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The asymptotic relative entropy of entanglement

K. Audenaert1, J. Eisert2,3, E. Jané2,4, M.B. Plenio2, S. Virmani2 and B. De Moor1
1 Katholieke Universiteit Leuven, Dept. of Electrical Engineering (ESAT-SISTA), B-3001 Leuven-Heverlee, Belgium

2 QOLS, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, SW7 2BW, UK
3 Institut für Physik, Universität Potsdam, 14469 Potsdam, Germany
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We present an analytical formula for the asymptotic relative entropy of entanglement w.r.t. PPT states for
Werner states of arbitrary dimension. We then demonstrate its validity using methods from convex optimization.
This is the first case in which the asymptotic value of a subadditive entanglement measure has been calculated.
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The systematic investigation of quantum entanglement is a
major goal of quantum information theory [1]. In the study of
entanglement manipulation one considers the interconversion
of different forms of entanglement by means of local quantum
operations and classical communication (LQCC). For pure bi-
partite states entanglement manipulation in both the finiteand
asymptotic limits is quite well understood. For pure states
necessary and sufficient conditions for the local interconvert-
ibility of entangled states are known. In the asymptotic limit
of infinitely many copies of a pure state, a single number, the
von Neumann entropy of a subsystem, appropriately quanti-
fies the degree of entanglement [2].

Much less is known about the entanglement of mixed states.
One approach is to defineentanglement measures, which are
functions of a state that cannot increase under local opera-
tions and provide constraints on possible local entanglement
manipulation protocols. These measures prove to be useful
mathematical and conceptual tools, and have interesting links
with other areas such as the study of channel capacities [3].
A number of such measures have been proposed, most no-
tably the entanglement of formation [3], the distillable entan-
glement [3,4], and the relative entropy of entanglement [4,5].
The distillable entanglement is defined as the asymptotic num-
ber of pure maximally entangled states that can be obtained
via LQCC from a supply of a given state. For mixed states the
distillable entanglement is exceedingly difficult to compute as
it is defined as an asymptotic quantity referring to infinitely
many copies of a quantum state. Therefore, upper bounds on
the distillable entanglement, in particular other entanglement
measures, are of major practical use. One such entanglement
measure is the relative entropy of entanglement, defined as

ER(σ) = min
ρ∈D

S(σ||ρ), (1)

for statesσ, whereD is the set of states with positive partial
transpose (PPT states), andS(σ||ρ) = tr[σ lg σ − σ lg ρ] (lg
signifieslog2). This function essentially quantifies the distin-
guishability ofσ from the set of PPT states. The setD can
also be taken to be the set of separable states [5]. However,
the set of PPT states is much easier to characterise, and the
resulting measure provides a tighter bound to the distillable
entanglement, one that is actually attained on pure states and

certain mixed states [3].
In general, efficient protocols for entanglement manipula-

tion require an asymptotic number of copies of the initial
state. Therefore, to address any question related to asymp-
totic entanglement manipulation, one will instead have to con-
sider asymptotic versions of the entanglement measures. For
a given measure of entanglementE, the asymptotic version
E∞ is defined as the average entanglement per copy in the
asymptotic limit [6,7],

E∞(σ) = lim
n→∞

E(σ⊗n)

n
. (2)

For example, the asymptotic cost of creating a mixed state by
LQCC from a supply of pure maximally entangled states is
given by the asymptotic entanglement of formation [7]. How-
ever, such asymptotic entanglement measures are difficult to
compute, and so far this task has not been accomplished ex-
cept for the very rare occasions where the measure in question
is known to be additive [8].
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FIG. 1. The asymptotic relative entropy of entanglement
E∞

R (σ(p)) of Werner states inCd⊗C
d as a function ofp (the weight

of the antisymmetric state) for several values ofd. The dashed lines
separate the two regimes of Eq. (3), ford = 10 and ford = 3.

In this Letter we present a general formula for the asymp-
totic relative entropy of entanglement for an important class
of bi-partite states, namely the Werner states of arbitrarydi-
mension [9]. These states are the only states that are invari-
ant under local unitaries of the formU ⊗ U . They can be
conveniently formulated in terms of the projectorsπ0 (π1) on

1

http://arXiv.org/abs/quant-ph/0103096v2


the symmetric (antisymmetric) subspaces of a Hilbert space
H = C

d ⊗ C
d. Denoting the permutation operator that inter-

changes the subsystems asπ, the projectors can be expressed
asπ0 = (11 + π)/2 andπ1 = (11 − π)/2. A general Werner
state is of the formσ(p) = pσ1 + (1− p)σ0, p ∈ [0, 1], where
σ0 = π0/tr[π0] andσ1 = π1/tr[π1]. Appropriately exploiting
the symmetry of this state is one of the key ingredients to the
proof of the main statement of this Letter. We formulate this
main result as a theorem.
Theorem. For states inCd ⊗ C

d of the formσ(p) = pσ1 +
(1 − p)σ0 with p ∈ (1/2, 1], E∞

R w.r.t. PPT states is given by

E∞
R (σ(p)) =







1 − H(p), p ≤ d+2
2d

lg d+2
d + (1 − p) lg d−2

d+2 , p > d+2
2d

(3)

whereH(p) = −p lg p − (1 − p) lg(1 − p).

It is interesting to note from this formula thatE∞
R never

exceeds the logarithm of the negativity [10]. Curiously,
E∞

R (σ(p)) is a convex function ofp, whereas numerics show
thatER(σ(p)⊗n)/n is not convex for any finite numbern >
1. It is also intriguing that this formula isexactlythe same
as that from a different optimization problem considered by
Rains [11], where he minimizes the functionB(ρ, σ) =
S(ρ||σ) + log |σΓ| over all statesσ. Rains’ quantity is also
an upper bound to the distillable entanglement. However, itis
not a convex function, which makes its minimization difficult
due to the possibility of local minima. This applies especially
in the asymptotic limit as the additivity properties ofB(ρ, σ)
are unknown.

Proof: The proof proceeds in two stages. First we provide
an upper bound onER(σ⊗n)/n for any number of copiesn,
by presenting a trial optimal state. Then we derive a lower
bound forER(σ⊗n)/n using convex optimization methods.
We conclude by showing that the two bounds coincide in the
asymptotic limitn → ∞.

Upper bound: We consider a situation where we holdn
copies of a Werner stateσ(p). Following the work of Ref.
[12], we will make heavy use of symmetry. In Refs. [4,12]
it has been shown that if a state is invariant under a certain
symmetry group, then one can restrict the minimization in Eq.
(1) to those PPT states that are also invariant under the same
group. Asσ(p) is invariant under the groupG of local uni-
taries of the formU ⊗ U , the stateσ(p)⊗n is invariant under
G⊗n. This implies that the optimal PPT state forσ(p)⊗n can
be chosen to be a convex sum of the2n possiblen-fold tensor
products ofσ0 andσ1,

η =

2n−1
∑

f=0

xf (σf1
⊗ σf2

⊗ · · · ⊗ σfn
), (4)

where~x = (x0, ..., x2n−1)
T forms a probability distribution,

andfi ∈ {0, 1}, i = 1, ..., n, is thei-th digit in the binary
representation off . Furthermore, as the stateσ⊗n is invari-
ant under any permutation of then copies, we can add the

constraint thatxl = xm if the number of 1’s in the binary
representations ofl andm are the same.

We will consider trial states of the form
∑

i wi(uiσ1 +
viσ0)

⊗n , which automatically satisfy this constraint. Such
states correspond to:

~x =
∑

i

wi

(

ui

vi

)⊗n

(5)

where theui(vi) component is the weight ofσ1(σ0), ui+vi =
1 and

∑

i wi = 1 (and therefore
∑

j xj = 1).
We will need to know the eigenvalues of the partial trans-

pose ofη in order to ensure that it is PPT. Ignoring degeneracy,
there are only two eigenvalues of the partial transpose of the
Werner stateσ(p). It is easy to show that they are non-negative
iff the following two component vector is non-negative:
(

−1 1
1 (d − 1)/(d + 1)

)(

p
1 − p

)

= T

(

p
1 − p

)

.
(6)

Similarly, it can easily be shown thatη will be a PPT state
iff the ~y and~x in the following equation are non-negative vec-
tors:

~y =

(

−1 1
1 (d − 1)/(d + 1)

)⊗n

~x = T⊗n~x (7)

Subject to this condition we need to calculate the relative en-
tropy between then-copy Werner stateσ(p)⊗n and this gen-
eralized Werner stateη. This is given by:

S(σ(p)⊗n||η)/n

= −H(p) − (1/n)

n
∑

k=0

Ck
npn−k(1 − p)k lg

∑

i

wiu
n−k
i vk

i . (8)

At this point, we notice that since the second term in Eq.
(8) is the average of the function

ξ(n − k) = (1/n) lg
∑

i

wiu
n−k
i vk

i (9)

over a binomially distributed variablek, the value can be sub-
stituted byξ(np) when we take the limitn → ∞ [13].

SinceE∞
R (σ(p)) is the minimal value ofS(σ(p)⊗n||η)/n

over all possible PPT statesη, any such PPT stateη will give
us an upper bound forE∞

R (σ(p)). In particular, for the vector
~x we propose a mixture of twon-fold Kronecker powers:

~x =

2
∑

i=1

wi

(

1 − ai

ai

)⊗n

, (10)

where0 ≤ wi ≤ 1, w1 = 1 − w2, 0 ≤ a1 ≤ 1/2 and
1/2 ≤ a2 ≤ 1. Proper values for the parameters need to
be selected, to ensure that the corresponding stateη will be
PPT. Inspired by numerical results, we consider two separate
intervals forp in Eq. (3); 1/2 ≤ p ≤ (d + 2)/(2d), and
(d + 2)/(2d) ≤ p ≤ 1.
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For the first interval, setw1 = 0 anda2 = 1/2, so that
xk = 2−n for all k. This state gives us an upper bound that
equalsER for one copy ofσ(p)

E∞
R (σ(p)) ≤

S(σ(p)⊗n||η)

n
= 1 − H(p). (11)

Now consider the second interval. We will set

a1 =
(d + 2)(1 − p)

d + 2 − 4p
, a2 =

1 + d − (d + 2)a1

d + 2 − 4a1

w1 = 1 − w2 =
1

1 + zn
, z = (d + 2 − 4a1)/d. (12)

We calculateT⊗n~x:

~y = T⊗n~x =

2
∑

i=1

wi

(

2ai − 1
1 − 2ai/(d + 1)

)⊗n

(13)

so that, with the values of Eq. (12)

yk =

2
∑

i=1

wi(2ai − 1)n−#(k)

(

1 −
2ai

d + 1

)#(k)

,
(14)

where#(k) is the number of 1’s in the binary representation
of k. It is easy to check using Eq. (12) thatyk is always non-
negative.

As a consequence, by taking into account the discussion af-
ter Eq. (8) and the notation introduced in Eq. (5), the upper
bound forn → ∞ reads

E∞
R (σ(p)) ≤ −H(p) − lim

n→∞
lg

(

2
∑

i=1

wiu
pn
i v

(1−p)n
i

)1/n

= −H(p) − lg lim
n→∞

(

tn1 + tn2
qn
1 + qn

2

)1/n

= −H(p) − lg
max(t1, t2)

max(q1, q2)
(15)

with

t1 = d(d − 2)p(d + 2)1−p(1 − p)1−ppp

t2 = (d − 2 + d2(1 − p))p(d2p − d − 2)1−p

q1 = d2 − 4 and q2 = d(d + 2 − 4p). (16)

It is easy to check that forp ≥ (d + 2)/(2d) (the second in-
terval), botht1 ≥ t2 andq1 ≥ q2. So we obtain:

E∞
R (σ(p)) ≤ −H(p) − lg

t1
q1

= lg
d − 2

d
+ p lg

d + 2

d − 2
.
(17)

In the other regime,p ≤ (d + 2)/(2d), the bound obtainable
from Eq. (15) is worse than Eq. (11). This ends the proof of
the upper bound.

Proof of lower bound:We now proceed to find a lower
bound onER. To do this, we will use the idea of Lagrange

duality [14]. To calculateE∞
R we need to solve the optimiza-

tion problem

ER(σ(p)⊗n)

n
= min

~x
{−H(p)−

1

n
~zT · lg ~x}

with ~x ≥ 0 , −T⊗n~x ≤ 0 ,

2n−1
∑

k=0

xk = 1, (18)

where~zT = (p, 1−p)⊗n. This is a convex optimization prob-
lem, so it is possible to consider the so-called dual problem. It
is a basic result in convex optimization theory that the optimal
(maximal)g-value of the dual problem is a lower bound on the
optimal (minimal) value of the primal problem, which is just
what we are looking for (see [14] for a general description of
duality in optimization).

The dual problem can be obtained as follows. First form
the Lagrangian by multiplying the constraints with Lagrange
multipliers and adding them to the objective function:

L(~x,~λ, ν) = −H(p) −
1

n
~zT lg ~x

−~λT T⊗n~x + ν(

2n−1
∑

k=0

xk − 1). (19)

The constraint~x ≥ 0 is not included explicitly, as it just deter-
mines the domain of the functionlg. Note that~λ must exhibit
the same copy-permutation symmetry as~x. Because the con-
straint associated to~λ is an inequality, we have to introduce
the constraint~λ ≥ 0. The dual function is now given by

g(~λ, ν) = inf
~x≥0

L(~x,~λ, ν), (20)

and the dual optimization problem is:

max
~λ,ν

g(~λ, ν) , ~λ ≥ 0, (21)

including any other constraints on the domain ofg.
For our problem, the dual function can be calculated explic-

itly. The derivative of the Lagrangian w.r.t.xk is

∂L

∂xk
= −

1

n ln 2

zk

xk
−
(

~λT · T⊗n
)

k
+ ν. (22)

The Lagrangian reaches an extremum (minimum) at

x̂k =
1

µk

zk

n ln 2
, (23)

whereµk = ν −
(

T⊗n~λ
)

k
and we have exploited the sym-

metry ofT . The dual function is

g(~λ, ν) =
1 + ln(n ln 2)

n ln 2
+

1

n

2n−1
∑

k=0

zk lg µk − ν (24)

where we have used that~zT = (p, 1 − p)⊗n, which implies
that

∑2n−1
k=0 zk lg zk = −nH(p) . As stated before,~λ must be
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non-negative, and inspecting the domain ofg(~λ, ν) yields an
additional constraint that theµk be non-negative.

Now, any acceptable assignment of values to~λ andν gives
a lower bound toE∞

R (σ(p)). Again we consider the twop-
intervals of Eq. (3). Forp ≤ (d + 2)/(2d) we propose

ν1 = 1/(n ln 2)

~λ1 =
ν1

dn

(

(

1
d + 1

)⊗n

−

(

d + 1 − 2dp
d + 1

)⊗n
)

. (25)

After a short calculation we obtainµk = ν12npn−#(k)(1 −
p)#(k) . This gives a feasible point of the dual problem, be-
cause both~λ andµk as given here are non-negative. The value
of g using these assignments isg(~λ1, ν1) = 1 − H(p).

For the second interval,p ≥ p′ = (d + 2)/(2d), we replace
p by p′ in Eq. (25), giving

ν2 = ν1 , ~λ2 =
ν2

dn

(

(

1
d + 1

)⊗n

−

(

−1
d + 1

)⊗n
)

. (26)

We now obtaing(~λ2, ν2) = lg d+2
d + (1 − p) lg d−2

d+2 .

As the two lower boundsg(~λ1, ν1) andg(~λ2, ν2) coincide
with the two upper bounds (Eqs. (11) and (17)), the proof of
the Theorem is now complete.

The remarkable behavior ofE∞
R (σ(p)) is shown in Fig. 1

for several values ofd. The nonlinear behavior for small val-
ues ofp goes over into a linear dependence onp above the
threshold valuep′ = (d + 2)/2d. An immediate consequence
of the result is that there are no inseparable Werner states with
zero entanglement cost—a similar conclusion could not be
drawn from Rains’ bound as it is not an asymptotic quantity.
It is astonishing that, as long asp ≤ p′, E∞

R is invariant un-
der the strongly irreversible operation of twirling, mapping
Werner states onC2 ⊗ C2 to Werner states onCd ⊗ Cd [15].

Interestingly, the dependence ofE∞
R (σ(p)) on p is quite

similar to the conjectured behavior of the entanglement of for-
mation for a single copy of an isotropic state [16]: there, one
can also distinguish between two regimes, and for larger val-
ues of the weightF of the maximally entangled state in the
isotropic state the dependence of the entanglement of forma-
tion is conjectured to be linearly dependent onF .

In this Letter we have concentrated on the important class
of Werner states. With similar methods, one can also inves-
tigate other classes with high symmetry. It is hoped that this
work can significantly contribute to the quest for a better un-
derstanding of the asymptotic regime of entanglement.
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