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1 Introduction

The game theoretic predictions for repeated games crucially depend on whether

a game is finitely or infinitely repeated. In particular, cooperation can usually be

sustained only if the game has an infinitely repeated horizon. While many exper-

iments have shown that stable cooperation can nevertheless occur with finitely

many repetitions, a central question is how to address the theoretical dichotomy

between finitely and infinitely repeated games in the design of cooperation ex-

periments. This paper analyzes three termination rules commonly used in exper-

iments and compares their impact on cooperation rates.

The first termination rule is simply to repeat the stage game of the experi-

ment a finite number of times and to inform participants about the number of

repetitions in the instructions. This method is transparent as subjects have com-

mon knowledge about the length of the experiment just as they have about all

other aspects of the game. However, game-theoretic predictions from infinitely

repeated games do not apply with this termination rule. A further disadvantage

is that end-game effects may occur.

The second method is to refrain from informing participants about the actual

length of the experiment. This termination rule may help avoiding end-game

effects. The main disadvantage of this termination rule is that it is difficult

to control for subjects’ beliefs regarding the number of periods. Holt (1985)

dismisses this method since he prefers to fully inform subjects about the things

to come in an experiment.

The third termination rule is to impose a random stopping rule to terminate

the experiment. The termination mechanism (e.g., the throw of a die) and the

termination probability are common knowledge. This method attempts to make

repeated game arguments relevant. The termination probability implies a dis-

count factor which allows predictions based on the infinitely repeated game to

be made. However, Selten, Mitzkewitz and Uhlich (1997) argue that infinitely

repeated games cannot be approximated in the laboratory. Subjects know for
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sure that the experiment is of some finite duration and that the experimenter

simply cannot continue “forever”. Therefore, backward induction arguments and

the logic of a finitely repeated game apply. On the positive side, a random end

might also help avoiding end-game effects.

This paper compares the three termination rules using a prisoner’s dilemma

as the stage game. To our knowledge, we are the first to compare the termination

rules in a unified frame though a few papers have analyzed some of the issues we

address (see the conclusion).

2 Theory and Experimental Design

The stage game underlying our cooperation experiments is the simple prisoner’s

dilemma in Table 1. This is a standard two-player prisoner’s dilemma with Si =

{defect, cooperate}, i=1 , 2 , as strategy sets (in the experiment, neutral labelling

for the strategies was used). The static Nash equilibrium of the game in Table 1

is {defect, defect}.

defect cooperate

defect 350, 350 1000, 50

cooperate 50, 1000 800, 800

Table 1: The stage game

Our four treatments reflect the above discussion of termination rules. In treat-

ment Known, the end of the experiment was given to the participants simply by

saying that the experiment would last for 22 periods. In treatment Unknown,

the length of the experiment (28 periods) was not mentioned to the participants

and the instructions merely said that the experiment would last at least 22 pe-

riods. In RandomLow, the instructions said that the experiment would last at

least 22 periods and then the experiment would continue with a probability of

1/6. In treatment RandomHigh, there were at least 22 periods and then the
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experiment would continue with a probability of 5/6.1

The subgame perfect Nash equilibrium predictions for the treatments are as

follows. The static Nash equilibrium, {defect, defect}, is also the unique pre-

diction of the finitely repeated game in treatment Known. In Unknown, we

cannot control for subjects’ prior on the termination of the experiment. The

static Nash equilibrium may apply but possibly repeated game arguments have

bite as well. If we ignore Selten, Mitzkewitz and Uhlich’s (1997) argument, we

can make predictions based on infinitely repeated games for the treatments with

a random end. From Stahl (1991), {cooperate, cooperate} is a subgame perfect

Nash equilibrium outcome of the infinitely repeated game if and only if the dis-

count factor is larger than 4/13 ≈ 0.31. Cooperation may thus only emerge in

RandomHigh. In RandomLow, the unique subgame perfect Nash equilibrium

is {defect, defect}.

The experiments were conducted in the experimental laboratory at Royal Hol-

loway, University of London. Ten pairs of subjects participated in each treatment,

so, in total, 80 students participated. Average payments were £7.20. Sessions

lasted about 45 minutes including time for reading the instructions.

3 Experimental Results

We start by looking at cooperation rates in the four treatments. In order to

take possible dependence of observations into account, we report the number of

cooperate choices per pair; see Table 2. This is also the unit of observation of the

statistical tests below. We refer to the first 22 periods, so the maximum is 44

cooperate choices.2

1We control for the minimum number of periods (rather than the expected number of pe-

riods) across treatments because an analysis of the impact of termination rules requires that

subjects play the same number of periods before the termination rule is triggered.
2In three out of the four sessions with a random end, play stopped after period 22. The

remaining session (RandomHigh) had 26 periods.
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Treatment cooperate choices per pair rate

Known 44 43 42 22 11 9 6 3 3 1 41.8%

Unknown 43 43 34 24 21 16 13 11 11 9 51.1%

RandomLow 43 43 43 37 30 19 16 13 12 8 60.0%

RandomHigh 44 44 43 33 32 31 17 13 7 6 61.3%

Table 2: Results by (ordered) pairs

Comparing treatments across the ten ranked pairs, there are three to six

pairs in each treatment who have a cooperation rate of 66% or more, and there

are also three to six pairs in each treatment who cooperate at a rate of less

than 33%. It seems remarkable that there are virtually no differences between

RandomLow and RandomHigh. In the Known treatment, there are three

pairs who virtually do not cooperate at all. Looking at the sum of cooperate

choices across all ten pairs, cooperation rates differ between treatments and the

treatments with random end seem to achieve better cooperations rates. However,

these differences are not significant.3 We conclude

Result 1. The termination rule does not have a significant effect on cooper-

ation rates.

Next, we turn to end-game effects. Comparing the average cooperation rate

in periods 1 to (t − 1) to the rate in period t with a related-sample Wilcoxon

test and separately for all treatments, we find significantly lower prices in periods

20, 21 and 22 in treatment Known (Wilcoxon related-sample test, p < 0.05).

To check for an end-game effect is important because to consider the sum of

cooperate choices across all periods is biased when an end-game effect occurs

in some treatments but not in others. Accordingly, excluding periods 20 to 22

implies slightly more even cooperation rates of 44.2%, 48.7%, 61.8% and 62.4%

3The p-values of the according Mann-Whitney U tests range between 0.19 (Known vs

RandomLow) and 0.85 (RandomLow vs RandomHigh).
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in Known, Unknown, RandomLow and RandomHigh respectively.
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Figure 1: Cooperation over time

Figure 1 shows the time path of cooperate choices in the experiments. The time

paths of the four treatments often overlap, so we show the data in two separate

figures. All treatments start at a level of around ten cooperate choices. Known

and Unknown stay at this level; after period 15 the number of cooperate choices

stays constant in Known but it increases in Unknown. Both RandomLow

and RandomHigh average at a higher level than the other treatments between

period five and period 15 (though this is not significant). Then cooperation

declines towards period 22 (as mentioned, again not significant).

Result 2. A known finite horizon leads to a significant end-game effect in the

last three periods. The other termination rules do not cause a comparable drop

in cooperation.
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Finally, we summarize the results regarding RandomLow and RandomHigh.

We do not observe different cooperation rates though cooperation is predicted to

occur only in RandomHigh. Moreover, one might expect that the continuation

probability affects behavior towards period 22, but, again, we do not observe such

any impact. We therefore conclude:

Result 3. In treatments with a random termination rule, the termination

probability does not significantly affect behavior.

4 Conclusion

In this paper, we analyze three termination rules for repeated game experiments.

In our data, we find that the termination rule does not have a significant effect

on cooperation rates though treatments with random end seem to achieve better

cooperations rates. When a random termination rule is implemented, the termi-

nation probability does not significantly affect behavior as results are virtually

identical in these treatments—in clear contrast to the prediction based on the

theory of infinitely repeated game. A known finite horizon leads to a significant

end-game effect while the other termination rules do not.

The results suggest that the choice of the termination rule for cooperation

experiments should be more determined by practical matters than by efforts to

match the requirements of infinitely repeated games. Practicality and trans-

parency presumably favor the commonly known finite horizon. The end-game

effects which may occur are often not troublesome; most researchers using this

termination rule simply test for them, and, if significant end-game effects occur,

they discard these periods from the analysis.

Our results are consistent with Engle-Warnick and Slonim (2003). They ran

trust game sessions with a known horizon of five periods and sessions with a

random stopping rule with a continuation probability of 0.8. With inexperienced

players, they find that the level of trust does not vary in the two treatments even
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though the repeated game was played twenty times. Roth and Murnighan (1978)

found that a higher continuation probability does lead to more cooperation in the

prisoner’s dilemma. However, in the modified setup analyzed in Murnighan and

Roth (1983), this could not be confirmed.4
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