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ABSTRACT
The localised molecular orbitals of the formaldehyde molecule
are computed using a minimum basis set of Slater atomic orbitals.
The method of calculation used obtains localised molecular orbitals
(1.m.o.s ) directly at the Hartree-Fock level of approximation,
rather than the more usual way of obtaining l.m.o.s from the

canonical molecular orbitals.

The major difficulty in implementing this method is found to
lie in satisfying orthogonality conditions, required by the l.m.o.
theory, prior to an actual calculation. It is not found possible
to satisfy these conditions completely for the formaldehyde molecule.
Ways of overcoming this difficulty are discussed. L.m.o.s are
calculated using Schmidt and Lowdin orthogonalisation of a suitable

set of non-orthogonal starting—point functions.

The resulting l.m.o.s are found to give a unigque many-electron
total wavefunction, which is the same as that obtained by a canonical
molecular orbital calculation. The individual l.m.oc.s obtained are
not unique, their forms depending on the method of orthogonalisation

used and on the form of the starting-point functions.

Calculations are also made at several stages of approximation,
each stage corresponding to ideas of chemical valence theory.
Hence, perfectly localised molecular orbitals are computed directly.
The results of calculations in which the operator is truncated to
include only contributions from electrons and nuclei in the immediate
environmment of the l.m.o. being calculated are found to be very
similar to those using the full Hartree-Fock operator.

.5,
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The chemical significance of the l.m.o.s is examined by
calculation of various properties including bond-energies. An
examination is also made of the effect of making arbitrary changes
in the polarity of one bond on some of the properties of other bonds.

Finally, a general study of the electron density given by many
l.m.o.s 1in different molecules is made, and the use of l.m.o.s in
describing the formation of a two—electron chemical bond is

examined.
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Abbreviations arc Symbols Used

Iccalised molecular orbital.
Cenonical molecular orbital.

Atcmic unitse.

Total wavefunction.

Mclecular crbital, usuzally ar l.m.0.

Cancriical molecular orbital.

Atcomic orbital,

Free stace furction.

Lagrangian multiplier or eigenvalue,

Eigenvalue of a carcnical molecular ortital.

Slater atcmic c1bilal exponenrt.

Number of molecular crbitals (2n = number of electrons).
Number of atcmic orbitales ir the atomic orbital basis set.
Muwber of free space furctions.

Coefficient in the expansion of a molecular orbital in

terms of atemic orbitalse.

Coefficient in the expansion of a free space funciicr in

terms of atomic orbitals.

Coefficient in the expansion of the orbital to be

calculated in terms of the free space basis functions.

Overlap integral.

Overlap integral matrices.



=

=

Nermelisirng ccnstant.

Unitary transformation.

Total energy.

Kirnetic energy

Potential energy.

Dipole moment.

Hartree-Fock operatore

Charge on nucleus a.

Coulomb operator, defined by equation (2.5).
Exchange operator, defined by equation (2.6).
Coulomb integral, defined by equation (2.7).
Exchange integral, defined by equation (2.8).

"Exchange Factor" occurring in the expression for the

operator at stage 2. (equation 3.30).

L.meo. describing a sigma~bond.

L.me.0. describing a pi-bond.

L.me.o. describing a lone pair.

L.m.o. describing an inner shell.

Anti-bondirg partner of M .

Hybrid atomic orbital.

Polarity parameter.

Population of a hybrid atomic orbital on atom A.
Atomic charge in a hybrid atomic orbital on atom A.
Total atomic charge on atom A.

Ionic bond energy.

Dipole-dipole interaction.

10



11

Ag Change from the SCF value in the atomic charge on the

carbon atom.

jex

A set of non-orthogonal functions.

]Z A set of orthogonal functions.

P Projection operator.

A A measure of the orthogonality of the occupied orbitals
in formaldehyde, defined by equation (3.15).

r\ A measure of the overall difference between two sets of
l.m.0.s., defined by equation (4.16).

M Number of non-linear simultaneous equations given by the
orthogonality condtions. ‘

u Jacobian matrix.

A Electronegativity.

Electron density.

oL

Difference density.

D A measure of the total build-up of electron density on
bond formation, defined by equation (6.7).

€ Electronic charge.
m Electronic mass.
h Planck's constant.
a, Bohr radius

ij Kronecker delta. Sjj =1if 1 = j.

sij=o if 1 £ j.

A single underlining of a symbol denotes a vector, and a double

underlining of a symbol denotes a matrix.
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Section 1 The General Purpose of the Work

The general purpose of the work is to calculate localised molecular
orbitals ard to investigate their properties. The main part of the
present work is concerned with the calculation of the localised molecular
orbitals of the formaldehyde molecule.

The solution of Roothaan's equations1 for the molecular orbitals of
a molecule gives the canonical molecular orbitals which, in general,
extend over the whole nuclear framework of the molecule. However, as
Lernmard-Jones first pointed out,2 because of the invariance of the total
wavefunction to a unitary transformation amongst the molecular orbitals,3
orbitals may be chosen which are the most suitable for the investigation
of a particular physical problem. In this way molecular orbitals may be
obtained which are localised in particular regions of the molecule.

There are many reasons for prefering to calculate localised molecular
orbitals (l.m.o.s ) rather than the conventional canonical molecular
orbitals (c.m.o.s ). While the canonical molecular orbitals are
convenient for describing ionization potentials and electronic spectral
transitions, their inherent delocalisation does not correspond to the
traditional chemical concept of a two-—electron bond which was first
proposed by Lewis in 1916.4 As calculations of the c.m.o.s of larger
molecules are reported, such as those listed by Christoffersen,5 the
disparity between the c.m.o.s and the chemical description of a molecule
in terms of bonds, lone pairs and inner shells becomes even more apparent.
When large organic and biclogical molecules are considered it is difficult
to envisage these in terms of molecular orbitals which are completely
delocalised over the entire molecule. On the other hand, molecular

orbitals which are localised in specific regions of the molecule

correspond more closely with intuitive chemical thinking.
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The idea of a covalent local bond connecting atoms in a molecule,
described by Pauling in "The Nature of the Chemical Bond",6 is one of
the most widespread and successful concepts in chemistry. It is one

7

of the basic premises of the theory of organic chemistry’' and
stereochemistry.8 It is hoped that localised molecular orbitals
provide a mathematical description of the classical chemical bond and
hence may be used to calculate properties of individual bonds such as
bornd polarities and hybridisations.

There is considerable chemical evidence, particularly from organic
chemistry, that individual bonds in molecules have properties which are,
to a certain extent, independent of the structure of the rest of the
molecule and that a particular type of bond retains some of its
properties in different molecules. This is the basis of the concept of
an homologous series.7 Thermodjnamic data provides evidence of the
additivity of certain bond properties. For example, heats of formation
can be interpreted on the assumption that there is a definite amount of

energy, the bond energy, associated with each type of bond.9

Amongst
other properties which have been found to be transferable from one
molecule to another are bond moments.10 Localised molecular orbitals
describing chemical bonds should therefore be to some extent
transferable from molecule to molecule.

The question of the transferability of l.m.o.s has been discussed

3 14

12
by Allen and Schull11 and Boys. Rothenberg1 and Peters have
shown that the l.m.o.s representing carbon-hydrogen bonds in different
molecules are very similar and Schull et al.15 have demonstrated actual

transferability of l.m.oc.s from one molecule (H20) to another (H2O?).
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Considerable interest has been shown in this aspect of l.m.o.s in the
hope that it might be possible to transfer l.m.o.s from small to large
molecules.

Conventional ab initio calculations of the canonical molecular
orbitals become prohibitively difficult as the size of the molecule
increases, although Christoffersen has used a method for their
determination based on the formation of large molecules from previously

5

calculated molecular fragments. The transferability of l.m.o.s

indicates that it should be possible to construct wavefunctions of large
molecules in terms of the appropriate l.m.o.s of smaller molecules,12’16’17
and this has been investigated by Von Néissen.18 This idea forms the
basis of several recent calculations where wavefunctions are constructed
from perfectly localised bond orbitals expressed in terms of hybridisation
and polarity parameters and the total electronic energy is then minimised
with respect to these parameters.19’2o'21
An additional property of l.m.o.s 1is that they are expected to be
useful in constructing wavefunctions of high accuracy which attempt to
allow for electron correlation. Lennard-Jones and Pople first
suggested that localised molecular orbitals should have a minimum of
inter-orbital correlation.g2 The main correction to the wavefunction
should then be given by intra-orbital correlation. L.m.o.s have been
used by many workers in configuration interaction techniques,23_26

although Steiner suggests that the inter-orbital correlation may not be

neglected.27
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Section ? Historical Development of Localised Molecular Orbital

Calculations

The two methods of approximation which have been developed in the
quantum mechanical treatment of the electronic structure of molecules
are the valence-bond method28 and the molecular orbital method.29
In the valence-bond method the molecule is considered as being built
from its constituent atoms, a point of view which is closely related to
chemical concepts. The method works well for small molecules but as
the number of electrons in the molecule increases it becomes increasingly
complicated.

The molecular orbital method is an extension to molecules of atomic
orbital theory. Each electron is assigned to a one-electron wavefunction
or molecular orbital. Electron correlation is, in the main, neglected.

In the case of a closed shell system the total wavefunction is approximated
by a single Slater determinant in which each occupied molecular orbital
occurs twice, once with a spin and once with B spin. The forms of the
molecular orbitals are given by the Hartree-Fock equations proposed by
Fock in 1930.3 In his original paper Fock made the important observation
that a unitary transformation among the occupied orbitals leaves the total
wavefunction of the molecule unchanged. This leads to a simplification

of the Hartree-Fock equations to a form which, together with the technique
of expressing each molecular orbital as a linear combination of atomic
orbitals,1 provides a practical solution of the equations. This method
gives the canonical molecular orbitals which transform as the irreducible
representations of the molecular point group. A large number of ab initio
calculations on molecules carried out according to the Hartree-Fock-Roothaan

scheme have been repcrted in the literature.BO
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Lennard—Jones? first suggested that because of the invariance of
the total wavefunction to a unitary transformation amongst the molecular
orbitals, orbitals could be chosen which were localised in specific
regions of a molecule and which were therefore closely allied to
traditional chemical concepts. The relationship between the localised
molecular orbitals and the canonical molecular orbitals has been
discussed by many authors.2’31_36

Methods of calculating localised molecular orbitals have been

35

reviewed by Weinstein, Pauncz and Cohen. There are two possible approaches.
Some workers have obtained them from the canonical molecular orbitals by
applying an appropriate unitary transformation, while others have attempted

to calculate localised molecular orbitals directly. The former method
depends on having available the canonical orbitals, and on choosing a
localising criterion. Several criteria have been proposed.

31

Lemmard-Jones and Pople” obtained equivalent orbitals which were so
defined that they transform into each other under the symmetry operations
of the point group of the molecule. They observed that the equivalent
orbitals gave different values for certain terms in the electronic
interaction energy compared to the canonical orbitals. The electronic
interaction energy is the sum of the total coulombic repulsion of all the
S
/

electrons,-rﬁz; 2Jij + %f Jii

, and the total exchange attraction of all

the electrons, fo%; Ki;],Both terms are invariant under a unitary
J
transformation. However, the sum of orbital self-interaction energies,

, 1
[g JiiJ,the total inter-orbital repulsions,‘Li#__J— ZJi j;!z’ and the total
self-energies of the overlap charge distributions,-{#J Kij ], each vary
with a unitary transformation of the occupied molecular orbitals.

The equivalent orbitals give a larger value than the canonical orbitals

for the first of these terms and smaller values for the other two terms.
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36

Edmiston and Ruedenberg~  used the criterion of maximising the sum of the
orbital self-interaction energies,[zz JiJ;to give a general iterative
procedure for the calculation of l.mjé.s in the absence of symmetry.

The resulting functions are known as energy localised orbitals and the
method has been used extensively. Edmiston and Ruedenberg carried out
calculations on a wide range of diatomic molecules. Pitzer37 performed
the first calculation on a polyatomic molecule, ethane, and Kaldor38
applied the method to ammonia, ethylene and acetylene. Among more
recent calculations are those on boron hydrides and on cyclic hydro-

39

cartons by Newton, Switkes et al. Recently a related method, known

as density localisation, which minimises the sum of the charge density

40

overlap integrals, was proposed by Von Neissen.
Another localising criterion was proposed by Foster and Boys.23
They imposed maximum separation of the centroids of the charge described
by a given set of molecular orbitals, to yield a set of functions called
"exclusive orbitals". Although these orbitals are localised and
correspond closely to the chemical picture of wvalency, they were originally
formulated as a step in the multiconfiguration treatment of electron
correlation. Thus the exclusive orbitals were then used to define
"oscillator orbitals"™ each of which interacts mainly with one exclusive
orbital and which then enables electronic correlation to be introduced
for that orbital. Later, Boys amended the definition of the exclusive

orbitals slightly,?’

and this method has been used by Bonaccorsi,

2
Scrocco and Tomasi to obtain 1.m.o.s.4 Although the criterion of
Edmiston and Ruedenberg has a clearer physical significance, the method

of Foster and Boys is more economical, especially for larger molecules.
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43

Ruedenberg '~ classified methods of localisation based on the
transformation of the canonical orbitals into "intrinsic" and "external"
transformations. The methods of Edmiston and Ruedenberg and of Foster
and Boys described above are based on intrinsic criteria, as they do not
explicitly require localisation in a particular region of the molecule,
the resulting localisation being a consequence of the condition imposed.
Several external criteria have also been proposed, where physical
localisation of the electron density in a particular region is imposed
directly.

An early method proposed by Peters44

is based on the assumption
that the l.m.o.s are completely localised on the appropriate atom or
atoms and have very small amplitudes outside the bond or lone pair in
guestion. The properties of these l.m.o.s have been discussed by

45-53

Peters, and the electron density distribution arising from
individuwal l.m.0.s 1is examined in Chapter Six of this work. Another
external procedure was given by Magnasco and Perico in 196854 using a
transformation based on the partition of the total electronic population
according to Mulliken's method.55
The alternative approcach to the calculation of localised molecular
orbitals is to attempt to calculate them directly, with no reference to
the canonical molecular orbitals. The possibility of obtaining l.m.o.s
directly at the Hartree-Fock level of accuracy was discussed by Adams,16

Gilbert ! 43

and Ruedenberg. Adams modified the Hartree-Fock equations
to obtain an eigenvalue equation, the solutions of which are the l.m.o.s
by making appropriate changes in the Hartree-Fock operator. The
equation is difficult to solve and Adams obtained only an approximate
solution for the Lithium Hydride molecule,

Using the work of Adams, Gilbert and Ruedenberg, and also of

Anderson,56 Peters proposed a method57 for the direct calculation of



localised molecular orbitals from the Hartree-Fock equations which retains
the Hartree-Fock operator in its usual form. There is no loss of rigour
from the Hartree-Fock level of approximation and the theory results in an
eigenvalue equation which is easily solved by conventional methods. Each
l.m.0. is calculated separately, the forms of the other occupied orbitals
in the molecule remaining fixed during the calculation. This method 1is
used in the present work to calculate the l.m.oc.s of formaldehyde and
details of the formal theory are given in Chapter Two. It has so far

been tested with the BH molecule57 and with rnethane58

by Peters, and used
recently in a slightly modified form by Wilhite and Whitten26 for
calculations on water, ammonia, ethylene and formaldehyde. Peters has
also discussed the use of the method in Open Shell calculations.59
Essentially the same idea of using orthogonalised sets of basis functions

was developed at the same time by Goddard et al. for excited states.6o

The application of symmetry theory to the l.m.o.s is given in reference 61.



Section 3 Previous Calculations on the Formaldehyde Molecule

There are many calculations on the ground state of the formaldehyde
molecule, at various levels of approximation, reported in the literature
and a brief survey of these is given below.

Formaldehyde has been the subject of a number of semi-empirical
calculations. Some examples are given in reference 62. In 1960
Foster and Boys,63 and Goodfriend, Birss and Duncan64 carried out the
first ab initio calculations. A later recalculation by Newton and
Palke65 indicated errors in the latter wavefunction. Formaldehyde was
chosen by Foster and Boys to test their scheme for configuration
interaction calculations. After solution of the Roothaan equations to
give the canonical orbitals, they calculated the exclusive orbitals
which they found to be localised on the bonds. The formaldehyde molecule
was also used as a model by Parks and Parr66 to test their theory of
separated electron pairs.

More recently the Hartree-Fock-Roothaan scheme was used by Switkes,
Stevens and Lipscomb67 to calculate the canonical molecular orbitals of a
range of molecules, which include formaldehyde, using a minimum basis set
of Slater-type atomic orbitals. Calculations using basis sets of
Gaussian atomic orbitals have been performed by several workersé8 and

Whitien and Hackmeyer25

have reported a configuration interaction study
of the molecule. A multiconfiguration calculation using Slater atomic
orbitals has been carried out by Levy.

Localised molecular orbitals have been obtained from the canonical

orbitals by Peters47 54

and Magnasco and Perico, using their own localising
criteria, and by Newton, Switkes and Lipscomb70 following the Edmiston~-
Ruedenberg procedure. Formaldehyde is also one of the molecules whose

l.m.0.s have been calculated recently by Wilhite and Whibtenzé using a



method based on the l.m.o0. theory which was proposed by Peters.57 Wilhite
and Whitt en work with a basis set of Gaussian atomic orbitals and have

modified the method slightly so that all the l.m.o.s. are determined

together.



Section /4 The Scope of the Present Work

The present work provides a further test of the l.m.o. theory devised
by Peters,57 with the eventual aim of developing it into a working method
for the direct calculation of l.m.o.s without first calculating the
CeMeOoSe Prior to this work several questions remained concerning the
method. It was not clear whether the orthogonality conditions, which
are implicit in the theory and which must be satisfied before the
calculation of an l.m.o., are not too severe for many molecules.

In addition, the uniqueness of the end-point and the convergence of the
method had not been fully explored, although no difficulties had been

found for methane. These questions are investigated in the present work
although, for reasons discussed below, no clear conclusion is reached
concerning the orthogonality conditions and the uniqueness of the end-point.

It was decided to calculate the l.m.o.s of formaldehyde as this
molecule gives a more searching test of the theory than the methane molecule.
It is the first use of the theory for a molecule containing lone pairs of
electrons and a pi-bond, and is a much more stringent test of the
orthogonality conditions. There are also many experimental measurements
and previous calculations reported in the literature with which to compare
results. The problems arising on the application of the l.m.o. theory to
formaldehyle are discussed in Chapter Three.

In addition to developing the l.m.o. theory the results of the
calculations on formaldehyde are of chemical interest. Formaldehyde
contains a carbonyl group j;and is the first member of the homologous series
of aldehydes and ketones, which play an important part in organic chemistry.7
The carbonyl group also occurs in many large biological molecules, examples

being given by the peptides and proteins.



The l.m.o. theory was designed with a view to performing calculations
on large molecules.57 Each l.m.o. is calculated separately, while the
forms of the other l.m.o.s in the molecule are kept constant, providing
a possible route to the calculation of parts of a large molecule. This
aspect of the theory has been investigated by Wilhite and Whitten.26
The successful calculation of the l.m.o.s of formaldehyde may be regarded
as a possible step towards calculating the l.m.o.s of larger molecules
containing the carbonyl group, such as amides and peptides. Considerable
interest has been shown recently in calculations of these molecules.

Calculations on large molecules are further assisted by the ability
to apply the l.m.o. theory at different levels of approximation, or
stages. The approximations are made by neglecting the effects of distant
parts of the molecule when calculating a particular l.m.o. Each stage
corresponds to ideas of chemical valence theory. The first stage is the
simplest approximation and corresponds most closely to chemical ideas of
a two-electron bond. The final stage is the complete solution of the
secular determinant given by the l.m.o. theory and corresponds to a more
mathematical point of view. A detailed description of each stage is given
in Chapter Three.

In the present work l.m.o.s were calculated for the formaldehyde
molecule at each of the various stages to investigate how good an
approximation the earlier stages give to the rigorous final stage. The
results are discussed in Chapters TFour and Five. These calculations
differ from those of Wilhite and Whi#fen26 who use a method which
calculates all the l.m.o.s together and obtains orthogonality of the
occupied §rbitals by Lowdin orthogonalisation which causes a certain amount
of delocalisation. This method is not applicable at the earlier stages of

approximation but only at the rigorous final stage. These workers use a
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basis set of Caussian atomic orbitals whereas the present work uses a basis
get of Slater atomic orbitals.

Having calculated numerical expressions for the l.m.o.s 1t is then
necessary to interpret them in terms of their physical significance.

Various properties of the individuwal l.m.o.s are discussed in Chapter Five.
The calculated values of bond energies are of particular interest as these
are quantities which may be compared with experimental values and which are
of considerable chemical importance. The l.m.0.s of the methane molecule
gave values which agreed unexpectedly well with the experimental Values.5
The formaldehyde molecule is also used as a model to investigate the effect
of a variation in the polarity of a bond on some of the properties of the
molecule.

Perhaps the best picture of the physical nature of the l.m.o.s would be
provided by an investigation of their electron density distribution. In
Chapter Six a general study is made of the electron density given by many
l.m.o.s in different molecules, and the use of l.m.0.s 1in describing the
formation of a iwo-electron chemical bond is examined. This work was
carried out partly in preparation for the investigation of the electron
density distribution given by the l.m.o.s of formaldehyde calculated by the
present method, although such an investigation was not performed in this work.

The electron density distribution in the H, molecule, which contains a

2
single bonding molecular orbital, was examined by Daudel and co—workers,72
who found that the formation of the two—-electron bond is accompanied by an
increase of electron density in the region between the two nuclei, and a
decrease of electron density outside this region. The present work examines

if this is a general conclusion for all l.m.o.s describing two—electron

bonds by comparing the electron density distribution of the two electrons
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before and after the bond is formed. The delocalised canonical orbitals
are not suitable for use in this way.']?)_77 The electron density

distribution for lem.oc.s 1in several molecules have been reported in the

literature,Bgd’ 42 but no comparison with the situation before bonding

was made.

This approach differs from that of many workers who have compared the
change in the total electron density of the whole molecule on bond
formation.74—82 They have found an increase in electron density in the

inter-nuclear region, but also an increase of electron density outside

this region, which has been ascribed to the formation of lone pairs.



CHAPTER TWO

BASIC THEORY
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Section 1 Hartrece-Fock Theory

A brief summary of the Hartree-Fock theory for a molecule with a
closed shell structure is given below. More detailed treatments are

1,3 83

given in the original literature and in standard texts.
The wavefunction of a closed shell molecule is represented by a single

determinant. For a molecule with 2n electrons the wavefunction is given by

Y ol | B8 8,8y e B8, (2.1)

where ¢1""¢n are molecular orbitals (m.o.s ), E(denoting an orbital with

B spin. As a consequence of the determinantal form of the wavefunction,

the molecular orbitals from which it is constructed are unique except for

a unitary transformation among themselves. Therefore the wavefunction in
equation (2.1) may be expressed in terms of a different set of m.o.s , ¢;....¢;,

which are related to the first set by a unitary transformation. In matrix

notation
g =2.Y (2.2)

where g_is the row vector containing the m.o.s ¢1""¢n' gf the row
vector containing the m.o.s ¢; ceee ¢; and U the nxn matrix

representing the unitary transformation. (A single underlining denotes

a vector and a double underlining denotes a matrix). Hence there are
infinitely many sets of m.o.s which describe the same total wavefunction \}? .

The wavefunction for which the total energy is a minimum is given by

any set of molecular orbitals satisfying the Hartree-Fock equations

n
= 1= 1ooon
J‘;l J = 1oo-n
Where F is the Hartree-Fock operator given by
2 Zg’ n
F=-1/2\/ + ~Z2,/Tg + Z (ZJJ - Kj) (2.4)
e=1 j=1 :



The first term represents the kinetic energy of an electron in the ith
MeO. The second term represents the sum over the g nuclei in the
molecule of the coulombic attraction between the electron and the nuclei.
Zg 1s the charge on nucleus a and r. is the distance between nucleus a and
the electron. The third term represents the coulombic repulsion and
exchange attraction between an electron in the ith m.o. and all the

electrons in the molecule. The coulomb operator, Jj' is given by

Iy #(1) = : av, | 81 (2.5)

where ¢(1) signifies an m.o. occupied by the first electron and ¢(2)

signifies an m.o. occupied by the second electron. is the distance

T12
between the first and second electrons and the integration is over the
co—ordinates of the second electron. The exchange operator, Kj’ is given
by

..2 (2
JRENG I \

T12 /
It is also convenient to define coulomb integrals Jij and exchange

K, 8,(1) =

.6
; g,(1) (2.6)

integrals Kij in terms of the respective operators.

iy = g;ﬁi(l) Iy 85(1) avy (2.7)

}¢i<1) Ky #;(1) avy (2.8)

i

Kij

These equations may be written

oy
|

ij = <% ¢i| ‘53 ¢j> (2.9)

ij - <¢1 ¢J‘ ¢l ¢j> ‘ (2.10)

=
t



adopting the convention that the left-hand side of the bracket refers to
electron 1. As only real functions are used in this work complex
conjugates are not indicated.

The Ej; in equation (2.3) are Lagrangian multipliers arising from the
auxiliary conditions that the orbitals be orthonormal. In matrix notation

equation (2.3) is given by

e

F=g.c (2.11).

where é; is an nxn matrix containing the Lagrangian multipliers.

It can be shown that when the set of m.o.s jé are subjected to a
unitary transformation as described by equation (2.2) the set of m.o.s
obtained, gzz satisfy the same equation. Since the operator F is
invariant under a unitary transformation, equation (2.11) may be written

Fg.U=8.U (U .€.U0) (2.12)

or Fg=g.e (2.13)

The canonical molecular orbitals are obtained by choosing to calculate
the set of m.o.s whose éé matrix is diagonal. Equation (2.3) then reduces

to the simpler form

(2.14)

To obtain m.o.s 1in practice, it is necessary to express each m.o. in

terms of a basis set of atomic orbitals, 2&.
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+

= = (2.15)
A p=1 *p pt X g

Where ¢; 1s a column vector of coefficients. Assembling the columns into

a rectangular matrix ¢ of t rows and n columns gives the general form of

(7.15)
g =X .c (2.16)

Substituting (2.16) into equation (2.11), premultiplying by the column of
atomic orbitals and integrating gives the general form of the Hartree-Fock

equations.

F.c=58.c2.€ (2.17)
where F is the txt matrix with elements
. 2.18)
“pq {/xp ¥ 7 pl ]Xq
and 3 is the analogous overlap integral matrix with elements
s = dV=< | (2.19)
Pq prxq X Xq>

In the canonical case equation (2.17) reduces to

. (2.20)
[g-&. SJ%:O

1 =
Solution of equation (2.20), by solving the secular equation

Det (£-€58) =0 (2.21)

generates t eigenvalues,gg, and t eigenvectors, g5 The n eigenvectors
associated with the n lowest eigenvalues correspond to the occupied m.o.s.
The remaining (t-n) virtual m.o.s have no straightforward physical

significance, although they are used to build up excited states of molecules.
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The canonical molecular orbitals belong to the irreducible representations
of the symmetry group of the molecule, and experience shows that they

are in general delocalised over all the atoms of the molecule,
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Section 2 Localised Molecular Orbital Theory

For many chemical purposes it is more helpful to work with molecular
orbitals localised in particular regions of the molecule, corresponding
to bonds or lone pairs. Localised molecular orbitals can be obtained
from the canonical orbitals by choosing the matrix U in equation (2.2)

33-36 N

in such a way that this is the case. Iff@ is the set of c.m.0.s and

§# the set of l.m.o.s then
f=6.u (2.22)
The following theory was developed to obtain l.m.o.s directly.57

If attention is focussed on one particular m.o., say ¢i’ the Hartree-Fock

equation (2.3) may be written in the form

<:D
Fg- €4 = é—_—_l(wi) S (2.23)

The problem is then to solve this equation and determine ¢i and €5;. This
may be achieved, given that the forms of all the other occupied orbitals
in the molecule are known and fixed, in the following way.

As with the canonical orbitals each l.m.o. is expanded in terms of an

atomic orbital basis set.

¢J B Z— ’xm ij j=l...n (2'24)

The size of the atomic orbital basis set, t, determines the size of the set
of molecular orbitals. The T m.o.s span a t-dimensional function space.
If the forms of (n-1) of the occupied m.o.s are fixed, this t—dimensional
function space can be divided into two mutually orthogonal subspaces.

One (n—1)—dimensiona1 subspace is spanned by the fixed functions and is
called the "fixed" space. The remaining subspace is of [t-(n-1)] = s
dimensions and is spammed by the functions whose forms are to be determined

(ie the m.o. being calculated together with the empty virtual orbitals).



This is known as the "free" space.
Each of the free space functions, U1...Us, is expanded in terms of
the atomic orbital basis set.

t
u_ = :El X Kk
P 1 "

u=

p=l...s

wp (2.25)

Initially the coefficients kmp may be chosen arbitrarily within the
restriction that each free space function, Up’ must be orthogonal to each
fixed space function, ¢k’ as required by the mutuvual orthogonality of the

fixed space and the free space.

Teeson(k{i) (2.26)

eyl =0 )

o) TeeeS

]

Equation (2.23) may be solved by expressing the ith m.o. as a linear

combination of the free space functions.

S
g, = qu Cyi Yq (2.27)

The free space functions therefore form a basis set for the expansion of

¢i’ termed the free space basis set to distinguish it from the atomic
orbital basis set (equation 2.24)). Because of the mutual orthogonality

of free and fixed spaces the right hand side of equation (2.23) may then

be eliminated without loss of rigour. This can be seen by substituting
(2.27) in (2.23), multiplying (2.23) from the left by U, and integrating

over the coordinates of electron 1, to give

S
N\ ) ~
£~ Cgi op | E 'uq> - S <up | uq>

q=1
Cot { RIS Gp 1 8> (2.29)
k=1

(k#i)

Mw

1

q

l,..s

P
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All the terms in the sum on the right hand side of the equation are zero,
as all the <up‘ ,ZSK> are zero by construction of the free space functions

Up (equation 2.26). The equation then reduces to

S

-
L Cos { Fpg - €45 8,400 p=l...s (2.29)

Or in matrix notation

Q = 2-30
33818 =0 (230

e
1

Where_E and

lita

are sxs matrices containing elements

qu = <up | 7| uq> (2.31)

and

Spr, T <upl uq> (2.32)

Tespectively. The secular equation

ver ( ¥ - €

Ho.

) =0 (2.33)

can be solved in a similar way to the Roothaan equations which give the
conventional c.m.o.s. Equation (2.33) differs from equation (2.21) in
that the secular determinant is of smaller dimension, sxs, as opposed to
txt. The basis functions are the free space basis functions, U1...Ué,
not the atomic orbital basis set. The F operator is the conventional
Hartree—Fock operator, constructed from all the occupied orbitals as in
(2.2).

To calculate a set of m.o.s equation (2.30) is solved for each m.o.
in turne. To show how the method works in practice the calculation of
the first m.o., say ¢1, is illustrated below. The forms of all the other
occupied m.o.s., ¢2...¢£, are assumed to be known. Initially these will
be guesses based on physical considerations. Free space functions,

Hﬂ...Us, are constructed such that they are orthogonal to the fixed space
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according to (2.26), with U, being as close to the final form of ¢1 as
possible. The F matrix, with elements given by (2.31) is then formed.
Solution of (2.30) gives the eigenvalue and eigenvector of the first Me0.,
¢1, together with those of all the virtual orbitals. The lowest and only
nerative eigenvalue corresponds to the occupied orbital ¢1. The F
operator is then reconstructed with the improved ¢1 and the process
repeated to self-consistency. A second m.o., say ¢2, can then be
calculated in the same way, with the new form of ¢1 used in constructing
the fixed space and the F operator. Further calculations are made until
the forms of none of the occupied orbitals can be further improved. There
are therefore two cycling processes — firstly the iteration to self-
consistency within the calculation of one particular m.o., and secondly the
cycling round the m.o0.s until no more overall improvement can be obtained.
Wilhite and Whifﬁen26 have reversed the order of these two processes so that
all the molecular orbitals are improved together.

The theory set out above applies to any set of m.o.s satisfying the
Hartree-Fock equations. Localised molecular orbitals are obtained by
constructing the initial fixed space from localised functions thus forcing
the orbital being calculated to be substantially localised, through the
orthogonality conditions of equation (2.26). Hence the orthogonality
conditions play an important part in forming the calculated m.o. The t
atomic orbital coefficients c . describing the orbital being calculated ¢i
(equation (2.24)) are determined partly by the (n-1) or (t-s) orthogonality
conditions (equation (2.26)) and partly by solution of the sxs secular
determinant (equation (2.33)).

The question arises of the uniqueness of the orbitals. This is a

difficult point as there is no requirement in the formal theory that the

final set of orbitals be unique. A set of SCF m.o.s is uniquely determined
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by making a specific choice of the off-diagonal Lagrangian multipliers E&i.
The method given above is dependent on the starting-point functions to the
extent that a set of SCF localised m.0.s 1is obtained only from a set of
starting-point functions which are localised. It is hoped, however, that
the detailed forms of the l.m.o.s forming the fixed space will have little
influence on the form of the l.m.o. being calculated either through the
operator, or through the orthogonality conditions. It has been found in
previous work58 that the triple criterion of firstly minimizing the total
energy, secondly requiring the orbitals to be localised and thirdly
requiring the orbitals to be mutually orthogonal apparently gives
individual orbitals, as well as a total wavefunction, which are independent
of the starting—point. This problem is investigated further in the
present work, although, for reasons discussed below, it is not possible to

reach a clear conclusion.
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Section 3 Methods of Orthoponalisation

In implementing the l.m.o. theory described in Section 2 it is
necessary both to obtain a set of functions which are orthogonal amongst
themselves and to obtain one set of functions which is orthogonal to
another set. Details of the orthogonality conditions are set out in
Chapter Three. Methods which may be used to attain this orthogonality
have been reviewed by Lowdin84 and are discussed below.

The general problem may be described in the following way. An
orthogonal set of m functions, lﬁ , can be expressed in terms of a

non-orthogonal set of m functions, Zi y by a linear transformation:

¥ =X.a
= (2.34)

where‘éyis.an mxm matrix of coefficients. Given the set of non-orthogonal
functions, :2 y the problem is then to find the matrix of coefficients A

such that

il e

(v lvys= >

P
ot
e
ot
e

N\
lex
je
A4
il

(2.35)

i

where B is the identity matrix and éT is the transpose of the matrix A.

fe=

There is no unique solution to equation (2.35), so that many sets of
orthogonal functions can be obtained from the non-orthogonal set Ei .
Several orthogonalising procedures have been developed, each of which
results in a different set of orthogonal functions.

Perhaps the most straightforward procedure to apply, and the one which
has proved most useful in the present work, is the method of Schmidt

orthogonalising. In its simplest form the method is as follows.
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For a non-orthogonal pair of functions Xl and \52 y an orthogonal pair,\f"/ and

1
\,/,; , are obtained by subtracting ?Sl, multiplied by the overlap integral

between ¥ lancl X?, from ?52, followed by renormalisation.

V.= 3,

4 4

(2.36)

U}

, \ / x

Vo= N 0¥, = Y 818,00
N’I’> is a normalising constant. This procedure may be formulated in
terms of a projection operator. If the form of ¥ is kept constant the

component of \52 orthogonal to Xl’ 'lf’z, is selected by the operator (1 - P)

where P is the projection operator

p= 3, (%, (2.37)

Hence
Vo=, (1= >0 P
= N - <
e 0¥ = ¥ Y ¥, ) (2.38)
The method is easily extended to obtain an orthogonal set of functions
from a non-orthogonal set XJO_ cene XZ, in a step-wise process. Firstly
B (2).... ‘éz are made orthogonal to ?Siin a series of changes of the type
given by (2.36). The superscript denotes the number of times the function

has been changed.

1 _ . 0 o Sy©O 0" .
¥y =My ¥y = ¥y ¥ %50 ) e O
Since X }).... 5’3; are now all orthogonal to ¥ i they may be combined
[ i
linearly without losing orthogonality to ¥ ]Lj 3 1 ceee B la.re made
L
1
orthogonal to ¥ oin a similar series of changes
2 _ 1 1 < 1 1 -
Ki-NZi ( Xi - 32 32 l Xi> ) i-looom

(2.40)
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The process is repeated until all functions are orthogonal to all
others. The resulting set of functions, ' i,' Xé, Zﬁg,,,, Kﬁ'l
is therefore an orthogonal set. It can be seen that 'Kiis left
unchanged by the method, Z{% is changed once, and later functions in the

set are changed increasingly. The forms of the functions in the final

set therefore depend on the order in which they appear in the sequence

YO v O o} o 0
ul 32 X} 54-00 B’m (2.41)

This point has proved important in the present work.

The above method corresponds to a solution of equation (2.35) in which
the matrix é:is triangular. The individual elements in,é:become rather
cumbersome as the size of the set of functions increases, but the method
is casy to use in a computer program.

The Schmidt orthogonalising procedure can also be used to achieve
orthogonality between an orthogonal set of functions, ¥ Leoe %V‘h, and
another function b Oleaving 7{3_... Q/'m unchanged. ¥ ° is altered to
make 1t orthogonal to each function in the set in a series of changes of

the form

k k-1

¥ =N (30T -y Ky ¥ ) k=1...u

(2.42)

An alternative method of orghogonalisation, symmetric orthogonalisation,
8
which was devised by Lowdin, > makes an equal number of changes to each
function in a non-orthogonal set, li . Firstly a matrix of overlap

integrals EQL is formed, with elements

Sij; <xi| Xj> ..3“_ (2.43)
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S differs from other overlap integral matrices in that the diagonal
elements are zero. An orthogonal set of functions, lﬁ' , 1s then

given by

Y= X, 1+s" 2-1/2 (2.44)

The matrix (1 + S )

can be expressed as a series

(1+5 -1-% §= +3 (s Ly2 _ 546 (s Lys . (2.45)

and has elements %
R L L L

3 ji
-
VL sk L 2.46)
- 5/16 >?, L S5, S 513 e (

Orthogonal functions IV' (i = 1eeen) are therefore given by

Vi:. %ZKS "'% ZXSJP ll(‘i

k

(2.47)
- 5/16 ‘v Z E Lk kl Si‘l L

The series given by equatlon (2 44) does not always converge and in this

1
case it 1is necessary to evaluate (1 + SL )"% in some other way.84 No

convergence difficulties were found, however, when this method of
orthogonalising was employed for the functions occurring in this work.

84 that the method of Lowdin orthogonalising gives

It can be shown
a set of orthogonal functions which ressemble the initial non-orthogonal
functions as closely as possible.

A third method of obtaining orthogornality is provided by symmetry

orthogonalisation. For a pair of non-orthogonal functions ¥ 1 and 3 X

an orthogonal pair,'ybj.and ’9’2, is given by the sum and difference of

the two functions.
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(2.48)

Extension of the method to a larger set of non-orthogonal functions can

be achieved, but becomes complicated. The functions produced are all

extensively altered by orthogonalising in this way and so the method was

not found suitable for use in the present work.
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IMPLEMENTATION OF THE THEORY
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Section 1 Avpplication of The Theory to Formaldehyde

The formaldehyde molecule was chosen as a test of the l.m.o. theory
partly because of the reasons mentioned in Chapter One, and partly because
many of the integrals needed had been made available by Newton and Palke.65
The atomic coordinates used in the calculations and shown in Table 3.1

were those employed by Newton and Palke. The positions of the axes are

shown in Figure 3.1.

H

Ny

Figure 3.1 Positions of the Ayes for the Formaldehyde Molecule

The calculations were performed in atomic units, defined by
e =m=h/21'\' =1 (3-1)

where e is the electronic charge, m is the electronic mass and h is
Planck's constant. 1 a.u. of distance = 0.529 X. 1 a.u. of energy

= 2T.70976 eV.

86

A minimum atomic orbital basis set of Slater-type orbitals was used.

The general form for these orbitals is given by

nlm

- €T
LS e 8 T, (8, #) (3.2)



Table 3.1 Atomic Coordinates of Formaldehyde (a.u.)

Atom Cartesian Coordinates Charge
X Y Z
C 0.000 0.000 0.000 6.00
0 0.000 0.000 =2 .300 8.00
H 0.000 1732 1.000 1.00
i 0.000 -1.732 1.000 1.00
Table 2.2 Atomic Orbital Exponents
Index Atom Atomic Exponent
Orbital

1 C 1s 5.700

2 C 2s 1.625

3 C 2pZ 1.625

4 c 2p_ 1.625

C ? 1.62

5 Py 5

6 0 18 T.700

7 0 2s 2.275

8 0 2pZ 2.275

9 0 ?pX 2.275

10 0 ? 2.7
Py 5
12 i 1s 1.200
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where Yim is the angular part of the function and Nﬁl is a normalising
constant. The orbital exponents, § , used for formaldehyde are those
given by Slater's Rules and are shown in Table 3.2.

The formaldehyde mglecule contains 16 electrons in 8 doubly
occupied molecular orbitals (n = 8). The atomic orbital basis set used
consists of 12 orbitals (t = 12), so the Hartree-Fock function space is
therefore 12 dimensional. To perform a calculation according to the
l.m.o. theory57 this space is divided into an (n -1 = 7) dimensional
fixed space containing the 7 l.m.o.s whose forms are fixed, and an
(s =t -n+ 1 =5) dimensional free space containing the l.m.o0. to be
calculated and four virtual orbitals.

It is convenient to label the eight occupied l.m.o.s8. and four
empty or virtual orbitals in formaldehyde with two sets of symbols as
shown in Table 3.3. One set are the general symbols which were used in
describing the basic l.m.o. theory in Chapter Two. Hence ¢1"’¢8 are
the eight occupied orbitals and UQ...U are the four virtual orbitals.

5

The l.m.o. whose form is being calculated is ¢i or U The second set

7°
of symbols is specific to the formaldehyde molecule and describes the
type of l.m.o. P+ represents a sigma-bond, W a pi-bond, A a lone
pair and T an inner shell. The forms of the four virtual orbitals are
determined by the orthogonality conditions but it is convenient to
envisage them initially as the anti-bonding partners r** and ¥ of the
occupied orbitals ™ and W .

As discussed in Chapter Two, a final set of localised m.o0.s. is
obtained using the l.m.o. theory only if the starting-point functions are

localised. To start the calculation a set of functions which resemble

in general form the required end-point functions are therefore needed.



Table 3.3 Labelling of l.m.0.s 1in Formaldehyde

417

1

General Explicit

Symbol Svmbol Description

¢1 IC Inner shell on carbon atome

5252 IO Inner shell on oxygen atom.
’ rr

TV —type lone pair on oxygen

atom.
Occupied ¢4 ?\O ¢ —-type lone pair on oxygen
| m.0us atom.
¢5 M C carbon~hydrogen bond.
L -
) 6 ¥ cH carbon-hydrogen bond.
¢7 Mo carbon—oxygen O -bond.
¢8 TTCO carbon-~oxygen T —bond.
* . :
U2 HCH anti-bonding partner of Mo
. * . . '
Virtual U3 M e’ anti-bonding partner of PCH .
Orbitals %
3 - 3 N
U4 HCO anti-bonding partner of 'UCO'
oL * = .
U5 0 anti-bonding partner of ﬂCO'

M represcnts a O -bond, T a

T ~bond,

‘A a lone pair and I

an inner shell. The subscript denotes the atom or atoms with

which the function is associated and a superscript distinguishes

between the 0 — and W —type lone pairs.




48

In addition, the starting-point functions should be completely confined
to two centres for the bonds and one centre for the lone pairs and inner
shells in order to apply the theory to the formaldehyde molecule at the
earlier stages of approximation, where perfectly localised molecular
orbitals are calculated. ¢1"'¢R were therefore chosen initially as
completely localised functions corresponding to the bonds, lone pairs and
inner shells described in Table 3.3.

The general form for a bond between atoms A and B is

A A 3

g.=N. (p.” V. + D. 'VJB

J J J ) (3.3)

A

where"9j and '9jB are normalised hybrid atomic orbitals on atoms A and B

respectively. ij and ij are polarity parameters and N5 is the normalising

constant. Perfectly localised forms for the bonds in formaldehyde,

¢5"'¢8’ are therefore given by

C C H
Pog = M5 (p57 V5" + v

c.c
Mo’ = Vg (g Vg + g

B

¢ s
H H
V)

c, ¢ 0 0
Moo = M7 (o7 N77 + 07 V7))

TTCO

0 0 .
Y, <ch\’gC+Pg v.9 (3.4)

The perfectly localised one-centre functions ¢1...¢4 are of the form given

below, where the inner shells are chosen initially as pure 1s atomic orbitals.

I = s
[¢] (o]
I = Is
[¢] (0]
TT L]
>\C=~o3° (3.5)
N, =V,

c
o~
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The starting-point forms for the virtual orbitals should also be
perfectly localised, firstly in order to apply the theory at all the
various stages of approximation, and secondly to obtain localised SCF

virtual orbitals for use in configuration interaction calculations.

* ) C.C_H,H
Few = M5 (B57 Vs7-25" Vo )
o / c,c 4., %
Pew = 1\T6 ( Pg ‘76 -bg x)6 )

(3.6)

% ; c.Cc 0

NCO = N ( p}'b \)7 "p'] \')70 )
—> / 3

Moo = My (pg=¥ Cp 09, 0 )

Equations (3.4), (3.5) and (3.6) define the required starting-point
functions. The exact form of the hybrid atomic orbitals,'v , and the
values of the polarity parameters, p, then remain to be chosen subject

to the restrictions imposed by the orthogonality conditions.
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Section 2 The Orthogonality Conditions

It became increasingly clear as the work progressed that the
orthogonality conditions are the major difficulty in the implementation
of the l.m.o. theory. In discussing these conditions it is helpful
first to consider the calculation of the conventional c.m.o.s. where such
problems do not arise.

The Hartree-Fock equations (2.3), and in particular the construction
of the Hartree-Fock operator (2.4), assume that all the occupied molecular
orbitals are mutually orthogonal. This condition is easily satisfied for
CeMe0.S. Given a starting-point set of non-orthogonal functions, an
orthogonal set may be obtained by applying one of the orthogonalisation

proccdures described in Chapter Two. —The-Haritres-Eock—oporator—ms——

. 4 . . . .
of the orbitals.~  The alteration of the original functions is not

important in the case of the c.m.o.s as the starting-point forms of the
m.o.s affect the calculation of the improved m.o.s only via the operator
and all the m.o.s are determined together. Moreover, the solutions of

equation (2.20)
F-€ 8]g =0 (2.20)

for the c.m.o.s are orthogonal so that, even if the original starting-
point m.o.s are not orthogonal, orthogonal functions are produced after
the first cycle of the calculation. As the operator is constructed only
from the occupied orbitals, starting-point forms for the empty virtual
orbitals are not required, so no orthogonality difficulties arise

concerning the virtual orbitals.
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Solution of equation (2.20) is often achieved by applying an
orthogonalisation procedure to the basis set of atomic orbitals to give an
orthogonal basis set of functions which have no physical significance.

The elements of the S matrix are then given by

%pa T Opg (3.7)

€0 that the secular determinant has elements

Fog - ESpq (3.8)

In the case of the l.m.o. theory the situation is more complicated.
Three distinct sets of orthogonality requirements may be distinguished.

(i) TFirstly, as with the c.m.o.s , construction of the Hartree-Fock
operator, which contains all the occupied orbitals, presupposes that these
orbitals are mutually orthogonal.

gyl o> = & j

k=1...8

1¢0.8

(3.9)

(ii) Secondly, there is the requirement in the formal l.m.o. theory
that each function in the free space, the l.m.o. being calculated and the
virtual orbitals, be orthogonal to each of the orbitals in the fixed
space (equation(2.26)). This condition has no parallel in the calculation

of the c.m.o.s.

k= 1...8 i
<ol 8> =0 et e A (3.10)
D Teeed

(iii) Thirdly, as with the c.m.0.s , the most convenient solution of the
secular determinant for the l.m.o.s (equation (2.33)) is achieved by making
the basis functions, in this case the free space basis functions, Uj---US,

mutually orthogonal. This requirement is convenient but not essential.
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Occupied m.o.s Empty m.o.s
L

><

il
I
1B

NN

,L :

@q\
:\

Fixed space

Free snace

Figure 3.2 Overlap Integral Matrix for the Calculation of
Ps,the carbon-hydrogen bond.

KoY ‘ \\;::
\\\\\ Orthogonality condition (i)
____/////

Orthogonality condition (ii)

‘ Orthogonality condition (iii)
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Vs _ p Teaed
\UP' uq> = gpq ] 5 (3-11)

Q
|

These three sets of conditions are illustrated in Figure 3.2. It can
be seen that for all the orthogonality conditions described above to be
obeyed all 12 l.m.o.s , filled and empty, must be mutually orthogonal.

Satisfying these conditions is made difficult by the requirement that
the functions be localised (equations (3.4), (3.5) and (3.6)). This
requirement is particularly important for the occupied orbitals.
Orthogonality condition (i) might be satisfied by subjecting a non-orthogonal

set of occupied orbitals to an orthogonalising procedure, as with the c.m.o.s.

+inear tronsformation—of—the orbitals. However, in the l.m.o. theory the
forms of the occupied orbitals are important'and such a procedure would
cause delocalisation of some or all of the functions. As well as appearing
in the Hartree-Fock operator the occupied orbitals in the fixed space also
affect the final form of the l.m.o. being calculated through orthogonality
condition (ii), that the free space be orthogonal to the fixed space.
Furthermore, as each l.m.o. is calculated in turn, the forms of the occupied
orbitals in the fixed space should remain unaltered at the end of each
calculation. As all the occupied orbitals appear in the fixed space at
some time before the final set of l.m.o.s is obtained it would seem
desirable to satisfy orthogonality condition (i) by obtaining an orthogonal
set of localised occupied orbitals as a starting-point.
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In previous work on methane it was possible to construct by inspection
perfectly localised occupied and virtual orbitals which satisfy all the

orthogonality conditions. This was largely because of the high degree of
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symmetry of the methane molecule and is not possible in formaldehyde, nor
in the general case.

If the double criteria of perfect localisation and complete satisfaction
of the orthogonality conditions are adhered to, for all 12 functions in
formaldehyde, the problem becomes the solution of the simultaneous

equations given by the orthogonality conditions (3.9), (3.10) and (3.11)

: J=1...8
<¢j‘ ) = Bjk (3.9)

k=1...8

k = 1048 (k;éi)
/7
u_| £ = 0 (3.10)
N p k> P = Tessd
P =1eeed ( )
g : 3.1
<up{uq> = qu qd = Tees5

for the constants ij and kmj used in the expansion of the orbitals in terms

of the atomic orbital basis set.

N

L= c . i = Teee .

J l?;l XZIA g J 1 n (2 24)
—t

u, = 2__ X, Kup P =1...8 (2.25)
w=1

Many of these coefficients will be zero because of the localisation
requirement. Thus, in terms of the atomic orbitals and their coefficients
the perfectly localised molecular orbitals in formaldehyde are given below.

The occupied orbitals are:
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can easily be made orthogonal to each other.
therefore, there are 35 disposable constants, while equations (3.9), (3.10)

and (3.11) form a set of 55 simultaneous non-linear equations.
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pi orbitals are orthogonal to all other orbitals, by symmetry, and

Disregarding the pi orbitals
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of equations greatly exceeds the number of disposable variables, so even
if the equations were linear, straightforward solution of all the equations
while keeping perfect localisation of all the functions would not therefore
be possible. Ways of overcoming this difficulty had to be sought.

Two choices are available. Bither the orthogonality conditions or
the complete localisation requirement must be relaxed. The formal theory
demands orthogonality between all functions, except for the free space
within itself, but applies to any set of orthogonal orbitals whether
localised or not. Moreover, non-orthogonal orbitals present difficulties
in their use and linear dependencies may arise within a set of orbitals.
For these reasons more importance was attached to the orthogonality
conditions than to the localisation requirement.

The complete localisation of all functions imposed above can be
relaxed a little in the following ways. The amount of freedom to relax
the localisation requirement varies depending on the stage at which the
calculation is made. More freedom is available at the final rigorous
stage than at the earlier stages where a completely localised function is
calculated.

Considering first the free space functions, for a rigorous final stage
calculation the virtual orbitals may be allowed to delocalise extensively,
although localised SCF virtual orbitals for use in configuration interaction
calculations are not then obtained directly. The orbital to be calculated,
¢i’ also need not be completely localised at this stage. However, at
earlier stages of approximation both ¢i and its anti-bonding partner must
be perfectly localised.

As discussed above, the localised nature of the fixed space is more
important. The functions of the fixed space appear in the actual

calculations only wvia the operator and for this purpose need not be localised,
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the Hartree-Fock operator being invariant under a linear 'transformation.1
However, the localisation condition for the fixed space cannot be relaxed
completely as it is the localised nature of the fixed space which forces
localisation on the orbital to be calculated via the fixed space — free
space orthogonality conditions (equation (3.10)).

The best approach would therefore seem to lie in attempting to
achieve orthogonality between the occupied orbitals and then to construct
the virtual orbitals orthogonal both to the occupied orbitals and amongst
themselves. Bearing in mind all these considerations a suitable set of

starting-point functions for the calculations was sought.
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Section 3 The Search for a suitable starting-point

(a) Introduction

There are two main approaches to seeking a starting-point which
satisfies as far as possible the double criteria of orthogonality and
localisation. The first, which may be termed an "analytical"™ approach,
is the solution of the orthogonality conditions as a set of simultaneous
equations for the expansion coefficients ij and kmj in equations (2.24)
and (2.25). The second consists of applying an orthogonalisation
procedure, such as those described in Chapter Two, to a suitable set of
non-orthogonal functions. Both methods offer many possibilities and a

complete investigation could not be undertaken in this work.

(v) Direct Analytical Solution of Orthogonality Eguations

As stated above, complete satisfaction of all the orthogonality
conditions whilst retaining localisation is not possible for the
formaldehyde molecule. However the “analytical™ method may still be
used to impose as much orthogonality as possible on a set of perfectly
localised orbitals. This approach was examined in the hope of obtaining
an approximate solution, in which the remaining non-orthogonality was
reduced to a level where the l.m.o. calculations would not be seriously
affected.

As the orthogonality conditions are in general non-linear, the usual
methods for the solution of linear simultaneous equations cannot be
employed. Solution can be achieved by an M-dimensional
generalisation of the Newton-Rapheson iterative procedure (where M is
the number of equations). The method is described in detail in
Chapter Seven. It involves a lengthy and complication calculation
requiring a similar amount of computing time to a final stage l.m.o.

calculation. Furthermore the expression for each overlap integral in
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terms of the variables ij and kmj’ and the derivative of each expression
with respect to each variable must be written explicitly into the program.
In addition, it seems that the procedure does not always converge.

The method was first used to attempt to obtain orthogonality amongst
the occupied orbitals (3.9). This condition consists of 36 equations,

n

including the normalisation of each function. However «w 1is orthogonal
to all other occupied l.m.0.s , and ‘11. to all but V&CH and t*CH" by
symmetry, which reduces the number of equations to 24. The overlap
integral between the inner shells was neglected as it is small (.00003) and
cannot be reduced when using the forms of the functions given by (3.12).
Imposing the condition that the two CH bonds should be of the same form
effectively reduces the number of separate equations to 14, and the number
of variables to 14. A solution of these 14 equations for the 14 variables
was therefore attempted.

Estimates of the values of the coefficients are needed as a starting-
point for the procedure. Values which gave non-polar bonds and
conventional or Pauling28 hybrids on each atom (ie sp2 hybrids on the
carbon atom) were used. The calculation converges to a set of functions
containing "anti-bonding" CH bonds, in which the coefficients of the atomic
orbitals on the C and H atoms are of opposite sign. Indeed, it can be
seen that the overlap integral between the CH bond and the ?3; lone pair

which is given by

Cpenl No) = o(11,5) <2pyol1sﬂ> + ¢(5,5) <2py0| 2pyc> (3.14)

cannot be set to zero if the two coefficients 0(11,5) and 0(5,5) are of the
same sign, as the two atomic orbital overlap integrals are positive.
However, the l.m.o. theory requires as a starting-point functions which

are of the same general form as the end-point functions so this solution
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had to be discarded. The calculation was repeated imposing restrictions
on the CH bonds, that the atomic orbital coefficients be of the sign
expected on physical grounds, in an attempt to get some increase in
orthogonality but none was obtained.

Attempts were then made to reduce as many of the overlap integrals
between the occupied orbitals as possible to zero. The other equations
were replaced with arbitrary conditions that the CH and CO bonds be
non-polar and that the hybridisation on the carbon atom be the same in

both the CH and CO bonds. The success of each calculation was measured by

g 172
= | 1/56 2

N = | 1/56 5: ke <¢i|¢3> (3.15)

(if

& P

the root mean square value of the off-diagonal elements of the l.m.o. overlap
integral matrix. An orthogonal set of l.m.o.s has a A value of zero.
The overlap integrals of l.m.o0.s. sharing a common nucleus were
first set to zero. The calculation converged to give a set of l.m.o.s
ghown in Table 3.4, which have a A value of 0.0310, without altering grcatly
the general form of these functions. This is a considerable improvement
on the A value of the starting-point functions (0.0981) but cannot be said
to be negligibly small. The overlap integrals of the CH bonds with the

lone pairs are still large.
<‘~1m‘ Xo> = 0.0208
<:}lcﬂ‘:x1:>

(3.16)
0.1137

Il
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The arbitrary conditions were then replaced in various combinations
with further l.m.o. overlap integrals set to zero. Some of these
calculations did not converge to an end-point and those which did converge
did not produce l.m.o.s with a A value significantly less than that obtained
previously.

Taking the atomic orbital coefficients for the occupied l.m.o.s shown
in Table 3.4 as fixed, an "analytical" solution was also sought in
constructing virtual orbitals orthogornal to the occupied orbitals, as
required by orthogonality condition (ii). The CO virtual orbital is
orthogonal to V. and :Xz by symmetry. As the CH bonds have the same
form, there are 6 equations, including the normalisation of the orbital, to
solve. There are also 6 variables kmj in the orbital (equation (3.13)).
Solution of the 6 equations for the 6 variables gave a CO virtual orbital
orthogonal to all the occupied orbitals.

The CH virtual orbital is orthogonal to Ti:,by symmetry, leaving
8 equations to solve. However, the CH virtual orbital has only five
variables kmj’ so the 4 overlap integrals with occupied orbitals centred
on the carbon atom were set to zero. The calculation reduced these four
overlap integrals to zero, but the procedure leaves a large overlap integral

™
with Ao .

Cpal Ay = —0.1268 (3.17)
The coefficients of the virtual orbitals obtained in this way are also shown
in Table 3.4.
It was concluded that the amount of non-orthogonality remaining in the
functions resulting from these attempted "analytical" solutions was too
great to be neglected. It is possible that greater mathematical expertise

would yield an effective procedure along the lines followed here.
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However, such a procedure would have the disadvantage of being inaccessible
to the majority of chemists for whose use the l.m.0. theory is designed.

Consequently, other ways of obtaining the required orthogonality were

examined.

(C) Orthogonalisation of a Set of Non—orthogonal Punctions

An essentially different approach in the search for a suitable
starting—point is to construct, by some simple recipe, a set of non-
orthogonal perfectly localised functions of the type required and then to
apply an orthogonalisation procedure of some kind. This will lead to a
certain amount of delocalisation of some or all of the functions. It has
the advantage over an analytical solution that it is a much simpler
procedure to follow and involves much less calculation. The desired
non-orthogonal functions are easy to construct on physical and chemical
grounds . There are several orthogonalisation procedures available and
the various methods were discussed in Chapter Two. Of these, the methods
of Schmidt orthogonalising and symmetric or Lowdin orthogonalising were

considered.

(i) Schmidt Orthogonalising

The method of Schmidt Orthogonalising is simpler to apply than that of
Lowdin orthogonalising. It is also more flexible in that the resulting
functions depend on the order in which the functions appear in the original
non-orthogonal set. While this has the disadvantage that the resulting
set of orthogonal functions is not unique, and hence the sequence of
orthogonalising must be specified, it also has advantages. Schmidt
orthogonalising allows one function, the first in the sequence, to remain

unchanged. This may be chosen as the orbital to be calculated, preventing
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it from being delocalised by orthogonalising. The sequence of
orthogonalising will therefore be different for the calculation of each
l.m.o. Hence the Schmidt orthogonalising procedure providés a method
which can be used for all stages of the l.m.o. calculations, both the
rigorous final stage calculations, and the earlier stages which are
concerned with perfectly localised orbitals. Construction of virtual
orbitals orthogonal to the occupied orbitals can be achieved by placing
them at the end of the sequence of orthogonalising, so that they do not
affect the forms of the occupied orbitals. Satisfaction of all the
orthogonality conditions can therefore be achieved before each l.m.o.
calculation by successive Schmidt orthogonalisation of the occupied and
virtual orbitals together in a sequence which is partly determined by the
l.m.0. to be calculated and by the stage of calculation.

The Schmidt orthogonalisation procedure thus provides a simple method
of meeting all the orthogonalisation regquirements needed for the l.m.o.
calculations, and can be applied at all the stages of approximation.
Attention was therefore concentrated on this method of orthogonalisation
and the use of the l.m.o. theory with Schmidt orthogonalising was examined
at all the stages of approximation and for different sequences of
orthogonalisation.

The only serious disadvantage of the method is that some of the
occupied orbitals in the fixed space are delocalised. It was not clear
before the calculations were made how this would affect the results.
Thus, after the calculation of one l.m.o0., say ¢1, the next l.m.o. to be
calculated, say ¢2, may appear in the fixed space as an extensively

delocalised function. This was partly overcome in the following way.
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Nniher than take as the starting-point for the calculation of ﬁp the

form of ¢? as it appeared in the fixed space for the previous calculation
of ¢1, the localised form of the function was taken. This was the
original form it had before the orthogonalisation procedure for the
calculation of ¢1 was applied. Thus for each calculation of an l.m.o.
the starting-point form of the l.m.o. was localised.

The details of applying the l.m.o. theory using Schmidt orthogonalisation
vary from stage to stage and are described together with the details of each
stage in the next section. The main outline of the method is described
below. Firstly, a set of non-orthogonal occupied and virtual orbitals
of the form given by (3.4), (3.5) and (3.6) are constructed. The
simplest choice is that of non-polar bonds with Pauling (spz) hybrids, but
other polarities and hybridisations were also used, providing different
starting-points. (Details of all the starting-points used are given
in Section 5). These 12 functions are arranged in the sequence
appropriate to the calculation of the first l.m.o., say ¢1, as given by (2.41)‘
and Schmidt orthogonalised in that sequence in the way described in
Chapter Two. The free space is then constructed from ¢1 and all the
virtual orbitals. The fixed space consists of all the other functions,
some of which will be quite extensively delocalised. An l.m.o.
calculation can now be made, to give an improved form for ¢1, and this
calculation is iterated to self-consistency. Where the orbital to be
calculated and the virtual orbitals do not occur together in the
orthogonalising sequence it is necessary to re—orthogonalise before each
iteration in order to preserve the correct form of the F operator.

When self-—consistency is reached the improved forms of ¢1 and the virtual

orbitals are retained. These functions, together with the original, in
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general non-orthogonal, forms for the other occupied orbitals, are then
arranged in the sequence appropriate to the calculation of the next l.m.o.,
and the process repeated.

If the Schmidt orthogonalising sequence is chosen so that the
l.m.o.s are not made orthogonal to the other occupied orbitals the set
of energy-minimised functions obtained is non-orthogonal. An orthogonal
gset describing the same total wavefunction can then be obtained, if required,

by Lowdin orthogonalising the 8 occupied orbitals.

(ii) Lowdin Orthogonalising

The other method of obtaining a suitable orthogonal starting-point
examined was that of Lowdin orthogonalising. It has the advantage that
it treats all the functions in a given set on an equal basis so that if
applied to a set of localised molecular orbitals it is said to cause the

84

smallest possible delocalisation of the orbitals. It is also
unambiguous in that the forms of the resulting functions are not dependent
on the order in which the functions appear in the set. It is therefore
a suitable method for a rigorous final stage l.m.o. calculation, where
some delocalisation of the orbitals is allowed, but not for earlier stages
where the orbital to be calculated must be perfectly localised.

Lowdin orthogonalisation is restricted in that it may only be used to
orthogonalise within a set of functions and nol to construct one set of
functions orthogonal to another set, as the orthogonality of the fixed
space to the free space requires. The 8 occupied orbitals may be Lowdin

orthogonalised and then other methods used to construct virtual orbitals

orthogonal to the occupied orbitals and amongst themselves. This is the

method used by Wilhite and Whitten26 in their l.m.o. calculations, in which

all l.m.o.s. are calculated together.
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A starting-point set of 8 orthogonal occupied orbitals is obtained
by Lowdin orthogonalising a non-orthogonal set of functions constructed
on physical grounds. A different set of orthogonal free space functions
is constructed for the calculation of each l.m.o. and solution of equation
(2.30) for each l.m.o. then gives a new set of orbitals which in general is
not orthogonal. This set of functions is again Lowdin orthogonalised and
rew sets of free space functions are constructed. The process is repeated
until the l.m.o.s are self-consistent.

Calculations using the above method of orthogonalising were performed
in this work and the results compared with those obtained by the method of
Schmidt orthogonalising. A suitable set of free space functions was
obtained in this case by Schmidt orthogonalising a non-orthogonal set of
virtual orbitals both to the occupied orbitals and amongst themselves.

It would also be possible to use Lowdin orthogonalisation to obtain
an orthogonal set of occupied orbitals and Schmidt orthogonalisation to
construct the virtual orbitals, and then to calculate one l.m.o. at a time.
This method is perhaps preferable as there would then be no need to re-Lowdin
orthogonalise the occupied orbitals or to re-construct the virtual orbitals

during the calculation, but this method was not used in the present work.
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Section 4  Description of the Various Stages of Approximation

(a) Introduction

The l.m.o. theory described in Chapter Two can be applied to a
molecule at various levels of approximation, or stages. The first stage
corresponds to the simplest approximation, and the final stage is the
complete solution of the secular determinant given by the l.m.o. theory.
In the present work four stages are examined, the numbering of the stages

57

differing slightly from that used previously. The four stages are:

(i) sStage One: The calculation of a perfectly localised bond
considering only the two electrons of the bond and assuming perfect

shielding of the nuclei.

(i1) Stage Two: The calculation of a perfectly localised bond
allowing for imperfect shielding of the nuclei and taking into account

other electrons in the immediate environment of the bond.

(111) Stage Three: The calculation of a perfectly localised bond taking

into account all the other electrons and nuclei in the molecule.

(iv) Stage Four: The calculation of a slightly delocalised l.m.o.

by complete solution of equation (2.30).

A localised bond is obtained by truncating the secular determinant, while
effects of distant parts of the molecule are neglected by truncating the
operator. The earlier stages are simpler calculations than the later
stages and so involve less computing time. The theory was designed so
that a stage 1 calculation is performed first, then a stage 2 calculation,

and so on, until complete solution of the secular determinant is reached.57
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There are several reasons for applying the l.m.o. theory at different
stages. Firstly, a picture of the variocus factors which determine the
nature of the chemical bond is built up. For example, comparison of the
perfectly localised orbitals of stage 3 and the slightly delocalised
orbitals of stage 4 shows the effect of delocalisation, while comparison
of stages 1, 2 and 3 shows the effect of more distant parts of the molecule
on a bond. Secondly, stage 3 gives functions which are perfectly localised
without first making the rigorous stage 4 calculations and then truncating
them. Thirdly, stages 1 and 2 are two—centre calculations requiring only
two—centre electron repulsion integrals which are much easier to calculate
than the three— and four-centre integrals necessary for later - stages.

This provides a possible route for the calculation of bonds in a large
molecule where the number of electron repulsion integrals required becomes
prohibitive for conventional c.m.o. all-electron calculations.

The details of the various stages are given below. Although a stage 4
calculation is lengthier than the earlier stages, and so in practice is
performed last, it is conceptually the simplest of the four stages and so

is described first.

(b) Stage Four
A stage 4 calculation consists of the complete solution of the secular
equation (2.33), as described in Chapter Two. For formaldehyde there are
5 free space functions, and the secular determinant is 5-dimensional.
Suitable starting-point functions are constructed, as described in
Section 3, and Schmidt orthogonalised. The F matrix is then formed from
these functions. Bach matrix element can be expressed as a sum of

atomic orbital contributions
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Where ¢j (j = 1...8) are the occupied orbitals. These may be expressed

in terms of the atomic orbitals, as in equation (2.?4)
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The kinetic energy integrals, nuclear attraction integrals, and
electron repulsion and exchange attraction integrals shown in (3.24) for
formaldehyde, using Slater atomic orbitals, were made available for this
work by Newton and Patlke.65

The Schmidt orthogonalising sequence used for stage 4 calculations

may be represented as

(B eere¥g ) ( By eeun %) (3.23)

corresponding to (2.41), where the first eight functions are the occupied
orbitals and the last four functions are the virtual orbitals. The order

within the occupied orbitals does not affect the operator or total energy
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as both are invariant under a linear transformation of the occupied
orbitals.1 However, it does affect the form of the l.m.o. used as a
starting-point in a calculation. Taking the two extreme cases, if the
l.m.o0. to be calculated is the last occupied orbital in the sequence,
i.e. ¥ 8 it is altered by orthogonalisation to all the other occupied
orbitals, and could become extensively delocalised. Thus the form of
the orbital to be calculated is altered by being made orthogonal to the
functions in the fixed space. On the other hand, if the l.m.o0. to be

calculated is first in the sequence, i.e. h! it is unaltered by the

7
orthogonalising but is mixed into the other orbitals. Thus the forms
of the functions in the fixed space are altered in order to make the
orbital to be calculated orthogonal to them. The order within the other
occupied orbitals is not important as they only appear in an actual
calculation via the operator.

Calculations were made using the two extreme cases of Schmidt
orthogonalising sequence and the results compared. The first sequence

described above is referred to as sequence I and the second as sequence II,

so that, for example, sequence I for the calculation of a CH bond might be:

ToNE x % )
(ic_ Io 7\0 >\o \v\u\' l\*c,o o Pu;\\\(‘.&u\ ,“\Cr\' H.‘QQ T\rc)(:’)-':’ll)

and sequence II

AT % | x
(‘*u\ L Io ?\o ‘>\o \~-\<_\\l M eo Teo )(PC\\ r—kc_‘r\’ ‘-\:o TYCO\(:))'QS)

(c) Stage Three

In a stage 3 calculation the secular determinant is truncated to a
°x? determinant. The free space contains two functionsvonly, the l.m.o.

to be calculated, and the virtual orbital which is its anti-bonding partner.
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If both these functions are perfectly localised, the l.m.o.s resulting
from the calculations are perfectly localised. Hence a stage 3
calculation provides a way of calculating directly perfectly localised
occupied, and also virtual,orbitals.

Only the two-—centre functions, the sigma- and pi-~bonds can be
calculated in this way. Attempts were made at extending the method to
calculate the one-centre functions, the lone pairs and inner shells, but
this did not prove successful. It was thought that one-centre functions
might be calculated at stage 3 by expanding ¢i in equation (2.27) in terms
of free space functions which were all completely localised on the
appropriate centre. A calculation of 7f; was attempted in this way but
in practice it was not found possible to construct two or more mutually
orthoronal perfectly localised functions on the oxygen atom which did not
have very large overlap integrals with the other occupied orbitals.

In theory, the operator used at stage 3 is the rigorous, complete
Hartree-Fock operator, as at stage 4, constructed from all the nuclei,
and all the electrons in the molecule. However, because of the difficulties
posed in obtaining orthogonality, it is not always possible in practice to
work with the Hartree-Fock operator at stage 3. In order to obtain a
perfectly localised virtual orbital it is unfortunately necessary to
introduce a further approximation when using Schmidt orthogonalisation.

‘To prevent delocalisation by the ofthogonalising the virtual orbital
must be placed in the orthogonalisation sequence before any function
containing contributions from other atoms. Hence, first in the sequence
are all the functions localised on the required atoms, including the orbital
to be calculated, and the virtual orbital. Next in the sequence are all
the other occupied orbitals. For example, the sequence for the calculation

of a CO sigma~-bond at stage 3 might be

(Ic_ LIPS ,X'To ,Xro Teo Yo Hfo\)( Hen Hc\\'\ (3.26)
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The other virtual orbitals are not involved at stage 3 . Calculations
with various orders of the functions within the two groups were made and
the results compared.

All orbitals cccurring in the sequence after the virtual orbital are
altered by the mixing in of an unoccupied orbital, and hence the operator
constructed from this set of orbitals is not the ftrue Hartree-Fock
operator. In practice, it was found that, provided the overlap integrals
between the virtual orbital, and the occupied orbitals into which it mixed
was small (i.e. <:O.1) the effect was not too great.

The extent to which the inaccurate operator affects the calculations
may be judged in two ways. Firstly a calculation which gives a final
set of l.m.o.s with a higher total energy than the starting-point
functions is obviously unacceptable. Secondly, the lowest eigenvalue,
Gii, generated from the calculation by the inaccurate operator may be

]
compared to a recalculated value Eii .

€ = <elFl4> (3.27)

where ¢i is the eigenfunction corresponding to Gii and FI is the true
Hartree—Fock operator, constructed by Schmidt orthogonalisation of the
occupied orbitals only, including ¢i’ without mixing in the virtual
orbital, as in the computation proper. The magnitude of the quantity
(25;- Gj') gives an indication of the error introduced by the inclusion
of the virtual orbital into the F operator. A large value for this
difference suggests a large error in the calculation, although a small

value does not necessarily indicate that the error is small.

(d) sStages One and Two

At stages 1 and 2, as at stage 3 the secular determinant is truncated

to a 2x2 determinant, and only two—centre functions may be calculated.
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These will be perfectly localised if the starting-point is perfectly
localised. Unlike stage 3, at stages 1 and 2 the operator is truncated.
Instead of using the Hartree-Fock operator constructed from all the
nuclei, and all the electrons in the molecule, a local operator containing
only the nuclei of the bond is used. A different operator is therefore

necessary for the calculation of each l.m.o.

(i) Stage One
At stage 1 perfect shielding of the nuclei by the electrons
outside the bond is assumed, so that only the two elect?ons in the bond
are considered, and an effective nuclear charge of +1 is assigned to
each nucleus. In general, for a bond ¢AB between nuclei A and B the

operator FAB is given by

This operator contains expressions for the nuclear attraction associated
with individual nuclei. As the integrals made available by Newton and
Palke contained only the total nuclear attraction integrals, calculations
of the individual nuclear attraction integrals had to be made. These

integrals have the general form

. 1 .
R L-?A}% ac (3.29)
The one- and two-centre integrals were calculated by hand, and the two—
centre integrals checked by repeating the calculations using Roothaan's
formulae. 7 The three-centre integrals were calculated using a computer
program THRCEN, supplied by Melrose, which carries out Gaussian integration

8
according to the method of Magnusson and Zauli. 8 The results are shown

in Tables (3.5) to (3.8).
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The only starting-point functions required for each stage 1
calculation are the forms for the bond being calculated, and its anti-
bonding virtual orbital, which are easily constructed to be orthogonal

and so no orthogonalising difficulties arise at this stage.

(i1) Stagre Two
Stage 2 provides a more realistic environment for the bond than

stage 1, allowing for imperfect shielding. For a bond ¢A between

B’
nuclei A and B, the operator is constructed from all functions centred on
A or B, and the nuclei are given their true charges. The calculation

is limited to a two-centre calculation by truncating to hybrids,
containing one electron, bonds formed by A or B with other nuclei.

This is achieved in the following way. Firstly a set of suitable
(non—orthogonal) l.m.o.s 1is constructed as for the other stages. Then,
for each function, the coefficients of the atomic basis functions not
situated on atoms A or B are set to zero, and the function is
re-normalised.  The result is that functions centred solely on A and B
remain unchanged. These include inner shells and lone pairs on A or B,
and the bonds and virtual orbitals between A and B. Functions not
containing atomic basis functions on A or B, such as inner shells on other
atoms, are discarded. Functions containing atomic basis functions on A
or B as well as on other atoms are truncated to hybrids on A or B, with
the same hybridisation as in the original l.m.o.s. These hybrids are
then treated in the calculations as containing only one electron.

A stage 2 calculation may then be thought of as involving a much
smaller atomic basis set than that used in stages 3 and 4, the atomic
basis set being different for the calculation of each bond. For example,
the calculation of a CH bond involves only the atomic orbitals of the

carbon and hydrogen atoms.
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The stage 2 operator has a more complicated expression than either
the Hartree-Fock operator used at stages 3 and 4 or the stage 1 operator.

In general it may be summarised as

h
. . 8
_A3 = :
A »§+L(2J.—K.)+Z(Jk-xxk)
A B j=1 J J k=1 (3.30)

where the first summation is over the g doubly occupied l.m.o.s and the
second summation is over the h singly occupied hybrids. The operator for

the calculation of the CH bond in formaldehyde is then
LCH _ 1<% 1.0 6.0 -
Froom -3V - 2 - 2y (205

- K- 2 - K
" : . ch)+(JM‘r

b )

T - -
MR XKHI,,‘) NS xKr«ZL-) (3.31)

# ( J7 = xKoT )

“eo Teo

-
Where Prce 18 the hybrid formed from the truncation of pme, etc.

Similarly, the operator for the calculation of the CO sigma bond is

FCO(‘) _ —;’%VQ 6.0 8.0 (?JI - K. ) + (?JI -k )
(&

Y Yo < ° I,
2J — K av 2] c - Kt
@I - Ky )+ X K )
+ (2cho - Ky ) o+ (2., - Kt*cc-)
* (Tpr, = oxkr) * Oul = xK W3 ) (3.32)

Although the expressions for stage 2 operators appear complicated they
are straightforward to construct on physical grounds, apart from the
question of the weight of inclusion of the exchange integrals, represented
by the unknown, X . There is no difficulty with the doubly occupied

orbitals. Each exchange integral occurs once as in the Hartree-Fock
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operator, as one electron from the pair must have a spin parallel to that
of the electron considered. However, the spin of the electron in the
singly occupied hybrid atomic orbitals is not known. If it is parallel
to that of the electron considered, the exchange integral for the hybrid
should occur in the operator (x=1). If the spins are paired no
exchangé integral should occur (x:O). This situation is shown by
including an "exchange factor", x, in the expression for the operator.
Calculations with various values of x varying from one to zero were made,
and the results compared to determine firstly how much the value of x
affected the result of the calculation, and secondly which value of x
gave the lowest total energy. This value was then used in subsequent
calculations.

After the truncation procedure described above, the resulting
functions were Schmidt orthogonalised before each calculation. As all
the functions contain contributions only from atomic orbitals on the
two~nuclei of the bond being calculated, orthogonalisation produces no
delocalisation. The virtual orbital may therefore be placed at the end
of the orthogonalising sequence, so that the mixing of the virtual
orbital into the occupied orbitals which occurs at stage 3, does not

occur at stage 2.
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Section 5 Details of Starting—Points

The resultis of the l.m.o. calculations using the orthogonalisation
procedures described in Section 3 were found to be affected by the
choice of the set of non-orthogonal functions used as a starting-point.
Consequently details of all the various starting-points are given
below. These are all sets of perfectly localised non-orthogonal
functions of the form given by (3.4), (3.5) and (3.6). They are

numbered (a) to (h).

Starting—point (a) is a set of non-polar bonds with sp2 hybrid

atomic orbitals on the carbon atom directed along the internuclear axes.
In this case all the polarity parameters in equations (3.4) are 1.0.

and the normalised hybrid atomic orbitals are:

VSC = 0.5773 2s_ + 0.4083 2p_ + 0.7071 2p
c z y
c c
v HE
5 = 1sH
VC - 0.5773 2s_ +0.4083 2p_ - 0.7071 2p
6 ¢ e Ie
H
\>H - 1SHI
6 (3.33)
v° - 0.5773 25 0.8165 2p
7 c Z,
Vv 0 >
= 2p
T zg
v e _
8 2px
c
Vo .
8 - sz
o)
The sigma-type lone pair is approximated by the single 280 atomic
orbital and the pi-type lone pair by the 2py atomic orbital.
o}
N
= 2p
o]
Yo
- (3.34)

?\c = 2SO
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Starting—point (b) is the same as starting-point (a) except for the

sigma-type lone pair which is constructed orthogonal to the CO sigma-bond
and to the inner shell on the oxygen atom.
c

Ao =0.9505 25 - 0.3817 2p_ = 0.2219 1s_ (3.35)
o

Another starting-point, (bb), was used in which the sigma-type lone pair

was only constructed orthogonal to the CO sigma-bond.

-~

N = 0.9238 2p, = 0.3829 2p_ (3.36)

0] (e}

Starting—point (c) has non-polar bonds with sp hybridisation on the

carbon atom. Hence all the polarity parameters in equations (3.4) are

1.0. The normalised hybrid atomic orbitals on the carbon atom are

\)C
5

0.7071 2SC + 0.3536 2pZC + 0.6124 2pyc

C
\06

0.7071 gsc +0.3536 2p, ~ 0.6124 2, (3.37)

(e} Cc

Ve -
7 = 0.TOT1 25, - 0.T071 2p,

vy C
8 = 2px
c

and the normalised hybrid atomic orbitals on the other atoms are the same

as for starting-point (a). The sigma~type lone pair is constructed

orthogonal to the CO sigma-bond and to the inner shell on the oxygen atom.

_C
A = 0.9514 2s - 0.3796 2pzo - 0.2221 1s_ (3.38)

Starting—point (d) is the best result obtained by the attempted

analytical solution of the orthogonality equations. The atomic orbital

coefficients are given in Table 3.4. These functions were treated as a
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non-orthogonal set and orthogonalised in the same way as the other

starting-points.

Starting—point (e), used at stage 4, is the result of a stage 3

calculation using starting—point (bb) and Schmidt orthogonalising in

sequence III (defined in Chapter Four).

Starting—point (f) has highly polar bonds. The hybridisation on

the carbon atom is sp2 and the sigma-type lone pair is the single 2sO
atomic orbital, as in starting-point (a). The polarity parameters of
each bond are in the ratio 2/1 with all the bonds polarised towards the

positive z direction.

1.0

, : (3.39)
p6 = p7 = P8 = 2.0

o)
Ul
Il
g
(o)}
!
g
)
|
kel
(00]
1l

Starting-point (g) is the same as starting-point (f) except for the

sigma-type lone pair which is constructed orthogonal to the CO sigma-bond

and to the inner shell on the oxygen atom.

2
N = 0.8651 2s_ - 0.5408 2p_ - 0.2020 1s_ (3.40)
(o]

Starting—point (h), used at stage 3, is the result of a stage 2

calculation using starting-point (bb) and a value of the exchange factor, x,

of 0.5.

The total electronic energies and orbital energies of starting-points

(2) to (h) are given in Table 3.9.
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Section 1 Stage 4

(a) Introduction

A typical stage four l.m.o. calculation for formaldehyde using Schmidt
orthogonalisation is shown in Table 4.1. The starting-point used here
was a set of 1l.m.0.s with non-polar bonds, Pauling hybrids, and the
sigma~type lone pair as the 2s atomic orbital on the oxygen atom. This
is starting point (a), as described in Chapter Three, which has a total
eléctronic energy of =1424.7572 a.u. The order in which the functions
were orthogonalised in this calculation was sequence I, where the l.m.o.
to be calculated is made orthogonal to the rest of the occupied orbitals.

Newton and Palke claim an accuracy of six or more decimal places
in the integrals used in the calculations and an accuracy of four decimal
places in the resulting value of the total energy.65 The l.m.o.
calculations were therefore cycled until the value of the total electronic
energy differed by no more than 0.0005 a.u. from the value of the previous
cycle. Generally, the starting-points used, which were chosen to be as
near to the end-point functions as possible, required only 3 cycles of the
l.m.o.s. The only more extreme starting-point used at stage 4, the
"polar" starting-point (f), required more cycles. No convergence
problems were encountered in any stage 4 calculation.

For comparison with the l.m.o. calculations a conventional canonical
calculation of formaldehyde was performed. The results are shown in
Table 4.2. The resulting total energy differs by 0.05 a.u. from the value
reported by Newton and Palke.

Direct comparison of the computing times taken by l.m.o. and c.m.o.
calculations is not straightforward, largely because the choice of the

initial starting-point is different in the two cases. Each cycle within



Table 4.1

&8

A Typical Stage 4 Calculation for Formaldehyde

Cycle l.m.o. ‘NUmber.of Resulting total Energy
calculated iterations electronic energy Decrease
(a.u.) (a.u.)

1 B 5 —144.7676 0.0114
by 4 ~144.7795 0.0109

pee A -144.7927 0.0132

AL 5 144 .8133 0.0206

e 6 -144.8/60 0.0327

I 4 -144.8483 0.0022

To 4 -144 .8500 0.0018

Tew 3 -144 .8500 0.0000

2 Pea 3 -144 .8505 0.0005
Pt 2 -144 .8507 0.0002

Mo 5 -144.8531 0.0024

2% 4 ~144.8532 0.0001

AN 4 ~144.8533 0.0001

Te 2 -144.8531 -0.0002

Lo 2 -144 .8531 0.0000

Weo 3 -144 .8535 0.0004

3 Hed 2 ~141.8535 0.0000
Ben! 2 -144.8536 0.0001

Meo 4 ~144.8538 0.0002

A o ~144.8538 0.0000

Ao 3 ~144.8538 0.0000

T 2 -144.8538 0.0000

Le 2 ~-144.8538 0.0000

Nee 3 -144.8538 0.0000
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an individual stage 4 l.m.o. calculation is generally slightly faster than
each cycle of a canonical calculation. However, the l.m.o. theory is
designed so that the complete cycle of all the l.m.0.s , comprising the
calculation to self-consistency of each l.m.o. at stage 4, is expected to

56
although

be much slower than a single cycle of a canonical calculation,
fewer cycles of the l.m.o. calculations should be needed to reach overall
self-consistency. For the formaldehyde molecule a single complete cycle
of 1.m.o.s took approximately 20 times the computing time of one
canonical calculation cycle. The computing time taken by l.m.o.
calculations made following Wilhite and Whitthen's method26 using Lowdin
orthogonalising was similar to that taken by the corresponding l.m.o.
calculations using Schmidt orthogonalisation.

Fourteen stage 4 calculations were made to test whether the l.m.o.
theory used resulted in a unique end-point which was independent firstly
of the starting-point l.m.o.s , secondly of the details of the ortho-
gonalising, and thirdly of the order in which the l.m.c.s were computed.
Three different orders of calculating the l.m.0o.s were used.

They are:

(i) The order shown in Table 4.1, which was the order normally used.

C AW -
“J‘Cﬂ \-‘\C\\‘ ‘J\cc- ,AC ')\o ic Lo r\-c,c, (401)
(ii) The reverse of the order shown in Table 4.1, except for the pi

bond.
[\

Ay
Ie e 7\0 '}\c Yoo ‘-\Qr\‘ Pew Tleo (4.2)

(iii) A third order which calculates ?nyirst

’X‘:O '}T; HQC r.kg\ql Hg\-\ I’C IO TTCO (4'3)
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The formal theory does not make it clear whether the results of the
method are dependent on the starting-point, as discussed in Chapter Two,
and so calculations were performed using starting-points which were
different, but of a similar form, to examine how far this is so in
practice.

There are two ways in which the end-points of l.m.o. calculations
may differ. Firstly, as for the calculation of the canonical m.o.s ,
different calculations could result in a different total wavefunction,
which would give different values for properties dependent on the total
wavefunction such as the total electronic energy and the electric dipole
moment . Secondly, different calculations could give the same total
wavefunction, but result in different l.m.o.s , one set of l.m.o.s being
related to the other by a linear transformation. In this case, only
properties assoclated with the individwal l.m.o.s would differ, the
eigenvalues, and bond properties such as atomic charges and bond moments.

These two possibilities are examined separately below.

(b) The Uniqueness of the Total Wavefunction

The results of the various stage 4 calculations were first examined to
see if they gave the same total wavefunction. Table 4.3 shows values of
the total electronic energy and dipole moment, as well as a test of how well

the results obey the virial theorem, which states that

E=-T=V/2 ' (4.4)
where E is the total energy, T the kinetic energy and V the potential energy.
The dipole moment is given by the expectation value of the dipole

N
moment operator (& .

(gipley (2.5)

¥
> = ) ar (4.6)



Table 7.3 Properties Dependent on the Total Wavefunction
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Method of Prthogonal-— Starting—|Order of Total Virial Dipole,
Orthomonal1aing point.” caleculating | Elcctronic|Theorem | Moment”
isation sequence. 2 Encrey teot (D)
l.m.o.s. (@.u.) —T/E
I (a) (1) —-144.8538 {1.0069 2.44
(a) (i1) ~144.8537 {1.0074 | 2.47
(a) (iii) —114.8540 |1.0072 2.6
(a) (1) -144.8538 {1.0072 2.46
Sohmidt (a) (i1) -144.8539 |1.0069 2.44
ortho- () (i) -141.8538 {1.0071 -
gonalising
11 (a) (i) -144.8539 [1.0072 2.53
(a) (ii) -144.8537 |1.0073 -
(b) (1) -144.8539 [1.0070 | 2.44
(c) (i) —-14/.8538 |1.0072 2.46
(a) (1) -144.8539 |1.0070 2.44
(e) L(3) -144.8538 |1.0070 2.44
Lowdin - (a) - -144.8539 }1.0070 -
ortho-
conalising - (d) - -144.8539 {1.0070 -

1) Orthogonalising sequences I and II, and starting-points (a) to (f) are

defined in Chapter 3.

2) Orders (i), (ii) and (iii) of calculating the l.m.0.s
this Chapter, by (4.1), (4.2) and (4.3).

are defined in

3) All the dipole moments given are in the sense C+O_, and are in Debye
(1 a.u. = 2,5413 Debye).
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where q; is the ith element of charge, and T& is the vector from an
arbitrary origin to the element of charge q,- For the formaldehyde

molecule, only the dipole moment along the z-axis need be considered

N
Mw, = L9 3 (4.7)
1

e
The electronic part of the dipole moment, r*z’ may be expressed in terms

of atomic orbitals using equation (?.24)

1
g

Z %3 cm,j<'Xmi zl'xm> (4.8)

<
Mg =2
z 1 m'=1

The integrals over atomic orbitals

CSHEE (4.9)

o
were evaluated by hand. The nuclear part of the dipole moment,r~z, is

given by 4+
w
By o=

I

=
]
—_

g z. (4.10)

1 1

where q: is the charge on the ith nucleus. The total dipole moment is
then given by
e ™
Mg =ty * ¥y (4.11)
The total electronic energies shown in Table 4.3 differ by only

0.0003 a.u., which is well within the expected error, and these values
agree with the total electronic energy obtained for the canonical m.o.s
(-144.8539 a.u.). The virial theorem test, —T/E, is consistent at a value
of 1.0071 ¥ 0.0002, as near to unity as may be expected from a minimum basis
set calcula‘bion.67 This again agrees with the result of the canonical
calculation (1.0069). The values of the dipole moment also agree fairly

well at 2.45 D ¥ 0.02, with one exception (2.53D). The value for the
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canonical m.o.s 1s 2.42 D. These values agree reasonably well with the

89

experimental value of 2.33 D. These results therefore suggest that

the various calculations shown in Table 4.3 lead to the same total
wavefunction, and that this total wavefunction is the same as that obtained
by the canonical calculation.

Confirmation that two different calculations give the same total
wavefunction may be obtained by finding the overlap integral between the
two wavefunctions. Let Efa and E?b represent wavefunctions obtained from
calculations (a) and (b) respectively, and be made up of doubly occupied
l.m.o.s ¢ia and ¢ib (i = 1....8). The overlap integral between‘:t-’a and
J p 1S given by

< N {’b>= [det(gab)]2 ‘//[det(éaa)]é. [Tié;(ﬂsbb)ﬂj‘?—\ (4.12)

b a

b
where §a S % and S b are 8x8 matrices of l.m.o. overlap integrals,

with elements

S R

1]

Il

32 (A1) (4.13)

1]

55 = (A 18D

1]

If the l.m.o.s of"§’a and {’b are mutually orthogonal, then det(§aa)

and det(gbb) are unity, and (4.12) is simplified to

ab) ]2

< T ¥ b\,= [det (8 (4.12)

Table 4.4 shows the overlap integrals between the results of wvarious

stage 4 l.m.o. calculations using the Schmidt orthogonalising procedure.
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The closeness of all the off-diagonal values to unity confirms that
these calculations all lead to the same total wavefunction.

It may therefore be concluded that the total wavefunction obtained
at the end of the stage 4 1.m.o. calculations of formaldehyde is
independent of the starting-point, of the order of calculating the
l.m.o.s , of the method of orthogonalisation used, and (with Schmidt
orthogonalising) of the sequence of orthogonalisation. Furthermore,
this total wavefunction is the same as that obtained by a canonical

calculation.

(c) The Uniqueness of the Individual l.m.o.S.

It has been established that the stage 4 l.m.o. calculations all
lead to the same many-electron total wavefunction. There remains the
possibility that the sets of occupied l.m.o.s obtained from the
calculations are rotated with respect to each other. Accordingly, the
individual l.m.o.s were examined to see whether or not the method
resulted in a unique set of l.m.o.s. For convenience the calculations
which use Schmidt orthogonalisation are numbered 1 to 12, as in Table 4.5.

The question arises of how to determine whether two sets of l.m.o.s
are the same. The most direct way is to compare the atomic orbital
coefficients but this is cumbersome since each l.m.o. is described by up
to 1?2 coefficients. Two l.m.0.s can also be shown to be the same if
they have the same eigenvalue. Since the total wavefunction is the same
in both cases, and the operator is invariant under a linear transformation,
any differences in corresponding eigenvalues are due to differences in the
individual l.m.ofs. The eigenvalues of l.m.o.s obtained by Schmidt
orthogonalising using sequences I and II are shown in Tables 4.6 and 4.8

respectively. The values for the pi bond, which is unchanged by a linear



Table 4.5 Description of Stage 4 l.m.o. Calculations

Using Schmidt Orthogonalisation

i Calculation Schmidt o Starting— Order of‘

i Number Orthogonalising -1 calculating
! sequence1 point l.m.o.s ?

| 1 I a (i)

i > a (i1)

% 3 a (iii)

E 4 a (1)

5 a (ii)

é f (i)
7 IT 2 (1)
.8 a (i1)
9 b ()
10 c (1)
L1 d (1)

12 e (i)
! Orthogonalising sequences I and II, and Starting-points (a) to (f)
are defined in Chapter 3.
2

Orders (i), (ii) and (iii) of calculating the l.m.o.s. are defined

in this Chapter, by (4.1), (4.2) and (4.3).



98

transformation amongst the l.m.o.s by reason of its symmetry, agree to
within an accuracy of i 0.001 a.u., both amongst themselves and with the
value obtained by the canonical calculation (- 0.468 a.u.). However the
eigenvalues of the other l.m.o.s are very sensitive to small changes in
the total energy, a change of 0.0005 a.u. in the total energy producing
changes of up to 0.01 a.u. in the eigenvalues. Two l.m.0.s were
therefore judged to be significantly different if their eigenvalues
differed by more than 0.01 a.u.

Two l.m.o.s may also be compared by evaluating the overlap integral
between them. If two different calculations, a and b, give two sets of

l.m.o.s ¢?, ¢2....¢% and ¢?, ¢2....¢2, the overlap integrals

<'¢? | ¢?77 i=1.u..8 (4.15)

appear in Tables 4.7 and 4.9 for Schmidt orthogonalising in sequences I

and IT respectively. The last entry in these tables, N\ , is a measure

of the over-all difference of the l.m.0.s in the two sets.‘

2

" = V‘R[@i | #iy-1] (4.16)

p[\
i

-

Two l.m.o.s may be judged to be the same if their overlap integral
is greater than 0.998. If each of the eight overlap integrals between
two sets of l.m.o.s is 0.998 then Y| 1is 4.0 x 107,

The individual l.m.o.s obtained from stage 4 l.m.o. calculations
using Schmidt orthogonalising sequences I and IT and using Lowdin

orthogonalising are examined in detail below.

(i) Schmidt Orthogonalising in Sequence T

The first six calculations described in Table 4.5 use Schmidt
orthogonalising sequence I, where the l.m.o. being calculated is made

orthogonal to all the other occupied orbitals, and hence the final set of
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l.m.0o.s obtained is an orthogonal one. The first three calculations
have the same starting-point, (a), and differ in the order in which the
l.m.c.s are calculated. Calculations 4 and 5 have another starting-
point, (@), us:ng different orders of calculating the l.m.o.s , and the
last calculation has a third starting—point, (f). The eigenvalues
associated with the l.m.o.s obtained by these calculations are given
in Table 7.6 and their overlap integrals in Table 4.7.

Considering first calculations 1, ? and 3, the eigenvalues of all
the l.m.o.s , except the pi-bonds, differ by more than 0.01 a.u., in
some cases by 1.0 a.u. The overlap integrals between these functions
are much less than 0.998, with the exception of the inner shells in one
case. Calculations 1, 2 and 3 therefore produce different individual
l.m.o.s. The l.m.0.s given by calculations 4 and 5 have eigenvalues
which agree to within 0.01 a.u. except those of the CH bonds and pi-type
lone pair which differ by 0.02 a.u. and 0.04 a.u. respectively. The
overlap integrals for these functions are both less than 0.998.
Calculations 4 and 5 therefore also produce different individual l.m.o.s ,
though the differences are less than between calculations 1,2 and 3.

The form of the l.m.o.s obtained by Schmidt orthogonalising in seqguence I
therefore depends on the order in which the l.m.o0.s are calculated, the
dependence being less for starting-point (d) than for starting-point (a).

This dependence on the order in which the l.m.o.s are calculated
can be seen to be a consequence of Schmidt orthogonalising the l.m.o. to
be calculated to all the remaining occupied orbitals, as in sequence I.
For a set of l.m.o.s ¢1....¢8, if ¢1 is calculated first, its form is
changed so that it is then orthogonal to the other l.m.o.s ¢2""¢8'

When next ¢2 is calculated it is already orthogonal to @,, so that its

1
form is altered to make it orthogonal to ¢3....¢8, but not to ¢1.



Tatle 4.6 Eigenvalues of l.m.0.s

Calculated using Schmidt
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Orthoronalising Sequence 7. (a.ul).
Calculation

g. 1 2 3 4 5 6

I, -20.586 —=19.370  —20.583 -20.583 -20.585  -20.580
I, ~11.241 =10.972  =11.337 -11.337 =11.340  =11.341
g ~1.272 =2.202  —1.043 -1.043  =1.042  =1.772
Mo -0.673 -1.044  -0.871 -0.881 -0.885 -0.670
- —0.687 -0.879  -0.742 -0.726 -0.706  -0.684
B e -0.710 -0.829  -0.721 0.728 -0.706  -0.712
NG —0.471 =0.430  =0.431 0.430  —0.471  —0.471
N o -0.470 -0.468 -0.468 -0.468 -0.469 -0.468
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Table 4.7 Overlap Tnteprals between l.m.o.s Calculated using

Schmidt Orthoronalising Sequence T,

Calculations

g. 1 and 2 1 and 3 4 and 5 3 and 4
I, 0.9851 1.0000 1.0000 1.0000
I, 0.9715 1.0000 1.0000 1.0000
e 0.9877 0.9877 0.9868 1.0000
AL 0.9068 0.9255 0.9994 0.999¢
M ex 0.9809 0.9866 0.9931 0.9983
. 0.9908 0.9865 0 9931 0.9984
K o 0.9291 0.9348 1.0000 0.9996
T g 1.0000 1.0000 1.0000 1.0000

n 1.6 x 107° 8.9 x 107> 3.0 x 1074 6.0 x 1070

1. T\ is defined by equation (4.16).
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If, however, ¢2 is calculated first it is changed so that it is orthogonal
to the other l.m.o.s ¢3""¢8 and ¢1. When ¢1 is calculated it is then
already orthogonal to ¢? and only changed by orthogonalising to

¢3....¢8, not to ¢2. Hence the order in which they are calculated
determines whether ¢1 is constructed orthogonal to ¢2 or ¢2 is constructed
orthogonal to ¢1. This applies to all other pairs of functions in
¢1""¢Q‘ The dependence of the calculations on the order in which the
l.m.o.s are calculated is therefore a feature of Schmidt orthogonalising
in sequence I, and a totally orthogonal starting—-point would not be
affected in this way. A set of starting-point functions which is close
to orthogonal, such as (d), will be affected less by the order in which
the l.m.o.s are calculated, than a set of functions such as (a), where
there are much larger overlap integrals between the l.m.o.s. In
particular the orthogonality of 3i; to pPco and I0 seems to play an
important part. In starting-point (d) the three functions are
orthogonal. In calculation 3, which has starting-point (a), 7\; is
calculated first and constructed orthogonal to pi and IO, giving it a
similar form to :f; in (d). Comparison of calculations 3 and 4 in
Tables 4.6 and 4.7 shows them to have similar end-points.

The dependence of Schmidt orthogonalising in sequence I on the order
in which the l.m.o.s are calculated confuses the examination of the
dependence of the method on the starting-point. Only three calculations
were made which used different starting-points, (a), (d) and (f),
calculating the 1l.m.o.s 1in the same order, (i). These are calculations
1, 4 and 6. Comparison of the eigenvalues in Table 4.6 shows that
calculations 1 and 4 give different forms for the l.m.o.s , their eigen-

values, except those of the inner shells, all differing by more than

0.01 a.u. The eigenvalues given by calculations 1 and 6, however, agree
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to well within 0.01 a.u., and so starting-points (a) and (f) give the
same form for the l.m.o.s , when the l.m.o.s8 are calculated in the
game order. Thesc two starting-points differ only in the polarity of
the bonds, and have the same form for the inner shells and lone pairs, and
the same hybridisation on the carbon and oxygen atoms.

In conclusion, stage /4 calculations which use Schmidt ortho-
gonalising sequence I produce end-point l.m.o.s which are mutually
orthogonal but which are arbitrarily rotated. In particular the forms

of the l.m.o.s obtained depend on the order in which they are calculated.

11 chmi rtnogonalisin, in equence
ii) Schmidt Orthogonalising in S 1T

Calculations 7 to 12 described in Table 4.5 use Schmidt
orthogonalising sequence II, where the other occupied orbitals are made
orthogonal to the l.m.o. to be calculated, and hence orthogonality of the
l.m.0. to the other orbitals is not imposed. The resulting set of
energy-minimised orbitals are therefore not mutually orthogonal, and so
two end-points may differ from one another in the amount of non-
orthogonality. The eigenvalues obtained for calculations 7 to 12 are
given in Table 4.8, and the l.m.o. overlap integrals between the results
of various calculations are given in Table 4.9.

Calculations 7 and B have the same starting-point, (a), and differ
in the order of calculation of the l.m.o.s. Their end-points have
eigenvalues which agree to within 0.01 a.u. The atomic orbital
coefficients agree to within 0.001 and the overlap integrals between the
l.m.0.s are all unity (to 4 decimal places). Hence calculations 7 and
8 have the same, non-orthogonal, end-point and Schmidt orthogonalising in
sequence IT is therefore independent of the order in which the l.m.o.s

are calculated.



Table 4.8 Eiecenvalurs of 1.m.o.s

Calculated using Schmidt

Orthogonalising Sequence II. (a.u.)

104

Calculation

g 7 9 10 11 12

I, —20.570 -20.582  -20.582 -20.584 -20.584 -20.581
I; =11.349 =11.237  =11.342 -11.338 =11.341 =11.342
X ~2.447 =2.455  =1.040 ~1.045 =1.042  —1.031
Heo -1.105 -1.109  -1.118 -1.180 -0.886  -0.912
 or -0.887 -0.878  -0.883 -0.948 -0.729  -0.743
Moge | 0-885 -0.8%0  -0.881 -0.949 0.727  0.743
P\Z -0.462 -0.470  0.470 ~0.472  0.471  -0.469
e -0.469 -0.468  -0.469 -0.468 0.469  -0.468
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Calculations 9 to 12 have different starting-points. Table 4.8 shows
that, in general, the eigenvalues obtained by calculations 7 and 9 to 12 do
not agree to within 0.01 a.u., and in Table 4.9 no pair of these
calculations have overlap integrals for all the l.m.o.s greater than
0.998. The resulting forms of the l.m.o.s therefore do differ with the
starting-point used.

Comparison of the values in Table 4.8 with the eigenvalues of the
starting-point functions (Table 3.9) shows that the eigenvalues obtained
by Schmidt orthogonalising in sequence II are quite close to the starting-
point values. The stage 4 calculations only change the eigenvalues of the
four bonds in formaldehyde by between 0.002 a.u. and 0.032 a.u., although
the values for the other functions are changed by up to 1.0 a.u.

Where the eigenvalues of l.m.o.s obtained from different calculations
agree to within 0.01 a.u. and the overlap integral between the l.m.o.s. is
greater than 0.998, the starting-point forms for the function are the same,
or very similar, in the two cases. For example, all the starting-points
have the same form for the inner shells and the pi-type lone pair. The
eigenvalues obtained for these functions all agree to within 0.01 a.u., and
the corresponding l.m.o. overlap integrals are all 1.0000.

Starting-points (a) and (b) differ only in the form of the sigma-type
lone pair, the forms of the CH and CO bonds being the same. The resulting
CH and CO bonds (calculations 7 and 9) have overlap integrals of 1.0000 and
their eigenvalues agree to within 0.01 a.u. The eigenvalues obtained for
the sigma-type lone pair, however, differ by 1.4 a.u., and the corresponding
overlap integral is low (0.909). Calculations 7 and 9 therefore give the
same form for the CH and CO bonds, but a different form for the sigma-type

lone pair.



3
The starting-point forms for ‘AO in calculations 9 to 12 are all

constructed orthogonal to Pec and IO, which gives them a similar form.
In calculation 7 the starting-point form of 7\c is the 9so atomic

orbital. The eigenvalues of Ac> obtained by calculations 9 to 12 agree

at 1.020 * .01 a.u., which differs from the value obtained by calculation 7,

—
o

2.447 a.u. The overlap integrals for ‘Ac. are unity between calculations
9 and 10, 9 and 11, and 11 and 12, but very low (nd 0.91) between
calculation 7 and calculations 9 to 12. The resulting form of the sigma~
type lone pair is therefore very similar for calculations 9 to 12 and
different to that obtained by calculation 7.

In conclusion, a stage 4 calculation which Schmidt orthogonalises in
sequence IT results in a set of energy-minimised individual l.m.oc.s which
are not mutually orthogonal. The forms of these l.m.o.s depend on the
starting-—point used, but not on the order in which the l.m.o.s are
calculated. Moreover, the l.m.o.s obtained have a form closely
resembling the starting-point used so that the choice of different
starting-points rotates the end-point functions.

Figure 4.1 shows how two such sets of l.m.o.s A and B, comprising
l.m.o.s ¢‘f, ¢2A....¢8A and ¢1B, ¢2B....¢8B respectively, are related, as

both sets give the same total wavefunction.

A B
A L=B

: u Y,

A > B

Figure 4.1 Representation of the relationship between sets of l.m.o.s

obtained using Schmidt orthogonalising sequence II.
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EA and QB are linear transformations converting the non-orthogonal sets

L] ?
of l.m.o.s A and B into orthogonal ones A and B . This is equivalent

to applyiﬁg on orthogonalising procedure, as in equation (2.34)

' A

A = ALL (4.17)

B -pL
A' and E' are then related by a unitary transformation .

B =é'.g (4.18)
The connection between A and B is given by

B.1% - aty (4.19)
Providing EB has an inverse,

B—1
B = A.L.U.L (4.20)

A measure of the non-orthogonality of a set of functions is given

by A, defined in Chapter Three.

8
=ﬁ/56> V<, » (319

1=

(S

1 3=1

1‘u,\

1£#3
Values of A for various starting-points and for the sets of functions

obtained by calculations using Schmidt orthogonalising sequence II from

these starting-points are shown in Table 4.10.
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Table /.10 Values of A

Starting- A at Starting- A after calculation
Point Point using Schmidt
orthogonalising sequence II
(a) 0.0931 0.0979
(b) 0.0553 0.0550
(c) 0.0871 0.0869
() 0.0310 0.0307
(&) 0.0391 0.0390

It can be seen that the values of A after the calculations are the same

as those before the calculations. The amount of non-orthogonality in the
l.m.0.s obtained by calculations using Schmidt orthogonalising in‘
sequence II is therefore the same as the amount of non-orthogonality in
the starting-point. The two starting—points which have low A values,

(a) and (e) give l.m.o.s which differ the least.

To determine whether the differences between the sets of l.m.o.s
obtained by us‘ng Schmidt orthogonalising sequence II were due to
differences in the amount of non-orthogonality, each set was converted
to an orthogonal set set of l.m.o.s , as described by (4.17). The method
of Lowdin orthogonalisation was chosen so as to alter as little as possible
the localised nature of the functions. The eigenvalues of the orthogonal
l.m.0.8 were then re—~calculated, and their values are shown in Table 4.11.
The overlap integrals between the orthogonal l.m.o.8 are shown in Table
.17, Lowdin orthogonalising produces greater changes in the less
orthogonal sets of l.m.o.s , so that the eigenvalues obtained from
calculation 7 are changed by up to 1.0 a.u., and those from calculations 9
and 10 by about 0.1 a.u., while the largest change in the results from

calculations 11 and 12 is 0.03 a.u..
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Table 4.11 Eigenvalues of l.m.o.s Calculated using Schmidt
Orthogonalising Sequence TT
(re—calculated after Lowdin O:r-‘thoicgonal*saﬁ;ion)JI (a.u.)
' Calculation
¢1' T 9 10 (N 12
IO -20.246 -20.569 -20.571 -20.584 -20.581
IC -11.231 -11.224 -11.706 -11.342 -11.342
N
Ne -1.492 -1.029 -1.044 -1.040 -1.030
PCO -0.813 -0.953 -0.955 -0.886 -0.900
Meq -0.754 —0.752 —0.752 -0.719 0.717
Hemr -0.752 -0.750 -0.753 -0.719 -0.716
\, ~0.445 0.451  =0.453 ~0.449 ~0.443
TTCO -0.469 -0.469 -0.468 -0.469 -0.468

The values shown are those re—calculated after Lowdin
orthogonalisation of the final set of le.m.o.s.

of the (non-orthogonal) l.m.o.s

The eigenvalues

obtained directly from the

calculations are shown in Table 4.8.
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The effect of Lowdin orthogonalising on the eigenvalues is, in
general, to increase the differences between the values for the inner
shells, but to decrease the differences between the values for the other
l.m.o.s. The spread of these values, however, remains greater than
0.01 a.u. The overlap integrals between the inner shellls after Lowdin
orthogonalisation are in many cases smaller than before, indicating that
the differences between their forms are increased, but the over-all
differences between different sets of l.m.o.s , measured by N\ are in
each case decreased. The values of M between calculations 9 to 12,
which all have starting-points in which ?i; is constructed orthogonal to
Yo, and Io’ are all below 4.0 x 10—5. In particular calculations 9 and
10, and 11 and 12 both have "\ values of less than 10_6. The re-calculated
eigenvalues of calculations 9 and 10 agree to within 0.01 a.u., with the
exception of the values for IC, which differ by 0.018 a.u. The
re—calculated eigenvalues of calculations 11 and 12 agree to within 0.01 a.u.,
with the exception of the values for t¢, , which differ by 0.014 a.u.
The l.m.oc.s 7resulting from these two pairs of calculations are therefore of
a very similar form after Lowdin orthogonalisation.

Lowdin orthogonalisation of the results of a stage 4 l.m.o. calculation
using Schmidt orthogonalising sequence II therefore eliminates some of the
differences between the various end-points, but does not result in a unique

end-point.

(iii) Lowdin Orthogonalising

Only two calculations were made using this method of obtaining an
orthogonal starting—point. The eigenvalues, given in Table 4.13, differ
by more than 0.01 a.u., and so it appears that use of this method of
orthogonalisation is also dependent on the starting-point, although more

calculations are needed for a fuller examination. From the limited results
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available the eigenvalues seem to be similar to those obtained by
Schmidt orthogonalising in sequence II followed by Lowdin orthogonélisation

of the resulting l.m.o.s. (Table 4.11).

Table 4.13 Eigenvalues of l.m.o.s obtainad using

Lowdin orthogonalisation (a.u.)

¢ Starting-Point
i
(a) (8)

Io -20.254 -20.584
IC =-11.224 ~-11.341
. ~1.494 -1.042
Ve -0.816 -0.8R4
Mea ~0.749 -0.718
Sty -0.749 -0.718
')\Wc -0./51 ~0./49
Mo -0./69 -0./69

(d) Summary of Stage 4 Results

The results of the stage 4 l.m.o. calculations on the formaldehyde
molecule are summarised below. The calculations give a unique many-
electron total wavefunction which is the same as that obtained by a
canonical molecular orbital calculation. The forms of the individual
l.m.0.s , however, are not unique. They depend on the method of
orthogonalisation employed.

When Schmidt orthogonalisation is used the result depends on the
sequence in which the l.m.o.s are orthogonalised. Furthermore, when
using sequence I, where the l.m.o. to be calculated is made orthogonal

to all the other occupied orbitals, the result depends on the order in
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which the l.m.o0.s are calculated. If sequence II is used, where the
remaining occupied orbitals are mace orthogonal to the l.m.o. to be
calculated, the result does not depend on the order in which the
l.m.0o.3 are calculated, but a non-orthogonal end-point resultc.
Orthogonalisation of this end-point does not produce a unique set of
l.meo.se.

In all the methods of obtaining orthogonality used the forms of
the individual l.m.o.s. obtained depend on the form of the initial
starting—point, despite the fact that the total wavefunction obtained
is independent of the starting-point. When Schmidt orthogonalisation
in sequence II is used the forms of the end-point l.m.o.s closely
resemble the forms of the starting—-point l.m.o.s. These results are

discussed further in Chapter Five.

(e) Conversion of l.m.0.s 1o c.m.0.S.

The above results show that each stage 4 l.m.o0. calculation
produced the same total wavefunction, but different individual l.m.o.s.
Each of these sets of l.m.o.s. g is related to the canonical m.o.s. ?
by a unitary transformation U, which is slightly different in each case.

As 1n equation (2.22):

g=-6.v (4.21)

To demonctrate this, some of the sets of l.m.o.s from stage 4
calculations were converted to the canonical m.o.s.

The 8x8 € matrix was formed, with elements

€ij = <¢1| F ' ¢J> (4-22)
The canonical m.o.s. have eigenvalues given by the diagonalised form
of this matrix, denoted by g, The canonical m.0.s and their eigen-

values may therefore be found by solution of the eigenvalue equation



115

1 (4.23)

where (a.21)
Oi=d. g

and (1.25)

Sey = SHJdY

The eigenvalues of the canonical m.o.s obtained in this way from
l.m.0. calculations 1, 7 and 12 are shown in Table 4.14. The values
agree within themselves and with the eigenvalues of the canonical m.o.s

calculated directly, to within 0.01 a.u.

Table 2.1/ Eigenvalues of the canonical m.o.s obtained from

1.m.0o.s (a.u.)

l.m.o. Calculation
1 7 12

-20.589 -20.583 -20.581

-11.375 -11.353 -11.345
-1.363 -1.362 -1.360
-0.829 -0.830 -0.829
-0.675 -0.675 -0.674
-0.560 -0.554 -0.558
-0.470 -0.469 -0.467
-0.379 ~0.375 -0.380
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Section ? Stage Three

(a) Introduction

The basic aim of a stage 3 calculation is to compute the best set
of perfectly localised molecular orbitals. The only available
orthogonalisation procedure which preserves the perfectly localised
nature of the l.m.o. being calculated is Schmidt orthogonalisation.

The method, discussed in Chapter Three, involves the division of the,
l.m.0.s into two groups. The first group contains all the functions
centred on the two atoms of the bond to be calculated and the second
group contains all the other occupied orbitals. Table 4.15 shows which

l.m.0.8 occur in which group for the four bonds in formaldehyde calculated

at stage 3.

Table 1.15 Groups of l.m.o.s 1in stage 3 Schmidt Orthogonalising sequences

l.m.o. to be

calculated l.m.0.s 1in group 1 l.em.0.s 1in group 2
% I T .
Fen T prca praw To Ao }0 pen’ Poo Ve
- L3 — [ bl -
P! Lo pa! pa! da ’Ao ’AC pred Breo teo
e =AY AT ®
Moo TeToNe Mo Teo oo pree Meu pen!
- - AY AT - L 3 .
T T ie ’/\o Ao e oo tee Pron e

Use of this method introduces inaccuracies into the operator by
allowing one of the virtual orbitals to mix into some of the occupied
orbitals. Preliminary calculations were therefore made to investigate
whether these inaccuracies would prove to be a serious difficulty and, if
this was not the case, which sequence of l.m.o.s would give the best

results.
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(b) Tnvestigation of Schmidt Orthogonalising Sequences at Stage 3

The preliminary calculations were carried out in the following way.
From starting-point (a) or (bb), which differ only in the form of the
sigma-type lone pair, a single calculation was performed of a CH or a
CO sigma bond using various sequences of the l.m.o.s within the two
groups. The success of the calculation was judged firstly by whether
it resulted in a aecrease in the total energy and secondly by the
guantity (égg —-Ei), defined in Chapter Three.

The results of calculating a single CH bond from starting-point (bb)
are shown in Table 4.16. The values of the total electronic energy
given are re-calculated after the calculation. These are formed from
the l.m.0. given by the calculation and the other occupied orhitals
so that they do not include contributions from the virtual orbital.

The first three entries in Table 4.16 show that the order of the functions
in the second group does not affect the resulting total energy or the
eigenvalue of the CH bond, so that it may be concluded that the order of
the functions within the second group is unimportant.

The results of calculating a single CO sigma bond from starting
points (a) and (bb) are shown in Tables 4.17 and 4.18 respectively.

These results together with the last entry in Table 4.16 show that
different orders within the first group of functions give different wvalues
for the total electronic energy and for the eigenvalue of the l.m.o.
calculated. Changes within the fixed space functions in this group

lead to the same results, so that it may be concluded that the different
values obtained are determined by the pcsition in the orthogonalising
sequence of the l.m.o. to be calculated, and the virtual orbital.

The position of the virtual orbital determines into which occupied

orbitals it is mixed by the orthogonalising and hence the extent of the



Teble 4,16 Results of Calculating a single CH bond from

Starting—point (bb) at Stage 3.
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{

t 0% ,ao’] —
Schmidt Orthogonalising TObal. Elgenvalu'c., eku\ eHm
Electronic . K
Sequence Fnerey Crad Craew
eroup 1 eroup 2 (a.u.) (a.u.) (a.u.) (a.u.)
I ycur?;. To \1 ng Py’ Mo Tee | =144.7811 | -0.719 -0.750] -0.032
I pes pon| Teo pa' Beo Ag Mo Te | -144.7812 | 0.719 -0.750| -0.032
« _ LT T
Te pen Moy | fo Per’ Ao pee Ao Tes | =144.7812 | -0.719  -0.750] -0.032
. X - . .‘\-\r ‘\"— . R
Benbin Lo ) to Ao e prew! Bee Beo | 1144,7664 | -0.872 -0.901] -0.029
i
1. E’Puais the eigenvalue given by the stage 3 calculation, erau,

the eigenvalue re-—computed after the calculation.




Table 2.17

Results of Calculatire a single CO sigma-bond

from Starting—point (a) at Stage 3.
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Total Eigenvalues1 i ¢
Schmld;eOzthgionallslng Flectronic c 4 I AIPOR g
quen | Energy P er*ccv
sroup 1 croun 2| (a.u.) | (a.u.) (a.u)t (a.u.)
— ,}‘U ,>\Tl' - ) ¥ ,
Ledte Ao Mo o pree Poo | Bon Mer! | 2144.7637 | -0.629 -0.640| -0.011
) . (SN | S ol )
}Au;Jt,ch%O'ko o Moo | pen ha' 1 2144,.7623 | -1.079 -1.091} -0.012
,\L’ _2'7!' — x '
P e Ae To Te Weo bree | pev pred' | —144,7623 -1.079 -1.091{ -0.012
T, To beo Ao Ap Tt !
< o \A"o o (o) (&) PCC HC‘“ HC“ "'144—.7606 _0-864 —01876 "‘00011
) X - [',,\‘ﬂ' — i
bee Pee Te Yo A Ao o P Bew { =144.4191 | -1.020 -1.206] —0.186

the eigenvalue re-—computed after the calculation.

/
élhcois the eigenvalue given by the stage 3 calculation, Gibco




Table 4.18

Results of Calculating a single CO sigma-—bond

120

from Starting—point (bb) at Stage 3.
,] i

Schmidt Orthogonalising Total Eigenvalues Cha, Sheo

Sequence Electronic C.. é;

Energy P heo

Froun 1 eroup 2 (a.u.) (a.u.) (a.u,) fa.u.)
Toie Mo Ao T Keo fedo | B pan' | =144.7726 [=0.911 -0.923| —0.013
ACOAT .~ %
Ao Mo Te To Teo Mao bree | Pen Pant | —144.7726 [-0.911 —0.923| -0.013
. ~ - Cc AAIT . »® . '
bee Te Te AL Ao T P (Mo Pat | 2144.7726 [=1.118  =1.131| -0.012
AT AT * - =
Ne Ao Mo Meo Te To Tee | Prew bew' | Z944.7718 |=1.122 =1.129 | -0.008
— - * T 4T .
Te Yo Peo e Ao Ao T | pen pew' | 2144.6974 |-0.738 —0.977 | =0.239

* — AT 4T _. i
Beo Pie Te To Aa Ay Tl Men prad' | =144.5066 |-1.020 -1.287 | -0.267

1. €

the eigenvalue re-computed after the calculation.

F(ois the eigenvalue given by the stage 3 calculation, éer
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inaccuracies in the operator. These inaccuracies will be minimised,

at stage 3, by placing the virtual orbital at the end of the functions in
the first group, the furthest along the orthogonalising sequence posszible
whilst preserving localisation, so that it mixes only into the l.m.o.s in
the second group. Where this is done the total electronic energy in each
case shows a decrease on the starting—point value, and values of

(e;_-ei) of approximately -0.01 a.u. for the CO sigma bond and -0.03 a.u.
for the CH bond occur.

The extent to which the wvirtual orbital mixes into an occupied orbital
which is placed after it in the Schmidt orthogonalising sequence is
determined by its overlap integral with the occupied orbital. Values of
these overlap integrals are given in Table 4.19. For the calculation of
™ cor the only l.m.o.s in the second group of functions are r&CH and }LCH"
with which the virtual orbital has a low overlap integral of 0.01. For
the calculation of r‘CH’ there are six l.m.0.s. in the second group of
functions, but the virtual orbital has a fairly low overlap integral with
each of them, the largest being -0.15 for the overlap integral with the
pi-type lone pair.

These results may be compared with those orthogonalising sequences
where the virtual orbital is not placed at the end of the first group of
functions. The virtual orbital is then mixed into more occupied orbitals,
and the inaccuracy of the operator is increased. In each case the
resulting total electronic energy is much less of an improvement on the
starting point wvalue. In particular where‘&:b is placed before %i> y, with
which it has a very large overlap integral, the resulting total electronic

energy is higher than that of the starting-point functions, and the value of

Il
(E:i - ei) is greater than -0.70 a.u. The effect of placing the virtual

orbital before the inner shell functions in the first group is less.
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Table 41.19 Overiap Tnteprals of Virtual Orbitals with Occupied

Orbitals, for Startine-Points (a) and (bb).

Occupied Overlap Integral Overlap Integral

l.m.o. with fbH* with }lCO*

IC -0.,0750 -0.0632

IO 0.0141 -0.0738

No -0.1480 0.0000

Xo 0.077€, 0.0589" 20.5527, =0.7155
rbH 0.0000 0.0126

Mo 0.1225 0;0126

b o 0.1029 0.0000

oo 0.0000 0.0000

! The first value is for starting-point (a), the second for

starting-point (bb).



123

For the calculation of both\ACH and'PCO the value of (6: —-6i) is not
altered significantly, but the resulting total electronic energy is in
each case higher than when the virtual orbital is placed after these
functions. The overlap integrals of the virtual orbitals with the inner
shells are low ( € 0.10 a.u.).

The above results suggest that the inaccuracies incurred in the
operator by Schmidt orthogonalising as described for stage 3 in Chapter
Three will not ser‘ously d'srupt the calculations if the virtual orbital
s placed at the end of the first group of functions. This has the
effect of only allow'ng the virtual orbital to mix into functions with
which it is likely to have a small overlap integral. The orthogonalising
secuence used for a stage 3 calculation of a bond T&AB may therefore be

re-written
<¢1 ¢p“") H:B (¢1‘ ¢9'“") (4'26)

where ¢1, ¢9.... are l.m.o.s centred on atoms A and/or B, and ¢;, ¢;....
are the remaining occupied l.m.0.8.

Tables 2.17 and /.18 show that different results are also obtained
by'orthogonalising sequences with different positions of the l.m.o. to be
calculated. As at stage 4, if the l.m.o. to be calculated occurs before
all the other functions it is unaltered by the orthogonalising. If it
occurs after the other functions in the first group it is altered by being
made orthogonal to them. After the calculation of }LCO, different values
for the eigenvalue of }LCO result.

The effect of the position of the l.m.o. to be calculated and of the
virtual orbital on the results may be further illustrated by examination
of the total electronic energy after orthogonalisation and after the
calculation of *LCO' The values are shown in Table 4.20. An orthogonalising

sequence where the virtual orbital is mixed into none of the occupied orbitals
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Table 4.70  Total Fleoctronic Fnerey after Orthogmonalication and
after Calculation of the CO sigma-hond, at Stage 3.
Total Electronic Energy (a.u.)
Orthgi"ﬁiizmg Starting- After After
e .o Orthogonal- | Calculation
within group 1 point . :
isation of
cO
X — v
P P (TCTe 20 Mo o) | —144.7572 | —143.1262 | =144.4191
A ~n < ™ — N\ <
bee (Te Te Vo Ao Weo) Pleal —144.7572 | -144.7588 | -144.7623
— A AT .' *
(Tele Mo Do Weo) peo Peo| =144.7572 | —-144.7588 |  -144.7637

1

Starting-point (a).
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will have the same energy after orthogonalisation as before. Comparison
of the first and second entreies in Table /.20 shows that placing the
virtual orbital before all the fixed space l.m.o.s Jeads to a large
rise in the total electronic energy after orthogonalisation (1.6 a.u.),
whereas placing it at the end of the first group of functions raises the
total electronic energy by only 0.001 a.u. The value of the total
electronic energy after the subsequent calculation of the CO sigma bond
is therefore different. The second and third entries in Table 4.20,
which differ in the position of tLCO but have the same position for r;EO’
have the same total electronic energy after orthogenalisation. They
vary in the total electronic energy after the calculation of }LCO-

Stage 3 calculations were therefore made using two sequences of
Schmidt orthogonalisation. The first, denoted as sequence III to avoid
confusion with the sequences used at stage 4, places the l.m.o. to be
calculated next to its virtual orbital and after all the other functions

in the first group. For example, sequence III for tLCO is

(Ic LIPS ?‘Co ‘>“L Mo Meo \ H:o ( Meu PCA\'\ (4.27)
and for 'ACH
( e P\Cﬂw Hc: ( is '7‘60 >\1o Mee  Men! Wco) (4.28)

The second sequence, sequence IV, places the l.m.o. to be calculated

at the beginning. For example, sequence IV for M co is
= AT AT *
( HCC Ic .\-Q :;\0 AC W co ) Hw ( PC'“ Hc\.\' (4029)
and for P cH

(PQ\ Te \ P‘Cf\ ( 1s ?‘(; ’A-‘To Pco Pen! /‘ECO\ (4.30)
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(¢) Results from Stare 2 Calculations

A typical stage 3 l.m.o. calculation for formaldehyde is shown
in Table 4.21. The starting-point used was (a) and the l.m.o.s were
Schmidt orthogonalised in sequence III. As at stage 4, the stage 3
calculations were cycled until the value of the total electronic energy
differed by no more than 0.0005 a.u. from the value of the previous cycle.
Generally only 3 cycles of the bonds were required, although the "polar"
start ng—points recquired more cycles. A stage 3 calculation was found
to take approximately between 5 and 10 times less computing time per
l.m.o. than the corresponding stage 4 calculation.

Twelve stage 3 calculations were performed using starting-points

(a) to (h) and Schmidt orthogonalising sequences III and IV. The
resulting total electronic energies and eigenvalues are shown in Tables
4.23, 4.24 and A.25. The results were examined to see if they depended
on the order in which the bonds were calculated, the sequence of Schmidt
orthogonalising, and the starting-point used. At stage 3 the one-centre
functions, the inner shells and lone pairs, remain fixed and only the
bonds are calculated. The values of the total electronic energy and
the eigenvalues cbtained will therefore depend on the form of the one-
centre functions used in the starting-point. However, when comparing
two calculations using the same starting-point the form of these functions
is the same in both cases so that if the calculation leads to the same
form for the four bonds the total electronic energy, and also the eigen-
values, should be the same in each case. The eigenvalues quoted at
stage 3 are the values Efi re~calculated after the calculation has
reached self-consistency, with the operator constructed from the l.m.o.s

given by the calculation, and not the values G‘i which occur during the
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Table 4.21 A Typical Stage 3 Calculation for Formaldehyde

Cvel l.m.o. Number of Resulting Total Energy
JeLe calculated iterations Electronic Energy Decrease

(a.u.) (a.u.)

1 Mon 3 -144.7603 0.0031

t*CH' 3 -144.7628 0.0025

H o 5 -144.7707 0.0079

T o 4 -144.7736 0.0029

2 ¥kCH 2 ~144.7737 0.0001

rACH 2 -144..T737 0.0000

o 4 —-144.7744 0.0007

oo 3 ~144.7746 0.0002

3 e 2 -144.7746 0.0000

}*CH’ 2 —-144.7745 0.0001

w 3 -144.7746 0.0000




Table 4.22 Two Stage 2 Calculations with Different Orders of

Calculating the 1.m.o.s.1

Order of l.m.o.
Calculation

i‘-‘\‘ﬂ r‘}‘t\x‘ r\.‘-:» Wee,

Mee Moo prew preat

Total Electronic
Energy (a.u.)

Re-calculated ;
Eigenvalue, €, (a.u.)

¢i =Fex
Pi = Feo
¢1’ =T o

-144.7856

-0.739
-0.906

-0.459

—-144.7857

-0.740

-0.909

-0.460

Using starting-point (bb) and Schmidt orthogonalising sequence III.

<



calculation when the operator includes contributions from the virtual
ortital.

In sequence IV, like sequence II at stage 4, the l.m.o. to be
calculated is not made orthogonal to the other occupied orbitals.
The stage 4 results suggest that calculations using sequence IV will not
be dependent on the order in which the l.m.o.s are calculated, although
no results were obtained at stage 3.

Sequence III orthogonalises the l.m.o. to be calculated to some
of the occupied orbitals, and is therefore similar to sequence I at
stage 4 where the l.m.o. to be calculated is made orthogonal to all of
the other occupied orbitals. The results of Schmidt orthogonalising
in sequence I were found to be dependent on the order in which the bonds
were calculated. However, in sequence III the l.m.o. to be calculated
is only made orthogonal to the one-centre functions which are not
calculated at stage 3, and not to the other l.m.o.s calculated at this
stage. In order to test the dependence of sequence III on the order in
which the l.m.0.s are calculated, two calculations were performed using
sequence III and the same starting point (bb). The first calculated
the l.m.o.s in the order shown in Table 4.21, the second in the reverse
order. The resulting values of the total electronic energy and
eigenvalues, both re-calculated after the calculation are shown in
Table 4.22. The atomic orbital coecfficients obtained from the two
calculations agree to with ha 0.001, and the overlap integrals between
the corresponding l.m.o.s are all 1.0000. It may therefore be
concluded that calculations using sequence III are not dependent on the
order in which the l.m.o.s are calculated.

The total electronic energies after the various stage 3 calculations

performed using sequences III and IV are given in Table 4.23, and the



Table L.23 Total Electronic Energies given by Stage 3

Calculations. (a.u.)

Schmidt Starting Total
Orthogonalising | =-point. | Electronic
Sequence, Energy.
a =144 TT46
b -144.7868
bb -144.7856
III c -144.8013
d - 14447695
f =1L TTLS
g -144.7636
h =144+ 7844
a =14L.7722
v b =-144.7872 :
f =144 7T !!
v f
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Table 4.24 Ei,@tenvalues1 of 1.m.0.s Calculated using Schmidt

Orthoronalising Sequence IIT (a.u.)

Starting-point

¢i a b c a f g h
I, ~20.514 =20.555 -20.550 —20.538 —20.511 =20.551 —20.541
I, -11.316 =11.332 =11.294  =11.301  =11.317 =11.341 =11.296
,\Z -2.439 -1.012  -1.007 -1.002  -2.428 -0.867 =-2.000
M co -0.636 -0.901 -0.904  -0.865  -0.637 -1.038 -0.891
M ox -0.731 -0.740 ~0.771 ~0.721 -0.731 -0.742 -0.733
M e -0.731 -0.740 -0.771  -0.721  -0.731 -0.742 -0.738
A -0.440 -0.452 -0.443  -0.438  -0.439 -0.450 -0.439
Trco -0.444 -0.459 -0.449 -0.446 0.444 -0.460 -0.446

1. Re—~computed after the l.m.o. calculations.



Table 4.25 Eigenvalues)I of 1.m.0.8

Calculated using Schmidt

1.

Orthoponalising Sequence IV,

(a.u.).

¢. Starting—point
i a b c
I, ~20.522 -20.551  =20.524
To -11.302 -11.326 ~11.300
Ne -2.430 ~1.016  -2.430
K co -1.070 ~1.199 ~1.203
M oy -0.865 0.876  -0.838
M g -0.865 —0.876 —0.838
Ne —0.440 ~0.449 —0.440
—‘TCO -0.444 -0.456 ~-0.444

Re—computed after the l.m.o. calculations.
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recalculated eigenvalues in Tables 4.24 and 4.25 respectively. Comparison
of calculations with the same starting-point, but different sequences of
Schmidt orthogonalisation shows that the resulting values of the total
electronic energy are generally not the same, but vary by only a small
amount (0.002 a.u., 0.0004 a.u., and 0.003 a.u. for starting-points (a),
(b) and (f) respectively). For starting-point (b), where the sigma—type
lone pair is constructed orthogonal to the CO sigma-bond and the oxygen
atom inner shell, the difference is within the expected error in the value
of the total electronic energy. For the other two starting-points the
value obtained by scquence III is lower than that obtained by sequence IV.
Cequence IIT might be expected to lead to a lower total electironic energy
as 1t imposes some orthogonality of the bonds to the inner shells.

The eigenvalues obtained by sequences III and IV, however, differ
considerably so that although the two sequences give similar values for the
total electronic energy they give different forms for the individual
l.m.o.s. This confirms the preliminary results of the previous section
and agrees with the stage 4 results. The eigenvalues obtained by sequence
IV, in which the bond is not altered by orthogonalisation, are similar to
the eigenvalues of the starting-point functions, as is the case with
sequence II at stage 4.

The different starting-points used with both sequences III and IV
lead to different values of the total electronic energy. These values
range from 0.0526 a.u. to 0.0903 a.u. above the stage 4 value. However,
in each case the value is lower than the starting-point value.

The different starting-points also lead to different eigenvalues for
the bonds. The quantities (e; -ei) for all the stage 3 calculations

performed are given in Table 4.26 for the CH and CO sigma bonds. Values of
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Table A.76 Values of G.lj - é’i for Stage 3 Calculations (a.u.)
Schmidt Starting € .
Orthogonalising -point
sequence Mon Fco

a -0.031 0,012
b -0.032 -0.014
c -0.001 -0.017
III d -0.004 -0.001
f -0.031 -0.012
g -0.032 -0.014
nh -0.002 0.005
a -0.032 -0.013
Iv b -0.032 -0.014
c -0.032 -0.013




Table A.27 Virral Theorem Test after Stape 3 Calculations

Schmidt Starting—
Orthogonalising point -T/E
Sequence
a 1.0124
b 1.0077
c 1.0087
ITT d 1.0085
f 1.0124
g 1.0071
h 1.0085
a 1.0125
IV b 1.0080
f 1.0125
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up to -0.017 for ‘*'CO and up to -0.032 for r~CH occur. These are of
the order of magnitude predicted by the preliminary calculations in the
previous section. It may therefore be concluded that the inaccuracies
incurred by including the virtual orbitals in the operator at stage 3
are not seriously affecting the calculations.

A check was also made to see how nearly the virial theorem was
obeyed at stage 3. The results are shown in Table 4.27. For starting-
points where the sigma-type lone pair is made orthogonal to the CO sigma
bond and the oxygen atom inner shell the values of —T/E range from
1.0071 to 1.0087, a difference of from zero to 0.0016 from the stage 4
results. For starting-points (a) and (f), where the form of the sigma-
type lone pair is ?so, —T/E differs from the stage 4 results by 0.0053.

Part, at least, of the differences found in the values of the total
electronic energy and the eigenvalues is due to the different forms for
the sigma-type lone pair used in different starting-points and not altered
at stage 3. It is the only one-centre function which has different forms
in starting—points (a) to (h). The simplest form for this function is
?so as in starting-point (a). The importance of the form of the sigma-
type lone pair can be seen by comparing the total electronic energy obtained
with starting point (a) (—144.7746 a.u. and =144.7722 a.u. for sequences
ITII and IV respectively) with that obtained from starting point (b) where
7:; is constructed orthogonal to‘kco and I (-144.7868 a.u. and
—144.7872 a.u. for sequences III and IV respectively).

In order to investigate further the best form for this function to
use at stage 3, a stage 4 calculation of ix: was made using as a
starting-point the results of the stage 3 calculation made with starting-

point (b) and sequence III, (i.e. starting-point (e)), and Schmidt

-
orthogonalising in sequence II. The form of 7\, obta ned was then
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truncated to give

[
Ac = 0.9697 7s_ -0.333? ?pzo -0.2206 1s_ (4.37)

which is fairly similar to the form used in starting—point (b)

'XZ: 0.9506 ?s_ -0.38172p -0.7219 1s_ (4.32)

o

Use of this form (4.31) in a further stage 3 calculation (using sequence III)
resulted in a total electronic energy of -144.7910 a.u., only 0.0042 a.u.
lower than that obtained by the starting-point (b) form (4.3?). The method
used in starting-point (b) of constructing the sigma-type lone pair
orthogonal to the CO sigma-bond and the oxygen atom inner shell would
therefore seem to give a good approximate form for the function. This
method, however, depends heavily on the starting-point form for the CO
sigma-bond, so that a very different form for the sigma-type lone pair is
obtained by constructing it orthogonal to the polar CO sigma-bond, as in

starting-point (g).

—

\ = 0.8 . .
7‘0 0.R651 7S, -0.5408 ?pZo -0 ?920 18, (4.33)
The total electronic energy obtained by using starting-point (g) is higher

than that obtained by starting-point (f) which has the simple 2s_ form for

[« 3

'Ac . One solution might be to construct ﬂi: orthogonal to the hybrid
atomic orbital on the oxygen atom making up the CO sigma-bond, which would
at least discount the affect of differences in polarity, but this was not
done in this work.

The only starting-points used above which have the same form for ?ﬁ;
are (a) and (f). Sequence IIT leads to the same valué for the total
electronic energy and for the eigenvalues for the two calculations while

sequence IV does not. The atomic orbital coefficients of all the l.m.o.s
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obtained by the two calculations using sequence III agree to within
i0.001, so that it may be concluded that in this case the two starting—
points (a) and (f) give the same end-point. The l.m.o.s obtained by
the two calculations using sequence IV have overlap integrals of 0.9999
for the CH bonds, but only 0.994? for the CO sigma bond, giving a v\
value of 3.4 x 10_5. Use of sequence IV therefore gives different end-
points for starting-points (a) and (f).

These starting-points, however, differ only in the polarity of the
bonds. To investigate further the effect of the form of the sigma-type lone
pair several more calculations were made, using Schmidt orthogonalising
sequence III, with different forms for the bonds butAwith the same form
for the sigma-type lone pair. The form chosen was that of starting-point
(bb)

Ll

No=0.9238 °s 0.3729 ?p, (4.34)
o]

The results of these calculations are given in Table 4.28, and show that
in general the different starting-points still give different values for
the total electronic energy when the form of"xi is the same in each case,
so that the form of this function is not ent rely responsible for the
differences in the values of the total electronic energy shown in Table
A4.73. The eigenvalues in Table 4.28 are also different for different
starting-points but differ less than the values in Table 4.724. Apart
from the effect of the sigma-type lone pair, the stage 3 calculations
therefore, in general, give bonds whose forms are dependent on the form of

the starting-point bonds.
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Table 4.28 Results of Stage 3 Calculations1 with the same

form for the sipma—-type Lone pair.2

Starting-point

fOI’H’l for bonds. (a) or (b) (C) (d) (f) or (9‘)
Total Electronic !
Energy (a.u.) - =144.7857 —144.8000 -144.7676  =144.7857

I

ftee—calculated
Eigenvalues, & =

(a.u.)

¢i = I, -20.557 -20.550 -20.550  -20.553
g. = I, -11.332 -11.294 -11.336  -11.335
g = A —2.011 —2.003 —2.009 .=2.010
gb’i = Moo -0.909 -0.915 -0.892 -0.910
¢1 = Mg -0.740 -0.771 -0.723 -0.740
g = Poy -0.740 -0.771 -0.723 ~0.740
g.o= N, -0.452 -0.443 -0.449 -0.451
g =T -0.459 -0.449 ~0.458 -0.459

1. Using Schmidt orthogonalising sequence IIT.

2. The form of the sigma-type lone pair used is that occurring in

starting-point (bb).



140

The exception to this general conclusion occurs when a bond and its
ant=bonding virtual orbital have the same hybridisation on each atom,
as with starting-points (a) and (f), which, as shown in Table 4.2R8 and
above, give the same end-point for calculations using Schmidt ortho-
gonalising sequence III. Solution of the truncated 2x? secular
determinant then determines only the polarity of the bond calculated.

This was used to examine the effect of changes in the polarity of bonds
and the results are given in Chapter Five.

In theory the Schmidt orthogonalising will alter the hybridisation
before a calculation is made. In sequence III, which places the l.m.o.
to be calculated next to the virtual orbital, both functions are made
orthogonal to the one-centre functions and the hybridisation is kept
effectively the same in each case. In sequence IV the virtual orbital
is made orthogonal to the one-centre functions, while the l.m.o. to be
calculated is not, so the hybridisation is altered by the orthogonalising
in one case and not in the other. The calculations made to examine the
effect of changes in the polarity of bonds were therefore carried out
using sequence ITI.

In bonclusion, the inaccuracies introduced into the operator at
stage 3 by the Schmidt orthogonalising sequences used did not prove too
serious a difficulty, and the resulting sets of perfectly localised
molecular orbitals had total electronic energies ranging from 0.0526 a.u.
to 0.0903 a.u. above the stage 4 value. The different values obtained
for the total electronic energy were shown to be due firstly to different
forms for the bonds calculated at stage 3 and secondly due to different
forms for the one-centre functions which remain unaltered, the form of the
sigma~type lone pair being particularly important. The forms of the bonds
were found to depend both on the starting-point used and on the sequence of
Schmidt orthogonalisation as at stage 4. The results of the stage 3

calculations are discussed further in Chapter Five.
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Section 3 Stages One and Two

(a) Introduction

At stages 1 and 2 a set of perfectly localised molecular orbitals is
computed using a truncated operator. The success of this approximation
may be judged by comparing the results of stage 1 and stage 2 calculations
on the formaldehyde molecule with the results of stage 3 calculations
where the full Hartree-Fock operator is used. The stage 1 results are

discussed first.

(b) Stape One Results

The ability of the stage 1 model of an isolated two-electron bond to
give reasonable forms for the bonds was tested by performing a single
stage 1 calculation of each of the four bonds in formaldehyde. The
starting-point forms used for the bonds and their anti-bonding partners
were those of starting-point (a), non-polar bonds with sp? hybridisation
on the carbon atom, and with the virtual orbitals constructed orthogonal
to the corresponding bonds. As described in Chapter Three, a charge of +1
was ass gned to each nucleus. The computing time taken by the stage 1
calculations was approximately the same as that taken by a stage 3
calculation of a single bond, the number of cycles needed to reach self-
consistency being greater.

The success of a stage 1 calculation was judged by the form of the
function produced and by the eigenvalue given by the calculation. A
further test would be given by the values of the total electronic energy
and the eigenvalue produced when the function replaced its starting-point
form in the set of starting-point functions, but these results were not

obtained in this work.
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The form given by a stage 1 calculation for the CH bond was

P oy = 0-1370 2s_ + 0.0976 szc + 0.1691 2pyc + 0.8225 1y (4.35)

which is heavily polarised towards the hydrogen atom. The eigenvalue
given by the calculation was -0.2776 a.u. The forms obtained for the

sigma and pi CO bonds were
¥ co
AL

0.5693 2s - 0.8052 2p, +0.0315 2p, (4.36)
[¢] (o]

]

co = 0-9241 ?pxC + 0.2316 2pxo (4.37)

which are both heavily polarised towards the carbon atom. The eigenvalues
given by the calculations were 0.3271 a.u. and 0.6778 a.u. for the sigma-
and pi-bond respectively.

These results bear no relation to those of the detailed computations.
The operator used at stage 1 is therefore too simple an approximation to
be useful. The bonds given by the calculations are all heavily polarised
away from the larger of the two atoms making up the bond and all three of
the eigenvalue; obtained are far too high when compared to the results
obtained at stages 3 and 4, those associated with the CO bond being both
positive.

It would be possible to vary the values of the nuclear charges in some
systematic manner while retaining the simple formulation of the stage 1
operator. In this way l.m.o.s which resembled the stage 3 and stage 4
l.m.o.s might be obtained. However, no exploration along these lines
was attempted in this work, and it was concluded, for the present, that
the stage 1 operator does not provide a satisfactory method of approximation

for the calculation of the l.m.o.s. of formaldehyde.
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(c) stace Two Results

A number of calculations were made with the stage 2 form of the
truncated operator (3.30) and with several different Schmidt orthogonalising
sequences. Starting—points (a) and (bb) were used, together with a value
of the exchange factor, x, of 0.5. This work is therefore not a complete
analysis of the problems of satisfying the orthogonality conditions for the
formaldehyde molecule at this level of approximation. The results proved
to be sensitive to the orthogonalising sequence.

Where the l.m.o. to be calculated was placed after all the other
occupied orbitals in the orthogonalising sequence the cycling of the bonds
did not converge satisfactorily to an end-point, but rather oscillated,
the calculation of some l.m.o.s 7resulting in an increase rather than a
decrease in the total energy. This is the only occasion in the whole of
this work on which convergence did not occur. Such a sequence for the
calculation of a CH bond might be

T T *

.
' m .38
Io Pogr Moo Moo Pog Poem (4.38)

—

and for the calculation of a CO sigma bond

AT LT T * (4.39)
InTe 20 2o™er Por' Moo Poo Peo

so that the singly occupied hybrids ‘L;ﬁ' }igo etc. are mixed by the
orthogonalising into a doubly occupied orbital. The reason for the
oscillating behaviour may be that the orthogonalisation raises the total
energy, while the solution of the secular determinant lowers the total
energy.

On the other hand, when the l.m.o. to be calculated was placed first

in the sequence the calculations did converge satisfactorily as in stages
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3 and 4. In this case the orthogonalising sequence used for a CH bond

was

T T T *
T
Peon Ic Per' Moo Moo Pen

and for a CO sigma bond

1 b
Poo Tolg Ao 2o T

hy T

co Mer Per Peo

(4.40)

(4.47)

No singly occupied orbitals were then mixed into doubly occupied orbitals.

This latter method was therefore used in all the subsequent calculations

at this stage.

A typical stage ? calculation using this Schmidt orthogonalising

sequence with starting-point (a) and a value of x of 0.5 is shown in

Table 4.79. As at stages 3 and 4 the stage 2 calculations were cycled

Table 4.79 A Typical Stage ? Calculation for Formaldehyde

cvel l.m.o. Number of Resulting Total E

yeie calculated iterations Electronic Energy Dnergy
(a.u. ecrease

(a.u.)
1 rACH 3 -144.7612 0.0040
}*CH' 3 ~144.7642 0.,0030
ﬁ-CO 2 -144.7707 0.0000
2 rACH 2 ~144.7707 0.0000
‘JCH' 2 —-144.7706 0.0001
*LCO 2 -144.7707 -0.0001
oo 2 ~144.7707 0.0000

until the value of the total electronic energy differed by no more than

0.0005 a.u. from the value of the previous cycle.

In general, only 2 or 3
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cycles of the bonds were required. The computing time taken by a stage
? calculation was found to be approx mately the same as that taken by a
stage 3 calculation.

As at stage 3, only the bonds are calculated at stage 2, the one—
centre functions, the inner shells and lone pairs, remaining fixed.

It follows that the values of the total electronic energy and the
eigenvalues obtained will again depend on the form of the one-centre
functions used in the starting-point.

Before a stage ? calculation is made some of the l.m.o.s are
truncated to give the truncated operator. The eigenvalues obtained
during a calculation are formed with the truncated operator. Similarly,
values of the total electronic energy computed with the forms of the
l.m.0.s as they appear in an individual calculation refer to the
particular fragment of the molecule concerned with the bond being
calculated. After a stage ? calculation had reached self-consistency,
therefore, a new set of l.m.o.s was formed comprising the l.m.o. which
had been calculated together with the original untruncated forms for the
other occupied orbitals. This set of l.m.o.s. was then used to evaluate
both the eigenvalues, us‘ng the full Hartree-Fock operator, and the total
electronic energy so that a comparison could be made with the values of
these quantities given by other stages.

Several stage 2 calculations were made with values of the exchange
factor x varying from O to 1 and using the same starting-point, (a).

Table 4.30 shows the variation in the eigenvalues given by the calculations
with the value of x. They all decrease with increasing x value and all

vary over a range of about 0.10 a.u. The variation in tLhe townl energy ig
shown in Figure 4.2. The value of x was found to affect the value of the

total electronic energy by about 0.01 a.u. (about 0.25 eV). The lowest
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Table 4.30 Eigenvalues given by Calculations

with different

values for the Exchange Factor, x.

%
?. 1.00 0.75 0.50 0.25 0.00
- -0.880 -0.852 —0.825 -0.798 -0.772
M g —0.880 -0.852 -0.825 -0.798 -0.772
Meo ~-1.085 =1.069 -1.053 =1.037 =1.022
g —0.465 0.447 -0.429 -0.412 -0.395

1.

Using Starting-point (a).
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-144.75]

R y Stage 2
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Figure 4.2 Variation of the Total Xlectronic Energy

with the exchange factor x,
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value of the total electronic energy (-144.7706 a.u.) was given when x was
0.5. Moreover this agrees well with the values obtained for starting-
point (a) at stage 3 (-144.7746 a.u. using sequence III and -144.7722 a.u.
using sequence IV). This value of x was therefore used in subsequent
calculations.

Table 4.31 shows the values of the total electronic energy resulting
from stage 2 calculations with various starting-points, all using a value
for x of 0.5. As at stage 3 different values are obtained for different
starting-points. These results were compared with the values obtained
by the corresponding calculations performed at stage 3. They should
str' ctly be compared w'th stage 3 calculations using Schmidt ortho~
gonalising sequence IV, where the l.m.o. to be calculated is also not
made orthogonal to the other occupied orbitals. However, as only a few
calculations were performed using sequence IV, and these were shown to give
total electronic energies near to those obtained by sequence III (within
0.005 a.u.) the results of the stage 2 calculations were compared w'th
those of stage 3 using sequence IIT. Table 4.31 shows that the values
of the total electronic energy given by stage 2 calculations with the
truncated operator are very close (also within 0.005 a.u.) to the values
given by the stage 3 calculations with the complete Hartree-Fock operator.

The e’genvalues obtained from the calculations are given in Table 4.32,
and the values re-—calculated after the calculation are given in Table 4.33.
Comparison of the values in the two tables shows that the eigenvalues
obtained with the truncated operator in Table 4.32 are in each case slightly
higher than the eigenvalues obtained with the full Hartree-Fock operator in
Table 4.33. The differences between the values for the CO sigma and pi
bonds range from 0.001 a.u.to 0.013 a.u. The differecnes between the

values for the CH bonds are greater, ranging from 0.053 to 0.078 a.u.
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Table 4.31 Total Electronic Znergies given by Stage 2

Calculations. (a.u.)

Starting Total Difference from Stage 3 values%
—-point. Electronic
Energy. Sequence III  Sequence IV
a =144, 7707 0.0040 0.0015
bb -144.7859 -0.0003 -
f —-144.7736 0.0010 -0,0022

1. Exchange factor x=0.5.
2. Stage 2 result minus stage 3 result. Values are given for stage 3
results obtained by Schmidt orthogonalising in sequence III and

in sequence IV.



Table 4.32 Eigenvalues obtained directly from stage 2 Calculations
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(a.u.).
Starting-point
in a bb c d
M co -1.053 ~-1.091  -1.165 -0.867 -1.185
" cH -0.825 -0.825 0.889 -0.677 -0.807
B CH? -0.825 -0.825 -0.889 -0.676 -0.806
W co -0.429 0.444 0.443 -0.444 0.429
Table 4.33 Eigenvalues re—computed after stage 2 Calculations (a.u.)
Starting-point
¢i a bb c d
IO -20.482 =20.519 =20.504 =20.517 -20.482
Io -11.316 -11.349 =11.362 =11.350 =11.315
Ao -2.409 -1.988 -0.987 -0.992 -2.409
Peo -1.056 ~1.104 -1.173 -0.868  —1.184
PCH -0.878 -0.890 -0.967 -0.735 -0.860
PCH' -0.878 -0.890 -0.967 =0.735 -0.859
o —0.417 -0.430 -0.423 -0.429  -0.416
oo -0.438 -0.456 -0.456 -0.454  -0.438
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Unfortunately the eigenvalues obtained at stage 2 may not be
compared with the stage 3 results using sequence III, which were found
to differ from those obtained using sequence IV. Only two stage 3
calculat ons, those using sequence IV and start ng-points (a) and (£)
are therefore available for comparison. The corresponding entries in
Table 4.25 and Table 4.33 all differ by about 0.02 a.u., except the

values for I which differ by 0.04 a.u., and T ., which differ by

Co
0.00?2 a.u. No conclusion was therefore drawn from the limited results
available, More stage ? and stage 3 calculations with the same
starting-point are required to ascertain whether the truncated stage 2
operator gives a good approximation to the form of the l.m.o. given
by a stage 3 calculation.

Finally, the success of the stage 2 calculations which require only
one— and two-centre electron repulsion integrals may be compared to a
stage 3 type calculation where all the three— and four—-centre integrals
are simply put to zero. A calculation of this kind was made using
starting-point (a) and Schmidt orthogonalising in sequence III. The
resulting l.m.o.s have a total electronic energy of -144.6084 a.u.,
higher than the starting-point value, whereas the corresponding stage 2
calculation gives l.m.o.s with a total electronic energy of —-144.7707 a.u.

In conclusion, stage ? calculations which placed the l.m.o. to be
calculated first in the Schmidt orthogonalising sequence so that it was
unaltered by the orthogonalising proved successful. As at stages 3 and
4 the forms of the individual l.m.o.s depend on the starting-point used.
A value of the exchange factor, x, of & was found to give l.m.o.s with
the lowest total electronic energy and providing this value is used the
stage 2 calculations give results which are in good agreement with those

obtained at stage 3. The success of the stage 2 calculations is discussed

further in Chapter Five.
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Section 1 Discussion of Results

The greatest difficulty encountered in using the l.m.o. theory to
compute 1l.m.0.s of formaldehyde is that the original orthogonality
conditions cannot be satisfied in a straightforward way for this molecule
prior to the actual calculations. The method of Schmidt orthogonalising
hefore cach individual l.m.o. calculation which was used to overcome thig
difficulty is successful in giving a unique many-electron total wavefunction
which is the same as that obtained by a conventional canonical molecular
orbital calculation. Unfortunately, the individual l.m.o.s obtained
are not unique, their forms depending on the sequence in which the functions
are orthogonalised. The most successful sequence at the rigorous stage 4
level of approximation is perhaps that which leaves the l.m.o. to be
calculated unchanged by orthogonalisation, sequence II. L.m.o.s obtained
using this sequence depend only on the starting-point, and not on the order
in which the l.m.o.s are calculated, although there is the disadvantage
that the final l.m.c.s are not mutually orthogonal.

Both Schmidt and Lowdin orthogonalising appear to produce l.m.o.s
whose forms depend on the form of the starting-point functions. The
question arises of whether this dependence on the starting—point is a
consequence of the basic theory as discussed in Chapter Two, or whether it
is a result of the methods used to overcome the difficulty of not being
able to obtain a localised orthogonal starting-point. The results for
formaldehyde indicate that starting-points which are closer to orthogonal
have similar end-points so it may be the case that unique l.m.o.s would be
obtained from an orthogonal starting-point, as they were in the simpler
example of the methane molecule.58 No final conclusions may be drawn from
the results obtained in the present work and further calculations on other

molecules are needed to decide this question.
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If a localised starting-point could be obtained for formaldehyde,
the form of an 1 ,m.o. would be partly determined by its orthogonality to
the other occupied orbitals forming the fixed space before a calculation
is made. When Schmidt orthogonalisation in sequence II is performed it
is chosen to alter the other occupied orbitals forming the fixed space, so
that the l.m.o. to be calculated is retained in its original arbitrary form.
The form of the final l.m.o. is therefore determined only by the solution
of the secular determinant so that it is to a certain extent dependent on
its initial starting-point form. Use of sequence I, and of Lowdin
orthogonalisation, however, also give l.m.o.s which appear to be dependent
on the starting-point. Here the l.m.o. to be calculated is altered by
be‘ng made orthogonal to all the other occupied orbitals before a calculation
is made, but the situation 1is not clear since the orthogonalising
necessarily delocalises the function.

The results show that l.m.o.s obtained by Schmidt orthogonalising in
sequence II have forms very similar to their starting-point forms. While
in many ways this is a disadvantage, it could be in one sense an advantage.
It may be that this method produces l.m.o.s which, while energy-minimized,
differ as little as possible from the starting-point functions, though this
is not demonstrated conclusively in this work. In this way the required
forms of l.m.o.s may be chosen by choosing a particular set of starting-
point functions, in the same way as it is chosen to calculate localised
rather than canonical molecular orbitals. This may be of use in extending
the method to calculations of parts of large molecules.

An additional point on the question of the dependence of the l.m.o.s
on the starting-point is that the l.m.o. theory is expected to give the same
l.m.o.s8 only from qualitatively similar starting-points. It may be that

the starting-points used in this work differed too extensively, particularly
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in the form used for the sigma—type lone pair. The results obta ned
indicate that starting-points which have similar forms for this function
have similar end-points. Further stage 4 l.m.o. calculations are
required to reveal how similar the starting-point functions must be to
give effectively the same end-point set of l.m.o.s.

The calculation of properties of the l.m.o.s proved difficult
because a unique set of l.m.o.s was not obtained in this work. In some
cases calculations on all the different sets of l.m.o.s obtained were
performed and the results compared, but in other cases the set of l.m.o.s
obtained from calculation 12 (see Table 4.5) was taken arbitrarily as a
typical example. The results of these calculations are discussed in the
remaining sections of this Chapter.

The Schmidt orthogonalising procedure also enables calculations on the
formaldehyde molecule to be carried out successfully at the earlier levels
of approximation, stages 2 and 3, so that a set of perfectly localised
functions, which are not mutually orthogonal, may be calculated despite the
fact that a perfectly localised orthogonal starting-point cannot be found.
A disadvantage associated w'th this method at stage 3 is that in order to
obtain a perfectly localised virtual orbital, the virtual orbital must
be mixed by the orthogonalising into some of the occupied orbitals,
‘ntroduc‘ng inaccuracies into the operator. This did not prove to be too
serious a difficulty in practice.

The main aim of a stage 3 calculation is to calculate directly the
best set of perfectly localised molecular orbitals. It is conjectured
that these may be of the same, or possibly even lower total electronic
energy than those obtained by truncating the stage 4 functions. The
stage 3 l.m.o.s obtained in the present work have total electronic energies

which are typically only 0.5 to 1.0a.u.higher than those of the truncated



stage 4 functions. The latter are discussed below in Section 3.

It is a feature of the stage 2 and stage 3 calculations that the
one-centre functions cannot be calculated at this level of approximation,
so the values of the total electronic energy will be expected to vary
with the form of these functions, particularly the sigma-type lone pair.
No way of calculating this function while keeping it localised was found
in this work. It was demonstrated in Chapter Four, however, that for the
stage 3 l.m.o.s differences in the form of this function did not account
solely for the differences in the values of the total electronic energy.

The forms of the end-point l.m.o.s obtained for formaldehyde at
stage 3 depend on the form of the starting-point functions used, as at
stage 4. In order to preserve the localised nature of the l.m.o. being
calculated a Schmidt orthogonalising sequence is chosen at stage 3 so that
the 1.m.o0. is not altered by being made orthogonal to all of the other
occupied orbitals. Wth sequence IV, where the l.m.o. is unaltered by
the orthogonalising as with sequence II at stage 4, the form of the l.m.o.
is determined only by solution of the secular determinant, and a certain
dependence on the starting-point is therefore introduced. Here also the
forms of the l.m.o.s obtained are close to theirstarting-point forms.

The situation is less clear with sequence III, where the l.m.o. to be
calculated is made orthogonal to the one-centre functions, but not to the
other bonds.

Stage 2 calculations of formaldehyde proved to be feasible provided
a Schmidt orthogonalising sequence was chosen which placed the l.m.o. to
be calculated before the truncated orbitals. The individual l.m.o.s
obtained at stage 2 again depend on the starting-point used. As the
l.m.o. to be calculated is unaltered by the orthogonalising procedure,

“ts form is determined only by solution of the secular determinant.



157

Stage ? calculations using a value of the exchange factor, x, of
+ give results which are in good agreement with those obtained at stage 3.
Values of the total electronic energy obtained by the two stages, using
the same starting-point were found to differ by less than 0.005 a.u. The
truncated stage 2 operator therefore provides a very good approximation
to the complete Hartree—Fock operator used at stage 3, indicating that the
l.m.o. being calculated is not influenced greatly by distant parts of the
molecule, a result which is consistent with the conventional chemical
picture of a classical two-electron chemical bond. This is confirmed by
the good agreement between the eigenvalues given by stage 2 calculations,
using the truncated operator, and those re-calculated afterwards using the
full Hartree-Fock operator. This result suggests that it may well be
possible to extend the l.m.o. theory to the calculation of partz of large
molecules. It is an important result which confirms that some of the
basic ideas behind this approach are essentially correct, at least for this
example.

Finally, in contrast to the good results obtained with the stage ?
truncated operator, the stage 1 truncated operator proved to be too simple

an approx‘mation to be useful.
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Sect‘on ? TJonization Potentials

According to Koopmans' theorem9o the molecular orbitals of an ion
may be approximated by those of the neutral molecule. The difference
in energy between the ion and the neutral molecule is then given by
the appropriate e genvalue from the Hartree-Fock equation (2.5). It is
further thought that the observable "onization potential of an electron
is given by the eigenvalue of the canonical molecular orbital which the
electron occupies.91 It follows that the eigenvalues of the c.m.o.s
are observable quantities whereas the eigenvalues of the l.m.o.s are,
in general, not observable quantities. This is demonstrated in Figure 5.1
where the eigenvalues of the c.m.o.s and l.m.o.s of formaldehyde are
compared with the experimental ionization potentials. As discussed above
many different sets of l.m.o.s were obtained at stage 4, depending on the
method of orthogonalisation and the starting-point used. In Figure 5.1
the values obta'ned by calculation 12 are shown. Much the same result
occurs with the other sets of l.m.o.s.

The first four ionization potentials of formaldehyde have been found

92 No

experimentally by high resolution photoelectron spectroscopy.
exper‘mental values are available in the literature for the remaining
jonization potentials of the formadehyde molecule in the gaz phace.
However, the ionization potentials of the carbon and oxygen inner shell

93

electrons have been estimated”’” to be approximately 294.0 eV and 537.5 eV
respectively from ESCA studies of the closely related molecules
acetaldehyde and acetone.

Koopmans' theorem neglects the reorganisation of the remaining
electrons after ionization, which causes the magnitude of the experimental

ionization potential to be less than the corresponding eigenvalue, as well

as d fferences in the correlation energy and relativistic effects between
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the ion and the molecule. Newton estimates the error using Koopmans'
theorem to be between 1 and 10%. Bearing this in mind, it can be seen
from Figure 5.1 that the eigenvalues of the c.m.o.s of the valence
orbitals correspond to the experimental ionization potentials, whereas

the e‘genvalues of the l.m.o.s in general do not. The canonical
molecular orhitals, and not the localised molecular orbitals, are therefore
useful in describing processes concerned with ionization.

In some cases the l.m.o.s give the same value for an eigenvalue as
the c.m.o.s. In these cases the l.m.o.s become observable quantities
and should correspond to the experimental ionization potential. This
occurs when an l.m.o. is prevented from mixing with the other l.m.o.s.

One example is the pi-bond in formaldehyde which is prevented from mixing
with the other orbitals by symmetry requirements. The eigenvalue for the
pi-bond from the c.m.o. and l.m.o. calculations is the same, and differs
from the experimental value of an ionization potential by only 1.34 eV.

Another example is given by the inner shells. Orbitals of the same
energy interact most strongly,95 so that the inner shells, which have
energies well separated from those of other orbitals, do not interact
greatly with the other l.m.o.s. Table 5.1 shows that the e’*genvalues for
the inner shells from l.m.o. and c.m.o. calculations do not differ greatly,
‘ndicating that the eigenvalues of the inner shell l.m.o.s should
correspond well with the experimental "onization potential. However, the
calculated values are lower than the estimated experimental values by about
14 eV for the carbon inner shell and 21 eV for the oxygen inner shell.
This is consistent with the anticipated 1 to 10% error in Koopmans' theorem.94
S iegbahn and co-—workers96 have found that the ionization potentials
obtained by calculations on neutral molecules by Koopmans' theorem for

inner shells of light elements are systematically 10 — 20 eV lower than

those found experimentally.



lel

Table 5.1 Eizenvalues of l1.m.0.s and c.m.0.s and Experimental

Tonisation Potentials for the inner shells (eV).

IO IC
~559.70 -308.81
l.m.o. -[60.03 ~308.61
- 1
Eigenvalues ~560.08 308.50
-560.08 -308.59
-560.01 -308.60
CelleOoa _560.02 _308.77
Eigenvalues
Experimental
Tonisation =537.5 -294.0
Poten‘l:ials2

(I The five values shown are from stage 4 calculations using

Schmidt orthogonalising sequence II and starting-points (a) to (e).

2. Estimated values (see text).



Section 3 Delocalisation

(a) Extent of Delocalisation

The l.m.o.s obtained at stage 4 are localised mainly on one or two
atoms with small contributions from atomic orbitals on the other atoms in
the molecule. A perfectly localised orbital can be obtained by deleting
these contributions from other atoms and re-normalising to give a
truncated orbital. The overlap integral between a stage 4 l.m.o. ¢ and
the normalised truncated orbital ¢T gives a measure of how well localised
the l.m.o. ¢ is. The results are usually expressed in terms of a

delocalisation parameter d?o with a range O to 100, given by

d =10 x[1- <¢IgY ]'% (5.1)

A function may be considered localised of the overlap integra1<f¢l ¢T)is
greater than 0.99 or the value of d is less than 10. Values of d for the
l.m.o.s obtalned at stage 4 are given in Table 5.C. The last column
shows the average d value for all the eight occupied orbitals, providing a
measure of how well localised the set of l.m.o.s is.

It can be seen from Table 5.2 that the majority of d values are below,
10, although calculations using Schmidt orthogonalising sequence I give
some values as high as 15.

Schmidt orthogonalising in sequence II gives l.m.o.s with d values
which are all below 10. The values for IC and Io are consistent at 0.8
and 0.6 respectively, giving inner shells which are well localised on the
appropriate atom. The values for XZ are also fairly consistent at about
9.7 indicating that the pi-type lone pair is more extensively delocalised

than the other l.m.o.s. The values for the remaining functions vary with

the starting-point, and are all interemdiate between these two extremes.
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The average d values for calculations Schmidt orthogonalising in
sequence II are all less than those obtained by Schmidt orthogonalising
in sequence I suggesting that the former method results in a more
localiced gset of functions. However, these functions are not mutually
orthogonal. Lowdin orthogonalisation leads, with only a few exceptions,
to an increase in the value of d for each of these functions, and hence
to an increase in the average d values. The resulting average d values
are comparable with those obtained by calculations Schmidt orthogonalising
in sequence I, although when comparing calculations with the same
starting-point, the former remain slightly smaller. All the average
d values obtained in the present work compare favourably with the average
of the d values obtained by localisation of the canonical molecular

70

orbitals.

(b) Sigmaconiugation Energies

The total electronic energies of three of the sets of truncated
l.m.0.s are given in Table 5.3. The values differ by only 0.01 a.u.,
although as values for the remaining sets of l.m.o.s were not obtained
in this work it is not clear if this is fortuitous. The difference
between the energy of the stage 4 l.m.0.s and that of the truncated
l.m.o.s gives the energy gained by the l.m.o.s from delocalisation,
the sigmaconjugation energy. An upper limit to the value of this
quantity is given by the difference between the stage 3 and stage 4
total electronic energies. The results range between 1.43 eV and
2.46 eV. The truncated stage 4 l.m.o.s. in table 5.3 give a value of
the hyperconjugation energy of between 1.23 eV and 1.50 eV. This
compares well with the value obtained by Wilhite and Whitten26 for their
formaldehyde l.m.o. calculation, 1.40 eV, and is smaller than the value

70

obtained by localisation of the c.m.o.s , 2.25 eV.



Table 5.3 Total Electronic Fnergies of Truncated l.m.0.s and

Sigmaconjugation Energies
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Total Electronic Sigmaconjugation
Calculation1 %ﬁiﬁ%ﬁtzg lemeoa Fmerey
(a.u.) (a.u.) (eV)
1 -144.7988 0.0551 1.499
7 -144.8033 0.0506 1377
12 -144.8087 0.0452 . 1.229

Te

See Table 4.5.

Table 5.4 Contributions to the Sigmaconjugation Energy1 by

T

individual l.m.o.s

Energy Decrease on Delocalisation
lem.o. (a.u.) (eV)
IC 0.0006 0.016
IO 00,0007 0.019
?{ 0.0344 0.926
o 0.0034 0.093
Mo 0.0020 0.054
}ACH' 0.0025 0.068
Meo 0.0014 0.038

Results from calculation 12.
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The total sigmaconjugation energy may be broken down into
contributions from each of the eight l.m.o.s. This was carried out for
the results of calculation 12. Taking the truncated stage 4 l.m.o.s
as a starting-point a further stage 4 calculation was performed. The
cnerey decrcacse after the calculation of each l.m.o. then gives the encrgy
gained by the l.m.o. on delocalisation. Two calculations were performed
calculating the l.m.o.s in two different orders, (i) and (ii) as defined
in Chapter Four. The value of the total electronic energy after the first
cycle of the l.m.o.s was within 0.0005 a.u. of the stage 4 SCF wvalue, so
further cycling of the l.m.o.s was not needed. The values of the energy
decrease obtained for each l.m.o. in the two cases agreed to within
0.0005 a.u. and the average value is shown in Table 5.4. It can be
seen that the delocalisation of the pi-~type lone pair accounts for nearly
1 eV of the total sigmaconjugation energy of 1.23 eV. This agrees with

97

an early conclusion reached by Mulliken” +that the pi-type lone pair in

formaldehyde is extensively delocalised.
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Section 4 Hybridisation and Polarity

The most direct chemical information which may be derived from
l.m.o.s describing bonds and lone pairs is the hybridisation, di-ection
and, in the case of the two-centre functions, the polarity. A perfectly
localised orbital, such as the truncated stage 4 1l.m.o.s. discussed in
the last section, or a stage 2 or stage 3 l.m.o., may be expressed in the

follow' ng way. A sigma bond between atoms A and B is given by

Ppap=c, 1s, +c¢, 2s, +¢c, 2p (5.2)
A1 A A2 A A3 0y
+ C s, + C, 2s_ + C_ 2D
B1 B B2 B By B
a pi-bond between atoms A and B by
AB = Cy PPp * Cp ?p_W (5.3)
A B
and a sigma-type lone pair on atom A by
")F- =c, 1s, +¢c, 28, +¢C, 2p_ (5.4)
A A,1 A A2 A A3 <y

A bond ¢AB may be expressed as a sum of two normalised hybrids,

"9A andeB, one on each atom, as in equation (3.3).

¢AB=pA A+t P Vg (5.5)

where Py and pp are the polarity parameters. For a sipgma bond
v = 3 .
A=Y, (CA1 15, + CA2 s, + CA3 QPO.A) (5.6)

and similarly for §>B, where NA and NB are normalising constants.

The polarity parameter Py is then given by
P, = 1/N, (5.7

For a pi bond

» (5.8)

n
N
g

A Al

and

PA = CA (5'9)

and similarly for atom B.



168

The hybridisation in the hybrid QA or in the lone pair :\A is given
by the ratio of the squarcs of the coefficients of the 2pc_ and ?s
atomic orbitals.

Hybridisation parameter = c 2 /c 2 (5.10)
A3 A?

This quantity corresponds to the value of x in the expression spx.
The angle the two CH bonds in formaldehyde make with the z-axis is given
by the ratio of the ?py and sz atomic orbital coefficients.

The charge on atom A resulting from the polarity of the bond ¢AB
between the atoms A and B may be obtained using Mulliken's population
analysis.98 The population of the hybrid atcomic orbital on atom A4,

N

A is given by

2
1 = S .
APy = 2" + PPeSyp (5.11)

where SAB is the overlap integral between the hybrid atomic orbitals \>A
and \>B which form the bond ¢AB' The charge in the hybrid atomic orbital
\QA is defined as the difference between the population of the hybrid
atomic orbital in the molecule and that of the neutral free atom suitably

hybridised. It is given by

a8,y =1-21,(4,)) (5.12)

and has a negative sign if charge accumulates in the hybrid atomic orbital
as compared with the free atom. The total charge on atom A arising from

the polarity of all the bonds in the molecule is given by
m
Q, = ZqA(in) (5.13)
1=1

where m is the number of bonds centred on atom A.
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The polarity parameters of the l.m.o.s obtained by the various
stage 4 calculations of the formaldehyde molecule are shown in Table 5.5.
The values for the pi-bond are constant as all the calculations gave the
same form for this function. The polarity parameters of the CO sigma-
bond and the CH bonds are also fairly consistent, despite the fact that
the over-all form of the l.m.o.s vary between the different calculations,
as shown by their eigenvalues and overlap integrals in Chapter Four. All
the l.m.o.s describing the CH bonds are polarised towards the carbon atom
which is the more electronegative of the two atoms. Similarly all the
l.m.o.s describing the CO sigma-bond are polarised towards the oxygen
atom. The pi-bond, however, is seen to be polarised slightly towards the
carbon atom rather than the more electronegative oxygen atom as might have
been expected, suggesting that the sigma-electron accumulation on the
oxygen atom is sufficient to cancel the effect of the electronegativity of
this atom. A similar result was obtained for formaldehyde by Peters46
from localisation of the canonical molecular orbitals, although Newton's
result,7o based on the localisation criterion of Edmiston and Ruedenberg,
gives both a pi-bond and a sigma-bond polarised towards the oxygen atom.

The polarity parameters of both the CO sigma-bond and the CH bonds
obtained using Schmidt orthogonalising sequence II agree particularly well
(within 0.02). Lowdin orthogonalisation of these sets of functions does
not affect greatly the polarity parameters of the l.m.o.s describing the
CH bond, or those describing the CO sigma-bond with one exception, the
form of erO obtained with starting-point (a). This becomes much more
heavily polarised towards the oxygen atom on orthogonalisation. The values
for 1l.m.o.s obtained using Schmidt orthogonalising sequence I agree well
with those of l.m.o.s obtained using sequence II, again with one exception,

one of the forms of P'CO obtained with starting-point (a). The polarity



Table 5.5 Polarity Parameters1

of Stage 4 1l.m.0.s
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P b T
Calculation® . CH . . Co . . co
c " c 0 c Py

i(Schmidt 1 10.59 0.49 | 0.51 0.78| 0.66 0.6

iOrthogonalising

in Sequence I) 2 0.61 0.47 0.51 0.65 1 0.66 0.62
3 | 0.61  0.47 | 0.52  0.65| 0.66 0.62
4 | 0.61 0.47 | 0.52  0.65]| 0.66 0.62
5 (0.5  0.49 | 0.51 0.65| 0.66  0.62
7 0.61 0.46 0.52 0.64 | 0.65 0.63
9 | 0.61 0.46 | 0.51 0.64| 0.66 0.62
10 | 0.62  0.45 | 0.54 0.63] 0.66  0.62

(Schmidt 1 0.60  0.47 | 0.51 0.65| 0.66  0.62

Orthogonalising

in Sequence II) 12 0.61 0.47 0.51 0.65 | 0.66 0.62
7° 1 0.59 0.8 | 0.52  0.70| 0.65 0.63
9% 1 0.59 0.48 | 0.51 0.65| 0.66  0.62
10 | 0.59  0.48 | 0.52  0.65| 0.66  0.62
117 | 0.60 0.48 | 0.51  0.65| 0.66  0.62
12 1 0.60  0.48 | 0.51 0.65| 0.66 0.62

Localisation Q.56 0.54 0.48 0.62 1 0.61 0.68

of c.m.o.s

L

1. Defined by equation (5.5)

2. See Table 4.5.

orthogonalising the set of l.m.0.s

3. Reference 70.

* refers to the l.m.0.s. obtained by Lowdin

given by the calculation,
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parameters therefore seem to be insensitive to the precise form of the
l.m.o.s obtained at stage 4.

In contrast, the hybridisation in each l.m.o., and the angle between
the two CH bonds vary considerably betwcen the various calculationg.
The values are shown in Table 5.6. The hybrid atomic orbital on the
oxygen atom in the CO sigma-bond is mainly the 2pZ atomic orbital.
Where the hybridisation parameter, as defined by e;uation (5.10) is
greater than 10 it is denoted by the symbol p in the table. The
hybridisation on the carbon atom is, with only a few exceptions,
nearer to sp than Sp2. A hybridisation of sp would imply that the

1.5 p1.5

carbon atom in formaldehyde is about s s intermediate between

the unpromoted S2p2 state and the promoted sp2 stage. A similar

58

result was obtained for the methane molecule

3

was found to be closer to sp2 than sp~.

where the hybridisation

The atomic charge on the carbon atom from/uCH, A~ and frC is

Co 0

shown in Table 5.7. The values differ in magnitude between the various
calculations, but do not differ in sign. There is seen to be an
accumulation on the carbon atom in the CH bonds of between 0.11 and 0.18
of an electron and in the CO pi~bond of between 0.02 and 0.06 of an
electron. There is a decrease on the carbon atom in the CO sigma-bond
of between 0.10 and 0.34 of an electron. As the polarity parameters
have been shown not to vary greatly the differences in the values of the
atomic charges may be presumed to occur through differences in the
values of the overlap integral between the hybrid atomic orbitals
forming the bond arising through the differences in hybridisation.

The total charge on each of the four atoms in formaldehyde is given in

Table 5.8. These values are seen to vary considerably.



Table 5.6 szridisation1

in Stage 4 1.m.0.8
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g
, 2\ Feo Peon | anele
Calculation 0
C 0 c LHCH?
Atom Atom | Atom !
|
(Schmidt 71 0.01 1.23  5.79 | 1.34 119°
Orthogonalising 0
in Seauence I) 2 1 0.10 2.04 P 1.25 125O
31 0.10 1.89 P 1.23 125
4 0.10 1.62 P 1.28 124°
5 0,11 1.69 P 1.19 123°
(Schmidt 0.01 1.22 P 1.04 120°
Orthogonalising o}
in Sequence II) 0.11 1.24 P 1.03 1210
10 0.10 0.77 P 0.78 118
11 | 0.11 1.69 P 1.26 124°
12 | 0.12 1.26 P 1.07 122°
0.04 1.48 P 1.28 121°
0.11 1.58 P 1.27 122°
101 0.10 0.46 P 1.30 121°
¥* [e]
11771 0.11 1.67 P 1.202 124
121 0,12 1.58 P 1.28 122°
LocalisaEion of - 1.56 5.87 | 1.63 112.96°
CellleOsS

1. Defined by equation (5.10).

Where the hybridisation parameter

is greater than 10 it is denoted by the symbol p in the table.

2. See Table 4.5.*fefers to the l.m.0.s obtained by Lowdin

orthogonalising the set of l.m.0.s

3s Reference T0.

given by the calculation.




Table 5.7 Atomic Charce on the Carbon Atom1

in Stage 4 1l.m.0.S

173

.2

- Calculation qC(gACH) qC('*CO) qC( TTCO)

(Schmidt 1 -0.11 +0.34 -0.04

Orthogonalising

in Sequence I) 2 -0.13 +0.17 ~0.05
3 -0.15 40.16 -0.04
4 -0.14 +0.15 -0.04
5 -0.11 +0.16 -0.05

(Schmidt T -0.15 40,13 -0.02

Orthogonalising

in Sequence II) 9 -0.16 +0.15 -0.05
10 -0.18 +0.10 -0.04
11 -0.14 +0.17 -0.05
12 -0.15 +0.16 -0.06
7| —0.12 40.22 —0.02

*

9 -0.12 4+0.16 -0.05
10l —0.12 +0.15 -0.04
117 0.13 +0.17 -0.05
12%] 0.12 40.17 -0.06

1. Defined by equation (5.12).

2. See Table 4.5

orthogonalising the set of l.m.o.s

¥ refers to the l.m.o.s

obtained by Lowdin

given by the calculation.
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5 Atom
Calculation 0 C i '

(Schmidt 1 | =0.30 4+0.09 +0.11 +0.11

Orthogonalising

in Sequence I) 2 | -0.12 -0.14 +0.13 +0.13
3 | 0.12 —0.17 +0.15 +0.15
4 | -0.13 —0.17 +0.14 40.14
5 | 0.11 -0.11 40411 +0.11

g(Schmidt 7 | =011 -0.19 +0.15 +0.15

‘Orthogonalising

in Sequence IT) 9 | -0.10 ~-0.22 +0.16 +0.16
10 | -0.06 -0.30 +0.18 4+0.18
11 | 0.12 —0.16 +0.14 +0.14
12 | 0.10 -0.20 +0.15 +0.15
7% =0.20 -0.04 40,12 40.12
9% —0.11 0.13 40,12 10,12
10*] —0.11 0.13 10.12 40,12
11*| .12 0.13 +0.13 +0.13
12" 0.1 0.13 +0.12 +0.12

1. Defined by equation (5.13).

2. See Table 4.5.

orthogonalising the set of l.m.o.s

* refers to the lem.oss. obtained by Lowdin

given by the calculation.
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The polarity parameters of the stage 2 and stage 3 l.m.o.s are
given in Table 5.9. The values for the CH bond at both stage 3 ard
stage ? are fairly consistent and agree well with the stage 4 polarity
parameters. The stage 3 and stage 2 values for the CO sigma-bond differ
amongst themselves a little more, but not greatly, and also agree with
the stage 4 result obtained with the same starting-point and similar
Schmidt orthogonalising sequence. The stage 3 pi-bond polarity
parameters are consistent and show that the stage 3 form of this
function is slightly more polarised towards the carbon atom than the
stage 4 l.m.o. The stage ? pi~bond polarity parameters vary a little
more, between a non-polar bond and one which is slightly polarised
towards the carbon atom. In general, then, the polarity parameters of
the stage 2 1.m.o.s agree fairly well with those of the stage 3 l.m.o.s
The polarity parameters of the stage 3 l.m.o.s are reasonably consistent
and give a good approximation to those obtained at stage 4. This is in

53

agreement with the results obtained for the methane molecule” where it
was demonstrated that the polarity of the CH bond did not change as it

became delocalised.



Table 5.9 Polarity

1
Parameters

of Stage 2 and Stage 3 l.m.0.S
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| Starting— b M ™
point used p CHP P €0 p p co p
C H C 0 o 0
Stage 3 a 0.60 0.48{0.53 0.78 |0.69 0.59
Schmidt
Orthogonalising b 0.60 0.,48{0.49 0.67 |0.69 0.59
Sequence III bb 0.60 0.48/0.49 0.67 |0.69 0.59
c 0.64 0.44;0.53 0.65 |0.68 0.60
d 0.63 0.4610.50 0.68 |0.69 0.60
g 0.61 0.48{0.45 0.67 | 0.70 0.58
h 0.62 0.46{0.49 0.67 | 0.68 0.60
Schmidt a 0.61 0.48]0.54 0.63 {0.67T 0.61
Orthogonalising
Sequence IV b 0.60 0.4510.48 0.67 | 0.69 0.59
f 0.60 0.48{0.52 0.62 | 0.67 0.62
‘Staze 2
. a 0.60 0.48{0.55 0.62 | 0.64 0.64
bb 0.60 0.48{0.48 0.67 | 0.67 0.6
c 0.61 0.47{0.50 0.66 { 0.67 0.61
d 0.61 0.49/0.50 0.67 | 0.67 0.62
f 0.60 0.47/0.53 0.61 ; 0.64 0.64

1. Defined by equation (5.5).
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Section 5 Fxamination of Arbitrary Changes in the Forms of l.m.o.s.

(a) TIntroduction

The l.m.o. theory was set up so that it is possible to examine the
effects of making arbitrary changes in one l.m.o. on both its own
properties and also on the forms and properties of other l.m.o.s in the
molecule. In this way, the formaldehyde molecule may be used as a model
for higher members of the homologous series of aldehydes and ketones with
a view to possibly being able to predict some of the properties of these
molecules. This information may be obtained using the present l.m.o.
theory as one l.m.o. is calculated at a time the other l.m.o.s remaining
fixed. Hence, the l.m.o. theory enables effects from different l.m.o.s
to be distinguished. An analysis of this kind cannot be carried out
with methods which calculate all functions simultaneously as with the
canonical molecular orbital calculations.

The three parameters of an l.m.o. which may be changed are its
polarity, the hybridisation and the extent of delocalisation. For an
l.m.o. describing a bond all three parameters may be changed, while for
an l.m.o. describing a lone pair, or an inner shell, the hybridisation and
delocalisation may be changed. A complete analysis would examine the
effect of changes in all the possible parameters for all the l.m.o.s in
formaldehyde. Changes in the total energy of the molecule on
delocalisation of all the l.m.o.s were discussed briefly in Section 3.
The detailed analysis given below is confined to an examination of changes
of properties resulting from changes in the polarity of the bonds.

This provides an investigation of whether it is possible to think of a
chemical bond in terms of simple electrostatics and regard it as a dipole

with a positive and negative end. The polarity of a bond was demonstirated
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in Section 4 to be insensitive to the different end-points obtained from
different l.m.o. calculations.

The analysis was carried out in the follow'ng way. An SCF set of
l.m.o.s was taken and one, or more, of the bonds was constructed at a
particular polarity without altering the hybridisation or delocalisation
and the eigenvalues of all the l.m.o.s and the total electronic energy
were computed. The polarities chosen were those which gave polarity
parameters in the ratios 2/1, 1/1 and 1/2.  An individual l.m.o.
calculation was then made of each of the remaining bonds in turn and the
resulting polarities of these bonds, the eigenvalues of all the l.m.o.s
and the total electronic energy were again computed.

These calculations were made at the stage 3 level of approximation
and with stage 3 functions as a stage 3 calculation is much less time
consuming than a rigorous stage 4 calculation. The results of the
slage 3 calculations were demonstrated in the last section to reproduce
well the polarities of the stage 4 l.m.o.s. In addition, the stage 3
functions are perfectly localised and, if Schmidt orthogonalising sequence
III is used, only the polarity of the bond changes during a calculation.
In this way the hybridisation and extent of delocalisation is easily kept
constant, so that any changes in properties are due to changes in the
polarity of the bonds. The SCF set of 1l.m.o.s used was that obtained
by a stage 3 calculation using starting-point (b).

The effect of changing the polarity of the four bonds in formaldehyde
on the total energy, on the polarity of the other bonds, and on the

eigenvalues of the other l.m.o.s are discussed in turn below.
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(b)  Effect of Arbitrary Changes in the polarity of bonds o1 the

Total Electronic Energy

The differernce between the total electronic energy of a polar
molecule and that of a molecule with all its bonds non-polar may be
considered to be composed of two terms.52 The first is the sum of the
ionic bond energies, the internal stabilisation resulting from the bond
being polar rather than non-polar. Each ionic bond energy is expected
to be negative, indicating that the polar bond leads to a lowering of
the total electronic energy of. the molecule, although only the sum of
the ionic bond enargies need be negative. The second term consists of
the electrostatic interactions between the polar bonds. These may be
initially considered to be dipole-dipole interactions, neglecting any
contributions from interactions between higher multipoles. The dipole—~
dipole interactions will presumably be positive or negative according
to the orientation of the two polar bonds in the molecule. In the
following work IB(¢i) denotes the ionic bond energy of the bond ¢i and
DD(¢i, ¢j) denotes the dipole-dipole interaction between the bondn ¢i
and ¢j'

The difference between the total electronic energy of the polar SCF
l.m.o.s of formaldehyde and the total electronic energy when all four
of the bonds in the molecule are constructed to be non-polar is

0.0218 a.u. and is made up of the following contributions.
IB(pen) + IB(pewt) + IB(pee) + IB(Teo)

+DD(pem 5 trewt) + DD(pen 4 prce) + DD(prewt yprce)

+ DD( hen 1TCO) + DD(P‘C“' » Tee) + DD( prec y Teo ) = -0.0218 (5.14)

Since the two CH bonds in formaldehyde have the same form, their

ionic bond energies and the dipole-~dipole interactions with the other bonds
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Table 5.10 Total Electronic Enerey after one or more Bonds is

constructed to be Norn-polar

Total Difference
Bond(s) co?struoted B ectronic from SCP
nonTRetar Energy l.m.o.s
(a.u.) (a.u.)
None -144.7868 -
(SCF 1l.m.o0.s )
Pex -144.7838 -0.0030
Mco —-144.7683 -0.0185
o -144.7812 -0.0056
Feo. Teo -144.7720 -0.0148
1
}ACH 'ACH; ~144.7799 -0.0069
?
Mer, Teo ~144.7772 -0.0096
Pem, Merr, Feo Too| ~144-7650 -0.0218
? ’
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will have the same value, so equation (5.14) may be written

? x IB( ‘Acn) + IB(r«co) + IB( e )
+ 2 x DD(roq,}—\L’o) + 2 x DD(peny Feo) + DD(peo 4 Wice )

+ DD(T»\CN ,‘v\cu‘) = -0.0218 (5.15)

The values of the individual ionic bond energies and dipole-dipole
interactions may be found from the rise in the total electronic energy
after each of the bonds, and various combinations of the bonds, have been
constructed to be non-polar. For example, the rise in the total electronic
energy when one CH bond is constructed non-polar is 0.0030 a.u. This Tise
is due to a loss of the ionic bond energy of the CH bond as well as the
dipole—dipole interactions of the CH bond with the other bonds in the

molecule.

1B( ‘«m) + Dp( pen ,rxcn') + Dp( sy }A(o)

+ DD( pen , Tee) = —0.0030 (5.16)

Six equations of this type were obtained and the values of the total
electronic energies are given in Table 5.10. These equations, together
with equation (5.15) were then solved for the seven individual values of
the ionic bond energies and dipole-dipole interactions. The results are
shown in Table 5.11. The ionic bond energies of the CH and CO sigma-—
bonds are negative, as expected, but that of the pi-bond is positive
indicating a slight destabilisation of the bond on becoming polar. The
value for the CH bond in formaldehyde is of the same order as that obtained
for the CH bond in methane58 (0.0065 a.u.). The signs of the dipole-
dipole interactions are consistent with the atomic charges of the SCF
l.m.o.s. The values of the atomic charges for the actual stage 3 l.m.o.s

used in this section are shown in Figure 5.2.
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Table 5.11 Jonic Bond Energies and Dipolc~Dipole Interactions

a.u. eV

Tonic Bond Energies

IB(PmQ -0,0040 -0.11
1B (f*co) -0,0073 -0.20
IB (TTCO) 4+0.0017 40.05
Dipole-Dipole Interactions

D (g, M egre) +0.0009 +0.02
DD (T‘CH, rACo) -0.0010 -0.03
DD <T*CH, rrCO) +0.0010 +0.03
DD <}ACO"TTCO) -0.0093 -0.25

Table 5.12 Predicted Total Electronic Energies when Bonds are

constructed to be non-polar

Bonds constructed Total Electronic Energy (a.u.)
non-polar Predicted Cbtained
Mon Moo -144.7663 -144.7662
]
Fox, Forr, Moo -144.7633 -144.7632
'-1 . 2 _1 4: 2
'*CH, FCH: LA 44.7723 44.7724
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+0.12
(+0.12) (-0.12) 0.1z
O C
-0.42 +Q,22 —0.12
+0,12

Figure 5.2 Atomic charges of 1.m.o.s obtained by the stage 3 calculation

using Starting-Point (b) and Schmidt Orthogonalising Sequence IIT

1)  Values for the pi-bond are shown in brackets.

The dipole—dipole interactions are in general an order of magnitude
smaller than the ionic bond energies, as has been found in previous work.52
The exception is that between the CO sigma— and pi-bonds which is very
large. This may be expected because of the close proxinity of these
bonds, and perhaps compensates for the positive value of the pi-bond's
ionic bond energy.

The values of the ionic bond energies and dipole-dipole interactions
shown in Table 5.11 may be used to predict the rise in total electronic
energy when other combinations of bonds are made non-polar. These
predictions, together with the actual value of the total electronic energy
obtained when this is done are shown in Table 5.12. The two values agree

to well within the expected error, showing the values in Table 5.11 to be

consistent.
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c) Effect of Arbitrary Changes in the Polarity of bonds on the polarit
J

of neighbouring bonds

The variation in the polarity of a neighbouring bond when the
polarity of a bond is altered gives an indication of the extent to which
the bonds polarise one another. Accordingly, each of the bonds in
formaldehyde was taken in turn and its polarity altered to a fixed value
as described above. A separate calculation made on each of the remaining
three bonds then enabled the polarity of that bond to alter in response
to the polarity of the fixed bond. Hence the polarity of the bond which
was calculated altered from its SCF value to a value which would help to
minimise the total energy of a molecule which contained the bond whose
polarity was fixed.

All the four bonds in the formaldehyde molecule have the carbon atom
in common. The change in the atomic charge on the carbon atom was
therefore chosen as a measure of the change in the polarity of a bond,
in order to enable the different bonds to be compared. If the bond
whose polarity is fixed is ¢i the change in the SCF value of the atomic
charge on the carbon atom is denoted by Aqi (¢i). Similarly, if the
bond whose resultant change in polarity is measured is Q% the change from
the SCF value of the atomic charge on the carbon atom is denoted by
pag (8,)-

Aqi (¢j) was plotted against Aqi (¢i). The results for ¢i =g
are shown in Figure 5.3, for ¢i = P¢o in Figure 5.4 and for ¢i =T ¢
in Figure 5.5. Although only four points, including the origin which
represents the SCF set of l.m.o.s , are shown for each plot these points
lie on definite straight lines, indicating a linear relationship between
the polarity of the fixed bond and that of its neighbouring bonds. The

gradients of these lines are shown in Table 5.13.
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Figure 5.3 Changes in the Polarity of Neighbouring Bonds due
_ to Changes in the Polarity of ¥cH
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Figure 5.4 Changes in the Polarity of Neighbouring Bonds due
to Changes in the Polarity of Yeo
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Table 5.13 Gradients of Figures 5.3, 5.4 and 5.5

Bond whose Bond whose Gradient P
polarity is change in Aqg(;zf_)/Aq (8.)
; ) A J c*i
fixed, 525 polarity is
* measurcd, 5253.
HCH PCH' -0.089
Mco -0.042
T co -0.083
Mo -0.053
PCO
ﬁCO -0.431
b -0.107
-WCO CH
Mo -0.424
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In each case the polarity of the neighbouring bonds alters in the
direction expected from electrostatic considerations. Hence if the CH
bond, for example, is heavily polarised towards the hydrogen atom the
atomic charge on the carbon atom increases so Aqi (erH) is positive.

The polarity of a neighbouring bond, for example the CO sigma-bond, then
alters in the direction of the carbon atom, decreasing the atomic charge
onn the carbon atom so qu ( V“°> is negative. The gradient of the graph
of Aqi ( ECC) against Aqi‘( Pcﬂ) is therefore negative, as is each of
the gradients shown in Table 5.13.

A large absolute value of these gradients indicates a large
polxrisation of one bond by the other and conversely a small absolute value
indicates a small amount of polarisation. The results show that there
is a definite polarisation of one bond by another, but that in general it
is =mall (5 - 10%). The CH bonds show little polarisation by the other
bonds. A s'milar result was obtained in work on the methane rnolec:ules‘8
where 1t was concluded that the CH bonds in methane do not polarise one
another to any great extent. The CO sigma— and pi-bonds show little
polarisation by the CH bonds, but do show a large polarisation of one by
the other. As would be expected these two bonds are closely linked, a
change in the polarity of one causing a change of polarity in the opposite
sense of the other. The sigma—bond appears to be polarised by the pi-bond

to the same extent as the pi-bond is polarised by the sigma-bond.

(d) Effect of Arbitrary changes in the polarity of bonds on the eigenvalues

of other T.m.o.s

The eigenvalue of a function is determined firstly by the form of the
function itself and secondly by the form of all the other functions in the

molecule, from which the operator is constructed. The following work



examines the effect on the eigenvalue of one function of changes in the
polarity of other functions. The form of the function whose eigenvalue
is studied is kept constant, so that any changes in its eigenvalue are
due to changes in the operator.

(1) Eigenvalues of Inner Shells

The eigenvalues of the inner shells are examined first. These
are observable quantites, as discussed in Section 2. The variation of the
jonization potentials, or binding energies, of the inner shells with the
polarity of the bonds is of interest from the point of view of E3CA

studies. Siegbahn and co-workers?? " 100

have found that the experimental
core—electron binding energies shift measurably with their chemical
environment, and that there is a well established linear relationship
between the shift and the degree of bond polarity in different molecules
as estimated from electronegativity considerations.

As described above, each of the four bonds in formaldehyde was
fixed at various polarities and the eigenvalues of the carbon and oxygen
inner shells re-calculated. Figure 5.6 shows the resulting eigenvalue
of the carbon atom inner shell at different polarities of‘ACH, *‘co and
TTCO’ as measured by the changes in the atomic charge on the carbon atom
Aqi (‘*CH)’ qu (PCO) and qu (TTCO). Although only four points are
again shown for each plot, there is seen to be a definite linear
relationship between the eigenvalue and the polarity of the bonds. This
relationship is different for each bond. The gradients are given in
Table 5.14. The results are those which would be expected from
electrostatic considerations, an increase, for example, in the charge on
the carbon atom producing a decrease in the eigenvalue, or an increase in

the binding energy.
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Figure 5.7 Variation of the IO

Eigenvalue with Changes in

the Atomic Charge on the Oxygen Atom.
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Gradients of Figures 5.6, 5.7 and 5.8

Bond whose
polarity is

Gradients

. F = F
fixed, ¢i Io Vs.Aqg(¢i) GEIO vs.AqO(ﬁi) C’IO Vs, AQC(¢1>
}ACH -0.325 - -0.087
Moo -0.242 -0.471 -
T[CO -0.288 =0.727 -

Table 5.15 Values of the Gradients in Pipures 5.6, 5.7 and 5.8

predicted from Egquation (5.25)

Bond whose
polarity is

Gradients

co

. - g - F
fixed, ¢i E:I vs. ch(¢i) E:I vs. Aq, G:I vs. AqF (¢i)
C o) 0 C
T 20.353 - —0.089
M o -0.358 -0.536 -
I -0.396 -0.740 -
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Figure 5.7 shows the variation of the eigenvalue of the oxygen atom
inner shell with the polarities of the CO sigma— and pi-bonds as measured
by the changes in the atomic charge on the oxygen atom Aqg(%xco) and
Aqi(frco). Again there is a linear relationship which is different for
the two bonds, changes in the polarity of the pi-bond giving a much
greater change in the eigenvalue than changes in the polarity of the
sigma—bond. An increase in the charge on the oxygen atom produces a
decrease in the eigenvalue and vice versa.

The eigenvalue of the oxygen aftom inner shell was also found to be
effected by changes in the polarity of the CH bond. Figure 5.8 shows
the variation of the eigenvalue with changes in the atomic charge on the
carbon atom caused by changes in the polarity of the CH bond, qu (rLCH).
The effect is therefore not confined to bonds centred on the same atom as
the inner shell. The variation of the eigenvalue of the oxygen inner shell
with the polarity of the CH bond is a longer range effect, and is smaller
than those shown in Figure 5.7. It is, however, linear and is in the
direction expccted from electrostatics. The gradients of the plots in
Figures 5.7 and 5.8 are shown in Table 5.14.

In conclusion, the present analysis shows the eigenvalues of the inner
shells to be linearly dependent on the polarity of the bonds in the
formaldehyde molecule. This is in agreement with the findings of Siegbahn

and others96’99’1oo’1o1

that the experimental binding energies of the inner
shells in different molecules vary linearly with the polarity of the bonds.
These workers find a linear relationship between the binding energy of an
inner shell and the calculated total charge on the atom concerned. The
present work uses the formaldehyde molecule as a model to examine the
separate effect from easch bond The results suggest that the variation in

the eigenvalues of the inner shells may be explained in terms of simple

electrostatics. If this is the case, it should be possible to predict the



values of the gradients in Table 5.14 from an electrostatic model of the

molecule.

The eigenvalue of the inner shell on atom A is given by

€. = 1,1l Fl
1, TSRl (5.17

A change in the polarity of a bond between atoms B and C, ¢BC’ produces
! 7
a change in the eigenvalue through the operator. If ¢ BC and ¢ BC
‘ 4 "
, sent the bond t two different polarities and and €
represen ¢BC at two di p eIA I,

are the eigenvalues of IA at these polarities, the only diffrence between

1 1
QIA and ErAvnll be in terms in the operator involving ¢BC’ all the

other terms in the operator being the same in the two cases. Considering
only coulombic terms and neglecting the exchange terms the change in the
eigenvalue is given by
/ X/ > /12 2) /)
- - = - - 2
€p - ey |=2 1, 18,5 SIS (5.18)
A A
t

/ y
Expressing ¢ BC and ¢ BC in terms of polarity parameters and normalised

hybrid atomic orbitals,‘?B and ”VC, as in equation (5.5)

‘5:3(3 - PIB”B * pé“’c (5.5)
gives
[EIIA - EI;A = 2 ij32 - p'::32 )<IA2l VB?_)*
(5.19)
2 p’02 - pgz )<IA2W02>" 4( vy pg - Py BY )<132|°B"c>
102

After substitution of Mulliken's Approximation

(1,21v,70) = 30,1V ((1A2|'952> - <1A2|\>C2))
(5.70)
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cquation (5.19) may be exprcssed in terms of the atomic charges given

by equation(5.12)
i o ] 7 2 2
€ - € = - -
{ I, EIJ {( aglPye) - agl@ps) ) {1,519

, ,, (5.21)
© Caglele) = solp) ) (P>}

The atomic charge on atom B, for example, due to the polarity of

¢PF it equal to minus the atomic charge on atom C due to the polarity
of ¢BC
Therefore
EI n
1, EIA -
(5.23)

. ! " 2 2 /1 @ 2
- CaplByy) = a5 )L <1219, - (1B}
Expressing equation (5.23) in terms of the changes from the SCF

values in the atomic charges as shown in Figures 5.6, 5.7 and 5.8 gives
7 1"
. ¥t ¥,oM
(S - & = - (& - Aq?
[ i I;J (2afigl) - adwr) )

[<1f195) - G )

(5.24)

A plot of the eigenvalue EEI, against the change in the atomic charge
A

on atom B caused by a change in the polarity of ¢BC should therefore have

a gradient given by:
' 2.4 2 2 ., 2
gradient = - { <IA |“QB > - <IA IVC >} (5.25)

This quantity was evaluated for each of the plots in Figures 5.6 to 5.8,
and the values are shown in Table 5.15. They are in fairly good agreement

with the gradients obtained from the graphs.
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Equation (5.24) is derived by assuming that the contributions from
other parts of the molecule are constant, as they are in the present work
which considers changes in the polarity of one of the bonds of a single

96

molecule. Siegbahn and co-workers”™ have used an electrostatic potential
model for the calculation of changes in the inner shell binding energies
due to different polarities of bonds in different molecules, with good
results.

From the information in Table 5.14 an attempt was made to predict the
binding energies of the carbon and oxygen inner shells of acetaldchyde and
acetone, by assuming the carbon-carbon bonds in these molecules to be
approximated by the non-polar CH bonds of the present work. The absolute
value of the eigenvalue of inner shells is expected to be approximately
10 to 20 eV larger than the experimental ionization energy, as discussed

96,101,103 have found that it is

in section 2. However, several workers
possible to predict successfully the difference in the binding encrey
between one molecule and another by the difference in the eigenvalues of
the immer shells in the two molecules, although good results have not been
obtained with a small atomic orbital basis set such as is used in the
present work.

The experimental shifts in the binding energy,93 together with the
shifts predicted by the results in Table 5.14 are shown in Table 5.16.
The experimental shifts are based on estimated experimental values for the
ionlzation energies in formaldehyde, as discussed in section 2. A positive
value of a shift as shown in Table 5.16 indicates a decrease in the eigen-—
value or an increase in the binding energy in the larger molecule. The
predicted values are seen not to reflect very successfully the experimental
values. The experimental error for the ESCA measurements is estimated to

be about 0.2 eV so the binding energy of the carbon inner shell does not
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Table 5.16 Predicted and Experimental Shifts in Binding

Energies of Inner Shells (eV)

I I
¢ 0
Predicted Experimental|Predicted Experimental
value value value value
Formaldehyde
to +1.09 [-0.1]" +0.29 [+0.6]]
Acetaldehyde
Acetaldehyde
to +1.09 0.1 +0.29 +1.4
Acetone

1. Estimated values (see text).



change sienificantly in the three molecules considered, whercas a rise
of approximately 1 eV is predicted in each case. The experimental
binding energy of the oxygen inner shell rises from formaldehyde to
acetone. The predicted values do show a rise in the binding energy,

but by too small an amount.

(ii) Eigenvalues of Valence Shell 1.m.o.s

The eigenvalues of the remaining l.m.o.s are not observable
quantities, with the exception of the pi-bond. It is, however, still of
interest to investigate how these quantities change with the polarity of
the bonds. As with the inner shells, the eigenvalues of all the other
l.m.o.s 1in the molecule were found to vary linearly with changes in the
atomic change on the appropriate atom.

The variation of the eigenvalues of the lone pairs resulting from
changes in the polarity of the CO sigma— and pi-bonds, as measured by the
change in the atomic charge on the oxygen atom are shown in Figures 5.9
and 5.10. It can be seen that the pi-bond affects the eigenvalues of
the lone pairs to a greater extent than the sigma-bond, and that the
effect of each bond on both lone pairs is the same. As with the inner
shell on the oxygen atom, the lone pairs were also found to vary with the
polarity of the CH bond, as measured by the change in the atomic charge on
the carbon atom. This is shown in Figures 5.711 and 5.12. Again the
effect is less than that of the CO bonds, the pi-type lone pair being
affected to a slightly greater extent than the sigma—type lone pair.

The gradients for Figures 5.9 to 5.12 are shown in Table 5.17. The
variation of both the lone pairs with the polarity of the bonds is in.the
direction expected from electrostatic considerations. The experimental
ionization energies of lone pairs in different molecules (which correspond
to the eigenvalues of the c.m.o.s not the l.m.o.s ) have been observed to

vary with the polarity of the bondslO4
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The effect of changes in the polarity of one bond, ¢i’ on the
e’ genvalues of other bonds, ¢j’ are shown in Figures 5.13, 5.14 and 5.15,
and the gradients of these plots are given in Table 5.18. In each case
the polarity of the fixed bond is measured by the atomic charge on the
carbon atom. In general, the eigenvalues of the bonds fall when the
charge on the carbon atom increases, as would be expected, and each
eigenvalue is affected by the polarity of the neighbouring bonds to a
similar extent. The two exceptions are the variation in the eigenvalue
of}LCO when the polarity of TrCO is altered and conversely the variation

in the eigenvalue of T 0 when the polarity of r&CO is altered. These

C
two bonds share the same two atoms and are closely linked. In each

case an increase 1in the charge on the carbon atom is equivalent to a
decrease in the charge on the oxygen atom. The eigenvalue of each bond
is decreased when the other bond is polarised towards the carbon atom.

At SCF the sigma-bond is polarised towards the oxygen atom, so its
eigenvalue would be expected from electrostatic considerations to decrease
when the pi-bond is polarised further away from the oxygen atom and to
rise when the pi-bond is polarised towards the oxygen atom. This is the
behaviour which is found to occur. The effect is an order of magnitude
larger than the effect of the CH bond on the eigenvalue of F'CO' The
converse, however, does not occur. At SCF the pi-bond is polarised
towards the carbon atom, so its eigenvalue would be expected to increase
when the sigma-bond is polarised towards the carbon atom and to decrease
when the sigma-bond is polarised away from the carbon atom. The reverse

behaviour is observed. In both cases, however, the variation of the

eigenvalue with the changes in atomic charges is linear.
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Table 5.18 Gradients of Figures 5.13 to 5.15
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Bond whose
polarity is

Gradients

fixed, §. € bex VS-Aqg(Séi) Creo VS—Aqg(féi) €rgo VS-Aqg(Q‘i)
Moge -0.118 -0.123 -0.110
Moo -0.087 - +0.047
oo -0.179 +1.206 -
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The eigenvalues of the bonds ¢j were also noted after an l.m.o.
calculation had been performed on the bond. A calculation allows the
form of ¢j to change in response to the change made in the polarity of
the fixed bond ¢i' In this case a change in the eigenvalue of ¢j occurs
through a change in the form of ¢j' as well as through the operator.

The eigenvalues of ¢j before and after a calculation were found to agree
to well within 0.01 a.n., cxcept when both ¢i and ¢j are the CO-sigma
and pi-bonds. The eigenvalues therefore indicate that the form of ¢j
does not change significantly in response to the polarity of the other
bond, except in these two cases. This confirms the earlier conclusion

that there is little polarising of one bond by another.



Section 6  Rond Energies

(a) Introduction

One of the important objectives in calculating localised molecular
orbitals is the direct computation of bond energies which may be compared
with experimental values. The canonical molecular orbitals give only
the atomisation energy, the sum of the bond energies.

To calculate the quantity usually termed the bond dissocation energy
the bond is broken and the energy of the two fragments computed. The
difference between the total energy of the molecule and that of the two
fragments is the bond dissociation energy. Ideally the energy of the
ground state of the fragment should be used. Where the fragment is a
single atom this is easily done, but where this is not the case the
calculation of the energy of the fragment poses problems. An accurate
computation of the energy would require a separate SCF calculation of the
fragment, in its ground state geometry, which would in general be an open-
shell calculation.

The mcthod used in the prescnt work makes the agsumption that therc io
no reorganisation of the geometry of the molecule or of the electrons on
breaking the bond. The value for the bond dissociation energy of the CH
bond in methane obtained using this method58 was within 0.5 eV of the
experimental value, a good result for a minimum basis set calculation.

Each fragment is formed by deleting from the l.m.o.s of the whole
molecule all contributions from the atom or atoms in the other fragment,
and re-normalising. For sets of perfectly localised functions only the
l.m.o. whose bond dissociation energy is being calculated need be
considered but for sets of slightly delocalised functions all the l.m.o.s
in the molecule must be taken into account. The bond between two atoms

is then replaced by two hybrid atomic orbitals, one on each atom, which
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are each regarded as being occupied by a single electron. These hybrid
atomic orbitals are not orthogonal to the other l.m.o.s and if a set of
slightly delocalised l.m.0.s are used the doubly occupied orbitals are
not orthogonal amongst themselves. There are three possible approaches
to this problem. Firstly, the non—orthogonality may be neglected.
Secondly, the orbitals in each fragment may be orthogonalised by for
example Schmidt orthogonalising. Lastly, the energy of each fragment
may be computed over a non-orthogonal set of functions. All three of
these options was used to calculate the total energies of the fragments
formed by breaking the CH bond and the CO double bond in formaldchydec.

The bond dissociation energies of these bonds are then given by

Bond Dissociation Energy = EM - (EF + E;) (5.26)

where EM is the total energy of the formaldehyde molecule, =113.4026 a.u.,
and EF and E; are the total energies of the fragments. Defined in this
way the bond dissociation energy is negative for a stable bond.

In addition to the difficulties already considered which are common
to any calculation of a bond dissociation energy from a set of l.m.o.s ,
the present work has the extra complication that a unigque set of l.m.o.s
was not obtained from the l.m.o. calculations. Results for both bonds
were obtained for the l.m.o.s given by calculation 12 and some results

for the CO bond were also obtained for the l.m.o.s given by calculation 7.

(b) Calculation of the CH Bond Dissociation Energy

The two fragments formed by breaking the CH bond are the hydrogen
atom and the formyl radical <CHO.

The energy of the ground state of the hydrogen atom is given by using
an exponent of —-1.0 for the hydrogen atomic orbitals in the expression

EH = <13H| _§Vz|13H> + <lsH ] -1.O/rH l lsH>
(5.27)
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This gives a value of -0.5000 a.u. The experimental value is -0.4996 a.u.105

The energy of the formyl radical is calculated by assuming that there
is no electron reorganisation on breaking the CH bond. The geometry of
the formyl radical is known to be similar to that of the formaldehyde
molecule.106 In the following work the seven doubly occupied orbitals
ara denoted by ¢1....¢m and the singly occupicd hybrid atomic orbital by

¢m+1' If the functions ¢1""¢m+1 are assumed to be mutually orthogonal

the energy of the fragment is given by

'::E = 2 ; <¢1|h|¢l> + <¢m,.l'h'¢m+l>

(5.28)
Wwoiusl
" 12:_1 }>;'._:1 {2 i 188> - {84, ¢i¢k>} + R

where R is the total nuclear repulsion in the fragment, and h is the

one—electron operator,the sum being over the three atoms in the fragment.

o Z
h=-3V - ) 2 (5.29)
a=l ‘=

An estimate of the bond dissociation energy of the CH bond was first
obtained by calculating the energy of the formyl radical using equation
(5.28) and neglecting the non—orthogonality of the functions. More
accurate values were then conputed by Schmidt orthogonalising the functions.
Two Schmidt orthogonalising sequences were used. FPirstly, the singly
occupied hybrid atomic orbital was placed at the beginning of the sequence
so that 1t was unaltered by the orthogonalising but was mixed into the
other functions. Secondly, the singly occupied hybrid atomic orbital was
placed at the end of the sequence so that it was not mixed into the doubly
occupied orbitals. The three values of the bond dissociation energy
obtained are shown in Table 5.19.

The follow'ng expression for the energy of the formyl radical in
terms of a set of non-orthogonal orbitals was derived using the method

10
first formulated by Lowdin.
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(5.30)
where h is given by equation (5.29).
Z is the mxm overlap integral matrix of the functions ¢1""¢m and Q
is the (m+1)x(m+1) overlap integral matrix of the functions ¢1....¢

m+1’

-~ -1
so that Pi; and Qij etc. are elements of the inverses of the matrices

P and Q. Equation (5.30) was obtained using Jacobi's ratio theorem ' 6,109
which states that
P 1y :
i3 = Py; det (B) (5.31)

where Pij is the co~factor obtained by deleting row i and column j from

the matrix P, and multiplying by (_1)(1+3)

-1 =1 -1 =1
and PIJ e = [P P . = Py P 1 det (p) (5.32)
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P..

where i3,k is the co-factor obtained by deleting rows i and j and
?

columns k and L from the matrix g, and multiplying by (—1) (i+j+k+t).

The bond dissociation energy of the CH bond calculated using equation
(5.30) s given in Table 5.19. This value is very similar to the second
value calculated by Schmidt orthogonalising the functions, which was
obtained by the Schmidt orthogonalising sequence which does not allow the
singly occupied hybrid atomic orbital to mix into the doubly occupied
orbitals.

The experimental value of the bond dissociation energy of the first
CH bond in formaldehyde has been determined as less than 78 kcal/mole
by photolysis in the presence of iodine9 and as 75 : 2 kcal/mole
(3.25 * 0.1 eV) by electron impact at 400 - 5OOOK:I10 The best calculated
values shown in Table 5.18 differ from the experimental value by 1.2 to
1.4 eV (about 30 kcal/mole). The agreement is therefore not as good as
that obtained for the methane moleoule,58 but is still good when compared
to the usual calculation of Dissociation Energies.68a The question of

whether a better recult would be obtained with one of the other sets of

lem.o.s from the l.m.o. calculations remains to be answered.

(c) Calculation of the CO Bond Dissociation Energy

The two fragments formed by breaking the CO double bond are the
oxygen atom and the CH2 radical. The breaking of the two bonds leaves
two unpaired electrons on each fragment. Where no electron
reorganisation is assumed the question therefore arises of whether the
spins of these electrons are paired or parallel.

The energy of a fragment with ,m doubly occupied orbitals ¢1""¢m

and two singly occupied hybrid atomic orbitals ¢m+1 and ¢m+2 is given by
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where h is given by equation (5.35). P is the mxm overlap integral
matrix of ¢1....¢m and Q is the (m+2) x (m+2) overlap integral matrix
of ¢1""¢m+2' The bond dissociation energy of the CO double bond
calculated using equation (5.36) is given in Table 5.20. It can be
cecn that this value is the same as that obtained by Schmidt
orthogonalising the functions so that the singly occupied orbitals

do not mix into the doubly occupied orbitals, when the electrons in the
singly occupied orbitals have the same spin (x = 1).

The bond dissociation energy of the CO double bond was also evaluated
for the l.m.o.s given by calculation 7, using equation (5.36) to compute
the energy of the CH, radical. A value of -0.0477 a.u. (=1.30 eV) was
obtained, which agrees well with the result from the l.m.o.s given by
calculation 12. However, values for all the various sets of l.m.o.s
obtained at stage 4 are needed to reveal how sensitive the bond dissociation

energy is to the details of the l.m.o.s.



Table 5.19 Bond Dissociation Energy of the CH Bond in Formaldehyde
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Bond Discociation
Fnergy of the CII
bond.

(a.u.) (eV)

Calculated Valuesll

Method of Calculating the Total Energy of
Energy of the Formyl Radical the Formyl

Radical (a.u.)

3.

Neglecting non- -112.8197
orthogonality and using
equation (5.28).

Schmidt orthogonalising
and using equation (5.28)

(i) hybrid atomic orbital
at beginning of -112.6800
sequence.

(ii) hybrid atomic orbital ~112.7395
at end of sequence.

Calculation over non- -112.7318
orthogonal orbitals using
equation (5.30).

-0.0829 | -2.26

-0.2226 | -6.06

-0.1631 | ~4.44

-0.1708 | -4.65

Experimental valu92

Using l.m.0.s from calculation 12.

Reference 110.
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(5.33)

where x is the exchange factor and h is the one—electron operator.

In the case of the oxygen atom R equals zero and h is given by

(5.34)

Hlot\?

The ground state of the oxygen atom is a triplet state, according to
Hw.d's Rules, so that the energy of the ground state may be calculated
using equation (5.33) by putting the three doubly occupied orbitals

¢ to ¢3 as 1~ ’ 2so and 2pz ' ¢4 and ¢5 as 2pX and 2py , and x equal to

(o) ) o)
1.0. This gives a value of =74.5330 a.u. The experimental wvalue is

-75.109 a.u.105
For comparison the energy of the oxygen atom was also calculated

with the hybrid atomic orbitals as they appear in the formaldehyde

molecule. The hybrid atomic orbitals were first Schmidt orthogonalised

in a sequence which did not allow the singly occupied orbitals to mix into

the doubly occupied orbitals and then equation (5.33) was used to calculate

the total energy of the atom. Results of =74.4563 a.u., =74.4254 a.u. and

-74.3946 a.u. were obtained using values of the exchange factor x of 1.0,

0.5 and 0.0 respectively. The value of the exchange factor therefore

makes a difference of 0.06 a.u. in the resulting total energy, the lowest

value being given when x is 1.0 and the spins of the two electrons in the

singly occupied hybrid atomic orbitals are parallel. This value is

0.08 a.u. higher than the energy of the ground state of the atom, giving

an indication of the order of magnitude of the error resulting from the

assumption that there is no electron reorganisation.
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The energy of the CH, radical was calculated by assuming that there

2
is no reorganisation of the geometry of the molecule, or of the electrons,
when the CO bond is broken. In fact the most stable state of the CH2
radical is a triplet state which is linear.111 From the l.m.o.s given
by calculation 12 an estimate of the bond dissociation energy of the CO
bond was first obtained by neglecting the non-orthogonality of the

functions and by calculating the energy of the CH2 radical using equation

(5.33). In this case

e

L o
h =3y —2_1 (5.35)
a=

SN

QY

the sum being over the three atoms in the fragment.

More accurate values of the energy of the fragment were then
obtained by Schmidt orthogonalising the functions in a sequence so that
the singly occupied orbitals were not mixed into the doubly occupied
orbitals. In each case three results were obtained using values for
x of 1.0, 0.5 and 0.0, The values of the bond dissociation energy,
computed using the calculated ground state energy of the oxygen atom, are
shown in Table 5.20.

The following expression for the energy of the CH2 radical in terms

of a set of non-orthogonal orbitals was derived, assuming the electrons

‘n the singly occupied hybrid atomic orbitals to have the same spin.



Table 5.20 Bond Dissociation Energy of the CO Bond in Formaldehyde

220

Bond Dissociation
Energy of the CO

bond.
(a.u.) (eV)
Calculated values1
Method of Calculating Total Energy of
the Energy of the CH X the CH, radical
. 2 2
radical. (a.u.)
1. Neglecting non- 0 ~38.8435 -0.0249 -0.68
orthogonality and 1
using equation 5 -38.8734 -0.0050 0.14
(5.33) 1 -38.9032 +0.0348  40.95
2. Schmidt orthogonal-| O -38.7597 -0.1087 -2.96
ising and using 1 _ _ _
equation (5.33) 5 38.7896 0. 0824 2.24
1 -38.8195 -0.0489 =133
3. Calculation over
non-orthogonal _ _
orbitals using 38.8195 ~0.0489 1.33
equation (5.36)
Experimental value2 -0.2014 -5.48
1« Using l.m.o.s from calculation 12.
2. Reference 9.
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The bond dissociation energy of the CO double in formaldehyde
cannot be measured directly experimentally. A value of the bond energy
of 149 kcal/mole (5.48 eV) has been given9 by assuming a value for the
bond energy of the two CH bonds in formaldchyde of 90.5 kcal/mole, and
subtracting these from the atomisation energy of the molecule. However,
the calculated values differ from the experimental value by 4.15 eV, so
the results of the calculated bond dissociation energy of the CO bond

clearly underestimate the experimental value by several eV.
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ELECTRON DENSITIES
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TWO-ELECTRON CHEMICAL
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Section 1 Introduction

The work described in this Chapter is an attempt to understand the
physical significance of l.m.o.s by an investigation of their electron
density distributions. 33 l.m.o.s describing two—electron chemical
bonds, both sigma and pi, occurring in 19 different molecules were
studied. The forms of the l.m.o.s wused are those given in references
44, 51 and 58. These l.m.o.s were truncated to give perfectly localised
functions. For an l.m.o. describing a bond between atoms A and B, ¢AB’

the electron density is given by

/)AB = ¢i13 . (6)

The change in electron density on bond formation is examined in order
to ascertain whether the conclusion reached by Daudel and co-workers for the
H2 molecule,72 that the formation of a two-electron chemical bond is
accompanied by an increase of electron density in the region between the
two nuclei and a decrease of electron density outside this region, is a
gcneral conclusion for all l.m.o.s describing two—electron bonds. This
is achieved by calculating the density difference function, first defined
by Daudel as the difference between the actual electron density and that
which would occur if the electron density of the "free atoms" were simply
superimposed. The electron density in the l.m.o. is 2fiB’ as there are
two electrons, and if the electron density in the atomic orbitals on

atoms A and B forming the bond is /DA and /DB respectively, the density

difference function, S , is given by

> = 2Py = (Py +Pp (6.2)
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A positive value of > then indicates an increase of electron density on
bond formation.

The queation arisces of the exact form of the atomic orbitals forming
the bond. If the simple atomic orbitals of the free atom are used,
difficulties arise in molecules with extensive hybridisation, such as
the carbon compounds. A hybrid atomic orbital with the same
hybridisation as in the l.m.o. was therefore used. As in equation (2.24)
the l.m.o. may be written in terms of the atomic orbitals

ap = ®1s, sy * °2sA 28y + “2p, 2py + “1sg 1513_ (6.3)

+ c 2s, + C 2p
2sB B QpB B
It may also be expressed in terms of two normalised hybrids ’OA and “QB

on atoms A and B

¢AB=CA_\)A+CB—\>B (6.4)

where

‘QA.= (Cqu 1s, + CZSA 2s, + c2pA 2pA)/CA (6.5)

and similarly for'VB. The density difference function is then given by
; 2 2 2
d=24, - (3,7+3;) (6.6)

Profiles of S along the inter-nuclear axis, and contour diagrams of
S were obtained for the 33 bonds studied. In all diagrams 1 inch
represents 1 Bohr radius, a, (0.529 X).
A measure of the total build-up of electron density in the inter-
nuclear region on molecule formation, D, is given by integrating ® between
two planes intersecting the inter-nuclear axis perpendicularly at a and b.

Using cylindrical polar coordinates,
oo Pl

b
D= J dz JA"' J Ae 8(7‘1-"193 (6-7)

a
The values of a and b used are discussed below.
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Sect on 2 Results

A typical result is shown by the l.m.o. describing the sigma-bond
of the N? molecule. Figure 6.1 shows the variation along the inter-
nuclear axis of the electron density d*stribution of two electrons in
the l.m.o., and Figure 6.2 gives the S value calculated using hybrid
atomic orbitals on the two nitrogen atoms. P profiles were also
obtained for the molecules N2, HF and F2 using the pure 2p atomic
orbitals to calculate /QA and /0 B in equation (6.2). They differed
from those obtained by using the hybrid atomic orbitals only around the
two nuclei.

The contour diagram of % for the N, sigma-bond is shown in

2

Figure 6.3 and for the N, pi-bond in Figure 6.4. Contour diagrams of

2
S for all of the other bonds studied are given in Figures 6.6 to 6.32.
Thirty of the thirty-three bonds show the same general behaviour as the
bonds in N2. There is an accumulation of electron density in the inter—
nuclear region as compared with the valence atomic orbitals of the two
atoms forming the bond, and also on accompanying decrease in electron
density outside the region of the bond. This is the same result which
occurs with the H, molecule (Figure 6.5).

The three bonds studied which do not show the build-up of electron
density in the inter-nuclear region are LiH and the sigma- and pi-bonds
of CO. (Figures 6.12, 6.13 and 6.14). These are strongly polar bonds
in the sense that CA and CB of equation (6.4) are very different. To
investigate these three cases further artificially non-polar l.m.o.s ,
in which CA and CB are equal, were constructed. These non-polar bonds

show the normal accumulation of electron density in the inter-nuclear

region, and decrease of electron density outside that region. It was
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Figure 6.28 Contours of & (in electrons/ az) for the C-H 6-bond

in Coﬂz. The three l.m.0.s shown are obtained by

different localisation routes?4

. 237
<
o \o. 00 0.00!
0.01
= —
D '1 i
T 525 -0.01
| o /LQ\ |
O \ R
S ‘0'10/\\ (M | 1
“_2 .00 -1.00 C 1.0% | H 3.00 4
)
o
N 7
0.00
L0 1
O
o
- -0,01
[an
i 0,025
| a
o) -0,0 \
2 =010/ ) , R , \
o - - - 100 3.0¢0 4.
-2.00 1.00 C 1.20 H
. pIIU.
(ow]
o
-
=)
D -
. "0.0l
(and
S L
©.% 55 . ¥ 3.00 4

.0



2 .00

=
: . O ol
fou

- //"\\.o_ol

< // | -0 10

1 T
o 1.00 CE 3.00 4
A.U.

.01
4.

g
o~

\

i

)

|
o !
<
(o

-0, 01

g v—OlO
9% .00 —&.co ‘

C

300

Figure 6.29 Contours of & (in electrons/ a ) for the C-C 0-bond

in C0H2 The three l.m.o.s shown are obtained by
—

different localisation routes?4

4.0



239

o
o
o N0, 00 9:.9r 0.0
02
.32 -0.0 ///’”~\\_0.01
2D -4 4 \ \
-x“'(
@ =0.0
7 (O
) N\ _JCﬁZ) .
o
C?l~ \ T J [ { : J
“.2.30 -1.0 1.00 C 3.60 4.0
N A.U.
Figure 6.30 Contours of & (in electrons/ az) for the n-bond in HCN.
fo=)
&
o~ 0,00 _0-0L 0.00/
0.02
.2 'o'?\ =0.01
= -b.02 N\ 0,02
|
|D‘I . = ] I IL |
=7 g -1.00 C 1.C0 C 3.00 4.0
R.U. ,
Figure 6.31 Contours of 6 (in electrons/ ai) for the n-bond in C,Hz.
o
e
o 0.01 0.00
0.0Q2
vD h —
:(:"— “\\"O‘Ol
¢ — \
(o
< 1
{ 1 Ll i
L7250 1.00 Cl 3.60 4.0

A.U.

Figure 6.32 Contours of & (in electrons/ az) for the n~-bond

in CH20.

\




240

therefore concluded that the polarity effects in these molecules
outwe’gh the build-up of electron density between the two nuclei. On
the other hand, the HF sigma-bond, which is usually supposed to be highly
polar, might also have been expected to show this effect, but its 5
contour diagram (Figure 6.7) follows the general conclusion, and a non-—
polar HF sigma~bond has a % contour diagram much the same as that in
Figure 6.7.
To complete the argument, the case of the hypothetical He2 "molecule"
was then examined. A profile of S along the inter-nuclear axis,
agsuming an inter-nuclear distance of 2.0 a.u. (1.058 X) ig given in
Figure 6.33. There is an increase in electron density between the
nuclei for the two electrons in the bonding molecular orbital, but a
larger decrease n electron density between the nuclei for the two
electrons in the anti-bonding molecular orbital, giving an overall decrease
in electron density in the inter-nuclear region, on "molecule" formation.
The total charge build-up between the nuclei for all the bonds studied
was evaluated according to equation (6.7). A difficulty arises here in
defining the inter-nuclear region. The simplest definition would be to
take the integration limits a and b in equation (6.7) as the positions of
the two nuclei. However, S generally becomes large and negative near the
nuclei, a result which is gensitive to the choice of atomic orbitals in
equation (6.3), and which may have no physical s®gnificance since the
absolute value of the electron density is high near the nuclei. This
region which is not thought to be primarily concerned with bond formation
may be excluded by arbitrarily taking the integration limits at the points
where the zero O contour crosses the inter-nuclear axis. The results
of both choices of integration limits are given in Table 6.1. Although

in some cases negative values of D are obtained when a and b are defined
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Table 6.1 Total charge Accumulation, D, in the Internuclear Region.
[folecule Bond D( S =0) D (nuclei)
HF - 0.67 0.67
OH - 0.58 0.58
NH - - 0.47
CH - - 0.38
BH - - 0.31
LiH - - 0.05
N2 ' 0.92 0.90

w 0.23 0.18

F, G 0.31 0.31
Cco T 0.98 0.95
T - 0.29

002 = 0.68 0.59
C3 = 0.46 0.42
HCN C-H 0.22 0.18
C-N © 0.52 0.36

C-N w 0.21 0.16

C N, c-C « 0.11 -0.08
C-N © 0.57 0.45

04 C1--C2 T 0.55 0.51
02—03 v 0.1 -0.16

N; N-N © 0.71 0.66
CHy, C-H 0.16 0.13
CH20 C-0 & 0.61 0.51
cC-0T 0.20 0.13

C2H2 C-H 0.22 0.19
0.19 0.1

0.19 0.14

C-C & 0.12 -0.20

0.34 0.20

0.20 -0.04

C-C W 0.19 0.16




The definition of D is given in equation (6.7). The terms
D(% = 0) and D(nuclei) refer to the limits of integration a
and b in equation (6.7). The results reported for D(S= 0)
were obtained taking a and b as the points where the zero
contour crosses the inter-nuclear axis, and those reported
for D(nuclei) were obtained taking a and b as the positions
of the nuclei. The three values shown for the acetylene
molecule refer to the three different localisation routes

given in reference 44.
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as the positions of the nuclei, in general the difference between the

two scts of results is not great. The values show an accumulation of
clectrons between the nuclei of up to one electron out of the pair of

electrons forming the bond.

Both the ® contour diagrams and the D values were examined to see
if there 1s any connection between them and such experimental and
theoretical bond quantities as bond energies, electronegativity
differences and overlap populations. Two relationships which may be
of significance were found.

The first concerns electronegativity differences. Within certain
restricted sets of similar bonds there does seem to be a tendency for S
to accumulate progressively over towards the increasingly electro-
negative atom. This was measured by the distance from the mid-point of
the bond of the maximum value of ® reached along the inter-nuclear ax’s.
The series FH, OH, NH, CH, BH, LiH (Figures 6.7 to 6.12) shows the
progression well, LiH is then seen to be an extreme example of this
effect, in which the accumulation of S towards the more electronegative
atom has gone so far as to conceal the overlap build up. | This may
represent a transition away from a covalent bond to an ionic one.8‘|'112
A similar series s given by the CH bonds of methane, formaldehyde,
acetylene and hydrogen cyanide. The polarisation towards the H atom
in these two series is shown plotted against the difference in electro-
negativity of the two atoms forming the bond in Figure 6.34. The above
result is interesting in that it connects the theoretical idea of
polarity with the observable quantity electron density.

The second relationship found is between bond energies and the total
build—up of charge density in the inter-nuclear region as measured by D.

Figure 6.35 shows that the D values for the diatomic molecules do show a

tendency to be proportional to the bond energy, although this seems to be

less so for the polyatomic molecules studied.
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1. The polarisation parameter is defined as the distance (in a.,u.) of

the maximum & value from the mid-point of the bond in the direction

of the H atom. For polyatomic molecules the bond to which the point

refers is shown in brackets.

2. To obtain the electronegativity of atom A,xA,the conventional

hybridisation was assumed and Pauling's scale given in reference

121 used. The electronegativity difference is then ( X, =X, )
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1. D is given by equation(6.7), with the limits of integration

as the points where the zero & contour crosses the inter-nuclear

axis. Where necessary a total D for a multiple bond is cobtained

by adding together the o and n contributions., For polyatomic

molecules the bond to which a point refers is shown in brackets.

2, Bond Energies were obtained from references 9 and 110.
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Section 3 Discussion

The conclusion drawn from the S contour diagrams in Figures 6.3 to
6.32 is that the build-up of electron density in the inter-nuclear region
and decrease of electron density outside that region on bond formation
shown by the H? molecule is, in general, shown by all l.m.o.s.
Examination of the electron density distribution of individual l.m.o.s
therefore gives a clearer physical picture of bond formation than the
electron dens*ty distribution of the whole molecule which has been studied
by many workers.74_82

The qualitative meaning of the term "inter-nuclear region" is clear,
but it is difficult to define rigorously. The definition used in this
work, in equation (6.7) is a simple and arbitrary one, used for the
comparison of increases in electron density between the nuclei in different

113

bonds. The "binding region", defined by Berlin through the forces

exerted on the nuclei, is often used for the examination of electron density
distributions. 0 114
The explanation for accumulation of electron density in this region

115

often given is thaf it is a region of low potential energy. However,

the role of the kinetic energy has been discussed by many workers.116—118
Ruedenberg and co-workers have given a detailed analysis of the binding
of the H2+ molecule.118 Their findings confirm that the actual process
of the overlap of atomic orbitals to form a covalent bond is accompanied
by a build-up of electron density between the nuclei, and they find that
the accompanying decrecasce ‘n total energy results from an increase in
potential energy and a decrease in kinetic energy. Contraction of the

wavefunction then lowers the potential energy and raises the kinetic

energy.
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The 1l.m.o.s used in the present work are obtained from molecular
orbital wavefunctions which are not of as high a quality as those given
by present day small molecule calculations. The question therefore
arises of whether the results obtained are due to inaccuracies in the
molecular orbitals. Comparisons of wavefunction quality and density
functions have been given in the literature.74 The accurate James-—

119

Coolidge wavefunction for the H2 molecule gives the same qualitative
result as the simple molecular orbital wavefunction but gives larger
numerical values for S .72 It is therefore to be hoped that the present
S contour diagrams are qualitatively the same as those which would be
obtained with l.m.o.s from more accurate calculations.

The l.m.0.s examined in the present work are also not unique since
no formal localisation criterion was used in their localisation.
S contour diagrams for the CH and CC bonds in acetylene obtained by the
three localisation routes given in reference 44 are shown in Figures 6.28
and 6.29. The three diagrams are very similar in both cases althoug
they vary slightly in the numerical values of D and the maximum > value,
indicating that % is not too sensitive to the localisation route.

However, no examination was undertaken in this work of l.m.o.s obtained

by other localising criteria.
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CHAPTER SEVEN

COMPUTATIONAL DETAILS
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Section 1 L.m.o. and c.m.o. Calculations

All computer programs employed in the work described in the previous
chapters were written in FORTRAN IV and were used on the University of

London CDC 6600 and CDC 7600 computers.

(a) L.m.o. calculations

The program FORM was written to carry out l.m.o. calculations for
the formaldehyde molecule according to the method described in Chapter
Two . A general version of the program was stored on a disc file, with
a copy on magnetic tape. Modifications to the general program were then
made according to the method of orthogonalisation used and the stage of
approximation as discussed in Chapter Three.

The main outline of the program is shown by the flow-diagram in
Figure T7.1. The atomic orbital coefficients of the starting-point
functions (equations (2.24) and (2.25)) were read in from punched cards.
The various integrals over atomic orbitals needed for the evaluation of
the 55 matrix (equation (3.2?)) were stored on a disc file, with a copy
on mapretic tape. The overlap integrals and kinetic cnergy intograln
were stored by the program in two 12 x 12 arrays and the nuclear
attraction integrals in a 12 x 12 x 4 array. The electron repulsion and
exchange attraction integrals were stored in a 1-dimensional array, the

position of the integral
( Y X 7-1
gy XX (7.1)
being given by
1T+ (E=1+12(i=-1+12(k=1+120Q=1))) (7.2)

The total number of electron repulsion and exchange attraction integrals
ig ‘|2!"'L = 20,736. However, for a given value of i, j, k and 1, integrals

which differ by exchanging the indices i and j, or k and 1, or by
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exchanging the pair i and j with the pair k and 1 have the same value.
Only integrals with the indices in canonical order were therefore stored
on the disc file. In this case the index with the larger value occurs
first within the pairs i, j and k,1 and the pair containing the index
with the largest value occurs before the other pair. 0f these
integrals all except 1,499 are zero to 6 decimal places. Only non-zero
integrals were stored on the disc file and their values were read into
the program together with the corresponding values of i, j, k and 1.

At stages 1 and 2 only the one- and two-centre electron repulsion and
exchange attraction integrals are used. These integrals were therefore
sorted into various groups containing one-, two-, three- and four—centre
integrals and stored on the disc file in these groups.

Having read in the necessary data, the program FORM carries out a
calculation of an l.m.o. First the orthogonality conditions are
satisfied, as described in Chapter Three, and then the F matrix is
constructed, the size of the F matrix depending on the stage of
approximation. As the free space basis functions are mutually orthogonal,

the elements of the § matrix (equation (2.32)) are given by

s _$S (7.3)

Pq rq

£0 that the secular determinant (equation (2.33)) has elements

Foq ~ €s Pq (7.4)

The eigenvalues and eigenvectors of this matrix are calculated by
the subroutine EIGEN in the University of London Computing Centre

Scientific Subroutine Package. This subroutine uses the diagonalisation
method originated by Jacobi and adapted by von Neumann for large compute%gg
For a rigorous final stage calculation of formaldehyde five eigenvalues

are obtained and for earlier stages two eigenvalues are obtained. The
lowest and only negative value is taken as that associated with the

improved form of the l.m.o. being calculated, €'i'
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The eigenvectors obtained, qu, refer to the free space basis

! /
functions and define a new set of functions U ....U5

1
? S"S
= C = Teeee .
U @uqqp p =1 5 (7.5)

which may be expressed in terms of atomic orbitals by substitution of

equation (2.25)

5 12
D X k C (7.6)
u_ = .
P ééi ééi W umq Tgp p=1l...5 [

The function which is associated with the lowest eigenvalue, e'i’
corresponds to the improved form of the l.m.o. being calculated, ¢i'

As in equation (2.27)

g = §~ u C (2.27)

This form for ¢i rerlaces the previous form in the occupied orbitals.
The other four functions define new forms for the virtual orbitals.

In the majority of cases in the present work each l.m.o. is
calculated separately. A new E matrix is constructed from the new set
of occupied and virtual orbitals, after re-orthogonalisation of the
functions where this is necessary. New eigenvalues and eigenvectors are
found and the process repeated until the value of the lowest eigenvalue
agrees with that obtained from the previous cycle of the calculation to
within 0.0001 a.u.

When self-consistency within the calculation of an l.m.o0. is reached
the program FORM calculates properties of the new set of occupiecd l.m.o.o.
Firstly, the 8x8 overlap integral matrix of all the occupied orbitals is
evaluated, as these orbitals are in general not mutually orthogonal.
Secondly, the total electronic energy is computed. As this quantity is

invariant to a linear transformation amongst the occupied orbitals,
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a set of non-orthogonal occupied l.m.o.s may be subjected to an
orthogonalisation procedure and then used in the expression for the

total electronic energy of an orthogonal set of orbitals.

-
E=2/{F.1n\g Y+
T3 J

Zj §{2 By B b= <85 81985 8 (7.7)
2 Z

A (7.8)

a=1
The program FORM uses Schmidt orthogonalisation in the sequence ¢1....¢8.
Thirdly, the orbital energies of all eight occupied l.m.oc.s are

re—calculated. The orbital energy of the jth l.m.0. is given by
€ =<¢J—|Fl¢j> (7.9)

The F operator, given by equation (2.4), is constructed from all the
occupied orbitals which are assumed to be mutually orthogonal. The
Hartree-Fock operator s invariant to a linear transformation of the occupied
orbita,ls,1 so to form the operator the non-orthogonal set of l.m.o.s may be
subjected to an orthgonalisation procedure. However, the form of the l.m.o.
whose orbital energy is calculated, ¢j’ must remain unchanged by the
orthogonalisation, as it also appears explicitly in the expression for the
orbital energy. This is achieved by Schmidt orthogonalising in such a way
that ¢j appears first in the orthogonalising sequence and is hence

unaltered by the orthogonalisation. To calculate the orbital energies of
all eight l.m.o.s , therefore, each l.m.o. is taken in turn, the set of
occupied l.m.0.s Schmidt orthogonalised in the appropriate sequence and

the orbital energy of the l.m.o. calculated according to equation (7.9).
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Having computed these properties the calculation of another l.m.o.
*s performed, the free space consisting of the starting-point form of the
orbital to be calculated and the virtual orbitals obtained from the
previous calculation. The 1l.m.o0.s8 are calculated ‘n turn in this way
until calculation of all eight l.m.o.s decreases the total electronic
energy by less than 0.0005 a.u.

Modifications were also made to the program FORM to carry out l.m.o.
calculations according to Wilhite and Whi‘*en's method26 using Lowdin
orthogonalisation. In this case the procedure within each l.m.o.
calculation is that described above, but the operations are performed in a
different order so that all l.m.o.s. are calculated together as described
in Chapter Three. Fach l.m.o. is not cycled to self-consistency, but a
single calculation is made of each of the eight occupied orbitals.

These are then re—orthogonalised and the process repeated until the total
electronic energy varies by no more than 0.0005 a.u.

Having calculated a set of energy-minimised l.m.o.s , separate
computer programs were used to calculate the various properties
described in Chapter Five. In the evaluation of bond energies, the
total energies of the fragments were computed by a subroutine ENOG.

The inverses of the matrices E and g occurring in the expressions for
the total energy of the fragments in terms of a set of non-orthogonal
orbitals (equations (5.30) and (5.36» were found by the subroutine
MINV in the University of London Computing Centre Scientific Subroutine

Package.
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(b) C.m.o. Calculations

The program DELOC was written to carry out a c.m.o. calculation for
the formaldchyde molecule. The storing of the various intcgrals over
atomic orbitals was the samc as described for the l.m.o. calculations.
An orthogonal basis set of functions was obtained by Schmidt orthogonalising
the set of atomic orbitals. The orthogonal set, 'xd°....’x12° may be

expressed in terms of the non-orthogonal atomic orbitals, ﬁ(1.... C(12,

as “n equation (2.34)

12
°c _ 3

%% = 3 A
574 T A (7.10)

where Akj are coefficlents determined by the orthogonalising procedure.

The program DELOC constructs the F matrix, with elements

Fi =<‘xj° 71X, (7.11)
as in equation (2.18). Solution of equation (2.20) using the subroutine
EICEN in the University of London Computing Centre Scientific Subroutine
Package, as described for the l.m.o. calculations, gives 12 eigenvalues,
Ei, and 12 eigenvectors, c.. The lowest 8 eigenvalues correspond to
the 8 occupied c.m.o.s.

o)

The eigenvectors refer to the orthogonal basis set ’X1O....’X 12

Fach new c.m.o. may be expressed in terms of the atomic orbitals by

O, = Z X2 c,.,= ) ) X_A .c (7.12)
i 3al J 7id §71 k=1 k "xj 713

The new forms for the ocoup{ed c.m.o.s. are then used to construct a new F
operator, and hence a new F matrix, and the process repeated until the

total electronic energy varies by less than 0.0001 a.u.
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Section 2  Solution of Simultaneous Non-Linear Eruations

The satisfaction of the orthogonality conditions by an analytical
method, as discussed in Chapter Three, requires the solution of a set
of simultaneous non-linear equations. A program SIMEQN was written to
attempt the solution of such a set of equations, using a package from
the CERN Program Library, NEWTON, which carries out an M-dimcnoional
generalisation of the Newton-Rapheson method (where M is the number of
equations).

The solution, a, of a single non-linear equation

f(x) =0 (7.13)
may be obtained by Newton-Rapheson iteration in the following way.

If X, is an approximation to the solution, a better approximation, x40

is given by the general formula

Xn =X -1 " f(Xn—‘l)/f, (xn—1) (7'14)

ot

where

£ (x ) - 20 (7.15)

d Xn—-‘l

x, is then used to obtain a further value, x

give a series Xy X

o and the process rcpeated to

g1 Xpeees IT equation (7.13) has a solution at x = a

the series will converge to the value of a providing £ (a) # 0 and

]
f (x) is continuous at x = a.123
The CERN Library subroutine NEWTON searches for the solutions

ageeeedy of a set of M simultaneous non-linear equations

|
(@]

f1 (X1""XM)
f2 (X1....xw9

1l
o

(7.16)

oy (x1....xM) =0



Using vector notation, A contains the solutions Byeseedy and equation

(7.16) is written

Il
o

F (X

(7.17)

If the wvector zo contains x10 x2?°"XMO’ approximations to the values of

n

8,8,e4-8y, & series of sets of improved values X , (n = 1,2....) is

given by

oo (N Ie HT

[R=s]

where G (X) is the Jacobian

¢ (%) _QAE (®

4a-)£
with elements arf. (X, 0000 )
R Sl A

1d 3 x.

J

and

P =F @ ).0e @ H1T

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

If equation (7.17) has a solution at X = A the series Zé (n=1,2.04)

will converge to A providing firstly the functions fi(i = 1ee..M) and
their first and second partial derivatives are continuocus and secondly
the Jacobian matrix g (z) has a non-vanishing determinant at X.

The subroutine NEWTON only accepts a new vector ZF if it satisfies

the following two conditions.



1) That the method is converging. This 1s tested by comparing the
sum of the squares of the functions f1""fM evaluated with the new
values of Xyeee Xy z?, with those evaluated with the previous values

~1
of X oo e Xy ZP . For convergence

u M
) 5P K 2 (@ hTP (7.23)

=1 1=1

[ N

2) That zn lies within a domain defined by the user of the
subroutine NEWTON. This provides the facility to put limits on the
individual values of XyoeeeXye

If one of these conditions is not satisfied gM is reduced by 2"

(m = 1,2....) until E? does obey the conditioms.

X - _)22_1 - gn/gm (7.24)

The maximum number of reductions allowed must be specified by the main
program and a value of 10 was used in the program SIMEQN.
ZF is accepted as a solution to the set of simultaneous equations

if one of the conditions below is satisfied

|2, (2] { 07 (7.25)

or /
J

e ———

[£,(x)1? (o™ (7.26)

1

M,

i
k and 1 are set by the main program and a value of 5 was used for both.
If these conditions are not satisifed after a certain number of cycles
the calculation is stopped. The number of cycles allowed is set by the
main program and a value of 20 was specified in SIMEQN.

The CERN package consists of the function NEWTON, described above,

together with a subroutine LINEQN and two functions SCAL and TEST. The
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user of the package has to supply functions SYSTEX (defining f1....f®9

and LIMITE (setting bounds on the values of x1....xw9 and the subroutine

DERIVE (defining the Jacobian G (X)), handing them over to the function

NEWTON by means of an EXTERNAL statement in the main program.
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Section 3 Electron Density Calculations

The program CONTAN was written to evaluate 8 velues according to
equation (6.6) using the Calcomp graph plotting routine to draw &
profiles and S contour diagrams. The axis system used for a bond
between atoms A and B is that used in reference 44 and is shown in

Figure 7.2.

Figure 7.2 Avis system used in electron density calculatinons

for a bond between atoms A and B

’

A sigma-bond is symmetrical about the inter-nuclear axis and it was
chosen to draw contours of % in the x-z plance. For a pi-bond,
S contours were drawn in the plane of the bond, so that for a 2py
pi-bond, for example, contours of S were drawn in the y—z plane.
The contours of & were obtained by a method based on that given by
124

Wahl. A contour line indicating a difference density value C in the

x—z plane is defined by the equation

S (x,2) = ¢ (7.27)
and its path by the relation
Jdx dz

as = =0 (7.28)

o

The direction of the tangent at any point on the contour is then given by

Ax 38 fax

Az 35/8x

(7.29)
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Assuming the point (xo, zo) is on the contour, a second point on
the contour may be found in the following way. A small step, As, is
taken along the tangent to the contour at (XO, Zo> to (x’ , Z'), where

/

X = XQ + AX
(7.20)
/
z =2 + Az
o
A2 2\E
and As = (Ax° + Az°) (7.37)

In the program CONTAN a step of 0.02 a.u. was taken. The difference
/ .
density, & , at the point (x', zl) is calculated, and the difference

between this value and the required contour value found.

AS = S'(xl, zl) - C (7.32)

A correction is then applied perpendicular to the initial

tangent, along the line

Az’ ‘")%// A%

(7.33)

a distance given by

e a8, /]

S ax! dx" 38 /ax
to a point which it is hoped lies on the contour. The correction is
continued until AS falls below an acceptable value. This was taken
as 0,0005 a.u. in the program CONTAN. This point is then joined to
the previous point on the contour, (xo, zo), by a straight line. The
process is repeated to trace out the entire contour. The incremental
step, As, was chosen small enough to give points sufficiently close

together to prescent a smooth curve. The first point on the contour,

needed to start tracing out the contour, was found from the profiles of

8 along the internuclear axis.
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Abstract. The localised molecular orbitals (I.m.o.s) of the formaldehyde molecule are computed in a
rigorous manner at the Hartree-Fock level of approximation using a minimum basis set of Slater
atomic orbitals. The theoretical and chemical significance of the results is examined.

1. Introduction

This work is an application of the general theory put forward some years ago [1] for
the computation of localised molecular orbitals (l.m.o.s) in molecules at the Hartree-
Fock level of approximation. The motive for working with such orbitals is that they
may be used in molecules of any size whereas the familiar canonical m.o.s can only be
used at this level of approximation with molecules which are small by chemical stan-
dards.

The 1.m.o.s also have the advantage of being conceptually and algebraically simple
with the result that correlation problems are easily studied with them. The l.m.o.s are
also closely related to chemical theory and also to valence bond theory. The [.m.o.s
are ideal for describing bond breaking processes. They are not so useful as the canon-
ical m.o.s for describing ionisation processes.

2. Theory

This is a brief outline of the general theory given earlier [1]. Full details and defini-
tions may be found there.

The well established method of computing the m.o.s(¢") of a closed shell molecule
is based on the Hartree-Fock equation

Fo; = ei;, (1)

where Fis the Hartree-Fock operator defined in the usual way for a closed shell system
and e; is the eigenvalue which is approximately equal to the ionisation energy of the
electron in the ith m.o.

The m.o.s given in (1) are the canonical m.o.s which are distinguished from the
l.m.o.s by the prime. The canonical m.o.s are often thought of as ‘the m.o.s’ of the
molecule and they are in general spread over the entire molecule. But the single deter-
minant wave function constructed from these m.o.s is invariant under a linear trans-
formation and this fact was widely used some ten years ago [2] to localise the m.o.s of

0. Chalvet et al. (eds.), Localization and Delocalization in Quantum Chemistry, Vol. I, 99-105. All Rights Reserved
Copyright © 1975 by D. Reidel Publishing Company, Dordrecht-Holland
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a number of small molecules into the |.m.o.s which are confined within small regions
of the molecule and which resemble closely the chemical bonds and lone pairs of
classical chemical valence theory.

This route to the l.m.o.s via a linear transformation of the canonical m.o.s is not
useful for large molecules because their canonical m.o.s are not available. It is thus
essential to find an equation which will give the I.m.o.s directly and this is just the
generalised form of the Hartree-Fock equation

n

Féi= ) ewds. )

k=1
When this equation is written in the form

"

Fo; - Z enPr = €;i; 3)
k#i=1

it is clear that this will become a simple eigenvalue equation if the sum on the left is
made to vanish. This is done by supposing that we are interested in the 7th l.m.o. alone,
as we often are, and that all other l.m.o.s are given and fixed. The fixed orbitals form
a function space called the fixed space which is part of the Hartree-Fock space. The
remaining part of the Hartree-Fock space is called the free space and it contains the
required orbital ¢; and the virtual orbitals.

The essential point now is to construct the two spaces to be mutually orthogonal so
that any function in the one space is orthogonal to any function in the other space.

We then select a basis for the free space uy...u, (s is the quantity called t —n+1
earlier [1]) and then expand ¢; over these functions

¢i = Z cqiuq' (4)
q=1

Putting (4) into (3) and using the orthogonality of the two spaces gives the secular

equation for the ith l.m.o.

5

ZI ci(Fpy—€iS,) =0 (p=1..9). (5)
a=

The required function ¢; is the lowest and only negative eigenvalue of this equation.
It is natural to select for the functions u, an approximate form of the required answer
in order to get the secular determinant into a near diagonal form from the start. This
was done in the earlier work and in the present work and seems quite successful but
other choices are possible.

This theory has been tested by us [I] and by others [3] with good results.

3. Example of the Formaldehyde Molecule

The basis set of Slater atomic orbitals for this molecule contains 12 functions so the
complete Hartree-Fock space is 12 dimensional. There are 16 electrons in 8 doubly
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occupied l.m.o.s so the fixed space is 7 dimensional and the free space is 5 dimen-
sional.

To get a start, the 8 doubly filled l.m.o.s are chosen in the simplest possible way
with the lone pairs represented by pure atomic orbitals and the chemical bonds as
Pauling hybrids combined together into non-polar bonds. Suppose that we are com-
puting the I.m.o of one of the carbon-hydrogen bonds. Then the fixed space is the
7 functions given approximately by the inner shells 15 and lsc, the two other bonds
pien and peq plus the n bond 7o and the two lone pairs 15, A5. The nest step is to
generate 5 functions which are orthogonal to these 7 functions. There are various pos-
sibilities here but we have so far used the Pauling hybrids to form non-polar anti-
bonding l.m.o.s corresponding to the four bonds. The functions are then orthogonal-
ised by the Schmidt procedure or otherwise and the secular determinant is set up and
solved in a straightforward way.

This process may then be repeated for all the 8 occupied I.m.o. using in a calcula-
tion on a given bond the improved orbitals from the earlier computations. After this
has been done, we have 8 improved functions, It is possible to recycle the entire theory
through all 8 bonds again and we have done this but the results suggest that a second
cycle is not important as compared with the first cycle.

The main complication with this method is the necessity of generating sets of mutu-
ally orthogonal functions. The severity of this problem varies from case to case. In
some cases, there is no difficulty whatever, [1] but where there are lone pairs present,
the orthogonalising requires care. This topic will be dealt with elsewhere in detail.

4. Results on the Formaldehyde Molecule

The following general points have been established.

(i) the total energy calculated with this theory is identical with that computed using
the canonical m.o.s so the many electron wave function is the same for both sets of
m.o.s.

(ii) The total energy obtained and so the total wave function are independent of the
starting point and it seems from the limited results available now that the individual
l.m.o.s are also independent of the starting point.

(iii) The theory is stable to the choice of starting point and we have never encoun-
tered divergence difficulties when using the theory in a straightforward way.

The specific results are summarised in Table I and Figure 1. Figure 1 shows the
eigenvalues for the canonical m.o.s the l.m.o.s and the symmetrised 1.m.o.s which
differ from the 1.m.o.s only in the use of the sum and difference of the two C—H
bonds. The set of ‘symmetrised i.m.o.s’ all transform in the conventional way as the
rows of the character table. The I.m.o.s do not transform under an irreducible repre-
sentation of the group but under a reducible one.

Inspection of Figure 1 suggests that the canonical m.o.s and not the l.m.o.s describe
the ionisation process so in dealing with ionisation (and probably excitation) processes
one should use canonical m.o.s as far as possible.
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Fig. 1. Eigenvalues with various sets of molecular orbitals vs experimental ionisation potentials.

Table [ gives the detailed form of the l.m.o.s and the significance of these is discussed
in the following section. As a rough guide to these forms we write

tey = 0.47 1sy + 0.44 25, + 0.44 2p
teo =0.652pzg +0.352sc + 0.38 2pc

co =0.67 1c + 0.61 7.

We also define a truncated function ¢ which is the original function with the con-
tributions from other atomic orbitals crossed out, and then the function renormalised.
The overlap integral between the two functions ¢ and ¢ T gives a measure of how well
localised are the l.m.o.s. The results are usually expressed in terms of the quantity d

given by
d=100(1—<¢ | ™)
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and d1s called the delocalisation parameter. If the overlap integral is 0.990 then d is
about 10. Our impression from earlier work is that a ¢ of less than 10 is required
before the function may reasonably be called ‘localised’. The highest d value of this sort
of orbitals is 8. '

The total energy using the functions given in Table I is —144.8532 a.u. and that
computed with all the functions in truncated form is —144.8066 a.u. [t is our impres-
sion that the third decimal place in these numbers is probably significant so we can
conclude that the *hyperconjugation energy’ of the molecule is about 1.5 eV. We have
done computations to break this down to show that the delocalisation of the n lone
pair accounts for about 1 eV of the total and the delocalisation of the C—H bonds
accounts for about } eV each. This result is similar to that obtained in the methane
work [1].

5. Chemical Information and Simple Electrostatics

The computation of wave functions and expectation values of observables is for some
workers the end of the matter but for many the results only assume significance when
translated into visualisable terms and familiar quantities such as hybridisations, bond
polarities and a variety of electrostatic quantities such as ion-dipole, dipole-dipole
interaction energies. The value of these ideas lies in their simplicity and ease of use by
non-specialists in dealing with large molecules. In this section we interpret these results
along these lines.

Thinking first of an isolated bond, then the l.m.o. given in Table | may be written as

n=0.67 e+ 0.61 ng
Uco =051 hyc +0.65 hyg
Uey = 0.47 1sy 4+ 0.61 hyc.

If one define atomic populations in the usual way one has the population diagram

0.84 H

01‘17——0.83C1ﬂ5
~
0.93 (5/7) 101 H

and the corresponding hybridisation diagram is

These results may be compared and contrasted with conventional chemical dogma on
these matters.

An interesting question is that of how much energy bonds gain by being polar rather
than non-polar. It is true that much depends on the definitions of the terms ‘polar’
and ‘non-polar’ here but we found earlier that a carbon-hydrogen bond in methane is
increased in energy by about 4 kcals/mole as a result of its polarity and perhaps much
the same will be true for the formaldehyde bonds. We might call this quantity the
‘ionic bond energy’.
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A related idea is that one may usefully think of polar bonds as interacting by simple
electrostatics as two dipoles do. We found some support for this idea in our earlier
work [1] when the interaction energy of two polar C—H bonds in methane appeared
to be about | kcal/mole for a pair of bonds. We have looked for evidence of bonds
polarising each other but we have found none so far this work.

It is important to be cautious about these last two points because the values in-
volved are very small and, strictly speaking, we cannot rely on the accuracy of the
integrals to this extent. Nevertheless, these results do emergy in a consistent fashion
from the computations.
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