
Universal Algorithms for Probability Forecasting ∗

Fedor Zhdanov

Computer Learning Research Centre,
Department of Computer Science,

Royal Holloway University of London,

Egham, Surrey, TW20 0EX, UK.

fedor@cs.rhul.ac.uk

Yuri Kalnishkan

Computer Learning Research Centre,

Department of Computer Science,

Royal Holloway University of London,
Egham, Surrey, TW20 0EX, UK.

yura@cs.rhul.ac.uk

Multi-class classification is one of the most important tasks in machine learning. In this

paper we consider two online multi-class classification problems: classification by a linear

model and by a kernelized model. The quality of predictions is measured by the Brier
loss function. We obtain two computationally efficient algorithms for these problems by

applying the Aggregating Algorithms to certain pools of experts and prove theoretical

guarantees on the losses of these algorithms. We kernelize one of the algorithms and prove
theoretical guarantees on its loss. We perform experiments and compare our algorithms

with logistic regression.

Keywords: Probability prediction, online regression, Brier loss, multi-class classification

1. Introduction

Online prediction is a large area of machine learning (see [3] for an overview) with
many practical applications to data mining problems. It focuses on algorithms that
learn “on-the-fly”. In online regression framework we receive some input and try to
predict the corresponding outcome on each time step. The quality of the predictions
is assessed by means of a loss function measuring their deviation from true outcomes.

In this paper we consider the multi-dimensional Brier game where outcomes and
predictions come from a simplex and can be thought of as probability distributions
on the vertexes of the simplex. The problem of prediction in this environment can
be thought of as soft multi-class classification of a given input, where the classes
correspond to the vertexes of the simplex. The loss function we consider is the

∗Earlier versions of this paper appeared in Proceedings of Artificial Intelligence Applications and

Innovations, AIAI 2010, vol. 339 of IFIP Advances in Information and Communication Technology,
Springer, 2010 and as technical report arXiv:1001.0879 at CoRR.

1

2 Fedor Zhdanov and Yuri Kalnishkan

square loss (see [2] for a discussion), i.e., the squared norm of the difference of a
prediction and the true outcome.

The idea of universal algorithms originated in the Bayesian learning framework.
A universal algorithm captures the power of a (parametric) family of algorithms
and performs little worse than the best algorithm in the family in terms of the
cumulative loss. Contrary to Bayesian or any other traditional statistical settings,
we make no assumptions about the mechanism generating the data (e.g., we assume
no underlying distribution). The relative bounds for the performance of a universal
algorithm hold in the worst case.

We use Vovk’s Aggregating Algorithm (a generalization of the Bayesian mixture)
to mix families of predictors. In [15] the Aggregating Algorithm was applied to the
case of Brier loss when possible outcomes are in a segment of the real line; this
resulted in the Aggregating Algorithm Regression (AAR) also known as the Vovk-
Azoury-Warmuth predictor (see [3]).

One algorithm we construct applies a variant of the AAR to predict each coordi-
nate of the outcome separately and then combines these predictions to get a prob-
ability prediction. The other algorithm is designed to give probability predictions
directly by merging underlying families of asymmetric linear (or kernel) predictors.

An asymmetric predictor works as follows. We single out one component of the
outcome assuming it to have the meaning of the “remainder”. All components except
for the remainder are generated by a linear (or kernel) function, while the remainder
is chosen so that the components sum up to one. This approach is motivated by a
range of practical scenarios. For example, in a football match either one team wins or
the other, and the remainder is a draw (see [16] for online prediction experiments in
football). When we analyze a precious metal alloy we may be interested in obtaining
a description of the following kind: this alloy has 40% of gold, 35% of silver, and
some unspecified addition (e.g., consisting of copper and palladium), which can be
thought of as the remainder. Financial applications often try to predict the direction
of the price move, i.e., whether the price is going up or down; the remainder in this
situation is the price staying close to the current value.

These algorithms are the first computationally efficient online regression algo-
rithms designed to solve linear and non-linear multi-class classification problems.
We derive theoretical bounds on the cumulative losses of both the algorithms. We
arrive at a surprising conclusion that the component-wise algorithm is better than
the second one asymptotically, but worse in the beginning of the prediction process.
Their performance on benchmark data sets appears to be very similar.

An overview of the framework can be found in Section 2; a description of the
algorithms in the linear case is in Section 3; the theoretical bounds are derived in
Section 4.

We extend the class of experts using the kernel trick. We kernelize the second
algorithm and obtain a theoretical bound on its loss. The cumulative loss of the ker-
nelized algorithm is compared with the cumulative loss of any finite set of functions

Probability Forecasting with Linear and Kernelized Models 3

from the Reproducing Kernel Hilbert Space (RKHS) corresponding to the kernel
(see Section 5.1 for a definition). The kernelization is described in Section 5. Our
experimental results are shown in Section 6. Section 7 makes the conclusions and
shows some possibilities for further work.

Competing with linear experts in the case where possible outcomes come from
a simplex of dimension higher than 2 was not widely considered by other re-
searchers, so the comparison of theoretical bounds can not be performed. Kivinen
and Warmuth’s paper [10] includes the case when the possible outcomes lie in a
high-dimensional simplex and their algorithm competes with all logistic regression
functions. They use the relative entropy loss function L and get a regret term of
the order O(

√
LT (α)). Their prediction algorithm is not computationally efficient

and it is not clear how to extend their results for the case when predictors lie in an
RKHS.

2. Framework

A game of prediction is defined by three components, a space of outcomes Ω, a
decision space Γ, and a loss function λ : Ω × Γ → R. We are interested in the
following generalization of the Brier game (see [2]).

Take a finite set Σ with d elements; Σ can be identified with {1, 2, . . . , d}. Let
the space of outcomes Ω = P(Σ) be the set of all probability measures on Σ. It can
be identified with the simplex {y = (y(1), y(2), . . . , y(d)) ∈ [0, 1]d |

∑d
i=1 y(i) = 1} of

vectors in Rd. The vertexes of the simplex are the vectors e1, e2, . . . , ed forming the
standard basis in Rd; a vector ei has one at the i-th position and zeros elsewhere.
They can be identified with probability measures concentrated on single elements
of Σ.

For the decision space we take the hyperplane Γ := {(γ(1), . . . , γ(d)) ∈ Rd |∑d
i=1 γ(i) = 1, } in d-dimensional space containing all the outcomes. The loss func-

tion on y ∈ Ω and γ ∈ Γ is defined by

λ(y, γ) =
∑
σ∈Σ

(
γ(σ) − y(σ)

)2

= ‖y − γ‖2.

For example, if Σ = {1, 2, 3}, ω = (1, 0, 0), γ(1) = 1/2, γ(2) = 1/4, and γ(3) = 1/4,
then λ(ω, γ) = (1/2−1)2 +(1/4−0)2 +(1/4−0)2 = 3/8. The Brier loss is one of the
most important loss functions used to assess the quality of classification algorithms.

The game of prediction is being played repeatedly by a learner receiving some
input vectors xt ∈ X ⊆ Rn. This game follows Protocol 1.

We will construct an algorithm capable of competing with all asymmetric
linear predictors. On step t an asymmetric linear predictor outputs ξt(α) =
(ξ(1)

t (α), . . . , ξ(d)
t (α))′ (in this paper M ′ denotes the transpose of a matrix M) de-

4 Fedor Zhdanov and Yuri Kalnishkan

Protocol 1 Protocol of forecasting game
L0 := 0.
for t = 1, 2, . . . do

Reality announces a signal xt ∈ X ⊆ Rn.
Learner announces γt ∈ Γ ⊆ Rd.
Reality announces yt ∈ Ω ⊆ Rd.
Lt := Lt−1 + λ(yt, γt).

end for

fined by

ξ
(1)
t (α) = 1/d + α′1xt

. . .

ξ
(d−1)
t (α) = 1/d + α′d−1xt (1)

ξ
(d)
t (α) = 1− ξ

(1)
t − · · · − ξ

(d−1)
t = 1/d−

(
d−1∑
i=1

αi

)′
xt,

where αi ∈ Rn, i = 1, . . . , d−1 are vectors of n parameters and α = (α′1, . . . , α
′
d−1)

′ ∈
Θ = Rn(d−1). In the model defined by (1) the prediction for the last component of
an outcome is calculated from the predictions for other components. Let LT (α) =∑T

t=1 λ(yt, ξt(α)) be the cumulative loss of an asymmetric predictor α over T trials.

3. Derivation of the algorithms

In this section we apply the Aggregating Algorithm (AA) proposed by Vovk in [13]
to mix asymmetric linear predictors. The Aggregating Algorithm is a technique for
merging predictions of arbitrary experts, i.e., predictors following Protocol 1 and
making their predictions available to us. An expert can be a predictor of any kind,
e.g., a human expert, an algorithm, or even some uncomputable strategy. In this
paper we will mostly consider parametric families of prediction algorithms.

Suppose that we have a pool of experts ξt(α) parametrized by α ∈ Θ (e.g.,
the pool of asymmetric linear predictors introduced above is parametrized by α ∈
Rn(d−1)). The Aggregating Algorithm keeps weights pt−1(α) for the experts at each
time step t and updates them according to the exponential weighting scheme after
the actual outcomes is announced:

pt(α) = βλ(yt,ξt(α))pt−1(α), β ∈ (0, 1). (2)

Here β = e−η, where η ∈ (0,+∞) is a parameter called the learning rate.
This weights update rule ensures that the experts predicting badly receive lower
weights. The weights are then normalized to sum up or integrate to one: p∗t (α) =
pt(α)/

∫
α∈Θ

pt(α)dα.
The prediction of the algorithm is a combination of the experts’ predictions. One

possible way to merge experts’ predictions is simply to take the weighted average

Probability Forecasting with Linear and Kernelized Models 5

of the experts’ predictions with weights pt(α) as in [9]. The Aggregating Algorithm
uses more sophisticated prediction scheme and sometimes achieves better theoretical
performance. On step t it first defines a generalized prediction as a function gt : Ω →
R such that

gt(y) = logβ

∫
Θ

βλ(y,ξt(α))p∗t−1(α)dα (3)

for all y ∈ Ω. It is a weighted average (in a general sense) of the experts’ losses for
each possible outcome. It then outputs any γt such that

λ(y, γt) ≤ gt(y) (4)

for all possible y ∈ Ω. If such prediction can be found for any weights distribution
on experts the game is called perfectly mixable. Perfectly mixable games and other
types of games are analyzed in [14]. It is also shown there that for finite pools of
experts the AA achieves the best possible theoretical guarantees.

3.1. Proof of mixability

In this section we show that our version of the Brier game is perfectly mixable and
obtain a function mapping generalized predictions gt to predictions γt satisfying (4).
It is shown in Theorem 1 from [16] that the Brier game with a finite number of
outcomes is perfectly mixable iff η ∈ (0, 1]. We will extend this result to our settings.

The outcome space considered in [16] is a subspace of the outcome space from
this paper; it consists of d probability measures fully concentrated on the vertexes
of the simplex, which can be identified with points from Σ. We denote the set
of vertexes by R(Σ) = {e1, e2, . . . , ed}. The decision space in [16] is the set of
probability measures P(Σ), i.e., points from the simplex. In this paper we had to
expand this to the whole hyperplane in order to be able to consider experts defined
by (1). We need to prove that inequality (4) still holds for our outcome and decision
spaces. We start by showing that any vector from Rd can be projected into the
simplex without increasing the Brier loss.

Lemma 3.1. For any ξ ∈ Rd there exists θ ∈ P(Σ) such that for any y ∈ Ω the
inequality λ(y, θ) ≤ λ(y, ξ) holds.

Proof. The Brier loss of a prediction γ is the squared Euclidean distance between
γ and the actual outcome y in the d-dimensional space. The proof follows from the
fact that P(Σ) is a convex and closed set in Rd.

Lemma 3.2. Let p(α) be any probability density on Θ and ξ be any pool of experts
parametrized by α ∈ Θ. Then for any η ∈ (0, 1] there exists γ ∈ Γ such that for any
y ∈ R(Σ) we have

λ(y, γ) ≤ logβ

∫
Θ

βλ(y,ξ(α))p(α)dα.

6 Fedor Zhdanov and Yuri Kalnishkan

Proof. By Lemma 3.1 for any ξ(α) we can find θ(α) ∈ P(Σ) such that the loss of
experts does not increase: λ(y, θ(α)) ≤ λ(y, ξ(α)) for any y ∈ R(Σ). Thus we have

logβ

∫
Θ

βλ(y,θ(α))p(α)dα ≤ logβ

∫
Θ

βλ(y,ξ(α))p(α)dα

for any y ∈ R(Σ). By Theorem 1 from [16] the inequality

λ(y, γ) ≤ logβ

∫
Θ

βλ(y,θ(α))p(α)dα.

can be satisfied for any η ∈ (0, 1] (β ∈ [e−1, 1)).

A function converting generalized predictions into predictions satisfying (4) is
called a substitution function. We shall prove that we can use the same substitution
function and the same learning rate parameter η as in [16]. The following lemma
extends Lemma 4.1 from [6].

Lemma 3.3. Let p(α) be a probability density on Θ and ξ be any pool of experts
parametrized by α ∈ Θ. Put

f(y) = logβ

∫
Θ

βλ(y,ξ(α))p(α)dα

for every y ∈ P(Σ). If γ ∈ P(Σ) satisfies λ(z, γ) ≤ f(z) for all z ∈ R(Σ) then
λ(y, γ) ≤ f(y) for all y ∈ P(Σ).

Proof. For brevity we shall write ξ instead of ξ(α). It is easy to check that
λ(y, γ) − λ(y, ξ) =

∑
σ∈Σ y(σ)[λ(eσ, γ) − λ(eσ, ξ)], where eσ is the vector from the

standard basis corresponding to σ ∈ Σ. Note that λ(y, γ) − f(y) ≤ 0 is equiv-
alent to

∫
Θ

βλ(y,ξ)−λ(y,γ)p(α)dα ≤ 1. Thus due to the convexity of the exponent∫
Γ

β
P

σ∈Σ y(σ)[λ(eσ,ξ)−λ(eσ,γ)]p(α)dα ≤
∑

σ∈Σ y(σ) = 1.

We shall use the substitution function defined by the following proposition.

Proposition 3.1. Let g be a superprediction. For every σ ∈ Σ let eσ be the corre-
sponding vertex of the simplex, i.e., e

(ρ)
σ = 0 if σ 6= ρ and e

(σ)
σ = 1 for all σ ∈ Σ.

Let rσ = g(eσ). Then there exists s ∈ R satisfying the condition

d∑
i=1

(s− ri)+ = 2,

where x+ = max(x, 0). If γ = (γ(1), . . . , γ(d)) is such that

γ(i) =
(s− ri)+

2
, i = 1, . . . , d

then (4) holds.

Probability Forecasting with Linear and Kernelized Models 7

The proposition follows from Proposition 1 from [16] and Lemma 3.3 above.
Note that this substitution function allows us to avoid weights normalization in

calculating the generalized prediction at each step (i.e., to drop ∗ in the weights
distribution) and speed up the computation. Suppose that instead of gt we can get
only r = gt(y) + C, where C is the same for all y. Then predictions γt defined by
the substitution function from Proposition 3.1 will be the same.

3.2. Algorithm for multidimensional outcomes

For the prior weights distribution p0 over the set Θ = Rn(d−1) of experts α we take
the Gaussian density with a parameter a > 0:

(aη/π)n(d−1)/2e−aη‖α‖2 .

Instead of evaluating the integral in (3) we shall get a shifted generalized prediction
r by calculating ri = gT (ei)− gT (ed) (we drop the index T in r for brevity). Each
component of r = (r1, . . . , rd) corresponds to one of the possible outcomes and
rd = 0. Other components, with i = 1, . . . , d− 1, are

ri = logβ

βgT (ei)+
PT−1

t=1 gt(yt)

βgT (ed)+
PT−1

t=1 gt(yt)
= logβ

∫
Θ

e−ηQ(α,ei)dα∫
Θ

e−ηQ(α,ed)dα

where Q(α, y) denotes the quadratic form:

Q(α, y) =
T∑

t=1

d∑
i=1

((y(i)
t − ξ(i)(xt))2.

Here yt = (y(1)
t , . . . , y

(d)
t) are the outcomes on the steps before T and yT =

(y(1)
T , . . . , y

(d)
T) is a possible outcome on the step T .

Let C =
∑T

t=1 xtx
′
t; it is a matrix of size n × n. The quadratic form Q can

be partitioned into the quadratic part, the linear part, and the remainder: Q =
Q1 + Q2 + Q3. Here

Q1(α, y) = α′Aα

is the quadratic part of Q(α, y), where A is a square matrix with n(d− 1) rows (see
the exact expression for A in the algorithm below). The linear part is equal to

Q2(α, y) = h′α− 2
d−1∑
i=1

(y(i)
T − y

(d)
T)α′ixT ,

where hi = −2
∑T−1

t=1 (y(i)
t − y

(d)
t)xt, i = 1, . . . , d − 1 make up a big vector h =

(h′1, . . . , h
′
d−1)

′. The remainder is equal to

Q3(α, y) =
T−1∑
t=1

d∑
i=1

(y(i)
t − 1/d)2 +

d∑
i=1

(y(i)
T − 1/d)2.

The ratio for ri can be calculated using the following lemmas. The integral
evaluates as follows:

8 Fedor Zhdanov and Yuri Kalnishkan

Lemma 3.4. Let Q(α) = α′Aα + b′α + c, where α, b ∈ Rn, c is a scalar and A is
a symmetric positive definite n× n matrix. Then∫

Rn

e−Q(α)dα = e−Q0
πn/2

√
det A

,

where Q0 = minα∈Rn Q(α).

This lemma is proven as Theorem 15.12.1 in [5]. Following this lemma, we can
rewrite ri as ri = F (A, bi, zi), i = 1, . . . , d− 1, where

F (A, bi, zi) = min
α∈Θ

Q(α, ei)−min
α∈Θ

Q(α, ed).

The variables bi, zi and the precise formula for F are given by the following lemma.

Lemma 3.5. Let

F (A, b, z) = min
α∈Rn

(α′Aα + b′α + z′α)− min
α∈Rn

(α′Aα + b′α− z′α),

where b, z ∈ Rn and A is a symmetric positive definite n × n matrix. Then
F (A, b, z) = −b′A−1z.

Proof. This lemma is proven by taking the derivative of the quadratic forms
w.r.t. α and calculating the minimum: minα∈Rn(α′Aα + c′α) = − (A−1c)′

4 c for any
c ∈ Rn (see Theorem 19.1.1 in [5]).

We can see that bi = h+(x′T , . . . , x′T ,0, x′T , . . . , x′T)′ ∈ Rn(d−1), where 0 is a zero-
vector from Rn. We also have zi = (−x′T , . . . ,−x′T ,−2x′T ,−x′T , . . . ,−x′T)′. Thus we
can calculate d − 1 differences ri, assign rd = 0, and then apply the substitution
function from Proposition 3.1 to get predictions. The resulting algorithm is Algo-
rithm 1. We will refer to it as mAAR (multi-dimensional Aggregating Algorithm
for Regression).

3.3. Component-wise algorithm

In this section we derive the component-wise algorithm. It gives predictions for each
component of the outcome separately and then combines them in a special way.

First we explain why we cannot directly use the algorithm from [15] in the
form of d−1 component-wise copies. In [15] one-dimensional experts are “centered”
around the center 1/2 of the prediction interval [0, 1], i.e., 1/2 is the mode and the
mean of the prediction given the prior density on experts. The mean d-dimensional
prediction is then (1/2, . . . , 1/2, 1 − (d − 1)/2)). If the outcome y = (1, 0, . . . , 0)
occurs, then the mean square loss is (d− 1)/22 + (d− 1)2/22.

Note that the mean prediction of experts (1) is 1/d in each component. If the
outcome y = (1, 0, . . . , 0) occurs, then the mean square loss is (d−1)/d2+(1−1/d)2,
which is an improvement for d > 2.

Probability Forecasting with Linear and Kernelized Models 9

Algorithm 1 mAAR for the Brier game
Fix n, a > 0. C = 0, h = 0.
for t = 1, 2, . . . do

Read new xt ∈ X.

C = C + xtx
′
t, A = aI +

2C · · · C
...

. . .
...

C · · · 2C


Set bi = h + (x′t, . . . , x

′
t, 0, x′t, . . . , x

′
t)
′, where the zero-vector from Rn is placed

at the i-th position, i = 1, . . . , d− 1.
Set zi = (−x′t, . . . ,−x′t,−2x′t,−x′t, . . . ,−x′t)

′, where −2x′t is placed at i-th po-
sition, i = 1, . . . , d− 1.
Calculate ri := −b′iA

−1zi, rd := 0, i = 1, . . . , d− 1.
Solve

∑d
i=1(s− ri)+ = 2 w.r.t. s ∈ R.

Set γ
(i)
t := (s− ri)+/2, ω ∈ Ω, i = 1, . . . , d.

Output prediction γt ∈ P(Ω).
Read outcome yt.
hi = hi − 2(y(i)

t − y
(d)
t)xt, h = (h′1, . . . , h

′
d−1)

′.
end for

The experts from [15] are more suitable for the case when each input vector x

can belong to many classes simultaneously; they do not allow us to take advantage
of the fact that the classification is actually unique (albeit soft).

Now let us consider component-wise experts given by

ξ
(i)
t = 1/d + α′ixt, i = 1, . . . , d. (5)

The derivation of the component-wise algorithm (we call it component-wise Aggre-
gating Algorithm Regression and abbreviate to cAAR) is similar to the derivation
of Algorithm 1 for two outcomes. The initial distribution on each component of
experts (5) is given by

(aη̃/π)n/2e−aη̃‖αi‖2 .

Note that the value for η̃ here will be different from 1 since the loss function in each
component is half of the Brier loss λ(y, γ) = (y − γ)2 + (1− y − (1− γ))2. We will
further see that η̃ = 2. The loss of expert ξ(αi) over the first T trials is

T∑
t=1

(y(i)
t −1/d−α′ixt)2 = α′i

(
T∑

t=1

xtx
′
t

)
αi−2α′i

(
T∑

t=1

(y(i)
t − 1/d)xt

)
+

T∑
t=1

(y(i)
t −1/d)2.

Instead of the substitution function from Proposition 3.1 we use the substitution
function suggested in [15] for the one-dimensional game:

γ
(i)
T =

1
2

+
gT (0)− gT (1)

2

10 Fedor Zhdanov and Yuri Kalnishkan

Therefore, the substitution function can be represented as

γ
(i)
T =

1
2

+
1
2

logβ̃

β̃gT (0)

β̃gT (1)

=
1
2

+
1
2

logβ̃

∫
Rn e−η̃α′iBαi+2η̃α′i(E+(0−1/d)xT)−η̃(W+1/d2)dαi∫

Rn e−η̃α′iBαi+2η̃α′i(E+(1−1/d)xT)−η̃(W+(1−1/d)2)dαi

=
1
d

+
1
2
F

(
B,−2E − d− 2

d
xT , xT

)

=
1
d

+

(
T−1∑
t=1

(y(i)
t − 1/d)x′t +

d− 2
2d

x′T

)(
aI +

T∑
t=1

xtx
′
t

)−1

xT (6)

for i = 1, . . . , d. Here B = aI +
∑T

t=1 xtx
′
t, E =

∑T−1
t=1 (y(i)

t − 1/d)xt, W =∑T−1
t=1 (y(i)

t − 1/d)2, β̃ = e−η̃. The transitions are justified using Lemma 3.4 and
Lemma 3.5.

Then this method projects its prediction onto the prediction simplex so that the
loss does not increase. We use Algorithm 2 suggested in [11].

Algorithm 2 Projection of a point from Rn onto probability simplex.
Initialize I = ∅, x = 1 ∈ Rd.
Let γT be the prediction vector and |I| is the dimension of the set I.
while 1 do

γT = γT −
Pd

i=1 γ
(i)
T −1

d−|I| ;

γ
(i)
T = 0,∀i ∈ I;

If γ
(i)
T ≥ 0 for all i = 1, . . . , d then break;

I = I
⋃
{i : γ

(i)
T < 0};

If γ
(i)
T < 0 for some i then γ

(i)
T = 0;

end while

4. Theoretical bound

We derive theoretical bounds for the losses of Algorithm 1 and of the naive
component-wise algorithm predicting in the same framework.

4.1. Component-wise algorithm

We prove here a theoretical bound for the loss of cAAR. The following lemma is
our main tool. It is easy to prove the following statement (Lemma 1 from [15]):

Lemma 4.1. If the learner follows the Aggregating Algorithm in a perfectly mixable
game, then for every positive integer T , every sequence of outcomes of length T , and

Probability Forecasting with Linear and Kernelized Models 11

any initial weights density p0(α) on experts it suffers loss satisfying

LT (AA(η, P0)) ≤ logβ

∫
Θ

βLT (α)p0(α)dα. (7)

Proof. We proceed by induction in T : for T = 0 the inequality is obvious, and for
T > 0 we have:

LT (AA(η, P0)) ≤ LT−1(AA(η, P0)) + gT (ωT)

≤ logβ

∫
Θ

βLθ
T−1p0(θ)dθ + logβ

∫
Θ

βλ(ωT ,ξθ
t) βLθ

T−1∫
Θ

βLθ
T−1p0(θ)dθ

p0(θ)dθ

= logβ

∫
Θ

βLθ
T p0(θ)dθ .

We used the inductive assumption, the definition of gT given by (3), and (2).

The following theorem provides a bound on loss of one component of the
component-wise algorithm.

Theorem 4.1. Let the outcome space in the prediction game be the interval
[A,B], A, B ∈ R. Assume experts’ predictions at each step are ξt = C + α′xt,
where α ∈ Rn, C ∈ R is the same for all the experts α, and ‖xt‖∞ ≤ X for all t.
There exists a prediction algorithm producing γi ∈ R, i = 1, . . . , d such that for any
a > 0, every positive integer T , every sequence of input vectors and outcomes of
the length T and any α ∈ Rn we have

T∑
t=1

(γt − yt)2 ≤
T∑

t=1

(ξt − yt)2 + a‖α‖22 +
n(B −A)2

4
ln
(

TX2

a
+ 1
)

. (8)

Proof. We need to prove that the game is perfectly mixable (see (4)) and find the
optimal parameter η for the algorithm. Considerations similar to the ones in the
proof of Lemma 2 from [15] lead to the inequality η ≤ 2

(B−A)2 . Clearly, Lemma 4.1
holds for our case, so we only need to calculate the difference between the right-hand
side of (7)

logβ

∫
Rn

dα(aη/π)n/2 exp

[
−ηα′

(
aI +

T∑
t=1

xtx
′
t

)
α

+ η 2α′

(
T∑

t=1

(yt − C)xt

)
− η

T∑
t=1

(yt − C)2
]

.

and the loss of the best expert α′0

(
aI +

∑T
t=1 xtx

′
t

)
α0 − 2α′0

(∑T
t=1(yt − C)xt

)
+∑T

t=1(yt − C)2. Here α0 is the point where the minimum of the quadratic form is
attained. Due to Lemma 3.4 this difference equals

1
2η

ln det

(
I +

1
a

T∑
t=1

xtx
′
t

)
≤ n(B −A)2

4
ln
(

TX2

a
+ 1
)

.

12 Fedor Zhdanov and Yuri Kalnishkan

We bound the determinant of a symmetric positive definite matrix by the product
of its diagonal elements (see [1], Chapter 2, Theorem 7) and use η = 2

(B−A)2 .

Interestingly, the theoretical bound for the regression algorithm depends only
on the size of the prediction interval but not on the location of it. It also does not
depend on the concentration point of experts. We use the component-wise algorithm
to predict each component separately.

Theorem 4.2. If ‖xt‖∞ ≤ X for all t, then for any a > 0, every positive integer
T , every sequence of outcomes of the length T , and any α ∈ Rn(d−1) the loss LT of
the component-wise algorithm satisfies

LT ≤ LT (α) + da‖α‖22 +
nd

4
ln
(

TX2

a
+ 1
)

. (9)

Proof. We extend the class of experts in (1) in (5). The algorithm predicts each
component of the outcome separately. Summing theoretical bounds (8) for d com-
ponents of the outcome, taking αd = −

∑d−1
i=1 α′i, and using the Cauchy inequality

‖
∑d−1

i=1 αi‖22 ≤ (d − 1)
∑d−1

i=1 ‖αi‖22 we get the bound. To give probability forecasts
we can project prediction points on the prediction simplex using Algorithm 2. The
bound will then hold by Lemma 3.1.

4.2. Linear forecasting

The theoretical bound on the loss of Algorithm 1 is given by the following theorem.

Theorem 4.3. If ‖xt‖∞ ≤ X for all t, then for any a > 0, every positive integer
T , every sequence of outcomes of the length T , and any α ∈ Rn(d−1) the algorithm
mAAR(2a) satisfies

LT (mAAR(2a)) ≤ LT (α) + 2a‖α‖22 +
n(d− 1)

2
ln
(

TX2

a
+ 1
)

. (10)

Proof. We apply mAAR with the parameter b = 2a. Recall that C =
∑T

t=1 xtx
′
t.

Following the argument from the proof of Theorem 4.1 with η = 1 we obtain the
bound.

We can derive a slightly better theoretical bound: in the determinant of A one
should subtract the second block row from the first one and then add the first block
column to the second one, then repeat this d− 2 times.

Proposition 4.1. Under the conditions of Theorem 4.3 mAAR(a) satisfies

LT (mAAR(a)) ≤ LT (α) + a‖α‖22

+
n(d− 2)

2
ln
(

TX2

a
+ 1
)

+
n

2
ln
(

TX2d

a
+ 1
)

. (11)

Probability Forecasting with Linear and Kernelized Models 13

Theoretical bound (10) is worse asymptotically by d than bound (9) of the
component-wise algorithm, but it is better in the beginning, especially when the
norm of the best expert ‖α‖ is large. This can happen when the dimension of the
input vector is larger than the size of the prediction set: n � T .

5. Kernelization

In some cases the linear model is not rich enough to describe data well and a more
complicated model is needed. We use the so called kernel trick. It is a popular
technique in machine learning and it was applied to AAR in [4]. We derive an
algorithm competing with all sets of functions with d− 1 elements from an RKHS.

5.1. Derivation of the algorithm

Definition 5.1. A kernel on a domain X is a function K : X×X → R satisfying the
following two properties. It is symmetric, i.e., for all x1, x2 ∈ X we have K(x1, x2) =
K(x2, x1) and positive semi-definite, i.e, for every positive integer n, all x1, . . . , xn ∈
X and all ξ1, . . . , ξn ∈ R the inequality

∑n
i,j=1 K(xi, xj)ξiξj ≥ 0 holds.

A Hilbert space F of functions from X to R is a Reproducing Kernel Hilbert
Space (RKHS) corresponding to a kernel K if for all x ∈ X the function K(x, ·)
(i.e., K considered as the function of the second argument) belongs to F and for
all functions f ∈ F the reproducing property f(x) = 〈f,K(x, ·)〉F holds.

Classical examples of kernels are Gaussian (RBF) with K(xi, xj) = e−
‖xi−xj‖

2

2σ2

and Vapnik’s polynomial K(xi, xj) = (xi · xj + 1)d. It is possible to show that for
every kernel there is a unique RKHS. Linear combinations

∑n
i=1 aiK(xi, ·), where

xi ∈ X, all belong to the RKHS and are dense in it.
Our algorithm will compete with the following experts:

ξ
(1)
t = 1/d + f1(xt)

. . .

ξ
(d−1)
t = 1/d + fd−1(xt) (12)

ξ
(d)
t = 1− ξ(1) − · · · − ξ(d−1),

where f1, . . . , fd−1 ∈ F are any functions from some RKHS F . We will denote an
expert defined by f1, . . . , fd−1 ∈ F as in (12) by f and use notation LT (f) for its
loss.

We start by rewriting mAAR in the dual form. Let

Ỹi = −2(y(i)
1 − y

(d)
1 , . . . , y

(i)
T−1 − y

(d)
T−1,−1/2),

Y i = −2(y(i)
1 − y

(d)
1 , . . . , y

(i)
T−1 − y

(d)
T−1, 0),

k̃(xT) = (x′1xT , . . . , x′T xT)′,

K̃ = (x′sxt)T
s,t=1

14 Fedor Zhdanov and Yuri Kalnishkan

for i = 1, . . . , d−1 (note that x′sxt is the scalar product of xs and xt). We show that
the predictions of mAAR can be represented in terms of variables defined above.
We will need the following matrix property.

Proposition 5.1. Let B,C be matrices such that the number of rows in B equals
to the number of columns in C, and I be identity matrices. If aI +CB and aI +BC

are nonsingular then

B(aI + CB)−1 = (aI + BC)−1B. (13)

Proof. This is equivalent to (aI + BC)B = B(aI + CB), which is true because of
distributivity of matrix multiplication.

Consider a T (d− 1)× T (d− 1) matrix A =

aI +

2K̃ · · · K̃
...

. . .
...

K̃ · · · 2K̃


.

Lemma 5.1. On trial T the values ri for i = 1, . . . , d− 1 in mAAR can be repre-
sented as

ri =
(
Ỹ1 · · · Y i · · · Ỹd−1

)
A−1

(
k̃(xT)′ · · · 2k̃(xT)′ · · · k̃(xT)′

)′
. (14)

Proof. By M = (x1, . . . , xT) denote a matrix n × T of column input vectors.
Consider the following matrices of (d− 1)2 blocks:

B =

2M · · · M
...

. . .
...

M · · · 2M

 and C =

M ′ · · · 0
...

. . .
...

0 · · · M ′

 .

Then hi from the algorithm mAAR equals hi = MY
′
i ∈ Rn. Decompose b′i =(

Ỹ1 · · · Y i · · · Ỹd−1

)
C, where only the i-th block column uses Y i. The matrix A

is equal to A = aI + BC. Using Proposition 5.1 we get

ri = −b′iA
−1zi = −

(
Ỹ1 · · · Y i · · · Ỹd−1

)
· (aI + CB)−1C

(
−x′T · · · −2x′T · · · − x′T

)′
.

Note that K̃ = M ′M and k̃(xT) = M ′xT ; thus (14) holds.

If we replace dot products x′ixj in K̃ and k̃(xT) by an arbitrary kernel K(xi, xj)
we get a kernelized algorithm (to get predictions one can use the same substitution
function from Proposition 3.1 as before). We call this algorithm mKAAR (K for
Kernelized).

Probability Forecasting with Linear and Kernelized Models 15

5.2. Theoretical bound for the kernelized algorithm

To derive a theoretical bound for the loss of mKAAR we will use the following
matrix determinant identity lemma. This statement is often called the Sylvester
identity.

Lemma 5.2. Let B,C be as in Proposition 5.1, and a be a real number. Then
det(aI + BC) = det(aI + CB).

Proof. The proof is by considering a block matrix identity:(
I B

0 I

)(
I + BC 0
−C I

)
=
(

I B

−C I

)
=
(

I 0
−C I + CB

)(
I B

0 I

)
.

We just need to take the determinants of the right- and left-hand sides.

The main theorem follows from the property of RKHS called Representer theo-
rem (see Theorem 4 in [12]).

Theorem 5.1. Let g : [0,∞) → R be a strictly increasing function. Assume X is
an arbitrary set, and F is a Reproducing Kernel Hilbert Space of functions on X
corresponding to a kernel K : X2 → R. Assume that we also have a positive integer
T and an arbitrary loss function c : (X × R2)T → R

⋃
{∞}. Then each f ∈ F

minimizing

c ((x1, y1, f(x1)), . . . , (xT , yT , f(xT))) + g(‖f‖F)

admits a representation of the form f(x) =
∑T

i=1 αiK(xi, x) for some αi ∈ R, i =
1, . . . , T .

The theoretical bound for the loss of mKAAR is proven in the following theorem.

Theorem 5.2. Let X be an arbitrary set of inputs and F be a Reproducing Kernel
Hilbert Space of functions on X with the kernel K : X2 → R. Then for any a > 0,
any f1, . . . , fd−1 ∈ F , any positive integer T , and any sequence of inputs and outputs
(x1, y1), . . . , (xT , yT)

LT (mKAAR(a)) ≤ LT (f) + a
d−1∑
i=1

‖fi‖2F +
1
2

ln det

I +
1
a

2K̃ · · · K̃
...

. . .
...

K̃ · · · 2K̃


 (15)

Here the matrix K̃ is the matrix of kernel values K(xi, xj), i, j = 1, . . . , T .

Proof. The bound follows from the upper bounds for mAAR and the Representer
theorem. Let us first consider the case with the scalar product kernel K(x1, x2) =
x′1x2. Denote C =

∑T
t=1 xtx

′
t. By Lemma 5.2 and calculations similar to those in

the proof of Lemma 5.1 we have the equality of determinants.

16 Fedor Zhdanov and Yuri Kalnishkan

Let us show we can use any other kernel instead of the scalar product and get the
term with the determinant. The Representer theorem assures that the minimum of
the expression LT (f) + a

∑d−1
i=1 ‖fi‖2F over f -s is reached on a linear combinations

of the form fi(x) =
∑T

j=1 αi,jK(xj , x); the functions of this type form a finite-
dimensional space so we can use the above argument for linear kernels.

Corollary 5.1. Under the assumptions of Theorem 5.2 the following bound holds:

LT (mKAAR(a)) ≤ LT (f) + a
d−1∑
i=1

‖fi‖2F +
d− 1

2
ln det

(
I +

2
a
K̃

)
. (16)

Proof. The bound follows from Theorem 7 in Chapter 2 of [1].

If we know an upper bound on the kernel values and the time horizon in advance,
we can further optimize bound (15).

Corollary 5.2. Under the assumptions of Theorem 5.2 if cF > 0 is such that
K(x, x) ≤ cF and if we know the number of steps T in advance and are given
F > 0, we can choose a > 0 such that the bound

LT (mKAAR(a)) ≤ LT (f) + 2cFF
√

(d− 1)T , (17)

holds for any f1, . . . , fd−1 ∈ F :
∑d−1

i=1 ‖fi‖2F ≤ F 2.

Proof. Bounding the logarithm of the determinant as in Theorem 7 in Chapter 2
of [1] and using the inequality ln(1 + x) ≤ x we get

d− 1
2

ln det
(

I +
2
a
K̃

)
≤ (d− 1)T

2
ln
(

1 +
2c2
F

a

)
≤ (d− 1)Tc2

F
a

.

We can choose the optimal value for a minimizing the overall upper bound: a =
cF
√

(d−1)T

F .

6. Experiments

We run our algorithms on six real world time-series data sets. In the time series
we consider there are no signals attached to the outcomes. However we can take
vectors consisting of previous observations (we shall take ten of those) and use them
as signals. The dataset DEC-PKTa contains an hour’s worth of all wide-area traffic
between the Digital Equipment Corporation and the rest of the world. The dataset
LBL-PKT-4a consists of observations of an hour of traffic between the Lawrence
Berkeley Laboratory and the rest of the world. We transformed both the data sets

aData sets can be found at http://ita.ee.lbl.gov/html/traces.html

Probability Forecasting with Linear and Kernelized Models 17

in such a way that each observation is the number of packets in the correspond-
ing network during a fixed time interval of one second. The other four datasetsb

(C4,C9,E5,E8) relate to transportation data. Two of them, C9 and C11, contain
low-frequency monthly traffic measures. The other two, E5 and E8, contain high-
frequency day traffic measures. On each of these data sets the following operations
were performed: subtraction of the mean value and division by the maximum abso-
lute value. The resulting time series are shown in Figure 1.

0 500 1000 1500 2000 2500 3000 3500 4000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) DEC-PKT series

0 500 1000 1500 2000 2500 3000 3500 4000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) LBL-PKT series

0 20 40 60 80 100 120 140 160 180
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) C4 series

0 50 100 150 200 250
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(d) C9 series

0 100 200 300 400 500 600 700 800
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(e) E5 series

0 100 200 300 400 500 600 700 800
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

(f) E8 series

Fig. 1. Time series from 6 data sets.

We used ten previous observations as an input vector for tested algorithms at
each prediction step. We are solving the following 3-class classification problem: we
predict whether the next value in a time series will exceed the previous value by ε

or more, fall below the previous value by ε or more, or stay within the ε-vicinity of
the previous value. The value of ε is chosen to be the median of all the changes in
the data set.

In order to assess the quality of predictions, we calculate the cumulative square
loss at the last two thirds of each time series (test set) and divide it by the number
of examples (MSE). Since we are considering the online settings, we could calculate
the cumulative loss from the beginning of each time series. However calculating the
loss from one third of the dataset on allows us to eliminate starting effects, to choose
the ridge parameter a fairly on the training set, and to compare the performance
of our algorithms with batch algorithms usually used to solve this kind of problem.

The total square loss on the test set takes into account the quality of an algorithm
only at the very end of the prediction process, and does not consider the quality
during the process. We introduce another quality measure: at each step in the test
set we calculate MSE of an algorithm until this step. After all the steps we average

bData sets can be found http://www.neural-forecasting-competition.com/index.htm.

18 Fedor Zhdanov and Yuri Kalnishkan

these MSEs (AMSE). Clearly, if one algorithm is better than another on the whole
test set (its total MSE is smaller) but was often worse on many parts of the test set
(total MSEs of many parts of the set is larger), this will reflect in AMSE. We will
demonstrate the purpose of AMSE later.

We compare the performance of our algorithms with the multinomial logistic
regression (mLog), which is a standard classification algorithm giving probability
predictions

γi
mLog =

eθix∑d
i=1 eθix

for all the components of the outcome i = 1, . . . , d. In our case d = 3. Here param-
eters θ1, . . . , θd are estimated from the training set. We apply this algorithm in two
regimes: batch regime, where the algorithm learns only on the training set and is
tested on the test set (and thus θ is not updated on the test set); and in the online
regime, where at each step new parameters θ are found, and only one next outcome
is predicted. The second regime is more suitable under online settings, but the first
one is more standard and fast. In both the regimes logistic regression does not have
theoretical guarantees for the square loss.

We also compare our algorithms with the simple predictor outputting the average
of the previous classes (and thus always giving probability predictions).

We are not aware of other efficient algorithms for online probability predic-
tion, and thus use logistic regression and simple predictor as the only baselines.
Component-wise algorithms which could be used for online prediction (e.g., Gradi-
ent Descent from [8] or Ridge Regression from [7]), have to use normalization from
Algorithm 2. Thus they have to be applied in some modified form and can not be
directly compared with our algorithms.

The ridge for our algorithms is chosen to achieve the best MSE on the training
set, which is the first third of each series. It is important to note that both cAAR
and mAAR give initial probability of 1/d for each class (see motivation of cAAR in
the beginning of Section 3.3: the mean for α is zero, so ξ1 = . . . = ξd−1 = 1

d , and
ξd = 1 − (d − 1) 1

d = 1
d . The class of points which lie within the ε-vicinity around

the previous points is considered to be the asymmetric class (the d-th component)
for mAAR. Indeed, it has the meaning of the remainder compared with the other
two classes.

We also run kernelized algorithms with the Gaussian kernel k(x1, x2) =
exp(−s‖x1 − x2‖22), with s chosen among the numbers 0.001, 0.01, 0.5, 1, 2, 10.
Coordinate-wise algorithm is called cKAAR by analogy with the linear one. Pa-
rameter s for the kernel was chosen to be the one which provides the best MSE
on the training set. In the online settings the effect of overfitting is reduced: pre-
dictions are evaluated on a set different from that where the algorithm is trained.
Indeed, first the algorithms are trained on indexes 1 . . . T̃ , then the predictions are
made for T̃ + 1 and larger values of T . Kernelized algorithms can be made faster if
approximation techniques or symmetric block matrix inversion formulas are used.

Probability Forecasting with Linear and Kernelized Models 19

The results are shown in Table 1. We highlight the most precise algorithms for
different data sets. We also show time needed to make predictions on the whole
data set. The algorithms were implemented in Matlab R2010b and run on a laptop
with 8Gb RAM and processor Intel Core i5, T7200, 2.40GHz.

As we can see from the table, the online methods perform better than the batch
method. Online logistic regression performs well, but is very slow (in comparison
with linear algorithms). Our linear algorithms perform similar to each other and
comparable to the online logistic regression, but they are much faster. Performance
of the kernelized algorithms is generally better than for the linear algorithms, and
is often better than all of the competitors. Of course, one can achieve even better
performance with kernelized algorithms by choosing a kernel function more suitable
for this application, including, e.g., periodic terms in it (and dependency on time)
especially for E5 and possibly for other datasets, or some non-zero increasing mean
for C4, C9, E8. Our purpose is to demonstrate that the algorithms can be applicable
in the real setting, and compare their strengths and weaknesses.

It is clear from the table that mKAAR is generally slower than cKAAR, and has
very similar performance. Both kernelized algorithms slow down with time, because
at each step t inversion of the matrix t×t (or (d−1)t×(d−1)t for mKAAR) is needed,
but they also have much more potential for capturing important dependencies in
the data. On smaller datasets the kernelized algorithms are much more efficient.
They are much faster than logistic regression when applied online on C4 and C9.

We tried to change the balance between the numbers of instances in each class by
increasing and decreasing the width of the tube. This allowed us to check whether
the number of instances in the third class (remainder) influenced the difference in
performance between the algorithms. We did not observe any significant effect on
performance though.

In order to demonstrate online performance of the algorithms, we can look how
MSE evolves with time for different algorithms. Figure 2, left, shows the evolution
of the MSE over time for the whole C4 set, and the right subfigure shows it for the
test set. For the rest of the data sets the pictures look similar. For each point t on
the horizontal axis, the vertical axis shows the mean square loss accumulated so
far. For the test set graph, the mean error calculation starts from zero (this is the
reason why the graphs look different after the test set starts). The performance of
the mLogOnline is not shown for the whole set because its starting error is by far
out of bounds of the graph, and the scale would not allow us to see the difference
between the algorithms.

First, it is important to note that mLog clearly overfits: it performs well on
the training set (the set left from the vertical line on the left graph), and then its
MSE degrades on the test set. None of the online algorithms has this property,
even though some of them are a little unstable at the start of the process. Another
interesting feature is that the relative rankings of the performances change with
time. Imagine, for example, that the test set ended at 105. Then MSE would show
that mLogOnline was better than mLog, whereas is is clear from the graph that

20 Fedor Zhdanov and Yuri Kalnishkan

Table 1. The square losses and prediction time (sec) of different algorithms applied
for time series prediction. cAAR,mAAR, cKAAR, and mKAAR stand for the new al-

gorithms, mLog states for the logistic regression, mLogOnline states for online logistic
regression, and Simple stands for the simple average predictor. The numbers in brackets

show the dataset sizes.

Algorithm MSE AMSE Time MSE AMSE Time

DEC-PKT (3602) LBL-PKT (3600)

cAAR 0.45906 0.45822 0.25 0.48147 0.4790 0.314

mAAR 0.45906 0.45822 0.624 0.48147 0.4790 0.692

cKAAR 0.45444 0.45389 1855.269 0.46892 0.4696 1792.648
mKAAR 0.45463 0.45444 20587.56 0.46966 0.47032 20505.947

mLog 0.46107 0.46265 0.234 0.47749 0.47482 0.332
mLog Online 0.45751 0.45762 1162.431 0.47598 0.47398 1351.749

Simple 0.58089 0.57883 0 0.57087 0.5657 0.007

C4 (172) C9 (227)

cAAR 0.64834 0.65447 0.008 0.63238 0.64082 0.012
mAAR 0.64538 0.65312 0.03 0.63338 0.64055 0.039

cKAAR 0.62947 0.63682 0.064 0.63448 0.66975 0.140
mKAAR 0.63453 0.6423 0.467 0.63353 0.66645 1.242

mLog 0.76849 0.77797 0.141 0.97718 0.91654 0.141

mLog Online 0.68164 0.7351 2.391 0.71178 0.75558 4.663
Simple 0.69037 0.69813 0.002 0.65090 0.65348 0.002

E5 (716) E8 (747)

cAAR 0.34452 0.34252 0.041 0.29395 0.29276 0.043
mAAR 0.34453 0.34252 0.127 0.29374 0.29223 0.13
cKAAR 0.33897 0.33697 7.023 0.27268 0.26490 7.881
mKAAR 0.3389 0.33694 62.952 0.2715 0.26114 72.206

mLog 0.31038 0.30737 0.544 0.31316 0.30382 0.04
mLog Online 0.30646 0.30575 216.429 0.27982 0.27068 40.509

Simple 0.58212 0.58225 0.001 0.69691 0.70527 0.001

20 40 60 80 100 120 140 160
0.3

0.4

0.5

0.6

0.7

0.8

cAAR
mAAR
cKAAR
mKAAR
mLog
Simple

(a) C4 all

60 70 80 90 100 110 120 130 140 150 160
0.3

0.4

0.5

0.6

0.7

0.8

cAAR
mAAR
cKAAR
mKAAR
mLog
mLogOnline
Simple

(b) C4 test only

Fig. 2. MSE after each step of the C4 set for different algorithms. The graph on the left is for
the whole set, and the graph on the right is for the test set only.

the online algorithm became better after around 95 only. For this reason, AMSE
is introduced: in this case, AMSE (average level of the MSE line) for mLogOnline
would be higher than AMSE for mLog. Another important feature is that the per-

Probability Forecasting with Linear and Kernelized Models 21

formance stays relatively stable for all our algorithms, and does not converge to
zero. This characterizes the power of the experts chosen for prediction (how well
the model describes the process). Indeed, if there was an ideal expert (with perfect
performance), theoretical bounds (at least in the linear case) would guarantee the
convergence of the MSE lines to zero. If there is no ideal expert, and the best ex-
pert makes small error at each step, the lines would converge to the value of that
error. A different choice of the kernel will change the RKHS where the best expert
is located, which may lead to lower convergence line. It is interesting though to see
from the left graph that online algorithms improve with time as to be expected.

It is not surprising that cAAR and mAAR provide very similar performance (and
the same can be said about the pair cKAAR and mKAAR). Indeed, they compete
with the same experts, and the main component in the error is the component of the
best expert’s loss if the model for the data is not perfect (if best expert’s loss is far
from zero). Both algorithms converge to the same best expert, so asymptotically we
can expect the same performance. In the beginning of the prediction process their
performances can be quite different though, and that can be seen on the left graph
of Figure 2. Lines for cAAR and mAAR (and for cKAAR and mKAAR) are far
from each other at first, but then converge to similar values.

We should also note that logistic regression can be considered in the online
regression framework too, and theoretical guarantees on the square loss can be
proven for an algorithm competing with logistic regression experts as in [18]. This
algorithm can as well be kernelized and guarantees for the kernelized algorithm can
be proven (see [17], Section 4.5).

Summarizing the experimental results, we can say that although mLogOnline
gives good results on many data sets, it is often not as good as kernelized algorithms.
Kernelized algorithms also have the flexibility of changing the kernel and thus having
better model for the data. They are fast to run on small data sets, but are very slow
on large data sets, often significantly slower than mLogOnline. Linear algorithms
often provide similar results, but are much faster to run. They can be better than
all the rest of the algorithms for some of the problems, for example if the dimension
of the input vectors is very high. Batch logistic regression is very fast to run but
often has much worse precision.

7. Discussion

We considered an important generalization of the online classification problem. We
presented new algorithms which give probability predictions in the Brier game. Both
algorithms do not involve any numerical integration, and can be easily computed.
Both algorithms have theoretical guarantees on their cumulative losses. One of
the algorithms is kernelized and a theoretical bound is proven for the kernelized
algorithm. We performed experiments with linear and kernelized algorithms and
showed their strengths and weaknesses by evaluating performance, time to train and
predict, flexibility, and stability of the performance. We have provided results for

22 Fedor Zhdanov and Yuri Kalnishkan

different scenarios: when time series are growing (C4 and C9), when the noise is more
shifted to one of the sides from the mean (DEC and LBL), when there is a periodic
component of the series (E5), and in a more stable setting (E8). We compared them
with the logistic regression, the benchmark algorithm giving probability predictions.

An important open question is to obtain lower bounds for the loss of our algo-
rithms. Judging from the lower bounds in [15] one can conjecture that the regret
term of order O(lnT) is optimal for the case of linear model (1). It is possible that
the multiplicative constant can be improved though.

Acknowledgments

The authors are grateful to Alexey Chernov, Vladimir Vovk, and Alex Gammerman
for useful discussions and to anonymous reviewers for helpful comments. This work
has been supported by EPSRC grant EP/F002998/1 and ASPIDA grant from the
Cyprus Research Promotion Foundation.

References

1. Edwin F. Beckenbach and Richard Bellman. Inequalities. Springer, Berlin, 1961.
2. Glenn W. Brier. Verification of forecasts expressed in terms of probability. Monthly

Weather Review, 78:1–3, 1950.
3. Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge

University Press, Cambridge, UK, 2006.
4. Alexander Gammerman, Yuri Kalnishkan, and Vladimir Vovk. On-line prediction with

kernels and the complexity approximation principle. In Proceedings of the 20th Con-
ference in Uncertainty in Artificial Intelligence, pages 170–176, 2004.

5. David A. Harville. Matrix Algebra From a Statistician’s Perspective. Springer, New
York, 1997.

6. David Haussler, Jyrki Kivinen, and Manfred K. Warmuth. Sequential prediction of
individual sequences under general loss functions. IEEE Transactions on Information
Theory, 44:1906–1925, 1998.

7. Arthur E. Hoerl and Robert W. Kennard. Ridge Regression: biased estimation for
nonorthogonal problems. Technometrics, 42:80–86, 2000.

8. Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient
descent for linear predictors. Information and Computation, 132:1–63, 1997.

9. Jyrki Kivinen and Manfred K. Warmuth. Averaging expert predictions. In Proceed-
ings of the 4th European Conference on Computational Learning Theory, pages 153–
167. Springer, Berlin, 1999.

10. Jyrki Kivinen and Manfred K. Warmuth. Relative loss bounds for multidimensional
regression problems. Machine Learning, 45:301–329, 2001.

11. Christian Michelot. A finite algorithm for finding the projection of a point onto the
canonical simplex of Rn. Journal of Optimization Theory and Applications, 50:195–
200, 1986.

12. Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA,
USA, 2002.

13. Vladimir Vovk. Aggregating strategies. In Proceedings of the Third Annual Workshop
on Computational Learning Theory, pages 371–383, San Mateo, CA, 1990. Morgan
Kaufmann.

Probability Forecasting with Linear and Kernelized Models 23

14. Vladimir Vovk. A game of prediction with expert advice. Journal of Computer and
System Sciences, 56:153–173, 1998.

15. Vladimir Vovk. Competitive on-line statistics. International Statistical Review,
69:213–248, 2001.

16. Vladimir Vovk and Fedor Zhdanov. Prediction with expert advice for the Brier game.
In Proceedings of the 25th International Conference on Machine Learning, pages 1104–
1111, 2008.

17. Fedor Zhdanov. Theory and Applications of Competitive Prediction. PhD thesis, De-
partment of Computer Science, Royal Holloway University of London, UK, 2011.

18. Fedor Zhdanov and Vladimir Vovk. Competitive online generalized linear regression
under square loss. In Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases 2010, pages 531–
546, 2010.

