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1. Introduction. A Pisot number is a real algebraic integer, θ, such
that θ > 1 and all conjugates of θ (other than θ itself) have modulus less
than 1. The set of all Pisot numbers is usually denoted S (after Salem).

Suppose that r, k, a1, . . . , ar−k are all integers with r ≥ 2, 0 ≤ k ≤ r,
ai ≥ 2 (1 ≤ i ≤ r − k). If r = 2 and k = 0, then we exclude a1 = a2 = 2.
Then it was shown in [1] that the only roots of the equation

(1)
r−k∑

i=1

zai−1 − 1
zai − 1

+
k

z
= 1

are a certain Pisot number θr,k(a1, . . . , ar−k), say, and its conjugates. Let
U be the set of all such Pisot numbers (T being used for Salem numbers!).
Then (see [1])

• U is a proper subset of S;
• trace : U → Z is surjective.

In particular, there exist Pisot numbers of negative trace.
Indeed a construction was given in [1] which could produce Pisot num-

bers of any desired trace. Unfortunately, to produce negative trace the con-
struction required that the degree of the Pisot number should be huge. An
example was given (not claimed to be best-possible!) with trace −5 and
degree 141 731 565 070 951.

In this paper it is shown how to construct Pisot numbers with negative
trace and much smaller degree: the current record is 23 837. This cannot be
too far from minimal for elements of U , in that a key result of this paper
is that for minimality we may assume that each ai is a product of at least
four distinct prime factors. It is hoped that a second, more computational,
paper will establish several other extremal results. The ultimate goal is to
find the smallest degree of any element of S with negative trace, and finding
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the minimal degree for elements of U with negative trace would be a step
along the way.

2. Formulas for the degree and trace. To compute the minimal
polynomial of θr,k(a1, . . . , ar−k) we need to clear denominators in (1). If we
multiply (1) by the dth cyclotomic polynomial for every d > 1 dividing one
of the ai, and multiply by z if k > 0, then the denominators will have been
cleared. It was shown in [1], by computing residues at all relevant dth roots
of 1, that nothing less will do. Hence we can read off formulas for the degree
and trace:

(2) degree(θr,k) =
∑

1<d|ai for some i

ϕ(d) + ε,

where
ε =

{
0 if k = 0,
1 if k > 0

and

(3) trace(θr,k) = r +
∑

1<d|ai for some i

µ(d) .

Here ϕ and µ are Euler’s totient function and the Möbius function respec-
tively.

From (2) and (3) we see immediately that in seeking negative trace with
minimal degree we must have k = 0. From now on we restrict to k = 0,
and write θr(a1, . . . , ar) for θr,0(a1, . . . , ar). We shall now always have ε = 0
in (2).

Applying inclusion-exclusion to (2) gives an alternative degree formula,
which may be easier to use for computations:

degree(θr) = − 1 +
∑

i

ai −
∑

i<j

gcd(ai, aj)(4)

+
∑

i<j<k

gcd(ai, aj , ak)− . . .

Similarly we get a second formula for the trace:

(5) trace(θr) =
∑

S⊆{a1,...,ar}, |S|≥2, gcd(S)>1

(−1)|S|,

where gcd({x, y, z, . . .}) means gcd(x, y, z, . . .).
Suppose that there are n distinct primes dividing a1, . . . , ar. Then (3)

may be written

(6) trace(θr) = r − n+
∑

d|ai for some i, ω(d)≥2

µ(d),

where ω(d) is the number of distinct prime factors of d.
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We glean two obvious minimality conditions from these formulas. Sup-
pose that θr(a1, . . . , ar) has minimal degree amongst elements of U with
negative trace. Then from (3) and (2) we see that

(7) Each ai is squarefree.

Moreover (3) shows that the trace depends only on the pattern of the primes
dividing a1, . . . , ar, not on the primes themselves. Hence from (2) we find
that for minimality

(8)
If p1, . . . , pn are the distinct primes dividing a1, . . . , ar,

then p1, . . . , pn are the first n primes in some order.

In what follows, we shall suppose that (7) and (8) always hold.

3. Dual Pisot numbers. Suppose that θr(a1, . . . , ar) ∈ U , with
θr(a1, . . . , ar) satisfying (7) and (8). Thus p1, . . . , pn are the first n primes
in some order. Let q1, . . . , qr be the first r primes. We define the dual of
θr(a1, . . . , ar) to be θn(b1, . . . , bn), where bj (1 ≤ j ≤ n) is the product of
those qi for which ai is divisible by pj . Note that the dual Pisot number
does not depend on the ordering of p1, . . . , pn: changing the order merely
has the affect of permuting b1, . . . , bn, which does not change θn(b1, . . . , bn).

For example, if r = 3, n = 4, then the dual of θ3(p1p2p3, p1p2, p3p4)
is θ4(q1q2, q1q2, q1q3, q3). (We have b1 = q1q2 since p1 divides a1 and a2,
etc. If we chose to swap the labels p3 and p4, then the dual would be
θ4(q1q2, q1q2, q3, q1q3) = θ4(q1q2, q1q2, q1q3, q3).)

The dual of the dual of θr(a1, . . . , ar) is just θr(a1, . . . , ar).
Under duality, a subset S of {a1, . . . , ar} for which gcd(S) > 1 corre-

sponds to a divisor d > 1 of one of the bj , and (−1)|S| = (−1)ω(d) = µ(d).
Hence ∑

S⊆{a1,...,ar}, |S|≥2, gcd(S)>1

(−1)|S| =
∑

d|bj for some j, ω(d)≥2

µ(d).

Comparing (5) and (6) we have

(9) trace(θn(b1, . . . , bn)) = n− r + trace(θr(a1, . . . , ar)).

For an example of the usefulness of this, one can check from, e.g., (6) that
for negative trace we must have r ≥ 6. Duality immediately tells us that
for negative trace (assuming (7) and (8)) we must have n ≥ 6. This will
be pursued further in a second paper, where it will be shown that we need
n ≥ 8, which is a best-possible bound.

4. More minimality conditions. Deleting all appearances of any pi
(1 ≤ i ≤ n) from a1, . . . , ar will reduce the degree, by (2). In seeking minimal
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degree with negative trace, we may therefore impose a third minimality
condition, in addition to (7) and (8):

(10)
Deleting all appearances of any pi will

produce a Pisot number with larger trace.

Of course, we cannot delete all appearances of pi if this would reduce r
to 0 or 1, or to 2 with a1 = a2 = 2. Any such primes pi will be excluded
from consideration in checking (10): we only delete deletable primes.

Dually we insist that

(11)
Deleting any ai will produce a

Pisot number with larger trace.

Again, if r = 2 then we deem that (11) is satisfied although we cannot
delete any ai; or if r = 3 then we only consider deletions which do not result
in r = a1 = a2 = 2 (if any).

Note that deleting an ai may not decrease the degree. Certainly the
degree is never increased, but it will be unchanged if ai divides some other
aj . In this case the trace would be decreased by 1, using (3). Thus (11)
implies that

(12)
No ai divides any other aj .

(Unless r = 2, or r = 3 and a1 = a2 = a3 = 2.)

We label this as a new condition, for convenience, although as remarked
it follows from (11). In effect we are insisting that amongst elements of U
with negative trace and minimal degree, we seek those with smallest (most
negative) trace.

As a final minimality condition, we consider the effect of permuting the
primes p1, . . . , pn which divide any of a1, . . . , ar. This leaves the trace un-
changed, but may change the degree, so we insist that:

(13) No permutation of p1, . . . , pn will lower the degree.

Definition. If θr(a1, . . . , ar) satisfies (7), (8), (10) and (11) (and hence
also (12)), and has negative trace, then we say that θr(a1, . . . , ar) has a
locally minimal pattern of primes. If also (13) holds, then we say that
θr(a1, . . . , ar) is locally minimal.

In seeking minimal degree amongst elements of U with negative trace,
we may restrict to locally minimal elements.

5. The two main theorems. The following result is extremely use-
ful, and immediately provides a nontrivial lower bound on the degrees of
elements of U with negative trace, although we shall not pursue this here.
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Theorem 1. If θr(a1, . . . , ar) has a locally minimal pattern of primes,
then each ai is divisible by at least four primes.

We shall see that four is best-possible: indeed there are locally minimal
elements of U for which each ai is divisible by exactly four primes.

From the proof, we isolate the following lemma, which will prove useful
in constructing families of Pisot numbers with negative trace.

Lemma. Let θr(a1, . . . , ar) ∈ U . Let p1, . . . , ps be the distinct primes
dividing a1. For each T ⊆ {1, . . . , s}, let ST be the subset of {a2, . . . , ar}
containing those ai (2 ≤ i ≤ r) which are divisible by all the primes in T :

(14) ST = {ai : 2 ≤ i ≤ r, pj | ai for all j ∈ T}.
Then

trace(θr(a1, . . . , ar))

=
∑

∅6=T⊆{1,...,s}, ST 6=∅
(−1)|T |+1 +

∑

S⊆{a2,...,ar}, |S|≥2, gcd(S)>1

(−1)|S|.

P r o o f. We use (5), and split the sum as Σ1 +Σ2, where

Σ1 =
∑

S⊆{a1,...,ar}, a1∈S, |S|≥2, gcd(S)>1

(−1)|S|,

Σ2 =
∑

S⊆{a2,...,ar}, |S|≥2, gcd(S)>1

(−1)|S|.

We may suppose that a1 = p1 . . . ps, since repeated prime factors in a1

change neither Σ1 nor Σ2.
For each subset S ⊆ {a1, . . . , ar} such that a1 ∈ S, |S| ≥ 2 and gcd(S) >

1, we consider those nonempty T contained in {1, . . . , s} such that
∏
i∈T pi

divides gcd(S) (equivalently, S − {a1} ⊆ ST ). For such S we have
∑

T 6=∅,∏i∈T pi| gcd(S)

(−1)|T |+1 = 1,

hence

Σ1 =
∑

S

(−1)|S|
∑

T 6=∅,∏i∈T pi|gcd(S)

(−1)|T |+1

=
∑

T 6=∅
(−1)|T |+1

∑

S−{a1}⊆ST , |S|≥2, a1∈S
(−1)|S|

=
∑

T 6=∅, ST 6=∅
(−1)|T |+1,

as desired.



378 J. McKee

Note that Σ2 is the trace of the Pisot number obtained by deleting a1.
Of course there is nothing special about a1, and the Lemma tells us how to
compute the change of trace if we add or delete any ai.

For example, with θ3(6, 10, 15), we have a1 = 6 = 2 × 3, S{2} = {10},
S{3} = {15}, S{2,3} = ∅, and

∑

T 6=∅, ST 6=∅
(−1)|T |+1 = (−1)|{2}|+1 + (−1)|{3}|+1 = 1 + 1 = 2,

so we have

trace(θ3(6, 10, 15)) = 2 + trace(θ2(10, 15)) = 3.

Proof of Theorem 1. Suppose that θr(a1, . . . , ar) has a locally minimal
pattern of primes. By (7) we have a1 = p1 . . . ps for distinct primes p1, . . . , ps.
For negative trace, one readily checks from (3) or (5) that r > 3, so that
θr−1(a2, . . . , ar) ∈ U and has larger trace. By the Lemma,

Σ1 =
∑

∅6=T⊆{1,...,s}, ST 6=∅
(−1)|T |+1 < 0,

where ST is defined by (14).
Note that by (10), S{pi} 6= ∅ for any i, else we could delete pi without

changing the trace.
If s = 1, then

Σ1 =
∑

T={p1}
(−1)|T |+1 = 1.

If s = 2, then either

Σ1 =
∑

T∈{{p1},{p2}}
(−1)|T |+1 = 2,

or
Σ1 =

∑

T∈{{p1},{p2},{p1,p2}}
(−1)|T |+1 = 1.

If s = 3, then if S{p1,p2,p3} 6= ∅ we have Σ1 = 3 − 3 + 1 = 1, else
Σ1 ≥ 3− 3 = 0.

Hence we must have s ≥ 4. There is nothing special about a1, so each ai
must be divisible by at least four primes.

One can also prove Theorem 1 using (3), rather than (5). I have chosen
to go via (5) because the Lemma will be useful later.

If a1 = p1p2p3p4, then we can be rather precise about the possible ways
in which the primes p1, p2, p3, p4 appear amongst the other ai:

Theorem 2. Suppose that θr(a1, . . . , ar) has a locally minimal pattern
of primes, and that a1 = p1p2p3p4 with p1, p2, p3, p4 primes. Then, after
relabelling the primes and the ai if necessary , we have one of three cases:



Pisot numbers with negative trace 379

Case A:
a1 = p1 · p2 · p3 · p4,

a2 = p1 · p2 · b2,
a3 = p1 · p3 · b3,
a4 = p1 · p4 · b4,
a5 = p2 · p3 · b5,
a6 = p2 · p4 · b6,
a7 = p3 · p4 · b7,

with b2, . . . , b7 coprime to a1. We may have r > 7, but no further ai can be
divisible by any three of p1, p2, p3, p4.

Case B:
a1 = p1 · p2 · p3 · p4,

a2 = p1 · p2 · b2,
a3 = p1 · p3 · b3,
a4 = p1 · p4 · b4,
a5 = p2 · p3 · b5,
a6 = p2 · p4 · b6,

with b2, . . . , b6 coprime to a1. Each further ai is divisible by at most two of
p1, p2, p3, p4, and is not divisible by p3p4.

Case C:
a1 = p1 · p2 · p3 · p4,

a2 = p1 · p2 · p3 · b2,
a3 = p1 · p4 · b3,
a4 = p2 · p4 · b4,
a5 = p3 · p4 · b5,

with b2, . . . , b5 coprime to a1. Each further ai is divisible by at most two of
p1, p2, p3, p4, except that we allow divisibility by p1p2p3.

In Case A, deleting a1 increases the trace by 2; in Cases B and C ,
deleting a1 increases the trace by 1.

P r o o f. As in the proof of Theorem 1, we have S{pi} 6= ∅ for i = 1, 2, 3, 4.
Suppose first that S{pi,pj ,pk} 6= ∅ for some triple of primes (pi, pj , pk),

with ST defined by (14). Relabelling, we may assume that S{p1,p2,p3} 6= ∅.
Then, with notation as in the Lemma,

Σ1 = 3− 3 + 1 +
∑

p4∈T, ST 6=∅
(−1)|T |+1,
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so we require ∑

p4∈T, ST 6=∅
(−1)|T |+1 ≤ −2.

We can achieve this if and only if S{p1,p4}, S{p2,p4}, S{p3,p4} are all nonempty,
and S{pi,pj ,p4} = ∅ for any 1 ≤ i < j < 4. This gives us Case C.

Next we have the possibility that no three of p1, p2, p3, p4 divide any
one of a2, . . . , ar. To achieve Σ1 < 0 we need S{pi,pj} 6= ∅ for either 5 or 6
of the possible pairs 1 ≤ i < j ≤ 4, giving Case B or Case A respectively.

Corollary. If θr(a1, . . . , ar) has a locally minimal pattern of primes
and if each pi divides exactly three of the ai, then each ai is divisible by at
least five primes.

We shall see that “five” is best-possible.

P r o o f. Examining the patterns in Cases A, B, C of Theorem 2, we see
that at least one of p1, p2, p3, p4 divides at least four of the ai.

6. The symmetry group, and some locally minimal examples.
Given a locally minimal pattern of n primes, we still have n! permutations
of the first n primes to consider in order to find a locally minimal Pisot
number. Exploiting symmetry speeds this search.

Definition. The symmetry group of θr(a1, . . . , ar) is the group con-
sisting of those permutations of p1, . . . , pn which induce permutations of
a1, . . . , ar (and so fix the Pisot number).

For example, let us consider the pattern given in [1] with trace −5. This
took r = 6, n = 20, with each prime dividing exactly three of the ai: all(6

3

)
= 20 triples being covered. By (5), trace =

(6
2

)− (63
)

= −5.
This pattern is locally minimal, but we can delete any four of the pi and

still have a negative trace.
It seems at first natural to delete four primes as symmetrically as possi-

ble, giving the following locally minimal pattern with r = 6, n = 16:

a1 = p2 · p3 · p6 · p7 · p8 · p11 · p13 · p14,

a2 = p2 · p4 · p5 · p6 · p8 · p14 · p15 · p16,

a3 = p2 · p4 · p5 · p9 · p10 · p11 · p12 · p13,

a4 = p1 · p4 · p7 · p8 · p10 · p12 · p13 · p15,

a5 = p1 · p3 · p6 · p9 · p10 · p11 · p15 · p16,

a6 = p1 · p3 · p5 · p7 · p9 · p12 · p14 · p16.

The symmetry group has order 24, and is isomorphic to S4. It is gener-
ated by

(p1 p16)(p2 p13)(p3 p9)(p4 p8)(p5 p7)(p6 p10)(p12 p14),
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(p1 p8)(p2 p9)(p3 p14)(p4 p10)(p5 p11)(p6 p16)(p12 p13),

and

(p1 p12)(p2 p6)(p3 p13)(p4 p16)(p5 p15)(p8 p14)(p9 p10).

For this case, I shall give a proof that this is indeed the symmetry group: in
later (simpler!) cases I shall leave the justification as an exercise.

Certainly the above three permutations of p1, . . . , p16 induce permuta-
tions of a1, . . . , a6, namely

(a1 a3)(a2 a4),

(a1 a6)(a2 a5),

and

(a4 a6)(a3 a5).

Also they induce permutations of {p5, p7, p11, p15}, namely (p5 p7), (p5 p11),
and (p5 p15). These three transpositions generate the full symmetric group
on {p5, p7, p11, p15}, so our symmetry group, G say, contains a subgroup
isomorphic to S4.

It is enough now to show that any element of G which fixes each of
p5, p7, p11, p15, fixes every prime. First note that each ai is divisible by a
uniquely-determined pair of primes from {p5, p7, p11, p15}, so any element of
G fixing each of p5, p7, p11, p15 fixes each of a1, . . . , a6. But each pi divides a
uniquely-determined triple of a1, . . . , a6, so any element ofG fixing a1, . . . , a6

must fix p1, . . . , p16, and we are done.
A pleasing geometrical interpretation of this symmetry group was sup-

plied by Chris Smyth and Elmer Rees. We can view a1, . . . , a6 as the edges of
a tetrahedron. Each pi appears in three edges, and the four missing triples
can be taken to correspond to the four faces of the tetrahedron (or their
complements). The symmetry group then corresponds to permutations of
the vertices of the tetrahedron.

In principle, utilising this symmetry group reduces the search for a lo-
cally minimal Pisot number with this pattern of primes by a factor of 24. In
practice, I found it easier to fix p1 and p2, then loop through all 14! possi-
bilities for p3, . . . , p16. Under the action of G there are twelve orbits for the
ordered pair (p1, p2), so I searched through 12 × 14! possibilities, gaining a
factor of 20 rather than 24. The search took two weeks (rather than forty) on
my home PC. The minimal degree is 34 250 586 162, achieved, for example,
when

(p1, . . . , p16) = (7, 17, 47, 29, 2, 13, 3, 23, 31, 19, 5, 53, 37, 43, 11, 41) .

In fact one can do a little better (also noted by Chris Smyth) by deleting
four triples from the twenty asymmetrically, deleting all those dividing both
a1 and a2. This leaves gcd(a1, a2) = 1, allowing deletion of a further prime,
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giving trace 14 − 15 = −1 (using (5)). There are two essentially distinct
ways of deleting this fifth prime, the first of which shows that the “five” in
the Corollary to Theorem 2 is best-possible.

The first possibility is:

a1 = p1 · p2 · p3 · p4 · p5,

a2 = p6 · p7 · p8 · p9 · p10 · p11,

a3 = p1 · p3 · p6 · p7 · p11 · p12 · p13 · p15,

a4 = p4 · p5 · p6 · p8 · p10 · p12 · p14 · p15,

a5 = p2 · p3 · p4 · p7 · p8 · p9 · p13 · p14 · p15,

a6 = p1 · p2 · p5 · p9 · p10 · p11 · p12 · p13 · p14.

The symmetry group has order 4, isomorphic to C2×C2. The minimal degree
is 12 160 477 837.

Moving p15 from a5 to a1 gives the second possibility:

a1 = p1 · p2 · p3 · p4 · p5 · p15,

a2 = p6 · p7 · p8 · p9 · p10 · p11,

a3 = p1 · p3 · p6 · p7 · p11 · p12 · p13 · p15,

a4 = p4 · p5 · p6 · p8 · p10 · p12 · p14 · p15,

a5 = p2 · p3 · p4 · p7 · p8 · p9 · p13 · p14,

a6 = p1 · p2 · p5 · p9 · p10 · p11 · p12 · p13 · p14.

There are more symmetries here: 12 of them, with the symmetry group
isomorphic to S3 × C2. The minimal degree is 7 627 134 993.

Even with r = 6 one can do much better, by allowing the pj to divide
more than three of the ai. Consider the following ten-prime pattern:

a1 = p1 · p2 · p4 · p9 · p10,

a2 = p1 · p2 · p5 · p6 · p7 · p8,

a3 = p1 · p3 · p5 · p6 · p7,

a4 = p1 · p3 · p4 · p8 · p9 · p10,

a5 = p2 · p3 · p5 · p7 · p9,

a6 = p2 · p3 · p4 · p6 · p8 · p10.

All 15 pairs (ai, aj) have gcd > 1, as do 19 of the 20 triples (the missing
one being (a1, a3, a5)). There are three primes appearing four times, giving
trace 15 − 19 + 3 = −1 (using (5)). The symmetry group is S3, and the
minimal degree is 1 106 669, achieved, for example, when (p1, . . . , p10) =
(3, 5, 7, 29, 19, 13, 17, 2, 23, 11).
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7. Constructing smaller examples. We can use the patterns of Theo-
rem 2, and the result of the Lemma, to try to build locally minimal patterns
with smaller degree.

To accommodate Case A of Theorem 2, we need r ≥ 7, and the total
number of primes, counting with multiplicity, must be at least 28. The fol-
lowing remarkable pattern would be locally minimal, if only it had negative
trace!

a1 = p1 · p2 · p3 · p4,

a2 = p1 · p2 · p5 · p6,

a3 = p1 · p3 · p5 · p7,

a4 = p1 · p4 · p6 · p7,

a5 = p2 · p3 · p6 · p7,

a6 = p2 · p4 · p5 · p7,

a7 = p3 · p4 · p5 · p6.

This satisfies all the minimality conditions (7), (8), (10), (11), but has
trace 21−28+7 = 0 (using (5)). The pattern is self-dual. Each pair of the ai
is divisible by exactly two of the pj . With only 28 of the 35 possible triples
covered, we can modify this pattern to give trace −1 by adding an eighth
prime, dividing, say, a1, a2 and a7. Relabelling we get a locally minimal
pattern with a total of only 31 primes (the record: presumably optimal):

a1 = p1 · p2 · p3 · p4 · p8,

a2 = p1 · p2 · p5 · p6 · p8,

a3 = p3 · p4 · p5 · p6 · p8,

a4 = p1 · p3 · p5 · p7,

a5 = p1 · p4 · p6 · p7,

a6 = p2 · p3 · p6 · p7,

a7 = p2 · p4 · p5 · p7.

The trace is 21 − 29 + 7 = −1 (using (5)). The symmetry group is
isomorphic to S4 (permuting a4, a5, a6, a7, and exhibiting S3 as a quotient
group, permuting a1, a2, a3). The minimal degree for this pattern is 69 213,
achieved when a1, . . . , a7 is some permutation of 14 586, 15 470, 19 635, 570,
2 926, 5 187, 13 585.

It would be nice to have each ai divisible by only 4 primes. With r = 7,
8, or 9, this is impossible. But for r = 10 we can achieve it. The simplest
construction takes two copies of Case A in Theorem 2, based on primes
{p1, p2, p3, p4} and {p5, p6, p7, p8}, and glues them together to give a self-
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dual pattern with r = n = 8:

a1 = p1 · p2 · p3 · p4,

a2 = p1 · p2 · p5 · p6,

a3 = p1 · p3 · p5 · p7,

a4 = p1 · p4 · p6 · p7,

a5 = p2 · p3 · p5 · p8,

a6 = p2 · p4 · p6 · p8,

a7 = p3 · p4 · p7 · p8,

a8 = p5 · p6 · p7 · p8.

Here the trace is 24− 32 + 8 = 0 (using (5)). Using the Lemma, we see that
although there are no values of a9 with ω(a9) = 4 which would make the
trace negative, there are several that preserve trace 0, such as

a9 = p1 · p2 · p7 · p8,

giving Σ1 = 4 − 4 = 0 (S{p1,p8} = S{p2,p7} = ∅), in the notation of the
Lemma. And now if we add, for example,

a10 = p1 · p3 · p6 · p8

we achieve Σ1 = 4− 5 = −1, and trace(θ10(a1, . . . , a10)) = −1. In terms of
(5) we have trace = 41− 80 + 52− 16 + 2 = −1. Although we have a total
of forty primes, we can achieve a smaller degree than before, helped by each
ai being divisible by only 4 primes. The symmetry group is nonabelian of
order 16, and the minimal degree is 25 125, achieved by

a1 = 2 · 5 · 7 · 17,

a2 = 2 · 5 · 11 · 19,

a3 = 2 · 7 · 13 · 19,

a4 = 2 · 11 · 13 · 17,

a5 = 3 · 5 · 7 · 19,

a6 = 3 · 5 · 11 · 17,

a7 = 3 · 7 · 13 · 17,

a8 = 3 · 11 · 13 · 19,

a9 = 2 · 3 · 7 · 11,

a10 = 2 · 3 · 5 · 13.

We can do marginally better. Consider the first locally minimal pattern
of this section, with r = 7, n = 8, and 31 primes. The dual pattern has



Pisot numbers with negative trace 385

r = 8, n = 7, and trace 8− 7 + (−1) = 0, using (9):

a1 = p1 · p2 · p3 · p4,

a2 = p1 · p2 · p5 · p6,

a3 = p1 · p3 · p5 · p7,

a4 = p1 · p4 · p6 · p7,

a5 = p2 · p3 · p6 · p7,

a6 = p2 · p4 · p5 · p7,

a7 = p3 · p4 · p5 · p6,

a8 = p1 · p2 · p7

(after some relabelling). We can replace a8 by

a8 = p1 · p2 · p7 · p8

without changing the trace. Now adding

a9 = p1 · p4 · p5 · p8

preserves trace 0: Σ1 = 4− 4 = 0. Finally, adding

a10 = p3 · p4 · p7 · p8

gives us trace −1: Σ1 = 4 − 5 = −1. In terms of (5), we have trace =
42− 86 + 61− 21 + 3 = −1.

The gain over the previous pattern is that now we have three primes
appearing 6 times, rather than two, and one prime appearing only 3 times.
This allows us to have more smaller primes. The symmetry group is S3, and
the minimal degree is 23 837, achieved when a1, . . . , a10 is some permutation
of 390, 462, 1 190, 1 938, 1 995, 2 090, 2 805, 4 641, 4 862, 5 005.
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