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We study the � phase in a superconductor-ferromagnet-superconductor Josephson junction, with a
ferromagnet showing a cycloidal spiral spin modulation with in-plane propagation vector. Our results
reveal a high sensitivity of the junction to the spiral order and indicate the presence of 0-� quantum phase
transitions as function of the spiral wave vector. We find that the chiral magnetic order introduces chiral
superconducting triplet pairs that strongly influence the physics in such Josephson junctions, with
potential applications in nanoelectronics and spintronics.
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It is by now well established that an equilibrium super-
conducting phase difference of � can be arranged between
two singlet superconductors (S) when separating them by a
suitably chosen ferromagnetic (F) material [1,2]. Transi-
tions between the � state and the 0 state of such Josephson
junctions have been revealed in experiments through os-
cillations of the Josephson critical current with varying
thickness of the ferromagnet [3] or with varying tempera-
ture [4]. The � Josephson junction is currently of consid-
erable interest as an element complementary to the usual
Josephson junction in the development of functional nano-
structures [5], including superconducting electronics [6]
and quantum computing [7].

Recently there has been rapid progress in the field of
chiral magnetism [8–11] that raises the expectations for
applications of chiral magnets in spintronics. Chiral order
occurs in inversion asymmetric magnetic materials [9,11]
that in the presence of spin-orbit coupling give rise to a
Dzyaloshinskii-Moriya interaction Dij � �Si � Sj�. This in-
teraction favors a directional noncollinear (spiral) spin
structure of a specific chirality over the usual collinear
arrangement favored by the Heisenberg exchange interac-
tion Jij�Si � Sj�. A well-studied [9,10] chiral magnet (CM)
is the transition-metal compound MnSi, with the spiral
wave length � � 180 �A. Nanoscale magnets or magnetic
systems with reduced dimensionality that frequently lack
inversion symmetry due to interfaces and surfaces are
expected to exhibit chiral magnetism [8]. This has been
confirmed by the recent observation [11] of a spin spiral
structure (with � � 12 nm) in a single atomic layer of
manganese on a tungsten substrate.

In this Letter, we combine chiral magnetism with super-
conductivity in a controllable Josephson nanodevice where
0-� transitions can be induced by tuning the magnetic
spiral wave vector Q (see Fig. 1). Possible ways of control

in nanomagnets are, e.g., electric fields, geometry, or pin-
ning layers. Such a Josephson device shows a surprisingly
complex behavior with 0- to �-state transitions as function
of � � 2�=Q, that turn into zero temperature transitions
for some critical wave vectors. However, below a material
specific threshold �th � ��J, where �J is the penetration
depth of pairs into the chiral magnet, a qualitatively differ-
ent behavior is found.

Within our model chiral magnetism and singlet super-
conductivity take place in mutually separated materials,
and the magnetic spiral affects only the superconducting
proximity amplitudes. This is in contrast to the case of
coexisting superconducting and spiral magnetic order
within the same material [12]. We also contrast our model
to the case of a helical spiral spin modulation with a
propagation wave vector perpendicular to the S-F interface
[13], and the Josephson effect in S-F-S junctions with a
Néel domain structure [14]. The physics studied in
Refs. [13,14] is dominated by the presence of long-range
triplet components that are absent in the present system

FIG. 1 (color online). S-CM-S Josephson junction where CM
is a chiral ferromagnet with a cycloidal spiral spin modulation;
i.e., the spins are confined to a plane (the x-y plane) parallel to
the spiral propagation direction (the y axis).

PRL 100, 077003 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 FEBRUARY 2008

0031-9007=08=100(7)=077003(4) 077003-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.077003


[15] (concerning the role of long-range triplet pairs in S-F-
S hybrid structures see also [16] ). In Refs. [13,14], a strong
dependence of the Josephson critical current Ic on the
ferromagnet inhomogeneity is found due to these long-
range components. However, the related magnitude of Ic
is so small that the observation of such an effect is ques-
tionable. In this Letter, we report a critical current with a
much larger magnitude [17], which is essential for poten-
tial applications.

We study the S-CM-S junction shown in Fig. 1 within
the framework of the Usadel theory [1]. Furthermore, we
shall assume that the pair correlations induced in the chiral
magnet, quantified by the anomalous Green function f, are
small. This is fulfilled for temperatures close to the super-
conducting critical temperature Tc, and also for much
smaller temperatures T provided that the S-CM interface
transparency is small. We decompose the 2� 2 spin matrix
f as f � fsi�y � i�ft � ���y, where fs is the singlet com-
ponent and ft is the triplet vector (here � is a vector of
Pauli matrices). These components obey [15] in the magnet
a system of linearized Usadel equations

 �Dfr
2 � 2"n�fs � 2iJ � ft; (1)

 �Dfr
2 � 2"n�ft � 2iJfs; (2)

where "n � �T�2n� 1� is the Matsubara frequency with
n a positive integer. Quantities for negative frequencies are
obtained through symmetry relations [15], the components
fs and ft being, respectively, even and odd in "n. The z axis
is perpendicular to the interfaces, and the CM region is
delimited by jzj< df=2. The S and CM parts have diffu-
sion constants Ds and Df, and corresponding supercon-

ducting coherence lengths �s;f �
�����������������������
Ds;f=2�Tc

q
. For

simplicity, we assume that the two S regions, and also
the two S/CM interfaces, are characterized by identical
parameters. Another important length scale is the magnetic

length �J �
������������
Df=J

q
.

The exchange field J rotates within the x-y plane in the
CM film with a spiral wave vector Qey,

 J �y� � J�cosQy; sinQy; 0�: (3)

As a result f depends on both spatial coordinates z and y.
The triplet vector ft is found to be parallel to J everywhere
[15]. It is convenient to introduce chiral triplet components
f	 � �
ftx � ifty�e

	iQy. In the CM layer, the singlet
component fs and the two chiral triplet components f	
are then given by

 fl�z� �
X
��	1

’l;��a� cosh�k�z� � b� sinh�k�z��; (4)

where l � s or 	, ’s;� � ��, ’�;� � �, ’�;� � �� and

 k� �
������������������������������������������
2�"n � �iJ����=Df

q
; (5)

 �� �
� ���������������

1� �2
p

� i�� for � 
 1

�i�
���������������
�2 � 1

p
� ��� for �> 1

; (6)

where � � DfQ
2=4J � �Q�J�

2=4. As the singlet compo-
nent fs, the chiral triplet components penetrate over the
short length scale �J inside the chiral magnet.

The different coefficients a� and b� are determined by
boundary conditions for the two S/CM interfaces (located
at z � 	df=2). These connect the f on the S side of the
interface (denoted zs) with the f on the CM side at the
interface (denoted zf) and read [18]

 ��f@zfl�zf� � �s@zfl�zs�; (7)

 �b�f@zfl�zf� � 	�fl�zs� � fl�zf��; (8)

for the triplet (l � 	) and singlet (l � s) amplitudes. The
parameters � and �b are related to the conductivity mis-
match between the two sides (��f=�s � �f=�s with the
bulk conductivities �f in CM and �s in S) and the bound-
ary resistance, respectively. The signs	 in Eq. (8) refer to
the interfaces at z � 	df=2, respectively. In the following,
we define the shorthand notation ��	� � fs�	df=2� for the
singlet amplitudes at the interfaces.

Because of the leakage of pair correlations into the
central CM region, the amplitudes ��	� are expected to
be reduced compared with the bulk value in S. This inverse
proximity effect can be important in hybrid structures
involving ferromagnets (see, e.g., Ref. [19] ). However,
the spatial dependences of fs as well as of the triplet
components can be disregarded in S when ��
1� �bdf=�f, and the rigid boundary conditions hold

(see, e.g., Ref. [1] ), with ��	� � ��se
	i�=2=

������������������
"2
n � �2

s

p
,

where � is the phase difference between the two super-
conductors. Using Eqs. (7) and (8) within this assumption,
we express a� and b� as functions of ��	�

 a� �
���� � ����

2

1

��� � ����A�
; (9)

 b� �
���� � ����

2

1

��� � ����B�
; (10)

where A�� cosh�x����bk��f sinh�x��, B� � sinh�x�� �
�bk��f cosh�x��, and x� � k�df=2.

The current flowing through the S-CM-S junction is

 I � 2e
Df

�
NfST

X
n

Im �f�s@zfs � f�tx@zftx � f�ty@zfty�;

(11)

where Nf is the Fermi-level density of states per spin in
CM and S is the cross-section area. We insert f�tx@zftx �
f�ty@zfty � �f

�
�@zf� � f

�
�@zf��=2 and Eq. (4) in Eq. (11),

and express I as a function of a� and b� as
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 I � 4e
Df

�
NfST

X
n�0

X
�;�0

Im �����0�� � �
0��a��0b�k��: (12)

For �< 1 only the terms with � � �0 contribute, while for
�> 1 only the terms with � � �0 contribute [the case � �
1 is defined via the corresponding limit in Eq. (12)]. In
agreement with current conservation, the dependence on z
vanishes.

It then follows from Eqs. (9), (10), and (12) that the
current-phase relation reduces to sinusoidal form I �
Ic sin���. Close to Tc we get for Ic

 IcRN � 4V0

�df
�f
� 2�b

�X
n�0

X
��	1

T2
c

"2
n

k��f��
A�B���� � ����

;

(13)

where RN � �df � 2�b�f�=�fS is the normal state
resistance, �f � 2e2NfDf is the conductivity of the CM
layer, and V0 � ��2

s=4eTc. On the other hand, for low
barrier transparencies (�b � 1) [20], we have A� �

�bk��f sinh�k�df=2� and B� � �bk��f cosh�k�df=2�,
which lead to

 IcRN �
4�
�b

T
e

X
n�0

X
��	1

�2
s

"2
n � �2

s

��=��� � ����
k��f sinh�k�df�

: (14)

In the absence of inhomogeneity (Q � 0), we then recover
expressions for the critical current in the literature [1].
Note that the temperature T appears through several terms
in Eq. (14), such as �s (here we assume the BCS tempera-
ture dependence), "n, and k�.

In the following we study the influence of an exchange
field with chiral order on the Josephson effect on the basis
of Eq. (14). For small thicknesses df we have used the
more general expression (12) to verify that Eq. (14) indeed

is applicable in the parameter range we consider. As we
show in Fig. 2, the chiral magnetic order introduces a
surprisingly rich behavior: the magnitude of Ic as function
of increasing wave vector Q presents initial oscillations
and suppression, followed by increase and final saturation.
Depending on the thickness of the CM layer, there can be
one or several 0-� and �-0 transitions as function of the
spiral order wave vector Q. Above a certain value of Q
(Q�J � 2 indicated by the vertical line in the figure) Ic is
positive independently of other model parameters, mean-
ing that the junction phase difference is stabilized at zero.
Physically, this can be understood as an averaging out of
the exchange field within one magnetic length �J.
Technically, this critical value of Q separates a region
with complex eigenvalues k� (�< 1, oscillating Ic) from
a region with real k� (�> 1, monotonically increasing Ic),
see the inset of Fig. 2. For �< 1, the complex k� leads to a
nonmonotonic dependence of Ic as function of Q. In the
large-Q limit, the Josephson critical current for a junction
with a normal metal is recovered.

In Fig. 3(a) we study in more detail the critical current
within the region 0 
 Q�J 
 2 supporting oscillations.
For an intermediately thick magnetic film (here df �
2:7�f) it is possible to see both 0-� and �-0 transitions
as function of Q, with a reasonably large critical current.
The phase transitions shift to lower values of Q with
increasing temperature. As seen in Fig. 3(b), the spiral
order can also induce 0-� transitions as function of tem-
perature for certain parameter ranges.

Phase diagrams of the �-0 transitions are presented in
Fig. 4. We see that in the low-T region [4(a)] the phase
transition line T�-0�Q� develops a very steep slope. This
insensitivity to temperature variations can be of importance
for device applications. Although at ultralow temperatures
a more sophisticated theory than the mean field approach
presented here should be used, our results in Fig. 4 give a
strong indication of a �-0 transition as a function ofQ also
at zero temperature. Thus, the system of a chiral magnet

FIG. 2 (color online). Josephson critical current Ic vs the spiral
wave vector Q for a few thicknesses of the ferromagnet: curves
from top to bottom df=�f � 0:1, 1, 3, 5. Here T � 0:1Tc and
J � 20Tc. The inset shows the flow of the real and imaginary
parts of the eigenvalues k	1 with varying � � �Q�J�

2=4 for
"n � �Tc.
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FIG. 3 (color online). (a) Critical current vs spiral wave vector
for a few temperatures, in the region 0 
 Q�J 
 2, where 0-�
transitions are possible. Here df � 2:7�f and J � 20Tc. (b) The
0-� transition is observable as function of temperature for a
certain thickness (here df � 0:45�f) by tuning the spiral wave
vector. The other model parameters are the same as in (a).
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sandwiched between two superconductors is of potential
interest for the study of critical behavior near a quantum-
critical point.

In the right panel of Fig. 4 the very different behaviors
for Q�J < 2 and >2 are also seen. For Q�J < 2 the spiral
order shifts the transition lines towards thicker magnetic
films, but the transition line never disappears from the
phase diagram. Only in the region Q�J > 2 is the averag-
ing of the exchange field over the magnetic length so
effective as to prevent 0-� transitions.

In summary, we have studied the Josephson effect in an
S-CM-S junction in the presence of an in-plane cycloidal
spin spiral structure in the magnet. We have found that the
presence of a spin spiral can change the ground state of the
Josephson junction and lead to a transition between a �
junction and a 0 junction for a critical spiral wave vector.
The dependences of the Josephson effect on magnet thick-
ness and on temperature depend sensitively on the wave
vector of the chiral order in the magnet. We predict that a
quantum-critical point should exist in the phase diagram
for suitably chosen sample parameters.

We would like to thank Gerd Schön for valuable con-
tributions to this work. T. L. acknowledges support from
the Alexander von Humboldt Foundation.

Note added.—After submission, we became aware of
work by Crouzy et al. [21], who study in-plane magnetic
Néel domain walls. Their model is markedly different from
ours, but leads to similar findings about the periodicity of 0
to � transitions with the magnetic inhomogeneity.

[1] A. A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev.
Mod. Phys. 76, 411 (2004); A. I. Buzdin, Rev. Mod. Phys.
77, 935 (2005); F. S. Bergeret, A. F. Volkov, and K. B.
Efetov, Rev. Mod. Phys. 77, 1321 (2005).

[2] P. H. Barsic, O. T. Valls, and K. Halterman, Phys. Rev. B
75, 104502 (2007); Z. Pajovic et al., Phys. Rev. B 74,
184509 (2006); B. Crouzy, S. Tollis, and D. A. Ivanov,
Phys. Rev. B 75, 054503 (2007).

[3] T. Kontos et al., Phys. Rev. Lett. 89, 137007 (2002);
Y. Blum et al., Phys. Rev. Lett. 89, 187004 (2002);
W. Guichard et al., Phys. Rev. Lett. 90, 167001 (2003);
V. A. Oboznov et al., Phys. Rev. Lett. 96, 197003 (2006);
V. Shelukhin et al., Phys. Rev. B 73, 174506 (2006);
J. W. A. Robinson et al., Phys. Rev. Lett. 97, 177003
(2006).

[4] V. V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001); H.
Sellier et al., Phys. Rev. Lett. 92, 257005 (2004); S. M.
Frolov et al., Phys. Rev. B 70, 144505 (2004).

[5] J. J. A. Baselmans et al., Nature (London) 397, 43
(1999).

[6] T. Ortlepp et al., Science 312, 1495 (2006).
[7] L. B. Ioffe et al., Nature (London) 415, 503 (2002).
[8] A. N. Bogdanov and U. K. Rößler, Phys. Rev. Lett. 87,
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FIG. 4 (color online). (a) (T �Q) phase diagram for a
Josephson junction with a chiral magnet (J � 20Tc) between
two singlet superconductors. The transition from a � junction at
smaller chiral wave vector Q to a 0 junction at larger Q is
indicated for several thicknesses of the ferromagnetic layer.
(b) Corresponding low-T (df �Q) phase diagram (T � 0:1Tc).
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