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ABSTRACT

The purpose of the work is to tabulate the cubic number fields with
discriminants between =-20,000 and O; for esch field there is given:-

the discriminant DIS;

the coefficients 4, B, C of a polynomial, a zero B of which generates
the field;

the index of the polynomial over the field, INDEX;

2z
the fundanental unit of the fiela Lot }7‘0 + X

the class number H;

the minimum ideal norm P, required in the search for the class number.

The completed table, together with computer programs used in the
calculations, and one program used for checking the discriminant values,
are found in the appendix to the thesis. Also a note is given of the only

seven fields in the above range whose class group is not cyclic.



PART T

The theory needed to calculate the complex
cubic number fields with discriminant greater

then ~20,000, their units and class nambera.



INTRODUCT ION

The earliest tables of algebraic number fields were naturally those
of quadratic fields. Most elementary text books give the process of
obtaining field discriminants, defining polynomials and integral basis
elements for such fields, and they prove that K( J:j) and K( ,f-:t ) ere
the only imeginary quadratic fields with units other than %4. In real
quadratic fields the unit problem is neatly solved by use of a continued
fraction algorithm. Gauss and Hermite head the list of authors on the
work of finding the class number of these fields, which produced an
elegant continueé fraction reduction technique for ideals in real fields,
(Dickson (13), Bachmenn(3)). Sommer (29) gives an example of such tables
for fields of discriminants between <100 and 100, but also includes other
relevant facts such as ideal and genus structures,

The problem is more involved in fields of higher degree. Mathews (26)
gives a method of finding a list of polynomials, which contain all defining
polynomials for fields of negative discriminant greater than a given bound;
he includes a tsble of fields with discriminant greater then -1000. His
method was to produce‘bounds for the polyromial coefficients; similar
methods were used by Minkowski (29), and by Godwin and Samet (15) who
calculateé the totally reel cubic fields with discriminant less than
20,000, and whose method is used in this thesis. Hasse (23) approached
the problem 'by class field theory; he reduces the question to certain
calculations in quadratic fields, but unfortunately this method furnishes
only the field discriminants, snd gives no information about the defining
polynomials of the respective fields.

-3



Bounds have been given by Davenport and Heilbronn (40) for the
density of both kinds of cubic fields. Zolotareff (33) using an idea of
Hermite gives a method of finding units of pure cubic fields (i.e. generated

3

by a polynomial x” = n). Berwick (7) using an extension of continued
fractions in the cubic case Jacobi (24), produced an algorithm to calculate
the fundamental units of cubic fields. Delone and Faddeev (42) gave two
methods, basicaliy the work of G.F. Vorondi (31), and one of these methods
is used in this thesis to calculate the fundamental unit of cubic fields
with signature 1. Cther methods of unit calculation are notably those of
Uspensky (32), Bergmann (4), (5), Hasse and Bernstein (6) and Tszekeres.
Godwin (16) gives e method of ascertaining if two units in a totally real
cubic field form a fundamental pair. Using Mathews table and Voronoi's
algorithm, Delone and Latysheva (D + F) produced a table of fundamental
units for all cubic fields with negative discriminant greater than =369.
Dedekind (14) produced a method to find the class number of pure cubic
fields and Reid (2%0) has a table of the class numbers of fields corres-
ponding to other special types of polynomials. Godwin (17) gives the
class numbers of all the real cubic fields in his table mentioned above.
Tebles of higher degree are scarce. Godwin (18)(19)(20)(21)(22),

produced tables of all types of quartic fields with small discriminant.



CHAPTER. 14

The calculation of ell complex cubic fields with discriminant greater

than -20,000

1¢1 The basis of the above calculation is the following theorem, similar
to one used Yy Codwin (20).
Theorem 1.1 Let X be a cubic field having signature one and discriminant
Then there is et least one polynomial

P(x) = %0 - ex’+ bx-oc

where a, b, ¢ are rational integers, having zeros d,lai- c¥ , such

that X is gererated by one of these zeros, and for which

3
—aog \2

S« Slupy) = (x-pYr o = ( =4 (o an integerso)

Proof
The integers of K form a 3-dimensional lattice ;C, with determinant
,\/7) « Ve may order the base vectors of f, so that the real one comes

first, and we apply the transformation defined by the matrix

e o o
L L
(o] 2 1
-}.Ig_ ¢ e
0 JS T

producing a real lattice xz. which contains the points O (o0,0,0) and
I (1,1,0).
Now we project I,_ into the 2-dimensional lattice ‘f 3 in the hyper-
plane perpendicular to 0I. By Minkowski's Theorem on Convex Bodies we
see that there is a point of 13 such that its distanceﬁ from OI satisfies
O < /a < z det sfa
ey
-5=



It (ollf}-\- C\(, /3-7-33 is the corresponding point’ of f\ then

—

\ 2 2
Jaz = dz-«-/bz-u- T (OH'F\ + '{‘_215

(o(-fﬂz + d‘\fv'
Z

Now d&ti,}- J‘lz'dn.tofl = é—ﬁaf‘z

2 < 2.2 .4-cA
and so S = 2/3 - \/% ™

1.2 W¥e now choose A, , so that we wish to find allJ_complex cubic fields
with discriminent greater than Ao . So b (.—%_Aﬂi is obtained from the
theorem and we consider all polynomials with S <S5 . These polynomials
will have discriminants greater than or equal to A. » FWe will choose O
s0 that | A, | is as small as possible, hoping that this will maximize the
proportion of polynomisls for which the geros yield fields with discrimi-
nants not less than M,l » However, there being no relationship between
polynomials and their corresponding fields this need not be true.

To find 1, we maximise

J“—A 2\6 ((d‘ml*' \61> subject to
1}?’ S J-g((“‘/"”l*""‘éz) = -slo

1]

- 2
i.e. meximise 2\6 ( gl_‘_ \6?'> subject to gt-l- 6'\62= "5{& = >\
Let T = Mo ® Y= X anm®
~ Je



2
J-a = 2N am® (N o ¢ A ain*8)
Then -

This has meximum or minimum at

cos - 0 angd 1;an2 g = <
26-3
: )
i) ifcos ® =0 .0 X,’J—E
3
ané so J-a = 23 = 72"
, 2 sJo
3 %
- 26'4' Aa
T o P

ii) if tan® P = <

gin® - Jo
Zo=> , J29=3 3s-3
J“zi - AN]s (26'~3 . 1 )
and ) T E B 363 3s-3
o 3 % 3,
. 2N 2 & o A,

J";’J_?—] 3 3J3 3 Jsss
l‘. ( AQG' /q'
Jo—t *1

3 %
fax ) = ¥ s, . Ao"')/" 2 .é'.‘l)
Max J-A = 1Max (E—l (vz—_r ) (36‘

and for positive integral values of @ , this takes a minimum at o = 3.

1+3 Let a field cof discriminant A ve generated by a zero of a polynomial

P(x), with discriminant D Then D = A kz, where K is called the index of
P,

Ve now produce a bound for k

-



¥e have D = —hx’((d-/s)"f‘é")z and 8 = (a-pY+ o¥*

where again we assume o~ is an arbitrary rational integer.

S << - e« A = - « D
A 3 K?
1 r'4
2 b oy - ()
<t o< 2 =)

and since (o- l) 82 < S the r.hos. has a maximum when

¥ = [ '
- R 3 (-0 K

i.e. k* =« 1 & J-s0
3173 (s=1) K
= Ls_ . o J*O"A
813 (5=
The rohes. has a minimun at o = 3, and so this reinforces our original

3
choice of & giving K = (—g-) J~A

4.4 In this section, bounds for the polynomial coefficients, which we
dependent on the discriminant of the field, are produced. Consider the
field generated by one of the roats of,/-ii'ix of x7 - ax?+ bx=c = 0.
Ve may essume without loss of generality that 0 <« X < 1, 0 < /3
since any polynomial may be transformed into ome of this type by the
substitution y = 2 x + n where n is a rational integer.
Now a = a+ 2 P

b 2«,5 + Pz -+ Kz

e = (%)

L}

Thus a, b, ¢ are greater than zero. We now consider the case when a2 = 1

i.e. P(x) = x° = x% 4 bx - ¢, which has geros %, /32: ¢¥Y . Thus the

polynomial with zeros (i-a) , (I -p) t iy isdx) = x> - 2x% + (b+ Ux
~8-



~{1-a+b=-c). The discriminant of { equals the discriminant of P

and 5(l~d,|-/a, %)= S(«,F,}Q « YowP(o) = ~e <o and since F(X)
cuts the x axis only once, between O and 4, then P(1) > 0 i.e.
1=~a+be-c >0, lacb+ 1 >0 and so §{x) satiszfies all the conditions
of the thecrer, Thus ve need ouly consider ore of the cases a = 1 or

&= 2, 30 ve asswic that a'z 2, a0d b, ¢ 21 seaeeelt).

Now U4b = a° = éd/a~az+ts-81>o

Thm b>.§3 00.&‘!(2):

fon  S= (apfedy < llol?
Henoo = diZp = ar2B-o) < B+ 2100  aeeenn(3)
neo (a=p) = d=3beBY 20

L
end so S = |a-3b+b3"] > |&~3b) which mplies [A,,l* > | -abl

e 4‘."" ‘Aé‘% < b = az'* ‘A‘[% --touo(li‘)
3 >

If a2 3 this result can be sharpencd to

b < Cf'i-lﬂo‘%' —_ (Q—B)z

.b 6 ..l...(@)
! 2
since b = ZdP+Pz+zsz < 2/30(1' /23+ IAolf;(o(~E)
i
= CI?'*L-]A‘;P’ - 2 CO("F)z
3 3
W /5*_0‘ > a-3 from (3}



Since a polynomial has only one real zero and this is in the interval
[0,1] we have,

P(O) = =¢ <0

P(1) = 1+ b-a-c 21

B8O c = b+ a 00-000(5)

1.5 If a polynomisl P(x) sstisfies these conditions, it is automatically
irreducible, and if it has discriminant D then its zeros geperate a cubic

field K( © ), with discriminant A = D
2

k
12 A, is teken as 20,000 then we see that S2 < 20,000 and k= 6. We
now give a method of finding the index and discriminant of P, if its
coefficients lie within the given bounds. To find k we first finid the
number k' so that -?2 is square free and check to see if the factors of
k' divide the inael; of P« This is done in three stages:~
i) In order to find if a prime p divides the index of a polynomial P(x)
we use a theorem found in Bachmemn (2), which states:-
The necessary and sufficient condition for p to divide the index of P is
that if P(x) = H(x) - p{x), then some repeated factor of H divides M modulo
p. Suppose P(x) = - ‘ax2 + bx - ¢ and P'(x) = 312 - 2ax .+ b theh any
repeated factor x - x, of H(x) must be a repeated factor of P mod p and so

P'(x,‘) = O mod p

Now H(x1) = 0 mod pz and, since M(x1) = 0 mod p, we have P(x1) = 0O mod pz.
Thus we find all the solutions of P'(x) = O mod p and them we know that
one of these solutions will satisfy P(x) = O mod pz if and only if p
divides the index of P.
11) If we have discovered that p|k, end if pzf k', we now need to know if
92;—9-15 0<d, e =p°-1

satisfies & monic cubic polynomial equation with rational integral coeffi-

p2|k. To do this we check if any of the numbers

=10~



cients i.e, we see if any of these nunbers ave slgebraic integers.

I pz(k end pB{k' ve need to check if there is an algebraic integer
of the form 91*:9 te 0 =4d,e < p3 = 1 in the sbove manner.
If one does not exist this does not necessarily mean pBXk. Ve now must

use 1ii).
1ii) Here we check for an algetraic integer of the form 9—}’-

0 sj < p - 1 in a manner similer to ii). W¥e need not check if higher
powers of p divide the index of P since by the choice of o we know that
k = 6.

1.6 Tt remains to test if fields with the sawme discriminent are in fact
the sare field. This is done with the knowledge of the zeros of the poly-
nomials F(x), ¢(x) which generate the fields, and sn integral basis for
one of theme. ]

If the zeros of P, Q are respectively o, B+c¥ | dl, ﬁ't ey’
end an integral basis of the first field is [1, 8 , ?_Z:%P_t&]
shere © 1s one of the zeros of P(x).

If the fields are the same there will exist rational integral r, s, ¢

8o that < = v (s da+e) 4 sq + £
Kk
peiy = ¥ ((BeixY+ d(priY)+e) . s(ptig)+t
K

and from these relations two possible sets of trieds r, s, t can be found,

and if they are rational integers then the fields would be the sane.

1.7 A theorem of Hasse (23), a description of which is to be found in
Chgpter 2, was used a3 a final check, to see if all the required fields
had in fact been founa. This theorem finds how many non-conjugate fields
exist with discriminant D, by considering the uniquely defined quadratic

field with discriminent 8 and the idesal groups of index 3 within this
- “t4-



nupber fields Here D = df2 where d is square free or of the form l;d‘

and d‘ is square free and f a rational integer.
This theorem confirmed that there were 3169 non-conjugate complex
cubic number fields with discriminant D in the range -20,000 € D < Q,
There are 2853 discriminants with 1 associated non-conjugate field
27 discriminants with 2 associated non-conjugate fields
58 discriminants with 3 associated non-conjugate fields

22 discriminants with 4 associated non-conjugate fields -



CHAPTER 2

Hegse's Theorem's on the mumber of cubic fields of piven discriminant.

This Chepter states Hasse's results without their proof. The
theorems answer the question, if D % 0 is & rational integer which is
= Qor 1 mod 4, when is it the Giscriminant of at least ore cubic
field, end how many such fields, N(D), sre there.

Hasse first produces a necessary condition for K(D) > O.
Theorem 2,1 If D = af2, vhere d is the discriminant of & quadratic f£ield
Q, and £ is a rational integer then either a) f = Py Py eeesss Py

w
ord) fe PyPy eseese Py 3

w=1or 2

end vhere p, (i =1, sesves nt n > o) ave rational primes, not equal to

3, such that p; = % mod 3 (Xronecker symbol)
i .

In case b) we also have the conditions

ir d 2 Omod 3} then w= 2
if d = 3md9 then w=1

or if d = ~3mod 9 then w=1o0or 2

Let e be the number of ideal classes of index 3 prime to £ in Q, then:
we have the theorem. |
Theorem 2.2

-
If £ = 1 then K(D) :1—-;-'-1

If £ > 1 then the calculation is more involved. For each p; # 3 we choose
a number ./01 such that:

-13-



JJ i T & primitive root mod @ i
and /01 = 1 mod -é-?gi
where C§ iis one of the prime divisors of piinQ.

¥%e also choose o of these /a’sinthe cese where 5lf. In case
a) thus, § = 0 however in case b) we have
b1) d 2 Omod 3 ; w=2 then O =4 and

/Dws‘l#}ﬁmaa?:ﬁﬂﬂ = 1 mod
b,) = t3md9;\ w=1 then S =1  and
1+ Ja ma 33 P = -1moa-§
3)) 4 £ -3mod 93 W2 then § =2 and

ﬁnf|51+5ﬂm9; /a,m;_ 1 mod
mod

Pan = 1t Jamass pa, o= 9

iy

“
3
u

oirs ol

3
Let Z be the pumber group of all Xo Y ¥ , where X, is a prime

1

mamber in ¢, :‘Sis 2 rﬁkiaml muber prime to £, and § 2 1 mod f is
in Q. Then ;TS‘ Jaé ( Yi = Gy 1, 2) reprezents each number in
Qs prime to £ modulo Z. Let N; (¢ =1, sevese, et e 2 0) be
beeis of the ideal groups modulo 3 prime to f. Consider &n = ?Q
end 1 = e, or if the fileld has discriminant positive or equal to -3, we
paut 1 = e+ 1, and &, is set to the fundarmental unit of the field.

We find %LR = 4, seencey N ¥ S Kz 4, eavessy 1 such that
ned 1Y
g~ 2 [ (2)

Lt

These values of ‘3&& now give us the answer to our question.

-l



Theorem 2.3
I L(D) is the numbersof pon-proportional solutions
1)

(I1 sevensey Yn+ S ) of %LR Ii = 0 mod 3 k= 1, voevsesy 1l

L2

and !’i:p O for all i = 1 ceeess N+ 1,

Then K(B) = 3° . L(D)

Corollary If %"R = 0 for ell i, k we have
e n+d - 1

N(D) =3 . 2
NMp) =3*+1' ., 2

!

i & $2

n if S =2

S ————————



CHAPTER

The Colculation of Class Numbers of Algebraic Number Fields

3.1 An algorithm for calculeting the class number of cublc fields is
given by Voronoi (Delone and Faddeev {(12))., A brief summary and explana-
tion of the algorithm for the complex cubic case is given in Chapter 4.

This chapter describes what are krnown as relative minima of a
lattice, shows some of the properties of these points, and gives a con-
nection between seis or 'productions' of these relstive minima and the
class numbers of the field containing the lattice.

Finally, it is shown how the algorithm in the case of real quadratic
fields reduces to finding chains of Hermite-Reduced Ideals i.e. chains of
reduced ideals related by the continued fraction elgorithm (see Bachmarn
(3)).

3.2 Let the glgebraic number field K( D ) ve generated by a zero ® o
the polynomial
£ (x) =z - B .4 * = 1, cesese + (- )P a,

Let the 5eros of £ be &, eesess , ol (realand B i, -, s +iYs
We consider the space Y with general point (d,--, o(,-‘/z,i-tx, ,---,Psdx,)
Let 36 =P0) = b,,_‘g"‘\ e+ b, Dbe a mumber in K{( D ), and let
(é denote the point (P( & ), sveese , P(Pg+ ¢ ¥s )) of Y. Ve shall
distinguish between a polynomiel and the mssociated point of Y by
underlining it in this way.

Let T,.'s be the set of points ¢ , where 4) is any point of K( 8 ).
The isomorphism CF‘&':) i establishes an isomorphism K(9 ) <> Tas &
Let Kr,s be the space (x1, seeeves Xy Yyt 12, ceceen, Yo ¥ izs)

-6~



where Xys Y5 %4 e IR » the real numbers. Then K(',s > -T?»S
Addition, subtraction, multiplication and @ivision are defined component-
wise in both l/{“15 and “‘.S » If_'_t' = (11, sssese xr, y1 + iz,‘, sesvas

T+ iz.s) e Wrs , define the r + s directional parameters 1/3,,‘ thus

l/‘)d(ﬁ) = ixji 1 €<jsr

y?—r"'zg-r r+1 £ Sr+ s

The /ad' 's sre multiplicative,
We define the normed body of a poin‘cge Tes £o be the region V C Kns
where .
Ve etk g 0<p@) y 1sfsres]
Now we consider miltiplicative lattices in Tl-‘,s i.e. lattices S, such
that the product of any two points of S, also belong to S.

If o €S then the totality of points 5_ xY ; Je S} is also
in S end is thus a multiplicative lattice S'; we write S* = 4 3 and we
define point-lattices maltiplication as such.

If there exists a multiplicative lattice S" such that S = & 5"

|
then we define point-lattice division by % S=8"

—

A point of such a lettice S in (rs is called a relative minimum of
S if its normed body contains no other point of S epart from the origin.
Diagram 3.1 gives an example of such points. The dotted lines show the
integral lattice of the quadratic field generated by a zero & of the
polynomial P(x) = x% = 4. 4.e. the points (n & + m, n& + m) where
W = ,\/—‘!__l;,, Q& = - ﬁ end n, m teke all rational integral values, Five

relative minimice sre shown, viz L, “td, wth Jawll Luwt!S = €

the fundamental autarrphism of the lattice.
Half of the rormed body (i.e. that part with positive first coordinate)
. 51'7—
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of each of these relastive minima 4s shown by a contimmous line. This is
all that is required since the lattice is symmetric about the line OI.

From the disgram it is seen that T = L, W+, wek, dewssll , b o415

are relstive minima, wherecas 1w+ ] = (14,48 eve, = 0.52 ves) is not
gince its normed body contains W+ H = (7e7h oves 0u26 2ui)a
3,3 If Ll is a relative minimum of S, then we consider the region V(4)

defined by

v(a) = & 3J33(E) <JJ‘; (2) ;s JET for some J such that
' 1s T <« M+s (q')

:/DB.C@ sJ)a,(.Q.}-t-d d>o del

As 4 increases from zero, Minkowski's convex bbay theorem tells us there

i3 a lattice point, ssy {li , which lfes in V(4) for some @ > 0. If

-gx is the firsf point obtained by increasing 4 from zérc; then the

normed body of .Q.( contzins no other point of 8 spart from the origin.
Now £ and “_t_: satisfy the same conditions for Q; s a8 do the

points _Og_b'. £, ik 9 ) contains a root of unity « . We can define

L, to lie in a certain region which will uniquely deterﬁtine its choice,

as follows

IfA 1< < r choose the region of space such that Ij =20

If r+ 1=+ s and 1f the field contains k roots of unity, choose

the region such that

S

| -~ T< gy i2) <
Fence {], is a uniquely determined relative minimum.

Repeating this process we get an infinite sequence of relative minima

i “18"



Voronol proves that we msy point - lattice ~ divide S successively by

these relative minima end get a sequence of lattices
s S . 2
So = _Eo ) Sl = '_E' )=t SP =< --‘a-P

end that the above rethod produces orly a finite number of different
lattices, Thus the sequence of lattices 50, S.,-, 5e
must have two lattices the same,

Suppose Sw 1is the first lattice to be repeated, say for the
first time in Owwm . Then £€,: flam /flr  is a miltiplicative
sutomorphism for S, & belongs to Ok and is the n'P relstive minimm
in the chain generated by I = (4, 1, 4, eoe , 1), #here; mist be a
relative minimm of Sk.

Therefore we have a chain of relative minima

T-1,8 o, 0, Bur, e

where £ = -gk*i and gn = & (v)
Ar

then EX meg €. % | (c)

Thus the sequence of relative minima is of the form

e, ,---"" ’I”“"/ &, 6% - )é‘g”’")é'z:-”
Using (b) and (¢) we can extend the chain in the opposite direction to get
a two-way infinite chain of relative minima.

% p e, B are called the principal relative minima of direction

Je
Thus starting at a multiplicative lattice S we get a sequence of lattices
S:Sa’ Sc,""') SR;"" » SM-‘-H{, SM.!,}{) - -



The set of lattices Sps eee s S is called a loop of lattices. Starting

k+me-1
at a lattice, which belongs to a loop, using the sbove process, we naturally

enter the same loop.

Suppose we consider the loop of lattices R, ---, Rm

where the principal relative minima of R, ere E. y T gm = &
If we start witﬁ a lattice Ri wvhose principal relstive minima ere
@.,"',_@_Mf-’_ﬁ_{fhenweknow that Hise = B_‘. and Re = -?—-'-
s _@24-2-‘ Ben
hence RL = E_‘_..
' _@M—:- &
. &
) ghﬂ-l
end s étsf.;’ §i+g-|
' 2 in

The two way infinite chain of relative minima in direction d, is called a

a8, - chain of relstive minima.

1 .
3.4 Suppose we have a point \'z e Tas s and define the norm

of Y s H (Y) s to be 45
| N = TR (2)
Ir Yl is the algebraic nunber corresponding to Q then

N()- [ Norm ()]

Hence the multiialicity of norm, N, follows; and no ambiguity arises between

the definition gﬁf the norm of a point in T:',s and the norm of an algebraic
rurber in  K($) . 2
Lemms 3.1 1t o end JB ere relative minima of a lattice S, then 13 a

’ S
relative minima of the lattice ‘d" :
: o
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Proof Suppose =Y is not a relative minimum of 'E_T i.e. 3 a
relative minimum ¥ € ;_ such that

/a*C@‘P"(%) for 811 i = 1, eesee T+ 8
i.e, PRi(B).p:a) < Pip)
bence P (88) < Pi(B) for 81l 1 = 1, seess T+ 8
and since  ¥.d belongs to 8, since ¥ < % we have

is not a relative mirimum of S, a contradiction.

For a relative minimum o of a lettice S we define the
production of & 4a 3, FROD (& )s as follows. ¥e choose (r+ 8 - 1)
directions 4,y evesee,y dr + 5 - 1 and first starting from A in the é,
direction produce a & P chain a relstive minima. Then from each of these
relative minima progduce 62 « chains of relative minima, and so on in the
remaiving directions. The totality of relative minima preduced in this way
is then called the production of % in S. The production depends on the
order in which we take directions, and we suppose that we fix a definite
order on these directions.
Similarly to lermma3l we mey prove

prop (&) = FRop (1) s,
Lemua 3,2 If, in a lattice S, we have a unit £ , then

o (E)g =€ .FrROD (1)s
Proof Suppose the rext relative minimum to Y € FROD (1),
in the &, direction, is & , and the pext relstive minimum from

£Y in the 4, divection is £ .
| I a.gF B then
P (B £)< /a;(z‘) since otherwise X . £ would be the next
relstive minimum to £.¥ in the d; direction.
.

But 0.() < p:(8. €') since otberwise B £  would be the next
wDl=



relative minimum of { in the d: Girection.
le, Pila) = Pl £)
This is ondy 0 3¢ o= B- £, a contradiction.
Thus starting with ¥ = 1  we prove, the lema.
Theorem 3.4 -
Given two equivalent lattices P, § in E( § ), there exist relative
micime f' ) ‘_}" of P, § respectively where
N(¢)= 1in (8 ($)): ¢ arelative minizun of P
N(¥' )= in(8(¥ )) s ¥ arelative minimum of Q
such that Y/P = ?‘ Q
Proof P, § are equivalent, f.e. there exist o, /3 e K(8)
such that 4P =« B ¢
let ¥ be arelative minimn of P with minimm norm, and T wa
relative mininum of ¢ with mibninmun porm.
There exiet ¢ € P and Y < Q such that

S . é = 7é ’ 'SE Iy (1)
a - g = ﬁ - Y Seesse (2)
Henoe By =as 3

Since norms are multiplicative we have
N(¢) w(¥) = B(¥) n(Z)
Bence either (¢ ) < %(2) o K(¥Y) = &(ZX)
It K(9) < E(F) the norzed body of ¢ would contain a relative
minisunm of P, wkoze norm would thus de less than the norm of ;‘E - a
contradiction.
Bence N (P ) = 4(E) end tusn (¥) = ¥(F)
From (1)

-]
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and hence ¥Yr = $ Q
ena ¢, ¥ satisfy the conditions of the theorem.

Given a production of relative minima of a lattice S, we point -
lattice - divide S by these minima and the resulting set of lattices is
called a lattice production inK (9 ).
e conéider the productions of relative minima connected by a unit to be
the same since by Lemua 3.2, they give rise to the same lattice productions.
Corollary If there is only one production of relative minime in any
lattice of K ( B ) then the class number of the field K { § ) is the
number of different lattice productiops in the field.
Proof If two lattices belong to the same lattice production they are
equivalent, By theorem 3.1 two lattices which are equivalent belong to the
same lattice prbduction. ’
1]
Theorem 1‘ .2 In any field of signature 1, every lattice contains only one
production of relative minima.
Froof Since we have a field with signature 1, there are two parameter
directions to be considered, sgy x and y. If :_f__l is a relative minimum
we let _Q(x)
of -__Q. v

The production of a lattice S in this type of field reduces to a

J}
) ve the respective x and y directional parameters

one-dimensional chain of the form { .9.} ~o <¢ < o0 with the

. Y ¢x) (y) (4)
conditions -Q:..“ > 0l { , D, < .[lg such that
there does not exist amother point of the lattice 8 satisfying
x) (x) (x)
__QL“ > T > L
(o) (4)
-0.:. k) > T 9

*2}—



Let @ be any relative minima of S.

Let -93 be that member of the chain of relative minima with largest x

(a)
parameter less than @ ()

14 ()
j.e. —QS g < @ = ‘Q'IJ* ¢

M) )
Fowit By < @ then @ would not ve a reletive minimm,
¢ ()
hence @ 9 < _QJ 2
and thus B = _-QJ,,‘

In a £ield K (0 ), with signature 2 we consider 3 parsmeter
directions, say x, y, 2« If () is a point of K (), then .Q“,) ﬂ{v)ﬂ(?)
are the respective x, y, 2z pérameters of __Q. s X3 ¥, Z being erbitrary
but fixed.

We now prove thet every lattice in a field of signature 2 contains
only one production of relative minime. What we prove in fact is that an
x - chain from one relstive minima always intersects a z - chain from any
other relative minima.

The proof given is exactly equivalent to Voronoi's proof, but is
stated algebraically as opposed to the latter geometric arguments.

Lemma 3.3 There are no two members 5oy {1; of any x - chain {—sz
for which the following inequalities hold

y) (o}
'Qi < i
2"

_Q' R S -Q,s

3

(x) (x)
Proof If {); <[, then by the definition of x chains (§ 3.3)

@)
.Q‘_“a‘ S ﬂ_’ (y) and _D; D _stﬂ contradicting one of the

(¢ x} _Q (X)
inequalities. A similar contradiction occurs if 'Q'a < h

Theorem 3.3 Two, two sided chains of relative minima of different
directions have a comnon element.
Proof Let x - chain be | ()] end = - chain be EI}E

-l



In {T}‘there is an element T‘ (1 may be negative)

such that . C‘ﬂ )

L > 4
Tc“;)) > -ﬂ(‘a‘
T(‘e) < _QCI)

This is true since in a chain in one direction there are elements of

eevee (1)

erbitrary large size in the perpendicular directions.
simtleryy 3 e e I8,

(x) (x)

N, < T

_.Qn (y) S T (y)
(?) (2)

.Qw. > T

Let Qi be the relative minimum in f .rld x With largest x coordinate

satisfying similar conditions i.e.
(x\ (x)

Q. < T
0.9 > 7"

Iy (
-%-l R s T %)

such that

sssee (ii)

veses (ii1)

-

Ir _Q;’q > T‘;“) then we would have -E = ‘BJ bty the

definition of consecutive reletive minima,
(x) Q)
_LQ < T:
—
DY < T ?
i)
@)

Sirce the conditious

1) < -rg
‘Q-)

contradict the fact that [. is a relstive minimum we have two possibilities
—Q'm - ‘.__\_ (x)

-n(%) . Tz(g\ esves (17)

Tca) sesss (7)



Ve now show that (v) is incorrect. Assume the contrary.

Then {Q}x has two elerents ) and 4l such that
( (9
nY < T < 4,
‘ () ceees (Vi)
(®) >
N s P oS -QJ

by equations (i) end (v), but this contradicts lemma 3.3.

Thus (iv) is the only possibility.

Now consider { 1-5} z - let I-{ be that element of this z - chain
pith maximum Z - coordinate less than _QJ'(Z)

We have (3 (2) c2)

() —_
Te < .ﬂ) = [ e < Q.
and hence there are three possible cases.

()
—Q (.‘\) < —r-e
3=t

(5\ (%\ vsses (Vii)
., < T
) (x)
S (visd)
“p ('-a\ sease 'iii
L+ > Te
(x)
and —Qd-\ (x\ S Te
( [ E X N B J ix
A, WO T B (tx)
If (vii) is true then by the definition of {, Tou = Ly

and the chains have a common element.
If (ix) is true from (iii) and (ix) we have that

x) (x\ x)
T > e > e
(y4) (9

which contradicts lemma 3.3, leaving us with the possibility (viii).

avene (!)

Dl



In this case, if -Q;, @ 4 7-6 {.z) we would necessarily have _I_:e - "-@5
and thus the chains heve a common element.
So we assume that _lel) < Te * -
Also we know that -QJ“‘)) > Te @ for otherwise ‘[eu = &
Thus _QJ(:) < T x)
Q9 5 T coens (x1)
-Q‘g(z) S Te ) |
So either the two chains have & common element or
30 e 101, e LT < {1’}2 satisfying inequalities

(iv) and (xi) end where
T‘C o <, T-(- ‘:’) = CI
"rc“)‘ < P’)»‘-\ (T\:“ﬂ ) JI(‘J’B = CZ

(
"'re(E) - —Qz) '= Cs

Comparing (i) with (iv) and (ii) with (xi), we may repeat this argument

to find our new relative minima

._S_lo- 3 E—Q},‘ end Ty ,Ti e ffﬁ 2 such that
‘r;!lx\ < _l.[ {x) < C‘
nt(‘a, < Cl LEE RN (Xii)

T @ < <,
which again satisfy coaﬁition# similar to (iv) and (xi), or otherwise the
chains have 2 common element. We may repeat this ergument, and since there
are only finitely many relative minima in a bounded range, then this
procedure must eventually terminate. That is { :Q'gx and {Izz

have a common element.

Thus we see that in fields of signature 1 or 2, every lattice has
only one production of relative minima end hence, by the corollery to
Theorem 3.1, the class number of any one of these fields is the mmber
of different lattice productions in that field.
27~



3.6 If we congider K (4/:3 ) , the field generated by the positive

rootofxz—dzo d > ¢

let W = 4a itd = 2,3 md (4)

= 1249 ifa = 1 mod (4)
Consider the ideals L @, “’*b‘] in K (4@ ) where o’ ! R(w+ ')
We look at the fractional ideals [1, ‘2—3—?' ] similar to the
original,

We consider relative minima in the direction of increasing x, x the
direction of @.

All points of the ideal lattice lie on lines parallel to OI through the

(n(cu+b‘) n (3 +b)
al ? qf

points

for rational integral n.

let two regions V1, Vz be defined _
V1 = {_ﬁ € Ky t = (x‘, xz) -1 < x, < 0 }
Vz = {..‘ti € l'{z,o : t = (x,,, xz) 0 < x, < 1 _Z'

Except for the line through the origin, every line has one lattice point -

:i.nV1 and one ian.s

Now on any line the point in V1 has smaller x value than the point in Va.

The relative minimm rext to (1, -1) must lie inV,.
' . (x) y)
As we lookinregionR(d) ={__§ € Ko - £ <d ; E <! p) dz'}
and increesing d from 1 the next relative minimum must lie on a line
Cn(uub‘) n (S+ 5"
}
)

[«
Tf 1 is the distance from where the line through M (1) cuts the x axis,

through )=M (n) n > 1

to the origin, then I . point \:2_ lying on the line through ¥ (1)
(x

in V, so that 1 < W< 1

1
and a point in V, lying on line through M (n) must have x parameter value

at leasat -—’%
-28-



Pirst relative minimum lies on a line through X (1)

w+ b &S+ b
and is the unique point defired by ( Y d a
S+ b
-1 < &= <o  web 1
N snd = >
f.ee O <« —&—-b <a < w=+b

the conditions far reduced ideala due to Hermite.



A Description and Explanation of Voronoi's Algorithm

41 Voronoi (23) considers e 3-dimensional lattice, with gemeral points
( g :i:éQ , g ) end then transforms it into the real lattice S with
general point (%’Q, ‘4 Je All points of S lie on lines parallel to the
line through the points O (0, O, 0) and I (1, O, 1) and these lines, or
;;parallels" cut the %—V) plane in a 2-dimensional lattice T. We know
(Delone and Feddeev (13), p.p. 459-464) that T has a basis x, y such that ,
triangles formed by the origin with pairs of x, y, X%, =%, =¥, x-y teken |
cyclically are all acute-angled. Of these six triangles we choose that
one which covers the negative § -axis, and suppose the basis points are
x end y. let z, (2, %,) be a point of T. The lattice point of S, which
lies on the parallel through z and hes least positive g -coordinate, is
called the pinhead of z: let it be z + t(2) OI, and then we have

0 < #(z) < 1. Ifz 40, then t(z) £ O since the ; coordinate of
the pinheed must be irrational.

Since - z - t(z) OI is & point of S we have that t(=z) = 1-t(z).
The projection of z + t(z) OI onto T is (z.1 + t(z), 52) and is denoted by
. TWe denote by | z| the distance of 2'fron 0, f.e. |z]= (z? + zi)% .
Since we assume that I is a relative minimum in the following proof, we
have | 2 ' | 1 for every z in T,
The next relative minimum is thet pinhead z' for which |z'| is

least. Voronoi's theorem states that it is one of the pinheads

A ={2‘.’$ 1, (=x)', (-p)*, &', r-x)', (541)"} . Since a proof of this

theorem was not available to us, we give an independent proof. In the
=30~



following sections z' will mean both the pinhead of z, and the projection
of the pinhead onto the g - w plene as no awbiguity arises,
Le2

Lemma b1 min ((2'] %, [(=2)'] ) < [2]? 1f 2, S -
< 3224»% it -fs g,

¥ <0
Proof Y%e have (31 + t)2§ (- z,- b+ 1)2 according as t S £ - z,

Hence if z, = ~% we have
2 _ 2y - 2 2
min ((z, + )%, (= 2, =~ t+ 1)9) = (2, + £)° < 2,° for
O=<t < 1 '
If = = 5, < O we have
min ((z, + )%, (-2, = t + 09 = mex (5,5, %) = &
Fow min ([2'[ %, [(=2)'] ) = min ((z, + $(2))%+ 222, (- =, = t(s) +1)2
+ 522)
2 2 2
= 2,° + min ((}r.1 + t(=z))~, (-51 - t(z) + 1)°)
whence the result follows.

Since | 2'| and l (-gs)’I are both greater than 1 we have

\§{2>1 if 215% eer (1)
end 322 > 2 1f S E =0 .. (2
If 2 makes en angle <© with the negative % ~gxis, then
12 w = T/ le 1> 1 cee (3)
if w > T (22> 3 s (&)

Nowlet x = (= x cos® , x8in® )andy=(-ycond , -y sing )
where x = ‘g:_\, y= lx\, 0<¥9 ,0<c{l s 9+9b < I

8 is the angle made by x with the negative % - -axis, and Sb the
angle msde by y with the same exis, x and y being on opposite sides of
this axis.

From (4) we heve

-3f-



X, ¥ > ‘2 sea (5)
Moo it O > T tren from (5) x> cos D
while 1¢ 9§ < % then (3) gives x > 1 end again x > cos O
Thus x > cos D see (6)
¥%e now show that if 96.]-%’ %[ then
x - cos D

>
In the intervel % < B < T vwe have [z, > -3
i.e. x 2 ""'4/3-”‘

‘ 2 8in §
- > 43 .
Hence x cqs@ 2 2P cos 9
Now —2—/‘-/51;}—7@- .- 0039 attainsaminimm at S = %
. . T <D< T .
in tle intervel = = V- = 7 with value %

Ir O0< P < ;—I then zcos B = t(x) > cos §  since x* lie insige
the unit circle, and thus I would not be a relative minimum.
Thus ‘ xcos B ~t(x) > cosD>0 .. (8)
Lerma 4.2 Let ax + by be a point of T, not belonging to A, then there
exists a point z € 4, such that .
[(ax + w)*| > [2'] e (9)
Proof Case (1) ab > O
Ifa < O then (ax + b,y_)g , the i -coordinate of (ax + bYy), is
greater ‘then zero. Hence
[(ex + W' > [ax « txl
> (x2 + y?)
since x, y ere sides of an ecute angled triangle. |
Thus ] (ax + ny)* l > Min (}@2, y°) + % end at least one of the
points £ x, £ y of A satisfies (9) by Lemma 4.1. If a > O we assume
first that ex cos U + by cos ¢ > 1

~32e



l(azs + bl)"‘ 2 Iag_c_ + bil 2+ t2 - 2 Ia_:_g + ”by_l t cos [w]
ees (10)
where t = t (ax + by) and L is the engle made by ex + by with the
negative § ~axis.
Since ax cos P by cos ¢ > 1 we know that
|(ags* by)*|? > a%%+ v%2 41~ 2ax cos B - 2by cos ¢ + 2abxy cos (9+4)
ees (11)
If we fix 9+4> we find the maximum velue of ex cozs § + by cos q5
ve (a°x2 + b2y% + 2abxy cos (0+¢ )t and hence, from (11), we have
[(ex + w)*|? 2 (a?x% v2%2 + 2abxy cos (0« )% - 1) 2
A eee (12)
Ifaorb = 2 and 1< x < y then from (12) anao<@+¢><'£_7. we have
| Cex + wy)*) 2 » (JE-1)2 %> fxz
+ %
and 80 by lemna 4.1 one of & x satisfies (9),
If x < 1 using (3) we mst have O >17;- and herce ¢ < %7.' which
implies, agai.fx by (3), that y > 1 . We still have that x >"£§. From
(12) we derive
[ax + 3| 22 3n](Ga? o 105 - 12 (2 4 E - 0 e (1)
and both of these variables are less than 22 4 i.
Hernce ‘(a_:_c_ + 'bx)'l 2> 2%+ 12> Min (L&'l 25 l(‘?:)" 2)
and thus one bf % x satisfies (9).
Wie now corsider ax cos D + by cos ¢ < 1
Since l(egc_ + by)'| 1is not less than the y coordinate of ax + %y,
we have
)2

[(ex + w2 > (axs1a® -ty sing cee (12)
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= 82x% + b2y2 + 2abxy cos (D+¢ ) - (ax cos § + by cos ¢ )2
2%x% + bvoy° & 2ebxy ooé (P+¢ ) -1
and ifaor b = 2 we have
| l(ex« )" 12 > 50 (22 5% - 1
z wuin (5, 5%) + §
and ty lemma 4.1, one of the points & x, T y satisfies (9).
Case (ii) a.b = O T
We assume without loss of generality that b =0
If & € ~2 then [(ax t] > ex vee (15)

since the % coordinate of ex is positive, hence

2

\(ex)’[z > ox? > l.x2> x“+ %

since from {4) x >“/-§

Thus egain lemma 4.1 gives us that one of X x satisfies (9).

Ifa >2endxcos ® 2 Fthenaxcos ® > 1 and thus from (11)
[(ex)?] 2 > %% - 2axcos® +1 ees (16)

(ex = cos § )2+ (1—00329 )

Fow x <1 = cos § > ¥

= @ < T
:"'"-7’ x > i a contradiction, thus x >1 and so
l(a_:g)‘l 2 5> (ex~xcos® )2
z (a-1)%%%

2
x

\v

> [x*] 2 gsince x > 1

and so x satisfies (9).

ol

If xcos® < % then B>
J(ex)'] 2 2 a%x? sin®

)



> 3x2 = 12 + %
and hence one of & x satisfies (9).
Case (iii) ad < O
¥We assume without loss of genmerality that b < C.
The square of the perpendicular distance of the origin from the line
_I_.«,(b) -tz ¢+ by (t e R ), is Qeater than-gz ¥in (yz, [z -x] 5
This is so, since the triangle formed by the origin, ~y end x -3y is
acute-angled. |
Phus 1(&;_: + b;g_)'[ 2 > %2 Min (yz, | x —1[2) vwse (17)
since (ax + Yy)* lies on the opposite side of L(b) to the origina
Hence if b < - 2 then |
[2 > 2wumn (5% IX"llz)
> xin (5%, |z - x| %) + % vy (3) and (h)

and so by lem,-;:a ko1, one of £ y, T (x ~ y) satisfies (9).

[(ex + w)

‘Thus b can oni:}_ ‘be - 1
Ifa 23 andl"t (ax -3y) =1 then

l(ax-y} 12 [(a-1}1\:~1r‘os‘9] 5 1[ ees (18)
This is so, sinne (ex -~ ¥)* is at a distance from the origin greater than
the distance of the projection of {ax - y) onto L(-1). . Also the angle
subtended at X -x by ox - 3 {2 > 2) exd the origin is obtuse. (see
siagran ho1) ' |
Thus from (18) ve see,

l(azuy_)'l 2 > [(a'- 2) x+ (x~1cosb )Jz + 15-1[2
(6) gives x >cos® >1lcos § end =

(x -2 2 2 [(a-22]2+ |z-x|?

» .2 12*l§“112
Again lemna zp;.1v and (3, (4) give that one of L x, 2 {x - 3) satisfies (9).

—3:’-



This leaves us with the point 2x « y.
Ir (23,;-1)5 =~ (2xcos® ~ycosd ) > 0 then
2

2
‘(2’.&"&)'[ > 1235“42‘ )I_&‘Xl + 12 e (19)

because the angle subtended st x by the origin and 2x - y is obtuse,
Thus lemma 4.4 with (3) (4) give that one of 2 x, X (g - y) satisfy (9).
So we sssuse thet 2x cos D ~yecos $ > O Let L=t(2x-y),B is
the point (2¢x ~ ¥), E 1s (x - 3}, @ 4s acute since it is equal to one of
the angles in the fundamental trisngle formed by the origin, x eand y.
t=t{x-y) lence 1-t=t(y~z).

The projection of the point, a distance of {1 ~ ¢ in the g <0
direction from E, onto the line “Z, is the point D. The projection of

(2x+=3) ontoDE is the point C.

§ L (x-4)
g




Since OFC = T — & >’_;L' we have

oc® > om?4m? = )_:_:-y_]z + (x-1cos )?
If(x-lcosg)z?.'% thenoc2>[_x-y_[2+-}; ses (20)
and since the angle subtended et C by (2x - y)* and O is obtuse then

-2l " > [s-2|°+%
which from lemma 4.1 proves that one of * (x - ¥) satisfies (9).
' Thus (x - 1 cos & )% < L enddy (6) x >cos 9 > 1cos B

and so x < % + lcos B ves (21)
(7) puts a further restriction that 0 <P < %r and hence

1<x<%+lcosg<-g eee (22)
by (21) and (3).
Eow[_g’;[ =,[xc059 -t (x)]

= xcos® - %t (x) from (8)
= lcos® + Lt (x) ase (23) from (21)

If ¢t (x) = % then

[5'5\41&:3‘9 < cos B |
which would place x' inside the unit circle, contradicting the fact that
I is a relative minimum,
Thus ¢t (x) < %
If1 < t (x) then 1 < % which is impossible since by (32) we mst have
1 <x <% + % _ 1.

Thus 1 > ¢t {x) end hence

t(x~y) = 1-t(x)
So t{gy-x) = 1~1+t(x)
and ED = {1~1+t (x)) cos &
B = 1lecos®

CO = EB -ED~CB



= x={1+1t (x)) cos B
Hence OC < 0D < x > {1+ t (x)) cos B
But xcos® > cos @ + t (x) vy (8),
and thus x. > cos ® + ¢t (x) = (41+ t (x)) cos 9.
Ir0c < opthen [(z-2 'l < J(2zx-p')
and so y - x satisfies the conditions of the lemma.
The proof is similar in the case when 2 < o.
The previous lemrma constitutes a proof of Voronoi's Theorem.
We now consider (x + y)'in more detail.
4e3 Let /)(z) = Min (J z'| ,|(-‘-~z)‘\ where z < T.
Lemms 4.3 If ./()(_x_-x) < L/a(_g), then
tin (| /bh), /D(_ -1)) < |&z+3)) = P E+1
Proof (_1_:4-3;)3 = L)g + (z) and since one of 9, ¢ <Z—£
thenxcos B +ycos¢dp > E o J2 >
mence | (~xz-3)'|>|(-z- x)[ - laep] > | L+x)'l
end thus , /3(5*1) = [(x+y){
Let 1=t (x) and m= % {x~-3)
Ve first lock at the case /Q(x) = ‘_x_" andl/é)(g:_ -3) = l(_:g -—1)’(

There gre three cases {t¢ consider

n g i+m : >1+'m
i) 1<2 it) 2 =1 < 2 iii1) 12 2

Since t (x+3y) T 21-m (mod 1) we have respectively

t{x+y) = 2vl>m+1,22-m21-m=1
In the following section, let (x - y)*, x' be denoted by A, B respectively.
‘Let (x + y)= be the point where the line 2B cuts the line throughx + ¥

parallel to the % ~ axis. Let {1 represent the projection of OI onto the

g -.‘Q plane..



m
(1) 1 < 2. InthisceseCam(x+y)' =(x+y)x +4

Diagram 4.2

In diagrom be2 A" = (x ~y)* =1 ,C" = (x+ y) 2, BC* = &B is of

length (- y)' = 2p, since t(-y) =m~ 1 and A'B = BC is o? length
Yt =2n siﬁge t{y) =1l=-ms 'E is the mid-point of 4B and KDD''

is the perpendicular bisector of AB. DD' is the perperdiculer bisector

of BC.

o =engle #'BA < T since A’A=1, B> 1 , and a'B> 1
Now if P (x+3) < ‘/Q (x -y_) the orizin mist lie in the sector
D'DD'* since then ve have/é(x +y) <‘p (x) and Jb(x -y) <P (x).
The perpendicular distance of Cto D isp+ 2ncosd 2 pen

Hence the distance of C to the origin > perpendicular distance of C to

D



1 +m m
(i) 2 A~ 1 > 2. In this situation %%+ %* = (x +2) *

and since yO(x) > yO (x *%) the origin lies on the opposite side

from X*of the perpendicular bisector of ~ and hence (x

Ja(x +z) = |(x ¥x)*1> "~(x)>yo(a-i)
iii) 1 S ~2°% « Benoe (x +x)° = (x+x)»-J. Let Hbe the
point X* J. .

Diagram 4*5
Since 1 > » and (x + lies on the line joining (x ~ to x + (1 7 i)»].
i.e. Hj and 1 sinoe t(y) =1 - mand so » =12* > 1, then the
perpendicular bisector BE, of AB cuts the linejoining A toH internally at
B, since it cannot cut BH internally.
Since * N X) (x) the origin must lie on the sameside of DE as A
Also the ” -coordinate of H must be negative or otherwise |x*| > |
With the origin in this position we must have

/>(%-.%) < y~fe +x)

We now consider the case where yO(x) =  1("*x)*| and-x)= |(5"x)
(x+x) * is X+X + (21 fme X .
Since y)(x) = j(~xj* we have 1 * * -x cos 9 and 9>
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and sine© = | % *y)'| have "~ <i +x cos9 -y cos

Hence 21 + m < - cos9 x -ycos”
Ho?) since 9 > % then f * and soy® 1 and hence
21 +m <' 1 Tfhich toiles (x t %)* = (x+y) * 4j[and ise
have a situation analagous to (i) of previous section#
i X-4
Diagram 4.4

Similar configurations oocur In the reaaining fuo pcsoibilities
i.e. i) AN(2) = 12'1 aiia S -z) = 1(jC~3)'l
and ii; J3(x)

[*)*| and *~ Cs ~.II -
and leimca 4 »5 is proved#
A similiir statement may be proved if (v) > ju (x - x) thus
% need only consider (54-7) if 170 Cs - v) is greaAer than both
C$ And * (y).
Wiyn t(2) + t(y) > 1  the pinhead of x +% lies on the parallel
through jK+%at a distance t(*) 4 t(y) - 1 from that point. Let
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A, &', B, B', C, C' denote respectively x + y, (x+ )", X, 2", ¥, X'
The angle 4BO (4C0) = w-(0+¢) > "% and hence the perpendicular from
O to 4B ( AC) cut 4B (AC) on the opposite side of CB(OC) from A. Also
we have thet t(x) + t(g) - 1 is less than both t(x) and t(y). Hence

the perpendicular from O to A'B' (A'C') cuts the line at E (F) on the

opposite side of 0B { OC) to A'. Also A'B* > B = y .

Now B'E {C'E) < perpendicular distance of B' (C') %o line OB (0C)

= dB (dc) say
- If we prove that either 4, < Jy or & < 2x then we will have
j(x 4 y)' } > Min ( ﬂ(}_), ﬁ (“Z)) e e (2)4-)

There are three possibilities;

r 9> 1,;2' then = > Z,Jgins end d, the distance of BC' from OC is

less then sin,{> < sin ('!)I_-g) =cos & .

£ . 3 - g -
Now3 =85 2 2 sin® cos which has a minimum velue zero
in the interval T <9< T at 9= '%'

Hence é’é‘- > aé and jB(x) < |z+xl

Ir %<%'. and CP':‘%.ThendB < Leandy o> 1
and so Jb(g) < [+

Finally we have the case when 9, ¢  bothlie in [T, %

Now x cos @ - t(x) > cos® endyecos ¢ -tly) > cos¢ by (8)

jece . ) .
x>t(-§) + 1, y>t(x)+1
' cos § cos ¢
We mey assmne} thet 2t{y) sin ?5 > x , 24(x)sin O > y, for

otherwise (24) would be satisfied. ,
Hence  2t(y) cos 9 > Hx) 1, 2t(x) cosc}>-§§ll + 1

cos @ cosq’:
whence  [3t(y) >* 72.§.(5)+ PN T CO RN %x),, 1

‘1}2“’



edding ve get ( /3 = J:i ) (8(x) + t(y)) > 2

fee. t(x) + t(z) > 2 .4/3 , acontrediction since t(x) + t(y) < 2.
Herce we only consider the case when (x) + t(y) < 1 .,

Ifas{ 65 }g andcn( Lp )§ then (x + y) is the projection
&f ¥ onto the g'-Q plane and thus (5%?)\5 = a8+ C.

If a+ c > % then the projection of 1 « ( 5!34—@ ) onto the %-‘Z
plane is closer to the origin than is the projection of N TTR
Hemoe |(x+ y)'| > !(-5 *_z)'] » which was rejected by lemma 4.2,

Ve have thus proved

Lemma 4e4 Unless the conditions

) pl@ < pla- ) P < PG-Y
111) t(z) + tlg) < 1) (f)g+ (Pl < #

81l hold, then there is a point 2, 2 ¢ { ntntGi 'l)} such
that l(§+x)‘[ > [_%'[

Lek We now suppose that the cubic field K (© ) is generated by one

of the zeros d,P:‘:ix of the polynomial p(x) = X - @ -n. Stgrting
with the lattice = [1, ¢ , ¥ ] = [1 . mig”"“gl /""“'21““9]
the lettice T will have basis elements

2o (MmeEd) s (5 )

o
y = (n'(@-e‘) +n" ({31-%1-«’5) '~ ) g(n'-n“ )) - C%z \Q )
We see that | %l Qz - %z‘Q‘ = (m'n'=mn') ( K(td;@\‘ *‘6"))

= (Waea'n'). Z sey

{

=3

YZ' « N i
- L if and only if mn —-mn >0

—

5 5,

Thus
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It m'n" -~ tﬂ" n' is initially positive, then after every transfor-

mation performed on the basis, with positive discriminant, the new

vélue of m‘n" - m“ﬁ‘ will still be positive., In the case when
m'n“- m“n‘ < O we glter the basis to [1, ¢ <P] which satisfies

the condition,

To use Voronoi's algorithm we have to find a basic vector pair
for the lattice ¥ which produces an acute triangle with the origin
covering the negative % axis. First ve have to produce a basias which
gives an ecute triangle withv the arigin, the second condition is thén
satisfied by using a suitable transformation.

T has a basis x, y, the necessery and sufficient conditions that the
triangle is scute ave

i) Z+x >0

i) x.(x-3 >0

i) y.@-z>0
il.e. all three angles of the triangle have positive cosines.

Fow x.x = § (@pl+y?) (m*s mn' o “‘“1("‘1“%”
w‘ 2« A say
Ly o= Y (ple) (mie [m'n"+ m'n') L o (o‘&-cy\)

i

= Z + B sgy
and Y « Y =2 (n,1+ Ao n' sz—q,)>

= Z . C say
Without loss of generality, these conditions may be restated as
i) B > ¢ ii1) A > B 1i4) ¢ > B
because of the fact that 2 > O

IftB < O, Yy post-miltiplying the basis by thg matrix

=Ll



the basis is changed to [1."‘1’4 ?] which gives us B > 0
and det H = + 14

If A < B by setting d = [%} and past-muliiplying by & matrix
3 0 0
Jd = 0 1 -d
#] ¢ 1

we have A > B, and detd =+ 1., Similerly ifC < B,

By repeated multiplication of the basis by matrices such as H and J, we
eventually arrive at a basis which satisfies conditions i), ii), iii).
This is so, because on egch maltiplication B is decreased by a value
greater than the minimum length of a vector in the lattice, and is
positive. (this is the method of reduction of a quadratic form)

By multiplying the newly found basis by matrices Ii, (il =1, ee 5 6) ,
the six triangles formed by the respective basis elements form the first
reduced Hexagon of Zelling.

Here the matrices are defined by

K 0] 1 0 0]
o .0 1 0 0 -1
L. - he -
K 0 0] K 0 0]
I = |0 1 1 I, =|o -1 -1
o0 -1 0 | K 3 o



i 4] 0 4 0 4]
15=0 c -1 162 9} 4

0
0 1 1 4] -1 -4

Two of the six triangles formed by the six basis end the origin, cover
the g - axis, one the positive ? - axis, the other the negative.

However we know for these that

LI
g, 5.
and so if the trisngles cross the negative } - axis then
Yl« < O ‘h o E o
- = 7 , <
E, 3. B
thus >0 Ny < ©

Thus the required vector pair is that one whose first element has
posiﬁive_ n coordinate and whose second element has negative
n - caofdihate.

If b» = n coordinate of ? - ? )

d = T? coordinate of Y LY (Vn
Then the required basis is that one obtained from post-miltiplication
by I;, where i is such that by > 0 d; < Oend |

(b, 65, 1) = ((v, 8, 1), (b, =g, 2), (v-4, b, 3),
" (b+a, b, 4), {3 ~b+ g, 5), (3, b-d, 6))

Now suppose aﬁ this stage we have a basis [,1 ) ‘P: J LP‘]
we require the pinhéaas corresponding to points ¢, ¢,
To do this we £ing integer 1, m so that
o < ¢ Z ) + 1 < 4
o < 0§ +m <
and by setting the rew besis as [1) C?.*e; ‘PMM] - [’l, Cf;l\{l]

Now we use Voronoi's theorem which states that the first relative
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minimam of S is that one of the seven given below, which is the minimum

distance from the ; - axis

¢ or 1 - denoted by Do

-

< 1~6-)

¢ o 1 - denoted by D,
(-1)% ( 4“"- P ) or (1= (-1)* (cf-cf )aenoted by O
vhere t=01f ¢ (f) > ¥ (%)
= 1 otherwise

(P denoted by @ » which need only be considered if

PCR) > p@Y o pls) > plk)

ma ¢ (4) v (L) <
5(%) + v () < %

For B, all ve need check is if a= ¢ ( § )

sice (1+ ¢ )(E ) = 1-a

Thus . = ; if a < %

x

wein

= 1'~<£ if otherwise
similarly 9, = ¢  if e= ¢ (5) < 3
= 4« ‘; otherwise
(-9 I=n® it (a-o)-0" < %
1= (5= )(-1)® othermise
0, = ¢ ; |
Then we find i, j, k¥, 1 from 0, 1, 2, 3 such that
PO < p&) < p9) < p(F)

and then set [ 1, 9., 9¢] as the reduced bssis of S, and where

8,

i

is‘ the first relative minimum of S.
By aividing the lattice by 91 and considering the lattice
[‘1 ' "',] we may repeat the process and in this way produce

a sequence of lattices S, with first relative minimum @ 1, which
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) o Q)
will fumnish us with the relative minima of 5. i.e. Ui . 9¢ 952 )

Le5 Ve row show howmalgorithm is sctually used in the compu-
tation of the class nuwber of a given field.
We first find all ideals with norms less than the Mirkowski-Davenport
Bound {Davenport (9)) B. "
i) How suppose the field has basis [1,9 ,>\] where ) = —gﬁf———
for some integral Jj, k, snd where 'index' is the index of the
defining polynomisl oi the field K{ § ). Then any ideal of norm n can
be represented in the form @— = [a, 20 . o, 4 A +e ? . fJ
where ay b, ¢, d, €, £ are rational positive integers and a x bx d = n.
Prom the additivity property of ideals end since a‘B s al belong
to the ideal we may redefine the sbove representation so t‘hat 0O Sbh=< a
0 =d =aendalso0 se<band0 se¢, f=< e

Ve also have that &> "’f\/_x; . Iéw G, is the highest common factor
of three numbers a, b@l-r ¢, @ ANreB o f end hence

i ‘ aE,n[Norm(b O +¢c)endn [Korm(d >\+e‘9+£)

ii) Ve mow vary p between the bound 2 = n < B and for easch n produce
e set of values for &, b, ¢, d, ¢, £ - we £till do not kuow if the
form@.: [a,b D +c,ar +e® +f] is in fact an idesl ~
we heve implicitly the additive rule - we must now check if the totality
of linear combinations & when miltiplied by any integer of the field
give a subset of @ .
This is simply done by cheoking 1£ ah , a0 ,b 92409 ,
5 >\9' +c>\ ,d>\9 +992+f% s @ )\21-3/\9 + 2 A all
belong to a .
%hen all these conditions have been satisfied, then the ideal iz added

to the list of ideals to be considered by Voronoi's slgorithm.
Y



Omemhavemideal [a,b@ +c,d>\ +e® »f] we have to
divide the three basls elements by a to put it in the form which is
used in the calculation i.e. a fractional ideal containing 1 as its

minimal positive rational member. So we consider

[1 28 s ad e Qv }

2

Once we have all ideals with norm less than B in the form, we f£ing
the number of Jifferent lattice loops evolved in the process of the
algorithm end this furnishes us with the class number of the field.
L6 Ve néw produce a check on the unit produced by Voronoi's
algorithm. |
Consider the field generated by a zero of theApolynomial
P(x) = x0 - ax% 4 bx = 1 with negative discriminant end the roots of
P(x) = O are .o(, /34_- LY Let the unit & represent this triad.
Since « (/52*'5") =1 e can sssume o« >1 for we can choose
between E_ s 2and g 4 (5’1 represents the triad o(-‘, 0(/5 t[—dx )
Define S(€) = (a-p)+ ¥ \
- o<1-Zo</3 T & |
Thus s(s")‘ = ,ofz-:- Z/s*- X and hence
s(e)-sle")= oLZ-ZoLP ol - 04-14-2/5 - &
e (w-0) o (K- 2p <+ 1)
: L
¥e have that oL(/aﬂyf) -1 hece B < « ?  and so
(e )-8 ') > (a) &° (% - 1)

> O

so S(£) > s(€') enas(e ) > s(£€"), where n is a rational
teger greater than 1.

-0 n
%e consider S( & ) in more detail. Suppose & represents
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n
the triad of slgebraic numbers oL , W \’z where

d-'ﬁ (Coz-l- Q1)-_ i wi‘:‘z - (/B‘i'ig\-q.
2 n a
Thus LJ*-«-TZ a2 o and so o < o4&
- N -2
S(€7 )-8 (") - (" w)oe - & Ip -
Xl 2w o« 7p =4
a -2

UL S
If o> 1 then

I a2

oé'l K o - el - 1)

s(e") -5 (€

Now if o0 > [-795
-n -
S(E€ )8 ()

Artin (1) gives us the lemma
3
(] > -2-? - 6 where D is the discriminant of the

polynomial P, and thus is not greater than A the discriminant of

the field generated by P.

Hence if [D}> L7 then o> 4,795, and thus in every cubic field

with discriminant less than =47 (so that in fact A = -59), S(€ )

whére & représents a unit of the field, takes a minimum value at the

fundamental unit of the field, with real part in the interval 0 < X< %,
Now given an algebraic integer p 924-0;,9 +r of K( B ) we have
s( PQZ""W”— ) = s(8 ){(p(b(+/3)+q, )7'.(. [szl} where now

«, /5 *ey ere the zeros of the polynomial satisfied by B
| Hence if we find a unit € (as was done using Voronei's algorithm),

we can produce all P, 9 which satisfy
S (€)
( (0‘1’ )4‘ 2 2 2 << J————.
Platp)+q. ) « P Y =5
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and then exhaust all the possible units Pﬂz“ip T eventually
giving us the fundamental unit of the field.

Using this technique, the fundamental units cbtained by Voronoi's
algorithm for the first hundred complex cubic fields, were checked, and
found to be correct.

4.7 Only seven of the fields considered had a non-cyclio group of
idealss These are the following fields, identified by their discriminant
and generating polynomial eqization.

i)  ~6571 generatedby D ° - 102 + 560 -39 = o0

The class number of this field is 4, and the group of ideals is
the product of two cyclic gfoups of order 2, which are generated by
tdesls [2, D+ 1, D2+1] ans 15,9,92]

ii) =-6883 generated by 63 - 179 2, 779 - 3% = ©

The field has class munber 4, and the group of ideals is the
product of two cyclic groups of order 2 generated by ideals [2 ) 9 ) B ZJ
and [5 ) 9 ,8 2]

141) =11003 generatedby D 2 - 302 4+ 179 - 14 = 0

The field has c¢lass number 8, and the group of ideels is the
product of a cyclic group of order 4 and a cyclic group of order 2.

The group of order 4 is generated by ideal [2 , 9 ,92] and the
group of order 2 is generated by ideal [7 ) Da+3,0 " 5]

iv) ~12763 generated by 93 - 140 2, P - 30=0

The group of ideals is the product of a cyoclic group of order 4
and a cyclic group of order 2.

The group of order 4 1is generated ty ideal [2 ,9,0 ZJand the
group of order 2 is generated by ldeal f} ’ B , 0 ZJ
v) «~16871 generated by 93 - 12 92 + 479 - 35 =0
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The group of ideals is the product of two cyclic groups of order
2 generated by ideals [5 , 9,80 2J end [5, D41, 82 . lu-]
vi) ~17231 generated by 9 5 . 69 2 + 230 - 9 = 0

The group of ideals is the product of two cyclic groups of order

2 2
24 generated ty [3, 8 J % J and [3! B +1, 8% » 2]
vii) ~18923 generated by O 3. 99 2, 350 - 26 = O

The group of ideals is the product of a cyclic group of order &
and a cyclic group of order 2. ,
The cyclic group of order 4 is generated by [2 ; ﬂ, o 2} and

the cyclic group of order 2 is gernerated by [5, g +2,0 2 + 1]



PART YT

A description of the programs used in the calculatiom
of the complex cubic mumber fields, their fundamental

units and class numbers



CEAFTER

Ihe field calenlation = TABLE
First the subroutines ere described, and then finally the main routine.

BASTS ‘IZ, T, K.‘S}
P(x) a:5~15x2+ I4x = 15 has zercos g,cb,\{/ and we are concerned with

the field K(© ). This routine has o dual purpose, i) given the index of

. LT B4US
the polynomial I2, to find an integral basis of the field |1, O, g*?l—*———}

or 1i) to check if I2 divides the index of P by checking there exists the

91
oauts 1,9, Laexs

by considering the coefficients IA, IB, IC of the monic polynomisl

B KTO + WS

satisfied by % = g 0 < KI',EFS =sI2~-1a8

] contained in the ring of integers. This is done

described in 1 § 5 (1), cheoking if eny such 5 is an algebraio integer.
If no such integer exists, i.e. 12 Joes not divide the index of P, we
trensfer this fact to the main progrem by returring KT ss - 1+ The

routine slso returns =20 1 = Z8¢" sa = £8¢  which ere
used in two of the following subroutines IITEX 2 and CHECK.

INDEX 1 (M

P(x) = x7 = Iix? + IBx - IC, and IN divides the index of P. ALl these
variables are ocbtained via common store. Using the theory described in

1 § 5 (1) the routine finds whether the prime nuber M divides the index
of P or nots Ve krow H ,Vm ; by verying JT bvetween O and M-1 and by

setting I = P'(JT) and K = P(JT) (P'(x) the Gerivative of P(x)), we see

that M divides ths index if X [z and X2 | K and if this s so we replace

IN vy IN x M, meking IN one slep c«losler to the ectual value of the index of P.

aﬂ“-



INDEX 2 (JM, M)

Again P(x) = x> - Tix? + IBx ~ IC and IN divides the index of P. Ji = u%
for some rationsl integral q and J¥ | IN x ¥ but JuJIN, By calling

BASIS JM, KT, KS we know that JY divides the index of P if and ounly if
KT ¥ -1 and in this case we replace IN by IN x M. This routine is used

mostly in finding if the index of P contains a squared factor.

INDEX M

9 ) P end M are the same as in previous subroutines. This routine using

the theory of 1 § 5 (4i1), checks if any of the M numbers 5 = @; =
1 = I = M ere algebraic integers by considering the equation

x> - Lax? 4 IBx - 1C = O satisfied by 5 . 1IN is the same as in the
previous subroutines. If one such integer does exist, then we know that
M’ divides the index of P and in this case we return IN as zero. We need
not return the basis of the integral ring of the field, since if M,B does -
divide the index of the polynomial, then the index is greater than 6, and

the polynomizl may be discarded.

CHECK (14, I2, I3, I, I5, R1, R2, R3, XT, kS, J3, J4, J5, ¥1, Y2, Y3, ¥Q)

We sre given a polynomial P(x) = x3 - I}x2 + Ix - I5 with zeros R1, R2 T iR3,

one of which generates the field K( © ) with discriminant -« I1 end integral

Pl kK TO +4S
basis L%, 9, A= +I;_ ] « Q(x) is another polynomial

x> = 335 + J4x - I5 with voots T1, Y2 + 1Y3 end both polynomial P and Q
generate fields with the same discriminant. This routine using the theory
of 4 § '6 searches for a Tschirnhausen transformetion between polynomials
P and Q by finding approximate values RL, RM, RN so that:-

q5 = I!L)\ + B9 + RN
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satisfies the equation Q (¢ ) = ot 0.001 . IL, D4, IV are the nearest -
integers to BL, RM, RN respectively. We check if \2 = W)+ b 4 N
.satisx”ies‘ Q( Q ) = 0 end if so then the two polynomialé give rise to the
same fields, and in this case MQ, which snswers the question of vhether P

and q are related thus, is returned as , TRUE ., if not then . FALSE .

The Main Procram
Initially the inter-related bounds sre found for IA, IB and IC, which are
such thet the totality of polynomisls P(x) = X - Iix” + IBx - IC give rise
to all fields with negative discriminant greater than - 20,000.
In the three loups IA, IB, IC vary thus JTA MIN < IA < IJA MAX,
IBKIN €« I < IB¥AX, IC XIN € IC = IC MAX; and we consider each
polynomial in turn.e In section 2 we have fixed IA, IB, IC and we find the
discriminant IDEM of P(x) and set IDET = - IDEM, We ensure that IDEM is
negative so that P(x) has two complex roots, the roots being ALPHA, BETA =
i GAMA (we shall refer to them as &, [«” 4£C¢¥ ). These are calculated
by the Newton Rephson method, and eve used to find RIS =8 ( /4, § ) end
here, as throughout the program when we successively reduce ITET by dividing
it by squares of factors of the index.of P, we check that IDET < IS = RISZ.
Section 3 contains the method by which the index of the polynomial is found.
Subroutines INDEX 1, INDEX 2 and IFIEX 3 are used after first finding the
squared divisors of IDET, fo calculate each factor of the index of P and
then we divide ITET by the square of this factor. After the final value
of the index hes been found {INDEX) we check both that the index is less
than 6 and that IDET < 20,000,
Since the largest complex cubic discriminant is - 23, and since
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312 x 23 = 22103 the only index factors we need consider are the rationel
primes = 29 and slao L, &, 9, 25 es ve oy discard any polynomdal with
index greater then 6.

In Section 4, storting &t K = 4, for each £ield produced, we m2t ILET in
IDIs (¥), DIDEX, IA, 1B, IZ 4n IZ (1-4, K) m;a d,f*,b’ in 22 (1 - 3, K)
and then increment X by 1, end then renipulate the errpys so that the IDIS |
values ere in increasing ovder.

In the lest section, 5, we take sll fields with the same diseriminant, by
considering the INID prryey, end using the subroutine CHECK find the ectual
aunber of different non-conjugate fields with thet Ciscriminant. Finally
the progrem prints cut one representative polynomial with its discriminant,
index and roots for each normconjugate field with discriminant less than

- 20,600,



CHAPTER 6
The calculation of the fundamentel unit and class number of a given field
using program VORONOIX,
First is given a description of the subroutines used in the above program
except the major subroutine UNIT which comes at the end.
IcF (17, IX, IL, IH)

This routine calculates IH the h.c.f. of the sbsolute value of integers
1J, JX and IL by caelculating

| heofe (hecotf. (@] | [=|),(mD
JCF 2 does the same calculation but for double precision values,

PASTS is essentially the same routine found in Chapter 5.

suB (I, J, X, L)

M1+ M8 M3 Mg N2D M3
[1’ $* 16 A% Te form a basis of a given

lattice, and §: = sz + ZBxy + Cyz is the quadratic form which representa

the wector pair defining the two dimensional lattice corresponding to the
given basis. Chapter /. .

This routine produces a rew basis for the lattice by pre-multiplying the

|

vector [¢ by the matrix LI
Y. 014
0K L

DOW | ; I 0 © 1

¢l =g |t M2m3(<| "

z

y M 2 N3 L9

Thug the new basis is of the form



s [t0o0o (o o] !
— 10 I J|x|m w2z mz|x}|®
T loxi |mmunllf

We redefine M1, M2, M3, N1, N2, N3 so that we bave the new basis in the

¥+ 420 L u3 82 N1+NL9+N392]
16 e

The associated binery quedratic form has slso changed and the new values

sare form i.e. [ﬁ,

of 4, B and C are
AxI+ 2xBxIxK+CxK
AxIx.T-&Bx(IxLi-J‘xK)*GxKxL
Ax3%4+2xBxLxJ+CxL?

respectively.

MLy (31, J2, J3, X4, X2, K3, 11, L2, L3)

I1, I2 are obtained via common store ; we have a field K(Q ) generated by a
zero of the polynomial P(x) = %’ = Mx - I2. The routine mltiplies the
number J1 + 320 + 3380 2 by K1 « K20 + K30 2 to give as the product the
algebraic nuiber T4 + L2 O + 13 @ 2, MULT 2 is a similar routine, but it

uses double precision values.

INVER (I, J, K, KDET)

1Q, I, N(3.3) in comwn store. This routine finds the inverse of the
matrix A=| T T K and sets
wK T+Tex T

™3 TQT+INK T+IQK

X _ 1.1 where N (14,5) J .= 1,3 and KDET have no common factors.
Koer = 3
Fow if ¢ =1I4+J90 +KEQ 2 is an integer of K(D ), where © =19 B + Iy
. X o
then N(41,4) + N(hz)g + N(1,.3) 9 is the inverse ¢ of (P k(9 ).
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FACTOR
P(x) = x° - Thx® + IBx = IC, whose zeros AL, BE © iCA generate the algebraic

muuber £ield K( D ). The field has integral besis [1; P, /\] vhere

\ = 0P+ T O + kS
- INDE X

» and has discriminant - IDET with Minkowski~Davemport
bound M.

NORN (J) finds the norm of 8 & 4+ J where s is defined just before the call
of this function. NORK (I, J, X) finds the normof I92+ 38+ k.

2 2 THDEK
The representations of 9 , AP, A in terms of A end O are

r3
know found © 1X>\+IIB+IZ,

]

/\9 ::JX>\+J! 9-’-3,2
1

A
Ideals le [F,§9+J, A+ UP +K] are stored in the array

KX )\.+KYB+KZ

LIST. LIS? (4, 1) = F, LIS? (4, 2) = J, LIST (4, 3) = S, LIST (4, &4) = O,
LIsr (i, 5) = K, LISP (4, 6) = U, LIS? (4, 7) = T and LIST (4, 8) is the
norm of the ideal.
For 1 = 1 we cansider the integral ideal [1, 8, )\]
Section 1 of the routine is a section of loops which gererate 311 the
possible values for P, 8, J4 T, U, K using the bounds and conditions discussed
in &4 8 (1), for all ideals with norm N less than or equal to the Minkowski
bound MZ. ’
In Section 2 we see if the module P, 89+ 9, TA + U9 + K} (for convenience
we will call it [S,, 5:., 53_1 ) satisfies the multiplicity condition of ideals.
fees let 8,0 = M (1, 1) A 42T (5, 2) B 4m(s, 3)

Sih= M (1e3, DA (143,200 (143, 3)

_ o . i=1,2,3
when we check if E‘j{(j, 1) >\ + (3, 2) Q 4+ x1(3, 3) for =1, ., 6 belongs

to the module. _
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If this is =0 then we have in fact produced an ideal. We initially set
ICO to 1 and in section 3 we increment ICO end fill the array LIST as
described previously. |

In this way we produce ICO different ideals with norm < MZ which ere
now returned to the main program via common store, to be processed by
subroutine UNIT to calculate both the fundamental unit of the field, and

the number of non-equivalent classes.

MAIN PROGRAM

VORONOI
T 3 2
For each field K( O ), where O -14 90 + B 9P -1c =0, 1a, 1B, IC
are given together with the discriminant -~ IDEL and INDEX, the index of the
polynomiale Initially we set MARK to 1 and CLAS to zero. MARK will
eventually give
Mex (tn (vorm &; )

all ideal classes ’fe € 2'[‘
and CLAS will be the class muber of the field.
As an example of the use of this program, we will illustrate its operations
by considering a specific field, the one generated by a zero of the poly-
pomial P(x) = x> = 2x° 4 6x = 1. IDET = 563 end INDEX = 1.
First, in Section 1, we calculate the roots AL, BE *iGA of F(x) = O by the
Newton Raphson Method. |
In what follows referémes to the particular example will occur in braces

{ } thus:~

{AL = 0017609 eas 3 BE = 0.91195 ovs ; GA = 2.20163 ...}

In Section 2 the integral basis of the field is calculated by calling the

subroutine BASIS
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{ inE( O ) vasis is ['1:9:%1] since INDEX = 1 }
Then ¥Z the Minkowski Bound is cbtained {LZ = 4}
For ease of celculetion, we change the defining polynomial by the trans-
format ion <{> =3 0 - Iito form a new polynomial ¢3- I2 ¢ -1 =0
with regl root H. The index of this polynomial IG = 9x INDEX.

i IQ= <42 5 IN = =65 ; H = =147 wuv 3 B° = EHE = 2016 vae |
Subroutine FACTCR is now celled, which gives all the idesls whose norms
are not greater than MZ. They are ITAG in number end are set in the array
LIST {1 - YTAG, 1 - 8).

{ ITAG = 4 and
LIST (1, 1-8) = 1; 0,1,0; 0,0,13:1 corresponding to ideal [‘1,9,9‘} =1,
LIST (2, 1-8) = 2; 1,1,0; 1,0,1; 2 corresponding to ideal[A 18,149 ] =

2

LIST (5, 4-8) = 2; 0,2,0; 1,1,1; b corrzsponding to ideal [7., 29, H9*9J= 3
]

LIST (%, i=8) = 4; 3,1,0; 3,0,1; 4 corresponding to ideal [“,3*9;3*9J= )

and in the new variable the idesls become

{1}_5_1_3_:{ ’ L4.+l¢.4>+f']

Io= 9

o [r, B g ]
5 - [1 | l2'4;6¢ ; 1‘1+7¢ ¢J
L = [1— , 33;53@ 3Hk¢ &]

after having been put in the form required for the application of the
algorithm i.e. a fractionsl ideal which contains 1 as its smallest natural
nunber. }

UNIT (1) is then called which gives the fundamental unit of the field,
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(heving transforaed back to the 0ld variable 8 ) viz In 92+ DEB + pp
DG

which is associated with prime principel ideals

{[1, 6:‘&# : L++:¢+ ¢*]

is the reduced form of 11 and the

lattice loop is:=- 2
[ 3~ 3¢ b+ g
) 7

q
Ted s ¢2 (2- 124 Loop 1
1 ) 26 % 3& ’
and thus the fundemental unit is G 36 ?3
i6e DD = IF = O DE = DG = 1 }

Now we cell UNI? (2), eus, UNIT (ITAG) in furn correspending to each of
the lattices in LIST (2, -ITAG, 1-8), and we are eventuslly given CLAS
the mumber of different lattice loops, and VARK,

The relevant information is then printed and we then consider the next

19 ! 18 13 (3

field. - . y- 30 é 4, 4)2
- b+ 4+
{ Li l ls + 3¢ ‘ﬁi’.f %j has red-ucea form [i § ) ____..d__,,__,‘m}

which proé‘uces the loop )
[ s 3~ 3¢ 1s+¢ +¢

Loop 2

Irp+ 4! 6_éé
[_1’ (8

The second idesl of the loop is the reduced form of 13

1
! 3tk 3-3¢
193*3?{’ )3‘*““#*4' and has reduced form [1, ki 4’*4’ ’ 26 ]
Y 36

which leads on %o Loop 1 &s will be shown in detail at the ead of the

description of UNIT.
The results give us CLAS = 2 and MiRK = 2, and so the cubic field X( B )
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generated by a zero 8 of P has fundamental unit 9’ and class number 2.

UNIT §INK!
We consider the ideal

LIST (MK, L) \ ¢ LISTONG3) O+ T (NG, 2 Lislimy, D)+ LisT (101,6) 9 +LST(NK, 8)
{ 1 KIST (INK, 1) ! LisT (i, 1)

921» IWE + xE
wh:re >\.—.- T S
2
-0+ 8O ~10=0.
3
Under the transfoimation CP: 30 - I, ¢= IQ(P + IN and the 4deal

becomes [ U1+ M2 b+ M3 ~1+~z¢+m3¢*]
1, )
6 s

s in the £ield X(Q ) where

2
% 3e3 | 20vié + 97 ] }
il €. [1’ = J 3 in the exanmple

2
EHO (U,V,W) defines the distance of U + ?ﬁb + W ¢9 from the resl axis.

Now we enter a loop which is the consideration of Voronai's Algorithm,

SLEP (1) ¥e check that sz,x ¥3 - M3 x N2 > 0, end if not interchange the
basis elenenis |

{Inthe example 3x41~=0xk=3 > 0 }
SrEP (IT) We calculate ihe values A, B, C ( as described in Chapter 4)
{a=9 ;B=9.m ;c=shzr } B

STEP (IIT) Check if B > 0, if not call subroutine SUB (0, =1, 1, O) which
alters basis from [i; ¢ HV’] to [11 "4/1 CP/.]

{B z 9.79 > O s0 original basis is left }'

STEP (IV) Check if A > BandC > B ; if B> A

we call sui)routine suB (1, -ID, 0, 1) where ID z[‘%]

and if C<B call SB (1, O, ~ID, 1) where ID = Fé]
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snd by repeated use of this section the three conditions 4 > B - o,

C > B ere satisfied

{ A=9,B=979 .. A< B end so we call SUB {1, -1, O, 1)

to produce basis | 1 32‘3’:34’ Vl;f +$7 ] ;A= 9,B = 0.79, C = 43.69}

STEP (V) Ve calculate RB = (M2 - M3 x H) RD = (N2 - X3 x H),
Now one of the six peairs (BB, RD), (-RB, -RD), (RB-RD, EB), (RB + RD, -RB),
(RD, -RB + RD), (-RD, RB - RD) and only one has positive first element and
negative second. We find which and cell the corresponding subroutine, no
call to subroutine, SUB (-1, O, O, 1), SUB(1, 1, -1, C); SUB (-1, =1, 1, 0)
suB (0, -1, 4, 1) : sUB (0, 1, -1, -1). This corresponds to finding which
of the elements of the reduced Hexagon of Zelling cross the negative %
exis (Chapter 4).
i BB = 3,0 ; KD = 2.47 > O of the other possivilities RD > O, R3 - RD < O
satisfy the sbove conditions so we call SUB (0, =1, 1, 4) to give a new basis

[1 ’-2+¢+4>’~ 38-2¢ J.¢1] }

36 3

SrEP (VI) Finds I, such that

M1+ M2 x H + M3 x HHH
< e 1

and we reset M1 = ¥1 - I x IG, then we £ind a new value of I such that

0 <N1+N2'X¥G+NEXHHH- 1 <

and reset N = N4 - I x IG. This corresponds to finding the pinheads

0 < 1

1

associated with the two basis elements,

. -
{ =2+ B HHL o3 I=1 newelement J35¢*¢ _ ¢
36 36
'35“—7%H+ HHE =22, I=1 pewelement 1-1¢+¢¢ - ¢

4 3 36

in the notation of Chapter 4



STEP(VIT) Ve calculate XA, XC where XA is the & coordinate of ¢

and XC is the g coordinate of ‘F and with the conditions described

in Chapter L we choose two pinheads from the seven possible with reference
to these values XA and XC and the distance RHO, i.e. we choose the pinheads
with the smallest value of RHO,

{ 4 = =0.23 XC = =-1.2

Iy 1
Ve heve 0o ‘P ’3““;?* . since XA < % J0° = 336.1
L S i_iﬁf_ﬁ since XC < % P = 1909.1
1 36 . ‘
@lzi-q'mF: 3-3¢ since 1 ~XA+ XC < § ama ¢ -Y SO
YA

hence JD,_ = 393,2

Tt was not necessary to calculate 93 since ﬁz < pi

The reduced basis is A+ +¢" a- 3¢ k
[ 175 a
STEP (VIII)

Me U2 b N3 M aHod o+ N3
Ve have a reduced basis {1 s L= ic : i&a : e *2

where ¥1, M2, ¥3, K1, X2, N3, IG have no common factor because of the use

of subroutine ICF.

3
Setting N initially at 1 we define § = 212 "’212 £ ¥3$ 103 then

increment N end divide the lattice by #w-( (the q)yu are stored in

arreys IAN and NP) and repeat the process to find a reduced basis for

the new lsttice. The division is produced by multiplying the lattice by
¢~'_'l s O ' Yeing obtained by the subroutine INVER, until we

eventually produce a loop of lattices which has either not occurred

previously or one which has. With the production of each new loop we set

ITEST (4-7, ITIB) to be ¥1, M2, ¥3, N1, N2, N3, IG, the first reduced
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lattice values of the loop. ITIB wes initially set to zero and incremented
each time a new lattice loop iz found. MARK is set to the norm of the
initial lattice of the new loop. | |
At the end of each reduction process we first check if the lattice has
occurred in a previous loop, by comparing ¥1, M2, M3, N1, K2, K3, IG with
ITEST (1~7, 1-ITIB), If such an occurrence happens the completion of the
loop will give us no rew information so we return to the mein program.
If not we must check if a new loop has been produced, this is done by
comparing M1, M2, K3, N1, N2, N3, IG with the previous bases of lattices
in the loop, which have been stored in IAN (1~ 3, 1~ (N - 1)) Ja¥ (41— 3,
1~ (N-1)) and P (1— (N = 1)). If the initial lattice of the loop is the
integral lattice of the field we enter Section 2 otherwise we return. This
section calculates the fundamental unit of the field by multiplying the

?3( 's together. Since some of the units get rather large (some
coefficients as large as 1030), it is necessary to use double precision.
It is also necessary then to transform the unit to the original representa-
tion by the transformation B = E—%‘Q « As a safeguard on the
number of lattices in the loop we required N < 99, but none of the loop
did reach this number.

{’e’z’e now conclude the description of the example. -

2 —3
1 2uvpeg? | 3-2¢ is the reduced basis. We devide the
’ 36 26

lattice by (34%9+¢?) /36 to obtain the new lattice
1 Tt ¢ +¢? lq-u¢+q>’-]
{_ 3 ’

36
12> 0

40.5 ; C = 181.3

#

Step IT A =13.69 ; B
Step III,IVA > B > 0 ; C > B so we leave original basis
Step V RB = 2.47 > 0 ; RD=-9.5 < O so we leave the basis unchanged.
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Step VI ¢' = 00215 e kP, = 1'03 swe
I‘*’: =03 Iy =~ thus

¢ =6; ¥ =9 -1 and so the new basis is

T+d+ gt =17 - +?
[1’ 3¢ ’ 3 ]

- Step VII XA = «0.981 < 1 ; XC=-1.89 < %

p-¢ >0 atd 1 - YA + XC < }
thus B = % Po= 1515.9 ...
9, = ¥ _ _ p = 8608.9 ...
B, = |—¢+¢ Po= 6291497 ue

and since 2 < 0, we need not calculete 93
P=p T+d+¢* 12 -12¢ ]
36 36
But this basis cccurred in the reduction of the integral lattice

and the reduced basis is [ 1,

i.e. loop 1. 2nd so we lave the loop

36 36 36 3¢

[1 )31++4>+?7' ; 3"3‘#],_ >[1 )7“"#*'4)1., 12-‘26#]’}

)

L [1,2 tefef ]




CHAFTER 7
The Check of the Initial Teable

¥ain Prooram ~ FAS3RE

Let P(1), ... P(35) denote the first 35 primes, P(35) = 149 being the final
prime required since it is the smallest prime whose square is greater than
20,000, For a given value L, LIZ gives the index of the smallest prime
vhose square is greater than L. ITCP is initially set to zero dbut
eventually gives the total cubic number fields with negative discriminant
thet ere produced. .
The first loop of the program sets J(1) = JJ x 4 and J(2) = J(1) + 3, 8o
that as JJ takes the values 5 to 5000, the sets - J(1) end - J(2) then
include gll discriminents of cubic number fields which lie between «23
and -20,000. (A1l eiscrimnants are = 0 or 1 mod 4 (SCEUR (28)). Using
" the P's we may fastorise any of the numbers J(4) and J(2) which occur.
We set L =J(I), T =1 or 2 and IB = -L, where IB is the possible field
discriminent we sre checking, Arrsys INIEX (1 — 6) and JNDEX {1 — 6) are
cleared; then by varying IJ from L¥Z to 35 we find the first prime P(1J)
such that P(IT) x % 2 > L and we reset LiZ to IJ, and MZ (which is the
bound on the index of P required in factorising L) to IJ - 1. Q(4) has
been set to 2 and @f2) to 3, ¢(3 — IP) will eventually contain all prime
faci:ors of L which are not equal to 2 or 3. ¥e know that if L is less than
20,000 then L cen have at most 4 such prime factors and hence IP = 6.
INDEX (I) will show to what power Q(I) divides L. First we find to what
power (1) = 2 divides L by dividing L successively by 2 until it is prime
%o 2. Each time inecreasing INDEX (1) by 4 ard a similar procedure is
earried out for INIEX {2). Next IP is initially set to 2 and by varying
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IJ between 3 end ¥Z we f£ind if P(IT) divides L end if so we set IP to
P+ 1, (IP) to P(IL7), INIMX {IP) = 1 end L = L/Q(IP), We then see if
Q(IP) still divides L; if so we set INTEX (IP) = INCEX (IP) + 1 and
L = L/Q(IP) and repeat this process until L and §(IP) are coprime. If
the final value of L is not 1 then L is a prime which is greater than -
P(MZ) and no ve set IP = IP 4+ 1, (IP) = L and INDEX (IP) = 1,
By Theorem 2.1, we know that

EX (1) = 3. ifrI =3
and INDEX (1), DDEX (2) < 5
Herce if ere of these conditions is not satisfied we reject IB as a
cubic field discriminant.
Next, IDET, the associated guadratic discriminant of IB, is found. The
relation

B IIET = JPAL % % 2

L]

wsiquely determires IIET end TTAL, where IDET is of the form a) 4m,
mE2cr 3mod hord)m, m = 41 md 4. To find these values, we initially

set ITAL = JDET = 1 &{nd bty varying ¥ from 2 to IP set

JNDIIK () = DpEX (M) - MSD (INIEX (M), 2) (also for ¥ = 1)
IET = IDET = (M) » x MO0D (DVDEXK (¥) 2)
IT AL = ITAL = QM) x x JNIFX (M)

For ¥ = 1 (i.e. the case we 2 divides IB) we observe the following rules
ITAL = TTAL x 2 % = JNDEX (1)
IIET = -IDET = 2 = x MULY

vhere JNDEX (1) end MULT are given by the table
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ODEX (1) wUIr  JepIx (4)

2 3 1

4 2 1

3 3 0

2 2 0 if IDET £ 1 mod 4
C 2 0 1 if IDET = 4 mod 4

1 no field

0 0 0

Row we check that the finai value of IDET = O or 4 mod 4. Having obtained
IDET we now f£ind a defining polynomial x> - FIAx + FIB of the f£ield with this
discriminant. PFIA and FIB are given by the formilee
if IDET £ 1 md 4 thenFIA=0  and FIB:-Z%E
if IE? = 1modl thenFIA=1  end szi-‘-:?i@r—l
If ITAL (£ in Hasse's notation, the Flihrer of the field) is 1 we call sub-
routine NEG (IDET,ICL) which gives us ICL, the muber of basis elements of
the $deal group of index 3 in the quadratic field (if ony).
The n\wsber of cubic ficlds with discriminant -~IB is given by Theorem 2.2 as
NOF = (% = x ICL - 4)/2, and we then jump o the printout routine.
If ITAL > 1 we calculate ISEM, the number of primes F 3% which divide ITAL.
For esch such prime we check the quadratic residue cf condition of Theorem A
j.e. if Q(I) aivides IPAL, G(I)# 3 then we must have ¢(I)= (3%) mod 3.
L0 = ( é?g) is the Kronecker symbol which is calculsted by subroutine
QUap (ITET, (I)) end returned via common store.

Now IDEL ( § in Hesse's notation) is calculated by the rules
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if JNDEX (2) = O then IDL = O 3

if D ¥ 0mod 3  and JOK (2) = 2 then IEL =1 3
1¢ IDET = 23 mod 9 and JHDEX (2) = 1 then IDSL =4 3
it IDEP S -3 mod 9 and JIEX (2) = 2 then IDEL =2 ;

othervise there is no cubic field with discriminant IB,
By calling subroutine NiG (IDIT, ICL), we cbtein ICL, the number of basis
elerents of the ideal group of index 3 inK( © ) (e in Hasse's notation).
If ICL = O and IDZT & -3 then the ccrc.nary to Theoren 2.3 gives

NOF = 2 w = (ISR + IDEL - 1) if IDEL 4 2

*> 32 2% x IO it EL = 2 _

In the case vhen IIET = - 3 or ICL > C we get SUM = O, and by using subroutines
QUATY and FTROCT i1f eithex a prive @ divides TVAL and Q £ 3 or 1f 3 divides
ITAL end IDET, we increment SUX by 1 and find IR (1, s0) B + & (2, sm)
(Basse's f:)s To find any remsining  A:'s {iee. if @ = 3 and the gbove
conditions are not satisfied) subroutine SOLVE is used, and this also
produces XP (4,3) (the yij of Hosse), We fix ¥(1) = 1 (¥(i) is the Ti of |
| Hasse's notation) and very ¥(2), sees, Y(ISEM) between 1 and 2; if INL =2
we let Y{ISHM « 1) vary between O, 1, 2. ‘

The series of loops produce all pon proportionsl sclutions of the equations
SEMt IDEL~1

KoP(i, k) =Y(1) S Omad3 4=k =IL
c=1l :

IDT times. IDI = 2 2 = (4 - I32¥) if IDEL + 2
= 3% 2xx (&~ ISEN if IDEL = 2
Thus the NOF solutions contain HUF/IDI non proportionsl solutions, and we
reset NOP to this value. Finally we have that the nunber of cubio fields ‘

vith disoriminest I8 is given by NOF = (3 x » ICL) = KCF . |
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@sp (1,7)
This routine calculates the Kronecker symbol (‘:TI') = K where I is the
discriminant of the quedratic field K( § ) defined by the polynomial

x2 - IAx + IB. I4, IB are obtained from common store.

X 1s evaluated thus:~

if J adivides I then we set K = O

if the idesl (J) fectorises in K(D ) then K = 1 otherwise K = =1
K is initially set at zero, and if J divides I we return this value.
If not, K iQ set to =1 and we see if there is anL in the intervel (1, J]

such that L2+ IAxL+ IB is divisible by J; if so then K 1is retwrned as +1.

HCP (1J, IR, IH)

This routine calculates the h.c.f. of two integers IJ and IXK in a method

similar to that used in the routine ICF of the Voronoi program.

¥e (A8,C,D,L.M.P) ‘ .
A, B, C, D, are integers, § satisfies 92 . 140 + IB = O. This subroutine ;
calculates the integers L, K where |
L+¥8 = (A+B O )C+D® ) modP
0 = L, ¥ < P~-1

EV (IDET, I, J, XK, L, M)
We have the field K( B) as before and NORY (J) = Nrm ( & + J).

[I, © + J] is en idesl in K{ © ) and thus the mubers © + 3 * (Wx 1)
for integral N lie in the ideal. By verying M ‘tbetween 1 and K we may !

£ind & number O + I + (N 2 I) whose norm when divided by I is prime to K. ‘

P
Such a number is O + NN and the ideal [N( I+ ), D + M is



equivalent to [I, ® +J]. By a method similar to CUBE see below, we
fixed integers L, ¥ such that Narm (L ¥ + X) 2 Form ( B & KX)° and
(L © 4 ¥) is equivalent to [1,9 + 3)3.

TRIPLE (LT, TAN)

As before ve have a field K{ D ), where P2 -140 .+ 3= 0~am3
NoRK (J) = ‘h’m'm( 9 +3)|
This subroutine finds the vslues of JB such that [If, © + J5) s & Gauss
reduced ideal i,e.

-1 € 2xJB+IA < IT < » NORE (JB)
or 0 < 2x=JB+IA < IT 4if LT = x 2 = KORY (JB)
(LT 4s fixed having been read into the subroutine as a parameter),
<L - T4 4 4 IT - IA

2 and ==

¥%e do this by sllowing JB to vary between and
then checking the sbove inequalities,

IAR was initlally set to zero, then after each value of JB is produced IAN
is incremented by 1, I(IAN) ia set to JB. Finmlly the array I is returned

via cormon stcre, snd the flnal value of IA is returned as a psrameter.

rEg (IoET, I%Z
¥e ere given IDET, the discriminant of a quadratio £ield K( © ), where
IET < Oand 92« IA T + IB= 0. The Kinkowski bound of the field,
viz, I¢ = 3 -IDET/3, 4s now calculated.
KORM {I) will give the sbsolute velue of the norm of the algebraic integer

B 4+ I. ¥e initially set ICL to zero and CLASNO to 1; wheve ICL will
eventually give the muber of basis elements of the ideal group of index 3
in the field, end CLASNO the class number of the field, A ;
KErp (K, 1) O + KzzP (K, 2), K= 1, ses) I gives the basis elevents
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of the ideal group, and if the field has a fundamental unit which is not
unity, KEEP (ICL + 1, 1) D + KEFP (KL + 1,2) will be that unit.
If IDET = -3 then vwe know that the field has no ideal group of index 3
end the fundsmental unit of K(® ), (where 82~ € + 1 =0) 1 & .
Hence KEEP (1, 1) = 1 and KEEP (4, 2) = O. (We assume that the field is
such that ICL < 2). If IIET 4 -3 then we find CLASNO by finding the number
of Gauss reduced pairs JA, JB for which

~JA € 2xJB+ IA = JA <J—}=N0m.i (38)
or O =2=xJB+ IA < JAIif JA x x 2 = NORM {JB)
(See Gauss (14)). By a similar rethod to TRIFLE we let JA vary between 2
and IQ end for every value of JB found to satisfy the above inequalities,
we incresse CLASNO by 1. If 3 does not divide CLASNO then there does not
exist m idesl group of index 3, herce ICL = O, However if 3 | CLASNO we
call CUEE (IDET, ICL) which calculates ICL end the values of KEEP (K, 1),

Kerp (X, 2), K =1, ICL .

Sove (Ix, I, ITO, I7)

We set P = IR (3, ITO) ; N = IT {Ir0) is the bound required in the search
for varigble JKJ found belowe If P % 3, we consider the two possibilities

that IR (4, IT0) = (ng:"f;) is or is not equal to 1. When IR (4, ITO) = 1 we
£ind en integer LI , 4 < LU = Psuwchthat M B +1I) = O g P,

end consequently the integer IX such thet IX = 1M 8 +LEmafr, ¥+ 11)
jie. IX = IN - LM x LIT pod P,

Then ve £ind JKJ > (IR (2, IT0)) = = JKJ = IX mod P, (IR (2, IT0)) is

the A, in Fesse's notation, and we st KOP (12, Iro) = W0D (JKJ, 3) which |
is Hasse's warigble Hrro,u ’ S |
If I3 (4, I0) = 1 we raise ) =IR (1, 0) B + IR (2, IT0) to the |

Iro
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integer power JKJ, and checking that the result IOV & + I0J is congruent
to M § 4 LN mod P, Then, as previously, we set KOP (IZ, ITO) = MOD (JKJ, 3) ’
If P = 3 we need to £ind the reraining /a‘s and eorresponding gl.,q s. We first

change 1M B + LN into the equivalent form 5 m-@ MN., If IDEL = 2 we |
£ind J such that M xJ = 4 mod 9 and then let LL = ¥OD (J = ¥, 9).

Then KCP (12, swd) = [LL 22 1}- 1 |

3
34 1L - [LL ; 1
coming from the woy that 1 + 3 *)IDET and 1 + zfm form a complete set of

&nd ROP (12, SUM + 1)

B

], the last two results

residues.

lees IB0ofTDEF + MK 5 (1+ 3 2fIEST ) = » KOP (12, smi) £ (1 + 5/ IDET )
® x KOP (IZ, SUM + 1)

If ITEL = 1 however then we find J so that ¥ N xJ = 4 med 3 and set

KCP (IZ, SUA) = XN = J xod 3 since

12/ TDET + 300 = (1 4+ %/ IDET) x = KOP (IZ, S0M) mod 3

PROOT_(P)
Wahave,asbefore,afieldK(@),92-IA9' +B=0and ¥ & + IN |
i3 & basis element of the ideal group of index 3 in K{ € ) (PROCT is only
called if such an ideal group does exist, or the field has a unit, aend

M B + LN is set to be the fundamentel unit. SUM is passed to the routine
via common store, where it is increased by 1 and then the routine calculates
the primitive root of P (P prime) IR (1, sti) B & IB( 2, SUM) and also sets
IR (3, SUM) = P and IR (4, SUM) = KS = -@%‘T—' {where the () denotes the
Kropecker symbol). We essume that the value of SUM never exceeds 8.

The Euler furction & of P in K( & ) is (P =~ 4)(P - KS) 32 P is prime. Ve
pet e P-1eandN=P~ES then § =¥ x ¥ and ¥ is the Euler function

of P in the rational field, The case when P = 9 is also considered, if



KS 4 1 then N = 72 otherwise N 36,
For prime P if K5 = 1 we need only consider the rational primitive roots of

P =0 ve set N = 1, and these primitive roots are produced by examining
mubers I to see which satisfy 41 <= I <= P « 1 and

rt

If X3 = =1 or P = 9 then we let I, J vary independently between 1 and P and

W

1 mod P IT.;f 1 mod P J/Tsucht:hat‘tf T< P~1

abeck 42 (3 & + I)™' = L m0d P where L is a rational integer end
BCF (L, P) = 1 where (J 15 v+_I)T # rationel integer 1 = T = H -1,

CUBE (IDET, IEZ)

We consider the field K(© ), where ©2- IA 6 4+ IB = 0. IEZ, which will
eventually give the number éf basis elements of the ideal group of index 3,
is set initially to zero; IBO, the Minkowski bound, is ;/_-'ﬁiﬁr_/T -

The program is divided into 3 main sections.

The first section considers the case when IDET = 1 mod 4. ‘S’e let LT vary
between 1 and IBO and call TRIPLE (LT, IAN) for each IT., IAN gives the
muber of Gauss-reduced ideals of the form {LT, ¥ + I(TaM]) where

1 < IsM =< IaX. To find members of the ideal group of index 3, we look
for algebraic integers of K( © ) of norm LT = = 3, there being no integer
of norm IT. The nethéa is to look for integers I¥S and I2 such that Norm
(s © +I2) =1 ==x 3 =17, IfLUS > O the minimun value of

NORM (TMS © + I2) for fixed IMS is (IB - %) = IS x x 2 which ocours when

I2 = ~LuS/2.

Hencel&fsszxmxm%xxo.f;z2:m:%xzo.5=ﬂo
We let LMS very detween 1 and JBO and search for ;{2, a solution of the
equation
12 % (12 + I¥S) = I7T - 1¥S % x 2 = I3 = LT
-.77..
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i.ee I2 x 11 = LUT where I1 = I2 + 1S
Once a solution (LMS, I2) has been found we check if IX, the h.cefs of
IM3 and I2, is not 1 and IX does not divide IDET., Otherwise we may ignore
the solution as it simply involves rationel multiples of a previous solution.
Then we check to see if it belongs to one of the IAN ideals, and if so we
have found one rember of the ideal group of index 3. We then increase
IEZ by 1 and set ICU (IEZ, 1) = L¥S, I (IEZ, 2) = 1%, ICU (IEZ, 3) = LT
end ICU (IEZ, 4) = I (IG). In other words, we have an ideal [LT, B+ I(1G)]
which when cubed is equivalent to (I¥S § + I2).
The second section contains similar operations t$o the first except inatead

we consider the case IDET = O mod 4. Ve let LT very from 2 to IBC, and

for each LT, L¥S varies from 2 to JBO and for each LE3 set I2 =f[ LTT-L¥Saxx2xIB

and check if Norm (I#S © + I2) = ILTT, end contimnue es in section 1.

In section 3 we check that the number of basis elements of the ideal group

index 3 is either 1 or 2 (otherwise a diagnostic is printed and the program

stops). If, the number of basis elements KE 4s 2 i.e. we have 1 < IEZ = 8,

we produce a Gsuss reduced ideal equivalent to [ICU (1,3), B + ICU (1,4)Jmee2,
i say. We check this ideal against the list of ideals

|
|
{1cv (%, 3), 10 (K, 4) + B ), 2 = K =< IEZ, end the first one not equal

¥
to say K = K

ideal group. [ICU (1, 3), © + XU (4, 2;)]_ is provisionally taken to be

, we take as the provisional second basis elemert of the

the first basis element. If the second basis element is not prime to ITAL, |
se call EQV (IDET, XU (X', 3), ICU (X', &), ITAL, KEEP (2,1), KEEP (2,2)),
otherwise we set XESP (2,1) = ICU (K', 3) and KIEP {2,2) = ICU (X', 4).
If I0U (1, 3) is not prime to ITAL we call the subroutine |
EQV (IDE?, IOU (4,3), ICU (1,4), ITAL, KEEP (1,1), KEEP (1,2)) or otherwise |
set KEEP (1,1) = ICU (1,3) end KEEP (1,2) =I€U (1,4).
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Berce [KEEP (1,1), © + XuEP (1,2)] ( ana [kmEP (2,1), © + KEEP (2,2]] if
XE = 2) are basis elements for the ideal group of index 3, which are prime
to IDAL.
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