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Hash-functions
• Cryptographic hash-functions are a key element 

of all widely used signature schemes.
• They are also used as a component of many 

asymmetric encryption schemes.
• Such functions map an arbitrary length bit string 

to a fixed length bit string (e.g. of length 128, 
160, 224 or 256 bits).

• If the output length is n bits, then we refer to an 
n-bit hash-function.
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Examples
• Examples of widely used hash-functions 

include:
– RIPEMD-128 and RIPEMD-160 (standardised 

in ISO/IEC 10118-3);
– MD5 (now discredited);
– SHA-1 (a NIST and ISO/IEC standard, but 

now looking a little shaky);
– SHA-256 (NIST and ISO/IEC standardised).
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Necessary properties
• A cryptographic hash-function h is normally 

expected to have the following properties:
– pre-image resistance (the ‘one way’ property):  given 

an arbitrary n-bit block y it is computationally 
infeasible to find an input x such that h(x) = y;

– second pre-image resistance:  given an arbitrary bit 
string x, it is computationally infeasible to find a 
distinct bit-string x′ ≠ x such that h(x′) = h(x).

• In many cases (e.g. when h is used as part of a 
signature scheme) the following property is also 
required:
– collision resistance:  it is computationally infeasible to 

find two distinct bit-strings x and x′ (x ≠ x′) such that 
h(x) = h(x′).
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A trivial collision attack
• The Birthday Paradox tells us that, if we choose 

around √m elements from a set of size m (with 
replacement), then there is a good chance of 
choosing one element twice.

• Hence if we compute h(x) for around √(2n) = 2n/2

messages, then there is a good chance of 
finding a collision.

• Hence, given 2n/2 computations and 2n/2 storage, 
we can find a collision for any n-bit hash-
function.
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Background
• A memoryless technique for finding hash-

function collisions was proposed by Quisquater
and Delescaille (1989) – we refer to this as the 
QD attack.

• This was refined by van Oorschot and Wiener 
(1994) to produce a technique which is both 
parallelisable and produces collisions for 
‘meaningful’ messages  [see also section 9.7.1 
of the HAC].

• This requires O(2n/2) computational steps and 
trivial memory for an n-bit hash-function.
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Functions and functional graphs
• Suppose f: {1,2,…,m} → {1,2,…,m}.
• Then f defines a directed graph (the functional 

graph) with:
– m vertices (the values 1, 2, …, m);  and
– m directed edges, where a→b is an edge if and only if 

f(a)=b.
• This graph is made up of a number of connected 

sub-graphs (components), where each 
component will contain a single directed cycle 
and some directed trees attached to (pointing to) 
the cycle.
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Example

The above example of a functional graph for m=13 
is taken from the HAC.
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Random functions
• Suppose f : {1,2,…,m} → {1,2,…,m} is randomly 

chosen from the class of all such functions.  [We 
call f a random function]. 

• The expected length of a cycle in the functional 
graph is √(πm/8), and the expected maximum 
cycle length is around 1.7√m.

• The expected length of a ‘tail’ (i.e. a path from a 
point to a cycle) is also √(πm/8), and the 
expected maximum tail length is around 0.8√m.

• The largest connected component will contain 
O(2m/3) vertices, i.e. the majority of the vertices 
will be in one large connected component.
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The QD attack  I
• The QD attack involves observing that, for an n-

bit hash-function h, we can consider the action 
of h on the set of all n-bit blocks:

• We can model this restricted version of h as a 
random function,

h: {1,2,…,m} → {1,2,…,m}, where m = 2n.
• Hence, if we choose a random block x, then the 

sequence:
x, h(x), h2(x), h3(x), …
will define a path in the functional graph of (the 
restricted version of) h.
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QD attack  II
• This path will eventually reach a cycle, and will 

then repeatedly go round the cycle.
• We just need to find a way to notice when the 

path round the cycle has been completed.
• This can be done with distinguished points.
• That is, call an n-bit block x a distinguished block

if the leftmost n/2-s bits of x are all zeros (for 
some smallish s, e.g. s=8).
(Actually, any fixed pattern of n/2-s bits will do equally 

well – however, looking for zeros is usually easiest).
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QD attack  III
• The attack proceeds as follows:

choose a random block x;
for i = 1, 2, …

compute hi(x);
if hi(x) is a distinguished block then

if (hi(x) = hj(x) for any recorded distinguished pair
(j, hj(x)), j < i)  then stop;

record the distinguished pair (i,hi(x))
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QD attack  IV
• The algorithm will give a pair (i, j) such that hi(x) 

= hj(x) and 1 ≤ j < i.
• This means that, either:

– x = hi-j(x)  [not a collision but an interesting fact in 
itself, since we have found a pre-image for x], or

– for some t < j: hi-t(x) = hj-t(x) & hi-t-1(x) ≠ hj-t-1(x), i.e. we 
have a collision.

• If the first event occurs, start again.  The first 
event will occur if and only if x is on a cycle 
(probability very small).



16

Information Security Group

QD attack complexity
• The storage requirement is clearly trivial, i.e. 

O(2s).
• Each cycle will probably contain at least one 

distinguished block (choose s large enough to 
ensure this, bearing in mind the average cycle 
length).

• Since the expected path length and expected 
cycle size are both √(πm/8), where m=2n, the 
number of computational steps is clearly O(2n/2). 
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Iterated random functions
• We now need to consider some further 

properties of random functions.
• In particular, we are interested in the 

properties of the image set of functions
f: {1,2,…,m} → {1,2,…,m}.
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Image sets  I
Theorem  Suppose f1, f2, … are independent 

random functions, where
fi: {1,2,…,m} → {1,2,…,m}.

Then the expected size of the image set of the 
compound function ft • ft-1 • … • f1 (i.e. the 
function made up of f1, followed by f2, …, 
followed by ft) is bounded above by 2m/t (for 
large image sets).

Corollary If one iteratively applies 2w random 
functions to a set, then the size of the image set 
(for a large image set) is around 1/2w-1 times the 
size of the domain.
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Image sets  II

0.27m5
0.31m4
0.37m3
0.47m2
0.63m1

size of image sett
(number of functions)

The expected sizes of the image sets for small t
(and large m) are as follows:
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The Merkle meta-method
• All the widely used hash-functions are based 

on Merkle’s meta-method.
• That is, they involve:

1. padding the data
2. splitting the padded data into blocks of a fixed 

length (say r);
3. setting an initial chaining value to a fixed value;
4. iteratively applying a round function (or compression 

function), which takes an n-bit chaining value and 
an r-bit data block as input, and outputs an n-bit 
chaining value.

• The hash-code is the final chaining value (of 
length n bits)
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Merkle meta-method
Di

(ith data block, of length r)

Hi
(ith chaining value, of length n)

Hi-1

Round-function
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Example parameters
• MD5, SHA-1 and RIPEMD-160 have 

r=512 and n=160.
• SHA-256 has r=512 and n=256.
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The length block
• All the well-known hash-functions have a  

similar padding scheme.
• This involves adding up to r-1 zeros to the 

end of the message to make sure the 
length is a multiple of r.

• Then an additional r-bit block is added to 
the end, which encodes the original 
message length.
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Effect of the length block
• When computing hi(x) (for i=1,2,…) in the QD attack, the 

input to h has a fixed length (n bits).
• Hence, in each case, the padded message being hashed 

will contain two r-bit blocks (assuming n ≤ r), the first of 
which will contain the n-bit input followed by r-n zeros, 
and the second of which will be fixed (the length block).

• Since the initial chaining value is fixed, the first iteration 
of the round function can be treated as a random 
function from a set of size m=2n onto itself.

• Since the r-bit length block is fixed, the second iteration 
of the round function can also be thought of as a random 
function.

• That is, the values of hi(x) for i=1,2,…, will be drawn from 
a set of size 0.47×2r (and not 0.63 × 2r).
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Aside: a simplying assumption
• For the previous slide (and in all subsequent 

discussions) we look only at the size of the 
image set, and (implicitly) assume that the 
probabilities of choosing elements in this set are 
equal.

• However, this is not correct.  Some elements are 
more likely to be chosen than others.

• This will increase the probability of a collision, 
i.e. our simplifying assumption underestimates 
the attack success probability. 
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QD attack effects  I
• This will mean that the expected size of the cycle will be 

smaller then the previous estimates would suggest, 
which means that the attack is actually more effective 
than would otherwise be the case. 

• Indeed, suppose the attacker actually computed gi(x) 
instead of hi(x), where:

g(y) = h(y||0r-n||b1||b2||…||bv)
for some v, where 0r-n denotes r-n zeros, bi is a (fixed) 

distinct r-bit block for every i, and || is concatenation.
• Thus computing g involves computing the round function 

a total of v+2 times, which can be modelled as the 
iterative performance of v+2 independent random 
functions from a set of size m=2n onto itself.
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QD attack effects  II
• That is, from the theorem, the output of gi(x) will 

be drawn from a set of size at most 2n+1/(v+2).
• Suppose v = 2u-2.
• In this case (by heuristic arguments) the 

expected size of the cycle which the 
computation of gi(x) will proceed round will be 
O(2(n+1-u)/2).

• That is, the complexity of the attack has now 
been reduced by a factor of 2(u-1)/2, i.e. a collision 
can be found using O(2(n+1-u)/2) hash 
computations. 
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QD attack effects  III
• However, we have cheated!
• The reduction in the number of hash 

computations is at the cost of hashing messages 
whose padded versions will contain 2u r-bit 
blocks, so the overall attack complexity will 
actually increase as u increases.

• This means it is necessary to be careful about 
assessing attack complexity solely in terms of 
hash function computations.
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Extending the attack
• We can directly apply the observations on the 

effectiveness of the QD attack on a hash-
function to a collision attack on HMAC.

• A collision attack on a MAC scheme requires 
finding two messages with the same MAC.

• A MAC can then be found for a message, 
without it being computed by the legitimate 
parties.

• Using ‘standard’ methods, finding a collision 
requires n0.5 message/MAC pairs, for an n-bit 
MAC.
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HMAC
• MAC based on hash function h

– K1 and K2 are derived from key K
– HMAC of message m is h(K2||h(K1||m))

K1||m h h HMACK(m)

K1 K2

K2||h( K1||m )m

K
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HMAC Forgeries I
• Collect HMACs for messages m1,…,ms

– Same length and agree in final kr bits
– s chosen appropriately (as for QD attack).

• Find messages mi and mj with same 
HMAC

• Obtain HMAC of mi||p for any string p
– Forge HMACK(mj||p) as HMACK(mi||p)
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HMAC Forgeries II
• Hash function with n=128 and r=512

– Messages agreeing in last 238 bytes (v=32)
– 249 hash values should give collision

• Collect 249 HMAC values
– Find messages mi and mj with same HMAC
– Obtain HMAC of mi||p for any string p
– Forge HMACK(mj||p) as HMACK(mi||p)
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Security of HMAC
• The attack on HMAC works because the 

hash-function ‘compression function’ is not 
1-1 for a fixed message block input.

• However, when computing a MAC using 
one of the CBC-MAC methods, the 
compression function is 1-1.

• Hence this attack does not apply to CBC-
MACs.
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Applications of iterated hash-functions
• Multiple iterations of hash-functions have been 

proposed for use in a variety of applications.
• For example:

– Lamport proposed the use of hash-chains for user 
authentication;

– hash-functions are used for random bit generation, by 
iteratively hashing a random ‘seed’;

– hash-functions are often used as a simple and quick 
method of detecting accidental errors in a data string 
D, by storing h(D) with D (for a hash-function h).
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Multiple iterations
• If an m-bit hash-function is iterated a large 

number of times, then we know that the 
size of the domain will be O(√m).

• This means that there is a potential danger 
of loss of up to half of the entropy.

• The effect will, to a large extent, depend 
on the hash-function length, and the way 
that the iterations are computed.
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Example scenario  I
• Suppose a series of 64-bit values are required (e.g. as 

pseudo-random values).
• Suppose a 128-bit hash-function is iteratively applied to 

a 128-bit seed.
• Could take the first 64 bits of the output, before 

rehashing.
• However, the full 128 bits must be rehashed, and not just 

64.
• If not, then after O(232) hash applications, the sequence 

of bits output will cycle with period O(232).
• That is only ≈32 bits of entropy will remain.
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Example scenario  II
• However, if the full 128 bits are hashed 

every time, then, after 232 iterations, 
around 96 bits of entropy will remain.

• This is likely to be satisfactory for most 
purposes.

• Of course, after 264 iterations, ‘only’ ≈64 
bits of entropy will remain.
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Theory
• Most importantly, and this work has not been done 

previously, we would like to avoid the simplifying 
assumption, and assess the true probability of a 
successful attack.

• Some additional work is required to properly compute 
the expected sizes of the cycles and tails for the 
functional graph of compound random functions.

• It would also help to know the expected size of the 
largest component of the functional graph for a 
‘compound’ random function. 

• This should then yield theoretical results on the 
performance of variants of the QD attack. 



43

Information Security Group

Agenda
1. Hash-functions and collision attacks
2. Memoryless strategy for finding collisions
3. Properties of random functions
4. Impact on memoryless strategy
5. Attacking HMAC
6. Other observations
7. Acknowledgements



44

Information Security Group

Acknowledgements
• This is joint work with Sean Murphy.
• Thanks also to Laurence O’Toole and 

Peter Wild for useful discussions.
• Most of the observations in this talk were 

originally made by Preneel and van 
Oorschot (1995/1999).


