Resonance behaviour for classes of billiards on the Poincaré half-plane

Phil Howard

(2007)

Phil Howard (2007) Resonance behaviour for classes of billiards on the Poincaré half-plane.

Our Full Text Deposits

Full text access: Open

Full Text - 2.45 MB

Links to Copies of this Item Held Elsewhere


Abstract

The classical and quantum mechanics of two linked classes of open billiard systems on the Poincaré half-plane is studied. These billiard systems are presented as models of arithmetic scattering systems under deformation. An investigation is made of the classical phase space and the stability of a certain family of periodic orbits is investigated. The movement of the positions and widths of the resonances is followed, as the shape of Artin’s billiard is deformed. One deformation varies its lower boundary, interpolating between integrable and fully chaotic cases. The other deformation translates the right hand wall of the billiard, thus interpolating between several examples of Hecke triangle billiards. The variation of the statistical properties of the spectra are focussed on and the transitions in the statistics of the resonance positions and widths are mapped out in detail near particular values of the deformation parameters, where the billiard is a fundamental domain for some arithmetic group. Analytic solutions for the scattering matrix and the resonance positions in these particular systems are derived and numerical results are obtained which are in excellent agreement with the predictions. Away from the arithmetic systems, both generic behaviour according to the predictions of Random Matrix Theory, and non-generic behaviour is found, with deviations occurring particularly in the long range statistics. In the integrable case, semiclassical WKB theory is used to produce accurate wavefunctions and eigenvalues. For the general deformation a number of numerical methods are explored, such as the finite element method, complex absorbing potentials and collocation, in order to find an optimum method to locate the resonance positions.

Information about this Version

This is a Published version
This version's date is: 30/05/2007
This item is peer reviewed

Link to this Version

https://repository.royalholloway.ac.uk/items/14009f47-01a2-838a-c050-b468c61b0427/1/

Item TypeMonograph (Technical Report)
TitleResonance behaviour for classes of billiards on the Poincaré half-plane
AuthorsHoward, Phil
DepartmentsFaculty of Science\Mathematics

Deposited by () on 28-Jun-2010 in Royal Holloway Research Online.Last modified on 14-Dec-2010

Notes

References

[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen. LAPACK Users’ Guide. Society for Industrial
and Applied Mathematics, third edition, 1999. 109

[ADG+99] H. Alt, C. Dembowski, H.-D. Gr¨af, R. Hofferbert, H. Rehfeld,
A. Richter, and C. Schmit. Experimental versus numerical eigenvalues
of a Bunimovich stadium billiard: A comparison. Phys. Rev.
E, 60:2851–2857, 1999. 106

[AGG+97] H. Alt, H.-D. Gr¨af, T. Guhr, H. L. Harney, R. Hofferbert, H. Rehfeld,
A. Richter, and P. Schardt. Correlation-hole method for
the spectra of superconducting microwave billiards. Phys. Rev. E,
55:6674–6683, 1997. 128

[ALST05] R. Aurich, S. Lustig, F. Steiner, and H. Then. Indications about
the shape of the universe from the Wilkinson microwave anisotropy
probe data. Phys. Rev. Letters, 94:021301, 2005. 21, 38

[And58] P. W. Anderson. Absence of diffusion in certain random lattices.
Phys. Rev., 109:1492–1505, 1958. 20

[Arf85] G. Arfken. Mathematical Methods for Physicists, pages 560–562.
Academic Press, Inc., 1985. 55

[Art24] E. Artin. Ein mechanisches System mit quasi-ergodischen Bahnen.
Abh. Math. Sem. d. Hamburgischen Universit¨at, 3:170–175, 1924.
22, 37

[AS65] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions.
Dover, 1965. 40, 108, 111, 161, 162

[ASS88] R. Aurich, M. Sieber, and F. Steiner. Quantum chaos of the
Hadamard-Gutzwiller model. Phys. Rev. Lett., 61:483–487, 1988.
23

[Ave02] H. Avelin. Research announcement on the deformation of cusp
forms. Technical report, Uppsala Univ, 2002. UUDM report
2002:26, Uppsala. 24

[Bac03] A. Backer. Numerical aspects of eigenvalue and eigenfunction computations
for chaotic quantum systems. In M. Degli Esposti and
S. Graffi, editors, The Mathematical Aspects of Quantum Maps.
Springer, 2003. 109

[BB70] R. Balian and C. Bloch. Distribution of eigenfrequencies for the
wave equation in a finite domain I: three-dimensional problem with
smooth boundary surface. Ann. Phys., 60:401–447, 1970. 61

[BB86] K. Bartschat and P. G. Burke. Resfit - a multichannel resonance
fitting program. Computer Physics Communications, 41, 1986. 95

[BB97] M. Brack and R Bhaduri. Semiclassical Physics. Addison Wesley,
1997. 20, 115, 116

[BD95] H. Beijeren and J. R. Dorfman. Lyapunov exponents and
Kolmogorov-sinai entropy for the Lorentz gas at low densities. Phys.
Rev. Letters, 74:4412–4415, 1995. 87

[Ber89] M. Berry. Quantum chaology, not quantum chaos. Physica Scripta,
40:335–336, 1989. 20

[BGGS92] E. B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit.
Chaotic billiards generated by arithmetic groups. Phys. Rev. Lett.,
69:1477–1480, 1992. 22, 145, 148

[BGS84] O. Bohigas, M. J. Giannoni, and C. Schmit. Characterization of
chaotic quantum spectra and universality of level fluctuation laws.
Phys. Rev. Lett., 52, 1984. 21, 119

[BGS86] O. Bohigas, M.-J. Giannoni, and C. Schmit. Spectral fluctuations
of classically chaotic quantum systems. LNP Vol. 263: Quantum
Chaos and Statistical Nuclear Physics, 263:18–40, 1986. 22

[BH76] H. P. Baltes and E. R. Hilf. Spectra of Finite Systems. Bibliographisches
Institut, Mannheim, 1976. 61

[BK99] M. V. Berry and J. P. Keating. The Riemann zeros and eigenvalue
asymptotics. SIAM Review, 41:236–266, 1999. 24, 119

[Bog06] E. Bogomolny. Quantum and arithmetical chaos. In Frontiers in
Number Theory, Physics and Geometry, Proceedings of Les Houches
winter school 2003. Springer-Verlag, 2006. 39, 64, 68, 70

[Bou01] N. Bouhamou. The use of NAG mesh generation and sparse solver
routines for solving partial differential equations. Technical report,
NAG Ltd, 2001. Reference no. TR1/01 (NP3615). 104

[Bro73] T. A. Brody. A statistical measure for the repulsion of energy levels.
Lettere Al Nuovo Cimento, 7:482, 1973. 125

[BSS92] J. Bolte, G. Steil, and F. Steiner. Arithmetical chaos and violation
of universality in energy level statistics. Phys. Rev. Lett., 69:2188–
2191, 1992. 22, 112

[BT77] M. V. Berry and M. Tabor. Level clustering in the regular spectrum.
Proc. R. Soc. Lond. A, 356:375–394, 1977. 119, 125

[BTU93] O. Bohigas, S. Tomsovic, and D. Ullmo. Manifestations of classical
phase space structures in quantum mechanics. Physics Reports,
223:43–133, 1993. 20

[BV86] B. V. Bal´azs and A. Voros. Chaos on the pseudosphere. Phys. Rep.,
143:109–240, 1986. 12, 22, 28, 34, 38, 45, 64, 70

[BV98] E. Balslev and A. Venkov. The Weyl law for subgroups of the
modular group. Geom. Funct. Anal., 8(3):437–465, 1998. 24

[CAM+04] P. Cvitanovi´c, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay.
Chaos: Classical and Quantum, page 555. Niels Bohr Institute,
Copenhagen 2005, 2004. Stable version 11. 61

[CE89] P. Cvitanovi´c and B. J. Eckhardt. Periodic-orbit quantization of
chaotic systems. Phys. Rev. Lett., 63(8):823–826, 1989. 62

[CGS91] A. Csord´as, R. Graham, and P. Sz´epfalusy. Level statistics of a noncompact
cosmological billiard. Phys. Rev. A, 44:1491–1499, 1991.
66, 161

[CGSV94] A. Csord´as, R. Graham, P. Sz´epfalusy, and G. Vattay. Transition
from Poissonian to Gaussian-orthogonal-ensemble level statistics in
a modified Artin’s billiard. Phys. Rev. E, 49:325–333, 1994. 82, 83,
84, 86, 92, 124, 125, 127, 148

[CM03] N. Chernov and R. Markarian. Introduction to the Ergodic Theory
of Chaotic Billiards. IMPA, Rio de Janeiro, Brasil, 2003. 87

[Cox65] H. S. M. Coxeter. Non-Euclidean Geometry. University of Toronto
Press, 1965. 34

[Cre95] P. Crehan. Chaotic spectra of classically integrable systems. Journal
of Physics A, 28:6389–6394, 1995. 48

[Ein17] A. Einstein. Zum Quantensatz von Sommerfeld und Epstein. Verhandlungen
der Deutschen Physikalischen Gesellschaft, 19:82–92,
1917. 19

[EMOT53] A. Erd´elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi.
Higher Trascendental Functions: Volume 1. McGraw-Hill, 1953.

[FH65] R. P. Feynman and A. R. Hibbs. Quantum Physics and Path Integrals.
McGraw-Hill, 1965. 57, 58

[FK97] R. Fricke and F. Klein. Vorlesungen ¨uber die Theorie der automorphen
Funktionen. Teubner, Leipzig, 1897. 47

[FKS05] Y. V. Fyodorov, T. Kottos, and H.-J. St¨ockmann, editors. Special
issue on trends in quantum chaotic scattering, volume 38. Institute
of Phyiscs publishing, 2005. 23

[For29] L. Ford. Automorphic Functions. McGraw-Hill, 1929. 47

[Fri98] H. Friedrich. Theoretical Atomic Physics. Springer, 1998. 24, 56

[FS97] Y. Fyodorov and H.-J. Sommers. Statistics of resonance poles, phase
shifts and time delays in quantum chaotic scattering: Random matrix
approach for systems with broken time-reversal invariance. J.
Math. Phys., 38, 1997. 78, 95, 119, 121

[GHSV91] R. Graham, R. H¨ubner, P. Sz´epfalusy, and G. Vattay. Level statistics
of a noncompact integrable billiard. Phys. Rev. A, 44:7002–
7015, 1991. 61, 106, 111, 124

[GR89] P. Gaspard and S. Rice. Semiclassical quantization of the scattering
from a classically chaotic repellor. J. Chem. Phys., 90:2242–2254,
1989. 51

[Gut67] M. C. Gutzwiller. Phase-integral approximation in momentum
space and the bound states of an atom. J. Math. Phys., 8:1979–
2000, 1967. 58

[Gut83] M. C. Gutzwiller. Stochastic behavior in quantum scattering. Physica
D: Nonlinear Phenomena, 7:341–355, 1983. 50

[Gut90] M. Gutzwiller. Chaos in Classical and Quantum Mechanics.
springer-verlag, 1990. 20, 38, 46, 58, 112

[Had98] J. Hadamard. Les surfaces `a courbures oppos´es et leurs lignes
g´eod´esiques. J. Math. Pures et Appl., 4:27–73, 1898. 22, 45

[HB82] D. A. Hejhal and B. Berg. Some new results concerning eigenvalues
of the non-Euclidean Laplacian for PSL(2, Z). Technical report,
University of Minnesota, 1982. 110, 111, 112

[Hej92a] D. A. Hejhal. Eigenvalues of the Laplacian for Hecke triangle groups.
Memoirs of the American Mathematical Society, 97, 1992. 70, 112

[Hej92b] D. A. Hejhal. Eigenvalues of the Laplacian for Hecke triangle groups.
Mem. Amer. Math. Soc., 469, 1992. 110, 112

[Hel84] E. J. Heller. Bound-state eigenfunctions of classically chaotic Hamiltonian
systems: Scars of periodic orbits. Phys. Rev. Lett., 53:1515–
1518, 1984. 21

[HIL+92] F. Haake, F. Izrailev, N. Lehmann, D. Saher, and H.-J. Sommers.
Statistics of complex levels of random matrices for decaying systems.
Z. Phys. B, 88:359–370, 1992. 122

[HMFOU05] P. J. Howard, F. Mota-Furtado, P. F. O’Mahony, and V. Uski.
Statistics of resonances for a class of billiards on the Poincar´e halfplane.
J. Phys. A, 38:10829–10841, 2005. 106

[Kea92] J. P. Keating. Periodic orbit resummation and the quantization of
chaos. Proc. R. Soc. Lond. A, 436:99–108, 1992. 62

[Kub73] T. Kubota. Elementary Theory of Eisenstein Series. John Wiley
and Sons, 1973. 51

[LLJP86] L. Leviandier, M. Lombardi, R. Jost, and J. P. Pique. Fourier
transform: A tool to measure statistical level properties in very
complex spectra. Physical Review Letters, 56:2449–2452, 1986. 128

[LP76] P. D. Lax and R. S. Phillips. Scattering Theory for Automorphic
Functions. Princeton University Press, 1976. 41, 51

[LRP06] M. Lyly, J. Ruokolainen, and A. Pursula. Elmer, 2006.
http://www.csc.fi/elmer/index.phtml. 101, 103

[LS93] M. Lombardi and T. H. Seligman. Universal and nonuniversal
statistical properties of levels and intensities for chaotic Rydberg
molecules. Phys. Rev. A, 47:3571–3586, 1993. 129, 131

[LSZ03] W. T. Lu, S. Sridhar, and M. Zworski. FractalWeyl laws for chaotic
open systems. Phys. Rev. Letters, 91, 2003. 61

[Maj98] A. W. Majewski. Does quantum chaos exist? a quantum Lyapunov
exponents approach. ArXiv Quantum Physics e-prints, 1998, quantph/
9805068. 20

[MHB+04] S. M¨uller, S. Heusler, P. Braun, F. Haake, and A. Altland. Semiclassical
foundation of universality in quantum chaos. Phys. Rev.
Lett., 93:014103, 2004. 21

[Moi97] N. Moiseyev. Quantum theory of resonances: calculating energies,
widths and cross-sections by complex scaling. Physics Reports,
302:211–203, 1997. 96

[Mon73] H. Montgomery. The pair correlation of zeros of the zeta function.
Analytic Number Theory (Proceedings of Symposia in Pure Mathematics),
24:181–193, 1973. 23

[MS05] F. Mezzadri and N. C. Snaith. Recent Perspectives in Random Matrix
Theory and Number Theory. Cambridge University Press, 2005.

[Odl] A. M. Odlyzko. The first 100, 000 zeros of the Riemann
zeta function, accurate to within 3 ∗ 10−9).
http://www.dtc.umn.edu/∼odlyzko/zeta tables/zeros1. 56,
110, 111, 112

[Odl89] A. M. Odlyzko. The 1020th zero of the Riemann
zeta function and 70 million of its neighbours.
http://www.dtc.umn.edu/∼odlyzko/unpublished/, 1989. 112,
125, 129

[Olv74] F.W. J. Olver. Asymptotics and Special Functions. Academic Press,
1974. 159, 161

[Ott93] E. Ott. Chaos in Dynamical Systems. Cambridge University Press,
1993. 20

[PHH06] O. Pironneau, F. Hecht, and A. Le Hyaric. FreeFEM++, 2006.
http://www.freefem.org/ff++. 80, 103

[PRSB00] E. Persson, I. Rotter, H.-J. St¨ockmann, and M. Barth. Observation
of resonance trapping in an open microwave cavity. Physical Review
Letters, 85:2478–2481, 2000. 122
[PS85] R. S. Phillips and P. Sarnak. TheWeyl theorem and the deformation
of discrete groups. Comm. Pure Appl. Math., 38:853–866, 1985. 24

[PT56] C. E. Porter and R. G. Thomas. Fluctuations of nuclear reaction
widths. Physical Review, 104:483, 1956. 21, 121

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in FORTRAN - The Art of Scienctfic Computing.
Cambridge University Press, 1992. 110, 155, 162

[RM93] U. V. Riss and H.-D. Meyer. Calculation of resonance energies and
widths using the complex absorbing potential method. J. Phys. B,
26:4503–4536, 1993. 96, 97, 98

[RM02] L. Ramdas Ram-Mohan. Finite Element and Boundary Element
Applications in Quantum Mechanics. Oxford University Press, 2002.

[Rob86] M. Robnik. A simple separable Hamiltonian having bound states
in the continuum. Journal of Physics A, 19:3845–3848, 1986. 56

[RV98] M. Robnik and G. Veble. On spectral statistics of classically integrable
systems. Journal of Physics A, 31:4669–4704, 1998. 125

[SC93] R. Schack and C. Caves. Hypersensitivity to perturbations in the
quantum baker’s map. Phys. Rev. Lett., 71(4):525–528, 1993. 20

[Sch78] D. Schattschneider. The plane symmetry groups: Their recognition
and notation. Am. Math. Monthly, 85:439–450, 1978. 47

[Sch80a] C. Schmit. Quantum and classical properties of some billiards on
the hyperbolic plane. In Chaos et Physique Quantique — Chaos and
Quantum Physics, Les Houches, ecole d’´ete de physique theorique
1989, session LII. Elsevier Science Publishers B V, 1980. 106, 121

[Sch80b] B. Schutz. Geometrical Methods of Mathematical Physics. Cambridge
University Press, 1980. 30, 36

[Sch95] R. Schack. Comment on ‘exponential sensitivity and chaos in quantum
systems’. Phys. Rev. Lett., 75(3):581, 1995. 20

[Sel56] A. Selberg. Harmonic analysis and discontinuous groups in weakly
symmetric Riemannian spaces with applications to Dirichlet series.
Journal of the Indian Mathematical Society, 20:47–87, 1956. 63

[SH00] S. Sahoo and Y. K. Ho. Determination of resonance energy and
width using the method of complex absorbing potential. Chinese
Journal Of Physics, 38:127–138, 2000. 96

[SSCL93] M Sieber, U Smilansky, S C Creagh, and R G Littlejohn. Nongeneric
spectral statistics in the quantized stadium billiard. Journal
of Physics A: Mathematical and General, 26(22):6217–6230, 1993.

[SSS03] D. Savin, V. Sokolov, and H.-J. Sommers. Is the concept of a non-
Hermitian effective Hamiltonian relevant in the case of potential
scattering? Phys. Rev. E, 67, 2003. 78

[Ste94] G. Steil. Eigenvalues of the Laplacian and of the Hecke operators
for PSL(2, Z). Technical report, DESY, 1994. 110, 111

[St¨o99] H.-J. St¨ockmann. Quantum Chaos: an Introduction. Cambridge
University Press, 1999. 38, 119, 125, 127

[SZ89] V. V. Sokolov and V. G. Zelevinsky. Dynamics and statistics of
unstable quantum states. Nuclear Physics A, 504:562–588, 1989.

[Tay72] J. Taylor. Scattering Theory. John Wiley and Sons, Inc., 1972. 41,

[Tem75] N. M. Temme. On the numerical evaluation of the modified Bessel
function of the third kind. J. Comput. Phys., 19:324–337, 1975. 162

[The05] H. Then. Maaßcusp forms for large eigenvalues. Math. Comp.,
74:363–381, 2005. 111

[THM96] G. Tanner, K. T. Hansen, and J. Main. The semiclassical resonance
spectrum of hydrogen in a constant magnetic field. Nonlinearity,
9:1641–1670, 1996. 62

[Tit51] E. C. Titchmarsh. The Theory of the Riemann Zeta-Function. Oxford
University Press, 1951. 54

[Ven78] A. B. Venkov. Selberg’s trace formula for the Hecke operator
generated by an involution, and the eigenvalues of the Laplace-
Beltrami operator on the fundamental domain of the modular group
PSL(2, Z). Math. USSR Izvestiya, 12:448–462, 1978. 61, 64, 65

[vV28] J. H. van Vleck. The correspondence principle in the statistical
interpretation of quantum mechanics. Proceedings of the National
Academy of Sciences of the United States of America, 14:178–188,
1928.

[Wat66] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge
University Press, 1966. 40

[Wey11] H. Weyl. ¨ Uber die asymptotische Verteilung der Eigenwerte.
G¨ottinger Nachrichten, 110, 1911. 60

[WJ89] D. M. Wardlaw and W. Jaworski. Time delay, resonances, Riemann
zeros and chaos in a model quantum scattering system. Journal of
Physics A, 22:3561–3575, 1989. 38, 43, 112

[Wol05] Wolfram Research, Inc. Mathematica, 2005. 110, 114


Details