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ABSTRACT

This thesis is concerned with a study of inelastic electron-atom collisions 

with the incident energy ranging from just above the first ionization 

threshold to some energy where the First Born approximation becomes valid.

The main physical effects which need to be included in the theoretical 

treatment of such collisions are electron exchange and distortion of both the 

atomic system and the wave describing the external electron. A method which 

takes account of these effects, to be referred to as the Distorted Wave 

Polarized Orbital (DWPO) approximation, is described. Three models based 

on this approximation are developed and applied to electron collisions with 

the light atoms hydrogen and helium.

In particular the models are applied to the following collision processes:

e + H(ls) e + H(2s, 2p, 2s + 2p);

e t He(l^S) - y e t  He(n^’̂ L), n = 2,3,4,5, L = S,P.

Results are presented for the total (integral) and differential cross sections 

and also, where appropriate, for the parameters describing the orientation and

alignment properties of the excited atom. The results are compared with those

of other theoretical methods and with experimental measurements.
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CHAPTER 1 

REVIEW OF RECENT THEORETICAL MODELS

§1.1 Introduction

During the last few years, there has been considerable progress in the 

understanding of electron impact excitation of atoms. Experimentally, an 

increasing volume of absolute differential cross section data is available 

for such collisions with the light atoms hydrogen and helium, particularly the 

latter. It is with these two atoms, theoretically the simplest to treat, with 

which this thesis will be mainly concerned. When dealing with electron impact 

excitation of these light atoms, it is convenient to divide the range of 

impact energy possessed by the incoming electron into three regions.

Firstly, there is the high energy region, defined essentially as that region 

where the First B o m  Approximation and its related methods are believed to be 

valid. Hence, this region may be accounted for theoretically; the papers of 

Truhlar et al. (1970) and Rice et al. (1972) provide a comprehensive review of the 

various Born models when applied to excitation of the 2 ^  and 2^S levels of 

helium respectively. At the other extreme, there is the low energy region, 

basically lying below the first ionization threshold. Here the close-coupling 

methods, developed by Burke, Smith, Seaton and others, have been used with 

considerable success to study low energy resonances. Applications to electron- 

hydrogen collisions have been made by Burke and Taylor (1966), Geltman and 

Burke (1970), Burke and Webb (1970) and more recently by Callaway and Wooten 

(1974, 1975).

For helium, reference may be made to the work of Smith et al. (1973), Ormonde 

and Golden (1973), Oberoi and Nesbet (1973). A more recent approach, based 

on the R-matrix method (Burke et al. 1971), has been applied to the elastic 

scattering of electrons from hydrogen and helium atoms by Burke and Robb 

(1972). The method has been further applied by Berrington et al. (1975) 

to a study of low energy electron scattering by helium atoms: where a comparison



is possible with experimental results, the agreement is satisfactory. Generally,

it may therefore be said that methods are available for dealing with this impact
energy region.

However, it is the intermediate energy region, lying between the two

described above, which attracts much current interest. Here there is no

longer a finite number of open channels as in the low energy case, rather an 

infinite number may now be open. A recent sophisticated model for electron- 

hydrogen collisions has been developed by Callaway and coworkers (see Callaway 

et al. (1976) and references quoted therein). Their method involves a close- 

coupling pseudo-state approach for the .lower order partial'waves and a distorted 

wave polarized orbital*treatment of the higher partial waves. For energies 

below 4 Rydbergs the method is successful in predicting the n = 2 differential 

cross sections for hydrogen excitation compared with experiment, while above 

this energy, quite good agreement with experiment is obtained by a similarly 

sophisticated method due to Kingston et al. (1976). Here, the close-coupling 

approximation is employed for the lower order partial waves and the unitarized B o m  

approximation for the higher partial waves.

Theoretical treatments, however, of the electron impact excitation of 

helium in the intermediate energy region are not quite so advanced, especially 

for transitions due to spin-exchange alone. Broadly speaking, theories may be 

classified into one of the following categories:

1. Plane wave models

2. Eigenfunction expansion techniques whereby the wave function for the 

whole system is expanded in a complete set of suitable eigenfunctions

3. Various semi-classical (eikonal) approaches

4. Distorted wave treatments

5. The many-body approach which in fact has recently been found to be 

corrected to the fourth category (Rescigno et al. 1974).

In the following a brief and formal account of scattering theory will be 

presented, and in the remainder of the chapter, a short description of the 

above five categories of theoretical treatments to the problem.



§1*2 Formal Scattering Theory

Under this heading the elements of formal scattering theory will he 

presented; for a thorough and detailed account see, for example, Goldberger 

and Watson (1964), Let ft be the wave function belonging to the initial

channel for the complete physical system under consideration. Then t T

satisfies the Schrtidinger equation

(H - E) yt = 0 (1.2.1)

where H is the Hamiltonian for the total system and E the corresponding 

energy. H is divided into two parts:

H = H + V (1.2.2)a a

where H^ is the unperturbed Hamiltonian and is a perturbation,

due, for example, to the presence of the scattering electron. The subscript 

a denotes quantities in either the initial channel (a = i) or the final 

channel (a = f). The eigenfunctions of H^ will be denoted by \jĵ with

energy eigenvalue E^ such that

H = E Tj, . (1.2.3)a a a^a

The Green’s function operator for the unperturbed system in the initial channel 

is written formally as

with e a small positive number such that, when all manipulations have been 

completed, the limit as e 0^ is finally taken. With this definition of 

gÎ the Schrbdinger equation (1.2.1) may be rewritten in the form

vT = + GÎ V. vT (1.2.5)1 1 1 1 1

which is often referred to as the Lippmann-Schwinger equation.

The Green’s function operator for the full perturbed system may be 

similarly expressed as



G - E-H+ie ' (1.2.6)

The superscript (+) denotes here and elsewhere that the function satisfies 

outgoing wave boundary conditions. Hence equation (1.2.5) may be manipulated 

symbolically to give the formal, solution

vT = + G+ V.1 1  1 1

= (1 + G* V^)*i . (1.2.7)

However this solution is no nearer to obtaining than (1.2.1) since the

operator expression on the right hand side involves a knowledge of 

Premultiplying (1.2.7) by one obtains

T TÎ (1.2.8)

where the transition operator T acting on the initial unperturbed wavefuneion 

of the system is given by

T = V^(l + V^) . (1.2.9)

The T-matrix element, T^^, for a transition from state i to state f is then

T^^ = . (1.2.10)

The subscript on V has been deliberately omitted for the following reason: 

for rearrangement collisions there is no reason for preferring to

in (1.2.10). In fact, instead of premultiplying (1.2.7) by V^, the same

operation and definition could have been derived from using V , The difference

which’ may arise from calculations using either or V. in (1.2.10) is

generally referred to as the post-prior discrepancy.

Working with atomic units, the differential cross section for electron 

impact excitation scattering processes is defined to be ■

4tt 1
Here, kj. denotes the momentum vector of the incoming electron and that

of the outgoing electron;(1.2.11) may essentially be interpreted as a measure 

of the probability of scattering into particular solid angles.



The probability of scattering at all is obtained by integrating (1.2.11) over 

all solid angle to obtain the total cross section in the form

|T d(cos8) . (1.2.12)
-1

Comparison of experimental and theoretical total cross sections provides 

probably the simplest test of any theoretical model whereas that between 

differential cross sections provides a more stringent test.

A quantity closely related to the total cross section (1.2.12) is the 

generalized oscillator strength, f^^(K), defined by

(E^ - Eĵ ) |e^j (K)|^ (1.2.13)

where

e^f(K) =  ̂ . (1.2.14)
s

K is the momentum transferred by the scattered electron to the atom, that

is K = k. - k^, and the sum is over the number of atomic electrons. The —  — 1 — f

generalized oscillator strength is related to the total cross* section by

Q.r(k.^) = ^if. i E(E -E.)f 1

Kr max f.r(K) „
— --- dK ira (1.2.15)

with the limits of integration being given as K . = k. - k and K = k. + k^.mxn 1  t max i r

§1,3 The B o m  Approximation

This section will be concerned with a brief outline of the Born approximation 

and comments on its application to electron-atom collisions. To begin with, 

equations (1.2.4) and (1.2.6) are combined so that symbolically one has

g'*' = gT + gT V. g'*’ . (1.3.1)

The B o m  Series for G^ is then obtaihed by successive iteration of this

equation



G* = GÎ + g Tv .g| + gIv .g Tv .g ! + ... (1.3.2)XJLX X X X X X

Substituting this expression into the formal solution (1.2.7) for vt and

then considering the Transition matrix element (1.2.10) yields the B o m
Series for T._ if

Tjf = T ™  + ̂ ^|VG+Vi|^i> + <^f|VGl\\G+Vi|*i> +''' (1.3.3)

where for convenience the first term has been denoted by

T ™  = . (1.3.4)

Retaining only this term in (1.3.3) results in the First Bora Approximation 

(FBA) to T^^; retaining also the second term gives the Second B o m  

Approximation (SBA):

= <4"f|v(l + gTv^)|i(;̂> . (1.3.5)

Further terms may be included but the labour becomes prohibitively complicated;

even in evaluating the second-order term, further simplification is required.

The FBA may be applied in a straightforward manner to electron-hydrogen

collisions for which closed expressions are obtainable for the cross sections

(Mott and Massey, 1955). For the case of helium this is no longer possible

since exact atomic wave functions are not known and resort must therefore be

made to approximate functions. Bell et al. (1969) have employed many-parameter

correlated wave functions for both the initial and final states of helium to
1 1  1study excitation from the ground state to the n S, n P and n D states and 

obtained accurate values for the generalized oscillator strengths (see equation 

(1.2.13)) and for the total cross sections, equation (1.2.15).

SBA calculations have also been made by a number of authors for electron 

impact on hydrogen.and helium atoms; see for example Woollings and McDowell (1973) 

and references quoted therein. More recently, Buckley and Walters (1974) have 

used a modified form of the Second Born Approximation to make detailed studies 

concerning elastic scattering of electrons by ground state helium atoms and 

in a further publication (Buckley and Walters, 1975) concerning excitation to



the 2 S level. Both calculations allow for exchange, the inelastic case 

adopting the Ochkur approximation. Further details may be obtained from the 
respective papers.

For a description of those transitions which occur via spin-exchange, the

First Born Approximation (1.3.4) is often referred to as the Bom-Oppenheimer

or Born-Exchange Approximation. In such processes, the interaction V no

longer depends on the same coordinates before and after the collision, a result

which gives rise to the post-prior discrepancy as remarked earlier. Born-

Oppenheimer calculations have been carried out by Bell et al. (1966) to obtain
3 3total cross sections for excitation of the 2 S and 2 P levels of helium 

by electron impact over a wide range of incident energies. Differential 

cross sections have been calculated by Steelha mmer and Lipsky (1970). When 

compared with experiment the Bom-Oppenheimer Approximation is found to fail 

drastically, particularly at lower impact energies.

A serious drawback of plane wave theories, such as the Born-Oppenheimer 

approximation, is their treatment of the incoming and outgoing electron as a 

free particle. Provided the perturbation V is small, or equivalently the 

passage time of the incoming particle through the neighbourhood of the target 

atom is relatively small, this may be justifiable. If however, the electron 

is in the vicinity of the atom for a longer period, the incident wave distorts 

and may no longer be considered that of a free particle. Moreover, exchange- 

effects will become more prominent. It is precisely in this important region 

that the Born Approximation ignores the presence of the atom. Hence the Born 

Approximation can probably be assumed reliable for describing high energy 

electron impact excitation of atomic transitions which occur principally via 

direct processes as opposed to exchange processes. It is well known that large- 

angle differential cross sections calculated in the Bora Approximation become 

rapidly poorer as the impact energy is decreased. The method also fails at 

small angles for elastic scattering and for transitions from, one s-state to 

another, this being attributed to the neglect of polarization (see, for example, 

the review article by Bransden and McDowell (1976) on electron-atom collisions
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at intermediate energies). At such energies, one is therefore forced to 

consider alternative methods and it is with these various methods that the 

remainder of this chapter is concerned.

§1.4 Eigenfunction Expansion Techniques

When the incident energy of the incoming electron lies below the first 

ionization potential of the target atom, close-coupling approximations have 

had considerable success. Essentially the wave function y T for the total 

system is expressed as a sum over a set of eigenfunctions:

N
" I ’̂ in^X^ + X(r,x) . (1.4.1)

n=l
Here, and elsewhere, r_ represents collectively the coordinates of the orbital

electrons and x the coordinatesof the external electron; the centre of

mass is taken to coincide with the atomic nucleus. The é. (r) belong to ain —
complete set, usually infinite, which must necessarily be truncated at some 

convenient point N for computation; ^ correction function which

seeks to take account of those terms omitted by the truncation. Using such

a method, Burke and Webb (1970) studied excitation of the 2s and 2p levels 

of atomic hydrogen by electron impact. In their calculations they chose as 

a basis the Is, 2s and 2p states (N = 3) of the target and substituted 

for X modified 3s and 3p pseudo-states.

However, when the impact energy lies above the first ionization threshold, 

an infinite number of channels become open and close-coupling methods impractical. 

An alternative approach has been given by Bransden and Coleman (1972), referred 

to as the Second-Order Optical Potential method. Essentially, a second-order 

potential matrix is constructed in order to account for the terms omitted by 

truncating the eigenfunction expansion of yT. Referring to Bransden and 

Coleman (1972), a set of strongly coupled states can appear explicitly in the 

sum and representation also given to the omitted states. Briefly Bransden 

and Coleman write the eigenfunction expansion as
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Y'‘’(r,x) = I F^(x) (1.4.2)
n

where, for convenience the (i) subscript has been dropped and the ijj (r) 

are eigenstates of the target atom with corresponding eigenenergies E^. If 

those states to be retained in the sum are labelled n = 0...N, the Schrbdinger 

equation for the system is shown to be

= 2 ! V^Jx) F^(x) + 4 f
m=0 m=0

dx’ K (x,x*)F (x’) —  n m  m —

n = 0...N (1.4.3)
2where k = 2(E - E ), E the energy of the total system. K (x,x*) is n n riin —  —

the second-order non-local potential given in terms of the free particle
2Greenb function G(k^ ;>c,x') by the expression

Knm<4.x') = I G(k V (X)p=N+l ^ t'

The matrix elements of the interaction potential V(r̂ ,î<) appearing in this 

line are defined by

= ijj (r) V(r,x) (r) dr . (1.4.5)n —  m • ■— —

Bransden and Coleman continue by using closure to* simpli:^ (1.4.4) which as it 

stands is too complicated to evaluate exactly. The problem therefore reduces to 

evaluation of (1.4.4) and subsequent calculation of the F^(x) using (1.4.3).

The model has had wide application, the results of which have been published 

in a series of papers. Initially, an impact parameter treatment was formulated ■ 

and applied by Bransden et al. (1972) to electron and proton scattering off 

hydrogen atoms. A more sophisticated approach, but still in the impact parameter 

formalism, was later applied to the same problem by Sullivan et al. (1972), 

the chief difference being that former calculations were limited to the one- 

and two-channel versions of the theory whereas the latter was a four-channel 

approach. Berrington et al. (1973) extended the model to a study of elastic 

and inelastic scattering of electrons by helium atoms; in particular they 

studied excitation of the 2^S and 2^P levels. Excitation of the n = 3 levels
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has been considered by Bransden and Issa (1975) who used two-, seven- and 

nine- state approximations in their calculations. Electron energies ranged from 

100 to 1000 eV. However the validity of such semi-classical methods is restricted 

to applications where the incident energy lies in the higher region.

Developments have, therefore, been made to treat the same problem without

the impact parameter assumption and allowing for exchange, hence enabling the

model to be more realistically applied to the intermediate energy region. The

results of a partial wave formalism applied to the elastic scattering of

electrons by hydrogen and helium atoms have been summarized in a paper by

Winters et al. (1974). Bransden and Winters (1975) later extended this distorted

wave formalism to excitation of the 2s level of hydrogen and of the 2^S and 
32 S levels of helium over the impact energy range 50-200 eV. In their work, 

Bransden and Winters allowed for polarization effects in the initial, channel 

when calculating the distorted wave and in the final channel allowed only for 

the field of the final target state. This is in contrast to the many-body 

approach of Taylor and coworkers, which will be considered in §1.7.

§1.5 Eikonal Methods

For relatively high impact energies and particular transitions, namely 

those which can occur via direct interactions as opposed to exchange interactions, 

contributions arising from exchange effects may be considered small. In such 

cases methods can therefore be developed which are specifically applicable 

only to those processes considered to be dominated by the direct part of the 

transition amplitude. The eikonal approach is one such method and has been used 

extensively in many forms by a number of authors (the Glauber approximation is one 

such form and has recently been reviewed by Gerjuoy and Thomas, 1974). For a 

general review on the eikonal theory of electron-atom collisions, see the article 

by Joachain (1974).

In order to emphasise the main idea, the problem is first treated by direct 

analogy with potential scattering. The wave function Y. assumes the form
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= A (1.5.1)

with A and S real, A a slowly varying function of the incident wave 

number k^. Essentially the idea is to treat the scattering semi-classically 

in which case scattering will be confined to small angles and the particle 

trajectory will be treated as a nearly straight line parallel to the direction 

of incidence.

Substituting (1.5.1) into the time independent Schrbdinger Equation

and making the fundamental eikonal approximation, which assumes that
2 2 2 V A << k A, k =2E, one finds

(VS)2 = 2(E - V). (1.5.2)
Equation (1.5.2) is the Eikonal Equation, whose solution S is now 

substituted into (1.5.1) which then becomes the eikonal wave function and 

forms the basis of the eikonal theory.

A recent development of eikonal methods has been the multichannel eikonal 

treatment, formulated and applied in a series of papers by Flannery and McCann. 

Briefly, equation (1.5,1) is replaced by a truncated sum over unperturbed 

target eigenstates ;()̂ (2) :

N is (x)
Y. (r,x) = y if) (r,x) a (x) e ^ , (1.5.3)

1 --- n — —  n —n=l

ik .X

which therefore allows for different trajectories in each channel represented 

in the sum. The coordinate x is expressed in terms of the impact parameter 

p and the distance z measured from the centre of mass along a line parallel 

to the incident direction, Ü  + zz_. Substituting (1.5.3) into the time- 

dependent SchrBdinger Equation and noting that, classically t = z/v^, it 

is found that the a^^,z) satisfy the set of first-order coupled differential 

equations

r o N i(S -S )
nfm



14

which is basically equation (9) of Flannery and McCann (1974). These equations 

are solved subject to the boundary conditions a^(p,-«>) = 5^^. V is as 

usual the interaction potential.

The multichannel form of the T-matrix is then obtained by substituting 

for in the expression

'̂ if " T^^(kj^;r,x)> » (1.5.5)

Further simplifications are made according to the process under consideration, 

details of which are outlined in the respective papers by Flannery and McCann.

A point to be made is that (1.5.3) allows for exchange only implicitly; 

no explicit account of exchange is included in the model. It is possible to 

include pseudo-states in an effort to make allowance for those states omitted 

by truncating the sum. Calculations have been carried out by Flannery and 

McCann (1974) with and without pseudo-states in a four-state and seven-state 

treatment for elastic and inelastic scattering of electrons from atomic 

hydrogen. Small-angle (less than 40°) differential cross sections for excitation 

of the 2p level are in very good agreement with experiment. Agreement 

for the 2s level is not so good, this being put down to the fact that 

exchange and polarization effects are neglected. The results of a ten-state 

calculation for inelastic electron-helium scattering have also been published 

(Flannery and McCann, 1975); as should be expected the method is generally 

successful for forward-angle scattering but fails appreciably in the backward 

direction where exchange is considered to dominate. Total cross sections 

are in good agreement with experiment for impact energies above 100 eV.

Another eikonal based method has been formulated by Byron and Joachain 

(1973a). The solution of (1.5.2) may be written

S = const. + I [2(E - V)J^ dz (1.5.6)

where the trajectory of a straight line along the z-axis parallel to k^ 

has been used.
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S = k^z

As z + - S is required to yield a plane wave, whence
z

[2(E - V)]^ dz'. (1.5.7)

For high impact energies the integral may be approximated to x*

Vdz (1.5.8)X - ■ k7
1
1

which is the well known Glauber approximation to S. Substituting into 

(1.5.5), one obtains the Glauber T-matrix element

G I ITif = <*f|v|e . (1.5.9)

Byron and Joachain (1973a) go on to show that this reduces to the form

T?^ = - ik^ I dp^e^-- <*f|e^X-l|*^> . (1.5.10)

Here, p is again the impact parameter defining the straight line trajectory

with respect to the target atom and K the momentum transfer. The eikonal

factor is expanded and (1.5.10) rewritten in the form of the Glauber Series

i f  = - iki Ï S -  (1.5.11)
n=l

with

. (1.5.12)

This is in close analogy with the Born Series (1.3.3) for T\^. Byron and 

Joachain then take for the Eikonal Born Series

i f  = i f  + i f  + i  (1.5.13)

where Tg is treated as a correction term to the Second Born element T^^^. 

The model has been further developed by using the Ochkur approximation to 

account for exchange effects; details may be obtained from the paper by 

Byron and Joachain (1973a). The method has been successfully applied to the 

elastic scattering of fast electrons from helium (Byron and Joachain, 1973b)
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and to the elastic scattering of electrons from atomic hydrogen at intermediate

and higher energies (Byron and Joachain 1974). More recently, Byron and Latour

(197 6) applied the same method to electron impact excitation of the n = 2

states of hydrogen above 100 eV and obtained good agreement with experiment

for scattering angles less than 100°. Byron and Joachain (1975) have also

considered electron impact excitation of the 2^S level of helium at

intermediate and high energies. However, in this case a slightly modified 
BBSversion of was adopted.

fSBA  ̂ (1.5.14)

Their differential cross section results are seen to be in good agreement 

with experiment over the whole angular range.

§1.6 Distorted Wave Theory

It has already been remarked in §1.3 that, when the interaction between 

the incident electron and target atom causes only a small perturbation to 

the system, the external electron is considered to be adequately represented 

by a plane wave. This, it will be recalled, is basically the Born approximation 

which is expected to be valid at high impact energies. However, as was pointed 

out earlier, when the perturbation is no longer weak, distortion becomes 

important and plane wave theories break down. Essentially, the distorted 

wave technique recognises that the wave describing the incoming and outgoing 

particle will be distorted due to the presence of the target and consequently 

attempts to incorporate distortion effects into the equations defining the 

cross sections.
Denoting quantities in the initial channel by the subscript i. and those 

in the final channel by f, the interaction potential V is divided into 

two parts

V = Ui + %i (1.6.1)

= Urn + Wrf f
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such that the U's depend only upon x, the coordinate of the free electron. 

Similarly the total Hamiltonian H is divided into two parts:

H = Fl  + (1.6.2)

with

Hf + Wf

(1.6.3)

and H^, H^ the unperturbed Hamiltonians.

The Lippmann-Schwinger equations satisfied by the total wave functions 

for the system, Y. and , Y^ (the time reversed Y.), are written

1 1
(1.6.4)

+ Ë-ZB-ZiF1 f

where notation follows that of §1.2. Similarly the state functions of H~^ 

and H^ satisfy the equations

(1.6.5)

* E.-H -ie Hf't’f •1 f

Formally equations (1.6.4) and (1.6.5) have solutions in direct analogy with

(1.2.7).

The T-matrix element is given by

T. _ = <t|;.VyT> = <y"Vi|).> (1.6.6)if f 1 f 1

so that from the above equations, after appropriate formal manipulations, 

the well known two-potential formulae may be obtained (see for example 

Messiah, 1970):
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(1.6.7)

= <*f|V-Hil*i> + <ïf|WiUi> .

Provided the initial and final target states are different, the first 

term may be shown to vanish in each case. The Distorted Wave Born Approximation 

(DWBA) to T^^ is then derived by approximating vT by (fît and similarly 

by (|)̂ so that (1.6.7) reduces to

T ™ *  = . (1.6.8)

It is instructive to compare thisexpression with the First Born Approximation

i T f  = . (1.3.4)

Physically, the potential U may be said to distort the waves subsequently 

seen by the second potential W. Equation (1.5.8) is interpreted as the 

Born Approximation for scattering by W in the presence of the distorting 

potential U. There is clearly a close analogy between (1.6.8) and (1.3.4), 

the latter describing the scattering of undistorted or plane waves by the 

potential V.

Joachain and Vanderpoorten (1973) have combined the DWBA with the Eikonal 

approach. Basically they choose U by using the Glauber approximation 

and then compute the distorted wave functions <f>t and (|)̂ as eikonal wave 

functions (equation (2.4.2) of their paper). However, the method neglects 

the effects of exchange between the incoming electron and those of the target 

and hence is only suitable for describing direct excitation processes at 

higher impact energies. Coupled with the additional eikonal restrictions, 

the theory can only be expected to hold for small-angle scattering at 

intermediate and high impact energies. This is indeed found to be the case. 

Joachain and Vanderpoorten (1973) employed the model to study inelastic scattering 

of electrons and protons by atomic hydrogen at intermediate impact energies.
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Similarly excitation of the 2^3 and 2^P levels of helium has been discussed . 

in later publications (Joachain and Vanderpoorten, 1974a and 1974b).

Distorted Wave results for excitation of the 2^P level of helium by 

electron impact have also been published by Madison and Shelton (1973). In 

theJf calculation, the distorted waves are computed, without exchange 

considerations, on the potential

- r  +

in the initial and final elastic scattering channels. Z is the nuclear charge 

and V̂ (>t) is defined to be the spherical average of the interaction of the 

free electron with the atomic.electrons in the respective channel. The 

calculation does not allow for target distortion which for intermediate 

energies is considered important. Nevertheless their results are surprisingly 

good.

11,7 Many-Body Theory

The Many-Body Green’s function techniques of Martin and Schwinger (1959) 

have been used by Schneider et al. (1970) to formulate an approximation 

scheme for the elastic scattering of electrons from atoms and molecules.

Using this first-order approach, namely the Random Phase Approximation (hence­

forth abbreviated to RPA), Yarlagadda et al. (1973) studied elastic scattering 

of electrons from helium at impact energies below the first ionization 

threshold. Thomas et al. (1974) extended the method to treat inelastic 

scattering of electrons from helium over the intermediate energy region and 

obtained particularly good agreement with experimental results for excitation 

of the 2^P level. In their paper the direct and exchange transition matrix

elements are given in the RPA as

 ̂ dxd2  (1.7.1a)
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f 4 ” ^̂ 2 :) Tx-xl (1.7.1b)

(r) and f,̂  ̂ (r) are the Hartree-Fock continuum orbitals (distorted
h  -  -

waves) with outgoing and incoming wave boundary conditions respectively.

is the transition density matrix element computed between the final and 

initial target states, calculated in the RPA. The theory allows for exchange 

in determining the distorted waves but omits polarization.

An interesting feature of the model is that the continuum orbitals are 

both calculated in the field of the initial state of the target. Or, in other 

words, the outgoing electron sees the initial state of the atom so that 

scattering occurs before the atom makes the transition to its final state.

Such a description is referred to as the two-time model. More recently, 

many-body theory has been extended further by Yarlagadda and Taylor (1975) 

to describe electron impact ionization and has been applied in first-order 

form to the coincident ionization of helium by Ealuja and Taylor (1976). The 

good agreement obtained with experiment lends further support to the two-time 

model.

The many-body approach has also proved useful by offering insight into 

other physical aspects of electron-atom collisions. For example, terms arise 

in the formalism which may be interpreted physically as arising from 

polarization effects, screening effects due to the atomic electrons, final- 

state interactions and each with corresponding exchange counterpart. A full 

description of these interaction terms and others is to be found in the papers 

by Csanak et al. (1973) and by Csanak and Taylor (1973). A detailed review 

of the many-body theory approach to atomic collisions is given in the article 

by Csanak et al. (1971).

It is interesting to note that in the distorted wave calculation by 

Madison and Shelton (1973), the best results were obtained when the final 

channel distorted wave was computed in the field of the target ground state, 

in agreement with the two-time model. Rescigno et al. (1974) have since 

shown that in lowest-order, the many-body field theory method can be
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expressed as a distorted-wave model whereby the distorted wave in both the 

initial and final channels is a Hartree-Fock continuum orbital calculated in 

the field of the target ground state. Essentially, Rescigno et al. derive, 

by using second quantization techniques and the RPA, the expression given by 

Csanak et al. (1971) for . Then, using the distorted wave approximation

coupled with the RPA, they obtain the same expression for T^^, thus demonstrating 

the equivalence of the two methods.
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CHAPTER 2

THE DISTORTED WAVE POLARIZED ORBITAL METHOD 

§2.1 The Polarized Orbital Method

The method of Polarized Orbitals is particularly suited to the study 

of electron-atom collisions over the intermediate energy range referred to in 

Chapter 1. It is a method based on physical reasonableness rather than a 

mathematical derivation from first principles, and as such is an attempt to 

account for the distortion induced in the target system by the presence of 

the free electron. This distortion will, of course, also apply to the wave 

function for the scattering electron. Another dominant effect in this impact 

energy region arises from the exchange interactions between the scattering 

electron and the bound electrons. The Distorted Wave Polarized Orbital 

(abbreviated to DWPO) approach, applied by McDowell et al. (1973) to electron 

impact excitation of the Is ns transitions in atomic hydrogen and singly

ionized helium is designed to allow for these two effects of polarization and 

electron exchange. Earlier Bell and Kingston (1967a,b,c) used a polarized 

orbital approach to calculate photoionization cross sections of helium,singly 

ionized lithium and negative hydrogen ions respectively, and obtained accurate 

results. Motivated by this work, Lloyd and McDowell (1969) applied the 

polarized orbital approximation to calculate total cross sections for electron 

impact excitation of the 2s and 2p levels of atomic hydrogen for electron

energies up to 9 Rydbergs. Subsequently, the DWPO method has been developed 

by McDowell and coworkers to study differential scattering.

Originally,in a study of polarization and exchange effects on the 

scattering of electrons from atoms , in particular, oxygen, Temkin (1957) 

introduced the method of polarized orbitals. The technique was later used by

Temkin and Lamkin (1961) and by Sloan (1964) to calculate the lower order

phase shifts for electron-hydrogen collisions.
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Modifications to the polarized orbital method have been made by a number 

of authors. In particular, modified versions have been applied to the 

elastic scattering of electrons from helium by LaBahn and Callaway (1964) and 

from hydrogen and helium by Callaway et al. (1968). For a comprehensive 

review of Polarized Orbital Approximations, see the review by Drachman and 

Temkin (1972). In the following, a brief outline of the original polarized 

orbital approach will be presented with a view to emphasising the main ideas 

as summarized by Duxler et al. (1971) describing their application of the 

theory to scattering of electrons by helium. Hence to be specific, scattering 

of electrons by a general two-electron atom or ion possessing nuclear charge 

Z will be considered.

Here, and elsewhere, the centre of mass for the complete scattering system 

is assumed fixed at the target nucleus. The initially bound electrons will 

have position vectors r^ and r^ with respect to this point and that of 

the incident electron will be r^. Atomic units will be adopted here and 

elsewhere throughout the thesis, unless otherwise stated.

The method essentially offers a prescription to tT, the wave function 

for the whole system in the initial channel, which, it will be recalled, 

satisfies the SchrBdinger Equation (1.2.1)

(H - E)Y* = 0 . (1.2.1)

H consists of the kinetic energy operators and Coulombic interactions 

between the particles comprising the system but omits spin-dependent terms.

It is convenient to separate H into two parts

H = H» + ÔV (2.1.1)

where H* is defined to be

H' = - - —  - —  t —  - (2.1.2)1 2 rg ^3
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and 6V given by

6V = - iV„^ - —  + —  + -i- . (2.1.3)
® ’"a ""13 "’23

The abbreviation r. . = Ir. - r.l has been used. Following Duxler et. al.13 ‘“1 -q' ^
(1971), the polarized orbital method has three basic features which for ease

of recognition will be labelled A,B,C.

Distortion of the target is recognised at the outset of the theory and 

is hence incorporated into the form of the atomic wave function as a 

perturbation correction. Thus, wT assumes the form

(A) TÎ = ^{$^(12) + F(3) } (2.1.4)

where the following notation has been employed:

$^(12) = unperturbed ground state atomic wave function*.

^P0 l(1 2 ,s) z correction function to 3u^l2) due to the polarization

of the atomic orbitals by the presence cf the incident 

electron labelled 3 ;

F(3) = electron wave function describing the scattering:

is an antisymmetrising operator acting on all three electron labels.

The incoming electron will induce in the atom electric multipole moments 

so that a polarization potential is set up which in turn attracts the 

electron and produces further distortion. The adiabatic approximation is 

made that the interaction potential between the free electron and target is 

varying so slowly that the orbital electrons can smoothly adjust; semi- 

classically this amounts to saying that the speed of the incoming electron 

is considerably less than that of the bound electrons in their orbits. 

Mathematically it may be said that the free electron can be assumed stationary 

and its kinetic energy operator neglected in 6V. However, it should be 

pointed out that for sufficiently polarizable targets, the incoming electron 

may attain a velocity of similar magnitude to the orbital electrons and hence
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invalidate trhis assumption.

It is further reasoned that the dominant polarization effects come from

that region where the incident electron is "outside" the atomic cloud of

electrons, that is r^ < r^ (i = 1,2). Hence equation (2.1.3) is approximated to

n e(r ,r ) e(r ,r ) 
iV = - ^  +  ̂ + - /- (2.1.5)

3 13 ^23

where e(x,y) is the unit step function defined by

e(x,y) = 0  X > y

= 1 X < y .

Its effect is to "switch off" the perturbation when the incident electron 

is "inside" the target atom. Replacing the latter two terms in (2.1.5) by their

multipole expansions and retaining only the first two terms of each, it is

found that

, 2
(B) ÔV = — ^ \ r. cos 8. e(r.,r ) (2.1.6)

Tg j=l  ̂ ^

with 6. the angle between the radius vectors r. and £«. This is the3 3 3
dipole approximation to 6V; physically it says that 6V is due to a 

"stationary" external electron and that it is assumed to vanish when the 

incident electron penetrates the atom.

It remains to find an equation satisfied by the wave function F(3) for 

the scattering electron. In the method of polarized orbitals this is obtained 

by projecting the SchrBdinger Equation (1.2.1) onto the unperturbed ground 

state $^(12) and integrating over the atomic coordinates:

(C) $*(12) [H-E] Y&12;3) dr,dr. = 0 , (2.1.7)

vT(12;3) takes the form given by (2.1.4). Equation (2.1.7) is a necessary 

condition for TÎ to satisfy (1.2.1) but it is clearly not a sufficient 

condition. tT would only be an exact solution of the SchrBdinger Equation 

if the projection of [H-Ej'i't onto all states of the target vanished.
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Equation (2.1,7) is the scattering ansatz of the theory and will be further 

discussed in the next section (§2 ,2 ).

So far no mention has been made of how to determine the perturbation 

(12;3) of equation (2.1.4). Essentially, the unperturbed ground state 

may be taken to be represented by a separable wave function

$i(l2 ) = ' (2 .1 .8 )

When the perturbation 6 V is introduced, the orbitals <}> (i) become

polarized and $^(12) goes over into the perturbed wave function $^(12;3) 

obtained by replacing #^^(i) in (2 .1 .8 ) by $^^(i) + i = 1 ,2 .

is the dipole component of the perturbed atomic orbital due to the 

external electron; the problem hence centres on the determination of ^

Writing 6 V^ for. the dipole approximation (2.1.5) to 6 V, the total 

Hamiltonian H of equation (2.1.1) is approximated to Ĥ :̂

H = H' + 5V . (2.1.9)

The functions (J>̂ ĵ̂ (i,3), i = 1,2, may now be determined by using a 

variational principle, imposing the condition that

$1 * H * 2  = 0  . (2 .1 .1 0 )

The resulting equation is approximated' to first-order in the perturbation

(<|)poi) and subsequently reduced to a second-order differential equation satisfied

by 6  , . For further details reference should be made to the original paperpol
by Temkin (1957).

To summarize, it is emphasised again that the principal features of the 

polarized orbital method lie in; (A) the choice of wave function for the complete 

system,(B) the adiabatic and dipole approximations to the interaction between 

the scattering and atomic electrons and (C) the scattering ansatz.

The Distorted Wave Polarized Orbital method of McDowell et al. (1973) 

allows only for dipole distortion implicitly in the initial channel, and 

calculates the distorted wave in the adiabatic-exchange approximation, to be
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discussed in the next section. Explicit target distortion does not appear 

in the T-matrix element, This relatively simple method is referred to

as the DWPO I model. A more sophisticated method (McDowell et al., 1974) allows 

for target distortion to appear explicitly through the direct part of T^^ 

and is referred to as the DWPO II model. Both models have since been used 

to study excitation of the p-levels of atomic hydrogen and singly ionized 

helium by electron impact (McDowell et al., 1975a, 1975b; Morgan and McDowell 

1975) with energy lying in the intermediate range. Good agreement in the 

DWPO II model is obtained with experiment for the total n = 2 differential

cross sections at scattering angles below 60°. Syms et al. (1975) have

recently generalized the DWPO II model and examined electron impact excitation 

of the n = 3 levels of atomic hydrogen.

The rest of the chapter will, however, be devoted to application of the 

DWPO model, in its different forms, to the excitation of helium by electrons 

with incident energy within the intermediate region. The two essential items 

are the scattering equation (§2.2) and the form taken by the T-matrix (§2.3).

§2.2 Derivation of the Scattering Equation

In the previous section, the scattering ansatz of the polarized orbital 

method was stated, equation (2.1.7). The purpose of this section will be 

to further examine this equation in the context of the Distorted Wave Polarized 

Orbital method when applied to scattering by helium and to hence derive 

the equation of motion satisfied by the distorted wave in the adiabatic- 

exchange approximation. The approximation accounts for distortion of the 

incident wave through a direct polarization potential and omits those terms 

arising from exchange-polarization. Moreover, if this direct polarization 

potential is also omitted, the approximation reduces to the static-exchange 

model of Morse and Allis (1933). Hence it is convenient to obtain the 

adiabatic-exchange equation from a derivation of the static-exchange equation 

coupled with a modification to the static potential to introduce the polarization

term.
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With this in mind, rather than use (2.1.4) for t T in (2.1.7), the 

unperturbed function is adopted instead, that is;

'pT(12;3) = A *j^(12)F(3) $'*'(12,3) . (2 .2 .1 )

Here (j)̂ (12) is the spatial part of the helium ground state wave function 

and S^(12,3) a singlet spin function; other notation follows that of the 

previous section (§2 .1 ).

$^(12) = *^(12) S‘̂ (12) (2.2.2)

represents the unperturbed ground state wave function. The spin functions 

are defined to be (Mott and Massey, 1965)

S'*'(12) = ^  (a^Bj - B^Cg) 3

$'*'(1 2 ,3) = S'*(1 2 )ag ,

and the scattering ansatz is written

$t(12) [H-E] t T(12,3) dr,dr dç = 0 (2.2.3)
1  X "TJL

where the spin integration has been specifically denoted by dç. H is given

by (2.1.1) with the substitutions (2.1.2) and (2.1.3). Substituting for 

tT(12,3) by (2.2.1) and $^(12) by (2.2.2) into (2.2.3) and noting that 

(j)ĵ (12) and H are symmetric in 1 and 2, integration over spin yields

*t(12) [H-E] {*.(12)F(3) - *.(23)F(1)] dr dr = 0 . (2.2.4)X X X "“X éL

For convenience, this will be written as

I - J = 0 (2.2.5)

where I is the direct integral

I =

and J the exchange integral

f **.(12)[H-E] *.(12)F(3)dr^drg (2.2.6)
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*^^12)[H-E] *.(23)F(l)dr,dr_ . (2.2.7)1 1 —1 — z

It is now assumed that is separable and, since the ground state
2has configuration (Is) , the Hartree-Fock function becomes a simple 

product function of the form

<|).(r,t) = (r) (t) (2 .2 .8 )

where 4"2ŝ —  ̂ satisfies the Hartree-Fock equation (or equivalently, in 
this case, the Hartree Equation)

[ + —  - V_(r) + E, 1 (r) = 0 . (2.2.9) ̂ r o is-J ^Is —

Throughout this section, energies will be expressed in Rydberg units; here 

is the single ionization energy of the atom. V^(r) is the potential 

energy of the electron at position vector r_ (with respect to the centre of 

mass at the nucleus) due to the field of the other electron:

dt . (2 .2 .1 0 )V^(r) = 2

The ground state energy, E^, of the atom is expressed then in the form

E. = 2 e.
1  Is *, (r)|^ V (r) dr (2.2.11)Is

and the total energy, E , of the scattering system is given by

E = E^ + k.^ (2.2.12)

with k. the incident nomentum.—1
Having established the form which (j>̂ (12) is to take, equations (2.2.6) 

and (2 .2 .7 ) are recalled and simplified in turn under the headings (a) and (b).

(a) A(j)^(12)[H-Ej <f)̂ (12)F(3) dr^dr^ (2.2.6)

Substituting for (f)̂ (12) from (2.2.8) and also H, referred to after

(2.2.3), one has
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I =
1  ^ 1 2

C c )  h s < 2 )
_ 2 2Z ^ 2
2 "'2 "'12 +ls(l) *ls(:) f(3) dr^dr.

*ls(2 ) [■ ^3^ " Ü  ■
2Z 2 . 2 . 2—  + -- + ------- E
^3 ^ 1 2  ^13 ^23

*ls(l) *ls(2)r(3)dridr

(2.2.13)

The term ——  has been added and subtracted for convenierce and the nuclear 
12

charge number Z retained. With the aid of equations (2.2.10) and (2.2.11) 

this expression reduces to give

I = (2E^g-E)F(3) + *lg(l)*lg(2 ) - V, 2 2Z 2  ^ _ 2 _  ^ 2 1

^3 ^ 1 2  ^13 ^23

4», (2)F(3)dr,dr_ .Is — 1  — 2

Then, employing the expression (2.2.12) for E and equation (2.2.11), 

the above becomes

I = 2 2Z 2 2
 ̂ ^3 ^13 ^23

^g(2)F(3)dr dTg - F(3)

which is symmetric in 1 and 2. Hence writing

972V (r) = - + 4oo r r-t dt (2.2.14)

the direct integral I may finally be written

I = - [ + k.^ - 2V ^(r )1f (3) .L 3 1  oo a J (2.2.15)

(b) J = (12)[H-E]*.(23)F(l)dr,dr_X X “ X — z (2.2.7)

By hermiti d-ty, or equivalently using Green’s Theorem, (j)̂ (12) and 

<j)̂ (23)F(l) may be interchanged so that, writing H in full as in (a)

above
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J = _ V 2  + ^  _ 2 Z 
1  " - 1 2  "l

t o 9 7 "I A A
- ^ 2  " IT J

t •
r O 07 9 9 -| A A

(2.2.16)

With the help of equation (2.2.9) and (2.2.10), the first two terms 

are simplified so that

*, (l)F(l)dr, + Is — 1
hs<2)*,^(3)F(l)[- V^(r^) +

hs(^)hs(^) % ‘̂îl2
t o 07 O ■ 0 -1 A A

- ’ 3 - ? :  +  Î 7 T  + Î -  - E  ]  A s ^ l ^ h s ( 2 > ' = £ l ^ i 2  •13 23

At this point, it is convenient to denote by G the integral

G = <p (r) F(r) dr . Is —  —  — (2.2.17)

Using (2.2.10) and (2.2.11) J becomes, with suitable rearrangement:

J =  ̂[E. - E]

+ 2*^^(3) F(l)dr^ - s[Vg^ + ^  + E J  *ig(3)
13 3

The final bracketed term vanishes by (2.2.9). Finally with the aid of 

equation (2.2.12), the exchange integral J may be written

J = [(s^ 3  - k. )G + 2 ] *;^(1) —  F(l) dr^] *^^(3) (2.2.18)

Replacing G by its definition (2.2.17) and combining (2.2.15) and

(2,2.18) into (2.2.5) yields the scattering equation for F(r̂ ) in the ' 

static-exchange approximation:

[V^ + k.^ - 2V ^(r) lF(r) = «- 1  oo -* —
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r 2 r * f=  -[(e^g - k. )  J  *^g(t)F(t)dt +  2  — ^ (2.2.19)

The adiahatic-exchange approximation is now derived by recalling the definition 

of V^o(r), equation (2.2.14), and replacing 4,̂ (̂t) by <|î̂ g(t) + 4»p̂ j_(t,r) 

where, it will be recalled, is the dipole component of the perturbed
atomic wave function. One then has that

2 V ^ ^ M  = + 2 Vp^^(r) (2 .2 .2 0 )
with

= - f  + 2 r-t dt , (2 .2 .2 1 )

r-tl • (2 .2 .2 2 )

Vis ig(r) is the direct static potential, that is, the interaction of the

free electron with the bound electronic cloud; V _(r) is the directpol
polarization potential, due to the distortion of the target by the incident 

electron.

Inserting (2.2.20) into (2.2.19) the final result is obtained whereby 

F(r) satisfies the integro-differential equation.

[v2 + k.2 - is(r) - 2V (r)]F(r)Is,Is pol

r 2  f * f '(’is(t)F(t)
■ "[(^Is " ) J *j^g(t)F(t)dt - 2  J  — j p g   • (2.2.23)

Equation (2.2.23) is the Adiabatic-Exchange approximation to the scattering 

ansatz (2.1.7) and is the central equation of the DWPO I and DWPO II models. 

Attention is drawn to the fact that only static-exchange terms have been retained, 

exchange-polarization having been omitted (see, however. Chapter 4). Essentially 

this equation may be viewed as an augmentation of the basic static-exchange 

approximation by the addition of a direct polarization potential. Historically, 

this is in fact how the approximation was first introduced (Bates and Massey, 1943)
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§2.3 Formulation of the T-Matrix Element

This section will be concerned with the formulation of the T-Matrix 

element in the various DWPO models. Expressions will be obtained to 

represent transitions from the ground state to either a singlet or triplet 

spin state of the target. The use of the letter Z to denote the nuclear 

charge will be continued from the previous section (§2 .2 ), so that the 

analysis will in fact be applicable to any two-electron atomic system.

To begin with, equation (1.2.10) for T^^ is recalled and its 

constituent components defined in the context of the DV7P0 approximation,

Tif = Vf (1 .2 .1 0 )

Here the final channel interaction potential is chosen for V and defined 
in the direct channel to be

so that electrons 1 and 2 are bound and electron 3 is the scattered 

electron. YÎ is defined by equation (2 .2 .1 )

'FÎ(12,3) = (j)̂ (l2)F(3) S+(12,3) (2.2.1)

The unperturbed function , ijĵ, for the system in the final channel 

is defined to be

4^(12,3) = *;X12)%. (z,3) S~(12,3) (2.3.2)X X i

where the plus and minus signs differentiate between either a singlet or a

triplet final state respectively. This convention will also be adhered to

elsewhere. 4»̂  denotes the spatial part of the atomic wave function and

X (z,3) is taken to be an outgoing Coulomb wave in the field of the 
f

residual charge, z = Z - 2, satisfying (McDowell and Coleman, 1970, 

equation (5.4.1))

(v2 + k /  + ~ )  = 0 (2.3.13)
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The doublet spin functions for the system, S (12,3) are given as 
(Mott and Massey, 1965)

S (12,3) = ^  (“2 ^ 2  " ̂ 1^2^ ^3 ) (2.3.3a)

S (12,3) = ~ “ 3 ^“l^ 2  ^ ^1 ^2  ̂J ’ (2.3.3b)

Substituting these expressions, together with the defining equations

(2,2.1) and (2.3.2), into (1.2.10) and effecting the spin integration 

yields for both singlet (+) and triplet (-) excited states

V = h/ - if (2.3.W

(I)
= /3 T^^ . (2.3.4b)

The terms on the right hand side are the matrix elements

 ̂«t'f(12)X]̂  (z,3)Vpj^(12)F(3)> (2.3.5)

= <**(12)x^ (z,3)V^*^(23)F(l)> (2.3.6)

denoting the direct and exchange parts respectively. It is noted that for 

a transition to a triplet spin state, T^^ consists of only an exchange 

term (equations (2.3,4b) and (2.3.6)), coinciding with the fact that such 

transitions from the ground state can only occur via charge exchange; 

there are no spin-dependent terms retained in the Hamiltonian of the 

system.

In §2.1, reference was made to including target distortion explicitly 

in T^^; in the above, this is only allowed for implicitly through 

calculation of the distorted wave, F(£).
Such an account of distortion is incorporated by remembering that

4>£(r̂ ,̂ ) is separable

= 4).g(r) 4)j,g(̂ ) (2 .2 .8 )
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and replacing each of the orbitals by the polarized form

^ + V l  (2.3.7)

just as in the derivation of the polarization potential (see equation

(2.2.22)). Making this substitution into the direct term (2.3.5), equations
(2.3.4) are modified to

T f /  = (T.^“ + p^^) - (2.3.8a)
(II)

"if = "i/'
where

P

= /3 (2.3.8b)

h f  ■ 2<'t'f(12) X,, (z.3) *^g(l) *poi(2,3) F(3)> . (2.3.9)

+The exchange matrix element remains unaltered. These approximations to TT^ 

are consistent with the adiabatic-exchange approximation (2.2.23) to P(£) ; 

both allow for polarization in the direct terms but neglect entirely the effects 

of exchange-polarization contributions. If now, the modification (2.3.7) is 

inserted in the exchange term (2.3.6), equations (2.3.8) become

h f "  = (hf“ + hf') - (hf"" + hf""" - hf''") (2.3.10a)
(III)

h f

where the additional exchange terms are given by

= <*^(12) x^ (z,3) *^g(2) *pgi(3,l) F(l)> . (2.3.11)

T.f^^- = <^(12) Xk (z.3) *^g(3) *pgi(2,l) F(l)> . (2.3.12)

This approximation to T^^“ allows for both direct and exchange effects in the 

atomic wave function arising from dipole distortion of the target. However, the 

adiabatic-exchange approximation to F(r) is inconsistent with this treatment. 

The scattering equation must be modified to include the additional terms which 

arise when account is taken of exchange on the polarization parts. This will
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be discussed in Chapter 4.

The significance of the Roman numerals (I-III) is to indicate the various 

DWPO approximations to T^^. Hence equation (2.̂ 3.4) is the DWPO I approximation 

to equation (2.3.8) is the DWPO II approximation, and equation (2.3.10)

is the DWPO III approximation. Physically these models may be summarized by 

saying that: DWPO I allows for target distortion only implicitly through the 

calculation of the distorted wave in the adiabatic-exchange approximation; DVfPO II 

calculates the distorted wave also in the adiabatic-exchange approximation but, 

in addition, allows for target distortion explicitly in the direct term of the 

T-matrix; DWPO III takes account of distortion in both the direct and exchange

terms of the T-matrix but no longer calculates the distorted wave in the

adiabatic-exchange approximation. It is to be noted that for excitation to a 

triplet spin state, DWPO II reduces to the simpler DWPO I model.

The remainder of this section will centre upon a study of the constituent parts 

of the T-matrix namely equations (2.3.5), (2.3.6), (2.3.9), (2.3.11) and (2.3.12), 

in preparation for a partial wave analysis in the following chapters.

The final unperturbed target wave function, #^fl2), is written

4(12) = ^[u^gCD V*^(2) ± v^^(l) u^^(2) ] (2.3.14)

where u (r) is the core orbital and v Tfr) the valence orbital of the ato* i.Is —  nJt —
The various direct and exchange contributions to when the substitutions

indicated by equation (2.3.1) for and (2.3.14) for 4»̂  are made, will

now be considered in turn.

13 "23

+ls(l)+ls(2)f(3) ^^123
where dr. . indicates integration over the space variables r.  ̂both

— t • • • 1  * *

here and elsewhere.
This expression is symmetric in 1 and 2 and may hence be written

V  = + A  - : 3 - : 4 ]  (2.3.15)
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with:

h  =

\I(2) (z,3) A -  *1 .(1 )*,.(2) F(3) drri3  is -is -123

“1 3 (2 ) ?*^(l) (z,3) ^  *,.(1) *,_(2) F(3) drr 3  is -Is -123

' Âs(^) C ( 2 )  X*4z,3) ^  *^^(1) *3^(2) F(3) dr^ ^ 3

(j)ĵg(r’) and (£.) are required to be orthogonal in which case

(2.3.16a)

(2.3.16b)

(2.3.16c)

(2.3.16d)

nil

The integral is separable so that one may define

B =

= v“t(l) x! (z,3) *,,(1) F(3) dr̂ ĝS
nl' ' "13

(2.3.17)

(2.3.18)

note that B should approximately be unity. T^^ can hence be written as

(2.3.19)T,.^ = B /2 I, if A

h f = 72 I [<sC) O 2) + vj;+(l) u"^(2)] x Nz,3) ( ^  .  ̂- 1^)
This is written more compactly as

= / 2  [ Kĵ  + K2  - 2 Kg + - 2 K^] (2.3.20)
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with :

K. = I C ( 2 )  x"^(z.3) ^  *^^(1) *^^^(23) F(3) (2.3.21a)

=
*+

Jl) v^/2) Xv (z,3) ^(|)^Ji) <^^^,{23) F(3) dr
13Is nil r , ' ’'Is'̂ " '^pol'"" “-123 (2.3.21b)

K_ = A J ^'> vZl(2) xt (z,3) ^  *,„(1) *_„,(23) F(3) dr
3Is nil k^'“’'" r.̂ '̂ Is'̂ ' ’’'pol' " ‘ '"—123 (2.3.21c)

“1 3 (2 ) V ( l )  Xk^(z.3) ^  *^g(l) *p^i(23) F(3) dr^23 (2.3.21d)

r *
A  = < 3 (2 ) - l i a ) X^^z.S) ^ * ^ 3 (1 ) *^^,(23) F(3) dr^ 3 3 (2.3.21e)

A  = "1 3 (2 ) C ( ^ )  Xk4^.3) ^  *3 g(l) *p^^(23) F(3) dr^ 3 3  (2.3.21f)

From the orthogonality of (f»̂ (̂r) and  ̂(r)nil

%5 = % 6  = °

so that simplifies to

A f  = /2 [K 3  + Kj - 2 K3  4  k J1 2 3 4 (2.3.22)

h / '  = ^  < î ( 2 ) ± v*^(l) 4 ^(2 )] x ^ 4 z , 3 ) ( ^  +

^ 3 (2 ) As(3) F(l) dr^ 3 3

In a more condensed form this is written

T. E± 1
if ~ 72

(2*3.23)

with**
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^  *^^(2) *3^(3) F(l) dr^33 (2.3.24a)

A  = \I(2) x|^_(z.3) ^  *ig(2) *^^(3) F(l) dr^23 (2.3.24b)
23

= "Is(2) 41'^) X[ (z.3) ^  *^^(2) *3^(3) F(l) dr3 g3  (2.3.24c)

J.. = ^  A s ( 2 ) ^£i23 (2.3.24d)

= \I(2) x" (Z.3) ^  4<ig(2) As(^) ^£i23 (2.3.24e)

"L(^) \I(2) Xx4^.3) ^  *ig(2) *^^(3) F(l) dr^33 (2.3.24f)

From orthogonality between bound states

E± therefore reduces to

(2.3.25)

L 4 ^)  < I ( 2 ) ± 4 ^(1 ) u " g ( 2 ) ] x ^ _ ( z . 3 ) ( ^ 4 ^ - f - )
^13 ^23 ^3

h s ( 2 ) *pol(3:) F(l) dr^ 3 3

which is written

Kf i Kf + (2.3.26)

with :
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K. El Xĵ  (z,3) ( - ^ )  (j,̂ (̂2) 4>„^,(31) F(l) dr,,, (2.3.27a)
"’13 "’3 P°^ -123

K, El *  J. ?v

"ls(2) V ( l )  X^^(z.3) —  *^^(2) *pgi(3i) F(l) dr^23 (2.3.27b)

K. El ft+ . A
\I(2) x^^z.S) ~  *^^(2) *p^^(31) F(l) dr^ 3 3  (2.3.27c)

K, El 4s(2) X ^ 4 z ,3) ^  *^g(2) *p^^(31) F(l) dr^23 (2.3.27d)

K El "L(^) x[ (Z.3) ^  *ig(2) *pg/31) F(l) dr^23 (2.3.27e)
i Ivî

K El  ̂ C ( 2 )  Xk (^.3) ^  *^g(2) *pgi(31) F(l) dr^23 (2.3.27f)

By the usual orthogonality requirements one has

El± hence becomes

(2.3.28)

T E2±. 
if

"if
E2± 1

72
' r A A+ A+ A n A ... 1 1 9 .

\f(2) ±v-(l) "is(2)] X% (z.3) (7 —  + g - -  — )
13 23 ^3

*pol(2 1 ) F(l) d£i23

This integral is rearranged so that defining
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K. E2 (2,3) ^  *,_(3) *_.,(21) F(l) dr,_ (2.3.29a)"Is' ' ^pol' -123

K, E2 4s(2) v*^(l) X* (Z.3) 4- *3g(3) *pgp(21) F(l) dr^^g (2.3.29b)
f 23

K, E2 ^ ( 2 )  X*^(z,3) J -  *^^(3) *pg,(21) F(l) dr^ 3 3  (2.3.29c)
13

K, E2 V ( 2 )  x" (z,3) ^  *3 ^(3 ) *p^^(2 1 ) F(l) dr^ 3 3  (2.3.29d)

K, E2 X^4z,3) ^  *3 g(3 ) *pg^(21) F(l) dr^ 3 3  (2.3.29e)

kA" = I 4̂ (2) v*±(l) x|^^(z,3) ^ *^g(3) *pg^(2 1 ) F(l) dr^^g (2.3.29F)

m E 2 ± b̂ecomes

T,i / "  = &  [ K / '  ± K g -  + K g -  - 2 K , -  ± K g -  ^ 2 K g - ]  . (2.3.30)

In connection with the exchange integrals, it is worth emphasing that, apart

from the choice of v „(r), the integrals are the same for excitationnx- —
to either a singlet or triplet final spin state,
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CHAPTER 3 

EXCITATION OF HELIUM

§3.1 Preliminary Remarks

This chapter will be concerned with a partial wave treatment of the 

Adiabatic-Exchange Equation derived in §2.2, equation (2.2.23), and a 

partial wave analysis of the integrals obtained in §2 . 3  which constitute 

the T-matrix. These integrals will be dealt with according to the excited 
state under consideration (§3.3 for S-states, §3.4 for P-states) and 

expressions formulated for the differential and total cross sections.

The chapter.will conclude with a discussion of the (X,x) orientation and 

alignment parameters with application to l"s n"p transitions.

In this first section, some basic definitions and notation for the 

wave functions employed will be established and various partial wave 

expansions summarised.
Previously, the approximate Hartree-Fock ground state wave function 

(f)£(1 2 ) of equation (2 .2 .8 ) was expressed as a product of two orbitals.

Each of these orbitals is now written as

(})- (r) = R̂  (r) Y (r) (3.1.1)^Is —  Is oo

where R^^(r) is the radial part of the function and has the form

R, (r) = N^(e + c, e ^^); (3.1.2)Is 1  J-

N^, a,b and c^ are constants.
Y (r) is a spherical harmonic function satisfying the convention 
Jim

A  A
y'; ( r )  = (-1)” Y. (r) J (3.1.3)Jim Jl-m

X denotes the angular components of 21 spherical polar coordinates,

X = (0 ,(j)); 2 1 will denote a unit vector in the direction of 2 1*

The excited state wave function ({>̂ (12), written as
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*f(1 2 ) = ^  [u^gd) -1̂ (12) ± v±^(l) Ug^(2 ) J . (2.3.14) 

has the core orbital û (̂r̂ ) expressed in the form

u^g(r) = w(r) Y^^(r) (3 .1 .4 )

—and the valence orbital v (r) asnx/ —

The choice of the radial parts R^^(r), w(r) and R^^(r) is discussed 

in Appendix A, In order to avoid unnecessarily complicating the notation, 

it should cause no ambiguity if the ’± ’ superscript convention is not 
strictly adhered to in the analysis to follow.

Concerning the polarized orbital correction; the first-order 

perturbation term to the orbital (|)^^(is given in the

following form by Temkin (1959) , modified by Temkin and Lamkin (1961), as

e(r,t) is the unit step function introduced in equation (2.1,5) which

causes the perturbation to vanish when the incident particle penetrates the

atomic cloud. Pĝ (x) is a first-order Legendre polynomial and the radial

function u, (r) satisfies the Sternheimer Equation ls->p

^ s ”(") 2

"ls.p(") = As(") • (3-1-7)

Here P^^(r) is the r- multiplied radial component of the ground state

orbital ; primes denote differentiation with respect to r. This equation

is obtained following the discussion after equation (2 .1 .1 0 )--for a complete

account see §6.3 of the article by Drachman and Temkin (1972). Usually

Sternheimer’s equation must be solved numerically. However, by a slight

modification to P^g(r), a closed expression may be obtained for

u, (r) as follows.Is-̂ p
A function f(r) is defined such that
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and can easily be shown to satisfy the equation
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(3.1.8)

f(r) = r (3.1.9)

by substituting (3.1.8) directly into equation (3.1.7). The modification 
is to let P^g(r) have the hydrogenic form

(3.1.10)

with a screening parameter, to be determined in the next section (§3.2)
in connection with the direct polarization potential. Upon insertion 

into (3.1.9) the subsequent equation is solved to yield

f(r) = (Z r + J Z 7 r^).
2Z 3 ° °

Hence u. (r) can now be written in closed form as ls-»p

(3.1.11)

-3/2 2  2r e  ( Z r + J Z ^  r ).o o (3.1.12)

Because ^^^(r) has assumed a hydrogenic form, which for hydrogen is 

exact with Z^ = 1 , this approximation to will be referred to

as the Self Consistent Field Hydrogenic Approximation.

Having dealt with the atomic wave functions, attention will now be 

drawn to the various partial wave ejçansions in spherical harmonics to 

be used in succeeding sections. The spherical harmonic addition theorem 

states that (Messiah, 197.0)

(3.1.13)
m=T&

where is the angle between the directions specified by r̂  ̂ and.

and P^(x) denotes, of course, a Legendre polynomial.

The inverse of |r - t| is expanded in the well known multipole formula
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^ oo X f. A
F I T  " X  X  ^  7^(r.t) \ / r )  (3.1.14)X—0 y—X 

where

= - T Ü :  (3.1.15)
">

r^ = min (r,t); r^ = max (r,t).

The incoming wave F(r_) is decomposed into a series of partial waves as

“ u (k ,r)
F(r) = I AU,k.)  -i  P,(cos6 ) (3.1.16)

£ = 0  " ^

where A(£,k^) is a coefficient depending only upon £ and k^. The 
U£(ki,r) satisfy the boundary conditions

U£(k^,0 ) = 0  ; Uj^(k^,r) ^  k_"z sin (*(r) + 8^) (3.1.17)

with 6  ̂ the elastic scattering phase shift and

*(r) k^r - ^  ^  log(2k^r) + n^(k^) ; (3.1.18)

n^(k) is the Coulomb phase shift given by

n^(k) = arg r(£+ 1 - ~ )  . (3.1.19)

Specifically, A(£,k^) has the form

A(£,k^) = (2£+l) i^ k^ ^ exp[i{6 ^(k^) + ilĵ (k̂ )}]. (3:1.20)

Using also the relation between spherical harmonics and associated Legendre

polynomials i

Y^je.*) = (-1 )“ 2 £+l (£-m)I
4ïï ’ (£tm)I

2
P^^(cos0) e^^^, m ^  0 (3.1.21)

(if m < 0, use is first made of relation (3.1.3)) 
with m = 0 in this case, it is convenient to rewrite (3.1.16) as

F W  = I (2%+l)= " 7  ■■ Yj,g(r) exp[i{«j^(k^) + n^(k^)}](3.1.22)

The outgoing Coulomb wave Xu (z,r) is expressed in a similar manner as
f
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”  ̂ > A t
X (z.r) = 4w I I i H (k^) Y (r) y!‘ (0,0) exp[in,(k.)] (3.1.23) 

f X=0 y=-X A r Ay Ay A t

where it will be remembered that since the origin of coordinates is at the
nucleus, the angle beween r and in (3.1.23) is 0 - 0  with 0
the scattering angle defined by

jSi-kf = cose , (3.1.24)

The function H^(kr) is given by

krH^(kr) = G^(kr) (3.1.25)

where G^(kr) is the regular Coulomb function satisfying (McDowell and 
Coleman, 1970, equation (5.4.18))

,2_  2 .  m + 1 )  22
L dr? p7 "

subject to:

G^(kr) = 0 (3.1.26)

Gx̂ k-,0) = 0 j G^(k,r) sin(kr - ^  log(2kr) +rî  (k)). (3.1.27)

For helium, z = 0 (viz. z = Z - 2) so that x-̂  (z,r) becomes a plane
f

wave and H^(kr) reduces to a spherical Bessel function.

Having established the above definitions and expressions, particularly 

the partial wave expansions, one can now proceed to look further at the 

scattering equation (2.2.23) and integrals of §2.3.

§3.2 The Radial Scattering Equation

The radial scattering equation satisfied by the u^(k^,r) appearing 

in the partial wave expansion (3.1.22) is obtained by inserting (3.1.22) 

into the adiabtic-exchange equation (2.2.23). Use is made of the substitution

(3.1.1) and of the expansion (3.1.14) so that after straightforward partial 

wave analysis, one obtains:
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u^(ki.r) = -[(e ^ 3  - k.- ) 6 AO

R^g(t)u^(k^,t)Y^(r,t)tdt IrR^^Cr). (3.2.1)]Is

Closed expressions, to be given below, may be derived for the direct 

potential terms Is^^^ ^po%(̂ * Hence this equation is now
amenable to integration by numerical methods. Discussion of such techniques 

for solving this type of equation is postponed until Chapter 5 on computation 
and numerical analysis.

Attention will now focus on the direct potentials. Recalling equation
(2.2.21) for ^^(r) and equation (3.1.1) for one finds with

the aid of (3.1.14) and effecting the angular integration;

972V_ - (r) = - ~  + 4Is,Is r
0

dt. (3.2.2)

Replacing R^^(t) by the expression (3.1.2), the radial integration is 

carried out so that (3.2.2) reduces to

-2ar
2 Vls,ls(r) = - f  + F - “l { (1 + (2a)

-2br-(a+b)r
+ (a+b)  ̂ _ \2 1̂. 71772(a+b)

It is noted that asymptotically

2 Vls.ls(r) A

(2b) }] (3.2.3)

-2(Z-2)

as expected since the scattering electron moves in the field of a nucleus 

screened by two electrons.
The polarization potential V^^^(r) is treated similarly. In this 

case the wave functions appearing in equation (2.2.22) are replaced according 

to (3.1.1) and (3.1.6) so that one has

tdt

where the radial and angular integrations have been indicated sq)arately.
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Using the addition theorem (3.1,13) on P^(cos8^^^ and inserting the 

expansion (3.1,14), the angular integration is carried out to give
r
Q dt . (3.2.4)

Inserting (3.1.2) and (3.1.12) for the functions R (t) and u (t)Is ls->-p
and integrating finally gives

N, 2 24pi ,24 . 24r . 12r^ . 4r^ . r^.

-, -z.r

where

(3.2.5)

“l = =2 = Zl = a + %o' %2 = b +
and

5Z
Pi = 2 + ^ °  , i = 1,2.

1

As expected, equation (3.2.5) agrees exactly with equation (13) of

McDowell et al. (1973) for the case of hydrogen, obtainable by writing
— 2, Cĵ  — 0, a — 1 and — 1.

For numerical purposes, it is desirable to have power series

expansions in r of ^^(r) and V^^^(r), suitable for evaluation at

small r. Such expansions are derived by replacing the exponential terms

in (3.2,3) and (3.2.5) by their respective power series sums and

retaining terms up to a specified order in r. Explicit expressions for

both potentials are given in Appendix B.
The remainder of this section will be occupied with finding a value

for the screening parameter appearing in equation (3.1.12) for

u (r). V _(r) is defined to behave asymptotically as ls-)-p pol

^  (3.2.6)

where a is the dipole polarizability, taken for helium to be 1.395 a.u. 

in accordance with the experimental value provided by Johnston et al. 

(1960). Equation (3.2.5) behaves asymptotically as
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32 N] 
rt. - —  - lY" (3.2.7)

An equation satisfied by is now obtained by matching the above

asymptotic expressions. Thus, making the relevant substitutions for p.
and Z^ (i = 1,2), one has

32 ITT o
(7Zg+2a) (7Z^t2b)
---------t c

1  (Zo+b) 6

(3.2.8)
L (Z„+a)

This line is then rearranged to give a polynomial equation of degree 25 in 

^o solved numerically by the Newton-Raphson method, details of which
follow in Chapter 5.

§3.3 Cross Sections for the S-Levels

The purpose of this section and the one to follow (§3.4) is to derive,

via a partial wave analysis, suitable expressions from which the differential

and total cross sections may be computed. Essentially one is concerned

with substituting the various partial wave formulae of §3.1 into the basic

integrals obtained for the T-matrix element in §2.3. The atomic wave
+functions (b., (r), u, (r) and v „(r) will take the form indicated by lines Is —  Is —  nA —

(3.1.1), (3.1.4) and (3.1.5) respectively. The resulting expressions 

are then simplified by integrating over the angular variables and employing 

properties of the spherical harmonics, particularly orthogonality. The order 

in which the direct and exchange parts of T^^ were considered in §2.3
Eliwill also be adopted here. However, analysis of the exchange parts T^^

E2+and T^^ , which arise only in the DWPO III model, will be deferred

until the following chapter (Chapter 4) where exchange-polarization effects 

are dealt with more fully. Thus the first T-matrix component to be considered 

is T./..

T._D = B/2 I. if A (2.3.19)

where it will be recalled I^ is defined by (2.3.18);
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:A = C Xkf(Z'3) <^13 • (2-3-18)

With the choice of atomic wave functions adopted (see Appendix A 
for details) the integral represented by B, equation (2.3.17), is 

obtainable in closed form. The full expression is given in Appendix C. 
Regarding I^, by substituting (3.1.14), (3.1.22) and (3.1.23) for r^g"^, 

F(3) and Xĵ  (z ) respectively, one obtains using orthogonality of 
the spherical harmonics, that

00 lA
ifi = ~  I (2Atl) Z^^^(A,k.,k_) e ^ P (cosO) (3.3.1)
^ /k\A= 0   ̂ ^ &

where the following notation has been employed:

u (k.,r) H (k^r) f (r) dr, (3.3.2)
0

fls.ns(r)

A i  A f ls,ns

^  2R^g(f) R^g(t) y^(r,t) t dt, (3.3.3)

= G^(k_) + n^(k^) - B^(k^) . (3.3.4)

Provided R (t) is of a simple form, the integral f. (r) may be ns X- » o ls,ns
evaluated analytically (see Appendix C). Otherwise numerical methods are 

required. It is noted that with R^^Ct) and R^^(t) orthogonal,

fis ^g(r) -> 0 for increasing r, which effectively reduces the infinite
* (A)range of the integral I (A,k^,k^).

T^^^ may now be summarized as

i (2&+1) %(*)(&,k^.kp) e V^(oos0). (3.3.5)

P.
= /2[K^ + Kg - 2Kj + K^] (2.3.22)

Each of the integrals, defined by (2.3.21a,b,c,d) contains the

function é _(r,t). This function has been given explicitly in (3.1.6), pol---
whereby, with the aid of the addition theorem (3.1.13), the Legendre 

polynomial Pj^(cos0^^) is expressed in terms of a sum over spherical harmonics
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Since this section is concerned with excitation to an S-level, one observes 

that integrating over r^» orthogonality of the spherical harmonics causes 
three of the integrals to vanish

Kj = Kg = Kij = 0 .

PTif therefore in this case, requires only a closer study of K^;

= ^  +poi(23) F(3) dr^^3 (2.3. 21a)

Inserting repectively (3.1.14), (3:1.22) and (3.1.23) for r^g F(3) 

and ( z,rg) as for above and integrating over the angular
variables with the aid of (3.1.13) and the familiar orthogonality property 

possessed by the spherical harmonics, one derives

I (2&+1) P,(cos0) . (3.3.6)1 Z=0 1 r Ï

B is defined as above by (2.3.17), by (3.3.4) and

u/kp.r) H^(k^) k]^^^g(r) dr , (3.3.7)

"ïs,ns(r) = - 4
rr

u., ^ (t) R (t) t^ dt . (3.3.8)Q is-vp ns

Equation (3.3.8) may be compared with equation (9) of McDowell et al.

(1974) who consider excitation of hydrogen atoms and singly ionized helium

to the 2s level. Provided R^g(r) assumes a simple form (see Appendex A),

k (r) is obtainable analytically as in Appendix C. With (3.3.6) ns ,ns
p reduces to

h /  • ^  • I  • I (2 ttl) /(^^A.k-.k^) e *P^(cos0 ). (3.3.9)

Ti/" i [ Jl - ^2 + Jg - 2J%] (2.3.25)
 ̂ — 2̂Rather than refer explicitly to the partial vave expansions used for r^^ ,
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F(r) and (z,r) as was done under and above, their
use will be assumed in the following without further mention. Each J 

integral is taken in turn and the corresponding result summarized.
Ji=

=
yc s’c+ * 1
“ls(2) X. (2,3) —  *,3 (2 ) 4  (3) F(l) dr^23 (2.3.24a)r^3 'is -is

The integration over r̂  ̂ niay be separated from that over r_ and r^ to
give

= B (3.3.10)

where represents the integral

X*^(2,3)^4i^(3) F(l) dr^3_

A straightforward partial wave analysis reduces this to the form

iA.
J. = 7K- 1 ,k )e V ( cos0)

i A=0 ^ ^ ^
.(A) (3.3.11)

with :

gis,%(r) dr, (3.3.12)

Rls(t) H^(k^t) Y^(r,t) t dt (3.3.13

where
= 8 ls!&(r) + SisltCr).

rr

R (t) H (k t) t ^^dt . Is A f

For small r it is desirable to make a series expansion in r of 

gj^)^(r). The expression is summarized in Appendix C. Returning to 

J^, this integral is finally written as

- ^ 1 = ^  J  - -£1 A=0
k^) e P„(cos0), (3.3.14)
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^2 =

^ 2  = P 2 3  -is -is -123 
(2.3.24b)

This integral is separable so that the integrations over r̂  ̂ and r-23
may be considered individually.

/4ïï

^:s(2 )Xk^/=' 3) *ls(2)*is(3) dr2 3  = Æ  d^®(k^) exp[- in^Ck^fl ,

where

Ci(k.) = w(r) u^(k^,r) rdr , (3.3.15)

W  - R (r) H (k r) f (r) rdr Is o f  ls,ns (3.3.16)

and f^g ^g(r) is given by (3.3.3). Consequently is rewritten as

iA
(3.3.17)

^3 =
^3 = "Is(2) k'^(2,3) ^  *is(2)*is(3) F(l) d£323

(2.3.24c)

For excitation to an S-level with which this section is concerned, Jg 

is observed to have similar structure to ; that is, Jg only differs 

from in that u^g(r) and v^^(r) have been interchanged. The

following integrals are hence defined:

C2 (k.) = R (r) u Jk. ,r) rdr , ns o 1
(3.3.18)

d2 (kf) = Ris(r) H^(k^r)

where

(3.3.19)

f, (r) = r I w(t) R_^(t) Y (r,t) t"dt . (3.3.20)Is,W I A IS o
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Closed expressions are obtainable for f^^ ^(r) and d^Ck^) with the 

choice made of atomic wavefunctions— see Appendix C. Jg becomes

4tt iA
(3.3.21)

^ 4 :

■̂ 4 = I 4 (2) 4 (^) Xkf(:'3) ^  +ls(2)+ls(3) ^(^)

This can be written as a product of three separate integrals :

V" (1) F(l) dr, ns — 1 kk (^’£ 3 ) 7 - +ls(3) %  •f 3

(2.3.24d)

The latter two integrals are simplified to yield

F(l) exp[i{6 ^(k^) +n^(k^)}].

X> (2 ^:3 ) ^  dq^(kfj exp[- in^(k^J].3 'o' f

cf(k^) is defined by (3.3.18) and dg(k^) by

R^g(r) H^(k^) rdr^3(kf) = (3.3.22)

which is obtainable in closed form and given in Appendix C. Ĵ  ̂ assumes

the form

(3.3.23)

Expressions (3.3.14), (3.3.17), (3.3.21) and (3.3.23) are now collected
E±together and inserted into line (2.3.25) for T^^

T./- = + ^  ^  I [B/(*)«l,k.,k^) t {c=(k.)[d2(kf) - 2Bd3(kf)]

iA
± Cĵ (k̂ ) di(k^J} 6 ^^] e *P^(cosQ) . (3.3.24)

The remainder of this section will now concentrate on obtaining explicit 

expressions for the differential and totàl cross sections in the D̂ fPO I 

and DWPO II models (the DWPO III model is dealt with in Chapter 4). The
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key expressions derived so far are: (3 .3 .5 ) for (3 .3 .9 ) for
E±and (3.3.24) for . Bearing these expressions îxi mind, the transition

matrix element for the process under consideration (excitation
from the ground (IS) state to either an n^S or n^S state of the 
atom) is written

± " ± 1 6 ,
Tif = I B e P (cos 0). (3.3.25)

A=0 ^ ^

The B^ are determined according to the spin state of the excited atom 
and to the DWPO model being employed. Thus to determine the B~ in the 

DWPO I model, the expressions for T^^^ and T^f^" derived in this

section are incorporated into equation (2.3.4) for In the DWPO

II model, the same expressions together with the corresponding one for
p . +Tff are incorporated into equations (2.3.8) for T^^. Explicit expressions

f • .for the B^ in terms of the integral expressions derived in this section
are presented below:
DWPO I:

^  [2(2A+D % ( * ) ( % . -  J-(*)(Jl,k^,k^)

(3.3.26a)

"{ [^2^^i^ ^^(k^) + c^(kf) d^(k^)] B - 2c^(k^) dg(k^)j-6 ^^J

\  |^J^^^(A,kf,kf) +|̂ [c2 (k^)d2 (kf)-Cj^(kf)d^(kf)] B

-•2c2(k^)dg(k^jô^^] (3.3.26b)
DWPO II:

2 r(P)/. , , t(A)112A+UIJ U,K_. +

-([c^(k.) d^Ckf) + c^Ck.) dS(kf)] B- 1  - 2 c=(k.) d3 (k^)]6 ,^ ]

Since DWPO II only modifies the direct terms of T^^ (and hence the B^) and 

leaves the exchange terms unaltered (compare p.3.26a) and (3.3.27) above), B^ 

assumes the same form as in (3.3.26b).
In fact the DWPO II approximation is easily obtained from the DWPO I
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approximation by making the following transformation on f (r)ls,ns
(cf. (3.3.3)) appearing in the ) integral (3.3.2):

fls.ns(r) - fis,ns(r) + |  (3.3.28)

with kis^ng(r) given by (3.3.8).

Recalling equation (1.2.11) for the differential cross section and 
inserting (3.3.25) for one has in a straightforward manner that

da 1 k^ «> «
= 2 ' kT  ̂ I B B cos(A - A ) P (cosG) P (cosG) a^/sr .M-tt 1 A=0 X=0  ̂ A A A o

(3.3.29)
The superscript on the B^ serves no further purpose and has been omitted. 

When computing cross sections, the appropriate expression is, of course, 

selected from either equation (3.3.26) or (3.3.27). For computational 

purposes, in order to economise on machine time, it is advantageous 
to rewrite the differential cross section in the form

= "IT ' k:M-ir 1

where ;

R = I B cos A P (cos 0) ,
A=0 * %

I = % B^ sinAj^ P^ (cos 0). (3.3.30)
A=0

Hence only two single summations are required as opposed to the double 

summation of equation (3.3.29). In practice the series may be adequately 

summed term by term up to some value of A, say A^^^^ at which point 

terms for A > A^^^ have no significant effect on the cross sections. In 

order to determine an expression for the total (integrated) cross section, 

it is however mathematically easier to use (3.3.29). Hence, integrating 

over all solid angle and employing the property of orthogonality possessed 

by the Legendre polynomials the total cross section is given by
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2

53.4 Cross Sections for the P-Levels

The comments made at the beginning of the previous section (§3.3) 

will apply here also. The form of the wave function will remain unchanged 

and the same partial wave expansions will be employed. However, the partial 

wave analysis becomes more involved,caused essentially by the valence 

orbital of the excited state now having an angle-dependent component:

4(^1) = 4 ^ “̂  ̂v ^ )  - (3.4.1.)

Further complications arise due to the long-range dipole character of the 

interaction for optically allowed S - P transitions. This effects the 

direct part of the T-matrix element whereby the integrals extend over a 
considerably greater range than previously for the S - S transitions. 

Correspondingly, the direct partial wave sum converges much more slowly, 

since many more partial waves make a significant contribution. A method 
for overcoming this convergence problem is discussed but a technique for 

computing the long-range integrals themselves is deferred until Chapter 5. 

Here, the aim will be, as in the previous section, to derive manageable 

expressions for the differential and total cross sections in the DV7P0 I and 

D̂ fPO II models. These will necessarily be more complex than for §3.3, since 

the cross sections not only have ra = 0 contributions (m is the magnetic 

quantum number of the excited state as in equation (3.4.1.) above) but 

also m = ± 1 contributions. However, due to the axial symmetry about 

k. of the system, or mathematically.—1

Y„ (0,0) = (-1)” Y, ^(0,0) (3.4.2)Am x,,-m

with the z-axis along k̂j., one sees that consequently it will be necessary 

to consider only the m - 0 and m - 1 contributions, m — — 1 being the 

same as m = 1 to within a negative sign.
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Discussion will begin with the direct component of the T-matrix element.

h f  = B/2 1^

with B defined by (2.3.17) and by

(2.3.19)

:A = ^̂ 13 -13

Making the by now familiar substitutions and partial wave decompositions 

presented in §3.1, one finds, on carrying out the angular integration.
that I. becomes A

:A = & - &  I I Ï l'-\2itl)(21tl):
A = 0  y = - X  A = 0

u^(k.,r)H^(k^)f^^^^p(r)dr

'X 1 A\ /X 1 A'

,0 0 0/ \-y -m 0,
Y^^(Q,0) exp[i{a^(k^) + n^(kf) - h^(kf)}] . (3.4.3)

The Wigner 3 - j symbols have been introduced through the relation given, 
for example, by Edmonds (1974, equation (4.6.3))

(2A tl)(2A2+l)(2Agtl)
4ir

-, 1
A2  AA/A^ A2  Aĝ

0 0 0 /\m^ m^l

(3.4.4)
This relation will be utilized throughout this section. The integral

f. (r) is defined in analogy with f. (r) (cf (3.3.3)) to be ls,np ls,ns

fls.npCr) = r (3.4.5)

which asymptotically does not tend to zero so rapidly as f^^ ^^(r) but 

rather as
(3.4.6)

(see Appendix C for an evaluation of f^^ ^^(r) in closed form). It is 

precisely this behaviour which gives rise to the long-range nature of the 

radial integral appearing in (3.4.3) and mentioned earlier in this section.
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Returning to the 3 - j symbols, one is able, with the aid of certain 
symmetry properties, to simplify further the integral I^. In particular, 

the arguments appearing in the upper row satsify the triangle inequality 
so that in this case :

A = X ± 1  X > 0 ,

= 1 X = 0 .

Also, the sum of the arguments belonging to the lower row is zero so that 
here y = - m. These two properties will be used throughout this section 

but will not always be explicitly specified as above. For a thorough 

account of the properties and relations satisfied by the Wigner symbols, 

reference should be made to the book by Edmonds (1974).

At this point it is convenient to define by I(A,X) the radial integral

I(A,X) = Hj^(kfT) u^(k^,r) f^^ ^ (r) dr (3.4.7)
J 0  ̂9^P

and to let

Y° = / 3 ' (3.4.8)
1

= a^(k.) + r^(k.) - n%(kf) . (3.4.9)

With the above results derived from the 3 - j symbols, (3.4.3) reduces 

essentially to a single summation where it is now appropriate to write
iA. ... iA

= ffP+l ) TfA.A+l') eAo
iA. ... iA

A. = iy° {(A+1) I(A,A+1) e - AI(A,A-l) e (3.4.10a)

yB A .2 ^A A _2
= i ^  {I(A,A+D e + I(A,A-1) e }. (3.4.10b)

By employing (3.1.21) to express the remaining spherical harmonic of

(3.4.3) in terms of a Legendre function, one can write down the m = 0 

and m = 1 expressions for T^f^, on evaluating the respective 3 - j 

symbols, in the compact form
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m = 0,1 ^if - I
A=m (cos 0) (3.4.11)

h /  =
T.f = /2 [K^ + - 2Kg + ] (2.3.22)

As before the addition theorem (3.1.13) is used to write the angular part 

of the function appearing in each K_(i = 1,...4) in terms of
spherical harmonics. Each is taken in turn.

Ki =

kl = C ( 2 )  Xk^(2.3) *ls(l)+pol(23) F(3) ^^123 (2.3.21a)

The usual substitutions and angular momentum expansions are made and yield

2 (4TT_r 
1

iA.1 “ 1 t 0(2A+1)2(2X+1) e
X’=0 y ’=-X’X=0 y=-X v=“l A=0

X+1 1
H^,(kfT) u^(k.,r)|- j ’̂is..p(t)\p('‘)[Fj .

A A
Tlm(r)Ylp(r)?lv(r)dr

(3.4.12)

%X'y'(t) ?x,(t) Yiv(t) Y^,^,(0,0).

Use has been made of (2.3.17) for B and (3.4.9) for A^,^. For rotational

purposes in evaluating the angular integrals, let I(n^ ^)denote the
angular integration over r...t. Then using (3.4.4) the angular integration 

over r becomes
'1 X 1\ /I X 1

0 0 0/ \m y V
I(Oy) = 3 /■

/ 4w

The integral over t consists of four spherical harmonics and is hence a 

little more involved. However, by using the result from, for example, . 

Edmonds (1974, equation (4.6.5)) that

(2A tl)(2A +1)(2A+1)
4tt

'h ^2 n  / h  ^2 y
(0 0 0/ Im^ m^ ml '

(3.4.13)
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I(î2̂ ) is reduced to an integral over three spherical harmonics. Hence, 

using also (3.4.4), can be performed. Having done this, the total
angular integration is expressed as

I(Ort) = I I I !  (2V,1)
y=-X v=^lA’=0 m’=- A’

3(2X»+1)(2A+1)
4tt

'1 X 1'
,0 0 0;

fl X IWX 1 A'\/X 1 A'\/X' A' A\/X' A» A\
\m y v/\0 0 0 /\y v m'/\0 0 o/\m» -m’ 0/

where the summations over y and v come from the main integral expression

(3.4.12). This can now be simplifed by use of the orthogonality property
(Edmonds, 1974, equation (3.7.8))

(3.4.14)

The resulting expression for is then inserted back into (3.4.12)

for to give

= - . A  j; I I i*-A' (2H+1) [3(2X'+l)]i 7 ^ ' ^
X'=0 X=0 A=0

X+1 'X 1 1\ /X’ A 1)

(3.4.15)

0 " \o 0 0/ \o 0 oy

/X’ A 1 \L 0 •

From the triangle inequality satisfied by the arguments appearing in the 

upper rows of the 3-j symbols, one has that (a) X = 0,2 and (b) A = X' ± 1 

for X > 0, A = 1 for X’ =0. The radial integral is consequently written as

P(A,X) =

with
rr

hls.np(r) = - F F  + T  ' 4r -J
dt .

(3.4.16)

(3.4.17)
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Hence, with the aid of (3,1,21) to transform Y , (6,0) into a Legendre functionA ,-m °
and the notation (3.4.8) for y , the m = 0 and m = 1 expressions for

sre obtained respectively, on evaluating the corresponding 3 - j  symbols, 
to be

m = 0 K. =
iA iA,

m = 1 
K_:

K. =

i y }/2 I [(A+l)P(A,A+l)e *'*+1 - AP(A,A-l)e ^>^"^1 P. (cosO),
A=0 J &

(3.4.18a)
i I rP(A,A+l)e + P(A,A-l)e ^ P ^ ( c o s 0 ) . (3.4.18b)

A=1 ^

4 ( 2 )  X* (Z,3) ^  *is(l) * (23) F(3) dr^23
f 13 ^

Inserting the usual radial and angular parts of the atomic wave functions and 
making the various angular momentum expansions,, the angular integration is 

carried out with the aid of (3.4.4) to give

1 iA,
^ 0 =  % / ¥  I I d ‘^2X+l)(2)l+l)i

i X=0 A=0 0
H^(k^r)Uj^(k.,r)

/A 1 X\ /A 1 X\ 
f, (r) k. (r)dr Y. _(8,0) .ls,w ls,np lO 0 0/ \m -m 0/ A,-m (3.4.19)

A is given by the familiar expression (3.4.9) and f., (r) byA, A -LS , w
(3.3.20). k (r) is defined in analogy with k (r) of (3.3.8) to be ls,np xs,ns

kls,np(’̂) = - 7 u (t) R (t)t dt ,ls->-p ■ ' np (3.4.20)

Let

Q(A,X) = B-1 H / V )  “a ( V )  fls.«(r) kis,np(r)dr ■ (3.‘*.2D

Then, noting the relation between A and X obtained from the 3 - j  

symbols, the m = 0 and m = 1 expressions for Kg take, after some 

manipulation, the respective forms

m = 0 K = iY°/2 I [(%+l)Q(&.%+l)e^*&'%+k-&q(%.t-l)e *'*"^]P,(cosG),
A=0 (3.4.22a)
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. . .  „ . , D  - -= 1 Kp = ir I [Q(&,&+l)e *'*+1 + Q(&,t-l)e *'*"^lP?Xcos0) (3.4.22b)
Z=1 ^

K 3 :

K3  = 4 ( ^ )  4 ( 2 )  Xk;/ = '3) F -  4is(l)*poi(23) F(3) dr^23 (2-3.21o)

This is separable and making the usual substitutions and effecting the angular 
integration with the aid of (3.4.4), becomes

^3 ■ 7 ^  ‘ ^  I I  ̂ (2X+l)(2A+l)z e H (k r)u (k.,r)i X=0 A=0 Jq

/A X 1\ /A X 1 \
(o 0 o) (m 0 J

kfs np(r) is given by (3.4.20) and  ̂ hy (3.4.9). Writing

R(A,X) = Q H&(kfr)"x(ki'r) kis.np(r) (3.4.24)

and using similar analysis as in previous cases, the m = 0 and m = 1 
expressions for Kg assume the form

oo i^ 1^
m = 0 K = i y^/2 I [(A+l)R(A,A+l)e ^ ’̂ '*'^-AR(A,A-l)e ^ ’̂ "^1P (cosO), (3.4.25a)

A=0 ^

m = 1 K_ = i Y^ I [R(A,A+l)e *'^^^+R(A,A-l)e ^’̂ "^jpAcosG). (3.4.25b)
A=1 *

This is given by (2.3.21d). Substituting for (J>pQ2̂ —  ̂ by equation
(3.1.6) and replacing the Legendre polynomial by the expansion (3.1.13), the 

angular integration over r^ causes the integral to vanish:

K^ = 0 . (3.4.26)

At this point the results (3.4.18), (3.4.22), (3.4.25) and (3.4.26) are 

collected together into (2.3.22) to formulate a general expression depending
ponly upon m for T^f . For compactness, let

S(A,A±1) = 2{P(A,A±1) + Q(A,A±1) - 2R(A,A±1) } (3.4.27)
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and write

Boo = S(A,A+l)e *'*+1 -A S(A,A-l)e (3.4.28a)
iA iA,

^A1 " ^ {S(A,A+l)e + S(A,A-l)e (3.4.28b)

Then the required expression may be written (with m = 0,1) as
00

m = 0,1 Tf^ (m) = 5! (cosO) .
A=m Am A (3.4.29)

(2.3.25)

Each integral is treated in turn.

= "1(2) 4 ( 1 )  xl (z.3) (2)4,„(3) F(l) drIs nA ri3 -̂ is -is -123

A straightforward partial wave analysis gives

127tB
1 ~~7k7

1 0  1  iA
J, = I  ̂ i (2X+1)(2A+1)  ̂e A,X

X=0 A=0

(2.3.24a)

"x(ki,r)%(r)gl3,j,(r)dr

'A X 1\ / A X 1'

lO 0 0 / \-m 0 m,
(3.4.30)

The function g^^ ^(r) is given by (3.3.13). Then, letting

J(A,X) = "x(ki.r)Rnp(r)Sis,%(r)dr (3.4.31)

and the m = 0 and m = 1 expressions for become respectively

iA, iA,
m

m

= 0 = i yC/2 I [ J(î,Ul)e ^  *'*"^]P%(cose),
(3.4.33a)

= 1  Ji = i /  I [j(&.%+l)e *'*^1 + J(&,l-l)e *'&"l]p)<cos0).

'̂ 2 = ' u!ji) v1(2) x! (z.3) 7 7  *is(2)*is(3) B(D dr.Is nA -123

(3.4.33b)

(2.3.24b)

The angular integration may be evaluated using only the property of orthogonality
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between the spherical harmonics. Concerning the radial integration, it is

convenient to define d^(k^), by analogy with df(k,) (c.f. equationC3.3.16)),
to be

di(k^) = (3.4.34)

with given earlier by (3.4.5) and to recall the integral c^(k^)
given by (3,3.15). The m = 0 and m = 1  expressions for Jg can 
then be written as

m = 0  J g = - i Y  c^(kf) d^(k^) e P^(cos8 ),

iA.
m = 1 Jg = i yC 1_ c^(k^) d^ (k^) e k.O p^cos0).

(3.4.3.5a) 

(3.4.35b)

" 3 :
^3 = 4 ( 2 )  4 ( ^ )  k"/z.3) ^  4 ^3 (2 ) *1 3 (3 ) F(l) dr^g3  (2.3.24c)

Again the integration over the angular variables may be handled using 

only orthogonality of the spherical harmonics. It is found that the integral 

only exists for m = 0. By analogy with Cg^(kf), defined in (3.3.18), 

it is convenient to write

02 (k.) = R^p(r) Uj^(kf,r) r dr (3.4.36)

and to recall dg(k^), given by (3.3.19), in order to express the radial

integral compactly. Hence, Jg reduces eventually to

Y /V Hm = 0  only Jg = i oJ(k,) dL(k^) e 6
2  ' i' 2 '"f mO • (3.4.37)

J,:
^4 = 4 ( 2 )  4 ( k )  x;jz.3) ^  *1 3 (2 )4 1 3 (3 ) F(l) dr^23 (2.3.24d)nf'

This integral is separated into three distinct integrals over r^, Tg and £g,

That over Tg is just the integral represented by B, equation (2.3.17).

Those over r, and r„ are reduced respectively to:— 1 — o
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fv_:(r) F(r) dr = i / ^  . ^  ̂ ( k .  ) exp [iCŜ Ĉk. ) + ni(k.)}]«
A±
Tnp — ' '— ' — mo

where Cg (k^) is given above by (3.4.3 6) and dg(k ) by (3.3.22). It 

is observed that only exists for m = 0. Coirbining the above results.
the required expression for is

m = 0 only J. = i y^/2 c/(k.) d,,(k̂ ) e
iA.

(3.4.38)

Having now obtained the results (3.4.33), (3.4.35), (3.4.37) and (3.4.38), a
E±general expression for ^ depending only upon m is derived. Inserting 

the above results into (2.3.25), and writing

iA,A+1
2A+1 [j (A,A+D + Cg (k. ) [ B"^dg(k^) - 2dg(kf)]5j, j A, A+1

iA.
2A+1 [j (A,A-D ± B"^c^(k.) di^(kf)5^^] e (3.4.39a)

■'Ai 7T^

iA
ITT ® ± B-k ci(k.) d / ( k ^ ) a j

iA,A, A-1

E±the final expression for (m = 0,1) is written in the compact

m = 0,1 Ti/-(ni) = I p“ (cos 0) .
A=m Am A

(3.4.39b)

form

(3.4.40)

This completes the partial wave analysis of the basic integrals contributing 

to the T-matrix element T\̂ .. As in the case for S - S transitions in 

§3.3, the key expressions derived so far are: (3.4.11) for T.^^(m),
E±,(3.4.24) for T^^ (m) and (3.4.40) for T^^ “(m). One is now in a position 

to formulate expressions; in the DWPO I and DWPO II models for computing 

the differential and integral cross sections describing excitation processes 

from the ground (l^S) state of the target to either an n^P or n^P state. 

However, before embarking upon such a formulation, attention is dravm to the 

remark at the beginning of this section which concerns the slow convergence
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of the series appearing in (3,4,11) and (3,4,29), This does not arise in 

the exchange case (3,4,40) since basically in each of the exchange integrals 

a partial wave function is integrated against a bound state function rather 
than another partial wave as in the direct case; partial waves (incoming 

and outgoing) have an oscillatory nature at large distances from the scattering 

centre whereas bound state wave functions decrease exponentially in 

magnitude. When computing total integrated cross sections this problem of 

convergence is not too serious a difficulty since only a relatively small 

number of partial waves contribute significantly, especially at lower impact 

energies. Hence for such energies, provided one is only interested in total’ 

(and therefore integral) cross sections, the series may be adequately summed 
term by term. On the other hand, for differential cross sections the 

difficulty takes on more significance, particularly from a computational 

point of view, since many more terms in the sum must now be included. In 

the following, an artifice is described to overcome this difficulty.
Essentially, it is the lower order partial waves which suffer most 

distortion, becoming progressively less distorted for higher order A until 

they merge at some value of A, say A^, into plane wave contributions. In 

practice, A^ is set to the current value of A when the elastic scattering 

phase shift 6^ of (3.1.17) is typically less than 0.005. The idea then is, 

following McDowell et al, (1975b), to sum the series for the T-matrix 

element up to this value A^, to subtract the corresponding terms calculated 

in the Born Approximation and finally to add the complete T-matrix element 

calculated in the Born Approximation, Denoting Born terms by a B (not to 

be confused with the integral definition (2.3.17)), this is expressed 

mathematically in each case as (viz. m = 0,1);

A^
T . / W  = I [A,„- a" J p7 cos0) 4T./(m). (3.4.41)

A=m
m = 0,1 ^

T./(m) = I - b I j  p” ( C O S 0 )  + T ^ ^ m )  . (3.4.42)
^ A=m
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The Born terms and B^^ are derived from the expressions for

^Am respectively with u^(k^,r) replaced by /k^rH^(k^r), viz.(3.4.10) 
and (3.4.28). Using previous notation the Born T-matrix element T^^^(m) is 
defined as

B ^k+*rq ik..rm = 0,1 (m) = <4^(12) e ^ V 4.(12) e (3.4.43)

and the "Polarized-Bom" T-matrix element T ^^®(m) as

PB i k r _ ik,.r_
m = 0,1 T^^ (m) = 2<y(12) ^ ^Isfl^^pol^^S) e ^ > (3.4.44)

with m = 0,1 and (j)̂ (12) the corresponding final state target wave function.

It is essential that closed expressions be obtainable for T. ®(m) and T.r^^(m).if it
In order to make the integrals concerned tractable, simple Hartree-Fock

functions were employed (Morse et al., 1935, for the 2^P state; Goldberg

and Clogston, 1939, for the 3^P state) and to preserve consistency the same

functions were adopted throughout the entire calculation of the cross sections.
PBFor the case of T^^ (m), a slight modification is introduced to ease

computation. It is seen that for large r

f, (r) -> B . (3.4.45)

The modification is then to approximate f^^ ^(r) by B for all r ; physically

this means that the core electron is assumed to be passive throughout the

scattering process. The full expressions are derived in Appendix D.

In order to formulate both differential and total cross sections, the modified
D Pexpressions (3.4.41) and (3.4.42) for T^^ and T.^ will now be used 

throughout the remainder of this section and the one to follow (§3.5), rather 

than (3.4.11) and (3.4.29). Of course, such modifications are unnecessary 

for singlet-triplet level transitions which only involve the exchange term 

(3,4.40). The general expression for the total differential cross section 

for excitation to a P state is obtained by averaging over the (single) 

initial state and summing over the (three) final states and hence written
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do _ ^ 'k'l
dû - diT + d T + —  (3.4.46a)

where the subscripts (0,±1) denote the magnetic substate quantum numbers.

Due to axial symmetry of the system, the latter two terms are identical so that

do . ‘I'o ^ 24*1
d n ' ^ ’̂ 'djr (3.4.46b)

with

|TT̂ (ni)|̂ , m = 0,1 . (3.4.47)

The and superscripts have been introduced to distinguish between
excitation to either a singlet or a triplet spin state respectively.

In the DWPO I model (viz. (2.3.4)) one has that

T./(m) = I [(A^^ - C+^) - A®Jp”(oose) + T./(m) . (3.4.48a)
A=m

(:) max
Tj^f"(m) = I C"^ P“ (cosG) . (3.4.48b)

A=m

^max appearing in (3.4.48b) is defined by the assumption that all contributions
for A > £ may be neglected, max

In the DWPO II model (viz. (2.3.8)) one has that 
A

(II) T./(m) = f  [(D%m - C l j  - D ^ J P ;  (C O S G )  + T./(m) + T./ ^ m )  .
A=m

(3.4.49)

Tif"(m) remains unchanged and has the form given by (3.4.48b) above. D^^ 

is simply modified by the addition of in both the DWPO and Born

terms :

^Am " ^Am ^ ^Am '
(3.4.50)

+ B, /  .

In fact the D^ are easily obtained from the A^^ by making the following 

transformation on ^^Cr) (c.f. (3.4.5)) appearing in the I(A,X)

integral (3.4.7);
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,-l  ̂ _ ir; + n, ils,np ls,np
(3.4.51a)

given by (3.3.20), h (r) by (3.4.17) and k (r) by 9 j.ü,iip Is ,np
(3.4.20). In line with the approximation described following (3.4.45), one 
finds that (3.4.51a) is in fact modified according to

fls.np(r) " fls,np(r) + tls.npf?) (3.4.51b)
with

rr
hs,np(=^> = - ^ R (t) t^ dt (3.4.52)

0  is-4-p np

in agreement with equation (28) of McDowell et al. (1975a). t (r) isls,np
evaluated in Appendix C for the cases n = 2,3 when R (t) is a simplenp
Hartree-Fock Function. Note that asymptotically t^^ ^^(r) behaves 
according to

tls.np(r) ~ 4  (3.4.53)

which gives rise to the slow convergence previously mentioned for the series 
in (3.4.29).

It.will be observed that in (3.4.48a) and (3.4.49), contributions

from exchange have been omitted for A > A^, it being tacitly assumed that

exchange terms are negligible when compared to the direct terms for the

(A^ + 1)^^ partial wave and beyond. In practice this assumption may not be

true and due account of exchange terms required up to some other value of A,

sav A (indeed A may be either greater or less than A_). However, max max o
in order to avoid unnecessary complications in the foDowing theory, it will 

continue to be assumed that A^ and A^^^ coincide, the above amendment, 

if appropriate, being implicit.
2The total integrated cross section, Q^^(k. ), is obtained by 

integrating (3.4.4 6) over all solid angle SI. Thus, taking account of 

axial symmetry,
Q^f(k^2) = + 2Q^ (3.4.54)
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where the integral cross section Q (m = 0,1) is defined to bem 
f da
FsT . (3.4.55)

denote the integral cross section computed from the first A 
partial waves alone:

A I 12
m = 0 Q -(A ) = . 7  4 I 2 (3.4.56a)

477̂  ^i A=0 o

m = 1 Qi=(Ag) = ^  ^  4 |q^ J 2 _ (3.4.56b)

Here and in the following the final spin state of the target atom is denoted 

explicitly. (m = 0,1) is de&ned below. The analogous Born expression
Q^^(A^) is defined by inserting in place of and the’Born

B+PB Bplus Polarized-Born” expression (A^) is definedly inserting .

The integral cross section calculated in the Born Approximation is denoted by

6Q^(B) and in the ’’Born plus Polarized-Born” Approximation by 6Q^(B + PB) .
BEvaluation of these latter two quantities which requires T^^ (m) (viz. (3.4.43)) 

PBand T^^ (m) (viz.(3.4.44)), is discussed in Appendix D.

The DWPO I approximation to the integral cross section Q^“ is then

obtained by setting

Q

(I)
m" = Qm'(Ao) - ' (3.4.57a)

Q ■ = Q "(A ) (3.4.57b)m ^  max

with ^ - CAm* *"4 in (3.4.55).

The DWPO II approximation to the integral cross section Q^” is 

obtained by setting

(II) q/  = < ( A y  - + 4Qm(B+PB) (3.4.58)

with this time = )̂ Am ' ^Am^* 4  regains unchanged from (3.4.57b).

The total integrated cross section for the process under consideration is then 

derived in the respective DWO model by substituting either (3.4.57) or
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(3.4,58) into (3.4.54).

§3.5 The Orientation and Alignment Parameters

So far this chapter has been occupied with the determination of inelastic 

snd total (integrated) cross sections. However, in addition to 
the cross sections,information may also be obtained on the orientation and 
alignment of the final state of the target atom. After the collision, the 

state of the atom is taken to be a coherent superposition of the relevant 

magnetic substates. Eventually the atom undergoes a transition with the 

subsequent emission of light (photon); by analysing the angular distribution 
and polarization of this light, it is possible to gain information about 

the anisotropy of the atomic state. Experimentally, the orientation may 

be obtained by measuring the circular polarization of the emitted photon.

The alignment may be determined by using a delayed coincidence technique to 
measure the angular correlations between the inelastically scattered electrons 

and photons emitted in the scattering plane. Such coincidence techniques 

have been developed by Eminyan and coworkers and used initially by Eminyan

et al. (1973) to obtain the angular correlations between electrons with an

incident energy of either 77.7 or 80 eV scattered inelastically from 

helium and the photons emitted from the decay of the 2^P and 3^P states.

A succinct account of the theory is provided in the paper by Macek and 

Jaecks (1971). This, together with the related article by Eminyan et al. 

(1976), will form the basis for the brief theoretical description outlined 

below for the particular case of excitation of the n^P levels of helium.

Reference may also be made to the paper by Wykes (1972).
From a practical point of view, the collision time is always considered 

short compared to the radiation time. Hence, denoting the state vector of 

the n^P level by |^^t)> one has that at time t — 0

|i|;(0)> = b^|l,l> + + b_^|lfl>. (3.5.1)
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|lM> is the state vector describing the particular atomic state with total 

orbital angular momentum L(= P here) and magnetic sublevel quantum number 

M(- 0,±1 here); spin-dependent interactions are assumed negligible, b^ is 
the amplitude for producing the respective excited state. |ip> possesses 

mirror symmetry in the scattering plane so that b̂  ̂? -b Further, |ip> 

can be normalized so that the excitation amplitudes are related to their 
respective differential cross sections by

"o = » (3.5.2a)

<̂ 1 = o_l = , (3.5.2b)

a = 0 ^ + 2o^ . (3.5.2c)

Throughout this section a will be used to denote the total differential
1cross section for exciting the n P state and to denote the differential

cross section for exciting the magnetic substate labelled M. In general 

the bĵ  are complex so that writing for the phase,

I I= Î m I ® • (3-5.3)

The dimensionless orientation and alignment parameters (X,x) are then

defined as follows

X = Og/o (0 ^  X ^  1) (3.5.4a)

X - x^ " X  ̂X ^n) (3.5.4b)

and may be determined both experimentally and theoretically. Thus the 

accurate determination of X and x imposes a more stringent test on 
theory than that provided by determination of the differential and integral 

cross sections. From an experimental point of view, X and x sro 
measured as functions of energy and electron scattering angle and are free 

from the problems of absolute calibration and normalization upon which the 

determination of differential cross sections must rely. It remains to see 

how these parameters may be used to obtain information about the state of

the excited atom.
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It is assumed that contributions from cascade are negligible and that 
LS coupling holds, which for a light atom such as helium may be taken 

as correct. Returning to the state vector (3.5.1), this is not an eigenstate 
of the atomic Hamiltonian and is written at time t > 0, with h = 1,

U(t)> = I b |l,M> + iE)t^ (3.5.5)
M

E is the energy of the excited n^P state and 1/y the mean lifetime of 

this state. Almost all lines observed in atomic (and molecular) spectra 

originate from the electric dipole nature of the transition. Hence, the 

probability dN^ of observing a photon with polarization vector t in a 

time At after the atom has made the transition to the excited state | ip> 

is proportional to the square of the electric dipole matrix element integrated 

over At

^t
dN = C c |<0| £.X |T|)(t)>| dt, (3.5.6)

C is a proportionality factor and _X is the electric dipole moment operator. 

|0> is the state vector for the lower (l^S) level reached in the decay.

The angles specifying the direction n of the photon will be denoted by 

(6^,^^), and the polarization vector £  written

Ê = (3.5.7)

where and £  are orthogonal unit vectors at right angles to the

direction and 6 is the direction of polarization. The aim is to

derive an expression for dH^ which depends on the minimum number of 

parameters. Substituting for |i|̂ (t)> by (3.5.5) into (3.5.6) yields

9 rAt _ .
dM = c |J;<o |£.x 11,M> b I dt . (3.5.8)
° M

By expressing and in terms of spherical tensor components, namely
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. ? >  = 0

and using the Wigner-Eckart theorem to factor out the matrix elements, 
Eminyan et al. (1976) find that

•At
e'Yt (it (3.5.9)

with a = 1,2. In practice At »  1/y so that following the references 

cited above, the integration over time is carried out and, since the photon 
detector is insensitive to polarization, the result is summed over two 

independent polarization directions, say 3 and 3 + . This gives, after
much labour

d^N dN
dn do ' 1  ^  (3.5.10)e -V V

with 
dN
dST = -fï [*oo + + (All ■ BeA^,iSln28^cos(*g-*^)

. 2+ A sin 0 cos2(# - <p )]. (3.5.11)±~j- V e V
2d N^/dO^dO^ is the joint probability for electron scattering in the direction

specified by the angles ( 8̂  @ ) and photon scattering in the direction

specified analogously just above line (3.5.7). dN^/dO^ is the

probability density for the emission of a photon in the direction after
electron scattering. in the notation of Eminyan et al. (1976), is the

total (integrated) cross section, cr is defined previously in (3.5.2). The

A are defined by Macek and Jaecks (1971) who find for helium that P9L
a a ‘ <b b >

Aoo ' All = - Al-1 = r  • = - V  • (3.5.12a)

With the aid of definitions (3.5.2) to (3.5.4) the above A^^ can be 

expressed as :

_ a ;
CO y * “11 “1-1 2yA = 7 ' • All = - Ai- 1  = k  (1 -A)' Aol % -  e'X-
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Hence by substituting into (3.5.11) one finds

^^c _ 3N
^  - 87 (3.5.13a)

where N is the angular correlation function defined by

N = [Xsin 0^ t 2 (l-X)(cos 0^tl) - 2(1-X)sin^0^cos^(#^-^^)

+ [X(l-Xy]2 cosx sin20^ cos((f>̂ -({)̂ ) J . (3.5.13b)

Equation (3.5.13) corresponds to equation (17) of Eminyan et al.

(1976). In practice, Eminyan and coworkers set the electron detector at 
(j) g = 0 and the photon detector at (j)̂ = ir so that

N = Xsin^0^ + (1-X) cos^0^ -[X(1-X)J^ cosx sin20^ . (3.5.14)

Since N depends on cosx, the experiment will only determine x up

to a sign. Eminyan et al. (1974) have used the delayed coincidence technique

to obtain values for X and |x| by observing emission from the 2^P

level of helium over the angular range 16° ^  0^ ̂  40° and for electron

impact energies ranging from 40 eV to 200 eV. In a later publication

(Eminyan et al., 1975) X and |x| have been similarly determined for

excitation of the 3^P level for 10° ^  0 ̂  ̂  30° and electron energies

lying between 50 eV and 150 eV.

Moreover, Fano and Macek (1973) have made a theoretical study of impact

excitation and polarization of the emitted photon. Essentially, they show

that the average intensity of emission over all directions depends on

dynamical factors such as the line strength whereas the anisotropy and
polarization of the light (photon) depends on the alignment and orientation

of the excited atom. The intensity of the emitted light is formulated in
colterms of the components of an orientation vector £  and the components 

of an alignment tensor determined in the 'collision frame' (x,y,z)

which has been used above as opposed to the 'detector frame' defined by the 

photon detector in the notation of Fano and Macek (1973). These components
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are independent of one another in the sense that a change of excitation
process may alter any one of them and leave the others fixed.

Using spherical tensor notation, the non-vanishing components of 
col col£  and A are defined by Fano and Macek (1973) in terms of the mean 

values of expressions involving the components of the orbital angular 

momentum vector L and by Eminyan et al. (1976) in terms of X and % 
so that

= <L > [L(L+l)]'l Z -[X(l-X)]i sin % (3 .5 .1 5 a)

*0 °^ = - L^>[L(L+1 )}"^ z 1 (1 -3 X) (3 .5 .1 5b)

*1 +^ " 3^L^7 2 +L2 L%>[L(L+1 )] ^ = [X(1 -X)J* cos X (3 .5 .1 5 c)

- Ly^>[L(L+l)]"^ z J (X-1 ) (3 .5 .1 5 d)

The mean values are of course taken with respect to the excited state.

Hence one sees how the parameters X and % may be used to obtain information 
about the orientation and alignment of the excited state.

Physically X represents a relative measurement of which,

according to the definition (3.5.4a), can be made absolute when a is 

known from an absolute measurement. Together with (3.5.2c), a knowledge of 

the individual differential cross sections and may then be derived.

For a comparison between such cross sections for excitation of the n^P 

level in helium, see the papers by Chut]ian and Srivastava (1975, n = 2) and 

Chutjian (1976, n = 3).
X on the other hand may be physically interpreted as the phase 

difference between the excitation amplitude of the respective magnetic 

substates (see equation (3.5.4b)). However, it has recently been shown 
(Kleinpoppen, 1976) that a measurement of x for the excitation/de-excitation 

process S + P + S in helium coincides with the phase difference between 

two electric field vectors of the radiated photon emitted from the second 

transition. In other words, one has the remarkable conclusion that a 

quantum mechanical phase difference appears as a directly measurable
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(macroscopic) phase between two observable light vectors.

The angular correlation function N of equation (3.5.13b) may be 
expressed in terms of the components of as

^ " f  ^2+^ sin^e^ cos2((t)̂ -(f)̂ ) + A°°^ sin20^ cos((p̂ -<f>̂ ) + j  (3cos^0^-l)

(3.5.16)
Hence, an experimental determination of N contains no information about

the orientation £  . In other words the angular correlation depends only

upon the alignment of the atom as remarked at the beginning of this section, 
colHowever, 0^_ may be determined by examining the degree of circular 

polarization, P, of the correlated photons. P is defined in terms of 
integral cross sections as

Qo - (3.5.17)

when 0^ = m/2. For coincident photons emitted perpendicular to the plane 
of scattering, that is and <j)̂ = 0, Eminyan et al. (1976)

show that

P = 2[X(1-X)]i sin X • (3.5.18)

Therefore, with the aid of (3.5.15a), a measurement of P determines 0^°^

and also fixes the sign of x* Experimentally, determination of P is

difficult due to the short wavelength of the light.

Physically one sees from (3.5.15a) that 0^°^ is a measure of the

expectation value of the orbital angular momentum received by the atom

perpendicular to the plane of scattering and is hence an indication of the

extent to which the atom is oriented. Moreover, it can be shown that
<L > = <L > = 0 so that the net orbital angular momentum transferred toX z
the atom is restricted to a component along y_.

In order to compute the orientation and alignment parameters (X,x) using

the DWPO models, some results from §3.4 must be recalled.
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X is quite simply computed from (3.5.4a) with the aid of (3.4.46) and 
(3.4.47) with the appropriate insertions for T^^(m) depending on whether 
one chooses DWPO I or DWPO II.

X is computed by considering T^^(m) as given by (3.4.48a) or (3.4.49) 

depending again on the choice of model. For convenience the superscript has 
been omitted from T̂ .̂(m) , since it serves no purpose in the following 

discussion. T^^(m) is divided into its real and imaginary parts, denoted 

respectively by R^(8 g) and 1^(6^) where the dependence upon scattering 

angle (written in this section as 8 ̂  rather than 0) has been made explicit

T^^(m) = R^(8g) + i I^(8g), m = 0,1. (3.5.19)

The phase x^ referred to in equation (3.5.3) is then given by

= tan'l (I^(8e)/R^(8g)), m = 0,1 . (3.5.20)

SO that the relative phase x may be obtained by substituting for Xq 

and Xp in (3.5.4b). It is noted that when 0^ = 0 or tt, the m = 1 

component of T^^ vanishes so that Xj_ and hence x remain undefined 

at these angles.
Finally, the excitation amplitudes, when calculated in the First Born 

Approximation, are always either purely real or purely imaginary. Hence this

approximation predicts that X = 0 or ±tt, in clear disagreement with

experiment. One therefore sees that in this respect the First Born 

Approximation is inadequate, particularly for predicting the orientation of 

the excited atom. Hence, a measurement of x may consequently be used 

to define further the region of validity of the First Born Approximation.
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CHAPTER 4 

EXCHANGE-POLARIZATION EFFECTS

§4.1 Introduction

This chapter will he concerned with a treatment of the effects arising from 
a consideration of the Pauli exclusion principle upon the polarization terms 

which occur in calculating cross sections for inelastic electron-atom 

scattering. In general, the inclusion of such effects in scattering theory 

adds considerable complexity to the calculations. Taylor and coworkers have 
introduced terms due to exchange-polarization interactions into their 

many-body formalism via a second-order transition potential (see, for example, 

Csanak et al. (1973) and Csanak and Taylor (1973)). Close-coupling methods 

also allow for the effects of exchange-polarization, though only implicitly 

through the very nature of the close-coupling expansion. However, in the 

following discussion, an attempt is made to develop a theory which takes 

explicit account of exchange-polarization interactions in electron-atom 
collisions.

For two-electron target systems, such as helium, the treatment of 

these extra interactions has already been briefly mentioned in Chapter 2 in 

connection with the Distorted Wave Polarized Orbital approximation. It 

was remarked there that the scattering equation satisfied by the distorted 

wave F(r) (c.f. §2.2) could no longer be considered in the adiabatic-exchange 

approximation but rather should be supplemented by further terms arising 

from a full analysis of the polarized orbital ansatz (2.1.7). Moreover, the 

T-matrix element, formulated in §2.3, should also be modified as in (2.3.10) 

to allow explicitly for exchange effects on the polarized wave function 

representing the ground state of the target atom. In the context of the 

DWPO approximation, the DWPO III model endeavours to allow for these effects 

of exchange-polarization via the initial channel; final channel distortion 

is omitted altogether. The purpose of this chapter then is to develop the 

DWPO III model and in particular to enable an account of exchange-polarization
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to be incorporated into the formalism concerning (a) excitation from the ■ 
ground (Is) state to any excited (nA) state in atomic hydrogen (§4.3) 
and (b) excitation from the ground (l^S) state to another S-state (n^'^S) 

in helium (§4.4). Essentially, therefore, one is concerned with the new 

form of the scattering equation and with the corresponding modifications 
to the T-matrix element.

§4.2 The Radial Scattering Equation

The scattering equation is obtained from the polarized orbital ansatz

(2.1.7) for both hydrogen and helium by making the relevant choice of wave 

functions. Such an analysis has been performed for hydrogen by Sloan (1964) 

and for helium by Duxler et al. (1971). Following these authors, the radial 

scattering equation for the u^(k^,r) appearing in the expansion (3.1.16) 

for F(r) is written, adopting previous notation, as

dr r ^
= -t[rR (r) [ R̂ (̂t)û(k..t)tdt + ̂  R^^(t)u^(k.,r)Ŷ(r.t)tdtJ

I— J Q ' O

- I  (-=is +

r & _&-i Is A 1 ____ ^ A + 1____
^ L(2%+D(2&-l) J (2A+l)(2Ht3) ^

■ Jr — ------- J

fco R (t)u„(k,,t) 1 O f a

r

r dr I Is+p

The factors N and x have been introduced merely for convenience; they 

depend upon the target atom under consideration.
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For hydrogen; N = 1, t = +1 for a singlet spin state

T = -1 for a triplet spin state.
For helium; N = 2, t = 1.

^Is defined to be the single ionization energy, as in equation (2.2.9).

The terms in the latter pair of curly brackets arise from the operation of 
the Laplacian operator V on the step function e(r,t) contained in 

(fipoî Zst). Such terms were first derived by Sloan (1964) in a study of the 

method of polarized orbitals for the elastic scattering of slow electrons 

by atomic hydrogen and singly ionized helium. It is to be noted that these 

terms contain a derivative of u^(k^,r), that is, a velocity-dependent term, 

which consequently constitutes a non-adiabatic effect. Moreover, their 

inclusion in (4.2,1) improves the phase shifts in the p-wave, the only case 

for which they arise. Equation (4.2.1) will now be discussed briefly in 

connection with hydrogen and helium.

In the case of hydrogen, (4.2.1) should be compared with the equivalent 

equation in the adiabatic-exchange approximation given by McDowell et al. (1973, 

equations (11) and (14)). The radial function R (r) is replaced byis
the exact (hydrogenic) function R^^(r) where

R^g(r) = 2Z^^^ e Z = 1 for hydrogen . (4.2.2)

The direct potentials ^^(r) and V^^^(r) may be obtained from equations

(3.2.3) and (3.2.5) respectively, making, of course, the appropriate choice 

of parameters. The resulting expressionsagree with equations (12) and (13) 

of McDowell et al. (1973) as previously remarked in §3.2. Temkin and Lamkin 

(1961) also derived (4.2.1) in their application of the method of polarized 

orbitals to the scattering of electrons from hydrogen, but omitted the 

final set of terms first included by Sloan (1964).
In the case of helium, (4.2.1) should be compared with the equivalent 

equation in the adiabatic-exchange approximation given earlier by equation 

(3.2.1). The direct potentials and V^^^(r) remain of course
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unaltered and are given as before by (3.2.3) and (3.2.5) respectively. However, 

compared with hydrogen, two additional integral terms should now be included 
in (4.2.1) for helium as in equation (3.1) of Duxler et al. (1971). In the 

present treatment, these two terms (which effect only the s- and p-waves, 

respectively) have been omitted in order to simplify the method of solution 

for (4.2.1). Comparison between calculated s and p phase shifts with those 

published by Duxler et al. (1971) showed very close agreement despite this 
omission.

Having presented the radial scattering equation in a form suitable 

for electron scattering by either hydrogen or helium, discussion will now 

focus on the modification to the T-matrix element.

§4.3 Is ->■ nA Transitions in Hydrogen -

Differential cross sections, describing excitation of Is -*■ nA transitions 

in atomic hydrogen by electron impact, have been published in the DWPO I 

and DWPO II models in a series of papers by McDowell and coworkers. Briefly,

Is ->■ ns transitions have been considered in the DV/PO I model by McDowell 

et al. (1973) and in the DWPO II model by McDowell et al. (1974). Subsequently, 

work on the Is np transitions has been published in both models by 

McDowell et al. (1975a). Excitation of the n = 2 level has been discussed 

in a further paper, in the DWPO I and DWPO II models, by McDowell et al. (1975b) 

and similarly excitation of the n = 3 level by Syms et al. (1975). The 

idea then of the present section (§4.3) is to extend the DWPO model used 

in the above papers to include an account of exchange-polarization (DWPO III). 

The scattering equation has already been considered in the previous section 

(§4.2) so that here one will be occupied with including the effects of 

exchange-polarization explicitly in the T—matrix element.
The starting point, therefore, of this section will be equation (2) of 

McDowell et al. (1975b) which, to conform with notation of this thesis, is

written
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'^i/ ■ X% (z.2) + *poi(12)) F-(2)]>. (4.3.1)

.A is an antisymmetrising operator on electrons 1 and 2; the plus and 

minus signs refer respectively to singlet and triplet spin states of the 

complete system (projectile and target). The interaction potential in this 
section (§4.3) is given by

V = - ~  + ^  (4.3.2)
2 12

and must not be confused with that for helium given by equation (2.3.1). The 

final unperturbed atomic wave function is written in the exact form

with if^(r) the radial (hydrogenic) wave function. Similarly, the unperturbed 

ground state wave function <|)̂ g(r) is written

*.,(r) = R̂ ’ (r) Y„„(r) (4.3.4)Is —  Is oo

with R^^(r) defined in (4.2.2). The *H’ superscript only serves to 

distinguish between atomic wave functions for hydrogen and helium and in 

fact will be dropped where there is no possibility of ambiguity. 

is defined by equation (3.1.6) with = 1. F(r) and Xĵ  (z,r) are 

expressed as in (3.1.22) and (3.1.23) respectively; note however, that in 

the present case, the residual charge z is taken rather to be defined as 

z = Z -1 where Z denotes as before the nuclear charge.

Equation (4.3.1) is expanded to give;

h /  = ( h /  + * ( h /  + h / ' )  (^-3-3)

where;
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X% (z.2) 4.̂ (1) F-(2)> (4.3.6a)

PD
Tif = <*^(1) X]^^(z,2) Vf *pol(l)2) F (2)> (4.3.6b)

h /  = X% (z,2) 4^(2) F-(l)> (4.3.6c)

PE +Tif = <4f(l) X% (z,2) Vf 4>p^i(2,l) F-(l)> (4.3.6d)

D ERetaining and in (4.3.5) gives the DWPO I model (c.f. equation
(19) of McDowell et al. (1973) or equation (1) of McDowell et al. (1974)).

PDRetaining also gives the DWPO II model (c.f. equation (2) of

McDowell et al. (1974) cr equation (25) of McDowell et al. (1975a)). Both
these models have been fully developed elsewhere. Emphasis is consequently

PEnow placed upon a partial wave analysisof in (4.3.6d). Notation
will follow that of §3.1.

PEHence, in , the atomic wave functions ^^(r) and are

replaced by their respective forms outlined earlier in this section. The

Legendre polynomial P^(cos 8^^) appearing in the expression for ^poi^— ^
is expanded in spherical harmonics according to the addition theorem given

by (3.1.13). F(r) and (z,r) are expressed as mentioned above just
f _ -

after equation (4.3.4) and r^^ appearing in of (4.3.2) is replaced

by its multipole expansion (3.1.14). One therefore finds that

, PE : _ 2(4£)1 2 % % .A'-X i2|:+ll2 y (G,o)
3/k. X=0 X'=0 A'=0 ^

 ̂ (4.3.7)

R̂/r) uj(k.,r){i f Uf̂ p̂(t) Ĥ(kft) x\,(r,t)tdt } dr
where

v - . * > = - 4 - î V -r
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X 1
XX'!.' rt ^Lx J-i= I

Çi

*
A'o

0, X'y IV (4.3.9)

In order to perform the integral over r, use is first made of relation
a
X'y'"' ‘IV
a  ̂ a(3.4.13) to express the product Y , ,(r) Y _(r) in terms of a single

spherical harmonic, say Y^^(r). The integral may then be evaluated with 
the aid of (3.4,4) to yield

Kt!^) = (-1)“ I I
p=o q= -p

3(2X'+l)(2p+l)
2

#p+l)(2A'+l)(2A+l)
4lT 4ir

. /I X* p\ /p A» i\ n  X 'p A» A
\0 0 0/ \o 0 0/ \v y' q/ \q 0 -m>

Note that from the last Wigner 3-j symbol one has that q = + m. The 

integral over t is straightforward using (3.4.4) and gives

I(O^) = (-1)' 3(2X+1)(2X'+1)
4TT

a X x'\ /I X X»

lO 0 0 / \v -y y \

These two results for 1(0^) and I(O^) are subsequently inserted into

(4.3.9) and advantage taken of the orthogonality property possessed by the 

Wigner 3-j symbols which is given by Edmonds (1974, equation (3.7.8)). 

One finds that

^XX'A'(^rt)
3(2X'+1)

4ïï
(2A+1)(2A'+1)(2X+1)

4 tt

A A' X
m 0 -m

2 /A A' X\ /X X' 1

\o 0 0/ \0 0 0/

y,-m ( 4 . 3 . 1 0 )
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From the 3 j symbols appearing in (4.3.10) one observes that

 ̂ ^ X > 0 ;  X’ = l  if X = 0. It is convenient to define by
,X

Is-)-p(r) the following radial integral:

(p)

rr

Let g^^ ^(r) be defined by

(4.3.11)

4s!x(t> = - 4 % ^  • ■ 2 ^ 1  • ; n T  f

(4.3.12)
For small r, it is desirable to make a series expansion in r of 

g^g^^(r). This is readily obtained if t^*^^(r) defined in (4.3.11) is 

expressed as a series expansion in r. Such an expansion is derived in 
Appendix C,

PERecalling (4.3.7) for T^^ and substituting for ^^x'A'^^rt^ with 
the aid of (4.3.10), it is consequently seen that

3/2PE ^ ( W 2 :  I I I

yk^ X=0 A'=0
2A+1
2X+1 (p)%n2(r)u%;(ki.r) gis,x(”̂)

'Z A' X\ ■ /A A' X\ iA

lO 0 0/ \m 0
4  iA

e Y. (0,0) (4.3.13)
-m/

The expression (4.3.6c) for T^^ may be evaluated in a similar way. 

The angular integrations are relatively straightforward and are performed by 

making use of orthogonality between the spherical harmonics together with 

(3.4.4). The result is summarized as 

3/2 00 «

h f
E _ (4ir)

Jk,
I I
X=0 l'=0

- 6Xo
R (r) H^(k^r)rdr

_/r) dr

'A A* X\ /A A' X \
lO 0 0/ \m 0 -ml

i&x r
« ' ?X._m (G'O) - (4.3.14)
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This is the exchange term adopted by McDowell and coworkers in the DWPO I

and DWPO II models. The fimction gis^^(r) is defined by McDowell et al.

(1973, equation (32)) and is observed to coincide with the definition of

&ls,A^^^ thesis (equation (3.3.13)), given the appropriate choice
of R^g(r) and H^(k^).

The total exchange T-matrix element in the DWPO III model is defined
E PFas the sum of T^^ and T^^ , that is

By comparing (4.3.13) and (4.3.14), one sees that this is most easily 

obtained by making the following transformation on g^^ ^(r) appearing 
in equation (4.3.14) for T_.̂ :̂

®ls,X^^^ &ls,x(^) ®ls,X^^^ (4.3.15)

where g^^^.(r) is defined by (4.3.12). Note that g . (r) and g^^\(r)
J-S J.S ÿ A J.S g A

are both independent of A, the orbital angular momentum quantum number 

of the excited state. It is consequently emphasised that (4.3.15) is 

the only modification required to include exchange-polarization effects 

explicitly in the T-matrix element for excitation from the ground (Is) 

state to any other (nA) state.
To summarize: the DV/PO III model for describing excitation of Is nA 

transitions in atomic hydrogen is obtained by solving for u^(k^,r) in the 

appropriate version of (4.2.1) and incorporating the modification (4.3.15) 

into the exchange T-matrix element of the DVIPO II model.

§4.4 p g  4- Transitions in Helium

As in the previous section (54.3) the object here will be to investigate 

the result of explicitly including the effects of exchange-polarization in 

the T-matrix element. For helium (or indeed any two-electron atomic system) 

such effects have already been noted to g.ve rise to two additional terms;
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given by (2.3.28) and given by (2.3.30). In the following,
a partial wave analysis will be performed on each of these terms. When

considering excitation of atomic hydrogen, a general result (4.3.15) was

derived which was suitable for any transition. However, such a result is not
possible in the case of helium, due essentially to the further exchange

interactions arising through the presence of the core electron. Hence, the

analysis will be restricted to S - S transitions. Notation follows exactly
that adopted in Chapter 3. The correction term is expressed

by (3.1.6) coupled with (3.1.13) to expand the Legendre polynomial and |ry£| ^

is replaced by the multipole expansion (3.1.14). F(£) and y. (z,r) are
f

decomposed into partial wave sums according to (3,1.22) and (3.1.23)
Elirespectively. Consideration will first be given to T^^

T./"- = ± ^  ± K / "  + K,"" ] (2.3.28)

El,.The (i = l,...4) are evaluated in turn with the aid of the above

mentioned partial wave expansions, remembering that v^^~(r) represents 

an s-state (A = s).

h'': ■ r . . .=  I U, '’(2) v l ' - ( l )  x2 ( z , 3 ) ( ; A ' "  (31)F(l)dr,1
(2.3.27a)

It is noted that the integration over r^ may be separated completely from 

that over r and denoted by the usual expression B of (2.3.17). The
PEremaining integral over r^g is then observed to closely resemble that for T.^

in the case of hydrogen, equation (4.3.6d). Consequently, one may utilise
PEthe final expression (4.3.13) given for T.^ , with of course the appropriate

choice of wave functions applicable to helium.
Since one is only concerned with S-S transitions so that putting 1 = 0

in (4.3.13), the two Wigner 3-j symbols reduce to give
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.0 0 c)

U;;(ki.r) g(P|^(r) dr (4.4.2)

where S^3 ĵ̂ (r), with helium wave functions, is defined by (4.3.12).

For small r, a series expansion in r is readily obtained from Appendix C.

Then, expressing the remaining spherical harmonic (8,0) as a Legendre

polynomial with the help of (3.1.21) and employing the notation of (3.3.4)
Elfor the phases, one sees that may be written as

= 7 ^  I e^^^^(A,k. ,k ) e  ̂P (cosG) . (4.4.3)
y 1 A=0 ^ ^ ^

K2-:

f
ElThe integration over r^ is separable as above in and is denoted

by B (equation (2.3*17)). Inserting the various partial wave expansions, the 

integration over r^g is straightforward. The angular integrals are 

performed using only orthogonality of the spherical harmonics. The radial
Elintegral is denoted by p̂  ̂ (k^,k^) where

PjEl(k.,kf) =-|" R^3 (r) u^(k.,r)(i
r

u- ^ (t) H., (k^t)dt)dr . (4.4.4) ^ Is^p 1 . r

Hence, writing for the phases (see equation (3.3.4)) and employing
El(3.1.21), Kg is reduced to

p^^^(k^,k^) e ^ Pĵ (ccs 0) . (4.4.5)

K 3 "

K3 " u* (1) V < 2 )  (z.3) 7 ^  (2.3.27c)Is nA k^ ^23

After substituting the appropriate partial wave expansions, the angular



91

integral is seen to present no complications and requires only the property 
of orthogonality between the spherical harmonics. Concerning the radial

Elintegral, this is denoted by q (k^,k^):

El,q (k_,k^) =- w(r ) u^(k^,r)(p u , (t) H (k^t)f (t)dt)dr (4.4.6) ^ ls-)-p I f  Is ,ns

where f^^ ^^(r) is defined by equation (3.3.3). is consequently
summarized as

^  e 1 P^(cos 0) . (4.4.7)

FI ( i'i îV+ jV 1
\  =1 —  *^^(2) *p,i(31) F(l) dr^23 (2.3.27d)

It is observed that (2.3.27c) and (2.3.27d) differ only by the interchange

of the electron labels in the first two functions under the integral. Hence,

since this section is only concerned with S-S transitions, the angular

integrals are identical in (2.3.27c) and (2.3.27d). Also, the radial integral

of the latter is easily determined from that of the former by interchanging

(r) and R (r) (which appears in f (r)), and is consequently given by ns J-S ,nsw

fCO

P2^^(Ri>V
00 fV

o o
El\here f • (r) is defined by equation (3.3.20). K_ is finally written asls,w

iA.
(4.4.9)® "Pi(oose)

EliReturning to equation (2.3.28) for T.^ , this can now be summarized by
collecting together the results (4.4.3), (4.4.5), (4.4.7) and (4.4.9) for the

K (i = 1,...4) to give
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" - 72 ^  J o  c ® + 2{ (P2^4k.,k^) - Bp^\k..k^))

- qf^Xk^.k^) } 6^^] e Pj^(cos0) . (4.4.10)

T E2±.
if

V  = 72 [h"' ± Kz'' + X3^2 . ,,_̂ E2 , ,^E2 ; ,,^E2 j (2.3.30)

E2The (i = l,..,6) are defined in (2,3.29). It is noted that each
E2 depends on the function given explicitly by equation (3.1.6).

The Legendre polynomial P^(cos8^ ̂  appearing in is subsequently

expressed as a sum over spherical harmonics by the addition theorem (3.1.13). 

Performing the integration over the angular variable r ̂  and remembering 

that only S-S transitions are under consideration, it is then easily seen that

= 0. (4.4.11)

E2 E2 E2T^^ hence reduces to a further analysis of only and
E2 is considered first.

K l "  =

K / '  = f ^ ( 1 ) / | ( 2 ) x^^(z,3) ^  *^3 (3 ) *p„i(2 1 ) F(l) dr^23

Making the usual partial wave expansions, the angular integration is readily

performed using only orthogcnality between the spherical harmonics. The
E2radial integral is subsequently denoted by q (k^,k^) where

q^^(k-.k^) ='|J^ w(r) u^(ki.r)(ij^ Sls,l(^)^t)dr. (4.4.12)

E2^(p) Is defined by equation (3.3.13). is finally written as

q̂ (̂kj. ,k^) e ^ P^(cosO) . (4.4.13)
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E2

K2" Xk/z.3) ■—  ♦igO) *poi(21)F(l) dr^23 (2.3.29b)

One sees by comparing (2,3.29a) and (2.3.29b) that the same argument which 

was used to evaluate from the expression for may also be applied

here. Hence, interchanging w(r) and R (r) in (4.4.12) and writing

p"'(k.,V
1 rr

\s^^^ (t)gpg ^(t)dt)dr (4.4.14)
o ^ *

with g^^ ^(r) given as above by equation (3.3.13), reduces to

pO Qjr pO Â-
V  = p (k.,k^) e P^(cosG) . (4.4.15)

E2 E2Collecting together (4.4.13) and (4,4.15) for and respectively

and substituting these expressions into (2.3.30), together with the trivial
E2+result (4.4.11), is summarized by writing

= ± ^  .^[p^^(kj^.k^) ± q^^(k^,k^)]e ^ P^(oos0) . (4.4.16)

The total exchange T-matrix element in the DVJPO III model for helium, given 

by (2.3.10), may then be derived by combining expressions (3.3.24), (4.4.10) 

and (4.4.16) for and respectively. One bas that

+{c2®(k^) Cd2(k^) - 2Bdg(kj)] ± C3̂ (k.)dĝ ®(k̂ ) } + 2{[p/\k^.k^) + pf̂ fk̂ .k̂ )

- Bp/4k . . k p ]  ± [q:l(k..kf) + q^^(k.,k^)]}6,J P^(cos0) . (4.4.17)

The sum /*\i,k^,k^) + /^4;i.k^,k^) is most easily obtained by making 

the following transformation on gps,j!,(’̂  ̂ appearing in J (i,k^,k^):
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where is given as is appropriate by (4.3.12). This is in exact
analogy with the case for hydrogen (c.f. equation (4.3.15)).

1 1 3To summarize: for treating 1 S -v n ’ S transitions in helium with 

the DWPO III model, the appropriate version of equation (4.2.1) is solved 

for the u^(k^,r) and the exchange T-matrix element, T^^ ", appearing 

in the DWPO II model, modified according to equation (4.4.17) above.
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CHAPTER 5 
COMPUTATION” AND NUMERICAL ICTHODS

§5.1 Solution of the Scattering Equation

The present section will be concerned with the method of solution/
employed to solve.-tlie radial scattering equation which embodies one of the 

principal features of the Distorted Wave Polarized Orbital approximation.

In the DWPO I and DVIPO II models, the scattering function is computed in the 

adiabatic-exchange approximation summarized by equation (3.2.1). When 

allowance is also made for exchange-polarization effects, resulting in the 

DWPO III model, the scattering equation is correspondingly modified and 

summarized by equation (4.2.1). It will be noted that the adiahatic-exchange 

equation is incorporated into the full polarized orbital equation. Further, 

the equation for scattering by a one-electron atomic system (in the present 

case hydrogen) and for scattering by a two-electron atomic system (in the 

present case helium) are, apart from detail differences, very similar. The 

adiabatic-exchange equation for one-electron systems has been summarized 

by McDowell et al. (1973, equation (11)).
In practice a general program (RADIAL) was developed to compute in the

adiabatic-exchange approximation the u^(kv,r) for scattering by either 

one-electron or two-electron systems. Such a program also contained switches 

to neglect the exchange (integral) terms and the direct polarization 

potential V ^^(r). Later, RADIAL was subsequently modified to solve 

equation (4.2.l), but a switch retained to output in the adiabatic-exchange 

approximation. Hence, by reading in various switches, results are produced

in a number of approximations:
1. the static approximation (Taylor, 1972, §9d),
2. the static-exchange approximation (introduced by Morse and Allis,

1933, and summarized by Bransden 1970).
3. the adiabatic-exchange approximation (equation (3.2.1) and McDowell

et al. 1973).
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4. the polarized orbital approximation (equation (4.2.1) ).

Since results in each ofthe above approximations may be deduced from 

the polarized orbital equation by setting the relevant switches to zero, 

discussion will be restricted to solving equation (4.2.1). In particular, 

it should be observed that the solution of (4.2.1) for the p-wave (u^(k.,r)) 

involves not only a second derivative of u^(k.,r) but also a first 

derivative and consequently provides the most complicated version of (4.2.1), 

Hence, in the following, consideration will be given to the method of 

solving (4.2.1) for A = 1, and therefore simultaneously including the 

method for any of the other cases by setting the appropriate switches 

accordingly. The method of solution will follow closely that employed by 

McDowell et al. (1974) and by Sloan (1964); it should be clear which terms 

are to be retained in any other approximation so that it will be unnecessary 

to explicitly denote the omission of such terms vfhen considering a particular 

approximation. In order to simplify equation (4.2.1), some preliminary 

remarks and definitions are first made.
The second integral term on the right hand side is denoted by Y^(k^.,r):

Y^(k^,r) = r R^g(t) u^(k^,t) Y^(r,t) t dt. (5.1.1)

This defines the Hartree-function which satisfies the following second-order 

linear differential equation given by Hartree (1957).

Y^Ck^.r) = Y^Ck^.r) - (2i+l) R^^Cr) u^Ck^.r) (5.1.2)

subject to the boundary conditions

Y„(k.,r) ~ Y (k.,r) ~ r"* .
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The remaining integrals have a similar structure whereby it is convenient 
to write

W%(a,b;n) =
a r(Z+l)+n (5.1.3)

Further, it is convenient to let

f ^ ( k .  , r )  =  k . 2  -  M i + i l  _ (5.1.4)

2t
” 2&+1 *'lsR. (r) (5.1.5)

h(r) = - r R^g(r)(- )x (5.1.6)

&r&-1p^(r) - - 4t U2 s-̂ p(r) (2 &+i)(2 &-l) (5.1.7)

q^(r) = - 4t u^g^p(r) (2&+i)(2&+3) (5.1.8)

s^(r) = - (r)) (5.1.9)

s^Cr) = - |i . u^3,p(r) (5.1.10)

t ( r )  =  -  [  ? ^  R i s ( r )  -  U i s + p ( r ) ( -  +  > < / ) ] (5.1.11)

G is taken to be the experimental value for the single ionization Is
energy. The integrals from r to infinity are manipulated using the result 

that
'V

_

r "e e

where e is usually chosen to be zero. Then, by writing D as a linear 

differential and integral operator involving integration only up to r, 

defined by
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2

^  + S2(r) & } "&(%!'?) - S&(r) ?%(%!.?)

+ P&(r) Wj^(0.r;0) + q^(r) H^(e,r;2) + 6^^ t(r) H^(0,r;-1). (5.1.12)

it is possible to rewrite equation (4,2.1) in the following simplified form: 

Du^(k^,r) = p^(r) W^(0,«;0) + q^(r) W^(e,«;2) + 6^^t(r) W^(0,«,;-i)

+ 4&oh(r) W^(0,oo;-2). (5.1.13)

At this stage it is worthwhile to point out that the integral W^(a,b;2)

multiplying q^(r) in equations (5.1.12) and (5.1.13) diverges according

to 1/r as r -> 0, since the integrand behaves as 1/r . Thus it is

expedient to choose e > 0 which has been indicated explicitly by writing

in e rather than 0. However, the multiplying factor q^(r) behaves 
£+3as r for small r and effectively reduces the product to zero in the

limit as r 0.
Essentially, equation (4.2.1) has been reduced to a system of two 

coupled linear differential and integro-differential equations, namely 

equations (5.1.2) and (5.1.13). Consideration will now be given to the 
method adopted for solving simultaneously these two equations. The method 

is a non-iterative one devised originally by Percival and subsequently applied 

by Marriott (1958) in a study of Is - 2s electron impact excitation cross 

sections of atomic hydrogen.
One defines the following corresponding homogeneous and inhomogeneous 

solutions of equations (5.1.2) and (5.1.13):

HI ^ HI. H2 H2
homogeneous solutions: ’ Jl ’ %

II II 12 12. 13 13inhomogeneous solutions: u^ , ; u^  ̂ .
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The homogeneous solutions u^" satisfy the homogeneous equation

D = 0 (5.1.14)

where the operator D is defined in (5.1,12), The inhomogeneous solutions u
12 13 ^u^ and u^ satisfy respectively the inhomogeneous equations

D u^^^ = h(r) i = 0

= P^(r) & > 0
D u / 2  = q^(r)

D u^^3 = t(r) . (5.1.15)

Each of the satisfies the differential equation (5.1.2). At this stage,
it is remarked that if one is interested in either the static-exchange or 

adiabatic-exchange approximation, it is only necessary to solve for u^^^ 

in (5.1.15) since the other equations only arise in the full polarized orbital 

treatment.
General solutions of (5.1.2) and (5.1.13) may now be written as

+ =2 + °3 + =4 \   ̂+ °5 (5.1.16a)

Y^(k.,r) = + Cg y/2 + C3  y / "  + o, Y^^^ + y / ^  (5.1.16b)

where the (i = 1,...5) are mixing coefficients. It can easily be 

checked that these solutions satisfy (5.1.2). In order that they satisfy

(5.1.13), one finds by substituting into (5.1.13) that the mixing coefficients

must satisfy the relation
5 . 5 5

CgPĵ (r) + c^q^(r) + t(r) = p^(r) ^i^i î'̂ i’

(5.1.17)
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where, writing = Hi, = H2, = II. = 12 and = 13, one
has in an obvious notation from definition (5.1.3)

■ "‘i
P f  = W  (0,oo;-2) £ = 0

a.
= W ^(0,oo;0) & > 0

“iQi = K  (E,= ;2) all Z

a.
Tp = ^(0,«>;-l) all Z .

Since according to the definition (5.1.7), p^(r) is zero, it is convenient 
for notational purposes only in (5.1.17) to let p^(r) denote the expression 

h(r) given by (5.1.6). The functions p^(r), q^(r) and t(r) are linearly

independent so that equating the respective coefficients, the mixing parameters 

are found to satisfy the system of linear equations given below;

OgCl - Pg) - Py - Cg Pg  ̂(C^P^ t O^ P^)

- Cg Qg + c^(l-Qy) - Cg Qg = (c^ ^ Qg) (s.l.is)

" Cg Tg + Cg(l-Tg) * ( C t T^) .

In practice, since the overall normalization of the solution u^(k^,r) given 

by (5.1.16a) is to be fixed later, one is at liberty to set c^ = 1. The 

system (5.1.18) is consistent and subsequently solved for c^, c^ and c^ 

in terms of c^« It is subsequently necessary to find a further relation

in order to determine c^.
The differential equations (5.1.2) and (5.1.13) are solved numerically

(a^)
up to some sufficiently large r, say r = R, such that (k^,r)

may be written as the asymptotic expression
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, -, (a-)Yjj (k^.R) = R (k^.R) (5.1.19)

with
(*<) fR (a.)

I5, (k^»R) = Rie(r) u„ ^ (k.,r) dr. (5.1.20)o is A i'

This should be compared with the asymptotic behaviour of Y^(k.,r) given

in connection with equation (5.1,2). The a. are defined immediately below
(a.) ^

equation (5.1.17). Hence with Y ^ (k.,R) computed from (5.1.2) and
(a . )  ^ ^

(k^,R) computed from (5.1.20), one writes

V (*i) 5 (a.)
I c. Y (k.,r) = R I c, I (k.,R) . (5.1.21)i_l -L ■ 1  1 = 1  1  ^

Substituting for c^, ĉ ,̂ c^ and recalling that c^ has been set to unity,
equation (5.1.21) furnishes an expression from which one can determine c^* 

Finally, it remains to normalize u^(k^,r) as given in (5.1.16a) so 

that asymptotically

u.(k.,r) ~ k.  ̂sin(#(r) + 6 ). (3.1.17)

This is carried out following McDowell et al. (1974) who use the JWKB

method formulated by Burgess (1963). The idea is to match the numerical

solution of u%(k^,r) with the corresponding JHKB solution at some convenient

point r such that R < r < R. R is defined to be the smallest value of^ N N
r such that

|f^(k^,r) - w| < |w| e (5.1.22)

where f (k.,r) is given by (5.1.4) and w is the long-range expression

for f^(k^,r) given by

r
e is normally set to lO'®. R coincides with the value of r defined 

earlier in the discussion immediately proceeding equation (5.1.19) on the

asymptotic behaviour of Y^(k^,r)*
The JWKB solution to u^(k^,r) is defined to be
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UjCk-.r) = sin(*(r) + 6^). (5.1.24)

By substituting (5.1.24) into the asymptotic equation

"i ■ ° • (5.1.25)

one finds that
2

Ç = w + ; 2  (5.1.26)
dr

with
rr

0(r) = Ç dr' . (5.1.27)

The lower limit is left unspecified in (5.1.27); in practice it is chosen 

so that the above boundary condition (3.1.17) is satisfied. Equation

(5.1.26) is a non-linear differential equation. However, provided

w » Ç-2 ^
dr

it may be solved iteratively and yields for the first-order solution, denoted

by Çq .
= w^. (5.1.28)

1 1It is noted that in the limit r-x», ^ so that (5.1.24) has

the correct asymptotic behaviour according to (3.1.17). The next iteration

yields where
1 j2

Ç = w + w^ — w  ̂ . (5.1.29)
^ dr

(j)(r) is now determined by substituting for ç in equation (5.1.27)

and evaluating the integral by parts. Full details are given in the paper

by Burgess (1963).
Having obtained expressions for ç(r) and <|)(r), one is now in a

position to calculate the overall normalization constant of the u^(k^,r). 

At the points r = r^ and r = r^_^ the respective numerical solution is

equated with
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^ sin((f)(r̂ ) + 6^),i = N, N-1 (5.1.30)

where A is the required normalization constant. Consequently (5.1.30) supplies 
twoEKiuations depending on A and 5,^ The phase shift 6^ is eliminated 

and a subsequent value obtained fbr A, say A^. N is then increased by

unity and the computation repeated to give another value for A, say

This is continued until the following condition is satisfied for 
some value M

l \  - V l l  |A.I E. (5.1.31)

e is usually taken to be lO" .

When a suitable value for A has been established, the u^(k^,r)

are normalized. The phase shift 6^ may subsequently be determined by

considering (5.1.24) at the point r = r^. Suppose 6^ has the value 5^

at this point. Then as in the above procedure for finding the normalization

constant A, the phase shift is computed at r = r^^^ to give the value

6., _ say. This is continued until one has that N+1

l®D ■ V l l  " " (5-1-32)

for some point r = r^. The above method of Burgess (1963) is only accurate

for computing 6^ to the fourth decimal place; 6^ is chosen to lie in the

range - ïï < 5^ ^ir. Consequently e is set to 10 in (5.1.32).
This essentially completes the method used to determine u^(k^,r) over

the range 0 < r ^  R. For r ^  R, the JWKB approximation to Uj^(k^,r) is

constructed using equation (5.1.24) with ç and *(r) given as above by

Burgess (1963).

§5.2 Numerical Procedure for the Scattering Equation

Under this heading the numerical techniques used to solve the differential 

equations arising in the DWPO models will be discussed. The method described 

earlier in §5.1 for solving the scattering equation avoids the need for an
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Iterative procedure and does not require the use of awkward outward and 

inward integration methods to normalize the solution. Numerically, equations 

(5.1.2) and (5.1.13) are solved simultaneously by the formula due originally 

to Numerov (1933). Numerov’s method is particularly suited to equations 
of the type

y" = b(r)y t c(r). (5.2.1)

Here, b(r) and c(r) are independent of y and primes denote differentiation
with respect to r. Following FriJberg (1966), the recurrence relation
required to solve (5.2.1) by this method assumes the form

2 2 2 
■ Î2 ^n+l^^n+l = 2(1 - l2 ^  ' l2 + Ï2

(c + 10c + c  .)). (5.2.2)n+1 n n-1

The notation should be clear; h is the mesh size, given by r^^^ = r^ + h.

This relation was adopted by the program RADIAL to solve equation (5.1.2) 

and also in the initial version of the program to solve equation (5.1.13) 

in the adiabatic-exchange approximation. However, when considering the 

full polarized orbital treatment, formula (5.2.2) is no longer adequate, 

due essentially to the introduction of the first derivative term. Before 

drawing attention to the method used to cope with this further term, it is

convenient to modify (5.2.2).
Hence using the formula given by Hartree (1958) that

- y„_, + ^  (y;+i + 1 % '  + 

and with the help of (5.2.1), the recurrence relation (5.2.2) is rewritten

as
h' y^+p) = 2y„ - y^-i + &  + C i ^  ' (5 .2 .4 a)(^ntl 12 "'ntl'

y;+l = bn+ 1  ^n+l + =n+l '
(5.2.4b)

The latter relation (5.2.4b) is used to provide the second derivatives 

required by the former relation (5.2.4a).
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Turning now to the full polarized orbital approximation of equation

(5.1,13), one is essentially interested in an equation of the type

y" = a(r)y' + b(r)y + c(r) . (5.2.5)

The first derivative may be expressed according to the result given by 
Sloan (1964) that

K + l  " ïï[f(yn+l ■ ~ V l ) ]  ' + C l )  " °(^") ' (5.2.6)

Then, substituting for y^^^ in (5.2.4a) with the aid of (5.2.5) and

employing (5.2.6) to eliminate the term in y^^^, one finds that the 

relation (5.2.4a) becomes

^n+l = [ C  " ?n-l + 12(10?% + y".^) + ^  ^  - 16y„ + ?y^_^

- |g(64y;; + 8y"_^)]]/[l - (jj C l  + #  C l ) ] '  (5-2.Va)

The next iteration will require a knowledge of y^^^. This may be

obtained from (5.2.5) and (5.2.6) in the form

2 2 2 

Ï2 ^n+l = ( &  bn+1 + #  %+l)yn+l + Ï2 =n+l + I t *n+l{ " + C - 1
2

_ ^ ( 6 4 y ” +  8y;;_l)}. J 5 . 2 . 7 b )

Note that when a(r) is absent, the recurrence method (5.2.7) reduces to

that in (5.2.4) as expected.
It will be observed that the linear operator D acting on u^(k^,r) 

inequation (5. 113) gives rise to integral terms of the type

g(r) = w(t) y(t) dt. (5.2.8)

These terms are included implicitly in the function c(r) of (5.2.5). 

Consequently, it would appear that a prior knowledge of y^^^ required 

to determine such integrals as (5.2.8). This difficulty may be circumvented 

by the use of a Newton-Cotes formula of the open type. In practice, four 

such formulae were employed in turn (see equations (25.4.21 - 24) of
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Abramowitz and Stegun, 1970) and the subsequent results checked against 

each other for stability by varying the mesh si?e. Generally, a reasonable 

degree of stability was achieved, particularly with the 4-point formula 

(25,4.23), the most trouble coming from the s-waves. However, rather than 

employ a method which depends on extrapolation, it was subsequently decided 

to abandon the Newton-Cotes formulae and to utilize the method outlined by 

Sloan (1964) which uses the well known Simpson formula for integration.

Using Simpson’s rule (see, for example, FrBberg, 1966) it is easily 

seen that

&n+l =n-l
n+1

n-1
w(t) y(t) dt

= I  ["n+1 ^n+l + %  + "n-1 ^n-J '
SO that one has immediately the result

Sn+l = I  "n+1 y%+l + V l  + I k  + "n-1 ^n-J (5.2.9)

It is then convenient to express the integrals from 0 to r explicitly, 

that is to let

rr
c c + p ay + q 3y + t Yy (5.2.10)

where p, q and t are the functions appearing in equation (5.1.17). The 

Greek notation should be clear from a comparison with (5.1.12) and also 

the definition of the integrals, equation (5.1.3). The integral terms

are to be expressed according to (5.2.9). Hence putting

IT =
rr

ay p = 3y, a = Yy.

a recurrence relation may be set up for each term as follows:
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\ + l  = I  “n+1 ̂n+1 + "n-1 + |['*“nyn + “n-1 ^n-J '

Pn+1 = I  ®n+l C l  + Pn-1 + l^^^n^n + ®n-l » (5.2.11)

“n+1 3 ̂n+1 ^n+1 ^ “n-1 ̂  3 "̂*̂ n5̂ n ^ ^n-1 ^n-1^ '

Finally, (5.2.10) and (5.2.11) are incorporated into the two recurrence 

formulae of (5.2.7) to give

r h^
C l  (Pn+l“n + 9n+l®n + C l ^ n ^ ^ n  " [ ̂  “ 36<Pn+l“n-l + C l ® n - 1

+ tn+lYn-l)}yn-l + ^ ( ^ ^  + ^n-l^ + H “n+1 + l2<Pn+l"n-l + Si+l^n-l + '^n+A-l^

+ &  “n+lf” IG^n + C - 1  ■ 12(5%  + 5yn-l))]/[^ " (î2 "^n+l + H  ^ n + J
3

• &  (Pn+l“n+l + C l C l  + & + 1 C 1 )]' (5.2.12a)

and

2 2 2 
Ï2 ?n+l = (ï2 bn+1 + H  ^n+l^rn+l + Ï2 “n+1 + &  “n+l( ' l^^n + C - 1

- ^64y|; + 8y%_^) } + ̂  (p„^iVl + W n + 1  + \ + l “n+l^ ' (5.2.12b)

The final version of RADIAL therefore adopted the recursion method (5.2.12).

Results in the adiabatic-exchange approximation were then checked with those 

computed in the original version which employed the relation (5.2.2) and 

found to agree.

The method used above for treating the integrals of the type (5.2.8) generates 

two sequences for g(r), since g(r) is computed at alternate points rather 

than consecutive points. This is evident from the result (5.2.9) whereby

^+1* ^n-1* ^n-3’’“  sequence and g^, g^,^, forms the
other. Eventually, in order to determine values for the infinite integrals 

P^, Qĵ  and T^ appearing in equation (5.1.17), the mean is taken of the
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two limits belonging to the corresponding sequences of the finite integral

g(r). Concerning the integral one sees that it has a singularity
21/r at the origin which has been avoided by commencing the integration 

at e > 0 rather than the origin; In practice e is set to the value 

0.01; however, for the triplet s-wave in electron-hydrogen collisions, it 

is set to 0.04 in order to achieve a more stable result.

The Numerov methods outlined above provide a rapid means for integrating 

the differential equations encountered in §5.1, However, the methods are 

not self starting and consequently it is necessary to make power series 

expansions in r for the solutions about some regular point which in 

this case is taken to be the origin. The singularity possessed by 

W^(a,b;2) - see equation (5.1.13) - gives rise to the introduction of 

logarithmic terms in the series for u^(k^,r) and Y^(k^,r). One has 

that

u^(kf,r) = [a^ + a^r + a^r^ + a^r^ + (a^ + logr) r^

+ (â  + A^ logr)r^ + (a^ + A^ logr)r^+...], (5.2.13a)

Y^(k^,r) = r^^^^b^ + b^r + b^r^ + b^r^ + b^r^ + b^r^ +

(bg + Bg logr)r^ + (b,̂  + B,̂  lcgr)r^t...], (5.2.13b)

Note that the logarithmic terms only arise in the full polarized orbital

treatment, otherwise the A^ and B^ are set to zero. In practice 9

terms were retained in each of the series.

Homogeneous solutions are obtained by setting

a = 1 b = 0o o

a = 0 b = 1.o o

Inhomogeneous solutions are obtained by setting

a = 0 b = 0.o o
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Before discussing the practical details, a word is in order about the 

determination for non-hydrogenic systems of the parameter appearing

l̂s-)-p^^^’ equation (3,1.12), This parameter has been found to satisfy 
the equation (3.2,8) which for convenience will now be written as

f(x) = 0 (5.2.14a)
where

25
f(x) = I a . (5.2.14b)

n = 0

Equation (5.2.14a)is solved iteratively by the Newton-Raphson method which 
may be summarized by the formula

f(x )
C l  = - f H T )  • (5.2.15)n

Such a process involves a great deal of tedious algebra to rearrange 

(3.2.8) into the suitable polynomial expression (5.2.14b). In practice, 

the starting value was taken to be the nuclear charge Z and the

iteration terminated when

I C l  - < c

where typically e = 10 The starting value was then altered slightly

in order to test the sensitivity of the result. In each case, agreement 

to six decimal places was achieved after 7 or 8  iterations.

The differential equations were integrated on a grid which was divided 

into four intervals: 0  < r < r̂ ^̂ . r̂ ^̂  4  r 4  r̂ jg, r^g 4  r <, r^g and

r̂ ĝ ^  r ^  ̂ N4 ’ step length was doubled at the end of each interval,

and was normally set to an initial value h = 0.004 a^. Usually, the 

intervals were determined by setting N1 = 100, N2 = 200, N3 = 1000 

for helium, N3 = 1500 for hydrogen and N4 = 2000 - 4500. Hence, this 

grid is consequently adopted to evaluate the basic radial integrals contributing 

to the cross sections. The point r^^ coincides with the point R defined 

in connection with equation (5.1.19). When starting the solutions, the 

series expansions were used for the first NSTART points where typically
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NSTART = 2A + 14.

The numerical solution was also computed at the point ^^^g^ART compared
with the corresponding series solution; accuracy was required to within 

-45 X 10 %. This same condition was imposed at the step length doubling

points N1 and N2 whereby the solutions were computed using both the 
new and old step length and compared.

The mixing coefficients were determined by solving the system of 

linear equations (5.1.18) by Cramer’s rule. However, such a method may 

produce erroneous results if the system is ill-conditioned. To provide a 

check on the accuracy of the resultant values for the mixing eoefficients, 

library routines employing double-precision and also tests for ill-conditioning 

were extensively used to solve (5.1.18). In every case, 6-figure agreement 

was obtained between the two methods.

As a further check on the numerical solutions and in particular the 

choice of N3, the mixing coefficients were calculated twice using the 

integrals P^, Q̂ ., T̂ĵ (i = 1,...5) computed up to the point N3-1 and then 

the point N3. The value for the mixing coefficient c^ was required to 

satisfy the condition

I (N3) (N3-1),  ̂ I (N3),\^2  "  ^ 2  I <  1 ^ 2  I c

—6where e = 10

Concerning the full polarized orbital treatment, a certain degree of 

sensitivity was noted in the choice of e appearing in the integral 

W^(e,b;2) and also in the choice of NSTART, particularly for the triplet 

s-wave in electron-hydrogen scattering. The values adopted here were found 

to produce the most stable results under change of the initial‘.mesh size h.

When h was given a value such that 0.002 ^  h ^  0.006 atomic units,

3- to 4-figure agreement was found in both the u^(k^,r) and the phase 

shift 6^. The latter are given in tables 1 and 2 and may be compared with 

published values whereby the agreement is seen to be very good, particularly 

in the adiabatic-exchange approximation.
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§5.3 Numerical Methods for the Cross Sections

Having dealt with the scattering equation in the previous two sections 

(§5.1 and 5.2), the remaining parts of the chapter will be concerned with 

the numerical derivations of the differential and integral (total) cross 

sections for electron-helium collision processes in the DWPO models 

described in Chapters 3 and 4. In fact the programs to be described compute 

results not only for helium but for any two-electron atomic system .

Essentially two such programs have been written for this purpose. The
1 1 3first (POLORS) computes cross sections for 1 S -x n * S transitions. 

Initially, POLORS computed results in the DWPO I and DWPO II models (§3.3)

but was later modified to also produce results in the DWPO III model (§4.4).
1 1 3The second (POLORP) computes cross sections for 1 S ^ n ’ P transitions 

using the DWPO I and DVjPO II models (§3.4) and also computes the (X,x) 
parameters (§3.5). The two programs employ basically the same numerical 

methods but incorporate different versions of RADIAL to compute the partial 

waves u^(k^,r) and the phase shifts 6^. POLORS in its final form utilises 

the full polarized orbital version of RADIAL whereas POLORP utilises the 

simpler adiabatic-exchange version. In practice, RADIAL, POLORS and POLORP 

have been written so as to allow as much interchange as possible between 

routines which are common to at least two of the programs. Usually, such 

routines may be inserted into either program simply by adjusting their 

COMMON blocks. A typical example is given by the function routine which 

furnishes the function f^(k^,r) defined by equation (5.1.4).

In both POLORS and POLORP, a grid is set up similar to that defined 

for RADIAL in §5.2. Simpson's rule could then be used to evaluate the 

integrals which did not allow a straightforward analytic evaluation. The 

u^(k^,r) are computed in the DWPO approximation until the phase shift 6̂  

becomes small enough to satisfy the inequality
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where usually s = 0.001. At this point the RADIAL routines are switched off 

and subsequent u^(k^,r) replaced by r/k^ H^(k^r) where H^(k^,r) is a 

regular Coulomb (Bessel) function with appropriate normalization. The 
H^(kr) are obtained in kr-multiplied form

kr H^(kr) = G^(kr) (3.1.25)

w"here G^(kr) is derived by solving the appropriate differential equation

(3.1.26) using the Numerov formula given in (5.2.2). This was found to 

be a faster method for generating the H^(kr) rather than using the standard 

library routines available (McDowell et al., 1973). The H^(k^) are also 

generated by this method in order to evaluate the function g^^ ^(r). This 

function, defined in equation (3.3.13) and subsequently modified in POLORS 

according to (4.4.18) is evaluated by integrating g^^^ (r) (and g^^\(r))JLŜ Xr «LS3J6(2 )outwards and integrating g^^ ^(r) inwards using Simpson's rule at half the 

basic step length. In the asymptotic region g^^ ^(r) (as defined by

(3.3.13) and in DWPO III subsequently modified according to (4.3.15)) may 

be replaced by its respective asymptotic form. However, comparison between 

results based on different grid parameters indicated such asymptotic 

contributions to be very small.

Both programs adopted the experimental atomic energy levels published 

by Martin (1960) unless specifically required to be otherwise (see §5.4 

on the discussion of cross sections computed in the Born-Oppenheimer 

approximation where theoretically determined eigenenergies are also employed).

Attention will now be given to some individual aspects of POLORS and 

POLORP in turn.

Concerning POLORS, it was found that when R^^(r) was represented by

a Cohen and McEachran function, it was quicker to evaluate f. (r) and^ ls,ns
kis ^g(r), given by equations (3.3.3) and (3.3.8) respectively, by a 

numerical procedure similar to that adopted for g^^ ^(r) rather than 

analytically. The integrals arising only for the p-wave in the DWPO III 

model were also evaluated by a similar such numerical procedure.
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The computation of the partial wave elements in the sum (3.3.25) is

terminated when the addition of another term (defined by expressions

(3.3.26) or (3.3.27)) yields an overall change in the total cross section 
-6of less than 10 % at which point the differential cross section is computed.

-2 -4Percentage changes of 10 and 10 were also tried and found to be adequate
2at lower energies (k^ < 40 eV) to reproduce 3-figure agreement in the

differential cross sections. However, at higher energies, in the region of

200 eV, such a percentage change did not allow enough partial waves to

contribute to the differential cross section. This lack of convergence in

p artial waves can be recognised by a characteristic oscillatory behaviour

in the differential cross section at large scattering angles. By requiring
-6a change of at least 10 %, this behaviour was eliminated for all impact

energies considered in deriving differential cross section results.

Concerning POLORP, the long-range nature of the direct integrals, defined 

essentially by equation (3.4.7), makes a complete evaluation by Simpson’s 

rule impractical. The difficulty arises from the oscillatory nature of the 

integrand in the asymptotic region, which provides a significant contribution' 

to the integral. To overcome this problem, the integrals are divided into 

two parts

!(&,%) = I,,„ + I (5.3.1)N4 «
where r

( N4
^N4

I =

H (k_r)u.(k. ,r)f (r)dr, (5.3.2) A f A 1  Is ,np

-9r sin$^Xr)sin(#^(r) +6^) dr. (5.2.3)
^N4

The constant 3 is defined to be such that

r f- (r) -X 3 kj-A. (5.3.4)ls,np f 1

where account has been taken of the normalization of and u^(k^,r).

The <t>(r) are defined through equation (3.1.18).
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The first integral is evaluated with the aid of Simpson’s

rule. The second integral is evaluated using a method due to Belling
(1958) and reviewed by Norcross (1974).

In this method, is expressed as a difference of two integrals

I» = G (5.3.5)

where, writing %i(r) = 4i(r) + 6% - <f'̂ (r) and Xr/r) = ^^(r) + 5̂  + f (r),
g.(R) is defined as'1

foa

g^(R) = r-2
R

r cos%i dr, (R = r^^; i = 1,2)

= P^^R)sinx^(R) + Qu(R)cosx^(R). (5.3.6)

Differentiating this result with respect to R and equating coefficients 

of sin Xi and cos x^» the functions P^ and are found to satisfy
the first-order linear differential equations

dP.
dR^ “ Xj_Qi = 0 (5.3.7a)

"iQi 1
dK“  + Xi^i = - —  • (5.3.7b)

Following Belling (1968), P^ and are expressed in terms of asymptotic

expansions and the coefficients obtained by a rapidly convergent iterative 

scheme. Consequently, g^(R) may be obtained to an accuracy of 5 to 6 

figures, provided the lower limit of the integral in (5.3.3) is sufficiently 

large.

This long-range behaviour also effects the convergence of the partial

wave sums. A method for computing these sums has already been discussed in

§3.4. Typically occurring in equations (3.4.41) and (3.4.42) is

set to 30. As a check on the numerical work. Born cross sections were 

computed for the l^S -x 2^P transition at 29.6 eV and for the l^S -x 3^P 

transition at 29.2 eV using firstly the partial wave treatment and secondly 

the analytic expressions for the T-matrix element (see Appendix C).
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On comparing results, the integral cross sections were in at least 6-figure 

agreement and the differential cross sections were in agreement to 4 figures. 

Thus, this provided a useful check on the accuracy of the programming.

Finally, both programs were tested for sensitivity to changes in the 

initial step length h. POLORS was run for impact energies of 29.6 eV and 

40.1 eV using an initial step length lying in the range 0.002 ^  0.006.

The integrals were compared and found to be in 5-to 6"figure agreement 

except for c^(k^) and c^(k^) (see equations (3.3.15) and (3.3.18) 

respectively) which agreed to 2 usually 3 figures. Generally, the best 

agreement in the cross section (usually 3 figures) was achieved when h 

was chosen such that 0,003 ^  h ^  0.005. POLORP was similarly tested, it 

being found that cross sections generally agreed to a least 3 figures.

Belling’s method for evaluating (see equation (5.3.3)) was found

to give the most accurate results when r^^ 'v 40 a^; this was inferred 

from the good agreement obtained between the analytic and partial wave 

treatments for oonputing B o m  cross sections as referred to above.

When computing the scattering functions u^(k^,r) in the DV/PO 

approximation with a smaller value for h, for example h = 0.002, 

convergence difficulties arose in the RADIAL routines for higher order partial 

waves; typically for A > 3 at an impact energy of 29.6 eV. Coupled with 

this fact and with the most stable results being obtained for 0.003 ^  h ^  0.005, 

an initial step length of 0.004 was subsequently adopted for production runs.

§5.4 The Born and Bom-Oppenheimer Approximations

Switches were incorporated into POLORS and POLORP so that the programs 

could produce results also in the Born and Born-Oppenheimer approximations.

By comparing with published results, one has a valuable check on the 

consistency and accuracy of the respective program. Both approximations may 

be deduced from the DV/PO I model with u^(k^,r) replaced by ^’̂k̂ ^̂ (̂k̂ r) 

for all A.
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B o m  results for 1 S -x n S transitions may then be derived from

POLORS by omitting all exchange terms. In the case of l^S -x n^P transitions,

the ’Bom-sub tract ion ’ procedure employed to perform the sum over partial
waves is also neglected. Hence POLORP computes results in the Born

approximation by means of a partial wave treatment and consequently allows

the use of a slightly more sophisticated wave function for R (r).np
Differential cross sections for the excitation of l^S -x 2^S and l^S ^ 2^P

transitions in helium have been computed using the Cohen and McEachran wave

function for the excited state wave function R . (r). The results at 29.6nl
and 40.1 eV are reproduced in graphical form in figures 1 and 2, and may be 

compared with similar Born results quoted in the paper by Thomas et al.
(1974). The agreement is seen to be very good.

An extensive analysis of the Bom-Oppenheimer approximation has been 

made for the excitation of l^S -x 2^S and l^S -x 2^P transitions in helium.

Both programs were modified slightly so that results could be obtained 

either from using a ’prior* formulation or from using a ’post’ formulation. 

Results for the total cross sections computed in the'prior'formulation could 

then be compared directly with those published by Bell et al. (1966).

Adopting the notation of this thesis. Bell et al. (1966) take the 

T-matrix element to be

iK.r ik. .r /. \
T^^” = /3<({)̂ (12)e *^(23) e ^ > + 6T^^1 (5.4.1)

where the interaction potential is given by

V • — — —  + —  ' - + — —  . (5.4.2)
"’I "’12 "’13

The additional increment arises from,the use of approximate

target wave functions and is given by the expression

ik^.r„ ik,.r
= /3<4fXl2)e ®[Hgg - E^] 4^(23) e ^ . (5.4.3)

The atomic Hamiltonian H^^ is given in an obvious notation as
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H.j = - + 7.2) - I :  - f :  + • (5.4.4)
1 3 1]

When the 'post' interaction potential is used, one derives, following 
a very similar procedure to Bell et al. (1966), the T-matrix element in the 
form

— , -F *— q • • r , r \
Tff = /3«p^(12)e *i(23)e " \  (5.4.5)

The interaction potential is given by

= + ^  + (2.3.1)
3 U 3  ^23

and the increment is found to be

C-F) ik. "2 ik^.r
= /3<(j)̂ (23)e " " V  *f(12)e ^ >. (5.4.6)

A partial wave reduction of the expressions for T^^ appearing in 

equations (5.4.1) and (5.4.5) is straightforward and consequently will not 

be reproduced here. Apart from the term 6T̂ .̂, the difference between the 

’post’ and ’prior’ expressions occurs via the structure of certain orthogonality 

integrals, which arise only in consideration of the incoming s-wave in 

POLORS and also in consideration of the incoming p-wave in POLORP. The 

accuracy in the computation of the radial integrals was checked at various 

energies by using an initial mesh size of 0.002, 0.004 and 0.006. Between 

5-and 6-figure agreement was obtained in each case. Results were also 

computed using variationally determined energy eigenvalues of Bell et al.

(1966) rather than the experimental values tabulated by Martin (1960). Total
1 3  1 3cross sections for 1 S -x 2 S and 1 S -x 2 P excitation in helium computed

from expression (5.4.1) and using either experimental or theoretical atomic

energy levels are tabulated in tables 3 and 4 and compared with the results

of Bell et al. (1956). The agreement between the present values obtained

using theoretical energies and those of Bell et al. is seen to be most

satisfactory.



118

The expression (5.4.5) was also employed to obtain cross sections using

the post interaction potential. The excited state wave function was chosen

to be either that of Morse et al. (1935) as in the above calculations or that

of Cohen and McEachran (see Appendix A for details) and results compared

with those of similar calculations based on the prior interaction formulation ,

(5.4.1). It was found that, for 2 S excitation, the post-prior discrepancy

vanished (cf. §1.2 for an earlier discussion of the post-prior discrepancy).

Hence, provided the atomic wave functions are not assumed to be exact (which

would result in the disappearance of the extra term 6T.^ in (5.4.1) and

(5.4.5)), there is no difference between calculations using a formulation

based on either the post (V^) or prior (V^) interaction potential terms.

A comparison is given in table 5 between total cross sections for describing
3excitation of the 2 S level when computed using (5.4.1) and (5.4.5) with 

ÔT.^ set to zero. The results using the full expression are also tabulated

to offer further comparison. Such a result was not found in the case of
1 31 S -X 2 P transitions.

Differential cross section results are given in figures 3 and 4 for 
3 3excitation to the 2 S and 2 P levels respectively of helium at impact

energies of 29.6, 40.1 and 55.5 eV using the prior expression (5.4.1)
(i)without the additional term 6T^^ . Here, the one parameter Hylleraas

wave function (Hylleraas, 1929) was adopted to represent the ground (l^S)

state and for the excited levels, the wave functions of Veselov et al. (1961)
3 3for the 2 S state and of Eckart (1930) for the 2 P state. The results

may then be compared with those published by Steelhammer and Lipsky (1970)

and quoted by Thomas et al. (1974). Hence this provides an accurate check

on the programs for excitation to these levels.

Moreover, differential cross section results for excitation of the

1 S -X 2 S transition at an impact energy of 29.6 eVwere calculated from

the full expression (5.4.1). In these calculations, two different wave

functions were used for the excited state, namely the simple Hartree-Fock
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function of Morse et al. (1935) and that of Cohen and McEachran described 

in Appendix A. The results are plotted in figure 5 and are observed to agree 
very closely.
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CHAPTER 6 

RESULTS

§6.1 Excitation of H(ls -x 2s, 2p, 2s + 2p)

This section will essentially be concerned with a study of the results 

obtained from including exchange-polarization effects and also of the process 

of unitarization (to be outlined below) on the differential cross sections 

for the collision process

e + H(ls) -X e + H(2s,2p,2s + 2p)

Differential cross section data at pre-selected angles and impact energies 

are presented in tables 6 - 9  and compared graphically, where possible, 

with theory and absolute experimental measurement in figures 6 - 9 .

Unitarization

For collisions which conserve the number of particles involved, such as 

considered here, the scattering or S-Matrix possesses the property of 

unitarity. However, theoretical models do not always yield a unitary 

S-matrix. The process of unitarization, introduced by Seaton (1961) 

and subsequently applied by Lawson et al. (1961) and Somerville (1963) to 

electron-hydrogen collisions, is designed to produce this property in the 

S-matrix. McDowell and coworkers have also developed the method and applied 

it to their results obtained in the DWPO I and DWPO II models where it 

produced a substantial improvement.
Briefly, one writes the T-matrix T in terms of the S-matrix S_ 

according to
T = 1 - £  (6.1.1)

with 1 the unit matrix. S can be defined in terms of a real symmetric 

matrix R (often referred to as the reactance matrix) such that
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1 + iR
S = ï ^  (5.1.2)

which preserves the unitarity of £. From (6.1.1), T is then written 
in terms of R as

- 2iR
l  = (6.1.3)

If, following Lawson et al. (1961), one now assumes that |r | «  1, which 

is valid provided the interactions are weak, a first approximation to T 
is given by

t (°) = - 2iR . (6.1.4)

Substituting (6.1.4)into (6.1.3), another approximation is obtained for T_:

(1) ^
-  7 7 7 ^ -

By inserting (6.1.5) for £  in (6.1.1) and using (6.1.4) one sees that

£  is unitary according to definition (6.1.2). The idea then is to substitute

for T^^^ into (6.1.5) and compute T^^^ and to subsequently compute cross 

sections using T^^^ rather than T^^ \  Results obtained from T^^^ will 

be specifically referred to as unitarized, otherwise they may be assumed 

to be non-unitarized.

In computing T^^\ the elements T̂ ĵ and T^^ (that is the elements 

of the first row and, from symmetry consideration, the elements of the first 

column) are obtained with appropriate phase in the DWPO approximation and 

the remaining elements in the Born approximation. The relevant Born integrals 

have been discussed by Kingston et al. (1976) who employ the unitarized Bom 

approximation of Lawson et al. (1961) to compute the higher order partial waves 

in their treatment of electron impact excitation of the n = 2 states of 

atomic hydrogen.
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H (Is 2s) Transitions

Differential cross sections computed in the DWPO III model at impact 

energies of 50 and 100 eV are compared in figure 6 with the corresponding 

results in the DWPO I and DWPO II models published by McDowell et al. (1975b).

The effect of allowing explicitly for target distortion enhances the forward 

peak in both cases compared to the DWPO I results. For scattering angles less 

than 50°, the DWPO II and DVfPO III models yield similar results whereas 

for angles above 50°, the inclusion of exchange-polarization terms produces 
an increase in the cross section.

Table 6 presents unitarized and non-unitarized results for both these 

energies. On comparing columns (i) and (ii) in each case, the magnitude . 

of the results is seen to vary considerably, by as much as a factor of 3.

It is noted in each case that unitarization reduces the total (integral) 

cross section.

H(ls ->• 2p) Transitions

Differential cross section results for excitation of the 2p state 

are presented in table 7 and figure 7 at incident energies of 50 and 100 eV.

On comparing with the DWPO I and DWPO II results of McDowell et al. (1975b), 

the explicit inclusion of target distortion in the T-matrix element is seen 

to slightly reduce the cross section in the forward direction. The predictions 

of DWPO II and DWPO III again coincide for smaller scattering angles (c.f.

Is 2s transitions above) as expected since exchange-effects are relatively 

less important over this angular range. Contributions from exchange however 

begin to dominate for larger angles; one sees that the inclusion of exchange- 

polarization effects increases the cross section for angles above 100 as compared 

to the DWPO I and DWPO II results which do not allow for such effects. This 

was also the case for Is ->■ 2s transitions as shown in figure 6.
From table 7, a comparison may be made between the unitarized and non­

unit arized results for each energy. Again, one sees that the magnitudes
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much as a factor of 3 and that unitarization lowers the integral 
cross sections. ,

H(ls ->• (2s + 2p)) Transitions

Total differential cross sections for excitation to the n = 2 level 

have been computed in the DWPO III model at a number of incident energies.

The results, unitarized and non-unitarized, are given in tables 8 and 9. In 

figure 8, a comparison of the non-unitarized results is made with the absolute 

experimental data of Williams (1976) for impact energies of 1.02, 1.21 and

1.44 Rydbergs. Similarly, results at higher impact energies of 54.4 eV 

(=4 Ryd.), and 100 eV are illustrated in figure 9 with the absolute 

measurements of Williams and Willis (1975) and with the results of other 
theoretical methods.

Concerning the lower energies, essentially lying just above the ionization 

threshold, the agreement with experiment is considered highly satisfactory, 

particularly at 1.21 Ryd. Also in figure 8, the individual 2s and 2p 

contributions have been plotted. It is evident that in this model the 

dominant contribution to the n = 2 total differential cross section 

arises at all angles from excitation to the 2p state, especially in the 

forward direction. Moreover, Callaway et al. (1976) have considered 

excitation of the n = 2 level at these energies using a hybrid method 

and obtain even better agreement with experiment. Callaway et al. essentially 

combine the distorted wave polarized orbital approximation (without 

exchange-polarization) with a close-coupling pseudostate approach. The 

pseudostate expansion is employed for the lower order partial waves (O^L ^  3) 

and the DWPO approximation for the higher order partial waves. The method 

is further described in the earlier paper by Callaway et al. (1975). Their 

results have not been displayed in figure 8 but referring to the later paper, 

one sees that the individual contribution from the 2s and 2p states are 

basically similar to those obtained in the DWPO III model for angles less
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than 90°. However, for angles above 90°, the hybrid method predicts a 

larger 2s and smaller 2p contribution than the DV/PO III model. Overall 

the method is seen to yield a total result lying closer to the experimental 

points than that of the DV7P0 III model.

A comparison between the unitarized and non-unitarized data in table 

8 shows that generally the process of unitarization produces results which 

detract from the already good agreement obtained with the DWPO III model and 

consequently are not illustrated in figure 8. However, unitarization improved 

the low energy results derived in the DWPO I and DWPO II models for 

excitation of alkali atoms (Kennedy, 1976),

Turning to the results at higher impact energies, these are compared 

in figure 9 with experiment and also with the theoretical treatments of 

Callaway et al. (1976) (figure 9(a) only) and of Kingston et al. (1976).

The latter method is similar to the former but rather than employ distorted

waves for the higher order partial waves, use is made of the unitarized

Born approximation (c.f. the earlier discussion of this section on unitarization).

At an incident energy of 54.4 eV, equivalently 4 Rydbergs, the theories agree

reasonably well with each other and with experiment for scattering angles

less than 30° except in the forward direction where the hybrid method of

Callaway et al. produces a more enhanced peak. For angles above 30°, the

DWPO III model tends to underestimate the experimental points though,

in common with the approach of Callaway et al., yields a pronounced increase

in the backward direction. Unitarization did not improve the situation.

Generally, the models of Kingston et al. (1976) and of Callaway et al. (1976) 

give good agreement over the angular region for which there are experimental 

measurements at this energy.

Comparison with experiment at 100 eV between the DWPO III model and the 

calculation of Kingston et al. (1976) again showsgood agreement for angles 

less than 30°. However, for larger angles the DWPO III results are too 

small whereas those of Kingston et al. remain satisfactory up to about 80°.

The DWPO III cross section exhibits as at 54.4 eV, an increase in the 

backward direction.
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Moreover, the unitarization procedure• yields D W O  III results in better 

agreement with experiment than the corresponding non-unitarized results and 

consequently these have been plotted in figure 9(b). This improvement 

is hardly surprising since at higher energies the interaction potential becomes 

relatively weaker due to the shorter passage time of the scattered electron 

and hence the approximations made in connection with the process of unitarization 

(see in particular equation (6.1.4)) are more likely to be justified. Thus, 

the process of unitarization, while not producing improvement in DV7P0 III 

results at lower energies, does improve the results at higher energies.

Summary

As should be expected, the effects of exchange-polarization are found 

to be important at low electron impact energies in determining accurate 

differential cross sections. At higher energies, the DWPO III model provides 

accurate results for small scattering angles, due to the improved treatment 

of polarization, but tends to underestimate the differential cross sections 

for larger angles. The model does produce an increase in the backward 

cross section though not sufficient to give the accuracy of more sophisticated 

methods.

The process of unitarization outlined in this section begins to improve 

DWPO III results at impact energies above 100 eV, but has a contrary effect 

at the lower energies. This is not unexpected since at low energies where the 

non-unitarized results are already accurate, the assumption of weak coupling 

is invalid,

§6.2 Excitation of He(l^S -*■ n^S)

Total and differential cross sections have been computed for the inelastic 

processes

e + He(l^S) ->e+ He(nS)
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in the DVrPO I and D W O  II models for n = 2,3,4,5 and in the DV/PO III model 

for n = 2. Total cross sections obtained in the DV7P0 I and DWPO II models 

are presented in tabular form in table 10 and compared graphically with absolute 

experiment and other theoretical models over the energy range from threshold to 

about 400 eV in figure 10. Differential cross sections at pre-selected impact 

energies are given in tables 11 - 15 and similarly compared with other results 
in figures 11-15.

Total Cross Sections

Concerning the DWPO approximation to the total cross sections illustrated 

in figure 10, the excited state is taken to be described in each case by the 

wave function due to Cohen and McEachran - see Appendix A for details.

2^S Results for excitation of this state have been published by a number 

of experimental and theoretical groups and are compared in figure 10(a). At 

the higher energies there is generally good agreement between the different 

theoretical results and the absolute experimental measurements of Vriens et al.

(1968); not shown are the measurements of Miller (1956) which agree closely 

with those of Vriens et al. Only the DWPO I results have been plotted in this 

figure ; the DWPO II results have been omitted. For energies above 200 eV there

is close agreement with the Coulomb-projected B o m  calculations of Hidalgo

and Geltman (1972) which in fact neglect exchange and polarization effects. It

follows therefore that this approximation is only expected to be valid at 

higher energies.

Moving to lower energies the DVJPO I and particularly the DWPO II results 

(see table 10) remain lower than those of other models, with the exception 

of the results calculated in the eikonal distorted wave method (Joachain and 

Vanderpoorten, 1974a) which are consistent with the DV7P0 I results down to 

about 70 eV. It is noted that, apart from the lower energy data of Rice 

et al. (1972), the DWPO results are consistent with experimental measurements 

down to near threshold, and are the only results to agree with the measurements
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of Brongersma et al. (1972) at very low energies. ' The other experimental 

points are due to Hall et al. (1973) and to Trajmar (1973) whose point 

at 40.1 eV coincides with that of Hall et al. at 39.2 eV. Theoretically, 

the second-order optical potential results of Winters (1974), computed in a 

partial wave treatment of the method, overestimate the experimental values 

whereas the many-body calculation of Thomas et al. (1974) and the multichannel 

eikonal treatment of Flannery and McCann (1975) are consistent with the 

experimental points of Rice et al. (1972) at 55.5 eV and Hall et al. (1973) 

at 48.2 and 39.2 e V: however, in the former case the method not unexpectedly 

fails for energies below 40 eV.

3^S Total cross sections, computed in the DWPO I and DWPO II models, 

for excitation of this state, are displayed in figure 10(b) and compared 

with absolute experimental measurement and with the results from a ten-channel 

eikonal treatment (Flannery and McCann, 1975). A theoretical calculation has 

also been carried out by Bransden and Issa (1975) at energies above 200 eV.

They use a nine-state impact parameter version of the second-order optical 

potential method and obtain results in very close agreement with the D'tfPO I 

model; consequently their results are omitted for clarity.

In the DWPO approximation, the overall profile including the shoulder 

between 60 and 100 eV, a feature which,while discernible in the previous 

case (c.f. figure 10(a)), is more prominent in the present work. It is 

observed that the effect of including target distortion explicitly in the 

T-matrix is to reduce the cross section by at most 10%. The best agreement 

with experiment is obtained with the measurements of Moustafa Moussa et al.

(1969), those of St. John et al. (1964) tending to lie somewhat higher.

At lower energies, reasonable agreement is obtained with the recent experimental 

point of Chutjian and Thomas (1975) at 39.7 eV but not at the lower energy 

of 29.2 eV.
The multichannel eikonal curve agrees closely with the DWPO II curve 

down to about 60 eV and then decreases, and exhibits quite a different behaviour 

relative to the DWPO approximation compared to that for 1 S 2 S transitions.
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Calculations in the DWPO I and DWPO II models are illustrated, 

together with experimental results, in figure 10(c); a brief discussion 

of the experimental techniques, with particular emphasis on normalization 

procedures, is given by Scott and McDowell (1975b). Again it is observed 

that the main feature of the DV7P0 II model is to reduce the overall curve 

given by the DWPO I model, while at the same time preserving the shape, 

particularly the shoulder lying here between 50 an 150 eV.

Experimental evidence for such a shaulder is offered by the measurements 

of Moustafa Moussa et al. (1969) which, together with the measurement of 

Showalter and Kay (1975) at 200 eV, lie in closest accord with the theory.

For energies above 50 eV, the results of van Raan et al. (1971) and of 

Pochat et al. (1973) lie some 20% higher than the DWPO results; at energies 

below this value both groups predict a maximum near 40 eV. However, the DWPO 

approximation predicts a peak value closer to 30 eV and of greater magnitude. 

The experimental data of St. John et al. (1964) indicates a peak value of 

comparable magnitude to the DWPO result but at 40 eV. Generally though, 

their measurements are in poor agreement and appear considerably too large

compared to later measurements.
1 1 1  5 S Total cross section results for the transition 1 S ->• 5 S are

given in figure 10(d) and compared with the absolute data provided by the

groups referred to in the above discussion of 4^8 results. Once again,

the behaviour of the DWPO I and DWPO II curves resembles that for the previous

cases, the shoulder becoming more evident between 50 and 150 eV and the peak

value attained once more at 30 eV.
The existence of a shoulder is again supported by the measurements

of Moustafa Moussa et al. (1969); however, their results generally tend to

lie below the DWPO curves. Reasonable agreement is obtained in the DWPO

approximation with the data of St. John et al. (1964),y an Raan et al. (1971)

and Pochat et al. (1973) for energies above 150 eV. The recent measurement

at 200 eV due to Showalter and Kay (1975) appears low. Below 150 eV, the

results of van Raan et al. (1971) and of Pochat et al. (1973) agree well.
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showing a similar variation with energy to that found in the 4^S results.

Their measurements lie above the DWPO results down to 40 eV at which point 

the former group seem to predict a maximum whereas the latter group seem 
to indicate the peak closer to 35 eV.

Coupled with the measurements of St. John et al. (1964), which seem 

high for energies below 150 eV, there remains some discrepancy between 

experimental results themselves,and with theory.

Summary

A comparison of total cross section results obtained in the DWPO I and 

DV7P0 II models for each state shows that the general shape of the curves remains 

unchanged. The effect of including target distortion explicitly in the T-matrix, 

or equivalently coupling the S and P states, does however make itself 

apparent over the energy range lying between the peak value and about 400 eV 

whereby the total cross section is lowered slight by some 5 - 10%. At 400 eV 

the curves essentially coincide for each case. The DWPO approximation 

introduces a shoulder into the cross section between roughly 50 and 150 eV 

which becomes progressively more evident the higher the state, being most 

evident for excitation of the 5^S state.

Agreement with absolute experiment and, where available, with other 

theory varies, being least comparable at lower impact energies. Generally however, 

the overall agreement of the DWPO results with experiment is good.

Differential Cross Sections

Calculations in the DWPO I and DWPO II models utilized the excited state 

wave function of Cohen and McEachran (discussed in Appendix A); the results 

are given in tabular form (tables 11 and 13 - 15) and graphically in figures 

11 and 13 - 15 where they are compared with absolute experiment and other 

theoretical data. Further calculations for excitation to the 2 S state were 

performed in the DWPO I, II and III models using the simpler excited state
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wave function of Byron and Joachain (see Appendix A). The results are 

tabulated in tables 11 and 12 and compared with absolute experimental 
measurements in figure 12.

2^S Discussion for describing excitation of this state will first 

centre on the DWPO I and DWPO II results which are presented in table 11 at 

five incident energies. It is noted that use of either the wave function 

due to Cohen and McEachran or that due to Byron and Joachain makes no appreciable 

difference to the DWPO calculations, results differing by at most 10%. DWPO I 

results computed using the former wave function are plotted in figure 11.

At 29,5 eV, only the experimental points of Trajmar (1973) have been 

included in figure 11(a)those of Hall et al. (1973), obtained independently 

at 29.2 eV and by a different technique, lie in close agreement and are 

consequently omitted for clarity. The DWPO result agrees well in the forward 

direction with the many-body treatment of Thomas et al. (1974) and with the 

Glauber approximation (Yates and Tenney, 1972). Experimentally, however, 

tha forward peak is considerably larger and is more accurately reproduced by 

the distorted wave calculation of Shelton et al. (1973). Each of the 

theoretical models reveals a minimum in the angular vicinity of that observed 

experimentally at 50° but differ over the magnitude, the many-body approach 

predicting a very deep structure. For large scattering angles, the many-body 

approach produces good agreement with experiment and coincides with the 

DWPO results in the backward direction. The Glauber model not unexpectedly 

fails at such angles due to a lack of exchange considerations. On the other 

hand, the distorted wave calculation of Shelton et al. (1973) continues 

to remain above the experimentalresults.

In figure 11(b), the situation illustrated for 40.1 eV is similar to 

that at 29.6 eV; again only the experimental measurements of Trajmar (1973) 

are plotted, those of Hall et al. (1973) at 39.7 eV being in very close agreement. 

The DWPO curve and that of Thomas et al. (1974) agree well over the whole 

angular range but fall below experiment in the forward and backward directions.

The Glauber approximation, while producing similar agreement at small angles.



131

fails completely for angles greater than 70°. Each of these theories 

predicts a minimum of comparable depth; the calculation of Shelton et al.

(1973) yields results lying above both experiment and other theory., especially 

in the magnitude of the dip. None, however, is able to reproduce the smaller 
magnitude observed by experiment.

Also shown are the ten-channel eikonal results of Flannery and McCann 

(1975). For angles less than 30° their results agree accurately with the 

experimentally observed forward peak. This is to be expected since their 

method takes into account the main effects contributing to small-angle 

scattering such as intermediate and long-range couplings between each channel, 

static distortion in each channel and polarization of each target state 

represented in the multichannel eikonal expansion. Exchange, however, is 

only included implicitly through the very nature of the expansion and is 

therefore probably one of the main reasons why the theory fails completely 

at large angles. Their results are not expected to be accurate for angles 

much above 30°.

For an energy of 81.63 eV, the DWPO I results and other theoretical 

results are compared in figure 11(c) with the experimental data published by 

Rice et al. (1972) and by Opal and Beaty (1972) (at 82 eV). In the forward 

direction the majority of theoretical treatments, including the DWPO I model, 

predict a similar peak which is smaller than that obtained in the ten-channel 

eikonal method (at 80 eV) of Flannery and McCann (1975) and in the second-order 

diagonalization method of Baye and Heenen (1974) (not shown). This latter 

method is essentially a high energy approximation. However, the results of 

Baye and Heenan compare well with experiment out to about 60° while those of 

Flannery and McCann rapidly fall away at larger angles. It is observed that 

the DWPO results, the calculations of Thomas et al. (1974), the second-order 

optical potential distorted wave results of Bransden and Winters (1975) and 

the Coulomb-projected Born results of Hidalgo and Geltman (1972) begin to 

diverge from each other for angles above 30 , the best overall agreement with 

experiment being maintained by the work of Thomas et al. followed by that of
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Bransden and Winters ; both these methods employ distorted waves calculated 

in the field of the final state. However, the measurements of Opal and 

Beaty (1972) afford evidence for a slight minimum and shoulder for angles 

greater than 30°. Similar structure is predicted by the DWPO approximation, 

though with a depth up to an order of magnitude smaller than that observed 

by Opal and Beaty, and to a much lesser extent by the many-body approach 

but with a comparable magnitude to the experimental points. The Coulomb- 

projected Born calculation, which omits exchange and distortion altogether, 

fails to predict any structure and falls off rapidly with increasing scattering 
angle.

Results at 100 eV are illustrated in figure 11(d). It is observed 

that the DWPO approximation exhibits a similar cross section to that at 81.63 eV, 

the dip structure being in the present case relatively less deep. The dip 

and shoulder structure is observed to have a higher magnitude in the experiment 

of Suzuki and Takayanagi (1973) and is also predicted by the Second Born

calculations of Buckley and Walters (1975) which however are not shown. The

second-order diagonalization method of B ^ e  and Heenen (1974) again produces 

a more enhanced peak in the forward direction and remains in good agreement

with experiment for smaller angles. The results of Bransden and Winters

(1975) and of Hidalgo and Geltman (1972) are in close accord with the DWPO 

I results out to 40°, whereafter the second-order optical potential model 

seems to favour the experimental points of Crooks (1972) which do not predict 

the dip and shoulder structure mentioned earlier. For larger scattering angles, 

the Coulomb-projected B o m  results fall away rapidly as in figure 11(c) 

at 81.63 eV whereas the DWPO results lie about 50 - 70% below the measurements 

of Suzuki and Takayanagi (1973). It is noted again that the model of Bransden 

and Winters (1975), which allows for polarization effects in the initial 

channel and uses a distorted wave formalism to account for final channel 

scattering, produces results which lie above those of the other theoretical 

treatments for angles greater than 40°. These other methods do not incorporate 

final channel distortion effects.
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The method of Bransden and Winters (1975), however, provides the best 

overall agreement with experiment, indicating that such effects probably 
become important for large-angle scattering.

Theoretical and experimental cross sections at 200 eV are compared in 

figure 11(e). The experimental measurements shown are due to: Opal and 

Beaty (1972), Suzuki and Takayanagi (1973) and Dillon and Lassettre (1975) 

and form a consistent description of the cross section for the angular range 

up to 150°. For angles between 5° and 30°, the different theoretical 

treatments are in close accord. Below 5°, the Coulomb-projected Born results 

(Hidalgo and Geltman, 1972) coincide with those of the DWPO I model whereas 

the Eikonal Born Series calculation of Byron and Joachain (1975), together 

with the second-order diagonalization procedure (Baye and Heenen, 1974) and the 

Second Born calculations of Buckley and Walters (1975)(not shown), predict a 

sharper peak. Comparable magnitude in the forward direction is, however, 

obtained by the DWPO II model (see table 11(e)). Above 30°, each of the 

theories, except the Eikonal Born Series, falls below experiment. The latter, 

which allows for long-range and exchange effects, remains in essentially 

complete agreement with the experimental data for all angles up to 150°.

Discussion will now centre on differential cross sections obtained in 

the DWPO III model employing the excited state wave function of Byron and 

Joachain (see Appendix A). The results are tabulated in table 12 and compared 

with the corresponding results from the DWPO I and.DWPO II models (see table 11), 

together with the experimental measurements referred to above, in figure 12. 

Rather than make individual comments on each energy, the results will be 

taken together. It should be noted that the measurements of Hall et al.

(1973) at 29.2 eV and 39.2 eV have been included in figure 12.

As in the case of hydrogen, when deriving the distorted waves u^(k^,r) 

from equation (4.2.1), it is found that at most only those for £ = 0 - 4 

differ appreciably from the corresponding solutions obtained in the 

adiabatic-exchange approximation, equation (3.2.1). This is to be expected 

since exchange-polarization effects become less important for larger Ü
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(or in other words for larger impact parameters). For subsequent Z

the appropriate adiabatic-exchange solutions are employed. The same remarks

of course will apply to excitation of the 2^S state, to be discussed in §5.3.

Turning to figure 12, it is noted that the forward peak produced by 

including distortion effects explicitly in the T-matrix (DWPO II and DVJPG III) 

increases with increasing energy compared with the DWPO I result. For 

energies above 40.1 eV, the DWPO II and DWPO III results virtually coincide 

for angles less than 40°, in accord with the expectation that for this 

process exchange becomes relatively less important at small angles the higher 

the impact energy. At 200 eV, the forward cross section compares well 

with that produced by the Eikonal Born Series illustrated in figure 11(e).

However, inclusion of exchange-polarization effects appears to generally 

make little improvement in the cross sections. Indeed the backward cross 

section is lowered in each case, contrary to the result noted in excitation 

of atomic hydrogen (§6.1). This failure of the DWPO III model indicates that 

other physical effects, even at the lower energies, are more important than 

exchange-polarization. Comparison with those calculations in figure 11 

which allow for distortion effects in the final channel seems to suggest 

that final channel distortion is more important than exchange-polarization 

when computing large-angle differential cross sections for excitation of 

He(2^S).

3^S Results computed in the DWPO I and DV/PO II models for this state 

are tabulated in table 13 and DWPO I results displayed in figure 13 at four 

incident energies. The calculations used the excited state wave function of 

Cohen and McEachran (see Appendix A) in every case. The results of the two 

models yield curves of generally the same shape and exhibit a similar trend 

to that for l^S 2^S transitions, namely that DWPO II produces an increasing 

forward enhancement over the DWPO I result with increasing energy whereas 

for large-angle scattering produces smaller results than DWPO I.

Experimental and theoretical results are not so numerous in this case as 

they are for excitation of the 2^S state. The only absolute experimental
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measurements known are those of Chutjian and Thomas (1975) at 29.2 and 39.7 eV; 

these authors also publish the results of a many-body calculation at these 
energies.

At 29.2 eV, one sees from figure 13(a) that the D W O  I and many-body 

theory results are in excellent agreement in the forward and backward 

directions and predict a similar angular position of the minimum, though 

somewhat shifted from that observed experimentally. Both theories, however, 

disagree considerably over the depth, DWPO producing a shallow dip and many- 

body theory a much deeper result. Neither theory reproduces the structure 

observed between 50° and 80°. Agreement with experiment at small angles is 

poor but improves at large angles. At such a close energy to threshold 

it may well be necessary to consider the effects of neighbouring states such 
as 3^P and 3^D.

The situation improves at 39.7 eV, illustrated in figure 13(b), 

particularly between the theoretical curves which now agree quite well over 

the full angular range. The overall agreement with experiment is also improved, 

the angular position of the minimum being correctly predicted at 60°, though 

not the full depth. There also appears to be some structure observed at 110° 

which neither theory reproduces. The forward cross section is again 

underestimated by both models.

Moving to higher energies, figure 13(c) compares at 100 eV the theoretical 

results of the DWPO I model with those of a ten-channel eikonal calculation 

(Flannery and McCann, 1975). No experimental measurements were available 

for this impact energy. Essentially, the behaviour of the two theories at 

this energy resembles that at 81.63 and 100 eV for excitation of the 2^S 

state. The DWPO approximation produces the characteristic dip and shoulder 

structure whereas the multichannel calculation yields a larger peak value in 

the forward direction together with some structure at 7 , interpreted as 

arising from intermediate couplings with the n ?q^+3_ states. Both theories 

differ widely in the backward direction, DWPO results being an order of 

magnitude higher than the multichannel eikonal results.
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For 200 eV, a similar comparison to that at 100 eV is offered in figure 

13(d). Good agreement is shown for small scattering angles (less than 30°) 

apart from the characteristic forward enhancement produced by the ten-channel 

eikonal treatment. At larger angles, the two methods again diverge, DV/PO I 

results being greater by a factor of 6. Presumably this is due to the distorted 

wave polarized orbital approximation taking account of exchange whereas the 

method of Flannery and McCann (1975) takes no explicit account of such effects.

4^S Tabular results, computed at four incident energies in the DWPO I 

and DWPO II models, are presented over the whole angular range in table 14.

The small-angle (0° - 20°) results are plotted in figure 14 where they are 

compared with the absolute experimental measurements of Pochat (1973) and 

at higher energies with those of the First B o m  approximation, deduced from 

.the accurate generalized oscillator strengths published by Bell et al. (1969).

At energies of 50 and 60 eV, the DWPO II results show a slight 

improvement over the DWPO I results, particularly in the latter case.

Concerning an impact energy of 100 eV, the forward enhancement produced 

by the DWPO II model continues to increase relative to the DWPO I result 

and is in good agreement with Pochat ̂ s measurements for angles greater than 

10°. This enhancement is increased further at 200 eV where essentially the 

DWPO II model provides results in complete agreement with the experimental 

data at each of these angles. On the other hand, the DWPO I model and First 

Born approximation both fail in the forward direction at these energies. It 

is also noted from figure 14(b), that the DWPO I results approach those 

of the First Born approximation; this is to be expected since the latter 

approximation is the high energy limit of the DWPO I model (McDowell et al. 

1975a).
5^S DWPO I and DWPO II results are tabulated for angles up to 180° 

in table 15 and illustrated over the angular range 0 - 20 in figure 15.

The experimental points are again the absolute data of Pochat (1973), and 

at the two higher impact energies a comparison is also provided with the 

First Born approximation, deduced, as in the 4 S case, from the accurate 
generalized oscillator strengths tabulated by Bell et al. (1969).
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The situation presented in figure 15 resembles closely that described 

previously in connection with the 4^S state. For the lower energies of 50 

and 60 eV, the DWPO II model provides a small improvement on the DV7P0 I result, 

producing reasonable agreement with experiment for angles, above 15°. Turning 

to an impact energy of 100 eV, the DWPO II model gives good agreement with 

experiment over the latter half of the angular range, continuing to produce 

an increasing forward peak relative to the DV/PO I model. By 200 eV, the 

agreement between experiment and the enhancement of the cross section due 

to the DWPO II model is basically complete. Again it is observed that the 

First Born approximation, plotted at 100 and 200 eV, fails to give a 

satisfactory account of small-angle scattering. As in figure 14(b), the 

DWPO I results are seen to approach the First B o m  results at higher energies.

Summary

From the differential cross section results obtained for excitation of the 

2^8 and 3^8 states, one sees that at lower energies, the DWPO approximation 

reproduces the shape of the experimentally determined cross sections reasonably 

well, especially at energies close to 40 eV. The position of the minimum is 

correctly reproduced but, in common with other theoretical methods, the depth is 

not always accurately predicted. The magnitude of the forward cross section is 

relatively small compared with experiment at these energies.

At higher energies, the DWPO approximation produces results in better 

agreement with experiment for small angles (less than 30°), particularly when 

explicit account is taken of target distortion. For angles above 30°, the method 

predicts a shape comparable to that observed in experiment but with a smaller 

magnitude; this is particularly evident at 81.63 and 100 eV. Results in the DWPO II 

model for these angles are lower than those in the DWPO I model. 8urprisingly, 

results in the DWPO III model are still lower, whereas for excitation of hydrogei, 

the inclusion of exchange-polarization effects increased the backward cross section. 

Generally DWPO III results for helium are not significantly different from those 

obtained in the
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DWPO II model, particularly at lower energies. However, it should be 

noted that models which allow for distortion effects in the final channel 

yield results of a larger magnitude, similar to that measured experimentally.

Comparison of DWPO I and DVfPO II results for excitation of the 4^S 

and 5^S states at angles up to 20° shows that by allowing explicitly for 

target distortion, progressively better agreement is obtained with experiment 

as the impact energy increases. By 200 eV, the DWPO II model yields results 

which lie basically in complete agreement with experiment; models which 

neglect target distortion, such as the First Born approximation, fail to 

provide a satisfactory account of small-angle scattering at this energy. 

Consequently explicit allowance for coupling between S and P states 

(as in the DWPO II model) is seen to be essential for a good description 

of small-angle scattering.

§6.3 Excitation of He(l^S -y 2^S)

Results for the total and differential cross sections have been computed 

in the DWPO I and DWPO III models for the excitation process

e + He(l^S) 4- e + He(2^S) .

Provided spin-dependent interactions are omitted (which is usually the case) 

this process can only occur via charge-exchange and consequently furnishes 

an exacting test of the theoretical treatment of exchange.

The total cross section, obtained in the DWPO I model, is tabulated 

in table 16 and is illustrated in figure 16 together with other theoretical 

predictions and absolute experimental data over the energy range from 

threshold to 200 eV. Differential cross sections at five impact energies are 

presented in the DWPO I model in table 17 and figure 17 and also in the DV7P0 III 

model in table 18 and figure 18.



139

Total Cross Section

This has been computed using the excited state wave function of Cohen 

and McEachran (see Appendix A for details) in the DWPO I model and is 

compared in figure 16 with the absolute experimental measurements supplied by 

four independent groups. Not shown in the figure are the measurements of 

Hall et al. (1973), obtained for energies less than 50 eV, and which agree 

closely with those of Trajmar (1973) at 29.6 and 40.1 eV and with that of 

Crooks et al. (1972) at 50 eV. Together with the low energy data of Brongersma 

et al. (1972) and the values at higher energies of Vriens et al.(1968), the 

experimental data are noted to yield a consistent result over the whole 

energy range. An interesting feature is the structure observed by Crooks 

et al. (1972) at 50 eV, due to a broad p-wave resonance which effects their 

differential cross section results by more than three orders of magnitude.

Figure 16 also shows the theoretical results obtained in the many-body 

approach (Thomas et al. 1974) and in the partial wave treatment of the 

second-order optical potential model (Winters, 1974). It is noted that the

slopes of the theoretical curves are similar and that for energies above 80 eV,

the DWPO I and second-order optical potential results agree very well. However, 

below this energy their remains some discrepancy over the magnitude of the

total cross section, and in the case of the DWPO results, also over the shape.

A close-coupling calculation by Smith et al. (1973) (not illustrated) gives 

results a factor of 2.5 smaller than those of Winters (1974) — see however 

the comment by Seaton (1974). Generally, the theoretical results tend to 

lie above the experimental points, particularly at higher energies. The 

sudden dip in the DWPO I curve at 30 eV appears,on comparison of integral 

results in table 17, to be connected with the choice of excited state wave 

function.

Summary

For energies less than 50 eV, the DWPO approximation predicts a total 

cross section which is considerably inconsistent with other results, both
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experimental and theoretical. At energies.above 80 eV, the DWPO I and second- 

order optical potential results agree very closely but increasingly overestimate 

the size of the experimental measurements with increasing impact energy.

Differential Cross Sections

These have been computed at five impact energies ranging from 29.6 to 

200 eV and are illustrated in figures 17 and 18. In the case of the DWPO 

I model, results have been obtained using the wave function- of either Cohen 

and McEachran or Morse et al. for the excited state (see Appendix A) and 

are tabulated in table 17; figure 17 displays at each energy the results 

derived by using the Cohen and McEachran function. In table 18, results 

computed in the DWPO III model, employing the wave function of Morse et al., 

are presented and compared with the corresponding D W O  I results and with 

absolute experimental data in figure 18. Consideration will first be given 

to the DV7P0 I results (c.f. table 17 and figure 17).

At an impact energy of 29.6 eV, figure 17(a) shows DV/PO I results

obtained using either wave function for the excited state. Absolute

experimental results have been published by Trajmar (1973) and by Hall et al.

(1973) (at 29.2 eV); the latter, obtained independently and using a completely

different normalization procedure, agree significantly well with the former

and have subsequently been omitted. Comparison is also made with the many-

body method of Thomas et al. (1974) and the distorted wave calculation of

Shelton et al. (1973). Comparing the cross sections computed in the DWPO I

model, it is immediately obvious that for this transition, the model is
3sensitive to the choice of wave function for the 2 S state; results differ 

by as much as a factor of five. This sensitivity has been investigated and 

found to arise principally from the integral defined by equation (3.3.18), 

that is the overlap between R^^(r) and the s-wave u^(k^,r), and to a lesser 

extent from the integral J^^^(0,k^,k^), equation (3.3.12). It becomes 

most apparent in the magnitude of the first term of the partial wave
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sum (3.3.25); when computed using the Cohen and McEachran function, b”o
(c.f. equation (3.3.26b)) has a magnitude half that obtained using the wave 

function of Morse et al. However, when this same process is considered in 
the Born-Oppenheimer approximation. (using the full expression (5.4.5)), that 

is, neglecting distortion, the sensitivity vanishes as illustrated by figure 5.

In figure 17(a), the DWPO method predicts minima at similar positions 

to the experimental values at 45° and 115°, though underestimating the 

magnitudes by a substantial amount. In fact, renormalizing the DWPO I results 

by a factor of 10 produces very good agreement with experiment (Scott and 

McDowell, 1975a). The calculations of Shelton et al. (1973) and Thomas et al.

(1974) on the other hand predict the correct magnitude but disagree over the 

shape. These models, including the DV/PO I model, are essentially first-order 

calculations; a recent matrix-variational calculation (not shown) by Thomas 

and Nesbet (1974), designed to model a second-order many-body approach, yields 

far more encouraging results.

Figure 17(b) illustrates theoretical results at 40.1 eV and compares 

them with the corresponding absolute experimental measurements of Trajmar

(1973). Similar experimental results, obtained independently using different 

techniques, have been published by Hall et al. (1973) (referred to above) at 

39.7 eV and by Crooks et al. (1972) at 40 eV; both sets of results are in 

very close agreement with Trajmar*s measurements and have been omitted for 

clarity. Using the Cohen and McEachran wave function, the DWPO I model 

again predicts two minima, at 25° and 105°, which are also obtained using 

the simpler function of Morse et al. (c.f. table 17(a)). Experiment, however, 

predicts only a single minimum at 95° and while agreement is better than at

29,6 eV, the DWPO I results again considerably underestimate the forward 

and backward cross sections. Many-body theory gives good agreement at 

angles between 15° and 35° and, in common with the other distorted wave 

calculation (Shelton et al. 1973), produces a single minimum at 65°. Both 

calculations yield results of comparable magnitude with experiment in 

the forward and backward directions.
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By 81.63 eV, the forward peak produced in the DWPO I model at lower 

energies is seen to vanish and that the cross section suffers a sharp decrease 

at small angles, contrary to the absolute experimental data of Yagishita 

et al. (1976) given for 80 eV. This forward dip, referred to as an Ochkur 

dip, may be removed by a more sophisticated account of exchange; see for example 

HuQ (1974), Ochkur and Burkova (1975) and the summary at the end of this 

section. The second-order optical potential results of Bransden and Winters

(1975) show much better agreement with the observed data at these angles, though 

at larger angles, in common with those of the DWPO I model,bear little 

resemblance to the experimental measurements of either Opal and Beaty (1972)

(at 82 eV) or Yagishita et al. (1976). It is noted from table 17(b) 

that the sensitivity to the choice of atomic wave function observed in the 

DWPO I results for lower energies is beginning to diminish; this is 

because the s-wave no longer provides the dominant contribution to the 

scattering cross section, more terms contributing to the partial wave sum 

(3.3.25).

Moving to 100 eV (figure 17(d)), the DWPO I model exhibits a similar 

shape to that at 81,63 eV. The experimental data provided by Crooks (1972), 

Suzuki and Takayanagi (1973) and by Yagishita et al. (1976) reveal a very 

large increase again in the forward cross section. For larger angles, 

essentially above 30°, where the results of the two Japanese experiments 

virtually coincide (hence only the earlier points of Suzuki and Takayanagi 

are plotted), there is some confusion between the experimental values. 

Theoretically, the many-body calculation of Thomas et al. (1974) and the 

partial wave treatment of the second-order optical potential method (Bransden 

and Winters, 1975) predict comparable shapes to each other, including the 

structure between 30° and 40°, but differ in magnitude with increasing angle, 

the former producing results lying above the latter.

Finally, at 200 eV, the DWPO I model is compared in figure 17(e) 

with the absolute experimental measurements of a number of groups: Opal and 

Beaty (1972), Suzuki and Takayanagi (1973), Dillon (1975) and Yagishita
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et al. (1976). Again the DWPO approximation produces a sharp dip in the 

forward direction as in the previous cases at 81.63 and 100 eV. A more 

involved theoretical treatment (Ochkur and Burkova, 1975) using the Second 

Born approximation is however able to predict results in good agreement with 

experiment for small angles. Experimentally there is evidence for a 

certain degree of structure between 20° and 40°. For angles between 50° and 

75°, the DWPO approximation is in good agreement with the experimental 

measurements while for larger angles underestimates tte observed cross section. 

Inspection of table 17(e) shows that the sensitivity exhibited by the excited 

state to the choice of wave function has virtually disappeared.

Similar calculations in the DWPO III model are presented in table 18; 

in order to ease the computation, the excited state is described by the simpler 

wave function of Morse et al. (1935). The results are compared in figure 18 

with corresponding DV/PO I results from table 17 and also with the absolute 

experimental data referred to in connection with figure 17. As discussed in 

§'6.2 concerning DWPO III results for excitation of the 2^S state, only 

the first five distorted wave functions (viz. u^(k^,r), & = 0 - 4) are 

computed allowing for exchange-polarization effects— for higher &, the 

corresponding adiabatic-exchange solutions are employed.

At the lower energies (29.6 and 40.1 eV), the inclusion of exchange- 

polarization terms is noted to further reduce the peak in the forward 

direction, but otherwise increases the overall magnitude (particularly at

29.6 eV) of the DVÎPO I results while at the same time preserving the general 

shape of the curve for angles above 20°. The agreement on an absolute 

scale with the data given by Trajmar (1973) and Hall et al. (1973) remains 

however poor.

Considering the differential cross section at higher energies (81.63,

100 and 200 eV), the Ochkur dip is still prominent in the forward direction. 

For angles less than 90°, there is little difference between the two models 

in predicting the cross section. A significant feature, however, for larger 

angles is the enhancement produced by DWPO III, especially at 200 eV.
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One concludes therefore that such an increase in the backward direction 

is due to exchange-polarization effects alone. Despite this improvement, 
discrepancy with experiment continues to exist.

Summary

The results presented in this section indicate that theoretical 

predictions of differential cross sections for production of the 1^8 2^S

transition in helium by electron impact are less successful than for the 

l^S 4- n^s transitions studied in §6.2. Probably the best agreement 

with experiment is obtained by the distorted wave treatment of the second- 
order optical potential method.

At lower energies, the DWPO approximation yields a result too small 

compared with experiment while at higher energies, the overall magnitude 

is improved but fails to agree in shape with the experimental data. A degree 

of sensitivity to the excited state wave function is apparent, especially 
at lower impact energies.

The inclusion of exchange-polarization terms increases the overall 

magnitude at low energies by as much as a factor of 2 but is still unable 

to provide reasonable agreement with experiment. At higher energies, the 

DWPO approximation fails completely to predict the large increase in the 

differential cross section at small angles, whereas in the backward direction, 

allowance for exchange-polarization effects does produce a substantial 

increase, particularly at 200 eV. A similar increase has been observed in 

§5.1 concerning Is 4- 2s transitions in atomic hydrogen.

The DWPO approximation is essentially a theory which provides a first- 

order treatment for dealing with those transitions which can only occur via 

exchange processes whereas it provides a second-order treatment for those 

transitions which can also occur via direct means (as in §6.2). Hue (1974) 

has shown by using a limiting selection rule for exchange scattering at 

relatively high energies that where the orbital term symbols of the initial 

and final atomic states remain unchanged, the second-order term in the
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exchange T-matrix element becomes more important in the small and large- 

angle regions compared with the first-order term. In fact Huo shows that 

the second-order term dominates in the forward direction at high energies 

(above 300 eV) while the first-order term is important at low energies. Such 

a result could help to explain the sudden decrease in the forward direction 

of the differential cross section computed in the DWPO approximation at 

higher energies. Moreover, according to Ochkur and Burkova (1975), spin- 

exchange transitions in helium, such as to the 2 S state, occur in two 

steps*. 1) an elastic exchange process between the incoming electron and the 

ground state electron of opposite spin and 2) the subsequent interaction with 

the other ground state electron which produces a transition to some excited 

state. This argument may be generalized to atoms possessing more than two 
electrons.

Such a two-particle process can only be described by second-order 

formalism. Their theory is supported by the excellent agreement with 

experiment which they obtain, at 200 eV for angles less than 90°, using the 

Second Born approximation.

§6.4 Excitation of He(l^S 4- n^P)

Results computed in the DWPO I and DWPO II models have been obtained 

for the inelastic processes

e + He(l^S) 4- e + He(n^P), n = 2,3,4,5.

Total (integral) cross sections are tabulated in table 19 for n = 2,3,4,5 

and displayed graphically in figure 19. Differential cross sections have been 

obtained for n = 2,3 and are given in tables 20-23. They are compared 

with other results, both theoretical and experimental, in figures 20-23. 

Finally, the orientation and alignment parameters(X,x) have been determined 

for n = 2,3 and are presented for the whole angular range in tables 24-27 

and illustrated in figures 24-27 for angles up to 50 .
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Total Cross Sections 

1
2 P An abundance of theoretical and absolute experimental data has 

accumulated over recent years for electron impact excitation of l^S 2^P 

transitions in helium. Table 19(a) lists the integral and total integral 

cross section results when computed in the DVIPO I and DWPO II models for 

energies from just above threshold to 300 eV. The excited state is taken to 

be described by the simple Kartree-Fock wave function of Karse et al.

(discussed in Appendix A). The total integral results are plotted in figure 

19(a) and compared with absolute experimental measurements. It will be 

observed that the DWPO I results extend over the region up to 1000 eV,

In fact, as seen from table 19(a), by 300 eV the approximation agrees with 

the Born or'Born plus Polarized-Born'to 3 figures so that consequently only 

the corresponding Born cross section is plotted for energies above 300 eV.

Born results alone increase far too rapidly for energies below 300 eV 

and peak much higher and closer to threshold than DWPO results (Scott and 

McDowell, 1976).

From an experimental point of view, there is good consistency throughout 

the energy regions considered between the various sets of data, though the 

results of Moustafa Moussa et al. (1969) for E > 80 eV and of Chutjian 

and Srivastava (1975) at 60 and 80 eV would appear rather low. At lower 

energies both DWPO models are in close agreement with the values provided by 

Donaldson et al. (1972) and Hall et al. (1973), Proceeding to the peak 

value, correctly positioned with respect to energy by both models, the DWPO I 

model begins to overestimate the experimental results while the DWPO II 

model gives a lower cross section which is in good accord with the measurements 

of de Jongh and van Eck (1971). However, the theoretical results are still 

of greater magnitude than those of Donaldson et al. (1972) until E > 200 eV 

where the agreement with DV7P0 II is very good. DWPO I continues to remain 

in good agreement with the points of de Jongh and van Eck (1971) for increasing 

energy and for 200 < E < 1000 eV is also in close accord with the recent 

data published by Dillon and Lassettre (1975). Overall, when compared with
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experiment, the effect of including target distortion via the ground state 

wave function appearing in the T-matrix element is to lower the total 

(integral) cross section and hence produce better peak values than the 

simpler (DWPO I) model which contains no such explicit account of target 
distortion.

Theoretical results from other models have been omitted from figure 19(a); 

to do justice to each would only obscure the results of others. However, the 

essential features of their results will be briefly described below.

For high energies, as one would expect, most of the theories agree 

reasonably well. As the impact energy decreases below 300 eV, the results 

of the Coulomb-projected Born approximation of Hidalgo and Geltman (1972) 

begin to rise too sharply, followed for E < 150 eV by those of the second- 

order optical potential method, calculated in an impact parameter treatment 

by Herrington et al. (1973). A partial wave treatment of the latter method 

(Winters, 1974) does, however, provide results above 100 eV in good agreement 

with those of DWPO I. The second-order diagonalization procedure of Baye 

and Heenen (1974), in common with otherhi^ energy approximations, also 

overestimates grossly the peak value.

The results of the ten-channel eikonal treatment of Flannery and McCann 

(1975) agree closely with the DWPO I results down to 80 eV; for E < 80 eV, 

they continue to overestimate, hardly surprising since the method is 

essentially a high energy approximation. Good agreement is obtained between 

DV/PO II results and those in the distorted wave calculation of Madison 

and Shelton (1973) for E > 125 eV. However, for E < 125 eV, their results 

increase too quickly and shift the position of the peak from the experimental 

point at 90 eV down to 70 eV. This lack of agreement is probably due to 

omission of exchange in the former theory and to a neglect of polarization 

in the latter. Judging from the better agreement of the DV/PO II model with 

experiment at the peak value, it appears that exchange (in fact, this is 

neglected in the actual calculation of the distorted waves by Madison and 

Shelton) and polarization become important in calculating total cross sections
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for energies less than 150 eV.

The eikonal distorted wave method of Joachain and Vanderpoorten (1974a) 
gives results consistent with DWPO II down to 60 eV; below 60 eV, their 

results are more in line with those of DWPO I. The best agreement with 

experiment over the size and position of the maximum is provided by the 

Glauber calculation of Chan and Chen (1974a); such a calculation is expected 

to give a very good description of small-angle scattering which, since the 

major contribution to the total cross section comes from small angles, 

accounts for the close agreement. For energies from 90 eV down to 30 eV, 

the many-body theory approach of Thomas et al. (1974) yields results 

lying between those of DWPO I and DWPO II; their calculations allow for 

distortion in both the entry and exit channels.

3^P Theoretical results for excitation to this state are not quite 

so numerous as in the previous case but nevertheless form a substantial 

volume of material for comparison with experimental measurements. DWPO I 

and DWPO II results are tabulated in table 19(b) and, together with other 

theoretical results and absolute experimental data, are displayed in figure 

19(b).

For energies above 300 eV, theory and experiment agree quite well; 

the experimental measurements are due to Moustafa Moussa et al, (1969), 

de Jongh and van Eck (1971) and Donaldson et al, (1972). As in the previous 

case, DVJPO I and II total cross sections agree to 3 figures with the corresponding 

Born results; consequently B o m  values are plotted for energies in this region.

For energies below 300 eV, the DWPO I results tend to favour the data 

of Donaldson et al. (1972) while the DWPO II results are smaller by at most 

10%, preserving the profile, and in good agreement with the measurements 

of Moustafa Moussa et al. (1969) except at 80 eV. At energies away from 

90 eV (the position of the maximum), the DWPO I and DWPO II results come into 

closer agreement with each other and also with the points of de Jongh and 

van Eck (1971) which otherwise are comparatively smaller. The experimental 

point of Showalter and Kay (1975) at 200 eV appears rather low and at 80 eV
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the measurement of Chùtjian (1976) also seems low, though that at 100 eV 
is compatible with other experimental values.

Concerning other theoretical methods, the results of a nine-state 

impact parameter version of the second-order optical potential model 

(Bransden and Issa, 1975) begin to increase too steeply for energies below 

300 eV, followed by those in the second-order diagonalization procedure 

(Baye and Heenen, 1974). The only other remaining curve is that of Flannery 

and McCann (1975), obtained in their ten-channel eikonal treatment. The 

results are reasonably good down to 100 eV, where they agree with the 

experimental point of Chutjian (1976), falling between those of Moustafa 

Moussa et al. (1969) and Donaldson et al. (1972). Below this energy, the 

peak value of the cross section is obtained at 70 eV, shifted from the 90 eV 

predicted by Donaldson et al. (1972). Not shown are the Glauber results of 

Chan and Chen (1974b) which lie generally below experiment.

4^P Here the DWPO approximation to the integral cross sections in 

both models is computed without the Born-subtraction artifice described in 

§3.4 to perform the sums over partial wave cross sections. Instead the 

first 30 terms are retained for E < 150 eV and the first 40 for E ^  150 eV, 

this being found adequate to produce a smooth total differential cross 

section at small angles which is where the main contribution to the cross 

section arises. With less terms or at an energy above 300 - 400 eV, the 

total differential cross section exhibits a more extensive oscillatory nature, 

characteristic of a lack of convergence in partial waves, which extends into 

this small-angle region (less than 40^ - 50°).

Since there is now no need to obtain an expression for the B o m  T-matrix

(which it will be recalled would be required in closed form), a more

complicated wave function may be taken for the excited state; that of Cohen

and McEachran (see Appendix A) is adopted. Further, the p-wave u^^(k^,r) is

made orthogonal to R (r); hence the integral c«(k.), given by (3.4.36),np 1 ÿ
vanishes. The subsequent D W O  I and DWO II results are given in table

19(c) and are displayed in figure 19(c) with absolute experimental measurements
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One sees that the measurements of de Jongh and van Eck (1971) and of 

Donaldson et al, (1972) agree closely with each other at all energies except 

80 eV; the point due to Showalter and Kay (1975) at 200 eV coincides with that 

of the former group. The results of Moustafa Moussa et al. (1969) are 
comparatively low.

The maximum is observed to occur in the vicinity of 90 eV and is very 

well predicted in shape and magnitude by the DWPO II model when compared 

with the data of Donaldson et al. (1972), DWPO I results lie approximately 

10% higher at this energy, being in closer agreement with those of D W O  II 

for energies away from this value. The second-order diagonalization 

procedure of Baye and Heenen (1974) yields results which agree well with 

the data of de Jongh and van Eck (1971) for energies above 300 eV; 

however for energy values below this, the method improves little on the 

First Born Approximation (Bell et al. 1969, not shown), the results increasing 

far too rapidly for energies below 200 eV, Also not displayed are the 

Glauber results of Chan and Chen (1974b), which lie above those of the 

DWPO models.

Overall, the DWPO II model produces the most satisfactory agreement with 

experiment, being in best accord with the measurements of Donaldson et al.

(1972).

5^P Total (integral) cross sections have been obtained in the DWPO I
1

and DWPO II models. The comments on the computation of 4 P cross sections, 

given in the first two paragraphs of the previous section, all apply to 

this case also. However, using the coefficients published by McEachran and 

Cohen (1969) gave very large integral cross section results. Consequently 

the coefficients vere modified according to the procedure outlined in 

Appendix A. Results obtained from using both the modified and unmodified 

coefficients are presented in table 19(d); the modified results are illustrated 

in figure 19(d).
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The only experimental points available aie those of Moustafa Moussa et 

al. (1969) and, at 200 eV, that of Showalter and Kay (1975). The DWPO I 

result agrees well with this latter measurement, the DWPO II result being 

some 10% lower. However, both models predict results of similar shape, but 

lying considerably higher than the data of Moustafa Moussa et al, (1969). 

Further, the DWPO results attain a maximum value at about 90eV, whereas 

that of Moustafa Moussa et al. seems to be nearer 80 eV. The second-order 

diagonalization method of Baye and Heenen (1974) once more increases too 

rapidly for energies below 200 eV and subsequently predicts a much larger 

peak value of the cross section.

Summary

The DWPO I and DWPO II models produce total integral cross sections 

of similar profile which generally speaking are in good agreement with 

absolute experimental measurements, particularly in the latter model; the 

DV7P0 II results tend to lie at most 10% below those of the DV7P0 I model. 

Compared with other theoretical predictions, where results are available 

for comparison, the DWPO models provide total, integral cross sections which, 

taken over the full range of impact energies illustrated, are the most 

consistent with experiment.

It is noted that for energies above 300 eV, the DWPO I and DWPO II 

models yield total integral cross sections which agree to at least 3 figures 

with those obtained in their high energy limits, namely the Born and’B o m  

plus polarized—Dorn*approximations respectively. Hence one concludes not 

surprisingly, that exchange effects become negligible in computing total 

integral cross sections for energies above this value.

Differential Cross Sections

Differential cross section results, computed in the DWPO I and DWPO II 

models for excitation of the n^P^, n^P+^, n^P (n = 2,3 only) states, are
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tabulated over the whole angular range in tables 20 - 23 and the total 

differential cross section displayed graphically in figures 20 - 23, 

together with other theoretical results and absolute experimental data.

2^P DWPO I results are plotted for five incident energies in figure 

20 where they are compared with experimental and other theoretical results.

Figure 21 illustrates for small-angle scattering the results of the DWPO II model 

at four incident energies and includes also those of the DV7P0 I model and 

of experiment for comparison. Throughout the calculations, the simple 

Hartree-Fock function of Morse et al. (1935) has been utilized to describe 

the excited state (see Appendix A). Consideration is first given to the 
DWPO I results, figure 20.

For electron impact energies of 29.6 and 40.1 eV, only the absolute 

experimental data of Truhlar et al. (197 3) have been plotted, those of Hall 

et al. (1973) (at 29.2 and 39.7 eV) lying in close agreement and consequently 

omitted. At 29.6 eV, DWPO I results are in reasonable accord with the 

experimental points for smaller angles, except in the forward direction 

itself where they tend to fall slightly below experiment but nevertheless 

provide the closest theoretical agreement. The close-coupling results (at 29 eV) 

obtained by Truhlar et al. (1973) appear generally too high, in common 

with the results of the distorted wave calculation of Madison and Shelton 

(1973) which, while too small in the forward direction, are too high for 

angles greater than 30°.
The many-body method (Thomas et al. 1974) yields results which follow 

closely those of the DWPO I model out to 60°, both sets lying close to 

experiment. However, for angles greater than 60°, the many-body results 

follow more closely the experimental trend than the DWPO I values; the 

latter fall at their lowest point (about 125°) to an order of magnitude 

below experiment.
The situation at 40.1 eV displays theoretical curves in better 

agreement with each other and with experiment at smaller angles, DWPO I 

providing once more the closest agreement. The close-coupling calculation
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shows some oscillation for angles above 120° which could well be due to a lack 

of convergence in the partial wave sums. Also shown are the ten-channel 

-eikonal results of Flannery and McCann (1975). However, for angles above 60°, 

both the DWPO I and multichannel eikonal results continue to decrease too rapidly 

and fall considerably below experiment while the many-body treatment produces 

excellent agreement over the whole angular range.

Moving to figure 20(c), where the DWPO I results have been plotted for an 

incident energy of 81.63 eV, there exist more numerous theoretical calculations. 

Experimentally, the measurements given by Opal and Eeaty (1972) at 82 eV and by 

Chutjian and Srivastava (1975) at 80 eV are in good agreement out to about 105° 

whereafter the former measurements lie below the latter. Experimental data 

have also been given by Truhlar et al. (1970) but are omitted for clarity. On 

the theoretical side, it was decided to also omit the results of the eikonal 

distorted wave method (Joachain and Vanderpoorten, 1974a) and of the second-order 

diagonalization procedure (Baye and Heenen, 1974) in order to maintain a 

reasonably distinct figure. Both sets of results range over the angular region 

from 0° to 80° and are consistent with those of other theoretical treatments.

Good agreement is obtained between each of the represented models and 

with experiment for angles less than 30°, with perhaps the exception of the 

Coulomb-projected B o m  calculation of Hidalgo and Geltman (1972) at 82 eV which 

produces results lying consistently high. DWPO I results provide the best 

overall agreement with experiment out to 40°; above this point, they tend 

to underestimate both sets of data. The results of the ten-channel eikonal 

treatment at 80 eV follow a similar pattern, though falling further below 

experiment than those of DWPO I in the backward direction, due most probably 

to an explicit omission of exchange effects. Generally,the best agreement 

with experiment is obtained by the distorted wave calculation of Madison 

and Shelton (1973) at 80 eV and by the application of many-body theory 

(Thomas et al. 1974). Both these methods allow for final channel distortion 

but omit the long-range polarization effects; this would account for the superior 

performance of the DWPO approximation in the forward direction.
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At 100 eV, the DWPO I results are again in best accord with the experimental 

data shown, which is due at 5° to Chamberlain et al. (1970) and over the 

rest of the angular range to Suzuki and Takayanagi (1973). In figure 20(d), 

the theoretical results of the eikonal distorted wave method (Joachain and 

Vanderpoorten, 1974a) and of the second-order diagonalization procedure (Baye 

and Heenen, 1974) have been included, and agree quite well with experiment 

over the range given for each method. The results of Madison and Shelton 

(1973) and of the Glauber treatment (Chan and Chen, 1974a) have, however, 

been omitted for reasons of clarity. The former results are found to be 

quite reasonable on comparison with the absolute experimental values of 

Crooks and Rudd (1972). The Glauber model, with results given only for 

angles less than 20°, shows comparable agreement with DWPO I.

The partial wave treatment of the second-order optical potential method 

(Winters, 1974) provides results in close agreement with experiment for 

angles less than 50°; for angles above 50°, following closely the DWPO I 

values, the results fall below experiment. Results in the ten-channel 

eikonal treatment, provided by Flannery (1975), show a familiar behaviour 

to that of previous cases, that is good agreement in the forward direction 

and for angles less than 30° with experiment (as expected), but underestimating 

f>r large angles. Figure 20(d) also shows an improvement in the Coulomb- 

projected 'Born approximation, which is expected to be better at higher 

energies.

The final energy considered is 200 eV, figure 20(e), where again a 

large volume of data is available. The experimental results of the four 

groups represented, absolute in each case, form a consistent shape, those 

of Suzuki and Takayanagi (1973) coinciding well with the small-angle data 

of Chamberlain et al. (1970) and of Dillon and Lassettre (1975) and at larger 

angles with those of Opal and Beaty (1972). Theoretical predictions are 

in good agreement with these measurements for angles less than 30 ; for 

angles above 30°, they begin to diverge from each other. DV/PO I and the 

ten-channel eikonal results (Flannery 1975) exhibit a similar behaviour to
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that at previous energies, falling below other theory and experiment for 

angles above 40°, particularly in the latter model. The eikonal distorted 

wave .method and the second-order diagDnalization procedure show predictions 

not unlike those illustrated at 100 eV in figure 20(d), being in reasonable 

agreement with other models and experiment over their respective angular 

regions. The Glauber treatment of Chan and Chen (1974(a)) has again been 

omitted ; values are given only for angles up to 20° and agree closely 

with other theoretical results.

For large-angle scattering, the profile of the Coulomb-projected Born 

calculation decreases too rapidly and lies below experiment and just above 

that of D W O  I, whereas the distorted wave calculation (Madison and Shelton, 

1973) provides a good cross section out to 120°. Since this latter method 

treats the initial and final channel on an equivalent footing, this good 

agreement with experiment lends further support to the necessity to allow 

for final channel distortion.

Corresponding DWPO II results for excitation to this state are presented 

in table 21. A general comparison between tables 20 and 21 shows that for 

each of the five incident energies, the DWPO II total differential cross 

section results are some 10 - 20% smaller than those computed in the DWPO I 

model for all angles. Results obtained in both models for impact energies 

of 29.6, 40.1, 80 and 100 eV are displayed at small angles with absolute 

experimental data in figure 21.

For the lower two energies, the DWPO II model yields very good agreement 

with the measurements obtained by Truhlar et al. (1973) and at 29.2 and

39.7 eV by Hall et al. (1973), improving over the DV/PO I results. A certain 

degree of discrepancy does however remain in the forward direction itself.

Considering 80 eV, the two DWPO models produce results lying closer 

together and in good accord with the data of Chutjian and Srivastava (1975) 

though neither predicting the slight lowering of the cross section observed 

at 15°. Finally the DV/PO models are compared at 100 eV with the measurement 

of Chamberlain et al. (1970) at 5° and with the measurements of Suzuki and
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Takayanagi (1973) over the remainder of the angular range up to 36°. Again, 

there appears to be some structure observed at 15° which is not found 

theoretically. The DWPO II model agrees well with experiment, however, for 

angles above 20°. The First B o m  approximation, deduced from the accurate 

generalized oscillator strengths tabulated by Bell et al. (1969), yields 

results of larger magnitude than those of either DWPO model; this approximation 
fails to allow for polarization effects.

Overall the consequence of explicitly including target distortion in 

the T-matrix element is to lower the total differential cross section and 

to subsequently provide better agreement with published experimental data 

at small angles. Both the DWPO I and DWPO II models, however, underestimate 

experiment at large angles, particularly the DWPO II model.

3^P Differential cross sections describing'excitation to this state 

and computed in the DWPO I model are tabulated at four incident energies 

in table 22. Corresponding results in the DWPO II model are given in table 23. 

Both calculations employed the simple Hartree-Fock function of Goldberg 

and Clogston (1939 , see also Appendix A) for the excited state. Graphical 

comparisons of the DWPO I results for the total differential cross sections 

with theory and experiment are presented in figure 22. Figure 23 offers 

a closer examination of small-angle scattering, allowing for the improved 

treatment of polarization in the DWPO II model, at lower impact energies. 

Attention will first be given to figure 22.

Comparison is made at the lower energies of 29.2 and 39.7 eV with

the absolute experimental data of Chutjian and Thomas (1975). It must be

emphasised that their apparatus was unable to resolve between excitation 
1 3  1to the 3 ’ D and 3 P states so that in fact the points plotted represent

1 3  1 1the combined result for excitation to the 3 ’ D and 3 P states. The 3 P
3 1state lies only 0.014 and 0.013 eV from the 3 D  and 3 D  states respectively. 

However, comparing with the many-body calculations, also given in the paper 

by Chutjian and Thomas (1975), one sees that the main contribution to 

the cross section for angles less than 60° arises from the 1 S 3 P transition;
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consequently the experimental points plotted in figure 22 (and 23) over this 

angular region allow one to make a useful comparison with observation for 

excitation .of the 3 P state alone. At larger angles it appears from 

the many-body calculations that, while the 3^P cross section drops smoothly,
3

the 3 D cross section increases,providing a substantial contribution (about

80% at 136°) for an energy of 29.2 eV and a lesser contribution (about 30%

at 136°) at 39.7 eV to the joint differential cross section. At both

energies, the 3^D contribution is at most 12%; the overall effect of the 
1 33 * D states is to flatten the cross section for large angles. All 

theoretical calculations represented in figure 22 apply to the 3^P state 

alone.

Comparing the DWPO I results in figures 22(a) and 22(b) with those of 

the many-body calculation and with the experimental measurements, shows 

excellent agreement out to 60°, except at 29.2 eV in the forward direction 

itself where both calculations fall below the experimental points. At 

large angles (essentially above 60°) the DV7P0 I results decrease rapidly below 

the many-body results which at 29.2 eV lie themselves below the experimental 

measurements. In figure 22(b), many-body theory is in very good accord 

with experiment over the whole angular range at 39.7 eV. Also shown in 

this figure are the ten-channel eikonal results (at 40 eV) of Flannery and 

McCann (1975) which predict a more enhanced forward peak but, similar to 

the DWPO I results, drop to at least an order of magnitude below experiment 

at 136°.

In figure 22(c), at 100 eV, the experimental points (Chutjian, 1976)
1 3have been corrected for contributions due to the 3 ’ D states, following 

a procedure outlined in Chut jian^s paper. The DWPO I results are seen to 

be in very good agreement for angles less than 40°, tending to underestimate 

at larger angles. The ten-channel eikonal results are also in good agreement 

at small angles, in common with the Glauber method (Chan and Chen,

1974b). Concerning also figure 22(d), which illustrates only theoretical 

results, the Glauber approximation results are shown for angles less than
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10°, the results merging into the ten-channel eikonal points of Flannery

and McCann (1975) , for angles between 10° and 20°. The results of Flannery 

and McCann extend over the whole angular range and comparison with the 

results of the DWPO I model shows that both models exhibit a similar trend, 

the eikonal method dropping below the DV/PO I model for angles above 50°, 

due presumably to explicit neglect of exchange effects, whereas the DWPO models 
allow explicitly for such effects.

DV/PO II results are plotted for small angles in figure 23 at 29.2 

and 39.7 eV and compared with the DV/PO I results and also with the experimental 

measurements referred to above in connection with figure 22. At 29.2 eV,

DV/PO II results appear somewhat low in the forward direction but otherwise 

are in good agreement with experiment, especially for angles above 20°. An 

overall comparison for the complete angular region between DV/PO I and 

DWPO II is obtainable from tables 22 and 23. Essentially, the DWPO II model 

yields differential cross section results (total and magnetic sublevel) some 

10%, or 20% in some cases, smaller than the DV/PO I model, thus producing 

less comparable results with experiment, where available, for large angles.

Summary

Differential scattering for excitation of the 2^P and 3^P levels 

of helium has been studied in the DWPO I and DWPO II models for impact energies 

varying from approximately 30 eV to 200 eV. On comparison with absolute 

experimental data and with other theoretical methods, the DV/PO approximation 

reproduces the best overall agreement with small-angle measurements, especially 

in the DWPO II model. For larger angles, the approximation consistently 

underestimates experimental data for each impact energy whereas models which 

allow for distortion in the final channel as well as in the initial channel 

(e.g. the many-body approach) yield more compatible results.
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The DWPO models incorporate an account of the effects due to the long- 

range adiabatic polarization interaction and, particularly in the DV/PO II 

model, this is undoubtedly the reason for such accurate small-angle 

differential cross sections. This in turn accounts for the accurate total 

(integral) cross section values, since the most significant contribution 

to the total integrated cross section comes from the small-angle region 
of the differential cross section

The (X,x) Parameters

These parameters, referred to as the orientiation and alignment parameters, 

have been defined in equations (3.5.4) and discussed in §3.5. They have been 

computed in the DWPO I and DWPO II models for the 2^P and 3^P states, 

and are presented over the whole range of angles in tables 24 - 27 and, in

the DV/PO I model, up to 50° in figures 24 - 27. The same excited state

wave functions used in deriving differential cross sections, discussed 

in the last section, are of course, employed here also. The results of this 

section are compared with the experimental data of Eminyan and coworkers 

and with other theoretical predictions.

2^P Results for X and % are tabulated in tables 24 and 25

respectively, for incident energies of 40, 60, 80, 100 and 200 eV. The

DWPO I results are displayed in figures 24 and 25 and compared with the 

experimental data of Eminyan et al. (1974) in each case and with available 

theoretical results. Comparison between DWPO I and DV/PO II results for 

X in table 24 and for % table 25 shows that there is at most 10% 

difference between them so that consequently, discussion will be confined 

to.the DV/PO I results. Consideration is first given to X.

The first energy considered is 40 eV where for angles less than 15 

there is good agreement between each of the four theories represented and 

with experiment. For angles out to 50°, best agreement with experiment is 

maintained by the distorted wave calculation of Madison and Shelton (1973),
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followed by the ten-channel eikonal results of Flannery and McCann (1975).

The DV/PO I results fail to predict a minimum over this angular range and 

underestimate the experimental measurements; a similar comment applies to the 

many-body approach (Thomas et al., 1974), represented at 40.1 eV.

Proceeding to a higher impact energy of 60 eV, the situation alters 

in that the DV/PO I is in best accord with experiment (there is no distorted 

wave calculation by Madison and Shelton at this energy), the agreement 

extending out to 25° where experiment finds a sharper rise in the results.

The multichannel eikonal results and many-body theory results show a similar 

trend to those of the DV/PO I model, but of smaller magnitude.

At 80 eV, best agreement with experiment is .obtained by the distorted 

wave calculation of Madison and Shelton (1973) at 78 eV; DV/PO I results agree 

well out to 20° with experiment whereafter they fail to produce the more 

rapid increase measured by experiment and predicted accurately by the former 

calculation. The multichannel eikonal and many-body treatments are both 

in disagreement with experiment at each angle.

Moving to 100 and 200 eV, excellent agreement is once more obtained 

with experiment by Madison and Shelton’s distorted wave model. The DWPO I 

results lie in reasonable agreement with experiment for angles less than 

20° whereas at 200 eV the DWPO I results are in slightly better agreement 

with the two experimental points than those of Madison and Shelton. At 

this latter energy, these two theoretical methods remain in good agreement 

with each other up to 40° where the DWPO approximation predicts a peak value. 

The results of Flannery and McCann (1975) in their multichannel eikonal 

method and those in the eikonal distorted wave Born approximation (Joachain 

and Vanderpoorten, 1974b) produce a lower minimum than that observed 

experimentally and by the former two (distorted wave) methods.
Generally, however, X is best reproduced in figure 24 by the distorted

wave calculation of Madison and Shelton (1973).
Considering % » the situation with respect to this parameter is quite

different from that for X when comparing theoretical models. At 40 eV,
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the distorted wave results of Madison and Shelton (1973) are in best 

accord with experiment while those of the ten-channel eikonal treatment 

(Flannery and McCann, 1975) show a clear improvement over the DV/PO I 

results, particularly at lower angles (less than 40°). Figure 25(b) illustrates 

only the DV/PO I results and experiment, the agreement here at 60 eV being 
better than that at 40 eV.

For impact energies of 80 and 100 eV, the ten-channel eikonal results 

provide the best agreement with experiment, those of Madison and Shelton 

(at 78 eV) being too large and producing a shape of opposite curvature 

whereas the DV/PO I results reveal a similar but somewhat lower shape to the 

ten-channel eikonal results. At 100 eV, the calculations of Flannery and 

McCann show a certain degree of structure at 20°, not resolved experimentally 

nor predicted by other theoretical calculations. The results of the eikonal 

distorted wave B o m  approximation (Joachain and Vanderpoorten, 1974b) 

have been plotted for 100 eV and exhibit a similar but lower profile to 

those of Madison and Shelton (1973).

A similar behaviour of the theoretical results amongst themselves is 

repeated to a certain extent for angles less than 25° at an impact energy 

of 200 eV. However, as sho;m in figure 25(e), only two experimental points 

are available which in this case support best the eikonal distorted wave 

calculation of Joachain and Vanderpoorten (1974b). The DV/PO I results 

give quite a different shape at all angles, whereas the ten-channel eikonal 

results begin to increase away from other theoretical results for angles 

greater than 20°.
For the most part, however, the best overall agreement of % with 

experiment is obtained by the ten-channel eikonal model of Flannery and 

McCann (1975).
3^p Results for X and % are presented for the whole range of 

angles in tables 26 and 27 respectively for impact energies of 50, 80, 100 

and 200 eV. Experimental measurements have been published by Eminyan et al.

(1975) for angles only up to 30°. In figures 26 and 27, results for X and x
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respectively, obtained in the DWPO I model, are compared with these 

measurements and with those of a four-channel eikonal treatment as appears 

in the paper by Flannery and McCann (1975). As for the 2^P state, a 

comparison of tables 26 and 27 shows that the DWPO I and DWPO II results 

differ by at most 10% so that discussion may be subsequently confined to 

the DWPO I results. To begin with, X is first discussed.
Figure 26(a) illustrates results for 50 eV impact energy. Generally 

there is little resemblance to the experimental points in either theory.

Neither predicts agreement for angles above 20°; a ten-channel calculation 

(Flannery 1975) reduces the multichannel eikonal result between 10° and 30°

so that it coincides to a larger extent with the DV/PO I result, while at

angles above 30° it returns to a profile similar to that produced by the 

less sophisticated four-channel treatment.

At energies of 80 and 100 eV, both theories agree reasonably well 

with experiment out to about 15°, the agreement with DV/PO I at 80 eV 

continuing out to 25°. However, neither theoretical curve increases rapidly 

enough at larger angles to follow the experimental points. For these

energies, and indeed at 200 eV also, the multichannel eikonal results show

considerable structure about the minimum predicted between 15° and 30° in 

each case, whereas the DV/PO results exhibit a very smooth behaviour.

Figure 26(d) offers only a comparison between the two theories, which 

without experimental data, is difficult to assess. In common with the 2^P 

result for this energy, one observes that the DV/PO approximation predicts 

a peak at an angle of 40°.

Generally speaking, where measurements have been made, the DV/PO 

models yield values of X in better agreement with experiment.

Turning to % » the DV/PO I and four-channel eikonal results are compared 

with experiment, where available, in figure 27. For the lowest energy 

(40 eV) both models exhibit different curves, neither agreeing with experiment 

at any angle though there is some experimental evidence at 20 for the 

maximum predicted by the four-channel eikonal method (Flannery and McCann,

1975) at an angle of 30°. Figure 27(b) shows that at 80 eV, the eikonal



163

results are to be preferred to the DWPO I results; neither theory, however, 

produces the correct magnitude but the overall shapes are in better accord 
than at 50 eV,

Results at 100 eV show the four-channel treatment at its best for the 

3 P state; agreement with the experimental points is good whereas the DWPO I 

results continue to underestimate the measurements. A certain degree of 

structure is revealed in the four-channel eikonal results, not found in the 

DWPO calculations. This is most evident in figure 27(d) where at 200 eV, 

there are no experimental values and little resemblance between the results 
of either theory.

However, overall in figure 26, the better agreement for % with 

experiment where available is obtained with the four-channel eikonal 
treatment. *

Summary

Theoretically % is more difficult to determine accurately than X.

X is most accurately computed for the 2^P state in the distorted wave 

calculation of Madison and Shelton with the results of the DV/PO approximation 

being in good agreement with experiment over the first half of the angular 

range illustrated. For the 3^P state, the DV/PO approximation produces 

results for X closer to experiment than the multichannel eikonal method.

X on the other hand is generally best predicted for both states by 

the multichannel eikonal approach of Flannery and McCann. DV/PO results 

consistently underestimate this parameter, while at the same time exhibiting 

the general shape of the experimental measurements.

Moreover, it is difficult to draw any conclusions from these results 

except to say that there is so far no one theory which consistently agrees 

with the available measurements of both X and x*
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§6.5 Excitation of He(l^S -v 2^P)

Total (integral) cross sections and differential cross sections have 

been computed in the DWPO I model for the excitation process

e + He(l^S) 4- e + He(2^P).

Integral cross sections are tabulated in table 28 and illustrated in

figure 28. Differential cross sections for excitation of the 2^P^, 2^^^^
3 3and 2 P states are presented in table 29 and the total 2 P differential

cross section displayed at five impact energies in figure 29.

Total Cross Sections

These have been obtained in the DWPO I model incorporating the excited

state wave function of McEachran and Cohen (1969, see also Appendix A).
3The total integrated cross section for excitation to the 2 P state is 

illustrated in figure 28 for energies from just above threshold to 200 eV 

and compared with the many-body theory results (Thomas et al., 1974). The 

experimental points are absolute measurements in each case, obtained by Jobe 

and St. John . (1967) and at lower energies by Trajmar (1973) and Hall et 

al. (1973).

The results af the latter two mentioned experimental groups are a little 

higher than those of Jobe and St.Jchn but overall the measurements form 

a consistent curve. DV/PO I predicts accurately the position of the maximum 

at 35 eV but overestimates by a factor of at least 2 the magnitude of the 

observed peak. For the rest of the energy range considered, the DV/PO I 

results agree well in shape with the experimental data but continue to

remain at a higher magnitude. Total integrated cross section results in the

many-body theory of Thomas et al. (1974) are published for energies only 

up to 81.63 eV and lie higher still than the DWPO I results.
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Summary

Generally, the agreement between the results of the DWPO I model and 

with the shape of the experimental measurements is good; the theoretical 

results, however, lie as much as a factor of 2 above the measured values. 

Moreover, compared with the other spin-exchange transition, considered in 

§6.3, the situation is considerably more satisfactory.

Differential Cross Sections

These have been computed using either the excited state wave function 

of Cohen and McEachran or that of Morse et al. (see Appendix A for details) 

and the results given in table 29. Those obtained from using the Cohen 

and McEachran function are illustrated for five incident energies in 

figure 29 and compared with other theoretical results and with absolute 

experimental measurements.

At 29.6 eV, the cross section calculated using the simpler wave function 

is also shown in figure 29(a). Both may be compared with the absolute 

experimental results of Trajmar (1973) which agree closely with those 

of Hall et al. (1973) obtained at 29.2 eV (not shown); both experiments 

utilized different normalization procedures. Theoretically, the many-body 

theory results of Thomas et al. (1974) are also shown and the distorted 

wave results of Shelton et al. (1973). The theories agree fairly well 

in the forward direction but none is able to reproduce the experimental 

values at small angles nor indeed at any other angle. It is noted that the 

latter two models exhibit a similar result to each other.

Use of the simpler Hartree-Fock function in the DWPO I model reduces 

the cross section for large angles below that obtained using the Cohen and 

McEachran function; the cross section in the backward direction is decreased 

by 80%. This sensitivity to the excited state wave function is found 

to mainly arise, here and at higher energies, from the overlap integral
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(3.4.36) of the radial function and the p-wave u^(k.,r). The

corresponding integral (3.3.18) was also found to be chiefly responsible 

for similar discrepancies observed in excitation of the 2^S state discussed 

in §6.3. A lesser degree of sensitivity arises in the integrals defined 

by (3.4.31), decreasing with increasing Jl, and also in that defined by 
(3.4.34).

For an energy of 40.1 eV, the theoretical models again agree quite well 

in the forward direction but overestimate the experimental results, in this 

case by a factor of almost 10. The measurements are those of Trajmar (1973) 

and Gelebart et al. (1975). Corresponding measurements were made by Hall 

et al. (1973) at 39.2 eV (not shown) and are in close agreement with those 

displayed. Once more, none of the available theoretical models represented 

in figure 29(b) is able to reproduce the curve indicated by the experimental 

points. It is, however, noted that the distorted wave calculation of Shelton 

et al. (1973) and similarly that of the many-body theory (Thomas et al. 1974) 

produce comparable results to each other. Both calculations omit polarization 

effetts but allow for distortion in the initial and final channels. The 

primary difference between the two methods lies in the computation of 

these distorted waves: Shelton et al. allow for distortion only by the 

static-field of the target whereas Thomas et al. allow for distortion by 

the Hartree-Fock field of the target.

Comparison of the DWPO I results in table 29(b.) reveals again a 

comparatively severe drop in the cross section at large angles when the 

simpler wave function is used for the excited state.

Moving to a higher energy, one sees at 81.63 eV that the DV/PO I results 

and those of the many-body theory agree very closely out to an angle of 60 

after which the many-body results overestimate the experimental data of 

both Opal and Beaty (1972) at 82 eV and Chutjian and Srivastava (1975) at 

80 eV. The DV/PO I results on the other hand follow closely the measurements 

of Opal and Beaty for angles above 50°. For angles less than 40 , both 

theories overestimate the experimental points of Chutjian and Srivastava (1975)
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and Yagishita et al. (1976) at 80 eV, which together with those of Opal 

and Beaty (1972) exhibit a certain degree of scatter amongst themselves.

The sensitivity to the choice of atomic wave function for the excited 

state in the DWPO I model has decreased and from table 29(c) one sees that 

both sets of results now agree to within 20% due to the increased number of 

partial waves contributing to the differential cross section. For increasing 

I the integrals are again noted to be less sensitive to R^pCr).

In figure 29(d) results are shown at 100 eV; the DWPO I model reproduces 

reasonably well the experimental profile obtained by Suzuki and Takayanagi

(1973) and Yagishita et al. (1976). For angles above 60 , the measurements 

of these two experiments agree with each other. Finally, at 200 eV, the 

DWPO I results are again compared with the recent data of Yagishita et al.

(1976) and reproduce very well their measured cross section, including 

the peak observed at 10°.

The DV/PO results do, however, continue to be sensitive to the choice 

of excited state wave function ; results computed at 100 and 200 eV using the 

simpler representation of the Hartree-Fock solution lie higher for large 

scattering angles than those obtained using the Cohen and McEachran function. 

Overall however, this sensitivity has diminished with increasing impact 

energy.

Summary

The agreement of the DV/PO I results with experiment is at its best for 

the higher energies (above 81.63 eV), especially for angles less than 40° 

at 200 eV. Below 81.63 eV, agreement is poor; there is also no other theoretical 

treatment capable of adequately reproducing the experimental results. V/here 

available, the distorted wave calculations of Shelton et al. (1973) and the 

many-body calculations of Thomas et al. (1974) agree well with each other; 

both these models employ distorted waves in the final as well as in the 

initial channel.
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A certain amount of sensitivity arises in the DWPO I model, particularly 

at low energies, concerning the choice of wave function for the excited 
state.

§6.6 Conclusions

Integral and differential cross sections together with, where appropriate, 

orientation and alignment parameters, have been computed over the intermediate 

energy region (§1.1) in a distorted wave polarized orbital approximation 
for the inelastic collision processes:

e + H(ls) e + H(2s, 2p, 2s + 2p), (1)

e + He(l^S) 4- e + He(n^L), (2)

e + He(l^S) 4- e + He(2^L), (3)

n = 2,3,4,5; L = S,P .

Results for each process represented in (1) - (3) have been summarized in 

the appropriate sections of this chapter. The aims of the present section 

(§6.6) are to formulate general conclusions from this work and to discuss 

directions for future study into these collision processes.

Concerning the work on excitation of atomic hydrogen (process (1) above), 

the inclusion of exchange-polarization effects in the DWPO approximation 

greatly improved the total differential cross sections for the lower impact 

energies (less than 1.44 Rydbergs), particularly for large-angle scattering.

The unitarization technique failed to improve the accuracy of the differential 

cross sections until the impact energy reached 100 eV. One concludes 

immediately that in the case of low energy inelastic electron scattering by 

atomic hydrogen, exchange-polarization effects are important.

Turning to helium and in particular to the transition where spin is 

conserved, i.e. process (2), the DWPO approximation produces total (integral)
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excitation cross sections in close agreement with experiment over the 

whole energy range, whereas comparable models (other distorted wave methods, 

including lowest-order many-body theory) fail at lower energies. As far 

as the differential cross sections are concerned, the DWPO approximation 

gives accurate results in the forward direction for energies above 100 eV, 

failing to an increasing extent as the energy decreases below this value.

Such accuracy with experiment at small angles would account for the good 

total cross section values. Agreement with experiment is improved in the 

DWPO II model though not so dramatically as in case of atomic hydrogen 

or the alkali atoms; this is probably because helium has such a relatively 
small polarizability.

Nevertheless, for L = S in process (2), it has been shown that allowing 

explicitly for polarization effects in the T-matrix element, as well as 

in calculating the distorted wave, yields excellent agreement with experiment 

at 200 eV for small scattering angles; whereas models which omit polarization 

effects, such as the First Born approximation, do not provide such a 

satisfactory description.

Generally, the DWPO approximation yields a reasonable profile for the 

cross section at lower energies, improving with increasing energy at small 

angles while at the same time becoming less comparable with experiment at 

larger angles. The explicit inclusion of polarization effects in the direct 

and exchange terms of the T-matrix element reduces further the cross section 

for large-angle scattering. It is this large-angle region where theoretical 

models which also allow for distortion in the final channel produce 

substantially better results. Hence, it is concluded that such final channel 

effects are important for accurately describing large-angle scattering.

The predictions of X and % allow no firm conclusions to be drawn, 

except that distorted wave treatments predict X more accurately than xî 

the latter is most accurately calculated in a multichannel eikonal treatment.
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Finally, in connection with the spin-exchange processes (3), the DWPO 

approximation is considerably less successful, especially for the process 

where the total orbital angular momentum symbol remains unchanged. A 

discussion of differential scattering for this case, L = S, has already 

been given in §5.3; surprisingly, allowance for exchange-polarization effects 

did little to improve the situation. One concludes that much work remains 

to be done in order to achieve a complete understanding of such simple 
rearrangement collisions.

Concerning the DV/PO approximation in general, recent work using a 

hybrid method to study process (1) and discussed in §6.1, shows that the 

DWPO approximation to the lower order partial waves is less accurate than 

for the higher order waves. A 12% difference between total integrated 

cross sections for excitation of H(2p) at an impact energy of 0,86 Rydbergs 

is obtained when the close-coupling pseudostate expansion includes partial 

waves for 0 ^  L ̂  2 rather than 0 ^  L ̂  3. In the forward direction, 

the corresponding total differential cross section is reduced by almost 

50%. However, DV/PO calculations of total cross sections for inelastic 

electron scattering off positive ions, where the A = 0 contribution is 

relatively less than for the neutral atom, show that the DV/PO approximation 

treats the higher partial waves (classically, the larger impact parameters) 

very well.
Further extensions of the DV/PO approximation would be to treat the 

exchange term of the T-matrix element to second-order and to allow for distortion 

in the final channel. Work in this direction has already commenced in 

connection with excitation of H(ls ->• 2s).
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APPENDIX A 

Atomic Wave Functions

When dealing with atoms which possess more than one bound electron, 

exact analytic wave functions are no longer available so that consequently it 

is necessary to choose suitable approximate functions. For helium, however, 

such functions have been determined to a high degree of accuracy. This appendix 

will be concerned with the forms employed to represent the wave functions 

for (i) the initial (ground) state and (ii) the final (excited) state.

(i) Ground (l^S) state

*i(12) = *ig(l) *ig(2)
where

= Ris(r) .

Rĵ g(r) is chosen to be the simple Hartree-Fock wave function of Green et al. 

(1954) which is expressed as

R^g(r) = . (A.la)

The parameters a,b,c^ and the normalization constant N^ have the values

a = 1.4558, b = 2a, c^ - 0.6 and N^ = 2.968468. (A.lb)

Polarization Term:

For c o n v e n i e n c e , the first-order perturbation correction to 
(j)ĵ (̂r) due to dipole polarization,will also be summarized under this heading:

with

u. (r) = Z re ° (Z r + ^ r^) . (A.2a)ls->p o o o

If the radial component of $^^(r) is given by (A.l) it is found that, to 

ensure the direct polarization potential has the correct asymptotic behaviour,

Z has for helium the value o
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= 1.598960 (A.2b)

and for hydrogen the value

= 1 ' (A.2c)

(ii) Excited (n^*^L) State

where

u^^(r) = w(r) v^^(r) = R* ^(r) .

The plus sign refers to singlet states and the minus sign to triplet states.

The function w(r) is taken throughout to have the hydrogenic form

w(r). = 22^/2 g-Zr (A.3)

where Z denotes the nuclear charge. R^^(r) is given below depending on the

value of L(L = S or P) and the spin (singlet or triplet) of the excited 
• —state. Essentially (r) is represented by two different types of function,

namely (a) the simple Hartree-Fock wave function and (b) the "frozen-core" 

Hartree-Fock wave function of Cohen and McEachran (1967a,b). Details of the 

appropriate functions are presented under the headings (a) and (b) respectively 

and further references quoted accordingly.

The latter wave function has the basic form of an expansion in a series 

of associated Laguerre functions:

R“ (r) =  ̂ a. e r^ (2ar) (A.4)
i=2t+l ] ]

where a = Z/n and the coefficients a^ are appropriately tabulated up to
ksome value j = N. The Laguerre polynomials (x) are defined by the formula

L.k(x) = ^
 ̂ dx

S-States:

(e-x %i)
dx^

(a) n = 2
R*s(r) = - c^r e (A.5a)
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The values assigned to the parameters of Rg^Cr) are taken to be those given 
by Byron and Joachain (1975);

p = 0.855, q = 0.522, = 0.432784 and = 0.61928. (A.5b)

For the parameters are obtained from the paper by Morse et al. (1935);

p = 1.57, q = 0.61, c = 0.34081 and = 1.05. (A.5c)

(b) n = 2 - 5

The appropriate Cohen and McEachran function is determined by putting 

= 0 in (A.4). The coefficients a^, which were used, are those tabulated 

by Crothers and McEachran (1970).

In connection with all the above functions for the S-states, it is
• —  •emphasised that the R (r) are forced to be orthonormal to R, (r) usingns Is

the following transformation on the former function:

R" (r) + {R- (r) - A R, (r)}//(l-A^) (A.6)ns ns Is
where

A = I R (r) R“ (r) r^ dr.1̂  Is ns ' o

R^g(r) and R~^(r) are assumed to be individually normalized before applying 

the transformation (A.6).

P-States:

(a) n = 2

R^^(r) = Ng r e (A.7a)

The normalization constant is trivially given by Ng = 2p  ̂//3. The parameter 

p is taken for both singlet and triplet functions from Morse et al. (1935).

For R^ (r); 2p

For RgpCr):

p = 0.485. (A.7b)

p = 0.55 . (A.7c)
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( a ) n — 3

RgpCr) = Ng r - Cg r e I'") (A.8a)

The parameters are obtained from the paper by Goldberg and Clogston (1939);

p = 0.325, q = 0.325, = 0.152939 and N = 0.113034. (A.8b)

(b) n = 2 - 5

The appropriate Cohen and McEachran function is obtained by putting 

& = 1 in (A.4). The coefficients a^ are tabulated by McEachran and 

Cohen (1969). However, for the case n = 5, the a^ are modified as follows.

Let f^ denote the generalized oscillator strength (see equation (1.2.13)) 

at some 20 momentum-transfer values K and computed using the wave functions 

R^g(r) and R^^(r) as given above. Let g^ denote the corresponding 

generalized oscillator strength tabulated by Bell et al. (1968) at the 20 

values of K in their table 1. These authors enplcy a more sophisticated wave 

function for <{)̂ (12) than that given above. The quantity

20
" k  ®k'k=l

is then formulated and minimized with respect to the a^. The modified â  

are found to be

a^ = 1.0 a^ = 1.4438,-4

= 4.5694,-1 a^ = -8.3183,-5 (A.9)

a^ - 1.1351,-2 = 7.9979,-6

ag = -1.7240,-4 = -2.5054,-7

where ,n denotes multiplication by 10^, whereas the original Cohen and 

McEachran coefficents were.

ag =1.0 = - 1.0793,-4

a^ = 3.8579,-1 = 5.0251,-5

ag = 3.8271,-2 8g = - 5.4226,-6

ag = -4.5652,-3 a^g = 3.7851,-7
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APPENDIX B

Power Series Expansions for the Direct Potentials

V (r) : 
Is,Is

(B.la)
where the coefficients a are given by the general formula

■ 4Ng^[(2a)""2 t Zc^Ca+b)""^ + c^^(2b)^ ^]|n-l]/(n+D! (B.lb)n—2 2,_, »n~2“

The parameters on the right hand side are given in (A.lb).

2V ,(r) = - 4(b.r + b.r^ t b_r^ + b,,r̂  + b^r^ + b_r^ + b„r"^+...)/3 pol 1 2 3 4 b D /

(B.2a)

where the coefficients b^ are given by the general formula

N.
b = <ÎJ_. i ,  î i l L  „  , Î L . !o, b ü ’

n+4 (n-l)I l̂'‘n+4 (n-l)I (B.2b)

The notation of equation (3.2.5) has been adopted. The parameters 

a, b, c^ and are given in (Al.b) and in (A.2).
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APPENDIX C

Analytic Expressions for Various Integrals

The integrals appearing below are all evaluated by elementary methods so 

that only the final result will be presented. Notation follows exactly that 

in Appendix A.

B:

B =
fCO

0
w(r) R^g(r) r dr

= 4 2^/2 [i/(z + a)® + c^/(Z + b)^ ] . (C.l)

w(t) R^g(t) Y^(r,t) t dt

r + 2 “(Z+a)re -(Z+b)r ■e
Z+a 2 1 (Z+a)^ -L Z+b (Z+b)2

(C.2)

with B as in (C.l).

^ls,ns^^^*

fls,ns(r) = r R, (t) R (t) t dt Is ns

This is evaluated for the case n = 2 only. Further, R (r) will be takenns
to be defined by (A. 5) and will, of course, be subjected to the modification 

(A.6) to ensure orthogonality to R^^Cr).

N.

v/(l-A )
N 4

'r 2 - 1 e r 21 e“^ " 2  4r ^r + —  — + c ■’ + nt “ Co r + —  +2
. uJ 2 "-iL vj 2 ^2  V w

-wr

w w

r 2 ^ 4 r ^ 6 - i e -xr

X X
► - AN̂ 4 r +

(2a) 

-2br

[ - i f b ]
“(a+b)r

a+bJ (a+b)2

where

A = Rls(r) %2g(r) r dr

(C.3)



177

r 2 2 c, 6o 6c^c -|
= "1*2 -3 + - -3^ - (2.4)Lu V w X J

and u = a + p ,  v = b + p, w = a + q, x = b + q .

r

r
Rls(t) Ĥ (kj,t)

This is evaluated only for small r. The function R^^Cr) assumes the form 

indicated in (A.l). H^(k^) is a regular Coulomb function and by writing

X = k^r may be expressed using results from Abramowit z and Stegun (1970) as
C O

H^(x) = c^(n) X I A^(%) X . (C.5)

Here, n = - ^  with z the residual charge given by z = Z - N; Z denotes 
f

the nuclear charge and N the number of bound electrons. The normalization 

factor c^^%) is defined by

c (n) = 2 ^  |r(&+l+î )|(2&+DI

and the coefficients A^ by:

A^(n) = 1; A^(n) = \(n) = + 2& + i) ' ̂  =

Then the required series expansion of is derived to be

= ^1 k /  r^+' r
where:

n , %n-m ^
•.<“> = Z / . ë à r  "f •m-u

In practice, n is typically set to n =5.^ ’ max ^ max

kls,ns(r) = - ^
The comments made in connection with R (t) in the above evaluation ofns
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^ls,ns^^^ also apply to the evaluation of ^^(r). The case n = 2 only
is considered.

1 z -i
k, (r) =  TT . -2-ls,2s V&l-A )

r o ^
^ 2  I + J - ^2 (^3 ?) - Cg Fg (v,r) - Cg —  Fg(v,r)}

ij li -
- AN^{ F^(w,r) + ~  Fg(w,r) + c^ F^(x,r) + c^ ^  Fg(x,r) }

where, writing 3 = or.

(C.7)

F^(a,r) = [24 - (3*̂  + 43'" + 123^ t 243 + 24)e

Fg(a,r) = [120 - (3'" + 53^ + 203* + 603^ + 1203 + 120)e"^]/a^

Fg(a,r) = [720 - (3^ + 6 3  ̂ + 303^ + 1203^ + 3603^ + 7203 + 720)e"^]/a^.

Here, one has that u = Z t p, v = Z_ + q, w = Z t a, x = Z tb. A, however,o o 0 0 ’

is as above in (0.4).

For small r, the F\(a,r) (i = 1,2,3) may be written

(C8a)

r_5
F^(a,r) =

Fg(a,r) =

Fg(a,r) =

5 6 14 48 216 5 *

(C.8b)

r.7 A
8 18 7 '

Apart from a factor of r the definition adopted here for k^^ ^^(r) agrees 

with that of McDowell et al. (1974). Further, as a check, if the expressions 

in (C.8b) are inserted into (0.7) and the appropriate hydrogenic substitutions 

made for a, b, c^, and Z^ together with of course A = 0, the result

is found to correspond exactly with equation (10’) of McDowell et al. (1974).

fl8,np(r):

fls.np(r) = r Ris(t) Knp(t)

This integral is expressed for the cases n = 2,3 with R^^(r) given by 

equations (A.7) and (A.8). The expression for n = 3 only is presented;
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that for n = 2 may easily be deduced by setting c^ = 0 and replacing N, 

by Ng together with the appropriate choice for the parameter p.

fl8,np(r) L Gg/u.r) t G^(v,r) - CgG^Cw.r) - c^CgGg(x.r) (C.9)

where, putting 3 = otr.

Gj_(a,r) = [24 - (33^ + 123^ + 246 + 24)e ,

Gg(a,r) = [120 - (33^ + 183^ + 603^ + 1203 /+ 120)e“^3/a^
(C.lOa)

Here, one has that u = a + p ,  v = b + p ,  w = a + q ,  x = b + q .  For 

small r, G^(a,r) and Gg(a,r) may be written

1 ■G^(a,r) =

Gg(a,r) =

a (C.lOb)

tls,np(r):
/r

tls,np(r) = - ^

This is presented for n = 2,3 only. The comments made above concerning the

evaluation of f_ (r) also apply directly to the evaluation of t.. (r).ls,np ls,np

'ls,np(r) =
-4
5r

N.
4 • 7z" u

7Z
[l + g ^  [720 - (x + 6x + 30x + 120x + 360x +

+720X + 720) e x^e ^ 1 + ^ [ 5 0 4 0  - (y^ + 7y^ + 42y^ (C.lla) 

Z
+ 210y^ + 840y^ + 2520y^ + 5040y + 5040)e”^] " ^  |

where u = Z ^ + p ,  v = Z ^ + q ;  x = u r ,  y = v r ,

For small r, t. (r) is written as Is ,np

tls.np(r) = ■  -

7Z
r (1 + —;r-)(a + a.x + a_x t a«x + a x + a^x +...)2u o



2 3 4 1(1 + -^)(b^ + b^y + b^y + b^y + b^y t...) J
-  V

where
, ..m 2u - mZ

_  _  (-1) _ o■ ml • (m+7)(2ut7Z ) ’
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(C.llh)

_ (-1)ra 2v - mZ
ml * (m+8)(2vt8Z^)

Equations (C.ll) may be checked against equations (29) and (30) of McDowell

et al. (1975a) by making the appropriate substitutions mentioned after equation
/ ^(C.8b). To within a misprint of /Z, exact agreement is obtained in each case,

=

This is evaluated only for small r. The function u, (r) assumes the formls-»p
given in (A.2a) with Z^ = 1.598950 for helium as in (A.2b) and with

= 1 for hydrogen as in (A.2c). H^(k^) is a regular Coulomb function and

expressed according to the series in (C.5). Hence one finds that, writing 

X = k ^ ,

^ Z

where:

By defining

n
ILn=0

a X n
&tltnt4

« a .X n-1I2kj- &+X+nt4f n=l

a = I A n m (n-m)Im—u
n

a =

.n-m
^n " 2(A+l+n+4) \ (m+2-n) (^-m)! ^m—u m

the final result may be written as 

Typically n^^^ = 5  in practice.

nmax

J. (C.12)

dg(k^):

d2(kf) = R, (r) H (k_pr) f (r) r dr Is o r  ls,w
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For helium, H^(k^) = j^(k^r) where j^Cx) is a spherical Bessel function 

of the first kind:

sin X

Using (A.l) for R (r) and (C.2) for' f (r) one has thatJLS Is ,W

ri + !ii r L _  + - _ ° A ]

l - T .8 (u +k^ ) u^+k^^^ sT(v^+k^^)

1 r. , __x t. ■ .1 1 r. , xt 1
t^(w^+k/) ^ w^+k/-^ t^(x^+k ̂ ) L x^+k 2-

(C.13)

where s = Z + a ,  t = Z + b ;  u = s + a ,  v = s + b ,  w = t + a ,  x = t + b .

dg(kf):

dg(k^) = R (r) H (k r) r dr Is o r

As in the evaluation of dg(k^) in equation (C.13) above, H^(k^r) is 

replaced by a zero-order spherical Bessel function. Hence, with (A.l) for 

R^g(r), one easily finds that

dg(kf) = 2 , 2  ^2. 2 La +k^ b +k^
(0.14)
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APPENDIX D

The B o m  T-Matrix Elements and Total Cross Sections

Only the cases for n = 3 are considered in detail; corresponding 

expressions for n = 2 may subsequently be easily deduced. The atomic 

wave,functions are collected together for convenience:

?oo(r) "(t)

The radial functions are given by: (A.l) for R^^(r), (A.2) for ^^^^^(r),

(A.3) for w(r) and (A.8) for Rg^(r). n = 2 results are obtained by setting

Cg = 0, together with replacing Ng by Ng and inserting the appropriate

value for p as indicated in (A.7) for Rg^(r).

The interaction term is defined as

V = - ~  + + -i- .
^ ^3 ^13 ^23

Let K denote the momentum transfer vector

K = k. - k^ .
—  — 1  — T

The above expressions are defined in a frame of reference where the z-axis 

is along ]<̂  and the xz plane defined as the plane containing K and 

The axis of quantization for the atomic states is hence taken along

The angle between K and k̂  ̂ will be denoted by g and is given by

+ k.^ - k /
cos 6 = -----^ ----- • (D.l)

iK. rThe plane wave e — can then be expressed as

e^— *—  = 47T y y i^ j (Kr) Y (r) Y (3,0) (D.2)
X=0 (i=-X ^
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where r is the direction of r with respect to and j^(x) is a

spherical Bessel function of the first kind (see, for example, Abramowitz 
and Stegun (1970) §10)

(m):
•n « r g  i k . « r „

(m) = <*f(12)e  ̂ *,_(2) e  ̂ SIs

Making use of the orthogonality relationship between atomic wave functions
Dand also the symmetry exhibited by electrons 1 and 2, (m) reduces to

13 "̂ -123 ■ (D.3)

This is further simplified with the aid of the well known result

e ^ - -  _ 4ir iK.t
TIFïT "L - e -  - (D.4)

which is often referred to as Bethe's Integral. Hence effecting the integration 

over rg with the help of (D.4), and inserting the appropriate substitutions.

T ®(m) = B/2 ^
^ K ;

A T 'k' riR, (r) R (r) Y (r) Y, (r) e -  -  dr . (D.5)Is np oo Im —

B is defined by (C.l). The plane wave expansion (D.2) is now made and the 

angular integration carried out to yield

3/2
Tif^(m) = i B/2 (47T)

K
R (r) R (r) j (Kr) r dr Y (3,0) (D.6)is np J- im

The analytic expressions for the radial functions are then inserted, noting that.

j^(x) = (sin X - X cos x)/x" (D.7)

and the resulting elementary integral evaluated. Hence the required expression

for T^^^(m) is

3/2 c, V

5w ^-k2 Cg(5x2-K2) 1
(xZ+K?)" '

(D.8)

with u = a + p, v = b +  p, w = a + q, x = b + q .
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P R  p * — *3 ^— -1 * ^ “3(m) = 2<^^(12)e *^^(1) 4' ^CZS) e ^ " S

Substituting for the atomic wave functions in terms of their radial and 

angular components and emploT^ing orthogonality of the spherical harmonics, 
one finds

T ^(m) = - — Lg- [P + q ] 
(2n)2

(D.9)

where : 

^ = & w(r, ) R__(rJ Y:_(rJ e  ̂ ~  °rg '’l(=°®923^3l' np^ 2'' "lmr^2

w(r, ) R__(r,) Y\_(r^) e  ̂(—  - ~ )  R (1) P (cos9 )
^13 ^3 r_ ^2

<^̂ 123

1" np" 2" "lm"-"2'

The integrals P and Q are considered in turn. Concerning P, the 

integration over r^ is separable and gives the result defined as B (viz 

equation (C.l)). Using the spherical harmonic addition theorem to express 

P^(cosGgg) in terms of spherical harmonics and using also the well known

multipole expansion on   , integration over r̂  ̂ gives the result that
^23

= ^ 1  ( 
v= - 1  J

^iK.r
F _(r) Y, (r) dr2 npm Iv

with;

 ̂ X  -Xp
4m Y, (r)

rr
R

0
/ \ X + 1

1 X i\ n  X 1
0 0 0/ \ra y V

The Wigner 3-j symbols arise from the integration over three spherical
iK. rharomonics. The expansion (D,2) is now enployed for e — and the angular 

integration over r performed:

2 «> « X
P =_ (4m) B I I I ’'3(21'+!) i;,,

10 X'=0 y’=-X'  ̂ ^0X+0
(Kr)(

X+1
(— ) dt ) dr
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0 01 \0 0 0/ V =-l y=-X im y v/ \y’ y v/ *

At this point the orthogonality property satisfied by the Wigner 3-j symbols,

given for example by Edmonds (1974, equation (3.7.7)), is introduced and

consequently the sum over the latter two symbols reduced to 6, , t <S . . PX’l y ’m
then becomes a single infinite sum over X. However, by applying the triangle 

inequality satisfied by the arguments appearing in the upper row of a 3-j 

symbol, one sees that X = 0 or 2. Hence P reduces to a single term which 

on evaluating the remaining 3-j symbols gives the result

P = (D.IO)

where 1^^ is defined to be the radial integral

^np
3

R (t) u (t) t dt) dr . (D.ll)
0  np ls-»p0

Attention is now focussed on the expression Q which will similarly

be evaluated. This is relatively straightforward compared to the integral

P above. Inserting the plane wave expansion (D.2), the appropriate multipole.

expansion for —^  and expressing P,(cos 6 _) in terms of spherical 
^13

harmonics, it is seen that the angular integration can easily be performed 

using only orthogonality of the spherical harmonics. Consequently Q may be 

summarized as

2
R (t) u (t)tdt) dr (D.12) Q np Is^P

following previous notation. See (C.l) and (C.2) for B and f^^

respectively. When analytic expressions are appropriately inserted for the

radial functions appearing in (D.12), the subsequent integral is found to be
PBvirtually impossible to evaluate in closed form. Since T^^ (m) is required

to be available in closed form, it is consequently necessary to make some 

approximation in (D.12). For large r it is easily seen from (C.2) that

f (r) B . (D.13)
Is»"
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The approximation is hence made to replace ^(r) by its asymptotic form

for all r. Physically this amounts to neglecting the interaction of the core

electron with the valence and scattering electrons, which in the present 

situation is considered to be a reasonable approximation. Hence one sees in 

fact that Q vanishesJ
PBThe evaluation of T^^ (m) subsequently centres on the determination of

PB.I in (D.ll). T. r: (m) is written asnp ir

(D.14)

Inserting the analytic expressions (A.2a) and (A.8a) for u_ (r) and R (r)Is^p
respectively into the integral I^^, equation (D.14) becomes :

=-i 4 B (4ir)̂ ''̂  Y^^(g,0) [Aĝ (p) - Cg AgCq)] (D.15)/2 .3/2 N.

np

where, writing y = a +

A^(a) =

Ag(a) =

i^(Kr)

o ~

j^(Kr)

r Ç. _Y Z
t e  (1 + ~  t) dt) dr ,

0
r „ Z

t e  (1 + t ) dt) dr .
0

(D.15a)

(D.16b)
0 r

By observing the very close resemblance between (D.15a) and (D.16b) it is noted 

that the latter may be obtained from the former using the techniques of parametric 

differentiation under the integral sign, that is

Ag(oi) = - A^(a) . (D.17)

Hence one seeks to evaluate A^(a). Making the appropriate substitution for 

the spherical Bessel function given by (D.7), and putting y = t/r, (D.16a) 

can be written in the form.

A.(a) = —X
K

y^(P (sin Kr - Kr cos Kr)(r^ + —  yr^) e ''̂ ^̂ dr)dy. (D.18)
0 Jo

The integral over r is performed with the help of integral results from the 

book by Gradshteyn and Ryzhik (1965, page 490 formulae 5 and 6). Thus



A^(a) = ^

X
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6 3Z
 ^— 9 ^ 7 0  r2sin30-6sin0cos40 + (2cos0sin40-8sin0cos0cos5&)1o [(yy)  ̂ 2y J

dy (D.19)
where tan 0 = K/yy. At this point, one redefines the variable of integration to 

be (f) where = 1/0. After a certain amount of manipulation (D.19) takes 
the form

p 2 ftan \ / K  . 6  3Z
Ai(a) = — J — ^ -̂ 2  [ (6sin ^-1) + -r—^ (I5sin (f>-6sin (|))]d(j). (D.20)

y o cos (j) Y

(D.20) can now be evaluated by using standard integral results for powers

of trignometric functions and is consequently straightforward. The contribution

arising from the lower limit of integration is then seen to vanish. For

the contribution arising from the upper limit it is convenient to let

X = K/y

so that the upper limit of (j) is given by tan# = 1/x. The resulting 

expression is then summarized as

Ag_(a) = L
y L (1+x ) 2(l+x ) 4(l+x. )

3 9 - 1- I l l (D.21a)

The corresponding result for Ag(ot) is obtained from (D.17). The differentiation 

is straightforward but laborious so that only the final result is presented.

2x^ 4x^ 15x^ 65x^ 105x^ -
2 4  2 3  2 2  2 4 "tan(1+x ) (1+x ) 2(l+x ) 4(l+x ) 4 )

(D.21b)

PBThe required result for T^^ (m) is then obtained by substituting from

(D.21) the appropriate expressions into (D.15).

Due to the approximation based on line (D.13), the above evaluation 

of T^^^^(m) may be compared directly with the evaluation of the corresponding 

term, Tj^(PB), for excitation of the 2p state of atomic hydrogen, given by
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McDowell et al. (1975b). Allowing for the appropriate external factor and
PBatomic wave function parameters, the above expression derived for T.^ (m)

is seen to be in exact agreement with equation (19) of McDowell et al. for 
Tj^(PB).

The Total Cross Sections:

So far, analytic expressions in terms of K have been derived for 
B PBTff (m) and T^^ (m) as required by equations (3.4.43) and (3.4.44). The

corresponding integral cross sections in the Born and^Bom plus Polarized-

Born^Approximation must now be considered in connection with equations (3.4.57-58)

The following treatment is designed to be applicable to both approximations;

hence, for generality, the T-matrix element will be denoted by T^ and the

corresponding integral cross section by Q^. Q will denote the total

integrated cross section. 6Q (B) and 6Q (B+PB) are then obtained from them m
respective expressions for by replacing T^ by T^^^(m) and by

B PBTif (m) + T^^ (m) respectively.

The general expression for is given by

1 k rl g
0 = It I d(cos 0) ira . (D.22)w _ 2 k. _' m' o2tt 1 ' -1

Since T^ depends explicitly on K rather than the scattering angle 0, 

it is desirable to express as an integral over K instead of 0. This

is easily achieved since

= k^^ + k^^ - 2k^k^ cos 0 . (D.23)

Consequently equation (D.22) becomes

It K dK Tra ^ (D.24)I tn * n
K

1 1
1  min

where K . = k. - k_ and K = k. + k_.min 1 f max i f
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The total integrated cross section is expressed as

Q = + 2Q^ (D.25)

where use has been made of the fact that due to mirror symmetry

in the plane of scattering. Q is independent of the angle g. This may

readily be seen by expressing Q in the form
K

1 i f  r 9 2 ~i 9Q = |t | + 2 | t. I K dK .a (D.26a)
2. k. Jk . ° 3 o1 min

T^ depends on 3 only through the term Y^^(3jO) (viz. equations (D.8)
B PBfor T^^ (m) and (D. 14) for T^^ (m) ) ; inserting the well known

analytic expressions for-the Y^^(3jO) into (D.26a) one observes that the
2 23-dependence of the integrand is expressed as (cos 3 + $in 3) which can, 

of course, be replaced by unity. Hence, in (D.26a), by choosing 3 = 0 ,  

or equivalently choosing the axis of quantization along K, one sees that T^ 

vanishes and that only T^ remains in the integrand, a result which greatly 

facilitates computation:
K• max m 2

It (3=0) K dK Tra , (D.26b)
K . °

1  min

In practice then, is computed from (D.24) and Q from (D.26b).

is then obtained directly from (D.25).

For n = 2, exact analytic expressions for and Q were derived

in the B o m  approximation. For the 'Bom plus Polarized-Born'approximation 

and also each of the n = 3 results, the integrals were evaluated numerically 

by Simpson's rule.
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TABLES

Notation:

,n denotes that entry is to be multiplied by 10^,
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TABLE 3

TOTAL CROSS SECTION IN UNITS OF tt FOR EXCITATION OF He(2^S) IN THE

BORN-OPPENHEIMER APPROXIMATION COMPUTED FROM EXPRESSION (5.4.1).

(a.u.) This work Bell et al. (1966)
Experimental Theoretical
Energy Levels Energy Levels

1.2 - 1.01 9.52,-1

1.359 1.18 1.28 1.21

1.5 8.57,-1 8.91,-1 8.48,-1

1.6 6.34,-1 6.51,-1 6.23,-1

1.65 5.40,-1 5.52,-1 5.23,-1

1.8 3.27,-1 3.32,-1 3.17,-1

1.922 2.16,-1 2.18,-1 2.08,-1

2.0 1.66,-1 1.67,-1 1.59,-1

3.0 6.71,-3 6.70,-3 6.45,-3

4.0 5.03,-4 5.01,-4 3.63,-4
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TABLE 4

TOTAL INTEGRATED CROSS SECTION IN UNITS OF tt a  ̂ FOR EXCITATION OFo
He(2^P) IN THE BORN-OPPENHEIMER APPROXIMATION COMPUTED FROM EXPRESSION (5.4.1).

(a.u.) This work Bell et
Experimental Theoretical
Energy Levels Energy Levels

1.25 1.25,-1 2.89,-1 2.89,-1
1.359 2.05,-1 2.41,-1 2.41,-1
1.5 1.28,-1 1.38,-1 . 1.41,-1
1.5 8.91,-2 9.36,-2 9.61,-2
1.65 7.49,-2 7.78,-2 8.01,-2

1.8 4.55,-2 4.63,-2 4.78,-2

1.922 3.10,-2 3.13,-2 3.22,-2

2.0 2.45,-2 2.46,-2 2.53,-2

3.0 1.77,-3 1.75,-3 1.77,-3

4.0 2.48,-4 2.46,-4 2.49,-4
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TABLE 5

TOTAL CROSS SECTION IN UNITS OF tt FOR EXCITATION OF He(2^S) COMPUTED

IN THE BORN-OPPENHEIMER APPROXIMATION USING THE PRIOR AND POST FORMULATION 

WITH AND WITHOUT 6T^^ OF EXPRESSION (5.4.1) AND (5.4.5).

E(eV) Prior Post with ôT^^

29.6 1.22 9.33,-1 8.78,-1

1.27 9.82,-1 9.17,-1

40.1 4.89,-1 4.28,-1 4.14,-1

5.11,-1 4.63,-1 4.32,-1

81.63 3.02,-2 3.43,-2 3.55,-2

3.15,-2 3.77,-2 3.70,-2

100 1.24,-2 1.47,-2 1.54,-2

1.29,-2 1.60,-2 1.61,-2

200 5.64,-4 6.60,-4 6.98,-4

5.91,-4 6.86,-4 7.31,-4

For each value of the energy E, the first line of the results is obtained using 

the excited state wave function of Cohen and McEachran and the second line using 

that of Morse et al. - see Appendix A for details.
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TABLE 6

DIFFERENTIAL CROSS SECTION IN UNITS OF a FOR ELECTRON II4PACT EXCITATIONo
OF H(2s) COMPUTED IN THE DWPO III MODEL AT INCIDENT ENERGIES OF 50 AND 100 eV. 

COLUM (i) GIVES THE NON-UNITARIZÊD RESULT AND COLUMN (ii) THE CORRESPONDING 
UNITARIZED RESULT.

0° 50 eV 100 eV

(i) (ii) (i) (ii)

0 1.61 3.32 2.54 4.69
5 1.21 1.86 1.31 1.44

10 6.3^-1 5.43,-1 4.34,-1 2.65,-1
15 2.93,-1 1.31,-1 1.42,-1 6.08,-2
20 1.33,-1 3.25,-1 5.03,-2 1.96,-2
25 6.20,-2 1.06,-2 1.94,-2 ' 8.51,-3
30 • 3.13,-2 5.37,-3 8.00,-3 5.09,-3
35 1.75,-2 3.97,-3 3.62,-3 3.69,-3
40 1.10,-2 3.52,-3 1.89,-3 2.77,-3
45 7.68,-3 3.30,-3 1.19,-3 2.23,-3
50 5.81,-3 3.13,-3 8.71,-4 1.87,-3
55 4.64,-3 2.94,-3 7.03,-4 1.57,-3
60 3.80,-3 2.71,-3 5.99,-4 1.33,-3
70 2.57,-3 2.23,-3 4.53,-4 8.99,-4
80 1.72,-3 1.79,-3 3.37,-4 6.61,-4
90 1.19,-3 1.44,-3 2.47,-4 4.57,-4

100 8.84,-4 1.23,-3 1.80,-4 3.55,-4
110 7.78,-4 1.16,-3 1.36,-4 2.71,-4
120 8.31,-4 1.19,-3 1.11,-4 2.23,-4
130 9.89,-4 1.31,-3 1.05,-4 2.05,-4
140 1.22,-3 1.49,-3 1.07,-4 1.88,-4
150 1.45,-3 1.68,-3 1.20,-4 2.03,-4
160 1.64,-3 1.83,-3 1.31,-4 1.95,-4
170 1.80,-3 1.94,-3 1.40,-4 2.15,-4
180 1.87,-3 1.99,-3 1.50,-4 1.90,-4

Integral 7.82,-2 6.54,-2 4.99,-2 4.48,-2
(it )
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TABLE 7

DIFFERENTIAL CROSS SECTION IN UNITS OF a ^sr ^o FOR ELECTRON IMPACT EXCITATION
OF H(2p) COMPUTED IN THE DWO III MODEL AT INCIDENT ENERGIES OF 50 AND 100
COLUMN (i) GIVES THE NON­UNITARIZED RESULT AND COLUMN (ii) THE CORRESPONDING
UNITARIZED RESULT.

8° 50 eV 100 eV

(i) (ii) (i) (ii)

0 3.88,+1 3. 5 7,+1 9.68,+l 9.35,+l
5 2.22,tl 1.96,+1 2.16,+1 2.00,+l

10 8.02 6.56 4.08 3.60
15 2.88 2.24 9.50,-1 8.60,-1
20 1.07 8.51,-1 2.45,-1 2.44,-1
25 4.14,-1 3.62,-1 6.76,-2 8.11,-2
30 1.65,-1 1.71,-1 2.04,-2' 3.32,-2
35 6.90,-2 8.93,-2 6.89,-3 1.61,-2
40 3.08,-2 5.16,-2 2.74,-3 8.95,-3
45 1.53,-2 3.31,-2 1.33,-3 5.58,-3
50 8.82,-3 2.30,-2 8.14,-4 3.75,-3
55 5.90,-3 1.68,-2 6.16,-4 2.72,-3
60 4.39,-3 1.27,-2 5.07,-4 2.06,-3
70 2.72,-3 7.35,-3 3.21,-4 1.14,-3
80 1.58,-3 4.18,-3 1. 85,-4 6.21,-4
90 7.69,-4 2.29,-3 9.40,-5 3.43,-4

100 4.19,-4 1.34,-3 7.44,-5 2.16,-4
110 5.17,-4 9.49,-4 1.02,-4 1.75,-4
120 8.88,-4 9.28,-4 1.31,-4 • 1.56,-4
130 1.43,-3 1.18,-3 1.62,-4 1.52,-4
140 2.14,-3 1.58,-3 2.18,-4 1.88,-4
150 3.03,-3 2.09,-3 3.26,-4 2.45,-4
160 3.96,-3 2.62,-3 4.78,-4 3.47,-4
170 4.68,-3 2.98,-3 6.25,-4 4.29,-4
180 4.96,-3 3.11,-3 6.94,-4 4.56,-4

Integral 8.93,-1 7.75,-1 6.63,-1 6.20,-1
(ir )
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TABLE 8(a)

DIFFERENTIAL CROSS SECTIONS IN UNITS OF a^^sr”^ FOR ELECTRON IMPACT EXCITATION
OF THE N = 2 LEVEL OF ATOMIC HYDROGEN COMPUTED IN THE D W O  III MODEL AT INCIDEl
ENERGIES OF (a) 1-.02, (b) 1.21 and (c) 1.44 Rydbergs. COLUMN (i) GIVES THE NON-
UNITARIZED PESULI AND COLUMN (ii) THE CORRESPONDING UNITARIZED RESULT.

E = 1.02 Rydbergs

0° 2s 2p Total
(i) (ii) (i) (ii) (i) (ii)

0 6.38 -2 2.48 -1 1.08 8.77,-1 1.15 1.13
5 6.15 -2 2.32 -1 1.05 8.30,-1 1.11 1.06

10 5.50 -2 1.89 -1 9.52,-1 7.06,-1 1.01 8.95,-1
15 4.59 -2 1.35 -1 8.11,-1 5.46,-1 8.57,-1 6.80,-1
20 3.60 -2 8.37 -2 6.55,-1 3.89,-1 6.92,-1 4.73,-1
25 2.69 -2 4.54 -2 5.09,-1 2.63,-1 5.36,-1 3.08,-1
30 1.97 -2 2.18 -2 3.83,-1 1.75,-1 4.03,-1 1.96,-1
35 1.48 -2 1.02 -2 2.80,-1 1.19,-1 2.95,-1 1.29,-1
40 1.20 -2 6.49 -3 2.01,-1 8.66,-2 2.13,-1 9.31,-2
45 1.11 -2 6.82 -3 1.43,-1 6.90,-2 1.54,-1 7.58,-2
50 1.16 -2 8.71 -3 1.01,-1 5.91,-2 1.13,-1 6.78,-2
55 1.29 -2 1.08 -2 7.09,-2 5.31,-2 8.38,-2 6.39,-2
60 1.48 -2 1.25 -2 5.01,-2 4.88,-2 5.16,-2 6.13,-2
70 1.89 -2 1.44 -2 2.79,-2 4.17,-2 4.68,-2 5.62,-2
80 2.26 -2 1.44 -2 2.31,-2 3.52,-2 4.57,-2 4.96,-2
90 2.57 -2 1.25 -2 3.13,-2 2.89,-2 5.70,-2 4.14,-2

100 2.85 -2 8.92 -3 5.00,-2 2.40,-2 7.85,-2 3.29,-2
110 3.11 -2 4.71 -3 7.74,-2 2.31,-2 1.09,-1 2.78,-2
120 3.38 -2 1.36 -3 1.11,-1 2.95,-2 1.45,-1 3.08,-2
130 3.66 -2 1.94 -4 1.48,-1 4.50,-2 1.84,-1 4.52,-2
140 3.93 -2 1.78 -3 1.84,-1 6.93,-2 2.24,-1 7.11,-2
150 4.17 -2 5.62 -3 2.17,-1 9.85,-2 2.59,-1 1.04,-1
160 4.37 -2 1.03 -2 2.43,-1 1.27,-1 2.87,-1 1.37,-1
170 4.50 -2 1.41 -2 2.60,-1 1.47 ,-l 3.05,-1 1.61,-1
180 4.54 -2 1.55 -2 2.66,-1 1.55,-1 3.11,-1 1.70,-1

Integral 1.09,-1 5.68 ,-2 5.65,-1 3.05,-1 6.74,-1 3.61,-1
(tt a ) o



TABLE 8(b)

E = 1.21 Rydbergs
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0° 2s 2p Total
(i) (ii) (i) (ii) (i) (ii)

0 1.59,-1 5.41,-1 2.70 2.24 2.86 2.78
5 1.51,-1 4.89,-1 2.55 2.07 2.70 2.56

10 1.28,-1 3.63,-1 2.18 1.65 2.30 2.01
15 9.72,-2 2.23,-1 1.71 1.16 1.81 1.38
20 6.70,-2 1.14,-1 1.26 7.44,-1 1.32 8.58,-1
25 4.20,-2 4.77,-2 8.83,-1 4.62,-1 9.25,-1 5.10,-1
30 2.39,-2 1.68,-2 6.08,-1 2.91.-1 6.32,-1 3.08,-1
35 1.25,-2 6.64,-3 4.13,-1 1.96,-1 4.26,-1 2.03,-1
40 6.46,-3 5.68,-3 2.81,-1 1.44,-1 2.88,-1 1.49,-1
45 4.12,-3 7.42,-3 1.94,-1 1.13,-1 1.98,-1 1.21,-1
50 4.06,-3 9.07,-3 1.36,-1 9.30,-2 1.40,-1 1.02,-1
55 5.19,-3 9.90,-3 9.66,-2 7.77,-2 1.02,-1 8.76,-2
60 6.80,-3 1.00,-2 6.98,-2 6.52,-2 7.67,-2 7.52,-2
70 9.91,-3 9.30,-3 3.79,-2 4.58,-2 4.78,-2 5.51,-2
80 1.22,-2 8.00,-3 2.28,-2 3.26,-2 3.50,-2 4.06,-2
90 1.38,-2 6.15,-3 1.98,-2 2.45,-2 3.36,-2 3.06,-2

100 1.55,-2 3.88,-3 2.68,-2 2.09,-2 4.24,-2 2.48,-2
110 1.76,-2 1.83,-3 4.25,-2 2.23,-2 6.01,-2 2.41,-2
120 2.02,-2 8.65,-4 5.50,-2 2.94,-2 8.53,-2 3.03,-2
130 2.32,-2 1.65,-3 9.15,-2 4.24,-2 1.15,-1 4.41,-2
140 2.64,-2 4.29,-3 1.19,-1 6.00,-2 1.45,-1 6.43,-2
150 2.93,-2 8.23,-3 1.44,-1 7.96,-2 1.74,-1 8.79,-2
160 3.16,-2 1.24,-2 1.65,-1 9.76,-2 1.97,-1 1.10,-1
170 3.31,-2 1.55,-2 1.78,-1 1.10,-1 2.11,-1 1.26,-1
180 3.37,-2 1.67,-2 1.83,-1 1.15,-1 2.17,-1 1.32,-1

Integral 7.80,-2 6.36,-2 7.00,-1 4.44,-1 7.78,-1 5.07,-1
(tt a^2)



TABLE 8(c)

E = 1.44 Rydbergs
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0° 2s 2p Total

(i) (ii) (i) (ii) (i) (ii)

0 3.22,-1 9.16,-1 5.22 4.42 5.54 5.34
5 3.00,-1 7.95,-1 4.80 3.96 5.10 4.75

10 2.43,-1 5.29,-1 3.78 2.88 4.03 3.41
15 1.74,-1 2.75,-1 2.67 1.81 2.84 2.09
20 1.13,-1 1.14,-1 1.76 1.06 1.87 1.17
25 6.76,-2 3.72,-2 1.11 6.04,-1 1.18 6.41,-1
30 3.78,-2 1.03,-2 6.96,-1 3.65,-1 7.33,-1 3.75,-1
35 2.05,-2 4.95,-3 4.35,-1 2.38,-1 4.55,-1 2.43,-1
40 1.18,-2 5.88,-3 2.80,-1 1.71,-1 2.92,-1 1.77,-1
45 8.05,-3 7.27,-3 1.85,-1 1.30,-1 1.93,-1 1.37,-1
50 7.02,-3 7.66,-3 1.27,-1 1.02,-1 1.34,-1 1.10,-1
55 7.16,-3 7.28,-3 9.08,-2 8.16,-2 9.79,-2 8.89,-2
60 7.63,-3 6.52,-3 6.62,-2 6.57,-2 7.38,-2 7.22,-2
70 8.26,-3 4.86,-3 3.67,-2 4.29,-2 4.50,-2 4.77,-2
80 8.23,-3 3.42,-3 2.06,-2 2.85,-2 2.88,-2 3.19,-2
90 8.12,-3 2.19,-3 1.34,-2 2.01,-2 2.15,-2 2.23,-2

100 8.57,-3 1.26,-3 1.40,-2 1.63,-2 2.26,-2 1.76,-2
110 9.87,-3 9.88,-4 2.14,-2 1.68,-2 3.12,-2 1.77,-2
120 1.20,-2 1.71,-3 3.41,-2 2.12,-2 4.60,-2 2.30,-2
130 1.46,-2 3.57,-3 5.03,-2 2.91,-2 6.49,-2 3.27,-2
140 1.74,-2 6.41,-3 6.80,-2 3.91,-2 8.54,-2 4.55,-2
150 2.01,-2 9.74,-3 8.47,-2 4.95,-2 1.05,-1 5.92,-2
160 2.22,-2 1.28,-2 9.86,-2 5.86,-2 1.21,-1 7.14,-2
170 2.36,-2 1.50,r2 1.08,-1 6.49,-2 1.31,-1 7.99,-2
180 2.41,-2 1.57,-2 1.11,-1 6.76,-2 1.35,-1 8.33,-2

Integral 7.70,-2 6.92,-2 8.13,-1 5.58,-1 8.90,-1 6.27,-1
(ir )
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TABLE 9(a)

2 -1DIFFERENTIAL CROSS SECTIONS IN UNITS OF a^ sr FOR ELECTRON IMPACT EXCITATION 

OF THE N = 2 LEVEL OF ATOMIC HYDROGEN COMPUTED IN THE DWPO III MODEL AT 

INCIDENT ENERGIES OF (a) 54.4 eV (= 4 RydJ AND (b) 100 eV. THE FOURTH COLUMN 

GIVES THE TOTAL UNITARIZED RESULT.

E = 54.4 eV

8 2s 2p Total

0 1.73 4.39,+l 4.56,+l 4.42,+l
5 1.25 2.31,+1 2.43,+l 2.24,+l

10 6.24,-1 7.66 8.28 6.82
15 2.76,-1 2.60 2.88 2.18
20 1.21,-1 9.29,-1 1.05 7.88,-1
25 5.52,-2 3.45,-1 4.00,-1 3.24,-1
30 2.73,-2 1.33,-1 1.60,-1 1.50,-1
35 1.50,-2 5.36,-2 6.86,-2 7.87,-2
40 9.22,-3 2.32,-2 3.25,-2 4.66,-2
45 6.35,-3 1.13,-2 1.77,-2 3.08,-2
50 4.77,-3 6.43,-3 1.12,-2 2.19,-2
55 3.78,-3 4.31,-3 8.09,-3 1.65,-2
60 3.07,-3 3.26,-3 6.33,-3 1.28,-2
70 2.09,-3 2.09,-3 4.19,-3 8.03,-3
80 1.44,-3 1.20,-3 2.64,-3 4.98,-3
90 9.91,-4 5.84,-4 1.58,-3 3.13,-3

100 7.33,-4 3.39,-4 1.07,-3 2.14,-3
110 6.29,-4 4.08,-4 1.04,-3 1.75,-3
120 6.49,-4 6.79,-4 1.33,-3 1.72,-3
130 7.56,-4 1.07,-3 1.83,-3 1.95,-3
140 9.12,-4 1.59,-3 2.50,-3 2.38,-3
150 1.09,-3 2.26,-3 3.35,-3 2.91,-3
160 1.23,-3 3.00,-3 4.23,-3 3.44,-3
170 1.34,-3 3.59,-3 4.92,-3 3.83,-3
180 1.38,-3 3.81,-3 5.19,-3 3.97,-3

Integral 7.46,-2 , 8.70,-1 9.44,-1 8.27,-1
(rr )



TABLE 9(b)

E = 100 eV

210

0° 2s 2p Total

0 2.54 9.68,+l 9.94,+l 9.82,+l
5 1.31 2.16,tl 2.30,+l 2.14,+1

10 4.34,-1 4.08 4.51 3.87
15 1.42,-1 9.50,-1 1.09 9.20,-1
20 5.03,-2 2.45,-1 2.95,-1 2.63,-1
25 1.94,-2 6.76,-2 8.69,-2 8.96,-2
30 8.00,-3 2.04,-2 2.84,-2 3.83,-2
35 3.62,-3 6.89,-3 1.05,-2 1.98,-2
40 1.89,-3 2.74,-3 4.63,-3 1.17,-2
45 1.19,-3 1.33,-3 2.52,-3 7.80,-3
50 8.71,-4 8.16,-4 1.68,-3 5.63,-3
55 7.03,-4 6.16,-4 1.32,-3 4.30,-3
60 5.99,-4 5.07,-4 1.11,-3 3.39,-3
70 4.53,-4 3.21,-4 7.74,-4 2.04,-3
80 3.37,-4 1.85,-4 5.23,-4 1.28,-3
90 2.47,-4 9.40,-5 3.42,-4 8.00,-4

100 1.80,-4 7.44,-5 2.55,-4 5.71,-4
110 1.36,-4 1.02,-4 2.37,-4 4.46,-4
120 1.11,-4 1.31,-4 2.42,-4 3.79,-4
130 . 1.05,-4 1.62,-4 2.67,-4 3.57,-4
140 1.07,-4 2.18,-4 3.25,-4 3.76,-4
150 1.20,-4 3.26,-4 4.47,-4 4.48,-4
160 1.31,-4 4.78,-4 6.08,-4 5.42,-4
170 1.40,-4 6.25,-4 7.65,-4 6.44,-4
180 1.50,-4 6.94,-4 8.44,-4 6.46,-4

Integral 4.99,-2 6.63,-1 7.13,-1 6.65,-1
(TT )
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TABLE 11(a)

DIFFERENTIAL CROSS SECTION IN UNITS OF a ^sr~^ FOR ELECTRON IMPACT EXCITATIONo
OF He(2^S) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF

(a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV AND (e) 200 eV. COLUMN 

(A) IS OBTAINED USING THE EXCITED STATE WAVE FUNCTION OF COHEN AND McEACHRAN AND (B) 

USING THAT OF BYRON AND JOACHAIN - SEE APPENDIX A FOR DETAILS.

E = 29.6 eV

(I) (II)

(A) (B) (A) (B)
0 2.34,-1 2.34,-2 2.52,-2 2.52,-2
5 2.29,-2 2.29,-2 2.44,-2 2.45,-2

10 2.15,-2 . 2.15,-2 2.24,-2 2.24,-2
15 1.93,-2 1.93,-2 1.95,-2 1.94,-2
20 1.66,-2 1.66,-2 1.61,-2 1.60,-2
25 1.38,-2 1.37,-2 1.28,-2 1.26,-2
30 1.11,-2 1.10,-2 9.80,-3 9.62,-3
35 8.64,-3 8.47,-3 7.40,-3 7.17,-3
40 6.64,-3 6.43,-3 5.63,-3 5.35,-3
45 5.14,-3 4.88,-3 4.43,-3 4.12,-3
50 4.12,-3 3.82,-3 3.74,-3 3.40,-3
55 3.53,-3 3.20,-3 3.44,-3 3.08,-3
60 3.29,-3 2.96,-3 3.42,-3 3.04,-3
70 3.57,-3 3.18,-3 3.90,-3 3.49,-3
80 4.36,-3 3.95,-3 4.63,-3 4.21,-3
90 5.28,-3 4.85,-3 5.35,-3 4.91,-3

100 6.13,-3 5.69,-3 5.95,-3 5.50,-3
110 6.84,-3 6.39,-3 6.42,-3 5.96,-3
120 7.40,-3 6.95,-3 6.77,-3 6.31,-3
130 7.84,-3 7.38,-3 7.04,-3 6.57,-3
140 8.17,-3 7.70,-3 7.25,-3 6.76,-3
150 8.41,-3 7.94,-3 7.40,-3 6.91,-3
160 8.58,-3 8.11,-3 7.50,-3 7.01,-3
170 8.68,-3 8.20,-3 7.56,-3 7.07,-3
180 8.71,-3 8.23,-3 7.58,-3 7.09,-3

Integral 2.70,-2 2.55,-2 2.55,-2 2.40,-2
(tt a^ )



TABLE 11(b)

E = 40.1 eV
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(I) (II)

0
5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

(A)

4.66
4.50
4.05 
3.40
2.65 
1.93 
1.30 
8.02 
4.54 
2.35
1.19
7.66
8.20 
1.60 
2.56 
3.34
3.89 
4.26 
4.49
4.6 5 
4.76 
4.83 
4.88
4.90
4.91

,-2
,-2
,-2
,-2
,-2
,-2
,-2
,-3

,-3
,-3
,-4
,-4
9-3
9-3
9-3
9-3
9-3
9-3
-3
-3
-3
-3
-3
-3

(B)

4.71 
4.55
4.09 
3.44
2.69 
1.95
1.32 
8.15 
4.59 
2.35 
1.14 
6.87 
7.17
1.47 
2.42 
3.19 
3.74
4.10
4.33
4.48 
4.58 
4.65
4.69
4.71
4.72

, - 2

, - 2

,-2
, - 2

, - 2

,-2
,-2
9-3
9-3
9-3
9-3
,-4
,-4
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3

(A)

5.78 
5.46
4.64 
3.57 
2.52
1.64
9.85 
5.44
2.78 
1.40
8.70 
8.63 
1.14
1.96
2.70 
3.22 
3.55 
3.74
3.85 
3.92
3.97 
4.00 
4.02
4.03
4.03

-2
-2
-2
-2
-2
-2

-3
9-3
9-3
9-3
,-4
,-4
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3

(B)

5.85.-2
5.53
4.69
3.61
2.55 
1.66 
9.96 
5.48
2.76 
1.34 
7.83 
7.57 
1.02 
1.82
2.56 
3.07 
3.38
3.56 
3.67 
3.73
3.76 
3.79
3.81
3.82
3.82

-2
-2
-2
-2
-2

-3
-3
-3
-3
-4
-4
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3
-3

Intégral
(tt a ^) o

2.04,-2 2.01,-2 1.87,-2 1.83,-2



TABLE 11(c)

E = 81.63 eV
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(I) (II)

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

(A)

1.07
1.00
8.16
5.81
3.67 
2.06 
1.03 
4.54
1.71 
5.36 
1.87
1.92 
3.16
5.68 
5.97
7.30 
7.20
6.92 
6.58
6.30 
6.09 
5.90 
5.75
5.72 
5.74

,-l
9-1
, - 2

,-2
, - 2

, - 2

, - 2

9-3
9-3
9-4
,-4
,-4
,-4
9-4
,-4
9-4
,-4
,-4
9-4
,-4
,-4
9-4
,-4
,-4
,-4

(B)

1.08,-1
1.00
8.17
5.83
3.69 
2.07 
1.04 
4.56
1.70
5.19 
1.74 
1.88 
3.23
5.91 
7.28 
7.62 
7.50
7.20
6.83 
6.53 
6.30 
6.09 
5.94
5.91
5.92

-1
-2
-2
-2
-2

-2

-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4

(A)

1.67
1.42 
9.52 
5.56 
2.94
1.42 
6.20 
2.38
7.60 
2.15 
1.30 
2.11 
3.29 
5.17 
5.93
5.97 
5.85
5.60 
5.20
4.97 
4.89 
4.65 
4.44 
4.58 
4.77

,-l
,-l
,-2
,-2
,-2
,-2
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
,-4
9-4
,-4
9-4
,-4
,-4
,-4
,-4
,-4
9-4
,-4

(B)

1.67
1.43
9.57
5.59
2.95
1.42
6.19
2.35
7.35 
1.98 
1.25 
2.16
3.42 
5.38 
6.17
6.20 
6.05 
5.78
5.36 
5.10 
5.02 
4.77 
4.55 
4.69 
4.87

,-l
,-l
,-2
, - 2

,-2
, - 2

9-3
9-3
,-4
,-4
,-4
9-4
,-4
,-4
9-4
,-4
,-4
,-4
,-4
9-4
9-4
,-4
,-4
,-4
,-4

Integral
(tt

1.41,-2 1.42,-2 1.31,-2 1.32,-2



TABLE 11(d)

E = 100 eV
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(A)
(I)

(B)
(II)

(A) (B)

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90

100
110
120
130
140
150
160
170
180

1.22
1.12
8.75
5.87
3.43
1.77 
8.18 
3.38 
1.26 
4.70 
2.60 
2.66 
3.29 
4.31 
4.58 
4.42 
4.10
3.77 
3.48 
3.25 
3.07 
2.93 
2.84
2.78 
2.77

,-l
,-l
,-2
,-2
, - 2

, - 2

9-3
9-3
9-3
,-4
,-4
,-4
j-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4

1.22
1.12
8.77 
5.88 
3.44
1.78 
8.19 
3.35 
1.22
4.38 
2.40 
2.59 
3.34 
4.51 
4.85 
4.70
4.38 
4.03 
3.73 
3.48 
3.29 
3.15 
3.06 
3.00 
2.98

-1
-1
-2
-2

-2

-2
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4

1.98
1.62
9.92
5.33 
2.60 
1.17 
4.86 
1.85 
6.55 
2.70 
2.03 
2.38 
2.94 
3.64 
3.75 
3.57 
3.30 
3.02 
2.78 
2.59 
2.44
2.33 
2.26 
2 . 2 2  

2.21

,-l
,-l
9-2
,-2
, - 2

9-2
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
9-4
,-4
,-4
,-4
,-4
,-4
,-4
9-4
,-4
,-4
,-4

2.00
1.62
9.97 
5.34 
2.60 
1.17
4.80
1.79 
6.11 
2.43 
1.90
2.38 
3.01
3.81
3.97
3.80
3.52 
3.23 
2.99 
2.79 
2.64
2.53 
2.45 
2.40
2.39

-1
-1
-2
-2

-2
-2

-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4

Integral 
(ir a^2)

1.30,-2 1.31,-2 1.23,-2 1.23,-2



TABLE 11(e)

E = 200 eV
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(I) (II)
(A) (B) (A) (B)

0 1.57,-1 1.57,-1 2.94,-1 2.96,
5 1.33,-1 1.34,-1 1.84,-1 1.85,

1 0 8 .37,-2 8.41,-2 8 .0 1 , - 2 8.04,
15 4 .II9 - 2 4.13,-2 3.11,-2 3.12,
2 0 1.69,-2 1.70,-2 1.13,-2 1.13,
25 6.16,-3 6.19,-3 3.99,-3 3.96,
30 2.14,-3 2.12,-3 1.41,-3 1.38,
35 7.77,-4 7.55,-4 5.48,-4 5.26,
40 3.49,-4 3.31,-4 2.67,-4 2.53,
45 2.20,-4 2.10,-4 1.76,-4 1 .6 8 ,
50 1.78,-4 1.74,-4 1.44,-4 1.40,
55 1.58,-4 1.58,-4 1.27,-4 1.26,
60 1.43,-4 1.45,-4 1.15,-4 1.16,
70 1.14,-4 1.19,-4 9.18,-5 9.47,
80 8.91,-5 9.42,-5 7.20,-5 7.58,
90 6.98,-5 7.48,-5 5.70,-5 6 .1 1 ,

1 0 0 5.58,-5 6.07,-5 4.59,-5 5.02,
1 1 0 4.56,-5 5.04,-5 3.78,-5 4.21,
1 2 0 3.83,-5 4.30,-5 3.19,-5 3.62,
130 3.31,-5 3.77,-5 2.77,-5 3.20,
140 2.95,-5 3.40,-5 2.47,-5 2.90,
150 2.69,-5 3.14,-5 2.26,-5 2 .6 8 ,
160 2.52,-5 2.97,-5 2.13,-5 2.55,
170 2.43,-5 2.87,-5 2.05,-5 2.47,
180 2.41,-5 2.85,-5 2.05,-5 2.47,

Integral 8.65,-3 8.70,-3 8 .43,-3 8.47,

>9-1
,-l
,-2
, - 2

,-2
9 - 3

9 — 3

,-4
,-4
,-4
,-4
,-4
,-4
9 - 5

.9 - 5

■9 - 5

9 - 5

■9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

(ir
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TABLE 12(a)

DIFFERENTIAL CROSS SECTION IN UNITS 2 -1 OF a sr o FOR ELECTRON IMPi

OF He(2^S) COMPUTED IN THE DWPO III MODEL AT INCIDENT ENERGIES

40.1, 81.63 eV and (b) 100 AND 200 eV.

8° 29.6 eV 40.1 eV 81.63 e

0 2.28,-2 5.48,-2 1.64,-1
5 2.21,-2 5.18,-2 1.40,-1

10 2.02,-2 4.38,-2 9.36,-2
15 1.74,-2 3.36,-2 5.46,-2
20 1.43,-2 2.36,-2 2.88,-2
25 1.12,-2 1.53,-2 1.39,-2
30 8.49,-3 9.11,-3 6.03,-3
35 6.28,-3 4.96,-3 2.27,-3
40 4.65,-3 2.46,-3 6.95,-4
45 3.56,-3 1.17,-3 1.79,-4
50 2.93,-3 6.81,-4 1.20,-4
55 2.65,-3 6•80,-4 2.25,-4
60 2.63,-3 9.38,-4 3.63,-4
70 3.05,-3 1.70,-3 5.71,-4
80 3.70,-3 2.36,-3 6.44,-4
90 4.31,-3 2.80,-3 6.26,-4

100 4.81,-3 3.04,-3 5.82,-4
110 5.19,-3 3.16,-3 5.24,-4
120 5.46,-3 3.21,-3 4.55,-4
130 5.66,-3 3.22,-3 4.06,-4
140 5.81,-3 3.22,-3 3.78,-4
150 5.92,-3 3.22,-3 3.42,-4
160 6.00,-3 3.23,-3 3.14,-4
170 6.04,-3 3.23,-3 3.21,-4
180 6.06,-3 3.23,-3 3.35,-4

Integral 2.09,-2 1.65,-2 1.28,-2
(ir )



TABLE 12(b)
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8° 100 eV 200 eV

0 1.97,-1 2.96,-1
5 1.60,-1 1.84,-1

10 9.82,-2 8.03,-2
15 5.26,-2 3.12,-2
20 2.57,-2 1.14,-2
25 1.15,-2 3.98,-3
30 4.72,-3 1.37,-3
35 1.74,-3 5.03,-4
40 5.78,-4 2.33,-4
45 2.22,-4 1.57,-4
50 1.84,-4 1.37,-4
55 2.46,-4 1.31,-4
60 3.22,-4 1.25,-4
70 4.14 ,-4 1.07,-4
80 4.24,-4 8.55,-5
90 3.91,-4 6.58,-5

100 3.41,-4 4.92,-5
110 2.90,-4 3.59,-5
120 2.45,-4 2.59,-5
130 2.08,-4 1.86,-5
140 1.81,-4 1.34,-5
150 1.61,-4 9.93,-6
160 1.48,-4 7.75,-6
170 1.40,-4 6.58,-6
180 1.38,-4 6.31,-6

Integral 1.21,-2 8.44,-3
(tt a/2)
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TABLE 13(a)

DIFFERENTIAL CROSS SECTION IN UNITS OF 2 -1 a sr o FOR ELECTRON IMPACT EXC

OF He(3^S) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERC

(a) 29.2 AND 39.7 eV AND (b) 100 AND 200 eV.

0° 29.2 eV 39.7 eV
DV/PO I mrpo II DWPO I DlfPO II

0 3.15,-3 3.21,-3 7.35,-3 8.78,-3
5 3.11,-3 3.15,-3 7.14,-3 8.38,-3

10 2.97,-3 2.98,-3 6.54,-3 7.32,-3
15 2.77,-3 2.73,-3 5.66,-3 5.88,-3
20 2.51,-3 2.42,-3 4.61,-3 4.38,-3
25 2.23,-3 2.10,-3 3.53,-3 3.04,-3
30 1.94 ,-3 1.80,-3 2.53,-3 1.98,-3
35 1.67,-3 1.54,-3 1.70,-3 1.22,-3
40 1.44,-3 1.33,-3 1.08,-3 7.32,-4
45 1.25,-3 1.18,-3 6.59,-4 4.66,-4
50 1.12,-3 1.09,^3 4.22,-4 3.58,-4
55 1.03,-3 1.04,-3 3.26,-4 3.56,-4
60 9.99,-4 1.04,-3 3.31,-4 4.15,-4
70 1.04,-3 1.11,-3 5.01,-4 6.04,-4
80 1.17,-3 1.24,-3 7.30,-4 7.84,-4
90 1.34,-3 1.37,-3 9.30,-4 9.17,-4

100 1.51,-3 1.49,-3 1.08,-3 1.00,-3
110 1.66,-3 1.59,-3 1.18,-3 1.05,-3
120 1.78,-3 1.67,-3 1.24,-3 1.08,-3
130 1.88,-3 1.73,-3 1.29,-3 1.10,-3
140 1.96,-3 1.78,-3 1.32,-3 1.11,-3
150 2.01,-3 1.81,-3 1.34,-3 1.12,-3
160 2.05,-3 1.84,-3 1.35,-3 1.13,-3
170 2.08,-3 1.85,-3 1.36,-3 1.13,-3
180 2.08,-3 1.85,-3 1.36,-3 1.13,-3

Integral 6.24,-3 6.03,-3 4.88,-3 4.50,-3
(n



TABLE 13(b)
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100 eV 200 eV
DWPO I DWPO II DWPO I DWPO II

0 2.30,-2 3.79,-2 3.03,-2 5.71,-2
5 2.15,-2 2.17,-2 2.67,-2 3.88,-2

10 1.76,-2 2.06,-2 1.83,-2 1.80,-2
15 1.26,-2 1.17,-2 9.89,-3 7.50,-3
20 7.90,-3 6.02,-3 4.39,-3 2.92,-3
25 4.36,-3 2.85,-3 1.70,-3 1.07,-3
30 2.13,-3 1.24,-3 6.05,-4 3.91,-4
35 9.20,-4 4.83,-4 2.18,-4 1.48,-4
40 3.52,-4 1.71,-4 9.31,-5 6.92,-5
45 1.26,-4 6.40,-5 5.51 ,.-5 4.33,-5
50 5.9ik-5 4.23,-5 4.34,-5 3.47,-5
55 5.64,-5 5.06,-5 3.87,-5 3.06,-5
60 7.26,-5 6.54,-5 3.52,-5 2.82,-5
70 1.02,-4 8.64,-5 2.87,-5 2.29,-5
80 1.13,-4 9.17,-5 2.27,-5 1.81,-5
90 1.11,-4 8.84,-5 1.79,-5 1.42,-5
100 1.04,-4 8.20,-5^ 1.43,-5 1.14,-5
110 9.56,-5 7.52,-5 1.17,-5 9.44,-6
120 8.84,-5 6.92,-5 9.85,-6 8.05,-6
130 8.24,-5 6.43,-5 8.51,-6 7.04,-6
140 7.77,-5 6.06,-5 7.55,-6 6.29,-6
150 7.42,-5 5.78,-5 6.90,-6 5.69,-6
160 7.18,-5 5.59,-5 6.47,-6 5.26,-6
170 7.05,-5 5*48 ,-5 6.22,-6 4.98,-6
180 7.00,-5 5.46,-5 6.11,-6 4.58,-6

Integral 2.89,-3 2.68,-3 1.99,-3 1.91.-3
(. a/)
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TABLE 14(a)

DIFFERENTIAL CROSS SECTION IN UNITS OF a sr FOR ELECTRON IMPACT EXCITATION
OF He(4^S) COMPUTED IN THE

o
DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF

(a) 50 AND 6C •eV AND (b) 100 AND 200 eV.

0° 50 eV 60 eV
DV7P0 I DWPO II DWPO I DWPO II

0 3.98,-3 5.23,-3 5.20,-3 7.37,-3
5 3.84,-3 4.91,-3 5.00,-3 6.77,-3

10 3.45,-3 4.07,-3 4.42,-3 5.34,-3
15 2.88,-3 3.03,-3 3.59,-3 3.73,-3
20 2.23,-3 2.06,-3 2.67,-3 2.35,-3
25 1.59,-3 1.27,-3 1.80,-3 1.35,-3
30 1.04,-3 7.13,-4 1.09,-3 6.91,-4
35 6.09,-4 3.55,-4 5.84,-4 3.06,-4
40 3.12,-4 1.53,-4 2.63,-4 1.06,-4
45 1.35,-4 5.91,-5 8.90,-5 2.15,-5
50 4.95,-5 3.28,-5 1.52,-5 1.72,-6
55 2.68,-5 4.42,-5 9.97,-6 1.36,-5
60 4.13,-5 7.33,-5 1.71,-5 3.76,-5
70 1.14,-4 1.41,-4 7.49,-5 8.62,-5
80 1.87,-4 1.92,-4 1.23,-4 1.18,-4
90 2.38,-4 2.23,-4 1.51,-4 1.33,-4

100 2.69,-4 2.38,-4 1.65,-4 1.39,-4
110 2.85,-4 2.44,-4 1.70,-4 1.39,-4
120 2.95,-4 2.45,-4 1.71,-4 1.37,-4
130 3.00,-4 2.46,-4 1.70,-4 1.34,-4
140 3.02,-4 2.45,-4 1.68,-4 1.32,-4
150 3.02,-4 2.44,-4 1.67,-4 1.30,-4
160 3.03,-4 2.43,-4 1.66,-4 1.29,-4
170 3.03,-4 2.42,-4 1.65,-4 1.29,-4
180 3.03,-4 2.42,-4 1.65,-4 1.28,-4

Integral 1.49,-3 1.34,-3 1.30,-3 1.16,-3
(ïï a ^) 

o



TABLE 14(b)
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100 eV 200 eV
DWPO I DWPOII DWPO I DV7P0 II

0 8.36,-2 1.38,-2 1.12,-2 2.11,-2
5 7.86,-3 1.16,-2 9.90,-3 1.45,-2

10 6.52,-3 7.67,-3 6.92,-3 6.87,-3
15 4.76,-3 4.42,-3 3.86,-3 2.93,-3
20 3.04,-3 2.32,-3 1.76,-3 1.16,-3
25 1.72,-3 1.12,-3 6.89,-4 4.30,-4
30 8.55,-4 4.93,-4 2.48,-4 1.59,-4
35 3.77,-4 1.96,-4 8.98,-5 6.00,-5
40 1.46,-4 7.04,-5 3.78,-5 2.76,-5
45 5.26,-5 2.60,-5 2.18,-5 1.70,-5
50 2.38,-5 1.63,-5 1.71,-5 1.35,-5
55 2.15,-5 1.92,-5 1.52,-5 1.19,-5
60 2.76,-5 2.49,-5 1.38,-5 1.10,-5
70 3.96,-5 3.33,-5 1.15,-5 9.05,-6
80 4.40,-5 3.55,-5 9.04,-6 7.20,-6
90 4.33,-5 3.43,-5 7.21,-6 5.68 ,-6
100 4.05,-5 3.17,-5 5.74,-6 4.58,-6
110 3.73,-5 2.90,-5 4.73,-6 3.78,-6
120 3.44,-5 2.66,-5 3.96,-6 3.22,-6
130 3.19,-5 2.46,-5 3.43,-6 2.82,-6
140 3.00,-5 2.31,-5 ■ 3.05,-6 2.52,-6
150 2.86,-5 2.20,-5 2.78,-6 2.28,-6
160 2.77,-5 2.12,-5 2.61,-6 2.11,-6
170 2.71,-5 2.08,-5 2.50,-6 2.00,-6
180 2.69,-5 2.06,-5 2.53,-6 1.86,-6

Integral 1.10,-3 1.02,-3 7.67,-4 7.35,-4
(w
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TABLE 15(a)
DIFFERENTIAL CROSS SECTION IN UNITS OF a ^sr“^o FOR ELECTRON IMPACT EXC
OF He(S^S) COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERC
(a) 50 AND 60 eV AND (b) 100 AND 200 eV.

0° 50 eV 60 eV
DWPO I DWPO II DWPO I DWPO II

0 1.86,-3 2.45,-3 2.45,-3 3.47,-3
5 1.80,-3 2.30,-3 2.36,-3 3.20,-3

10 1.62,-3 1.92,-3 2.09,-3 2.53,-3
15 1.36,-3 1.44,-3 1.71,-3 1.78,-3
20 1.06,-3 9.79,-4 1.28,-3 1.13,-3
25 7.64,-4 6.10,-4 8.68,-4 6.51,-4
30 5.01,-4 3.44,-4 5.31,-4 3.36,-4
35 2.96,-4 1.73,-4 2.86,-4 1.49,-4
40 1.53,-4 7.56,-5 1.30,-4 5.22,-5
45 6.7 %-5 2.98,-5 4.45,-5 1.09,-5
50 2.53,-5 1.68,-5 7.92,-6 1.08,-6
55 1.37,-5 2.22,-5 5.93,-7 6.88,-6
60 2.04,-5 3.62,-5 8.38,-6 1.87,-5
70 5.55,-5 6.92,-5 3.70,-5 4.29,-5
80 9.13,-5 9.45,-5 6.10,-5 5.87,-5
90 1.17,-4 1.10,-4 7.52,-5 6.65,-5

100 1.32,-4 1.17,-4 8.21,-5 6.92,-5
110 1.41,-4 1.20,-4 8.47,-5 6.93,-5
120 1.45,-4 1.21,-4 8.51,-5 6.84,-5
130 1.47,-4 1.21,-4 8.47,-5 6.71,-5
140 1.48,-4 1.20,-4 8.40,-5 6.60,-5
150 1.49,-4 1.20,-4 8.33,-5 6.50,-5
160 1.49,-4 1.19,-4 8.27,-5 6.43,-5
170 1.49,-4 1.19,-4 8.24,-5 6.39,-5
180 1.49,-4 1.19,-4 8.23,-5 6.38,-5

Integral 7.22,-4 6.50,-4 6.31,-4 5.64,-4
(w a ^) o
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100 eV 200 eV
DWPO I DWPO II DWPO I DWPO II

0 3.98,-3 6.59,-3 5.29,-3 1.01,-2
5 3.75,-3 5.57,-3 4.73,-3 7.01,-3

10 3.13,-3 3.70,-3 3.37,-3 3.35,-3
15 2.30,-3 2.15,-3 1.90,-3 1.44,-3
20 1.48,-3 1.13,-3 8.72,-4 5.75,-4
25 8.44,-4 5.50,-4 3.45,-4 2.15,-4
. 30 4.24,-4 2.44,-4 1.25,-4 7.94,-5
35 1.88,-4 9.73,-5 4.51,-5 3.00,-5
40 7.34,-5 3.49,-5 1.88,-5 1.37,-5
45 2.63,-5 1.27,-5 1.08,-5 8.36,-6
50 1.16,-5 7.83,-6 8.37,-6 6.63,-6
55 1.04,-5 9.24,-6 7.47,-6 5.87,-6
60 1.34,-5 1.21,-5 6.86,-6 5.44,-6
70 1.95,-5 1.64,-5 5.66,-6 4.48,-6
80 2.18,-5 1.76,-5 4.51,-6 3.57,-6
90 2.15,-5 1.70,-5 3.57,-6 2.83,-6

100 2.01,-5 1.57,-5 2.87,-6 2.28,-6
110 1.86,-5 1.44,-5 2.35,-6 1.88,-6
120 1.71,-5 1.32,-5 1.98,-6 1.61,-6
130 1.59,-5 1.22,-5 1.71,-6 1.40,-6
140 1.49,-5 1.15,-5 1.52,-6 1.26,-6
150 1.42,-5 1.09,-5 1.39,-6 1.14,-6
160 1.38,-5 1.05,-5 1.30,-6 1.06,-6
170 1.35,-5 1.03,-5 1.25,-6 1.00,-6
180 1.34,-5 1.02,-5 1.23,-6 9.33,-7

Integral 5.37,-4 4.93,-4 3.75,-4 3.59,-4
(ïï a ^) o



225

TABLE 16

TOTAL CROSS SECTION IN UNITS OF ir a  ̂ FOR ELECTRON IMPACTo
EXCITATION OF He(2^S) COMPUTED IN THE DWPO I MODEL.

E(eV) T.C.S.

25 7.80,-3

30 2.18,-3
40 • 3.80,-3

50 4.83,-3

60 4.58,-3

70 3.93,-3

80 3.26,-3

90 2.66,-3

100 2.16,-3

125 1.32,-3

150 8.41,-4

200 3.98,-4

300 1.27,-4
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TABLE 17(a)

DIFFERENTIAL CROSS SECTION IN UNITS OF a^^sr"^ FOR ELECTRON IMPACT•EXCITATION OF 

He(2^S) COMPUTED IN THE DWPO I MODEL AT INCIDENT ENERGIES OF (a) 29.6 AND 40.1 eV,

(b) 81.63 AND 100 eV AND (c) 200 eV. COLUMN (A) IS OBTAINED USING THE EXCITED 

STATE WAVE FUNCTION OF COHEN AND McEACHRAN AND (B) USING THAT OF MORSE ET AL. - 
SEE APPENDIX A FOR DETAILS.

0 29.6 eV 40.1 eV
(A) (B) (A) (B)

0 1.84,-3 '2.64,-3 1.69,-3 1.59,-3
5 1.76,-3 2.55,-3 1.59,-3 1.47,-3

10 1.53,-3 2.30,-3 1.31,-3 1.16,-3
15 1.20,-3 1.94,-3 9.70,-4 7.76,-4
20 8.46,-4 1.54,-3 7.00,-4 4.51,-4
25 5.22,-4 1.17,-3 5.86,-4 2.88,-4
30 2.82,-4 8.86,-4 6.57,-4 3.20,-4
35 1.49,-4 7.17,-4 8.75,-4 5.14,-4
40 1.24,-4 6.64,-4 1.16,-3 7.97,-4
45 1.83,-4 7.06,-4 1.44,-3 1.08,-3
50 2.93,-4 8.09,-4 1.64,-3 1.30,-3
55 4.20,-4 9.37,-4 1.73,-3 1.41,-3
60 5.32,-4 1.06,-3 1.69,-3 1.40,-3
70 6.41,-4 1.19,-3 1.33,-3 1.09,-3
80 5.78,-4 1.16,-3 8.01,-4 6.07,-4
90 4.21,-4 1.03,-3 3.50,-4 1.97,-4
100 2.84,-4 9.10,-4 1.23,-4 1.57,-5
110 2.54,-4 8.96,-4 1.60,-4 1.05,-4
120 3.72,-4 1.03,-3 4.23,-4 4.29,-4
130 6.23,-4 1.29,-3 8.39,-4 9.10,-4
140 9.60,-4 1.65,-3 1.32,-3 1.45,-3
150 1.32,-3 2.02,-3 1.79,-3 1.98,-3
160 1.63,-3 2.35,-3 2.17,-3 2.40,-3
170 1.85,-3 2.57,-3 2.42,-3 2.68,-3
180 1.92,-3 2.65,-3 2.51,-3 2.78,-3

Integral 2.30,-3 4.76,-3 3.81,-3 3.32,-3
(, a,2)
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0° 81.63 eV 100 eV
(A) (B) (A) (B)

0 9.25,-4 9.73,-4 6.19,-4 6.70,
5 8.92,-4 9.37,-4 6.04,-4 6.55,

10 8.72,-4 9.12,-4 6.41,-4 6.94,
15 1.01,-3 1.05,-3 8.52,-4 9.14,
20 1.35,-3 1.40,-3 1.23,-3 1.31,
25 1.80,-3 1.86,-3 1.63,-3 1.73,
30 2.20,-3 2.29,-3 1.90,-3 2.02,
35 2.44,-3 2.54,-3 1.98,-3 2.12,
40 2.47,-3 2.59,-3 1.89,-3 2.02,
45 2.32,-3 2.44,-3 1.67,-3 1.80,
50 2.05,-3 2.17,-3 1.41,-3 1.52,
55 1.73,-3 1.84,-3 1.13,-3 1.24,
60 1.41,-3 1.49,-3 8.85,-4 9.69,
70 8.44,-4 8.98,-4 5.02,-4 5.55,
80 4.66,-4 4.95,-4 2.72,-4 3.04,
90 2.60,-4 2.75,-4 1.55,-4 1.75,

100 1.81,-4 1.89,-4 1.10,-4 1.23,
110 1.79,-4 1.88,-4 1.05,-4 1.15,
120 2.20,-4 2.34,-4 1.21,-4 1.30,
130 2.80,-4 2.99 ,-4 1.44,-4 1.54,
140 3.42,-4 3.67,-4 1.69,-4 1.80,
150 3.98,-4 4.28,-4 1.90,-4 2.02,
160 4.41,-4 4.75,-4 2.07,-4 2.19,
170 . 4.68,-4 5.04,-4 2.17,-4 2.30,
180 4.76,-4 5.14,-4 2.20,-4 2.33,

Integral 3.15,-3 3.32,-3 2.16,-3 2.33,

,-4 
,-4 
,-4 
,-4 
j -3
j-3
,“3 
,—3 
, — 3 
5-3 
,—3 
,“3 
,-4 
,-4 
,-4 
,-4 
,-4 
,-4 
,-4 
,-4 
,-4 
,-4 
,-4 
,—4 
,-4

(. a/)
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200 eV
(A) (B)

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90

100
110
120
130
140
150
150
170
180

1.09 
1.20 
2.19 
4.22 
5.97 
6.50
5.95 
4.87
3.72
2.72
1.93 
1.36 
9.46 
4.63 
2.40 
1.42 
1.03
8.93 
8.69
8.89 
9.21 
9.52 
9.75
9.89
9.96

,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-5
,-5
,-5
,-5
,-5
,-6
,-6
,-6
,-6
,-6
,-6
,-6
,-6

1.21
1.34
2.40 
4.53
6.40 
7.01 
6.45 
5.31 
4.08
3.00 
2.15
1.52 
1.07 
5.36 
2.85
1.71 
1.21
1.01 
9.43 
9.30 
9.38
9.52 
9.65
9.72 
9.76

,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-5
,-5
9-5
9-5
9-5
9-6
9-6
9 - 6

9 - 6

9 - 6

9 - 6

9 - 6

Integral
(.K

3.98,-4 4.38,-4
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TABLE 18(a)

DIFFERENTIAL CROSS SECTION IN UNITS OF 
.3

2 -1 a sr o FOR ELECTRON IMPACT EXCITATION 
OF He(2"S) COMPUTED IN THE DWPO H I  MODELS AT INCIDENT ENERGIES OF (a) 29.6,
40.1 AND 81.63 eV AND (b) 100 AND 200 eV.

0° 29.6 eV 40.1 eV 81.63 eV
0 2.02,-3 2.46,-4 1.25,-3
5 1.98,-3 2.21,-4 1.31,-3

10 1.88,-3 1. 69,-4 1.52,-3
15 1.75,-3 1.45,-4 1.91,-3
20 1.62,-3 2.05,-4 2.43,-3
25 1.53,-3 3.77,-4 2.94,-3
30 1.50,-3 6.47,-4 3.30,-3
35 1.54,-3 9.65,-4 3.43,-3
40 1.63,-3 1.27,-3 3.33,-3
45 1.77,-3 1.49,-3 3.04,-3
50 1.91,-3 1.60,-3 2.64,-3
55 2.04,-3 1.58,-3 2.19,-3
60 2.15,-3 1.45,-3 1.74,-3
70 2.24,-3 9.59,-4 9.67,-4
80 2.20,-3 4.23,-4 4.45,-4
90 . ■ 2.14,-3 8.85,-5 1.77,-4

100 2.15,-3 8.37,-5 1.18,-4
110 2.31,-3 4.24,-4 2.14,-4
120 2.64,-3 1.05,-3 4.12,-4
130 3.10,-3 1.85,-3 6.66,-4
140 3.63,-3 2.71,-3 9.34,-4
150 4.15,-3 3.51,-3 1.18,-3
160 4.59,-3 4.16,-3 1.38,-3
170 4.88,-3 4.58,-3 1.51,-3
180 4.98,-3 4.72,-3 1.55,-3

Integral 9.88,-3 4.78,-3 4.57,-3
(ir



TABLE 18(b)
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0° 100 eV 200 eV

0 1.00,-3 2.41,-4
5 1.08,-3 2.94,-4

10 1.31,-3 4.67,-4
15 1.72,-3 7.04,-4
20 2.21,-3 8.74,-4
25 2.62,-3 9.09,-6
30 2.83,-3 8.36,-4
35 2.82,-3 7.10,-4
40 2.62,-3 5.74,-4
45 2.30,-3 4.49,-4
50 1.93,-3 3.43,-4
55 1.55,-3 . 2.57,-4
60 1.20,-3 1.88,-4
70 6.50,-4 9.34,-5
80 2.98,-4 3.90,-5
90 1.21,-4 1.31,-5

100 8.02,-5 8.29,-6
110 1.37,-4 1.92,-5
120 2.59,-4 4.14,-5
130 4.15,-4 7.04,-5
140 5.82,-4 1.02,-4
150 7.37,-4 1.32,-4
160 8.61,-4 1.56,-4
170 9.41,-4 1.72,-4
180 9.69,-4 1.78,-4

Integral 3.35,-3 7.22,-4
(7T )



CO
II
d

2

TABLE 19(a)

CM CM CM H CM Y Y Y f—1 iH 1—I 1—1 Y  Y Y  Y Y  Y 1—1 Y
CM CD j- CD in =t CM CO CD CD CD CM CD d" H d- r- CM CM in rHII Ph 00 1—1 CD r—1 C- =t o d" iH zt CM =t CM d- CM CO CM CO CM
d CM 1—1 00 CO H tr- H 1—1 1—1 •H <H H  iH r4 f—1 iH iH r-i 1—1 •H iH

231

'O<u•S
+j
§Ü

PLI

0)
K

O

o

CO CO CO CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM
iH

1
+1 CO CM in d- in CO in CM d- CD O  in CD O CM H CD in

CD CD d- O CO o CD CD CO CD CD I— 1 CM 00 CO CD CO CD CM
rH
CM H  CO ID H H  CM H  CM CM CM CM CO CM CO CM CO CM CO CM CO

fMo
§MBMw
EhO
<

M

IEhO5
Wg

CM
(d
t=

pHo
COEh

g
CO
§MEh
O
HCO
COCO§o

COl-Jss
oPh
o
Q

M
Oèo
Eh
%

IÈO
O

LO
II
d

M
O

P L ,4CM

CM CM 
1 1 CM CM 1 1 CM H  1 1 CM CM 1 1

CM CM 
1 1 CM CM 1 1 CM CM 1 1 CM CM 1 1 CM CM 1 1 CM CM 1 1

in O  CD d- CM 00 00 O  l> o CO CO CD in CO
d- CO CD d- O  O CO CD (D CD O  CM 00 CD CD O CO in CD in
iH CM CD in H CD CD CD 00 00 CD CD CD CD in in

CM CM 
1 1

CM H  
1 1

CM 1— 1 
1 1 Y Y 1— 1 1—1 

1 1
1-4 1-4 
1 1

r-4 r4 
1 1

r-4 r4 
1 1

1— 1 1— 1 
1 1

1—1 1-4 
1 1

in H O  r-\ CD CD l> CD O  in in o in CD CD CO CO in r4
PH CO CO in CO CD in 1—1 CD CO CD CO CD CO in CO d- CO d- CM CO

iH
CM CM CD d" <— 1 00 H r4 iH 1— 1 iH 1-4 r4 1-4 r4 r4 1-4 1-4 r4 r4 r4

CO CO CO CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM CM

r4
4-1 O CM CD r- o CO in in 1-4 CM r4 00 1-4 00 in CO in in r-

P h CO in CD H in CO CM CD CD CO CD in O  CD r4 CD CM CD CM in
1-4
CM CM d- CD 1— 1 r4 CM CM CM CM CO CM CO CO CO CO CO CO CO CO CO

CM CM 
I I

O 00 r4

CM H  00

CM H  
I I

CM H  
I I

CM
I

CM CM 
I I

CM CM 
I I

CM CM 
I I

CM CM 
I I

CM CM 
I I

00iH O 
CO H

j- d-00 I—I
IT) H

rH C- 
CM O

iH
cn d-CD 00 H  O  O

I— I l Oin CM
C- 00

r4 iH 
CM CD

CD LO00 o CM CM I I
CO CM 
O  CD

Ig
g

gOEh
j-
II
d >0)

w
in
CM OCO o Om OCD O oCO oCD oo inCM



232

TABLE 19(a) continued.

fCM

fCM

rCM

>0)
W

H r4 CM CM CM CM
A A  Cl L

00 rH 00 C"o iH d  LO LO LO
«H rH CD CD C''

1—1
CM CM 
1 1 CM CM 

1 1
CM
1 CM1

+ 1 H  d d  CD 0 0 l O
P h CD H r -  0 0 0 0 diHCM CM 0 0 CM CM CM CM

CM CM 
I I

0 0  C Men 00 
zf- d-

CM CM 
I I
O o o 00
d- 00

CM CM 
I I
o o oo H
L O  L O

CM CM 
I I
r~i 0 0  
CM <J)
d  0 0

CM CM 
I I
CM CO 00 lû
CM CM

Y  Y rH 1—1 CM CM
A 0%

O CM 0 0 LO dP L , H  CM O  O O OrHCM iH «H iH iH 00 00

r H
C M  C M  
1 1

C M  C M  
1 1

C M
1

C M
1

+ 1 0 0  0 0 0 0 L O d
P L , r H  d C D  1— 1 L O C O

r H
C M 0 0  O O C M  0 0 C M C H

CM CM 
I I

d  C O  CD
CM CM

OLO OoCM
OOCO

P,O
d
u
oPQ
bOP!•H
dop.w<u
u
dOO
Q)
rd•P
<ü
d•HrH
Td
d
O
O
Q)
U)

0)ÆP
d(d
prH
dw(ü
d
O
O
0)
p
w(U>•HbO
0)
d•HrH
PW
d•HMh P
Q) rH

dP CO<u
d

d
(D d
d d0) O

PQ0) 1
dip <dN
H-i •H
O d(d
<D rH
d Or—1 PL,[d> CO

drH
o P,td(U d

d
d oo CQPh —



TABLE 19(b)
233

rCO

CO CN 
1 1

CO CN 
1 1

CN CN 
1 1

CN CN 1 1 CN CN 
1 1 CN CN 

1 1 CN CN 1 1
CN CN 
1 1

CN CN 
1 1 CN CN 1 1 CN CN 1 1

CN d CD t> CD rH O  LO O  00 O  CN en CN rH 1—1 CD O CD CO CD CDLO d CD LO LO d CO CD C" CD en CD en LO o d CD CO 00 O CD
CN H LO CN H  CO CN CO CN CO CN CO CN CO CO CO CN CO CN CO CN CN

MM
O

lo d  1 1 d  CO 1 1
CO CO 
1 1

CO CO 
1 1

CO CO 
1 1 CO CO 

1 1
CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1rH

+1 en 1—1 CO CD o CO LO LO CN rH LO t" CN CD CO LO CN CN o CO d  enpL, 00 CD O  00 d CN o CO o o LO LO 00 00 o O  H CN O •H1—1CO CD CO 00 H CN d d  CD LO CD b" CD CD 00 C" 00 00 C" O

d
•S
1

CO CN 
1 1

CO CN 
1 1

CN CN 1 1 CN CN 1 1 CN CN 1 1 CN CN 
1 1 CN CN 1 1 CN CN 1 1 CN CN i 1

CN CN 
1 1

CN CN 1 1
O CN CD O LO CO LO d CO 00 en r—1 00 d d  o 00 CN CN CD CO

Ph CO CO CO CN O  LO d  d CD CN CD iH CD CD CD 00 lO CD d  d CN CN
1—1CO CN H ■ d  CN H  CN iH CN iH CN H  CN «H rH rH rH r—t «H «H 1—1 iH r-i

CO CN 
1 1

CO CN 
1 i

CN CN 1 1
CN CN 
1 1

CN CN 
1 1 CN CN 1 1 CN CN 1 1

CN CN 
1 1

CN CN 
1 1

CN CN 1 1
CN CN 
1 1

CD CD LO 00 CD d  CD LO CD LO O CN 00 CO d en H CN en CN HCO CD LO en 00 00 CD o O  O CN O CO 00 CO r- CN CD H  CN CD O
CO H C" CN H  CO CN d CO d CO d CO CO CO CO CO CO CO CO CN COrCO

d  d  1 i
CO CO 1 1

CO CO 1 1
CO CO 1 1

CO CO 1 1
CO CO 1 1

CO CO 1 1
CO CO 1 1

CO CO 1 1
CO CO 1 1

CO CO 1 1
iH+1 00 00 H  d en Lf) O  d LO en CN 00 H  o CN CD H  O d  ID CO LO

A CO H O  H 1—1 O CD 00 O  00 00 d CO 00 CD en 00 O en 00 00 LO
rHCO H  d H  CN CO in d  CD CD l> CD 00 00 r» 00 en t" 00 00

H
O
èA

rCO

CO CN 
I I
00 00 o LO
CO H

CO CN 
I I
C'' CN LO LO
LO CN

CN CN I I
CN CN 
I i

CN CN I I CN CN I I
CN CN 
I I

CN CN I I
CN CN 
I I

d LO CN 00

CN

CD CN CD
H  CN

d  CN
00 LO

CN

00 I—I 
00 CO
H  CN

CD CN 
00 rH
H  CN

O  LO
00 en CO H00

«H I—I

CN CN 
I I
CO CN LO LO
I—I «H

CN CN 
I I
LO O  CO CO
«H r—I

>0)
w

LO
CN OCO Od OLO oCD OC'' O00 oCD OOr-i

LO
CN OLO



TABLE 19(b) continued.
g 
s

234

fCO

MM

CN CN CN CN
*„

1—1 O OCO d CD CD
CN CN 1—1 1—1

CO CO CO CO
1—1 '« L
+1 C -  o CN d

A o  CN CD H1—1CO CD lO CD

0 PQ
bO•g'OgAœ
1
ü
0)
g
dj

■ S

PQ

CN CO 
I I

C N  m  
O  C D
I— I C D

C O  C O  
I I

CD in 
H

CD

'd
do
ü<üCO
0)

'd
g

fCO

M

C N C N C N C N
0\ L

l O C D C O C O
L O L O O o
C N C N C N C N

dCOd)
d
O
èA
d)
p
CO
>• H
bO
d)

• SCO CO CO CO r—1
iH A A P+1 LO CD CO COA CO 00 CO CD diH •HCO b" i> CD CD Mh. S

p

A

>
d)

W

C N  C N  
I I

0 0  C N  O O
I— I rH

Oo
C N

CO CO 
I I

O  CO lO O

O
oC O

E3gg
d)g
p
0
d)
dg1
d)
dGA

YCO2
Ë0

PQ1nj
( UN

• HgrHOAaA



TABLE 19(c)
235

A

C O C O C O C N C N es C N C N C N C N C O C O
A A L L A 0\ *«

C N C N C N ï> C N C O C N o L O C OL O 00 00 o C N C N C N r— 1 1— 1 C O d
d L O 00 1— 1 iH r— 1 1— 1 « H 1— 1 1— 1 en C''

M
O

d d C O C O C O C O C O C O C O C O C O C O
r H 0% L 0% 0% 4% L 0\
+ 1 C O C O e n o 1— 1 d C O C N o d 1— 1A L O en C O O d C O C - 00 en en C O1— 1

d C N en iH C N C N C N C N C N C N C N C N C N

rd

C O C O C O C O C O C O C O C O C O C O C O C O
0% A A #% 01 0% 0\ L L

• H d C O C O L O 00 C N 00 en C O C No 00 L O L O en en 00 L O 00 C N 1— 1 00
d C O . L O C O C O C O C O C D L O L O d C N

d

C O C O C N C N C N C N C N C N C N C N C N C O
A A A A 0%

C N C N C N C N C N C D C D L O 00 O d C"L O 00 O ( N C O C O C O C O C N C N O en
d C D f—t rH 1— 1 1— 1 •H iH 1—1 r-i r— 1

iH+1O  AA  «—Its: dA

d C O C O C O C O C O C O C O C O C O C O C O
A A A *„ *« A A A A A A

00 00 en en C N C O L O C O en en rH
C N r— 1 00 C O C'' en O 1— 1 C N i H en L O
C O 1— 1 1— 1 C N C N C N C O C O C O C O C N C N

C O C O C O C O C O C O C O C O C O C O C O C O
A A L L A A A A

O C D C D r H C O i > C N o en C D r H C O C D
A C O d d . d L O 1— 1 C O C D d enr — 1
d C O d C D C " C ' ' ( D L O d C N

>0)X— / O o O O O o o O L O O O O
C O d L O C D C ' ' 00 en O C N L O O OW 1— 1 • H r H C N C O



TABLE 19(d)
236

CO CO 
1 1

CO CO 
1 i

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

o  LO en CD O  d CO CO d  H LO en H  en 00 CDr- 00 CD e n CN c^ H  00 CD d 00 CD e n (X) C''
«H 1—( CN CO d  LO L O  CD LO E- L O LO l> LO

CO (Q
I I

C O C O C O C O
1 1 1 1

r H L O L O enC O O C D r— 1
L O C " d C D

fin

MM
01

i î
d  d  
1 1

d  CO 
1 1

d  CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CQ
1 i

CO CO 
1 1

CO CO 
1 1r H

+ 1 e n  CO CN O d d  LO LO d LO r H  CD CD 1—1 O  ^ e n  CD CN LO
A O  0 0 CD C'' i >  O e n  CO H  m CN CD CO E~ CO 0 0 d ° o e o  0 0 CO1— 1 •  •LO « H  r H d  CD r H e n  r H r H  r H r H  r H r H  r H r H  r H r H  H r H  r H r H  r H

'd
d

• S
gw

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 i

CO CO 
1 1

O 00 en C" CN LO r H d  d LO CO CD LO 00 00 r- d d  ^ CN d CN 00
p4 d  d C" CD CD CD r H  r H CO -CO CO CO CN CN r H  r H 00 LO CO O  CD

r H . •
LO r H  r H r H  CN CN CO CO d CO d CO d CO d CO d CN CO CN CO CN CN

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO CO 
1 i

CO CO 
1 1

CO CO 
1 i

CO CQ 
1 1

CO CO 
1 1

CO CO 
1 1

H CN 00 CD CD O- d  CN d  o CO CD CD CN e n  L O E- 00 CD CNT E"
A e n r H  LO 00 LO 00 E» CO CO LO LO LO CD d  iD r H  Y E^ CD O  CD

r HLO r H  r H CO d d  CD LO E" CD 00 CD 00 CD 00 CD 00 CD 00 LO E~- LO CD

o
A

I—I+1
dm

d  d  
1 1

d  d  
1 1

d  CO 
1 1

CO CO 
1 1

CO CO 
1 i

CO CO 
1 1

CO CO 
1 1

CO CO 
1 1

CO PQ 
1 1

CO CO 
1 1

CO CO 
1 1

r H  00 C N  O oo CO d  CO O  d O  E" E" CD r H  r H L O CO d d  r H
d  e N L O  e n e n  C N r H  L O CO E" d  00 d  e n L O  O L O  O L O  O d  e n

• •
r H  C N L O  E^ 00 H r H  r H r H  r H <— 1 r H r H  r H r H  C N H  C N r H  C N • H  r 4

CO CO 
I I

CO CO 
I I

CO CO 
I I

CO CO 
I I

CO CO 
I I

CO CO 
I I

CO CO 
I I

CO CO 
I I

CO CO
I I

CO CO 
I I

CO CO 
I I

rLO
CO CO 
d  d
r H  I— I

00 00 o en
CN CN

CO CNo iH
CO d

CD CD 
LO CD
CO d

d  CO C'' 00
CO d

C N  H00
CO d

H oCD C''
CO d

CD CO 
d  LO
CO d

r- LOo o 
< •

CO d

I—I 00 
LO

CN CO

d  d  
H  0 0
CN CN

>0)
w

o
CO

o
d

o
LO

o
CD

o o00 oe n
oo LO

CN
oLO oo

CN



TABLE T9(d) continued..

237

A

M
M
O
O

rH+1
A

Hm

A

M
o  + !

o lO

rm

>0)
M

d
«3C O  C O d1 1 Xi
üO )  C O tdL O  l > W <U
ü tuC O  d S C O

td 1
d
td C O

p
P p( U < ü
Xi • H
o Ü
o • i HC O  C O P

1 1 td P
0 ) tu1— 1 0 0 • H Oi - H  d p Ü• H

r H  r H td td
o tu
6 • r i

A
<D • r H
Xi td
P O

g
bO d
d dC O  C O • i H

1 1 w tu
d Xit o  C N pC O  0 0 td
0) hOr H  r H p d
d • r i
P, C O
S d
o
o tu

dm • r i
• H 1—1
C O t )
p P« H O
d ü
C O tuC O  C O tu C O

1 1 d
tuL O  C N tu .p0 0  r H Xi p

pC O  l O td
Mh P
o td
( U P
d o• H • H

r H PO
P g

C O  C O d Mh
1 1 " r i
A  A Mh tu

1— 1 r H >C N  C O Q) td
Xi >r H  r H p

tu
p
td

w pC O
td

bO tu
d pC O  C O <D • r i

1 1 d C J
tu X

C O  r H tu C O
d  en Q ) r H

Xi tu • r l
r H  r H P r P td

P P
P tu
O P td

O
tu Mh P
d o

r - j C O « p
td p
> p <

tu
x: • r l X
ü O • r l
td • r l td
tu A P

P tu
O d tu p ,
O O o p ,C O A o <



238

TABLE 20(a)

DIFFERENTIAL CROSS SECTIONS IN UNITS 2 -1OF a sr FOR ELECTRON IMPACT o
OF He(2^P) COMPUTED IN THE DWPO I MODEL AT INCIDENT ENERGIES OF (a

(b) 40.1 eV, (c) 81.63 eV, (d) 100 eV AND (e) 200 eV.

E = 29.6 eV

6° m = 0 m = 1 Total
0 1.85,-1 0 1.85,-1
5 1.75,-1 ■ 1.31,-3 1.78,-1

10 1.49,-1 4.43,-3 1.58,-1
15 1.16,-1 7.67,-3 1.31,-1
20 8.30,-2 9.65,-3 1.02,-1
25 5.55,-2 1.00,-2 7.55,-2
30 3.51,-2 9.10,-3 5.33,-2
35 2.11,-2 7.54,-3 3.62,-2
40 1.22,-2 5.83,-3 2.38,-2
45 6.73,-3 4.30,-3 1.53,-2
50 3.59,-3 3.06,-3 9.71,-3
55 1.87,-3 2.14,-3 6.14,-3
60 9.83,-4 1.48,-3 3.94,-3
70 3.67,-4 7.28,-4 1.82,-3
80 2.42,-4 3.97,-4 1.04,-3
90 1.70,-4 2.49,-4 6.69,-4

100 8.87,-5 1.76,-4 4.40,-4
110 2.70,-5 1.33,-4 2.93,-4
120 1.62,-5 1.03,-4 2.22,-4
130 6.53,-5 7.73,-5 2.20,-4
140 1.62,-4 5.39,-5 2.70,-4
150 2.80,-4 3.29,-5 3.46,-4
160 3.91,-4 1.57,-5 4.23,-4
170 4.71,-4 4.12,-6 4.79,-4
180 4.99,-4 0 4.99,-4

Integral 3.05,-2 6.22,-3 4.30,-2
(ir



TABLE 20(b)

E = 40.1 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

7.36
6.48
4.56
2.72
1.47 
7.43
3.58 
1.65
7.33 
3.18
1.47 
8.68 
7.26 
7.64 
7.23
5.58
3.58 
1.90 
8.77
5.34 
7.33 
1.25 
1.84 
2.29 
2.45

,-l
,-l
,-l
,-l
,-l
,-2
,-2
,-2
9-3
9-3
9-3
,-4
,-4
9-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5
,-4
,-4
,-4
9-4

0
1.42 
3.91 
5.07 
4.66 
3.54 
2.39 
1.50 
8.94 
5.18 
2.97 
1.74 
1.06
5.09
3.42 
2.76 
2.34 
1.99 
1.65 
1.28
9.10 
5.57 
2.64 
6.83 
0

9-2
9-2
9-2
9-2
9-2
9-2
,-2
9-3
9-3
9-3
9-3
9-3
9-4
9-4
9-4
9-4
9-4
9-4
,-4
9-5
9-5
9-5
9-6

7.36
6.77
5.34 
3.74
2.40
1.45
8.37 
4.65 
2.52
1.35 
7.42 
4.34 
2.85
1.78
1.41 
1.11 
8.26 
5.89 
4.17 
3.10 
2.55
2.36
2.37
2.42
2.45

9-1
9-1
9-1
9-1
9-1
9-1
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-3
9-3
9-3
9-4
9-4
,-4
9-4
9-4
9-4
,-4
,-4
9-4

Integral
(ïï a ^) o

5.87,-2 1.58,-2 9.03,-2



TABLE 20(c)

E - 81.63 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90

100
110
120
130
140
150
160
170
180

3.93 
2.15 
5.48
1.94
6.50 
2.40
9.76 
4.39 
2.26 
1.35 
9.23 
6.98 
5.54 
3.53 
2.18 
1.29
7.51 
5.06 
4.61 
5.58 
7.20
8.76 
1.02 
1.18 
1.28

,-l
9-1
,-2
,-2
9-3
9-3
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
,-4
,-4
,-4

0
2.99
3.15
1.72
7.75 
3.21 
1.26
4.72
1.73
6.59
3.08
2.08 
1.86 
1.85 
1.78
1.60 
1.39
1.16 
9.06 
6.69 
4.59
2.76 
1.20 
2.52 
0

,-l
9-1
9-1
9-2
9-2
,-2
9-3
9-3
,-4
,-4
,-4
,-4
,-4
9-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9 - 6

3.93 
2.74 
1.28 
5.38.-1
2.20
8.83
3.49 
1.38 
5.71 
2.66 
1.54 
1.11
9.26
7.22 
5.73
4.49 
3.53 
2.82
2.27 
1.89 
1.64 
1.43 
1.26
1.23
1.28

-1
-2
-2
-2
-3
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4

Integral 
(w a,2)

7.46,-2 3.10,-2 1.37,-1



TABLE 20(d)

E = 100 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

5.43
2.25
5.03 
1.31 
4.12 
1.51 
6.30 
3.01 
1.65
1.04 
7.15 
5.22 
3.93 
2.21 
1.21
6.42 
3.58 
2.68 
2.96 
3.89 
5.07 
6.38 
7.34
8.05
8.43

,-l
,-l
9-2
9-2
9-3
9-3
9-3
9-3
,-4
,-4
,-4
9-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5

0
4.98
3.68 
1.60 
6.13 
2.19 
7.45 
2.40 
7.54 
2.64 
1.43 
1.26
1.31 
1.38
1.31 
1.16 
9.81 
8.00 
6.15 
4.49 
2.95
1.69 
7.78 
1.84 
0

,-l
,-l
9-1
,-2
,-2
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5

9 -5

9 -5

9 -5

9 - 6

9-6

5.43 
3.25 
1.24 
4.52.-1
1.64
5.90
2.12
7.82 
3.17 
1.57 
1.00 
7.75 
6.55 
4.97
3.83 
2.95 
2.32 
1.87 
1.53 
1.29 
1.10 
9.77 
8.89 
8.42

-1
-2
-2
-3
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-5
-5
-5

.43 i-5

Integral 6.86,-2 3.23,-2 1.33,-1
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0° m = 0

TABLE 20 (e) 

E = 200 eV 

m = 1 Total

0 1.36,41 0 1.36,41
5 1.16 1.10 3.35

10 1.16,-1 2.73 -1 6.62,-1
15 2.40 ,-2 6.30 -2 1.50,-1
20 7.29,-3 1.40 -2 3.53,-2
25 2.86,-3 2.94 -3 8.74,-3
30 1.38,-3 5.48 -4 2.47,-3
35 7.66,-4 8.23 -5 9.31,-4
40 4.63,-4 1.82 -5 4.99,-4
45 2.93,-4 2.46 -5 3.42,-4
50 1.93,-4 3.56 -5 2.64,-4
55 1.30,-4 4.11 -5 2.12,-4
60 8.61,-5 4.20 -5 1.70,-4
70 3.49,-5 3.92 -5 1.13,-4
80 1.38,-5 3.32 -5 8.02,-5
90 4.41,-6 2.67 -5 5.77,-5
100 2.38,-6 2.13 -5 4.50,-5
110 3.36,-6 1.58 -5 3.50,-5
120 5.94,-6 1.16 -5 2.91,-5
130 8.49,-6 7.88 -6 2.42,-5
140 1.17,-5 4.94 -6 2.15,-5
150 1.33,-5 2.91 -6 1.91,-5
160 1.54,-5 1.13 -6 1.77,-5
170 1.65,-5 3.59 -7 1.72,-5
180 1.59,-5 0 1.59,-5

Integral
(tt

4.21,-2 2.97,-2 1.02,-1
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TABLE 21 (a)

DIFFERENTIAL CROSS SECTIONS IN UNITS ■ 2 -1OF a^ sr FOR ELECTRON IMPACT EXCITATION

OF He(2^P) COMPUTED IN THE DWPO II MODEL AT INCIDENT ENERGIES OF (a) 29.6 eV,

(b) 40.1 eV, (c) 81.63 eV, (d) 100 eV AND (e) 200 eV.

0° m = 0

E = 29.6 eV 

m = 1 Total
0 1.59,-1 0 1.59,-1
5 1.50,-1 1.15,-3 1.53,-1

10 1.28,-1 3.89,-3 1.35,-1
15 9.80,-2 6.69,-3 1.11,-1
20 6.91,-2 8.35,-3 8.58,-2
25 4.53,-2 8.58,-3 6.25,-2
30 2.80,-2 7.71,-3 4.34,-2
35 1.63,-2 6. 30-,-3 2.89,-2
40 9.02,-3 4.81,-3 1.86,-2
45 4.75,-3 3.49,-3 1.17,-2
50 2.38,-3 2.44,-3 7.27,-3
55 1.16,-3 1.67,-3 4.51,-3
60 5.85,-4 1.13,-3 2.85,-3
70 2.60,-4 5.31,-4 1.32,-3
80 2.21,-4 2.75,-4 7.71,-4
90 1.70,-4 1.65,-4 5.00,-4

100 9.04,-5 1.13,-4 3.16,-4
110 2.68,-5 8.36,-5 1.94,-4
120 1.08,-5 6.41,-5 1.39,-4
130 5.03,-5 4.83,-5 1.47,-4
140 1.33,-4 3.39,-5 2.01,-4
150 2.36,-4 2.09,-5 2.78,-4
160 3.33,-4 1.00,-5 3.54,-4
170 4.02,-4 2.65,-6 4.08,-4
180 4.27,-4 0 4.27,-4

Integral 2.46,-2 5.07,-3 3.47,-2
(ir a^2)



TABLE 21(b)

E = 40.1 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

6.65
5.84 
4.06 
2.38 
1.26
6.17 
2.87 
1.27 
5.31
2.18 
1.01
6.71
6.49
7.50 
7.08 
5.43
3.48 
1.86 
8.46
4.48
5.36 
9.12
1.37
1.72
1.85

,-l
,-l
,-l
,-l
,-l
,-2
,-2
,-2
,-3
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-4
9-4
,-4

0
1.30
3.53
4.53
4.11 
3.07
2.05 
1.26
7.42 
4.23 
2.40 
1.38
8.30 
3.88 
2.57
2.05 
1.72 
1.46 
1.21
9.42 
6.69
4.11 
1.95
5.06 
0

-2
-2
-2
-2
-2
-2
-2
-3
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-6

6.65
6.10
4.76 
3.29 
2.08 
1.23 
6.96
3.79 
2.01 
1.07
5.80 
3.43 
2.31 
1.53 
1.22 
9.52 
6.93 
4.79 
3.26 
2.33 
1.87 
1.73
1.76 
1.82 
1.85

-1
-1
-1
-1
-1
-1
-2
-2
-2
-2
-3
-3
9-3
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
9-4
,-4

Integral
(tt a ^) o

5.06,-2 1.36,-2 7.77,-2



TABLE 21(c)

E = 81.63 eV

245

m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90

100
110
120
130
140
150
160
170
180

3.73
2.02
5.91 
1.71 
5.55 
2.01 
8.01 
3.60 
1.87 
1.14 
7.98 
6.12 
4.90
3.16 
1.97
1.17
6.92 
4.64 
4.08 
4.77
6.05 
7.29 
8.41 
9.79
1.06

,-l
,-l
,-2
,-2
9-3
9-3
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
,-4

0
2.81
2.89
1.53
6.76
2.75
1.07
3.98
1.46
5.59
2.65 
1.79
1.60 
1.58 
1.51 
1.36 
1.18 
9.83 
7.67
5.66 
3.88 
2.34 
1.01 
2.10 
0

,-l
,-l
,-l
,-2
9-2
,-2
9-3
9-3
9-4
,-4
,-4
,-4
9-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9 - 6

3.73 
2.58 
1.17 
4.78,-1
1.91
7.51
2.93 
1.16 
4.78 
2.26 
1.33 
9.71 
8.11 
6.31 
4.99 
3.90
3.05 
2.43
1.94 
1.61 
1.38 
1.20 
1.04 
1.02
1.06

-1
-2
-2
-2
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4

Integral 
(it 3.̂)

6.83,-2 2.79,-2 1.24,-1



TABLE 21(d)

E = 100 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90

100
110
120
130
140
150
160
170
180

5.20
2.12
4.58
1.15
3.52
1.27
5.27 
2.54
1.42 
9.03
6.28 
4.62 
3.49 
1.98 
1.09 
5.86 
3.29
2.43 
2.60 
3.36 
4.34
5.44 
6.24 
6.84 
7.18

-1
-1
-2
-2
-3
-3
-3
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5

0
4.72 
3.38 
1.42
5.31
1.87
6.32 
2.04
6.47
2.30 
1.26 
1.10 
1.14 
1.19 
1.13 
9.99
8.48 
6.91
5.31
3.88 
2.55 
1.46
6.73 
1.59 
0

9-1
,-l
,-l
,-2
,-2
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-6

5.20 
3.07 
1.13 
4.00,-1
1.41
5.01
1.79
6.63 
2.72
1.36
8.79 
6.82 
5.77
4.37
3.36
2.58 
2.03
1.63 
1.32 
1.11 
9.43
8.36
7.58 
7.16 
7.18

-1
-2
-2
-3
-3
-3
-4
-4
-4
-4
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-5

Integral
(ïï a )̂ o

6.35,-2 2.92,-2 1.22,-1



TABLE 21(e)

E = 200 eV
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0° m = 0 m = 1 Total

0 1.33,+1 0 1. 3 3, +1
5 1.09 1.04 3.16

10 1.04,-1 2.45,-1 5.93,-1
15 2.09,-2 5.46,-2 1.30,-1
20 6.31,-3 1.20,-2 3.04,-2
25 2.51,-3 2.54,-3 7.60,-3
30 1.23,-3 4.86,-4 2.20,-3
35 6.91,-4 7.64,-5 8.44,-4
40 4.20,-4 1.70,-5 4.54,-4
45 2.67,-4 2.14,-5 3.10,-4
50 1.76,-4 3.10,-5 2.38,-4
55 1.18,-4 3.60,-5 1.90,-4
60 7.88,-5 3.70,-5 1.53,-4
70 3.21,-5 3.49,-5 1.02,-4
80 1.28,-5 2.97,-5 7.21,-5
90 4.13,-6 2.39,-5 5.19,-5
100 2.19,-6 1.92,-5 4.05,-5
110 3.01,-6 1.42,-5 3.15,-5
120 5.30,-6 1.05,-5 2.62,-5
130 7.58,-6 7.12,-6 2.18,-5
140 1.05,-5 4.47,-6 1.94,-5
150 1.19,-5 2.63,-6 1.72,-5
160 1.39,-5 1.02,-6 1.59,-5
170 1.48,-5 3.27,-7 1.55,-5
180 1.43,-5 0 1.43,-5

Integral 4.00,-2 2.74,-2 9.47,-2
(tt ao
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TABLE 22(a)

DIFFERENTIAL CROSS SECTIONS IN UNITS OF a FOR ELECTRON IMPACT EXCITATIONo
OF HeO^P) COMPUTED IN THE DWPO. I MODEL AT INCIDENT ENERGIES OF (a) 29.2 eV,

(b) 39.7 eV, (c) 100 eV AND (d) 200 eV.

0^ m = 0

E = 29.2 

m = 1

eV

Total

0 2.20,-2 0 2.20,-2
5 2.12,-2 9.96 -5 2.14,-2

10 1.89,-2 3.54 -4 1.96,-2
15 1.57,-2 6.59 -4 1.71,-2
20 1.23,-2 9.08 -4 1.41,-2
25 9.06,-3 1.04 -3 1.11,-2
30 ■ 6.36,-3 1.05 -3 8.45,-3
35 • 4.26,-3 9.62 -4 6.19,-3
40 2.75,-3 8.21 -4 4.39,-3
45 1.7 1,-3 6.64 -4 3.04,-3
50 1.03,-3 5.14 -4 2.06,-3
55 6.05,-4 3.87 -4 1.38,-3
60 3.51,-4 2.85 -4 9.20,-4
70 1.25,-4 1.50 -4 4.26,-4
80 5.79,-5 8.17 -5 2.21,-4
90 3.43,-5 4.79 -5 1.30,-4

100 2.16,-5 3.07 -5 8.30,-5
110 1.70,-5 2.12 -5 5.93,-5
120 2.36,-5 1.51 -5'̂ 5.38,-5
130 4.25,-5 1.07 -5 6.39,-5
140 7.06,-5 7.20 -6 8.50,-5
150 1.02,-5 4.29 -6 1.11,-4
160 1.31,-4 2.00 -6 1.35,-4
170 1.51,-4 5.09 -7 1.52,-4
180 1.59,-4 0 1.59,-4

Integral 5.00,-3 8.42,-4 6.68,-3



TABLE 22(b)

E = 39.7 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

1.24
1.12
8.50
5.57
3.29
1.80
9.31
4.54 
2.09 
9.08 
3.91 
2.00
1.54 
1.79 
1.89
1.55 
1.04 
5.65
2.56
1.32 
1.60 
2.76 
4.16 
5.26 
5.67

,-l
,-l
, -2
,-2
,-2
,-2
,-3
9-3
9-3
,-4
,-4
,-4
,-4
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5

0
1.85
5.51
7.93
8.12
6.82
5.04
3.42
2.19
1.35 
8.12
4.88
3.01
1.35 
8.21 
6.16
5.01 
4.15 
3.39 
2.64
1.89 
1.17 
5. 58 
1.46 
0

1.24.-1
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
9-3
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-6

1.16
9.60 
7.15 
4.91
3.17 
1.94 
1.14 
6.47
3.60 
2.01
1.18
7.55 
4.49 
3.53 
2.78 
2.04 
1.40 
9.33
6.60 
5.37 
5.10 
5.28
5.55 
5.67

-1
-2

-2

-2

-2
-2
-2

-3
-3
-3
-3
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-5
-5
-5

Integral
(Tt a J Z )

1.22,-2 3.13,-3 1.85,-2



TABLE 22(c)

E = 100 eV
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m = 0 m = 1 Total

0
5
10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

1.12
5.33
1.38
3.89 
1.28
4.75 
1.96 
9.04 
4.77
2.90 
1.98 
1.45 
1.10 
6.52
3.76 
2.13 
1.27
9.38
9.44 
1.15
1.44 
1.75 
2.01 
2.20 
2.24

-1
-1
-2
-2
-3
-3
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-6
-6
-5
-5
-5
-5
-5
-5

0
9.71
8.49
4.14 
1.73 
6.63 
2.39 
8.11
2.65
9.15
4.36 
3.43 
3.48 
3.70 
3.52 
3.13
2.66 
2.17 
1.68 
1.22 
8.04 
4.66 
2.08
5.36 
0

,-2
,-2
,-2
,-2
,-3
9-3
,-4
,-4
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
9-5
,-7

1.12 
7.27,-1
3.08 
1.22
4.73 
1.80
6.74 
2.53 
1.01 
4.73 
2.85 
2.13 
1.79
1.39
1.08
8.40
6.58 
5.28
4.30
3.59 
3.05 
2.69 
2.43
2.30 
2.24

-1
-1
-2
-2

-3
-3
-3
-4
-4
-4
-4
-4
-4
-5
-5
-5
-5
-5
-5
-5
-5
-5
-5

Integral
(it

1.73,-2 7.81,-3 3.29,-2



TABLE 22(d)

E = 200 eV
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m = 0 m = 1 Total

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

2.87
3.18
3.55
7.67
2.33 
8.96 
4.17 
2.25 
1.35 
8.48 
5.57
3.75
2.50 
1.03 
4.16 
1.40 
7.45 
9.78
1.68 
2.39 
3.27
3.75
4.34 
4.64
4.50

,-l
, - 2

9-3
9-3
,-4
,-4
,-4
,-4
9-5
9-5
9-5
9-5
9-5
,-6
9 - 6

,-7
,-7
9 - 5

9 - 6

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

0
2.54,-1
7.34
1.88
4.52
1.01
2.02
3.29
5.95
6.14
9.23 
1.10 
1.1 5, 
1.09 
9.28 
7.48 
5.98 
4.45 
3.27
2.23 
1.40 
8.20 
3.21 
1.00 
0

-2
-2
-3
-3
-4
-5
-6
-6
-6

-5
-5
-5
-6
-6
-5
-6
-6
-6
-6
-7
-7
-7

2.87
8.25
1.82
4.52
1.14
2.92 
8.21
2.92 
1.47 
9.71 
7.42 
5.95 
4.80
3.21
2.27 
1.64
1.27 
9.89
8.21
6.84 
6.07 
5.39 
4.98
4.84 
4.50

,-l
,-l
9 - 2

9 - 2

9 - 3

,-4
,-4
,-4
9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 5

9 - 6

9 - 5

9 - 5

9 - 5

9 - 6

9 - 6

9 - 5

5 - 6

Integral 
(tt 3.^)

1.08,-2 7.37,-3 2.55,-2
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DIFFERENTIAL CROSS SECTIONS IN UNITS
TABLE 23(a)

OF a ^sr“^ FOR o ELECTRON IMPA(
OF HeO^P) COMPUTED IN THE DWPO II MODEL AT INCIDENT ENERGIES OF
(b) 39.7 eV, (c) 100 eV AND (d) 200 eV.

0° m = 0

E = 29.2 eV 

m = 1 Total
0 1.82,-2 0 1.82,-2
5 1.75,-2 8.57,-5 1.77,-2

10 1.55,-2 3.04,-4 1.61,-2
15 1.28,-2 5.62,-4 1.39,-2
20 9.85,-3 7.69,-4 1.14,-2
25 7.13,-3 8.73,-4 8.88,-3
30 4.88,-3 8.71,-4 6.62,-3
35 3.18,-3 7.89,-4 4.76,-3
40 1.97,-3 6.64,-4 3.30,-3
45 1.17,-3 5.29,-4 2.23,-3
50 6.67,-4 4.03,-4 1.47,-3
55 3.67,-4 2.97,-4 9.60,-4
60 1.98,-4 2.13,-4 6.25,-4
70 6.49,-5 1.07,-4 2.79,-4
80 3.44,-5 5.44,-5 1.43,-4
90 2.33,-5 2.98,-5 8.29,-5

100 1.43,-5 1.80,-5 5.02,-5
110 1.03,-5 1.18,-5 3.39,-5
120 1.62,-5 8.21,-6 3.26,-5
130 3.34,-5 5.78,-6 4.50,-5
140 5.92,-5 ■ 3.91,-6 6.71,-5
150 8.83,-5 2.36,-6 9.30,-5
160 1.15,-4 1.11,-6 1.17,-4
170 1.33,-4 2.84,-7 1.34,-4
180 1.40,-4 0 1.40,-4

Integral 3.86,-3 6.63,-4 5.19,-3
(w a/)



TABLE 23(b)

253

8° m = 0

E = 39 

m = 1

.7 eV

Total
0 1.10,-1 0 1.10,-1
5 9.95,-2 1.67 -3 1.03,-1

10 7.44,-2 4.93 -3 8.43,-2
15 4.79,-2 7.03 -3 6.20,-2
20 2.76,-2 7.11 -3 4.19,-2
25 1.47,-2 5.88 -3 2.65,-2
30 7.30,-3 4.28 -3 1.59,-2
35 3.38,-3 2.87 -3 9.11,-3
40 1.45,-3 1.81 -3 5.07,-3
45 5.80,-4 1.09 -3 2.77,-3
50 2.35,-4 6.48 -4 1.53,-3
55 1.35,-4 3.83 -4 9.01,-4
60 1.33,-4 2.32 -4 5.96,-4
70 1.83,-4 1.00 -4 3.84,-4
80 1.91,-4 5.93 -5 3.10,-4
90 1.55,-4 4.36 -5 2.42,-4

100 1.03,-4 3.50 -5 1.73,-4
110 5.62,-5 2.88 -5 1.14,-4
120 2.53,-5 2.35 -5 7.24,-5
130 1.18,-5 1.84 -5 4.86,-5
140 1.21,-5 1.33 -5 3.86,-5
150 2.06,-5 8.26 -6 3.71,-5
160 3.16,-5 3.97 -6 3.95,-5
170 4.03,-5 1.04 -6 4.24,-5
180 4.37,-5 0 4.37,-5

Integral
CïT a ^) o

1.04,-2 2.65,-3 1.57,-2
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0° m = 0

E = 100 

m = 1

eV

Total

0 1.07 0 1.07
5 5.01,-1 9.17 -2 6.84,-1

10 1.25,-1 7.77 -2 2.81,-1
15 3.40,-2 3.67 -2 1.07,-1
20 1.08,-2 1.49 -2 4.07,-2
25 3.93,-3 5.54 -3 1.52,-2
30 1.60,-3 2.02 -3 5.63,-3
35 7.41,-4 6.86 -4 2.11,-3
40 3.96,-4 2.27 -4 8.50,-4
45 2.44,-4 8.02 -5 4.05,-4
50 1.69,-4 3.88 -5 2.46,-4
55 1.25,-4 3.02 -5 1.85,-4
60 9.53,-5 3.03 -5 1.56,-4
70 5.71,-5 3.18 -5 1.21,-4
80 3.33,-5 3.01 -5 9.36 ,-5
90 1.91,-5 2.68 -5 7.28,-5
100 1.15,-5 2.27 -5 5.70,-5
110 8.51,-6 1.86 -5 4.56,-5
120 8.38,-6 1.43 -5 3.70,-5
130 9.95,-6 1.04 -5 3.08,-5
140 1.23,-5 6.87 -6 2.61,-5
150 1.49,-5 3.99 -6 2.29,-5
160 1.71,-5 1.78 -6 2.06,-5
170 1.86,-5 4.58 -7 1.95,-5
180 1.89,-5 0 1.89,-5

Integral 
(ir aJ2)

1.58,-2 7.02,-3 2.99,-2



TABLE 23(d)

E = 200 eV

255

0

0
5

10
15
20
25
30
35
40
45
50
55
60
70
80
90
100
110
120
130
140
150
160
170
180

Integral
(TT

m = 0 m = 1 Total
2.79 0 2.79
2.99,-1 2.40,-1 7.78,-1
3.17,-2 6.58,-2 1.63,-1
6.61,-3 1.62,-2 3.90,-2
2.00,-3 3.86,-3 9.72,-3
7.74,-4 8.72,-4 2.52,-3
3.66,-4 1.78,-4 7.22,-4
2.00,-4 3.07,-5 2.62,-4
1.20,-4 5.89,-6 1.32,-4
7.56,-5 5.48,-6 8.65,-5
4.96,-5 8.03,-6 6.57,-5
3.34,-5 9.59,-5 5.26,-5
2.23,-5 1.01,-5 4.24,-5
9.19,-6 9.60,-6 2.84,-5
3.71,-6 8.21,-6 2.01,-5
1.25,-6 6.64,-6 1.45,-5
6.67,-7 5.32,-6 1.13,-5
8.72,-7 3.96,-6 8.79,-6
1.49,-6 2.91,-6 , 7.31,-6
2.12,-6 1.98,-6 6.08,-6
2.91,-6 1.24,-6 5.40,-6
3.33,-6 7.30,-7 4.79,-6
3.85,-6 2.85,-7 4.42,-6
4.12,-6 8.96,-8 4.30,-6
3.98,-6 0 3.98,-6

1.02,-2 6.77,-3 2.37,-2
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TABLE 24(a)

VALUES OF X FOR ELECTRON IMPACT EXCITATION OF He(2^P) COMPUTED IN THE DWPO I 

and DWPO II MODELS AT INCIDENT ENERGIES OF (a) 40 AND 60 eV, (b) 80 AND 100 eV AND
(c) 200 eV.

40 eV 60 eV
DWPO I DWPO II DWPO I DWPO II

0 1.000 1.000 1.000 1.000
5 0.958 0.958 0.884 0.883
10 0.855 0.853 0.671 0.669
15 0.730 0.726 0.505 0.501
20 0.614 0.606 0.399 0.393
25 0.514 0.503 0.335 0.326
30 0.430 0.414 0.296 0.285
35 0.357 0.335 ' 0.277 0.263
40 0.292 0 .265 0.277 0.263
45 0.235 0.205 0.305 0.296
50 0.198 0.173 0.371 0.372
55 0.199 0.195 0.455 0.467
60 0.254 0.280 0.516 0.535
70 0.428 0.491 0.535 0.560
80 0.513 0.580 0.484 0.511
90 0.502 0.570 0.407 0.436
100 0.432 0.501 0.325 0.355
110 0.323 0.389 0.256 0.283
120 0.210 0.259 0.227 0.247
130 0.171 0.191 0.269 0.279
140 0.290 0.288 0.392 0.392
150 0.530 0.528 0.576 0.571
160 0.774 0.775 0.786 0.782
170 0.941 0.942 0.946 0.945
180 1.000 1.000 1.000 1.000
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0° 80 eV 100 eV
DWPO I DWPO II DWPO I DWPO :

0 1.000 1.000 1.000 1.000
5 0.790 0.790 0.693 0.693

10 0.518 0.516 0.406 0.404
15 0.369 0.366 0.290 0.287
20 0.301 0.296 0.252 0.249
25 0.275 0.269 0.256 0.253
30 0.279 0.272 0.297 0.294
35 0.312 0.306 0.386 0.384
40 0.384 0.379 0.524 0.524
45 0.491 0.490 0.663 0.662
50 0.589 0.590 0.714 0.714
55 0.621 0.626 0.674 0.677
60 0.595 0.603 0.599 0.604
70 0.492 0.503 0.445 0.453
80 0.387 0.401 0.315 0.324
90 0.294 0.310 0.217 0.227

100 0.221 0.236 0.154 0.162
110 0.185 0.197 0.143 0.149
120 0.202 0.210 0.194 0.197
130 0.289 0.291 0.303 0.303
140 0.441 0.439 0.462 0.460
150 0.616 0.612 0.653 0.650
160 0.805 0.802 0.825 0.823
170 0.954 0.953 0.956 0.956
180 1.000 1.000 1.000 1.000
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TABLE 24(c)

0° 200 eV

DWPO I DWPO II
0 1.000 1.000
5 0.345 0.345

10 0.175 0.175
15 0.160 0.161
20 0.206 0.208
25 0.327 0.331
30 0.557 0.558
35 0.823 0.819
40 0.927 0.925
45 0.857 0.862
50 0.731 0.740
55 0.612 0.622
60 0.506 0.515
70 0.308 0.315
80 0.172 0.177
90 0.076 0.079

100 0.053 0.054
110 0.096 0.096
120 0.204 0.202
130 0.350 0.348
140 0.541 0.539
150 0.696 0.694
160 0.873 0.872
170 0.958 0.958
180 1.000 1.000
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TABLE 25(a)

VALUES OF X IN RADIANS (-it < % ^  FOR ELECTRON IMPACT EXCITATION OF He(2^P) 

COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF (a) 40 AND 60 eV, 
(b) 80 AND 100 eV AND (c) 200 eV.

0

5 
10 
15 
20 
25 
30 
35 
40 
45 
: 50 
55 
60 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170

40 eV 60 eV
DWPO I

-8.78,-2 
-1.03,-1 
-1.30,-1 
-1.71,-1 
-2.31,-1 
-3.15,-1 
-4.38,-1 
-6.18,-1 
-8.89,-l 
-1.29 
-1.81 
-2.35 
-3.12 
2.71 
2.47 
2.31 
2*16 
1.85 
1.25 
6.83,-1 
4.05,-1 
2.79,-1 
2.21,-1

DWPO II

-8.32,-2 
-9.82,-2 
-1.25,-1 
-1.66,-1 
-2.26,-1 
-3.13,-1 
-4.42,-1 
-6.39,-l 
-9.47,-1 
-1.42 
- 2.00 
-2.52 
3.05 
2.64 
2.42 
2.29 
2.17 
1.92 
1.37 
7.58,-1 
4.38,-1 
2.97,-1 
2.32,-1

DWPO I

-5.93,-2 
-8.52,-2 
-1.31,-1 
-2.01,-1 
-3.04,-1 
-4.55,-l 
-6.75,-1 
—9.89,-l 
-1.41 
-1.92 
-2.45 
-2.93 
2.71 
2.38 
2^20 
2.03 
1.79 
1.45 
1.06 
7.70,-1
5.89,-1
4.90,-1 
4.55,-1

DWPO II

-5.72,-2 
-8.29,-2 
-1.29,-1 
- 2.01,-1 
-3.08,-1 
-4.67,-1 
-7.02,-1 
-1.04 
-1.49 
- 2.01 
-2.53 
- 3.00 
2.66 
2.35 
2.18 
2.03 
1.82 
1.50 
1.12 
8.23,-1 
6.31,-1 
5.25,-1 
4.87,-1
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0° 80 eV 100 eV
DV7P0 I DWPO II DWPO I DWPO II

5 -4.85,-2 -4.72,-2 -4.33,-2 -4.24,-2
10 -8.44,-2 -8.32,-2 -8.82,-2 -8.76,-2
15 -1.47,-1 -1.47,-1 -1.64,-1 -1.66,-1
20 -2.41 ,-l -2.44,-1 -2.76,-1 -2.83,-1
25 -3.77,-1 -3.87,-1 -4.36,-1 -4.49,-1
30 -5.71,-1 -5.90,-1 -6.56,-1 -6.78,-1
35 -8.41,-1 -8.73,-1 -9.52,-1 -9.81,-1
40 -1.20 -1.25 -1.35 -1.38
45 -1.67 -1.72 -1.88 -1.91
50 -2.23 -2.27 -2.52 -2.54
55 -2.78 -2.81 -3.04 -3.05
60 3.07 3.05 2.91 2.91
70 2.58 2.57 2.55 2.55
80 2.33 2.32 2.34 2.34
90 2.13 2.13 2.11 2.12
100 1.89 1.90 1.78 1.79
110 1.54 1.57 1.35 1.38
120 1.16 1.20 9.53,-1 9.87,-1
130 8.48,-1 8.90,-1 6.89,-1 7.19,-1
140 ■ 6.37,-1 6.72,-1 5.33,-1 5.59,-1
150 5.12,-1 5.41,-1 4.41,-1 4.62,-1
160 4.45,-1 4.71,-1 3.84,-1 4.03,-1
170 4.22,-1 4.46,-1 3.71,-1 3.89,-1
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TABLE 25(c)

0° 200 eV

DWPO I DWPO II

5 -4.09,-2 -4.05,-2
10 -1.19,-1 -1.21,-1
15 -2.37,-1 -2.44,-1
20 -3.92,-1 -4.04,-1
25 -5.91,-1 -6.04,-1
30 -8.49,-1 -8.61,-1
35 -1.28 -1.28
40 -2.26 -2.21
45 -3.07 -3.03
50 2.92 2.95
55 2.78 2.80
60 2.71 2.72
70 2.60 2.61
80 2.44 2.45
90 2.07 2.09

100 1.39 1.41
110 7.76,-1 7.99,-1
120 4.81,-1 4.96,-1
130 3.54,-1 3.65,-1
140 2.79,-1 2.88,-1
150 2.40,-1 2.48,-1
160 2.28,-1 2.36,-1
170 1.91,-1 1.98,-1
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TABLE 26(a)

VALUES OF X FOR ELECTRON IMPACT EXCITATION OF Ke(3^P) COMPUTED IN THE DWPO I
AND DVæO II MODELS AT INCIDENT ENERGIES OF (a) 50 AND 80 eV AND (b) 100 AND 200 eV.

G° 50 eV 80 eV

DWPO I DWPO II DWPO I DWPO II

0 1.000 1.000 1.000 1.000
5 0.939 0.938 0.822 0.821

10 0.800 0.797 0.564 0.562
15 0.653 0.648 0.408 0.404
20 0.532 0.523 0.328 0.322
25 0.439 0.426 0.291 0.283
30 0.368 0.350 0.283 0.273
35 0.310 0.287 0.300 0.287
40 0.263 0.235 0.349 0.336
45 0.230 0.202 0.438 0.428
50 0.229 0.211 0.542 0.535
55 0.280 0.286 0.601 0.599
60 0.370 0.407 0.599 0.602
70 0.532 0.579 0.520 0.531
80 0.563 0.611 0.430 0.445
90 0.528 0.579 0.347 0.365

100 0.458 0.511 0.278 0.297
110 0.370 0.421 0.239 0.256
120 0.296 0.338 0.248 0.261
130 0.284 0.311 0.320 0.328
140 0.381 0.392 0.457 0.46CT
150 0.573 0.577 0.624 ■ 0.623
160 0.784 0.784 0.807 0.805
170 0.941 0.941 0.953 0.952
180 1.000 1.000 1.000 1.000
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100 eV 200 eV
D W O  I DWPO II DWPO I DWPO II

0 1.000 1.000 1.000 1.000
5 0.733 0.732 6.385 0.384

10 0.448 0.446 0.195 0.194
15 0.319 0.316 0.170 0.169
20 0.271 0.266 0.205 0.205
25 0.264 0.259 0.307 0.307
30 0.291 0.284 0.508 0.506
35 0.358 0.351 0.775 0.765
40 0.474 0.466 0.919 0.911
45 0.613 0.604 0.874 0.873
50 0.694 0.685 0.751 0.756
.55 0.679 . 0.674 0.630 0.635
60 0.612 0.611 0.521 0.525
70 0.468 0.473 0.322 0.324
80 0.348 0.356 0.183 0.184
90 0.254 0.263 0.085 0.086
100 0.193 0.202 0.059 0.059
110 0.178 0.186 0.099 0.099
120 0.220 0.226 0.204 0.204
130 0.319 0.323 0.350 0.349
140 0.473 0.473 0.539 0.539
150 0.653 0.652 0.696 0.695
160 0.829 0.828 0.871 0.871
170 0.954 0.953 0.959 0.958
180 1.000 1.000 1.000 1.000
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TABLE 27(a)

VALUES OF X IN RADIANS (-ïï < x 1  Tr) FOR ELECTRON IMPACT EXCITATION OF He(3^P) 
COMPUTED IN THE DWPO I AND DWPO II MODELS AT INCIDENT ENERGIES OF (a) 50 AND 
80 eV AND (b) 100 AND 200 eV .

0 50 eV 80 eV
DWPO I DWPO II DWPO I DWPO II

5 -7.71,-2 -7.32,-2 -5.22,-2 -5.05,-2
10 -9.57,-2 -9.13,-2 -8.50,-2 —8.33,-2
15 -1.28,-1 -1.24,-1 -1.41,-1 -1.40,-1
20 -1.78,-1 -1.74,-1 -2.26,-1 -2.28,-1
25 -2.51,-1 -2.48,-1 -3.48,-1 -3.56,-1
30 —3.56,—1 -3.58,-1 -5.24,-1 -5.42,-1
35 -5.11,-1 -5.24,-1 -7.75,-1 -8.07,-l
40 -7.44,-1 -7.81,-1 -1.12 -1.17
45 -1.09 -1.18 -1.58 -1.64
50 -1.58 .-1.73 -2.13 -2.19
55 -2.14 -2.31 -2.70 -2.75
60 -2.66 -2.80 3.10 3.07
70 2.88 2.79 2.54 2.52
80 2.46 2.40 2.27 2.56
90 2.25 2.21 2.08 2.07
100 2.10 2.09 1.87 1.87
110 1.94 1.95 1.58 1.60
120 1.67 1.72 1.26 1.30
130 1.29 1.36 9.64,-1 1.01
140 8.98,-1 9.71,-1 7.46,-1 7.85,-1
150 6.42,-1 6.97,-1 6.09,-1 . 6.44,-1
160 5.02,-1 5.44,-1 5.31,-1 5.62,-1
170 4.32,-1 4.66,-1 4.98,-1 5.29,-1
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100 eV 200 eV

5

10
15

20
25

30

35

40

45

50

55

60

70

80

90

100
110
120
1 30

1 4 0

1 50

1 6 0

170

DWPO I

- 4 . 5 9 , - 2  

- 8 . 6 9 , - 2  

- 1 . 5 6 , - 1  

- 2 . 5 8 , - 1  

- 4 . 0 3 , - 1  

-6.06,-l 
- 8 . 8 4 , - 1  

- 1 . 2 6  

- 1 . 7 7  

- 2 . 4 0  

- 2 . 9 7

2 . 9 2  

2 . 5 2

2 . 2 8

2 . 0 6

1 . 7 7  

1 . 4 0  

1 . 0 4

7 . 7 9 , - 1  

6.11,-1
5 . 0 7 , - 1  

4 . 4 9 , - 1

4 . 1 4 , - 1

DWPO II

- 4 . 4 6 , - 2  

- 8 . 5 9 , - 2  

- 1 . 5 7 , - 1  

- 2 . 6 3 , - 1  

-4.16,-l 
- 6 . 2 8 , - 1  

- 9 . 1 6 , - 1  

- 1 . 3 0  

- 1 . 8 1  

- 2 . 4 3  

- 2 . 9 8

2 . 9 2  

2 . 5 1

2 . 2 8

2 . 0 6

1 . 7 8

1 . 4 2  

1 . 0 7  

8 . 0 9 , - 1  

6 . 3 8 , - 1  

5 . 3 1 , - 1

4 . 7 1 , - 1

4 . 3 5 , - 1

DWPO I

- 4 . 1 0 , - 2  

- 1 . 1 4 , - 1  

-2.21,-1 
- 3 . 6 6 , - 1  

- 5 . 5 6 , - 1  

-8.02,-1 
- 1 . 1 8  

- 2 . 0 3  

- 2 . 9 7  

2 . 9 5

2 . 7 8  

2 . 6 9

2 . 5 8

2 . 4 2

2 . 0 6

1 . 4 2

8 . 1 5 , - 1

5 . 0 7 , - 1

3 . 7 2 , - 1  

2 . 9 3 , - 1  

2 . 5 2 , - 1

2 . 3 6 , - 1  

2.02,-1

DWPO II

- 4 . 0 5 , - 2  

r l . 1 5 , - 1  

- 2 . 2 8 , - 1  

- 3 . 7 8 , - 1  

- 5 . 7 1 , - 1  

- 8 . 1 8 , - 1  

- 1 . 1 9  

- 1 . 9 9  

- 2 . 9 1  

2 . 9 9

2,i 82

2 . 7 2

2 . 5 9

2 . 4 3

2 . 0 7

1 . 4 3

8 . 2 4 , - 1

5 . 1 6 , - 1

3 . 8 0 , - 1  

2 . 9 9 , - 1  

2 . 5 8 , - 1  

2 . 4 3 , - 1

2 . 0 8 , - 1
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TABLE 28

TOTAL (INTEGRAL) CROSS SECTION IN UNITS OF tt FOR ELECTRON IMPACT EXCITATION
OF He(2 P) COMPUTED IN THE DlfPO I MODEL.

E (eV)

25

30

40

50

60

70

80

90

100
125

150

200
300

m = 0

2.18,-2 

3.82,-2 

3.65,-2 

2.42,-2 

1.52,-2 

9.70,-3

6.37,-3 

4.32,-3 

3.02,-3

1.38,-3 

7.14,-4 

2.45,-4 

5.21,-5

m = 1

7.00,-3 

9.31,-3 

6.50,-3 

3.89,-3 

2.41,-3 

1.58,-3 

1.09,-3

7.83,-4

5.83,-4 

3.13,-4 

1.88,-4 

8.64,-5 

2.69,-5

Total

3.58,-2

5.68

4.95

3.20

2.00
1.29

8.54

5.88

4.19

2.01
1.09

4.14

1.06

-2

-2

-2

-2

-2

-3

-3

-3

-3

-3

-4

-4
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TABLE 29(a)

DIFFERENTIAL CROSS SECTIONS IN UNITS OF FOR ELECTRON IMPACT EXCITATION

OF He(2^P) COMPUTED IN THE D W O  I MODEL AT INCIDENT ENERGIES OF (a) 29.6,

(b) 40.1 (c) 81.63 (d) 100 AND (e) 200 eV. COLUMNS (A) ARE OBTAINED USING THE 

EXCITED STATE WAVE FUNCTION OF COHEN AND McEACHRAN AND COLUMNS (B) USING THAT 

OF MORSE ET AL. - SEE APPENDIX A FOR DETAILS.

E = 29.6 eV
(A) (B)

0° m — C m = 1 Total m = C m = 1 Total
0 5.58 -2 0 5.58 -2 8.04 -2 0 8.04 -2
5 5.52 -2 1.18 -4 5.54 -2 7.97 -2 1.21,-4 7.99 -2

10 5.35 -2 4.54 -4 5.44 -2 7.76 -2 4.66,-4 7.85 -2
15 5.07 -2 9.60 -4 5.27 -2 7.42 -2 9.86,-4 7.62 -2
20 4.71 -2 1.57 -3 5.03 -2 6.97 -2 1.61,-3 7.29 -2
25 4.28 -2 2.20 -3 4.72 -2 6.43 -2 2.26,-3 5.88 -2
30 3.81 -2 2.79 -3 4.37 -2 5.83 -2 2.86,-3 6.40 -2
35 3.31 -2 3.29 -3 3.97 -2 5.20 -2 3.37,-3 5.87 -2
40 2.81 -2 3.67 -3 3.54 -2 4.55 -2 3.75,-3 5.30 -2
45 2.33 -2 3.92 -3 3.11 -2 3.92 -2 4.00,-3 4.72 -2
50 1.88 -2 4.03 -3 2.68 -2 3.31 -2 4.11,-3 4.13 -2
55 1.47 -2 4.04 -3 2.28 -2 2.75 -2 4.11,-3 3.57 -2
60 1.11 -2 3.96 -3 1.90 -2 2.24 -2 4.03,-3 3.05 -2
70 5.60 -3 3.62 -3 1.28 -2 1.40 -2 3.67,-3 2.14 -2
80 2.16 -3 3.17 -3 8.50 -3 8.01 -3 3.21,-3 1.44 -2
90 4.59 -4 2.69 -3 5.85 -3 4.03 -3 2.72,-3 9.47 -3

100 6.54 -5 2.23 -3 4.53 -3 1.66 -3 2.26,-3 6.17 -3
110 5.42 -4 1.80 -3 4.14 -3 4.61 -4 1.82,-3 4.10 -3
120 1.52 -3 • 1.39 -3 4.30 -3 3.56 -5 1.41,-3 2.85 -3
130 2.70 -3 1.02 -3 4.74 -3 7.35 -5 1.03,-3 2.13 -3
140 3.88 -3 6.83 -4 5.25 -3 3.46 -4 6.92,-4 1.73 -3
150 4.92 -3 4.00 -4 5.72 -3 6.92 -4 4.05,-4 1.50 -3
160 5.71 -3 1.83 -4 6.08 -3 1.00 -3 1.85,-4 1.38 -3
170 6.21 -3 4.67 -5 6.31 -3 1.22 -3 4.73,-5 1.31 -3
180 6.38 -3 0 6.38 -3 1.29 -3 0 1.29 -3

[ntegral 3.74,-2 9.32,-3 5.61,-2 5.94,-2 9.46,-3 7.83, -2
(. a,')
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E = 40.1 eV
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(A)

0° m = C m = 1 Total

0 6.43 -2 0 6.43 -2
5 6.35 -2 2.01 -4 6.39 -2

10 6.11 -2 7.53 -4 6.26 -2
15 5.73 -2 1.52 -3 6.03 -2
20 5.24 -2 2.33 -3 5.70 -2
25 4.68 -2 3.03 -3 5.28 -2
30 4.07 -2 3.53 -3 4.78 -2
35 3.47 -2 3.78 -3 4.23 -2
40 2.8,9 -2 3.82 -3 3.65 -2
45 2.35 -2 3.68 -3 3.09 -2
50 1.87 -2 3.43 -3 2.56 -2
55 1.46 -2 3.12 -3 2.08 -2
60 1.11 -2 2.79 -3 1.67 -2
70 5.90 -3 2.19 -3 1.03 -2
80 2.72 -3 1.71 -3 6.14 -3
90 9.95 -4 1.36 -3 3.72 -3
100 2.28 -4 1.09 ^3 2.42 -3
110 4.37 -5 8.76 -4 1.80 -3
120 1.81 -4 6.82 -4 1.55 -3
130 4.66 -4 5.05 -4 1.48 -3
140 7.93 -4 3.42 -4 1.48 -3
150 1.09 -3 2.02 -4 1.50 -3
160 1.33 -3 9.33 -5 1.52 -3
170 1.48 -3 2.39 -5 1.53 -3
180 1.53 -3 0 1.53 -3

[ntegral 3.63,-2 6.46, -3 4.93, -2

m = 0

(B) 

m = 1 Total
8.21 -2 0 8.21,-2
8.11 -2 2.04 -4 8.15,-2
7.83 -2 7.64 -4 7.99,-2
7.39 -2 1.54 -3 7.70,-2
6.83 -2 2.36 -3 7.30,-2
6.17 -2 3.06 -3 6.78,-2
5.45 -2 3.55 -3 6.17,-2
4.74 -2 3.80 -3 5.50,-2
4.04 -2 3.81 -3 4.81,-2
3.39 -2 3.66 -3 4.12,-2
2.80 -2 3.39 -3 3.48,-2
2.28 -2 3.07 -3 2.89,-2
1.83 -2 2.74 -3 2.38,-2
1.13 -2 2.13 -3 1.56,-2
6.67 -3 1.66 -3 1.00,-2
3.71 -3 1.32 -3 6.35,-3
1.92 -3 1.06 -3 4.05,-3
9.02 -4 8.53 -4 2.61,-3
3.64 -4 6.66 -4 1.70,-3
1.16 -4 • 4.93 -4 1.10,-3
3.12 -5 3.35 -4 7.01,-4
2.90 -5 1.98 -4 4.25,-4
5.81 -5 9.14 -5 2.41,-4
8.70 -5 2.34 -5 1.34,-4
9.84 -5 0 9.84,-5

5.34,-2 6.37,-3 6.61,-2



TABLE 29(c)
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(A)
E = 81.63 eV

(B)

0° m = C m = 1 Total m = 0 m = 1 Total
0 1.70 -2 0 1.70 -2 1.91 -2 0 1.91,-2
5 1.66 -2 2.16 -4 1.70 -2 1.87 -2 2.16,-4 1.91,-2

10 1.54 -2 7.31 -4 1.68 -2 1.74 -2 7.29,-4 1.88,-2
15 1.36 -2 1.26 -3 1.61 -2 1.54 -2 1.24,-3 1.79,-2
20 1.15 -2 1.56 -3 1.47 -2 1.32 -2 1.54,-3 1.63,-2
25 9.40 -3 1.59 -3 1.26 -2 1.09 -2 1.55,-3 1.40,-2
30 7.42 -3 1.42 -3 1.03 -2 8.69 -3 1.36,-3 1.14,-2
35 5.71 -3 1.16 -3 8.02 -3 6.80 -3 1.09,-3 8.97,-3
40 4.29 -3 8.83 -4 6.06 -3 5.24 -3 8.12,-4 6.86,-3
45 3.17 -3 6.47 -4 4.47 -3 3.99 -3 5.82,-4 5.15,-3
50 2.31 -3 4.63 -4 3.23 -3 3.02 -3 4.07,-4 3.83,-3
55 1.66 -3 3.30 -4 2.31 -3 2.27 -3 2.84,-4 2.84,-3
60 1.17 -3 2.36 -4 1.64 -3 1.71 -3 2.00,-4 2.11,-3
70 5.61 -4 1.32 -4 8.25 -4 9.72 -4 1.11,-4 1.19,-3
80 2.47 -4 8.69 -5 4i21 -4 5.56 -4 7.39,-5 7.03,-4
90 9.43 -5 6.66 -5 2.27 -4 3.21 -4 5.79,-5 4.36,-4
100 2.76 -5 5.50 -5 1.38 -4 1.88 -4 4.85,-5 2.85,-4
110 5.00 -6 4.59 -5 9.68 -5 1.13 -4 4.07,-5 1.95,-4
120 4.12 -6 3.70 -5 7.80 -5 7.35 -5 3.28,-5 1.39,-4
130 . 1.29 -5 2.79 -5 6.87 -5 5.38 -5 2.47,-5 1.03,-4
140 2.48 -5 1.91 -5 6.31 -5 4.57 -5 1.69,-5 7.96,-5
150 3.62 -5 1.14 -5 5.90 -5 4.39 -5 1.00,-5 6.40,-5
160 4.54 -5 5.25 -6 5.59 -5 4.48 -5 4.63,-6 5.41,-5
170 5.12 -5 1.34 -6 5.39 -5 4.63 -5 1.18,-6 4.86,-5
180 5.32 -5 0 5.32 -5 4.69 -5 0 4.69,-5

[ntegral 5.96, -3 1.03,-3 8.02, -3 7.53,-3 9.51,-4 9.43,-3
(ïï a )̂ o



TABLE 29(d)

E = 100 eV
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(A) (B)

0^ m = 0 m = 1 Total m = 0 m = 1 Total
0 1.01,-2 0 1.01 -2 1.10 -2 0 1.10,-2
5 9.81,-3 1.97 -4 1.02 -2 1.07 -2 1.97 -4 1.11,-2

10 8.95,-3 6.38 -4 1.02 -2 9.78 -3 6.34 -4 1.10,-2
15 7.71,-3 1.03 -3 9.77 -3 8.46 -3 1.01 -3 1.05,-2
20 6.32,13 1.18 -3 8.68 -3 6.97 -3 1.15 -3 9.27,-3
25 4.97,-3 1.10 -3 7.17 -3 5.52 -3 1.05 -3 7.63,-3
30 3.77,-3 8.99 -4 5.57 -3 4.24 -3 8.43 -4 5.93,-3
35 2.79,-3 6.69 -4 4.13 -3 3.19 -3 6.11 -4 4.41,-3
40 2.03,-3 4.69 -4 2.96 -3 2.36 -3 4.16 -4 3.20,-3
45 1.45,-3 3.17 -4 2.08 -3 1.74 -3 2.72 -4 2.29,-3
50 1.02,-3 2.10 -4 1.44 -3 1.28 -3 1.75 -4 1.63,-3
55 7.16,-4 1.39 -4 9.95 -4 9.42 -4 1.13 -4 1.17,-3
60 4.96,-4 9.38 -5 6.83 -4 6.95 -4 7.44 -5 8.44,-4
70 2.28,-4 4.80 -5 3.24 -4 3.84 -4 3.79 -5 4.60,-4
80 9.74,-5 3.09 -5 1.59 -4 2.16 -4 2.53 -5 2.67,-4
90 3.62,-5 2.41 -5 8.45 -5 1.24 -4 2.05 -5 1.65,-4

100 1.03,-5 2.04 -5 5.12 -5 7.34 -5 1.76 -5 1.09,-4
110 1.92,-6 1.73 -5 3.64 -5 4.57 -5 1.49 -5 7.56,-5
120 1.84,-6 1.40 -5 2.98 -5 3.13 -5 1.21 -5 5.54,-5
130 5.31,-6 1.05 -5 2.64 -5 2.46 -5 9.06 -6 4.27,-5
140 9.85,-6 7.19 -6 2.42 -5 2.22 -5 6.17 —6 3.46,-5
150 1.42,-5 4.25 -6 2.27 -5 2.21 -5 3.63 -6 2.94,-5
160 1.76,-5 1.96 -6 2.15 -5 2.29 -5 1.67 -6 2.62,-5
170 1.98,-5 4.99 -7 2.08 -5 2.37 -5 4.25 -7 2.45,-5
180 2.05,-5 0 2.05 -5 2.40 -5 0 2.40,-5

[ntegral 3.02,-3 5.83, -4 4.19 ,-3 3.62,-3 5.33,-4 4.68,-3
(tt a^2)



TABLE 29(e)

E = 200 eV
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6° m = C

(A) 

m = 1 Total

0 1.48 -3 0 1.48 -3
5 1. 39 -3 1.19 -4 1.63 -3

10 1.16 -3 3.09 -4 1.78 -3
15 8.76 -4 3.64 -4 1.60 -3
20 6.13 -4 2.94 -4 1.20 -3
25 4.09 -4 1.92 -4 7.93 -4
30 2.66 -4 1.11 -4 4.. 89 -4
35 1.72 -4 6.07 -5 2.93 -4
40 1.10 -4 3.19 -5 1.74 -4
45 7.13 -5 1.65 -5 1.04 -4
50 4.61 -5 8.49 -6 6.31 -5
55 2.99 -5 4.43 -6 3.88 -5
60 1.94 -5 2.41 -6 2.42 -5
70 8.04 -6 9.88 -7 1.00 -5
80 3.16 -6 7.06 -7 4.57 -6
90 1.09 -6 6.47 -7 2.39 -6

100 2.88 -7 5.93 -7 1.47 -6
110 4.70 -8 5.10 -7 1.07 -6
120 . 5.24 -8 4.08 -7 8.68 -7
130 1.55 -7 3.01 -7 7.56 -7
140 2.83 -7 2.01 -7 6.84 -7
150 4.00 -7 1.16 -7 . 6.33 -7
160 4.92 -7 5.25 -8 5.97 -7
170 5.50 -7 1.33 -8 5.76 -7
180 5.69 -7 0 5.69 -7

(B)

Integral 2.45,-4 8.44,-5 4.14,-4
(t aJZ)

m = 0 ÏÏ1 = I Total

1.47 -3 0 1.47,-3
1.38 -3 1.18 -4 1.62,-3
1.15 -3 3.03 -4 1.75,-3
8.57 -4 3.50 -4 1.56,-3
5.93 -4 2.73 -4 1.14,-3
3.91 -4 1.71 -4 7.33,-4
2.52 -4 9.42 -5 4.40,-4
1.62 -4 4.82 -5 2.58,-4
1.05 -4 2.36 -5 1.52,-4
6.87 -5 1.13 -5 9.14,-5
4.59 -5 5.41 -6 5.67,-5
3.11 -5 2.65 -6 3.64,-5
2.15 -5 1.41 -6 2.43,-5
1.07 -5 6.64 -7 1.20,-5
5.59 -6 5.67 -7 6.72,-6
3.06 -6 5.44 -7 4.15,-6
1.79 -6 4.95 -7 2.78,-6
1.18 -6 4.18 -7 2.02,-6
9.14 -7 3.28 -7 1.57,-6
8.36 -7 2.39 -7 1.31,-6
8.52 -7 1.58 -7 1.17,-6
9.04 -7 9.07 — 8 1.09,-6
9.62 -7 4.08 -8 1.04,-6
1.00 -6 1.03 -8 1.02,-6
1.02 -6 0 1.02,-6

2.43, -4 7.53,-5 3.93,-4
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FIGURE CAPTIONS
Figure 1

Differential cross section for electron impact excitation of He(2^S) 

computed in the First Born approximation at incident energies of 29.6 and 40.1 eV.

Figure 2

Differential cross section for electron impact excitation of Ke(2^P) 

computed in the First Born approximation at incident energies of 29.6 and 40.1 eV.

Figure 3
3Differential cross section for electron impact excitation of He(2 S) 

computed in the Bom-Oppenheimer approximation at incident energies of 29.6,
40.1 and 55.5 eV.

Figure 4
3Differential cross section for electron impact excitation of He(2 P) 

computed in the Born-Oppenheimer approximation at incident energies of 29.6,

40.1 and 55.5 eV.

Figure 5
3Differential cross section for electron impact excitation of He(2 S) 

computed in the Born-Oppenheimer approximation at an incident energy of 29.6 eV 

using expression (5.4.1).

------------  Obtained using the excited state wave function of Cohen and

McEachran.

------------  Obtained using the excited state wave function of Morse et al.

Figure 6

Differential cross section for electron impact excitation of H(2s) computed 

in the DWPO approximation at incident energies of (a) 50 eV and (b) 100 eV.

 *-------- DWPO I (McDowell et al., 1975b)

------------  DWPO II (McDowell et al., 1975b)

------------  DWPO III (present work)
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Figure 7

Differential cross section for electron impact excitation of H(2p) computed 

in the D W O  approximation at incident energies of (a) 50 eV and (b) 100 eV.
Theory as for figure 6.

Figure 8

Differential cross section for electron impact excitation of H(n =2) 

computed in the DWPO III model at incident energies of (a) 1.02, (b) 1.21 and

(c) 1.44 Rydbergs.

-----------  Excitation of the 2s state.

  Excitation of the 2p state.

------------ Excitation of the n = 2 level.

Experiment: $ , Williams (1976).

Figure 9

Differential cross section for electron impact excitation of H(n = 2) at 

incident energies of (a) 5.4.4 eV (= 4 Ryd.) and (b) 100 eV.

------------ DV/PO III

  -------  Hybrid close-coupling unitarized Born approximation:Kingston

et al. (1976).

  ------- Hybrid pseudo-state close-coupling distorted wave model:

Callaway et al. (1976), (a) only.

------------ Unitarized DWPO III model, (b) only.

Experiment: § , Williams and Willis (1975).

Figure 10
Total cross section for electron impact excitation of He(n^S).

(a) n = 2:

------------ DWPO I
  -- ---- Multichannel eikonal method: Flannery and McCann (1975).

+ -- 4-—  Eikonal distorted wave method: Joachain and Vanderpoorten (1974a).

 -- ----- Many-body theory: Thomas et al. (1974).
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Figure 10 continued

------------  Second-order optical potential distorted wave model: Winters (1974).

------------  Coulomb-projected Born approximation: Hidalgo and Geltman (1972).

Experiment: §, Hall et al. (1973); 5 ,  Trajmar (1973); $ , Brongersma et al. (1972]

ÿ 9 Rice et al. (1972); J  , Vriens et al. (1968).
(b) n = 3:

------------  DWPO I

—   --- - DWPO II

  --------    Multichannel eikonal method: Flannery and McCann (1975).

Experiment: ÿ , Chutjian and Thomas (1975); § , Moustafa Moussa et al. (1969);
5 9 St.John et al. (1964).

(c) n = 4:

------------ DWPO I
 --------  DWPO II

Experiment: 5  s Showalter and Kay (1975); ÿ , Pochât et al. (1973);

î , van Raan et al. (1971); § , Moustafa Moussa et al. (1969); 5  , St. John et
al. (1964).

(d) n = 5:

Same as in figure 10(c).

Figure 11

Differential cross section for electron impact excitation of He(2^S) at 

incident energies of (a) 29.6 eV 9 (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and

(e) 200 eV.

------------ DWPO I

  ---*---  Many-body theory: Thomas et al. (1974).

    Multichannel eikonal method: Flannery and McCann (1975).

  ---   Second-order diagonalization method: Baye and Heenen (1974).

 1---- 1--- Eikonal B o m  Series: Byron and Joachain (1975).

------------  (a) and (b), distorted wave calculation: Shelton et al. (1973);

(c) and (d) 9  second-order optical potential distorted wave model: 

Bransden and Winters (1975).
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Figure 11 continued

----------- ; (a) and (b), Glauber approximation: Yates and Tenney (1972);

(c) to (e). Coulomb-projected Born approximation: Hidalgo and 
Geltman (1972).

Experiment: $ , Dillon and Lassettre (1975); 5  , Suzuki and Takayanagi (1973);

i  , Trajmar (1973); f  , Crooks (1972); i , Opal and Beaty (1972); g , Rice 

et al. (1972).

Figure 12

Differential cross section for electron impact excitation of He(2^S) 

computed in the DWPO approximation at incident energies of (a) 29.6 eV,

(b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and (e) 200 eV.

-----------  DWPO I

------------ DWPO II

------------ DWPO III

Experiment: g , Dillon and Lassettre (1975); g , Hall et al. (1973);

5 , Suzuki and Takayanagi (1973); i  , Trajmar (1973); ÿ  , Crooks (1972);

J a Opal and Beaty (1972); g  , Rice et al. (1972).

Figure 13

Differential cross section for electron impact excitation of He(3^S) at 

incident energies of (a) 29.2 eV, (b) 39.7 eV, (c) 100 eV and (d) 200 eV. 

------------ DWPO I

— --- ----- Many-body theory: Thomas et al. (1974).

  -------  Multichannel eikonal method: Flannery and McCann (1975).

Experiment: $ , Chutjian and Thomas (1975).

Figure 14

Small-angle differential cross section for electron impact excitation 

of He(4^S) at incident energies of (a) 50 eV, (b) 60 eV, (c) 100 eV and

(d) 200 eV.

------------  DWPO I

 *--- *--- DWPO II
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Figure 14 continued

---------------- First Born approximation: Bell et al. (1969).
Experiment: ÿ , Pochât (1973).

Figure 15

As for figure 14, but for excitation of He(5^S).

Figure 16
3Total cross section for electron impact excitation of He(2 S).

------------ DWPO I

------------ Many-body theory: Thomas et al. (1974).

------------ Second-order optical potential distorted wave model: Winters (1974)

Experiment: i  , Trajmar (1973); g , Brongersma et al. (1972); ? , Crooks

et al. (1972); ^  , Vriens et al. (1968).

Figure 17
3Differential cross section for electron impact excitation of He(2 S) at 

incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and 

200 eV.

 -----------  DWPO I (with excited state wave function of Cohen and McEachran).

----------  DWPO I (with excited state wave function of Morse et al.).

  -- ---- Many-body theory: Thomas et al. (1974).

-------  --- (a) and (b), distorted wave calculation: Shelton et al. (1973);

(c) and (d), second-order optical potential distorted wave model: 

Bransden and Winters (1975).

Experiment: 5  , Yagishita et al. (1976); ^ , Dillon (1975); 5  , Suzuki and

Takayanagi (1973); J , Trajmar (1973); %  , Crooks (1972); ÿ , Opal and Beaty (1972).

Figure 18
3

Differential cross section for electron impact excitation of He(2 S) 

computed in the DWPO approximation at incident energies of (a) 29.6 eV, (b) 40.1 eV,

(c) 81.63 eV, (d) 100 eV and (d) 200 eV.
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Figure 18 continued
------------, DWPO I

------------ DWPO III

Experiment: 5 , Yagishita et al. (1976), ^ , Dillon (1975); 5 , Hall et al.

(1973); 5  » Suzuki and Takayanagi (1973); 4  , Trajmar (1973); $ , Crooks (1972); 
i , Opal and Beaty (1972).

Figure 19

Total integrated cross section for electron impact excitation of He(n^P).

(a) n = 2:
------------ DWPO I

 *-------- DWPO II

Experiment: S , Chutjian and Srivastava (1975); J , Dillon and Lassettre (1975);

5 , Hall et al. (1973); $ , Donaldson et al. (1972); 4 , de Jongh and van Eck (1971) 

4 , Moustafa Moussa et al. (1969).

(b) n = 3;

------------ DWTO I

  --- *--  DWPO II

--------------  Multichannel eikonal method: Flannery and McCann (1975).

--------------  Second-order diagonalization method: Baye and Heenen (1974).

--------------  Second-order optical potential method: Bransden and Issa (1975).

Experiment: § , Chutjian (1976); ÿ  , Showalter and Kay (1975); other symbols

as in figure 19(a).

(c) n = 4:
Same as in figure 19(b).

(d) n = 5:
Same as in figure 19(b).
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Figure 20

Total differential cross section for electron impact excitation of Ke(2^P) 

at incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV 
and (e) 200 eV.

------------ DWPO I

------------ Many-body theory: Thomas et al. (1974).

------------ Multichannel eikonal method: Flannery and McCann (1975).

------------ Second-order diagonalization method: Baye and Heenen (1974).

I" *■ Eikonal distorted wave method: Joachain and Vanderpoorten (1974a).

------------  (a) to (c) and (e), distorted wave calculation: Madison and Shelton

(1973); (d), second-order optical potential distorted wave model: 
Winters (1974).

------------ (a) and (b), 2-state close-coupling calculation: Truhlar et al.

(1973); (c) to (d). Coulomb-projected Born approximation: Hidalgo 

and Geltman (1972).

Experiment: @ , Chutjian and Srivastava (1975); J  , Dillon and Lassettre (1975);

4  , Suzuki and Takayanagi (1973); 5 , Truhlar et al. (1973); J , Opal and Beaty 

(1972); 4 , Chamberlain et al. (1970).

Figure 21

Small-angle total differential cross section for electron impact excitation 

of He(2^P) at incident energies of (a) 29.6 and 40.1 eV and (b) 80 and 100 eV.

------------  DWPO I

------------ DWPO II

------------ First Born approximation: Bell et al. (1969).

- Experiment : - ÿ  y Hall et- al. ■ (1973); -. other symbols as for. figure 20.



280

Figure 22

Total differential cross section for electron impact excitation of He(3 P)

at incident energies of (a) 29.2 eV, (b) 39.7 eV, (c) 100 eV and (d) 200 eV.
------------ DWPO I

------------ Many-body theory: Chutjian and Thomas (1975).

------------  Multichannel eikonal method: Flannery and McCann (1975).

------------ Glauber approximation: Chan and Chen (1974b).

Experiment: i , Chutjian (1975); 5 » Chutjian and Thomas (1975).

Figure 23

Small-angle total differential cross section for electron impact excitation 

of He(3^P) computed in the DWPO approximation at incident energies of 29.2 and

39.7 eV.
  DWPO I

  DWPO II

Experiment: 5 » Chutjian and Thomas (1975).

Figure 24

X for electron impact excitation of He(2^P) at incident energies of

(a) 40 eV, (b) 60 eV, (c) 80 eV, (d) 100 eV and (e) 200 eV.
  DWPO I

 -- ----  Many-body theory: Thomas et al. (1974).

--------.---- Multichannel eikonal method: Flannery and McCann (1975).

— + — + - Eikonal distorted wave method: Joachain and Vanderpoorten (1974b)

------------  Distorted wave calculation: Madison and Shelton (1973),

Experiment: 4 , Eminyan et al. (1974).

Figure 25
1x1 for electron impact excitation of He(2^P) at incident energies of

(a) 40 eV, (b) 60 eV, (c) 80 eV, (d) 100 eV and (e) 200 eV.

Theory and experiment as for figure 24.
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Figure 26

X for electron impact excitation of He(3^P) at incident energies 

of (a) 50 eVj (b) 80 eV, (c) 100 eV and (d) 200 eV.

-----------  Dvæo I

------------  Multichannel eikonal method: Flannery and McCann (1975).

Experiment; 4 , Eminyan et al. (1975).

Figure 27

|x| for electron impact excitation of He(3^P) at incident energies of
(a) 50 eV, (b) 80 eV, (c) 100 eV and (d) 200 eV.

Theory and experiment as for figure 26.

Figure 28

Total integrated cross section for electron impact excitation of He(2^P). 
------------ DWPO I

  ------- Many-body theory: Thomas et al. (1974).

Experiment: 4 , Hall et al. (1973); 4  , Trajmar (1973); 5 , Jobe and St. John

(1967).

Figure 29
. 3Total differential cross section for electron impact excitation of He(2 P) 

at incident energies of (a) 29.6 eV, (b) 40.1 eV, (c) 81.63 eV, (d) 100 eV and

(e) 200 eV.

------------  DWPO I (with excited state wave function of Cohen and McEachran).

------------  DWPO I (with excited state wave function of Morse et al.).

------------ Many-body theory: Thomas et al. (1974).

------------ Distorted wave calculation: Shelton et al. (1973).

Experiment: 5  , Yagishita et al. (1976); § , Chutjian and Srivastava (1975);

4 9 Suzuki and Takayanagi (1973); 4  9 Trajmar (1973); 4 , Gelebart et al. (1975) 

on (b). Opal and Beaty (1972) on (c).
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Abstract. Total and differential cross sections are calculated for electron impact excitation 
of the 2 'S , 2^ Sand 3 'S states of helium in a distorted wave model at impact energies between 
30 and 300 eV. The results are compared with other theoretical models and with recent 
absolute experimental measurements.

1. Introduction

The study of electron impact excitation of helium atoms has received considerable 
attention during the last few years. Close-coupling methods have been used to study the 
low-energy resonances (Smith et al 1973, Orm o n d e  and Golden 1973, Oberoi and Nesbet 
1973) whereas the Born and related methods have provided reasonably accurate total 
cross sections at high energies. However, it is the intermediate energy region, from the 
first ionization threshold to the B o m  region and where an infinite number of channels 
m a y  be open, which provides m u c h  current interest.

There have been a number of important recent studies. The second-order optical 
potential method of Bransden and Coleman (1972) has been applied, initially in an impact 
parameter treatment, to 2^8 excitation of helium by Berrington et al (1973) and by 
Nicholls and Winters (1973). M o r e  recently Bransden and Winters (1975) have used a 
partial wave formalism which has produced both singlet and triplet differential cross 
sections in close agreement with the experimental measurements at higher energies by 
Crooks and Rudd (1972).

The many-body theory of Martin and Schwinger (1959) has been developed and 
applied by Tho m a s  et al (1974) to electron impact excitation of the n = 2 levels of 
helium using a first-order form of the theory. The method predicts the position of the 
deep m i n i m u m  at about 50°, characteristic of 2'S differential cross sections at low 
energies, with reasonable accuracy. Preliminary results for the n =  3 states at two 
energies are given by Taylor et al (1975).

Both these calculations employ distorted waves in the initial and in the final channel, 
but whereas the model of Thom a s  et al requires both to be calculated in the field of the 
ground state, Bransden and Winters allow for polarization effects in the initial channel, 
and calculate the distorted wave in the final channel in the field of the final state. A  
similar, but simpler, model was employed earlier by Shelton et al (1973). The eikonal 
distorted wave method has been utilized by Joachain and Vanderpoorten (1974) w h o  
have calculated cross sections for 2^8 excitation at intermediate and higher energies.

1851
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At higher energies, attempts have also been made to improve on the first Born 
predictions in a number of ways, a m o n g  the most interesting recent calculations being 
the Glauber treatment by Yates and Tenney (1972) and the Coulomb projected Born 
calculations of Hidalgo and Geltman (1972).

In this paper we apply the distorted wave polarized orbital (d w p o )  model of McDowell 
et al {1912,1974), which allows for the effects of distortion in the initial channel, including 
polarization, and also for distortion of the target by the dipole polarization. W e  restrict 
ourselves in this paper to total and differential cross sections for 2^S, 2^S and 3^S 
excitation at energies from 29 2 to 300 eV. There are m a n y  recent absolute experimental 
measurements on these cross sections (Trajmar 1973, Rice et al 1972, Crooks and Rudd 
1972, Opal and Beaty 1972, Brongersma et al 1972, Suzuki and Takayanagi 1973, Dillon 
and Lassettre 1975, Moustafa Moussa et al 1969, Hall et al 1973), so that they provide 
a stringent test of any theoretical model.

W e  outline our theoretical model in the next section (§ 2). Details of the calculations 
and the approximate wavefunctions employed are described in § 3, our results being 
presented and compared with those of other theoretical models, and with experiment in 
§4. Finally we summarize our results and present our conclusions in § 5.

2. Theory
\

The theory developed below is for a general two-electron atom or ion carrying a nuclear 
charge Z. W e  adopt atomic units throughout.

The transition matrix is defined by

Tif = (1)
where 0^ is the unperturbed wavefunction in the final channel, Vf the interaction potential 
in this channel and the exact wavefunction describing the total system in the initial 
channel. The differential cross section I{fi) for a transition from an initial state i to a 
final state f is then expressed in terms of the T-matrix by

=  4 st-' (2)

with ki and kf the initial and final m o m e n t u m  of the incoming and outgoing electron 
respectively. By integrating (2) over all solid angles we obtain the total cross section Qif 
given by

ôif(^f) =  2 ^^ ̂  J  d(cos 0) nal (3)

with k̂ .kf = cos 0.
W e  assume the centre of mass to be fixed at the nucleus and let be the position 

vector of the incident electron with respect to this point. The initially bound electrons 
have position vectors and ̂ 2 .

The Schrodinger equation describing the complete process is

( H - E ) Y +  = 0  (4)
with

E = ik? + E„=ikl + E„. (5)

Eq and E„ refer to the ground and excited state energies of the target atom respectively.
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H is divided into two parts

H = H(+Vf (6)

where it is convenient to choose

Hf = — î(Vi+V| +  V|)-------------1----, (7)
2̂ 3̂ ^12

in the notation of McDowell et al (1973) where no w  z =  Z  — 2.
The system considered has total spin S =  ̂  and hence is a doublet. Denoting the 

doublet spin functions by 5^ and S~ (plus and minus signs referring to singlet and triplet 
states of the target respectively), the final unperturbed state of the total system can be 
represented by

Of(12,3) =  .A±(12,3)S±(12,3) (9)

where 3) represents the spatial part of Of and is the product of a bound state
function (j)f{\2) and an outgoing Coulomb wavefunction 3).

i/.±(12,3) =  <^f(12)%,/z,3), (10)

^ + (12, 3) =  ̂ (l%i^2-(%2)?i)«3, (11)

S (12,3) =  -y^[2^3«iO(2 — (%3(ai^2 +  ̂ i«2)]. (12)

The total antisymmetrized wavefunction 'Tj'*' is written as

=  ^<^;(12)f(3)S+(12,3) (13)

with </>i(12) the unperturbed spatial part of the ground state wavefunction and F(3) the
distorted wave. W e  n o w  obtain the following expressions for the T-matrix, on integrating 
over spin functions,

T +  =  <^f(12,3)%(12)F(3)>-<(Af(12,3)k;^;(23)f(l)> (14)

=  VXiAf(I2,3)f;(^;(23)f(l)>. (15)

The distorted wave is derived by the procedure adopted by McDowell et al (1973).
Thus, T(3) is expanded in partial waves

f(3) = A,'!^^P,(cos 9,) (16)
V^i«=0 3̂

where u,{k-,r) satisfies

I +  --- p  2Fj^ is(r) — 2Kpo|(r)| Uiik̂r) = Xi{r)rRf̂{r) (17)
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with

j  tRi,{t)ui{k;t)dt-:̂ ĵ r)df (18)

and

y/G f) = 3TÏ- (19)
Equation (17) is to be solved subject to the usual boundary conditions,

M/(̂ i,0) =  0, U/(/Ci,r) ~  k̂ >̂̂  sin{k/-jln + ôi).
The polarization induced by the incoming electron is only taken into account by 

means of the direct polarization potential Kp„,(r) so that (17) produces elastic scattering 
solutions in the adiabatic exchange approximation, the effect of exchange polarization 
terms having been neglected.

The direct static potential jg(r) is given by

l̂is,is(0 = — — + 0is(̂ )̂  (20)
and Fp„,(r) by

Vpo\(r) = ( </>is(̂)r:̂</>poi('*, f) ) (21)
with 0poi(>*, t) the dipole component of the perturbed atomic wavefunction.

It is consistent with our neglect of exchange polarization terms in (17) to include 
the dipole distortion of the atom, through the ground state wavefunction </>i(12), in the 
direct transition amplitude alone. This results in a modified T-matrix describing 
singlet-singlet transitions of the form

= Ti7-HTPf°' (22)
where is given by (14) and

TD°' =  2<^f(12,3)k;,^i,(l)(^p„(2,3)F(3)>. (23)

W e  discuss results obtained with both T,7 and and refer to these as the d w p o  i 

and DW PO ii approximations respectively.

3. Numerical methods and choice of atomic wavefunctions

The elastic scattering phaseshifts were obtained from solutions of (17) by the method 
of Burgess (1963) and on comparison with those of Duxler et al (1971), were found to 
be in good agreement. A  further check on the numerical work was provided by in­
corporating in the code switches to output the Born and Born-Oppenheimer approxi­
mation results for total and differential cross sections. Born results were in reasonable
agreement with those of Bell et al (1969) considering the more complex wavefunctions 
employed by the latter. The Born-Oppenheimer 2^S total cross sections were compared 
with those of Bell et al (1966) and were in good agreement. These latter results will be 
discussed further below.
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3.1. Choice of atomic wavefunctions
(i) The wavefunction describing the ground state was taken to be the separable Hartree- 
Fock wavefunction of Green et al (1954)

=  ^i,(l)<^i,(2) (24)

with

0isW —  '̂ is(̂ )̂ oo(̂ )» (25)
îs(0 = A'i(e"“̂ + Cie-2-), (26)
a =  1-4558, Cf =  06, =  2-968468.

The dipole part of the distortion induced in the ground state is given by

(27)

where e(r, r) is a unit step function which causes the perturbation to vanish when the 
incoming electron is ‘inside’ the atom. The radial function f/is->p(r) is the usual 
Sternheimer function

C/,._p(x) =  Zô^'Ve-^"-(Zor +  iZ^r^). (28)

The parameter Z q (= 1-598) is evaluated by matching the asymptotic behaviour of
K>oi(̂ ') to —  a/2r‘* with a the dipole polarizability of helium, taken to be 1-395 al. In the 
DW PO II model 0 is(# ‘i) is replaced by

<̂ is(̂ i) +  </>poi(̂ i,̂ 3X i =  1,2. (29)

This results in the expression (22) instead of (14).
(ii) The wavefunction describing the excited state is taken to have the form

# ( 12) =  F,.(1)M'„(2)]. (30)

The core orbital IFjs(r) is taken to be a Is hydrogenic eigenfunction while the valence
orbital ({̂ (r) is

%,s(:-) = ;(Jr))oo(̂ ). (31)
jR„s(r) is taken to be the analytic Hartree-Fock frozen core wavefunction due to Cohen
and McEachran (1967a, b)

Ki.r) =  e-"- Y. ‘iTOjdM (32)
J= 1

with /? =  Z/n. The â P coefficients are tabulated by Crothers and McEachran (1970). 
The Lj{x) are Laguerre polynomials and n denotes the principal quantum number of 
the state concerned.

In order to test the sensitivity of the cross sections to this choice of R„sir) we also 
computed results for n =  2 by taking R„s(r) to have the form

Rzs(r) =  N2(e-'"'-cye-''3. (33)
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The values of the parameters are, for the 2^S state (Byron and Joachain 1974)

P = 0-865, q = 0-522, =  0-432784, =  0-61928

and for the 2^S state (Morse et al 1935).
p =  1-57, q = 0-61, C2 =  0-34081, =  105.

These functions were also used by Bransden and Winters (1975) and allow us to make 
a direct comparison with their work.

4. Results and discussion

W e  have calculated total and differential cross sections for excitation of 2^S and 2^S at 
energies of 29-6, 40-1, 81-63, 200 eV in both d w p o  i and d w p o  ii models. In addition 
we have evaluated the total and differential cross sections for 3^S in the d w p o  i model 
at a number of energies.

Our code was checked by comparing our Born-Oppenheimer results (obtained by 
replacing Wf(k; r) in d w p o  i by k[' ̂̂ r̂jiik/), where y ,(x) is the Ith regular spherical Bessel 
function) with the ‘prior’ calculations of Bell et al (1966). Provided it is not assumed 
when deriving' an expression for the exchange amplitude that the approximate helium 
wavefunctions adopted are exact, there is no post-prior discrepancy. The total cross 
section results are found to be insensitive to the representation of the Hartee-Fock 
ground state, and to that of the excited state.

4.1. 2̂ S excitation of helium
Our total cross section results for the H S  2 ‘S transition are shown in figure 1 and 
compared with those of other theoretical models and with experiment. At energies 
above 200 eV they are in close agreement with the Coulomb-projected Born calculation 
of Hidalgo and Geltman (1972) and with the experimental measurements of Vriens et al 
(1968). Our results are consistent with the measurements of Rice et al (1972) above 
50 eV but at lower energies they agree with the results of Trajmar (1973) at 30 and 40 eV 
and with those of Brongersma et al (1972) at 21 and 23 eV. As in the case of hydrogen 
our model does not give the low-energy resonances.

If we ignore the measurements of Rice et al (1972) at energies below 50 eV, we are 
then consistent with all other available experiments over the energy range from 20 to 
400 eV.

The many-body theory calculation by T h o m a s  et al (1974), while also consistent 
with experiment at energies above 40 eV, not unexpectedly fails at lower energies. 
However the eikonal distorted wave calculation of Joachain and Vanderpoorten (1974) 
appears to give good results d o w n  to 80 eV whereas the Coulomb-projected Born 
results of Hidalgo and Geltman (1972) and the second-order optical potential result of 
Winters (1974) increase rather too rapidly with decreasing energy below 200 eV.

Differential cross sections for H S  ->■ 2 ‘S are shown in figure 2 (a), (b), (c), (d) at four 
energies. The results were insensitive (within 10%) when the Cohen-McEachran 
excited state function was replaced by that of Byron and Joachain. O ur results, using 
Cohen-McEachran wavefunctions (in the d w p o  i approximation) agree well in shape 
with the experimental results of Trajmar (1973) at 29-6 eV. However, they fail to show 
the forward and backward peaks and underestimate the depth of the observed m i n i m u m



Electron im pact excita tion  o f  H e 1857

xlÔ

300 500 1000

Figure I. Theoretical and experimental total cross section results for the excitation of the
2 'S  State of helium by electron impact.  present results (dw po  i) ,  many-body
theory (Thomas et al 1974),------------ second-order optical potential distorted wave results
(Winters 1974),--------- 1--------- 1------- 1- eikonal distorted wave m ethod (Joachain and Vander­
poorten 1974),------- * ------- * -------Coulomb-projected Born approxim ation (Hildalgo and
Geltman 1972). Experimental results: ^  Trajm ar (1973), Brongersma et al (1972), 
^  Rice et al (1972), A Vriens et al (1968), □  Lassettre (1965).

near 60°. Independent measurements, using different techniques, by Hall et al (1973) 
and Crooks and Rudd (1972) are in excellent agreement with Trajmar’s work, and will 
not be discussed separately. In the forward direction our results agree well with the 
many-body calculation of Thomas et al (1974) and with the Glauber approximation 
(Yates and Tenney 1972), though the many-body method gives a m u c h  deeper minimum. 
A  distorted wave Born approximation calculation (Shelton et al 1973) succeeds in 
predicting the forward peak but fails at larger angles. W e  are again in agreement with 
T homas et al at large angles, where the Glauber approach fails completely, tending at 
29 6 eV to a value close to 9 x 10“  ̂Ug sr'^ for 9 > 140°, where the experiment of 
Trajmar (1973) (but not that of Hall et al 1973) indicates a much larger backward cross 
section. The addition of target distortion to our model ( d w p o  ii) has little effect in this 
case, unlike that of Is ns excitation in atomic hydrogen, but it produces some forward 
enhancement. Presumably this is because He(HS) has a comparatively low polarizability. 
The results at 40 1 eV (figure 2(h)) show a similar picture, except that all the calculations 
but that of Shelton et al (1973) now agree in the forward direction and at the minimum, 
and correctly account for the experimental behaviour at small angles. They again 
underestimate both the depth of the mi n i m u m  and backward cross section. The 
Glauber result remains an order of magnitude too small for large angles, while the 
DWBA gives results much larger than experiment at all angles.

Opal and Beaty (1972) have extended the measurements to higher energies and we 
make comparisons with their results at 81-63 eV (figure 2(c)) and 200 eV (figure 2(d)). 
At the first of these energies we also show the many-body result (Thomas et al 1974) and
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Figure 2. Differential cross section results for the excitation of the 2 ‘S state of helium by
electron impact at (a) 29 6, {b) 40 1, (c) 81-63 and (d) 200 eV. (u )  present results
(dw po  i) ,  many-body theory (Thomas et al 1974),-----------distorted wave calculation
of Shelton et al (1973),...........G lauber approxim ation (Yates and Tenney 1972), + experiment
(Trajmar 1973). {h) as for (a), (c) present results (dw po  i) ,  many-body theory
(Thomas et al 1974),-----------second-order optical potential distorted wave results (Bransden
and W inters 1975), ^  experiment (Opal and Beaty 1972), 0  experiment (Rice et al 1972). 
(d) -  x - x -  Coulomb-projected Bom  approxim ation (Hidalgo and Geltm an 1972), V  pre­
liminary eikonal Bom series results (Byron and Joachain 1975), ^  experiment (Suzuki and 
Takayanagi 1973), □  experiment (Dillon and Lassettre 1975). O ther symbols as for (c).

a second-order potential distorted wave result of Bransden and Winters (1975). All the 
theories agree at small angles and are in excellent agreement with the measurements of 
Rice et al (1972) for 6 < 45°. The many-body theory shows a shallow m i n i m u m  at 52°, 
where our model predicts a very deep minimum. Both experiments (Rice et al 1972, 
Opal and Beaty 1972) show minima (at 60° and 45° respectively), deeper than predicted 
in the many-body theory, but m u c h  shallower than we obtain. The distorted wave
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calculations of Bransden and Winters (1975) fail to predict a m i n i m u m  but agree well 
with the many-body result at large angles, the experimental results lying between these 
theoretical predictions and ours.

At 200 eV the experimental results of Opal and Beaty (1972), Suzuki and Takayanagi
(1973) and of Dillon and Lassettre (1975) are in good agreement over a wide angular range. 
Our calculation and that of Hidalgo and Geltman (1972) agree well with each other, 
but fall below experiment for angles greater than 40°. Preliminary eikonal Born series 
calculations by Byron and Joachain (1975) are, however, in essentially complete agree­
ment with experiment at this energy for all angles from 20° to 150°. Comparison with 
the results of Bransden and Winters (1975) at 150 eV (their figure \{d)) suggests that 
inclusion of final-channel distortion is necessary to account for the large observed 
backward cross sections at moderate and higher energies. A  similar conclusion was 
reached by McDowell et al (1975) in the case of n =  2 excitation of atomic hydrogen.

4.2. 2̂ S excitation of helium
The observed differential cross section at 29 6 eV (Trajmar 1973, Hall et al 1973, Crooks 
et al 1972) show two minima, at 45° and at 115°. Our model reproduces the shape of the 
experimental curve accurately (figure 3). W h e n  we employ the Cohen-McEachran 
excited state function, we must renormalize our calculation by a factor of 10 to produce 
the agreement shown in figure 3. Changing to the Hartree-Fock representation of the 
excited state due to Morse et al (1935) shifts these results by as much as a factor of five 
at some angles but preserves the two minima. The transition matrix element is very 
sensitive to the approximate wavefunctions employed at low impact energies (though 
this sensitivity is absent if distortion is neglected), whereas the experimental measure­
ments of different groups, all claiming absolute values, agree well for this transitionf.

kV

120 180
0 (deg)

Figure 3. Differential cross section results for the excitation of the 2^S state of helium by
electron impact at 29-6 eV.  present model employing the Cohen and M cEachran
excited state wavefunction and renormalized by a factor of 10, present model employing
the H artree-Fock representation for the excited state wavefunction due to Morse et al (1935) 
and renormalized by a factor of 10, +  experiment (Trajmar 1973).

t  Note added in proof. This sensitivity arises from the overlap of the / =  0 component of the distorted wave 
with the radial part of the 2^S function.
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W e  suggest that it is therefore a valid procedure to normalize the theoretical calculations 
to experiment, say at 20°. The other theoretical models, ie the many-body theory of 
Thomas et al (1974) and the distorted wave calculation of Shelton et al (1973) show only 
a single shallow m i n i m u m  near 90° and 70° respectively (figure 4(a)).

At 40 1 eV our model again predicts two minima but only one (at 95°) is observed 
experimentally, and our results are mu c h  too small at both small and large angles. The

120

180 
9 (deg)

Figure 4. Differential cross section results for the excitation of the 2^S state of helium by 
electron impact at (a) 29 6, (6) 401, (c) 81-63 and (d) 200 eV. (a )  present results em­
ploying the Cohen and M cEachran excited state w avefunction , present results
employing the H artree-Fock representation for the excited state wavefunction due to
Morse et al (1935), many-body theory (Thomas et al 1974),------------distorted wave
calculation of Shelton et al (1973), +  experiment (Trajmar 1973). (h) as for (a), (c )---------
present results,------------second-order optical potential distorted wave results (Bransden and
W inters 1975), ^  experiment (Opal and Beaty 1972). {d) ^  experiment (Suzuki and T aka­
yanagi 1973). O ther symbols as for (c).
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other theoretical models shown in figure 4(b) (Thomas et al 1974, Shelton et al 1973) 
predict a single minimum, but at a m u c h  smaller angle (65°). At 81 6 eV neither our 
results nor those of Bransden and Winters (1975), shown in figure 4(c), bear m u c h  re­
semblance to each other or to the experimental data of Opal and Beaty (1972) except at 
large angles. At 200 eV (figure 4(̂ )), allowing for our underestimate at large angles 
through failure of our model to include final-channel distortion, the agreement with 
experiments of Opal and Beaty (1972) and of Suzuki and Takayanagi(1973) is reasonable. 
However, we find a sharp decrease in the differential cross section at small angles 
{0 < 25°), which is known as an Ochkur dip. In treating excitation to triplet states our 
model is essentially first order apart from local distortions in the incident wave, whereas 
it is second order for transitions in which the direct amplitude enters. A  more sophisti­
cated treatment of exchange removes this forward dip (Byron and Joachain 1975).

O ur calculated total cross sections for 2^S are shown in figure 5. They are compared 
with the experimental measurements of Brongersma et al (1972), Trajmar (1973), 
Crooks et al (1972) and Vriens et al (1968) over the complete energy range. In addition 
we show the theoretical results of Thomas et al (1974) using lowest-order many-body 
theory and those of Winters (1974) using the second-order optical potential model. 
A  close-coupling calculation by Smith et al (1973) (see however Seaton 1974) gives 
results a factor of 2-5 smaller than those of Winters (1974). The slopes of the theoretical 
results are in good agreement, though there is some disagreement as to the magnitude 
of the cross section below 80 eV. At higher energies our results and those of Winters 
are in essentially complete agreement.

V

o

100
£ ( e V )

140 180

Figure 5. Theoretical and experimental total cross section results for the excitation of the
2 ’S state of helium by electron impact.  present resu lts , many-body theory
(Thomas ef al 1974),-----------second-order optical potential distorted wave results (Winters
1974). Experimental results: ^  T rajm ar (1973), $  Brongersma et al (1972), ^  Crooks et al 
(1972), ^  Vriens et al (1968).
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However, the experimental results from 22 eV to 200 eV reported in four independent 
experiments, each in a separate energy range, form a consistent whole, and give an 
energy dependence which is m u c h  more rapidly decreasing at high energies than is the 
theory.

A  confirmation of the results of Vriens et al (1968) (which involve an extrapolation 
from 5° to the forward direction) would be especially helpful in advancing our under­
standing of ->■ transitions.

4.3. Ŝ S excitation of helium
In view of the success of our model for 2 ‘S excitation we thought it worthwhile to extend 
the work to the 3^S case. Our total cross sections are compared with experiment 
(Moustafa Moussa et al 1969) in figure 6. The second-order optical potential results 
(calculated in a nine-state impact parameter version) of Bransden and Issa (1975) are 
shown for comparison. Their results are available for E ^  200 eV only, and lie slightly 
above ours at these energies, ours being within 1 0 %  of experiment in this range. At 
intermediate energies (100 <  E  ^  300 eV) our results lie as m u c h  as 2 0 %  above the 
experimental data, but we are again in close agreement at lower energies. The overall 
agreement is highly satisfactory.

100 300 400

Figure 6. Theoretical and experimental total cross section results for the excitation of the
3*S state of helium by electron impact.  present results (dw po  i), —  •  —  second-order
optical potential model (Bransden and Issa 1975), o  experiment (M oustafa Moussa et al 
1969).

Neither of the available theoretical models (Taylor et al 1975, and this paper) give 
results in agreement with the experimental measurements of Chutjian and Thomas
(1974) for the 3 1 5  differential cross section at 29 2 eV except at large angles (figure 7(a)), 
both theories predicting unstructured minima near 60° and failing to predict the forward 
peak. It m a y  well be necessary to include explicitly coupling with 3^P and 3*D at least, 
to obtain agreement with experiment this close to threshold. However, similar calcula­
tions at 39 7 eV are in m u c h  better agreement with each other (figure 7(6)) and with
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Figure 7. Differential cross section results for the excitation of the 3 ‘S state of helium by
electron impact at (a) 29 2 and (b) 39-7 eV. (a) present results (dw po  i) ,  many-
body theory (Taylor et ai 1974),-^ -e x p e r im e n t  (Chutjian and Thomas 1974). (6) as for (a).

experiment, the m i n i m u m  being in the correct position, but neither theory showing the 
structure observed near 110°.

5. Conclusion

W e  have presented the results of our distorted wave calculations of total and differential 
cross sections for electron impact excitation of the 2^S, 2^S, and 3^S states of helium at 
energies between 30 and 300 eV, Detailed tables of our results will be published else­
where (Scott 1976).

At low energies (E < 100 eV) we reproduce the shape of the absolute experimental 
measurements well, including the positions of the minima, but in c o m m o n  with other 
similar theoretical models we do not always predict accurately the depth of the minimum. 
At higher energies our model underestimates the backward scattering, and we believe 
this to be due to its failure to allow for distortion effects in the final channel.

Ou r  model is less successful for 2^S excitation, though it gives a better account of 
the detailed structure in the differential cross section at the lowest energy considered 
than the other available models, and yields total cross sections for 2^S in good agreement 
with the work of Winters (1974) at energies above 80 eV. W e  believe that further experi­
mental measurements of the total cross section for l^S 2^S at energies above 100 eV 
would help to resolve the discrepancy between the two sets of theoretical results and 
the experimental data of Vriens et al (1968). A  further measurement of the differential 
cross section at 80 eV would also be helpfulf.
t  Such measurements have been carried out by Pochat, Gelebert and Peresse (1975 private communication) 
and confirm Opal and Beaty's work.
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The total cross sections for both the 2*S and 3^S transitions agree well with experi­
ment at all energies. W e  intend to extend this work to higher members of the helium 
isoelectronic sequence which are of interest in plasma and astrophysical applications 
and to the 4^S and 5^S states (Scott and McDowell 1975).

Since the model yields results for the S-S transitions of comparable accuracy to the 
many-body theory model of Taylor and his colleagues it will be interesting to examine 
its predictions for S-P transitions, and in particular for the coincidence experiments of 
Eminyan et al (1974). This work is n o w  under way.
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Abstract. The distorted wave polarized orbital approxim ation is applied to  the excitation of 
4^S and 5^S levels of helium. Results are presented for total cross sections over an electron 
impact energy range of 25 to 400 eV and also for small-angle differential cross sections a t 
impact energies of 50, 60, 100 and 200 eV. These are com pared with experiment and the 
accurate Born results of Bell et al. The introduction of explicit s-p  coupling into the T m atrix , 
has a marked influence on the small-angle differential cross sections, producing a strong 
enhancement, and bringing them into close agreement with experiment at the highest energy 
considered.

1. Introduction

W e  extend the work of a previous paper (Scott and McDowell 1975 to be referred to as I) 
which discussed n <  3 only, by applying the distorted wave polarized orbital model 
( d w p o )  outlined in I to calculate both total and small-angle differential cross sections 
for electron impact excitation of the 4 ‘S and 5^8 states of helium from its ground state. 
In particular, we shall examine in more detail the effect of explicit inclusion of coupling 
between S and P  states in the direct term of the T matrix.

W e  outline briefly the theoretical model described in I. The Tmatrix m a y  be written

7if'= (1)

where the notation follows that adopted in I. Consequently the differential cross section, 
/(Q), is given by

and by integrating over all solid angles the total cross section, is obtained in the form

0if(^?) 2 ^  ̂  J  d(cos 6) 7IÛ0- (3)

2369
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Recalling 1(14) we express the T matrix of our d w p o  i model as

=  <iAf(12,3)P^<^;(12)f (3)> -  3)P;<^;(23)f (1)> (4)
where polarization effects are included only implicitly through the distorted wave F{r).

In the DW PO ii model we restate 1(22) and 1(23) whereby the transition matrix be­
comes

=  Tiî -h rff°' (5)

with as above and Tff°‘ given by

=  2<(Af(12,3)P^<^i,(l)(^p.,(23)f(3)>. (6)
W e  note that ̂ poi(»*, t) is the dipole component of the perturbed atomic wavefunction 

and provides a coupling between the S and P  states of the atom. Hence d w p o  ii allows 
explicitly for polarization distortion of the ground state of the target atom.

Following exactly the procedure indicated in I, the distorted wave F{r) is decomposed 
into partial waves which satisfy the radial scattering equation 1(17). W e  emphasize that 
the effect of polarization is taken into account via the direct potential term Fpoi(»*) (equation 
(21) of I) but that the terms arising from exchange polarization effects and all other non- 
adiabatic effects are neglected.

W e  have obtained results in both d w p o  i and d w p o  ii approximations and compare 
our total cross sections with the experimental work of St John et al (1964), Moustafa 
Moussa et al (1969), van Raan et al (1971) and Pochat et al (1973). In addition the dif­
ferential cross sections calculated at four intermediate impact energies, over the angular 
range from 0° to 20°, are compared with the recent experimental data of Pochat (1973). 
At 100 eV and 200 eV we also m a k e  a comparison with the Born approximation deduced 
from the accurate generalized oscillator strengths tabulated by Bell et al (1969).

Each experimental group claims their results to be absolute and for convenience we 
briefly summarize their methods of normalization.

The highest values are obtained by St John et al (1964), and m a y  be influenced by 
the relatively high current electron beam (:^1 m A )  used. They used published values 
to correct for the polarization of the emitted radiation, and apparently did not correct 
for instrumental polarization effects.

Moustafa Moussa et al (1969) normalized via their 2^S 2^P value, which in turn
depends on the theoretical optical oscillator strength for that transition. However, dif­
ferent monochromators are required for 2^P (where the radiation is in the vacuum uv) 
and for 4^S where the radiation is in the visible. The transfer between instruments m a y  
introduce error. In addition these authors used published polarization data.

Pochat et al (1973) normalize via the measurement of the 2^P differential cross 
section which is scaled to the 5° value of Chamberlain et al (1970).

In the experiment of van Raan et al the measurements were carried out at low gas 
pressures and low electron current to avoid certain problems discussed by Heideman
(1968). Their quoted results, which we use, are based on their o w n  absolute calibration 
with a tungsten lamp and an independent measurement of the polarization. However 
these results imply a high value for the H S  -> 3^P optical oscillator strength, and if we 
renormalize their data to the theoretical value (Schiff and Pekeris 1964) this reduces it 
by 10 %  and brings it into close agreement with our d w p o  ii  values.

The best values, in our view, would lie between those of van Raan et al (1971) (which 
are close to those of Pochat et al 1973) and the lower results of Moustafa Moussa et al
(1969).
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2. Results

2.1. 4̂ S excitation of helium

The total cross sections obtained from both approximations for the transition l^S ->■ 4^S 
are plotted in figure 1, where they are compared with experiment. W e  have denoted the 
coincidence of experimental points of two groups (to within plotting accuracy) by 
parenthesis. The presence of the shoulder lying between 60 and 150 eV has been noted 
inl^S->2^Sandl^S-^3^S transitions (I) but is more pronounced for the 4 ̂ S excitation.

J I L L 1-1

20 50 100
f C c V J

200 500 1000

Figure 1. Theoretical and experimental total cross section results for the excitation of the
4*S state of helium by electron im p a c t  present results (d w po  i) , present results
(dw po  ii), ^  experiment (Pochat et al 1973), ^  experiment (van Raan et al 1971), ^  experiment 
(M oustafa Moussa et al 1969), ^  experiment (St John et al 1964).

Ou r  results, particularly in d w p o  ii, are in very close accord with the tabulated data 
of Moustafa Moussa et al (1969) and we see that there is evidence from their results for 
the existence of such a shoulder. The results of Pochat et al (1973) and of van Raan et al 
(1971) are seen to exhibit similar shapes but with a slight rise at the position where we 
predict a shoulder. However, the results of our models are too large compared with 
these experiments at energies below 40 e V  and at higher energies tend to lie approximately 
20 %  below the experimental points of these two groups.

The peak obtained by St John et al (1964) is of comparable magnitude to ours but 
generally the agreement is poor. W e  observe that our peak, occurring at 30 eV, does not 
coincide with that of any of the experiments. Both Pochat et al (1973) and van Raan et al 
(1971) find a m a x i m u m  lying closer to 40 eV.

The differential cross sections for small-angle scattering (0°-20°) are illustrated in 
figure 2 and are presented at four impact energies. The experimental data are due to 
Pochat (1973). For the lower energies of 50 and 60 eV, d w p o  i  is poor but d w p o  ii results 
show an improvement for scattering angles above 15°. At 100 eV, d w p o  ii predicts a 
close correspondence for angles above 10° and the forward enhancement compared with 
the DW PO I result becomes increasingly important. The first Born approximation result
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205 0 5 10 150 1510 Scattering ongle (deg)
XI0

Scattering angle (deg)
Figure 2. Theoretical and experimental differential cross section results for the excitation of 
the 4*S State of helium by electron impact at (a) 50 eV, (b) 60 eV, (c) 100 eV and (d) 200 eV. 
 first Born approxim ation due to Bell et al (1969). O ther symbols as for figure 1.

deduced from the accurate generalized oscillator strengths given by Bell et al (1969) 
is shown for the higher energies, and is seen to lie between d w p o  i and d w p o  ii and to 
correspond closely in shape to our d w p o  i results.

By 200 eV, the forward enhancement produced by the d w p o  ii model (including s-p 
coupling) gives results essentially in complete agreement with Pochat’s measurements 
over this angular range. W e  also see that our d w p o  i curve approaches the Born for 
higher energies, as w e  should expect since the Born approximation is the high-energy 
limit of DW PO I (McDowell et al 1975).
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2.2. 5̂ S excitation of helium
Figure 3 illustrates the total cross section in both approximations and also shows the 
experimental work of the groups listed for 4^S excitation. The shoulder predicted by 
our theory has become comparatively more prominent but extends over the same energy 
range as for previous singlet-singlet cross sections. O u r  peak value occurs approxi­
mately at 30 eV which is similar to that for 4^S excitation.

0 5

j_i
100 200 500 1000

i"(eV)
Figure 3. Theoretical and experimental total cross section results for the excitation of the 
5 ‘S state of helium by electron impact. Symbols as for figure 1.

The points due to Moustafa Moussa et al (1969) again afford evidence for such a 
shape but we note that both our curves lie higher than their data for energies above 60 eV 
whereas for the 3^S (I) and 4^S cases, agreement is very close. At impact energies above 
150 eV our results are in best accord with the two measurements of Pochat et al (1973), 
but in general there is close agreement between theory and all the experiments above this 
energy. Below 150 eV the work of Pochat et al (1973) and the tabulated points of van 
Raan et al {1971) agree well and give a similar variation with energy to that found for 4^S. 
Their data lie above our results for energies greater than 40 eV, but the former group 
indicate a m a x i m u m  at about 35 eV whereas the latter seem to predict the peak close to 
40 eV.

The data of St John et al (1964) exhibit a generally shifted curve and tend to have an 
overall magnitude higher than that found by the other experimental groups. Their 
peak value does not reach the same magnitude as given by our theory whereas for the 
l^S -> 4^8 cross section, the absolute magnitudes are comparable. In summary, the 
agreement at impact energies above 150 e V  is satisfactory but below this figure there 
remains a discrepancy between both theory and experiment, and a m o n g  the different 
experiments. It is perhaps worth observing that for both 4^8 and 5^8 excitation the effect 
of coupling the 8 and P  states only begins to become apparent after the peak value of the 
total cross section has been reached, and has little effect on the total cross sections at 
energies above 200 eV.
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Turning n o w  to the differential cross section for scattering angles between 0° and 20°, 
w e  compare our theory with the absolute experimental results of Pochat (1973) at energies 
of 50, 60, 100 and 200 eV. The comparison is shown in figure 4. For 100 and 200 eV 
impact energies we have also plotted the Born approximation results which we deduced 
from the generalized oscillator strengths of Bell et al (1969), as for the 4^S case. The 
situation resembles closely that for the previous case. The d w p o  ii model produces an 
increasing forward enhancement relative to d w p o  i as the impact energy is increased,

5

4

3

V 2

0
Scattering angle (deg)

Scattering angle ( d e g )
Figure 4, Theoretical and experimental differential cross section results for the excitation of 
the 5*S state of helium by electron impact a t (a) 50 eV, (b) 60 eV, (c) 100 eV and (d) 200 eV. 
Symbols as for figure 2.
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becoming more and more in line with the experimental data of Pochat (1973). At 100 e V  
we see that d w p o  ii predicts the cross section well over the latter half of the angular range 
concerned, and at 200 eV d w p o  ii produces sufficient forward enhancement to agree 
most satisfactorily with the experimental data over the whole of this angular range. The 
results obtained in the first Born approximation again exhibit a similar behaviour to those 
of the DW PO I model, which approach the f b a  at high energies. Contrary to what might 
have been expected w e  see that even at 200 eV the first Born approximation fails to give 
a satisfactory account of small-angle scattering.

3. Conclusions

W e  have calculated total and differential cross sections for

e +  He(l'S) e +  He(n'S), n =  4, 5

at low and intermediate energies, in a distorted wave model, both with and without 
target distortion.

The shape of the experimental total cross section is well reproduced by both models, 
at energies above 40 eV, though the theoretical models give the m a x i m u m  cross section 
at a lower energy than is found experimentally. At energies between 40 and 100 eV 
the results of different experimental groups differ by a factor of two whereas the difference 
between our two theoretical models is at most 5 %. W e  cannot, therefore, distinguish 
between these on the basis of total excitation cross section data.

The recent small-angle differential cross section measurements of Peresse and his 
colleagues (Pochat 1973, Pochat et al 1973) do, however, allow such a distinction to be 
drawn. W e  find that models without target distortion (‘s-p coupling’) such as the first 
Born approximation and d w p o  i do not account for the observed strong enhancement of 
these inelastic differential cross sections in the forward direction. Inclusion of target 
distortion (in the ground state) as in our d w p o  ii  model gives a completely satisfactory 
account of the measurements at 200 eV, though failing to an increasing extent with de­
creasing impact energy.

W e  can describe this forward enhancement as due to elastic scattering off intermediate 
P  states by a polarization-type interaction. The increasing inadequacy of this model at 
energies below 100 e V  suggests that our failure to include exchange polarization terms 
m a y  be significant at such low energies.
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Abstract. A number of local potentials have been suggested to represent the non-local 
e.xchange kernel in electron-atom  scattering. A comparative numerical study has been 
made in which phase shifts for the elastic scattering of electrons by H, H e^ and He 
using these potentials are tested against those calculated from the exchange integro-differ- 
cntial equations. The influence of additional long range polarization potentials is also 
investigated. It is shown that, except at the lowest energies, exchange effects can be repre­
sented accurately by the Furness-M cCarthy and related potentials.

1. Introduction

In developing equations to determine the wavefunction for the elastic scattering of 
electrons by atoms, many authors have replaced the integral kernel describing the 
exchange interaction by an equivalent local potential. This has the advantage of 
making the scattering equations easier to solve numerically and the procedure might 
be expected to be accurate at high energies for which exchange effects are compara­
tively small.

Although a fairly large number of variants of the equivalent local potential have 
been suggested, no systematic study of the accuracy of the resulting phase shifts 
or of the range of energies over which these potentials m a y  be employed has yet 
appeared||. In this paper, after reviewing briefly the derivation of the selected equival­
ent potentials, we use these to calculate phase shifts within a simple model for which 
the exact phase shifts can be calculated.

The model we have chosen is the static exchange approximation for electron 
scattering by the ground states of H, H e ^  or He. W e  have also investigated whether 
the presence of an additional polarization potential modifies the accuracy with which 
the exchange potentials represent the effect of the exchange kernel.

2. The exchange equations

The static exchange equation^ describing the elastic scattering of electrons by an

§ Perm anent address; The University of Durham, South Road, Durham , England.
II See however, Riley and Truhlar (1976).
*1 The derivation of the static exchange equation has been discussed by Bransden (1970) and by M ott
and Massey (1965). .
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atomic target has the form, in atomic units

[V^ +  (2Z/r) +  F(r) =  2Vfr) F{r) + 2z j K(r, r') F{r') dr. (1)

In this equation, Z  is the net charge on the target atom or ion, jk~ is the energy 
of the incident electron, l̂ (r) is the static interaction between the atom and the 
incident electron, and K{r,F) is the exchange kernel. The parameter t is —  1 for 
the scattering of electrons by H  or He'*' when the overall spin is S =  1, the triplet 
state, and is + 1  when the overall spin is S =  0, the singlet state. W h e n  the target 
is neutral helium t =  —  1. The model represented by equation (1) makes no allowance 
for inelastic channels. With the addition of a polarization potential, it does however 
represent elastic scattering rather well, even at high energies, although strictly the 
effective potential develops an imaginary component above the lowest inelastic 
threshold.

The static interaction l{(r) is the matrix element of the instantaneous interaction 
between the electron and the target with respect to the ground state target wavefunc­
tion. The ground state wavefunction is denoted by (f){x) for H  and He'*', where

(j){x) =  e (2)

with a =  1 for H  and a =  2 for He'*'. For helium we employ the approximate 
wavefunction of Byron and Joachain (1966)

 ̂ d)(xi,X2) =  0 (x i )<;6(x 2), (3)
with

(̂ (x) =  ( N / \ / M  (e-- -b )9e-:"),

N = 2-6051, a =  1-41, j? =  0-799 and y = 2-61.
In each case F,,(r) has the form

(4)

with //= 1 for H  and He'*' and p = 2 for He, and the corresponding exchange 
kernel is

K{r, y) =  #■) ÿ(/) [-(i/c^ -€) + (l/|r -  r |)] (5)

where e is the ground state energy of the target.
By expanding the wavefunction F{r) in partial waves, and solving the resulting 

radial equations numerically, the exact phase shifts in the static exchange model 
have been obtained in the m o m e n t u m  interval 0-5 ^  k ^  10-0 for 0 ^  ^  8. T o  exa­
mine the exchange potentials in the presence of polarization we have also obtained 
the exact phase shifts when a polarization potential l̂ (r) is added to the static poten­
tial I{. W e  shall refer to this case as the adiabatic-exchange model. For this 
purpose, we chose the form (Bransden 1970) for electron scattering by H  and He'*'

=  -  4 /

(6)
where y = r for H, y =  2r for He'*'.



Equivalent exchange potentials in electron scattering 1303

At the lower energies, for k ̂  1 for H, and k ^  2 0 for He^, our phase shifts 
can be compared with those published in the literature and collected together by 
Mott and Massey (1965) and Drachman and Temkin (1972). The agreement is excel­
lent.

For scattering by neutral helium, the method of Duxler et al (1971) (see Drachman 
and Temkin 1972) allows an approximation consistent with the wavefunction (3) to be 
obtained. Calculations were carried out with this potential, denoted by Fp(r), which 
has the explicit form

24 24r 12r^ 4r^ r*

Z.

where

Cl =  1, C 2 =  /?,Zj =  a +  Z o , Z 2 =  y +  Zo,p/ =  2 -I- (5Zo/Z,), i =  1,2. (8)

The parameters a, p, y are defined below equation (3), and the scaling parameter 
Zq is Zq =  1 60315.

For comparative purposes, w e  also made calculations with the simple Buckingham 
polarization potential

^  “  4[(Zr)“ + d^Y
where the parameter d was chosen to be 10 and the effective charge Z  is 1 for H, 
2 for He ^  and 1-341 for He. Electron-helium calculations were also performed using 
potential (6) with y =  l-341r, consistent with a polarizability of 1-39.

3. The exchange potentials

The term proportional to {jk̂ —  e) in the exchange kernel only contributes to scatter­
ing in the / =  0 partial wave. Such behaviour cannot be represented by a non-singular 
potential, and it has been usual either to drop the term completely, or to remove 
it by requiring the function F(r) to be orthogonal to 0(r). In the case of the S =  1, 
triplet state for the electron-hydrogen system, this does not involve modification 
of equation (I), because it is easily shown that if F{r) is a particular solution of 
the equation then F{r) 4- 2(f){r) is also a solution. It is then possible to pick X so 
that the orthogonality condition is satisfied. For the S =  0, singlet state, F{r) can 
also be made orthogonal to (j){r) but at the expense of including an inhomogeneous 
term proportional to ^(r) in equation (1). In the published applications of the poten­
tials to be described (with some exceptions), no attempt has been made to ensure 
that the computed wavefunction is in fact orthogonal to 0(r), and for this reason 
we have followed the same course. The orthogonality condition is only important 
at low energiesf (k ^  1), because the oscillatory nature of F{r) ensures that the overlap

fT h is  statem ent is not necessarily true in other contexts, for example, when the wavefunction F(r) is 
required in the calculation of ionization cross sections.
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between F{r) and 0(r) is in any case small, and decreasing for increasing k. Thus 
in this approximation,

I K(r . ,') di-' % #■ ) J (l/|i- -  i-'l) F(r') di', (10)

and the problem is then to determine a potential F,;(r) such that

Ft(r) F{r) = |  K{r, ;•') F(r') dr'. (11)

It should be noted that strictly it is not necessary to satisfy this strong condition, 
because all that is required is that the functions F{r) and F{r') on the left and right 
hand sides of (11) should have the same phase shifts to a good approximation. 
However in what follows, the functions will be chosen to be identical.

3.1. Expansion methods
The first group of potentials which we shall consider involve the Taylor expansion 
of the function F{r') about the point r' = r. In general, this will lead to a series 
of velocity dependent potentials as discussed in chapter 8 of the monograph by Mott 
and Massey (1965). The very simplest approximation of this type is to retain just 
the first term of such an expansion. In which case, we have from (11)

V
K[/)(r) =  0(r) J dr'. (12)

This potential has been employed by Y u  (1975) to calculate orbitals for bound states 
from which generalized oscillator strengths are calculated. Because the m o m e n t u m  
dependence of is ignored, this approximation would not be expected to be 
satisfactory except at low energies. Calculation shows that this potential is mu c h  
too strong for small k which suggests that in the bound state problem, for highly 
excited states near the continuum, it will not be a satisfactory approximation either.

T o  retain the m o m e n t u m  dependence of the potential, Furness and McCarthy 
(1973) follow Percy and Buck (1962) in expanding the product (j){r')F{r')

F,:(r)F(,-) =  m  I (l/|r -  r'|)exp[(F -  ,-).?] [0(c)f(.-)] dr'.

Because [_(f){r)F{r)'] is square integrable, the integration can be carried out to give 

M;(r)F(f') =  47r0(r)|Vr^[<^(r)F(j')], (13)

where the inverse operator \V\~̂  acts to the right on [_4>{r)F{ry]. Since p = —N is 
the m o m e n t u m  operator, further approximations, valid at high energies, can be made; 
first, the action of p on 0(r) can be ignored and secondly, p can be replaced by the 
local classical momentum, i.e.

= {k̂ - 2V{r)), (14)

where V{r) = l̂ (r) +  rVj:{r), and If, is the direct potential, Fo(r) =  %(r) +  (Z/r) +  Vfr).
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The accuracy of the first of these approximations depends on the variation of
(}){r') with r' being much smoother than the variation of F{r'), so that (f){r') can be
replaced by 0(r) in (10).

Combining (13) and (14) provides a quadratic equation for Fg, from which rFg 
is found to be

-  2H)(r) -  [(k̂  ̂-  2f^(r))^ -  327TT|#)|::]'/::}, (15)

where the solution is chosen so that Fe(/')^0 as k — »co.
In their original paper, Furness and McCarthy gave a slightly different expression 

for VY\ but the correct result was first given by Vanderpoorten (1975).
In circumstances for which the exchange potential is less important than the direct 

potential it is permissible to write

This is a particularly useful expression because it can be easily generalized for use in 
the coupled channel approach to inelastic scattering. For example, Bransden and 
Noble (1976) have discussed electron scattering by hydrogen and helium ions in a 
coupled channel approximation, employing a matrix exchange potential, which preserves 
time reversal invariance,

Vtj = 2n4>n<-)4’im<<i +  I2e,l -  2M,)-' +  (Aj +  |2ej| -  2F,j)->]

where / and j label the different channels and the corresponding orbitals and other 
quantities. A  similar potential has been proposed by Riley and Truhlar (1976).

In the high energy limit, the Furness-McCarthy potential becomes

=  (17)

In the first Born approximation, Vanderpoorten has pointed out that this potential 
gives the Ochkur approximation to the exchange amplitude. In this connection it 
should be noted that the comparative study of approximations to the exchange ampli­
tude by Abiodun and Seaton (1966) has already shown that the Ochkur exchange 
amplitude in the static-exchange model is, for / =  0, accurate to a few per cent for k >  2.

It is not necessary to ignore completely the operation of p on the target wavefunc­
tion (f){r). T o  the first approximation, it can be taken into account (Bransden and 
Noble 1975) in the expression for the local momentum, which becomes

pf =  k'-H2€|-2F(r), (18)

where e is the ground state energy of the target atom. Each of the expressions (15)
to (17) will be modified appropriately. W e  have chosen just two of these for numerical
study;

and
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In the first Born approximation yields the exchange amplitude suggested by
Bely (1967) as an improvement on the Ochkur approximation.

3.2. Slater potentials
W e  n o w  consider a group of potentials which resemble the well known Slater poten­
tial (Slater 1951) employed in bound state problems, which has the form

F<,7\r) =  A
1/3

(21)

where p{r) is the electron density, and A is a constant. It is easy to verify that 
if A has the magnitude required by bound state problems (Herman and Skillman 
1963), the resulting potential is quite unsuitable for representing exchange effects 
in scattering problems, being considerably too large. Bauer and Browne (1964) 
adjusted the constant A so that for / =  0, the best possible agreement was obtained 
with the exact low energy electron-hydrogen phase shifts, in the energy interval 
k <  0 8. In the singlet state, the additional constraint was imposed that F(r) was 
orthogonal to the bound state solution of the equations representing H". The ortho­
gonality condition <0|F> =  0, discussed above, was also imposed. Bauer and Browne 
showed h o w  to apply their potential to electron scattering by complex atoms and 
achieved considerable success at low energies. In the present work, we have tested 
this potential at higher energies and in angular m o m e n t u m  states with / f 0. For 
/ =  0, we have not imposed the orthogonality conditions, so that we obtain slightly 
different and poorer results at very low energies.

3.3. The Mittleman-Watson potential
A  different approach to the problem is to return to equation (10) and to recognize 
that since F{r) behaves similarly to a plane wave, we can write approximately

ViXr) F(r) =  r ̂ ^MÇiexp[ik.(r' -  /•)] dr F(r). (22)

This idea is due to Massey and M o h r  (1934) w h o  employed it to localize the optical 
potential, rather than the exchange kernel.

Starting from equation (22), Mittleman and Watson (1960) complete the evaluation 
of Fgfr) by using the Thomas-Fermi approximation to represent the bound state 
orbitals 0(r). They find

V[f\r) =  kP(r) - i(k̂  -  P\r)) In k +  P{r)k - P{r)j, (23)

where P{r) is the Fermi m o m e n t u m

F(r) =  {3n̂N\(l){r)fY’̂, (24)

where N = 1 for H e ^  and H  and A  =  2 for He.
Although the derivation of suggests that it should be most accurate for 

atomic targets composed of ma n y  electrons, Byron and Joachain (1975) have used
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this potential, apparently successfully, for a helium target. For large k, it is clear 
from (22) that again reduces to the Ochkur form (17), while for smaller k it 
resembles the potential of Slater. However the assumptions on which (23) is based 
break down in this region.

Recently we received a preprint (Riley and Truhlar 1976) in which a potential 
of the Mittleman-Watson form is rederived. However in place of the incident m o m e n ­
tum k, various forms of local m o m e n t u m  p̂ r) are employed. O n  the basis of numeri­
cal calculations for scattering by helium and argon (without allowance for polariza­
tion), Riley and Truhlar conclude that out of those considered the most satisfactory 
choice for p̂{r) is

pY) = (^" +  P\r)Ŷ .̂ (25)

Replacing k in (23) by pfr), we obtain termed by Riley and Truhlar, ‘the asymto- 
tically adjusted free-electron gas approximation’. Unfortunately, Riley and Truhlar 
have employed a slightly different helium wavefunction from the one used here, so 
to obtain an accurate comparison, we have recomputed their results for helium and 
extended them to include the effect of polarization and also to scattering by H  and 
H e  + .

A n  alternative technique based on equation (22) is to compute the integral using 
an accurate orbital (f) (or the exact wavefunction in the case of H  or He'*'). The 
resulting potential might be expected to be superior to the Mittleman-Watson poten­
tial for light atoms, but no calculations based on this idea have been reported to 
our knowledge. F r o m  (22) this potential can be written as

=  J dR0(|/?-rl)e'^-^

W e  have investigated the spherically symmetrical approximation in which (f){\R —  r|) 
in the integral is replaced by the first term in a Legendre polynomial expansion 
in terms of the angle between R and r. This defines the potential kŷ °*(r).

4. Numerical results

Phase shifts have been calculated for / ̂  8 and k =  0 5, 1 0, 2 0, 3 0, 5 0, 7 0 and 
10 0, from the static exchange equations for electron scattering by H, He'*' and He, 
and also from the adiabatic exchange equations. Further sets of phase shifts were 
obtained by replacing the exchange kernels by each of the potentials Ft*. T w o  
separate numerical programs based on the Fox-Goodwin algorithm and the 
Runge-Kutta method respectively were available and both were used to confirm 
the accuracy of the phase shifts, which are determined to an accuracy of 
10"^ radians. For e ~ - H  scattering, Vanderpoorten (1975) compared the results 
of using potentials F^^ and F^* with the static exchange phase shifts at 50 
and 100 eV, for / =  0,1,2, and his results agree with ours for this case. The 
complete tables of phase shifts are too lengthy to reproduce here but tables 1-7 
illustrate the results obtained with the most successful potentials. The polarization 
potentials employed in calculating the phase shifts displayed in tables 1-7 were Fp
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for H  and He'*' (see equation (6)) and F® for H e  (see equation (7)). The results calcu­
lated with the Buckingham potential F^, and those employing Fp for H e  are discussed 
briefly below. The complete tables of phase shifts can be obtained on request.

4.1. Electron scattering by atomic hydrogen
In tables 1-3, the exact phase shifts for / =  0, 1 and 2 obtained by solving the 
integro-differential equation (1) for electron scattering by hydrogen are compared 
with results obtained from the Furness and McCarthy potential the Ochkur 
potential F ^\ the modified potential of Bransden and Noble F^ \  the Bauer and 
Browne potential F[7\ the potential of Mittleman and Watson F[®\ and the Riley 
and Truhlar potential F^\ The results are given both for the static-exchange model 
and for the adiabatic-exchange model.

Of the potentials shown in the tables, the Furness and McCarthy potential 
provides the most accurate phase shifts for k ̂  TO. Below k = 0 5 for certain ranges 
of r the argument of the square root in (15) becomes negative for the case t =  -I-1 
and it becomes impossible to define the Furness-McCarthy potential. The agreement 
with the exact phase shifts for k ̂  2 is remarkable, the difference rarely exceeding 
1%. The extension of the Furness-McCarthy potential to coupled channel situations 
is somewhat complicated, so it is important to assess the simplified versions 
and which are easily generalized. Both potentials provide phase shifts which 
agree quite closely with exact phases down to k =  3 0. Below k =  3, the potential 
Fg*̂  ̂remains adequate d o w n  to k =  TO while the Ochkur potential ceases to produce 
sensible results at such low energies. The other potentials of this group, and 
F ^\ are distinctly less good for k ̂  3, although adequate at the higher energies.

N o  reasonable results were obtained using the Y u  potential VY\ nor could 
reasonable results be obtained with a Slater potential of the magnitude used 
in bound state calculations. By adjusting the constant A to produce a reasonable 
fit to the 1 = 0 phase shifts at k =  TO (giving Z  =  0-141), the Slater potential 
F^^ produces phase shifts for 1 = 0 that are in fair agreement with the exact 
phases over the whole energy region, but for I f 0, the agreement with the exact 
phase shifts becomes very poor.

The potential of Mittleman and Watson, F^\ produces accurate phase shifts 
for k ̂  3. For 2 ̂  k <  5 the phase shifts are in reasonable agreement with the exact 
ones, but are distinctly less accurate than those provided by the Furness-McCarthy 
potential and by its simplified versions. Below k =  2, the potential Fg*®’ fails to pro­
duce reasonable results.

The variation of the Mittleman and Watson potential, introduced by Riley and 
Truhlar, is m u c h  more successful than and is comparable in accuracy 
with the Furness and McCarthy potential F^^ for k ̂  2. At k =  TO, the Furness 
and McCarthy potential is superior but at k =  0-5 neither potential is successful, 
being particularly poor in the singlet state (S =  0).

The potential also based on (22), represents the exact phase shifts slightly 
less accurately than F^\ For example, at k =  2 the triplet and singlet s-wave phase 
shifts given by this potential in the adiabatic-exchange model are 0-9359 and 0-6046 
radians, respectively. This is probably due to the crude approximation in which only 
the zero order term in the angular expansion of the integrand was employed. However 
taking higher order terms produces an over-complicated result and is hardly likely
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to improve on the excellent results obtained with the simple forms of the other 
potentials. This potential will not be considered further.

The higher order phase shifts (not shown in the tables) are given accurately by 
each of the potentials investigated, with the exceptions of and For example, 
at k = 10. / =  8, the exact S =  0 and S =  1 phase shifts for the static exchange 
model are 0-0337 and 0-0352 respectively. Both the Mittleman-Watson and the Fur- 
ness-McCarthy potentials give the results 0-0333 and 0-0347 for S = 0 and S =  1 
respectively, while the Slater potential gives 0-0067 and 0-0614.

4.2. Electron scattering by Hê
It cannot be accepted without test that the degree of success achieved by the various 
exchange potentials for the e " - H  system will be repeated for other systems. For 
this reason calculations have been carried out for the e"-He^ system, in which 
the target is more compact and where the long range Coulomb interaction might 
modify considerably potentials of the Furness-McCarthy type. The calculated phase 
shifts show, in fact, that the relative success of the various potentials is about the 
same as for the e " - H  system. The most successful potential for k ^  3-0 is again 
the Furness-McCarthy potential, but for k < 2-0 the results rapidly deteriorate. In 
contrast the modified potential which allows to some extent for the variation 
of (j){r') with r' in the exchange kernel, is only slightly less accurate for k ^  3 and 
remains useful at low energies down to k = 0-5. The Slater potential is less 
accurate at all energies than but is comparatively more successful than for 
the e ~ - H  system. The Mittleman-Watson potential on the other hand completely 
fails below k =  3, although providing accurate phase shifts at the highest energies. 
In table 4, the situation is illustrated at the momenta A =  1-0 and 3 0, with and 
without the polarization potential.

4.3. Electron .scattering by He
The phase shifts obtained using the five most successful potentials are compared 
in the case of electron-helium scattering, with those obtained from the solution of 
the exchange integro-differential equations, in tables 5, 6 and 7 for / =  0, 1 and
2. The Furness-McCarthy potential the modified potential of Bransden and 
Noble and the potential of Riley and Truhlar reproduce the exact phase 
shifts to a remarkable degree, in both the static-exchange and the adiabatic- 
exchange models. Useful results are obtained over a wider energy range than for 
H  or He^. For s-waves, all three potentials F g a n d  F^' remain good down 
to the lowest m o m e n t u m  considered, k = 0-5, but for / ̂  1, the Bransden and Noble 
potential gives the best phase shifts at low energies although being slightly 
less successful at the highest energies considered.

4.4. Polarization potentials
Examination of the tables shows that the general conclusions about the successes 
or failures of the various exchange potentials examined are the same for both the 
static-exchange and the adiabatic-exchange models. This is an important result 
because in applications the exchange potential is often used in conjunction with 
effective polarization and absorptive potentials which are approximations to the exact
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‘optical’ potential. As indicated earlier, to help assess this point we repeated the 
calculations with other forms of polarization potential. The Buckingham polarization 
potential (9) behaves quite differently from the forms (6) or (7) at small r, so we 
checked the success of the exchange potentials in the presence of the Buckingham 
potential in detail. O ne case is illustrated in table 8, where the phase shifts using 
the Furness-McCarthy potential are shown for e“- H  scattering at /c =  2 0 and k = 5 0.

Table 8. Phase shifts (radians) for electron scattering by hydrogen, using the Buckingham 
polarization potential.

k = 2-0 k = 5-0

/ A B A B

0 S =  1 I-47V5 1-4705 0-7721 0-7739
0 1-3270 1-3211 0-7519 0-7521

1 S =  1 0-8508 0-8420 0-5573 0-5568
0 0-6596 0-6706 0-5356 0-5359

2 S = 1 0-3803 0-3777 0-4139 0-4134
0 0-2784 0-2801 0-3957 0-3958

A From  solution of the exchange integro-dilTerential equation.
B Com puted from the Furness and M cCarthy exchange potential F{f’.

It is interesting to see h o w  different the phase shifts given by the Buckingham poten­
tial are from those shown in tables 1-3 obtained using (7). but the exchange potential 
is equally successful in either case. Comparing the detailed tables of phase shifts 
produced with the Buckingham potential with those produced from potentials (6) 
and (7), shows that the success of the exchange potentials does not depend to a 
significant extent on the other potentials present.

5. Conclusions

In the derivations of the exchange potentials outlined earlier, the approximations 
made, with one or two exceptions, become more accurate as the energy increases. 
This accounts for the excellent agreement between the results obtained with the Fur­
ness-McCarthy potential and its simplifications, and the results of the Mittleman- 
Watson and Riley-Truhlar potentials at the highest energies considered. W h a t  is 
somewhat surprising is that this agreement and the agreement with the phase shifts 
obtained from the exact exchange kernels remains good to very low momenta— about 
k = 0 5 for helium, k = TO for H  and k = 2 0 for He^.

The potential with the widest range of application appears to be that of Furness 
and McCarthy but it is important to notice that the modified potential F[.-̂’
is nearly as effective, since this potential can easily be generalized to represent the 
off-diagonal exchange kernels encountered in coupled channel situations. Riley and 
Truhlar have also explored this point and have proposed the use of an off-diagonal 
potential rather similar to that employed in the coupled channel calculations of 
Bransden and Noble.
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