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ABSTRACT

We present a computer program tailored to the
calculation of single particle inclusive reaction observables
and two models for the incorporation of absorptive type
corrections in the triple Regge region which do not require the
inclusion of free parameters.

We conclude that the first model we present is not
sufficiently realistic and so requires the derivation of the
second, more sophisticated model in the Regge-eikonal
approximation. Both models were used to examine the
observables for pseudo-scalar meson production via charge

exchange.
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CHAPTER I

General Introduction



I INTRODUCTION

This thesis is primarily concerned with the introduction
of absorptiQe type corrections to a pure Regge pole model for
single particle inclusive reactions in the triple Regge regions.
Accordingly, in this introductory chapter we will briefly
mention the theoretical and experimental stimulae that have
led to the effort expended on single particle inclusive
reactions which.must include a slightly more extended mention
of Muellers Generalised Optical Theorem and the various multi-
Regge scaling limits. We conclude this chapter with brief
descriptions of various of the other models that have been put
forward to introduce absorptive type corrections to
inclusive reactions.

In chapter II a computer program is presented which was
written in order to make the organisation, calculation and
presentation of results for the class of reaction we consider
a much easier process.

Chapter III presents the derivation of a parameter free
model for the normal Regge limit (see section VI, Multi-Regge
Limits and scéling) which has a natural ektension to the
triple-Regge limit. We also present a fairly naive model for
absorptive corrections but are forced to conclude that it is not
sufficiently realistic.

In Chapter IV we derive a moré reasonable model which is
based on the eikonal approximatioh to multiple Reggeon
ekchange and Chapter V contains a calculation of the differential
Cross éection and target asymmetries for various charée exchange
reactions. The main conclusion to this calculation being that,
in contrast to the'exclusive counterpart, the reaction ﬁp+n°X

should show no signature dip at around |t|=0.5 [GeV/c]? and that



the target asymmetries that we find by this method will be small.
Chapter VI gives a brief recapitulation of the conclusions we
can draw and also a consideration of various questions that

remain unanswered.



IIINCLUSIVE PROCESSES

The production of many body final states accounts for
75 - 80% of the total cross section at presently available
énergies {11. However, it is almost impossible to analyse a
multiparticle production event experimentally because of the
complexities involved in being certain that the final observed
particles attributed to a single event are in fact all that
resulted from it. This would normally be done for a small
number of final particles via four momentum reconstruction and
quantum number conservation arguments and the extreme
difficulty of detecting all the neutral produced particles must.
invalidate this approach for higher final multiplicities.

Similarly multiparticle final states are hard to analyse
theoretically simply because of the proliferation of independant
variables with particle number. Accordingly some selection
of the available information has to be made. The method that
has received much attention is that of the inclusive process
whereby the presence of a particular particle (or set of particles)
is detected»in‘a final state, bﬁt no information is retained ‘
concerning the remainder of theAproduéed particles.‘ We
concentrate for thé remainder of this thesis on single particle
inclusive processes of the form |

1+ 2~ 3A+ X 1.1
which is depicted in figure 1l.1. Here the particles 1 and 2
are obviously spécified by the particular beam and taréetused
in the experlment and partlcle 3 is of a partlcular type, say T
or a*t, X symbolises the sum of all flnal states that can occur
with 3, in order to. conserve four-momentum and all the relevant
quantum numbers embodiéd in the initial state. Thus

px=p1+p2-p3, NX=N1 + N, -YN3 A : 1.2



where p denotes four-momentum and N denotes one of the set

of conserved quantum numbers, which will certainly include

Figurei-1.The single particle inclusivereaction 1+42->3+X

These processes have the advantage that they are extremely
easy (comparatively) to measure experimentally, since the
measurement of the momentum of a single final particle, and
the knowledge of its particle type are sufficient to determine
the event completely.

Theoretically these processes also appear fairly simple
when viewed via a generalisation of the optical theorem due to
Mueller (2] which will be considered in greater detail later.
Thus the combination Qf ease (relative) of acquisition of data,
of which there is a developing fﬁnd {3] and the amenability 6f»
these processes to theoretical énalysis has greatly contributed
to the interest and effort devoted to them.

Interesting reviews on the subject can be found in Ref.4.



ITIKINEMATICS FOR INCLUSIVE PROCESSES

We wish to analyse the process of equation 1.1 and

figure 1.1 kinematically. For this purpose we choose the

1l - 2 centre of mass frame in which the four momenta appear as
P1 = (E1, O, O, P)

p. = (E,, O, O, -p)

Ps (Eas P3sr1s P3i2s p3c)

2 2 2 2
with p;y = E; -p = m
2 2 2 2

p2 = E2 -p =m,

pi = E§ -pfi-p.% -pi = m} 1.3

We see erm the above equations that there are at most
four independant variables for this process. In the case
where no polarisation data is recorded this number reduces to
three since an arbitrary rotation about the Z-axis will be
permitted. Even if this is not the case, rotation about the
Z-axis introduces at most a kinematical phase factor, and‘so
there are only three independant dynamical Variables. We will
introduce some of the more widely used sets in order to show -
the relationship between them..

If we define »

s = (p1 + p2)? | 1.4

then simple manipulations of equations 1.3_teil us that

p? = %g [s=(m; + m;)?|(s-(m; - mz)zl
1 . . :
E, é TS (s + m¥ - m2) | - 1.5

1
E2=§7§(s+m§-m§)

We can introduce the triangle function

Ax,y,z) = x% + y? + 2?2 - 2Xy - 2YZ - 2xz



and then

p? = 3= A (s, m}, m}) 1.7
We can also introduce

ps: = (P31 + Psia) % 1.8
then one set of variables that could be chosen is s,ps3., P3. -
Of course not all these variables are relativistically
invariant, but they are certainly experimentally reasonable
since p3. rangeg between *+ p depending on the dynamical
mechanism for the production of particle 3 while pj;, remains,
in by far the majority of cases, below 0.5 GevV/C. [5]

We next define the missing mass, M; via

(p1 + p2 - p3)? 1.9

M2
b4
= s + m% - 2E3/§
This variable will have a lower threshold determined by
quantum number conservation and an upper threshold when

particle 3 is produced at rest in the 1 - 2 C.M. frame given by

M2 = (/5 - my)? ' 1.10
Clearly from equation 1.5 we can say '
1
q® = psf + ps? = 77 (s-(ma+M ) ?) (s-(me-M ) ?) 1.11

_ 1
and ES < 378 (s + m} - M%)

With the approximations s,M2+=,p? small, we can say
. p : ' x

M2y 2 2 :
ph. = 9, Bx - 2lpac ] - 1.12
;S

Another independant variable is defined by
t = (p1 - ps)2 =m} + m} - 2E,E;+2pps. 1.3
this variable has thresholds reached as ps;. reaches * ‘its
maximum value for particular values of s and Mi. In terms of

these variables these thresholds are given by



min 4s

] )2
|t | max ={/(s + mi - M;)2 - m3 ijﬂs + m? - m3)? - mf}

4s
- i m?-md) - M2 -nh) 1.14
We can also define
u = (pz-p3)2 = m% + m% - 2E2E3 - 2pp3L 1.15

and in a manner analogous to the relation in two body scattering
we find that |
s+t +u =mf+m§+m§+M}2{ 1.16
So s, £ and Mi form a set of three independant dynamical
variables, and it is this set that we make free use of in the
remainder of this thesis.
There are however, two other variables in common use.
The first is the Feynman variable or reduced longitudinal

momentum [6] defined by

= P31
X = 1.17
P3tax
Using equation 1.12, since Paipay will occur for the smallest
admissible value of M;, we can write
2
le:2|p3L| -1 "MX , 1.18

;S S

Equation 1.18 is sometimes used as the definition Qf X but'the
two definitions can only'be‘equivalent when m;, m,, m; and
p:. can be neglected compared to s and M;. The concept of
"fragmentation" can be introduced briefly here. If x=z+1
particle 3 ié moving close £o the originél speed and direction
of~§artic1e 1 and it is therefore logical to assume that it is

a fragment of that particle. Similarly for x=-1 and particle 2.



On the other hand if x z O then the produced particle is almost
stationary in the 1-2 C.M. frame and so cannot be associated
with either particle 1 or particle 2. So the use of s, x and
p3. provides another commonly used set of variables. We can
relate t and p3, via equations 1.1l and 1.13 for x:+l. If
P3. = gCos® then 6 is the 1-2 C.M. framescattering angle, and

t = tmin - 2pg(1-Cos6) 1.19

For small 6 this can be approximated by
2
- P3:

X

- - R 52 .
t"tm q Pa. =t 4h

in

Since p:=p3. and g:zps. .

max
The second widespread variable is the rapidity y defined by [7]

y = % log I3 T Psv | 1.20
Es - pa

If we also define the "longitudinal mass"

u? = (m} + p%.)

so that EZ = u? + pi.

Then P3" = sSinh y
u
Ej; ) . }
T = Cosh y S i 1.21

The main property of the rapidity y is its easy transformation
under a Lorentz boost by velocity v élong the Z-axis. Since
ps = (uCosh y, pglj, Psi2, ¥ Sinh y) ' 1.22
then applying the transformation'equations
| E3>Y(Es + Vps.)
P3>Y (pPs .+ VE3)
Where c = i and y = (l-Vz)-!i

then y+y+%log %;% - A ‘ ' - 1.23



Thus the three variables s, y and p3, also form an
independant set.
In order to relate y to the original set of s, t and sz

we must return to equations 1.13 and 1.15, which show, as

s + o that
t = -V/s (E3 - ps.)
u = =vyYs (E; + pi.)
where we neglect m?, m? and m} with respect to s. In

conjunction with equation 1.16 and also neglecting m2+m3+m3

we have
2 _ -
V3 = k% log(%) =% log (Mx S t ) 1.24
t



IVSINGLE PARTICLE INCLUSIVE CROSS SECTIONS

We will use the multi-particle state normalisation, which we
give for spinless identical particles for simpliéity,
n
<q1..9_|pP1..P.>=L T {8 (q1-P_.) (27 ) *2E(q,)} 1.25
n % perms i=1 pi 1
Of course only one term of this sum can be non zero, at most.

Use is also made of the resolution of the identity

R J;'l d°p; lp1.-p_><p1..p_| | 1.26
- ] Y . e .
n=2 % /i=1 2E, (2m)° n n

We also note that, since we insist upon conservation of four

momentum we can write

m n
<q1..qm|R|p1..pn> = (2n)“6“(§=lqi-§=lpj) T(Q1+.Q iP1++P))
,m n
= (2m) "8 (2 ) )T 1.27
(2m) (i=lql j=lPJ) n-m

Now we can write down the cross-section for two particles -~

n particles as

n .3 ' ' n
Fo = J%T4W d Ty (2w)* 6" (p1+p2-I ri)lT
* i=1 : . i=1

|2 - 1.28
2>n (2m) 32Ei " .

2»n

Where F is a two particle flux factor which is equal to [5]

20% (s, m?2, m%). Clearly

©

O, . = I o :
total n=1 2-n _ . 1.29

Almost in passing we can write down the two_partiéle unitarity
equation using the unitarity of the S - matrix i.e.
sts =sstT =1 B | ' 1.30 -

and writing the S-matrix in the form 1 + iR we have

11



<Q1Q2|5+S|PIP2>

<QxQ2|P1Pz>
= <q1q2 |1|pip2> + <Q1Q2|R+R|Plpz>

- i<Q1Q2|R+|P1P2> + i<q,q; |R|p1P2>
-i-

Inserting the resolution of the identity between the R and R
we have
- i(<q192|R|p1p2> - <q1Q3|R+|P1P2>) =
© 1 n 3
- d’r, + :
X n!f]l i <q192 |R |r1. x_><rj..r_|R|p1p2> 1.32
n=2 i=1 2E1i(2m)° n n

If we make use of the time reversal invariance prbperty of the
amplitudes and of the hermitian analyticity property i.e.
T(s-ie,...) = T*(s+ie,...) '1.33
and also making use of equations 1.27, 1.28, 1.29 we will have

2 Im(T,, > (s+ie,t=0)) = Fo__, ; 1.33

The complete derivation is of course not quite this simple, but
this sketch proof will be useful to indicate the manner in which
Mueller's Generalised Optical Theorem can be motivated. The
complete proof is found in Ref.S8.

We can now define the single particle inclusive cross
section from equations 1.28 and 1.29 by inserting.the correct

delta functions. Thus

n .

1on'E, H2 -1 -}Tﬁ 8T (2m)s*(pitpa-E 1)
Bs n=1 ™* Ji=1 (2m) 2E; i=1
,__n . | E
(2m)" 2EsX 8% (ps-z,) [T, 1% N 1.34

2=1 2>n

. Clearly, the delta function can be used to perform one of the
momentum integrations and since the final particles are

identical the sum from £ =1 to n produces only a factor of n.

12



Thus we can say

16m3E, g;g_ = F; ; 755%7. Ig_l d’ry (2&)“5‘(p1+p2-g r,
Ps n=1 * ) i=1 (5%33531 i=1
|Toonl? 1.35

This is not the only form for the cross-section that is used.
In Appendix 3 we derive the normalisation that is used for the
next form of cross-sections we give in a similar manner to
that given above.

We thus find

S 2
3 3. 3f2p,¥s d%0 | . 16n® {2 _d%0 } 1.36
16m°Es g ga 16w { JEQMZ {w dean’

where the variables are definedin section III.

If we write d’ps = m|ps;|d|ps|?d(Cosh) which we can do

because of rotational invariance about (with our kinematics)-:

the Z-axis, then we can give the differential cross-section in

terms of the other sets of complete variables:described in
section III namely

q? U d%g - 2 d2g :
167°Es F503 = 16n2 I(pZ 1dy * 167°% a5 77ax 1.37
: 1

The last pafts of equations 1.37 and 1.36 are really valid
only as s-+w, |

A further point to note is that if we integrate equation 1.35
with reépect to T%%EES we do ndt ;eturn to equation 1;28 |
since we have cancelled an n from the n factorial. Thus

13



d3ps b
o p 1
T 167°E, =5 I no 1.38

3
ﬁsnaEa gs

This gives us a method of defining an average particle

multiplicity via

o] o]
L no L no
<n> = n=1 2 n n=1 2>n 1.39
; 9total
O2—*n
n=1

This value for <n> can be seen to behave like <n(s)> = A+B log s
(9]. This shows that as interaction energy increases a
decreasing fraction is used to produce new particles, the
remainder staying as kinetic energy of those that are prodﬁced.'
This feature can be used to distinguish between various

multiparticle production theories.

14



V MUELLER's GENERALISED OPTICAL THEOREM

Mueller [2] has indicated that there is a very strong
heuristic correspondance between single particle
inclusive cross-sections and the discontinuity in an
unphyéical three body amplitude. A diagrammatic derivation

is given in figure 1.2.

. 3
= > ,
= ;Erg X |2 2

X 12 X
{a) {b)

3 3
z(?_ij T T’E?) = f0Eey! "
X 12 2 2i 2

(d)

(c)

Figure1.2.A diagrammatic representatlon of the derivation of Muieller’s
Generalised Optical Theorem.

The derivation proceeds is the same spirit as that
sketched out in section IV for the two body case. We first
use the completeness relation 1.26 tQ relate the actual
inclusive cross-section of figure 1l2a to the unit

sum of 1.2b. This is precisely as in the two body case.

However we now make use of an analytic continuation from the

case with particle 3 outgoing and particle 3' incoming to
anti particle of 3 (i.e. 3) incoming and §' outgoing. Tﬁis
takes us from figure 1.2b to 1.2c. It is then possible to
make use of the unitarity relation used in section Iv; but
with a three particle initial state,‘ih’order to paséAfromr
figure'l,2c to 1.2d. The discqntinuity in fhis case is of
course not in the‘variable s = (p1+pz)2 but in the energy

variable of the three body amplitude, that is M;=(p1+p2-p3)2.

15



This last expression shows that this diagrammatic derivation
has, in fact, glossed over some of the trickier aspects
since the amplitudé of figure 1.2d is clearly unphysical
since particle 3 is constrained to have a negative energy,
due to the analytic continuation. This can be expressed

more clearly by realising that

Discx{T(12§;M;2{,s,t)} = {T(12_3-;M;+ie,s,t)—T(l2§;M}2c-i€,s,t)} 1.40

i.e. we should stay on the same side of the cuts in the sub-
energies s and t for the physical 3-3 amplitude. However,
figure 1.2b makes it clear that for the inclusive cross-
section we will be above the threshold cut in s in T but below
it it TT. Thus for us to be certain that this result holds
we require that taking the discontinuity in one variable will
not affect the discontinuity taken in another. While this
has not been conclusively shown there are arguments that lead
us to expect it in this case [lo].

We have thus‘managed‘to relate the single particle
inclusive cross-section to the discontinuity of a three body
amplitudé.in an unphysical region of one of its momenta ;
measurements of this three body cross-section in its physical
region are in any case unlikely td be-forthcoming, The
exercise is however, not in the least pointless since we can
"also write down the expected Regge-pole forms for this |
amplitude which then gives us the expected Regge-behaviour
of the sing1e partic1e7inclusive cross-section. More detail

- 0of these forms will be given in the next section.

- 16



All the discussion of the optical theorem has so far been
without any mention of spin dependance of any kind. It is
however possible to write down a wider form for the optical
theorem [1ll] where three body helicity amplitudes are used

which can have different helicities for the initial and

final particles. Thus

n d3qi n
z f I =757 (2m)*8* (I  g.+ps-pi1-p2)
x /=1 (2T)72E4 i=1 *

s o ..l_ -
%;Al)Q[T |)\3)\x><}\3>\x|T|)\1)\2>

l . P " B}
= 37 Disc MZ <AiX2A3|T|A1d2A5> 1.41

is an expression of the full Mueller generalised optical
theorem.

If we write all the symbols concerning the sﬁmﬁations and
integrations as i and making an obvious notation for the

amplitudes this expression looks simpler as

* ° ) -
» - " 1 . . A - -
;f{f)\slx;)\l}\z f)\a?\x;)\1)\2} = -2—£Dlsc M;{fhlzlafh)\zka} 1.42

We could go 6n to discuss the various time-reversal, parity and
hermiticity relations which will impose various constraints
on the Mueller amplitudes from two directions. Either from
that of the three body amplitude [12,13] or by using the fact
“that the inclusive cross-seétions can be viewéd as a sum of'
non-interfering quasi-two body cross-sections;‘with the

missing mass state viewed simply as the second final body.

17




We choose the latter approach [14] except in the case
of time reversal, because the arguments can be given in the
more familiar two body helicity relations [15].

We consider time reversal first and simply remark that
because of the special continuations performéd, a time
reversed Mueller amplitude no longer satisfies the stie
prescription necessary as shown in figure 1.3, and so time

reversal gives no relations between the different helicity

amplitudes.
)\§ AA"
)\1 }\2'
+
)\2 > <€ )\j

(a) ' (b)

Figure1.3.The Mueller amplitude and its time-reversed counterpart.The
iambdas denote quantum numbers such as helicity.

The hermiticity property is easiest seen by taking the

complex conjugate of both sides of equation 1.42. This

yields

-1 (D1 f .. .‘. *_ 1 . f Xodes ’)\’A, )

H lSCMz >\1A2)\9,}\1)\z}\3) = '2—i'DlSCM2 }\1 2 3,)\1 2A3 1.43
X E X . .

’,

which immediately indicates that for Ay = A}, 1=1,3 the

discontinuity will be pure imaginary, as in the corresponding

case for two body.
To derive the parity reversal property we must consider
the relation for the quasi-two body amplitudes. We use the

' Jacob and Wick phase convention [15] and since we will be

principally interested in O-%++O—X scattering in this thesis

we will consider the spin % proton, which will be the target

“particle and "type 2" in the phase convention,as particle 2.

18



The parity relation can then be written as

B-xa=Ayi=-Aa=ha (-¢,) = N0k

S3+s_—S;-S;+A -)\3—>\1-)\2
minz (-1) x X

f .
Aaxx:lllz(¢i) 1.44

where Sy denotes the spin of a particle or conglomerate and
the angles ¢i are all those internal to the particles
comprising the state X. We will be integrating over all
these angles aed so the fact that they are reversed is no
problem. Performing this integration then we have
FOdnd o sdids = | (mA)+ (a=22)+ (As=23)

» -

_f* - .
;ff-xsxx;-xl-xz =AsA i=Ai=A,  1.45

or

l . s e 4 P ~ P

51 DlSCM; DAz xssan,a; = Fl)(kI-A1)+(A2-A2)+(A3_ks)
l . - - »
-z—IDlSCM}z{f-XI")\Z-Aa;-Xl-)\z—)\a 1.46

So, since there will be N? N% N} distinct helicity amplitudes,
if Ni = 2si+l - i.e. the number of possible helicities, and so
2NfN§N§ different numbers to measure, the hermiticity
condition reduces this by a factor of 2, as does the parity
relation. There are therefore LN2N2N3 different |
measurements to make. If we specialise to the case of
interest for this thesis, namelf O-%+}O-X, we see that there
are qnly two possible measurements to determine the
reaction completely5 ‘ -

These‘two measurements are usually taken to be the
unpolarised cross-sectien, and the polarised target
asymmetry. The former quantity'is defined in section IV, but
the latter needs some further investigation to cast it into

the language of s-channel helicity amplitudes.



1 ;T—<fiffijgii73 1 ;ifz”’/’eréya

(a) (b)

Figure1.4.The two cross-section measurements necessary for target
asymettry calculations.

The target asymmetry for a reaction is defined as the
difference between the two cross-sections depicted in
figure 1.4 i.e. a) - b) where the target particle is
polarised at right angles to the incoming beam. This
quantity is then scaled to the unpolarised cross-section.
If we define the target asymmetry as Ezlwe will have

2 2
.y R
I U a1 s i ] ) 1.47

22=

AIZAS;{I ﬁa)\x;)\lle'PI flg)\x;)\llll}‘
where we have
s d?co 1 'f 2
T z = Z - l A3 ;)\112[ 1.48
H'dthx 16w s(211+1)(2A2+l)§1A2A3 ; R _
which is given in Appendix 3.A.
,'We'now convert to the helicity frame using [16]
| 1> = /% (=i]|+>+]=>)
1.49
1> = /% (-] +>+1|=>)
: . _ T . .
Defining & = Alkzlaf[fkalx,kllzlz we then obtain
- . £ Ib' g »
226 = 3 f=i{ad inat Mok adcHAad Aam XsA iAi+l} - 1.50

Ai1As :
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Using equations 1.42 and 1.46 we can rewrite this in terms
of discontinuities as
' I,6 = Disc

M2 X=X hi4X, 1.51
X

Consideration of equation 1.43 with equation 1.46 assures us
that this discontinuity is pure real, as, of course it must be.
The target asymmetry I, also has certain kinematical
properties, but since they are based on angular momentium
considerations, and are not direct results of the optical

theorem we leave their derivation until chapter V where

use is made of them.
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VIMUELLER REGGE LIMITS AND SCALING

In the last section we have demonstrated a strong link

between a discontinuity in a three body reaction and the
single particle inclusive cross section. Therefore we can
postulate modelsvfor the three body reaction which do not
involve labarynthine integrals and sums over phase space.
The class of models that seem to have benefited most are
perhaps the Regge models, and single particle inclusive
reactions have provided an extensive testing ground for
Regge ideas.

While it is much more complicated than the corresponding
partial wave decomposiﬁion of two body reactions, and their
subsequent Regge-ization, it is possible to at least strongly
motivate this process in the case of the six-point amplitude
[17, 18 1. However, because of the multiplicity of sub-
energies in this case over that in the two body case there
are several different Regge limits and it turns out to be
convenient to distinguish between three major regions-of
phase space. These are the beam and target fragmentation
regions, which are further divided into three sub-éections,and

the central region.

w -
T o g 2 Loy g
= o o @ Q) a =
[« — z o .4 — o
[ T T I B B
thin : Ym_dx.
Target Central Beam
Fragmentation ' Region Fragmentation
_ Region Region .
Figure 1.5.Phase space regions in rapidity for 14243 +X showing the relevant

Regge limits.
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i) The Beam Fragmentation Region

We normally take particle 1 to be the beam particle and

in this case, if particle 3 is only moving slowly in

the rest frame of particle 1, we would expect particle 3

to be associated with particle 1, and indeed to be a

fragment of it. In this region clearly x = 1 and y = ymax.

Dealing with the sub-regions in order as x departs from 1

(x strictiy equals 1 is of course elastic scattering) we

have.

a) The fixed Mi limit with t and M; fixed and small and
s/M;+w. This is also called the normal Regge limit
since we expect the 1-3 channel to Reggerize in a
similar faslion to two body sCattéfing. This limit
is illustrated in figure 1.6 and the scattering

amplitude then takes on the form

2 1 13 o, (t)+a- (t)
£(1+3)-3 I By (t)E, (t) (s) )
ij

13 * 2 R . ’ .
B (f;)aj ()EME, L) | 1.52

where f]'z_)'32 iS the forward Reggeon particle
scatterihg discontinuity,hsi the Reggeon-parti¢1e
particle coupling, Ei the Reggeon signatureAfactor

and o the poie trajectory function.

1Dice 4 1 1
—— zDISCMJ 2 vl }

Figure1.6.The transition to the normal Regge limit.

1 3
2
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b) As M; increases, for large enough values of s then
there is a regidn of phase spacé where both the
customary 1-3 channel is capable of Regge—iZatidn,
but also the 2-2 channel of the corresponding 3 body
reaction. This limit is the famous triple Regge
limit which arises as t remains small and fixed and
s/M;+w,M§+w. This limit is illustrated in figure 1.7.
In this region the cross section retains the
expression of equation 1.52, but we can now give a

form for the forward Reggeon particle discontinuity,

namely
.y 22
£33 (u2e) - 38y (0)IM(E (0))gy 4y (£,£,0)
M2+ook ' ’
X
(Mz)ak(O)-ui(t)—aj(t) 1.53
X

The imaginary part of the signature factor appears
because we have taken the discontinuity. gijk denotes
the triple-Regge coupling and the other sumbols have
been explained. The M; behaviour of this quantity ‘
can be ﬁnderstood by realising that large overlapping
subenergies combine in a simple'multiplicativé

manner [191, thus the energy of the "normal" Redgeon is

proﬁortibnal to s/M; and that of the other simply to

2
Mx‘
2 133
=|1 3| ——= -
X1 2. 12 2

Figure1.7.The transition to the triple-Regge limit.
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c) As M; increases further we come to the situation where
though the 22 channel can still Regge-ize , the 13
can no longer. This is known as the single-Regge
limit and corresponds to t and s/M; fixed and finite
but Mj{w. This limit is denoted in figure 1.8.

Note in the literature the term "fragmentation region"
refers specifically to the single-Regge limit.

The form of the cross-section can be given as

2 a, (0) 1+3 M2
£1>3)-25g220) 2y Xk (e 1.54
k k k S
1+3 M2
where Fk (1;,t) takes into account the five point

upper bubble.

ii) The Target Fragmentation Region

The target fragmentation is the counterpart of the beam
fragmentation region at the other end of phase space,
where (p,-p3)? = u is fixed and finite. The discussion

of thé‘previous section applies with the obvious changes.

iii) The Central Region

This region is inieffect what is left between the two
fragmentation régions. At gnergies above about
s = 60GeWc? thebtwo fragmentation regions}beéome well
separated [5] to léave a well defined central region,
which,as is shown by figure 1.5, does lie in the middle
of phase space where both x and y are close to zero.
Figure‘l.9 depicts the'possible Regge limit for this region,
where we see that both subenergies (p1-ps)? = t and

) v

' 3 5 1 3 3’ 1 ' 1
— —== _ Disc
X K ~ 32 2 2i M,

'Figure1-8_.The transition to the single Regge limit.




(p2-p3) 2 = u should be large. To see how this arises
we take the s+~ 1limit of equations 1.13 and 1.15 to
yield |

t = -/s(Es=ps, )y U = ~/s(E3+ps. ) 1.55
This gives %; = u? where y is the "longitudinal mass"
defined for use with the rapidity variable y (equation

2
1.20). Ssince Pa: is generally small, for small m}, p

2
will be about 1.0GeV/c* at best. This shows where the
figure of s = 60 GeV/c? before the onset of Regge
behaviour occurs. We can then write down the asymétotic

cross—-section as

. 33
1 11 £ Olj_(O) u a. (0) A
£(1,3,2) =t | = 2y (B3]
(1,3,2) si,jBi (0) | Gy 4 ( )\So By (0) 1.56
If we write
2y 117 22”7 33 5.2
then
o, (0)-1 o.(0)-1 1.57
. 2y |1 u_ |3
f(l,3,2) bX X35 (u®) 5o s,

ij

Here s, is the usual energy scale normally taken to be 1.0
GeVc?.

1 3 2

Figure 1.9 The transition to the double Regge limit.




We are now in a position to discuss the asymptotic
energy dependance of the various kinematic regions. We
begin with the single-Regge limit or "fragmentation region".
Equation 1.54 gives this cross section and clearly we would
be entitled to exchange the Pomeron with trajectory intercept

= 1 at t = 0 as well as other trajectories with lower

intercept. In this case qc(O) = 1 and
2 M 2
S

Thus the cross section depends (at fixed t) only on the.
ratio of two energies and is thus independant of the energy
units used i.e. it "scales". The Mueller-Regge model then
predicts scaling in the fragmentation region, and since the
non-scaling terms due the exchange df Reggeons of intercept
approximately ak(o) = .5, the model also predicts the speed
of approach to scaling behaviour - namely as s_%. We also

note that this form of scaling extends with no alterations

into the triple-Regge region, but does not extend to the

normal-Regge region, which in any case occupies an increasingly

small region of phase space as s increases.
This scaling result was predicted previously by Amati
et al [20], Yang and co-workers [21] and Feynman [6 1.
Yang's views were based on a m@del of lorentz cont;acted
discs co-exciting each other and'decaying. Since both Uél and

o were observed to be approximately constants, the modes of

tot . 4
. exitation should become independant of s, and the disc-decay

reach a limiting distribution in its own rest frame.

27



The views of Amati et al.and Feynman were based on multi-

peripheral models whose philosophy is that production reactions

should look like that of figure 1.10 with each particle
produced at small momentum transfer to those on either side

of it.

2.
L

-
>

Figure 1-10 A production amplitude where the particles are produced
multi-peripherally '

In the models considered the distribution of particle 3 in
both x and p;; became independant of s as s+w, The result
also extends into the central region as can be explained
from equation 1.57. Here, if both exchanges are Pomerons
we see that

£(1,3,2) - pr(uz) | ’ 1.59

again independant of s.

The scaling hypothesisVSeems to work very well in the
fragmentation region (9], but somwhat less well in the
central region [22]. This is perhaps ﬁot surprising since
the approach to scaling in this case is as sf% which comes
from the.exchange of a Pomeron and one secondary Reggeon.
The effects which cause the,deviation»oﬁ the Otot from a

constant are also clearly playing some part.
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VIITHE MUELLER-REGGE MODEL AND MULTIPLE SCATTERING

In the case of two body interactions it was rapidly
found that the Regge-pole picture was capablé of giving a
reasonably good explanation of the experimental data. The

effective trajectory of elastic data can be found by

assuming

29 = Fe) () Za(e)? 1.60
dt so :
Plotting log g% against log(s) at fixed t will give us a
value for oceff(t) - the effective trajectory for that process.

For charge exchange reactions at least these trajectories
seem consistent between reactions and also seem to be linear [5].
However, the Regge-pole only model can be shown to be
inadequate from the direction of theory [23] where it is seen
that "Regge cuts" or mulfiple exchange of Reggeons must
contribute to the asymptotic amplitude, and from
phenomenology where several detailed features rule out the
use of pure Regge poles aldne. The simplest to see being the
polariéation in the reaction w-p¥n°n.. A pure pole model
would predict zero polarization while a substantial value is
observed [24].

The same is true for single particle inclusive reactions
in the triple-Regge Limit. Much effort has been expended,
and with no small success on.pure pole tripleRegge aﬁalyseslzsl.
However, there are again tﬁeoretical afguments [26] for the
inclusion of multiple-Regge exchangé'in:this région. The
problém of Pomeron_de—coupling [27] arises because of an
anomaly in the inclusive cross-section in the triple-Regge
region. This anomaly has been examined in the light of the

inclusion of multiple-Reggeon exchange [28] which removes the

anomaly for this case. - 29



On a phenomenological level, the pure-Regge pole model
will predict a zero target asymmetry both from the standpoint
of a factorisable Reggeon-particle-particle coupling [29]
and also from that of a pure naturality exchange [30].

There seems to be some evidence that this asymmetry is non-

zero [31, 32], although the data exists at too low an energy

for strong conclusions to be drawn. There is also the case

of the reactioﬁ y+p+n$+x with a virtual photon. Naturality

arguments for a pure pole exchange would dictate a forward

dip [33] where experimental data seem to predict a forward peak

(341 though this prediction is based on the position of only

one data point. There has also been much work done where a

triple Regge-model incorporating poles only has been improved

by the inclusion of an absorption or cut model [35].

For these reasons several groups of people have
attempted to construct an absorption or Regge-cut model for
single-particle inclusive reactions. This thesis sets out
one such attempt and to conclude this introductory chaptér we
give brief summaries of some of the other models.

a) N S Craigie and G Kramer [36] constructed a model in
order to cure the disease found in Ref.33 in the hope.
that absorption would turn the pure poie dip into the peak
required by the data. Thermoael takes the form of abpértial
wave analeis of the quasi two body amplitude with
integrals over the intefnal variables‘of the missing mass
state. The type of re-scattering corrections envisaged

- are depicted in figure 1.1ll. The transition £o impact

parameter space is made using the usual two-body assuﬁptions
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and it turns out to be possible to arrive at a closed

form for the sum over the helicities of the missing mass
state in order to arrive at the formula
AT , azr, d?q . . ‘
H (t,t°) = f 1 J 'os*(t”-1, )HA l(ll‘ T1) S(x-11)
2T 27 R

where S(1-1,) = 2782 (1-1,)~cae @ (Z711)" 1.61

where t = tmin - 1%2x defines T as a scalar. The vector
1” = (1°Cos¢,1”Sing) indicate that the internal triple-Regge
scattering need no longer take place in the ¢ = O plane and

C and a are defined via

_ at
ImF(s,t) = Oior S ©
C = Tiot / (8ma)
. o . o
where Orot 15 the PP total cross-section and F(s,t) the P p:

elastic amplitude. The lambdas refer to the helicity of

7 et E ) 7

Figure1.11.Re-scattering corrections to the Mdeller-Regge expcnéion of the
reaction ¥+p-= Ti+X.[see Ref.36)

In fact because of the form of the approximation used for
the dJ functions this derivation implicitly assumes that'fhe
flip of helicity intovthe missing mass state will be small.
See appendix 3C for a more defailed discussion of this
problem and as to why this approximation is reasonable and

Ref.37 for a derivation of the two body dJ approximation.
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Also, in the calculation the multiple of 2m of the delta
functions in the definition of the S-factor (equation 1.61)
was missed off, so while a good fit to the data was obtained
it required an inordinately large value for C. The
parameters fitted in this paper have been used in the
estimation of the polarised target asymmetry for this reaction

by K Ahmed, J G Kérner, G Kramer and N S Craigie [32]

b) F E Paige and T L Trueman [38] and F E Paige and

D P sidhu [39]. In their interesting paper, Paige and
Trueman give an extended review of the way in which the two
body cut can be related to a diagram in single particle
inclusive reactions. These two diagrams are shown in

figure 1.12.

P Ps P, P,
x

Py

pd

a P. Pa P,

P (a) : (b) )

Figure 1.12 a)Regge-cut graph for total cross-sections.b)related Mieller graph.
(see Ref.38)

Their calculation is cast in the form of the Reggeon
Calculus and it is possible to write down a simple closed
expression for the contribution of the cut to the total

cross—-section, namely
.

‘Coszlkna(qlzﬂ

cut d2q, Cosmalg,?) : $
o (s) = J 2 ) . '
total (2m) sin?ma (g, 2)

—Sinzl%wa(qlzn

2y . . .
g20(a:")=2 wat(q,2) Wb (q, 2) 1.62
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where the choice of term in the curved brackets is made
according to the signature of the exchanged Reggeons and the
cut-coupling functions Na+ and Nb+ are just those'functions
one would expect after factoring the unwanted terms in the
diagram of figure 1.12b, Unfortunately when a similar
procedure is attempted with the single particle inclusive
cut graph aad the double particle inclusive cross-section
(see figure 1.13) the attempt is frustrated partly because
the amplitudes in the single particle inclusive cut have
differing boundary conditions from those in the double
particle inclusive graph (this problem could perhaps be over-
come as was a similar in the generalised optical theorem),
but also because the distortion of contours required to
obtain the closed form is not possible in this case due to
cuts occuring in the other subenergies available in this

case, though not in the two body case.

p\ . pﬂ p‘

po p: (G) : . (b)

Figure 1.13. a) Mueller -Regge cut graph.b)Mueller graph for the two particle
cross-section in Regge limit.(see ref.38)

It does however,turn out to be‘possible to make
estimates of fhe cut corrections in certain specialised
sub~regions, the main of which is tﬁe triple-Regge region.
A cut graph in this region is shown in figure 1.14 and

form for the discontinuity is given by
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1. 2 1
2—i-DlSCM F)\’}\(S’M ’2q2) =16_TT2- jdzklNasaz(ql'}'kl,kl)
gasos;ia. (q,,q,+k, )NayA ;a,A (k) [-2Im(§,5553%))
(ﬁz) G.2+(13+0.5"l (Mz)d2+a|,—l 1.63

where the Ns are again two particle, two Reggeon coupling
functions, the g is a three-Reggeon coupling and the §'s are

the usual signature factors.

Figure 1.14.A Regge cut graph for the triple-Regge region.(see ref.38)

It is this formula that Paige and Sidhu apply ih order to
make estimates of the relative importance of cuts in the
triple-Regge region. They make the assumptions that the
cut-coupling function.will be simply the product of
appropriate Regge residues and make.an exponential
approximation for these and for the three-ﬁeggeons~coupling.
They then make estimates of the ratio of ocut/opole for the
‘reactions'ﬂ—p+nox,n§p;qx and K-p+f°x. In all cases'this
ratio is greater than -1 so no large dips are predicted, and

the average contributions are around 30%, increasing with |t].
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Paige and Sidhu also calculate A polarizations from various
initial states. Where data exists their results which

are in all cases of the order of 1% or 2%, are not
inconsistent, but the data does possess large error bars.

c) J Pumplin [40]. Pumplin adopts a different view point
to most of the other models for absorption in single particle

inclusive reactions.

b > > b
Figure 1.15 .A re-scattering correction to the triple-Regge graph between
particle b and particle c.(see ref.40)

He argues that since, away from x = 1, the dissociation
reaction a+c+R takes place over a long time, that it will be
the re-scattering between particle ¢ and particle b that is
important (see figure 1.15), and by meane of ‘a fourier

decomposition produces the formula
M(B, /B, M, 8)= [a2qaq" ,u, (@73, M2, s)

(s (3, -3")-in_, (B, ~37xs)1

(62 (3, -9 +iM_ (B, -d,xs)] 1.6
which he specialises, using‘various gauseian or exponential

approximations before applying it to the reactions

y+p+7m+x and TH+prTEX
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in the form
M(p?) = iMzoRbqu‘F*(q’)jqu(q)

—_.

— — 2 — —_—
e (%)A(g"-q) S*(q’-pl)S(q-Pl) 1.65

where the S factors are given by

s(g) = 8?6)—%%9e-(%)032 1.66
and
F(p) = B(t) (s/M2)*(E)

Pumplin also makes the argument, using elementaryvparticle
propagators, that these c-b scatterings are the only ones
that contribute and that a-b rescatterings do not. The use
of elementary propagators instead of Regge propagators
however, seems slightly suspect. In the first paper
Pumplin then calculates y+p+*7m:x and indicates that this model
cannot generate a forward peak with any reasonable absorption
parameters and the second paper is devoted to the reaction
n_p+ﬂ°x, the main predictions being no dips seen at around

t = -0.5 GeV/c?, unlike the reaction 7 p»7°n and a raising

of the effective trajectory for the exchanged p-Reggeon.

d) A Capella, J Kaplan and J TranThanh Van [41]. These
authors utilise a simplified approach to the Reggeon |
Calculus previously developed by them [42] for two body
reactions.‘ They make contact with the single particle
inclusive process by allowing one triple-Pomeron coupling

‘to split the simply exchanged Pomerons . This arrangement

is illustrated in figure 1l.16.
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a : a
- DS
Figure1.16.A diagram in two-body scattering related to the single-particle

inclusive distribution.{see ref.42)

It is a combinatorial re-arrangment of the discontinuities
formed by cutting such diagrams through particle b and the
"third leg" of the triple-Pomeron cluster that form the
basis for this model of absorptive corrections. They arrive’
at a diagram of the form of figure 1.17. For various reasons
it is clear that this formulation will hold only for x very close to
one. This is clearly demonstrated in that the form for t used

is t = -—pcl2

rather than the more usual t = - é/x.

Figure 1.17.The discontinuity related fo the single-particle inclusive
distribution.[see ref.42)

The detailed form of the absorptive corréction is not
transparent. It can be shown to be of the general form of
all these models briefly described, but with a particular
choice for the S(J,s) factors (see equatibns 1.66 or 1.61) to
give an eikonal type form, but also to take account of some
inelastic intermediate states. For this reason the form is

not given.
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The main conclusion of this paper is that the absorptive
corrections calculated are very large, due mainly to the
combinatorics as opposed to those in the twb body case. They
make an estimate of the triple-Pomeron coupling, which they
find to be significantly different from the pole only case,
but also find that even with large absorptive corrections, the
Pomeron factorisation property still seems to hold at a 10%
level.

e) A Garcia Azcarate [43] studies the reaction p+p»*n+x in
the triple-Regge region in both the framework of a
peturbative approach to Reggeon calculus, as in the previous
model and a system comprising small absorption corrections of
a similar type to those proposed in Ref.36. Azcarate uses

a Regge-ised one pion exchange mechanism with only the
Pomeron included in the ﬂ+p elastic scattering. Since the
resultant intermediate pion are so dose to the mass-shell it
is reasonable to use the physical values for cross-sections
and couplihg constants.

The model for O.P.E.R. withqut absorption shows reasonable
behaviour, but does overestimate the normalisétion (seé
Ref.44 for an alternative approach to this reaction in both
the 0.P.E.R. and weakly absorbed model). The two sorts of
absorption now reduce this normalisation. However, the ﬁodel
of Capella et. al. prdduces a curve which is sighificantly
below the data while the weakly absorbing model interbolates

the data fairly well.
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f) J Bartels and G Kramer [45] . These authors again
approach the subject from the standpoint of the Reggeon
Calculus, and, although making various numerical approximations,
they consider the diagrams of figure 1.18. They achieve a
cross-section for s = 20GeV/c? of only l/3 the pole value,

and because the cuts die away very slowly as s rises (This
of course comes as a consequence of the M;/s scaling of the
pole amplitude), this value has only increased to .44 of the

original pole expression by s = 3000 GeV/c?.

Figure1.18.The pole-only diagram and three lowest order Reggeon Caiculus
cut correciions.lsee ref.d5) :

From this we see that the Reggeon calculus much stronger cuts
for one additional pomeron as indicated by Ref.41 and also
that these cuts persist to very high energy. The size of
these cuts.indicate to the authors that the investigation of
both "enhanced" gfaphs where more than one triple Poneron |
vertex occurs, or éerhaps higher order Po meron vertices

(see figure 1.19 for representations of these graphs) and
multiple Pomeron exchange in non-enhanced graphs could well

be important.

(a) (b} ' (c) (d)
Figure1.19.Several “Enhanced” multi-Pomeron graphs.(see ref.45) .
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They calculate the enhanced contributions of figure 1.19
and find that from a few percent at s = 20GeV/c?, some of
these graphs, particularly those of parts a) and c) have risen
in importance to about 20% of the pole graph by s = 3000 GeV/c?.
They also derive the multi-Pomeron exchange for Reggeon
calculus in the eikonal approximations and remark that at low
energies the convergence of the resulting series expansion
will be slow, fhough this will improve as energies increase.
Bartels and Kramer therefore conclude that at low energies
enhanced graphs are not yet important, but several terms in
the eikonal series will need to be accounted for and as
energies increase, this series will truncate sooner, but
enhanced graphs become important, and at energies higher than
those achievable today enhanced will begin to dominate. All
in all a much more complicated area than cuts in two body
-reactions.
g) G R Goldstein and J F Owens [46]. These authors
provide us with another impact parameter/FQurier decomposition
method. 'They define their impact parameter as that variable
conjugate to the two dimensional p., and give references [47] to

support its choice.

The analysis is easily performed and with the choice of

_ -b?/4a . . .
Sege(P) =1 = Ce the final formula.is given as
e azk, (d?k; N . . . .
Dga“b“cyabc(p,) = o T Dga’b c‘,abc(kl,kl)

| —a(p, -k, )2 ) *-a*(p -k7)2} 1.67
- {2m82 (p, -k, ) -2aCe a(p, =k, ) } {2m6% (p, -k[)-2a*Ce a*(p, ‘y) }
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This form is similar to that derived in Ref 36. The
impact parameter in this reference is defined as the
variable conjugéte to P.,/x, however, any phenomenological
differences arising from this choice should be slight.

The reaction p+p+A++ + X is chosen for study; The
motivation for this is fairly clear. The reaction should be
dominated by pion exchange and due to the proximity of the
pion pole to tﬁe physical, it is possible to give a good
estimate of the relevant triple-Regge coupling. When this
is done, the existance of good quality data allows us to
say that the pole only model yields a normalisation
approximately a factor of two too large (see ref.48 fof an
alternative calculation for this reaction both in the pole
only and absorbed form. These papers also give references to
the daa of this reaction). This discrepancy can be
remedied by absorption.

Of course this reaction is also interesting since it
provides, fairly easily, a measurement of the decay density
matrix elements of the A++. Predictions of these quantities
should be very model sensitive.

The authors find that a good fit can be obtained to a set
of data with reasonable absorption parameters and with the'
agreed value for theGnNA.v A pole only fit results in an
unreasonable value for GnNA' which is,-after all, well

attested to.

It is therefore possible to conclude from this analysis

that the absorptive corrections do have a definite role to play.
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CHAPTER IX

A Computer Program for the Calculation
And Display of High Energy Single Particle

Inclusive Production Reaction Observables
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INTRODUCTION

There are many different types of single particle inclusive pfoduction
reactions of phenomenclogical interest. This, coupled to the need to present
much more information than in the corresponding exclusive reaction case,
make it desirable to be able to experiment both with the dynamic model, and
the presentation of the calculated observables with as little computer
reprogramming as po;sible. To make this possible we felt it necessary to
write a computer program that would accept a standardized data deck for any
of the relevant reactions, or set of reacfions, and that could then perform
calculations of almost all the relevant observables. The dynamic model
used for these calculations is added on as a new written function, as indicated
in fig 3, and which particular quantities are calculated and which presented
can be completely governed by the specification of integer flags read in with
the data deck.

We also felt that the manner in which the results are presented is
extremely important, and to this end the program provided a line-printed
output which contains all the relevant information. Parts or all of this
output can be switched off using relevant flag values. We also provide
the facility of plotting every set of results calculated, both for 1gcidity
in that the user is immédiately aware of effects in a éﬁitable graph that
are easily hidden in a loﬁgvcolumn of figures, and also for sheer convenience
when plotted results are required for puﬁlication. This plotting facility
requires the attachment of a plotting paékage which is freely available
from Computer Physics Communications.

The program was also written to conform to the reéuirements of the
standard minimisation package MINUIT and has been successfully used with
this package to perform 'X2 minimisation for theory-data compariéon.

Several people have successfully used the program (named ONQPLT)

over a wide variety of inclusive reactions, and ONCPLT has, I hope, for
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them provided a short cut to the adequate presentation of their calculated

results.

What follows this introduction is a Program Summary giving the relevant
technical details in a short form and a Long Write Up which elaborates on

the conventions and techniques used within the program.
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PROGRAM SUMMARY

Title of program: ONCPLT

Catalogue number: AAUR

Computer: CDC 6600, CDC 7600; Installation: University of London Computer Centre

Operating system: CDC SCOPE

Programming language used: FORTRAN IV

High speed core reguired: 25K words

No. of bits in a word: 60

Overlay structure: None

No. of magnetic tapes required: None

Other peripherals used: Card reader, Printer, Calcomp plotter with Calcomp
compatible software

No. of cards in combined program and test deck: 4,020

Card punching code: CDC

CPC Library subprograms used: AAUN, Title APLOT, Ref 49.

Keywords: Nuclear, High Energy, Single-Particle-Inclusive Cross Section,
s-Channel Helicity States, Spin Density Matrix, Effective Trajectories,

X2-Minimization,-Graph Plotting

Fature of the physical problem

This program is concermed with the phenomenological analysis and the display
via both the printer and graph plottér of high-energy single-particle-

inclusive production reaction observables.

Method of solution

The program can be run under either the fixed. t or the fixed M2 modes

when calculating differential cross sections with that for fixed t being
integrated over the t-bin by 8-point Gaussian quadréture. Total cross -

~ sections can be calculated using repeated 48-point Gaussian quadrature. In
addition, effective trajectories and density matrix elements can be calculated.

The results of all these types of calculation can be plotted with the inclusion
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of the graph plotting package APLOT [ 49 ]. The program is compatible with

MINUIT {50 ] and this combination has been used to perform minimization[51].

Restrictions on the complexity of the program

The number of data points considered cannot exceed 500 in general. In the
case where density matrix data or effective trajectory data is to be read

in the number of da_ta points cannot exceed 100. This is purely a dimensional
requirement and can be altered. If density matrices are to be calculated

the final detecting particle must have spin less than 5/2.

Typical running time

The test run took 72.2 sec. (of which 32.7 sec was compilation time on the
CDC 6600.) A recent minimization calculation [ 511 in which the program

was used, 400 passes minimizing 3 parameters on 28 data points took 184 seconds.
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LONG WRITE-UP

1. INTRODUCTION

The computer program described here is designed to handle calculationé
for single-particle-inclusive reactions in the region s/M2 large and to
compare the theoretical predictions with the experimental data both by means
of line printer ané graph plotter output.

The matrix elementsof interest are calculated in the TRACE function
subroutine and, according to various flags in the program, the program
will calculate differential cross sections in either a fixed t or a fixed-
M2 mode, total cross sections integrated over a specific region of phase
space, density matrices of the observed final pérticle and an effective
trajectory for the exchanged Repgeon.

Since theory can often only provide a functional form with several
adjustable parameters the program is set up to provide-a x2 minimization
on the differential crbss section data when used in conjunction with the

standard minimization program MINUIT [50] .

2. CONVENTIONS AND KINEMATICS

The kinematics we calculate for the process a + b+ c + X are the
usual relativistic invariants given by

2

2 2 _
s=(p, +p)% t=(p,-p)% M =(p +p -p) -

For single-particle—inélusive production reactions the minimum |t] effect

2 . .
is important since it is a function of both s and M. t is given by

_ 2 2 _ ' )
t = ma + mc 2EaEc + 2gkcost,

where q and k are the three-momenta of c-and a in the a-b centre-

of-mass frame, Tpansfqrming this to relativistic invariants we f%nd 47



1 2 _ 2 2 2 2
T [(mc ma)—(M-mb)] .
On neglecting all single particle masses we find

|t|max = 8- M2’ Itlmin = 0.

This approximation does not seem valid at presently available energies and
so throughout the program we have used the exact expression for Itlmin'
The normalization is taken from the expression for the total inclusive

cross section

a°q dsq
N 2 R 1 2
<> 0 = J an J = = #°(q, +ay-p, - ) - ?j |<c,x|T|a,b>|*,

where daqc denotes deqc/(21r)3 and ﬁu(x) denotes (2v)464(x), F is
the flux factor for the particular frame of reference chosen and I denotes
all the summation and averaging over all the helicity states, different .
particle states, etc. and integration over all three-momenta intermal to
the M2 state. We can acquire the differential cross section from this

expression by inserting appropriate delta functions, i.e.

2 i’ ¢, 2
d%_ _ [ 42 c M b -y - 2 _ -
it i f ¢ fz}:c 75, P e T TR T B e R Pl

. .
. 8(t - [pa - pc]2) %’ i |<c,X|T|a,b>| ’

which in the centre-of-mass frame of particles a and b .yields

2 .
@ Lo L |eitlan® .
dth2 eur k

<n> is the average multiplicity of the detected particle and is a function of
s only. It would normally be impliéitly included in the measurement of an

is no necessity to calculate it and divide it out.
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We need now to consider in more detail the generalized optical theorem[11,14]

which gives us

N -
X dsq. NX
2 J I 2El 64( Z a4 - q,) z T . T*v 1yt
X i=1 1 i=1 1 M % )\CX,)«a)\b }\CX;)\axb
1 .
= + Disc T
9 13191, >
i M2 Aclakb H )\c}‘a}\b

where NX is the number of particles in the M2 state, A denotes the helicity
of the appropriate single particle state and x denotes the helicity of the

. 2
composite M~ state. Thus we have

AN A
Gabcl ).

(= Disc T
19131 13131,
Xa)‘b)‘c 21 M2 Aclalb’kclaxb

[ 1<conimlans|? = )
Ac >‘a b

> 1

We can obtain parity relations for this 3 + 3 amplitude by noting that for

the pseudo-two-body amplitude

T
“Amx3mA Ay (0xg)
NNy Sc+SX—Sa-Sb+(x-AC) - (Aa-xb) v
= (-1) Ty xsaa (X
'ﬂa“b . c 2 ab

where the x; are labels interna; to to the composite state which are flipped

- by the parity operation. However, once we form the required combinations and

integrate we find that

Disc

M b

TI!I.
2 Acxalb,kckax
=Y A1)+ (A -A')
- (_l)(la Aa) + (lb lb) (‘c c
: b

Disc Tt ytoat. 3 -3
- M2 Xc la lb, Xc la A

" This formula is used in calculating spin density matrices since in forming
bilinear combinations all the dependence of the M~ state must cancel out.
In calculating spin density matrix elements of the finally detected

particle we will wish to present the results in the Gottfried-Jackson frame
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for the observed final particle. This involves a rotation from the reference
frame depicted in fig.2l. For the rotation calculated in the program (see

Section 4) to be the correct one the "amplitudes" must be calculated according

to these kinematics.

3. EFFECTIVE TRAJECTORIES

. 2
In the regime,k s + ®, s/M" » ®, the triple-Regge ansatz for the cross

section (see fig.22) is given by [16]

d2 N lizati Ao ai(t)
S 0 _ JNormalization 13 s
T 2~ { Factors } . z z Bi (t) Ei(t) =5
dtdM s
13 MAykg M
b A A P a-(t)
c3opise (a3 (epet Yo (o & T
21 M2 A2 3 j 2

The behaviour of the normalization factor is typically 1/s.
To arrive at the effective trajectory we assume that essentially only
one Regge exchange is involved and the expression collapses to

2a(t)

s_
5 .-
M ,

2 . . ’
s d% _ Normallzatlon} ) G(t,MQ)

dth2 Factors

T

Our method for calculating the effective trajectory is to calculate differential

cross sections for the same values of the invariants t and M2‘ but different
values of s. Then

o dzc- ‘
[Normalization]{ig 2
Factor 2 T dth2
1n < 5 ¢
' e e s, do
[Normallzatlon 171
Factor 1 ™ 2

dtdM /
a(t) = - - .

s
21n {Eg}
_ 1
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Fig.2.1. Particles a and b centre-of-mass coordinate system
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Fig.2.2. The triple-Regge diagram for the process

l
T
Discpm2

a+.b$c+X
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This method has the advantage that it is possible to study the dependence

of the effective trajectory as 1 varies, it is valid in both the Normal
2 2 .

(s/M" > o, M fixed) and the triple-Regge (s/M2 +> o, M2 + o) 1imits. In

addition it assumes nothing about the functional form of G(t,MQ).

4. SPIN DENSITY MATRIX ELEMENTS

The spin density matrix elements of the observed final particle in the
reference frame of fig.2.1 are given by [11,14]
Alx|T|AAts<x x|T|A A >p%, . oD
c ab ‘c a b TA'A_TAMA ?
a'a bb

CM _
pl'l - 2 z'
b X

]
cc AaAa Ay
where pa and pb are the density matrices of the two initial state particles.
Normally these will be the unit matrices but provision is made in the program
to calculate spin density matrix elements with initial polarization. Returning
to the former case for clarity we have

CM z

- > ]
pA(,:)\c Disc 5 <Acxalb| [Aclalb>.

Aalb M

This matrix is then normalized by the condition that it has unit trace. . To
pass from the center-of-mass to the Gottfried-Jackson frame we must apply the

Wigner rotation through an angle ¢ which is given by

m ksing
c

ctan P = = T .
Eck81n9 ‘an

Thus, we have
"8

cJ ' c Sc. . cM
C - Cc C

m'A!
c

These matrices must be hermitian, i.e.
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&

P'm = Pom

If parity is conserved we have

(-l)m'_mp ' .

o
m'm -m',-m

These properties come from the way the matrix is constructed and the parity
relations of the "amplitudes" used to construct them and, of course, we have

them normalized to unit trace, i.e.

The program is dimensioned so that it is capable of calculating rotation
funections up to S, = 5/2.
A fairly detailed account of how pc-M is actually calculated in the

program will be given in Section 8.

5. TOTAL CROSS SECTIONS

The program performs the calculation

max . max
2
[ sz f dt <> d 02 s R
o dtdM
Mz t . (s,M7)
. min
min

, ' 2
by repeated Gauss—Legendre quatrature [52] where Mzmax? Mo, oand t
are set by‘the user and _tmin(s,Mz) is calculated in the program.

The program was tested for rounding errors in this aspect of its

~ calculation by evaluating

'mdmz [?

. at £(t,M0) = 13.3
0 - g(MZ)

where ,f(t,Mz) =1 and g(Mz) = M2/SO. The result was 13.333333333331. 54



6. MINIMIZATION

The program is written to allow it to be used in conjunction with the
minimization program MINUIT [50] . Since the data on polarizations and spin
density matrix elements is usually accompanied by large error bars, the
program in its present state confines itself to minimizing on the x2
generated by the data points for the differential cross sections. The variable
parameters are passed through between the minimization program and ONCPLT
using a user provided routine so that the only constraint on the type and

the number of parameters is that provided by MINUIT [50] . The x2 is

defined by
) 2
2 2
<n>-% d 62 - <> 54 02
2=y ) dtdM”  experiment " dtdM” theory |
All Data < d20
Points Standard Deviation of <> = 5
L dtdM” - experiment] |

For a single data point a x2 < 1 represents a theoretical value within the
statistical error. Overall normalization errors are not taken into account

in this formula.

A long write-up on MINUIT [50] should be consulted before minimization

is attempted.

7. PLOTTING THE RESULTS

While the‘program gives é'comprehensive output via.line printer it is'v
often useful to have a visual compariéon of the theory with expe?iment‘in v
the form of graphical output. |

The program contains a routine which interfaces with a plotting package
APLOT [49] and this routine plots the differential cross sections, the densify
matrices and the effective trajectories with the data points and their error -

bars if desired. We can have up to 20 plots in columns of four plots each on
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paper 21 inches wide. It is also possible to plot total cross sections but
in this mode only one plot is allowed. A multiplicative scaling of all plots

is allowed by changing one card of the program.

8. THE COMPUTER PROGRAM

a) Commentation
Each routine contains within itself sufficient comment cards to make
itself intelligibile. Further, in the routine FCN there is
i) a list and a description of all the COMMON variables
ii) a description of user provided routines

iii) a description of the data cards required.

b) List of subroutines

Fig.2.3 gives a list of all the subroutines of the program and also the'
calling sequence. The reason for inclusion of this figure is that it allows
the user to easily identify portions of the program to be deleted if a particular
‘function is not required, e.g. total cross sections. Thus, in this example,
TOTX, EMMAXX, QMULT2, FUP, FLO and FN may be deleted but BLOCK DATA must

femain if Gamma functions are to be calculated. .

c) Flow Chart of TCHISQ

- The Schematic Flow Chart, shown in fig.24, is included to give an easily
read account of all the oPtiéns open during a call to FCN (which will normally
call TCHISQ). Almost all the decisions are taken-according to the variables

MODE and IFLAG1 - 6 a full description-bf which is given in the comments‘in

subroutine DATIN.
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USER INTERNAL
LEVEL ROUTINES
FCN DATIN 'DATUP | EMMSQ
- DELMIN
SETUP  |PARAM* |
|PARAM |
uescc*
UBBNF *
DELMIN
EMMSQ

GAMMA | BRECK

DELTA |

» USER PROVIDED

T ° +« PLOTTING SYSTEM ROUTINE

- «» PLOTTING PACKAGE ROUTINE

TCHISG [GLQ2P8 |SIGTOT
TRACEU | TRACUI-5%
TRACEN | TRACN1-5%
AMPUP* | T
DM RM12 ROTANG
RM1 ROTANG
RM32 ROTANG
RM2 ROTANG
RM52 ROTANG
MPROD
EFFTRA ,
APLOT PLOT +
SYMBOL+
NUMBER+
LOGAX ++
LINAX
MCURVE
' ERRVw
TOTX EMMAXX | DELMIN
QMULT2 | DELMIN
; FUP
: FLO
? FN SIGTOT |
‘ TRACEU : TRACUI-5%
: TRACEN | TRACN1-5%
| BLOCK
| DATA i
RESOUT .

‘Fié.2.3. List of subroutines ihéorpo:ating calling sequences
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SUBROUTIBE TCHISG
———————{_START OF LOOF OVER PROCESSES )

_ﬁ——‘ START OF LOOP OVER ENEAGIES '

ONLY

CALCULATE TOTAL YES

CROSS SECTIONS
1

——(_START_OF LOOP OVER DaTA BINS )

[
r—@r OF LOOP OVER DATA POINTS)

INITIALIZE VARIABLES ACCORDING
YO FIXED 1 OR FIXED M? MODE

1S DATA POINT

RINEMATICALLY

VIABLE
Bl

SET RESULTS TO ZERO

CALCULATE DIFFERENTIAL

. ARE
DENSITY MATRICES
TO BE CALCULATED

GENERATE _AMPLITUDES

CALCULATE SPHM DENSITY MATRIX

i
s [caLcwaTE x7anD 400 0 TOTAL }——et—r]

ARE EFFECTVE CALCULATE EFFECTIVE
R friaronss
,

ARF.
DFFERENTIAL
CROSS SECTIONS TO
8E FLOTTED

2

PLOT DIFFERENTIAL
CROSS SECTIONS

PLOT DENSITY MATRIX
ELEMENTS

PLOT EFFECTIVE
TRAJECTORIES

flow—chart giving the structure of subrqﬁtine TCHIS?

Fig.2,4. Schematic



d) Description of the Output

Section 2 gave the kinematics in terms of the particle labels a,b and
¢ but throughout the program the particle labels 1, 2, 3 andAu are used.
To calculate certain kinematics particle 1 is taken as the beam particle and
particle 2 is the target particle. For IFLAG = O we make the associlation
a=1,b =2and ¢c = 3; for IFLAG = 1 we make the association a = 2,b =1
and ¢ = 4. Apart from this complication the output is written so as to be
self-explanatory. Any further explanation of the variables can be found

either in DATIN or in the common block commentation.

e) Caded Normalization
The differential cross section is calculated as
[ANORM(IP)/(suw2k2)1='= TRACEU (or TRACEN),
with ANORM(IP) = SPIN(IP)*(Normalization Factors), where SPIN(IP) = 1 for

particle a of spin O and SPIN(IP) = 1 for particle a of spin 3

=

or a photon. The normalization factors will be the highest common factor
of all the s-independent factors which need to be calculated for the various
parts of the matrix elements.  Individual differences from this value must

be accounted for in the subroutines TRACUl-5 and TRACN1-5.

f)  Numbers of Processes

Each call to FCN can deal with up to five processes with the type of
process’deterﬁining Which TRACU1-5, TRACN1-5 subroutine is called and all these
brocesses can be of differing.or of the same type. Each process can havg up
to 5 different énergies and each energy can have up to 20 different t or M
bins. The total'limitation on the number of daté points is 500 (or 100 if
dengity matrix or effective trajectory.data is reéd in) but this requipement could
be relaged simply by redimensioning certain arrays and‘changing the error
Statements in subroutine DATIN. Thisallows the parameters of a'model to be
determined from experimental data quering a wide raﬁge of processes and

is taken cumulatively over energies and
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g) Note on AMPUP and DM

s CH .
The quantity Pyr;  1s proportional to
cc

Disc <A!
and it is quite feasible to perform the rotations to the Gottfried-Jackson
frame using this formulation of the bilinear form. However, the program uses
a factorizing technique, explained in the comment in the listing, which
effectively treats
Disc , <A' A_ A _|T] A A A
c a b c.'a

M2 b

= 5 at ] aga

. > <h, 0[TY| A, N> o,

b b

where the sum over Y allows the effects of non-interfering exchanges to be
fully taken into account. The dimensioning at present is for Y =1 to 3. -
and by extending this number in DM and AMPUP it would be possible to
account for either more exchanges in a Regge pole framework or a regime where

~ less factorization is possible.

h) Note on Interference Terms |

In the Test Run of the program_(sée note (i)) we considered processesA
where the ailowed Régge éxchangesrare the w, the p and A, for K +p > AtF 4 x
for K + P> K° + X, with absorption in the iatter

and the p and the A2

case. Since we have taken the p and the A2 trajectopies to be‘strongly.
exchange degenerate throughout there will be no interference bgtween these two
exchanges for either pure Regge poles, or, in the particular model used for

.the test run, absorbed Regge poles.
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We also know [16] that in the regime of factorizable Regge poles, the

exchange of poles yith different naturality will lead to no interference,

for the unpolarized cross section in the normal Regge limits (S/M2 + o, 2

fixed). This property basically derives from the fact that a parity
AL ‘

transformation on B must take into account, for the phase factor, not
only the helicities and the intrinsic parities of the external particles, but
also the naturality.of the exchanged Reggeon 1i. Thus, when the sums over all
external spins are performed the interferences between such exchanges cancel
out. These two properties mean that in our Test Run it was not necessary to
take into account any interference terms.

If, however, the condition of exchange degeneracy between the p and

the A2 trajectories, was removed, then all four of the diagrams of fig.25

%

would have to be considered and not just the first two, i.e., the p - p

b3

and the A2 - A2 diagrams. This would be perfectly possible within the

TRACEU, TRACEN framework of the program, where the appropriate TRACUL-5

function subroutines would have to be modified suitably to take these interference

terms into account.

Of course, when absorption corrections take place, the absorbed exchanges

can be of mixed naturality and the TRACEU and TRACEN function subroutines are

merely used to hand back the necessary variables.

=

i) The Test Run

As a Test Run the program has been set up to calculate the two processes
K™+ P~ K° + X and K +p = AYT 4+ X. The results of the Calcomp output are

shown in fig.26. In fig.26 we see the invariant inelastic cross section plotted

: . 2 .
against M2/s for fixed t and against t for fixed M /s for the reaction
K +p + K% + X. 1In addition the effective Regge trajectory aeff(t) is

. - ++
Plotted for K° production. For the reaction K +.p > A + X we haye

‘ . ++ .
included a plot of the decay density matrices of the A" . Details of the
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derivation of the amplitudes may be found in Moriarty and Tabor [51] and
Choudhury et al.[53] for K° and a*t single-particle-inclusive production,
respectively.

Various other calculations of a variety of single-particle-inclusive
reactions using a number of different models [ 35] have now been carried out
using ONCPLT. 1In addition, the calculations of the DESY groupld233,36l, of
Pumplin [40] and of Paige and Sidhu [39] are easily verified. The user

is free to write his own TRACUl-5 and TRACN1-5 using whatever model he wishes.
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Fig.2.6. CALCOMP plotter output of the test run for the reaction K~ + p »-K°+ X
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CHAPTER III

Corrections to A Mueller-Regge Model
Of The Reactions O_%++O-X Proceeding

Via Charge Exchange
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INTRODUCTION

In this chapter we introduce a fairly simple Regge-pole model in the
"S/M2 large" region of single particle inclusive reactions which obviates
the need to introduce free parameters of any form. We then make some rather
stringent assumptions which allow us to caleulate, in an extremely simple
manner, certain absorption type corrections to our original pole-only
distribution.

To illustrate our calculations we choose certain of the reactions
o %+ -0 X proceeding via charge exchange, namely ﬂ—p - no X, ﬂ—p - nX,

K+p - Kox and K-p - E?X.

We choose these reactions in particular because in the case of exclusive
reactions it is reasonably clear that while the Regge-pole picture provides
an almost surprisingly good explanation of high energy scattering data, there
are definite reasons, both theoretical and experimental (in terms of
polarizations etc.) why some kind of cut correction must be included.
Investigations of the precise form of correction required are best done in
the simplest possiﬁle regime, and with as few free parameters as are absolutely
necessary. The exclusive reactions n—p + 7°n and ﬂ_p - nn have been much
used in determining both the parameters for the _p/A2 pole and also the sort
of absorption correétioﬁs that are necessary, as well as the reactions [54]
Kb - Eon and K+n - K?p which are, of course,i“line reversed". . These
reactions have been and will continue to be so useful precisely because they
are so simple in the Regge-pole picture so that any humps g?d dips that one
pole generates cannot'be masked by the.contributions of others.

The reaction nfp - won is, however, limited in its usefulne;s as far as
Reége—cut or Absorption models are conéérnéd, since at small momeﬁtum t;ansfers
it is dominated by a helicity flip amplitude whic£ does not seem to ;equire
significant alteration from the.simple Regge;pole wifh Wrong Signatdgé
Nonsensé Zeroé [55]). The inclusi;é reaction ﬂ_é - 10X 'is not expected to be

dominated by flip amplitudes; we assume dominance by the helicity non flip
. -~ .

amplitude for the main body of the calculation. Barnes et al. [56] are
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carrying out the inclusive experiment 1 p ~ n°(n)X by detection of two
photons, so there will be high energy data a&ailable for two of the four
reactions in the near future.

We calculate the four reactions using strong exchange dege neracy for
the p and A2 Regge trajectories, and use 56(3) symmetry to relate the
different particle couplings, since we feel that the introduction of any free
parameters will obscure the form of the correction required, and in any case
it can be argued that the measured deviations from exchange degeneracy
should be precisely due to the cut correction required. We calculate all
four inclusive reactions for completeness since the shape of the final
absorbed curves depends not just on the size and rate of fall off of the
cut corrections, of which we know a certain amount in advance, but very
strongly on the relative phases of pole and cut, so that while the same poles
contribute in a given reaction the final absorbed curves can look completely

different.

Y

P : =<1,2ITI3 X >

2 > vggT\JE:::;é:::%}M:
X

- Figure 3.1a). A Regge-pole diagram (s/M? large) representing one component

_of a single particte inclusive distribution,with X embodying all discrete and .

continuous observables contained in the missing mass state.

) 3 2 3—< 3
‘ # - g =l,Disc 1 1
. . }Mz 2i
X2 Y ——"——— R 2 2)
Figure 3-1b). A schematic representation of j:he'generulised optical theorem.

".
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FORMALISM

Our task in this section is first to produce a Regge-pole type expression
for the process represented diagrammatically in Figs. 3.1(a) and (b) and then
derive a prescription for performing absorptive type corrections to it.

Before we begin this it is reasonable gere to exhibit the normalisation
appropriate to single particle inclusive distributions.

We have, formally, for the quasi-total cross sections (we can only take
events in which at least one particle of the type we desire is produced)

that

<n>0 =pedan I T {%|<1 2|T|3,x>|2} 1 3.1
4 f £ f.s i.s ¢ ’ ' F

Where pfdﬂf represents the final phase space, I in the sum over final spin,

f.s

z is the average over the initial spins, F is an initial state flux factor
i.s.

and the symbol i represents all the integrations over the final phase space
not accounted for in pidﬂi.

We can here make the usual definition of the appropriate relativistic

invariants
2 2 2 2

s=(p) +P) st =(p ~ay) M = (p, +pP, " q,) 3.2

and in a less formal manner we have
3 3
d°q, d g 2
- 37 Mxgdio 4 - p. - z Flul”. L 3.3
TR % x| 28 _ 2EM5(q3 au =By - e T Eul g ‘

X

This form can be converted to the differential form by inserting the appropriate

§~functions i.e.
3
3% 2 ‘3‘13‘qu 4
<R 2T M) TE 2Ry, S
BtBMx C .Mx

(q3 + qu- Py~ pz)'

2 2 2
§ (t=(p; = ag) )8 M ~(p, +p, - q3)")

r T|ul2 %— . 3.4

These integrations can be trivially performed to yield
320 1
2
ataMx 64Tsp

<> , I T|n|?

where p in the modulus of the initial 3-momentum in the Centre of Mass Frame

of particles 1 and 2. 4 ‘ ; 71



It is conventional to include the term < n > with the o0 since the
product is the quality measured experimentally, and a more usual form would
then be

2 2 =112
do,(s, t, M) _ 1 1 I|mM". 3.5

dtam
X 64n2p2

s
T
This calculation can be found in greater detail in Appendix‘3A.
We now return to the expression of Fig.3.la), which can be written
formally as <l,2|T]3,X>. From now on in the derivation we will specialise
to the case where particle 1 is a w , particle 2 a proton and particle 3
a ﬂo. When the final expression is obtained the changes necessary to
accommodate the other three reactions we will deal with will be fully outlined.

For the =T particle dissociating into a ﬂo and an (off shell)

elementary p particle we could envisage a matrix element of the form
n v
J°G, T
UV x

where, if we define

I}

u H
P (pl + q3)
Uy - U
Q"+ (py — q3)

we will have

Q'Q

v .
L
Wy Q% - mf)

with P: restricted to be a four Vector only.

A suitable current for the top vertex would then be

. | .
= ZPTTE ¥
JH = S ( (@)g (95), ) PH - 3.6

which, since
2 2
-0 =m0

maintains the required gauge invariance.
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gpnn would be given by the physical coupling constant defined by [57]

2

g
pmm _
—— = 2.09 ,

). ). represents an SU(3) coefficient

and the expression ( (33'5)2 (¢5 1 F

which will assist in making the switch between reaction later on. The
coefficients required for all four reactions are given in Table 3.1.

We can now expand the quantity £ |< 1,2 lTI 3,x > 2
J
X

v! '
Ty ¢ Nia 3.7 .

- LM v
=J Gy { f r. T, N

X

The most general symmetric second order tensor capable of being

constructed from the vectors available (i.e. (p M and Qu) is

2
g™ e k) ()Y
18 2'Pp7 Pyl ¥
v ! v v! v V!
Ay Q0+ Ay ((pz) Q' +Q(p)" ) | 3.8
T
and this must be precisely the form of the quantity { % P: r: T},

: X
here the As can at most be functions of t and Mi .

When we consider the form of the currents J and propagators G

we arrive at the expression

g 2
2o Gy () ) —e— .
ol (¢5)3 b)) P (t - n2)2
pA
. 2 2 2 g
P A M)+ (P.p) A (t,M )} - 3.9

and since P2 in 0(1) and P.p, in 0(s) then in the limit we will

‘ 2
wish to take, that is, t small and fixed, s » =, s/M >, the
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. . 2 2 . .
contribution from P Al(t, Mx) is dominated by (P.p2)2 A2(t,M§) and

consequently we will neglect the contribution from Al

to the cross-section. See Appendix 3.B for the precise reasoning for this.
We can gain an insight into the normalisation and functional

dependenciles of 12(t, Mi) by considering the standard optical theorem

for pp elastic scattering (for an off-shell p). The form we will

finally adopt is
an’ o®P  (t, M)
2, _ p Tot p4
Az(t’ Mx) - 2 2 2
AM , m, m )

X p p

3.10

where A has the standard form A(x,y,z) = [x2 + y2 + z2 - 2xy - 2X2 —V2yz]% .
This form is not an exact equality. Various approximations have been
made to acquire a form which can be utilised in a practical calculation.
Appendix 3.B contains the full motivation for this choice.

To make contact with a process for which there is an experimentally
measured total cross-section we consider the Vector Meson Dominance model [58]
(See fig. 3.2) and picking out the p term from the sum over the

available vector mesons we can say

PP - .65
Gl 5 o= 1986 + =] . (0.27) . = :
(t - m7) (M)* (1 - "/.2)
p % m

p

This has given us a non-Reggeized form of the matrix element we require. -

) . 2
In the kinematic limit stated before i.e. t small, s + o, s/Mx > oo

".we can perform the requiréd Reggeization‘via the replacement [57]
o1+ 1 e i, E

+ (1 - o (). a' £ S,y (e (t) - 1) 3.11
. P o 2 (42) e

t - mp %

14



where ap(t) = 0.47 + 0.905t. Combination of all the exhibited formulae

yields for the reaction = p — X

2
2 g mm 2 2
s do 1 { P
= = ((62) (4.0 (P.p,) .
™ graM®  eunps L M 3 5 2
X F
8m2 ;gt : ) ] 2ap(t)—2 (1 + 1 e-lnap(t) )
- (P - () ah)® (=) E— :
AM™, m"y m7) P My
X p p
. t &
1+ T e l"ap( ))
2 } 3.12

On closer examination this form, is the limit we have described,

corresponds precisely to the accepted inclusive Regge formula [16] illustrated

in Fig. 3.3a i.e.
dzc

_ 9 = B.(t) g.(t) B.(t) g.(t) .
dtd (M, 2/s) . R ]

a () + aj(t) ) ,
(22) DlscMi ’Ai2+j2 (Mx’ t) 3.13

M
b4

In fact the form we have produced and will use henceforth is
equivalent to the Triple Regge formula illustrated in Fig. 3.3b) because
we have introduced a "high energy" (high Mi) form for the cross-section

PP

bcTot’ and thus the true kinematic limit we are using is

s/Mi - 5, Mi N w, t fixed. It would be possible, though,>by~using

. 2
a lower energy form for oggt to 1ift the condition of large MX .

This has been done by another author for a different reaction with some

i

success [59] .
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Figure 3.2.A diagram for the VMD model where the &-p total cross-section

is made up of a sum of terms such as the above where M stands for one
of the 17 mesons which can couple directly to the photon.

2 2

Figure3.3a).A Regge diagram correspondlng to the limit t small, s/M large,

for the exchange of Reggeons i and j.

- X . .
Figure 3.3b).The two triple-Reggeon discontinuities which contribute to the
form of equation 3.13.

Figure 3.4 .A Reggelzed 3-particle dlscontmmty showing additional elastic
scattering in the 1-2 channels.\
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Since we wish to incorporate the concept of strong exchange degeneracy
and S U (3) symmetry in order to avoid introducing any free parameters, having
gained the expression for the reaction = p+ 7° X we can make the transition

to ﬂ_p + nX by changing the signature of the pole from Tpto T , and

Ag
alter only the Clebsch Gordan coefficient ((¢_) (4_).) to (($_.) (¢_) ).
5 571 5 5 :
3 3 1D
while leaving the coupling constant alone. Similarly when going to

- = + ,
Kp~> K°X and K p > K°% we can simply add both the p and A2

contributions with their appropriate signature factors and SU(3) factors.
The set of SU(3) coeficients is presented in table 3.1.

We are now at the stage where we have a relatively conventional formula
for the single particle inclusive matrix element which involves no free
parameters.

The next stage is the implement a rather simplistic scheme of absorption
type corrections. To do this we consider the full expressionbassociated

with the diagrammatic representation of fig 3.1b), namely [36]

Mz 2
Hy” o a. (PT P3Py 3 Py P, P3)
122 %3
n 3 n
: % b
= 1 - - .
z J i1 § (X ¥k + P3Py "Py)
x ,£) 2Ei i=1

< p§ Aé, kl - kan|Pl.Al p2 AQ >

< Pg Ago Ky =++ k [T|p7 A7 p5 A5 > 3.14

N\

17

L V4



Our main interestlies in the helicity behaviour of the intermediate

missing mass state and to exhibit this more clearly we write

n dgk. n
z [ —= & (1 x, + P - Py — P,)
x(n,&) i1 284 o1 4 3 1 2
. ]psks;kl...kn><p3A3;kl...knl
- z IPSAS;pxsx)‘xnx><P§>‘§;PxSx>‘xnxl 3.15
S xMx

where Sy and AX represent the spin and helicity of the intermediate
state and n, represents all degeneracy labels not otherwise covered. This
allows us to write

likéls

H ~ (psp5p,3PP,P3)
A AAg 1P2P33P1PoP3

= i <PiAiP§ )\5 ] T ] Pa)\ 3 ,pXSXXXnX>

P3N 3P, 8, A N, | T Py A P2 > . 3.16

To perform a partial wave analysis on these amplitudes we choose the frame
of reference where the intermediate state travels along the positive

z-axis and to acquire independent expansions we only enforce

Py +P, " P3 = P] tP; Py _ : : B
and not
pl = Pi’ P2 = Pé': P§ '=._ P2'

The mechanics of this analysis can be seen in Appendix'B.C and we give

the result after transition to an impact parameter formulation as

~

1.
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A1A32,

H ~ (p3P5P,3P;P,Pz)
A ANy T1P2P3P1RaPE
—i16(y —u ! -
. 16Cuy=uy)  -i¢"(uy-uy) 1

2
L

X
fm bdb J- - (bt) Jm b'db'g. _ (b't')
b, ¥ b} M7

|
> ™

2
hA (b,b', s, MX) 3.17
X
where

ul = Ax - AS ul = Ax - 23

My T AN My T A3 0 Mg

kb, = max {Iﬁl|,|u2l}

kb(') = max {lull’lu2|}

where k 1is the three momentum of a particle in the initial C M state.
For high energies and small helicity flips we can be confident
in setting bo’ bé = 0. Otherwise account must be taken more fully of
the lower limit to the b-space integration.
We must now consider fhe use to which equation 3.17 is to be put.
Appendix 3C makes it clear that the appro#imate form of 3.17 can only
hold for small Ax and the further approximations that bo and 'bé = 6,
which make the manipulation of 3.17 relatively simple, are also‘only ;
viable in a similar fegion. 'Since the formula is to be used for the

reactions O-%t+O—X, Ai,l sAzsA, = 0. The small angle behaviour of 3.17 can

1°72°"3

be seen to be I_ _ | , | ]
A Uwgw ) ey, )
H 2, 5t 12 o 17207 4
A A
B 2 Ax X L

So for the case when T = 1' = 0 the sum in Xx collapses down to one

term, namely that for which\ k2 = Ax = A§ when ﬁl L 0= By T Uy

-

since no compensatory flip can come from the 1-3 particle vertex.
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A=

A

equation 3.12) at least for small Mi/s. This indicates that for the

The form we will use for H posses a strong forward peak (see

forward reaction (1t = 1') we do not expect helicity'flip into the missing

mass state to dominate since if this were so, a forward turnover would be
The lack of any sign of such a turnover apd the small angle
character of all approximations to this point lead us to make the
supposition that helicity flip into the missing mass state is negligable.
In thié case equation 3.17 simplifies to

H. (t,1',s,M°) = bdb J (bt) b'db' J (b't')
AQ p 4 0 o 0 o |

h(b, b', s, Mi) 3.18

where we have performed an integration over ¢ and ¢' which removes

their dependence from the L.H.S. and the factor of —25- on the
L
R.H.S. Equation 3.18 is the basis of the numerical calculations we will

make.

Inverting this equation we find

2
h(b,b',S,Mx) = r
. | o

drt Jo(br) IZ dt't! Jo (b't")

H (1,1, s, Mg) ' | 3.19
2

We ihtroduce absorption type corrections by taking some account
of elastic scattering in the 1-2 and I-2 channels as illustrated in Fig. 3.4.

In this scheme h(b, b', s, Mi) is modified to. the form

‘

‘!

. [

2 % |

- S(b)h(b,b',s,M) S (b') 3.20
. ' ;
{

I

which is supposed to be the b-space decomposition of the absorbed discontinuityj

[ 94
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ab
HX s (t, t', s, M2) = fm db b J_ (br) Iw db'p' g (b't')
2 X 0 © 0 °©

S(b)sS(b") J” droto Jo (bro) J” d TéTé J0 (b'ré)
0 0

. 2
H)\2 (To,Té, s, Mx)’ 3.21
which gives the absorbed discontinuity in terms of the pure Regge
discontinuity. The parametrization used for the elastic scattering
matrices will be Gaussian i.e. [60]

2
S(b) =1 - ce AP 3.22

where X = l/R2 with R the radius of the interaction and C 1is the opacity.
Both these quantities can be calculated from experimental elastic scattering
data, and the values used are given in table 3.2.

It is worth noting here that we use the full value of C calculated
from the total cross section. Unitarity dictates that this value be less
than, or equal to one, since a value largef than this would mean that
the S-wave scattering would account for a negativé particle flux. In
a conventional two body inelastic absorption calculation illustrated

by Fig. 3.5 the analogue of 3.20 would be

s2(b)n(b,S) S3(b).

which would then norm;lly be approximated to
1 - (EE;;;E£)~e-lb2)h(b,S). -

using the power series exﬁénsion7f6r>the square-root and neglecfing higher

order terms. Since C;, C5 <1 this form does not violate unifarity

In our case, however, we have two séparate partial wave expansibns with-

indepéndént,impact parameters, and so we can use the full value of C .

without‘overabsorb{ng the S-wave.
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Returning now to equation 3.21 and incorparating the form for the S
matrices 3.22, we can perform immediately the two b-space integrals
using the formula [61)

~Ab2
J” dtb J (bt) J (b1 ) e
o n n o

(P et
L W TRt T 3.23
2\ N2\ ' :
and equation 3.21 becomes
Habs (t,t', s, M2) = dt T dt 't ' H(tr ', s, M2)
KQ X 0 o0 o o o© oo X
(T2+T 2)
- T
1 C [THN o
{TO Slrrg) — 23 e L (T)}
(T'2+T'2)
- _° o
1 1.1y - C 42 _°
{ T 8(t T, ) o © Io (2A )} 3.24

In order to evaluate the expression in equation 3.24 we must insert
the form of equation 3.12 for H(Tdﬂo', s, Mi). Before we can do this
there are slight problems. 3.12 includes a factor F(l—aP(t)) which
will prevent the integral from converging. This factor arises from the
ghost eliminating mechanism in the Reggeizing process and is therefore

valid only at small t. We make the approximation
. At

‘ 2
(1 - ap(t)) v A e .
with - ‘
A =.0-874886
A, =_05j1824

where Al~ and A2 are found using a least squares technique over the

“range 0 < |t]| <1 (Gev/e)2.

We ﬁust'also extend the form of 3.12 from the forward direction.
" This is easy for the T and To' dependence of the Regge legs (see
Fig. 3.4), but for To.k To', to will be non—zéré and we will expect
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that some dependence upon‘to should manifest itself. The form of this
dependence is not clear and the elastic scattering effects we have
introduced will be peaked about the value T, T, Té = r'. The assumption
was made therefore to disregard any t, dependence. This assumption

is the most drastic, andAleast easy to justify of those made to this

point, since if is only fully realised if the Reggeon-particle discontinuity
is isotropic. We shall see later that we must pay a certain price for
accepting thi; simplification.

With these approximation used and with the integral {61]

—ax? Mn(ly + 1g 4 1
fZJ(Xn e 1 (kx) = ku:izg(+;§2l; 2)
0 H yialiartals T(u+1)

2
1F (Z(p4n+l) ,u + 13 k" /4a)

and taking account of the special cases

2 2
Lk k* /4a
1F1ds 15332 e
2 2 2
Lk S k™ /ha
lFl(2, 1; 4a) = (EE +1) e

where lFl’ is a degenerate hypergeometric function, we can perform all

the integrals necessary in 3.24 analytically.

=X
¢
"

b > > > > d :
Figure 3.5.A Reggeized 2-particle amplitude showing additional elastic
scattering in the initial and final channels. )

i
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RESULTS

In figures 3.7 to 3.8 we present the results of applying the preceding

scheme for absorption corrections to the four reactions

T + p > w + x°

T + p > n + x°
kf '+ p > k04 x't
.K- + p = K°+ x°

at s = 100 GeV/c2 for both t and Mi/s distributionsas given on the figures.
In all cases we have made allowances for the edge of phase space which—is given
for the different mass configurationsin figure 3.6. In the case of the 71 we
have made no allowance for the branching ratio into yy which would possibly
be the experimental method for detecting inclusive ns since this i& also
the mode for #° detection as 1f§ decay almost completely in two photons.

Figures 3.9 to 3.11 give results for the reaction K + pP K-or; x°
at an energy of Plap ° 14.3 GeV/c for which experimental data exists 162] .

- Turning to a detailed consideration of the figures; 3.6 shows that the

[tminl effect leading té spurious forward turnovers should be negligible over
the whole region of interest.for the w - 7° reactibn, wﬁile it should lead»
to very noticeable effects for w-.+‘ﬁ, k" > x° and K +x° present
middle cases where the effect becomes noticeable only after about 'Mi/s = 0.2,
~as seen in figure 3.7b where the Mi/s_ fixed plot starts at Lt|=|tmin[.
These inclusive phase space bounaaries_aré not strictly simply a function of -
Mi/s,, and tnﬁﬁ + 0 as s =+ « for all values of ‘Mi/s, however the approach
td the limit is exceedihgly slow [63] and the presented figure, though valid
at s = 100 GeV/c should be fairly adcura%e at attainable energies abové this,
though modification would occur at energies substantiaily lowgr;' -

Figuré 3.?a) shows the fixe& Mi/é plots for w D> ° X and w P> n.X

in which the allowed Regge exchanges are p and A2 respectively. TFor the
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n° plots the naturality dip which occurs for the pole only graph (represented
by long dashes) at |[t| = 0.51 GeV/c2 iSJﬁ;;éa in to about [t| = 0.4 although
this varies slightly with Mi/s. It is substantially filled in, but by no
means obliterated in disagreement with the calculation of Pumplin [40] who
does not introduce a naturality dip in his pole only term andacquired no dips
via absorption. An experi ment by Burleson et al. [64] at the energy of
Piap 5 GeV/c present plots for fixed Mi . This energy is much too low for
our triple-Regge type input model but some points of mote are that a
pronounced dip at t = 0.5 GeV/c occurs for Mi < 2 GeV/c2. This bin is.
presumably dominated by the reactions n-p >n°n and P~ > a°. For

the 2 < Mi < 4 bin the dip is still noticeable, but considerably reduced.

For the final bin, U4 < Mi < 6, any dip structure, if present, is obscured

by the |t min| effect. The indication for larger 'Mi that can be deduced

from this experiment are that the dip at t = -0.5 GeV/c2 probably does notv
persist.

The n plots show no great difference between pole only, and aBsorbed
curves except for a reduction in normalization and the introduction of some
very gentle dips for low Mi/s. A

Figure 3.7b shows the fixed Mi/s plots forAfhe reactions ‘K+ P >x° x'F
and X p > K° x°. The K° reaction also has the absorbed curves not
greatly different from the pole only curves with slight dips, as changes of
slobe fof low Mi/é. ‘The change in ndrmalization;ggain occurs. Thé'Kbreaction{
while béhaving similarly for ;gpger Mi/s, ekhibits'stroﬁg dips for low Mi/s.
These dips arise due to a combination of ignoring the dependance for'nén forward
diagrams and the method of tréating' p—A2 interference terms used - i.e;'they
are treated aé a p-p tefm with differing signature factbrs. We believe

these zeros are spurious, introduced by defects in the model. Of the two
mechanisms contributing; we believe the negligence of t, dependence to be
the more serious.

Considering now figure 3.8a, this shows the Mi/sidependance for fixed t
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of the n and 7° reactions. The tail-offs for large Mi/s are due to the
tmin effect over the t-bins which are 0.2 GeV/c2 wide. Any seeming
discrepancy over normalization between the plots of 3.7a and 3.8a is accounted
for by the fact that the differential cross-section point obtained for the
centre of a fixed - t bin is found using 8-point Gaussian quadrature across
the t-bin.

The n plots.show very little difference between the pole only curve
and the absorbed curve except the change in normalization. The strange structure
of the 1° plots is attributable to the dip structure of pole only, and
absorbed curves, although for small |t| the pole and absorbed curves are
similar except for normalization changes.

Figure 3.8b gives the corresponding plots for the kK° and K° reactionms.
Apart from the re-manifestation of the zero in the absorbed amplitude for
t = - 0.7 in the K° reaction we again see little other than the now familiar
normalization change. The slopes of pole only and absorbed curves for the
K° at t=- 0.70 o differ slightly however.

In figure 3.9 we consider the reaction K p-~ K° x° at the muéh lower
energy of Piap - 14.3~GeV/c or s=28 GeV/c2. We emphasise that no fitting
has been performed on the ;alculated curves —‘they'are complete predictions.

As can be seen the average overall normalization of the curves is nof ridiculous
which at least partly justifies our assumptions concerning this part of the
modél. Also the t-dependance of the data is fairly well accountéd‘for, at least
as well by therabsorbed curve as by the pole onlyfcurve. The Mi/s dependance
is, however, not well accounted for by either the pole only or the absorbed
curve. - |

Since our input pole model is essentially triple-Regge in fofm we would
expect this at least to reflect the gréss .Mi/si‘behaviour, and unless the
differences4existing in our moael can account for the gross change of slope,
we would be forced to consider changing Regge parameters to bring closef

agreement. : v : . .
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The two features of our model that could have some bearing on the overall

2, m2 m2) which is a
PP

Mi/s shape are the inclusion of the factors A(M
threshold effect, and causes the increase of all the curves for low Mi/s.
An optimist would see justificatian for this in the lowest points for t = -0.50
and -0.70 GeV/c2. . As Mi increases this factor approaches Mi and so
should not affect the larger Mi behaviour. The other feature is the
inclusion of a term proportional to 1/(M§)% in the U;gT term. This term
is indicated by the V.M.D. fit and also there is no reason to exclude it upon
duality grounds since the pp channel would not be considered exotic. If
this term were removed, all curves would rise more swiftly than at present;
we cannot just take it out because we would like the look of the curves more
without it. Being dissatisfied with the fit of our curves to the data with
the predicted values to all parameters, we can change some of these parameters
in order to obtain a better fit. The parameters we will free will be the
overall normalization, the true Regge parameters f r the p-pole, and for the
absorbed curve we will also free the opacity C, of the initial elastic
scattering.

The motivation for thisexercise is not just to see how good a fit we
can obtain to the data, but also how far the parameters of the best fit are
away from the predicted values, and indeed partly to make a thorough test of
the minimisation facility of the program used for all the calculations, which
is presented in Chapter II ,and which appears as ref.65.

The results of this mlnlmlsatlon are given 1e-Table 3.3 and flgures 3.10
and 3.11.

The minimisation was carfied out on the 28 data points which 1lie in ther
region 0.2 < [t]| < 1.0 GéV/c’2 and O.i5 < Mi/s < 0.5. We do not include
the first t-bin (0.0 < |t| < 0.2) because this bin is affected by the |t min]

cut off which would be'2xtremely (computer) time-consuming to allow for in a

2 . .
meaningful manner. We do not include lower values of Mx/s since this
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involves low values of Mi/s which our model can account for at best in an
average sense. It could be argued that we should make our top Mi/s cut-off
much lower to ensure that the top legs of the diagram (fig. 3.3 or 3.4) ar
properly Reggeizing. However the data seems well behaved up to the value
we use, and a substantially lower value would not yield sufficient points to
make a fit meaningful.

Model A, whose plots are presented in figure 3.10a consists of a pole
only model (C = O) with the other parameters allowed to move essentially

freely (note that for the minimisation we have removed the threshold effect

2
p

was performed on the fixed -t plots since integration occurs over the bin

of A(Mi, m_, mg) since it represents no physical threshold). The fitting
which better reflects the way in which the data point was obtained. Because
of the scatter of dat points, which is probably statistical rather than .
dynamical in nature, no fit could be expected to have a really low x2.
The fact that model A does have a x2/(d,p) of less than 1 might be regérded
as encouraging, but the parameter values are not. The worst parameter
value found in that of o which has a value of around 0.1. The trajectory
used in Model A seems to have little to do with the p particle. For Model B
we constrain o ~to be greater than, or equal to 0.3. This value is still
fairly well away from thatiexpected fora p - trajectory,Abut at any rate
slightly more reasonable. The xz/(d.p.) for Model B is however much
higher. |

In Model C we allow the opacity, C,'to be non-zero. The fit is almost
as good as that for Model A, but C 1is reduced almost by half its prediéted
value, and tﬁe Regge parameters:assigned unfamiliar values, though nof
immediately ridiculous. VA point of noéeAis that if the data admits a slight
‘ cupvatgre in the fixed Mi/s Pl?ts,-this is better accounted for by Model C
than by Model A.

. The normalization changes in all three models are not excessive.

Figure 3.11 gives the effective trajectories for all three models. 83



A in short dashes, B in longer dashes and C solid. The A and B
trajectories are just the input straight lines, but the trajectory for Model C
is modified from that input. Its form is not too far removed from a straight
line, and for a largepart of the range it lies close to that of Model A.

It is interesting to note that L.H.0'Neill et al. [66] have reported
measurements for the reaction T p -+ 7° X at 14 GeV/c and extract a fitted
p trajectory from a triple Regge fit to their data. They have only three

points and the error bars are large but the fitted trajectory is

ap (t) = 0.44 + 2.77t.

We cannot use this trajectory to make any excuses for the departure of
our Regge parameters from those predicted, since our stance is that our
absorption model will account for the difference between the effective
trajectory and that predicted.

It does however show that the problem is not confined to one set of dafa,
and that triple-Regge alone would not seem to account for the data without
recourse to extreme Regge parameter values.

We note here also that their data does not extend to large enough values
of |t| to resolve any questions abot dip structures.

All of the calculations for this chaéter were performed by ONCPLT [65]

and originally plotted by computer using the plotting package APLOT [48L
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CONCLUSIONS

We wish here to qguickly draw together the implications of our model
and the available data. It seems that the effective trajectory of the
two sets of data we use do not correspond to the p trajectory found via
two-body data, with exchange degeneracy, and some means must be found to
account for this departure. The model we have put forward in the previous
sections seems to go a short way towards doing this, phenomeno logically,
but by no means far enough.

That is, if we take the effective trajectory of the K° data to be
that of Model A, Model C modifies its own trajectory towards that of Model A,
but only from a halfway value to the true p trajectory.

In addition our modelhas various heuristic defects which are commented
upon previously. These lead, among other things, to the spurious zeros in
the X° plots, and also to setting all target asymmetries to zero, since we
ignore sin 8., dependancies to obtain our initial formula. The target
asymmetry of course has a factor of sin 6., incorporated.

Some of these defects could be corrected within‘the basic framework
of the model, however this framework is itself so much open to question that
the effort does not seem justified; We therefore conclude that the model

as presented is not.sufficiently realistic, and that a less restrictive model

must be developed.
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TABLE 3.1

Reaction Exchange D-type Coupling F-type Coupling
ﬂ_p+ﬂox p 2
T p*nX A, 2/V3
K_p+ROX p -2
2, V2
K pk°x o V2
A, V2

SU(3) coefficients for the reactions 0‘%++O_X proceeding via charge

exchange.
TABLE 3.2
) 2 -2

Reaction Energy (GeV/c) c A(GeV/c 7)
T prOX 100 .663 : .0676
T4p>nX 100 - .663 .0676
Kpk®x - 100 .536 .0729 -
Kp+K°x 100 _.553 .0676
Kp+K°x 28 .608 .0676

Absorption Coefficients ‘
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TABLE 3.3

Parameter Model A Model B Model C
Symbol |Predicted Value | Limits Value | Limits Value | Limits
Value ‘ Enforced Enforced Enforced

C 0.608 0.0 fixed 0.0 fixed 0.362

N 1.0 3.644 0.0 2.113 0.0 2.080 0.0
6.0 6.0 6.0

ao 0.470 .099 |-0.5 0.3 . 0.313 |.0.3
l'o . l.o

o' 0.905 .935 0.0 .931 0.0 1.494 0.0
2.0 2.0 2.0

x2/data point 0.855 2.186 1.171

Minimisation parameter values with imposed limits and a X2Aﬂata point)

for each of the three models.

N
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APPENDIX 3A
We have the expression for the quasi-total cross-section o
3 3
2 dqq dgq 4
<n> g = |[dM 3 M - -
q J x J —=x Slayt W TP Py)

2E3 QEM
x

£ T|u|? %. 3A.1

The L.H.S. can be converted into a differential cross-section in t and
2 . . . . .
Mx by inserting their appropriate &-function on the R.H.S. This

ensures that integration of the differential cross-section will yield

the correct form for the total cross section. We therefore have
2
0 o ( 3 3
a . 2 14 4 q
<n> 2" J dn J ) "% &%, +a,-p.-p,)
oM % 3 - M, "1 2
x 2F 2E X
3 M '

2 2 2
s(M_ - (p; + P, ~ q5)7)8(t - (py=q)")

=112 1 i
= 3A.2
Iz |M| © F A
We can immediately perform the <I3qM integration to be left with
' . X :
2% f 2 dg d Cose d ‘
<n> q2 = Jde J q q2 oS ¢ S (E3 + E‘MX - }/S- )
atam2 (2m)* 2B 2By
T8(t *a(p -p ?)G(MQ'—'(p +p,—q )2) EE]M|2 . 3A.3
. 1°3 X 1°2 73 F . 7

where q is the modulus of the three momentum of particle 3, and 6,¢

givé its spatial orientation from the line of particle 1 in the 1-2 centre
‘of mass frame. Becaﬁse of rotationél invariance |M|2 will not |
depend on ¢ and so the ¢ integration can be trivialiy performed to -

' / ' 2 . . .
yield a factor of 2m. - We also perform the Mx integration at this stage

using the corresponding §-function to be left with
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2 2 :
( —
> 2% . J q_dg dCosé s (g +E, - /2) & (t - (pp %) sTiml? % 3A.4
ataM?2 2m.2E, 2Ey 3 13 F
X 3 X
We now make the transformation
2 Vs
dt au’ = 275 9 pq dqdCoss 3A.5

Es

which can be arrived at by considering

2 _ 2 2
M = (/s-ED" - Qs
2 /
t = mi + m3 - Vs . mg + q2 + 2pqCosb

in the 1-2 C.M. frame, with p the modulus of the 3-momentum of particle 1, say.

It is possible to perform the t integration immediately to leave

320 ( dMi 1 :
<n> ___Sb = J , . 8(E; + E, -V5)
3taM 27.2E 8/sp ©Ux
b4 M
X
xim|?. 1 IA.6
13
We now use the well known relation {671 that
8(f(x)) = I 8(x - a)
a |f'(a)]
where the sum is over the zeros of £f(x).
Since ,
E3 + EM - Vs = ¢m3 + q2 + /Mi + q2 —,/E
b ,

we have . :

- /3y = 2 _ - ‘ - 3A.7

8(Eg +E, - VE) = 2B, 8(M° - %) | o
X - _ x .

This allows us to perform the final integration and inserting the form of the
flux factor for two particles i.e. F = u/S p _ 3A.8

)
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we have
2
9 O 1
2
BtaMx 64msp

<n> f§|M|2 . ‘ 3A.9
A more conventional form, if symbolically incorrect for this quantity
would be

s d20 1

S
= £z |M| 3A.10
" dthi s4mp>

and it is this form that is used throughout.
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APPENDIX 3B
We consider the optical theorem which give a total cross-section as .

the discontinuity of the elastic amplitude at t = O, namely
2 2 i (5 . .
2A(s,ml,m2) OroT (s) = DlscS(ZA<pljlkl,p2A212]T]pljlllp232A2>) 3.B1
172 :
The case we are interested in is that of %+ 1 elastic scattering,
and using an M-function decomposition we can say

)\ %

: _2 A A ; :
<PyAp P TIPA DA > = T (py)e " 1(py) 13 e () WP 2(p,). ~ 3.B2.

If we perform the helicity sum over AQ and consider the available tensorial

forms for M we have

2 2 - %) Hv u v, A .
2A(s, ml,m2) UTOT(S) = (i €, (pl){klg + l2(p2) (p?) }eu(pl)) : 3.B3
1
Now we have
e, = (|p|; Ep)/m
* ~+
e,(p) = (05 n (p)) 3.Bu4
~+
where Df(E). p=20
*
and I evx (p) gvu sﬁ(P) = 3

A
we are also using C.M. helicity states and so, for this exércise,
Dy = - p, Wwe can easily rewrite 3.B3 as 2A(s,m§,m§) OTOT(S) =

. 2 2 - .

ar, + (DSsmm 2, | : 3.B5
L () 2 '

o , 1 ,

Translated back to the notation of Chapter ITII the s we are using here

is Mi. The contribution from'-)\2 is enhanced by a factor of 52 over

that from Al in equation 3.9. -Since equation 3.B5 shows that Al can

only be enhanced by a factor of (Mi)? over AQ we see that the contribution
.of Al in equation 3.9 must be suppressed with respect to that of AQ by
a factor of (Mi/s)%, and sé in the limit s/Mi + o we can ignore the

contribution from Al in 3.9.

106



The problem of how to decide on a reasonable form for

A, persists however.

We can split the contribution to the total cross section coming from the
differing polarization of the 1 particle using 3.B4 and we have

A(s,mJQ_,m2

2 2 o . ) 2 .
= D A
2A(s,ml,m2) T roT DlSCS )\2 ( = ) ) +Disc_ A,
1
: 2 2 + s 3.B6

2A(shml,m2) UTOT - DlSCS )\l

2 2. - _ .
2A(s,ml,m2) GTOT = DlscS Al

So if mass-shell l—%+ elastic scattering were possible we could

use the differing polarization to find a reasonable expression for Disc 12.
Without introducing free parameters then, the simple choice seems

to be that we neglect the longitudinal cross section with respect to tﬁe

transverse and therefore write

A, = 8m opgr 3.B7

2 2
A(s,ml,m2)
We also pass to the regime in which equation 3.B7 will be used, namely.
m? + t without alfering the threshold factors, since the simple replacement

- of m2 by t results in nonsense, and no other replacement is obvious.

1
The philosophy of equation 3.B7 and 8.10 is therefore to give ‘Aé
a reasonable functional dependence and while the normalization is certainly

not definitive it should not be ridiculous.
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APPENDIX 3C

We wish to perform a partial wave analysis upon the expression

Az Ai A

1 3
H L (p1P3P4 5 P1P,P3)
1 23
- <p1A1P§A§I T, P3 3° pxsx)\xnx>
Sx *x Mx :
P3r3> pxsx)‘xnxlTlplxlp?Q> 3.Cl

Now in a obvious change of notation we take, for a two particle C.M. state

147
| 8 ¢ u, u,> =& (27 +1 % (6,8, -¢) |T M pup>
1207 T () P (409 [

where the two particles plane wave helicity state is related to two
particle angular momentum helicity states [68]

Note that w = u, - My which defines our type 1, type 2 particle convention.

Thus
J*
<® @, uy by, 1Tl 0 ¢uy w,> = I {QJ +1 D (¢, @, - @)
S H 172 Jul" tr Hug
J J ‘ .

i
where Mg = u*-—ua, My = Wy = My and angular momentum conservation laws
enforce that J and M are equal on both sides of the T-matrix, and !

rotational invariance gives us that the T-matrix does not depend on M.

When we define ul = Ax'- As
u1 = xx - A3 .
My T oAt Ny
Wy T A3 A

and remember that the kinematics is, such that the missing mass state is

travelling along the positive 2z axis we can write

N
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23 ? 241 2J'41
2 g Z L

X J = max {[ﬁl[,lﬁzl}
J* = max {|ul|,|u2|}

pJ - (4,8, -¢) pd’ (48", -¢')
LI L A

J 2
z <)\i)\§IT (S,MX )I)\s)\x, S Ny>

S
XnX

J! 2
<A§Axsxnx|T (s, )|A1A2> 3C.3

. ey . .
and since D;'m (0,B,y) = e Lom d;,m(B) e YR

we have

- = Al -1 34t -
Hxlx213 ) 1¢(u2 ul) i (ul u2)
A A A= € Ce
172%3

>N

23+1 23! '
) L2 ¢l - (e )d) (en
ul“? l-ll-u-z

J = max {lallqla2|}
J'= max {]ullsluzl}

- T 2
szn <AiA§ITV(%MX')IA3Axsxnx>

XX

<A A_s.n ITJ'(sM.z)IA A> 3C.4
3% x7x''x Sx 101%27 .

This in fact completes thg partial wave analysis of the-amplitude, but as
such is in a form that is not readily usable. We wish to make thg impact
- parameter approximation which leads to a remarkably simple form in which
to make absorption type Cerections. | |

i

Defining -
- J 2 :
h, . = ) ) <Aprg|T(s, M Agr s.n> .
X Sx,ﬂx }

Jr. 2 -
flslxsxnxlT (5,4, )[A 2> , _ . 3C.5
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A ) 2i+1 20141 I (8).
% _ m Ly ulu2
J = max {Iull,|u2|}
J'= max {|ul|,|u2|}
J' ' 2
du " (8') hA (Jd, J', s, Mx ) A 3C.8

172 X

The first step towards the impact parameter approximation is to write

HA in an approxiﬁate form with J and J' treated as continuous parameters
e

and the summations over J and J' as integrals. We can justify this

2
A (g, Ja', s, M ") does not have a strong
X

variation between contiguous values of J, J°!

procedure physically if h

and so the continuous

function can account reasonably for the J, J' behaviour in an average

sense. Hk can then be expressed as

X
o« oo '
H, = J 4T + 1) J arrar + 1) a - (o) & (a")
x  bw : Mk Hi¥o
- - 2
J = max{|ul||u2|} J'= max {|u1||u2|} h)\X (J, Jys,M ) | 3c.7

The next step is to approximate the dJ functions since their precise

form is very complicated. A general expression is

(3-m'-n) ! (j+m-n)!(n+m'-m)!n!

- 1
g ey =z {EDUGMIG-M M (') 2
m'm - .

: s gt T -
(Cos%8)2]+m m 2n(—sin%8)m m+2p } 3c.8

This can be approximated to order (1 - Cos) in the form

Nl

i _ oy '-m r(j+m'+1)T(§-m+1) }
dip(8) = (-1) { TG D) T(3-mT+1)

- A(j,m',m) i}m"m)/Q

R

Jm,_m[(Z(.l—CosB)'A(jv,m' ,Am))%l : 3C.9

where A(§,m',m) = j(§+1) - im"(m'+1)-im(m-1) with j > |m'|, |m| and
m'>m,J is a Bessel function of the fir st kind. This can be seen

using the series form for the Bessel function [63] _ 110



w 1,24k

3.(2) = (32)" kio T

This approximate form will be valid for small angles B whatever
values m and m' take on, but is still difficult to apply because
of the complex form for the A factor and the T functions. At high -
energies and for small angle scattering it can be argued that the region
of interest will be the higher partial waves, i.e. iﬁtegration over regions
where j >> 1. Also in two body scattering clearly m ‘and m' will be
of the order of 1, and in this case a further level of approximation
can be made. We will have A(j,m',m) & (j + %)2 and, for m' =m or

for both around a value of 1 we will have

T(+m'+1)I'(j- 7 . e
[1‘8-:;1)1)"(;3111?3;] - A(F,m',m) m'-m)/2 %

and thus

3 1. ' .
a3, (8) ™ Mg, 12(3+3) sins] 3C.10

m'm (-1

This extremely elegant approximation to the dj function has been widely
used in two body scattering, however in the presenf case there is a difficulty
in using this form. It will be perfectly adequate for small values of the.
mssing mass helicity, Ay, but theoretically Ax can become very'large
as greater.helicity flip into the missing mass state takés‘pléce. We remark
here that for B = b no helicity flip into the missing mass state can
take place, and helicity flip will be suppressed for small values of B.
Setting these problems aside we ' can say‘at least for small values of
AX fhat | - o 1
H = [m a7 (3 + 1) Jm a3 + 1)
| gemaxd [y | 7, |} 3t =max{fu) | [u,] 3

J- - (2(J+})sinde) g _ (2(J'+})Sinde')
Ul H 21 . Ul U2 -

hy (J, 3", s, M 2. . : : . 3c.11
X : .

X
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If we now define

b = (J + 3)/k T 2kSini6

b' = (J' + 3)/k 1' = 2kSinie!'

where k 1is the modulus of the three momentum of the initial particles then

1 Im *
H, = — dbb J- - (bt) [ db'b' J (b't')
‘e ur? b H17Hy bt Hiko
(o] (o]
h (b, b', s, M °) 3C.12
)\x ) E > Uy . C.
where
kb = max {{uy|s[u,]?
kbt = max {|ug|,|u,[} 3C.13

For high energy interactions k goes as . Ys and so, if Ax is small we
can set bo and b'O to zero. As the missing mass increases, so should the
available spin states, thus in our previous notation the s, sum extends
to larger values, and with s, the possible values of Ax that can be
attained. If the maximum S, that we need consider increases as Mx
then in a kinematic region with Mx2/s fixed we have bo increasing aé
Vs for the largest possible values of Ax we néed consider. If s;
increases only as (sz)% then bo will behave as a dqnétaﬁt for lapge
Ax, and for S. increasing less rapidly with ng we will be able to
set b; to zero for all values of Ax encountered.

Assuming that this is the case, or at lgéét for small values of Ax ]

we can invert 3C.12 using the orthogonality properties of the Bessel

function, namely

jm xJ (ax) J (a'x)dx =1 § (a'- a') . . . 3C. 14
o V A a _
Thus 3
.20 2 '
hA (b*', b, s, Mx ) = 4nu fwdrr J- - (bT)
x 0 HikHo
: Im dt't' g (b't") Hy (t,t', s, Mx2) ' ‘ E .3C.15
o 17 M2 X _ , o
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CHAPTER IV
A Closed Regge-Eikonal Formula For

Multiple Exchange Contributions to the

Inclusive Six Point Function

113



INTRODUCTION

In the previous chapter we formulated a fairly simple
model for applying abéorption type corrections to inclusive
spectra, more on a phenomenological level then theoretical, but
were forced at the end to conclude that it could not account, in
the given form, for the physics of the situation. The choice
is to persevere with the basic framework of fhis simple model
and add some complexity and refinement to the structure, or to
attempt to derive a completely new formula which will not contain
any of the basic defects of the old.

There have been by now, many attempts at the prdblem of
introducing corrections of the re-scattering or multiple exchange
type. Several [36,46 lconcentrate on the initial channel as we
did in the previous chapter. ~Pumplin [40] argues that
rescattering between the final particle and tﬁe non-dissociating
particle in the fragmentation region should be the<impbrtant
mechanism. Paige and Trueman[38] Aanaiyse the situation ffom
the standpoint of Gribov calculus,‘but are unable to preéent a
phenomenologically useful formula due to the generality of their
-method. 7 |

We wish to produce a closed formula that will be of greaﬁer
generality than~the.épproaches which take one or other of the
possible reséattering channels into_éédount. To this end we
will work ﬁith thé Regge—Eikonal Approximation, first proposed
by Frautschi and Mafgoiis‘[?O] ‘and subéequently given a certain
amount of fespectability when it was deriVed by suﬁming'nesﬁed

ladder diagrams in a ¢3 theofy, with certain extra assumptionsv
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[71]It must be emphasised here that one of the primary
purposes of this derivation will be to determine precisely
which assumptions muét be made in order to extend this conceét
from the two body case where kinematical considerations dictate
that the exchanged momentum become transverse, to the
inclusive or 3-body case where more complex considerations
come into force. .

The technigque we use in order to‘arrive at our eikonai
approximation will be a simple generalisation of that of
Abarbaniel and Itzyksor72] . They use the technique of -
functional derivation to sum up all multi-meson exchanges in
a two body case. In Appendix 4A we present this technique in
slightly more detail than that found in the reference.

The generalisation we use involves partly the exchange of
four point Green's functions whose legs we composed of
spinless mesons. We use this form since it is suggestive of

xchanging sums of ¢? ladders which, in a leading logarithm
caléulation add up to a Regge pole behavedrexchange[73]

which is the behaviour we require finally.
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DERIVATION IN THE THREE BODY CASE

In this section we wish to proceed with the derivation of
a Regge-Eikonal correction to the one-particle inclusive
reaction. We start by considering the three body "amplitude"
shown in figure 4.1. For simplicity we consider the'equal
masses case. We do this by exchanging four point Greens
functions between various of the legs of the six point functions.
Since we will finally wish to go to the Regge limit of these
four point functions, we exchange them only between legs that
will have a large channel energy in the limit that interestsus
namely s-+w, s/M;+w. Bearing in mind that we wish to take a
discontinuity in M; we need only consider exchanges between a,
c and b legs and a, ¢ and b legs. All other exchanges will
either not Reggerize or, in the eikonal approximation to be taken
later, will disappear when the M; discontinuity is taken.

We must then, write the analogue of equation 4A.1 for the
three body case which interests us. This is éomplicatedAby
the fact that we must attach not oﬁly four point G;een's function
in all combinations, but also a six-point Green's functiqn
which we will take to account for the,poésibly,larée momen;um
changes betweén particle a and particle c in theAfragmehtat;on
region.’

One expression wé could use for fhis would be

(21)*6" (P, + Py, = P, = Pz = Pp *+ Pg) H(P,rPyrPgi Pz PRrPg)

= D*DyD Lt N(p2-m?)<p_|GC )G G(B)|p,>

2 .

Y
Py M

<pg|G(8)G, G (B) |py><pz|G(A)G, T G (C) [py>

A=B=C=0 4

A=B=C=0
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where the D,D* operators would account for the exchange of the
four point functions in all possible combinations and the term

DY would have the form

6 -

8

Dy, = (I dyiG®(y;... § 8 —
X fi=1 Y167 {y1 e -¥e) SA(y1) 6G(yz2) 6C(ys)

§ 8 8
SA(ys) 6B(ys) 6B(ye)

which could account for, say, a charge exchange reaction between
particles a and c. The formulation of equation 4.1 would lead
to diagrams of the form shown in figure 4.4, where the
attachments of the legs deriving from the Dy ahd D, are
intermingled. Only in the case where no large momentum need
travel through the various Greeh's functions i.e. the case where
Mi is small, could this formulation possibly eikonalige in its
entirety. For M; large, at some stage large components of
longitudinal momentum must flow away from the momentum of
particle a to fofm fhe large missing mass.

Since our task is not to consider in detail these complex
momehtum effects we accordingly assume that our four-point
Green's.fpnctions G* are'strongly suppressed not merely for :
large |g?|(see figure 4.2) but_aiso for large components of
momentum ttavelling down any of thenlegs. This assumption of
k/V/s+o is after all the main content of the eikonai |
apprbximation. We also however, insist that the large
components of momentum do flow down the legs of the six-point
Green's function, G°®. This treats two objects, which might
seem superficially similar, in a completely different manner.
The main justification for this is that it allows us to.

achieve our stated end.
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We can then, either discard completely those terms which
are represented by that of figure 4.4, or, since time ordering
becomes unimportant in the eikonal approximation, we could
consider gathering together the legs of the G* that inter-
sperse those of the G® and separate them from the G“'s, that
will eikonalise. This amounts to a redefinition for the
input G¢.

Whichever of these courses is adopted we utilise the

completeness relation
1 +
f(—z—%ir 2r8” (p?-m?) [p><p| = 1 . | 4.3

since the scources act only on single particle states and can

then write

(2m) 8" (p,*+P,"P,~Pg ~Pp * Pg) H(P,sPy/PiPg/PprPE)

L y_ - ‘
=p*» 1 %Py, 9Py 2ﬂ6+(p;-m2)2n6+(pé-m2)
a,8 (2my* (2m) " '

[ L -~ /- A ” - L
(2m)*8" (p*Py PP ~ Py + Pg)
* * *

't (p7,pZiR) T (ppsPEiB) T (P5yPZiC)

Pl I) -

Y(p /PLrPLiP7s Por P
r(pc,pé;C) T(bepﬂ’B) T(p,/p}iA)

4.4
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where

@ .
T(pa,p&;A) = <p&|Texp{—i IdTA(X—2PT»A(X)|pa> 4.5

(]

whose derivation can be found in Appendix 4A.

*
We can now define the two operators D and D .

We say

S

§ 8 8
ac,b(dA' §C’ Eﬁ) 5C

5
D =D b Deplser 38)

8 §
ab(EX’ Eﬁ)'

y
= L § 8 M
Dap = expli fg=ld YiSa(y;) SA(y,Y & (Yir Yzr Yss Yu)
s 8 ]
SB(ys) ©6B(y4)
D = expli’ ﬁ a* 8 § G" ( )
ac,b p =1 Yy SA (Y1) 6C(y2) Yir Y21 Y3r Yu
8 8 ]
§B(ys) 8B (yy) 4.6

The eikonal approximation can be made in equation.4.5 in a
similar manner to that in Appendix 4A exvept that instead of
the symmetrig approximation used there we replace the operator -
P in each 1 by the external momentum. This shoula not lead
fo exﬁremé errors and simplifies the calcglations.

Thus

TG(P'r p; A) = fc'i"xei(p—p )-x E%E é;p[-i IETA(x-2an 4.7
. g u .

We can also carry out the functional differentiation by noticing
that it acts as a shift operator as in Appendix 4A and we find

‘the lengthy expression arises
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b ol - - - .
(2m) *6" (p_*P,"P~P7 ~Pp *Pg)H(P,/PyrP iP5 PEs Pg)

= L » L -
f T d Py d Py yr6*(p"2-m2)2n6" (p~2-m?)
y ¥ (2m) " (2m) y .

IBH_ d*x

8 d“xE ei(pa-pa)'xa+i(Pb_pb)'xb+i(p;—pc)'Xc
B

_3 _a _3
(e} 1aaa 18ab 1aac

ei(pa—pa)-xa+i(pg - pE)'Xb+i(pE - pE).x
) a0 o0}
expli de dr jdr dt, G!
o @ aly b~ b “ab
[¢ o] [+ o] o0 0 [¢ o]
P L * - P y

+i dea jdrc éd‘rbdtbGac’b+1 deCch jdrdechb I

o o b %a %

Cc

oo ly , P D - - » . ,_ 2
(2m) "6 (pa+pb Pc"P7 ~ P * pg) Y(Qac' Qac’ %b’ Sab’Mx)

2 ) 2 expli zT—dT: IET—dT: G::
-ido=— ~i3 o=~ —-ida— P a a b” b Tab
a b
. co‘ oo ©o ) uy ' ] - ) [o) ) b %
#1 [arg farg farg atg oft g +ifarg arg [arg  arpegpas
a c b ' _ c
where
' Qac = (pafpé)’Qac = (pé—pE)’ QbB = (pb-pg)
and
v o= g( o . - P (- - ¢ -
Gp = G(2pa('ra Ta),xa Xy pa(ra+ra)+pb(1b+rb),2pb(Tb Tb))

L —_— - - . » - » .
Gop = G(ch(frc TS) 1X Xy PC(TC+TC)+pb(Tb+Tb)'2pb(Tb‘Tb))
b -— -— - - - -
Gac,b - G(xa ZPaTa'xc+2chc'%(xa+xc) X, "PTa P Tt

pb(Tb+Tg)f2pb(Tb-T£))  : _ 4.9
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Before we continue further there are two points of
interest to note about the form of equation 4.8. The first
is fhat, as will shortly become clear, we can define two
independant impact parameters Bab, Bcb. In the case of Mi»O
where we have quasi-two-body scatterihg we would not expect
these impact paramters to be independant. However, for
large M2 we would expect such independance from naive physical
arguments. Secondly we must realise that equation 4.8 does
not-give the whole story - it forms the most complicated part
but does not allow for diagrams where some of the possible
elastic scatterings do not occur, and most transparently does
not allow for the case where no intermediate scattering takes
place. These unconnected, or partially unconnected pieces
could be allowed for at this stage, but the resulting expression
would be considerably longer than 4.8. The analysis for these
pieces would also be simpler than for the expreseion of 4.8.

We therefore carry this analysis through and rematrk at'a
later stage what effect the inclusion of these pieces would be.
We simplify the expre551on of equatlon 4.8 by making

varlous transformations of variables. The first will be

Yap = b

xa_ p'Yeb = ¥ ¥pr X =.§(xa+x +x.)

X = L(x— + x— + x—
= Xz - Xp x— - X, X = Z(x— + Xg + xc) 4.10

ab b’ ch = = 3G

" The Jacobeans of these transformatiene are unity. -
Equation 4.9 tells us that there ie no dependance on X or

',i in either of the exéonential factors and of course Y is

defined.as‘translationally invariant so we immediately perform

the d*X, d"X integrations which produce the factors
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booh e e et ” bk - 2 oo -
(2m) "6 (Pa"'Pb P."P, Pb+Pc) (2m)*8 (pa' + pp - Pg - P3 PE +p—6)

These two 8-functions allow us, in combination with that already

existing, both to factor of the overall conservation of

momentum §-function and also to perform the d“pb and d“pg

" integration. If we also notice that, having performed these

integrations we have

. 2 - l - - . - ”
1('Z?(pa‘_pa) - §(pb-pc—pb+pc))‘yab l(pa pa)'yab
e = e -

2, . 1 i - .
i(f(pc P.) - 3(P,+P,P, Pp)) Y p i(pg Pe)Yap
e = e

We can write

. d'p” o
y

+, .
H(QZ_, s, M2) =j'd P3 S, 2ns*(p]2-m?)

(2m* (2m*

278" (p‘2 2y ot (p 2-m?)

+

2me’ (p— - m?)27ns (p—z- m )znéﬁp— - m?)

| . i(p_-pl) .y, i(pl-p.).y
: : a “a ab c ‘¢ cb
fd}Yabd“chd yab:-l Yo © ©

3 3 9 )
ida, 1doy 18qc -idas

P2 " pa)vap 1lpg - o).y

) a V . : -. ) ‘ - 2
“Toop -ldag exp iV, +iVoc, bt Ven! Y190 /905 pr ab'M )
. .
exp[- iVa—b - 1V—c- 5" iVE )|
' ‘
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where

barred variables.

= < b
Vo Iad'radra L dr,dt/G4,
a b
= ik
Vac,b I dTa I ch I dTdebGac,b
%a %c %
= s ~~h
Vcb I drcdrc I ddeTchb
% b
V= = Z 372 Z et
B = [ drgdtg f 54755
3 )
Ve = = a “a Careareait
ac,b f Tz f i f 59%%¢, B
o= az op
VE‘B = IdTEdTE f dTBdTBGc—b' 4.11
(X-E. 015
The next changes'of variables we make are the -~Sudakov
decompositions
Yab - ab 2 %b Pa * z_cab Py,
_ 5 + 2 ’ 4.12
Yo T Pcb T ¢ Y%eb Pe 9%b Pp
- where Bab'pa = Bab'pb = ,Bcb'pc = Bcb'pb_ =0
with a similar decomposition for the barred variables.
We also define the momentuh transfer variables
o = ’(pa - ), Q. = (p} - p,) and similarly for the
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In a completely analogous manner to the shift of
integration variables we found in 4A19 and 20 in Appendix A
we can now shift the t-integration variables. | Invthe two-body
case this accounts for all the ¢ integrations eventually, bit
in this case we account only for six out of the eight. We
also rewritevthe d“p& integrations in terms of the Qa s, which

is a simple shift of origin and we find
_ -8 4 y 4 u t, a2 2yt c2_ 2
H = (2m)° [d*Q d*Q d*0-d"ess” (p}%- n) 8" (pyP- m?)

+ - 4 -, »
67 (p2 = m2) §(PE - m?) §TpE - m2) SMpE - m2)I, T I I

iQ_.B iQ .B -iQ—.B— =-iQ—.B—
dB.dB ., e ° ab "¢ cb( i p _gp—e @ @b c"“cb
ab cb ab cb
2i0(Q .p,) - ZlB(QE . pE)
do_,do_[do , do—do——do— da e c *b® di e
ab "ab “cb "ab " "ab cb: 27 m
3 3) .3 ' o 5
39,y aqab 90 expllvab + lvac,b + lvcb]
. » » A. - r 2
Y(Qac’ ac' ~bb’ Sab’ Mx)
3 3 3 o k. T* L G* , .
0,080,304 P "WVap = Wae,p 7 Vep ! o 4.13
where‘ g = Gab - ch, .0 = 05 - O'E
= o W2 273
and JQB‘ = 4 (pav. PB P pB)

We:further define
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%ac T PETPRE T Q5 -+t O = pp-opg
% = m-E - Ogroc-o, -,
Vop = I;dra dT; IdtbdrgG“(Zpa(T;—Ta),

a .

ab “P, (t +T ) + pb(rb+Tb), 2pb('rb b)

o
= *( - -
vac, fdx 'fdr de dT G ] Bcl 2paT + 2chc-20p]
%a

X (Bap+Bcb)'paTa'PcTc + pp (T ttl) + 20p,2p, (17-1,))

o [ .
vo, = dechc fﬁr dt/G* (2p (15-1_),

Bp ~ PC(TC+TC) + pb(Tb+Tb’) + 2pbo,2pb(16-1b))

and similarly for the barred quantities.
It is now possible to carry out the integfation of the
total derivatives implied in equation 4.13. If we consider

one half(the unbarred‘half) the result contains the term
exp[i)(ab + lxac,b + lch]' - _ o R
where X_, -represents V_, with the lower limits of integration

(_Oab"—cagr taken to = «. This is the only term we - would
expect, however, we also obtain terms '

- explix ] + explixl -1
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that these terms are included arises from the formulation of

equation 4.4 which only accounts for diagrams where all possible

types of interaction are connected. Clearly the term 1 would

be cancelled if no intermediate scattering took place and

similarly the terms exp [i ] and explix ,.] are cancelled by
Xab PliXeb

the terms where only a-b or c-b rescattering takes place. The

term which does survive is then

(=2} iQ . B iQ e B
= 2 2 a""ab c' “cb

=o0

. ) .. 0 '
exp [1Xap + Xge,p ¥ Xep! 4.14

The final transformation to be made is to decompose Q and Qc

into their transverse and longitudinal parts according to

0 - 2py.Q, 5 ; 2p,-Q, o+ T
a Zpa.pb a 2pa.pb b a
c 2pc.pb Pe ‘2pc.pb b c
wherg Q-Pg = %P, = O i
ey =.A —_— 4.15
Qc’pc Qc'pb 0

We have in équation 4.15 neglected terms of order

Q;/S and so on.
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Also we consider the mass-shell delta functions, for

example

67 (p72m?) = & ((p,-Q,)2-m?)

wn 2
6(2pa.Qa Qa )
and so on.

Having done this we arrive at the expression

© i .B . +i0 .B ,-i0—.B——id .B
- -8 2 2 2 2R a'"ab c'cb a'“ab cb
H = (21) [d g,4%0,a%0-a%0- e

(o] (o]

fdada [a(p,.0,)d(p,.0,)28(20,.p,-0,%) 8 (20, .p, *a=(0,+0.) )

2]

fd(pc.Qc)d(pb.Qc) 28 (2p,.0,+0_) 6 (2p, .0 )

f) .

| | A | _
fd(pg.o-a-)d(pg.g-g)za(ng.gg - 07) 8 (2p5.0 + @ +(03+05) ?)

oo

2 —-—
)(d(pE.Qg)d(pE.QE)za(sz.QE + 02)8(2p, .05 - T)

-0

iao 2 -iag
[$2e  s(0040

2 ' _ ‘ : 4
Y(Qac’QEE’QbE’Sab’Mx)S*(QE'QE'U) ' 74'16

In equation 4.16 we note that the Jacobeans of this most recent
calculation cancel with the Jacobeans T.p9cprTaprIcp Of @
previous transformation to order 1/s and also we have

introduced the variables o and o via the insertion of
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{da 8(2p, .0 -a)f da6 (2pp.0z - )

which clarifies some.of the forthéoming manipulations.

It is possible to immediately perform eight of the
integrations in equation 4.16 and we can of course note that
since Bab isborthogonal to both Pa and P etc, so remembering

b
that o

2pb’Qc
o = 2pgp. Q3

we can rewrite equation 4.16 in the slightly simpler form
H =

Ia26a a*y, a*é; a0z 10 .B_, +iQ_.B_, -i05.B-i0z.Bp5

a cb
LEm2m? Zn? Tm? ©
){dOdO'S (6al-d¢ro) S*((ja"égrO)
2. iao, 4 iag 2 :
"2—% e r '2—::‘ e Y(Q 'Q— bers blM ) 4.17

 This formulavis-as far as we can proceed without detailed
considerations of the dependances of the variables of the Y
function. In fact the- Splrlt of the elkonal approx1mat10ns is
present in the choice of variables made.

The full dependance of the Y function could be shown,

aiter taking the forward M; discontinuity, as

7 »~2 » ~2 - - 2
(O cr Qac' be' Sab’ Sapr My!

2 : o
M cannot be affected by the intermediate rescatterings

because of overall conservation of momentum, but if we define

.,

. _' : ” - 2
Sab — '4 (Pa + pb)

-~ » - 2
S35 (p7 + pp)
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Then these quantities will not be identically equal to Sap*
It is not reasonable, in the light of all the other assumptions
made, that we would expect the region where these quantities are
severely deviated from the original value to be of any
importance in our calculation. The expressions for s;b and
sgé thus tell us which quantities it is pe;fectly safe to
ignore with respect to s. It turns out that o and o are among
these and also that Q22 and QZZ depend only on a/s and a/s at
worst. These facts are briefly demonstrated in Appendix 4B,
That we can ignore the o and o dependance of the Y-function
Clearly leads to a great simplification of equation 4.17 since
we are able to perform the o and o integrations and these yield
two delta functions of the form §&(o) and §(a). We then use
these §-functions to perform the o and ¢ integrations,
effectively setting o = ¢ = O.

If we now take the forward M; discontinuity and make the

definitions

tac = (QaC:_Qa-l-QC)2

te = Q- %Gt R’

te = (9, * Q- 0g- )

t. = Qécz = o2 o | B .4.1§

We have the final form of our expression, namely

2 azg, arg, a'h; A
H(t, s M) = 2m?Z (2m)y* (2m)* (2m)*

S (6a'-6c) Y(tacl t"a"'a‘r tol S.b’ M:{) S*‘(Q;:'QE)
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where . R -
s = [ama% o %arPapt e Bep 1 Xap (Bap) *Xac, b (BapBep) *Xep Bep !
ab™ “cb :

and * * : *
2 qep. T9a-105-Bop ~1zp (Bgp) *X3c, 5 (Bap Bop’ *Xop (Bap )
S* = d%p . d?B—e e v
b cb
4.19
We also use. Appendix 4B to show the following
If PC = Xp, + YPy, + P,
2 =2
withy = ™ * Pe, - xm?
Xs s
Then
2
Scb T X*Sap M, = (1-x)sab
to order 1/s, and also
2_ =M = 22Uy 2
t = (2-x)m? -1 (pc*+ xQ, + Qc)
ac
: : X
2 =H K <M 2
t— = (2-x)m2 - O —(pc1+XQ§ + 07)
ac ~
X
, o2
t = (2-x)m? -1 "Pg,
X
to = Qg +Qp - 07 -9 4.20

where we note that [V is a four vector with only two
independant components and that pé‘L is a positive quantity.
Our next task is to account for the eikonal phases of

equations 4.19 [74 ],
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The expression for Xab is

= [l L » - - -
fdradra.de dt/G" (2p, (15=1,) /B +p, (1{+1,) =P _+17),2p, (1[-T,))

4,21

We can make the change of variable

n’ = (Tg -Tb), 17 = (Tb + rg)/z

and this has Jacobean unity. Taking the fourier transform of

G*(x, y, x”), and its inverse we have,

a4k VR
[ - — -~
G (Xry'x ) = (2,”)10 r (21T)T Zm " G (qulk )
explilk.x + g.y + k“.x7)] 4,22

Substituting equation 4.22 into equation 4.21 we have
. 4
d*q 19-Bap ratk a‘k” v, .
e T TEmr ¢ ek
jdndrdﬁar’exp(izpa.kf+izpb.k’T'-izpa.qn-izpb.qn’)4.23
Performing the n,n” T and T integrations_we find

d*q | iq.Bab'
xab,=f(zn) 2m8(2p, -q) 2fs(2pb.q)e

ot

- d%k d“k”
ORI 2ﬂ6(2p .k) 2n6(2pb k%) G (k,q,k7)
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We make the transformation of variables

d“q+d(2pa.q)d(2pb.q)d26 where pa.ﬁu = pb.ﬁu = 0, and this

has Jacobean 1/2 S.b (see Appendix 4a).

We can therefore write

. iQ.B
1 azq ab f d*k
Xab =3 Sab (zn)z e W 218 (2pa.k)
a'k” "o . '
ITZ—-W)—W 21T(S(2pb.k ) G"(k,q,k ) 4.24

We use the relation

1 1 |
Lt [_ . + . ] = 2n8(2p.k)
eror 2p.k+ie 2p.k+ic 7

and also note that for s+«=; k?//s, t/v/s+0 we have

1 1 ! 1

(p—-k) “-m* + ie + (p+k) “=- m* + ie -~ =2p.k +ie + 2p.k+ic

Thus the expression

L 44, - n, E
[%2$)T Zwé(zpa-k)}'%i%yr 2ﬂ6(2pbfk) G%k;q,k’) 4.25

represents the four diagrams shown in figure 4.5 in a high énergy

1limit.  In a ladder approximation these diagrams sum up to a
signatured Regge pole, allowing for overcounting and so equation
-4.24 is the Fourier Bessel transform for this expression and

_can be written as

o L - i0.B_, : a(-0%) |
- _1 (_4a%*Q ab., (_52)g. (-52 -92 4.26
xab-sab[-(—m—ze_. 8, (-0 8, (TN E (T sy _
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Pe

Pa

> Ps
Figure 4.1.The three-body “amplitude” used for considering single particle
inclusive reactions. .

X, Xy

k-q/2 - k+q/2

X X k+q/2 k'-q/2

2 4

Figure 4.2.The four-point Green's function used -as a basic exchange.

Y Y
Yi Y.

Y Y
Flgure 4.3 A triple ladder type six-point Green's function.

Figure 4.4 .A d-iagrcxr:\ wh'ich'will not eikonalise in the-case of the six-point
function.

KX ¥ ¥

Flgure 4.5.The four dlograms represented by the expression of equatlon 4.25
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where £ is the signature factor, o is the trajectory of the
Regge pole and the quantities Ba and Bb are the vertex residues

which arise from the integration
d*k d*k” ,
I-(z—")—r 278 (2pa.k) IW 27T5(2pb.k)

The 6-functions have the effect of keeping the interacting
particle roughly on mass shell as it passes through the
interaction.

The expression 4.26 also holds for x and y— with

cb’ Xab cb

suitable changes.

We now turn to the trickier problem of x The initial

ac,b’

expression is given by

X

3 - u - - ‘
ac,b [ dTachddeTbG (Bab Bcb 2pata+2chc,

%(Bab+Bcb)-PaTa_chc+pb(Tb+T£)l 2Pb(Tb-T£)) 4.27

We again use the fourier transform to find

, _ da“x d*q d*k”
Xac,b Zn T Zm* n°

G“(k,q,k’)exp(iqf(Bab+Bcb)/2)

exp(ik.(Bab—Bcb))I'dradrchbdrgexp(ik.(—29a1a+2ché))-‘

exp(iq'(—paTa-chc+pb(Tb+T£)fik12pb(Tb_Tg))v 4.28

We refer to figure 4.6 for the definition of some momenta.
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We can perform the TaTer Tp and Th integration to yield

§~functions and we also make the transformation.
k = Qa + Qc

qg = Q_-0Q
5 ' a ~“c

which has Jacobean unity. We can therefore say, after some

re-arrangement

d"Qa a*o

- C ' '
Xac,b - (2m) "+  (2mw) " 2ﬂ6(2pa‘Qa) 2ms(ch‘Qc)

2n6(2pb.(Qa—Qc)) exp(iBab.Qa+iB b Qc)

'S o
[ Sy 2ms(2p, K 6'(Q,%0,)/2,Q,-0 k")

Next we insert a specialisation for the form of

d*k” ™y Q.+ _ -
W 2ﬂ6(2pb-k) G (_‘2—', Qa chk )
Which we také as
2 2 ; : “yalg?)
Ap(Q, )8, (Q %) B(a?) ((Q,+Q,) -Py) |

Where an appropriate form for AF(kz)might be

-1
fdap(u)[kz—a2+i€] : -

We also make a further transformation namely

Q

; . AH
a 20apa + 2Tapb + Qa»

20cpc +-ZTcpb + Qc

0
It

4.29

4.30

4.31
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which effectively have the Jacobeans 4p_.p, and 4p .
a'*b Pe*Pp

We therefore acquire the form

dzﬁé dzﬁé . .
Xac,b = f (Zm) 2 T(2m)Z S%P (lBab'Qa+chb'Qc)

1 [ o]
4pa.pb 4pc'pb E?ufddadradgchcé(4pa'pra)

6(4pc'prc)6(4(pa‘pboa_pc'pbcc))AF(Q;)AF(Qé)

2 a(g?) ‘
B(a®) (2p_.p 0, +2p,-P,0.) 4.32
We can now do three of the o/t integrations, say Tt rc; Ot
which pull down Jacobean factors and if we have X0, = X0 = 0,

from the third of these integrationsthen

d2Qa d2g

1 : .
zm 7 (a7 SXP(iByp-0,%18g,-Q0)

Scb

Xac,b

2 2
B(a®) (5,)*(T) o faong (0,1 85 (0216 (T

where Qa2 and ch can be expected to be functions of o but g?
is not. ‘ | -
It is perfeétly possible to make explicit the o depeﬁdance of
Qa2 and ch and thereby perfofm the do integrations.

However we must alwayé remembef that our calculation has been
performed throughoutvin the eikonal approximation and wé
therefore'éxpect the region of integration of importance to be

that where all components of Qa//E are small with respect to 1.
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If we consider equation 4.31 this indicates that we expect the
region of integration of interest to be.where ocis small with
respect to 1. If we consider the specialised form 4.30 used,
the propagators AF(Q;), AF(Qé) will only enforce a peaking for

o small with respect to s and therefore 4.30 does not explicitly
conform to the eikonal approximation. We can insert the
desired peaking very crudely by hand by considering the integral

[+

| .

which is zero.
We can only conclude from this that in the eikonal approximation

we would expect xac,b to be small.
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Pe Qa2 — R Pa-Qal2
! \a.
Pe-Q./2 i x . pe+Q./2
b a
Bab; ch., q=0Q.-Q,
I
\J
p,-ql2—Y—Y . Py* /2

Figure 4.6.The diagram for the mixed eikonal phase.

Figure 4.9.Extra didgrams considered by the present model which would
contribute to the filling of a naturality dip.
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DISCUSSION

In equation 4.19 we have derived a formula which accounts for,
in the eikonal approximation, all‘corfections to a Regge-pole
only graph of the class of which the diagram shown in figure
4.7 is a member. We see that there are three distinct types
of correctidn namely rescattering between particles a and b
rescattering between particles ¢ and b, and a mixed
rescattering which we do not believe to be important in the
eikonal approximation. In this way we fully overcome one of
the objections raised about the formula of Chapter III. . We
are also in a position to calculate target assymetries since

we have no need to reglect Siné in the present formula

CM
and we would not expect spurious zeros to occur via use of the
formula of equation 4.19.

We need to discuss two further points concefninglthis
formula. Because we include two independant impact parameters
and eikonal phases we might easily expect the.absofption
corrections that we derive to be considerably stronger than
‘those found from a calculation where only one phase is present

[40,36] ', however, our formﬁla would contain many
more second order diagrams, if cut‘bff'at this level, than
.Wbuld the model of Craigie et al [ 36] which contains_onlyi
| those shown in figure 4.8. The absofption corréctiéns of
Ref.36 were introduced principally to remove a forward dip
which was dictated via naturality considerations in the pole
onlf diagraﬁ»and not seen in the yp>m*X data. This-

calculation, when fitted to the data, produced an opacity C,

which was considerably larger than unity.
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One reason for this large size was that only one of the
diagrams shown in figurg 4.8,namely the second order diagram,
can contribute to fillingin the naturality dip. The
other three all have these dips.

We can now see the reason for the inordinately large value of
C found. The one second order diagram must dominate over the
sum of the othgr three at small ki which can oﬁly happen for
values of C larger than 1.

In the present model, there are several diagrams at the
second order level which would contribute to f£illing in such a
naturality dip and so we could expect that values of C much
closer to unity would suffice in fitting the yp»mix data.

We will see later that the present modél, for values of the
opacity similar to those used in Chapter III, does not
produce large absorption effects.compared to those of the
model used in the previous chapter. This is also due to the
e#tra second order diagrams éonsidered and so while we would
not expect the present model to give rise to extreﬁely strongf
absorption corrections we would expeét the naturaltiy dips of
Ref . 36 to be much better filled iﬁ.' | |

The seéénd point we wish to make, almost in passing, is
"that if a full ¢°® calculation were attempted we woﬁld expect

only a contribution from the phase ¥

Xac,b 1P analogy with AFS/J

Mandlestam - cuts in two body reactions.l 74IThe eikonal
calculation we have made, while bor;owing some of  the feétures
~of ¢% ladders dbes in fact require extra mechanism which are
not made explicit in order to enforce the k2/vVs conditions

necessary for the eikonal approximation to be valid.
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APPENDIX 4A

Abarbanel and Itzykson [72] wish to sum the class of
graphs shown in fig.4A.1 in the eikonal approximation their
starting point is Schwinger's [75]expression for this set of

graphs namely

i e ” r
2my T(p 2! pz:pgpl)5(p2+p2~pl'Pl)

= Lt(p?-m?) (p{-m?) (pi%m?) (p>m?)

pZ-m?

1 .
K(A,A%)<p |G(a)]|p ><p”|G(A”)|p~>] 4A.1
2 1 2 1 'aA,A=0

which is for equal mass spinless scattering.|p> is a one
particle plane wave state, G(A) is the Greens function for
the interaction of a spinless particle in an external scalar

source A i.e.
S GTl(A) = PZ-m2-A(X)+ic 47.2

P and X are four dimensional momentum and space operétors

which satisfy<

X ,B 1 = igUQ S o 4a.3
The term K(A,A”) is a functional derivative operétorland

determines the type of interaction which takes place bétween-

the two spinless particles and can account for many sorts qf

interaction, with the proviso thatAthey attach to the interacfing

-particle via a spinless intermediary. The form chosen is
) , - ‘ l,. ‘b, -~ ‘ 6 - o .
K exP;a_¥ Y wmey POV Aty

ig? d“k e—ik'x : _ v
with D(x) = (2m)* k=u“+ie . ' 47,4
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which is the form for exchanging spinless particles of mass u
between the two particles.
It is important to note, as will become clear later,
that this form already has the non-interacting part subtracted
from it. This part is not required for this two body case,
but we must‘take care to include it when considering the
3 body case later. |
We must no% cast this equation into a form in which the
introduction of the eikonal approximation is more transparent.
We will use the operator identities [76]

- @
(A+B) - fdt exp (i(A+B)t)

° ' , 1 _s .
exp(i(A+B)) = exp(iA)Texp fdt e 1At iBelAt
and the formal solution of G(A), 4

G(a) = 1 + G(A)A(X) 1 ' 47A.5
P?-m?+ic P -m’+ic :

when we consider

, 1
2 (P%'mz)(Pz'm2)<P2| STomZiic lp1> -

2 -

pl-m B

= Lt (p}-m?)§"(p1~p2) = O § 4A.6
p%-m? '

we see that the first term of the‘expansion'for‘G(A) does not
contribute. This is the mechanism for subtracting off the
non-interacting part.

Thus using 4A.5 and 4A.6 we have

- © N
<p2|G(A)|pi> = <p2| fdt expi(Pz-m2+ie)t
+ - 1 . .
Texp { -i fkdrA(x-zm)}A(X) sr=mtrre 1P, . 4n.7

]
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where use has been made of the fact that, with the stated
commutation relations

exp(-iP?1)A(X) exp(iP2t) = A(X-2PT) 47.8
Thus

Lt (pf-mz)(pz-m2)<pzlG(A)|pl>

2 2
p;™m
= Lt (p?-m?) (p2-m*)
p§+m2 (p:-m‘+is) (p:-m‘+ie)

[e o]
<p2| fdti(Pz—m2+ie) exp {i(P?-m%+ie)t}

Texp<{-; IETA(X-zPT)} A(X)|p1> 4A.9

Performing a formal integration by parts and then taking the

limits € » o+, pi+m2 in that order we have

Lt (p?-m?) (p2-m?)<p |G(A)]|p >
p2->m?2 , 2 2 1
i
- .
= <p, |1 Texp {-i.deA(X—ZPT).}A(X)[p1> | | 4A.10
. o
We can therefore rewrite equation 4A.1 as

=i

" »~ P 4 a+ - ;;
e T(p +p,iP P )8 (P +P =P -P )
= K(a,A%)<p [T(2) [p ><p |T(X) [p]>]y oo - ¢ | 4a.11
where :
"T(A) = i Texp {-i ;dTA(X—ZPT)} A(X) 4A.12
. , _

-We caﬁ'implement the eikonal approximation in this formulation
simply by replacing the operators P and P” by fhe c - vectors p'
= %(p1+p2),p = %(P1+P22. The time ordering is no longer

" important since the anticommutation properties of P and X are

no longer in force and so we can write
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duX :
< > = -
pz IT (A) Ip1 -z—z )1, exp [ i (pl pz) « X ]

exp [ -1 fx(x -2pt)dT]A(x)

d*x . P @
= f y exp [i(p =p ).x] — exp[-i}hA(x-ZpT)dtll ,
(2m) 12 9o o @ =0  4A.13

The task is now to carry out the functional differentiation
contained in K. We must evaluate the expression

exp { fd"y d*y” D(y-y”) GA?y) GA,iy,)} .

[+ ] @
exp il IdTA(X—ZpT) + Idr’A’(x’—2pT’M}|
- A=A"=0 47 .14
o o
where we have

S§A (x)
SA(y)

= §*(x-y) 47.15
This evaluation is necessarily formal and the technique used is

quite tedious. Since the answer can clearly be seen tévbé

exp {- £3¢ IE}'D(x-x’—2p1+2p’T‘)} | 4A.16
o ,

we omit the detailed wofking.

Egquations 4A.13 to 4A.1l6 contain most of fhe ideas which will be

of use to us in the derivation of the 3-body case, however, we

conéinue to a concluéion‘for the sake of cqmpleteness.

We can now re-write 4A.l11 in the eikonal~approximation as

"‘i' ;v‘.» >l. . —_n
=i TE(pz.pZ,pl:pl)G(p2+p2 P, pl)

_(d'x d*x” . . PRSP
= | =z — exp [i(pi1-p2).Xx + i(p1-p2).x"1]
3 3 @ @ » _— e i o _» .
= —— expl- |[dT [dT D (x-x"-2pT+2p~17)] a =20
9a  da b o’ a” =0 42.17
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We can integrate over x + x” directly which effects the
cancellation of the overall momentum é-function.

Next we make the transformation

X -x” = b - 2po + 2po” 4A.18
where b is orthogonal to both p and p”. This has the

Jacobean 2§ where

§ = s[l-(t+4qz)/s 1%. We leavethe derivation of this
Jacobean until later.

We also have

PP, = -(p:-p;) with both orthogonal to p and p~.

Whence
T (s,t) = 2i8 Idzb exp [ -1 (B -B,).b |
E :
Q@ o o] [+¢]
- - “D (b- “(t7+0”
Lwcdo 2 337 exp [ £?T‘LFT D(b.ZP(T+Y)+2P (17407)) ] 47.19

If we now make the shifts

T+1+0, T T +0

we can also shift the derivatives so that

90 ‘3 0=0)

" and so taking a, a” to zero we are able to perform the two o
integrations directly, to obtain

T (s,t) = 2i8 Idzb exp | =1(B ~B).b |
T = ;

. - ‘ .
expl- IdeT’D(b—2p1+2p’T’)] - 4A.20

If we now consider the detailed form of D we need to consider

the integral
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@ (o , 5, (d'qg exp [ ~ig. (b-2pt+2p~17)]
[dr‘£dr 192 [ T3 a7 4n.21

We can perform the two 1 integrations to form §-functions to

yield

. a* - -ig.b .
ig? [$ady. PRLHDL spe@isizpt.a) 48,22
We can make the transformation of variables

g = g+ np+ n’p” ~ 4n.23
where forms for n and n” in terms of 2p.q and 2p”~.q are given

later. This results in the form

-ig? a%g exp [-ig.b] , 4
28 Zm T (1q] 7 u?) | 4.2

and inserting this into equation 4A.20 we have

T (s,t) = 2i8 jdzb exp - (5 -5 ) .b]
E

i
{exp [5%

j%_;%.)z exg[—i;‘g.bl] _1} E X | 47,25

wh P -p)? =
ere (p1 Pz) t

This is the final form. All that remains is to evaluate the

Jacobeéns which have been left until now.

For the transformation of 4A.18 we go to the frame where
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p, = (E,~q/2,0,k)
p, = (£,a/2,0,%)
p, = (E,q/2;0.-k)
p, = (E,~q/2,0,k) - 4A.26

s = 4E? = +p 7)?
: (p1 P )

In this frame

P = (pl + Pz)/z' = (E,0,0,k)
P’ = (p: + P;)/z = (g,0,0,-k)
then if x = b -2poc + 2p~¢”

(p2E(0-0'),bl,bz,-ZkKo+0’)) . 4Aa.27

the Jacobean is

-2E 0 O - 2k| = 8Ek
0O1l1lo0 (0]
001 O
2E 0 0 -2k
2 : 2_ - : ' ‘
- 23[%7]% = 2s[1- iﬂ;—i] I ' 4A.28

For the transformation of 4A.23 we consider
o = 2p.q,0° = 2p°.q

and we wish for the transformation.

d*gq+dodo”d?q
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g = g+ np + n’p” where g.p = g.p° =0

Then

2p.g = 2np*+ 2n’p.p” = o

2p”.q = 2np.p”+ 2n°p"% = ¢~

Thus

g = g+ Rlp-pig’-p?o) ., p’(p.pio-p’’c’)
2((p.p7) “-p“p %) 2((p.p7)“-p°pP ™ °)

We go again to the frame given in 4A.26
Then
p* = m’-t/4 = p°*

p.p'é s/2 + (t/4 - m?)

Thus
2 . 2 . . . -2
- 2_ 2 2 __E - 4m _t = S__
So
2E » ” 2k L ”» -
= 2= (p.p”~-p?) (0+0°),q 9 , == (p.p +p?) (¢7-0)
g2 ' R . V
And the Jacobean is
c2 (p.p™-p?) 0 0 " (p.p"-P")
o . 1 (0] 0 -
0 0. 1 0
- ' 2 -
_2% (p.p"+p?) O O = (p.p +p?)
g g ‘ '

8 Ek(p.p”=2) (p.p +p?)
—
S

4A.29

-4A.30

4A.31

4a.32 .
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Now

(p.p”"- p’z)(p.p’+p?) = 52/4

Ek = 8/4

Thus the Jacobean is L
258
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Figure 4A1.The class of diagrams to be summed in the eikonal approximation.
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APPENDIX 4B

In this appendix we present calculations of various

variables in slightly more detail than in the main body of the

chapter.

If we take

P = xp, t yp, t+ P,

where

Pg, P, = Pg, P, = o 4B.1
Then

P = x2m? + yzmz—pé1 + 2Xyp_ .Py | 4B.2

Neglecting quantities of order y? we find

1 m2+p2 -xm?
—_ Ci1

y = . 4B.3
Sab ( X ) )
We now consider
- 2 = - - - 2
(p,-P.) ((1-x)p_-YP,~P; )

so t (1—x)2m2+y2m2-2pa.pb(l—x)y-pél

- - ex) 2m2—p2
ys (1-x)+(1-x) “m*-p,

(2-x)m5(m2+pé;) , : 4B.4
—_ v

Where pél is taken as a positive quantity.

If we consider s_ = (pc+pb)2 = 2P -Py .. §
Then s = 2 Xp,+Py * ym? |

| = X s, 7 4B.5
Also M§ = (pa + py - pc)2
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M; - (pa T Pp T pc)2
= ((1—x)pa + (l-y)pb - ﬁél)z
= 2pa.pb(l-x) + 0 (1)

= (I=x)sgy, 4B.6

It is now necessary to examine the variable s;b = (p;+p£ F.
We note that with the definition implicit in equation 4.17

and precursors

that a = 2pb.Qc = —2pa.Qa

»

= - 2
Thus s_, (pa Q, t P, tQ +Q)

) , ,
(pa + Py )4+ 2 (pa + pb).Qc + Qc

We recall the decomposition of Qc in 4.15 to write

. o
Sab =~ Sap T 0 * 2pa‘ (xs
. ab

(X2pa * Yy * Eél)+60) + Qé

+a +0 (59;) + 0(1) | 4B.7
a

Sab
Equation 4B.7 then shows us that we are perfectly entitled to
neglect oi/sab with respect to 1, since an eikonal approximation
should not deviate the'energy S;b far from sab" -
We are now in a position to consider Q2 and Q7. We

refer back to the §-function found in equation 4.16, and also

the decomposition of equation 4.15
. Q 2 ] -

' W oe M _ C M B

Thus Q. = 35 Pg xs Pp t Q%

o2 ; a2 N ch 2 2 2P¢.Pb 0Q? - 32
- *c _ xzsz~(§§4) )» x’s® ¢ c

Neglecting Qé/s and a/s we have

2 2y = -
Q2 (1L + =) 0z
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2 . _ A2
Thus QC = Qc 4B.8
where 6é is a positive quantity.
In a similar fashion we also have
2 ., _ A2
Qa e Qa 4B.9

and also for the barred quantities.

The next variable we need to consider is

Qc = (P - pJ)
= (p, -p;) - (Q, + Q)
Thus Q72 =t = Q2. = 2(p,-p.).(Q,+Q.)+(Q,+Q.)*

=t -2pa.Qa+2pc.Qc - 2pa.Qc+2pc.Qa
2 2 '
+ Qa + Qc + 2Qa.Qc
Using the form of the delta functions in equation 4.16 we
have 2p_.Q = Q; and 2p_.Q, = —Qé, thus -

tZ, = t = 2p_ .0 +2p_.Q,+2Q .0 4B.10

We have from equation 4B.4

t = (z-x)lnz._ﬂz.-.&12
X X

We now proceed to calculate the other three quantities on the

R.H.S. of equation 4B.1l0O

2

= 20 -—c | g M
2pa‘Qc T Xs (pa°pc) XS 27‘-:’a'pb~+ 2panc_

o 2 - N

= 20 (xm2+ypa.pb) -gg + Zpa.ch

XS

We neglect the first term since it is of order %

Thus (xp_+yP,+Py ).Q, = o0 |
: , » R . Q2 TR
=u _ 2p .Q H - C _2p «Q
and 2p_.0 " = - cl*¥s" ,Thus 2p, .0~ cL' c 4B.11

X X
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(-a+(Q_+Q,) ?)

u
2P.-Q, = 2(Xpa+ypb+p01).( = Pa
Q 2 ,
. ra u
+ s pb + Qa]
- 242 2
2% ( a+(Qa+Qc) )m + 2xpa.pra
s s
2y (=a+(Q_+Q ) 2) 2yQ2m? U o= U
+ Sa C pa.pb+ a + 2pc .Qa
Neglecting terms of order o/s or Q;/s we have
= 2 H =RU .
2pc.Qa = X Qa + 2pC Q) 4B.12
(—a+(Q_+0 )2 Q’p |
_ a “c ab + oV
2Qa“Qc B 2( S Py * s Q )'
_ Q2
o - < u
(xs P xs b + Qc)
_ -a+(Q_+0 )% o« _ =a+(Q_+Q )% Q2
= 2 ( a ~c %s Pa°Pc a ~c _C Py+Py
s I s XS
~a+(Q.+Q )2 = u Q2 _ Q20%m?
+ a *c pa.Qc +. a0 ~a pb.pc arc
s XS -s Xs
2 ._;u : -’ - -
o+ 82 PpeQc + 2 pc'Qg * 000, )
s Xs :

Neglecting all terms of_ofder o/s or Q;/s we are left with-

20, .9, 262. g

Putting together 4B.4, 4B.11,4B.12 and 4b.13

-them inio 4B.10 we finally arrive at
' H, AU _RU, 2
(P, +xQ +Q.)

X

m2

-— 2-—
(2 X)m‘ =t

-

tac

4B.13

"and substituting
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and of course R 1
» 2 m2 (pCIl+xQ—a- u+ QE)Z
tze = (@=xIm°- o 4 X 48,14

Finally we note that

— A o A"y 2
to = (pf - pg)

- - 2
(Q, + 0, - 27 - &)

and using equations 4B.8, 9 and 1l we can write

t = @M+ gt- oH- &t 4B.15
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CHAPTER V
An Application Of The Closed Regge-Eikonal

Formula for Multiple Exchange Contributions

To the Inclusive Six Point Function
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INTRODUCTION

We are now in possession of a formula for absorption
type corrections to the inclusive six-point function
which overcomes many of the heuristic defects of the
model proposed in chapter.III and we therefore wish
to perform certain calculations with the new model'
in order to examine it, both in its own right and
also in comparison with the o0ld model. To do this
it is natural to choose the same family of reactions
for the reasons stated previously - namely. the
simplicity in the Regge-pole picture. Accordingly we
will make calculations of the cross-sections for the
reactions

ﬂi + p->1 + X

T+

+p->*n + X

K" + p > kK° + X

K~ +p > K° + X

We will also calculate target asymetfries for all these
»interactions, which was not possible using the moael of
chapter III. We also note here that it is possible

to extend the formula of.chapter IV to cover the.cése
where two of'the scalér‘legs of Ehe Green's functionsi
(Pomerans) attach to a sﬁin % particle as is seen in
Appendix 5A. Also the formulé is derived for the case
of the coupling of two scalar mesons to a third scalar,

however the use of the formula for the case of a pseudo

scalar mesons should be quite acceptable.
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The input triple-Regge type expression we will use will

be similar to that used in Chapter III although there are
some differences which will be made clear later. It is
also necessary to relate various unmeasured cross-sections
(such as ﬂop elastic scattering) to measured ones. This

is done via the simple application of isospin, and results
in all absorption parameters being fully predicted. Simple
isospin ideas are alsovused to relate the sign of the‘

flip amplitude to that of the non flip amplitude in order

that the target asymettry be calculated.

The use of these ideas again leads to a model, as in
Chapter III where no arbitrary parémeters must be

introduced.

FORMALISM

From the defivations of Chapter IV [74] and the extension
of appendix 5A we can write down the foliowing formula
which will be sufficient for the purposes of calculating

. - L+ - o s
corrections to the reactlons,Q L + 0 X via charge

‘exchange.
We have_.‘ e 3
H(t,s_,M2) = f %, a%_ a%. &% :
o (2m? (2m? (2m? (2m?
S(8,,8)Y (¢ tag ty: Sy, M) S* (@582) - 5.1
“where

(22 22 - O
S = y{dABabd Bcbexpll(Qa.Bab+Qc.BCb)_

+ i(Xab(Bab)+Xac,b(Bab’Bcb)"'ch(Bcb)),]
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and

* = 20 L2.
S fd BaEd BCb exp[-i(CE.BEE+§E.BEE)

-1 —_— R —_— - _— I —_— —_— -—
l(Xab (Bab)+xac,b*(Bab'Bcb)+ch*(Bcb))] 2.2

and Xze. g car be expected

b

The mixed eikonal phéses Xae. b

to be small because of the basic assumptions of the

eikonal approximation, and the other phases are given by

_ 2 Js =2 =2

Xab = i__ a"Q_ exp(-iQ_.B_,)B,(-07) B, (-Q)
ab (2n)2 "

X =1 (3%  exp(-iB .B )8 _(-8°)8, (-B2)

cb > c" " cb’' e ¢’ b c
Scb /7 (27) 2
_‘2 'a(—QC)

where the notation is as for chapter IV,’

To summarise this dependance of the internal momentum

transfers on the Q variables we have

tac,- thin T i(pc1+XQa+Qc)
- = R 2
tEE‘— tain -’i(pCL+XGé+Qc)
& = —(B_48.-8--8-)2 - 5.4
o ~a'vca ~c ,

Here we have made a change of thation'in that we

now regard Qﬁoa and Qc as purely two dimensional vectors-

and the inclusion of the minus sign reflects the change
of metric. The justification for this change is given

in the first part of Appendix 5B.
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For the parameters of the elastic scattering
symbolised by the xs we take

a(t) =1 + a’t
(t) P
where aé is taken henceforth as 0.25

and  Eo(t) = —exp(—ima(t)/2) _ 5.5

We also use B_(t)B (t) = pet, B (t) B, (£) = pedt

Comparison with the absorption model ailows us to relate
the Ds and as to the quantities normally used nameiy.[57]
D = 4mCa, a = 1/4) - 5.6

where C is the opacity and would be'expected to take oﬂ

a value between O and 1,'and A is:the inverse of the
square of the radius of interaction . This correspondanée
can be seen in another way. Pumplin [LO]‘indicates‘that
fdzBabd2 |

absorption of the S-wavewhich a value of C such that

BCbS%O is the condition for almost total
0<C<1l brings about. Wifh this parametrisation the
eikonal phases of equation 5.3 become the fourier
transforms of Gaussians and as such can be performed

[61] to yield

= _3iD exp [ ;Bib/4A I

- X
ab ATA
. 2 . - .
X, = _iD exp | -BZ, /44" ] : - 5.7
cb A cb _
where.A =

a + ocp loge (sab) - 11rap/2
A = a + ap loge(scb) - 1ﬂap/2
The traditional absorption model can be recovered if

aé is set to zero.
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The form for the S factors in equation 5.2 is therefore
the fourier transform of the exponential of a sum of

Gaussians i.e.

2 . [
s=[dB expliQ_.B_.]l exp|-_D
ab a‘“ab ATA

exp{-B2 |
4

jol]
>'U
[SUSLA )

2 L= [
d“B ,exp[iQ .B , lexp|-_D_ exp|-B
~I cb ¢’ cb 2T .

> N
0
o
[N RS

L

and wﬁen the second exponential is expanded as a sum
of powers, we can exchange the order of the summation
and integral operations leaving a sum of Gaussian Fourier
transforms. These are similarly easily performed and

using a substitution from equation 5.6 we can rewrite

H(t,Sab,Mx) _‘fd Qa d QC d Qa d QC
7 2m? 2m? @2m? (2m?

K2ﬂ)252(5a) + 4m ) g—Ca!k exp[-ﬁiA/k]}
k=1 kk! k-1

(2m262@ ) + 41 § (cn®  expl-G2A/Ll
=1 zzlél—l'

2
Y(tac'tEE(tofsab’Mx)

{(2m262(@2) + 4r ] (-ca)™ _ expl-Gia*/mD
m=1 mm'A*m—l

' . b ., =2,
K2ﬂ)252(QE) + 4T Elf—Ca!n - exp [-QzZA*/n ]
n= ’*n—

nnlA f.5.9

It is equation 5.9 with an input Y term of the
form shown diagrammatically in figu;e 5.1 that we .

use to evaluate our form of absorption correction.

161



The detailed form of the off-forward 3 body amplitude
we will use is mentioned later. and given in the second
part of appendix 5B, and because of this form it is
possible to perform any of the integrals implied by

equation 5.9 analytically, as is indicated in appendix 5C.

The performed integrals in this appendix show that as
succeséively more external legs become connected by
intermediate Pomerons the integral becomes suppressed
not only by the expected factors of C or C” (always

less than one) and reciprocals of factorials but

also by factors (essentially) of 1/A or 1/A° ; in

the present case A and 2&° have; approximately, the |
numerical value of 5. Since the infinite series of
possible diagrams must be truncated at some point for

a numerical calculation, and because of this suppression
of the higher diagrams we feel justified in carrying
through the practical calculation for diagrams arising
from the exchange of not more than two extra, intermediate
Pomerons. Ali thé diagrams inclﬁded in this calcuiation
are shown in figure 5.2(a). It must also be noted

that the eikonal approximation treats all the diag;ams’
of, say; figure 5.2(b) simiiérly.A Tﬁe next step would
be to inélude diagrams up to 4 inte;mediate PomerOns.‘
_Thete would be very many such diagrams ; with the third
ana fourth orders at least partially mutually cancelling,
and with many of them heavily suppressed by factorials.

It was felt that the increase in programming complexity
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and computer time used in the evaluation of the

theoretical curve would not be justified by the expected

small change - most of the salient features of the

model should be included by the second order.

The reaction o LT 07X is fully determined by the
measurement of not only the differential cross section
but algo requires measurement of the target asymmetry
for polarised protons. This quantity, =, is given by
(161 .
= = DiscM2<—|T|+>
X

Disc,2<+|T|+> : _ 5.10
My :

where <A|T|A> represents the forward 3-body amplitude
for %+o_o_+%+o-o— and the 'incoming' proton has -
helicity A. The differential cross-section is, of

course, proportional to }<A|T[A>.
A

Appendix 5A gives us the clue as to how we must impiement

the inclusion of helicity flip, and equation 5A.11
indicates just how flip and non flip amplitudes can be

e G - 2y
Aformed, where the quantity Y(tac'tEE'to'Mx ) is a

matrix formed from available vectors and y-matrices.

It will be possible to use a less general formulation
than equation 5A.11 which is still sufficient for our
~purposes, as will be seen later, and to motivate thé_

choice for this and our choice of Regge exchanges for

163



the two quantitiés, differential cross-section and
target asymmetry, we first consider an M-function
decomposition for the three-body amplitude, wﬁere
we use thekinematics of figure 5.3 which depicts

the initial a-b cm. frame. (a is the incoming O,

b the incoming proton and c the "outgoing" 07).

The decomposition can be given in its most general

2
form as [77] HAA(t'S'Mx )
- A ’
= %__ul(pb)[A+BY.pa+CY.pc+Dy.pay.pay.pc]'u (pb) 5.11
m

where m is here the proton mass and
p, = (B .,-p ), py = (E,,P ), p. = (E.. q)
Then - )
H, ,=A- (m2-E, (E_+E,)) B/m+ (E_E) +pqCos0) C/m
+ (EaEc-quOSG)D/m

and

. ~ido
= D
H A(Ea+Eb)pq51nOe »

where p and g are the moduli of p and g , three

vectors.

Since the differeﬁt spin states must have the same

energy dependance and (Ea+Eb)pm§
2

and for Cos® = 1-0(1l) i.e. small t,
s .

EaEc—quosG@O(mZ)
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we see that the term in D in H++ is kinematically

suppressed ‘with respect to the other terms and
therefore effectively decouples in the triple-Regge
region. It is this behaviour that motivates our
choice of exchanges for the third or to leg of the

triple-Regge diagram (figure 5.4).

Thus for the differential cross-section we include_

the Pomeron,f-Reggeon for the tO exchanges.. These

exbhanges could be expected to dominate and will not
couple strongly to a helicity flip proton. These
terms are shown diégrammatically in figure 5.4(a).

The O O —-Reggeon vertex admits only p, A, or p and

Ay

exchanges for all the different processes. Since
the Pomeron and f-Reggeon have the same signature and
isospin properties [ 78] there will be no sign changes

between the ppf, A2A2f and ppP and A2A2P triple Regge

éouplings.

The flip amplitude, to which the target asymmetry
is proportional, is mediated by the p-Reggeon (shdwn
in figure 5.4(b)) since the helicity flip coupling of

the p to nucleons is large, and would certainly be .

expected to dominate the non flip coupling for small
g - | _ | _ | .
Havihg decided upon the possible third exchanges we

must incorporate the t, threshold effects into the

,flip-éoupling p-exchanges. To rewrite 5A.11 in a
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slightly different notation we require

2

Yp (tacl tg_ltolsab,Mx )

C

=u (pB)(ﬁg4m) r;g(¢5+m)u+(pb)

Yt ., t== 2y

ac acltolsablMx 5.13

2, . :
whereY(tac,taa,t S p My ) is to be given by a

o
sum of exponentials and is the quantity discussed in

appendix 5B. The quantity Fgg is some gamma matrix,

and all the threshold behaviour is taken to reside

in this spinor/y-matrix factor.

We can identify two facets of this behaviour. Firstly,
consistent with our formulation of the model in the
eikonal approximation we treat the proton-proton-
Reggeonnvertegas factorisable, and since the vertex
functions of spin flip Regge-vertex are required

to go to zero as -/t as tyOR9we wish this factor to

exhibit a /—to'behavidur of some form. Secondly we

insist thaf, afterinsertion;intoequation 5.9, andiafter
all the integrals have been pérformed this factor
produces behaviour of the férm indicatéd in equation
5.12 i.e. fhe integrals call down arfactor'of

qSinOei¢
,Wé thus replace the spinor factors by a multiplicative.

factor which is sufficiently generdl to produce the

behaviour we require. Such a factor is [32]
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. . +
p,,Cosé + Q. +0. * 1(pCL81n¢ + 0., Qc2)

: - - i i + - + 0-.)]
- {p_ Cos¢ + Q 1 +Q 1 + i(p_ Sin¢ Qa2 ch)
5.14

since it produces both the correct ¢ and P,

dependances as shown in appendix 5C and also goes

to zero if and only if /-to goes to zero. The

ordering of the barred and un-barred variables
corresponds to the +- ordering in the definition
of the target asymmetry as can be seen using

a simple form for the pp-p coupling and the vector

Py and Pg-

We now have sufficient calcuiation machinery to
evaluate the required contributions té the model, -
once we have derived forms for the three quantities
Yp, Yf and ?p and also the absorption coefficients
required i.e. C, C, a and a’ which we now proceed

to do. A detailed consideratién‘of the wwp-=7Tp

off forward triple-Regge terms is éiven in appendix 5B,
and the generalisation to the other reactions is o
straight forward. We use simple'isospin ideas to
relate unknown absorbtion p;fameters to known ones
and‘aISO to determine the re;ative‘signé’of the

flip (p) td non-flip (P and £) amplitudes. Stfong_

ekchange degeneracy is assumed between p and A2

in order to relate'the varioﬁs different‘reactions
together. The détailed way in which this is done and
also tables of the various coefficients are-given~in
appendix SB.
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The forms presented in this appendix are then sufficient
to allow the integrals presented in appendix 5C to be
combined in the correct forms for the calculation

and plotting of differential cross-sections and

target asymmetries as presented in the next section.

bb

e Regge expression used

Figure 5.1 The input tripl
la of this chapter.

for correction in the formu
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Figure S.2(a) The classes of correction diagram
‘actually used in the calculation of this chapter

ol
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Figure 5.2(b) A class of diagrams treated 51m11ar1y
by the eikonal approx1mat10n used.
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DO o°
o
[a]

1

>y

L 1 >

Pa

X

Figure 5.3. The kinematics employed for the
calculation. b is the incoming proton, a is_the
incoming O~ particle and c is the outgoing o
particle. :

C*—ﬁ e —c-q e
DiSCMg a-+=4S Sx—b— + 1S S,‘———
P ’ f
b ST TV ST .

Figure 5.4(a) The two exchanges for the t, or third -

leg giving rise to the differential cross—section.

C-th.

Discy2 | a»{S
X

.L +
- P,

Figure 5.4 (b) The single third_légrexchange'which
‘contributes to the target asymmetry -
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RESULTS

In figures 5.5 to 5.10 we present the results of
applying the new scheme for absorption corrections,
both for differential cross sections and target

asymmetries, to the reactions

= 0,,0
m+p+1 +X

+ +

1l +p+1r°+X+
m +p+n+x°

n++p+n+X++
ktipsrCaxtt

K—+p+Eo+Xo

at s = 100 GeV/c® for both t and M?/s distributions as
shown in the figures. In all cases allowance’for the
edge of phase space has been made, and.for the case

of the n, no allowance has been made for the branching

ratio-into yy:; the likely experimental detection node.

Figure 5.11 gives results for the reaction Kf+p+R°+x°

at the lower energy of plab =.14.3 GeV/c for which

experiﬁental»data exists. In all cases’fo; thé
differential_éross—sections, the so0lid curve répresents
the prediction bf the Regée pole only model giveﬁ above
and the long dashes represent the pfediction of the
absorption method Chapter II; which is drawn here for
_comparison purposes. The shor£ dashed curve is the

" prediction of the present model for the target asymmetry

the short dash curve represents the prediction of the
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present model - the two other models predict an

identically zero target asymmetry.

Turning now to detailed consideration of the figures,
the most striking prediction of figure 5.5(a) for the
reéction ﬂ_p+ﬂoxo is that the sighature dip, si
prominant in the pole only curves, and merely shifted
in towérd t=0 in the model of chapter III ié now
completely obliterated for low M2/s although it does

reappear for sz/s = 0.5. It would be difficult to

maintain that full Reggeization had taken place at
this point, and so less than full weight can be placed

on the predictions at this value of sz/s. The final

curves we produce in fact bear a fairly:close
resemblance in shape to those of Pumplin [40]
even though our starting points, and methods of carrying

through absorption corrections are dissimilar.

The plots for target asymmetry for this reaction show
quite a lot of detailed structure, showing the required

‘zero as pCl+O and also a reduction as sz/s increases,.

mainly due to the fact that a Reggeon with intercept
=) is used to account for the proton flip amplitude.
However since all target asymmetries, not just those
for this reaction-remaih below two percent it seems

Unlikely’that any . of the structure would be experimentallf~
measurable except in an eXtremely high statistics

experiment. All that these curves predict is that
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target asymmetry .should be "small". Figure 5.5(b) shows
the same reaction for various fixed t-bins. Any
normalisation dsicrepancy between these curves and

those for fixed sz/s is accounted for by the fact

that the curves for fixed t are found from integrating
the theoretical expression over the t-bin using an
8-point Gauss Legendre quadrature. This effect is
particularly noticeable for t = -0.5 GeV/c2 where

the actual pole value is below 10_3, shown by

figure 5.5(a), and the integration across the bin
raises it above this value. From figure 5.5(b) we see
that for small t, the absorbed curves show very little
difference in slope from the pole only curves, although
a decrease in normalisation is ihdicéted. At t =
-0.5 GeV/c2 the dip structure plays a strong part andAforr
'still higher |t] the slopes of pole and:ébsorptionlmodel

begin to separate. We note that the present model has a

greater slope in log (sz/s) than does the model of

Chapter III.
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Figure 5.6 (a) shows a very similar picture to that of
5.5(a) maihly because we predict no differences bétween
p+—Reggeon-proton scattering and that for p-—Reggeon
and proton even though we do take account of some
differences in the absorption parameters. The target
asymmetries follow the same general slope and are the
negative of those for ﬂ—p+ﬂox purely because we téke
-the Gp+p+po coupliﬁg as the negative of the Gp_p-po
coupling, as predicted by isospin. Figure 5.6 (b) again
shows the same similarity for the same reasons.

Turning to figure 5.7 (a) for the reactions n-p+nX°,

no signature dip is predicted in the range of |t

of interest here for the pole oniy graph, and the
present model follows the pole—bnlyrprofile fairly
élosely, although at a slightly reduced slope and
normalisation at small values of |t|. The present
model shows less structure than that of Chapter I1T
which predicts shallow dips at -t = 0.7 GeV/c2

for sméll sz/s, and for this reaction the target

asymmetries do not reaéh above 1%. Figure 5.7(5)'
shows the same reaction for fixed values of |t|

and for small |t| we see that the present model differs
from'the'pole only graph only in normalisation, not
greatly in slope, with a slight slope change introduced

for -t30.5 GeV/cz.

Target asymmetries show the same steady fall off in

| sz/s.
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Figures 5.8(a) and (b) show the reaction m +p»nX' ",
and again the graphs are extremely similar to those
of n_+p+nX° with the difference in sign of the target
asymmetry.
Figure 5.9 (a) gives the results for the reaction

+ o, ++

K p*K'X '. We note that the present model differs

in no great extent from the pole only model throughout,

as usual. There is a great difference however between
it and the model of chapter III which predicted zeros

for small sz/s. These zeros are nowhere to be seen

for the present model which we believe is as it should
be. Target asymmetries again fall short of great
significance. Figure 5.9(b) again shows very similar

slopes in sz/s for the pole only and preseht model
for small |t|, and slight deviations in slope as’sz/s

gets larger.

Figure 5.10(a) and (b) show the reaction K'+p+E9+x;

This is the line-reversed reaction to that of S.Q(efvand
(b) and so the pole;only graphs"are identical. The .
model.of chapter III showed_ﬁp great differences between
them becaﬁse of its Siﬁplicgfy in dealing with'phases.

The present model however, only gives differences in

detail (viz. the two plots for sz/s = O;lo and the

point where pole ohly and absorved curves cross) while
the basic shape is very much the same. The target

asymmetries are of course similar to those for
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kKtpsk®xt"  except with a sign reversal. Figures
5.11(a) and (b) show the same reaction at the lower
energy of Piap = 14.3GeV/c for which there is data for
the differential cross-secfion, although not for the

target asymmetry [62]. Considering the fixed sz/s

prlots first we see that, in general, the model of
chapter III gives curves that seem to exhibit too

much curvature for the data, and that the pole only
curves exhibit too great a slope in -t for the data.
The present model lies somewhere between the two.

It does not exhibit curvature and structure not really
called for in the data, and because of the strongest
changebin normalisation dccuriné for small |[t] it
shows a lesser slope in t tﬁat of theApole only curve.
The change is not really sufficiently great however
since in all cases the short dashed line passes through
the error base of only one or two data points, the
rest being taken out of range by the slope differences.
There is consolation to be had,.however,-from the fact
that better-agreement is obtained at the values of
Mx2/s of 0.125 and 0.175 than'largef values since for
sz/s = 0.375 it is possible;that the uppér legs

(see figure 5.1) are not fully Reggeized.

A further point to note is that for small sz/s the

data points for large |t| are accounted for, while for

larger sz/s the points at smaller |t| have the error
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bars interpolated by the present model. This effect
is seen better in figure 5 5.11(b) where we see the
general trend that all three models do not have sufficient

slope in sz/s, although the present model is a

slight improvement on that of chapter ITII, and not
greatly worse than that of pole only. Experience

with the parameter fitting process of'chapter IIT might
suggest that the present model could be»made to fit

the data with less of an adjustment of Regge—Parameters

because of its good behaviour in t.

It can be said, however, that agreement in both
normalisation and form is surprisingly good for a model

in which all parameters'are predicted beforehand.

All the calculations of differential cross-sections and
target asymmetries were carried out using the program
ONCPLT [65] , and all the figures were initially

computer plotted [49] .
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CONCLUSIONS

The strongeét conclusions that we can draw from this
calculation are that our model does not predict large
values for the target asymmetry, the largest value
calculated being about 2%. Secondly we do not expect
to see the signature dips seen in the exclusive cése

in the inclusive reaction at about t = -0.5 GeV/cz.

In our case they are absolutely filled in by the

absorption contributions.

To return to these conclusions in more detail it‘is
well known that either a factorisable Regge pole
[77,11 or a fixed naturality exchange [77,13] £for the

to leg-wili give rise to zero target asymmetry.

Eqgually well known is the kinematical angular behaviour
of any asymmetry present [7i11j3,14 '] which our
model properly reproduces. This kihematical behéviOur
includes a P, éuppression, and %his fact ;hat any
asymmetry’muét vanish'as pc; . plus the lack of
contribution from factorisable poles hasiled to the’

. beiief that any target asymmetry in the inclusive case
will be small)vénd therefore;difficult to measure. The

present model then concurs with this view.

If large (V10%) target asymmetries are seen
experimentally, then our simple prescription for an
off-forward, bﬁﬁ factorisable, Regge-pole exchange

for the tg leg would have to be abandoned in favour
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of some other mechanism. One such mechanism would
be the exchange of a pP cut down the to leg. This
entity is neither factorisable, nor of fixed
naturality and so would not be constrained to

give zero helicity flip contribution for to = 0, and

therefgre could be considered without any absorption
corrections of the type considered here. Soffer and
Wray [79} have considered just such a mechanism
in a way that leaves the upper Reggeon-particle
vertices free. They were thus able to factor off these
vertices for both flip contribqtions and non fiip
cqntributions. This approach limited them in
calculating kinematicai dependancies and they were
forced to insert the factor V=t by hand. Their
model is compared with data by Dick et al. [31] .
This data was obtained in a ﬂ—p +W—X experlment at

plab = 8 GeV/c. For 0.5<x<0.8 the model of Soffer

‘and Wray gives a target asymmetry falrly constant

"at about 7%, rising to about 10% at x = 0.95. On the.
other hand, the data pfesentéd give an asymmetry_fér
the elastic reaction (x =A1.02 of about 17%, and when

M, has risen to 2 GeV/c (x=0.75) the target asymmetry

cannot be said to be significantly above zero. This
could be an indication that when Regge pole exchange'

is expected to dominate (i.e. Mx2>4.0 GeV/cz) in the
to'leg then the target asymmetry does become small, as

predicted by a factorisable pole, and our model.
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If we consider the signature dips, and lack of them,
in nip+nox there is some high energy data avaiiablé,
as was mentioned in chapter III. O'Neill et al

are able to present a p-pole effective trajectory
which is significantly different from that predicted
by either elastic data or a Chew-Frautschi plbt,
indicaking that some form of absorption cdfrection
would seem to be indicated, although the data does
not extend to large enough values of |t| to resolve
the questions about dip structure. Our model
normalisation and theirs at t = O certainly agree

to an order of magnitude. An experiment performed
at the much lower energy of 5 GeV/c' [64] . Here
the |t| behaviour is presented out to 1.9 Gev/c2.

2

For Mx <2 GeV/c2 the cross—seétion shows a substantial

dep. However this cross section would almost

certainly be dominated by the reactions n-p+ﬂ°n

and n_p+woA° which could both be expected to exhibit

2

dip structures. Fér 2<Mx <4 the dip structure is

2

much less apparent. For 4<MX'<6 the tmin effect

extends to obscure the region of intereét. It does
seem likely though, that the dip structure will not
extend.to higher energies, and higher values of-sz.
Our last comment is on the failure of our model to
reproduce exactly the data of ref. 77 . .For lower

values of Mx2 and for a reaction mediated by m exchange
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instead of the present p exchange an attempt to f£it the

data using mp elastic cross-sections [59] met with

some success in fitting various dips and humps in the

sz/s spectrum. There is possibly some structure in
the sz/s data spectra, and were data, where high
values_of s/MX2 and sz were possible simultaneously,

available we might find better agfeement, due to

more complete Reggeization. This argument may seem

a trifle naive when the data for t = -0.3 GeV/c2

are seen to hold to a very straight line in the log -

plot of sz/s, but the effective p trajectory given

by O'Neill et al and that given for the p in chapter
IIT indicates that a simple Regge-pole picture,
exchanging poles with physical meaning, does not

hold up.

Several questions therefore seem to require data at a

much higher energy to resolve than satisfactory..
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APPENDIX 5A

In this appendix we show that the eikonal approximation of Chapter

IV can be extended to the case where the spinless intermediate exchanges

depend from a spin 1 particle.

We must first consider the form

2—

2.,.12 2. " |
LM (p "1 <p, [6(B) [p, > 5A1

T(B)=It L, ,,Lt, (p
20 Pb2+M2 Pb2+M2

in analogy with equation 4Al, but in this case
. -1
G(B) = (P - M - gB(X) + ie) ~ 5A2

or alternatively

_ PM g(P+M) B(x)(P+M) -
GB) = 5> +—35 > i 5 2 SA3
P M (P-M"-(P+M) gB(X) +ie(P+MI(P"-M")
where
. ;
Lt <p£' g+M2|pb> (pbz-M2)(p§—M2) =0 SAY
e>0 P -M
1
Pb2+M2
Pb2+M2

Using again the formal integral representation and operator identity of

equation HAS5 we can write

(P?-MQ-g(P+M)B(x)+ie(P+M))-l :

: Iw it ei(P2-M2'+ie(P+M'))t Texrift d
0 c

e 2 . e 2 2 .
e—l(P -M +1€(P+M))T(-ig(?+M)B(x))el(P -M +1e(F+M))t] 5A5
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In a completely analogous fashion to the analysis performed from equation
4A6 to equation 4Al2, we can insert equation 5A5 into equation 5A1 and simplify

to obtain
(p,py3B) = <p! |1 Texp {- i r dt (P+M)gB(X-2PT)}  g(P+M)B(X)2M|P, >. 546
It is at this stage that we eikonalize by replacing the operator 138 by

the C-number vector pbu, and thus making allowance for the spin character

of the particles we can write

: duxb ar i(pb-p];).xb
Te<Pb’p£;B) = 2MJ 7 u (pé)e
(2m)
Ez—b expl- ig r (¢+M)B(x—2pbr)d'rjIab_)ou)‘(pb) 5A7
o , .

If we make one further approximation which is consistent with the eikonal

formulation namely [ 80]

~)1! -1 nv . )

(e (g, 1 M) = 0 (e (20 (py) a8
we can provide the final formulation for

t., s
TE(Pb’pb’B) le

3 - [} ’
1(pb Pb).xb

(p. sp'3B) = 3 (1) {| d*xe
T\ PpsPp3B/ = 0 AP/ ¢
2 expl- i.2Mg r B(x—2pb'r)d1']| }2Mu"(pb) 5A9

a@b o % =0

This form is the analogue of equation 4A13 and can be inserted in equation

4.4 to yield
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4 4
(2m) "8 (p_+p, - P ~p5-Pp*pZ) H(p, sy 5P, 3p;PED)

oo 4
dp!' dpl
% P ' '
=DD f T u4 aq .2w6+(p 2-m2)2n6+(p‘2-m2)
(2m)"  (2m) ¢ e * e

44' e ! 1
(2m) "6 (pa+pb P.-PL PE+pg)
* 1_* 1.7 ' t
T (pgpgsA)T (pgpgs )t (p,5p)3A)T (p P! 35C)

u

A Y i(pe-pl).x-
B(PE){f d'x “PEPRp 3

— exp[+i2Mg J”
(2m) Sag

ﬁ(x.QpB T)dT]Ia '}
%5 :

b=0

Al A

)\'
v Ppp)

1
2(pL)¥(p2p{p} spLpg B D(p))}

At Y i(p,-p}). ' A
-"b d'x b b % 3 . b
u (p'){J-————— e —— exp[-i2¥g J“ B(x-2p, 1)d1] YouT(p)
D) (am® ooy, b =0 b

5A10

where we use the generalization of equation 4.3 to spin 3 particles to insert

the spinors around the Y function, which now has the character of a Dirac
vy-matrix of some general form.
So to effect the transition to one spin } leg we have only to make

the replacement

b (tacftéé’to’sab’Mi) > B -

A5 LY : 2
u ,(pﬁ)(¢E+M) (tac’taa’to’%ﬂa’Mx)

A

(g} +Mu b(pb). | 5A11

in equationvu.lg.
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APPENDIX 5B

The first section of this appendix deals with the

detailed representations of the vectors Ga and Qc.
If we take

(¥Ys_,/2, O, O, k)

g
[¢]]
!

pb = ('sab/zl OI OI "k)

P =_((X+y)Vsab/2, p.,Cos¢, p, Sin¢, (x-y) k)
' 2. 2 _ 2 |
where y = 1 m-+p~ —-xm - 5.B.1
L ( nleg, )

Then since pa'ﬁa = pb.6a = O so we can take without

any loss of generality

Qa = (O, Qal' Qazl 0) | - 5.B.2
If we now take
QC = (QCOI chl Qc2l QC3) - 5~B’3

Then we can use the two conditions
PeQc = PR = O

to eliminate the components gco and Qc3'

So,'pb.Qc = O gives
QC3 = -Ys_ ch - 5.B.4
2k

and pc.ﬁc = 0 gives

o = (X+y){§ Quo=Qc2Pc, Sind - chchC°S¢ - (x-y)kQ _,

V-' YS.BOS

SubStituting for'Qc from equation 5.BQ4 we have

xvYs_.Q = p

ab™co ci

(Q§1C°$¢ +7chsin¢) - 5.B.6
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For the region that interests us x is of the order of 1

and so-.equation 5.B.6 shows phat the Qo and Qc3
components are down on the ch and QC2 by a factor of
/5;%. Since the eikonal approximation assumes that the
region of importance occurs when Q.1 and ch (also

Q.1 and Q_, for that matter) are small with respect

to /E;; we are-justified in neglecting the contributions
from the Qco and Qcé componenté in the expression for
tac and to which is what we have effectively Qone in
equation 5.4.

The next:section of this appendix degls with the

representation of the off forward triple-Regge expression

for mwmp+mmp scattering. This has the-general form|[ 81]

: 2 :_

A

o (£l ) * o
s prac ) . a (t_.) -
ag Bnnp(tac) Sap p'ac Ep(tac)‘
M - 2
X MX
| | ap (k) ght 5.8.7
GppR(tac'tEE’to)gR(to)(MX) R'o BPPR(tO) :
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Where R stands for the Pomeron or the f- or p;

Reggeon, and the As are the proton helicities and

the E£s represent the appropriate signature factors.
Notice that for A#X for the Pomeron and f-Reggeon

that BQQP,t = 0. Also for the p-Reggeon B;;p = 0.

The p-vertex factor, however, does not take cary of
any threshold effects. These are left to be dealt

with by the factor of equation 5.14 and B;;p(to) is
taken to be a simple exponential in to' after
approximations have been made.

In order to decide on the precise functional form

of the various quantities in 5.B.7 we return to the

form of equation 3.12.

Thus we can make the identification

o (8) = 9 ((B5) <¢5)3)Fup [(l-a(£))/2
and 21m~{G (t.t, o)%JO)BppP(o) +
oe (O)
Gppf(t{t,o)if(O)Bppf(o)/Mx }

N o
- 1.404(m2p)3(98.6'+ 64.9/ (M)

We take [57]

ol [(l-ag ()

++ _
Boor (te) = 9ppe%s

at

and B (t)

o
ppp t DDP( Je

5.B.8

.. 5.B.10

where a is determined by considering Tp and pp elastic

scattering [ 82]
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There remains the functional dependence of G_R(t_ ,t--,t ).
op ac’ "ac’ o

This could in general be expected to exhibit an extremely
complicated behaviour [17 ] . However, at this level

of approximation we take the behaviour of GppR to be a

constant.

Separating out the two Mx2 dependencies of the R.H.S.

in equation 5.B.9 and assigning the two terms to
Pomeron and f-Reggeon resepctively we can acquire the

normalisations at to = O for the Pomeron and f-Reggeon

exchanges; having assumed the functional form, we can

then write down the terms

++ 2 -
Yp (acrtzgitorSap My ) = 9, () e (0g) Q) pog
2
Pl () sy % Facde (e )
2
MX

Sopr (Bs)ol8s) g o Tll-o (250) s, % (tadlg (t55)

: [okii o p'-ac ( ab)
2 2
~ M
_ X
2 .3 at 2,0y (t) |
.69.22(m"p) > %o (M %)% %o - 5.B.11
++ 2
Y l I ’ 2 = '
£ ( tgz.ty ;ab M, ) «¢5)c(¢5)a F%p
2
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F(l-a _(t_ )) (Egb) p(tac) gp(tac)
2
M
X -
o (t==) «
Y ’ (o] ac,
Iorn ((¢)5(¢5)a)Fap T(l—ap(taa)) fgh) Ep(taa)
2 M_
'81.12(m20)3 F(1-a(t ) (sz)“f(to) - 5.B.12
F(l-af(o))

For want of better information we take

2
Yp(tac'tSE'to’sab’M ) = ( (($5 c(¢5) )
2
o (t_)
P(l-ap)tac)))(fég) p rac’ £t )
2 .
M
X
o (t==)
T , p ' "ac
Gomn (Fs)e (65)4) g @) T(1-a (t——)))(__g) £, (tgz)
2 2
MX
' 2,3 o 2,0 (t) 7
oo /g 8;.12(mp )7 T(l-a (t))) (M “)"p'"0” - 5.B.13

P(l-ap(O))

where the overall normalisation derives from that of

the f—Reggeon.exchange. The numerical factor jz and the

quantity Tac; which takes on the values +], come from

the differing isospin between the p and £, and is the
ratio of the SU(2) Clebsch Gordan coefficients for

each.

We note here that the gamma functions arise from the
' Gell Mann ghost ellmlnatlng mechanism and are only want
for use at small values of t; accordingly we will

approximate them by exponentials in t.
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Also, by using ideas of SU(3) symmetry and strong exchange

degeneracy between p and A we need only alter the

2I
quantity ((65) c(<b5)a)F to ((Es)c(dss)a)D for A,

exchange, or for the various different particles a and c.

Thus, table 5.B.I gives the Regge parameters for the
four exchanges considered here, table 5.B.II gives
the exponential approximations used for the gamma
functions and table 5.B.III gives the quantities

((¢5)c(¢5)a)F,D and Tac for all-the different reactions

considered. The numbers in these tables allow
calculation of all the off forward triple-Regge

terms that are necessary for evaluation of the selected
integrals in appendix 5.C. Consideration of equations

5.B.11, 12, 13 show that the quantities YP' Yf and

?p are indeed sums of exponentials of the required form.

The last, short, section to this appendix deals with
the calculation of the Various.absorption parameters -

C, C,a and a“for the various particles and interactions.

We have

— 2y
C = otot/(ZnR )

where R is the radius of interaction which seems
fairly constant over the range of energies that

we have taken, and are given in table 5.B.IV.
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For our purposes.we relate the unknown total cross-
, o =0
sections of m, n, K and Ko on protons to the known
+ - + - : ‘
ones of m, m , K and K on protons using very

simple isospin ideas.

As‘sz/sab changes so does s for which we need

cb’
absorption parameters. To make this calculation easy
we assﬁme that total cross-sections of the four known
reactions are piecewise linear between the points

in energy given in table 5.B.IV. We can then calculate

a value of C at any energy assuming this linearity.
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TABLE 5.B.I.

- REGGE PARAMETERS FOR THE FOUR

EXCHANGES THAT WE CONSIDER

Trajectory]Intercept|Slope [Signature| Isospin
P 1.0 0.25 +1 o)
A2 0.47 0.905 +1 1
£ 0.4 1.0 +1 o)

TABLE 5.B.II - EXPONENTIAL APPROXIMATIONS TO

GAMMA FUNCTIONS

Function Approximation
I'(l—dp'(t)) 1.475605 exp (.6118244t)
I (1-ag(t)) | 1.307707 exp (.4856229t)
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TABLE 5.B.III - SU(3) FACTORS AND RELATIVE

SIGNS OF -THE p TRIPLE REGGE COUPLING TO THAT

FOR POMERON AND f

Reaction SU(3) factor Reéitive
o 2, gn.
T pTOX 2 o _
T p>nX 0 2/V3 -
ﬂ+p+nox 2 0] +
1T+p+nx o) 2/Y3 +
K+p+K°X V2 /2 +
K p+K°X -2 V2 -

TABLE 5.B.IV - ABSORPTION PARAMETERS

. — >
Reaction Energy (GeV/c)2 C A (GeV/c)
T p 100.0 0.669 0.0676
: 25.0 | 0.691 0.0676
mtp 100.0 . 0.694 | 0.0729
25.0 0.694 0.0729
K p 100.0 . '] 0.553 0.0676
25.0 0.572 0.0676
14.0 0.586 0.0676
ktp 100.0 0.551 0.0729
K 14.0 0.516 0.0729
7.0 0.516 0.0729
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APPENDIX 5C

This appendix is concerned with performing the integrals arising from

equation 5.9 analytically. To reiterate we have
2= 2= 2= 2=
H:[an dQc dQ:—_l dQE .
en? (n? @n? (n?
=2
f = (1) 't QA
(2m%6%(@ wum ] —__% exp(- )}
k=1 k.k!(Aa)
5 5o © (—l)lc "R‘ail aiAl
{(2m)°6 (Qc)+41T 1 exp(- T—)}
2=1 2.81(A")
=2 .
@ ~A®
2 0 = ( l)mcm m .Q
{(2w)787(Q=) +ur X = exp(- -
a m=1 m.m'(a%)"™" 1 m
N T
{(2m) 262 (Q) +4m ) ——— exp(- )}
¢ n=1 n.n!(A'%®)
Htaertsstor ). SIORCRER RN 5C1
'where
. = (pclc:osq;fqalwcl—ipc fm-iQaZ-chz) |
-(pclc°s¢+Q;l+Qa' -ip_ sin¢-iQ; -iQ; ) | 502

2 L ' 2 2

for integrals arising ffom the helicity flip 3-body discontinuity and

for integrals arising from the helicity nonflip 3-body discontinuity.
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The notation is as for the previously mentioned equations. Because

of the form chosen for Y i.e. a sum of exponential terms, we need only

consider integrals containing

E tac TFtac Gto
e e e

5C3

where E, F énd G can have small imaginary parts. Also because the

functions we are integrating are uniformly continuous we will be able to

exchange summation and integration symbols where necessary.

Therefore, the integrals that must be performed in order to be able

to construct all the possible contributions to 5C1 can be listed as:-

'=|||-'

_ EN

:Nli—- N

=

1
T

3|+

ll—-'
olF

: =1M||-'

=2

QA __
2= a = , Etac Ftac Gto
a"q, exp{= ==} £(Q, e e e
=2
Q A’ ==
2= c = Etac Itac Gto
d*Q, exp{ ) } f(Qc)e e e
2 Qa Etac Ftas Gto
a - ac o
d Qg exp{- — -} f(Qa)e e e
G Etac Ft3c_Gto
d“Q- exp{- cn 1 f(QE)e acgttacy
-2 =2
Q%A Q°A' -
2= .2 a (e} - - Etac Ftac Gto
f d Qad Q, exp{- o i } f(Qa’Qc) e e e
- L =2, =2 .
~ o AT QAT . prac Ptas Gto
f d2 Eszc exp{-j- am - :i } f(Qa,Qc)e Cet taCE
' =2 =2 .
QA Q_A® ==
2= 2= a a = = . Etac Ftac Gto
f d Qad‘QE exp{- "o } f(Qa’Qé)e e e
=2 =2 :
- 2= QA QA - = . Etac Ftac Gto
f_szad2Q6 exp{- __}a:_ - cn } f(Qa’Qé)e e e
) =2 .
: Q.A'  Q_A* : : ==
2= 2= c _ _.a S § j.Ebtac Ftac Gto
f d°Q d"Q exp{- — ~ } f(Qc,Qa)e e
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‘dzAv -Q-‘ZA'*

10. J_t_z_ f 45 oG, expl- R R R

11. % [ d26cd255d265 exp{- 6§A' - %A* - 62:'*} £, .3 ’-Q*E)eEtaceFtEEtho

12. .ig ( d26;d2aéd2aé exp{- GEA 6§A* _ 62:'*} f(ag’aé’aé)eEtaceFtEEtho

13. '-ig f d26;d26ed26é exp{- GEA _ GEA' _ 6%5'*} f(ag;ac,aé)eEtaceFtéatho

14, ig J d26;d26;d265 exp{- GEA - QEA' 6§A*} : f(ag,ﬁg,Eé)eEtéFethatho

L5, _i_g f d26a d25c d255 d235' . 6§A ) E;?A' ;E}:%A* ) 3;:'*}
f(a;;aé’aé,aé)eEtaceFtEEtho. scl

The order of these integrals are, of course 2, 4, 6 and 8 but since the
dependence on the l-components (say Q, ) decouples from all the 2-components,

‘ 1 - o
these integrals are made up of products of 1st, 2nd, 3rd and 4th order’

integrals.

Once the integrals listed 1 to 15 are written out the full'v
d;component dependeﬁce.shown it will be seen thaf tﬁere are jusf eight -
separéte integrals which must be perférmed,'ﬁnd that all the intégralsiéf
interest are formed from sums of préducts of theée eight, wifh possibly
‘different arguments. These integrals can 5e listed as:-

2
a) J dz exp{- Mz - 2Bzz}.

2 ]F

b) I dz z exp{- M z2 - 28 z}
p2 z

ﬂ.JH
Nl
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1 . - 2 ,2
c) - f dydz exp{ Myy - Mzz - sty - QBZZ + 2szyz}
d) 1 J dyyd.z exp{- M 2 M 22 - 2B y - 2B,2 + 2y __yz}
= yy Z y z vz
1 2 2 C L2
e) f dxdydz exp{- M x° - M - M2 -2x%x -2 - 28,2
372 yaz expi= By vy XX T 2By - 28
+ 2 « X + 2 + 7 .
Yy Y, X2 QYYZJZ}
1 2 2 2
£) "3/2 f dxxdydz exp{ M x° - Myy - MZ27 - 28 x - 28yy - 28,7
+ 2nyxy + Qszxz + 2szyz}
1 22 2 2 | 2
g) ﬁ2 [ dwdxdydz exp{ Mww Mxx - Myy M, Zz" - 2wa - 28Xx - 2Byy - 2B,
+ 2wawx>+ 2wawy + 2y W2 + 2nyxy t 2y + 2szyz}
h) "1 dwwdxdydz>exp{— M w2 - M x2 -M 2 _ M 22 - 28w - 2B x - 2B
s ' W X yy z W X yy
L :
+ 2Bzz + 2y WX+ 2ywywy + 2y Wz + 2nyxy + 2y, %% + 2yyZyZ}
5C5
Now Gradsteyn and Rhyzik [61] give us that
2., | B ‘B2 . - -
Jﬁ dy elou”+28u} _ /CE exp{a—} for Re a > 0 5C6
-00 ) o .
and . : A A
du.u e'Iau2+2Bu} - _B /ﬂf ex {Ei} for Re o >0
_w s /5 =

and repeated use of these two integrals is all that is necessary to evaluate

the multiple integrals of equations 5Ch.
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We list the forms of the integrals of 5C5 as

2
1 Z
a) VI‘T exp{M—}
z z
5, &
b) - —== exp{=—1}
M 3/2 MZ
z
B
1 vz
c) 1/2 exP{A }
A cyz
yz
' 2
where A = MM -¥%
vz Vv z vz
2 2
B = M + M + 2
vz sz ZBY Bszsz
8 M +8 v, 1 B
d) - L2 272 oxp{-YZ}
A 3/2 A z
yaz y
: B
e) = exp{-2Y2}
1/2 A
A Xyz
XYz
where A = MMM -H Y2 - M 72 - M 72 - 2y. Y. Y
Xy 2z x'yz MR Z' Xy Xy 'Yz Xz
2 2 2
Bxyz - AyzSX + szBy * Axsz
+ 2MXBy~BZsz + 2My8x6zyxz + ZMZBXBYYXZ
t 2B B Yy Yz t QBszny yz ¥ 2BkBnyzsz
- 3 + -1
£) [BxAyz + BinzMy + BnyyMz t Bznysz Bnyzsz?

XYz .

A B
exp{-2X%}

XYz
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B

g) 1 exp XYz,
A 1/2 A

wXuz WXy z

2 2
nysz

1

A
WXy Z

MMMM +
WXy 2z

where

Y

My yz

nyxz

2kawaszsz

2
Mwasz -

MMYWZ,

Xy

2
Bwayz

and B 2
WXyZ

2Bwawa,yz

+

+ 28 B A

W Z WZ,Xy

+

28xBZsz,wy

MMy

MY + My

with A
- WX,y2

Yb

+ B A

—[Bwayz . X WX,VZ

MwMnyz

My

M
X z2'wy

A
X WYz

Yy Wz HZ

wayz * waszsz *

+

2 2

* szwa

Y

2Mway wz'yz

- 2wasznysz

2 2
MwMzny

2
- MyMzsz

+ B2A

Yy WXz

2
z

+ 28 B A

W Y Wy,.X2

+ 28 8 A

XYy XyaWz

B

Yz 1 Y VuyYay

Y Y

B

A + B
YV WY 4XZ z

sz,xy]

2 2
xw'yz

My

Y. Y z

2Mwax WZ'XZ

wawaxy

- 2szszwany

+ BTA

WXy

Wz nyyz

5C7

h)

. 3/2

Aﬁxyz ,

B A
exp{z¥§z5}

WXYZ
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The form of the integrals e - h of 5C7 might suggest that the
algebra involved in determining them was almost interminalble however it was
possible to use the symmetry properties between the integration variables
to fix the final form without full recourse to detailed algebra. Part of
this is brought 6ut by the notation where any quantity with two or more
subscripts nof separated by commas is symmetric under exchange of any two
of the subscripts in position.

To conclude this appendix we give the expanded form of all the

integrals of 5C4 to show that they can indeed be written as sums and products

of the integrals of 5C5 and for integrals.l - 10 we also give the detailed
structure of the final answer. We do not do this for integrals 11 - 15
since these were not utilised in the actual calculations of this chapter,
and the form would be so complex that little or no insight into the analyti

properties woutd be gained from it.

1. 1 e(E+F)t dQ do £
T | a; a, a’
A 2
exp{-(= + Ex + G)Q -2p_ Cos¢EQ_ }
k a c a
1 % 1
A 2 s
: exp{—(E-+ Ex + G)Q” -2p  Sin¢EQ_ 1}
a c a
2 1 2
. for f('da) = 1
2 2 : -
. p, E .
I - exp(E+F)t exol 1 }
a,k Cé‘+ Ex + G) i 2imx+oe
Tk ‘ k :
for £(Q) = Q + iQ_ .
a ‘a) a,
. 2 .o
-p, Ee'? p, E
I! 73 1 = exp(E + F)t exply L }
@ (2 + Ex + G) . T tEx+6

c
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l —
2) P dQ, do, £(Q).

J(E+E)t J
1 2

N
exp{-(3— + 2 + Q2 - 2p_ Cos¢rf:—(Qc }
1

1 1
1
exp{-(%— + E + G)Q2 - 2p SinquQ }
X c c X c
2 1 2
for f((_ic) = 1
pi E2/x2
I - __exp(E+4F)t exp 1 }
¢t A LE ELE
(9, 5t G) T tx*6
for £(Q.) = Q. + iQ
c ) <,
-P, E/x et? exp{(E+F)t} pi 1522/x2
Tes © }\' 3 2 exP{A'l 7}
i (>—+=+0) = +=+0
2 X 2 X

. 1 2
A% 2
exp{-(=— + Fx + G)Qa -2p_ Cos¢FQy }
m e ! 1
. A% 2 .
~exp{-(— + Fx + G)Q§ -2p_ Sin¢FQ; }
. . 2 —1 2
for f(aé) = 1 . ' -~
P2 F
© _ exp(E+F)t 1
i T T —
~ (-m— + Fx + G) ==+ Fx +
for f(aa) = -Qz - iQj
: 1 2
P, Fglpexp{(E+F)t} pi F2
Iy o= i,.‘ — 5 exp{;‘;:‘-]-'-——}
s (= + Fx + G) T tFx+G6
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' 1 (E+F)t =
4) T © J dQEldQ62 f(QE)
' 1 .
exp{—(ég— +‘£ + G)Qg - 2pc Cos¢5Q6 }

A':':A F 2 . F
exp{-( —+ -+ G)QE - 2pclSln¢;QE2}

for f(6é) =1

2 2,2
pc F™/x
I- = exp{(E+F)t} exp! 1 }
c,n (A% F A'® F
( 5 ” + G) = + ” +»G
for f(-Q:—:) =-Q; - iQg
1 2
P, F/xel¢exp{(E+F)t} pi .F2/x2
Ten” lA 3 2 exply - !
? (= += +0G) = +=+0C
n X n X
1 E+F)t = =
5) L E) f aq, do_ dq_ do_ £(T,3.)
T 1 1 2 2

exp{-(-f-:‘- + Ex + G)Q‘f1 - (%—- + ?{- + G)Qi - 2p_ Cos¢EQ,
1 1 1 1

N X E' ) - .
. -2p Cos¢—=Q - - 2(E +6)Q Q_ 1}
N x'c, a; ¢

E . \.2 .
7.1 G)Qc2 2pclS_:Ln4>EQa°

4 1
expl-(£ + Ex + 002 - (5 +
_ . ‘ 2 :

E, '
- 2p Sin¢=Q - 2(E +G)Q Q_ .}
TG *% )

]
=

for f<6;,6;>‘

exp{(E+F)t}
A A"
(§-+ Fx + G)(2 +

E

I =
ac,kt _ <t G)—(E+G)2
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2 E2(A

A' 1 2
P —2+T+G(;-l))
1l kx

exp { = } :

(-]‘%+ Ex + G)(%'—-I-; +G) - (E+G)2

for f(6;,6;) = Qal + ch + i(Qa2 + ch)-

A' A, i¢
-pclE(z— +-F;)e exp{(E+F)t}
1] -
Iac,kz»}( A

k

]
+ Ex + G)C%— +~g + G) - (E+G)2}2

2 2, A A 1 2
ch(;(—x—2+2 + 6 - 1Y)

T }
(%-+ Ex + G)(%— + §-+ G) - (E+G)2

exp{

dQ,  £(Q5.Q,)

1 (E+P)t I
6) — e dQ-.dQ_ dq-
2 a1 ¢ @ %

A% 2 A'
exp{-(=— + Fx + G)Q. - (— +
m a) L

»® |t

2

'+ G)Qc

- 2p Cos¢FQ- =- 2p_ Cos¢E/xQ + 26Q- Q_ }
Cl al Cl Cl al C

2 ' 2
:exp{-(ﬁi + Fx + G)Qg - (%—-+‘§-+ G)Q02
. 2

- 2p Sin¢gFQ- - 2p_ Sin¢E/xQ_ + 26Q- Q_ }
ks B 9 €2 82 ¢

for f(ﬁé,ag) =1

. exp{(E+F)t}
a,c,m,8 (A" - E Ax A2
(2 to G)(m + Fx + G)-G’
2 (02(-4-'--+‘E +G) + EZ(éi + Fx + G) - 2EEG,.
‘Pc L x> K2m x X
exp{—3 o }
G-+ I+ O+ Fx + 0) - ¢

for f(§;,6;).; Qc —'Qa + ch - iQE

1 1 2 2
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FA%
. pCl IFQ— - 19 exp{(E + F)t)

da,c,mg X ! .
E A% 2
{(z to G)(E— +Fx +G) - G}

2

pz
€

E

' . 2 &
Fe-+Zro+ E & o - 29
X x2 X

}

expf{ =

(-—+—+G)(—+Fx+G)-G2

1 (E+P)t o =
7) “2 e J anlanlan2dQ52 f(QaQa)
\\
exp{—(-% + Ex + s)le - & +Px ot G)le

- 2p_ Cos¢EQ. - 2p_ Cos¢FQ- + 2GQ_ Q- }
Cl al Cl a al al
b
exp{—(é-+ Ex + G)Q2 - i+ G)QE
k a2 m ‘ a2

-

- 2pclSin¢EQa 2p, Sin¢FQ, + 26Q Q }

2 1 1 2 %2
for f(ﬁ;, Q

I - - exp{(E + F)t}
a,a,k,m A A% 2

(f +Ex + G)(—+Fx +6) - G
) *
p2 (°R + Ex + @) + B + Bx + ©) - 2870)

exp{

A A% » 2
(T<'+BX+G)_(m +Ffo) - G

for £Q,, ;) =Q - Q5 +i(q - Q).
: 1 1 2 o

FA EA* . i¢ .
[-k—-'-—m—']e exp{ (E +F')t}.

P
I = ‘c'l' :
2,3 (B4 Ex + c)(f;i +TFx +G) - GO}

pi IF2(£‘+Ex+G)+E(—-—+Ex+G)-2EFG]

>exp{ E3 2 }
-(%+Ex‘+G)(:—-+Fx+G) -G

}
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1 (E + Dt = =
8. = dQ  dq- - -
7 e f %, %800, 9, £(q,.0)
. ) : 1%
exp{—(]ﬁ(\- +Ex +6)Q° - A2 + £+ )02
a n X C
1 1
' F
- 2p Cos¢EQ. =~ 2p Cos¢ = Q_ + 2GQ_ Q- 1}
.Cl al Cl X Cl al Cl
A 2 A% T 2
exp{—(-k- + Ex + G)Qa - (—;— ot G)QE
2 ‘ 2
. F
- 2p Sin¢EQ. - 2p Sing = Q + 26Q_ Q- }
Cl a2 cl X C2 32 C2
for f(Qa E) =1
I _ exp{(E + F)t}
o - LS
a,¢,kn (i}‘:— + Ex + G)(AT- + 5 +6) - ¢
2 F2A 2 A T 2EFG
P, 5{x +Ex + G) + E (5——+;+G) - =5
exp{’ 1x }
A A'* F 2
(f +Ex + G)(—— +-§+G) G
for £(Q_,0) =Q -Q +i(Q - Q).
a’’e’  Tay 7o 3
’ 1% i :
P, %“—( - EAn | el¢exp{(E + F)t}
- 1
It = T
ac,kn {(% + Ex + G)(f‘—ﬁ-i + % + @) - &%
2 FAy me s ) + B2AL 4 Ky o) - ZEES)
Pcl X2 k . n X 2 )
exp A AT T 2 ¥
(-E+Ex+G)(-n—-_r;+G) -6
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l -
g. ;5 I anldQEldQ§2dQE2 f(Qa QE)‘

F 2 A% 2
<t G)QE (m— + Fx + G)Qa

19
exp{—(!%;— +
1 1

F
- 2p Cos¢—Q- - 2p Cos¢FQ- - 2(F +G)Q_ Q- }
Cl X cl cl al al Cl

A'% F 2 A% 2
exp{ (—5— tot G)Qa - (= + Fx + G)Qa
. 2 2
F
- 2p Sin$=Q- - 2p SingFQ- - 2(F + G)Q- Q- }
cl X c2 cl a2 a2 02

for f(65 65) =1

exp{(E + )t}
== - (X3 E3
ac,m - (B 5 + G)(ﬁ—— +Fx + Q) - (F +6)°

n
2 A ) + 5222 L L6y - 2x(F + @)
pc;-2—l(r-n——+f‘x+e +X(T"'_§'+G‘X + G
exp{ 1% X3 }
(A +£+G)(!—\‘-—+Px+G)-(F+G)2
n- X m .
“_ ) = - (o _ oL s _ +o.
for f(Qa Qc) (Qal + qu) %(Qa2 ch).
1 CIRE |
P Al 4 A2 ]el¢exp{(E + F)t}
Cl n mx - .
I = TH % ) ’
ac,mn AR F L@ +rx +6) - (F + 0)°)°
n X m .
2 2 e ' 1%
o) E—I(A—+FX+G) +x2(A—’—'+£+G) - 2x(F + G)}
cl x2 m~ x ‘ »
exp{ TTE T }
(= +

A% 2
;+G)(-r-n—+rx+G)-(FfG)
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l — -—
10. — fdQ dQ. dQ_ dQ- £(Q_,Q
w2 C) € Gy ey €

)

c

' | E 2 'y
exp{—(%— tot G)Qc - (égi + Fx + G)Qé
1 1

E 3
- 2p, Cos¢ =—Q_ - 2p Cosp —Q- + 26Q_ Q- }
Cl X cl Cl b 4 cl cl cl

A' E 2 Al 2
exp{ (E +o 4 G)Qc2 (T + Fx + G)Q62

.  E ., F
- 2p Sing = Q_ - 2p Sing — Q- + 26Q_ Q. }
C:L X C2 Cl X C2 C2 C2

exp{(E + F)t}

Iz - ' LE3
ctan (AL L E LA Z s E,0) - ¢
L b4 n X
t 1 .
pi /x2 [PQ(i\— +£—+ G) + E2(An_ +£+ G) - 2EFG] .
exp{ - }
A' E Al E 2
(T+§+G)(n+x+6) G
for £(Q ,Q-) = Q, - Q-' +1(Q. -Q:)
e e 1 < %
FA! EA'® i¢ .
o pcl [xl — ] e Vexp{(E + F)t}.
cétn - _A' _E A% T 2. 2 "
» '{(T+;+G)(T+;+G) G}
’A ] 1 <%
pi /x2lF2(i— +;E(-+ G) + Ez(fA-ﬁt +£— + G) - 2EFG]
exp{ AT _E A% T 2 b
- (- +x t G+ +0) -¢C
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1. = o (E+F) J dQ, dog dQ dq, dQz dQ; £(Q_,Q5Q;)
i 1 1 1 2 2 2
(A" E 2 A% 2 _ A% F 2
exp{ (2 +;+ G)Qc - (r—n—'f' Fx + G)Qa - (T+-)_{-+ G)Q(-:
1 1 1
- 2p_ Cos¢ E Q - 2p Cos¢FQ- - 2p Cos E Q
Cl X Cl Cl ) al Cl X Cl
+26Q. Q= +26Q Q. - 2(F + G)Q- Q- }
Cl al Cl Cl ] al Cl
A' E 2 A% . 2 A% F 2
exp{ (T tot G)Qc - (-m—- + Fx + G)Qa - (¢ =4 G)QE
2 2 2
- 2p_ Sin¢ E Q. - 2p_ Sin¢FQ. = 2p_ Sin¢ E Q ‘
Cl X C2 Cl 8.2, Cl X 02
+26Q Q= +26Q Q- - 2(F + G)Q= Q- },
02 8.2 C2 C2 a2 02
where f(a ,6—6—) =1 or =Q -Q -0Q. +i(Qz -0Q.-Q )
C ac C:L al Cl C2 X 02 a2
1 (E+F) I =
12, = e dQ_ dQ- dQ. dqQ_ dq_. dQ- £(Q_,Q-Q.)
“3 al a_.L cl» a2 ;2 c2 a’‘a‘c
. t3 LE F
exp{—(-]é‘- + Ex + G)Qfl - (ﬁ— +Fx + G)Qg - (%— tot G)Qé
S 1 v 1 1
- 2p Cos¢EQ_ - 2p Cos$FQ- - 2p Cosé — Q=
C1 3 AT | ¢ - * %
+ 260 Q- + 260 Q- - 2(F+G)Q= Q= } : -
S b s 314 ,
‘ ' * '* F 2
exp{-(-}é- + Ex + G)Q§ - (-%—_ + Fx -+ G)Q; - (-AT tt G)Qé-

2 2 : 2

. o . F
81n¢FQ52 - 2pc Sin¢d oy QE

2p . SingEQ. =~ 2p
c a “Fe 1 9

1 2 1

2GQaZQa2 + 2GQa2QE2 - 2(F + G)Q52Q52}

o+
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1

2

13. & o(E+E)t f dq_ do, dQ._ dq, dq_do; £(T,Q.3,)
m 3 €1 @ 2% %
A 2 A' E 2 A'% T 2
exp{ (k + Ex + G)Qa (T + ; + G)QC (T + ; + G)Qa
1 1 .
«=2p Cos¢EQ. - 2p Cosé E Q - 2p Cosé¢ E Q-
Cl al Cl X Cl Cl X Cl
- 2(E+G)Q. Q +26Q. Q- + 26Q Q- 1}
al Cl al Cl Cl Cl
A 2 A' E 2 A'% F 2
exp{ (k + Ex + G)Q‘_=l2 (2—' tot G)Qc2 -(—-r;- t ot G)Qz
-2p_ Sin¢gEQ. - 2p_Sing £ Q. - 2p_Sin¢ E Q
Cl a2 Cl X Cl Cl X C
- 2(E + G)Q, Q +26Q_ Q. +26Q Q- )
a8 ¢ 3y S € ©o
where f(a_‘ ) 1 or =Q +Q -Q- +i(Q +Q -Q).
al Cl Cl a2 C2 C2
. Lo JER f dq, do_ dog dq_ dq_ dog £(Q3.05)
B 1 1 %1 %2 C2 %2
‘ 1 . % ' .
exp{—(% + Ex + G)Qi - (-‘:— +;E:- + G)Qi - (-:T— + Fx + G)Qg
1 ) 1 al
R ‘
- 2p_ Cos¢EQ - 2p Cosd —Q - 2p Cos¢FQ-
¢y a; ¢y x ¢y ¢,
-2(E +G6G)Q._ Q@ +26Q Q- + 26Q Q-1
a3¢ - 1Y 1 4
. A 2 A' E 2 A% 2
exp{-(f +Ex + G)QC - (5—+=+0G)Q. - (= + Fx + G)Qz
k. a2 2 X _ c2 m a{2
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. E
- 2p SingEQ. - 2p_ Sin¢ — Q. - 2p_ Sin¢FQ-
¢y a, ¢, x e, ¢y a,

- 2(E + G)Qa Qc + 2GQa Qa + 2GQc QE }

2 72 2 “2 2 92
1 (E+F) f =

15. = e" ‘ dQ_ dQ dQ- dQ- dQ dQ_ dQ. dQ- £(Q Q Q.Q.)
nll a; cl a; c-,L a, <, a2 c2 a‘c‘a‘e
' %

exp{—(;—} + Ex + G)Q:l - (%—- + 5— + G)Qi - (%— + Fx + G)Qag1

1 1 1

A LI 0
TSR R %

E 3
- 2p_ Cos¢EQ - 2p Cos¢p —Q - 2p Cos¢FQ- - 2p Cos¢ — Q-
¢y a, o X g ¢y a; ¢y X "¢y

- 2(E + G)Qachl + 2GQalQal + 2GQalQEl.

+ 2¢.Qc QG - 2(F +'G)Q5 Qs }

+ 20Q. Q-
a, a 1 %1 1 <1

1l

A 2 Al E 2 A% 2
exp{—(i- + Ex + G)Qa2 (‘2 tot G)Qc2 (m + Fx + G)Qé—12 B

F . 2
+ G)Qa

1%
- (___An + =
x 2

' ws., E . . F
- 2p Sin¢EQ. - 2p Sin¢ — Q - - 2p Sin¢FQ- - 2p Siné = Q-
cy | a, ¢y x "¢y ¢y a; c; x "¢y

- 2(E + G)Qa2Qc2 f 2GQa2Q52 + 2GQa2Q62

+26Q Q- +26Q Q- - 2(F + G)Q= Q= }.
cy 32 a5 ©5 ‘ 4 ¢

- ek -

3 .

where £(Q Q503 Q) =1 or = Q +Q, -Q -Q +i(Q *+Q, -Q; -Qz)
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It is easily seen that integrals 11 - 15 of 5C8 can be performed by

repeated application of the integrals e - h of equations 5C7. We also

. . i
note that the correct kinematical factor namely, pC e ¢ 5

1
multiplies all the I' integrals which contribute to the "flip"

discontinuity, i.e. the target asymmetry. This justifies the choice of

the form of the factor given in 5.14.
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CHAPTER VI

Reprise
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In the preceding four chapters we have developed a fairly
sophisticated model for the evaluation of absorptive tépe
corrections to so célled triple-Regge distributions. This
has proceeded via the writing of a fairly large computer
program [65] which is intended to ease the extensive data
handling, célculations and, not least important, display_of
results, which accompany work on single particle inclusive
reactions. Wé then went on to develop and‘évaluate a fairly
simplistic model for incorpdrating absorptive corrections with
the basic triple-Regge formalism. This simplistic model was
however found to be too naive in concept, and was shown up as
unsatisfactory, both at an heuristic and phenomenologicai level.
The next stage was to develop a more rigorous and better
motivated model. While the previous model was derived from the
stand-point of considering the sums of quasi-two body
reactions, the newer model was to consider absorptive type
corrections to a three body»amplitude, taking the discontinuity
in M; to make contact with single particle inclusive reactions
via the generalised optical theorem of Muller. These.
corrections were of a fairly géﬁerai type, uﬁder thé Regge-eikonal
approximation, but we re-iterate that we could notAhope to
ihcorporate ali possible corrgcﬁions of the type we were .
considering, énd.still have been able to retrieve a reasonable,
ciosed, eikonal fprm at the end of the Calculations.i We were,
in fact, pléased and suprised at the level of approximétions.
ﬁecessary in orderAtd achieve the finalAcloéed form which does

not come about as simply and automatically as in the two body case.
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In the final chapter of these four the formula just derived
was applied to the problem of charge exchange spinless
meson reactions. None of the gross heuristic and
phenomenological defects of the. previous model were present
and comparison with data was quite encouraging, although
complete agreement was not found. This might possibly be
put down to the relatively low energy of the experiment for
a "triple-Regge" type calculation. We feel that data at a
substantially higher energy are needed in order to be able to
resolve questions of the detailed sz/s dependance. Such
data should be available in a rélatively shortvperiod.[56]
Quite a lot of effort has been expended on the question of '
absorptive corrections to the triple-Regge spectrum, and quite
a few calculations have been presented in the literaturé.'
Those, to date, that I have found most interesting haveABeen
briefly considered, separately in Chapter I. It is now
possible to "compare and contrast" these formulae with that
derived in Chapter IV.
V ferhaps the most useful form in which to view the formula

‘of Chapter IV isA(see 4.19)

l

. 2A 25 - 2= 2
H(t,sab,sz) =479, 479, 470 d°Qg
(2m)y?2 (2m? T(2m)? T2m)?
_; - - ' 2 >—-\ - . .
S(Qach) Y (taclt'a'a‘l to'_sab’ MX ) ,S* (Q;,QE) ) E 6.1

- Our model does, in fact, make a specific, eikonal, choice for
the form of the S factors, but.we need not be concerned with this

precise form. Equation 6.1 is enough.
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When we turn to other models we see that an equation of

the form
_ (d%*k, 4a%k;
H(pc;) - ‘IZH 2T SEff(pCL - kz)
Y(pg, = kv P, = K ) S* pe(pg, = k7)) 6.2

crops up repeatedly. Note that the slight'change in
normalisation is taken up in the Seff factors. This formula is
used by Craigie and Kramer [36] , Goldstein and Owens [46] and
Capella, Kaplan and Tran Thanh Van [41], although this fact is
not transparent in the last case. Different definitions of the
impact parameter and hence k, are made;  such details should not
affect phenomenology, and also different definitionsAof_Seff, which
however, always refer to rescattering in the a-b or 1-2 channels.
Pumplin [40] also produces a formula of this type, but in his case
the re-scattering is deemed to occur in the c-b or 3-2 channel.
Since in most of the detailed models the ébsorption paramters
‘will not be strongly enefgy dependant, even this change should
A.not be strohgly reflected in thefphenomen§l6gy.:‘ |

Paige and sidhu [39] derive a formula, not too dissimilar to
that given in equation 6.2, from the viewpoint ofvthe Reggebn
caléulus, however, while equation 6.2 clearly allows for the
possibilify of rescatﬁering in both tﬁe *incoming" and “outgoihg“
1-2 or a-b channels, Paige and Sidhu- discouht thié, and make the
correétion to the pole ohly graph with the sum of the two "sinély
rescattered" graphs with an extra elastic reaction in either |
the "incoming" or "outgoing" chénnel;_i Their.derivation uses
the Gribov pﬁt cbupling functions~of.the form ﬁaSaz(qJL +k , ,k,)

for the upper 1,3 vertex apd Nagaz(kl)'for the 2-2 vertex.
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Of course in this form there is no factorization into the form

%
Serr ¥ Sgff

where the Y represents the pole only expression. However,
Paige and Sidhu specialise to the "absorption model" form for
these functions, namely

Nasaz(tZ’t’) = B13a5(t2) B11a5(t')

2 .
Baap (£7) : 6.3

Nauaz(t ')

and the use of this parametrization brings their model more
nearly to the form given by equation 6.2.

Bartels and Kramer [45] also derive an absorption model in
the Reggeon calculus. They make similar assumptions to Paige
and Sidhu, but go much further by considering more complicated
diagrams, including enhanced graphs (graphs with more than one
triple-Pomeron coupling) and also by deriving an eikonal-
approximation which gives a similar form to that of Capella et él.
Bartels and Kramer indicate that they feel at present day'
‘energies several terms in their eikonal expansion will be
important while at highér energies the enhanced>graphs will
assume greater and greatgr importance.

We now return to a point made in the abové authors
derivation of their eikonal modgl; némely that in the éase df{
charge exchange with also the exchange of éeveral eikonal
Pomgrons they can see the 2 particle - ixPomeron, 1 Reggeon cut
coupling function N_,, in either of the forms gg gaRé or
gachg. ' This is of course in the eikonal apprdximation, and
from their point of view the formula derived in Chapter IV and
re~-stated in eéuation 6.1 appears to embody'SOme over éounting.

We shall return to this point shortly.
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The above discussion then shows us that all the available
absorption or cut correction models can be obtained almo;t as a
subset of that given'in Chapter 1IV. of vafioué different
S-factors and input Y expressions would need to be used, with
one or other of the eikonal phases y set to zero to regain either
1-2 or 3-2 ré-scattering only, and for the approach of Bartels
and Kramer, the Y graph would have to embody various enhanced
graphs. .

There are a few further points we wish to consider however,
In the case of two body reactions the parts a) and b) of
figure 6.1 represent two candidates for the two body cut. They are
represented in ¢ theory for siﬁplicity. Diagram a) was first
studied by Amati et.al. [20] and b) by Mandelstan [23] who showed
that b) will dominate a) as s»+w, The rigorous argument is quite
complicated, however a simple physical argument shows the
underlying reason. Clearly figure 6.1 a) has two Reggeons
emitted sequentially while b) can have the two emitted
simultaneously. As s>~ the two particles will spend less time
in their'mutual interaction radius and two sequential events
become less favourably indicaﬁed, |

This fact however, has not put a stop toAan immense amount
of phenoﬁenology using figure 6.1 a) as its basis, It is éhe
- so-called absérption.model, and whilemuch successful work has -
resulted, there are indications in the polarisation measurements
in- p+w9n and the line reversal breaking- of K+n+K°p and
_K'p+ﬁ°n, whiéh.could,nét be acboﬁnted»for by the traditional .-
absqrption model, that the precise phése of the cut is not well
accountéd'for. " This led to the proposalrof the i-factor model
[ 84]which by a brute force adjﬁstmentvof the phase of the cut

was able to account for both these phenomena[ea,sm .
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More recent phenomenological analyses [ 86, 87] and a theoretical
argument [ 88lin a simple multi-peripheral dual type model lend
support to this kind'oﬁ model. A corresponding calculation in
the Reggeon Calculus| 89] , where a more complicated form than the
absorption model prescription for the cut coupling functions is
used, is showing encouraging results. |

All this points to the fact that the traditional absorption
model is likely to be unable to reproduce the precise phase of
the two body amplitude. Every calculation, including our own,
however, does use the traditional prescription. It is perhaps
slightly more justifiable since, away from x = 1 the interaction
of the particles to produce a massive M; state takes place over a
relatively long time [40] , unlike at x = 1 where interaction
timings_must be of the same sort as for two body reactions.

The reason why the traditional absorption model has received
so much emphasis is, of course, because it is very easy to apply
znd does give some quite substantial successes. It wili probably
continue to be applied quite extensively where the precise,
detailed phase of the cut is not of paramount importance.

One fﬁrther poiht-thatVWe muet consider is-that of Bartels and
Kramer where the suggestion is made of overcounting in the
formula 6.1.7 A calculation has been performed in ¢? field -
theory for a single particle in the M;;state, i.e.'at X ='i[741
This of course gives that the eikonal phasee)( ab and)(;b,are
'small (this is just another AFS/Mandelstan cut question) but the
mixed eikonal phase x ac,b enters with the correct welght. ' The
question is therefore.not ea51ly resolved, however, from the |
standpointhof our calculation we see that thegquestion baeically '
hinges on whether we_are justified in choosing two independant

impact parameters for B.p and B, . For x = 1 and small t it
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would seem likely that the dynamics of the situation require

B and B to be similar. We are after all in a quasi-two

ab cb

body situation. Away from x = 1 it is.not clear that this is so.
Consider the diagram of figure 6.2. We are again using a

¢® Regge coupling. If we take this sort of diagram seriously,

the important point to note is that in the integration about

the loop over d*k, it need not be just the small values of k,

or those where k.:pl, that contribute to building up the residue.

Near x = 1, these values of k in the momentumrpicture do not

affect the co-ordinate picture since the reaction will take

place over short times, and this ensures that particle 3

cannot propagate to impact paramebers far removed from those

of particle 1. As X comes away from‘l, and the times of

reaction lengthen, the integral over k will ensure that all

impact parameters B, are achievable. This shows us that we

can indeed take Bab and Bcb independant. It is however clear

that Bartels and Kramer's argument is sound for small M;.

To finally conclude, then, we feel that phenomenology in the
'trlple-Regge inclusive region will not be. successful with a pole
only formulatlon, in any detailed sense, but in much the same
way that the absorption model in two body scattering has been able
- to provide ‘good detailed agreement between experlmenr and theory
~over a wide range of processes, we feellthat its counterpart in-
the triple Regge.region could be, and to an extent has been

- successful. To continue we also feel that the formula derived in

Chapter IV'provides a very flexible formulation of the "absorption -

model" in the triple Regge region, which when combined with the
computer program outlined in Chapter II would prov1de a Very
.interesting tool for examinlng the phenomenology of the triple-

Regge region in inclusive processes.'
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