
Multi-agent system security
for mobile communication

Niklas Borselius

Technical Report
RHUL–MA–2003–5
1 September 2003

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Multi-agent system security
for mobile communication

by

Niklas Borselius

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Department of Mathematics
Royal Holloway, University of London

2003

Abstract

This thesis investigates security in multi-agent systems for mobile communica-
tion. Mobile as well as non-mobile agent technology is addressed.

A general security analysis based on properties of agents and multi-agent sys-
tems is presented along with an overview of security measures applicable to
multi-agent systems, and in particular to mobile agent systems.

A security architecture, designed for deployment of agent technology in a mo-
bile communication environment, is presented. The security architecture allows
modelling of interactions at all levels within a mobile communication system.
This architecture is used as the basis for describing security services and mech-
anisms for a multi-agent system. It is shown how security mechanisms can be
used in an agent system, with emphasis on secure agent communication.

Mobile agents are vulnerable to attacks from the hosts on which they are ex-
ecuting. Two methods for dealing with threats posed by malicious hosts to a
trading agent are presented. The first approach uses a threshold scheme and
multiple mobile agents to minimise the effect of malicious hosts. The second
introduces trusted nodes into the infrastructure.

Undetachable signatures have been proposed as a way to limit the damage a
malicious host can do by misusing a signature key carried by a mobile agent.
This thesis proposes an alternative scheme based on conventional signatures and
public key certificates.

Threshold signatures can be used in a mobile agent scenario to spread the risk
between several agents and thereby overcome the threats posed by individual
malicious hosts. An alternative to threshold signatures, based on conventional
signatures, achieving comparable security guarantees with potential practical
advantages compared to a threshold scheme is proposed in this thesis.

Undetachable signatures and threshold signatures are both concepts applicable
to mobile agents. This thesis proposes a technique combining the two schemes
to achieve undetachable threshold signatures.

This thesis defines the concept of certificate translation, which allows an agent
to have one certificate translated into another format if so required, and thereby
save storage space as well as being able to cope with a certificate format not
foreseen at the time the agent was created.

2

Acknowledgements

First, I would like to thank my supervisor, Professor Chris Mitchell, for his help,
constant support, and for always being available and encouraging.

Next, my thanks go to Mobile VCE for funding and motivating my research, and
also for bringing together industry and academia into a fruitful and stimulating
environment. Thanks to everyone, academics and industrials, with whom I have
had the pleasure to work through Mobile VCE.

The staff and my fellow students within the Mathematics department, by their
warmth and friendship, have provided a most pleasant and genial environment
during my years of study at Royal Holloway – my thanks go to all of them.

Finally, I want to thank my parents who have supported me in whatever deci-
sions I have taken throughout my life, and whose support has also been impor-
tant during my studies in England.

3

Contents

1 Introduction 14

1.1 Motivation and challenges . 15

1.2 Structure of thesis . 18

1.3 Contribution of thesis . 20

1.4 Notation and cryptographic primitives 22

1.5 Definitions . 25

2 Security issues in multi-agent systems 28

2.1 Introduction . 29

2.2 Agents and multi-agent systems 30

2.3 Security implications . 32

2.3.1 Agent Execution . 32

2.3.2 Situatedness . 33

2.3.3 Autonomy . 34

2.3.4 Communication . 34

2.3.5 Mobility . 36

2.3.6 Rationality, veracity, and benevolence 37

2.3.7 Identification and authentication 38

2.3.8 Anonymity . 39

2.3.9 Trust . 39

4

CONTENTS

2.3.10 Authorisation and delegation 40

2.4 Conclusions . 40

3 Security measures for multi-agent systems 41

3.1 Introduction . 42

3.2 Security measures for agent communication 42

3.3 Protecting mobile agents . 44

3.3.1 Contractual agreements 46

3.3.2 Trusted hardware . 46

3.3.3 Trusted nodes . 47

3.3.4 Co-operating agents . 48

3.3.5 Execution tracing . 49

3.3.6 Encrypted payload . 50

3.3.7 Environmental key generation 50

3.3.8 Computing with encrypted functions 51

3.3.9 Obfuscated code . 52

3.3.10 Undetachable signatures 52

3.4 Protecting the agent platform . 54

3.4.1 Sandboxing and safe code interpretation 54

3.4.2 Proof carrying code . 55

3.4.3 Signed code . 55

3.4.4 Path histories . 55

3.4.5 State appraisal . 56

3.5 Conclusions . 56

4 A security architecture for agent based mobile systems 58

4.1 Introduction . 59

4.2 Involved parties . 60

5

CONTENTS

4.3 Device structure . 61

4.4 Agent execution environment . 63

4.5 Agent construction . 67

4.6 Conclusions . 68

5 Security services and mechanisms for agent based mobile sys-
tems 69

5.1 Introduction . 70

5.2 Security functionality . 70

5.2.1 Platform protection . 70

5.2.2 Agent protection . 73

5.2.3 Communication security services 77

5.3 Providing security functionality 79

5.3.1 Platform protection . 80

5.3.2 Agent protection . 82

5.3.3 Communication security services 90

5.4 Conclusions . 92

6 Agent communication security 93

6.1 Introduction . 94

6.2 Architectural issues . 94

6.3 Data origin authentication . 95

6.3.1 Stationary agents . 96

6.3.2 Mobile agents . 98

6.4 Entity authentication . 103

6.4.1 Architecture support for authentication 105

6.5 Non-repudiation . 106

6.5.1 Architecture support for non-repudiation 108

6.6 Confidentiality of communication 108

6

CONTENTS

6.6.1 Architecture support for confidentiality 110

6.7 Anonymity . 110

6.7.1 Architecture support for anonymity 113

6.8 Conclusions . 113

7 Securing FIPA agent communication 114

7.1 Introduction . 115

7.2 The FIPA communication model 116

7.3 FIPA Message structure . 118

7.3.1 Security evaluation . 120

7.4 Open PGP . 120

7.4.1 Using PGP for FIPA messages 122

7.5 Agent — platform interaction . 123

7.6 Conclusions . 128

8 A pragmatic alternative to undetachable signatures 129

8.1 Introduction . 130

8.2 Solving the problem the conventional way 131

8.2.1 Preliminaries . 131

8.2.2 Preparing the agent . 132

8.2.3 Executing the agent . 132

8.2.4 Remarks on implementation 133

8.2.5 A brief comparison . 134

8.3 Relationship to secure delegation schemes 136

8.4 Conclusions . 137

9 Mobile agent based transactions 138

9.1 Introduction . 139

9.2 Threats to trading agents . 140

7

CONTENTS

9.3 Models of agent platforms . 142

9.4 Model for a trading agent . 144

9.5 Threshold scheme . 146

9.5.1 The scheme . 146

9.5.2 The votes . 148

9.6 Using one trusted host . 149

9.7 Conclusions . 153

10 A pragmatic alternative to threshold signatures 154

10.1 Introduction . 155

10.2 Mobile agents and threshold signatures 155

10.3 An alternative based on conventional signatures 157

10.3.1 Preparing the agents . 157

10.3.2 Executing an agent . 158

10.3.3 Remarks on implementation 159

10.3.4 A brief comparison . 160

10.4 Conclusions . 163

11 Undetachable threshold signatures 164

11.1 Introduction . 165

11.2 RSA undetachable signatures . 166

11.3 Threshold signatures . 167

11.4 Undetachable threshold signatures 170

11.5 Conclusions . 172

12 Certificate translation 173

12.1 Introduction . 174

12.2 General concept . 175

12.3 Security considerations . 176

8

CONTENTS

12.3.1 Certificate content assurance 177

12.3.2 Revocation . 177

12.3.3 Liability . 178

12.4 Applications for certificate translation 179

12.4.1 Translating between incompatible certificate types 179

12.4.2 Translating incompatible certificate fields 179

12.4.3 Delegating path validation 180

12.4.4 Centralised trust and policy management 180

12.5 Scenarios . 181

12.5.1 WAP . 181

12.5.2 MExE . 183

12.6 Extension to SCVP . 185

12.7 Outline of a certificate translation protocol 186

12.7.1 Request . 187

12.7.2 Response . 190

12.8 Conclusions . 191

13 Conclusions 192

13.1 Summary and conclusions . 193

13.2 Suggestions for future work . 197

Bibliography 199

9

List of Figures

4.1 A model for the elements within a device 62

4.2 agent execution environment architecture 65

6.1 Agent Q sending a message to agent R 96

6.2 Movement of a mobile agent . 99

6.3 Deployment of multiple one-hop agents 100

6.4 Using trusted platforms to update the agent’s key 100

6.5 TSP offering a timestamp and forward service 107

6.6 Agent Q sending a message to agent R 108

6.7 Proxy service giving anonymity 111

7.1 FIPA message transport model 117

7.2 Methods of communication between agents on different platforms 118

7.3 Security services separated from ACC 124

7.4 Secure communication services offered ‘transparently’ to agents . 124

9.1 A model for agent platforms . 143

9.2 A second model for agent platforms 143

10

List of Tables

7.1 Message envelope description . 118

7.2 ACL message elements . 119

7.3 Open PGP packet types . 121

11

Acronyms

ACC Agent Communication Channel

ACL Agent Communication Language or

Access Control List (depending on context)

AI Artificial Intelligence

API Application Program Interface

ARPA Advanced Research Projects Agency

BER Basic Encoding Rules

CA Certification Authority

CPU Central Processing Unit

CTS Certificate Translation Server

DTD Document Type Definition

EC Environment Certifier

EMV Europay, Mastercard and Visa

FIPA Foundation for Intelligent Physical Agents

GSM Global System for Mobile communication

HSP Home Service Provider

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

IP Internet Protocol

ISO International Organization for Standardisation

KQML Knowledge Query and Manipulation Language

12

MAC Message Authentication Code

MAS Multi-Agent System

MExE Mobile Station Application Execution Environment

MS Mobile Station

PC Personal Computer

PDA Personal Digital Assistant

PER Packed Encoding Rules

PGP Pretty Good Privacy

PKI Public Key Infrastructure

PKIX Public-Key Infrastructure (X.509)

PRAC Partial Result Authentication Code

PS Proxy Service

RA Registration Authority

RFC Request For Comments

RSA Rivest, Shamir, and Adleman

– a public key cryptosystem named after its inventors

SCVP Simple Certificate Validation Protocol

SIM Subscriber Identity Module

SP Service Provider

SPKI Simple Public Key Infrastructure

TLS Transport Layer Security

TSP Trust Service Provider

UMTS Universal Mobile Telecommunications Service

USB Universal Serial Bus

VPN Virtual Private Network

WAP Wireless Application Protocol

WTLS Wireless Transport Layer Security

XML Extensible Markup Language

Chapter 1

Introduction

Contents

1.1 Motivation and challenges 15

1.2 Structure of thesis 18

1.3 Contribution of thesis 20

1.4 Notation and cryptographic primitives 22

1.5 Definitions . 25

This chapter describes the context of this research, its contribution to the field

of security in multi-agent systems for mobile communication, and presents the

structure of this thesis. Definitions and notation used throughout the thesis are

also defined.

14

1. Introduction

1.1 Motivation and challenges

The concept of an agent originates from the area of Artificial Intelligence (AI)

but has now gained more widespread acceptance in mainstream computer sci-

ence [84]. The term ‘agent’ has become fashionable, and a more mature tech-

nology than currently available is often implied. This is in particular true for

security in multi-agent systems. Over-simplified assumptions and references to

security solutions that do not address all the issues are not uncommon in the

literature. Naturally, security is not a driving force for the research and devel-

opment of multi-agent systems, and therefore has not received much attention

from the agent community. Nevertheless, in order for agent technology to gain

widespread use and provide viable solutions for commercial applications, secu-

rity issues need to be addressed.

Autonomous agents and multi-agent systems represent a relatively new way of

analysing, designing, and implementing complex software systems. This thesis

is only concerned with the security of the system and its components (leav-

ing design methodologies to others). Several multi-agent systems are available

as commercial products and many more have been implemented in various re-

search projects, with varying success. Ongoing standardisation efforts [21, 48]

have proven successful and are still evolving. Today there is growing interest

and research in implementing and rolling out (open) multi-agent systems on a

wider scale1. Mobile VCE (www.mobilevce.com), which funded this research,

is undertaking one such project where the agent paradigm is researched in a

mobile telecommunications setting.

1See http://www.agentcities.org for an example of an ongoing effort to implement large
scale multi-agent systems.

15

1. Introduction

Agents are independent pieces of software capable of acting autonomously in

response to input from their environment. Agents can posses differing capabil-

ities [80], but typically possess the required functionality to fulfil their design

objectives. To be described as ‘intelligent’, software agents should also have

the ability to act autonomously, that is without direct human interaction, be

flexible, and in a multi-agent system be able to communicate with other agents,

that is to be social. Agents are, to various degrees, aware of their environment,

which can also often be affected by the agents’ actions.

A mobile agent is a particular class of agent with the ability during execution

to migrate from one host to another where it can resume its execution. It

has been suggested that mobile agent technology, amongst other things, can

help to reduce network traffic and to overcome network latencies [52]. The

limited processing resources and power supply available to many mobile devices

are also arguments for mobile agents. Mobile agents could migrate to hosts

with sufficient resources. An agent’s ability to move does, however, introduce

significant security problems.

Future mobile communication systems are envisioned as being able to offer a

much wider range of services [108], thereby putting new requirements on the

communication infrastructure. The software agent paradigm is believed to be

able to offer a number of important properties for applications as well as for

middleware services of future mobile communication systems [83]. It is within

this context that the research presented in this thesis has been pursued.

The system envisioned utilises agent technology. Agents can exist on all kinds

of hosts throughout the infrastructure, from the smallest devices (e.g. watch

or phone) to application servers and communication infrastructure equipment.

16

1. Introduction

While some agents will have the capability to move between platforms, others

will always reside on the same platform. Whichever is the case, agents need

access to certain security functionality. The envisioned system also includes,

and allows, devices not using agent technology.

The system will also need to cope with different kinds of information each of

which may require very different levels of protection. While certain information

needs extensive protection, other information might not. This must be kept in

mind when providing security services.

The system needs to be scalable. Security functionality can often be easily rolled

out and provided for a small system; however, to do so on larger scale and in

such a way that the system is allowed to grow requires robust solutions.

Openness in this context means that there is no single authority in control of

the system. This means that users and service providers are able to connect to

the infrastructure and utilise it in a similar way to the Internet today. Indeed,

the system is likely to utilise, and interact with, the Internet.

Flexibility, scalability, and openness are important properties for the envisioned

agent system [83]. One of the motivations for the use of the agent paradigm

is that it facilitates flexibility: self-contained agents can be deployed to work

autonomously in the system, with minimal management from the system itself.

Security services for a multi-agent system should be general enough to be used

as desired by the agents without imposing too high an overhead. Furthermore,

security functionality should not be implemented in such a way that it prohibits

the provision of additional security functionality, as may be required within

certain applications. Therefore security functionality needs to be provided in a

17

1. Introduction

manner that does not impede flexibility or extension.

1.2 Structure of thesis

This thesis is organised as follows. In the remainder of this chapter, the main

contributions of this thesis are first described, the notation and cryptographic

primitives used throughout the thesis are specified, and definitions of security

terminology used are given.

Chapter 2 describes properties of agents and multi-agent systems, focusing on is-

sues with possible security implications. Security issues for multi-agent systems

are then identified.

Chapter 3 describes available technologies and research efforts addressing se-

curity issues in multi-agent systems, with emphasis on technology addressing

issues for mobile agents.

In chapter 4 a security architecture for agent based mobile systems is proposed.

The architecture has four levels of abstraction: the involved parties, the device

structure, the agent execution environment, and the agent construction.

Chapter 5 describes security services and mechanisms for agent based mobile

systems, and relates these to the architecture proposed in chapter 4.

Chapter 6 describes how security of communication between agents on different

platforms can be addressed in general, as well as within the context of the

security model presented in chapter 4.

18

1. Introduction

Chapter 7 evaluates the FIPA standards for agent communication protocols and

outlines how security can be added to them.

In chapter 8 a ‘pragmatic’ alternative to undetachable signatures is proposed,

relying on the use of conventional signatures and public key certificates. Un-

detachable signatures let a user limit the intention of the data string to which

a correct signature can be applied. We show how this can be achieved using

conventional mechanisms.

Chapter 9 proposes two methods to improve the security and reliability of mobile

agent based transactions in an environment which may contain some malicious

hosts.

Chapter 10 presents alternatives to threshold signatures that raise questions

about the value of such schemes when applied in a mobile agent setting.

Chapter 11 introduces the concept of undetachable threshold signatures, which

enables constrained signing power to be distributed across multiple agents, thus

reducing the necessary trust in single agent platforms.

In chapter 12 the concept of certificate translation is defined and examples of

its applications are proposed.

Finally, chapter 13 gives the conclusions of this thesis.

19

1. Introduction

1.3 Contribution of thesis

A security analysis based on properties of agents and multi-agent systems is

presented (chapter 2). Security analyses have been carried out by others, but

usually with a particular application in mind, resulting in more narrow threat

scenarios compared to the security issues presented in this thesis. An overview

of the security measures applicable to multi-agent systems, and in particular to

mobile agent systems, is also given (chapter 3).

A security architecture, designed for deployment of agent technology in a mobile

communication environment, is presented in chapter 4. The security architec-

ture allows modelling of interactions at all levels within a mobile communication

system. This architecture is then used as a basis for describing security services

and mechanisms for a multi-agent system (chapter 5), with emphasis on secure

agent communication (chapter 6), where we show how security mechanisms can

be used in an agent system.

The FIPA agent communication protocols have become a de facto standard, but

lack security functionality. This is addressed in chapter 7 where we analyse the

FIPA specifications and outline how security can be added to them.

Undetachable signatures have been proposed [98] as a way to limit the damage

a malicious host can do by misusing a signature key carried by a mobile agent.

In chapter 8 we propose a scheme for the same purpose, relying on conventional

signatures and public key certificates.

Mobile agents are vulnerable to attacks from the hosts on which they are exe-

cuting. If a mobile agent is sent out to find a particular item of merchandise on

20

1. Introduction

a user’s behalf it is exposed to a range of possible attacks from the hosts visited

by the agent. In chapter 9 we propose two ways to overcome the threats posed

by malicious hosts. The first approach uses a threshold scheme and multiple

mobile agents to minimise the effect of malicious hosts. The second approach

introduces trusted nodes into the infrastructure.

Threshold signatures can be used in a mobile agent scenario to spread the risk

between several agents and thereby overcome the threats posed by individual

malicious hosts. In chapter 10 we propose a rather simple alternative to thresh-

old signatures based on conventional signatures, achieving comparable security

guarantees with potential practical advantages compared to a threshold scheme.

Undetachable signatures and threshold signatures are both concepts applicable

to mobile agents. In chapter 11 we propose a scheme combining the two schemes

to achieve undetachable threshold signatures.

Agents in a mobile communications environment are likely to be exposed to a

variety of applications requiring them to produce digital signatures, and supply

a digital certificate that can be used to validate the signature. Several different

formats for digital certificates exist today, usually optimised for a particular ap-

plication or environment. If an agent is exposed to several of these applications

or environments, it may need to have as many digital certificates. In chapter 12

we define the concept of certificate translation, which allows an agent to have

one certificate translated into another format if so required, and thereby save

storage space as well as being able to cope with a certificate format not foreseen

at the time the agent was created.

21

1. Introduction

1.4 Notation and cryptographic primitives

In this section we briefly describe some of the cryptographic tools used to pro-

vide security functionality, as well as the notation used throughout this thesis.

For a more thorough introduction to all the necessary cryptography see, for

example, [87].

Symmetric encryption

Symmetric encryption, or secret-key encryption, uses a secret key to encrypt

a message into ciphertext and the same key to decrypt the ciphertext into the

original message.

For the purposes of this thesis

EK(m)

denotes symmetric encryption of data string m using secret key K.

There are a number of available symmetric encryption algorithms (see, for ex-

ample, [87]).

Symmetric cryptography, which includes symmetric encryption and messages

authentication codes (see below), requires the sender and receiver to agree on a

shared secret key. Symmetric cryptography is in general more efficient in terms

of computing resources than asymmetric cryptography (defined below).

22

1. Introduction

Message authentication codes

Message Authentication Codes (MACs) aim to guarantee the source and in-

tegrity of a message. A MAC is sent together with the message it is protecting.

For the purposes of this thesis

MACK(X)

denotes a MAC computed on data X using the secret key K.

There are a variety of well-established means for computing MACs, typically

either based on the use of a block cipher or a cryptographic hash function (see,

for example, [87]). There are also standards for such schemes, notably ISO/IEC

9797 parts 1 and 2 [72, 73].

Asymmetric cryptography

Asymmetric cryptography, or public-key cryptography, involves the use of two

distinct keys, one public and one private. The private key is kept secret by

its owner, while the public key can be freely shared with everyone. There are

a number of different types of asymmetric cryptographic schemes, including

encryption schemes and digital signatures.

Whilst asymmetric cryptography does not, like symmetric cryptography, rely on

the sender and receiver agreeing on a shared secret, the user of the public key

must ensure that the correct key is used. Public Key Infrastructures (PKIs) are

used for this purpose. In a PKI, Certification Authorities (CAs) issue digitally

signed certificates which bind a public key to an identity and possibly other in-

23

1. Introduction

formation (e.g. certificate expiry date). X.509 [76] is a widely adopted standard

specifying the format of digital certificates. Standards also exists for PKIs, see

for example IETF PKIX2.

Asymmetric encryption

In an asymmetric encryption scheme, the public key is used for encryption and

the private key for decryption. The most commonly used algorithm for public-

key encryption is RSA (see for example [87]). Standards describing how to use

asymmetric encryption include [59].

For the purposes of this thesis

EX(m)

denotes the asymmetric encryption of data string m using the public key of

entity X.

Digital signatures

Digital signatures aim at guaranteeing the origin and integrity of a message.

The originator of a message uses his signing key, the private key, to sign the

message and sends it along with the message to the recipient. The recipient

uses the verification key, i.e. the public key of the signer, to verify the origin

and integrity of the message. Typically a digital signature functions as a check

value on data, and we assume the use of such a signature scheme throughout

this thesis. That is, when sending a digital signature on data, both the data

and the signature need to be transmitted. Signature schemes do exist where

2 http://www.ietf.org/html.charters/pkix-charter.html

24

1. Introduction

part or all of the data can be recovered from the signature itself, but these are

less commonly used.

For the purposes of this thesis

sX(m)

denotes the signature of entity X (which must be computed using the private

signature key of X) on data string m.

There are many signature schemes available (see for example [87]), including

a number of techniques which are international standards, see for example,

[45, 59, 66, 67, 68].

1.5 Definitions

In this section security terminology used in the reminder of this thesis is defined.

This is by no means intended to be a complete list of security terminology. (For

further information and discussions of security terminology see, for example,

[47, 49, 69].)

Access control: The means of enforcing authorisation [47].

(Entity) Authentication: The provision of assurance of the claimed identity

of an entity [47].

Authorisation: The granting of rights, by the owner or controller of a resource,

for others to access that resource [47].

Certification Authority (CA): A centre trusted to create and assign public

25

1. Introduction

key certificates. Optionally, the certification authority may create and assign

keys to the entities [61].

Confidentiality: The property that information is not made available or dis-

closed to unauthorised individuals, entities, or processes [69].

Data integrity: The property that data has not been altered or destroyed in an

unauthorised manner [69]. For the purposes of this thesis, when not specifically

stated otherwise, we use integrity to mean data integrity.

Data origin authentication: The corroboration that the source of data re-

ceived is as claimed [69].

Digital certificate: A digitally signed data structure containing an identifier

for an entity and certain information associated with that entity, e.g. a public

key or an access control attribute [40].

Non-repudiation of origin: Protects against the originator’s false denial of

having created the content of a message and of having sent a message [62].

Non-repudiation of receipt: Protects against a recipient’s false denial of

having received a message [62].

Public key certificate: A digital certificate containing a public key for an

entity.

Public Key Infrastructure (PKI): System consisting of TTPs, together with

the services they make available to provide certified public keys.

26

1. Introduction

Traffic flow confidentiality: A confidentiality service to protect against the

inference of information from observation of traffic flows [69].

Trusted Third Party (TTP): A security authority, or its representative,

trusted by other entities with respect to security related activities [67].

Security policy: A set of rules that apply to all security-relevant activities in

a domain [47].

27

Chapter 2

Security issues in

multi-agent systems

Contents

2.1 Introduction . 29

2.2 Agents and multi-agent systems 30

2.3 Security implications 32

2.3.1 Agent Execution . 32

2.3.2 Situatedness . 33

2.3.3 Autonomy . 34

2.3.4 Communication . 34

2.3.5 Mobility . 36

2.3.6 Rationality, veracity, and benevolence 37

2.3.7 Identification and authentication 38

2.3.8 Anonymity . 39

2.3.9 Trust . 39

2.3.10 Authorisation and delegation 40

2.4 Conclusions . 40

This chapter describes properties of agents and multi-agent systems, focusing

on properties with possible security implications. Security issues for multi-agent

systems are then identified.

28

2. Security issues in multi-agent systems

2.1 Introduction

This chapter briefly describes properties of agents and multi-agent systems (sec-

tion 2.2). It is not intended to be a complete description of agents multi-agent

systems (we are, for example, not concerned with AI properties for agents here).

The focus is restricted to issues with possible security implications. Using these

properties, the security issues for multi-agent systems are identified (section 2.3).

Finally, the conclusions of this chapter are presented in section 2.4. Some of

the work described in this chapter has been previously published in [9, 10]. For

further information on agents and multi-agent systems (MAS) see, for exam-

ple, [54, 80, 117].

The security analysis presented in this chapter is based on properties of agents

and open multi-agent systems. Security analyses have been presented elsewhere,

often with a particular application in mind, resulting in more narrow threat

scenarios compared to the general security issues presented in this chapter.

For a thorough analysis of mobile agent security see [78]. The malicious host

problem is described in some detail in [53, 56]. Other analyses of security issues

for mobile agents can be found in [26, 50, 98]. For general multi-agent systems,

not focusing on mobile agents, security analyses are more scarce. The following

publications all contain limited security analyses of multi-agent systems, mostly

in the context of a particular application or system implementation, [46, 55,

104, 106, 116].

29

2. Security issues in multi-agent systems

2.2 Agents and multi-agent systems

Agents are software entities that exhibit autonomy and certain ‘intelligence’.

An agent is often assumed to represent another entity, such as a human. No

single universal definition of agents exists, but there are certain widely agreed

universal characteristics of agents; these include situatedness, autonomy, and

flexibility [80].

• Situatedness means that the agent receives sensory input from its envi-

ronment and can perform actions which change the environment in some

way.

• Autonomy means that an agent is able to act without the direct inter-

vention of humans (or other agents), and that it has control over its own

actions and internal state.

• Flexibility can be defined to include the following properties:

– Responsive: refers to an agent’s ability to perceive its environment

and respond in a timely fashion to changes that occur in it.

– Pro-active: agents are able to exhibit opportunistic, goal-driven

behaviour and take the initiative where appropriate.

– Social: agents should be able to interact, when appropriate, with

other agents and humans in order to solve their own problems and

to help others with their activities.

A number of other attributes are sometimes discussed in the context of agent

systems. These include but are not limited to [80]:

30

2. Security issues in multi-agent systems

• Rationality: the assumption that an agent will not act in a manner

that prevents it from achieving its goals and will always attempt to fulfil

those goals.

• Veracity: an agent will not knowingly communicate false information.

• Benevolence: an agent cannot have conflicting goals that either force

it to transmit false information or to effect actions that cause its goals to

be unfulfilled or impeded.

• Mobility: the ability for an agent to move across networks and between

different hosts to fulfil its goals. For the purpose of this thesis we limit

the definition of mobile agents to those agents with the ability to migrate,

on their own initiative, during execution from one host to another where

they can resume their execution.

A multi-agent system (MAS) is a system composed of multiple autonomous

agents with the following characteristics [79]:

• each agent cannot solve a problem unaided,

• there is no global system control,

• data is decentralised, and

• computation is asynchronous.

Computer hosts, or platforms, provide agents with environments in which they

can execute. A platform typically also provides additional services, such as

communication facilities, to the agents it is hosting. In order for agents to be

able to form a useful open multi-agent system where they can communicate

31

2. Security issues in multi-agent systems

and cooperate, certain functionality needs to be provided to the agents. This

includes functionality to find other agents or to find particular services. This

additional functionality can either be implemented as services offered by other

agents or as services more integrated into the MAS infrastructure itself. Exam-

ples of such services include facilitators [19], matchmakers [20], mediators [114],

and blackboards [90].

Open multi-agent systems are usually envisioned as systems, communicating

over the Internet, allowing anybody to connect to a platform on which agents

are running. This means that the MAS lacks a global system control and that

information in general is highly decentralised.

2.3 Security implications

In this section we will discuss agent security issues based on the characteristics

described in the section 2.2. Security issues in agent systems have been analysed

previously, usually with a focus on a particular application or domain, see for

example [7, 94]. In this section we present a general analysis based on the

fundamentals of agents and MAS.

2.3.1 Agent Execution

Naturally, agents need to execute somewhere. A computer host, the immedi-

ate environment of an agent, is ultimately responsible for the correct execution

and protection of the agent. This leads to the question of where access control

decisions should be performed and enforced. Should an agent contain all neces-

sary logic and information required to decide if an incoming request is authentic

32

2. Security issues in multi-agent systems

(originating from its claimant) and if so, is it authorised (has the right to access

the requested information or service)? Or can agents rely on their execution

platform to provide access control services?

The environment might also need certain protection from the agents that it

hosts. An agent should, for example, be prevented from launching a denial of

service attack through consuming all resources on a host, thus preventing the

host from carrying out other things (such as executing other agents). Security

issues related to the executing host become even more apparent for agents that

are mobile, further described in section 2.3.5.

2.3.2 Situatedness

The meaning of the term ‘environment’ depends on the application and appears

to vary somewhat arbitrarily in the agent literature; it can for example be the

Internet or the host on which the agent is executing. An agent is assumed to

be ‘aware’ of certain states or events in its environment. Depending on the

nature and origin of this information, its authenticity and availability need to

be considered; (confidentiality of such information might also be relevant). If an

agent’s ‘environment’ is limited to the host on which it is executing, no specific

security measures might be necessary (assuming the host environment cannot

be spoofed). The situation is, however, likely to be different if the agent receives

environment information from, or via, the Internet. (Security of communication

is further explored in section 2.3.4.)

33

2. Security issues in multi-agent systems

2.3.3 Autonomy

Autonomy, when combined with other features given to agents, can introduce

serious security concerns. If an agent, for example, is given authority to buy or

sell things, it should not be possible for another party to force the agent into

committing to something it would not normally commit to. Neither should an

agent be able to make commitments it cannot fulfil. Hence, issues related to

delegation needs to be considered for agents.

The autonomy property does not necessarily introduce any ‘new’ security con-

cerns; this property is held by many existing systems. It is worth mentioning

that Internet worms (often referred to as viruses) also hold this property, which

enables them to spread efficiently without requiring any (intentional or unin-

tentional) human interaction. The lesson to learn from this is that powerful

features can also be used for malicious purposes if not properly controlled.

2.3.4 Communication

Of the flexibility properties, social behaviour is certainly interesting from a

security point of view. This means that agents can communicate with other

agents and humans. Just as an agent’s communication with its environment

needs to be protected, so does its communication with other agents and humans.

The following security properties should be provided:

• Confidentiality: assurance that communicated information is not accessi-

ble to unauthorised parties.

• Data integrity: assurance that communicated information cannot be ma-

34

2. Security issues in multi-agent systems

nipulated by unauthorised parties without being detected.

• Authentication of origin: assurance that communication originates from

its claimant.

• Availability: assurance that communication reaches its intended recipient

in a timely fashion.

In addition to these basic security properties, non-repudiation services should

be considered. One can distinguish non-repudiation of many actions (eight

non-repudiation services are defined in [62]). We believe the following non-

repudiation services to be the ones most useful in a generic agent system:

• Non-repudiation of origin: protects against the originator’s false denial of

having created the content of a message and of having sent a message [62].

• Non-repudiation of receipt: protects against the recipient’s false denial of

having received a message [62].

Fundamental to the above-mentioned communication security properties are is-

sues relating to the identification and authentication of the sending and receiving

parties. These issues are discussed further in section 2.3.7.

It should be noted that security usually comes at a cost. Additional computing

resources as well as communication resources are required by most solutions to

achieve the above-mentioned security requirements. Therefore, security needs

to be dynamic. Sometimes it makes sense to protect all communication within a

system to the same degree, as the actual negotiation of security mechanisms can

then be avoided. However, in a large scale open multi-agent system, security

35

2. Security issues in multi-agent systems

services and mechanisms need to be able to fit the purpose and nature of the

communications of various applications with differing security requirements.

Some implementations of MAS assume that security is provided transparently

by a lower layer. This approach might be sufficient in a closed system where the

agents can trust each other and the only concern is external malicious parties.

However, we believe that agents in an open system may often need to be ‘security

aware’, i.e. they need to be able to make decisions based on where information is

originating from and how well protected it is. As suggested elsewhere (e.g. [55]),

public key cryptography and a supporting Public Key Infrastructure (PKI) can

be used as important tools for securing inter-agent communication.

With a public key infrastructure in place, security protocols and mechanisms

already developed for other applications can be made to fit the requirements

of multi-agent systems to provide authentication, confidentiality, and data in-

tegrity.

2.3.5 Mobility

The use of mobile agents raises a number of security concerns. Agents need

protection from other agents and from the hosts on which they execute. Sim-

ilarly, hosts need to be protected from agents and from other parties that can

communicate with the platform. The problems associated with the protection

of hosts from malicious code are quite well understood.

The problem posed by malicious hosts to agents seems more complex to solve.

Since an agent is under the control of the executing host, the host can in principle

do anything to the agent and its code. The particular attacks that a malicious

36

2. Security issues in multi-agent systems

host can make have been described in [53] and [56], and can be summarised as

follows.

• Observation of code, data and flow control.

• Manipulation of code, data and flow control – including manipulating the

route of an agent.

• Incorrect execution of code – including re-execution.

• Denial of execution – either in part or whole.

• Masquerading as a different host.

• Eavesdropping on agent communications.

• Manipulation of agent communications.

• False system call return values.

2.3.6 Rationality, veracity, and benevolence

These properties could at a first glance appear to be very security relevant.

However, on closer consideration they seem to be too abstract for us to consider

as practical security concerns. The meaning (from a security point of view) of

these properties seems to be: “Agents are well behaved and will never act in a

malicious manner.” If we make this a genuine requirement, then the required

redundancy for such a system is likely to make the system useless. It would, of

course, be valuable to have a system where agents can be assumed to behave

truthfully and honestly in every situation. This does not seem a likely scenario

for a multi-agent system that is not under very strict control and under a single

authority, and would not correspond to the assumed open system scenario.

37

2. Security issues in multi-agent systems

However, measures can be taken to limit maliciously behaving agents. Assurance

that only information from trusted sources is acted upon and that agents (or

their owner) can be held responsible for their actions, as well as monitoring

and logging of agent behaviour, are all mechanisms that can help in creating a

system where the actions of malicious agents can be minimised.

2.3.7 Identification and authentication

Identification is not primarily a security issue in itself; however, the means

by which an agent is identified are likely to affect the way an agent can be

authenticated. For example, an agent could simply be identified by something

like a serial number, or its identity could be associated with its origin, owner,

capabilities, or privileges. As mentioned in section 2.3.4, authentication is often

fundamental to secure communication. If identities are not permanent, security-

related decisions cannot be made on the basis of an agent’s identity.

Connected with identification and authentication is anonymity. While an en-

tity’s identity is of major importance to certain applications and services, it is

not needed in others. An open multi-agent system would probably require some

sort of anonymity service to acquire wide acceptance today. In fact, agents are

likely to be ideal for providing anonymity to their owners as they are indepen-

dent pieces of code, possess some degree of autonomy, and do not require direct

user interaction.

38

2. Security issues in multi-agent systems

2.3.8 Anonymity

As mentioned in section 2.3.7, agents appear to be ideal for providing user

anonymity. However, anonymity can pose a big threat in an open system.

Agents are independent pieces of code, they possess some degree of autonomy,

and they do not require direct user interaction; without the ability to trace

agent activities to users, agents can be used to launch denial of service attacks.

2.3.9 Trust

Agents need to be able to make decisions based on information received and

collected from other entities. In order to make these decisions they need to

be able to evaluate the trustworthiness of the information or the information

source. A mobile agent needs to decide whether or not to transfer to, and

execute on, a particular host.

The issues surrounding trust within agent systems are currently attracting much

research within the agent community. Various mechanisms for agents to reason

about trust have been proposed, see, for example, [23]. Trust mechanisms based

on reputation are one approach suggested by a number of authors (e.g. [8, 99]).

Creating trust between entities without any, or very limited, common history

or knowledge of each other, which would be the case in an open MAS, is a

non-trivial task. Even though PKI technology still has to prove itself viable for

an open system on a global scale, a PKI may well be the best available solution

for distribution of trust in an open multi-agent system [18].

39

2. Security issues in multi-agent systems

2.3.10 Authorisation and delegation

Authorisation and delegation are important issues in multi-agent systems. Not

only do agents need to be granted rights to access information and other re-

sources in order to carry out their tasks, they will also be acting on behalf of

a person, organisation, or other agents, requiring transfer of access rights be-

tween different entities. With a public key infrastructure in place, delegation

can be done through various types of certificates, including attribute certifi-

cates for delegation of rights, and issuing of ‘traditional’ public key certificates

for delegation of signing rights.

2.4 Conclusions

In this chapter the security issues existing for open multi-agent systems have

been identified. The security issues are mainly related to agent execution and

the fact that, since agents are autonomous and need to act upon information

received from various entities, the trustworthiness of this information needs to

be guaranteed by the system and considered by the agent. Security issues related

to agent execution, and the fact that agents are under the control of a (perhaps

untrusted) executing host, are particularly relevant to mobile agents.

40

Chapter 3

Security measures for

multi-agent systems

Contents

3.1 Introduction . 42

3.2 Security measures for agent communication . . . 42

3.3 Protecting mobile agents 44

3.3.1 Contractual agreements 46

3.3.2 Trusted hardware . 46

3.3.3 Trusted nodes . 47

3.3.4 Co-operating agents 48

3.3.5 Execution tracing . 49

3.3.6 Encrypted payload 50

3.3.7 Environmental key generation 50

3.3.8 Computing with encrypted functions 51

3.3.9 Obfuscated code . 52

3.3.10 Undetachable signatures 52

3.4 Protecting the agent platform 54

3.4.1 Sandboxing and safe code interpretation 54

3.4.2 Proof carrying code 55

3.4.3 Signed code . 55

3.4.4 Path histories . 55

3.4.5 State appraisal . 56

3.5 Conclusions . 56

This chapter describes available technologies and research efforts addressing se-

curity issues in multi-agent systems.

41

3. Security measures for multi-agent systems

3.1 Introduction

Based on the security analysis of chapter 2, three broad categories of neces-

sary security services for multi-agent systems can be distinguished, namely,

(1) those addressing the communication between agents, (2) services protecting

agents against malicious platforms, and (3) services protecting platforms against

malicious agents. This chapter describes existing technologies and research ef-

forts addressing these three categories. In section 3.2 we will consider measures

specifically addressing communication security issues for agents and MAS. The

two following sections describe available technologies and research efforts ad-

dressing the security issues arising from the mobility property of mobile agents.

Section 3.3 considers mechanisms addressing various security aspects of the mo-

bile agent, and section 3.4 examines technologies protecting the executing hosts

from misbehaving agents. Section 3.5 gives the conclusions of this chapter. Note

that security services specifically relevant to multi-agent systems are discussed

further in chapter 5. This latter discussion is given in the context of the agent

security architecture introduced in chapter 4, whereas the discussion in this

chapter focuses primarily on the existing work in the area

3.2 Security measures for agent communication

Many commercial and research MAS architectures have been implemented and

many are still under development1. Several of these recognise security as an issue

to be taken care of in the future, whilst others imply that security is provided for.

It is common for MAS implementations to assume a VPN-like (Virtual Private

Network) underlying network to provide security services. This approach usu-

1See http://www.agentbuilder.com/AgentTools for a list of available systems.

42

3. Security measures for multi-agent systems

ally does not provide for much flexibility, since secure communication between

parties without pre-established relationships becomes cumbersome. Neverthe-

less, this solution can use well established security protocols and be adequate

for applications where all communication is protected to the same degree. Such

an approach usually leaves the agents completely unaware of security services as

this is handled between agent platforms (or perhaps even at the link level). The

agents themselves are also unprotected from malicious hosts if no other security

measures are applied.

Communication security can also be implemented at the session layer. [28] pro-

poses the use of TLS (Transport Layer Security) to protect agent communication

sessions. The proposed implementation allows the agent to rely on the host for

negotiation of security parameters, as well as the agent to supply its security

parameters for the TLS sessions.

FIPA2 is a non-profit standards organisation that is developing standards for

software agents to allow heterogeneous agent systems to interact. There are

a growing number of agent projects, platforms and agent applications based

on the FIPA standard (see, for example, [91]). Earlier, today outdated, FIPA

documents did consider some security issues. However, the current standards

do not deal with security. FIPA has recognised this and recently initiated work

in the area3. [92] includes a very brief attempt to add security to a FIPA

agent system, where it is suggested that the agent platform implements both

authentication of agents and facilitators (entities offering certain services to

agents) and the use of encrypted channels. However, no details are included,

and how key management and authentication should be provided is not specified.

2Foundation for Intelligent Physical Agents, see http://www.fipa.org
3See http://www2.elec.qmul.ac.uk/~stefan/fipa-security for the state and progress of

this work.

43

3. Security measures for multi-agent systems

We consider the FIPA specifications further in chapter 7.

KQML (Knowledge Query and Manipulation Language) [48] is a message pro-

tocol designed to enable software agents to communicate with each other. The

protocol has been developed as part of an ARPA project. KQML does not deal

with security issues but depends on security being provided by lower layers.

[106] proposes a security architecture for KQML. Symmetric or asymmetric

cryptography is supported and keys are assumed to be agreed beforehand. The

proposed extension provides for confidentiality, authentication, and (limited)

data integrity protection. However, as pointed out by the authors, it does not

protect against message replay attacks. A solution using mediating agents to

enable communication with crypto un-aware agents is also proposed. Another

suggestion for enhancing KQML with security is proposed in [55]. Parame-

ters for certificate management are defined leaving the format of the certificate

undefined.

3.3 Protecting mobile agents

Addressing the security threats that arise to mobile agents from potentially ma-

licious host environments is recognised by the security community as a difficult

but vitally important problem. As a result, there have been many attempts to

address the threats posed to mobile agents, most addressing a particular part

of the problem.

As stated in section 2.3.5, once an agent has arrived at a host, little can be

done to stop the host from treating the agent as it likes. The problem is usually

referred to as the malicious host problem. A simple example, often used to

44

3. Security measures for multi-agent systems

illustrate how a malicious host can benefit from attacking a mobile agent, is the

shopping agent. An agent is sent out to find the best airfare for a flight with

a particular route. The agent is given various requirements, such as departure

and destination, time restrictions, etc., and sent out to find the cheapest ticket

before committing to a particular purchase. The agent will visit every airline

and query their databases before committing to a purchase and reporting back

to the agent owner. A malicious host can interfere with the agent execution in

several ways in order to make its offer appear most attractive. For example,

a malicious host could try to: (1) erase all information previously collected by

the agent – in this way the host is guaranteed at least to have the best current

offer; (2) change the agent’s route so that airlines with more favourable offers

are not visited; (3) simply terminate the agent to ensure that no competitor

gets the business either; (4) make the agent execute its commitment function,

ensuring that the agent is committing to the offer given by the malicious host

(if the agent is carrying electronic money it could instead take it from the agent

directly). In addition to this, the agent might be carrying information that

needs to be kept secret from the airlines (e.g. maximum price).

There is no universal solution to the malicious host problem, but some partial

solutions have been proposed. Many of the security mechanisms are aimed at

detecting, rather than preventing, misbehaving hosts. In the following subsec-

tions we will describe some of the mechanisms proposed to address the malicious

host problem.

45

3. Security measures for multi-agent systems

3.3.1 Contractual agreements

The simplest solution (at least from a technical perspective) is to use contrac-

tual means to tackle the malicious host problem. Operators of agent platforms

guarantee, via contractual agreements, to operate their environments securely

and not to violate the privacy or the integrity of the agent, its data, and its

computation. However, to prove that such an agreement has been broken might

be a non-trivial task.

3.3.2 Trusted hardware

If the operators of the available execution environments cannot be trusted, one

obvious solution is to let a trusted third party supply trusted hardware, in

the form of tamper resistant devices, that are placed at the site of the host

and interact with the agent platform [115]. A tamper resistant device can,

for example, come in the form of a smart card. Such trusted hardware can

then either protect the complete execution environment of the agent or perform

certain security sensitive tasks. However, such trusted hardware must be used

carefully and might appear to offer more security than it really does. The

agent must still be able to communicate with resources at the local platform

(the part under control of an untrusted party), for example to interact with a

local database. All such interactions can still be intercepted by the untrusted

party. We note that, in the case where interactions with a database is required,

techniques (e.g. Private Information Retrieval – PIR [27]) have been proposed

allowing retrieval of information without revealing what information is being

retrieved.

46

3. Security measures for multi-agent systems

If the trusted hardware is only used to protect security sensitive actions this

might be even more vulnerable. It might, for example, be tempting to let the

agent’s private signature key be protected such that it only will be available

when decrypted inside the trusted device. A signature algorithm can then be

executed within the device using the agent’s private key. In this way, the private

signature key is never exposed to the host. However, the host might be able

to interfere with the communication taking place between the agent residing

on the host and the trusted device in such a way that a correct signature is

produced on information falsely manufactured by the host. Above all else, the

major drawback of trusted hardware is the cost of such a solution.

Two ongoing efforts, namely the Trusted Computing Group (TCG) [107] and

Next-Generation Secure Computing Base (NGSCB) [101], have the goal of pro-

viding trusted computing sub-systems. These technologies appear to have the

potential to provide a trusted environment for mobile agents. The functionality

provided by these schemes includes, protected execution, protected storage, and

platform authentication.

3.3.3 Trusted nodes

By introducing trusted nodes into the infrastructure, to which mobile agents

can migrate when required, sensitive information can be prevented from being

sent to untrusted hosts, and certain misbehaviours of malicious hosts can be

traced. The owner’s host, i.e. the platform from where the mobile agent is first

launched, is usually assumed to be a trusted node. In addition to this, service

providers can operate trusted nodes in the infrastructure.

47

3. Security measures for multi-agent systems

This approach does not appear to be fully explored elsewhere. The approach

can potentially be very valuable in a mixed wireless and fixed network, allowing

users to despatch mobile agents into the fixed network, relying on trusted nodes

for processing of ‘sensitive’ information.

In our example with the shopping agent, the mobile agent can be constructed so

that the commitment function (e.g. the agent’s signature key) is encrypted such

that it can only be decrypted at a trusted host. Once the agent arrives at the

trusted host it can compare the collected offers and commit to the best offer.

Alternatively, one agent containing the ability to commit to a purchase can be

sent to a trusted node. From this node one or several sub-agents are sent to

the airline hosts to collect offers. Depending on the threat scenario, single hop

agents can be used, that is agents only visiting one host before returning back, or

one or several multi-hop agents can be used. Once the sub-agent or agents have

returned to the trusted node, the best offer is selected and the agent commits

to a purchase. This last alternative does limit the agent’s mobility, but may be

beneficial in certain scenarios. This approach is further explored in chapter 9.

3.3.4 Co-operating agents

By using cooperating agents, a similar result to that of trusted nodes can be

achieved [96]. Information and functionality can be split between two or more

agents in such a way that it is not enough to compromise only one (or even

several) agents in order to compromise the task. An identical scenario to that

described using trusted nodes can, for example, be achieved by letting the agent

residing on the trusted host be executed on any host that is assumed not to be

conspiring with any of the airlines.

48

3. Security measures for multi-agent systems

By applying fault tolerant techniques the malicious behaviour of a few hosts can

be countered. One such scheme for ensuring that a mobile agent arrives safely

at its destination has been proposed in [100]. Although a malicious platform

may cause an agent to operate incorrectly, the existence of enough replicates

ensures the correct end result.

Again, referring to the shopping agent, several mobile agents can be used, taking

different routes, and before deciding on the best offer the agents communicate

their votes amongst each other. Techniques based on these ideas are further

described in chapter 9.

3.3.5 Execution tracing

Execution tracing [110] has been proposed for detecting unauthorised modifica-

tions of an agent through the faithful recording of the agent’s execution on each

agent platform. Each platform is required to create and retain a non-repudiable

log of the operations performed by the agent while executing on the platform.

The major drawbacks of this approach are not only the size of the logs created,

but also the necessary management of created logs. In addition, privacy issues

are likely to arise when this kind of information is logged.

Partial Result Authentication Codes (PRACs) were introduced by Yee [119].

The idea is to protect the authenticity of an intermediate agent state or partial

result that results from running on a server. PRACs can be generated using

symmetric cryptographic algorithms. The agent is equipped with a number

of encryption keys. Every time the agent migrates from a host, the agent’s

state or some other result is processed using one of the keys, producing a MAC

49

3. Security measures for multi-agent systems

(Message Authentication Code) on the message. The key that has been used

is then disposed of before the agent migrates. The PRAC can be verified at a

later point to identify certain types of tampering. A similar functionality can be

achieved using asymmetric cryptography by letting the host produce a signature

on the information instead.

3.3.6 Encrypted payload

Asymmetric cryptography (also known as public key cryptography) is well suited

for a mobile agent that needs to send back results to its owner or which collects

information along its route before returning with its encrypted payload to its

owner. This is due to the fact that the encryption key does not need to be

kept secret. However, to encrypt very small messages is either very insecure

or results in a large overhead compared with the original message. A solution

called sliding encryption [120] has been proposed that allows small amounts of

data to be encrypted, and consequently added to the cryptogram, such that the

length of the resulting ciphertext is minimised. Due to the nature of asymmetric

cryptography the agent is not able to access its own encrypted payload until

arriving at a trusted host where the corresponding decryption key is available.

3.3.7 Environmental key generation

Environmental key generation [95] allows an agent to carry encrypted code or

information. The encrypted data can be decrypted when some predefined envi-

ronmental condition is true. Using this method an agent’s private information

can be encrypted and only revealed to the environment once the predefined

condition is met. This requires that the agent has access to some predictable

50

3. Security measures for multi-agent systems

information source; several examples of such information sources are given in

[95]. Once the private information has been revealed, it would, of course, be re-

vealed to the executing host. However, if the condition is not met on a particular

host, the private information is not revealed to the platform.

3.3.8 Computing with encrypted functions

Sander and Tschudin [98] have proposed a scheme whereby an agent platform

can execute a program embodying an enciphered function without being able

to access the original function. For example, instead of equipping an agent with

function f , the agent owner can give the agent a program P(E(f)) which im-

plements E(f), an encrypted version of f . The agent can then execute P(E(f))

on x, yielding an encrypted version of f(x).

With this approach an agent’s execution would be kept secret from the executing

host as would any information carried by the agent. For example the means to

produce a digital signature could thereby be given to an agent without revealing

the private key. However, a malicious platform could still use the agent to

produce a signature on arbitrary data. Sander and Tschudin therefore suggest

combining the method with undetachable signatures (see section 3.3.10).

Although the idea is straightforward, the problem is to find appropriate encryp-

tion schemes that can transform functions as intended; this remains a research

topic. Recently Barak et al. [4] have shown that obtaining theoretical justifica-

tion for a program’s ability to completely hide its information appears infeasible.

51

3. Security measures for multi-agent systems

3.3.9 Obfuscated code

Hohl [57] proposes what he refers to as Blackbox security to scramble an agent’s

code in such a way that no one is able to gain a complete understanding of

its function. However, no general algorithm or approach exists for providing

Blackbox security. A time-limited variant of Blackbox protection is proposed

as a reasonable alternative. This could be applicable where an agent only needs

to be protected for a short period. One serious drawback of this scheme is the

difficulty of quantifying the protection time provided by the obfuscated algo-

rithm. Nevertheless, commercial applications are available that protect software

by obfuscating the code in various ways [29].

3.3.10 Undetachable signatures

By binding usage restrictions to a signature key given to the agent, we can

potentially limit the damage a malicious host can do. Sander and Tschudin [98]

proposed one such scheme, which they refer to as undetachable signatures. Their

original scheme has since been improved [81]. The idea is to encode constraints

into the signature key. If the constraints are not met a valid signature is not

produced, preventing arbitrary messages from being signed.

Undetachable signatures, as proposed by Sander and Tschudin [98], are based on

the idea of computing with encrypted functions. The host executes a function

s ◦ f , where f is an encrypting function, without having access to the user’s

private signature function s. The security of the method lies in the encrypting

function f . Whilst Sander and Tschudin were unable to propose a satisfactory

scheme, more recently Kotzanikolaou, Burmester and Chrissikopoulos [81] have

52

3. Security measures for multi-agent systems

presented an RSA-based scheme which appears to be secure.

The idea of an undetachable signature is as follows. Suppose a user wishes to

purchase a product from an electronic shop. The agent can commit to the trans-

action only if the agent can use the signature function s of the user. However as

the server where the agent executes may be hostile, the signature is protected

by a function f to obtain g = s ◦ f . The user then gives the agent the pair

(f, g) of functions as part of its code. The server then executes the pair (f, g)

on an input x (where x encodes transaction details) to obtain the undetachable

signature pair

f(x) = m and g(x) = s(m).

The pair of functions allows the agent to create signatures for the user whilst

executing on the server without revealing s to the server. The parameters of the

function f are such that the output of f includes the user’s constraints. Thus

m links the constraints of the customer to the bid of the server. This is then

certified by the signature on this message. The main point is that the server

cannot sign arbitrary messages, because the function f is linked to the user’s

constraints.

An alternative to undetachable signatures proposed in this thesis (see chapter 8)

is to use digital certificates to regulate the validity of digital signatures. Digital

certificates are used to let a verifier check the validity of a digital signature.

Certificates usually include a validity period under which valid signatures can be

produced. By extending the constraints included in the certificate to context-

related values such as executing host, maximum value of a purchase, and so

on, certificates can be used to further restrict the usage of signature keys and

thereby decrease the involved risks regarding improper use of the signature key.

53

3. Security measures for multi-agent systems

One advantage with this scheme over undetachable signatures is that it relies

on already well-established cryptographic techniques.

3.4 Protecting the agent platform

Generally speaking, more mature technology is available to address the prob-

lem of protecting the agent platform from malicious agents than is available to

protect agents against malicious platforms. This problem also appears easier

to solve than the malicious host problem. Techniques similar to those used to

address security issues associated with downloading software from the Internet

can be applied to the mobile agent scenario. We next describe some of these

techniques.

3.4.1 Sandboxing and safe code interpretation

Sandboxing [49] isolates applications (or in our case agents) into distinct do-

mains enforced by software. The technique allows untrusted programs to be

executed within their own virtual address space thereby preventing them from

interfering with other applications. Access to system resources can also be con-

trolled through a unique identifier associated with each domain.

Agents are usually developed using an interpreted script or programming lan-

guage. The main motivation for this is to support agent platforms on hetero-

geneous computer systems. The idea behind safe code interpretation is that

commands considered insecure can either be made safe or denied to the agent.

Java is probably the most widely used interpretative language used today. Java

[86] also utilises sandboxing and signed code (described in section 3.4.3); this

54

3. Security measures for multi-agent systems

makes Java well suited for development of agents.

3.4.2 Proof carrying code

Proof carrying code [89] requires the author of an agent to formally prove that

the agent conforms to a certain security policy. The execution platform can then

check the agent and the proof before executing the agent. The agent can then

be run without any further restrictions. The major drawback of this approach

is the difficulty in generating such formal proofs in an automated and efficient

way.

3.4.3 Signed code

By digitally signing an agent, its authenticity, origin, and integrity can be veri-

fied by the recipient. Typically the code signer is either the creator of the agent,

the agent owner (on whose behalf the agent is acting), or some party that has

reviewed the agent. The security policy at the recipient platform, perhaps in

conjunction with attribute certificates supplied with the signed code, would then

decide if a particular signature means that the code should be executed.

3.4.4 Path histories

The idea behind path histories [25] is to let a host know where a mobile agent

has been executed previously. If the agent has been running on a host that is

not trusted, the newly visited host can decide not to let the agent execute or to

restrict the execution privileges. Path histories require each host to add a signed

entry to the path, indicating its identity and the identity of the next platform

55

3. Security measures for multi-agent systems

to be visited, and to supply the complete path history to the next host.

3.4.5 State appraisal

State appraisal [39] attempts to ensure that an agent’s state has not been tam-

pered with and that the agent will not carry out any illegal actions through

a state appraisal function which becomes part of the agent code. The agent

author produces the appraisal function which is signed by the author, together

with the rest of the agent. An agent platform uses the function to verify that

an incoming agent is in a correct state and to determine what privileges an

agent can be granted during execution. The theory, which is still to be proven

in practice, requires that the legal states can be captured and described in an

efficient and secure way.

3.5 Conclusions

The security issues for non-mobile agents can, at least in theory, to a great

extent be tackled through existing security technology and protocols. However,

issues related to trust and delegation in a large scale multi agent system are

non-trivial to solve. Although a public key infrastructure is likely to be an

important part of the solution, agents need to be able to reason and make

decisions based on various security parameters. Execution of agents (mobile as

well as non-mobile) on untrusted platforms is another factor introducing non-

trivial security concerns, in particular related to correct agent execution and

confidentiality of agent data.

There does not seem to be a single solution to the security problems introduced

56

3. Security measures for multi-agent systems

by mobile agents unless trusted hardware is introduced, which is likely to prove

too expensive for most applications. The way forward appears to lie in a range

of mechanisms aimed at solving particular (smaller) problems. This could, for

example, include mechanisms that depend on agents executing on several hosts

rather than on only one host, mechanisms and protocols binding agent actions

to hosts, generation of various types of audit information that can be used in

case of disputes, and so on. Solutions to certain problems do exist, but for

mobile agents to be more widely adopted this is an area that requires further

research.

57

Chapter 4

A security architecture for

agent based mobile systems

Contents

4.1 Introduction . 59

4.2 Involved parties . 60

4.3 Device structure . 61

4.4 Agent execution environment 63

4.5 Agent construction 67

4.6 Conclusions . 68

In this chapter a security architecture for agent based mobile systems is proposed.

The architecture has four levels of abstraction: involved parties, device structure,

agent execution environment, and the agent.

58

4. A security architecture for agent based mobile systems

4.1 Introduction

Within this chapter a model specifically designed for analysing security issues

within an agent-based mobile system is presented. The model is presented

at four different levels of abstraction. This enables all types of interactions,

including those within a device and those spanning the entire mobile system, to

be modelled. Some of the work described in this chapter has been previously

published in [11].

This chapter contains four main sections, each containing a model for a dif-

ferent level of abstraction, starting with the highest level and working down.

Specifically, the contents are as follows.

Section 4.2 describes the Involved parties and their roles. This section provides

the highest level of abstraction in this chapter.

Section 4.3 considers the structure of a Device, one component of which is an

agent execution environment. Note that we use the general term ‘device’ to

include any hardware component which constitutes part of the mobile system.

This covers any hardware component that uses wireless networking of some

kind. Examples would include mobile terminals and parts of terminals as well

as non-mobile computers that are part of the agent system.

Section 4.4 describes this Agent execution environment in more detail, focusing

on security functionality.

In section 4.5 we consider the various parts of an Agent and how it interacts

with its environment. Section 4.6 then gives the conclusions of the chapter.

59

4. A security architecture for agent based mobile systems

4.2 Involved parties

This section describes the high level entities that can be distinguished in the

security model. The parties can be thought of as distinct individuals or or-

ganisations. However, in practice one organisation can take the roles of more

than one entity. It is also possible that not every party would be involved in a

particular scenario.

Device user: also referred to as user. The user is assumed to have physical

control over the device, but may not necessarily be the same entity as the device

owner.

Device provider: the manufacturer of the device. In order for the manufac-

turer to offer upgrades or additional services, the device provider will typically

share a security context with the device. This security context will typically

involve shared secrets and/or the provision of ‘root’ public keys.

Device owner: this might, for example, be the user or the employer of the

user. Again there is a trust and possibly a cryptographic relationship with the

device. The rationale for distinguishing the device owner from the device user

is the fact that they might have different objectives. An employer might, for

example, want to restrict the use of a device in order to protect itself from

various threats, such as malicious code.

Service Provider (SP): provides some kind of service, (e.g. transport service,

information service, payment service, etc.) including directory services and re-

mote agent execution environments to users and other SPs. A service provider

may or may not have a pre-established contract with its clients.

60

4. A security architecture for agent based mobile systems

‘Home’ Service Provider (HSP): i.e. an entity with which the device owner

or device user has a contractual relationship. This gives the provider of services

to the device an identifiable entity from which he can extract payment (the HSP

will then present a bill for all services provided to the device owner). Note that

a device owner may have many HSPs.

Trust Service Provider (TSP): a special class of service provider providing

trusted third party services, e.g. a CA (Certification Authority), an RA (Regis-

tration Authority), a timestamping service, an electronic notary, etc. [65].

Agent provider: provides other parties with agents. The agent provider would

typically be the developer of the agent. The agent provider can rely on its

reputation or can issue other guarantees concerning provided agents’ behaviour.

The agent provider and the agent owner can be different entities. One can

envision a scenario where software developers provide (e.g. sell) agents to users.

The users would then only need to provide the agent with certain credentials

and perhaps specify its objectives.

Agent owner: the entity on whose behalf an agent is executing. All parties can

deploy agents to act on their behalf. These agents can execute on a device under

the control of the agent owner as well as in other places within the infrastructure.

4.3 Device structure

This section describes the different parts of a device, including most importantly

agents and the agent execution environment. A diagram of the device model is

given in figure 4.1. Only one agent is shown in the figure, but a device would

61

4. A security architecture for agent based mobile systems

typically have multiple agents executing in the agent execution environment.

It should be noted that devices and their resources can vary greatly, and de-

pending on their purpose might not include all the components described here.

The device described is a mobile one, but a similar structure can be assumed to

exist within other devices where agents are executed within the infrastructure.

non-agent

software

agent

agent

execution

environment

remote resources

device resources
 subscription

module

Figure 4.1: A model for the elements within a device

The constituent elements of the device model are as follows.

Agent: executable code which is acting on behalf of its owner. All parties can

use agents to represent themselves. An agent can execute in an environment

that is under the control of its (i.e. the agent’s) owner, or it may execute in an

environment provided by another party. Agents may or may not be mobile. As

illustrated in figure 4.1, an agent can communicate with other entities over a

network as well as with other functional blocks within the same device, including

device resources, a subscription module, other agents, and other device software.

Agent execution environment: provides the resources required for agents to

execute and communicate with other agents as well as with other resources and

entities. The agent execution environment, further described in section 4.4, is

62

4. A security architecture for agent based mobile systems

regulated and controlled through mechanisms here referred to as agent control.

Several agents can execute simultaneously within one environment.

Subscription module: a hardware device (e.g. smart card, USB token) which

may interact with the device. An example of such a module is the GSM SIM

[111]. This module would typically be provided by a Home Service Provider

(HSP), and would share secret keys with a HSP and/or possess HSP-provided

root public keys. Not every mobile device will be capable of directly interacting

with such modules but some will, and hence it needs to be included in the model.

Remote resources: agents executing in a device can communicate with re-

sources (e.g. agents and services) on other devices.

Non-agent software: software (applications and middleware functions) resid-

ing on the same device but not under the control of the agent platform control

functionality. Agents can communicate with such software just as such software

would be able to interact with agents.

Device resources: refers to other resources residing in the device. Examples

of such resources include a user interface, a hardware crypto-engine, various

cryptographic primitives that might be bound to the device (e.g. in the form of

a cryptographic API), and communication resources.

4.4 Agent execution environment

In this section the security functionality of the agent execution environment

is described. We are only considering security functionality here, and a com-

63

4. A security architecture for agent based mobile systems

plete execution environment would be more complex. A diagram of the agent

execution environment is given in figure 4.2.

It should be noted that, depending on the device on which the agent execu-

tion environment is residing, not all the elements of this model may exist. A

device might, for example, not support the downloading of agents – in which

case the agent mobility service would not exist. The complete agent execution

environment will include the following elements.

Agent management and control: is the governing security platform element.

This element is responsible for managing all agents executing on the platform in-

cluding monitoring and controlling access to resources as well as communication

between agents executing on the local platform.

Agent communication services: provides communications facilities to agents

executing within the environment. This includes secure communication services.

Agent security services: includes security services provided by the environ-

ment to executing agents. For example, the environment may add a digital

signature to data (signed with the private device signature key) at the request

of an agent.

Agent mobility service: enables agents to send themselves (and associated

stored state) to other devices. The agent mobility service also includes function-

ality to assess received agents and any associated security information to decide

if an agent shall be granted permission to execute on the platform. Agents

requesting transfer to another platform will also be assessed for appropriate

privileges by this entity. If required, the agent mobility service can add plat-

64

4. A security architecture for agent based mobile systems

form specific information (e.g. agent path history) before transmission. The

agent mobility service is responsible for setting up secure transmission channels

when required for agent transfers.

Event logging service: logs security relevant events for storage in an audit

trail. It may also provide security intrusion detection based on processing of

recorded events. Such detected events, or combinations thereof, would then

result in a notification to another sub-system (e.g. agent management and con-

trol), which would then take appropriate action.

agent management & control

agent mobility service

event logging service

agent security services

agent communication

services

agent execution area

access

control

database

security

policy

Storage

and post

processing

device

resources

and

subscription

module

other agent

execution

environments

TSP

remote resources

(inc. remote agents)

Figure 4.2: agent execution environment architecture

In addition to the described elements, which make up the execution environ-

ment, the elements/functionality below (which also appear in figure 4.2) are

part of the architecture.

65

4. A security architecture for agent based mobile systems

The security policy and access control database regulate the behaviour of

the security mechanisms. One example of information making up the security

policy could be a rule base describing how, and under what circumstances,

agents can be given access to the execution environment, and can interact with

each other and their environments. Other examples include the specification

of security related events for which log entries should be generated, and what

controls should be implemented in order for an agent to start execution. The

access control database contains information governing how various resources

can be accessed by the various parties. This information could, for example, be

in the form of an Access Control List (ACL) [49] or a set of capabilities [49], or

some combination of the two. This database can be physically located on the

device, handled remotely over a communication link, or be implemented as a

combination of local and remote facilities.

Remote systems can dispatch agents to the platform in order for them to be

executed. In the same manner, the agent execution environment can dispatch

agents to execute in other environments.

Log storage and post processing manages and processes log data once gen-

erated. This functionality can be physically located on the device, handled

remotely over a communication link, or as a combination of the two.

Device resources and subscription module includes any resources (hard-

ware and software) residing on the device.

Trust Service Provider (TSP) (as described in section 4.2) provides various

trust services.

66

4. A security architecture for agent based mobile systems

Remote resources are resources residing on other platforms with which agents

can communicate, including other agents.

4.5 Agent construction

The various parts of an agent are likely to have different properties that need

to be addressed through appropriate security mechanisms. The following dis-

tinctions between component parts of an agent can be made. Note that this

agent model is designed for the purposes of security analysis only. As a result,

important agent functionality may not be covered within this model.

Core executable part: information that can be executed. This information

is distinguished from other information to allow a user to obtain an agent from

an independent party (agent provider).

Payloads: An agent is likely to have various kinds of payloads. Payloads can

consist of non-executable data as well as executable information required by the

agent to fulfil its task. Execution state, information supplied by the agent owner,

and information collected at various hosts (for mobile agents), are all examples

of payloads of an agent. In addition to this, an agent can obtain executable

payloads to add agent functionality that is not part of the core executable part.

By separating agent parts in this way integrity verification values can be cre-

ated where appropriate. The use of the above distinctions becomes particularly

important for mobile agents, but is also relevant for agents that are transferred

to be executed on a platform not belonging to the agent provider. (As in sec-

tion 2.2, we are here defining a mobile agent to be an agent that can move ‘on

67

4. A security architecture for agent based mobile systems

its own initiative’ and continue execution in the environment where it arrives.)

4.6 Conclusions

In this chapter a security architecture for agent based mobile systems has been

proposed. The model includes the involved parties at the highest level, then a

device structure, an agent execution environment, and finally, the structure of

an agent.

68

Chapter 5

Security services and

mechanisms for agent based

mobile systems

Contents

5.1 Introduction . 70

5.2 Security functionality 70

5.2.1 Platform protection 70

5.2.2 Agent protection . 73

5.2.3 Communication security services 77

5.3 Providing security functionality 79

5.3.1 Platform protection 80

5.3.2 Agent protection . 82

5.3.3 Communication security services 90

5.4 Conclusions . 92

This chapter describes security functionality for an agent based mobile system

and outlines possible approaches for their realisation.

69

5. Security services and mechanisms for agent based mobile systems

5.1 Introduction

In this chapter we specify a set of security services for agent based mobile

systems within the context of the security model specified in chapter 4. The

security services are divided into three main classes, namely security services

to protect the execution platform, security services aimed at protecting agents,

and communication security services.

Section 5.2 describes security functionality and where this functionality fits into

the architecture. In section 5.3 possible approaches for how the security func-

tionality can be implemented are outlined. Finally, section 5.4 gives the conclu-

sions of this chapter.

5.2 Security functionality

This section specifies and motivates security services and mechanisms useful

within an agent based mobile system. Section 5.2.1 defines security function-

ality applicable to platform protection, section 5.2.2 defines functionality for

protecting agents, and section 5.2.3 defines security services for communication

within the system.

5.2.1 Platform protection

In this section we will define security functionality primarily directed at ad-

dressing the security of the execution environment. Again, we note that agent

execution environments will exist in various kinds of devices and the precise

70

5. Security services and mechanisms for agent based mobile systems

functionality, including security functionality, provided by the environment will

also vary. Hence, the functionality described here may not be implemented in

every device.

Logical access control

Multiple agents as well as other applications and system software are assumed

to be executing on the same host and thereby be sharing system resources. The

executing host needs to ensure that agents (and other software entities) are not

interfering with each other or the system in unauthorised ways.

Logical access controls ensure that agents (or other software entities) cannot

interfere with each other or the platform in unauthorised ways. The agent man-

agement and control element is the main entity within the agent environment

architecture enforcing access control. However, access control is also part of the

functionality of the mobility service, event logging service, agent security service,

and agent communication services.

Authentication of foreign code

In order to provide flexibility a host will need to be able to receive, retrieve and

execute agents. In fact, this applies to any kind of software, not only agents. In

a mobile environment, with constant changes taking place, the ability to receive

and execute software is likely to be very important functionality.

In order for an agent to be executed (with more than a very minimum of priv-

ileges), the origin of the code would need to be established. When an agent

71

5. Security services and mechanisms for agent based mobile systems

arrives at the execution environment it is handled by the mobility service. Here

various security checks are made.

Authorisation of foreign code

Before an agent (or any other piece of downloaded code) is allowed to commence

its execution, it needs to be authorised to do so. For any kind of action requested

by the agent the host needs to ensure that the agent is authorised to proceed.

Authorisation issues would be resolved at various parts within the system, partly

depending on the trust model and authorisation model chosen. However, the

mobility service would make an initial decision as to whether an agent should

be allowed to commence execution and a trusted service provider is likely to be

involved in issuing authorisation credentials for agents.

Secure communication

The platform will be required to communicate with other entities within the

infrastructure. For example, agents will be transferred to and from other plat-

forms, and various trusted service providers need to be contacted. Depending

on the nature and sensitivity of the communication, various levels of protec-

tion will be required. Requirements and motivation for communication security

services are further developed in section 5.2.3.

Any of the elements capable of communicating with other parties would be

responsible for providing communications security services.

72

5. Security services and mechanisms for agent based mobile systems

Event logging

As opposed to most other security features, which are in place to prevent security

breaches, auditing and monitoring enable follow-up when something goes wrong.

The main purpose of audit trails is to provide information that can be examined

at a later point in time. Examples of applications for audit data include fraud

detection, intrusion detection, follow-up in case of failure, and follow-up in case

of a security breach. Audit information can also be used for real-time monitoring

in order to take immediate actions in case of security violation.

The event logging service within the agent execution environment is responsible

for generating audit trails. The security policy governs the definition of security

events to be logged. (As described in section 5.2.2 below, audit events can also

be generated at the initiative of an agent.)

5.2.2 Agent protection

In this section we define security functionality that is offered to agents (mobile

and non-mobile). Some functionality is offered as services by the executing

platform or by a third party, while other functions would be implemented in the

agent itself.

Access control

An agent’s information needs to be protected from unauthorised access by other

entities executing on the same host, as well as from remote entities. An agent

might also need protection from the host on which it is executing.

73

5. Security services and mechanisms for agent based mobile systems

Logical access control is enforced by various elements on the host, but mainly by

the agent management and control element. Certain information and execution

can be protected by physical means through the use of a subscription module.

Agent authentication

In order for an agent to be sure about the identity of another agent, agents need

the ability to authenticate each other, and to authenticate themselves towards

an agent platform and towards service providers.

The agent security services element would help an agent to prove its identity,

at least to the extent of proving the agent’s location.

Platform authentication

Platforms will need to authenticate themselves to agents on other hosts, agents

executing on the host itself, and to other hosts.

Depending on the purpose of this authentication, the agent mobility service, the

agent security services and the agent communication services are the elements

most likely to be required to prove their identities to an agent.

Authorisation

Depending on an agent’s task and purpose, it might need to determine if a

platform or agent should be granted access to certain information, or whether

certain actions should be taken by the agent itself.

74

5. Security services and mechanisms for agent based mobile systems

Such authorisation decisions would need to be taken by the agent itself or specif-

ically delegated to another party by the agent.

Secure agent mobility

The model proposed for the agent based mobile system allows for agent mobility

as well as downloadable agents. A mobile agent can (on its own initiative) move

between platforms, while a downloadable agent would be pulled by the device

or pushed by a third party onto the device, usually to enhance the functionality

of the device in some way.

Functionality involved when agents are transferring from one host to another is

offered by the mobility services. Whatever criteria are used for agent mobility, a

protected audit trail can be very important to prove that a host has acted in an

illicit manner. The event generation functionality is explained further below.

Agent communication

Agents have capabilities to communicate with other agents as well as with other

entities that exist on the same device as the agent or on remote devices. This

communication will, depending on its nature and sensitivity, need various levels

of protection. Agents need to be offered the ability to be ‘security aware’. Even

if security functionality is not directly implemented in the agent, the agent

may need to be able to access certain security functionality/properties from the

executing platform, as well as being informed about the circumstances under

which information has been transferred. Such information is important to let

agents decide the origin of data and its trustworthiness.

75

5. Security services and mechanisms for agent based mobile systems

Inter platform communication is protected by agent management and control

and intra platform agent communication is provided through agent commu-

nication services. (Intra platform agent communication is further covered in

section 5.2.3.)

Event Logging

In a system where proper security is difficult to achieve or where the level of

security is traded off against performance criteria, (as is likely to be the case with

mobile agents) having transaction data that can be examined at a later point in

time can be very important. Not only can this information be examined when

needed, it can also deter illegal behaviour. Agents need the ability to generate

audit trails that can be examined if needed.

Events logged locally, or processed by the local environment (and possibly then

dispatched elsewhere), are handled by the event logging service. If the logging

functionality is handled completely by the agent no other services would have to

be involved apart from the agent communication services if events are dispatched

to other agents/platforms and perhaps a non-repudiation service.

Anonymous execution

The possibility for users to have agents acting on their behalf without giving

other parties the means to trace the actions to the user is potentially an im-

portant factor for user acceptance (anonymity also introduces vulnerabilities,

including denial of service attacks, see section 2.3.8).

76

5. Security services and mechanisms for agent based mobile systems

No specific service on the execution device is necessarily required to allow agents

run without a traceable user. (Anonymous transactions are covered in sec-

tion 5.2.3.)

5.2.3 Communication security services

In this section we will briefly describe communication security services and the

motivation for their use within a multi-agent system.

Integrity of communication

Integrity protects against improper modifications of messages, duplication of

messages, deletion of part or all of the messages in a sequence, or reordering of

parts of a message sequence.

Integrity is closely linked to origin authentication (see below). Without an

authenticated source for data, assurance of maintained integrity does not usu-

ally mean much. Data origin authentication also requires the provision of data

integrity. However, certain integrity properties might be of less importance de-

pending on the application (for example, message duplication may be a relatively

minor threat for many applications).

Authentication

Authentication is fundamental for secure communication, and is about the as-

surance of the claimed identity of an entity. Two forms of authentication can

be distinguished:

77

5. Security services and mechanisms for agent based mobile systems

• Entity authentication, the corroboration that an entity is the one claimed.

Applies to connection oriented communication.

• Data origin authentication, the corroboration that the source of data re-

ceived is as claimed. Applies to connectionless communication.

Agents as well as platforms need to be authenticated as well as be able to ensure

the identity of another party. This entity authentication service is normally

provided by the use of an appropriate authentication protocol [87]. For the

purpose of authentication protocols, no distinction need be made between agents

and platforms (a platform can in practice be represented by an agent).

For the envisioned system, i.e. a multi-agent system in a mobile telecommuni-

cation environment, entity authentication as well as data origin authentication

are required. Data origin authentication is, for example, required for simple

message passing between agents. Entity authentication can be required when

an agent is involved in real-time data provision, such as real-time video.

Non-repudiation

Non-repudiation is about preventing entities denying their actions. Non-repudiation

can be regarded as an extension to authentication. Digital signatures often play

an important role in non-repudiation protocols. In addition to this, the provision

of non-repudiation requires some sort of agreement regulating what constitutes

a digital signature and the meaning of a signature, the definition of a third party

that can settle disputes, and additional functionality to bind actions to a point

in time (e.g. timestamps or a trusted deposit).

78

5. Security services and mechanisms for agent based mobile systems

Non-repudiation can be applied to various actions; for a multi-agent system,

non-repudiation of origin and non-repudiation of receipt are believed to be of

most relevance. Non-repudiation of origin protects against an originator’s false

denial of having created the content of a message and of having sent a mes-

sage [62]. Non-repudiation of receipt protects against a recipient’s false denial

of having received a message [62].

Confidentiality of communication

Confidentiality of communication is about ensuring that unauthorised parties

cannot access information in transit. For communication between agents ex-

ecuting on separate hosts, encryption is typically required for confidentiality

protection. As for integrity, confidentiality can be applied per message or per

session.

Anonymity

Anonymity services allow a user to perform actions without being tracked or

associated with a transaction. The possibility of anonymous transactions is

potentially an important factor for user acceptance.

5.3 Providing security functionality

In this section we will consider how the security functionality described previ-

ously in this chapter can be provided.

79

5. Security services and mechanisms for agent based mobile systems

5.3.1 Platform protection

Logical Access Control

The platform needs to protect itself and its hosted agents against unauthorised

access. Such functionality is often implemented in existing operating systems

and execution environments. It can, at least partially, be implemented by using

the concept of sandboxing and safe code interpretation (as described in sec-

tion 3.4.1), where executable code (e.g. an agent) would be able to do anything

within the sandbox while any actions involving resources outside the sandbox

are closely regulated and monitored. With this approach only limited efforts

need to be spent on ensuring the correctness of the received code.

However, using the sandbox technique alone does not address all the access con-

trol issues. In order to make full use of agents they need to be able to access

resources outside the sandbox. Resources outside the sandbox include resources

located on the same physical device as well as the ability to communicate with

other devices/hosts/agents. Also, even within the sandbox, code is using re-

sources, and hence access controls need to exist even when sandbox techniques

are employed.

We assume that the execution environment has a security policy that regulates

the requirements under which an access request will be granted. It is reason-

able to assume that an access control list (ACL) [49] in combination with a

capability-based scheme [49] will be required to provide the necessary access

control services. While ACLs are typically rather static in nature (although

there is nothing to stop dynamic changes to the list) a capability scheme allows

a subject to provide the required information at the point of an access request.

80

5. Security services and mechanisms for agent based mobile systems

A capability scheme based on public key cryptography and a PKI would allow

for the required delegation and transfer of rights between parties.

Authentication of foreign code

Use of the sandbox technique and safe code interpretation on their own can

only be used to limit agent access to local resources. This is not enough to

provide more powerful functionality. Applications will need to be given access

to resources that, if misused, can result in unauthorised actions. In recent years

research has been performed on proof carrying code (described in section 3.4.2).

This research aims to verify that a piece of code is secure before it begins

execution. However useful this would be, this is still very much an emerging

area, and it is not clear how feasible it would be to restrict agents to those

which have formal proofs of security. A more pragmatic approach is to trust a

particular piece of software because one decides to trust the developer/supplier

of the software. This technique is used in Java [86] as well as in MExE [1]. Using

this technique we need ways of verifying that a particular piece of software does

originate from a party we are prepared to trust, at least for the purposes of code

execution. This can be done through cryptographic means.

When an agent arrives at the execution environment it is handled by the mobil-

ity service. Here various security checks are made. The following information

associated with the agent can, for example, be verified and used by the mobil-

ity service, in conjunction with its own policy information, in order to decide

whether an agent should be granted execution rights:

• agent owner,

81

5. Security services and mechanisms for agent based mobile systems

• agent provider,

• policy information associated with the agent,

• required resources,

• submitting host,

• path history.

Event logging

Once audit data is generated it needs to be stored and properly protected.

Storage can be at the local platform but can also be sent to a trusted party

or other remote storage. If the security of the platform is compromised it can

potentially be valuable to have transferred the audit data prior to the attack.

This does of course generate network traffic and hence is not always the preferred

option.

Once audit data is generated and stored it can be analysed. The analysis can be

an automatic process e.g. looking for patterns or anomalies, or it can be carried

out manually, e.g. in the event of a security breach.

5.3.2 Agent protection

First note that certain aspects of agent protection, in particular focussing on

protecting the means for agents to create signatures and commit to transactions,

are considered in much greater detail in chapters 8 – 11.

82

5. Security services and mechanisms for agent based mobile systems

Access control

In order to protect an agent from other agents the logical access control mech-

anisms described in section 5.3.1 would apply. The problems involved when

trying to protect information existing on a device from a determined user who

has physical control over the device are non-trivial. One possible solution to

this problem is a protected chip; in the case of GSM and UMTS this takes the

form of a smart card [111]. The model used for deploying agents in an open

network setting should not require the use of such security measures but should

nevertheless allow them to be used.

Physically protected devices exist with various functionalities and with different

interfaces and formats. The simplest can only be used for protected storage

while more sophisticated also have processing capabilities. The complete agent

execution environment can in theory be implemented in a protected device.

More realistic, however, is to have a protected device with very limited storage

and processing power that can be used for critical information storage and

processing.

Agent authentication

Agents need the ability to authenticate each other, and to authenticate them-

selves towards an agent platform and service providers. As long as the host on

which the agent is executing is trusted not to misuse any authentication infor-

mation, existing authentication protocols can be used for this purpose. These

protocols can, for example, be based on shared secrets or public key cryptog-

raphy and can be implemented independently from the agent platform. In the

83

5. Security services and mechanisms for agent based mobile systems

case where the host that is executing the agent is not trusted with agent au-

thentication information, the solutions will greatly depend on the application.

Certain applications should probably not be implemented using mobile code

when the executing platform cannot be trusted.

Platform authentication

Once an agent is executing on a platform it is in theory too late to determine

if the platform is authentic or not. If it is a hostile platform, the platform can

trick the agent into executing anyway. However, by involving a Trusted Service

Provider (TSP), certain functionality to ensure that a host will act in an honest

manner can be provided. Platform authentication mechanisms similar to those

used for agents can be employed.

Authorisation

As for authentication, once an agent is executing on a platform it is in theory too

late to determine if the platform is authorised to execute the code or not. This

can potentially also be solved by involving a TSP that carries out authentication

and checks if the platform is authorised before giving the platform full access

to the executable code. Other possible solutions might involve cryptographic

approaches, where a host is required to possess the correct decryption key in

order to be able to interpret the code correctly.

84

5. Security services and mechanisms for agent based mobile systems

Secure agent mobility

Although mobility could be functionality built into an agent using standard

communication services, this is likely to prove too cumbersome. The execution

environment can therefore offer a mobility service.

An agent can carry code that should not be disclosed to an untrusted party. One

way to ensure that an agent and its payloads are not disclosed is to encrypt the

agent when in transit and ensure that the agent is only sent to trusted hosts.

The challenge is then to decide what constitutes a trusted host. The agent can

carry a list of hosts that are considered to be trusted. Alternatively, the agent

can carry a list of trusted Environment Certifiers (ECs), generated by a TSP

that vouches for the behaviour of the host (and its operator). A host would

then have to show, (e.g. produce a digital certificate and signature) that it is

certified. In both cases we trust that a trusted host would not let the agent

move to an environment that is not trusted.

The fundamental problem that a trusted host must be trusted not to disclose

the agent to an un-trusted party cannot be avoided. However, by involving

TSPs we can minimise the information sent to the trusted host and/or move

the decision whether a particular host should be trusted to the trusted party. In

any case, a host will need the means to be authenticated, be it authentication to

another host, an agent on another host, or even to an agent already executing

on the host.

85

5. Security services and mechanisms for agent based mobile systems

Agent communication

For communication between agents executing on separate hosts, encryption is

typically required for confidentiality protection. An agent can include the re-

quired functionality for encryption/decryption and its associated key manage-

ment functionality. This might be a desirable solution for certain applications.

However, for performance (and management) reasons it is more efficient to let

encryption/decryption be provided as a service by the agent’s execution envi-

ronment. Depending on the device, this might be implemented in software only,

but may also be assisted by special hardware. Similarly, integrity functionality

can be implemented within the agent, but it is likely to be more efficient when

realised as a service.

For communication between agents executing on the same host, confidentiality

and integrity of communication are assumed to be provided by the platform.

The platform needs to separate agents in such a way that information leak-

age and manipulation are prohibited. To further protect the communication

between agents on the same host would not make sense, since the party in

physical control of the host (who would be the only other potential threat) will

have direct access to agents anyway. If further protection is required physical

measures must be used.

Event Logging

Agents need the ability to generate audit trails that can be examined if needed.

How to handle such information for agents, and in particular for mobile agents,

is not straightforward; the following options are possible for a mobile agent:

86

5. Security services and mechanisms for agent based mobile systems

Store audit information in the agent’s payload. This would generate some extra

communication but would not necessarily require involvement of extra function-

ality or parties. The carried audit information can, however, be manipulated

and possibly accessed by hosts visited after generation. Cryptographic tech-

niques, such as those described in section 3.3.5, can be used to protect such

payloads. In such a case, additional computational resources would then be

required.

Store audit information at the host where it is generated. No extra network traf-

fic would be incurred but hosts would be relied upon to store the information for

a certain period. It might not be in the interest of the host to keep the informa-

tion. It could also potentially become cumbersome to retrieve the information

when needed if an agent’s audit trail is spread out over several hosts.

Send audit information to agents on other hosts. Multiple agents can be used in

cooperation in order to minimise the reliance on a single, possibly ill-behaved,

host. This approach will incur additional network traffic but no additional

infrastructure would be required.

Send audit information to a trusted service provider. Extra network traffic

would be generated and some sort of agreement must exist between the agent

owner and the TSP.

The approach chosen would depend on the application. An open MAS would

probably need to provide for all such solutions.

87

5. Security services and mechanisms for agent based mobile systems

Non-repudiation

A non-repudiation service can prove very valuable in a system where agents

are representing users in various scenarios. This can be provided through cryp-

tographic protocols that ensure one or more parties cannot later deny that a

certain transaction took place. This particular security feature can be split into

two separate problems, that of non-repudiation of origin and non-repudiation

of receipt. Non-repudiation services can help to make audit information more

credible and useful, and also to provide an infrastructure for binding contractual

agreements of various kinds.

Non-repudiation can be achieved using digital signatures and a supporting pub-

lic key infrastructure. It would be straightforward for an agent executing in

an environment controlled by the agent’s owner to produce non-repudiable ma-

terial. However, when an agent is executing on a device under someone else’s

control this becomes non-trivial. The executing host could then make the agent

produce a signature that would not have been produced if the agent was exe-

cuted properly. One partial solution to this problem is to also let the executing

host add a digital signature to the material. However, what such a signature

would achieve in practice is not clear. In case of a dispute it might not be

trivial to determine if the agent has been executed in a proper manner or not.

This solution would, however, allow the host on which the agent produced the

signature to be traced.

Further, it would be useful to distinguish between information that the host

understands and information that the host does not understand. For example,

a signature produced on some information provided by an agent could be used

88

5. Security services and mechanisms for agent based mobile systems

to show that the agent was executing on the host. However, it could not be used

to hold the host (or its owner) responsible for the signed content. On the other

hand, a host might, for example, be requested to sign information saying that

an agent is executing on the host at a particular time, in which case the host (or

its owner) should be accountable. In this case the host needs to ’understand’

what it is signing. A verifier must then also be able to distinguish between such

information.

A trusted service provider would need to be involved at some stage of a non-

repudiation protocol. It can simply act as a settling entity in case of disputes

or be involved in the actual production of non-repudiable material. A time

stamping service might also be required for certain non-repudiation material

(see section 6.5).

The agent security services would be able to generate signatures on the host’s

behalf. Such a signature could be produced at an agent’s request or automati-

cally as part of a protocol.

The means for agents to create non-repudiable commitments are considered in

much greater detail in chapters 8 – 11.

Anonymous execution

The agent based system can provide for anonymous execution by (1) allowing

execution of agents, without identification of the agent owner; and (2) by the

usage of proxy services that would allow a user to be traced only if the user or

her agents are misbehaving. This service can be provided in the network by a

service provider. It would be the security policy of a device that regulates if

89

5. Security services and mechanisms for agent based mobile systems

such agents and their transactions would be allowed onto the device.

5.3.3 Communication security services

This topic is covered in considerably more detail in chapters 6 and 7.

Authentication and integrity of communication

By digitally signing content, information can be linked to its signer. With a sup-

porting PKI, information can also be linked to parties without pre-established

relations. This is crucial functionality for provision of authentication in a scal-

able multi-agent system. A digital signature will also (if properly implemented)

provide integrity protection for the signed message.

An agent can be equipped with its own private key. Its signatures can then

be verified by anyone who can obtain a copy of the corresponding public key.

Likewise, agent platforms can be equipped with their own private keys to let

them produce digital signatures. If pre-established relationships exist, MACs

can be used instead. However, for mobile agents these techniques might prove

insufficient. Sections 6.3 and 6.4 further describe how authentication techniques

can be applied to agent communication.

Non-repudiation

Non-repudiation can be achieved by various means. The solution should, of

course, depend on the application of the non-repudiation service. A service

aimed at protecting transactions involving high monetary values can be allowed

90

5. Security services and mechanisms for agent based mobile systems

to have high transaction costs and delays, while these factors should be kept

to a minimum when very low value transactions are involved. For agent-based

middleware, a service supporting small value transactions is believed to be valu-

able. Although high value transactions should not be prohibited, these might

be better dealt with as an ‘application service’. Section 6.5 further describes

how a timestamping service can be used to provide a non-repudiation service in

a multi-agent environment.

Confidentiality of communication

For the application of agents, and particularly mobile agents, asymmetric cryp-

tography has some very useful properties. An agent sending a confidential mes-

sage does not need to carry a secret key. It can use the public key of the party

with which it communicates to encrypt the data – this then means that access

to an agent (and hence to the public key it carries) does not reveal messages

previously encrypted by that agent. Depending on the application, it might

be possible to give an agent the public key it needs to use for its communica-

tion. However, in a more dynamic scenario, agents need to be able to obtain

the public key of an arbitrary entity (perhaps within certain domains). By

using public key cryptography the problem of keeping the cryptographic keys

secret is removed. However, it is crucial to ensure the relationship between a

public key and the owner of its corresponding private key. Confidentiality of

communication is further developed in section 6.6.

91

5. Security services and mechanisms for agent based mobile systems

Anonymity

User anonymity can be achieved through various means. If an agent cannot be

traced to its owner through any of the information carried in its communication

the owner remains anonymous. However, it might be possible to trace a user

through the identity of an agent, in which case the agent identity would need to

be changed into one that cannot be traced to the user. This approach is further

developed in section 6.7.

5.4 Conclusions

In this section basic security functionality addressing the security of agents,

agent platforms, and agent communication has been identified. High level out-

lines of how these security features can be realised have also been given. This

provides a context for the more specific discussions making up the remainder of

this thesis.

92

Chapter 6

Agent communication

security

Contents

6.1 Introduction . 94

6.2 Architectural issues 94

6.3 Data origin authentication 95

6.3.1 Stationary agents . 96

6.3.2 Mobile agents . 98

6.4 Entity authentication 103

6.4.1 Architecture support for authentication 105

6.5 Non-repudiation . 106

6.5.1 Architecture support for non-repudiation 108

6.6 Confidentiality of communication 108

6.6.1 Architecture support for confidentiality 110

6.7 Anonymity . 110

6.7.1 Architecture support for anonymity 113

6.8 Conclusions . 113

This chapter describes, within the context of the security model presented in

chapter 4, how agent communications security can be provided in a MAS.

93

6. Agent communication security

6.1 Introduction

An agent’s ability to communicate is fundamental and essential for it to function

in a multi-agent system. In this chapter we describe how secure communication

between agents on different platforms can be addressed within a multi-agent

system in general, as well as within the security architecture presented in chap-

ter 4. The basic cryptographic tools used to provide secure communications,

as well as the notation used in this chapter have been described in section 1.4.

The security services for agent communication and their motivation have been

described in section 5.2.3.

Section 6.2 points out some architectural issues. Sections6.3 to 6.7 respectively

describe how specific security services, namely data origin authentication, en-

tity authentication, non-repudiation, confidentiality, and anonymity can be pro-

vided. Finally, the conclusions of this chapter are presented in section 6.8.

6.2 Architectural issues

In this section we will consider in general terms where security services can

be implemented and how the architecture presented in chapter 4 can support

secure agent communication.

There are two main options for the location of secure communication services.

One option is for the agents themselves to directly implement security services.

This approach is rather independent from the architecture and the functionality

offered by the execution platform, allowing the developer to make choices as to

how security services are implemented and used.

94

6. Agent communication security

The other option is to place security services within the execution platform as

services to communicating agents. In order to make the system scalable and

manageable we believe that security services should be implemented as part of

the architecture on the execution platform. However, this should be done in

such a way that the first option is not prevented (although preventing agents

providing security services is probably not something that can easily be enforced

by the platform).

The security architecture described in chapter 4 contains entities and compo-

nents that will facilitate secure agent communication. Of the involved parties

the trust service provider (TSP) is of particular importance for establishing se-

cure communications, but other entities may also be involved. One role for a

TSP is to act as a CA issuing digital certificates.

In the agent execution environment architecture (see chapter 4), the agent secu-

rity services and agent communication services are the main elements involved

in the provision of secure communication.

A subscription module can also be used to facilitate secure communication. This

is assumed to be a small tamper proof module (e.g. a smart card) provided by a

service provider. Such a device can be used for protected (agent) execution and

protected storage of various information (including private and secret keys).

6.3 Data origin authentication

In this section we will describe how, and to what degree, data origin authentica-

tion can be provided, first for stationary (i.e. non-mobile) agents (section 6.3.1),

95

6. Agent communication security

and then for mobile agents (section 6.3.2).

We will use the following scenario to illustrate the message exchanges (see fig-

ure 6.1). Agent Q, residing on platform P1, needs to send a message to agent

R, residing on platform P2. R requires assurance that the message originates

from Q.

Platform P1

Agent

Q

Platform P2

Agent

R

Figure 6.1: Agent Q sending a message to agent R

Whether authentication and integrity should be provided between agents (Q-R),

between agent and platform (Q-P2), or between platforms (P1-P2) should not

be dictated by the system. This will be an application decision which is likely

to differ depending on the nature of the application and the capability of the

platforms for which the application is intended.

6.3.1 Stationary agents

The simplest solution involves Q sending a signed message to R as follows.

Q → R : m‖sQ(m)

Of course, this solution requires Q to have its own signature key pair, and

R to have a trusted copy of Q’s public signature verification key. This latter

property can, for example, be achieved by transferring a public key certificate

for the necessary public key, signed by a mutually trusted CA.

Alternatively, if agent Q and agent R have a pre-established relationship in the

96

6. Agent communication security

form of a shared secret (K1), a MAC can be used instead. The computation of a

MAC is generally less computationally intensive than that of a digital signature.

In a scenario where an agent is frequently communicating with the same agent

(or agents), this can be a more efficient solution.

Q → R : m‖MACK1(m)

If an agent is executing on a host that is trusted and the agent’s secrets (e.g.

cryptographic keys) have not been compromised, the above protocols are enough

to ensure data origin. However, in the case where it is possible that the agent’s

key has been compromised, the executing host can also add its digital signature.

This would prevent a party who has obtained the agent’s key from impersonating

the agent in an undetectable fashion. It can also serve to bind the executing

platform to certain actions.

Q → R : m‖sQ(m)‖sP1(m‖sQ(m))

Or alternatively, if shared secrets exist

Q → R : m‖MACK1(m)‖MACK2(m‖MACK1(m))

where K1 is a secret shared between Q and R, and K2 is a secret shared between

P1 and R.

Combinations of digital signatures and MACs are, of course, also possible.

The above protocols do not protect against message deletion, duplication, or

delay attacks. To protect against message duplication and message deletion the

message m should be constructed to also include the intended recipient and

a freshness value. Freshness values usually take the form of a timestamp or a

nonce (number used once). Clock based timestamps require synchronised clocks

97

6. Agent communication security

which would probably be infeasible to provide securely for all the platforms in

our system.

That is, we should use a construction of the following form:

m = m1‖RID‖nonce

where m1 is the original message, RID is the identity of the recipient, and nonce

is a unique message number. The nonce must be supplied by the recipient;

alternatively sequence numbers can be used which must be maintained by both

sender and recipient.

General mechanisms using MACs for entity authentication are further described

in [75], and general mechanisms using digital signatures for entity authentication

are further described in [74].

To protect against delay attacks, timestamps or a challenge-response protocol

(see section 6.4) would be required.

6.3.2 Mobile agents

For mobile agents, the above protocols can be insufficient even if platforms are

required to add their signatures. An agent platform, on which the agent has

previously (legally) executed, can at a later time still produce a valid agent

signature. (Perhaps we have decided that we trust the platform not to perform

such an attack when sending the agent there, in which case no further measures

would be necessary).

Figure 6.2 shows the path of a multi-hop agent, moving from its original platform

98

6. Agent communication security

Platform P
1
 Platform P
2
 Platform P
n

Platform P
0

‘Agent home’

Agent

migration

Figure 6.2: Movement of a mobile agent

(P0), the ‘agent home’, to platforms P1, P2, . . . and finally to Pn before returning

to, or sending a final message to, the ‘agent home’ P0. The ‘agent home’ is the

agent’s origin and is assumed to be fully trusted by the agent (and its owner).

This could, for example, be a user’s mobile terminal. If the protocols described

in section 6.3.1 are used, any platform from P1 to Pn would be able to produce

a valid signature simply by extracting the agent’s cryptographic key and using

it to sign a message.

We will now describe some partial solutions to this problem. They are not

complete solutions since they introduce new, sometimes significant, constraints

or communication overheads and will not suit every situation.

Avoiding multi-hop agents

A partial solution to this problem, but with likely significant increased complex-

ity, is to only use single-hop agents or to make the agent visit a trusted services

provider between every visited platform.

By making the agent return to the ‘agent home’ between every move, as shown

in figure 6.3, the need to use the same secret or private key on more than one

platform can be avoided by updating the agent’s key every time it leaves P0.

99

6. Agent communication security

Platform P
1
 Platform P
n

Platform P
0

‘Agent home’

Platform P
2

Figure 6.3: Deployment of multiple one-hop agents

Platform P
1
 Platform P
2
 Platform P
n

Trusted

Platform TP
1

Platform P
0

‘Agent home’

Trusted

Platform TP
2

Platform P
3

Figure 6.4: Using trusted platforms to update the agent’s key

Figure 6.4 shows how trusted platforms can be inserted in the path and used to

update the agent’s key (or any other information that should not be unneces-

sarily exposed). The trusted platforms would be run by a TSP. Depending on

the application an agent might visit more than one platform before it needs to

move to a trusted platform in order to obtain a new signature key.

Undetachable signatures

Another (partial) solution is to associate a signature key with certain con-

straints. Sander and Tschudin proposed one such scheme in [98], which they

refer to as an undetachable signature. This was described in more detail in sec-

tion 3.3.10. This prevents signatures form being applied to arbitrary messages.

100

6. Agent communication security

Restricting signatures through digital certificates

An alternative to undetachable signatures is to use public key certificates to reg-

ulate the validity of digital signatures. Public key certificates are used to link an

identity with a public verification key by which a verifier can check the validity

of a digital signature. Certificates usually include a validity period under which

valid signatures can be produced. By extending the constraints included in the

certificate to context-related values such as executing host, maximum value of a

purchase, and so on, certificates can be used to further restrict the use of signa-

ture keys and thereby decrease the risks involving improper use of the signature

key. One advantage with this scheme over undetachable signatures is that it

relies on already well-established cryptographic techniques. This approach is

further described in chapter 8.

Distributing trust among multiple platforms

By using threshold signatures we can deploy agents in such a way that a single

compromised platform or agent will not compromise the security of the scheme.

The scheme can be tailored in such a way that a number of agents can be

compromised without compromising the scheme.

The idea of a threshold scheme is to take a secret, and divide it into pieces

called shares which are distributed among a group of entities. Then any subset

of these entities of a given size can reconstruct this secret, but a smaller group

can learn no information about the secret. An example of such a scheme is given

in [102].

101

6. Agent communication security

Threshold cryptography was first proposed by Desmedt [33]. One important

type of threshold cryptosystem is known as a threshold signature. In such a

scheme, any set of k parties from a total of l parties can sign a document,

whereas any coalition of less than k parties cannot. Such schemes tend to rely

on a combiner which is not necessarily trusted. Several schemes have been

proposed based on both ElGamal and RSA signatures (see, for example, [103]

for a short survey). Recently Shoup [103] proposed an RSA-based scheme which

is as efficient as possible; the scheme uses only one level of secret sharing, each

server sends a single part signature to a combiner, and must do work that

is equivalent, up to a constant factor, to computing a single RSA signature.

Although not perfect as a threshold signature scheme (as it relies on a trusted

party to form the shares) this scheme is ideal in a mobile agent setting, where

the user would be responsible for generating the shares for his agents.

By combining undetachable signatures and threshold signatures, we can achieve

undetachable threshold signatures. The construction of such a scheme is de-

scribed in chapter 11.

An alternative to using threshold signatures is to generate unique signature

keys for a number of agents and accompany these with public key certificates.

Encoded in the certificates is also a threshold value. In order for a verifier to

produce a valid signature a number of ‘agent-signatures’ meeting the thresh-

old value must be collected. This scheme is further described, along with its

practical advantages, in chapter 10.

A different approach, which also avoids complete trust in one execution en-

vironment, is to use cooperating agents. While one agent might reside on a

platform where the main processing is carried out, other agents residing and ex-

102

6. Agent communication security

ecuting on other platforms can carry sensitive or important information which

is only released to the first agent once certain conditions have been fulfilled.

This approach assumes that the platforms carrying the different agents will not

cooperate, an assumption which is reasonable for our envisioned system. Such

protocols have been proposed by Roth [96].

Hiding signature key from executing hosts

If the ability to produce a signature can be incorporated into the agent in such

a way that a malicious platform cannot misuse this information, the problem of

agent authentication would have been solved.

Techniques have been invented to hide information or execution code even from

an executing host. Environmental key generation, computing with encrypted

functions, and obfuscated code are all examples of such techniques – for details

see sections 3.3.7, 3.3.8, and 3.3.9. In the case of environmental key generation

the agent’s private signature key would be held encrypted and only revealed

if certain conditions are met. In the case of obfuscated code, it is the private

signature key that would be embedded in scrambled form.

6.4 Entity authentication

In this section we will look at how entity authentication can be achieved.

The same mechanisms used to support data origin authentication can be used for

entity authentication. Entity authentication can be unilateral or mutual. As for

message authentication, asymmetric or symmetric cryptographic mechanisms

103

6. Agent communication security

can be used. If no pre-established secret exist between the agents, public-key

cryptography can be used in combination with a public key infrastructure to

facilitate authentication. For agents with regular communication, mechanisms

not requiring public-key cryptography might be preferable as they are likely to

be less computationally intensive.

As in section 6.3, we suppose that agent Q, residing on platform P1, needs to

authenticate itself towards agent R, residing on platform P2 (see figure 6.1).

Below is an example of a mutual authentication protocol using digital signa-

tures [74].

Q → R : NQ

R → Q : NR‖sR(NR‖NQ‖QID)

Q → R : sQ(NQ‖NR‖RID)

where NQ and NR are nonces, QID and RID are the identities of Q and R

respectively.

As for origin authentication (section 6.3) an application may also wish to au-

thenticate the originating platform. This can be achieved by also letting the

platform add its signature as follows.

Q → R : NQ

R → Q : NR‖sR(NR‖NQ‖QID)‖sP2(NR‖sR(NR‖NQ‖QID))

Q → R : sQ(NQ‖NR‖RID)‖sP1(sQ(NQ‖NR‖RID))

For mobile agents, as in the origin authentication case, multi-hop agents can

be avoided (see section 6.3.2) in order to eliminate misuse of the agent’s keys.

The process of restricting the scope of signatures through digital certificates can

104

6. Agent communication security

also be applied to the entity authentication case. However, of the mechanisms

described in section 6.3.2, undetachable signatures and distributing trust among

multiple platforms do not appear to be applicable to entity authentication for

mobile agents.

6.4.1 Architecture support for authentication

In this section we will consider how the security architecture can support and

facilitate authentication.

As stated above (in section 6.2), agents can include all the functionality they

need, including that necessary to support entity authentication. It is also pos-

sible to build applications independent of the supporting security architecture.

However, by providing security services to agents, a more efficient and manage-

able solution is accomplished.

An agent can request the execution platform to verify authentication informa-

tion and be returned a success or failure message and, if requested, some sort of

receipt that can be stored in a log or sent to a trusted platform for safe storage

in case of future disputes.

If the executing platform does not have the certificates, or other supporting

information, required for validating the information it can contact a trusted

service provider offering this service.

In a highly distributed environment, certificates and certificate revocation in-

formation will be generated, maintained, and stored in various places. It is also

likely that, for performance reasons, such information will be cached in various

105

6. Agent communication security

places in the infrastructure. An agent should therefore also be able to express

various degrees of assurance in authentication verification when requesting ser-

vices from the platform.

A subscription module can be used as protected storage and facilitate distribu-

tion of root certificates and shared secrets. The subscription module can also be

used to protect processing involving these secrets, thereby minimising the risk

that they are misused by an adversary.

6.5 Non-repudiation

As mentioned earlier (in section 2.3.4), one can distinguish non-repudiation of

many actions. Generic protocols for non-repudiation services have been specified

in a series of ISO standards [62, 63, 64]. In this section we will outline a simple

non-repudiation of origin service applicable in an agent context.

The simplest form of non-repudiation protocol is to use digital signatures as

described in section 6.3.1. Some kind of agreement would need to exist in order

to be able to settle disputes at a later point in time. One major problem with

such a protocol is the absence of any indication of time in the message. If

accurate clocks are available at the point of the message creation, the time can

be included in the message. To provide accurate clocks is a non-trivial task,

and a possible point of attack; one way of addressing this is through the use of

a TSP, as proposed immediately below.

A simple non-repudiation service can be achieved as an extension to the au-

thentication protocols given in section 6.3.1. A TSP can offer a non-repudiation

106

6. Agent communication security

service simply by offering a timestamp and forward service;

(M1) Q → T : RID‖m‖sQ(RID‖m)

(M2) T → R : m‖sQ(RID‖m)‖TIME‖sT (m‖sQ(RID‖m)‖TIME)

where TIME is the time of the transaction. The recipient’s identity is included

in the first message to indicate to whom T should forward the message. For the

protocol to work, the two communicating entities (agents, platforms, etc.) need

to be able to communicate with a TSP offering the service. The protocol further

requires both communicating parties to trust the same TSP for the service.

The protocol can be extended to offer non-repudiation of delivery by requesting

the recipient (R) to send a signed reply, either directly to the sender (Q) or

through the trusted service provider in the same manner as the protocol just

described.

More sophisticated protocols have been proposed that can be used also in an

agent context to achieve non-repudiation. Examples include protocols proposed

for certified e-mail, see e.g. [3, 88]. An attractive property of the protocol

proposed in [88] is that a trusted third party only needs to be involved when

the protocol is failing.

Platform P1

Agent

Q

TSP

T

M1

Platform P2

Agent

R

M2

Figure 6.5: TSP offering a timestamp and forward service

107

6. Agent communication security

6.5.1 Architecture support for non-repudiation

The protocol described above requires the support of a trusted service provider

to timestamp and forward messages. This can be implemented as part of the

middleware. Users might get access to the service and ‘agree to trust’ the TSP

simply by having a contract with their home service provider (other business

models are also possible). A supporting micropayment scheme could be used to

charge for the service. If more sophisticated protocols are required for certain

applications, e.g. for high value transactions, this might be better implemented

as an application service above a middleware layer.

6.6 Confidentiality of communication

In this section we will describe how confidentiality of communication can be

achieved. For communication between agents executing on separate hosts, en-

cryption is required for confidentiality protection.

Platform P1

Agent

Q

Platform P2

Agent

R

Figure 6.6: Agent Q sending a message to agent R

Q can simply, before sending the message to R, encrypt the message using R’s

public key as follows.

Q → R : ER(m)

Only R will then be able to decrypt the message using the corresponding pri-

vate key.

108

6. Agent communication security

If agent Q and agent R have a pre-established relationship in the form of a

shared secret, symmetric cryptography can be used instead. Symmetric encryp-

tion/decryption is in general less computationally intensive than corresponding

asymmetric operations. Again, in a scenario where an agent is frequently com-

municating with the same agent (or agents), this can be a more efficient solution.

That is, we have:

Q → R : EK1(m)

where K1 is a shared secret between Q and R. Since asymmetric cryptography

has advantages when it comes to key distribution, and symmetric key cryp-

tography has efficiency advantages, it is common to use a combination of the

two, i.e.

Q → R : ER(K)‖EK(m)

where ER(K) is a secret key K encrypted using R’s public key. The secret key

K is then used to encrypt the message.

The same mechanisms can be used to initialise a protected session. Alterna-

tively, and perhaps more likely to be implemented in a real system, the TLS

protocol [35] can be used, where TLS is a standardised protocol for initialising

and encrypting a session [28]. TLS also supports unilateral or mutual authen-

tication of the communicating parties.

To achieve traffic flow confidentiality at the communication layer where agent

communication takes place, traffic padding can be used. Agents would then

generate dummy traffic in order to hide the real communication that is taking

place. Depending on the threat scenario, it might be enough to generate dummy

traffic between two communicating agents (hiding real communication time and

frequency), or agents can send dummy traffic to multiple agents in order to

109

6. Agent communication security

conceal the real recipient.

6.6.1 Architecture support for confidentiality

In this section we will consider how the security architecture can support and

facilitate confidentiality of communication.

Like the functionality supporting integrity, the security architecture can help in

finding, retrieving, and verifying public key certificates for agents. Further, the

executing platform can provide local agents with encryption and decryption of

messages as well as entire sessions.

As for authentication support, the subscription module can be used for storage

and distribution of root public keys.

6.7 Anonymity

In this section we describe how anonymity can be offered within the multi-agent

system.

The possibility of anonymous transactions is potentially an important factor for

user acceptance. Agents are in many ways ideal for providing anonymity to their

owners as they are independent entities, possessing some degree of autonomy,

and do not require direct user interaction. The agent based system can, for

example, provide for this by (1) allowing communication with, and execution

of, agents not carrying the identity of the agent owner, and (2) by the use of

proxy services that would allow a user to be traced only if the user or her agents

110

6. Agent communication security

are misbehaving. This service can be provided in the network by a service

provider. It would be the security policy of a device that regulates whether or

not such agents and their transactions would be allowed onto the device.

We will now use the FIPA protocol, further described in chapter 7, to outline how

anonymity can be provided to agent communication through a proxy service.

A FIPA message envelope carries, amongst other information, the parameters

to and from, indicating the identity of the intended recipient and the identity

of the originating agent in the format: agent@host.com.

The from parameter is mandatory but can be changed to one that does not

reveal the agent’s true identity or the host on which the agent is running. This

would provide anonymity to the agent as well as to its owner. However, if the

parameter is used for replies, then the use of an arbitrary agent identity will

prevent replies being delivered. One should also be aware that an underlying

transport services might reveal the physical address of such a message (e.g. the

platform’s IP address).

A proxy service would remove these problems. Suppose that agent Q, residing

on platform P1, needs to send an anonymous message to agent R, residing on

platform P2, to which R should be able to reply. A proxy service (PS) can then

be used as follows, and as shown in figure 6.7.

Platform P1

Agent

Q

Proxy Service

PS

M1
 Platform P2

Agent

R

M2

M4
 M3

Figure 6.7: Proxy service giving anonymity

111

6. Agent communication security

(M1) Q → PS : from : Q@P1‖to : PS‖xto : R@P2

(M2) PS → R : from : A@PS‖to : R@P2

(M3) R → PS : from : R@P2‖to : A@PS

(M4) PS → Q : from : PS‖to : Q@P1‖xfrom : R@P2

In message (M1) indicates xto to whom PS shall forward the message and in

message (M4) indicates xfrom who originally sent the message.

The protocol, which works in a similar way to established Internet mail remail-

ers1, does require more messages than the standard non-anonymous version, and

requires access to the proxy service. The agent’s identity is only kept secret from

P2 and R, not from the proxy service. Hence, depending on the application, the

proxy service might also be required to be trusted (to various degrees).

By using mixes, as first proposed by Chaum [24] or one of its variants, e.g.

[51, 77, 105], the level of anonymity can be further enhanced. A network of

mixes can, in combination with cryptography, be used to split, and route, a

message through a network to its recipient, in such a way that any single mix-

node, an intercepter, or the recipient cannot identify the initiator. The recipient

can still use the same path through the mix-network to route a replay to the

initiator; this is achieved by assigning unique identifiers to individual message

transfers between mix-nodes, that can be used to route a reply back to the

initiator.

1See: http://www.andrebacard.com/remail.html for general information on Internet mail
remailers.

112

6. Agent communication security

6.7.1 Architecture support for anonymity

The proxy anonymity service can be provided as part of a middleware layer. It

can be operated by a TSP who has a relationship with the agent owner and, if

required, can provide certain assurance regarding the behaviour and actions of

the agent. If the agent is mobile the agent’s identity (or the owner’s identity)

would be exchanged for a proxy identity. For a communicating agent (mobile

or stationary) the proxy service would forward messages to their real owners.

If necessary, and if such a function is supported by the TSP, the proxy solution

can also be used to trace the real owner.

6.8 Conclusions

In this chapter we have shown how security protocols can be used to provide

secure communication within an agent-based system. Data integrity, data ori-

gin authentication, entity authentication, non-repudiation, confidentiality, and

anonymity can all be provided for the communication.

For mobile agents it is a non-trivial task to ensure that communication originat-

ing from the agent cannot be spoofed. Several techniques to limit the threats

posed to mobile agent communication exist. Nevertheless, mobile agents must

be deployed with great care if the authenticity of the communication is of im-

portance.

113

Chapter 7

Securing FIPA agent

communication

Contents

7.1 Introduction . 115

7.2 The FIPA communication model 116

7.3 FIPA Message structure 118

7.3.1 Security evaluation 120

7.4 Open PGP . 120

7.4.1 Using PGP for FIPA messages 122

7.5 Agent — platform interaction 123

7.6 Conclusions . 128

This chapter evaluates the FIPA agent communication protocols and outlines

how security functions can be added.

114

7. Securing FIPA agent communication

7.1 Introduction

FIPA1 is a non-profit organisation promoting the use and development of in-

telligent agents by openly developing specifications supporting interoperability

among agents and agent-based applications. FIPA’s specification for agent com-

munication has become a de facto standard. Although earlier, today obsolete,

FIPA specifications did consider security for agent communication [41, 43], se-

curity is not covered in the current specifications [44]. It appears that the FIPA

specifications and the general state of agent research are now mature enough

to require security services for agent communication. FIPA has recognised the

need for improved security and initiated work in the area2. Most of the work

described in this chapter has been previously published in [13].

In this chapter we will evaluate the FIPA specifications from a security point

of view and propose extensions to the specifications in order to provide security

services for agent communication. We will address the following security services

for agent message communication:

• Integrity, protects against improper modification of a message.

• Origin authentication, the corroboration that the source of data re-

ceived is as claimed.

• Confidentiality, guarantees that unauthorised parties cannot access in-

formation in transit.

Non-repudiation, which can be considered as a stronger version of origin au-

1Foundation for Intelligent Physical Agents, see http://www.fipa.org
2See http://www2.elec.qmul.ac.uk/~stefan/fipa-security for the state and progress of

this work.

115

7. Securing FIPA agent communication

thentication, will not be further addressed in this chapter. Non-repudiation (of

data origin and data reception) can be achieved using authentication mecha-

nisms in combination with timestamps and a third party to settle disputes (as

described in section 6.5).

We are still assuming a multi-agent system in an open environment, that is,

a system where no single authority is in control of the system, which means

that agents (and other entities) cannot be assumed to act in a perfectly honest

manner. We are also assuming the existence of a supporting Public Key In-

frastructure (PKI) for management of certified cryptographic public keys. The

precise requirements for a PKI for an open multi-agent system is a research

topic in itself.

The chapter is structured as follows. In the next two sections we briefly describe

the FIPA agent communication specifications, first the communication model

and then the message structure. Section 7.4 describes the Open PGP message

format and how this can be applied to agent communication. In section 7.5

we consider the required interaction between an agent and its platform if the

platform is to provide secure communications services to the agent. Finally,

section 7.6 gives the conclusions of this chapter.

7.2 The FIPA communication model

Figure 7.1 shows the FIPA message transport reference model [44].

The message transport service is a service typically provided by the agent plat-

form on which an agent is executing. However the agent and the message

116

7. Securing FIPA agent communication

Agent Platform

Message Transport

Service

Agent

Agent Platform

Message Transport

Service

Agent

Message Transport Protocol

Figure 7.1: FIPA message transport model

transport service do not have to be located on the same host. The message

transportation service supports the transportation of messages between agents

on any given agent platform and between agents on different platforms through

the provision of an Agent Communication Channel (ACC). FIPA recognises

three options for an agent when sending a message to another agent residing on

a remote platform (illustrated in figure 7.2) [44].

1. Agent A sends the message to its local ACC using a proprietary or stan-

dard interface. The ACC then takes care of the transmission of the mes-

sage to the correct remote ACC. The remote ACC will then eventually

deliver the message.

2. Agent A sends the message directly to the ACC on the remote agent

platform on which B resides. This remote ACC then delivers the message

to B.

3. Agent A sends the message directly to agent B, using a direct communi-

cation mechanism. The message transfer, including buffering of messages

and any error messages, must be handled by the sending and receiving

agents. (No further specification for this communication mode is covered

by FIPA.)

117

7. Securing FIPA agent communication

Agent Platform

ACC

Agent A

Agent Platform

ACC

Agent B
 3

 1

2
 1 & 2
1

Figure 7.2: Methods of communication between agents on different platforms

7.3 FIPA Message structure

In this section we will describe the structure of a FIPA message [44] and then

consider how security is addressed.

A message is made up of a message envelope, containing transport informa-

tion, and a message body comprising of the agent communication data or ACL

(Agent Communication Language) message. Table 7.1 shows the structure of

the message envelope. An ACC should deliver the whole message, including the

message envelope, to the receiving agent. However, it is possible for agent plat-

forms to provide middleware layers to free agents from the task of processing

the envelope [44].

Table 7.1: Message envelope description

Parameter Description
to Names of primary recipients of the message, mandatory.
from Name of the agent who sent the message, mandatory.
comments Optional comment.
acl-representation Name of the syntax representation of the message body,

mandatory.
payload-length The length of the message body, optional.
payload-encoding The language encoding of the message body, optional.
date Message creation date and time, mandatory.
intended-receiver The name of the agent to whom this instance of a mes-

sage is to be delivered, optional.
received Time received by an ACC, optional.
transport-behaviour Transport requirements of the message, optional.

118

7. Securing FIPA agent communication

A earlier, now obsolete, version of the message transport service specification [43]

contained an optional envelope parameter called encrypted. If used, the field

indicates that the message is encrypted as defined in IETF RFC 822 [31]. The

syntax for the parameter is two words. The first word indicates the software

used to encrypt the body, and the second, optional, word is intended to aid the

recipient in selecting the proper decryption key. Current FIPA platforms based

on JADE (Java Agent DEvelopment Framework) [6], FIPA-OS [91], etc., do not

support this field.

Table 7.2 shows the structure of an ACL message. The performative element is

the only mandatory element of an ACL message; all other elements are optional.

The ACL message structure does not include any security specific elements.

Table 7.2: ACL message elements

Element Description
performative The type of communicative act of the message.
sender Name of the agent who sent the message, mandatory.
receiver Names of primary recipients of the message, mandatory.
reply-to Indicates that subsequent messages in this conversation

are to be directed to the agent named in this element.
content Denotes the content of the message.
language Denotes the language in which the content element is

expressed.
encoding Denotes the specific encoding of the content language

expression.
ontology Denotes the ontology used to give a meaning to the sym-

bols in the content expression.
protocol Denotes the interaction protocol that the sending agent

is employing with this message.
conversation-id Used to identify the ongoing sequence of communicative

acts that together form a conversation.
reply-with Introduces an expression that will be used by the re-

sponding agent to identify this message.
in-reply-to Denotes an expression that references an earlier action

to which this message is a reply.
reply-by Denotes a time which indicates the latest time by which

the sending agent would like to have the reply.

119

7. Securing FIPA agent communication

7.3.1 Security evaluation

The current FIPA message specifications do not provide any security services.

However, the presided version of the standard [43] had limited provision for

security through the envelope primitive encrypted. This allows for additional

software to be used to offer message confidentiality through encryption. Ori-

gin authentication and message integrity are not supported. Furthermore, the

encrypted field in the envelope is intended for the ACC, not the agent itself,

which means that the encryption would be under the control of the ACC, not

the agent.

7.4 Open PGP

In this section we will briefly describe the Open PGP message structure in order

to be able to evaluate its appropriateness for FIPA messages.

Open PGP [22] is a non-proprietary protocol for protecting email using public

key cryptography. It is based on PGP as originally developed by Phil Zimmer-

mann [121]. The Open PGP protocol defines standard formats for encrypted

messages, signatures, and certificates for exchanging public keys. Over the past

decade, PGP, and more recently Open PGP, have become well used de facto

standards for encrypted email. By becoming an IETF standard [22], Open PGP

may be implemented freely.

PGP messages are constructed from a number of records referred to as packets.

A packet is a piece of data that has a tag specifying its meaning. A PGP

message consists of a number of packets. Some of those packets may themselves

120

7. Securing FIPA agent communication

contain other packets. Each packet consists of a packet header, followed by the

packet body. The packet header has a tag which denotes what type of packets

the body holds. Table 7.3 shows the defined tags.

Table 7.3: Open PGP packet types

Tag no. Description
0 Reserved - a packet tag must not have this value
1 Public-Key Encrypted Session Key Packet
2 Signature Packet
3 Symmetric-Key Encrypted Session Key Packet
4 One-Pass Signature Packet
5 Secret Key Packet
6 Public Key Packet
7 Secret Subkey Packet
8 Compressed Data Packet
9 Symmetrically Encrypted Data Packet
10 Marker Packet
11 Literal Data Packet
12 Trust Packet

As can be seen from Table 7.3, PGP supports the secure message services de-

scribed in section 7.1, including message confidentiality, through the use of

symmetric and asymmetric encryption algorithms, and message integrity and

origin authentication, through the use of digital signatures.

Some of the PGP packets listed in the table are designed for key management.

This is functionality we have not considered, but which is crucial for deployment

of cryptography on a large scale.

PGP is not the only standard for describing cryptographically protected mes-

sage content. Another example is Cryptographic Message Syntax (CMS) (RFC

3369) [58]. CMS is used by S/MIME (Secure/Multipurpose Internet Mail Ex-

tensions) [93] and specifies syntax for representing digitally signed, hashed, au-

thenticated, or encrypted arbitrary message content (CMS is based on PKCS

121

7. Securing FIPA agent communication

#7 [97]). Similar functionality to that described for Open PGP is available in

CMS.

7.4.1 Using PGP for FIPA messages

We will now consider how the PGP message structures can be used with FIPA

messages.

PGP can be used to encrypt and sign the entire ACL message without making

any changes to the message envelope. This would leave the agent to take care of

the encoding and decoding of PGP structured messages. This would not require

any changes to the FIPA specifications, assuming the agent is able to determine

if a message is PGP encoded or not (this might, for example, be achieved by

using the encoding field).

If there are reasons for treating the elements within the ACL differently, for

example to only encrypt or sign certain elements, additional information would

need to be provided to the agent to indicate how the message should be pro-

cessed.

If the ACC service is to perform encryption/decryption and process signatures

‘seamlessly’, additional information needs to be provided in the message enve-

lope.

The advantage with using an existing standardised protocol such as Open PGP

or CMS is that it is already defined, thereby avoiding duplication of work. The

drawback might be that the already standardised protocol has features unnec-

essary for our purposes, possibly adding unnecessary payloads and, perhaps,

122

7. Securing FIPA agent communication

confusion.

To summarise, it is rather straightforward to make use of the Open PGP message

structure for FIPA agent communication. However, in order to allow for all the

communication modes described in section 7.2, as well as for cryptographically

protected messages, the specifications should allow encryption/decryption and

signature processing to be carried out by the ACC service as well as by the

agent. This would require additional information to be added in the message

envelope. For full flexibility, the ACL message should also carry information

describing the security mechanisms applied to the message. The information

exchange between an agent and ACC service is further described in the next

section.

7.5 Agent — platform interaction

In this section we consider further where the communication security mecha-

nisms fit in the FIPA architecture. We will also highlight architectural issues not

covered in the previous sections, namely key management and security policies.

Leaving the complete coding and encoding of encrypted or signed messages

to the agent may not always be desirable. To keep agents simple and small,

it can be more efficient to let the executing host deal with this potentially

complex task. This can be done in different ways, as described in the next two

paragraphs.

As shown in figure 7.3, one way is to let the agent receive the message as usual,

and when the agent has determined that it is an encrypted or signed message,

123

7. Securing FIPA agent communication

it forwards the message to the appropriate service to decrypt it or to verify

the signature. The agent would then be returned the decrypted message or

an indication of the outcome of the signature verification. Similarly when the

agent wants to send an encrypted message or a signed message it would send

the message to the appropriate service and be returned the processed message,

which now can be sent as usual.

Agent Platform

ACC

Agent
Agent Security

Services

1

3

4

2

Figure 7.3: Security services separated from ACC

A second option, depicted in figure 7.4, would be to let the ACC intercept the

communication and offer the security services in a more transparent way to

the agent. This would require the ACC to be able to determine if incoming

communication is encrypted or signed, as well as getting an indication from the

agent whether encryption or signing should be done before sending the message.

Agent Platform

ACC

Agent
Agent Security

Services

1
 4

2
 3

Figure 7.4: Secure communication services offered ‘transparently’ to agents

Both modes of operation should be provided to ensure that the communication

modes described in section 7.2 are fully supported.

There are two important, and non-trivial, issues we have not yet covered. One

124

7. Securing FIPA agent communication

is key management. When encryption is used the encryption/decryption keys

need to be managed. For asymmetric cryptography a PKI is typically used

to facilitate certain aspects of the key management. In a multi-agent system

various key management issues arise due to the fact that the agent executes on

a host which, in theory, has full control over the agent, even more so if the agent

depends on the host to carry out processing involving cryptographic keys. The

following questions need to be considered:

• Is the agent in control of its own key, or is this completely/partly delegated

to the platform where the agent is executing?

• Does the agent need its own keys, or can agents on the same host use the

same cryptographic keys?

Since applications will have different requirements we believe that agents should

have the freedom to decide on these issues themselves. This requires the archi-

tecture to support both the above approaches.

The second important thing we have not yet discussed is that of security policies.

If an agent depends on the host to perform cryptographic tasks, the agent needs

to communicate its requirements to the host. Likewise the host needs to let the

agent know certain information about its processing.

While PGP might be sufficient for the transport of encrypted and signed mes-

sages, further specifications need to be developed for a complete solution. Com-

munications between the agent and the executing host need to be standardised

to cover the transfer of key management and security policy data. In the re-

mainder of this section we consider the information that needs to be exchanged

125

7. Securing FIPA agent communication

between an agent and the ACC service, which we assume is residing on the

platform where the agent is executing.

For outgoing communication (communication originating from the agent) the

agent needs to be able to supply (explicitly or implicitly) the platform with the

following instructions relating to the processing of the message being sent:

• Request message encryption.

• Supply an encryption key or indicate that the platform’s encryption key

should be used.

• Specify the choice of encryption algorithm (and other possible algorithm

related options, including key length, padding, etc.).

• Request message signing.

• Supply a signature key or indicate that the platform’s signature key should

be used.

• Specify the choice of signature algorithm (and possible algorithm related

options, including key length, padding, etc.).

If an agent requests encryption or signing, the platform would typically apply

default values for parameters not specified by the agent.

For incoming communication (communication destined for the agent) the plat-

form needs to be able to inform the agent regarding the following aspects of the

security processing of a received message:

• If the message was protected through encryption during transit.

126

7. Securing FIPA agent communication

• If the message was encrypted, indicate the method of encryption that was

applied to the message (e.g. encryption algorithm and key length).

• If the message carried a digital signature.

• If the message was signed, to what extent the signature and the public

key (i.e. the certificate chain) have been verified.

The platform might need certain information from the agent in order to decrypt

a message or verify a signature, including the following:

• the decryption key,

• the identities of the trusted Certification Authorities (CAs) and agents,

• the signature verification requirements (e.g. verification against revocation

lists and maximum permitted length of certification chains).

The above information can be exchanged between the agent and platform in

various ways. The most straightforward way appears to be to let the agent

supply message specific information with every message that is passed to the

ACC service. Another option, which may be more efficient, is for the agent

to have a complete security policy description that can be passed to the ACC

service prior to any other communication taking place. Such a policy should be

allowed to be as complex as might be required. Different requirements might,

for example, apply depending on the destination of a message. A third option

is to combine the other two options. An agent can then carry, and supply to

the platform, a complete communication security policy, but can also request

a particular message treated differently by supplying specific information with

the message.

127

7. Securing FIPA agent communication

7.6 Conclusions

The FIPA agent communication specifications are lacking sufficient functionality

to provide secure communication. By using an existing message structure such

as the Open PGP message format, sufficient protection can be achieved for the

communication. We have considered where security services can be applied to

agent communication within the FIPA architecture, and we have described the

information exchange required between an agent and the ACC security services.

Further detailed analysis and specification is, however, required for a complete

solution.

Another way to achieve secure agent communication appears to be the XML3

(Extensible Markup Language) specifications. A Document Type Definition

(DTD) to carry an ACL message has been defined by FIPA [42]. Various efforts

are in progress for specifying how cryptographic services can be applied to XML

[36, 60, 118]. These are also likely to provide the security services required for

agent message communication.

3See http://www.w3c.org/XML for information about XML and the ongoing work on XML
security.

128

Chapter 8

A pragmatic alternative to

undetachable signatures

Contents

8.1 Introduction . 130

8.2 Solving the problem the conventional way 131

8.2.1 Preliminaries . 131

8.2.2 Preparing the agent 132

8.2.3 Executing the agent 132

8.2.4 Remarks on implementation 133

8.2.5 A brief comparison 134

8.3 Relationship to secure delegation schemes 136

8.4 Conclusions . 137

In this chapter a ‘pragmatic’ alternative to undetachable signatures is proposed,

relying on the use of conventional signatures and public key certificates.

129

8. A pragmatic alternative to undetachable signatures

8.1 Introduction

As we established in section 2.3.5 there are limits to the protection that can be

offered to a mobile agent. An agent platform can potentially modify the agent

code, and/or interfere with the data stored by an agent. Hence efforts to protect

agents reduce to either finding ways to enhance the level of trust that can be

placed in results produced by an agent, or limiting the powers given to an agent.

This chapter focuses on the latter approach — in particular it considers the issue

of giving an agent the power to sign on a user’s behalf, without running the risk

of revealing the user’s private signature key to the platform on which the agent

is executed. Some of the work described in this chapter has been previously

published in [17]. Observe that this chapter can be seen as providing a specific

solution to issues raised under the ‘non-repudiation’ heading in section 5.3.2.

As described in section 3.3.10, undetachable signatures can be used to limit

the information over which a valid signature can be produced by encoding con-

straints into a function f . Whilst the original scheme proposed in [98] has

proven insecure, an alternative RSA-based scheme proposed by Kotzanikolaou,

Burmester and Chrissikopoulos [81], appears to be sound. However, it is a new

scheme, and should perhaps be used with care. In the remainder of this chapter

we describe an alternative approach which uses only well-established crypto-

graphic techniques. The scheme is described in section 8.2. In section 8.3 we

observe the relationship to delegation schemes, before giving the conclusions of

this chapter in section 8.4.

130

8. A pragmatic alternative to undetachable signatures

8.2 Solving the problem the conventional way

We now consider an alternative solution to the problem which undetachable

signatures have been introduced to solve. This solution is wholly based on

conventional cryptographic primitives, and hence may be more likely to succeed

in practice. It is also quite general in its specification, allowing the use of any

digital signature scheme.

8.2.1 Preliminaries

Suppose user U wishes to create a mobile agent A that may run on one or more

agent platforms not completely trusted by U . Suppose also that user U wishes

to give A the power to sign statements on behalf of U , as long as the statement

conforms to rules specified in a string R (where R is in a form agreed by all

parties to the transaction). It is possible that R may be completely explicit

about the rules governing the signing process by the agent, or R may simply

contain one or more pointers to generally agreed policy statements, perhaps

with additional parameters.

Note that it is implicit to the solution described immediately below, and also

to the solutions using undetachable signatures, that the agent is transferred by

U to the platform on which it is to execute by some secure means. This secure

transfer should enable the receiving agent platform to check its integrity and

origin, and also should protect the confidentiality of all the sensitive parts of

the agent (most crucially including any embedded secret or private keys).

131

8. A pragmatic alternative to undetachable signatures

8.2.2 Preparing the agent

Before sending the agent A, user U performs the following steps. Note that we

assume that U has a signature key pair of its own, (SU , PU) say, and a certificate

CertU for its own public key, PU , signed by a Certification Authority (CA).

1. U generates a signature key pair (SA, PA) specifically for use by the agent.

2. U creates a public key certificate CertA for the agent’s public key (PA),

signed using U ’s own signature key (SU). This certificate also contains a

copy of the string R, which states in what circumstances A’s key may be

used, and which makes it clear that PA is an agent key. It is also expected

that this certificate would have a very short lifetime, i.e. it would have an

expiry date very close to the time of issue.

3. U now equips the agent A with the private signature key SA, and copies

of the two certificates CertA and CertU .

4. A is now securely transferred to one or more agent platforms.

8.2.3 Executing the agent

When A executes, it may be necessary for A to sign a message of some kind (e.g.

a commitment to a transaction) on behalf of user U . Such a transaction should

be signed using the agent’s private key SA, and the signature should then be

transferred with the two certificates CertA and CertU to the entity requiring the

commitment, e.g. a merchant. The recipient of the commitment, M say, then

performs the following steps.

132

8. A pragmatic alternative to undetachable signatures

1. The user’s certificate CertU is verified by M using a trusted copy of the

CA’s public key. Note that if M does not have this CA’s public key, then

it will need to be derived by some means, e.g. using a certificate chain. M

may also want to contact a revocation service to ensure that the certificate

has not been revoked.

2. M checks that it is prepared to accept a commitment from U , and also

checks that the name in the certificate is consistent with the user name

received from the agent.

3. The agent’s certificate CertA is verified by M using the copy of U ’s public

key obtained in the first step.

4. M checks that the string R contained in CertA is consistent with the

transaction that is taking place.

5. M finally checks the agent’s signature using the copy of A’s public key

obtained from CertA.

It should be clear that, by the simple step of including R in the certificate for

A’s key pair, the power given to A by U can be limited to that specified by U .

This has been achieved without any need for a new cryptosystem.

8.2.4 Remarks on implementation

Before attempting to compare this new scheme with the use of undetachable

signatures we make some remarks about the implementation of the scheme.

• Given that the agent key pair has only a short lifetime, it may be possible

to use a relatively short key. That is, if the signature scheme is RSA

133

8. A pragmatic alternative to undetachable signatures

based, a short modulus could be used, say of 512 bits, in the knowledge

that factoring the modulus and hence breaking the key would be infeasible

during the key’s lifetime. This would make key generation faster and

would reduce the amount of key information to be transferred. It would

also mean that creating and verifying agent signatures could be made

significantly more efficient.

• If a ‘weak’ key pair was used for the agent key, or, more generally, if

the certificate for the agent key pair has a very short period of validity,

problems might arise if the agent’s signature is required to have long term

validity, e.g. to provide a non-repudiation service in the event of a dispute.

The ‘standard’ way of resolving this problem is to use a timestamping ser-

vice to sign a concatenation of the signature and a timestamp, providing

evidence that the signature was generated during the key’s period of va-

lidity. An alternative to using a trusted timestamping service would be to

simply require the agent platform to add a timestamp and its signature

to any signed commitments output by the agent. Not only would this

provide evidence about when the agent signed the message, but it would

also enable the recipient of the signed message to verify on which platform

the agent was running. This would appear to be a valuable service in its

own right, which would apply equally to the case where an undetachable

signature scheme is employed.

8.2.5 A brief comparison

We now attempt to briefly compare the efficiency of the above scheme with the

efficiency achievable using an undetachable signature scheme. For the purposes

of the comparison we suppose that signatures for the scheme in this chapter

134

8. A pragmatic alternative to undetachable signatures

are computed using RSA and a hash function, and we compare this with the

RSA-based undetachable signature scheme of Kotzanikolaou et al. [81]. To

compare the efficiencies of the two schemes we compare separately the work to be

performed by the user U , the agent A, and the recipient of the commitment, M .

• User U . For the scheme above, the user will be required to generate a

key pair and certify the public key, i.e. compute one signature and gener-

ate one key pair. For the undetachable signature scheme of [81], the user

is required to perform two exponentiations, equivalent in complexity to

performing two signatures. Note that, whilst key generation will typically

take much longer than computing a signature, key pairs could not only

be made quite small (as discussed above), but could be generated in ad-

vance. Hence, the new scheme, whilst requiring more computation overall,

actually requires less computation at the time of agent creation.

• Agent A. For the new scheme, the agent is required to compute one

signature. For the undetachable signature scheme, the agent is required

to perform two exponentiations, equivalent to two signatures. Moreover,

for the undetachable signature scheme these will be ‘full size’ signatures,

whereas for the new scheme the key lengths may be reduced (as above).

• Recipient of commitment M . For the new scheme the recipient of the

signed message will be required to verify two certificates and a signature,

i.e. a total of three signature verifications. For the undetachable signa-

tures scheme it is also necessary to verify the user’s certificate, as well

as performing two exponentiations. Hence the two schemes have roughly

comparable efficiencies.

135

8. A pragmatic alternative to undetachable signatures

It would appear that the scheme of this chapter has potential efficiency advan-

tages over the undetachable signature scheme, quite apart from the advantages

inherent in using established cryptographic primitives.

8.3 Relationship to secure delegation schemes

Note that the problem which the proposed solution is designed to address ap-

pears to be closely related to the problem of secure delegation in distributed

systems. Delegation refers to the situation where one entity wishes a separate

entity to perform a task on its behalf. Security problems arise when the dele-

gated entity does not have the access rights to perform the task, and hence must

be temporarily given these rights in order to perform the requested actions. The

issue then becomes one of giving these rights in such a way that they cannot be

abused. See, for example, [30] for a general introduction to delegation issues.

An analogous approach to the one described here has been proposed by several

authors as a solution to secure delegation — see, for example, [109]. However,

instead of the use of a public-key certificate, special ’delegation tokens’ have

been proposed. Note also that issues can arise with any such solution since

the originating user will have a copy of the private key generated for agent

use. The user may use this key to masquerade as the agent, and then deny the

transaction, blaming the platform on which the agent has run. The proposed

use of countersignatures by the agent platform, as described in section 8.2.4

above, significantly reduces the seriousness of this threat.

136

8. A pragmatic alternative to undetachable signatures

8.4 Conclusions

A pragmatic solution to a mobile agent security problem has been proposed.

This solution has potential practical advantages by comparison with the use

of undetachable signatures, and appears to offer a very similar set of security

guarantees. When combined with the use of signatures by the agent platform,

this solution has the potential to solve certain problems relating to transaction

repudiation.

137

Chapter 9

Mobile agent based

transactions

Contents

9.1 Introduction . 139

9.2 Threats to trading agents 140

9.3 Models of agent platforms 142

9.4 Model for a trading agent 144

9.5 Threshold scheme 146

9.5.1 The scheme . 146

9.5.2 The votes . 148

9.6 Using one trusted host 149

9.7 Conclusions . 153

This chapter proposes two methods to improve the security and reliability of

mobile agent based transactions in an environment which may contain some

malicious hosts.

138

9. Mobile agent based transactions

9.1 Introduction

In this chapter we consider strategies for the deployment of mobile trading

agents to reduce certain security threats to their operation. In a future world

of co-operating mobile and fixed devices, the mobile agent computing model

is expected to become an increasingly important one. In the domain of e-

commerce/m-commerce transactions, mobile trading agents could play a very

useful role. Users could launch such agents to make transactions on their behalf,

and the agents would look for the ‘best buy’ by visiting multiple merchant sites

without any direct user intervention. Indeed such activity could take place while

the user has no current network connectivity.

The mobile agent computing model gives rise to a range of security threats. As

discussed in section 2.3.5, these threats can be divided into two main classes:

• threats to the platform from malicious and/or unauthorised agents, in-

cluding threats to the integrity of the platform and other agents, threats

to the confidentiality of stored data, and denial of service threats, and

• threats to the agent from malicious platforms, including threats to the

confidentiality of agent stored data, and threats to the integrity of the

agent and its computations.

In this chapter we are concerned with the second class of threats, and in par-

ticular with threats to agents deployed for trading applications. Specifically,

users will need to give trading agents certain authority to authorise transac-

tions, whilst at the same time users will wish to protect themselves against

malicious merchants forcing an agent to make a non-optimal purchase.

139

9. Mobile agent based transactions

We consider simple ways in which deployment of multiple agents can reduce the

threat to trading agents from platforms outside of their direct control. We con-

sider two general approaches. In the first approach multiple agents are equipped

with ‘shares’ of the means to commit to a transaction. In the second approach a

single trusted host provides a location for multiple agents to ‘report back’ infor-

mation enabling a purchasing decision to be made. Some of the work described

in this chapter has been previously published in [14].

The chapter has the following structure. Section 9.2 explores threats to trading

agents in more detail. This is followed in sections 9.3 and 9.4 by a discussion of

the models used here for agent platforms and for trading agents. Sections 9.5

and 9.6 then explore the two approaches for enhancing trading agent security.

Section 9.7 gives the conclusions of this chapter.

9.2 Threats to trading agents

The general threats to mobile agents have been described in section 2.3.5. In

this section we consider the particular threats to a trading agent in more detail.

That is, we consider the particular threats to an agent which wishes to purchase

an item (or a service) from a merchant.

1. A malicious host lies about its offer.

Here a host lies about the offer it makes to an agent, in order to get the

trade. The host would then charge a higher price at a later date. One way

around this is to force the host to sign its bid, thereby committing to it.

2. A malicious host learns other offers and undercuts them.

140

9. Mobile agent based transactions

If a host knows that all offers but its own have been collected and finds

out the best standing offer, it can undercut the best standing offer slightly

(in fact the host need not know all other offers, it could just undercut the

current offers). Of course, in some circumstances letting hosts undercut

each other might be considered a desirable feature.

3. A malicious host learns the maximum price a user is prepared to pay and

bids just under this.

In a similar fashion the host may charge more than its normal price, if it

knows the maximum price the user is prepared to pay. Thus a host must

be kept from learning the maximum price a user is prepared to pay, either

by encrypting this information or by not sending this information with

the agent.

4. A malicious host manipulates the requirements.

This is when the host changes the requirements to favour its bid. For

example, it could add a requirement to buy from a certain host, or remove

constraints from the agent.

5. A malicious host alters the agent’s route.

Here, the host keeps the agent away from its competitors, and thus secures

the agent’s trade. One way to prevent this is to use more than one agent

(possibly an agent per host), send each agent on a different route and

combine the offers on the agent’s return. Another way is to use one agent

with a ‘star’ like route – it returns home after visiting each host before

being sent out to a different host.

6. A malicious host commits to purchases that the user does not wish to

make.

141

9. Mobile agent based transactions

This happens when a host can abuse the committal function that an agent

has. A method to discourage this is to force the host to sign a transaction,

as well as the user (thus providing traceability).

7. A malicious host denies the agent a service.

Here a host would stop an agent from moving further on its route. This of

course could be traced if an agent reports back when it arrives at a host.

8. A malicious host captures electronic money.

Here a host would remove the electronic money that an agent may have

to purchase an item and either steals the money outright, or uses it for a

different purchase.

We do not consider the payment process here, as we are concerned only with

the part of a transaction involved in selecting a merchant and committing to

the transaction.

9.3 Models of agent platforms

Mobile agents roam between platforms. However, they can also communicate

with each other, and with other hosts. This leads to the question as to the best

“platform model” to use for trading (or indeed any other) agents. There are

clearly two basic approaches which we now describe.

The first approach (see Figure 9.1) is to have a designated platform (or a col-

lection of such platforms) to which we can send an agent to execute. This agent

then communicates with merchant hosts to seek information and commit to

purchases.

142

9. Mobile agent based transactions

Merchant

User

Agent

Platform

Agent

Merchant
Merchant

Figure 9.1: A model for agent platforms

The second model (see Figure 9.2) is to have an agent roam to each merchant

host in turn and collect the information it requires. After collecting all the

information the agent can then either return to the user to make the purchase,

return to the chosen merchant to make the purchase or make the purchase from

the final host.

Merchant

Platform

P
1

Merchant

Platform

P
2

Merchant

Platform

P
n

User

Agent

migration

Figure 9.2: A second model for agent platforms

In a mobile telecommunications environment it may also be beneficial to have a

third model. This is where the requirements for a purchase are communicated to

a ‘home platform’ (the user’s home PC or a network operator controlled device)

which then forms the agent and conforms to one of the above models.

In the above, any of the platforms may be malicious, with the possible exception

143

9. Mobile agent based transactions

of the home platform. The solutions proposed below can be made to fit into

any of the above situations, although they both fit better into the first model.

The security risks associated with the above two models clearly differ. In the

first case, the ‘designated platform’ might be trusted to keep secret certain

agent information. An example of where this might be useful is when the agent

contains details of the user ‘expected’ price (or maximum price), which it would

be helpful not to reveal to the merchant. Of course, the threat then arises that

one of the designated platforms will collude with one or more of the merchants.

In the second case, it is clearly impossible to try and keep any information in

the agent secret from the merchants. In both cases, however, as we will show

in the remainder of this chapter, there are potential benefits to be gained from

the use of multiple agents, albeit not from the confidentiality perspective.

9.4 Model for a trading agent

We consider the information that an agent wishing to trade must know. Firstly,

when initiating a purchase, a user will have a set of requirements (for instance

the item to be purchased, the maximum price for that item, a time limit within

which the purchase to be made). We will assume that a user encodes these

requirements into a string R which is understood by all parties. When a host

quotes for a given purchase, it will also produce a similar string with its offer.

The agent, if it is to perform the purchase on behalf of the user, must also

carry a function which will commit to the trade. This could be performed by,

for instance, signing the details of the trade. One scheme to allow an agent to

perform a signature operation on behalf of a user without revealing the user’s

144

9. Mobile agent based transactions

private key to a host is the undetachable signature scheme proposed in [81] (see

also section 11.2). In this scheme, using RSA, an agent carries both the hash

value, h, of the requirements and the signed hash value, hd mod n, where (d, n)

is the user’s private RSA key. To commit to a transaction for the user the agent

calculates

(hd)x = hxd = (hx)d mod n

effectively signing hx where x is the host’s offer. An alternative to this, where the

agent carries its own private key which the user certifies, was given in chapter 8.

Thus we assume that a trading agent will carry the following information:

• User Identifier – U

• Requirements for purchase – R

• A committal function – C. The committal function is used by the agent

to commit to a transaction on the user’s behalf. C could be a signature

function using a special private key provided to the agent by the user

(as in chapter 8), or, C could be a function of the type described above,

derived from the user’s own private signature key. In any event, we assume

that the function is designed so that only transactions within constraints

defined by the user can be authorised.

Note that, if a single ‘trading agent’ is deployed there are a number of problems

which might arise. Firstly, although the committal function will typically be

limited to transactions conforming to user-defined parameters, there is still the

possibility that the agent platform will force the agent to commit to a transaction

which is less than optimal. It may also commit to more than one transaction,

even if the user only intended to make at most one purchase.

145

9. Mobile agent based transactions

One way to reduce this threat is to deploy multiple agents, a subset of which

must agree to the transaction before it can be authorised. Such an approach is

the focus of the remainder of this chapter.

9.5 Threshold scheme

One means of addressing the malicious host problem is to use multiple agents

each of which has a ‘vote’. If one of the possible transactions receives enough

votes, then a transaction will be authorised with the relevant merchant. We

begin by outlining the scheme, and then consider the details of what a secure

vote can consist. We assume use of a (k, n) scheme – i.e. a merchant will need

k votes out of a possible n to ‘win’.

9.5.1 The scheme

Let P = {P1, P2, . . . , Pn} be a set of agent platforms. The user then sets up

a (k, n) voting scheme with shares v1, v2, . . . , vn. Clearly k should exceed the

number of ‘suspected’ malicious hosts. Given no information about the system

a sensible value would probably be n/2 + 1. The value of k reflects the level of

trust in the system.

The user then forms n agents Ai (1 ≤ i ≤ n) containing the following informa-

tion

• User Identifier – U

• Requirements for purchase – R

146

9. Mobile agent based transactions

• A vote – vi

Each agent is then dispatched to its agent platform. At the platform there are

two modes of execution:

1. The agent contacts each merchant itself, and gathers bids that meet the

requirements.

2. The agent contacts a subset of the merchants and communicates the best

bid to its peers.

We note that for case 2, if an agent is contacting a number of merchants, and

these merchants are only contacted by one agent, a successful attack can be

achieved by compromising less than k hosts.

When each agent has received all the information about each bid, the agent sends

its vote to the merchant with the best offer. On receipt of the correct number

of votes, the merchant or a nominated third party can construct (and verify)

the authorisation for the bid from the votes. The merchant or nominated third

party can then use this as evidence that the user has committed to transaction.

We now consider the security of the above scheme. The major advantage of the

scheme is the need to corrupt either n− k + 1 agents to prevent the transaction

or k hosts to divert or alter the transaction. Thus the choice of k is crucial.

This also means that a denial of service attack is harder as a host or set of

colluding hosts will need to terminate (or prevent from communicating their

vote) n − k + 1 agents. Again to force a purchase, a host or hosts must force k

agents to offer their vote.

147

9. Mobile agent based transactions

If an agent visits a subset of the hosts involved, the information could then be

used to help identify any malicious hosts.

9.5.2 The votes

As mentioned above, the votes can be assembled by either the selected merchant

or a nominated third party. Note that there are clear risks associated with giving

votes to the merchant, since the merchant could now possibly commit the user

to a transaction of the merchant’s choice (within any constraints imposed by the

string R). That is, the merchant is not forced to commit to the transaction as

offered to the agents. Hence the use of a nominated third party to reconstruct

the votes is the preferred approach. The possibility that this may not be feasible

in practice leads to an alternative approach.

One approach is threshold cryptography as discussed in section 6.3.2. Recently

Shoup [103] proposed an RSA based scheme which is as efficient as possible;

the scheme uses only one level of secret sharing, each server sends a single part

signature to a combiner and must do work that is equivalent, up to a constant

factor, to computing a single RSA signature. Although not perfect as a threshold

signature scheme (as it relies on a trusted party to form the shares) this scheme

is ideal in our setting. (Note that an alternative scheme without a trusted dealer

is given in [32]. This scheme also improves on Shoup’s scheme by not relying on

an RSA modulus made up of ‘safe primes’). An example of an ElGamal based

scheme is given in [82]. We note that an (n, n) threshold signature scheme is

just a multisignature; such schemes have been studied for many years — see,

for example, page 488 of [87].

148

9. Mobile agent based transactions

We note, however, that such a threshold signature scheme does not provide a

means for the shares to incorporate an encoding of the string R. Thus, if there

were k colluding hosts they could sign (and reconstruct a signature) for any

document. One solution to this problem, analogous to the solution described

in chapter 8, is for the user to generate a special signature key pair for the

particular purchase (i.e. for this particular set of agents), and then to generate

a certificate for the public key incorporating a copy of R. When the signature is

reconstructed from the signature shares, it can be verified using this certificate.

An alternative approach is to merge the undetachable signature scheme given

in [81] with the threshold signature scheme of Shoup [103], and details of this

are given in chapter 11.

9.6 Using one trusted host

We consider a second solution to the problem, which employs a single trusted

host. We note that the solution described below involves a user sending out

agent(s) to individual merchant platforms, whereas it could just communicate

with them to ask for their bids. However, in a wireless communications setting

where communication is expensive, slow, and/or unreliable, it is believed to be

beneficial to be able to dispatch an agent into the fixed network. When the

agent has finished its task it contacts the user or waits for the user to collect

the result.

Let P = {P1, P2, . . . , Pn} be a collection of platforms offering a service that a

user wishes to purchase. Let T be a host that the user trusts to act honestly

in this transaction. (Note that we do not need to trust this host fully – it just

needs to be neutral in this transaction). Before the transaction commences we

149

9. Mobile agent based transactions

assume that each platform Pi securely establishes a shared secret key Ki with

T . Optionally, a key for message integrity checks could also be established.

The user dispatches an agent A to the trusted host T containing the information

outlined in section 9.4. We note that the committal function C may be of any

form with which the user is prepared to trust the host T . However, to reduce

the trust requirements we envisage that this will be an undetachable signature

scheme, e.g. the one described by Kotzanikolaou [81], or the scheme given in

chapter 8.

There are now several approaches for T . The first is to form a single subagent

containing the following information:

• agent identifier – I,

• requirements for purchase – R,

• host identifier – T ,

which would then visit each of the platforms in P in turn. We note that the

requirements sent out do not need to include pricing information (that is the

maximum price the user is prepared to pay) or any other information that

the user wishes to be used to help make the decision, but does not wish to

communicate to the platform. Another approach is to form a single agent for

each platform. A third approach has the above agent visiting a subset P ′ ⊂ P

of the above platforms. Whichever strategy is employed, at each host the agent

performs the following actions:

1. Find out the platform’s bid Bi for the item specified in the requirements

150

9. Mobile agent based transactions

R.

2. Encrypts the concatenation of Bi, R, Pi and I using the key Ki. At this

point the host could also, optionally, attach a MAC (Message Authentica-

tion Code) to protect the integrity of the host’s bid. Label the encrypted

string Ei.

3. The agent then stores the pair (Pi, Ei).

The agent returns to T when it has finished visiting all of its platforms. The

agent on T then decides the best offer and commits to it using the committal

function.

We note some of the features of the above scheme.

• Using an agent per host alleviates the need to encrypt anything, assuming

that agents are always transferred between hosts in encrypted form.

• Using a single agent leaves the scheme open to some attacks.

• Using more than one agent that does not visit all the hosts could be used

to (help) identify a malicious host.

If we use a single agent and it visits all the hosts, or we have an agent that visits

more than one host, the agent is subject to the following attacks:

• An approach to enable a malicious host to underbid its competitors is as

follows. The host forms a new agent containing the user’s requirements, a

fictitious user identifier, and its own host identifier. This agent would then

traverse the route of the user’s agent, and discover the bids offered for that

151

9. Mobile agent based transactions

set of requirements. The host could then underbid its competitors, but

the user’s agent would need to have been kept on the malicious host in

the interim period. Thus monitoring the progress of an agent could help

determine if such an attack was being used.

• A simple denial of service attack: stop the agent in its tracks. This attack

is hard to defeat if there is no progress monitoring of the agent’s movement.

• A malicious host could alter the pair (Pi, Ei) to read (Pj , junk) (where

junk is a random string of the correct length) to stop the decryption of

a bid. However as the host cannot read the bid, for this to be successful

(i.e. to delete those bids more attractive than those of the malicious host)

the host would have to have knowledge of all the bids, which it would have

to gather itself (possibly by cloning the agent).

If multiple agents are deployed, each agent visiting a subset of the hosts, and

each host is visited by several agents. It is possible to identify a misbehaving

host, assuming that enough agents are used. This also requires careful choice

of agent destinations and routing.

Note that to force T to purchase from a malicious host, the host has to lie and

then be unscrupulous, or just lie and possibly not profit as much as it would

expect. That is if the malicious host M wants to force a user to trade with

it, then it must have the best price. So it must either charge more than its

advertised price (possibly breaking the committal function) or make less profit

than it expects (because the price advertised is less than the host should sell

for).

We now consider the extent to which the user must trust the host T . The user

152

9. Mobile agent based transactions

must trust that T does not favour a particular platform for this transaction.

However, with a sufficiently good committal function then this is the only trust

requirement. For example using the Kotzanikolaou et al. undetachable signa-

ture scheme [81], as a committal function, T can be given the means to commit

to the transaction without being trusted with a copy of the user’s private sig-

nature key. This may be a situation where using an undetachable signature

scheme has advantages over the creation of a separate signature key for each

agent.

9.7 Conclusions

We have considered two different ways in which the deployment of multiple

agents can reduce the threat to mobile trading agents from potentially malicious

agent platforms. In the first approach multiple agents are equipped with ‘shares’

of the means to commit to a transaction. A method implementing this idea

using a threshold signature scheme, e.g. the recently proposed scheme of Shoup,

[103], was outlined. In the second approach a single trusted host is employed

to collect information from multiple agents on possible transactions. This host

then chooses the optimal transaction and commits to it.

The two approaches each have their own advantages. The first approach avoids

the need for a single trusted host. However, implementing the first approach

requires use of some potentially complex cryptographic signature functions. The

second approach is potentially less complex from a cryptographic perspective,

but does require a host which, if not completely trusted, is at least required

to act neutrally with respect to the set of merchants. Both approaches are of

potential practical importance in future mobile computing environments.

153

Chapter 10

A pragmatic alternative to

threshold signatures

Contents

10.1 Introduction . 155

10.2 Mobile agents and threshold signatures 155

10.3 An alternative based on conventional signatures . 157

10.3.1 Preparing the agents 157

10.3.2 Executing an agent 158

10.3.3 Remarks on implementation 159

10.3.4 A brief comparison 160

10.4 Conclusions . 163

This chapter presents some rather simple alternatives to threshold signatures

which raise questions about the value of such schemes, at least when applied to

the mobile agent scenario.

154

10. A pragmatic alternative to threshold signatures

10.1 Introduction

As discussed in section 6.3.2, threshold signature schemes enable a group of n

entities to be given ‘shares’ of a private signature key in such a way that, for

some parameter k (1 ≤ k ≤ n), any subset of k entities can collectively create

a valid signature on a message, whereas any collection of k − 1 or fewer entities

cannot. Schemes of this type have been discussed widely in the literature, and a

number of systems have been proposed; see for example [103] for a brief survey.

Again, as discussed in section 6.3.2, one particularly attractive scheme has been

recently proposed by Shoup, [103]. This scheme is based on RSA, and the

composite signature can be verified in exactly the same way as a ‘regular’ RSA

signature. In the discussion below we use this scheme as a ‘benchmark’ against

which alternatives can be compared. Some of the work described in this chapter

has been previously published in [16].

Section 10.2 motivates the use of threshold signatures for mobile agents. Sec-

tion 10.3 describes the alternative approach, relying on conventional cryptogra-

phy. Section 10.4 gives the conclusions of this chapter.

10.2 Mobile agents and threshold signatures

As pointed out in section 2.3.5, there are limits to the protection that can be

offered to an agent. An agent platform can potentially modify the agent code,

and/or interfere with the data stored by an agent. Hence efforts to protect

agents reduce to either finding ways to enhance the level of trust that can be

placed in results produced by an agent, or limiting the powers given to an agent.

155

10. A pragmatic alternative to threshold signatures

This chapter focuses on the former approach — in particular it considers the

issue of dividing a task amongst multiple agents to increase the level of trust in

the collective results of the agents.

In particular we are concerned with giving all subsets of agents of size k or more

the power to sign on a user’s behalf, without giving smaller groups of agents such

a capability. We suppose that the agents are set up to agree to a transaction,

the details of which the agents are to determine. As discussed in section 9.5

this might typically occur by giving the agents the power to visit a number of

merchants, and find out which merchant is offering a particular good or service

at the lowest price. Some of the agents may be modified by a malicious host,

but we assume that this occurs to at most k − 1 of them.

As discussed in more detail in chapter 9, this seems to be a natural application

for the notion of threshold signatures. The user launching the agents acts as

the ‘dealer’ in the threshold signature scheme, and creates the shares of the

signature key. Each agent is equipped with a share, and when a transaction is

to be signed creates a signature share. A third party (e.g. the merchant making

the transaction) receives the signature shares and uses them to construct a valid

signature. This distribution of trust across a multiplicity of agents reduces

the threat from small numbers of malicious hosts, who might be capable of

manipulating agent computations. Finally, note that this problem also relates

to the well-known concept of a multisignature which, for our purpose as least,

can be regarded as a special type of threshold signature for the case of k = n.

156

10. A pragmatic alternative to threshold signatures

10.3 An alternative based on conventional sig-

natures

We now consider an alternative solution to this trust distribution problem. Un-

like the use of threshold signatures, this solution is wholly based on conventional

cryptographic primitives, and hence may be more likely to succeed in practice.

It is also quite general in its specification, allowing the use of any digital signa-

ture scheme.

Note that it is implicit to the solution described immediately below, and also to

the solutions using threshold signatures, that the agents are transferred by the

user U to the hosts on which they are to execute by some secure means. This

secure transfer should enable the receiving host to check its integrity and origin,

and also should protect the confidentiality of all the sensitive parts of the agent

(most crucially including any embedded secret or private keys).

10.3.1 Preparing the agents

Before sending the agents, (which we label A1, A2, . . . , An) user U performs the

following steps. Note that we assume that U has a signature key pair of its own,

(SU , PU) say, and a certificate CertU for its own public key, PU , signed by a

Certification Authority (CA).

1. U generates a signature key pair (Si, Pi) specifically for use by agent Ai.

2. U creates a public key certificate Certi for agent Ai’s public key (Pi),

signed using U ’s own signature key (SU). This certificate also contains

policy information which indicates precisely the purpose of the certificate,

157

10. A pragmatic alternative to threshold signatures

and also the parameter k, indicating the ‘threshold value’ (as above). It is

also likely that this certificate will have a very short lifetime, i.e. it would

have an expiry date very close to the time of issue.

3. U now equips agent Ai with the private signature key Si, and copies of

the two certificates Certi and CertU .

4. Ai is now securely transferred to one or more agent platforms.

10.3.2 Executing an agent

Now suppose that some subset of k agents decide that they wish to collectively

sign a message (e.g. to commit to a transaction with a merchant) on behalf of

user U . Each agent Ai signs the message using its own private key Si, and

the signature is then transferred with the two certificates Certi and CertU to

the entity requiring the signature, e.g. a merchant. The recipient of the agent

signatures, M say, then performs the following steps for each received agent

signature.

1. The user’s certificate Certi is verified by M using a trusted copy of the

CA’s public key. If M does not have this CA’s public key, then it will need

to be derived by some means, e.g. using a certificate chain. The agent then

checks that it is prepared to accept a signature from U , and also checks

that the name in the certificate is consistent with the user name received

from the agent.

Note that this step will only need to be performed once for the k agent

signatures.

2. The agent’s certificate Certi is verified by M using the copy of U ’s public

158

10. A pragmatic alternative to threshold signatures

key obtained in the first step.

3. M finally checks the agent’s signature using the copy of Ai’s public key

obtained from Certi.

The merchant waits until k valid agent signatures have been received (recall that

k was encoded in each agent certificate). The collection of k agent signatures

is then deemed to be equivalent to the signature of the user, and the merchant

proceeds with the transaction. The collection of k agent signatures (with the

accompanying certificates) are retained as evidence of the transaction.

10.3.3 Remarks on implementation

Before attempting to compare this new scheme with the use of threshold signa-

tures we make some remarks about the implementation of the scheme.

• Given that the agent key pairs have only a short lifetime, it may be possible

to use relatively short keys. That is, if the signature scheme is RSA based,

a short modulus could be used, say of 512 bits, in the knowledge that

factoring the modulus and hence breaking the key would be infeasible

during the key’s lifetime. This would make key generation faster and

would reduce the amount of key information to be transferred. It would

also mean that creating and verifying agent signatures could be made

significantly more efficient.

• If a ‘weak’ key pair was used for an agent key, or, more generally, if the cer-

tificate for an agent key pair has a very short period of validity, problems

might arise if the agent’s signature is required to have long term validity,

159

10. A pragmatic alternative to threshold signatures

e.g. to provide a non-repudiation service in the event of a dispute. The

‘standard’ way of resolving this problem is to use a timestamping service

to sign a concatenation of the signature and a timestamp, providing evi-

dence that the signature was generated during the key’s period of validity.

An alternative to using a trusted timestamping service would be to simply

require the agent host to add a timestamp and its signature to any sig-

natures output by the agent. Not only would this provide evidence about

when the agent signed the message, but it would also enable the merchant

receiving of the signature to verify on which host the agent was running.

This would appear to be a valuable service in its own right.

• The scheme as described does not restrict the nature (e.g. value and/or

type) of messages which the agents can collectively sign. However, a re-

striction could easily be imposed by including the scope of the agent keys

in the respective agent public key certificates, as described in chapter 8.

• This scheme is in some respects analogous to the widely discussed notion

of delegation using special delegation keys – see for example [30] for an

introduction to delegation issues and [109] for one approach to the use of

delegation keys.

10.3.4 A brief comparison

We now attempt to briefly compare the efficiency of the above scheme with the

efficiency achievable using the Shoup threshold signature scheme [103]. For the

purposes of the comparison we suppose that signatures for the scheme in this

chapter are computed using RSA, and we compare this with the Shoup RSA-

based threshold signature scheme [103]. To compare the efficiencies of the two

schemes we compare separately the work to be performed by the user U , each

160

10. A pragmatic alternative to threshold signatures

agent Ai, and the recipient of the agent signatures M .

• User U . For the scheme above, the user will be required to generate one

key pair for each agent Ai, and certify the public keys, i.e. compute n

signatures and generate n key pairs. For the threshold signature scheme

of [103], the user is only required to generate at most one key pair (for

the secret key that is shared by the n agents). However, each agent will

need to be equipped with a public key certificate for its share, so that the

signature share can be verified by the merchant (or whoever combines the

signature shares). Hence the user will be required to generate one key pair

and compute n signatures. Note that, whilst key generation will typically

take much longer than computing a signature, key pairs for the scheme

described in this chapter could not only be made quite small (as discussed

above), but could be generated in advance. Hence, the new scheme, whilst

requiring more computation overall, actually requires comparable amounts

of computation at the time of agent creation.

• Agent Ai. For the new scheme, the agent is required to compute one

signature. For the Shoup scheme, each agent is required to perform one

exponentiation, equivalent to one signature.

• Recipient of agent signatures M . For the new scheme the recipient of

the signed message will be required to verify k + 1 certificates (the user

certificate and the k agent certificates) and k signatures, i.e. a total of 2k+1

signature verifications. For the Shoup scheme it is also necessary to verify

the user’s certificate, as well the k agent certificates and the k signature

shares. Hence the two schemes have roughly comparable computational

efficiencies. Of course, the storage efficiency for the scheme described

above will be rather less than for the Shoup scheme, unless it is necessary

161

10. A pragmatic alternative to threshold signatures

to retain the signature shares for auditing purposes.

In summary it would appear that the scheme of this chapter is really quite

comparable with the Shoup threshold signature scheme, with two exceptions.

Initialising the scheme requires a number of key generations, which, however,

could be done ‘off-line’. The other difference is in the size of storage required

for signatures, which is significantly larger for the new scheme.

However, this advantage of the Shoup scheme disappears if the signature shares

must be kept for auditing purposes. Indeed, this is not such an unlikely scenario,

since, in the event of a dispute, it will be valuable to learn which agents took

part in the signing process. Thus the implementation efficiency differences,

which could be rather minor in practice, could easily be outweighed by the

advantages inherent in using established cryptographic primitives.

Finally observe that one other difference between the approach proposed here

and the use of threshold signatures relates to the issues of anonymity and ac-

countability. In most threshold signature schemes, the verifier of the signature

cannot determine which of the k shareholders created the signature, whereas

with the above approach there is no anonymity for agents. In some circum-

stances the anonymity property may be desirable, but in many agent applica-

tions the reverse is likely to be true. That is, the originator of the agents will

in many cases wish to have the means to determine which agents performed the

action on its behalf.

162

10. A pragmatic alternative to threshold signatures

10.4 Conclusions

A pragmatic alternative to threshold signatures has been proposed. This alter-

native has potential practical advantages by comparison with the use of thresh-

old signatures, and appears to offer a very similar set of security guarantees.

Although the analysis was performed within the context of mobile agents, it is

possible that the scheme described here is competitive with the Shoup threshold

signature scheme in other environments.

163

Chapter 11

Undetachable threshold

signatures

Contents

11.1 Introduction . 165

11.2 RSA undetachable signatures 166

11.3 Threshold signatures 167

11.4 Undetachable threshold signatures 170

11.5 Conclusions . 172

This chapter introduces the concept of undetachable threshold signatures, which

enables constrained signing power to be distributed across multiple agents, thus

reducing the necessary trust in single agent platforms.

164

11. Undetachable threshold signatures

11.1 Introduction

A digital signature is the electronic counterpart to a written signature. Thus one

way to commit to an electronic transaction is by the use of a digital signature.

It would be useful to let mobile agents be able to commit to transactions on a

user’s behalf. Mobile agents, however, face the problem of having to execute in

a hostile environment where the host executing the agent has access to all the

data that an agent has stored (for instance the private signature key).

Undetachable signatures, see section 3.3.10, can be used to limit the information

over which a valid signature can be produced by encoding constraints into a

function f . However, one problem with this approach is that the agent is still

given the power to sign any transaction it likes, subject to the requirement that

the transaction must be consistent with the constraints used to construct f .

Thus, for example, whilst the constraints may limit the nature and/or value of

a transaction, a malicious host may force an agent to commit to a transaction

much less favourable than could be achieved.

Thus, to protect further against malicious hosts, a user may wish to use more

than one agent and have the agents agree on a bid before committing to it.

Hence, a user may send out n agents with the criteria that k of them must agree

before committing to a purchase. The obvious solution to such a requirement

is to employ a threshold signature scheme, meaning that agents can all sign the

bid they think ‘best’ given the user’s requirements, and then, on receipt of a

sufficient number of these bids, the user’s signature can be reconstructed.

However, such a scheme does not possess the means to constrain the power

given to a quorum of agents. This motivates the introduction of the concept of

165

11. Undetachable threshold signatures

an undetachable threshold signature which both distributes signature authority

across multiple agents and simultaneously constrains the signatures that may

be constructed. Some of the work described in this chapter has been previously

published in [15].

The rest of the chapter is organised as follows. In section 11.2 we outline the

undetachable signature scheme of [81], and in section 11.3 we briefly review

threshold signatures and describe the method of Shoup [103] to construct such

a scheme. In section 11.4 we define the concept of an undetachable threshold

signature, and show how an example of such a scheme may be obtained by

combining the schemes of [81] and [103]. Section 11.5 gives the conclusions of

the chapter.

11.2 RSA undetachable signatures

We briefly present the RSA undetachable signature scheme given in [81]. The

user sets up an RSA signature pair in the usual manner, that is the user selects

an RSA modulus n which is the product of two primes p and q, and a number e

such that 1 ≤ e ≤ φ(n) = (p−1)(q−1) and gcd(e, φ(n)) = 1. Let d be such that

1 ≤ d ≤ φ(n) and ed = 1 mod φ(n). The user then publishes the verification

key (n, e) and keeps d as the private signing key.

Let I be an identifier for the user and R the encoded requirements of the user

for a purchase (we assume that R is encoded in a manner which is understood

by all parties). Let h be an appropriate hash function (i.e. one giving a value

in Zn
1). The user then forms H = h(I,R).

1We note that this property of a hash function is non-trivial to achieve efficiently. It is
also non-trivial to obtain a uniform distribution over Zn based on existing constructions that

166

11. Undetachable threshold signatures

The user then gives an agent the user identifier, the requirements, and the pair

(H,G) as its undetachable signature, where G = Hd mod n. To sign a bid B

(which we assume is in the same format as R), the executing host calculates

x = h(B). The undetachable signature is then the pair (Hx, Gx). We note that,

Gx = (Hd)x = Hdx = Hxd = (Hx)d

so that the server has signed the value Hx with the user’s private key.

We briefly note that this scheme appears secure, and an informal proof of this

fact is given in [81]2. To forge a signature on a different set of requirements

R′ a malicious host would need to forge H ′ = h(I,R′), G′ = (H ′)d and (G′)x.

Clearly the main obstacle to the attacker is the need to forge G′, and this would

require knowledge of a user’s private key. Having said this, there is nothing in

this scheme to prevent a host from signing more than one bid, or presenting a

bid that just meets the requirements of the user (as opposed to a possibly better

offer).

11.3 Threshold signatures

As previously described in section 6.3.2, by using threshold signatures we can

distribute trust amongst a number of agents, rather than relying on the correct

execution of a single agent. Recently Shoup [103] proposed an RSA based

threshold signature scheme which is as efficient as possible; the scheme uses

only one level of secret sharing, each server sends a single part signature to a

yield mappings onto the set of n-bit strings. A slow construction of such a hash function is
given in [5].

2The authors of the paper claim that the security of their scheme rests on the difficulty
of forging RSA signatures. A short argument is given in the paper to support this claim. It
appears that this argument can be developed into a more formal security proof relating the
security of their scheme to that of the underlying RSA signature scheme in the random oracle
model.

167

11. Undetachable threshold signatures

combiner, and must do work that is equivalent, up to a small constant factor,

to computing a single RSA signature.

Although in some sense not perfect as a threshold signature scheme (as it relies

on a trusted party to form the shares) this scheme is ideal in our setting, where

the user dispatching the agent will always (one would hope) trust themselves.

(Note that an alternative scheme without a trusted dealer is given in [32]. This

scheme also improves on [103] by not relying on an RSA modulus made up of

‘safe primes’). An example of an ElGamal based scheme is given in [82].

We next briefly outline the threshold signature scheme of [103].

The user (dealer) forms the following:

• An RSA modulus n = pq where p = 2p′ + 1 and q = 2q′ + 1 are safe

primes, i.e. p′, q′ are prime.

• A public exponent e, where e is prime, and a private key d, where de ≡ 1

(mod p′q′).

• A polynomial f(x) =
∑k−1

i=0 aix
i where a0 = d and ai ∈ {0, 1, . . . , p′q′−1}

(selected at random) for 1 ≤ i ≤ k.

• L(n), the bit length of n, and L1, a secondary security parameter — Shoup

[103] suggests L1 = 128.

• The l signature key shares of the scheme si, where each si is selected at

random from the set {s|0 ≤ s ≤ 2L(n)+L1 , s ≡ f(i) mod (p′q′)}.

• The verification keys VK = v and VKi = vsi where v ∈ Qn, the subgroup

of squares of Z
∗
n.

168

11. Undetachable threshold signatures

• A global hash function h mapping into Z
∗
n.

• A second hash function g whose output is an L1-bit integer.

In this scheme a shareholder signs a message m in the following manner. Firstly

the shareholder calculates the hash of the message, i.e. x = h(m). The signature

share of a shareholder i then consists of

xi = x2∆si

and a ‘proof of correctness’ (note that ∆ = l!). The proof of correctness is

basically just a proof that the discrete logarithm of x2
i to the base x4∆ is the

same as the discrete logarithm of vi to the base v. Let L(n) be the bit length of

n. The shareholder then chooses a random number r ∈ {0, . . . , 2L(n)+3L1 − 1}

and computes

v′ = vr, x′ = x4∆r, c = g(v, x4∆, vi, v
′, x′), z = sic + r.

The proof of correctness is then (z, c) which can be verified by calculating

c = g(v, x4∆, vi, x
2
i , v

zv−c
i , x4∆zx−2c

i).

To combine the shares the combiner acts as follows. Assume we have valid

shares from a set S = {i1, i2, . . . , ik} of shareholders. The combiner computes

λS
0,j = ∆

∏

i∈S\{j}

i

(i − j)
.

These values are derived from the standard Lagrange interpolation formula.

These values are integers and it is clear that they are easy to compute. We also

have, from the Lagrange interpolation formula that,

∆ · f(0) =
∑

j∈S

λS
0,jf(j) mod (p′q′).

169

11. Undetachable threshold signatures

In other words we have,

d · ∆ =
∑

j∈S

λS
0,jsj

The combiner then computes,

w = x
2λS

0,i1

i1
· · ·x

2λS
0,ik

ik

= x4∆2
∑

j∈S(sjλS
0,j)

= x4∆5d.

To check this signature we note that we = x4∆5

where gcd(e, 4∆5) = 1. As e

is coprime to 4∆5 we can find a, b such that a(4∆5) + be = 1 so that we finally

have the signature

ye = (waxb)e = x.

11.4 Undetachable threshold signatures

We now introduce the notion of an undetachable threshold signature. Suppose

a user has a private signature key s and a public verification key v. Suppose

also that the user has a ‘constraint string’ R, which will define what types of

signature can be created. Then an undetachable threshold signature scheme

will enable the user to provide n entities with ‘shares’ of the private signature

key (where the shares will be a function of R), where the following properties

must be satisfied:

• Each entity can use their share to sign a message m of their choice to

obtain a ‘signature share’.

• The ‘correctness’ of a signature share can be verified independently of any

other signature shares.

170

11. Undetachable threshold signatures

• Any entity, when equipped with k different signature shares for the same

message m, can construct a signature on the message m which will be

verifiable by any party with a trusted copy of the public key of the user,

and which will also enable the string R to be verified.

• Knowledge of less than k different signature shares for the same message

m cannot be used to construct a valid signature on the message m.

• Knowledge of any number of signature shares (up to a bound polynomial in

the key length3) for messages other than m will not enable the construction

of a valid signature on message m.

• Knowledge of any number of different signature shares for constraints

strings other than R will not enable the construction of a valid signature

with associated constraint string R.

As discussed above, the motivation for introducing this concept is that the use

of a threshold signature scheme or a detachable signature scheme on its own

would not protect against all possible attacks in a mobile agent scenario. We

now describe an example of such a scheme. For brevity, we only give the neces-

sary changes to the threshold scheme in section 11.3 to form the undetachable

threshold signature scheme.

Recall that the secret share for shareholder i consists of a number si. Let h

be an appropriate hash function. The signature share of this shareholder for a

message m is then

xi = x2·∆·si .

3The bound is necessary to make the scheme realisable. Without such a bound, attacks
such as those of Desmedt and Odlyzko [34] will apply. The exact nature of the bound will
depend on the details of the scheme.

171

11. Undetachable threshold signatures

where l is the total number of shares, ∆ = l! and x = h(m) is a hash of the

message.

As in section 11.2 let I be the identifier of a user and let R be the user require-

ments. Let H = h(I,R) be a hash of the requirements. We replace the share

si with a pair (H, ti = H2·∆·si). To sign a bid B the shareholder calculates

C = h(B) and

tCi = (H2·∆·si)C = H2·∆·siC = (HC)2·∆·si .

Thus, when all the shares are combined the combiner will have a signed copy of

HC , thus achieving a signed undetachable signature.

We observe that a proof of security is given for the scheme in section 11.3

provided that k is one greater than the number of corrupt servers (in the case

where k exceeds the number of corrupt servers by a greater number a slightly

adapted scheme is used). With this information to hand we note that this

scheme is secure as long as the undetachable scheme given in [81] is secure, and

that this scheme appears to be sound.

11.5 Conclusions

By combining threshold signatures and undetachable signatures, the concept

of undetachable threshold signatures was introduced. Undetachable threshold

signatures enable constrained signing power to be distributed across multiple

agents, thus reducing the necessary trust in single agent platforms even further,

compared to only using threshold signatures or undetachable signatures.

172

Chapter 12

Certificate translation

Contents

12.1 Introduction . 174

12.2 General concept . 175

12.3 Security considerations 176

12.3.1 Certificate content assurance 177

12.3.2 Revocation . 177

12.3.3 Liability . 178

12.4 Applications for certificate translation 179

12.4.1 Translating between incompatible certificate types . 179

12.4.2 Translating incompatible certificate fields 179

12.4.3 Delegating path validation 180

12.4.4 Centralised trust and policy management 180

12.5 Scenarios . 181

12.5.1 WAP . 181

12.5.2 MExE . 183

12.6 Extension to SCVP 185

12.7 Outline of a certificate translation protocol 186

12.7.1 Request . 187

12.7.2 Response . 190

12.8 Conclusions . 191

In this chapter the concept of certificate translation is defined and examples of

its applications are proposed.

173

12. Certificate translation

12.1 Introduction

As we have argued in chapters 5 and 6, asymmetric cryptography and a Public

Key Infrastructure (PKI) can be used to achieve secure agent communication.

Digital certificates have a central role in any PKI. The traditional way to enable

communication between entities in different PKIs is to utilise cross certification

where a Certification Authority (CA) issues a certificate for a CA in another

PKI. However, such certificates may not exist or may not be directly useable

for various reasons.

Certificates used in different PKI implementations tend to have different struc-

tures and different information stored in them. This can make communication

between entities of different PKIs tedious or even impossible. Although many

PKIs make use of standard formats for certificates such as X.509 [76], this can

still create problems since, as in the case of X.509, the standard supports ex-

tension fields that are not defined within the standard.

If agents are deployed to represent users, they are likely to encounter applica-

tions and circumstances requiring various formats of digital certificates. Since

many agents would reside on mobile devices with limited memory and pro-

cessing resources, the number of private keys and digital certificates carried by

the agents should be kept to a minimum. In these circumstances the concept

presented in this chapter, certificate translation, is likely to be useful. Other

applications where certificate translation can be used include WTLS [113] and

MExE [1], which are both examples of applications using public key certificates

designed for a wireless mobile environment. Some of the work described in this

chapter has been previously published in [12].

174

12. Certificate translation

The rest of this chapter has the following structure. In section 12.2 we de-

fine and describe the concept of certificate translation. Section 12.3 describes

security considerations that are introduced with translated certificates. In sec-

tion 12.4 we describe some possible applications for certificate translation. In

section 12.5 we describe how certificate translation can be used for WAP and

MExE. Section 12.6 proposes certificate translation as an extension to SCVP.

Section 12.7 outline a protocol for certificate translation. Section 12.8 gives the

conclusions of the chapter.

12.2 General concept

By electronically signing a public key along with an entity identifier and possibly

various other attributes, a certification authority provides assurance regarding

the relationship between the public key and the included attributes. If any

of these attributes are changed a new CA signature must be applied to the

certificate.

In certain circumstances, such as where a certificate carries an incompatible

certificate field or is of an incompatible type from that which the end user

understands, it would be useful to make changes to existing certificates. Such

changes can be achieved using certificate translation, a concept that forms the

main focus of this chapter. We now define the terms underlying this translation

concept. A translated certificate is a certificate to which changes have been

made since it was originally issued. Changes to a certificate’s content as well

as to its format (e.g. structure, coding) may have been made. The value of the

public key is the only certificate field that may not be altered. A certificate

translation service is able to accept a certificate and create a new (translated)

175

12. Certificate translation

certificate with a modified structure and/or content. A certificate translation

server (CTS) is a server that offers a certificate translation service to clients. A

certificate translation server would have to be trusted by its clients, the entities

using the service, just like any traditional CA has to be trusted by its users.

If the CA who signed the original certificate is ‘accessible’ (and willing) it can

issue a new certificate including the public key of the original certificate and any

other attributes that apply. On other occasions the CA who issued the original

certificate will not be available or able to issue a certain certificate. On such

occasions a CA acting as a CTS, who is able to verify the original certificate,

could issue a new certificate including the public key from the original certificate.

Another application of certificate translation is to translate a chain of certifi-

cates into a single certificate. This can in particular be useful in environments

where the CPU, memory, or bandwidth resources of the certificate recipient are

constrained, and can also be used to centralise trust and policy management in

a domain.

12.3 Security considerations

In this section security considerations that are introduced by translated certifi-

cates are described. Certificate content assurance (section 12.3.1), certificate

revocation (section 12.3.2), and liability (section 12.3.3) are all issues that need

to be considered.

176

12. Certificate translation

12.3.1 Certificate content assurance

A certificate translation service will in practice act as a CA. A CA usually

takes certain measures to ensure that the information it puts into a certificate

is correct. This typically includes measures to ensure that a claimed identity

actually belongs to the claimant and that an entity that supplies a public key to

be included in a certificate is also in possession of the corresponding private key.

The effort a CA puts into ensuring the correctness of this information is usually

defined either implicitly or explicitly in a certification practice statement. A

certificate translation service would have to rely on measures taken by other CAs

for the purposes of verifying identity and validating public keys. The signature

on the certificate that is to be translated, as well as any intermediate certificates

required to form a certificate chain to a trusted root, have to be validated. A

certificate translation service would have to publish its own certification practice

statement specifying under what circumstances a translated certificate will be

produced.

12.3.2 Revocation

By translating a certificate the translator is in practice issuing a new certificate

and therefore acting as a CA. If the original certificate is revoked the translated

certificate should also be revoked. In certain environments and applications this

problem can be tackled through giving translated certificates a minimal validity

period. Where this is not possible, revocation must be dealt with in a proper

way, just as in any other PKI.

If clients are going to be able to validate the status of the original certificate

177

12. Certificate translation

even when only in possession of the translated version, enough information must

be provided in the translated certificate (or along with it) to validate it against

certificate revocation lists, or any other means used to advertise revocations

for certificates issued by the original CA. In the case where X.509 v3 [76] is

used in the translated certificate and the original certificate conforms to X.509

v1, v2, or v3, the issuer name and certificate serial number can be stored in

an extension of the translated certificate, in order to allow traceability of the

original certificate.

12.3.3 Liability

A certification authority may place limitations on the use of its certificates, in

order to control the risk that it assumes as a result of issuing certificates. For

instance, it may restrict the community of certificate users, the purpose for

which they may use its certificates, and/or the type and extent of damages that

it is prepared to make good in the event of a failure on its part, or that of its

end-entities. These matters can be defined in a certificate policy.

It is most likely that by translating a certificate any liabilities undertaken by

the original CA will no longer apply. For certain applications, or where the

certificate policy refers to the public key rather than to the certificate as such,

liabilities undertaken by the CA originally issuing a certificate might still apply.

If the translating service is prepared to do so, it can issue translated certificates

under similar policies as the original certificate was issued; otherwise it can issue

the certificate using a more appropriate policy for the situation.

178

12. Certificate translation

12.4 Applications for certificate translation

In this section we will describe some situations where certificate translation can

be used.

12.4.1 Translating between incompatible certificate types

Many types of certificate exist today. A few examples are: X.509 [76], X9.68 [2],

Open-PGP certificates [22], SPKI certificates [37], EMV certificates [38], and

WTLS certificates [113]. Applications designed to use one type of certificate

usually do not work very well with a different type of certificate. In some cases

certificates are very application-oriented and using a different type of certificate

does not make any sense. For other applications different types of certificates

are used for the same purpose, possibly in different domains. Under such cir-

cumstances translation of certificates from one format into another would allow

entities using different types of certificates to communicate using the advantages

of public-key cryptography and digital certificates.

12.4.2 Translating incompatible certificate fields

Although many PKIs make use of standard formats for certificates such as X.509

[76], this can still create problems since, as in the case of X.509, the standard

supports extension fields that are not defined within the standard. Two different

CAs can be issuing certificates carrying extensions with the same purpose but

with different names. It is also possible that different CAs are issuing certificates

carrying extensions with the same name and syntax but with different purposes.

179

12. Certificate translation

This interoperability issue is made significantly more serious if the proprietary

extensions are marked as critical. That is, if indications are made in the certifi-

cate that the verifier is obliged to process these extensions when verifying the

certificate. Otherwise ignoring unrecognised extensions is always an option for

the verifying party.

12.4.3 Delegating path validation

If a client does not have sufficient processing or networking resources to perform

path validation for each certificate it receives, path validation can be delegated

to a certificate translation server. The CTS validates the certificate chain and

issues a new certificate carrying the public key of the last certificate in the chain.

12.4.4 Centralised trust and policy management

For organisations requiring a centrally imposed policy and management func-

tion, it is unacceptable to allow a client to manage its own set of trusted roots,

or the policies that it accepts during path validation. A certificate translation

server can enforce policy decisions while performing path validation. After val-

idating a certificate chain the certificate translation server can, if appropriate,

issue a translated version of the last certificate in the chain, at the same time

imposing restrictions regulated through its policy.

180

12. Certificate translation

12.5 Scenarios

In this section we motivate the use of translated certificates by showing how the

concept can be used within WAP (section 12.5.1) and MeXE (section 12.5.2).

12.5.1 WAP

Need for certificate translation in WAP

WAP (Wireless Application Protocol) [112] is considered here as a possible

application for which certificate translation could prove to be of advantage.

In WTLS (Wireless Transport Layer Security) [113], the security protocol de-

signed for WAP, certificates are used for server authentication as well as for

client authentication when so requested. Digital certificates can also be used

in WAP for key agreement. The WAP specification specifies three supported

formats for certificates and allows additional certificate types to be added in the

future. The currently specified certificate types are X.509v3 [76], X9.68 [2], and

a WTLS certificate, which is a certificate optimised for size.

WAP is intended to be used in a wireless environment by handheld devices

with limited storage, processing resources and transmission bandwidth. Secu-

rity parameters are negotiated during the WTLS handshake. This negotiation

may also require transmission of certificates between server and client and vice

versa. When certificates are known in advance, no certificates need to be trans-

mitted between the two parties. When a certificate is transmitted the sender

indicates the type of certificate that it supplies. However, there is no way for the

receiving party to indicate which type of certificate it prefers or understands.

181

12. Certificate translation

It therefore appears that, in order to be compatible with this version of WTLS,

an implementation must be able to handle all three of the specified certificate

types. A certificate chain can be transmitted along with a certificate. In a cer-

tificate chain, all certificates must use algorithms appropriate for the negotiated

key exchange suite. E.g. if RSA has been selected, all certificates must carry

RSA keys signed using an RSA signature.

Certificate translation in WAP

Certificate translation could be used in WAP in order to minimise the processing

and storage requirements of certificates, as well as to provide compatibility

with types of certificates other than those defined within the current WTLS

specification.

When a WAP client receives a certificate with an unknown type, it can simply

forward it to a server that offers a certificate translation service. The certificate

translation server interprets the certificate, validates it, and rewrites it in a

format that the client has requested, putting its own signature on it. However,

WAP is designed to be used in an environment where large time delays exist,

and it is possible that a connection would time out during the time it takes for

the WAP client to establish a session with a server that offers the translation

service and has the certificate translated. This should not, however, lead to

any serious complications. The client can initiate a new WTLS session and,

during this handshake, indicate that it already has the server certificate. The

corresponding scenario where a WAP server does not understand the client

certificate type would work in the same manner.

Certificate translation could also be used to reduce the computational load on

182

12. Certificate translation

a handheld device with limited CPU resources. Every certificate that needs to

be verified requires some computing resources. Given that a certificate chain

can contain quite a few certificates and that the processing power on some

handheld devices will be very limited it may be desirable to let a CTS do the

computations required. By doing this, resource requirements will be shifted from

CPU resources (on the handheld device) to bandwidth requirements, assuming

that CPU resources at the CTS are not limited. The CTS would, after receiving

a certificate chain, verify the certificates and, if the chain terminates in a root

public key trusted by the CTS, create a new certificate. This new certificate

would, according to our definition, be a translation of the last certificate in the

chain. After receiving the translated certificate the user could store it for future

use, if applicable.

12.5.2 MExE

Need for certificate translation in MExE

MExE is another application where a certificate translation service could be

advantageous.

MExE (Mobile Station Application Execution Environment), as specified by

3GPP, provides a standardised execution environment for mobile stations (typ-

ically a mobile phone with a smart card). MExE specifies three security do-

mains [1]:

- MExE security operator domain (MExE executables authorised by the

HPLMN (Home Public Land Mobile Network) operator, i.e the operator

whose network the user has a subscription to).

183

12. Certificate translation

- MExE security manufacturer domain (MExE executables authorised by

the terminal manufacturer).

- MExE security third party domain (MExE executables authorised by

trusted third parties).

Untrusted MExE executables are not in a specific domain, and have very reduced

privileges. For each domain a root public key is installed in the MS (Mobile

Station). In order for an executable to run, it has to carry a signature that can

be validated using root public keys and digital certificates (certificate chains are

supported). An optional mechanism, involving storing a hash of the executable

along with its expiry date/time in a protected verified application list, is defined

to avoid the need for signature verification each time an executable is run.

The MExE specification [1] mentions WTLS certificates and X.509 certificates

but does not rule out other types of certificates.

Certificate translation in MExE

Just as for WAP, certificate translation can be used in MExE in order to min-

imise the processing and storage requirements for certificates as well as to pro-

vide compatibility with other types of certificates.

Since no certificate type is mandated for MExE it is possible that problems with

incompatible certificate types will arise. Certificate translation can, in a very

similar way as described for WAP, be used to overcome such obstacles.

The problem with recurrent signature validation of previously executed code

184

12. Certificate translation

has been taken care of through the verified application list as mentioned above.

However, multiple applets downloaded and executed from the same site are

likely to share the same certificate chain. A translated certificate can be used to

shorten such a certificate chain in order to preserve CPU and memory resources.

It is likely that an MS aware of multiple instances of signed code from the same

site could do such a verification even more efficiently in terms of CPU resources.

A certificate translation approach, however, could be more general, and would

not require the terminal to store any intermediate states or results, and therefore

would require less memory resources.

12.6 Extension to SCVP

The Simple Certificate Validation Protocol (SCVP) is currently an IETF Inter-

net draft [85]. The protocol allows a client to offload certificate handling to a

server. The server can give a variety of information about a certificate, such

as whether or not a certificate is valid, a chain to a trusted certificate, and so

on. SCVP has many purposes, including simplifying client implementations and

allowing companies to centralise their trust and policy management.

SCVP allows a client to request the status of a certificate. This requires applica-

tions using the SCVP service to be aware of the protocol. Applications designed

before the finalisation of SCVP, or which for some other reason do not support

SCVP, will not be able to make use of the SCVP protocol. If a certificate trans-

lation server were used instead, standalone software able to communicate with

a CTS would be able to interact with existing software without any changes

to the certificate-using software. The certificate-using software would have to

load the CTS public key as a trusted root public key, and certificates signed by

185

12. Certificate translation

the CTS would therefore be verifiable. Such a solution would allow a company

to centralise their trust and policy management, requiring minimal changes to

existing systems.

Another advantage with a certificate translation solution over the current SCVP

protocol is that only a certificate would need to be stored by the client, as

opposed to SCVP where a certificate and associated status information need to

be stored by the client if required for future use.

Since many features of SCVP are potentially useful in a certificate translation

service, certificate translation could be implemented as an extension to, or in

combination with, SCVP.

12.7 Outline of a certificate translation protocol

In this section we will outline a protocol for certificate translation. The protocol

described is a standalone protocol in order to show how certificate translation

can be implemented. As described in section 12.6 the protocol could be in-

corporated into another protocol. However, for environments with restricted

bandwidth, having a dedicated protocol is likely to reduce unnecessary commu-

nication overhead.

This protocol uses a simple request response model. That is, a client creates

a single request and sends it to the server; the server creates a single response

and sends it to the client. The client is assumed to be in possession of a trusted

copy of the CTS public key prior to use of the protocol.

186

12. Certificate translation

Certificate translation is expected to be of particular importance in wireless

environments, where bandwidth is limited, and where clients have restricted

processing and memory resources. Hence, in order to keep the data sent over the

communication path to a minimum, the CTS can keep a database of its clients

and their preferences. This will minimise the information that is sent in every

translation request. The server can, for example, store the preferred certificate

type, client certificate, and possibly certain certificate field information that

might be specific to a client.

12.7.1 Request

A translation request is made up of the following information, of which some

will not always be required:

• client identification,

• original certificate (certificate to be translated),

• original certificate type,

• new certificate type,

• new certificate content,

• certificates for path validation,

• client certificate,

• client signature.

We now consider each of these information types in a little more detail.

187

12. Certificate translation

Client identification

Client identification is used to identify the client requesting translation. Identifi-

cation can be used for things such as accounting, locating the client’s certificate

(if not supplied in the request), or to find the client’s preferences in a database if

such a database exists. In environments where this information is not required,

such as in a protected private network where the translation service is available

to all connected users, and there is no need for the server to keep a user database

of any kind, this information can be omitted.

Original certificate

This is the certificate for which translation is requested. The complete certificate

or a certificate identifier must be supplied as part of a certificate translation

request.

Original certificate type

If known by the client, the type of the certificate that is submitted for translation

is indicated here. Since one purpose of the protocol is to enable clients not aware

of certain types of certificate to have certificates of those types translated into a

known type, it must be assumed that the client is not always aware of the type

of the certificate that is submitted for translation. The translation server should

therefore be able to analyse the supplied certificate and come to a conclusion

regarding the supplied certificate type. In environments where the translation

service will be used for the purpose of translating from certificate types unknown

to the client, the translation server could be configured to know which types of

188

12. Certificate translation

certificates its clients are aware and not aware of, and which types the client is

likely to be requesting translation for. The certificate type field is also, when

applicable, used to indicate the certificate encoding, such as BER [70] or PER

[71], if known by the client.

New certificate type

This field indicates the type of certificate, and encoding if applicable, that the

client expects to receive back from the translation server.

New certificate content

This part allows the client to describe any specific information that needs to

be included in the new certificate. The client can specify the content of any

fields it wishes to have included, or may only indicate which fields are to be

included in the new certificate and let the translation server get the information

from the translated certificate. Another approach would be for the client to

indicate the intended usage for the new certificate. The detailed specification of

this particular section requires further research so as to allow enough flexibility

without requiring too great an overhead.

Certificates for path verification

Many protocols utilising digital certificates let the communicating parties in-

clude a certificate chain when exchanging certificates, in order for the other

party to verify the certification path. If the client receives such a certificate

chain it can forward it to the translation server.

189

12. Certificate translation

Client certificate

When the server is not expected to already possess the requesting client’s public

key, or is not able to retrieve it by other means, the client should also supply

its digital certificate in the request in order to enable the server to verify the

signature.

Client signature

When the translation service need to be restricted to pre-registered clients only,

when the service is being charged for, or when clients need to be held accountable

for their translation requests for other reasons, the client signs the complete

request.

12.7.2 Response

The certificate translation response is sent back to the client in response to

its request. If the requested certificate translation fails the server returns an

error code indicating why the request has not been fulfilled. If the request

is processed successfully, a new translated certificate is returned to the client.

Since the certificate will carry the translation server’s signature, no further

message authentication will be required in many cases. However, on occasions

when the client who requested the translation will not be the end user, it is

possible that the client will not be able to verify the certificate signature, and

another signature would be required in the response to enable the recipient to

verify that the message originates from the certificate translation server and has

not been tampered with.

190

12. Certificate translation

12.8 Conclusions

We have described the concept of certificate translation and how it can be used

in a variety of scenarios. Not only can the concept prove useful to convert cer-

tificates of different types, but it could also be particularly useful in wireless

environments in order to preserve bandwidth, memory, and CPU resources. A

protocol for certificate translation can be implemented as a standalone proto-

col or as an extension to, or in combination with, existing certificate status

management protocols. SCVP is a good example of an existing protocol that

can be extended to incorporate certificate translation. In other environments a

standalone protocol is more appropriate to keep communications overhead to a

minimum.

Agents deployed in a wireless environment are believed to have access to very

limited resources, and are hence prevented from carrying several digital certifi-

cates, and may be exposed to applications requiring different types of certifi-

cates. Certificate translation therefore seems to be well suited for agents in a

wireless environment.

191

Chapter 13

Conclusions

Contents

13.1 Summary and conclusions 193

13.2 Suggestions for future work 197

In this chapter we summarise the main conclusions and original contributions

of this thesis, and give suggestions for future work in the area.

192

13. Conclusions

13.1 Summary and conclusions

This thesis deals with security in multi-agent systems in general, and in partic-

ular as applied to mobile communication.

The security issues existing for open multi-agent systems have been identified.

The security issues are mainly related to agent execution and the fact that, since

agents are autonomous and need to act upon information received from various

entities, the trustworthiness of this information need to be guaranteed by the

system and verified by the agent. Security issues related to agent execution, and

the fact that agents are under the control of a (perhaps untrusted) executing

host, are particularly relevant to mobile agents.

The security issues for non-mobile agents can, at least in theory, to a great

extent be tackled through existing security technology and protocols. However,

issues related to trust and delegation in a large scale multi-agent system are

non-trivial to solve. Although a public key infrastructure is likely to be an

important part of the solution, agents need to be able to reason about, and make

decisions based on, various security parameters. Execution of agents (mobile as

well as non-mobile) on untrusted platforms is another factor introducing non-

trivial security concerns, in particular related to correct agent execution and

confidentiality of agent data.

There does not seem to be a single solution to the security problems introduced

by mobile agents unless trusted hardware is introduced, which is likely to prove

too expensive for most applications. The way forward appears to lie in a range

of mechanisms aimed at solving particular (smaller) problems. This could, for

example, include mechanisms that depend on agents executing on several hosts

193

13. Conclusions

rather than on only one host, mechanisms and protocols binding agent actions

to hosts, generation of various types of audit information that can be used in

case of disputes, and so on. Solutions to certain problems do exist, but for

mobile agents to be more widely adopted this is an area that requires further

research.

A security architecture, designed for deployment of agent technology in a mo-

bile communication environment, has been proposed in this thesis. The security

architecture allows modelling of interactions at all levels within a mobile com-

munication system. The model includes the involved parties at the highest level,

then a device structure, an agent execution environment, and finally, the struc-

ture of an agent. Basic security functionality addressing the security of agents,

agent platforms, and agent communication has been identified and high level

outlines of how these security features can be realised have also been given.

We have also shown how conventional security protocols can be used to provide

secure communication within an agent-based system. Data integrity, data ori-

gin authentication, entity authentication, non-repudiation, confidentiality, and

anonymity can all be provided for agent communications.

For mobile agents it is a non-trivial task to ensure that communication originat-

ing from the agent cannot be spoofed. Several techniques to limit the threats

posed to mobile agent communication exist. Nevertheless, mobile agents must

be deployed with great care if the authenticity of the communication is of im-

portance.

The FIPA agent communication specifications lack sufficient functionality to

provide secure communication. By using an existing message structure such as

194

13. Conclusions

the Open PGP message format, communications security services can be added

to FIPA. We have considered where security services can be applied to agent

communication within the FIPA architecture, and described the information

exchange required between an agent and the ACC security services. Further

detailed analysis and specification is, however, required for a complete solution.

A pragmatic solution to undetachable signatures has been proposed, relying on

conventional signatures and public key certificates. Our solution has potential

practical advantages by comparison with the use of undetachable signatures,

and appears to offer a very similar set of security guarantees. When combined

with the use of signatures by the agent platform, this solution has the potential

to solve certain problems relating to transaction repudiation.

We have considered two different ways in which the deployment of multiple

agents can reduce the threat to trading mobile agents from potentially malicious

agent platforms. In the first approach multiple agents are equipped with ‘shares’

of the means to commit to a transaction. A method implementing this idea using

a threshold signature scheme was outlined. In the second approach a single

trusted host is employed to collect information from multiple agents on possible

transactions. This host then chooses the optimal transaction and commits to it.

The two approaches each have their own advantages. The first approach avoids

the need for a single trusted host. However, implementing the first approach

requires use of some potentially complex cryptographic signature functions. The

second approach is potentially less complex from a cryptographic perspective,

but does require a host which, if not completely trusted, is at least required

to act neutrally with respect to the set of merchants. Both approaches are of

potential practical importance in future mobile computing environments.

195

13. Conclusions

Threshold signatures can be used in a mobile agent scenario to spread the risk

between several agents and thereby overcome the threats posed by individual

malicious hosts. A pragmatic alternative to threshold signatures has been pro-

posed. This alternative has potential practical advantages by comparison with

the use of threshold signatures, and appears to offer a very similar set of security

guarantees. Although the analysis was performed within the context of mobile

agents, it is possible that the scheme is competitive with threshold signature

schemes in other environments.

Undetachable signatures and threshold signatures are both concepts applicable

to mobile agents. By combining threshold signatures and undetachable signa-

tures, the concept of undetachable threshold signatures has been introduced.

Undetachable threshold signatures enable constrained signing power to be dis-

tributed across multiple agents, thus reducing the necessary trust in single agent

platforms even further, compared to only using threshold signatures or unde-

tachable signatures.

We have described the concept of certificate translation and how it can be used

for different purposes. Not only can the concept prove useful to convert between

certificates of different types, but it can also be particularly useful in wireless

environments in order to preserve bandwidth, memory, and CPU resources. A

protocol for certificate translation can be implemented as a standalone proto-

col or as an extension to, or in combination with, existing certificate status

management protocols. SCVP is a good candidate of an existing protocol that

can be extended to incorporate certificate translation. In other environments a

standalone protocol is more suitable to minimise communications overheads.

Agents deployed in a wireless environment are believed to have access to very

196

13. Conclusions

limited resources, and are hence prevented from carrying several digital certifi-

cates, and may be exposed to applications requiring different types of certifi-

cates. Certificate translation therefore seems to be well suited for agents in a

wireless environment.

13.2 Suggestions for future work

Although security mechanisms and services used in today’s distributed systems

and computer platforms are also applicable to multi-agent systems, for agents

to fully live up to their potential and be able to represent humans for more

complex tasks, issues related to trust needs to be further studied. Building

trust, describing trust, and reasoning about trust are all issues that need to be

addressed, and that are currently the subject of ongoing research.

Mobile agents potentially have an important role to play in future communi-

cation systems. However, to be of real use beyond very trivial tasks, security

mechanisms are required. In this thesis we have proposed security mechanisms

useful for mobile agents, but there is still scope for much more research in this

area.

One related area not investigated in this thesis where research is ongoing is that

of using mobile agents for security purposes. Mobile agents can be deployed

to enhance the security of a network. Applications that have been suggested

include, intrusion detection, virus detection, and security management. Appli-

cations like these do, of course, require that mobile agents themselves do not

introduce unmanageable security threats. This is still an emerging area, but

appears to offer interesting possibilities.

197

13. Conclusions

The FIPA specifications need to be further developed to include security func-

tionality. We have proposed one way forward, but further details are needed for

a complete specification. XML should also be fully evaluated for the purpose of

securing FIPA agent communication.

198

Bibliography

[1] 3rd Generation Partnership Project (3GPP). Mobile Station Application

Execution Environment (MExE), Functional description, 3GPP, 3G TS

23.057, stage2 (release 1999) edition, March 2000.

[2] ANSI X9.68. Digital Certificates for Mobile/Wireless and High Trans-

action Volume Financial Systems: Part 2: Domain Certificate Syntax.

American National Standard Institute, 2002.

[3] Giuseppe Ateniese, Breno de Medeiros, and Michael T. Goodrich.

TRICERT: A distributed certified e-mail scheme. In Proceedings of ISOC

2001 Network and Distributed System Security Symposium (NDSS’01),

pages 45–56. CA, 2001.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit

Sahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating

programs. In J. Kilian, editor, Advances in Cryptology – Crypto 2001

proceedings, number 2139 in LNCS, pages 1–18. Springer-Verlag, Berlin,

2001.

[5] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryp-

tography: the case of hashing and signing. In Y. Desmedt, editor, Ad-

vances in Cryptology – Crypto ’94 proceedings, number 839 in LNCS, pages

216–233. Springer-Verlag, Berlin, 1994.

199

BIBLIOGRAPHY

[6] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. JADE: a

FIPA2000 compliant agent development environment. In Jörg P. Müller,

Elisabeth Andre, Sandip Sen, and Claude Frasson, editors, Proceedings of

the Fifth International Conference on Autonomous Agents, pages 216–217.

ACM Press, 2001.

[7] J. Bigham, A.L.G. Hayzelden, J. Borrell, and S. Robles. Distributed con-

trol of connection admission to a telecommunications network: Security

issues. In Alex L.G. Hayzelden and Rachel A. Bourne, editors, Agent

Technology for Communication Infrastructures, chapter 6. Wiley, 2001.

[8] A. Birk. Learning to trust. In R. Falcone, M. Singh, and Y. H. Tan, editors,

Trust in Cyber-societies, number 2246 in LNAI, pages 27–54. Springer-

Verlag, Berlin, 2001.

[9] Niklas Borselius. Mobile agent security. Electronics & Communication

Engineering Journal, 14(5):211–218, October 2002.

[10] Niklas Borselius. Security in multi-agent systems. In Y. Mun and H. R.

Arabnia, editors, Proceedings of the 2002 International Conference on

Security and Management (SAM’02), pages 31–36. CSREA Press, Nevada,

2002.

[11] Niklas Borselius, Namhyun Hur, Marek Kaprynski, and Chris J. Mitchell.

A security architecture for agent-based mobile systems. In Proceedings

– 3G2002, Third International Conference on Mobile Communications

Technologies, number 489 in IEE Conference Publication, pages 312–318.

IEE, London, 2002.

[12] Niklas Borselius and Chris J. Mitchell. Certificate translation. In Proceed-

ings of NORDSEC 2000 – 5th Nordic Workshop on Secure IT Systems,

pages 289–300. Reykjavik University, 2000.

200

BIBLIOGRAPHY

[13] Niklas Borselius and Chris J. Mitchell. Securing FIPA agent communi-

cation. In H. R. Arabnia and Y. Mun, editors, Proceedings of the 2003

International Conference on Security and Management (SAM’03), Vol. 1,

pages 135–141. CSREA Press, Nevada, 2003.

[14] Niklas Borselius, Chris J. Mitchell, and Aaron Wilson. On mobile agent

based transactions in moderately hostile environments. In B. De Decker,

F. Piessens, J. Smits, and E. Van Herreweghen, editors, Advances in

Network and Distributed Systems Security, Proceedings of IFIP TC11

WG11.4 First Annual Working Conference on Network Security, KU Leu-

ven, Belgium, pages 173–186. Kluwer Academic Publishers, Boston, 2001.

[15] Niklas Borselius, Chris J. Mitchell, and Aaron Wilson. Undetachable

threshold signatures. In Cryptography and Coding - Proceedings of the 8th

IMA International Conference, Cirencester, UK, number 2260 in LNCS,

pages 239–244. Springer-Verlag, Berlin, 2001.

[16] Niklas Borselius, Chris J. Mitchell, and Aaron Wilson. On the value of

threshold signatures. ACM SIGOPS Operating Systems Review, 36(4):30–

35, October 2002.

[17] Niklas Borselius, Chris J. Mitchell, and Aaron Wilson. A pragmatic al-

ternative to undetachable signatures. ACM SIGOPS Operating Systems

Review, 36(2):6–11, April 2002.

[18] K. P. Bosworth and N. Tedeschi. Public key infrastructures — the next

generation. In Robert Temple and John Regnault, editors, Internet and

wireless security, BTexact Communications Technology series 4, pages 95–

120. IEE, London, 2002.

201

BIBLIOGRAPHY

[19] Jeffrey M. Bradshaw. An introduction to software agents. In Jeffrey M.

Bradshaw, editor, Software Agents, chapter 1, pages 3–46. AAAI Press /

The MIT Press, 1997.

[20] Jeffrey M. Bradshaw, Stewart Dutfield, Pete Benoit, and John D. Wool-

ley. KAoS: Toward an industrial-strength open agent architecture. In

Jeffrey M. Bradshaw, editor, Software Agents, chapter 17, pages 375–418.

AAAI Press / The MIT Press, 1997.

[21] Bernard Burg. Towards the deployment of an open agent world. In Her-

mes, editor, Journées Francophones d’Intelligence Artificielle Distribuée

et de Systèmes Multi-Agents (JFIADSMA2000), October 2001.

[22] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP Message

Format, RFC 2440. IETF, November 1998.

[23] Cristiano Castelfranchi and Yao-Hua Tan, editors. Trust and Deception in

Virtual Societies. Kluwer Academic Publishers, The Netherlands, 2001.

[24] David L. Chaum. Untraceable electronic mail, return address, and digital

pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.

[25] David Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin Par-

ris, and Gene Tsudik. Itinerant agents for mobile computing. In Michael N.

Huhns and Munindar P. Singh, editors, Readings in Agents, pages 267–

282. Morgan Kaufmann, San Francisco, CA, 1997.

[26] David M. Chess. Security Issues in Mobile Code Systems. In Giovanni

Vigna, editor, Mobile Agents and Security, number 1419 in LNCS, pages

1–14. Springer-Verlag, Berlin, 1998.

[27] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Pri-

vate information retrieval. Journal of the ACM, 45(6):965–981, 1998.

202

BIBLIOGRAPHY

[28] Joris Claessens, Bart Preneel, and Joos Vandewalle. Secure communica-

tion for secure agent-based electronic commerce applications. In J. Liu

and Y. Ye, editors, E-Commerce Agents: Marketplace Solutions, Security

issues, and Supply and Demand, number 2033 in LNAI, pages 180–190.

Springer-Verlag, Berlin, 2001.

[29] Cloakware Corporation. Protecting Digital Content using Cloakware Code

Transformation Technology, white paper, 1.2 edition, 2002.

[30] Bruno Crispo. Delegation of responsibility (position paper). In B. Chris-

tianson, B. Crispo, W.S. Harbison, and M. Roe, editors, Security proto-

cols: 6th International Workshop, Cambridge, UK, number 1550 in LNCS,

pages 118–124. Springer-Verlag, Berlin, 1998.

[31] David H. Crocker. Standard for the format of ARPA Internet text mes-

sages, RFC 822. IETF, August 1982.

[32] Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signa-

tures without a trusted dealer. In Birgit Pfitzmann, editor, Advances in

Cryptology – Eurocrypt 2001 proceedings, number 2045 in LNCS, pages

152–165. Springer-Verlag, Berlin, 2001.

[33] Y. Desmedt. Society and group oriented cryptography. In C. Pomerance,

editor, Advances in Cryptology – Crypto ’87 proceedings, number 293 in

LNCS, pages 120–127. Springer-Verlag, Berlin, 1988.

[34] Y. Desmedt and A.M. Odlyzko. A chosen text attack on the rsa cryp-

tosystem and some discrete logarithm schemes. In H.C. Williams, editor,

Advances in Cryptology – Crypto ’85 proceedings, number 218 in LNCS,

pages 516–522. Springer-Verlag, Berlin, 1986.

203

BIBLIOGRAPHY

[35] T. Dierks and C. Allen. The TLS Protocol Version 1.0, RFC 2246. IETF,

January 1999.

[36] D. Eastlake 3rd, J. Reagle, and D. Solo. XML-Signature Syntax and

Processing, RFC 3275. IETF, March 2002.

[37] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.

SPKI Certificate Theory, RFC 2693. IETF, Septtember 1999.

[38] EMV 4.0 Book 2, EMV Integrated Circuit Card Specification for Payment

Systems - Book 2: Security & Key Management, Version 4.0, 2000.

[39] William Farmer, Joshua Guttmann, and Vipin Swarup. Security for mo-

bile agents: Authentication and state appraisal. In E. Bertino, H. Kurth,

G. Martella, and E. Montolivo, editors, Proceedings of the European Sym-

posium on Research in Computer Security (ESORICS 96), number 1146

in LNCS, pages 118–130. Springer-Verlag, Berlin, 1996.

[40] Jalal Feghhi, Jalil Feghhi, and Peter Williams. Digital Certificates – Ap-

plied Internet Security. Addison-Wesley-Longman, 1999.

[41] FIPA 98 Specification Part 10, Version 1.0, Agent Security Management.

Geneva, October 1998. Obsolete.

[42] FIPA ACL Message Representation in XML Specification, Document no.

XC00071B. Geneva, June 2000.

[43] FIPA Agent Message Transport Service Specification, Document no.

XC00067D. Geneva, August 2001.

[44] FIPA Agent Message Transport Service Specification, Document no.

SC00067F. Geneva, December 2002.

204

BIBLIOGRAPHY

[45] FIPS PUB 186-2, Digital Signature Standard (DSS). Gaithersburg, MD,

January 2000.

[46] Leonard N. Foner. A Security Architecture for Multi-Agent Matchmaking.

In M. Tokoro, editor, Proceedings of the Second International Conference

on Multi-Agent Systems, pages 80–86. AAAI Press, menlo Park, CA, 1996.

[47] Warwick Ford. Computer Communications Security — Principles, Stan-

dard Protocols and Techniques. Prentice-Hall, New Jersey, 1994.

[48] M. Genesereth and R. Fikes. Knowledge interchange format, version 3.0

reference manual. Technical Report Logic-92-1, Computer Science De-

partment, Stanford University, 1992.

[49] Dieter Gollman. Computer Security. John Wiley & Sons, Chichester,

1999.

[50] Robert S. Gray, David Kotz, George Cybenko, and Daniela Rus.

D’Agents: Security in a multiple-language, mobile system. In Giovanni

Vigna, editor, Mobile Agents and Security, number 1419 in LNCS, pages

154–187. Springer-Verlag, Berlin, 1998.

[51] Ceki Gulcu and Gene Tsudik. Mixing e-mail with BABEL. In Sympo-

sium on Network and Distributed System Security (NDSS’96), pages 2–16.

IEEE, 1996.

[52] Colin G. Harrison, David M. Chess, and Aaron Kershenbaum. Mobile

agents: Are they a good idea? Computer science research report, IBM

Research Center, New York, NY, 1995.

[53] Vesna Hassler. Security Fundamentals for E-commerce. Artech House,

2000.

205

BIBLIOGRAPHY

[54] Alex L. G. Hayzelden and Rachel A. Bourne, editors. Agent Technology

for Communication Infrastructures. John Wiley & Sons, Chichester, 2000.

[55] Qi He, Katia P. Sycara, and Timothy W. Finin. Personal security agent:

KQML-Based PKI. In Katia P. Sycara and Michael Wooldridge, editors,

Proceedings of the 2nd International Conference on Autonomous Agents,

pages 377–384, New York, NY, 1998. ACM Press.

[56] Fritz Hohl. A model of attacks of malicious hosts against mobile agents. In

Proceedings of the ECOOP Workshop on Distributed Object Security and

4th Workshop on Mobile Object Systems: Secure Internet Mobile Compu-

tations, pages 105–120, 1998.

[57] Fritz Hohl. Time limited blackbox security: Protecting mobile agents from

malicious hosts. In Giovanni Vigna, editor, Mobile Agents and Security,

number 1419 in LNCS, pages 92–113. Springer-Verlag, Berlin, 1998.

[58] R. Housley. Cryptographic Message Syntax, RFC 3369. IETF, August

2002.

[59] IEEE P1363, Standard specifications for public key cryptography, 2000.

[60] Takeshi Imamura, Blair Dillaway, and Ed Simon. XML encryption syntax

and processing, W3C candidate recommendation, August 2002.

[61] ISO/IEC 11770-1, Information Technology — Security techniques — Key

management —Part 1: Framework. Geneva, 1996.

[62] ISO/IEC 13888-1. Information technology — Security techniques — Non-

repudiation — Part 1: General. Geneva. 2nd edition, to be published.

[63] ISO/IEC 13888-2. Information technology — Security techniques — Non-

repudiation — Part 2: Mechanisms using symmetric techniques. Geneva,

1998.

206

BIBLIOGRAPHY

[64] ISO/IEC 13888-3. Information technology — Security techniques — Non-

repudiation — Part 3: Mechanisms using asymmetric techniques. Geneva,

1997.

[65] ISO/IEC 14516 / ITU-T X.842. Information technology — Security tech-

niques — Guidelines for the use and management of Trusted Third Party

services. Geneva, 2002.

[66] ISO/IEC 14888-1. Information technology — Security techniques — Data

signatures with appendix — Part 1: General. Geneva, 1998.

[67] ISO/IEC 14888-2. Information technology — Security techniques — Data

signatures with appendix — Part 2: Identity-based mechanisms. Geneva,

1999.

[68] ISO/IEC 14888-3. Information technology — Security techniques —

Data signatures with appendix — Part 3: Certificate-based mechanisms.

Geneva, 1998.

[69] ISO/IEC 7498-2 / ITU-T X.800, Data Communication Networks: Open

System Interconnection (OSI); Security, Structure and Applications —

Security Architecture for Open Systems Interconnection for CCITT Ap-

plications. Geneva, 1991.

[70] ISO/IEC 8825-1 / ITU-T X.690, Information Technology — ASN.1 En-

coding Rules: Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules (DER). Geneva,

1998.

[71] ISO/IEC 8825-2 / ITU-T X.691, Information Technology — ASN.1 En-

coding Rules: Specification of Packed Encoding Rules (PER). Geneva,

1998.

207

BIBLIOGRAPHY

[72] ISO/IEC 9797-1. Information technology - Security techniques — Mes-

sage Authentication Codes (MACs) — Part 1: Mechanisms using a block

cipher. Geneva, 1999.

[73] ISO/IEC 9797-2. Information technology — Security techniques — Mes-

sage Authentication Codes (MACs) — Part 2: Mechanisms using a hash-

function. Geneva, 2002.

[74] ISO/IEC 9798-3 Information technology — Security techniques — Entity

authentication mechanisms — Part 3: Mechanisms using digital signature

techniques. Geneva, 1998. 2nd edition.

[75] ISO/IEC 9798-4, Information technology — Security techniques — En-

tity authentication — Part 4: Mechanisms using a cryptographic check

function. Geneva, 1999. 2nd edition.

[76] ITU-T Recommendation X.509, Information technology — Open Systems

Interconnection — The Directory: Public-key and attribute certificate

frameworks. Geneva, 2000. 4 edition, Also ISO International Standard

9594-8.

[77] Markus Jakobsson. Flash mixing. In The Eighteenth annual ACM sym-

posium on Principles of distributed computing, pages 83–89. ACM press,

1999.

[78] Wayne Jansen and Tom Karygiannis. NIST Special Publication 800-19 –

Mobile Agent Security. National Institute of Standards and Technology,

1999.

[79] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent

research and development. Autonomous Agents and Multi-Agent Systems,

1(1):275–306, 1998.

208

BIBLIOGRAPHY

[80] N. R. Jennings and M. Wooldridge. Intelligent agents: Theory and prac-

tice. The Knowledge Engineering Review, 10(2):115–152, 1995.

[81] Panayiotis Kotzanikolaou, Mike Burmester, and Vassilios Chrissikopou-

los. Secure transactions with mobile agents in hostile environments. In

E. Dawson, A. Clark, and C. Boyd, editors, Information Security and Pri-

vacy, Proceedings of the 5th Australasian Conference ACISP 2000, number

1841 in LNCS, pages 289–297. Springer-Verlag, Berlin, 2000.

[82] Susan K. Langford. Threshold DSS signatures without a trusted party. In

D. Coppersmith, editor, Advances in Cryptology – Crypto ’95 proceedings,

number 963 in LNCS, pages 397–409. Springer-Verlag, Berlin, 1995.

[83] O. Lazaro, J. Irvine, D. Girma, J. Dunlop, A. Liotta, N. Borselius, and

C.J. Mitchell. Management system requirements for wireless systems be-

yond 3G. In Proceedings - IST Mobile & Wireless Communications Sum-

mit 2002, pages 240–244, 2002.

[84] Michael Luck and Mark d’Inverno. A conceptual framework for agent

definition and development. The Computer Journal, 44(1):1–20, 2001.

[85] A. Malpani, R. Housley, and T. Freeman. Simple Certificate Validation

Protocol (SCVP), Internet Draft. IETF, June 2002.

[86] Gary McGraw and Edward W. Felten. Securing JAVA: Getting Down

to Business with Mobile Code. John Wiley & Sons, New York, NY, 2nd

edition, 1999.

[87] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied

Cryptography. Discrete Mathematics and Its Applications. CRC Press,

1996.

[88] S. Micali. Simultaneous electronic transactions. US Patent 5666420, 1997.

209

BIBLIOGRAPHY

[89] George C. Necula and Peter Lee. Safe, untrusted agents using proof-

carrying code. In Giovanni Vigna, editor, Mobile Agents and Security,

number 1419 in LNCS, pages 61–91. Springer-Verlag, Berlin, 1998.

[90] H. Penny Nii. Blackboard systems. In A. Barr, P.R. Cohen, and E.A.

Feigenbaum, editors, The Handbook of Artificial Intelligence, Volume IV,

pages 1–82. Addison-Wesley, New York, 1998.

[91] S. Poslad, P. Buckle, and R. Hadingham. The FIPA OS agent platform:

Open source for open standards. In Jeffrey Bradshaw and Geoff Arnold,

editors, Proceedings of the 5th International Conference and Exhibition

on the Practical Application of Intelligent Agents and Multi-Agents, pages

355–368, UK, 2000.

[92] S. Poslad and M. Calisti. Towards improved trust and security in FIPA

agent platforms. In Autonomous Agents 2000, June 2000.

[93] B. Ramsdell. S/MIME Version 3 Message Specification, RFC 2633. IETF,

June 1999.

[94] H. Reiser and G. Vogt. Security requirements for management systems

using mobile agents. In Proceedings of the Fifth IEEE Symposium on

Computers and Communications: ISCC 2000, pages 160–165, 2000.

[95] James Riordan and Bruce Schneier. Environmental key generation to-

wards clueless agents. In G. Vigna, editor, Mobile Agents and Security,

number 1419 in LNCS, pages 15–24. Springer-Verlag, Berlin, 1998.

[96] Volker Roth. Secure recording of itineraries through co-operating agents.

In Proceedings of ECOOP Workshop on Distributed Object Security and

4th Workshop on Object Systems: Secure Internet Mobile Computations,

pages 147–154, France, 1998. INRIA.

210

BIBLIOGRAPHY

[97] RSA Laboratories. PKCS #7: Cryptographic Message Syntax Standard,

1993. version 1.5.

[98] Tomas Sander and Christian Tschudin. Protecting mobile agents against

malicious hosts. In Giovanni Vigna, editor, Mobile Agents and Security,

number 1419 in LNCS, pages 44–60. Springer-Verlag, Berlin, 1998.

[99] Michael Schillo, Petra Funk, and Michael Rovatsos. Using trust for detect-

ing deceitful agents in artificial societies. Applied Artificial Intelligence,

14(8):825–848, September 2000.

[100] Fred B. Schneider. Towards fault-tolerant and secure agentry. In

M. Mavronicolas and P. Tsigas, editors, Proceedings of the Eleventh In-

ternational Workshop on Distributed Algorithms, number 1320 in LNCS,

pages 1–14. Springer-Verlag, Berlin, 1997.

[101] Security Model for the Next-Generation secure computing Base. white

paper, Microsoft Corporation, 2003.

[102] A. Shamir. How to share a secret. Communications of the ACM, 22:612–

613, 1979.

[103] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor,

Advances in Cryptology – Eurocrypt 2000 proceedings, number 1807 in

LNCS, pages 207–220. Springer-Verlag, Berlin, 2000.

[104] Masakazu Soshi and Mamoru Maekawa. The Saga Security system: A

security Architecture for open Distributed systems. In Proceedings of the

6th IEEE Workshop on Future Trends of Distributed Computing Systems,

pages 53–58. IEEE, 1997.

211

BIBLIOGRAPHY

[105] P F Syverson, D M Goldschlag, and M G Reed. Anonymous connections

and onion routing. In Proceedings: IEEE Symposium on Security and

Privacy, pages 44–54. IEEE Computer Society Press, 1997.

[106] Chelliah Thirunavukkarasu, Tim Finin, and James Mayfield. Secret agents

- a security architecture for the KQML agent communication language.

In Proceedings of the Intelligent Information Agents Workshop held in

conjunction with Fourth International Conference on Information and

Knowledge Management CIKM’95, pages 176–184, Baltimore, December

1995. IEEE Computer Society Press.

[107] Trusted Computing Group — Main Specification, Version 1.1a, 2001.

[108] P.J. Turner, D.R. Basgeet, N. Borselius, E. Frazer, J. Irvine, N. Jef-

feries, N.R. Jennings, M. Kaprynski, O. Lazaro, S. Lloyd, C.J. Mitchell,

K. Moessner, T. Song, E. Homayounvala, D. Wang, and A. Wilson. Sce-

narios for future communications environments, technical report ECSTR-

IAM02-005. Technical report, Department of Electronics and Computer

Science, Southampton University, October 2002.

[109] V. Varadharajan, P. Allen, and S. Black. An analysis of the proxy prob-

lem in distributed systems. In Proceedings: 1991 IEEE Computer Soci-

ety Symposium on Research in Security and Privacy, pages 255–275, Los

Alamitos, CA, May 1991. IEEE Computer Society Press.

[110] Giovanni Vigna. Protecting mobile agents through tracing. In Proceedings

of the Third ECOOP Workshop on Operating System support for Mobile

Object Systems, pages 137–153, Finland, June 1997.

[111] Michael Walker and Tim Wright. Security. In Fridhelm Hillebrand, ed-

itor, GSM and UMTS – The Creation of Global Mobile Communication,

chapter 15, pages 385–406. John Wiley & Sons, Chichester, 2002.

212

BIBLIOGRAPHY

[112] WAP Forum. Wireless Application Protocol, Architecture Specification,

July 2001. WAP-201-WAPArch-20010712.

[113] WAP Forum. Wireless Application Protocol, Wireless Transport Layer

Security, April 2001. WAP-261-WTLS-20010406-a.

[114] Gio Wiederhold. Mediators in the architecture of future information sys-

tems. IEEE Computer, 25(3):38–49, March 1992.

[115] U. G. Wilhelm, S. Staamann, and L. Buttyàn. Introducing trusted third

parties to the mobile agent paradigm. In J. Vitek and C. Jensen, editors,

Secure Internet Programming: Security Issues for Mobile and Distributed

Objects, number 1603 in LNCS, pages 471–491. Springer-Verlag, Berlin,

1999.

[116] H. Chi Wong and Katia Sycara. Adding Security and Trust to Multi-Agent

Systems. applied Artificial intelligence, 14(9):927–941, 2000.

[117] Michael Wooldridge. An Introduction to MultiAgent Systems. John Wiley

& Sons, Chichester, 2002.

[118] XML key management specification (XKMS 2.0), March 2002.

[119] Bennet Yee. A sanctuary for mobile agents. In Jan Vitek and Christian

Jensen, editors, Secure Internet Programming: Security Issues for Mobile

and Distributed Objects, number 1603 in LNCS, pages 261–274. Springer-

Verlag, Berlin, 1999.

[120] A. Young and M. Yung. Sliding encryption: A cryptographic tool for

mobile agents. In Eli Biham, editor, Proceedings of the 4th International

Workshop on Fast Software Encryption, FSE’ 97, number 1267 in LNCS,

pages 230–241. Springer-Verlag, Berlin, January 1997.

213

BIBLIOGRAPHY

[121] Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press,

Boston, 1995.

214

