
 WITH COMPLEX CONJUGATES

260 En ELIZABETH MARY TAYLOR

\qquad
Yolu SUPERVISOR: PROFESSOR H.J. GODWIN

\qquad
\qquad

ProQuest Number: 10097403

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10097403
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT

This thesis investigates the existence of a Euclidean Algorithm in cubic fields with complex conjugetes. This investigetion is made using the following methods.

The first method is a modification of a result of Cessels which states that no field of discriminant less than $-\left(\frac{81(5+3 \sqrt{ })}{2}\right)^{2}=-(412.944 .)^{2}$ possesses a Euclideen Algorithm. By using the modification it is possible to show that some fields of discriminent greater then the above bound, but close to it, also do not possess a Euclideen Algorithm.

A second method is to choose an algebraic integer β which is a divisor of $1 \pm \epsilon^{n}$, where ϵ is the fundanental unit of the field in question and n is a rational integer. We then determine whether there are any residue classes modulo β which do not contain on integer of norm of absolute value less than the absolute value of the norm of β.

The next method is an adaptation of a method of Barnes and Swinnerton-Dyer for the real quadratic pields, modified here for the Pields in question. This method aims to isolate the points with minimum at least 1.

An indirect method, which is used as the finol step of the last method described, is to determine the minimum of numbers of the form $\frac{\alpha}{1-\epsilon^{n}}$, where α is an integer of the field in question and n is a positive rational integer.

In addition to existing results, 37 fields have been shown
to possess a Euclidean Algorithm and it hes been esteblished that there is no Euclidean Algorithm in 289 fields. For some fields the inhomogeneous minimum hos been determined.
for The numerical results obtained are given in the last chopter of this work. The listings of the computer programs used for the above methods are in the appendix to this thesis.

 -300087 sud -10383i.

 27.
\qquad

ACKNOWLEDGEMENTS

I wish to express my thanks to my supervisor, Professor H.J. Godwin, for his invaluable alvice and encouragement and for his assistance with calculations particularly while the methods were being developed.

My thanks are also due to Dr. I.0. Angell for his assistance With some computing details and the adaptations of his routines for use in the methods of this thesis; and who, together with Professor Godwing provided details of the fields of discriminants -160087 and -169271.

I an grateful to members of the department of Statistics and Computer Science at Royal Holloway College for assistance with the compilation and running of the programs; and on whose linis to the Univexsity of London's CDC 6600 computer the programs were run. Finally, I wish to acknowledge the Iinancial support of the Science Research Council.

CONTENTS

ABSTRACT 2
INTRODUCTION 7
PART I
THE THEORY OF THE METHODS OF INVESTIGATION 17

1. Relative Minima and Ideals whose Norm is a rational prime. 18
2. An adeptation of a result of Cessels. 24
3. A method which uses congruences to find a point \propto
in \mathbb{K} for which $M(\mathbb{K}, \boldsymbol{\alpha}) \geqslant 1$. 384. An edaptation of a method of Barnes and Swinnerton-Dyerfor Cubic Fields with Complex Conjugates. 46
4. The Minimum of $\frac{\alpha}{1-\epsilon^{n}}$. 65
5. A Numerical Consideration of the methods employed. 74
PART II
THE PROGRAMS USED AND THE RESULTS OBTAINED 86
6. The Progran RELMIN. 87
7. The Program C0NG. 90
8. The Programs CUBOID, FCUB and CUBX. 98
9. The Program TRANS. 105
10. The Program EXCEP. 109
11. The results obtained. 113
REFERENCES 129
$|\Xi(\zeta-\gamma \beta)| \geqslant|\bar{\infty}(\beta)|$$(4,2)$
The Appendix volume to this thesis contains listings of all
routines used.

co-ordinaten et the polet ${ }^{2} F_{0}$, ve suy

-2.
bevs
I. 1 If there are algebraic integers $\beta, \boldsymbol{\rho}$ in \mathbb{K} such that $\beta \neq 0$ and

$$
\begin{equation*}
|N(\beta-\gamma \beta)| \geqslant|N(\beta)| \tag{1.1}
\end{equation*}
$$

for every algebraic integer γ in K, where N represents the norm of the algebraic number, there is said to be no Euclidean Algorithm in the field.
I. 2 Let L_{1}, . .,$_{n}$ be n linear forms in the real variables $x_{1}, * \cdot x_{n}$ of determinant Δ. Let $\left(x_{1}, \cdot, \cdot, x_{n}\right)$ be the coordinates of the point P in n-dimensional space, then, if y_{1}, . ., y_{n} are real numbers and $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{n}\right)$ are the coordinates of the point P_{0}, we say

$$
P \equiv P_{0}(\bmod 1) \quad i P \quad x_{1} \equiv y_{1}, \cdots, x_{n} \equiv y_{n}(\bmod 1)
$$ We define

$$
M\left(L_{1}, *, L_{n} ; P_{0}\right)=\min _{P \equiv P_{0}}\left|L_{1} \not \ldots L_{n}\right|
$$

and $M\left(L_{1}, \cdots, L_{n}\right)=\underset{P_{0}}{\max } M\left(L_{1}, *, L_{n} ; P_{0}\right)$.
$H\left(\mathrm{~L}_{1}\right.$, . . $\left.\mathrm{L}_{\mathrm{n}}\right)$ is then said to be the inhomogeneous minimum of the linear forms L_{1}, $\ldots, \mathrm{L}_{\mathrm{n}}$.
$I_{0} 3$ If $\tilde{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n}$ are rational and $\alpha=\alpha^{(1)}$ is the value of L_{1} for $\left(x_{1}, \ldots, x_{n}\right)=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, α is an algebraic number and $\alpha^{(2)}, \ldots, \alpha^{(n)}$, the corresponding values of $L_{2}, \ldots{ }_{n}$, are $i t s$ algebraic conjugates we also have

$$
N(\alpha)=\alpha^{(1)} \ldots . . \alpha^{(n)}
$$

and the set of values of L_{1} over all rational values of $\left(x_{1}, \ldots, x_{n}\right)$ constitute an algebraic number field \mathbb{K} of discriminant D where $D=\Delta^{2}$.

We now define

$$
M(\mathbb{K}, \alpha)=\min _{\gamma}|N(\alpha-\gamma)|
$$

where the minimum is over all algebraic integers γ in \mathbb{K}, and

$$
\begin{align*}
\mathbb{M}(K) & =\max _{\alpha} \mathbb{M}(\mathbb{K}, \alpha) \tag{It}\\
& =\max _{\alpha} \min _{\gamma}|N(\alpha-\gamma)|
\end{align*}
$$

where the masinum is over all algebraic numbers α in K. We then say $M(\mathbb{H})$ is the inhomogeneous minimum of the field K. We have
and

$$
M(\mathbb{K}, \alpha)=M\left(L_{1}, \ldots, L_{n} ; \tilde{\alpha}\right)
$$

$$
M(K) \leqslant M\left(L_{1}, \ldots, L_{n}\right)
$$

with equality in the latter relationship when $\mathbb{M}\left(L_{1}, \ldots, L_{n}\right)$ is attained at a rational point.
I. 4 Since the quotient of any two numbers of \mathbb{K} is itself a number in K, for all algebraic integers ρ, β in K we have

$$
\left|N\left(\frac{s}{\beta}-\gamma\right)\right| \leqslant M(K)
$$

for some algebraic integer γ in K ; so that

$$
|N(S-\beta \gamma)| \leqslant M(\mathbb{K})|N(\beta)| .
$$

Hence, if $M(\mathbb{K})<1$, the field has a. Euclidean Algorithm.
Conversely, if $M(\mathbb{K}) \geqslant 1$ there exists an algebraic number $\alpha=\frac{\rho}{\beta}$ in K, where ρ, β are algebraic integers of K, so that

$$
\left|N\left(\frac{\rho}{\beta}-\gamma\right)\right| \geqslant 1
$$

for every algebraic integer γ in \mathbb{K}, since every algebraic number in K may be expressed as the quotient of two algebraic integers in $K_{\text {; }}$ thus

$$
|N(\rho-\beta \gamma)| \geqslant|N(\beta)|
$$

for every algebraic integer γ in K. Hence, if $M(K) \geqslant 1$, the field has no Euclidean Algorithm.

Thus

K has a Euclidean Algorithm if and only if $M(\mathbb{K})<1$ We see that a sufficient condition for the existence of a Euclidean Algorithm is

$$
M\left(L_{1}, \cdots, L_{n}\right)<1
$$

If $M(K, \alpha) \geqslant 1$ for some algebraic number α in K, immediately $M(K) \geqslant 1$; thus the nonexistence of a Euclidean Algorithm in on algebraic number field may be established by finding a single algebraic number α in K for which $K(K, \alpha) \geqslant 1$.
I. 5 The question of a Euclidean Algorithm in complex quadratic fields was relatively easily answered, a proof is given in (22) of the fact that the complex quadratic field $\mathbb{K}(\sqrt{ } \mathbb{I})$ has a Euclidean Algorithm only when $n=-1,-2,-3,-7,-11$.

For the real quadratic fields, the fact that the field $\mathbb{K}(\sqrt{ })$ of discriminant $d>0$ does not have a Euclidean Algorithm if d is sufficiently large was first established by a combination of several results, notably those of Berg (3), Behrbohn and Rédei (4), Erdös and Ko (15) and Heilbronn (24). Davenport (8) gave an independent proof of this result; the underlying principles of
the method employed are given in (9). Devenport's method is bosed on a consideration of the corresponding binary quadratic forms, the more general result given is thats if $g(x, y)=a s^{2}+b x y+c y^{2}$ is an indefinite binary quadratic form with real coefficients and discriainant $d=b^{2}-4 a c>0$, and $f(x, y)$ does not represent 0 for any integral values of x, y other than 0,0 , there exist real numbers $\boldsymbol{\xi}, \boldsymbol{h}$ with the property that

$$
|P(x+\xi, y \div h)|>\mathfrak{K}^{2} \sqrt{d_{0}}
$$

The proof is based on the construction of the point (ξ, h) from an infinite chain of reduced forms all equivalent to the original form. In (8) the reduction due to Hurwitz is used and leads to a specific constant, 2^{-7}, in plece of \boldsymbol{K}^{2}. Devenport then goes on to show that, when a, b, c are rational integers, ξ and η, when constructed as above, are rational, thus there is no Euclidean Algorithm if $\sqrt{ }>_{2}{ }^{7}$. Since there are only a Pinite number of real quedratic fields with bounded discriminant there are only a finite number of real quadratic fields with a Euclidean Algorithm. Davenport used this basic method to show that there is a Euclidean Algorithm in only a finite number of cubic fields with complex conjugate fields (11), and in only a finite number of complex quartic fields whose conjugate fields are also complex (12).
I. 6 Cassels (5) esteblishes the same general results as Davenport but with the following specific constents

For the real quadratic fields $M(\mathbb{K})>\frac{\Delta}{45.2}$
For the cubic Pields with complex conjugate fields $M(K)>\frac{|\Delta|}{420}$

For the complex quartic fields whose conjugate fields are also complex $H(\mathbb{K})>\frac{|\Delta|}{5300}$

Cassels in Pact establishes these results for the minime of the corresponding linear forms and uses the some besic method in each case. A further consideration and extension of the case of the cubic fields with comples conjugate fields is made in chapter 2 of this thesis.
X. 7 Chatland (7) gives a sumary of the results concerning the real quadratic fields and investigates those fields of discriminant less than $2^{1.4}$, Davenport's bound. He states that there is no Euclidean Algoritha in $\mathbb{K}(\boldsymbol{\gamma} I)$ unless

$$
\mathrm{m}=2,3,5,6,7,11,13,17,19,21,29,33,37,41,57,73,97
$$ except possibly when $m=193,241,313,337,457,601$. For these lest six cases Chatland and Davemport (6) show that there is no Euclidean Algorithm by a modification of Devenport's general method of (8). Inkeri (25) used a method based on that of Erdos and K_{o} (15) to give an independent proof of these results. The statenent thet $\mathbb{K}(\sqrt{ } 97)$ has a Euclidean Algorithm wes shown to be felse by Bernes and Swinnerton-Dyer (2). In (2) the inhomogeneous minima of the norm forms f_{m} of the fields $K(\sqrt{m})$ for $m \leqslant 101$, except for $n=46,57,67,71,73,86,94$, are obtained; for these last seven forms an upper bound for $M\left(f_{m}\right)$ is given. Godwin (20) modified the method of Barnes and Swinuerton-Dyer to give $M\left(\rho_{m}\right)$ for these seven forms which are the norm forms of those fields with a large fundemental unit.

The bisis of the method of (2) is to choose a value H^{\prime} slightly less than $h\left(f_{m}\right)$ and to show that for $\left(x_{1}, y_{1}\right)$ in all but a small sub-region R of a fundamental region modulo 1 in the (x, y)-plene there is an integer point $\left(x_{0}, y_{0}\right)$ such thet

$$
\left|x_{m}\left(x_{1}-x_{0}, y_{1}-y_{0}\right)\right| \leqslant M^{?}
$$

Having found such a region R , any point $\mathrm{P}^{*}=\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$ at which $M\left(f_{m}, P^{*}\right)>M^{\prime}$ must lie in R and also in its tronsform by the fundanental automorph E of $\mathrm{f}_{\mathrm{m}}(\mathrm{x}, \mathrm{y})$; hence points at which $M\left(f_{m}\right)$ is token must lie in the set R_{0} which is common to $\mathbb{E}^{\mathrm{n}}(\mathrm{R})$, reduced modulo 1, for all integral values of n_{t} This nethod is extended to the case of the cubic fields with complex conjugate fields in chapter 4 of this thesis.
I. 8 Ennola (14) used a nodification of Davenport's method of (8) to obtain the result that for the real quedratic Pields $M(\mathbb{K})>\frac{\Delta}{16+6 \sqrt{6}}>\frac{\Delta}{30.69^{\circ}}$. In this paper Ennola supplies a proof of the results concerning the existence of the Euclidean Algorithm in real quadratic fields which are stated above.
I. 9 The results outlined so far are concerned with those fields which possess only one fundanental unit; there are no corresponding general results for other fields. Heilbromn (23) proves that Euclid s Algorithm holds in only a Pinite number of cyclic cubic fields. Godwin (16) obtains on upper bound for the inhoagoneous minimum of some totally real cubic norm forms, which gives rise to the fact that there is a Euclidean Algorithm in those fields of discriminant $49,81,148,169,229,257,316$, and 361 ; an
upper loound is also supplied for the inhorogeneous minimum of the Pield of diseriminant 321 which was shown to possess a Euclidean Algorithm by Smith, the result being quoted in (16) . Samet (26) extends the method of Bernes and Swinnerton-Dyer (2) to a special set of linear forms, those corresponding to the field of diseriminant 148, and shows that the inhomogeneous minimum is $\frac{1}{2}$ so that the field has a Euclidean Algorithm. In (27) Samet comsiders the family of fields defined by

$$
\begin{equation*}
\theta^{3}-a \theta^{2}-2 \theta-a=0 \tag{I. 4}
\end{equation*}
$$

where a is a large positive integer; $\theta+1, \theta-1$ are units with norms -1 and +1 respectively and the discriminant is $\Delta^{2}=4 a^{4}+13 a^{2}+32$. He assumes that $1, \theta, \theta^{2}$ is a basis for the field, which is the case if Δ^{2} has no squared factor other than 4 and $a \equiv 1,2,3(\bmod 4)$ e Then, if ξ, $\%, \zeta$ are the forms

$$
\begin{aligned}
& \xi=x+y \theta+z \theta^{2} \\
& h=x+y \phi+z \phi^{2} \\
& \xi=x+y \psi+z \psi^{2}
\end{aligned}
$$

where θ, ϕ, ψ are the roots of I. 4 , by using a modification of the method of Barnes and Swinnerton-Dyer, Sanet shows that for all sufficiently large a
(i) $u=\frac{1}{8} 0^{2} \quad$ if $a \equiv 2(\bmod 4)$ and this value is taken only at points $P \equiv\left(0,0, \frac{1}{2}\right)$
(ii) $H=\frac{1}{8} a^{2}\left(1-\frac{1}{a}\right)^{3}$ if $a \equiv 1$ or 3 (mod 4) and this value is taken only at points $P \equiv+\left(\frac{1}{2}, 0, \frac{1}{2}-\frac{1}{2 a}\right)$.

Smith (28) uses Heilloron's method to show that the only cyclic
cubic fields of discriminant $<10^{8}$ which may possess a Euclidean Algoritha are those of discriminaits $7^{2}, 9^{2}, 13^{2}, 19^{2}, 31^{2}, 37^{2}$, $43^{2}, 61^{2}, 67^{2}, 73^{2}, 103^{2}, 109^{2}, 127^{2}$ and 157^{2}. He then goes on to use the method of Barnes and Swinnerton-Dyer (2), es extended by Samet (26), to give the values of the inhomogeneous minime of the fields of discriminents $13^{2}, 19^{2}, 31^{2}, 37^{2}, 43^{2}$, and 73^{2} and to show that the fields of discriminents 61^{2} and 67^{2} possess a Euclideen Algorithme Davenport (10) had previously obtained the values of the inhomogeneous minima of the fields of discriminents 7^{2} and 9^{2}, and in this woy shown that they possess a Eaclidean Algorithm, also, as stated above, Godwin (16) had shown thet the fields of discriminants $13^{2}(=169)$ and $19^{2}(=361)$ are Euclidean. Smith shows that the inhomogeneous minima of the fields of discriminants $13^{2}, 19^{2}, 31^{2}, 37^{2}$ and 43^{2} are less than 1 , and so the fields possess a Euclidean Algorithm; but that of the field of discriminant 73^{2} is $\frac{9}{8}$, greater then 1 , so that this field does not possess a Euclidean Algorithm.

For fields of higher degree, Godwin (17) has shown that the totally real quertic fields with discriminents $725,1125,1600$, 1957, 2225, 2304, 2624, 2777 and 4205 possess a Euclidean Algorithm, as does the totally real quintic field $\mathbb{K}(2 \cos (2 \pi / 11))$, which is the totally real quintic field of least discriminant.
I. 10 I now turn to the cubic fields with complex conjugate fields, which are the subject of this thesis. Godwin (18) adapted his method of (16) and (17) to show that the pields of discriminants
$-23,-31,-44,-59,-76,-83,-87,-104,-107,-108,-116,-135$, $-139,-140,-152$ possess a Euclidean Algorithm. 15 The basis of this method is to show that, if a polynomial $P(x)$ has zeros which are not too far apart, the set of x for which $P(x)<1$ contains e complete set of residues modulo 1. The fifteen fields shown to possess a Euclidean Algorithm are the first fifteen in the table of cubic fields with complex conjugate fields of Angell (1); the method yields no result for other fields, but by the methods described in this thesis I have shown that the next tiro fields in the table, those of discriminants -172 and -175 , also possess a Euclidean Algorithm. The next, that of discriminant -199, hes inhomogeneous minimum 1 ; thus, it is the first in the table which does not possess a Euclidean Algorithm.
I. 11 In the following $(1, \theta, \lambda)$ is an integral basis for the cubic number field $K=\mathbb{K}(\theta)$, where θ is the real zero of the polynomial $x^{3}-\frac{-e x^{2}+b x-c \text {. The field has discriminant }}{}$ D where $D<0$, and, if l is the index of the polynomial over the field,

$$
\lambda=\frac{\theta^{2}+t \theta+s}{l} \quad 0 \leqslant t, s<\ell
$$

where t and s are rational integers.
ϵ is the fundamental unit of K satisfying $0<\epsilon<1$ and has algebraic conjugates $\epsilon^{\prime}, \epsilon^{\prime \prime}=\bar{\epsilon}^{\prime}$.

Let θ have algebraic conjugates $\phi, \bar{\phi}_{\dot{y}}$ and λ have algebraic conjugates $\psi, \bar{\psi}$ then $\psi=\frac{\phi^{2}+t \phi+s}{\ell}$. Throughout the thesis, the terms number and integer without
qualification mean cubic number and cubic integer. 0nly fields of class number 1 will be considered, since this is a necessary condition for the existence of a Buclidean Algorithm.

Part I describes the theory of the methods of investigation. Chapter 1 gives a summary of the properties of relative minima, since these will be required in later chapters. Chapter 2 gives an extension of a result of Cassels. Chapter 3 considers the fact: if there is no integer of K of norm of absolute value less than $|N(\beta)|$, congruent to ρ modulo β for two integers β and $\{$ in K, where β is non-zero, there is no Euclidean Algorithm in $K_{\%}$ it is shown how this fact may be formulated into a practicable method to show that a field does not possess a Euclidean Algorithm. Chapter 4 shows how the method of Bernes and Swinuerton-Dyer may be adapted to show that a field possesses a Euclidean Algorithm. Chapter 5 shows how the minimum of a point of the form $\frac{\alpha}{1-\epsilon^{n}}$, where α is an integer of K, may be computed. Chapter 6 uses one particular Pield to demonstrate each of the methods employed, and describes the limitations of each of these methods.

Part II gives deseriptions of the actwal programs used, and contains a table showing the results obtained.

SL3.t「2\%

 PART I

Fe Laik

THE THEORY OF THE METHODS OF INVESTIGATION.

she A4

$$
\begin{aligned}
& \rho_{i}(\hat{\omega})=1 \geq 1 \\
& \rho_{1}(\hat{\omega})=x_{0}=\frac{8}{3}
\end{aligned}
$$

$$
\left.T=\left\{\hat{A} \hat{A} \in+\rho_{j}(\hat{\Delta})<\rho_{j}(\hat{\alpha}\}\right\} \quad \hat{a} a z=\hat{B}\right\}
$$

CHAPTER 1

relative minima and meals whose norm is a rational prime.
1.1 We give a short summery of certain properties of relative minima, in particular in the context of fields K which consist of elements $x+y \theta+z \theta^{2}$ where x, y, z are rational numbers and θ is the real root of a cubic equation of negative discriminant; relative minima will be used in some later chapters.

Consider the space B with general point $(x, y+i z)$, where x, y, z are elements of the real number field. We define the space A to be the set of points $\hat{\alpha}=(\delta(\theta), \delta(\phi))$ where $\alpha=\delta(\theta)=d_{1} \theta^{2}+d_{2} \theta+d_{3}$ is in K, and d_{1}, d_{2}, d_{3} are rational real numbers; the isomorphism $\alpha \leftrightarrow \hat{\alpha}$ then establishes an isomorphism $K \leftrightarrow A$. We have $B \supset A$ and addition, subtraction, multiplication and division are defined component-rise in B and in A.
1.2 If $\hat{\omega}=(x, y+i z)$ is in B, the directional parameters ρ_{1}, ρ_{2} are defined by

$$
\begin{aligned}
& \rho_{1}(\hat{\omega})=|x| \\
& \rho_{2}(\hat{\omega})=y^{2}+z^{2}
\end{aligned}
$$

From their definitions ρ_{1} and ρ_{2} are multiplicative. The normed body of a point $\hat{\alpha}$ in A is defined to be the region $V \subset B$ given by

$$
V=\left\{\hat{\omega}: \hat{\omega} \in B, p_{j}(\hat{\omega})<p_{j}(\hat{\alpha}) ; j=1,2\right\} \text {. }
$$

1.3 If \boldsymbol{f} is an ideal of \mathbb{K} and hes typical element $\alpha, \hat{\boldsymbol{j}}$ is
the ideal lattice in A with typical point $\hat{\alpha}_{0}$ = Multiplicative lattices $\hat{\wp}$ in A are those lattices for which the product of any two points of \hat{g} also belongs to $\hat{\xi}$. The ideal lattices are multiplicative.

If $\hat{\alpha}$ is in $\hat{\boldsymbol{\phi}}, \hat{\rho}^{\prime}=\{\hat{\alpha} \hat{\gamma}: \hat{\gamma} \in \hat{\oint}\}$ is also in $\hat{\phi}$ and is a multiplicative lattices point-lattice multiplication is defined by

$$
\hat{\xi}^{\prime}=\hat{\alpha} \hat{S}
$$

If there exists a multiplicative lattice $\hat{\xi}^{\prime \prime}$ such that $\hat{\oint}=\hat{\alpha} \hat{\xi}^{\prime \prime}$, point-lattice division is defined by

$$
\hat{\oint}^{\prime \prime}=\frac{1}{\hat{\alpha}} \hat{\jmath}
$$

1.4 A point of an ideal lattice $\hat{\xi}$ in A is called a relative minimum of $\hat{\xi}$ if its normed body contains no other point of $\hat{\boldsymbol{\xi}}$ except the origin.

For a relative minimum $\hat{\Omega}$ of $\hat{\xi}$ we define the region $\mathrm{V}(\hat{\Omega}, \mathrm{d})$ by

$$
v(\hat{\Omega}, d)=\left\{\begin{array}{l}
\hat{\alpha}: p_{j_{1}}(\hat{\alpha})<p_{j_{1}}(\hat{\Omega}) \quad j_{1}=1,2, \\
: p_{j_{2}}(\hat{\alpha}) \leqslant p_{j_{2}}(\hat{\Omega})+d \\
d \text { a real non-negative number, } j_{2}=1,2, j_{2} \neq j_{1}
\end{array}\right\}
$$

From Minkowski's convex body theorem there is a lattice point $\hat{\Omega}_{1}$ which lies in $V(\hat{\Omega}, d)$ for some $d>0 ;$ and if $\hat{\Omega}_{1}$ is the first such point obtained by increasing d from $0, \hat{\Omega}_{1}$ is also a relative minimum of $\hat{\boldsymbol{\zeta}}$. If the point $\hat{\gamma}$ satisfies the conditions stated above for $\hat{\Omega}_{1},-\hat{\gamma}$ also satisfies them. $\quad \hat{\gamma}^{\prime}=(x, y+i z)$ is chosen to be $\hat{\gamma}$ or $-\hat{\gamma}$ so that

$$
\begin{array}{cl}
x>0 & \text { if } j_{1}=2, j_{2}=1 \\
-\frac{\pi}{2}<\arg (y+i z) \leqslant \frac{\pi}{2} & \text { if } j_{1}=1, j_{2}=2
\end{array}
$$

in this way $\hat{\Omega}_{1}=\hat{\gamma}^{\prime}$ is uniquely defined, and will be said to be the relative minimum adjacent to $\hat{\Omega}$ in the $\boldsymbol{\rho}_{j_{2}}$ direction.

By this means a two-way chain of relative minima * * $\hat{\Omega}_{-12} \hat{\Omega}_{09} \hat{\Omega}_{1,} \hat{\Omega}_{2}$. may be defined. If $\hat{\Omega}_{1,} \hat{\Omega}_{19}$. . are relative minima of $\hat{\boldsymbol{j}}_{\boldsymbol{j}} \Omega_{1,} \Omega_{\Lambda}$, . are said to be relative minima of ξ.

A more detailed account of relative minima may be found in (13).
1.5 From now on, in this chapter, we restrict the consideration to the case when K is a cubic field of negative discriminant. In this case, if α is in K, so that $\hat{\alpha}$ is in A, and $N(\hat{\alpha})$ is defined by

$$
\begin{aligned}
& N(\hat{\alpha})=p_{1}(\hat{\alpha}) p_{2}(\hat{\alpha}), \\
& N(\hat{\alpha})=|N(\alpha)| .
\end{aligned}
$$

LEMMA 1. 1

Given an ideal $\}$, if Ω_{1}, Ω_{2}, . .,Ω_{j}, . are successive relative minima of $\$$, and \oint is divided by these relative minima to give the ideals

$$
g_{1}=\frac{f}{\Omega_{1}} ; \quad g_{2}=\frac{f}{\Omega_{2}} ; \ldots, g_{j}=\frac{f}{\Omega_{j}} ; \ldots,
$$

for some k, \oint_{k} is the unit ideal $(1, \theta, \lambda)$ and Ω_{k} produces \oint. PROOF OF LEMMA 1.1

As stated in the introduction, this thesis considers only cubic fields of negative discriminant with class number 1 ; thus there exists an integer α_{1} for which $\}=\left(\alpha_{1}\right)$.

We suppose, first of all, that α_{1} is not a relative minium of S, we may find α_{2}, a relative minimum of g, such that

$$
p_{j_{1}}\left(\hat{\alpha}_{2}\right)<p_{j_{1}}\left(\hat{\alpha}_{1}\right)
$$

and

$$
p_{j_{2}}\left(\hat{\alpha}_{2}\right)<p_{j_{2}}\left(\hat{\alpha}_{1}\right)
$$

which implies
$\left|N\left(\alpha_{2}\right)\right|=N\left(\hat{\alpha}_{2}\right)=\rho_{j_{1}}\left(\hat{\alpha}_{2}\right) \rho_{j_{2}}\left(\hat{\alpha}_{2}\right)<\rho_{j_{1}}\left(\hat{\alpha}_{1}\right) \rho_{j_{2}}\left(\hat{\alpha}_{1}\right)=N\left(\hat{\alpha}_{1}\right)=\left|N\left(\alpha_{1}\right)\right|$,
this contradicts the choice of α_{1} as an integer which produces $\}$.
From Voronoi, as described in (13), there are only a finite number of distinct ideals among $\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \ldots, \boldsymbol{f}_{j}, \ldots$, so we have, for some rational integer f,

$$
\xi_{i}=g_{i+f}, \quad g_{i} \neq g_{i+j} \quad \text { for } 0<j \leq f-1
$$

so that $\frac{1}{\Omega_{i}}=\frac{1}{\Omega_{i+f}}$
which gives $\frac{\Omega_{i f f}}{\Omega_{i}}=\epsilon$.
Since α_{1} is a relative minimum of $\}$, for some rational integers k, k_{1} we hove

$$
\Omega_{k}=\epsilon^{k_{1}} \alpha_{1}
$$

so that Ω_{k} produces $f_{\text {. }}$

$$
\begin{aligned}
&\text { Also, if }\}_{k}=\frac{g}{\Omega_{k}} \\
& N\left(\xi_{k}\right)=N\left(\frac{g}{\Omega_{k}}\right)=1,
\end{aligned}
$$

where the norm of an ideal is the norm of any integer which produces it, thus f_{k} is the unit ideal.
1.6 We now turn to a description of the method used for computing, for any rational prime p, the ideals of norm p, the relative minima of each of these ideals and the integers which produce the ideals. The method described follows that used by Angell (1)
for finding the ideals and corresponding relative minima for rational integers which are not necessarily prime.

Any ideal of norm p may be represented in the form

$$
\xi=\left(i_{1}, i_{2} \theta+i_{3}, i_{4} \lambda+i_{5} \theta+i_{6}\right)
$$

where $i_{1}, i_{2}, i_{3}, i_{4}, i_{5}, i_{6}$ are positive rational integers, $i_{1}, i_{2} \cdot i_{4}=p$ and from the additive property of ideals $0 \leqslant i_{2}<i_{1}$, $0 \leqslant i_{4}<i_{1}, 0 \leqslant i_{5}<i_{2}, \theta \leqslant i_{3}<i_{1}, 0 \leqslant i_{6}<i_{1}$. Since p is prime we have $i_{1}=p, i_{2}=1, i_{4}=1, i_{5}=0$, so the ideal may be represented in the form

$$
\mathcal{g}=\left(p, \theta+i_{3}, \lambda+i_{6}\right) \quad \text { where } 0 \leqslant i_{3}<p, 0 \leqslant i_{6}<p
$$

Thus, given p, for each pair of values, $\boldsymbol{i}_{3}, \boldsymbol{i}_{6}$, in the given range, a test is made for

$$
\oint=\left(p, \theta+i_{3}, \lambda+i_{6}\right)
$$

being an ideal. Automatically the additive property of ideals is held by $\}$, now it remains to show that all the linear combinations of $p, \theta+i_{3}, \lambda+i_{6}$, when multiplied by an integer of the field, are in \mathcal{f}. This is done by checking that $p \theta, p \lambda$, $\theta^{2}+i_{3} \theta, \theta \lambda+i_{3} \lambda, \lambda \theta+i_{6} \theta, \lambda^{2}+i_{6} \lambda$ all belong to \oint_{0} If all the conditions are satisfied than \mathcal{f} is an ideal of norm p. We note that, since $N(p)=p^{3}$, there are at most three distinct ideal factors of (p), other than the mit ideal, and so at most three distinct ideals of norm p.
1.7 The method of determination of the relative minima of the ideals follows the steps of Voronoi's algorithm as enumerated
in (13). We have the ideal $\boldsymbol{\beta}=\left(p, \theta+i_{3}, \lambda+i_{6}\right)$, for application
of the algorithm we consider the ideal $\frac{f}{p}=\left(1, \frac{\theta+i_{3}}{p}, \frac{\lambda+i_{6}}{p}\right)$ which under the transformation $\mathcal{\beta}=3 \boldsymbol{\theta}-\mathrm{a}$, so that $\boldsymbol{q}^{3}=q \boldsymbol{q}+\mathrm{n}$ for some rational integers q and n, becomes

$$
\left(1, \frac{m_{1}+m_{2} \xi+m_{3} \xi^{2}}{i_{g}}, \frac{n_{1}+n_{2} q+n_{3} \xi^{2}}{i_{g}}\right)
$$

for some rational integers $m_{1}, m_{2}, m_{3}, n_{1}, n_{2}, n_{3}, i_{g}$. Following the steps of the algorithm we obtain a basis $\left(1, \theta_{g}, \theta_{h}\right)$ for $\frac{1}{p}$, where θ_{g} is the relative minimum of $\frac{g}{p}$ adjacent to 1 in the P_{2} direction this basis is said to be the reduced basis of the lattice. The ideal $\frac{f}{p}$ is divided by θ_{g} to give the ideal with basis $\left(1, \frac{\theta_{h}}{\theta_{g}}, \frac{1}{\theta_{g}}\right)$ and the process is repeated to obtain a reduced basis for this ideal.

In this way we obtain a sequence of ideals $f_{1}=\frac{f}{p}, f_{2}=\frac{f_{1}}{\theta_{9}^{(1)}}, \ldots$, $S_{k+1}=\frac{S_{k}}{\theta_{g}^{(k)}}$ with reduced bases
$\left(1, \theta_{g}^{(1)}, \theta_{h}^{(1)}\right)=\left(1, \theta_{g}, \theta_{h}\right),\left(1, \theta_{g}^{(2)}, \theta_{h}^{(2)}\right), \ldots,\left(1, \theta_{g}^{(k+1)}, \theta_{h}^{(k+1)}\right)$ respectively, where S_{k+1} is the unit ideal. The reduced basis of the unit ideal is previously found by applying one cycle of Voronoi's algorithm to the ideal $(1, \theta, \lambda)$.

From this we see that

$$
\oint=\left(p \prod_{i=1}^{k} \theta_{j}^{(i)}\right)
$$

and, when $p=1$, the relative minima of the field are given by

$$
1, \theta_{g}^{(1)}, \theta_{g}^{(1)} \theta_{g}^{(2)}, \theta_{g}^{(1)} \theta_{g}^{(2)} \theta_{g}^{(3)}, \ldots \ldots
$$

so that \mathcal{I} is the integral lattice of the field; in this case $\prod_{i=1}^{k} \theta_{g}^{(i)}=\epsilon \quad$ the fundamental unit of the field.

CHAPTER 2

AN ADAPTATION OF A RESULT OF CASSELS.
2.1 Let $K(\theta)$ be the cubic field of discriminant $D=-\Delta^{2}$,
if θ is a zero of the polynomial $P(x)$ let l be the index of P over the field. Define the space a to consist of points (ξ, η, ξ) where $\xi \in K(\theta)$ and $\xi \pm i \eta$ are the algebraic conjugates of ξ; let $(\xi, \boldsymbol{\eta}, \boldsymbol{\xi})$ be said to be an integer point of a when $\{$ is an integer of $K(\theta)$, then the integer points of a form a lattice $\mathcal{K}_{\boldsymbol{\theta}}$.

Cassels (5) shows thet there exists a point (ξ, η, ξ)
of a such that

$$
\min \left|\xi_{0}\left(\xi_{0}^{2}+\eta_{0}^{2}\right)\right|>\frac{2|\Delta|}{81(5+3 \sqrt{3})}=\frac{1 \Delta \mid}{412.944 . \ldots} \quad 2.1
$$

where the minimum is over all points $\left(\xi_{0}, \eta_{0}, \xi_{0}\right) \equiv(\xi, \eta, \rho)(\bmod 1)$.
In the following it will be shown that, for any field for which $l=1$, a value M, which depends on the relative minima of the field, may be found such that there exists a point $(\xi, \eta, \boldsymbol{\rho})$ of a such that

$$
\min \left|\xi_{0}\left(\xi_{0}^{2}+h_{0}^{2}\right)\right|>\frac{2|D|}{81(9+5 \sqrt{3}) M}=\frac{|D|}{715.24 \ldots M} \quad 2.2
$$

where the minimum is over all points $\left.\left(\xi_{0}, h_{0}, \xi_{0}\right) \equiv(\xi, \eta\},\right)(\bmod 1)$. For any such field

$$
\frac{2|D|}{81(9+5 \sqrt{3}) M} \geqslant \frac{2|\Delta|}{81(5+3 \sqrt{3})}
$$

we note that

$$
81(9+5 \sqrt{3})=\sqrt{3} .81(5+3 \sqrt{ } 3) .
$$

Using this result I heve investigated two fields of diseriminant such that no result concerning the Euclideon Algorithm can be
obtained using Cassel' result; both of these fields were shown to possess no Euclidean Algorithms.

In the more general case when \boldsymbol{l} is not equal to 1 we may establish that there exists a point (ξ, η, ρ) of a such that

$$
\min \left|\xi_{0}\left(\xi_{0}^{2}+h_{0}^{2}\right)\right|>\frac{2|D| l^{2}}{81(9+5 \sqrt{ } 3) M^{*}},
$$

where the minimum is over all points $\left(\xi_{0}, \eta_{0}, \eta_{0}\right) \equiv(\xi, \eta, \xi)(\bmod 1)$, for a particular value M^{*} which depends on the field in question. However, we cannot establish a relationship with Cassel' result similar to 2.3.
2. 2 Suppose that \mathcal{H} is any three dimensional lattice which contains an infinite sequence of points $P_{n}=\left(\beta_{n}, \gamma_{n}, \alpha_{n}\right)$ such the

$$
\begin{aligned}
\beta^{2}\left|\alpha_{n}\right| & >\left|\alpha_{n+1}\right| \\
\left|\beta_{n}^{2}+\gamma_{n}^{2}\right| & <\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right|
\end{aligned}
$$

LEMMA 2.1

$$
\text { Define } \quad M=\max _{n}\left|\alpha_{n}\left(\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right)\right|
$$

then, given p, q such that $p q^{2} \geqslant M$, there is a point of the lattice, $P=(\beta, \gamma, \alpha)$, not equal to $(0,0,0)$, such that

$$
\begin{aligned}
\left|\beta^{2}+\gamma^{2}\right| & \leqslant q^{2} \\
|\alpha| & \leqslant p
\end{aligned}
$$

This result is best possible for the value of the lower bound of pq^{2} when the sequence $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ is a sequence of relative minima of the lattice and is periodic. PROOF OF LEMMA 2.1

Given p, we define n by

$$
\left|\alpha_{n}\right|>p \geqslant\left|\alpha_{n+1}\right|
$$

which is possible since the sequence $\left\{\alpha_{n}\right\}$ is decreasing. If
then

$$
\begin{aligned}
q^{2} & <\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right| \\
p q^{2} & <\left|\alpha_{n}\right|\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right| \leqslant M
\end{aligned}
$$

which is false. Hence

$$
q^{2} \geqslant\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right|
$$

and $\left(\beta_{n+1}, \gamma_{n+1}, \alpha_{n+1}\right)$ is the required point.
If the sequence $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ is a sequence of relative minima of the lattice, for any rational integer n there is no point (β, γ, α) for which
and

$$
\begin{aligned}
|\alpha| & <\left|\alpha_{n}\right| \\
\left|\beta^{2}+\gamma^{2}\right| & <\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right| .
\end{aligned}
$$

If the sequence is periodic, there exists a rational integer m for which

$$
M=\alpha_{m}\left(\beta_{m+1}^{2}+\gamma_{m+1}^{2}\right)
$$

Let $M^{\boldsymbol{\prime}}=M-\delta$ for some positive real number δ and let p, q be such that

$$
\begin{aligned}
& M^{\prime} \leq p q^{2}<M \\
& p<\left|\alpha_{m}\right| \\
& q<\left|\beta_{m+1}^{2}+\gamma_{m+1}^{2}\right|^{\frac{1}{2}}
\end{aligned}
$$

then any point (β, γ, α) satisfying

$$
\left|\beta^{2}+\gamma^{2}\right| \leqslant q^{2} \quad \text { and } \quad|\alpha| \leqslant p
$$

must also satisfy

$$
\left|\beta^{2}+\gamma^{2}\right|<\left|\beta_{m+1}^{2}+\gamma_{m+1}^{2}\right| \text { and }|\alpha|<\left|\alpha_{m}\right|
$$

which contradicts the definition of $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ as a sequence of relative minima. Hence H is best possible in this case.
2.3 Let the linear forms L_{1}, L_{2}, L_{3} be defined by

$$
\begin{align*}
& \mathrm{L}_{1}=\mathrm{x}+\mathrm{y} \boldsymbol{\theta}+z \boldsymbol{\lambda} \\
& \mathrm{~L}_{2}=\mathrm{x}+\mathrm{y} \phi+z \psi \\
& \mathrm{~L}_{3}=\mathrm{z}+\mathrm{y} \bar{\phi}+z \bar{\psi}
\end{align*}
$$

where x, y, z are rational, so that L_{2} and $L_{3}=\bar{L}_{2}$ are the algebraic conjugates of L_{1}.

The matrix

$$
\left(\begin{array}{lll}
1 & \theta & \lambda \\
1 & \phi & \psi \\
1 & \bar{\phi} & \bar{\psi}
\end{array}\right)
$$

has adjoint

$$
\left(\begin{array}{ccc}
\phi \bar{\psi}-\bar{\phi} \psi & \bar{\phi} \lambda-\theta \bar{\psi} & \theta \psi-\phi \lambda \\
\psi-\bar{\psi} & \bar{\psi}-\lambda & \lambda-\psi \\
\bar{\phi}-\phi & \theta-\bar{\phi} & \phi-\theta
\end{array}\right)
$$

Define the linear forms H_{1}, M_{2}, M_{3} in the rational variables u, v, w by

$$
\begin{aligned}
& M_{1}=\frac{1}{i}\{(\phi \bar{\psi}-\bar{\phi} \psi) u+(\psi-\bar{\psi}) v+(\bar{\phi}-\phi) w\} \\
& M_{2}=\frac{1}{i}\{(\bar{\phi} \lambda-\theta \bar{\psi}) u+(\bar{\psi}-\lambda) v+(\theta-\bar{\phi}) w\} \\
& H_{3}=\frac{1}{i}\{(\theta \psi-\phi \lambda) u+(\lambda-\psi) v+(\phi-\theta) w\}
\end{aligned}
$$

then H_{1} is real, $\mathrm{H}_{2}, \mathrm{M}_{3}$ are conjugate complex and are the algebraic conjugates of $M_{1} ; M_{1}, M_{2}, M_{3}$ have determinant Δ^{2}. We also have

$$
M_{1} L_{1}+H_{2} L_{2}+M_{3} L_{3}=(x u+y v+z w) \Delta
$$

These definitions of $M_{1}, H_{2}, M_{3}, L_{1}, L_{2}, L_{3}$ are then the same as those given for the ternary cubic case in Cassel (5).
2.4 There are rational integers $a_{\lambda}, b_{\lambda}, c_{\lambda}, l_{1}, l_{2}, l_{3}, t_{1}$, $t_{2}, t_{3}, p_{1}, p_{2}, p_{3}$ such that $\lambda, \psi, \bar{\psi}$ are the zeros of

$$
x^{3}-a_{\lambda} x^{2}+b_{\lambda} x-c_{\lambda}
$$

$$
2.8
$$

and

$$
\begin{aligned}
& \lambda^{2}=l_{1} \lambda+l_{2} \theta+l_{3} \\
& \theta^{2}=t_{1} \lambda+t_{2} \theta+t_{3}
\end{aligned}
$$

$$
\theta \lambda=p_{1} \lambda+p_{2} \theta+p_{3} ;
$$

also, equalities corresponding to 2.8 hold for ϕ, ψ and for $\bar{\phi}, \bar{\psi}$.
We have $\phi \bar{\psi}-\bar{\phi} \psi=(\phi-\bar{\phi})\left(a_{\lambda}-\lambda\right)+p_{1}(\bar{\psi}-\psi)+p_{2}(\bar{\phi}-\phi)$
and

$$
\begin{aligned}
(\phi+\bar{\phi})(\phi-\bar{\phi}) & =t_{1}(\psi-\bar{\psi})+t_{2}(\phi-\bar{\phi}) \\
\psi-\bar{\psi} & =(\bar{\phi}-\phi)\left\{\frac{\theta-a_{2}+t_{2}}{t_{1}}\right\}
\end{aligned}
$$

thus
and so

$$
\left.m_{1}=\frac{(\bar{\phi}-\phi}{i}\right)\left\{u\left(\lambda-a_{\lambda}\right)+\left(v-u p_{1}\right) \frac{\left(\theta-a_{1}\right)}{t_{1}}+w+u p_{2}+\frac{\left.\left(v-u p_{1}\right)_{t_{2}}\right\}}{t_{1}}\right\}
$$

with similar expressions for M_{2} and M_{3}.
Thus the linear forms M_{1}, M_{2}, M_{3} may be given by

$$
\begin{align*}
& u_{1}=\frac{(\bar{\phi}-\phi)}{i t_{1}}\left\{u \lambda t_{1}+v \theta+w\right\} \\
& u_{2}=\frac{(\theta-\phi}{i t_{1}}\left\{u \psi t_{1}+v \phi+w\right\} \\
& u_{3}=\frac{(\phi-\theta)}{i t_{1}}\left\{u \bar{\psi} t_{1}+v \bar{\phi}+w\right\}
\end{align*}
$$

and the set of points $\left(\frac{M_{2}+M_{1}}{2}, \frac{M_{2}-M_{3}}{2 i}, M_{1}\right)$, for integer values of u, V, W, forms a three dimensional lattice \mathbb{K}_{T}. We also note that $t_{1}=l$, the index of P over $K_{\text {. }}$
2.5 The general case when l may take any value is discussed in section 2.10.

We now restrict the consideration to the case when $l=1$. We have $\lambda=\theta^{2}, \psi=\phi^{2}$ and $\bar{\psi}=\bar{\phi}^{2}$ thus

$$
\begin{aligned}
& M_{1}=\frac{(\bar{\phi}-\phi)}{i}\left\{u \theta^{2}+v \theta+w\right\} \\
& M_{2}=\frac{(\theta-\bar{\phi})}{i}\left\{u \phi^{2}+v \phi+w\right\} \\
& M_{3}=\frac{(\phi-\theta)}{i}\left\{u \bar{\phi}^{2}+v \bar{\phi}+w\right\},
\end{aligned}
$$

then (β, γ, α), where $\alpha, \beta \pm i \gamma$ are values of M_{1}, M_{2}, M_{3} respectively, is a point of $\mathcal{K}_{\boldsymbol{T}}$ if and only if there is a point $(\xi, \eta\}$,$) of K_{\theta}$ such that

$$
\alpha=\frac{(\bar{\phi}-\phi)}{i} \xi ; \quad \beta+i \gamma=\frac{(\theta-\bar{\phi})}{i}(\xi+i h) ; \quad \beta-i \gamma=\frac{(\phi-\theta)}{i}(\xi-i \eta) .
$$

In the field K we may find on infinite sequence of relative minima $\left\{\rho_{n}\right\}$ which corresponds to an infinite sequence of points of $\mathbb{K}_{\theta},\left\{\xi_{n}, h_{n}, \rho_{n}\right\}$ for which

$$
\begin{aligned}
\left|\xi_{n-1}\right| & >\left|\xi_{n}\right| \\
\left|\xi_{n-1}^{2}+\eta_{n-1}^{2}\right| & <\left|\xi_{n}^{2}+\eta_{n}^{2}\right| .
\end{aligned}
$$

Thus there is a sequence of points $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ in K_{T}, for which $\alpha_{n}=\frac{(\bar{\phi}-\phi)}{i} \zeta_{n}$
so that $\left|\alpha_{n}\right|=\left|\frac{\Phi-\phi}{i}\right|\left|\xi_{n}\right| \geq\left|\frac{\Phi-\phi}{i}\right|\left|\xi_{n+1}\right|=\left|\alpha_{n+1}\right| ;$
that is

$$
\left|\alpha_{n}\right|>\left|\alpha_{n+1}\right| .
$$

Also

$$
\begin{aligned}
& \beta_{n}+i \gamma_{n}=\frac{(\theta-\bar{\phi})}{i}\left(\xi_{n}+i h_{n}\right) \\
& \beta_{n}-i \gamma_{n}=\frac{(\phi-\theta)}{i}\left(\xi_{n}-i \eta_{n}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
\left|\beta_{n}^{2}+\gamma_{n}^{2}\right|=|(\theta-\bar{\phi})(\phi-\theta)|\left|\xi_{n}^{2}+\eta_{n}^{2}\right| & <|(\theta-\bar{\phi})(\phi-\theta)|\left|\xi_{n+1}^{2}+\eta_{n+1}^{2}\right| \\
& =\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right| ;
\end{aligned}
$$

that is

$$
\left|\beta_{n}^{2}+\gamma_{n}^{2}\right|<\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right| .
$$

We also have the sequence $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ a sequence of relative minima of the lattice K_{T}; if not, for some integer n there is a point (β, γ, α) of \mathbb{K}_{T} such that

$$
\begin{aligned}
\left|\beta^{2}+\gamma^{2}\right| & \leq\left|\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right| \\
|\alpha| & <\left|\alpha_{n}\right|
\end{aligned}
$$

which implies that there is a point (ξ, h, ξ) of \mathbb{K}_{θ} for which

$$
\begin{aligned}
\left|\xi^{2}+\eta^{2}\right| & \leqslant\left|\xi_{n+1}^{2}+h_{n+1}^{2}\right| \\
|\xi| & <\left|\xi_{n}\right|
\end{aligned}
$$

which contradicts the definition of $\left\{\xi_{n}, h_{n} \rho \xi_{n}\right\}$ as a sequence of relative minima of K_{θ}.

Now let

$$
\begin{aligned}
M & =\max _{n}\left|\rho_{n}\left(\xi_{n+1}^{2}+\eta_{n+1}^{2}\right)\right| \\
M_{T} & =\max _{n}\left|\alpha_{n}\left(\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right)\right| \\
& =\operatorname{maxax}_{n}|(\bar{\phi}-\phi)(\theta-\bar{\phi})(\phi-\theta)|\left|\zeta_{n}\left(\xi_{n+1}^{2}+h_{n+1}^{2}\right)\right| \\
& =|\Delta| \max _{n}\left|\zeta_{n}\left(\xi_{n+1}^{2}+\eta_{n+1}^{2}\right)\right| \\
& =|\Delta| M .
\end{aligned}
$$

2.6 Define E by

$$
E(\xi, \eta, \xi)=\left(\xi^{\prime}, h^{\prime}, \xi^{\prime}\right)
$$

when

$$
\epsilon\}=\xi^{\prime}
$$

$$
\begin{aligned}
& \epsilon^{\prime}(\xi+i \eta)=\left(\xi^{\prime}+i \eta^{\prime}\right) \\
& \epsilon^{\prime \prime}(\xi-i h)=\left(\xi^{\prime}-i h^{\prime}\right),
\end{aligned}
$$

then for some rational integer $\boldsymbol{f}>0$ and every rational integer n

$$
\mathbb{E}\left(\xi_{n}, \eta_{n}, \zeta_{n}\right)=\left(\xi_{n+f}, h_{n+f}, \xi_{n+f}\right) \quad \text { (see chapter 1) }
$$

so that

$$
\epsilon S_{n}=S_{n+f},
$$

and if

$$
\rho_{\epsilon}^{2}=\epsilon^{\prime} \epsilon^{\prime \prime},
$$

$$
\rho_{\epsilon}^{2}\left(\xi_{n}^{2}+h_{n}^{2}\right)=\left(\xi_{n+f}^{2}+h_{n+f}^{2}\right)
$$

for every rational integer n.
Thus we have

$$
\begin{aligned}
\left|\xi_{n+f}\left(\xi_{n+1+f}^{2}+h_{n+1+f}^{2}\right)\right| & =\left|\epsilon \xi_{n} \rho_{\epsilon}^{2}\left(\xi_{n+1}^{2}+h_{n+1}^{2}\right)\right| \\
& =\left|\xi_{n}\left(\xi_{n+1}^{2}+h_{n+1}^{2}\right)\right|
\end{aligned}
$$

hence

$$
\mathbb{M}=\max _{n_{0} \leqslant n \leqslant n_{0}+f-1} 1 \xi_{n}\left(\xi_{n+1}^{2}+\eta_{n+1}^{2}\right) .
$$

Therefore, in calculating M only one loop of relative minima of K need be considered; we note that, since the sequence $\left\{\xi_{n}, \eta_{n}, \zeta_{n}\right\}$ is periodic, the sequence $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ is also periodic.

We now see that the sequence $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$ satisfies the conditions of lemma 2.1, hence, given p, q such that $p q^{2} \geqslant M_{T}$, there is a point of the lattice, (β, γ, α), not equal to $(0,0,0)$, such that

$$
\begin{aligned}
\left|\beta^{2}+\gamma^{2}\right| & \leqslant q^{2} \\
|\alpha| & \leqslant p
\end{aligned}
$$

thus, by definition of (β, γ, α), there exist integer values of u, v, w, not all zero, such that

$$
\left|m_{1}\right| \leqslant p, \quad\left|m_{2}\right|=\left|m_{3}\right| \leqslant q .
$$

2.7 We now have the following lemme corresponding to lemme 12 of (5).

LEMMA 2.2

Let $k>1$ be given. There is an infinite set of values $\alpha_{n}, \mu_{n}, \nu_{n}=\bar{\mu}_{n}$ of M_{1}, M_{2}, M_{3} corresponding to integer values u_{n}, v_{n}, w_{n} of u, v, w, as used in the expressions 2.6 , such that
(i) $\left|\alpha_{n} \mu_{n}^{2}\right| \leqslant|\Delta| M$
(ii) \quad | $\left|\alpha_{n}\right| \leqslant\left|\alpha_{n-1}\right|$
(iii) $\left|\mu_{n}{ }^{2}\right|\left|\alpha_{n-1}\right| \leqslant k|\Delta| M$

$$
\text { (iv) } \quad\left|\mu_{n}\right| \geqslant\left|\mu_{n-1}\right|
$$

PROOF OF LEMMA 2.2
By construction of H_{T} there is a set of values $\alpha_{0}, \mu_{0}, \nu_{0}$ satisfying (i). Now define $\alpha_{n}, \mu_{n}, \nu_{n}$ by induction, given $\alpha_{n-1}, \mu_{n-1}, \nu_{n-1}$

$$
\begin{array}{ll}
\left|\alpha_{n}\right| \leqslant k^{-1}\left|\alpha_{n-1}\right| & \text { hence (ii) is satisfied } \\
\left|\mu_{n}^{2}\right| \leqslant \frac{k|\Delta| M}{\left|\alpha_{n-1}\right|} & \text { hence (iii) is satisfied. }
\end{array}
$$

$\alpha_{n}, \mu_{n}, \nu_{n}$ exist since $k^{-1}\left|\alpha_{n-1}\right| \frac{k|\Delta| M}{\left|\alpha_{n-1}\right|}=|\Delta| H_{0}$
At each stage the smallest μ_{n} satisfying (iv) is chosen, otherwise μ_{n} instead of μ_{n-1} would have been chosen at the previous stage.

We now have the following two lemmas, reproduced from lemmas 13 and 14 of (5).

LEMMA 2.3
If $k>2$, we may find values x_{0}, y_{0}, z_{0} of x, y, z, as used in the definitions 2.5, such that

$$
\left\|x_{0} u_{n}+y_{0} v_{n}+z_{0} w_{n}\right\| \geqslant \frac{k-2}{2(k-1)}
$$

for all n; where u_{n}, v_{n}, w_{n} are the values of u, v, w, in the definitions 2.6, corresponding to the values $\alpha_{n}, \mu_{n}, \nu_{n}$ of $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, and

$$
\|x\|=\min |m-x|
$$

where the minimum is over rational integer values of m,

LEMMA 2.4

Suppose that $k>2$

$$
\mathbf{r}=\left(\frac{k+k^{\frac{1}{2}}}{2}\right)^{\frac{1}{2}}, \quad q=k r^{-2}
$$

so that $q r^{2}=k, q+2 q^{-\frac{1}{2}}=2 r+r^{-2}=2^{\frac{2}{3}\left(\frac{1+k^{\frac{1}{2}}+k}{\left(k+k^{\frac{1}{2}}\right)^{\frac{2}{2}}}\right.}=\lambda \quad$ (say).

If l, m, p are positive numbers such that

$$
l_{\mathrm{m}}^{2} \leqslant \mathrm{p}^{3}, \quad l \leqslant q p, \quad m \leqslant r p
$$

then

$$
l+2 m \leq \lambda p
$$

2. 8 Now let $\zeta, \xi+i \eta, \xi-i h$ be values taken by L_{1}, L_{2}, L_{3} for some

$$
(x, y, z) \equiv\left(x_{0}, y_{0}, z_{0}\right) \quad(\bmod 1)
$$

and let r and q be defined in terms of k as for lemma 2.4.
Choose n such that

$$
\left|\mu_{n}^{2}\right| \leqslant r^{2}|\xi|^{\frac{2}{3}}\left|\xi^{2}+\eta^{2}\right|^{-\frac{1}{1}}(|\Delta| \mu)^{\frac{2}{3}} \leqslant\left|\mu_{n+1}^{2}\right|
$$

then by (iii) of lemma 2.2

$$
\begin{gathered}
\left|\alpha_{n}\right| \leqslant \frac{k|\Delta| M}{\left|\mu_{n+1}^{2}\right|} \leqslant k r^{-2}|\rho|^{-\frac{2}{3}}\left|\xi^{2}+h^{2}\right|^{\frac{1}{3}}(|\Delta| M)^{\frac{1}{3}} \\
\left|\alpha_{n}\right| \leqslant q|\zeta|^{-\frac{2}{3}}\left|\xi^{2}+h^{2}\right|^{\frac{1}{3}}(|\Delta| M)^{\frac{1}{3}} .
\end{gathered}
$$

By applying leman 2.4 with

$$
l=\left\lvert\,\left\{\alpha_{n}\left|, \quad m=\left|(\xi+i \eta) \mu_{n}\right| \quad \text { and } \quad p=|\rho|^{\frac{1}{3}}\right| \xi^{2}+\left.\eta^{2}\right|^{\frac{1}{3}}(|\Delta| M)^{\frac{1}{2}}\right.\right.
$$

we have

$$
\left\lvert\,\left\{\left.\alpha_{n}|+2|(\xi+i \eta) \mu_{n}|\leqslant \lambda| g\right|^{\frac{1}{3}}\left|\xi^{2}+\eta^{2}\right|^{\frac{1}{3}}(|\Delta| m)^{\frac{1}{3}},\right.\right.
$$

but

$$
\begin{aligned}
|\Delta|\left|x u_{n}+y v_{n}+z v_{n}\right| & =\left|\rho \alpha_{n}+(\xi+i \eta) \mu_{n}+(\xi-i \eta) \nu_{n}\right| \\
& \leqslant\left|\rho \alpha_{n}\right|+2\left|(\xi+i \eta) \mu_{n}\right| ;
\end{aligned}
$$

thus, since

$$
\begin{gathered}
\left\|x_{0} u_{n}+y_{0} v_{n}+z_{0} w_{n}\right\| \geqslant \frac{k-2}{2(k-1)} \quad \text { for all } n, \\
\left|\xi\left(\xi^{2}+\eta^{2}\right)\right| \geqslant \frac{|\Delta|^{3}}{|\Delta| M \mid}\left(\frac{(k-2)}{2(k-1) \lambda}\right)^{3}=\frac{|D|}{M} \frac{(k-2)^{3}\left(k+k^{\frac{1}{2}}\right)^{2}}{2^{5}(k-1)^{3}\left(1+k^{\frac{1}{2}}+k\right)^{3}} \\
=\frac{|D| f(k)}{M} 2^{5} .
\end{gathered}
$$

$f(k)$ attains a maximum, F, when $k=(\sqrt{ } 3+1)^{2}$, so we have

$$
\left|\rho\left(\xi^{2}+\eta^{2}\right)\right| \geqslant \frac{|D|}{M} \frac{(2+2 \sqrt{ } 3)^{3}(5+3 \sqrt{ } 3)^{2}}{2^{5}(3+2 \sqrt{ } 3)^{3}(6+3 \sqrt{3})^{3}}=\frac{2|D|}{81(9+5 \sqrt{ }) M} \geqslant \frac{|D|}{M .715 .24 \ldots}
$$

that is the result 2.2 .
2.9 For the second part of the result we note that in lemma 11 of (5) it is stated thats
if $p>0, q>0$ are given and $p q^{2} \geqslant|\Delta|^{2} 3^{-\frac{1}{2}}$, then there exist integer values u, v, w (as in 2.10), not all zero, such that

$$
\left|M_{1}\right| \leqslant p, \quad\left|M_{2}\right|=\left|M_{3}\right| \leqslant q ;
$$

but from lemaa 2.1, if $p>0, q>0$ are given and $p q^{2} \geqslant H_{T}=|\Delta| M$, there exist integer values u, v, w, not all zero, such that

$$
\left|M_{1}\right| \leqslant p, \quad\left|m_{2}\right|=\left|m_{3}\right| \leqslant q
$$

But lemme 2.1 also states that $M_{T}=|\Delta| M$ is best possible as a lower bound of pq^{2}, thus we have

$$
|\Delta| M \leqslant|\Delta|^{2} 3^{-\frac{1}{2}}
$$

hence

$$
\frac{2|D|}{81(9+5 \sqrt{ }) M}=\frac{|D| F}{M_{0} 2^{5}}=\frac{|\Delta|^{3} F}{M \cdot|\Delta| \cdot 2^{5}} \geqslant \frac{|\Delta|^{3} F}{|\Delta|^{2} 3^{\frac{1}{2}} 2^{5}}=\frac{|\Delta| 3^{2} F}{2^{5}}=\frac{2|\Delta|}{81(5+3 \sqrt{3})}
$$

that is

$$
\frac{2|D|}{81(9+5 \sqrt{3}) M} \geqslant \frac{2|\Delta|}{81(5+3 \sqrt{3})}
$$

which is the result 2.3 .
2.10 I return now to the case when l nay have any value, We note, from 2.10, thet (β, γ, α) is a point of \mathbb{K}_{T} if and only if there is a point (ξ, η, ζ) in K, such that

$$
\begin{equation*}
\rho=x+y \theta+z \theta^{2}=x^{\prime}+y^{\prime} \theta+z t_{1} \lambda \tag{i}
\end{equation*}
$$

for some rational integers $x, y, x^{\prime}, y^{\prime}, z$
(ii) $\alpha=\frac{(\phi-\phi)}{i l} \zeta ; \beta+i \gamma=\frac{(\theta-\bar{\phi})}{i l}(\xi+i \eta) ; \beta-i \gamma=\frac{(\phi-\theta)}{i l}(\xi-i \eta)$.

We now define K^{*} to be that subset of K which has basis $\left(1, \theta, \theta^{2}\right)$, that is the subset with basis $(1, \theta, l \lambda) . \mathbb{K}^{*}$ is
also a field, end the sublattice K_{θ}^{*} of \mathcal{K}_{θ} which consists of those points (ξ, η, ξ), where $\left\{\in K^{*}\right.$, is a multiplicative lattice. $\quad \mathcal{G}=\mathrm{x}+\mathrm{y}^{\theta}+\mathrm{zl} \mathrm{\lambda}$ is said to be an integer of K^{*} when x, y, z are all rational integers g and $(\xi, \eta\}$,$) is$ seid to be an integer point of K_{0}^{*} when \mathcal{G} is an integer of K^{*}. Since \mathscr{K}_{θ}^{*} is a maltiplicative lattice, we may find an infinite sequence of relative minima $\left\{\boldsymbol{\rho}_{n}^{*}\right\}$ in K^{*} which corresponds to an infinite sequence of integer points of $\mathbb{K}_{\theta}^{*},\left\{\xi_{n}^{*}, \eta_{n}^{*}, \xi_{n}^{*}\right\}$, for which

$$
\begin{gathered}
\left|\xi_{n-1}^{*}\right|>\left|\xi_{n}^{*}\right| \\
\left|\xi_{n-1}^{*^{2}}+\eta_{n-1}^{*^{2}}\right|<\left|\xi_{n}^{*^{2}}+\eta_{n}^{*^{2}}\right|
\end{gathered}
$$

and a corresponding sequence, $\left\{\beta_{n}, \gamma_{n}, \alpha_{n}\right\}$, in \mathcal{K}_{T} such that

$$
\begin{aligned}
&\left|\alpha_{n-1}\right|>\left|\alpha_{n}\right| \\
&\left|\beta_{n-1}^{2}+\gamma_{n-1}^{2}\right|<\left|\beta_{n}^{2}+\gamma_{n}^{2}\right| .
\end{aligned}
$$

However, this sequence in K_{\top} is not necesserily a sequence of relative minimas nor can it be shown to be periodic, since the field K^{*} cannot be shown to have a fundamentel automorphism.

Following the arguments of $2.5,2.7$ and 2.8 with M replaced by \mathbf{M}^{*}, where

$$
\begin{aligned}
M^{*} & =\max _{n}\left|\zeta_{n}^{*}\left(\xi_{n+1}^{*^{2}}+h_{n+1}^{*^{2}}\right)\right| \\
M_{T} & =\max _{n}\left|\alpha_{n}\left(\beta_{n+1}^{2}+\gamma_{n+1}^{2}\right)\right| \\
& =\frac{|\Delta| \ell M^{*}}{l^{3}}=\frac{|\Delta| M^{*}}{l^{2}},
\end{aligned}
$$

and eventually we obtain

$$
\left|\xi\left(\xi^{2}+\eta^{2}\right)\right| \geqslant \frac{2|n| \ell^{2}}{\mu^{*} 81(2+5 \sqrt{3})}, \quad \text { the result } 2.4 .
$$

2.11 For computing this method, the sequence of nuabers $\theta_{g}^{(1)}$, . ., $\theta_{g}^{(k)}$,
corresponding to the ideal of integers of the field, are calculated as described in chapter 1. We now observe that, in obtaining the products of these numbers to give the relative minima of the field, if $r_{1} \theta^{2}+r_{2} \theta+r_{3}$, where r_{1}, r_{2}, r_{3} are rational integers, is such a relative minimum, the coefficients r_{1}, r_{2}, r_{3} become large in absolute value as the relative minima become closer to ϵ. This fact causes loss of accuracy in the calculation of $\alpha_{n}, \beta_{n}, \gamma_{n}$ and so in the calculation of M, even with double precision arithmetic.

Suppose

$$
\epsilon=i_{\epsilon} \theta^{2}+j_{\epsilon} \theta+k_{\epsilon}
$$

then

$$
\begin{aligned}
\epsilon^{-1}=\epsilon^{\prime} \epsilon^{\prime \prime}= & \left(i_{\epsilon} \phi^{2}+j_{\epsilon} \phi+k_{\epsilon}\right)\left(i_{\epsilon} \bar{\phi}^{2}+j_{\epsilon} \bar{\phi}+k_{\epsilon}\right) \\
= & i_{\epsilon}^{2}\left(\theta^{2}-a \theta+b\right)^{2}+j_{\epsilon}^{2}\left(\theta^{2}-a \theta+b\right)+k_{\epsilon}^{2} \\
& +i_{\epsilon} j_{\epsilon}\left(\theta^{2}-a \theta+b\right)(a-\theta) \\
& +i_{\epsilon} k_{\epsilon}\left(\theta^{2}-a^{2}+2 b\right)+j_{\epsilon} k_{\epsilon}(a-\theta) .
\end{aligned}
$$

From this expression we see that if the coefficients of $1, \theta, \theta^{2}$ in the expression for ϵ are $0(n)$ then those in the expression for ϵ^{-1} are $0\left(n^{2}\right)$.
2. 12 We have a complete loop of relative minima of the field given by

$$
1, \theta_{g}^{(1)}, \theta_{g}^{(2)} \theta_{g}^{(1)}, \ldots, \prod_{i=1}^{k} \theta_{g}^{(i)}
$$

since $\prod_{i=1}^{k} \theta_{g}^{(i)}$ is the fundamental unit of the field

$$
\left(\prod_{i=j+1}^{k} \theta_{g}^{(i)}\right)^{-1},\left(\prod_{i=j+2}^{k} \theta_{g}^{(i)}\right)^{-1}, \ldots,\left(\theta_{g}^{(k)}\right)^{-1}, 1, \theta_{g}^{(i)}, \ldots, \prod_{i=1}^{j} \theta_{g}^{(i)}
$$

is also a complete loop of relative minima of the field when \mathbf{j} is an integer satisfying $0 \leqslant j \leqslant k$.

We choose j so thet the order of magnitude of the coefficients of $1, \theta, \theta^{2}$ in the expression for $\prod_{i=1}^{j} \theta_{g}^{(i)}$ and in that for $\left(\prod_{i, j+1}^{k} \theta_{g}^{(i)}\right)^{-1}$ will be approximately the same. In view of the result stated above for the coefficients in the expressions for ϵ and ϵ^{-1}, we choose $j=\left[\frac{2 k}{3}\right]$ where $[i]$ represents the greatest integer less than i. When this particular loop of relative minima has been calculated, we may calculate the α_{n} and β_{n} and so M the loss of accuracy when using double precision arithmetic is not now significant. The multiplication and division routines used in calculating the relative minime check for the possibility of overflow, which in this case is interpreted as the result yielding an integer with more digits than double precision arithmetic allows significant figures.

In this way we find a lower bound on the inhomogeneous minimum of the field; for simplicity, in the program the constant $715.24 .$. is replaced by 720.

A METHOD WHICH USES CONGRUENCES TO FIND A POINT \propto IN K FOR WHICH \quad II $(K, \alpha) \geqslant 1$ 。
3.1 I.1 is equivalent to the statement that there is no integer of K with norm of absolute value less than $|N(\beta)|$ congruent to \int modulo β.

The method of congruences which is used to prove that there is no Euclidean Algorithm in a particular field is based on this fact, and may be summarized in the following steps:
(I) An integer β is chosen and representatives of each of its non-zero residue classes are calculated; suppose these representatives are denoted by \mathcal{S}_{1}, S_{2}..., $\boldsymbol{S}_{r_{p}}$ where $r_{\beta}=|N(\beta)|-1$. Let $Z=\left\{\rho_{j}: 1 \leq j \leq r_{\beta}\right\}$ be the set of representatives. (II) For each ideal g of norm of absolute value less than $|N(\beta)|$, an integer α which produces it is calculated; we then have $\mathcal{S}=(\alpha)$. Let the set of these integers be $\left\{\alpha_{j}: 1 \leqslant j \leqslant m\right\}$, then any integer of norm of absolute value less than $|N(\beta)|$ is of the form $\boldsymbol{\alpha}_{j} \epsilon^{\boldsymbol{W}}$ for some j satisfying $\quad 1 \leqslant j \leqslant m$ and some rational integer w. (III) If h is the smallest positive rational integer for which $\epsilon^{n} \equiv 1(\beta)$, we find the set Λ defined by
 If $\mathrm{Z}=\Lambda$ then no conclusion is reached about the existence of a Euclidean Algorithm in K. If there is a
representative $\mathcal{G}=\mathcal{G}_{2}$ where $\mathcal{L} \leqslant L \leqslant r_{\beta}$ and \mathcal{G} is in $(z-\Lambda)$, there is no Euclidean Algoritha in K.

The remainder of this chapter describes the method of computing this algorithm.
3.2 An underlying problem of this method is to find, for any given positive rational integer n, the distinct ideals of norm n and the integers which produce them.

If $\mathrm{n}=\mathrm{p}$, a rational prime, the ideals and corresponding integers are found as described in chapter 1.

We now consider the case when $n=p^{r}$, where p is a rational prime and r is a positive rational integer not equal to 1. It has been noted in chapter 1 that (p) has at most three distinct ideal factors; we also note that (p) has a square factor if and only if p divides D, the discriminant of the field. The possible factorizations of (p) and consequently the ideals of norm in are as follows
(i) (p) is a prime ideal in K hence there are no ideals of norm $p ;$ this may occur only if p does not divide D. There will only be an ideal of norm n if r is a multiple of 3 , when the only such ideal is $\left(p^{\frac{f}{3}}\right)$; if r is not a multiple of $3,(n)$ is a prime ideal in K.
(ii) (p) S.Q where f is an ideal of norm p and Q is a prime ideal of norm p^{2}; this may occur only if p does not divide D. There is one ideal (α) of norm p and one ideal (β) of norm p^{2}; the ideals of norm $\mathrm{p}^{\mathbf{r}}$
are $\left(\alpha^{u} \beta^{\frac{r-u}{2}}\right)$ where 2 divides $r-u$ and $r \geqslant u \geqslant 0$. (iii) $(p)=\boldsymbol{j}^{3}$ where \boldsymbol{g} is an ideal of norm p; we only have this situation if p divides D. There is just one ideal (α) of norm p and, consequently, just one ideal $\left(\alpha^{r}\right)$ of norm p^{r}.
(iv) $(p)=f_{1} \mathcal{S}_{2}^{2}$ where g_{1} and f_{2} are ideals of norm p; this happens only if p divides D. There are two ideals $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$ of norm p and the ideals of norm p^{r} are ($\alpha_{1}^{u} \alpha_{2}^{r-u}$) where $r \geqslant u \geqslant 0$.
(v) $(p)=f_{1} f_{2} f_{3} \quad \begin{aligned} & \text { where } f_{1}, f_{2}, f_{3} \text { are ideals of norm } p ; ~\end{aligned}$ this occurs only if p h divide D. There are three ideals $\left(\alpha_{1}\right)$, $\left(\alpha_{2}\right)$ and $\left(\alpha_{3}\right)$ of norm p, the ideals of norm p^{r} are $\left(\alpha_{1}^{u} \alpha_{2}^{v} \alpha_{3}^{r-u-v}\right)$ where $r \geqslant u \geqslant 0, r \geqslant v \geqslant 0, r \geqslant u+v \geqslant 0$.
3.3 Finally we consider the case $n=p_{1}^{r_{1}} p_{2}^{r_{2}} \ldots p_{u}^{r_{u}}$ where p_{1}, \ldots, p_{u} are rational primes and r_{1}, \ldots, r_{u} are positive rational integers. The ideals of norm n are of the form $\left(\alpha_{1} \alpha_{2} \ldots \alpha_{u}\right)$ where $\left(\alpha_{i}\right)$ is an ideal of norm $p_{i}^{r_{i}}$ for $i=1$, . , u; all ideals of norm in are found by considering all products $\alpha_{1} \ldots \alpha_{u}$ for all possible values of $\alpha_{1}, \ldots, \alpha_{n}$.

For both of the cases where n is composite, having found the ideals of norm a prime p, and the integers which produce them, for all p less than n; by using the expressions enumerated in section 3.2 , it is possible to calculate all ideals of noria n and the integers which produce them.
3.4 Having chosen a value for β the next problem is to find
a complete set of residues modulo $\boldsymbol{\beta}$.

LEMMA 3.1

Suppose that r is the smallest positive rational integer

$$
\text { for which } r+1 \equiv 0 \quad(\beta)
$$

q is the smallest positive rational integer for which $(q+1) \theta+w_{1} \equiv 0 \quad(\beta)$, for some w_{1} satisfying $0 \leqslant w_{1} \leqslant r$
and p is the smallest positive rational integer for which $(p+1) \lambda+v_{2} \theta+w_{2} \equiv 0 \quad(\beta)$, for some w_{2} satisfying $0 \leqslant w_{2} \leqslant r$ and some \mathbf{v}_{2} satisfying $0 \leq v_{2} \leq q$,
then $Z=\{\rho: \rho=u \lambda+v \theta+w ; \quad 0 \leqslant u \leqslant p, \quad 0 \leqslant v \leqslant q, \quad 0 \leqslant w \leqslant r\}$
is a complete set of residues modulo β.
PROOF OF LEMMA 3.1
Suppose that $d_{1} \lambda+d_{2} \theta+d_{3}$ is some integer of the field, then

$$
\mathrm{d}_{1} \lambda+\mathrm{d}_{2} \theta+\mathrm{d}_{3} \equiv \mathrm{~d}_{1}^{x} \lambda+\mathrm{d}_{2}^{\prime} \theta+\mathrm{d}_{3}^{\prime} \quad(\beta)
$$

for some rational integers $d_{2}^{\prime}, d_{3}^{\prime}$ and some rational integer d_{1}^{*} satisfying $0 \leqslant d_{1}^{*} \leqslant p$ since $(p+1) \lambda \equiv-v_{2} \theta-w_{2} \quad(\beta)$, $d_{1}^{*} \lambda+d_{2}^{\prime} \theta+d_{3}^{*} \equiv d_{1}^{*} \lambda+d_{2}^{*} \theta+d_{3}^{\prime \prime} \quad(\beta)$
for some rational integer d_{3}^{n} and some rational integer d_{2}^{*} satisfying $0 \leqslant d_{2}^{*} \leqslant q$ since $(q+1) \theta \equiv-w_{1} \quad(\beta)$,

$$
d_{1}^{*} \lambda+d_{2}^{*} \theta+d_{3}^{\prime \prime} \equiv d_{1}^{*} \lambda+d_{2}^{*} \theta+d_{3}^{*}(\beta)
$$

for some rational integer d_{3}^{*} which satisfies $0 \leqslant d_{3}^{*} \leqslant r$ since $r+1 \equiv 0 \quad(\beta)$.

$$
\text { Thus } d_{1} \lambda+d_{2} \theta+d_{3} \equiv d_{1}^{*} \lambda+d_{2}^{*} \theta+d_{3}^{*} \text { where } 0 \leqslant d_{1}^{*} \leqslant p
$$

$0 \leqslant d_{2}^{*} \leqslant q, 0 \leqslant d_{3}^{*} \leqslant r ;$ that $i s$ every integer of the field is congruent to an integer of Z, thus Z contains a complete set of residues modulo β.

It remains to show that no two elements of Z are congruent to each other. Suppose

$$
d_{1} \lambda+d_{2} \theta+d_{3} \equiv e_{1} \lambda+e_{2} \theta+e_{3} \quad(\beta)
$$

where

$$
0 \leqslant e_{1} \leqslant d_{1} \leqslant p
$$

$$
0 \leqslant d_{2} \leqslant q, \quad 0 \leqslant e_{2} \leqslant q
$$

$$
0 \leqslant d_{3} \leqslant r, \quad 0 \leqslant e_{3} \leqslant r
$$

then

$$
\left(d_{1}-e_{1}\right) \lambda+\left(d_{2}-e_{2}\right) \theta+d_{3}-e_{3} \equiv 0 \quad(\beta) \quad 3.1
$$

and.

$$
0 \leqslant d_{1}-e_{1} \leqslant p
$$

If $d_{2} \geqslant e_{2}$ and $d_{3} \geqslant e_{3}$ we have

$$
\begin{aligned}
& 0 \leqslant d_{2}-e_{2} \leqslant q \\
& 0 \leqslant d_{3}-e_{3} \leqslant r
\end{aligned}
$$

thus 3.1 implies

$$
d_{1}=e_{1}, \quad d_{2}=e_{2}, \quad d_{3}=e_{3}
$$

as a result of the definitions of p, q, and r.
If $d_{2} \geqslant e_{2}$ and $d_{3}<e_{3}$ we have

$$
0<r+1+\left(d_{3}-e_{3}\right) \leqslant r
$$

$$
0 \leqslant d_{2}-e_{2} \leqslant q_{3}
$$

but $\quad\left(d_{1}-e_{1}\right) \lambda+\left(d_{2}-e_{2}\right) \theta+r+1+\left(d_{3}-e_{3}\right) \equiv 0$
as a result of the definition of r, this is a contradiction.
If $d_{2}<e_{2}$ then

$$
0<q+1+\left(d_{2}-e_{2}\right) \leqslant q
$$

and w^{\prime} may be chosen such that

$$
0 \leqslant w^{\prime} \leqslant r
$$

and

$$
w^{\prime} \equiv w_{1}+d_{3}-e_{3} \quad(\beta) \quad \text { from the definition of } r,
$$

but

$$
\left(d_{1}-e_{1}\right) \lambda+\left(q+1+d_{2}-e_{2}\right) \theta+w^{\prime} \equiv 0 \quad(\beta)
$$

as a result of the definitions of q and w_{1}. This again is a contradiction. Hence $d_{1}=e_{1}, d_{2}=e_{2}, d_{3}=e_{3}$, thus, Z is
a complete set of residue classes modulo β.
3.5 The choice of the integer β is made so that the method may be most efficient. For every number α of K there is a positive rational integer h such that

$$
\epsilon^{n} \alpha \equiv \alpha \quad(1),
$$

and h is the smallest positive rational integer for which such a congruence is true. Hence

$$
\left(\epsilon^{h}-1\right) \alpha \equiv 0 \quad(1) ;
$$

thus, if $\alpha=\frac{s}{\beta}, \beta$ divides $\epsilon^{h}-1$, that is

$$
\epsilon^{h} \equiv 1(\beta)
$$

Now suppose that $\left(\alpha_{1}\right), \ldots,\left(\alpha_{m_{n}}\right)$ are the distinct ideals of norm n, then every integer of norm n is congruent to $\epsilon^{w} \alpha_{j}$ for some rational integers w and j satisfying $0 \leqslant w \leqslant h-1$, $1 \leqslant j \leqslant m_{n}$. Thus, for given n, the smaller h the fewer incongruent integers there will be of norn n; hence, the smaller h the fever incongruent integers there will be with norm of absolute value less than $|N(\beta)|$. Thus the smaller h the lower the probability will be of all the residue classes modulo β being covered.
3.6 For the real quadratic fields for which results are known ((2) and (21)), the numbers α for which $M(K)=M(K, \alpha)$ satisfy

	$\epsilon \alpha \equiv \alpha$
or (1)	
	$\epsilon \alpha \equiv-\alpha$ (1)
or, in one case, $\epsilon^{2} \alpha \equiv-\alpha$ (1).	

Thus the possible values of β are the factors of $\epsilon-1, \epsilon+1$ or of $\epsilon^{\mathbf{2}}+1$. We note that if the ideals of norm n are $\left(\alpha_{1}\right), \ldots,\left(\alpha_{u}\right)$, any integer of nora n will be of the form $\pm \epsilon^{k} \alpha_{i}$ for sone rational integers k and i such that $1 \leqslant i \leqslant u_{\text {. }}$ In considering the residue classes which contain integers of norm n we must, therefore, consider every integer of the form $\pm \epsilon^{k} \alpha_{i}$ for $0 \leqslant k \leqslant h-1$ and $1 \leq i \leqslant u$. Howevex, if we restrict the values of β to factors of $\epsilon-1$ or $\epsilon+1$, we only need consider the integers $\pm \alpha_{i}$ for $1 \leqslant i \leqslant u$. In order to restrict the number of integers β considered for any one field, only those values of β the norm of which is a rational prime or the cube of a rational prime are used; the latter are included so that any rational prime factors of $\epsilon-1$ or of $\epsilon+1$ are condidered.

To prevent the time spent in searching for uncovered residue clesses becoming too large, β was further restricted so thet $\operatorname{IN}(\beta) \mid$ was less than 500 ; this was found, by experiment, to be a reasonable limit, in particular since most fields for which there was a possibility of considering integers β with $|N(\beta)|$ greater then 500 gave overflow warnings. All routines involving nultiplication or division where the numbers involved were likely to cause overflow, in the sense that the integer answer could have coefficients which consist of nore digits than the number of
significant figures allowed, included tests for the possibility of overflow, and monitored such possibilities.

4. 2 箅is chaptaz bacribos a mathod of isolabimg those pointa

 to the spare of ber

$$
\begin{aligned}
& \tilde{\alpha}=\left\{B_{e} d(\phi), I_{\theta} d(\phi) ; d(\theta)\right) \text {. (cartosian ea-urdinetes) } \\
& =(t e(\phi)\}, \arg d(\phi), d(\theta)\} \text { (cylintirical polar }
\end{aligned}
$$

congrdinnetos)

$$
\begin{aligned}
W(\tilde{*})=\vec{H}(\alpha) & =d(\theta) \operatorname{L}(\phi) \alpha(\bar{\phi}) \\
& =d(\theta)\left(\{\text { Be } d(\phi))^{2}+(\sin d(\phi))^{2}\right),
\end{aligned}
$$

$$
3(2)+\left\{(\}^{2}+b^{2}\right)=
$$

CHAPTER 4

AN ADAPTATION OF A METHOD OF BARNES AND SWINNERTON-DYER FOR CUBIC FIELDS WITH COMPLEX CONJUGATES.
4.1 This chapter describes a method of isolating those points $\boldsymbol{\alpha}$ in \mathbb{K} for which $M(K, \alpha)$ is greater than a chosen bound. By this means we mey either show that $M(K, \alpha)<1$ for all α in K, so that \mathbb{K} has a Euclidean Algorithm; or we may find a point $\boldsymbol{\alpha}$ such that $M(K)=M(K, \alpha)$, in this wey we determine the inhomogeneous minimun of the field and consequently whether or not it possesses a Euclidean Algorithm. The method described is en adaptation of thet used by Barnes and Swinnerton-Dyer in (2).
4.2 If a number α in K is given by $\alpha=d(\theta)=d_{1} \theta^{2}+d_{2} \theta+d_{3}$, where d_{1}, d_{2}, d_{3} are rationel numbers, let α be represented in the space a by

$$
\begin{array}{rlrl}
\tilde{\alpha} & =(\operatorname{Red}(\phi), \operatorname{In} d(\phi), d(\theta)) & & \text { (cartesian co-ordinates) } \\
& =(|d(\phi)|, \arg d(\phi), d(\theta)) & & \text { (cylindrical poler } \\
& & \text { co-ordinates) }
\end{array}
$$

then the isomorphism $\alpha \leftrightarrow \tilde{\alpha}$ establishes an isomorphism $K \leftrightarrow a_{\text {。 }}$ Now define

$$
\begin{aligned}
N(\tilde{\alpha})=N(\alpha) & =d(\theta) d(\phi) d(\bar{\phi}) \\
& =d(\theta)\left((\operatorname{Red}(\phi))^{2}+(\operatorname{Im} d(\phi))^{2}\right),
\end{aligned}
$$

thus, generally, if $\tilde{\alpha}$ is the point (ξ, η, η) then

$$
N(\tilde{\alpha})=\rho\left(\xi^{2}+\eta^{2}\right) .
$$

If α is an integer in $K, \tilde{\alpha}$ is said to be an integer point of a. Let the trensformation E on points of a be defined by

$$
\mathbb{E}(\tilde{\alpha})=\tilde{\beta} \quad \begin{aligned}
& \text { when } \\
& 46
\end{aligned} \in \alpha=\beta \text { where } \alpha, \beta \text { are in } \mathbb{K} ;
$$

expressed in cylindrical polar coordinates, E is then the transformation

$$
(p, w, \xi) \rightarrow\left(p p_{\epsilon}, w+w_{\epsilon}, f f_{\epsilon}\right)
$$

where $0<\zeta_{\epsilon}=\epsilon<1, \rho_{\epsilon}=\sqrt{\epsilon^{\prime} \bar{\epsilon}^{\prime}}$, so that $\rho_{\epsilon}^{2} \rho_{\epsilon}=1$ and $\omega_{\epsilon}=\arg \epsilon^{\prime}$. 4.3 If R is a set of points of a, the statement $\tilde{\alpha} \in R(\bmod 1)$ means that, for some integer $\tilde{\gamma}$ in $a, \tilde{\alpha}-\tilde{\gamma}$ is in $R_{\text {。 }}$ theorem 4.1

Let R be a bounded point set in the space a such that, for some given set R^{*} in a and some given integer point $\tilde{\gamma}$ in a, any point $\tilde{\alpha}$ in R has the property that either $\mathrm{E}(\tilde{\alpha}) \in \mathrm{R}^{*}(\bmod 1)$ or $\mathrm{E}(\tilde{\alpha})-\tilde{\gamma} \in \mathrm{R} ;$ and further that $\mathrm{E}^{-1}(\tilde{\alpha})$ is congruent to a point of R^{*} or of R . If $\tilde{\alpha} \in \mathrm{R}$ and $\mathrm{E}^{\mathrm{n}}(\tilde{\alpha})$ is not congruent to a point of R^{*} for any $n \lessgtr 0, \tilde{\alpha}$ is the fixed point $\tilde{\beta}$ of E defined by

$$
E(\tilde{\beta})=\tilde{\beta}+\tilde{\gamma} \quad \tilde{\beta}=\left(\xi_{\beta}, \eta_{\beta}, \rho_{\beta}\right)=\left(\rho_{\beta}, \omega_{\beta}, \rho_{\beta}\right) .
$$

The generalized form of this theorem, for algebraic fields of any given degree, is due to Cassel (quoted in (2)); since a proof was not readily available I provide one for this particular case, analogous to that given for the quadratic case in (2). LaBia 4.2

Let S be the transformation

$$
(p, \omega, \xi) \rightarrow\left(\sigma p, \omega+\omega_{\sigma}, \zeta / \sigma^{2}\right)
$$

where $6>1$ and $-\pi<\omega_{6} \leqslant \pi_{\text {; }}$ and let R be a bounded point set. Suppose $S^{n}\left(\tilde{\alpha}_{1}\right) \in \mathrm{R}$ for all $\mathrm{n} \geqslant 0$, then $\tilde{\alpha}_{1}$ lies on the line $\rho=0$, the origin 0 belongs to the closure \bar{R} of R,
and $\mathrm{S}^{\mathrm{n}}\left(\tilde{\alpha}_{1}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$. If $\mathrm{S}^{\mathrm{n}}\left(\tilde{\alpha}_{2}\right) \in \mathrm{R}$ for all $\mathrm{n} \leqslant 0$ then $\tilde{\alpha}_{2}$ lies on the plane $\left\{=0\right.$ and $S^{n}\left(\tilde{\alpha}_{2}\right) \rightarrow 0$ as $n \rightarrow-\infty$. PROOF OF LEMMA 4.2

Let $\tilde{\alpha}_{1}$ be the point $\left(\rho_{1}, \omega_{1}, \xi_{1}\right)$ then

$$
s^{n}\left(\tilde{\alpha}_{1}\right)=\left(\sigma^{n} \rho_{1}, \omega_{1}+n \omega_{\sigma}, \rho_{1} / \sigma^{2 n}\right) .
$$

Thus, since R is bounded, $\sigma^{n} \rho_{1}$ is bounded as $n \rightarrow \infty$; hence, since $\sigma>1$, it follows that $\rho_{1}=0$. Also

$$
\mathrm{s}^{\mathrm{n}}\left(\tilde{\alpha}_{1}\right)=\left(0, \omega_{1}+n \omega_{6}, \sigma^{-2 n} \xi_{1}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

hence $0 \in \overline{\mathrm{R}}$.

$$
\begin{array}{r}
\text { Similarly, if } \tilde{\alpha}_{2}=\left(\rho_{2}, \omega_{2}, \rho_{2}\right) \text { then } \\
S^{n}\left(\tilde{\alpha}_{2}\right)=\left(6^{n} \rho_{1}, \omega_{2}+n \omega_{\sigma}, \rho_{2} / \sigma^{2 n}\right)
\end{array}
$$

and $h_{2} / \sigma^{2 n}$ is bounded as $n \rightarrow-\infty$, hence $g_{2}=0$ and

$$
S^{n}\left(\tilde{\alpha}_{2}\right)=\left(\sigma^{n} \rho_{2}, \omega_{2}+n \omega_{6}, 0\right) \rightarrow 0 \quad \text { as } n \rightarrow-\infty .
$$

PROOF OF THEOREM A 4.1
Suppose that $\tilde{\alpha}_{0} \in R$ and that $\mathbb{E}^{n}\left(\tilde{\alpha}_{0}\right)$ is not congruent to a point of R^{*} for any $\mathrm{n} \geqslant 0$,

Let $\tilde{\gamma}$ be the point $\left(\xi_{\gamma}, \eta_{\gamma}, \zeta_{\gamma}\right)=\left(\rho_{\gamma}, \omega_{\gamma}, \zeta_{\gamma}\right)$ and define the transformation F by

$$
F(\tilde{\alpha})=\mathbb{E}(\tilde{\alpha})-\tilde{\gamma} .
$$

Then, since $F(\tilde{\alpha}) \equiv E(\tilde{\alpha})(\bmod 1)$ for all $\tilde{\alpha}, F^{n}\left(\tilde{\alpha}_{0}\right)$ is not congruent to a point of R^{*} for any $\mathrm{n} \geqslant 0$.

If the origin is now changed to $\tilde{\beta}$, that is $\tilde{\alpha}^{\prime}=\tilde{\alpha}-\tilde{\beta}$,
the transformation F becomes

$$
\left(\rho^{\prime}, \omega^{\prime}, q^{\prime}\right) \rightarrow\left(\rho^{\prime} \rho_{\epsilon}, \omega^{\prime}+\omega_{\epsilon}, \zeta^{\prime \prime} \xi_{\epsilon}\right)
$$

$-\pi<\omega_{\epsilon} \leqslant \pi, \quad \rho_{\epsilon}^{2} q_{\epsilon}=1$ and $0<\rho_{\epsilon}<1$ so that $\rho_{\epsilon}>1$ and $\rho_{\epsilon}=1 / \rho_{\epsilon}^{2}$

By hypothesis

$$
\begin{gathered}
\tilde{\alpha}_{0} \in R \\
F\left(\tilde{\alpha}_{0}\right)=E\left(\tilde{\alpha}_{0}\right)-\tilde{\gamma}=\tilde{\delta}_{1} \in \boldsymbol{R} \\
F^{2}\left(\tilde{\alpha}_{0}\right)=F\left(\tilde{\delta}_{1}\right)=E\left(\tilde{\delta}_{1}\right)-\tilde{\gamma}=\tilde{\delta}_{2} \in R
\end{gathered}
$$

and ultimately

$$
\tilde{\delta}_{n}=F^{n}\left(\tilde{\alpha}_{0}\right) \in R \quad \text { for all } n \geqslant 0
$$

It now follows from lemma 4.2 that $\tilde{\beta} \in \bar{R}, \tilde{\delta}_{n} \rightarrow \tilde{\beta}$ as $n \rightarrow \infty$ and $\tilde{\alpha}_{0}$ lies on the line $\rho^{\prime}=0$, that is the line $\xi-\xi_{\beta}=\eta-\eta_{\beta}=0$. If $\tilde{\alpha}$ is a point in R such that $E^{-1}(\tilde{\alpha}) \in R^{-1}(\bmod 1)$ then there is on integer point $\tilde{\mu}$ such that

$$
E^{-1}(\tilde{\alpha})=\tilde{\mu}+\tilde{\delta} \quad \text { where } \tilde{\delta} \in R
$$

thus

$$
\tilde{\alpha}=E(\tilde{\mu})+E(\tilde{\delta})
$$

Since $\tilde{\alpha}$ is a point of R and, by hypothesis, $E(\tilde{\delta})-\tilde{\gamma} \in R$, we have $\mathrm{E}(\tilde{\mu})=-\tilde{\gamma}$ so that $\tilde{\mu}=-\mathrm{E}^{-1}(\tilde{\gamma})$ which is independent of $\tilde{\alpha}$. Hence there is an integer point $\tilde{\mu}$ such that, for any given $\tilde{\alpha}$ in R, either $E^{-1}(\tilde{\alpha}) \in \mathbb{R}^{*}(\bmod 1)$ or $E^{-1}(\tilde{\alpha})-\tilde{\mu} \in R$. Thus, by similar reasoning to that used for $n \geqslant 0$, in which for $n \leqslant 0$ we replace E by E^{-1} and $\tilde{\gamma}$ by $\tilde{\mu}$, we find that $\tilde{\alpha}_{0}$ lies on the plane $\boldsymbol{\mathcal { F }}-\boldsymbol{S}_{\boldsymbol{\beta}}=0$. Hence $\tilde{\alpha}_{0}$ lies at the intersection of the line $\xi-\xi_{\beta}=\eta-\eta_{\beta}=0$ with the plane $\rho-\rho_{\beta}=0$, thus $\tilde{\alpha}_{0}=\tilde{\beta}$.
4.4 Theorem 4.1 may be generalized to the case of a finite number of bounded point sets as follows.

THEOREM 4.3

Let $\mathrm{R}_{0}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{m}}$, be a finite number of bounded point sets. Suppose that for some R^{*} and some integer points $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \ldots, \tilde{\gamma}_{m}$ every point $\tilde{\alpha}_{i}$ in $\tilde{R}_{i}(i=0,1, \ldots, m-1)$ has the property that either
or

$$
\begin{aligned}
& E\left(\tilde{\alpha}_{i}\right) \in R^{*}(\bmod 1) \\
& \left.E\left(\tilde{\alpha}_{i}\right)-\tilde{\gamma}_{i+1} \in R_{i+1} \quad \text { (where } R_{m} \text { is } R_{0}\right)
\end{aligned}
$$

Let

$$
\tilde{\gamma}=\tilde{\gamma}_{m}+E\left(\tilde{\gamma}_{m-1}\right)+E^{2}\left(\tilde{\gamma}_{m-2}\right)+\ldots+E^{111}-1\left(\tilde{\gamma}_{1}\right)
$$

and let $\tilde{\beta}$ be the fixed point of $E^{\text {mi }}$ defined by

$$
\mathbf{E}^{\mathbb{m}}(\tilde{\beta})=\tilde{\beta}+\tilde{\gamma}
$$

Further suppose that any $\tilde{\alpha}_{i}$ in R_{i} has the property that either $E^{-1}\left(\tilde{\alpha}_{i}\right) \in R^{*}(\bmod 1)$ or $E^{-1}\left(\tilde{\alpha}_{i}\right) \in R_{j}(\bmod 1)$ for some j satisfying $0 \leqslant j \leqslant m-1$. If $\tilde{\alpha} \in R_{0}$ and $E^{n}(\tilde{\alpha})$ is not congruent to a point of R^{*} for any $n \geqslant 0$ then $\tilde{\alpha}$ is the fixed point $\tilde{\beta}$ of E^{m}.

PROOF OF THEOREM 4.3
First suppose that $\tilde{\alpha}$ is in R_{0} and $\mathbb{E}^{n}(\tilde{\alpha})$ is not congruent to a point of R^{*} for any $\mathrm{n} \geqslant 0$. By hypothesis

$$
\begin{array}{lr}
\mathrm{E}(\tilde{\alpha})=\tilde{\alpha}_{1}+\tilde{\gamma}_{1} & \tilde{\alpha}_{1} \text { in } \mathrm{R}_{1} \\
\mathrm{E}\left(\tilde{\alpha}_{1}\right)=\tilde{\alpha}_{2}+\tilde{\gamma}_{2} & \tilde{\alpha}_{2} \text { in } \mathrm{R}_{2} \\
\cdots \cdots \cdot \ldots \\
\mathbb{E}\left(\tilde{\alpha}_{m-1}\right)=\tilde{\alpha}_{m}+\tilde{\gamma}_{m} & \tilde{\alpha}_{m} \text { in } R_{\mathrm{n}}=R_{0},
\end{array}
$$

thus

$$
\begin{aligned}
& E^{m}(\tilde{\alpha})= \tilde{\alpha}_{m}+\tilde{\gamma}_{m}+E\left(\tilde{\gamma}_{m-1}\right)+\ldots+E^{\mathrm{m}-1}\left(\tilde{\gamma}_{1}\right) \\
& E^{\mathrm{m}}(\tilde{\alpha})-\tilde{\gamma}=\tilde{\alpha}_{m} \text { in } R_{0} .
\end{aligned}
$$

Now suppose that $\tilde{\alpha}$ is in R_{0} and $\mathbb{E}^{n}(\tilde{\alpha})$ is not congruent to a point of R^{*} for any $\mathrm{n} \leqslant 0$. By hypothesis for some i, $0 \leqslant i \leqslant m-1$, there is en integer point $\tilde{\mu}_{i}$ such that
and for $\mathrm{E}^{-1}(\tilde{\alpha})=\tilde{\delta}_{i}+\tilde{\mu}_{i}$ $\tilde{\delta}_{i}$ in R_{i},
thus

$$
\tilde{\alpha}=\mathbb{E}\left(\tilde{\delta}_{i}\right)+\mathbb{E}\left(\tilde{\mu}_{i}\right)
$$

Also, by hypothesis,

$$
\mathbb{E}\left(\tilde{\delta}_{i}\right)-\tilde{\gamma}_{i+1} \in R_{i+1}
$$

thus we have $R_{i+1}=R_{0}$, hence $i=m-1$,

$$
E\left(\tilde{\mu}_{m-1}\right)=-\tilde{\gamma}_{m}
$$

and so

$$
\tilde{\mu}_{m-1}=-\mathbb{E}^{-1}\left(\tilde{\gamma}_{m}\right)
$$

which is independent of $\tilde{\alpha}$. Thus there is an integer $\tilde{\mu}_{m-1}$ such that

$$
E^{-1}(\tilde{\alpha})=\tilde{\delta}_{m-1}+\tilde{\mu}_{m-1} \quad \tilde{\delta}_{m-1} \text { in } R_{m-1}
$$

Similarly there are integers $\tilde{\mu}_{m-2}, \cdots, \tilde{\mu}_{0}$ such that

$$
\begin{array}{ll}
\mathrm{E}^{-1}\left(\tilde{\delta}_{m-1}\right)=\tilde{\delta}_{m-2}+\tilde{\mu}_{m-2} & \tilde{\delta}_{m-2} \text { in } R_{\mathrm{m}-2} \\
\cdots \cdots \\
\mathrm{E}^{-1}\left(\tilde{\delta}_{1}\right)=\tilde{\delta}_{0}+\tilde{\mu}_{0} & \cdots \cdots
\end{array}
$$

and we have

$$
\mathrm{E}^{-\mathrm{m}}(\tilde{\alpha})=\mathrm{E}^{-(\mathrm{m}-1)}\left(\tilde{\mu}_{m-1}\right)+\mathrm{E}^{-(\mathrm{m}-2)}\left(\tilde{\mu}_{m-2}\right)+\ldots+\tilde{\mu}_{0}+\tilde{\delta}_{0} .
$$

Hence

$$
\mathbb{E}^{-12}(\tilde{\alpha}) \in \mathbb{R}_{0} \quad(\bmod 1)
$$

Thus, by applying theorem 4.1 with E replaced by $\mathbb{E}^{\text {m }}$, theorem 4.3 follows.
4.5 A fundamental region f of a is one such that for every point $\tilde{\alpha}_{1}$ of a there is a point $\tilde{\alpha}_{2}$ in f such that

$$
\tilde{\alpha}_{1} \equiv \tilde{\alpha}_{2} \quad(\bmod 1),
$$

and for any two points $\tilde{\alpha}_{1}, \tilde{\alpha}_{2}$ both in f the congruence holds if and only if $\tilde{\alpha}_{1}=\tilde{\alpha}_{2}$.

The method of covering may now be summarized as follows
I. A fundamental region y of a is chosen.
II. Either a). For every number α in \mathbb{K}, such that $\tilde{\alpha}$ is in f, it is shown that there exists an integer point $\tilde{\gamma}$ in a such that, for a given real number $\mathrm{C}<1$,

$$
|N(\tilde{\alpha}-\tilde{\gamma})| \leqslant C \quad 4.1
$$

If this is possible, K has a Euclidean Algorithm. For this case it is sufficient to show that 4.1 holds for every point of $\mathrm{F}^{\text {. }}$
or b). Regions $R_{0}, R_{1}, \ldots, R_{m-1}$ and integer points $\tilde{\gamma}_{1}, \tilde{\gamma}_{2}, \ldots, \tilde{\gamma}_{m}$ in a are pound such that
(i) the conditions of theorem 4.3 are satisfied with

$$
E^{*}=f-\bigcup_{i=0}^{m-1} R_{i} .
$$

(ii) if $\tilde{\beta}$ is the fixed point of E^{m} satisfying

$$
\begin{aligned}
& \mathrm{E}^{\mathrm{m}}(\tilde{\beta})=\tilde{\beta}+\tilde{\gamma} \\
& \text { and } \min |N(\tilde{\beta}-\tilde{\delta})|=c \\
& \text { where the minimum is over integers } \tilde{\delta} \text { in } a \text {, }
\end{aligned}
$$

for every point $\tilde{\alpha}$ in R^{*} for which α is in: K

$$
\min |N(\tilde{\alpha}-\tilde{\delta})|<c
$$

where the minimum is over integers $\tilde{\delta}$ in $a_{\text {. }}$
If II(b) is followed then $C=\max \min |N(\tilde{\alpha}-\tilde{\delta})|$ where the minimua is over all integers है in a and the maximum is over points $\tilde{\alpha}$ in a for which α is in \mathbb{K}; thus C is the inhomogeneous miniurm of K, and so the field has a Euclideon Algorithm if and only if $\mathrm{c}<1$.

The alternatives $I I(a)$ and $I I(b)$ are provided since if it is possible to follow II (a) the nethod is shorter, as no consideration of transformation by the fundanental unit is required.
4.6 In order to satisfy the conditions of II (a) or of II (b), the fundemental region is divided into submegions $\boldsymbol{f}_{1}, \ldots, \ldots, \mathfrak{F}_{n}$. A finite set f of integer points of a is chosen. Then, for given C we establish for every $f_{i}, i=1$, ..., n, whether there is an integer point $\tilde{\gamma}$ in \oint such that
for every point $\tilde{\alpha}$ in $\mathcal{F}_{i} \quad|N(\tilde{\alpha}-\tilde{\gamma})|<c . \quad 4.2$ Now each region f_{i}, for which there is no such $\tilde{\gamma}$, is itself subdivided and its sub-regions tested as were the regions \mathcal{F}_{i}. After repetition of this testing a practical number of times, either II (a) will be satisfied or there will be regions R_{1}, . . , $\mathrm{R}_{\text {m }}$ for which no integer point of $\$$ can be found which satisfies 4.2. Having calculated the transformations of points of R_{1}, \ldots, R_{n} by E, we will have one or both of the following situations:
(i) There are regions $\mathbb{R}_{\mu_{1}}, \ldots, \mathbb{R}_{\mu_{n}}$ where $1 \leqslant \mu_{i} \leqslant m$ for $i=1$,. . . n such that, if $\tilde{\alpha}$ is in $R_{\mu_{i}}$, for some rational integer $j_{i} A^{j i}(\tilde{\alpha}) \equiv \mathcal{F}-\bigcup_{i=1}^{m} R_{i} \quad(\bmod 1)$. In which case, for $i=1$, . . , n there is an integer point $\tilde{\gamma}_{\mu_{i}}$, not in \oint, which satisfies 4.2 for $\tilde{\alpha}$ in $R \mu_{i}$.
(ii) For $\nu=1,2, \ldots, p$ there are regions $R_{\nu, 0}, \ldots, R_{\nu,\left(m_{\nu}-1\right)}$ and integer points $\tilde{\delta}_{\nu, 1}$, .., $\delta_{\nu, m_{\nu}}$ where $R_{\nu, i}$ belongs to the set $\left\{R_{1}, \ldots, R_{m}\right\}$ such that if $\tilde{\alpha}$ is in $R_{\nu, i \text {, }}$

$$
E(\tilde{\alpha})-\tilde{\delta}_{\nu,(i+1)} \text { is in } R_{\nu,(i+1)} \text { where } R_{\nu, m_{\nu}}=R_{\nu, 0,}
$$

and if there are regions $R_{\mu_{j}}$ satisfying (i), $R_{\mu_{j}} \neq R_{\nu, i}$ for $\nu=1, \ldots, p, i=0, \ldots, m_{\nu}, j=1, \ldots, n_{0}$
In the second case each of the sets of regions $R_{\nu, 09} \ldots, R_{\nu,\left(m_{\nu}-1\right)}$ satisfies theorem 4.3. Let $\tilde{\beta}_{\nu}$ be the corresponding fixed point of $\mathrm{E}^{\mathrm{m}}, \tilde{\beta}_{\nu}$ in $\mathrm{R}_{\nu, 0}, \quad \beta_{\nu}$ in $K_{;}$then, if we have

$$
C=\max _{\nu} \min _{\tilde{\delta}}\left|N\left(\tilde{\beta}_{\nu}-\tilde{\delta}\right)\right|
$$

where $1 \leqslant \nu \leqslant p$ and $\tilde{\delta}$ is an integer in a, where the maximum is attained for $\nu=\nu_{0}, I I(b)$ is satisfied with the regions $R_{\nu_{0}, 0}$. . . , $R_{\nu_{0}}\left(m_{\nu_{0}}-1\right)$. It should be noted that the sets $\left\{\mathbb{R}_{\nu, 0}, \ldots, R_{\nu,\left(m_{\nu}-1\right)}\right\}$ for $\nu=1, \ldots, p$ are not necessarily disjoint, and the value of ν_{0} is not necessarily unique.
4.7 The fundamental region f is chosen in order to allow a simple and efficient algorithm for selecting the integer points in \oint so that, for a given integer $\tilde{\gamma}$ in \mathcal{f} there is a high probability of the existence of a subregion f_{y} of f which satisfies 4.2. With this in mind, f is chosen so that, if $\tilde{\alpha}$ in f is
given by $\tilde{\alpha}=\left(\xi_{\alpha}, \eta_{\alpha}, \xi_{\alpha}\right)$ and we define

$$
D_{y}=\max _{\alpha \text { in }}\left|\left(\xi_{\alpha}^{2}+\eta_{\alpha}^{2}+\zeta_{\alpha}^{2}\right)\right|,
$$

then D_{y} is as small as possible. The method used to do this is now described.
4.8 If $(1, M(\theta), Q(\theta))$ is a basis for K where M is linear and monic in θ and Q is a quadratic with coefficient $\frac{1}{l}$ for θ^{2},

$$
\begin{aligned}
{[(0,0,0),(1,0,1),} & (\operatorname{ReM}(\phi), \operatorname{In} M(\phi), M(\theta)), \\
& (\operatorname{Re} Q(\phi), \operatorname{Im} Q(\phi), Q(\theta))]
\end{aligned}
$$

is a basis for the lattice of integers of a. The actual choice of M and Q is made so that the scalar product

$$
(1,0,1) \cdot(\operatorname{Re} M(\phi), \operatorname{Im} M(\phi), M(\theta))=\operatorname{Re} M(\phi)+M(\theta)
$$

is a minimum over all possible choices of M, say for M^{\prime}; and the scalar products

$$
(1,0,1) \cdot(\operatorname{Re} Q(\phi), \operatorname{Im} Q(\phi), Q(\theta))=\operatorname{Re} Q(\phi)+Q(\theta)
$$

and

$$
\begin{aligned}
& \left(\operatorname{Re} M^{\prime}(\phi), \operatorname{Im} M^{\prime}(\phi), M^{\prime}(\theta)\right) \cdot(\operatorname{Re} Q(\phi), \operatorname{Im} Q(\phi), Q(\theta)) \\
& =\operatorname{Re} M^{\prime}(\phi) \cdot \operatorname{Re} Q(\phi)+\operatorname{Im} M^{\prime}(\phi) \cdot \operatorname{Im} Q(\phi)+M^{\prime}(\theta) \cdot Q(\theta)
\end{aligned}
$$

are each a minimum over all possible choices of Q, say for Q^{\prime}. \mathcal{F} is then chosen to be the set of points (ξ, η, ξ) where

$$
\begin{gathered}
\xi=x+y \cdot \operatorname{Re} M^{\prime}(\phi)+z \cdot \operatorname{Re} Q^{\prime}(\phi) \\
\eta=\quad y \cdot \operatorname{In} M^{\prime}(\phi)+z \cdot \operatorname{Im} Q^{\prime}(\phi) \\
\mathcal{\xi}=x+y \cdot M^{\prime}(\theta)+z \cdot Q^{\prime}(\theta) \\
-\frac{1}{2}<x \leqslant \frac{1}{2}, \quad-\frac{1}{2}<y \leqslant \frac{1}{2}, \quad-\frac{1}{2}<z \leqslant \frac{1}{2} .
\end{gathered}
$$

and

We determine M^{\prime} and Q^{\prime} as follows. Suppose

$$
m(\theta)=\theta-k
$$

and

$$
Q(\theta)=\lambda-p \theta-q,
$$

then we require

$$
\begin{aligned}
\text { Re } \phi+\theta-2 \mathrm{k} & \text { a minimum over all possible rational integer } \\
& \text { values of } \mathrm{k} .
\end{aligned}
$$

Let

$$
k_{1}=[\operatorname{Re} \phi+\theta]
$$

and

$$
k_{2}= \begin{cases}k_{1} & \text { if } k_{1} \text { is even } \\ k_{1}+1 & \text { if } k_{1} \text { is odd and } \operatorname{Re} \phi+\theta>0 \\ k_{1}-1 & \text { if } k_{1} \text { is odd and } \operatorname{Re} \phi+\theta<0,\end{cases}
$$

then k_{2} is even and is that even integer closest to $\operatorname{Re} \phi+\theta$. If $\mathrm{k}^{\prime}=\frac{1}{2} \mathrm{k}_{2}, \quad M^{\prime}(\theta)=\theta-\mathrm{k}^{\prime}$ satisfies the conditions stated above for $M^{\prime}(\theta)$. To find the rational integer values of p and q such that $Q(\theta)$ satisfies the conditions for $Q^{\prime}(\theta)$, we require

$$
\operatorname{Re} \psi+\lambda-p(\operatorname{Re} \phi+\theta)-2 q
$$

and. $\quad \operatorname{Re} \psi(\operatorname{Re} \phi-k)+\operatorname{Im} \psi \operatorname{Im} \phi+\lambda\left(\theta-k^{\prime}\right)$

$$
\begin{aligned}
& -\mathrm{p}\left(\operatorname{Re} \phi\left(\operatorname{Re} \phi-k^{\prime}\right)+\operatorname{Im} \phi \operatorname{In} \phi+\theta\left(\theta-k^{\prime}\right)\right) \\
& -\mathrm{q}\left(\operatorname{Re} \phi+\theta-2 k^{\prime}\right)
\end{aligned}
$$

to be a minimum over all rational integers p and q. Suppose p_{r} and q_{r} are the real numbers which when substituted for p and q respectively cause the above two expressions to become zero. Let

$$
\begin{aligned}
& p_{\epsilon}= \begin{cases}\frac{1}{2} & \text { if } p_{r}>0 \\
-\frac{1}{2} & \text { if } \\
p_{r}<0\end{cases} \\
& q_{\epsilon}=\left\{\begin{array}{lll}
\frac{1}{2} & \text { if } & q_{r}>0 \\
-\frac{1}{2} & \text { if } & q_{r}<0
\end{array}\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& p^{\prime}=\left[p_{r}+p_{\epsilon}\right] \\
& q^{\prime}=\left[q_{r}+q_{\epsilon}\right] ;
\end{aligned}
$$

$Q(\theta)=\lambda-p^{\prime} \theta-q^{\prime}$ then satisfies the conditions stated above for $Q^{\prime}(\theta)$.
4.9 The method of subdivision of f is chosen to simplify the testing for an integer for which a subregion satisfies 4.2. The smallest cuboid \mathcal{b} which contains all points of f, and which has faces parallel to the coordinate planes, is chosen. f is then divided into $10 \times 10 \times 10$ similar cuboids $\mathcal{C}_{i j k}, i=1, \ldots, 10 ;$ $j=1, \ldots, 10 ; k=1, \ldots, 10$. Each $\mathcal{L}_{i j k}$ has a flag $\mathcal{L}_{i j k}$ which is set to 2 for those regions which do not contain any point of \mathfrak{f} and to 1 otherwise. $\mathscr{L}_{i j k}$ is subsequently set to 0 when an integer point $\tilde{\gamma}$ is found for which $\boldsymbol{b}_{i j k}$ satisfies 4.2.

15 If the region ℓ^{*} to be tested is the set of points (ξ, η, ξ) for which

$$
\begin{array}{r}
\xi_{1} \leqslant \xi \leqslant \xi_{2} \\
\eta_{1} \leqslant h \leqslant \eta_{2} \\
\xi_{1} \leqslant \xi \leqslant \zeta_{2}
\end{array}
$$

then \mathscr{C}^{*} intersects with f only if at least one of $\left(\xi_{i}, \eta_{j}, \xi_{k}\right)$ $(i=1,2 ; j=1,2 ; k=1,2)$ lies in \mathfrak{f}; which is so if there is a set i, j, k with $i=1$ or $2, j=1$ or $2, k=1$ or 2 such that

$$
\begin{aligned}
& \xi_{i}=x+\bar{J} \operatorname{Re} M^{\prime}(\phi)+z \cdot \operatorname{Re} Q^{\prime}(\phi) \\
& \eta_{j}=y \cdot \operatorname{Im} M^{\prime}(\phi)+z \cdot \operatorname{Im} Q^{\prime}(\phi) \\
& \xi_{k}=x+y \cdot M^{\prime}(\theta)+z \cdot Q^{\prime}(\theta)
\end{aligned}
$$

where $|x| \leqslant \frac{1}{2}, \quad|y| \leqslant \frac{1}{2}, \quad|z| \leqslant \frac{1}{2}$.
If $\tilde{\gamma}$ is the point $\left(\xi_{\gamma}, h_{\gamma}, \xi_{\gamma}\right)$, it is an integer point for which b^{*} satisfies 4.2 only if, when we define

$$
\begin{aligned}
& \xi_{d}=\max \left(\left|\xi_{2}-\xi_{y}\right|,\left|\xi_{1}-\xi_{2}\right|\right) \\
& h_{\alpha}=\operatorname{aias}\left(\left|h_{2}-h_{2}\right|,\left|h_{1}-h_{2}\right|\right) \\
& \xi_{d}=\max \left(\left|\xi_{2}-\xi_{2}\right|,\left|\xi_{1}-\xi_{z}\right|\right),
\end{aligned}
$$

we have $\rho_{d}\left(\xi_{d}^{2}+\eta_{d}^{2}\right)<c$.
After testing using all points of f, those bilk for which $\mathcal{L}_{i j k}$ is equal to 1 are subdivided and tested as was \mathcal{E}. The process is continued, using further subdivisions, until those regions for which an integer point cannot be found to satisfy 4.2 can be combined to give regions R_{0}, . . . , R_{m}-1 to satisfy II (b), or until II (a) is shown to be satisfied.
4.10 The choice of \mathfrak{f} as a fundamental region such that if $\tilde{\alpha}$ is in $\mathcal{f},-\tilde{\alpha}$ is in f hes the following advantages
(i) When considering the set of sub-regions of the original region \mathfrak{b}, we need only consider those points $(\xi, \eta\}$,$) ,$ given by 4.3 , for which $|x| \leqslant \frac{1}{2},|y| \leqslant \frac{1}{2}, 0 \leqslant z \leqslant \frac{1}{2}$. When subsequently testing these sub-regions all points must be considered.
(ii) The quantities involved in the above expressions are all of the same order of magnitude, usually of absolute value less than 10 ; so with an accuracy of fifteen significant figures, as on the computer used, rounding error will not cause inaccuracies in the results when C is quoted to just four decimal places, as in the program used.
4.11 I now turn to the choice of the set f of integer points. Suppose that \mathcal{C} is the set of (ξ, η, ζ) for which

$$
\begin{aligned}
& \xi_{l} \leqslant \xi \leqslant \xi_{u} \\
& \eta_{l} \leqslant \eta \leqslant \eta_{u} \\
& \xi_{l} \leqslant \rho \leqslant \xi_{u}
\end{aligned}
$$

and that the cuboids $f^{(i)}, i=1, \ldots, \ldots$, for which we are trying to find integer points to satisfy 4.2, are the sets of (ξ, h, ξ) for which

$$
\begin{aligned}
& \xi_{L}^{(i)} \leqslant \xi \leqslant \xi_{u}^{(i)} \\
& \eta_{l}^{(i)} \leqslant \eta \leqslant \eta_{n}^{(i)} \\
& \xi_{e}^{(i)} \leqslant \xi \leqslant \xi_{u}^{(i)}
\end{aligned}
$$

where

$$
\begin{array}{ll}
\xi_{u}^{(i)}-\xi_{l}^{(i)}=10^{-h}\left(\xi_{u}-\xi_{l}\right)=\xi_{n} & \text { say } \\
\eta_{u}^{(i)}-h_{l}^{(i)}=10^{-h}\left(h_{u}-\eta_{l}\right)=h_{n} & \text { say } \\
\xi_{u}^{(i)}-\xi_{l}^{(i)}=10^{-h}\left(\xi_{u}-\xi_{l}\right)=\xi_{n} \text { say }
\end{array}
$$

$$
\xi_{l}^{(i)}=m_{1 i} \xi_{h}+\xi_{l} ; \quad \eta_{l}^{(i)}=m_{2 i} \eta_{h}+\eta_{l} ; \quad \xi_{l}^{(i)}=m_{3 i} \xi_{h}+\xi_{l}
$$

for some positive rational integer h and non-negative rational integers $m_{1 i}, m_{2 i}, m_{3 i}$.

It is required that the set $\$$ should contain those integer points $\tilde{\gamma}=\left(\xi_{r}, h_{r}, \xi_{r}\right)$ such that for some $\ell^{(i)}$, all $\tilde{\alpha}=\left(\xi_{\alpha}, h_{\alpha}, \zeta_{\alpha}\right)$ in $f^{(i)}$ satisfy $|N(\tilde{\alpha}-\tilde{\gamma})|<c$ 4.4
and as few other points as possible. Now

$$
|N(\tilde{\alpha}-\tilde{\gamma})|=\left|\left(\xi_{\alpha}-\zeta_{\gamma}\right)\left(\left(\xi_{\alpha}-\xi_{\gamma}\right)^{2}+\left(h_{\alpha}-h_{x}\right)^{2}\right)\right|
$$

thus bounds may be found for ξ_{γ}, $h_{\gamma}, \mathcal{F}_{x}$, for those $\tilde{\gamma}$ for which there is a high probability that 4.4 holds; in terms of the bounds
on $\xi_{\alpha}, h_{\alpha}, f_{\alpha}$ for $\tilde{\alpha}$ in $\ell_{\text {. }}$
In order that
$\begin{array}{lll}\left|\left(\xi_{\alpha}-\xi_{\gamma}\right)\left(\left(\xi_{\alpha}-\xi_{\gamma}\right)^{2}+\left(h_{\alpha}-h_{\gamma}\right)^{2}\right)\right|<c & \text { for all } \tilde{\alpha} \text { in } b^{(i)} \\ \left|\left(\xi_{\alpha}-\xi_{\gamma}\right)\right|<\frac{c}{\left(\left(\xi_{\alpha}-\xi_{\gamma}\right)^{2}+\left(h_{\alpha}-h_{\gamma}\right)^{2}\right)} & \text { for all } \tilde{\alpha} \text { in } b^{(i)} & 4.5 \\ \left.\left|\left(\xi_{\alpha}-\xi_{\gamma}\right)^{2}+\left(h_{\alpha}-h_{\gamma}\right)^{2}\right|<\frac{c}{\mid\left(\xi_{\alpha}-\xi_{\gamma}\right)} \right\rvert\, & \text { for all } \tilde{\alpha} \text { in } \zeta^{(i)} & 4.6\end{array}$
Thus we may either restrict the values of ξ_{γ} and η_{γ} and so find bounds for ξ_{γ}, or restrict the value of ρ_{γ} and so find bounds for ξ_{γ} and η_{γ}.

First of all we restrict the values of ξ_{γ}, and η_{γ}, so that they are close to the values of ξ and h_{α} for $\tilde{\alpha}$ in \mathscr{b}, by the inequalities
and

$$
\begin{align*}
& \xi_{l}-0.1 \leqslant \xi \leqslant \xi_{u}+0.1 \\
& \eta_{l}-0.1 \leqslant \zeta \leqslant \eta_{u}+0.1
\end{align*}
$$

The constant 0.1 is chosen bearing in mind that the critical
value for C, so for as the Euclidean Algorithm is concerned, is 1.
With ξ_{γ}, h_{γ} satisfying 4.7, a sufficient condition for
S_{γ} satisfying 4.4 is

$$
\left|\left(\xi_{\alpha}-\rho_{\gamma}\right)\right|<\frac{c}{\rho_{h}^{2}}
$$

where

$$
\rho_{h}^{2}=\max \left|\left(\xi-\xi_{\gamma}\right)^{2}+\left(h-h_{\gamma}\right)^{2}\right|,
$$

and the maximum is over all points $\tilde{\beta}=(\xi, \eta, \xi)$ where $\tilde{\beta}$ is in $f^{(i)}$ and $|N(\tilde{\beta}-\tilde{\gamma})|<c$. A necessary bound for ρ_{h} is then $\frac{1}{2}\left(\xi_{h}^{2}+h_{h}^{2}\right)^{\frac{1}{2}}$. $\frac{1}{2} \max \left\{\xi_{h}, \eta_{h}\right\}$ was in fact used as this lower bound since it was thought to be a more efficient expression to use when programing, although
$\sqrt{\frac{1}{2}}\left(\frac{1}{2}\left(\xi_{n}^{2}+\eta_{h}^{2}\right)^{\frac{1}{2}}\right) \leqslant \frac{1}{2} \max \left\{\xi_{h}, \eta_{n}\right\} \leqslant \frac{1}{2}\left(\xi_{n}^{2}+\eta_{n}^{2}\right)^{\frac{1}{2}}$
so that some extra points would be included in \& . However, it
was found necessary to impose bounds on the coefficients $x_{\gamma}, y_{\gamma}, z_{\gamma}$ where $S_{\gamma}=x_{\gamma}+J_{\gamma} M^{\prime}(\theta)+z_{\gamma} Q^{\prime}(\theta)$; with the result that F_{γ} does not come near the bound calculated, using either of the above bounds for ρ_{h}, when C is close to 1. Thus a necessary condition for the integer point $\tilde{\gamma}$ to be included in the set \mathcal{f} is that when $\tilde{\gamma}$ satisfies 4.7 it further satisfies

$$
\left|\xi_{\alpha}-\zeta_{n}\right|<\frac{46}{\left(\max \left\{\xi_{n}, \eta_{h}\right\}\right)^{2}} \text { for all } \tilde{\alpha} \text { in } f^{(i)}
$$

for which a necessary condition is

$$
\eta_{l}-\frac{4 C}{\left(\max \left\{\xi_{n}, h_{n}\right\}\right)^{2}} \leqslant \zeta_{\gamma} \leqslant \xi_{n}+\frac{4 C}{\left(\max \left\{\xi_{n}, \eta_{n}\right\}\right)^{2}} \quad 4.8
$$

We now find necessary conditions for $\tilde{\gamma}$ in $\&$ by first restricting the value of ρ_{r} so that it is close to the values taken by S_{α} for $\tilde{\alpha}$ in \mathcal{C}, we use the inequality

$$
\rho_{e}-0.1 \leq \rho_{x} \leq \rho_{u}+0.1
$$

With ζ_{γ} satisfying 4.9 a sufficient condition for ξ_{γ}, h_{γ} satisfying 4.6 is

$$
\left|\left(\xi_{\alpha}-\xi_{\gamma}\right)^{2}+\left(\eta_{\alpha}-\eta_{\gamma}\right)^{2}\right|<\frac{c}{z_{h}} \quad \text { where } z_{h}=\max \left|\xi-\xi_{\gamma}\right|
$$

and the maximum is token over all points $\tilde{\beta}=(\xi, \eta, \xi)$ where $\xi_{l}^{(i)} \leqslant \xi \leqslant \xi_{u}^{(i)}, \eta_{l}^{(i)} \leqslant \eta \leqslant \eta_{u}^{(i)}$ and $|N(\tilde{\beta}-\tilde{\gamma})|<c$. A necessary lower bound for Z_{h} is then $\frac{1}{2} S_{h}$. Thus a necessary condition for the integer point $\tilde{\gamma}$ to be included in \oint is that when it satisfies 4.9 it further satisfies

$$
\left|\left(\xi_{\alpha}-\xi_{\gamma}\right)^{2}+\left(\eta_{\alpha}-\eta_{\gamma}\right)^{2}\right|<\frac{2 C}{i_{n}}
$$

for which necessary conditions are

$$
\begin{array}{ll}
& \xi_{l}-\left(\frac{2 C}{s_{n}}\right)^{\frac{1}{2}} \leqslant \xi_{\gamma} \leqslant \xi_{u}+\left(\frac{2 C}{s_{n}}\right)^{\frac{1}{2}} \\
\text { and } \quad & \eta_{\ell}-\left(\frac{2 C}{s_{n}}\right)^{\frac{1}{2}} \leqslant \eta_{\gamma} \leqslant \eta_{u}+\left(\frac{2 C}{s_{n}}\right)^{\frac{1}{2}}
\end{array}
$$

4.12 Having found the regions R_{1}, . . . , R_{m} for which there is no integer point $\tilde{\gamma}$ satisfying 4.2 , it is necessary to determine with which of these regions the translates of the regions, $E\left(R_{1}\right), \ldots, E\left(R_{n}\right)$, intersect.

We suppose that, for some n where $1 \leqslant n \leqslant m, R_{n}$ is the set of points (ξ, η, ξ) which satisfy

$$
\begin{aligned}
& \xi_{1}^{(n)} \leq \xi \leqslant \xi_{2}^{(n)} \\
& \eta_{1}^{(n)} \leq \eta \leqslant \eta_{2}^{(n)} \\
& \left.\xi_{1}^{(n)} \leq\right\} \leq \xi_{2}^{(n)}
\end{aligned}
$$

For each of these vertices, $\left(\xi_{i}^{(n)}, \eta_{j}^{(n)}, \int_{n}^{(n)}\right) \quad i=1,2, j=1,2$, $k=1,2$, we find the cylindrical polar coordinates $\left(p_{(i, j)}^{(n)}, \alpha_{(i, j)}^{(n)}, \int_{k}^{(n)}\right)$. If the fundamental unit \in has cylindrical poler coordinates ($\left.\rho_{\epsilon}, \alpha_{\epsilon}, \rho_{\epsilon}\right)$, the transforms of a point (ρ, α, ρ) by ϵ is $\left(p p_{\epsilon}, \alpha+\alpha_{\epsilon}, \int S_{\epsilon}\right) ;$ thus treasforas of the vertices of R_{n} will be $\left(\rho_{(i, j)}^{(n)} \rho_{\epsilon}, \alpha_{(i, j)}^{(n)}+\alpha_{\epsilon}, f_{k}^{(n)} \Omega_{\epsilon}\right)$ for $i=1,2, j=1,2, k=1,2$. $\mathbb{E}\left(R_{n}\right)$ is then the cuboid with these points as vertices. We suppose now that $E\left(R_{n}\right)$ is the set of points (ξ, η, ξ) which satisfy

$$
\begin{aligned}
& \xi_{1 \epsilon}^{(n)} \leqslant \xi \leqslant \xi_{2 \epsilon}^{(n)} \\
& \eta_{1 \epsilon}^{(n)} \leqslant \eta \leqslant \eta_{2 \epsilon}^{(n)} \\
& \xi_{1 \epsilon}^{(n)} \leqslant \zeta \leqslant \xi_{2 \epsilon}^{(n)}
\end{aligned}
$$

We wish to find the set y of those points $\tilde{\gamma}$ which cause $\mathbb{E}\left(\mathbb{R}_{n}\right)-\tilde{\gamma}$ to intersect with the original fundamental region f, in order that we may find which of R_{1}, \ldots, R_{m}, if any, intersect with the translates of $E\left(R_{n}\right)$. For each triplet (i, j, k) we find a tried $\left(x_{i j k}^{(n)}, y_{i j k}^{(n)}, z_{i j k}^{(n)}\right)$
such that

$$
\begin{aligned}
& \xi_{i \varepsilon}^{(n)}= x_{i j k}^{(n)}+y_{i j k}^{(n)} \operatorname{Re} m^{\prime}(\phi) \\
& \eta_{j \in}^{(n)}= z_{i j k}^{(n)} \operatorname{Re} Q^{\prime}(\phi) \\
& y_{i j k}^{(n)} \operatorname{Im} M^{\prime}(\phi)+z_{i j k}^{(n)} \operatorname{Im} Q^{\prime}(\phi) \\
& \xi_{k \in}^{(n)}=x_{i j k}^{(n)}+y_{i j k}^{(n)} M^{\prime}(\theta)+z_{i j k}^{(n)} Q^{\prime}(\theta) .
\end{aligned}
$$

The rational integers $X_{\ell}, X_{u}, Y_{\ell}, X_{u}, Z_{\ell}, Z_{u}$ are then defined such that X_{l}, Y_{ℓ}, Z_{l} are the greatest and X_{u}, Y_{u}, Z_{u} are the least rational integers to satisfy

$$
\begin{aligned}
& X_{l} \leqslant \mathbb{x}_{i j k}^{(n)} \leqslant X_{u} \\
& X_{l} \leqslant y_{i j k}^{(n)} \leqslant X_{u} \\
& Z_{l} \leqslant z_{i j k}^{(n)} \leqslant Z_{u}
\end{aligned}
$$

over all i, j, k where $i=1,2, j=1,2, k=1,2$. The possible integers $\tilde{\gamma}=\left(\xi_{\gamma}, \eta_{\gamma}, \zeta_{\gamma}\right)$ are then among those which satisfy

$$
\begin{aligned}
& \xi_{\mathbf{x}}=x+y \cdot \operatorname{Re} m^{\prime}(\phi)+z \cdot \operatorname{Re} Q^{\prime}(\phi) \\
& \eta_{x}=y \cdot \operatorname{Im} M^{\prime}(\phi)+z \cdot I_{m} Q^{\prime}(\phi) \\
& \xi_{x}=x+y \cdot M^{\prime}(\theta)+z \cdot Q^{\prime}(\theta)
\end{aligned}
$$

where

$$
\begin{aligned}
& X_{l} \leqslant x \leqslant X_{u} \\
& X_{l} \leqslant y \leqslant Y_{u} \\
& Z_{l} \leqslant z \leqslant Z_{u} ;
\end{aligned}
$$

we define y to be the set of integer points which satisfy these conditions. For each integer $\tilde{\gamma}$ in \bar{y} we then test whether, for $p=1, \ldots, m, R_{p}+\tilde{\gamma}$ intersects with $E\left(R_{n}\right)$.
4.13 The program which performs this testing calculates the basis of the lattice and then reads the values of the coefficients of the vertices of R_{1}, \ldots, R_{m} as data, in a format with ten
decimal places. To ensure that no points are lost due to rounding error the values of $\xi_{1}^{(n)}, \eta_{1}^{(n)}$ and $\xi_{1}^{(n)}$ for $n=1, \ldots$, 1 are decreased by 10^{-10} and the values of $\xi_{2}^{(n)}, \eta_{2}^{(n)}$ and $\rho_{2}^{(n)}$ are increased by 10^{-10} before any transformations are performed. The velues of $P_{\epsilon}, \alpha_{\epsilon}, S_{\epsilon}$ will be accurate within the limits of the machine, that is fifteen significant figures, as the coefpicients of ϵ relative to the basis ($1, M^{\prime}(\theta), Q^{\prime}(\theta)$) are read in as rational integers and $P_{\epsilon}, \alpha_{\epsilon}, S_{\epsilon}$ are determined using the basis which is calculated.

```
Since 0<\epsilon< 1 we also heve
```

$$
\begin{array}{ll}
\left.\xi_{1 \epsilon}^{(n)}=\xi_{1}^{(n)}\right\}_{\epsilon} \\
\left.\mathcal{S}_{2 \epsilon}^{(n)}=\mathcal{S}_{2}^{(n)}\right\}_{\epsilon} \\
\xi_{1 E}^{(n)}=\min _{i, j}\left(\rho_{(i, j)}^{(n)} \rho_{\epsilon} \cos \left(\alpha_{(i, j)}^{(n)}+\alpha_{\epsilon}\right)\right) & i=1,2, j=1,2 . \\
\eta_{1 \epsilon}^{(n)}=\min _{i, j}\left(\rho_{(i, j)}^{(n)} \rho_{\epsilon} \sin \left(\alpha_{(i, j)}^{(n)}+\alpha_{\epsilon}\right)\right) & i=1,2, j=1,2 . \\
\xi_{2 E}^{(n)}=\max _{i, j}\left(\rho_{(i, j)}^{(n)} \rho_{\epsilon} \cos \left(\alpha_{(i, j)}^{(n)}+\alpha_{\epsilon}\right)\right) & i=1,2, j=1,2 . \\
\eta_{2 E}^{(n)}=\operatorname{mix}_{i, j}\left(\rho_{(i, j)}^{(n)} \rho_{\epsilon} \sin \left(\alpha_{(i, j)}^{(n)}+\alpha_{\epsilon}\right)\right) & i=1,2, j=1,2 .
\end{array}
$$

D. 8 It 以

THE MINIMUM OF $\frac{\alpha}{1-\epsilon^{n}}$.
5.1 For a given number $\frac{\alpha}{1-\epsilon^{n}}$, where α is an algebraic integer, we wish to find the minimum C of $\left|N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)\right|$ for integers γ in K g from $I_{8} 3$, if C is greater than or equal to 1 then the field is non-Euclidean. The special number $\frac{\alpha}{1-\epsilon^{n}}$ is chosen since for every number $\{$ in K there is a positive rational integer in such that

$$
\epsilon^{n} \rho \equiv \rho(1)
$$

thus, if $\zeta=\frac{\alpha}{\beta}$,

$$
\begin{equation*}
\left(1-\epsilon^{n}\right)^{\frac{\alpha}{\beta}} \equiv 0 \tag{1}
\end{equation*}
$$

hence β divides $1-\epsilon^{n}$; therefore, without loss of generality, we may restrict β to values of the form $1-\epsilon^{n}$.

We obtain bounds for the coefficients p, q, r in the canonical representation of γ as $p \lambda+q \theta+r$; using these bounds we can conduct a computer search for possible γ. The bounds are obtained by showing that values of $N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)$ are equal to those taken by a restricted set of γ^{\prime} s, since the norm remains unchanged under certain transformations of the lattice of integers.
5.2 In the trivial case when $\frac{\alpha}{1-\epsilon^{n}}$ is an integer then $C=0$. In the following it will be assumed that $\frac{\alpha}{1-\epsilon^{n}}$ is not an integer of K.

LEMMA 5.1

The number $\frac{\alpha}{1-\epsilon^{n}}$ transforms into itself if the elements of K are transformed by

$$
T s \gamma \rightarrow \frac{\gamma-\alpha}{\epsilon^{n}}
$$

$$
5.1
$$

PROOF OF LEMMA 5.1 trivial.
For any given integer γ in K

$$
\begin{aligned}
N\left(\frac{\alpha}{1-\epsilon^{n}}-T(\gamma)\right) & =N\left(\frac{\alpha}{1-\epsilon^{n}}-\frac{(\gamma-\alpha)}{\epsilon^{n}}\right) \\
& =N\left(\frac{\alpha \epsilon^{n}+\alpha-\alpha \epsilon^{n}-\gamma\left(1-\epsilon^{n}\right)}{\epsilon^{n}\left(1-\epsilon^{n}\right)}\right) \\
& =N\left(\frac{1}{\epsilon^{n}}\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)\right) \\
& =N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)
\end{aligned}
$$

since $N\left(\epsilon^{n}\right)=1$ and N is multiplicative.
We now have

LEMMA 5.2

$$
N\left(\frac{\alpha}{1-\epsilon^{n}}-T^{i}(\gamma)\right)=N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)
$$

for every rational integer i.
5.3 If T_{l} is an arbitrary real number such that $T_{l}>\frac{\alpha}{1-\epsilon^{n}}$, under the transformation 5.1 the set of integers γ in K for which $\gamma \geqslant \tau_{\ell}$ is transformed into that set for which

$$
\gamma \geqslant \frac{\tau_{l}-\alpha}{\epsilon^{n}}>\tau_{l} \quad \text { since } 0<\epsilon^{n}<1 \text { when } n \geqslant 1 \text {. }
$$

If τ_{n} is an arbitrary real number such that $\tau_{n}<\frac{\alpha}{1-\epsilon^{n}}$, the set of integers γ for which $\gamma \leqslant \tau_{n}$ is transformed into that set for which

$$
\gamma \leqslant \frac{\tau_{n}-\alpha}{\epsilon^{n}}<\tau_{n} \quad \text { since } 0<\epsilon^{n}<1 \text { when } n \geqslant 1 \text {. }
$$

Now define the sets A and B :

$$
\begin{aligned}
& A=\left\{\gamma: \gamma \text { integer in } K \text { and } T_{l} \leqslant \gamma<\frac{T_{l}-\alpha}{\epsilon^{n}}\right\} \\
& B=\left\{\gamma: \gamma \text { integer in } K \text { and } \frac{T_{u}-\alpha}{\epsilon^{n}}<\gamma \leqslant \tau_{u}\right\} .
\end{aligned}
$$

Suppose γ is an integer in K which satisfies

$$
\frac{\alpha}{1-\epsilon^{n}}<\gamma<\tau_{l}
$$

and that $T^{i}(\gamma)$ does not belong to A for any rational integer i, in particular for any positive rational integer i. We have

$$
\gamma>\frac{\alpha}{1-\epsilon^{n}}, \quad T(\gamma)=\frac{\gamma-\alpha}{\epsilon^{n}}
$$

so that

$$
T(\gamma)-\frac{\alpha}{1-\epsilon^{n}}=\frac{\gamma-\frac{\alpha}{1-\epsilon^{n}}}{\epsilon^{n}}>0
$$

since $0<\epsilon^{n}<1$. Thus

$$
T^{i}(\gamma)>\frac{\alpha}{1-\epsilon^{n}}
$$

for every positive rational integer i.

$$
\text { Since } \gamma<\tau_{t}, T(\gamma)<\frac{\tau_{t}-\alpha}{\epsilon^{n}} \text {, but } T(\gamma) \text { does not belong }
$$ to A hence

$$
T(\gamma)<T_{l} .
$$

Thus $T^{i}(\gamma)<\tau_{l}$ for every positive rational integer i.
We now have

$$
\frac{\alpha}{1-\epsilon^{n}}<T^{i}(\gamma)<\tau_{l}
$$

for every positive rational integer i, so that

$$
\frac{\alpha}{1-\epsilon^{n}}<\frac{\gamma-\alpha_{j=0}^{i g} \epsilon^{n_{j}}}{\epsilon^{n^{t}}}<\tau_{l}
$$

for every positive rational integer i,

$$
\gamma<\epsilon^{n i} \tau_{l}+\alpha \sum_{j=0}^{i-1} \epsilon^{n j}
$$

for every positive rational integer i, hence

$$
\gamma<e+\frac{\alpha}{1-\epsilon^{n}}
$$

where e is arbitrarily sal since τ_{l} is fixed and $0<\epsilon^{n}<1$; but this contradicts

$$
\frac{\alpha}{1-\epsilon^{n}}<\gamma .
$$

Thus, for some positive rational integer $i, T^{i}(\gamma)$ belongs to A.

Now suppose that γ is an integer in K which satisfies

$$
\frac{I_{1}-\alpha}{\epsilon^{n}}<\gamma
$$

and that $T^{i}(\gamma)$ does not belong to A for any rational integer i, in particular for any negative rational integer i.
$\gamma>\frac{T_{l}-\alpha}{\epsilon^{n}} \quad$ hence $\quad T^{-1}(\gamma)>\tau_{l}$.
$T^{-1}(\gamma)$ does not belong to A hence

$$
T^{-1}(\gamma)>\frac{T_{l}-\alpha}{\epsilon^{n}},
$$

consequently

$$
T^{-i}(\gamma)>\frac{\tau_{l}-\alpha}{\epsilon^{n}}
$$

for every positive rational integer i. Therefore, we have

$$
\gamma \epsilon^{i n}+\sum_{j=0}^{i-1} \alpha \epsilon^{j n}>\frac{r_{l}-\alpha}{\epsilon^{n}}
$$

for every positive rational integer i, thus

$$
\gamma>\epsilon^{-i n}\left\{\frac{\pi_{1}-\alpha}{\epsilon^{n}}-\sum_{j=0}^{i-1} \alpha \epsilon^{j n}\right\}
$$

for every positive rational integer i since $0<\epsilon^{n}<1$. Hence $\gamma>M$ for arbitrarily large H since τ_{t} and α are fixed, $0<\epsilon^{n}<1$ and $\frac{T_{L}-\alpha}{\epsilon^{n}}-\frac{\alpha}{1-\epsilon^{n}}=\frac{T_{1}\left(1-\epsilon^{n}\right)-\alpha}{\epsilon^{n}\left(1-\epsilon^{n}\right)}>0$.
This contradicts any particular choice of γ; hence, if γ is an integer such that

$$
\gamma>\frac{\alpha}{1-\epsilon^{n}}
$$

then for some rational integer $i, T^{i}(\gamma)$ belongs to A.
Similarly, if γ is an integer such that

$$
\gamma<\frac{\alpha}{1-\epsilon^{n}}
$$

then for some rational integer $i, T^{i}(\gamma)$ belongs to B.
From lemma 5.2, 5.3 and 5.4, for any integer γ_{1} in K there is an integer γ_{2} in $A \cup B$ such that

$$
N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma_{1}\right)=N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma_{2}\right) .
$$

Thus, if C_{1} is any positive real number and there is an integer γ_{1} in \mathbb{K} such that

$$
\left|N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma_{1}\right)\right|<c_{1}
$$

there is an integer γ_{2} in Au such that 5.5 holds with γ_{1} replaced by γ_{2}. In particular if

$$
c=\min \left|N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)\right|
$$

where the minimum is over integers γ in \mathbb{K}, we have

$$
c=\min \left|N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)\right|
$$

where the minium is over integers γ in $A \cup B$.
5.4 Following the notation described in the introduction, the number $\gamma=p_{\gamma} \lambda+q_{\gamma} \theta+r_{\gamma}$ may be represented in the space a by the point $\tilde{\gamma}=\left(\xi_{\gamma}, \eta_{8}, \rho_{\gamma}\right)$ where

$$
\begin{aligned}
& \rho_{\gamma}=p_{\gamma} \lambda+q_{\gamma} \theta+r_{\gamma} \\
& \xi_{\gamma}=p_{\gamma} \operatorname{Re} \psi+q_{\gamma} \operatorname{Re} \phi+r_{\gamma} \\
& \eta_{\gamma}=p_{\gamma} \operatorname{Im} \psi+q_{\gamma} \operatorname{Im} \phi .
\end{aligned}
$$

If

$$
\Delta=\left|\begin{array}{ccc}
\lambda & \theta & 1 \\
\operatorname{Re} \psi & \operatorname{Re\phi } & 1 \\
\operatorname{Im} \psi & \operatorname{In} \phi & 0
\end{array}\right|
$$

we have
$\boldsymbol{p}_{\mathbf{\gamma}}=\left|\begin{array}{ccc}\boldsymbol{\rho}_{\mathbf{\gamma}} & \theta & 1 \\ \xi_{\mathbf{\gamma}} & \operatorname{Re\phi } & 1 \\ \eta_{\boldsymbol{\gamma}} & \operatorname{In} \phi & 0\end{array}\right| / \Delta$

$$
\begin{aligned}
& q_{\gamma}=\left|\begin{array}{ccc}
\lambda & \xi_{\gamma} & 1 \\
\operatorname{Re} \psi & \xi_{\gamma} & 1 \\
\operatorname{Im} \psi & \eta_{\gamma} & 0
\end{array}\right| \Delta \\
& r_{\gamma}=\left|\begin{array}{ccc}
\lambda & \theta & \rho_{\gamma} \\
\operatorname{Re\psi } & \operatorname{Re\phi } \phi & \xi_{\gamma} \\
\operatorname{Im} \psi & \operatorname{Im} \phi & \eta_{\gamma}
\end{array}\right| / \Delta .
\end{aligned}
$$

$\frac{\alpha}{1-\epsilon^{n}}=\xi_{\alpha^{*}}$ may be represented by the point

$$
\tilde{\rho}_{\alpha^{*}}=\left(\xi_{\alpha^{*}}, \eta_{\alpha^{*}}, \rho_{\alpha^{*}}\right) .
$$

In searching for the points $\tilde{\gamma}$ for which

$$
\left|N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)\right| \leqslant c_{1}
$$

for some chosen positive real number C_{1}, if τ_{0}, τ_{n} are arbitrarily chosen real numbers such that

$$
\tau_{w}<\frac{\alpha}{1-\epsilon^{n}}<\tau_{i},
$$

from the above it is sufficient to consider those $\tilde{\gamma}$ for which

$$
\begin{array}{ll}
\tau_{1} \leqslant \rho_{x}<\frac{\tau_{1}-\alpha}{6^{n}} & 5.7 \\
\tau_{u} \geqslant \rho_{y}>\frac{\tau_{u}-\alpha}{\epsilon^{n}} . & 5.8
\end{array}
$$

and
5.5 Consider, first of all, those $\tilde{\gamma}$ which satisfy 5.7. If

$$
\left|\left(\xi_{x}-\xi_{\alpha^{*}}\right)\left\{\left(\xi_{x}-\xi_{\alpha_{*}}\right)^{2}+\left(\eta_{x}-\eta_{\alpha^{*}}\right)^{2}\right\}\right| \leqslant c_{1},
$$

since

$$
S_{\gamma} \geqslant \tau_{l}>S_{\alpha^{*}}
$$

we have

$$
\left(\xi_{\gamma}-\xi_{\alpha^{*}}\right)^{2}+\left(\eta_{z}-\eta_{\alpha^{*}}\right)^{2} \leqslant \frac{C_{1}}{\tau_{i}-\xi_{\alpha^{*}}}=\sigma_{1}^{2} \quad \text { say. }
$$

Thus, in searching for those $\tilde{\boldsymbol{\gamma}}$ satisfying 5.6 and 5.7 , it is sufficient to consider those $\tilde{\gamma}$ which also satisfy

$$
\begin{aligned}
& \xi_{\alpha^{*}}-\sigma_{1} \leqslant \xi_{\gamma} \leqslant \xi_{\alpha^{*}}+\sigma_{1} \\
& \eta_{\alpha^{*}}-\sigma_{1} \leqslant \eta_{\gamma} \leqslant \eta_{\alpha^{*}}+\sigma_{1} .
\end{aligned}
$$

From the bounds on $\xi_{\gamma}, \xi_{\gamma}, \eta_{r}$, we may calculate $p_{\gamma}^{(1)}, p_{\gamma}^{(2)}$, $q_{\gamma}^{(1)}, q_{\gamma}^{(2)}, r_{\gamma}^{(1)}, r_{\gamma}^{(2)}$ such that, to find those $\tilde{\gamma}$ satisfying 5.6 and 5.7 , it is sufficient to consider those $\tilde{\gamma}$ for which
$p_{\gamma}^{(1)} \leqslant p_{\gamma} \leqslant p_{\gamma}^{(2)}$
5.9
$q_{\gamma}^{(1)} \leqslant q_{y} \leqslant q_{\gamma}^{(2)}$
5.10
$r_{r}^{(1)} \leqslant r_{x} \leqslant r_{\gamma}^{(2)}$.
5.11

We now suppose $p_{\gamma}^{(2)}-p_{\gamma}^{(1)} \leqslant q_{\gamma}^{(2)}-q_{\gamma}^{(1)}$, then, since

$$
\eta_{x}=p_{x} \operatorname{Im} \psi+q_{z} \operatorname{In} \phi,
$$

for any $\tilde{\gamma}$ with p_{γ} satisfying 5.9 , which also satisfies 5.6 and 5.7 we have

$$
\frac{\eta_{\alpha} *-\sigma_{1}-p_{x} \operatorname{Im} \psi}{\operatorname{Im} \phi} \leqslant q_{k} \leqslant \frac{\eta_{\alpha} *+\sigma_{1}-p_{x} \operatorname{Im} \psi}{\operatorname{Im} \phi}
$$

since ϕ may be chosen such that In ϕ is positive.

$$
\xi_{\gamma}=p_{\gamma} \operatorname{Re} \psi+q_{\gamma} \operatorname{Re} \phi+r_{\gamma}
$$

thus, for any $\tilde{\gamma}$ with p_{γ} satisfying 5.9 and q_{γ} satisfying 5.12, for which 5.6 and 5.7 hold

$$
\xi_{\alpha^{*}}-\sigma_{1}-p_{\gamma} \operatorname{Re} \psi-q_{\gamma} \operatorname{Re} \phi \leqslant r_{\gamma} \leqslant \xi_{\alpha^{*}}+\sigma_{1}-p_{\gamma} \operatorname{Re} \psi-q_{0} \operatorname{Re} \phi .
$$

In this way we obtain bounds on the values of p_{γ}, q_{γ} and $r_{\gamma} g$ and so have a finite number of possibilities for $\tilde{\gamma}$ satisfying 5.6 and 5.7.

$$
\text { If } p_{\gamma}^{(2)}-p_{\gamma}^{(1)}>q_{\gamma}^{(2)}-q_{\gamma}^{(1)} \text { then, for any } \tilde{\gamma} \text { with } q_{\gamma}
$$ satisfying 5.10 which also satisfies 5.6 and 5.7 we hove

$$
\frac{\eta_{\alpha}^{*}-\sigma_{1}-q_{\gamma} I_{n} \phi}{\operatorname{II} \psi} \leqslant p_{\gamma} \leqslant \frac{\eta_{\alpha}{ }^{*}+\sigma_{1}-g_{\gamma} \operatorname{Im} \phi}{\operatorname{Im} \psi}
$$

since $I_{m} \psi>0$ as $I_{m} \psi=\frac{2 R e \phi I m \phi+t I_{m} \phi+s}{l}, \phi$ is chosen such that In ϕ is positive, $\theta+2 R e \phi=$ a hence $\operatorname{Re\phi }=\frac{a-\theta}{2} \geq 0$ since $a \geqslant 1$ and $0<\theta<1$.

We now have, for any $\tilde{\gamma}$ with q_{γ} satisfying 5.10 and p_{γ}
satisfying 5.13,

$$
\xi_{\alpha^{*}}-\sigma_{1}-p_{\gamma} \operatorname{Re} \psi-q_{\gamma} \operatorname{Re} \phi \leqslant r_{\gamma} \leqslant \xi_{\alpha^{*}}+\sigma_{1}-p_{\gamma} \operatorname{Re} \psi-q_{\gamma} \operatorname{Re} \phi
$$

Again tee have bounds on the possible values of p_{x}, q_{y} and r_{γ}, and so a finite number of possibilities for $\tilde{\gamma}$ satisfying 5.6 and 5.7.
5.6 Now we consider those $\tilde{\gamma}$ satisfying 5.8

$$
\tau_{u} \geqslant \rho_{x}>\frac{\tau_{u}-\alpha}{\epsilon^{n}} \text { hence } \zeta_{\alpha^{*}}>\tau_{u} \geqslant \zeta_{\gamma}
$$

and is

$$
\left|\left(\xi_{\gamma}-\xi_{\alpha^{*}}\right)\left\{\left(\xi_{\gamma}-\xi_{\alpha^{*}}\right)^{2}+\left(\eta_{\gamma}-\eta_{\alpha^{*}}\right)^{2}\right\}\right| \leqslant c_{1}
$$

we have

$$
\left(\xi_{x}-\xi_{\alpha^{*}}\right)^{2}+\left(\eta_{x}-\eta_{\alpha^{*}}\right)^{2} \leqslant \frac{C_{1}}{\xi_{\alpha^{*}}-\tau_{\mu}}=\sigma_{2}^{2} \text { say. }
$$

Thus in the same way as that used for $\tilde{\gamma}$ satisfying 5.6 and 5.7
with σ_{1} replaced by σ_{2}, we may find a finite number of possibilities for $\tilde{\gamma}$ satisfying 5.6 and 5.8 .
5.7 In some cases the range of values of γ in A and B may be very large, we, therefore, choose integers $\tau_{l}^{(1)}, \ldots, \tau_{l}^{(k)}$ such that

$$
\frac{\alpha}{1-\epsilon^{n}}<T_{t}=T_{l}^{(1)}<\ldots .<\tau_{l}^{(n)}=\frac{T_{l}-\alpha}{\epsilon^{n}}
$$

and integers $\tau_{u}{ }^{(1)}, \ldots, \tau_{u}{ }^{(m)}$ such that

$$
\frac{\tau_{u}-\alpha}{\epsilon^{n}}=\tau_{u}^{(m)}<\ldots,<\tau_{u}^{(1)}=\tau_{u}<\frac{\alpha}{1-\epsilon^{n}} .
$$

Then, using the method outlined above for $\tilde{\gamma}$ satisfying 5.7, we consider, in turn, those $\tilde{\gamma}$ satisfying

$$
\tau_{l}^{(i)} \leqslant \xi_{\gamma}<\tau_{l}^{(i+1)} \quad \text { for } i=1, \ldots, k-1
$$

replacing τ_{l} by $\tau_{i}^{(i)}$ throughout.
We then use the method outlined above for $\tilde{\gamma}$ satisfying 5.8
to consider, in turn, those $\tilde{\gamma}$ satisfying

$$
\tau_{u}^{(i+1)}<\left\{_{\gamma} \leqslant \tau_{u}^{(i)} \quad \text { for } i=1, \ldots, m-1\right.
$$

replacing τ_{n} by $\tau_{n}^{(i)}$ throughout.
5.7 When determining $\left|N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)\right|$ for γ in Au B, we first determine the integer $\alpha-\gamma\left(1-\epsilon^{n}\right)$ then calculate its norm and divide this by $N\left(1-\epsilon^{n}\right)$. The integers involved in these calculations often become very large; consequently double precision arithmetic is used, and a message is monitored when the quantities involved are likely to cause integer overflow, that is a loss of accuracy in the double precision entities.

\qquad

aqua molakats

\qquad
\qquad
A. NUMERICAL CONSIDERATION OF THE METHODS EMPLOYED.
6.1 This chapter gives an exauple of the applicetion of each of the methods of this thesis, using the cubic field with discriminant -199 as exwanle. Also included in this chapter are descriptions of some of the basic routines employed ond observations on the limitations of the methods.
6.2 Each of the methods described involves the determination of the real zero θ of the defining polynomial of the field, a basis for the field, and a basis for the lattice of integers.

If a field has defining polynomial $x^{3}-a x^{2}+b x-c$, the zeroes are the roots of the equation $x^{3}-a x^{2}+b x-c=0$; we make the substitution $y=3 x-a$, that is $x=\frac{y+a}{3}$, then

$$
y^{3}-q y-n=0
$$

where $q=3 a^{2}-9 b, \quad n=27 c-9 a b+2 a^{3}$;
if we now let $q=3 u v, n=u^{3}+v^{3}$ then $\Theta=u+v$ is the real zero of the polynomial 6.1. This theory is used to determine (1) and $\theta=\frac{(+a}{3}$, the former is required for the application of Voronoi's algorithm which is initially referred to in chapter 1.

The cubic field \mathbb{K} with discriminent -199 has defining polynomial $x^{3}-2 x^{2}+5 x-3$ thus

$$
\mathrm{n}=7, \quad q=-33
$$

and we obtain

$$
\begin{aligned}
\theta & =.73727772 \\
\Theta & =.21183316
\end{aligned}
$$

The index of the polynomial relative to the field is 1 , thus the basis is $(1, \theta, \lambda)$ where $\lambda=\theta^{2}$. We now have the basis for the lattice of integers

$$
\begin{array}{rlll}
(0,0,0),(1,0,1), & (.63136113 \ldots, & 1.9158303 \ldots . . & .73727772 \ldots), \\
& (-3.2717892 \ldots, & 2.4191617 \ldots . . & .54357843 \ldots) .
\end{array}
$$

6.3 Most of the methods employed require the determination of the coefficients of $1, \theta, \lambda$ in the expressions for θ^{2}, λ^{2} and $\theta \lambda$; these values are subsequently used in routines for the product and the quotient of two elgebraic numbers. For the field K we find, since $\lambda=\theta^{2}$,

$$
\begin{aligned}
& \theta^{2}=1 \lambda+0 \theta+0 \\
& \lambda^{2}=-1 \lambda-7 \theta+6 \\
& \theta \lambda=2 \lambda-5 \theta+3 .
\end{aligned}
$$

Some of the methods require the determination of the norm of an algebraic number, the product of two algebraic numbers or the quotient of two algebraic numbers. It is in the routines for these operations thet there is the greatest danger of integer overflow; to prevent undetected overflow, the coefficients with respect to the basis of the field of the algebraic integer or integers involved are tested to ensure that the coefficients of the resultant integer will not require more significent figures than possible with the computer in order to give an exact result. When the product of n coefficients is involved, for single precision arithmetic we ensure that no product may exceed 10^{14-t}, and for double precision arithmetic we ensure that no product may
exceed 10^{20-t}, where, in each cese, t is the smallest power of 10 which exceeds the greatest constant multiplier of the products of coefficients involved in the particular subroutine in question.
6.4 I nov turn to the adaptation of Cesselst result described in chapter 2. We start with the ideal

$$
\left(1, \theta, \theta^{2}\right)=\left(1, \frac{6+3 \Theta}{9}, \frac{4+4 \Theta+\Theta^{2}}{9}\right)
$$

which has reduced form

$$
\left(1, \frac{3-3 \Theta}{9}, \frac{7+\Theta+\Theta^{2}}{9}\right) ;
$$

and the next ideal in the loop is also this ideal. The reduced ideal, expressed in terms of $\boldsymbol{\theta}$, is given loy

$$
\left(1,1-\theta, 1-\theta+\theta^{2}\right),
$$

and we see that one complete sequence of relative minima is

$$
1,1-\theta
$$

and
$\varepsilon=1-\theta$. We then have

$$
M=3,3063007
$$

thus

$$
\frac{|\mathrm{D}|}{720 \mathrm{M}}=.0726 ;
$$

in fact

$$
\frac{|D|}{715.244 M}=.0731
$$

$$
\frac{|\Delta|}{412.944}=.0342
$$

Using the method for fields in the teble of (1) no results concerning the existence of the Euclidean algorithm could be found. The field with discriminant -160087 was shown to heve 44 distinct relative minima, thus the chain calculated consisted of $\left[\frac{44+1}{3}\right]=15$ relative minime "before" 1 and 29 "after". The resultant value of M was $188.308 .$. so that

$$
\frac{|D|}{720 M}=1.1807>1
$$

hence the field does not possess a Euclideon Algorithm.
Sinilarly, for the Pield with discriminant -169571 $M=167.136 \ldots$ thus

$$
\frac{|D|}{720 M}=1.4091>1
$$

and this Pield does not possess a Euclidean Algorithm.
6.5 For the method described in chapter 3 we have $\epsilon=1-\theta$ hence $\epsilon-1=-\theta$ and $N(\epsilon-1)=-3$. Thus the only divisor of $\in-1$ is $\epsilon-1$ itself, and multiples of it by the fundamental unit. However, any integer of norm 2 or 3 will have the fundamental unit of the field, or its negative, as a member of its non-zero residue classes; consequently, no result can be obtained by considering residue classes modulo $\in-1$.
$\epsilon+1=-\theta+2$ has norm 7 , thus any factor, not a power of the fundmental unit, must be a multiple of $\epsilon+1$ loy a power of the fundamental unit.

The method used for calculating integers of a given norm causes congruences to be considered nodulo $\beta=\theta^{2}-\theta+5=(\epsilon+1) / \epsilon$. We then have $\epsilon \equiv-1(\beta)$ thus $-\epsilon \equiv 1(\beta)$. There are no integers of norm 2 and so none of norms 4 or 6 . $3=\theta\left(\theta^{2}-2 \theta+5\right)$ where $\theta^{2}-2 \theta+5$ is an algebraic prime of norm 9. Thus integers of norm 3 are either congruent to $\theta \equiv 2(\beta)$ or to $-\theta \equiv 5(\beta)$. There are no integers of norm 5. Thus we see that there are no integers of norm less than $|N(\beta)|$ congruent to 3 or 4 modulo β, and so the field does not possess a Euclidean Algorithm.

When using this nethod it was found that, as the size of the coefficients of the fundanental unit with respect to the field increased, the magnitude of the norms of $\in-1$ and of $\epsilon+1$ also increased and hed prime factors of nora greater then 500, with the result thet no conclusion was reached; also, for such fields, overflow warning messages were given, hoth in calculating the integers of a given norn and in establishing to which congruence class any particular integer belonged, thus invalidating any results which may have been obtained. With these points in mind only those fields with discriminent of ebsolute value less then 5,000 were investigated by means of the progrem, but some additional ones were investigated "by hand".

Generally, when α is an integer of norm less than $|N(\beta)|$, we determine to which congruence class it belongs by establishing for which j_{j}, where $1 \leqslant j \leqslant r_{\beta}, \beta$ divides $\rho_{j}-\alpha_{0}$ However, this method becomes time consuaing when $|N(\beta)|$ is large; we note that when $|N(\beta)|$ is a rational prime the residue classes modulo β are represented by the rational integers $0,1, \ldots, \ldots,|N(\beta)|-1$ and we have $\theta \equiv i_{\theta}(\beta)$ and $\lambda \equiv i_{\lambda}$ for some rational integers i_{θ} and i_{λ} satisfying $0 \leqslant i_{\theta} \leqslant|N(\beta)|-1$ and $0 \leqslant i_{\lambda} \leqslant|N(\beta)|-1$; hence, for any $\alpha=p \lambda+q \theta+r$ we have $\alpha \equiv p i_{\lambda}+q i_{\theta}+r(\beta)$. By reducing the expression modulo $|N(\beta)|$ we establish to which residue class α belongs. In some cases this modification reduced the time taken to establish a result from over 120 seconds of central processor time to less then 5 seconds.
6.6 We now consider the adaptation of the method of Bernes and Swimerton-Dyer as described in chapter 4. Starting from the basis for K and the corresponding besis for a described above, and following the argunents of 4.8 , we obtein the basis $\left(1, \theta-1, \theta^{2}-\theta+2\right)$ for K then the corresponding basis for a is

$$
\begin{aligned}
(0,0,0),(1,0,1), & (-.3686388604, \\
& 1.9158303963, \\
& (-1.9031503584, \\
. .5033313285, & 1.8063007167) .
\end{aligned}
$$

This results in \mathcal{f} being the set of points (ξ, η, ξ) given by $|\xi| \leq 1.6358946094$
$|h| \leqslant 1.2095808624$
$|\rho| \leqslant 1.5345114980$.
In the following a region which satisfies 4.2 will be said to be covered.

On subdivision of \mathcal{E} into sulo-regions, with $C=.9999$, there are 14 uncovered regions with $\mathcal{1} 0$; but only one of these regions contains uncovered sub-regions itself, namely R_{1}, that given by
$-1.3087156875 \leqslant \xi \leqslant-.9815367656$
$.0676646899 \leqslant \eta \leqslant 1.2095808624$
$.3069022906 \leqslant \boldsymbol{s} \leqslant .6138045992$.
R_{1} contains five uncovered sub-regions but only two of these contain uncovered sub-regions themselves, namely R_{11} :

$$
\begin{gathered}
-1.2759977953 \leq \xi \leq-1.2432799031 \\
1.0160479244 \leq \eta \leqslant 1.0402395416 \\
.3682827595 \leqslant \leqslant .3989729895 \\
79
\end{gathered}
$$

R_{12} :

$$
\begin{array}{r}
-1.2759977953 \leqslant \xi \leqslant-1.2432799031 \\
1.0402395416 \leqslant \eta \leqslant 1.0644311589 \\
.3682827595 \leqslant\} \leqslant u 1.3989729895
\end{array}
$$

On further subdivision, R_{11} contains three uncovered sub-regions, two of which themselves contain uncovered sub-regions, namely

R_{111} :

$$
\begin{array}{r}
-1.2629106384 \leqslant \boldsymbol{\xi} \leqslant-1.2596388492 \\
1.0354012182 \leqslant \boldsymbol{\eta} \leqslant 1.0378203799 \\
.3744208055 \leqslant \boldsymbol{S} \leqslant .3774898285
\end{array}
$$

R_{112} :
$-1.2596388492 \leqslant \xi \leqslant-1.2563670600$
$1.0354012182 \leqslant \eta \leqslant 1.0378203799$
$.3744208055 \leqslant \boldsymbol{\rho} \leqslant .3774898285$
R_{12} contains four uncovered sub-regions, but none of these contain uncovered sub-regions themselves.

$$
R_{111} \text { contains two and } R_{112} \text { five uncovered sub-regions }
$$ which are all contained in the region \mathbb{R} given by

$$
-1.2599660281 \leqslant \xi \leqslant-1.2589844914
$$

$$
\begin{aligned}
& 1.0366107991 \leqslant \eta \leqslant 1.0378203800 \\
& .3756484147 \leqslant \boldsymbol{\zeta} \leqslant .3759553170
\end{aligned}
$$

thus any point $\tilde{\alpha}$ in y with $|N(\tilde{\alpha}-\tilde{\gamma})|>.9999$, where $\tilde{\gamma}$ is an integer in f^{\prime}, must be in R or in R_{-}, where $R_{\text {_ }}$ is the set of those points $\tilde{\alpha}$ for which $-\tilde{\alpha}$ is in R. We find that any point $\tilde{\alpha}$ in R satisfies either

$$
\mathrm{E}(\tilde{\alpha})-\tilde{\gamma} \text { is in } \mathrm{R}_{\text {_ }} \text { where } \gamma=(1+2(\theta-1))
$$

or

$$
\mathbb{E}(\tilde{\alpha}) \in\left(\xi-\left(R \cup R_{-}\right)\right)(\bmod 1)
$$

Thus any point $\tilde{\alpha}$ in R satispies either

$$
\begin{aligned}
& \mathrm{E}^{2}(\tilde{\alpha})-\mathrm{E}(\tilde{\gamma})+\tilde{\gamma} \text { is in } \mathrm{R} \\
& \mathrm{E}(\tilde{\alpha})-\tilde{\gamma} \in\left(\boldsymbol{y}-\left(\mathrm{R} \cup \mathrm{R}_{-}\right)\right)(\bmod 1) .
\end{aligned}
$$

In the latter case $\tilde{\alpha}$ must have minimum less than .9999. The required fixed point $\tilde{\beta}$ of E^{2} is given by

$$
\epsilon^{2} \beta-\epsilon(2 \theta-1)+2 \theta-1=\beta,
$$

where

$$
\epsilon=-\theta+1, \quad \epsilon^{2}=\theta^{2}-2 \theta+1
$$

and we have

$$
\begin{gathered}
\left(\theta^{2}-2 \theta+1\right) \beta-\left(-2 \theta^{2}+3 \theta-1\right)+2 \theta-1=\beta \\
\beta=\frac{-2 \theta^{2}+\theta}{\theta^{2}-2 \theta}=\frac{-2 \theta^{2}+\theta}{\epsilon^{2}-1} .
\end{gathered}
$$

It now remains to calculate

$$
\min _{\tilde{\delta}}|N(\hat{\beta}-\tilde{\delta})|,
$$

where the minimum is over integers δ in K this will be done using the method described in chapter 5. From ebove, we know that for every $\tilde{\alpha}$ in \mathcal{f} such that $\tilde{\alpha}$ is not equal to $\tilde{\beta}$

$$
\min _{\tilde{\delta}}|N(\tilde{\alpha}-\tilde{\delta})|<.9999
$$

6.7 When using the method of chepter 4, it was found that as the absolute value of the discriminant of the field increased, the number of uncovered sub-regions of a particular region became lerge with $C=.9999$, the "crucial" value in the investigation of the Euclidean Algorithm. To avoid very large amounts of output, when the number of uncovered sub-regions of a particular region exceeded a bound given as data at run-tine, only the number of sub-regions, and not their nature, wes printed; when
the nature of the sub -regions was required, a modified version of the program was used, this determined and printed the bounds on the coordinates of points in the smallest cuboid, with sides parallel to the coordinate axes, which contained all of the uncovered sub-regions of a given region.

However, even with the modified program, it was found that the number of regions to be considered, when attempting to satisfy II (a) or II (b) of chapter 4, became so large es to make the method require a large amount of computing for those fields of discriminants -680 and -687 , and completely impractical for that with discriminant -1004. Consequently, with the exception of the field with discriminant $\mathbf{- 1 0 0 4}$, no investigation was made of fields after that with discriminant -687 in the table of (1).
6.8 I now turn to the determination of the minimum of $\frac{-2 \theta^{2}+\theta}{\epsilon^{2}-1}=\frac{2 \theta^{2}-\theta}{1-\epsilon^{2}}$ using the method of chapter 5.

Note that

$$
\frac{2 \theta^{2}-\theta}{1-\epsilon^{2}} \equiv \frac{3 \theta}{1-\epsilon^{2}} \quad(\bmod 1)
$$

and

$$
\frac{3 \theta}{1-\epsilon^{2}}=\frac{3}{-\theta+2}=\frac{3 \theta^{2}+15}{7}=\frac{3.5435784374+15}{7}=2.375819331=\zeta_{\alpha^{*}}
$$ $\alpha^{*}=\frac{3 \theta}{1-\epsilon^{2}}=\frac{3 \theta^{2}+15}{7}$ is fixed under ϵ^{2}, and $\alpha^{*}>0 ; \quad \alpha^{*}$ is used here instead of $\frac{2 \theta^{2}-\theta}{1-\epsilon^{2}}$ to simplify calculations.

$\tilde{\alpha}^{*}$ is the point $\left\{\operatorname{Re}\left\{\frac{3 \phi^{2}+15}{7}\right\}, \operatorname{Im}\left\{\frac{3 \phi^{2}+15}{7}\right\}, \frac{3 \theta^{2}+15}{7}\right\}$

$$
\begin{aligned}
\operatorname{Re}\left\{\frac{3 \phi^{2}+15}{7}\right\} & =\frac{3 \operatorname{Re} \phi^{2}+15}{7} \\
\operatorname{In}\left\{\frac{3 \phi^{2}+15}{7}\right\} & =\frac{3 \operatorname{Im} \phi^{2}}{7}=140661764=\xi_{\alpha^{*}} \\
\operatorname{In} & =1.036783597=\eta_{\alpha^{*}}
\end{aligned}
$$

that is, $\tilde{\alpha}^{*}$ is the point $\{.740661764,1.036783597,2.375819331\}$

$$
=\left\{\xi_{x^{*}}, \eta_{\alpha^{*}}\left\{_{\alpha^{*}}\right\} .\right.
$$

If $\tau_{\ell}=5$ and $\tau_{u}=-5$ we have $\tau_{u}<\zeta_{\alpha *}<\tau_{\ell}$. We wish to consider those points $\tilde{\gamma}=\left(\xi_{\gamma}, \eta_{\gamma}, \xi_{z}\right)$ for which

$$
\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right| \leq 2
$$

where 2 is chosen as a value greater then 1 . We note that if

$$
\begin{aligned}
& \xi_{\gamma}=p_{\gamma} \operatorname{Re} \phi^{2}+q_{\gamma} \operatorname{Re} \phi+r_{\gamma} \\
& \eta_{\gamma}=p_{\gamma} \operatorname{In} \phi^{2}+q_{\gamma} \operatorname{Im} \phi \\
& q_{\gamma}=p_{\gamma} \theta^{2}+q_{\gamma} \theta+r_{\gamma}
\end{aligned}
$$

$$
6.2
$$

we have

$$
\begin{aligned}
& p_{\gamma}=-.271619232 \ldots \xi_{\gamma}-.015016455 \ldots \eta_{\gamma}+.271619232 \ldots \rho_{\gamma} \\
& q_{\gamma}=.342979656 \ldots \xi_{\gamma}+.540928484 \ldots \eta_{\gamma}-.342979656 \ldots \rho_{\gamma} \\
& r_{\gamma}=-.105224901 \ldots \xi_{\gamma}-.390651899 \ldots \eta_{\gamma}+1.105224901 \ldots \rho_{\gamma}
\end{aligned}
$$

check: the determinant of the coefficients is $-.14177624=-\int \frac{4}{199}$ and $-\sqrt{\frac{199}{4}}=$ the determinant of the coefficients of the equations 6.2. Following the reesoning of chapter 5, we first consider those points $\tilde{\gamma}$ for which

$$
\tau_{l} \leqslant q_{r} \leqslant \frac{\tau_{l}-3 \theta}{\epsilon^{2}} ;
$$

using the notation of chapter 5

$$
\sigma_{1}=\left(\frac{2}{5-\rho_{\alpha^{*}}}\right)^{\frac{1}{2}}=.873007817
$$

and we have

$$
\begin{aligned}
\xi_{\alpha^{*}}-\sigma_{1} & =-.132346053 \leqslant \xi_{\gamma} \leqslant \xi_{\alpha^{*}}+\sigma_{1}=1.613669581 \\
\eta_{\alpha^{*}}-\sigma_{1} & =.163775780 \leqslant \eta_{\gamma} \leqslant \eta_{\alpha^{*}}+\sigma_{1}=1.909791414 \\
\tau_{1} & =5
\end{aligned}
$$

We now obtain the bounds

$$
\begin{array}{r}
.891114170 \leqslant p_{\gamma} \leqslant 11.005480200 \\
-13.811379521 \leqslant q_{\gamma} \leqslant-.128381867 \\
4.610262640 \leqslant r_{\gamma} \leqslant 44.595233710
\end{array}
$$

hence

For each value of p_{y} we may obtain smaller ranges for q_{y}, then for r_{y}, as follows

$$
q_{\gamma}=\frac{\eta_{\gamma}-p_{x} \operatorname{Im} \phi^{2}}{\operatorname{Im} \phi}
$$

hence

$$
\begin{gathered}
.085485532-1.262722280 p_{\gamma} \leqslant q_{\gamma} \leqslant .996847852-1.262722280 p_{\gamma} \\
r_{\gamma}=\xi_{\gamma}-p_{\gamma} \operatorname{Re} \phi^{2}-q_{\gamma} \operatorname{Re} \phi
\end{gathered}
$$

thus

$$
p_{\gamma}=4 \text { gives no integer values of } q_{8}
$$

$$
\begin{aligned}
& p_{\gamma}=5 \text { requires } q_{\gamma}=-6
\end{aligned} \begin{aligned}
& r_{\gamma}=21 \Rightarrow\left|N\left(\alpha^{*}-\tilde{\gamma}\right)\right|=\frac{72}{21} \\
& p_{\gamma}=6 \text { requires } q_{\gamma}=-7
\end{aligned} \begin{cases}r_{y}=24 \Rightarrow\left|N\left(\alpha^{*}-\tilde{\gamma}\right)\right|=\frac{261}{21} \\
o r & r_{\gamma}=25 \Rightarrow\left|N\left(\alpha^{*}-\tilde{\delta}\right)\right|=1\end{cases}
$$

$$
p_{\gamma}=7 \text { requires } q_{\gamma}=-8\left\{\begin{array}{l}
r_{\gamma}=28 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{339}{21} \\
\text { or } r_{\gamma}=29 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{216}{21}
\end{array}\right.
$$

$$
\begin{aligned}
& -.132346053+3.271789219 p_{\gamma}-.6313611396 q_{\gamma} \\
& \leqslant r_{\gamma} \leqslant 1.613669581+3.271789219 p_{\gamma}-.6313611396 q_{\gamma} \\
& p_{\mathbf{z}}=1 \text { requires } q_{\gamma}=-1\left\{\begin{array}{l}
r_{\gamma}=4 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=1 \\
\text { or } r_{\mathbf{y}}=5 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=1
\end{array}\right. \\
& p_{\gamma}=2 \text { requires } q_{\gamma}=-2\left\{\begin{array}{l}
r_{\gamma}=8 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{33}{21} \\
\text { or } r_{\gamma}=9 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{27}{21}
\end{array}\right. \\
& p_{\gamma}=3 \text { requires } q_{\gamma}=-3\left\{\begin{array}{l}
r_{\gamma}=12 \Rightarrow\left|N\left(\tilde{\alpha}^{\star}-\tilde{\gamma}\right)\right|=\frac{81}{21} \\
\text { or } r_{y}=13 \Rightarrow\left|N\left(\alpha^{\star}-\tilde{\gamma}\right)\right|=\frac{111}{21}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& 1 \leqslant p_{y} \leqslant 11 \\
& -13 \leqslant q_{7} \leqslant-1 \\
& 5 \leqslant r_{r} \leqslant 44 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& p_{\gamma}=8 \text { requires } q_{y}=-10\left\{\begin{array}{l}
r_{y}=33 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{441}{21} \\
0 r \\
r_{y}=34 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{783}{21}
\end{array}\right. \\
& p_{y}=9 \text { requires } q_{y}=-11\left\{\begin{array}{l}
r_{\gamma}=37 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{87}{21} \\
0 r \\
r_{\gamma}=38 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{591}{21}
\end{array}\right. \\
& \begin{aligned}
p_{\gamma}=10 \text { requires } q_{\gamma}=-12 \quad r_{y}=41 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=1
\end{aligned} \\
& \begin{array}{l}
p_{\gamma}=11 \text { requires } q_{\gamma}=-13 \quad r_{\gamma}=45 \Rightarrow\left|N\left(\tilde{\alpha}^{*}-\tilde{\gamma}\right)\right|=\frac{369}{21} .
\end{array} \\
& \text { We must now consider those points } \tilde{\gamma} \text { for which } \\
& \tau_{u} \geqslant \rho_{\gamma} \geqslant \frac{\tau_{u}-\alpha}{\epsilon^{n}}
\end{aligned}
$$

and we have

$$
\sigma_{2}=\left(\frac{2}{3_{\alpha} * 5}\right)^{\frac{1}{2}}=.52072672 . \ldots
$$

hence

$$
\begin{aligned}
& \xi_{\alpha^{*}}-\sigma_{2} \leq \xi_{\gamma} \leq \xi_{\alpha^{*}}+\sigma_{2} \\
& \eta_{\alpha^{*}}-\sigma_{2} \leq \eta_{\gamma} \leq \eta_{\alpha^{*}}+\sigma_{2} \\
& \frac{\tau_{u}-3 \theta}{\epsilon^{2}} \leq \xi_{\gamma} \leq \tau_{u}
\end{aligned}
$$

and we proceed as above to reach eventually the conclusion

$$
\min _{\gamma}\left|N\left(\frac{3 \theta}{1-\epsilon^{2}}-\gamma\right)\right|=1
$$

We now have the result that the cubic field with discriminant -199 does not possess a Euclidean Algorithm; it has inhomogeneous minimum 1 and this minimum is attained at the numbers congruent to $\pm \frac{\left(1+3 \theta^{2}\right)}{7} \quad(\bmod 1)$.
6.9 For the method of chapter 5, as the value of n increases ϵ^{n} becomes so smell that the range of values of $p_{\gamma}, q_{\gamma}, r_{\gamma}$ to be considered becomes too large to be practical. For the field of discriminant -680 it was found that no result could be obtained with $n=3$ within 60 seconds central processor time.

PART II

THE PROGRALS USED AND FHE RESULTS OBTATNED: wheat whon wo bre

avertill ovis

 $1258=0^{*}$
 (a) a and n

$$
\begin{aligned}
& \lambda^{2}=281 . \lambda+3360 \theta+206
\end{aligned}
$$

CHAPTER 7

THE PROGRAM RELMIN

This progran is that used for the method of chapter 2. In this and other program descriptions the subroutines will be described before the main program; widely used values are passed between the subroutines by means of COMMON variables.

FUNCTION IOF(I)

The answer returned is the greatest power of 10 which exceeds the value of 1 . This value is required when we are determining bounds which are used for the prevention of integer overiflow.

SUBROUTINE BASEH

The field has defining polynomial $x^{3}-I A_{0} x^{2}+$ IB. $x-I C$, discriminent IDET, and the index of the polynomial over the field is INDEX. The routine determines the values $P H=\Theta, I \varrho=2=q$, INN $=R N=n, H H H=\omega^{2}$ and $Z Z=H H H-q$, where Θ, q and n are as defined in 6.2. These values are all required in the application of Voronoi's algorithm in the subroutine MINIMA. The values IL1, IL2, IL3, IT1, IT2, IT3, IP1, IP\&, IP3 where

$$
\begin{aligned}
& \lambda^{2}=\text { ILI. } \lambda+\text { IL2. } \theta+\text { IL } 3 \\
& \theta^{2}=\text { IT1. } \lambda+\text { IT2. } \theta+\text { IT3 } \\
& \theta \lambda=I P 1_{\bullet} \lambda+\text { IP2. } \theta+\text { IP3 }
\end{aligned}
$$

are also determined. From these values we now have a basis for the lattice of integers
$(0,0,0),(R(1), U(1), H(1)),(R(2), U(2), H(2)),(R(3), U(3), H(3))$

Finally the subroutine is used to determine the upper bounds on the product of the coefficients of the algebraic integers for the subroutines MULTCD and DIVCD, which are used for double precision multiplication and division respectively.

The suloroutines $\operatorname{SUB}(I, J, K, L)$, INVER $(I, J, K, K D E T)$,
$\operatorname{ICF}(\mathrm{IJ}, \mathrm{IK}, \mathrm{IL}, \mathrm{IH}), \quad \mathrm{ICF} 2(\mathrm{IJ}, \mathrm{IK}, \mathrm{IL}, \mathrm{IH})$ and
MULT $(\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~K} 1, \mathrm{~K} 2, \mathrm{~K} 3, \mathrm{L1}, \mathrm{~L} 2, \mathrm{~L} 3)$ are those used by Angell in (1) chapter 6.

SUBROUTINE PHITH(II, $\mathrm{I} 2, \mathrm{I} 3, \mathrm{ID}, \mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{JD})$
Given I1, I2, I3, ID, this routine finds $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3$, JD such that

$$
\frac{I 1+I 2 .(1)+13 . \Theta^{2}}{I D}=\frac{J 1_{\bullet} \lambda+J 2 . \theta+J 3}{J D}
$$

SUBROURINE DIVCD ($\mathrm{L} 1, \mathrm{Hl}, \mathrm{N} 1, \mathrm{LN}, \mathrm{L} 2, \mathrm{M} 2, \mathrm{~N} 2, \mathrm{LD}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{LR}$)
$\mathrm{L}, \mathrm{M}, \mathrm{N}$ and LR are determined such that

$$
\frac{L_{0} \lambda+M_{0} \theta+N}{L I}=\left(\frac{\mathrm{L} l_{\cdot} \lambda+M 1 \cdot \theta+\mathrm{N} 1}{\mathrm{LN}}\right) /\left(\frac{\mathrm{L} 2 \cdot \lambda+\mathrm{M} 2 \cdot \theta+\mathrm{N} 2}{\mathrm{LD}}\right) ;
$$

the coefficients in the numerator and denominator are first tested for the possibility of overilow.

SUBROUTINE MULTCD ($\mathrm{L} 1, \mathrm{M1}, \mathrm{NI}, \mathrm{LN}, \mathrm{L} 2, \mathrm{H} 2, \mathrm{~N} 2, \mathrm{LD}, \mathrm{L}, \mathrm{H}, \mathrm{N}, \mathrm{LR}$)
L, M, N and $L R$ are determined such that

$$
\frac{L_{0} \lambda+M_{0} \theta+N}{L R}=\left(\frac{L 1 \cdot \lambda+M 1 \cdot \theta+N 1}{L N}\right) \cdot\left(\frac{L 2 \cdot \lambda+M 2 \cdot \theta+N 2}{L D}\right) ;
$$

again the coefficients in the nunerator and denominotor are first tested for the possibility of overflow.

DOUBLE FUNCTION DCI $(x, X, Z, R D)$
The answer returned is the co-ordinate of $X+X, \boldsymbol{\theta}+\mathrm{Z} \cdot \boldsymbol{\lambda}$
in the $\mathcal{\xi}, \boldsymbol{\eta}$ or \boldsymbol{q} direction when $R D$ is the array R, U or H respectively.

SUBROUTINE MINIMA

SECTION 1 of this routine closely follows the subroutine UNIT of (1) chapter 6. (On exit from SECTION 1 we have a loop of N lattices

$$
\begin{aligned}
& \left(1, \frac{\operatorname{IAN}(1, J)+\operatorname{IAN}(2, J) \cdot \Theta+\operatorname{IAN}(3, J) \cdot \Theta^{2}}{\operatorname{NP}(J)},\right. \\
& \left.\frac{\operatorname{JAN}(1, J)+\operatorname{JaN}(2, J) \cdot \Theta+\operatorname{JaN}(3, J) \cdot\left(\oplus^{2}\right.}{\operatorname{NP}(J)}\right)
\end{aligned}
$$

for $J=1$, . . . N, and the first and Nth lattices are the same. From these lattices we obtain a sequence of relative minima

$$
L(1, I L A T) \cdot \lambda+L(2, I L A T) \cdot \theta+L(3, I L A T)
$$

for $\operatorname{ILAT}=1, \ldots, N$ and if $N Q P=[N / 3]+1$ we heve

$$
L(1, N Q P) \cdot \lambda+L(2, N Q P) \cdot \theta+L(3, N Q P)=1
$$

From these relative minima we obtain the value REIN which is the value M of chapter 2 ; thus we obtain the value of DET/720.REMN where DET is a real variable with the same value as IDBT.

THE MAIN PROGRAM.
The main program simply co-ordinates the execution of the subroutines, and reads ond prints relevant information about the fields.

Following the reasoning of chapter 2, this program only gives a meaningful result when INDEX $=1$.

[^0]THE PROGRAM CONG

The method of chapter 3 is put into practice by using this progrem. The subroutines $\operatorname{ICF} 2(\mathrm{IJ}, \mathrm{IK}, \mathrm{IL}, \mathrm{IH})$, $\operatorname{SUB}(\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L})$, $\operatorname{ICF}(\mathrm{IJ}, \mathrm{IK}, \mathrm{IL}, \mathrm{II})$, $\operatorname{INVER}(\mathrm{I}, \mathrm{JJ}, \mathrm{K}, \mathrm{KDET}), \quad \mathrm{MULT}(\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{K1}, \mathrm{~K} 2, \mathrm{~K} 3, \mathrm{L1}, \mathrm{~L} 2, \mathrm{~L} 3)$, $\operatorname{DIVCD}(\mathrm{LL}, \mathrm{M1}, \mathrm{~N} 1, \mathrm{LN}, \mathrm{L} 2, \mathrm{M} 2, \mathrm{~N} 2, \mathrm{LD}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{R})$ and $\mathrm{IOF}(\mathrm{I})$ are as for the program RELMIN. The subroutine MULT2($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}$) is the double precision version of MULT as described in chapter 6 of (1).

SUBROUTINE BASE
This routine is basically similor to BASEI in the progrom RELINN. BASE does not calculate a basis for the lattice of integers. Additionally, BASE finds upper bounds for the product of the coefficients of the algebraic integers for the subroutines MULTC and DIVC.

SUBROUTINE FACTOR (NN, NF, NP , NL, I)
This routine is used to determine the rational prime Pactors of NN which are less then 500. NL is chosen by the calling routine to be on integer greater than the number of distinct rationel prime factors of NN. Finally I is the number of distinct rational prime factors of $N N$ and these factors are in the array NF such that $N P(I)$ is the power to which $N F(I)$ is a factor of NN. In the routine we note that an integer n has at least one factor less then $n^{\frac{1}{2}}$, unless it is prime.

SUBROUTINE IDEAL (N,ISC)

IDEAL is a simplified version of the subroutine FACTOR of (1) chapter 6; IDEAL finds the ideals of norm N, where N is restricted to be a rational prime.

$$
\operatorname{NORL}(\mathrm{KB})=\mathrm{N}\left(\left(\theta^{2}+\mathrm{KT} \cdot \theta+\mathrm{KB}\right) / \mathrm{L}\right)
$$

where L is the index of the polynomial $x^{3}-I A x^{2}+I B x-I C$, and $K T, K S$ are such that $\lambda=\frac{\theta^{2}+K T \theta+K S}{L} ;$ and

$$
\operatorname{NORN}(J)=N(\theta+J) .
$$

The ideals of norm N are

$$
(A(I), B(I) \cdot \theta+C(I), D(I) \cdot \lambda+E(I) \cdot \theta+G(I))
$$

for $\quad I=1, \ldots$, ISC.
SUBROUTINE CHANGE ($\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{Il}, \mathrm{Jl}, \mathrm{K} 1$)
The integers I, J, \mathbb{K}, L are supplied to the routine; $\mathrm{II}, \mathrm{J} 1, \mathrm{KI}$ are found such that $\mathrm{Il}, \lambda+\mathrm{Jl}. \theta+\mathrm{Kl}=\left(\mathrm{I}_{\boldsymbol{\theta}} \theta^{2}+J . \theta+\mathrm{K}\right) / \mathrm{L}$. SUBROUTINE PRIN(INK)

This subroutine, as the subroutine MNIMA of chepter 7, is based on the subroutine UNIT of (1).

When INK is equal to 1 , starting from the basis $(1, \theta, \lambda)$ the routine finds the reduced basis for the unit ideal of the field, which is given by

$$
\left(1, \frac{M U 1+M U 2 \Theta+M U 3 \Theta^{2}}{I G U I}, \frac{N U 1+N U 2 \Theta+N U 3 \Theta^{2}}{I G U I}\right) .
$$

When INK is greater then 1 , given the ideal (JA, JB. $\left.\theta+\mathrm{JC}, \mathrm{JD}_{\bullet} \lambda+\mathrm{JE}_{0} \theta+J F\right)$ of norm INK the routine finds an integer JP. $\lambda+J R_{0} \theta+J S$ which produces the ideal. These calculations are based on the theory of chapter 1.

PRIN also includes tests on the arguments of the routines MULT2 and CMANGE to check for the possibility of integer overplow.

DOUBLE FUNCTION FBET ($\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{~J} 1, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{KI}, \mathrm{K} 2, \mathrm{~K} 3)$
The answer returned is the value of the determinant
$\left|\begin{array}{lll}\text { I1 } & \text { I2 } & \text { I3 } \\ \text { J1 } & \text { J2 } & \text { J3 } \\ \text { K1 } & \text { K2 } & \text { K3 }\end{array}\right|$.

In the program RELMIN this was written as a function statement in the subroutine DIVCD; but the compiler used for this progran appeared to loop when attempting to optiaise the expression for the determinant, this wes overcome by compiling this subroutine alone without full optimisation. The different compiler was used since the one for this program considerably increased the compile-time but greatly reduced the run-time; the letter was important for this program due to the extent to which it was used.

FUNCTION IALMOD (IP, IR ,IS, JP, JR, JS)
If $J P_{\cdot} \lambda+J R_{\bullet} \theta+J S$ divides $I P_{\cdot} \lambda+I R_{\theta} \theta+I S$, the onswer returned is 0 ; the answer 1 is returned otherwise. The result is obtained by testing whether the denominator of the quotient of these two algeloraic integers is 1.

SUBROUTINE INCON (JP, JR, JS , M, ICP, ICR, ICS ,LIC)

$$
\operatorname{NORN}(J J, J)=N(J J . \theta+J)
$$

The routine sets $\operatorname{ICP}(I) \cdot \lambda+\operatorname{ICR}(I) \cdot \theta+\operatorname{ICS}(I)$ for $I=1, \ldots, M$
to representatives of the non-zero residue classes modulo $J P \cdot \lambda+J R_{0} \theta+J S$ where $M=\operatorname{IN}(J P \cdot \lambda+J R . \theta+J S) \mid-1$. Also $\operatorname{LIC}(I)$ is set to 1 for $I=1, \ldots$, u.

SUBROUTINE MODAL(KXP, KR ,KS ,ICP, ICR, ICS,LIC , M1,JP,JR ,JS)
M is again $|N(J P, \lambda+J R, \theta+J S)|-1$. The routine finds the values of I, where $1 \leqslant I \leqslant M$ such that KP. $\lambda+\mathbb{K R} \cdot \theta+K S$ or $-(\mathbb{K P} \cdot \lambda+\mathbb{K R} \cdot \theta+\mathbb{K S})$ is congruent to $\operatorname{ICP}(\mathrm{I}) \cdot \lambda+\operatorname{ICR}(\mathrm{I}) \cdot \theta+\operatorname{ICS}(\mathrm{I})$ modulo JP. $\lambda+$ JR. $\theta+$ JS. \quad For these values of I , LIC(I) is set to 0 .

When IPRIME equals $0, J P \cdot \lambda+J R . \theta+$ JS does not heve nora a rational prime and the representatives of the residue classes must be tested in turn until the relevant ones are found.

When IPRIIE equals 1 , JP. $\lambda+J R . \theta+J S$ is on algebraic prime and we have $\theta \equiv$ ITHETA and $\lambda \equiv$ LLAM hence

$$
\mathbb{K P} \cdot \lambda+\mathbb{K R} \cdot \theta+\mathbb{K S} \equiv \mathbb{K P} \cdot \operatorname{ILAM}+\mathbb{K R}, \text { ITHETA }+\mathbb{K S} \equiv \mathbb{K P R S}
$$

and

$$
-(\mathbb{K P} \cdot \lambda+\mathbb{K R} \cdot \theta+\mathbb{K} S) \equiv-K P R S .
$$

When IPRIME equels $2, \mathrm{KP} \cdot \lambda+\mathbb{K R} \cdot \theta+\mathbb{K S}$ is equal to θ or to λ and we only wish to find the residue class to which $+\theta$ or $+\lambda$ belong.

SUBROUTINE TEST
Each integer of norm MF is considered, where IF is a factor of $N(\epsilon+1)$ or of $N(\epsilon-1)$. We have $I M, \lambda+J M \cdot \theta+\mathbb{K M}$ equal to $\epsilon+1$ or to $\epsilon-1$, as appropriate, and JP, $\lambda+J R, \theta+J S$ is the integer of norm $u F$ currently being considered. \quad ICL $=1 \mathrm{MF}-1$.

First, we test whether JP. $\lambda+J_{0} \theta+J S$ divides $I M, \lambda+J M, \theta+K M ;$ if so, ve find the representatives of the set of non-zero residue classes modulo JP, $\lambda+J R, \theta+J S$, otherwise we turn to the next integer of norm MF. The set of representatives is
$\operatorname{ICP}(I) \cdot \lambda+\operatorname{ICR}(I) \cdot \theta+\operatorname{ICS}(I)$ for $I=1$, . . ICL. We note that if and only if JP, $\lambda+J R_{0} \theta+J S$ has norm a rationel prime, the set of representatives of its non-zero residue classes will be
 laes norm a rational prime, IPRIME is set to 2 and we find the values ILAM and ITHETA such that ILAM $\equiv \lambda(J P \cdot \lambda+J R . \theta+J S)$ and ITHETA $\equiv \theta(J P, \lambda+J R, \theta+J S)$, IPRIME is then set to $1 ;$ the initial setting ILAM $=$ ITHETA $=0$ allows for the case when JP. $\lambda+J R_{\Delta} \theta+J S$ divides θ or $\lambda_{\text {. Those values LIC(I) which }}$ heve been set to 0 in finding ILAM and ITHETA are reset to 1. In the case when the norm of JP. $\lambda+$ Jn. $\theta+J S$ does not have norm a rational prime IPRIME is set to 0.

We now test for the residue classes to which $+\epsilon$ and $-\epsilon$ belong, and then find which other residue elasses contain integers of norm less than MF; finally JCOUNT is the number of residue classes which do not contain such an integer. If JCOUNT equals 0 we go on to the next integer of norm MF. When JCOUNT does not equal 0 the representatives of the residue classes which do not contain an integer of norm less than $1 F$ are printed together with the neture of JP. $\lambda+J R_{0} \theta+J S$, and we set EUCLID to 1 to indicate that the field does not possess a Euclidean Algorithm. Originally $\mathbb{M P}$ is the power to which MF is a factor of
$N\left(M_{0} \lambda+J_{0} \theta+K M\right)$, it is reduced by 1 each time thet on integer of norm MF has been considered in the manner described above, which indicates that the integer is a factor of
$I M_{0} \lambda+J M_{0} \theta+K M ; M P=0$ causes exit from the routine.

SUBROUTINE DIVC ($\mathrm{LI}, \mathrm{Hl}, \mathrm{NI}, \mathrm{L} 2, \mathrm{H} 2, \mathrm{~N} 2, \mathrm{~L}, \mathrm{H}, \mathrm{N})$
KDET(Il,I2,I3,J1,J2, $\mathrm{J} 3, \mathrm{~K} 1, \mathrm{~K} 2, \mathrm{~K} 3$) is the single precision version of the double precision function FDET.

The routine yields the quotient

$$
L_{e} \lambda+M_{0} \theta+N=\left(L_{\bullet} \lambda+\mathbb{H I}_{\bullet} \theta+\mathrm{NL}\right) /\left(L_{2} 2_{\bullet} \lambda+M 2 \cdot \theta+\mathrm{N} 2\right)
$$

and is used only when we know that the quotient is an algebraic integer. The routine also includes tests for the possibility of integer overfiow.

SUBROUTINE MULTC (LI, M1,N1, L2, M2, N2, L, M, M)
The routine gives the product

$$
L_{\cdot} \lambda+M_{0} \theta+N=(L 1 . \lambda+M 1 . \theta+N 1) \cdot(L 2 \cdot \lambda+M 2 \cdot \theta+N 2)
$$

and also checks for the possibility of integer overflow.
DOUBLE FUNCTION DNORM(IP,IR,IS)
The answer returned is

$$
N\left(I P \cdot \lambda+I R_{0} \theta+I S\right)
$$

and checks are made for the possibility of integer overflow. THE MAIN PROGRAM

The progran reads the details of the field to give defining polynomial $x^{3}-I A \cdot x^{2}+$ IBex - IC, discriminant -IDET and the inder of the polynomial relative to the field is INDEX; the fundemental unit of the field is $\frac{I_{0} \theta^{2}+J_{0} \theta+K}{L}$. The subroutine

BASC is called; then we use the routine CHANGE to give the rational integers $11, \mathrm{Jl}, \mathbb{K} 1$ such that $\epsilon=I 1, \lambda+J 1 . \theta+K 1$. We now set the retionel integers $A A, B B, C C, D D, E E, F F$ such that the ideal ($\mathrm{AA}, \mathrm{BB} \cdot \theta+\mathrm{CC}, \mathrm{DD}, \lambda+\mathrm{BE} \cdot \theta+\mathrm{FF}$) is the unit ideal, then call $\operatorname{PRIN}(1)$ to find the reduced basis of this ideal.

EUCLID is set to 0 to indicate that the Euclidean property of the field is unknown, and ICHECK is set to $\mathbf{- 1}$ as we begin to consider congruences modulo integers which are foctors of $\epsilon-1$. Eventually $\operatorname{IP}(I), \lambda+\operatorname{IR}(I) . \theta+\operatorname{IS}(I)$ for $I=1, \ldots$, MAPC -1 will be the integers so far calculated which produce distinct ideals; thus MAPC points to the first "empty" element of the arrays IP, IR, IS end so is set to 1 here. We now set $\mathrm{IM}_{\mathrm{H}} \lambda+\mathrm{JM}_{\boldsymbol{A}} \theta+\mathbb{K M}=\epsilon-1$ and MAX to be the greetest member of the set

$$
\begin{aligned}
& \left\{f: f=p \text { or } f=p^{3}, p \text { a rational prime, } f \text { divides }|N(\epsilon-1)|\right. \\
& \text { and } f<500\} \text {. }
\end{aligned}
$$

0n this cycle MLX will be set to 2 and we now turn to the determination of all distinct algebraic integers of norm of absolute value between 2 and MAX inclusive. These integers are determined according to the theory of chapter 3, and we have the integers of norm INORA as $\operatorname{IP}(\mathrm{I}) \cdot \lambda+\operatorname{IR}(I) . \theta+\operatorname{IS}(\mathrm{I})$ for I between MAP (INORM, I) and MAP (INORM,2) .

The method allows for a maximum of 2000 integers of norm of absolute value at most HAX. Reeching this limit, or an attempt to exceed it, would result in the printing of a diegnostic
and the value of MAX being reduced so that the above condition is satisfied.

We now go on to consider the rational integers MF, where MF is either a rational prime or the cube of a rational prime, MF divides $N(M, \lambda+J M \cdot \theta+K M)$, and $M F$ is at most MAX. If, after a call on the subroutine TEST, EUCLID is equal to 1 , we know that the field does not possess a Euclidean Algorithm and so proceed no further. When all rational integers $4 F$ have been considered we set $I M_{0} \lambda+J_{0} \theta+K M$ to $\epsilon+1$, and ICHECK to 1 to indicate that factors of $\epsilon+1$ are being considered. We now repeat the above process noting that:
if MLX is first set to MAX, MAX is set to the greatest member of the set

$$
\begin{array}{r}
\left\{f: f=p \text { or } f=p^{3}, p\right. \text { a rational prime, } \\
f \text { divides }|N(\epsilon+1)| \text { and } f<500\}
\end{array}
$$

we only need to calculate the integers of norm of absolute value between MLX and MAX on this second cycle.

We consider congruences modulo integers with norm the cube of a rational prime to ensure that all the rational prime fectors of $\epsilon+1$ and $\epsilon-1$ are taken into account.

THE PROGRAMS CUBOID, FCUB AND CUBX

These three programs, which are basically similar, are those used to put the method of chapter 4 into prectice. CUBOID is that used for the Pirst subdivision of the smallest cuboid which contains the fundamental region, then FCUB is used for subsequent subdivisions. CUBX is used to find the smalleat cuboid which contains the uncovered sub-regions of a particular region, when the number of such sub-regions is large.

The function subroutine CI is the single precision version of the function subroutine DCI of chapter 7 .

SUBROUTINE BASIS

This subroutine is basically the same as the subroutine BASEll of chapter 7, with the following exceptions. Only the values T and S where $\lambda=\left(\theta^{2}+T \theta+S\right) /$ INDEX are found and not the other coefficients in the expressions for θ^{2}, λ^{2} and $\theta \lambda_{0}$. No bounds to be used for the prevention of integer ovenflow are found since they are not necessary for this program. Additionally, this routine adjusts the basis, given in the arrays R, U and H, to be that one which corresponds to the basis $\left(1, M^{\prime}(\theta), Q^{\prime}(\theta)\right)$ for the field as described in 4.8. Details of the besis of the field and that of the lattice are printed only for the prograw CUBOID.

SUBROUTINE BOUND ($\mathrm{R}, \mathrm{AL}, \mathrm{AU}$)
We note that a basis for a fundomental region of the lattice
is

$$
\begin{aligned}
(0,0,0),(1,0,1)=(R(1), U(1), H(1)), & (R(2), U(2), H(2)), \\
& (R(3), U(3), H(3))
\end{aligned}
$$

where $\mathrm{I}, \mathrm{U}, \mathrm{II}$ are the $C 0 M 0 N$ arrays of the mein program. Thus the vertices of this region are given by (ξ, η, ζ) where

$$
\begin{aligned}
& \xi=x_{0} R(1)+y_{0} R(2)+z_{0} R(3) \\
& \eta=x_{0} U(1)+y_{0} U(2)+z_{0} U(3) \\
& \boldsymbol{\xi}=x_{0} H(1)+J_{0} H(2)+z_{0} H(3)
\end{aligned}
$$

and $\mathrm{x}, \mathrm{y}, \mathrm{z}$ each toke the values 0,1 .
BOUND is used to find the massimm and minimun values of ξ, η or \mathcal{F} when R is the main program array R, U or H respectively.

SUBROUTINE USE
This routine is used to determine the set \int of integer points to be used in testinge f consists of the points corresponding to the integers of K given by $\mathrm{PM}(\mathrm{I}) \div \mathrm{PN}(\mathrm{I}) \cdot \theta+\mathrm{PO}(\mathrm{I}) \cdot \lambda$ for $I=1$, . . , KZ. If KZ reaches the volue 1000 no more integers are alded to the set.

SUBROUTINE COVER ($\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{L}, \mathrm{ICOUNT}$)
For each elenent of \boldsymbol{f}, this routine determines for which sub-regions of the region under consideration 4.2 is satisfied, that is we have these sub-regions covered. If at any stage we find thet all sub-regions are covered, a return to the calling program is made immediately. ICOUNT is the number of sub-regions left uncovered after consideration of any element of \mathcal{G}. When an
element of \boldsymbol{f} is found such that we show that the sub-region with vertices

$$
\begin{aligned}
\left(X\left(I+t_{i}\right), Y\left(J+t_{j}\right), Z\left(K+t_{l k}\right)\right) \quad \text { for } \quad t_{i} & =0,1 ; \quad t_{j}=0,1 ; \\
t_{k c} & =0,1,
\end{aligned}
$$

is covered, we set $L(I, J, K)$ to 0 .
We note that for the program CUBOID we are considering the whole of the cuboid containing the fundemental region, and this cuboid is symmetrical about the origin; so we need only consider those regions containing points (ξ, η, ξ) which are in regions 9.3 where \mathbb{K} takes values between 6 and 10 .

THE MAIN PROGRAM CUBOID
The details of the field are first read; the field hes discriminant -IDET, defining polynomiel $x^{3}-I A \cdot x^{2}+$ IB. x - IC and this polynomial hes index relative to the field INDEX.

The subroutine BASIS is called to determine the basis of the field. We now use the subroutine BOUND to Pind the velues $\mathrm{XL}, \mathrm{XU}, \mathrm{YL}, \mathrm{YU}, \mathrm{ZL}, \mathrm{ZU}$ such that the smallest cuboid containing the fundamental region with vertices 9.2 is the set of points (ξ, η, ξ) such that
$X L \leqslant \xi \leqslant X U$
XL $\leqslant \boldsymbol{\eta} \leqslant \mathrm{XU}$
$Z L \leqslant S \leqslant 20$.
We then adjust these values so that the sinilar fundanental region which is symetric about the origin is contained in the cuboid which is the set of points (ξ, η, ξ) such that
$|\xi| \leqslant X U=-X L$
$|\eta| \leqslant \mathrm{YU}=-\mathrm{YL}$
$\mid\{\mid \leqslant Z U=-Z L$.
BK is assigned the value C of chapter 4. CIN $=.1$ is the ratio of the side of a sub-region which we are attempting to cover to that of the original cuboid containing the fundanental region, that is the value $10^{-\mathrm{h}}$ of chapter 4. AM wes a value used when the progran was employed to find the inhomogeneous ninimum of a field; it was a measure of the anount by which the velue of C was to be altered if the number of uncovered. sub-regions was greater than the value LIHIT. Since we are only concerned here with the Euclidean property of the field, LIMIT was made so large that the value of C was not adjusted.

IBC is the greatest absolute value of the coefficients of the integer points, this bound was used to prevent the number of elements of ρ becoming too large. For the fields with the smaller values of LDET this value was fixed at 10 in the progrom, but it was Pound necessary to be able to malce it smaller as the value of IDET increased. The subroutine USE is then called. The sub-regions are to be those with vertices 9.3 for $I=1, \ldots, 10 ; J=1, \ldots, 10 ; K=1, \ldots, 10 ;$ and by symmetry we need only consider the values $\mathbb{K}=6$, . . , 10 . For these values of I, J, K we set $L(I, J, K)$ to I to indicate that the corresponding sub-region has not yet been "covered", in the sense of 6.6. Then we determine the values of the elements of the arrays X, Y and Z.

We now wish to set $L(I, J, K)$ to 2 for those sub -regions which do not intersect with the fundamental region. We note that if (ξ, η, ξ) is a point of the cuboid,
for some real numbers x, y, z. This point is also a point of the fundamental region only if

$$
|x| \leqslant \frac{1}{2}, \quad|y| \leqslant \frac{1}{2}, \quad|z| \leqslant \frac{1}{2}
$$

Thus a subregion intersects with the fundamental region only if at least one of its vertices satisfies these conditions.

It should be pointed out that the determinant of the coefficients in 9.4 is

$$
\left|\begin{array}{ccc}
1 & \operatorname{Re} \phi-k & \operatorname{Re} \psi-p \cdot \operatorname{Re} \phi-q \\
0 & \operatorname{Im} \phi & \operatorname{Im} \psi-p_{\bullet} \operatorname{Im} \phi \\
1 & \theta-k & \lambda-p_{0} \theta-q
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
I & \operatorname{Re} \phi & \operatorname{Re} \psi \\
0 & \operatorname{In} \phi & \operatorname{Im} \psi \\
1 & \theta & \lambda
\end{array}\right|
$$

$$
=\frac{1}{2 i}\left|\begin{array}{lll}
1 & \phi & \psi \\
1 & \bar{\phi} & \bar{\psi} \\
1 & \theta & \lambda
\end{array}\right|
$$

which has absolute value $\frac{i \Delta}{2 i}=\frac{\Delta}{2}$, where $\Delta=I D E T^{\frac{1}{2}}$. But, from the choice of $\operatorname{Im} \phi$ as positive, we have

$$
\left|\begin{array}{ccc}
1 & \operatorname{Re} \phi & \operatorname{Re} \psi \\
0 & \operatorname{Im} \phi & \operatorname{Im} \psi \\
1 & \theta & \lambda
\end{array}\right|=\frac{1}{\operatorname{INDEX}}\left|\begin{array}{ccc}
1 & \operatorname{Re} \phi & \operatorname{Re} \phi^{2} \\
0 & \operatorname{Im} \phi & \operatorname{Im} \phi^{2} \\
1 & \theta & \theta^{2}
\end{array}\right|
$$

$$
\begin{aligned}
& \xi=x_{0} R(1)+y \cdot R(2)+z_{0} R(3) \\
& \eta=x_{*} U(1)+y_{\bullet} U(2)+z_{\bullet} U(3) \\
& \left\{=x_{0} H(1)+J \cdot H(2)+z_{0} H(3)\right.
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\left(\operatorname{Im} \phi \cdot \theta^{2}+\operatorname{Re} \phi_{0} \operatorname{Im} \phi^{2}-\operatorname{Re} \phi^{2} \cdot \operatorname{Im} \phi-\operatorname{Im} \phi^{2} \cdot \theta\right)}{\operatorname{INDEX}} \\
= & \left(\operatorname{Im} \phi_{0} \theta^{2}+\operatorname{Re} \phi_{0} \operatorname{In}_{0} \operatorname{Re} \phi_{0} \operatorname{Im} \phi-\left((\operatorname{Re} \phi)^{2}-(\operatorname{Im} \phi)^{2}\right) \cdot \operatorname{In} \phi\right. \\
& \left.-2_{0} \operatorname{Re} \phi_{0} \operatorname{Im} \phi \cdot \theta\right) / \operatorname{INDEX} \\
= & \frac{\operatorname{Im} \phi}{\operatorname{INDEX}}\left(\theta^{2}-2 \cdot \operatorname{Re} \phi_{0} \operatorname{Im} \phi+(\operatorname{Re} \phi)^{2}+(\operatorname{Im} \phi)^{2}\right) \\
> & 0
\end{aligned}
$$

thus the value of the determinant is $\frac{1}{2}$ IDET ${ }^{\frac{1}{2}}$. Consequently, the efificiency of this progren could heve been improved by using this expression.

We now call the subroutine COVER to find the number ICOUNT of sub-regions which are left uncovered, and print the value of ICOUNT. If ICOUNT is not equal to 0 , and is less than LIMIT, the values of $X(I), Y(J), Z(K)$ for those regions for which $L(I, J, K)$ is equal to 1 are printed; these values are also punched onto cards for later use by FCUB.

TIE MAIN PROGRAM FCUB

This program finds the saallest cuboid containing the fundemental region, then reads the values $B K$ and IBC as in CUBOID. The value $C I N=10^{-\mathrm{h}}$ must be read by this program, then the subroutine USE is called.

LIMIT is again the maximum number of uncovered regions for which the vertices are to be printed. M is the number of regions which are to be subdivided. Each of these regions is now treated as the cuboid containing the fundamental region was treated by CUBOID; with the exception that we must now consider the values $I=1, \ldots, 10 ; \mathrm{J}=1, \ldots, 10$. 10 . $\mathrm{K}=1, \ldots, \ldots, 1$

THE MAIN PROGRAM CUBX
This program is basically the same as FCUB with the following exceptions. We do not read a value LIMIT. On return from the subroutine COVER we find the values XLN, XUP, YLW, YUP, ZLV, ZUP such that the uncovered sub-regions of the particular region in question are contained in the cuboid which consists of the set of points (ξ, η, η) where

XLV $\leqslant \xi \leqslant$ XUP
ILW $\leqslant \eta \leqslant$ YUP

Thate detersimes 领斯 Nalye of
$3(x)+2(J)=2(J) * 2\{x\}=$

"-

TIE PROGRAM TRANS

From the prograns of chapter 9 we find regions R_{1}, . ., R_{n}, ve wish to deteraine the intersections of the transformations of these regions by the fundanental unit with the regions themselves; this program is used to achieve this. The subroutine BASIS and the function subroutine CI are the same as for the progrens of chapter 9.

FUNCTION $\operatorname{ADJ}(R, U, I, J)$
This determines the value of

$$
R(I) \cdot U(J)-R(J) \cdot U(I)=\left|\begin{array}{ll}
R(I) & U(I) \\
R(J) & U(J)
\end{array}\right|
$$

SUBROUTINE UPLW (RL,RU,TR)
On return from this subroutine

$$
\begin{aligned}
& \mathrm{RL}=\min (\mathrm{RL}, \mathrm{TR}) \\
& \mathrm{RU}=\max (\mathrm{RU}, \mathrm{TR})
\end{aligned}
$$

SUBROUTINE ROUNDI (RC, IR)
If takes the value of FC rounded to the nearest integer. FUNCTION DCORR (X, J)

When this function subroutine is called, X is a bound on the co-ordinates of one of the uncovered regions. $J=1$ indicates that X is a lower bound and the answer returned is $X-0.1$. $J=2$ indicates that X is an upper bound and the answer returned is $X+0.1$. In this wey we avoid the possibility of rounding
error concealing the intersection of an uncovered region with the transform of some uncovered region.

TIE MAIN PROGRAM I TRANS

We note that if the point (ξ, η, ξ) has cylindrical polar coordinates $(\rho, \propto, \boldsymbol{\zeta})$, and the point of the lattice corresponding to the fundamental unit has cylindrical polar co-0rdinates $\left(p_{6}, \alpha_{\epsilon}, h_{6}=\epsilon\right)$, the transform of the point by the fundamental unit has cylindrical polar coordinates

$$
\left(p p_{\epsilon}, \alpha+\alpha_{\epsilon}, \rho h_{\epsilon}\right) .
$$

We will define R_{-J} to be the set of points $\tilde{\rho}$ where $-\tilde{\hat{\rho}}$ is in R_{J}. $R_{J}+\tilde{\gamma}$ will be defined as the set of points $\tilde{\beta}+\tilde{\gamma}$ where $\tilde{\boldsymbol{\gamma}}$ is in R_{J}.

TRANS reads the values EXC, EXC, EZC where

$$
\epsilon=E X C \cdot H(1)+E Y C \cdot H(2)+E Z C \cdot H(3)
$$

It should be noted that EXC, EXC, EZC are the coefficients of ϵ relative to the basis $\left(1, m^{\prime}(\theta), Q^{\prime}(\theta)\right)$ and not $(1, \theta, \lambda)$. (EX, $E X, E X)$ are the cartesian coordinates of the point $\tilde{\boldsymbol{\epsilon}}$ of the lattice of integers, and (ER, EALP, GZ) are its cylindrical polar co-ordinates.
N is the number of regions to be considered; these regions are ${ }_{R_{I}}$ for $I=1$, . . N, N where R_{I} is the set of points $(\xi, \eta, 3)$ such that

$$
\begin{aligned}
& X(1, I) \leqslant \xi \leqslant X(2, I) \\
& X(1, I) \leqslant \eta \leqslant Z(2, I) \\
& Z(I, I) \leqslant\{\leqslant Z(2, I)
\end{aligned}
$$

for $I=1$, . . , N. When N is large, which usually means
greater than 15, the anount of time taken to consider the intersection of the transform of each region with the appropriate translates of the original region becomes large; consequently, 41 and M2 are read such that the transforms of the regions R_{I} for $I=M 1$, . . , M2 are considored in this run.

We now consider each region in turn. For the vertex $(X(I I, I), Y(J J, I), Z(K K, I))$ we determine its cylindrical polar co-ordinates ($\mathrm{RA}, \mathrm{ALP}, \mathrm{Z}(\mathrm{KK}, \mathrm{I})$), and from these the cylindrical polar co-ordinates of its transforn by the fundanental unit (TRA,TALP,TZ); we note that RA and ALP, and consequently TRA and TALP, are independent of $Z(K K, I)$ and so may be determined in on outer loop. This vertex is then the point $\tilde{\rho}$ where $\boldsymbol{\xi}=$ TXC.H $(1)+$ TYC.H(2) + TZC.H(3). After inspecting the eight vertices, the transformed region is the set of points (ξ, η, ξ) where
$X L \leqslant \xi \leqslant X U$
$\mathrm{VL} \leqslant \boldsymbol{~} \leqslant \mathrm{XU}$
$Z L \leqslant 9 \leqslant Z U ;$
and if $\}=x_{0} H(1)+y_{0} H(2)+z_{0} H(3)$
XIC $\leqslant x \leqslant$ XUC
$\mathrm{XLC} \leqslant \mathrm{y} \leqslant \mathrm{YUC}$
ZLC $\leqslant z \leqslant$ ZUC.
Since the fundanental region consists of the points $\tilde{\rho}$ where $\zeta=x_{0} H(1)+y \cdot H(2)+z_{0} H(3)$ and $|x| \leqslant \frac{1}{2}, \quad|y| \leqslant \frac{1}{2}, \quad|z| \leqslant \frac{1}{3}$, if XLC, XUC, YLC, YUC, ZLC, ZUC, when rounded to the nearest integer, become IXL, IXU, IYL, IYU, IZL, IZU respectively, we
must consider for each integer point $\tilde{\delta}$, where
$\gamma=x_{0} H(1)+y_{0} H(2)+z_{0} H(3), \quad x$ is between IXL and IXU, y is between IYL and IYU, z is between IZL and IZU, whether $R_{J}+\tilde{8}$ or $R_{-J}+\tilde{8}$ intersects with $E\left(R_{I}\right)$ for J between 1 and N. IFLAG is set to 1 when at least one such region R_{J} is found.

THE PROGRAM EXCEP

The method of chapter 5 is implemented by this progrod. The subroutine BASES is basically the some as the subroutine BASEH of RELMIN, but the bounds which it finds for the prevention of integer overflow are for the erguments of DNORM and MULTD. The subroutine MULTD is the double precision version of the subroutine MULTC of the progran CONG. The function subroutine DCI is the sone routine as that for the prograa RELMIN. The function subroutine DAJ is the double precision version of the function ADJ of the program TRANS. The subroutine CHANGE and the function subroutine DNORM are the some as those for the program CONG.

LOWUP (XT $, \mathrm{XV}, \mathrm{XV}, \mathrm{XL}, \mathrm{XU}$)
The routine finds $X L$ and $X U$ such that $X L \leqslant X T \cdot Y(1)+X V \cdot Y(2)+X V \cdot Y(3)$ $\mathrm{YL}(\mathrm{I}) \leqslant \mathrm{Y}(\mathrm{I}) \leqslant \mathrm{YU}(\mathrm{I})$ for $I=1,2,3$ and the arrays YL and YU are passed across to the subroutine as COMMON arrays.

LIMITL (XXL, IXL $)$
IXI. is the least integer greater than XXL. A diagnostic is given if the resultant integer would require more than 14 digits; that is if the integer would come close to the limits of accuracy of the machine.

LIMITU (XXU, IXU)

IXU is the greatest integer less than XXU. A diagnostic is ogain given if the resultant integer would require more than 14 digits.

THE HAIN PROGRAM EXCEP
The field being considered hes discriminant -IDET, defining polynomiel $x^{3}-I A \cdot x^{2}+I B \cdot x-I C$ and the index of the polynomial relative to the field is INDEX. BASES is celled to find the details of the basis of the field and of the lattice of integers. If we are finding the minimum of $\frac{\alpha}{1-\epsilon^{n}}$, then $\alpha=\frac{I Z_{0} \theta^{2}+I Y_{0} \theta+I X}{I D}$ and $\quad 1-\epsilon^{n}=\frac{J Z . \theta^{2}+J Y . \theta+J X}{J D}$ and $H(2)=\theta$. We then have

$$
\begin{aligned}
& A X+A Y_{\cdot} \theta+A Z \cdot \lambda=I I X+I I Y_{\cdot} \theta+I I Z \cdot \lambda=\frac{I Z_{0} \theta^{2}+I Y_{0} \theta+I X}{I D} \\
& B X+B Y \cdot \theta+B Z \cdot \lambda=J I X+J I Y_{0} \theta+J I Z \cdot \lambda=\frac{J Z \cdot \theta^{2}+J Y_{0} \theta+J X}{J D}
\end{aligned}
$$

and we obtain $A N=\alpha, \quad B E=1-\epsilon^{n}$.
The transformetion on the lattice is $Q \rightarrow \frac{Q-\alpha}{\epsilon^{n}}=\frac{2-A N}{1-B E}$, so we determine the volues $\mathrm{BP}=1-\mathrm{BE}$ and $\mathrm{ABP}=-\mathrm{AN} /(1-\mathrm{BE})$. $C K=S K$ is the value of C_{1} of chapter 5 ; CK is a double precision quantity, $S K$ is single precision.

The conjugates of α are ANV ${ }_{-}^{+}$. ANV and those of $1-\epsilon^{n}$ are BEV + i. BEW, then the conjugates of $\frac{\alpha}{1-\epsilon^{n}}$ are ABV_{-}^{+}i.ABN. BNORM is the nora of $1-\epsilon^{n}$.

TLI $=$ SLI is the value τ_{f} of chapter 5 ; then TUI $=\frac{T L 1-\alpha}{\epsilon^{n}}$. We are to investigate the renge of velues of f_{y} of chapter 5 in sections given by

$$
T L \leqslant S_{\gamma}<T U \quad \text { such that } T U-T L \leqslant 100 .
$$

With this in ind we set $T L=T L 1$ and $T U=\min (T U 1, T L+100)$. RMINIM is to eventually toke the value of the minimum of $\frac{\alpha}{1-\epsilon^{n}}$; it is initially set to the value $S \mathbb{S K}$, which should be chosen by the user so that it will be greater then the minimum. NEXT is set to 1 when we are considering values of $f_{\boldsymbol{r}}$ greater then $\frac{\alpha}{1-\epsilon^{n}}$, and to 2 when we are considering values of $\boldsymbol{p}_{\boldsymbol{\gamma}}$ less than $\frac{\alpha}{1-\epsilon^{n}}$.

SB is the value σ_{1} of chapter 5. We must consider the into ers $\tilde{\boldsymbol{\gamma}}=\left(\boldsymbol{\xi}_{\boldsymbol{x}}, \boldsymbol{\eta}_{\boldsymbol{x}}, \boldsymbol{\rho}_{\boldsymbol{x}}\right)$ such that
$\mathrm{VL} \leqslant \xi_{\mathrm{z}} \leqslant \mathrm{VU}$
$W L * \eta_{x} \leqslant W$
$T L \leq \mathcal{S}_{x} \leq T U$.
If $z_{r}=p \cdot \lambda+q \cdot \theta+r$
for some rational integers p, q and r, we investigate the values of p and q where

IPL $\leqslant \mathrm{p} \leqslant \mathrm{IPU}$
POL $\leq q \leq I Q U$,
the range of values for r will be found for any particular pair of values of p and q. If the range of integer values for p or that for q is mull, a diagnostic is printed and the program terminates. We determine which of p and q has the smaller range of values. If p has the smaller range, for each value of p we determine the integer values IQLT, IQUT such that we must consider the reduced range of values of q given by IQLT $\leqslant q \leqslant$ IQUT.

Then for each value of q in this range, we determine the integer

Vulues ISLT, ISUT such that we ust consider the velues of π in the range

$$
\text { ISLT } \leqslant \mathrm{r} \leqslant \text { ISUT. }
$$

For each value of r we than determine the value of $N\left(\frac{\alpha}{1-\epsilon^{n}}-\gamma\right)$ in the form $N\left(\alpha-\gamma\left(1-\epsilon^{n}\right)\right) / N\left(1-\epsilon^{n}\right)$. When q has the smaller range, for each value of q we determine the range for p, then for each value of p we determine the range for r. Having considered the range of values of $\boldsymbol{f}_{\boldsymbol{r}}$ given by $2 L \leqslant S_{\gamma} \leqslant T U$, if TU is less than TUl, TL is set to the value TU and TU to $\operatorname{HU}(T U 1, T U+100)$ then the above process is repeated; when $T U=T U 1$ we go on to consider velues of $\}_{\gamma}$ less than $\frac{\alpha}{1-\epsilon^{n}}$. First NEXT is set to NEXT $+1=2$, TU1 $=$ SUl is the value of τ_{u} of chapter 5 , then $T L 1=\frac{T U 1-\alpha}{\epsilon^{n}}$. Again we are to consider values of \boldsymbol{q}_{8} in "sections", therefore, we set $T U=T U 1$ and $T L=\max (T U-100, T L 1) . \quad S B$ is now the value $\boldsymbol{\sigma}_{2}$ of chapter 5. The relevant integers are investigated in the menner described above; then, if TL $>$ TLI, we set $T U=T L$ and then $T L=\max (T U-100, T L 1)$, otherwise we print the value of RMINIM and stop.

TIE RESULTS OUTAINED

The following table includes all the results obtained by the methods of this thesis. For each field we give the discriminent, D, the coefficients a, b, c of the defining polynomial $x^{3}-a x^{2}+b x-c$, ond the index, L, of the polynomial relative to the field, as given in the table in (1).

The "property" of the field is indicated by E if the field possesses a Euclidean Algorithm and by N if it does not. The last colum has an entry when further information about the field is included at the end of this chapter, the entry is a reference to that information.

The results for the first fifteen fields, those with discriminants between -23 and -152 inclusive, were obtained by Godwin (18); these fields vere not investigeted by the methods of this thesis, but the results are included here for the solse of completeness.

D	L		b,		Property	
-239	1	6	11.	3	E	
-243	1	6	12	5	E	
-244	1	10	29	18	E	
-247	1	6	13	7	E	
-255	1	5	8	1	E	
-268	1	7	18	1	E	
-300	1	8	18	6	E	
-307	1	4	8	3	N	
-324	1	9	24	14	E	
-327	1	8	19	9	N	(5)
-335	1	4	9	5	N	
-339	1	7	15	6	N	
-351.	1	3	6	1	N	
-356	2	5	12	4	E	
-364	1	3	7	3	N	
-367	1	4	7	1	N	
-379	1	5	9	2	E	
-411	1	2	6	3	E	
-419	1	9	23	10	E	
-424	2	7	16	4	E	
-431	2	9	26	16	E	
-436	1	6	13	6	N	(6)
-439	1	7	14	3	N	
- 440	2	6	14	4	E	

D
L
a, b, c
Property

-451	1	10	28	13	E
-459	1	9	21	2	N
-460	1	2	6	2	E
-472	1	9	22	6	E
-484	1	4	9	4	E
-492	1	4	8	2	E
-499	1	3	7	2	E
-503	2	7	18	8	E
-515	1	8	20	11	E
-516	2	8	22	12	E
-519	1	10	29	17	E
-524	1	5	11	5	N
-527	1	3	8	5	N
-543	1	5	10	3	E
-547	1	8	18	5	N
-567	1	9	24	13	N
-620	1	11	35	23	N
-628	2	7	20	12	E
-652	2	4	12	4	E
-655	1	7	16	7	N
-671	1	6	11	1	N
-675	1	6	12	3	N
-879	1	6	13	5	N
-687	1	4	9	3	E

(8)
(9)

D	L	a, b, c			Property
-695	1	8	21	13	N
-755	1	4	10	5	N
-759	1	2	7	3	N
-808	1	5	10	2	N
-812	1	11	33	13	N
-823	1	9	22	5	N
-839	1	8	19	7	N
-863	1	7	18	11	N
-883	2	8	23	12	N
-908	2	9	23	3	N
-940	1	9	25	15	N
-959	1	4	11	7	N
-972	1	6	12	2	N
-983	1	2	7	1	N
-1004	1	6	14	6	N
-1007	1	7	14	1	N
-1011	1	11	35	22	N
-1036	2	6	16	4	N
-1048	2	5	16	8	N
-1059	1	7	17	8	N
-1075	2	7	18	4	N
-1087	1	5	12	5	N
-1135	1	10	27	7	N
-1147	1	10	30	19	N

D	L		b,		Property
-1164	1	7	15	3	N
-1172	2	7	21	11	N
-1175	1	3	8	1	N
-1187	1	2	8	5	N
-1191	1	14	55	39	N
-1196	1	5	13	7	N
-1207	1	11.	34	17	N
-1208	2	4	13	2	N
-1219	1	12	40	21	N
-1231	1	10	29	15	N
-1235	1	10	28	11	N
-1259	1	13	47	28	N
-1267	1	2	8	3	N
-1291	1	9	25	14	N
-1292	1	12	38	10	N
-1295	1	7	16	5	N
-1815	1	13	45	16	N
-1316	2	4	14	4	N
-1819	1	9	26	17	N
-1327	1	6	18	3	N
-1351	1	8	21	11	N
-1355	1	6	14	5	N
-1363	1	11	31	2	N
-1383	1	4	11	5	N

D L \quad a, b, c Property

-1388	1	2	8	2	N
-1407	1	11	32	7	N
-1431	1	6	15	7	N
-1448	2	6	17	4	N
-1452	1	10	26	2	N
-1547	1	7	15	2	N
-1567	1	8	19	5	N
-1579	1	6	16	9	N
-1580	1	4	10	2	N
-1583	1	11	36	25	N
-1599	3	7	24	9	N
-1603	2	12	43	28	N
-1615	1	3	10	5	N
-1619	1	8	22	13	N
-1647	1	12	39	15	N
-1675	1	4	12	7	N
-1687	1	9	22	3	N
-1700	2	2	13	4	N
-1708	1	10	28	10	N
-1736	2	9	29	17	N
-1743	1	13	48	33	N
-1751	3	11	36	9	N
-1755	2	9	30	20	N
-1783	1	14	52	19	N

D
L
a, b, c
Property

-1772	1	7	19	11	N
-1807	1	2	9	5	N
-1815	1	5	12	3	N
-1868	2	7	23	13	N
-1871	1	2	9	7	N
-1895	1	12	41	25	N
-1955	1	11	35	20	N
-1959	1	2	9	3	N
-1967	3	8	27	9	N
-2023	1	4	11	3	N
-2036	2	2	14	8	N
-2039	1	7	20	13	N
-2047	1	3	10	3	N
-2063	3	10	31	3	N
-2159	1	10	29	13	N
-2167	1	13	44	9	N
-2199	3	9	30	9	N
-2207	1	10	27	5	N
-2228	1	6	17	10	N
-2235	1	10	28	9	N
-2283	3	9	33	18	N
-2315	1	5	13	4	N
-2816	1	7	17	5	N
-2372	1	4	13	8	N

D	L		, b,		Property
-2403	1	12	42	29	N
-2420	2	8	25	10	N
-2423	3	11	42	27	N
-2444	1	9	23	5	N
-2479	1	12	37	3	N
-2491	2	10	31	10	N
-2503	1	7	18	7	N
-2515	1	12	40	19	N
-2540	2	11	39	25	N
-2579	1	11	33	10	N
-2591	3	10	39	27	N
-2599	1	11	38	23	N
-2604	1	2	10	6	N
-2627	1	2	10	7	N
-2636	2	12	44	28	N
-2647	1	4	13	7	N
-2668	1	9	25	11	N
-2699	2	9	26	4	N
-2708	2	9	29	13	N
-2723	1	3	11	4	N
-2732	1	6	14	2	N
-2759	1	5	12	1	N
-2791	1	10	31	19	N
-2795	2	5	18	4	N

D	L		b,		Property
-2796	1	5	13	3	N
-2803	1	5	15	8	N
-2855	1	14	55	37	N
-2860	2	10	32	12	N
-2878	1	4	11	1	N
-2895	3	9	30	5	N
-2915	1	8	20	5	N
-2951	1	5	14	5	N
-2956	1	6	16	6	N
-3011	1	9	23	4	N
-3039	1	7	20	11	N
-3043	2	6	19	2	N
-3055	1	15	58	11	N
-3059	2	6	23	14	N
-3107	1	13	43	2	N
-3127	1	16	69	37	N
-3148	2	16	72	52	N
-3159	1	3	12	7	N
-3159	1	12	39	13	N
-3176	2	3	17	7	N
-3179	1	13	45	14	N
-3191	1	12	41	23	N
-3212	2	6	20	4	N
-3235	1	9	25	10	N

> D

L
a, b, c
Property

-3244	1	12	40	18	N
-3259	1	4	14	9	N
-3263	1	9	26	13	N
-3308	2	8	24	4	N
-3311	1	8	21	7	N
-3331	1	5	13	2	N
-3359	1	4	13	5	N
-3371	1	3	11	2	N
-3404	2	2	16	4	N
-3439	1	14	51	11	N
-3451	1	10	28	7	N
-3483	2	3	18	12	N
-3495	1	10	27	3	N
-3543	3	10	37	15	N
-3547	3	8	28	3	N
-3560	2	13	45	5	N
-3575	3	7	28	9	N
-3591	1	3	12	5	N
-3599	1	11	34	13	N
-3615	1	2	11	7	N
-3619	1	10	32	21	N
-3647	1	7	18	5	N
-3671	1	8	19	1	N
-3687	3	6	27	11	N

> D

L
a, b, c
Property

-3695	1	2	11	5	N
-3711	1	5	16	9	N
-3756	2	5	19	3	N
-3767	1	6	17	7	N
-3783	3	5	20	13	N
-3820	2	4	20	12	N
-3831.	1	11	36	21	N
-3915	2	8	30	12	N
-3916	1	7	19	7	N
-3935	3	4	25	15	N
-3943	1	13	46	19	N
-3980	2	11	35	5	N
-3991	1	2	11	3	N
-3999	3	9	36	19	N
-4007	1	10	31	17	N
-4012	1	8	24	14	N
-4023	3	6	27	9	N
-4039	1	5	14	3	N
-4075	1	14	52	17	N
-4076	2	7	27	17	N
-4111	1	16	71	51	N
-4147	1	8	20	3	N
-4175	1	8	23	11	N
-4191	3	3	24	17	N

D
L
a, b, c
Property

-4239	1.	3	12	3	N
-4255	1	7	20	9	N
-4291	2	14	51	2	N
-4295	3	11	44	25	N
-4307	1	9	23	2	N
-4359	1	17	80	61	N
-4364	1	5	17	11	N
-4411	2	4	19	4	N
-4455	1	9	24	5	N
-4487	1	14	53	23	N
-4511	1	10	33	23	N
-4555	2	7	26	12	N
-4556	2	10	36	20	N
-4559	1	9	26	11	N
-4567	1	9	28	17	N
-4575	3	2	23	19	N
-4639	1	6	19	11	N
-4691	1	8	24	13	N
-4699	1	14	54	29	N
-4715	2	15	62	28	N
-4727	1	5	16	7	N
-4735	1	14	55	35	N
-4771	2	8	27	8	N
-4823	1	13	48	29	N

D	L		a, b,		Property
-4831.	1	17	76	29	N
-4844	1	8	20	2	N
-4859	1	2	12	7	N
-4003	3	10	41	23	N
-4908	1	2	12	6	N
-4935	3	7	30	9	N
-4963	1	18	88	59	N
-10011	3	10	42	9	N
-10019	2	16	75	56	N
-10028	2	17	75	7	N
-19899	3	18	96	61	N
-19927	2	6	31	2	N
-19939	1	9	31	12	N
-19976	2	22	129	68	N
-160087	1	0	1	77	N
-169571	1	1	35	22	N

[^1]We now have the additional information concerning the indicated fields.
(1) These results are those obtained by Godvin (18).
(2) The inhomogeneous minimum is $\frac{3}{4}$ and is attained at numbers congruent to $\pm\left(\frac{\theta^{2}-25 \theta+14}{1-\epsilon}\right)$.
(3) The inhonogeneoud minimun is $\frac{3}{5}$ and is attained at numbers congruent to $\pm\left(\frac{3 \theta^{2}-6 \theta+3}{1-\epsilon}\right)$.
(4) The inhomogeneous minimum is 1 and is attained at numbers congruent to $\pm\left(\frac{3 \theta}{1-\epsilon^{2}}\right)$.
(5) The inhomogeneous minimun is $\frac{101}{99}$ and is attained at numbers congruent to $\pm\left(\frac{4 \theta^{2}-4 \theta+1}{1-\epsilon^{2}}\right)$ and trensforms of then by the fundamental unit.
(6) The inhomogeneous minimum is $\frac{79}{78}$ and is attained at numbers congruent to $\pm\left(\frac{29 \theta^{2}-33 \theta+10}{1-\epsilon^{2}}\right)$.
(7) Numbers congruent to $\pm\left(\frac{19 \theta^{2}-213 \theta-155}{1-\epsilon^{4}}\right)$, and transforms of them by the fundamental unit, have minimun $\frac{44712}{45747}$, thus the inhomogeneous minimum of the field is ot least this velue but is less than 1.
(8) Numbers congruent to $\pm\left(\frac{-5 \theta^{2}+68 \theta-23}{1-\epsilon^{3}}\right)$, and transforns of then by the fundamental unit, have minimum $\frac{7593}{8343}$, thus the inhomogeneous minimun of the field is at least this value but is less than 1.
(9) Numbers congruent to $\pm\left(\frac{9 \theta^{2}-27 \theta+8}{1-\epsilon^{2}}\right)$, and transforms of them by the fundemental unit, have minimum $\frac{937}{945}$, thus the
inhomogeneous minimum of the field is at least this value but is less than 1.
(10) These results were obtained by the aethod of chapter 2.

Vanhor Fiolan 7

1. ANGELL, I.0., 'The tabulation of complex cubic fields with units ond class numbers', Ph.D. Thesis, London 1971.
2. BARNES, E.S. and SWINNERTON-DYER, H.P.F., 'The Inhomogeneous Minime of Binary Quedratic Forms' (1), Acta Mathematica 87 (1952), 259-323.
3. BERG, E., Über die Existenz eines Euklidischen Algorithmus in quadratischen Zahlkörpen', Kungl. Fysiogr Sällskapeti Lund Förhandlingar 5 (1935), 1-6.
4. BEHRBOHM, H. and REDEI, L., 'Der Euklidische Algorithmas in quedratischen Körpen', J. fur Math. 174 (1936), 192-205.
5. CASSELS, JowoSe, 'The Inhomogeneors Minimum of Binary Quadratic, Ternary Cubic and Quarternary Quartic Forms' and Addendum, Proc. Cambridge Phil. Soc. 48 (1952), 72-86 and 519-520.
6. CHATLAND, H. and DAVENPORT, H., 'Euclid's Algorithm in Real Quadratic Fields', Canadian J. Math. 2 (1950), 289-296.
7. CHATLAND, H., 'On the Euclidean Algorithm in Quadratic Number Fields ${ }^{\top}$, Bull. Amer. Math. Soc. 55 (1949), 948-953.
8. DAVENPORT, H., 'Indefinite Binary Quedratic Forms, and Euclid's Algorithm in Real Quadratic Fields', Proc. London Meth. Soc. (2) 53 (1951), 65-82.
9. DAVENPOHT, He, 'Indefinite Binary Quedratic Forms', Quart. J. Math. (0xford) (2) 1 (1950), 54-62.
10. DAVENPORT, H., ${ }^{1} 0 \mathrm{n}$ the Product of Three Non--llomogeneous Linear Forms', Proc. Cambridge Phil. Soc. 43 (1947), 137-152.
11. DAVENPORT, H., 'Euclid's Algorithm in Cubic Fields of Nogative Discriminant', Acta Mathematica 84 (1950), 159-179.
12. DAVENPORT, H., 'Euclid's Algorithm in certain Quartic Fields', Transections Amer. Math. Soc. 68 (1950), 508-532.
13. DELONE, B.N. and FADEEV, D.K., 'Theory of Irrationalities of the Third Degree', Translations Amer. Math. Soc. Vol. 10 .
14. ENNOLA, V., 'On the Inhomogeneous Minimum of Indefinite Binary Quadratic Forms and Euclid's Algorithm in Real Quodratic Fields', Ann. Univ. Turku Ser. AI 28 (1958), 9-26.
15. ERD"̈S, P. and KO, C., 'Note on the Euclidean Algorith', J. London Math. Soc. 13 (1938), 3-8.
16. GODWIN, H.J., $10 n$ the Inhomogeneous Minima of Totally Beal Cubic Norm-Forms', J. London Math. Soc. 40 (1965), 623-627.
17. GODWIN, H.J., 'On Euclid's Algorithn in some Quartic and Quintic Fields', J. London Math. Soc. 40 (1965), 699-704.
18. GODWIN, H.J., '0aI Euclid's Algorithm in some Cubic Fields with Signature One', Quart. J. Math. (0xiord) (2) 18 (1967), 333-338.
19. GODVIN, H.J., 10n the Product of Five Homogeneous Lineor Formst, J. London Math. Soe. 25 (1950), 331-339.
20. GODVIN, H.J., 'On the Inhomogeneous Minima of certain Norn-Forms', J. London Hath. Soc. 30 (1955), 114-119.
21. GODVIN, H.J., unpublished.
22. MARDY, G.II. and WRIGHT, E.M., 'Introduction to the Theory of Nunhers', C1arendon Press, 0xford, 4th ed. (1960).
23. HEILBRONN, H., 'On Euclid's Algoritha in Cubic Self-Conjugate Fields', Proc. Cenbridge Phil. Soc. 46 (1950), 377-382.

24, HEILMRONN, H., '0n Euclid's Algorithm in Real Quadratic Fields', Proc. Cambridge Phil. Soc. 34 (1938), 521-526.
25. INKERI, K., 'Uber den Euklidischen Algorithms in quadratischen Zallkorpen', Annales Acadeniae Scientarum Fennicae 41 (1947), 5-34.
26. SAMET, P.d., 'The Product of Non-Homogeneous Linear Forms I', Proc, Cambridge Phil. Soc. 50 (1954), 372-370.
27. SAMET, P.A., 'The Product of Non-Homogeneous Linear Forms II', Proc. Cambridge Phil. Soc. 50 (1954), 380-390.
28. SHITH, J.R., '0n Euclid's Algorithm in some Cyclic Cubic Fields', J. London Math. Soc. 44 (1969), 577-582.
29. SWINNERTON-DEER, H.P.F., The Inhomogeneous Hinima of Compler Cubic Norm Forms', Proc. Cambridge Phil. Soc. 50 (1954), 209-219.

EUCLID'S ALGORITHM IN CUBIC FIELDS

WITH COMPLEX CONJUGATES

```
    PCUB
                                    $8
    EXI &P , - % % % %
#nd thelr suthrouthes. Esch promtam dustingls
and thetr subroutines. Each progra
APPENDIX
    whimh are Hest,
```



```
    Which fove boctl listed ith Irmevious sectl if
```



```
which are momyisation= of zubroutivees of enven
```


ELIZABETH MARY TAYLOR

ROYAL HOLLOWAY COLLEGE, LONDON

Supervisor : PROFESSOR H J GODWIN

The listings of the programs

RELMIN	3
CONG	25
CUBOID	58
FCUB	58
CUBX	58
TRANS	76
EXCEP	85

and their subroutines. Each program listing is preceded by a title page which gives

1. the program name
2. the names of those subroutines which it uses and which are listed in the same section
3. the names of those subroutines which it uses and which have been listed in a previous section.

Listings of those routines copied from Angell(1), or which are modifications of subroutines of Angell are included for completeness.

THE PROGRAM RELMIN

SUBROUTINES - ALL LISTED IN THIS SECTION

BASEH	5	MULT	19
MINIMA	8	PHITH	20
SUB	15	DIVCD	21
INVER	16	MULTCD	22
ICF	17	DCI	23
ICF2	18	IOF	24

PROGRAM RELMIN (INPUT, OUTPUT)
C. . . THIS PROGRAM FINDS A LOWER BOUND FOR THE INHOMOGENEOUS MINIMUM OF C. . . THE FIELD.

COMMON/DI/IA,IB,IC, INDEX, IDET
COMMON/D2/ILI, ILZ,IL3, IT1,IT2,IT3,IP1,IP2,IP3
C... READ IN DETAILS OF THE FIELD. A BLANK CARD WHICH SETS IDET TO ZERO,
C...IINDICATES THE END OF THE DATA DECK.

2 READ 101 , IDET, INDEX, IA, IB, IC
101 FORMAT(I6,I2.3I5)
IF (IDET.EQ. 0) STOP
C. . THE FIELD NOW BEING CONSIDERED HAS DISCRIMINANT -IDET, IT IS $K(x)$
C. . WHERE $x * 3-I A * x * * 2+I B * X-I C=0$.

IDETM $=-$ IDET
PRTNT 102, IDETM, INDEX, IA, IB, IC
102 FORMAT ($1 \mathrm{H} 1,1 X$, 26 HTHE FIELD HAS DISCRIMINANT, I $8,6 \mathrm{H}$ INDEX, $13,28 \mathrm{H}$ AND 1 POL YNOMIAL COEFFICIENTS, 316)
C... NOW FIND X WHERE THE FIELD IS $K(x)$ AND ALSO A BASIS FOR THE FIELD. CALL BASEH

103 FORMAT $(/, 1 x, 45$ HTHE FIELD IS $K(x)$ AND HAS BASIS $(Y, x, 1)$ WHERE
ASSIGI $=4 \mathrm{HX} * 2$ € 4 SSIGR $=4 \mathrm{HY} * 2$ £ ASSIG3 $=4 \mathrm{HX} \% \mathrm{Y}$
PRINT 104,ASSIG1, IT1, IT2,IT3
PRINT 104 ,ASSIG2, IL1, IL2, IL 3
PRINT 104,ASSIG3,IP1,IP2,IP3
104 FORMAT $(12 \mathrm{X}, \mathrm{A} 4,2 \mathrm{H}=, \mathrm{I} 10,3 \mathrm{HY}+, \mathrm{I} 10,3 \mathrm{HX}+, \mathrm{I} 10)$
C... NOW FIND THE LOOP OF IDEALS STARTING WITH 1 AND A CHAIN OF RELATIVE C... MINIMA FOR THIS FIELD.

CALL MINIMA
C...REPEAT THE CYCLE

GO TO ?
END

SUBROUTINE BASEH

OUBLE R,U,H,A,B,C,VI,V2,V3,V4,V5,V6,V7,D,T,S,XIN
DOUBLE IOBD, IOBDD
COMMON/DI/IA,IB, IC, INDEX, IDET
COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
COMMON/D3/R (3) , U(3), H(3)
COMMON/D10/PH, ZZ, HHH/D9/IQ, INN,Q,RN
COMMON/D16/IOBD,IOBDDC...SATISFIES AN EQUATION PH**3-TQ*PH-INN=0. FIND PH AND PH*PH-IQC...FOR USE IN THE SUBROUTINE MINIMA.
$A=F \operatorname{LOAT}(I A) \& B=F L O A T(I B) \& C=F L O A T$ (IC)
$\mathrm{I} O=3 \% \mathrm{~T} A * I A-9 * I A$
INN=27*IC-9*IA*IB+2*IA*IA*IA
$Q=F L O A T$ (IO)
RN=FLOAT (INN)
$\mathrm{V} 1=\mathrm{FLOAT}(\mathrm{IQ} / 3)$
$V 2=F L O A T$ (INN)
V3=DSクRT (V2**2-4.000*V1**3)
V4=(V2+V3)/2.000
V5 $=(\mathrm{V} 2-\mathrm{V} 3) / 2.000$
IF (V4.NE.0.000) GO TO 51
V $6=0.000$ \& GO TO 5 ?
$51 \mathrm{D}=1.000$
IF (V4.GE.0.000) GO TO 53
$\mathrm{V} 4=-\mathrm{V} 4$ \& $\mathrm{D}=-1.000$
$53 \mathrm{~V} 6=\operatorname{DEXP}((\mathrm{DLOG}(\mathrm{V} 4)) / 3.0 \mathrm{DO}) \% \mathrm{D}$
52 IF (V5.NE.0.0D0) GO TO 54
$V 7=0.000$ \& GO TO 55
$54 \mathrm{D}=1.000$
IF (V5.GE. O.0D0) GO TO 56
$V 5=-V 5$ \& $D=-1.0 D 0$
$56 \quad V 7=\operatorname{DEXP}((D L O G(V 5)) / 3.000) \approx D$
$55 \mathrm{PH}=\mathrm{SNGL}(\mathrm{V} 6+\mathrm{V} 7)$ \& $\mathrm{HHH}=\mathrm{PH}$ *PH
$Z Z=\mathrm{HHH}-\mathrm{Q}$
$H(2)=(V 6+V 7+A) / 3.000$
$R(2)=(A-H(2)) / 2.0 D 0$
$U(2)=D S Q R T(C / H(2)-R(2) * R(2))$
$H(1)=1.0 D 0 € R(1)=1.000 £ U(1)=0.000$
C...R(N) +I.U(N) AND R(N) -I.U(N) ARE THE CONJUGATES OF $H(N)$ FOR $N=1,2,3$.

C
C... $(H(1), H(2), H(3))=(1, x, Y)$ IS A BASIS FOR THE FIELD. $C \ldots Y=(X * * 2+I T * X+I S) / I N D E X$, IT AND IS ARE NOW CALCULATED.

IN=INDEX
IN2=IN**2 \& IN3=IN2*IN
IF (INDEX.NE. 1) GO TO 1
$\mathrm{IT}=0$ \& IS=0 \& GO TO 2

1 KI=IA**2-2*IB \& K4=IB**2-2*IA*IC £ K5=IA*IB-3*IC
D0 3 ITC=1, IN
$I T=I T C-1$
OO 4 TSC=1, IN
$\mathrm{IS}=\mathrm{ISC}-1$
$J A=K 1+I T^{*} I A+3 * I S$

JB=K4+IT**2*IB+3*IS**2+IT*KS+2*IS*KI+2*IS*IT*IA
IF (MOD (JB, IN2). NE.0) GO TO 4
$J C=I S * * 3+I T * * 3 * I C+I C * * 2+I S * 2 * I T * I A+I S * K 4+I S * I T * 2 * I B+I T * I B * I C$
$1+I T * * 2 * I A * I C+I S * * 2 * K 1+I S * I T * K 5$
IF (MOD (JC, IN3). NE.0) GO TO 4
GO TO 2
4 CONTINUE
3 CONTINUE
2 ITI=INDEX
$I T 2=-1 T$
IT $3=-$ IS
$M L=2 * I A * I T+I A * I A+2 * I S+I T * I T-I B$
ILI $=$ ML/ $/$ IN
ILI $=M L / I N$
IL2 $=(-I T * M L+2 * I S * I T+I C-2 * I B * I T-I A * I B) / I N Z ~$
IL $3=(-I S * M L+2 * I C * I T+I A * I C+I S * I S) / I N 2$
$M P=I A+I T$
$I P 1=M P$
$I P 2=(I S-I B-I T * M P) / I N$
IP3=(IC-IS*MP)/IN
$T=F L O A T(I T) £ S=F L O A T(I S) £ X I N=F L O A T(I N D E X)$
$H(3)=(H(2) * H(2)+T * H(2)+S) / X I N$
$R(3)=(R(2) * R(2)-U(2) * U(2)+T * R(2)+S) / X I N$
$U(3)=(2.0 D 0 * R(2) * U(2)+T * U(2)) / X I N$
C.
C...DIVCD FOR TESTING FOR THE POSSIBILITY OF OVERFLOW.
$\stackrel{C}{C}$
IL $1 A=I A B S(I L 1) £ I L 2 A=I A B S(I L 2) £ I L 3 A=I A B S(I L 3)$ $I T 1 A=I A B S(I T 1) \& I T 2 A=I A B S(I T 2) \& I T 3 A=I A B S$ (IT3) $\begin{array}{lll}I T 1 A=I A B S(I T 1) & £ I T 2 A=I A B S(I T 2) & £ I T 3 A=I A B S(I T 3) \\ I P 1 A=I A B S(I P 1) & £ I P 2 A=I A B S(I P 2) & £ I P 3 A=I A B S(I P 3)\end{array}$
$I P 1 A=I A B S(I P 1) £ 1 P 2 A=1 A B S$
$I O B L=M A X O(I L 1 A, I L 2 A, I L 3 A)$
$I O B L=M A X 0(I L 1 A, I L 2 A, I L 3 A)$
IORT $=$ MAXO (IT1A, ITZA, IT3A)
$I O B P=M A X O(I P 1 A, I P 2 A, I P 3 A)$
$I L T P=M A X O$ (IOBL, IOBT, IOBP)
ILTP $=$ IOF (ILTP
IOBS $=29-$ ILTPI
IOBD $=10.000 * * I O B S$
IF (IOBL.GT. IORP) GO TO 20
IF (IOAP.GT. IOBT) GO TO 21
IOBAS $=10 B P=10 B T$
GO TO 22
21 IOBAS $=10 B P * I O B P$
GO TO 22

20 IF (IOBP.GT.IOBT) GO TO 23
IOBAS =IOBL*IOBT
GO TO 22
23 IOBAS=IOBL \#IOBP
23 IOBAS $=10 B L$ \#IOBP
22 IOBSS $=10 F$ (IOBAS) IOBSS $=10 \mathrm{~F}($ IOBAS
IORS $=29-10 R S S$
IOBS $=29-$ IORSS
IORDD $=10.000 \%$ IOBS
$I O B D D=10 \cdot 000 *$ IOBS
RETURN


```
            SUBROUTINE MINIMA
```

 SUBROUTINE MINIMA
 DOURLE L (3,99),DA,DB,DC,ZPL,DD,DE,DF,ZPJ,Z0,X1,Y1,XY1
 DOURLE L (3,99),DA,DB,DC,ZPL,DD,DE,DF,ZPJ,Z0,X1,Y1,XY1
 DOURLF REMN,RNMN,R,U,H,DCI
 DOURLF REMN,RNMN,R,U,H,DCI
 COMMON/DI/IA,I8,IC.INDEX,IDET
 COMMON/DI/IA,I8,IC.INDEX,IDET
 COMMON/DZ/KX,KY,KZ,IX,IY,IZ,JX,JY,JZ
 COMMON/DZ/KX,KY,KZ,IX,IY,IZ,JX,JY,JZ
 COMMON/D3/R(3),U(3),H(3)
 COMMON/D3/R(3),U(3),H(3)
 COMMON/D7/M1,M2,M3,N1,N2,N3,A,B,C/D8/MB (3)
 COMMON/D7/M1,M2,M3,N1,N2,N3,A,B,C/D8/MB (3)
 COMMON/D10/PH,ZZ,HHH/D9/IO,IN,Q,RN
 COMMON/D10/PH,ZZ,HHH/D9/IO,IN,Q,RN
 DIMENSION LI (8),JAN (3,99),K(4,3),NPJ(99),NP(99),IAN(3,99)
 DIMENSION LI (8),JAN (3,99),K(4,3),NPJ(99),NP(99),IAN(3,99)
 C...RHO IS THE SQUARE OF THE DISTANCE OF THE POINT P+V*PH+W*PH**2
C...RHO IS THE SQUARE OF THE DISTANCE OF THE POINT P+V*PH+W*PH**2
C...FROM THE REAL AXIS.
C...FROM THE REAL AXIS.
RHO (P,V,W)=((P+W*Q)**2-V* (V*Q+W*RN)) + (W*W*RN-V*P)*PH
RHO (P,V,W)=((P+W*Q)**2-V* (V*Q+W*RN)) + (W*W*RN-V*P)*PH
1+(V*V-W*(P+W*Q))*HHH
1+(V*V-W*(P+W*Q))*HHH
N=1

```
            N=1
```



```
C...REGIN WITH THE IDEAL (1,X,Y).
```

C...REGIN WITH THE IDEAL (1,X,Y).
LI(1)=1\&LI(4)=0\&LI(3)=INDEX \&LI(2)=0
LI(1)=1\&LI(4)=0\&LI(3)=INDEX \&LI(2)=0
LI(7)=1 \& LI(6)=-IY \& LI(5)=-IZ \& LI (8)= INDEX
LI(7)=1 \& LI(6)=-IY \& LI(5)=-IZ \& LI (8)= INDEX
C...BASIS FOR LATTICE IS
C...BASIS FOR LATTICE IS
C... [I,(M1+M2*PH+M3*PH**2)/IG,(N1+N2*PH+N3*PH**2)/IG].
C... [I,(M1+M2*PH+M3*PH**2)/IG,(N1+N2*PH+N3*PH**2)/IG].
IG=9*LI(1)*LI(8) \& MI=9*LI(2)+3*IA*LI(3)+LI (4)*IA*IA
IG=9*LI(1)*LI(8) \& MI=9*LI(2)+3*IA*LI(3)+LI (4)*IA*IA
NI=9*LI(5)+3*IA*LI(6)+LI(7)"IA*IA
NI=9*LI(5)+3*IA*LI(6)+LI(7)"IA*IA
M2=3*LI (3) +2*LI (4)*IA
M2=3*LI (3) +2*LI (4)*IA
N2=3*LII(6)+2*LI (7)*IA
N2=3*LII(6)+2*LI (7)*IA
M3=LI(4) \& N3=LI(7)
M3=LI(4) \& N3=LI(7)
C..... A,B,C ARE COEFFICIENTS OF THE ASSOCIATED BINARY QUADRATIC FORM
C..... A,B,C ARE COEFFICIENTS OF THE ASSOCIATED BINARY QUADRATIC FORM
A=R=C=0.
A=R=C=0.
C...PARTS (I),...., (VIII) ARE THE STEPS OF VORONOI'S ALGORITHM AS
C...PARTS (I),...., (VIII) ARE THE STEPS OF VORONOI'S ALGORITHM AS
C...DESCRIRED IN DELONE AND FADDEEV.

```
C...DESCRIRED IN DELONE AND FADDEEV.
```



```
C..... TEST THAT M2FN3-M3*N2 IS GREATER THAN 0 ..........
```

C..... TEST THAT M2FN3-M3*N2 IS GREATER THAN 0
IF (M2*N3-M3*N2.GT.0.) GO TO 20
IF (M2*N3-M3*N2.GT.0.) GO TO 20
I1=M1 \& I I2=M2 \& I 3= M3
I1=M1 \& I I2=M2 \& I 3= M3
M1=N1 \& M2=N2 \& M3=N3
M1=N1 \& M2=N2 \& M3=N3
N1=I1 \& N2=IL \& N3=I3

```
    N1=I1 & N2=IL & N3=I3
```



```
C..... PRODUCTION OF INITIAL VALUES OF A,B,C
```

C..... PRODUCTION OF INITIAL VALUES OF A,B,C
R1=M1
R1=M1
R1=M1 \& R2=MZ \& R3=M3
R1=M1 \& R2=MZ \& R3=M3
S1=N1\& S2=N2 \& S3=N3
S1=N1\& S2=N2 \& S3=N3
G=IG
G=IG
A=R2*R2+R2*R3*PH+R3*R3*2Z
A=R2*R2+R2*R3*PH+R3*R3*2Z
R=R2*S2+(R2*S3+R3*S2)*PH* 0.5+R3*S3*ZZ
R=R2*S2+(R2*S3+R3*S2)*PH* 0.5+R3*S3*ZZ
C}=52*S?+S2*S3*PH+S3*S3*ZZ
C}=52*S?+S2*S3*PH+S3*S3*ZZ
C=S2*S2+S2*S3*PH+S3*S3*
C=S2*S2+S2*S3*PH+S3*S3*
C=S2*S2+S2*S3*PH+S3*S3*2Z
C=S2*S2+S2*S3*PH+S3*S3*2Z
C....
C....
III) AND (IV) FIND THE TWO BASIS ELEMENTS OF THE REDUCED HEXAGON
III) AND (IV) FIND THE TWO BASIS ELEMENTS OF THE REDUCED HEXAGON
C.... (III) AND
C.... (III) AND
IF(B.GT.0.)GO TO 2?
IF(B.GT.0.)GO TO 2?
CALL SUB(0,1,-1,0)

```
    CALL SUB(0,1,-1,0)
```



```
            IF(A-R.LT.0.) GO TO 32
            32 IF(A-C,GT,0.) GO TO }4
            ID=INT (B/A)
            CALL SUB(1,-ID,0,1)
            GO TO 22
            ID=INT (B/C)
            CALL SUB (1,0,-ID,1)
            GO TO 22
            C...TO FIND THE TWO ZELLTNG HEXAGON BASIS ELEMENTS WHICH COVER THE
            C...NEGATIVE 'XSI' AXIS.
            R2=M2 & R 3=M3 & S2=N2 & S 3=N3
            RR=R?-R3*PH & RD=S2-S3*PH
            RB=R2-R3*PH & RD=S2-S3*P
            IF =RO-RB
            IF(RR.LT.0.) GO TO 60
            IF(RD.LT.0.) GO TO 90
            IF(RUP.GT.0.) GO TO 55
            CALL SUB (0,-1,1,1)
            GO TO 90
            CALL SUB (-1,-1,1,0)
            GO TO 90
            IF(RD.LT.0.) GO TO }7
            CALL SUB (-1,0,0,-1)
            GO TO 90
            IF(RN-RB.GT.0.) GO TO 80
            CALL SUB(1,1,-1,0)
            GO TO 90
80 CALL SUB (0,1,-1,-1)
C....FINDING THE PINHEADS C
C...(N1+N2*PH+N3*PH**2)/IG.
    90 R1=M1 & R2=M2 & R 3=M3
        S1=N1 & S2=N2 & S3=N3
        T=(R1+R2*PH+R3*HHH)/G
        I=IFIX(T)
        IF(T.GT.0.) GO TO 4001
        I= I-1
            4001 M1=M1-I*IG
            S}=(S1+S2*PH+S3*HHH)/
            I=IFIX(S)
            IF(S.GT.0.) GO TO 4002
            I=T-1
4002 N1=N1-I*IG
C.... ( VIT)
C...CHOOSING THE TWO ELEMENTS OF THE REDUCED BASIS OF THE LATTICE FROM
C...THE SEVEN POSSIBILITIES BY FINDING THE TWO WITH MINIMUM RHO VALUE.
200 R1=M1 & S1=N1 & G2=2.*G
    xA=(2.* (R1+R3*Q)-R2*PH-R 3*HHH)/G2
```

$X C=(2 . *(51+53 * 2)-52 * P H-S 3 * H H H) / G 2$ IF (XA-0.5.GT.0.) GO TO 201
$K(1,1)=M 1$ \& $K(1,2)=M 2$ \& $K(1,3)=M 3$
GO TO 202
IF (XC-0.5.GT.0.) GO TO 203
$K(2,1)=N 1 \quad £ K(2,2)=N 2$ £ $K(2,3)=N 3$
GO TO 204
$K(2,1)=I G-N 1$ \& $K(2,2)=-N 2$ £ $K(2,3)=-N 3$
$T=(R 1+R 2 * P H+R 3 * H H H) / G$
IF (T-S.LT.0.) GO TO 220
IF $(X A-X C . G T .0 .5) \quad$ GO TO 210
$K(3,1)=M 1-N 1 \& K(3,2)=M 2-N 2 £ K(3,3)=M 3-N 3$
GO TO 240
$K(3,1)=I G-M 1+N 1 \& K(3,2)=-M 2+N 2 \& K(3,3)=-M 3+N 3$ GO TO 240
IF (XC-XA.GT. 0.5) GO TO 230
$K(3,1)=N 1-M 1 \& K(3,2)=N 2-M 2$ \& $K(3,3)=N 3-M 3$
GO TO 240
$230 \quad K(3,1)=I G-N 1+M 1 \& K(3,2)=-N 2+M 2$ £ $K(3,3)=-N 3+M 3$
$240 \quad R Z O=R H O(F L O A T(K(1,1))$, FLOAT $(K(1,2))$, FLOAT $(K(1,3)))$
$R Z 1=R H O(F L O A T(K(2,1)), F L O A T(K(2,2))$, FLOAT $(K(2,3)))$ RZZ $=$ RHO (FLOAT $(K(3,1))$,FLOAT $(K(3,2))$,FLOAT $(K(3,3)))$ IF (RZZ.LT.RZ0) GO TO 280 IF (RZZ.LT.RZ1) GO TO 260
IF (T+S.GT. 1.) GO TO 250
IF $(X A+X C . G T .0 .5) \quad$ GO TO 250
$K(4,1)=M 1+N 1 £ K(4,2)=M 2+N 2 £ K(4,3)=M 3+N 3$
$R 73=R H O(F \operatorname{LOAT}(K(4,1)), \operatorname{FLOAT}(K(4,2))$, $\operatorname{FLOAT}(K(4,3)))$ RZ3 $=$ RHO (FLOAT $(K(4,1))$, FLO
IF (RZ3.GT. RZ0) GO TO 245
IF $(R Z 3 . G T, R Z 1) \quad G 0$ TO 244
$M 1=K(4,1)$ £ $M 2=K(4,2) ~ \& ~ M 3=K(4,3)$
$M 1=K(4,1) \quad £ \quad M 2=K(4,2) \quad £ \quad M 3=K(4,3)$
$I F(R Z 0 . G T . R Z 1)$ GO TO 243 IF (RZO.GT.RZ1) GO TO 243
$N 1=K(1,1)$
$G 0$ TO 300 \& $N 2=K(1,2)$ \& $N 3=K(1,3)$ GO TO 300
$N 1=K(2,1)$ £ $N 2=K(2,2)$ £ $N 3=K(2,3)$ GO TO 300
$244 \quad M 1=K(2,1)$ \& $M 2=K(2,2)$ \& $M 3=K(2,3)$ $N 1=K(4,1)$ £ $N 2=K(4,2)$ £ $N 3=K(4,3)$ GO TO 300
245 IF (RZ3.GT.RZ1) GO TO 250
$M 1=K(1,1) \quad £ M 2=K(1,2)$ £ $M 3=K(1,3)$ M1 $=K(1,1)$, $N 3=K(4,3)$ GO TO 300
IF (R70.GT.R71) GO TO 255
$M 1=K(1,1)$ £ $M 2=K(1,2)$ £ $M 3=K(1,3)$ $N 1=K(2,1)$ \& $N 2=K(2,2)$ £ $N 3=K(2,3)$ GO TO 300
150
255 M1 $=K(2,1)$ \& $M 2=K(2,2)$ \& $M 3=K(2,3)$
$N 1=K(1,1) \quad £ N 2=K(1,2) \quad £ \quad N 3=K(1,3)$
GO TO 300
$260 \quad M 1=K(1,1)$ £ $M 2=K(1,2) £ M 3=K(1,3)$
$N 1=K(3,1)$ £ $N 2=K(3,2)$ £ $N 3=K(3,3)$
$M 1=K(2,1) \quad £ \quad M 2=K(2,2) \quad £ \quad M 3=K(2,3)$ $N 1=K(3,1)$ £ $N 2=K(3,2)$ £ $N 3=K(3,3)$ GO TO 300
$160290 \quad \begin{aligned} & \text { IF }(R Z 0 . G T . R Z 1) \text { GO T0 } 295 \\ & \\ & M 1=K(3,1) \text { \& } M 2=K(3,2) £ M 3=K(3,3)\end{aligned}$ $N 1=K(1,1)$ £ $N 2=K(1,2)$ £ $N 3=K(1,3)$ GO TO 300
$295 \quad M 1=K(3,1) \quad \& \quad M 2=K(3,2)$ £ $M 3=K(3,3)$ $N 1=K(2,1)$ £ $N 2=K(2,2)$ \& $N 3=K(2,3)$
C.... (
$300^{\circ} \operatorname{JAN}(1, N)=N 1 € \operatorname{JAN}(2, N)=N 2 \AA \operatorname{JAN}(3, N)=N 3$ £ NP $(N)=I G$
$\operatorname{TAN}(1, N)=M 1 \& \operatorname{IAN}(2, N)=M 2$ \& $\operatorname{IAN}(3, N)=M 3$
$N Q Q=N-1$
C...... FIND THE INVERSE OF THE SECOND BASIS ELEMENT, THE FIRST RELATIVE
C..... OF THE LATTICE

8988 CALL TNVER (M1,M2,M3, JDET)
$I 1=M B(1)$ *IG £ I2=MB(2)*IG \& $13=M B(3) * I G$ CALL ICF (I1, I2, I3,IF1)
C.... DIVIDE LATTICE BY SECOND BASIS ELEMENT AND PRODUCE A NEW LATTICE CALL MULT (MB (1), MB (2), MB (3), N1,N2,N3, J1, J2, J3) CALL ICF $(\mathrm{J} 1, \mathrm{~J} 2, \mathrm{J3}, \mathrm{IF} 2)$
CALL ICF (IF1, IF 2, JDET, IF)
$M 1=J 1 / I F \& M 2=J 2 / I F \& M 3=J 3 / I F$
$\mathrm{Nl}=\mathrm{I} / / \mathrm{IF}$ \& $\mathrm{N} 2=\mathrm{I} 2 / \mathrm{IF}$ \& $\mathrm{N} 3=\mathrm{I} 3 / \mathrm{IF}$ \& $\mathrm{IG}=\mathrm{JDET} / \mathrm{IF}$
IF (N.EQ.1) GO TO 501
C...CHECK IF OLD LATTICE COMPLETED THE LOOP.

IF (IAN (1,N) .NE. IAN11) GO TO 502
IF (IAN $(2, N)$.NE. IAN21) GO TO 502
IF (IAN $(3, N)$. NE. IAN31) GO TO 502
IF (JAN $(1, N)$. NE. JAN 11) GO TO 502
IF (JAN $(2, N)$. NE.JAN21) GO TO 502
IF (JAN $(3, N)$. NE. JAN31) GO TO 502
IF (NP (N).EQ.NPI) GO TO 600
GO TO 502
501 IAN11=IAN(1,1) \& $\operatorname{IAN21=\operatorname {IAN}(2,1)~\& \operatorname {IAN}31=\operatorname {IAN}(3,1)~}$ $\operatorname{JAN} 11=\operatorname{JAN}(1,1) \& \operatorname{JAN} 21=\operatorname{JAN}(2,1) \& \operatorname{JAN} 31=\operatorname{JAN}(3,1) \& \operatorname{NP} 1=\operatorname{NP}(1)$
$502 \mathrm{~N}=\mathrm{N}+1$
C.....IF N.GT. 99 PRINT DIAGNOSTIC............ IF (N.LT.99) GO TO 10
PRINT 1111
1111 FORMAT ($39 H$ LATTICE LOOP HAS MORE THAN 99 MEMBERS) GO TO 7

C... NOW PRINT OUT THE LATTICES IN THIS CHAIN.

600 PRINT 112
112 FORMAT $/ /, 1 X, 81 H T H E$ ELEMENTS OF THE LOOP ARE, WHEN EXPRESSED IN TER
IMS OF THE BASIS (1, PHI, PHI**2))
DO $700 \mathrm{JIM}=1, \mathrm{~N}$
PRINT 113, IAN $(1, J I M), I A N(2, J I M), \operatorname{IAN}(3, J I M), N P(J I M), J A N(1, J I M)$,
1 JAN $(2, J I M), \operatorname{JAN}(3, J I M)$, NP (JTM)

210700 CONTINUE
14 FORMAT $(/ /, 1 X, 57 H W H E N$ EXPRESSED IN TERMS OF THE BASIS $(Y, x, 1)$ THESE 1 BECOME)
C. . . WHEN THE THIRD ELEMENT OF EACH LATTICE BASIS HAS BEEN PRINTED THEN
C...IT IS NO LONGER NEEDED AND SO THE ARRAY JAN MAY BE USED TO STORE THE C...VALUES OF THE COEFFICIENTS OF THE SECOND ELEMENT IN TERMS OF THE C...BASIS $(y, x, 1)$, SO THAT SECOND ELEMENT IS
C... JAN $(1, J I M) \approx Y+\operatorname{JAN}(2, J I M) * X+\operatorname{JAN}(3, J I M)$

DO 800 JIM $=1, N$
CALL PHITH (IAN $(1, J I M), \operatorname{IAN}(2, J I M), I A N(3, J I M), N P(J I M), N I A N 1, N I A N 2$,
1NIAN3,NNPI)
CALL PHITH $(J A N(1, J I M), J A N(2, J I M), J A N(3, J I M), N P(J I M), N J A N 1, N J A N 2$,
INJAN3,NNPJ)
PRINT 113, NI AN1,NIAN2,NIAN3,NNPI,NJAN1,NJAN2,NJAN3,NNPJ
$\operatorname{JAN}(1, J I M)=$ NI AN 1
$J A N(3, J I M)=N I A N 3$
NPJ $(J I M)=N N P I$
800 CONTINUE
C
C...THE RELATIVE MINIMA ARE TO BE L(1, ILAT) $\% Y+L(2$, ILAT $) * X+L(3$, ILAT) FOR C...ILAT=1, N. THE RELATIVE MINIMUM 1 IS TO BE PUT AT 'ABOUT ONE THIRD' C...OF THE WAY ALONG THE CHAIN.
$\mathrm{NQH}=\mathrm{N} / 3$
$\mathrm{NQP}=\mathrm{NQH}+1$
$\mathrm{NOM}=\mathrm{N}$
$\mathrm{L}(1, N O P)=0.000$
$L(2, N Q P)=0.000$
$L(3, N Q P)=1.000$
C. . . NOW CALCULATE THOSE RELATIVE MINIMA WHICH COME 'BEFORE' 1 .

DO 900 ILAT=1, NQH
$N O P P=N Q P$
$N O P=N Q P-1$
NOM $=$ NOM -1
$D D=J A N(1, N Q M) £ D E=J A N(2, N Q M) £ D F=J A N(3, N Q M)$
$Z P J=N P J$ (NOM)
CALL DIVCD $(L(1, N Q P P), L(2, N Q P P), L(3, N Q P P), 1.0 D 0, D D, D E, D F, Z P J, D A, D B$, 1DC, ZPL)
$L(1, N O P)=D A$
$L(2, N O P)=D B$

```
        L}(3,NQP)=D
        900 CONTINUE
        C...NOW CALCULATE THOSE RELATIVE MINIMA WHICH COME 'AFTER'1.
            NQU=NQQ-NOH & NQPP =NQH +1
            DO 901 ILAT=1,NQU
            NOP=NOPP
            NQPP=NOPP +1
            DD=JAN(1,ILAT) & DE=JAN(2,ILAT) & DF=JAN(3,ILAT)
            ZPJ=NPJ(ILAT)
            CALL MULTCD (L (1,NQP),L(2,NQP),L(3,NQP),1.DO,DD,DE,DF,ZPJ,DA,DB,
            1DC,ZPL)
            L(1,NQPP) =DA
            L(?,NOPP) =DR
            L(3,NQPP)=DC
            I CONTINUE
            C
            C...NOW PRINT OUT THIS CHAIN OF RELATIVE MINIMA.
            C...FOR N=1 TO NQO CALCULATE Z (N)*(X(N+1)*X(N+1) +Y(N+1)*Y(N+1)) WHERE
    C...Z(N) IS THE NTH RELATIVE MINIMUM OF THE CHAIN AND X (N) +I.Y(N),
    C...XX(N)-I.Y(N) ARE ITS CONJUGATES.
            PRINT 115
            15 FORMAT (/, 1X,34HTHE RELATIVE MINIMA ARE AS FOLLOWS)
            ZO=DCI(L(3,1),L(2,1),L(1,1),H)
            RFMN=1.000
            PRINT 116,L(1,1),L(2,1),L(3,1)
            116 FORMAT (/,1X,3D24.16)
            DO 902 ILAT=2,N
            DD=L(1,ILAT) &DE=L(2,ILAT) & DF=L(3,ILAT)
            PRINT 116,DD,DE,DF
            XI=DCT (DF,DE,DD,R)
            Y1=DCT (DF,DE,DD,U)
            XY1 =X 1*X1+Y1*Y1
            RNMN=DABS (Z0%XY1)
            PRINT 990,Z0,X1,Y1,XY1,RNMN
            990 FORMAT }//,1X,3HZO=,024.16,4H\quadX1=,024.16,4H\quadY1=,024.16,/,1X,11HGIVIN
            IG XYI=,D24.16,10H AND RNMN=,024.16)
            ZO=DCI (DF,DE,DD,H)
            IF(RNMN.GT.REMN) REMN=RNMM
            902 CONTINUE
            C...NOW FIND AND PRINT THE CALCULATED LOWER BOUND ON THE MINIMUM OF THE
            C....FIELD.
            PRINT 970,REMN
            970 FORMAT (6H REMN =,024.16)
            REMNR=REMN
            DET=FLOAT (IDET)
            VALUE=DET / (720.0*REMNR)
            PRINT 980,VALUE
```

980 FORMAT (/,9H DET/720M,F20.4)

SUBROUTINE SUB (I ,J,K,L)

COMMON/D7/M1,M2,M3,N1,N2,N3,A,B,C
$R T=I \& R J=J \& R K=K \& R L=L$
$A 1=A * R I * R I+2 . * B * R I * R K+C * R K * R K$
$B 1=R I * R J * A+B *(R I * R L+R J * R K)+C * R K * R L$
$C l=A * R J * R J+2 . * B * R J * R L+C * R L R L$
$A=A 1 \& B=B 1 \& C=C 1$
$I 1=M 1 \& I 2=M 2 \& I 3=M 3 \& J 1=N 1 \& J 2=N 2 \& J 3=N 3$ $M 1=I * I 1+K * J 1 \& M 2=I * I 2+K * J 2 \& M 3=I * I 3+K * J 3$ $N 1=J * I 1+L * J 1 \& N 2=J * I 2+L * J 2$ \& $N 3=J * I 3+L * J 3$ RE TUR

SURROUTINE INVER(I, J,K,KDET

C...FINDS THE INVERSE OF THE ALGEBRAIC INTEGER I $+J * P H+K * P H * * 2$
C...THE INVERSE IS $(N(1,1)+N(1,2) * P H+N(1,3) * P H * 2) / K D E T$.
$\mathrm{LA}=\mathrm{I}$ \& $\mathrm{LB}=\mathrm{J} £ \quad \mathrm{LC}=\mathrm{K}$
$L D=I N * K \quad L E=I+I Q * K \quad L F=J$
$L G=I N * J \& L H=I Q * J+I N * K £ L I=I+I Q * K$
$N(1)=L E * L I-L H * L F$
$N(2)=L C$ * $H-L B^{*} L I \& N(3)=L B^{*} L F-L E * L C$
$M A=N(1)$ \& $M B=L G * L F-L D * L I \& M C=L D * L H-L G * L E$
$J D E T=L A * M A+L B * M B+L C * M C$
$J D E T=L A * M A+L B^{* M} M B$
$K D E T=I A B S(J D E T)$
IF (JDET.GT.0) GO TO 10
IF (JOET.GT. 0
DO $5 \mathrm{JZ}=1,3$
$N(J Z)=-N(J Z)$
$\begin{array}{ll}5 & \text { CONTINUE } \\ 10 & \text { CONTINUE }\end{array}$
CALL ICF (N(1),N(2),N(3),IZ)
CALL ICF (IZ,IZ,KDET,IY)
$N(1)=N(1) / I Y £ N(2)=N(2) / I Y \& N(3)=N(3) / I Y$
$K D E T=K D E T / I Y$
RETURN
RET
END

SURROUTINF ICF (IJ,IK,IL,IH)

```
C..... FINDS IH, THE H.C.F. OF THE ABSOLUTE VALUES OF 3 INTEGERS IJ,IK, IL
N=1 £ J=IABS(IJ) £ K=IABS(IK) & L=IABS(IL)
IF(K.EQ.0) GO TO 7
IF(J.NE.0) GO TO 9
J=K & GO TO 1
IF(J.NE.0) GO TO &
IH=IL & GO TO 50
K=J £ GO TO 1
IF (J.LT.K) GO TO 10
I=J & J=K £ K=I
M=MOD (K,J)
IF (M.EQ.0) GO TO 30
IF(M.EQ.0) GO TO 30
K=J & J=M & GO TO 10
l}\begin{array}{l}{K=J & J=M & GO TO 10}
IF(N.EO.2) GO TO 50
N=N+1 & J=IH & K=L & GO TO 1
IH=1
RETURN
END
```

SURROUTINE ICFZ(IJ,IK,IL,IH)

$$
\begin{aligned}
& \text { CONTINUE } \\
& \text { IF (K.EQ.O) GO TO } 7
\end{aligned}
$$

$$
\begin{array}{lllll}
\text { IF (K.EQ.O) GO TO } \\
\text { IF (J.NE.O) } & \text { GO } & \text { TO } & 9
\end{array}
$$

$$
\begin{aligned}
& J=K £ G O \text { TO } 1 \\
& I F(J . N F .0) \text { GO }
\end{aligned}
$$

$$
\operatorname{IF}(J . N E .0) \text { GO TO } 8
$$

$$
\begin{aligned}
& I H=L € G O \text { TO } 50 \\
& K=J \& G O \text { TO }
\end{aligned}
$$

$$
\text { IF (J.LT.K) GO TO } 10
$$

$$
I=J \& J=K \& K=I
$$

$$
H=D M O D(K, J)
$$

$$
\text { IF (H.EQ.O.) GO TO } 30
$$

$$
\text { IF }\left(H_{.} E Q .1\right) \text { GO TO } 31
$$

$$
K=J £ J=H \& G O \text { TO } 10
$$

$$
I H=J
$$

$$
\begin{aligned}
& \text { IH } \mathrm{I}=\mathrm{J} \\
& \text { IF }(N . E Q \cdot 2) \text { GO TO } 50
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF }(N \cdot E Q \cdot 2) \text { GO TO } 50 \\
& N=N+1 \text { £ } J=I H \& K=L \text { \& } £ \text { TO } 1
\end{aligned}
$$

$31 \quad \mathrm{IH}=1$

SUBROUTINE MULT $(J 1, J 2, J 3, K 1, K 2, K 3, L 1, L 2, L 3)$
$\mathrm{L} 1=\mathrm{J} 1 * \mathrm{~K} 1+\mathrm{I} 2 *(\mathrm{~J} 3 * \mathrm{~K} 2+\mathrm{J} 2$ \% K 3 $)$
L2=J1*K2+K1*J2+I1*(J3*K2+J2*K3) + I $2 * J 3 * K 3$
$\mathrm{L} 3=\mathrm{J} 1 * \mathrm{~K} 3+\mathrm{J} 2 * \mathrm{~K} 2+\mathrm{J} 3 * \mathrm{~K} 1+\mathrm{I} 1 * \mathrm{~J} 3 * \mathrm{~K} 3$
RETURN
RETD

COMMON/DI/IA, IB, YC, INDEX, IDET
COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
$J 3=I 1-I A^{*} I 2+I 3^{*} I A^{*} I A$ \& $J 2=3 * I 2-6 * I A * I 3$

CALL ICF (JD, J1, J2, JF)
JF? $=\mathrm{JF}$

$J 1=J 1 / J F F \& J 2=J 2 / J F F$ \& J3 $=$ J3 $3 / J F F \& J D=J D / J F F$ RETUR

SURROUTINE DIVCD (L1,M1,N1,LN,L2,M2,N2,LD,L,M,N,LR)
C. .. DIVCD IS A DOUBLE PRECISION ROUTINE WHICH FINDS THE QUOTIENT OF C... (L1*Y+M1*X+N1)/LN AND $(L 2 * Y+M 2 * X+N 2) / L D$, IT IS $(L * Y+M * X+N) / L R$.

DOUBLE LI,M1,N1,LN,L2,M2,N2,LD,L,M,N,LR,II,I2,13,J1,J2,J3,K1,K2,K3
DOUBLE JDET,KDET, IHF, LG,LRA
DOUBLE IOBD,IOBDD,LA,MA,NA,DDIVI,DDIV2,DDIV
COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
COMMON/D16/IORD,IOBDD
$\operatorname{KnET}(I 1, I 2, I 3, \mathrm{~J}, \mathrm{~J} 2 \cdot \mathrm{~J} 3, \mathrm{~K} 1, \mathrm{~K} 2, \mathrm{~K} 3)=\mathrm{I} 1 * \mathrm{~J} 2 * \mathrm{~K} 3+\mathrm{I} 2 * \mathrm{~J} 3 * \mathrm{~K} 1+\mathrm{I} 3 * \mathrm{~J} 1 * \mathrm{~K} 2$
$1-I 1 * J 3 * K 2-I 2^{*} J 1 * K 3-I 3 * J 2 * K 1$
C...FIRST TEST FOR THF POSSIRILITY OF OVERFLOW
$L A=D A B S(L 1) ~ \& M A=D A B S(M 1)$ \& $N A=D A B S(N 1)$
LA=DABS (LI) \& MA=DABS
DDIV $=$ DMAX 1 (LA,MA.NA)
A=DARS (L2) $\mathrm{C} A=$ DABS
LA=DABS (LZ) £ MA=DABS
DDIVZ=DMAXI (LA,MA,NA)

DDIV=DOIV2*DOIV2*DDIV?
GO TO 2
1 DDIV=DDIV1*DDIV2*DDIV?
? IF (DDIV.LT. IORDD) GO TO 3
PRINT 50
50 FORMAT $\left(1 X, 10\left(1 \mathrm{H}^{*}\right), 27 \mathrm{HDANGER}\right.$ OF OVERFLOW IN DIVCD, $\left.10(1 \mathrm{H} *)\right)$
3 I $1=L 2 * I L 1+I P 1 * M 2+N$?
$I 2=L 2 * I L 2+I P L^{*} M 2$
I $3=L 2^{s} I L 3+I P 3^{m M 2}$
$J 1=I P 1$ \#L $2+M 2$ \# IT 1
$J==T P \int \pi L$ 2+MS*TTV+NS

$K 1=L$ \& \& K $2=M 2$ \& $K 3=N 2$
JDET $=$ KDET $(I 1, I 2, I 3, J 1, J 2, J 3, K 1, K 2, K 3)$
$L=K D E T(L 1, M 1, N 1, J 1, J 2, J 3, K 1, K 2, K 3) \% L D$
$M=K D E T(I 1, I 2, I 3, L 1, M 1, N 1, K 1, K 2, K 3)$ \& $L D$
$\mathrm{N}=K D E T(I 1, I 2, I 3, J 1, J 2, J 3, L 1, M 1, N 1)$ \#LD
LR=JDET*LN
CALL ICF $2(L, M, N, I H F)$
$L R A=L R$
CALL ICF2(IHF,LRA,LR,LG)
$\mathrm{L}=\mathrm{L} / \mathrm{LG} £ M=M / \mathrm{L} G £ \mathrm{~N}=\mathrm{N} / \mathrm{LG} £ \mathrm{LR}=\mathrm{LR} / \mathrm{LG}$
RETURN
END

SUBROUTINE MULTCD (L1,M1,N1,LN,L2,M2,N2,LD,L,M,N,LR)

$$
c
$$

C... MULTCD IS A DOUBLE PRECISION ROUTINE WHICH FINDS THE PRODUCT OF C... (LI*Y+M1*X+N1)/LN AND (L2*Y+M2*X+N2)/LD, IT IS (L*Y+M*X+N)/LR.

OOUBLE LI,MI,NI,LN,LZ,M2,N2,LD,L,M,N,LR,IP,Y1,YZ,Z
DOUBLE IOBD, IOBDD,LA,MA,NA,MULT1,MULTZ,MULT
COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
COMMON/D16/IOBD, IOBDD
C...FIRST TEST FOR THE POSSIBILITY OF OVERFLOW.
$L A=D A B S(L 1) £ M A=D A B S(M 1) ~ £ N A=D A B S(N 1)$
LA=DABS (L1) £ MA=DABS
MULT1=DMAX1 (LA,MA *NA)
$L A=D A R S(L) \& M A=D A B S(M 2) \& N A=D A B S(N 2)$
LA $A=D A B S(L 2) £ M A=D A B S$
$M U L T 2=D M A X 1(L A, M A, N A)$
MULT2=DMAX1 LLA,MA
MUL. $T=$ MULT $1 \$$ MUL $T 2$
IF (MULT.LT. IORD) GO TO 1
PRINT 50
50 FORMAT $(1 \times, 10(1 \mathrm{H} *)$, 28 HDANGER OF OVERFLOW IN MULTCD, $10(1 \mathrm{H} *)$)
1 IP $=\mathrm{L} 1 \mathrm{FM} 2+\mathrm{L} 2 \mathrm{FM1}$
$L=L 1 * L 2^{*} I L 1+I P * I P 1+M 1 * M 2 * I T 1+L 1 * N 2+L 2^{* N} 1$
$M=L 1 * L 2 * I L 2+I P * I P 2+M 1 * M 2 * I T 2+M 1 * N 2+M 2 * N 1$
$\mathrm{N}=\mathrm{L} 1 * L 2 * \mathrm{IL} 3+\mathrm{IP} * \mathrm{IP} 3+\mathrm{MI}$ *M2*IT3+N1*N2
$\mathrm{LR}=\mathrm{LN}$ * $\mathrm{L} D$
CALL ICF2 (L, M,N,Y1)
$Y 2=Y 1$
CALL ICF $2(Y 2, Y 1, L R, Z)$
$\mathrm{L}=\mathrm{L} / 7$ \& $\mathrm{C}=\mathrm{M} / \mathrm{Z}$ \& $\mathrm{N}=\mathrm{N} / \mathrm{Z}$ \& $L R=L R / Z$
RETURN
END

DOUBLE FUNCTION DCI $(X, Y, Z, R D)$
DOUBLE $X, Y, Z, R D(3)$
$D C I=X * R D(1)+Y * R D(2)+Z * R D(3)$
RETURN
5
END

FUNCTION IOF (I)

C...I IS LESS THAN 10% IOF (I).

IFL=I
IFLI $=0$
$1 \mathrm{IFL} 1=\mathrm{IFL} 1+1$
$\mathrm{IFL}=\mathrm{IFL} / 10$
IF (IFL.GT.0) GO TO 1
$\mathrm{I} O F=\mathrm{IFL} 1$
RETURN
END

THE PROGRAM CONG $1 P 2+1 H^{3}$

SUBROU TINES

IN THIS SECTION

BASE	34	SUR	15
FACTOR	37	INVER	16
IDEAL	38	ICF	17
PRIN	40	ICF2	18
MULT2	45	MULT	19
CHANGE	46	DIVCD	21
TEST	47	IOF	24
INCON	50		

```
    PROGRAM CONG (INPUT, OUTPUT)
C.. THIS PROGRAM TESTS WHETHER ANY OF THE RESIDUE CLASSES MODULO THE
C...FACTORS OF E+1 AND E-1 CONTAIN ANY INTEGERS NOT CONGRUENT TO AN
C... INTEGER WITH NORM LESS IN ABSOLUTE VALUE THAN THE ABSOLUTE VALUE OF
C...THE NORM OF THE MODULUS UNDER CONSIDERATION. IF THIS IS SO THEN THE
C...FIEID REING CONSIDERED IS NON-EUCLIDEAN. OTHERWISE NO CONCLUSION IS
C...REACHED.
    COMMON/D20/MU1,MUZ,MU3,NU1,NUZ,NU3,IGU1
C
C...INITIALIZING
INTEGER A,B,C,D,E,F
INTEGER EUCLID,AA,BB,CC,DD,EE,FF
DOUBLE DNORM,DIM,DJM,DKM,DN
COMMON/DI/IA,IB,IC,INDEX,IDET
COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
COMMON/03/MF,MP,MAP (500,2)
COMMON/D4/IP(2000),IR(2000),IS(2000)
COMMON/DS/IM, JM, KM
COMMON/D6/EUCLID
COMMON/D11/A (3),B(3),C(3),D(3),E(3),F(3)
COMMON/D12/AA,BB,CC,DD,EE,FF,IPP,IRR,ISS
    COMMON/D21/I,J,K
    IMENSION NF (100), NP(100)
    DMENSION IPW(100), TRW(100), ISW(100)
C
    40 READ 101, IDET, INDEX,IA,IB,IC,I,J,K,L
    IF (IDET.EQ.0) STOP
    101 FORMAT(16,12,315,3I16,13)
C...THE FIELD BEING CONSIDERED HAS DISCRIMINANT -IDET, AND IS K (X) WHERE
C..x**3-IA*X**2+IR*X-IC=0. THE FUNDAMENTAL UNIT OF THE FIELD IS
C...F=(T*x**2+J*X+K)/L.
    IDETM=-IDET
    PRTNT 102,IDETM,INDEX,IA,IB,IC
```



```
    129H, AND POLYNOMIAL COEFFICIENTS,3I6)
    CALL BASE
C...AN INTEGRAL BASIS FOR THE FIELD IS ( }1,X,Y)\mathrm{ WHERE
C... X**2=IT1*Y+IT2*X + IT3
C... Y**2=ILI*Y + IL2*X + IL3
C... X*Y =IP1*Y + IPZ*X + IP3
C...AND SO Y=(x**2-IT2*X-IT3)/IT1, IT1=INDEX.
    PRINT }10
    103 FORMAT (/, 1 }x\mathrm{ , 45HTHE FIELD IS }K(x)\mathrm{ AND HAS BASIS ( }Y,x,1)\mathrm{ WHERE)
            ASSIGI=4HX**2 & ASSIGR=4HY**2 £ ASSIG3=4HX*Y
            PRINT 104,ASSIGl,ITl,IT2,IT3
            PRINT 104,ASSIG2,IL1, IL2,IL3
            PRTNT 104,ASSIG3,IP1,IP2,IP3
```

104 FORMAT $(12 X, A 4,2 H=, I 10,3 \mathrm{HY}+, 110,3 \mathrm{HX}+, \mathrm{I} 10)$ CALL CHANGE (I,J,K,L,II,J1,K1)
C...E $=(I * x * * 2+J * X+K) / L=I 1 * Y+J 1 * X+K 1$
$I=I 1$ \& $J=J 1$ \& $K=K 1$
C...E $=1 * Y+J * X+k$

108 FORMAT ($1 \mathrm{X}, 26$ HTHE UNIT OF THE FIELD IS $(, 116,1 \mathrm{H},, \mathrm{I} 16,1 \mathrm{H}, \mathrm{I} 16,1 \mathrm{H})$) PRINT $108, \mathrm{I}, \mathrm{J}, \mathrm{K}$
C...THE 'REDUCED' FORM OF THE UNTT IDEAL IS NOW CALCULATED.
$A A=B B=D D=1$ \& CC=EE $=F F=0$
CALL PRIN(1)
EUCLID=0 \& $I C H E C K=-1$
$M A P C=1$
C. . E EUCLID $=0$ WHEN THE EUCLIDEAN PROPERTY OF THE FIELD IS UNKNOWN AND IS
C...EQUAL TO 1 WHEN THE FIELD IS FOUND TO BE NON-EUCLIDEAN
C...MAPC IS A POINTER TO THE NEXT 'EMPTY, ELEMENT OF (IP, IR, IS).
C...ICHECK $=-1$ WHEN CONSIDERING $E-1$ AND ICHECK $=1$ WHEN CONSIDERING E +1
C...WE NOW BEGIN A CONSIDERATION OF E-1.
$M \Delta X=0$
$T M=1 \quad$ \& $J M=J$ \& $K M=K-1$
C. . . $I M^{3} \$ Y+J M * X+K M=E+I C H E C K$

31 DIM $=I M$ \& $D J M=J M$ \& $D K M=K M$
DN=DNORM (DIM,DJM,DKM)
$\mathrm{N}=\mathrm{DN}$
$D N=D A B S(D N)$
IF (DN.LT. 1.0014) GO TO 956
PRINT 957, ICHECK
957 FORMAT ($1 \mathrm{X}, 10$ ($1 \mathrm{H} *), 10 \mathrm{HNORM}$ OF $\mathrm{E}+, \mathrm{I} 2,24 \mathrm{HIS}$ TOO LARGE FOR INTEGER, $\left.110\left(1 \mathrm{H}^{*}\right)\right)$ GO TO 20
956 PRINT 107, ICHECK , N
107 FORMAT $(/, 1 \times, 36$ HNOW CONSIDER THE FACTORIZATION OF E $+, I 2,15 H$ WHICH H IAS NORM, I16) $\mathrm{N}=\mathrm{I} A B S(N)$
$E N=F L O A T(N) \& R E N=S Q R T(E N) \& M A X R=I F I X(R E N)+1$ \& MAXF=MAXR/2+1 MAXF=MINO (100,MAXF)
C... MAXF IS AN UPPER BOUND FOR THE NUMBER OF DISTINCT PRIME FACTORS
C... OF N

CALL FACTOR (N,NF,NP, MAXF,NFC)
C...NFC IS THE EXACT NUMBER OF DISTINCT PRIME FACTORS OF N. NP(I) IS THE
C... POWER TO WHICH NF (I) IS A FACTOR OF N.
C.. NOW FIND MAX WHICH IS THE LARGEST NUMBER OF
C... (F:F=R OR R* 2 WHERE R IS A FACTOR OF N). IZFRO $=0$
IF (ICHECK.EQ.-1) GO TO 15
IF (MAX. NE. MBX) GO TO 17
15 MBX $=1 \quad$ I $=1$, NFC
IF (NP(II).LT. 3) GO TO 21
$M A \times \times 1=N F(I I) * * 3$
IF (MRXX1.LT.500) GO TO 22
$21 \mathrm{MBXX1}=\mathrm{NF}$ (II)
IF (MRXX1.GT.500) GO TO 2
22. $M B X=M A X O(M B X, M B X X 1)$

2 CONTTNUE
IF (MAX.GT. 1) GO TO 1
PRINT 105 , ICHECK
105 FORMAT ($1 \mathrm{X}, 2 \mathrm{HE}+$, I2, 29 H HAS NO FACTORS LESS THAN 500) MAX=MBX
IF (MAX.LE.MAX) GO TO 17
$M L X=M A X O(2, M A X+1)$
MAX $=M B X$
PRTNT $109, \mathrm{MLX}, \mathrm{MAX}$
109 FORMAT $11 X, 49 H$ ALL INTEGERS WITH NORM OF ABSOLUTE VALUE BETWEEN, I5, 14 H AND, I5,25H INCLUSIVE ARE CALCULATED)
C. . ALL INTEGERS WITH NORM BETWEEN MLX AND MAX ARE NOW CALCULATED.

DO 3 INORM $=$ ML X, MAX
IF (INORM.EQ. 2) GO TO 8
FNORM =FLOAT (INORM) \& RNORM=SQRT (FNORM) \& NNORM=IF IX (RNORM)
DO 7 INM=2, NNORM
IF (MOD (INORM, INM) , EQ.0) GO TO-9
C CONTINUE
GO TO 8
$9 \operatorname{MAP}(I N O R M, 1)=M A P C ~ \& ~ N N O R M=I N O R M / 2$
C..... HAVING REACHED THIS POINT INORM IS COMPOSITE 50 FIND THE ALGEBRAIC
C.....INTEGERS OF NORM INORM BY CONSIDERING THE PRIME FACTORS OF INORM.
C.....MAP (INORM, 1) IS THE FIRST POSITION IN THE ARRAYS (IP, IR, IS) IN
C......WHICH AN INTEGER OF NORM INORM APPEARS. NNORM IS THE GREATEST
C.....POSSIBLE PROPER RATIONAL INTEGRAL FACTOR OF INORM.
$\operatorname{IP}(M A P C)=0$ \& $\operatorname{IR}(M A P C)=0$ \& IS $(M A P C)=1$
C..... SET THIS FIRST POSITION INITIALLY TO 1 SO THAT AS PRIME FACTORS OF
C..... INORM ARE FOUND, THE ALGEBRAIC INTEGERS OF NORM THESE PRIMES
C..... RAISED TO THE POWER TO WHICH THEY DIVIDE INORM CAN BE MULTIPLIED
C. TOGETHER SO THAT ALL THE INTEGERS OF NORM INORM ARE FOUND.
$M A P C=M A P C+1$ \& I INORM $=$ TNORM
C... IINORM IS SET TO INORM HERE SO THAT AS PRIME FACTORS OF INORM ARE C...FOUND IINORM MAY BE DIVIDED BY A SUITABLE POWER OF THAT PRIME WHILE C...SAVING INORM. DO 50 INM $=2$, NNORM
C....LOOK FOR A FACTOR OF IINORM I.E. A PRIME FACTOR OF INORM .

IF (MOD (IINORM, INM). NE.O) GO TO 50
C. HAVING FOUND A PRIME FACTOR, FIND TO WHAT POWER, INPW, IT DIVIDES
C...... I INORM

INPW = 0
81 IF (MOO(I INORM, INM). NE . 0) GO TO 80
I INORM=I INORM/INM \& INPW=INPW+1 GO TO 81
80 IF(MAP (INM,1) .EQ.-1) GO TO 51
ISM=MAP (INM,2) -MAP (INM,1) +1
IF (ISM.EQ.1) GO TO 52

```
\[
\text { IF (ISM.EQ.2) GO TO } 53
\]
C.....HAVING REACHED THIS POINT INM HAS THREE DISTINCT ALGEBRAIC FACTORS
C....SSO ALL ALGEBRAIC INTEGERS OF NORM INM%#INPW ARE PUT IN THE ARRAYS
C.....(IPW, IRW, ISW).
    IS I=MAP(INM,1) & IS2=IS1+1 & IS3=IS2+1
    IPSI=IP(IS1) € IRSI=IR(IS1) € ISSI=IS(IS1)
    IPS2=IP(IS2) & IRS2=IR(IS2) & ISS2=IS(IS2)
    IPS3=IP(IS3) £ IRS3=IR(IS3) £ ISS3=IS(IS3)
    INPWP=INPW+1 & IWC=0
    DO 82 JMAP1P=1, INPWP
    JMAP1 =JMAP1P-1
    LTMIT=INPWP-JMAP1
    DO &2 JMAPZP =1, LIMIT
    JMAPZ = JMAP2P-1
    JMAP = INPW-(JMAP 1 +JMAP2) & IWC=IWC+1
    IF(IWC.GT. 100) GO TO }9
        IPWP=0 & IRWP=0 & ISWP=1
        IF(JMAP1.EQ.0) GO TO B4
        DO 83 JPW=1, JMAP1
        CALL MULTC(IPWP,IRWP,ISWP,IPSI,IRSI,ISSI,IPWW,IRWW,ISWW)
        IPWP=IPWW & IRWP=IRWW & ISWP=ISWW
    83.CONT INUE
    84 IF(JMAPZ.EQ.0) GO TO 86
        DO 85 JPW=1, JMAPZ
        CALL MULTC (IPWP, IRWP,ISWP,IPS2,IRS2,ISS2,IPWW,IRWW,ISWW)
        IPWP=IPWW & IRWP=IRWW & ISWP=ISWW
    85 CONTINUE
    8 6 ~ I F ( J M A P 3 . E Q . 0 ) ~ G O ~ T O ~ 8 9 ~
        DO }87\mathrm{ JPW =1, JMAP3
        CALL MULTC (IPWP, IRWP, ISWP,IPS3,IRS3,ISS3, IPWW, IRWW,ISWW)
        IPWP=IPWW & IRWP=IRWW & ISWP=ISWW
        8 7 \text { CONTINUE}
        89 IPW(IWC)=IPWP&IRW(IWC)=IRWP& ISW(IWC)=ISWP
    82 CONTINUE
C...THERE ARE IWC INTEGERS OF NORM INM*%INPW CONTAINED IN (IPW,IRW,ISW).
            GO TO 99
    5 3 ~ I S I = M A P ( I N M , 1 ) ~ \& ~ I S ? = I S I + 1 ~
    IPS1=IP(IS1) £ IRS1=IR(IS1) & ISS1=IS(IS1)
    IPS2=IP(IS2) & IRS2=IR(IS2) & ISS2=IS(IS2)
    C.....HAVING REACHED THIS POINT INM HAS TWO DISTINCT ALGEBRAIC FACTORS.
            INPWP=INPW+1 & IWC=0
            DO 92 JMAP1P=1, INPWP
            JMAP1 = JMAP 1P-1
            JMARZ=INPN-JMAP & & IWC=IWC+1
            IF(IWG.GT.100) GO TO 97
            IPWP=0 & IRWP=0 & ISWP=1
            IF(JMAPI.EQ.0) GO TO 94
            DO 93 JPW=1,JMAP1
            CALL MULTC(IPWP,IRWP,ISWP,IPS1,IRSI,ISS1,IPWW,IRWW,ISWW)
            IPWP=TPWW & IRWP =IRWW & ISWP=ISWW
```

93 CONTINUE
94 IF (JMAPZ.EQ. 0) GO TO 91
DO $95 \mathrm{JPW}=1$. JMAP2
CALL MULTC (IPWP, IRWP, ISWP, IPS2, IRS2,ISS2, IPWW, IRWW, ISWW)
$I P W P=I P W W \& I R W P=I R W W \& I S W P=I S W W$
95 CONTINUE
91 IPW $(I W C)=I P W P \& I R W(I W C)=I R W P \& I S W(I W C)=I S W P$
C..... THERE ARE NOW IWC INTEGERS WITH NORM INM**INPW.

GO TO 99
52 IMAP = MAP $(\operatorname{INM}, 1)$
C. . . . HAVING REACHED THIS POINT INM HAS JUST ONE LINEAR FACTOR.

IF INP REACHED THIS POINT INM HAS JUST ONE LINEAR
IF (INPW.EQ. 1) GO TO 55
IF (MOD (IDET, INM) .EQ.0) GO TO 55
C..... INM DIVIDES THE DISCRIMINANT OF THE FIELD IF AND ONLY IF INM HAS A
C.... SQUARE FACTOR, I.E. IN THIS INSTANCE IF INM IS THE CUBE OF AN
C.....ALGEBRAIC INTEGER. HENCE IF INM DOES NOT DIVIDE IDET THEN INM HAS
C..... ONE LTNEAR AND ONE QUADRATIC FACTOR.

CALL MULTC(IPSI,IRSI,ISS1,IPSI,IRSI,ISS1,IPL2,IRL2,ISL2)
CALL DIVC $(0,0$, INM, IPS1,IRS1,ISS1,IPQ,IRQ,ISQ)
C.....(IPL2,IRL2,ISL2) AND (IPQ,IRQ,ISQ) ARE THE TWO DISTINCT ALGEBRAIC
C. INTEGERS OF NORM INM»\#2.

IF (MOD (INPW,2) ,EQ.0) GO TO 56
INPW2 $=($ INPW-1) 12 \& INPW $=1$ \& GO TO 57
56 INPW2=INPW/2 \& INPW=0
57 INPW2P = INPW2+1 £ IWC=0
DO 64 JMAPIP $=1$, INPWCP
JMAP $1=J M A P 1 P-1$
JMAPZ = INPWZ-JMAPI
$I W C=I W C+1$
IF (IWC.GT. 100) GO TO 97
$I P W P=0$ \& $I R W P=0 \quad \& \quad[S W P=1$
IF (JMAP 1.EQ.0) GO TO 65
$0066 \mathrm{JPW}=1$. JMAP
CALL MULTC(IPWP,IRWP,ISWP,IPLZ,IRLZ,ISL2,IPWW,IRWW,ISWW)
$I P W P=I P W W \& I R W P=I R W W \& I S W P=I S W W$
66 CONTINUE
65 IF (JMAP2.EQ.0) GO TO 63
DO 68 JPW $=1$. JMAPZ
CALL MULTC (IPWP, IRWP, ISWP, IPQ, IRQ, ISQ, IPWW, IRWW, ISWW)
$I P W P=I P W W$ \& $I R W P=I R W W \& I S W P=I S W W$
68 CONT INUE
$63 I P W(I W C)=I P W P € I R W(I W C)=I R W P £ I S W(I W C)=I S W P$
64 CONTINUE
C.....IWC IS THE NUMRER OF INTEGERS WITH NORM INM**PW WHERE PW=INPW IF
C.....INPW WAS EVEN AND INPW-1 IF INPW WAS ODD.

IF (INPW.EQ.O) GO TO 99
GO TO 67
$55 \mathrm{IWC}=1 £ I P W(I W C)=0 £ I R W(I W C)=0 £ I S W(I W C)=1$
C..... 55 IS REACHED EITHER IF INPW WAS ORIGINALLY 1 OR IF INM HAS NO
C.QUADRATIC FACTOR IN EITHER OF THESE CASES IF PA IS THE ALGEBRAIC
C......INTEGER OF NORM INM THEN PA*INPW IS THE ONLY INTEGER OF NORM
C. INM 3 \# TNPW.

67 DO $62 \mathrm{JWC}=1$, IWC
$I P W P=T P W(J W C) \& I R W P=I R W(J W C) \& I S W P=I S W(J W C)$
D0 $69 \mathrm{JPW}=1$, INPW
CALL MULTC (IPWP, IRWP, ISWP, IPSI,IRSI,ISS1,IPWW, IRWW, ISWW)
$I P W P=I P W W \& I R W P=I R W W \& I S W P=I S W W$
69 CONTINUE
$I P W(J W C)=I P W P \& I R W(J W C)=I R W P \& I S W(J W C)=I S W P$
C.....IUC IS THF NUMBER OF ALGERRAIC INTEGERS OF NORM INM*:INPW.
$99 \mathrm{MPC}=$ MAPC-1 \& LMAP=MAP $($ INORM, 1$) € K M A P=M A P C-L M A P$
$D O \quad 8$ B JMAP $=\angle M A P, M P C$
$I P P=I P(J M A P) € I R R=I R(J M A P) \& I S S=I S(J M A P)$
DO $88 \mathrm{JPW}=1, I W C$
$K M A P 1=J M A P+(J P W-1) \Rightarrow K M A P$
IF (KMAP1.GT.2000) GO TO 90
CALL MULTC(IPP, IRR, ISS,IPW (JPW), IRW (JPW), ISW (JPW), IP (KMAP1), IR(KMAP1) , IS (KMAPI)
88 CONTINUE
MAPC $=$ MAPC $+(\mathrm{IWC}-1)$ \#KMAP
IF (MAPC.LE. 2000) GO TO 96
90 PRTNT $900, \mathrm{MAX}$
900 FORMAT ($1 X, 68$ HMORE THAN 2000 INTEGERS WITH NORM AT MOST MAX IF MAX IIS GREATER THAN, I5)
GO TO 16
96 IF (IINORM.FO.1) GO TO 61 GO TO 50
51 IF (MOD (INPW • 3) . NE • 0) GO TO 60
C..... THIS POINT IS REACHED IF INM HAS NO ALGEBRAIC FACTORS, THUS THE
C..... ONLY POSSIBLE INTEGERS WITH NORM DIVISIBLE BY INM ARE POWERS OF
C. INM. THUS THERE ARE ONLY INTEGERS OF NORM INM**INPW AND SO OF
C...... INORM IF INPW IS A MULTIPLE OF 3.
$I N W P=I N P W / 3 \& M P C=M A P C-1 \& \quad L M A P=M A P(I N O R M, 1)$
DO 58 JMAP = LMAP, MPC
$I P U=I P(J M A P) \& I R U=I R(J M A P) \& I S U=I S(J M A P)$
DO $59 \mathrm{JPW}=1$, INWP
$I P P=I P U \& I R R=I R U \& I S S=I S U$
CALL MULTC (IPP, IRR, ISS, 0,0, INM, IPU, IRU, ISU)
59 CONTINUE
$I P(J M A P)=I P U \& I R(J M A P)=I R U \& I S(J M A P)=I S U$
58 CONTINUE
IF (MAPC.GT. 2000) GO TO 90
IF (IINORM.EQ.1) GO TO 61
50 CONTINUE
60 MAPC $=$ MAP $($ INORM, 1$) £$ MAP (INORM, 1$)=-1$ £ GO TO 3
C....MAP (TNORM, 1$)=-1$ INDICATES THAT THERE ARE NO INTEGERS OF NORM INORM. 61 MAP $(\operatorname{TNORM}+2)=$ MAPC-1 \& GO TO 3
C...MAP (INORM, 2) IS THE LAST POSITION IN THE ARRAYS (IP, IR, IS) IN WHICH
C...AN INTEGER OF NORM INORM APPEARS.

97 PRINT 901 , INORM
901 FORMAT $(1 x, 71 H T H E R E$ ARE MORE THAN 100 INTEGERS OF NORM P*FA WHERE P
1ふ『A IS A FACTOR OF , I5)
GO TO 16

- CALL IDEAL (INORM, ISC)
C...THIS POINT IS REACHED WHEN INORM IS A RATIONAL PRIME, ITS ALGEBRAIC
C...FACTORS ARE NOW CALCULATED. THERE ARE ISC SUCH FACTORS WHERE ISC IS
C... AT MOST 3 .

IF (ISC.NE.0) GO TO 70
C... IF INORM IS ALSO AN ALGEBRAIC PRIME THEN THERE ARE NO INTEGERS OF
C...NORM INORM.
$\operatorname{MAP}($ INORM, 1$)=-1$ £ GO TO 3
70 MAP (INORM, 1) $=$ MAPC
DO 10 IFILL $=1$, ISC
$A A=A(T F I L L) £ B B=B$ (IFILL) \& CC=C(IFILL)
$D D=D(I F I L L) ~ \& E E=E$ (IFILL) \& $F F=F$ (IFILL)
CALL PRIN (INORM)
$I P(M A P C)=I P P \& I R(M A P C)=I R R \& I S(M A P C)=I S S$
$M A P C=M A P C+1$
IF (MAPC.LE.2000) GO TO 10
IF (IFILL.EQ.ISC) IZERO=1
PRINT $900, \mathrm{MAX}$
GO TO 16
10 CONTINUE
MAP (INORM,2) $=$ MAPC-1
CONTINUE
GO TO 17
16 MAX $=$ INORM-1 + IZERO
17 DO $6 \mathrm{II}=1$, NFC
C...RUN THROUGH THE POSSTBLE NORM VALUES FOR FACTORS OF E + ICHECK-1
$M P=N P$ (II) $£ \quad M F=N F$ (II)
IF (MF.LE. 3) GO TO 23
IF (MAP (MF, 1) •EQ.-1) GO TO 23
CALL TEST
IF (EUCLID.EQ. 1) GO TO 40
C...IF THE EUCLIDEAN PROPERTY OF THE FIELD IS STILL UNKNOWN FIND IF C. . MF**3 IS A FACTOR OF NORM (IM*Y + JM*X + KM) OTHERWISE STOP.

23 IF (MP. LT . 3) GO TO 6
C...MFR NORM (IM*Y+JM*X+KM) GO ON TO NEXT POSSIBLE
C...PRIME NORM VALUE.
$M F=M F * 3 £ M P=1$
IF (MF.GT.MAX) GO TO 6
CALL TEST
IF (EUCLID.EO.1) GO TO 40
6 CONTINUE
C... NOW AS POSSIBLE NORM VALUES OF THE MODULI TO BE CONSIDERED WE HAVE C...GONE THROUGH ALL THE PRIME FACTORS OF IM* $Y+J M * X+K M$ AND THEIR CUBES.
C... HAVING REACHED NO CONCLUSION WE GO ON TO A CONSIDERATION OF THE
C...FACTORS OF $E+1$ IF $I M \approx Y+J M * X+K M=E-1$ AND END OTHERWISE

20 IF (ICHECK.EQ. 1) GO TO 30
$I C H E C K=1$ £ $I M=I$ \& $J M=J$ £ $K M=K+1$
GO TO 31
30 PRINT 106
106 FORMAT ($1 \times, 30 H N O$ CONCLUSION HAS BEEN REACHED)
 END

SUBROUTINE BASE
DOURLE IUBM. IOBD
COMMON/D1/IA,IB, IC, INDEX, IDET

COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
COMMON/D10/H, ZZ, HHH/D9/IQ, INN, O, V2
COIMMON/D15/IUBN,IOB, IOBDS/D16/IUBM, IOBD
C...WHEN CONSIDERING THE FIELD $K(x)$ SUPPOSE $H=3 * x-I A$ THEN H SATISFIES AN
C...EQUATION H**3-IQ*H-INN=0. FIND H AND H**2-IQ FOR USE IN THE
C... SUBROUTTNE PRIN.

INN=27*IC-9*IA*IB+2*IA*IA*IA
Q=FLOAT (IQ)
$\mathrm{V}_{1}=0 / 3$.0
$V ?=F L O A T$ (INN)
V3=SQRT (V2**2-4.0*V1**3)
$V_{4}=(V 2+V 3) / 2.0$
$\mathrm{V} 5=(\mathrm{V} 2-\mathrm{V} 3) / 2.0$
IF (V4.NE.0.0) GO TO 51
V6=0.0 \& GO TO 52
$51 \mathrm{D}=1.0$
IF (V4.GE.0.0) GO TO 53
$\mathrm{V} 4=-\mathrm{V} 4$ \& $\mathrm{D}=-1.0$
$53 \mathrm{~V} 6=\operatorname{EXP}((\operatorname{ALOG}(\mathrm{V} 4)) / 3.0) \approx \mathrm{D}$
52 IF (V5.NE.0.0) GO TO 54
V7 $=0.0$ \& GO TO 55
$54 D=1.0$
IF (V5.GE.0.0) GO TO 56
V $5=-V 5$ \& $D=-1.0$
$56 \mathrm{V7}=\mathrm{EXP}((\operatorname{ALOG}(\mathrm{V} 5)) / 3.0) \% \mathrm{D}$
$55 \mathrm{H}=\mathrm{V} 6+\mathrm{V7}$ \& $\mathrm{HHH}=\mathrm{H} * \mathrm{H}$
$Z Z=\mathrm{HHH}-0$
C...NOW FIND IT AND IS SUCH THAT $(1, x, Y)$, WHERE $Y=(x * x+I T * X+$ IS $) /$ INDEX,
C...IS A BASIS FOR THE FIELD.

IN=INDEX
IN2=IN**2 \& IN3=IN2*IN
$K 1=I A^{*} I A-2 * I B \in K 2=I A^{*} I C$ \& $K=I B^{*} I C$
$K 4=I B * I B-2 * I A * I C \& K 5=I A * I B-3 * I C \& I C Z=I C * I C$
IF (INDEX.NE.1) GO TO 1
$I T=0$ € IS=0 \& GO TO 2
1 DO $3 \mathrm{ITC}=1$. IN
IT I ITC-1
DO 4 TSC=1, IN
IS $=$ ISC -1
$J A=K I+I T * I A+3 * I S$
IF (MOD (JA,IN).NE.0) GO TO 4
JR=K4+IT*2 2 IB+3*IS**2+IT*K5+2*IS*KI+2*IS*IT*IA
IF (MOD (JB, INZ) .NE.0) GO TO 4
$J C=I S * 3+I T * * 3 * I C+I C * 2+I S * 2 * I T * I A+I S * K 4+I S * I T * 2 * I B+I T * I B * I C$
1+IT**2*IA*IC+IS**2*K1+IS*IT*K5
IF (MOD (JC, IN3). NE. O) GO TO 4

GO TO ?
CONTINUE
3 CONTINUE
C. . . NOW FIND THE COEFFICIENTS OF Y, X AND 1 IN THE EXPRESSIONS FOR Y \& Y,
C....X*X AND X*Y...
C... $\quad Y * Y=I L 1^{*} Y+$ IL $2^{*} X+$ IL 3
C... $X * x=I T 1 * Y+I T 2 * X+I T 3 \quad \ldots$.
C... $\quad X * Y=I P 1 * Y+I P 2 * X+I P 3$
$I T 1=T$ NDE X
$I T 2=-I T$
$I T 3=-T S$
$M L=2 * I A * I T+I A * I A+2 * I S+I T * I T-I B$
$M L=2=1 A$ IT
II $2=(-I T * M L+2 * I S * I T+I C-2 * I B * I T-I A * I B) / I N 2$
$I L 2=\left(-I T * M L+I^{*} I S^{*} I T+I C-A^{*} I B^{*} I T-I A^{*} I B\right)$
$I L 3=\left(-I S^{* M L}+2^{*} I C * I T+I A^{*} I C+I S^{*} I S\right) / I N 2$
$M P=I A+I T$
$I P 1=M P$
$I P P=(I S-I B-I T \$ M P) / I N$
IP3=(IC-IS*MP) $/ I N$
C...FIND AN UPPER BOUND, A POWER OF 10 , FOR THE ARGUMENTS OF DNORM
C...WHICH WILL NOT GIVE RISE TO OVERFLOW.
$K 1 P=I A B S(K 1) \& K 4 P=I A B S(K 4) \& K S P=I A B S(K 5)$
$N F=M A X 0(K 1 P, K 2, K 3, K 4 P, K 5 P, T C 2)$
$I O N F=I O F(N F)$
IONS $=(29-$ IONF $) / 3$
IONS $=(29-I O N F)$
IURN $=10$ 名范IONS
C... NOW FIND AN UPPER BOUND FOR THE ARGUMENTS OF MULTZ.
$I Q A=I A B S(T Q) € I N N A=I A B S$ (INN)
NON $=$ MAXO (IOA, TNNA)
I $Q \mathrm{~N}=\mathrm{I} O F$ (NQN)
IOMS $=29-10 \mathrm{~N}$
IURM $=10.000 \%$ IOMS
C...FIND SIMILAR BOUNDS FOR THE ARGUMENTS OF MULTC,DIVC AND DIVCD.
IL $1 A=\mathrm{IABS}(\mathrm{IL} 1) \& \mathrm{IL} 2 \mathrm{~A}=\mathrm{IABS}(\mathrm{IL} 2) \& \mathrm{IL} 3 \mathrm{~A}=\mathrm{IABS}(\mathrm{IL} 3)$
IT1A=IABS (IT1) £IT2A=IABS(IT2) £ IT3A=IABS(IT3)
$T P 1 A=I A B S(T P 1) \& I P 2 A=I A B S(I P 2) \& I P 3 A=I A B S(I P 3)$
$I O B L=M A X O(I L 1 A, I L 2 A, I L 3 A)$
$I O B T=M A X O(I T 1 A, I T 2 A, I T 3 A)$
$I O B P=M A \times 0(I P 1 A, I P 2 A, I P 3 A)$
IOBAS =MAXO (IOBL, IOBT, IOBP)
IOBSS =IOF (IOBAS)
IOBS $=14-$ IOBSS
IOR $=10 \%$ IOBS
IF (IOBL.GT. IORP) GO TO 20
IF (IOBP.GT.IOBT) GO TO 21
$I O B A S=I O B P * I O B T$
GO TO 22
21 IOBAS $=10 B P *$ IOBP
GO TO 22
20 IF (TORP. GT. IORT) GO TO 23

IOBAS $=I O B L$ *IOBT
GO TO 22
23 IOBAS $=$ IOBL 2 TOBP
22 IORSS $=$ IOF (IOBAS)
IORS $=14-$ IORSS $\&$ IORSD $=29-$ IORSS
IORS $=14-$ IOBSS
IOBDS $=10 \%$ IOBS \& $I O B D=10.000 \%$ IOBSD
RETURN
END

SUBROUTINE FACTOR (NN,NF,NP,NL, I)
C. . THE SUBROUTINE FACTOR FINDS THE FACTORS OF NN WHICH ARE LESS THAN
C...500 AND PUTS THEM IN THE ARRAY NF. NP (I) IS THE POWER TO WHICH NF (I)
C...IS A FACTOR OF NN. NL IS AN UPPER BOUND ON THE NUMBER OF POSSIBLE
C...DISTINCT PRIME FACTORS OF NN. FROM THE MAIN PROGRAM NL IS AT MOST
C... 100 .

DIMENSION NF (NL), NP (NL)
$\mathrm{N}=\mathrm{NN}$
$E N=F L O A T(N) \& R N=S Q R T(E N) \& N R=I F I X(R N)$
C...NR IS THE GREATEST INTEGER LESS THAN SQRT (N) AND SO N CAN HAVE AT C... MOST ONE FACTOR GREATER THAN NR.
$\mathrm{I}=0 € \mathrm{JF}=1$
$3 \mathrm{JF}=\mathrm{JF}+1 \quad £ \quad \mathrm{JP}=0$
IF (JF.GT.NR) GO TO 6
IF (JF.GT.500) GO TO 7
1 IF (MOD (N,JF). NE, 0) GO TO 4
$J P=J P+1 \& N=N / J F$
$E N=F L O A T(N) \& R N=S Q R T(E N) \& N R=I F I X(R N)$
IF (N.NE. 1) GO TO I
GO TO 5
4 IF (JP.EQ.0) GO TO 3
$\mathrm{I}=\mathrm{I}+1 € \mathrm{NF}(\mathrm{I})=\mathrm{JF} \& N P(\mathrm{I})=\mathrm{JP}$
IF(I.GE.NL) GO TO 7
GO TO 3
$6 \quad \mathrm{JF}=\mathrm{N}$ \& $\mathrm{JP}=1$
$5 \mathrm{I}=\mathrm{I}+1 € \mathrm{NF}(\mathrm{I})=\mathrm{JF} € \mathrm{NP}(\mathrm{I})=\mathrm{JP}$
7. RETURN

END

SUBROUTINE IDEAL (N, ISC)
SUBROUTINE IDEALTN
C...TDEAL FTNDS THE IDEALS (A(I) 8 (I) $\# X+C(I), D(I) * Y+E(I) * X+G(I))$
C...FOR $I=1$, ISC OF NORM N WHERE N IS A RATIONAL PRIME, HENCE
C...TSC $=0,1,2$. OR 3 .

COMMON/D1/IA,TB,IC,L,IDET
COMMON/DZ/KX, KY,KZ, IX, IY, IZ, JX, JY, JZ
COMMON/D11/A (3), B (3), C (3),D(3), E(3),G(3)
DIMENSION MY $(6,3)$
C. . $\operatorname{NORL}(K R)=$ NORM $(x * * 2+K T * x+K B) / L$

NORL $(K B)=(I C * I C+I C * K T * K T * K T+K B * K B * K B+I B * I C * K T+(I B * I B-2 * I A * I C) * K B$
$1+(I A * I C+I B * K B) * K T * K T+((I A * I A-2 * I B)+I A * K T) * K B * K B+(I A * I B-3 * I C) * K T$
2*KR)/(L*L*L)
C... $\operatorname{NORN}(J)=\operatorname{NORM}(x+J)$
$\operatorname{NORN}(J)=I C+J *(I B+J *(I A+J))$
INOEX=L
$K T=-I Y$ \& $K S=-I Z$

ISC=0
C...... LOOP FOR VALUES OF J I.E. C(ISC)
$004 \mathrm{JJ}=1$. N
$\mathrm{J}=\mathrm{J} \mathrm{J}-1$
C...N MUST DIVIDE $\operatorname{NORM}(x+J)$
$\operatorname{IF}(M O D(\operatorname{NORN}(J), N), N E, 0)$ GO TO 4
C........LOOP FOR VALUES OF K I.E. G(ISC)

DO $6 \mathrm{KK}=1$, N
$K=K K-1$
$K B=K$ b $L+K S$
C.......N MUST DIVIDE NORM $(Y+K) \ldots .$.

IF (MOD (NORL (KB), N) . NE . 0) GO TO 6

C..... MULTTPLES OF IDEAL MEMBERS BY INTEGERS MUST BE IDEAL MEMBERS
C......MY (IT, 1) \&Y + MY (IT, 2) $8 X+M Y(I T, 3)$ IS THF PRODUCT OF ONE OF (X, Y)..
C......WITH ONE OF THE BASIS ELEMINTS OF THE IDEAL. IT VARIES FROM 1 TO
C....... 6 SO THAT EVERY CASE IS CONSIDERED.
$\operatorname{MY}(1,1)=0 £ \operatorname{MY}(1,2)=N £ \operatorname{MY}(1,3)=0 £ \operatorname{MY}(2,1)=N £ \operatorname{MY}(2,2)=0$
$\operatorname{MY}(2,3)=0 £ \operatorname{MY}(3,1)=I X £ \operatorname{MY}(3,2)=J+I Y £ \operatorname{MY}(3,3)=I Z £ \operatorname{MY}(4,1)=J+J X$
$\operatorname{MY}(4,2)=J Y \& \operatorname{MY}(4,3)=J Z £ M Y(5,1)=J X £ \operatorname{MY}(5,2)=J Y+K £ M Y(5,3)=J Z$
$M Y(6,1)=K X+K \quad € \operatorname{MY}(6,2)=K Y$ \& $\operatorname{MY}(6,3)=K Z$
DO 8 IT $=1,6$
C...CHECKS THAT MY (IT, 1$) \approx Y+M Y(I T, 2) \approx X+M Y(I T, 3)$ BELONGS TO THE IDEAL.
$N A=M Y(I T, 1) \& N B=M Y(I T, 2) ~ \& N C=M Y(I T, 3)$
NC=NC-NA*K-NB*J
IF (MOD (NC,N) .NE.O) GO TO 6
8 CONTINUE
$\mathrm{ISC}=\mathrm{ISC}+1$
事等


```
<unconom
```


$8=-2+5{ }^{\circ}$

SUBROUTINE PRIN (INK)
DOUBLE $X, Y, Z, D A, D B, D C, D D, D E, D F, D G, D H, D I, Y Z$
DOUBLE IUBM,IOBD
DOUBLE DAXMUL, DXMULL, DXMUL?

DOUBLE DDA,DDB,DDC
COMMON/DI/IA,IB,IC, INDEX,IDET
COMMON/DZ/KX,KY,KZ, IX, IY,IZ, JX, JY,JZ
COMMON/D7/M1,M2,M3,N1,N2,N3,A,B,C/D8/MB (3)
COMMON/D10/H,ZZ,HHH/D9/IQ,IN,Q,RN
COMMON/D12/JA,JB,JC,JD, JE, JF, JP, JR, JS
COMMON/D $16 /$ IUBM, IOBD
COMMON/D20/MU1,MU2,MU3,NU1,NU2,NU3, IGU1
COMMON/D20/MU1,MU2,MU3,NU1,NU2,NU3, IGU1
C... RHO IS THE SQUARE OF THE DISTANCE OF THE POINT $U+V * H+W * H * 2$ FROM
C...THE REAL AXIS.
$R H O(U, V, W)=((U+W * Q) * * 2-V *(V * Q+W * R N))+(W * W * R N-V * U) * H$
$+\left(V * V-W^{*}\left(U+W^{*} Q\right)\right) * H H H$
$\mathrm{N}=1$

$\operatorname{LI}(1)=J A \& L I(4)=0 \& \operatorname{LI}(3)=J B * I N D E X \& L I(2)=J C * I N D E X$
$\operatorname{LI}(7)=J D \& L I(6)=J E * I N O E X-I Y$ * LI (7)
$\mathrm{LI}(5)=J F *$ INDEX -IZ "LI $(7) € \mathrm{LI}(8)=\mathrm{INDEX}$
C...BASIS FOR LATTICE IS [1, (M1 $\left.\left.+M 2^{*} H+M 3^{*} H^{* *} 2\right) / I G,\left(N 1+N 2^{*} H+N 3 * H * 2\right) / I G\right]$
$I G=9 * L I(1) * L I(8) \& M I=9 * L I(2)+3 * I A * L(3)+L I(4) * I A * I A$
$M 2=3 \% \operatorname{II}(3)+2 * \operatorname{L}(4) * I A$
$\mathrm{N} 2=3$ * $\mathrm{I}(6)+2 * \mathrm{~L} I(7) * I A$
M3 $=$ LI (4) £ N $3=L I$ (7)
C..... A,B,C ARE COEFFICIENTS OF THE ASSOCIATED BINARY QUADRATIC FORM $A=B=C=0$.
C...PARTS (I),... (VIII) ARE THE STEPS OF VORONOI'S ALGORITHM AS
C... DESCRIBED IN DELONE AND FADDEEV.

C..... TEST THAT M2*N3-M3 ${ }^{\circ} N 2$ IS GREATER THAN 0

10 IF (M2sN3-M3\%N2.GT.0) GO TO 20
$I 1=M 1 \& \quad I 2=M 2 \& \quad 13=M 3$
$M 1=N 1 \& M 2=N 2 \& M 3=N 3$
$N 1=I 1$ \& $N 2=12 \& N 3=13$

C..... PRODUCTION OF INITIAL VALUES OF A,B,C
$R 1=M 1$ \& R $2=M 2$ \& R $3=M 3$
$S 1=N 1 \quad \& \quad S 2=N 2 \& S 3=N 3$
$G=I G$
$A=R 2 * R 2+R 2 * R 3 * H+R 3 * R 3 * Z Z$
$B=R 2 * S 2+(R 2 * S 3+R 3 * S 2) * H * 0.5+R 3 * S 3 * Z Z$
$C=S 2 * S 2+S 2 * S 3 * H+S 3 * S 3 * Z Z$
C.... (III)
C..... (III) AND (IV) FIND TWO BASIS ELEMENTS OF THE REDUCED HEXAGON OF

> C...).ZELLING.
> IF(B.GT.0.) GO TO 22
> CALL SUB $(0,1,-1,0)$
IF (A-R.LT.0.) GO TO 32
IF (C-B.GT.0.) GO TO 50
32 IF(A-C.GT.0.) GO TO 40
$I D=I N T(B / A)$
$\operatorname{CALL} \operatorname{CUR}(1,-I D, 0,1)$
GO TO 22
ID=INT (B / C)
CALL $\operatorname{SUB}(1,0,-1 D, 1)$
GO TO 22
C. (V)
C...TO FIND THE TWO ZELLING HEXAGON BASIS ELEMENTS WHICH COVER THE
C....NEGATIVE 'XSI' AXIS.
$R 2=M 2$ \& $R 3=M 3$ \& $S 2=N 2$ \& $S 3=N 3$
$R B=R 2-R 3 * H \& R D=S 2-S 3 * H$
$R U P=R D-R B$
IF (RB.LT.0.) GO TO 60
IF (RD.LT.O.) GO TO 90
IF (RUP.GT.0.) GO TO 55
CALL $\operatorname{SUB}(0,-1,1,1)$
GO TO 90
CALI $\operatorname{SUB}(-1,-1,1,0)$
GO TO-9)
IF (RO.LT.O.) GO TO 70
CALL $\operatorname{SUB}(-1,0,0,-1)$
GO TO 90
70 IF (RD-RB.GT.O.) GO TO 80
CALL $\operatorname{SUB}(1,1,-1,0)$
GO TO 90
$80 \operatorname{CALL} \operatorname{SUB}(0,1,-1,-1)$
C.... (VT) …..............
.
C... INDING THE PINHEADS CORRESPONDING TO (M1 $+\mathrm{M} 2 * \mathrm{H}+\mathrm{M} 3 * \mathrm{H} \% 2) / I G$ AND
C... (N1 + N2*H $\left.+\mathrm{N} 3 * \mathrm{H}^{2} * 2\right) / I G$.
$R 1=M 1 \& R 2=M 2 \& R 3=M 3$
$\begin{array}{lllll}R 1=M 1 & \& & R 2=M 2 & \text { \& } & R 3=M 3 \\ S 1=N 1 & \& & S 2=N 2 & \text { \& } & S 3=N 3\end{array}$
$S 1=N 1+S 2=N 2 \in H 3=N$
$T=\left(R 1+R 2^{*} H+R 3 * H H H\right) / G$
$T=\left(R 1+R 2^{*}\right.$
$I=I F I X(T)$
$I F(T . G T .0$.
IF (T.GT.0.) GO TO 4001
$\mathrm{I}=\mathrm{I}-1$
4001 M1 = M1-I $\$ \mathrm{I} G$
$S=\left(S 1+S 2^{*} H+S 3^{*} H H H\right) / G$
$\mathrm{I}=\mathrm{IF} \mathrm{I} \times(\mathrm{S})$
IF (S.GT.0.) GO TO 4002
$\mathrm{I}=\mathrm{I}-1$
$4002 \mathrm{~N} 1=\mathrm{NI}-\mathrm{I} * \mathrm{IG}$
C.... (CHOOSING THE TWO ELEMENTS OF THE REDUCED BASIS OF THE LATTICE FROM

```
    C...THE SEVEN POSSIBILITIES BY FINDING THE TWO WITH MINIMUM RHO VALUE,
    200 R1=M1 & S1=N1 & G2=2. *G
        XA=(2.*(R1+R3*Q)-R2*H-R3*HHH)/G2
        XC= (2.*(S1+S3*0)-S2*H-S3*HHH)/G2
        IF(XA-0.5.GT.0.) GO TO 201
        K(1,1)=M1 & K(1,2)=M2 £ K(1,3)=M3
        GO TO 202
        K(1,1)=IG-M1 & K(1,2)=-M2 & K(1,3)= -M3
    IF(XC-0.5.GT.0.) GO TO 203
        K(2,1)=N1 & K(2,2)=N2 & K(2,3)=N3
        GO TO 204
    K(2,1)=IG-N1 & K(2,2)=-N2 & K(2,3)=-N3
    204 T=(R1+R2*H+R3*HHH)/G
        S}=(S1+S2*H+S3*HHH)/
        IF (T-S.LT.0.) GO TO 220
        IF (T-S.LT.0.) G0 TO 220 
        K(3,1)=M1-N1 & K(3,2)=M2-N2 & K (3,3)=M3-N3
        GO TO 240
    210-K(3,1)=IG-M1+N1 & K (3,2)=-M2+N2 & K (3,3)=-M3+N3
        GO TO 240
        IF(XC-XA.GT.0.5) GO TO 230
        K(3,1)=N1-M1 & K(3,2)=N2-M2 & K(3,3)=N3-M3
        GO TO 240
    230 K(3,1)=IG-N1+MI E K (3,2)=-N2+M2 & K(3,3)=-N3+M3
    240 RZO=RHO(FLOAT (K (1, 1)),FFLOAT (K (1,2)),FFLOAT (K (1,3)))
        R71=RHO(FLOAT (K(2,1)), FLOAT(K (2,2)),FLOAT (K (2,3)))
        R72=RHO (FLOAT K( }3,1)),\mathrm{ FLOAT K ( }3,2)),\mathrm{ FLOAT K ( }3,3))
        R2C=RHOIFLOA
        IF (RZ2.LT.RZO) G0 T0 280
        IF(RZ2.LT.RZ1) G0 T0 260
        IF (T+S.GT.1.)GO TO 250
        IF (XA + XC.GT.O.5) GO TO 250
        K(4,1)=M1+N1 & K(4,2)=M2+N2 & K(4,3)=M3+N3
        RZ3=RHO (FLOAT (K(4,1)),FLOAT (K(4,2)),FLOAT (K(4,3)))
        IF(RZ3.GT.RZ0) GO TO 245
        IF(RZ3.GT.RZ1) GO TO 244
        M1=K(4,1) & M2=K (4,2) £ M3=K (4,3)
        IF(RZO.GT.RZ1) GO TO 243
        N1=K(1,1) & N2=K(1,2) £ N3=K(1,3)
        GO TO 300
        243 N1=K(2,1) & N2=K(2,2) & N3=K (2,3)
        GO TO 300 (2)
    244 Ml=K(2,1) & M2=K (2,2) & M3 =K (2,3)
        Ml=K(2,1)
        GO TO 300
    245 IF(RZ3.GT.RZ1) GO TO 250
        M1=K(1,1) & M2=K(1,2) £ M3=K(1,3)
        N1=K(4,1) £ N2=K(4,2) £ N3=K(4,3)
        GO TO 300
    IF(RZ0.GT.RZ1) GO TO 255
    M1=K(1,1) & M2=K(1,2) & M3=K(1,3)
```

$55 M 1=K(2,1)$ \& $M 2=K(2,2) \quad \& \quad M 3=K(2,3)$
$M 1=K(2,1)$ \& $M 2=K(2,2)$ \& $M 3=K(2,3)$ $N 1=K(1,1)$ £ $N 2=K(1,2)$ £ $N 3=K(1,3)$ GO TO 300
$260 \quad M 1=K(1,1)$ £ $M 2=K(1,2)$ £ $M 3=K(1,3)$ $N 1=K(3,1)$ £ $N 2=K(3,2)$ £ $N 3=K(3,3)$ GO TO 300
280 IF(RZ1.GT.RZ2) GO TO 290
$M 1=K(2,1) \quad \& \quad M 2=K(2,2) \quad \& \quad M 3=K(2,3)$
$N 1=K(3,1) \quad \& N 2=K(3,2) \quad \& \quad N 3=K(3,3)$
290
GO TO 300
IF (RZ0.GT.RZ1) GO TO 295
$M 1=K(3,1) \quad £ \quad M 2=K(3,2) \quad$ £ $\quad M 3=K(3,3)$
$N 1=K(1,1) £ N 2=K(1,2) \quad £ \quad N 3=K(1,3)$
GO TO 300
$295 \quad M 1=K(3,1) \& M 2=K(3,2) \quad \& \quad M 3=K(3,3)$
$N 1=K(2,1) £ N 2=K(2,2)$ £ $N 3=K(2,3)$
C.... (VITI)
$300 \operatorname{JAN}(1, N)=N 1 £ \operatorname{JAN}(2, N)=N 2 £ \operatorname{JAN}(3, N)=N 3 £ N P(N)=I G$
$\operatorname{IAN}(1, N)=M 1 € \operatorname{IAN}(2, N)=M 2$ \& $\operatorname{IAN}(3, N)=M 3$
IF (INK.EQ.1) GO TO
$\mathrm{NOQ}=\mathrm{N}-1$
C...... FIND THE INVERSE OF THE SECOND BASIS ELEMENT, THE FIRST RELATIVE
C... MINTMUM OF THE LATTICE.

8988 CALL INVER (M1,M2,M3.JDET)
$I 1=M B(1) * I G$ \& $I 2=M B(2) * I G \& I 3=M B(3) * I G$
CALL $\operatorname{ICF}(I 1, I 2, I 3, I F 1)$
C..... DIVIDE LATTICE BY SECOND BASIS ELEMENT AND PRODUCE A NEW LATTICE CALL MULT (MB (1), MB (2), MB (3),N1,N2,N3,J1, J2, J3)
CALL TCF $(J 1, J 2, J 3$, IF 2$)$
CALL ICF (IF1,IF2, JDET, IF)
$M 1=J 1 / I F \& M 2=J 2 / I F \& M 3=J 3 / I F$
$N 1=I 1 / I F \& N 2=I 2 / I F \& N 3=I 3 / I F \& I G=J D E T / I F$
IF (N.EQ.1) GO TO 501
C......CHECK IF THE OLD LATTICE IS THE UNIT LATTICE.....

IF (IAN(1,N) .NE.MU1) GO TO 501
IF (IAN $(2, N)$. NE.MUZ) GO TO 501
IF (IAN $(3, N)$.NE .MU3) GO TO 501
IF $(J A N(1, N), N E, N U 1)$ GO TO 501
IF (JAN (2,N) , NE .NUZ) GO TO 501
IF (NP (N).EQ.IGU1) GO TO 600
IF (NP (N).EQ.IGU1) GO TO 600
$501 \quad \mathrm{~N}=\mathrm{N}+1$
C. . . . IF N.GT. 99 PRINT DIAGNOSTIC

IF (N.LT.99) GO TO 10
PRINT 1111
1111 FORMAT (38H LATTICE LOOP HAS MORE THAN 99 MEMBERS) GO TO 7


```
C...SECTION ? IS ENTERED WHEN THE LATTICE LOOP IS COMPLETE. IT
C...MULTIPLIES ALL THE RELATIVE MINIMA TOGETHER TO GIVE AN INTEGER OF
C...NORM INK.
    600 DB=DC=0 & DA=LI (1) & NPD=1
            00 700 JIM=1,NQQ
            DD=IAN(1,JIM) & DE=IAN(2,JIM) & DF=IAN(3,JIM)
            DDA=DABS(DA) & DDB=DABS(DB) & DDC=DABS(DC)
            DXMUL 1 =DMAXI (DDA,DDE,DDC)
            DDA=DABS(DD) & DDB=DABS(DE) & DDC=DABS(DF)
            DXMLUL 2=DMAX1 (DDA DODB DDC1
            DAXMUL=DXMUL 1*DXMUL?
            IF(DAXMUL.LT.IUBM) GO TO 601
        650 FORMAT ( }1\times,10(1\mp@subsup{H}{}{*}),40HDANGER OF OVERFLOW WITH INTEGERS OF NORM,I5
            110(1H*))
    601 CALL MULTZ(DA,DB,DC,DD,DE,DF,DG,DH,DI)
            NPD=NPD*NP (JIM)
            X=NPD
            CALL ICFZ (X,DG,DH,Y)
            Y2=Y
            CALL TCFZ(Y,YZ,DI,Z)
            DA=DG/Z & DB=DH/Z & DC=DI/Z
            NPD = X/Z
700 CONTINUE
            DD=DC%9.DO & DE=3.D0*DB-DC*6.D0%IA
            DF=IA*IA*DC-IA*DB+DA & DG=NPD
            DF=IA*IA*DC-IA*DB+DA & 
            CALL ICF2(DH,DF,DH,DI)
            DD=DD/DI & DE=DE/DI & DF=DF/DI & DG=DG/DI
            DDA=DABS (DD) & ODB=DABS (DE) & DDC=DABS(DF)
            IF(DDA.GE. 1.0D14) GO TO 701
            IF(DDB.GE.1.0014) GO TO 701
            IF (ODC.LT.1.0D14) GO TO 702
    7 0 1 ~ P R I N T ~ 6 5 0 , I N K
    702 JP1=DO & JR1=DE & JS1=DF & JD=DG
            CALL CHANGE (JP1,JR1,JS1,JD,JP,JR,JS)
            GO TO 7
            MU1=M1 & MUZ=M2 & MU3=M3 & NU1=N1 & NU2=N2 & NU3=N3 & IGU1=IG
            RETURN
            END
```

SUBROUTINE MULT2 $(A, B, C, D, E, F, G, H, I)$
$\begin{array}{ll}C \\ C \\ C & \text { DOUBLE PRECISION VERSION OF MULT }\end{array}$
DOUBLE $A, B, C, D, E, F, G, H, I, D O, D N$
COMMON/O9/IQ,IN,Q,RN
$D O=Q$ £ $D N=R N$
$\mathrm{G}=\mathrm{A} * \mathrm{D}+\mathrm{DN} *\left(\mathrm{~B}^{*} \mathrm{~F}+\mathrm{C}^{*} \mathrm{E}\right)$
$H=A * E+B * D+D Q^{*}(B * F+C * E)+D N * C * F$
$I=A * F+B * E+C \Rightarrow D+D O^{*} C F$
RETURN
END

SUBROUTINE CHANGE (I,J,K,L,II,J1,Kl)
C...CHANGE FINDS I $1, J 1, K 1$ SUCH THAT I $1 * Y+J 1 * X+K 1=(I * x * * 2+J * X+K) / L$.

COMMON/O2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
$I 1=(I * I T 1) / L £ J I=(I * I T Z+J) / L E K I=(I * I T 3+K) / L$
RETURN
END

SUBROUTINE TEST

C.. THIS SURROUTINE TRIES CONGRUENCES TO MODULI OF NORM MF WHERE MF IS A C...FACTOR OF NORM (E + ICHECK) AND SETS EUCLID TO 1 IF NOT ALL THE RESIDUE C...CLASSES TO ONE OF THE MODULI OF NORM MF CONTAIN AN INTEGER OF NORM
C...LESS THAN MF.

INTEGER EUCLID
DOUBLE IM, JM,KM,JP,JR,JS
COMMON/D3/MF,MP,MAP (500, 2)
COMMON/D4/IP(2000), IR(2000), IS(2000)
COMMON/D5/IIM,JJM,KKM/D6/EUCLID
COMMON/D21/I,J,K
COMMON/D30/ITHETA.ILAM.IPRIME
DIMENSION ICP (500), ICR (500), ICS (500), ICD (500), LIC(500)
$I M=I I M \& \quad J M=J J M \& K M=K K M$
$I M=I I M ~ \&$
JCOUNT $=-1$
LMAP $1=$ MAP $(M F, 1) ~ £ ~ L M A P Z=M A P(M F, 2)$
DO $7 \quad J=$ LMAP 1. LMAP?
C. . NOW USE IN TURN EACH OF THE ALGEBRAIC INTEGERS OF NORM MF.
$J P=I P(J J) \& J R=I R(J J) \& J S=I S(J J)$
$J J P=J P$ \& JJJR=JR \& JJJS=JS
C. . . CHECK TO SEE IF JP*Y+JR*X+JS IS A FACTOR OF IM*Y+JM*X+KM IF IT IS
C. . . NOT GO ON TO THE NEXT NUMBER OF NORM MF

IF (IALMOD (IM, JM, KM, JP, JR, JS) .EQ.1) GO TO 7
$\mathrm{ICL}=\mathrm{MF}-1$
C...ICL IS THE NUMBER OF NON-ZERO RESIDUE CLASSES MODULO (JP,JR,JS).

CALL INCON(JP,JR,JS,ICL, ICP, ICR,ICS,LIC)
C...LIC(I) IS SET TO 1 INITIALLY AND TO 0 WHEN AN INTEGER OF NORM LESS
C...THAN MF IS FOUND TO BELONG TO ICP (I) \#Y + ICR (I) \& X + ICS (I). NOW RUN
C... THROUGH THE INTEGERS WITH NORM LESS THAN MF AND ELIMINATE THE
C... RESIDUE CLASSES TO WHICH THEY BELONG.

IPR IME $=0$
ITHETA $=0$ \& ILAM=0
C...IPRIME $=1$ WHEN X AND Y ARE CONGRUENT TO RATIONAL INTEGERS AND
C...TPRIME $=0$ OTHERWISE.

IF(ICS(ICL) .NE.ICL) GO TO 20 IPRIME = ?
C...IPRIME $=$? WHEN FINDING THE VALUES OF ILAM AND OF ITHETA.

CALL MODAL (1,0,0,ICP,ICR,ICS,LIC,ICL,JP,JR,JS)
DO $21 \mathrm{JJC}=1$, ICL
IF (LIC(JJC).NE.0) GO TO 21
IL $\Delta M=J J C$
$L I C(J J C)=1$
GO TO 22
21 CONTINUE
22 CALL MODAL $(0,1,0,1 C P$, ICR,ICS,LIC,ICL,JP,JR,JS)
DO $23 \mathrm{JJC}=1$, ICL
IF (LIC(JJC).NE.0) GO TO 23
ITHETA =JJC
LIC (JJC) =1
GO TO 24

23 CONTINUE
2 IPRIME $=1$
PRINT 999, ITHETA, ILAM
999 FORMAT (26H MODULUS IS PRIME, ITHETA $=$, I5,6H ILAM=, I5)
C. ... X IS CONGRUENT TO ITHETA AND Y TO ILAM.

O CALL MODAL (I, J,K,ICP,ICR,ICS,LIC,ICL,JP,JR,JS)
00 \& JJC=2, ICL
IF (MAP (JJC, 1) •EQ.-1) GO TO 8
MMAP $1=$ MAP $(J J C, 1) ~ \& ~ M M A P 2=M A P(J J C, 2)$
DO 9 JJD=MMAP1, MMAPZ
$K P=I P(J J D) \& K R=I R(J J D) \& K S=I S(J J D)$
CALL MODAL (KP,KR,KS,ICP,ICR,ICS,LIC,ICL,JP,JR,JS)
9 CONTINUE
JCOUNT $=0$
DO 10 ICOUNT $=1, \mathrm{ICL}$
IF (LIC (ICOUNT) EQ. 0) GO TO 10
JCOUNT = JCOUNT + 1
ICD (JCOUNT) $=$ I COUNT
10 CONTINUE
C.....JCOUNT IS THE NUMBER OF RESIDUE CLASSES STILL UNCOVERED. IF THE
C.....RESIDUE CLASSES ARE ALL COVERED GO ON TO CONGRUENCES TO ANOTHER
C..... MODULUS, OTHERWISE GO ON TO INTEGERS OF A GREATER NORM.

IF (JCOUNT.EQ.0) GO TO 11
\& CONTINUE
C. . NOW THE ONLY REMAINING RESIDUE CLASSES WITH LIC=1 ARE THOSE WHICH
C...DO NOT CONTAIN AN INTEGER OF NORM LESS THAN MF.
C...IF JCOUNT $=-1$ THEN THERE ARE NO INTEGERS WITH NORM LESS THAN MF C...OTHER THAN E AND SO WIE GO ON TO FINO WHICH RESIDUE CLASSES ARE C... UNCOVERED SINCE THIS HAS NOT REEN DONE.

IF (JCOUNT.NE.-1) GO TO 13
JCOUNT =0
DO 12 ICT=1, ICL
IF (LIC(ICT) .EQ.0) GO TO 12
JCOUNT=JCOUNT + 1
$\operatorname{ICD}(J C O U N T)=I C T$
12 CONTINUE
IF (JCOUNT.EQ.O) GO TO 11
C... IF THERE ARE STILL SOME UNCOVERED RESIDUE CLASSES THEN THE FIELD IS
C... NON-EUCLIDEAN SO THIS FACT IS PRINTED TOGETHER WITH THE MODULUS AND
C. . . UNCOVERED RESIDUE CLASSES.

13 PRINT 102 ,JJP, JJR,JJS
102 FORMAT $(1 X, 67 H T H E$ FIELO IS SHOWN TO BE NON-EUCLIDEAN WHEN CONSIDERI ING CONGRUENCES, $/, 1 X, 14$ HTO THE MODULUS, $3116, /, 1 X, 39$ HWHEN THE UNCOVE 2RED RESIDUE CLASSES ARE-)
DO 14 ICT $=1$, JCOUNT
$I D=I C D(I C T)$
PRINT 103,ICP(ID), ICR(ID), ICS(ID)
103 FORMAT $(15 X \cdot 3$ I16)
14 CONTINUE
EUCL TD=1
C...SETTING EUCLID TO 1 INOICATES THE FIELD IS NON-EUCLIDEAN. GO TO 15
$M P=M P-1$

7 CONTINUE
15 RETURN
END

SURROUTINE INCON(JP, JR, JS, M, ICP, ICR, ICS,LIC)
C. . . INCON FINDS THE RESIDUE CLASSES MODULO JP*Y + JR* \times +JS EXCLUDING THE C... TERO RESIDUE CLASS. THESE ARE ICP (I) $\% Y+I C R(I) * x+I C S(I) F O R I=1$, M, C...THE CORRESPONDING LIC (I) IS SET TO 1. $M=N O R M(J P \& Y+J R * X+J S)-1$.

DOUBLE DJ,DJJ,JP,JR,JS,DARG1,DARG2
COMMON/DI/IA, IB, IC, INDEX, IDET
DIMENSION ICP (M), ICR (M), ICS $(M), L I C(M)$
C. . . NORN $(J J, J)=\operatorname{NORM}(J J * X+J)$.

NORN $(J J, J)=J J * J J * J J * I C+J *(J J * J J * I B+J *(J J * I A+J))$
$M M=M+1$
JJP=JP \& JJR=JR \& JJS=JS
PRINT 160 ,JJP,JJR,JJS,MM
160 FORMAT $/ /, 1 \mathrm{X}, 35 \mathrm{HCONGRUENCES} \mathrm{ARE} \mathrm{CONSIDERED} \mathrm{MODULO} \mathrm{(} \mathrm{I} 15,,1 \mathrm{H}, \mathrm{I} 15,1 \mathrm{H}$,
$1, I 15,1 H),(, 1 X, 14$ HiNHICH HAS NORM, I 15)
DO $1 \mathrm{I}=1, \mathrm{M}$
$\operatorname{ICP}(\mathrm{I})=\operatorname{ICR}(\mathrm{I})=\operatorname{ICS}(\mathrm{I})=0 £ \operatorname{LIC}(\mathrm{I})=1$
1 CONTINUE
$I P=I R=I S=0$
$I P P=I R R=I S S=1$
C...FIRST CALCULATE IS SUCH THAT $0,1, \ldots$, IS ARE INCONGRUENT MODULO
C...JP $\$ Y+J R \approx X+J S$.
$002 \mathrm{~J}=1$, MM
IF (MOD (J*J*J,MM) .NE.0) GO TO 2
$J J P=J P$ \& JJR=JR \& JJS=JS
$0 J=J$
DARG1 $=0 . D 0$ \& DARG2=0.DO
IF (IALMOD (DARGI,DARGZ,DJ,JP,JR,JS) .EQ. I) GO TO 2
IS=J-1 \& GO TO 3
2 CONT TNUE
3 ISS=IS+1
IF (ISS. FQ.MM) GO TO 7
IS2 $=$ MINO (ISS,MM/ISS)
C...NOW FINN IR SUCH THAT $R * X+S$ FOR $R=0$, IR AND $S=0$, IS ARE INCONGRUENT
C... MODULO JP*Y+JR*X+JS.

DO $4 \mathrm{JJ}=1 \cdot$ IS2
DO $10 \mathrm{JL}=1$, ISS
$J=\mathrm{JL}-1$
IF (MON (NORN (JJ,J), MM) .NE.0) GO TO 10
DJJ=JJ € $D J=J$
DARGI $=0$. DO
IF (IALMOD (DARG1,DJJ,DJ,JP,JR,JS) ,EQ. 1$)$ GO TO 10
$I R=J J-1$ £ GO TO 5
10 CONTINUE
4 CONTINUE
5 $I R R=I R+1$
IF ((ISS*IRR).EQ.MM) GO TO 7
$I P P=M M /(I S S * I R R)$
$I P=I P P-1$
C. . .THE RESTDUE CLASSES ARE NOW $(P * Y+R * X+S) P=0, I P, R=0, I R, S=0, I S$.

7 I JK=0

DO 8 II $=1$, IPP
$I=I I-1$
DO \& $J J=1$, IRR
$J=J J-1$
$008 \mathrm{KK}=1$, IS
$K=K K-1$
IF ((I.EQ.0).AND. (J.EQ.0).AND. (K.EQ.0)) GO TO 8
IK = I JK + 1
$C P(I J K)=I \& I C R(I J K)=J £ I C S(I J K)=K$
8 CONTINUE
PRINT 161,IP,IR, IS
161 FORMAT $(4 X$, 46 HTHE RESIDUE CLASSES ARE ($P * Y+R * X+S$) WHERE $P=0$, , 14 , $15 \mathrm{H} R=0, \mathrm{I} 4,5 \mathrm{H} \mathrm{S}=0, \mathrm{I} 4, /, 1 \mathrm{X}, 18 \mathrm{HP}, \mathrm{R}, \mathrm{S}$ NOT ALL ZERO) RETURN
END

SUBROUTINE MODAL (KP,KR,KS,ICP,ICR,ICS,LIC,M,JP,JR,JS)
C...MODAL FINDS WHICH ICP (I) \# $Y+$ ICR(I) $\# X+I C S(I)$ IS CONGRUENT TO
C... $+0 R-(K P * Y+K R * X+K S)$ MODULO JP\$Y+JR*X+JS AND SETS THE CORRESPONDING
C...LIC(I) TO 0 .

DOURLE IP,IR,IS,JP,JR.JS
COMMON/D30/ITHETA, ILAM, IPRIME
DIMENSION ICP(M), ICR (M), ICS (M),LIC(M)
IF (IPRIME.NE.1) GO TO 5
$M M=M+1$
$K K P=M O D(K P, M M)$
$K K R=M O D(K R, M M)$
KPRS=KKP\& II AM
AM+KKR* THETA + KKS
KPRS $=M O D$ (KPRS, MM)
IF (KPRS. LT.0) KPRS $=M M+K P R S$
LIC $(K P R S)=0$
$K P R S=M M-K P R S$
KPRS $=M M-K P R S$
LIC $($ KPRS $)=0$
RETURN
$5001 \mathrm{I}=1$, M
$I P=K P-I C P(I) \& I R=K R-I C R(I) £ I S=K S-I C S(I)$
MODIAL =IALMOD (IP,IR,IS,JP,JR,JS)
IF(LIC(I).NE.0) LIC(I)=MODIAL
IF (MODIAL.EQ.0) GO TO 3
1 CONTINUE
3 IF (IPRIME.EQ.2) RETURN
P KP
$I P=K P+I C P(I) \& I R=K R+I C R(I) \& I S=K S+I C S(I)$
MODIAL =IALMOD (IP, IR, IS, JP, JR, JS)
IF (LIC (I). NE.0) LIC(I) =MODIAL
IF (MODIAL.EQ.0) GO TO 4
? CONTINUE
4 RETURN
END

FUNCTION IALMOD (IP, IR, IS, JP, JR, JS)
C... THE FUNCTION IALMOD TAKES THE VALUE 0 IF JP\& + JR* $X+J S$ DIVIDES
C...IP*Y+IR*X+IS, OTHERWISE IT TAKES THE VALUE 1.

DOURLE IP,IR,IS,JP,JR,JS,ID,JD,LP,LR,LS,LD
I AL MOD $=0$
$I D=1 . D 0$ \& $J O=1 . D 0$
CALL DIVCD (IP, IR,IS, ID,JP,JR,JS,JD,LP,LR,LS,LD)
IF (LD.NE. 1.DO) I ALMOD=1
RETURN
END

SUBROUTINE DIVC(LI,Ml,NI,L2,M2,N2,L,M,N)
C...THE SUBROUTINE DIVC FINDS THF QUOTIENT OF THE TWO ALGEBRAIC NUMBERS C...L1*Y+M1*X+N1 AND L2*Y+M2*X+N2 IN THE CUBIC FIELD WITH INTEGRAL
C...BASIS $(1, x, y)$, WHERE $x * * 3-I A * x * * 2+I B * x-I C=0$, AND SETS THIS QUOTIENT
C...BASIS $(1, x, Y)$, WHERE $X * 3-I A * x * 2+I B * X-I C=0$, AND SETS THIS QUOTIENT C...TO $L \forall Y+M \geqslant X+N$

COMMON/D2/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2, IP3
COMMON/D15/IUBN,IOB,IOBDS

1-11*J3*K2-I2*J1*K3-I3*J2*K1
C...FIRST TEST FOR THE POSSIBILITY OF OVERFLOW.
$L A=T A R S(L 1) ~ \& M A=T A R S(M 1) \& N A=T A B S(N 1)$
IDIVI=MAX0 (LA,MA,NA)
$L A=I A B S(L 2)$ \& $M A=I A B S(M 2) \& N A=I A B S(N 2)$
IDIVZ=MAXO (LA,MA,NA)
IF (INTV1.GT. IDIV2) GO TO 1
IOIV=IDIV2*IDIV2*IDIV?
GO TO?
1 IDIV=IDIV1*IDIV2*IDIV?
2 IF (IDIV.LT.IOBDS) GO TO 3 PRINT 50
50 FORMAT $1 \times, 10(1 \mathrm{H}$) , 26HDANGER OF OVERFLOW IN DIVC, $10(1 \mathrm{H}$))
3 II=L2*ILI +IP1*MZ + N2
I $2=$ L2 ${ }^{\text {I }}$ IL2 + IP2*M2
$13=L 2 * I L 3+I P 3 * M 2$
$J 1=I P 1 \approx 2+M 2 * I T 1$
$12=I P 2 * L 2+M 2 * I T 2+N 2$
$13=T P 3$ * L ? +M 2*TT3
$K 1=L 2$ \& $K 2=M 2$ \& $K 3=N 2$
JDET $=K D E T(I 1, I 2, I 3, J 1, J 2, J 3, K 1, K 2, K 3)$
$L=K D E T(L 1, M 1, N 1, J 1, J 2, J 3, K 1, K 2, K 3) / J D E T$
$M=K D E T(I 1, I 2, I 3, L 1, M 1, N 1, K 1, K 2, K 3) / J D E T$
$\mathrm{N}=\mathrm{KDET}(\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 3, \mathrm{~J} 1, \mathrm{~J}, \mathrm{~J} 3, \mathrm{~L} 1, \mathrm{M} 1, \mathrm{~N} 1) / J D E T$ RFTURN
END

SUBROUTINE MULTC(L1,M1,N1,L2,M2,N2,L,M,N)
C...THE SUBROUTINE MULTC FINDS THE PRODUCT OF THE TWO ALGEBRAIC NUMBERS
C...L1*Y+M1*X+N1 AND L2*Y+M2*X+NZ IN THE CUBIC FIELD WITH INTEGRAL
c...RASTS $(1, x, y)$, WHERE $x * * 3-I A * x * * 2+I B * x-I C=0$, AND SETS THIS PRODUCT
C...TO $L^{*} Y+M * X+N$.

COMMON/D2/IL1, IL2,IL3, IT1, IT2,IT3,IP1,IP2, IP3
COMMON/D15/IUBN, IOB, IOBDS
C...FIRST TEST FOR THE POSSIBILITY OF OVERFLOW.
$L A=I A B S(L 1) £ M A=I A B S(M 1) £ N A=I A B S(N 1)$
MULT $1=$ MAXO $(L A, M A, N A)$
$L A=I A R S(L 2)$ \& $M A=I A B S(M 2)$ \& $N A=I A B S(N 2)$
MUL.T2=MAX0 (LA,MA,NA)
MULT $=$ MUL T 1 \$MULT?
IF (MULT.LT.IOB) GO TO 1
PRTNT 50
50 FORMAT $(1 \mathrm{X}, 10(1 \mathrm{H} \%), 27 \mathrm{HDANGER}$ OF OVERFLOW IN MULTC, $10(1 \mathrm{H} \%)$
1 IP $=\mathrm{L} 1 * M 2+\mathrm{L} 2^{* M 1}$
$L=L 1 * L 2 * I L 1+I P * I P 1+M 1 * M 2 * I T 1+L 1 * N 2+N 1 * L 2$
$M=L 1 * L 2 * I L 2+I P * I P 2+M 1 * M 2 * I T 2+M 1 * N 2+N 1 * M 2$
$N=L .1$ LL $2 * I L 3+I P * I P 3+M 1 * M 2 * I T 3+N 1 * N 2$
RETURN

DOUBLE FUNCTION DNORM (IP,IR,IS)
C. . DNORM (IP, IR , IS $)=\operatorname{NORM}(I P * Y+I R * X+I S)$

DOURLE IP,IR,IS,P,R,S,AD,BD,CD,DEX,DEX3,DIUBN,DT2,DT3
DOUBLE PA,RA.SA
COMMON/DI/IA,IB, IC, INDEX, IDET
COMMON/D2/IL1, IL2,IL3, IT1,IT2,IT3,IP1,IP2,IP3
COMMON/D15/IUBN, IOB, IOBDS
$A D=I A \& B D=I B \& C D=I C$ \& $D E X=I N D E X$
DEX $3=$ DEX*DEX*DEX
OIUBN=IUBN \& DT2=IT2 \& DT3=IT3
C...NOW FIND P,R,S SUCH THAT (P*X**2*R*X+S)/INDEX=IP*Y+IR*X+IS.
$P=I P$
$R=I R * D E X-D T 2 * I P$
S=IS\%DEXーDT3关IP
C...IF ANY OF P,R,S ARE SO LARGE THAT THEY MAY CAUSE 'OVERFLOW' IN THE C...CALCULATION OF DNORM THEN PRINT A DIAGNOSTIC.
$P A=D A R S(P)$ \& $R A=D A B S(R) \& S A=D A B S(S)$
$\begin{array}{llll}\text { IF (PA.GE.DIUBN) } & \text { GO TO } & 1 \\ \text { IF (RA.GE.DIUBN) GO TO } & 1\end{array}$
IF (RA.GE.DIUBN) GO TO
IF (SA.LT.DIUBN) GO TO 2
1 PRINT 100
100 FORMAT $\left(/, 1 \mathrm{X}, 10\left(1 \mathrm{H}^{*}\right), 48 \mathrm{HDANGER}\right.$ OF OVERFLOW WHEN USING THE FUNCTION 1DNORM, $\left.10\left(1 \mathrm{H}^{*}\right)\right)$
2 DNORM $=(P * P * P * C D * C D+R * R * R * C D+S * S * S+P * P *(R * B D * C D+S *(B D * B D-2.0 D 0 * A D *$
$1 C D))+R * R *(P * A D * C D+S * B D)+S * S *(P *(A D * A D-2.0 D 0 * B D)+R * A D)+P * R * S *(A D * B D$
2-3.0D0 \% CD))/DE×3
3 RFTURN
END

DOUBLE FUNCTION FDET (Il, I2, I $3, \mathrm{J1}, \mathrm{~J} 2, \mathrm{~J} 3, \mathrm{~K} 1, K 2, K 3)$
DOUBLE I1,I2,I3,J1,J2,J3,K1,K2,K3
FDET $=I 1 * J 2 * K 3+I 2 * J 3 * K 1+I 3 * J 1 * K 2-I 1 * J 3 * K 2-I 2 * J 1 * K 3-I 3 * J 2 * K 1$
RETURN
RETUR
END

THE PROGRAMS CUBOID, FCUB AND CUBX
CUBOID 59
FCUB 62
CUBX 65

SUBROUTINES - ALL LISTED IN THIS SECTION

BASIS	68	COVER (CUBOID ONLY)	73
USE	70	CI	74
BOUND	72	COVER (FCUB AND CUBX) 75	

PROGRAM CUBOID (INPUT, OUTPUT, PUNCH)
COMMON/D1/IA,IB,IC,INDEX,IDET/D2/R(3),U(3), H(3)

COMMON/03/PM (1000), PN (1000), PO (1000),KZ/D4/BK,CIN
COMMON/DT/XL, XU,YL,YU,ZL,ZU, XE,YE, ZE
COMMON/D8/IBC
DIMENSION $X(11), Y(11), Z(11), L(10,10,10)$
CNOM (CX,CY, CZ, DX, DY, DZ $)=C X \approx D X+C Y \approx D Y+C Z \approx D Z$
C... READ IN THE DETAILS OF THE FIELD AND FIND A BASIS. THEN FIND THE
C...SMALLEST CUBOID CONTAINING THE FUNDAMENTAL REGION OF POINTS
C... (XC,YC,ZC) RELATIVE TO THE BASIS FOR WHICH $-0.5 \leq X C \leq 0.5 ;-0.5 \leq Y C \leq 0.5$;
....-0. $5 \leq 7 \mathrm{C} \leq 0.5$.
111 FORMAT(I6,I2,315)
READ 111,IDET, INDEX,IA,IB, IC
CALL BASIS
CALL BOUND (R,XL, XU)
$X F=X U-X L$
CALL GOUND $(U, Y L, Y U)$
$Y E=Y U-Y L$
CALL BOUND (H,ZL, ZU)
$Z E=Z U-Z L$
$\begin{array}{llll}X U=X E / 2.0 & \& & X L=-X U \\ Y U=Y E / 2.0 & \& & Y L=-Y U\end{array}$
ZU=ZF 12.0 \& $\mathrm{ZI}=-20$
116 FORMAT $/ /, 2 x$, *THE SMALLEST CUBOID WITH EDGES PARALLEL TO THE CO-ORD 1 INATE AXES*, $1,1 x$, , WHICH CONTAINS A FUNDAMENTAL REGION CONTAINS THO 2SE POINTS (X, Y, Z) WHERE*, $/, 5 X, * X$ IS BETWEEN*,F8.4,1X, "AND*,F8.4, /,
 4\%AND*,F8.4)
PRTNT $116, \mathrm{XL}, \mathrm{XU}, \mathrm{YL}, Y \mathrm{Y}, \mathrm{ZL}, \mathrm{ZU}$
C... THE SMALLEST CUBOID CONTAINING THE FUNDAMENTAL REGION IS GIVEN BY C... XL $\leq X \leq X U$, $Y L \leq Y \leq Y U$, $Z L \leq Z \leq Z U$.
C...READ IN THE DETAILS OF THE SUB-DIVISION.
C...FIND THE SUTTABLE INTEGER POINTS WITH COEFFICIENTS LESS THAN IBC.
C...INITIALIZE THE MARKER ARRAY L. SETTING L (I, J,K) TO 2 FOR THOSE
C...SUR-REGIONS OF THE CUBOID WHICH DO NOT INTERSECT THE FUNDAMENTAL
C...REGION AND TO 1 OTHERWISE.

112 FORMAT (F7.4)
READ 112,BK
READ 112,AM
CIN $=.1000$
119 FORMAT (I5)
READ 119,IBC
CALL USE
READ 119, LIMIT
DO $12 \mathrm{I}=1,10$
DO $12 \mathrm{~J}=1,10$
DO $12 \mathrm{~K}=6,10$
$12 \mathrm{~L}(\mathrm{I}, \mathrm{J}, \mathrm{K})=1$
DO $13 \quad \mathrm{I}=1,11$
$F I=F L O A T(I-1)$ \& $R X=F I * C I N$
$X(I)=X L+R X * X E \& Y(I)=Y L+R X * Y E £ Z(I)=Z L+R X * Z E$
13 CONTINUE $\mathrm{BDFT}=\mathrm{R}(1) * U(2) * H(3)+R(2) * U(3) * H(1)+R(3) * U(1) * H(2)-R(1) * U(3) * H(2)$
BDET=R (1)*U(2)*H(3)+R(2)*U(3)*H
$1-R(2) * U(1) * H(3)-R(3) * U(2) * H(1)$
$1-R(2) * U(1) * H(3)-R(3) * U(2) * H(1)$
$X 12=(U(1) * H(2)-U(2) * H(1)) / R D E T$
$X 12=(U(1) * H(2)-U(2) * H(1)) / B D E T$
$X 23=(U(2) * H(3)-U(3) * H(2)) / B D E T$
$\times 31=(U(3) * H(1)-U(1) * H(3)) / B D E T$
$Y 12=(H(1) * R(2)-H(2) * R(1)) / R D E T$
$Y 23=(H(2) * R(3)-H(3) * R(2)) / 8 D E T$
$Y 31=(H(3) * R(1)-H(1) * R(3)) / B D E T$
$Z 1 ?=(R(1) * U(2)-R(2) * U(1)) / B D E T$
$Z 1 ?=(R(1) * U(2)-R(2) * U(1)) /$ BDE
$Z 23=(R(2) * U(3)-R(3) * U(2)) / R D E T$
$Z 31=(R(3) * U(1)-R(1) * U(3)) /$ RDET
DO $35 \mathrm{I}=1,10$
$0025 \mathrm{~J}=1,10$
DO $15 \mathrm{~K}=6,10$
00 $36 \quad \mathrm{I} 1=1,2$
D0 $26 \mathrm{Jl}=1,2$
DO $16 \mathrm{~K} 1=1$, ?
$T 2=1+T 1-1 \quad$ € J2=J+J1-1 £ K2=K+K1-1
$X C=C N O M(X(I 2), Y(J 2), Z(K 2), X 23, Y 23, Z 23)$
$Y C=C N O M(X(I 2), Y(J 2), Z(K 2), X 31, Y 31, Z 31)$
$Z C=C N O M(X(12), Y(J 2), Z(K 2), X 12, Y 12, Z 12)$
IF ((ARS $(X C) . L E .0 .5)$.AND. (ABS (YC) .LE.0.5).AND. (ABS (ZC) .LE.0.5))
1 GO TO 15
16 CONTTNUE
26 CONTINUE
36 CONTINUE
$L(T, J, K)=$?
15 CONT INUE
25 CONTINUE
35 CONTINUE
C... NOW FIND WHICH REGIONS ARE LEFT UNCOVERED. BY ALTERATION OF BK,
C... IF NECESSARY, REDUCE THE NUMBER OF UNCOVERED REGIONS TO LESS THAN
C...LIMIT.
118 FORMAT $(/, 1 X$, *BK = *,F7.4)
8 PRINT 118, BK
CALL COVER (X,Y,Z,L,ICOUNT)
PRINT 113, ICOUNT
113 FORMAT ($1 x$, "THERE ARE NOW*, $15,1 x$, *UNCOVERED REGIONS*)
IF (ICOUNT.GT.LIMIT) GO TO 19
IF (ICOUNT.EQ.0) GO TO 3
201 FORMAT (I6)
PUNCH 201, IDET
101 FORMAT (1X, औTHESE HAVE VERTICES:
PRINT 101

DO $17 \quad \mathrm{I}=1,10$
$\begin{array}{lll}\text { DO } & 17 & \mathrm{~J}=1.10 \\ \text { DO } & 17 \mathrm{~K}=6.10\end{array}$
IF (1 (I, J, K) NF 1) GO TO 17
102 FORMAT $(2 X, 3 F 15.10)$ GO TO
PRINT $102, X(I), Y(J), Z(K)$
202 FORMAT (3F15.10)

17 CONTINUE
GO TO 3
19 IF (ICOUNT.LE. 100) GO TO G
$A N=A M$ \& GO TO 11 a $\quad \begin{array}{lll}11\end{array}$
$9 A N=0.1 \% A M$
11 BK=BK+CIN*AN \& GO TO 8
3 STOP
END

Tr=7it-7!

- $\rightarrow--$ - -

PROGRAM FCUB(INPUT, OUTPUT, PUNCH)

COMMON/D1/IA, IB, IC, INDEX,IDET/DZ/R (3), U(3), H (3)

COMMON/D3/PM (1000), PN(100
COMMON/D7/XI, XH,YL,YU,ZL, ZU, $\mathrm{XE}, Y E, Z E$,KZ/D4/BK,CIN
COMMON/O8/IRC
DIMENSION $X(11), Y(11), Z(11), L(10,10,10)$
CNOM (CX,CY,CZ,DX,DY,DZ) $=\mathrm{CX} \approx \mathrm{DX}+\mathrm{CY} \approx \mathrm{DY}+\mathrm{CZ} * D Z$
C... READ IN THE DETAILS OF THE FIELD AND FIND A BASIS. THEN FIND THE
C...SMALLEST CUBOID CONTAINING THE FUNDAMENTAL REGION OF POINTS
C... (XC,YC, ZC) RELATIVE TO THE BASIS FOR WHICH $-0.5 \leq X C \leq 0.5$;
C...-0. $5 \leq Y C \leq 0.5 ;-0.5 \leq Z C \leq 0.5$.

111 FORMAT (I6,I2,3I5)
READ 111, TDET, INDEX,IA,IB, IC
CALL RASIS
CALL ROUND (R, XL, XU)
$X E=X U-X L$
CALL ROUND (U,YL,YU)
$Y E=Y U-Y L$
CALE ROUND $(H, Z L, Z U)$
$\mathrm{ZE}=\mathrm{ZU}-\mathrm{ZL}$
$X U=X E / 2.0$ \& $X L=-X U$
$Y U=Y E / 2.0 \& Y L=-Y U$
$Z U=Z E / 2.0$ \& $Z L=-Z U$
C... READ THE DETAILS OF THE SUBDIVISION AND FIND THE SUTTABLE
C... INTEGER POINTS. THEN READ IN THE NUMBER OF REGIONS WHICH ARE
C...TO BE CONSIDERED.

112 FORMAT (F7.4)
READ 112,BK
READ $112, C I N$
119 FORMAT (I5)
READ 119, IBC
CALL USE
READ 119,LIMIT
READ $119, \mathrm{M}$
DO 3 ICT $=1$, M
C. . . NOW WORK THROUGH EACH REGION IN TURN. FIRST INITIALIZE THE MARKER
C. .. ARRAY L, SETTING L (I,J,K) TO 2 FOR THOSE SUBREGIONS OF THE
C...CUBOID WHICH DO NOT INTERSECT THE FUNDAMENTAL REGION AND TO 1 OTHERWISE.

120 FORMAT (3F15.10)
READ $120, \mathrm{XB}, \mathrm{YB}, \mathrm{ZB}$
121 FORMAT (/, $1 \times$, THE REGION BEING SUBDIVIDED HAS VERTEX*, $/, 1 \times, 3 F 15.10$)
PRINT $121, X B, Y B, Z B$
DO $13 \mathrm{I}=1,11$
$\begin{array}{ll}F T=F L O A T(I-I) & \& \\ X(I)=X R+R X * X E & Y(I)=Y R+R X * Y E \& Z(I)=Z B+R X * Z E\end{array}$
3 CONTINUE
$0012 \quad 1=1,10$
DO $12 \mathrm{~J}=1,10$
DO $12 K=1,10$
$12 L(I, J, K)=1$
BDET $=R(1) * U(2) * H(3)+R(2) * U(3) * H(1)+R(3) * U(1) * H(2)-R(1) * U(3) * H(2)$
$1-R(2) \approx U(1)$ *H(3)-R(3) \#U(2) *H(1)
$\times 12=(U(1) \mathrm{BH}(2)-U(2) \mathrm{sH}(1)) /$ RDE
$x 23=(U(2) \mathrm{F}+(3)-U(3) \mathrm{FH}(2)) /$ BDET
$\times 31=(U(3) * H(1)-U(1) * H(3)) /$ RDET
$Y 12=(H(1) * R(2)-H(2) * R(1)) /$ RDET
$Y 23=(H(2) * R(3)-H(3) * R(2)) /$ ADET
$Y 31=(H(3) \neq R(1)-H(1) \neq R(3)) /$ RDET
$Z 12=(R(1) * U(2)-R(2) * U(1)) /$ RDET
$Z 23=(Q(2) * U(3)-R(3) \approx U(2)) / B D E T$
$Z 31=(R(3) \nLeftarrow U(1)-R(1) * U(3)) /$ RDE
DO $41 \mathrm{I}=1,10$
$\begin{array}{lll}00 & 41 & I=1,10 \\ 00 & 31 & J=1,10\end{array}$
$\begin{array}{lll}\text { DO } & 21 & K=1,10\end{array}$
$\begin{array}{lll}\text { DO } & 21 & K=1,10 \\ \text { DO } & 42 & I 1=1,2\end{array}$
$\begin{array}{lll}\text { D0 } & 42 & I 1=1,2 \\ 00 & 32 & \mathrm{~J}=1 \\ 0 & 2 & \text { ? }\end{array}$
$0022 K 1=1,2$
$12=1+11-1$ £ J2=J+J1-1 £ K2=K+K1-1
$X C=C N O M(X(I 2), Y(J Z), Z(K 2), X 23, Y 23, Z 23)$
$Y C=\operatorname{CNOM}(X(I 2), Y(J Z), Z(K 2), X 31, Y 31, Z 31)$
$Z C=C N O M(X(I 2), Y(J 2), Z(K 2), X 12, Y 12 . Z 12)$
IF ((ABS (XC) .LE . 0.5) .AND. (ABS (YC) . LE.0.5).AND. (ABS (ZC) . LE •0.5))
$1 G 0$ TO 21
2 CONTINUE
32 CONTINUE
42 CONTINUE
$L(I, J, K)=己$
21 CONTINUE
31 CONTINUE
41 CONTINUE
C.. .NOW FIND WHICH SUB-REGIONS ARE LEFT UNCOVERED WITH THE GIVEN VALUE C...OF RK. IF THIS NUMBER IS LESS THAN OR EQUAL TO LIMIT THEN PRINT C....OUT THE VERTICES OF THE UNCOVERED REGIONS.

CALL $\operatorname{COVER}(X, Y, Z, L, I C O U N T)$
113 FORMAT ($1 x$, IT CONTAINS*, $15,1 x$, *UNCOVERED REGIONS*)
PRINT 113. ICOUNT
IF (ICOUNT.EQ.O) GO TO 3
IF (ICOUNT.GT.LIMIT) GO TO 3
101 FORMAT ($1 \times$. \$THESE HAVE VERTICES*)
PRINT 101
201 FORMAT(16)
PUNCH 201,IDET
DO $17 \mathrm{I}=1,10$
DO $17 \mathrm{~J}=1,10$
DO $17 \mathrm{~K}=1,10$

IF (L (I, J,K) , NE. 1) GO TO 17
102 FORMAT $(2 X, 3 F 15.10)$
PRTNT $102, X(I), Y(J), Z(K)$
105
PUNCH $120, X(I), Y(J), Z(K) \square-\square$
17 CONTINUE
CONTINUE
STOP
END

\square
516
$3+2$
\qquad
\square
\square

...

D0.37

PROGRAM CURX (INPUT, OUTPUT, PUNCH)
COMMON/DI/TA,IR, IC, INDEX, IDET/D2/R (3),U(3), H(3)
COMMON/D3/PM (1000$),$ PN $(1000), P 0(1000), K Z / D 4 / B K, C I N$
COMMON/OT/XL, XU,YL,YU,ZL, ZU, XE,YE, ZE
COMMON/DR/IBC
DIMENSION $X(11), Y(11), Z(11), L(10,10,10)$
$\operatorname{CNOM}(C X, C Y, C Z, D X, D Y, D Z)=C X * D X+C Y * D Y+C Z * D Z$
C. . PEAD IN THE DETAILS OF THE FIELD AND FIND A BASIS. THEN FIND THE
C... SMALLEST CUBOID CONTAINING THE FUNDAMENTAL REGION OF POINTS
C... (XC,YC,7C) RELATIVE TO THE BASIS FOR WHICH $-0.5 \leq X C \leq 0.5$;
C... $-0.5 \leq Y C \leq 0.5 ;-0.5 \leq Z C \leq 0.5$.
iil FORMAT (I6,12,315)
READ 111, IDET, INDEX, IA, IB, IC
CALL BASIS
CALL $\operatorname{BOUND}(R, X L, X U)$
$X E=X U-X L$
CALL ROUND $(U, Y L, Y U)$
$Y E=Y H-Y L$
CALL BOUNO (H,ZL, ZU)
ZE=ZU-ZL
$X U=X E / 2.0$ \& $X L=-X U$
$Y U=Y F / 2.0$ \& $Y L=-Y U$
$Z U=Z E / 2.0$ \& $Z L=-Z U$
C... READ IN THE DETAILS OF THE SUBDIVISION AND FIND THE SUITABLE
C. . INTEGER POINTS. THEN READ IN THE NUMBER OF REGIONS WHICH ARE
C...TO BE CONSIDERED.

112 FORMAT (F7.4)
READ 112 ,BK
READ $112 . C$ C
119 FORMAT (I5)
READ 119, TBC
CALL USE
READ 119.M
DO 3 TCT $=1, \mathrm{M}$
C... NOW WORK THROUGH EACH REGION IN TURN. FIRST INITIALIZE THE MARKER
C. .. ARRAY L, SETTING L (I,J,K) TO 2 FOR THOSE SUBREGIONS OF THE
C...CUBOID WHICH DO NOT INTERSECT THE FUNDAMENTAL REGION AND TO 1 OTHERWISE,

120 FORMAT (3F 15.10)
READ $120, X B, Y B, Z B$
121 FORMAT ($/, 1 x$, *THE REGION BEING SUBDIVIDED HAS VERTEX*, /, $1 X, 3 F 15.10$)
PRINT $121, \mathrm{XB}, \mathrm{YB}, \mathrm{ZB}$
D0 $13 \mathrm{I}=1,11$
$\mathrm{FI}=\mathrm{FLOAT}(I-1) € R X=F I * C I N$
$X(I)=X B+R X * X E \& Y(I)=Y B+R X * Y E \& Z(I)=Z B+R X * Z E$
13 CONTINUE
DO $12 \mathrm{I}=1,10$

DO $12 \mathrm{~J}=1,10$
DO 12 $K=1,10$
$12 L(I, J, K)=1$
BDET $=R(1) * U(2) * H(3)+R(2) * U(3) * H(1)+R(3) * U(1) * H(2)-R(1) * U(3) * H(2)$
$1-R(2) \approx U(1) * H(3)-R(3) \approx U(2) * H(1)$
$x 12=(U(1) * H(2)-U(2) * H(1)) / B D E T$ $\times 23=(1)(2) A H(3)-U(3) \# H(2)) / B D E T$ $\times 31=(U(3) * H(1)-U(1) * H(3)) /$ RDET $Y 12=(H(1) * R(2)-H(2) * R(1)) / B D E T$ $Y 23=(H(2) * R(3)-H(3) * R(2)) / B D E T$ $Y 31=(H(3) \Rightarrow R(1)-H(1) \Rightarrow R(3)) / B D E T$ $Z 12=(R(1)$ * $U(2)-R(2) * U(1)) / R D E T$ $Z 23=(R(2)$ 解 (3) $-R(3) \approx U(2)) /$ RDET $Z 31=(R(3) * U(1)-R(1) * U(3)) /$ RDET
DO $41 \mathrm{I}=1,10$
DO $31 \quad J=1,10$
$\begin{array}{lll}\text { DO } & 31 & J=1,10 \\ D 0 & 21 & K=1,10\end{array}$
$\begin{array}{lll}\text { DO } & 21 & K=1,10 \\ D 0 & 42 & 11=1, \text { ? }\end{array}$
$\begin{array}{lll}\text { DO } & 42 & 11=1,2 \\ D 0 & 32 & J 1=1,2\end{array}$
D0 $22 \quad K 1=1$,
$12=\mathrm{I}+\mathrm{T} 1-1$ \& $\mathrm{J} 2=\mathrm{J}+\mathrm{J} 1-1$ £ $\mathrm{K} 2=\mathrm{K}+\mathrm{K} 1-1$
$X C=C N O M(X(I 2), Y(J Z), Z(K 2), X 23, Y 23, Z 23)$
$Y C=C N O M(X(12), Y(J 2), Z(K 2), X 31, Y 31, Z 31)$
$Z C=\operatorname{CNOM}(X(12), Y(J 2), Z(K 2), X 12, Y 12, Z 12)$
$\operatorname{IF}(A B S(X C) . G T \cdot 0.5)$ GO TO 22
IF (ABS (YC).GT.0.5) GO TO 22
IF (ARS (ZC).LE.O.5) GO TO 21
22 CONTINUE
32 CONTINUE
42 CONTINUE
$L(T, J, K)=$
2) CONTINUE

31 CONTINUE
41 CONTINUE
C... NOW FIND WHICH SUB-REGIONS ARE LEFT UNCOVERED WITH THE GIVEN VALUE C...OF BK. IF THIS NUMBER IS LESS THAN OR EQUAL TO LIMIT THEN PRINT
C...BOUNDS FOR THE REGION CONTAINING THE UNCOVERED REGIONS.

CALL COVER $(X, Y, Z, L$, ICOUNT)
113 FORMAT ($1 \times$, IT CONTAINS*, $15.1 x$, *UNCOVERED REGIONS*)
PRINT 113. ICOUNT
IF (ICOUNT.EQ.0) GO TO 3
101 FORMAT ($1 X$, "THESE HAVE VERTICES BETWEEN*) PRINT 101
201 FORMAT (I6)
PUNCH 201,IDET
$X L W=10.0$ £ $X U P=-10.0$
$Y L W=10.0$ \& $Y U P=-10.0$
$Z L W=10.0$ \& $Z U P=-10.0$
DO $17 \mathrm{I}=1,10$

DO $17 \mathrm{~J}=1,10$
$00 \quad 17 \mathrm{~K}=1,10$
IF (L(T,J,K),NE.1) GO TO 17
IF $(X(I) \cdot L T \cdot X L W) \quad X L W=X(I)$
$I F(X(I) . G T, X U P) \quad X U P=X(I)$
$\operatorname{IF}(Y(J) \cdot L T \cdot Y L W) \quad Y L W=Y(J)$
IF $(Y(J), G T, Y U P) \quad Y U P=Y(J)$
IF $(Z(K) \cdot L T \cdot Z L W) \quad Z L W=Z(K)$
IF (Z(K),GT, ZUP) $\quad Z U P=Z(K)$
901 FORMAT $(/, 5 X$, AZ, $2 F 15.10)$
$A X=2 H X: £ A Y=2 H Y: £ A Z=2 H Z:$
PRINT 901, AX,XLW,XUP
PRINT 901. AY, YLW, YUP
$X U P=X U P+C I N * X F$ \& $Y U P=Y U P+C I N * Y E$ \& $Z U P=Z U P+C I N * Z E$
904 FORMAT ($/$, $\%$ GIVING LOWER AND UPPER BOUNDS RESPECTIVELY ON $X, Y, Z: *)$
PRINT 904
902 FORMAT $(5 X, 3 F 15.10)$
PRINT 902, XLW,YLW,ZLW
PRINT 902, XUP, YUP,ZUP
903 FORMAT (3F15.10)
PUNCH $903, X \mathrm{LLW}, \mathrm{YLW}, \mathrm{ZLW}$
PUNCH 903,XUP, YUP, ZUP
3 CONTINUE
STOP
END

SUBROUTINE BASI

COMMON/DI/IA,IB, IC. INDEX,IDET/DC/R(3),U(3), H(3)
(
C...FIND $H(2)$ WHERE THE FIELD IS $K(H(2))$ AND ALSO $R(2)$ AND $U(2)$ WHERE
C...R(2) + I.U(2) AND $R(2)-I . U(2)$ ARE THE CONJUGATES OF $H(2)$
$\mathrm{V} 1=-\left(B-\left(A W^{*} \mathrm{C}\right) / 3.0\right) / 3.0$
$V P=-(\Delta * R / 3,0-2,0 * \Delta * * 3 / 27,0-C)$
$\mathrm{V} 3=S O R T(V 2 * * 2-4.0 * \mathrm{~V} 1 * * 3)$
$V_{4}=(V 2+V 3) / 2.0$
$V 5=(V \geqslant-V 3) / 2.0$
IF (V4.NE.0.0) GO TO $51 \quad \mathrm{~V} \quad \mathrm{~L}$
$510=1.0$
IF (V4.GE.0.0) GO TO 53
$\mathrm{V} 4=-\mathrm{V} 4 \quad \mathrm{E}: D=-1.0$
$53 \mathrm{VG}=\mathrm{FXP}((\mathrm{ALOG}(\mathrm{V} 4)) / 3.0) \% \mathrm{D}$
52 IF (V5.NE,0.0) GO TO 54
$V 7=0.0$ \& GO TO 55
$54 D=1.0$
IF (V5.GE.0.0) GO TO 56
$V 5=-V 5$ \& $D=-1.0$
$56 \mathrm{~V} 7=E X P((A L O G(V 5)) / 3.0) * D$
$55 H(2)=V 6+V 7+A / 3.0$
$R(2)=(A-H(2)) / 2.0$
$U(2)=\operatorname{SQRT}(C / H(2)-R(2) * * 2)$
$H(1)=1.0 £ R(1)=1.0 £ U(1)=0.0$
C...(R(1),U(1),H(1))=(1,0,1) IS THE LATTICE POINT CORRESPONDING TO UNITY
C...FIND T AND S WHERE $Y=(H(2) \uparrow 2+T . H(2)+S) /$ INDEX IS SUCH THAT
C... (1,H(2),Y) IS A BASIS OF THE FIELD.
IF (INDEX.NE. 1) GO TO 57
$57 \mathrm{~K} 1=1 \mathrm{~A}$ *2-2*IB \& K4=IB**2-2*IA*IC \& K $5=1 A * I B-3 * I C$
IN2=IN**2 \& IN3=IN2*IN
DO 59 ITC $=1$, IN
IT $=\mathrm{ITC}-1$

IS $=1 S C-1$
$J A=K I+I T$ * $I A+3 * I S$
IF (MOD (JA,IN). NE • O) GO TO 60
$J B=K 4+I T * * 2 * I B+3 * I S * 2+I T * K 5+2 * I S * K I+2 * I S * I T * I A$
IF (MOD (JB, IN2) . NE . 0) GO TO 60

IF (MOD(JC, IN3) . NE.O) GO TO 60
$T=F I O A T$ (IT) \& $S=F L O A T(I S) ~ \& ~ G O ~ T O ~ 58$
60 CONTINUE
60 CONTINUE
$58 \times I N=F L O A T$ (INDEX)

```
        H(3)=(H(2)**2+T*H(2)+5)/XIN
        R(3)=(R(2)**2-U(2)**2+T*R(2)+S)/XIN
        O(3)=(2.0*R(2)*U(2)+T*U(2))/XIN
    C...R(3)+T.U(3) AND R(3) -I.U(3) ARE THE CONJUGATES OF H(3)
                IDETM=-IDET
                PRINT 501,IDETM,INDEX,IA,IR,IC,H(2),T,S,H(3)
        501 FORMAT (1H1, 1X, #THE FIELD HAS DISCRIMINANT*, I7, * INDEX*,I4, /, 1X, *AN
            10 POLYNOMIAL COEFFICIENTS A =*, I 4,* }\textrm{B}=\stackrel{*}{*},\textrm{I}4,* C=*,I4,//, 2X,*A BASIS
                ZFOD THIS FIELD IS (1,H+L), L= (H.H+T.H+S)/INDEX,*,/,lX,*WHERE H=*,
                3F7.4.* T=*,F6.1, * S=*,F6.1, * AND L=*,F7.4)
        C...FROM THE BASIS FOUND ABOVE FIND ANOTHER SUCH THAT THE FUNDAMENTAL
        C...REGION IS ALMOST RECTANGULARI
            IO=1
            IF((R(2)+H(2)) .LT.0.0) ID=-1
            IAK=IFIX(R(2)+H(2))
            IF (MOD(IAK*2) NE,0) IAK=IAK+ID
            AK=FLOAT (TAK)/2.0
            AI=R(3)+H(3) £ B1=R(2)+H(2) £ C1=2.0
            A2=R(3)*(R(2)-AK)+U(2)*U(3)+H(3)*(H(2)-AK)
            B2=R(2)*(R(2)-AK)+U(2)*U(2)+H(2)*(H(2)-AK)
            C2=R(2)+H(2)-2.0%AK
            DET=81*C2-82*Cl
            P=(A1*C2-A2*C1)/DET
            0=(B1*AC-B2*A1)/DET
            DP=DQ=1.0
            IF(P.LT.0.0) DP = - 1.0
            IF (0.LT.0.0) DO=-1.0
            IP=IFIX(P) & AP=FLOAT (IP)
            IF (ARS (P-AP),GT.0.5) AP=AP+DP
            IQ=IFIX(Q) & AQ=FLOAT (IQ)
            IF (ABS (Q-AO).GT.0.5) AQ=AQ+DQ
            R(3)=R(3)-AP*R(2)-AQ
            U(3)=U(3)-AP*U(2)
            H(3)=H(3)-AP*H(2)-AO
            R(2) =R (2) -AK
            H(2)=H(2)-AK
        502 FORMAT (/,2X, #THE NEW BASIS IS 1,H-AK,L-AP.H-AQ WHERE AK=*,F6.1,
            1*AP=*,F6.1,* AQ=*,F6.1)
            PRINT 502,AK,AP,AQ
        503 FORMAT(1X,*THUS GIVING THE BASIS FOR THE LATTICE OF INTEGERS*)
            PRTNT 503
        504 FORMAT(1X,3F15.10)
            DO 61 I=1,3
            61 PRINT 504,R(I),U(I),H(I)
            RETURN
            ENO
```


SUBROUTINE USE

COMMON/D2/R(3),U(3),H(3)/D3/PM(1000), PN (1000), PO (1000), KZ COMMON/D4/BK,CIN/D7/XL,XU,YL,YU,ZL,ZU, XE,YE,ZE
COMMON/D8/IRC
C...FIND THE BOUNDS ON THE CARTESIAN CO-ORDINATES OF 'SUITABLE'
C... TNTEGER POINTS
$X Y M=A M A X I$ (XE, YE)
SOT $1=$ SQRT $(2.0 * B K /(C I N * Z E))$
SQT $2=4.0$ *BK / ((CIN*XYM) **2
$A 1=X L-S Q T 1 \& A Z=X U+S Q T 1$
$B 1=Y L-S Q T 1 \& B 2=Y U+S Q T 1$
$\mathrm{Cl}=\mathrm{ZL}-\mathrm{SQTZ}$ \& $\mathrm{C} 2=Z \mathrm{U}+\mathrm{SQTZ}$
C...WORK THROUGH ALL THE INTEGER POINTS WITH COEFFICIENTS LESS THAB IBC C... IN ABSOLUTE VALUE. STARTING WITH THOSE INEAREST' TO THE
C...FUNDAMENTAL REGION.
$\mathrm{KZ}=0$
$I B C T=3 * I B C+1$ \& $I B C P=I B C+1$
DO 35 ISIG=1, IBCT
IMU $=$ MINO (ISIG,IBCP)
DO 31 IM21=1, IMU
IM2=IM21-1
INU=MINO ((ISIG-IMZ), IBCP)
DO 30 IN21=1, INU
IN2 $=$ IN21-1
IO2=ISIG- (IM2 + IN2 + 1$)$
IF (IO2.GT.IBC) GO TO 30
DO 41 IMT=1,?
IMM $=1$
IF (IMT.EQ.2) IMM $=-1$
DO 42 INT $=1$, 2
I $\mathrm{NN}=1$
IF (INT.EQ.2) INN=-1
DO 37 IOT=1, ?
$I O 0=1$
IF (IOT.EQ. 2) IOO=-1
$I M I=I M M * I M 2 \& \quad I N I=I N N * I N 2 \& \quad I O 1=I 00 * I O 2$
$R M=F L O A T(I M 1) £ R N=F L O A T$ (IN1) £ RO=FLOAT (IO1)
IF (KZ.EQ.0) GO TO 36
C... TEST TO SEE THAT THIS INTEGER IS NOT ALREADY IN THE LIST, WHICH
C... MAY HAPPEN WHEN ONE OF THE COEFFICIENTS IS ZERO
$I Z 2=M A X 0(1,(K Z-8))$
DO $39 \mathrm{JZ}=1 Z 2, K Z$
IF ((RM•EQ.PM(JZ)).AND•(RN•EQ.PN(JZ)).AND.(RO.EQ.PO(JZ))) GO TO 37
39 CONTINUE
C..TEST TO FIND WHETHER THF INTEGER IS ISUITABLE
$36 \mathrm{RJ}=C I(R M, R N, R O, R) £ U J=C I(R M, R N, R O, U) £ H J=C I(R M, R N, R O, H)$
IF (RJ.LT. (XL-0.1)) GO TO 34 £ IF (RJ.GT. (XU+0.1)) GO TO 34
32 IF (UJ.LT. $(Y L-0.1))$ GO TO 34 £ IF (UJ.GT. $(Y U+0.1))$ GO TO 34

IF (HJ.LT.C1) GO TO 34 £ IF (HJ.LT.C2) GO TO 33
34 IF (HJ.LT. (ZL-0.1)) GO TO 37 £ IF (HJ.GT. (ZU+0.1)) GO TO 37 IF (RJ.LT.A1) GO TO 37 £ IF (RJ.GT.AC) GO TO 37
IF (UJ.LT.B1) GO TO 37 £ IF (UJ.GT.B2) GO TO 37
$33 K Z=K Z+1$ £ $P M(K Z)=R M \& P N(K Z)=R N £ P O(K Z)=R O$
C...TEST WHETHER THE ARRAYS HOLDING THE INTEGERS ARE 'FULL'. IF (KZ.GE. 1000) GO TO 40
37 CONTINUE
37 CONTINUE
42 CONTINUE
30 CONTINUE
31 CONTINUE
35 CONTINUE
302 FORMAT $(/, 2 x$, *FOR DISSECTING THE FUNDAMENTAL REGION INTO ($1 / C I N$) 43 ISUB-REGIONS WHERE CIN $=\stackrel{3}{3}, F 7.4,1,1 \times$, \#AND TAKING THE VALUE OF BK TO B 2E*,F7.4,*, THEN*, I5,* INTEGER POINTS ARE USED*)
40 PRINT 302,CIN, BK,K7
RETURN
END

SUBROUTINE BOUND (R,AL,AU)
C...AL IS THE MINIMUM OF THE EIGHT 'R' CO-ORDINATES AND AU IS THE
C...MAXIMUM.

OTMENSION R(3)
$A R G 1=R(1)+R(2)$ £ $A R G 2=R(2)+R(3) £ A R G 3=R(3)+R(1)$
$A R G 4=R(1)+R(2)+R(3) \quad$
$A L=A M T N 1(Z E R O, R(1), R(2), R(3), A R G 1, A R G 2, A R G 3, A R G 4)$
$A U=A M A X 1(Z E R O, R(1), R(2), R(3), A R G 1, A R G 2, A R G 3, A R G 4)$ RETURN
ENO

SUBROUTINE COVER $(X, Y, Z, L, I C O U N T)$

COMMON/D2/R (3), U(3), $\mathrm{H}(3) / \mathrm{D} 3 / \mathrm{PM}(1000), \mathrm{PN}(1000), \mathrm{PO}(1000), K Z$ COMMON/D4/BK,CIN

DIMENSION X(11), Y(11),Z(11), L (10,10,10)
C...FOR EACH INTEGER SET THE L MARKERS OF THE REGIONS WHICH IT COVERS
C...TO ZERO AND COUNT THE NUMBER OF REMAINING UNCOVERED REGIONS

DO $13 \mathrm{IE}=1, \mathrm{~K} 7$
$P X=C I(P M(I E), P N(I E), P O(I E), R)$
$P Y=C I(P M(I E), P N(I E), P O(I E), U)$
$P 7=C I(P M(I E), P N(I E), P O(I E), H)$
ICOUNT $=0$
$0020 \quad \mathrm{I}=1,10$
$0019 \mathrm{~J}=1,10$
DO $18 \mathrm{~K}=6$, 10
IF (L(I,J,K).NE.1) GO TO 18
$X D=\operatorname{AMAXI}(\operatorname{ABS}(X(I)-P X), \operatorname{ABS}(X(I+1)-P X))$
$Y D=A M A X 1(A B S(Y(J)-P Y), A B S(Y(J+1)-P Y))$
$7 D=A M A X 1(A B S(7(K)-P 7), A B S(7(K+1)-P Z))$
$T D=Z D *(X D * 2+Y D * 2)$
IF (TD.LT.BK) GO TO 12
I COUNT $=$ ICOUNT +1 \& GO TO 18
$12 L(I, J, K)=0$
18 CONTINUE
19 CONTINUE
20 CONTINUE
C...IF ALL THE REGIONS ARE NOW COVERED RETURN TO THE MAIN PROGRAM. IF (ICOUNT.EQ.0) GO TO 15
13 CONTINUE
15 RETURN
END

FUNCTION CI (X, Y, Z, R)

C...THIS GIVES THE 'R' CO-ORDINATE OF THE POINT WITH COEFFICIENTS (X, Y, Z) DIMENSION R(3)
$C I=X * R(1)+Y * R(2)+Z * R(3)$
RE TURN
END

SUBROUTINE COVER $(X, Y, Z, L, I C O U N T)$

COMMON/D2/R(3),U(3),H(3)/D3/PM(1000),PN(1000),PO(1000),KZ COMMON/D4/BK,CIN

$$
\begin{aligned}
& \text { DIMENSION } X(11), Y(11), Z(11) \\
& \text { C. . FOR EACH INTEGER SET THE L MA }
\end{aligned}
$$

OR THE L MARKERS OF THE REGIONS WHICH IT COVERS
C...TO ZERO AND COUNT THE NUMBER OF REMAINING UNCOVERED REGIONS.

DO $13 \mathrm{IE}=1, \mathrm{KZ}$
$P X=C I(P M(I E), P N(I E), P O(I E), R)$
$P Y=C I(P M(I E), P N(I E), P O(I E), U)$
$P Z=C I(P M(I E), P N(I E), P O(I E), H)$
I COUNT $=0$
DO $20 \quad \mathrm{I}=1,10$
DO $19 \mathrm{~J}=1,10$
IF (L(I,J,K) .NE. 1$)$ GO TO 18
$X D=A M A X I(\operatorname{ABS}(X(I)-P X), A B S(X(I+1)-P X))$
$Y D=A M A X 1(A B S(Y(J)-P Y), A B S(Y(J+1)-P Y))$
$Z D=A M A X 1(A B S(Z(K)-P Z), A B S(Z(K+1)-P Z))$
$T D=Z D *(X D * * 2+Y D * * 2)$
IF (TD. LT. BK) GO TO 12
ICOUNT $=$ I COUNT+1 E GO TO 18
$12 \mathrm{~L}(\mathrm{I}, \mathrm{J}, \mathrm{K})=0$
18 CONTINUE
19 CONTINUE
20 CONTINUE
C... IF ALL THE REGIONS ARE NOW COVERED RETURN TO THE MAIN PROGRAM. IF (ICOUNT.EQ.0) GO TO 15
13 CONTINUE
15 RETUR ENO

THE PROGRAM TRANS

SUBROUTINES

IN THIS SECTION IN PREVIOUS SECTION

ADJ	81	BASIS	68
UPLW	82	CI	74

PROGRAM TRANS (INPUT, OUTPUT)
C. . THIS PROGRAM TRANSFORMS THE N UNCOVERED REGIONS AND DETERMINES THE
C... INTERSECTION OF THE TRANSFORMS WITH THE ORIGINAL REGIONS.

COMMON/DI/IA, IB, IC, INDEX, IDET/DZ/R (3) , U(3), H (3)
DIMENSION $X(2,100), Y(2,100), Z(2,100)$
C...(R(I),U(I),H(I)) $I=1,3$ IS A RASIS FOR THE LATTICE OF INTEGERS.
C... A MAXIMUM OF 100 UNCOVERED REGIONS MAY BE CONSIDERED WHERE THE ITH
C... REGION HAS LOWER LIMITS ON ITS CARTESIAN CO-ORDINATES
C... $(X(1, I), Y(1, I), Z(1, I))$ AND UPPER LIMITS $(X(2, I), Y(2, I), Z(2, I))$. $C N O M(C X, C Y, C Z, D X, D Y, D Z)=C X * D X+C Y * D Y+C Z * D Z$
C... THIS FUNCTION IS USED TO CALCULATE THE CO-ORDINATES OF A POINT
C... RELATIVE TO THE BASE WHEN ITS CARTESIAN CO-ORDINATES ARE KNOWN.
C... READ THE DETAILS OF THE FIELD.

READ 100 ,IDET, INDEX, IA, IB, IC
100 FORMAT (I6, I2,3I5) CALL BASIS
C... THE COEFFICIENTS OF THE FUNDAMENTAL UNIT RELATIVE TO THE BASIS
C...(H(1),H(2),H(3)) FOR THE FIELD ARE READ.

READ 101, EXC, EYC, EZC
101 FORMAT (3F15.10)
C. . THE CARTESIAN THEN THE CYLINDRICAL POLAR CO-ORDINATES OF THE
C...FUNDAMENTAL UNIT ARE NOW CALCULATED.
$E X=C I(E X C, E Y C, E Z C, R)$
$E Y=C I(E X C, E Y C, E Z C, U)$
$E Z=C I(E X C, E Y C, E Z C, H)$
$E R=S Q R T(E X * E X+E Y * E Y)$
$E A L P=A T A N Z(E Y, E X)$
112 FORMAT $(/, 47 \mathrm{H}$ THE UNIT HAS CO-ORDINATES RELATIVE TO THE BASE, $13 \mathrm{~F} 15.10, /, 23 \mathrm{H}$ CARTESIAN CO-ORDINATES, 3F $15.10,1,35 \mathrm{H}$ AND CYLINDRICAL 2 POLAR CO-ORDINATES, 3F 15.10)
PRINT 112 , EXC, EYC, EZC, EX, EY, EZ, ER, EALP, EZ
C... READ N, THE NUMBER OF REGIONS TO BE CONSIDERED, THEN THE BOUNDS ON
C... THEIR CARTESIAN CO-ORDINATES.

READ 102,N
102 FORMAT (I5)
DO $50 \mathrm{I}=1$, N
DO $51 \mathrm{~J}=1$, 2
READ $101, X(J, I), Y(J, I), Z(J, I)$
$X(J, I)=\operatorname{DCORR}(X(J, I), J)$
$Y(J, I)=\operatorname{DCORR}(Y(J, I), J)$
$Z(J, I)=\operatorname{DCORR}(Z(J, I), J)$
51 CONTINUE
50 CONT INUE
DET=FLOAT (IDET)
BDET = SQRT (DET) $/ 2.0$
C. . . BDET IS THE DETERMINANT OF THE REAL LATTICE. THE FOLLOWING NINE
C... VALUES ARE FOR USE IN CALCULATING COEFFICIENTS RELATIVE TO THE BASE
C...FROM CARTESTAN CO-ORDINATES.
$\times 12=A D J(U, H, 1,2) / B D E T$
$\times 23=A D J(U, H, 2,3) /$ BDE T
$\times 31=A D J(U, H, 3,1) / B D E T$
$Y 12=A D J(H, R, 1,2) / B D E T$
$Y 23=A D J(H, R, 2,3) / B D E T$ $Y 31=A D J(H, R, 3,1) / B D E T$
Z12=ADJ $(R, U, 1,2) / B D E T$
$223=A D J(R, U, 2,3) / B D E T$
$Z 31=A D J(R, U, 3,1) / B D E T$
C... READ MI,MZ WHERE REGIONS M1 UP TO MZ ARE TO BE CONSIDERED IN THIS
C...RUN.

READ 102,M1
READ $102, M 2$
104 FORMAT (3H1 R,I3)
DO ? $\mathrm{T}=\mathrm{M1}, \mathrm{M} 2$
C...WORK THROUGH THE REGIONS ONE BY ONE.

PRINT 104 , I
C...FIRST FIND THE CYLINDRICAL POLAR CO-ORDINATES OF THE VERTICES OF THE
C...ITH REGION AND THEN THE CO-ORDINATES OF THE VERTICES OF THE TRANSFORM

DO $4 \mathrm{II}=1$, 2
$05 \mathrm{JJ}=1$,
$R A=S O R T(X(I I, I) \# X(I I, I)+Y(J J, I) * Y(J J, I))$
$A L P=A T A N Z(Y(J J, I), X(I I, I))$
$T R A=R A * E R$
$T A L P=A L P+E A L P$
$T X=T R A * C O S$ (TALP)
$Y=T R A * S I N(T A L P)$
$006 \mathrm{KK}=1$, 2
C. . NOW FTND THE CO-ORDINATES RELATIVE TO THE BASE OF THIS VERTEX OF C.. THE TRANSFORM
$T X C=\operatorname{CNOM}(T X, T Y, T Z, X 23, Y 23, Z 23)$
TYC $=\operatorname{CNOM}(T X, T Y, T Z, X 31, Y 31, Z 31)$
$T Z C=$ CNOM (TX,TY,TZ,X12,Y12,Z12)
PRINT 113, X (II, I), Y(JJ,I), Z(KK,I), RA, ALP, Z (KK,I), TRA,TALP,TZ,TX,
TY,TZ,TXC,TYC,TZC
113 FORMAT $/ /, 38 H$ THE POINT WITH CARTESIAN CO-ORDINATES, $3 F 15.10, /$, 135 H HAS CYLINDRICAL POLAR CO-ORDINATES, 3F $15.10, /, 64 \mathrm{H}$ IT IS TRANSFO ZRMED INTO THAT WITH CYLINDRICAL POLAR CO-ORDINATES, 3F15.10,1,
333 H WHICH HAS CARTESIAN CO-ORDINATES, $3 \mathrm{~F} 15.10, /, 38 \mathrm{H}$ AND CO-ORDINATE
4 S RELATIVE TO THE BASE, 3F 15.10)
C... $X L, Y L, Z L$ ARE TO BE THE LOWER LIMITS ON THE CARTESIAN CO-ORDINATES OF
C...REGION I AND XU,YU,ZU THE UPPER LIMITS. XLC,YLC,ZLC AND XUC,YUC,ZUC
C... ARE TO BE THE BOUNDS ON THE CO-ORDINATES RELATIVE TO THE BASE.

IF (TI.NE. 1) GO TO 7
IF (JJ.NE • 1) GO TO 7
IF (KK.NE. 1) GO TO 7
$X L=X U=T X \quad \& \quad Y L=Y U=T Y \& \quad Z L=T Z$
$X L C=X U C=T X C$ \& YLC=YUC=TYC \& ZLC=ZUC=TZC
GO TO 6
7 IF (KK.EQ.2) GO TO 9

CALL UPLW (YL, YU,TY)
9 IF (II.NE. 1) GO TO 8 IF (JJ.NE. 1) GO TO 8 $Z \mathrm{O}=\mathrm{TZ}$
C... NOW FIND THE LIMITS ON THE CO-ORDINATES RELATIVE TO THE BASE OF C... THE INTEGERS TO BE USED IN TRANSLATING THIS REGION BACK ON TO THE
C...FUNDAMENTAL REGION

CALL ROUNDI (XLC, IXL)
CALL ROUNDI (XUC, IXU)
CALL QOUNDI (YLC. IYL
CALL ROUNDI (YUC, IYU)
CALL ROUNDI (ZLC, IZL)
CALL ROUNOI (ZUC, IZU)
PRINT $114, X L, Y L, Z L, X U, Y U, Z U, I X L, I Y L, I Z L, I X U, I Y U, I Z U$
114 FORMAT $(/ /, 5 x, 1 H L, 3 F 20.10, /, 5 X, 1 H U, 3 F 20.10, /, 13 H$ INTEGERS: L,3I6,/
$1,12 \mathrm{X}, 1 \mathrm{HU}, 3 \mathrm{I} 6)$
IFLAG=0
C...IFLAG=0 WHEN NO REGION HAS BEEN FOUND WHICH INTERSECTS WITH A
C... TRANSLATE OF THE TRANSFORM OF REGION I, IFLAG=1 WHEN AT LEAST ONE
C... SUCH REGION HAS BEEN FOUND. FOR EACH POSSIBLE TRANSLATING INTEGER
C.. . NOW FIND WHICH REGIONS INTERSECT.

LEXTT $=I X U-I X L+1$ \& MEXTT=IYU-IYL $+1 \&$ NEXTT $=I Z U-I Z L+1$
RLAST $=F L O A T(I X L)-1.0 £ \operatorname{RMAST}=F L O A T(I Y L)-1.0 £ R N A S T=F L O A T(I Z L)-1.0$
RL=RL AST
DO $10 \mathrm{JL}=1$, LEXTT
$\mathrm{RL}=\mathrm{RL}+1.0$
$\mathrm{IL}=\mathrm{IF} \mathrm{I} \times(\mathrm{RL})$
RM=RMAST
DO 11 JM=1,MEXTT
$R M=R M+1.0$
IM = IF IX (RM)
$R N=R N A S T$
DO $12 \mathrm{JN}=1$, NEXTT
$\mathrm{RN}=\mathrm{RN}+1.0$
$\mathrm{IN}=\mathrm{I} F I \times(\mathrm{RN})$
$Z C=C I(R L, R M, R N, H)$
$X C=C I(R L, R M, R N, R)$
$Y C=C I(R L, R M, R N, U)$
C...FOR THIS INTEGER RUN THROUGH THE ORIGINAL UNCOVERED REGIONS.

DO $15 \mathrm{~J}=1$, N
C... CALCULATE THE BOUNDS ON THE TRANSLATE OF ORIGINAL REGION J BY
C...THE INTEGER (L, M,N)
$Z U C=Z(2, J)+Z C$ \& $Z L C=Z(1, J)+Z C$
150
$Y U C=Y(2, J)+Y C$ \& $Y L C=Y(1, J)+Y C$
$M J=J$
C...MJ IS SET TO J WHEN CONSIDERING THE JTH REGION AND TO $-J$ WHEN
C. . . CONSIDERING ITS 'NEGATIVE'.

14 IF (ZL.GT.ZUC) GO TO 17
IF (ZU.LT.ZLC) GO TO 17
IF (XL.GT. XUC) GO TO 17
IF (XU.LT.XLC) GO TO 17
IF (YL.GT.YUC) GO TO 17
IF (YU.LT. YLC) GO TO 17
PRINT $105, \mathrm{MJ}, \mathrm{IL}, \mathrm{IM}, \mathrm{IN}$
105 FORMAT (/,42H THIS REGION'S TRANSFORM INTERSECTS WITH R, I $3,4 \mathrm{H}$ + โ, $13 I 5,141)$
IF (MJ.LT.0) GO TO 15
$Z L C=-Z(2, J)+Z C$ \& $Z U C=-Z(1, J)+Z C$
$X L C=-X(2, J)+X C £ X U C=-X(1, J)+X C$
$Y L C=-Y(2, J)+Y C E \quad Y U C=-Y(1, J)+Y C$
$M J=-J$
GO TO 14
16 IFLAG=1
15 CONTINUE
12 CONTINUE
11 CONTINUE
10 CONTINUE
IF (IFLAG.EO.1) GO TO 2
PRINT 106
106 FORMAT $(/, 68$ H THIS REGION'S TRANSFORM DOES NOT INTERSECT WITH ANY 0
IRIGINAL REGION)
2 CONTINUE
STOP
END

FUNCTTON ADJ(R,U,I, J)
DIMENSION R(3),U(3)
$A D J=R(I) * U(J)-R(J) * U(I)$

SUBROUTINE UPLW(RL,RU,TR
IF (RL.LE.TR) GO TO 10
$R L=T R$ \& GO TO 11
$\mathrm{RL}=\mathrm{TR}$ £ GO TO 11

END

SUBROUTINE ROUNDI (RC, IR)
ID $=1$
IF $(R C . L T, 0,0) ~ I D=-1$
$I R=I F I X(R C)$
RIR=FLOAT (IR)
IF (ABS (RC-RIR) .GT.0.5) IR=IR+ID
RETURN
END

FUNCTION DCORR (x, J)
C. . . THIS FUNCTION ALLOWS FOR ROUNDING ERROR ON THE BOUNDS ON THE
C...CARTESIAN CO-ORDINATES.

CORR $=1 . O E-10$
DCORR $=0.0$
IF (X.EQ.0.0) RETURN
IF (J.EQ.2) GO TO 1
OCORR $=x-$ CORR
RETURN
1 DCORR $=X+C O R R$
RETURN
END

THE PROGRAM EXCEP

SUBROUTINES

IN THIS SECTION IN PREVIOUS SECTIONS

BASES	91	CHANGE	46
MULTD	93	DNORM	56
LOWUP	94	DCI	23

LOWUP	94	DNORM	56
DCI	23		
	95	IOF	24

LIMITL	95	IOF	24

LIMITU 96

\qquad

CALL LIMITU(OU.IQU)
IF (IPI. IF.IPU) GO-TO
IF (IPL.LE.IPU) 30 T0 70
1 PRINT 202,IPL, IPU,IQL,IQU
134 TO.
STIP
GT.10U) GO TO 7
C...NOW P HAS THE SMALLER RANGE SO USING THE FACT THAT $U(1)=0$ AND SO
$0=(\omega-P * 131) / 1)^{(2)}$
C... THUS PROVIDED $U(2) \geqslant 0$, WIHICH IS SO. THE BOUNDS ON W AND EACH POSSIBLE
... ALSO USINGRIII BE FURTHER RESTRICTED.
$\cdots \quad S=V-0 * R(2)-P * R(3)$,

VAIIIFS OF S MAY RE FOUND. RUN THROUGH THF VALUES P FROM
TPCOUNT $=I P U-I P L+1$
$\mathrm{P}=\mathrm{F}$ (OAT(TPL) -1.0
DO 12 IPC=1, IPCOUNT
$P=P+1.000$
C..FIND BOUNDS ON Q FOR THIS VALUE OF P
$O L T=M L / U(2)-P U A$
QUT $=W U / U(2)-P U A$
...AS SUMTABI F VALUFS OF Q ARE FO
$C \ldots \ldots . V=S+0$)R(2)+P\#R(3)SINCE $R(1)=1$
C... $S D S=T-0^{*} R(2)-P * R(3)$

CALL LIMITL (OLT•IOLT)
IF (IQUT. LT. IOLT) GO TO 12

$P R=P Q R(3)$
$\mathrm{C}=1 \cdot$ IOCOUNT
$0=0+1.000$
SE $F=V L+P Q$
$S U T=V U+P O$
CALL LIMITL (SLT,ISLT)
IF(IS甘T.LT.TSIT) GO TO 13
ISCOUNT = TSUT-ISLT +
On 14 ISC $=1$. ISCOUNT
$I P=P$ \& $I Q=0$ \& $I S=S$

	16-CONTINDF 15 CONTINUE
	C...THF NEXT SECTION OF THIS BRANCH OF VALUES OF T IS NOW CONSIDERED. 2 IF (NEXT.E日. ट) GO TO 4
205	
	C...WHEN TU REACHES THE VALUE TUI THEN THIS BRANCH OF VALUES IS C... COMPLETED SO THE OTHER IS NOW CONSIDERED.
	TL=TU
210	TU= ПMTN1 (TU,TU1)
	G0 TO 6
	$5 \mathrm{NFXT}=\mathrm{NEXT}+1$
	READ 102,SU1
215	TU1 $=$ SU1
	20 K FORMAT ($/, 4 \mathrm{H}$ TU $=$, 510.1)
	C...NOW READ THE UPPER BOUND ON THE LOWER BRANCH OF INTEGERS AND
	$\mathrm{TL} 1=T H / / B P+A B P$
220	$\mathrm{TU}=\mathrm{TU1}$
	$\mathrm{TL}=\mathrm{TU}-100 \cdot 000$
	$T \mathrm{LI}=$ DMAXI $(T L, T L 1)$
	Q SAR=DSDRT (CK/($(A N / B E)-$ TU) $)$
225	C... NOW REPEAT THE ABOVE WITH THESE LIMITS ON T AND THIS VALUE OF SB 60 TO 3
	4 IF (TL.LE.TL1) GO TO 7
	C... NHEN TL REACHES THE VALUE TLI THEN THIS BRANCH OF VALUES IS C... COMPLETED SO THE MINIMUM OF THIS POINT, RMINIM, IS PRINTED.
	TUET1
230	$T L=T L-100.000$
	$\mathrm{TL}=$ DMAX $(\mathrm{TL} \cdot \mathrm{TLJ})$
	GO TO 8
	204 FORMAT $/(, 30 H$ THE MINIMUM FOR THIS POINT IS,F20.10)
235	STOP -
	END
	Tine
	\%
	\%1

SUBROUTINE BASES
DOUBLE $A, B, C, R, U, H, V 1, V 2, V 3, V 4, V 5, V 6, V 7, T, S, D, X I N$
DOUBLE IOBD
COMMON/D1/IDET, INDEX,IA,IB,IC/DZ/R (3), U(3), H (3)
COMMON/D4/IL1, IL2, IL 3, IT1, IT2, IT3,IP1, IP2, IP3
COMMON/D15/IURN/D16/IOBD
$A=F L O A T(I A) \& B=F L O A T(I B) \& C=F L O A T(I C) \& I N=I N D E X$
C...FIND $H(2)$ WHERE THE FIELD IS $K(H(2))$ AND ALSO $R(2)$ AND $U(2)$ WHERE
C...R(2) + I.11(2) AND $R(2)-I . U(2)$ ARE THE CONJUGATES OF $H(2)$.
$V 1=-(B-(A * 2) / 3.0 D 0) / 3.000$
$V 2=-(A * B / 3.0 D 0-2.000 * A * 3 / 27.0 D 0-C)$
$\mathrm{V} 3=\mathrm{DS} \cap \mathrm{RT}(\mathrm{V} 2 * * 2-4.000 * \mathrm{~V} 1 * * 3)$
$V_{4}=(V 2+V 3) / 2.000$
$V 5=(V 2-V 3) / 2.000$
IF (V4.NE.0.0D0) GO TO 51
V6 $=0.000$ \& GO TO 52
$51 \mathrm{D}=1.000$
IF (V4.GE. 0.000) GO TO 53
$V 4=-V 4$ £ $D=-1.000$
53 V6=DEXP $((D L O G(V 4)) / 3.000) * D$
5? IF (V5.NE.0.0D0) GO TO 54
V7=0.0D0 \& GO TO 55
$540=1.000$
IF (V5.GE.0.0D0) GO TO 56
$V 5=-V 5$ \& $D=-1.000$
$56 \mathrm{~V} 7=\mathrm{DEXP}((\mathrm{DLOG}(\mathrm{V} 5)) / 3.0 \mathrm{D}) \% \mathrm{D}$
$55 H(2)=V 6+V 7+A / 3.000$
$R(2)=(A-H(2)) / 2 \cdot 0 D 0$
$U(2)=D S Q R T(C / H(2)-R(2) * * 2)$
$H(1)=1.0 D 0 £ R(1)=1.000 £ U(1)=0.000$
C...(R(1),U(1),H(1))=(1,0,1) IS THE LATTICE POINT CORRESPONDING TO UNITY
C...FIND T AND S WHERE $Y=(H(2) * * 2+T * H(2)+S) /$ INDEX.
C...FIND T AND S WHERE $Y=(H(2) * 2+T * H(2)$
$C \ldots(1, H(2), Y)$ IS A BASIS OF THE FIELD.

IN2=INAIN \& IN3=IN2*IN
$K 1=I A * I A-2 * I B$ \& $K 2=I A * I C \& K 3=I B * I C$
$K 4=I B^{*} I B-2^{*} I A^{*} I C \& K 5=I A * I B-3 * I C \& I C 2=I C * I C$
IF (INDEX.NE.1) GO TO 57
$I T=0$ \& $I S=0$
$T=0.0$ \& $S=0.0$ \& GO TO 58
57 DO 59 ITC=1, IN
$I T=I T C-1$
DO 60 ISC=1, IN
IS = ISC-1
$J A=K 1+I T * I A+3 * I S$
IF (MOD (JA, IN) . NE. 0$)$ GO TO 60
$J B=K 4+I T * * 2 * I B+3 * I S * * 2+I T * K 5+2 * I S * K I+2 * I S * I T * I A$
IF (MOD (JB, IN2).NE.0) GO TO 60
$J C=I S * * 3+I T * * 3 * I C+I C * 2+I S * * 2 * I T * I A+I S * K 4+I S * I T * * 2 * I B+I T * I B * I C$

1+IT**2*IA*IC+IS*2*KI+IS*IT*K5
IF (MOD (JC, IN3) , NE.0) GO TO 60
$T=F L O A T$ (IT) \& $S=F L O A T(I S) ~ \& G O T O \quad 58$
60 CONTINUE
59 CONTINUE
$58 \times I N=F L O A T($ INDEX $)$
$H(3)=(H(2) * 2+T * H(2)+5) / X I N$
$R(3)=(R(2) * * 2-U(2) * * 2+T * R(2)+S) / X I N$
$U(3)=(2.000 * R(2) * U(2)+T * U(2)) / X I N$
IT $1=$ INDEX
IT2=-IT
IT $3=-15$
$I M L=2 * I A * I T+I A * I A+2 * I S+I T * I T-I B$
ILI $=I M L / I N D E X$
$I L 2=(-I T$ *IML+2*IS*IT+IC-2*IB*IT-IA*IB)/IN2
IL $3=(-I S * I M L+2 * I C * I T+I A * I C+I S * I S) / I N 2$
$I P I=I \Delta+I T$
$I P 2=(T S-I B-I T * I P 1) / I N D E X$
IP3 $=\left(1 \mathrm{C}-1 \mathrm{~S}^{*}\right.$ IP1)/INDEX
PRINT $100,((R(I), U(I), H(I)), I=1,3)$
100 FORMAT $(/, 27 \mathrm{H}$ A BASIS FOR THE LATTICE IS,/, $15 \mathrm{X}, 1 \mathrm{HR}, 19 \mathrm{X}, 1 \mathrm{HU}, 19 \mathrm{X}, 1 \mathrm{HH}$,
$13(/, 5 \times, 3020.10)$)
$\mathrm{I}=2$ \& $\mathrm{J}=3$
PRTNT 101, I, I, IT1,IT2,IT3
PRINT $101, \mathrm{~J}, \mathrm{~J}, \mathrm{IL} 1, \mathrm{IL} 2, \mathrm{IL} 3$
PRTNT $101, I, 1$, IP1,IP2,IP3
$101 \operatorname{FORMAT}(/, 10 \mathrm{X}, 2 \mathrm{HH}(, \mathrm{I} 1,4 \mathrm{H}) \mathrm{KH}(, \mathrm{I} 1,2 \mathrm{H})=, \mathrm{I} 10,6 \mathrm{HH}(3)+, \mathrm{I} 10,6 \mathrm{HH}(2)+, \mathrm{I} 10$,
$14 \mathrm{HH}(1))$
C...FIND AN UPPER BOUND, A POWER OF 10 , FOR THE ARGUMENTS OF DNORM WHICH
C...WILL NOT GIVE RISE TO OVERFLOW.
$K 1 P=T A B S(K 1)$ \& $K 4 P=I A B S(K 4)$ \& $K 5 P=I A B S(K 5)$
$N F=M A \times 0(K 1 P, K 2, K 3, K 4 P, K 5 P, I C 2)$
$I O N F=I O F(N F)$
IONS $=(29-I O N F) / 3$
IURN $=10 \%$ IONS
C. . FIND BOUNDS FOR THE RELEVANT PRODUCTS OF MULTD SUCH THAT OVERFLOW
C...WILL NOT OCCUR.

IL $1 A=I A B S(I L 1) \& I L 2 A=I A B S(I L 2) £ I L 3 A=I A B S(I L 3)$
IT $1 A=I A B S(I T 1) £ I T 2 A=I A B S(I T 2) £ I T 3 A=I A B S(I T 3)$
$I P 1 A=I A B S(I P 1) \& I P 2 A=I A B S(I P 2) £ I P 3 A=I A B S(I P 3)$
ILTP=MAX0 (ILIA, IL2A,IL3A,IT1A,IT2A,IT3A,IP1A,IP2A,IP3A)
ILTP $1=\mathrm{IOF}$ (ILTP)
IOBS = 29-ILTP1
IORD $=10.000 \%$ IORS
IOBD $=10$
RF TURN
END

SUBROUTINE MULTD(I1,J1,K1,I2,J2,K2,I,J,K)
C...MULTD FINDS THE PRODUCT OF I $1 * H(3)+J 1 \% H(2)+K 1 \% H(1)$ AND C...I I2 H $(3)+J 2^{* H}(2)+K 2 * H(1)$, IT IS I*H(3)+J*H(2)+K*H(1)

DOUBLE I1,J1,K1,I2,J2,K2,I,J,K,IP
DOUBLE IOBD, IA, JA,KA,MULT1, MULTZ, MULTP
COMMON/D4/IL1,IL2,IL3,IT1,IT2,IT3,IP1,IP2,IP3
COMMON/D16/IOBD
$I A=D A B S(I 1) \& J A=D A B S(J 1) \& K A=D A B S(K 1)$
MULT1 =DMAXI (IA,JA,KA)
$I A=D A B S(I 2) \& J A=D A B S(J 2) \& K A=D A B S(K 2)$
MULT $2=$ DMAX1 (IA, JA,KA)
MUL TP $=$ MUL T 1 \#MULT?
IF (MULTP.LT.IOBD) GO TO 1
PRINT 50
50 FORMAT $\left(1 X, 10\left(1 \mathrm{H}^{*}\right), 27\right.$ HDANGER OF OVERFLOW IN MULTD, $10(1 \mathrm{H})$
1 IP = I $1 * 25+I 5 * J 1$
$I=I 1 * I 2 * I L 1+I P * I P 1+J 1 * J 2 * I T 1+I 1 * K 2+I 2 * K 1$
$J=I 1 * I 2 * I L 2+I P * I P 2+J 1 * J 2 * I T 2+J 1 * K 2+J 2 * K 1$
$K=I 1 * I 2 * I L 3+I P * I P 3+J 1 * J 2 * I T 3+K 1 * K 2$
RETURN
END
SUBROUTINE LOWUP (XT,XV,XW,XL,XU)
c.... $X=X T * Y(1)+X V * Y(2)+X W * Y(3)$
C...IS BETWEEN $X L$ AND $X U$, WHERE $Y(I)$ IS BETWEEN YL(I) AND YU(I), $I=1$ • 3 .
DOUBLE $X T, X V, X W, X L, X U, X(3), Y L, Y U$
COMMON/D3/YL (3), YU(3)
$\begin{array}{ll}X(1)=X T \quad \& \quad X(2)=X V & \& \quad X(3)=X W \\ X L=X U=0,000\end{array}$
DO $1 \quad I=1,3$
IF (X(I).LT.0.000) GO TO 2
$X L=X L+Y L(I) * X(I)$
$X U=X U+Y U(I) * X(I)$
GO TO
$2 X L=X L+Y U(I) * X(I)$
$X U=X U+Y L(I) * X(I)$
1 CONTINUE
RF TURN
END

SUBROUTINE LIMITL(XXL,IXL)

 C...IXL IS THE SMALLEST INTEGER GREATER THAN $X X L$.DOUBLE XXL, XXLA $X \times L A=D A B S(X \times L)$
IF (XXLA.LT.1.0D14) GO TO I PRINT 50
50 FORMAT $\left(1 \times, 10\left(1 H^{*}\right), 35\right.$ HMORE THAN 14 DIGITS IN THIS INTEGER, $\left.10\left(1 H^{*}\right)\right)$
$1 \mathrm{XL}=\mathrm{SNGL}(X \times \mathrm{L})$
$I X L=I F I X(X L)$
IF (FLOAT (IXL)-XL)4,5,5
$4 \mathrm{IXL}=\mathrm{IXL}+1$
5 RETURN
END

SUBROUTINE LIMITU(XXU,IXU)
C....IXU IS THE GREATEST INTEGER LESS THAN $x X U$.

DOUBLE XXU,XXUA
$X X U A=D A B S(X X U)$
IF (XXUA.LT.1.0014) GO TO 1
PRINT 50
50 FORMAT $\left(1 X, 10\left(1 \mathrm{H}^{*}\right), 35\right.$ HMORE THAN 14 DIGITS IN THIS INTEGER, $\left.10\left(1 \mathrm{H}^{*}\right)\right)$
$1 \mathrm{XU}=\mathrm{SNGL}(X \times U)$
$I X U=I F I X(X U)$
IF (FLOAT (IXU) -XU) 4,4,5
5 I $X U=I X U-1$
4 RETURN
END

DOUBLE FUNCTION DAJ (R, U, I, J)
DOUBLE BDET,R(3),U(3)
COMMON/D5/BDET
DAJ=(R(I) $\# U(J)-R(J) * U(I)) / B D E T$ RETURN
END

[^0]:

[^1]: (10)
 (10)

