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ABSTRACT

This thesis is concerned with a study of inelastic electron-atom collisions
with the incident energy ranging from just above the first ionization
threshold to some energy where the First Born approximation becomes valid.
The main physical effects which need to be‘included in the theoretical
treatment of such collisions are electron exchange and distortion of both the
atomic system and the wave describing the external electron. A method which
takes account of these effects, to be referred to as the Distorted Wave
Polarized Orbital (DWPO) approximation, is described. Three models based
on this approximation are developed and applied to electron collisions with
the light atoms hydrogen and helium.

In particular the models are applied to the following collision processes:

e + H(1s) ~ e + H(2s, 2p, 2s + 2p);

e + He(llS) > e + He(nl’BL), n = 2,3,4,5, L = S,P.

Results are presented for the total (integral) and differential cross sections
and also, where appropriate, for the parameters describing the orientation and
alignment ﬁroperties of the excited atom. The results are compared with those

of other theoretical methods and with experimental measurements.
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CHAPTER 1

REVIEW OF RECENT THEORETICAL MODELS

§1.1 Introduction

During the last few yeérs, there has been consideratle progress in the
understanding of electron impact excitation of atoms. Experimentally, an
increasing volume of absolute differential cross section data is available
for such collisions with the light atoms hydrogen and helium, particularly the
latter. It is with these two atoms, theoretically the simplest to treat, with
which this thesis will ke mainly concerned. When dealing with electron impact
excitation of these light atoms, it is convenient to divide the range of
impact energy possessed by the incoming electron into three regions.

Firstly, there is the high energy region, defined essentially as that region
where the First Born Approximation and its related methods are believed to ke
valid. Hence, this region may be accounted for theoretically; the papers of
Truhlar et al. (1970) and Rice et al. (1972) provide a comprehensive review of the
various Born models when applied to excitation of the 21P and 21S levels of
helium respectively. At the other extreme, there is the low energy region,
basically lying below the first ionization threshold. Here the close-coupling
methods, developed by Burke, Smith, Seaton and others, have been used with
considerable success to study low energy resonances. Applications to electron-
hydrogen collisions have been made by Burke and Taylor (1966), Geltman and
Burke (1970), Burke and Webb (1970) and more recently by Callaway and Wooten
(1974, 1975).

For helium, reference may be made to the work of Smith et al. (1973), Ormonde
and Golden (1973), Oberoi and Nesbet (1973). A more recent approach, based
on the R-matrix method (Burke et al. 1971), has been applied to the elastic
scattering of electrons from hydrogen and helium atoms by Burke and Robb
(1972). The method has been further applied by Berrington et al. (1975)

to a study of low energy electron scattering by helium atoms: where a comparison



is possible with experimental results, the agreement is satisfactory. Generally,
it may therefore be said that methods are available for dealing with this impact
energy region.

However, it is the intermediate energy region, lying between the two
described above, which attracts much current interest. Here there is no
longer a finite number of open channels as in the low energy case, rather an
infinite number may now be open. A recent sophisticated model for electron-
hydrogen collisions has been developed by Callaway and coworkers (see Callaway
et al. (1976) and references quoted therein). Their method involves a close-
coupling pseudo-state approach for the .lower order partial waves and a distorted
wave polarized orbital-treatment of the higher partial waves. For energies
below 4 Rydbergs the method is successful in predicting the n = 2 differential
cross sections for hydrogen excitation compared with experiment, while above
this energy, quite good agreement with experiment is obtained by a similarly
sophisticated method due to Kingston et al. (1976). Here, the close-coupling
approximation is employed for the lower order partial waves and the unitarized Born
approximation for the higher partial waves.

Theoretical treatments, however, of the electron impact excitation of
helium in the intermediate energy region are not quite so advanced, especially
for transitions due to spin-exchange alone. Broadly speaking, theories may be
classified into one of the following categories:

1. Plane wave models

2. Eigenfunction expansion techniques whereby the wave function for the
whole system is expanded in a complete set of suitable eigenfunctions

3. Various semi-classical (eikonal) approaches

4. Distorted wave treatments

5. The many-body approach which in fact has recently been found to be
connected to the fourth category (Rescigno et al. 1974).

In the following a brief and formal account of scattering theory will be
presented, and in the remainder of the chapter, a short description of the

above five categories of theoretical treatments to the problem.



§1.2 Formal Scattering Theory

Under this headirg the elements of formal scattering theory will be
presented; for a thorough and detailed éccount see, for example, Goldberger
and Watson (1964). Let W; be the wave function belonging to the initial
channel for the complete physical system under consideration. Then W;

satisfies the Schr8dinger equation

(H - E) w; =0 (1.2.1)

where H is the Hamiltonian for the total system and E the corresponding

energy. H 1is divided into two parts:

H = Ha + Va (1.2.2)

where Ha 1is the unperturbed Hamiltonian and Va is a perturbation,

due, for example, to the presence of the scattering electron. The subscript
a denotes quantities in either the initial channel (a = i) or the final
channel (a = f). The eigenfunctions of H will be denoted by v, with

energy eigenvalue Ea such that

Hy =Ey_ . (1.2.3)

The Green's function operator for the unperturbed system in the initial channel

'is written formally as

+ _ 1
i % E.°H,+1ic (1.2.1)
i 1

with € a small positive number such that, when all manipulations have been
completed, the limit as ¢ > 0+ is finally taken. With this definition of
-’.

Gi the SchrbBdinger equation (1.2.1) may be rewritten in the form

vyt =y, v+ af v, ot (1.2.5)
1 1 1 1 1

which is often referred to as the Lippmann-Schwinger equation.
The Green's function operator for the full perturbed system may be

similarly expressed as



+ 1

G :m . (1.2.6)

The superscript (+) denotes here and elsewhere that the function satisfies
outgoing wave boundary conditions. Hence equation (1.2.5) may be manipulated

symbol ically to give the formal. solution

€
]

+
.t . Y.
wl G Vl ll',l

+
(L +6G Vi)lbi . (1.2.7)

However this solution is no nearer to obtaining W; than (1.2.1) since the
operator expression on the right hand side involves a knowledge of W;:

Premultiplying (1.2.7) by V, one obtains

Ty, =V, Y] (1.2.8)

where the transition operator T acting on the initial unperturbed wavefuncion

of the system is given by

~ +
T=V.(1+6 V). (1.2.9)
The T-matrix element, Tif’ for a transition from state i +to state f 1is then
T.. = <y vy s (1.2.10)
if £7i7 7 _ Tes

The subscript on V has been deliberately omitted for the following reason:

for rearrangement collisions there is no reason for preferring Vi to Vf

in (1.2.10). In fact, instead of premultiplying (1.2.7) by Vi the same

operation and definition could have been derived from using V The difference

f,‘
which may arise from calculations using either Ve or V. in (1.2.10) is
generally béférred to as the post-prior discrepancy.

Working with atomic units, the differential cross section for electron

impact excitation scattering processes is defined to ke .

k .
do _ 1 £ 2 2 -1
aw - 472' ki lTifl ao sr - . (1.2.11)

Here, ki denotes the momentum vector of the incoming electron and kf that

of the outgoing electron;(1l.2.11) may essentially be interpreted as a measure

of the probability of scattering into particular solid angles.



The probability of scattering at all is obtained by integrating (1.2.11) over

all solid angle to obtain the total cross section in the form

k 1 .
2. 1 ¢ 2 2
Qif(ki ) = = . [ lTif] d(cosd) wa * . (1.2.12)
2w i /-1

Comparison of experimental and theoretical total cross sections provides
probably the simplest test of any theoretical model whereas that between
differential cross sections provides a more stringent test.

A quantity closely related to the total cross section (1.2.12) is the

generalized oscillator strength, fif(ﬁ), defined by
£..(K) =2 (E. - E.) |e (1<)|2 (1.2.13)
TS R A A £ L
where
._ iK.r
eif(K) = g <wf[e-—-—s[¢ > . (1.2.1%)

K 1is the momentum transferred by the scattered electron to the atom, that

is K=k. -k and the sum 1s over the number of atomic electrons. The

—-i £
generalized oscillator strength is related to the total cross'section by
K
max F._(K)
2 2 if 2
Qo (k.7) = = I ———— dK Tma (1.2.15)
if i E(Ef Ei) X . K o
min
with the limits of integration being given as Kmin = ki - kf and Kmax = ki + kf.

§1.3 The Born Approximation

This section will be concerned with a brief outline of the Born approximation
and comments on its @plication to electron-atom collisions. To begin with,

equations (1.2.4) and (1.2.6) are combined so that symbol ically one has

et =ct+atv. ot | (1.3.1)
1 1 1

+ . . . . . .
The Born Series for G  is then obtained by successive iteration of this

equation



+ + + + t, o o
G = G. V.G, .G.V.G. e
Gl + G1V1G1 + GiVlGIVlGl + (1.3.2)

Substituting this expression into the formal solution (1.2.7) for W; and

then considering the Transition matrix element (1.2.10) yields the Born

Series for T.
if

_ ~FBA + + +
Tie = Tip *’“%lVGiVi|¢i> + <¢f[veivigivi|¢i> tous (1.3.3)

where for convenience the first term has been denoted by

FBA

Tig = <wf|v{¢i> . (1.3.4)

Retaining only this term in (1.3.3) results in the First Born Approximation
(FBA) to Tif; retaining also the second term gives the Second Bornm

Approximation (SBA):

SBA _ +
T ;= <¢flv(1 + Givi)l¢i> . (1.3.5)

Further terms may be included but the labour becomes prohibitively complicated;
even in evaluating the second-order term, further simplification is required.
The FBA may be applied in a straightforward manner to electron-hydrogen
collisions for which closed expressions are obtainable for the cross sections
(Mott and Massey, 1965). For the case of helium this is no longer possible
since exact atomic wave functions are not known and resort must therefore be
made to approximate functions. Bell et al. (1969) have employed many-parameter
correlated wave functions for both the initial and final states of helium to

lS, an and nlD states and

study excitation from the ground state to the n
obtained accurate values for the generalized oscillator strengths (see equation
(1.2.13)) and for the total cross sections, equation (1.2.15).

SBA calculations have also been made by a number of authors for electron
impact on hydrogen and helium atoms; see for example Woollingé and McDowell (1973)
and references quoted therein. More recently, Buckley and Walters (1974) have.
used a modified form of the Second Born Approximation to make detailed studies

concerning elastic scattering of electrons by ground state helium atoms and

in a further publication (Buckley and Walters, 1975) concerning excitation to



the 218 level. Both calculations allow for exchange, the inelastic case
adopting the Ochkur approximation. Fufther details may be obtained from the
respective papers.

For a description of those transitions which occur via spin-exchange, the
First Born Approximation (1.3.4) is often referred to as the Born-Oppenheimer
or Born-Exchange Approximation. In such processes, the interaction V no
longer depends on the same coordinates before and after the collision, a result
which gives rise to the post-prior discrepancy as remarked earlier. Born-
Oppenheimer calculations have been carried out by Bell et al. (1966) to obtain
total cross sections for excitation of the 238 and 23P levels of helium
by electron impact over a wide range of iricident energies. Differential
cross sections have been calculated by Steelhammer and Lipsky (1970). When
compared with experiment the Born-Oppenheimer Approximation is found to fail
drastically, particularly at lower impact energies.

A serious drawback of plane wave theories, such as the Born-Oppenheimer
approximation, is their treatment of the incoming and outgoing electron as a
free particle. Provided the perturbation V is small, or equivalently the
passage time of the incoming particle through the neighbourhood of the target
atom is relatively smali, this may be justifiable. If however, the electron
is.in the vicinity of the atom for a longer period, the incident wave distorts
and may no longer be considered that of a free particle. Moreover, exchange-
effects will become more prominent. It is precisely in this important region
that the Born Approximation ighores the presence of the atom. Hence the Born
Approximation can probably be assumed reliable for describing high energy
electron impact excitation of atomic transitions which occur principally via
direct processes as opposed to exchange processes. It is well known that large-
angle differential cross sections calculated in the Born Approximation become
rapidly poorer és the impact energy is decreased. The method also fails at
small angles for elastic scattering and for transitions' from one s-state to
another, this being attributed to the neglect of polarization (see, for example,

the review article by Bransden and McDowell (1976) on electron-atom collisions
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at intermediate energies). At such energies, one is therefore forced to
consider alternative methods and it is with these various methods that the

remainder of this chapter is concerned.

§1.4 Eigenfunction Expansion Techniques

When the incident energy of the incoming electron lies below the first
ionization potential of the target atom, close-coupling approximations have
had considerable success. Essentially the wave function W; for the total

system is expressed as a sum over a set of eigenfunctions:
N
Y., = nzl Yoo () E(x) + x(r,x) . o (1.4.1)

Here, and elséwhere, r represents collectively the coordinates of the orbital
electrons and x the coordinatesof the external electron; the centre of

mass 1s taken to coincide with the atomic nucleus. The win(g) belong to a
complete set, usuélly infinite, which must necessarily be truncated at some
convenient point N for computation; x(r,x) is a correction function which
seeks to take account of those terms omitted by the truncation. Using such

a method, Burke and Webb (1970) studied excitation of the 2s and 2p levels
of atomic hydrogen by electron impéct. In their calculations they chose as

a basis the 1ls, 2s and 2p states (N = 3) of the target and substituted
for x modified 3s and 3p pseudo-states.

However, when %hé impact energy lies above the first ionization threshold,
an infinite number of channels become open ‘and close-coupling methods impractical.
An alternative approach has been given by Bransden and Coleman (1972), referred
to as the Second-Order Optical Potential method. Essentially, a second-order
potential matrix is constructed in order to account for the terms omitted by
truncating the eigenfunction expansion of W;. Referrving to Bransden and
Coleman (1972), a set of strongly coupled states can appear explicitly in the
sum and representation also given to the omitted states. Briefly Bransden

and Coleman write the eigenfunction expansion as



11

¥ (r,x) = ) v () F_(x) (1.4.2)
L A

where, for convenience the (i) subscript has been dropped and the wn(g)
are eigenstates of the target atom with corresponding eigenenergies En. If
those states to be retained in the sum are labelled n = 0...N, the SchrBdinger
equation for the system is shown to be
[V2 + k'Q]F (x) =2 g V. (x) F (x) +u g J dx' K _(x,x")F _(x")
n I'n= neg DMU Tme= =0 = nm == ""m'=
n = 0...N (1.4.3)
where kn2 = 2(E - En), E the energy of the total system. Knm(zlg') is

the second-order non-local potential given in terms of the free particle

Greens function G(kn2;§}x') by the expression

1 - IS 2. ' i t d
K ',(X’Z(_ ) - P:I§+l G(k al(_)l(_ ) Vnp(ﬁ) me(_)i ) . (lou.q‘)

The matrix elements of the interaction potential V(r,x) appearing in this

line are defined by

Vnm(ﬁ) = I wn*(g) V(r,x) wm(g) dr . (1.4.5)

Bransden and Coleman continue.by using closure to simplify (1.4.4) which as it

stands is too complicated to evaluate exactly. The problem therefore reduces to

evaluation of (1.4.4) and subsequent calculation of ther F;(ﬁ) using (1.4.3).
The model has had wide application, the results of which have been published

in a series of papers. Initially, an impact parameter treatment was formulated -

and applied by Bransden et al. (1972) to electron and proton scattering off

hydrogen atoms. A more sophisticated approach, but still in the impact parameter

formalism, was later applied to the same problem by Sullivan et al. (1972),

the chief difference being that former calculations were limited to the one~

and two-channel versions of the theory whereas the latter was a four-channel

approach. Berrington et al. (1973) extended the model to a study of elastic

and inelastic scattering of electvons by helium atoms; in particular they

studied excitation of the 218 and 21P levels. Excitation of the n = 3 levels
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has been considered by Bransden and Issa (1975) who used two-, seven- and

nine- state approximations in their calculations. Electron energies ranged from
100 to 1000 eV. However the validity of such semi-classical methods is restricted
to applications where the incident energy lies in the higher region.

Developments have, therefore, been made to treat the same problem without
the impact parameter assumption and allowing for exchange, hence enabling the
model to be more realistically applied to the intermediate energy region. The
results of a partial wave formalism applied to the elastic scattering of
electrons by hydrogen and helium atoms have been summarized in a paper by
Winters et al. (1974). Bransden and Winters (1975) later extended this distorted
wave formalism to excitation of the 2s 1level of hydrogen and of the 218 and
238 levels of helium over the impact energy range 50-200 eV. In their work,
Bransden and Winters- allowed for polarization effects in the initial channel
when calculating the distorted wave and in the final channel allowed only for
the field of the final target state. This is in contrast to the many-body

approach of Taylor and coworkers, which will be considered in §1.7.

§1.5 Eikonal Methods

For relatively high impact energies and particular transitions, namely
those which can occur via direct interactions as opposed to exchange interactions,
contributions arising from exchange effects may be considered small. In such
cases methods can thereforé be developed which are specifically applicable
only to those processes considered to be dominated by the direct part of the
transition amplitude. The eikonal approach is one such method and has been used
extensively in many forms by a number of authors (the Glauber approximation is one
such form and has recently been reviewed by Gerjuoy and Thomas, 1974). For a
general review on the eikonal theory of electron-atom collisions, see the article
by Joachain (1974).
| In order to emphasise the main idea, the problem is first treated by direct

. . . +
analogy with potential scattering. The wave function Wi assumes the form
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Y. = Ae (1.5.1)

with A and S real, A a slowly varying function of the incident wave
number kyo Essentially the idea is to treat the scattering semi-classically
in which case scattering will be confined to small angles and the particle
trajectory will ke treated as a nearly straight line parallel to the direction
of incidence.

Substituting (1.5.1) into the time independent Schr8dinger Equation
and making the fundamental eikonal approximation, which assumes that

V2A << k2A, k2 = 2E, one finds

(vs)2 = 28 - V). (1.5.2)

Equation (1.5.2) isthe Eikonal Equation, whose solution S is now
substituted into (1.5.1) which then becomes thé eikonal wave function and
forms the basis of the eikonal theory.

A recent development of eikonal methods has been the multichannel eikonal
treatment, formulated and applied in a series of papers by Flannery and McCann.
Briefly, equation (1.5.1) is replaced by a truncated sum over unperturbed

target eigenstates ¢n(£):

N N is_(x)
¥, (r,x) = ) b (z,x) a (x) e T, (1.5.3)
n=l
ikn.z
b (z.x) = ¢ (r) e .

which therefore allows for different trajectories in each channel represented
in the sum. The coordinate X is expressed in terms of the impact parameter
~p and the distance z measured from the centre of mass along a line parallel
to the incident direction, x =p + z%: Substituting (1.5.3) into the time-
dependent Schr8dinger Equation and noting that, classically. t = Z/Vi’ it

is found that the aan’z) satisfy the set of first-order coupled differential
equations

2 % Sam N i(Sn"Sm)
[km - 2<wmtv|¢m>] 3 = - i nim a  <v [V[y > e (1.5.4)
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which is basically equation (9) of Flannery and McCann (1974). These equations
are solved subject to the boundary conditions an(p,-w) = Gin' V is as
usual the interaction potential.

The multichannel form of the T-matrix is then obtained by substituting

for Wi+ in the expression
' +
Tif = <Ibf(kf§_1_‘_,_>§)!V(£,3<_)l ¥, (ki;£,§)> . (1.5.5)

Further simplifications are made according to the process under consideration,
details of which are outlined in the respective papers by Flannery and McCann.
A point to be made is that (1.5.3) allows for exchange only implicitly;
no explicit account of exchange is included in the model. It is possible to
include pseudo-states in an effort to make allowance for those states omitted
by truncating the sum. Calculations have been carried out by Flannery and
McCann (1974) with and without pseudo-states in a four-state and seven-state
treatment for elastic and inelastic scattering of electrons from atomic
hydrogen. Small-angle (less than 40°) differential cross sections for excitation
of the 2p level are in very good agreement with experiment.  Agreement
for the 2s 1level is not so good, this being put down to the fact that
exchange and polarizatiqn effects are negleéted. The results of a ten-state
calculation for inelastic electron-helium scattering have also been published
(Flannery and McCann, 1975); as should be expected the method is generally
successful for forward-angle scattering tut fails appreciably in the backward
direction where exchange is considered to dominate. Total cross sections
are in good agreement with experiment for impact energies above ldO eV.
Another eikonal based method has been formulated by Byron and Joachain

(1973a). The solution of (1.5.2) may be written

;
S = const. + j [Q(E - V):lz dz (1.5.6)

where the trajectory of a straight line along the z-axis parallel to Ei

has been used.



As z + - ®, S 1is required to yield a plane wave, whence
' z :
S = k;z - J [2(3 - vi]% dz! (1.5.7)
3 . .5,

For high impact energies the integral may be approximated to x:

X = - %}- Jw vdz (1.5.8)
i ~c0

which is the well known Glauber approximation to S. Substituting into
(1.5.5), one obtains the Glauber T-matrix element

G i
Toe = <¢flvle vy (1.5.9)

Byron and Joachain (1973a) go on to show that this reduces to the form

G _ _ . iK.p ix_
Tie = - ik, J dpe <wf[e I (1.5.10)

Here, p 1is again the impact parameter defining the straight line trajectory
with respect to the target atom and K the momentum transfer. The eikonal

factor is expanded and (1.5.10) rewritten in the form of the Glauber Series

G @ .n G
= -3 =
Tye=-ik, 1 o7 T (1.5.11)
n=l
with
T € = < x> (1.5.12)
n f i L . L]
This is in close analogy with the Born Series (1.3.3) for Tif' Byron and
Joachain then take for the Eikonal Born Series
TEBS o oFBA y SBA | 48 (1.5.13)

if if if 3

S
where Tg is treated as a correction term to the Second Born element TiiA.
The model has been further developed by using the Ochkur approximation to
account for exchahge effects; details may ke obtained from the paper by

Byron and Joachain (1973a). The method has been successfully applied to the

elastic scattering of fast electrons from helium (Byron and Joachain, 1973b)

15
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and to the elastic scattering of electrons from atomic hydrogen at intermediate
and higher energies (Byron and Joachain 1974). More recently, Byron and Latour
(1976) applied the same method to electrcn impact excitation of the n = 2
states of hydrogen above 100 eV and obtained good agreement with experiment
for scattering angles less than 100°. Byron and Joachain (1975) have also
considered electron impact excitation of the 218 level of helium at
intermediate and high energies. However, in this case a slightly modified

version of T?BS

g Was adopted,

EBS _ TG - T ¢ + TSBA ) (1.5.14)

Tif 2

Their differential cross section results are seen to be in good agreement

with experiment over the whole angular range.

§1.6 Distorted Wave Theory

It has already been remarked in §1.3 that, when the interaction Letween
the incident electron and target atom causes only a small perturktation to
the system, the external electron is considered to be adequately represented
by a plane wave. This, it will be recalled, is bésically the Born approximation
which is expected to be valid at high impact energies. However, as was pointed
out earlier, when the perturbation is no longer weak, distortion becomes
important and plane wave theories break down. Essentially, the distorted
wave technique recognises that the wave describing the incoming and outgoing
particle will be distorted due to the presence of the target and consequently
attempts to incorporate distortion effects into the equations defining the
cross sections.

Deﬁoting(}antities in the initial channel by the subseript i. and those
in the final channel by £, the interaction potential V is divided into
two parts

V =U. + W, (1.6.1)

1t
(e
+
=




such that the U's depend only upon x, the coordinate of the free electron.

Similarly the total Hamiltonian H is divided into two parts:

H=H + W, (1.6.2)
= Hf + Wf
with
H, = Hy +U; (1.6.3)
= Hf + Uf
and Hi’ Hf the unperturbed Hamiltonians.

The Lippmann-Schwinger equations satisfied by the total wave functions

for the system, W; and V¥ (the time reversed TI), are written

£
+ 1 +
wi 11).‘?. + E.—Hi+is Wl
(1.6.4)
Yo o=y b VY
£ Yf T E.-H_-ie £
i f

where notation follows that of §1.2. Similarly the state functions of H-i

and H, satisfy the equationms

f
+ 1 +
¢, = Y. + — - U.¢.
i i Ei Hi+1e 11
(1.6.5)
PR S Y
£ f  E.-H_.-ie £f'£
i'f

Formally equations (1.6.4) and (1.6.5) have solutions in direct analogy with
(1.2.7).

The T-matrix element is given by

- to_ y”
Tip = <V V¥ = <V V> (1.6.6)

so that from the above equations, after appropriate formal manipulations,
the well known two-potential formulae may be obtained (see for example

Messiah, 1970):

17
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3
!

g5 = <Ol VWl + <ogliglvi>

(1.6.7)

<¢f[V-Wi[¢;> + <w;[wi|¢;>

Provided the initial and final target states are different, the first
term may be shown to vanish in each case. The Distorted Wave Born Approximation
(DWBA) to T, ¢ is then derived by approximating WI by ¢I and similarly

W; by ¢; so that (1.6.7) reduces to

DWBA _ =1t
T;e = <¢flwl¢i> . (1.6.8)

It is instructive to compare thisexpression with the First Born Approximation
to Tif:

FBA
Tie = <Ve[V]y;> . (1.3.4)

Physically, the potential U may be said to distort the waves subsequently
seen by the second potential W. Equation (1.6.8) is interpreted as the
Born Approximation for scattering by W in the presence of the distorting
potential U. There is clearly a close analogy between (1.6.8) and (1.3.4),
the latter describing the scattering of undistorted or plane waves by the
potential V.

Joachain and Vanderpoorten (1973) have combined the DWBA with the Eikonal
approach. Basically they choose U by using the Glauher approximation
and then compute the distorted wave functions ¢; and ¢; as eikonal wave
functions (equation (2.4.2) of their paper). However, the method neglects
the effects of exchange between the incoming electron and those of the target
and hence is only suitable for describing direct excitation processes at
‘higher impact energies. Coupled with the additional eikonal restrictions,
the theory can only be expected to hold for small-angle scattering at
intermediate and high impact energies. - This is indeed found to be thé case.
Joachain and Vanderpoorten (1973) employed the model to study inelastic scattering

of electrons and protons by atomic hydrogen at intermediate impact energies.



Similarly excitation of the ols and 2'P  levels of helium has been discussed.
in later publications (Joachain and Vanderpoorten, iQ?ua and 1974h).

Distorted Wa&e results for excitation of the 21P level of helium by
electron impact have also been published by Madison and Shelton (1873). In
their calculation, the distorted waves are computed, without exchange

considerations, on the potential

-2z
X

+ V3(x)

in the initial and final elastic scattering channels. Z is the nuclear charge
and VS(E) is defined to be the spherical average of the interaction of the
free electron with the atomic.electrons in the respective channel. The
calculation does not allow for target distortion which for intermediate

energies is considered important. Nevertheless their results are surprisingly

good.

§1.7 Many-Body Theory

The Many-Body Green's function techniques of Martin and Schwinger (1959)
have been used by Schneider et al. (1970) to formulate an approximation
scheme for the dastic scattering of electrons from atoms and molecules.
Using this first-order approach, namely fhe Random Phase Approximation (hence-
forth abbreviated to RPA), Yarlagadda et al. (1973) studied elastic scattering
of electrons from helium at impact energies below the first ionization
threshold. Thomas et al. (1974) extended the method to treat inelastic
scattering of electrons from helium over the intermediate energy region and
obtained particularly good agreement with experimental results for excitation
of the 21P level. In their paper the direct and exchange transition matrix

elements are given in the RPA as

D (+),y (=) 1 _RPA (1.7.1a)
T = | £ (x) £ “( X ,v) dxd _
J K, 2 Fi X Tay] (y>y) dxdy
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E (+) (-) 1 RPA '
T = | £ (x) f “( X ,x) dxdy. (1.7.1b
| =

fif) (r) and fi;) (r) are the Hartree-Fock continuum orbitals (distorted
waies) with outgoing and incoming wave btoundary conditions respectively.

XRPA is the transition density matrix element computed between the final and
initial target states, calculated in the RPA. The theory allows for exchange
in determining the distorted waves but omits polarization.

An interesting feature of the model is that the centinuum orbitals are
both calculated in the field of the initial state of the target. Or, in other
words, the outgoing electron sees the initial state of the atom so that
scattering occurs before the atom makes the transition to its final state.
Such a description is referred to as the two-time model. More recently,
maﬁy—body theory has been extended further by Yarlagadda and Taylor (1975)
to describe electron impact ionization and has been applied in first-order
form to the coincident ionization of helium by Baluja and Taylor (1976). The
good agreement obtained with experiment lends further support to the two-time
model.

The many-body approach has also proved useful by offering insight into
other physical aspects of electron-atom collisions. For example, terms arise
in the formalism which may be interpreted physically as arising from
polarization effects, screening effects due to the atomic electrons, final-

state interactions and each with corresponding exchange counterpart. A full

20

description of these interaction ‘terms and others is to be found in the papers

by Csanak et al. (1973) and by Csanak and Taylor (1973). A defailed review
of the many-body theory approach to atomic collisions is given in the article
Ey Csanak et al. (1871).

It is interesting to note that in the distorted wave calculation by
Madison and Shelton (1973), the best results were obtained when the final
channel distorted wave was computed in the field of the target ground séate,
in agreement with the two-time model. Rescigno et al. (1974) have since

shown that in lowest-order, the many-body field theory method can be
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expressed as a distorted-wave model whereby the distorted wave in both the

initial and final channels is a Hartree-Fock continuum orbital calculated in

the field of the target ground state. Essentially, Rescigno et al. derive,

by using second quantization techniques and the RPA, the expression given by
Csanak et al. (1971) for Tif . Then, using the distorted wave approximation
coupled with the RPA, they obtain the same expression for Tif’ thus demonstrating

the equivalence of the two methods.
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CHAPTER 2

THE DISTORTED WAVE POLARIZED ORBITAL METHOD

§2.1 The Polarized Orbital Method

The method of Polarized Orbitals is particularly suited to the study
of electron-atom collisions over the intermediate energy range referred to in
Chapter 1. It is a method basedon physical reasonableness rather than a
mathematical derivation from first principleé, and as such is an attempt to
account for the distortion induced in the target system by the presence of
the free electron. This distortion will, of course, also apply to the wave
function for the scattering electron. Another dominant effect in this impact
energy region arises from the exchange interactions between the scattering
electron and the bound electrons. The Distorted Wave Polarized Orbital
(atbreviated to DWPO) approach, applied by McDowell et ai. (1973) to electron
impacf excitation of the 1s + ns transitions in atomic hydrogen and singly
ionized helium is‘designed to allow for these two effects of polarization and
electron exchange. Earlier Bell and Kingston (1967a,b,c) used a polarized
orbital approach to calculate photoionization cross sections of helium singly
ionized lithium and negative hydrogen ions respectively, and obtained accurate
results. Motivated by this work, Lloyd and McDowell (1969) applied the
polariéed orbital approximation to calculate total cross sections for electron
impact excitation of the 2s and 2p levels of atomic hydrogen for electron
energies up to 9 Rydbergs. Subsequently, the DWPO method has been developed
by McDowell and coworkers to study differential scattering.

Originally,in a study of polarization and exchange effects on the
scattering of electrons from atoms,in particular, oxygen, Temkin (1957)
introduced the method of polarizea orbitals. The technique was later used by
Temkin and Lamkin (1961) and by Sloan (1964) to calculate the lower order

phase shifts for electron-hydrogen collisions.
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Modifications to the polarized orbital method have been made by é number
of authors. In particular, modified versions have been applied to the
elastic scattering of electrons from helium by LaBahn and Callaway (1964) and
from hydrogen and helium by Callaway et al. (1968). For a comprehensive
review of Polarized Orbital Approximations, see the review by Drachman and
Temkin (1972). In the following, a brief outline of the original polarized
orbital approach will be presented with a view to emphasising the main ideas
as summarized by Duxler et al. (1871) describing their application of the
theory to scattering of electrons by helium. Hence to be specific, scattering
of electrons by a general two-electron atom or ion possessing nuclear charge
Z will be considered.

Here, and elsewhere, the centre of mass for the complete scattering system
is assumed fixed at the target nucleus. The initially bound electrons will
have position vectors r. and T, with respect to this point and that of

1

the incident electron will be Ige

elsewhere throughout the thesis, unless otherwise stated.

Atomic units will be adopted here and

The method essentially offers aprescription to Y;, the wave function
for the whole system in the initial channel, which, it will be recalled,

satisfies the SchrBdinger Equation (1.2.1)
. ,
(H=-E}Y, =0 . (1.2.1)

H consists of the kinetic energy operators and Coulombic interactions
between the particles comprising the system but omits spin-dependent terms.

It is convenient to separate H into two parts
H=H + &V (2.1.1)
where H' is defined to be

(2.1.2)
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and 6V given by

8V = - 12'V32 - %_ + .__rl + -———r:L . (2.1.3)
3 13 Y23
The abbreviation rij = lzi - Ejl has been used. Following Duxler et. al.

(1971), the polarized orbital method has three basic features which for ease
of recognition will be labelled A,B,C.

Distortion of the target is recognised at the outset of the theory and
is hence incorporated into the form of the atomic wave function as a

perturbation correction. Thus, ?; assumes the form
+ _ pol .
(A) vl = A{e,(12) + 821 (12;3) F(3) } (2.1.4)

where the following notation has been employed:

¢.(12) = unperturbed ground state atomic wave function;

pol - . . . .

¥ 7(12,3) = correction function to ¢i(l2) due to the polarization
of the atomic orbitals by the presence & the incident
electron labelled 3

F(3) = electron wave function describing the scattering:

ngtis an antisymmetrising operator acting on all three electron labels.

The incoming electron will induce in the atom electric multipole moments
so that a polarizatioh potential is set up which in turn attracts the
electron and produces further distortion. The adiabatic approximation is
made that the interaction potential between the free electron and target is
varying so slowly that the orbital electrons can smoothly adjust; semi-
classically this amounts to saying that the speed of the incoming electron
is considerably less than that of the bound electrons in their orbits.
Mathematically it may be said that the free electron can be assumed stafionary
and its kinetic energy operator neglected in §V. However, it should be
pointed out that for sufficiently polarizable targets, the incoming electron

may attain a velocity of similar magnitude to the orbital electrons and hence
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invalidate this assumption.

It is further reasoned that the dominant polarization effects come from
that region wherethe incident electron is "outside' the atomic cloud of
electrons, that is r; < r, (i = 1,2). Hence equation (2.1.3) is approximated to

s(rl,rs) e(rz,ra)

oV = - 2 + (2.1.5)

3 3 To3

where e(x,y) is the unit step function defined by

}
o

e(x,y) = X >y

1 X <y.

. Its effect is to "switch off" the perturtation when the incident electron
is "inside" the target atom. Replacing the latter two terms in (2.1.5) by their

multipole expansions and retaining only the first two terms of each, it is

found that

(B) sV = Lo f r, cos 8, _e(r.,r,) (2.1.8)
P32 551 j 33 j*> 3

with Gj 3 the angle between the radius vectors Eﬁ and Tge This is the

dipole approximation to &V; physically it says that 6V is due to a
"stationary" external electron and that it iIs assumed to vanish when the
incident electron penetrates the atom.

It remains to find an equation satisfied by the wave function F(3) for
the scattering electron. In the method of polarized orbitals this is obtained-
by projecting the Schr8dinger Equation (1.2.1) onto the unperturbed ground

state ¢i(12) and integrating over the atomic coordinates:

* + _
©) f 0,(12) [H-E] ¥{(12;3) drydr, =0 . (2.1.7)

YI(12;3) takes the form given by (2.1.4). Equation (2.1.7) is a necessary
condition for W; to satisfy (1.2.1) but it is clearly not a sufficient
condition. W; would only be an exact solution of the SchrBdinger Equation

if the projection of [H~E]W; onto all states of the target vanished.
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Equation (2.1.7) is the scattering ansatz of the theory and will be further
discussed in the next section (§2.2).

So far no mention has been made of how to determine the perturbation
®P01(12;3) of equation (2.1.4). Essentially, the unperturbed ground state

may be taken to be represented by a separable wave function
9;(12) = ¢, (1)¢, (2) . (2.1.8)

When the perturbation 6V is introduced, the orbitals ¢ls(i) become
polarized and ¢.(12) goes over into the perturbed wave function @I(l2;3)
obtained by replacing ¢ls(1) in (2.1.8) by ¢ls(1) + ¢Pol(1,3), i=1,2.

pol is the dipole component of the perturbed atomic orbital due to the

external electron; the problem hence centres on the determination of ¢pol'

Writing &V_ for the dipole approximation (2.1.6) to &V, the total

D

Hamiltonian H of equation (2.1.1) is approximated to Hp:

= ' .
HD H' + GVD . (2.1.9)

The functions ¢Pol(i,3), i =1,2, may now be determined by using a

variational principle, imposing the condition that
* =0 (2.1.10)
6 ¢I HD @I - . odoe

The resulting equation is approximated to fivrst-order in the perturbation
(¢pol) and subsequently reduced to a second-order differential equation satisfied
by ¢pol' For further details reference should be made to the original paper

by Temkin (1957).

To summarize, it is emphasised again that the principal features of the
polarized orbital method lie in;(A) the choice of wave function for the complete
system,(B) the adiabatic and dipole épproximations to the interaction between
the scattering and atomic electrons and (C) the scattering ansatz.

The Distorted Wave Polarized Orbital method of McDowell et al. (1973)

allows only for dipole distortion implicitly in the initial channel, and

calculates the distorted wave in the adiabatic-exchange approximation, to be
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discussed in the next section. Explicit target distortion does not appear
in the T-matrix element, Tif' This relatively simple method is referred to"
as the DWPO I model. A more sophisticated method (McDowell et al., 13874) allows
for target distortion to appear explicitly through the direct part of Tif
and is referred to as the DWPO II model. Both models have since been used
to study excitation of the p-levels of atomic hydrogen and singly ionized
helium by electron impact (McDowell et al., 1975a, 1975b; Morgan and McDowell
1975) with energy lying in the intermediate range. Good agreement in the
DWPO II model is obtained with experiment for the total n = 2 differential
cross sections at scattering angles below 60°. Syms et al. (1975) have
recently generalized the DWPO II model and examined electron impact excitation
of the n = 3 levels of atomic hydrogen.

The rest of the chapter will, however, be devoted to application of the
DWPO model, in its different forms, to the excitation of helium by electrons

with incident energy within the intermediate region. The two essential items

are the scattering equation (§2.2) and the form taken by the T-matrix (§2.3).

§2.2 Derivation of the Scattering Equation

In the previous section, the scattering ansatz of the polariged ortital
method was stated, equation (2.1.7). The purpose of this section will ke
to further examine this equation in the context of the Distorted Wave Polarized
Orbital method when applied to scattering by helium and to hence derive
the equation of motion satisfied by the distorted wave in the adiabatic-
exchange approximation. The approximation accounts for distortion of the
incident wave through a direct polarization potential and omits those terms
arising from exchange-polarization. Moreover, if this direct polarization
potential is also omitted, the approximation reduces to the static-exchange
model of Morse and Allis (1933). Hence it is conveﬂient to obtain the '
adiabatic-exchange equation from a derivation of the static-exchange equation

coupled with a modification to the static potential to introduce the polarization

term.
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With this in mind, rather than use (2.1.4) for ¥; in (2.1.7), the

unperturbed function is adopted instead, that is:
+ -
¥1(12;3) = A $,(12)F(3) s%(12,3) . (2.2.1)

Here ¢i(l2) is the spatial part of the helium ground state wave function
and S+(12,3) a singlet spin function; other notation follows that of the

previous section (§2.1).
2,(12) = ¢,(12) s7(12) - (2.2.2)

represents the unperturbed ground state wave function. The spin functions

are defined to be (Mott and Massey, 1965)

s7(12) = 35 (a8, - 8y0,)

st(12,3) = S+(12)u3 ,
and the scattering ansatz is written
05 (12) [ *(12,3) dr.dr. dz = O
;(12) [H-E] ¥](12,3) dr,dr,dz = (2.2.3)

where the spin integration has been specifically denoted by dz. H 1is given
by (2.1.1) with the substitutions (2.1.2) and (2.1.3). Substituting for
¥1(12,3) by (2.2.1) and #;(12) by (2.2.2) into (2.2.3) and noting that

¢i(12) and H are symmetric in 1 and 2, integration over spin yields
I ¢:(12) (H-E] {¢;(12)F(3) - ¢,(28)F(1)} dr dr, =0 . (2.2.4)
For convenience, this will be written as
I-J=0 _ (2.2.5)
where I is the direct integral
I= J ¢?(12)[H-B] $,(12)F(3)dr, dr, (2.2.6)

and J the exchange integral
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J = J ¢:(12)EH~E] ¢,(23)F(1)dr, dr, (2.2.7)

2

It is now assumed that ¢i(£AE) is separable and, since the ground state
has configuration (13)2, the Hartree-Fock function becomes a simple

product functicn of the form
¢;(r.1) = ¢,,(2) ¢, (£ (2.2.8)

.where ¢lS(£) satisfies the Hartree-Fock equation (or equivalently, in

this case, the Hartree Equation)

[ v2 o+ %Z-- v (r) + Els] ¢ls(£) =0 . (2.2.9)

Throughout this section, energies will be expressed in Rydberg units; here
€1g is the single ionization energy of the atom. Vo(r) is the potential
energy of the electron at position vector pr (with respect to the centre of

mass at the nucleus) due to the field of the other electron:

2
[6, (O]

Vo(l") = 2 J-IE:ET-— d_‘ts_ . (2.2.10)

The ground state energy, Ei’ of the atom is expressed then in the form

- 2
E; =2e - I l6,4(®)]° V () ar (2.2.11)

and the total energy, E, of the scattering system is given by
2
E=E, + k., (2.2.12)
i i

with ki the incident nomentum.
Having established the form which ¢i(l2) is to take, equations (2.2.6)

and (2.2.7) are recalled and simplified in turn under the headings (a) and (b).
%
(a) I= J ¢i(;2)[H—B] ¢;(12)F(3) dr,dr, (2.2.6)

Substituting for ¢i(12) from (2.2.8) and also H, referred to after

(2.2.3), one has




1= f ¢’;S(1) ¢:S(2)[— le - f;% + ;i' ] ¢ls(ll) $,5(2) ?(3> dr,dr,
) Jr ¢is(l) ¢is(2) [_ v22 _ _i.z_ + ;—i—; ]¢ls(1) $,,(2) P(3)' dr,dr,
+ J 01,1 ¢y (@) [- 7,7 - %—2— - r; + P; + rzs - E] 6,,(1) ¢, (2)F(3)dr,ar
(2.2.13)
The term 2 has been added and subtra?ted for conveniere and the nuclear

. 12
charge number Z retained. With the aid of equations (2.2.10) and (2.2.11)

this expression reduces to give
/

| * % 2 22 2 2 2
= (2e, -E)F(3) + f ¢, ()¢, (2)| -V, - =~ + ¢. (1)
1s 1s 1s ‘[ 3 ry Tip  Tyg 23] 1s
¢4 (2)F(3)dr, dr,

Then, employing the expression (2.2.12) for E and equation (2.2.11),

the above becomes

% % 2 _22, 2 2 2
Iz J' $14(1)¢, (2) [ e ———~] 4, (14, (2)F(3)dr dr, - k,“F(3)

which is symmetric in 1 and 2. Hence writing

14, ()]
2v (r) --323+ J—[l—ft—[— at (2.2.14)

the direct integral I may finally be written

2 2
I = '[Vs +X° - 2voo(r3)]r‘(3) X (2.2.15)

(b) J (2.2.7)

I ¢ (12)[H-E]¢ (23)F(1)dr, dr,

, %
By hermiti city, or equivalently using Green's Theorem, ¢i(l2) and
¢i(23)P(1) may Le interchanged so that, writing H in full as in (a)

above
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- ( 2 2 27 H &
3= b1(20, ((DFQ)[- 7% + - -r_l_] 0} (18] (2)dr, ar,
( 2 27 %t %
| 61,20, (DEW)[- 7," - o ] 1. (8, (2) arjax,
( 2 22 . 2 2 % £
+] ¢ls(2)¢ls(3)F(1)[- Voo ;g + }—1—3 + —P-Q_; - E] ¢,(1),(2) drydr, .

(2.2.16)
With the help of equation (2.2.9) and (2.2.10), the first two terms

are simplified so that

J = 4,03 J ¢ls(;)F(1)d_gl + J ¢ls(2)¢ls(3)f‘<1)[— v (r,) + e ]

¢:S(1)¢is(2) dzldEQ

2 27 2 -2 % %
+ I ¢ls(2)¢ls(,3)F(l) [ - V3 ~ ;‘g + ;\-l; + ';;; - E]¢ls(l)¢ls(2)d£ld£2 .

At this point, it is convenient to denote by G the integral
G = f 41.(2) F(x) dr . (2.2.17)
Using (2.2.10) and (2.2.11) J becomes, with suitable'rearrangement:

J =€, 69, (3) +[E; - E]Gp, (3)
. 1 2 27

+ 24, (3) I ¢,.(1) ———-rls F(1)dr, - c;[v3 + ;; -V (ry) + els] $,5(3)
The final bracketed term vanishes by (2.2.9). Finally with the aid of
equation (2.2.12), the exchange integral J may be written
J = [(e -k 2)G + 2 qf"' (1) 1 F(1) dr ]¢ (3) (2.2.18)

1s i 1s )3 =1] "1s

Replacing G by its definition (2.2.17) and combining (2.2.15) and
(2.2.18) into (2.2.5) yields the scattering equation for F(r) in the"

static-exchange approximation:

[v? 4}<i2 - 2v_ (r) JE(p) =
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$15(H)F()

E
= -[(els - ki2) J ¢, (DIF(H)dt + 2 J d_t_]¢ls(;_) (2.2.19)

|-t

—_——

The adiabatic-exchange approximation is now derived by recalling the definition
of Voo(r), equation (2.2.14%), and replacing ¢ls(z) by ¢lS(E) + ¢pol(£9£)

where, it will be recalled, ¢ is the dipole component of the perturbed

pol

atomic wave function. One then has that

2Voo(r) = 2Vls,ls(r) + 2Vpol(r) (2.2.20)
with
2
(ry = - 2 1410
Vig1a(®) == 242 = dt ,  (2.2.21)
. (£) ¢ . (t,r)
_ 1s =" "pol '——
Vpol(r) 2 [ =3t dt (2.2.22)
Vls lS(r) is the direct static potential, that is, the interaction of the
2

free electron with the bound electronic cloud; V__.(r) is the direct

pol
polarization potential, due to the distortion of the target by the incident
electron.

Inserting (2.2.20) into (2.2.19) the final result is obtained whereby

F(r) satisfies the integro-differential equation,

2 2
[P 3" - 2wy ) () -2y ()] R

5 % cbis(t)f'(t)
= —[(sls - k) J ¢, (DF(D)aL - 2 J_IE[_— dt]4>ls(r) . (2.2.23)

Equafidn (2.2.23) is the Adiabatic-Exchange approximation to the scattering
ansatz (2.1.7) and is the central equation of the DWPO I and DWPO II models.
Attention is drawn to the fact that only static-exchange terms have been retained,
exchange-polarization having been omitted (see, however, Chapter 4). Essentially
this equation may be viewed as an augmentation of the basic static-exchange
approximation by the addition of a direct polarization potential. Historically,

this is in fact how the approximation was first introduced (Bates and Massey, 1943)



§2.3 Formulation of the T-Matrix Element

This section will be concerned with the formulation of the T-Matrix
element in the various DWPO models. Expressions will be obtained to
represent transitions from the ground state to either a singlet or triplet
spin state of the target. The use of the letter Z to denote the nuclear
charge will be continued from the previous section (§2.2), so that the

analysis will in fact be applicable to any two-electron atomic system.

To begin with, equation (1.2.10) for T ¢ is recalled and its

constituent components defined in the context of the DWPO approximation,
Ti = <¢f V. ¥,> , (1.2.10)

Here the final channel interaction potential is chosen for V and defined

in the direct channel to te
$— (2.3.1)

so that electrons 1 and 2 are bound and electron 3 is the scattered

electron. WI is defined by equation (2.2.1)

wi(lz,s) 4 (12)F(3) 57(12,3) (2.2.1)

The unperturted function , wf, for the system in the final channel
is defined to be
+ +

v(12,8) = ¢;(12)ka(z,3) S(12,3) (2.3.2)
where the plus and minus signs differentiate between either a singlet or a
triplet final state respectively. This convention will also te adhered to
glsewhere. e denotes the spatial part of the atomic wave function and
Xx (z,3) 1is taken to be an outgoing Coulomb wave in the field of the'

£
residual charge, z = 2 - 2, satisfying (McDowell and Coleman, 1970,

equation (5.4.1))

(v2 + kf2 + ng X =0 (2.3.13)
f

33
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- . .
The doublet spin functions for the system, S (12,3) are given as

(Mott and Massey, 1965)
+ .
st(12,3) =-§5 (a,8,-80)) a (2.3.3a)
$7(12,3) = %%- [253ala2 - ay(a,B, ¥ Bla2)] . (2.3.3b)

Substituting these expressions, together with the defining equations
(2.2.1) and (2.8.2), into (1.2.10) and effecting the spin integration

yields for both singlet (+) and triplet (-) excited states

+ D __E+
Tif = Tif Tif : (2.3.4a)
(1)
- E-
T,p =Y37T.. . (2.3.4b)
The terms on the right hand side are the matrix elements
7, D= <¢+(12)x (z,3)V_¢.(12)F(3)> (2.3.5)
if f kf S 2 1 o
T, P = <0T(12)x, (2,3)V,4, (23)F(1)
sf = <6g ka z,3)V .4, (23)F(1)> (2.3.6)

denoting the direct and exchange parts respectively. It is noted that for
a transition to a triplet spin state, T;f consists of only an exchange
term (equations (2.3.4b) and (2.3.6)), coinciding with the fact that such
transitioﬁs.from the ground state can only occur via charge exchange;
there are no spin-dependent terms retained in the Hamiltonian of the
system.

In §2.1, reference was made to including target distortion explicitly
in Tif; in the above, this is only allowed for implicitly through
calculation of the distorted wave, F(r).

Such an account of distortion is incorporated by remembering that

¢i(£AE) is separable

$5(r,t) = ¢, (x) ¢, (2) (2.2.8)



35

and replacing each of the orbitals by the polarized form
¢, (&) » 9, (@) + ¢pol(£}£) (2.3.7)

just as in the derivation of the polarization potential Vpol (see equation
(2.2.22)). Making this substitution into the direct term (2.3.5), equations

(2.3.4) are modified to

Toe = (Typ +Tip) - Typ (2.3.8a)
(II)
- E"'
Tie =73 T (2.3.8b)
where
P |
T.o = 2<41(12) xkf(z,s) Ve 6141 6,,(2,3) F(3)> . (2.3.9)

. . . . +
The exchange matrix element remains unaltered. These approximations to Tif
are consistent with the adiabatic-exchange approximation (2.2.23) to F(r);
both allow for polarization in the direct terms but neglect entirely the effects

of exchange-polarization contributions. If now, the modification (2.3.7) is

inserted in the exchange term (2.3.6), equations (2.3.8) become

+ _ D P E+ El+ E2+
Tie = (Tif + T ) (Tif + T + Ty ) (2.3.10a)
(III) '
- _ E- El- E2-
T, = /3[Tif FT e+ Ty ] (2.3.10b)
where the additional exchange terms are given by
El+ _ . * '
T ¢ = <¢f(12) xkf(z,3) Ve ¢ls(2) ¢pol(3,1) F(1)> , (2.3.11)
E2+ +
- . 2.3.12
Tip <¢f(12) Xy (z,3) Ve ¢ls(3) ¢pol(2,1) F(1)> (2.3.12)

£
This approximation to Tifi allows for both direct and exchange effects in the
atomic wave function arising from dipole distortion of the target. Howgver, the
adiabatic-exchange approximation to F(r) is inconsistent with this treatment.
The scattering equation must be modified to include the additional terms which

arise when account is taken of exchange on the polarization parts. This will
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be discussed in Chapter 4.

The siénificance of the Roman numerals (I-III) is to indicate the various
DWPO approximations to Tif' Hence equation (2.3.4) is the DWPO I approximation
to T.p; equation (2.3.8) is the DWPO II approximation, and equation (2.3.10)
is the DWPO III approximation.' Physically these models may be summarized by
saying that: DWPO I allows for target distortion only implicitly through the
calculation of the distorted wave in the adiabatic-exchange approximation; DWPO II;
calculates the distorted wave also in the adiabatic-exchange approximation but,
in addition, allows for target distortion explicitly in the direct term of the
T-matrix; DWPO III takes account of distortion in both the direct and exchange
terms of the T-matrix but no longer calculates the distorted wave in the
adiabatic-exchange approximation. It is to be noted that for excitation to a
triplet spin state, DWPO II reduces to the simpler DWPO I model.

The remainder of this section will centre upon a study of the constituent parté
of the T-matrix namely equations (2.3.5), (2.3.6), (2.3.9), (2.3.11) and (2.3.12),
in preparation for a partial wave analysis in the following chapters.

The final unperturbed target wave function, ¢f(l2), is written

0512) = Sofu (0 V@) £ v W w2 ] (2.3.8) ‘

+ .
where u S(r) is the core orbital and vng(g) the valence orbital of the atow.

1

t . .
The various direct and exchange contributions to Tif , when the substitutions

+4-
and (2.3.14) for ¢} are made, will

indicated by equation (2.3.1) for Ve

now be considered in turn.

D
Tif :
D 1 J & %t L %* % 1 1 —2_
T.. = u, (1) v (2) + v_,(Lu, (2)|x, (2,3) (=— + — )
if V2 [ 1s nl ng 1s kf ri3 Tpy Tg
¢ls(l)¢ls(2)F(3) d£123
where dri . indicates integration over the space variables r;  Lis, both

here and elsewhere.

This expression is symmetric in 1 and 2 and may hence be written

D _ 2 o
T, =7 (1 +1,-I3-1,] (2.3.15)



with:

_ F3 f4 & 1

I = f 85 (2) Vg (1), (2,9) IROUNCY F(3) dr) o4 (2.3.16a)
I, = J w1 V) (2,3)

2 1s " xkf Z, I 916(128, (2) F(3) dr 4 (2.3.16b)
I _ g (2) LR ) % 1

3 T w2 v, xkf(z,3)-;; $15(1) ¢,(2) F(3) dr,,, (2.3.16¢)
I, = [ u (1) V2 X (z,3) 24, |

L Vg ka z, ;; 915 1) ¢ls(2) F(3) dr, 53 (2.3.16d)
¢ls(£) and vgz(z) are required to be orthogonal in which case

12 = 13 = I,+ =0 .
The integral I is separable so that one may define
= w2 ¢ (@
B=|u ()¢, (x)dr (2.3.17)
_ L % 1 .
I, = f vnz(l) Xp (z,3) = ¢ls(l) F(3) dr, 43 (2.3.18)
£ 13
note that B should approximately Lbe unity. TifD can hence be written as
1.2=8/21, . (2.3.19)
if A
P
Tif :

if r

P _ 2 P % + L &% % 1 1 _ 2__
T -2, J [u] @) v_f2) + v 21w (2)] X (2 Gt o)

¢ls(1) ¢Pol(23) F(3) dr) g

This is written more coﬁpactly as

P _ | -
Typ = 2 [ K|+ K, = 2K + K + K 2K6] (2.3.20)



with:

4
Vn2(2)

# L
J u; (2) VR

r E3 b3 +
o @) v

u. (2) v*+(

nk )

%
X
kf

Xd (2,3)
kf r

E3
Xp (z,3) -

£

&
X, (2,3)
kf

* (2,3)
X Z,
kf

I3
X (z,3) >

by

From the orthogonality of ¢ls(£)

P
so that T.
i

In a more condensed

with?

£

P

T, =vV2[ K + K

if

Er _
Tig <

simplifies to

2

[ ¢ g+

1
(z,3) P ¢l

23

1

——

13

1

3

1

13

1

T3

1

3

and

- 2K, + K, ]

2

b16(1) 40, (2)
b15(1) 4,,(29)
$,5(1) ¢Pol(23)
b5 (1) 6,,1(23)

05(1) ¢ (23)

th(ﬁ)

S(1) ¢pol(23)

F(3)

F(3)

F(3)

F(3)

F(3)

F(3)

Ty 53

dry 93

dry 53

dry 53

dry 53

dr; 53

$1.(2) ¢,,(3) FQ1) ary,

form this is written

Jy £ J 425, +J, - 27, ]

1 &% %y %4 % &
T. = 75-J[:uls(l) vn2(2) + Vnz(l) ulS(Z)] xkf(2,3)(

3

3

(2.3.21a)

(2.3.21b)

(2.3.21c)

(2.3.21d)

(2.3.21e)

(2.3.21f)

(2.3.22)

1

To3

=
13

(2.3.23)

8

2
T3

\
4
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r B3 :':i &
- 1
J, = -
17 U@ v @) X (2:3) p 152 4, (9) TQ) ey, (2.3.24a)
I = [ % (l) *i_(Q) 13 1
2 T | Ut vy xkf(z,S) s $15$2) ¢,,(3) F(1) dr . (2.3.24b)
J. = ( u:': (2) V*i(l) E ( 3) 1
37 ) Ys - ka Z, ;;; ¢ls(2) ¢ls(3) F(1) d£123 (2.3.24¢)
5, = [ o @) ) F (2,8 L
= u = =
y =) Y v ><kf z,3 r ¢lS(2) ¢ls(3) F(1) dr, 54 (2.3.24d)
5= [ V) o L
5 = | (D) Vg xkf(z,s) Fl—a- $15(2) ¢;,(8) F(1) dr, . (2.3.24e)
Jo= | u (D) vE2) ¥ (2,8)
6 = | W V2 ka Z, ;; ¢ls(2) ¢ls(3) F(1) dryog (2.3.24f)
From orthogonality between bound states
Jg = Jg =0
E+
Tif therefore reduces to
Et _ 1 _
T =tis[dy%d,+d53-25, ] . (2.3.25)
Elt
Tie ¢
El+ 1 J & %+ Nt & b3 1 1 2
T, = w (1) vE(2) £ v (1) ul (2) ] %, (2,8) (= 4 == - Z)
if V2 I: 1s nf nf 1s kf i3 Tog r3
$,5(2) ¢p01(31) F(1) dr,,4
which is written
Elx _ 1 El -~ E1 _ E1 _ Er E1 Kl 2.3.26
Tif =5 [ + Kl +.K§ + K3 + Ku + KS QKE ] (2.3.26)

with :
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El _ [ * %t %
K77 =lu (2) v 3y (- _ L
1 J Y1s (1) ka(z’ ) ( T r3) $6(2) ¢,,,(81) F(1) dr),,5(2.3.27a)
El _ [ = %4 £ 1
K = 2 - —_
5 J u (2 v o (1) xkf(z,s) v $,4(2) ¢Pol(31) F(1) dr,,, (2.3.27Db)
El (% %+ % 1 :
K = -
3 J u (1) v 1 (2) xkf(z,s) s ¢,5(2) ¢pol(31) F(1) dr, . (2.8.27c)
El [ % it & 1
K = 2 —_
y J u, (2) v (1) xkf(z,s) ™ 9,4(2) ¢Pol(31) F(1) dr,, (2.3.27d)
El E %+ P 1
K = .
5 I u, (1) v (2) xkf(z,s) T $,5(2) ¢Pol(31) F(1) dr,,q4 (2.3.27e)
kP = [0 ) V@) o] (2,8 2 (2) ¢ (31)
6 =] Yis Vne ka Zs ;g' ¢ls ¢pol 1) F(1) d-3-123 (2.3.27£)

By the usual orthogonality requirements one has

13 T2z T3

1 _ 1 _
KE = Kg =0 .
T, El* hence becomes
if
El+ 1l El El E1l El
= - + . -28
T, Tl S Sl Sel S Wkl B (2.3.28)
E2+
Tif :
E2t _ 1 % oy a ot * y L .2
- - 3 [ U
T, , 73 I[ulS(l) Vn2(2) %2(1) ulS(Q)] ka(zs ) (I’ + )

¢ls(3) ¢Pol(21) F(1) dr, 4

This integral is rearranged so that defining



G - f u () v o ¢ 1
- v 3) — |
1 1s'™° "ng xkf z,3) s ¢,4(3) 601 (21) F(1) dr) )
E2 = [ 2) v o (a,a
= u v i N

2 J "1 Tng xkf z,3) Ty $,5(3) ¢p01(21) F(1) dr.,.

B2 [ = St % 1
K = | u, (1) v (2 —_

3 J Yis ' 2) xkf(z,a) o 9, .(3) ¢Pol(21) F(1) dr ,,

K, J ¥ vE2) (2, L
= u v —
4 1s 0 xkf z,3) n $,4(3) ¢Pol(21) F(1) dr, .,
2 [ = %+ % 1
K = 2 —_—
5 J u, (2) v o (1) xkf(z,a) e $14(3) ¢Pol(21) F(1) dr, 4
B2 o [ ) v o (2,9) L
6 ) "1 "me ka Zs EN $1(3) 9,5, (21) F(1) dr, g
T, E2 becomes
if
E2+ _ 1 E2 E2 E2 E2 E2 - E2
T = 75-[:Kl £ Ky Ky 26,7 £ KT F 2K ] )

b1

(2.3.29a)

(2.3.29b)

(2.3.29¢)

(2.3.29d)

(2.3.29¢)

(2.3.291)

(2.3.30)

In connection with the exchange integrals, it is worth emphasing that, apart

+
from the choice of Vng(_l_"_), the integrals are the same for excitation

to either a singlet or triplet final spin state.
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CHAPTER 3

EXCITATION OF HELIUM

§3.1 Preliminary Remarks

This chapter will be concerned with a partial wave treatment of the
Adiabatic-Exchange Equation derived in §2.2, equation (2.2.23), and a
partial wave analysis of the integrals obtained in §2.3 which constitute
the T-matrix. These integrals will be dealt with according to the excited
state under consideration (§3.3 for S-states, §3.4 for P-states) and
expressions formulated for the differential and total cross sections.

The chapter will conclude with a discussion of the (X,X) orientation and
alignment parameters with application to llS > an transitions.

In this first section, some basic definitions and notation for the ‘
wave functions employed will be established and various partial wave
expansions summarised.

Previously, the approximate Hartree-Fock ground state wave function

¢, (12) of equation (2.2.8) was expressed as a product of two orbitals.

Each of these orbitals is now written as
- . 3.1.
¢ls(£) Rls(r) Yoo(r> ( ; ;)

where Rls(r) is the radial part of the function and has the form

—br)

Ry () = N (e + ¢y e )5 A (3.1.2)

Nl’ a,b and c, are constants.

Y2 (;) is a spherical harmonic function satisfying the convention
m
NOERCH r) (3.1.3
Yzm(r) (-1) Yl—m(r) ; )

; denotes the angular components of x in spherical polar coordinates,
X = (6,8); % will denote a unit vector in the direction of X.

The excited state wave function ¢f(l2), written as



0£(12) = 55 [w (1) vF (12) £ v5, (1) uw () ], (2.3.18)

has the core orbital uls(g) expressed in the form

w2 = wir) Yoo(;’) (3.1.4)

and the valence orbital vzz(z) as
+ + ~
V(2 = an(r) Yzm(r). (3.1.5)

The choice of the radial parts Rls(r), w(r) and an(r) is discussed
in Appendix A. In order to avoid unnecessarily complicating the notation,
it should causé no ambiguity if the 't*' superscript convention is not
strictly adhered to in the analysis to follow.

Concerning the polarized orbital correction; the first-order
perturbation term ¢pol(£12) to thé orbital ¢ls(£) is given in the

following form by Temkin (1959) , modified by Temkin and Lamkin (1861), as

)

(r) P (cosb
L =y (3.1.6)

u
_ _elr,t) “1svp t
¢pol(£13) - t2 ' r ’ Y

e(r,t) is the unit step function introduced in equation (2.1.5) which
causes the perturbation to vanish when the incident particle penetrates the

atomic cloud. Pl(X) is a first-order Légendre polynomial and the radial

function uls+p(r) satisfies the Sternheimer Equation
2 P "(r)
d 1s 2 _
—l: 5~ T (7 —5-] ulS+P(r) = Pls(r) . (3.1.7)
dr 1s r

Here Pls(r) is the r-multiplied radial component of the ground state
orbital ;3 primes denote differentiation with respect to r. This equation
is obtained following the discussion after equation (2.1.10)—for a complete
account see §6.3 of the article by Drachman and Temkin (1872). Usually
Sternheimer's equation must be solved numerically. However, by a slight
modification to PlS(r), a closed expression may be obtained for

uls+p(r) as follows.

A function f£f(r) is defined such that

43



Ly

uls+p(r) = f(r)PlS(r) (3.1.8)

and can easily be shown to satisfy the equation

2 2P'_ (p)
d 1s d .2 ]
- - —_—F = f(r) = r (3.1.9)
[ ) 2 Pls(r') dr r‘2

by substituting (3.1.8) directly into equation (3.1.7). The modification
is to let Pls(r) have the hydrogenic form

-Z r
3/2 o
P =
lS(r) 2Zo re (3.1.10)

with ZO a screening parameter, to be determined in the next section (§3.2)
in connection with the direct polarization potential. Upon insertion

into (3.1.9) the subsequent equation is solved to yield

£r) =2 (zr+ 327 0. ~(3.1.11)
o o)
27
o
Hence uy (r) can now be written in closed form as
S>p
-Z r
_ ., —-3/2 o 2 .2
uls+P(r) =2 re (Zor + 3 z,° ). (3.1.12)

Because Ias(r) has assumed a hydrogenic form, which for hydrogen is

exact with Zo = 1, this approximation to u p(r) will be referred to

1s->
as the Self Consistent Field Hydrogenic Approximation.

Having dealt with the atomic wave functions, attention will now be
drawn to the various partial wave expansions in spherical harmonics to

be used in succeeding sections. The spherical harmonic addition theorem

states that (Messiah, 187.0)

L
_ U L ~
P, (cos8 p) = mos mz—z v, (r) Y, (r) (3.1.13)
where 8, is the angle between the directions specified by r; and r,

and Pz(x) denotes, of course, a Legendre polynomial.

The inverse of IE.“.EI is expanded in the well known multipole formula



A
el ) o
= = = Y,{(r,t) Y, (r) Y (t) (3.1.14)
r-t AZ0 p=A 2A+1 A Al Al
where
r(A .
Yk(r,t) = 3T (3.1.15)
r
>
r_ = min (r,t); r_ = max (r,t).

The incoming wave F(r) is decomposed into a series of partial waves as

uz(ki,r)

F(x) = ] A%,k B, (cos6) (3.1.16)
2=0

where A(z,ki) is a coefficient depending only upon £ and ki' The

uz(ki,r) satisfy the boundary conditions

uz(ki,o) =0 uz(ki,r) oo ki

Ni=

sin €¢(r) + 52) (3.1.17)
with 62 the elastic scattering phase shift and
in 2

¢(r) o, g - 5t K

log(2k,r) + ny(k,) ; (3.1.18)
nl(k) is the Coulomb phase shift given by

ng(k) = arg T(4+ I =~ =) - (3.1.19)
Specifically, A(z,ki) has the form

A(L,ki) = (22+1) it ki_% exp[i{Gz(ki) + “z(ki)ﬂ' (3:1.20)

Using also the relation between spherical harmonics and associated Legendre

polynomials

2
Y, (8,6) = (-1)mli22+l ) (z"m)l} P "(cos6) ™ nso (3.1.21)

e (L+m)!

Gf m < 0, use is first made of relation (3.1.3))
with m = 0 in this case, it is convenient to rewrite (3.1.16) as

T uz(kir)
k‘
i

P =51 (2041)% 3* ¥, (8) explil6,(,) +n, () H(3.1.22)

The outgoing Coulomb wave X} (z,r) 1is expressed in a similar manner as
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o )
_ A Sy ot .
x-kf(z,g_) = yn AZO uz_)\ 1% HyGegr) Y, () Y, ,(0,0) explin (k)] (3.1.29)

where it will be remembered that since the origin of coordinates is at the

nucléus, the angle beween r and k

£ in (3.1.23) is 6 - 0 with ©

the scattering angle defined by

| = >
|= >

£ = cose, (3.1.24)
The function HA(kr) is given by
erA(kr) = Gk(kr) (3.1.25)

where Gk(kr) is the regular Coulomb function satisfying (McDowell and

Coleman, 1970, equation (5.4.18))

2
d
[ S e x® - Lx;’l—)— + 22 ] ¢, (k) = 0 (3.1.26)
dr T
subject to:
. A z
6, (k,0) = 0 ; G (k,r) v sinCkr - 3+ T log(2kr) +n, (k). (8.1.27)

For helium, 2z = 0 (viz. z = Z - 2) so that Xk (z,r) becomes a plane
£
wave and HA(kr) reduces to a spherical Bessel function.
Having established the above definitions and expressions, particularly

the partial wave expansions, one can now proceed to look further at the

scattering equation (2.2.23) and integrals of §2.3.

§3.2 The Radial Scattering Equation

The radial scattering equation satisfied by the uz(ki,r) appearing
in the partial wave expansion (3.1.22) is obtained by inserting (3.1.22)
into the adiabtic-exchange equation (2.2.23). ﬁse is made of the substitution
(3.1.1) and of the expansion (3.1.1%) so that after straightforward paftial

wave analysis, one obtains:
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2
d 2 _2(2+1) 2
— + k,” - == - - = - - -
[ dr2 i r2 2vls,ls(r) 2Vpol(r)] uzski,r) [(als kg )620
Jo Rls(t)uz(ki,t)tdt +'§§?i'jo Rls(t)ui(ki,t)Yl(r,t)tdt:lrRlS(r). (3.2.1)

Closed expressions, to be given below, may be derived for the direct

otenti . .
potential terms Vls,ls(r) and Vpol(r). Hence this equation is now

amenable to integration by numerical methods. Discussion of such techniques
for solving this type of equation is postponed until Chapter 5 on computation
and numerical analysis.

Attention will now focus on the direct potentials. Recalling equation
(2.2.21) for Vls,ls(r) and equation (3.1.1) for ¢lS(£), one finds with
the aid of (3.1.14%) and effecting the angular integration:

27

- _ 24 2 2
zvls,ls(r) = -S4l I: RlS(t) Yo(r,t) t° dt. (3.2.2)

Replacing Rls(t) by the expression (3.1.2), the radial integration is

carried out so that (3.2.2) reduces to

-2ar
2V ) =-2:31-¥ia+2
1s,1s 1 2 (2a)2
5 -(a+b)r 5 5 -2br
+ 2¢,(1 + ) +c; (1 +52) } . (3.2.3)
1 (atb) ( +b)2 1l 2b (2b)2
It is noted that asymptotically
-2(2-2)
2Vls,ls(r) hags r

as expected since the scattering electron moves in the field of a nucleus
screened by two electrons.

The polarization potential Vpol(r) is treated similarly. In this
case the wave functions appearing in equation (2.2.22) are replaced according

" to (3.1.1) and (3.1.6) so that one has

rt

r
- B °
2vbol(r) iy Jo R, (1) uls+p(t){fg = dt

Y (;)P (cos®_.) . '
o 1 ]tdt

where the radial and angular integrations have been indicated separately.




Using the addition theorem (3.1.13) on Pl(cosert) and inserting the

expansion (3.1.14%), the angular integration is carried out to give

. r
8 2
2V T - —
Pol(r) B fo Rls(t) uls+p(t) t° dt . (3.2.4)

Inserting (3.1.2) and (3.1.12) for the functions R. (t) and u (t)
1s 1s+p

and integrating finally gives

N, 2 2U4p, 2 3 4
_ 4 1 i 24 2ur 12r 4p
2V (r)—~—.7—2a. -4 ( + + + +2—=)
pol apt V45 32y 1 g5 2.5 g% 238 22 %4 P1
1 1 1 1 1
Zors -Z,r (3.2.5)
.
1
where
al =1, a2 = 3 Zl = a+ Zo’ Z2 =b + Zo
and
Sz(')
Pi=2+z-.- ) i=l,2.
1

As expected, equation (3.2.5) agrees exactly with equation (13) of
McDowell et al. (1973) for the case of hydrogen, obtainable by writing
N, = 2, ¢y 7 0, a =1 and Zo = 1.

For numerical purposes, it is desirable to have power series
expansions in r of Vls,ls(r) and Vbol(r)’ suitable for evéluation at
small r. Such expansions are derived by replacing the exponential terms
in (3.2.3) and (3.2.5) .by their respective power series sums and
retaining terms up to a specified order in r. Explicit expressions for
both potentials are given in Appendix B.

The remainder of this secticn will be occupied with finding a value

for the screening parameter Zo appearing in equation (3.1.12) for

(r). V___(r) is defined to behave asymptotically as

uls+p pol

(r) (3.2.6)

A

> -2
. Pm rq
where o is the dipole polarizability, taken for helium to be 1.395 a.u.
in accordance with the experimental value provided by Johnston et al.

(1960). Equation (3.2.5) behaves asymptotically as
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N o c.p
232 1 ("1 172
2Vpol(r) ) T 5t —=% |* (3.2.7)
r o Zl z2 -

An equation satisfied by Z, 1is now obtained by matching the above
asymptotic expressions. Thus, making the relevant substitutions for D;

and Z. (i = 1,2), one has

o Ny I:(7Zo+2a) (7zo+2b)J
(o]

= + c

= (3.2.8)
(Zo+a)6 1 (Zo+b)6

32 VZ

This line is then rearranged to give a polynomial equation of degree 25 in

ZO and solved numerically by the Newton-Raphson method, details of which

follow in Chapter 5.

§3.3 Cross Sections for the S-Levels

The purpose of this section and the one to follow (53.#) is to derive,
via a partial wave analysis, suitable expressions from which the differential
and total cross sections may be computed. Essentially one is concerned
with substituting the various partial wave formulae of §3.1 into the basic
integrals obtained for the T-matrix element in §2.3. The atomic wave
functions ¢ls(£), uls(g) and viz(g) will take the form indicated by lines
(38.1.1), (3.1.4) and (3.1.5) respectively. The resulting expressions
are then simplified by integrating over the angular variables and employing
properties of the spherical harmonics, particularly orthogonality. The order
in which the direct and exchange parts of T.. were considered iﬁ §2.3

. El+
will also be adopted here. However, analysis of the exchange parts Tif

B2+
f L]
until the following chapter (Chapter 4) where exchange-polarization effects

and 'Ti which arise only in the DWPO III model, will be deferred

are dealt with more fully. Thus the first T-matrix component to be considered

. D
is Tif -
D

Tif :

D
= 2.3.
T.¢ BY2 I, (2.3.19)

where it will be recalled I is defined by (2.3.18):
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_ T4 % 1
I, = « LI
A J v, (1) xkf(z,3) o $,.(1) F(3) dr 4. (2.3.18)

With the choice of atomic wave functions adopted (see Appendix A
for details) the integral represented by B, equation (2.3.17), is

obtainable in closed form. The full expression is given in Appendix C.

Regarding I,» by substituting (3.1.14), (3.1.22) and (3.1.23) for rls—l,
F(3) and xkf(z,zs) respectively, one obtains using orthogonality of
the spherical harmonics, that
® iA
y
I, = -2 ) (28+1) I(A)(z,k.,k ) e % P_(cos®) (3.3.1)
A 1°f 2
vk.2=0
i
where the following notation has been employed:
I(A)(Z kioko) = ) u, (k.,r) H (k.r) £ (r) dr (3.3.2)
R - o ¥ i? 2 f 1s,ns ’ tUe
: - . 2
ls,ns(r) =r E R () R _(£) v (z,t) t7 dt, (3.3.3)
Provided Rns(t) is of a simple form, the integral fls,ns(r) may be

evaluated analytically (see Appendix C). Otherwise numerical methods are
required. It is noted that with Rls(t) and R__(t) orthogonal,

fls ns(r) + 0 for increasing r, which effectively reduces the infinite
b |

range of the integral I(A)(l,ki,kf).

D .
T may now be summarized as

if
.0=3 7T<—8"B OXO (2£+l)I(A)(z k. k,.) elAR'P (cos0). (3.3.5)
if T2 i g= I S 3 2
P,
Tig ¢
P - -
Tie G V2[K) + K, = 2Ky + K, ] (2.3.22)

Each of the Ki integrals, defined by (2.3.2la,b,c,d) contains the

function ¢ Ol(r,t). This function has been given explicitly in (3.1.6),
P — —

whereby, with the aid of the addition theorem (3.1.13), the Legendre

polynomial Pl(cosert) is expressed in terms of a sum over spherical harmonics.
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Since this section is concerned with excitation to an S-level, one observes

that integrating over Tos orthogonality of the spherical harmonics causes

three of the integrals to vanish

P . . .
Tif therefore in this case, requires only a closer study of Kl;

_ % + 3 % 1
K, = I uls(l)vnﬁ(z) Xy (z,3) T ¢ls(1) ¢P01(23) F(3) dr, g (2.3.21a)

£ 23

1

Inserting repectively (3.1.14), (3.1.22) and (3.1.23) for » , F(3)

23
and Xk (Z’Eb) as for TifD above and integrating over the angular

£
variables with the aid of (3.1.13) and the familiar orthogonality property

poésessed by the spherical harmonics, one derives

8TB v P iA '
K. = §§F_ Y (22+41) 1( )(g,ki,kf) e Pz(cosO) . (3.3.8)

ie=0

B 1is defined as above by (2.3.17), A, by (3.3.4) and

Py (7
li = JO ul(ki,r) Hz(kfr) kls,ns(r) dr , (3.3.7)
1 - 2
Hs’ns(r’) Z - ;é* IO ulS+P(t) Rns(t) t dt. (3.3.8)

Equation (3.3.8) may be compared with equation (9) of McDowell et al.
(1974) who consider excitation of hydrogen atoms and singly ionized helium
to the 2s level. Provided Rns(r) assumes a simple form (see Appendex A),

(r) is obtainable analytically as in Appendix C. With (3.3.6)
ns,ns

T, P reduces to
if
o iA
P_1 4 uymB (p) 2
T.o =55 o = o T o(2241) I'"7(2,k.sk.) e P, (cos®). (3.3.9)
if V2 3 7ki 420 i*"f 2
E+
Tig
Ex 1 - 2.3.25
T,s iZ[JliJ2+J3 23, ] ( )

. . -1
Rather than refer explicitly to the partial vaveexpansions used for rij .
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F(r) and ¥, (z,r) as was done under T. D
= kf - if
use will be assumed in the following without further mention. Each J

and T, P abtove, their
if

integral is taken in turn and the corresponding result summarized.

J .

1
J. = % (2) :‘ci-() % 1
17 ug v, (2 ka(z,S) ;Ig'¢ls(2)¢ls(3) F(1) dr; 53 (2.3.24a)
The integration over r, may be separated from that over r, and ry to
give
J, =B J, (3.3.10)
where JA represents the integral
= [V o e e, (@)
Ip = | Vns) % (253 7o $1(8) F(1) dry 4
‘ £ 13
- A straightforward partial wave analysis reduces this to the form
o iA
_ bm (a) 2
Jy = 7k z I (05K, k)e TP (cos0) (3.3.11)
i 2=0
with:
(A) "
J (R,ki,kf) = IO Rns(r) ul(ki’r) gls,l(r) dr, (3.3.12)
8o p(T) = J R, (£) Hy(ket) v, (r,t) 2 at (3.3.13
_ (1) (2)
= 8157 g, ()
where

r
(1) 1 2+2
gls,z(r) ;E-IO R () Hy(kpt) £77° at,

(2)2(P) = r

. 242 I (2 1)y,
ls,

. Rls(t) HE(kft) t

For small r it is desirable to make a series expansion in r of
gil)g(r). The expression is summarized in Appendix C. Returning to

Jl’ this integral is finally written as

= 18 E J(A)(E k. k) eiAzP (cos0) (3.3.14)
J1 7 VK kg Ke 2 ' -3

1220



I = E3 (l) 1+ & 1 .
o T Yyg Vnﬂ.(z) ka(Z,3) ;;; ¢ls(2)¢ls(3) F(1) dl:‘_123

(2.3.24b)

This integral is separable so that the integrations over r; and L0

may be considered individually.

f w (1) F(1) dp, = jgg'°1(ki’expfi{So(ki)+”o‘kf)}]’

+ E 1 .
J vhs(2)xk (z, 3) ;7—-¢ls(2)¢ls(3) dr,, = e dls(kf) exp [~ ino(kfX],

£ 23

where

c; (k) = J: w(r) u (k,,r) rdr, ‘ (3.3.15)

S .

d (ep) = [: R, (2) Ho(kfr)‘flsgns(r) rdr (3.3.16)

and f;_ (r) 1is given by (3.3.3). Consequently J, 1s rewritten as
,NiS 2
all s iAo

Jy = 7¢§ ey (k) di(ke) e (3.8.17)

J3:

o
1

& %+ ES 1
3 J ulS(2) Vnz(l) xkf(z,3) ;1-2; ¢ls(2)¢ls(3) F(1) dr, )4

(2.3.24c)
For excitation to an S-level with which this section is concerned, J3
is observed to have similar structure to J2; that is, J3 only differs
from J, in that uls(r) and viz(r) -have been interchanged. The

2

following integrals are hence defined:

S 3
c2(ki) = )y Rns(r) uo(ki,r) rdr , (3.3.18)
d2(kf) = J, Rls(r) Ho(kfr) fls,w(r) rdr (3.3.19)
where
2
fls,w(r) =r JZ w(t) Rls(t) Yo(r,t) tdt. (3.3.20)

53



Closed expressions are obtainable for fls w(r) and dz(kf) with the
. H

choice made of atomic wavefunctions— see Appendix C. J, becomes

3
- L S . iAo
Jg = 7€ colks) dy(kp) e (3.3.21)

Jq:

3, = | vl v ) % (2,0 2

y T Ygl?) v, xkf z,3 z, ¢15(22¢,.(3) FQ1) dr, 4 (2.3.244d)
This can be written as a product of three separate integrals:

3, =B | v:_ (1) FQ) dr, | % (z,r) -4, (3) d

4 - Vns o) X R N $1'8) dzg
The latter two integrals are simplified to yield

+ H4T
: f v (1) F(1) dr, -/ (k ) exp[l{G (k) +n (k )}]
1
- s _ 3

f kf(z ,D ) X ¢ls(3) dga = Juim d, (kf) exp[ 1no(kf)].

cs(ki) is defined by (3.3.18) and dj(kg) by
dylkp) = E R () H (k) rdr (3.3.22)
which is obtainable in closed form and given in Appendix C. Ju assumes
the form
Y le

S
J, = 712 . B c2(ki) da(kf) e (3.3.23)

Expressiohs’(3.3.lu), (3.3.17), (3.3.21) and (3.3.23) are now collected

E+
together and inserted into line (2.3.25) for T, iF

Et

1 4 (4) s
T Tt 7}‘:_1 (8777 (0 k ok ) + {e (k) [d (k) = 2Bd, (k)]

ne~18

2=0

iAz
t e () d (kf)} §,5] e P,lcos0) . (3.3.24)
The remainder of this section will now concentrate on obtaining explicit

expressions for the differential and total cross sections in the DWPO I

and DWPO II models (the DWPO III model is dealt with in Chapter 4). The
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key expressions derived so far are: (3.3.5) for TifD, (3.3.9) for TifP
and (3.3.24) for TifEi. Bearing these expressions in mind, the transition
matrix element Tif for the process under consideration (excitation

from the ground (llS) state to either an nlS or nSS state of the

atom) is written

iA%
e Pz(cos 0), (3.3.25)

= I+

(=]
- Z B
2=0
* . .
Thg B2 are determined according to the spin state of the excited atom

and to the DWPO model being employed. Thus to determine the Bi in the

DWPO I model, the expressions for TifD and TifEi derived in this
: +
section are incorporated into equation (2.3.4) for Tgf. In the DWPO

II model, the same expressions together with the corresponding one .for
_ +
TifP are incorporated into equations (2.3.8) for Tgf. Explicit expressions

, + :
for the BE in terms of the integral expressions derived in this section

are presented below:

DWPO I:

+ 1 L4nB

7— %-(—- [2(22"‘1'1) I(A)

(4)
(Z,ki,kf) -d

(z,ki,kf)
(3.3.26a)

~{Le3ti;) dylie)) + i) Sk TB™ - 265(;) dle) } oy |

- 3 umB [ (A) -1
B =- 3. "[J (2,0 5kp) +{[eh (k) (kp)=c, (ic; )aS (k)] B

)
~2¢5(k,)d (kf}sz ] (3.3.26b)
DWPO II:
+ _ 1 LB (A) (P) k J(A) [} k k )
B} = o "VE;[ 2020+ 1) [T (0 k) + 2 10070,k k)] - (2%,
(3.3.27)

_{[c§<ki) dyk ) + e (k;) di(kfI]B—l - 2c50k;) 408, ]

: +
Since DWPO II only modifies the direct terms of Tif (and hence the Bl) and
leaves the exchange terms unaltered (compare (3.3.26a) and (3.3.27) above), Bz

assumes the same form as in (3.3.26b).

In fact the DWPO II approximation is easily obtained from the DWPO I



approximation by making the following transformation on £ (r)
S,ns
(cf. (3.3.3)) appearing in the .I(A)(R,ki,kf) integral (3.3.2):
Flo @ > £ () + 2k (r) (3.3.28)
1ls,ns 1s,ns 3 "1ls,ns U

with kls,ns(r) given Lty (3.3.8).
Recalling equation (1.2.11) for the differential cross section and

inserting (3.3.25) for Tif’ one has in a straightforward manner that

do o 1 Ef E E BB, cos(A - A.) P (cos®) P. (cosd) a 2/
b 2 . . - CcCSs Ccos a sr .
T oup? Ky gz0a0 FA oA A °

(3.3.29)
The superscript on the Bz serves no further'purpose and has been omitted.
When computing cross sections, the appropriate expression is, of course,
selected from either equation (3.3.26) or (3.3.27). For computationél
purposes, in order to economise on machine time, it is advantageous .

to rewrite the differential cross section in the form

k
do 1 f 2 2 2
— =— . — (R" + 1I9) a “/sr
an 4%2 ki o
where:
R = zzo Bl cosAz Pl (cos 0),

(o)

= inA . 3.3.30

I 2 Bz sind, Pz (cos 0) ( )
2=0

Hence only two single summations are required as opposed to the double
summation of equation (3.3.29). Iﬁbpractice the series may be adequately
summed term by term up to some value of 2, say Lmax, at which point

terms for & > zmax have no significant effect on the cross sections. In
order to determine an expression for the total (integrated) cross section,
it is however mathematically easier to use (3.3.29). Hence, integrating
over all solid angle and employing the property of orthogonality possessed

by the Legendre polynomials the total cross section is given by

56
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k © B
2 1 £ 2 2
Qelk,”) == . —=u ¥ Ta (3.3.31)
f 2 L s \Je
i i 4 ki 020 20+1 o)
§3.4 Cross Sections for the P-Levels

The comments made at the beginning of the previous section (§3.3)
will apply here also. The form of the wave function will remain unchanged
and the same partial wave expansionswill be employed. However, the partial
wave analysis becomes more involved, caused essentially by the valence

orbital of the excited state now having an angle-dependent component:

Vi, (x) = Rip(r) Y, (2) . | (3.4.1.)

Further complications arise due to the long-range dipole character of the
interaction for optically allowed S - P transitions. This effects the
direct part of the T-matrix element whereby the iﬂtegrals extend over a
considerably greater range than previously for the S - S transitions.
Correspondingly, the direct partial wave sum converges much more slowly,
since many more partial waves make a significant contribution. A method
for overcoming this convergence problem is discussed but & technique for
computing the long-range integrals themselves is deferred until Chapter 5.
Here, the aim will be, as in the previous section, to derive manaéeable
expressions for the differential and total cross sections in the DWPO I and
DWPO II models. These will necessarily ke more complex than for §3.3, since
the cross sections not only have m =0 coﬁtributions (m is the magnetic
quantum number of the excited state as in equation (3.4.1.) above) but

also m =+ 1 contributions. However, due to the axial symmetry about

E& of the system, or mathematically,
m
= (- 3.4.2
Yzm(e,o) (-1) Yz,_m(e,o) ( )

with the z-axis along ki’ one sees that consequently it will be necessary

to consider only the m = 0 and m =1 contributions, m = - 1 being the

same as m = 1 to within a negative sign.
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Discussion will begin with the direct component TifD ‘of the T-matrix element.

D.

Tig:

D

T.p = BY2 I, : (2.3.19)

with B defined by (2.3.17) and I, by
L= | Vi) x (z,8)
AT VP x (2,3) 7= ¢, (1) F(3) dr,, . (2.3.18)
£ 13
Making the by now familiar substitutions and partial wave decompositions
presented in §3.1, one finds, on carrying out the angular integration,

that I becomes

A
1, =41 .3 af % T 4 o) (2aen)E (k, »r)H, (
AT 7?; - 73 i 2+1)(2x+1 Ouz ki,r HA kfr)fls,np(r)dr

2=0 wp=-1 2=0

A1 z) (x 1 z) ‘ '
. Y. (0,0) exp[i{§ (k,) + n (k,) - n (k)}]. (3.4.3)
0 0 o -4 -m O AU 271 21 AE

The Wigner 3 - j symbols have been introduced through the relation given,

for example, by Edmonds (1974, equation (4.6.3))

1
4 (20 +1)(28, +1)(22 41) |2/8. 2, )M/, 2
~ ~ L L 1 2 3 1 72 1 2
J Yllm (r) YL o (r) Yz 0 (r) dr = { ] ( j(

Y
1 272 3 3 0] 0 0 m, m,
(3.4.4)
This relation will be utilized throughout this section. The integral
fls,np(r) is defined in analogy with fls,ns(r) (cf (3.3.3)) to be
” 2
= R._(t) R_(t (r,t) t° dt (3.4.5)
fls,np(r) r Jo lS( ) np( ) AL
which asymptotically does not tend to zero so rapidly as fls,ns(r) but
rather as
1 _
noo= 3.4.6
fls,np(r) r ( )

haga-
(see Appendix C for an evaluation of fls,np(r) in closed form). It is
precisely this behaviour which gives rise to the long-range nature of the

radial integral appearing in (3.4.3) and mentioned earlier in this section.
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Returning to the 3 - j symbols, one is able, with the aid of certain

symmetry properties, to simplify further the integral I In particular,

A'
the arguments appearing in the upper row satsify the triangle inequality

so that in this case;

Also, the sum of the arguments belonging to the lower row is zero so that
here w = - m. These two properties will te used throughout this section
but will not always be explicitly specified as atove. For a thorough
account of the properties and relations satisfied by the Wigner symbols,
reference should be made to the book by Edmonds (1974).

At this point it is convenient to define by I(2,A) the radial integral

I(2,A) = J: Hz(kfr) uA(ki,r) fls,np(r) dr (3.4.7)
and to let
Pt T (5.0.8)
i
Az,x = 6k(ki) + nk(ki) - "z(kf) . (3.4.9)

With the above results derived from the 3 - j symbols, (3.4.3) reduces
essentially to a single summation where it is now appropriate to write

iA iA

Li2tl RI(L,2-1) e (3.4.10a)

s
n

20 in {(2+1) I(2,241) e IL”L-l},

D iA iA
1
A =i % {I(2,2+1) e 2t + I(2,8-1) e

Ra ’l-l}
21 ’

(3.4.10b)

By employing (3.1.21) to express the remaining spherical harmonic of
(3.4.3) in terms of a Legendre function, one can write down the m = 0
and m = 1 expressions for TifD, on evaluating the respective 3 - j

symbols, in the compact form
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m= 0,1 Tigm) = oA PE (cos 0) . -~ (3.4.11)

P _
T.p = V2 [Kl t K, - 2Ky + K, ] (2.3.22)

As before the addition theorem (3.1.13) is used to write the angular part
of the function ¢pol(£9£) appearing in each Ki(i = 1l,...4) in terms of

spherical harmoniecs. Each K, is taken in turn.

_ % L E3 1 i
K, = J uls(l) Vnz(z) xkf(z,s) ;;g ¢ls(1)¢Pol(23) F(3) dr, oq (2.3.21a)

The usual substitutions and angular momentum expansions are made and yield

3 A o A 1 ® | ia

2 (LHT) .2-)\' 1 ~l

(=2 ) ) ) ) ) y o4 (22+1)2(2x+41) e
1 3 ;ki A'=0  u'=-A'Az0 p=-A v=-1 2=0

-]

AL

r )\ +l & ~ % ~ P ~ ~
(R (D)L dt tdr Y. (r)Y. (r)Y, (r)dr
uls+p np r Q 1m AH 1v

r

® 1
JO HA'(kfr) uz(ki,r){; fo

(3.4.12)

* ~ ~ ~ AN
[Q YA,u,(t) Ylu(t) Ylv(t) Yzo(t)dt Yx'u'(G’O)‘
t

Use has been made of (2.3.17) for B and (3.4.9) for A For notational

AL’
purposes in evaluating the angular integrals, let I(Q t)denote the

LRI
-~ ~

angular integration over r...t. Then using (3.4.4) the angular integration

ATl 1 2 1 1 2 1
I(Qr) = 3 e .
0 0 O m ¥ v

~

over . r becomes

-

The integral over t consists of four spherical harmonics and is hence a
little more involved. However, by using the result from, for example, .
Edmonds (1974, equation (4.6.5)) that

)
. . o g [(20 +1)(20, +1)(2041) 2 [o. £, 2\ /. &, 2\ 4 .
1 2 1 72 1 72
! (P)Yz m (r) = z z [ au } ( ) ( m)Yzm(r)’

2im oMo 220 m=-1 o o o \m m

(3.4.13)



61

“ I(Qt) is reduced to an integral over three spherical harmonics. Hence,
using also (3.4.4), I(Qt) can be performed. Having done this, the total

angular integration is expressed as

—r= 7 Fsod T /1 21
I(Qrt) = 3(2&:1) z Z z Z (28'+1) [%(2A'+i)(22+1)}2 (
us-A  v=-12'=0 m'=- o' " 0 0 0

(l A l)(k 1 2')<X 1 2')(%' ! 2>(l' L 2)
m p v/\0 O O/\p v m'/\O 0 o/\m' -m' O

where the summations over u and v come from the main integral expression

(3.4.12). This can now be simplifed by use of the orthogonality property

(Edmonds, 1974, equatioh (3.7.8))

A 1 '
) (A ! l) (A 14 ) =% 6, 6, - (3.4.14)

uE-A o vE-l p v m/ \y v m'

The resulting expression for I(Qr ) 1is then inserted back into (3.4.12)

t

for K, to give

1
oo o - a1 1 iA'
K, = - —%%15 . Y Tt (e [3(ata)]Z e AR
i A'=0 A=0 2=0
oo 1(F 't A+l AL 1V e 1
H., (k k. = (t)R__(£)(=) dtldr
IO A'( fr)ul( ;o7) {5 JO U g ) np = 0 o0 olls 0 o
A' o2 1
Y (6,0) . (3.4.15)
Al .-m .
m 0 -m 4

From the triangle inequality satisfied by the arguments appearing in the

upper rows of the 3-j symbols, one has that (a) A = 0,2 and (b) £ =" £ 1

for A >0, & =1 for A' = 0. The radial integral is consequently written as
= 3.4.16
P(2,)) J: Hz(kfr) ux(ki,r) hls’np(r)dr ( )
with .
r
1 t ., 2 t
= -= t)| =+ - . —|dt. (3.4.17)
hls,np(r) r JO uls+p(t)Rnp( ) [r' 5 r3}
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Hence, with the aid of (3.1.21) to transform Yo m(G,O) into a Legendre function
_ ,-

. D
and the notation (3.4.8) for y”, the m =0 and m =1 expressions for

K, are obtained respectively, on evaluating the corresponding 3 - j symbols,

to ke
_ P 18y a1 18y g1
m=0 K =ivyv2] [()P@,a41)e P opp(ga-1)e B ]Pl(coso),
220
(3.4.18a)
= iA 1A
. D + 10—
m=1 K =iy [ [Presde P yp(a,eo1)e B 1]Pl(coso). (3.4.18b)
821 .
K2:

(2.3.21b)

_ & L t3 1
K, = f uls(l} vy (2) xy (2,3) 27— ¢, (1) ¢Pol(23) F(3) dr,,,

£ 13
Inserting the usual radial and angular parts of the atomic wave functions and

making the various angular momentum expansions,. the angular integration is

carried out with the aid of (3.4.4) to give

o ) 1A 0o
_ &1 /fim A= 3
K, = 73 /% Z Z 1V (2a+1)(2241)% e H, (kr)u, (k, )
i A=0 =0 0
21 A 2 1 A
£ (r) k (r)dr Y (0,0) . (3.4.19)
1s,w ) 1s,np 0 0 0 m-m O L,-m
A " is given by the familiar expression (3.4.9) and f (r) by
£24A ls,w
(3.3.20). kls,np(r) is defined in analogy with kls,ns(r) of (3.3.8) to be
= - 3.4.20
kls,np(r) 2 Jo uls+p(t) Rnp(t?t dt . ( )
Let
_l bt
= . 3.4.2
Q(2,A) =B JO Hz(kfr) uA(kir) fls,w(r) kls,np(r)dr ( 1)

Then, noting the relation between £ and X obtained from the 3 - j

symbols, the m =0 and m = 1 expressions for K2 take,-after some

manipulation, the respective forms

A

iA i
-2Q(2,%-1)e ot %]Pz(cose),

T 2,0+1
m=0 K2 = iYD/Q z [(l+l)Q(2,2+l)e ’
2=0
(3.4.22a)
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w iA ia
. D + - l
5 = 1Y ) [Q(2,2+l)e B4l Qe,e-1)e *oF l]Pz(cose) (3.4.22b)
2=1

E]
]
=
~
1]

~
!

(2.3.21¢)

& T4 E 1
g = I uls(l) Vn2(2) xkf(z,3)-;; ¢ls(l)¢Pol(23) F(3) dr, o4

This is separable and making the ysual substitutions and effecting the angular

integration with the aid of (3.4.4), becomes

_ 4B u/r o % a-g W
Ky = e~ + 75~ Z E iYT (2at1)(2041)2 e 2 H, (kru, (k, 1)
i A=0  £=0 | 0
(z A 1) (z A1 )
k (r)dr Y, (0,0),. (3.4.23)
1s,mp 0O 0 0/ \m 0 -m %,-m
kls,np(r) is given by (3.4.20) and Az,x by (3.4.9). Writing
R(2,2) = J: Hl(kfr)ux(ki,r) kls,np(r) dr (3.4.24)

and using similar analysis as in previous cases, the m =0 and m=1

expressions for K3 assume the form

iA

in
P2 gr(a,e-1)e BATY

i yPv2 § [(e+1)R(2,2+1)e
2=0

(cos0), (3.4.25a)

E]

"

o

=~
"

Py

iA A
2,241 2’2-¥]P;%cos®). (3.4.25b)

w i
iy2 ¥ [RG2,241)e FR(L,0-1)e

=1

E]
"
'_l
~
"

This is given by (2.3.21d). Substituting for ¢pol(£PE) by equation
(3.1.6) and replacing the Legendre polynomial by the expansion (3.1.13), the

A

angular integration over r, causes the integral to vanish:

K, =0. (3.4.26)

At this point the results (3.4.18), (3.4.22), (3.4.25) and (3.4.26) are
collécted together into (2.3.22) to formulate a general expression depending

only upon m for TifP. For compactness, let

S(2,2+1) = 2{P(2,2+1) + Q(L,2%1) - 2R(£,2%1) } (3.4.27)
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and write
A )
..D - * 1By oo
By = iy {(8+1) S(2,2+1)e P Ly g(p,0-1)e Pty (3.4.28a)
D iA iA
By, =i %5 (s(e,evlde My g(penye Pot Ly, (3.4.28D)
Then the required expression may ke written (with m = 0,1) as
m = 0,1 T P( ) = § m
= 0, g (M) = Bym g (cos®) . (3.4.29)
L=m
E+
Tig ¢
Et _ .1
Tie =ty a3, +95-27,] (2.3.25)
Each integral is treated in turn.
Jl:
5= | @) VR (2,3 24,
R AV ka Z, ;I; ¢ )¢1S(3) F(1) dr, 54 (2.3.24a)
A straightforward partial wave analysis gives
128 e -1 iAz A
- : 2 H)
J) = =5 Vi Z z i (22+1)(22+1) jmux(ki,r)Rnp(r)gls’z(r)dr
i A=0 £=0 0
2 21 L A1
Y, _(0,0). (3.4.30)
0 0 O \»\m O m ?
The function g1 l(r) is given by (3.3.13). Then, letting
H]
J(2,A) = J: uA(ki,r)Rnp(r)ng,z(r)dr (3.4.31)
and YE = %YD, the m=0 and m = 1 expressions for Jl become respectively
= SiyEe T [ EL s(e,etde P e J(2,2-1)e NS p, (cos0)
m=0 Jy=iyv2 oo - AL 2041 cos®/,
(3.4.33a)
E AZ 2+1 AZ -1 1(
m=l J =iy 221 22+l [J(2,2+1)e + J(2,2-1)e ]P cos0).
(3.4.33b)
J2: ] 1
% 4 *
Jy = J u, (1) v 2 (2) xkf(z,a) ;;; ¢,5(229,,(3) F(1) dr (2.3.24Db)

The angular integration may be evaluated using only the property of orthogonality
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between the spherical harmonics. Concerning the radial integration, it is

. . P
convenient to define dl(kf), by analogy with di(kf) (c.f. equation(3.3.16)),

to be

o0

P -
dl(kf) = J

with fls,np(r) given earlier by (3.4.5) and to recall the integral cl(ki)

Rls(r) Hl(kfr) £lq np(r) r dr (3.4.34)

0

given by (8.3.15). The m =0 and m =1 expressions for J

, can
then be written as
) _ . EV2 P A 0
m=0 J,=-4iy 35 cl(ki) dl(kf) e ° Pl(cose), (3.4.3.5a)
m=1 J,=iy 2 c (k) d &) 1,0 pXcose)
5 Y o35 clky) 4 (ko) e 1(cos0) . (3.4.35b)
J.: .
3 J. = & (ﬁ) *i(l) % 1
3 % | v (@ v, xkf(z,a) ;;; $91(2) ¢,,(3) F(1) dr, 4 (2.3.24¢)

Again the integration over the angular variables may be handled using
only orthogonality of the spherical harmonics. It is found that the integral

only exists for m = O. By analogy with ¢ S(ki), defined in (3.3.18),

2
it is convenient to write

{+-]
P - .
<, (ki) = Jo Rnp(r) uz(ki,r) r dr (3.4.36)
and to recall dz(kf)’ given by (3.3.19), in order to express the radial

integral compactly. Hence, J3 reduces eventually to

E/2 iA

_ _ .Y P 0,1
m=0only Jg=i-g c, (ks) d2(kf) e §0 * (3.4.37)
Jd,:
) = [ W @) VD) x (2,3 -6, (204 (3) F(D) 4 (2.3.244)
Ty = | (B V() (2,90 T2 4y 51208 Tiog 409
This integral is separated into three distinct integrals over r,, r, and r,.

That over r2' is just the integral represented by B, equation (2.3.17).

Those over r; and r, are reduced respectively to:
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[ % _./fm 1 P
vnp(z) F(r) dr = i -E; - 73 % (ki) exp[i{Gl(ki) +.n1(ki)}]6mo’

J

[ ooy Lo ) 1/2 .
J ka z,r) 4 ¢ls r) dr = (4nm) ds(kf) exp[ - 1no(kf)]

P . . -
where ¢, (ki) 1s given above by (3.4.36) and ds(kf) by (3.3.22). It

is observed that Ju only exists for m = 0. Combining the above results,

the required expression for Jl+ is
lAO,l

Gmo' (3.4.38)

. E P
=0 =
only J, =iy V2 c, (ki) ds(kf) e
Having now obtained the results (3.4.33), (3.4.35), (3.4.37) and (3.4.38), a
. + |
general expression for TifE depending only upon m is derived. Inserting

the above results into (2.3.25), and writing

+ . El L+l P -1 2 L+l
=+ _.___l - I
Co = v J(R,041) + <, (k.)[B d2(kf) 2d3(kf)[620

3 22+1
1 -1
2z+1 [J(z 2-1) £ B "e (ki) 4; Flx )521] } , (3.4.39a)
. E iA
£ _ iy 1 2,041 [ ]
=+ —_— H
GL =7 { ST¥S] J(2,8+1) e 22+l J(2,2-1) + cl(ki) d (kf)621
iA
e %ot l‘}, (3.4.39b)
the final expression for TifBi (m = 0,1) is written in the compact form
_ Et - ° r .m '
m = 0,1 T.e (m) lzm C,n Py (cos ©). (3.4.40)

This completes the partial wave analysis of the Lasic integrals contfibuting
to the T-matrix element Tif' As in the case for S - S transitions in
§3.3, the key expressions derived so far are: (3.4.11) for TifD(m)’

(3.4.24) for TifP(m) and (3.4.40) for TifEi(m). One is now in a position
to formulate expressions: in the DWPO I and DWPO II models for computing

the differential and integral cross sections describipg excitation processes
from the ground (llS) state of the target to either an an or nSP state.
However, before embarking upon such a formulation, attention is drawvn to the

remark at the beginning of this section which concerns the slow convergence
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of the series appearing in (3.4.11) and (3.4.29). This does not arise in

the exchange case (3.4.40) since basically in each of the exchange integrals
a partial wave function is integrated against a bound state function rather
than another partial wave as in the direct case; partial waves (incoming

and outgéing) have an oscillatory nature at large distances from the scattering
centre whereas bound state wave functions decrease exponentially in
magnitude. When computing total integrated cross sections this problem of
convergence is not too serious a difficulty since only a relatively small
number of partial waves contribute significantly, especially at lower impact
energies. Hence for such energies, provided one is only interested in total’
(and therefore integral) cross sections, the series may be adequately summed
term by term. On the other hand, for differential cross sections the
difficulty takes on mofe significaﬁce, particularly from a computational
point of view, since many more terms in the sum must now be included. 1In

the following, an artifice is described to overcome this difficulty.

Essentially, it is the lower order partial waves which suffer most

distortion, Lecoming progressively less distorted for higher order ¢ until
they merge at some value of &, say 20, into plane wave contributions. In
practice, £, is set to the current value of 2 when the elastic scattering
phase shift Gl of (3.1.17) 1is typically less than 0.005. The idea then is,
following McDowell et al. (1975b), to sum the series for the T—matrix

element up to this value 20, to subtract the corresponding terms calculated
in the Born Approximation and finally to add the complete T-matrix element
calculated in the Born Approximation. Denoting Born terms by a B (mot to

be confused with the integral definition (2.3.17)), this is expressed

mathématically in each case as (viz. m = 0,1):

2
o
D B m B A
T, (m) = I o[, - ALlR (cos0) + Tif (m), (3.4.41)
2=m
m = 0,1 .
' o
P _ _ B m PB Ty
T ¢ (m) = zzm [Bzm Bymd By (cos@) + T, (m) . (3.4.42)



68

B B .
The Born terms Alm and Bzm are derived from the expressions for Al

and B, = respectively with uz(ki,r) replaced by /kier(kir),'viz.(3.4.10)

and (8.4.28). Using previous notation the Born T-matrix element T.fB(m) is
i

defined as

) B ikgery ik;.r
m= 0,1 Tip (m) = <4.(12) e Ve 6.(12) et 3, (3.4.43)
and the “Polarized-Born" T-matrix element T.fPB(m) as
1
ik_.p ik..r
PB eIy XL
=0 . =
m 1 T.e (m) 2<¢f(12) e Ve ¢ls(1)¢pol(23) e > (3.4.44)

with m = 0,1 and ¢f(l2) the corresponding final state target wave function.

B(m) and T PB

It is essential that closed expressions be obtainable for Ti if

£ (m).

In order to make the integrals concerned tractable, simple Hartree-Fock
functions were employed (Morse et al., 1935, for the 21P statej Goldberg
and Clogston, 1939, for the 31P state) and to preserve consistency the same

functions were adopted throughout the entire calculation of the cross sections.

PB
£

computation. It is seen that for large r

For the case of Ti (m), a slight modification is introduced to ease

flS,W(r) > B. (3.4.45)
)

The modification is then-to approximate fls,w(r) by B for all r; physically
this means that the core electron is assumed to beApaésive throughout the
scattering process. The full expressions are derived in Appendix D.

In order to formulate both differential and total cross sections, the modified
expressions (3.4.41) and (3.4.4?) for TifD and TifP will now be used
throughout the remainder of this section and the one to follow (§3.5), rather
than (3.4.11) and (3.4.29). Of course, such modifications are unnecessary
for singlet-triplet level transitions which only involve the exchange term
(3.4.40). The general expression for the total differential cross section

for excitation to a P state is obtained by averaging over the (single)

initial state and summing over the (three) final states and hence written
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do
do _ _o© 1 -1
ae ~ae ta TTam (3.4.46a)

where the subscripts (0,+1) denote the magnetic substate quantum numbers.

Due to axial symmetry of the system, the latter two terms are identical so that

do 2do
do _ o) 1
an = a0 +m— (3.4.48b)
with
- do
m_ 1 - 2
= ° ;fi" = ITif(m)I ,m = 0,1 . (3.4.47)
m i
The "+" and "-" superscripts have been introduced to distinguish between

excitation to either a singlet or a triplet spin state respectively.

In the DWPO I model (wiz.(2.3.4)) one has that

L
o
+ - _ oty _ B qom B
T, (M) = 2Zm[;(Am Com) = APy (cos®) + T, "(m) , (3.4.48a)
(I) ‘
_ max  _
= 3.4.48b
T s (m) Com Fo (cos0) . ( )
2=m
2 appearing in (3.4.48b) is defined by the assumption that all contributions
max

for & > 2 may be neglected.
max

In the DWPO II model (viz. (2.3.8)) one has that

2
° B B PB
(1I1) Tif+(m) = Lzm [(Dlm - C;m) - Dy ]P; (cos0) + Tse (m) + Tie (m) .

(3.4.49)
Tif_(ﬁ)' remains unchanged and has the form given by (3.4.48b) above. Dy
is simpl& Azm modified by the addition of B, in both the DWPO and Born

terms:

(3.4.50)

In fact the Dzm are easily obtained from the AZm by making the following

transformation on fl (r) (c.f. (3.4.5)) appearing in the I(2,1)
s,np

integral (3.4.7):
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fleumpt™) g np®) ¥ 2{[87¢ s (®) - 21k

1s,w (I‘) + hls,np(r). }.

1s,np

(3.4.51a)

f r i i
ls,w( ) is given by (3.3.20), hls,np(r) by (3.4.17) and kls,np(r) by
(3.4.20). 1In line with the approximation described following (3.4.45), one

finds that (3.4.51a) is in fact modified according to

f (r) ~ £
1s,np ) ls,np(r) + tls’np(r) (3.4.51b)
with
r 3
t (r) = -
1s,np b Jo ulS+P(t) Rnp(t) t” dt (3.4.52)
in agreement with equation (28) of McDowell et al. (1975a). t (r) is

1s,np

evaluated in Appendix C for the cases n = 2,3 when Rnp(t) is a simple

Hartree-Fock Function. Note that asymptotically tig nP(r) behaves
9

according to

(r) (3.4.53)

II~J
=

t
1s,np o

which gives rise to the slow convergencepeviously mentioned for the series
in (3.4.29).

It.will be observed that in (3.4.48a) and (3.4.49), contributions
from exchange have been omitted for 2 > 20, it being tacitly assumed that
exchange terms are negligible when compared to the direct terms for the
(20 + l)th partial wave and beyond. In practice this assumption may not be
true and due account of exchange terms required up'to some other value of &,
say L .. (indeed Loy TEY be either greater or less than 20). However,
in order to avoid unnecessary complications in the folbwing theory, it will

continue to be assumed that 2/ and lmax coincide, the atove amendment,

if appropriate, being implicit.

2

The total integrated cross sectionm, Qif(ki ), 1is obtained by

integrating (3.4.46) over all solid angle Q. Thus, taking account of

axial symmetry,

Qif(kiz) = Q, t+ 20 (3.4.54)
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where the integral cross section Qm(m = 0,1) is defined to be

dom
Q = J m @ . (3.14.55)

Let Qm(lo) denote the integral cross section computed from the first 20

partial waves alone:

£ 1 K o lo, * 2
m=0 Q (8)=-—.=u 7§ 9 Ta (3.4.56a)
o o’ T2k by T2ea o *
)
n=1 iy =i . f, ;oA g, 2 2 (3.4.56b)
= ==, = Ta . M.
1207 72 Tk gl :al 21 o

Here and in the following the final spin state of the target atom is denoted
. . + . ,
explicitly. sz (m = 0,1) 4is defined below. The analogous Born expression

B, . . . .
Q, (20) is defined by inserting Asz in place of sz+ and the 'Born

B+PB( B

plus Polarized-Born" expression Q, om *

%,) 1is definedly inserting D
The integral cross section calculated in the Born Approximation is denoted by
GQm(B) and in the "Born plus Polarized-Born" Approximation by 6Qm(B + PB).

Evaluation of these latter two quantities which requires TifB(m) (viz. (3.4.43))

PB
£

+
The DWPO I approximation to the integral cross section Q- is then

and Ti (m) (viz.(3.4.44)), is discussed in Appendix D.

obtained by setting

o f = t(a) - Q) + 60 (B), (3.4.57a)
(1) |
Q, *© Qm“(zmax) (3.4.57b)
. + + - =
with sz = Azm - sz and sz = clm in (3.4.55).

‘ . .,
The DWPO II approximation to the integral cross section Qm is
obtained by setting

(11) ot =g, (r,) - Q. T (k) + 6, (B47B) ' (3.4.58)

i i i to. - * - ains unchan éd from (3.4.57b).
with this time sz = Dzm sz ; Qm rem g

1
I
The total integrated cross section for the process under consideration is then

derived in the reSPective DWPO model by substituting either (3.4.57) or



(3.4.58) into (3.4.54).

§3.5 The Orientation and Alignment Parameters

So far this chapter has Leen occupied with the determination of inelastic

differential and total (integrated) cross sections. However, in addition to
the cross sections,information may also be obtained on the orientation and
alignment of the final state of the target atom. After the collision, the
state of the atom is taken to be a coherent superposition of the relevant
magnetic substates. Eventually the atom undergoes a transition with the
subsequent emission of light (photon); by analysing the angular distribution
ana polarization of this light, it is possible to gaiﬁ information about
the anisotropy of the atomic state. Experimentally, the orientation may
be obtained by measuring the circular polarization of the emitted photon.
The alignment may be determined by using a delayed coincidence technique to
measure the angular carelations betweenthe inelastically scattered electrons
and photons emitted in the scattering plane. Such coincidence techniques
have been developed by Eminyan and coworkers and used initially by Eminyan
et al., (1973) to obtain the angular correlations between electrons with an
incident energy of either 77.7 or 80 eV scattered inelastica}ly‘from
helium and the photons emitted from the decay of the 2lP and SlP states.
A succinct account of the theory is provided in the paper by Macek and
Jaecks (1971). This, together with the related article by Eminyan et al.
(1976), will form the basis for the brief theoretical description outlined
below for the particular case of excitation of the an levels of helium.
Reference may also be made to the paper by Wykes (1972).

From a practical point of view, the collision time is always considered
short compared to the radiation time. Hence, denoting the state vector of

the n'P level by |¢(t)> one has that at time t =0

|p(0)> = blll,l> +b_|1,0> +b_,|152>. (3.5.1)
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lLM> is #he state vector describing the particular atomic state with total
orbital angular momentum L(=P here) and magnetic sublevel quantum number

M(= 0,%1 here); spin-dependent interactions are assumed negligitle. by, is

the amplitude for producing the respective excited state. |y> possesses

mirrorsymmetry in the scattering plane so that b, = -b Further, |¢>

-1°
can be normalized so that the excitation amplitudes are related to their

respective differential cross sections by

- 2 .
o, = b [, (3.5.2a)
6, =o . = |b |2 (3.5.2b)
17 -1 1o e
6 To_+ 2 (3.5.2¢)

Throughout this section o will be used to denote the total differential

cross section for exciting the an state and Oy to denote the differential
1

cross section for exciting the magnetic substate labelled M. In general

the bM are complex so that writing Xy for the phase,

lxM
by = Byl e . (3.5.3)

The dimensionless orientation and alignment parameters (A,x) are then

defined as follows

A=o /o (0<x<1) (3.5.4a)

X=X T X (-m < x <m) (3.5.u4b)

and may be determined both experimentally and theoretically. Thus the
accurate determination of A and X imposes a more stringent test on
theory than that provided by determination of the differential and integral
cross sections. From an experimental point of view, A and x are
measured as functions of energy and electron scattering angle and are free

from the problems of absolute calibration and normalization upon which the

determination of differential cross sections must rely. It remains to see

how these parameters may be used to obtain information atout the state of

the excited atom.
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It is assumed that contributions from cascade are negligible and that
LS coupling holds, which for a light atom such as helium may be taken

as correct. Returning to the state vector (3.5.1), this is not an eigenstate

of the atomic Hamiltonian and is written at time t > 0, with h = 1,
[u(t)> = J byl 11> o~ (¥/2 + iE)t (3.5.5)
M

E 1is the energy of the excited an state and 1/y the mean lifetime of
this state. Almost all lines observed in atomic (and molecular) spectra
originate from the electric dipole nature of the transition. Hence, the
probability ch of observing a photon with polarization vector % in a
time At after the atom has made the transition to the excited state |y>
is proportional to the square of the electric dipole matrix element integrated
over At

At ~ ’

N =¢ J |<0| e.x lu(t)>|? at. (3.5.6)

o
C 1is a proportionality factor and X is the electric dipole moment operator.
|0> is the state vector for the lower (llS) level reached in the decay.
The angles specifying the direction Q, of the photon will be denoted by

~

(Bv,¢ ), and the polarization vector ¢ written
v

§_= ;Fl)cosﬁ + §F2)81n8 (3.5.7)
2(1) +(2) i t right angles to the
where € and € are orthogonal unit vectors a g g

direction @ and B is the direction of polarization. The aim is to
v
derive an expression for dN_ which depends on the minimum number of

parameters. Substituting for |¢(t)> by (3.5.5) into (3.5.6) yields

. 2 (At ¢
N = c|J<0e.X|1,4> by J e '- dt . (3.5.8)
c — —
M o
i (1) (2 herical tensor components, namel
By expressing E and € in terms of spherical te D , y
~ ii¢ A(l) .
(1) _ 1 cosb e v e, = - sin ev ;

€1 T V2 v ’
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(2) R 6y ~(2) _
a1 TV2 ¢ e e =0
and using the Wigner-Eckart theorem to factor out the matrix elements,

Eminyan et al. (1976) find that

c 2 X ; % At -
ch =3 |<O”X I l>| X be;' 8(10') E(a) J e YT at (3.5.9)
)

with o = 1,2. In practice At > 1/y so that following the references
cited above, the integration over time is carried out and, since the photon

detector is insensitive to polarization, the result is summed over two

™

independent polarization directions, séy B and B + 5 -

This gives, after

much labour

dQNC' g ch
T&@ T W (3.5.10)
e v v
with
ch 3y 2
zr-; =-§? [Aoo + All + (All - Aoo)cos ev + V2 RerlSln2evc°S(¢e_¢v)
+ A, . sin’6 cos2(4 - ¢ )]. (3.5.11)
1-1 v e v T

d2Nc/dQedQv is the joint probability for electron scattering in the direction

Qe speqified by the angles (Be,¢e) and photon scattering in the direction
Qv specified analogously just above line (3.5.7). ch/dQv is the

' probability density for the emission of a photon in the direction Q, after
electron scattering. z, in the notation of Eminyan et al. (1976), is the
total (integrated) cross section. o is defined previously in (3.5.2). The

qu are defined by Macek and Jaecks (1971) who find for helium that

t

g g <b b.>
o . 1 =01
= — = - = — = . .5.12
AOO Y ° All Al—l Y 4 Agl Y (3.5.1 a)

With the aid of definitions (3.5.2) to (3.5.4) the above qu can be

expressed as:

A(-2)  ix

> . (3.5.12b)

=9
(l"A)’ Aol -Y
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Hence by substituting into (3.5.11) one finds

o, gy
@, T (3.5.13a)

where N 1is the angular correlation function defined by
N = [Asin26 + l(l-l)(c0826 +1) - 1(l—)\)sin26 cos2(¢ ~-¢_)
v 2 v 2 v v e
.
+ [A(1-2)]2 cosy sinQGv cos(¢v—¢e)] . (3.5.13b)

Equation (3.5.13) corresponds to equation (17) of Eminyan et al.
(1976). In practice, Eminyan and coworkers set the electron detector at

¢e = 0 and the photon detector at ¢v = 7 so that
. 2 2 1 .
N = Asin ev + (1-1) cos Gv ~[A(1-1)}2 cosx 81n26v X (3.5.14)

Since N depends on cosy, the experiment will only determine ¥ up

to a sign. Eminyan et al. (1974) have used the delayed coincidence technique

to obtain values for A and |x| by observing emission from the 2lp

(e]

level of helium over the angular range 16° 2 6_ < 40" and for electron

e
impact energies ranging from 40 eV to 200 eV. 1In a later publication
(Eminyan et al., 1975) X and |x| have been similarly determined for

(o)

excitation of the 3lp level for 10° < 6 _ < 30" and electron energies

e
lying between 50 eV and 150 eV.

Moreover, Fano and Macek (1973) have made a theoretical study of impact
excitation and polarization of the emitted photon. Essentially, they show
that the average intensity of emission over all directioﬁs Q, depends on
dynamical factors such as the line strength whereas the anisotropy and
polarization of the lighé (photon) depends on the alignment and orientation
of the excited atom. The intensity of the emitted light is formulated in
terms of the components of an orientation vector 9?01 and the components
of an alignment tensor éFOl, determined in the 'collision frame' (x,y,z)

which has been used above as opposed to the 'detector frame' defined by the

photon detector in the notation of Fano and Macek (1973). These components
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are independent of one another in the sense that a chalge of excitation
process may alter any one of them and leave the others fixed.

Using spherical tensor notation, the non-vanishing components of

ol .
0 and AFOl are defined by Fano and Macek (1973) in terms of the mean

values of expressions involving the components of the orbital angular

momentum vector L and by Eminyan et al. (1976) in terms of A and ¥

so that

col - 1

072" = <L [L(L+1)] Lo D@-2)22 sin (3.5.15a)
ol 2 -

,Ag = 2<38L," - §_2>[L(L+l)] Y1 a-a (3.5.15L)

A%t = 1t L +L L >[L(L+l)]_l = D‘(l—A)]v% cos (3.5.15¢)
1+ 2%z T2 x - X 9.L0C
col _ 4 2 _ 2 -1 _ 5 _

Aoy = <L - LML) = = 3 (A-1) (3.5.15d)

The mean values are of course taken with respect to the excited state.
Hence one sees how the parameters A and. x may be used to obtain information
about the orientation and alignment of the excited state.

Physicélly A represents a relative measurement of Oy which,
according to the definition (3.5.4a), can be made absolute when ¢ is
known from an absolute measurement. Together with (3.5.2c), a knowledge of
the individual differential cross sections LA and o, may then be derived.
For a comparison between such cross sections for excitation of the an
levél in helium, see the papersby Chutjian and Srivastava (1975, n = 2) and
Chutjian (1976, n = 3). |

x on the other hand may be physically interpreted as the phase
difference between the excitation amplitude of the respective magnetic
substates (see equation (3.5.4b)). However, it has recently heen shown
(Kleinpoppen, 1976) that a measurement of x for the excitation/de-excitation
process s » p > lS in helium coincides with the phase difference between
two electric field vectors of the radiated photon emitted from the second
transition. In other words, one has the remarkable conclusion that a

quantum mechanical phase difference appears as a directly measurable
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(macroscopic) phase between two observable light vectors.
The angular correlation function N of equation (3.5.13b) may be

expressed in terms of the components of ACOl as

- 2 col , 2 _ col _, 1l ,col 2
N = 7t A2+ sin ev c032(¢v ¢e) + Al+ 81n29v cos(¢v—¢e) + §-A° (3cos Bv-l).v

(3.5.16)
Hence, an experimental determination of N contains no information about
. . col
the orientation O 7. In other words the angular correlation depends only

upon the alignment of the atom as remarked at the beginning of this section.

col . . s .
However, Ol- may be determined by examining the degree of circular
polarization, P, of the correlated photons. P is defined in terms of
integral cross sections as

Qo - Ql

i Qo * Ql

(3.5.17)

when ev = /2. For coincident photons emitted perpendicular to the plane
of scattering, that is ev = ¢v = m/2 and ¢e = 0, Eminyan et al. (1976)

show that

P = 2[A(1-\)] 2 sin x . (3.5.18)

col

Therefore, with the aid of (3.5.15a), a measurement of P determines Ol_

and also fixes the sign of x. Experimentally, determination of P  1is

difficult due to the short wavelength of the light.

col

Physically one sees from (3.5.15a) that 0,

is a measure of the
expectation value of the orbital angular momentum received by the atom
perpendicular to the plane of scattering and is hence an indication of the

extent to which the atom is oriented. Moreover, it can be shown that

<, > = <, > = 0 so that the net orbital angular momentum transferred to
X Z . .

the atom is restricted to a component along y..

In order to compute the orientation and alignment parameters (X,x) using

the DWPO models, some results from §3.4 must be recalled.
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A is quite simply computed from (3.5.4a) with the aid of (3.4.46) and

(3.4.47) with the appropriate insertions for Tif(m) depending on whether
one chooses DWPO I or DWPO II.

X 1s computed by considering Tif(m) as given by (3.4.48a) or (3.4.49)
depending again on the choice of model. For convenience the superscript has
been omitted from Tif(m) » since it serves no purpose in the following
discussion. Tif(m) is divided into its real and imaginary parts, denoted

respectively by Rm(ee) and Im(ee) where the dependence upon scattering

angle (written in this section as 8, rather than ©) has been made explicit.

Tig(m) =R (8 +31T(8), m=0,l. (3.5.19)

The phase Xm referred to in equation (3.5.3) is then given by
Xy = tan™t (I (0g)/R (65)), m=0,1. (3.5.20)

so that the relative phase yx may be obtained by substituting for Xo
and X, in (8.5.4b). It is noted that when 6,=0 or m, the m=1
component of Tif vanishes so that X1 and hence x remain undefined
at these angles.

Finally, the excitation amplitudes, when calculated in the First Born
Approximation, afe.always either purely real or purely imaginary. Hence this
approximation predicts that x = 0 or *w, in clear disagreement with
experiment. One therefore sees that in this respect the First Born
Approximation is inadequate, particularly for predicting the orientation of
the excited atom. Hence, a measurement of x may consequently be used

to define further the region of validity of the First Born Approximation.
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CHAPTER 4

EXCHANGE-POLARIZATION EFFECTS

§4.1 Introduction

This chapter will be concerned with a treatment of the effects arising from
a consideration of the Pauli exclusion principle upon the polarization terms
which occur in calculating cross sections for inelastic electron-atom
-scattering. In general, the inclusion of such effects in scattering theory
adds considerable complexity to the calculations. Taylor and coworkers have
introduced terms due to exchange-polarization interactions into their
many-body formalism via a second-order transition potential (see, for example,
Csanak et al. (1973) and Csanak and Taylor (1973)). Close-coupling methods
also aliow for the effects ofexchange-polarization, though only implicitly
through the very nature of the close~coupling expansion. However, in the
following discussion, an attempt is made to develop a theory which takes
explicit account of exchange-polarization interactions in electron-atom
collisions.

For two-electron target systems, such as helium, the treatment of
these extra interactions has already been briefly mentioned in Chapter 2 in
connection with the Distorted Wave Polarized Orbital approximation. It
was remarked there that the scattering equation satisfied by the distorted
wave F(r) (c.f. §2.2) could no longer be considered in the adiabatic-exchange
approximation but rather should be supplemented by further terms arising
from a full analysis of the polarized orbital ansatz (2.1.7). Moreover, the
T-matrix element, formulated in §2.3, should also be modified as in (2.3.10)
to allow explicitly for exchange effects on the polarized wave function
representing the ground state of the target atom. In the context of the
DWPO approximation, the DWPO III model endeavours to allow for these effects
of exchange-polarization via the initial channelj final channel distortion
is omitted altogether. The purpose of this chapter then is to develop the

DWPO III model and in particular to enable an account of exchange-polarization
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to be incorporated into the formalism concerning (a) excitation from the -
ground (1s) state to any excited (n%) state in atomic hydrogen (54.3)

and (b) excitation from the ground (llS) state to another S-state (nl’as)
in helium (84.4). Essentially, therefore, cne is concerned with the new

form of the scattering equation and with the corresponding modifications

to the T-matrix element.

§4.2 The Radial Scattering Equation

The scattering equation is obtained from the polarized orbital ansatz
(2.1.7) for both hydrogen ana helium by making the relevant choice of wave
functions. Such an analysis has been performed for hydrogen by Sloan (1964)
and for helium by Duxler et al. (1971). Follcwiﬁg these authors, the radial
scattering equation for the uz(ki,r) appeariné in the expansion (3.1.16)

for F(r) 1is written, adopting previous notation, as

i - r2 - NVlS’lS(r) - NVPol(r)] uz(ki,r)

2 2
:_T[?Rls(r)[:(els—ki )620 J: Rls(t)uz(ki’t)tdt T j: Rls(t)uz(ki,r)Yk(r,t)tdt]

3 2-1 I” Ry (B)u, (ky,t)dt 2+ 1 241
r

uls_*P(r) { L [(22_‘_1)(22_17 tg,-r]_ t (22,1'1)(29,1'3) r

T ..

T
w R, _(t)u, (k,,t) R, (v)
2 1 2 "4° 2 d (1s
-5 ey kg6 Jr - dt } "3 Gzlf{uls*p(r) ar ( r )
Ris®) 4 fs ) Q_.} (k. ,r) (4.2.1)
A Sl ) e, e G O | =

The factors N and Tt have been introduced merely for convenience; they

depend upon the target atom under consideration.



82

For hydrogen; N=1, <1=+1 for a singlet spin state
T =-1 for a triplet spin state.
For helium; N =2, T = 1.

€1g is defined to be the single ionization energy, as in equation (2.2.9).
The terms in the latter pair of curly brackets arise from the operation of
the Laplacian operator V2 on the step function e(r,t) contained in
¢Pol(£A£). Such terms were first derived by Sloan (1964) in a study of the
methad of polarized orbitals for the elastic scattering of slow electrons
by atomic hydrogen and singly ionized helium. It is to be noted that these
terms contain a derivative of ul(ki,r), that is, a velocity-dependent term,
which consequently constitutes a non-adiasbatic effect. Moreovef, their
inclusion in (4.2.1) improves the phase shifts in the p-wave, the only case
for which they arise. Equation (4.2.1) will now be discussed briefly in
connection with hydrogen and helium.

In the case of hydrogen, (4.2,1) should be compared with the equivalent
equation in the adiabatic-exchange approximation given by McDowell et al. (1973,
equations (11) and (14%)). The radial function Rls(r) is replaced by

the exact (hydrogenic) function R?S(r) where

R?S(r) = 223/2 e—Zr’ Z =1 for hydrogen . (4.2.2)

The direct potentials Vls,ls(r) and Vpol(r) may be obtained from equations
(3.2.3) and (3.2.5) respectively, making, of course, the appropriate choice
of parameters. The resulting expressionsagree with equations (12) and (13)
of McDowell et al. (1973) as previously remarked in §3.2. Temkin and Lamkin
(1961) also derived (4.2.1) in their application of the method of polarized
orbitals to the scattering of electrons from hydrogen, but omitted the
final set of terms first included by Sloan (1364).

In the case of helium, (4.2.1) should be compared with the equivalent

equation in the adiabatic-exchange approximation given earlier by equation

(3.2.1). The direct potentials vls,ls(r) and Vpol(r) remain of course
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unaltered and are given as before by (3.2.3) and (3.2.5) respectively. However,
compared with hydrogen, two additional integral terms should now be included
in (4.2.1) for helium as in equation (3.1)of Duxler et al. (1971). In the
present treatment, these two terms (which effect only the s- and p-waves,
respectively) have beeﬁ omitted in order to simplify the method of solution
for (4.2.1). Comparison between calculated s and p phase shifts with those
published by Duxler et al. (1971) showed very close agreement despite this
omission.

Having presented the radial scattering equation in a form suitable
for electron scattering by either hydrogen or helium, discussion will now

focus on the modification to the T-matrix element.

§4.3 1s + n¢ Transitions in Hydrogen-

Differential cross sections, describing excitation of 1ls + nf% transitions
in atomic hydrogen by electron impact, have been published in the DWPO I
and DWPO II models in a series of papers by McDowell and coworkers. Briefly,
ls > ns transitions have been considered in the DWPO I model by McDowell
et al. (1973) and in the DWPO II model by McDowell et al. (1974). Subsequently,
work on the 1s * np transitions has been published in both models by
McDowell et al. (1975a). Excitation of the n = 2 1level has been discussed
in a further paper, in the DWPO I and DWPO II models, by McDowell et al. (1975b)
and similarly excitation of the n =3 level‘by Syms et al. (1975). The
idea tﬁen of the present section (§4.3) is to extend the DWPO model used
in the above papers to include an account of exchange-polarization (DWPO III).
The scattering equation has already been considered in the previous section
(54.2) so that here one will be occupied with including the effects of
exchange-polarization explicitly in the T-matrix element.

The starting point, therefore, of this section will be equafion (2) of

McDowell et al. (1975b) which, to conform with notation of this thesis, is

written
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+
Tip = <¢f(l) xkf(z,Q) Ve f\[(¢ls(l) + ¢Pol(12)) Fi(2)]>. (4.3.1)

%& is an antisymmetrising operator on electrons 1 and 2; the plus and
minus signs refer respectively to singlet and triplet spin states of the
complete system (projectile and target). The interaction potential in this

section (§4.3) is given by

Vf=-l—+ri (4.3.2)
T 12

and must not be confused with that for helium given by equation (2.3.1). The
final unperturbed atomic wave function ¢f(£) is written in the exact form

- gH -
9e(x) = R ()Y, (r) (4.3.3)

with Rgz(r) the radial (hydrogenic) wave function. Similarly, the unperturted

ground state wave function ¢ls(r) is written

- i -
¢ls(£) = Rls(r) Y () , (4.3.4)

with Ris(r) defined in (4.2.2). The 'H' superscript only serves to
distinguish between atomic wave functions for hydrogen and helium and in
fact will be dropped where there is no possibility of ambiguity. ¢pol(£13)
is defined by equation (3.1.6) with Z_ = 1. F(r) and xkf(z,z) are
expressed as in (3.1.22) and (3.1.23) respectively; note however, that in
the present case, the residual charge z is taken rather to be defined as

z = 7 -1 where Z denotes as before the nuclear charge.

Equation (4.3.1) is expanded to give;

x D, PDy, (n E, . PE
. T, (4.3.5)
Ty = (e +Tjp )2 Ty #T5¢ )

where;
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D

Tie T 0D (22) Ve 00) Fr(2)> (4.3.6a)
7, FD - <¢ (1) (z,2) Vv *

if £ xkf > £ ¢pol(1,2) F(2)> (4.3.6b)
T..F = < () x, (z,2) t

ig T g ka z,2) Vo ¢.(2) F(1)> (4.3.6c)
T, FE = o (1) x (2,2) V. 4 .(2,1) F

if £ ka 3 £ q)pol ,l) r (l)> (4.3.5&.)

. s D E . .
Retaining T,.” and T.e in (4.3.5) gives the DWPO I model (c.f. equation

(19) of McDowell et al. (1973) or equation (1) of McDowell et al. (1974)).
Retaining also TifPD gives the DWPO II model (c.f. equation (2) of
McDowell et al. (1974) cr equation (25) of McDowell et al. (1975a)). Both

these models have been fully developed elsewhere. Emphasis is consequently

PE

£ in (4.3.6d). Notation

now placed upon a partial wave analysisof Ti

will follow that of §3.1.

. PE . .
Hence, in Tif , the atomic wave functions ¢f(£) and ¢pol(£}3) are

replaced by their respective forms outlined earlier in this section. The
Legendre polynomial Pl(cos ert) appearing in the expression for ¢pol(£’z)
is expanded in spherical harmonics according to the addition theorem given

by (3.1.13). F(r) and Xy (z,r) are expressed as mentioned above just
£ -

after equation (4.3.4) and »., = appearing in V_ of (4.3.2) is replaced

12 £
by its multipole expansion (3.1.14%). One therefore finds that

3 -] © " ' % iA 1
r, PE o 204m)” MRS Ty (6,0)
if 3/k. A=0 A'=0 £'=0 !
i (4.3.7)
* + 1 T >
J Roe (2 uz7(ki’r){ ?'fouls+p(t) Hx(kft)'YA'(r’t)tdt }dr IAA'A'(Qrt)
(o]
where
- ku - (k ) F) .(30409)
By g §,(k;) +my( 30 7 (kg |
A
t 1 (4.3.8)

bl = m——  w— .
vy (pst) = RN %30
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IAA'Q'(QIVQ denotes the total angular integration and is given by

A A 1
I, .. )= JY*“***~ AL
gt @ u2=-w uz-l vz_l o Tan(® T @ 1) Yy () @
fﬂ qu(t) Yl,u,(t)Ylv(t)dt . (4.3.9)
t

In order to perform the integral over r, use is first made of relation
% ~ E I

(3.4.13) to expreés the product YA'u'(r) Ylv(r) in terms of a single

spherical harmonic, say qu(r). The integral may then be evaluated with

" the aid of (3.4.4) to yield

1@ ) = (-1)" E ﬁ 3(20'+1) (2pt1) | | ept1) (207 41) (2041) |
r p=o g=-p L L

.(1 At p) (p 2! z) 1 A" p p L' z)
0O o0 o0 0 0 o v p q> (q 0 -m

Note that from the last Wigner 3-j symbol one has that g = + m. The

Nj=

integral over t is straightforward using (3.4.%) and gives

1
I(e.) = (_1)11 [3(2X+l)(2l'+l):lz (l A A’) (l A )\') '
t qm
0 0 0 v -1 pt

These two results for I(Qr) and I(Qt) are subsequently inserted into
(4.3.9) and advantage taken of the orthogonality property possessed by the

Wigner 3-j symbols which is given by Edmonds (1974, eguation (3.7.8)).

One finds that

=1
N

I (@) =

AATLT et

seontel) | (2eendets)(any | (2 2 A A AT
L e

(2 2! l) 8, - (4.3.10)
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From the 3-j symbols appearing in (4.3.10) one observes that

At =X %1 if X>0; A' =1 if A = 0. It is convenient to define by

L,

t1s->p(r) the following radial integral:

2,2 r ML |
tlS+P(r) = Io (t) H (kx t)t . (4.3.11)

Let gip) (r) be defined by

(p) 2(A+1) 1 A A+ 22 1 AA-1 2.1,-1
(r = - . - . — .
gls A ) 2A+3 A+3 lS+p% r) -1 AL tls+p (r) + 2 T t1s+p( )le
(4.3.12)

For small r, it is desirable to make a series expansion in r of

(P) (r) This is readily obtained if ti sA (r) defined in (4.3.11) is

expressed as a series expansion in r. Such an expansion is derived in
Appendix C.

Recalling (4.3.7) for TifPE and substituting for I
the aid of (4.3.10), it is consequently seen that

AA'Z'(Qrt) with

3/2 © © )
E _ (4m) ARON 22+1 (p)
T. = y i (22'+1) J R (r)u (k 1) g, A (r) dr
if a0 it 241 | Tne

[ A D AU A A\ iAx ot
( e "7 v (0,0) (4.3.13)
X,-m

The expression (4.3.6c) for TifE may be evaluated in a similar way.
The angular integrations are relatively straightforward and are performed by
making use of orthogonality between the spherical harmonics together with

(3.4.4). The result is summarized as

-]

i (un)3/2 E 7 izl_x (201+1) 2241 [:Jm an(r) uz?(ki;r) g1g k(r) dr
o 2

Tif T Tk Lo 4o 2A+1
i .
A AR AN S SR
- k,,r)rdr fw R, (r) H,(k r)rdr] (
GAO I: : (r)u ( i’ o 1s AE 0 0 O m O -m
in .,
e My (0,0) . (4.3.14)

A,-m



88

This is the exchange term adopted by McDowell and coworkers in the DWPO I

and DWPO 1I models. The furction 81g X(r) is defined by McDowell et al.
H]

(1973, equation (32)) and is observed to coincide with the definition of

gls,g(r) in this thesis (equation (3.8.13)), given the appropriate choice

of Rls(r) and Hz(kfr).

The total exchange T-matrix element in the DWPO III model is defined

E P
as the sum of Tif and. Tif B, that is
E PE
Tif + Tif .

By comparing (4.3.13) and (4.3.14), one sees that this is most easily
obtained by making the following transformation on g1q A(r) appearing
b

in equation (4.3.14) for T{fE:

g () »g_ () +gP) (n) (4.3.15) -

1s,A 1s,A 1s,A

h (p) (r) is defined by (4.3.12). DNote that g (r) and g(P) (r)
where g, ") y (4.3.12). 15, 15,
are both independent of £, the orbital angular momentum quantum number
of the excited state. It is consequently emphasised that (4.3.15) is
the only modification required to include exchange-polarization effects
explicitly in the T-matrix element for excitation from the ground (1s)
state to any other @&) state.

To summarize: the DWPO III model for describingexcitation of 1s -+ n&
transitions in atomic hydrogen is obtained by solving for uz(ki,r) in the
appropriate version of (4.2.1) and incorporating the modification (4.3.15)

into the exchange T-matrix element of the DWPO IT model.

.54.4 llS +4nl’35 Transitions in Helium

re in the previous section (§4.3) the object here will be to investigate

the result of explicitly including the effects of exchange-polarization in

the T-matrix element. For helium (or indeed any two-electron atomic system)

such effects ha?e already been noted to gve rise to two additional terms;
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El: 4 ' E2+ A
T.,g  given b¥ (2.3.28) and Tie given by (2.3.30). In the following,

a partial wave analysis will be performed on each of these terms. When
considering excitation of atomic hydrogen, a general result (4.3.15) was
‘derived which was suitable for any transition. However, such a result is not
possible in the case of helium, due essentially to the further exchange
interactions arising through the presence of the core electron. Hence, the
analysis will be restricted to S - S transitions. Notation follows exactly
that adopted in Chapter 3. The correction term ¢Pol(£$3) is expressed

by (3.1.6) coupled with (3.1.13) to expand the Legendre polynomial and IETEJ—l
is replaced by the multipole expansion (3.1.14). F(r) and xkf(z,g) are

decomposed into partial wave sums according to (3.1.22) and (3.1.23)

Elt

respectively. Consideration will first be given to Tif .

Elt
Tif :
Elt+ 1 El El El El
= + —— -
T, . £ = R Sl el Al (2.3.28)
The KiEl(i =1,...4) are evaluated in turn with the aid of the above

+
mentioned partial wave expansions, remembering that vnz“(z) represents

an s-state (& = s).

Bl -
Kl .

El _ % it S _j;__ i_
K= j g (2) v, (1) xkf(z,:a)(rls rs) ¢ls(2)¢Pol(31>F(1)42123

(2.3.27a)

It is noted that the integration over r, may Le separated completely from

that over r 4 and denoted by the usual expression B of (2.3.17). The
PE

remaining integral over I, is then observed to closely resemble that for T..

in the case of hydrogen, equation (4.3.6d). Consequently, one may utilise

: PE . ) :
the final expression (4.3.13) given for Tif , with of course the appropriate

choice of wave functions applicable to helium.
Since one is only concerned with S-S transitions so that putting 2 =0

in (4.3.13), the two Wigner 3-j symbols reduce to give
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0 ! 2
L7 A :
e
0 o o TAESK (4.4.1)
Let
(p) *
J . = (p)
(l,kl,kf) ] Rns(r) ug(ki,r) glg’z(r) dr | (4.4.2)
where g(p) (r) with heli i 1 :
15,270 lum wave functions, is defined by (4.3.12).

For small r, a series expansion in r is readily ottained from Appendix C.
Then, expressing the remaining spherical harmonic Yzo(@,o) as a Legendre
polynomial with the help of (3.1.21) and employing the notation of (3.3.4)

for the phases, one sees that KlEl may be written as

o ' iA
El _ u4nB (P) %
K, " = Y I (8,k..k.) e © P (cosO) . (4.4.3)
! ISt 1Tt % _
El
K2 :
El _ % St & 1
K,™ = J “13(2) Voo () xkf(z,s) T ¢ls(2) ¢pol(31) F(1) dr,,, (2.3.275)
. . s . El .
The integration over r, is separable as above in Kl and is denoted

by B (equation(2.3.17)). Inserting the various partial wave expansions, the
integration over T3 is straightforward. The angular integrals are

performed using only orthogonality of the spherical harmonics. The radial

E
integral is denoted by P, l(ki,kf) where
r

El N 1
Py (ki,kf) = J: Rns(r) ul(ki,r)(P fo uls+p(t> Hl(kft)dt)dr . (u.u.y)

Hence, writing 4, for the phases (see equation (3.3.%)) and employing

El

(3.1.21), K2 is reduced to
| iA
K EL _ 8B plEl(k.,kf) e ! Pl(cos 0) . (4.4.5)
/ i
2 ks |
El
K3 :

g1 [ * 0y o (2,3) =— ¢, (2) ¢__ . (31)F(1)dr (2.3.27c)
Ky = f uls(l) vnﬁ( ) ka 2 7y T1s pol =123

After substituting the appropriate partial wave expansions, the angular
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integral is seen to present no complications and requires only the property
of orthogonality between the spherical harmonics. Concerning the radial

integral, this is denoted by qu(ki,kf):

El (7

1 r
. w(r) ul(ki,r)(; Jo ulS+P(t) Hl(kf‘C)fls

ns(t)dt)dr (4.4.6)

]

where fls,ns(r) is defined by equation (3.3.3). KsEl is consequently

summarized as

iA
El _ 87 El 134
El
K,
El _ o %ot % 1 :
K, = [ uls(z) vnz(l) xkf(z,a)-;;; ¢ls(2) ¢Pol(31) F(1) dr, 4 (2.3.274d)

It is observed that (2.3.27¢) and (2.3.27d) differ only by the interchange
of the electron laﬁels in the first two functions under the integral. Hence,
since this section is only concerned with S-S transitions, the angular
integrals are identical in (2.3.27c) and (2.3.27d). Also, the radial integral
of the latter is easily determined from that of the former by interchanging

w(r) and Rns(r) (which appears in fls S(r)), and is consequently given by

r
E1 _ 1
P, (ki’kf) -—I: Rns(r)ul(ki,r)(r L uls—»p(t)Hl(kft)fls,w(t)dt)dr (4.4.8)

El ., . .
vhere fls w(r) is defined by equation (3.3.20). K, is finally written as
3
iA
El _8r _ El 1 o "t
K, = VET'pQ (ki’kf) e P, (cos ). (4.4.9)
: i

+ . .
Returning to equation (2.3.28) for TifBl', this can now be summarized by

collecting together the results (4.4.3), (4.4.5), (4.4.7) and (4.4.9) for the

KiEl (i =1,...4) to give
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El+ . 1 U1 < (P)
T, =k = - B J (2.k. El _ El
i 7y L L kyske) + 20 (0,7 0k k) = BRI (e k)
+
£ q (kg ak) au]e P, (cos0) . (4.4.10)
E2t
T,
E2+ 1 E2 E2 E2 E2 E2 - . E2
Tie o = [KTT 2K K - 2K, £ KT ¥ 2k ] (2.8.30)

E2 . . .
The K, (i =1,...6) are defined in (2.3.29). It is noted that each

i
E2 .
K, depends on the function ¢pol(£>E) given explicitly by equation (3.1.8).

The Legendre polynomial Pl(coser_g appearing in ¢pol(£3z) is subsequently -

expressed as a sum over spherical harmonics by the addition theorem (3.1.13).

Performing the integration over the angular variable r and remembering

2

that only S-S transitions are under consideration, it is then easily seen that

K3 = K4 =K = Kg '™ = 0. (4.4.11)
TifE2 hence reduces to a further analysis of only K1E2 and KQEQ.
KlE2 is considered first.
E2
Kl :

E2 _ % %t & _iL; :
K™ = f u, (1) v o (2) xkf(z,a) s $,,(3) ¢Pol(21) F(1) dr,,, (2.3.292)

Making the usual partial wave expansions, the angular integration is readily
performed using only orthogmality between the spherical harmonics. The

E2
radial integral is subsequently denoted by q (ki,kf) where

T

E2 -1 i o (uon,12

q (ki’kf) = E-Iw w(r) ul(ki,r)(r Jo Rhsgt) uls+p(t) gls,l(t)dt)dr (4.4.12)

o
B2 , . .
gls,l(r) is defined by equation (3.3.13). K; is finally written as
iA
k"2 = %‘%- 2k sk,) e T Pyleos0) (4.4.13)
i
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E2,

K. E? = f w (2) v*i(l) X* (2,3) ==— 4. (3) (21)F(1) d
2 1s " kel 2 415(3) 1 (21)F(1) dry ) (2.3.29b)

r23 3

One sees by comparing (2.3.292) and (2.3.29b) that the same argument which

El
was used to evaluate Ku from the expression for KSEl

here. Hence, interchanging w(r) and Rns(r) in (4.4.12) and writing

may also be applied

0

E2 _- T

Rns(r) ul(ki,r)C% [ w(t)uls+P(t)gls,l(t)dt)dr (4.4.14)

o o

with gls,l(r) given as above by equation (3.3.13), K2E2 reduces to

iA
E2 _8r _E2 %1
K,™" = 7E;-p (ksske) e P, (cos@) . A (4.4.15)
. : ‘ E2 E2 .
Collecting together (4.4,13) and (4.4.15) for K, and K, respectively
and substituting these expressions into (2.3.30), together with the trivial
+
result (4.4.11), TifEQ’ is summarized by writing
e S L [ P21, k) £ P2k ,k )]eiAl P.(cos0) (4.4.16)
if T T2 kg LB T Tt 1 ' i

The total exchange T-matrix element in the DWPO III model for helium, given

by(2.3.10), may then be derived by combining expressions (3.3.24), (4.4.10)

E+x Elt

+
£ T Tif and TifE2' respectively. One has that

and (4.4.16) for Ti

E+ El+ B2t _, 1 4m_ % OO PN ¢
Te * T + Ty R gO[B{ (2,k, k) (5K, k) }

El E2
+{c28(ki) [d,(kp) - 2Bd, (k)] * cl(ki)dls(kf)} R 2{[p2 (kyokg) +p (k; k)

iA

: E2 )
- BplEl(ki’kf)] s [qu(ki,kf) +q (ki,kf)]}dll] e * P, (cos), (4.4.17)

' P . . . .
The sum J(A)(g’ki,kf) + J( )(z,ki,kf) is most easily obtained by making

.. (A) .
the following transformation on gls’z(r) appearing in J (z,ki,kf).

(p) .4.18
ng’z(p) > gls,z(r) + gls,z(r) (4 )



oy

(p)

where g, 2(r) is given as is appropriate by (4.3.12). This is in exact
s .

analogy with the case for hydrogen (c.f. equation (4.3.15)).

. . 1 .
To summarize: for treating 1°S -+ nl’ss transitions in helium with

the DWPO III model, the appropriate version of equation (4.2.1) is solved

+

for the uz(ki,r) and the exchange T-matrix element, Tif -, appearing

in theDWPO II model, modified according to equation (4.4.17) above.
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CHAPTER 5

COMPUTATION™ AND NUMERICAL METHODS

§5.1  Solution of the Scattering Equation

The present secﬁ}on will be concerned with the method of solution
employed to solve/tﬁ; radial scattering equation which embodies one of the
principal features of the Distorted Wave Polarized Orbital approximation.

In the DWPO I and DWPO II models, the scattering function is computed in the
adiabatic-exchange approximation summarized by equation (3.2.1). When
allowance is also made for exchange—polarization effects, resulting in the
DWPO III model, the scattering equation is correspondingly modified and
summarized by equation (4.2.1). It will be noted that the adiabatic-exchange
equation is incorporated into the full polarized orbital equation. Further,
the equation for scattering by a one-electron atomic system (in the present
case hydrogen) and for scattering by a two-electron atomic system (in the
present case helium) are, apart from detail differences, very similar. The
adiabatic~exchange equation for one-electron systems has been summarized

by McDowell et al. (1973, equation (11)).

In practice a general program (RADIAL) was developed to compute in the
adiabatic-éxcﬁange approximation the uz(ki,r) for scattering by either
one-electron or two—electfon systems. Such a program also contained switches
to neglect the exchange (integral). terms and the direct polarization
potential Vpol(r). Later, RADIAL was subsequently modified to solve
equation (4.2.1)s but a switch retained to output in the adiabatic-exchange
approximation. Hence, by reading in various switches, results are produced
in a number of approximations: .

1. the static approximation (Taylor, 13872, §94).

9. the static-exchange approximation (introduced by Morse and Allis,

1933, and summarized by Bransden 1970).

3. the adiabatic-exchange approximation (equation (3.2.1) and KHcDowell

et al. 1973).
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%.  the polarized orbital approximation (equation (4.2.1)).

.Since results in each oftha above approximatiéns may be deduced from
the polarized orbital equation by setting the relevant switches to zero,
discussion will be restricted to solving equation (4.2.1). In particular,
it should be observed that #he solution of (4.2.1) for the p-wave (ul(kifr))
involves not only a second derivative of ul(ki,r) but also a first
derivative and consequently provides the most complicated version of (4.2.1).
Hence, in the following, consideration will be given to the method of
solving (4.2.1) for & = 1, and therefore simultaneously including the
method for any of the other cases by setting the appropriate switches
accordingly. The method of solution will follow closely that employed by
McDowell et al. (1974) and by Sloan (1964); it should be clear which terms
are to be retained in any other approximation sc that it will be unnecessary
to explicitly denote the omission of such terms when considering a particular
approximation. In order to simplify equation (4.2.1), some preliminary
remarks and definitions are first made.

The second integral term on the right hand side is denoted by Yl(ki‘r):

Yl(ki,r) =r rRlS(t) uz(ki,t) Yz(r,t) t dt. (5.1.1)

o

This defines the Hartree-function whichsatisfies the following second-order

linear differential equation given by Hartree (1957):

2
2(2+1)
i‘—; ¥, (gom) = —(-;2— ¥ (kr) - (2041) Ry (0) wyCepom)  (5.1.2)

subject to the boundary conditions

-2
Y (k.,r) ~ r2+l, Yz(ki,r) N T,
ol 0 bag el
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The remaining integrals havg a similar structure whereby it is convenient

to write

b R (») uy(k,,r)

W,(a,b:n) = J
2' Pt (5-1-3)
a r(2,+l)+n
Further, it is convenient to let
_ 2 2(2+1)
f (k,or) = k,” - —=—=2 _ -
PALTE 5 2 Nvls’ls(r) vaol(r) (5.1.4)
_ 2T
gy(r) = 577 R () (5.1.5)
h(r) = - v R, _(£)(- e._ + k,°)
is 1s i T (5.1.6)
lrz-l
‘Pz(r) = - U1 uls+p(r) LD () (5.1.7)
2+1
- (2+1)r
q,(r) = - 4t uls+P(r) v D) (2253) (5.1.8)
R. (r) 2R, (r)
__ 2t d (1s 1s 51__(
sl(r) T3 [juls+p(r) dr ( T >+ T dr uls+p(r))}(5'l'g)
R, (r)
2T 1s
= - = 5.1.10
SZ(r) 3 uls+p(r) r ( )
_ 2t [ .2 _ _ 2
£ == 2 [P R ) - () ey i) ] (5.1.11)
€ is taken to be the experimental value for the single ionization
s .
energy. The integrals from r to infinity are manipulated using the result
that

where e is usually chosen to be zero. Then, by writing D as a linear

differential and integral operator involving integration only up to r,

defined by
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2
d
Du, (k. ,r) = | S—= .,7) - d
ul( 3 r) {drz + fz(klgr) 6zl{sl(r) + s2(r)-a;}} ul(ki,r) - gz(r) Yz(ki,r)
+ pz(r) W, (0yr30) + q, (r) W (e,r;2) + 8,1 tlr) W, (0,r;-1), (5.1.12)

it is possible to rewrite equation (4.2.1) in the following simplified form:

Duz(ki,r') = Pz(r‘) WZ(O’OO;O) + qz(r) WZ(E’OO;2) + 6211:(1,) wl(oam;_l)

+ Gzoh(r) wz(o,m;-z). (5.1.13)

At this stage it is worthwhile to point out that the integral Wl(a,b;Q)
multiplying qz(r) in equations (5.1.12) and (5.1.13) diverges according
to 1l/r as r = 0, since the integrand behaves as l/r2. Thus it is
expedient to choose € > O which has been indicated explicitly by writing
in € vrather than 0. However, the multiplying factor qz(r) behaves

as r2+3 for small r and effectively reduces the product to zero in the
limit as r + O,

Essentially, equation (4.2.1) has been reduced to a system of two
coupled linear differential and integro-differential equations, namely
equtions (5.1.2) and (5.1.13). Consideration will now be given to the
method adopted for solving simultaneously these two equations. The method
is a non-iterative one devised originally by Percival and subsequently applied
by Marriott (1958) in a study of 1s - 2s electron impact excitation cross
sections of atomic hydrcgen.

One defines the following corresponding homogeneous and inhomogeneous

solutions of equations (5.1.2) and (5.1.13):

homogeneous solutions: u s Yz 3 U s ¥y

inhomogeneous solutions: U Yz P Yo s u Y,
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. H
The homogeneous solutions U, satisfy the homogeneous equation

D U, = 0 (5.1.14)
where the operator D is defined in (5.1.12). The inhomogeneous solutions u
I2 I3 . . *
u, and Uy satisfy respectively the inhomogenecus equations

Du,™ = h() L =0
= pz(r) 2 >0
D ule = q,(r)
D uzIS = t(r). : (5.1.15)
Each of the Yz satisfies the differential equation (5.1.2). At this stage,
it is remarked that if one is interested in either the static-exchange or

adiabatic-exchange approximation, it is only necessary to solve for uoll

in (5.1.15) since the other equations only arise in the full polarized orbital
treatment.

General solutions of (5.1.2) and (5.1.13) may now be written as

H1 H2 11 12 I3
= 5.1.16
uz(ki,r) c) U, T te,u tegu T o Ul tog ( a)
} H1 H2 I1 12 ¢ I8 5.1.16D)
Yz(ki,r) = ey Yg + e, T,77 + ey YUty Yz tc. ¥, (5.1.

where the c, (i = 1,...5) are mixing coefficients. It can easily be
checked that these solutions satisfy (5.1.2). In order that they satisfy

(5.1.13), one finds by substituting into (5.1.13) that the mixing coefficients

must satisfy the relation

5

5 .5
= .P. + q,(r) c.Q. + t(r) c.T.,
ep,(¥) + c,q, () + e t(r) = p(¥) izl c,P; +q, igl 3Q igl 373

(5.1.17)

I

]
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where, writing @, = HL, @, = H2, ay =11, @, = I2 and @, = I3, one

has in an obvious notation from definition (5.1.3)

a.
I

Pi - Wz (0,03-2) £ =0
O
- 1

= W,Q. (O,co;O) L >0
%

Q; =W, "(e,=32) all g
%

Ty =W, 7(0,23-1) all 2.

Since according to the definition (5.1.7), po(r) is zero, it is convenient
for notational purposes only in (5.1.17) to let po(r) denote the expression
h(r) given by (5.1.6). The functions pl(r), qz(r) and t(r) are linearly
independent so that equating the respective coefficients, the mixing parameters

are found to satisfy the system of linear equations given below:

cs(l - P3) - c, Pu - o Ps (clPl tc, P2)

-c + cq(l—Qq) - c Q5 = (cl Q +c, Q2) (5.1.18)

3 Q3

-c., T, =-¢ T + cs(l—Ts)

3 T3 y Ty (cl Tl f <, T2) .

In practice, since the overall normalization of the solution ug(ki,r) given
by (5.1.16a) is to be fixed later, one is at liberty to set ¢, = 1. The

system (5.1.18) is consistent and subsequently solved for Cas and cg

in terms of c_. It is subsequently necessary to find a further relation
2

in order to determine c,e

(5.1.13) are solved numerically
(o))
(k.,r)
i

The differential equations (5.1.2) and

r, say r = R; such that Y

up to some sufficiently large 2

may be written as the asymptotic expression
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(a.) (a.)
v, (kR

"
o
—

[
~
A

e

v
=
~

(5.1.19)

with
(a.)

1

R (e;) L+1
Jo Rls(r) u, (ki,r) r dr. (5.1.20)

This should be compared with the asymptotic behaviour of Yz(k.,r) given
: i

in connection with equation (5.1.2). The a. are defined immediately below
) (a,)
eq?ation (5.1.17). Hence with Y, + (ki,R) computed from (5.1.2) and
a,

I£ . (ki,R) computed from (5.1.20), one writes

J (o) 5 (o)
1 )
izl ;g Yo (kT =R izl c; I, . (k;.R) . (5.1.21)

Substituting for Cgs c#, c¢_ and recalling that ¢, has been set to unity,

5 1

equation (5.1.21) furnishes an expression from which one can determine e

Finally, it remains to normalize uz(ki,r) as given in (5.1.16a) so

that asymptotically

uz(ki,r) vk
r S

Nj=

sin(¢(r) + 62). (3.1.17)

This is carried out following McDowell et al. (1974) who use the JWKB
method formulated by Burgess (1963)., The idea is to match the numerical
solution of uz(ki,r) with the corresponding JWKB solution at some convenient

point Ty such that R < Ty < R.R is defined to be the smallest value of

r such that

| £,k o0) - w] < Wl e - (5.1.22)

where f@(ki,r) is given by (5.1.4) and w 1is the long-range expression

for fz(ki,r) given by

22z ,9_ (5.1.23)
T L :

e 1is normally set to 10_6. R coincides with the value of r defined

earlier in the discussion immediately preceeding equation (5.1.19) on the

asymptotic behaviour of Yz(ki,r).

The JWKB solution to u2(ki,r) is defined to be



-1
uz(ki,r) =z 2 sin(p(p) + 52). (5.1.24)
By substituting (5.1.24) into the asymptotic equation

[ddj
- twlu =0, 5.1.25
2 ] 2 ( )

one finds that

2
2 1 _1
T = w+ c29~2—c 2 (5.1.26)
dr
with
gl
¢(r) = J z dr' . (5.1.27)

The lower limit is left unspecified in (5.1.27); in practice it is chosen
so that the above boundary condition (3.1.17) is satisfied. Equation

(5.1.26) is a non-linear differential equation. However, provided

=
N

2
w > r 5115 T

dr
it may be solved iteratively and yieldsfor the first-order solution, denoted

by ©
° 1
T = w2, (5.1.28)

1 1
It is noted that in the limit e, C02 > ki§ so that (5.1.24) has

the correct asymptotic behaviour according to (3.1.17). The next iteration
yields 1 where
| 2
1 21
C. =W+ W' 945- w . (5.1.29)
! dr
¢(r) is now determined by substituting t; for ¢ in equation (5.1.27)
and evaluating the integral by parts. Full details are given in the paper
by Burgess (1963).
Having obtained expressions for t(r) and ¢(r), one is now in a

position to calculate the overall normalization constant of the uz(ki,r).

i = = tive numerical solution is
At the points r =y and v =71 the respec

equated with

102
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Az, (r) sin(¢(ry) + §,),1 =N, N-1 (5.1.30)

where A 1s the required normalization constant., Consequently (5.1.30) supplies

two equations depending on A and 62. The phase shift 62 is eliminated
and a subsequent value ottained for A, say AN. N is then increased by
unity and the computation repeated to give another value for A, say

AN+1' This is continued until the following condition is satisfied for
scme value M

|4, - By gl < |AM| €. (5.1.31)

e is usually taken to be 107°.

When a suitable value for A has been established, the uz(ki,r)
are normalized. The phase shift 62 may subsequently be determined by
considering (5.1.24) at the point r = ry. Suppose &, has the value &

at this point. Then as in the above procedure for finding the normalization

constant A, the phase shift is computed at r = Tyuel to give the value
6N+l say. This is continued until one has that
- 5.1.32
|6, = 651 < ls | ¢ ( )

for some point r = rp. The above method of Burgess (1963) is only accurate
for computing 62 to the fourth decimal .place; 62 is chosen to lie in the
range =~ m < 62 < m. Consequently € is set to lO“5 in (5.1.32).

This essentially completes fhe method used to determine. gl(ki,r) over
the range 0 <r <R. For r > R, the JWKB approximation to ul(ki,r) is

constructed using equation (5.1.24) with ¢ and ¢(r) given as above by

Burgess (1963).

§5.2 Numerical Procedure for the Scattering Equation
Under this heading the numerical techniques used to solve the differential

equations arising in the DWPO models will be discussed. The method described

earliepr in §5.1 for solving the scattering equation avoids the need for an
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iterative procedure and does not require the use of awkward outward and

inward integration methods to normalize the solution. Numerically, equations

(5.1.2) and (5.1.13) are solved simultaneously by the formula due originally
to Numerov (1933). Numerov's method is particularly suited to equations
of the type

y" = b(r)y + c(r). (5.2.1)

Here, b(r) and c(r) are independent of y and primes denote differentiation
with respect to r. Following Fr¥berg (1966), the recurrence relation

required to solve (5.2.1) by this method assumes the form

2 n> b 2 1
- 1§'bn+l)yn+l =201 - 12 bn)yn -@- Ei'bn~l)yn—l.+ h (bnyn * 12
(e, +10c +c  ,)). (5.2.2)
The notation should be clear; h is the mesh size, given by r . =T + h.

This relation was adopted by the program RADIAL to solve equation (5.1.2)
and also in the initial version of the program to solve equation (5.1.13)
in the adiabatic-exchange approximation. However, when considering the
full polarized orbital treatment, formula (5.2.2) is no longer adequate,
due essentially to the introduction of the first derivative term. Before
drawing attention to the method used to cope with this further term, it is
convenient to modify (5.2.2).

Hence .using the formula given by Hartree (1958) that

2
h " 1" " 5.2-3
2yn = Y1 + EE'(yn+l + lOyn + yn-l) ( )

yn+l =

and with the help of (5.2.1), the recurrence relation (5.2.2) is rewritten

as
n’ | h’ (109" + " ) (5.2.4a)
S A ia'y;+l) =W, "Y1t 12 10y, F Vpr’ o

- (5.2.4b).
Yptl - b1 Tns1 T nn1

The latter relation (5.2.4b) is used to provide the second derivatives

required by the former relation (5.2.4a).
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Turning now to the full polarized orbital approximation of equation

(5.1.13), one is essentially interested in an equation of the type

y" = alr)y' + blr)y + c(r) . (5.2.5)

The first derivative may be expressed according to the result given by

Sloan (1964) that

=173 7 h mn
! = ~ - - - - ) -
Yol " & [2(yn+l A n_l)] 38y, tyo 1) - 0(h) . (5.2.6)

Then, substituting for yg+l in (5.2.4a) with the aid of (5.2.5) and
employing (5.2.6) to eliminate the term in yé+l, one finds that the

relation (5.2.4a) Lecomes

h2 h2 h
- - —— 11 1" — - — :
Yn+1 [QYn Yo-1- ¥ T30V + yR 1)+ T3 e t o5 Fpaa{ T 18V, ¥ Ty

n2 h 9h

_ 2
- 2oyt + eyt DY) /[1- (T, tor e (5.2.72)

The next iteration (yn+2) will require a knowledge of yg+l. This may be

obtained from (5.2.5) and (5.2.6) in the form

2 2 2
h” v - (BD Sh h” h_ _
17 Vo1 - T3 Pna1 Y o0 %41 Vol T I Cnel YO0 an+l{ 16y, * -1
h2 o
_a " 1 }
1564y + 8y )} ,(5.2.7b)

Note that when a(r) is absent, the recurrence method (5.2.7) reduces to
that in (5.2.4) as expected.
It will be observed that the linear operator D acting on uz(ki,r)
in equation (5.113) gives rise to integral terms of the type
r
g(r) = J w(t) y(t) dt. (5.2.8)
€ :
These terms are included implicitly in the function c(r) of (5.2.5).
Consequently, it would appear that a prior knowledge of Yo+l is required
to determine such integrals as (5.2.8). This difficulty may be circumvented
by the use of a Newton-Cotes formula of the open type. In practice, four

such formulae were employed in turn (see equations (25.4.21 - 24) of
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Abramowitg and Stegun, 1970) and the subsequent results checked against
each other for stability by varying the mesh sige. Generally, a reasonable
degree of stability was achieved, particularly with the 4-point formula
(25.4.23), the most trouble coming from the s-waves. However, rather than
employ a method which dependé on extrapolation, it was subsequently decided
to abandon the Newton-Cotes formulae and to utilize the method outlined by
Sloan (1964) which uses the well known Simpson formula for integrationm.
Using Simpson's rule (see, for example, FrBberg, 1966) it is easily

seen that

Tn+l
Eos1 ~ Bpn-1 Ir w(t) y(t) dt

n-1

E-EW v + 4wy + W y ]
3L n+tl “n+l n ’n n-1 7n-14?

so that one has immediately the result

- h hp, .
Bosl = 3 Yol Yol T Bae1 T 3LM, Yy Yy Tl (5.2.9)

It is then convenient to express the integrals from O to r explicitly,
that is to let
r

By + t f YY » (5.2.10)
(o]

r r

C‘*C"'p[ ay+qI

) o
where p, q and t are the functions appearing in equation (5.1.17). The
Greek notation should be clear from a comparison with (5.1.12) and also
the definition of the Wz integrals, equation (5.1.3). The integral terms
are to be expressed according to (5.2.9). Hence putting
r r r
T = J oy, p = J By, g = J YY»
o o o)

a recurrence relation may be set up for each term as follows:
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h h
1rn+l 3 0Ln+l yn+l + 1Tn-l + §{uanyh + an-l yn-l]’

h h
n+l - 3 Bn'l-l yn+l t Phr-1 + 5[43nyn + Bn—l yn—l] s (5.2.11)

|=

_ h
0n+l T3 Yn+l yn+l * 0n—l + 3[uYnyn + Yn-l yn—l]'

Finally, (5.2.10) and (5.2.11) are incorporated into the two recurrence
formulae of (5.2.7) to give
3

3
_ h _ _h
yn+l - [{2 +9 (Pn+lan * qn+13n * tn+lYn)}yn { 1 §§{Pn+lan—l * qn+an—l

2 h2 2

h™ " " 'h
Y Dby 0y R yh ) e gt 17 Pn1"n-1 ¥ Ye1Pa-1 T tn41%n-1)

+ B g {-18y_+7 --}ﬁcsu'ws" )}/l—(ﬁb + B
24 “n+l Yn ¥ p-1 T 120 T Vpa }[ 12 “n+l 2% %n+d

3
h
T 36 (Pn+lan+l * qn+an+l * tn+1Yn+1)]’ (5.2.12a)
and
2 2 2
b2 .l oh n2 h _
17 Yne1 = T2 Pne ¥ 2% FnenVos1 T 13 ot T8 Gl T 1V, F T
h2 h2 .
- n 1" o
12004y 8y o) ISXY Pri1ne1 ¥ TrPner ¥ Tna®ner? - (5.2.12b)

The final version of RADIAL therefore adopted the recursion method (5.2.12).
Results in the adiabatic-exchange approximation were then checkgd with those
computed in the original version which employed the relation (5.2.2) and
found to agree.

The method used above for treating the integrals of the type (5.2.8) generates
two sequences for g(r), since g(r) is computed at alternate points rather
than consecutive points. This is evident from the result (5.2.9) whereby
gn+l’ g -1° gn_3,... forms one sequence and g, gn_2, gn_u,... forms the
other. Eventually, in order to determine values for the infinite integrals

Pi’ Qi and Ti appearing in equation (5.1.17), the mean is taken of the
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two limits belonging to the corresponding sequences of the finite integral
g(r). Concerning the integral Qi’ one sees that it has a singularity
l/r2 at the origin which has been avoided Ly commencing the integration
at € > O rather than the origin: In practice e is set to the value
0.01; however, for the triplet s-wave in electron-hydrogen collisions, it
is set to 0.04 in order to achieve a more stabtle result.

The Numerov methods outlined above provide a rapid means for integrating
the differential equations encountered in §5.1. However; the methods are
not self starting and consequently it is necessary to make power series
expansions in r for the solutions ébout some regular point which in
this case is taken to be the origin. The singularity possessed by -
Wz(a,b;2) - see equation (5.1.13) - gives rise to the introduction of

logarithmic terms in the series for uz(ki,r) and Yz(ki,r). One has

that
_ e+l 2 3 4
uz(ki,r) =r [ao tartar +ar + (a4 + A, logr) r
+ (a. + A logr)r5 + (a. + A logr)r6+.. ] (5.2.13a)
% T % 6 6 -1
_ Al 2 3 4 5
Y (k;or) = v [b  #Db7 +B 7" + b +br + b 4
6 7
(b6 + By logr)r + (b7 + B, logr)r'+...], (5.2.13t)

Note that the logarifhmic terms only arise in the full polarized orbital
treatment, otherwise the As and B, are set to zero. In practice 9
terms were retained in each of the series.

Homogeneous solutions are obtained by setting

a, = 1 bo-= 0

a, =0 bo = 1.
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Before discussing the practical details, a word is in order about the
determination for non-hydrogenic systems of the parameter ZO appearing

in uls+p(r)’ equation (3.1.12). This parameter has been found to satisfy

the equation . (3.2.8) which for convenience will now be written as

1}
(@]

£(x) (5.2.14a)

where
25

n
L ax. (5.2.14b)
n=0

f(x)

Equation (5.2.1%a)is solved iteratively by the Newton-Raphson method which
may be summarized by the formula

f(xn)

Xn+l = Xn - '%,—(;n-) . (5.2.15)

Such a process involves a great deal of tedious algebra to rearrange
(3.2.8) into the suitable polynomial expression (5.2.14b). In practice,
the starting value X, was taken to be the nuclear charge 2Z and the

iteration terminated when

X - X < g
n+l n

vhere typically e = lO‘lO. The starting value was then altered slightly

in order to test the sensitivity of the result. In each case, agreement
to six decimal places was achieved after 7 or 8 iterations.
The differential equations were integrated on a grid which was divided

<r<r

into four intervals: O <r < Ty TN ST 2Ty Tyo £

r < rN3 and

ryg LT LT The step length was doubled at the end of each interval,

N4 *
and was normally set to an initial value h = 0.004 a,. Usually, the

intervals were determined by setting N1 = 100, N2 = 200, N3 = 1000

for helium, N3 = 1500 for hydrogen and N4 = 2000 - 4500. Hence, this

grid is consequently adoptéd to evaluatethebasic radial integrals contributing

to the cross sections. The point r coincides with the point R defined

N3

in connection with equation (5.1.19). When starting the solutions, the

series expansions were used for the first NSTART points where typically
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NSTART = 22 + 1u.

The numerical solution was also computed at the point CNSTART and compared
with the corresponding series solution; accuracy was fequired to within

5 x 10_4%. This same condition was imposed at the step length doubling
points N1 and N2 whereby the solutions were computed using both the

new and old step length and compared.

The mixing coefficients were determined by solving the system of
linear equations (5.1.18) by Cramer's rule. However, such a method may
produce erroneous results if the system is ill-conditioned. To provide a
check on the accuracy of the resultant values forthe mixing coefficients,
library routines employing double-precision and also tests for ill—conditioﬁing
were extensively used to sélve (5.1.18). In every case, 6-figure agreement
was obtained between the éwo methods.

As a further check on the numerical solutions and in particular the
choice of N3, the mixing coefficients were calculated twice using the
integrals Pi’ Qi’ Ti (i =1,...5) computed up to the point N3-1 and then

the point N3. The value forthe mixing coefficient ¢, was required to

2

satisfy the condition

lc (N3) -

N3-1 N3
) -1 099

)

where ¢ = 10—6.

Concerning the full polarizéd'orbital treatment, a certain degree of
sensitivity was noted in the choice of € appearing in the integral
Wg(e,b;2) and also in the choice of NSTART, particularly for the triplet
s-wave in electron-hydrogen scattering. The values adopted here were found
to préduce the most stable results under change of the initial mesh size h.

When h was given a value such that 0.002 < h < 0.006 atomic units,
3- to u4-figure agreement was found in both the ul(ki,r) and the phase
shift 62. The latter are given in tables 1 and 2 and may be compared with
published values whereby the agreement is seen to be very good, particularly

in the adiabatic-exchange approximation.
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§5.3 Numerical Methods for the Cross Sections

Having dealt with the scattering equation in the previous two sections
(§5.1 and 5.2), the remaining parts of the chapter will be concerned with
the numerical derivations of the differential and integral (total) cross
sections for electron-helium collision processes in the DWPO models
described in Chapters 3 and 4. In fact the programs to te described compute
results not only for helium but for any two-electron atomic system .

Essentially two such programs have been written for this purpose. The

first (POLORS) computes cross sections for 1ts nl’3

S transitioms.
Initially, POLORS computed results in the DWPO I and DWPO II models (§3.3)
but was later modified to also produce results in the DWPO III model (§4.4).

lS > nl’3P transitions

The second (POLORP) computes cross sections for 1
using the DWPO I and DWPO II models (§3.4) and also computes the (A,x)
parameters (§3.5). The two programs employ btasically the same numerical
methods but incorporate different versions of RADIAL to compute the partial
waves uz(ki,r) and the phase shifts 62. POLORS in its final form utilises
the full polarized orbital version of RADIAL whereas POLORP utilises the
simpler adiabatic-exchange version. In practice, RADIAL, POLORS and POLORP
have been written so as to allow as much interchange as possible between
routines which are common to at least two of the programs. Usually, such
routines may be inserted into either program simply by adjusting their
COMMON blocks. A typical example is given by the function routine which
furnishes the function fz(ki,r) defined by equation (5.1.4).

In both POLORS and POLORP, a grid is set up similar to that defined
for RADIAL in §5.2. Simpson's rule could then be used to evaluate the
integrals which did not allow a straightforward analytic evaluation. The

uz(ki,r) are computed in the DWPO approximation until the phase shift 62

becomes small enough to satisfy the inequality
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where usually € = 0.001. At this point the RADIAL routines are switched off
and subsequent .ug(ki,r) replaced by r/ki Hl(kir) where Hz(ki,r) is a
regular Coulomb (Bessel) function with appropriate normalization. The

Hz(kr) are obtained in kr-multiplied form
ke Hy (kr) = G (kr) (3.1.25)

where Gz(kr) is derived by solving the appropriate differential equation
(3.1.26) wusing the Numerov formula given in (5.2.2). This was found to

be a faster method for generating the Hz(kr) rather than using the standard
library routines available (McDowell et al., 1973). The Hl(kfr) are also
generated by this method in order to evaluate the function gls,z(r). This
function, defined in equation (3.3.13) and subsequently modified in POLORS

(1) (

according to (%.4.18) is evaluated by integrating 81s £(P) (and glz)z(r))
3 9

(2) (r)

outwards and integrating g5 4
]

inwards using.Simpson's rule at half the
basic step length. In the asymptotic region gls’z(r) (as defined by
(3.3.13) and in DWPO III subsequently modified according to (4.3.15)) may
be replaced by its respective asymptotic form. However, comparison between
results based on different grid parameters indicated such asymptotic
contfibutions to be very small.

Both programs adopted the experimental atomic energy levels published
by Martin (1960) unless specifically required to be othefwise (see §5.4
on the discussion of cross sections computed in the Born-Oppenheimer
approximation where theoretically determined eigenenergies are also employed).

Attention will now be given to some individual aspects of POLORS and
POLORP in turn.

Concerning POLORS, it was fouhd that when Rns(r) was represented by
a Cohen and McEachran function, it was quicker‘to evaluate f, ns(r) and

S’
1s ns(r), given by equations (3.3.3) and (3.3.8) respectively, by a
L]
numerical procedure similar to that adopted for g, _ 2(r)- rather than
3’
analytically. The integrals arising only for the p-wave in the DWPO III

model were also evaluated by a similar such numerical procedure.
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The computation of the partial wave elements in the sum (3.3.25) is
terminated when the addition of another B, term (defined by expressions
(3.3.26) er (3.3.27)) yields an overall change in the total cross section
of less than 10-6% at which point the differential cross section is computed.
Percentage changes of lO—2 and lO—11L were also tried and found to be adequate
at lower energies (ki2 < 40 eV) to reproduce 3-figure agreement in the
differential cross sections. However, at higher energies, in the region of
200 eV, such a percentage change did not allow enough partial waves to
contribute to the differential cross section. This lack of convergence in
partial waves can be recognised by a characteristic oscillatory behaviour
in the differential cross section at large scattering angles. By requiring
a change of at least 10-6%, this behaviour was eliminated for all impact
energies considered in deriving differential cross section results.

Concerning POLORP, the long-range nature of the direct integrals, defined
essentially by equation (3.4.7), makes a complete evaluation by Simpson's
rule impractical. The difficulty arises from the oscillatory nature of the
integrand in the asymptotic region, which provides a significant contribution

to the integral. To overcome this problem, the integrals are divided into

two parts
I(2,)) = Iy t 5, (5.3.1)
where
“Ny
Iy, = jo Hy (kgrdu, (kg ,r)fls’np(r)dr, (5.3.2)

I =8 J r-231n¢f(r)sin(¢i(r) +6A) dr. (5.3.3)

Ny

The constant R 1s defined to be such that

r fls’np(r) - B kf{ki (5.3.4)

where account has been taken of the normalization of Hz(kfr) and uA(ki,r).

The ¢(r) are defined through equation (3.1.18).
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The first integral IN4 is evaluated with the aid of Simpson's
rule. The second integral I°° is evaluated using a method due to Belling
(1968) and reviewed by Norcross (1974).

In this method, I_ 1is expressed as a difference of two integrals
I, = E[gl(rNu) - gy(ry, )]s (5.3.5)

where, writing x,(r) = ¢;(r) + 8 - ¢f(r) and x2(r) = ¢i(r) 8+ ¢g(r),

gi(R) is defined as

-2 .
g; (R) f: r “cosy; dr, (R = rys 17 1,2)

Pi(R)sinxi(R) + Qi(R)cosxi(R). (5.3.8)

Differentiating this result with respect to R and equating coefficients
of sin Xi. and cos X3 the functions Pi and Qi are found to satisfy

the first-order linear differential equations

dp.

i -
= - %@ =0 (5.3.7a)
dq.

1 P, = - 1 . (5.3.7b)

® t XT3
Following Belling (1968), Pi and Qi are expressed in terms of asymptotic
expansions and the coefficients obtained by a rapidly convergent iterative
scheme. Consequently, gi(R) may be obtained to an accuracy of 5 to 6
figures, provided the lower limit of the integral in (5.3.3) is sufficiently
large.

This long-range behaviour also effects the convergence of the partial
wave sums. A method for computing these sums has already been discussed in
§3.4. Typically &  occurring in equations (3.4.41) and (3.4.42) is
set to 30. As a check on the numerical work, Born cross sectioné were
computed for the 1%6 + 2'P transition at 29.6 eV and for the 11§ + 3'P

transition at 29.2 eV using firstly the partial wave treatment and secondly

the analytic expressions for the T-matrix element (see Apperdix C).



115

'On comparing results, the integral cross sections were in at least 6-figure
agreement and the differential cross sections were in agreement to 4 figures.
Thus, this provided a useful check on the accuracy of the prograﬁming.

Finally, both programs were tested for sensitivity to changes in the
initial step length h. POLORS was run for impact energies of 29.6 eV and
40.1 eV using an initial step length lying in the range 0.002 < h < 0.0086.
The integrals were compared and found to be in 5-to 6-figure agreement
except for cl(ki) and Cz(ki) (see equations (3.3.15) and (3.3.18)
resﬁectively) which agreed to 2 usually 3 figures. Generally, the best
agreement in the cross section (usually 3 figures) was achieved when h

was chosen such that 0.003 < h < 0.005. POLORP was similarly tested, it
being found that cross sections generally agreed to a least 3 figures.
Belling's method for evaluating I (see equation (5.3.3)) was found
to give the most accurate results when r

N4

from the good agreement obtained between the analytic and partial wave

N~ 40 a s this was inferred

treatments for computing Born cross sections as referred to above.

When computing the scattering functions ul(ki,r) in the DWPO
approximation with a smaller value for h, for example h = 0.002,
convergence difficulties arose in the RADIAL routines fof higher order partial
wavesj typically for & > 3 at an impact energy of 29.6 eV. Coupled with
this fact and with the most stable results being obtained for 0.003 < h < 0.005,

an initial step length of 0.004 was subsequently adopted for production runs.

§5.4 The Born and Born-Oppenheimer Approximations

Switches were incorporated into POLORS and POLORP so that the programs
could produce results also in the Born and Born-Oppenheimer approximationms.
By comparing with published results, one has a valuable check on the
‘consistency and accuracy of the respective program. Both approximations may
vbe deduced from the DWPO I model with uz(ki,r) replaced by r/kin(kir)

for all 2.
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Born results for llS - nlS transitions may then be derived from
POLORS by omitting all exchange terms. In the case of llS > an transitions,
the 'Born-subtraction' procedure employed to perform the sum over partial
waves is also neglected. Hence POLORP computes results in the Born
approximation by means of a partial wave treatment and consequently-allows
the use of a slightly more sophisticated wave function for Rnp(r).
Differential cross sections for the excitation of llS > 218 and llS - 21P
transitions in helium have been computed using the CoOhen and McEachran wave
function for the e*cited state wave function an(r). The results at 29.6
and 40.1 eV are reproduced in graphical form in figures 1 and 2, and may be
compared with similar Born results quoted in the paper by Thomas et al.
(1974). The agreement is seen to be very good.

An extensive analysis of the Born-Oppenheimer -approximation has been

made for the excitation of llS - 23

S and llS > 23P transitions in helium.
Both programs were modified slightly so that results could be - obtained
either from using a 'prior' formulation or from using a 'post' formulation.
Results for the total cross sections computed in the'prior'formulation could
then be compared directly with those published by Bell et al. (1966).
Adoﬁting the notation of this thesis, Bell et al. (1966) take the

T-matrix element to Le

ik _.» ik,.r .
- —£"=3 —1 =1 (1)
Tip = /3<4>f(12)e v, ¢;(28) e >+ 8T, ¢ (5.4.1)
where the interaction potential Ve is given by
L Ti2 i3
The additional increment GTif(l) arises from the use of approximate
target wave functions and is given by the expression
ik .r ik,.r |
(1) _ —f°=3 _ =i'=1 5.1.3
8T, ¢ = /3<¢f(12)e [H23 E,] ¢i(23) e > ( )

The atomic Hamiltonian H23 is given in an obvious notation as
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2 2 2 2 1
. = -1 - = - £ —
ij = 2(vl ¥ Vj ) r. r. w..° (5.4.1)
1 J 1]

When the 'post' interaction potential is used, one derives, following

a very similar procedure to Bell et al. (1966), the T-matrix element in the

- form
ik ..r ik, .r
- _ —£*'=3 =i (£)
Tip = /3<¢f(12)e Ve ¢;(23)e >+ 8T, .7 . (5.4.5)
The interaction potential is given by
2 1
sz-—f—+;—+;}_ (2.3.1)
3 13 23
and the increment GTif(f) is found to be
£ _ thyemy ikpTy |
aTif = 3<¢i(23)e [H12 - Ef] ¢f(l2)e >. (5.4.8)

A partial wave reduction of the expressions for T. e appearing in
equations (5.4.1) and (5.4.5) is straightforward and consequently will not
be reproduced here. Apart from the term GTif, the difference between the
'post' and 'prior' expressions occurs via the structure of certain orthogonality
integrals, which arise only in consideration of the incoming s-wave in
POLORS and also in consideration of the incoming p-wave in POLORP. The
accuracy in the computation of the radial integrals was checked at various
energies by using an initial mesh size of 0.002, 0.004 and 0.006. Between
5-and 6-figure agreement was obtained in each case. Results were also
computed using variationally determined energy eigenvalues of Bell et al.
(1966) rather than the experimental values tabulated by Martin (1960). Total
cross sections for llS -+ 238 and llS -+ 23P excitation in helium computed
from expression (5.4.1) and using either experimental or theoretical atomic
energy levels are tabulated in tables 3 and 4 and compared with the results
of Bell et al. (1966). The agreement between the present values obtained
using fheoretical energies and those of Bell et al. is seen to be most

satisfactory.
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The expression (5.4%.5) was also employed to obtain cross sections using
the post interaction potential. The excited state wéve function was chosen
to be either that of Morse et al. (1935) as in the above calculations or that
of Cohen and McEachran (see Appendix A for details) and results compared
with those of similar calculations based on the prior interaction formulation )
(5.4.1). It was found that, for 238 excitation, the post-prior discrepancy
vanished (cf.A§l.2 for an earlier discussion of the post-prior discrepancy).
Hence, provided the atomic wave functions are not assumed to be exact (which

would result in the disappearance of the extra term GTi in (5.4.1) and

£
(5.4.5)), there is no difference between calculations using a formulation
based on either the post (Vf)' or prior (Vi) interaction potential terms.
A comparison is given in table 5 between total cross sections for describing
excitation of the 238 level when computed using (5.4%.1) and (5.4.5) with
6Tif set to zero. The results using the full expression are also tabulated
to offer further comparison. Such a result was not found in the case of

3

llS + 2°P +transitions.

Differential cross section results are given in figures 3 and 4 for
excitation to the 238 and 23P levels respectively of helium at impact
energies of 29.6, 40.1 and 55.5 eV using the prior expression (5.4.1)

(1)
£
' 1
wave function (Hylleraas, 1929) was adopted to represent the ground (17S)

without the additional term GTi . 'ﬁefe, the one parameter Hylleraas
state and for the excited levels, the wave functions of Veselov et al. (1961)
for the 233 state and of Eckart (1330) for the 2%p state. The results
may then be compared with those published by Steelhammer and Lipsky (1970)
and quoted by Thomas et al. (1974). Hence this provides an accurate check
on the programs for excitation to these levels.

Moreover, differential cross section results for excitation of the
llS ; 23S transition at an imbact energy of 29.6 eVwere calculated from

the full expression (5.4.1). 1In these calculations, two different wave

functions were used for the excited state, namely the simple Hartree-Fock
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function of Morse et ‘al. (1935) and that of Cohen and McEachran described

in Appendix A. The results are plotted in figure 5 and are observed to agree

very closely.
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CHAPTER 6

RESULTS

§6.1 Excitation of H(ls + 2s, 2p, 2s + 2p)

This section will essentially be concerned with a study of the results
obtained from including exchange-polarization effects and also of the process
of unitarization (to be outlined below) on the differential cross sections

for the collision process
e + H(1s) -+ e + H(2s,2p,2s + 2p).

Differential cross section data at pre-selected angles and impact energies
are presented in tables 6 - 9 and compared graphically, where possible,

with theory and absolute experimental measurement in figures 6 - 9.

Unitarization

For collisions which conserve the number of particles involved, such as
considered here, the scattering or S-Matrix possesses the property of
unitarity. However, theorétical models do not always yield a unitary
S-matrix. The process of unitarization, introduced by Seaton (1961)
and subsequently applied by Lawson et al. (1961) and Somerville (1963) to
electron-hydrogen collisions, is designed to produce this property in the
S-matrix. McDowell and céworkers have also developed the method aﬁd'applied
it to their results obtained in the DWPO I and DWPO II models where it
produced a substantial improvement.

Briefly, one writes the T-matrix T in terms of the S-matrix S
according to

T=1-8 (6.1.1)

with 1 the unit matrix. S can be defined in terms of a real symmetric

matrix R (often referred to as the reactance matrix) such that
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+
"

s= (6.1.2)

==
1

[N .

|| |

which preserves the unitarity of S. From (6.1.1), T is then written
in terms of R as
- 2iR
e T (6.1.3)
If, following Lawson et al. (1961), one now assumes that [B[ << 1, which

is valid provided the interactions are weak, a first approximation to T

is given by
T = - 2iR , , (6.1.4)

Substituting (6.1.%) into (6.1.3), another approximation is obtained for T:

, (0
D= (6.1.5)
T ) | .1.

2 + 2_0

By inserting (6.1.5) for T in (6.1.1) and using (6.1.4) one sees that

S is unitary according to definition (6.1.2). The idea then is to substitute

©) (1)

for T into (6.1.5) and compute T

(1) rather than TxO). Results obtained from T

and to subsequently compute cross

(1 will

sections using T
. be specifically referred to as unitarized, otherwise they may be assumed
to be non-unitarized.

In computing T(O), the elements le and Til (that is the elements
of the first row énd, from symmetry consideration, the elements of the first
column) are obtained with appropriate phase in the DWPO approximation and
the remaining elements in the Born approximation. The relevant Born integrals
have been discussed by Kingston et al. (1976) who employ the unitarized Borm
approximation of Lawson et al. (1961) to compute the higher order partial waves

in their treatment of electron impact excitation of the n = 2 states of

atomic hydrogen.
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H(ls + 2s) Transitions

Differential éross sections computed in the DWPO III model at impact
energies of 50 and 100 eV are compared in figure 6 with the corresponding
results in the DWPO I and DWPO II models published by McDowell et al. (1975b).
The effect of allowing explicitly for target distortion enhances the forward
peak in both cases compared to the DWPO I results. For scattering angles less
than 500, the DWPO II and DWPO III models yield similar results whereas
for angles above 500, the inclusion of exchange-polarization terms produces
an increase in the cross section.

Table 6 presents unitarized and non—unitarizéd results for both these
energies. On comparing columns (i) and (ii) in each case, the magnitude .
of the results is seen to vary considerably, by as much as a factor of 3.

It is noted in each case that unitarization reduces the total (integrél)

cross section.

H(ls > 2p) Transitions

Differential cross section results for excitation of the 2p state
are presented in table 7 and'figure 7 at incident energies of 50 and 100 eV.
On comparing with the DWPO I and DWPO II results of McDowell et al. (1875b),
the explicit inclusion of target distortion in the T-matrix element is seen
to slightly reduce the cross section in the forward direction. The predictions
of DWPO II and DWPO III again coincide for smaller scattering angles (ec.f.
1ls - 2s transitions above) as expected since exchange-effects are relatively
less impbrtant over this angular range. Contributions from exchange however
begin to dominate for larger angles; one sees that the inclusion of exchange-
polarization effects increases the cross section for angles above 100° as compared
to the DWPO I and DWPO II resuits which do not allow for such effects. This
was also the case for 1s - 2s transitions as shown in figure 6.

From table 7, a comparison may be made between the unitarized and non-

unitarized results for each energy. Again, one sees that the magnitudes
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differ by as much as a factor of 3 and that unitarization lowers the integral

cross sections,

H(ls - (2s + 2p)) Transitions

Total differential cross sections for excitation to the n = 2 1level
have been computed in the DWPO III model at a numter of incident energies.

The results, unitarized and non-unitarized, are given in tables 8 and 9. In
figure 8, a comparison of the non-unitarized results is made with the absolute
experimental data of Williams (1976) for impact energies of 1.02, 1.21 and
l.44 Rydbergs. Similarly, results at higher impact energies of 54.4 eV

(= 4 Ryd.), and 100 eV are illustrated in figure 9 with the absoluté
measurements of Williams and Willis (1975) and with the results of other
theoretical methodé.

Concerning the lower energies, essentially lying just above the ionization
threshold, the agreement with experiment is considered highly satisfactory,
particularly at 1.21 Ryd. Also infigure 8, the individual 2s and 2p
contributions have been plotted. It is evident that in this model the
dominant contribution to the n = 2 total differential cross section
ariges at all angles from excitation to the 2p state, especially in the
forward direction. Moreover, Callaway et al. (1976) have considered
excitation of the n = 2 level at these energies using a hybrid method
and cobtain even better aéréement with experiment. Callaway et al. essentially
combine the distorted wave polarized orbital approximation (without
exchange-polarization) with a close-coupling pseudostate approach. The
pseudostate expansion is employed for the lower order partial waves (0L < 3)
and the DWPO approximation for the higher order partial waves. The method
is further described in the earlier paper by Callaway et al. (1875). Their
results have not been displayed in figure 8 but referring to the later paper,
one sees that the individual contribution from the 2s and 2p states are

basically similar to those obtained in the DWPO III model for angles less
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than 90°. However, for angles abtove 900, the hybrid method predicts a
larger 2s and smaller 2p contribution than the DWPO III model. Overailv
the method is seen to yield a total result lying closer to the experimental
points than that of the DWPO III model.

A comparison between the unitarized and non-unitarized data in table
8 shows that generally the process of unitarization produces results which
detract from the already good agreement obtained with the DWPO III model and
consequently are not illustrated in figure 8. However, unitarization improved
the low energy results derived in the DWPO I and DWPO II models for
excitation of alkali atoms (Kennedy, 1976).

Turning to the results af higher impact energies, these are compared
in figure 9 with experiment and also with the theoretical treatments of
Callaway et al. (1976) (figure 9(a) only) and of Kingston et al. (1976).

The latter method is similar to the former but rather than employ distorted
waves for the higher order partial waves, use is made of the unitarized

Born approximation (c.f. the earlier discussion of this section on unitarizationm).
At an incident energy of S54.4 eV, equivalently 4 Rydbergs, the theories agree
reasonably well with each other and with experiment for scattering angles
less than 30° except in the forward direction where the hybrid method of
Callaway et al. produces a more enhanced peak. For angles above 30°, the
DWPO III model tends to underestimate the experimental points though,

in common with the approach of Callaway et al., ylelds a pronounced increase
in the backward direction. Unitarization did not improve the situation.
Generally, the models of Kingston et al. (1976) and of Callaway et al. (1976)
give good agreement over the angular region for which there are experimental
measurements at this energy.

Comparison with experiment at 100 eV between the DWPO III model and the
calculation of Kingston ef ai. (1976) again showsgood agreement for angles
lessbthan 30°. However, for larger angles the DWPO III results are too
small whereas those of Kingston et al. remain satisfactory up to about 80°.
The DWPO III cross section exhibits as at 54.4 eV, an increase in the

tackward direction.
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Moreover, the unitarization procedure yields DWPO III results in better
agreement with experiment than the corresponding non-unitarized results and
consequently these have been plotted in figure 9(b). This improvement
is hardly surprising since at higher energies the interaction potential becomes
relatively weaker due to the shortef passage time of the scattered electron
and hence the approximations made in connection with the process of unitarization
(see in particular equation (6.1.4)) are more likely to be justified. Thus,
the process of unitarization, while not producing improvement in DWPO III

results at lower energies, does improve the results at higher energies.

Summarx

As should be éxpected, the effects of exchange-polarization are found
to be important a{ lowelectron impact energies in determining accurate
differential cross sections. At higher energies, the DWPO III model provides
accurate results for small scattering angles, due to the improved treatment
of polarization, but tends to underestimate the differential cross sections
for larger angles. The model does produce an increase in the backward
cross section though notsufficient to give the accuracy of more sophisticated
methods.

The process of unitarization outlined in this section begins to improve
"DWPO III results at impact energies above 100 eV, but has a contrary effect
at the lower energies. ‘This is not unexpected since at low energies where the
non-unitarized results are already accurate, the assumption of weak coupling

is invalid.

§6.2 Excitation of He(llS -+ nlS)

Total and differential cross sections have been computed for the inelastic

processes

e + He(lls) > e 4+ He(nlS)
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in the DWPO I and DWPO II models for n = 2,3,4,5 and in the DWPO III model
for n = 2. Total cross sections obtained in the DWPO I and DWPO II models

are presented in tabular form in table 10 and compared graphically with absolute
experiment and other theoretical models over the energy range from threshold to
about 400 eV in figure 10. Differential cross sections at pre-selected impact
energies are given in tables 11 - 15 and similarly compared with other results

in figures 11 - 15.

Total Cross Sections

Concerniné the DWPO approximation to the total cross sections illustrated
in figure 10, the excited state is taken to be described in each case by the
wave function due to Cohen and McEachran - see Appendix A for details.

gii Results for excitation of this state have been published by a number
of experimental and theoretical groups and are compared in figufe 10(a). At
the higher energies there is generally good agreement between the different
theoretical results and the absolute experimental measurements of Vriens et al.
(1968); not shown are the measurements of Miller (1956) which agree closely
with those of Vriens et al. Only the DWPO I results have been plotted in this
figure; the DWPO II results have been omitted. For energies above 200 eV there
is close agreement with the Coulomb-projected Born calculations of Hidalgo |
and Geltman (1972) which in fact neglect exchange and polarization effects. It
follows therefore that fhis approximation is only expected to ke valid at
higher energies. |

Moving to lower energies the DWPO I and particularly the DWPO II results
(see table 10) remain lower than those of other models, with the exception
of the results calculated in the eikonal distorted wave method (Joachain and
Vanderpoorten, 1874a) which are-consistent‘with the DWPO I results down to
about 70 eV. It is noted that, apart from the lower energj data of Rice
et al. (1972), the DWPO results are consistent with experimental measurements

down to near threshold, and are the only results to agree with the measurements
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of Brongersma et al. (1372) at very low energies. The other experimental
points are due to Hall et al. (1973) and to Trajmar (13973) whose point
at 40.1 eV coincides with that of Hall et al. at 39.2 eV. Theoretically,
the second-order optical potential results of Winters (1974), computed in a
partial wave treatment of the method, overestimate the experimental values
whereas the many-body calculation of Thomas et al. (1974) and the multichannel
eikonal treatment of Flannery and McCann (1975) are consistent with the
experimental points of Rice et al. (1972) at 55.5 eV and Hall et al. (1973)
at 48.2 and 39.2 e V: however, in the former case the method not unexpectedly
fails for energies below 40 eV.

gig Total cross sections, computed in the DWPO I and DWPO II models,
for excitation of this state, are displayed in figure 10(b) and compared
with absolute experimental measurement and with the results from a ten-channel
eikonal treatment (Flannery and McCann, 1975). A theoretical calculation has
also been carried out by Bransden and Issa (1975) at energles above 200 eV.
They use a nine-state impact parameter version of the second-order optical
potential method and obtain results in very close agreement with the DWPO I
model; consequently their results are omitted for clarity.

In the DWPO approximation, the overall profile including the shoulder
between 60 and 100 eV, a feature which,while discernible in the previous
case (c.f. figure 10(a)), is more prominent in the present work. It is
observed thatthe effect of including target distortion explicitly in the
T-matrix is to reduce the cross section by at most 10%. The best agreement
with experiment is obtained with the measurements of Moustafa Moussa et al.
(1969), those of St. John et al. (1964) tending to lie somewhat higher.
At lower energies, reasonable agreement is obtained with the recent experimental
point of Chutjian and Thomas (1975) ét 39.7 eV but not at the lower energy
of 29.2 eV. ‘

The multichannel eikonal curve agrees closely with the DWPO II curve
down to about 60 eV and then decreases, and exhibits quite a different Lehaviour

1 1 -
relative to the DWPO approximation compared to that for 1°S + 2°S transitioms.
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uls Calculations in the DWPO I and DWPO II models are illustrated,

together with experimental results, in figure 10(c); a brief discussion
of the experimental techniques, with particular emphasis on normalization
procedures, is given by Scott and McDowell (1975b). Again it is observed
that the main feature of the DWPO II model is to reduce the overall curve
given by the DWPO I model, while at the same time preserving the shape,
particularly the shoulder lying here between 60 an 150 eV.

Experimental evidence for such a shaulder is offered by the measurements
of Moustafa Moussa et al. (1969) which, together with the measurement of
Showalter and Kay (1975) at 200 eV, lie in closest accord with the theory.
For energies above 50 eV, the results of van Raan et al. (1971) and of
Pochat et al. (1973) lie some 20% higher than the DWPO results; at energies
below this value both groups predict a maximum near 40 eV. However, the DWPO
approximation predicts a peak value closer to 30 eV and of greater magnitude.
The experimental data of St. John et al. (1964) indicates a peak value of
comparable magnitude to the DWPO result but at 40 eV. Generally though,
their measurements are in poor agreement and appear considerably too large
compared to later measurements.

gig Total cross section results for the transition llS -+ 518 are
given in figure 10(d) and compared with the absolute data provided by the
groups referred to in the above discussion of 418 results. Once again,
the behaviour of the DWPO I and DWPO II curves resembles that for the previous
cases, the shoulder becoming more evident between 50 and 150 eV and the peak
value attained once more at 30 eV.

The existence of a shoulder is again supported by the measurements
of Moustafa Moussa et al. (1969); ﬁowever, their results generally tend to
‘lie below the DWPO curves. Reasonable agreement is obtained in the DWPO
approximation with the data of St. John et al..(1964), van Raan et al. (1971)
and Pochat et al. (1973) for energies atove 150 eV. The recent measurement
at 200 eV due to Showalter and Kay (1975) appears low. Below 150 eV, the

results of van Raan et al. (1971) and of Pochat et al. (1973) agree well,
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showing a similar variation with energy to that found in the 418 results.
Their measurements lie above the DWPO results down to 40 eV at which point
the former group seem to predict a maximum whereas the latter group seem
to indicate the peak closer to 35 eV.

Coupled with the measurements of St. John et al. (1964), which seem
high for energies below 150 eV, there remains some discrepancy between

experimental results themselves,and with theory.

Summartz

A cqmparison of total cross section results obtained in the DWPO I and
DWPO II models for each state shows that the general shape of the curves remains
unchanged. The effect of including target disfortion explicitly in the T-matrix,
or equivalently coupling the S. and P states, does however make itself
apparent over the energy range lying between the‘peak value and about 400 eV
whereby the total cross section is lowered slight by some 5 - 10%. At 400 eV
the curves essentially coincide for each case. The DWPO approximation
introduces a shoulder into the cross section between roughly 50 and 150 eV
which becomes progressively more evident the higher the state, being most
evident for excitation of the s's state.

Agreement with absolute experiment and, where available, with other
theory’variés, being least comparable at lower impact energies. Generally however,

the overall agreement of the DWPO results with experiment is good.

Differential Cross Sections

Calculations in the DWPO I and bWPO II models utilized the excited state
wave function of Cohen and McEachran (discusséd in Appendix A); the results
are given in tabular form (tablés 11 and 13 - 15) and graphically in figures
11 and 13 - 15 where they are compared with absclute experiment and other
theoretical data. Further calculations for excitation to the 218 state were

performed in the DWPO I, II and III models using the simpler excited state
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wave function of Byron and Joachain (see Appendix A). The results are
tabulated in tables 11 and 12 and compared with absolute experimental
measurements in figure 12.

2i§ Discussion for describing excitation of this state will first
centre on the DWPO I and DWPO II results which are presented in table 11 at
five incident energies. It is noted that use of either the wave function
due to Cohen and McEachran or thaf due to Byrcn and Joachain makes no appreciable
difference to the DWPO calculations, results differing by at most 10%. DWPO I
results computed using the former wave function are plotted in figure 11.

At 29.6 eV, only the experimental points of Trajmar (1373) have been
included in figure 11(a); those of Hall et al. (1973), obtained independently
at 29.2 eV and by a different technique, lie in close agreement and are
consequently omitted for clarity. The DWPO result agrees well in the forward
direction with the many-body treatment of Thomas et al. (1974) and with the
Glauber approximation (Yates and Tenney, 1972). Experimentally, however,
the forward peak is considerably larger and is more accurately reproduced Lty
the distorted wave calculation of Shelton et al. (1973). Each of the
theoretical models reveals a minimum in the angular vicinity of that observed
experimentally at 50° but differ over the magnitude, the many—bédy approach

predicting a very deep structure. For large scattering angles, the many-body
approach produces good agreement with experiment and coincides with the

DWPO results in the béckward direction. The Glauber model not unexpectedly
fails at such angles due to a lack of exchange considerations. On tﬁe other
hand, the distorted wave calculation of Shelton et al. (1973) continues

to remain above the experimentalresults.

In figure 11(b), the situation illustrated for 40.1 eV is similar to
that af 29.6 eV again only the experimentalneasuremegts of Trajmar (1973)
are plotted, those of Hall et al. (1973) at 39.7 eV being in very close agreement.
The DWPO curve and that of Thomas et al. (1974) agree well over the whole

angular range but fall below experiment in the forward and backward directions.

The Glauber approximation, while producing similar agreement at small angles,



131

fails completely for angles greater than 70°. Each of these theories

predicts a minimum of comparable deﬁth; the calculation of Shelton et al.
(1973) yields results lying above both experiment and other theory, especially
in the magnitude of the dip. None, however, is able to reproduce the smaller
magnitude observed by experiment.

Also shown are the ten-channel eikonal results of Flannery and McCann
(1975). For angles less than 30° their results agree accurately with the
experimentally observed forward peak. This is to be expected since their
method takes into account the main effects contributing to small-angle
scattering such as intermediate and long-range couplings Between each channel,
static distortion in each channel and polarization of each target state
represented in the multichannel eikonal expansion. Exchange, however, is
only included implicitly through the very nature of the expansion and is
therefore probably one of the main reasons why the theory fails completely
at large angles. Their results are not expected to be accurate for angles
much above 30°.

For an energy of 81.63 eV, the DWPO I results and other theoretical
results are compared in figure 11(c) with the experimental data published by
Rice et al. (1972) and by Opal and Beaty (1972) (at 82 eV). In the forward
direction the majority of theoretical treatments, including the DWPO I model,
predict a similar peak which is smaller than that obtained in the ten-channel
eikonal method (at 80 eV) of Flannery and McCann (1975) and in the second-order
diagonalization method of Baye and Heenen (1974) (not shown). This latter
method is essentially a high energy approximation. However, the results of
Baye and Heenan compare well with experiment out to about 60° while those of
Flannery and McCann rapidly fall away at larger angles. It is observed that
the DWPO results, the calculations of Thomas et al.A(1974), the second-order
optical potential distorted waﬁe results of Bransden and Winters (1975) and
the Coulomb-projected Born results of Hidalgo and Geltman (1972) begin to
diverge from each other for angles above 300, the best overall agreement with

experiment being maintained by the work of Thomas et al. followed by that of
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Bransden and Winters; both these methods employ distorted waves calculated
in the field of the final state. However, the measurements of Opal and
Beaty (1972) afford evidence for a slight minimum and shoulder for angles
greater than 30°. Similar structure is predicted by the DWPO approximation,
though with a depth up to an order of magnitude smaller than that observed
by Opal and Beaty, and to a much lesser extent by the many-body approach
but with a comparable magnitude to the experimental points. The Coulomb-
projected Born calculation, which omits exchange and distortion altogether,
fails to predict any structure and falls off rapidly with increasing scattering
angle;

Results at 100 eV are illustratgd in figure 11(d). It is observed
that the DWPO approximation exhibits a similar cYoss section to that at.81.63 ev,
the dip structure being in the present case relatively less deep. The dip
and shoulder structure is observed to have a higher magnitude in the experiment
of Suzuki and Takayanagi (1973) and is also predicted by the Second Born
calculations of Buckley and Walters (1975) which however are not shown. The
second-order diagonalization method of Baye and Heenen (1974) again produces
a more enhanced peak in the forward direction and remains in good agreement
with experiment for smaller angles. The results of Bransden and Winters
(1975) and of Hidalgo and Geltman (1972) are in close accord with the DWPO
I results out to 400, whereafter the second-order optical potential model
seems to favour the experimental points of Crooks (1972) which do not predict
the dip and shoulder structure mentioned earlier. For larger scattering angles,
the Coulomb-projected Born results fall away rapidly as &n figure 11(c)
at 81.63 eV whereas the DWPO results lie about 50 - 70% below the measurements
éf Suzuki and Takayanagi (1973). It is noted again that the model of Bransden
and Winters (1875), which allows for polarization effects in the initial
channel and uses a distorted Qave formalism to account for final channel
scattering, produces results which lie above those of the other theoretical

treatments for angles greater than 40°, These other methods do not incorporate

final channel distortion effects.
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The method of Bransden and Winters (13975), however, provides the best-
overall agreement with experiment, indicatiﬁg that such effects probably
become important for large-angle scattering.

Theoretical and experimental cross sections at 200 eV are compared in
figure 11(e). The experimental measurements shown are due to:VOpal and
Beaty (1872), Suzuki and Takayanagi (1973) and Dillon and Lassettre (1975)
and form a consistent description of the cross section for the angular range
up to 150°. For angles between 5° and 300, the different theoretical
treatments are in close accord. Below 5°, the Coulomb-projected Born results
(Hidalgo and Geltman, 1972) coincide with those of the DWPO I model whereas
the Eikonal Born Series calculation of Byron and Joachain (1975), together
with the secondorder diagonalization procedure (Baye and Heenen, 1974) énd the
Second Born calculations of Buckley and Walters (1975)(not shown), predict a
sharper peak. Comparable magnitude in the forward‘direction is, however,
obtained by the DWPO II model (see table 11(e)). Above 30°, each of the
theories, except the Eikonal Born Series, falls below experiment. The latter,
which allows for long-range and exchange effects, remains in essentially
complete agreement with the experimental data for all angles up to 150°.

Discussion will now centre on differential cross sections obtained in
the DWPO III model employing the excited state wave function of Byron and
Joachain (see Appendix A). The results are tabulated in table 12 and compared
with the corresponding results from the DWPO I and. DWPO II.models (see table 11),
together with the experimental measurements referred to above, in figure 12.
Rather than make individual comments on each energy, the results will be
taken together. It should be noted that the measurements of Hall et al.
(1973) at 29.2 eV and 39.2 eV have been included in figure 12.

As in the case of hydrogen, when deriving the distorted waves uz(ki,r)
from equation (4.2.1), it is found that at most only those for £ =0 - &4
differ appreciably from the corresponding solutions ottained in the
adiabatic-exchange approximation, equation (3.2.1). This is to be expected

since exchange-polarization effects Lecome less important for larger £
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(or in other words for larger impact parameters). For subsequent £
the appropriate adiabatic-exchange solutions are employed. The same remarks
of course will apply to excitation of the 238 state, to be discussed in §6.3.
Turning to figure 12, it is noted that the forward peak produced by
including distortion effects explicitly in the T-matrix (DWPO II and DWPO III)
increases with increasing energy compared with the DWPO I result. For
energies above 40.1 eV, the DWPO II and DWPO III results virtually coincide
for angles less than 400, in accord with the expectation that for this
process exchange becomes relatively less important at small angles the higher
the impact energy. At 200 eV, the forward cross section compares well
with that produced by the Eikonal Born Series illustrated in figure 11(e).
However, inclusion of exchange-polarization effects appears to generally
make little improvement in the cross sections. Indeed the backward cross
section is lowered in each case, contrary to the result noted in excitation
of atomic hydrogen (§6.1). This failure of the DWPO III model indicates that
other physical effects, even at the lower energies, are more important than
exchange-polarization. Comparison with those calculations in figure 11
which allow for distortion effects in the final channel seems to suggest
that final channel distortion is more important than exchange-polarization
when computing large-angle differential cross sections for excitation of
He(2's).
§i§ Results computed in the DWPO I and DWPO II models for this state
are tabulated in table 13 and DWPO I results displayed in figure 13 at four
incident energies. The calculations used the excited state wave function of
Cohen and McEachran (see Appendix A) in every ease. The results of the two
models yield curves of generally the same shape and exhibit a similar trend

to that.for 118 -+ 2l

S transitions, namely that DWPO II produces an increasing
forward enhancement over the DWPO I result with increasing energy whereas
for large-angle scattering produces smaller results than DWPO I.

Experimental and theoretical results are not SO numerous in this case as

they are for excitation.of the 2lS state. The only absolute experimental
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measurements known are those of Chutjian and Thomas (1975) at 29.2 and 39.7 eV;
these authors also publish the results of a many—body calculation at these
energies.

At 29.2 eV, one sees from figure 13(a) that the DWPO I and many-body
theory results are in excellent agreement in the forward and backwara
directions and preaict a similar angular position of the minimum, though
somewhat shifted from that observed experimentally. Both theories, however,
disagree consideratly over the depth, DWPO producing a shallow dip and many-
body theory a much deeper result. Neither theory reproduces the structure
observed between 50° and 80°. Agreement with experiment at small angles is
poor but improves at large angles. At such a close energy to threshold
it may well be necessary to consider the effects of neighbouring states such
as SlP and SlD.

The situation improves at 39.7 eV, illustrated in figure 13(b),
particularly between the theoretical curves which now agree quite well over
the full angular range. The overall agreement with experiment is also improved,
the angular position of the minimum being correctly predicted at 600, though
not the full depth. There also appears to be some structure observed at 110°
which neifher theory reproduces. The forward cross section is again
underestimated by both models.

Moving to higher energies, figure 13(c) compares at 100 eV the theoretical
results of the DWPO I ﬁodel with those of a ten-channel eikonal calculation
(Flannery and McCann, 1975). No experimental measurements were available
for this impact energy. Essentially, the behaviour of the two theories at
this energy resembles that at 81.63 and 100 eV for excitation of the o's
state. The DWPO approximation produces the characteristic dip aﬁd shoulder
structure whereas the multichannel calculation yields alarger peék value in
fhe forward direction together.with some structure at 70, interpreted as
arising from intermediate couplings with the anO,tl states. Both theories

differ widely in the backward direction, DWPO results being an order of

magnitude higher than the multichannel eikonal results.



136

For 200 eV, a similar comparison to that at 100 eV is offered in figure
13(d). Good agreement is shown for small scattering angles (less than 30°)
apart from the characteristic forward enhancement produced by the ten-channel
eikonal treatment. At larger angles, the two methods again diverge, DWPO I
results being greéter by a factor of 6. Presumably this is due to the distorted
wave polarized orbital approximation taking account of exchange whereas the
method of Flannery and McCann (1975) takes no explicit account of such effects.

&iﬁ Tabular results, computed at four incident energies in the DWPO I
and DWPO II models, are presented over the whole angular range in table 14.
The small-angle (0° - 20°) results are plotted in figure 14% where they are
compared with the absolute experimental measurements of Pochat (1973) and
at higher energies with those of the First Born approximation, deduced frﬁm
the accurate generalized oscillator strengths published by Bell et al. (1969).

At energies»of 50 and 60 eV, the DWPO II results show a slight
improvement over the DWPO I results, particularly in the latter case.
Concerning an impact energy of 100 eV, the.forward enhancement produced
by the DWPO II model continues to increase relative to the DWPO I result
and is in good agreement with Pochat's measurements for angles greater than
10°. This enhancement is increased further at 200 eV where essentially the
DWPO II model provides results in complete agreement with the experimental
data at each of these angles, On the other hand, the DWPO I model and First
Born approximation both fail in the forward direction at these energies. It
is also noted from figure 14(b), that the DWPO I results approach those
of the First Born approximation; this is to be expected since the latter
approximation is the high energy limit of the DWPO I model (McDowell et al.
197%a).

p (o}
518 DWPO I and DWPO II results are tabulated for angles up to 180

‘ o 0 . s
in table 15 and illustrated over the angular range O - 20  in figure 15.
The experimental points are again the absolute data of Pochat (1973), and
at the two higher impact energies a comparison is also provided with the

. 1
First Born approximation, deduced, as in the 4°S case, from the accurate

generalized oscillator strengths tabulated by Bell et al. (1969). -
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The situation presented in figure 15 resembles closely that described
previously in connection with the uls state. TFor the ld%er energies of 50
and 60 eV, the DWPO II model provides a small improvement on the DWPO I result,
producing reasonable agreement with experiment for angles above 15°, Turning
to an impact energy of 100 eV, the DWPO II model gives good agreement with
experiment over the latter half of the angular range, continuing to produce
an increasing forward peak relative to the DWPO I model. By 200 eV, the
agreement between experiment and the enhancement of the cross section due
to the DWPO II model is basically complete. Again it is observed that the
First Born approximation, plotted at 100 and 200 eV, fails to give a
satisfactory account of small-angle scattering. As in figure 1lu4(b), the

DWPO I results are seen to approach the First Born results at higher energies.

Summagz

From the differential cross section results obtained for excitation of the
218 and 318 states, one sees that at lower energies, the DWPO approximation
reproduces the shape of the experimentally determined cross sections reasonably
well, especially at energies close to 40 eV. The position of the minimum is
correctly reproduced but, in common with other theoretical methods, the depth is
not always accurately predicted. The magnitude of the forward cross section is
relatively small compared with experiment at these energies.

At higher energies, the DWPO approximation produces results in better
agreement with experiment for small angles (less than 300), particularly when
explicit account is taken of target distortion. For angles above 300, the method
predicts a shape comparable to that observed in experiment but with a smaller
magnitude; this is particularly evident at 81.63 and 100 eV. Results in the DWPO II
model for these angles are lower than those in the DWPO I model. Surprisingly,
results in the DWPO III model are still lower, whereas for excitation of hydrogen,
the inclusion of exchange-polarization effects increased the backward cross section.
Generally DWPO III results for helium are not significantly different from those

obtained in the
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DWPO ;I model, particularly at lower energies. However, it should be
noted that models which allow for distortion effects in the final channel
yield results of a larger magnitude, similar to that measured experimentally.
Comparison of DWPO I and DWPO II results for excitation of the uls
and 518 states at angles up to 20° shows that by allowing explicitly for
target distortion, progressively bétter agreement is obtained with experiment
as the impact energy increases. By 200 eV, the DWPO II model yields results
which lie basically in complete agreement with experiment; models which
neglect target distortion, such as the First Born approximation, fail to
provide a satisfactory acéount of small-angle scattering at this energy.
Consequently explicit allowance for coupling between S -and P states

(as in the DWPO II model) is seen to be essential for a good descriptiom

of small-angle scattering.

§6.3 Excitation of He(llS - 238)

Results for the total and differential cross sections have been computed

in the DWPO I and DWPO III models for the excitation process

e + He(llS) > e + He(QSS) .

Provided spin-dependent interactions are omitted (which is usually the case).
this process can only occur via charge-exchange and consequently furnishes
an exacting test of the theoretical treatment of exchange.

The total cross section, obtained in the DWPO I model, is tabulated
in table 16 and is illustrated in figure 16 together with other theoretical
predictions and absolute experimental data over the energy range from
threshold to 200 eV.. Differential cross sections at five Iimpact energies are
presented in the DWPO I model in table 17 and figyre 17 and also in the DWPO III>'

model in table 18 and figure 18.
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Total Cross Section

This has beén computed using the excited state wave function of Cohen
and McEachran (see Appendix A for details) in the DWPO I model and is
compared in figure 16 with the absolute experimental measurements supplied by
four independent groups. Not shown in the figure are the measurements of
Hall et al. (1973), obtained for energies less than 50 eV, and which agree
closely with those of Trajmar (1973) at 29.6 and 40.1 eV and with that of
Crooks et al. (1972) at 50 eV. Together with the low energy data of Brongersma
et al. (1972) and the values at higher energies of Vriens et al.(1968), the
experimental data are noted to yield a conéistent result over the whole
energy range. An interesting feature is the structure observed by Crooks
et al. (1972) at 50 eV, due to a broad p-wave resonance which effects their
differential cross section results by more than three orders of magnitude.
Figure 16 also shows the theoretical results obtained in the many-body
approach (Thomas et al. 1974) and in the partial wave treatment of the
second-order optical potential model (Winters, 1974). It is noted that the
slopes of the theoretical curves are similar and that for energies above 80 eV,
the DWPO I and second-order optical potential results agree very well. However,
below this energy their remains some discrepancy over the magnitude of the
total cross section, and in the case of the DWPC results, also over the shape.
A close-coupling calculation by Smith et al. (1973) (not illustrated) gives
results a factor of 2.5 smaller than those of Winters (1974) — see however
the comment by Seaton (1974). Generally, the theoretical results tend to
lie above the experimental points, particularly at higher energies. The
sudden dip in the DWPO I curve at 30 éVap@eargon comparison of integral
results in table 17, to be connected with the choice of excited state wave

function.

Summarx

For energies less than 50 eV, the DWPO approximation predicts a total

cross section which is considerably inconsistent with other results, both
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experimental and theoretical. At energies above 80 eV, the DWPO I and second-
order optical potential results agree very closely but increasingly overestimate

the size of the experimental measurements with increasing impact energy.

Differential Cross Sections

These have been computed at five impact energies ranging from 29.6 to
200 eV and are illustrated in figures 17 and 18. In the case of the DWPO
I model, results have been obtained using the wave function: of either Cohen
and McEachran or Morse et al. for the excited state (see Appendix A) and
are tabulated in table 17; figure 17 displays at each energy the results
derived by using the Cohen and McEachran function. In table 18; results
computed in the DWPO III model, employing the wave function of Morse et al.,
are~presented'and compared with the corresponding DWPO I results and with
absolute experimental data in figure 18. Consideration will first be given
to the DWPO I results (c.f. table 17 and figure 17).

At an impact energy of 29.6 eV, figure 17(a) shows DWPO I results
obtained using either wave function for the excited state. Absolute
experimental results have been published by Trajmar (1973) and by Hall et al.
(1973) (at 29.2 eV); the latter, obtained indepenaently and using a completely
different normalization procedure, agree significantly well with the former
and have subsequently been omitted. Comparison is also made with the many-
body method of Thomas et al. (1974) and the distorted wave calculation of
Shelton et al. (1973). Comparing the cross sections computed in the DWPO I
model, it is immediately obvious that for this transition, the model is
sensitive to the choice of wave function for the 238 state; results differ
by as much as a factor of five. This sensitivity has been investigated and
found to arise principally from the integral defined by equation (8.3.18),
that is the overlap between st(r) and the s-wave uo(ki,r), and to a lesser
extert from the integral J(A)(O,ki,kf), equation (3.3.12). It becomes

most apparent in the magnitude of the first term of the partial wave
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sum (3.3.25); when computed using the Cohen and McEachran function, B;
(c.f. equation (3.3.26b)) has a magnitude half that obtained using the wave
function of Morse et al. However, when this same process is considered in
the Born-Oppenheimer approximation.(using the full expression (5.4.5)), that
is, neglecting distortion, the sensitivity vanishes as illustrated by figure 5.

In figure 17(a), the DWPO method predicts minima at similar positions
to the experimental values at 45° and 1150, though dnderestimating the
magnitudes by a substantial amount. In fact, renormalizing the DWPO I results
by a factor of 10 produces very good agreement with experiment (Scott and
McDowell, 1975a).: The calculations of Shelton et al. (1973) and Thomas et al.
(1974) on the other hand predict the correct magnitude but disagree over the
shape. These models, including the DWPO I model, are essentially first-érder
calculations; a recent matrix-variational calculation (not shown) by Thomas
and Nesbet (1974), designed to model a second-order many-body approach, yields
far more encouraging results.

Figure 17(b) illustrates theoretical results at 40.1 eV and compares
them with the corresponding absolute experimental measurements of Trajmar
(1973). Similar'eXPe??mental results, obtained independently using different
techniques, have been published by Hall et al. (1973) (referred to above) at
33.7 eV and by Crooks et al. (13972) at 40 eV; both sets of results are in
very close agreement with Trajmar's measurements and have been omitted for
clarity. Using the Cohen and McEachran wave function, the DWPO I model
again predicts two minima, at 25° and 1050, which are also obtained using
the simpler function of Morse et al. (c.f. table 17(a)). Experiment, however,
predicts only a single minimum at 95° and while agreement is better than at
29.6 eV, the DWPO I results again considerably underestimate the forward
and backward cross sections. Many-body theory gives good agreement at
angles between 15° and 35° and; in common with the other distorted wave
calculation (Shelton et al. 1973), produces a single minimum at 65°. Both
calculations yield results of comparable magnitude with experiment in

the forward and backward directions.
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By 81.63 eV, the forward peak produced in the DWPO I model at lower
energies is seen-to vanish and that the cross section suffers a sharp decrease
at small angles, contrary to the absolute experimental data of Yagishita
et al. (1976) given for 80 eV. This forward dip, referred to as an Ochkur
dip, may be removed by a more sophisticated account of exchange; see for example
Hua (1974), Ochkur and Burkova (1975) and the summary at the end of this
section. The second-order optical potential results of Bransden and Winters
(1975) show much better agreement with the observed data at these angles, though
at larger angles, in common with those of the DWPO I model,bear little
resemblance to the experimental measurements of either Opal and Beaty (1972)
(at 82 eV) or Yagishita et al. (1976). It is noted from table 17(b)
that the sensitivity to the choice of atomic wave function observed in the
DWPO I results for lower energies is beginning to diminish; this is
because the s-wave no longer provides the dominant contritution to the
scattering cross section, more terms contributing to the partial wa%e sum
(3.3.25).

Moving to 100 eV (figure 17(d)),the DWPO I model exhibits a similar
shape to that at 81.63 eV. The experimental data provided by Crooks (1972),
Suzuki and Takayanagi (1973) and by Yagishita et al. (1976) reveal a very
large increase again in the forward cross section. For larger angles,
essentially above 300, where the results of the two Japanese experiments
virtually coincide (hence only the earlier points of Suzuki and Takayanagi
are piotted), there is some confusion between the experimental values.
Theoretically, the many-body calculation of Thomas et al. (1974) and the
partial wave treatment of the second-order optical potential method (Bransden
and Winters, 1975) predict comparable-shapes to each other, including the
structure between 30° and MOO, but differ in magnitude with increasing angle,
the former producing results iying above the latter.

Finally, at 200 eV, the DWPO Imodel is compared in figure 17(e)
with the absolute experimental measurements of a number of groups: Opal and

Beaty (1972), Suzuki and Takayanagi (1973), Dillon (1975) and Yagishita
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et al. (1976). Again the DWPO approximation produces a sharp dip in the
forward direction as in the previous cases at 81.63 and 100 eV. A more
involved theoretical treatment (Ochkur and Burkova, 1975) using the Second
Born approximation is however able to predict results in good agreement with
experiment for small angles. Experimentally there is evidence for a

certain degree of structure between 20° and 40°. For angles between 50° and
750, the DWPO approximation is in good agreement with the experimental
measurements while for larger angles underestimates the observed cross section.
Inspection of table 17(e) shows that the sensitivity exhibited by the excited
state to the choice of wave function has virtually disappeared.

Similar calculations in the DWPO III model are presented in table 18;
in order to ease the computation,the excited state is.described by the éimpler
wave function of Morse et al. (1935). The results are compared in figure 18
with corresponding DWPO I results from table 17 and also with the absolute
experimental data referred to in connection with figure 17. As discussed in
6.2 concerning DWPO IITI results for excitation of the 218 state, only
the first five distorted wave functions (viz.uz(ki,r), 2 =0 -U4) are
computed allowing for exchange-polarization effects—for higher ¢, the
corresponding adiabatic-exchange solutions are émployed.

At the lower energies (29.6 and 40.1 eV), the inclusion of exchange-
polarization terms is noted to further reduce the peak in the forward
direction, but otherwise increases the overall magnitude (particularly at
29.6 eV) of the DWPO I results while at the same time preserving the general
shape of the curve for angles above 20°. The agreement on an absolute
scale with the data given by Trajmar (1973) and Hall et al. (1973) remains
however poor.

Considering the differential cross section at higher energies (81.63,
100 and 200 eV), the Ochkur dip is stiil prominent in the forward direction.
For angles less than 900, there is little difference between the two models
in predicting the cross section. A significant feature, however, for larger

angles is the enhancement produced by DWPO III, especially at 200 eV.
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One concludes therefore that such an increase in the backward direction
is due to exchange-polarization effects alone. Desﬁite this improvement,

discrepancy with experiment continues to exist.

Summary

The results presented in this section indicate that theoretical

1

predictions of differential cross sections for production of the 1°S + 2%

transition in helium by electron impact are less successful than for the
llS - nlS transitions studied in §6.2. Probably the best agreement

with experiment is obtained by tﬁe distorted wave treatment of the second-
order optical potential method.

At lower energies, the DWPO approximation yields a result too small
compared with experiment while at higher energies, tﬁe overall magnitude
is improved but fails to agree in shape with the experimental data. A degree
of sensitivity to the excited state wave function is apparent, especially
at lower impact energies.

The inclusion of exchange-polarization terms increases the overall
magnitude at low energies by as much as a factor of 2 but is still unable
to provide reasonable agreement with experiment. At higher energies, the
DWPO approximation fails completely to predict the large increase in the
differential cross section at smll angles, whereas in the backward direction,
allowance for exchange-polarization effects does produce a éubstantial
increase,particularly'at 200 eV. A similar increase has been obs'erved in
§6.1 concerning ls + 2s transitions in atomic hydrogen.

The DWPO approximation is essentially a theory which provides a first-
order treatment for dealing with those transitions which can only éccur via
exchange processes whereas it provides a second-order treatment for those
transitions which can also occur via direct means (as in §6.2). Huo (1974)
has shown by using a limiting selection rule for exchange scattering at

relatively high energies that where the orbital term symbols of the initial

and final atomic states remain unchanged, the second-order term in the
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exchange T-matrix element becomes more important in the small and large-
angle regions compared with the first-order term. In fact Huo sh&%s that
the second-order term dominates in the forward direction at high energies
(above 300 eV) while the first-order term is important at low energies. Such
a result could help to explain the sudden decrease in the forward direction
of the differential cross section computed in the DWPO approximation at
higher energies. Moreover, according to Ochkur and Burkova (1975), spin-
exchange transitions in helium, such as to the 238 state, occur in two
steps: 1) an elastic exchange process between the incoming electron and the
ground state electron of opposite spin and 2) the subsequent interaction with
the other ground state electron which produces a transition to some excited
state. This argument may be generalized to atoms possessing more than tﬁo
electrons.

Such a two-particle process can only be described by second-order
formalism. Their theory is supported by the excellent agreement with
experiment which they obtain, at 200 eV for angles less than 900, using the

Second Born approximation.

§6.4 Excitation of He(llS -+ an)

Results computed in the DWPO I and DWPO II models have been obtained

for the inelastic processes
1 1 =
e + He(17S) + e + He(n'P), n = 2,3,4,5,

Total (integral) cross sections are tabulated in table 19 for n = 2,3,4,5

and displayed graphically in figure 19. Differential cross sections have been
obtained for n = 2,3 and are given in tables 20-23. They are compared

with other results, both theoretical and experimental, in figures 20-23.
Finally, the orientation and alignment parameters(X,x) have been determined
for n = 2,3 and are presented for the whole angular range in tables 2u4-27

. )
and illustrated in figures 24-27 for angles up to 50°.
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Total Cross Sections

l ) .
2”P  An abundance of theoretical and absolute experimental data has

accumulated over recent years for electron impact excitation of llS -+ 2lP
‘transitions in helium. Table 19(a) lists the integral and total integral
cross section results when computed in the DWPO I and DWPO II models for
energies from just above threshold to 300 eV. The excited state is taken to
be described by the simple Hartree-Fock wave function of Marse et al.
(discussed in Appendix A). The total integral results are plotted in figure
18(a) and compared with absolute experimental measurements. It will be
observed that the DWPO I results extend over the region up to 1000 eV.

In fact, as seen from table 19(a), by 300 eV the approximation agrees with
the Born or'Born plus Polarized-Born'to 3 figures so that consequently only
the correspondiné Born cross section is plotted for energies above 300 eV.
Born results alone increase far too rapidly for energies below 300 eV

and peak much higher and closer to threshold than DWPO results (Scott and
McDowell, 1976).

From an experimental point of view, there is good comnsistency throughout
the energy regions considered between the various sets of data, though the
results of Moustafa Moussa et al. (1969) for E > 80 eV and of Chutjian
aﬁd Srivastava (1975) at 60 and 80 eV would appear rather low. At lower
energies both DﬁPO models are in close agreement with the values provided by
Donaldson et al. (1972) and Hall et al. (1973). Proceeding to the peak
value, correctly positioned with respect toenergy by both models, the DWPO I
model begins to overestimate the experimental results while the DWPO II
model gives a lower cross section which is in good accord with the measurements
of de Jongh and van Eck (1971). However, the theoretical results are still
of greater magnitude than those of Donaldson et al. (1972) until E > 200 eV
where the agreement with DWPO II is very good. DWPO I continues to remain
in good agreement with the points of de Jongh and van Eck (1971) for increasing

energy and for 200 < E < 1000 eV 1is alsc in close accord with the recent

data published by Dillon and Lassettre (1975). Overall, when compared with
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experiment, the effect of indudingtarget distortion via the ground state
wave function appearing in the T-matrix element is to lower the total
(integral) cross section and hence produce better peak values than the
simpler (DWPO I) model which contains no such explicit account of target
distortion.

Theoretical results from other models have been omitted from figure 19(a);
to do justice to each would only cbscure the results of others. However, the
essential features of their results will be briefly described below.

For high energies, as one would expect, most of the theories agree
reasonably well. As the impact energy decreases below 300 eV, the results
‘of the Coulomb-projected Born approximation of Hidalgo and Geltman (1972)
begin to rise too sharply, followed for E < 150 eV by those of the second-
order optical potential method, calculated in an impact parameter treatment
by Berrington et al. (1973). A partial wave treatment of the latter method
(Winters, 1974) does, however, provide results above 100 eV in good agreement
with those of DWPO I. The second-order diagonalization procedure of Baye
and Heenen (1974), in common with otherhigh energy approximations, also
overestimates grossly the peak value.

The results of the tenrchanﬁel eikonal treatment of Flannery and McCann
(1975) agree closely with the DWPO I results down to 80 eV;‘fbr E < 80 eV,
they continue to overestimate, hardly surprising since the method is
essentially a high energy approximation. Good agreement is obtained between
DWPO II results and those in the distorted wave calculation of Madison
and Shelton (1973) for E > 125 eV. However, for E < 125 eV, their results
increase too quickly and shift the position of the peak from the experimental
point at 90 eV down to 70 eV. This lack of agreement js probably due to
omission of exchange in the former theory and to a neglect of polarization
in the latter. Judging‘from the better agreement of the DWPO II model with
experiment at the peak value, it appears that exchange (in fact, this is
neglected in the actual calculation of the distorted waves by Madison and

Shelton) and polarization become important in calculating total cross sections
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for energies less than 150 eV.

The eikonal distorted wave method of Joachain and Vanderpoorten (1974a)
gives results consistent with DWPO II down to 60 eV; below 60 eV, their
results are more in line with those of DWPO I. The best agreement with
experiment over the size and position of fhe maximum is provided by the
Glauber calculation of Chan and Chen (1974a); such a calculation is expected
to give a very good description of small-angle scattering which, since the
major contribution to the total cross section comes from small angles,
accounts for the close agreement. For energies from 90 eV down to 30 eV,
the many-body theory approach of Thomas et al. (1974) yields results
-lying between those of DWPO I and DWPO II; their calculations allow for.
distortion in both the entry and exit channels.

éig Theoretical .results for excitation to this state are not quite
so numerous as in the previous case but nevertheless form a substantial
volume of material for comparison with experimental measurements. DWPO I
and DWPO II results are tabulated in table 19(b) and, together with other
theoretical results and absolute experimental data, are displayed in figure
13(p).

For energies above 300 eV, theory and experiment agree quite well;
the experimental measurements are due to Moustafa Moussa et al. (1969),
de Jongh and van Eck (1971) and Donaldson et al. (1872). As in the previous
case, DWPO I and II total cross sections agree to 3 figures with the corresponding
Born results; consequently Born values are plotted for energies in this region.

For energies below 300 ev; the DWPO I results tend to favour the data
of Donaldson et al. (1972) while the DWPO II resultsare smaller by at most
10%, preserving the profile, and in good agreement with the measurements
of Moustafa Moussa et al. (1969) excépt at 80 eV. At energies away from
90 eV (the position of the maximum), the DWPO I and DWPO II results come into
closer agreement with each other and also with the points of de Jongh and
van Eck (1971) which otherwise are comparatively smaller. The experimental

point of Showalter and Kay (1975) at 200 eV appears rather low and at 80 eV
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the measurement of Chutjian (1976) also seems low, though that at 100 eV
is compatible with other experimental values.

Concerning other theoretical methods, the results of a nine-state
impact parameter version of the second-order optical potential model
(Bransden and Issa, 1975) begin to increase too steeply for energies below
300 eV, followed by those in the second-order diagonalization procedure
(Baye and Heenen, 1974). The only other remaining curve is that of Flannery
and McCann (1975), obtained in their ten-channel eikonal treatment. The
results are reasonably good down to 100 eV, where they agree with the
experimental point of Chutjian (1976), falling between those of Moustafa
Moussa et al. (1969) and Donaldson et al. (1972). Below this energy, the
peak value of the cross section is obtained at 70 eV, shifted from the 90 eV
predicted by Donaldson et al. (1972). Not shown are the Glauber results of
Chan and Chen (1974b) which lie generally below experiment.

ﬂig Here the DWPO approximation to the integral cross sections in
both models is computed without the Born-subtraction artifice described in
§3.4 to perform the sums over partial wave cross sections. Instead the
first 30 terms are retained for E < 150 eV and the first 40 for E > 150 eV,
this being found adequate to produce a émooth total differential cross
section at small angles which is where the main contribution to the cross
section arises. With less terms or at an energy above 300 - 400 eV, the
total differential cross section exhibits a more extensive oscillatory nature,
characteristic of a lack of convergence in paftial waves, which extends into
this small-angle region (less than 40° - 50°).

Since there is now no need to pbtain an expression for the Born T-matrix
(which it ﬁill be recalled would be required in closed form), a more
complicated wave function may be taken for the excited state; that of Cohen
and McEachran (see Appendix A)“is adopted., Further, the p-wave ul(ki,r) is
made orthogonal to Rnp(r); hence the integral cg(ki{; given by (3.4.36),
vanishes. The subsequent DWPO I and DWPO II results are given in taple

19(c) and are displayed in figure 19(c) with absolute experimental measurements.
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One sees that the measurements of de Jongh and van Eck (1971) and of
Donaldson et al. (1972) agrée closely with each other at all energies except
80 eV; the point due to Showalter and Kay (1975) at 200 eV coincides with that
of the former group. The results of Moustafa Moussa et al. (1969) are
_ comparatiVely low.

The maximum is observed to occur in the vicinity of 90 eV and is very
well predicted in shape and magnitude by the DWPO II model when compared
with the data of Donaldson et al. (1972). DWPO I results lie approximately
10% higher at this energy, being in closer agreement with those of DWPO II
for energies away from this value. The second-ofder diagenalization
précedure of Baye and Heenen (1974) yields results which agree well with
the data of de Jongh and van Eck (1971) for energies above 300 eV;
however for energy values below this, the method improves little on the
First Born Approximation (Bell et al. 1969, not shown), the results increasing
far too rapidly for energies below 200 eV. Also not displayed are the
Glauber results of Chan and Chen (1874t), which lie above those of the
DWPO models.

Overall, the DWPO II model produces the most satisfactory agreement with
experiment, being in best accord with the measurements of Donaldson et al.
(1972). |

Eig Total (integral) cross sections have been ottained in the DWPO I
and IWPO II models. Thé comments on the computation of 4 P cross sections,
given in the first two paragraphs of the previous section, all apply to
this case also. However, using the coefficients published by -McEachran and
Cohen (1969) gave very large integral cross sectlon results. Consequently
the coefficients wre modified according to the procedure outlined in
Appendix A. Results obtained from using bofh the modified and unmodified
coefficients are presented in table 19(d); the modified results are illustrated

in figure 19(d).
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The only experimental points available are those of Moustafa Moussa et

al. (1969) and, at 200 eV, that of Showalter and Kay (1875). The DWPO I
result agrees well with this latter measurement, the DWPO II result being
some 10% lower. However, both models predict results of similar shape, but

lying considerably higher than the data of Moustafa Moussa et al. (1969).
Further, the DWPO results attain a maximum value at about 90eV, whereas
that of Moustafa Moussa et al. seems to be nearer 80 eV. The second-order
diagonalization method of Baye and Heenen (1974) once more increases too
rapidly for energies below 200 eV and subsequently predicts a much larger

peak value of the cross section.

Summarz

The DWPO I and DWPO II models produce total integral_cross sections
of similar profile which generally speaking are in good agreement with
absolute experimental measurements, particularly in the latter model; the
DWPO II results tend to lie at most 10% below those of the DWPO I model.
Compared with other theoretical predictions, where results are available
for comparison, the DWPO models provide total integral cross sections which,
taken over the full range of impact energies illustrated, are the most
consistent with experiment.

It is noted that for emergies above 300 eV, the DWPO I and DWPO II
models yield total integral cross sections which agree to at least 3 figures
with those obtained in their high energy limits, namely the Born and 'Born
plus polarized—Born'approximations respectively. Hence one concludes not
surprisingly, that exchange effects become negligible in computing total

integral cross sections for energies above this value.

Differential Cross Sections

Differential cross section results, computed in the DWPO I and DWPO II

1

models for excitation of the ano, n P+l’ an (n = 2,3 only) states, are
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tabulated over the whole angular range in tables 20 - 23 and'the total
differential cross section displa&ed graphically in figures 20 - 23,
together with other theoretical results and absolute experimental data.

zig DWPO I results are plotted for five incident energiesin figure
20 where they are compared with experimental and other theoretical results.
Figure 21 illustrates for small-angle scattering the results of the DWPO II model
at four incident energies and includes élso those of the DWPO I model and
of experiment for comparison. Throughout the calculations, the simple
Hartree-Fock functicn of Morse et al. (1935) has been utilized to descrite
the excited state (see Appendix A). Consideration is first given to the
DWPO I results, figure 20.

For electron impact energies of 29.6 and 40.1 eV, only the absolute
experimental data ofTruhlar et al. (1973) have been plotted, thoseof Hall
et al..(1973) (at 29.2 and 39.7 eV) lying in close agreement and consequently
omitted. At 29.6 eV, DWPO I results are in reasonable accord with the
experimental points for smaller angles, except in the forward direction
itself where they tend to fall slightly below experiment but nevertheless
provide the closest theoretical agreement. The close-coupling results (at 29 eV)
obtained by Truhlar et al. (1973) appear generally too high, in common
with the resulté of fhé distorted wave calculation of Madison and Shelton
(1373) which, while too small in the forward direction, are too high for
angles greater than 30°.
| The many-body method (Thomas et al. 1974) yields results which follow
closely those of the DWPO I model out to 600, both sets lying close to
experiment., However, for angles greater than 600, the many-body results
follow more closely the experimental trend than the DWPO I values; the
latter fall at their lowest point (about 125°) to an order of magnitude
below experiment.

The situation at 40.1 eV displays theoretical curves in better

agreement with each other and with experiment at smaller angles, DWPO I

providing once more the closest agreement. The close-coupling calculation
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shows some oscillation for angles above 120° which could well be due to a lack
of convergence in the partial wave sums. Also shown are the ten-channel

.eikonal results of Flannery and McCann (1975). However, for angles above 600,
both the DWPO I and multichannel eikonal results continue to decrease too rapidly
and fall considerably below experiment while the many-body treatment produces
excellent agreement over the whole angular range.

Moving to figure 20(c), where the DWPO I results have been plotted for an
incident energy of 81.63 eV, there exist more numerous theoretical calculations.
Experimentally, the measurements given by Opal and Beaty (1972) at 82 eV and by
Chutjian and Srivastava (1975) at 80 eV are in good agreement out to about 105°
whereafter the former measurements lie below the latter. Experimental data
have also been given by Truhlar et al. (1970) but are omitted for clarity.‘ On
the theoretical side, it was decided to also omit the results of the eikonal
distorted wave method (Joachain and Vanderpoorten, 1974a) and of the second-order
diagonalization procedure (Baye and Heenen, 1974) in order to maintain a
reasonably distinct figure. Both sets of results range over the angular region
from 0° to 80° and are consistent with those of other theoretical treatments.

Good agreement is obtained between each of the represented models and
with experiment for angles less than 300, with perhapé the exception of the
Coulomb-projected Born calculation of Hidalgo and Geltman (1972) at 82 eV which
produces results lying consistently high. DWPO I results provide the best
overall agreement with experiment out to HOO; above this point, they tend
to underestimate both sets of data. The results of the ten-channel eikonal
treatment at 80 eV follow a similar pattern, though falling further below
experiment than those of DWPO I in the backward direction, due most probably
to an explicit omission of exchange effects. Generally,the best agreement
with experiment is obtained by the distorted wave calculation of Madison
and Shelton (1973) at 80 eV and Ey the appliéation of many-tody theory
(Thomas et al. 1974). Both these methods allow for final channel distortion

but omit the long-range polarization effects; this would account for the superior

performance of the DWPO approximation in the forward direction.
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At 100 eV, the DWPO I results are again in best accord with the experimental
data shown, which is due at 5° to Chamberlain et al. (1970) and over the
rest of the angular range to Suzuki and Takayanagi (1973). In figure 20(d),
the theoretical results of the eikonal distorted wave method (Joachain and
Vanderpoorten, 1974a and of the second-order diagonalizatioﬁ procedure (Baye
and Heenen, 1974) have been included, and agree quite well with experiment
over the range given for each method. The results of Madison and Shelton
(1973) and of the Glauber treatment (Chan and Chen, 1974a) have, however,
been omitted for reasons of clarity. The former results are found to be
quite reasonable on comparison with the absolute experimental values of
Crooks and Rudd (1972). The Glauber model, with results given only for
angles less than 200, shows comparable agreement with DWPO I.

The partial wave treatment of the second-order optical potential method
(Winters, 1974) provides results in close agreement with experiment for
angles less than 50°; for angles abtove 500, following closely the DWPO I
values, the results fall below experiment. Results in the ten-channel
eikonal treatment, provided by Flannery (1975), show a familiar behaviour
to that of previous cases, that is good agreement in the forward direction
énd for angles less than 30° with experiment (as expécted), but underestimating
Br large angles. Figure 20(d) also shows an improvement in the Coulomb-
projected Born approximation, which is expected to be better at higher
energies,

The final energy considered is 200 eV, figure 20(e), where again a
large volume of data is available. The experimental results of the four
groups represented, absolute in each case, form a consistent shape, those
of Suzuki and Takayanagi (1973) coinciding well with the small-angle data
of Chamberlain et al. (1970) and of Dillon and Lassettré (1975) and at larger
angles with those of Opal and Beaty (1972). Theoretical predictions are
in good agreement with these measurements for angles less than SOO; for
angles above 300, they begin to diverge from each other. DWPO I and the

ten-channel eikonal results (Flannery 1975) exhibit a similar behaviour to
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that at previous energies, falling below other theory and experiment for
angles above 400,‘particularly in the latter model. The eikonal distorted
wave method and the second-order diagonalization procedure show predictions
not unlike those illustrated at 100 eV in figure 20(d), being in reasonable
agreement with other models and experiment over their respective angular
regions. The Glauber treatment of Chan and Chen (1974(a)) has again been
omitted; values are given only for angles up to 20° and agree closely

with other theoretical results.

For large-angle scattering, the profile of the Coulomb-projected Born
calculation decreases too rapidly and lies below experiment and just above
that of DWPO I, whereas the distorted wave calculation (Madison and Shelton,-
1973) provides a good cross section out to 120°. Since this latter methéd
treats the initial and final channel on an equivalent footing, this good
agreement with experiment Yends further support to the necessity to allow
for final channel distortion.

Corresponding DWPO II results for excitation to this state are presented
in table 21. A general comparison between tables 20 and 21 shows that for
each of the five incident energies, the DWPO II total differential cross
section results are some 10 - 20% smaller than those compufed'in the DWPO I
model for allAangles. Results obtained in both models for impact energies
of 29.6, 40,1, 80 and 1C0 eV are displayed at small angles with absolute
experimental data in figure 21.

For the lower two energies, the DWPO II model yields very good agreement
with the measurements obtained by Truhlar et al. (1973) and at 29.2 and
39,7 eV by Hall et al. (1973), improving over the DWPO I results. A certain
degree of discrepancy does however remain in the forward direction itself.

Considering 80 eV, the two DWPO models produce results lying closer
together and in good accord with the data of Chutjian and Srivastava (1975)
though neither predicting the élight lowering of the cross section observed
at 15°, Finally the DWPO models are compared at 100 eV with the measurement

of Chamberlain et al. (1970) at 5° and with the measurements of Suzuki and
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Takayanagi (1973) over the remainder of the angular range up to 36°. Again,
there appears to be some structure observed at iSO which is not found
theoretically, The DWPO II model agrees well with experiment, however, for
angles above 20°. The First Born approximation, deduced froﬁ the accurate
generalized oscillator strengths tabulated by Bell et al. (1969), yields
results of larger magnitude than those of either DWPO model; this approximation
fails to allow for polarization effects.

Overall the consequence of explicitly includ;ng target distortion in
the T-matrix element is to lower the total differential cross section and
to subsequently provide Letter agreement with published experimental.data
at small angles. Both the DWPO I and DWPO II models, however, underestimate
experiment at large angles, particularly the DWPO II model.

Eig Differential cross sections describing excitation to this state
and computed in the DWPO I model are tabulated at four incident energies
in table 22. Corresponding results in the DWPO II model are given in table 23.
Both calculations employed the simple Hartree-Fock function of Goldberg
and Clogston (1939-, see also Appendix A) for the excited state. Graphical
comparisons of the DWPO I results for the total differential cross sections
with theéry and experiment are presented in figure 22. Figure 23 offers
a closer examination of small—-angle écattering, allowing for the improved
treatment of polarization in the DWPO II model, at lower impact energies.
Attention will first be given to figure 22.

Comparisoﬁ is made at the lower energies of 29.2 and 39.7 eV with
the absolute experimental data of Chutjian and Thomas (1975). It must be
emphasised that their apparatus was unable to resolve between excitation

1,3

to the 37> D and 31P states so that in fact the points plotted represent

1,3

1 1
the combined result for excitation to the 37> D and 3P states. The 3P

l .
state lies only 0.01% and 0.013 eV from the 33D and 3D states respectively.
However, comparing with the many-body calculations, also given in the paper

by Chutjian and Thomas (1975), one sees that the main contribution to

1 1 . s
the cross section for angles less than 60° arises from the 1°S + 3 P transition;
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consequently the experimental points plotted in figure 22 (and 23) over this
angular region allow one to make a useful comparison with observation for
excitation of the SlP state alone. At larger angles it appears from

the many-body calculations that, while the 31P cross section drops smoothly,
>the 33D cross section increases, providing a substantial contribution (about
80% at 136°) for an energy of 29.2 eV and a lesser contribution (about 30%

at 136°) at 39.7 eV to the joint differential cross section. At both
energies, the SlD contribution is at most 12%; the overall effect of the

41,3

D states is to flatten the cross section for large angles. All
theoretiqal calculations represented in figure 22 apply to the 3lP state
alone.

Comparing the DWPO I results in figures22(a) and 22(bt) with those of
the many-body calculation and with the experimental measurements, shows
~excellent agreement out to 600, except at 29.2 eV in the forward direction
itself where both calculations fall below the experimental points. At
large angles (essentially above 60°) the DWPO I results decrease rapidly below
the many-tody results which at 29.2 eV lie themselves below the experimental
measurements., In figure 22(b), many-body theory is in very good accord
with experiment over the whole angular range at 39.7 eV. Also shown in

this figure are the ten-channel eikonal results (at 40 eV) of Flannery and
McCann (1975) which predict a more enhanced forward peak but, similar to
the DWPO I results, drép to at least an order of magnitude below experiment
at 136°,
In figure 22(c), at 100 eV, the experimental points (Chutjian, 1876)

l’3D states, following

have been corrected for contributions due to the 3
a procedure outlined in Chutjian's paper. The DWPO I results are seen to

be in Vefy good agreement for angles less than 400, tending to underestimate
at larger angles. The ten-chaﬁnel eikonal results are aiso in good agreement
at small angles, in common with the Glauber method (Chan and Chen,

1974b), Concerning also figure 22(d), which illustrates only theoretical

results, the Glauber approximation results are shown for angles less than



158

lOo, the results merging into the ten-channel eikonal points of Flannery
and McCann (1975) . for angles between 10° and 20°. Tﬁe results of Flannery
and McCann extend over the whole angular range and comparison with the
results of the DWPO I model shows that both models exhibit a similar trend,
the eikonal method dropping Lelow the DWPO I model for angles above 500,‘
due presumally to explicit neglect of exchange effects, whereas the DWPO models
allow explicitly for such effects.

DWPO II results are plotted for small angles in figure 23 at 29.2
and 39.7 eV and compared with the DWPO I results and also with the experimental
measurements referred to above in connection with figure 22. At 29.2 eV,
DWPO II results appear somewhat low in the forward direction but otherwise
are in good agreement with experiment, especially for angles above 20°, An
overall comparison for the complete angular region between DWPO I and
DWPO II is obtainable from tables 22 and 23. Essentially, the DWPO II model
yields differential cross section results (total and magnetic sublevel) some
10%, or 20% in some cases, smaller than the DWPO I model, thus producing

less comparable results with experiment, where availabtle, for large angles.

Summarz

Differential scattering for excitation of the 2lP and SlP levels
of helium has been studied in the DWPO I and DWPO II models for impact energies
varying from approximately 30 eV to 200 eV. On comparison with absolute
experimental data and‘with other theoretical methods, the DWPO approximation
reproduces the best overall agreement with small-angle measurements, especidlly
in the DWPO II model. For larger angles, the approximation consistently
underestimates experimental data for each impact energy whereas models which
allow for distortion in the final channel as well as in the initial channel

(e.g. the many-body approach) yield more compatible results.
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The DWPO models incorporate an account of the effects due to the long-
range adiabatic polarization interaction and, particularly in the DWPO II
model, this is undoubtedly the reason for such accurate small-angle
differential cross sections. This im turn accounts for the accurate total
(integral) cross section values, since the most significant contribution
to the total integrated cross section comes from the small-angle region

of the differential cross section

The (XA,x) Parameters

These parameters, referred to as the orientiation and alignment parameters,
have been defined in equations (3.5.4) énd discussed in §3.5. They have been
computed in the DWPO I and DWPO II models for the 21P and SlP states,
and are presented over the whole range of angles in tables 24 - 27 and, in
the DWPO I model, up to 50° in figures 24 - 27. The same excited state
wave functions used in deriving differential cross sections, discussed
in the last section, are of course, employed here also. The results of this
section are compared with the experimental data of Eminyan and coworkers
and with other theoretical predictions.

zig Results for A and Y are tabulated in tables 24 and 25
respectively, for incident energies of 40, 60, 80, 100 and 200 eV. The
DWPO I results are displayed in figures2y and 25 and compared with the
experimental data of Eminyan et al. (1974) in each case and with available
theoretical results. Comparison between DWPO I and DWPO II results for
A in table 24 and for ¥ in table 25 shows that there is at most 10%
difference between them so that consequently, discussion will be confined
to.the DWPO I results. Consideration is first given to A.

The first energy considered is 40 eV where for angles less than 15°
there is good agreement between each of the four thecries represented and
with expériment. For angles out to 500, best agreement with experiment is

maintained by the distorted wave calculation of Madison and Shelton (1973),
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followed by the ten-channel eikonal results of Flannery and McCann (1975).
The DWPO I results fail to predict a minimum over this angulér range and
underestimate the experimental measurements; a similar comment applies to the
many-body approach (Thomas et al., 1974), represented at 40.1 eV.

Proceeding to a higher impact energy of 60 eV, the situation alters
in that the DWPO I is in best accord with experiment (there is no distorted
wave calculation by Madison and Shelton at this energy), the agreement
extending out to 25° where experiment finds a sharper rise in the results.
The multichannel eikonal results and many-body theéery results show a similar
trend to those of the DWPO I model, but of smaller magnitude.

At 80 eV, Lbest agreement with experiment is _obtained by the distorted
wave calculation of Madison and Shelton (1973) at 78 eV; DWPO I results agree
well out to 20° with experiment whereafter they fail to produce the more
rapid increase measured by experiment and predicted accurately Lty the former
calculation. The multichannel eikonal and many-body treatments are both
in disagreement with experiment at each angle.

Moving to 100 and 200 eV, excellent agreement is once more obtained
with experiment by Madison and Shelton's distorted wave model. The DWPO I
results lie in reasonable agreement with experiment for angles less than
20° whereas at 200 eV the DWPO I results are in slightly better agreement
with the two experimental points than those of Madison and Shelton. At
this latter energy, these two theoretical methods remain in good agreement
with each other up to 40° where the DWPO approximation predicts a peak value.
The results of Flannery and McCann (1975) in their multichannel eikonal
method and those in the eikonal distofted wave Born approximation (Joachain
and Vanderpoorten, 1974b) produce a lower minimum than that observed
experimentally and by the former two (distorted wave) methods.

Generaily, however, A isAbest reproduced in figure 24 by the distorted
wave calculation of Madison and Shelton (1973).

Considering X, the situation with respect to this parameter is quite

different from that for A when comparing theoretical models. At 40 eV,
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the distorted wave results of Madison and Shelton (1973) are in best

accord with experiment while those of the ten-channel eikonal treatment
(Flannery and McCann, 1975) show a clear improvement over the DWPO I

results, particularly at lower angles (less than 40°). Figure 25(b) illustrates
only the DW?O I results and experiment, the agreement here at 60 eV being
better than that at 40 eV.

For impact energies of 80 and 100 eV, the ten-channel eikonal results
provide the best agreement with experiment, those of Madison and Shelton
(at 78 eV) being too large and producing a shape of opposite curvature
whereas the DWPO I results reveal a similar but somewhat lower shape to the
ten-channel eikonal results. At 100 eV, the calculations of Flannery and
McCann show a certain degree of struncture at 200, not resolved experimentally
nor predicted by other theoretical calculations. The results of the eikonal
distorted wave Born approximation (Joachain and Vanderpoorten, 197ub)
have been plotted for 100 eV and exhibit a similar but lower profile to
those of Madison and Shelton (1973).

A similar behaviour of the theoretical results amongst themselves is
repeated to a certain extent for angles less than 25° at an impact energy
of 200 eV. However, as shown in figure 25(e), only two experimental points
are available which in this case support best the eikonal distorted wave
calculation of Joachain and Vanderpoorten (1974b). The DWPO I results
.give quite a different shape at all angles, whereas the ten-channel eikonal
results begin to increase away from other theoretical results for angles
greater than 20°.

For the most part, however, the Lest overall agreement of x with
experiment is obtained by the ten—éhannel eikonal model of Flannery and
McCann (1975).

gig Results for A and‘ X are presented for the whole rangé of
angles in tables 26 and 27 respectively for impact energies of 50, 80, 100
and 200 eV. Experimental measurements have been published by Eminyan et al.

(1975) for angles only up to 30°. In figures 26 and 27, results for A and ¥
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respectively, obtained in the DWPO I model, are compared with these
measurements and with those of a four-channel eikonal treatment as appears
in the paper by Flannery and McCann (1975). As for the 21P state, a
comparison of tables 26 and 27 shows that the DWPO I and DWPO II results
differ by at most 10% so that discussion may be subsequently confined to
the DWPO I results. To begin with, A is first discussed.

Figure 26(a) illustrates results for 50 eV impact energy. Generally
there is little resemblance to the experimental points in either theory.
Neither predicts agreement for angles above 20°; a ten-channel calculation
(Flannery 1975) reduces the multichannel eikonal result between 10° and 30°
so that it coincides to a larger extent with the DWPO I result, while at
angles above 30° it returns to a profile similar to that produced by the
less sophisticated four-channel treatment.

At energies of 80 and 100 eV, both theories agree reasonably well
with experiment out to about 15°, the agreement with DWPO I at 80 eV
continuing out to 25°, However, neither theoretical curve increases rapidly
enough at larger angles to follow the experimental points. For these
energies, and indeed at 200 eV also, the multichannel eikonal results show
considerable structure about the minimum predicted between 15° and 30° in
each case, whereas the DWPO results exhibit a very smooth behaviour.

Figure 26(d) offers only a comparison between the two theories, which
without experimental data, is difficult to assess. In common with the Q}P
result for this energy, one observes that the DWPO approximation predicts
a peak at an angle of 40°,

Generally speaking, where measurements have been made, the DWPO
models yield values of A in better agreement with experiment.

Turning to ¥, the DWPO I and four-channel eikonal results are compared
with experiment, where available, in figure 27. For the lowest energy
(40 eV) both models exhibit different curves, neither agreeing with experiment
at any angle though there is some experimental evidence at 20° for the
maximum predicted by the four-channel eikonal method (Flannery and KcCann,

1975) at an angle of 30°. Figure 27(b) shows that at 80 eV, the eikonal
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results are to be preferred to the DWPO I results; neither theory, however,
produces the correct magnitude but the overall shapes are in better accord
than at 50 eV.

Results at 100 eV show the four-channel treatment at its best for the
SlP state; agreeﬁent with the experimental points is good whereas the DWPO‘I
results continue to underestimate the measurements. A certain degree of
structure is revealed in the four-channel eikonal results, not found in the
DWPO calculations. This 1s most evident in figure 27(d) where at 200 eV,
there are no experimental values and little resemblance between the results
of either theory.

However, overall in figure 26, the better agreement for x with
experiment where available is obtained with the four-channel eikonal

. treatment.

Summagz

Theoretically x is more difficult to determine accurately than A.
A 1is most accurately computed for the 2lP state in the distorted wave
calculation of Madison and Shelton with the results of the DWPO approximation
being in good agreement with experiment over the first half of the angular
range illustrated. For the 31P state, the DWPO approximation produces
results for A closer to experiment than the multichannel eikonal method.

X ‘on the other hand is generally best predicted for both states by
the multichannel eikonal approach of Flannery and McCann. DWPO results
consistently underestimate this parameter, while at the same time exhibiting
the general shape of the experimental measurements.

Moreover, it is difficult to draw any conclusions from these results
except to say that there is so far no one theory which consistently agrees

with the available measurements of both A and ¥x.
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86,5 Excitation of He(llS > 23P)

Total (integral) cross sections and differential cross sections have

been computed in the DWPO I model for the excitation process
1 3
e + He(17S) + e + He(2°P).

Integral cross sections are tabulated in table 28 and illustrated in

figure 28. Differential cross sections for excitation of the 23Po, 23P

1
and 23P states are presented in table 29 and the total 23P differential

cross section displayed at five impact energies in figure 29.

Total Cross Sections

These have been obtained in the DWPO'I model incorporating the excited
state wave function of McEachran and Cohen (1969, see also Appendix A).
The total integrated cross section for excitation to the 23P state is
illustrated in figure 28 for energies from just above threshold to 200 eV
and compared with the many-body theory results (Thomas et al., 1974). The
experimental points are absolute measurements in each case, obtained by Jobe
and St; John . (1967) and at lower energies by Trajmar (1973) and Hall et
al. (1973). o

The results ef the latter two mentioned experimental groups are a little
higher than those of Jobe and St.John but overall the measurements form
a consistent curve. DWPO I predicts éccurately the position of the maximum
at 35 eV but overestimates by a factar of at least 2 the magnitude of the
observed peak. For the rest of the energy range considered, the DWPO I
results agree well in shape with the experimental data but continue to
remain at a higher magnitude. Total integrated cross section results in the
many-body theory of Thomas et al. (1974) are published for energies only

up to 81.63 eV and lie higher still than the DWPO I results.
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Summarz

Generally, tﬁe agreement between the results of the DWPO I model and
with the shape of the experimentai measurements is good; the theoretical
results, however, lie as much as a factor of 2 above the measured values.
Mcoreover, compared with the other spin-exchange transition, considered in

§6.3, the situation is considerably more satisfactory.

Differential Cross Sections

These have been computed using either the excited state wave function
of Cohen and McEachran or that of Morse et al. (see Appendix A for details)
and the results given in table 29. Those obtained from using the Cohen
and McEachran function are illustrated for five incident energies in
figure 29 and compared with other theoretical results and with absolute
experimental measurements.

At 29.6 eV, the cross section calculated using the simpler wave function
is also shown in figure 29(a). Both may be compared with the absolute
experimental -results of Trajmar (1973) which agree closely with those
of Hall et al. (1973) obtained at 29.2 eV (not shown); both experiments
utilized different normalization procedures. Theoretically, the many-body
theory results of Thomas et al. (1974) are also shown and the distorted
wave results of Shelton et al. (1973). The theories agree fairly well
in the forward direction but none is able to reproduce the experimental
values at small angles nor indeed at any other angle. It is noted that the
latter two models exhibit a similar result to each other.

Use of the simpler Hartree-Fock function in the DWPO I model reduces
the cross section for large angles below that obtained using the Cohen and
McEachran functionj; the cross éection in the backward direction is decreased
by 80%. This sensitivity to the excited state wave function is found

to mainly arise, here and at higher energies, from the overlap integral
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(3.4.36) of the radial function RQP(P) and the p-wave ul(ki,r). The
corresponding integral (3.3.18) was also found to be chiefly responsible

for similar discrepancies obserwed in excitation of the 238 state discussed
in §6.3. A lesser degree of sensitivity arises in the integrals defined

by (3.4.31), decreasing with increasing £, and also in that defined by
(3.4.34).

For an energy of 40.1 eV, the theoretical models again agree quite well
in the forward direction but overestimate the experimental results, in this
case by a factor of almost 10. The measurements are those of Trajmar (1973)
and Gelebart et al. (1975). Corresponding measurements were made by Hall
et al. (1973) at 339.2 eV (not shown) and are in close agreement with those
displayed. Once more, none of the available theoretical models representéd
in figure 29(b) is able to reproduce the curve indicated by the experimental
points. It is, however, noted that the distorted wave calculation of Shelton
et al. (1973) and similarly that of the many-body theory (Thomas et al. 1974)
produce comparable results to each other. Both calculations omit polarization
effetts but allow for distortion in the initial and final channels. The
primary difference between the two methods lies in the computation of
these distorted waves: Shelton et al. allow for distortion only by the
static~field of the target whereas Thomas et al. allow for distortion by
the Hartree-Fock field of the target.

Comparison of the DWPO I results in table 29(b) reveals again a
comparatively severe drop in the cross section at large angles when the
simpler wave function is used for the excited state.

Moving to a higher energy, one sees at 81.63 eV that the DWPO I results
and those of the many-body theory agree very closely out to an angle of 60°
after which the many-body results overestimate the experimental data of
both Opal and Beaty (1972) at 82 eV and Chutjian and Srivastava (1975) at
80 eV, Tﬁe DWPO I results on the other hand follow closely the measurements
of Opal and Beaty for angles akove 50°, For angles less than 400, both

theories overestimate the experimental points of Chutjian and Srivastava (1875)
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and Yagishita et al. (1976) at 80 eV, which together with those of Opal
and Beaty (1972) exhibita certain degree of scatter amongst themselves.

The sensitivity to the choice of atomic wave function for the excited
state in the DWPO I model has decreased and from table 29(c) one sees that
both sets of results now agrée to within 20% due to the increased number of
partial waves contributing to the differential cross section. For increasing
£ the integrals are again noted to be less sensitiveto RQP(r).

In figure 29(d) results are shown at 100 eV; the DWPO I model reproduces
reasonably well the experimental profile obtained by Suzuki and Takayanagi
(1973) and Yagishita et al. (1976). For angles above 600, the measurements
of these two experiments agree with each other. Finally, at 200 eV, the
DWPO I results are again compared with the recent data of Yagishita et al.
(1976) and reproduce very well their measured cross section, including
the peak observed at 10°,

The DWPO results do, however, continue to be sensitive to the choice
of excited state wave function; results computed at 100 and 200 eV using the
simpler representation of the Hartree-Fock solution lie higher for large
scattering angles than those obtained using the Cohen and McEachran function.

Overall however, this sensitivity has diminished with increasing impact

" energy.

Summazz

The agreement of the DWPO I results with experiment is at its best for
the higher energies (above 81.63 eV), especially for angles less than 10°
at 200 eV. Below 81.63 eV, agreement is poor; there is also no other theoretical
treatment capable of adequately reproducing the experimental results. VWhere
available, the distorted wave calculations of Shelton et al. (1973) and the
many-body calculations of Thomas et al. (1974) agree well with each other;
Loth these models employ distorted waves in the final as well as in the

initial channel.
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A certain amount of sensitivity arises in the DWPO I model, particularly
at low energies, concerning the choice of wave function for the excited

state.

- §6.6 Conclusions

Integral and differential cross sections together with, where appropriate,
orientation and alignment parameters, have been computed over the intermediate
energy region (§1.1) in a distorted wave polarized orbital approximation

for the inelastic collision processes:

e + H(1s) + e + H(QS; 2p, 2s + 2p), (1)
e + He(llS) + e + He(nlL), (2)
e + He(llS) + e + He(23L), (3)

]
"

2,3,4,5; L = S,P.

Results for each process represented in (1) - (3) have been summarized in
the appropriate sections of this chapter. The aims of the present section
(§6.6) are to formulate general conclusions from this work and to discuss
directions for future study into these collision processes.

Concerning the work on excitation of atomic hydrogen (process (1) above),
the inclusion of exchange-polarization effects in the DWPO approximation
greatly improved the total differential cross sections for the lower impact
energies (less than 1l.44 Rydbergs), particularly for large-angle scattering.
The unitarization technique failed to improve the accuracy of the differential
cross sections until the impact energy reached 100 eV. One concludes
immediately that in the case of low energy inelastic electron scattering Ly
atomic hydrogen, exchange-polarization effects are important.

Turning to helium and in particular to the transition where spin is

conserved, i.e. process (2), the DWPO approximation produces total (integral)
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excitation cross sections in close agreement with experiment over the
whole energy range, whereas comparable models (other distorted wave methods,
including lowest-order many-body theory) fail at lower energies. As far
as the differential cross sections are concerned, the DWPO approximation
gives accurate results in the forward direction for energies above 100 eV,
failing to an increasing extent as the energy decreases below this value.
Such accuracy with experiment at small angles would account for the good
total cross section values. Agreement with experiment is improved in the
DWPO II model though not so dramatically as in case of atomic hydrogen

or the alkali atoms; this is probably because helium has such a relatively
small polarizability.

Nevertheless, for L = S in process (2), it has been shown that allowing
explicitly for polarization effects in the T-matrix element, as well as
in calculating the distorted wave, yields excellent agreement with experiment
at 200 eV for small scattering angles; whereas models which omit polarization
effects, such as the First Born approximation, do not provide such a
satiéfactory description.

Generally, the DWPO approximation yields a reasonable profile for the
cross section atlower energies, improving with increasing energy at small
angles while at the same time becoming less comparable with experiment at

larger angles. The explicit inclusion of polarization effects in the direct
and exchange terms of the T-matrix element reduces further the cross section
for large-angle scattering. It is this lérge—angle region where theoretical
models which also allow for distortion in fthe final channel produce
substantially better results. Hence, it is concluded that such final channel
effects are important for accurately describing large-angle scattering.

The predictions of A and x‘ allow no firm conclusions to be drawn,
except that distorted wave treafments predict . A more accurately than x;

the latter ismostaccurately calculated in a multichannel eikonal treatment.
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Finally, in connection with the spin-exchange processes (3), the DWPO
approximation is considerably less successful, especially for the process
where the total orbital angular momentum symbol remains unchanged. A
discussion of differential scattering for this case, L = S, has already
been given in §6.3; surprisingly, allowance for exchange-polarization effects
did little to improve the situation. One concludes that much work remains
to be done in order to achieve a complete understanding of such simple
rearrangement collisions.

Concerning the DWPO approximation in general, recent work using a
hybrid method to study process (1) and discussed in §6.1, shows that the .
DWPO approximation to the lower order partial waves is less accurate than
for the higher order waves. A 12% difference between total integrated
cross sections for excitation of H(2p) at an impact energy of 0.86 Rydbergs
is obtained when the close-coupling pseudostate expansion includes partial
waves for O < L < 2 rather than O < L < 3. In the forward direction,
the corresponding total differential cross section is reduced by almost
50%. However, DWPO calculations of total cross sections for inelastic
electron scattering off positive ions, where the £ = 0 contribution is
relatively less than for the neutral atom, show that the DWPO approximation
treats the higher partial waves (classically, the larger impact parameters)
very well.

Further extensions of the DWPO approximation would be to treat the
exchange term of the T-matrix element to second-order and to allow for distortion
in the final channel. Work in this direction has already commenced in

connection with excitation of H(ls + 2s).
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APPENDIX A

Atomic Wave Functions

When dealing with atoms which possess more than one bound elecfron,
exact analytic wave functions are no longer available so that consequently it
is necessary to choose suitable approximate functions. For helium, however,
such functions have been determined to a high degree of accuracy. This appendix
will be concerned with the forms employed to represent the wave functions

for (i) the initial (ground) state and (ii) the final (excited) state.

(i) Ground (llS) State

$,(12) = ¢, (1) ¢, (2)

where

by (@) =R (®) Y__(2) .

1s

Rls(r) is chosen to be the simple Hartree-Fock wave function of Green et al.

(1954) which is expressed as

_ -ar -br
Rls(r) = Nl(e + cje ). (A.la)

The parameters a,b,cl and the normalization constant Nl have the values

a = 1.4558, b =2a, ¢, =0.6 and N, = 2.968468. (A.1b)

Polarization Term:

For convenience,¢pol(£gt>, the first-order perturbation correction to

¢ls(£) due to dipole polarization,will also be summarized under this heading:

(ot = - e(r,t) ulS+p(r) Plﬂcosert)
¢’pol ==l 7 £2 ’ r o /
with
-Z r
- 2
uls+p(r) =Z 3/2 re ° (Zor + 2 202 r). (A.23)

If the radial component of ¢ls(r) is given by (A.1l) it is found that, to
ensure the direct polarization potential has the correct asymptotic behaviour,

Zo has for helium the value



172

N
"

° 1.598960 (A.2b)
and for hydrogen the value
Z =1, . (A.2c)

(ii) Excited (nl’sL) State

¢f(12) = %5-[uls(1) Viz(2) + viz(l) u, (2)]
where
U () =) Y ) V() = R () Y (2).

The plus sign refers to singlet states and the minus sign to triplet states.

The function w(r) is taken throughout‘to have the hydrogenic form

3/2 e—Zr

w(r). = 22 (A.3)

where Z denotes the nuclear charge. Ril(r) is given below depending on the
value of L(L =S or P) and the spin (singlet or triplet) of the excited
state. Essentially Riz(r) is represented by two different types of function,
namely (a) the simple Hartree-Fock wave function and (b) the "frozen-core"
Hartree-Fock wave function‘éf Cohen and McEachran (1967a,b). Details of the
appropriate functions are presented under the headings (a) and (b) respectively
and further references quoted accordingly. |

The latter wave function has the basic fofm of an expansion in a series

of associated Laguerpre functions:

N
Rig(r) = ) a. e %0 At L§2+l (2ar) (A.4)

j=22+1
where o = Z/n and the coefficients aj are appropriately tabulated up to

. k .
some value J = N. The Laguerre polynomials Lj (x) are defined by the formula

:] _ o
ij(x) & [ x d o X x])] .

S-States:

(aj n=2

R;S(r) N (e_Pr - ¢c,Tr e-qr) ‘ (A.5a)
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+

The values assigned to the parameters of R2s

(r) are taken to be those given

by Byron and Joachain (1975);
p = 0.865, g = 0.522, c, = 0.432784 and N, = 0.61928. (A.5b)
For R;S(r), the parameters are obtained from the paper by Morse et al. (1935);

1.57, q=0.6l, c, =0.34081 and N, = 1.05. (A.5¢)

J
"

(b) n=2-5

The appropriate Cohen and McEachran function is determined by putting
£ =0 in (A.4). The coefficients ass which were used, are those tabulated
by Crothers and McEachran (1970).

In connection with all the above functions for the S-states, it is-

+
emphasised that the R;S(r) are forced to be orthonormal to RlS(r) using

the following transformation on the former function:

K () » {E_(r) - A R _(m)}//(1-47) (A.5)
where

_ + 2
A= f: Rls(r) Rns(r) r° dr.

+
Rls(r) and R;S(r) are assumed to be individually normalized before applying

the transformation (A.6).

P-States:

++(a) n=2

Rzp(r) =N, r e PT (A.7a)

_ . 5/2
The normalization censtant is trivially given by N2 = 2p / /Y3. The parameter

p is taken for both singlet and triplet functions from Morse e al. (1935).

For RY (r):
2p .
p = 0.u485. (A.7b)
For R. (r):
2p

p = 0.55. (A.7c)
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(a) n=3

+ - -pr ~-qr X
Rsp(r) = N3 r (e -cyre ary (A.8a)

The parameters are obtained from the paper by Coldterg and Clogston (1939);

0.325, q = 0.325, Cq = 0.162933 and N3 = 0.113034, (A.8b)

g
n

() n=2-5

The appropriate Cohen and McEachran function is obtained by putting
2 =1 in (A.4). The coefficients a; are tabulated by McEachran and
Cohen (1969). However, for the case n = 5, the aj are modified as follows.

Let £ denote the generalized oscillator strength (see equation (1.2.13))
at some 20 momentum-transfer values K and comﬁuted using the wave functions
Rls(r) and Rsp(r) as given above. Let g denote the corresponding’
generalized oscillator strength tabulated by Bell et al. (1968) at the 20
values of K in their tablel. These authorsemploy a more sophisticated wave
function for ¢i(12)' than that given above. The quantity

20

I olg - g
ks1 o KK

2
|

is then formulated and minimized with respect to the ase The modified ay

are found to be

a, = 1.0 a, = 1.4438,-4
a, = 4.5694,-1 ag = -8.8183,-5 (A.9)
ag = 1.1351,-2 - ag = 7.9979,-6
ag = -1.7240,-4 ajq = —2.5054,-7
n

where ,n denotes multiplication by 10 , whereas the original Cohen and

McEachran coefficents were,

ag = 1.0 | | a, = - 1.0793,-4
a, = 3.8579,-1 ag = 5.0251,-5
a; = 3.8271,-2 ag = - 5.4226,-6
ag = ~4.5652,-3 aj, = 8.7851,-7.



175

APPENDIX B

R e——— T S

Power Series Expansions for the Direct Potentials

v (r):
ls s1s

- _ 2 3 4 5 6 7
2Vls,ls(r) = - 2Z/r - (a ar’ + agr ar’ +agr -ar +ar —es)

(B.1la)

where the coefficients a ~are given by the general formula
2 n-2 n-2 - 2, . .n-2
a =, [(Qa) + 2cl(a+b) + ¢ (2b) ]ln—ll/(n+l)! (B.1b)

The parameters on the right hand side are given in (A.1lb).

v _.(r):
pol
_ 2 3 4 5 6 7
2VPOl(r) == 4(br+ br” + byr” + byr’ + ber” + ber + bor +e0.)/3
(B.2a)
where the coefficients bn are given by the general formula
N P z z.°71 D z  z.°7L
b oz | (-9 L i 29 2 _|. (B.2b)
n JZO n+4 Zl (n-1)! 1'n+d 22 (n-1)!

The notation of equation (3.2.5) has been adopted. The parameters

a, b, c; and N, are given in (Al.b)and Z_  in (A.2),
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APPENDIX C

Analytic Expressions for Various Integrals

The integrals appearing below are all evaluated by elementary methods so

that only the final result will ke presented. Notationfollows exactly that

in Appendix A.

B:
B = JO w(r) Rls(r) r2 dr
= 4N 73/2 [1/(z ra)d 4 ¢, /(Z + b)° ] (c.1)
fls,w(r)
lS’W(r-) = r E w(t) Rls(t) Yo(r,t) £2 at

-(Z+a)r -(Z+b)r ‘ '
3/2 { 2 }e _ { 2 }e |
B - 27 N.iir + +c r + (c.2)
l[ Z+a (Z+a)2 1 Z+b (Z+b)2

with B as in (C.1).

(r):

1s,ns

_ [ 2
flsans(r) =r Jo Rls(t) Rns(t) t° dt

This is evaluated for the case n = 2 only. Further, Rhs(r) will te taken

to be defined by (A.5) and will, of course, be subjected to the modification

(A.6) to ensure orthogonality to R S(r).

1
N -ur - -vr ~Wr
1 27 e 27 e 2 Lr 6 e
£ (P)='——-—N{[r+—]———+c r+—] - c [r +—+—]
2
1s,2s VQl—AQ) [ﬁQ u u2 1 \Z v2 2 w w_2 w
—Xr -2ar -(a+b)r
2 Lp 6 e 2 e 2 e
-Cl.c2 r +'X_'+x_2']'_;’§—} - ANl{{:I‘ +-2—a- 2-2:)—2'1' ch[r’ + a+b] (a+b)2 +
-2br
e, [r+ %] 8 2} (c.3)
- (2b)

where

= 2
A= J Rls(r) st(r) r  dr
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2 6c 6ec.c

2 g 2 1%5 ~

NlNQ[ 3t—3" 73 "3 ] ' (c.4)
Lu v.oow X

and u= a+p, V

b+p, w=a+q, x=b +q.

(1) .
S OL
Wy = (TR (0 B ) 272 g
1s,2 &g 1s g f

This is evaluated only for small r. The function Rls(r) assumes the form

indicated in (A.1). Hz(kfr) is a regular Coulomb function and by writing

x = kfr may be expressed using results from Abramowitz and Stegun (1970) as

(-]

Hz(x) = Ci(n) Xz kzo Ak(n) <. (035)

Here, n = - %—- with 2z the residual charge given by 2z = Z - N; Z denotes
f
the nuclear charge and N the numter of bound electrons. The normalization

factor cg(n) is defined by

e (n) = 2F e™M/2 [TQrlin)]
s

(28+1)!

and the coefficients Ak by:

2”Ak-l(”)‘Ak—z(“)
An) =13 A) =giss AG) Fap e k22

(1) (r)

15,8 is derived to be

Then the required series expansion of g

Bhnax tan(a) + clan(b):]r-n

(1) % _2+3
Brey (P = Ny otn) Kkt s (c.6)
n=0
where:
n n-m
: (-a) m
a (@) = ] A =5 ke .
n =0 ™ (n-m)! f
In practice, N« is typically set to LI 5.
ls,ns(r):
(" (t) R (£) t° dt
kls,ns(r) - f ;3 0 Y1s+p ) Rg

The comments made in connection with Rns(t) in the above evaluation of
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fls,ns(r) also apply to the evaluation of kls,ns(r)' The case n = 2 only

is considered.

Nl

Z Z Z
1 o)
k (w=-——~——-[N{Fmr)+£m(um-c F, (v,r) - c, =2 F_(v,r)
1s,2s o /(1—A2) 2t 17 2 207 2 72 0 22 37 }
Zo Z
- ANl{ Fy(wsr) + 5= Ey(w,r) + ¢ Fi(x,p) + c; 59 F2(x,r)}] (c.7)

where, writing B = ar,

F,(a,r) = [24 - (8" + ug® + 1282 + 2up + 2u)e B1/45,
F,(a,r) = [120 - 8° + 58" + 208° + 6082 + 1208 + 120)e #7170, (c8a)

Fo(a,r) =720 - (8% + 68° + 308" + 1208° + 36082 + 7208 + 720)e ™1 /0" )

Here, one has that u = Zo +p, Vv Zo t+q, w= Zo +a, x = Zo + b. A, however,
is as above in (C.u4).

For small r, the Fi(a,r) (i =1,2,3) may be written

5 6 7 8 9
F(G,P)=I:§—-£~+-B_.__B_+§__..{l_]_._s_,
o

6 .7 .8 9
F,(a,r) = B__B B _28 +...:ll—6, (C.8b)
a .
7 8 9
-|B__8 [ B 1
F_(a,r) = [7 gt ...J a7 .

Apart from a factor of r-l, the definition adopted here for kls nS(r) agrees
]

with that of McDowell et al. (1974). Further, as a check, if the expressions
in (C.8b) are inserted into (C.7) and the appropriate hydrogenic substitutions

made for a, b, c and  Z together with of course A = 0, the result

1 Nl
is found to correspond exactly with equation (10') of McDowell et al. (1974).

(oe]

. . )
fls,np(r) = Jo Rls(t) th(t) Y; (r,t) t° dt

This integral is expressed for the cases n = 2,3 with th(r) given by

equations (A.7) and (A.8). The expression for n = 3 only is presented;
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that for n = 2 may easily ke deduced by setting ¢, = O and replacing N

3 3

by N2 together with the appropriate choice for the parameter p.

N N

f (r) = — [:G (u,r) + <y Gl(v,r) - c3G2kw,r) -c

1s,np C3GQ(X,P)} (c.9)

1

where, putting B8 = ar,

2w - (38° + 1287 + 248 + 24)e-B]/a5 s

Gl(a,r)
(c.10a)"
[120 - (38" + 188° + 608 + 1208 + 120)e P]/a®

G2(a,r)

Here, one has that u=a+p, v=b+p, w=a+q, Xx=b +gq. For

small r, Gl(a,r) and G2(a,r) may be written

5 6 7
=3 _38_ _ B8 3B 1
Gl(a,r) = [B ot % 56 +...] as s
(C.10b)
6 7
_ 3 B .98 _ 1l
Gz(u,r) = [28 -t T ...] s
a
t (r):
1s,np
r
. 2 3
tls,np(r) = 5r4 J uls+p(t) th(t) t° dt

A

" This is presented for n = 2,3 only. The comments made above concerning the

evaluation of fls,np(r)‘ also apply directly to the evaluation of 'tls,np(r)’

72
'“ Y3 5 4 3 2
tls,np(r) 17 [. {[l t 50 ] [720 - (x + 6x~ + 30x + 120x + 360x" +

| -x; %o 7-x] ©3 8z 7, .6, .5
+720x + 720) e ] - ﬁ Xx'e }——8{[1 + 270[5040 - (y" + 7y + 42y (C.1la)
v

Z,
4+ 210yu + 8u0y3 + 2520y2 + 5040y + 5040)e Y] - y e y:}J

where u = Zo +p, Vv-= Zo +q; X =ur, y = vr.
For small r, t (r) is written as
1s,np
7Z

4 '3 3 o 2 3 oS
= - X -0 +ax +ax +ax +...
tls,np(r) z 72; [; (1 + 2u)(ao + a, x t ayx a, " 5 )
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—cgt (L+ ) (b, + By 4 boy 3y yt  teee .

where
(_l)m 2u - mZz

o
m ~  m! : (m+77(2u+7Z07>’

[)
|

L - (_l)m 2v ~ mZO
m m! ' (m+8)(2v+8Zo)
Equations (C.11l) may be checked against equations (29) and (30) of McDowell
et al. (1875a) by making the appropriate substitutions mentioned after equation

(C.8b). To within a misprint of V7, exact agreement is obtained in each case.

tls+p(r)' .
L5 - : A+l
tls_*P(r) = Jo ulS_*P(t) Hy(kgt) 777 dt
This is evaluated only for small r. The function u (r) assumes the form

1s+p
given in (A.2a) with Z, = 1.598960 for helium as in (A.2b) and with

Zo = 1 for hydrogen as in (A.2c). Hz(kfr) is a regular Coulomb function and

expressed according to the series in (C.5). Hence one finds that, writing

(n) n @ a X
0 S A r“”[f ®n . oo n-1 ]
1s+p JZO n=0 L+A+nt+4 2kf n=l L+A+n+h
where
? (-a)" ™" Z,
a - A N1 s a =3 .
n Iy m (n-m)! kf
By defining
n
kf n (_a)n—m
bn T 2(2+Atnth) m§0 (m+2-n) (n-m)! Am
the final result may be written as
n
c,(n) max
LA _ 4 2 A+h n c.12
tlS+p(r) = —722— (kfr) r ngo b r. ( )
Typically N ax =5 in practlcg.
d,(kg):

dz(kf) = Jo Rls(r) Ho(kfr) fls,w(r) r dr
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For helium, Ho(kf#) = jo(kfr) where jo(x) is a spherical Bessel function

of the first kind:

. _sin x
jo(x) ===

Using (A.l) for R, (r) and (C.2) for' f (r) one has that

1s ls,w
d(k)=uz3/2N2[[¥-+i][ 1,1 ]
o'k V| L3t a2+kf2 b2+kf2
sz, [ o [ ]
s (u +k f ss(v2+kf2 ' +kf2
s [1+ ] = |:1+x+k ]] (c.13)

where s =2 +a, t=2+by; u=s+a, v=s+b, w=t+a, x=t+65.

da(kf):
d3<kf) = I: Rls(r) Ho(kfr) r dr
As in the evaluation of d2(kf) in equation (C.13) above, Ho(kfr) is

replaced by a zero-order spherical Bessel function. Hence, with (A.1l) for

Rls(r), one easily finds that

1 €1
d (k) = Ny LQ 5+ 2} . (C.14)
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APPENDIX D

The Born T-Matrix Elements and Total Cross Sections

Only the cases for n = 3 are considered in detail; corresponding
expressions for n = 2 may subsequently be easily deduced. The atomic

wave, functions are collected together for convenience:
¢ls(r) = Rls(r) Yoo(r)

¢ (r,t) = - E(rst) ) uls+p(r) Pl(cosert)
pol ' —’—= t2 - ] -

b (eat) =7 (1) Y (2) R(0) ¥y (8) + R_() ¥ () W) ¥ (D]

The radial functions are given by: (A.l) for Rls(r), (A.2) for u p(r),

1s~

(A.3) for w(r) and (A.8) for R, (r). n = 2 results are obtained by setting

3p

cq = 0, together with replacing N, by N, and inserting the appropriate

3 2

value for p as indicated in (A.7) for RQP(r).

The interaction term is defined as

2 1 1

V.= ==+ —— ¢ =

£ T3 Ti3 Tog

Let 5. denote the momentum transfer vector

K=k - ke

The above expressions are defined in a frame of reference where the z-axis
is along k; and the xz plane defined as the plane containing K and ki'
The axis of quantization for the atomic states is hence taken along k..

The angle between K and Ei will be denoted by g and is given by

K2 + ki2 - kf2

cos B = K . (D.1)

i

iK.r

The plane wave e —'— can then be expressed as
iK.r o A A - | ( )
—*= = i% 4 ' 0 D.2

e ) ) i 3, () Y, () Y, (8,0)

A=0  ji=-A
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-~

where r is the direction of r with respect to k; and jl(x) is a
spherical Bessel function of the first kind (see, for example, Abramowitz

and Stegun (1970) §10)

B
Tif (m):
ik_.r ik,.r

—f 1 =2

B —3
T f (m) = <¢f(12)e Ve ¢ls(l) ¢ls(2) e >

Making use of the orthogonality relationship between atomic wave functions

and also the symmetry exhibited by electrons 1 and 2, TifB(m) reduces to

iK.p
o =3

B 2
Ty (m) = 7 f 0e12) S5 4.(1) ;. (2) dnyy - (.3)

This is further simplified with the aid of the well known result

iK.r .
DL e .
I e iK.t (D.14)

dr = — e
_ gt D
r—-t K

which is often referred to as Bethe's Integral. Hence effecting the integration

ever rg with the help of (D.4), and inserting the appropriate substitutions,

B _ L | oy oF 2y JiKer
T, (m) = BY2 2 [ R, (2) Rnp(r) Yoo (r) Y (r) e dr . (g.s)
B is defined by (C.1). The plane wave expansion (D.2) is now made and the

angular integration carried out to yieid

(4w)3/2 Jm

2

T. B(m) = i BY2
if K

. 2
] Rls(r) Rnp(r) jl(Kr) r dr Ylm(B,O) (D.6)
The‘analytic expressions for the radial functions are then inserted, noting that,

jl(x) = (sin x - x cos x)/x2 (D.7)

and the resulting elementary integral evaluated. Hence the required expression

for TifB(m) is
3/2 c.v
B . S 7/2 - (4m) [ u 1 _
T, =i2 B’ — NN +
gg (M) =1 K 13 {(u2+K2)3 N }

2 .2

2 .2 c. (5x°-K")
Sw’-K 1 ]
c + Y. (B,0) (D.8)
s { G2kt Gt H

with u=a+p, v=b+p, w=a+gq, x=b+taq.
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PB
if

PB ik_.r ik..r
Tif (m) = 2<¢f(l2)e

—f£"=3 —1°=3
Ve ¢ls(l) ¢Pol(23) e >

Substituting for the atomic wave functions in terms of their radial and

angular components and emploving orthogonaiity of the spherical harmonics,

one finds
PB
T.e (m) =-—2_[rp+q] (D.9)
(2m)* '
where:
. iK.» u (r,)
_ 1l ® ==3 1 _1 €(23) “ls+p 2
P =i J w(r)) Rnp(rz) Yo(ry) e (7— - )R )= = P, (cos8,4)dn,
23 3 r3 2
Q -1 w(r,) R__(r.) Y* (; ) e.E'.£3 (—;_._ i_) R. (1) &(23) ulS+P(r2) P.(cosb,..)
L 1° "np 2" "Im "2 r 1s 2 r 1 23
13 3 P3 2
dr103

The integrals P and Q are considered in turn. Concerning P, the
integration over ry is separable and gives the result defined as B (viz.
equation (C.1)). Using the spherical harmonic addition theorem to express
Pl(005923) in terms of spherical harmonics and using also the well known

multipole expansion on ;l— » integration over r, gives the result that

23

- l lK.P A

_ Y4mB e — —
P = 3 Z [ 2 anm(r) Ylv(r) dr.
V= -1 r
with: :
© A Qw ~ (D N A+l

anm(r) =3 A%O u§~ 2A+1 qu(r) IO th(t) uls+p(t) (;) dt

(l A l) (l A l)
o 0 O m ou v/
The Wigner 3-j symbols arise from the integration over three spherical

iK.r
haromonics. The expansion (D,2) is now employed for e'='L and the angular

integration over r performed:

- (4ﬂ)2

© A ' r |
P=-73— B ;f Z it Ly 1 (850) Y3(21'+1) E j}‘,(Kr)(JO Rp(Eu g, (8)

& A+l
(;) dt) dﬁ
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At this point the orthogonality property satisfied by the Wigner 3-j symbols,
given for example by Edmonds (1974, equation (3.7.7)), is introduced and
consequently the sum over the latter two symbols reduced to sl'l.au'm' P

then becomes a single infinite sum over A. However, by applying the triangle
inequality satisfied by the arguments appearing in the upper row of a 3-j

syrmbol, one sees that X = 0 or 2. Hence P reduces to a single term which

on evaluating the remaining 3-j symbols gives the result

oo 2 2
P = i(4m)"B Ylm(s,o) - 5 Inp (D.10)

where Inp is defined to be the radial integral

N 1 (F 3
Inp = E i, (kr) ;-3— (Io Rnp(t) ulS+P(t) t~ dt) dr . (D.11)

Attention is now focussed on the expression Q which will similarly
be evaluated. This is relatively straightforward compared to the integral
P above. Inserting the plane wave expansion (D.2), the appropriate multipole

expansion for L and expressing Pl(cos 623) in terms of spherical
13

harmonics, it is seen that the angular integration can easily be performed
using only orthogonality of the spherical harmonics. Consequently Q may be

summarized as

S r

i(un)2

Q= =5 Ylm(B,O) [ jl(Kr)[flS’w(r)—B] (J

Rnp(t) ulS+P(t)tdt) dr (D.12)

0] 0

following previous notation. See (C.1l) and (C.2) for B and f (r)

l1s,w
respectively. When analytic expressions are appropriately inserted for the
radial functions appearing in (D.12), the subsequeﬁt integral is found to be

. . . . . PB . .
virtually impossible to evaluate in closed form. Since Tif (m) 1is required

to be available inclosed form, it is consequently necessary to make some

approximation in (D.12). For large r it is easily seen from (C.2) that

£ > B. | (D.13)
1s,w(r) o ‘
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The approximation is hence made to replace g w(r) by its asymptotic form
H]

for all r. Physically this amounts to neglecting the interaction of the core
electron with the valence and scattering electrons, which in the present
situation is considered to be a reasonable approximation. Hence one sees in
fact that Q vanishes!

PB

The evaluation of Tif (m) subsequently centres on the determination of

. PB . .
Inp in (D.11). Tif (m)» is written as

PB _ / 3/2
(m) =-1iL4B— (!+ ) lm(fs,o) Inp . (D.1y4)

Inserting the analytic expressions (A.2a) and (A.8a) for ulS+P(r) and Rnp(r)

respectively into the integral Inp; equation (D.1l4) becomes:

y N
PB(m) =-1 u B —3 (um)¥/ Ylm(S,O) /—g—; [4,() =gy Ay(a)] (D.15)

where, writing y = o + Zo’

o j_(Kr) z
Al(a) = J 1 3 ( 6 -Tt 1+ 5— t) dt) dr , (D.16a)
0] r 10
i, (kr) (v _ Z
A2(a) = r%—(( 7 e Tt (1 + 2—° t) dt) dr. (D.16b)
0 r J0 :

By observing the very close resemblance between (D.l6a) and (D.16b) it is noted
that the latter may be obtained from the former using the techniques of parametric

differentiation under the integral sign, that is

A2(a) = - Al(u). ‘ (D.17)

9
oY

Hence one seeks to evaluate Al(u). Making the appropriate substitution for
the spherical Bessel function given by (D.7), and putting y = t/r, (D.1l6a)

can be written in the form,

1 Z
3, -
A (a) = L ys( (sin Kr - Kr cos Kr)(r2 + == yr°) e Yrydr)dy. (D.18)
17" 2 2

K™ /0 0]
The integrél over r is performed with the help of integral results from the

book by Gradshteyn and Ryzhik (1965, page 430 formulae 5 and 6). Thus
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6 3Z

1 y . . 0

A (a) = = J [2s1n36—631n6cosue + —— (2cosfsini6-8sindcosh 56)
1 > RNV cosBcos

x> Jo [lyy)*4x3%/ ; 2v 1

dy (D.19)
where tan 6 = K/yy. At this point, one redefines the variable of integration to

be ¢ where ¢ = 1/8. After a certain amount of manipulation (D.19) takes

the form
2 (tan Ty/K . 6 3z
8 5 . : .
a,(a) = —K—,,J SR8 [ (esin¢-1) + = (16sin $-6sin2¢)]dé.  (D.20)
Yy ‘o cos ¢ v

(D.20) can now be evaluated by using standard integral results for powers
of trignometric functions and is consequently straightforward. The contribution
arising from the lower limit of integration is then seen to vanish. For

the contribution arising from the upper limit it is convenient to let
x = K/y

so that the upper limit of ¢ is given by tand = 1/x. The resulting

expression is then summarized as

3 3 3 2
Al(a) = §§ [{Sx + X2 7+ 5X2 5 + 25% 5— - HSE *l:an_l i-}
Y (1+x9)°  2(1+x)°  w(1+x9) X
3z 3 3 3 3 2
2 -
. __2_3{10}( P2y ux2 - 15x2 _ 55x2 _ 125x can~1 %H (D.21a)
Y (1+x°) (1+x7)°  2(14x7)°  u(1+x")

The corresponding result for A2(a) is obtained from (D.17). The differentiation

is straightforward but laborious so that only the final result is presented.

' 3 3 3 3 2
65 05 -
Ay(a) = 2—% [{mx + 2x2 Tt 4X2 5+ 15x2 , 5 - L ;- — ‘tan : % }
Y (1+x°) (1+x°) 2(1+x") 4(1+x")
(D.21b)
zZ 3 3 3 3 3 _
b2 {70x N 16x2 . 26x2 - 42x2 . 70x2 . WOx” 002, -1 % }] '
Y (1+x9)°  (1+x%) 7 (1+x9)° (Ax9)° (1+x°)

fPB(m) is then obtained by substituting from

(D.21) the appropriate expressions into (D.15).

The required result for Ti

Due to the approximation based on line (D.13), the above evaluation

of TifPB(m) may be compared directly with the evaluation of the corresponding

term, T,(PB), for excitation of the 2p state of atomic hydrogen, given by
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McDowell et al. (1875b). Allowing for the appropriate external factor and
atomic wave function parameters, the above expression derived for TifPB(m)
is seen to be in exact agreement with equation (19) of McDowell et al. for

TD(PB).

The Total Cross Sections:

So far, analytic expressions in terms of K have been derived for
TifB(m) and TifPB(m) as required by equations (3.4.43) and (3.4.44). The
corresponding integral cross sections in the Born and'Born plus Polarized-
Born'Approximation must now be considered in connection with equations (3.4.57-58).
The following treatment is designed to be'applicable to both approximations:
hence, for generality, the T-matrix element will be denoted by T, and the
corresponding integral aross section by Qs Q will denote the total

integrated cross section. GQm(B) and GQm(B+PB) are then obtained from the

respective expressions for Q, by replacing Tm by TifB(m) and by
B PB .
Tif (m) + T ¢ (m) respectively.
The general expression for Qm is given by
k 1 .
Q, = L, £ |T |2 d(cos 0) Cma’. (D.22)
2 " k, m o
2m i /-1

Since Tm depends explicitly on K rather than the scattering angle O,
it is desirable to express Q, asan integral over K instead of ©. This

is easily achieved since

2 2 2
it kf - 2kikf cos O . (D.23)

Consequently equation (D.22) becomes

max
2
qQ = _1_2_ . _1_,2[ [Tml2 KdK  ma_ (D.24)
™ot k. k. 4
1 min
where Kmin = ki - kf and Kmax = ki + kf.
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The total integrated cross section is expressed as

Q = Q, * 2Q1 (D.25)

where use has been made of the fact that Ql = Q_l due to mirror symmetry
in the plane of scattering. Q is independent of the angle B. This may

vreadily be seen by expressing Q in the form

max 2
Q=L .1 |T |2+2|T 1° | Kk ax a2, (D.26a)
2 2 o 1 o
2m k. K .
1 min

Tm depends on B8 only through the term Ylm(B,O) (viz. equations (D.8)
for TifB(m) and (D.1l4) for TifPB(m)); inserting the well known
analytic expressions for the Ylm(B,O) into (D.26a) one observes that the
B-dependence of the integrand is expressed as (cos2B + éin28) which can,
of course, be replaced by unity. Hence, in (D.26a), by choosing B8 = 0,
or equivalentlychoésing the axis of quantization along K, one sees that Tl

vanishes and that only To remains in the integrand, a result which greatly

facilitates computation:

max
Q= -5 . 2 J T (8=0)|* Kk ax  ma ? | (D.26b)
27 k. K .
1 min

In praétice then, Qo is computedAfrom (D.24)vand Q from (D.26b). Ql
is then obtained directly from (D.25).
For n = 2, exact analytic expressions for QO and Q were derived
in the Born approximation. For the 'Born plus Polariéed—Born'approximation
and also each 6f the n = 3 results, the integrals were evaluated numerically

by Simpson's rule.
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TABLES

Notation:

>0  denotes that entry is to be multiplied by 10",
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TABLE 3

TOTAL CROSS SECTION IN UNITS OF ao2 FOR EXCITATION OF He(23S) IN THE

BORN-OPPENHEIMER APPROXIMATION COMPUTED FROM EXPRESSION (5.4.1).

ks (a.u.) This work Bell et al. (1966)
Experimental Theoretical
Energy Levels Energy Levels
1.2 - 1.01 9.52,-1
1.359 1.18 1.28 1.21
1.5 8.57,-1 8.91,-1 - 8.u48,-1
1.6 6.34,-1 6.51,-1 ©6.23,-1
1.65 5.40,-1 © 5.52,-1 5,23,-1
1.8 3.27,-1 3.32,-1 3.17,-1
1.922 2.16,-1 2.18,-1 2.08,-1
2.0 1.66,-1 1.67,-1 1.59,-1
3.0 6.71,-3 6.70,-3 6.45,-3

4.0 5.03,-4 5.01,-4 3.63,-4



TOTAL INTEGRATED CROSS SECTION IN UNITS OF m a,

TABLE 4
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FOR EXCITATION OF

He(23P) IN THE BORN-OPPENHEIMER APPROXIMATION COMPUTED FROM EXPRESSION (5.4.1).

ki (a.u.)

1.25
1.359
1.5
1.6
1.65
1.8
1.922
2.0
3.0

4.0

This work

Experimental
Energy Levels
1.25,-1
2.05,-1
1.28,-1
8.91,-2
7.49,-2
4.55,-2
3.10,-2
245,-2
1.77,-3

2.48 -4

Theoretical
Energy Levels

2.89,-1

2.41,-1

1.38,-1.

9.36,-2
7.78,-2
4.63,-2
3.13,-2
2.46,-2
1.75,-3

2.46,-4

Bell et al. (1966)

2.89,-1
2.41,-1
1.41,-1
9.61,-2
8.01,-2
4,78,-2
3.22,-2
2.53,-2
1.77,-3

2.49,-4



TOTAL CROSS SECTION IN UNITS OF a

IN THE BORN-OPPENHEIMER APPROXIMATION USING THE PRIOR AND POST FORMULATION

TABLE 5

FOR EXCITATION OF He(23S) COMPUTED

WITH AND WITHOUT 6Tif OF EXPRESSION (5.4.1) AND (5.4.5).

E(eV)

29.6

40.1

81.63

100

200

Prior

1.22

1.27

4.89,-1

5.11,-1

3.02,-2

3.15,-2

1.24,-2

1.29,-2

5.64 -4

5.91,-4

Post
9.33,-1

9.82,-1

4.28,-1

4.63,-1

3.43,-2

3.77 ’_2

1.47,-2

1.60,-2

6.60,-4

6.86,-4

with GTif

8.78,-1

9.17,-1

4,14 ,-1

4.32,-1

3.55,-2

3.70,-2

1.54,-2

1.61,-2

6.98,-4

7.31,-4

203

For each value of the energy E, the first line of the results is obtained using

the excited state wave function of Cohen and McEachran and the second line using

that of Morse et al. - see Appendix A for details.
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TABLE 6
DIEFERENTIAL CROSS SECTION IN'UNITS OF aOQSr—l FOR ELECTRON IMPACT EXCITATION
OF H(2s) COMPUTED IN THE DWPO III MODEL AT INCIDENT ENERGIES OF 50 AND 100 eV.
COLUMN (i) GIVES THE NON-UNITARIZED RESULT AND COLUMN (ii) THE CORRESPONDING

UNITARIZED RESULT.

0 50 eV 100 eV
(1) (ii) | (1) (ii)
0 1.61 3.32 2.54 4.69
1.21 1.86 1.31 l.44
10 6.3 -1 5.43,-1 4.34,-1 2.65,-1
15 : 2.93,-1 1.31,-1 1.42,-1 6.08,-2
20 1.33,-1 3.25,-1 5.03,-2 1.96,-2
25 6.20,-2 1.06,-2 1.94,-27 8.51,-3
30 - 3.13,-2 5.37,-3 8.00,-3 5.09,-3
35 1.75,-2 3.97,-3 3.62,-3 3.69,-3
140 1.10,-2 3.52,-3 1.89,-3 2.77,-3
45 7.68,-3 . 3.30,-3 1.19,-3 2.23,-3
50 5.81,-3 3.13,-3 8.71,-U4 1.87,-3
55 4.64,-3 2.94,-3 7.03,-4 1.57,-3
60 3.80,-3 2.71,-3 5.99,-4 1.33,-3
70 2.57,-3 2.23,-3 4.53,-4 8.99,-U4
80 1.72,-3 1.79,-3 3.37,-4 6.61,-4
30 1.18,-3 1.44,-3 2.47,-4 4.57,-4
100 8.84,~4 1.23,-3 1.80,-4 3.55,-4
110 7.78,-4 1.16,-3 1.36,-4 2.71,-4
120 - 8;31,—4 1.19,-3 1.11,-4 2.23,-4
130 9.89,-4 1.31,-3 1.05,-4 2.05,-4
140 1.22,-3 1.49,-3 1.07,-4 1.88,-4
150 1.45,-3 1.68,-3 1.20,-4 2.03,-4
160 1.64,-3 1.83,-3 1.31,-4 1.95,-4
170 1.80,-3 1.94,-3 1.40,-4 2.15,-4
180 1.87,-3 1.99,-3 1.50,-4 1.90,-4
Integral 7.82,-2 © 6.5U4,-2 4.99,-2 4.48,-2

2
(mw a, )
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TABLE 7

DIFFERENTIAL CROSS SECTION IN UNITS OF aOQS):’_l FOR ELECTRON IMPACT EXCITATION

OF H(2p) COMPUTED IN THE DWPO III MODEL AT INCIDENT ENERGIES OF 50 AND 100 eV.
COLUMN (i) GIVES THE NON-UNITARIZED RESULT AND COLUMN (ii) THEE CORRESPONDING
UNITARIZED RESULT.

o 50 eV 100 eV

(1) (ii) (1) (ii)
0 3.88,+1 3.57,+1 9.68,+1 9.35,+1
2.22,+1 1.96,+1 2.16,+1 2.00,+1

10 8.02 6.56 .08 3.60
15 2.88 2.24 9.50,-1 8.60,-1
20 1.07 8.51,-1  2.45,-1 2.44,-1
25 .14 ,-1 3.62,-1 6.76,-2 8.11,-2
30 1.65,-1 1.71,-1 2.04,-2 3.32,-2
35 6.90,-2  ° 8.93,-2 6.89,-3 1.61,-2
40 3.08,-2 5.16,-2 2.74,-3 8.95,-3
45 1.53,-2 3.31,-2 1.33,-3 5.58,-3
50 8.82,-3 2.30,-2 8.14,- 3.75,-3
55 5.90,-3 1.68,-2 6.16,-U 2.72,-3
60 4.39,-3 1.27,-2 5.07,-U 2.06,-3
70 2.,72,-3 7.36,-3 3.21,-4 1.14,-3
80 1.58,-3 4,18,-3 1.85,-4 6.21,-4
90 7.69,-4 2.29,-3 9.40,-5 3.43,-4
100 4.19,-4 1.34,-3 7.4k -5 2.16,-4
110 5.17,-4 9.49,-4 1.02,-4 1.75,-4
120 8.88,-L 9.28,-14 1.31,-4 ©1.56,-4
130 1.43,-3 1.18,-3 1.62,-4 1.52,-4
140 2.14,-3 1.58,-3 2.18,-4 1.88,-4
150 3.03,-3 2.09,-3 3.26,-4 2.45,-4
160 3.96,-3 2.62,-3 4.78,-4 3.47,-4
170 4.68,-3 2.98,-3 6.25,-4  14.29,-4
180 4,96,-3 3.11,-3 6.9 - 4,56,
Integral 8.93,-1 7.75,-1 6.63,-1 6.20,-1

(mw a02)
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TABLE 8(a)

DIFFERENTIAL CROSS SECTIONS IN UNITS OF aOQSr-l FOR ELECTRON IMPACT EXCITATION

OF THE N = 2 LEVEL OF ATOMIC HYDROGEN COMPUTED IN THE DWPO III MODEL AT INCIDENT
ENERGIES OF (a) 1.02, (b) 1.21 and (c) 1l.u4 Rydbergs. COLUMN (i) GIVES THE NON-

UNITARIZED RESULT AND COLUMN (ii) THE CORRESPONDING UNITARIZED RESULT.
E = 1.02 Rydbergs

C] 2s 2p Total

(i) (ii) (i) (ii) (1) (ii)

0 6.38,-2  2.48,-1 1.08 8.77,-1 1.15 1.13

6.15,-2 2.32,-1 1.05 8.30,-1 1.11 1.06
10 5.50,-2  1.89,-1 9.52,-1 7.06,-1 1.01 8.95,-1
15 4.,59,-2 1.35,-1 8.11,-1 5.46,-1 8.57,-1 6.80,-1
20° 3.60,-2  8.37,-2 6.56,-1 3.89,-1 6.92,-1 4.73,-1
25 2.69,-2  4.54,-2 5.09,-1 2.63,-1 5.36,-1 3.08,-1
30 1.97,-2 2.18,-2 3.83,-1 1.75,-1 4,03,-1 1.96,-1
35 1.48,-2  1.02,-2 2.80,-1 1.19,-1 2.95,-1 1.29,-1
40 1.20,-2  6.49,-3 2.01,-1 8.66,-2 2.13,-1  9.31,-2
45 1.11,-2  6.82,-3 1.43,-1 6.90,-2 1.54,-1 7.58,-2
50 1.16,-2  8.71,-3 1.01,-1 5.91,-2 1.13,-1  6.78,-2
55 1.29,-2  1.08,-2 7.09,-2 5.31,-2 8.38,-2 6.39,-2
60 1.48,-2 1.25,-2 5.01,-2 4.88,-2  5.16,-2  6.13,-2
70 1.89,-2  1.44,-2 2.79,-2 4.,17,-2 4.68,-2 5.62,-2
80 2.26,-2  1.44,-2 2.31,-2 3.52,-2  L.57,-2  4.96,-2
90 2.57,-2  1.25,-2 3.13,-2 2.89,-2 5.70,-2  4.14,-2
100 " .2.85,-2  8.92,-3 5.00,-2 2.40,-2 7.85,-2  3.29,-2
110 3.11,-2 4.71,-3 7.74%,-2 2.31,-2 1.09,-1 2.78,-2
120 3.38,-2 1.36,-3 1.11,-1 2.95,-2  1.45,-1 3.08,-2
130 3.66,-2 1.94,-L4 1.48,-1 4.50,-2 1.84,-1 4.52,-2
140 3.93,-2 1.78,-3 1.84,-1 6.93,-2 2.24,-1  7.11,-2
" 150 4.17,-2  5.62,-3 2.17,-1 9.86,-2 2.59,-1 1.04,-1
160 4.37,=2 1.03,-2 2.43,-1 1.27,-1 2.87,-1 1.37,-1
170 4.50,-2  1.41,-2 2.60,-1 1.47 ,-1 3.05,-1 1.61,-1
180 4.54,-2 1.55,-2 2.66,-1 1.55,-1 3.11,-1 1.70,-1
Integral  1.09,-1 5.68,-2 5.65,-1 3.05,-1 6.74,-1 3.61,-1

2

)

(v a
o



10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(mw a,”)

2s
(1)

1.59,-1
1.51,-1
1.28,-1
9.72,-2
6.70,-2
4.20,-2
2.39,-2
1.25,-2
6.46,-3
4.12,-3
4,06,-3
5.19,-3
6.80,-3
9.91,-3
1.22,-2
1.38,-2
1.55,-2
1.76,-2
2.02,-2
2.32,-2
2.64,-2
2.93,-2
3.16,-2
3.31,-2
3.37,-2

7.80,-2

TABLE 8(b)

E = 1.21 Rydbergs

(ii)

5.41,-1
4.89,-1
3.63,-1
2.23,-1
1.14,-1
4.77,-2
1.68,-2
6.64,-3
5.68,-3
7.42,-3
9.07,-3
9.90,-3
1.00,-2
9.30,-3
8.00,-3

6.15,-3

3.88,-3
1.83,-3
8.65,-U
1.65,-3
4,29,-3
8.23,-3
1.24,-2
1.55,-2
1.67,-2

6.36,-2

Azp
(1)

2.70
2.55

2.18

1.71

1.26

8.83,-1
6.08,-1
4,13,-1
2.81,-1
1.94%,-1
1.36,-1
9.66,-2
6.98,-2
3.79,-2
2.28,-2
1.98,-2
2.68,-2
4,25,-2
6.50,-2
9.15,-2
1.19,-1
1.44,-1
1.65,-1
1.78,-1
1.83,-1

7.00,-1

(ii)

2.2
2.07

1.65

1.16

7.44,-1
4.62,-1
2.91.-1
1.96,-1
1.44,-1
1.13,-1
9.30,-2
7.77,-2
6.52,-2
4,58,-2
3.26,-2
2.45,-2
2.09,-2
2.23,-2
2.94,-2
4.24,-2
6.00,-2
7.96,-2
9.76,-2
1.10,-1
1.15,-1

TR |

Total
(1)

2.86
2.70
2.30
1.81
1.32
9.25,-1
6.32,-1
4.26,-1

'2.88,-1

1.98,-1
1.40,-1
1.02,-1
7.87,-2
4.78,-2
3.50,-2
3.36,-2
4.24,-2
6.01,-2
8.53,-2
1.15,-1
1.45,-1 -
1.74,-1
1.97,-1
2.11,-1
2.17,-1

7.78,-1

207

(ii)

2.78
2.56

2.01

1.38

8.58,-1
5.10,-1
3.08,-1
2.03,-1
1.49,-1
1.21,-1
1.02,-1
8.76,-2
7.52,-2
5.51,-2
4.06,-2
3.06,-2
2.48,-2
2.41,-2
3.03,-2
4.41,-2
6.43,-2
8.79,-2
1.10,-1
1.26,-1
1.32,-1

5.07,-1
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TABLE 8(c)

E = 1l.44 Rydbergs

e° 2s ' 2p Total
(1) (ii) (1) (ii) (i) (ii)
0] 3.22,-1 9.16,-1 5.22 L.y2 5.54 5.34
3.00,-1 7.95,-1 4,80 3.96 5.10 L.,75
10 2.43,-1 5.29,-1 3.78 2.88 4,03 3.41
15 1.74,-1 2.75,-1 2.67 1.81 2.84 2.09
20 1.13,-1 1.14,-1 1.76 1.06 1.87 1.17
25 6.76,-2 3.72,-2 1.11 6.04,-1 ‘ 1.18 6.41,-1
30 3.78,-2 1.03,-2 6.96,-1 3.65,-1 7.33,-1  3.75,-1
35 2.06,-2 4.95,-3 4,35,-1 2.38,-1 4.55,-1 2.43,-1
40 1.18,-2 5.88,-3 2.80,-1 1.71,-1 2.92,-1 1.77,-1
45 8.06,-3 7.27,-3 1.85,-1 1.30,-1 1.93,-1 1.37,-1
50 7.02,-3 7.66,-3 1.27,-1 1.02,-1 1.34,-1 1.10,-1
55 7.16,-3  7.28,-3 9.08,-2 8.16,-2 9.79,-2  8.89,-2
60 7.63,-3  6.52,-3 6.62,-2 6.57,-2 7.38,-2  7.22,-2
70 8.26,-3 4,86,-3 3.67,-2 4,29,-2 4,50,-2 4,77,-2
80 8.23,-3  3.42,-3 2.06,-2 2.85,-2 2.88,-2 3.19,-2
90 8.12,-3 2.19,-3 1.34,-2 2.01,-2 2.15,-2  2.23,-2
100 8.57,-3 1.26,-3 1.40,-2 1.63,-2 2.26,-2 1.76,-2
-110 9.87,-3 9.88,-4 2.14,-2 1.68,-2 3.12,-2 1.77,-2
120 1.20,-2  1.71,-3 3.41,-2 2.12,-2 4.60,-2  2.30,-2
130 1.46,-2 3.57,-3 5.03,-2 2.91,-2 6.49,-2 3.27,-2
140 1.74,-2 6.41,-3 6.80,-2 3.91,-2 8.54,-2 4,55,-2
150 2.01,-2 9.74,-3 8.147,-2 4.95,-2 1.05,-1 5.92,-2
160 2.22,-2  1.28,-2 9.86,-2 5.86,-2  1.21,-1 7.14,-2
170 2.36,-2 1.50,=2 1.08,-1 6.149,-2 1.31,-1  7.99,-2
180° 2.41,-2  1.57,-2 1.11,-1 6.76,-2 1.35,-1  8.33,-2
Integral  7.70,-2 6.92,-2 8.13,-1 5.58,-1 8.90,-1 6.27,-1
(r a_?)
o



DIFFERENTIAL CROSS SECTIONS IN UNITS OF ao2

TABLE 9(a)

sr

-1
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FOR ELECTRON IMPACT EXCITATION

OF THE N = 2 LEVEL OF ATOMIC HYDROGEN COMPUTED IN THE DWPO III MODEL AT

INCIDENT ENERGIES OF (a) 54.4 eV (= 4 Ryd) AND (k) 100 eV.

GIVES THE TOTAL UNITARIZED RESULT,

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
(ﬂaz)

2s

1.73
1.25

6.24,-1
2.76,-1
1.21,-1
5.52,-2
2.73,-2
1.50,-2
9.22,-3
6.35,-3
4.77,-3
3.78,-3
3.07,-3
2.09,-3
1.44,-3
9.91,-4
7.33,-4
6.29,-4
6.49,-4
7.56,-4
9.12,-4
1.09,-3
1.23,-3
1.34,-3
1.38,-3

7.46,-2

E

= 54.4 eV

2p

4.39,+1
2.31,+1
7.66
2.60
9.29,-1
3.45,-1
1.33,-1
5.36,-2
2.32,-2
1.13,-2
6.43,-3
4.31,-3
3.26,-3
2.09,-3
1.20,-3
5.8,
3.39,-4
I,08,-4
6.79,-4
1.07,-3
1.59,-3
2.26,-3
3.00,-3
3.59,-3
3.81,-3

. 8.70,-1

4.56,+1
2.43,+1
8.28

2.88

1.05

4.00,-1
1.60,-1
6.86,-2
3.25,-2
1.77,-2
1.12,-2
8.09,-3
6.33,-3
4,19,-3
2.64,-3
1.58,-3
1.07,-3
1.04,-3
1.33,-3
1.83,-3
2.50,-3
3.35,-3
4.23,-3
4.92,-3
5.19,-3

9.44,-1

THE FOURTH COLUMN

Total

4,42, +1
2.24,+1
6.82

2.18

7.88,-1
3.24,-1
1.50,-1
7.87,-2
4.66,-2
3.08,-2
2.19,-2
1.65,-2
1.28,-2
8.03,-3
4,98,-3
3.13,-3
2.14,-3
1.75,-3
1.72,-3
1.95,-3
2.38,-3
2.91,-3
3.44,-3
3.83,-3
3.97,-3

8.27,-1
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TABLE 9(b)
E = 100 eV
e° 2s 2p Total
0 2.54 9.68,+1 9.94,+1 9.82,+1
1.31 2.16,+1 2.30,+1 2.14 41
10 4.34,-1 4.08 4.51 3.87
15 1.42,-1 9.50,-1 1.09 9.20,-1
20 5.03,-2 2.45,-1 2.95,-1 2.63,-1
25 1.94,-2 6.76,-2 8.69,-2 8.96,-2
30 8.00,-3 2.04,-2 2.84,-2 3.83,-2
35 3.62,-3 6.89,-3 1.05,-2 1.98,-2
40 1.89,-3 2.74,-3 4.63,-3 1.17,-2
45 1.19,-3 1.33,-3 . 2.52,-3 7.80,-3
50 8.71,-4 8.16,-4 1.68,-3 5.63,-3
55 7.03,-4 6.16,-4 1.32,-3 4.30,-3
60 5.99,-4 5.07,-4 , 1.11,-3 3.39,-3
70 4.53,-4 3.21,-4 7. 74,4 2.04,-3
80 3.37,-4 1.85,-4 5.23,-4 1.28,-3
90 2.47,~4 9.40,-5 3.42,-4 8.00,-4
100 1.80,-4 7.44,-5 2.55,-4 5.71,-4
110 1.36,-4 1.02,-4 2.37,-4 T
120 1.11,-4 1.31,-4 2.42,-14 3.79,-4
130 . 1.05,-4 1.62,-U4 2.67,-4 3.57,-4
140 1.07,-4 2.18,-4 3.25,-4 3.76,-4
150 1.20,-4 3.26,-4 4.47,-4 4.48,-4
160 1.31,-4 4,78 ,-4 6.08,-4 5.42,-4
170 1.40,-4 6.25,-4 7.65,-4 6.4k, -4
180 1.50,-4 6.94,-4 8.4l -l 6.46,-4
Integral 4.99,-2 6.63,-1 7.13,-1 6.65,-1

2
(mw a_ )
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TABLE 11(a)
DIFFERENTIAL CROSS SECTION IN UNITS OF a02sr'l FOR ELECTRON IMPACT EXCITATION
oF He(2's) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF
(a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV AND (e) 200 eV. COLUMN
(A) IS OBTAINED USING THE EXCITED STATE WAVE FUNCTION OF COHEN AND McEACHRAN AND (B)

USING THAT OF BYRON AND JOACHAIN - SEE APPENDIX A FOR DETAILS.

E = 29.6 eV
o° (1) (II)
(a) (B) : (a) (B)

0 2.34,-1 2.34,-2 2.52,-2 2.52,-2

; 2.29,-2 2.29,-2 2.44,-2 2.45,-2
10 2.15,-2 2.15,-2 2.24,-2 2.24,-2
15 1.93,-2 1.93,-2 1.95,-2 1.94%,-2
20 1.66,-2 1.66,-2 1.61,-2 1.60,-2
25 1.38,-2 1.37,-2 - 1.28,-2 1.26,-2
30 1.11,-2 1.10,-2 9.80,-3 9.62,-3
35 8.64,-3 8.47,-3 7.40,-3 7.17,-3
40 6.64,-3 6.43,-3 . 5.63,-3 5.35,-3
45 5.14%,-3 4.88,-3 4.43,-3 4.12,-3
50 4.12,-3 3.82,-3 3.74,-3 3.40,-3
55 3.53,-3 3.20,-3 3.44,-3 3.08,-3
60 . 8.29,-3 2.96,-3 3.42,-3 3.04,-3
70 | 3.57,-3 3.18,-3 3.90,-3 3.49,-3
80 4.36,-3 3.95,-3 4.63,-3 4.21,-3
90 5.28,-3 4.85,-3 5.35,-3 4.91,-3
100 6.13,-3 5.69,-3 5.95,-3 5.50,-3
110 6.84,-3 6.39,-3 6.42,-3 ~ 5.96,-3
120 7.40,-3 6.95,-3 6.77,-3 6.31,-3
130 7.84,-3 7.38,-3 7.04,-3 6.57,-3
140 8.17,-3 7.70,-3 7.25,-3 6.76,-3
150 8.41,-3 7.94,-3 7.40,-3 6.91,-3
160 8.58,-3 8.11,-3 7.50,-3 7.01,-3
170 8.68,-3 -  8.20,-3 7.56,-3 7.07,-3
180 8.71,-3 8.23,-3 7.58,-3 7.09,-3
Integral 2.70,-2 2.55,-2 2.55,-2 2.40,-2
(1ra2)

o



10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(m a’”)

(4)

4,66,-2
4.50,-2
4.05,-2
3.40,-2
2.65,-2
1.93,-2
1.30,-2
8.02,-3
4.54,-3
2.35,-3
1.19,-3
7.66,-4
8.20,-4
1.60,-3
2.56,-3
3.34,-3
3.89,-3
4.26,-3
4.49,-3
4.65,-3
4.76,-3
4.83,-3
4.88,-3
4.90,-3
4,91,-3

2.04,-2

(1)

TABLE 11(b)

E = 40.1 eV

(B)

4,71,-2
4.55,-2
. 4,09,-2
3.u44,-2
2.69,-2
1.95,-2
1.32,-2
8.15,-3
4.,59,-3
2.35,-3
1.14,-3
6.87,-4
7.17,-4
1.47,-3
$2.42,-3
3.19,-3
3.74,-3
4,10,-3
4,33,-3
4.48,-3
4,58,-3
4,65,-3
4.69,-3
4.71,-3
4.72,-3

2.01,-2

(11)

(4)

5.78,-2
5.46,-2
4,64 ,-2
3.57,-2
2.52,-2
1.64,-2
9.85,-3
5.44,-3
2.78,-3
1.40,-3
8.70,-4
8.63,-4
1.14,-3
1.96,-3
2.70,-3
3.22,-3
3.55,-3
3.74,-3
3.85,-3
3.92,-3
3.97,-3
4.00,-3
4.02,-3
4.03,-3
4,03,-3

1087’-2

(B)

5.85,-2
5.53,-2
4.69,-2
3.61,-2
2.55,-2
1.66,-2
9.96,-3
5.48,-3
2.76,-3
1.34,-3
7.83,-4
7.57,-4
1.02,-3
1.82,-3
2.56,-3
3.07,-3
3.38,-3
3.56,-3
3.67,-3
3.73,-3
3.76,-3
3.79,-3
3.81,-3
3.82,-3
3.82,-3

1.83,-2
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(w a ™)

(a)

1.07,-1
1.00,-1
8.16,-2
5.81,-2
3.67,-2
2.06,-2
1.03,-2
4.54,-3
1.71,-3
5.36,-4
1.87,-4
1.92,-4
3.16,-4
5.68,-4
6.97,-4
7.30,-4
7.20,-L
6.92,-U
6.58,-4
6.30,-4
6.09,-4
5.90,-4
5.75,-4
5.72,-4
5,74 ,-4

1.41,-2

(1)

TABLE 11(c)

E = 81.63 eV

(B)

1.08,-1
1.00,-1
8.17,-2
5.83,-2
3.69,-2
2.07,-2
1.04,-2
4,56 ,-3

. 1.70,-3

5.19,-4
1.74%,-4
1.88,-4
3.23,-4
5.91,-4
7.28,-4
7.62,-4
7.50,-4
7.20,-4
6.83,-4
6.53,-U
6.30,-4
6.09, -1t
5,94, -4
5,91,-4
5.92,-4

1.42,-2

(4)

1.67,-1
1.42,-1
9.52,-2
5.56,-2
2.94,-2
1.42,-2
6.20,-3
2.38,-3
7.60,-4
2.15,-4
1.30,-4
2.11,-4
3.29,-4
5.17,-4
5.93,-4
5.97,-4
5.85,-4
5.60,-U
5.20,-4
4,97,-4
4.89,-4
4.65,-4
TTyTR
4.58,-4
4.77,~4

1.31,-2

(I1)

(B)

1.67,-1
1.43,-1
9.57,-2
5.59,-2
2.95,-2
1.42,-2
6.19,-3
2.35,-3
7.35,-4
1.98,-4
1.25,-4
2.16,-4
3.42,-4
5.38,-4
6.17,-4
6.20,-4
6.05,-4
5.78,-4
5.36,-4
5.10,-4
5.02,-4
4.77,-4
4,55,-4
4.69,-4
4.87,-4

1.32,-2
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral

(mw ao2)

(A)

1.22,-1
1.12,-1
8.75,-2
5.87,-2
3.43,-2
1.77,-2
8.18,-3
3.38,-3
1.26,-3
4.70,-4
2.60,-4
2.66,-U
3.29,-4
4.31,-4
4.58,-4
4.42,-4
4.10,-4
3.77,-4
3.48,-4
3.25,-4
3.07,-4
2.93,-4
2.84,-1
2.78,-4
2.77,-4

1.30,-2

(1)

TABLE 11(d)

E = 100 eV

(B)

1.22,-1
1.12,-1
8.77,-2
5.88,-2
3.4l -2
1.78,-2
8.19,-3
3.35,-3
1.22,-3
4,38,-U
2.40, -4
2.59,-u
3.34 -4
4,51,
4.85,-
4,70, -4
4,38 ,-
4.03,-4
3.73,-4
3.48,-4
3.29,-4
3.15,-4
3.06,-4
3.00,-4
2.98,-4

1.31,-2

(A)

1.98,-1
1.62,-1
9.92,-2
5.33,-2
2.60,-2
1.17,-2
4.86,-3
1.85,-3
6.55,-4

(I1)

2.70,-4

2.03,-4
2.38,-4
2.94,-4
3.64 -1
3.75,-4
3.57,-4
3.30,-4
3.02,-4
2.78,-4
2.59,-4
2.4l ,—L
2.33,-4
2.26,-U
2.22,-U
2.21,-4

1.23,-2

(B)

2.00,-1
1.62,-1
9.97,-2
5.34,-2
2.60,-2
1.17,-2
4.80,-3
1.79,-3
6.11,-4
2.43,-4
1.90,-4
2.38,-4
3.01,-U4
3.81,-4
3.97,-4
3.80,-4
3.52,-4
3.23,-4
2.99,-4
2.79,-4
2.64,-4
2.53,-U
2.45,-L
2.40,-4
2.39,-4

1.23,-2
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10
15
20
25
30
35
40
45
50
55
60
70
80
30

100

110

120

130

140

150

160

170

180

Integral
2
(ma™)

(a)

lo 57 ’-l
1.33,-1
8.37,-2

4,11,-2

1.69,-2
6.16,-3
2.14,-3
7.77,-4
3.49,-4
2.20,-U4
1.78,-4
1.58,-4
1.43,-4
L14,-4
8.91,-5
6.98,-5
5.58,-5
4.56,-5
3.83,-5
3.31,-5
2.95,-5
2.69,-5
2.52,-5
2.43,-5
2.41,-5

8.65,-3

(1)

TABLE 11(e)

E

= 200 eV

(B)

1.57,-1
1.34,-1
8.41,-2
4.13,-2
1.70,-2
6.19,-3
2.12,-3
7.55,~4
3.31,-4
2.10,-4
1.74%,-4
1.58,-4
1.45,-4
1.19,-4
9.42,-5
7.48,-5
6.07,-5
5.04,-5
4.30,-5
3.77,-5
3.40,-5
3.14,-5
2.97,-5
2.87,-5
2.85,-5

8.70,-3

(A)

2.94,-1
1.84,-1
8.01,-2
3.11,-2
1.13,-2
3.99,-3
1.41,-3
5.48,-4
2.67,-4
1.76,-4
1.44,-4
1.27,-4
1.15,-4
9.18,-5
7.20,-5
5.70,-5
4.59,-5
3.78,-5
3.19,-5
2.77,-5
2.47,-5
2.26,-5
2.13,-5
2.05,-5
2.05,-5

8.43,-3

(I1)

(B)

2.96,~-1
1.85,-1
8.04,-2
3.12,-2
1.13,-2
3.96,-3
1.38,-3
5.26,-4
2.53,-4
1.68,-4
1.40,-4
1.26,-4
1.16,-4
9.47,-5
7.58,-5
6.11,-5
5.02,-5
4.21,-5
3.62,-5
3.20,-5
2.90,-5
2.68,-5
2.55,-5
2.47,-5
2.47,-5

8.47,-3
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TABLE 12(a)
DIFFERENTIAL CROSS SECTION IN UNITS OF aOQSr_l FOR ELECTRON IMPACT EXCITATION
OF He(QlS) COMPUTED IN THE DWPO III MODEL AT INCIDENT ENERGIES OF (a) 29.6,

40.1, 81.63 eV and (b) 100 AND 200 eV.

) 29.6 eV 40.1 eV 81.63 eV
0 2.28,-2 5.48,-2 1.64,-1
5 : 2.21,-2 5.18,-2 1.40,-1
10 2.02,-2 4.38,-2 9.36,-2
15 1.74,-2 3.36,-2 5.46,-2
20 1.43,-2 2.36,-2 2.88,-2
25 1.12,-2 1.53,-2 1.39,-2
30 8.49,-3 9.11,-3 6.03,-3
35 6.28,-3 4.96,-3 2.27,-3
40 4.65,-3 2.46,-3 6.95,-4
45 3.56,-3 1.17,-32 1.79,-4
50 2.93,-3 6.81,-4 11.20,-4
55 2.65,-3 6.80,-4 2.25,-1
60 2.63,-3 9.38,-4 3.63,-U
70 3.05,-3 1.70,-3 5.71,-4
80 3.70,-3 2.36,-3 6.4k, -
90 4.31,-3 2.80,-3 6.26 -
100 4,81,-3 : 3.04,-3 ' 5.82,-4
110 5.19,-3 3.16,-3  5.04,-4
120 5.46,-3 3.21,-3 4,55,-14
130 5.66,-3 3.22,-3 4,06 ,-4
140 5.81,-3 3.22,-3 3.78,-4
150 5.92,-3 3.22,-3 3.42,-1
160 6.00,-3 3.23,-3 3.14,-4
170 6.04,-3 3.23,-3 3.21,-4
180 6.06,-3 3.23,-3 3.35,-4
Integral 2.09,-2 1.65,-2 1.28,-2
(r a?)



10
15
20
25
30
35
40
45
50
55
60
70
80
30
100
110
120
130
140
150
160
170
180

Integral

2
(Trao)

100 eV

1.97,-1
1.60,-1
9.82,-2
5.26,-2
2.57,-2
1.15,-2
4.72,-3
1.74,-3
5.78,-4
2.22,-4
1.84,-4
2.46 ,-4
3.22,-4
4.1k4,-4
4. 24,4
3.91,-4
3.41,-4
2.90,-4
2.45,-4
2.08,-4
1.81,-4
1.61,-4
1.48,-4
1.40,-4
1.38,-4

1.21,-2

TABLE 12(b)

200 eV

2.96,-1
1.84,-1

8.03,-2 °

3.12,-2
1.14,-2
3.98,-3
1.37,-3
5.03,-4
2.33,-4
1.57,-4
1.37,-4
1.31,-4
1.25,-4
1.07,-4
8.55,-5
6.58,-5
4.92,-5
3.59,-5
2.59,-5
1.86,-5
1.34,-5
9.93,-6
7.75,-6
6.58,-6
6.31,-6

8.44,-3
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DIFFERENTIAL CROSS SECTION IN UNITS OF aOQSr

or He(BlS) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF

TABLE 13(a)
-1

- (a) 29.2 AND 39.7 eV AND (b) 100 AND 200 eV.

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ra®)

DWPO I

3.15,-3
3.11,-3
2.97,-3
2.77,-3
2.51,-3
2.23,-3
1.94,-3
1.67,-3
1.44,-3
1.25,-3
1.12,-3
1.03,-3
9.99,-4
1.04,-3
1.17,-3
1.34,-3
1.51,-3
1.66,-3
1.78,-3
1.88,-3
1.96,-3
2.01,-3
2.05,-3
2,08,-3
2.08,-3

6.24,-3

29.2 eV

DWPO II

3.21,-3
3.15,-3
2.98,-3
2.73,-3
2.42,-3
2.10,-3
1.80,-3
1.54,-3
1.33,-3
1.18,-3
1.09,53
1.04,-3
1.04,-3
1.11,-3
1.24,-3
1.37,-3
1.49,-3
1.59,-3
1.67,-3
1.73,-3
1.78,-3
1.81,-3
1.84,-3
1.85,-3
1.85,-3

6.03,-3

FOR ELECTRON IMPACT EXCITATION

DWPO I

7.35,-3

7.14,-3
6.54,-3
5.66,-3
4.61,-3
3.53,-3
2.53,-3
1.70,-3
1.08,-3
6.59,-4
4.22,-4
3.26,-4
3.31,-4
5.01,-4
7.30,-4
9.30,-4
1.08,-3
1.18,-3
1.24,-3
1.29,-3
1.32,-3
1.34,-3
1.35,-3
1.36,-3
1.36,-3

4,88,-3

39.7 eV

DWPO II

8.78,-3
8.38,-3
7.32,-3
5.88,-3
4,38,-3
3.04,-3
1.98,-3
1.22,-3
7.32,-4
4.66,-4
3.58,-4
3.56,-4
4.15,-4
6.0k ,-4
7.84,-4
9.17,-4
1.00,-3
1.05,-3
1.08,-3
1.10,-3
1.11,-3
1.12,-3
1.13,-3
1.13,-3
1.13,-3

4.50,-3
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
. 150
160
170
180

Integral
2
(m a, )

DWPO I

2.30,-2
2.15,-2
1.76,-2
1.26,-2
7.90,-3
4.36,-3
2.13,-3
9.20,-4
3.52,-U
1.26,-4
5.9, -5
5.64,-5
7.26,-5
1.02,-4
1.13,-4
1.11,-4
1.04,-4
9.56,-5
8.84,-5
8.24,-5
7.77 ,-5
7.42,-5
7.18,-5
7.05,-5
7.00,-5

2.89,-3

100 eV

TABLE 13(b)

DWPO II

3.79,-2
2.17,-2
2.06,-2
1.17,-2
6.02,-3
2.85,-3
1.24,-3
4.83,-4
1.71,-4
6.40,-5
4,23,-5
5.06,-5
6.54,-5
8.64,-5
9.17,-5
8.84,-5
8.20,-5
7.52,-5
6.92,-5
6.43,-5
6.06,-5
5.78,-5
5.59,-5
5.48,-5
5.46,-5

2.68,-3

DWPO I

3.03,-2
2.67,-2
1.83,-2
9.89,-3
4.39,-3
1.70,-3
6.05,-4
2.18,-4
9.31,-5
5.51,-5
4.34,-5
3.87,-5
3.52,-5
2.87,-5
2.27,-5
1.79,-5
1.43,-5
1.17,-5
9.85,-6
8.51,-6
7.55,-6
6.90,-6
6.47,-6
6.22,-6
6.11,-6

1.99,-3

200 eV

DWPO II

5.71,-2
3.88,-2
1.80,-2
7.50,-3
2.92,-3
1.07,-3
3.91,-4
1.48,-4
6.92,-5
4.33,-5
3.47,-5
3.06,-5
2.82,-5
2.29,-5
1.81,-5
1.42,-5
1.14%,-5
9.44,-6
8.05,-6
7.04,-6
6.29,-6
5.69,-6
5.26,-6
4.98,-6
4,58,-6

1.91.-3
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DIFFERENTIAL CROSS SECTION IN UNITS OF a02sr
OF He(uls) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF
(a) 50 AND 60 eV AND (b) 100 AND 200 eV.

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

_Integral
(ra?)
o

DWPO I

3.98,-3
3.84,-3
3.45,-3
2.88,-3
2.23,-3
1.59,-3
1.04,-3
6.09,-4
3.12,-4
1.35,-4
4.95,-5
2.68,-5
4.13,-5
1.14,-4
1.87,-4
2.38,-4
2.69,-4
2.86,-4
2.95,-4
3.00,-4
3.02,-4
3.02,-4
3.03,-4
3.03,-4
3.03,-4

1.49,-3

50 eV

TABLE 14(a)

DWPO II

5.23,-3
4,91,-3
4.07,-3
3.03,-3
2.06,-3
1.27,-3
7.13,-4
3.55,-4
1.53,-4
5.91,-5
3.28,-5
4.42,-5
7.33,-5
1.41,-4
1.92,-4
2.23,-4
2.38,-U
2.4, -4
2.46,-1
2.146 -1
2.45,-14
2.4 -
2.43,-4
2.42,-4
2.42,-4

1.34,-3

-1

221

FOR ELECTRON IMPACT EXCITATION

DWPO I

5.20,-3
5.00,-3
4.42,-3
3.59,-3
2.67,-3
1.80,-3
1.09,-3
5,84, -1
2.63,-4
8.90,-5
1.52,-5
9.97,-6
1.71,-5
7.49,-5
1.23,-4
1.51,-4
1.65,-4
1.70,-4
1.71,-4
1.70,-4
1.68,-4
1.67,-4
1.66,-4
1.65,-4
1.65,-4

1.30,-3

60 eV

DWPO II

7.37,-3
6.77,-3
5.34,-3
3.73,-3
2.35,-3
1.35,-3

6.91,-4

3.06,-4
1.06,-4
2.15,-5
1.72,-6
1.36,-5
3.76,-5
8.62,-5
1.18,-4
1.33,-4
1.39,-4
1.39,-4
1.37,-4
1.34,-4
1.32,-4
1.30,-4

1.29,-4

1.28,-4
1.28,-4

1.16,-3



10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ma™)

DWPO I

8.36,-2
7.86,-3
6.52,-3
4.76,-3
3.04,-3
1.72,-3
8.55,-4
3.77,~4
1.46,-4
5.26,-5
2.38,-5
2.15,-5
2.76,-5
3.96,-5
4.40,-5
4,33,-5
4.05,-5
3.73,-5
3.44,-5
3.19,-5
3.00,-5
2.86,-5
2.77,-5
2.71,-5
2.69,-5

1.10,-3

100 eV

DWPOII

1.38,-2
1.16,-2
7.67,-3
4.42,-3
2.32,-3
1.12,-3
4.93,-4
1.96,-U4

TABLE 14(b)

7.04,-5 -

2.60,-5
1.63,-5
1.92,-5
2.49,-5
3.33,-5
3.55,-5
3.43,-5
3.17,-5
2.90,-5
2.66,-5
2.46,-5
2.31,-5
2.20,-5
2.12,-5
2.08,-5
2.06,-5

1.02,-3

DWPO I

1.12,-2
9.90,-3
6.92,-3
3.86,-3
1.76,-3
6.89,-4
2.48,-1
8.98,-5
3.78,-5
2.18,-5
1.71,-5
1.52,-5
1.38,-5
1.15,-5
9.04,-6
7.21,-6
5.74,-6
4.73,-6
3.96,-6
3.43,-6

" 3.05,-6

2.78,-6
2.61,-6
2.50,-6
2.53,-6

7.67,-U

200 eV

DWPO II

2.11,-2
1.45,-2
6.87,-3
2.93,-3
1.16,-3
4.30,-4
1.59,-4
6.00,-5
2.76,-5

1.70,-5-

1.35,-5
1.19,-5
1.10,-5
9.05,-6
7.20,-6
5.68,-6
4.58,-6
3.78,-6
3.22,-6
2.82,-6
2.52,-6
2.28,-6
2.11,-6
2.00,-6
1.86,-6

7.35,-4
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DIFFERENTIAL CROSS SECTION IN UNITS OF ao2sr
oF He(SlS) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF

(a) 50 AND 60 eV AND (b) 100 AND 200 eV.

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
1130
140
150
160
170
180

Integral
2
(ma ™)

DWPO I

1.86,-3
1.80,-3
1.62,-3
1.36,-3
1.06,-3
7.64,-4
5.01,-4
2.96,-4
1.53,-4
6.72,-5
2.53,-5
1.37,-5
2.04,-5
5.55,-5
9.13,-5
1.17,-4
1.32,-4
1.41,-4
1.45,-4
1.47,-4
1.48,-4
1.49,-4
1.49,-4
1.49,-4
1.49,-4

7'22 ,-q'

50 eV

TABLE 15(a)

DWPO II

2.45,-3
2.30,-3
1.92,-3
1.44,-3
9,79,-4
6.10,-4
3. 44,4
1.73,-4
7.56,=5
2.98,-5
1.68,-5
2.22,-5
3.62,-5
6.92,-5
9.45,-5
1.10,-4
1.17,-4
1.20,-4
1.21,-4
1.21,-4
1.20,-4

1.20,-4

1.19,-4
1.19,-4
1.19,-4

6.50,-4

-1

FOR ELECTRON IMPACT EXCITATION

DWPO I

2.45,-3
2.36,-3
2.09,-3
1.71,-3
1.28,-3
8.68,-4
5.31,-4
2.86,-4
1.30,-4
4.45,-5
7.92,-6
5.93,-7
8.38,-6
3.70,-5
6.10,-5
7.52,-5
8.21,-5
8.47,-5
8.51,-5
8.47,-5
8.40,-5
8.33,-5
8.27,-5
8.24,-5
8.23,-5

6.31,-4

60 eV

DWPO II

3.47,-3
3.20,-3
2.53,-3
1.78,-3
1.13,-3

6.51,-4

3.36,-4
1.49,-4
5.22,-5
1.09,-5
1.08,-6
6.88,-6
1.87,-5
4.29,-5
5.87,-5
6.65,-5
6.92,-5
6.93,-5
6.84,-5
6.71,-5
6.60,-5
6.50,-5
6.43,-5
6.39,-5
6.38,-5

5.64,-4 -
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10
15
20
25
.30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(w ao)

DWPO I

3.98,-3
3.75,-3
3.13,-3
2.30,-3
1.48,-3
8.4k, -4
4.24, -1
1.88,-U
7.34,-5
2.63,-5
1.16,-5
1.04,-5
1.34,-5
1.95,-5
2.18,-5
2.15,-5
2.01,-5
1.86,-5
1.71,-5
1.59,-5
1.49,-5
1.42;-5
1.38,-5

1.35,-5

1.34,-5

5.37,-4

100 eV

TABLE 15(b)

DWPO II

6.59,-3
5.57,-3
3.70,-3
2.15,-3
1.13,-3
5.50,~L
2.4, -1
9.73,-5
3.49,-5
1.27,-5
7.83,-6
3.24,-6
1.21,-5
1.64,-5
1.76,-5
1.70,-5
1.57,-5
1.44,-5
1.32,-5
1.22,-5
1.15,-5
1.09,-5
1.05,-5
1.03,-5
1.02,-5

4-93’_"}

DWPO I

5.29,-3
4.73,-3
3.37,-3
1.90,-3
8.72,-4
3.45,-4
1.25,-4
4,51,-5
1.88,-5
1.08,-5
8.37,-6
7.47,-6
6.86,-6
5.66,-6
4.51,-6
3.57,-6
2.87,-6
2.35,-6
1.98,-6
1.71,-6

1.52,-6

1.39,-6
1.30,-6
1.25,-6
1.23,-6

3.75,-4

200 eV

DWPO II

1.01,-2
7.01,-3
3.35,-3
1.44,-3
5.75,~4
2.15,-4
7.94,-5
3.00,-5
1.37,-5
8.36,-6
6.63,-6
5.87,-6
5.44,-6
4.48,-6
3.57,-6
2.83,-6
2.28,-6
1.88,-6
1.61,-6
1.40,-6
1.26,-6
1.14,-6
1.06,-6
1.00,-6
9.33,-7

3.59,-4
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TABLE 16

TOTAL CROSS SECTION IN UNITS OF T ao2 FOR ELECTRON IMPACT

EXCITATION OF - He(238) COMPUTED IN THE DWPO I MODEL.

E(eV) T.C.S.
25 7.80,-3
30 ' 2.18,-3
40 : 3.80,-3
50 4.83,-3
60 4 4.58,-3
70 3.93,-3
80 | 3.26,-3
90 2.66,-3

100 2.16,-3

125 | 1.32,-3

150 8.U1,-4

200 3.98,-4

300 1.27,-4



DIFFERENTIAL CROSS SECTION IN UNITS OF aozsr— FOR ELECTRON IMPACT-EXCITATION OF

He(2%S) COMPUTED IN THE DWPO I MODEL AT INCIDENT ENERGIES OF (a) 29.6 AND 40.1 ev,

(b) 81.63 AND 100 eV AND (c) 200 eV.

STATE WAVE FUNCTION OF COHEN AND McEACHRAN AND (B) USING THAT OF MORSE ET AL. -

SEE APPENDIX A FOR DETAILS.

0
5
10
15
20
25
30
35
40
45
50
55
60

70
80
30
100
110
120
130
140
150
160
170
180

Integral
2
(m a )

(A)

1.84,-3
1.76,-3
1.53,-3
1.20,-3
8.U46,-4
5.22, -4
2.82,-4
1.49,-4
1.24,-4
1.83,-4
2.93,-4
4.20,-4
5.32,-4
6.41,-4
5.78,-4
4.21,-4
2.8Y4,-4
2.5 ,-1
3.72,-4
6.23,-4
9.60,-4
1.32,-3
1.63,-3
1.85,-3
1.92,-3

2.30,-3

29.6 eV
(B)

"2.64,-3
2.55,-3
2.30,-3
1.94,-3
1.54,-3
1.17,-3
8.86,-4
7.17,-4
6. 64,4
7.06,-4
8.09,-4
9.37,-4
1.06,-3
‘1.19,-3
1.16,-3
1.03,-3
9.10,-4
8.96,-4
1.03,-3
1.29,-3
1.65,-3
2.02,-3
2.35,-3
2.57,-3
2.65,-3

4-76’—3

TABLE 17(a)
1

COLUMN (A) IS OBTAINED USING THE EXCITED

k0.1 eV
(2)

1.69,-3
1.59,-3
1.31,-3
9.70,-4
7.00,-4
5.86 -l
6.57,-4
8.75,-4
1.16,-3
1.44,-3
1.64,-3
1.73,-3
1.69,-3
1.33,-3
8.01,-4
3.50,-4
1.23,-4

1.60,-4
4.23,-4
8.39,-4
1.32,-3
1.79,-3
2.17,-3
2.42,-3
2.51,-3

3.81,-3

(B)

1.59,-3
1.47,-3
1.16,-3
7.76 -4
4.51,-4
2.88,-4
3.20,-4
5.14,-L
7.97,-4
1.08,-3
1.30,-3
1.41,-3
1.40,-3
1.09,-3
6.07,-U4
1.97,-4
1.57,-5
1.05,-4
4.29,-4
9.10,-4
1.45,-3
1.98,-3
2.40,-3
2.68,-3
2.78,-3

3.32,-3
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0
5
10
15
20
25
30
35
40
45
- 50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ra ™)

(A)

9.25,-4
8.92, -l
8.72,-4
1.01,-3
1.35,-3
1.80,-3
2.20,-3
2,44, -3
2.147,-3
2.32,-3
2.05,-3
1.73,-3
1.41,-3
8Ll -l
4.66,-4
2.60,-4
1.81,-4
1.79,-4
2.20,-U
2.80,-4
3.42,-4
3.98,-4
4.41,-4
4.68,-U
4.76 -4

3.15,-3

TABLE 17(b)

81.63 eV

(B)

9.73,-4
9.37,-4
9.12,-4
1.05,-3
1.40,-3 -
1.86,-3
2.29,-3
2.54,-3
2.59,-3
2.44,-3
2.17,-3
1.84,-3
1.49,-3
8.98,-1
4.95,-4
2.75,-4
1.89,-4
1.88,-4
2.34,-4
2.99,-4
3.67,-4
4.28,-4
4,75 ,-4
5,04, -4
5.14,-4

3.32,-3

100 eV

(A)

6.19,-4
6.04 ,-4
6.U41,-4
8.52,-4
1.23,-3
1.63,-3
1.90,-3
1.98,-3

1.89,-3

1.67,-3
1.41,-3
1.13,-3
8.85,-L
5.02,-L
2.72,-4
1.55,-4
1.10,-4
1.05,-4
1.21,-4
1.4k, -l
1.69,-4
1.90,-4
2.07,-4
2.17,-4
2.20,-4

2.16,-3

(B)

6.70,-4
6.55,-U4
6.94 -1
9.14,-4
1.31,-3
1.73,-3
2.02,-3
2.12,-3
2.02,-3
1.80,-3
1.52,-3
1.24,-3
9.69,-4
5.55,-4
3.04,-4
1.75,-4
1.23,-4
1.15,-4
1.30,-4
1.54,-4
1.80,-4
2.02,-4
2.19,-4
2.30,-4

2.33,-4

2.33,-3
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TABLE 17(c)

° 200 eV
(A) (B)

0 1.09,-4 1.21,-4
5 1.20,-4 1.34,-4
10 2.19,-4 2.40,-4
15 4,22,-4 4.53,-4
20 5.97,-4 6.40,-4
25 6.50,-4 7.01,-4
30 5.95,-4 6.45,-4
35 4.87,-4 5.31,-4
4o 3.72,-4 © 4,08,-4
45 2.72,-4 3.00,-4
50 1.93,-4 2.15,-4
55 1.36,-4 1.52,-4
60 9.146,-5 1.07,-4
70 4.63,-5 5.36,-5
80 2.40,-5 2.85,-5
90 1.42,-5 1.71,-5
100 1.03,-5 1.21,-5
110 8.93,-6 1.01,-5
120 : 8.69,-6 9.43,-6
130 8.89,-6 9.30,-6
140 9.21,-6 9.38,-6
150  9.52,-6  9.52,-6
160 9.75,-6 9.65,-6
170 9.89,-6 9.72,-6
180 9.96,-6 9.76,-6
Integral 3.98,-4 4,38,-4

2
(m a, )



TABLE 18(a)

DIFFERENTIAL CROSS SECTION IN UNITS OF ao2sr

OF He(238) COMPUTED IN THE DWPO ITI MODELS AT INCIDENT ENERGIES OF (a) 29.6,
40.1 AND 81.63 eV AND (b) 100 -AND 200 eV.

10
15
20
25
30
35
40
Y5
50
55
60
70
80

- 90

100

110
120
130
140
150
160
170
180

Integral
2
(ra ")

29.6 eV

2.02,-3
1.98,-3
1.88,-3
1.75,-3
1.62,-3
1.53,-3
1.50,-3
1.54,-3
1.63,-3
1.77,-3
1.91,-3
2.04,-3
2.15,-3
2.24,-3
2.20,-3

. 2.14,-3

2.15,-3
2.31,-3
2.64,-3
3.10,-3
3.63,-3
4.15,-3
4,59,-3
4.88,-3
4.98,-3

9.88,-3

4O.1 eV

2.146,-4
2.21,-4
1.69,-4
1.45,-4
2.05,-4
3.77,-4
6.47,-U
9.65,-4
1.27,-3
1.49,-3
1.60,-3
1.58,-3
1.45,-3
9.59,-U
4.23,-4

. 8.85,-5
8.37,-5
4. 2U -l
1.05,-3
1.85,-3
2.71,-3
3.51,-3
4.16,-3
4.58,-3
4.72,-3

4.78,-3

-1

FOR ELECTRON IMPACT EXCITATION

81.63 eV

1.25,-3
1.31,-3
1.52,-3
1.91,-3
2.43,-3
2.94,-3
3.30,-3
3.43,-3
3.33,-3
3.04,-3
2.64,-3
2.19,-3
1.74,-3
9.67,-4
4,45,k
1.77,-4
1.18,-4
2.14 -4
4.12,-4
6.66,-k4
9.34 -4
1.18,-3
1.38,-3
1.51,-3
1.55,-3

4.57,-3
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10
15
20
25
30
35
40
45
50
55
60
70
80
30

100

110

120

130

140

150

160

170

180

Integral
2
(ra ™)

100 eV

1.00,-3
1.08,-3
1.31,-3
1.72,-3
2.21,-3
2.62,-3
2.83,-3
2.82,-3
2.62,-3
2.30,-3
1.93,-3
1.55,-3
1.20,-3
6.50,-4
2.98,-4
1.21,-4
8.02,-5
1.37,-4
2.59,-4
4.15,-4
5.82,-4
7.37,-4

8.61,-4

9.41,-4
9.69,-4

3.35,-3

TABLE 18(b)

200 eV

2.41,-4
2.94,-4
4.67,-4
7.04,-4
8.74,-4
9.09,-6
8.36,-4
7.10,-4
5,74,
4.49,-4
3.43,-4

. 2.57,-4

1.88,-4
9.34,-5
3.90,-5
1.31,-5
8.29,-6
1.92,-5
4.14,-5
7.04,-5
1.02,-4
1.32,-4
1.56,-4
1.72,-4
1.78,-4

7.22,-4
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TABLE 19(a) continued......
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TABLE 19(b)
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TABLE 19(b) continued....
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TABLE 19(c)
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TABLE 1 9(d)
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TABLE T9(d) continued...
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‘7 ASgsus 9Y3 Jo SnTeRA YoBS I0J

e-“T6"T
e-‘eh°T 00¢g
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TABLE 20(a)
DIFFERENTIAL CROSS SECTIONS IN UNITS OF aO2.'sr'_l FOR ELECTRON IMPACT EXCITATION
OF He(2lP) COMPUTED IN THE DWPO I MODEL AT INCIDENT ENERGIES OF (a) 29.6 eV,

(b) 40.1 eV, (c) 81.63 eV, (d) 100 eV AND (e) 200 eV.

E = 29.6 eV

eo m=0 m=1 Total

0 1.85,-1 0 1.85,-1

5 1.75,-1 ©1.31,-3 1.78,-1
10 1.49,-1 4.43,-3 1.58,-1
15 1.16,-1 7.67,-3 1.31,-1
20 8.30,-2 9.65,-3 1.02,-1
25 5.55,-2 1.00,-2 7.55,-2
30 3.51,-2 9.10,-3 5.33,-2
35 2.11,-2 7.54,-3 3.62,-2
40 1.22,-2 5.83,-3 2.38,-2
45 6.73,-3 4.30,-3 1.53,-2
50 3.59,-3 3.06,-3 9.71,-3
55 1.87,-3 2.14,-3 6.14,-3
60 9.83,-4 1.48,-3 3.94,-3
70 3.67,-4 7.28,-4 1.82,-3
80 2.42,-4 3.97,-4 1.04,-3
90 1.70,-4 - 2.49,-4  6.69,-4
100 8.87,-5 1.76,-4 4.40,-4
110 2.70,-5 1.33,-4 2.93,-1
120 1.62,-5 1.03,-U 2.22,-4
130 6.53,-5 7.73,-5 2.20,-4
140 1.62,-4 5.39,-5 2.70,-4
150 2.80,-4 3.29,-5 3.46,-U4
160 3.91,-4 1.57,-5 4.23,-4
170 4.71,-4 4.12,-6 4.79,-4
180 4.99,-4 0 4.99,-4
Integral 3.05,-2 6.22,-3 4,30,-2

2y

(7 a
o



10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(m a )

7.36,-1
6.48,-1
4.56,-1
2.72,-1
1.47,-1
7.43,-2
3.58,-2
1.65,-2
7.33,-3
3.18,-3
1.47,-3
8.68,-4
7.26,-4
7.64,-4
7.23,-4
5.58,-4
3.58,-4
1.90,-4
8.77,-5
5.34,-5
7.33,-5
1.25,-4
1.84%,-4
2.29,-4
2.45,-4

5.87,-2

TABLE 20(Lt)

E =1340.1 eV

Total

7.36,-1
6.77,-1
5.34,-1
3.74,-1
2.40,-1
1.45,-1
8.37,-2
4.65,-2
2.52,-2
1.35,-2
7.42,-3
4.34,-3
2.85,-3
1.78,-3
1.41,-3
1.11,-3
8.26,-4
5.89,-4
4,17,-4
3.10,-4
2.55,-4
2.36,-4
2.37,-4
2.42,-4
2.45,-4

9.03,-2
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10
158
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(m a )

3.93
2.15°

6.48,-1
1.94,-1
6.50,-2
2.40,-2
9.76,-3
4.39,-3
2.26,-3
1.35,-3
9.23,-4
6.98,-4
5.504,-14
3.53,-4
2.18,-4
1.29,-4
7.51,-5
5.06,-5
4.61,-5
5.58,-5
7.20,-5
8.76,-5
1.02,-4
1.18,-4
1.28,-4

7.46,-2

TABLE 20(c)

E = 81.63 eV

Total

3.93
2,74

1.28

5.38,-1
2,20,-1
8.83,-2
3.49,-2
1.38,-2
5.71,-3
2.66,-3
1.54,-3
1.11,-3
9.26,-4
7.22,-4
5.73,-4
4.49,-4
3.53,-4
2.82,-4
2.27,-4
1.89,-4
1.64,-4
1.43,-4
1.26,-4
1.23,-4
1.28,-4

1.37,-1
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10
15
20
25
30
35
40
45
50
55
60
70
80
90

100

110

120

130

140

150

160

170

180

Integral
2
(ra”)

5.43
2.25

5.03,-1
1.31,-1
4.,12,-2
1.51,-2
6.30,-3
3.01,-3
1.66,-3
1.04,-3
7.15,-4
5.22,-4
3.93,-4
2.21,-4
1.21,-4
6.42,-5
3.58,-5
2.68,-5
2.96,-5
3.89,-5
5.07,-5
6.38,-5
7.34,-5
8.05,-5
8.43,-5

6.86,-2

TABLE 20(d)

E = 100 eV

Total

5.43
3.25

1.24

4,52,-1
1.64,-1
5.90,-2
2.12,-2
7.82,-3
3.17,-3
1.57,-3
1.00,-3
7.75,-4
6.55,-4
4.97,-4
3.83,-4
2.95,-4
2.32,-4
1.87,-4
1.53,-4
1.29,-4
1.10,-4
9.77,-5
8.89,-5
8.42,-5
8.43,-5

1.33,-1
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ra ™)

1.36,+1
1.16

1.16,-1
2.40 -2
7.29,-3
2.86,-3
1.38,-3
7.66,-4
4.63,-4
2.93,-4
1.93,-4
1.30,-4
8.61,-5
3.49,-5
1.38,-5
4.41,-6
2.38,-6
3.36,-6
5.94,-6
8.49,-6
1.17,-5
1.33,-5
1.54,-5
1.65,-5
1.59,-5

’4‘.21’-2

TABLE 20 (e)

E = 200 eV

Total

1.36,+1
3.35

6.62,-1
1.50,-1
3.53,-2
8.74,-3
2.47,-3
9.31,-4
4.99,-4
3.42,-4
2.64,-4
2.12,-4
1.70,-4
1.13,-4
8.02,-5
5.77,-5
4.50,-5
3.50,-5
2.91,-5
2.42,-5
2.15,-5
1.91,-5
1.77,-5
1.72,-5
1.59,-5

1.02,-1
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DIFFERENTIAL CROSS SECTIONS IN UNITS OF AOQSr_l

OF He(2lP) COMPUTED IN THE DWPO II MODEL AT INCIDENT ENERGIES OF (a) 29.6 eV,

TABLE 21 (a)

(b) 40.1 eV, (c) 81.63 eV, (d) 100 eV AND (e) 200 eV.

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
{r a 2)
o

E

= 29.6 eV

FOR ELECTRON IMPACT EXCITATION

Total

1.59,-1
1.53,-1
1.35,-1
1.11,-1
8.58,-2
6.25,-2
4,.34,-2
2.89,-2
1.86,-2

1.17,-2

7.27,-3
4.51,-3
2.85,-3
1.32,-3
7.71,-4
5.00,-4
3.16,-4
1.94,-4
1.39,-4
1.47,-4
2.01,-4
2.78,-4
3.54,-4
4.08,-4
4.27,-4

3.47,-2
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10
15
20
25
30
35
40
U5
50
55
60
70
80
90
100
110
120
130
© 140
150
160
170
180

Integral
2
(ra ™)

6.65,-1
5.84,-1
4.06,~1
2.38,-1
1.26,-1
6.17,-2
2.87,-2
1.27,-2
5.31,-3
2.18,-3
1.01,-3
6.71,-4
6.49,-4
7.50,~4
7.08,-4
5.43,-4
3.48,-4
1.86,-4
8.46,-5
4.48,-5
5.36,-5
9.12,-5
1.37,-4
1.72,-4
1.85,-4

5.06,-2

TABLE 21(b)

E = 40.1 eV

Total

6.65,-1
6.10,-1
4.76,-1
3.29,-1
2.08,-1
1.23,-1
6.96,-2
3.79,-2
2.01,-2
1.07,-2
5.80,-3
3.43,-3
2.31,-3
1.53,-3
1.22,-3
9.52,-4
6.93,-
4.79,-4
3.26,-4
2.33,-4
1.87,-4
1.73,-4
1.76,-4
1.82,-4
1.85,-4

7.77,-2
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(v a®)

3.73
2.02

5.91,-1
1.71,-1
5.55,-2
2.01,-2
8.01,-3

3'603—3

1.87,-3
1.14%,-3
7.98,-4
6.12,-4
4.90,-4
3.16,-4
1.97,-4
1.17,-4
6.92,-5
4,64 -5
4.08,-5
4.77,-5
6.05,-5
7.29,-5
8.41,-5
9.79,-5
1.06,-4

6.83,-2

TABLE 21(c)

E = 81.63 eV

Total

3.73
2.58
1.17
4.78,-1
1.91,-1
7.51,-2

2093,—2‘

1.16,-2
4.78,-3
2.26,-3
1.33,-3
9.71,-4
8.11,-4
6.31,-4
4.99,-4
3.90,-4
3.05,-4
2.43,-4
1.94%,-4
1.61,-4
1.38,-4
1.20,-4
1.04,-4
1.02,-4
1.06,-4

1.24,-1
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160°
170
180

Integral
2
(m a_ )

5.20
2.12

4.58,-1
1.15,-1
3.52,-2

1.27,-2

5.27,-3
2.54,-3
1.42,-3
9.03,-4
6.28,~4
4.62,-4
3.49,-U
1.98,-4
1.09,-4
5.86,-5
3.29,-5
2.43,-5
2.60,-5
3.36,-5
4.34,-5
5.44,-5
6.24 ,-5
6.84,-5
7.18,-5

6.35,-2

TABLE 21(d)

E = 100 eV

Total

5.20
3.07

1.13

4.00,-1
1.41,-1
5.01,-2
1.79,-2
6.63,-3
2.72,-3
1.36,-3
8.79,-4
6.82,-4
5.77,-4
4.37,-4
3.36,-1
2.58,-4
2.03,-4
1.63,-4
1.32,-4
1.11,-4
9.43,-5
8.36,-5
7.58,-5
7.16,-5
7.18,-5

1.22,-1
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(w a )

1.33,+1
1.09

1.04,-1
2.09,-2
6.31,-3
2.51,-3
1.23,-3
6.91,-4
4,20,-4
2.67,-4
1.76,-4
1.18,-4
7.88,-5
3.21,-5
1.28,-5
4.,13,-6
2.19,-6
3.01,-6
5.30,-6
7.58,-6
1.05,-5
1.19,-5
1.39,-5
1.48,-5
1.43,-5

4.00,-2

TABLE 21(e)

E = 200 eV

Total

1.33,+1
3.16

5.93,-1
1.30,-1
3.04,-2
7.60,-3
2.20,-3
8. 44,4
4,54, -k
3.10,-4
2.38,-4
1.90,-4
1.53,-4
1.02,-4
7.21,-5
5.19,-5
4.05,-5
3.15,-5
2.62,-5
2.18,-5
1.94,-5
1.72,-5
1.59,-5
1.55,-5
1.43,-5

9.47,-2
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TABLE 22(a)
DIFFERENTIAL CROSS SECTIONS IN UNITS OF ao2sr_l FOR ELECTRON IMPACT EXCITATION
OF He(3lP) COMPUTED IN THE DWPO. I MODEL AT INCIDENT ENERGIES OF (a) 29.2 eV,

(b) 39.7 eV, (c) 100 eV AND (d) 200 eV.

E = 29.2 eV
o° m=20 m=1 Total
0 | 2.20,-2 0 - 2.20,-2
2.12,-2 9.96,-5 2.14,-2
10 1.89,-2 3.54 -4 1.96,-2
15 1.57,-2 6.59,-L 1.71,-2
20 1.23,-2 9.08,-4 1.41,-2
25 9.06,-3 1.04,-3 | 1.11,-2
30 - 6.36,-3 1.05,-3 8.45,-3
35 - 4.26,-3 9.62,-4 6.19,-3
40 : 2.75,-3 8.21,-4 4.39,-3
45 1.7 1,-3 6.6~k 3.04,-3
50 1.03,-3 . 5.14,-4 2.06,-3
55 6.05,-4 3.87,-4 1.38,-3
60 3.51,-4 2.85,-4 9.20,-4
70 1.25,-4 1.50,-4 4.,26,-4
80 5.79,-5 8.17,-5 2.21,-4
90 3.43,-5 4.79,-5 1.30,-4
100 2.16,-5 3.07,-5 8.30,-5
110 1.70,-5 2.12,-5 5.93,-5
120 2.36,-5 1.51,-5°' 5.38,~5
130 . 4.25,-5 1.07,-5 6.39,-5
140 7.06,-5 7.20,-6 8.50,-5
150 1.02,-5 4.29,-6 1.11,-4
160 1.31,-4 2.00,-6 1.35,-4
170 1.51,-4 5.09,-7 1.52,-4
180 1.59,-4 0 1.59,-4
Integral 5.00,-3 ) 8.42,-4 6.68,-3

2)

(v a
o



10
15
20
25
30
35
40
4s
50
55
860
70
80
90
100
110
120
130
140
150
160
170
180

Integral

(r a?)

1.24,-1
1.12,-1
8.50,-2
5.57,-2
3.29,-2
1.80,-2
9.31,-3
4.54,-3
2.09,-3
9.08,-4
3.91,-4
2.00,-4
1.54,-4
1.79,-4
1.89,-4
1.55,-U4
1.04,-4
5.65,-5
2.56,-5
1.32,-5
1.60,-5
2.76,-5
4.16,-5

5.26,-5

5.67,-5

1.22,-2

TABLE 22(b)

E = 39,7 eV

Total

1.24,-1
1.16,-1
9.60,-2
7.15,-2
4.91,-2
3.17,-2
1.94,-2
1.14,-2
6.47,-3
3.60,-3
2.01,-3
1.18,-3
7.55,-4
.49, -4
3.53,-4
2.78,-4
2,04, -4
1.40,-4
9.33,-5
6.60,-5
5.37,-5
5.10,-5
5.28,-5

5.55,-5

5.67,-5

1.85,-2
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ma ™)

1.12
5.33,-1
1.38,-1
3.89,-2
1.28,-2
4.75,-3
1.96,-3
9.04 -4
4,77 ,-4
2.90,-4

1.98,-4 .

1.45,-4
1.10,-4
6.52,-5
3.76,-5
2.13,-5
1.27,-5
9.38,-6
9.L44,-6
1.15,-5
1.4k ,-5
1.75,-5
2.01,-5
2.20,-5
2.24,-5

1.73,-2

TABLE 22(c)

E = 100 eV

Total

1.12
7.27,-1
3.08,-1
1.22,-1
4.73,-2
1.80,-2
6.74,-3
2.53,-3
1.01,-3
4.73,-4
2.85,-4
2.13,-4
1.79,-4
1.39,-4

1.08,-4
8.40,-5
6.58,-5
5.28,-5
4.30,-5
3.59,-5
3.05,-5
2.69,-5
2.43,-5
2.30,-5
2,24 ,-5

3.29,-2
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10
15
20
25
30
35
10
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
‘(11 a ")

2.87

3.18,-1
3.55,-2
7.67,-3
2.33,-3
8.96,-4
4.17,-4
2.26,-4
1.35,-4
8.48,-5
5.57,-5
3.75,-5
2.50,-5
1.03,-5
4.16,-6
1.40,-6
7.45,-7
9.78,-7
1.68,-6
2.39,-6

3.27 ’_6

3.75,-6
4.34,-6
4,64 ,~6
4.50,-6

1.08,-2

TABLE 22(4d)

E = 200 eV

2.54,-1
7.34,-2
1.88,-2
4.52,-3
1.01,-3
2.02,-4
3.29,-5
5.95,-6
6.14,-6
9.23,-6
1.10,-5
1.15-5
1.09,-5
9.28,-6
7.48,-6
5.98,-6
4.45,-6
3.27,-6
2.23,-6
1.40,-6
8.20,-7
3.21,-7
1.00,-7

7.37,-3

Total

2.87
8.25,-1
1.82,-1
4.52,-2
1.14,-2
2.92,-3
8.21,-4
2.92,-4
1.47,-4
9.71,-5
7.42,-5
5.95,-5
4.80,-5
3.21,-5
2.27,-5
1.64,-5
1.27,-5
9.89,-6
8.21,-6
6.84,-6
6.07,-6
5.39,-6
4.98,-6
4.84,-6
4.50,-6

2.55,-2
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TABLE 23(a)
DIFFERENTIAL CROSS SECTIONS IN UNITS OF ao2sr—l FOR ELECTRON IMPACT EXCITATION
OF He(3'P) COMPUTED IN THE DWPO II MODEL AT INCIDENT ENERGIES OF (a) 29.2 eV,

(b) 39.7 eV, (c) 100 eV AND (d) 200 eV.

E = 29.2 eV

e° m=0 m=1 Total
0 1.82,-2 0 1.82,-2
1.75,-2 8.57,-5 0 1.77,-2
10 ‘ 1.55,-2 3.0 -4 1.61,-2
15 1.28,-2 5.62,-4 1.39,-2
20 9.85,-3 7.69,-4 1.14%,-2
25 7.13,-3 8.73,-4 8.88,-3
30 4.88,-3 8.71,-k4 _ 6.62,-3
35 3.18,-3 7.89,-4 4.76,-3
40 1.97,-3 6.64,-4 3.30,-3
45 1.17,-3 5.29,-4 2.23,-3
50 6.67,-4 4.03,-4 1.47,-3
55 3.67,-4 2.97,-4 9.60,-4
60 1.98,-4 2.13,-4 6.25,-4
70 6.49,-5 1.07,-4 2.79,-4
80 3.44,-5 5.44,-5 1.43,-4
90 2.33,-5 2.98,-5 8.29,-5
100 1.43,-5 1.80,-5 5.02,-5
110 ' 1.03,-5 1.18,-5 3.39,-5
120 1.62,-5 8.21,-6 3.26,-5
1130 3.34,-5 5.78,-6 4.50,-5
140 5.92,-5 . 3.91,-6 6.71,-5
150 8.83,-5 2.36,-6 9.30,-5
160 1.15,-4 1.11,-6 1.17,-4
170 1.33,-4 2.84,-7 1.34%,-4
180 1.40,-4 0 1.40,-4
Integral 3.86,-3 : 6.63,-L - 5.19,-3

2y

T
(ao
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TABLE 23(b)

E = 39.7 eV
@O - m=0 m=1 Total
0 1.10,-1 0 1.10,-1
9.95,-2 1.67,-3 1.03,-1
10 7.4 ,-2 4.,93,-3 8.43,-2
15 4.79,-2 7.03,-3 6.20,-2
20 2.76,-2 7.11,-3 4.,19,-2
25 » 1.47,-2 5.88,-3 2.65,-2
30 7.30,-3 4.28,-3 1.59,-2
35 3.38,-3 2.87,-3 9.11,-3
4o 1.45,-3 1.81,-3 5.07,-3
45 5.80,-4 1.09,-3 2.77,-3
50 2.35,-14 6.48,-L 1.53,-3
55 1.35,-4 3.83,-4 9.01,-4
60 1.33,-4 . 2.32,-4 5.96, -4
70 1.83,-4 1.00,-4 3.84,-1
80 1.91,-4 5.93,-5 3.10,-4
90 1.55,-4 4,36,-5 2.42,-1
100 1.03,-4 3.50,-5 1.73,-4
110 5.62,-5 2.88,-5 1.14,-4
120 2.53,-5 2.35,-5 _ 7.24,-5
130 1.18,-5 1.84,-5 4.86,-5
140 1.21,-5 1.33,-5 3.86,-5
150 2.06,-5 8.26,-6 3.71,-5
160 3.16,-5 3.97,-6 3.95,-5
170 4,03,-5 1.04,-6 .24, -5
180 4,37,-5 0 ' 4,37,-5
Integral 1.04,-2 2.65,-3 1.57,-2

2y

(r a
o



10
15
20
25
30
35
40 -
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ra®)

1.07
5.01,-1
1.25,-1
3.40,-2
1.08,-2
3.93,-3
1.60,-3
7.41,-4
3.96,-4
2. 44 -l
1.69,-4
1.25,-4
9.53,-5
5.71,-5
3.33,-5
1.91,-5
1.15,-5
8.51,-6
8.38,-6
9.95,-6
1.23,-5
1.49,-5
1.71,-5
1.86,-5
1.89,-5

l. 58,_2

TABLE 23(c)

E = 100 eV

9.17,-2
7.77,-2
3.67,-2
1.49,-2
5.64,-3
2.02,-3
6.86,-4
2.27,-4
8.02,-5
3.88,-5
3.02,-5
3.03,-5
3.18,-5
3.01,-5
2.68,-5
2.27,-5
1.86,-5
1.43,-5
1.04,-5
6.87,-6
3.99,-6
1.78,-6
4.58,-7

7.02,-3

Total

1.07
6.84,-1
2.81,-1
1.07,-1
4.07,-2
1.52,-2
5.63,-3
2.11,-3
8.50,-4
4.05,-l
2.46,-l
1.85,-4
1.56,-4
1.21,-4
9.36,-5
7.28,-5
5.70,-5
4.56,-5
3.70,-5
3.08,-5
2.61,-5
2.29,-5
2.06,-5
1.95,-5
1.89,-5

2.99,-2
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
2
(ra )

2.79
2.99,-1
3.17,-2
6.61,-3
2.00,-3
7. T4, -4
3.66,-4
2.00,-4

1.20,-4

7.56,-5
4.96,-5
3.34,-5
2.23,-5
9.19,-6
3.71,-6
1.25,-6
6.67,-7
8.72,-7
1.49,-6
2.12,-6
2.91,-6
3.33,-6
3.85,-6
4.12,-6
3.98,-6

l. 02 ’_2

TABLE 23(4d)

E

200 eV

Total

2.79
7.78,-1
1.63,-1
3.90,-2
9.72,-3
2.52,-3
7.22,-4
2.62,-4
1.32,-4
8.65,-5
6.57,-5
5.26,-5
4.24,-5
2.84,-5
2.01,-5
1.45,-5
1.13,-5
8.79,-6
7.31,-6
6.08,-6
5.40,-6
4.79,-6
4.42,-6
4,30,-6
3.98,-6

2.37,-2
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TABLE 24(a)
VALUES OF A FOR ELECTRON IMPACT EXCITATION OF He(2YP) COMPUTED IN THE DWPO I

AND DWPO II MODELS AT INCIDENT ENERGIES OF (a) 40 AND 60 eV, (b) 80 AND 100 eV AND

(¢) 200 eV.
e° 40 eV 60 eV
DWPO I DWPO II DWPO I DWPO II
0 1.000 1.000 1.000 1.000
0.958 0.958 0.884 0.883
10 0.855 0.853 0.671 0.669
15 0.730 0.726 0.505 0.501
20 © 0.614 0.606 0.399 0.393
25 0.514 0.503 0.335 0.326
30 0.430 0.414 0.296 0.285
35 0.357 0.335 0.2177 0.263
40 0.292 0.265 0.277 0.263
45 0.235 0.205 0.305 0.296
50 0.198 0.173 0.371 0.372
55 0.199 0.195 0.455 0.467
60 0.254 0.280 0.516 0.535
70 0.428 0.491 0.535 0.560
80 0.513 0.580 0.48U 0.511
90 0.502 0.570 0.407 0.436
100 0.432 0.501 0.325 0.355
110 0.323 0.389 0.256 0.283
120 10.210 0.259 0.227 0.2u47
130 0.171 ~0.191 L 0.269 0.279
140 0.290 0.288 0.392 0.392
150 0.530 0.528 0.576 0.571
160 0.774 0.775 0.786 0.782
170 0.941 0.942 0.946 0.945

180 1.000 1.000 1.000 1.000



10
15

20

25
30
35
40
45
50
55
60
70
80
20
100
110

120

130
140
150
160
170
180

DWPO I

1.000
0.790
0.518
0.369
0.301
0.275
0.279
0.312
0.384
0.491
0.589
0.621
0.595
0.492
0.387
0.294
0.221
0.185
0.202
0.289
0.441
0.616
0.805
0.954
1.000

80 eV

DWPO II

1.000
0.790
0.516
0.366
0.236
0.269
0.272

0.3086

0.379
0.480
0.590
0.626
0.603
0.503
0.401
0.310
0.236
0.197
0.210
0.291
0.439
0.612
0.802
0.953
1.000

TABLE 24(b)

DWPO I

1.000
0.693
0.406
0.290
0.252
0.256
0.297
0.386
0.524
0.663
0.714
0.674
0.599
O.445
0.315
0.217
0.154
0.143
0.194
0.303
0.462
0.653
0.825
0.956
1.000

100 eV

DWPO II

1.000
0.693
0.104
0.287
0.249
0.253
0.294
0.384
0.524
0.662
0.714
0.677
0.60
0.453
0.324
0.227
0.162
0.149

- 0.197
0.303
0.1460
0.650
0.823
0.956

1.000
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10
15
20
25
30
35
40
45
50
55

60

70

80

90
100
110
120
130
140
150
160
170
180

TABLE 24(c)

200 eV
DWPO I

1.000
0.345
0.175
0.160
0.206
0.327
0.557
0.823
0.927

£ 0.857

0.731
0.612
0.506
0.308
0.172
0.076
0.053
0.096
0.204
0.350
0.541
0.696
0.873
0.958
1.000

DWPO II

1.000
0.345
0.175
0.161
0.208
0.331
0.558
0.819
0.925
0.862
0.740
0.622
0.515
0.315
0.177
0.079
0.054
0.096
0.202
0.348
0.539
0.694
0.872
0.958
1.000



VALUES OF y 1IN RADIANS (-m < x < m) FOR ELECTRON IMPACT EXCITATION OF He(2lP)

COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF (a) 40 AND 60 eV,

TABLE 25(a)

(b) 80 AND 100 eV AND (c) 200 eV.

10
15
| 20
25
30
35
40
45
" 50
55
60
70
80
90
100
110
120
130
140
150
160
170

4O eV

DWPO I

-8.78,-2
-1.03,-1
-1.30,-1
~1.71,-1
~2.31,-1
-3.15,-1
-4.38,-1
-6.18,-1
-8.89,-1
-1.29
-1.81
-2.35
-3.12
2.71
2.47
2.31
2.16
1.85
1.25
6.83,-1
4,05,-1
2.79,-1
2.21,-1

DWPO II

-8.32,-2
-9.82,-2
~1.25,-1
-1.66,-1
-2.26,-1

-3.13,-1

-4, 42,-1

-6.39,-1 -

-9.47,-1
-1.42
-2.00
-2.52
3.05
2.64
2.42
2.29
2.17
1.92
1.37
7.58,-1
4.38,-1
2.97,-1
2.32,-1

60 eV

DWPO I

-5.93,-2
-8.52,-2
-1.31,-1
-2.01,-1
-3.04,-1
-4,55,-1
-6.75,-1
-9.89,-1
-1.41
-1.92
-2.45
-2.93
2.71
2.38
2.:20
2.03
1.79
1.45
1.06
7.70,-1
5.89,-1
4.90,-1
4.55,-1

DWPO II

-5.72,-2
-8.29,-2
-1.29,-1
-2.01,-1
-3.08,-1
-4,67,-1
-7.02,-1
~1.04
-1.49
-2.01
-2.53
-3.00
2.66
2.35
2.18
2.03
1.82
1.50
1.12
8.23,-1
6.31,-1
5.25,-1
4.87,-1
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10
15
20
25
30
35
40
45
50
55
60
70
80
30
100
110
120
130
140
150
160
170

80 eV

DWPO I

-4,85,-2
-8.44 -2
-1.47,-1
—2.41 ,-1
-3.77,-1
-5.71,-1
-8.41,-1
-1.20
~1.67
-2.23
-2.78
3.07
2.58
2.33
2.13
1.89
1.54
1.16
8.48,-1
6.37,-1
5,12,-1
4.45,-1
4.,22,-1

DWPO II

—4.72,-2
-8.32,-2
-1.47,-1
2.4 ,-1
-3.87,-1
-5.90,-1
-8.73,-1
-1.25
-1.72
2.27
-2.81
3.05
2,57
2.32
2.13
1.90
1.57
1.20
8.90,-1
6.72,-1
5.41,-1
4.71,-1
446 ,-1

TABLE 25(b)

100 eV

DWPO I

-4,33,-2
-8.82,-2
-1.64,-1
-2.76,-1
-14,36,-1
-6.56,-1
-9.52,-1
-1.35
-1.88
-2.52
-3.04
2.91
2.55
2.34
2.11
1.78
1.35
9.53,-1
6.89,-1
5.33,-1
4.41,-1
3.84,-1
3.71,-1

DWPO II

4, 2l4,-2

-8.76,-2
-1.66,-1
-2.83,-1
-4,49,-1
-6.78,-1
-9.81,-1
-1.38
-1.91
-2.54
-3.05
2.91
2.55
2.3Y4
2.12
1.79
1.38
9.87,-1
7.19,-1
5.59,-1
4.62,-1
4.03,-1
3.89,-1
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170

TABLE 25(c)

DWPO I

-4.09,-2
-1.19,-1
-2.37,-1
-3.92,-1
-5.91,-1
-8.49,-1
-1.28
-2.26
-3.07
2.92
2.78
2.71
2.60
2.4l
2.07
1.39
7.76,-1
4.81,-1
3.54,-1
2.79,-1
2.40,-1
2.28,-1
1.91,-1

200 eV
DWPO II

-4,05,-2
-1.21,-1
-2.404,-1
-4, 04,-1
-6.04,-1
-8.61,-1
-1.28
-2.21
-3.03
2.95
2.80
2.72
2.61
2.45
2.09
1.41
7.99,-1
4,96,-1
3.65,-1
2.88,-1
2.48,-1
2.36,-1
1.98,-1
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VALUES OF A FOR ELECTRON IMPACT EXCITATION OF He(SlP) COMPUTED IN THE DWPO I

TABLE 26(a)

262

AND DWPO II MODELS AT INCIDENT ENERGIES OF (a) 50 AND 80 eV AND (L) 100 AND 200 eV.

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

DWPO I

1.000
0.939
0.800
0.653
0.532
0.439
0.368
0.310
0.263
0.230
0.229
0.280
0.378
0.532
0.563
0.528
0.458
0.370
0.296
0.284
0.381
0.573
0.784
0.941
1.000

50 eV

DWPO II

1.000
0.938
0.797
0.648
0.523
0.426
0.350
0.287
0.235
0.202
0.211
0.286
0.407
0.579
0.611
0.579
0.511
0.421
0.338
0.311
0.392
0.577
0.784
0.941
1.000

DWPO I

1.000
0.822
0.564
0.408
0.328
0.291
0.283
0.300
0.349

'0.438

0.542
0.601
0.599
0.520
0.430
0.347
0.278
0.239
0.2u8
0.320
0.457
0.624
0.807
0.953
1.000

80 eV

DWPO II

1.000
0.821
0.562
0.1404
0.322
0.283
0.273
0.287
0.336
0.428
0.535
0.599
0.602
0.531
0.445
0.365
0.297
0.256
0.261
0.328
0.460
0.623
0.805
0.952
1.000




10
15
20
25
30
35
40
45
50
.55
60
70
80
90
100
110
120
130
140
150
160
170
180

DWPO I

1.000
0.733
O.448
0.319
0.271
0.264
0.291

0.358

o.u74
0.613
0.694
0.679
0.612
0.u468
0.3u8
0.254
0.193
0.178
0.220
0.318
0.473
0.653
0.829
0.954%
1.000

100 eV

TABLE 26(b)

DWPO II

1.000
0.732
0.4u6
0.316
0.266
0.259
0.284
0.351
0.466
0.604
0.685

.0.674

0.611
0.473
0.356
0.263
0.202
0.186
0.226

- 0.323

0.473
0.652
0.828
0.953
1.000

DWPO I

1.000
6.385
0.195
0.170
0.205
0.307
0.508
0.775
0.919
0.874
0.751
0.630
0.521
0.322
0.183
0.085
0.059
0.099
0.204
0.350
0.539
0.696
0.871
0.959
1.000

200 eV

DWPO II

1.000
0.384
0.194
0.169
0.205
0.307
0.506
0.765
0.911
0.873
0.756
0.635
0.525
0.324
0.184
0.086
0.059
0.099
0. 204
0.349
0.539
0.695
0.871
0.958
1.000
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VALUES OF x IN RADIANS (-m < x < m) FOR ELECTRON IMPACT EXCITATION OF He(31P)
COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF (a) 50 AND

TABLE 27(a)

80 eV AND (b) 100 AND 200 eV .

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170

DWPO I

~7.71,-2
~9.57,-2
-1.28,-1
-1.78,-1
-2.51,-1
-3.56,-1
-5.11,-1
-7.4l,-1
-1.09
-1.58
-2.14
-2.66
2.88
2.46
2.25
2.10
1.94
1.67
1.29
8.98,-1
6.42,-1

50 eV

5.02,-1 -

4.32,-1

DWPO II

-7.32,-2
-9.13,-2
-1.24,-1
-1.74,-1
-2.48,-1
-3.58,-1
-5.24,-1
-7.81,-1
-1.18

.=1.73

-2.31

-2.80
2.79
2.40
2.21
2.09
1.95
1.72
1.36
9.71,-1
6.97,-1
5.44,-1
4.66,-1

80 eV

DWPO I

-5.22 ,-2
-8.50,-2
-1.41,-1
-2.26,-1
-3.48,-1
-5.24,-1
=7.75,-1
-1.12
-1.58
-2.13
-2.70
3.10
2.54
2.27
2.08
1.87
1.58
1.26
9.64,-1
7.46,-1
6.09,-1
5.31,-1
4.98,-1

DWPO II

-5.05,-2
-8.33,-2
-1.40,-1
-2.28,-1
-3.56,-1
-5.42,-1
-8.07,-1
-1.17
-1.64
-2.19
-2.75
3.07
2.52
2.56
2.07
1.87
1.60
1.30
1.01
7.85,-1
6.44,-1
5.62,-1
5.29,-1
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265

_TABLE 27(b)

0 " 100 eV ' 200 eV

DWPO I DWPO II DWPO I DWPO II
5 ~4.59,-2 —4,146,-2 ~4.,10,-2 ~4.05,~2
10 -8.69,-2 ~8.59,-2 ~1.14,-1 ~1.15,-1
15 ~1.56,-1 -1.57,-1 -2.21,-1 ~2.28,-1
20 -2,58,-1 -2.63,-1 -3.66,-1 -3.78,-1
25 -4,03,-1 ~4,16,-1 -5.56,-1 -5.71,-1
30 -6.06,-1 -6.28,-1 - -8.02,-1 -8.18,-1
35 -8.84,-1 -9.16,-1 -1.18 -1.19
40 -1.26 -1.30 -2.03 -1.99
45 -1.77 -1.81 -2.97 ~2.91
50 ~2.40 -2.143 2.95 2.99
55 -2.97 -2.98 2.78 2,82
60 2.92 2.92 2.69 2.72
70 2.52 2.51 2.58 2.59
80 2.28 2.28 2.42 2.43
90 2.06 2.06 2.06 2.07
100 1.77 1.78 1.42 1.43
110 1.40 1.42 8.15,-1 8.24,-1
120 1.04 1.07 5.07,-1 5.16,-1
130 7.79,-1 8.09,-1 3.72,-1 3.80,-1
140 6.11,-1 6.38,-1 2.93,-1 2.99,-1
150 5.07,-1 5.31,-1 2.52,-1 2.58,-1
160 4, 49,-1 4.71,-1 2.36,-1 2.43,-1
170 4.14,-1 4.35,-1 2.02,-1 2.08,-1



TABLE 28

TOTAL (INTEGRAL) CROSS SECTION IN UNITS OF = ao2

gr He(23P) COMPUTED IN THE DWPO I MODEL.

E (eV)

25
30
40
50
60
70
80
30

100

125

150

200

300

2.18,-2
3.82,-2
3.65,-2
2.42,-2
1.52,-2
9.70,-3
6.37,-3
4.32,-3
3.02,-3
1.38,-3
7.14,-4

2.45,-4

. 5.21,-5

7.00,-3
9.31,-3
6.50,-3
3.89,-3
2.41,-3
1.58,-3
1.09,-3

7.83,-4

5.83,-U

3.13,-4
1- 88,—4
8.64,-5

2.69,-5

FOR ELECTRON IMPACT EXCITATION

Total

3.58,-2
5.68,-2
4,95,-2
3.20,-2
2.00,-2
1.29,-2
8.5 ,-3
5;88,-3
4.19,-3
2.01,-3
1.09,-3
1l -1

lo 06 ,-u’
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TABLE 29(a)
DIFFERENTIAL CROSS SECTIONS IN UNITé OF aOQSr-l FOR ELECTRON IMPACT EXCITATION
OF He(23P) COMPUTED IN THE DWPO I MODEL AT INCIDENT ENERGIES OF (a) 29.6,
(b) 40.1 (c) 81.63 (d) 100 AND (e) 200 eV. COLUMNS (A) ARE OBTAINED USING THE
EXCITED STATE WAVE FUNCTION OF COHEN AND McEACHRAN AND COLUMNS (B) USING THAT

OF MORSE ET AL. - SEE APPENDIX A FOR DETAILS.

E = 29.6 eV
. (a) ()
¢] m=20 m=1 Total m=0 m=1 Total
0 5.58,-2 0 5.58,-2 8,04,-2 0 8.04,-2
5.,52,-2 1.18,-4 . 5.54,-2 7.97,-2 1.21,-4 7.99,-2
10 5.35,-2 4,54,-4 5.44,-2 7.76,-2 4.66,-4 7.85,-2
15 5.07,-2 9.60,-4 5.27,-2 7.42,-2 9.86,-4 7.62,-2
20 4.71,-2 1.57,-3 5.03,-2 6.97,-2 1.61,-3 7.29,-2
25 4.28,-2 ~2.20,-3 4,72,-2 6.43,-2 2.26,-3 6.88,-2
30 3.81,-2 2,79,-3 4,37,~-2 5.83,-2 2.86,-3 6.40,~2
35 3.31,-2 3.29,-3 3.97,-2 5.20,-2 3.37,-3 5.87,-2
40 2.81,-2 3.67,-3 3.54,-2 4.55,—2 3.75,-3 5.30,-2
45 2.33,-2 3.92,-3 3.11,-2 3.92,-2 4.00,-3 4,72,-2
50 1.88,-2 4.03,-3 2.68,-2 3.31,-2 4.11,-3 4.13,-2
55 1.47,-2 4.04,-3 2.28,-2 2.75,-2 4.11,-3 3.57,-2
60 1.11,-2 3.96,-3 1.90,-2 2.24,-2 4.03,-3 3.05,-2
70 5.60,-3 3.62,-3 1.28,-2 1.40,-2 3.67,-3 2.14,-2
80 2.16,-3 3.17,-3 8.50,-3 8.01,-3 3.21,-3 1.44,-2
90 4,59,-4 2,69,-3 5.85,~3 4.03,-3 2.72,-3 9.47,-3
100 6.54,-5 2.,23,-3 4,53,-3 1.66,-3 2.26,-3 6.17,-3
110 5.42,-4 1.80,-3 b,14,-3 4.61,-4 1.82,-3 4,10,-3
120 1.52,-3 © .1,39,-3 4,30,-3 3.56,-5 1.41,-3 2.85,-3
130 2.70,-3 1.02,-3 4,74 ,-3 7.35,-5 1.03,-3 2.13,-3
140 3.88,-3 6.83,-4 5.25,-3 3.46,-4 6.92,-4 1.73,-3
150 4,92,-3 4.00,-4 5.72,-3 6.92,-4 4.05,-4 1.50,-3
160 5.71,-3 1.83,-4 6.08,-3 1.00,-3 1.86,-4 1.38,-3
170 6.21,-3 4,67,-5 6.31,-3 1.22,-3 4,73,-5 1.31,-3
180 6.38,-3 0] : 6.38,-3 1.29,-3 0 1.29,-3
Integral 3.74,-2 9.32,-3 5.61,-2 5.94,-2 9.46,-3 7.83,-2
(1 a?)
o



10
15
20
25
30
35
40
45
50
55
60
70
80

90"

100
110
120
130
140
150
160
170
180

m=0

6.4 3,-2
6.35,-2
6.11,-2
5.73,-2
5.24,-2
4.68,-2
4.07,-2
3.47,-2
2.89,-2
2.35,-2
1.87,-2
1.46,-2
1.11,-2
5.90,-3
2.72,-3
9.95,-4
2.28,-4
4.37,-5
1.81,-4
4.66,-4
7.93,-4
1.09,-3
1.33,-3
1.48,-3
1.53,-3

Integral 3.63,-2

(r a
o

2

)

TABLE 29(b)

E = 40.1 eV
(a)
m=1 Total
0 6.43,-2

2.01,-4  6.39,-2
7.53,-4  6.26,-2
1.52,-3  6.03,-2
2.33,-3  5.70,-2
3.03,-3  5.28,-2
3.53,-3  4.78,-2
3.78,-3  4.23,-2
3.82,-3  3.65,-2
3.68,-3  3.09,-2
3.43,-3  2.56,-2
3.12,-3  2.08,-2
2.79,-3  1.67,-2
2.19,-3  1.03,-2
1.71,-3  6.14,-3
1.36,-3  3.72,-3
1.09,-3  2.42,-3
8.76,-4  1.80,-3
6.82,-4  1.55,-3
5.05,-4  1.48,-3
3.42,-4  1.48,-3
2.02,-4  1.50,-3
9.33,-5  1.52,-3
2.39,-5  1.53,-3
0 1.53,-3

6.46,-3  4.93,-2

Total

8.21,-2
8.15,-2
7.99,-2
7.70,-2
7.30,-2
6.78,-2
6.17,-2
5.50,-2
4.81,-2
4.12,-2
3.u48,-2
2.89,-2

2.38,-2

1.56,-2
1.00,-2
6.35,-3
4.05,-3
2.61,-3
1.70,-3
1.10,-3
7.01,-4
4.25,-4
2.41,-k4
1.34,-4
9.84,-5

6.61,-2
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0
5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120

130 .

140
150
160
170
180

m=20

1.70,-2
1.66,-2
1.54,-2
1.36,-2
1.15,-2
9.40,-3
7.42,-3
5.71,-3
4.29,-3
3.17,-3
2.31,-3
1.66,-3
1.17,-3
5.61,-4
2.47,-4
9.43,-5
2.76,~5
5.00,-6
4.12,-6
1.29,-5
2.48,-5

3.62,-5

4.54,-5
5.12,-5
5.32,-5

Integral 5.96,-3

T a
( [¢]

2)

TABLE 29(c)

E = 81.63 eV

(A)
m=1 Total m=20
0 1.70,-2 1.91,-2
2.16,-4  1.70,-2 1.87,-2
7.31,-4  1.68,-2 1.74,-2
1.26,-3  1.61,-2 1.54,-2
1.56,-3  1.47,-2 1.32,-2
1.59,-3  1.26,-2 1.09,-2
1.42,-3 1.03,-2 8.69,-3
1.16,-3  8.02,-3 6.80,-3
8.83,-4  6.06,-3 5.24,-3
6. 47,-4  4,47,-3 3.99,-3
4,63,-4  3.23,-3 3.02,-3
3.30,-4  2.31,-3 2.27,-3
2.36,-4  1.64,-3 1.71,-3
1.32,-4  8.25,-4 9.72,-4
8.69,-5  4.21,-4 5.56,-4
6.66,-5  2.27,-4 3.21,-4
5.50,-5  1.38,-4 1.88,-4
4.59,-5  9.68,-5 1.13,-4
3.70,-5  7.80,-5 7.35,-5
2.79,-5  6.87,-5 5.38,-5
1.91,-5  6.31,-5 4.57,-5
1.14,-5  5.90,-5 4,39,-5
5.25,-6 5.59,-5 4.48,-5
1.34,-6 5.39,-5 4.63,-5
0 5.32,-5 4.69,-5
1.03,-3  8.02,-3 7.53,-3

Total

1.91,-2
1.91,-2
1.88,-2
1.79,-2
1.63,-2
1.40,-2
1.14,-2
8.97,-3

' 6.86,-3

5.15,-3
3.83,-3
2.84,-3
2.11,-3
1.19,-3
7.03,-4
4.36,-4
2.85,-4
1.95,-4
1.39,-4
1.03,-4
7.96,-5
6.40,-5
5.41,-5
4.86,-5
4.69,-5

9.43,-3
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10
15
20
25
30
-35
40
45
50
55
80
70
80
90
100
110
120
130
140
150
160
170
180

m=0

1.01,-2
9.81,-3
8.95,-3
7.71,-3
6.32,13
4.97,-3
3.77,-3
2.79,-3
2.03,-3
1.45,-3
1.02,-3
7.16,-4
4,96 -l
2.28,-4
9,74,-5
3.62,-5
1.03,-5
1.92,-6
1.84,-6
5.31,-6
9.85,-6
1.42,-5
1.76,-5
1.98,-5
2.05,-5

Integral 3.02,-3

T a
( [e]

2

)

TABLE 29(d)

E = 100 eV

Total

1.01,-2
1.02,-2
1.02,-2
9.77,-3
8.68,-3
7.17,-3
5.57,-3
4.13,-3
2.96,-3
2.08,-3
1.44,-3
9.95,-1
6.83,-4
3.24,-4
1.59,-4
8.U45,-5
5.12,-5
3.64,-5
2.98,-5
2.64,-5
2.42,-5
2.27,-5
2.15,-5
2.08,-5
2.05,-5

4.19,-3

Total

1.10,-2
1.11,-2
1.10,-2
1.05,-2
9.27,-3
7.63,-3
5.93,-3
4,41,-3

3.20 ’—3

2.29,-3
1.63,-3
1.17,-3
8.4k, -4
4.60,-4
2.67,-4
1.65,-4
1.09,-4
7.56,-5
5.54,-5
4,27,-5
3.46,-5
2.94,-5
2.62,-5
2.45,-5
2.40,-5

4.68,-3
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10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160

170

180

1.48,-3
1.3,-3
1.16,-3
8.76,-4
6.13,-4
4.09,-4
2.66,-4
1.72,-4
1.10,-4
7.13,-5
4.61,-5
2.99,-5
1.94,-5
8.04,-6
3.16,-6
1.09,-6
2.88,-7
4,70,-8

5.24,-8

1.55,-7
2.83,-7
4.00,-7
4.,92,-7
5.50,-7
5.69,-7

Integral 2.45,-4

T
( a,

2

)

TABLE 29(e)

E = 200 eV

m=1 Total

0 1.48,-3
1.19,-4  1.63,-3
3.09,-4  1.78,-3
3.64,-4  1.60,-3
2.94,-4  1,20,-3
1.92,-4%  7.93,-4
1.11,-4%  4.89,-4
6.07,-5  2,93,-4
3.19;,-5  1.74,-b
1.65,-5 ~ 1.04,-4
8.49,-6  6.31,-5
4.43,-6  3.88,-5
2.41,-6  2.42,-5
9.88,-7  1.00,-5
7.06,-7  4,57,-6
6.47,-7  2.39,-6
5.93,-7  1.47,-6
5.10,-7  1.07,-6
4.08,-7  8.68,-7
3.01,-7  7.56,-7
2.01,-7  6.84%,-7
1.16,-7 . 6.33,=7
5.25,-8  5.97,-7
1.33,-8  5.76,-7
0 5.69,-7

8.44,-5 4,1, -4

1.47,-3
1.38,-3
1.15,-3
8.57,-4
5.93,-4
3.91,-4
2.52,-4
1.62,-4
1.05,-4
6.87,-5
4.59,-5
3.11,-5
2.15,-5
1.07,-5
5.59,-6
3.06,-6
1.79,-6
1.18,-6
9.14,-7
8.36,-7
8.52,-7
9.04,-7
9.62,-7
1.00,-6
1.02,-6

2.43,-4

Total

1.47,-3
1.62,-3
1.75,-3
1.56,-3
1.14,-3
7.33,-L
.40, -4
2.58,-1
1.52,-4
9.14,-5
5,67,-5
3.64,-5
2.43,-5
1.20,-5
6.72,-6
4.15,-6
2.78,-6
2.02,-6
1.57,-6
1.31,-6
1.17,-6
1.09,-6
1.04,-6
1.02,-6
1.02,-6

3.93,-4

271



272

FIGURES



273

FIGURE CAPTIONS

Figure 1

Differential cross section for electron impatt excitation of He(2lS)

computed in the First Born approximation at incident energies of 29.6 and 40.1 eV.

Figure 2

Differential cross section for electron impact excitation of He(2lP)

computed in the First Born approximation at incident energies of 29.6 and 40.1 eV.

Figure 3

Differential cross section for electron impact excitation of He(235)
computed in the Born-Oppenheimer approximation at incident energies of 29.6,

40.1 and 55.5 eV.

Figure i

Differential cross section for electron impact excitation of He(23P)
computed in the Born-Oppenheimer approximation at incident energies of 29.6,

L0.1 and 55.5 eV.

Figure 5

Differential cross section for electron impact excitation of He(23S)
computed in the Born-Oppenheimer approximation at an incident energy of 29.6 eV

using expression (5.4.1).

Obtained using the excited state wave function of Cohen and
McEachran.

——————————— Obtained using the excited state wave function of Morse et al.

Figure 6

Differential cross section for electron impact excitation of H(2s) computed
in the DWPO apﬁroximation‘at incident energies of (a) 50 eV and (b) 100 eV.

. . DWPO I (McDowell et al., 1975b)

DWPO II (McDowell et al., 1975b)

DWPO III (present work)
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Figure 7

Differential cross section for electron impact excitation of H(2p) computeﬁ
in the DWPO approximation at incident energies of (a) 50 eV and (b) 100 eV.

Theory as for figure 6.

Figure 8

Differential cross section for electron impact excitation of H(n = 2)
computed in the DWPO III model at incident energies of (a) 1.02, (b) 1.21 and
(¢) 1.u4 Rydbergs.

—————————— Excitation of the 2s state.

Excitation of the 2p state.

Excitation of the n = 2 1level.

Experiment: @ , Williams (1976).

Figure 9

Differential cross section for electron impact excitation of H(n = 2) at

incident energies of (a) 5.4.4 eV (= 4 Ryd.) and (b) 100 eV.

DWPC III

—_—— Hybrid close-coupling unitarized Born approximation: Kingston
et al. (1976).

————— Hybrid pseudo-state close-coupling distorted wave model:

Callaway et al. (1976), (a) only.

—_— Unitarized DWPO III model, (b) only.

Experiment: é , Williams and Willis (1975).
Figure 10
Total cross section for electron impact excitation of He(nls).
(a) n=2:
DWPO I
—_———e— Multichannel eikonal method: Flannery and McCann (1975).
—t —+— Eikonal distorted wave method: Joachain and Vanderpoorten (1974a).

—_——— Many-body theory: Thomas et al. (1974).
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Figure 10 continued

Second-order optical potential distorted wave model: Winters (197u4).

—————————— Coulomb-projected Born approximation: Hidalgo and Geltman (1972).
Experiment: &, Hall et al. (1973); ZS, Trajmar (1973); @ , Brongersma et al. (1972)
B, Rice et al. (1972); & , Vriens et al. (1968).

(b) n = 3:

DWPO I

—_— DWPO II
—_—— Multichannel eikonal method: Flannery and McCann (1975).
Experiment: @ , Chutjian and Thomas (1975); & , Moustafa Moussa et al. (1969);

A, st.John et al. (1964).

DWPO I

—_———— DWPO II |
Experiment: Y , Showalter and Kay (1975); E., Pochat et al. (1973);

4 , van Raan et al. (1971); & , Moustafa Moussa et al. (1969); A , St. John et

al. (1964).

Same as in figure 10(c).

Figure 11

Differential cross section for electron impact excitation of He(2lS) at

incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and

‘(e) 200 eV,
DWPO i
—_—— Many-body theory: Thomas et al. (1974).
—_— — Multichannel eikonal method: Flannery and McCann (1975).
S — Second-order diagonalization method: Baye and Heenen (1974).
—_——— Eikonal Born Series: Byron and Joachain (1975).

(a) and (b), distorted wave calculation: Shelton et al. (1973);
(¢) and (d), second-order optical potential distorted wave model:

Bransden and Winters (1975).
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Figure 11 continued

———————— (a) and (b), Glauber approximation: Yates and Tenney (1972);
(c) to (e), Coulomb-projected Born approximation: Hidalgo and
Geltman (1972).
Experiment: § , Dillon and Lassettre (1975); A , Suzuki and Takayanagi (1973);
4 , Trajmar (1973); ¥ , Crooks (1972); & , Opal and Beaty (1972); O , Rice

et al. (1972).

Figure 12

Differential cross section for electron impact excitation of He(2lS)
computed in the DWPO approximation at incident energies of (a) 29.6 eV,
(b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and (e) 200 eV.

——————— DWPO I

DWPO II

DWPO III

Experiment: # , Dillon and Lassettre (1975); 0 , Hall et al. (1973);
A, Suzuki and Takayanagi (1973); 4 , Trajmar (1973); Y , Crooks (1972);

¢ , Opal and Beaty (1972); ¥ , Rice et al. (1972).

Figure 13

Differential cross section for electron impact excitation of He(SlS) at’

incident energies of (a) 29.2 eV, (b) 39.7 eV, (c) 100 eV and (d) 200 eV.

DWPO I
—_——— — Many-body theory: Thomas et al. (1974).
—_——— e — Multichannel eikonal method: Flannery and McCann (1975).

Experiment: & , Chutjian and Thomas (1975).

Figure 1y

Small-angle differential cross section for electron impact excitation
of He(ulS) at incident energies of (a) 50 eV, (b) 60 eV, (c) 100 eV and

(d) 200 eV.

DWPO I

—_— DWPO II
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Figure 14 continued

First Born approximation: Bell et al. (1969).

Experiment: & , Pochat (1973).

Figure 15

As for figure 14, but for excitation of He(SlS).

Figure 16

Total cross section for electron impact excitation of He(238).

DWPO I

Many-body theory: Thomas et al. (1974).

Second-order optical potential distorted wave model: Winters (1974).
Experiment: <§ » Trajmar (1973); & , Brongersma et al. (1972); ® , Crooks

et al. (1972)3; A, Vriens et al. (1968).

Figure 17

Differential cross section for electron impact excitation of He(238) at
incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and
200 eV.
DWPO I (with excited state wave function of Cohen and McEachran).
—_—————— DWPO I (with excited state wave function of Morse et al.).

—_—— Many-body theory: Thomas et al. (1974).

(a) and (b), distorted wave calculation: Shelton et al. (1873);
(e¢) and (d), second-order opticél'potential distorted wave model:
Bransden and Winters (1975).

Experiment: 01 , Yagishita et al. (1976); B, Dillon (1975); & , Suzuki and

Takayanagi (1973); A , Trajmar (1973); Y , Crooks (1972); @ , Opal and Beaty (1972).

Figure 18

Differential cross section for electron impact excitation of He(238)
computed in the DWPO approximation at incident energies of (a) 29.6 eV, (b) 40.1 eV,

(c) 81.63 eV, (d) 100 eV and (d4) 200 eV.
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Figure 18 continued

———————— —.  DWPO I

DWPO III
Experiment: & , Yagishita et al. (1976), ® , Dillon (1975); O , Hall et al.

(1973)3 & , Suzuki and Takayanagi (1973); & , Trajmar (1973); ¥ , Crooks (1972);

@ , Opal and Beaty (1372).

Figure 19

Total integrated cross section for electron impact excitation of He(an).

(a) n=2:

DWPO I

. DWPO II
Experiment: O , Chutjian and Srivastava (1975); 4 , Dillon and Lassettre (1975);
Q@ , Hall et al. (1973); & , Donaldson et al. (1972); X , de Jongh and van Eck (1971)
[] , Moustafa Moussa et al. (1969).

(b) n = 3:

DWPO I
—_— DWPO II
—_— e Multichannel eikonal method: Flannery and McCann (1975).
——— e e — Second-order diagonalization method: Baye and Heenen (1974).
————— Second-order optical potential method: Bransden and Issa (1975).
Experiment: @ , Chutjian (1976); Y , Showalter and Kay (1975); other éymbéls
as in figure 19(a).
(e) n =4

Same as in figure 19(b).
(d) n =5:

Same as in figure 19(b).
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Total differential cross section for electron impact excitation of Ee(2%P)

at incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV

and (e) 200 eV.

Experiment: @I

DWPO I

Many-body theory: Thomas et al. (1974).

Multichannel eikonal method: Flannery and McCann (1975).
Second-order diagonalization method: Baye and Heenen (1974).
Eikonal distorted wave method: Joachain and Vanderpoorten (197u4a).
(a) to (c¢) and (e), distorted wave calculation: Madison and Shelton
(1973)3; (d), second-order optical potential distorted wave model:
Winters (1974).

(a) and (b), 2-state close-coupling calculation: Trﬁhlar et al.
(1973); (c) to (d), Coulomb-projected Born approximation: Hidalgo
and Geltman (1972).

, Chutjian and Srivastava (1975); A& , Dillon and Lassettre (1375);

A , Suzuki and Takayanagi (1973); @ , Truhlar et al. (1973); & , Opal and Beaty

(1972); B , Chamberlain et al. (1970).

Figure 21

Small-angle total differential cross section for electron impact excitation

of He(2lP) at incident energies of (a) 29.6 and 40.1 eV and (b) 80 and 100 eV.

-- Experiment: - ¥

DWPO I
DWPO II
First Born approximation: Bell et al. (1969).

y-Hall et. al.. (1973);.. other symbols as.for. figure 20.
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Figure 22
Total differential cross section for electron impact excitation of He(3lP)

at incident energies of (a) 29.2 eV, (b) 39.7 eV, (c) 100 eV and (d) 200 eV.

DWPO I

Many-tody theory: Chutjian and Thomas (1975).

—_———— Multichannel eikonal method: Flannery and McCann (1975).
————————— Glaubter approximation: Chan and Chen (1974b).

Experiment: ] s Chutjian (1976); § , Chutjian and Thomas (1975).

Figure 23

Small-angle total differential cross section for electron impact excitation
of He(SlP) computed in the DWPO approximation at incident energies of 29.2 and

39.7 eV.

DWPO I

DWPO II

Experiment: ¢ , Chutjian and Thomas (1875).

Figure 24

A for electron impact excitation of He(2lP) at incident energies of

(a) 40 eV, (b) 60 eV, (c) 80 eV,(d) 100 eV and (e) 200 eV.

DWPO I

————— Many-body theory: Thomas et al. (1374).

—_——— Multichannel eikonal method: Flannery and McCann (1975).
—+—+ ——  Eikonal distorted wave method: Joachain and Vanderpoorten (197ub).

Distorted wave calculation: Madison and Shelton (1973).

Experiment: @ , Eminyan et al. (1974).

Figure 25
x| for electron impact excitation of He(2lP) at incident energies of
(a) 40 eV, (b) 60 eV, (c) 80 eV, (d) 100 eV and (e) 200 eV.

Theory and experiment as for figure 2u.
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Figure 26

A for electron impact excitation of He(BlP) at incident energies

of (a) 50 eV, (b) 80 eV, (c) 100 eV and (d) 200 eV.

DWPO I
—_———e— Multichannel eikonal method: Flannery and McCann (1975).

Experiment: $ , Eminyan et al. (1975).

Figure 27

lxl for electron impact excitation of He(3lP) at incident energies of
(a) 50 eV, (b) 80 eV, (c) 100 eV and (d) 200 eV.

Theory and experiment as for figure 26.

Figure 28

Total integrated cross section for electron impact excitation of He(23P).

DWPO I
—_————— Many-body theory: Thomas et al. (1974).

Experiment: € , Hall et al. (1973); i , Trajmar (1973); @ , Jobe and St. John

(1967).

Figure 29

Total differential cross section for electron impact excitation of He(23P)
at incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and

(e) 200 eV.

DWPO I (with excited state wave function of Cohen and McEachran).
————————— DWPO I (with excited state wave function of Morse et al.).

—_— Many-body theory: Thomas et al. (1974).

Distorted wave calculation: Shelton et al. (1973).
Experiment: G , Yagishita et al. (1976); & , Chutjian and Srivastava (1975);
A , Suzuki and Takayanagi (1973); 4 , Trajmar (1973); ¢ , Gelebart et al. (1975)

on (b), Opal and Beaty (1972) on (c).
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Abstract. Total and differential cross sections are calculated for electron impact excitation
of the 2'S, 2*Sand 3'Sstates of helium in a distorted wave model at impact energies between
30 and 300eV. The results are compared with other theoretical models and with recent
absolute experimental measurements.

1. Introduction

The study of electron impact excitation of helium atoms has received considerable
attention during the last few years. Close-coupling methods have been used to study the
low-energy resonances (Smith et al 1973, Ormonde and Golden 1973, Oberoi and Nesbet
1973) whereas the Born and related methods have provided reasonably accurate total
cross sections at high energies. However, it is the intermediate energy region, from the
first ionization threshold to the Born region and where an infinite number of channels
may be open, which provides much current interest.

There have been a number of important recent studies. The second-order optical
potential method of Bransden and Coleman (1972) has been applied, initially in an impact
parameter treatment, to 2'S excitation of helium by Berrington et al (1973) and by
Nicholls and Winters (1973). More recently Bransden and Winters (1975) have used a
partial wave formalism which has produced both singlet and triplet differential cross
sections in close agreement with the experimental measurements at higher energies by
Crooks and Rudd (1972).

The many-body theory of Martin and Schwinger (1959) has been developed and
applied by Thomas et al (1974) to electron impact excitation of the n = 2 levels of
helium using a first-order form of the theory. The method predicts the position of the
deep minimum at about 50°, characteristic of 2'S differential cross sections at low
energies, with reasonable accuracy. Preliminary results for the n = 3 states at two
energies are given by Taylor et al (1975).

Both these calculations employ distorted waves in the initial and in the final channel,
but whereas the model of Thomas et al requires both to be calculated in the field of the
ground state, Bransden and Winters allow for polarization effects in the initial channel,
and calculate the distorted wave in the final channel in the field of the final state. A
similar, but simpler, model was employed earlier by Shelton et al (1973). The eikonal
distorted wave method has been utilized by Joachain and Vanderpoorten (1974) who
have calculated cross sections for 2'S excitation at intermediate and higher energies.

1851
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At higher energies, attempts have also been made to improve on the first Born
predictions in a number of ways, among the most interesting recent calculations being
the Glauber treatment by Yates and Tenney (1972) and the Coulomb projected Born
calculations of Hidalgo and Geltman (1972).

In this paper we apply the distorted wave polarized orbital (DwWP0) model of McDowell
et al (1973, 1974), which allows for the effects of distortion in the initial channel, including
polarization, and also for distortion of the target by the dipole polarization. We restrict
ourselves in this paper to total and differential cross sections for 2'S, 23S and 3'S
excitation at energies from 29-2 to 300 ¢V. There are many recent absolute experimental
measurements on these cross sections (Trajmar 1973, Rice et al 1972, Crooks and Rudd
1972, Opal and Beaty 1972, Brongersma et al 1972, Suzuki and Takayanagi 1973, Dillon
and Lassettre 1975, Moustafa Moussa et al 1969, Hall et al 1973), so that they provide
a stringent test of any theoretical model.

We outline our theoretical mode! in the next section (§ 2). Details of the calculations
and the approximate wavefunctions employed are described in § 3, our results being
presented and compared with those of other theoretical models, and with experiment in
§ 4. Finally we summarize our results and present our conclusions in § 5.

2. Theory
\
The theory developed below is for a general two-electron atom or ion carrying a nuclear
charge Z. We adopt atomic units throughout.
The transition matrix is defined by

T = (O V¥ (1)

where @; is the unperturbed wavefunction in the final channel, V; the interaction potential
in this channel and W,* the exact wavefunction describing the total system in the initial
channel. The differential cross section I(€2) for a transition from an initial state i to a
final state f is then expressed in terms of the T-matrix by

1(2) = i k, Tl adsr™! (2)
with k; and k; the initial and final momentum of the incoming and outgoing electron
respectively. By integrating (2) over all solid angles we obtain the total cross section Q;
given by

1 kf +1

el 4 - 12 2
7k, _llTlfl d(cos0) mag (3)

Qif(kiz )=
with £, . l?f = cos .
We assume the centre of mass to be fixed at the nucleus and let r; be the position
vector of the incident electron with respect to this point. The initially bound electrons
have position vectors r; and r,.
The Schrédinger equation describing the complete process is

(H=EW =0 (4)
with

E, and E, refer to the ground and excited state energies of the target atom respectively.
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H is divided into two parts
H=H+V; (6)

where it is convenient to choose

zZ Z 1
Hi= —3Vi+Vi4+VyH-——-—"— Zi—, (N
Fy Ta T3 T2
AT TR 9
F3 T3 Ta3

in the notation of McDowell et al (1973) where now z = Z —2.

The system considered has total spin S = 3 and hence is a doublet. Denoting the
doublet spin functions by S* and S~ (plus and minus signs referring to singlet and triplet
states of the target respectively), the final unperturbed state of the total system can be
represented by

D(12,3) = (12, 3)S*(12,3) ©)

where (12, 3) represents the spatial part of ®; and is the product of a bound state
function ¢¢(12) and an outgoing Coulomb wavefunction y, (z.3).

¥i(12,3) = d(12)14,(2, 3), (10)
1

*(12,3) =ﬁ(a1ﬂ2—azﬁl)a3, (11
1

§7(12,3) = %[2B3a1a2'—a3(alﬂ2+ﬁla2)]‘ (12)

The total antisymmetrized wavefunction P;* is written as
W= W (12)F(3)S7(12,3) (13)

with ¢(12) the unperturbed spatial part of the ground state wavefunction and F(3) the
distorted wave. We now obtain the following expressions for the T-matrix, on integrating
over spin functions,

i = Y12, 3V (12)F(3)) — (Y(12, 3)V:(23)F(1)) (14)
Ty = 3W12,3)¢(23)F(1)). (15)

The distorted wave is derived by the procedure adopted by McDowell et al (1973).
Thus, F(3) is expanded in partial waves

F@3) = Li u'(kr3)P(c0593) (16)
Tk &
where u,(k;r) satisfies
2
=D oy =200 k) = X (IR L) (17)

dr?
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with
o] 2 [+ o]
X(r) = —(e;s—kH dpo tR, (D fk;t) dt———j tR, (Du,(k;t)y(t,r)dt (18)
° 20+1 J,
and
r
) = e (19)

>

Equation (17) is to be solved subject to the usual boundary conditions,
lll(ki, 0) = 0, ul(ki, r) ~ ki_l/z Sln(k,r—%ln’-{—(sl)
r—+w

The polarization induced by the incoming electron is only taken into account by
means of the direct polarization potential V,,,(r) so that (17) produces elastic scattering
solutions in the adiabatic exchange approximation, the effect of exchange polarization
terms having been neglected.

The direct static potential Vi, (r) is given by

zZ 2
Visaslr) = ——+ <¢ls(t)|—r__—t|¢ls(t)> (20)
and V,,(r) by

2
Vlr) = <¢ls<r)m¢po.<r, r)> @1

with ¢,,(r, t) the dipole component of the perturbed atomic wavefunction.

It is consistent with our neglect of exchange polarization terms in (17) to include
the dipole distortion of the atom, through the ground state wavefunction ¢;(12), in the
direct transition amplitude alone. This results in a modified T-matrix describing
singlet-singlet transitions of the form

Thed = T + TR (22)
where T is given by (14) and
TE = 2Y12, 3)V; ¢ (Dpa(2, 3IF(3)). (23)

We discuss results obtained with both T;f and T§°* and refer to these as the DWPO I
and DWPO 11 approximations respectively.

3. Numerical methods and choice of atomic wavefunctions

The elastic scattering phaseshifts were obtained from solutions of (17) by the method
of Burgess (1963) and on comparison with those of Duxler et al (1971), were found to
be in good agreement. A further check on the numerical work was provided by in-
corporating in the code switches to output the Born and Born-Oppenheimer approxi-
mation results for total and differential cross sections. Born results were in reasonable
agreement with those of Bell et al (1969) considering the more complex wavefunctions
employed by the latter. The Born-Oppenheimer 23S total cross sections were compared
with those of Bell et al (1966) and were in good agreement. These latter results will be
discussed further below.
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3.1. Choice of atomic wavefunctions

(i) The wavefunction describing the ground state was taken to be the separable Hartree—
Fock wavefunction of Green et al (1954)

$i12) = ¢, (1) (2) (24)
with

¢1(r) = Ry (r)Y5o(#), - (25)

Ry (r) = N (™" +c, e ™), (26)

a = 14558, c, = 06, N, = 2:968468.

The dipole part of the distortion induced in the ground state is given by

e(r,t) Uy, ,(r) Py(cos0,)
t? r Jr
where €(r, 1) is a unit step function which causes the perturbation to vanish when the

incoming electron is ‘inside’ the atom. The radial function U, . (r) is the usual
Sternheimer function

d)pul(y9 t) = -

27

Uggplr) = Zg ¥ 2re™27(Zor +522r%). (28)

The parameter Z,(= 1-598) is evaluated by matching the asymptotic behaviour of
Voalr) to —a/2r* with « the dipole polarizability of helium, taken to be 1-395 a3. In the
DWPO I model ¢, (r,) is replaced by

¢ls(ri)+¢pol(ri’r3)’ i= 132 . (29)

This results in the expression (22) instead of (14).
(ii) The wavefunction describing the excited state is taken to have the form

oF(12) = \/zths(l) VDV (2) (30)

The core orbital W, (r) is taken to be a 1s hydrogenic eigenfunction while the valence
orbital V,(r) is

Vo) = R(r) Yoo F). (31)

R, (r) is taken to be the analytic Hartree-Fock frozen core wavefunction due to Cohen
and McEachran (1967a, b)

N
R, (r)=¢e"#r Z a&N’L}(Zﬁr) (32)
j=1
with § = Z/n. The a{" coefficients are tabulated by Crothers and McEachran (1970).
The L}(x) are Laguerre polynomials and n denotes the principal quantum number of

the state concerned.
In order to test the sensitivity of the cross sections to this choice of R,(r) we also

computed results for n = 2 by taking R,(r) to have the form

R,(r) = Ny(e™?" —cyre™ ). (33)
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The values of the parameters are, for the 2'S state (Byron and Joachain 1974)

p = 0865, g = 0522, ¢, = 0432784, N, = 061928
and for the 23S state (Morse et al 1935).
p =157, g =061, ¢, = 034081, N, = 1.05.

These functions were also used by Bransden and Winters (1975) and allow us to make
a direct comparison with their work.

4. Results and discussion

We have calculated total and differential cross sections for excitation of 2'S and 23S at
energies of 29-6, 40-1, 81.63, 200 ¢V in both pwpoO 1 and DWPO 11 models. In addition
we have evaluated the total and differential cross sections for 3'S in the pwpo 1 model
at a number of energies.

Our code was checked by comparing our Born—Oppenheimer results (obtained by
replacing u,(k, r) in DWPO 1 by k;” }/?rj(k;r), where j(x) is the Ith regular spherical Bessel
function) with the ‘prior’ calculations of Bell et al (1966). Provided it is not assumed
when deriving an expression for the exchange amplitude that the approximate helium
wavefunctions adopted are exact, there is no post—prior discrepancy. The total cross
section results are found to be insensitive to the representation of the Hartee-Fock
ground state, and to that of the excited state.

4.1. 2'S excitation of helium

Our total cross section results for the 1!S — 2'S transition are shown in figure 1 and
compared with those of other theoretical models and with experiment. At energies
above 200 eV they are in close agreement with the Coulomb-projected Born calculation
of Hidalgo and Geltman (1972) and with the experimental measurements of Vriens et al
(1968). Our results are consistent with the measurements of Rice et al (1972) above
50 eV but at lower energies they agree with the results of Trajmar (1973) at 30 and 40 eV
and with those of Brongersma et al (1972) at 21 and 23 eV. As in the case of hydrogen
our model does not give the low-energy resonances.

If we ignore the measurements of Rice et al (1972) at energies below 50eV, we are
then consistent with all other available experiments over the energy range from 20 to
400 eV.

The many-body theory calculation by Thomas et al (1974), while also consistent
with experiment at energies above 40eV, not unexpectedly fails at lower energies.
However the eikonal distorted wave calculation of Joachain and Vanderpoorten (1974)
appears to give good results down to 80eV whereas the Coulomb-projected Born
results of Hidalgo and Geltman (1972) and the second-order optical potential result of
Winters (1974) increase rather too rapidly with decreasing energy below 200 eV.

Differential cross sections for 1'S — 2'S are shown in figure 2 (a), (b), (¢), (d) at four
energies. The results were insensitive (within 10%) when the Cohen-McEachran
excited state function was replaced by that of Byron and Joachain. Our results, using
Cohen—McEachran wavefunctions (in the DwpO I approximation) agree well in shape
with the experimental results of Trajmar (1973) at 29-6 eV. However, they fail to show
the forward and backward peaks and underestimate the depth of the observed minimum
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Figure 1. Theoretical and experimental total cross section results for the excitation of the
2'S state of helium by electron impact. —— present results (DWPO 1), — —- — many-body
theory (Thomas et al 1974), — — — second-order optical potential distorted wave results
(Winters 1974), —— +——+——+ eikonal distorted wave method (Joachain and Vander-
poorten 1974), —— % —— % ——— Coulomb-projected Born approximation (Hildalgo and

Geltman 1972). Experimental results: A Trajmar (1973), & Brongersma et al (1972),
@ Rice et al (1972), A Vriens et al (1968), [J Lassettre (1965).

near 60°. Independent measurements, using different techniques, by Hall et al (1973)
and Crooks and Rudd (1972) are in excellent agreement with Trajmar’s work, and will
not be discussed separately. In the forward direction our results agree well with the
many-body calculation of Thomas et al (1974) and with the Glauber approximation
(Yates and Tenney 1972), though the many-body method gives a much deeper minimum.
A distorted wave Born approximation calculation (Shelton et al 1973) succeeds in
predicting the forward peak but fails at larger angles. We are again in agreement with
Thomas et al at large angles, where the Glauber approach fails completely, tending at
29-6 eV to a value close t0 9 x 1072 adsr™! for 6 > 140°, where the experiment of
Trajmar (1973) (but not that of Hall et al 1973) indicates a much larger backward cross
section. The addition of target distortion to our model (DwPo 11) has little effect in this
case, unlike that of 1s — ns excitation in atomic hydrogen, but it produces some forward
enhancement. Presumably this is because He(1'S) has acomparatively low polarizability.
The results at 40-1 eV (figure 2(b)) show a similar picture, except that all the calculations
but that of Shelton et al (1973) now agree in the forward direction and at the minimum,
and correctly account for the experimental behaviour at small angles. They again
underestimate both the depth of the minimum and backward cross section. The
Glauber result remains an order of magnitude too small for large angles, while the
DWBA gives results much larger than experiment at all angles.

Opal and Beaty (1972) have extended the measurements to higher energies and we
make comparisons with their results at 81-63 eV (figure 2(c)) and 200 eV (figure 2(d)).
At the first of these energies we also show the many-body result (Thomas et al 1974) and
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Figure 2. Differential cross section results for the excitation of the 2'S state of helium by
electron impact at (a) 29-6, (b) 40-1, (c) 81-63 and (d) 200eV. (a) present results
(DWPO 1), -+ -+ — many-body theory (Thomas et al 1974), — — — distorted wave calculation
of Shelton et al (1973),- - - - - Glauber approximation (Yates and Tenney 1972), + experiment
(Trajmar 1973). (b) as for (a). (c) — present results (DWPO 1), —- ~-— many-body theory
(Thomas et al 1974), — — — second-order optical potential distorted wave results (Bransden
and Winters 1975), O experiment (Opal and Beaty 1972), W experiment (Rice et al 1972).
(d) — x —x— Coulomb-projected Born approximation (Hidalgo and Geltman 1972), ¥/ pre-
liminary eikonal Born series results (Byron and Joachain 1975), @ experiment (Suzuki and
Takayanagi 1973), [J experiment (Dillon and Lassettre 1975). Other symbols as for (c).

a second-order potential distorted wave result of Bransden and Winters (1975). All the
theories agree at small angles and are in excellent agreement with the measurements of
Rice et al (1972) for 8 < 45°. The many-body theory shows a shallow minimum at 52°,
where our model predicts a very deep minimum. Both experiments (Rice et al 1972,
Opal and Beaty 1972) show minima (at 60° and 45° respectively), deeper than predicted
in the many-body theory, but much shallower than we obtain. The distorted wave



Electron impact excitation of He 1859

calculations of Bransden and Winters (1975) fail to predict a minimum but agree well
with the many-body result at large angles, the experimental results lying between these
theoretical predictions and ours.

At 200 eV the experimental results of Opal and Beaty (1972), Suzuki and Takayanagi
(1973) and of Dillon and Lassettre (1975) are in good agreement over a wide angular range.
Our calculation and that of Hidalgo and Geltman (1972) agree well with each other,
but fall below experiment for angles greater than 40°. Preliminary eikonal Born series
calculations by Byron and Joachain (1975) are, however, in essentially complete agree-
ment with experiment at this energy for all angles from 20° to 150°. Comparison with
the results of Bransden and Winters (1975) at 150 eV (their figure 1(d)) suggests that
inclusion of final-channel distortion is necessary to account for the large observed
backward cross sections at moderate and higher energies. A similar conclusion was
reached by McDowell et al (1975) in the case of n = 2 excitation of atomic hydrogen.

4.2. 23S excitation of helium

The observed differential cross section at 29-6 eV (Trajmar 1973, Hall et al 1973, Crooks
et al 1972) show two minima, at 45° and at 115°. Our model reproduces the shape of the
experimental curve accurately (figure 3). When we employ the Cohen—McEachran
excited state function, we must renormalize our calculation by a factor of 10 to produce
the agreement shown in figure 3. Changing to the Hartree-Fock representation of the
excited state due to Morse et al (1935) shifts these results by as much as a factor of five
at some angles but preserves the two minima. The transition matrix element is very
sensitive to the approximate wavefunctions employed at low impact energies (though
this sensitivity is absent if distortion is neglected), whereas the experimental measure-
ments of different groups, all claiming absolute values, agree well for this transitiont.
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Figure 3. Differential cross section results for the excitation of the 23S state of helium by
electron impact at 29-6eV. present model employing the Cohen and McEachran
excited state wavefunction and renormalized by a factor of 10,- - - - - present model employing
the Hartree-Fock representation for the excited state wavefunction due to Morse et al (1935)
and renormalized by a factor of 10, + experiment (Trajmar 1973).

+ Note added in proof. This sensitivity arises from the overlap of the I = 0 component of the distorted wave
with the radial part of the 23S function.
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We suggest that it is therefore a valid procedure to normalize the theoretical calculations
to experiment, say at 20°. The other theoretical models, ie the many-body theory of
Thomas et al (1974) and the distorted wave calculation of Shelton et al (1973) show only
a single shallow minimum near 90° and 70° respectively (figure 4(a)).

At 40-1 eV our model again predicts two minima but only one (at 95°) is observed
experimentally, and our results are much too small at both small and large angles. The

(a) (6)
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do/ dfL (a?sr)
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L 10
60 120 180 60 120 180
6 (deg)

Figure 4. Differential cross section results for the excitation of the 23S state of helium by
electron impact at (a) 29-6, (b) 40-1, (c) 81-63 and (d) 200 eV. (a) present results em-
ploying the Cohen and McEachran excited state wavefunction, ----- present results
employing the Hartree-Fock representation for the excited state wavefunction due to
Morse et al (1935), —-—-— many-body theory (Thomas et al 1974), — — — distorted wave
calculation of Shelton et al (1973), + experiment (Trajmar 1973). (b) as for (a). (c)
present results, — — — second-order optical potential distorted wave results (Bransden and
Winters 1975), Q experiment (Opal and Beaty 1972). (d) § experiment (Suzuki and Taka-
yanagi 1973). Other symbols as for (c).
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other theoretical models shown in figure 4(b) (Thomas et al 1974, Shelton et al 1973)
predict a single minimum, but at a much smaller angle (65°). At 81-6 eV neither our
results nor those of Bransden and Winters (1975), shown in figure 4(c), bear much re-
semblance to each other or to the experimental data of Opal and Beaty (1972) except at
large angles. At 200eV (figure 4(d)), allowing for our underestimate at large angles
through failure of our model to include final-channel distortion, the agreement with
experiments of Opal and Beaty (1972) and of Suzuki and Takayanagi (1973) is reasonable.
However, we find a sharp decrease in the differential cross section at small angles
(0 < 25°), which is known as an Ochkur dip. In treating excitation to triplet states our
model is essentially first order apart from local distortions in the incident wave, whereas
it is second order for transitions in which the direct amplitude enters. A more sophisti-
cated treatment of exchange removes this forward dip (Byron and Joachain 1975).

Our calculated total cross sections for 2°S are shown in figure 5. They are compared
with the experimental measurements of Brongersma et al (1972), Trajmar (1973),
Crooks et al (1972) and Vriens et al (1968) over the complete energy range. In addition
we show the theoretical results of Thomas et al (1974) using lowest-order many-body
theory and those of Winters (1974) using the second-order optical potential model.
A close-coupling calculation by Smith et al (1973) (see however Seaton 1974) gives
results a factor of 2-5 smaller than those of Winters (1974). The slopes of the theoretical
results are in good agreement, though there is some disagreement as to the magnitude
of the cross section below 80 eV. At higher energies our results and those of Winters
are in essentially complete agreement.
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Figure 5. Theoretical and experimental total cross section results for the excitation of the
23S state of helium by electron impact. present results, —-—-— many-body theory
(Thomas ef al 1974), — — — second-order optical potential distorted wave results (Winters
1974). Experimental results: A Trajmar (1973), § Brongersma et al (1972), @ Crooks et al
(1972), l Vriens et al (1968).
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However, the experimental results from 22 eV to 200 eV reported in four independent
experiments, each in a separate energy range, form a consistent whole, and give an
energy dependence which is much more rapidly decreasing at high energies than is the
theory.

A confirmation of the results of Vriens er al (1968) (which involve an extrapolation
from 5° to the forward direction) would be especially helpful in advancing our under-
standing of !S — 3S transitions.

4.3. 3'S excitation of helium

In view of the success of our model for 2'S excitation we thought it worthwhile to extend
the work to the 3!S case. Our total cross sections are compared with experiment
(Moustafa Moussa et al 1969) in figure 6. The second-order optical potential results
(calculated in a nine-state impact parameter version) of Bransden and Issa (1975) are
shown for comparison. Their results are available for E > 200 eV only, and lie slightly
above ours at these energies, ours being within 109 of experiment in this range. At
intermediate cnergies (100 < E < 300eV) our results lie as much as 209, above the
experimental data, but we are again in close agreement at lower energies. The overall
agreement is highly satisfactory.

\
X'U’S T L T T T T
41 _
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I L 1 L ! T ]
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Figure 6. Theoretical and experimental total cross section results for the excitation of the
3'S state of helium by electron impact. present results (DWPO 1), — ® — second-order
optical potential model (Bransden and Issa 1975), © experiment (Moustafa Moussa et al
1969).

Neither of the available theoretical models (Taylor et al 1975, and this paper) give
results in agreement with the experimental measurements of Chutjian and Thomas
(1974) for the 3'S differential cross section at 29-2 eV except at large angles (figure 7(a)),
both theories predicting unstructured minima near 60° and failing to predict the forward
peak. It may well be necessary to include explicitly coupling with 3'P and 3'D at least,
to obtain agreement with experiment this close to threshold. However, similar calcula-
tions at 39-7¢V are in much better agreement with each other (figure 7(b)) and with
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Figure 7. Differential cross section results for the excitation of the 3'S state of helium by
electron impact at (a) 29-2 and (b) 39-7 V. (a) present results (DWPO 1), — - — - — many-
body theory (Taylor et al 1974), - § - experiment (Chutjian and Thomas 1974). (b) as for (a).

experiment, the minimum being in the correct position, but neither theory showing the
structure observed near 110°.

5. Conclusion

We have presented the results of our distorted wave calculations of total and differential
cross sections for electron impact excitation of the 2'S, 23S, and 3!S states of helium at
energies between 30 and 300eV. Detailed tables of our results will be published else-
where (Scott 1976).

At low energies (E < 100 eV) we reproduce the shape of the 'S absolute experimental
measurements well, including the positions of the minima, but in common with other
similar theoretical models we do not always predict accurately the depth of the minimum.
At higher energies our model underestimates the backward scattering, and we believe
this to be due to its failure to allow for distortion effects in the final channel.

Our model is less successful for 23S excitation, though it gives a better account of
the detailed structure in the differential cross section at the lowest energy considered
than the other available models, and yields total cross sections for 23S in good agreement
with the work of Winters (1974) at energies above 80 eV. We believe that further experi-
mental measurements of the total cross section for 1'S — 23S at energies above 100 eV
would help to resolve the discrepancy between the two sets of theoretical results and
the experimental data of Vriens et al (1968). A further measurement of the differential
cross section at 80 eV would also be helpfulf.

+ Such measurements have been carried out by Pochat, Gelebert and Peresse (1975 private communication)
and confirm Opal and Beaty's work.
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The total cross sections for both the 2'S and 3'S transitions agree well with experi-
ment at all energies. We intend to extend this work to higher members of the helium
isoelectronic sequence which are of interest in plasma and astrophysical applications
and to the 4'S and 5'S states (Scott and McDowell 1975).

Since the model yields results for the S-S transitions of comparable accuracy to the
many-body theory model of Taylor and his colleagues it will be interesting to examine
its predictions for S-P transitions, and in particular for the coincidence experiments of
Eminyan et al (1974). This work is now under way.

Acknowledgments

One of us (TS) is indebted to the Science Research Council for a Postgraduate Student-
ship. We wish to thank Dr F J de Heer for a useful discussion of the experimental
results, and Professor C Joachain and Dr E Lassettre for permission to quote unpublished
results.

References

\
Bell K L, Eissa H and Moiseiwitsch B L 1966 Proc. Phys. Soc. 88 57-63
Bell K L, Kennedy D J and Kingston A E 1969 J. Phys. B: Atom. Molec. Phys.2 26-43
Berrington K A, Bransden B H and Coleman J P 1973 J. Phys. B: Atom. Molec. Phys. 6 436—49
Bransden B H and Coleman J P 1972 J. Phys. B: Atom. Molec. Phys. 5 537-45
Bransden B H and Issa M R 1975 J. Phys. B: Atom. Molec. Phys. 8 1088-94
Bransden B H and Winters K H 1975 J. Phys. B: Atom. Molec. Phys. 8 1236-44
Brongersma H H, Knoop F W E and Backx C 1972 Chem. Phys. Lett. 13 16-9
Burgess A 1963 Proc. Phys. Soc. 81 442-52
Byron F W Jr and Joachain C J 1974 private communication to B H Bransden
—— 1975 Phys. Rev. to be published
Chutjian A and Thomas L D 1974 unpublished, but see Taylor et a/ (1975)
Cohen M and McEachran R P 1967a Proc. Phys. Soc. 92 37-41
—— 1967b Proc. Phys. Soc. 92 539-42
Crooks G B, DuBois R D, Golden D E and Rudd M E 1972 Phys. Rev. Lett. 29 327-9
Crooks G B and Rudd M E 1972 PhD Thesis University of Nebraska
Crothers D S F and McEachran R P 1970 J. Phys. B: Atom Molec. Phys. 3 976-90
Dillon M A and Lassettre E N 1975 J. Chem. Phys. to be published
Duxler W M, Poe R T and LaBahn R W 1971 Phys. Rev. A 4 193544
Eminyan M, MacAdam K B, Slevin J and Kleinpoppen H 1974 J. Phys. B: Atom. Molec. Phys. 7 1519-42
Green L C, Mulder M M, Lewis M N and Woll J W Jr 1954 Phys. Rev. 93 757-61
Hall R 1, Joyez G, Mazeau J, Reinhardt J and Scherman C 1973 J. Physique 34 827-43
Hidalgo M B and Geltman S 1972 J. Phys. B: Atom. Molec. Phys. 5 617-26
Joachain C J and Vanderpoorten R 1974 J. Phys. B: Atom. Molec. Phys. 7 817-30
Lassettre E N 1965 J. Chem. Phys. 43 4474-86
Martin P C and Schwinger J 1959 Phys. Rev. 115 1342-73
McDowell M R C, Morgan L A and Myserscough V P 1973 J. Phys. B: Atom. Molec. Phys. 6 1435-51
—— 1975 J. Phys. B: - Atom. Molec. Phys. 8 1053-72 .
McDowell M R C, Myerscough V P and Narain U 1974 J. Phys. B: Atom. Molec. Phys. T L195-7
Morse P M, Young L A and Haurwitz E S 1935 Phys. Rev. 48 948-54
Moustafa Moussa H R, de Heer F J and Schutter J 1969 Physica 40 517-49
Nicholls P S and Winters K H 1973 J. Phys. B: Atom. Molec. Phys. 6 L250~1
Oberoi R S and Nesbet R K 1973 Phys. Rev. A 8 2469-79
Opal C B and Beaty E C 1972 J. Phys. B: Atom. Molec. Phys. 5 627-35
Ormonde S and Golden D E 1973 Phys. Rev. Lett. 31 1161-4



Electron impact excitation of He 1865

Rice J K, Truhlar D G, Cartwright D C and Trajmar S 1972 Phys. Rev. A 5 762-82

Scott T 1976 Thesis University of London

Scott T and McDowell M R C 1975 J. Phys. B: Atom. Molec. Phys. 8 in press

Seaton M J 1974 Quart. J. R. Astron. Soc 15 370-91

Shelton W N, Baluja K L and Madison D H 1973 Proc. 8th Int. Conf. on Physics of Electronic and Atomic
Collisions (Beograd: Institute of Physics) Abstracts pp 296-7

Smith K, Golden D E, Ormonde S, Torres B W and Davies A R 1973 Phys. Rev. A 8 3001-11

Suzuki H and Takayanagi T 1973 Proc. 8th Int. Conf. on Physics of Electronic and Atomic Collisions (Beograd:
Institute of Physics) Abstracts pp 286~7

Taylor H S, Chutjian A and Thomas L D 1975 Electron and Photon Interactions with Atoms ed H Kleinpoppen
and M R C McDowell (New York: Plenum)

Thomas L D, Csanak Gy, Taylor H S and Yarlagadda B S 1974 J. Phys. B: Atom. Molec. Phys. 7 1719-33

Trajmar S 1973 Phys. Rev. A 8 191-203

Vriens L, Simpson J A and Mielczarek S R 1968 Phys. Rev. 165 7-15

Winters K H 1974 PhD Thesis University of Durham

Yates A C and Tenney A 1972 Phys. Rev. A 6 1451-6



J. Phys. B: Atom. Molec. Phys., Vol. 8, No. 14, 1975. Printed in Great Britain. © 1975

Electron impact excitation of He(n!S), (n = 4, 5)
at intermediate energies

T Scott and M R C McDowell

Mathematics Department, Royal Holloway College, Englefield Green, Surrey TW20 0EX,
England :

Received 5 May 1975

Abstract. The distorted wave polarized orbital approximation is applied to the excitation of
4'S and 5'S levels of helium. Results are presented for total cross sections over an electron
impact energy range of 25 to 400 eV and also for small-angle differential cross sections at
impact energies of 50, 60, 100 and 200 eV. These are compared with experiment and the
accurate Born results of Bell et al. The introduction of explicit s~p coupling into the T matrix _
has a marked influence on the small-angle differential cross sections, producing a strong
enhancement, and bringing them into close agreement with experiment at the highest energy
considered.

1. Introduction

We extend the work of a previous paper (Scott and McDowell 1975 to be referred to as I)
which discussed n < 3 only, by applying the distorted wave polarized orbital model
(Dwpo) outlined in I to calculate both total and small-angle differential cross sections
for electron impact excitation of the 4!'S and 5'S states of helium from its ground state.
In particular, we shall examine in more detail the effect of explicit inclusion of coupling
between S and P states in the direct term of the T matrix.

We outline briefly the theoretical model described in I. The T matrix may be written

Tp= (O WY (1

where the notation follows that adopted in I. Consequently the differential cross section,
I(Q), is given by

ks

19 =25,

| Tl agsr™! @)
and by integrating over all solid angles the total cross section, Qj, is obtained in the form

1 ke !
0u) = 53t | 1T dicos0) mad. ®
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Recalling I(14) we express the T matrix of our bwpo 1 model as

it = Y12, 3)Vdi(12)F(3)> — (Ye(12, 3)Vip((23)F (1)) )

where polarization effects are included only implicitly through the distorted wave F(r).
In the pwpo 11 model we restate 1(22) and 1(23) whereby the transition matrix be-
comes

Tmod _+ + Tg:vfol (5)
with T;f as above and TF given by

T = 2Y(12, 3)Vi (1) a(23)F (3))- (6)

We note that ¢,,(r, 1) is the dipole component of the perturbed atomic wavefunction
and provides a coupling between the S and P states of the atom. Hence bwpo 11 allows
explicitly for polarization distortion of the ground state of the target atom.

Following exactly the procedure indicated in I, the distorted wave F(r) is decomposed
into partial waves which satisfy the radial scattering equation I(17). We emphasize that
theeffect of polarization is taken into account via the direct potential term V,,(r) (equation
(21) of I) but that the terms arising from exchange polarization effects and all other non-
adiabatic effects are neglected.

We have onained results in both DwWpPo 1 and DWPO 11 approximations and compare
our total cross sections with the experimental work of St John et al (1964), Moustafa
Moussa et al (1969), van Raan et al (1971) and Pochat et al (1973). In addition the dif-
ferential cross sections calculated at four intermediate impact energies, over the angular
range from 0° to 20°, are compared with the recent experimental data of Pochat (1973).
At 100 eV and 200 eV we also make a comparison with the Born approximation deduced
from the accurate generalized oscillator strengths tabulated by Bell et al (1969).

Each experimental group claims their results to be absolute and for convenience we
briefly summarize their methods of normalization.

The highest values are obtained by St John et al (1964), and may be influenced by
the relatively high current electron beam (~1mA) used. They used published values
to correct for the polarization of the emitted radiation, and apparently did not correct
for instrumental polarization effects.

Moustafa Moussa et al (1969) normalized via their 2'S — 2P value, which in turn

- depends on the theoretical optical oscillator strength for that transition. However, dif-
ferent monochromators are required for 2! P (where the fadiation is in the vacuum uv)
and for 4'S where the radiation is in the visible. The transfer between instruments may
introduce error. In addition these authors used published polarization data.

Pochat et al (1973) normalize via the measurement of the 2'P differential cross
section which is scaled to the 5° value of Chamberlain et al (1970).

In the experiment of van Raan et al the measurements were carried out at low gas
pressures and low electron current to avoid certain problems discussed by Heideman
(1968). Their quoted results, which we use, are based on their own absolute calibration
with a tungsten lamp and an independent measurement of the polarization. However
these results imply a high value for the 1'S — 3'P optical oscillator strength, and if we
renormalize their data to the theoretical value (Schiff and Pekeris 1964) this reduces it
by 109 and brings it into close agreement with our DWPO 11 values.

The best values, in our view, would lie between those of van Raan et al (1971) (which
are close to those of Pochat et al 1973) and the lower results of Moustafa Moussa et al
(1969).
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2. Results
2.1. 4'S excitation of helium

The total cross sections obtained from both approximations for the transition 1'S — 4'S
are plotted in figure 1, where they are compared with experiment. We have denoted the
coincidence of experimental points of two groups (to within plotting accuracy) by
parenthesis. The presence of the shoulder lying between 60 and 150 eV has been noted
in1'S — 2'Sand 1'S — 3'S transitions (I) but is more pronounced for the 4'S excitation.
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Figure 1. Theoretical and experimental total cross section results for the excitation of the
4!S state of helium by electron impact. —— present results (DWPO 1), — - — present results
(pwPo 1), @ experiment (Pochat et al 1973), A experiment (van Raan et al 1971), O experiment
(Moustafa Moussa et al 1969), A experiment (St John et al 1964).

Our results, particularly in DWPO 11, are in very close accord with the tabulated data
of Moustafa Moussa et al (1969) and we see that there is evidence from their results for
the existence of such a shoulder. The results of Pochat et al (1973) and of van Raan et al
(1971) are seen to exhibit similar shapes but with a slight rise at the position where we
predict a shoulder. However, the results of our models are too large compared with
these experiments at energies below 40 eV and at higher energies tend to lie approxlmately
20 % below the experimental points of these two groups.

The peak obtained by St John et al (1964) is of comparable magnitude to ours but
generally the agreement is poor. We observe that our peak, occurring at 30 €V, does not
coincide with that of any of the experiments. Both Pochat et al (1973) and van Raan et al
(1971) find a maximum lying closer to 40 eV.

The differential cross sections for small-angle scattering (0°-20°) are illustrated in
figure 2 and are presented at four impact energies. The experimental data are due to
Pochat (1973). For the lower energies of 50 and 60 eV, DWPO 1is poor but DWPO 11 results
show an improvement for scattering angles above 15°. At 100 eV, pwPo 1 predicts a
close correspondence for angles above 10° and the forward enhancement compared with
the DWPO I result becomes increasingly important. The first Born approximation result
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Figure 2. Theoretical and experimental differential cross section results for the excitation of
the 4'S state of helium by electron impact at (a) 50 eV, (b) 60 eV, (c) 100 eV and (d) 200 eV.
- --- first Born approximation due to Bell et al (1969). Other symbols as for figure 1.

deduced from the accurate generalized oscillator strengths given by Bell et al (1969)
is shown for the higher energies, and is seen to lie between DWPO I and DWPO 11 and to
correspond closely in shape to our DWPO I results.

By 200 eV, the forward enhancement produced by the bwpo 11 model (including s—p
coupling) gives results essentially in complete agreement with Pochat’s measurements
over this angular range. We also see that our bwPo I curve approaches the Born for
higher energies, as we should expect since the Born approximation is the high-energy
limit of pwpo 1 (McDowell et al 1975).
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2.2. 5'S excitation of helium

Figure 3 illustrates the total cross section in both approximations and also shows the
experimental work of the groups listed for 4'S excitation. The shoulder predicted by
our theory has become comparatively more prominent but extends over the same energy
range as for previous singlet—singlet cross sections. Our peak value occurs approxi-
mately at 30 eV which is similar to that for 4'S excitation.
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Figure 3. Theoretical and experimental total cross section results for the excitation of the
5'S state of helium by electron impact. Symbols as for figure 1.

The points due to Moustafa Moussa et al (1969) again afford evidence for such a
shape but we note that both our curves lie higher than their data for energies above 60 eV
whereas for the 3'S (I) and 4!S cases, agreement is very close. At impact energies above
150 eV our results are in best accord with the two measurements of Pochat et al (1973),
but in general there is close agreement between theory and all the experiments above this
energy. Below 150 eV the work of Pochat et al (1973) and the tabulated points of van
Raan et al (1971) agree well and give a similar variation with energy to that found for 4'S.
Their data lie above our results for energies greater than 40 eV, but the former group
indicate a maximum at about 35 eV whereas the latter seem to predict the peak close to
40 V.

The data of St John et al (1964) exhibit a generally shifted curve and tend to have an
overall magnitude higher than that found by the other experimental groups. Their
peak value does not reach the same magnitude as given by our theory whereas for the
1'S — 4!S cross section, the absolute magnitudes are comparable. In summary, the
agreement. at impact energies above 150 eV is satisfactory but below this figure there
remains a discrepancy between both theory and experiment, and among the different
experiments. It is perhaps worth observing that for both 4'S and 5'S excitation the effect
of coupling the S and P states only begins to become apparent after the peak value of the
total cross section has been reached, and has little effect on the total cross sections at
energies above 200 eV.
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Turning now to the differential cross section for scattering angles between 0° and 20°,
we compare our theory with the absolute experimental results of Pochat (1973) at energies
of 50, 60, 100 and 200 eV. The comparison is shown in figure 4. For 100 and 200 eV
impact energies we have also plotted the Born approximation results which we deduced
from the generalized oscillator strengths of Bell et al (1969), as for the 4'S case. The
situation resembles closely that for the previous case. The pwro 1i model produces an
increasing forward enhancement relative to DWPO 1 as the impact energy is increased,
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Figure 4. Theoretical and experimental differential cross section results for the excitation of
the 5'S state of helium by electron impact at (a) 50V, (b) 60 eV, (c) 100eV and (d) 200 eV.
Symbols as for figure 2.



Electron impact excitation of He(n'S), (n = 4, 5) 2375

becoming more and more in line with the experimental data of Pochat (1973). At100eV
we see that DWPO 11 predicts the cross section well over the latter half of the angular range
concerned, and at 200 ¢V pwpo 11 produces sufficient forward enhancement to agree
most satisfactorily with the experimental data over the whole of this angular range. The
results obtained in the first Born approximation again exhibit a similar behaviour to those
of the Dwro 1 model, which approach the FBa at high energies. Contrary to what might
have been expected we see that even at 200 eV the first Born approximation fails to give
a satisfactory account of small-angle scattering.

3. Conclusions

We have calculated total and differential cross sections for
e+He(1'S) —» e+ He(n'S), n=45>5

at low and intermediate energies, in a distorted wave model, both with and without
target distortion.

The shape of the experimental total cross section is well reproduced by both models,
at energies above 40 eV, though the theoretical models give the maximum cross section
at a lower energy than is found experimentally. At energies between 40 and 100 eV
the results of different experimental groups differ by a factor of two whereas the difference
between our two theoretical models is at most 5%,. We cannot, therefore, distinguish
between these on the basis of total excitation cross section data.

The recent small-angle differential cross section measurements of Peresse and his
colleagues (Pochat 1973, Pochat et al 1973) do, however, allow such a distinction to be
drawn. We find that models without target distortion (‘s—p coupling’) such as the first
Born approximation and DwPo 1do not account for the observed strong enhancement of
these inelastic differential cross sections in the forward direction. Inclusion of target
distortion (in the ground state) as in our DwpO 11 model gives a completely satisfactory
account of the measurements at 200 eV, though failing to an increasing extent with de-
creasing impact energy.

We can describe this forward enhancement as due to elastic scattering off intermediate
P states by a polarization-type interaction. The increasing inadequacy of this model at
energies below 100 eV suggests that our failure to include exchange polarization terms
may be significant at such low energies.
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Abstract. A number of local potentials have been suggested to represent the non-local
exchange kernel in electron-atom scattering. A comparative numerical study has been
made in which phase shifts for the elastic scattering of electrons by H, He* and He

- using these potentials are tested against those calculated from the exchange integro—differ-
ential equations. The influence of additional long range polarization potentials is also
investigated. It is shown that, except at the lowest energies, exchange effects can be repre-
sented accurately by the Furness-McCarthy and related potentials.

1. Introduction

In developing equations to determine the wavefunction for the elastic scattering of
electrons by atoms, many authors have replaced the integral kernel describing the
exchange interaction by an equivalent local potential. This has the advantage of
making the scattering equations easier to solve numerically and the procedure might
be expected to be accurate at high energies for which exchange effects are compara-
tively small.

Although a fairly large number of variants of the equivalent local potential have
been suggested, no systematic study of the accuracy of the resulting phase shifts
or of the range of energies over which these potentials may be employed has yet
appeared|. In this paper, after reviewing briefly the derivation of the selected equival-
ent potentials, we use these to calculate phase shifts within a simple model for which
the exact phase shifts can be calculated.

The model we have chosen is the static exchange approximation for electron
scattering by the ground states of H, He* or He. We have also investigated whether
the presence of an additional polarization potential modifies the accuracy with which
the exchange potentials represent the effect of the exchange kernel.

2. The exchange equations

The static exchange equation¥ describing the elastic scattering of electrons by an

§ Permanent address: The University of Durham, South Road, Durham, England.

|| See however, Riley and Truhlar (1976).

¢ The derivation of the static exchange equation has been discussed by Bransden (1970) and by Mott
and Massey (1965). .
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atomic target has the form, in atomic units
[V2 + 2Z/r) + K*]F(r) = 2V.(r) F(r) + 21 J.K(r, ¥)F() dr. (1)

In this equation, Z is the net charge on the target atom or ion, 3k* is the energy
of the incident electron, V,(r) is the static interaction between the atom and the
incident electron, and K(ry') is the exchange kernel. The parameter t is —1 for
the scattering of electrons by H or He* when the overall spin is S = 1, the triplet
state, and is +1 when the overall spin is S = 0, the singlet state. When the target
is neutral helium © = —1. The model represented by equation (1) makes no allowance
for inelastic channels. With the addition of a polarization potential, it does however
represent elastic scattering rather well, even at high energies, although strictly the
effective potential develops an imaginary component above the lowest inelastic
threshold.

The static interaction V(r) is the matrix element of the instantaneous interaction
between the electron and the target with respect to the ground state target wavefunc-
tion. The ground state wavefunction is denoted by ¢(x) for H and He™, where

$(x) = (@*/m)! 2 ™™ 2

with « =1 for H and « = 2 for He*. For helium we employ the approximate
wavefunction of Byron and Joachain (1966)

' (I)(xlax2) = ¢(X1) ¢)(X2), (3)
with
¢(x) = (N/ 4m) (€™ + e ),

N =26051,0 =141, =0799 and y = 2:61.
In each case V(i) has the form

V() = u j dx|¢(x)|2( ! —3), @

jx —r] Xx

with g =1 for H and He* and u = 2 for He, and the corresponding exchange
~kernel is

K(r,r') = ¢(r) (') [— (K> — €) + (1/Ir — #I)] o)

where € is the ground state energy of the target.

By expanding the wavefunction F(r) in partial waves, and solving the resulting
radial equations numerically, the exact phase shifts in the static exchange model
have been obtained in the momentum interval 0-5 < k < 100 for 0 <[ < 8. To exa-
mine the exchange potentials in the presence of polarization we have also obtained
the exact phase shifts when a polarization potential V,(r) is added to the static poten-
tial ¥,. We shall refer to this case as the adiabatic-exchange model. For this
purpose, we chose the form (Bransden 1970) for electron scattering by H and He*

9 4 9 27 27 27
VA' = —— _—— _2"] '5 “4 73 2
() 4y“[1 27e (y +2y + 9y +—2y +——2y+ 4)J
(6)

where y =r for H, y = 2r for He™.
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At the lower energies, for k < 1 for H, and k < 2:0 for He*, our phase shifts
can be compared with those published in the literature and collected together by
Mott and Massey (1965) and Drachman and Temkin (1972). The agreement is excel-
lent.

For scattering by neutral helium, the method of Duxler et al (1971) (see Drachman
and Temkin 1972) allows an approximation consistent with the wavefunction (3) to be
obtained. Calculations were carried out with this potential, denoted by Va(r), which
has the explicit form

2 N 2 24p, 24 24r 12k 483
B _ — st 2t o5t 2+
Vi) = — ZOKZC{ [(zf+zf+ Z?J’Z?J’Z.-)p‘
Zyrd —Za
where '
Ci=1,C=p2Z=a+Zy,Z,=y+ Zo,pi =2+ (52,/Z;), i=12 ®)

The parameters o, f3, y are defined below equation (3), and the scaling parameter
Zyis Zy, = 1-60315.
For comparative purposes, we also made calculations with the simple Buckingham
polarization potential
9 ,
iz + I o
where the parameter d was chosen to be 1-0 and the effective charge Z is 1 for H,

2 for He* and 1-341 for He. Electron-helium calculations were also performed using
potential (6) with y = 1-341r, consistent with a polarizability of 1-39.

Vi) = -

3. The exchange potentials

The term proportional to (3k? — €) in the exchange kernel only contributes to scatter-
ing in the | = 0 partial wave. Such behaviour cannot be represented by a non-singular
potential, and it has been usual either to drop the term completely, or to remove
it by requiring the function F(r) to be orthogonal to ¢(r). In the case of the § = I,
triplet state for the electron-hydrogen system, this does not involve modification
of equation (1), because it is easily shown that if F(r) is a particular solution of
the equation then F(r) + A¢(r) is also a solution. It is then possible to pick 4 so
that the orthogonality condition is satisfied. For the § = 0, singlet state, F(r) can
also be made orthogonal to ¢(r) but at the expense of including an inhomogeneous
term proportional to ¢(r) in equation (1). In the published applications of the poten-
tials to be described (with some exceptions), no attempt has been made to ensure
that the computed wavefunction is in fact orthogonal to ¢(r), and for this reason
we have followed the same course. The orthogonality condition is only important
at low energiest (k < 1), because the oscillatory nature of F(r) ensures that the overlap

+ This statement is not necessarily true in other contexts, for example, when the wavefunction F(r) is
required in the calculation of ionization cross sections.
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between F(r) and ¢(r) is in any case small, and decreasing for increasing k. Thus
in this approximation,

f K(r, ¥) F(')dr = ¢(r) J(I/lr — |) @(r') F(*) d¥, (10)

and the problem is then to determine a potential Vy.(r) such that
Ve(r) F(r) = f K(r,¥)F(') dr. (11)

It should be noted that strictly it is not necessary to satisfy this strong condition,
because all that is required is that the functions F(r) and F(¢') on the left and right
hand sides of (I11) should have the same phase shifts to a good approximation.
However in what follows, the functions will be chosen to be identical.

3.1. Expansion methods

The first group of potentials which we shall consider involve the Taylor expansion
of the function F(r') about the point ' = r. In general, this will lead to a series
of velocity dependent potentials as discussed in chapter 8 of the monograph by Mott
and Massey (1965). The very simplest approximation of this type is to retain just
the first term of such an expansion. In which case, we have from (11)

Ve = o0 [ (”(’) (12)

This potential has been employed by Yu (1975) to calculate orbitals for bound states
from which generalized oscillator strengths are calculated. Because the momentum
dependence of V! is ignored, this approximation would not be expected to be
satisfactory except at low energies. Calculation shows that this potential is much
too strong for small k which suggests that in the bound state problem, for highly
excited states near the continuum, it will not be a satisfactory approximation either.

To retain the momentum dependence of the potential, Furness and McCarthy
(1973) follow Perey and Buck (1962) in expanding the product ¢()F(¥')

Vi(r) F(r) = ¢(r) f (/lr = ¥) exp[(F — 7). V] [¢(r) F(r)] dr.
Because [¢(r)F(r)] is square integrable, the integration can be carried out to give
Ve(r)F(r) = 4n(r)IVI~*[$(r)F(r)], (13)
where the inverse operator [V|~2 acts to the right on [¢(r)F(r)]. Since p = —iV is
the momentum operator, further approximations, valid at high energies, can be made;
first, the action of p on ¢(r) can be ignored and secondly, p can be replaced by the
local classical momentum, i.e.

p*—pd = (k> = 2V(r), (14)

where V() = W(r) + 1:1@(%), and V;, is the direct potential, Vp(r) = V() + (Z/r) + V,(r).
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The accuracy of the first of these approximations depends on the variation of
¢(r') with # being much smoother than the variation of F(r'), so that ¢(+') can be
replaced by ¢(r) in (10).

Combining (13) and (14) provides a quadratic equation for Vg, from which t14
is found to be

th® = &{k* = 2Wp(r) — [(K* — 2Vp(r))* — 32ntlg(r)|*]'12}, (15)

where the solution is chosen so that Vi(¥*)— 0 as k — 0.

In their original paper, Furness and McCarthy gave a slightly different expression
for 1;'¥, but the correct result was first given by Vanderpoorten (1975).

In circumstances for which the exchange potential is less important than the direct
potential it is permissible to write

4| (r)}?

Gy — (.
e A

(16)
This is a particularly useful expression because it can be easily generalized for use in
the coupled channel approach to inelastic scattering. For example, Bransden and
Noble (1976) have discussed electron scattering by hydrogen and helium ions in a
coupled channel approximation, employing a matrix exchange potential, which preserves
time reversal invariance,

Vij = 2ngFr); () [(k7 + 26 — 2Vi) ™1 + (K} + [2¢f — 2V;)7']

where i and j label the different channels and the corresponding orbitals and other
quantities. A similar potential has been proposed by Riley and Truhlar (1976).
In the high energy limit, the Furness~-McCarthy potential becomes

vier = 007 | | (17)

In the first Born approximation, Vanderpoorten has pointed out that this potential
gives the Ochkur approximation to the exchange amplitude. In this connection it
should be noted that the comparative study of approximations to the exchange ampli-
tude by Abiodun and Seaton (1966) has already shown that the Ochkur exchange
amplitude in the static-exchange model is, for | = 0, accurate to a few per cent for k > 2.

It is not necessary to ignore completely the operation of p on the target wavefunc-
tion ¢(r). To the first approximation, it can be taken into account (Bransden and
Noble 1975) in the expression for the local momentum, which becomes

pé = k* + 2¢| = 2V(r), (13)
where € is the ground state energy of the target atom. Each of the expressions (15)

to (17) will be modified appropriately. We have chosen just two of these for numerical
study:

o Al
VP)(') Tk ¥ |2¢| =2V, (r)’ "
and
V‘Eﬁ)(r) = W (20)‘

k2 + |2¢
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In the first Born approximation V{®(r) yields the exchange amplitude suggested by
Bely (1967) as an improvement on the Ochkur approximation.

3.2. Slater potentials

We now consider a group of potentials which resemble the well known Slater potcn—
tial (Slater 1951) employed in bound state problems, which has the form

1/3
: A (21)

3
(7) ) = _— *
V() = A |7~ plr)

where p(r) is the electron density, and A4 is a constant. It is easy to verify that
if A has the magnitude required by bound state problems (Herman and Skillman
1963), the resulting potential is quite unsuitable for representing exchange effects
in scattering problems, being considerably too large. Bauer and Browne (1964)
adjusted the constant A so that for | = 0, the best possible agreement was obtained
with the exact low energy electron—-hydrogen phase shifts, in the energy interval
k < 0-8. In the singlet state, the additional constraint was imposed that F(r) was
orthogonal to the bound state solution of the equations representing H™. The ortho-
gonality condition (¢|F) = 0, discussed above, was also imposed. Bauer and Browne
showed how to apply their potential to electron scattering by complex atoms and
achieved considerable success at low energies. In the present work, we have tested
this potential at higher energies and in angular momentum states with [+ 0. For
[ = 0, we have not imposed the orthogonality conditions, so that we obtain slightly
different and poorer results at very low energies.

3.3. The Mittleman—Watson potential

A different approach to the problem is to return to equation (10) and to recognize
that since F(r) behaves similarly to a plane wave, we can write approximately

)—f¢ ‘f’( xplik.( — 1] dr’ () 22)

This idea is due to Massey and Mohr (1934) who employed it to localize the optical
potential, rather than the exchange kernel.

Starting from equation (22), Mittleman and Watson (1960) complete the evaluation
of Vi(r) by using the Thomas—Fermi approximation to represent the bound state
orbitals ¢(r). They find

_ 1k k + P(r)
Vi) = - (kP(; —3(k? = P2(r)In P(r)l), (23)
where P(r) is the Fermi momentum
P(r) = (3n>N|¢(r)[*)'7, ‘ (24)

where N = 1 for He™ and Hand N = 2 for He.
Although the derivation of V{® suggests that it should be most accurate for
atomic targets composed of many electrons, Byron and Joachain (1975) have used
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this potential, apparently successfully, for a helium target. For large k, it is clear
from (22) that V£® again reduces to the Ochkur form (17), while for smaller k it
resembles the potential of Slater. However the assumptions on which (23) is based
break down in this region. -

Recently we received a preprint (Riley and Truhlar 1976) in which a potential
of the Mittleman-Watson form is rederived. However in place of the incident momen-
tum k, various forms of local momentum p.(r) are employed. On the basis of numeri-
cal calculations for scattering by helium and argon (without allowance for polariza-
tion), Riley and Truhlar conclude that out of those considered the most satisfactory
choice for p,(r) is

p(r) = (k* + P*(r))'2, (25)

Replacing k in (23) by p,(r), we obtain V{?), termed by Riley and Truhlar, ‘the asymto-
tically adjusted free-electron gas approximation’. Unfortunately, Riley and Truhlar
have employed a slightly different helium wavelunction from the one used here, so
to obtain an accurate comparison, we have recomputed their results for helium and
extended them to include the effect of polarization and also to scattering by H and
He*.

An alternative technique based on equation (22) is to compute the integral using
an accurate orbital ¢ (or the exact wavefunction in the case of H or He™). The
resulting potential might be expected to be superior to the Mittleman—Watson poten-
tial for light atoms, but no calculations based on this idea have been reported to
our knowledge. From (22) this potential can be written as

Vi(r) = ¢(r) de H(IR — !'|)€ik'R.

We have investigated the spherically symmetrical approximation in which ¢(|R — r{)
in the integral is replaced by the first term in a Legendre polynomial expansion
in terms of the angle between R and r. This defines the potential V¢'%(r).

4. Numerical results

Phase shifts have been calculated for I < 8 and k = 0'5, 10, 2-0, 3-0, 50, 7-0 and
100, from the static exchange equations for electron scattering by H, He* and He,
and also from the adiabatic exchange equations. Further sets of phase shifts were
obtained by replacing the exchange kernels by each of the potentials V{. Two
separate numerical programs based on the Fox-Goodwin algorithm and the
Runge-Kutta method respectively were available and both were used to confirm
the accuracy of the phase shifts, which are determined to an accuracy of
10" *radians. For e —H scattering, Vanderpoorten (1975) compared the results
of using potentials V¥ and V' with the static exchange phase shifts at 50
and 100eV, for [ =0,1,2, and his results agree with ours for this case. The
complete tables of phase shifts are too lengthy to reproduce here but tables 1-7
illustrate the results obtained with the most successful potentials. The polarization
potentials employed in calculating the phase shifts displayed in tables 1-7 were V}
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for H and He™ (see equation (6)) and V' for He (see equation (7). The results calcu-
lated with the Buckingham potential VC and those employing V4 for He are discussed
briefly below. The complete tables of phase shifts can be obtamed on request.

4.1. Electron scattering by atomic hydrogen

In tables 1-3, the exact phase shifts for [ =0, 1 and 2 obtained by solving the
integro—differential equation (1) for electron scattering by hydrogen are compared
with results obtained from the Furness and McCarthy potential ¥V, the Ochkur
potential ¥, the modified potential of Bransden and Noble V{, the Bauer and
Browne potential V{", the potential of Mittleman and Watson V‘S’, and the Riley
and Truhlar potential V{. The results are given both for the static-exchange model
and for the adiabatic-exchange model.

Of the potentials shown in the tables, the Furness and McCarthy potential
provides the most accurate phase shifts for k = 1-0. Below k = 0-5 for certain ranges
of r the argument of the square root in (15) becomes negative for the case 7 = +1
and it becomes impossible to define the Furness—McCarthy potential. The agreement
with the exact phase shifts for k > 2 is remarkable, the difference rarely exceeding
1%, The extension of the Furness—-McCarthy potential to coupled channel situations
is somewhat complicated, so it is important to assess the simplified versions V¢
and V¥ which are easily generalized. Both potentials provide phase shifts which
agree quite closely with exact phases down to k = 3-0. Below k = 3, the potential
Ve remains adequate down to k = 1-0 while the Ochkur potential ceases to produce
sensible results at such low energies. The other potentials of this group, V¢* and
V® are distinctly less good for k < 3, although adequate at the higher energies.

No reasonable results were obtained using the Yu potential Vi, nor could
reasonable results be obtained with a Slater potential of the magnitude used
in bound state calculations. By adjusting the constant A to produce a reasonable
fit to the =0 phase shifts at k=10 (giving A = 0-141), the Slater potential
V{) produces phase shifts for [ = 0 that are in fair agreement with the exact
phases over the whole energy region, but for ! # 0, the agreement with the exact
phase shifts becomes very poor.

The potential of Mittleman and Watson, V), produces accurate phase shifts
for k = 3. For 2 < k < 5 the phase shifts are in reasonable agreement with the exact
ones, but are distinctly less accurate than those provided by the Furness—McCarthy
potential and by its simplified versions. Below k = 2, the potential V¢® fails to pro-
duce reasonable results.

The variation of the Mittleman and Watson potentlal introduced by Riley and
Truhlar, V¢, is much more successful than W®, and is comparable in accuracy
with the Furness and McCarthy potential V¥ for k= 2. At k = 1-0, the Furness
and McCarthy potential is superior but at k = 05 neither potential is successful,
being particularly poor in the singlet state (S = 0).

The potential V{9, also based on (22), represents the exact phase shifts slightly
less accurately than V. For example, at k = 2 the triplet and singlet s-wave phase
shifts given by this potential in the adiabatic-exchange model are 09359 and 0-6046
radians, respectively. This is probably due to the crude approximation in which only
the zero order term in the angular expansion of the integrand was employed. However
taking higher order terms produces an over-complicated result and is hardly likely
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to improve on the excellent results obtained with the simple forms of the other
potentials. This potential will not be considered further.

The higher order phase shifts (not shown in the tables) are given accurately by
each of the potentials investigated, with the exceptions of V¢! and V™. For example,
at k= 10. [ =8, the exact S=0 and § =1 phase shifts for the static exchange
model are 0-0337 and 0-0352 respectively. Both the Mittleman—Watson and the Fur-
ness—McCarthy potentials give the results 0-0333 and 00347 for S=0 and S = |
respectively, while the Slater potential V"’ gives 0-0067 and 0-0614.

4.2. Electron scattering by He*

It cannot be accepted without test that the degree of success achieved by the various
exchange potentials for the e™-H system will be repeated for other systems. For
this reason calculations have been carried out for the e -He* system, in which
the target is more compact and where the long range Coulomb interaction might
modify considerably potentials of the Furness~McCarthy type. The calculated phase
shifts show, in fact, that the relative success of the various potentials is about the
same as for the e™H system. The most successful potential for k > 3-0 is again
the Furness—-McCarthy potential, but for k < 2-0 the results rapidly decteriorate. In
contrast the modified potential V{*, which allows to some extent for the variation
of ¢(r’) with » in the exchange kernel, is only slightly less accurate for k = 3 and
remains useful at low energies down to k = 0-5. The Slater potential V{7 is less
accurate at all energies than V;®), but is comparatively more successful than for
the e™-H system. The Mittleman-Watson potential on the other hand completely
fails below k = 3, although providing accurate phase shifts at the highest energies.
In table 4, the situation is illustrated at the momenta k = 1-0 and 3-0, with and
without the polarization potential.

4.3. Electron scattering by He

The phase shifts obtained using the five most successful potentials are compared
in the case of electron-helium scattering, with those obtained from the solution of
the exchange integro-differential equations, in tables 5, 6 and 7 for [ =0, 1 and
2. The Furness—McCarthy potential V¥, the modified potential of Bransden and
Noble V{® and the potential of Riley and Truhlar V{* reproduce the exact phase
shifts to a remarkable degree, in both the static-exchange and the adiabatic-
exchange models. Useful results are obtained over a wider energy range than for
H or He*. For s-waves, all three potentials V{?, V' and V{' remain good down
to the lowest momentum considered, k = 0-5, but for [ = 1, the Bransden and Noble
potential V> gives the best phase shifts at low energies although being slightly
less successful at the highest energies considered.

4.4. Polarization potentials

Examination of the tables shows that the general conclusions about the successes
or failures of the various exchange potentials examined are the same for both the
static-exchange and the adiabatic-exchange models. This is an important result
because in applications the exchange potential is often used in conjunction with
effective polarization and absorptive potentials which are approximations to the exact
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‘optical’ potential. As indicated earlier, to help assess this point we repeated the
calculations with other forms of polarization potential. The Buckingham polarization
potential (9) behaves quite differently from the forms (6) or (7) at small r, so we
checked the success of the exchange potentials in the presence of the Buckingham
potential in detail. One case is illustrated in table 8, where the phase shifts using
the Furness—-McCarthy potential are shown for e”—H scattering at k = 2-0 and k = 5:0.

Table 8. Phase shifts (radians) for electron scattering by hydrogen, using the Buckingham
polarization potential.

k=20 k=50
! A B A B
0 S=1 14795 14705  0-7721 0-7739

0 13270 13211 07519 07521
1 S=108508 08420 05573 05568
0 06596 06706 05356  0-5359
2 §=103803 03777 04139 04134
0 02784 02801 03957 03958

A From solution of the exchange integro—differential equation.
B Computed from the Furness and McCarthy exchange potential V{2,

A

It is interesting to see how different the phase shifts given by the Buckingham poten-
tial are from those shown in tables 1-3 obtained using (7). but the exchange potential
is equally successful in either case. Comparing the detailed tables of phase shifts
produced with the Buckingham potential with those produced from potentials (6)
and (7), shows that the success of the exchange potentials does not depend to a
significant extent on the other potentials present.

5. Conclusions

In the derivations of the exchange potentials outlined earlier, the approximations
made, with one or two exceptions, become more accurate as the energy increases.
This accounts for the excellent agreement between the results obtained with the Fur-
ness—McCarthy potential and its simplifications, and the results of the Mittleman—
Watson and Riley-Truhlar potentials at the highest energies considered. What is
somewhat surprising is that this agreement and the agreement with the phase shifts
obtained from the exact exchange kernels remains good to very low momenta—about
k = 0'5 for helium, k = 1-0 for H and k = 2-0 for He™.

The potential with the widest range of application appears to be that of Furness
and McCarthy (V{#), but it is important to notice that the modified potential V{*
is nearly as effective, since this potential can easily be generalized to represent the
off-diagonal exchange kernels encountered in coupled channel situations. Riley and
Truhlar have also explored this point and have proposed the use of an off-diagonal
potential rather similar to that employed in the coupled channel calculations of
Bransden and Noble.
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