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Abstract

An orientation of a digraph D is a spanning subdigraph of D obtained from D

by deleting exactly one arc between x and y for every pair x �� y of vertices such

that both xy and yx are in D� In this paper� we consider certain well�known classes

of strong digraphs� each member D of which has an orientation with diameter not

exceeding the diameter of D by more than a small constant�

� Introduction� terminology and notation

An orientation of a digraph D is a spanning subdigraph of D obtained from D by deleting
exactly one arc between x and y for every pair x �� y of vertices such that both xy and
yx are in D� In this paper� we consider certain well�known classes of generalizations
of tournaments� each strongly connected member D of which has an orientation with
diameter not exceeding the diameter of D by more than a small constant� While there is
a large number of publications considering minimum diameter orientations of undirected
graphs �see Sections ������	 in 
�� for results and references�� the present paper is the 
rst
study of minimum diameter orientations of digraphs� It is shown in Section ���� of 
�� that
orientations H of digraphs D such that the diameter of H does not exceed the diameter
of D by more than a small constant are of interest in a version of the gossip problem� see�
e�g�� 
	� ����

It is worth noting that there are a few papers 
�� �� ��� considering 
nite diameter
orientations of mixed graphs �or� equivalently� of directed graphs�� but none of these
papers has been devoted to minimizing the diameter of an orientation of a given digraph�
We restrict our attention to special classes of digraphs since even the problem of checking
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whether a given undirected graph has an orientation of diameter � is proved to be NP�
complete by Chv�atal and Thomassen 
�� and the upper bound on the diameter of an
orientation of an undirected graph obtained in 
�� is far from best possible for many
classes of undirected graphs� Notice that the minimum diameter orientation problem for
undirected graphs is a special case of that for directed graphs since every undirected graph
can be considered as the corresponding symmetric digraph�

This paper is organized as follows� In the rest of this section we give some terminology
and notation� In Section � we prove a somewhat surprising upper bound for the minimum
diameter of orientations of quasi�transitive digraphs and semicomplete bipartite digraphs�
In particular� we show that if D is a strong quasi�transitive digraph on at least � vertices�
then D has an orientation H such that diam�H� � maxf�� diam�D�g� The same bound�
with � replaced by �� holds for all semicomplete bipartite digraphs except for those in
which one partite set consists of a unique vertex� While such a bound is not valid for
the whole class of locally semicomplete digraphs� in Section � we prove that the bound
diam�H� � maxf�� diam�D�g holds for locally semicomplete digraphs D without so�called
similar vertices and diam�H� � maxf�� diam�D�g�� is true for every locally semicomplete
digraph D on at least three vertices�

We use the standard terminology and notation on digraphs as described in 
��� We
still provide most of the necessary de
nitions for the convenience of the reader� A digraph
D is symmetric if for every pair x �� y of vertices in D either there is no arc between x

and y or both xy and yx are in D� Symmetric digraphs are in natural correspondence to

undirected graphs� for an undirected graph G� the symmetric digraph
�

G is obtained from
G by replacing every edge xy with the pair xy� yx of arcs� Let D � �V�A� be a digraph
and let x� y be a pair of vertices in D� If xy � A� we say that y is an out�neighbour of x�
x is an in�neighbour of y� and x dominates y denoted by x�y� For sets X� Y � V � X�Y
means that x�y for every x � X� y � Y� The set of in�neighbours �out�neighbours� of a
vertex x is denoted by N��x� �N��x���

All paths and cycles we consider in this paper are directed� A path from x to y is an
�x� y��path� A digraph D is strongly connected �or� strong� if there exist an �x� y��path and
a �y� x��path for every pair x� y of distinct vertices in D� The distance� distD�x� y�� from
x to y in D is the least length of an �x� y��path if y is reachable from x� and is equal to
�� otherwise� We assume that distD�x� x� � � for every vertex x � V � The diameter of
D� diam�D�� is the maximum distance between an ordered pair of vertices in D� Observe
that a digraph D is strong if and only if diam�D� � �� A digraph D is connected if the
underlying undirected graph of D is connected� For a digraph D� let diammin�D� denote
the minimum diameter of an orientation of D� The converse of a digraph D is the digraph
obtained from D by replacing every arc xy of D by the arc yx�

A digraph D is semicomplete if there is at least one arc between any pair of distinct
vertices ofD� A tournament is a semicomplete digraph with no cycle of length �� A digraph
D is quasi�transitive if the existence of a pair xy� yz of arcs in D implies the existence of
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xz or zx �or both�� By de
nition� every semicomplete digraph is quasi�transitive� To see
that there are quasi�transitive digraphs� which are not semicomplete �and not transitive��
replace every vertex of a tournament T by a set of independent �i�e� with no arc between
them� vertices� The resulting digraph D is quasi�transitive� if xy� yz are in D� then x
and y belong to di�erent sets of independent vertices �as T has no ��cycle� and� thus�
are joint by an arc� A recursive characterization of quasi�transitive digraphs is given by
Bang�Jensen and Huang 
���

A digraph D is locally semicomplete if� for every vertex x� the subdigraphs of D in�
duced by N��x� and N��x� are semicomplete� One of the simplest examples of a locally
semicomplete digraph is a cycle� A digraph D is semicomplete k�partite� k � �� if the
vertices of D can be partition into k partite sets V�� V�� ���� Vk such that every partite set
is independent� but� for every pair x� y of vertices from distinct partite sets� xy or yx �or
both� is in D� When k � �� we speak of semicomplete bipartite digraphs� By de
ni�
tion� every semicomplete digraph with n vertices is a semicomplete n�partite digraph� A
characterization of locally semicomplete digraphs is obtained in 
���

Quasi�transitive digraphs� locally semicomplete digraphs and semicomplete k�partite
digraphs are well�known generalizations of tournaments� they share several nice structural
properties with tournaments and have been extensively studied in the literature �cf� 
�� ��
and the bibliography therein�� In particular� we know now that the hamiltonian cycle is
polynomial time solvable when restricted to any of these classes� �A highly non�trivial
proof that the hamiltonian cycle problem is polynomial time solvable for semicomplete
k�partite digraphs can be found in 
����

We conclude this section with the following useful result by Boesch and Tindell 
���
whose short proof is given by Volkmann 
����

Theorem ��� A strong digraph D has no strong orientation if and only if there is a pair
x� y of vertices in D such that the deletion of the arcs xy� yx leaves D disconnected�

� Orientations of quasi�transitive digraphs and semicom�

plete bipartite digraphs

Applying Theorem ��� it is easy to see that every strong quasi�transitive digraph of order
n � � has a strong orientation� Volkmann 
��� observed that a strong semicomplete k�
partite digraph D� k � �� has a strong orientation unless D is a semicomplete bipartite
digraph with a partite set consisting of a single vertex� �By Theorem ���� a semicomplete
bipartite digraph with a partite set consisting of a single vertex does not have a strong
orientation�� This justi
es the consideration of the following two classes of digraphs� Let
D� be the set of strong quasi�transitive digraphs of order n � �� Let D� be the set of
strong semicomplete bipartite digraphs with at least two vertices in each partite set�
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In this section� we shall use the following basic result�

Proposition ��� ��� Let D be a quasi�transitive digraph� Suppose that P � x�x�x����xk
is a minimal �x�� xk��path� Then the subdigraph induced by V �P � is semicomplete and
xj�xi for every � � i� � � j � k� unless k � �� in which case the arc between x� and xk
may be absent�

For digraphs from the class D� � D� the following somewhat surprising bound on the
minimum diameter of an orientation holds�

Theorem ��� If D � Di for i � f�� �g� then

diammin�D� � maxf� � �i� diam�D�g�

Proof� Assume that this theorem is false and that D is a counter�example to the theorem
with as few ��cycles as possible� Let D � Di for i � f�� �g and let � � ���i� Let xyx be a
��cycle in D� Clearly� the diameter of D increases by at least one when we delete either of
the arcs xy or yx from D� Therefore� there exist vertices sxy� txy � syx� tyx in D� such that
distD�xy�sxy � txy� � maxf�� diam�D�g and distD�yx�syx� tyx� � maxf�� diam�D�g� Let
P � p�p� � � � pl be an �sxy � txy��path in D of minimum length �in particular� l � diam�D��
and let Q � q�q� � � � qm be an �syx� tyx��path in D of minimum length �in particular�
m � diam�D��� Let � and � be de
ned such that xy � p�p��� and yx � q�q����

We now consider the following cases� which exhaust all possibilities�

Case �� ��� � l� ��� � m and D � D��D�� We 
rst show that p��� and q��� are
adjacent� This is clearly true if D is semicomplete bipartite as these two vertices belong
to di�erent partite sets of D� If D is quasi�transitive� then p� and p��� are adjacent�
Therefore� p����p� by the minimality of l� However� this implies that p��� and q��� are
adjacent� as p�����p� � q�����q����

If p����q���� then by q� � p����

q�q� � � � q�p���q��� � � � qm

is a �q�� qm��path of length m � diam�D� in D 	 yx� a contradiction� The case when
q����p��� can be considered analogously�

Case �� � � �� � � � and D � D� � D�� This case can be transformed into Case �
by considering the converse of D�

Case �� � � �� � � � � m and D � D�� We 
rst prove that l �m � �� Suppose that
l � m � �� i�e� x � p� � q�� y � p� � q�� Let z�z����zk be a shortest �y� x��path in D 	 yx�
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By the choice of x� y� k � �� By Proposition ���� zk�z� and z��z�� Hence� zkz�z�z� is an
�x� y��path in D 	 xy of length three� contradiction� Therefore� we may assume� without
loss of generality� that l � ��

Let R � r�r� � � � rt be a shortest path from q� to pl in D� The path R can be chosen such
that it does not contain yx� Indeed� if y � rj � x � rj�� for some j� then r�r����rjp�p����pl
is not longer than R �as p�p����pl is a shortest �p�� pl��path in D�� So� we may assume that
R does not contain yx� Similarly� it is not di�cult to see that we may assume that R does
not contain xy�

By Proposition ���� we obtain immediately that pl�p� if l �� � and pl�p� if l � �� If
l � �� then we have p��p� and p��p�� Therefore� by the minimality of l� p��p�� Hence�
for every l � �� pl�p��

We have t � �� for otherwise r�r� � � � rtp� would be a path from q� to qm of length
t � � � � in D 	 yx� Since pl�p� and rt���rt � pl� we conclude that rt�� and p� are
adjacent� If rt���p�� then r�r� � � � rt��p� is a path from q� to qm of length t � diam�D�
in D 	 yx� a contradiction� If p��rt��� then p�rt��pl is a path of length two from p� to
pl in D 	 xy� a contradiction�

Case �� � � �� �� � � l and D � D�� This case can be transformed into Case � by
considering the converse of D�

Case 	� � � �� � � � � m and D � D�� Suppose that l � m � �� Let z�z����zk be a
shortest �y� x��path in D	yx� By the choice of x� y� k � �� By the minimality of k� z��z�
�z� and z� belong to di�erent partite sets of D� and zk�zj � where j � � or � �zk and zj
belong to di�erent partite sets of D�� Hence� either zkz�z� or zkz�z�z� is an �x� y��path in
D 	 xy� a contradiction� So� we may assume� without loss of generality� that m � ��

Let R � r�r� � � �rt be a shortest path from q� to pl in D� As in Case �� we may assume
that R contains neither xy nor yx�

Suppose that t � �� implying that q� � pl and l�m � �� Assume that l � �� If p� and
pl belong to di�erent partite sets of D� then� by the minimality of l and the assumption
that D is semicomplete bipartite� pl�p�� which is impossible as plp� is a �q�� qm��path
of length one in D 	 yx� a contradiction� If p� and pl belong to the same partite set of
D� then pl�p� �by the minimality of l� and plp�p�p�p� is a �q�� qm��path of length four
in D 	 yx� a contradiction� So� l � �� Analogously� we can prove that m � �� Since
D 	 xy has a �p�� p���path and p� � q��q� � p�� there is a �p�� p���path S � s�s� � � � sa
in D	 xy� Assume that S has minimum length and observe that a � �� as s�s� � � �sapl is
a �p�� pl��path in D 	 xy� Furthermore� s��s� as s� and s� lie in di�erent partite sets of
D and S is of minimum length� Observe that if p��s�� then p�s�s� is a �q�� qm��path in
D 	 yx of length �� and if s��p� then s�s�s�s�p� is a �p�� pl��path in D	 xy of length ��
In both cases we obtain a contradiction� Hence� t � ��
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Suppose that � � t � �� Clearly r� and r� lie in di�erent partite sets� so we may
assume� without loss of generality� that r� and p� are adjacent �the case when r� and p�
are adjacent can be considered analogously�� Clearly p� dominates r� by the minimality of
m� However� p�r� � � � rt is a �p�� pl��path in D	 xy of length of t� � � �� a contradiction�
Hence� t � ��

Clearly r� and r� lie in di�erent partite sets� so we may assume� without loss of
generality� that r� and p� are adjacent �the case when r� and p� are adjacent can be
considered analogously�� Clearly p� dominates r� by the minimality of m� However the
path p�r� � � �rt in D 	 xy is of length t � diam�D��

Case 
� i� � �� i� � � � l and D � D�� This case can be transformed into Case � by
considering the converse of D� �

The upper bound of this theorem is sharp as one can see from the following examples�
Let Tk� k � �� be a �transitive� tournament with vertices x�� x�� ���� xk and arcs xixj for
every � � i � j � k� Let y be a vertex not in Tk� which dominates all vertices of Tk
but xk and is dominated by all vertices of Tk but x�� The resulting semicomplete digraph
Dk�� has diameter �� However� the deletion of any arc of Dk�� between y and the set
fx�� x�� ���� xk��g leaves a digraph with diameter �� Indeed� if we delete yxi� � � � � k	��
then a shortest �xk� xi��path becomes of length ��

Let H be a strong semicomplete bipartite digraph with the following partite sets V�
and V� and arc set A� V� � fx�� x�� x�g� V� � fy�� y�� y�g� and

A � fx�y�� y�x�� x�y�� y�x�� x�y�� y�x�� y�x�� y�x�� x�y�� x�y�g�

Let H � � H 	 x�y� and H �� � H 	 y�x�� It is easy to verify that diam�H� � � �in
particular� dist�y�� y�� � �� and that diam�H �� � diam�H ��� � � �a shortest �x�� y���path
in H � and a shortest �y�� x���path in H �� are of length ��� The digraph H can be used to
generate an in
nite family of semicomplete bipartite digraphs with the above property�
replace� say� x� by a set of independent vertices�

� Orientations of locally semicomplete digraphs

Unfortunately� the bound of the type

diammin�D� � maxfc� diam�D�g� ���

where c is a constant� is not valid for the whole class of strong locally semicomplete
digraphs� Consider the following digraph Dk � �V�A��

V � fx�� x�� ���� xkg� A � fxixi�� � i � �� �� ���� k	 �g � fxkx�� xkx�� x�x�� x�x�g�
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Figure �� The leftmost picture contains the given arcs� These arcs imply x�q���� and
thus x�q���� as seen in the middle picture� Analogously we obtain y�fp���� p���g� which
implies that x�p���� as seen in the last picture�

It is easy to check that diam�Dk� � k	� and diam�Dk	x�x�� � diam�Dk	x�x�� � k	��
The digraph Dk does not satisfy ��� due to the existence of so�called similar vertices x�
and x�� Two vertices x and y of a digraph D are similar if N��x� � fxg � N��y� � fyg
and N��x� � fxg � N��y� � fyg� Observe that if x and y are similar� then the ��cycle
xyx is in D�

The main result of this section� Theorem ���� can be proved using the classi
cation of lo�
cally semicomplete digraphs obtained in 
�� and Theorem ��� for the case of quasi�transitive
digraphs �actually� for just semicomplete digraphs�� Even though such a �classi
cation�
based� proof is slightly shorter than the one we provide below� the �classi
cation�based�
proof relies heavily on the classi
cation and related results in 
��� The presented proof
is direct and does not require any previous knowledge� Provided with enough detail� the
�classi
cation�based� proof along with the classi
cation itself and additional results and
de
nitions would require more space than our proof below� We start from the following
result�

Theorem ��� If D is a strong locally semicomplete digraph with no similar vertices then

diammin�D� � maxf�� diam�D�g�

Proof� Assume that this theorem is false and that D is a counter�example� with as few
��cycles as possible� Let xyx be a ��cycle in D� Since x and y are not similar� we may
without loss of generality 
nd a vertex u� such that xu � A�D�� but yu �� A�D�� However
this implies that uy � A�D�� as x�fu� yg� Since diam�D 	 xy� � maxf�� diam�D�g�
there are vertices sxy and txy such that distD�xy�sxy � txy� � maxf�� diam�D�g� Let P �
p�p� � � �pl be a shortest �sxy � txy��path in D� Since distD�xy�sxy� txy� � diam�D� the arc
xy must be used in the path P � so let � be de
ned such that xy � p�p���� The path
P � � p�p� � � �p�up��� � � � pl is a path in D 	 xy� implying that l � diam�D� � �� If � � �
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Figure �� The leftmost picture contains the given arcs� This implies that the arcs q����y

and y�p��� must be present� as seen in the next picture� This implies that q����q����
which implies that q����q���� as seen in picture �� Finally we must therefore have arc
y�q���� which implies that p����q���� as seen in the last picture�

then we observe that p���p��� � A�D� �as fp���� p���g�p� and l is minimum�� If � � �
then p��p� by a similar argument� So there is a �y� x��path of length � in D 	 yx�

There exist vertices syx and tyx in D� such that distD�yx�syx� tyx� � maxf�� diam�D�g�
Analogously to the above we let Q � q�q� � � � qm be a shortest �sxy � txy��path in D� and
observe that yx � A�Q�� which implies that there is some �� such that yx � q�q����
Furthermore m � diam�D� � �� as there is a path from y to x of length � in D 	 yx�

Assume without loss of generality that � � �� as otherwise we can reverse all arcs and
swap the names x and y� in order to get � � � �this is true since m � ��� We now consider
the following cases� which exhaust all possibilities�

Case �� � � �� Using the minimality of l and m we observe that the arguments in
Figure � imply that q��� and p��� are adjacent� as x�fq���� p���g in the last picture� If
q����p��� then the path q�q� � � � q���p���p���q��� � � � qm is a path of length m in D	yx�
a contradiction� If p����q���� then we analogously arrive to a contradiction�

Case �� � � � and � � � � m� Then� by the minimality of l and m� we obtain the
arcs seen in the last picture of Figure �� Since fp���� q���g�q���� the vertices p��� and
q��� are adjacent� We cannot have p����q��� as then the path �p� � p����q���p��� � � � pl
is a �p�� pl��path of length l in D 	 xy� Therefore q����p���� However this implies that
p��� and q��� are adjacent� We can now get a contradiction analogously to Case ��

Case �� � � �� We see from Figure � that x�fq�� q�� � � � � q���g� Let R � r�r� � � �rt
be a shortest path from q� to pl in D �see Figure ��� We have t � � as �p� � x��q�
and there is no �p�� pl��path of length at most four in D 	 xy� Observe that if x and
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Figure �� The 
rst picture contains the given arcs� This implies that the arc x�q����
which implies that x�q���� Continuing this process we see that x�fq�� q�� � � � � q���g� as
seen in the middle picture� In the last picture we have added a shortest �q�� pl��path�

r� are adjacent then either q�r�q��� � � � qm or p�r�r� � � � rt��pl are paths of length at most
diam�D� in D 	 fxy� yxg a contradiction� Therefore x and r� are not adjacent in D�

Since q��fq�� r�g we observe that q��r�� as if r��q� then x and r� would be adjacent
�as q����q��� Analogously q��r�� as q��fq�� r�g� Continuing in this fashion we get that
fq�� q�� � � � � q���g�r�� which is a contradiction against q��� and r� not being adjacent�

Case �� � � � and � � � � m� This clearly implies that � � � � m� as m � � � ��
By reversing all arcs we obtain the case when � � � and � � l	 � � �� which we handled
in Case �� �

Theorem ��� If D is a strong locally semicomplete digraph of order n � � � then

diammin�D� � maxf�� diam�D� � �g�

Proof� For a given vertex x � V �D�� let �N��x� � fxg� N��x� � fxg� be the neighbour�
hoods pair of x� Let V� � �N��M��� V� � �N��M��� � � � � Vk � �Nk�Mk� be the distinct
neighbourhood pairs in D� and let vi be some vertex in D with NT �vi� � �Ni�Mi�� for
i � �� �� � � � � k� Let D� be the subdigraph of D induced by fv�� v�� � � � � vkg� If k � �� then

D �
�

Kn � In this case our result follows from Theorem ���� So� we may assume that k � ��

We will now show that D� is a strong locally semicomplete digraph� Since D� is an
induced subgraph of D� it is clearly a locally semicomplete digraph� Let vj � vt be a pair of
distinct vertices in D� and let P � vjp�p� � � � plvt be a shortest �vj � vt��path in D� Assume
that pi � Vai

for all i � �� �� � � � � l� Since P is shortest� all sets Vj� Va�� Va�� � � � � Val
� Vt are

distinct� However this implies that vjva�va� � � � val
vt is a path in D�� So D� is strong�

By Theorem ��� we can 
nd an orientation D�� of D� such that

diam�D��� � maxf�� diam�D��g�

	



We now let D��� be the digraph obtained from D�� by replacing every vertex vi with the
set Vi and choosing arbitrary orientations for arcs between vertices in the same Vi �i �
�� �� � � � � k�� As above we can easily see that the distance between vertices in distinct sets�
Vj and Vt� remains the same in D��� as in D��� Let u �� w � Vi� Since D

��� is strong� there
is a vertex v 	� Vi such that v�w� Clearly� distD����u� w� � distD���u� v� � �� Thus� the
distance between two vertices in the same set Vi in D���� is at most diam�D��� � � and
D��� is an orientation of D with diam�D���� � diam�D��� � � � maxf�� diam�D��g � � �
maxf�� diam�D�g� �� �

� Further research

We were not able to prove or disprove the following bound for strong semicomplete k�
partite digraphs D� diammin�D� � diam�D� � c� where c is a constant�

Since every undirected graph can be considered as the corresponding symmetric di�
graph� it would be interesting to see what results on diameters of orientations of undirected
graphs can be extended to digraphs� The results on minimum diameter orientations of
undirected graphs form only a small part in the important area of orientations of undi�
rected graphs �e�g�� Chapter � in 
�� is completely devoted to orientations of graphs�� It
would be interesting to investigate what results in the area can be �or cannot be� gen�
eralized to orientations of digraphs� see Section ���� in 
�� for some examples of such
results�
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