arXiv:quant-ph/0103096v2 28 Sep 2001

The asymptotic relative entropy of entanglement
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We present an analytical formula for the asymptotic retagmtropy of entanglement w.r.t. PPT states for
Werner states of arbitrary dimension. We then demonstistalidity using methods from convex optimization.
This is the first case in which the asymptotic value of a sulb@ddentanglement measure has been calculated.
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The systematic investigation of quantum entanglement is aertain mixed statesﬂ[B].
major goal of quantum information theorﬂ [1]. Inthe study of In general, efficient protocols for entanglement manipula-
entanglement manipulation one considers the intercoiorers tion require an asymptotic number of copies of the initial
of different forms of entanglement by means of local quantunstate. Therefore, to address any question related to asymp-
operations and classical communication (LQCC). For pure bitotic entanglement manipulation, one will instead haveoto-c
partite states entanglement manipulation in both the faniték ~ sider asymptotic versions of the entanglement measures. Fo
asymptotic limits is quite well understood. For pure statesa given measure of entanglemdiit the asymptotic version
necessary and sufficient conditions for the local intereoiav. £ is defined as the average entanglement per copy in the
ibility of entangled states are known. In the asymptotidtim asymptotic limit []5[}7]
of infinitely many copies of a pure state, a single number, the
von Neumann entropy of a subsystem, appropriately quanti- E®(0) = lim E(U®"). )
fies the degree of entanglemeﬂt [2]. n—oo M

Much less is known about the entanglement of mixed stategzo example, the asymptotic cost of creating a mixed state by
One approach is to defirentanglement measureshich are | 5 from a supply of pure maximally entangled states is
functions of a state that cannot increase under local Oper%‘lven by the asymptotic entanglement of formatiﬂn [7]. How-
tions and provide constraints on possible local entangiéme g, e such asymptotic entanglement measures are diffeult t
manipulation protocols. These measures prove to be usef%mpute, and so far this task has not been accomplished ex-

mathematical and conceptual tools, and have interestilg li ot or the very rare occasions where the measure in questio
with other areas such as the study of channel capacﬂles [3k known to be additive[[8].

A number of such measures have been proposed, most no-
tably the entanglement of formatioﬂ [3], the distillabldam w1
glement [B[}4], and the relative entropy of entanglemB[4, ER
The distillable entanglement is defined as the asymptotit-nu 0.8
ber of pure maximally entangled states that can be obtained
via LQCC from a supply of a given state. For mixed states the
distillable entanglement is exceedingly difficult to contgas 0.4
it is defined as an asymptotic quantity referring to infinitel

many copies of a quantum state. Therefore, upper bounds on 0.2
the distillable entanglement, in particular other entangint 0 ‘ |
measures, are of major practical use. One such entanglement 05 06 07 08 09 1p

measure is the relative entropy of entanglement, defined as  FIG. 1. The asymptotic relative entropy of entanglement
. E¥ (o(p)) of Werner states i€ ® C* as a function op (the weight
Er(0) = hep S(ollp), (1) ofthe antisymmetric state) for several valuesiofThe dashed lines

separate the two regimes of EE. (3), b= 10 and ford = 3.
for statess, whereD is the set of states with positive partial

transpose (PPT states), afity||p) = trjolgo — olgp] (g

signifieslog,). This function essentially quantifies the distin-  In this Letter we present a general formula for the asymp-
guishability of o from the set of PPT states. The getcan totic relative entropy of entanglement for an importanssla
also be taken to be the set of separable stﬂes [5]. Howevesf bi-partite states, namely the Werner states of arbitdiry
the set of PPT states is much easier to characterise, and theension |[p]. These states are the only states that are 4nvari
resulting measure provides a tighter bound to the distédlab ant under local unitaries of the forti ® U. They can be
entanglement, one that is actually attained on pure statés a conveniently formulated in terms of the projectags(r;) on
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the symmetric (antisymmetric) subspaces of a Hilbert spaceonstraint thaty; = x,,, if the number of 1's in the binary
H = C? ® C?. Denoting the permutation operator that inter- representations dfandm are the same.
changes the subsystemsmsghe projectors can be expressed We will consider trial states of the forh, w;(ujo1 +
asto = (1+ 7)/2 andm, = (1L — 7)/2. A general Werner v;00)®" , which automatically satisfy this constraint. Such
state is of the forna(p) = po1 + (1 —p)oo, p € [0,1], where  states correspond to:
oo = mo/tr[m] andoy = 1 /tr[m1]. Appropriately exploiting on
the symmetry of this state is one of the key ingredients to the e Zwi < Uy ) (5)
proof of the main statement of this Letter. We formulate this - v;
main result as a theorem.
Theorem. For states irC* @ C? of the formo(p) = poy +  Where theu; (v;) componentis the weight of; (¢, u;+v; =
(1 —p)og withp € (1/2,1], Ey w.r.t. PPT states is given by 1and}_, w; = 1 (and thereforé_; z; = 1).

We will need to know the eigenvalues of the partial trans-

1 - H(p), p < % pose ofiy in order to ensure that itis PPT. Ignoring degeneracy,
Ex(o(p) = (3) there are only two eigenvalues of the partial transposeef th
Ig ‘%‘2 +(1-p)lg %, p> % Werner state (p). Itis easy to show that they are non-negative
iff the following two component vector is non-negative:
whereH (p) = —plgp — (1 — p)lg(1 — p).
(o) (2)7(,2,)
It is interesting to note from this formula thé&t never 1 (d-1)/(d+1) 1—p 1—p .(6)

exceeds the logarithm of the negativitD[lO]. Curiously,

EF (o(p)) is a convex function op, whereas numerics show  gimijlarly, it can easily be shown thatwill be a PPT state

that Er(a(p)®")/n is not convex for any finite number > iff the ;7 andz in the following equation are non-negative vec-
1. Itis also intriguing that this formula isxactlythe same  grs:

as that from a different optimization problem considered by
Rains [I1L], where he minimizes the functid®(p,o) = L (-1 1
S(pllo) + log|o"| overall stateso. Rains’ quantity is also =1 (d-1)/(d+1

an upper bound to the distillable entanglement. Howevé, it ) ] o )
not a convex function, which makes its minimization difficul SUPject to this condition we need to calculate the relative e

due to the possibility of local minima. This applies esplgia FOPY between the-copy Werner state.(p)®” and this gen-
in the asymptotic limit as the additivity propertiesBfp, o) ~ €ralized Wemer state. This is given by:

) >®nf_ "% (7)

Proof: The proof proceeds in two stages. First we provide N
an upper bound oz (c®™) /n for any number of copies, — _H(p) — (1 Ckpn=k(1 _ k1] Rk (8
by presenting a trial optimal state. Then we derive a lower () = (1/n) kz_o " (1=p) gzi:wluz v (8

bound for Eg(c®™)/n using convex optimization methods. _ _ _ _ _
We conclude by showing that the two bounds coincide in the At this point, we notice that since the second term in Eq.

asymptotic limitn — oo. (E) is the average of the function
Upper bound: We consider a situation where we hold ok
copies of a Werner state(p). Following the work of Ref. En—k)=(1/n)lg > wiu] v} 9)

4], we will make heavy use of symmetry. In Refd[[4,12]

it has been shown that if a state is invariant under a certaigyer g inomially distributed variable the value can be sub-
symmetry group, then one can restrict the minimization in EQgtityted by¢ (np) when we take the limit, — oo [[L3].

() to those PPT states that are also invariant under the samesince £5° (o (p)) is the minimal value of5(c(p)®"||n)/n

group. Aso(p) is invariant under the grou@’ of local uni-  oyer all possible PPT states any such PPT statewill give
taries of the formi/ © U, the stater (p)“™ is invariant under s an upper bound fdzs (o (p)). In particular, for the vector

G®". This implies that the optimal PPT state fep)“" can 7 e propose a mixture of two-fold Kronecker powers:
be chosen to be a convex sum of tepossiblen-fold tensor

products ofry ando, —a \ O
f:Zwi<1 a_‘“) , (10)
2"231 i=1 !
n= xp(op, Qo @ Qoy, ), 4)
=0 oh f2 ! where0 < w; < 1, w3 = 1—wy, 0 < a; < 1/2 and

1/2 < a2 < 1. Proper values for the parameters need to
wherez = (zo,...,z2»_1)T forms a probability distribution, be selected, to ensure that the corresponding statél be
andf; € {0,1}, ¢ = 1,...,n, is thei-th digit in the binary  PPT. Inspired by numerical results, we consider two separat
representation of . Furthermore, as the staté’™ is invari-  intervals forp in Eq. {3); 1/2 < p < (d + 2)/(2d), and
ant under any permutation of thecopies, we can add the (d+2)/(2d) <p < 1.



For the first interval, sety; = 0 anday = 1/2, so that  duality [[L4]. To calculateZ3® we need to solve the optimiza-
x, = 27" for all k. This state gives us an upper bound thattion problem
equalsEr, for one copy ofr(p)

E en 1
S(o(p)*"n PP < minf )~ 17 1)
BF(o(p) < =0 —2 =1-Hp). (11 -
, , , withd >0, —T®"#<0, Y ap=1, (18)
Now consider the second interval. We will set

_d+2)d-p) ag = 1+d—(d+2)a wherez” = (p,1—p)®". This is a convex optimization prob-
d+2—4p d+2—4a lem, so itis possible to consider the so-called dual problem

Wy =1—wy = = (d+2— 4ay)/d. (12) is a basic result in convex optimization theory that therogti

1+42zn7 (maximal)g-value of the dual problem is a lower bound on the
optimal (minimal) value of the primal problem, which is just
what we are looking for (se(ﬂll4] for a general description of
2 @n duality in optimization).
g=T"% = Zwi < 1 ;ai _dl 1 > (13) The dual problem can be obtained as follows. First form
i=1 ~ 20i/(d+1) the Lagrangian by multiplying the constraints with Lagrang
multipliers and adding them to the objective function:

We calculatel ®"z:

so that, with the values of Ed. {12)

IS 1
z2: " 90, \ #H®) L(Z, A\ v)=—H(p) — ﬁqlgx

1
=1 NT®nE 4y Z xp —1). (19)
where#(k) is the number of 1's in the binary representation
of k. Itis easy to check using Ec[{lZ) thatis always non-  The constrainf > 0 is notincluded explicitly, as it just deter-
negative. mines the domain of the functidg. Note that\ must exhibit
As a consequence, by taking into account the discussion afhe same copy-permutation symmetryzasBecause the con-
ter Eq. [B) and the notation introduced in Eﬂ (5), the uppestraint associated ta is an inequality, we have to introduce

bound forn — oo reads the constraink > 0. The dual function is now given by
2 /n g(X,v) = inf L(Z,X,v), (20)
ER(o(p)) < —H(p) — lim lg (szu ! m") =20
i=1 and the dual optimization problem is:
O e T (A L/m . .
=—H(p) — g am T maxg(\,v) , A>0, (21)
1 T 9d2 Xv
max(ty,1 ) . . )
=—H(p) —lg ﬁ (15)  including any other constraints on the domairyof
0 42 For our problem, the dual function can be calculated explic-
with itly. The derivative of the Lagrangian w.ray, is
ty = d(d — 2)P(d+2)'P(1 — p)~PpP (;9_,5 - 11 5 2k ()\T T®") tu. (22
ty=(d—2+d2(1—p))P(d*p—d—2)"" z nl2o
G =d?>—4 and g = d(d + 2 — 4p). (16)  The Lagrangian reaches an extremum (minimum) at
. . 1
It is easy to check that fgg > (d + 2)/(2d) (the second in- Tp=— T’“ 5 (23)
terval), botht; > t, andg; > ¢2. So we obtain: ok Tv 1
t d—2 d+2 whereu, = v — (T®"X) and we have exploited the sym-
> < - —lg — . k.o
B (o) = —Hp) - 1s ol =l d +rle d— 2(17) metry of T". The dual function is
2 —1
; ; - 1+In(nln2)
In the other regimep < (d + 2)/(2d), the bound obtainable g(Nv) = +nn1:2n Z e e —v  (24)

from Eq. (1b) is worse than Eq. (11). This ends the proof of
the upper bound.

Proof of lower bound:We now proceed to find a lower Where we have used that = (p,1 — p)®", which implies
bound onEi. To do this, we will use the idea of Lagrange thatz,C o Yk lg 2z = —nH(p) . As stated before) must be



non-negative, and inspecting the domairyoi v) yields an
additional constraint that the;, be non-negative.

Now, any acceptable assignment of values amdv gives
a lower bound taE¥ (o (p)). Again we consider the twp-
intervals of Eq. [[8). Fop < (d +2)/(2d) we propose

vt =1/(nln2)
1 ®n ®n
/\_dn<<d+1) ( d+1 ) ) (25)

After a short calculation we obtaim, = v'2"p"#*)(1 —
p)¥ (k) . This gives a feasible point of the dual problem, be-
cause boti anduy, as given here are non-negative. The value
of ¢ using these assignmentsis\!, 1) = 1 — H(p).

For the second intervagh, > p’ = (d + 2)/(2d), we replace

p by p' in Eq. (2}), giving
() () o

We now obtairny (X2, 12) = Ig 2 4 (1-p)lg j—;g.

As the two lower boundg(X!, v') andg(X2, v2) coincide
with the two upper bounds (Eqgg. [11) afid](17)), the proof o
the Theorem is now complete.

The remarkable behavior &% (o(p)) is shown in Fig
for several values af. The nonlinear behavior for small val-
ues ofp goes over into a linear dependenceabove the
threshold valug’ = (d + 2)/2d. An immediate consequence
of the result is that there are no inseparable Werner staties w
zero entanglement cost—a similar conclusion could not be
drawn from Rains’ bound as it is not an asymptotic quantity.
It is astonishing that, as long as< p/, E¥ is invariant un-
der the strongly irreversible operation of twirling, mapgi
Werner states ofi? ® C? to Werner states 08¢ @ C [L§].

Interestingly, the dependence 8% (o (p)) on p is quite
similar to the conjectured behavior of the entanglemenbef f
mation for a single copy of an isotropic sta@[16]: thereg on
can also distinguish between two regimes, and for larger val
ues of the weigh#' of the maximally entangled state in the
isotropic state the dependence of the entanglement of forma
tion is conjectured to be linearly dependention

In this Letter we have concentrated on the important class
of Werner states. With similar methods, one can also inves-
tigate other classes with high symmetry. It is hoped that thi

2

=
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vo=v, A d+1

f

work can significantly contribute to the quest for a better un [14]

derstanding of the asymptotic regime of entanglement.
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