Multimodal visual-somatosensory integration in saccade generation

Amlot, Richard, Walker, Robin, Spence, Charles and Driver, Jon

(2003)

Amlot, Richard, Walker, Robin, Spence, Charles and Driver, Jon (2003) Multimodal visual-somatosensory integration in saccade generation. Neuropsychologia, 41 (1). pp. .

Our Full Text Deposits

Full text access: Open

Full Text - 352.29 KB

Links to Copies of this Item Held Elsewhere


Abstract

Neurophysiological studies have demonstrated multisensory interaction effects in the neural structures involved in saccade generation when visual, auditory or somatosensory stimuli are presented bimodally. Visual-auditory interaction effects have been demonstrated in numerous behavioural studies of saccades but little is known about interaction effects involving somatosensory stimuli. The present study examined visual-somatosensory interaction effects on saccade generation using a multisensory paradigm, whereby task-irrelevant distractors appeared spatially-coincident with, or remote from the designated saccade target. Somatosensory distractors reduced the latency of saccades when presented before the visual target and the greatest facilitation effect was observed with spatially-coincident stimuli. Visual distractors spatially-coincident with a somatosensory target reduced latency (and increased peak velocity) when presented before and after the target. Visual distractors contralateral to somatosensory targets increased saccade latency and produced high error rates of saccades made to the distractor. The high error rates and latency modulation with visual distractors is consistent with a bias for visual stimuli in the saccadic system. In the visual target condition, saccade latency was modulated by a somatosensory distractor that was entirely task-irrelevant and this effect was always greatest with spatially-coincident distractors. The multisensory distractor effects are discussed in terms of saccades being programmed to the non-target modality, the early triggering of a non-spatial saccade 'when' signal, and multisensory neuronal enhancement effects.

Information about this Version

This is a Published version
This version's date is: 2003
This item is peer reviewed

Link to this Version

https://repository.royalholloway.ac.uk/items/00fb1d97-0b1f-05d3-c3ae-bc8acd8baaca/1/

Item TypeJournal Article
TitleMultimodal visual-somatosensory integration in saccade generation
AuthorsAmlot, Richard
Walker, Robin
Spence, Charles
Driver, Jon
Uncontrolled Keywordssaccades, multisensory, somatosensory, visual, crossmodal
DepartmentsFaculty of Science\Psychology
Research Groups and Centres\Psychology\Vision Research Group

Identifiers

doi10.1016/S0028-3932(02)00139-2

Deposited by () on 23-Dec-2009 in Royal Holloway Research Online.Last modified on 29-Jun-2011

References

References
1. O. Blanke and O.J. Grüsser , Saccades guided by somatosensory stimuli. Vision Research 41 (2001), pp. 2407–2412. SummaryPlus | Full Text + Links | PDF (123 K)

2. H. Colonius and P. Arndt , A two-stage model for visual–auditory interaction in saccadic latencies. Perception and Psychophysics 63 (2001), pp. 126–147. Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

3. M. Doyle and R. Walker , Multisensory interactions in saccade target selection: curved saccade trajectories. Experimental Brain Research 142 (2002), pp. 116–130. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

4. S. Everling and B. Fischer , The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36 (1998), pp. 885–900.

5. J.M. Findlay and R. Walker , A model of saccade generation based on parallel processing and competitive inhibition. Behavioral and Brain Sciences 22 (1999), pp. 661–721. Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

6. B. Fischer and H. Weber , Effects of procues on error rate and reaction times of antisaccades in human subjects. Experimental Brain Research 109 (1996), pp. 507–512. Abstract-EMBASE | Abstract-MEDLINE | $Order Document

7. B. Fischer and H. Weber , Effect of pre-cues on voluntary and reflexive saccade generation. I. anti-cues for pro-saccades. Experimental Brain Research 120 (1998), pp. 403–416. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

8. M.A. Frens and A.J. Van Opstal , Visual–auditory interactions modulate saccade-related activity in monkey superior colliculus. Brain Research Bulletin 46 (1998), pp. 211–224. SummaryPlus | Full Text + Links | PDF (704 K)

9. M.A. Frens, A.J. Van Opstal and R.F. Van der Willigen , Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Perception and Psychophysics 57 (1995), pp. 802–816. Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

10. J.M. Groh and D.L. Sparks , Behavioral characteristics. I. Journal of Neurophysiology 75 (1996), pp. 412–427. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

11. J.M. Groh and D.L. Sparks , Saccades to somatosensory targets. II. Motor convergence in primate superior colliculus. Journal of Neurophysiology 75 (1996), pp. 428–438. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

12. J.M. Groh and D.L. Sparks , Saccades to somatosensory targets. III. Eye-position dependent somatosensory activity in primate superior colliculus. Journal of Neurophysiology 75 (1996), pp. 439–453. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

13. P.E. Hallett , Primary and secondary saccades to goals defined by instructions. Vision Research 18 (1978), pp. 1279–1296. Abstract | Abstract + References | PDF (1692 K)

14. L.K. Harrington and C.K. Peck , Spatial disparity affects visual–auditory interactions in sensorimotor processing. Experimental Brain Research 122 (1998), pp. 247–252. Abstract-EMBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

15. R.S. Heffner and H.E. Heffner , Visual factors in sound localization in mammals. Journal of Comparative Neurology 317 (1992), pp. 219–232. Abstract-EMBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

16. H.C. Hughes, P.A. Reuter-Lorenz, G. Nozawa and R. Fendrich , Visual–auditory interactions in sensorimotor processing: saccades versus manual responses. Journal of Experimental Psychology: Human Perception and Performance 20 (1994), pp. 131–153. Abstract | Abstract + References | PDF (1881 K)

17. M.A. Meredith and B.E. Stein , Visual, auditory, and somatosensory convergence on cells in superior colliculus results in multisensory integration. Journal of Neurophysiology 56 (1986), pp. 640–662. Abstract-EMBASE | Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

18. A. Mokler and B. Fischer , The recognition and correction of involuntary prosaccades in an antisaccade task. Experimental Brain Research 125 (1999), pp. 511–516. Abstract-EMBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

19. D.P. Munoz and B.D. Corneil , Evidence for interactions between target selection and visual fixation for saccade generation in humans. Experimental Brain Research 103 (1995), pp. 168–173. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document

20. D.P. Munoz and R.H. Wurtz , Fixation cells in monkey superior colliculus. I. Characteristics of cell discharge. Journal of Neurophysiology 70 (1993), pp. 559–575. Abstract-EMBASE | Abstract-MEDLINE | $Order Document

21. D.P. Munoz and R.H. Wurtz , Fixation cells in monkey superior colliculus. II. Reversible activation and deactivation. Journal of Neurophysiology 70 (1993), pp. 576–589. Abstract-EMBASE | Abstract-MEDLINE | $Order Document

22. S.F.W. Neggers and H. Bekkering , Integration of visual and somatosensory target information in goal-directed eye and arm movements. Experimental Brain Research 125 (1999), pp. 97–107. Abstract-EMBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

23. E. Olivier, M.C. Dorris and D.P. Munoz , Lateral interactions in the superior colliculus, not an extended fixation zone, can account for the remote distractor effect. Behavioral and Brain Sciences 22 (1999), pp. 694–695. Abstract-EMBASE | Abstract-Elsevier BIOBASE | $Order Document | Full Text via CrossRef

24. P.A. Reuter-Lorenz, H.M. Oonk, L.L. Barnes and H.C. Hughes , Effects of warning signals and fixation point offsets on the latencies of pro versus anti-saccades: implications for an interpretation of the gap effect. Experimental Brain Research 103 (1995), pp. 287–293. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document

25. G. Rizzolatti, L. Riggio, I. Dascola and C. Umiltà , Reorienting attention across the horizontal and vertical meridians: evidence in favour of a premotor theory of attention. Neuropsychologia 25 (1987), pp. 31–40. Abstract | Abstract + References | PDF (945 K)

26. L.E. Ross and S.M. Ross , Saccade latency and warning signals: stimulus onset, offset, and change as warning events. Perception and Psychophysics 27 (1980), pp. 251–257. Abstract-EMBASE | Abstract-MEDLINE | $Order Document

27. S.M. Ross and L.E. Ross , Saccade latency and warning signals: effects of auditory and visual stimulus onset and offset. Perception and Psychophysics 29 (1981), pp. 429–437. Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

28. Sparks DL, Hartwich-Young R. The deep layers of the superior colliculus. In: Wurtz RH, Goldberg ME, editors. The neurobiology of saccadic eye movements. Reviews of oculomotor research, vol. 3. Amsterdam: Elsevier, 1989. p. 213–55.

29. C. Spence, M.R. Nicholls and J. Driver , The cost of expecting events in the wrong sensory modality. Perception and Psychophysics 63 (2001), pp. 330–336. Abstract-MEDLINE | Abstract-PsycINFO | $Order Document

30. Stein BE, Meredith MA. The merging of the senses. Cambridge MA: MIT Press, 1993.

31. G. Tassinari and D. Campara , Consequences of covert orienting to non-informative stimuli of different modalities: a unitary mechanism?. Neuropsychologia 34 (1996), pp. 235–245. Abstract | Abstract + References | PDF (1208 K)

32. T.P. Trappenberg, M.C. Dorris, D.P. Munoz and R.M. Klein , A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience 13 (2001), pp. 256–271. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-INSPEC | Abstract-MEDLINE | Abstract-PsycINFO | $Order Document | Full Text via CrossRef

33. R. Walker, H. Deubel, W.X. Schneider and J.M. Findlay , Effect of remote distractors on saccade programming: evidence for an extended fixation zone. Journal of Neurophysiology 78 (1997), pp. 1108–1119. Abstract-EMBASE | Abstract-MEDLINE | $Order Document

34. R. Walker, R.W. Kentridge and J.M. Findlay , Independent contributions of the orienting of attention, fixation offset and bilateral stimulation on human saccadic latency. Experimental Brain Research 103 (1995), pp. 294–310. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document

35. R. Walker, D. Walker, M. Husain and C. Kennard , Control of voluntary and reflexive saccades. Experimental Brain Research 130 (2000), pp. 540–544. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

36. H. Weber, N. Dürr and B. Fischer , Effect of pre-cues on voluntary and reflexive saccade generation. II. Effect of pro-cues for anti-saccades. Experimental Brain Research 120 (1998), pp. 417–431. Abstract-EMBASE | Abstract-Elsevier BIOBASE | Abstract-MEDLINE | $Order Document | Full Text via CrossRef

37. M.G. Wenban-Smith and J.M. Findlay , Express saccades: is there a separate population in humans?. Experimental Brain Research 87 (1991), pp. 218–222. Abstract-EMBASE | Abstract-MEDLINE | $Order Document

38. Wurtz RH. Vision for the control of movement. In Gazzaniga MS, editor. Cognitive neuroscience: a reader. Oxford: Blackwell, 2000. p. 341–65.


Details