BY

TIMOTHY RICHARD HOGAN (ROYAL HOLLOWAY COLLEGE)

PH.D. THESIS

ProQuest Number: 10097562

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10097562
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

$$
{ }_{5}^{T} 41.25
$$

HOG
158393
Junu:8

ABSTRACT

This thesis describes an investigation of the redistribution of electronic charge that occurs during the molecular vibrations of 1,4 -dioxan and related compounds. The infrared band intensities of dioxan- d_{0}, dioxan- d_{8}, cyclohexane $-\mathrm{d}_{0}$, cyclohexane $-\mathrm{d}_{12}$ and tetrahydropyran were measured in both solution and gas phases. In the solution phase, overlapping band systems were split into their components by assuming Lorentzian band contours and producing the absorbance maximum, band halfwidth and peak frequency from a least squares procedure. The individual gas phase intensities in such spectral regions were then derived by assuming that the distribution of intensity across the region was the same in both phases. Normal coordinate calculations were performed and extended to reduce the dioxan and cyclohexane experimental intensities to parameters known as atomic polar tensors (APTs). Each element of the APT for an atom represents the change in a component (x, y or z) of the molecular dipole moment on moving the atom along one of the molecule-fixed Cartesian axes. The sign ambiguity of the experimental dipole derivatives was satisfactorily resolved using constraints provided by the intensities of the deuterated compounds: APTs were calculated from each possible choice of signs and these were used in turn to predict the intensity of the deuterated molecule - the APT was rejected if the agreement was unsatisfactory (as measured by a "fit factor"). The Gaussian 76 package for $M O$ calculations was used to calculate ab initio APTs, and also, for dioxan, to derive a general valence force field. The latter, after least-squares refinement to the frequencies, proved more appropriate for the analysis of the dioxan intensities than a field derived from the Snyder-Zerbi generalized ether force field alone. A reasonable correspondence exists between the APTs derived from experiment and those
from the Gaussian 76 package, and certain trends are apparent along the series of molecules that hopefully will aid future studies and will provide a route to the prediction of spectra of related molecules.
CHAPTER 1. Page
1.1 Infrared band intensities (general discussion).. 1
1.2 The experimental determination of I.R. Band 2intensities.
1.3 The origin of the band intensity. 6
1.4 Analysis of intensity data. 9
1.5 Models for the flow of charge 14
1.6 The scope of the project. 17
CHAP TER 2.
2.1 Acquisition of the intensity data. 18
2.2 Solution spectra - bandfitting. 22
2.3 Experimental data - 1,4-dioxan. 23
2.4 F sum rule. 34
2.5 Effective atomic charges - 1,4-dioxan 38
2.6 Experimental data - cyclohexane. 38
2.7 F sum rule - cyclohexane. 47
2.8 Effective atomic charges - cyclohexane 50
2.9 Experimental data - tetrahydropyran. 51
CHAPTER 3.
3.1 The role of quantum mechanics in IR 58
spectroscopy.
64
3.2 Gaussian 76
65
3.3 Force constant determination.
86
86
3.4 Ab initio atomic polar tensors
3.4 Ab initio atomic polar tensors
86
86
3.5 APTs - 1,4-dioxan.
3.5 APTs - 1,4-dioxan.
91
91
3.6 APTs - cyclohexane.
3.6 APTs - cyclohexane.
95
95
3.7 APTs - tetrahydropyran
3.7 APTs - tetrahydropyran 100
CHAPTER 4.
4.1 Method used for the analysis of the IR band 103intensities.
4.2 Cyclohexane normal coordinate calculation 104
4.3 Determination of the signs of the $d_{o}{d p_{z} / d Q . ~}_{d}$. 109
4.4 Determination of the signs of the $d_{0} d p_{x} / d Q$ and $\mathrm{dpy} / \mathrm{dQ}$. 111
4.5 Use of the ab initio data to help resolve the sign ambiguity. 114
4.6 Significance of intensity distributions in regions of band overlap. 118
4.7 The cyclohexane experimental APTs 121
CHAP TER 5.
5.1 Evaluation of the Snyder and Zerbi ether force field. 123
5.2 Force field refinement. 128
5.3 Force Field A ('unconstrained') 131
5.4 Derivation of constraints based on the ab initio force constants. 132
5.5 Perturbation procedure for force field B ('constrainted'). 145
6.1 The use of the ab initio APTs in the analysis of the dioxan IR band intensities. 161
6.2 Determination of the signs of the $\mathrm{d}_{\mathrm{o}} \mathrm{dp}_{\mathrm{x}} / \mathrm{dQ}$ 168
6.3 Second and third rows of the dioxan APTs. 173
CHAP TER 7.
7.1 APTs in the dioxan-type axis system. 176
7.2 APTs in the band coordinate system. 182
7.3 Invariants of the APTs. 191
7.4 Trends in APTs. 199
7.5 Prediction of tetrahydropyran band intensities. 205
7.6 An 'average' dioxan force field. 211
7.7 Assessment of results. 214

Page

1. d_{o}-Dioxan: gas phase data. 25
2. d_{0}-Dioxan: solution data. 26
3. d_{8}-Dioxan: gas phase data. 28
4. d_{8}-Dioxan: solution data. 29
5. d_{0}-Dioxan: summary of experimental intensity
measurements. ... 30
6. d_{8}-Dioxan: summary of experimental intensity
measurements. ... 31
7. d_{0}-Dioxan individual band intensities. 32
8. d_{8}-Dioxan individual band intensities. 33
9. d_{0}-Dioxan intensity sums. 36
10. $d_{8}{ }^{\text {r Dioxan }}$ intensity sums. 37
11. d_{0}-Cyclohexane: gas phase data. 39
12. d_{12}-Cyclohexane: gas phase data. 40
13. d_{0}-Cyclohexane: solution data. 41
14. d_{12}-Cyclohexane: solution data. 43
15. ${ }^{d}{ }_{0}$-Cyclohexane: summary of experimental intensity 4
16. d_{12}-Cyclohexane: summary of experimental
intensity measurements. ... 44
17. d_{0}-Cyclohexane individual band intensities. 45
18. d_{12}-Cyclohexane individual band intensities. 46
19. d_{0}-Cyclohexane intensity sums. 48
20. d_{12}-Cyclohexane intensity sums. 49
21. Tetrahydropyran: gas phase data. 51
22. Tetrahydropyran: solution data. 53
23. Tetrahydropyran: summary of experimental \quad intensity measurements... 55
24. Tetrahydropyran individual band intensities. 56
25. Gaussian 76 dipole moment data for l,4-dioxan. 85
26. Gaussian 76 dipole moment data for cyclohexane. ... 90

27. Gaussian 76 dipole moment data for trioxan. 100
28. Calculated d_{0}-cyclohexane $I R$ frequencies. 106
29. Calculated d_{12}-cyclohexane $I R$ frequencies. 107
30. Evaluation of sign choices for d_{0}-cyclohexane $\mathrm{dp}_{\mathrm{z}} / \mathrm{dQ}$. 110
31. Evaluation of sign choices for d_{0}-cyclohexane $d p_{x} / d Q$ and $d p_{y} / d Q$. 112
32. Comparison of ab initio and experimental band intensities for d_{0}-cyclohexane. 116
33. Comparison of ab initio and experimental band intensities for d_{12}-cyclohexane. 117
34. Snyder and Zerbi force constants for 1,4-dioxan. 123
35. Frequencies calculated for d_{0}-dioxan using the Snyder-Zerbi force field. 124
36. Frequencies calculated for d_{8}-dioxan using the Snyder-Zerbi force field. 126
37. Ab initio constraints for dioxan force constants. 144
38. Force field A ('unconstrained'). 148
39. Force field B ('constrained'). 149
40. Comparison of fields A and B. 150
41. Frequencies calculated for d_{0}-dioxan using derived force fields. 151
42. Frequencies calculated for d_{8}-dioxan using derived force fields. 152
44(a) do-Dioxan: potential energy distribution (field A) 153
44(b) d -Dioxan: potential energy distribution $^{\text {Dis }}$ (field A) 155
45(a) do-Dioxan: potential energy distribution (field B). 157
45(b) d8-Dioxan: potential energy distribution (field B). 159
43. Intensities calculated for d_{0}-dioxan (field A plus ab initio APTs). 162
44. Intensities calculated for d_{0}-dioxan (field B plus ab initio APTs). 163
45. Splitting corresponding to Table 46. 164
46. Splitting corresponding to Table 47. 165
47. Intensities calculated for d8-dioxan (field A plus ab initio APTs). 166
48. Intensities calculated for d8-dioxan (field B plus ab initio APTs). 167
49. Carbon APTs (dioxan-type axis system). 178
50. Axial hydrogen APTs (dioxan-type axis system). 179
51. Equatorial hydrogen APTs (dioxan-type axis system). 180
52. Oxygen APTs (dioxan-type axis system) 181
53. Cyclohexane hydrogen APTs (bond coordinate system). 184
54. Dioxan hydrogen APTs (bond coordinate system). 185
55. Tetrahydropyran hydrogen APTs (bond coordinate system). 187
56. Troxan hydrogen APTs (bond coordinate system). 190
57. Invariants of the APTs. 198
58. Diagonal elements of hydrogen APTs (bond coordinate system). 201
59. Off-diagonal elements of hydrogen APTs (bond coordinate system). 202
60. Diagonal elements of carbon APTs (dioxan-type axis system). 203
61. Off-diagonal elements of carbon APTs (dioxan-type axis system). 203
62. Oxygen APTs (dioxan-type axis system). 204
63. Tetrahydropyran: constrained force field frequencies and intensities. 207
64. Tetrahydropyran: unconstrained force field frequencies and intensities. 209
65. d_{0}-dioxan 'average' force field frequencies and intensities. 211
66. d8-dioxan 'average' force field frequencies and intensities. 212

Chapter I - INTRODUCTION.
Section 1.1 Infra-Red Band Intensities.
Vibrational spectroscopy is a source of information on a number of different aspects of molecular dynamics. Band frequencies may be related, through a normal coordinate calculation, to the form and amplitude of each molecular vibration. The band shape is determined by the relaxation processes of the transition dipole undertaken by the molecules as well as by the direction of the transition moment. The band intensities, with which this thesis will be primarily concerned, are related to the resulting fluctuation in the charge distribution in the molecule.

Historically it is the frequency that has been the subject of most investigation. It is the most easily measured parameter, and has the most direct analytical application. It may be understood theoretically using the classical mechanics of vibrating systems as a starting point, and the development of this understanding has proceeded smoothly through the construction of generalised model force fields, and the acquisition and processing of expanding quantities of diverse experimental data. The study of band intensities however, has followed a more hesitant approach.

There are two definitions of band intensity currently in use.

$$
\Gamma_{k}=\frac{l}{c \ell} \int \ln \left(\frac{I_{o}}{I}\right)_{\nu} d \ln \nu
$$

c is the concentration of the absorbing material. ℓ is the path length of the cell. $\quad\left(I_{o}\right)_{\nu}$ is the initial beam intensity at frequency ν. (I) \mathcal{V}_{ν} is the intensity of the beam having passed through the sample. An alternative expression is:

$$
A_{i}=\frac{I}{c \ell} \int \ln \left(\frac{I_{o}}{I}\right)_{\nu} d \nu
$$

Here the integration is performed with respect to the frequency (yielding simply the area under the absorption curve), rather than the natural logarithm of the frequency.

As will be seen below, Γ can be directly related to the transition moment, the fundamental quantity which describes the change in electronic configuration in terms of wavefunctions of the initial and final vibrational states. Various rules can be formulated for the sum of Γ for a molecule, which are exact within the harmonic approximation, for the comparison of spectra of isotopically abstituted molecules ${ }^{1}$, and also for resonance interaction between energy states ${ }^{2}$.

Although no such rules exist for 'A', these are the values most frequently reported in the literature. Since $A_{i} \simeq \Gamma_{i} \nu_{i}$ within the accuracy of most experiments, the two quantities may be readily interconverted.

Section 1.2 Experimental Determination of Band Intensities.
Experimentally, the absolute intensity of an infra red absorption band is a difficult quantity to obtain. Data should be obtained from gas phase spectra since in liquid and solution the molecules of the sample are subject to perturbation due to intermolecular interactions. The effective field acting on the absorbing molecule may also be modified by dielectric phenomena that are difficult to quantify, and by fluctuating intermolecular interactions; the resulting spectrum is not a completely: reliable record of the intramolecular events taking place.

Except for all but the smallest of polyatomic molecules, a spectrum will consist not of well defined individual absorption bands, but sets of band complexes with overlapping components. In solution-phase spectra, each band may be assumed to be described by a Lorentzian or near Lorentzian - type function, and the components 'resolved' by the application of educated guesswork, simulation techniques, or least squares methods. In the gas phase, however, each band has an inherently complex structure, since the rotational fine structure remains intact, this information being lost in the liquid phase as intermolecular collisions and interactions destroy the separate identity of the rotational states.

From the point of view of assigning each band in a spectrum as arising from a transition of specified symmetry, this
superposition of information is extremely valuable, since the actual band contour is determined by the direction of change of dipole moment during the molecular vibration. Without this insight into the character of the transition yielding each band, it would be extremely difficult to unravel the frequency data from a spectrum, this being a necessity for force constant calculations.

From the point of view of acquiring total band intensity data, however, this information is not only superfluous, but it greatly increases the magnitude of the difficulty of data analysis due to the overlapping of bands. Although success has been achieved through simulation techniques, requiring the capability to perform asymmetric rotor calculations, such an approach requires an amount of effort to be expended which is prohibitive as far as routine investigations are concerned.

The procedure adopted in this study is to attempt to determine the individual gas phase band intensities by comparison of gas with solution phase data. Although this has been performed quite successfully, such approximations increase the magnitude of error in the results to a degree that is perhaps difficult to estimate.

Even considering a well defined, distinct absorption band in a spectrum, the question arises - is this a true representation of the physical processes occuring at the molecule? To what extent is the spectrum degraded by instrumental distortion? In a conventional spectrometer, the beam of light travelling from the sample passes through a slit and onto the detector. The fact that this slit is of finite width means that an interval of frequencies is actually being monitored at a given frequency setting. The resulting plot of transmission versus frequency does not then correspond to the true spectrum, but is actually a convolution of it with the slit function, which is often approximated as triangular in form.

$$
T\left(\nu^{\prime}\right)=\int_{0}^{\infty} I(\nu) g\left(\nu, \nu^{\prime}\right) d \nu
$$

$T\left(\nu^{\prime}\right)$ is the apparent intensity at frequency $\nu^{\prime} . \quad I(\nu)$ is the true intensity at $v . g\left(\nu, v^{\prime}\right)$ is the slit function, which is
zero except in a range close to ν^{\prime}. This is the factor which determines the resolution of the spectrometer.

The spectrum is distorted so as to yield an absorbance which is too low, and consequently the apparent band intensity is low. There is also a loss of information on the band contour, which is broadened by the effect. The magnitude of this distortion is determined by the ratio of the slit width to the band half-width - generally if this is maintained at a value less than 0.2 , errors in the band intensity arising from this source should be less than $\sim 2 \%$.

Early studies on band intensities, in the late l920's, brought attention to this problem of having adequate instrumental resolution. The fundamental of HCl was measured both by Bourgin ${ }^{3}$ and Bartholomé ${ }^{4}$ but for the above mentioned reason, their results differed by a factor of four.

A decade later, Wilson and Wells ${ }^{5}$ showed that as 'cl' reaches zero, then the observed intensity becomes the true intensity. Thus by making a series of measurements at different values of 'cl' the true value may be obtained by extrapolation.

If (observed intensity x cl) is plotted against cl, the slope of the tangent at the origin gives the desired value. Alternatively if $B / c l$ is plotted versus $c l$, the intercept at $\mathrm{cl}=0$ gives the true intensity. Care should be taken with such an approach, since the results obtained will rely heavily on data corresponding to low absorption which are subject to the largest experimental error.

Gas phase spectra often contain a number of exceptionally sharp features, i.e. strong Q branches, and these are especially prone to distortion due to inadequate resolution. It is then desirable to smear out the peak by adding to the cell a high pressure of inert gas, such as nitrogen. - If the measured absorbance is roughly constant over the range of the slit function, direct integration over the band will yield the correct intensity. Again, some caution is necessary, when dealing with weak bands, since a molecule undergoing excessive collisional perturbations may show induced absorption. This may occur for both normally inactive fundamentals, e.g. the $a_{I_{g}}$ mode of methane ${ }^{6}$, and for simultaneous transitions where absorption may occur at a frequency $\nu_{a} \pm \nu_{b}$ where ν_{a} and ν_{b} refer to the
fundamentals of the two different molecules ${ }^{7}$.
Solution and liquid phase studies are not hindered to such a large extent by the slit effect, but nevertheless it is still not negligible. Correction factors have been calculated and tabulated for e.g. a triangular slit and a Lorentzian band ${ }^{10}$, and for a gaussian slit function with either Lorentzian or gaussian bandshapes ${ }^{11}$.

A source of error unique to solution/liquid phase measurements is that the wings of a band may spread out to distances far from the band centre, and the point at which these merge with the baseline is difficult to determine. A way to circumvent this problem is to assume that the band may be represented analytically, and then integrate this function over all space.

With very high resolution the slit width problem is no longer relevant. As the resolution is increased, however, the spectrum will exhibit a higher level of noise unless the scan speed is slowed accordingly. Alternatively the noise level can be reduced at the stage of data analysis. One of the simplest ways to smooth fluctuating data is by applying to it a moving average such as a triangular or exponential type function. This process in itself leads to degradation of peak intensity.

This method of treating data is equivalent to convoluting it with the appropriate set of integers, these being fixed by the type of averaging function being employed. More sophisticated numerical analysis furnishes coefficients which yield a curve representing a least squares fit to the observed points ${ }^{12}$.

There are various methods which seek to derive the true from the observed spectrum. The relationship between the latter may be restated:

$$
f\left(\nu^{\prime}\right)=\int_{-\infty}^{+\infty} a\left(\nu-v^{\prime}\right) \phi(v) d \nu
$$

a $\left(\nu-v^{\prime}\right)$ is the fraction of radiation of frequency ν transmitted to the recorder set at v^{\prime}.

There are three groups of methods by which $\phi(\nu)$ can be deduced from $f\left(\nu^{\prime}\right)$, having gained one experimental scan only.
(1) $F(t)=\Phi(t) \cdot A(t)$ where F, Φ, and A are Fourier transforms of f, ϕ, and a \therefore Inverse Fourier transformation of $\Phi(t)$ will yield $\phi(\nu)$.
(2) The true spectrum may be recovered by adding a correction to the observed spectrum, based on the second derivative:
$\phi(\nu)=f(\nu)-\frac{s^{2}}{12} \frac{\partial^{2} f(\nu)}{\partial \nu^{2}}+$ higher derivatives.
This example is appropriate for a symmetric monochromator with a triangular instrument function.
(3) Pseudo-deconvolution. This involves convoluting the observed spectrum with the slit function. The true curve may be derived by analysis of the ordinate differences resulting from this operation ${ }^{15}$.

So it can be seen that experimentally there is often far more to obtaining the intensity of a band than running the spectrum and directly measuring the area under the curves. Certainly, before the spread of computer technology, the acquisition of reliable data had proved one of the main stumbling blocks in the field. Accurate work should now be capable of yielding band intensities correct to within 5%.

Section 1.3 The Origin of the Band Intensity.
In a quantitative investigation of the phenomena occuring at the initiation of the absorption process, quantum mechanics may be used to describe the material body whilst the radiation field is satisfactorily formulated using classical electomagnetic theory. First order perturbation theory is employed to determine how a molecule can interact with radiation, and shows that the probability of a transition between two states described by the wavefunctions ψ^{n} and ψ^{m} is proportional to the square of the 'transition moment' ' $\mu_{n m}$ '

$$
\underline{\mu}_{n m}=\left\langle\psi^{n}\right| \dot{p} \mid \psi^{m} \quad \underline{p}=\text { molecular dipole moment }
$$

According to classical electrodynamics, a system may absorb and emit radiation if its dipole moment is fluctuating in a periodic manner, and here the transition moment is in fact analogous to the classical amplitude of the oscillation.

If it is assumed that each molecular vibration is a simple harmonic motion, then the wavefunctions for the vibrational states are derived by solving the Schrödinger equation for the system, and they take the form

$$
\psi_{v}^{k}=N_{v} \exp \left(-\frac{1}{2} Y_{k} Q_{k}^{2}\right) H_{v}\left(Y_{k}^{\frac{1}{2}} Q_{k}\right)
$$

Q_{k} is the normal coordinate for the $k^{\text {th }}$ vibration. $Y_{k}=\frac{4 \pi^{2}}{h}\left(v_{c l}\right)_{k}, v_{c l}=$ classical frequency. $\quad H_{v}$ is a Hermite polynomial, the order 'v' being given by the quantum number v. N_{i} is a normalising factor.

The corresponding eigenvalue is given by $\varepsilon_{v}=\left(v_{i}+\frac{1}{2}\right) h \nu_{c l}$. Hence the frequencies at which radiation is absorbed can be identified with the classical mechanical frequencies.

The magnitudes of the components of the molecular dipole moment depend on the atomic configurations, and thus are functions of all vibrational coordinates, and capable of expansion as a Taylor series:

$$
p=p_{o}+\sum_{k}\left[\left(\frac{\partial p}{\partial Q_{k}}\right) Q_{k}\right]+\ldots
$$

'o' signifies correspondence to the equilibrium position.
So for the molecular dipole to vary, $\frac{\partial \underline{Q}}{\partial Q_{k}}$ must have at least one non-zero component. This actually corresponds to a 'selection rule', but it is 'restricted', in that its validity depends on two assumptions:
(1) That each vibration is simple harmonic. Otherwise the separability of the total vibrational motion into the individual normal modes is not possible.
(2) That higher terms in the Taylor expansion are negligible.

Further insight into the conditions necessary for absorption may be obtained by substituting the expansion for p into the definition of the transition moment.

$$
\underline{u}_{n m}=\underline{p}_{0} \int \psi^{n *} \psi^{n} d \tau+\sum_{k}\left[\left(\frac{\partial p_{2}}{\partial Q_{k}}\right) \rho \int \psi^{n *} Q_{k} \psi^{m} d \tau\right]
$$

The first term on the right hand side vanishes unless $n=m$, due to the mutual orthogonality of the wavefunctions, and since
this corresponds to no absorption, the term may be disregarded.
Consider the $k^{\text {th }}$ term of the remaining summation. The total vibrational wavefunction describing the state ' n ' is a product of wavefuntions, one for each normal mode.

$$
\begin{aligned}
\psi^{n} & =\Pi_{k} \psi_{k}^{n} \\
\therefore \quad \mu_{n m} & =\int \psi_{1}{ }^{n *} \psi_{1}{ }^{m} d Q_{1} \int \psi_{2}{ }^{n *} \psi_{2}{ }^{m} d Q_{2} \ldots \int \psi_{k}{ }^{n *}{ }_{Q_{k} \psi_{k}}{ }^{m} d Q_{k}
\end{aligned}
$$

There are two conditions that determine whether the RHS will be non-zero:
(1) For all modes except the $k^{\text {th }}$, the two states must be identical, from the orthogonality restrictions on the wavefunctions.
(2) The properties of the Hermite polynomials dictate that the vibrational quantum number must only change by unity during a transition.

The correctness of all these assumptions is brought into perspective by the fact that overtone and combination bands do have intrinsic intensity and are generally very common in infra red spectra. The fundamental bands remain as the dominant feature, however, and it is usual to treat mechanical and electrical anharmonicity as a perturbation to the simple harmonic description of the vibrational motion.

All the above 'selection rules' have been restricted in that their validity retains certain assumptions. Ultimately it is molecular symmetry that determines whether the dipole change is non-zero for a given motion. The rules obtained from these considerations are rooted mathematically in Group Theory, and are completely general in their application to both harmonic and anharmonic forms of motion.

So the criterion for the activity of a fundamental ultimately rests with the symmetry properties of the transition moment. In fact, group theory shows that this must belong to a representation whose structure contains the totally symmetric species, and for this to be true, the species of the vibration must be the same as that of one of the components of the dipole moment,
i.e. as one of the translations in the x, y, and z directions. Since the ordinary character tables list this information for each point group, the symmetry of the vibrations that are infra red active may be readily ascertained.

The discussion so far has presented the conclusions which determine only whether or not to expect a given fundamental to feature in an infra red spectrum. This only represents a superficial analysis of the transition moment, and does not indicate the precise nature of the phenomena which contribute to its value.

Section 1.4 Analysis of Intensity Data.
The primary task of intensity theory is to use the experimental data, the set of fundamental band intensities, to derive a set of parameters which describe the physical processes that occur as a molecule changes its configuration. Since it is the change in dipole moment that is all important, we are actually describing the way the charge distribution is distorted as the atomic centres are displaced.

The way in which we examine these processes depends on the coordinate system employed in the calculations, i.e. the way in which we describe the form of each vibration and the flow of charge.

The experimentally derived quantity is the derivative of the molecular dipole moment with respect to the normal coordinate for the vibration.

$$
A_{i}=\frac{N \pi g_{i}}{3 c^{2}}\left(\partial p / \partial Q_{i}\right)^{2}
$$

N is Avogadro's number, c is the velocity of light, and g_{i} is the degeneracy of the vibration.

This derivative is a quantity that is difficult to physically visualise and is of little use in itself in rationalising the flow of charge. The first step in the analysis is to decompose the $\partial p / \partial Q$ into parameters which are chemically more meaningful, such as functions of band lengths and interbond angles.

The transformation between internal coordinates and normal coordinates is given, in matrix notation, by

$$
R=L Q, \quad \text { where } L_{i j}=d R_{i} / d Q_{j}
$$

Thus,

$$
\begin{aligned}
d \underline{p} / d Q_{i} & =\sum_{j}\left(\partial \underline{p} / \partial R_{j}\right)\left(\partial R_{j} / \partial Q_{i}\right) \\
& =\sum_{j}\left(\partial \underline{p} / \partial R_{j}\right) L_{j i}
\end{aligned}
$$

and

$$
\begin{aligned}
d p / \partial R_{j} & =\sum_{i}\left(\partial p / \partial Q_{i}\right)\left(\partial Q_{i} / \partial R_{j}\right) \\
& =\sum_{i}\left(\partial p / \partial Q_{i}\right) L_{i j}^{-1}
\end{aligned}
$$

Thus in order to deduce a set of $\partial \underline{p} / \partial R_{j}$ it is necessary to measure the intensities of all the fundamentals, and to have determined the L matrix. The latter is only available if the molecular for ce field has been determined, and this fact contributes a major stumbling block. Although much effort and progress has been made in the area of normal coordinate/force constant calculations, force fields have been completely determined for only the smallest of polyatomic molecules.

First, the reverse computation will be considered, i.e. the calculation of vibrational frequencies employing a predetermined or assumed force field. The secular equation which must be solved takes the following form:

$$
\mathrm{GFL}=\mathrm{L} \Lambda
$$

The G matrix is the kinetic energy term, and its elements are functions of the nuclear masses and geometry (so the latter must be known by electron diffraction, or other means),

$$
\mathrm{G}=\mathrm{BM}^{-1} \mathrm{~B}^{\mathrm{t}}
$$

M^{-1} is a $3 \mathrm{~N} \times 3 \mathrm{~N}$ diagonal matrix, of the inverse atomic masses ($N=$ number of atoms). The B matrix relates the internal and Cartesian coordinate systems:
$R=B X, \quad B_{i j}:=\frac{\partial R_{i}}{\partial X_{j}}$
Setting up the G matrix is a straightforward computational matter.

The potential energy is defined by the F matrix in the secular equation. It is a function of the internal displacement coordinates, and may be expanded as a Taylor series in these.

$$
\begin{aligned}
& V\left(R_{1}, R_{2}, \ldots\right)=V_{0}+\left(\frac{\partial V}{\partial R_{1}}\right)_{0} R_{1}+\left(\frac{\partial V}{\partial R_{2}}\right) R_{0}+\ldots \\
& \quad+\frac{1}{2}\left(\frac{\partial^{2} V}{\partial R_{1}^{2}}\right)_{0} R_{1}^{2}+\frac{1}{2}\left(\frac{\partial^{2} V}{\partial R_{2}^{2}}\right)_{0}^{R_{2}}{ }^{2}+\ldots \\
& \quad+\left(\frac{\partial^{2} V}{\partial R_{1} \partial R_{2}}\right) R_{0} R_{1} R_{2}+\left(\frac{\partial^{2} V}{\partial R_{2} \partial R_{3}}\right) R_{2} R_{3}+\ldots
\end{aligned}
$$

V_{0} is the potential energy corresponding to the equilibrium geometry and it may arbitrarily be taken as zero, and the energies measured relative to it. The 'o' subscript signifies the equilibrium position, and hence the first derivatives in the expansion are zero. The second derivatives that remain are the 'force constants'.

$$
F_{11}=\left(\frac{\partial^{2} V}{\partial R_{1}^{2}}\right)_{0}, \quad F_{12}=\left(\frac{\partial^{2} V}{\partial R_{1} \partial R_{2}}\right)_{0} \text { etc. }
$$

Higher derivatives in the expansion would correspond to the anharmonic components of the force field.

Finally, the L matrix defines the form of each vibrational mode, and is the transformation matrix between internal and normal coordinates.

$$
R=L Q \text { i.e. } \quad L_{i j}=\partial R_{i} / \partial Q_{j} .
$$

The secular equation takes the form of an eigenvector/ eigenvalue problem. The frequencies are the elements of the diagonal matrix Λ, and are the eigenvalues of the product GF. Each row of L is the corresponding eigenvector. Such
computations are routine, and thus there is no inherent difficulty in calculating the frequencies starting from a known nuclear geometry and force field.

However, it is the vibrational frequencies which are the experimental observables, and therefore the principal source of data from which the molecular parameters, the force constants, have to be derived. Unfortunately the latter, in the general valence force field described above, are far greater in number than the independent pieces of data.

The most important source of extra information is the sets of new frequencies abtained by isotopic substitution. Here, the molecular force field remains unchanged, but the different atomic masses produce a new G matrix and hence furnish a different set of eigenvalues for GF. In this way, constraints are imposed on the possible values of the force constants. The sets of frequencies are, however, related:

$$
\left.\cdot \frac{\Pi \lambda}{\Pi \lambda}=\frac{|G|}{G Q^{-}} \right\rvert\,
$$

One such expansion exists for each symmetry block, and thus limits the new information available.

Previous experience may enable various assumptions regarding the numerical values of the force constants to be made. For instance, it is often reasonable to assume that the only interaction constants to take non-zero values should be those corresponding to internal coordinates with two atoms in common. Or certain force constants might be transferred from smaller, chemically related molecules which have already been studied in detail.

There is actually no straightforward way to reverse the normal coordinate calculation to yield force constants from frequencies. The usual procedure is to employ an iterative method. A guessed set of force constants is used to generate a set of frequencies which is compared with those observed, and the force field is then modified so as to reduce to a minimum the sum of the squares of the differences. Such a procedure may be 'badly behaved', in that the fit between postulated and experimental frequencies may oscillate during the cycle of
iteration or even get progressively worse. The convergence depends on a reasonable initial guess, and if this is not provided the assumption on which the process is mathematically based will not be obeyed. There may be some doubt concerning the acual assignment of the frequencies, and this may constitute a serious source of error in the calculation.

Even if the above is carried out successfully, the force field finally obtained will to some extent reflect the constraints and type of parametrization enforced by the investigator. And similarly, there will be some question as to how accurately the L matrix then calculated will describe the form of each vibration. Thus immediately a veil of uncertainty is drawn across the parameters obtainable from the experimental $d p / d Q$.

And yet an equally important problem must be considered at this initial stage. Experiment yields the square of $d p / d Q$, and hence only its magnitude, not its sign. There are 2^{n} possible sets of $d p / d Q$ where ' n ' is the number of infra red active bands. Symmetry reduces this to being true for each individual symmetry species. Each different set will yield a different set of $d p / d R$, so the problem is to decide which one is correct.

Again, isotopic substitution can be of great benefit. The parameters that characterise the way in which the charge is redistributed are independent of the actual atomic masses, being functions only of the electronic wavefunctions. Thus the $d p / d R$ obtained from a set of $d p / d Q$, for say the undeuterated compound, should reproduce the intensities observed for the fully deuterated compound. The ($\mathrm{dp} / \mathrm{dQ}$) dO_{0} which produce the $d p / d R$ which best adhere to this constraint are then considered to be the 'correct' sign choice. This procedure is subject to errors both from the experimental intensities and the force field being employed.

Supposing that a satisfactory set of $d \underline{p} / d R$ has been obtainedhow does the analysis now proceed?

Section 1.5 Models for the flow of Charge.

There are essentially two different routes of analysis which offer contrasting views of the charge redistribution. Historically the first was to regard each chemical bond as a separate molecular building block, a fragment whose electronic distribution acts in an independent manner. This 'zeroth bond moment hypothesis', rests on three simplifying assumptions:
(1) The stretching of a bond by dr produces a change of dipole moment along the bond of ($\partial \underline{\mu} / \partial r$)dr.
(2) The deformation of a bond through an angle d θ produces a dipole change $(\partial \underline{\mu} / \partial \theta) d \theta$ perpendicular to the bond and in the plane of movement.
(3) Changes in one band do not result in changes in another bond except when geometrically necessary.

In the above, ' $\underline{\prime}$ ' stands for the 'bond moment', and is equal to $q \cdot \underline{r}, \underline{r}$ being the unit vector along the bond and q the charge apportioned to each atom of the bond.

The usefulness of such a model may be measured by how the parametersobtained transfer between chemically similar molecules, and how resulting discrepencies can be rationalized. In fact the above model proves to be unsatisfactory ${ }^{16}$, and the more sophisticated treatment required must employ a greater number of parameters to describe the contribution to the total dipole moment and individual kond moments from electron flow in regions actually removed from the atomic displacements.

Such a model is found in the Gribov formulation ${ }^{17}$

$$
\mathrm{d} \overrightarrow{\mathrm{M}} / \mathrm{dQ} Q_{i}=\left[\left(\mathrm{e}^{+0}\right)^{\prime}(\underline{\underline{\underline{\mu}} / \partial R})+\left(\underline{\underline{\mu}}^{0}\right)^{\prime}(\underline{\underline{\underline{\underline{a}}} / \partial R})\right] \mathrm{L}_{i}
$$

As previously, the total molecular dipole moment is given by the vector sum of the bond moments.
$\vec{M}=\sum_{k} \mu^{k \rightarrow{ }_{e}^{k}}$
These bond moments include the dipole contributions from lone pair eletrons and off-axis moments.
$\frac{\mu^{k}}{ج_{0}}$ is the $k^{\text {th }}$ bond moment.
\vec{e}^{0} is the matrix defining the direction of each kond.
$\partial \underline{\mu} / \partial R$ is the rectangular matrix of derivatives of the bond moments with respect to the internal coordinates - including cress terms of the type $\partial \underline{\mu}_{i} / \partial R_{j}$. These are the molecular 'electrooptical parameters'. L_{i} is the $i^{\text {th }}$ column of the L matrix.

The above approach provides a method of examining the charge flow through a configuration space based on the system of internal coordinates. An alternative viewpoint is gained by considering the flow as the nuclear centres are displaced along each of the three Cartesian axes. It is assumed that the change in dipole moment depends linearly on small displacements of the atom, and that simultaneous displacements of several nuclei have an additive effect.

$$
P_{Q}=P_{x} A L
$$

P_{Q} is the 'polar tensor in normal coordinate space', a direct representation of the experimental intensities. It is a $3 \times 3 N-6$ matrix:

$$
P_{Q}=\left[\begin{array}{cccc}
d p_{x} / d Q_{1} & d p_{x} / d Q_{2} & \ldots . & d p_{x} / d Q_{n} \\
d p_{y} / d Q_{1} & & \ldots . & d p_{y} / d Q_{n} \\
d p_{z} / d Q_{l} & & \ldots . & d p_{z} / d Q_{n}
\end{array}\right]
$$

P_{x} is the polar tensor in cartesian coordinate space
'A' is the matrix that effects the transformation from internal coordinates to space fixed coordinates.

$X=A R$, and $B A=E$

P_{x} is actually written as a juxtaposition of 'atomic polar tensors' (APT's) , $P_{x}{ }^{\alpha}$, one for each atom α.

$$
\begin{aligned}
& P_{x}=\left[p_{x}^{l} \vdots P_{x}^{2}: \ldots P_{x}^{n}\right] \\
& P_{x}^{\alpha}=\left[\begin{array}{lll}
d p_{x} / d x_{\alpha} & d p_{x} / d y_{\alpha} & d p_{x} / d z_{\alpha} \\
d p_{y} / d x_{\alpha} & d p_{y} / d y_{\alpha} & d p_{y} / d z_{\alpha} \\
d p_{z} / d x_{\alpha} & d p_{z} / d y_{\alpha} & d p_{z} / d z_{\alpha}
\end{array}\right]
\end{aligned}
$$

These atomic polar tensors are the quantities sought from the experimental intensities. The first column gives the x, y, and z components of the dipole change due to a unit displacement of atom α in the x-direction.

The reverse transformation, required to derive P_{x} from P_{Q} is given by

$$
P_{x}=P_{Q} L^{-1} B+P_{\rho!}^{\beta}
$$

' $P_{\rho} \beta^{\prime}$ is a 'rotational correction' term which is required because of the apparent rotation of a permanent dipole moment in exchanging internal and cartesian coordinate systems. The β matrix is defined by the Eckart conditions, the constraints that are imposed on the B matrix to ensure zero angular momentum and translational kinetic energy. The elements of P_{p} are functions of the permanent dipole moment and moments of inertia.

The P_{Q} matrix will reflect the molecular symmetry molecules with a sufficient degree of symmetry that $d p / d Q_{i}$ is directed along only one of the x, y and z axes will only have entries along the single appropriate row, all other entries being zero. The number of independent elements in the P_{x} matrix is similarly restricted. For instance, if an atom lies on an axis with 3 -fold symmetry or greater, the APT must necessarily
be diagonal in form. Atoms which are classed as belonging to an 'equivalent set', have APT's which are related by the same similarity transformation that rotates one atom into another.

The actual numerical values of the APT elements depend on the arbitrary choice of direction for the molecular cartesian axes. For comparing the trends of atoms in different molecules, a useful convention is to direct the z axis along the bond in question.

Section 1.6 The Scope of this Project.
Up to this stage some of the tools and methods that may be employed in attempting to understand vibrational intensities have been introduced. Much of the above will be discussed further in later sections of this report, including the acquisition of experimental data and its subsequent interpretation.

In the field of intensity studies, most work has so far been centered on only small polyatomic molecules, such as simple hydrocarbons, and the halomethanes. This project represents an attempt to extend these studies to larger molecules with spectra that are correspondingly more complex. Two cyclic compounds, l,4-dioxan and cyclohexane are examined and the results obtained are then used to predict the spectrum of the compound intermediate between the two, tetrahydropyran.

Section 2.1 Acquisition of Intensity Data.
The experimental procedure which is described in the following pages is directed towards the goal of obtaining gas phase band intensities for the infrared active fundamentals of the molecules under consideration - l,4-dioxan, cyclohexane and tetrahydropyran. As discussed in the introduction, a gas phase spectrum typically consists of a series of overlapping bands, which themselves possess complex and illdefined contours. This results in it being necessary to make measurements of the corresponding solution phase spectra in an attempt to determine the intensity contribution of each individual band in the gas phase.

Each band in the solution spectrum may be satisfactorily described as near-Lorent及ian in shape; a simplification that enables overlapping band systems to be broken down into their components using least squares analysis. The extrapolation from solution to gas phase results is then made by making the assumption that the distribution of intensity across these band profiles is the same in both phases.

Before the advent of computer technology, a far higher degree of error was inherent to the measurement of the area under a spectral curve, methods often relying on the use of a planimeter or even counting squares on the chart paper. Now the spectral information may be recorded via a microcomputer on to tape or disc, and is thus in a form more amenable to analysis or any desired numerical manipulation.

At the beginning of this study, spectra were recorded using a Perkin-Elmer 325 spectrometer, interfaced to a Tektronix minicomputer. A computer program was developed, in BASIC, which enabled the spectroscopic transmittance data to enter the memory, and which after a given run provided various options that constitute the initial stages of the data analysis. [Program is listed in the appendix.]

These operations include:
(1) Acquisition of spectral data.
(2) Plotting of spectrum on the terminal screen.
(3) Storage of data on magnetic tape (cassette).
(4) Ratioing of sample and background
as required.
(5) Conversion into absorbance.
(6) Correction of absorbances for solvent effects.
(7) Integration of absorbance, yielding the total band area for a desired spectral range.

A typical 'sample run' consists of obtaining the spectrum of a solution of known molarity (a gas of known pressure), in a cell of known pathlength placed in the sample beail of the spectrometer, with a matching cell containing solvent alone in the reference bean (left blank for gas phase measurements). The 'background run' then consists of replacing the sample solution by pure solvent (or evacuating the gas phase sample and refilling one cell with the pressure-broadening gas).

The interface converts the signals from the spectrometer into ASCII Porm. There are five pieces of information - three digits defining the transmittance value i.e. units, tens and hundreds of units ($A \not \neq, B \not \subset$, and $C \not \subset$), ' 9831 corresponding to zero radiation reaching the detector. Frequency increments are represented through a two digit number ($D \$$ and $\mathbb{E} \$$). Knowledge of the separation of each point enables the frequency axis to be reconstructed to match the transmittance data.

The Tektronix minicomputer possesses an extensive graphics capability, which renders the programming of the plotting routine a straightforward matter. The WINDOW and VIEWPORT commands combine to define a grid on the terminal screen, and the MOVE command allows a chose: symbol to be placed anywhere on this grid. Axes may also be drawn to any given specification. A hand copy of the graphical or numerical information present on the screen may be obtained from a graph plotter, which may also be brought under direct program control.

More recently, this research group has acquired a PerkinElmer 983 spectrometer, and accompanying data station. A far larger range of commands for spectral acquisition and data manipulation are available as part of the fundamental operations of the instrument and data station. Now spectra are recorded on disc, which proves to be a more economical method of storage.

One of the main problems associated with the solution measurements is that the solvent employed may itself show absorbance in a region of interest, and for accurate intensity results there is a need to remove this source of distortion from the actual sample spectrum. For weak solvent absorption it is sufficient to simply subtract the background absorbance spectrum from that of the sample. However, the change from pure solvent to sample solution (say 95% solvent by volume) is of course accompanied by a drop in 'solvent concentration' as the molarity of sample solution increases the absorption due to solvent will diminish in proportion. This means that it is possible to over-compensate for solvent absorption on subtraction of the pure solvent spectrum, in the worst instance leading to the appearance of a negative absorbance peak.

The absorption resulting from the sum of these effects may be represented by:

$$
\frac{I(\nu) \text { bgrd }}{I(\nu) \text { sample }}=\exp \left[\varepsilon^{\nu} \ell(1-x)-\varepsilon^{\nu} \operatorname{CCl} 4^{\ell(1-x)}\right]
$$

$\ell=$ path length of the cell containing sample solution (a pure solvent for 'background' run). $x=$ fractional concentration of solvent in sample solution. $\varepsilon^{\nu}=$ extinction coefficient at frequency ν.
$\varepsilon_{\mathrm{CCl}}^{4} \mathrm{~m}$ may be obtained from measurements of solvent spectra at different cell path lengths, and on adding the correction factor, ' $\varepsilon^{\nu} \operatorname{CCl}_{4} \ell(1-x)$ ' to the absorbance points in the sample spectrum, the above described error is counteracted.

Another potential source of error to be aware of is background drift. During a given run this is negligible (except in the case of evaporation of liquid from either of the cells leading to bubble formation, when the run should simply be discontinued). However, comparison of background runs obtained at the beginning and end of the day will often show a shift in the 100% transmission points. Ideally there will be an area present in the sample spectrum corresponding to zero absorbance, and the background absorbance spectrum raised or lowered to ensure that this condition is met. Otherwise the absorbance at a given frequency (of constant or slowly changing absorption) may be fixed at a predetermined value (obtained from variable path-length measurements), the background transmittance spectrum being multiplied by the appropriate scaling factor.

The above operation may be programmed into the microcomputer, but the calculations required to analyse overlapping band systems into their individual components need a far larger amount of memory than is available. Thus there is a need to transfer the spectral data from tape or disc to a mainframe computer. For this purpose, the Tektronix was put into 'terminal mode' and linked to the London University CDC 7600, the data being sent over to previously created files. This process was effected by setting the tape at the beginning of the data file and pressing the 'SEND OVER' key. Latterly, the new Perkin-Elmer data station was linked to the VAX computer at Royal Holloway College, a small program being constructed to shift data from the datastation memory to the VAX via the auxilliary port.

The solutions employed were of strengths in the region 0.1 molar - 0.5 molar for 1,4 -dioxan, 0.1 molar - 1.5 molar for cyclohexane, and 0.1-0.6 M for tetrahydropyran, spectroscopic grade carbon tetrachloride and carbon disulphide being the solvents. The path lengths of the cells used were determined from an analysis of the diffraction patterns obtained from the spectrum of the empty cell alone.

Gas phase spectra were obtained using a variable path length gas cell (1.25 to 10 metres) and the pressure measured with a Baratron gauge. Pressures of sample (room temperature) employed fell in the range $0.1-5 \mathrm{~mm} \mathrm{Hg}$ of 1,4 -dioxan (1.25 metres) 0.5-10 mm cyclohexane (5 metres) and 0.2-3 mm tetrahydropyran (up to 5 metres path length). The introduction stressed the problems associated with spectral distortion due to the finite resolving power of the spectrometer, this being especially relevant to the gas phase spectra, where such sharp features as Q-branches are common. An attempt has been made to negate these errors, by introducing into the cell 500 mm pressure of an inert gas, nitrogen. The experimental results listed show no obvious pressure dependence, and hence it is justified in simply taking the mean as the best figure. In order to perform a more thorough numerical analysis, more time should be spent carrying out further experimental runs to provide a larger number of points on which to base any curve fitting.

Section 2.2 Solution Spectra - Bandfitting.

A solution phase absorption band possesses a contour that is well described by a Lorentzian function, except for the wings of the band, which would then be required to spread out to infinity. This behaviour may be suppressed by the inclusion of an exponential damping factor, leading to the following expression:

$$
I(\nu)=I_{\max } \cdot \frac{\Delta \nu_{\frac{1}{4}}^{2}}{\Delta \nu_{\frac{1}{4}}^{2}+\left(\nu-\nu_{0}\right)^{2}} \exp \left(-a_{0}\left|\nu-\nu_{0}\right|^{b}\right)
$$

$I(v)$ is the absorbance at frequency ν. ν_{0} is the frequency of the band centre. $\Delta \nu_{\frac{1}{4}}$ is half the band half-width - the difference in frequency $\left(\mathrm{cm}^{-1}\right)$ separating the band centre and the frequency corresponding to an absorbance of $I_{\text {max }} / 2$.
'a' and 'b' are parameters which have been empirically found to take values of 0.002 and 1.5 respectively to provide adequate damping.

A set of overlapping bands would then have a contour described by:

$$
I(v)=I^{I}(v)+I^{2}(v)+I^{3}(v)+\ldots
$$

where $I^{n}(v)$ contains the parameters specific to the n^{\prime} th band. Application of least squares theory (presented in the appendix) furnishes the parameters that represent the best fit to the overall observed band structure. The theory gives:

$$
\Delta \hat{p}=\left(J^{t} \omega J\right)^{-1} J^{t} \omega \hat{\varepsilon}
$$

J is the Jacobian matrix:

$$
\frac{\partial(I(\nu))}{\partial I_{\max }}=\frac{\Delta \nu_{\frac{1}{4}}^{2}}{\Delta \nu_{\frac{1}{4}}^{2}+\left(\nu-\nu_{o}\right)^{2}} \cdot \exp \left[-a\left|\nu-\nu_{o}\right|^{b}\right]
$$

$$
\begin{aligned}
& \frac{\partial I(\nu)}{\partial \Delta v_{\frac{4}{4}}}=2 I_{\max } \Delta \nu_{\frac{1}{4}} \frac{\left(\nu-\nu_{0}\right)^{2}}{\left[\Delta \nu v_{\frac{1}{4}}^{2}+\left(\nu-\nu_{0}\right)^{2}\right]^{2}} \cdot \exp \left[-a\left|\nu-\nu_{0}\right|^{b}\right] \\
& \frac{\partial I(\nu)}{\partial v_{0}}=2 I_{\max }\left(\nu-\nu_{0}\right) \frac{\Delta \nu_{\frac{1}{4}}^{2}}{\left(\Delta \nu_{\frac{1}{4}}^{2}+\left(\nu-\nu_{0}\right)^{2}\right)^{2}} \cdot \exp \left[-a\left|\nu-\nu_{0}\right|^{b}\right]
\end{aligned}
$$

' $\hat{\varepsilon}$ ' is the error vector; the difference between $J(v)$ calculated from a guessed set of parameters and the actual absorbance observed.
' ω ' is the weighting matrix - each element in the error vector is weighted by the observed absorbance.
$\Delta \hat{p}$ is the desired correction to each band parameter that improves the fit.

Generally it was found that four or five cycles of iteration were required before the optimum fit was achieved.

EXPERIMENTAL DATA.
Section 2.3 1,4-Dioxan.
In the following pages, the experimental data is presented from which the individual, gas phase band intensities are derived. Table lists the gas phase results for dioxan-d and Table 2 the corresponding data from the solution phase. Similarly, Tables 3 and 4 give the results for dioxan-d8.

In Tables 5 and 6 this information is summarised, the solution band intensities and the gas region intensities having been averaged, and the standard error of the mean determined. The solution/gas phase intensity ratio is obtained by comparing the total intensity for a given gas phase region with the sum of the solution intensities for bands contained within that region. This is the parameter which scales the solution band intensities to yield the final absolute gas phase band intensities

For instance, take the $1300-1070 \mathrm{~cm}^{-1}$ region in the spectrum of completely deuterated dioxan. In the solution phase, four bands exist whose individual intensities have been determined, but in the gas phase they overlap substantially, and only their sum may be determined experimentally. The ratio of this sum of four bands for solution and gas is 1.013, and this is the figure by which the solution band intensities are divided to
yield the corresponding 'experimental' gas phase results. Or in a completely analogous fashion, the total gas phase intensity in this region is divided amongst the constituent bands in exactly the same manner as found in the solution results. The final intensities derived are given in Tables 7 and 8 for the d_{0} and d_{8} compounds respectively.

TABLE 1.

Dioxan do : Gas Phase Data.

Frequency Range (cm^{-1})	$\begin{aligned} & \text { Pressure } \\ & \left(\mathrm{mm}, 298^{\circ} \mathrm{K}\right) \end{aligned}$	Intensity $\left(\mathrm{km} \mathrm{~mol}^{-1}\right)$
3050-2800	. 373	331.2
	. 376	330.0
	. 410	327.2
	. 424	339.5
	. 670	322.0
1520-1410	0.77	16.4
	1.02	16.9
	1.75	15.4
	2.97	16.1
1410-1335	0.53	12.7
	0.96	14.0
	1.47	13.3
	2.05	13.6
1335-1200	0.53	46.2
	0.96	48.6
	1.47	52.6
	2.05	46.9
1200-1000	0.13	179.4
	0.19	176.2
	0.22	177.6
	0.34	174.6
	0.48	174.5
960-800	0.15	88.0
	0.31	95.8
	0.45	83.9
	0.59	99.8
	0.70	96.1
660-540	0.83	15.5
	1.44	14.9
	2.95	13.9
	4.49	14.2
320-220	0.49	21.4
	0.85	20.6
	1.03	20.2
	1.08	19.1
	1.52	19.8
	1.56	19.8
	1.97	20.6

TABLE 2.:
da $_{o}$ - Dioxan Solution Data.

Frequency $\left(\mathrm{cm}^{-1}\right)$	```Concentration (molar)```	$I_{\max }^{\log _{e}}$	$\Delta \nu_{\frac{1}{2}}\left(\mathrm{~cm}^{-1}\right)$	$\mathrm{A}_{\mathrm{i}}\left(\mathrm{km} \mathrm{mol}{ }^{-1}\right)$
2967	. 0921	. 893	20.3	112.2
	. 1077	1.020	20.5	110.6
	. 2793	2.605	21.3	112.4
2917^{+}	.092]	. 515	15.4	51.4
	. 1077	. 590	15.1	49.7
	. 2793	1.508	16.7	53.1
$2893{ }^{+}$. 0921	. 421	9.8	28.6
	. 1077	. 490	9.8	27.9
		1.243		29.4
2859	. 0921	1.062	16.8	114.5
	. 1077	1.215	16.8	111.4
	. 2793	3.106	17.4	113.4
1453	. 1735	. 417	6.8	10.6
	. 1122	. 252	6.6	9.5
	. 2503	. 586	6.8	10.4
	. 3595	. 786	6.7	9.55
	. 1630	. 374	6.9	10.4
1445	. 1735	. 285	11.3	11.5
	. 1122	. 179	11.6	11.4
	. 2503	. 414	11.3	11.55
	. 3595	. 564	12.4	11.9
	. 1630	. 260	12.2	12.0
1376	. 1773	. 063	5.12	1.23
	.1114	. 0359	4.26	0.91
	. 2484	. 096	11.28	2.67
	. 0379	. 009	16.44	2.31
	. 5451	. 182	10.2	2.13
	. 2406	. 084	9.9	2.15
	. 3561	. 123	7.9	1.72
	. 0919	. 048	8.0	2.17
	.1617	. 065	6.4	1.66
1366	. 1773	. 318	8.9	10.34
	.1114	. 206	8.7	10.17
	. 2484	. 465	8.1	9.66
	. 0379	. 068	9.0	10.20
	. 5451	. 954	8.7	9.59
	. 2406	. 429	9.6	10.70
	. 3561	. 619	8.9	9.76
	. 0919	. 180	8.0	9.97
	.1617	. 295	9.0	10.36

TABLE 2 - continued...

TABLE 3.

Dioxan d Gas Phase Data.

Frequency Range (cm^{-1})	$\begin{aligned} & \text { Pressure } \\ & \left(\mathrm{mm}, 298^{\circ} \mathrm{K}\right) \end{aligned}$	Intensity $\left(\mathrm{km} \mathrm{~mol}^{-1}\right)$
2315-2150	0.52	89.2
	0.59	87.8
	0.59	90.8
	0.70	83.2
	0.75	85.4
2150-1900	0.36	107.6
	0.45	105.2
	0.59	94.3
	0.75	99.2
	0.81	100.5
1300-1070	0.37	244.1
	0.52	245.8
	0.53	219.3
	0.595	239.6
	0.70	234.8
	0.71	223.5
	0.97	215.1
1070-1000	0.37	43.1
	0.52	43.9
	0.53	38.7
	0.595	43.4
	0.70	40.4
	0.71	39.4
	0.97	38.0
1000-840	0.53	17.8
	1.26	17.5
	1.40	17.2
	1.56	17.7
	1.60	16.7
840-700		
	0.71	45.9
	0.97	43.6
	1.56	45.4
560-440	1.32	10.2
	2.04	10.8
	3.00	10.6
	3.88	10.7
270-200	1.30	
	2.51	13.4
	2.93	13.6
	3.46	15.3
	2.46	12.6
	3.00	12.2

TABLE 4.
Dioxan d 8 Solution Data.

$\begin{gathered} \text { Frequency } \\ \left(\mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Concentration } \\ & (\text { molar }) \end{aligned}$	$I_{\text {max }}$	$\Delta \nu_{\frac{1}{2}}\left(\mathrm{~cm}^{-1}\right)$	$A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$
2315-2150	. 1438			83.2
	. 2143			80.2
	. 0923			80.8
2150-1900	. 1438			104.6
	. 2143			100.7
	. 0923			101.3
1183	. 2143	3.608	8.3	89.6
	. 1438	2.800	7.6	95.3
	. 0923	1.721	7.8	93.4
1145	. 2143	1.319	7.4	29.3
	. 1438	. 963	7.0	30.2
	. 0923	. 590	7.2	29.85
1109	. 2143	4.170	7.5	94.1
	. 1438	3.410	6.7	103.3
	. 0923	2.118	6.7	99.9
1089	. 2143	. 641	6.6	12.9
	. 1438	. 460	6.2	12.9
	. 0923	.275	7.1	13.6
1039	. 2143	2.330	4.5	32.3
	. 1438	1.751	4.3	34.6
	. 0923	1.046	4.4	33.4
1028	. 2143	. 808	6.6	16.1
	. 1438	. 572	5.5	14.5
	. 0923	. 348	6.5	16.0
$\begin{gathered} 1000-840 \\ =896 \end{gathered}$. 2143	. 987	6.2	18.8
	.1438	. 572	5.5	19.4
	. 0923	. 425	6.3	18.9
758	.1251*	1.892	5.3	52.7
731	.1251*	. 198	6.8	6.98
492	. 2143	. 665	6.4	12.9
	.1438	. 472	6.2	13.4
	. 0923	. 288	6.4	13.1
270-200	. 2143			20.4
	. 1438			18.3
	. 0923			21.7

* in CS_{2}.

TABLE ${ }^{\circ}$ ．

Frequency $\left(\mathrm{cm}^{-1}\right)$	Solution Phase $A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$	Gas Phase Region（ cm^{-1} ） A_{i}		Solution／Gas Ratio for Region．
2967	111.7 ± 2	3050－2800	330.0	． $924 \pm .011$
2917	51.4 ± 2			
2893	$28.6 \pm .8$			
2859	113.1 ± 1.5			
1453	$10.1 \pm .2$	1520－1410	$16.19 \pm .35$	$1.355 \pm .034$
1445	11．88士．19			
1376	1．78土．51	1410－1335	$13.39 \pm .33$	． $894 \pm .028$
1365	10．09士．18			
1320	$3.84 \pm .63$	1335－1200	48.6 ± 1.6	$1.144 \pm .043$
1290	$13.94 \pm .19$			
1255	$37.77 \pm .55$			
1126	193.9 ± 1.0	1200－1000	176．5さ1．1	$1.226 \pm .0095$
1085	$12.69 \pm .25$			
1050	$9.87 \pm .26$			
887	$20.55 \pm .43$	960－800	84.9 ± 3.0	$1.281 \pm .048$
876	88.3 ± 1.5			
612	$19.92 \pm .63$	660－540	$14.64 \pm .43$	$1.361 \pm .059$
273	23.6	320－220	$20.22 \pm .36$	1.167

Dioxan ${ }^{\text {d }}$ ．

Summary of Experimental Intensity Measurements．

TABLE 6.

Frequency $\left(\mathrm{cm}^{-1}\right)$	Solution Phase $\mathrm{A}_{\mathrm{i}}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$	Gas Phase Region $\left(\mathrm{cm}^{-1}\right) \mathrm{A}_{\mathrm{i}}$		Solution/Gas Ratio for Region
2315-2150	81.0 ± 1.2	2315-2150	87.3 ± 1.5	. $928 \pm .025$
2150-1900	102.2 ± 1.6	2150-1900	101.4 ± 2.6	$1.008 \pm .030$
1183	92.8 ± 2.2	1300-1070	231.7 ± 5.0	$1.013 \pm .028$
1145	29.8 ± 3.4			
1109	99.1 ± 3.4			
1039	33.4 ± 1.2	1070-1000	$40.97 \pm .99$	$1.195 \pm .039$
1089	$13.16 \pm .31$			
1028	$15.5 \pm .5$			
894	$19.01 \pm .23$	1000-840	17.40土.21	$1.093 \pm .022$
758	35.9	840-700	59.7	1.47
731	47.5			
492	$13.11 \pm .17$	560-440	$9.56 \pm .17$	$1.371 \pm .03$
270-200	$20.1 \pm .15$	270-200	13.94土.9	1.44

Dioxan 8°

Summary of experimental intensity measurements.

TABLE 7.

1,4-Dioxan Individual Gas Phase Band Intensities.
d_{o} Dioxan.

Frequency $\left(\mathrm{cm}^{-1}\right)$

2970 au
2970 bu
2863 au
2863 bu $\begin{aligned} & 1457 \text { bu } \\ & 1449 \text { au }\end{aligned}$
1378 bu
1369 au
1291 bu
1256 au
1136 au
1086 au
1052 bu
889 bu
881 au
610 bu
288 au
274 bu
$A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$

$$
330 \pm 3.2
$$

$$
16.19 \pm .35
$$

$$
2.11 \pm .23
$$

$$
11.28 \pm .39
$$

$$
12.19 \pm .48
$$

$$
33.00 \pm 1.3
$$

$$
158.1 \pm 1.5
$$

$$
10.35 \pm .22
$$

$$
8.05 \pm .22
$$

$$
17.51 \pm .76
$$

$$
75.2 \pm 3.1
$$

$$
14.64 \pm .43
$$

$$
\sim 0
$$

20.22 ± 1.1

TABLE 8.

1, 4-Dioxan Individual Gas Phase Band Intensities.
$\mathrm{a}_{8} \xrightarrow{\text { Dioxan. }}$

Frequency $\left(\mathrm{cm}^{-1}\right)$	
$A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$ 2235 au 2232 bu 2098 bu 2086 au	
1191 au	188.7 ± 3.1
1153 bu	
1117 au	91.5 ± 3.3
1087 bu	$29.41 \pm .89$
1042 bu	97.8 ± 4.4
1030 au	$12.99 \pm .47$
922 au	28.0 ± 1.2
896 bu	$12.99 \pm .70$
809 au	~ 0
762 au	$17.40 \pm .23$
732 bu	~ 0
490 bu	39.14 ± 2.0
254 au	5.19 ± 0.10
238 bu	$9.56 \pm .17$
	~ 0

Section 2.4 F Sum Rule.

As was indicated in the Introduction, the following expression transforms $d p / d Q_{i}$ to derivatives with respect to the internal coordinates:

$$
\frac{d \underline{p}}{d Q_{i}}=\sum_{j} L_{j i} \frac{d \underline{p}}{d R_{j}}
$$

This leads to the following expression for the $i^{\text {th }}$ band intensity:

$$
\Gamma_{i}=\frac{N \pi}{3 c^{2}} \frac{1}{\omega_{i}} \sum_{j, i} L_{j i} L_{k i} \frac{d p}{d R_{j}} \frac{d p}{d R_{k}}
$$

On dividing this equation by the frequency ω_{i} and summing over i,

$$
\begin{aligned}
\sum_{i} \frac{\Gamma i}{\omega_{i}} & =\frac{N \pi}{3 c^{2}} \sum_{j, k} \sum_{i} \frac{L_{j-i} L_{k i}}{\omega_{i}^{2}} \frac{d p}{d R_{i}} \frac{d p}{d R_{k}} \\
& =\frac{N \pi}{3 c^{2}} \sum_{j, k} F_{j k}^{-1} \frac{d \underline{p}}{d R_{i}} \frac{d p}{d R_{k}}
\end{aligned}
$$

Since the right hand side is invariant to isotopic substitution as long as the isotopically related molecules belong to the same molecular point group, then so is $\sum_{i} \Gamma_{i} / \omega_{i}$. As $\Gamma_{i} \simeq A_{i} / \nu_{i}$,
 which may be used to check the consistency of the data from undeuterated and completely deuterated compounds.

Tables 9 and 10 show the application of the F sum rule, which should hold for the bands in the au and bu species separately, as well as the total summation of band intensity divided by the square of the frequency.

It is seen that the total sums agree very well, but that comparing the d_{0} au and d_{0} bu figures with those for the d_{8} compound, the former appear too high and the latter too low. A possible answer for this discrepency could be found in the bandsplitting suggested for the $d_{0} 889 \mathrm{~cm}^{-1}(\mathrm{bu})$ and $881 \mathrm{~cm}^{-1}$ (au) bands. A comparison of the solution and gas phase spectra show that there appears to be a change in the relative intensities of the bands on the change of phase. In solution, the
au band possesses the greater proportion of intensity (75 as opposed to $17.5 \mathrm{~km} \mathrm{~mol}^{-1}$), but in the gas phase the intensity seems to be far more equally shared between the two components. It would therefore be reasonable to transfer some of the intensity attributed to the au band to the bu in order to yield better agreement in the sum rule for the individual symmetry species.

Thus, if the two band intensities were actually constrained to be equal, $46.4 \mathrm{~km} \mathrm{~mol}^{-1}$ each,

$$
\begin{aligned}
& A_{889} / \nu^{2}=5.879 \times 10^{-15} \mathrm{~km}^{3} \mathrm{~mol}^{-1} \\
& A_{881} / \nu^{2}=5.978 \times 10^{-15} \mathrm{~km}^{3} \mathrm{~mol}^{-1}
\end{aligned}
$$

and then

$$
\begin{aligned}
& \text { au sum }=24.119 \times 10^{-15} \\
& \text { bu sum }=40.634 \times 10^{-15}
\end{aligned}
$$

and the agreement with the d_{8} figures would then be excellent.

TABLE 9.
d_{o} - Dioxan Intensity Sums.

Frequency (cm^{-1})	$A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$	$\mathrm{A}_{\mathrm{i}} / \nu_{i}^{2}\left(\mathrm{~km}^{3} \mathrm{~mol}^{-1}\right)$
$\left.\begin{array}{l} 2970 \text { au } \\ 2970 \text { bu } \end{array}\right\}$	176.6	2.00×10^{-15}
$\left.\begin{array}{l} 2863 \text { au } \\ 2863 \text { bu } \end{array}\right\}$	153.4	1.87
$\left.\begin{array}{l} 1457 \text { bu } \\ 1449 \text { au } \end{array}\right\}$	16.19	. 767
1378 bu	2.11	. 111
1369 au	11.28	. 602
1291 bu	12.19	. 731
1256 au	33.00	2.092
1136 au	158.1	12.251
1086 au	10.35	. 878
1052 bu	8.05	. 727
889 bu	17.51	2.216
881 au	75.2	9.689
610 bu	14.64	3.934
288 au	0	0
274 bu	20.22	26.933

Total $(a u+b u)=64.801 \times 10^{-15} \mathrm{~km}^{3} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \mathrm{au}=27.830 \times 10^{-15} \\
& \mathrm{bu}=36.971 \times 10^{-15}
\end{aligned}
$$

TABLE 10.
d_{8} Dioxan Intensity Sums.

Frequency $\left(\mathrm{cm}^{-1}\right)$	$\mathrm{A}_{\mathrm{i}}(\mathrm{km} \mathrm{mol}$	
2235 au$)$	$\mathrm{A}_{\mathrm{i}} / \mathrm{v}_{\mathrm{i}}^{2}\left(\mathrm{~km}^{3} \mathrm{~mol}^{-1}\right)$	
$\left.\begin{array}{c}2232 \mathrm{bu} \\ 2098 \mathrm{bu} \\ 2086 \mathrm{au}\end{array}\right\}$		
1191 au	188.7	4.0×10^{-15}
1153 bu		
1117 au	91.5	6.450
1087 bu	29.41	2.212
1042 bu	97.80	7.838
1030 au	12.99	1.099
922 au	28.0	2.579
896 bu	12.99	1.224
809 au	0	0
762 au	17.40	2.167
732 bu	0	0
490 bu	39.14	6.740
254 au	5.186	.968
238 bu	0.56	3.982

$$
\begin{aligned}
\text { Total (au+bu) } & =63.869 \times 10^{-15} \\
a u & =24.252 \times 10^{-15} \\
b u & =39.617 \times 10^{-15}
\end{aligned}
$$

Section 2.5 Effective atomic charges - 1,4-Dioxan.
The 'effective charge' of an atom is an invariant of its atomic polar tensor - its numerical value does not change upon rotation from one axis system to another.

$$
x_{\alpha}^{2}=(1 / 3) \text { Trace }\left[P_{x}^{\alpha}\left(P_{x}^{\alpha}\right)^{t}\right]
$$

In fact, this parameter is related to the sum of infra red band intensities for a molecule ${ }^{18}$

$$
K \sum_{i} A_{i}+\Omega=\sum_{\alpha}\left(I / m_{\alpha}\right) \xi_{\alpha}^{2}
$$

ξ_{α} is a former definition of effective charge, $\frac{1}{3} \xi_{\alpha}^{2}=\chi_{\alpha}^{2}$. Ω is a 'rotational correction' required for polar molecules. $K=1.0255 \times 10^{-3}$ for A_{i} in $k m ~ m o l ~ l i, ~ m_{\alpha}$ in amu and ξ in e.

Thus, if experimental data is available for say the undeuterated and completely deuterated molecules, the hydrogen effective charges may be computed by simply solving the two resulting simultaneous equations.

From the dioxan measurements,

$$
\begin{aligned}
& \sum_{i} A_{i}\left(d_{0}\right)=708.8 \mathrm{~km} \mathrm{~mol}^{-1} \\
& \sum_{i} A_{i}\left(d_{8}\right)=546.6 \mathrm{~km} \mathrm{~mol}^{-1}
\end{aligned}
$$

This leads to $X_{H}=0.118$.
Section 2.6 Experimental Data for Cyclohexane.
The absolute gas phase band intensities have been determined for cyclohexane d_{0} and d_{12} using the same techniques as described above for l,4-dioxan. The experimental data is presented in the following set of tables.

Tables 11 and 12 give the d_{o} and d_{12} gas phase data and Tables 13 and 14 give the corresponding solution phase data. In Tables 15 and 16 the final averages are listed, together with the solution/gas ratios. Tables 17 and 18 show the final derived band intensities for cyclohexane d_{0} and d_{12}.

TABLE 11.
d_{0} Cyclohexane - Gas Phase.

Frequency Range (cm^{-1})	$\begin{gathered} \text { Pressure } \\ \left(\mathrm{mm}, 298^{\circ} \mathrm{K}\right) \end{gathered}$	Intensity (km mol ${ }^{-1}$)
3030-2894	. 195	385.00
(1.25m path length)	. 257	356.4
	. 267	375.7
2894-2830	. 195	105.9
(1.25m)	. 257	102.7
	. 267	99.6
1500-1400	. 537	24.42
(5m)	. 598	25.00
	. 763	23.80
	1.009	24.26
	1.220	24.79
	1.52	23.20
	2.08	22.90
	2.49	20.85
1380-1330	7.28	0.25
(5m)	9.30	0.23
	20.11	0.24
	29.85	0.23
1310-1190	3.06	3.06
(5m)	3.56	3.61
	3.82	3.61
	4.21	3.61
1100-970	5.08	2.02
(5m)	6.31	1.87
	6.85	2.02
	7.65	2.04
970-800	2.078	6.56
(5n)	2.585	6.62
	3.140	6.71
	3.530	6.58
560-480	7.17	0.48
(5m)	9.85	0.47
	14.53	0.46
	14.53	0.46
	19.70	0.44

TABLE 12.
d_{12} Cyclohexane - Gas Phase.
Frequency Range (cm^{-1}) Pressure Intensity (km mol ${ }^{-1}$) (mm,298 ${ }^{\circ} \mathrm{K}$)

$\left(1.25 m_{i}\right)$. 464	240.3
	. 485	250.4
	. 497	253.6
	. 580	250.9
1240-1130	1.269	6.46
(5m)	1.578	6.24
	1.845	6.44
	2.083	6.36
1130-1045	1.269	6.63
(5m)	1.578	6.34
	1.845	6.48
	2.083	6.40
1045-950	1.269	5.84
(5m)	1.578	6.36
	1.845	6.04
	2.083	5.53
950-880	. 699	3.64
(5m)	1.035	3.43
	1.276	3.57
	1.515	3.42
770-600	2.976	3.35
(5m)	4.047	3.44
	4.36	3.61
	4.710	3.55
450-350	13.92	0.43
(5m)		

TABLE 13.
do Cyclohexane - Solution Data.
\($$
\begin{array}{lccc}\begin{array}{lll}\text { Frequency } \\
\left(\mathrm{cm}^{-1}\right)\end{array}
$$ \& \begin{array}{c}Concentration

(molar)\end{array} \& I_{max}^{\left(\log _{e}\right)} \& \Delta \nu_{\frac{1}{2}}^{\left(\mathrm{cm}^{-1}\right)}\end{array}\)| A_{i} |
| :---: |
| $l=.0224 \mathrm{~cm}]$ |

continued...

TABLE 13 - continued...

524	.4735	.104	7.60	1.05
	.4846	.109	7.54	1.09
	.9607	.209	7.52	1.05

$\left.\begin{array}{l}{[1]=0.31 \mathrm{~cm}} \\ {[2]=.020 \mathrm{~cm}} \\ {[3]=.011 \mathrm{~cm}}\end{array}\right\} \quad$ Variable path length cell employed.

* CS_{2} solvent

TABLE 14.
d $_{12 \text {-Cyclohexane - Solution Data. }}$
$\begin{array}{ccccc}\text { Frequency } & \text { Concentration } & I_{\max }^{\left(\log _{e}\right)} & \Delta \nu_{\frac{1}{2}}^{\left(\mathrm{cm}^{-1}\right)} & A_{i} \\ \left(\mathrm{~cm}^{-1}\right) & {[\ell=.0224 \mathrm{~cm}]} & & (\mathrm{km} \mathrm{mol}-1)\end{array}$

2300-2000	. 3367			262.7
1160	. 3367	. 282	8.66	4.61
	. 3757	. 321	8.36	4.56
	. 7260	. 613	8.58	4.61
1085	. 3367	. 625	5.84	7.11
	. 3757	. 713	5.90	7.09
	. 7260	1.352	5.92	7.20
1068	. 3367	. 118	6.88	1.57
	. 3757	. 133	6.78	1.60
	. 7260	. 260	6.81	1.58
988	. 3367	. 298	9.66	5.38
	. 3757	. 338	9.59	5.39
	. 7260	. 651	9.58	5.39
915	. 3367	. 500	4.54	4.66
	. 3757	. 563	4.68	4.71
	. 7260	1.088	4.62	4.59
719	. 4895^{*}			2.24
685	. 4895^{*}			3.34

${ }^{*} \mathrm{CS}_{2}$ is solvent

TABLE 15.
\underline{a}_{0}－Cyclohexane－Summary of Experimental Intensity Measurements．

Solution Gas Solution／gas ratio

Freq uency	$\begin{gathered} \mathrm{A}_{\mathrm{i}} \\ \left(\mathrm{~km} \mathrm{~mol}^{-1}\right) \end{gathered}$	Region	$\left.\underset{\left(k_{\mathrm{m} ~}^{\mathrm{mol}}\right.}{ } \mathrm{A}^{-1}\right)$	for region
9				
2\＄29	380.1 ± 7.6	3030－2894	370 ± 15	$1.027 \pm .031$
2854	108．4さ2．1	2894－2830	103 ± 3	$1.052 \pm .028$
1449	$28.72 \pm .81$	$\begin{aligned} & 1500-1400 \\ & 1380-1330 \end{aligned}$	$\begin{aligned} & 23.65 \pm .51 \\ & .238 \pm .010 \end{aligned}$	$1.214 \pm .043$
1257	$2.956 \pm .093$	1310－1190	$3.60 \pm .003$	$0.820 \pm .026$
1038	2.25	1100－970	$1.99 \pm .11$	2.18
1015	2.08			
904	$3.135 \pm .035$	970－800	$6.611 \pm .040$	$1.110 \pm .009$
862	4．204土． 035			
524	1．074土． 014	560－480	． $463 \pm .006$	$2.320 \pm .043$

TABLE 16.
\underline{d}_{12}－Cyclohexane－Summary of Experimental Intensity Measurements．

$2300-$	262.7	$2300-2000$	$248.8 \pm .3$	1.06
2000	262.7	$1240-1130$	$6.375 \pm .057$	$.720 \pm .007$
1160	$4.59 \pm .03$	$1130-1045$	$6.460 \pm .072$	$1.349 \pm .017$
1085	$7.135 \pm .045$	$1045-950$	$5.940 \pm .020$	$.906 \pm .030$
1068	$1.580 \pm .040$	1040		
988	$5.387 \pm .001$			
915	$4.65 \pm .05$	$950-880$	$3.517 \pm .062$	$1.323 \pm .026$
719	2.24	$770-600$	$3.49 \pm .10$	1.60
685	3.34			
394	0.84	$450-350$.426	1.979

TABLE 17.

${ }_{\mathrm{d}}^{\mathrm{o}}{ }^{\text {OCyclohexane }}$ Individual Gas Phase Band Intensities.

$\underline{\text { Frequency (} \mathrm{cm}^{-1} \text {) }}$	$\mathrm{A}_{\mathrm{i}}\left(\mathrm{km} \mathrm{mol}^{-1}\right)$
2933 eu	370 ± 15
$2914 \mathrm{a}_{2 \mathrm{u}}$	
2863 eu	103 ± 3
$2863 \mathrm{a}_{2 \mathrm{u}}{ }^{-}$	
1449 eu	$23.65 \pm .51$
$1449 \mathrm{a}_{2 \mathrm{u}}{ }^{-}$	
1346 eu	$0.24 \pm .01$
1257 eu	$3.6 \pm .003$
1033 a	2.0
904 eu	$2.824 \pm .035$
862 eu	$3.787 \pm .039$
524 a 2 u	. $463 \pm .006$
241 eu	~ 0

* Combination band

TABLE 18.
$\underline{\mathrm{d}}_{12}$-Cyclohexane Individual Gas Phase Band Intensities.

Frequency $\left(\mathrm{cm}^{-1}\right)$
$\underline{A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)}$

2221 eu	
$2206 \mathrm{a}_{2 \mathrm{u}}$	248.8 ± 5.0
2111 eu	
$2104 \mathrm{a}_{2 \mathrm{u}}$	
1160 eu	$6.375 \pm .057$
1085 a 2 u	$5.288 \pm .073$.
1068 eu	$1.171 \pm .016$
988 eu	$5.940 \pm .20$
915 a 2 u	$3.517 \pm .062$
719 eu	$1.397 \pm .05$
685 eu	$2.089 \pm .07$
394 a 2 u	0.43
190 eu	~ 0

Section 2.7 F Sum Rule - Cvclohexane.
As for l,4-dioxan, the consistency of the d_{0} and d_{12} cyclohexane experimental band intensities is checked using the F sur rule - i.e. by comparing the values obtained for $\sum_{i} A_{i} / \nu_{i}{ }^{2}$. The results are shown in tables 19 and 20.

It is seen that there is very good agreement not only for the total sums, but also for the separate sums for the $a_{2 u}$ and e_{u} symmetry species.

TABLE 19.
d_{0} Cyclohexane - Intensity Sums.

$\nu / \mathrm{km}^{-1} \times 10^{-15}$	$\mathrm{~A}_{\mathrm{i}} / \mathrm{km} \mathrm{mol}^{-1}$	
2933 eu	79	$\mathrm{~A}_{\mathrm{i}} / \mathrm{V}_{\mathrm{i}}^{2}, \mathrm{~km}^{3} \mathrm{~mol}^{-1}$
2933	79	0.9183×10^{-15}
$2914 \mathrm{a}_{2 \mathrm{u}}$	212	0.9183
2863 eu	26	2.4966
2863	26	0.3172
2863 a 2 u	51	0.3172
1449 eu	4.9	0.6222
1449	4.9	0.2334
1449 a 2 u	13.9	0.2334
1346 eu	0.12	0.6620
1346	0.12	0.0066
1257 eu	1.8	0.0066
1257	1.8	0.1139
1038 a 2 u	1.99	0.1139
904 eu	1.41	0.1847
904	1.41	0.1725
862 eu	1.9	0.1725
862	1.9	0.2557
524 a 2 u	0.46	0.2557
241 eu	0	0.1675

$a_{2 u}$ total $=4.133 \times 10^{-15} \mathrm{~km}^{3} \mathrm{~mol}^{-1}$
eu total $=4.035 \times 10^{-15} \mathrm{~km}^{3} \mathrm{~mol}^{-1}$
$a_{2 u}+e u=8.168 \times 10^{-15} \mathrm{~km}^{3} \mathrm{~mol}^{-1}$

TABLE 20.
d_{12} - Cyclohexane - Intensity Sums.

Section 2.8 Cyclohexane - Effective Atomic Charges.

$$
\begin{aligned}
& \sum A_{i}\left(d_{0}\right)=509.6 \mathrm{~km} \mathrm{~mol}^{-1} \\
& \sum A_{i}\left(d_{l 2}\right)=276.1 \mathrm{~km} \mathrm{~mol}^{-1}
\end{aligned}
$$

This pair of results yields the following value for the hydrogen atomic charge:

$$
x_{H}=0.115
$$

This represents quite a high value if it is considered that χ_{H} for most hydrocarbons has a value of \sim.l00. The figure presented, however, should be considered accurate since there is excellent adherence to the F sum rule by the d_{0} and d_{12} intensities.

The effective atomic charge for the carbon atoms may be obtained by substituting the value for hydrogen back into the intensity sum equation. This yields:

$$
x_{C}=0.175
$$

TETRAHYDROPYRAN - EXPERIMENTAL RESULTS.
Gas and solution phase intensity measurements were made for tetrahydropyran, following the same procedure employed for 1,4-dioxan and cyclohexane. In this studv, the resulting derived band intensities are not used to generate a set of atomic nolar tensors, but are used to investiqate the applicabilitv of tensors calculated using quantum mechanical methods, and also the transferability of tensors acquired for dioxan and cyclohexane.

The experimental data is presented below.

TETRAHYDROP YRAN-GAS PHASE DATA. - TABLE 21.

Freq. Ranre	Pressure (mm)	$\underline{A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)}$
3100-2780	. 258	319.3
	. 268	302.1
	. 291	336.2
	. 345	336.9
	. 383	355.0
	. 420	346.8
	. 495	331.2
1550-1415	1.952	19.3
	2.495	20.2
	2.590	19.8
	3.073	20.1
	3.575	20.1
1415-1325	1.952	10.95
	2.495	11.9
	2.590	11.7
	3.073	11.8
	3.575	12.2
1325-1235	2.815	14.8
	4.050	14.5
	4.250	15.0
	5.050	15.3
1235-1165	. 591	38.9
	. 84.5	41.1
	1.005	43.3
	1.218	45.3
	1.520	37.4
1165-1140	. 591	2.65
	. 845	2.31
	1.005	2.19
	1.218	2.23
	1.520	2.10

1140-977	. 591	103.9
	. 845	105.8
	1.005	102.3
	1.218	103.6
	1.520	103.7
977-930	2.540	2.38
	3.025	2.42
	3.48	2.44
925-832	1.495	26.6
	2.007	28.4
	2.195	28.4
	2.510	28.1
832-780	1.495	3.69
	2.007	3.97
	2.195	4.24
	2.510	4.27
620-520	1.435	3.65
	2.45	3.85
	3.025	3.55
	3.48	3.84
450-340		7.29
	2.735	6.95
	2.370	7.28
290-200	1.856	4.23
	1.910	4.30
	2.234	4.39
	2.535	4.295

TETRAHYDROPYRAT - SOLUTION DATA.

Frequencv	Mol. Conc.	$I_{\text {max }}$	$\Delta \nu_{\frac{1}{2}}$	A_{i}
3100-2780	$\begin{gathered} 0.1107 \\ 0.2083 \\ (0.5742) \end{gathered}$			$\begin{gathered} 402.0 \\ 384.8 \\ (344.7) \end{gathered}$
1440	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .193 \\ & .275 \\ & .350 \\ & .965 \end{aligned}$	$\begin{aligned} & 15.80 \\ & 16.06 \\ & 16.52 \\ & 15.65 \end{aligned}$	$\begin{aligned} & 16.23 \\ & 15.95 \\ & 16.27 \\ & 15.53 \end{aligned}$
1454	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{array}{r} .209 \\ .299 \\ .387 \\ 1.028 \end{array}$	$\begin{aligned} & 4.88 \\ & 4.88 \\ & 4.86 \\ & 4.92 \end{aligned}$	$\begin{aligned} & 6.05 \\ & 5.89 \\ & 5.95 \\ & 5.80 \end{aligned}$
1468	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .198 \\ & .281 \\ & .365 \\ & .9785 \end{aligned}$	$\begin{aligned} & 4.84 \\ & 4.88 \\ & 4.96 \\ & 4.85 \end{aligned}$	$\begin{aligned} & 5.69 \\ & 5.56 \\ & 5.72 \\ & 5.44 \end{aligned}$
1384	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{array}{r} .187 \\ .265 \\ .341 \\ .920 \end{array}$	$\begin{aligned} & 5.62 \\ & 5.70 \\ & 5.82 \\ & 5.72 \end{aligned}$	$\begin{aligned} & 6.18 \\ & 6.04 \\ & 6.20 \\ & 5.97 \end{aligned}$
1362	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .041 \\ & .060 \\ & .077 \\ & .219 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 4.50 \\ & 5.12 \\ & 4.52 \end{aligned}$	$\begin{aligned} & 1.17 \\ & 1.10 \\ & 1.25 \\ & 1.14 \end{aligned}$
1349	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .064 \\ & .092 \\ & .123 \\ & .319 \end{aligned}$	$\begin{aligned} & 14.60 \\ & 15.36 \\ & 14.68 \\ & 13.36 \end{aligned}$	$\begin{aligned} & 5.03 \\ & 5.14 \\ & 5.15 \\ & 4.48 \end{aligned}$
1300	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .194 \\ & .276 \\ & .355 \\ & .981 \end{aligned}$	$\begin{aligned} & 6.22 \\ & 6.30 \\ & 6.46 \\ & 6.11 \end{aligned}$	$\begin{aligned} & 7.08 \\ & 6.92 \\ & 7.12 \\ & 6.78 \end{aligned}$
1273	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .164 \\ & .234 \\ & .298 \\ & .827 \end{aligned}$	$\begin{aligned} & 7.81 \\ & 7.92 \\ & 8.17 \\ & 7.64 \end{aligned}$	$\begin{aligned} & 7.37 \\ & 7.20 \\ & 7.43 \\ & 7.04 \end{aligned}$
1257	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .135 \\ & .198 \\ & .257 \\ & .679 \end{aligned}$	$\begin{aligned} & 5.44 \\ & 5.34 \\ & 5.50 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 4.33 \\ & 4.25 \\ & 4.44 \\ & 4.14 \end{aligned}$
1197	$\begin{aligned} & .1107 \\ & .1628 \\ & .2083 \\ & .5742 \end{aligned}$	$\begin{aligned} & .852 \\ & 1.214 \\ & 1.510 \\ & 3.710 \end{aligned}$	$\begin{aligned} & 6.88 \\ & 6.90 \\ & 7.16 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 34.13 \\ & 33.10 \\ & 33.34 \\ & 32.09 \end{aligned}$

1157	. 1107	. 099	6.62	3.81
	. 1628	. 137	7.92	3.76
	. 2083	. 181	7.26	4.06
	. 5742	. 503	5.90	3.36
1092	. 1107	1.293	9.96	72.62
	. 1628	1.828	10.02	70.23
	. 2083	2.317	10.22	70.79
	. 5742	5.071	12.48	67.13
1048	. 1107	. 896	5.04	26.82
	. 1628	1.258	5.08	25.74
	. 2083	1.588	5.14	25.74
	. 5742	3.735	5.74	24.33
1032	. 1107	. 310	6.54	11.86
	. 1628	. 442	6.52	11.46
	. 2083	. 566	6.80	11.89
	.5742	1.526	6.58	11.28
1011	. 1107	. 297	5.68	9.94
	.1628	. 422	5.58	9.45
	. 2083	. 542	5.64	9.94
	. 5742	1.437	5.50	8.98
969	. 1107	. 171	4.56	4.65
	. 1628	. 244	4.66	4.59
	. 2083	. 304	4.48	4.32
	. 5742	. 816	4.16	3.92
872	. 3188	2.284	6.76	31.21
	. 5108	3.388	7.22	30.69
854	. 3188	. 385	7.28	5.62
	. 5108	. 611	7.42	5.67
816	. 3188	. 432	6.40	5.61
	. 5108	. 712	7.36	6.56
565	. 1107	. 161	6.70	6.29
	. 2083	. 285	6.66	5.87
	. 5742	. 761	6.46	5.55
520-350	. 3187			11.02
	. 5106			11.42
290-200	. 3187			4.79
	. 5106			4.96

$\begin{array}{r} \text { Soluti } \\ \operatorname{Band}\left(\mathrm{cm}^{-1}\right) \end{array}$	$\begin{aligned} & \text { Phase } \\ & \mathrm{A}_{\mathrm{i}}-1 \end{aligned}$	$\begin{aligned} & \quad \text { Gas } \\ & \text { Region } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Phase } \\ & \left.\qquad \begin{array}{l} \mathrm{A}_{i} \\ (\mathrm{~km} \mathrm{~mol} \end{array}\right) \end{aligned}$	Sol/Gas Ratio
3100-2780	393.0(10)	3100-2780	$332.5(7.1)$	1.18(.07)
1468	5.60(.08)	1550-1415	19.89(1.90)	1.38(.02)
1454	5.92(.06)			
1440	16.0(.2)			
1384	6.10(.07)	1415-1325	11.72(.24)	1.04(.03)
1362	1-564(.04)			
1349	4.95(.02)			
1300	6.97(.09)	1325-1235	14.90(.19)	1.24(.02)
1273	7.26(.11)			
1257	4.29(.08)			
1197	33.16(.51)	1235-1165	41.2(1.6)	.80(.03)
1157	3.75(.17)	1165-1140	2.30(.11)	1.63(.11)
1092	70.2(1.4)	1140-977	103.84(.62)	1.13(.02)
1048	25.66(.62)			
1032	11.62(.18)			
1011	9.48(.24)			
969	$4.37(.20)$	97,7-930	2.41(.02)	1.81(0.8)
872	30.95(.39)	925-832	27.9(.50)	1.31(.03)
854	5.65 (.04)			
816	6.08(.71)	832-780	4.04(.56)	1.51(.18)
565	5.90(.28)	620-520	3.72 (.08)	1.59(.08)
520-350	11.2(.2)	450-340	7.2(.1)	1.56
290-200	4.87	290-200	4.30	1.13

$v_{i} \mathrm{~cm}^{-1}$	$\mathrm{A}_{\mathrm{i}}\left(\mathrm{km} \mathrm{mol}^{-1}\right)$
2958a` & \\ \hline 2958a" & \\ \hline 2942a* & \(114.4 \pm 2.4\) \\ \hline 2933a* & \\ \hline 2924a`	
2860a` & \\ \hline 2860a`	
2849a` & \(218.1 \pm 4.7\) \\ \hline 2849a" & \\ \hline 2842a`	
1468a` & \(4.05 \pm .08\) \\ \hline 1454a`	$4.28 \pm .07$
1441a` & \(11.56 \pm .21\) \\ \hline 1434a* & \(\sim 0\) \\ \hline 1420a* & \(\sim 0\) \\ \hline \(1384{ }^{\text {a }}\) & \(5.85 \pm .17\) \\ \hline 1360a" & \(1.12 \pm .05\) \\ \hline 1347a" & \(4.75 \pm .08\) \\ \hline 1338a`	~ 0
1297a*	$5.61 \pm .12$
1271a*	$5.84 \pm .12$
1254a*	$3.45 \pm .08$
1242a"` & \(\sim 0\) \\ \hline 1195a"`	41.2 ± 1.6
1170a*	~ 0
1155a` & \(2.30 \pm .11\) \\ \hline 1090a"`	70.2 ± 1.4
1046a"	$25.7 \pm .6$
1030a` & \(11.62 \pm .18\) \\ \hline 1009a`	$9.48 \pm .24$

969a` & \(2.41 \pm .16\) \\ \hline 880a`	~ 0	
875a` & \(23.6 \pm .6\) \\ \hline 856a`	$4.30 \pm .09$	
818a` & \(4.04 \pm .56\) \\ \hline 811a`	~ 0	
565a` & \(3.72 \pm .08\) \\ \hline 458a`		
432a*	7.2	
400a` & \\ \hline \[\begin{aligned} & 252 a^{`}		
	252 a^{\prime} \end{aligned} \]	4.3

Chapter 3.

Section 3.1 The Role of Quantum Mechanics in IR Spectroscopy.
All theoretical treatments in which it is desired to calculate the physical characteristics of a molecular system from simply a knowledge of its atomic constituents rely on the derivation of the molecular wave function. This is the function that satisfies the Schrödinger equation for the system and contains all information regarding its dynamical properties.

Exact solution of the Schrödinger equation is not feasible except in the simplest of cases such as the hydrogen atom, and hence results will in general only represent an approximation. An important simplifying assumption is to constrain the nuclei to remain fixed during electronic motion, due to the vast differences in their masses (Born Oppenheimer approximation).

The formation of a molecule may be visualised as a transfer of charge between its constituent atoms, or a pairing of their electrons. The latter now 'inhabit' 'molecular' rather than atomic orbitals. In the LCAO method (Linear Combination of Atomic Orbitals) each molecular orbital is assumed to appear from a 'mixing' of the original atomic orbitals.

$$
\psi_{i}=\sum_{\mathrm{r}} \mathrm{c}_{\mathrm{ir}} \eta_{\mathrm{r}}
$$

$\psi_{i}=$ wavefunction describing the $i^{\text {th }}$ electronic state. $\eta_{r}=$ the $r^{\text {th }}$ atomic orbital.
$c_{i r}=$ coefficient of the $r^{\text {th }}$ AO in the $i^{\text {th }}$ MO.
The Variational Principle dictates that as the ψ_{i} become more accurately defined by such an expansion, the corresponding orbital energy reaches a minimum. Thus the coefficients cir must be chosen so as to minimize the energy of the system. The level of approximation that can be achieved is raised on increasing the number of η_{r} employed - as this number reaches infinity, the 'Hartree-Fock' Limit is said to be approached. The actual number and type of such functions defines the 'basis set' for the calculation.

The coefficients $c_{i r}$, and hence the molecular wavefunctions, are determined through the self-consistent field method (SCF) ${ }^{19}$. The equation that is to be solved takes the following form:

$$
F C=S C E
$$

F is the 'Fock' matrix.
C is the matrix of LCAO coefficients.
S is the overlap matrix
E is the diagonal matrix of MO eigenvalues.
To describe how the elements of these matrices are obtained, it is instructive to briefly examine the origin of the equation. Consider the form of the electronic Hamiltonian for the hydrogen molecule:
electron 1

$$
\mathrm{H}_{1,2}^{\mathrm{e}}=-\frac{1}{2} \nabla_{1}^{2}-\frac{1}{\mathrm{r}_{\mathrm{I}, 1}}-\frac{1}{\mathrm{r}_{\mathrm{II}, 1}} \quad\left[\hat{\hat{h}_{1}}\right]
$$

$$
-\frac{1}{2} \nabla_{2}^{2}-\frac{1}{r_{I, 2}}-\frac{1}{r_{I I, 2}}
$$

$$
\left[\hat{=\hat{h}_{2}}\right]
$$

$\left[E \hat{h}_{2}\right]$

$$
+\frac{1}{r_{12}}
$$

$\left[\equiv \hat{\mathrm{g}}_{12}\right]$
i.e. $H_{1,2}^{\mathrm{e}}=\hat{\mathrm{h}}_{1}+\hat{\mathrm{h}}_{2}+\hat{\mathrm{g}}_{12}$

The terms that contribute to the Hamiltonian are thus separated into the l-electron operators $1 \hat{1}$ and the 2-electron electron-electron interaction ' \hat{g} '. Similarly for a 2 M electron system,
$H(1,2, \ldots)=\sum_{\mu=1}^{2 M} \hat{h}_{\mu}+\sum_{\mu<\nu}^{M(2 M-1)} g_{\mu \nu}$
The expectation value of the energy is $\langle\psi| \hat{H}|\psi\rangle$. Thus:

$$
\begin{aligned}
E= & 2 \sum_{p}^{M}\langle\phi p(1)| \hat{h}_{1}|\phi p(1)\rangle \\
& +\sum_{p}^{M} \sum_{q}^{M}\left[2<\phi p(1) \phi q(2)\left|\hat{g}_{12}\right| \phi p(1) \phi q(2)\right\rangle \\
& \left.-<\phi p(1) \phi p(2)\left|\hat{g}_{12}\right| \phi q\left(1 \phi q_{1}(2)\right\rangle\right] \\
\text { or } \quad & E=2 \sum_{p}^{M} h_{p p}^{\phi}+\sum_{p}^{M} \sum_{q}^{M}\left(2 J_{p q}^{\phi}-k_{p q}^{\phi}\right)
\end{aligned}
$$

$J_{p q}$ and $K_{p q}$ symbolize the Coulomb and Exchange integrals respectively.

In this way it is seen that the energy is the sum of the one-electron energies (kinetic energy and electron nuclear attractions) and interactions between the charge clouds of all pairs of electrons.
$J_{p q}$ and $K_{p q}$ may be related to pseudo-one-electron operators:

$$
J_{\mathrm{pq}}=\langle\phi \mathrm{p}| \hat{J}_{\mathrm{q}}\left|\phi_{\mathrm{r}}\right\rangle, \mathrm{K}_{\mathrm{pq}}=\langle\phi \mathrm{p}| \hat{K}_{\mathrm{q}}\left|\phi_{\mathrm{p}}\right\rangle
$$

and the Schrödinger equation, $H \psi=E \psi$, may be written in the form:

$$
\left[\hat{\mathrm{h}}+\sum_{q}^{M}\left(2 \hat{J}_{q}-\hat{\mathrm{K}}_{q}\right)\right] \phi_{p}=\phi_{p^{\prime} \varepsilon_{p}}
$$

or $\hat{F} \phi p=\phi p \varepsilon p p$
where \hat{F} is the Fock operator. The elements of the diagonal matrix ε are the molecular orbital energies. For the computation the matrix representative of the Fock operator must be generated over the MO basis:

$$
F_{s t}^{\phi} \equiv\left\langle\phi_{s}\right| F\left|\phi_{t}\right\rangle
$$

and then, ${\underset{\underline{F}}{ }}^{\phi}=\underline{\underline{\varepsilon}}$, since $S_{s t}^{\phi}=\delta_{\text {st }}$
The unknown ϕ are expressed in terms of the atomic orbitals, η

$$
\phi=\eta \underline{\underline{c}} ; \phi^{+}=\underline{c}^{+} \eta^{+}
$$

It is required to transform the Fock matrix from the AO to the MO basis by an orthogonal transformation, which is equivalent to a rotation of the $A 0$ vector space via the appropriate similarity transformation:

$$
\cong \underline{\underline{F}}^{\eta} \cong=\cong \underline{\underline{S}}^{\eta} \cong \underline{\underline{c}}
$$

where $\underline{\underline{F}}^{\eta}=\underline{\underline{h}}^{\eta}+2 \underline{\underline{J}}^{\eta}-\underline{\underline{k}}^{\eta}$
and $\cdot S_{i j}=\left\langle\eta_{i} \mid \eta_{j}\right\rangle$
And thus the equation on which the SCF method is based has been reached. An initial guess is used to compute the Fock matrix, and the equation solved for \subseteq and $\underset{=}{E}$. This \subseteq is then used to calculate the Fock matrix for the next cycle of iteration. which should result in a lower molecular energy. The procedure is repeated until convergence is achieved.

The quality and character of such a MO calculation is determined by the number and nature of the basis functions employed in constructing the molecular orbitals. Historically, these functions were chosen to bear a close resemblance to atomic orbitals. Prior to the 1960's most calculations were carried out using Slater Type Orbitals (STO), which are analogous to the actual solution of the Schrödinger equation for the hydrogen atom, but possess different nodal properties:

$$
n_{n \ell m}(r, \theta, \phi)=A_{n} r^{n-1} e^{-\xi r} Y_{\ell, m}(\theta, \phi)
$$

Recently, Gaussian type functions(GTF) have been used. The difference lies in their radial dependence:

$$
\eta=r^{\eta} e^{-\alpha r^{2}}
$$

The advantage of these is that they facilitate the rapid computation of the molecular integrals, and thus render practicable the extension of the method to large polyatomic molecules - the importance of this point is seen on noting that as the number of basis functions (N) increases, the number of two-electron integrals increases as N^{4} e.g. if 50 basis functions are required for a NH_{4} MO calculation, there are $\sim 10^{6}$ such integrals.

A 'minimal' basis set corresponds to one which provides one function for every atomic orbital occupied in the isolated atom. The orbital exponents (ξ ミzeta) which are usually chosen are those variationally optimized for the free atoms.
. As already stated, the basis set fundamentally determines the reliability of a calculation, though it is often difficult to fully estimate the value of the resulting quantum mechanical interpretation that can be given to an experimentally determined physical property. It should be expected that the larger the number of functions included, the better will the outcome of a computation correspond to experiment. Some conclusions may be drawn from trends observed from calculations using different basis sets.

It was not until the early 1970's that such MO calculations made an impact on infra-red spectroscopic studies ${ }^{20}$. Before then, the wavefunctions obtained were not generally of sufficient quality to yield satisfactory force constants and dipole derivatives that could aid significantly the interpretation of experimental data. The expense of computations was often prohibitive, but the simplifications provided by semiempirical methods made it possible for a larger number of investigators to pursue such studies.

In the CNDO method (Complete neglect of differential overlap), $S_{i j} \equiv\left\langle\eta_{i} \mid \eta_{j}\right\rangle=\delta_{i j}$ resulting in a massive reduction in the number of integrations to be performed. Calculations
using this method showed an encouraging degree of success in predicting equilibrium dipole moments ${ }^{21}$ that lead to their application to the calculation of dipole moment derivatives. ${ }^{\mathbf{2 2}}$

More recently, much effort has been expended in calculating spectroscopic data using the Gaussian packages developed by Pople and co-workers. ${ }^{23}$ Structural parameters obtained have been found to mirror accurately those determined by experiment (e.g. by electron diffraction). Blom et al. ${ }^{24}$ examined the usefulness of the 4-3l C basis set (for definition, see ab initio section) using Gaussian 70 - for unstrained saturated hydrocarbonsthey could reproduce bond distances to within $.003 \AA$, and 0.4° for bond angles.

Such calculations have been employed in attempting to predict force constants, using a number of possible different approaches. Garrett and Mills ${ }^{25}$ derived expressions for force constants and dipole derivatives in terms of Hartree Fock wavefunctions. In the Pulay method, ${ }^{26}$ the nuclear geometry is determined by relaxing the nuclear coordinates until the forces acting on the atoms vanish. The force constants are then calculated by differentiating the forces numerically.

Alternatively, having assumed a given functional dependence of the potential energy on the internal displacement coordinates, the parameters that define the potential surface may be determined by their least-squares fit to the series of energies corresponding to a number of different molecular configurations. Such a method can provide a pathway to the prediction of anharmonic force constants, ${ }^{27}$ since it appears surprisingly that these may be predicted more reliably than quadratic constants when using simple basis sets.

Dipole derivatives/atomic polar tensor elements can be deduced from the dipole moment calculated at different molecular configurations. One of the principal applications of the parameters thus obtained is to help resolve the sign ambiguity of the $d p / d Q$ obtained by experiment. As mentioned previously, comparison of results from isotopically substituted molecules may limit the number of possible sign choices. The one which then corresponds best to that derived from the quantum-mechanically calculated parameters may be reasonably designated as the 'correct' choice.

As has been mentioned above, there has been recent success in applying the results derived from quantum mechanical calculations to the interpretation of spectroscopic data. In this section it will be shown how a readily available quantum mechanical package, Gaussian 76, has been employed to obtain parameters that will hopefully provide both a meaningful set of constraints for the perturbation treatment used to derive the force constants of 1,4-dioxan, and a guide to the correct sign choice for the experimental dipole derivatives.

Gaussian 76 is a computer program that performs ab initio Hartree-Fock molecular orbital calculations. ${ }^{28}$ The one- and two-electron integrals are calculated using basis sets of s,p or d cartesian gaussian functions, and the wavefunctions and energies are determined through the Self Consistent Field method. The following input data is required for the execution of the program:
(1) System control card. This determines the routo for the calculation (i.e. which of the various options are desired) and the type of basis set. The size of this basis is limited by the maximum permissable number of basis functions (90), number of shells (80), and degree of contraction (i.e. the number of terms in the linear combination of primitive gaussians that defines the atomic orbital, $=6$). This means that for 1,4-dioxan the largest allowable basis set is 4-31a, corresponding to 70 basis functions.
(2) The title for the run.
(3) The net charge and spin multiplicity - the latter specifying the number of electrons of either α or β spin.
(4) The nuclear geometry. This may be defined in one of two ways.
a) In terms of internuclear bond lengths and angles.
b) From the Cartesian coordinates of the atoms.

The former method is the approach relevant to obtaining force constants, which are functions of the internal coordinates, whilst the latter is appropriate to the derivation of the $a b$ initio atomic polar tensors.

Section 3.3 Force Constant Determination.
The potential energy may be calculated for a series of configurations that correspond to different values of the molecular symmetry coordinates. The zero point energy, equilibrium geometry and symmetrized force constants are then obtained by the least squares fitting of these parameters to the resulting potential surface.

The required specification of geometry is in many cases a non-trivial matter, since as will become apparent below, care must be exercised to maintain the correct conditions for ring closure. Examine the input for a typical fully symmetric (Ag) configuration.

The position of a nucleus is given by a bond length, bond angle and dihedral angle. Alternatively, the dihedral angle may be replaced by a second angle and a ± 1 which indicates the direction in which the bond points. For instance, atom 4a carbon atom, so the first entry in 161 the atomic number. Atom 4 is joined to atom 3 (the mid-point of the $\mathbb{C}-C$ band), by a line of length $R_{c c} / 2=.75814 \AA$. The subsequent entry of ' 1 ' and ' 90° ' indicates that the angle 431 is 90°. Then ' 2 ' and '90' indicates that the magnitude of the internuclear dihedral angle $4,3,1,2$ to 90°.

Now examine card 7 for atom 7. This is similar to the above until the third atom is specified. The 'l' after the second angle shows that rather than being a dihedral angle, 109.421° refers to the value of the angle $8 \hat{4} 6$.

It is seen that the atoms $1,2,3,5,9$ and 14 have the 'atomic number' of -1. This shows that they are 'dummy' atoms. These are strategically placed at convenient reference points in the molecular skeleton, and facilitate the definition of the other atomic positions.


```
NETWORK(UHCA104,NUN=ULCC)
JOE(UHCA104,J12,T5\0,MTOEO)
ATTACH(OVG,GAUSSIANTO,ID=PUOLLIC)
OVG.
**EOR**
S %11 1 1 4 4
3 1 1 1 1 4
    O 1
    -1
    -1 1 1.0
-1 11.1094
    0 3.75814
    -1 1.75214
    8 50.78ć
    0.7尤 1 120.24
    4.0<41* 3104.?Je
    111.2&วつ e 104.421
    41.0ア769 3 111.2も77
        109.421 
0
    1
        40.0
        90.0000
        0. O
        126.241
    < & .75.814 1 co.0<0! 
            270.0
    llll
    1 101.07709 % 9 1111.2097
& 10.6.02 rra
& 106.02 
    O 3.75814 1 9i.N000
            270.7
            180.0
    1?0.34
    1 131.07709 15 120.03
    1 131.07709 15 120.03 
        0.0
        111.2097 1
        109.736 -1
            10 130.0
            09.421 Q 109.73
            290.0
            4 C.O
            1&0.
```



```
    8.14.78c4
    0 9.75314 1 0п.C
    1 181.02418
9
            2
```

```
    141.07769
```



```
                                1
                            4
```

FULLY SYMMETRIC MOLECULAR DISTORTIONS.
At equilibrium, and in distortions that preserve the full symmetry of the molecule (Ag), the CO, COC and OCC internal coordinates are defined by:

$$
\begin{align*}
& \mathrm{r}_{45}=C 0 \sin \left(\frac{\hat{C O C}}{2}\right) \tag{3-1}\\
& \mathrm{r}_{65}=C 0 \cos \left(\frac{\hat{C O C}}{2}\right) \tag{3-2}
\end{align*}
$$

and by the angles $6, \hat{5}, 14$ and $15, \hat{14}, 5$ that introduce $\hat{O C C}$, as indicated by the following algebra:

$$
\left.\begin{array}{l}
\vec{R}_{6,4}=a \vec{e}_{x}+b \vec{e}_{y}+c \vec{e}_{z} \\
\left(\vec{R}_{6,10}=-a \vec{e}_{x}+b \vec{e}_{y}+c \vec{e}_{z}\right) \\
\text { Since } \vec{R}_{4,13}=\vec{e}_{y}, \text { then } \cos 0 \hat{C}_{C}=b . \\
\text { Now; } y_{6}-y_{4}=y_{6}-y_{5}=b_{64} \text { and } \cos (6, \hat{5}, 14)=\vec{R}_{6,5} \cdot \vec{R}_{14,5} \\
\therefore \quad \cos (6, \hat{5}, 14)
\end{array}\right)=\left(y_{6}-y_{5}\right) / r_{65} .
$$

The CH bond distances and angles are inputted directly, and their distortion conforming to any of the symmetry species may be performed without disturbing the other ring angles and b.onds.

Bu SYMMETRY COORDINATES.
Consider the distortions required to construct the CO symmetry coordinate:

$$
S_{\mathrm{C} 0}(\mathrm{bu})=\frac{1}{2}\left(\Delta \mathrm{r}_{46}+\Delta_{\mathrm{r}_{10,6}}-\Delta_{\mathrm{r}_{13,15}}-\Delta \mathrm{r}_{18,15}\right)
$$

As one section of the ring expands and the other contracts, the two CC bonds move in the xy plane so that they are no longer parallel:

Original position
 of 4

Thus, instead of being parallel with the y axis, this CC bond points in the negative x direction, and is described by:

$$
\vec{R}_{4,13}=-\cos \beta \cdot \vec{e}_{x}+\sin \beta \cdot \vec{e}_{y} .
$$

If the CO bonds are defined by the following expressions:

$$
\begin{aligned}
& \overrightarrow{\mathrm{R}}_{4,6}=a \vec{e}_{x}+b \vec{e}_{y}+c \vec{e}_{z} \\
& \vec{R}_{10,6}=-a \vec{e}_{x}+b \vec{e}_{y}+c \vec{e}_{z}
\end{aligned}
$$

the magnitude of the $\hat{C O C}$ angle is determined by taking the dot product.

$$
\begin{aligned}
\cos (4, \hat{6}, 10) & =\cos \hat{\operatorname{coc}}=\vec{R}_{4,6} \cdot \overrightarrow{\mathrm{R}}_{10,6} \\
& =-a^{2}+b^{2}+c^{2} .
\end{aligned}
$$

Normalisation gives: $a^{2}+b^{2}+c^{2}=1$
$\therefore \quad a=\left[\frac{1}{2}(1-\cos \hat{C O C})\right]^{\frac{1}{2}}$
(a is negative).
Again taking dot products:

$$
\begin{align*}
\cos (6, \hat{4}, 13) & =\cos \hat{O C C}=\vec{R}_{6,4} \cdot \vec{R}_{13,4} \\
& =-a \cdot \cos \beta+b \sin \beta \tag{3-5}
\end{align*}
$$

$\therefore \quad b=(\cos \hat{O C} C+a \cdot \cos \beta) / \sin \beta$
The expression for $6, \hat{5}, 14$ derived in the Ag section is still applicable:

$$
\begin{equation*}
\cos (6,5,14)=\frac{b}{\cos \left(\frac{\operatorname{coc} C}{2}\right)} \tag{3-6}
\end{equation*}
$$

except that b no longer corresponds to $\cos \hat{O C C}$ alone.

A similar analysis can be made for the other half of the ring, where:

$$
\begin{aligned}
& \vec{R}_{18,10}=-\vec{e}_{x} \cdot \cos \beta-\vec{e}_{y} \cdot \sin \beta \\
& \vec{R}_{13,15}=f \vec{e}_{x}+g e_{y}+h e_{z} \\
& \vec{R}_{18,15}=-f \vec{e}_{x}+g \vec{e}_{y}+h \vec{e}_{z}
\end{aligned}
$$

This provides the expressions:

$$
\begin{equation*}
f=\left[\frac{1}{2}(1-\cos \hat{C O C})\right]^{\frac{1}{2}} \tag{3-7}
\end{equation*}
$$

(f is positive)
and,

$$
\begin{align*}
& g=(\cos \hat{O C C}+f \cos \beta) / \sin \beta \tag{3-8}\\
& \cos (15, \hat{14}, 5)=\frac{g}{\cos \left(\frac{\hat{C O} C}{2}\right)} \tag{3-9}
\end{align*}
$$

Note that as $\triangle C O$ becomes smaller in magnitude, $\beta \rightarrow 90^{\circ}$, and the expressions given for 'b' and 'g' approach those appropriate to the equilibrium structure.

It is now possible to construct the molecular geometry input required for Gaussian 76. The distances $1-3$ and l-9 retain their equilibrium values, $\left[\mathrm{CO}^{\mathrm{eq}} \sin (\mathrm{COC} / 2)\right]$, since the mid-points of the $C C$ bonds do not move, being the pivots for their motion. The distances 5-6 and 14-15 take the value $[C O \cos (\hat{C O} C / 2)]$, but are in this case of different magnitudes due to the different lengths of the $C O$ bonds on opposite parts of the ring. And finally, the above vector algebra gives the expressions for the angles $6, \hat{5}, 14$ and 15,14,5.

One such run actually performed employed the following values:

$$
\begin{aligned}
& \Delta C O= \pm .02 \AA, \quad \hat{A}, \quad \hat{C} C=113.5^{\circ}, \quad \hat{O C C}=109.198^{\circ}, \\
& C C=1.51628{ }^{\circ}, \quad C O^{\mathrm{eq}}=1.4342 \hat{\mathrm{~A}}
\end{aligned}
$$

Substituting these figures gives:

$$
\cos \beta=\left(2 \times .02 \sin 56.75^{\circ}\right) / 1.51628=.02206
$$

$\therefore \quad \beta=88.7359^{\circ}$
and, $a=-f=-\left[\frac{1}{2}\left(1-\cos 113.5^{\circ}\right)\right]^{\frac{1}{2}}=-.83629$

The expressions for b and g now become

$$
\begin{aligned}
\mathrm{b} & =\left[\cos 109.193^{\circ}+(-.83629 \times .02206)\right] / .99976 \\
& =-.34728 \quad \quad(\text { using equation } 3-5) \\
\mathrm{g} & =\left[\cos 109.193^{\circ}+(+.83629 \times .02206)\right] / .99976 \\
& =-.31038 \quad \text { (using equation 3-7) }
\end{aligned}
$$

Thus, $\cos 6, \hat{5}, 14=(-.34728) / \cos 56.75^{\circ}$

$$
\cos 15, \hat{14}, 5=-.31038 / \cos 56.75^{\circ}
$$

$\therefore \quad 6, \hat{5}, 14=129.301^{\circ} ; \quad 15,14,5=124.478^{\circ}$

Finally,
$\mathrm{CO}^{\mathrm{eq}} \sin (\mathrm{COC} / 2)=1.19940$, corresponding to distance $1-3$
$\mathrm{CO}^{+} \cos (\mathrm{COC} / 2)=0.79733$, corresponding to distance $6-5$
$\mathrm{CO}^{-} \cos (\mathrm{COC} / 2)=0.77540$, corresponding to distance $15-14$

This treatment may be extended to investigate the effect that a bu COC angle distortion has on the rest of the molecular geometry. Take $\Delta(4, \hat{6}, 10)=+2^{\circ} ; \Delta(13,15,18)=-2^{\circ}$. Equation (3-4) becomes:
$a=\left[\frac{1}{2}(1-\cos 115.5)\right]^{\frac{1}{2}}=-.84573$.

Now define the direction of the CC bpnd:

$$
\vec{R}_{4,13}=m \vec{e}_{x}+n \vec{e}_{y} ; m^{2}+n^{2}=1
$$

and $\cos \hat{O C C}=\overrightarrow{\mathrm{R}}_{6,4} \cdot \overrightarrow{\mathrm{R}}_{13,4}=\mathrm{ma}+\mathrm{nb}$
Knowing the $C C$ bond length and the difference in the x coordinates of atoms 4 and 13, the angle θ may be obtained :

The x coordinate of A is $\mathrm{CO} \sin \left(\hat{C O C}^{+} / 2\right)=1.4342 \sin (115.5 / 2)$ $=1.21294$
The x coordinate of ' 13^{\prime} ' is $C O \sin \left(\mathcal{C O C}^{-} / 2\right)=1.4342 \times$ $\sin (111.5 / 2)=1.13550$.
So the difference in x coordinates is .02744
$\therefore \quad \sin \theta=.02744 / 1.51628$ and $\theta=1.03693^{\circ}$

Now, $m=-\sin \theta=-.01810$ and $n=\cos \theta=.99984$
Substituting in expressions (3-5) and (3-6)

$$
b=[-.32875+.0181(-.84573)] / .99984=-.34411
$$

and

$$
6, \hat{5}, 14=\operatorname{acos}\left[\frac{-.34411}{\cos \left(\frac{115.5}{2}\right)^{\prime}}\right]=130.156^{\circ}
$$

Using the same logic for the other side of the ring, where $\hat{C O C}{ }^{-}=111.50^{\circ}, 15,14,5=123.850^{\circ}$. Thus these angles which are required as input have now been evaluated. For this run, CO remains at its equilibrium value and it is COC that produces the difference between distances 6-5 and 15-14:

$$
\begin{aligned}
& \mathrm{CO}^{\mathrm{eq}} \sin \left(\operatorname{coc}^{\mathrm{eq}} / 2\right)=1.19940 \text {, corresponding to distance } 1-3 \\
& \mathrm{CO}^{\mathrm{eq}} \cos \left(\operatorname{coc}^{+} / 2\right)=0.76531 \text {, corresponding to distance } 6-5 \\
& \mathrm{CO}^{\mathrm{eq}} \cos \left(\operatorname{coc}^{-} / 2\right)=0.80717 \text {, corresponding to distance } 15-14 \\
& \text { The bu } \hat{O} \hat{C} C \text { deformations are straightforward, since they } \\
& \text { are defined through the values of the angles } 6, \hat{5}, 14 \text { and } \\
& 15,14,5 \text {, whilst all other input remains the same as for the } \\
& \text { equilibrium geometry. }
\end{aligned}
$$

Au SYMMETRY COORDINATES.

Ring distortions of a_{u} symmetry prove rather more difficult to simulate, since out of the CO, CC and OCC coordinates it is only possible to vary two independently.

Consider the CO symmetry coordinate:

$$
S_{C 0}\left(a_{u}\right)=\frac{1}{2}\left(\Delta r_{46}-\Delta r_{10,6}+\Delta r_{13,15}-\Delta r_{18,15}\right)
$$

As $S_{C O}$ changes, the two $C C$ bonds move further apart ${ }_{\text {a }}$ (but still remain parallel), with a resulting change in the OCC
angles: β_{1} and β_{2}. These changes need to be quantified in order to set up the molecular geometry for input to Gaussian 76.

Thus the CO and CC bonds are defined as unit vectors:

$$
\begin{aligned}
& \vec{R}_{4,6}=a \vec{e}_{x}+b \vec{e}_{y}+c \vec{e}_{z} \\
& \vec{R}_{10,6}=d \vec{e}_{x}+\vec{e}_{y}+f \vec{e}_{z} \\
& \vec{R}_{4,13}=\vec{e}_{y}=\vec{R}_{10,18} .
\end{aligned}
$$

So,

$$
\begin{equation*}
b=\cos \beta_{1} ; \quad e=\cos \beta_{2} \tag{3-10}
\end{equation*}
$$

Two expressions which relate the coefficients for the adjacent CO konds are:

$$
\begin{equation*}
r_{6,10} / r_{4,6}=c / f ; \quad r_{6,10} / r_{4,6}=b / e \tag{3-11}
\end{equation*}
$$

Define a parameter ρ that is the ratio of bond lengths:

$$
\rho=r_{6,10} / r_{4,6}=b / e=\frac{\cos \beta_{1}}{\cos \beta_{2}}=\frac{\cos (\beta+\Delta \beta)}{\cos (\beta-\Delta \beta)}
$$

where β is the original $\hat{O C C}$ angle and $\Delta \beta$ the change due to the CO deformations.
$\therefore \quad \rho=\frac{\cos \beta-\sin \beta \sin \Delta \beta}{\cos \beta+\sin \beta \sin \Delta \beta}$

For β in radisns and assuming $\Delta \beta$ is very small, this becomes:

$$
\rho=\frac{\cos \beta-\Delta \beta \sin \beta}{\cos \beta+\Delta \beta \sin \beta}=\frac{r-\Delta r}{r+\Delta r}
$$

'r' is the equilibrium CO bond length.
$\therefore \quad(r+\Delta r) \cos \beta-r \Delta \beta \sin \beta$

$$
=(r-\Delta r) \cos \beta+r \Delta \beta \sin \beta
$$

$\therefore \quad \Delta r \cos \beta=r \Delta \beta \sin \beta$
$\therefore \quad \Delta \beta=\frac{\Delta r}{r} \cot \beta$
Thus, for $\Delta r=+.02 \AA$,

$$
\begin{aligned}
\Delta \beta_{1} & =\frac{.02}{1.4342} \cot \left(109.193^{\circ}\right)=-.004854 \mathrm{rad} \\
& \equiv-.278^{\circ}=-\Delta \beta_{2} .
\end{aligned}
$$

It is now necessary to develop further relationships between a, b, c and d, e, f in order to determine their individual values. From normalization,
$a^{2}=\left(1-b^{2}\right)-c^{2}$
$d^{2}=\left(1-e^{2}\right)-c^{2} / \rho^{2}$
$\therefore \quad d^{2}=\left(1-e^{2}\right)+\frac{a^{2}}{\rho^{2}}-\frac{\left(1-b^{2}\right)}{\rho^{2}}$
The COC angle is defined through the dot product of $\vec{R}_{4,6}$ and $\vec{R}_{10,6}$:
$\cos \operatorname{COC}=a d+b e+c^{2} / p$
$\therefore \quad \cos \operatorname{coc}=a d+b e+\frac{\left(1-b^{2}\right)}{\rho}-\frac{a^{2}}{\rho}$
For $\Delta r=+.02 \AA$,
$\rho=\frac{1.4142}{1.4542}=0.97249$
From above, $\beta_{1}=108.915^{\circ}$ and $\beta_{2}=109.471^{\circ}$
$\therefore \quad b=-.32417$; $e=-.33333$.
Substituting these values in equations (3-13) and (3-14),
$d^{2}=1.05738 a^{2}-0.05737$
and $\cos \hat{C O C}=\cos 113.5^{\circ}=-.39875$

$$
=a d+1.02829-1.02829 \mathrm{a}^{2}
$$

$\therefore \quad a d=-1.42704+1.02829 \mathrm{a}^{2}$
These two expressions may now be solved for a and d :

$$
\left(\frac{-1.42704+1.02829 a^{2}}{a}\right)^{2}=1.05738 a^{2}-0.05737
$$

$\therefore \quad a^{2}=0.70772, a=-0.84126$
and $d^{2}=0.69096, d=0.83124$

From the normalisation conditions,

$$
\begin{aligned}
& c=(1-.70772-.10509)^{\frac{1}{2}}=-.43266 \\
& f=(1-.69096-.11111)^{\frac{1}{2}}=-.44489
\end{aligned}
$$

So, $\vec{R}_{4,6}=-.84126 \vec{e}_{x}-.32417 \vec{e}_{y}-.43266 \vec{e}_{z}$

$$
\vec{R}_{10,6}=+.83124 \vec{e}_{x}-.33333 \vec{e}_{y}-.44489 \vec{e}_{z}
$$

The quantities for data input may now be derived:

The x coordinates of positions 14 and '10' define the distances 1-3 and l-9 respectively.

$$
\begin{aligned}
& x_{4}=-\operatorname{ar}_{6,4}=1.22336 \\
& x_{10}=d r_{6,4}=1.17554
\end{aligned}
$$

The distance 6-5 is given by:

$$
\begin{equation*}
r_{6,5}=\left[\left(y_{6}-y_{5}\right)^{2}+\left(z_{6}-z_{5}\right)^{2}\right]^{\frac{1}{2}} \tag{3-15}
\end{equation*}
$$

$\left(x_{6}=x_{5}=0\right.$ - these lie on the y axis)
Now, $b=\frac{y_{6}-y_{4}}{\mathrm{r}_{6,4}}$, where $\mathrm{y}_{6}-\mathrm{y}_{4}=\mathrm{y}_{6}-\mathrm{y}_{5}$
$\therefore \quad y_{6}-y_{5}=\mathrm{br}_{6,4}=-.47141$
and $z_{6}=c r_{4,6}=-.62917$
Substituting these values into equation (3-15) gives

$$
r_{6,5}=0.78618
$$

Finally, $\quad \cos (6, \hat{5}, 14)=\frac{y_{6}-y_{5}}{r_{6,5}}$
$\therefore \quad 6, \hat{5}, 14=126.843^{\circ}$

Similarly, the CC konds cannot be displaced without affecting the OCC angles. Consider the case where 4-13 expands, and l0-18 contracts by a magnitude $\Delta r_{c c}$. The CO bond vectors are defined as above. Here, $c=f$, and

$$
\begin{equation*}
r_{4,6} b-\Delta r_{c c}=r_{6,10^{e}} \tag{3-16}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& b=\cos \beta_{1}=\cos (\beta+\Delta \beta)=\cos \beta \cos \Delta \beta-\sin \beta \sin \Delta \beta \\
& e=\cos \beta_{2}=\cos (\beta-\Delta \beta)=\cos \beta \cos \Delta \beta+\sin \beta \sin \Delta \beta
\end{aligned}
$$

Thus,

$$
\begin{align*}
-\Delta r_{c c} & +r_{4,6}(\cos \beta \cos \Delta \beta-\sin \beta \sin \Delta \beta) \\
& =r_{6,10}(\cos \beta \cos \Delta \beta+\sin \beta \sin \Delta \beta) \\
\therefore \quad \frac{-\Delta r_{c c}}{r_{6,10}} & +\cos \beta \cos \Delta \beta-\sin \beta \sin \Delta \beta \\
& =\cos \beta \cos \Delta \beta+\sin \beta \sin \Delta \beta \\
\therefore \quad \sin \Delta \beta & =\frac{-\Delta r_{c c}}{r_{c o}} \cdot \frac{1}{2 \sin \beta} \tag{3-17}
\end{align*}
$$

where $r_{6,10}=r_{6,4}=r_{C 0}$ (equilibrium CO bond length).
For $\Delta r_{c c}=+.02 \AA, \Delta \beta$ is calculated to be -0.423°. The calculations required for the input data are then exactly analogous to those above for CO, yielding

$$
\begin{aligned}
& \vec{R}_{4,6}=-.83900 \vec{e}_{x}-.32177 \vec{e}_{y}-.43881 \vec{e}_{z} \\
& \vec{R}_{10,6}=+.83351 \vec{e}_{x}-.33572 \vec{e}_{y}-.43881 \vec{e}_{z}
\end{aligned}
$$

which in turn give the following deaired quantities:

$$
\begin{aligned}
& 1-3=1.20329 ; \quad 1-9=1.19542 \\
& 6, \hat{5}, 14=126.849^{\circ} ; \quad r_{6,5}=0.78636
\end{aligned}
$$

Bg SYMMETRY COORDINATES.
Consider the bg CO symmetry coordinate.

As previously,

$$
\begin{aligned}
& \vec{R}_{4,6}=a \vec{e}_{x}+b \vec{e}_{y}+c \vec{e}_{z} \\
& \vec{R}_{10,6}=\overrightarrow{d e}_{x}+\overrightarrow{e e_{y}}+f \vec{e}_{z} \\
& \vec{R}_{4,13}=\vec{R}_{10,18}=\vec{e}_{y}
\end{aligned}
$$

and $b=\cos (6, \hat{4}, 13) ; \quad e=\cos (6, \hat{10}, 18)$.
The four equations required to determine the four unknowns, a, c, d and f are given by:

The normalisation conditions:

$$
a^{2}+b^{2}+c^{2}=1 ; \quad d^{2}+e^{2}+f^{2}=1
$$

The expression for the $\hat{C O C}$ angle:

$$
\vec{R}_{4,6} \cdot \vec{R}_{10,6}=\cos C O C=a d+b e+c f
$$

and finally, the ring closure condition

$$
f=\frac{r_{4,6}}{r_{10,6}} c=\grave{\rho} c
$$

The following expression is derived, defining as before $6,4,13=\beta_{1}, \quad 6,10,18=\beta_{2}$

$$
\begin{align*}
\cos \beta_{1} & -\cos \beta_{1} \cos \beta_{2}=\grave{\rho}\left(1-\cos ^{2} \beta_{-a}^{2}\right) \\
& -a\left[1-\cos ^{2} \beta_{2}-\dot{\rho}^{2}\left(1-\cos ^{2} \beta_{1}-a^{2}\right)\right]^{\frac{1}{2}} \tag{3-18}
\end{align*}
$$

For $\Delta \mathrm{r}_{\mathrm{CO}}=.02 \AA \mathrm{~A}, \grave{\rho}=\frac{1.4542}{1.4142}, \mathrm{~b}=-.32876=\mathrm{e}$;
$\cos C O C=-.39875$ (for no simultaneous bu OCC deformation) note that this ' ρ ' is the inverse of ρ employed in the a_{u} calculations.

This gives, from equation (3-18),

$$
\begin{aligned}
& {\left[-.39875-.10808-1.0283\left(1-.10808-\mathrm{a}^{2}\right)\right]^{2}} \\
& =\mathrm{a}^{2}\left[1-.10808-1.0574\left(1-.10808-\mathrm{a}^{2}\right)\right]
\end{aligned}
$$

leading to $2.8775 \mathrm{a}^{2}-2.0278=0$ and $\mathrm{a}=-.83947$.
$\therefore \quad c=\left(1-.83947^{2}-.32875^{2}\right)^{\frac{2}{2}}=-.43268$
$\therefore \quad \vec{k}_{4,6}=-.83947 \vec{e}_{x}-.32875 \vec{e}_{y}-.43268 \vec{e}_{z}$
$\vec{R}_{10,6}=.83305 \vec{e}_{x}-.32875 \vec{e}_{y}-.44492 \vec{e}_{z}$
Examine the y coordinates of the carbon atoms 4 and 10:

$$
\begin{aligned}
& y_{4}-y_{6}=-\mathrm{br}_{6,4}=.47807 \\
& y_{10}-\mathrm{y}_{6}=-\mathrm{er}_{6,4}=.46492
\end{aligned}
$$

$\therefore \quad \mathrm{y}_{5}-\mathrm{y}_{6}=.47150$

- the CC bond 4-13 has moved along the y axis to be closer to oxygen atom 6, whilst 10-18 has moved in the opposite direction. This must be taken into account when defining the distance from carbon to the dummy atoms, which up to this point have remained unaltered. Thus,

$$
\begin{aligned}
4-3 & =.75814-(.47807-.46492) / 2 \\
& =.75157=18-9
\end{aligned}
$$

and $13-3=.75814+(.47807-.46492) / 2$

$$
=.76471=10-9
$$

The rest of the input is calculated from the coefficients of the band vectors, as previously, giving:

$$
\begin{aligned}
6-5 & =.7863 ; \quad 6, \hat{5}, 14=126.844^{\circ} \\
x_{4}-x_{6} & =1.19038 ; \quad x_{6}-x_{10}=1.20353
\end{aligned}
$$

This satisfactorily fixes the geometry for the left hand side of the mlecule. The right hand side now needs to be considered separately, since the symmetry of the deformation causes the two oxygen atoms to possess differing x coordinates, and the parameters from one side of the molecule may now not be simply transferred to the other. For the correct symmetry to be preserved, the input must correspond to the following Cartesian coordinates:

Atoms:	6	10	13	15	14
x	0	-1.1781	1.22076	.04266	0
y	-1.22964	-.76471	.76471	1.22964	.75814
z	-.62925	0	0	.62925	0

- note that atom 15 is moved along the x axis to yield the correct CO bond lengths.

Thus,

$$
\begin{array}{ll}
14-15 & =.78746 \\
15,14,5 & =126.781^{\circ}
\end{array}
$$

This x axis motion of oxygen atom 15 results in an alteration of the dihedral angle $15,14,1,2$ which is easily derived:

> '. 042666^{\prime} is the x coordinate of the oxygen 15 .
> '. 62925^{\prime} is the z coordinate of this atom.

This gives $\alpha=3.8784^{\circ}$.
This is actually the most complicated CO deformation to input, since both CC bonds are moved apart and also along the y axis, and a dihedral angle is varied for the first occasion.

The above has shown how a structure may be formed which corresponds to specifically chosen values of the molecular symmetry coordinates. On executing Gaussian 76 for this geometry a molecular potential energy is yielded, and this is the parameter to be utilised in the fore constant determination.

Consider how one might proceed in order to obtain values for any two diagonal fore constants and their interaction constant. The equation governing the potential energy, assuming simple harmonic motion, is:

$$
E=E_{0}+\frac{1}{2} k_{1} \Delta S_{1}^{2}+\frac{1}{2} k_{2} \Delta S_{2}^{2}+k_{12} \Delta S_{1} \Delta S_{2}
$$

'E' is the energy from the Gaussian 76 run, and there are six unknowns - E_{0}, the minimum of the potential energy well; the three forcaconstants; and the two equilibrium values of the internal coordinates which combine to form the symmetry coordinates. Thus six suitably chosen runs will yield six equations which may then be solved for the parameters. A possible set of runs would be:

ΔS_{1}	ΔS_{2}	
+x	0	Determines $\mathrm{E}_{\mathrm{o}}, \mathrm{k}_{1}$ and S_{1}
+y	0	
0	0	Determines $\mathrm{E}_{0}, \mathrm{k}_{2}$ and S_{2}
0	+a	
0	+b	
+x	+a	Determines k_{12}

If $\Delta S_{1}=\frac{1}{2}\left(R_{1}+R_{2}+R_{3}+R_{4}\right)$ where R is e.g. CO, then x and y might be . 02 and .01 A . If $\Delta S_{2}=\frac{1}{2}\left(\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}\right)$ where R is e.g. $H^{a} C O$ then 'a' and ' b^{\prime} might be 3° and 2°.

One problem when the geometry has not already been previously optimized is that there are additional terms in the energy equation arising from the interaction between those coordinates shifted from their equilibrium values and those being varied. The best approach is to gradually optimise the geometry through several cycles of varying one or two coordinates at a time, untilforce constants and geometry parameters are obtained that show only negligible changes upon any further optimization.

The approach adopted in this study was initially as above, but it was realised that much information on the interaction constants was being disregarded and as such was acting as a major source of error. Thus a program was developed to carry out the least squares fitting of a larger number of force constants at a time to the energy values obtained froin all the runs.

The equations on which the employed perturbation technique is based are derived in the Appendix. The elements of the Jaccobian matrix were derived from the equation:

$$
E=V_{o}+\sum_{i} \frac{1}{2} k_{i j}\left(R_{i}-R_{e i}\right)^{2}+\sum_{i \neq j} k_{i j}\left(R_{i}-R_{e i}\right)\left(R_{j}-R_{e j}\right)
$$

Thus,

$$
\begin{aligned}
& \partial \Psi / \partial V_{o}=1 \\
& \partial E / \partial R_{e i}=-k_{i i}\left(R_{i}-R_{e i}\right) \\
& \partial E / \partial k_{i i}=\frac{1}{2}\left(R_{i}-R_{e i}\right)^{2} \\
& \partial E / \partial k_{i j}=2\left(R_{i}-R_{e i}\right)\left(R_{j}-R_{e j}\right)
\end{aligned}
$$

Various groups of force constants, such as CO, CC, COC, and OCC with their interactions, or the group of angle deformations $H^{a, e} C O$ and $H^{a, e} C C$, are then chosen in turn as parameters to be varied so as to give the best fit between the 'observed' ab initio energies and those calculated. The procedure is then continued until no further improvement occurs and the force constants have approached their optimum values - typically requiring 3 or 4 such cycles. The results from each symmetry block are obtained completely independently from each other.

The geometry employed for the $A u, B u$ and $B g$ runs, and for most of the Ag runs was that obtained from several cycles of optimising one or two coordinates (bend length, bond angles) in turn, as described previously. For the non-fully symmetric species this is adequate, since as long as the equilibrium on which the calculations are based is of the correct symmetry
(i.e. Ag) then all the other symmetry coordinates are by definition zero at this point and errors due to neglected interaction terms are not present. For the Ag force constant determination this can only be circumvented by providing enough data to ensure that all the interaction force constants are satisfactorily determined. The sets of calculated energies and derived force constants are listed in the Appendix.

The number of runs required to satisfy this condition, and to investigate the large number of force constants for a molecule of this size, means that such a project eventually becomes expensive in both computer time and the effort required to tackle the vector algebra required to determine the correct input. This is a factor which must be considered before embarking on similar procedures for new molecules.

TABLE 25.

Gaussian 76 dipole moment data for 1,4 -dioxan.
(Debyes)

Description of Run	x	y	z	TOT

| $\mathrm{H}^{\mathrm{a}}(7), \Delta \mathrm{x}=+.01 \AA$ | -.0005 | -.0015 | .0011 | .0019 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{H}^{\mathrm{a}}(7), \Delta \mathrm{x}=+.02 \AA$ | -.0010 | -.0029 | .0022 | .0038 |
| $\mathrm{H}^{\mathrm{a}}(7), \Delta \mathrm{A}=+.03 \AA$ | -.0016 | -.0044 | .0031 | .0056 |
| $\mathrm{H}^{\mathrm{a}}(7), \Delta \mathrm{A}=-.02 \AA$ | .0008 | .0030 | -.0026 | .0040 |
| $\mathrm{H}^{\mathrm{a}}(7), \Delta \mathrm{A}=+.02 \AA$ | -.0030 | -.0019 | .0052 | .0063 |
| $\mathrm{H}^{\mathrm{a}}(7), \Delta_{\mathrm{z}}=+.02 \AA$ | -.0068 | .0091 | -.0144 | .0184 |
| $\mathrm{H}^{\mathrm{e}}(8), \Delta \mathrm{x}=+.02 \AA$ | -.0101 | .0060 | .0064 | .0134 |
| $\mathrm{H}^{\mathrm{e}}(8), \Delta \mathrm{A}=+.02 \AA$ | .0048 | .0037 | -.0029 | .0067 |
| $\mathrm{H}^{\mathrm{e}}(8), \Delta \mathrm{Z}=+.02 \AA$ | .0073 | -.0054 | .0014 | .0092 |
| $\mathrm{C}(4), \Delta \mathrm{A}=+.02 \AA$ | .0625 | .0002 | .0083 | .0630 |
| $\mathrm{C}(4), \Delta \mathrm{A}=+.02 \AA$ | .0143 | .0324 | -.0019 | .0354 |
| $\mathrm{C}(4), \Delta \mathrm{A}=+.02 \AA$ | .0186 | -.0021 | .0390 | .0432 |
| $0(6), \Delta \mathrm{A}=+.02 \AA$ | -.1054 | -.0002 | -.0005 | .1054 |
| $0(6), \Delta \mathrm{A}=+.02 \AA$ | 0 | -.0689 | -.0011 | .0689 |
| $0(6), \Delta \mathrm{A}=+.02 \AA$ | 0 | -.0009 | -.0550 | .0550 |

Section 3.4 Ab Initio APT's.
The final piece of information in the Gaussian 76 output is the computed values of the x, y and z components of the dipole moment for that particular molecular configuration. By displacing an atom away from its equilibrium yosition and noting the resulting change in the components of the dipole moment, the corresponding atomic polar tensor may be determined. E.g.

$$
\frac{d p_{x}}{d y_{1}} \simeq \frac{\Delta \underline{p}_{x}}{\Delta \mathrm{y}_{1}}
$$

change in x cpt of dipole moment input change in y coordinate

By displacing the atom along each of the cartesian axes, by typically . $02 \AA$, the full polar tensor is obtained.

To this end, it is convenient to adop.t the option of inputting the atomic positions simply in terms of their cartesian coordinates, as shown in the example below.

Section 3.5 1,4-Dioxan.
The results of the Gaussian 76 runs are shown below. The geometry employed was derived from the bond lengths and angles listed above (page bb). Several runs were performed to test the linearity of the dipole moment change with the distortion of the coordinate, using an axial hydrogen. It is seen that the resulta adhere to the expected direct proportionality.

Division of the results by . 02 will give polar tensor elements in $D \AA^{-1}$. Since it is customary to describe the charge flow in teras of electrons, this figure must be multiplied by 0.20822 to convert to 'e'. Thus the following set of atomic polar tensors is obtained:

$\mathrm{H}^{\mathrm{a}}(7)$	$\Delta \mathrm{x}$	$\Delta \mathrm{y}$	$\Delta \mathrm{z}$	(in e)
$\Delta \mathrm{P}_{\mathrm{x}}$	-.0104	-.0312	-.0708	
$\Delta \mathrm{P}_{\mathrm{y}}$	-.0302	-.0198	+.0947	
$\Delta \mathrm{P}_{\mathrm{z}}$	+.0229	+.0541	-.1499	

```
NETWORK(UHCA104,RUN=ULCC)
JOB(UHCA104,J12,T1000,M7600)
ATTACH(OVG,GAUSSIANTÓ,ID=PUSLIC)
OVG.
**EOR**
$ 1
    23
    314
    4
    5
    O
```

1
$111 \quad 1$

```
                                    1
                                    1
    NEW CYC EQ
    O 1
        6 1.24107
        -.71653
        .2533
        6 0.00
        6 -1.24107
        6 -1.24107
        6 0.0
        6 1.24107
        1.24107
        12.14984
        1 0.00
        10.00
        1 -1.24107
        1 -2.14984
        -2.14984
        -1.24107
        0.0
        0.0
        2.14984
        1.24107
    -1
**EOF**
```

$\mathrm{H}^{\mathrm{e}}(8)$

-.1052	+.0500	+.0760
+.0625	+.0385	-.0562
+.0666	-.0302	+.0146

C(4)

+.6507	+.1489	+.1936
+.0021	+.3373	-.0219
+.0364	-.0198	+.4060

$0(6)$

-1.0973	0	0
-.0021	-.7173	-.0094
-.0052	-.0115	-.5726

A small error is apparent on examining the oxygen polar tensor. Flements 2,1 and 3,1 should in fact be zero by symmetry; a fact which can be simply imposed without requiring any other changes.

At this stage, the tensor for one of each distinct type of atom has been obtained. It is now desired to transfer these to the equivalent atoms in the molecule. For instance, consider $C(4)$ and $C(10)$ - the elements of their respective tensors are obviously simply related by symmetry, and a small amount of thought should enable the tensor of C (l0) to be written down immediately. Rigorously, the method is to rotate the coordinate systen so that $C(4)$ is then orientated with respect to the axes in the same way as C(10) was before the rotation. This is equivalent to perforing a similarity transformation on the APT of $C(4)$ with the inatrix which brings about the transfornation of the coordinates of $C(4)$ to $C(10):$

$$
\mathrm{P}_{\mathrm{x}}^{\mathrm{C}(10)}=\mathrm{A} \mathrm{P}_{\mathrm{x}}^{\mathrm{C}} \mathrm{~A}^{(4)}
$$

where A is

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & +1 & 0 \\
0 & 0 & +1
\end{array}\right]
$$

the metrix which reflects $C(4)$ into $C(10)$.
$P_{x}^{C(10)}$ is the same as $P_{x}^{C(4)}$, apart from the signs of the elements $1,2,1,3,2,1$, and 3,1 , which are reversed. The saile relationship naturally holds for all the atoms which are here related by the plane of reflection.

For atoms interconverted through the centre of inversion, the transforming matrix is now

$$
A=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

and the APT's in fact are equal - again this is apparent by simple inspection. In more complicated cases (e.g. see cyclohexane later on), however, this numerical method is the most straightforward route to the related. APT's.

So a complete set of APT's has now been obtained. The constraint of the invariance of molecular dipole moment during translational motion imposes the relationship that the sum all the tensors should equal the null matrix. For the ab inito tensors:

$$
\sum_{\alpha} P_{x}^{\alpha}=\begin{array}{ccc}
-.0542 & 0 & 0 \\
0 & -.0106 & .0476 \\
0 & -.0066 & -.0624
\end{array}
$$

This condition is well obeyed here, showing a satisfying degree of consistency between the independently calculated APT's. This relationship is frequently used to find the tensor for a remaining type of atom once the rest have been determined. Here the constraint may be fully imposed by this approach through treating, say, the carbon APT as unknown. Then,

$$
\left[\begin{array}{ccc}
-4 \mathrm{a} & 0 & 0 \\
0 & -4 \mathrm{~b} & -4 \mathrm{c} \\
0 & -4 \mathrm{~d} & -4 \mathrm{e}
\end{array}\right]=\left[\begin{array}{ccc}
-2.657 & 0 & 0 \\
0 & -1.3598 & .1352 \\
0 & .0726 & -1.6864
\end{array}\right]
$$

TABLE 26.

Gaussian 76 dipole moment data for cyclohexane.

Description of run	x	y	z	TOT
C1, $x=+.02 \AA$. 0110	-. 0055	-. 0024	. 0126
C1, $y=+.02 \AA$	-. 0065	. 0050	. 0015	. 0083
Cl, $z=+.02 \AA$	-. 0022	. 0013	. 0149	. 0151
C2, $x=+.02 \AA$. 0014	. 0001	0	. 0014
C2, $y=+.02 \AA$	0	. 0167	-. 0031	. 0169
C2, $z=-.02 \AA$	0	. 0026	-. 0149	. 0151
$\mathrm{H}^{\mathrm{a}} 7, \mathrm{x}=+.02 \AA$. 0036	-. 0018	. 0026	. 0047
$H^{\mathrm{a}} 7, \mathrm{y}=+.02 \AA$	-. 0018	. 0017	-. 0019	. 0031
$\mathrm{H}^{\mathrm{a}} 7, \mathrm{z}=+.02 \AA$	-. 0029	. 0017	-. 0198	. 0201
$\mathrm{H}^{\mathrm{e}} 8, \mathrm{x}=+.02 \AA$	-. 0181	. 0115	. 0044	. 0218
$H^{e} 8, y=+.02 \AA$. 0109	-. 0042.	-. 0025	. 0119
$H^{e} 8, z=+.02 \AA$. 0075	-. 0043	. 0034	. 0093
$\mathrm{H}^{\mathrm{a}} 10, \mathrm{x}=+.02 \mathrm{~A}$. 0006	. 0002	. 0003	. 0007
$\mathrm{H}^{\mathrm{a}} 10, \mathrm{y}=+.02 \mathrm{~A}$	0	. 0045	. 0034	. 0057
$H^{3} 10, z=-.02{ }^{\circ}$	0	. 0034	. 0198	. 0201
$H^{e} 9, x=+.02 \AA$. 0020	. 0004	0	. 0020
$H^{e} 9, y=+.02 \AA$	0	-. 0232	. 0049	. 0237
$H^{e} 9, z=-.02 \AA^{\circ}$	0	-. 0087	-. 0034	. 0093

where the elements of one of the carbon APT's are given by

$$
\begin{aligned}
1,1=a ; & 2,2=b ; & 2,3=c ; \\
3,2=\mathrm{d} ; & 3,3=\mathrm{e} &
\end{aligned}
$$

Since the remaining elements do not contribute to the sum they are not determinable in this way, and shall simply be given their $a b$ initio values. The APT for $C(4)$ then becomes:

$$
\begin{aligned}
P_{x}^{C(4)}= & +.6642+.1489+.1936 \\
& +.0021+.3400-.0338 \\
& +.0181+.4216
\end{aligned}
$$

which as expected is very similar to that computed directly from Gaussian 76.

Section 3.6 Cyclohexane.
The cartesian coordinates used for the Gaussian 76 input were based on the following structural parameters:

$$
\begin{aligned}
& \mathrm{C}-\mathrm{C}=1.52 \AA \\
& \mathrm{C}-\mathrm{H}=1.113 \AA \\
& \hat{\mathrm{CCC}}=111.05^{\circ} \\
& \hat{\mathrm{HCC}}=\text { tetrahedral } ;
\end{aligned}
$$

obtained by electron diffraction measurements ${ }^{29}$.

As previously, the data from each run is multiplied by .20822 to convert to electronic units, and divided by $\pm .02$, the atomic displacement. This yields the following set of 'raw' APT's.

	. 1145	-. 0677	-. 0229
Cl	-. 0573	. 0521	. 0135
	-. 0250	. 0156	. 1551
	. 0146	0	0
C2	. 0010	. 1739	-. 0271
	0	-. 0323	. 1551
$H^{\text {a }} 7$. 0375	-. 0187	-. 0302
	-. 0187	. 0177	. 0177
	. 0271	-. 0198	-. 2061
$\mathrm{H}^{\mathrm{a}} 10$. 0062	0	0
	. 0021	. 0468	-. 0354
	. 0031	. 0354	-. 2061
$\mathrm{H}^{\mathrm{e}} 8$	-. 1884	. 1135	. 0781
	. 1197	-. 0437	-. 0448
	. 0458	-. 0260	. 0354
$\mathrm{H}^{\mathrm{e}} 9$. 0208	0	0
	. 0041	-. 2415	. 0906
	0	. 0510	. 0354

The relationship between the APT's for e.g. C1 and C3 is as in 1,4 -dioxan, i.e. equal except for $1,2,1,3,2,1$, and 3,1 which are opposite in sign, and APT's for Cl and C4 are equal. The sum of these raw tensors is then:
$\sum_{\alpha} P_{x}^{\alpha}=\begin{array}{rcr}-.0624 & 0 & 0 \\ .0144 & .0628 & .0018 \\ .0062 & -.0126 & -.0936\end{array}$

- not corresponding well to the expected null matrix. In fact, these tensors do not satisfy the $D_{3 d}$ molecular point group symmetry. This condition requires that the following should hold:
(1) The 'terminal' atoms (2,9,10,5,15,16) shoul』 posses APT's of the form:

a	0	0
0	b	c
0	d	e

This is almost the case and is here simply imposed.
(2) The APT of C 5 should transform into that of C 3 on rotation of the axis system by 120° clockwise about the $C 3(z)$ axis (the same applying for all thus related atoms) i.e.

$$
\begin{aligned}
& \mathrm{APT} \mathrm{C3}=\mathrm{R}^{120} \mathrm{P}_{\mathrm{x}}^{\mathrm{C} 5}\left(\mathrm{R}^{120}\right)^{\mathrm{t}} \\
& =\left[\begin{array}{ccc}
-.5 & -.86603 & 0 \\
.86603 & -.5 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
.0146 & 0 & 0 \\
0 & .1739 & -.0271 \\
0 & -.0323 & .1551
\end{array}\right]\left[\begin{array}{ccc}
-.5 & .86603 & 0 \\
-.86603 & -.5 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& = \\
& \\
& =
\end{aligned}
$$

These constraints then yield the following set of APT's:

	.1341	-. 0690	-. 0235
C1	-. 0690	. 0544	. 0135
	-. 0280	. 0161	. 1551
	. 0146	0	0
C2	0	. 1739	-. 0271
	0	-. 0323	. 1551
	. 0366	-. 0176	-. 0307
$\mathrm{H}^{\mathrm{a}} 7$	-. 0176	. 0163	. 0177
	. 0307	-. 0177	-. 2061
	-. 1759	. 1136	. 0785
$\mathrm{H}^{\mathrm{e}} 8$. 1136	-. 0448	-. 0453
	. 0442	-. 0255	. 0354

	.0208	0	0
$\mathrm{H}^{\mathrm{e}} 9$	0	-.2415	.0906
	0	.0510	.0354
	.0062	0	0
$\mathrm{H}^{\mathrm{a}} 10$	0	.0468	-.0354
	0	.0354	-.2061

The sum of the tensors is now:
$\sum_{\alpha} P_{x}^{\alpha}=\begin{array}{ccc}.0624 & 0 & 0 \\ 0 & .0620 & 0 \\ 0 & 0 & -.0936\end{array}$

The null constraint may be imposed by determining the carbon APT's from those of the hydrogens.

$\sum \mathrm{P}_{\mathrm{x}} \mathrm{H}^{\mathrm{a}}$. 1588	0	0
	-	0	. 1588	0
		0	0	-1.2366
$\sum \mathrm{P}_{\mathrm{x}} \mathrm{H}^{\mathrm{e}}$		-. 662	0	0
	=	0	-. 662	0
		0	0	. 2124
\therefore		. 5032	0	0
$\sum P_{x}{ }^{c}$	$=$	0	. 5032	0
		0	0	1.0242

Applying a 120° similarity transformation to a generalised tensor having the same form as C2 yields:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-.5 & -.86603 & 0 \\
.86603 & -.5 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & c \\
0 & d & e
\end{array}\right]\left[\begin{array}{ccc}
-.5 & .86603 & 0 \\
-.86603 & -.5 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{lll}
(.25 a+.75 b) & (-.433 a+.433 b) & (-.866 c) \\
(-.433 a+.433 b) & (.75 a+.25 b) & (-.5 c) \\
(-.86603 d) & (-.5 d) & (e)
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
\therefore .5032 & =4(.25 a+.75 b)+2 a \tag{I}\\
.5032 & =4(.75 a+.25 b)+2 b \tag{2}
\end{align*}
$$

$(1) \rightarrow a=.1677-b$
In fact, it is not possible to solve for a and b
since substitution of this value of 'a' into (2) only yields $.5032=.5032$!

Referring to the C2 APT, and using (3) as a constraint,
if
$a=.0146$,
$b=.1531$
or if
$b=.1739$,
$a=. .0062$

The latter has been accepted on the basis that the larger quantity, 'b', is perhaps more likely to be predicted accurately. This leads to the finally accepted set of polar tensors - as the last set listed above, except for the carbons which are now chosen to satisfy the summation to a null matrix of all the APT's:

$\mathrm{C} 2 \mathrm{APT}=$| -.0062 | 0 | 0 |
| :---: | :---: | :---: |
| 0 | .1739 | -.0271 |
| 0 | -.0323 | .1707 |

and from the 120° rotation of axes,

Cl APT $=$| .1289 | -.0780 | -.0235 |
| ---: | ---: | ---: |
| -.0780 | .0388 | .0135 |
| -.0280 | .0161 | .1707 |

Section 3.7 Tetrahydropyran.

For the purposes of this set of calculations, the geometry of tetrahydropyran is constructed from those of l,4-dioxan and cyclohexane - the former providing the Cartesian coordinates of the oxygen - containing half, and the latter corresponding to the remaining atoms.

The numbering is according to the following scheme:

The following results were obtained:

TABLE 27.

Gaussian 76 dipole moment data for tetrahydropyran.

Descr	on of run	x	y	z	тот
$C^{\prime} A^{\prime}$	$\Delta \mathrm{x}=+.02 \mathrm{~A}$. 0674	1.4661	1.4792	2.0837
$C^{\prime} A^{\prime \prime}$	$\Delta y=+.02 \AA$. 0135	1.5054	1.4711	2.1048
$C^{\prime} A^{\prime}$	$\Delta \mathrm{z}=+.02 \AA$. 0182	1.4584	1.5114	2.1004
$C^{\prime} B^{\prime}$	$\Delta x=+.02 \AA$. 0058	1.4705	1.4761	2.0836
$C^{\prime} B^{\prime \prime}$	$\Delta y=+.02 \AA$. 0018	1.4613	1.4687	2.0718
$C^{\prime} B^{\prime \prime}$	$\Delta z=+.02 \mathrm{~A}$	-. 0004	1.4626	1.4867	2.0856
$C^{\prime} \mathrm{Cl}^{\prime}$	$\Delta \mathrm{x}=+.02 \AA$. 0018	1.4640	1.4718	2.0759
$c^{\prime} \mathrm{Cl}^{\prime}$	$\Delta y=+.02 \AA$	0	1.4760	1.4679	2.0817
$C 口^{\prime \prime}$	$\Delta z=+.02 \AA$	0	1.4640	1.4718	2.0759
0	$\Delta \mathrm{x}=+.02 \AA$	-. 1070	1.4638	1.4713	2.0782
0	$\Delta \mathrm{y}=+.02 \mathrm{~A}$	0	1.3954	1.4695	2.0265
0	$\Delta z=+.02 \AA$.	0	1.4637	1.4184	2.0382
$\mathrm{H}^{\text {a }}$ ' ${ }^{\prime}{ }^{\prime}$	$\Delta \mathrm{x}=+.02 \mathrm{~A}$	-. 0020	1.4610	1.4741	2.0754
$\mathrm{H}^{\text {a }}$ ' ${ }^{\prime}$	$\Delta y=+.02 \AA$	-. 0034	1.4620	1.4765	2.0779
$\mathrm{H}^{\mathrm{a}}{ }^{\prime} \mathrm{A}^{\prime}$	$\Delta \mathrm{z}=+.02 \AA$	-. 0071	1.4745	1.4549	2.0715
$\mathrm{H}^{\text {a }} \mathrm{B}^{\prime}$	$\Delta \mathrm{x}=+.02 \mathrm{~A}$. 0046	1.4662	1.4715	2.0772
$\mathrm{H}^{\mathrm{a}} \mathrm{B}^{\prime}$	$\Delta y=+.02 \AA$. 0003	1.4630	1.4780	2.0796

$H^{\text {a }}{ }^{\prime \prime}$	$\Delta_{z}=+.02{ }^{\circ}$. 0041	1.4711	1.4572	2.0707
$\mathrm{H}^{\mathrm{a}} \mathrm{C}^{\prime}$	$\Delta \mathrm{x}=+.02 \mathrm{~A}$	0	1.4640	1.4715	2.0757
$H^{\text {a }} \mathrm{Cl}^{\prime}$	$\Delta y=+.02 \AA$	0	1.4676	1.4809	2.0849
$H^{\text {a }}{ }^{\prime}{ }^{\prime}$	$\Delta_{z}=+.02 \AA$	0	1.4676	1.4524	2.0757
$\mathrm{H}^{\mathrm{e}} \mathrm{A}^{\prime}{ }^{\prime}$	$\Delta \mathrm{x}=+.02 \AA$	-. 0111	1.4721	1.4785	2.0864
$H^{e}{ }^{\prime} A^{\prime}$	$\Delta \mathrm{y}=+.02 \mathrm{~A}$. 0052	1.4647	1.4677	2.0735
$\mathrm{H}^{\mathrm{e}} \mathrm{A}^{\prime} \mathbf{l}^{\text {a }}$	$\Delta_{z}=+.02 \AA$. 0073	1.4571	1.4728	2.0717
$H^{e} \mathrm{~B}^{\prime}$	$\Delta \mathrm{x}=+.02 \AA$	-. 0161	1.4575	1.4641	2.0659
$H^{e} B^{\prime}$	$\Delta y=+.02 \AA$	-. 0072	1.4655	1.4689	2.0750
$H^{\text {e }} \mathrm{B}^{\prime}$	$\Delta_{\mathrm{z}}=+.02{ }^{\circ} \mathrm{A}$	-. 0113	1.4596	1.4721	2.0731
$\mathrm{H}^{e} \mathrm{C} \mathrm{C}^{\prime}$	$\Delta \mathrm{x}=+.02 \AA$. 0028	1.4638	1.4717	2.0757
$\mathrm{H}^{\mathrm{e}} \mathrm{Cl}^{\prime}$	$\Delta \mathrm{y}=+.02{ }^{\circ} \mathrm{A}$	0	1.4399	1.4688	2.0569
$\mathrm{H}^{\mathrm{e}} \mathrm{Cl}^{\prime}$	$\Delta_{\mathrm{z}}=+.02 \mathrm{~A}$	0	1.4644	1.4771	2.0799
Equilibrium		0	1.4641	1.4718	2.0760

This data is treated in the usual manner, and yields the following set of atomic polar tensors:
('e' units)
0

	-1.1140	0	0
(0)	-.0031	-.7152	-.0042
(0)	-.0052	-.0239	-.5559

$\underline{C}^{\prime} A^{\prime}$.7017	.1405	.1895
	.0208	.4300	-.0593
	.0770	-.0073	.4123
$\underline{C}^{\prime} B^{\prime}$.0604	.0187	-.0042
	.0666	-.0292	-.0156
	.0443	-.0323	.1551
$\underline{C}^{\prime} C^{\prime}$.0187	0	0
	0	.1239	-.0094
	0	-.0406	.1645
$\underline{H}^{a^{\prime}} A^{\prime}$	-.0208	-.0354	-.0739
	-.0323	-.0219	.1083
	.0239	.0239	-.1759

$\mathrm{H}^{\mathrm{a}} \mathrm{B}^{\prime}$.0479	.0031	.0467
	.0219	-.0115	.0729
	-.0031	.0645	-.1520

$\underline{H}^{\mathrm{a}}(\mathrm{C})$	0	0	0
	0	.0364	.0364
	0	.0947	-.2020
$\underline{H}^{\mathrm{e}} \mathrm{IA}^{\prime}$	-.1156	.0541	.0760
	.0833	.0062	-.0729
	.0698	-.0427	.0104
$\underline{H}^{\mathrm{e}} \mathrm{IB}^{\prime}$	-.1676	-.0750	-.1176
	-.0687	.0146	-.0468
	-.0802	-.0302	.0031
$\underline{H}^{\mathrm{e}} \mathrm{ICl}^{\prime}$.0292	0	0
	0	-.2519	.0031
	0	-.0312	.0552

Having corrected the 2,1 and 3,1 elements of the oxygen APT (symmetry dictates that these should be zero), the sum over all the APT's should be the null matrix. In fact,

$$
\begin{array}{ccc}
\sum_{\alpha} P_{x}^{\alpha}=-.0540 & 0 & 0 \\
0 & -.0304 & -.0009 \\
0 & -.0492 & -.0322
\end{array}
$$

This small inconsistency may be removed by omitting C'C' from the sum, and then setting this equal to the negative of the resulting sum matrix. Then,

O'C' $^{\prime}$	-.0728	0	0
	0	-.1543	.0085
	0	-.0086	-.1967

NETWORK (UHCA101,RUN=ULCC)
//UHCA101 JOB HOGAN
// EXEC CRAY
//SYSUT1 DD *
JOB, US = UHCA101, $M=3000, T=299$.
$A C C E S S, O N=G A U S I A N, I D=T R I A L$.
GAUSIAN.
/EOF
$\$ 00100$
000230000000000000000000000000002001000000000000000000000000
00031450000000000000000000000000001110000000100000000000000
$00040000000000000000000000000000 C 010 C 0000000000000000000000$
100050000000000000000000000000000001000000000000000000000000
0006000000000000000000010000000000100000000000000000000.3000
THP EQN
01

0	1.1994	-.75814	0.0
8	0.00	-1.229663	-.629358
1	1.239336	-1.124253	1.019712
1	2.023258	-1.149081	-.574315
0	-1.1994	-.75814	0.0
1	-2.023258	-1.149081	-.574315
1	-1.239336	-1.124253	1.019712
6	1.253	.76	0.00
0	0.00	1.306004	.664953
1	2.152342	1.131526	-540312
1	1.309359	0.131526	-1.04764
6	-1.253	1.131526	0.0
1	-1.309359	1.131526	-1.04764
1	-2.152342	1.027810	.540312
1	0.0	2.417210	1.742630
1	0.0		.601800

Section 3.8 Trioxan.

This molecule yields the following results:

TABLE 28.

Gaussian 76 dipole moment data for Trioxan.

Description of run	x	y	z (Debyes)
Equilibrium.	. 0	0	3.3922
$0 \quad \Delta x=+.02 \mathrm{~A}$	-. 1090	-. 0005	3.3917
$0 \quad \Delta y=-.02 \AA$	0	. 0757	3.3892
$0 \quad \Delta z=-.02 \AA$	0	-. 0033	3.4553
C4 $\quad \mathrm{x}=+.02 \mathrm{~A}$. 1074	0	3.3935
C4 $\quad \Delta y=+.02 \AA$	0	. 0835	3.4079
C4 $\quad \Delta \mathrm{z}=+.02 \AA$	0	. 0259	3.4651
$H^{3} 9 \quad \Delta x=+.03{ }^{\circ}$	-. 0068	0	3.3917
$\mathrm{H}^{\mathrm{a}} 9 \quad \quad \triangle \mathrm{y}=+.03 \mathrm{~A}$	0	. 0005	3.4013
$H^{\text {a }} 9 \quad \Delta z=+.03 \AA$	0	-. 0095	3.3640
$\mathrm{H}^{\mathrm{e}} 10 \quad \Delta \mathrm{x}=+.03{ }^{\circ}$. 0079	0	3.3921
$\mathrm{H}^{\mathrm{e}} 10 \quad \Delta \mathrm{y}=+.03{ }^{\circ}$	0	-. 0112	3.3974
$\mathrm{H}^{\mathrm{e}} 10 \quad \Delta \mathrm{z}=+.03 \AA$	0	. 0067	3.4021

The APT for C 2 may be obtained from that for C 4 by performing a similarity transformation based on the matrix corresponding to a 120° anticloclevise rotation about the z $\left(C_{3}\right)$ axis. Symmetry thus enables the APT's for all atoms to be derived from the data presented above.

This set of APT's was found to satisfy very well the condition $\sum_{\alpha} P_{x}^{\alpha}=0$, and so therefore can be employed without correction.

Trioxan ab initio APT's.

O(1)	-1.135	0	0
	0	-. 788	. 0344
	0	. 0312	-. 6569
C(4)	1.118	0	0
	0	. 8693	. 2696
	0	. 1635	. 7590
H^{a} (9)	- . 0472	0	0
	0	. 0035	-. 0660
	0	. 0063	-. 1957
H^{e} (10)	. 0548	0	0
	0	-. 0777	. 0464
	0	. 0360	. 0687
$0(3)$	-. 8747	. 1502	-. 0298
	. 1503	-1.0482	-. 0172
	-. 0270	-. 0156	-. 6569
C (6)	. 9314	-. 1077	-. 2335
	-. 1077	1.0558	-. 1348
	-. 1416	-. 0817	. 7590
$H^{\text {a }}$ (7)	-. 0092	-. 0219	-. 0572
	. 0219	-. 0346	. 0330
	. 0055	-. 0031	-. 1957
$H^{e}(8)$	-.0446	. 0574	. 0402
	. 0574	. 0217	-. 0232
	. 0312	-. 0180	. 0687

```
NETWORK(UHCA101,RUN=ULCC)
//UHCA101 JOB StEELE
// EXEC CRAY
//SYSUT1 DD *
JOB,US=UHCA101,M=300D,T=198.
ACCESS,DN=GAUSIAN,ID=TKIAL.
GAUSIAN.
/EOF
$0010000000000000000000000000000000000000
0002300000000000001000.7JGO3050000001C0000000000000000000
000314000000000000000000000000000011100000001000000000000
0004000000000000000000000000000000001000000000000000000000
000500000000000000000000000000000010000000000000000000010
0000000000U0000000000000C00000000010C000000000000000000
    TRIOXAN DP/DQ
O 1
        8 0.00000 -1.33997 -0.23177
        % 1.15573
        8 1.10045
        0. 0.00000
        8 -1.10045
        o -1.15573
        1.17653
        2.02211
        0.00000
        0.00000
        -1.17653
        -2.02211
```

 -1
 EOF

CHAPTER 4 - CYCLOHEXANE: ATOMIC POLAR TENSORS FROM EXPERIMENTAL BAND INTENSITIES.

Section 4.1 Method for the Analysis of Experimental Band Intensities.

A computer program. SIGN has been constructed which evaluates the suitability of the possible sign combinations of the $d p / d Q_{i}$ and computes the corresponding atomic polar tensors (for listing, see appendix). As well as the experimental band intensities, the following matrices are required as input:

B - Wilson B matrix; $B_{i, j}=d R_{i} / d X_{j}$
F - Force constant matrix
M - diagonal matrix of atomic masses
^ - diagonal matrix of vibrational frequencies
L - matrix which describes the form of each normal coordinate; $L_{i j}=d R_{i} / d Q_{j}$

These matrices (discussed previously in the Introduction) are produced by standard programs which carry out normal coordinate calculations. In this study the program F2.FOR, which had been previously written by D. Steele and co-workers, was employed. All these programs were written in FORTRAN, and the calculations performed on the VAX mainframe computer at Royal Holloway College.

The first step in SIGN is to derive the P_{Q} matrix from the experimental band intensities:

$$
\mathrm{dp} / \mathrm{dQ}_{\mathrm{i}}\left(\mathrm{eu}^{-\frac{1}{2}}\right)=0.03203\left[\mathrm{~A}_{\mathrm{i}}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right) / \mathrm{d}_{\mathrm{i}}\right]^{\frac{1}{2}}
$$

d_{i} being the degeneracy of the band.

A matrix is generated whose elements consist of +1 or -1 , each row corresponding to a possible set of signs for the $d p / d Q_{i}$. At the end of each cycle of the full calculation this is used to change the signs of relevant entries in the P_{Q} matrix, to establish the suitability of a given sign combination.

The APT's are derived from P_{Q} using the relationship: $P_{x}=P_{Q} L^{-1} B$

The L matrix is not inverted directly, but is calculated from

$$
L^{-1}=\Lambda^{-1} L_{F}
$$

L^{-1} mav be checked by ensuring that $L^{-1} L=\mathbb{E}$, where E is a unit matrix.

The P_{x} thus obtained is then used to predict the band intensities of the fully deuterated compound:

$$
P_{Q}=P_{x} A L
$$

The product 'AL' is calculated using the expression

$$
A L=M^{-1} B^{t} F L \Lambda^{-1}
$$

and it is checked that $B A L=L$.
These calculated intensities are then compared with those obtained experimentally bv defining a parameter 'f', the 'fit factor'

$$
f=\sum_{i}\left|A_{i}(a b s)-A_{i}(c a l c)\right| / A_{i}(o b s)
$$

The program yields a value of f for each possible combination of signs of selected $d \underline{p} / d Q_{i}$ (e.g. all the $a_{2 u}$ bands of cyclohexane). The magnitude of f is a measure of the suitability of each set of signs - the lower the value, the more likely that this is the correct sign combination. Section 4.2 Cyclohexane Normal Coordinate Calculation.

The force constants required for input to 'P2', the program which carries out the normal coordinate computations, are taken from the hydrocarbon general valence force field developed by Snyder and Schachtschneider ${ }^{30}$. Its application to cyclohexane and its deuterated derivatives has been investigated by Wiberg
and Shrake. ${ }^{31}$ The good agreement between calculated and observed vibrational frequencies led them to conclude that this was a satisfactory model for cyclohexane's force field. The results from this present calculation are tabulated below.

Due to the particular choice of axis system (see ab initio section) each infrared active mode produces a dipole moment chamge along only one of the x, y or z axes. For $a_{2 u}$ symmetry this along the z axis, and for the e_{u} bands half the intensity arises from changes in p_{x} alone and the other half from changes in p_{y} alone.

The first row of the APT will be determined only by the $d p_{x} / d Q$, the second row by $d p_{y} / d Q$, and the third bv $d p_{z} / d Q$. Hence the sims of each Cartesian component of the dipole derivative may be varied independently since the $a_{2 u}$ and e_{u} intensities depend on different sets of independent parameters.

No.*	Cal.v(cm^{-1})	Obs.v(cm^{-1})	P.E. Distribution (\%)
2 3	$\begin{aligned} & \text { 2930eu) } \\ & 2930 \mathrm{eu} \text {) } \end{aligned}$	2933	$\begin{aligned} & 52 \mathrm{CH}^{\mathrm{a}}, 48 \mathrm{CH}^{\mathrm{e}} \\ & 52 \mathrm{CH}^{\mathrm{a}}, 48 \mathrm{CH}^{\mathrm{e}} \end{aligned}$
4	$2927 \mathrm{a}_{2 \mathrm{u}}$	2914	$50 \mathrm{CH}^{\text {a }}$, $50 \mathrm{CH}^{\mathrm{e}}$
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	$\left.\begin{array}{l} 2856 \mathrm{eu} \\ 2856 \mathrm{eu} \end{array}\right)$	2863	$48 \mathrm{CH}^{\mathrm{a}}, 52 \mathrm{CH}^{\mathrm{e}}$ $48 \mathrm{CH}^{\mathrm{a}}, 52 \mathrm{CH}^{\mathrm{e}}$
12	2855 a 2u	2863	$60 \mathrm{CH}^{\text {a }}, 40 \mathrm{CH}^{\mathrm{e}}$
14 15	$\left.\begin{array}{l}1457 \mathrm{eu} \\ 1457 \mathrm{eu}\end{array}\right)$	1449	$\begin{aligned} & 76 \mathrm{HCH}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CC} \\ & 76 \mathrm{HCH}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{C}} \end{aligned}$
18	1449 a 2u	1449	$76 \mathrm{HCH}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CC}$
21	$\left.\begin{array}{l}1350 \mathrm{eu} \\ 1350 \mathrm{eu}\end{array}\right)$	1346	$\begin{aligned} & 76 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 12 \mathrm{CC} \\ & 76 \mathrm{H}^{\mathrm{C}}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 12 \mathrm{CC} \end{aligned}$
25 26	$\left.\begin{array}{l}1258 \mathrm{eu} \\ 1258 \mathrm{eu}\end{array}\right)$	1257	$\begin{aligned} & 64 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 20 \mathrm{H}^{\mathrm{e}} \mathrm{CC} \\ & 76 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 14 \mathrm{H}^{\mathrm{e}} \mathrm{CC} \end{aligned}$
35	$1005 \mathrm{a}_{2 \mathrm{u}}$	1038	$42 \mathrm{CCC}, 36 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\left.\begin{array}{l} 897 \mathrm{eu} \\ 897 \mathrm{eu} \end{array}\right)$	904	$\begin{array}{lll} 36 \mathrm{CC}, & 52 & \mathrm{H}^{\mathrm{a}} \mathrm{CC} \\ 36 \mathrm{CC}, & 52 & \mathrm{H}^{\mathrm{a}} \mathrm{CC} \end{array}$
$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 860 \mathrm{eu}) \\ & 860 \mathrm{eu} \end{aligned}$	862	$48 \mathrm{CC}, 24 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 24 \mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{CC}}$ $48 \mathrm{CC}, 24 \mathrm{H}^{\mathrm{CCC}}, 24 \mathrm{H}^{\text {CC }}$
43	$519 a_{2 u}$	524	$40 \mathrm{CCC}, 60 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
47 48	$\left.\begin{array}{l}181 \mathrm{eu} \\ 181 \mathrm{eu}\end{array}\right)$	241	$76 \mathrm{CCC}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CC}$ $76 \mathrm{CCC}, 12 \mathrm{H}^{\mathrm{C}} \mathrm{CC}$

* Number in the full set of output frequencies - shall be used as a label below.

CALCULATED d_{12} CYCLOHEXANE FREQUENCIES.

No.	Cal. $v\left(\mathrm{~cm}^{-1}\right)$	$\underline{0 b s . v}\left(\mathrm{~cm}^{-1}\right)$	P.E. Distribution (\%)
$\begin{aligned} & \mathrm{d} 2 \\ & \mathrm{~d} 3 \end{aligned}$	$\begin{aligned} & 2195 \mathrm{eu} \text {) } \\ & 2195 \mathrm{eu} \end{aligned}$	2221	$\begin{aligned} & 56 C D_{a}^{a}, 44 C D^{e} \\ & 56 C D^{a}, 44 C D^{e} \end{aligned}$
d4	$2189 \mathrm{a}_{2 \mathrm{u}}$	2206	$36 C D^{\text {a }}, 64 C D^{e}$
$\begin{aligned} & \mathrm{d} 8 \\ & \mathrm{~d} 9 \end{aligned}$	$\begin{aligned} & 2092 \mathrm{eu} \\ & 2092 \mathrm{eu} \end{aligned}$	2111	
dl2	${ }^{2086}{ }^{2 u}$	2104	$66 C D^{\text {a }}, 30 C D^{\text {e }}$
$\begin{aligned} & \mathrm{d} 16 \\ & \mathrm{~d} 17 \end{aligned}$	ll5leu)	1160	$44 \mathrm{CC}, 12 \mathrm{D}^{\mathrm{a}} \mathrm{CC}, 44 \mathrm{D}^{\mathrm{e}} \mathrm{CC}$ $46 \mathrm{CC}, 12 \mathrm{D}^{\text {CC, }}$, $42 \mathrm{D}^{\mathrm{e}} \mathrm{CC}$
d18	1079 au	1085	64 DCD, $12 \mathrm{CCC}, 12 \mathrm{D}^{\mathrm{a}} \mathrm{CC}$
$\begin{aligned} & \mathrm{d} 23 \\ & \mathrm{~d} 24 \end{aligned}$	$\begin{aligned} & 1048 \mathrm{eu}) \\ & 1048 \mathrm{eu} \end{aligned}$	1068	$\begin{array}{llll} 70 \text { DCD, } 12 & D_{a}^{a} C C, & 18 & D^{e} \mathrm{CC} \\ 70 \text { DCD, } & 12 & D^{\mathrm{a}} \mathrm{CC}, & 18 \\ D^{\mathrm{e}} \mathrm{CC} \end{array}$
$\begin{aligned} & \mathrm{d} 26 \\ & \mathrm{~d} 27 \end{aligned}$	$\left.\begin{array}{l}989 \mathrm{eu} \\ 989 \mathrm{eu}\end{array}\right)$	988	
d30	$885 \mathrm{a}_{2 \mathrm{u}}$	915	$42 \mathrm{CCC}, 36 \mathrm{D}^{\mathrm{e}} \mathrm{CC}$
$\begin{aligned} & \text { d36 } \\ & \text { d37 } \end{aligned}$	$\begin{aligned} & 726 \mathrm{eu}) \\ & 726 \mathrm{eu} \end{aligned}$	719	$48 \mathrm{CC}, 10 \mathrm{D}^{\mathrm{a}} \mathrm{CC}, 38 \mathrm{D}^{\mathrm{e} C C}$ $48 \mathrm{CC}, 10 \mathrm{D}^{\mathrm{CCC}}, 40 \mathrm{D}^{\mathrm{C} C}$
$\begin{array}{r} \mathrm{d} 39 \\ \mathrm{~d} 40 \end{array}$	$\left.\begin{array}{l}672 \mathrm{eu} \\ 672 \mathrm{eu}\end{array}\right)$	685	$\begin{aligned} & 64 \mathrm{D}^{\mathrm{a}} \mathrm{CC}, 32 \mathrm{D}^{\mathrm{e}} \mathrm{CC} \\ & 76 \mathrm{D}^{\mathrm{C}} \mathrm{CC}, 24 \mathrm{D}^{\mathrm{e}} \mathrm{CC} \end{aligned}$
d43	$388 \mathrm{a}_{2 \mathrm{u}}$	394	$36 \mathrm{CCC}, 50 \mathrm{D}^{\mathrm{a}} \mathrm{CC}, 10 \mathrm{D}^{\mathrm{e}} \mathrm{CC}$
d 47 d 48	$\left.\begin{array}{l}145 \mathrm{eu} \\ 145 \mathrm{eu}\end{array}\right)$	(190)	$\begin{aligned} & 80 \text { CCC } \\ & 74 \mathrm{CCC} \end{aligned}$

The L matrices for the molecular vibrations of cyclohexane. Contributions are given for representative internal coordinates. Others are deducible by symmetry.

```
A2u
    coordinatelv/cm-1 2927 2855 1448 1005 519
        \Deltara7 - -. 277 -. 320 .007 .002 .001
        \Deltare8 . . 327-.268 .007 -.014 .002
```



```
        R\Delta0216 .079 -.069 -.079 . 289 -. 157
        r\Delta\alpha718 -.005 .059 . 603 -.005 . 012
EM
coordinate\\nu/cm-1 2930 2856 1457 1350 1257. 897 860 181
    \Deltara7 . . 384 . 348 .004 .001 .018 .010 .000 .000
    \Deltare}8 = -. 358 . .375 .010 .008-.004 .000-.008 .000
    r\Delta\alpha718 .000-.070 .723-.102*.087 .049-.057-.013
    HR16 -.002 -.044 .042 . 104 .045 . 115 -. 128 .007
    R\Delta0216 .045 .045-.033-.059-.097-.149 .069 .086
```



```
    (rR)
```

Evaluation of sign choices for d_{0} Cyclohexane $\frac{d p_{z}}{d Q}$.

Input do Sign Choice Fit Factor

4	12	18	33	43
+	+	-	-	-
+	+	+	-	-
+	-	+	+	+
+	-	-	-	-
+	+	-	+	+
+	+	+	+	+
+	+	-	-	+
+	-	-	+	+
+	-	+	-	-
+	+	+	+	-
+	-	+	+	-
+	+	+	-	+
+	-	-	-	+
+	-	-	+	-
+	+	-	+	-
+	-	+	-	+

0.271	1
0.331	2
0.361	3
0.372	4
0.394	5
0.413	6
0.424	7
0.432	8
0.435	9
0.438	10
0.443	11
0.510	12
0.540	13
0.547	14
0.568	15
0.574	16

TABLE 31.

Section 4.4 Determination of Signs of $d p x / d Q$ and $d p y / d Q$.

There are eight eu bands, but only seven values of $d p_{x} / d Q$ to be varied, since the lowest frequency has zero experimental intensity. Since the magnitude of the dipole moment change must be equal for each component of the degenerate pair, the value of $d p_{x} / d Q_{i}$ is obtained from half the observed intensity of the $i^{\text {th }}{ }_{d_{0}}$ eu band. There are $2^{7}=128$ possible sign combinations of which 64 are actually completely independent, the rest just corresponding to a reversal of all these signs. The bands that contribute to the decived fit factor for the x components are dl7, d24, d26, d36 and d40 - as before, the CD stretches are excluded due to the overlap problem.

Exactly the same reasoning applies to an investigation of the signs of the y components. In this case the bands which define the fit factor are d16, d23, d27, d37 and d39. The results for both components are listed below.

Once the sign has been chosen for a given $d p_{x} / d Q_{i}$, the sign of the corresponding $d p_{y} / d Q_{i}$ is predetermined by symmetry. Similarly, once a given sign combination is chosen for the x-components, there is only one combination for the y-component which will pair with this to give polar tensors possessing the correct symmetry properties. As the table shows, the possible pairs of sign combinations are those sets which possess the same value of the fit factor. There still remains some ambiguity at this stage, however, since reversing the signs in each set will yield the same result. Thus there are four permutations of 'x-signs plus y-signs' that appear possible by simply considering the fit factor - only two of these yielding symmetrically correct tensors, only one of which is appropriate to physical reality. This ambiguity may be removed, as will be seen below, by use of the polar tensors derived from the ab initio calculations.

Evaluation of Sign Choices for $d o$ Cyclohexane $d p x / d Q$ and $d p y / d Q$.

Order	Fit Factor	x Signs	y Signs
1	0.607	+ - + + - -	+ - + + + -
2	0.680	+ + + +	+ + + + + - -
3	0.681	+ + - - + + +	+ + - - + +
4	0.694	+ - - - + + +	+ - - - + +
5	0.779	+ + - - + - +	+ + - - - +
6	0.872	+ - + - - -	+ - + - + -
7	0.887	+ + - + - -	+ + - - -
8	0.933	+ + - + + + +	+ + - + - + +
9	0.961	+ - - + - -	+ - - - -
10	0.971	+ - + + - - +	+ - + + + - +
11	0.975	+ + + - -	+ + + - + - -
12	0.978	+ - + + + + +	+ - + - + +
13	0.997	+ - - + + -	+ - - - +
14.	0.998	+ - - + - +	+ - - - +
15	1.006	+ + + + - - +	+ + + + + - +
16	1.024	+ - + + - + -	+ - + + + + -
17	1.028	+ + - - + + -	+ + - - + -
18	1.099	+ - + - - +	+ - + - + - +
19	1.113	+ + - + + - -	+ + - + - -
20	1.137	+ + - + + + -	+ + - + - + -
21	1.149	+ + - + + - +	+ + - + - + -
22	1.149	+ - + + + +	+ - - + - +
23	1.174	+ + + - - +	+ + + - + - +
24	1.200	+ - + + - + +	+ - + + + + +
25	1.200	+ + + + - + -	+ + + + + + -
26	1.221	+ - - + + -	+ - + - -
27	1.280	+ + + + - + +	+ + + + + + +
28	1.309	+ - + + - +	+ - + - - +
29	1.373	+ + - - + +	+ + - - + + +
30	1.382	+ + - - - +	+ + - + - +
31	1.414	+ - + - + -	+ - + - + +
32	1.441	+- + - - + +	+ - + - + + +
33	1.484	+ - + + + -	+ - + + - -
34	1.492	+----+ +	+ - - + + +
35	1.543	+ - + + + + -	+ - + + - + -
36	1.553	+ + + - - + +	+ + + - + + +
37	1.569	+ + - - -	+ + - + - -
38	1.584	+ + + - - +	$+++-++-$

continued...

39	1.608	$t+++{ }_{+}+$	+ + + + -
40	1.646	+ - - - - +	+ - - + - +
41	1.676	+ - - - -	+ - - + - -
42	1.771	+ + - + - + +	+ + - + + + +
43	1.778	+ + - + - +	+ + - + + - +
44	1.809	+ + + + + + -	+ + + + - + -
45	1.830	+ - + + + + +	+ - + + - + +
46	1.896	+ - + - + -	+ - + - -
47	1.923	+ - - + - + +	+ - - + + + +
48	1.939	+ - - + - +	+ - - + + - +
49	1.945	+ + - + - -	+ + - + + - -
50	1.942	+ + + + + + +	+ + + + - + +
51	2.020	+ - + - + + -	+ - + - - + -
52	2.053	+ + + - + - -	+ + + - - -
53.	2.077	+ + - - + -	+ + - - + + -
54	2.085	+ - + - - -	+ - + + + -
55	2.111	+ - - - +	+ - - + + -
56	2.181	+ + + - + + -	+ + + - - + -
57	2.220	+ - + - + + +	+ - + - - + +
58	2.223	+ - + + + - +	+ - + + - +
59	2.268	+ + + + + - +	+ + + + - +
60	2.286	+ + - + - + -	+ + - + + + -
61	2.363	+ - - + - +	+ - - + + + -
62	2.365	+ + + - + + +	+ + + - - + +
63	2.452	+ - + - + - +	+ - + - - +
64	2.539	+ + + - + - +	+ + + - - +

In these tables, it is apparent that there is no great spread in the values obtained for the fit factor - . 271 to .574 in the $\mathrm{a}_{2 \mathrm{u}}$ bands and .605 to 2.546 in the eu bands. This does not imply that two sign choices with very similar values of 'f' lead to similar values of derived $d_{l 2}$ intensities. For instance, consider the following example from the $d p_{z} / d Q$ sign variations.

No. 13: $+\cdots-+, \quad f=0.540$

$$
\begin{array}{ccc}
\mathrm{d}_{12} \text { band } & \text { Obs. }_{\mathrm{i}} / \mathrm{km} \mathrm{~mol}^{-1} & \text { Calc. } \mathrm{A}_{\mathrm{i}} / \mathrm{km} \\
18 & 5.3 & 1.19 \\
30 & 3.5 & 4.95 \\
43 & 0.4 & 0.23
\end{array}
$$

No. 14: $\quad+-++, \quad f=0.547$

18	5.3	4.89
30	3.5	0.12
43	0.4	0.16

Note that although f is practically the same, the values calculated for $d 18$ and $d 30$ are very different.

Section 4.5 The use of Ab Initio Data to Help Resolve Sign Ambiguity.

At this stage, the only critericn offered for deciding the suitability of a given sign combination has been the value of the fit factor. How reliable a guideis this? The magnitude of this parameter will be influenced by experimental error and the quality of the force field employed.

An ab initio set of APT's was calculated for cyclohexane using the Gaussian 76 package, and these may be used to predict the signs of the $d p / d Q_{i}$ and the magnitude of the band intensities, acting as a source of information completely independent from the experimental measurements. The results are shown in the following tables.

For both d_{0} and d_{12} cyclohexane the calculated intensities are generally of the correct magnitude, as is the distribution across the total spectrum - the majority of intensity is found in the CH stretches (the predicted total being $\sim 40 \%$ high), whilst the weakest bands are calculated to possess correspondingly low values.

Significantly, the signs of the calculated dipole derivatives for the $a_{2 u}$ bands are precisely those found to yield the optimum fit factor. This agreement must lead to optimism in the reliability of both procedures. However, the same is not immediately true for the eu bands - the ab initio sign combination being only l2th in the previous table. If the list is examined further, a group of signs very similar to the ab initio set is that possessing the 4 th lovest fit factor. On reversing all the signs, the only discrepency is then the sign of the $1350 \mathrm{~cm}^{-1}$ band, this being anyhow extremely weak. Thus this appears to be the correct sign choice for the x and y components.

Comparison of do Cyclohexane experimental band intensities with those predicted using Ab Initio Atomic Polar Tensors.

$\begin{array}{r} \mathrm{Calc} \\ \nu / \mathrm{cm}^{-1} \end{array}$	$\begin{gathered} 0 \mathrm{bs} \\ \nu / \mathrm{cm}^{-1} \end{gathered}$	$\begin{gathered} 0 \mathrm{bs} \\ \mathrm{~A}_{\mathrm{i}} / \mathrm{km} \mathrm{~mol} \\ \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Calc} \\ \mathrm{~A}_{\mathrm{i}} / \operatorname{sm} \mathrm{mol} \end{gathered}$		
2930(eu)		370	133.4	x	+
2930 (eu)	2933)			y	-
2927 ($\mathrm{a}_{2 \mathrm{u}}$)	2914?)		159.2	z	+
2856(eu)	2863)	103	269.2	x	-
	2863)			y	
$2855\left(\mathrm{a}_{2 \mathrm{u}}\right.$)	2863)		106.0	z	+
1457(eu)		23.65	10.0	y	+
1449 ($\mathrm{a}_{2 \mathrm{u}}$)	1449)		23.2	z	-
1350(eu)	1346	0.24	1.2	x	+
				y	-
				x	
1258(eu)	1257	3.6	0.6	y	+
$1005\left(\mathrm{a}_{2 \mathrm{u}}\right)$	1038	2.0	2.5	z	-
				x	+
897 (eu)	904	2.8	1.0	y	-
				x	+
860 (eu)	862	3.8	8.0	y	-
$519\left(\mathrm{a}_{2 \mathrm{u}}\right)$	524	0.46	0.06	z	-
181(eu)	241	~ 0	0.4		

TABLE 33.

Comparison of ${ }_{1}$ Cyclohexane Experimental Band Intensities with those predicted using Ab Initio Atomic Polar Tensors.

Calc ν / cm^{-1}	Obs ν / cm^{-1}	Obs $\mathrm{A}_{\mathrm{i}} / \mathrm{km} \mathrm{mol}^{-1}$	Calc $\mathrm{A}_{\mathrm{i}} / \mathrm{km} \mathrm{mol}^{-1}$
$2195(\mathrm{eu})$	$2221)$		62.1
$2189\left(\mathrm{a}_{2 \mathrm{u}}\right)$	$2206)$	248.8	73.3
$2092(\mathrm{eu})$	$2111)$		143.0
$2086\left(\mathrm{a}_{2 \mathrm{u}}\right)$	$2104)$		65.1
$1151(\mathrm{eu})$	1160	6.4	1.8
$1079\left(\mathrm{a}_{2 \mathrm{u}}\right)$	1085	5.3	9.1
$1048(\mathrm{eu})$	1068	1.2	4.5
$999(\mathrm{eu})$	988	5.9	2.4
$885\left(\mathrm{a}_{2 \mathrm{u}}\right)$	915	3.5	5.4
$726(\mathrm{eu})$	719	1.4	1.0
$672(\mathrm{eu})$	685	2.1	4.6
$388\left(\mathrm{a}_{2 \mathrm{u}}\right)$	394	0.43	.05
$145(\mathrm{eu})$	(190)	0	0.2

TABLE 34.

Section 4.6 Significance of the Intensity Distribution in Regions A, B and C.

Having examined the sign choices, it is now necessary to consider the repercussions of the band overlap in regions $A(3030-$ $\left.2894 \mathrm{~cm}^{-1}\right), B\left(2894-2830 \mathrm{~cm}^{-1}\right)$ and $C\left(1449 \mathrm{~cm}^{-1}\right.$ band). Each of these contains an eu and an $a_{2 u}$ band. Three different parameters were used to investigate the effect of a redistribution of intensity (between eu and $a_{2 u}$ bands) within each region: the fit factor, the total calculated CD stretch intensity, and the effective atomic charges of the hydrogen atoms.

The only parameter found to be dependent on the splitting in region C is the fit factor. Increasing the proportion of intensity given to the $a_{2 u}$ band leads to an increase in the intensities predicted for the $d_{12} a_{2 u}$ bands.

d_{12} Band No.	Obs. $\mathrm{i}_{\mathrm{i}} / \mathrm{km} \mathrm{mol}^{-1}$	Calc. $\mathrm{i}^{(1)}$	Calc. $\mathrm{A}_{\mathrm{i}}{ }^{(2)}$
18	5.3	9.4	0.1
30	3.5	4.9	1.6
43	0.4	0.3	0.3

Splitting (${ }^{1}$) is $0,0,23.7$
Splitting (${ }^{2}$) is $11.85,11.85,0$
The splitting that yields the best fit for both ${ }_{2 u}$ and eu bands is 4.9, 4.9, 13.9:

d_{12} Band No.	Obs. $\mathrm{A}_{\mathrm{i}} / \mathrm{km} \mathrm{mol}^{-1}$	Calc. $\mathrm{A}_{\mathrm{i}} / \mathrm{km} \mathrm{mol}^{-1}$
d17	3.2	1.4
d18	5.3	5.1
d24	0.6	0.6
d26	3.0	3.7
d30	3.5	4.0
d36	0.7	0.0
d40	1.05	1.7
d43	0.4	0.3
d47	0	0

$f=0.356$

So with the sign choice chosen, this represents the best partitioning of intensity within region C. But it is now necessary to check that, with this changed splitting, this sign choice still retains its position in the listing of choice against fit factor. The consequences for the five best combinations for x and z components are shown below.

x Sign	01d Fit Factor	New Fit Factor
+ - + + - -	. 607	. 414
+ + + + -	. 680	. 482
+ + - + + +	. 681	. 603
+ - - + + +	. 694	. 487
+ + - + - +	. 779	. 640
z Sign	01d Fit Factor	New Fit Factor
+ + - -	. 271	. 138
+ + + -	. 331	. 562
+ - + + +	. 361	. 320
+ - -	. 372	. 328
+ + - + +	. 394	. 611

These show that the splitting in block C can alter the relative ordering of the sign combinations, though in the above the chosen sets retain their positions.

Considering the $a_{2 u}$ bands alone, if all the intensity of the $1449 \mathrm{~cm}^{-1}$ band is attributed to the eu band, a subsequent variation of sign choices then gives:

```
+ + - - , f = . 562
+ - + - +, f = . 502
```

and the latter becomes top of the z sign list. But, in conclusion, the best pairing of 'sign choice + splitting' is that which yields a low value of the fit factor, and the chosen sign combination cannot lose its position in such a list without the fit factor rising overall. Thus the lowest z sign choice with the 4 th lowest x and y sign choice are the best combinations, the latter being in accord with the ab initio calculation, and the best splitting is $4.9,4.9,13.9$ in block C .

The splittings in regions A and B are found to affect the fit factor to a completely negligible degree - the intensity contained in these regions only determines the magnitude of the dipole change along the direction of the CH bonds. Again, the total CD stretch intensity is insensitive to the splitting, and remains steady at a value of ~ 0.97 of that observed experimentally. The parameter which is found to be sensitive to the redistribution of intensity from eu to $a_{2 u}$ bands is the hydrogen effective atomic charge, and more specifically, the relative values for the axial and equatorial hydrogen.

The ab initio calculations give $X_{H^{a}}=.125, X_{H_{e}}=.154$, whilst experiment yields the average value of $X_{H}={ }^{\mathrm{H}} .115$. The average ab initio value of $\sim .139$ is 21% too high. Since part of this error could be an overestimation of the equatorial value, it would probably be unwise to impose the suggested differentiation between the hydrogens at this stage. Thus, in parallel with the equality of axial and equatorial stretching force constants employed in the normal coordinate calculations, the values of $X_{H^{a}}$ and $X_{H_{e}}$, which are dependent on the splitting in regions A an $\mathbb{H}^{\mathrm{a}} \mathrm{B}$, will H^{e} be constrained to be equal.

The procedure adopted is to decide on a sensible intensity distribution in region A, and then vary that in section B so as to achieve this equalization. If the assignment of the $2914 \mathrm{~cm}^{-1}$ band, a weak shoulder, as the $a_{2 u}$ fundamental is correct, then most of the intensity should be given to the overlapping eu band. However, it is possible that this represents a scissoring combination band. This interpretation is supported by the ab initio calculations, which suggest that 54% of the total intensity in A should be given to the $a_{2 u}$ band.

The reliability of the Gaussian 76 results is shown by the satisfactory accord between observed and calculated band intensities, and especially in the prediction of correct sign choices for the $d p / d Q$. An encouraging sign as far as the splitting is concerned appears on referring back to the $1449 \mathrm{~cm}^{-1}$ d_{0} bands. Even though the total intensity of this band is calculated 42% too high, the $a_{2 u}$ band is calculated to possess 70% of the intensity, which is close to the value of 59% which is derived from the fit factor calculations above. Thus, in
the absence of any better information, the quanturn mechanical prediction of splitting in region A is adopted $-a_{2 u}=212 \mathrm{~km}$ mol^{-1}, eu $=158 \mathrm{~km} \mathrm{~mol}^{-1}$.

This does represent the most arbitrary assumption in this cyclohexane analysis. It should be recalled, however, that any subsequent error will only transfer to the magnitude of the dipole changes along the direction of the CH konds, and will not invalidate the other features of the APT's calculated.

The splitting in region B that equalises the effective charges is $a_{2 u}=51 \mathrm{~km} \mathrm{~mol}^{-1}$, eu $=52 \mathrm{~km} \mathrm{~mol}^{-1}$, and $X_{H^{a}}=X_{H^{e}}=0.118$, which is in good agreement with the experimental value of 0.115 .

Thus, the sign choices and intensity distributions have been derived, and now the APT's which result may themselves be considered.

Section 4.7 Atomic Polar Tensors for Cyclohexane.
The following sign combinations were employed in deriving the set of experimental APT's for cyclohexane:

	$\sim 2930 \mathrm{~cm}^{-1}$	$2863 \mathrm{~cm}^{-1}$	$1449 \mathrm{~cm}^{-1}$	$1038 \mathrm{~cm}^{-1}$	$524 \mathrm{~cm}^{-1}$
$\mathrm{dp}_{\mathrm{z}} / \mathrm{dQ}$	+	+	-	-	-

	2930	2963	1449	1346	1257	904	$862 \mathrm{~cm}^{-1}$
$\mathrm{dp}_{\mathrm{x}} / \mathrm{dQ}$	+	-	-	-	+	+	+
$\mathrm{dp} / \mathrm{dQ}$	-	+	+	+	+	-	-

The splitting of total intensity within regions A, B, and C is:

$$
\begin{array}{ll}
A\left(\sim 2930 \mathrm{~cm}^{-1}\right): & a_{2 u}=212 \mathrm{~km} \mathrm{~mol}^{-1}, \text { eu }=158 \mathrm{~km} \mathrm{~mol}^{-1} \\
B\left(\sim 2863 \mathrm{~cm}^{-1}\right): & a_{2 u}=51 \mathrm{~km} \mathrm{~mol}^{-1}, \text { eu }=52 \mathrm{~km} \mathrm{~mol}^{-1} \\
C\left(1449 \mathrm{~cm}^{-1}\right): & a_{2 u}=13.9 \mathrm{~km} \mathrm{~mol}
\end{array}
$$

The APT's calculated under these conditions are now presented alongside those derived from the Gaussian 76 package. The following numbering system is employed:

EXPRRIMENTAL

Cl	$\begin{array}{r} .085 \\ -.034 \\ -.072 \end{array}$	$\begin{array}{r} -.034 \\ .046 \\ .042 \end{array}$	$\begin{array}{r} -.038 \\ .022 \\ .176 \end{array}$	$\begin{array}{r} .129 \\ -.078 \\ -.028 \end{array}$	$\begin{array}{r} -.078 \\ .039 \\ .016 \end{array}$	$\begin{array}{r} -.023 \\ .013 \\ .171 \end{array}$
C2	$\begin{aligned} & .026 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .105 \\ -.083 \end{gathered}$	$\begin{gathered} 0 \\ -.044 \\ .177 \end{gathered}$	$\begin{gathered} -.006 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ .174 \\ -.032 \end{gathered}$	$\begin{array}{r} 0 \\ -.027 \\ . .171 \end{array}$
$\mathrm{H}^{\mathrm{a}} 7$	$\begin{array}{r} .032 \\ -.022 \\ .020 \end{array}$	$\begin{array}{r} -.022 \\ .006 \\ -.011 \end{array}$	$\begin{array}{r} .051 \\ -.029 \\ -.190 \end{array}$	$\begin{array}{r} .037 \\ -.018 \\ .031 \end{array}$	$\begin{array}{r} -.018 \\ .016 \\ -.018 \end{array}$	$\begin{array}{r} -.031 \\ .018 \\ -.206 \end{array}$
$\mathrm{H}^{\mathrm{a}} 10$	$\begin{gathered} -.007 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ .045 \\ .023 \end{gathered}$	$\begin{array}{r} 0 \\ .058 \\ -.190 \end{array}$	$\begin{aligned} & .006 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .047 \\ .035 \end{gathered}$	$\begin{gathered} 0 \\ -.035 \\ -.206 \end{gathered}$
$\mathrm{H}^{\mathrm{e}} 8$	$\begin{array}{r} -.127 \\ .074 \\ .078 \end{array}$	$\begin{array}{r} .074 \\ -.042 \\ -.045 \end{array}$	$\begin{array}{r} .057 \\ -.033 \\ .014 \end{array}$	$\begin{array}{r} -.176 \\ .114 \\ .044 \end{array}$	$\begin{array}{r} .114 \\ -.045 \\ -.025 \end{array}$	$\begin{array}{r} .078 \\ -.045 \\ .035 \end{array}$
$H^{e} 9$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ -.169 \\ -.090 \end{gathered}$	$\begin{gathered} 0 \\ .066 \\ .014 \end{gathered}$	$\begin{gathered} .021 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -.241 \\ .051 \end{gathered}$	$\begin{gathered} 0 \\ .091 \\ .035 \end{gathered}$

A detailed analysis of these APT's is delayed until later chapters, but one obvious feature that is very encouraging is the close correspondence between the 'experimental' and ab initio sets. Perhaps it is unclear to what extent this is made inevitable by the constraints imposed on the experimental APT's, but the fact remains that these were derived from observed d_{0} intensities, and are capable of accurately predicting those found for the d_{12} compound.

Section 5.1 Evaluation of the Snyder and Zerbi Ether Force Field.
A prerequisite for the analysis of the experimental band intensities of a compound is the possession of a molecular force field that is able to correctly predict the form of each vibrational mode. Snyder and Zerbi ${ }^{32}$ have derived a model general valence force field for aliphatic ethers from a procedure in which an initial field was refined so as to match the observed and calculated frequencies for ten compounds, one of which was 1,4-dioxan This force field forms the starting point for this investigation, and the numerical values of the force constants appear in Table35.

An indication of the suitability of this S+Z field for this study is the extent to which calculated vibrational frequencies match up with those that occur experimentally for undeuterated $\left(d_{0}\right)$ and coinpletely deuterated (d_{8}) 1,4-dioxan. ' 'hese are presented in Tables 36 and 37.

TABLE 35. Snyder and Zerbi Force Constants.

Force Constant Value*		Force Constant Value	
CH	4.626	CC/ HCC	0.367
CO	5.090	COC/UCC	0.005
CC	4.261	$\mathrm{COC} / \mathrm{HCO}{ }_{\mathrm{g}}$	0.002
COC	0.640	$\mathrm{COC} / \mathrm{HCO}_{t}^{\mathrm{t}}$	-0.062
OCC	0.545	OCC/OCC ${ }_{\text {g }}$	-0.005
HCO	0.579	UCC/ HCO	-0.017
HCH	0.403	$0 \mathrm{CC} / \mathrm{HCO}$	-0.016
HCC	0.457	$0 \mathrm{CC} / \mathrm{HCC}{ }_{\mathrm{t}}$	0.014
$\mathrm{CH} / \mathrm{CH}$	-. 046	OCL/ $\mathrm{HCC}{ }_{5}$	-0.059
$\mathrm{CO} / \mathrm{CO}$	0.288	$\mathrm{HCO} / \mathrm{HCO}$	-0.003
CO/CO	0.101	$\mathrm{HCO} / \mathrm{HCC}$	0.070
CO/COC	0.339	$\mathrm{HCL} / \mathrm{HCC}$	0.062
CO/OCC	0.420	$\mathrm{HCC} / \mathrm{HCC}_{g}$	0.002
CO/ HCO	0.310	$\mathrm{HCL} / \mathrm{HCC}_{t}$	0.071
CC/OCC	0.274		

* Unless stated otherwise, the following units are used for constants:
Stretch, Stretch/stretch in mdyn \AA^{-1}
Bend, bend/bend in mdyn $\AA^{-1}(\text { rad })^{-2}$
Stretch/bend in mdyn $\AA^{-1}(\mathrm{rad})^{-1}$
i.e. bend force constants are scaled by the lengths of the bonds that form the angle.

TABLE 36.
Snyder and Zerbi F.Field - Calculated Frequencies.
Obs.v($\left.\mathrm{cm}^{-1}\right) \quad$ Calc.v($\left.\mathrm{cm}^{-1}\right) \quad$ Potential Energy Distribution ($\%$)
Ag

2968	2971	$48 \mathrm{CH}^{\mathrm{e}}, 50 \mathrm{CH}^{\mathrm{a}}$
2856	2864	$51 \mathrm{CH}^{\mathrm{e}}, 49 \mathrm{CH}^{\mathrm{a}}$
1444	1470	$65 \mathrm{HCH}, 8 \mathrm{H}^{\mathrm{e} C O}, 10 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1397	1354	$17 \mathrm{H}^{\mathrm{e} C O}, 50 \mathrm{H}^{\mathrm{a} C C}, 41 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1305	1245	$21 \mathrm{H}^{\mathrm{e} C C}, 67 \mathrm{H}^{\mathrm{e} C O}, 26 \mathrm{H}^{\mathrm{a} C O}$
1128	1141	$80 C C, 21 \mathrm{CO}, 36 \mathrm{H}^{e} \mathrm{CC}, 25 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 8 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1015	1057	$72 \mathrm{CC}, 26 \mathrm{CO}, 17 \mathrm{H}^{e} \mathrm{CC}, 8 \mathrm{H}^{\mathrm{a} C O}, 9 \mathrm{OCC}$
837	825	$38 \mathrm{CC}, 59 \mathrm{CO}$
435	501	$8 \mathrm{CC}, 300 \mathrm{CC}, 55 \mathrm{COC}$
424	343	$11 \mathrm{H}^{\mathrm{e} C C}, 47 \mathrm{OCC}, 44 \mathrm{COC}$

Bg
29682963
$51 \mathrm{CH}^{\mathrm{e}}, 47 \mathrm{CH}^{\mathrm{e}}$
28562862
$48 \mathrm{CH}^{\mathrm{e}}, 52 \mathrm{CH}^{\mathrm{a}}$
14591458
$66 \mathrm{HCH}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
13351404
$36 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 45 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 25 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$1217 \quad 1227$
$13 \mathrm{CO}, 31 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 58 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1110
1150
$70 \mathrm{CO}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$, 110 OCC
853841
$23 \mathrm{CO}, 31 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 36 \mathrm{H}^{\mathrm{A}} \mathrm{CO}$
490
483
$23 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 78$ OCC
Au

2970	2969	$47 \mathrm{CH}^{\mathrm{e}}, 51 \mathrm{CH}^{\mathrm{a}}$
2863	2863	$52 \mathrm{CH}^{\mathrm{e}}, 48 \mathrm{CH}^{\mathrm{a}}$
1449	1464	$66 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{e} C O}, 7 \mathrm{H}^{\mathrm{a} C C}, 7 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1369	1356	$10 \mathrm{H}^{\mathrm{e} C C}, 31 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 50 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 26 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1256	1283	$27 \mathrm{CO}, 15 \mathrm{H}^{\mathrm{e} C C}, 26 \mathrm{H}^{\mathrm{e} C O}, 17 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$,
1136	1122	$24 \mathrm{CC}, 53 \mathrm{CO}, 25 \mathrm{H}^{\mathrm{e} C O} \mathrm{CO}, 11 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1086	1078	$55 \mathrm{H}^{\mathrm{e} C C}, 14 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 21 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
881	900	$76 \mathrm{CC}, 26 \mathrm{CO}, 8 \mathrm{H}^{\mathrm{a} C C}, 100 \mathrm{CC}$
288	175	750 CC

continuation...
Bu

2970	2965
2863	2863
1457	1457
1378	1413
1291	1254
1052	1020

$889 \quad 880$
$610 \quad 654$
274

2965
2863
1457

1254
1020

224
$53 \mathrm{CH}^{\mathrm{e}}, 46 \mathrm{CH}^{\mathrm{a}}$
$47 \mathrm{CH}^{\mathrm{e}}, 54 \mathrm{CH}^{\mathrm{a}}$
$68 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 8 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$9 \mathrm{CO}, 37 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 37 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 30 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$37 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 55 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$11 \mathrm{CO}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 16 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 16 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$,
$95 \mathrm{CO}, 18 \mathrm{COC}$
$43 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 42 \mathrm{OCC}, 13 \mathrm{COC}$
24 OCC, 70 COC

TABLE 37.
Obs.v($\left.\mathrm{cm}^{-1}\right) \quad$ Calc. $v\left(\mathrm{~cm}^{-1}\right) \quad$ Potential Energy Distribution((\mathbb{F})
Ag

2242	2230	$46 \mathrm{CH}^{\mathrm{e}}, 49 \mathrm{CH}^{\text {a }}$
2098	2098	$51 \mathrm{CH}^{\mathrm{e}}, 47 \mathrm{CH}^{\mathrm{a}}$
1225	1145	$\begin{aligned} & 29 \mathrm{CC}, 52 \mathrm{CO}, 10 \mathrm{HCH}, 30 \mathrm{H}^{\mathrm{e}} \mathrm{CO} \\ & 14 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 18 \mathrm{H}^{\mathrm{a}} \mathrm{CO} \end{aligned}$
1108	1053	$14 \mathrm{CC}, 52 \mathrm{HCH}, 31 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
1008	969	$\begin{aligned} & 30 \mathrm{CC}, 9 \mathrm{HCH}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 13 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, \\ & 36 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 10 \mathrm{OCC} \end{aligned}$
832	956	$14 \mathrm{CC}, 35 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 30 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
808	868	$58 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 46 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 8 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
752	768	$28 \mathrm{CC}, 49 \mathrm{CO}$
490	492	34 OCC, 49 COC
348	282	$14 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 41 \mathrm{OCC}, 45 \mathrm{COC}$

Bg

2226
2210
2088
1070
1023
956 888 711691 422 420
$53 \mathrm{CH}^{\mathrm{e}}, 44 \mathrm{CH}^{\mathrm{a}}$
$44 \mathrm{CH}^{\mathrm{e}}, 55 \mathrm{CH}^{\mathrm{a}}$
$73 \mathrm{CO}, 27 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 17 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$70 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$13 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 50 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 16 \mathrm{CO}$
$26 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$, $11 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 64 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$12 \mathrm{CO}, 37 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 27 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 12$ OCC $39 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 660 \mathrm{CC}$

Au
$2235 \quad 2226$

20862094
$1191 \quad 1188$
11171051
$1030 \quad 1017$
922940
$809 \quad 870$
$762 \quad 789$

254
142
$44 \mathrm{CH}^{\mathrm{e}}, 52 \mathrm{CH}^{\mathrm{a}}$
$54 \mathrm{CH}^{\mathrm{e}}, 44 \mathrm{CH}^{\mathrm{a}}$
$25 \mathrm{CC}, 81 \mathrm{CO} .12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 16 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$ $60 \mathrm{HCH}, 22 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
$9 \mathrm{CC}, 8 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 36 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 51 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$62 \mathrm{CC}, 29 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 130 \mathrm{CC}$
$17 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 68 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$22 \mathrm{CC}, 17 \mathrm{CO}, 46 \mathrm{H}^{\mathrm{e}} \mathrm{CC}$, $11 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$, $15 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
74 OCC
continuation...

Bu

2232	2216	$56 \mathrm{CH}^{\mathrm{e}}, 41 \mathrm{CH}^{\mathrm{a}}$
2098	2095	$40 \mathrm{CH}^{\mathrm{e}}, 58 \mathrm{CH}^{\mathrm{a}}$
1153	1161	$40 \mathrm{CO}, 39 \mathrm{H}^{\mathrm{e} C C}, 28 \mathrm{H}^{\mathrm{e} C O}, 21 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1087	1066	$68 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{a} C C}$
1042	976	$16 \mathrm{CO}, 28 \mathrm{H}^{\mathrm{e} C O}, 51 \mathrm{H}^{\mathrm{a} C O}, 12 \mathrm{COC}$
896	885	$18 \mathrm{H}^{\mathrm{e} C O}, 9 \mathrm{H}^{\mathrm{a} C C}, 9 \mathrm{H}^{\mathrm{a} C O}, 32 \mathrm{OCC}$,
		11 COC
732	767	$56 \mathrm{CO}, 17 \mathrm{H}^{\mathrm{e} C C}, 16 \mathrm{H}^{\mathrm{e} C O}, 11 \mathrm{COC}$
490	522	$21 \mathrm{H}^{\mathrm{e} C C}, 62 \mathrm{H}^{\mathrm{a} C C}, 31 \mathrm{OCC}$
238	198	$210 \mathrm{CC}, 71 \mathrm{COC}$

Note: Inclusion of the S+Z torsion f.c. has a completely negligible effect on all frequencies except for the lowest in each symmetry species, which are raised by $10-20 \mathrm{~cm}^{-1}$.

First consider d_{0}-dioxan. Overall there is a reasonably good agreement between observed and calculated frequencies, although in a number of cases some large discrepències appear. In their paper, Snyder and Zerbi gave $1335 \mathrm{~cm}^{-1}$ as an Ag band, and $1397 \mathrm{~cm}^{-1}$ as a Bg band - here the reverse as ${ }^{S}$ ignment has been made, since the latter appears definately polarised in the Raman spectrum. This explains why $1 \hat{3} 35 \mathrm{~cm}^{-1}$ seems poorly predicted as $1404 \mathrm{~cm}^{-1}$.

It is in Table37, with d_{8}-dioxan, that the largest discrepencies are apparent. The replacement of hydrogen by deuterium completely changes the character of corresponding normal modes, the severe degree of mixing providing a stringent test of the accuracy of the suggested interaction force constants. Errors of the order of $\sim 100 \mathrm{~cm}^{-1}$, e.g. 832 (956) $\mathrm{cm}^{-1} \mathrm{Ag}$, 1070 (1186) $\mathrm{cm}^{-1} \mathrm{Bg}$, indicate that this force field cannot be used with confidence to generate the L matrix required for the intensity analyses, so an attempt has been made to obtain a field that will describe the normal modes more accurately.

Section 5.2 Force Field Refinement.

In this section it is described how the standard force constant perturbation procedure has been applied, in an attempt to fit the experimental frequencies of d_{0} and d_{8} - dioxan to a common general valence type force field.

In this procedure, an initial trial force field is modified so as to minimize an error vector, which is defined by

$$
x^{I}=\sum_{i} \omega_{i}\left(\lambda_{i}{ }^{o b s}-\lambda_{i}^{l}\right)^{2}
$$

λ_{i} obs is the observed vibrational frequency; ω_{i} is the weighting factor for the ith observed frequency.
$\lambda_{i}{ }^{l}$ is the frequency predicted by the trial force field.
The way the force field is modified is determined by the equation

$$
J^{t}{ }_{\omega \Delta \Lambda}=J^{t}{ }_{\omega J} \Delta \Phi
$$

$$
\Delta \Phi=\left(J^{t}{ }_{\omega J}\right)^{-1} J^{t}{ }_{\omega \Delta \Delta \Lambda}
$$

$\Delta \Phi$ is a column matrix, whose elements are the force constants, $\Phi \mathrm{j}$. $\Delta \Lambda$ is a column matrix, where elements are $\Delta \lambda_{i}{ }^{n}$: $\Delta \lambda_{i}^{n}=\lambda_{i}{ }^{\text {obs }}-\lambda_{i}{ }^{n}$, ' n ' being the number of the iteration cycle. ω is a square diagonal matrix - the i, ith element is ω_{i}. J is the Jacobian matrix:

$$
J_{i j}=\left|\frac{\partial \lambda_{i}}{\partial \phi_{j}}\right|
$$

In fact,

$$
\frac{\partial \lambda_{k}}{\partial F_{i j}}=2 L_{i k} L_{j k} \quad(i \neq j)
$$

and

$$
\frac{\partial \lambda_{k}}{\partial F_{i i}}=\left(L_{i k}\right)^{2}
$$

Thus starting from the initial force field Φ^{1}, J^{l} and $\Delta \Lambda^{I}$ may be calculated and then $\Delta \Phi^{I}$. A new field is then formed, $\Phi^{2}=\Phi^{I}+\Delta \Phi^{I}$.

If the assumptions o:l which the equation is based (that the relationship between the force constant correction and frequency correction, $\Delta \lambda_{i}$, is linear) are completely obeyed, then the best force field would be obtained in one cycle only. However, in reality this procedure is carried out until the error vector reaches its minimum value.

In order to successfully apply a perturbation procedure to the problem of deriving force constants from observed vibrational frequencies, the latter must be assigned to their correct symmetry species. In this study, the assignments employed are those suggested by Ellestad and Klaboe. In the Raman spectra, the differentiation between Ag and Bg modes is made primarily on the basis of polarisation data, whilst in the infrared spectra the bands may theoretically be classified as Au or Bu according to their contours in the gas phase.

In d_{0}-dioxan, the intermediate inertial axis I_{B} coincides with the two-fold symmetry axis, but in d_{8}-dioxan the latter
coincides with the lowest axis of inertia, I_{A}. Thus for d_{0}-dioxan, a_{u} bands should have B-type contours and b_{u} bands should have A / C hybrid contours. In d_{8}-dioxan, a_{u} bands will have A-type contours and b_{u} bands B / C hybrid contours. Typically, the three forms of band envelope assume the following shape:

In reality, the bands are often overlapping and often possess an indistinctive contour. The difference between A and B / C is anyhow a rather subjective quantity.

Ellestad. and Klaboe have listed their arguments for their assignments, and call upon evidence from additional sources of information, such as normal coordinate calculations on similar molecules, and low temperature spectra. In this project it is considered that these assignments are satisfactory, and are not investigated further.

Any residual doubt concerning the assingment or exact frequency of a band may be expressed by imposing a weighting factor on that frequency which is less than unity. The followin: bands were treatod in this way:

Band	Weighting.	Preas on.
$\mathrm{d}_{0}, 1110(\mathrm{Bg})$	0.5	Polarization in question.
$\mathrm{d}_{0}, 2863(\mathrm{Au})$	0.5	B type contour not discernable.
$\mathrm{d}_{0}, 1449(\mathrm{Au})$	0.5	Ill defined contour.
$\mathrm{d}_{0}, 288(\mathrm{Au})$	0.0	Not observed.
$\begin{gathered} \mathrm{d}_{0}, \quad 881(\mathrm{Au}) / \\ 889(\mathrm{Bu}) \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	Overlapping, ill defined contours.
$\mathrm{d}_{8}, 808(\mathrm{Ag})$	0.1	Weak band between two strong polarized bands.
$\mathrm{d}_{8}, 2088(\mathrm{Bg})$	0.5	Polarization in question.
$\mathrm{d}_{8}, 1023(\mathrm{Bg})$	0.2	" " "
$\mathrm{d}_{8} \cdot 2086(\mathrm{Au})$	0.8	Uncertain band contour.
$\mathrm{d}_{8}, 1030(\mathrm{Au})$	0.2	" " "
$\mathrm{d}_{8} \cdot 922(\mathrm{Au})$	0.1	Extremely weak band.
$\mathrm{d}_{8} \cdot 254(A u)$	0.0	Not observed.

This is a rather arbitrary procedure since it attempts to compensate for an unknown degree of error. This simply reflects the uncertainties that must remain inherent to the perturbation method.

Section 5.3 Force Field A.
In the derivation of this force field, the initial Snyder and Zerbi dioxan force constants were varied through five cycles of iteration. The resulting field contained many ill-defined elements with large standard deviations, so this in turn formed the basis for further investigation, various interactions being set equal to zero and then the rest of the field perturbed in order to discover those force constants which were both important and determinable.

During this procedure, the $H C H$ diagonal force constant was held at its Snyder and Zerbi value since it is a redundant coordinate - angle changes around the carbon atom are completrly defined by the OCC, $H^{a} C C, H^{e} C C, H^{a} C O$ and $H^{e} C O$ internal coordinates. All the force constants then assume values consistent with that chosen for $\mathrm{f}_{\mathrm{HCH}}$.

It is found necessary to similarly fix the CC/OCC interaction in order to adequately determine $f_{C C}$ and $C O / C O$, since it is very highly correlated with these.

Thus 'Force Field A' has been produced - a 22 parameter field that reasonably reproduces the experimental frequencies for both undeuterated and completely deuterated compounds. The details from this calculation are tabulated below, but before this is a description of the methods used to obtain a rather different, but at this point equally reliable field - 'Force Field B^{\prime}.

Section 5.4 Derivation of Constraints Based on Ab Initio Force Constants.

It has been described how the quantum mechanical package Gaussian 76 was used to obtain a set of 'ab initio' symmetrized force constants. (Note that the units employed for force constants in this section only are Nm^{-1} for stretches and stretch/stretch interactions, $\mathbb{N m}^{-1}(\mathrm{rad})^{-2}$ for bends and bend/bend interactions, and $\mathrm{Nm}^{-1}(\mathrm{rad})^{-1}$ for stretch/bend interactions. To convert from Nm^{-1} to $m d y n \AA^{-1}$, simply divide the former by 10^{2}.) In this section it will be demonstrated that an analysis of these leads to a series of constraints which may then be imposed on the force constant perturbation procedure.

At this stage it should be emphasized that one of the aims of this study is to obtain force constants that are not necessarily unique to l,4-dioxan, but which may prove transferable to chemically related compounds such as tetrahydropyran and trioxan. For this to be possible, they should be related to an internal coordinate basis set rather than based on symmetry coordinates. It is then necessary to examine the relationship between these in order to proceed.

The transformation between internal and symmetry coordinates is given by

$$
S=U R
$$

and that between symmetrized and non-symmetrized force constants is
$F(s y m)=U F U^{t}$

This transformation may result in a modification of the numerical values of both diagonal and off diagonal force constants - a simple case will illustrate how this occurs.

Consider the CO, CC portion of the force constant matrix,

$$
\begin{aligned}
& \mathrm{CO}^{1} \quad \mathrm{CO}^{2} \quad \mathrm{CO}^{3} \quad \mathrm{CO}^{4} \quad \mathrm{CC}^{\mathrm{A}} \quad \mathrm{CC}^{\mathrm{B}}
\end{aligned}
$$

The above gives the form of the F matrix which includes the CO/CO and CO/CC interactions. (Below this will be expanded to include $\mathrm{CO} / \mathrm{CO} \mathrm{opp}$, between eg. CO^{1} and $\mathrm{CO} \mathrm{O}^{2}$.)
$U F=\left[\begin{array}{ccc}\frac{1}{2}\left(f_{C O}+C O / C O\right), \frac{1}{2}\left(f_{C O}+C O / C O\right), \frac{1}{2}\left(f_{C O}+C O / C O\right), \frac{1}{2}\left(f_{C O}+C O / C O\right), C O / C C, \\ \frac{1}{\sqrt{2}}(C O / C C), ~ & \frac{1}{\sqrt{2}}(C O / C C), & \frac{1}{\sqrt{2}} C O / C C, \\ \text { and finally, } & \frac{1}{\sqrt{2}} \mathrm{CO} / \mathrm{CC}, & \frac{1}{\sqrt{2}} f_{C C},\end{array}\right]$
$\mathrm{UFU}^{\mathrm{t}}=\left[\begin{array}{ll}\mathrm{f}_{\mathrm{CO}}+\mathrm{CO} / \mathrm{CO}, & \mathrm{CO} / \mathrm{CC} \\ \mathrm{CO} / \mathrm{CC} & \mathrm{f}_{\mathrm{CC}}\end{array}\right]$
Thus $\mathrm{F}_{\mathrm{CO}}^{\mathrm{Ag}}$ actually differs from the non-symmetrized force constant by the CO/CO interaction term. The mixing of these terms may change when considering different symmetry species. Using the above example but now considering the Bg block, the row of the U matrix is derived from

$$
\mathrm{S}_{\mathrm{CO}}^{\mathrm{Bg}}=\frac{1}{2}\left(\mathrm{CO}_{1}-\mathrm{CO}_{2}+\mathrm{CO}_{3}-\mathrm{CO}_{4}\right)
$$

and on computing $\mathrm{UFU}^{\mathrm{t}}$,

$$
\mathrm{F}_{\mathrm{CO}}^{\mathrm{Bg}}=\mathrm{f}_{\mathrm{CO}}-\mathrm{CO} / \mathrm{CO}
$$

Hence in principle, f_{60} and $C O / C O$ may be calculated from a knowledge of the numerical values of these two symmetrized force constants.

Having made this preliminary discussion, the above approach will be utilized in analysing the ab initio results in detail. The symmetrized force constants are tabulated for the Ag , Bu and Au blocks, together with the CO/OCC portion of the Bg block in the ab initio chapter.

An important feature which is apparent in these results is that all the symmetrized force constants associated with $\mathrm{H}^{\mathrm{a}} \mathrm{CO}, \mathrm{H}^{\mathrm{e}} \mathrm{CO}, \mathrm{H}^{\mathrm{a}} \mathrm{CC}, \mathrm{H}^{\mathrm{e}} \mathrm{CC}$ and OCC are disproportionately large and the corresponding interaction constants have all adopted a similar value. This may be shown to be a consequence of omitting the redundant $H C H$ coordinate. The redundancy condition involving the angles around the carbon atom (assuming ther are tetrahedral) may be written:

$$
\Delta \mathrm{OCC}+\Delta \mathrm{H}^{\mathrm{a}} \mathrm{CO}+\Delta \mathrm{H}^{\mathrm{e}} \mathrm{CO}+\Delta \mathrm{H}^{\mathrm{a}} \mathrm{CC}+\Delta \mathrm{H}^{\mathrm{e}} \mathrm{CC}+\Delta \mathrm{HCH}=0
$$

The following symmetry coordinates may then be constructed:

$$
\begin{array}{ll}
S_{1}=\frac{1}{\sqrt{2}}(\triangle O C C-\Delta H C H) ; & S_{2}=\frac{1}{\sqrt{2}}\left(\Delta H^{\mathrm{e}} \mathrm{CO}-\Delta \mathrm{HCH}\right) \\
\mathrm{S}_{3}=\frac{1}{\sqrt{2}}\left(\Delta H^{\mathrm{a}} \mathrm{CO}-\Delta \mathrm{HCH}\right) ; & \mathrm{S}_{4}=\frac{1}{\sqrt{2}}\left(\Delta \mathrm{H}^{\mathrm{e}} \mathrm{CC}-\Delta \mathrm{HCH}\right) \\
\mathrm{S}_{5}=\frac{1}{\sqrt{2}}\left(\Delta \mathrm{H}^{\mathrm{a}} \mathrm{CC}-\mathrm{HCH}\right) .
\end{array}
$$

The relevant portion of the F matrix is:

The impact of the redundancy on the corresponding ab initio force constants may be examined by forming UFU ${ }^{t}$.

It is convenient to revert to the following notation in these matrices:
$\alpha \equiv \operatorname{HCH}, \theta \equiv O C C, \quad \beta_{a}^{0}=H^{a} C O, \quad \beta_{e}^{O}=H^{e} C O, \quad \beta_{e}^{c}=H^{e} C C$, $B_{a}^{c}=H^{a} C C \quad$ See following page.

It is seen that the $f_{H C H}$ constant is added to all the elements of this portion of the matrix. This means that $f_{O C C}, f_{H_{C O}}, f_{H^{a} C C}, f_{H C C}, f_{H O C O}$ and all their interaction constants cannot individually be determined. However, since the calculated results show that the off diagonals have approximately the same value, the average of these may be associated with $f_{H C H}$ and the symmetrized force constants accordingly 'corrected' - this $f_{H C H}$ being subtracted from the diagonals and the interactions then set equal to zero.

This is actually not the only redundancy condition to influence the calculated $a b$ initio force constants. In the section describing the calculations required for the input to Gaussian 76 , a redundancy was revealed in the A_{u} block, it not being possible to deform either CO or CC without simultaneously changing the OCC angle:

$\stackrel{0}{\infty}$	$\stackrel{0}{\infty}$	$\stackrel{\infty}{\infty}$	$\underset{i}{\infty}$

$\begin{array}{llll}0 & 0 & 0 & \\ \infty & \infty & \infty & \\ \infty & 0 & 0 & 0 \\ \infty & \infty & \infty & 4\end{array}$

$$
\begin{aligned}
& \begin{array}{lll}
0 & 0 & \\
\infty & 0 & 0 \\
\infty & 0 & 0 \\
\infty & 0
\end{array}
\end{aligned}
$$

$$
U F U^{t}=2^{-I}\left[\begin{array}{l}
f_{\theta}+f_{\alpha}, \\
\theta / \beta^{o}-\alpha / \beta^{o}+f_{\alpha}, \\
\theta / \beta^{o}-\alpha / \beta^{o}+f_{\alpha}, \\
\theta / \beta^{c}-\alpha / \beta^{c}+f_{\alpha}, \\
\theta / \beta^{c}-\alpha / \beta^{c}+f_{\alpha},
\end{array}\right.
$$

$$
\begin{aligned}
& \theta / \beta^{\circ}-\alpha / \beta^{\circ}+f_{\alpha}, \\
& f_{\beta e^{-}}^{\circ} \alpha / \beta^{\circ}+f_{\alpha}, \\
& \beta^{\circ} / \beta^{\circ}-2 \alpha / \beta^{\circ}+f_{\alpha}, \\
& \beta^{0} / \beta^{c}-\alpha / \beta^{\circ}-\alpha / \beta^{c}+f_{\alpha}, \\
& -\alpha / \beta^{\circ}-\alpha / \beta^{\circ}+f_{\alpha},
\end{aligned}
$$

$$
\begin{aligned}
& \theta / \beta^{\circ}-\alpha / \beta^{\circ}+f_{\alpha}, \\
& \beta^{0} / \beta^{0}-\alpha / \beta^{0}-\alpha / \beta^{0}+f_{\alpha}, \\
& f_{\beta a^{0}-2 \alpha / \beta^{0}+f_{\alpha}}, \\
& -\alpha / \beta^{0}-\alpha / \beta^{c}+f_{\alpha}, \\
& \beta^{0} / \beta^{c}-\alpha / \beta^{0}-\alpha / \beta^{c}+f_{\alpha},
\end{aligned}
$$

$$
\begin{aligned}
& \theta / \beta^{c}-\alpha / \beta^{c}+f_{\alpha}, \\
& \beta^{o} / \beta^{c}-\alpha / \beta^{o}-\alpha / \beta^{c}+f_{\alpha}, \\
& -\alpha / \beta^{c}-\alpha / \beta^{o}+f_{\alpha}, \\
& f_{\beta e^{c}}^{c}-2 \alpha / \beta^{c}+f_{\alpha}, \\
& \beta^{c} / \beta^{c}-2 \alpha / \beta^{c}+f_{\alpha},
\end{aligned}
$$

$$
\left.\begin{array}{l}
\theta / \beta^{c}-\alpha / \beta^{c}+f_{\alpha} \\
-\alpha / \beta^{c}-\alpha / \beta^{o}+f_{\alpha} \\
\beta^{0} / \beta^{c}-\alpha / \beta^{c}-\alpha / \beta^{o}+f_{\alpha} \\
\beta^{c} / \beta^{c}-2 \alpha / \beta^{c}+f_{\alpha} \\
f_{\beta a}^{c}-2 \alpha / \beta^{c}+f_{\alpha}
\end{array}\right]
$$

$$
\begin{aligned}
\Delta R_{C C} & =-2 R_{C O}(\sin O C C)_{\sin } \triangle O C C \\
& =-2.7089 \Delta U C C \quad \text { (UCC in radians) } \\
\Delta R_{C O} & =\Delta O C C \times R_{C U} / \text { cot OCC } \\
& =-4.120 . \Delta O C C
\end{aligned}
$$

The $A_{u} C O$, CC and OCC symmetry coordinates are given by: $\left.\begin{array}{l}S_{a} \\ S_{b} \\ S_{c}\end{array} \begin{array}{cccccccccc}\mathrm{CO}^{1} & \mathrm{CO}^{2} & \mathrm{CO}^{3} & \mathrm{CO}^{4} & \mathrm{CC}^{\mathrm{A}} & \mathrm{CC}^{B} & 0 C C^{1} & 0 \mathrm{CC}^{2} & 0 C C^{3} & O C C^{4} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}\end{array}\right]$

From the equations which express the redundancy conditions, the normalised 'redundant' symmetry coordinates may be constructed:-

$$
\begin{aligned}
S_{1}^{R} & =\left(\sqrt{2} \times 2.7089 S_{b}-S_{c}\right) /\left(1+2 \times 2.7089^{2}\right)^{\frac{1}{2}} \\
& =.2444 S_{b}-.0638 S_{c} \\
S_{2}^{R} & =\left(4.12 S_{a}-S_{c}\right) /\left(1+4.12^{2}\right)^{\frac{1}{2}} \\
& =.2292 S_{a}-.0556 S_{c}
\end{aligned}
$$

Substituting for S_{a}, S_{b} and S_{c} gives the following U matrix
$\mathrm{S}_{1}^{\mathrm{R}}$
$\mathrm{S}_{2}^{\mathrm{R}}$$\left[\begin{array}{cccccc}\mathrm{CO}^{1} & \mathrm{CO}^{2} & \mathrm{CO}^{3} & \mathrm{CO}^{4} & \mathrm{CC}^{\mathrm{A}} & \mathrm{CU}^{\mathrm{B}} \\ .4859 & .4859 & -.4859 & -.4859 & 0 & 0 \\ 0 & 0 & 0 & 0 & .6842 & -.6842\end{array}\right.$
$\left.\begin{array}{llll}0 C C^{1} & \text { OCC }^{2} & \text { OCC }^{3} & \text { OCC }^{4} \\ -.1180 & -.1180 & .1180 & .1180 \\ -.1263 & -.1263 & \ddots .1263 & .1263\end{array}\right]$

As with the HCH redundancy, performing the UFU ${ }^{t}$ operation will reveal the effect of the mixing with UCC on the indiviđual CO and CC symmetrized force constants, $F=$

	CO^{1}	co^{2}	CO^{3}	CO4	$C C^{\text {A }}$	$C C^{B}$	OCC ${ }^{1}$	$0 \mathrm{Cc}{ }^{2}$	$0 C^{3}$	$0 C O C^{4}$
CO^{7}	fco	(5)		(1)	(2)		(3)	(6)		(7) 7
CO^{2}	(5)	fco	(1)		(2)		(6)	(3)	(7)	
CO^{3}		(1)	fco	(5)		(2)		(7)	(3)	(6)
CO^{4}	(1)		(5)	fco		(2)	(7)		(6)	(3)
$C O C^{\text {A }}$	(2)	(2)			$f \mathrm{cc}$		(4)	(4)		
$\mathrm{CC}^{\text {B }}$			(2)	(2)		fcc			(4)	(4)
OCC ${ }^{1}$	(3)	(6)		(7)	(4)		focc			
OCC ${ }^{2}$	(6)	(3)	(7)		(4)			focc		
OCC ${ }^{3}$		(7)	(3)	(6)		(4)			foce	
$0 C O C^{4}$	(7)		(6)	(3)		(4)				foce

The force constants are numbered in the following manner:

(1) $=\mathrm{CO} / \mathrm{CO}$
$(2)=\mathrm{CO} / \mathrm{CC}$
(3) $=C 0 / O C C$
(4) $=C C / O C C$
$(5)=\mathrm{CO} / \mathrm{CO}(\mathrm{Opp})[\mathrm{Eg} 1 / 2]$
$(6)=C O / O C 8\left[\mathrm{Eg} \mathrm{CO}{ }^{1} / \mathrm{UCC}^{2}\right]$
$(7)=\mathrm{CO} / \mathrm{OCC}^{\circ}\left[\mathrm{Eg} \mathrm{CO}^{1} / \mathrm{OUC}^{4}\right]$

Here a number of force constants have been introduced which would normally be assumed to take negligible values - (5), (6) and (7). l'hese have been included since the analysis below indicates that in this ab initio treatment they are too significant to be ignored.

UF

$$
\begin{aligned}
1,1 & =.4859\left[\mathrm{f}_{\mathrm{CO}}+(5)-(1)\right]+.1180[(7)-(3)-(6)] \\
& =1,2=-1,3=-1,4 \\
1,5 & =2[.4859(2)-.1180(4)]=-1,6 \\
1,7 & =.4859[(3)+(6)]-.1180 \mathrm{f}_{0 C C} \\
& =1,8=-1,9=-1,10
\end{aligned}
$$

$$
\begin{aligned}
2,1 & =.6842(2)-.1263[(3)+(6)] \\
& =2,2=-2,3=-2,4 \\
2,5 & =.6842 f_{C C}-2[.1263(4)] \\
& =-2,6 \\
2,7 & =.6842(4)-.1263 f_{\text {UCC }} \\
& =2,8=-2,9=-2,10
\end{aligned}
$$

Finally, the elements of $U F U^{t}$ are given by

$$
\begin{aligned}
1, I= & . \\
& +444\left[\mathrm{f}_{\mathrm{CO}}+(5)-(1)\right]+.4587[(7)-(3)-(6)] \\
& +.0557 \mathrm{f}_{O C C} \\
1,2= & 1.3298(2)+.2455[(7)-(3)-(6)]-.3229(4) \\
& +.0596 \mathrm{f}_{\mathrm{OCC}} \\
2,2= & .9363 \mathrm{f}_{\mathrm{CC}}-.6913(4)+.0638 \mathrm{f}_{\mathrm{OCC}} .
\end{aligned}
$$

Hence the redundancy causes the $F_{C O}^{A u}$ and $F_{C C}^{A u}$ to be functions of $f_{O C C}$ and the corresponding interaction constants.

The next step is to illustrate how numerical values may be attached to these force constants by examining the results from $A g, B g$ and $B u a b$ initio data. Calculating $U F U{ }^{t}$ for these species yields the following relationships

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{CO}}^{\mathrm{Ag}}=\mathrm{f}_{\mathrm{CO}}+\mathrm{CO} / \mathrm{CO}+\mathrm{CO} / \mathrm{CO}(\mathrm{Opp}) \\
& \mathrm{F}_{\mathrm{CO}}^{\mathrm{Bu}}=\mathrm{f}_{\mathrm{CO}}+\mathrm{CO} / \mathrm{CO}-\mathrm{CO} / \mathrm{CO}(\mathrm{Opp}) \\
& \mathrm{F}_{\mathrm{CO}}^{\mathrm{Bg}}=\mathrm{f}_{\mathrm{CO}}-\mathrm{CO} / \mathrm{CO}-\mathrm{CO} / \mathrm{CO}(0 \mathrm{pp}) \\
& \mathrm{F}_{\mathrm{OCC}}^{\mathrm{Ag}}=\mathrm{f}_{\mathrm{OCC}}+0 C C / O C C \\
& F_{O C C}^{B u}=f_{O C C}-O C L / O C C=F f_{O C C}^{B g} \\
& \mathrm{~F}_{\mathrm{CO}}^{\mathrm{AS}} / \mathrm{OCC}=\mathrm{CO} / O C \mathrm{C}+\mathrm{CO} / \mathrm{OCC}+\mathrm{CO} / \mathrm{O}^{\mathrm{C} C} \\
& \mathrm{~F}_{\mathrm{CO}}^{\mathrm{Bu}} / \mathrm{OCC}=\mathrm{CO} / O \mathrm{CC}-\mathrm{CO} / \mathrm{OCO}+\mathrm{CO} / \mathrm{O}^{\circ} \mathrm{CC} \\
& \mathrm{~F}_{\mathrm{CO} / \mathrm{OCC}}^{\mathrm{Bg}}=\mathrm{CO} / \mathrm{OCC}-\mathrm{CO} / \mathrm{COC}^{\circ}-\mathrm{CO} / \mathrm{O}_{\mathrm{CC}} \\
& \mathrm{~F}_{\mathrm{CO}}^{\mathrm{A}} / \mathrm{CC}=\sqrt{2} \mathrm{CO} / \mathrm{CC} ; \mathrm{Ff}_{\mathrm{CC}}^{\mathrm{Ag}}=\mathrm{f}_{\mathrm{CO}}
\end{aligned}
$$

Thus a series of simultaneous equations is generated which may be solved for the constituent force constants on substitution of the appropriate values from the $a b$ initio force constant tables. For instance:

$$
\begin{aligned}
& 577=\mathrm{f}_{\mathrm{CO}}+\mathrm{CO} / \mathrm{CO}+\mathrm{CO} / \mathrm{CO}(0 \mathrm{pp}) \\
& 592=\mathrm{f}_{\mathrm{CO}}+\mathrm{CO} / \mathrm{CO}-\mathrm{CO} / \mathrm{CO}(0 \mathrm{pp}) \\
& 550=\mathrm{f}_{\mathrm{CO}}-\mathrm{CO} / \mathrm{CO}-\mathrm{CO} / \mathrm{CO}(0 \mathrm{pp})
\end{aligned}
$$

'l'hese yield:

$$
\mathrm{f}_{\mathrm{CO}}=563.5 ; \quad \mathrm{CO} / \mathrm{CO}=21 ; \quad \mathrm{CO} / \mathrm{CO}(0 \mathrm{pp})=-7.5
$$

Similarly,

$$
\begin{array}{lll}
\mathrm{CO} / O C C=39.4 ; & \mathrm{CO} / O C \mathrm{CC}=-30.2 ; & \mathrm{CO} / O \mathrm{CC}=15.7 \\
\mathrm{CO} / \mathrm{CC}=25.7 & ; \quad \mathrm{f}_{\mathrm{CC}}=472 & ; \quad \mathrm{f}_{O C C}=109.3 \text { (includes } \mathrm{f}_{\mathrm{HCH}} \text {) }
\end{array}
$$

The $f_{O C C}$ value is simply the average of the results from the three symmetry species since they are in good agreement, indicating that OCC/OCC~0. To test the consistancy of the calculated values, these may be substituted into the equations obtained for the $A u$ force constants, and the result compared with the values listed.

Care should be taken in comparing 'like with like', the tabulated values needing to be scaled by the same coefficient that appears in the relevant equation - i.e. in the l,l Au force constant listed above, $f_{C O}$ is multiplied by . 9444, and for compatibility, the tabulated '554' should be scaled similarly.

Thus,

```
523 =.9444[f
    +.4587[CO/OCC - CO/OCC - CO/OCC] + .0557 foCC
    = 5l4, on substitution of the values derived for these
        force constants.
```

This represents very good agreement, when considering the large number of parameters involved.

The same procedure for $F_{C O / C C}$ suggests that $F_{C O / C C}^{A u}$ should be 29.7 as opposed to the 'observed' 10.8 - the poor agreement perhaps indicating that a CO/CC(Opp) term should be included. Finally, the $f_{0 C C}$ term:

$$
\begin{aligned}
F_{C C}^{A u} & =.9363 f_{C C}-.6913(C C / O C C)+.0633 f_{O C C} \\
& =.9363 \times 472
\end{aligned}
$$

and this gives $f_{C C}=471$, cormpared with $f_{C C}=479$ froin the Ag block - again, good agreement.

The above has shown how the symmetrized force constants can be analysed into their unsymetrized components by an examination of the $U_{F U}{ }^{t}$ transformation. The rest of the results from these calculations are now listed:
$C O / H^{\mathrm{a}} \mathrm{CC} \sim 0$ (Note that the stretches with all the angles except COC actually contain the stretch/HCH interaction).
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$.

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{CO} / \mathrm{HeCC}}^{\mathrm{Ag}}=10.2=\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}+\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CO} \\
& \mathrm{~F}_{\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}}^{\mathrm{Bu}}=40.1=\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}-\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{C} \mathrm{C}_{\mathrm{C}} \\
& \therefore \quad \mathrm{CO} / \mathrm{H}^{e} \mathrm{CC}=25.2, \mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{C}{ }^{\mathrm{O}}=-15.0 \text {. } \\
& \mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}}^{\mathrm{Ag}}=\mathrm{F}_{\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}}^{\mathrm{Bu}}
$$

i.e. no $\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}$ (erm can expıain the large discrepancy between $36.7(\mathrm{Ag})$ and $3.5(\mathrm{Bu})$.
Average $=22.6$.
$\underline{\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}}=\frac{1}{2}(41.9+45.1)=43.5-$ a good agreement between Ag and Bu .
$\underline{C O / C O C}=\frac{1}{2}(56.0+82.3)=69.1$
To explain the difference in $A g$ and Bu results, a CO/COC(Opp) interaction would be required.

$$
\begin{aligned}
& \mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}=28.2 / \sqrt{ } 2=19.9 \\
& \mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}=-14.1 \\
& \mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}=5.4 \\
& \mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}=-25.7 \\
& \mathrm{CC} / \mathrm{COC}=-14.0 / 2=-7.0 \\
& \mathrm{CC} / O \mathrm{CC}=9.1
\end{aligned}
$$

These CC interactions are derived fron the Ag results - the Au values are more complicated and less reliable functions due to the redundancy complication.
$\underline{\mathrm{CH}}=\frac{7}{3}(565+562+577)=568$
$\underline{\mathrm{CH}^{e}}=\frac{1}{3}(591+585+578)=585$
All the CH interactions are considered to be zero since these coordinates produce vibrations widely separated in frequency.
$\underline{C O C}=\frac{1}{2}(69.7+85.2)=77.5$
and COC/COC Opp $=-7.8$ to explain the $\mathrm{Ag} / \mathrm{Bu}$ difference.
The force constants which follow all contain f_{HCH} due to the redundancy around the carbon atom. As described previously, this is here taken as the average of the corresponding Ag interaction constants ~ 39.5, and this is to be subtracted from the diagonal term.
$\mathrm{H}^{\mathrm{a}} \mathrm{CC}$

$$
\begin{aligned}
& F_{H^{a} C C}^{A g}=F_{H^{a} C C}^{A u}=f H^{a} C C+H^{a} C C / H^{a} C C+f H C H \\
& F_{H^{a} C C}^{B u}=f H^{a} C C-H^{a} C C / H^{a} C C(C C)+f H C H
\end{aligned}
$$

$\therefore \quad H^{a} C C / H^{a} C C(C C)=7.6$

$$
f H^{\mathrm{a}} \mathrm{CC}=\left[\frac{1}{2}(103.3+94.9)-39.5\right]-7.6=52
$$

He Same form of relationship as $H^{\mathrm{e}} \mathrm{CC}$:

$$
\mathrm{fH}^{\mathrm{e}} \mathrm{CC}=51.1, \quad \mathrm{H}^{\mathrm{e}} \mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}(\mathrm{CC})=-2.5
$$

$\underline{H^{\mathrm{a}} \mathrm{CO}}=\frac{1}{3}(101.7+104.1+103.6)-39.5=63.6$
$\underline{H^{e} C O}=\frac{1}{3}(101.6+104.1+100.5)-39.5=62.6$
The excellent agreement between the symmetry species for HCO means that no additional interactions are required.

The CO, CC and OCC force constants were discussed prior to this list.

Thus a set of 'ab initio' force constants is derived that is based on the internal coordinate basis set. These are the parameters that furnish a set of constraints on the force constant perturbation procedure. The diagonals are to be allowed to vary whilst the off-diagonal elements are maintained at the same relative value to these principle diagonal terms as is predicted in the ab initio calculations. For example, $C O / C O=21 ; \quad f_{C O}=563.5, \quad \therefore \quad C O / C O=.037 f_{C O}$. Thus the following table of constraints is finally constructed. TABLE 38.

Force Constant	Constrained Value
CO/CO	. $037 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / \mathrm{CO}$ (0pp)	. $013 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / \mathrm{H}^{2} \mathrm{CC}$	0
$\mathrm{CO} / \mathrm{He}^{\mathrm{e}} \mathrm{C} \mathrm{C}$	$-.027 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$. $045 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / \mathrm{H}^{\text {a }} \mathrm{CO}$	$.040 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}$. $077 \mathrm{f}_{\mathrm{CO}}$
CO/OCC	$.070 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / 0 \mathrm{CC}$	-. $054 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} /{ }^{\circ} \mathrm{CC}$. $028 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CO} / \mathrm{COC}$	$.123 \mathrm{f}_{\mathrm{CO}}$
$\mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}$. $042 \mathrm{f}_{\mathrm{CC}}$
$\mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	-. $030 \mathrm{f}_{\text {CC }}$
$C C / H^{2} C 0$. $011 \mathrm{f}_{\mathrm{CC}}$
$\mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}$	-. $054 \mathrm{f}_{\text {CC }}$
$\mathrm{CC} / 0 \mathrm{CC}$. $019 \mathrm{f}_{\mathrm{CC}}$
$\mathrm{H}^{\mathrm{a}} \mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}(\mathrm{CC})$	$.145 \mathrm{f}_{\mathrm{H}^{\mathrm{a}} \mathrm{CC}}$
$\mathrm{H}^{\mathrm{e}} \mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}(\mathrm{CC})$	-. $050 \mathrm{f}_{\mathrm{He} \mathrm{CC}}$
OCC/OCC	0
COC/COC(0pp)	0

5.5 Perturbation Procedure for 'Constrained Force Field'.

The force field matrix, part of the input for the force constant refinement computer program, is listed in the form of row, colum, number of force constant and the coefficient by which this is multiplied. In order to impose a given constraint, all that is required is to substitute the last two pieces of data by the number of the diagonal force oonstant that is to be varied, and the coefficient which defines the appropriate relationship to be maintained during the perturbation procedure - these being the figures listed in Table Thus the only force constants that are actually varied are the diagonals, the rest being set to zero - in principle.

In fact, several modifications were required to produce a satisfactory fit. The $C O / H^{e} C \stackrel{O}{C}, C O / H^{e} C C$ and $C O / H^{\mathrm{a}} C O$ interaction constants had their constraints renoved, and were initially varied - in the end only $\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}$ approached a significant value, so the other two were set equal to zero.

- Again, to improve the fit, two more interaction constants were introduced - $\mathrm{COC} / \mathrm{CCO}$ and $\mathrm{H}^{\mathrm{e}} \mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$. This does not amount to a contradiction of the ab initio results, since the latter was seen to be 'swamped' by the inbuilt f_{HCH} contribution, whilst COC/CCO had been fixed at zero simply due to the inconsistency of its value between different symmetry blocks.

A further amendment was to alter $f_{H C H}$ from a fixed value of .403 to .365 , the latter appearing to be the optimum value on letting $f_{H C H}$ vary along with the other diagonals.

Although the final resulting field, 'Force Field B', contains a number of surprising elements - e.g. $C 0 / O C \mathrm{C}=-.2575$, $C C / H^{e} C O=-.2301$ - the degree of agreement between observed and calculated frequencies is essentially the same as that achieved with Force Field A.

The results of these calculations are now presented. Table39 contains the force constants that constitute Force Field A; Table40 contains those for Force Field B. Table4l lists these together with the Snyder and Zerbi force constants, for purposes of comparison. Table42 shows the frequencies
calculated for 1,4 -dioxan (d_{0}) from the two force fields, and Table 41 shows the results for dioxan $-d_{8}$. Table 42 gives the potential energy distributions derived from Force Field A, and Table 45 that from Force Field B.

Both field A (unconstrained) and field B (constrained) produce a differentiation between the axial and equatorial CH stretch diagonal force constants:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{CHa}}^{\mathrm{A}}=\mathrm{F}_{\mathrm{CH}}^{\mathrm{B}}=4.49 \\
& \mathrm{~F}_{\mathrm{CH}}^{\mathrm{A}}=\mathrm{F}_{\mathrm{CH}}^{\mathrm{B}}=4.77
\end{aligned}
$$

The ab initio values were $\sim 25 \%$ higher than these, but again show CH^{e} to be larger in magnitude than CH^{a}, and also predict a similar ratio for these:

$$
\begin{aligned}
& \left(\frac{\mathrm{F}_{\mathrm{CHe}}}{\mathrm{~F}_{\mathrm{CH}}{ }_{\mathrm{a}}}\right)_{\mathrm{A}, \mathrm{~B}}=1.062 \\
& \left(\frac{\mathrm{~F}_{\mathrm{CH}}}{\mathrm{~F}_{\mathrm{CH}}{ }_{\mathrm{e}}}\right)_{\text {ab initio }}=1.030
\end{aligned}
$$

Caillod et al. in their study of the CH stretching region of dioxan obtained values which are consistent with the above: $\mathrm{F}_{\mathrm{CH}}{ }^{\mathrm{a}}=4.530, \mathrm{~F}_{\mathrm{CH}}=4.805,\left(\mathrm{~F}_{\mathrm{CH}}{ }^{\mathrm{e}} / \mathrm{F}_{\mathrm{CH}}{ }^{\mathrm{a}}\right)_{\mathrm{C}}=1.061$.

The $a b$ initio values of $F_{C O}$ and $f_{c c}$ are $\sim 10 \%$ higher than those of fields A and B, but again similar ratios are found:

$$
\left(\frac{\mathrm{F}_{\mathrm{CO}}}{\mathrm{~F}_{\mathrm{CC}}}\right)_{\text {ab initio }}=1.194 ; \quad\left(\frac{\mathrm{F}_{\mathrm{CO}}}{\mathrm{~F}_{\mathrm{CC}}}\right)_{\mathrm{A}}=0.972 ; \quad\left(\frac{\mathrm{F}_{\mathrm{CO}}}{\mathrm{~F}_{\mathrm{CC}}}\right)_{\mathrm{B}}=1.119
$$

The ab initio values of $F_{H a C C}$ and $F_{H_{C C}}$ are equal as are $\mathrm{F}_{\mathrm{HaCO}}$ and $\mathrm{F}_{\mathrm{He} \mathrm{CO}}$. Whilst the values in A and B are now of the same magnitude as the ab initio they do not reflect this pattern. Both A and B give the equatorial greater than the axial force constants. However, the ab initio gives $\mathrm{F}_{\mathrm{HCO}}>\mathrm{F}_{\mathrm{HCC}}$ and this does reflect fields A and B.

The $a b$ initio $F_{C O C}$ is larger than the other angle diagonals, and again this is found in A and B.

Most of the major off-diagonal force constants in A and B are similar in value. Field B possesses a number of unexpectedly large values, due to the ab initio constraints: $C O / O \circ C C=-.257, \operatorname{COC} / C O C(O p p)=-.116$. Initially there is a temptation to say these terms should really be neglected, since they describe long range electronic effects, but the fact is that, as will be seen later, field B is actually more successful than field A in the analysis of the band intensities.

Unconstrained Force Field.

Force Constant	Value	Variance
CH^{e}	4.772	0.048
CH	4.490	0.050
CO	4.543	0.340
CC	4.673	0.350
COC	0.809	0.117
OCC	0.623	0.063
HCH	0.403	-
$\mathrm{H}^{\mathrm{e}} \mathrm{CO}$	0.605	0.048
$\mathrm{H}^{\mathrm{a}} \mathrm{CO}$	0.553	0.034
$\mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.496	0.063
$\mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0.345	0.037
$\mathrm{CO} / \mathrm{CO}$	0.810	0.205
$\mathrm{CO} / \mathrm{CC}$	0.037	0.152
$\mathrm{CO} / \mathrm{COC}$	0.505	0.150
$\mathrm{CO} / \mathrm{CCO}$	0.266	0.140
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}$	0.243	0.071
$\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}$	0.409	0.089
$\mathrm{CC} / \mathrm{CCO}$	0.274	-
$\mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.153	0.081
$\mathrm{CC} / \mathrm{Hi}^{\mathrm{a}} \mathrm{CC}$	0.143	0.054
$\mathrm{COC} / O C C$	0.162	0.038
$\mathrm{H}^{\mathrm{e}} \mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.143	0.021

TABLE 40.

Constrained Force Field.

Force Constant	Value	Variance
CH^{e}	4.767	0.056
$\mathrm{CH}^{\text {a }}$	4.489	0.059
CO	4.769	0.214
CC	4.261	0.340
COC	1.146	0.136
OCC	0.560	0.056
$\mathrm{H}^{\mathrm{e}} \mathrm{CO}$	0.721	0.040
$\mathrm{H}^{\text {a }} \mathrm{CO}$	0.513	0.020
$\mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.497	0.030
$\mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0.290	0.019
HCH	0.365	
CO/CC	0.192	0.173
COC/OCC	0.105	0.048
$\mathrm{H}^{\mathrm{e}} \mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.119	0.029
$\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}$	0.427	0.086
$\mathrm{CO} / \mathrm{CO}$	0.176	
CO/COC	0.587	
co/OCC	0.334	
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}$	0.367	
CC/OCC	0.081	
$\mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}$	-. 230	
$\mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}$	0.047	
$\mathrm{CC} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	-. 128	
$\mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0.179	
$\mathrm{HCC} / \mathrm{HCCg}$	-. 025	
HCC/HCCt	0.042	
CO/CO(Opp)	0.062	
$\mathrm{CO} / 0 \mathrm{CO}^{\circ}$	-. 257	
$\mathrm{CO} /{ }^{\circ} \mathrm{Cc}$	0.133	
COC/COC (0pp)	-. 116	

TABLE 41.
Comparison of Force Fields.

Force Constant	$\underline{S+Z}$		Uncon.	Constrained
$\mathrm{CH}^{\text {e }}$	4.626		4.772	4.767
$\mathrm{CH}^{\text {a }}$	4.626		4.490	4.489
CO	5.090		4.543	4.769
CC	4.261		4.673	4.261
COC	0.640		0.809	1.146
OCC	0.545		0.623	0.560
HCH	0.403	\leftrightarrow	0.403	0.365
$\mathrm{H}^{\mathrm{e}} \mathrm{CO}$	0.579		0.605	0.721
$\mathrm{H}^{\text {a }} \mathrm{CO}$	0.579		0.553	0.513
$\mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.457		0.496	0.497
$\mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0.457		0.345	0.290
$\mathrm{CH} / \mathrm{CH}$	-. 046		0	0
$\mathrm{CO} / \mathrm{CO}$	0.288		0.810	0.176
CO/CC	0.101		0.037	0.192
$\mathrm{CO} / \mathrm{COC}$	0.339		0.505	0.587
CO/OCC	0.420		0.266	0.334
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CO}$	0.310		0.243	0.367
$\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CO}$	0.310		0.409	0.427
$\mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0		0	0
$\mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0		0	0
CC/OCC	0.274	\leftrightarrow	0.274	0.081
CC/ $\mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.367		0.153	-. 128
$\mathrm{CC} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0.367		0.143	0.179
$\mathrm{COC} / \mathrm{OCC}$	0.005		0.162	0.105
$\mathrm{COC} / \mathrm{HCOg}$	0.002		0	0
$\mathrm{COC} / \mathrm{HCOt}$	-. 062		0	0
OCC/OCC	-. 005		0	0
OCC/ $/ \mathrm{H}^{\mathrm{a}}{ }^{\mathrm{e}} \mathrm{CO}$	-. 017		0	0
OCC/ $\mathrm{H}^{\mathrm{a}}{ }^{\mathrm{e}} \mathrm{CC}$	-. 016		0	0
OCC/HCCt	0.014		0	0
$\mathrm{HCO} / \mathrm{HCO}$	-. 003		0	0
$\mathrm{H}^{\mathrm{e}} \mathrm{CO} / \mathrm{H}^{\mathrm{e}} \mathrm{CC}$	0.070		0.143	0.119
$\mathrm{H}^{\mathrm{a}} \mathrm{CO} / \mathrm{H}^{\mathrm{a}} \mathrm{CC}$	0.070		0	0
HCC/HCC	0.062		0	0
$\mathrm{HCC} / \mathrm{HCCg}$	0.002		0	-. 025
HCC/HCCt	0.071		0	0.042
co/CO (0pp)	0		0	0.062
co/8cc	0		0	-. 257
co/0cc	0		0	0.133
$\operatorname{coc} / \mathrm{COC}(0.0$)	0		0	-. 116

TABLE 42.

$\underline{\mathrm{d}}_{0}$ Calculated Frequencies.

Ag	Obs. $\left(\mathrm{cm}^{-1}\right)$	A	B
	2968	2978	2976
	2856	2861	2864
	1444	1483	1481
	1397	1359	1381
	1305	1280	1306
	1128	1126	1103
	1015	1024	975
	837	835	814
	435	459	501
	424	419	397
Bg	2968	2972	2971
	2856	2855	2854
	1459	1461	1470
	1335	1352	1379
	1217	1245	1228
	1110	1090	1100
	853	857	836
	490	502	482
Au	2970	2973	2970
	2863	2861	2864
	1449	1480	1487
	1369	1348	1399
	1256	1227	1264
	1136	1112	1120
	1086	1035	1079
	881	868	833
	288	185	169
Bu	2970	2975	2976
	2863	2856	2854
	1457	1460	1454
	1378	1376	1381
	1291	1304	1302
	1052	1042	1036
	889	891	804
	610	612	642
	274	273	294

TABL 43.
d_{3} Calculated Frequencies.

	Obs. $\left(\mathrm{cm}^{-1}\right)$	A	B
Ag			
	2242	2231	2229
	2098	2107	2116
	1225	1237	1244
	1108	1122	1101
	1008	1025	1006
	832	858	861
	808	811	831
	752	765	728
	490	449	474
	348	342	332
$\underline{\mathrm{Bg}}$			
	2226	2214	2212
	2088	2091	2088
	1070	1098	1120
	1023	1059	1097
	956	991	983
	888	902	894
	711	705	692
	422	446	418
Au			
	2235	2217	2214
	2086	2104	2116
	1191	1217	1238
	1117	1095	1144
	1030	981	1074
	922	882	885
	809	835	832
	762	746	687
	254	151	138
$\underline{\mathrm{Bu}}$			
	2232	2221	2227
	2098	2094	2087
	1153	1145	1142
	1087	1067	1065
	1042	1017	1011
	896	894	871
	732	728	727
	490	525	509
	238	239	260

	$\underline{O b s} \nu_{i}$	Potential Energy Distribution (\%)
A		
	2968	$86 \mathrm{CH}^{\mathrm{e}}, 12 \mathrm{CH}^{\text {a }}$
	2856	$12 \mathrm{CH}^{\mathrm{e}}$, $86 \mathrm{CH}^{\text {a }}$
	1444	$60 \mathrm{HCH}, 7 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$, $11 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1397	$23 \mathrm{CC}, 14 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 28 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 47 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1305	$10 \mathrm{CC}, 11 \mathrm{CO}, 14 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 59 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$, $21 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1128	$10 \mathrm{CO}, 51 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 7 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 26 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 7 \mathrm{COC}$
	1015	$49 \mathrm{CC}, 10 \mathrm{CO}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 19 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
	837	$19 \mathrm{CC}, 74 \mathrm{CO}$
	435	$8 \mathrm{CO}, 34$ OCC, 99 COC
	424	$7 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 57 \mathrm{OCC}, 11 \mathrm{COC}$
$\underline{\mathrm{Bg}}$		
	2968	$89 \mathrm{CH}^{\mathrm{e}}$, $11 \mathrm{CH}^{\mathrm{a}}$
	2856	$11 \mathrm{CH}^{\mathrm{e}}$, $89 \mathrm{CH}^{\text {a }}$
	1459	$65 \mathrm{HCH}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
	1335	$30 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 22 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 48 \mathrm{H}^{\text {a }} \mathrm{CO}$
	1217	$38 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 55 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 24 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1110	$59 \mathrm{CO}, 20 \mathrm{OCC}$
	853	$39 \mathrm{CO}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 30 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
	490	$9 \mathrm{CO}, 9 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 700 \mathrm{CC}$
Au		
	2970	$87 \mathrm{CH}^{\mathrm{e}}, 13 \mathrm{CH}^{\text {a }}$
	2863	$13 \mathrm{CH}^{\mathrm{e}}, 86 \mathrm{CH}^{\text {a }}$
	1449	$62 \mathrm{HCH}, 16 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 8 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1369	$28 \mathrm{CC}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 13 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 29 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 38 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1256	$33 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 61 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 21 \mathrm{H}^{\text {a }} \mathrm{CO}$
	1136	$32 \mathrm{CC}, 40 \mathrm{CO}, 7 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 7 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	1086	$12 \mathrm{CC}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 41 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 10 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
	881	$30 \mathrm{CC}, 62 \mathrm{CO}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 100 \mathrm{CC}$
	288	77 OCC

Bu

2970	$89 \mathrm{CH}^{\mathrm{e}}, 11 \mathrm{CH}^{\mathrm{a}}$
2863	$11 \mathrm{CH}^{\mathrm{e}}, 89 \mathrm{CH}^{\mathrm{a}}$
1457	$67 \mathrm{HCH}, 16 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
1378	$23 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 21 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 59 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1291	$14 \mathrm{CO}, 42 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 56 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 13 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1052	$11 \mathrm{CO}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 20 \mathrm{H}^{\mathrm{e} C O}, 16 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 25 \mathrm{CCC}$
889	$70 \mathrm{CO}, 16 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 19 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 10 \mathrm{COC}$
610	$19 \mathrm{CO}, 15 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 10 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 57 \mathrm{CCC}, 45 \mathrm{COC}$
274	$13 \mathrm{OCC}, 57 \mathrm{COC}$

TABLE $44(\mathrm{~b})$.

Unconstrained Force Field d 8
$\underline{O b s}_{i} \quad$ Potential Energy Distribution (\%)
Ag

2242	$71 \mathrm{CH}^{\mathrm{e}}, 25 \mathrm{CH}^{\mathrm{a}}$
2098	$26 \mathrm{CH}^{\mathrm{e}}, 70 \mathrm{CH}^{\mathrm{a}}$
1225	$57 \mathrm{CC}, 32 \mathrm{CO}, 23 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1108	$12 \mathrm{CC}, 10 \mathrm{CO}, 46 \mathrm{HCH}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
1008	$14 \mathrm{HCH}, 62 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 11 \mathrm{COC}$
832	$30 \mathrm{H}^{\mathrm{e} C C}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 50 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
808	$26 \mathrm{CO}, 19 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 44 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
752	$27 \mathrm{CC}, 41 \mathrm{CO}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CC}$
490	$640 \mathrm{CC}, 69 \mathrm{COC}$
348	$9 \mathrm{H}^{\mathrm{e} C C}, 26 \mathrm{OCC}, 35 \mathrm{COC}$

Bg

2226	$79 \mathrm{CH}^{\mathrm{e}}, 19 \mathrm{CH}^{\mathrm{a}}$
2088	$19 \mathrm{CH}^{\mathrm{e}}, 79 \mathrm{CH}^{\mathrm{a}}$
1070	$51 \mathrm{CO}, 42 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 24 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1023	$66 \mathrm{HCH}, 23 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
956	$29 \mathrm{CO}, 13 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 15 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 11 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 100 \mathrm{CC}$
888	$22 \mathrm{H}^{\mathrm{e} C C}, 48 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 39 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
711	$23 \mathrm{CO}, 27 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 27 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
422	$20 \mathrm{H}^{\mathrm{a} C C}, 620 \mathrm{OCC}$

Au

2235
2086
1191
1117
1030
922
809
762
254
$71 \mathrm{CH}^{\mathrm{e}}, 27 \mathrm{CH}^{\mathrm{a}}$
$27 \mathrm{CH}^{\mathrm{e}}, 69 \mathrm{CH}^{\mathrm{a}}$
$69 \mathrm{CC}, 19 \mathrm{CO}, 8 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 13 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 14 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$55 \mathrm{HCH}, 11 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
$58 \mathrm{CO}, 13 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 23 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
$30 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 63 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$12 \mathrm{HCH}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 61 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$23 \mathrm{CC}, 24 \mathrm{CO}, 50 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 17 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
76 OCC

Bu

2232	$79 \mathrm{CH}^{\mathrm{e}}, 18 \mathrm{CH}^{\mathrm{a}}$
2098	$18 \mathrm{CH}^{\mathrm{a}}, 30 \mathrm{CH}^{\mathrm{e}}$
1153	$51 \mathrm{CO}, 32 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 32 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 17 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1087	$38 \mathrm{HCH}, 14 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 15 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 14 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1042	$9 \mathrm{CO}, 27 \mathrm{HCH}, 43 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 9 \mathrm{COC}$
896	$35 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 13 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 33 \mathrm{OCC}, 16 \mathrm{COC}$
732	$43 \mathrm{CO}, 37 \mathrm{H}^{\mathrm{e} C C}, 13 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 16 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 15 \mathrm{COC}$
490	$12 \mathrm{CO}, 30 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 480 \mathrm{CC}, 21 \mathrm{COC}$
238	$90 \mathrm{CC}, 61 \mathrm{COC}$

TABLE 45 (a).

Constrained Force Field d 0

$$
{\underline{O b s} v_{i}} \quad \text { Potential Enerry Distribution }(\%)
$$

Ag

2968	$86 \mathrm{CH}^{\mathrm{e}}, 13 \mathrm{CH}^{\mathrm{a}}$
2856	$13 \mathrm{CH}^{\mathrm{e}}, 85 \mathrm{CH}^{\mathrm{a}}$
1444	$51 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{e} C \mathrm{CC}, 20 \mathrm{H}^{\mathrm{e}} \mathrm{CO}}$
1397	$18 \mathrm{CC}, 33 \mathrm{H}^{\mathrm{e} C \mathrm{CC}, 59 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 16 \mathrm{H}^{\mathrm{a}} \mathrm{CO}}$
1305	$20 \mathrm{H}^{\mathrm{e} C O}, 61 \mathrm{H}^{\mathrm{a} C O}$
1128	$10 \mathrm{HCH}, 59 \mathrm{H}^{\mathrm{a} C C}, 8 \mathrm{H}^{\mathrm{e} C \mathrm{CC}}$
1015	$52 \mathrm{CC}, 50 \mathrm{CO}, 16 \mathrm{H}^{\mathrm{e} C \mathrm{C}, ~} 17 \mathrm{COC}$
837	$14 \mathrm{CC}, 61 \mathrm{CO}, 11 \mathrm{H}^{e} \mathrm{CC}$
435	$16 \mathrm{CC}, 11 \mathrm{CO}, 9 \mathrm{H}^{\mathrm{a} C O}, 130 \mathrm{CC}, 81 \mathrm{COC}$
424	70 OCC

Bg

2968	$88 \mathrm{CH}^{\mathrm{e}}, 11 \mathrm{CH}^{\mathrm{a}}$
2856	$11 \mathrm{CH}^{\mathrm{e}}, 89 \mathrm{CH}^{\mathrm{a}}$

$145926 \mathrm{HCH}, 70 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
$133531 \mathrm{HCH}, 64 \mathrm{H}^{\mathrm{e}} \mathrm{CC}$, $11 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
$1217 \quad 15 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 80 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$1110 \quad 84 \mathrm{CO}, 14 \mathrm{HCH}, 150 \mathrm{CC}$
$853 \quad 27 \mathrm{CO}, 19 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 34 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$490 \quad 15 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 78$ OCC
Au

2970	$86 \mathrm{CH}^{\mathrm{e}}, 13 \mathrm{CH}^{\mathrm{a}}$
2863	$13 \mathrm{CH}^{\mathrm{e}}, 85 \mathrm{CH}^{\mathrm{a}}$
1449	$49 \mathrm{HCH}, 27 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
1369	$16 \mathrm{CC}, 39 \mathrm{H}^{\mathrm{e} C \mathrm{CC}, 4} 4 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
1256	$12 \mathrm{CO}, 19 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 66 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1136	$10 \mathrm{CC}, 86 \mathrm{CO}, 15 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
1086	$11 \mathrm{CC}, 14 \mathrm{HCH}, 47 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
881	$60 \mathrm{CC}, 39 \mathrm{H}^{\mathrm{e} C C}, 11 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
288	$8 \mathrm{CO}, 790 \mathrm{CC}$

Bu

2970	$88 \mathrm{CH}^{\mathrm{e}}, 11 \mathrm{CH}^{\mathrm{a}}$
2863	$11 \mathrm{CH}^{\mathrm{e}}, 88 \mathrm{CH}^{\mathrm{a}}$
1457	$21 \mathrm{HCH}, 11 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 81 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
1378	$41 \mathrm{HCH}, 53 \mathrm{H}^{\mathrm{e} C \mathrm{CC}}$
1291	$10 \mathrm{H}^{\mathrm{a} C \mathrm{CC}, 72 \mathrm{H}^{\mathrm{a}} \mathrm{CO}}$
1052	$7 \mathrm{CO}, 19 \mathrm{H}^{\mathrm{e} C C}, 24 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 220 \mathrm{CO}, 28 \mathrm{COC}$
889	$100 \mathrm{CO}, 21 \mathrm{COC}$
610	$13 \mathrm{CO}, 36 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 450 \mathrm{CC}, 12 \mathrm{COC}$
274	$350 \mathrm{CC}, 43 \mathrm{COC}$

TABLE 45(b).
Constrained Force Field d 8
$\underline{O b s}_{i} \quad$ Potential Energy Distribution (\%)
$\xrightarrow{\mathrm{Ag}}$

2242
2098
1225
1108
1008
832
808
752
490
348
Bg

2226	$78 \mathrm{CH}^{\mathrm{e}}, 20 \mathrm{CH}^{\mathrm{a}}$
2088	$20 \mathrm{CH}^{\mathrm{e}}, 79 \mathrm{CH}^{\mathrm{a}}$
1070	$73 \mathrm{CO}, 43 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 11 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
1023	$12 \mathrm{HCH}, 10 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 72 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
956	$24 \mathrm{CO}, 57 \mathrm{HCH}, 14 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 80 \mathrm{CC}$
888	$13 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 10 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 70 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
711	$13 \mathrm{CO}, 26 \mathrm{H}^{\mathrm{e} C C}, 8 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 27 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 140 \mathrm{CC}$
422	$27 \mathrm{H}^{\mathrm{a} C C}, 650 \mathrm{CC}$

Au

$$
2235
$$

2086
1191
1117
1030
922
809
762
254
$69 \mathrm{CH}^{\mathrm{e}}, 27 \mathrm{CH}^{\mathrm{a}}$
$28 \mathrm{CH}^{\mathrm{e}}, 67 \mathrm{CH}^{\mathrm{a}}$
$51 \mathrm{CC}, 12 \mathrm{HCH}, 19 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 10 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$8 \mathrm{CC}, 33 \mathrm{CO}, 15 \mathrm{HCH}, 76 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 10 \mathrm{COC}$
$23 \mathrm{HCH}, 56 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 14 \mathrm{COC}$
$16 \mathrm{CO}, 23 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 48 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$47 \mathrm{CO}, 17 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 7 \mathrm{CC}, 7 \mathrm{H}^{\mathrm{e}} \mathrm{CO}$
$26 \mathrm{CC}, \mathrm{I} 9 \mathrm{CO}, 32 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 12 \mathrm{COC}$
$16 \mathrm{CC}, 8 \mathrm{CO}, 11 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 37 \mathrm{OCC}, 56 \mathrm{COC}$
$13 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 45 \mathrm{OCC}, 21 \mathrm{COC}$
$2235 \quad 67 \mathrm{CH}^{\mathrm{e}}, 31 \mathrm{CH}^{\mathrm{a}}$
$31 \mathrm{CH}^{\mathrm{e}}, 63 \mathrm{CH}^{\mathrm{a}}$
$53 \mathrm{CC}, 13 \mathrm{HCH}, 18 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 7 \mathrm{CO}$
81 CO
$8 \mathrm{CO}, 25 \mathrm{HCH}, 67 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 12 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
$11 \mathrm{HCH}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 28 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 49$ OCC
$19 \mathrm{HCH}, 65 \mathrm{H}^{\mathrm{a}} \mathrm{CC}$
$44 \mathrm{CC}, 56 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 15 \mathrm{H}^{\mathrm{a}} \mathrm{CO}$
8 CO, 79 OCC

Bu

2232
2098
1153
1087
1042
896
732
490
238
$77 \mathrm{CH}^{\mathrm{e}}, 19 \mathrm{CH}^{\mathrm{a}}$
$19 \mathrm{CH}^{\mathrm{e}}, 79 \mathrm{CH}^{\mathrm{a}}$
$28 \mathrm{CO}, 23 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 77 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 17 \mathrm{COC}$
$35 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 42 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 16 \mathrm{COC}$
$67 \mathrm{HCH}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CC}$
$13 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 17 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 30 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 270 \mathrm{CC}$, 11 COC
$100 \mathrm{CO}, 11 \mathrm{H}^{\mathrm{e}} \mathrm{CO}, 8 \mathrm{H}^{\mathrm{a}} \mathrm{CO}, 14 \mathrm{COC}$
$6 \mathrm{CO}, 9 \mathrm{H}^{\mathrm{e}} \mathrm{CC}, 48 \mathrm{H}^{\mathrm{a}} \mathrm{CC}, 36$ OCC
28 OCC, 47 COC

CHAPTER 6. DIOXAN: ANALYSIS OP EXPERIMENTAL INTENSITIES.
Section 6.1 Use of the Ab Initio APT'S.

- In this section it is described how an attempt has been made to obtain the set of atomic polar tensors for 1,4-dioxan, through an analysis of the experimental infra red band intensities. Both of the derived force fields; A (unconstrained) and B (constrained), have been utilized in the calculations, and much use is made of the ab initio polar tensors in determining how to proceed with the investigation.

In cyclohexane, the experimental intensities may be conveniently and rigorously apportioned to the changes along the x, y and z axes, according to the symmetry of the particular normal coordinate. In l,4-dioxan, in the au bands the intensity is due to changes in the dipole moment along the x axis. The bu bands involve changes along the y and z axes simultaneously. Therefore, the problem immediately arises - how is it possible to split the bu intensities so as to yield the experimental $d p_{y} / d \dot{Q}_{i}$ and $d p_{z} / d Q_{i} ?$

The method adopted here is to calculate these intensities from the ab initio polar tensors, and then impose the resulting suggested manner of splitting on the actual experimental intensities. The following tables show the results of these calculations: Table46 Calculated d_{0} intensities (force field A); Table47 - Calculated d_{0} intensities (force field B); Table48Splitting corresponding to Table 46; Table 49-Splitting corresnonding to Table 47; Table 50-Calculated d_{8} intensities (force field A); Table51 - Calculated d_{8} intensities (force field B).

It is apparent that the two force fields produce estimates of the intensities that are significantly different - it is difficult to say which one is most appropriate for use since force field A seems best for d_{0}-dioxan, and force field B best for d_{8}-dioxan.

For instance, in Table 46 the most intense bands $1136 \mathrm{~cm}^{-1}$ (au) and $881 \mathrm{~cm}^{-1}(\mathrm{au})$ are predicted as intense, and the weak bands such as 1378 (bu), 1052 (bu), and 288 (au) are predicted as low. The intermediate bands in several cases are estimated verv well e.g. 1291 (bu), $[1449$ (au) $+1457(b u)]$, but there is a degree

TABLE 46.
d_{0} Unconstrained Force Field.

$\nu_{i}(\mathrm{cr}$		$\begin{array}{r} \mathrm{CALC} \\ v_{i}(\mathrm{~cm} \end{array}$	$\begin{gathered} 0 \mathrm{BS} . \\ \mathrm{A}_{\mathrm{i}}(\mathrm{~km} \mathrm{~mol} \end{gathered}$	$A_{i}(k)$
2970	bu	2975		59.1
2970	au	2973	176.6	62.7
2863	au	2861		60.9
2863	bu	2856	153.4	148.5
1449	au	1480		0.1
1457	bu	1457	16.19	17.4
1378	bu	1376	2.11	3.0
1369	au	1348	11.28	33.9
1291	bu	1304	12.19	12.9
1256	au	1227	33.00	18.5
1136.	au	1112	158.1	102.3
1052	bu	1042	8.05	4.5
1086	au	1035	10.35	1.7
889	bu	891	17.51	51.0
881	au	868	75.2	123.0
610	bu	612	14.64	58.3
274	bu	273	20.22	41.2
288	au	185	0	4.4

TABLE 47.
d_{0} Constrained Force Field.

$v_{i}(\mathrm{C}$		$\begin{gathered} \text { CALC. } \\ v_{i}\left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} 0 \mathrm{BS} . \\ \mathrm{A}_{\mathrm{i}}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right) \end{gathered}$	CALC. $A_{i}\left(k m \operatorname{mol}^{-1}\right)$
2970	bu	$2976 \text {) }$	176.6	
2970	au	2970)	176.6	62.8
2863	au	2864)		
2863	bu	2854)	153.4	$\begin{array}{r} 03.4 \\ 146.6 \end{array}$
1449	au	1487)		5.7
1457	bu	1454)	16.19	5.4
1369	$a u$	1399	11.28	0.35
1378	bu	1381	2.11	14.6
1291	bu	1302	12.19	10.0
1256	au	1264	33.00	69.6
1136	au	1120	158.1	186.6
1086	au	1079	10.35	4.9
1052	bu	1036	8.05	17.8
881	au	833	75.2	8.4
889	bu	804	17.51	76.6
610	bu	642	14.64	14.2
274	bu	294	20.22	49.2
288	au	169	0	5.8

TABLE 48.
" ${ }^{\text {d }} 0$ Unconstrained Ab Initio Sign Choices and Intensity Distributions.

OBS. $\nu_{i}\left(\mathrm{~cm}^{-1}\right)$		x	y, \%	z, \%	
2970	bu	0	-, 7.3	-, 92.7	*
2970	au	-	0	0	
2863	au	+	0	0	
2863	bu	0	+, 37.5	-, 62.5	
1449	au	+	0	0	*
1457	bu	0	-, 64.0	+, 36.0	
1378	bu	0	+, 64.1	-, 35.9	
1369	au	+	0	0	*
1291	bu	0	+, 5.9	-, 94.1	
1256	au	-	0	0	*
1136	au	-	0	0	*
1052	bu	0	-, 22.0	+, 78.0	*
1086	au	+	0	0	
889	bu	0	-, 36.6	-, 63.4	
881	$a u$	-	0	0	*
610	bu	0	+, 97.8	+, 2.2	*
274	bu	0	-, 55.5	+, 44.5	*
288	au	-	0	0	*

[^0]
TABLE 49.

- d_{0} Constrained.

Ab Initio Sicn Choices and Intensity Distributions.

$0 B S . \nu_{i}\left(\mathrm{~cm}^{-1}\right)$	
2970	bu
2970	au
2863	au
2863	bu
1449	au
1457	bu
1369	au
1378	bu
1291	bu
1256.	au
1136	au
1086	au
1052	bu
881	au
889	bu
610	bu
274	bu
288	au

x	y, \%	z, \%
-	-	
0	+. 6.9	+, 93.1
-	0	0
+	0	0
0	+, 38.4	-, 61.6
+	0	0
0	-, 82.1	+, 17.9
+	0	0
0	-, 38.8	+, 61.2
0	+, 6.6	-, 93.4
+	0	0
+	0	0
-	0	0
0	+, 99.4	+, 0.6
+	0	0
0	-, 58.2	-, 41.8
0	-, 73.8	+, 26.2
0	+, 59.6	-, 40.4
+	0	0

TABLE 50.
d_{8} Unconstrained Force Field.

$v_{i}\left(\mathrm{~cm}^{-1}\right)$		$\begin{gathered} \text { CALC. } \\ \nu_{i}\left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} 0 B S . \\ A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right) \end{gathered}$	CALC. $\mathrm{A}_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$
2232	bu	2221)		46.1
2235	au	$2218)$	87.3	24.9
2086	au	2104)	101.4	58.3
2098	bu	$2094)$	101.4	86.8
1191	au	1217	91.5	90.5
1153	bu	1145	29.4	20.1
1117	au	1095	97.8	9.2
1087	bu	1067	13.0	1.1
1042	bu	1017	28.0	23.2
1030	au	981	13.0	133.7
896	bu	894	17.4	12.8
922	au	882	0	0.2
809	au	835	0	0.0
762	au	746	39.14	38.9
732	bu	728	5.2	35.8
490	bu	525	9.6	43.6
238	bu	239	13.9	29.0
254	au	151	0	2.9

TABLE:51.
d_{8} Constrained Force Field.

$v_{i}\left(\mathrm{~cm}^{-1}\right)$	$\begin{gathered} \text { CALC. } \\ \nu_{i}\left(\mathrm{~cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \text { OBS. } \\ A_{i}\left(k m \operatorname{mol}^{-1}\right) \end{gathered}$	CALC. $A_{i}\left(\mathrm{~km} \mathrm{~mol}^{-1}\right)$
2232 bu	2228)		
2235 au	$2214)$	87.3	$\begin{aligned} & 50.1 \\ & 22.5 \end{aligned}$
2086 au	2117)		
2098 bu	2087)	101.4	$\begin{aligned} & 67.8 \\ & 84.1 \end{aligned}$
1191 au	1238	91.5	36.5
1117 au	1144	97.8	204.1
1153 bu	1142	29.4	23.3
1030 au	1075	13.0	15.6
1087 bu	1065	13.0	2.4
1042 bu	1011	28.0	7.4
922. au	885	0	1.8
896 bu	871	17.4	24.0
809 au	832	0	0.3
732 bu	726	5.2	55.6
762 au	687	39.14	6.2
490 bu	509	9.6	16.2
238 bu	260	13.9	35.5
254 au	138	0	3.9

of inconsistancy. Table47 shows less satisfactory agreement $881(\mathrm{au})$ is now far too low, and $1378(\mathrm{bu})$ too high, though the predicted intensities are still generally of the correct order of magnitude.

In Table 50 there are a number of major faults - $1117 \mathrm{~cm}^{-1}$ (au) is far too low, and $1030 \mathrm{~cm}^{-1}$ (au) far too large. Table 51 shows overall a better pattern of predicted intensities and these faults are no longer nresent.

The two force fields should be expected to give different results, since many of the corresponding vibrational zodes are nredicted to be rather different in character. For instance, for the $d_{0} 881 \mathrm{~cm}^{-1}$ band force field A calculates $62 \% \mathrm{CO}$ in the potential energy distribution, whilst B calculates 0\% CO -
 $8.4 \mathrm{~km} \mathrm{~mol}^{-1}$. Obvious.ly the extent of motion of the oxygen atoms is a prime factor in determining the intensity of a band.

Section 6.2 Determination of Signs of $d p_{x} /$ dQ $_{i}$.

There are 9 au bands, one of which has effectively zero experimental intensity, so there are $2^{8}=248$ possible sign choices for the set of $d p_{x} / d Q_{i}$, or in fact 124 taking into account the equivalence of results on reversing a given collection of signs.

As in the analysis of the cyclohexane band intensities, the suitability of a given sign combination is examined by using the resulting APT's to calculate the intensities for the completely deuterated compound, which are then compared with those observed experimentally.

Tables 48 and 49 show the signs predicted for the d_{0} $\mathrm{dp} / \mathrm{dQ}$ on the basis of the force fields combined with the $a b$ initio APT's.

Force Field A.

The following represents the ab initio sign choice for the $d p_{x} / d Q$

| $2970 \mathrm{~cm}^{-1}$ | 2863 | 1449 | 1369 | 1256 | 1136 | 1086 | 881 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | + | + | + | - | - | + | - |

Four d_{8} intensities are chosen to contribute to the fit factor these are $1191,1117,1030$ and $762 \mathrm{~cm}^{-1}$. The two au $C D$ str band intensities are not experimentally available, and the three au bands with effectively zero intensity - 922, 809 and 254 cm^{-1} may be used as a further guide by inspection.

This sign choice yields the following d_{8} intensities:

ν	$A_{i}(o b s)$	$A_{i}(c a l c)$
1191	91.5	92.9
1117	97.8	12.2
1030	13.0	162.8
922	0.0	0.0
809	0.0	1.7
762	39.1	10.4
254	0.0	0.0

The au bands contribute only to the first row of the APT's here they are for this sign choice:

C^{4}	.646	.222	.204
$\mathrm{H}^{\mathrm{a} 7}$	-.017	.014	-.026
H^{e}	-.092	.106	.100
0^{6}	-1.073	0	0

Although the low intensity bands are well nredicted, $1117 \mathrm{~cm}^{-1}$ comes out far too low, and $1030 \mathrm{~cm}^{-1}$ far too high.

The predicted signs that are most likely to be in error are those corresponding to intensities predicted high when they should be low, and those which are predicted low when they should be high - the latter case having the greatest effect on the derived APT. This leads to the signs for $d_{0} 1449 \mathrm{~cm}^{-1}$ and $1086 \mathrm{~cm}^{-1}$ perhaps being the most likely to fall under suspicion. In fact, changing these signs has no great effect on either the fit factor or APT's.

Actually, the value of f can be drastically improved by changing just the sign of the last d_{0} band, $881 \mathrm{~cm}^{-1}$, leading to the following:
v
1191

- 1117

1030
922
809
762
254
A_{i} (obs) 91.5
97.8
13.0
0.0
0.0
39.1
0.0
$A_{i}(c a l c)$
121.4
0.5
13.5
0.3
2.1
95.4
0.0
$f=0.699$

C^{4}	.167	.619	
$\mathrm{H}^{\mathrm{a} 7}$.002	.042	
H^{e8}	-.087	.047	
0^{6}	-.163	0	.048
			.098

The improvement in ' f ' is simply due to the better prediction for the $1030 \mathrm{~cm}^{-1}$ band. $1117 \mathrm{~cm}^{-1}$ is still very poor. The band whose sign has been changed, $881 \mathrm{~cm}^{-1}\left(d_{0}\right)$ is large in magnitude ($75.2 \mathrm{~km} \mathrm{~mol}^{-1}$) and has been predicted even larger using the ab initio APT's ($123.0 \mathrm{~km} \mathrm{~mol}{ }^{-1}$), and hence would only be a likely candidate for a sign change if either the ab initio APT's, or force field, or both were totally unreasonable. The polar tensorsthen derived are very different - notably $\mathrm{dp}_{\mathrm{x}} / \mathrm{dx}(0)$ has changed from -1.073 to -.163.

There are a large number of sign combinations that yield f ~ 0.6, some of which can be ignored on the basis of prediction of large intensities for 922 and $809 \mathrm{~cm}^{-1}$, but all of which have three or four signs different from the ab initio choice. Furthermore, the resulting polar tensors are very different from the ab initio set. The success achieved with the cyclohexane ab initio APT's suggests that it is the force field employed, rather than the Gaussian 76 packare, that is most at fault.

Force Field B.
This is the ab initio sign combination:

* $2970 \begin{array}{llllllll}2963 & 1449 & 1369 & 1256 & 1136 & 1086 & 881\end{array}$

This gives the following predicted results:

v	A_{i} (obs)		$A_{i}(\mathrm{calc})$
1191			3.4
1117			216.2
1030			1.9
922			5.6
809			0.4
762			41.6
254			
C^{4}	. 679	-. 175	. 179
$\mathrm{H}^{2} 7$	-. 011	-. 017	-. 027
$\mathrm{H}^{\text {e }}$	-. 096	. 009	. 126
0^{6}	-1.144	0	0

The signs most likely to be in error are $1369 \mathrm{~cm}^{-1}$ (Obs 11.3, Calc 0.35), $1086 \mathrm{~cm}^{-1}$ (Obs 10.35, Calc 4.9), and $881 \mathrm{~cm}^{-1}$ (Obs 75.2, Calc 8.4). The fit factor may be improved through the variation simply of these questionable signs.

If $881 \mathrm{~cm}^{-1}$ is -1 , then it is found that $1369 \mathrm{~cm}^{-1}$ must be -l to yield a low f. The sign of $1086 \mathrm{~cm}^{-1}$ in this case has no great influence, although the negative is preferred. The - - combination for these three bands gives: [SIGN CHOICE 1]

ν		$A_{i}(0 b s)$		$A_{i}(\mathrm{Calc})$
1191		91.5		64.8
- 1117		97.8		123.8
1030		13.0		8.7
922		0.0		1.1
809		0.0		6.6
762		39.1		56.6
254		0.0		0.0
$\mathrm{f}=0.333$				
c^{4}	. 427	. 507	. 211	
$\mathrm{H}^{\text {a }}$. 034	. 059	-. 0.024	
$\mathrm{H}^{\text {e8 }}$	-. 096	. 179	. 086	
0^{6}	-. 730	0	0	

If $881 \mathrm{~cm}^{-1}$ is +1 , then $1369 \mathrm{~cm}^{-1}$ must be +1 , and $1086 \mathrm{~cm}^{-1}$ must be -1 to give a low fit factor. The +-+ combination for the bands gives:

【SIGN CHOICE 2】

ν	$A_{i}(0 b s)$	$A_{i}(\mathrm{Calc})$
1191	91.5	53.4
1117	97.8	127.6
1030	13.0	12.3
922	0.0	1.3
809	0.0	11.1
762	39.1	50.7
254	0.0	0.0

$f=0.269$ [lowest value out of all the sign combinations]

C^{4}	. .688	.131	-.017
$\mathrm{H}^{\mathrm{a} 7}$	-.065	.033	-.037
$\mathrm{H}^{\mathrm{e} 8}$	-.132	-.050	.115
0^{6}	-.981	0	0

The fact that the calculated d_{8} intensities agree so much better with the observed data than with those obtained with force field A, and that these sign choices are straightforwardly obtained from the ab initio results, strongly suggests that this constrained force field is the more reliable of the two from which an 'experimental' set of atomic polar tensors may be derived.

Section 6.3. 2nd and 3rd Rows of Dioxan APT's.
The second and third rows of the APT's are determined by the experimental values of $d p_{y} / d Q$ and $d p_{3} / d Q$, which in turn must be derived from the observed $b_{11} d_{0}$ band intensities. Tables 48 and 49 show the $a b$ initio sign choices for the two force fields torether with the calculated splitting of the b_{u} bands from which these dipole derivatives may be obtained.

The analvsis of these b_{u} bands presents a forinidable problem, since the 9 values of $d p_{y} / d Q$ and the 9 values of $\mathrm{dp}_{\mathrm{Z}} / \mathrm{dQ}$ may havei: their signs varied completely independently thus there are $2^{18 /} 2=131072$ possible sign combinations that each produce a new set of APT's. Even if a particular sign choice is singled out, the problem still remains of how to then split the bands into the y and z components, for if the $a b$ initio sign choice is not deemed satisfactory, then the subsequently predicted splittings are meaningless.

The success of force field B in favouring a set of signs consistent with the ab initio results can lead to some optimism in believing that the majority (if not all) of the b_{u} signs in Table 49 are reliable. The fact that most of the observed b_{u} intensities are only low to intermediate in value means that one or two errors of sign are unlikely to significantly change the form of the derived APT's. The y / z splitting is of still less consequence to the numerical value of the APT elements.

The procedure adopted here, then, is to impose all the constraints that appear in Table49 on the $d_{0} b_{u}$ bands, and calculate the APT's that result. This yields the following:

ν	$A_{i}(\mathrm{Obs})$	$\mathrm{A}_{\mathrm{i}}(\mathrm{Calc})$
1153	29.4	10.3
1087	13.0	6.3
1042	28.0	3.9
896	17.4	11.5
732	5.2	10.4
490	9.6	10.8
238	13.9	14.9

Overall there is reasonable agreement between the observed and calculated $\mathrm{b}_{\mathrm{u}} \mathrm{d}_{8}$ intensities, which are all interinediate in magnitude. The final APT's are now presented - the first row being derived from sign choice 1 (that from sign choice 2 is in brackets), and the second and third rows derived as was described immediately above. The ab initio APT's are listed for comparison.

Section 6.4 1,4-Dioxan Experimental APT's.

EXPT.
AB INITIO

APT's:

$$
\begin{aligned}
0^{6} & \equiv 0^{15} \\
\mathrm{C}^{4} & \equiv \mathrm{C}^{18} \\
& \equiv \mathrm{C}^{10} \equiv \mathrm{C}^{13} \quad(*) \\
\mathrm{H}^{\mathrm{a}} & \equiv \mathrm{H}^{\mathrm{a}} 19 \\
& \equiv \mathrm{H}^{\mathrm{a}} 12 \equiv \mathrm{H}^{\mathrm{a}} 17 \quad(*) \\
\mathrm{H}^{\mathrm{e} 8} & \equiv \mathrm{H}^{\mathrm{e}} 20 \\
& \equiv \mathrm{H}^{\mathrm{e}} 11 \equiv \mathrm{H}^{\mathrm{e}} 16 \quad(*)
\end{aligned}
$$

* - apart from reversal of sign of elements 1,2; 1,3; 2,1; 3,1.

Generally, there is very good agreement between the 'experimental' and ab initio APT's - the most significant terms are predicted correctly in both direction and magnitude. Of course, these results have been obtained by using the ab initio APT's to render the problem manageable, by placing constraints on the sign choices and b_{u} splitting. This in itself would not force the derived set of APT's to assume the same form as the ab initio set, since this experimental set is also determined by both the experimentally observed intensities, and the force field.

It is true that the force field B itself has been constrained by the results from the ab initio calculations, and right be expected to mirror those properties of electron flow exhibited by the $a b$ initio APT's, even though the relationship between the parameters is ultimately rather obscure. If these may be used successfully in conjunction with the experimental intensities, then this would imply that the ab initio picture is actually close to that of physical reality. Surely though the perturbation procedure has destroyed any dependence of force field on APT's, even if they have both originated from the same source, Gaussian 76.

Thus the two sets of APT's may be considered to be independent, and it is certainly correct to take their similarity as being an encouraging sign that a realistic model is being constructed to describe the flow of charge as the molecule vibrates.

Section 7.1.
Atomic Polar Tensors - Analysis and Discussion.
To compare the AP J's that bave keer derived for atoms in different molecules, it is necessary for these to be based on the same cartesian axis system. That employed for cyclohexane and trioxan (z-axis being the G_{3} axis ard the x-axis passirig through tre mid point of the in plane C-C or C-0 bend respectively) has been different from that for dioxan anc tetrahydropyran (y-axis parallel to the C-C bond; again the x-axis passes through its mid point) in order to take advantage of the simplifications that result from molecular symmetry.

The transition from one axis system to the other may be brougr.t about simply by a rotation about the x-axis. For instance consider trioxan.

Froil the Cartesian coordirates, the unit vectcr for the CO bond may be derived:

$$
\underline{e}_{12}=-.0040 e_{x}+.94529 \underline{e}_{y}-.32621 e_{z}
$$

Since $.94529=\cos 19.040^{\circ}$, this is the angle through which tre molecule shoulci be rotated around the x-axis (anticlcckwise) to bring the C-0 parallel to the y-axis (neglecting the tiny x-component).

As previously, the effect of this molecular retiction orn the APT's is realized through tre application of a similarity transformation.

$$
P_{x}(n \in W \text { axes })=R P_{x}(o l d) R^{t}
$$

R is	1	0	0
	0	$\cos \theta$	$-\sin \theta$
	0	$\sin \theta$	$\cos \theta$

This procedure has been applied to the cyclohexane and trioxan APTs, and the results are listed below with the corresponding parameters for dioxan and tetrahydropyran. The atoms are labelled according to the following numbering scheme,

Cyclohexane

Tetrahydropyran:
Dioxan:
Trioxan:
region 6 refilaced by an cxyeen atom. regions 3 and 6 replaced by oxygen atoms. regions 2,4 and 6 replaced by oxye日n atoms.

APT'S IN DIOXAN - TYPE AXIS SYSTEM.
Carbon Atoms.

$\begin{aligned} & \text { Cyclchexane: } \\ & \text { (Ab injtio) } \end{aligned}$	$\begin{array}{r} .1289 \\ -.0642 \\ -.0524 \end{array}$	$\begin{array}{r} -.0657 \\ .0442 \\ -.0287 \end{array}$	$\begin{array}{r} -.0482 \\ -.0313 \\ .1653 \end{array}$
Cyclohexane(1) (Experimental)	$\begin{array}{r} .085 \\ -.008 \\ -.079 \end{array}$	$\begin{array}{r} -.019 \\ .040 \\ -.006 \end{array}$	$\begin{array}{r} -.04 r^{\prime} \\ -.026 \\ .182 \end{array}$
Cyclobexane (3) (Ab initio)	$\begin{gathered} -.0062 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ .1922 \\ -.0247 \end{gathered}$	$\begin{gathered} 0 \\ -.0195 \\ .1524 \end{gathered}$
Cycloheyane (3) (Experiniental)	$\begin{aligned} & .026 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ .153 \\ -.091 \end{array}$	$\begin{array}{r} 0 \\ -.052 \\ .124 \end{array}$
$\begin{aligned} & \text { Tetrahydroxiyran(1) } \\ & \text { (At initio) } \end{aligned}$.7017 .0208 .0770	$\begin{array}{r} .14 C 5 \\ .4300 \\ -.00 \% \end{array}$	$\begin{array}{r} .1895 \\ -.0593 \\ .4123 \end{array}$
Tetrahydropyran (3) (Ab injtio)	$.018^{7}$ C ©	$\begin{array}{r} 0 \\ .12 \div 9 \\ -.0406 \end{array}$	$\begin{gathered} 0 \\ -.0094 \\ .1645 \end{gathered}$
Tetrahydropyran (2) (Ab initjo)	$\begin{aligned} & .0604 \\ & .0666 \\ & .0448 \end{aligned}$	$\begin{array}{r} .0187 \\ -.0292 \\ -.0323 \end{array}$	$\begin{array}{r} -.0042 \\ -.0156 \\ .1551 \end{array}$
$\begin{aligned} & \text { 1, 4-Micxan (]) } \\ & (\text { Ab initio) } \end{aligned}$	$\begin{aligned} & .6642 \\ & .0021 \\ & .0864 \end{aligned}$	$\begin{array}{r} .1480 \\ .3400 \\ -.0180 \end{array}$	$\begin{array}{r} .1936 \\ -.0338 \\ .4216 \end{array}$
$\begin{aligned} & \text {],4-Pioxar (1) } \\ & \text { (Experinentail) } \end{aligned}$	$\begin{array}{r} .668 \\ -.069 \\ -.124 \end{array}$	$\begin{array}{r} .131 \\ .258 \\ -.017 \end{array}$	$\begin{array}{r} -.017 \\ -.042 \\ .313 \end{array}$
$\begin{aligned} & \text { I'rioxan(l) } \\ & (\text { Ab initio) } \end{aligned}$	$\begin{aligned} & .9314 \\ & .0556 \\ & .1690 \end{aligned}$	$\begin{array}{r} .0256 \\ 1.0910 \\ .0329 \end{array}$	$\begin{array}{r} .2559 \\ -.0020 \\ .7238 \end{array}$
Trioxan (3) (At jnitic)	$\begin{gathered} 1.118 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & 6 \\ & .7240 \\ & .1515 \end{aligned}$	$\begin{aligned} & 0 \\ & .2575 \\ & .9043 \end{aligned}$ $.9043$

Note: Original cyclorexane AFTis have been rotated 19.473° anticlockwise about the x-axis. Trioxan APT's have been rotated 10.04° about the x-axis.

Axial Hydrogens.

Cyclohexare (1) (Ab initio)	$\begin{array}{r} .0366 \\ -.0268 \\ .0231 \end{array}$	-.0064 -.0084 . 0522	$\begin{array}{r} -.0348 \\ .0876 \\ -.1814 \end{array}$
Cyclohexare: (1) (Experinentel)	$\begin{array}{r} .032 \\ -.027 \\ -011 \end{array}$	$\begin{array}{r} -.038 \\ -.003 \\ .055 \end{array}$	$\begin{array}{r} .047 \\ .037 \\ -.181 \end{array}$
$\begin{aligned} & \text { Cyclohexane (3) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{aligned} & .0062 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .0187 \\ .1149 \end{gathered}$	$\begin{gathered} 0 \\ .0440 \\ -.1780 \end{gathered}$
Cyclohexane (3) (Experimental)	$\begin{gathered} -.007 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 0 \\ -.006 \\ .088 \end{array}$	$\begin{array}{r} 0 \\ .123 \\ -.138 \end{array}$
$\begin{aligned} & \text { Tetrahydropyran(1) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{array}{r} -.0208 \\ -.0323 \\ .0239 \end{array}$	$\begin{array}{r} -.0354 \\ -.0219 \\ .0239 \end{array}$	$\begin{array}{r} -.0739 \\ .1083 \\ -.1759 \end{array}$
$\begin{aligned} & \text { Tetrahydropyran (3) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ .0364 \\ .0947 \end{gathered}$	$\begin{gathered} 0 \\ .0364 \\ -.2020 \end{gathered}$
$\begin{aligned} & \text { Tetrahydropyran (2) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{array}{r} .0479 \\ .0219 \\ -.0031 \end{array}$	$\begin{array}{r} .0031 \\ -.0115 \\ .0645 \end{array}$	$\begin{array}{r} .0467 \\ .0729 \\ -.1520 \end{array}$
$\begin{aligned} & 1,4-\operatorname{Dioxan}(1) \\ & \text { (Ab initio) } \end{aligned}$	$\begin{array}{r} -.0104 \\ -.0302 \\ .0229 \end{array}$	-.0312 -.0198 .0541	$\begin{array}{r} -.0708 \\ .0947 \\ -.1499 \end{array}$
$\begin{aligned} & \text { 1,4-Dioxan (1) } \\ & \text { (Experimental) } \end{aligned}$	$\begin{array}{r} -.065 \\ -.030 \\ .006 \end{array}$	$\begin{array}{r} .033 \\ -.015 \\ .090 \end{array}$	$\begin{array}{r} -.037 \\ .077 \\ -.133 \end{array}$
$\begin{aligned} & \text { Trioxan(1) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{array}{r} -.0092 \\ .0225 \\ .0019 \end{array}$	$\begin{array}{r} .0020 \\ -.0610 \\ .0434 \end{array}$	$\begin{array}{r} .0612 \\ .0795 \\ -.1693 \end{array}$
$\begin{aligned} & \text { Trioxan (3) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{gathered} -.0472 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{r} 0 \\ -.0176 \\ -.0678 \end{array}$	$\begin{array}{r} 0 \\ .0548 \\ -.1746 \end{array}$

Equatorial Hydrogen.

Cyclohexane(1) (Ab initio)	$\begin{array}{r} -.1759 \\ .0924 \\ .0795 \end{array}$	$\begin{array}{r} .0809 \\ -.0134 \\ -.0429 \end{array}$	$\begin{array}{r} .1119 \\ -.0626 \\ .0043 \end{array}$
Cyclohexane(1) (Experimental)	$\begin{array}{r} -.127 \\ .044 \\ .098 \end{array}$	$\begin{array}{r} .051 \\ -.011 \\ -.054 \end{array}$	$\begin{array}{r} .078 \\ -.042 \\ -.017 \end{array}$
Cyclohexane (3) (Ab initio)	$\begin{aligned} & .0208 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ -.2552 \\ -.0518 \end{gathered}$	$\begin{gathered} 0 \\ -.0122 \\ -.0492 \end{gathered}$
Cyclohexane (3) (Experimental)	$\begin{aligned} & .000 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 0 \\ -.198 \\ .015 \end{array}$	$\begin{gathered} 0 \\ -.009 \\ .043 \end{gathered}$
$\begin{aligned} & \text { Tetrahydropyran (1) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{array}{r} -.1156 \\ .0833 \\ .0698 \end{array}$	$\begin{array}{r} .0541 \\ .0062 \\ -.0427 \end{array}$	$\begin{array}{r} .0760 \\ -.0729 \\ .0104 \end{array}$
$\begin{aligned} & \text { Tetrahydropyran (3) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{aligned} & .0292 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ -.2519 \\ -.0312 \end{gathered}$	$\begin{gathered} 0 \\ .0031 \\ .0552 \end{gathered}$
$\begin{aligned} & \text { Tetrahydropyran(2) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{aligned} & -.1676 \\ & -.0687 \\ & -.0802 \end{aligned}$	$\begin{array}{r} -.0750 \\ .0146 \\ -.0302 \end{array}$	$\begin{array}{r} -.1176 \\ -.0468 \\ .0031 \end{array}$
$\begin{aligned} & 1,4 \text {-Dioxan (1) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{array}{r} -.1052 \\ .0625 \\ .0666 \end{array}$	$\begin{array}{r} .0500 \\ .0385 \\ -.0302 \end{array}$	$\begin{array}{r} .0760 \\ -.0562 \\ .0146 \end{array}$
$\begin{aligned} & \text { 1,4-Dioxan (1) } \\ & \text { (Experimental) } \end{aligned}$	$\begin{array}{r} -.132 \\ .042 \\ .079 \end{array}$	$\begin{aligned} & -.050 \\ & -.006 \\ & -.036 \end{aligned}$	$\begin{array}{r} .115 \\ -.053 \\ -.004 \end{array}$
$\begin{aligned} & \text { Trioxan(1) } \\ & (A b \text { initio) } \end{aligned}$	$\begin{array}{r} -.0446 \\ .0441 \\ .0482 \end{array}$	$\begin{array}{r} .0411 \\ .0394 \\ -.0281 \end{array}$	$\begin{array}{r} .0567 \\ -.0334 \\ .0510 \end{array}$
$\begin{aligned} & \text { Trioxan (3) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{aligned} & .0548 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ -.0875 \\ -.0179 \end{gathered}$	$\begin{array}{r} 0 \\ -.0074 \\ -.0786 \end{array}$

Oxygen.

$\begin{aligned} & \text { Tetrahydropyran (6) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{gathered} -1.1140 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -.7152 \\ -.0239 \end{gathered}$	$\begin{gathered} 0 \\ -.0042 \\ -.5559 \end{gathered}$
$\begin{aligned} & \text { 1, 4-Dioxan (6) } \\ & \text { (Ab initio) } \end{aligned}$	$\begin{gathered} -1.0973 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -.7173 \\ -.0115 \end{gathered}$	$\begin{gathered} 0 \\ -.0094 \\ -.5726 \end{gathered}$
1,4-Dioxan(6)	$\begin{gathered} -.981 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -.473 \\ -.074 \end{gathered}$	$\begin{array}{r} 0 \\ .036 \\ -.352 \end{array}$
$\begin{aligned} & \text { Trioxan }(6) \\ & \text { (Ab initio) } \end{aligned}$	$\begin{gathered} -1.1350 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ -.7943 \\ -.0162 \end{gathered}$	$\begin{gathered} 0 \\ -.0130 \\ -.6506 \end{gathered}$

Bond Coordinate System.

In the literature, many APTs are reported that are based on the 'bond coordinate' system in which the molecular z-axis ís chosen so that it points along (or is parallel to) a specified band, Depending on the symmetry of the site of the bonded atom, the corresponding APT may assume a particularly simple form that will facilitate subsequent analysis.

In the molecules under consideration in this study this axis system is primarily of interest for the hydrogen atoms, the z-axis then pointing along the $C-H$ bond. Motion of the hydrogen in the z-direction is then a pure stretch. The dioxan-type system employed in the previous section actually has the y-axis parallel to $C-C$ bonds, but motion of a carbon atom in this direction results in other internal coordinate distortions apart from a C-C stretch, due to the cyclic nature of the structure.

To swing the $z-a x i s$ along a $\mathrm{C}-\mathrm{H}$ bond actually requires two rotations: one about the z-axis to give the same y coordinate as the carbon, and then a subsequent rotation about the y-axis to give the same y coordinate as the carbon. Consider the procedure for the cyclohexane equatorial hydrogen (ab initio data).

For simplification the coordinates are adjusted so that the carbon atom becomes the origin $0,0,0$. In this calculation the initial APT is based on the cyclohexane-type axis system, and these atoms have the following coordinates:

$$
\begin{array}{ll}
C: & (0,0,0) \\
\mathrm{H}^{\mathrm{e}}: & (.90877,-.52468,-.37100)
\end{array}
$$

The two rotation matrices multiply to give $\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]\left[\begin{array}{ccc}\cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos \phi \cos \theta & -\cos \phi \sin \theta & -\sin \phi \\ \sin \theta & \cos \theta & 0 \\ \sin \phi \cos \theta & -\sin \phi \sin \theta & \cos \phi\end{array}\right] \quad \equiv R$
It is required that
$R\left[\begin{array}{c}.90877 \\ -.52468 \\ -.37100\end{array}\right] \quad=\left[\begin{array}{c}0 \\ 0 \\ 1.113\end{array}\right]$
Three equations may be generated and then solved for the angles θ and ϕ.
(0). $90877 \cos \phi \cos \theta+.52468 \cos \phi \sin \theta .+.371 \sin \phi=0$.

0 . $90877 \sin \theta-.52468 \cos \theta=0$.
© . $90877 \sin \phi \cos \theta+.52468 \sin \phi \sin \theta-.371 \cos \phi=1.113$.
(0) yields $\tan \theta=.52468 / .90877 \therefore \theta=30^{\circ}$

Substituting this into (1) gives

$$
\tan \phi=-2.8283 \quad \therefore \phi=109.472^{\circ}
$$

and 0 may be used to confirm these figures.
Thus the transformation matrix R may be constructed. Then
P_{x} (bond coordinate system) $=R P_{x}$ (old) R^{t}
and

$$
\begin{gathered}
P_{x}(\text { old }) \rightarrow P_{x} \text { (new) as: } \\
{\left[\begin{array}{rrr}
-.1759 & .1136 & .0785 \\
.1136 & -.0448 & -.0453 \\
.0442 & -.0255 & .0354
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
.0492 & 0 & .0517 \\
0 & .0208 & 0 \\
.0089 & 0 & -.2553
\end{array}\right]}
\end{gathered}
$$

The APTs for hydrogen, in different molecules, in the bond coordinate system are listed below. Also given are the changes in the atomic coordinates produced by the shift of axes. 'The atoms are labelled as in the preceding section. In each case, the hydrogen coordinates listed are those bonded to the carbon at the origin.

APT'S IN BOND COORDINATE AXIS SYSTEM.

* Cyclohexane H^{e} (Ab initio); $\theta=30^{\circ}, \phi=109.472^{\circ}$

Old Coordinates	New Coordinates		
$c^{1} 0,0,0$	0,0,0		
$c^{2} 0,1.43306,-.5066$.7164,1.2410,-.5067		
$c^{6}-1.24107,-.71654,-.5066$.7164,-1.2410, -. 5067		
$\mathrm{H}^{\mathrm{a}} 0,0,1.113$	-1.0493, 0, -. 3710		
$\mathrm{H}^{\mathrm{e}}-.90877,-.52468,-.37100$	0,0,1.113		
01d APT	New APT		
-. 1759.1136 .0785	. 0492	0	. 0517
. $1136-.0448-.0453$	0	0.208	0
. 0442 -. 0255 . 0354	. 0089	0	-. 2553

Cyclohexane H^{e} (Expt).
Coordinates are listed above.

Old APT			New APT		
-. 127	. 074	. 057	. 042	0	-. 015
. 074	-. 042	-. 033	0	. 001	0
. 078	-. 045	. 014	. 009	0	-. 198

Note: In the cyclohexane-type axis system, the $\mathrm{C}-\mathrm{H}^{\mathrm{a}}$ actually points along the z direction, i.e. no computation is required.

TABLE 57.
Dioxan $H^{\mathrm{a}}\left(\mathrm{Ab}\right.$ initio) $\quad \theta=81.475^{\circ}, \phi=20.079^{\circ}$

> Old Coordinates
> New Coordinates
> $0,0,0$
> -1.4084,.2248, -. 5148
> $.4962,-1.2516,-.4875$
> 0,0,1.0841
> $.4962,-1.2516,-.4875$
> Old APT
> $-.0104-.0312-.0708$
> $-.0302 \quad-.0198 \quad 0.0947$
> $.0229 .0541-.1499$
> $.0227 \quad .0178-.0411$
> $.0486-.0196-.0419$
> $.0130 \quad .0391-.1832$

Dioxan H^{a} (Expt)

Coordinates as listed above.

	01d APT		
-.065	.033	-.037	
-.030	-.015	.077	
.006	.090	-.133	

New APT

$\begin{array}{rrr}.024 & .015 & -.024 \\ -.029 & -.063 & -.037 \\ -.031 & .026 & -.174\end{array}$
continued...
continued....

Dioxan H^{e} (Ab initio) $\theta=25.075^{\circ}, \phi=121.014^{\circ}$

0ld Coordinates
New Coordinates
$c^{1} 0,0,0$
$c^{2} 0,1.5163,0$
$0^{6}-1.1935,-.4809,-.6283$
. 3311,1.3734,-. 5507
$\mathrm{H}^{\mathrm{a}} .0552,-.3680,1.0181$
$\mathrm{H}^{\mathrm{e}} .8368,-.3915,-.5554$

01d APT
New APT
.0514 .0123 .0315
$-.1052 .0500 .0760$
$.0625 \quad .0385-.0562$
$.0666-.0302 \quad .0146$
$.0226-0559-.0014$
$.0119-.0222-.1594$

Dioxan H^{e} (Expt)

Coordinates as listed above.

	Old APT		New APT		
	-.132	-.050	.115	.063	.049
.042	-.006	-.053	.015		
.079	-.036	-.004	-.025	-.032	-.005
		-.083	-.173		

Tetrahydropyran $\mathrm{H}^{\mathrm{a}} \mathrm{I}$ (Ab initio) $\quad \theta=83.774^{\circ}, \phi=19.858^{\circ}$
\quad Old Coordinates
$\mathrm{C}^{1} 0,0,0$
$\mathrm{C}^{2} .0536,1.5181,0$
$0^{6}-1.1994,-.4715,-.6294$
$\mathrm{H}^{\mathrm{a}} .0399,-.3661,1.0197$
$\mathrm{H}^{\mathrm{e}} .8239,-.3910,-.5743$

01d APT
$-.0208-.0354 \quad-.0739$
-. 0323 -. 0219 . 1083
.0239 . $0239-.1759$

Tetrahydropyran H^{e} I (Ab initio)
$\theta=25.385^{\circ}, \phi=122.201^{\circ}$

New Coordinates
0,0,0
$-1.4140, .2179,-.5107$
$.5323,-1.2434,-.4769$
0,0,1. 084
$.6447, .7766,-.3778$

New APT
$.0105 \quad .0208-.0484$
$.0536-.0281-.0463$
$.0462 \quad .0355-.2010$

Old Coordinates

$C^{1} 0,0,0$
$C^{2} .0536,1.5181,0$
$0^{6}-1.1994,-.4715,-.6294$
$\mathrm{H}^{\mathrm{a}} .0399,-.3661,1.0197$
$\mathrm{H}^{\mathrm{e}} .8239,-.3910,-.5743$

Old APT

$\begin{array}{rrr}-.1156 & .0541 & .0760 \\ .0833 & .0062 & -.0729 \\ .0698 & -.0427 & .0104\end{array}$
Old Coordinates
$\mathrm{C}^{1} 0,0,0$
$\mathrm{C}^{2} .0536,1.5181,0$
$\mathrm{o}^{6}-1.1994,-.4715,-.6294$
$\mathrm{H}^{\mathrm{a}} .0399,-.3661,1.0197$
$\mathrm{H}^{\mathrm{e}} .8239,-.3910,-.5743$

0,0,0
.3210,1.3945,-. 5098
1.0023,-. $9402,-.4104$
$-.9657,-.3136,-.3801$
0,0,1.0780

New Coordinates

New APT

$$
\begin{array}{rrr}
.0476 & .0171 & .0408 \\
.0224 & .0362 & .0269 \\
.0223 & -.0109 & -.1836
\end{array}
$$

```
Tetrahydropvran \(H^{\mathrm{a}} 2\) (Ab initio)
\(\theta=98.626^{\circ}, \phi=199.733^{\circ}\)
```

\quad O1d Coordinates
$\mathrm{C}^{1}-.0536,-1.5181,0$
$\mathrm{C}^{2} 0,0,0$
$\mathrm{C}^{3}-1.2530,-5460, .6649$
$\mathrm{H}^{\mathrm{a}} .0564, .3715,-1.0476$
$\mathrm{H}^{\mathrm{e}} .8993, .3715, .5403$

New Coordinates
$-1.4203, .1747,-.5095$
0,0,0
.5557,-1. $3207,-.5071$
0,0,1.113
$.6551, .8334,-.3391$

Old APT

.0479	.0031	.0467	.0222	.0241	-.0166
.0219	-.0115	.0729	.0226	.0429	-.0293
-.0031	.0645	-.1520	-.0008	.0222	-.1807

Tetrahydropyran H^{e} 2 (Ab initio) $\quad \theta=157.554^{\circ}, \phi=-60.957^{\circ}$

$$
\begin{array}{ll}
C^{1}-.0536,-1.5181,0 & .3055,1.3823,-.5501 \\
C^{2} 0,0,0 & 0,0,0 \\
C^{3}-1.2530, .5460, .6649 & 1.0424,-.9830,-.5073 \\
\mathrm{H}^{\mathrm{a}} .0564, .3715,-1.0476 & -1.0101,-.3218,-.3391 \\
\mathrm{H}^{e} .8993, .3715, .5403 & 0,0,1.113
\end{array}
$$

Old APT
$\begin{array}{rrr}-.1676 & -.0750 & -.1176 \\ -.0687 & .0146 & -.01 \% 68 \\ -.0802 & -.0302 & .0031\end{array}$

New APT

.0473	.0026	.0471
.0066	.0387	-.0152
.0062	-.0103	-.2359

Tetrahydropyran $\mathrm{H}^{\mathrm{a}} 3$ (Ab initio) $\theta=-14.470^{\circ}, \phi=0$

Old Coordinates
 New Coordinates

$c^{2} 1.2530,-.5460,-.6649$
$c^{3} 0,0,0$
$C^{4}-1.2530,-.5460,-.6649$
$\mathrm{H}^{\mathrm{a}} 0,-.2782,1.0777$
$\mathrm{H}^{\mathrm{e}} 0,1.1112,-.0431$
$1.2530,-.6949,-.5074$
0,0,0
$-1.235,-.6949,-.5074$
0,0,1.113
0,1.0652,-. 3195

	OldAPT	
0	0	0
0	.0364	.0364
0	.0947	-.2020

	New APT	
0	0	0
0	. .0532	-.0294
0	.0288	-.2189

Tetrahydropyran $\mathrm{H}^{\mathrm{e}} 3$ (Ab initio) $\theta=-87.776^{\circ}, \phi=0$
$\quad \frac{\text { Old Coordinates }}{}$
$\mathrm{C}^{2} 1.2530,-.5460,-.6649$
$\mathrm{C}^{3} 0,0,0$
$\mathrm{C}^{4}-1.2530,-.5460,-.6649$
$\mathrm{H}^{\mathrm{a}} 0,-.2782,1.0777$
$\mathrm{H}^{\mathrm{e}} 0,1.1112,-.0431$

New Coordinates
1.2530,.6856,-. 5198

0,0,0
$-1.2530, .6856,-.5198$
0,-1.0660,-. 3198
0,0,1.113

	$\frac{\text { Old APT }}{}$	
.0292	0	0
0	-.2519	.0031
0	-.0312	.0552

$\frac{\text { New APT }}{}$.0292 0		
0	.0537	.0430
0	.0087	-.2503

TABLE 59.
Trioxan H^{a} (Ab initio) $\theta=-30^{\circ}, \phi=-.514^{\circ}$
\quad Old Coordinates
$C^{1} 0,0,0$
$0^{2}-.0057,1.3432,-.4635$
$0^{6}-1.1661,-.6677,-4635$
$H^{a}-.0149, .0086,1.0899$
$H^{e}-8664,-.5002,-.4108$

New Coordinates

$$
\begin{aligned}
& 0,0,0 \\
& 1.3479, .0048,-.4514 \\
& -1.3479, .0048,-.4514 \\
& 0,0,1.09 \\
& .4965,-.8664,-.4151
\end{aligned}
$$

Old APT

$\begin{array}{rrr}-.0092 & -.0219 & -.0572 \\ -.0219 & -.0346 & .0330 \\ .0055 & -.0031 & -.1957\end{array}$

Trioxan H^{e} (Ab initio) $\theta=30^{\circ}, \phi=112.323^{\circ}$

Old Coordinates
$c^{1} 0,0,0$
$0^{2}-.0057,1.3432,-.4635$
0,0,0
$.6837,1.1604,-.4467$
$0^{6}-1.1661,-.6677,-.4635$
.6837,-1.1604, -. 4467
$\mathrm{H}^{\mathrm{a}}-.0149, .0086,1.0899$
-. 9967,.0149,-. 4298
$\mathrm{H}^{\mathrm{e}} .8664,-.5002,-.4108$

01d APT
New APT

$$
\begin{array}{rrrccc}
-.0446 & .0574 & .0402 & .0758 & 0 & .0274 \\
.0574 & .0217 & -.0232 & 0 & .0548 & 0 \\
.0312 & -.0180 & .0687 & .0171 & 0 & -.0847
\end{array}
$$

Invariants of Atomic Polar Tensors.
The identification of the effective atomic charge X_{α} through a reformulation of the Crawford G sum rule has enabled an experimental sum of integrated band intensities to be analyzed into separate 'atomic' contributions. The most significant trend to have been identified is that in many cases the values of X_{α} seem to be independent of the host molecule. For instance $X_{H}=.101 e(\pm .005)$ in all hydrocarbons except acetylene and $X_{H}=.072 e(\pm .012)$ in the methyl halides. This implies that X_{α} represents some particularly localized combination of chemical bond properties which is sensitive to the nature of the atom α rather than those atoms in its immediate vicinity or their geometrical arrangement.

There are two possible methods for determining X_{α} : a) From the APT for that atom, by calculating $\left[\mathbb{P}_{x}^{\alpha}\left(P_{x}{ }^{\alpha}\right)^{t}\right]$. The effective charges may then be derived for all the atoms in the molecule and these will automatically satisfy those constraints imposed by the translational symmetry of the dipole moment.
b) Through measurements of the band intensities of isotopically substituted molecules and use of the sum rule (as used in the chapter presenting the experimental data).

The first method will yield χ_{α} that suffer from the same errors that are inherent to the determination of the APTs, namely uncertainties due to overlapping of bands, the sign choices of the experimental dipole derivatives and in the normal coordinates.

The second method is not usually viable for elements other than hydrogen. Isotopic data is scarce, and anyway the method would not be ideal for the heavier atoms (carbon, oxygen, fluorine etc.) since these provide only the minor terms in the intensity sums (the latter being weighted by the inverse of the atomic masses), and are thus particularly susceptible to errors from experimental measurements.

It is thus not realistic to expect the values of X_{α} derived from the two different approaches to be exactly equal. In this work, the X_{H} values obtained from the sum rule are:
$X_{H}=0.115$ for cyclohexane
$X_{H}=0.118$ for 1,4-dioxan
The values derived from the experimental APTs are:
$X_{H}=0.118$ for cyclohexane
$X_{H}=0.115 ; X_{H e}=0.124$ for 1,4 -dioxan

It appears that the two sets of values exhibit good agreement. It should be recalled, however, that a number of assumptions were made concerning the band-splitting in the CH stretch regions and that these strongly influence the experimental effective charges on axial and equatorial hydrogens separately.

All derived effective atomic charges are tabulated below. Two additional quantities are also listed, the Mulliken total atomic charge ${ }^{33}$ and the 'charge deformability' parameter.

The Mulliken charge is derived from molecular wavefunctions produced by quantum mechanical calculations.

Consider any normalized molecular orbital ϕ of a diatomic molecule, written as a linear combination of normalized atomic orbitals X_{r} and X_{S} of two respective atoms k and ℓ.

$$
\phi=c_{r} X_{r}+c_{S} X_{S}
$$

The occupancy of the molecular orbital, N (usually 2), may be envisaged as consisting of three 'sub-populations' whose distributions in space are given by the terms in the following expression

On integration over all space,

$$
N=N c_{r}^{2}+2 N c_{r} c_{s} S_{r s}+N c_{S}^{2}
$$

$S_{r s}$ is the overlap integral: $\int_{\infty} X_{r} X_{S} d \tau$

The first and last terms are the 'net atomic populations' and the central term is the 'overlap population'. In attempting to allocate the total population to the atomic centres alone, each atom is assigned exactly half of the overlap.

$$
\begin{aligned}
& N(k)=N\left(c_{r_{2}}^{2}+c_{r} c_{s} S_{r s}\right) \\
& N(l)=N\left(c_{s}+c_{r} c_{s} S_{r s}\right)
\end{aligned}
$$

The above logic may be expanded to fit the general case of a polyatomic molecule:

$$
N\left(i ; r_{k}\right)=N(i) c_{i r_{k}}\left(c_{i r_{k}}+\sum_{\ell \neq k} c_{i s_{\ell}} S_{r_{k} s_{\ell}}\right)
$$

$c_{i r}$ is the coefficient of the $r^{\text {th }}$ atomic orbital (on atom k) $i^{i r} k_{\text {the }} i^{\text {th }}$ molecular orbital. $N\left(i ; r_{k}\right)$ is the partial gross population in molecular orbital ϕ and atomic orbital $X_{r_{k}}$.

$$
\begin{aligned}
& N(i ; k)=\sum_{r} N\left(i ; r_{k}\right) \\
& N(i ; k) \text { is the subtotal in MO } \phi \text { on atom } k . \\
& N(k)=\sum_{i} N(i ; k)
\end{aligned}
$$

$N(k)$ is the total gross population on atom k.
So in this scheme the total electronic charge is divided amongst the individual atomic centres. This analysis is performed by the Gaussian 76 program and is presented in the full computer print-out. Some caution should be exercised before attaching a direct physical meaning to the Mulliken atomic charge and all the sub-populations since the procedure suffers from a number of deficiencies.
(1) The equal division of the overlap charge between two atoms of a bond may be unrealistic.
(2) It is possible for an atomic orbital electron population calculated from this scheme to be negative or greater than 2. (3) The charge $\mathrm{Nc}_{\mathrm{A}}{ }^{2}$ is assigned entirely to atom A even though the function ϕ_{A} may have its maximum at a significant distance from A, perhaps even in the vicinity of a neighbouring nucleus.
(4) The values obtained are dependent on the basis set.

At one stage in this project it was hoped that changes in the Mullihen populations due to atomic displacements might give a valuable insight into the origins of the molecular dipole moment change. In fact the dipole moment calculated on considering each atom as a point mass possessing the Mulliken charge bore no relationship to the value generated by that same Gaussian 76 run from the wavefunctions directly. Quite possible this is due to the inability of the Mulliken approach to cater for the directional and unsymmetrical nature of the bonding.

It has been found ${ }^{34}$ that charges correspond better with those found experimentally on increasing the size of the basis set. STO 4-31 G values are generally too positive.

Here it is considered that the Mulliken charges obtained may be most profitably used to identify trends that appear amongst atoms in different molecules, rather than attachinf too much significance to their absolute magnitudes.

The 'charge deformability' parameter is a function of two terms which are invariants of the APT for the atom α.

$$
\begin{aligned}
\bar{p}_{\alpha}= & \frac{1}{3} \operatorname{Tr} \mathrm{P}_{\mathrm{x}}^{\alpha} \\
\beta_{\alpha}^{2} & =\frac{1}{2}\left[\left(\mathrm{p}_{\mathrm{xx}}-\dot{p}_{\mathrm{yy}}\right)^{2}+\left(\mathrm{p}_{\mathrm{yy}}-\mathrm{p}_{\mathrm{zz}}\right)^{2}+\left(\mathrm{p}_{\mathrm{zz}}-\mathrm{p}_{\mathrm{xx}}\right)^{2}\right. \\
& \left.+3\left(\mathrm{p}_{\mathrm{xy}}^{2}+\mathrm{p}_{\mathrm{yz}}^{2}+\mathrm{p}_{\mathrm{xz}}^{2}+\mathrm{p}_{\mathrm{zx}}^{2}+\mathrm{p}_{\mathrm{yx}}^{2}+\mathrm{p}_{\mathrm{zy}}^{2}\right)\right]
\end{aligned}
$$

\bar{p}_{α} is the 'mean dipole derivative' and β_{α} is the anisotropy of the APT for atom α. These are related to the effective atomic charge by the relationship

$$
x_{\alpha}^{2}=\left(\bar{p}_{\alpha}\right)^{2}+(2 / 9) \beta_{\alpha}^{2}
$$

The charge deformability of atom α is defined as the ratio of \bar{p}_{α} to $\beta_{\alpha},|\bar{p} / \beta|_{\alpha}$.

To understand the significance of this parameter, consider the form of the APT for an atom A in a diatomic molecule.

$$
P_{x}^{A}=\begin{array}{ccl}
q^{\circ} & 0 & 0 \\
0 & q_{A}^{0} & 0 \\
0 & 0 & {\left[\underline{q}_{A}^{\circ}+\left(\delta q_{A} / \delta r_{A B}\right)^{\circ} r_{A B}{ }^{0}\right]}
\end{array}
$$

$\mathrm{q}_{\mathrm{A}}{ }^{\circ}$ is the charge on atom A when the structure is at equilibrium.
$r_{A B}{ }^{\circ}$ is the equilibrium bond length.
$\left(\delta q_{A} / \delta r_{A B}\right)^{0}$ gives the change in the value of the charge on
A as the bond is stretched: the charge flux.
The expressions for the invariants take the form

$$
\begin{aligned}
& \bar{p}_{A}=q_{A}^{\circ}+\frac{1}{3}\left(\delta q_{A} / \delta r_{A B}\right)^{\circ} r_{A B}^{\circ} \\
& x_{A}^{2}=\left(q_{A}^{\circ}\right)^{2}+\frac{2}{3} q_{A}^{\circ}\left(\delta q_{A} / \delta r_{A B}\right)^{\circ} r_{A B}+\frac{1}{3}\left[\left(\delta q_{A} / \delta r_{A B}\right)^{\circ} r_{A B}^{\circ}\right]^{2} \\
& \beta_{A}^{2}=\left[\left(\delta q_{A} / \delta r_{A B}\right)^{\circ} r_{A B}^{\circ}\right]^{2} \\
& \delta_{0}\left|\bar{p}_{A}\right| \beta_{A}\left|=\left|\frac{q_{A}^{\circ}}{\left(\delta q_{A} / \delta r_{A B}\right)^{\circ} r_{A B}}+\frac{1}{3}\right|\right.
\end{aligned}
$$

Thus if $\left(\delta q_{A} / \delta r_{A B}\right)^{\circ}$ is very small $\left|\bar{p}_{A} / \beta_{A}\right|$ will become correspondingly large, whereas if $\left(\delta q_{A} / \delta r_{A B}\right)^{\circ}$ is the leading term in the expression it will be small. This is equivalent to saying that atoms in bonds that have a prevalently ionic character (i.e. practically fixed charges) will have a high value of the parameter, >1.0. In this case the expressions for X_{A} and q_{A}^{o} become very similar.

This argument may be extended to polyatomic molecules, where an APT may be written in the form (z axis being parallel to $r_{A B}$):

$$
\begin{aligned}
& f\left[q_{A}^{0},\left(\delta q_{A} / \delta R_{t}\right)^{0}\right] \quad f\left[\left(\delta q_{A} / \delta R_{t}\right)^{0}\right] \quad f\left[\left(\delta q_{A} / \delta R_{t}\right)^{0}\right] \\
& P_{x}^{A}=f\left[\left(\delta q_{A} / \delta R_{t}\right)^{\circ}\right] \quad f\left[q_{A}^{\circ},\left(\delta q_{A} / \delta R_{t}\right)^{\circ}\right] \quad f\left[\left(\delta q_{A} / \delta R_{t}\right)^{\circ}\right] \\
& f\left[\left(\delta q_{A} / \delta R_{t}\right)^{0}\right] \quad f\left[\left(\delta q_{A} / \delta R_{t}\right)^{0}\right] \quad f\left[q_{A}^{0},\left(\delta q_{A} / \delta R_{t}\right)^{0}\right. \text {, } \\
& \left(\frac{\delta q_{A}}{\delta r_{A B}}\right)^{0} J
\end{aligned}
$$

where $R_{t} \neq \mathrm{r}_{\mathrm{AB}}$.

In hydrocarbons the off-diagonal charge flows are always smaller than q_{A}^{o} and $\left(\delta q_{A} / \delta r_{A B}\right)^{\circ}$. If these are then neglected, the above expression reduces to a form very similar to that given for a diatomic molecule, as do the corresponding expressions for the invariants. Within this approximation $|\bar{p} / \beta|$ may be interpreted in the same way. Thus in a non-polar molecule such as ethane $\left|\bar{p}_{H} / \beta_{H}\right|=0.144$, which can be compared with values of 1.2 for H in $\mathrm{H}_{2} \mathrm{O}$ and 21.6 for H in HCN .

Before considering the tabulated results it should be recalled that in order to impose the constraint $\Sigma . P_{x}^{\alpha}=0$ for a molecule it was found necessary to recalculate the APT for a specific chosen atom, in the ab initio calculations. This procedure has the disadvantage of concentrating the error from the full set on the APT for that certain atom, and it may prove misleading to compare subsequently derived parameters such as the invariantis with those from the unmanipulated APTs. For this reason the original carbon APT results have been included in the list, and these actually give a greater degree of consistency to the full set.

Firstly consider the data for the carbon atoms. It is here that the greatest fluctuation is observed on passing through the series cyclohexane, tetrahydropyran, dioxan, trioxan. This should be expected since carbon experiences the greatest bonding changes, being connected to zero, one, one and two oxygen atoms respectively. Thus it is observed that the Mulliken charge becomes correspondingly more positive and that the effective charge also increases (q_{m} increases by $\sim+0.3 e$ on the addition of each oxygen and X_{c} increases by $\sim 0.4 e) . \quad|\overline{\mathrm{p}} / \beta|_{c}$ is found to increase with the greater charge on the carbon as would be expected from the above discussion.

The variations in the properties of the hydrogen atoms are less significant since the replacement of carbon by oxygen occurs at a site two bonds away. Nevertheless, as the Mulliken charge becomes more positive, within the separate axial and equatorial sets the effective charge is seen to drop in magnitude. This trend is not consistent with
the values derived from the sum rule and experimental band intensities: cyclohexane, $X_{H}=0.115$; dioxan, $X_{H}=0.118$. No particular regularity is seen in the $\left|\bar{p} / \beta_{\bar{H}}\right|$ data.

A further feature that is apparent is that in each site in each molecule the Mulliken charge on the equatorial hydrogen is more positive than on the axial hydrogen. If a new parameter is defined

$$
\Delta=M C_{H} e^{-M C_{H}}{ }^{\mathrm{a}}
$$

for hydrogens as the same carbon in the same molecule, then the following trend becomes clear:

Molecule	$\Delta(s)$
Cyclohexane	.004
I,4-dioxan	.019
Tetrahydropyran (1)	.037
Trioxan	.066

Δ increases by ~.03e on the inclusion of each oxygen, but the 1,4 -dioxan figure suggests that addition of an oxygen separated by a C-C bond can reduce the discrepancy (the equatorial value is similar to that in THP but the axial hydrogen becomes more positive). $\quad \Delta=.012$ for tetrahydropyran hydrogens attached to both carbons 2 and 3.

The data for oxygen remains quite constant through the series. Thus whilst this atom is the source of the electronic rearrangements, it seems that the end result is actually an exchange of charge between the carbon and hydrogen atoms.

TABLE 60 INVARIANTS OF ATOMIC POLAR TENSORS.

Atom	Mulliken Charge(e)	$\chi_{\alpha}(\mathrm{e})$	$\underline{\square} / B \mid$
$C(C Y C, A B)$	-. 297	. 143	. 607
$C(C Y C, A B) *$	-. 297	.137	. 718
C (CYC, EXP T)		.131	590
Cl (THP, AB)	+. 029	. 552	1.223
C2 (THP, AB)	-. 324	. 311	. 320
C3 (THP, AB)	-. 312	. 150	1.320
C3 (THP, AB)*	-. 312	. 122	. 727
C(Dioxan, $A B$)	+. 002	. 517	1.096
C(Dioxan, $A B$)*	+. 002	. 507	1.080
C(Dioxan, EXPT)		: 475	. 889
$\mathrm{C}($ Trioxan, AB)	+. 295	. 945	1.824
O(THP, AB)	-. 704	. 829	1.596
O(Dioxan, AB)	-. 705	. 826	1.693
O(Dioxan, EXPT)		. 663	1.022
0 (Trioxan, AB)	-. 683	. 884	1.980
$H^{\text {a }}$ (CYC, AB)	+. 147	. 125	. 211
$H^{\text {a }}$ (CYC, EXP T)		. 118	. 231
H^{a} I ($\mathrm{THP}, \mathrm{AB}$)	+. 146	. 132	. 312
$\mathrm{H}^{\mathrm{a}} 2(\mathrm{THP}, \mathrm{AB}$)	+. 155	. 112	. 173
$H^{\mathrm{a}} 3(\mathrm{THP}, \mathrm{AB})$	+. 147	. 132	. 217
$H^{\text {a }}$ (Dioxan, $A B$)	+. 166	. 119	. 275
$H^{\text {a }}$ (Dioxan, EXPT)		. 115	. 370
$H^{\text {a }}$ (Trioxan, $\left.A B\right)$	+. 161	. 116	. 447
$H^{e}(C Y C, A B)$	+. 151	. 154	. 206
H^{e} (CYC, EXP T)		. 117	. 237
$H^{\mathrm{e}} \mathrm{I}$ ($\left.\mathrm{THP}, \mathrm{AB}\right)$	+. 183	. 122	. 215
$H^{\mathrm{e}} 2(\mathrm{THP}, \mathrm{AB})$	+. 167	. 144	. 174
$\mathrm{H}^{\mathrm{e}} 3$ (THP, AB)	+. 159	. 151	. 187
H^{e} (Dioxan, $\left.A B\right)$	+. 185	. 106	. 078
$H^{\text {e }}$ (Dioxan, EXP T)		. 123	. 197
H^{e} (Trioxan, AB)	$+.227$. 076	. 097

[^1]
Atomic Polar Tensors.

Any trends to have appeared in the invariants of the APTs must ultimately arise from relationships amongst the actual elements of these tensors. These in turn are functions of electro-optical parameters μ_{i} and $\partial \mu_{i} / \partial R_{j}$ (μ_{i} is the $i^{\text {th }}$ bond moment, R_{j} is the $j^{\text {th }}$ internal coorainate) which form the most direct interpretation of the electron flow. In this present study the analysis is not taken to this depth, the emphasis being rather on a comparison of the tensors of different compounds. Once trends have been identified they will promote the possibility of extending the work to prediction of the intensities of related molecules.

For convenience, the APT elements for atoms in different molecules are tabulated together below.

Consider first the carbon APTs (dioxan-type axis system). It should be recalled that the $2 n d$ and 3 rd rows of the dioxan experimental APTs contain a high measure of uncertainty due to the $a b$ initio constraints that had to be introduced during their acquisition. The diagonal elements increase in magnitude on passing through the cyclo-hexane-trioxai series, paralleling correctly the trend in the experimental APT elements. Out of the six off-diagonal elements four show a definite trend through the series: $d p_{x} / d z, d p_{y} / d x, d p_{z} / d x$ and $d p_{z} / d y$. Of these, only $d p_{x} / d z$ mirrors the difference between the cyclohexane and dioxan experimental APT elements. However, both the ab initio $d p_{x} / d y$ and $d p_{y} / d z$ do reflect this difference.

For the hydrogen atoms the APT's are based on the bond coordinate system. Consider the axial and equatorial atoms separately. The diagonals of ab initio axial hydrogen only exhibit a trend in $d p_{x} / d x$ but all mirror the experimental APTs. No off-diagonals show an obvious trend but all reflect the experimental figures except for $d p_{y} / d x$ and $d p y / d z$. For equatorial hydrogen, $d p_{y} / d y$ and $d p_{z} / d z$ do and $d p_{x} / d x$ does not show a progression, whilst $d p_{x} / d x$ and $d p_{z} / d z$ mirror the experimental results. Many off-diagonal elements for cyclohexane and trioxan are forced to zero by molecular symmetry. Of those which are not, $d p_{x} / d z$ and $d p_{z} / d x$, only
the former shows any trend. The experimental $d p_{x} / d y$ and $d p_{z} / d y$ changes are correctly predicted by the ab initio values. Most of the hydrogen APT elements are small in magnitude and so are of questionable significance.

For oxygen the values of the APT elements are independent of the host molecule, as was noted for the invariants. It seems that the inclusion of this atom strongly influences the carbon to which it is bonded and also the equatorial hydrogen attached to that carbon, but not the axial hydrogen. The diagonal elements of the carbon and equatorial hydrogen APTs typically have values directly proportional to the number of adjoining oxygen atoms.

One of the most interesting points to have emerged is the differentiation between axial and equatorial hydrogen. Such a phenomenon has been found to occur in many compounds containing atoms with lone pair electrons, as is indicated by the positions of the CH stretching modes. It is found that the lone pair weakens the CH bond that is trans to it. In dioxan the the other cyclic molecules studied here this is the carbon-axial hydrogen bond.

Thus the equatorial hydrogen is calculated to be more positively charged than its axial counterpart throughout this series of molecules. The CH^{e} stretching force constant is higher than that for CH^{a} in both the ab initio calculations and the unconstrained and constrained perturbation treatments.

The negative value of $d p_{z} / d z$ for the hydrogens implies that as the CH bond stretches the hydrogen acquires a greater positive charge. The drop from -. 2553 for H^{e} in cyclohexane to -. 0847 in trioxan can be seen as being consistent with the greater equilibrium positive charge on the latter. It is more difficult to produce an electron flow away from a centre with an already high positive charge. For the addition of each oxygen the equatorial hydrogen Mulliken atomic charge increases by $\sim 0.3+0.4 \mathrm{e}$ and the $\mathrm{dp}_{\mathrm{z}} / \mathrm{dz}$ also increases (i.e. becomes less negative) by a constant value, ~. 075 e .

TABLE 61.
Diagonal Elements of Hydrogen Atomic Polar Tensors(/e)
(Bond Coordinate System).

Atom, Molecule	$\frac{d p}{d x}$	$\frac{d p_{y}}{d y}$	$\frac{{ }^{\text {d }} \mathrm{p}_{z}}{d z}$
$\mathrm{H}^{\mathrm{a}} 1, \mathrm{CYC}(\mathrm{AB})$. 0366	. 0163	-. 2061
$\mathrm{H}^{\mathrm{a}} 1, \mathrm{CYC}(E X P T)$. 032	. 006	-. 190
$\mathrm{H}^{\mathrm{a}} 1, \mathrm{THP}(\mathrm{AB})$. 0105	-. 0281	-. 2010
$\mathrm{H}^{\mathrm{a}} 1$, Dioxan (AB)	. 0227	-. 0196	-. 1832
$\mathrm{H}^{\mathrm{a}} 1$, Dioxan (EXPT)	. 024	-. 063	-. 174
$H^{\mathrm{a}} 1$, Trioxan (AB)	-. 0348	. 0093	-. 1954
$\mathrm{H}^{\mathrm{e}} 1, \mathrm{CYC}(\mathrm{AB})$. 0492	. 0208	-. 2553
$\mathrm{H}^{\mathrm{e}} \mathrm{I}, \mathrm{CYC}(E X P T)$. 042	. 001	-. 198
$H^{e} 1, \operatorname{THP}(\mathrm{AB})$. 0476	. 0362	-. 1836
$\mathrm{H}^{\mathrm{e}} \mathrm{l}$, Dioxan (AB)	. 0514	. 0559	-. 1594
H^{e} I, Dioxan (EXP T)	. 063	-. 032	-. 173
H_{H}, Trioxan (AB)	. 0758	. 0548	-. 0847

TABLE 62.

Off-Diagonal Elements of Hydrogen Atomic Polar Tensors(/e) (Bond Coordinate System).

$$
\text { Atom, Molecule } \frac{d p_{x}}{d y} \quad \frac{d p_{x}}{d z} \quad \frac{d p_{y}}{d x} \quad \frac{d p_{y}}{d z} \quad \frac{d p_{z}}{d x} \quad \frac{d p_{z}}{d y}
$$

| $\mathrm{H}^{\mathrm{a}} 1, \mathrm{CYC}(\mathrm{AB})$ | -.0176 | -.0307 | -.0176 | .0177 | .0307 | -.0177 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}^{\mathrm{a}} 1, \mathrm{CYC}(\mathrm{EXP} \mathrm{T})$ | -.022 | .051 | -.022 | -.029 | .020 | -.011 |
| $\mathrm{H}^{\mathrm{a}} 1, \operatorname{THP}(\mathrm{AB})$ | .0208 | -.0484 | .0536 | -.0463 | .0462 | .0355 |
| $\mathrm{H}^{\mathrm{a}} 1, \operatorname{Dioxan}(\mathrm{AB})$ | .0178 | -.0411 | .0486 | -.0419 | .0130 | .0391 |
| $\mathrm{H}^{\mathrm{a}} 1, \operatorname{Dioxan}(E X P T)$ | .015 | -.024 | -.029 | -.037 | -.031 | .026 |
| $\mathrm{H}^{\mathrm{a}} 1, \operatorname{Trioxan}(\mathrm{AB})$ | -.0220 | -.0345 | -.0215 | .0574 | .0018 | -.0053 |

$\mathrm{H}^{\mathrm{e}} \mathrm{I}, \mathrm{CYC}(\mathrm{AB})$	0	.0517	0	0	.0089	0
$\mathrm{H}^{\mathrm{e}} \mathrm{I}, \mathrm{CYC}(\operatorname{EXP} \mathrm{T})$	0	-.015	0	0	.009	0
H^{e} I, THP (AB)	.0171	.0408	.0224	.0269	.0223	-.0109
$\mathrm{H}^{\mathrm{e}}, \operatorname{Dioxan}(\mathrm{AB})$.0123	.0315	.0226	-.0014	.0119	-.0222
$\mathrm{H}^{\mathrm{e}} \mathrm{I}, \operatorname{Dioxan}(E X P T)$.049	.015	.002	-.005	-.025	-.083
H^{e} I, Trioxan (AB)	0	.0274	0	0	.0171	0

TABLE 63.

Diagonal Elements of Carbon Atomic Polar Tensors (Dioxan Type Axis System).

Atom, Molecule	$\frac{d p_{x}}{d x}$	$\frac{d p_{y}}{d y}$	$\frac{d p_{z}}{d z}$
Cl, CYC (AB)	.1289	.0442	.1653
Cl, CYC (EXPT)	.085	.040	.182
Cl, THP (AB)	.7017	.4300	.4123
Cl, Dioxan (AB)	.6642	.3400	.4216
Cl, Dioxan (EXPT)	.688	.258	.313
Cl, Trioxan (AB)	.9314	1.0910	.7238

TABLE 64.

Off-Diagonal Elements of Carbon Atomic Polar Tensors (Dioxan Type Axis System).

Atom, Molecule	$\frac{d p_{x}}{d y}$	$\frac{d p_{x}}{d z}$	$\frac{d p_{y}}{d x}$	$\frac{d p_{y}}{d z}$	$\frac{d p_{z}}{d x}$	$\frac{d p_{z}}{d y}$
Cl,CYC(AB)	-.0657	-.0482	-.0642	-.0313	-.0524	-.0287
Cl, CYC (EXPT)	-.019	-.047	-.008	-.026	-.079	-.006
Cl,THP (AB)	.1405	.1895	.0208	-.0593	.0770	-.0073
Cl, Dioxan (AB)	.1489	.1936	.0021	-.0338	.0864	-.0181
Cl, Dioxan (EXPT)	.131	-.017	-.069	-.042	-.124	-.017
Cl, Trioxan (AB)	.0256	.2559	.0556	-.0020	.1690	.0329

TABLE 65.

Oxygen APT Elements (Dioxan Type Axis System).

Atom, Molecule	$\frac{d p_{x}}{d x}$	$\frac{d p_{y}}{d y}$	$\frac{d p_{z}}{d z}$	$\frac{d p_{y}}{d z}$	$\frac{d p_{z}}{d y}$
$06, \operatorname{THP}(A B)$	-1.1140	-.7152	-.5559	-.0042	-.0239
$06, \operatorname{Dioxan}(A B)$	-1.0973	-.7173	-.5726	-.0094	-.0115
06, Dioxan (EXPT)	-.981	-.473	-.352	.036	-.074
06, Trioxan(AB)	-1.1350	-.7943	-.6506	-.0130	-.0162

Prediction of Tetrahydropyran Band Intensities.

The ultimate test for the proposed force fields and APTs is their usefulness in predicting the infrared spectra of other molecules. A series of measurements have been made for tetrahydropyran, leading to a full set of experimental band intensities. In this section these are compared with figures predicted employing the force fields and APTs of cyclohexane and 1,4-dioxan.

The tetrahydropyran force field has here been formed by selecting appropriate force constants from those already used for cyclohexane and 1,4-dioxan. The latter supplies the constants for the oxygen-containing section of the molecule, and cyclohexane the other half.

Dioxan Force constants

Cyclohexane Force constants

The $f_{c c}$ value is the average of that from the two fields.

Two fields were investigated for dioxan so this procedure accordingly yields a 'constrained' and 'unconstrained' tetrahydropyran field.

One set of APT's for tetrahydropyran was constructed in a similar fashion using the experimental tensors obtained for cyclohexane and dioxan. A different set was obtained from the Gaussian 76 ab initio calculations, which actually allows differentiation between the three types of carbon present.

Thus there are four different possible combinations of force field plus APTs, which each produce a different set of predicted band intensities. These are tabulated below.

Due to the large number of closely spaced modes, all of these being infrared active, and the approximate nature of the force fields, matching the observed and calculated
frequencies is a somewhat arbitrary process. All that ean be done is to assume that it is correct to compare those bands of the same symmetry species (a' or a") that are closest in frequency. The quality of the frequency match will not determine the accuracy of the predicted intensity since these are different aspects of the molecular charge distribution.

A lot of data is listed. Overall there seems to be little to choose between constrained and unconstrained force fields in predicting the intensities. The ab initio API's, however, appear to give better results than those constructed from experimental APTs. This is apparent in the predictions for the most intense experimentally observed bands:

	Constrained		Unconstrained	
ν_{i}, A_{i} (obs.)	Ab initio	Expt.	Ab initio	Expt.
$1195,41.2$	49.9	26.4		
$1090,70.2$	64.7	52.2	74.4	56.6
$1046,25.7$	1.5	3.8	7.6	1.6
$875,23.6$	32.2	4.5	23.6	1.3

The ab initio APTs are successful except for the $1046 \mathrm{~cm}^{-1}$ band, whilst the experimental ones are satisfactory for only the $1090 \mathrm{~cm}^{-1}$ (most intense) band.

Many bands are intermediate in magnitude (between 4 and $20 \mathrm{~km} \mathrm{~mol}{ }^{-1}$) and on the whole are satisfactorily predicted. Two low intensity bands that seem particularly poor are the $880 \mathrm{~cm}^{-1}$ and $856 \mathrm{~cm}^{-1}$ bands.

	Constrained		Unconstrained	
ν_{i}, A_{i} (obs.)	Ab initio	Expt.	Ab initio	Expt.
$880, ~ 0$	0.8	25.4	18.8	48.9
$856,4.3$	22.8	4.2	29.1	5.4

These will be very sensitive to the amount of CO stretch predicted in the normal mode.

Overall, the reasonable measure of agreement must lead to some optimism in hoping that these fields and APTs form a viabl foundation on which to base further refinements.

TABLE 66.
Tetrahydropyran - 'Constrained' Force Field.

$\begin{aligned} & 0 \mathrm{bs} v \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Calc } \nu \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\left.\begin{array}{l} 0 \mathrm{bs} \mathrm{~A} \\ (\mathrm{~km} \mathrm{~mol} \end{array}{ }^{-1}\right)$	$\begin{aligned} & \text { Calc } A_{i} \\ & (\mathrm{~km} \mathrm{~mol} \end{aligned}$	$\begin{gathered} \text { Ab } \\ \text { initio } \end{gathered}$
2958a'	2980		EXPT	
2958a"	2974			
2942a'	2928	114.4	281.3	190.5
2933a'	2921			
$2924 a^{\prime \prime}$	2923			
2860a'	2860			
2860a"	2860			
2849a'	2856	218.1	150.0	280.2
2849a"	2855			
2842a'	2855			
1468a'	1463	4.0	0.0	0.8
1454a'	1449	4.3	1.8	5.9
1441a"	1474			
$1434 \mathrm{a}^{\prime}$	1443	11.6	15.9	21.24
1420a"	1449			
$1384 \mathrm{a}^{\prime}$	1399	5,85	0.5	5.3
1360a"	1401	1.1	4.4	3.2
1347a"	1393	4.75	12.8	1.0
1338a"	1339	0.0	5.2	0.9
1297a'	1356	5.6	1.3	1.8
1271a"	1216	5.8	9.2	9.2
1254a'	1300	3.45	3.8	3.5
1242a"	1179	0.0	0.8	3.5
1195a"	1264	41.2	26.4	49.9
1170a'	1227	0.0	0.8	6.2
1155a'	1123	2.3	0.3	1.5
1090a"	1114	70.2	52.2	64.7
1046a"	1095	25.7	3.8	1.5
1030a'	1042	11.6	4.1	4.8
1009a'	962	9.5	3.7	9.3
969 al	963	2.4	2.5	15.4

continued...

880a"	849	0	25.4	0.8
875a'	851	23.6	4.5	32.2
856a'	819	4.3	4.2	22.8
818a'	776	4.0	0.1	6.2
811a"	762	0.0	1.8	2.0
565a'	580	3.7	6.3	3.9
458a"	463			
432a'	500	7.2	19.3	10.4
400a'	369			
252a'	200			
252a"	171	4.3	1.3	13.72

TABLE 67.
Tetrahydropyran - 'Unconstrained' Force Field.

Obs ν $\left(\mathrm{cm}^{-1}\right)$	Calc ν $\left(\mathrm{cm}^{-1}\right)$	Obs Ai		
$\left(\mathrm{km} \mathrm{mol}^{-1}\right)$				$\mathrm{Calc} \mathrm{A}_{\mathrm{i}}$
:---:				
$\left(\mathrm{km} \mathrm{mol}^{-1}\right)$ EXPT^{2}		Ab		
:---:				
initio				

2958a'	2979)			
2958a"	2975)			
2942a'	2923)	114.4	281.1	190.0
2933a'	2922)			
2924a"	2923)			
2860a'	2859)			
2860a"	2859			
2849a'	2856)	218.1	149.7	279.2
2849a"	2855)			
2842a'	2855)			
1468a'	1471	4.0	2.2	5.6
1454a'	1453	4.3	4.4	8.1
1441a"	1471)			
1434a'	1444)	11.6	12.2	19.3
1420a"	1449)			
$1384 a^{\prime}$	1398	5.85	0.7	5.3
1360a"	1407	1.1	0.0	4.0
1347a"	1371 \{	4.75	10.7	8.2
1338a"	1345			
1297a'	1294	5.6	2.3	6.3
1271a"	1332	5.8	22.2	13.1
1254a'	1218	3.45	1.1	4.2
1242a"	1250	0	1.5	1.6
1195a"	1200	41.2	2.9	5.9
1170a'	1174	0	0.4	4.6
1155a'	1125	2.3	1.2	1.8
1090a"	1061	70.2	56.6	74.4
1046a"	1109	25.7	1.6	7.6
1030a'	1070	11.6	1.1	2.9
1009a'	960	9.5	2.4	5.8

```
continued...
```

969a"	956	2.4	1.4	9.1
880a"	881	0.0	48.9	18.8
875a'	878	23.6	1.3	23.6
856a'	811	4.3	5.4	29.1
$818 a^{\prime}$	797	4.0	0.0	2.2
811a"	766	0.0	1.0	6.5
565a'	568	3.7	5.8	10.3
458a"	480			
432a'	463	7.2	24.2	11.0
400a'	379			
252a'	197			
252a"	176	4.3	1.4	13.5

Section 7.6.
An 'Average' Dioxan Force Field.
Out of curiosity it was decided to test a third force field for dioxan formed by combining the constrained and unconstrained fields. The new field is taken as their average:

$$
F_{A v}=\left(F_{\text {constr }}+F_{\text {unconstr }}\right) / 2
$$

where F is an element in the force field matrix. Where there is no corresponding element (as with some interaction terms) $F_{A v}$ is simply half of the non-zero value.

This field, in conjunction with the dioxan $a b$ initio APTs, was used to calculate the dioxan frequencies and intensities. The results are tabulated below.

TABLE 68.
d $_{0}$ Dioxan - Average Force Field.

$\begin{aligned} & 0 \mathrm{bs} \nu_{i}^{1} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { Cale } v_{i} \\ & \left(\mathrm{~cm}^{-1}\right)^{2} \end{aligned}$	$\begin{aligned} & 0 \mathrm{bs} A_{i} \\ & (\mathrm{~km} \mathrm{~mol} \end{aligned}$	$\begin{aligned} & \text { Calc } A_{i} \\ & (\mathrm{~km} \mathrm{~mol} \end{aligned}$
2970bu	2975 \{	176:6	123.1
2970au	2971)		
$2863 a u$	2863 \{	153.4	209.6
2863bu	2855		
1457 bu	1440 \{	16.19	16.6
1449 au	1476		
1378bu	1368	2.11	1.9
1369 au	1359	11.28	8.2
1291 bu	1322	12.19	13.3
1256au	1261	33.00	54.6
1136au	1101	158.1	150.5

1086 au	1057	10.35	13.0
1052 bu	1035	8.05	7.0
889 bu	850	17.51	69.0
881 au	883	75.2	50.0
610 bu	652	14.6	35.8
288 au	178	0	5.2
274 bu	287	20.2	45.6

TABLE 69.
d_{8} Dioxan - Average Force Field.

$\begin{aligned} & 0 \mathrm{bs} \nu^{i} \\ & \left(\mathrm{~cm}^{-1}\right)^{2} \end{aligned}$	$\begin{aligned} & \text { Calc } v_{i} \\ & \left(\mathrm{~cm}^{-1}\right)^{2} \end{aligned}$	$\left.\begin{array}{l} 0 \mathrm{bs} \mathrm{~A} \\ (\mathrm{~km} \mathrm{~mol} \end{array}{ }^{-1}\right)$	$\begin{aligned} & \text { Calc } A_{i} \\ & \left(\mathrm{~km} \mathrm{~mol}^{-l}\right) \end{aligned}$
2235au	2216	87.3	72.1
2232 bu	2224		
2098bu	2090	101.4	148.0
2086au	2110		
Il91au	1217	91.5	68.4
1153 bu	1122	29.4	20.3
1117 au	1093	97.8	89.2
1087 bu	1057	13.0	4.4
1042 bu	1023	28.0	11.5
1030au	1059	13.0	91.3
922au	881	0	1.7
896 bu	894	17.4	19.6
809 au	836	0	0.1
762 au	732	39.1	17.6
732 bu	737	5.2	49.9
490 bu	531	9.6	26.9
238 bu	253	13.9	32.4
254 au	145	0	3.4

It was found that in nearly every case the intensity calculated is close to the average of those calculated with the initial two fields. In a number of cases this leads to a great improvement in the agreement with the experimental
results. For instance, the unconstrained field calculated the $d_{8} 1177 \mathrm{~cm}^{-1}$ band as 9.2 , the constrained field gave 204.1 and this new field gives 89.2, compared with the experimental value of 97.8. Similarly the unconstrained field gave $d_{0} 881 \mathrm{~cm}^{-1}$ as 123.0 , the constrained gave 8.4 and the new field gives 50.0, compared with the experimental value of 75.2. Of course there are a number of instances where the good agreement from one field is spoiled by the poor result from the other - e.g. the $d_{8} 1191 \mathrm{~cm}^{-1}$ band: unconstrained gives 90.5, the constrained 36.5 and the average field gives 68.4, compared with 91.5 experimentally.

This has illustrated that it seems possible to roughly estimate the consequences for the intensities on modifying the force field. Since ideally in future studies there will be a combined iterative refinement of fields and APTs to frequencies plus intensities, such a conclusion may lead to valuable constraints for the procedure.

The initial aim of this project was to perform a thorough analysis of the vibrational spectra of l,4-dioxan. The acquisition of experimental band intensities from gas and solution phase spectra, although time-consuming, is a straightforward procedure once the necessary instrumentation has been assembled and the computer programs have been written.

It was decided that MO calculations, carried out with Gaussian 76, would provide a set of constraints for later force field perturbation treatments, to ensure that realistic force constants could be produced for the analysis of the experimental data. Any subsequent'success from these results would then show that Gaussian 76 and the STO 4-31G basis set could properly be used for molecules of this size.

The ease with which atomic polar tensors could be obtained from Gaussian 76 made it feasible to calculate these for a range of related molecules, and this effectively decided the course of the rest of the research: experimental data was acquired for d_{0} - and d_{8}-dioxan, $d_{0}-$ and d_{12}-cyclohexane and tetrahydropyran, ab initio APTs were generated for dioxan, cyclohexane, tetrahydropyran and trioxan, and software was constructed to analyse the experimental band intensities and derive APTs from them.

Initially it was expected that the ab initio data would basically be employed to give some insight into the experimental figures. However, due to the greater quantity of the former at present, a rather different approach has been adopted. When agreement has appeared between the ab initio and experimental results, this has been used to justify some degree of confidence in the $a b$ initio results, and conclusions have been drawn from these which are then taken as being realistic.

Perhaps it is correct to be somewhat sceptical about such an approach. How much faith should really be attached to the figures that the computer generates in its quantum
mechanical calculations? Any indication of internal consistency is given great significance - maybe there is too much of a temptation to ignore those numbers which are not so satisfactory. When possible, conclusions ought to be drawn from real experiments in a real laboratory! The manner in which the dioxan constrained force field was derived is particularly open to this form of criticism; this is a least-squares fit (to experimental frequencies) of a least-squares fit (to energies calculated from Gaussian 76) to an MO calculation, which itself is based on a hierachy of assumptions (validity of LCAO approach, viability of basis set, etc.). A cynic would argue that the force constants finally produced might well be valid solutions to certain sets of equations, but actually lack any physical significance.

It is hoped that the success of the cyclohexane calculations will go some way to subduing such criticism. The fact that the $a b$ initio sign combinations are those generated by the completely independent force field plus experimental intensities must at least confirm the validity of this MO procedure for the calculation of APTs for this molecule.

Incorporation of oxygen atoms into the ring will certainly change the character of the molecule, so this success is not necessarily relevant. However, again the signs for $\mathrm{dp}_{\mathrm{x}} / \mathrm{dQ}$ gained via the experimental intensities correspond with those from the ab initio calculations apart froin those for several weak bands. Certainly ab initio force constants were used in generating the force field but these are several steps removed from the actual field employed, and the band intensities are completely independent. The fact is that it is the constrained force field that was most successful in analysing the intensities - this would have to be pure coincidence if the MO approach led to wholly abstract and meaningless force constants.

The force fields certainly need more thorough investigation since these are the prerequisites for any analysis of the experimental work. The next stage must be to carry out
a force field refinement simultaneously on all frequencies for the molecules studied. Certainly more isotopic data should be incorporated, especially ${ }^{13} \mathrm{C}$ or ${ }^{18} 0$ derivatives which would yield valuable information on the ring deformations (it was found that dioxan could be successfully prepared by the self-condensation of \lg of ethylene glycol (70\% yield) in concentrated sulphuric acid, and this can be bought commercially in the isotopically substituted forms).

In summary, it is hoped that this research has shown that Gaussian 76 can prove valuable in the analysis of the infrared spectra of these cyclic molecules. The degree of consistency between the ab initio results and those from experiment leads to optimism in believing that the derived atomic polar tensors are reasonable and that a procedure has evolved that will form the basis for future extensions of these studies.

ACKNOWLEDGMENTS

I would like to express my warmest gratitude to my supervisor, Dr. Derek Steele, whose encouragement and patience have enabled me to carry out the work described in this thesis. I would also like to thank the technical staff of the Chemistry Department, Royal Holloway College, for their assistance, and to acknowledge the support provided by the provision of a three year grant by the Science and Engineering Research Council.

CONTENTS

Refrences 219.
Tektronix computer program for processing of spectral data p. 222.
Gas phase spectra p. 230.
Solution phase spectra p. 267.
Energies calculated using Gaussian 76 p. 294.
Listing of the Fortran program ZSIGN p. 314.
Dioxan L matrices p. 320.

References

1. B. Crawford, Jr., J. Chem. Phys., 20 (1952) 977.
2. B. Crawford, Jr., J. Chem. Phys., 29 (1958) 1042.
3. D. G. Bourgin, Phys. Rev., 29 (1927) 794.
4. E. Bartholome, Z. Phys. Chem., (Leipzig), B23 (1933) 131.
5. E. B. Wilson, Jr., and A. J. Wells, J. Chem. Phys., 14 (1946) 578.
6. R. Coulon, B. Oksengorn, J. Robin and B. Vodar, J. Phys. Radium., 14 (1953) 63.
7. H. I. Welsh, M. F. Crawford, J. C. F. McDonald and D. Chisholm, Phys. Rev., 83 (1951) 1264.
D. A. Chisholm, Phys. Rev., 83 (1951) 1264.
J. Fahrenfort and J. A. A. Ketelaar, J. Chem. Phys., 22 (1954) 1631.
8. D. M. Dennison, Phys. Rev., 31 (1928) 503.
9. R.Ladenburg and F. Reiche, Ann. Physik., 42 (1911) 181.
10. D. A. Ramsey, J. Am. Chem. Soc., 74 (1952) 72.
11. H. J. Kostowsky and A. M. Bass, J. Opt. Soc. Am., 46 (1956) 1060.
12. A. Savitsky and M. J. E. Golay, Analyt. Chem., 36 (1964) 1627.
13. H. C. Burger and P. H. van Cittert, Z. Physik., 79 (1952) 722.
14. H. F. Herget, W. E. Deeds, N. M. Goular, R. J. Lovell and A. H.

1 . Nielsen, J. Opt. Soc. Am., 52 (1962) 1113.
15. R. N. Jones, R. Venkataragharan and J. W. Hopkins, Spectrochim. Acta, 23A (1967) 925.
16. D. F. Hornig and D. C. McKean, J. Phys. Chem., 59 (1955)
17. L. A. Gribov, Intensity Theory for Infrared Spectra of Polyatomic Molecules, Consultants Bureau, New York, 1964.
18. W. T. King, G. B. Mast and P. P. Blanchette, J. Chem. Phys., 56 (1972) 4440; 53 (1973) 1272; 64 (1976) 3036.
19. C. C. J. Roothan, Rev. Mod. Phys., 23 (1951) 69.
20. For example;
H. F. Schaefer, The Electronic Structure of Atoms and Molecules, Addison-Wesley, Reading, Massachusetts, 1972.
E. Clements, Proc. Nat. Acad. Sci. U.S.A., 69 (1972) 2942.
P. Pulay and W. Meyer, J. Mol. Spectrosc., 40 (1971) 59.
21. J. A. Pople and D. L. Beveridge, Approximate MO Theory, McGraw-Hill, New York, 1970.
22. G. A. Segal and M. L. Klein,J. Chem. Phys., 47 (1967) 4236.
23. R. Ditchfield, W. S. Hehre and J. A. Pople, J. Chem. Phys., 54 (1970) 724.
24. C. E. Blom, P. J. Slingerland and C. Altona, Mo1. Phys., 31 (5) (1976) 1359.
25. A. Garrett and I. Mills, J. Chem. Phys., 49 i(1968) 1719.
26. P. Pulay, Mo1. Phys., 17 (2) (1969) 197.
27. D. Steele, W. B. Person and K. G. Brown, J. Phys. Chem., 85 (1981) 2007.
28. J. A. Pople et al., Quantum Chemistry Package Exchange, 11 (1978) 368.
29. H. R. Buys and H. J. Goise, Tetrahedron Lett., 34 (1970) 2997.
30. R. G. Snyder and J. H. Schachtsneider, Spectrochim. Acta, 21 (1965)169.
31. K. B. Wiberg and A. Shrake, Specrochim. Acta, 27A (1971) 1139; 29A (1973) 567; 29A (1973) 583.
32. R. G. Snyder and G. Zerbi, Spectrochim. Acta, 23A (1967) 391.
33. R. S. Mulliken, J. Chem. Phys., 23 (1955) 1833.
34. M. Gussoni, C. Castiglioni and G. Zerbi, Chem. Phys. Lett., 95 (1983) 483.
35. M. Gussoni, P. Jona and G. Zerbi, J. Chem. Phys., 80 (1984) 1377.

The following is a listing of the program that was developed to store and manipulate spectra from the Perkin-Elmer 325 spectrometer. The operations performed by the program are described in Section 2.1.
 RRINT "Schn ON 2588-1888 RNGEE"
3508
88 5范 PRRN 'SCAN ON $1888-489$ RNHEE
THE 205

'SCAN ON $458-288$ RAMEE"
 "freanery at of rake"

 옥PRINT POOINS TO BE COLECTD AT ';YG;' OK-I INTRYMS'

3398 READ 933 : $18, \mathrm{~V} 8, \mathrm{F3}$
$\infty \infty$

2808 FOR I=8 TO NI STEP DNTCNI//83

x9
9388

$9975 \mathrm{HBO}_{3}=13+\mathrm{Hz}(120)$
8088 DIEIE HI，H2
ชว 3 ค

家 －TOTAL TIENSTY DF SECTIMC IS＊ HB
＇INTEKSITY ©F BAD IS＂；F2（Hi）x）$\times 12$

AVERKED OYER＂；NT；＂PONTTS＂
 ＂BACXCPMKD INTEXSITIES HME BEEN SCNFD BY＂； 5

8908
THEN 8308党旨品品
av 520

125: "Hu";复

 8

R21D E33: $12,13, F 8, I 8, N 7, S, F 3$

9788 PRIKT 'TPPUS 2 IF F2 TO BE CRECKED CR 3 FQ F3' 29
 8738 IPPTT 28

16818 DPMI F1，It， 15
$168: 5$ PRDIT＂DEMT EXP FACTORS＂
$160: 8$ IRTUT A5，B5
16228 FCR $K=1$ TO NI

$16878 \mathrm{D}=-45 \times 135(1244 \times 53 \mathrm{~F}=1)^{185}$
$16888 E=E X P(D)$

$16890 \% 2(K)=B / A \pm 5$
W．
$16: 18$ SN TO 15034
20098 PRIKT＂NTOT RASGE ME ITEGRTTIOR
に
5
5
5
5

色空

曋案
突
名
$0(N 8$
$i=1$
TO
2

涢
 18388 PRINT E25：＂MTENSTTY OF SECTIOH＂；$j^{\prime \prime}$＂IS＂；H2（188） $3+H 2(188)$
IE $\mathrm{HI}, \mathrm{H} 2$

： E2S：TOTM IMTEKSTIY OF SECTIONS IS＂，H3

 3308 GiIIIPPT MRHER OF SEPARATE BRHDS＂

 XOUBDED SPECTRM IS INH IS F3

$\rightarrow 5$ 18380 DIM HIC188），H2（188）
18318 FOR $I=1$ TO 188 （1） 108 $18328 \mathrm{HIC})=F 3(I+(\mathcal{1}-1)=188$ F2 옹 DR
OD：
DIM管
 STOP 900%

gas phase spectra			
d_{0}-Dioxan			
Spectrum	Region (cm^{-1})	Pathlength (m)	Pressure (mm Hg)
1	3100-2600	1.25	1.34
2	1520-1410	1.25	1.18
3	1410-1200	1.25	0.96
4	1200-1000	1.25	0.48
5	960-820	1.25	0.80
6	660-550	1.25	1.34
7	320-220	1.25	1.56
d_{8}-Dioxan			
8	2315-2150	1.25	0.6
9	2150-1900	1.25	0.6
10	1300-1000	1.25	0.71
11	1000-840	1.25	0.97
12	840-700	1.25	0.71
13	560-440	1.25	3.88
14	270-200	1.25	2.50
d_{0}-Cyclohexane			
15	3030-2830	1.25	0.15
16	1500-1400	1.25	1.52
17	1400-1310	5	30.00
18	1310-1190	5	3.82
19	1100-1000	5	7.65
20	1000-800	5	2.58
21	560-480	5	14.53

Spectrum Region (cm^{-1}) Pathlength (m) Pressure (mm Hg) d_{12}-Cyclohexane

22	$2300-2150$	1.25	0.48
23	$2150-2000$	1.25	0.48
24	$1300-1000$	5	1.58
25	$1000-850$	5	1.58
26	$770-600$	5	2.98
27	$450-350$	5	13.92

Tetrahydropyran

28	$3100-2780$	1.25	0.42
29	$1550-1335$	1.25	2.50
30	$1325-1235$	1.25	5.05
31	$1235-1000$	1.25	0.84
32	$1000-925$	5	3.48
33	$620-520$	5	3.48
34	$450-340$	5	3.24
35	$290-200$	5	2.54

Note: In all the spectra presented the absorbance is $\log _{10}\left(\mathrm{I}_{0} / \mathrm{I}\right)$, i.e. ordinate values should be multiplied by 2.303 to give the natural logarithmic absorbance value.

$\stackrel{1}{0}$

0.8
くめゃロロめくていい

18

0.5
$<\omega ๙ O \propto \oplus<Z O ル$

$\stackrel{9}{0}$

1.1

${ }^{1.3}$

$\stackrel{1}{\circ}$
くめのロロー《マいい

0.6

$\stackrel{N}{0}$

$\hat{0}$
«めわロロゅ《ていい

SOLUTION SPECTRA

Spectrum	Range (cm^{-1})	Concentration (M)	Solvent
d_{0}-Dioxan			
36	3100-2600	0.111	CS_{2}
37	1520-1220	0.177	$\mathrm{CC1}_{4}$
38	1300-1000	0.135	$\mathrm{CC1}_{4}$
39	970-840	0.060	CCl_{4}
40	660-540	0.277	$\mathrm{CC1}_{4}$
41	340-200	0.084	$\mathrm{C}_{6} \mathrm{H}_{12}$
$\mathrm{d}_{8}-\text { Dioxan }$			
42	2350-1950	0.214	CS_{2}
43	1300-850	0.092	CS_{2}
44	840-700	0.125	CS_{2}
45	600-400	0.214	CS_{2}
46	300-200	0.214	CS_{2}
d_{0}-Cyclohexane			
47	3100-2750	0.126	$\mathrm{CC1}_{4}$
48	1500-1200	0.188	$\mathrm{CC1}_{4}$
49	1300-1200	0.961	$\mathrm{CC1}_{4}$
50	1100-970	1.410	CS_{2}
51	950-850	0.961	$\mathrm{CC1}_{4}$
52	600-500	0.961	$\mathrm{CC1}_{4}$
d_{12}-Cyclohexane			
53	2500-1900	0.266	CCl_{4}
54	1200-850	0.726	$\mathrm{CC1}_{4}$
55	850-600	0.489	CS_{2}

Spectrum Range (cm^{-1}) Concentration (M) Solvent

Tetrahydropyran

56	$3300-2500$	0.208	$\mathrm{CC1}_{4}$
57	$1490-925$	0.208	$\mathrm{CC1}_{4}$
58	$910-770$	0.512	CS_{2}
59	$650-500$	0.512	CS_{2}
60	$350-200$	0.512	CS_{2}

Spectrum 42

Spectrum 43

Spectrum 45

Spectrum 48

Spectrum 49

Spectrum 50

Spectrum 51
Spectrum 52

Spectrum_ 53

Spectrum 56

Spectrum 57 ctd.

Least=squares_analysis
Suppose we aim to represent an obseryable as a function of some parameters p. Then the least squares problem is to adjust the array p so that the sum of the square of the error vectors is a minimum. Let the true and calculated observables be $I_{t i}$ and $I_{c i}$ and define the residual by

$$
R=\sum_{i}\left(I_{c i}-I_{t i}\right)^{2}
$$

If our initial guess at the parameters produces an array of calculated observables $I_{c i}^{0}$ then we wish to know the variations Δp which minimises R

$$
\begin{align*}
I_{c i} & =I_{c i}^{0}+\sum_{j}\left(\frac{\partial I}{\partial p_{j}}\right) \Delta R_{j} \equiv I_{c i}^{0}+\sum_{j} J_{i j} \Delta p_{j} \tag{2}\\
\therefore R & =\sum_{i}^{\Sigma}\left(\left(I_{c i}^{0}-I_{t i}\right)+\sum_{j} J_{i j} \Delta p_{j}\right)^{2} \tag{3}\\
\frac{\partial R}{\partial \Delta p_{j}} & =\underset{i j_{k} j_{k i}}{2 \Sigma \Sigma\left(I_{c i}^{0}-I_{t i}+J_{i, j} \Delta p_{j}\right) J_{i j} F 0} \tag{4}
\end{align*}
$$

Let $I_{t i}^{0}-I_{c i}$ be written as a vector of 'errors' $\widehat{\varepsilon}_{\boldsymbol{i}}$
The set of such minima equations as above can be put in matrix form

$$
\begin{align*}
& J^{t} \hat{\epsilon}=\left(J^{t} J\right) \Delta \hat{p} \tag{5}
\end{align*}
$$

If all obseryables are not of equal retiability it may be wished to weight the results in some manner. This can be achieved at the stage of equation (4) by multiplying the equation for $\varepsilon_{\mathbf{i}}$ by weight W_{i}. In equation (5) this is acconmodated by constructing a diagonal matrix W with entries equal to the weights W_{i} which leads to

$$
\begin{equation*}
J^{t} W \hat{\varepsilon}=\left(J^{t} W J\right) \Delta \hat{p} \tag{5}
\end{equation*}
$$

Provided that the set of 1 inear equations (4) are adequate to determine the $\Delta \mathrm{p}$ (one obvious condition is $\mathbf{j} \geqslant i$) then the determinant of $J{ }^{t} W J \neq 0$ and the matrix may be inverted to give the optimum $\Delta \mathrm{p}$ as

$$
\begin{equation*}
\Delta \hat{p}=\left(J^{t} W J\right)^{-1} J J^{t} \hat{\varepsilon} \equiv C^{-1} J^{t} W \hat{E} \tag{6}
\end{equation*}
$$

In the event that a linear relation (2) is very inadequate the correction (6) will lead to a corrected \hat{p} which may be little improvement - or even worse! Furthermore it is conceivable that due to existence of acceptable alternative ordering of $I_{c i}$ and $I_{t i}$ alternative solutions exist. To converge onto a particular solution, or to overcome oscillations one of two techniques can be employed.
(a) A small fraction (usually 0.1 to 0.5) of Δp can be added to the original p. Imagine a cross section in the solution space as below -

then a typical set of sequential solutions to $I_{c i}$ might Be as shown by solid line. By taking only half of $\Delta \hat{p}$ convergence of the minimum closer to the original choice of \hat{p} will be more likely.
(b) Addition ofaC \boldsymbol{i}_{i} to C ('a' any real constantl before inversion is also reputed to smooth convergence.

ENERGIES CALCULATED USING GAUSSIAN 76
In Section 3.3 it was described how Gaussian 76 was used to calculate the energies for various molecular configurations of 1,4-dioxan, which were subsequently used to derive a set of general valence force constants. In the following pages the raw data is presented in full.

The molecular gometries and corresponding energies are presented on alternate pages. For the former, the value of a representative member of each set of equivalent internal coordinates is given. For the latter, the energy calculated using Gaussian 76 (EN G76) and the energy calculated using the derived force constants (from the least-squares fit to the energies, EN FUNC) are given. These are given for each symmetry species. The "raw" ab initio force constants are then presented.

The following are the values of the internal coordinates corresponding to the minimum of the molecular potential energy, calculated from the Ag data.
$\mathrm{E}_{0}=-0.37154030$

$$
\mathrm{CO}=1.43574 \mathrm{~A}
$$

$$
C C=1.51752 \mathrm{~A}
$$

$$
\begin{aligned}
& \mathrm{H}^{\mathrm{e}} \mathrm{CC}=111.968^{\circ} \\
& \mathrm{H}^{\mathrm{a}} \mathrm{CO}=109.406^{\circ} \\
& \mathrm{H}^{\mathrm{e}} \mathrm{CO}=106.529^{\circ} \\
& \mathrm{COC}=113.572^{\circ} \\
& O C C=109.385^{\circ}
\end{aligned}
$$

$\mathrm{CH}^{\mathrm{a}}=1.08543 \mathrm{~A}$
$\mathrm{CH}^{\mathrm{e}}=1.07939 \mathrm{~A}$
$\mathrm{H}^{\mathrm{a}} \mathrm{CC}=110.060^{\circ}$
Note: in order to convert the energies to Hartrees add -305 to each figure. This was omitted in the calculations for simplification.

 FFFFFFFFFFRFFFFFFFFFFFFFFFFFFFFFFFFFF

 （n）

勺氏の

山的

 II 11 $x \times x \times x \leq x \leq x \leq x \leq x$

II 11 II 11 II II 11

NNinNNNNN

ogagh，
NNNNNNNN
aかaaかaan

に的にに
かoaのo

 －T－F

N人Nへ

 FFFFFFFFFFFFFFFFFFFFFFFFFOFFGFFFFFFFF FFFF
が心が心

Abstract

NNNNNNNNNNNNMNN
 MMMMMMMMMMMMぃMぃM

MMMMMMMMMMMMMMMMMMMMMMMMIMMMMMMMMMMMM

 ज0000000000ロロ000000000000000000000OOO

[^2]$0 \cdot 0 \cdot 0$
Min
へ人
－ロ゚
－2c

000
000
 0
0 orir －－

x, ∞ $F F F$ J J J C）m －E $\leftarrow \leftarrow \leftarrow$
$x \infty \omega$ いかけ 060 r r－ in win

II II II II II $\leq x \leq x \leq$ $0 \infty \rightarrow 0$－ N．$\quad 0 \rightarrow \infty$ $A 0$ in 0 $\begin{array}{ll}\ln \\ 0 & 0 \\ 0 & 0\end{array}$ 010000 QREDEO
 11111

II II II II i1 $\boldsymbol{r} \boldsymbol{r} \propto \propto \boldsymbol{\sim}$ orrooror 0
$r \times r a r$
x $\begin{array}{llll}\infty & \propto \\ \propto & \propto & \propto \\ \propto\end{array}$ II い1 U！H1（1）

N1OHNG Fincto minoso
 Moromra MーNMN「ocos M1のMMM － $0 \cdot 0$品品品

11 II 11 II 11

IL IL IL IL H．
1 $2 \geq \geq 2$ 111 IU UJ 1111
 0．Mn R＋ $C C N$ ns （x） $\operatorname{rin}+1$ MrvMMN MNVMNが FOEGOO MMMMM
 $\begin{array}{ccccc}11 & 11 & 11 & 11 & 11 \\ 0 & 0 & 0 & 0 & 0\end{array}$ $\begin{array}{lll}1000 & 0 \\ M N O M\end{array}$ M1919015

Z 2 Z 27

ODOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

1
0
0
H

 $\begin{array}{llllllllllllllllllllllllll}11 & 11\end{array}$

z z z z z z z て

 MMMMMMMMMNIMMNITHMMMMMMMMMMMM

nNNNNRNNNTUNNTUNNMNNNNNNNNNNN

 MMMMMMMMMMMMMMMMMMMMMMINMMM

CO	CC		CHa		CHe		HaCC		HeCO		HaCO		HeCO	COC		OCC
1.4342		1628		3412	1.	0776	109	26	11	2697	109	． 421	106	11	50	109.193
1.4442		5162 ¢	1.	3413	1.	07－ 8	109.	30	111	2097	109	． 421	105	113	． 50	109.193
1.4542		5162 ¢	1.	2413	1.	07767	130．	730	111	2097	109	． 421	100	113	50	109．193
1.4342		51628		を 43	1.	07769	107.	736	111	2597	109	． 421	106	11	50	111．193
1.4342		51028	1.	S 418	1.	07769	119	736	111	2697	100	． 421	106	113	． 5	112．193
1.4542		51028	1.	8418	1.	0776	109.	736	111	． 2097	109	． 421	106	113	50	111．193
1.4542		51622	1.	－ 213		－776	100．	736	111	.2097	1179	． 421	176	113	． 50	112．193

$$
\begin{aligned}
& \tau \cdot \varepsilon \tau \tau \\
& \text { S.Lて } \\
& 6 \cdot \varsigma\rangle \\
& \text { s. } 2 \varepsilon \\
& \text { - てと } \\
& \text { ク・クをー } \\
& \begin{array}{l}
8 \cdot 2 \tau \\
6 \cdot カ マ
\end{array} \\
& \text { จอ } 0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
v & \sigma & N & 0 & 0 \\
\infty & 0 & 0 & 0 & 0 \\
0
\end{array}
\end{aligned}
$$

Fortran Program for the Calculation of APTs from Experimental Intensities.

In the pages that follow the program ZSIGN is listed. This was used to investigate the sign choices for the experimental $\mathrm{dp} / \mathrm{dQ}$ and to calculate the experimental APTs, as was described in Section 4.1.

```
    PROGRAM ZSIGN
    DIMENSION NNPRNT(SO),NNTOT(SC)
    DIMENSION NROW(50),NCOLM(5C.),OFDR(3,100),WT(100)
    dimension znewdpdq(3,73)
    DIMENSION BEER(7C,70),XBEEP(70,70),X3EERX(70,70)
    DIMENSION AA(7G,-0)
    DIMENSION EXPT(50),IP(13000, ह),NAME(2),NSGN(50),3T(75.75)
    DIMENSION AM(20),G(75,75),FREQ(75),XLTR(75,75),ZLINV(75,75)
    DIMENSION BIGPERM(5O)
    DIMENSION ZB(75,75),OEXPT(50)
    DIMENSION APX(3,75),PX(3,75)
    dimension xfreq(50)
    DIMENSION E(75,75),XL(75,75)
    DIMENSION PQ(3,75)
    DIMENSION BANDINT(50)
    DIMENSION F(?5,75)
    DIMENSION DNOBANO(50)
    DIMENSION DDEXPT(5C)
    CHARACTEF*SO LABEL
    INPUT BAND INTENSITY (Km mol-1)
    INPUT NO OF BANOS, NO OF INTERNAL COORDINATES, NO OF ENTRIES IN
    READ(65,*)NBANDS,NR,NCPTS
                                    PQ MATRIX
    INPUT DIRECTION OF DIPOLE CHANGE (X=1,Y=2,Z=3)
    INPUT NO OF NORMAL COORDINATE, SIGN OF CPT, EXPT BAND INTENSITY
    INPUT FRACTION OE INTENSITY TO THIS CPT
    DO 2 I=1,NCPTS
    REAO(65,*)NROW(I),NCOLM(I),NSGN(I), EXPT(I),WT(I)
    WRITE(82,*)NROW(I),NCOLM(I),NSGN(I),EXPT(I),WT(I).
2 CONTINUE
    DO 4 I=1,NCPTS
    K=NKOW(I)
    J=NCOLM(I)
    DPDQ(K,J)=0.03203*((5XPT(I)*WT(I))**0.5)
    DPDQ(K,J)=EPDQ(K,J)*NSGN(I)
    WRITE(B2,*)K,J,EXPT(I),DPDQ(K,J)
4 \text { CONTINUE}
    OPDQ IS PQ MATRIX
    GENEPATE SIGN PERMUTATION MATRIX FOR DPDQ
    INPUT NO OF DPDQ TO BE VARIED
    READ(65,*)NCOL
    K=1
    DO 10 M=1,NCOL
    NCOL1=2**M
    NCOL2=(2**(M+1))-1
    DO 6 J=1,M
    DO 6 I=NCOL1,NCOL2
    L=I/2
    IF(J.EQ.M)GO TO o
    IP(I,J)=IP(L,J)
    GO T0 6
& IP (I,J)=K
```

```
            K=-K
    6 ~ C O N T I N U E ~
    10 CONTINUE
    REAO(55,111)LABEL
    READ(55,*)NR,NOAT FOR DEUT CPD
    NQ=3*NOAT
    LESSNQ=NQ-6
    READ(55,111)LABEL
    WRITE(6,111)LABEL
    READ(55,109)((ST(I,J),J=1,NR),I=1,NQ)
    REAO(55,111)LABEL
    WRITE(5,111)LABEL
    READ(55,109)(AM(I),I=1,NOAT)
    PREAE(55,111)LAGEL
    WRITE (6,111)LABEL
    READ(55,107)((G(I,J),J=1,NR),I=1,NR)
    REAE(55,111)LASEL
    REAU(55,109)((F(I,J),J=1,NR),I=1,NR)
    READ(55,111)LASEL
    DO 88 = =1,NQ
    REAO(55,*)V
    FREQ(I)=V
    8 CONTINUE
        DO 90 I=1,LESSNQ
        XFREQ(I)=(FREQ(I)/1302.9)**2
    90 CONTINUE
    READ(55,*)((XLTR(I,J),J=1,NR),I=1,LESSNQ)
C
C
C
    INPUT L-1 AND B FCR DO CPO FROM FOROTO.DAT
    NQ=3*NOAT
    LESSNQ=NQ-6
    READ(70,109)((ZE(I,J),J=1,NQ),I=1,NR)
    READ(70,109)((ZLINV (I,J),J=1,NR),I=1,LESSNQ)
    130015 I=1,NCPTS
    BIGPERM(I)=1
    15 CONTINUE
    INSERT PERM MATRIX INTO BIGOERM, ROW AT A TIME
C
C
C
```

INPUT WHICH OPDQ ARE EEING VARIED
READ (O5,*) (NAME (I), I=1,NCOL)
INPUT SIGNS OF REST OF DPDQ

INPUT MATRICES FROM FOROS5.DAT, DERIVED FROM NORMAL COORDINATE CALC

FOR DEUT CPD
$N Q=3 * N O A T$
LESSNQ=NQ-6
READ (55,111)LABEL
WRITE 6 6,111)LABEL
$\operatorname{READ}(55,109)((S T(I, J), J=1, N R), I=1, N Q)$
REAU (55,111)LABEL
WRITE(5,111)LABEL
READ (55,109)(AM(I), I=1, NOAT)
REAU(55.111)Label
$\operatorname{READ}(55,107)((G(I, J), J=1, N R), I=1, N R)$
REAC (55,111)LASEL
$\operatorname{REAU}(55,109)((F(I, J), J=1, N R), I=1, N R)$
READ $(55,111)$ LASEL
DO $38 \quad=1, N Q$
READ (55,*)V
REQ(I) =V
88 CONTINUE
DO $90 \mathrm{I}=1$, LESSNQ
XFREQ(I) $=($ (FREQ (I) /1302.9) **2
90 CONTINUE
READ (55,*) ((XLTR (I,J) ,J=1,NR),I=1,LESSNQ)

OO $144 \mathrm{IX}=$ NCOL 1 , NCOL 2
DO $16 \mathrm{I}=1$, NCOL
IPICK=NAME (I)
BIGPERM (IPICK) =IP $(I X, I)$
16 CONTINUE
CREATE DPDQ FOR THIS LOOD

```
    DO 18 I=1,NCPTS
    K=NROW(I)
    J=NCOLM(I)
    ZNEWDPDQ(K,J)=DP[Q(K,J)*BIGPERM(I)
    18 CONTINUE
    109 FORMAT(6F12.2)
    IF(IX.GT.NCOL1)GO TO 041
    741 CONTINUE
        DO 20 I=1,3
        DO 20 J=1,NR
        APX(I,J)=0.0
        DO 20 K=1,LESSNQ
        APX(I,J)=AFX(I,J)+znewdpdq(I,K)*ILINV(K,J)
```

C
C
C
C
c
c
20 CONTINUE
[0 $22 \mathrm{I}=1,3$
DO $22 \mathrm{~J}=1$, NG
D $x(I, J)=0.0$
DO $22 \mathrm{~K}=1$, NR
$P X(I, J)=P X(I, J)+A P X(I, K) * Z S(K, J)$
22 CONTINUE
333 FORMAT(' PX*)
C
c WE NOW HAVE PX FOR THIS SIGN CHOICE
USE THIS PX TO CALC INTENSITIES FOR DEUT CPD, PQ=PX.A.L
111 FORMAT(A30)
100 IF(IX.GT.NCOL1)GO TO 572
110 FORMAT (3F10.5)
FORM B
$00500 \mathrm{I}=1$, NR
DO $500 \mathrm{~J}=1$,NQ
$3(I, J)=3 T(J, I)$
500 CONTINUE
FORM (M-1) $\operatorname{BT} T$
DO $510 \mathrm{I}=1 \mathrm{NQ}$
$00510 \mathrm{~J}=1$, NR
$K=1+(I-1) / 3$
$B T(I, J)=B T(I, J) / A M(K)$
510 CONTINUE
$00811 \mathrm{I}=1, \mathrm{NQ}$
DO $811 \mathrm{~J}=1$,NR
DO $811 \mathrm{~K}=1$, NR
$\operatorname{BEER}(I, J)=\operatorname{SEER}(I, J)+B T(I, K) * F(K, J)$
311 CONTINUE
$00812 \mathrm{I}=1$, NQ
DO $812 \mathrm{~J}=1$ ILESSN

```
            DO 812 K=1,NR
            XEEER(I,J)=XBEER(I,J) +BEER(I,K)*XLTR(J,K)
    812 CONTINUE
            OO 81J I=1,NQ
            DO 813 J=1/LESSNQ
            XBEERX(I,J)=X&EER(I,J)/XFREG(J)
    813 CONTINUE
C
C XBEERX IS AL
C
C
C PREMULTIPLY EY B SHOULD GIVE L
    DO %̂14 I=1,NR
    DO 814 J=1/LESSNQ
    DO 314 K=1,NQ
    AA(I,J)=AA(I,J)+G(I,K)*XBEERX(K,J)
    314 CONTINUE
C FORM L MATRIX
C
    DO 515 I=1,NR
    DO 515 J=1,LESSNQ
    XL(I,J)=XLTR (J,I)
    515 CONTINUE
    DO 921 I=1,NR
    DO 921 J=1,LESSNQ
    AA(I,J)=AA(I,J)-XL(I,J)
    921 CONTINUE
    WRITE(96,109)((AA(I,J),J=1,LESSNQ),I=1,NR)
C
C FORG?6.DAT SHOULO CONSIST OF ZEROS
C
    572 CONTINUE
        DO 620 I=1,3
        DO 620 J=1,LESSNQ
        PQ(I,J)=0.0
        OO 020 K=1,NQ
        PQ(I,J)=PQ(I,J)+DX(I,K)*XEESRX(K,J)
        IF(IX.GT.NCOL1)GO TO 6?0
    620 CONTINUE
C
C DP/DQ(EU**.5) = .03こ03[A(I)(KmMOL**-1)/DEGEN(I)]**.5
C MUST FIND SUM OF CPTS**2
C
    WRITE(C6,109)((PQ(I,J),J=1,LESSNG),I=1,3)
    DO 700 J=1,LESSNQ
    DO 700 I=1.3
    PQ(I,J)=PQ(I,J)**2
    7OO CONTINUE
    OO 710 J=1/LESSNQ
    BANDINT (J)=0.0
    DO 710 I=1,3
    BANDINT(J)=PQ(I,J)+BANDINT(J)
    710 CONTINUE
        DO 720 J=1/LESSNG
        BANDINT(J)=BANDINT(J)/(0.032C3**2)
    720 CONTINUE
    BANDINT(I) IS I'TH CEUT CALC INTENSITY
```

C
C calculate fit parameter
C READ EXPT DEUTERATED INTENSITIES FROM FOROTO
C
if(ix.gt.ncol1)go to 885
DO 84 I=1,NBANOS
READ(75,*)DNOBAND(I),DEXPT(I)
84 CONTINUE
DO 885 I=1,NBANDS
NUME = DNOBAND(I)
DUEXPT(NUME)=DEXPT(I)
885 CONTINUE
TOT=0.0
IF(IX.GT.NCOL1)GO TO 907
C
C INPUT NO OF BANDS TO bE LISTED
C INPUT NO OF baNDS CONTRIBUTING TO fit FACTOR
REAC(65,*)NPRNT,NTOT
C
C INPUT BANDS TO BE DRINTED
C INPUT BANDS FOR FIT FACTOR
C
READ(05,*)(NNDRNT(I),I=1,NPRNT)
READ(E5,*)(NNTOT(I),I=1,NTOT)
907 DO 890 I=1,NPRNT
J=NNPRNT(I)
WRITE(80,*)J,DDEXPT(J), EANDINT(J)
WRITE(6,*)J,DDEXPT(J),BANDINT(J)
890 CONTINUE
DO 900 I=1,NTOT
K=NNTOT(I)
TOT=TOT+(((DDEXPT(K)-SANDINT(K))**2)/(DDEXPT(K)**2))**.5
900 CONTINUE
TOT=TOT/NTOT
c
c
TOT IS FIT FACTOR FOR THE SIGN CHOICE IN THE IX*TH ROW OF
MATRIX IP
WRITE(80,114)TOT,(ID(IX,I),I=1,NCOL)
WRITE(5,114)TOT,(IP(IX,I),I=1,NCOL)
WRITE(81,109)((PX(I,J),J=1,NQ),I=1,3)
WRITE(31,906)
906 FORMAT('...
C
C PX IS PRINTED IN FOROB1.DAT
C
114 FORMAT(F12.6.21I3)
C
C FORM NEXT PERMUTATION CF DPDQ
144 CONTINUE
930 STOP
END

```

\section*{_DIOXAN_L MATRICES}

The following tables show the \(L\) matrices used in the dioxan intensity analyses. The internal coordinates are defined as follows:

\[
\begin{array}{ll}
\mathrm{CH}^{\mathrm{e}} \equiv 1-3 & \mathrm{H}^{\mathrm{e}} \mathrm{CC} \equiv 3 \hat{1} 4 \\
\mathrm{CH}^{\mathrm{a}} \equiv 1-2 & \mathrm{H}^{\mathrm{e}} \mathrm{CO} \equiv 3 \hat{1} 5 \\
\mathrm{CC} \equiv 1-4 & \mathrm{H}^{\mathrm{a}} \mathrm{CC} \equiv 2 \hat{1} 4 \\
\mathrm{CO} \equiv 1-5 & \mathrm{H}^{\mathrm{a}} \mathrm{CO} \equiv 2 \hat{1} 5 \\
& O \mathrm{OC} \equiv 4 \hat{15} \\
& \mathrm{COC} \equiv 1 \hat{5} 12
\end{array}
\]
\(r\) and \(R\) below are the lengths of the appropriate bends that form the angle.
\[
\begin{aligned}
& \text { zTO } \\
& 25 \tau^{\circ}- \\
& 850^{\circ}- \\
& \varepsilon^{\circ} 70^{\circ} \\
& 59 \tau^{\circ} \\
& L 00^{\circ}- \\
& 07 \tau^{\circ}- \\
& 65 \tau^{\circ} \\
& 500^{\circ}- \\
& 500^{\circ} \\
& 2 \tau \tau \tau
\end{aligned}
\]
\[
\begin{aligned}
& \tau 60^{\circ} \\
& 0 \angle 0^{\circ}- \\
& 950^{\circ-} \\
& 0 Z 0^{\circ}- \\
& 670^{\circ} \\
& \angle S 0^{\circ} \\
& \angle Z 0^{\circ} \\
& 800^{\circ} \\
& S \angle \tau^{\circ} \\
& Z 67^{\circ}- \\
& \text { SL6Z }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Z SL6Z } \\
& \cdot \overline{\forall P T \ni T \mathbb{H}-\text { suoTfexq! } \Lambda \text { nव }}
\end{aligned}
\]
\[
\varepsilon L \tau
\]
\[
\begin{aligned}
& \tau 90^{\circ}- \\
& \tau Z 0^{\circ} \\
& 070^{\circ} \\
& L Z 0^{\circ}- \\
& \angle 90^{\circ}- \\
& \varepsilon L 0^{\circ} \\
& 0 Z 0^{\circ} \\
& \varsigma 70^{\circ} \\
& 6 L^{\circ}- \\
& \varepsilon 8 \tau^{\circ}- \\
& 798 Z^{\circ}
\end{aligned}
\]
\[
\begin{aligned}
& 6 \tau 0^{\circ}- \\
& 0 \varsigma 0^{\circ} \\
& 980^{\circ} \\
& 750^{\circ}- \\
& \tau 70^{\circ}- \\
& \varepsilon Z 0^{\circ}- \\
& L 00^{\circ}- \\
& 8 \tau 0^{\circ}- \\
& 56 \tau^{\circ}- \\
& 587^{\circ} \\
& 0 L 6 Z^{-}
\end{aligned}
\]
\[
\text { - } \bar{q} p[\partial T \mathbb{N}-\text { suotfriqut } \bar{n} \bar{V}
\]
\[
\begin{aligned}
& \varsigma 9 \tau^{\circ} \\
& \varepsilon 90^{\circ}- \\
& \varsigma 65^{\circ}- \\
& 7 \tau \varepsilon^{\circ} \\
& \varsigma 0 \tau^{\circ} \\
& 97 \tau^{\circ} \\
& \angle 90^{\circ} \\
& 900^{\circ}- \\
& 0 \tau 0^{\circ}- \\
& \text { zT0. } \\
& \text { ZOET }
\end{aligned}
\]
\[
\begin{aligned}
& \text { I60. } \\
& L 00^{\circ} \\
& 9 \varepsilon \tau^{\circ} \\
& 7 \tau 0^{\circ} \\
& \varepsilon 65^{\circ} \\
& \varepsilon S \tau^{\circ}- \\
& 8 Z^{\circ}- \\
& 550^{\circ}- \\
& 600^{\circ}- \\
& \varepsilon 00^{\circ} \\
& \varepsilon S^{\circ} 7 \tau
\end{aligned}
\]
\[
\begin{aligned}
& 900^{\circ} \\
& \tau 50^{\circ} \\
& \varepsilon Z 0^{\circ}- \\
& 7 \tau 0^{\circ} \\
& \tau \varepsilon 0^{\circ} \\
& 500^{\circ} \\
& 290^{\circ}- \\
& 6 \text { T0.- } \\
& 98^{\circ} \\
& 69 \tau^{\circ} \\
& 758 Z^{\circ}
\end{aligned}
\]```


[^0]:    * Normal coordinate reversed, so do same to signs of dipole changes to compare with 'constrained' results.

[^1]:    * Corresponds to result obtained before imposition of constraint $\sum \mathrm{P}_{\alpha}^{\alpha}=0$.

[^2]:    
    
    
    

