
1

Information Security Group

Generic collision attacks on
hash-functions and HMAC

Chris Mitchell
Royal Holloway, University of London

2

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

3

Information Security Group

Hash-functions
• Cryptographic hash-functions are a key element

of all widely used signature schemes.
• They are also used as a component of many

asymmetric encryption schemes.
• Such functions map an arbitrary length bit string

to a fixed length bit string (e.g. of length 128,
160, 224 or 256 bits).

• If the output length is n bits, then we refer to an
n-bit hash-function.

4

Information Security Group

Examples
• Examples of widely used hash-functions

include:
– RIPEMD-128 and RIPEMD-160 (standardised

in ISO/IEC 10118-3);
– MD5 (now discredited);
– SHA-1 (a NIST and ISO/IEC standard, but

now looking a little shaky);
– SHA-256 (NIST and ISO/IEC standardised).

5

Information Security Group

Necessary properties
• A cryptographic hash-function h is normally

expected to have the following properties:
– pre-image resistance (the ‘one way’ property): given

an arbitrary n-bit block y it is computationally
infeasible to find an input x such that h(x) = y;

– second pre-image resistance: given an arbitrary bit
string x, it is computationally infeasible to find a
distinct bit-string x′ ≠ x such that h(x′) = h(x).

• In many cases (e.g. when h is used as part of a
signature scheme) the following property is also
required:
– collision resistance: it is computationally infeasible to

find two distinct bit-strings x and x′ (x ≠ x′) such that
h(x) = h(x′).

6

Information Security Group

A trivial collision attack
• The Birthday Paradox tells us that, if we choose

around √m elements from a set of size m (with
replacement), then there is a good chance of
choosing one element twice.

• Hence if we compute h(x) for around √(2n) = 2n/2

messages, then there is a good chance of
finding a collision.

• Hence, given 2n/2 computations and 2n/2 storage,
we can find a collision for any n-bit hash-
function.

7

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

8

Information Security Group

Background
• A memoryless technique for finding hash-

function collisions was proposed by Quisquater
and Delescaille (1989) – we refer to this as the
QD attack.

• This was refined by van Oorschot and Wiener
(1994) to produce a technique which is both
parallelisable and produces collisions for
‘meaningful’ messages [see also section 9.7.1
of the HAC].

• This requires O(2n/2) computational steps and
trivial memory for an n-bit hash-function.

9

Information Security Group

Functions and functional graphs
• Suppose f: {1,2,…,m} → {1,2,…,m}.
• Then f defines a directed graph (the functional

graph) with:
– m vertices (the values 1, 2, …, m); and
– m directed edges, where a→b is an edge if and only if

f(a)=b.
• This graph is made up of a number of connected

sub-graphs (components), where each
component will contain a single directed cycle
and some directed trees attached to (pointing to)
the cycle.

10

Information Security Group

Example

The above example of a functional graph for m=13
is taken from the HAC.

11

Information Security Group

Random functions
• Suppose f : {1,2,…,m} → {1,2,…,m} is randomly

chosen from the class of all such functions. [We
call f a random function].

• The expected length of a cycle in the functional
graph is √(πm/8), and the expected maximum
cycle length is around 1.7√m.

• The expected length of a ‘tail’ (i.e. a path from a
point to a cycle) is also √(πm/8), and the
expected maximum tail length is around 0.8√m.

• The largest connected component will contain
O(2m/3) vertices, i.e. the majority of the vertices
will be in one large connected component.

12

Information Security Group

The QD attack I
• The QD attack involves observing that, for an n-

bit hash-function h, we can consider the action
of h on the set of all n-bit blocks:

• We can model this restricted version of h as a
random function,

h: {1,2,…,m} → {1,2,…,m}, where m = 2n.
• Hence, if we choose a random block x, then the

sequence:
x, h(x), h2(x), h3(x), …
will define a path in the functional graph of (the
restricted version of) h.

13

Information Security Group

QD attack II
• This path will eventually reach a cycle, and will

then repeatedly go round the cycle.
• We just need to find a way to notice when the

path round the cycle has been completed.
• This can be done with distinguished points.
• That is, call an n-bit block x a distinguished block

if the leftmost n/2-s bits of x are all zeros (for
some smallish s, e.g. s=8).
(Actually, any fixed pattern of n/2-s bits will do equally

well – however, looking for zeros is usually easiest).

14

Information Security Group

QD attack III
• The attack proceeds as follows:

choose a random block x;
for i = 1, 2, …

compute hi(x);
if hi(x) is a distinguished block then

if (hi(x) = hj(x) for any recorded distinguished pair
(j, hj(x)), j < i) then stop;

record the distinguished pair (i,hi(x))

15

Information Security Group

QD attack IV
• The algorithm will give a pair (i, j) such that hi(x)

= hj(x) and 1 ≤ j < i.
• This means that, either:

– x = hi-j(x) [not a collision but an interesting fact in
itself, since we have found a pre-image for x], or

– for some t < j: hi-t(x) = hj-t(x) & hi-t-1(x) ≠ hj-t-1(x), i.e. we
have a collision.

• If the first event occurs, start again. The first
event will occur if and only if x is on a cycle
(probability very small).

16

Information Security Group

QD attack complexity
• The storage requirement is clearly trivial, i.e.

O(2s).
• Each cycle will probably contain at least one

distinguished block (choose s large enough to
ensure this, bearing in mind the average cycle
length).

• Since the expected path length and expected
cycle size are both √(πm/8), where m=2n, the
number of computational steps is clearly O(2n/2).

17

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

18

Information Security Group

Iterated random functions
• We now need to consider some further

properties of random functions.
• In particular, we are interested in the

properties of the image set of functions
f: {1,2,…,m} → {1,2,…,m}.

19

Information Security Group

Image sets I
Theorem Suppose f1, f2, … are independent

random functions, where
fi: {1,2,…,m} → {1,2,…,m}.

Then the expected size of the image set of the
compound function ft • ft-1 • … • f1 (i.e. the
function made up of f1, followed by f2, …,
followed by ft) is bounded above by 2m/t (for
large image sets).

Corollary If one iteratively applies 2w random
functions to a set, then the size of the image set
(for a large image set) is around 1/2w-1 times the
size of the domain.

20

Information Security Group

Image sets II

0.27m5
0.31m4
0.37m3
0.47m2
0.63m1

size of image sett
(number of functions)

The expected sizes of the image sets for small t
(and large m) are as follows:

21

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

22

Information Security Group

The Merkle meta-method
• All the widely used hash-functions are based

on Merkle’s meta-method.
• That is, they involve:

1. padding the data
2. splitting the padded data into blocks of a fixed

length (say r);
3. setting an initial chaining value to a fixed value;
4. iteratively applying a round function (or compression

function), which takes an n-bit chaining value and
an r-bit data block as input, and outputs an n-bit
chaining value.

• The hash-code is the final chaining value (of
length n bits)

23

Information Security Group

Merkle meta-method
Di

(ith data block, of length r)

Hi
(ith chaining value, of length n)

Hi-1

Round-function

24

Information Security Group

Example parameters
• MD5, SHA-1 and RIPEMD-160 have

r=512 and n=160.
• SHA-256 has r=512 and n=256.

25

Information Security Group

The length block
• All the well-known hash-functions have a

similar padding scheme.
• This involves adding up to r-1 zeros to the

end of the message to make sure the
length is a multiple of r.

• Then an additional r-bit block is added to
the end, which encodes the original
message length.

26

Information Security Group

Effect of the length block
• When computing hi(x) (for i=1,2,…) in the QD attack, the

input to h has a fixed length (n bits).
• Hence, in each case, the padded message being hashed

will contain two r-bit blocks (assuming n ≤ r), the first of
which will contain the n-bit input followed by r-n zeros,
and the second of which will be fixed (the length block).

• Since the initial chaining value is fixed, the first iteration
of the round function can be treated as a random
function from a set of size m=2n onto itself.

• Since the r-bit length block is fixed, the second iteration
of the round function can also be thought of as a random
function.

• That is, the values of hi(x) for i=1,2,…, will be drawn from
a set of size 0.47×2r (and not 0.63 × 2r).

27

Information Security Group

Aside: a simplying assumption
• For the previous slide (and in all subsequent

discussions) we look only at the size of the
image set, and (implicitly) assume that the
probabilities of choosing elements in this set are
equal.

• However, this is not correct. Some elements are
more likely to be chosen than others.

• This will increase the probability of a collision,
i.e. our simplifying assumption underestimates
the attack success probability.

28

Information Security Group

QD attack effects I
• This will mean that the expected size of the cycle will be

smaller then the previous estimates would suggest,
which means that the attack is actually more effective
than would otherwise be the case.

• Indeed, suppose the attacker actually computed gi(x)
instead of hi(x), where:

g(y) = h(y||0r-n||b1||b2||…||bv)
for some v, where 0r-n denotes r-n zeros, bi is a (fixed)

distinct r-bit block for every i, and || is concatenation.
• Thus computing g involves computing the round function

a total of v+2 times, which can be modelled as the
iterative performance of v+2 independent random
functions from a set of size m=2n onto itself.

29

Information Security Group

QD attack effects II
• That is, from the theorem, the output of gi(x) will

be drawn from a set of size at most 2n+1/(v+2).
• Suppose v = 2u-2.
• In this case (by heuristic arguments) the

expected size of the cycle which the
computation of gi(x) will proceed round will be
O(2(n+1-u)/2).

• That is, the complexity of the attack has now
been reduced by a factor of 2(u-1)/2, i.e. a collision
can be found using O(2(n+1-u)/2) hash
computations.

30

Information Security Group

QD attack effects III
• However, we have cheated!
• The reduction in the number of hash

computations is at the cost of hashing messages
whose padded versions will contain 2u r-bit
blocks, so the overall attack complexity will
actually increase as u increases.

• This means it is necessary to be careful about
assessing attack complexity solely in terms of
hash function computations.

31

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

32

Information Security Group

Extending the attack
• We can directly apply the observations on the

effectiveness of the QD attack on a hash-
function to a collision attack on HMAC.

• A collision attack on a MAC scheme requires
finding two messages with the same MAC.

• A MAC can then be found for a message,
without it being computed by the legitimate
parties.

• Using ‘standard’ methods, finding a collision
requires n0.5 message/MAC pairs, for an n-bit
MAC.

33

Information Security Group

HMAC
• MAC based on hash function h

– K1 and K2 are derived from key K
– HMAC of message m is h(K2||h(K1||m))

K1||m h h HMACK(m)

K1 K2

K2||h(K1||m)m

K

34

Information Security Group

HMAC Forgeries I
• Collect HMACs for messages m1,…,ms

– Same length and agree in final kr bits
– s chosen appropriately (as for QD attack).

• Find messages mi and mj with same
HMAC

• Obtain HMAC of mi||p for any string p
– Forge HMACK(mj||p) as HMACK(mi||p)

35

Information Security Group

HMAC Forgeries II
• Hash function with n=128 and r=512

– Messages agreeing in last 238 bytes (v=32)
– 249 hash values should give collision

• Collect 249 HMAC values
– Find messages mi and mj with same HMAC
– Obtain HMAC of mi||p for any string p
– Forge HMACK(mj||p) as HMACK(mi||p)

36

Information Security Group

Security of HMAC
• The attack on HMAC works because the

hash-function ‘compression function’ is not
1-1 for a fixed message block input.

• However, when computing a MAC using
one of the CBC-MAC methods, the
compression function is 1-1.

• Hence this attack does not apply to CBC-
MACs.

37

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

38

Information Security Group

Applications of iterated hash-functions
• Multiple iterations of hash-functions have been

proposed for use in a variety of applications.
• For example:

– Lamport proposed the use of hash-chains for user
authentication;

– hash-functions are used for random bit generation, by
iteratively hashing a random ‘seed’;

– hash-functions are often used as a simple and quick
method of detecting accidental errors in a data string
D, by storing h(D) with D (for a hash-function h).

39

Information Security Group

Multiple iterations
• If an m-bit hash-function is iterated a large

number of times, then we know that the
size of the domain will be O(√m).

• This means that there is a potential danger
of loss of up to half of the entropy.

• The effect will, to a large extent, depend
on the hash-function length, and the way
that the iterations are computed.

40

Information Security Group

Example scenario I
• Suppose a series of 64-bit values are required (e.g. as

pseudo-random values).
• Suppose a 128-bit hash-function is iteratively applied to

a 128-bit seed.
• Could take the first 64 bits of the output, before

rehashing.
• However, the full 128 bits must be rehashed, and not just

64.
• If not, then after O(232) hash applications, the sequence

of bits output will cycle with period O(232).
• That is only ≈32 bits of entropy will remain.

41

Information Security Group

Example scenario II
• However, if the full 128 bits are hashed

every time, then, after 232 iterations,
around 96 bits of entropy will remain.

• This is likely to be satisfactory for most
purposes.

• Of course, after 264 iterations, ‘only’ ≈64
bits of entropy will remain.

42

Information Security Group

Theory
• Most importantly, and this work has not been done

previously, we would like to avoid the simplifying
assumption, and assess the true probability of a
successful attack.

• Some additional work is required to properly compute
the expected sizes of the cycles and tails for the
functional graph of compound random functions.

• It would also help to know the expected size of the
largest component of the functional graph for a
‘compound’ random function.

• This should then yield theoretical results on the
performance of variants of the QD attack.

43

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements

44

Information Security Group

Acknowledgements
• This is joint work with Sean Murphy.
• Thanks also to Laurence O’Toole and

Peter Wild for useful discussions.
• Most of the observations in this talk were

originally made by Preneel and van
Oorschot (1995/1999).

