
THE COGNITIVE DEVELOPMENT OF MATHEMATICS

SPATIAL AND TIMING MEASURES

ASSOCIATED WIIH ALGORITHMS

1 BY D. PAGER

ProQuest Number: 10098141

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10098141

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

The thesis considers in turn measures of algorithms,
measures of programs, and measures of computationso We
define an algorithm’s measure as the average of the space
time requirements of its associated computations, and
here, as with measures for programs, a question of
optimisation arises : that of finding the algorithm for
a function which has the least such measure.

The problem of optimisation for algorithmic measure,
in its general form, proves to be unsolvable, but we show
that an effective optimisation procedure does exist with
regard to algorithms for finite functions, and give in
detail the solution of the special case for functions with
a domain of two elements. Further, we reduce the
determination of the optimum algorithm for infinite
functions to that of calculating the value of a primitive
recursive function x (z) x(z?t), for any sufficiently
large t. Taking a different viewpoint, we investigate
the existence of lower bounds to the measures of
algorithms for certain functions.

A similar analysis is applied to the spatial
measure defined for programs, program length, and we
discuss some of the philosophical ramifications of
program brevity. In addition, a pseudo-spatial measure.

the number of instructions a program contains, is
considered. By using reduction theorems which map
onto one another corresponding instructions in equi
valent programs, we are able to adapt to this pseudo-
spatial measure our results on program length. We
then examine a problem of secondary optimisation, which
involves a minimisation of both algorithmic and program
measure.

Measures of computations have been analysed by
Myhill, Trakhtenbrot, Smullyan, Ritchie, Cleave,
Rabin, Arbib and Blum. An essential element in
Blum’s definition of computational measure are the
’measuring predicates’ and we investigate certain
relations between their spatial and timing.requirements
(as where an upper bound on one such quantity places
a lower bound on another)• The relevant literature
is discussed in brief, and we take up a number of
points which arise.

Most of the arguments and results in the thesis
are formulated in terms of Turing machines, but they
are applicable to other means of representing algorithms
In the final chapter we investigate how the definition
of Turing machines may be extended so as to provide a
more authentic model of actual computers both in regard
to space-time measure, and to the domain of functions
they enccxnpass.

CONTENTS

Notation 1

CHAPTER 1. MEASURES OF ALGORITHMS - 3
1. Basic definitions 5

1.1 Abstract definitions 5
1.2 Definitions for Turing machines 12

2. On efficiency: the optimisation problem 16
2.1 The general problem , 16
2.2 The problem for finite functions 32
2.3 A practicable special case 42
2.4 The problem for infinite functions 60

3. On inefficiency 69

CHAPTER 2. MEASURES OF PROGRAMS 75
1. On program length 75
2. On the number of instructions a program contains 87
3. Secondary optimisation 92

CHAPTER 3. MEASURES OF COMPUTATIONS 98
1. Blum’s definitions 98
2o The measuring predicates 103

2.1 Measures E and M considered in relation to Q 103
2.2 Measures E and M considered individually 112

3. Related work 125

CHAPTER 4. EXTENSIONS OF TURING MACHINES 132
1. Representation of built-in functions 133
2. Representation of negative and non-integer numbers 141

Appendix I 146
Appendix II 148
References 154

NOTATION

Theorems are numbered in a single sequence,
whereas lemmas, corollaries and formulae are numbered
anew in each section.

The notation in Davis ’ ’’Computability and
Unsolvability” is taken as our standard. Minor
deviations are that we employ lower case ’s-symbols’
in our Turing machines and write the predicate
T^(z,x^,...x^,y) as T(z,x^,...x^,y). We indicate
the initial appearance of symbols defined in Davis by
the mark , and a list of such symbols, together with
an informal description of their use, is given in
Appendix II.

Turing machines and algorithms are designated by
upper case letters, whilst their Gbdel numbers are
represented by the corresponding lower case letters.
Further, gn(Z) denotes the Gbdel number of Z. As in
Davis, by ’number’ we mean ’non-negative integer’, unless
otherwise specified, e.g. ’’for any (number) k %” stands
for ’’for any non-negative integer k ^ 1 ”. Variables
for such numbers are denoted by lower case letters, as
are those functions which are defined and employed only
within the proof of a single theorem. In general,

functions referred to more widely than this are
represented in upper case or by Greek letters.

The symbols a, b, p, S are employed throughout
the thesis to designate certain parameters we define.
Symbols such as u , , v , , 4» , are used toa,b a,b,p a ,b ,p
denote functions defined in terms of these parameters;
however where no ambiguity arises, the subscripts are
dropped.

CHAPTER 1

MEASURES OF ALGORITHMS

We give in this chapter our basic definitions ^
of space-time measure, and with this quantity as
criterion, discuss algorithms from the point of view
of efficiency. Our interest in providing a formal
treatment of this subject is prompted by the amount of
attention it receives in practice. The question of
algorithmic efficiency occurs in (a) computer
programming, where it forms the first consideration in
the construction of programs; economy in spatial and
timing requirements is particularly vital in the design
of library programs such as sine, cosine, exponentiation
and matrix routines; (b) Numerical Analysis, in devising
and evaluating various methods for tackling linear
programning problems, calculating determinants, and
solving systems of linear equations, etc.; (c) OperationstResearch, in cases such as the Travelling Salesman andtthe m X n scheduling problems, where algorithms for
deciding certain questions (typically by considering all
possible cases) are known, and the end being pursued is
that of finding substantially faster ones; (d) Games

^See Appendix I for description

Theory, where a similar goal arises with respect to
finite games with perfect information, as occur in
economics and chess.

By giving a precise definition to an algorithm’s
space-time measure, we enable the evaluation and
comparison of proposed solutions to problems such as
these to be precisely made. On the other hand we
provide a language in which one can formulate the
possibility that certain design objectives, such as
that of the Travelling Salesman problem, may be
unattai nable.

However, we have not limited ourselves to questions
of direct practical applicability. It has seemed
natural, in considering the problem of finding better
algorithms, to ask whether an optimum algorithm exists,
and if so, whether it be effectively determinable. To
this last we would take the answer as being ’yes’, no
matter how laborious the method of determination might
be.

SECTION 1 BASIC DEFINITIONS

The following are the main concepts which are
defined in the two succeeding subsections:

computation system
calculation
the space-time measure of a computation; a pure
time measure
the space-time measure of an algorithm

probability function; significant argument;
significant set
the efficiency of computations and algorithms
the optimisation function and the restricted
optimisation function
the spatial and timing measures of computations
of Turing machines

SECTION 1.1 ABSTRACT DEFINITIONS

COMPUTATION SYSTEM
By a computation system we mean a way of representing

algorithms on a finite alphabet, plus a specification of
the associated calculation procedure. The concept thus
embodies the algorithmic systems associated with Turing
machines, actual computers, Kleene systems of equations

and the U.R.M. ’s of Shepherdson and Sturgisysiy.

The references to algorithms in the definitions
which follow assume some such system.

CALCULATION
In writing a program to calculate a function

over its domain, we are not concerned with the behaviour
of the program for values of the dependent variables
outside the domain. We place no requirement as that
imposed by Davis’ definition of a Turing machine
’ computing ’ a function, that the prograim be non
terminating in this case/^ This prompts the following
definition of ’calculation’:

An algorithm calculates a function if it supplies
the value of the function for every member of the

tfunction’s domain.

THE SPACE-TIME MEASURE OF A QDMPUTATION
Rabin ^ 2 ^ and Blum have defined axiomatically

closely related concepts of a ’measure of proofs’ and a
’measure of computations’ respectively. The definition
of a measure for the space and time required by a
computation which we give below is a particular measure

^ Whereas an algorithm computes a function if it
calculates it, and is undefined for all arguments that are
not in the function’s domain.

of the last type. Rabin’s and Blum’s axioms are too
wide for our purposes. They do not isolate the
specific properties of a computation’s spatial and
timing attributes. Blum’s definition, for instance,
encompasses equally well as a valid measure the number
of steps a computation involves or a reciprocal thereof

k(such as some constant k) .
We assume that some measure is defined on the space

which the computation involves. In general this space
consists of two components, that occupied by the program,
and that used in the computation procedure itself. We
assume further that a measure is defined on the amount
of time required. This is usually identified with the
number of steps, as in Wang’s ’speed function’̂ 38/.

The space-time measure of a computation is taken to
be the following function of the space and time involved I

■ t
a X space involved -f- b x time involved,

where a,b are non-negative preselected
parameters, not both zero.

We denote this, with respect to a computation of an
algorithm Z for an argument (x^,x^^•••>x^) as

^ A linear function is of course not the only one
possible. We take up the question of other possible
measures later.

8

If a = o, the measure is referred to as a pure
time measure, whereas if a ̂ o, it is said to have a
spatial component.

THE SPACE-TIME MEASURE OF AN ALGORITHM
Let the algorithm be one for calculating the values

of a function f(x^,X 2 >•••jX^) over a domain S of n-tuples
We assume, as is the case in practice, that we will not
be called upon to calculate f(x^,x^,•••,x^) for each
member of S with equal probability. It is possible for
instance that no x^ can occur larger than some limit k;
in this case the probability of having to calculate
(k-|-L,k-fl, . . . ,kj-l) is zero.

In general we postulate the existence of a
probability function p(x^,X 2 ?•..,x^), where
p(x^,x^,...)X^) is the probability of having to
calculate f(x\,x_,...,x), such that

1 2, n '

t
(1) p(x^,x^j•••jx^) is recursive ,
(2) o ^ p(x^,X 2 ,...,x^) < 1 ,

' ̂in the original sense of Turing / 3 ^ ; i.e. we can
calculate, for any i, the i^^ binary digit.

1

(3) o < Y I j p(x^ ,Xg, . . . ,x^) < 1 ,

I I
(4) p(x^ - . . ,x^) > o (x^jx^j . .. ,x^) e S . f|

il

So if Z is an algorithm which calculates f, then ' ^
p(x_,x_,...,x) > o --> (x_,x_,.. ,x) € domain of Z,^ ' 1 2 n' ' 1 2 n'
and with respect to such sets of probabilities we define
the space-time measure of an algorithm Z as

^ i p(x^,...,x^) X space-time measure of the
x^,,,.,x^ computation of Z for (x^,...,x^)

We denote this by Y v (z) .a , D, p ,

PROBABILITY FUNCTION, SIGNIFICANT SET
When speaking of a probability function

p(x^,x^?...,x^), we will in all cases assume properties

^ ' we mean
x.,««»,xi ___ n

limit \ ' p(x ,...,X) » We allow the less
m 0 0 all Xj, .irrf Xn

such that Xj<m.
each i in 1(1)n

important case of X T p(x^, . . . ,x^) < 1, so that one
X ^ , . a * , X1 n

can evaluate and compare the expected space-time involved
in separate parts of an algorithm which consists of a set
of distinct procedures for different categories of arguments.

lO

(1) to (3) above. By the significant set S associated
with a probability function we refer to:
{ x^) I p (x^,x^ >•••j x^) > o } , and the members
of this set are called the significant arguments. By a
proper probability function for an algorithm, or function,
Z, we mean a probability function whose associated
significant set is contained in the domain of Z.

Efficiency of a Computation or Algorithm
By the efficiency of a computation or algorithm we

mean how small the associated measures are. It is
sufficient thus to equate efficiency with the corres
ponding inverses of these quantities.

Space-Time Measure of a Function
aa

By tfee- optimum algorithm b,p^^^ which calculates
a function f(x^jx^j «••?x^) over a domain S, we mean the
most efficient such algorithm. The concept is only
defined for probability functions which are proper with
respect to S.

Thus Y(gn(na,b,p(f)))

all algorithms Z
of the computation
system which calculate
f(Xt ,...,X) for all ' 1 n'
(Xt,...,x) such that ' 1 n'
p(x^,...,x^) > O

11

y(gn(q^ y p(f))) is also referred to as the space-time
measure of the function X(x,,x„,.••,x) f(x^,x^,.o,,x). ------------------------- ' 1 2 n̂ ' 1 2 ______ n'

Optimisation Function, Restricted Optimisation Function
By optimising an algorithm Z (with respect to a

proper probability function p(x^,x^,•••,x^)) we mean
finding (if it exists) the optimum algorithm which
calculates the same function Z does for all (x^,x^,••®,x^)
such that p (Xt ,x^,...,x) > o.1 2 n;

We denote the optimum such algorithm as <|)̂ ^^^(z)
or, for given parameters, simply as Z^ ; ^ is referred to
as the optimisation function.

For the sake of completeness we also define
(|)̂ y (z) as the most efficient algorithm which computes

 i . ^
the same function as Z does, and we refer to <j> as the
restricted optimisation function. (Thus y(gn(#(z)))
Y(gn(())'(z))) .) ^

Using Church’s lambda notation ^

 ̂Note the distinction between computation and
calculation, see page 6.

t If there is more than one algorithm with least space
time measure, each is an optimum algorithm, and the function
refers to in this case is an arbitrary one of these.
Expressions of the form ”Zj = (j)(Z)” or ”Z^ = Z^” are to be
interpreted as asserting that Z^ is one of the optimum
Turing machines concerned. may also be ambiguous
similarly.

12

SECTION 1.2 DEFINITIONS FOR TURING MACHINES

The Computation System of Turing Machines
We identify ’algorithm’ here with ’Turing machine’

plus a specification of the number of arguments, i.e. -
the degree of the function evaluated*

Thus if Z is a Turing machine, we denote as[z]^
(Davis' notation) the algorithm which evaluates

The time involved in a computation of a Turing
machine Z for argument (x^,x^>••®,x^) is identified with
the number of steps involved i.e. the number of
instantaneous descriptions the^computation consists of -i
We denote this as E(z,x_,x_,.•.,x) .i 2 n'

The space involved in such a computation is made
up of
(a) that directly employed in the computation procedure.
This is taken as measured by the size of the maximum tape?
expression that occurs. We use Rabin and Wang’s
definition of the magnitude of a tape expression as being
the smallest length of tape which includes the square
being scanned and the marked (non-blank) squares^^^. We

See our convention of representing the Gbdel numbers
of Turing machines by corresponding lower case letters, p.l

13

denote this as M (.,x).' I 2______ n̂
(b) that occupied by the quadruples which define the
Turing machine program. We adopt the convention of
representing programs for Turing machines, such as

^ I t = 1(1) m]
where for each t, x^ is either L, R or
an s-symbol s, ,

^t
on the alphabet {q ,1,R,L,3 , in the following way:

± 2 ’ J 2 ’ ^ 2 ’ ^ 2 ’ “ - •
where are the binary encodings of the coefficients

respectively, and .= x^ in the case that
x^ is L or R, whereas k^ = the binary encoding of the
coefficient k in the case that x^ is the s-symbol s, .

tWe denote by Q(z) the total number of symbols in such a
representation of a Turing machine Z.

We now have to decide on what weighting to give to
the two components of spatial measure considered above,
the number of symbols in the program and the number of %
squares of tape. We are influenced by the situation

twhich exists in actual computers, where each instruction,
t

or part of an instruction, occupies a fixed number of

 ̂As in e.g. the IBM 7090
As in e.g. the IBM 1401

14

registers. This prompts the following definition of
our measure of the space involved in a computation of a
Turing machine Z for an argument (x^ jX^,.••,x^) :

M(z,x^,X 2 ,...,x^) f t Q(z)
for some preselected t ,

it follows that, for such t ,

=

a^M(z,Xj , ., . ,x^) .f. i Q(z)) + b E(z,x^,...,x^)

We write this as Similarly our space-time
measure over Turing machines is written y . / , and’a,b,6,p'
this is given by

^ p(x^,*.*,x^) |a (M (z, x^ , . e • , x^) j- I Q(z)) -f- b E(z, x^ , . • . , x^)
1 n

EXAMPLE. To calculate y^ ^ ̂ ^(Zq) for a Turing machine
Z^ computing 2x, where Ù =1, a = b = 10, and p is a
singulary function such that

P(x)
o if x=o ;
90 1 if x>o .
TT̂

(Thus ^z^p(x) = 1, since = "1).

25

A suitable is the following

1 b 9l
b R 92

^2 1 s.393
^3 S3L 93

^3 1 L 93
^3 b 1 94
% 1 R 94
94 S3R 94
94 1 1 92
94 b L 95
95 S3I 96
96 1 L 95
(ends i3Lt

Here 0(2^) = 133,
M(z_,x) - 2x -f- 1,

2and E(z ,x) = 2x -f- 5x 3 ;
oo

Y(Zq) = ^ ^ (20x^ + 70x f 1370)
x»l X

= 217.78...

Ta,b,&,p(f)' +a,b,6,p(z) 4/,b,t,p(=)
defined similarly.

In the last two expressions Z is viewed as an
algorithm for a function of the same degree as that of
the probability function p(x^jX^?•••,x^). We indicate
this degree in the abbreviations 4^(z), 4^(z) which we
employ.

16

SECTION 2. ON EFFICIENCY: IHE OPTIMISATION PROBLEM

SECTION 2.1 THE GENERAL PROBLEM

Our first three theorems examine in increasing
depth (and length) the question of proving that one
Turing machine computes the same function as another.
These lead us to our main limitation theorem, which is
concerned with the problem of finding the optimum of
such equivalent Turing machines.

LEMMA
The set of Gbdel numbers for total n-ary functions

t
is not recursively enumerable.

PROOF
Assume that the set is recursively enumerable, and

that the recursive function f(z) enumerates the Gbdel
numbers concerned. Then

J) JS □>
u(miriyT(f (Xj) , x^ jx^,... ,x^, y)) f 1

is total and thus, by the hypothesis, for some z^,

U (min^T(f (Xj) ,X^,X2 >X^,y)) -j- 1 =
u(minyT(f(z^) ,Xj,...,Xj^,y)) .

Setting x^ = z^ now gives a contradiction.

This is a simple generalisation of Davis’ theorem 6.1
Chapter 5, which gives the result for singulary functions.

17

NOTATION
By kp we denote the Gbdel number of a Turing:d

machine N (u J), where N(x) = O, and by
B̂ , the recursive binary function with the property that

t
[Bn(u,v)J n(Xj,...,Xn) = [u]^([v] ̂ (x^,...,x^))

all u,v .

THEOREM 1. FIRST EQUIVALENCE THEOREM
The predicate P^(x,y) <f=» [x]^ = [y] ̂ which asserts

that the Turing machines X and Y compute the same n-ary
function, is not recursive .

PROOF

[z]^ is total 4=^ [Bn(ki'Z)]n = .

Thus the recursiveness of P^(x,y) would give the
recursiveness of ” [z] is total” in contradiction to the•* n
lemma.

DEFINITION
By an index of a partial recursive function, we

mean a Gbdel number of a Turing machine which computes it

^That such a recursive function exists follows from
Kleene’s Iteration theorem (theorem 23, p.342 yiLT/).

18

DEFINITION
A function g ^ ^ i s said to be a subfunction of a

function f^^^ if the domain D of g is a subset of
that of f , and if for all (x., , .. . ,x) e D,' i n'
g (x^,•••,x^) = f ^ (x ^ ,...,x^). (We use the term
’subfunction’ in preference to that of 'restriction'.)

A predicate P(x^,...,x^) is said to be a subpredicate
of a predicate Q(x^,...,x^) if its characteristic function
is a subfunction of that of Q(x^,...,x^).

Since many of the practical problems described in
the introduction involve (or by taking completions can
be made to involve) total functions, it is of particular
interest to examine the predicate [x]^ = [y]^ with
regard to the indices of these functions. To this end
we can strengthen the first equivalence theorem as follows :

THEOREM 2 . SECOND EQUIVALENCE THEOREM
No subpredicate of [x]^ = [y]^ defined over a domain

which includes the indices of the total n-ary functions
is partially recursive.

PROOF
Let the characteristic function of [x]^ = [y]^ be

^ Davis' notation for an n-ary function

19

r(x,y), and let a(x) be the function (using Davis'

notation) such that
r O if X > O , a(x) = [̂1 if X = O .

Consider then a function f^(z) defined as follows:

f^(z) = a (̂r (Bj^(k^,z) , k^)) - 1.

It is clear that if r(x,y) is partially recursive, so is
f (z) . But the domain of f^(z) consists exactly of the
indices of the total n-ary functions, and this would
then give their recursive enumerability, which is in
contradiction to the lemma. Thus r(x,y), and hence
[x]^ = L L ’ "ot partially recursive.

At this stage we note that a form of the limitation
theorem which follows later, is immediately obtainable
with regard to the restricted optimisation function.

THEOREM 3. ■ 'LIMITATION THEOREM FOR THE
RESTRICTED OPTIMISATION FONCTION '

There are values oî* the parameters a,b,t,p for which
'

neither the,restricted optimisation function 4) , . (z) ,a , D , 6 , p
nor any subfunction of it which is defined over a domain that
includes the indices of the total recursive functions, is
partially recursive. ,

PROOF
Let a and t be non-zero and any probability

function, e.g* one with a finite significant set, with respect
to which 4*^() is defined. Since a and t are non-zero,
there is an upper bound on the Q-measure that any of the

' *. ",
optimum Turing machines for the function [k^]^ may have, and
hence the set of such Turing machines is a finite one. Denote
this set as H.
Then '

[z] is total the predicate (B (k,, z))cH (À ;
" la true . P " ‘ ' :

/ /If 6 (or a subfunction of it defined over a domain which includes ■ n '
the indices of the total n-ary functions) were -partially recursive,
(a) would provide a means of recursively enumerating the
GBdel numbers of the total n-ary functions in contradiction
to the lemma. . . .

• ' I
NOTE. / The above result holds even if we restrict the signifi-

'

cant sets considered to finite ones. This is in direct contrast
o

to the result we later obtain for the optimisation function

4^(z) * See theorem 7, P.36*

[

21

DEFINITION
If, for i = l(l)m, (x^,.•.,x^) is a predicate and

f.(xT,.#.,x) is a function, then the function
1 ' 1 n'

g(x^,...,x^) denoted by the conditional form

f^(x^,*#«, x^) ; • • • j x^) —> f. • • • j x^) ;

is defined as f^(x^,...,x^) for the minimum coefficient t
in l(l)m such that (x^, . . . , x^) is true but

(x^,...,x^) is false for all i < t. (g is undefined
if this function f^(x^,,••,x^) is undefined,
or if Og , » . . is undefined where S is the least
value of i for which (x^,•.•,x^) is not false, or if
all the predicates are false.)

DEFINITION
The symbols F . and T. are used to denote arbitrary

tautologously false and true predicates respectively.
The latter, used in place of Q^(x^,...,x^) in the

conditional form above, would have the sense of "or
otherwise".

Kleene ̂ 1.7/ has proved the partial recursiveness of
the function defined by the conditional form (which he
calls "definition by cases") in the special circumstances
where (a) the predicates and functions involved are total

p o f l i Q (g W w r t i O e tinj

recursive (p.229); (b) the predicates are^mutually

22

exclusive (p.337)• Neither proof is extendable to the
general case we require, so we supply this as follows :

THEOREM 4 . CONDITIONAL FORM THEOREM
If the predicates and functions involved in

McCarthy's conditional form are partially recursive, so
is the function vihlch it defines.

tPROOF
Let t(x) be the function X(x)GLx.

If g(x^,...,x^) = (x^,...,x^) ^ f^(x^,...,x^); ...
... . Qn,(Xi,...,Xn) - (x^, . . ., x^)] ,

tWe employ here the predicate T.ànd functions U, min,
J j } GL defined in Davis. "T(z , x^ , . . . >x^, y) " (a standard
notation) stands for "y is the Gbdel number of a com
putation of Z for the argument (x^,x^,...,x^)"; U(x) is
the number of tallies in the last of a sequence of instant
aneous descriptions with Gbdel number x. "min^" is an
abbreviation of "the minimum y such that"; X(x) is the
sequence number (in the sequence of all primes arranged in
ascending order) of the highest prime factor of x. xGLy
is the exponent of the prime with sequence number x in the
prime factorisation of y .

These recursive functions and predicates are part of
a numbered list pp.58-62 > which we shall refer to in
future simply as Davis' definitions (1)-(26A) .

23

and if5 for i = l(l)m, r^ is an index of the characteristic
function of and an index of f^ ,

then g(x^,...,x^) = ^

U t min^^ I T(rj,Xj,. . . ,x̂ ,lGLy) A U(lGLy) =o A T(Zj,x̂ . . . ,x^,2GLy) }

V •[x(rj,Xj,. ..,x^,lGLy) A T(i^,Xj,...,x^,2GLy) a
U(lGLy) =1 A U(2GLy) =o a T(z^,Xp. . . ,x̂ ,3GLy) j

(rj ,Xj j • • • , x^,iGLy)a » » « aT(î ,x̂ , • • . , x̂ ,rnGLy) a

U (IGLy) =1 A , « , A u (m-lGLy) -1 a U(mGLy) =o a T(^,Xp. « . , x̂ jin-flGLy)]-̂

The partial recursiveness of g(x^,...,x^) follows.

NOTATION
If f and g are n-ary functions, we denote the fact

that f(x^,...,x^)= g(x^,...,x^) for all arguments
(Xj,...,x^) in some set S by f = g.

t Where this enhances clarity, we omit parentheses
enclosing singulary arguments. In the above formula the
argument of t and that of the left-most occurrence of U
are written in this way.

24

THEOREM 5. THIRD EQUIVALENCE THEOREM
Corresponding to any recursive infinite set S of

n-ary arguments, there exist a primitive recursive
function (r) and a number such that |Cg(r) j ^,
for each r, and J ^ are primitive recursive functions,
and such that

n f ^ ^ ^(r.r.y)

Taking S as the set of all n-tuples we obtain
immediately the corollary:

COROLLARY
No subpredicate of [x]^ = [y]^, defined over a

domain which includes the indices of the primitive
recursive functions, is potentially partially recursive.

PROOF OF THEOREM 5

Method of Proof
We define primitive recursive functions f^(x^,...,x̂)

and, for each r, f^ ̂ ̂ (x^,...,x^) in such a way that for
(x^,...,x^) ̂S, fg(x^,...,x^) enumerates the domain of
min^T(x,x,y), whereas for each r, ,r(^1’*“*’̂ n^
specified as follows: for all (x.̂ , . . . ,x̂) & S such
that fg(xj,...,x^) y r, fg , r (’'l ’ ' * * ’ = fg(x,,...,x^),
whereas for all (Xjj...jX^) (S such that f^ (Xĵ > .. . >x̂) _ r.

25

X will then follow
that

^s,r f '"V T(f'f'y) ' (B)

and the theorem is then obtained by a consideration of
the Gbdel numbers involved.

Definition of fg(x^,...,x^) and ^^^1’* *•’̂ n^

Observe first that

« X . A ” ' " ’’,o)
then X X domain of min T(x,x,y), since x^ in this o y o
case is the Gbdel number of the non-terminating Turing
machine

Secondly, note that if J(x,y) = ({x i- y) 3x -j- y)/2 ,
then, as is shown in Davis /§/ t

(1) J(x,y) effects a 1-1 mapping of 2-tuples
onto the integers ;

(2) there exist recursive functions K(w), L(w)
such that K(w) = x ^ ^ = w)
and L(w) = y \^(J(x,y) = w).

Now define:
h(o) = ,
h(wfl) = [T(L(w) ,L(w) ,K(w)) L(w) ; T. ;

and h^(w) = [h (w) X r ->h(w); T.-^ x^J .

- |-

We employ Davis' system of Gbdel numbering p.56 / y .

26

At least for singulary functions and total S, h and
satisfy (B) (if identified with f and f respectively)s s j r
However for non-total S, the forward implication is no
longer valid, since even if V T(r,r,y), h and h^ may
still compute the same function over S in the case
that S contains no w such that

L(w-l) = r
and T(r,r,K(w-l)) .

We must thus modify h and h^ in the way we do below (at
the same time generalising to n-ary functions)*

Auxiliary Functions J ,L^, and Un n s
Define J (Xt,...,x) for n > 2 n ' 1 n'

as J(x^,J(x^J••••)
n - 1 applications of

the J function

L^(y) for 1 < t < n

as K(L(L.** L(L(y)).»«)),
t-a applications
of the L function

and L^(y) as L(L(L.•*L(L(y)) . . •))n ' V— ---- '
0 - 1 applications
of the L function

27

It follows that for each n (>2) ,...,x^) is a
primitive recursive function which effects a 1 - 1 mapping
of the set of all n-tuples onto the non-negative
integers, and for each t in [l,n], is a primitive
recursive function such that

L^(y) = V ^ V (x^ - V A J^(x^,...,x^) . y)
x^ ,•••,x^

Denote by (x^,•..,x̂) the number of n-tuples (y^,..,,y^)
such that (yi,...,y) < J (Xt ,...,x) and such thatn i n' n ' 1 n'
(y^, .. », y^) -i' S. Ug(X],..«,x^) is then primitive

recursive since Ug(x^,...,x^)

Jn(Xj,...,Xn) _

(P(t) , L^(t) , ...,L” (t)) X S ^ 1 ; T. _> O

These auxiliary functions enable us to give the
required definitions for f^(x^,.•.,x^) and

fs,r(*l'''"'*n) viz:

fg(x^,...,X^) = h(J^(x^,...,xJ - Ug(Xj,...,X^)) ,
^s,r(*l''"''*n) = hr(Jn(*i'''*'*n) " Ug(x^,...,x^)).

S is infinite, and thus f^(x^,.••,x^) enumerates the
whole domain of minyT(x,x,y), and ̂j-̂ ^1 ’ * * ’’̂ n^ the
whole domain except r*

28

Thus

V T(r,r,y) ^ ^ •

Denote the n-tuples in the ordering

((x) J (x); •••? (x)) for x = 1,2,3, . ##

by a^,a2 >a^,o.. respectively. Then if for all

J fg(aj) = and if S, then, since

fs(&k) =■ ^s(^k-l)
a n d f r , s (& k) = ^ r , s (a k - i) ’

therefore fg(aĵ) = frjs^a^)*

Hence the least i such that f (a.) / f (a.) musts' i' A s,r' i'
involve an n-tuple a^ such that a^e s. So

^s,r / ^s ^s,r ^s • ^

(C) and (D) supply

VT(r,r,y) fg,, < •

On the other hand obviously

->VT{r,r,y) =» fg,r = fg

and thus in particular f = f^. These relationss , r s s
give (B).

29

The Gbdel Numbers of f and f ___________________ s__ s , r
By our result on McCarthy's conditional form,

h(w) is recursive, and since both and are
recursive, so is f^. We may thus denote by , the
Gbdel number of a Turing machine which computes it.
We show further that there exists a primitive recursive
function G (r) such that for each r s ' '

- ^s,r •

The proof employed in the conditional form
theorem ensures that h^(w) is recursively expressible
in terms of w and the Gbdel numbers of h(w), x^ (a
constant function), and the characteristic function' t
N(w) = o of the predicate T., as well as the Gbdel
number, for each r, of the recursive singulary predicate
h(w) f r. Denote this predicate by H^(w). Let v be
the Gbdel number of the characteristic function of
h(w) i- r, considered as a binary predicate in w,r.
Then,by Kleene's iteration theorem, there exists a recursive
binary function such that S^(v,r) is, for each r ,
the Gbdel number of the characteristic function of
H^(w) . Thus, for some recursive function d ,

h^(w) = d(S^(v,r),w) for each r,

and hence from the recursiveness of and we obtain

30

that for some recursive function qs

If computes the right-hand side, considered as a
n -}• 1 - ary function in r,x^,,.,,x^, then
~ 1 -IIs (c J r) computes f (x_,..,,x) for each r.L 's 'Jn ^ r,s'l n'
Denote S^(c^,r) by G^(r). The theorem follows by
substituting for Gbdel numbers in (B) which gives

^ -VT(r,r,y).

We can now treat the fundamental question
involved in the optimisation of algorithms :
"Can optimisation be effectively achieved?"

THEOREM 6 , THE MAIN LIMITATION THEOREM

There are values of the parameters a,b,t,p for which

neither the optimisation function « (z) , nor anya, D , -OjP

subfunction of it which is defined over a domain which includes

the indices of the primitive recursive functions, is potentially

partially recursive.

Let a and i be non-zero and p(x^,...,x^) any probability
function with an infinite eignificah.t set S with respect 'to '
which (() ̂ (Zg) is defined. One example of such a .probability
function is

p(xj^,... ,x^) = _______________ _______________
2 KZg.Xi, . .. ,Xn)(Jn(xi... x̂)+l)̂

for all (x^,...,x^)€S ,

in which case y(^g) ~ "pi________ ^ ^ tt ̂

It can easily be shown that a Turing machine G (r) may be's
constructed from Z such thats

^(Gg(r) , x ^ , . ; . , x ^) (z^ , x ^ , . . . , x ^) is bounded

by a linear function of r independent of x^,...,x^ . It
follows that whenever defined, so is (j)̂ (Ĝ (r)) for
each r .. '

Since a and t are non-zero, there exists a finite set H
of optimum Turing machines such that [z]^ = • ''̂ e
then have

*n(Gg(r))cH [Gg(r)]„ ?

Hence, by the equivalence theorem,

A (G (r))sH “’Y T(r,r,y) ,

and the result follows.

31

PROOF

Let 2 and G (r),for each r.be the/6 bdel numbers s . s ' ' ’ ̂ /
of primitive recursive functions as féfined in the
equivalence theorem above.
Then

+n(=s) W n :

Thus by the equiv

= 4n(Gs(f)) ^ ^ y T(r,r,y) ,

giving the present result.

We have given our most negative result on
optimisation first. Within the limitation this
theorem imposes, we consider now to what extent
optimisation can in fact be accomplished. We examine
separately in the first and second optimisation theorems
the case in which the significant set is finite and
that (such as was treated above) in which it is
infinite.

32

SECTION 2.2 THE PROBLEM FOR FINITE FUNCTIONS

A finite function is one defined over a finite
domain. In considering the optimisation of algorithms
over finite significant argument sets, it is with such
functions that we are concerned.

It might be thought at first sight that these
functions may be adequately dealt with by programs of
a 'table of values' kind, in which a Turing machine
goes into a unique state for each argument (or for
each difference between the number of tallies in
the argument and that required by the value of the

tfunction), and then, using corresponding quadruples,
adds or deletes the appropriate number of **l^s.
However this is not the case if efficiency criteria
are taken into account. Consider, for example, that
we wished to calculate x 2 over the domain
[o, 1,000,000^ . Clearly an algorithm for addition
such as

qilLq^
qiblq^

would prove to be more efficient with respect to any

~^To do this it must first move to the argument’s
left-hand end. '

33

space-time measure than one which ’stored' (by virtue
of its quadruples) the value of the function for each
member of the domain.

In most practical cases we are in fact only
interested in calculating functions over some such
finite domain. Finite functions are of particular
relevance to Games Theory. This is borne out by
the following observation.

OBSERVATION
The goal of finding the best algorithm for

evaluating the next move in any given position in a
finite game with perfect information, such as chess
or draughts, may be considered as one of optimising an
algorithm for a finite singulary function.

Consider some Gbdel numbering of all the positions
a player may be faced with, as well as of all the moves
he may make. Using a method based on the min-max
theorem for Games (Von Neumann and Morgenstern /37/),
one can effectively determine the best move in each
position. As the number of possible positions is
finite, this provides an evaluation of the finite
function f(x), where f(x) is the Gbdel number of a
player’s best move in the position with number x.
(It involves examining the tree of every possible

34

sequence of moves by the players and selecting the
best subtree.) The Games Theory problem then becomes
that of finding the optimum algorithm for evaluating
f (x) .

Here again the table of values method, listing the
best move for every possible position, is not
necessarily the most efficient. While for the
particular games of chess and draughts the situation
is not known, much superior algorithms have been found
for some games. A striking example of this is the
game of Nim (described e.g. in Hardy and Wright / l }/)•
The algorithm for playing this bears no comparison to
that of consulting a table that embraces all possible
rows.

The following definitions and lemmas lead up to
our optimisation theorem for finite functions, but
are also employed elsewhere in the thesis.

DEFINITION
By an act of a Turing machine we mean one of the

following operations on the tape I
(a) a move by the scanning head one place to the left;
(b) a move one place to the right;
(c) writing a specified symbol on the scanned square.

35

DBFINITION
By an action of a Turing machine, we mean a sequence

of acts.

LEMMA 1
Corresponding to any action Ç consisting (say)

of m individual acts, and any initial instantaneous
description, a Turing machine of m quadruples can be
defined for which the action Ç is that which would
occur in a computation starting with the given
instantaneous description.

LEMMA 2
Let Ç^, i = 1 (1) t, be a set of actions

consisting respectively of m^ acts_, i = 1 (1) t, and let
a ,̂ i = 1 (1)t, be a set of instantaneous descriptions
with the same internal configuration. Then a
necessary and sufficient condition that a Turing
machine Z can be defined such that, for i « 1(1)t,
is the action which would occur in the computation
of Z starting with , is that for all u,v in 1(1)t,

?u ¥ for some w <m^,m^, the symbol scanned
after w acts of starting is
different from that after w acts of
starting with .

36

Further the question of whether such Turing machines as
Z exist or not is effectively decidable, and if they
do, it is effectively possible to construct one
(consisting of 4 % m. quadruples) .

i=l ^

THEOREM 7o OPTIMISATION THEOREM FOR FINITE FUNCTIONS
If its significant set is finite, <|)̂(z) is

partially recursive.^

This may be interpreted as stating that it is
effectively possible to find an optimum algorithm for.
a finite function.

PROOF
If Z^ is any given Turing machine, we begin our

evaluation of ^7 calculating y (z^). If S
is the significant set being considered, this is given by

Y(Zo) =

•j^a(M(z^,x^, . . . ,x̂) + I Q{z^Ÿ) + t> E(z^,x^, . . . ,x̂)
(x^,...,x^)es

Note that Y(z^) is not defined, nor is 4>j.,(Zq) > unless
[^o]n(*l'"""'*n) defined for all (x^,..,,x^) e S,

t No matter what values are preselected for parameters
a,b,(,p.

37

whereas if | z 1) is defined for all such*- o -'n ' 1 n'
arguments, Y(z^) is effectively calculable, as S

tis finite.
Our space-time measure is defined in terms of

the non -negative parameters a,b,p, where a and b are
not both zero. In devising ways of reducing the set
of Turing machines from which Z need be selected,o
to a finite one, we consider separately the following
cases :

(1) b = (= o ,
(2) a ^ o A t ^ o 3

(3) b / o A (a = o v ^ - o) .

CASE 1 b = ̂ = o
The measure of computation involved here is

simply aM(z,x^,...,x^). Using lemma 2, we can
directly construct an optimum Turing machine which
evaluates [z^]^ over S by actions that involve setting
the left-hand tally blank, moving to the square on the
right of those representing the argument, and then

 ̂We leave it to intuition that the spatial and
timing measures M (z,x^,,.„,x^) and E(z,x^,...,x^) are
computable over the same domain as [z]^(x^,...,x^).
A formal proof of this is given in Chapter 3.

38

adding or deleting the required number of tallies.
(By setting the left-hand tally blank before moving
right, avoids employing a tape length greater than
the initial one in cases where this is possible because
f(x^,...,x^) ^ the number of squares on the initial
tape.)

CASE 2. a / o A / .o
If p z min p(x^,...,x^), the optimum

(x^,...>x^)cS
Turing machine Z^ must be such that

Q(<) ̂ .
p a t

This places an upper bound on the maximum coefficient
ifof a s- or q- symbol which can occur in Z^ , and hence

on the number of Turing machines which Z^ could be.
Consider the subset of these which calculate ^ over
S and for which

M(z,x^,...,x^) ^ y (f o r all (x^,...,x^)€ S . (A)
P~ a

Let Z be any such Turing machine with (say) u s-symbols
and V q-symbols. For each argument of S, Z must halt.
Since it cannot repeat an instantaneous description,
the maximum possible number of steps any of its
computations can involve must be less than the number

39

of possible instantaneous descriptions which can be
formed using its alphabet on a tape bounded by (A),

Y(Zq)pa
i.e. 4 Y(Zq) V u

P a
We can thus effectively select the subset in question,

* ^ and evaluate Y(z) in each case. is a Turing
machine for which this is a minimum.

CASE 3. b y o A (a = o v •0 = o)
The limitation we have here on Z* , provided by

the bound

P b

(or that for M(, . . . ,x) if a / o) , does notV ' o 1 n' ' ’

reduce the set of Turing machines to a finite one.
Our method is instead to consider the set of possible
actions such Turing machines may have.

If Z is any Turing machine defined over S, some
of whose actions involve writing symbols other than a

^ /tally, or a blank, a corresponding Turing machine Z
may be defined, using lemma 2 , which writes a blank
instead for each such act, but has all other acts
in common. It follows here that

40

and Y(z'') = Y(z) •

Thus we can restrict the Turing machines considered in
the determination of 4»^(z^) , to those involving only
the acts : ^

(1) move left,
(2) move right,
(3) write a tally,
(4) write a blank.

Further, as each action of 4>̂ (for arguments in S
must be of length ^ Y(z^),

P b Y(z,)
pband there are at most 4 such actions, it follows

that if s consists of t significant arguments, there are
Y(z.) t
pb^ 4 possible sets of actions of this kind.

Using lemma 2, each set may be examined as to whether
it corresponds to any Turing machine Z, and if so,
whether or not Z calculates Fz 1 over S may beL o^n
determined. Of those Turing machines obtained which
do, Y(z) can be calculated in each case, and a Turing
machine for which Y(z) is least selected as ^^o^ "

Since

“i(a = o A b « o) ==̂
^(b = o A 7 = o) v (a / o A t / o) v (b / o A (a - o V ^ « o)) ^

41

is a tautology, all possible cases have now been
considered*

As the particular measures of computation
E(z,x^,...,x^) and M(z,x^,.••,x^) are of particular
interest, we state explicitly the following corollaries:

COROLLARY 1*
Given a Turing machine and a set of

probabilities as to the likelihood of any of a finite
set S of arguments occurring, it is effectively possible
to determine a Turing machine calculating [z^]^ over S,
for which the expected average value of E(z,x^,..«,x^)
is a minimum.

COROLLARY 2 .
Similarly for M(z,x^,«..,x^)«

NOTE. The theorem remains provable in a wide range of
cases even when the space-time measure employed is other
than the linear one considered in this thesis. For
instance, where the critical factor is the maximum space
required, the following definitions of Y(z), applicable
only to finite functions, are of interest:

42

y(z) = a max. (m(z ,x^, . . . ,x) f I Q (z))
(x^,...j X^) € S

+ b p(x^,...,x^) E(z,x^,...,x^)
(x^ , . . . , X^) (r S

or, more strictly,

Y(z) = v(k, max. ("m(z,x^ , ... ,x) f C Q(z)) ^
(x^,...,x^)es J- n y

^ ^ E(z,x^,...,x^) ,
(Xĵ > •. •) x^) (S

where v(k,x) = o if k > x,
and is arbitrarily large if k < x.

It may readily be verified that our proofs remain
applicable to such choices for the measure function.

SECTION 2.3 A PRACTICABLE SPECIAL CASE

We have emphasised the practical importance of
optimising algorithms for finite functions. In the
theoretical study above we proved such optimisation to
be effectively possible, but the algorithm we supplied
to show this involved testing a prohibitively large
(though finite) class of Turing machines. It seems
that it should be possible to design the most efficient

43

Turing machine directly, given the significant
arguments, their probabilities, and the associated
function values. The question we are now considering
is that of finding an algorithm, efficient enough to be
of practical value, for calculating the optimisation
function. This unfortunately turns out to be
exceptionally difficult. We confine ourselves to
pure-time measures, and give a complete solution in
the case where the significant set consists of exactly
two arguments. (The problem is trivial if the
significant set consists of only one argument.)

NOTATION
We denote the optimum Turing machine required as

Z and the significant arguments in ascending order
as a^- 1 , a^- 1 , the function value [z^^(a^-l) as b^,
and [z] ̂ (a^-1) as b^, and the probability that

targuments a,-l,a^-l will occur as p, 1 -p respectively.I I z

t.Ifî Turing machines an argument x is stored as x-fl
•i' -- .

tallies; thus a^- 1 ,^i -̂l are represented respectively by

t.
a^,a^ " 1 " s.

The case, which we have allowed, in which the sum
of the probabilities is less than unity, is obtainable

by writing p as p^ and replacing 1 -p by p^ in all its
occurrences in expressions for Y(z *) that we give below.

44

Method of Analysis
As the size of the program is not relevant, we

need only specify the type of action which would occur
in the optimum Turing machine. It will be apparent
that the encoding in each case of quadruples to
effect the action required presents no difficulty.
The choice of Z*'s action (and hence of) is given,
in each of 6 cases which we distinguish (according
to the relative magnitudes of a^,a^,b^,b^) by calculating
Y (z) for not more than 4 alternatives, according to

expressions supplied in terms of the parameters
a^,a^,b^,bg,p, and chosing that for which y(z) is
least. We allow the determination of Z* to be made
according to such a simple selection by reducing,in
the four theorems which follow, the set of Turing
machines that need be considered.

Graphical Representation •
The various types of actions are represented

graphically. The initial position of the reading head
(scanning the leftmost tally) is taken as the origin,
and the squares of the tape as the integer coordinates
along the x- axis. Thus a^,a^ (the number of tallies
in the argument) correspond to points on the axis as
shown :

45

x-axis

DEFINITION
Event 1 is the contingency in which argument a^-1

occurs; event 2 , that in which ag-l occurs.

THEOREM 8

(a) Any steps in the actions for events 1 and 2 which
involve introducing symbols other than the tally or
blank may be replaced, without altering the total
number of tallies at the computation’s termination,
or the timing measure, by setting (or leaving)
the square concerned blank. We may thus confine
ourselves to Turing machines which employ only
blanks and tallies.

(b) Unless b^ - a^ = b^ - must proceed
eventually to a^ ̂ in order to distinguish between
event 1 and event 2 .

i.e. to the square with coordinate a^ •

46

(c) The only alterations to the tape Z ̂ can make
before reaching a^, are the addition^ of tallies

tto the left of the origin and the subtraction
of tallies in [o,a^-l] ; the most efficient
way it can do this (involving one or no changes
of direction) is to move left and add tallies
if so required, then move right to a^, subtracting
tallies where necessary from within [p a^ -ll> 1

"on the way».

DEFINITION
The action of a Turing machine before reaching a^

is called its P- action ("p” standing for "preliminary”) .
The most efficient actions for events 1 and 2 which can
occur after a P- action is complete are called the
corresponding F- actions (”F" standing for "following”) «

Thus,if b^ - a^ / b^ - a ^ ,the P- action for Z^
is either of the form

^By ’adding a tally’, we mean changing the symbol
in one of the tape squares from a blank to a ” 1 ” .
Similarly;by ’subtracting a tally’, we mean changing
a ” 1 ” to a blank.

47

or

The P- action may also be represented as

(A)

in which the dashes indicate groups of tallies and the
gaps between them blanks.

NOTATION d, t
Denote the number of tallies added to the left of

the origin as d, and the number of tallies subtracted
in [o,a^-l] as t.

THEOREM 9
It is sufficient to consider for Turing machines

with the tallies, if any, created by the P- action to
the left of the origin, grouped in an unbroken sequence

48

immediately to the origin’s left. Further the number
of such talliesd may be taken as zero, except if b^ > a ^ ,
in which case the alternative of d = b^ - a^ may be
required.

PROOF
If bg 4 a^j or b^ > and d ^ b^ - a^, compare

the timing measure for the computation obtained in
events 1 and 2 with P- action as in (A), to that with
P- action as in (B):

t-d
(B)o

where d'= o, and the number of tallies subtracted in
[o,a^-l] is reduced to t - d by eliminating subtraction
from the left. In each case a gain in efficiency is
obtained by using (B)’s P- action.

If bg > a^ and d ^ b^ - ag, a similar gain occurs
if the P- action in (C) is employed:

^ 2 ' ^ 2

(C)
^ 1

Here d'= bg - a^ and the number of tallies subtracted
in [o,a^-l] is reduced to t - ((b^ - a^) - d) by
eliminating subtraction from the left.

49

THEOREM 10. A ’STABILITY’ CRITERION FOR t
Let w(t) be the total average timing measure for a
P- action which creates t blanks in [o,a^-ll followed
by its corresponding F- action. Similarly let w(t-l),
w(t-)-l) be that for the cases respectively in which t
is reduced by 1 by eliminating the leftmost (rightmost)
blank, or.in which t is increased by 1 by creating an
additional blank immediately to the left of the present
leftmost one (to the right of the present rightmost
one) . Then , if

w(t-f-l) - w(t) = w(t) - w(t-l) ;

one can improve efficiency by altering t by 1.

PROOF
Obvious.

THEOREM 11
It is sufficient to consider for Z* Turing machines

in which the blanks created by the P-action in [o,a^-l]
are all grouped either at the origin or at a^-1.

PROOF
Consider how alterations to the distribution of

blanks in [o,a^-l] (but not to their total number)
affect efficiency. Note that

50

(a) in event 1, if the F- action involves addition,
changes to the distribution do not alter the total
average timing measure for this event;

(b) in either event, if the F- action involves
subtraction, the blanks are best grouped at the
origin; '

(c) In event 2, if the F- action involves either
addition of tallies to the left of the origin,
or to the right of a^, the distribution of blanks
is irrelevant;

(d) in event 2, if the F-action involves addition of
tallies in [o,a^-l] (i.e. in positions made blank
in the P- action), the blanks are best grouped
at a^-1.

It follows that the blanks may be grouped at the
origin or at a^-1 in all combinations of cases for
events 1 and 2, except the as yet unresolved one, where
the F- actions involve subtraction in event 1 and
addition in event 2 within [o,a^-l].

Let û, Ug denote the number subtracted or added
respectively in events 1 and 2, and let u^ , u^ denote
the new values for u^,Ug in the various modified actions
we present for comparison. Let c^ be the distance the
Turing machine considered moves to the left during the
F- action (which starts at a^) in event 1, and let c^
be that for event 2.

51

Modifying the P- action by altering the distribution
of blanks in [a^-c^? a^-l], will not increase the timing
measure for event 2; for event 1, the best arrangement
is obtained if the blanks in the interval are all
grouped at the left. Further, altering the distribution
in [o,a^-Cg-l] does not affect the timing measure in
either case. By grouping the blanks at the left in
the former interval, and at the right in the latter, we
obtain the following improved P- action:

^ 2 “ ^ 2

This can be further improved upon (for both events) by
displacing the group of blanks squares to
the right:

u (D)

Increasing t, the number of blanks created, by one,
causes u^ = u^-^1, û ̂ = u^-1 (provided u^ > 1) .
If Ô W is the increment this produces on the total
average timing measure, then - 6w will be that involved
if t is reduced by one (provided u^ ^ 1). Thus by
the stability criterion, theorem lO, one or other of
the following P- actions is superior to (D);

52

t+u

in which u = u u

or
t-u

u.+u

in which r -f z o; and in the last case,
the following P- action is as efficient:

t-u,
o

An argument similar to the above shows that we can
obtain a more efficient P- action by distributing the
blanks as shown:

t-u, u

The stability criterion then provides that one of the
following P- actions is a further improvement

where u = u.+u
t-u

u z o

53

or

o
t-u, u.-f-u

where u
u

= o ,
= u.-f- u2 •

Further, the P- action given below is of the same
efficiency as that given in the last case:

t-j-u

We have thus shown that any P- action can be
improved by grouping the blanks at o or a^-1.

NOTATION s, r
We denote the number of blanks grouped at the

origin which the P- action creates as s, and the
number grouped at a^-1 as r.

It may readily be verified, using theorems
8, 9, 10, 11, that the set of alternatives for the
P- action and corresponding F- actions which we now provide
include in all cases the optimum ones. The six cases
we consider are for

(1)
(2)

(3)

bi > a^,
bi) a^.

bi > a ,

b^ in [a^,a^),

bg in [o,a^),

54

(4) bl ^ ^1' ^2 >
(5) bl ̂ ^1’ ^2 = ^2
(6) bl ̂ &1, b2 ^ ^2

and in each we give expressions for the timing measure
Y(z) in terms of the parameters a^,a^, >p« may

then be selected by choosing an action for which y (z)
is least.

CASE 1
(a) If b^-a^ - b^-a^ add this number of tallies to the
origin's left, otherwise;

The alternative parameters
:̂ or the P- action that
need be considered

The corresponding F- actionst

either (b) d = o and r = o In event 1, add to the right*
In event 2, add to the left
of the origin or to the right
of a^ according to whether
a^ ^ i a^ or not.

t We omit obvious details, such as how many tallies
need be added or subtracted, or that the addition,
subtraction in the direction indicated is to be made
respectively at the first blank or marked squares
encountered.

55

or (c) d = b^-a^ and r = o In event 1, subtract to the
left or add to the right
(according to whether
(b^-a^) > (b^-a^) or not) . No
F- action is necessary for
event 2.

or (d) d = b^-a^ and ^ In event 1, no F- action is

^ = (^2~^2^ * (b^-a^) necessary. In event 2,
add to the left.

Y(z) in these cases is
(a) 2 (bi-ai)
(b) a^ f 2p{bi-ai) f (1-p) (min.(a^.a^-a^) f

^(bg-ag);
(c) a^ -f. 3 (b^-a^) ^ 2p | (b^-a^) - I
(d) a^ + 3 (b^-a^) ^ (b^-a^) - (b^-a^)

+ 2(l-p)((b^-a^) - (b^-a^))

^Theorem 10 precludes r being in (o, (b^-a^)-(b^-a^)),
^Note that a Turing machine takes one time unit

per movement of its head, plus an extra time unit for
each change of symbol that it makes.

56

(Only (b) and (c) need be considered if b^-a^;
and only (c) and (d) if b^-a^ > b^-a^, (c) is better
than (d) if p ^)

CASE 2 b

Alternative parameters for Corresponding F- action
the P- action

(a) s = o
(b) s = min.(a^-b^^a^)

Y(z) in these cases is

In event 1, add to the right
In event 2 , subtract to the
right,

a^ s -f- 2p(b^-a^j. s) -f 2(1-p) ((a^-b^) - s)

((a) is in fact better than (b) if p > i .)

CASE _3 b^ > a^> bg in [o,a^)

Alternative parameters for Corresponding F- actions
the P- action

(a) s = o Event 1; add right.
Event 2: if a^ > ^a^, subtract
^^2~^2^ - a^ to the right, then
move left subtracting a further
min.(a^,a 2 ~b2) tallies; if
a^ < ^ 2 follow a similar
algorithm with directions
reversed.

57

(b) s = min.(a^-b^ja^) Event 1: add right.
Event 2: subtract (a^-b^)
tallies to the right.

((c) s = min.(a2 -b2 ,2 a^-a 2 ,a^) ^

Use of theorems 8-11 reduces the possible cases
to (a), (b), (c) as shown; however we can also
eliminate (c), since it only forms a distinct case if

2a^-a^ 4 min.(a^-b^; a^) ,

and here the following implication holds :

case (c) is better than case (a)
case (b) is better than case (c)

Y(z) for (a) is

f 2 p(bi-ai) f (1-p) min. f
-j- 2min. (a^^a^-bg) , a^ 2ag- Sb^ }■ «

Y(z) for (b) is as in case 2b.

CASE 4 . b^ < a^, b^ > a^

Alternative parameters
for P- action

Corresponding F- actions

(a) d = o r = o Event 1: subtract left.
Event 2: add to the left or
right according to whether
a^ < ^ 2 or not.

58

(b) d = b^-a^ r r o Event 1: subtract left.
Event 2.: no action necessary.

(c) d = o r = a^-b^ Event 1: no action necessary.
Event 2: add to the left or
right according to whether
a^ < ag-b^ or not.

(d) d = bg-ag Event 1: no action necessary,
r = (a^-b^ -f Event 2: add to the left.

^2-^2)
(if a^-b^ -f bg-ag > a^)

Y(z) is
(a) + 2 p(ai-bi) + (1-p) { 2 (b2 -ag) f min.(ai,a 2 -ai)j
(b) a^ + ^(bg-ag) + 2p(a^-b^ + ^2“^2^
(c) 2a^-b^ + (1-p) {zfb^-a^) + + min.(a^ja^-b^)}

(d) a^ f 3(b2-a2) + + ^2“^2^ i" ^(^"P) (^l‘^l t ^2”^2^

CASE 5. b^ ^ ^1^ ^2 - ^2

Alternative parameters Corresponding F-actions
?or P action
(a) r = o Event 1: subtract left.

Event 2: no action necessary.

(b) r = a^-b^ Event 1; no action necessary.
Event 2: add left.

59

Y(z) is

(a) a^ + 2p(a^-b^)
(b) 2a^-b^ + 2(l-p)(a^-b^)

((a) is better than (b) if p<^.)

CASE 6 . b^ ̂ a^ b^ ^

Starting from the origin, subtract to the right
min. j (a^-b^) , (a^-b^)]^ = k (say) tallies. (This will
involve 2k time units.)
If

a^ = a^-k
and a^ = a^-k,

consider the new problem now formed with parameters
I Ia^ >^2)b^,b2,p :

(a) if a^-b^ = a^-b^» the calculation is complete;
I I(b) if a^-b^ < ag-bg, b^ = a^ and b^ < a^ and

thus either case 2 or 3 applies ;
I I(c) if a^-b^ > ag-bg, b^ < a^ and = a^ > and

case 5 applies.

60

SECTION 2.4 THE PROBLEM FOR INFINITE FUNCTIONS

In spite of our main limitation theorem, we showed
that optimisation is effective in the case where the
significant set considered is finite; we now consider
to what extent it can be achieved with infinite significant
sets. Our first two theorems are concerned with
delimiting the domain over which <l>(z) is at least
defined; the third reduces the determination of $(z),
for cases when it is defined,to the calculation of a
particular recursive function X(t) for any sufficiently
large value tt

THEOREM 12
For infinite significant sets and pure-time

measures :

No optimum Turing machine exists for any function
tf(x) such that f(x)-x is monotonically increasing.

^ How large t must be is not, however, in general
effectively determinable.

For formulations of Turing machines which use a
coding of numbers based on a radix k > 1 instead of the
unary coding employed in Davis, the corresponding result
applies to functions for which f(x) is monotonically

X
increasing.

61

PROOF
Let the arguments in the significant set S, taken

in ascending order, be denoted by •••• Assume
that an optimum Turing machine Z* calculating f(x) over
S does exist, and denote the number of q-symbols it
contains by m. As S is infinite, for each argument x^,
Z^ must eventually move to the first blank on the right
(at square +- 1), otherwise[z’]i(Xi)-x^ will be constant for
all t ^ i. The shortest possible computation in each
case is one in which Z moves to x^ 1, and then,
without reversing, adds f(x^)-x^ tallies to the right.
But Z^ cannot do this for more than m arguments, as it
requires a different internal configuration on reaching
X. 4- 1 for each i if it is to then add a different 1 '
amount of tallies without changing direction.

In contrast, consider a Turing machine h > m,
which behaves in the optimum way for arguments
Xo,Xi,••.,Xh, while for arguments x^, i > h, it reverses
direction after reaching x^ -f- 1 and alters the tape in
[o ,x^] to the condition Z^ would have produced by the
time reached x^ 1 ; after this Z^ returns to Xĵ -{- 1
and behaves from then on as Z^ would. Z^ 's computations
must involve less steps than those of Z^ for at least
one of the arguments (say x^) in j^x^,x^,............;

62

on the other hand they are at least as short as those of
Z* for all the arguments in , ... , .
The following inequality thus holds ;

00

Y(z*) - Y(Zh) > p(Xi) (E(^Xi) - E(Zj^,Xi)) - 3(P(^i) X^h + D
i=h+l

where p(x^) > o since x^ e S, and
E(z^ ,x^) - E(Zj^,x^) > 1. This gives:

CO

Y(z*‘) - Y(Zĵ) » p(x^) - a (^ p(Xi))(Xj^+l) (A)
i=h+l

We show that the right-hand side is > o for sufficiently
large h.

Since each computation involves moving to square
x̂ -f-1, E(z*' ,x^) for each i ,

and thus ^ p(x.)x. < £ p(Xĵ) E(z^,x^) = Y(z*) , which, by
b1*0 1*0

the hypothesis for Z*, is defined.

Hence ^p(x^)x^ is also defined. This implies
i=o 00

limit Y2 °)
h 00 i .h-|-l

which in turn gives
00

h->oo i=h-f-l

63

It follows that, for sufficiently large h,

p(x^) - 3(^ p(Xi) > o .
i =h-f-l

This inequality in conjunction with (A) provides
a contradiction to our definition of Z*; the theorem
follows.'

THEOREM 13. EXISTENCE THEOREM
Let the significant set considered be infinite and

Then, if and only if the space-time measure employed
has a spatial component, the following implication holds:

wherever Y(z) is defined, 4>(z) exists

(whatever values are preselected for parameters
a , b , i f p) ,

We regard 4»(z) as existing even when it is not
effectively determinable.^

PROOF
Necessity » a z o (i.e. the space-time measure is

a pure-time one). If a is zero, we can provide a
counterexample to the implication concerned. Consider
the example on page 14 where the space-time measure of
a Turing machine Z^ computing 2x is evaluated. Clearly

^This view would not be accepted by the Intuitionists.

64

t
y (z)̂ is defined there, but on the other hand,

according to theorem 12, no exists.

Sufficiency. a / o (i.e. the space-time measure
has a spatial component). Let be a Turing machine
for which Y(z^) is defined. As the alphabet of any -
Turing machine Z for which Y(z) 4 Y(Zq) cannot
involve s-symbols or q-symbols with coefficients

a~C Ï p(x ,...,x)
(Xjj. " "

2 .

the number of such Turing machines is finite. The
subset of these such that fz] = [z] must in turn ̂ n o n
include a subset T of Turing machines for which Y(z)
is defined. But T is finite and non-empty (since it
at least contains Z^ itself). Thus there exists

/min. y (z) , and ^ { z) is some Z in T such that
ZeT °

/Z = min. y (z) .
Z è T

t 2Viz: Y(z.) = 90b ' (20x + 70x + 137)
? ■

65

Let us employ, as suggested by the last theorem,
measures which include a spatial component. Consider
then the following theoretical approach one might take
towards finding the optimum Turing machine for an
infinite function, such as a total singulary function
f(x), where f(x)-x is monotonically increasing. The
optimisation theorem for finite functions shows that is
possible to determine the optimum Turing machine for
f(x) over any finite domain x = 1(1)t. One could thus,
by successively increasing t, obtain the optimum Turing
machines involved over larger and larger domains,'and
examine how (if at all) they varied. For small t,
the optimum Turing machine would be of a table of
values kind, in which a distinct action was programmed
for each argument. But as we pointed out in the proof
of theorem 12, this requires in general at least one
quadruple per argument. If is the optimum Turing
machine for f(x), all x, then Z is also a candidate
in the selection of the optimum Turing machine for f(x)

*over any finite domain. Further Z 's space-time measure
over 1(1)t is less than the corresponding measure over
all X. Thus an upper bound on the number of quadruples
which the optimum Turing machine for f(x) over any
finite domain can have, is given by Y () • If

5 a T

66

t Y(z*), this number is too small a quantity to
5 a {

allow the Turing machine to cater for each argument
individually. It thus seems reasonable to expect that
for sufficiently large t , any efficient algorithm for
calculating f(x), for x - 1(1)t, must be cast in an
abstract form that in fact calculates f(x) for all x r

and that the optimum algorithm for such t will also
be the optimum algorithm for computing f(x) for all x.
That this the case for all infinite functions, is
shown in the following theorem.

THEOREM 14. OPTIMISATION THEOREM FOR INFINITE FUNCTIONS
For infinite significant sets and measures with a

spatial component where t X o :

tThere exists a primitive recursive function
such that, wherever (z) exists ,

X^(zjt) = (z) for almost all t .

PROOF
Let be any Turing machine for which (z^)

(zj) exists. By methods such as that employed in the
third equivalence theorem, we may order the n-ary
arguments of the significant set S as a^,a^; ,

^ Corresponding to the specific parameters
a,b,^,p employed.

67

Let be the corresponding quantity
t
I p(a.) fi(z,a.) , where p is the probability function,

i=l ̂ ^
and Z* that Turing machine which calculates[z^]^
over a^, for i = l(l)t, for which Y^(z) is least
(i.e. the optimum Turing machine for [z^]^ over the
domain {a^,a^?•••?a^}). The theorem will be shown
to hold for a recursive function such that

X̂ (2 ^>t) = Z* for each t,

so justifying the heuristic approach we described in
the preliminary remarks.

As we mentioned there, also calculates Fz 1o OJ n
over {a^,a^j•••>a^}, and hence

Q(z^) must be 4 Y (z^) for each t .
a i P(a^)

If the finite set of Turing machines for which this
inequality holds is P^, Z* is in P^ for each t, and
so is Z .o

Corresponding to any Turing machine Z in P^ which
calculates a different function from that of Z^ over S,
there must be some argument a^ e S, such that
r zl (a^) X [z] . Let t be the least coefficient*- -'n' t' ^ o n' t' z
of 'a' for which this is the case; P^, the subset of
of such Turing machines; and the maximum value of

68

t for Z é P . Clearly then, for t > t , Z^ and Z^Z z max t o
compute the same function over S, and so are both members
of the smaller set P^-P^.

It is conceivable, however, that Z^ might in certain
cases ’oscillate’ indefinitely with increasing t among
the members of P^-P^ other than Z^. We show that this
is not the case.

If [z] = fz 1 , since Y.(z) is monotonically ̂ n s * - o - ’n t''
increasing with respect to t, either there exists
limit Y. (z) or limit Y (z) = œ . But for Z - Z* ,
t-^oo °
limit Y (z) does exist, viz: y(z ^). It follows that
t->«> ̂ °
limit Y. (z) = 0 0 Y. (z) > Y (z^) for almost all t,t -^00 ^ T V o

Ÿ / Iand hence Z y Z^ for all t > t^, some t^. On the other
hand if limit Y. (z) is defined, so is Y(z), which is

t — 0̂0
the limit concerned, and in this case, Z e P^-P^ implies
that Y(z) ^ Y(z*) (by definition of Z*)• Therefore

= Y(z) - Y(z^) d^ ̂ o; and if in fact d^ > o.

Y^(z) > Y(/) + I > Y^(<)
// Iffor all t > t^ some t^ .

Let P^ be the subset of Turing machines Z of P^-P^ su
that limit Y (z) = œ ; and P. the subset such that

t-> ® ^

ch

69

limit Y, (z) exists and is y (z *)» Then, for
t —» m °
t > max.(t , max.t', max.tf)) zf and Z* are members ofZ.P3 ^ Z«P^ z t o

(P^-Pg) - (Pg^P^^; moreover this set consists solely
of Turing machines that calculate [z 1 over S and areo n
of optimum efficiency. Hence = Z^ for all such t.

The theorem now follows if we write Z for Z , and
t °take x^(z,t) as the function defining Z^.

SECTION 3. ON INEFFICIENCY

Our inquiry so far has been concerned with the
question of efficiency. - We now raise the reverse
consideration, that of inefficiency. Rabin ^ 2 ^ , and
also Blum ̂ "5 / have proved the existence of ’arbitrarily
difficult' functions . Their notion of difficulty
(which we discuss in chapter 3) is quite different from
our concept of space-time measure, but one may ask whether

t X^’s primitive recursiveness is left for the
present to the intuition; we take up the question of
assertions of this kind later (page 145) •

70

a parallel result holds. The question in this form,
’’Are there functions of arbitrarily large space-time
measure (so that there is an arbitrarily small upper bound
on the efficiency of their algorithms)?”, proves trivial,
since we can specifically define functions with values
so large that their space-time measures of necessity
exceed that of any proposed upper bound.

THEOREM 15
There are functions with arbitrarily large space

time measures.

PROOF
Corresponding to any k, we can define a function

f(x) such that if Z is any Turing machine which computes
it, Y(z) > k. Let x^ be an argument-value for which
p(x^) > o; then f(x) may be taken as any function such
that t

= . l , x . . 1] ^f (X

Then, if Z computes this function,and b / o,
p(x) b E(z,x) > k, whereas if a / o,r- \ o' ' O'
p(x^) a M(z,x^) > k. Thus in all cases,
p(x^) ji(z,Xo) > k; the result follows.

^ Using ’ for ’the largest integer ^ x

71

The question becomes a material one if we exclude
functions of the type employed in the above theorem,
for which a value of x is postulated such that f(x)-x
is arbitrarily large. Let us instead consider functions
where f(x)-x is bounded. It turns out then that the
answer hinges upon whether the significant set considered
is a finite or infinite one, as the following two
theorems show.

NOTATION
l(x^,...,x^) is the length of the argument

(x^,...,x^)o In Davis type Turing machines
l(x II ̂ . ,x) = X X. +2n-l .

 ̂ " i=l 1

THEOREM 16
If the significant set S involved is finite, and

if h is any fixed number, there is an upper bound to the
space-time measure of functions for which.

f(x^,...,x^) - l(x^,...,x^) ^ h for all (x^,...,x^) e S
(corresponding to the parameters a,b,6,S employed).

PROOF

Let f(x^,...,x^) be any such function, and let Z
be any Turing machine computing it according to a table

72

of values method. We show that Q(z), M(z,x^,...,x^),
and E(z,x_,...,x) are bounded. The number of ' 1 n'
quadruples which Z requires, is < m(3m-j4i) where
m = max. l(x ,...,x)« This implies that

(x^, . . . ,x^) & S
Q(z) < m ^ -f-Æi)x(2 log^m(3m -i-4i) -f ;

moreover M (z , x^, .. ., x^) < m -f- h for all (x^,...,x^) e S
and E(z,x_,,..,x) < 3m 4-ah for all (Xt ,...,x) e S.' 1 n' ' ' I n '

Hence Y(z) = X T p(x^, ... ,x^) | a('M(z,x^, •.. ,x^)
(x^,.••,X^) 6 S

+ I Q(z)) + b E(z,x^, . .. ,x^) j

is bounded, and so therefore is Y(z)•

THEOREM 17
If the significant set S involved is infinite,

corresponding to any k no matter how great, there exists
a recursive function f(x) with space-time measure > k,
yet which is such that

f (x) = X or X -f- 1 for all x e S .

PROOF
Define recursively (f(x), S^) , where is a set

of Turing machine indices, as follows:

f(o) = o ,
Sq = a .

73

To evaluate f (y -f- 1) if p(y + 1) 7 f o, consider the
least number (say z^) of

“1̂1 >2, ••••, y-j-lj" — Sy

which is the Gbdel number of a Turing machine and which
is such that

« ?rl+ir ■

«nd let f(y+i) : p »oti(y+i) . yfi ^ y +11 I. — » y + i] (b)
and ;

if none of the numbers satisfy (A) , or if p(y-f-l) = o ,
let f(yfl) = y+1» and = S^.

Now consider the inequality

(l(z,x) k
P(x)

with respect to any Turing machine Z computing f(x).
This can hold for at most 2z values of x for which
p(x) / o, for otherwise a contradiction arises in that
z occurs as z in (B) for the evaluation of some value o ' ’

of f(x)o Accordingly for at least some y ,
p(y) îi(z,y) > k, and thus

Y(z) = I p(x) |i(2 ,x) > k
X € S

74

As this applies to any Turing machine computing f(x),
y (z *) is also > k.

We now turn to discuss, in the next two chapters, .
the individual spatial and timing measures in terms
of which our space-time measure for algorithms was
defined. These are the measures M(z,x^,..•,x^), Q(z)
and E(z,x^,...,x^) over computations, and that over
progrsons Q(z) (considered from a different point of
view); we also discuss a related measure over programs
W(z) (the number of instructions involved)«

75

CHAPTER 2

MEASURES OF PROGRAMS

SECTION 1. ON PROGRAM LENGTH

As we wish to draw attention to the range of
application of our concept of the spatial measure of a
program, we make an exception in Ihe first part of this
chapter to our practice of formulating results in terms
of Turing machines, and instead give them in an abstract
form applicable to any computation system.

We first discuss the definition in question, and
then go on to give associated results on translation
between programs and on the problem of finding programs
of minimum length.

DEFINITION
The set of programs of a computation system is a

recursive set of words on a finite alphabet by which
the algorithms of the system are represented. Each such
word is called a program of the system.

76

DEFINITION

Clearly a system of Gbdel numbering may be applied
to any set of programs. We employ our convention of
representing algorithms by upper case letters and their
Gbdel numbers by the corresponding lower case letters.
Further [z] ^ denotes the n-ary function the algorithm
Z evaluates.

DEFINITION

We take as the spatial measure Q(z) of a program Z,
its length (i.e. the number of letters of which it is
composed).

This concept may be interpreted for different
computation systems as follows:

Applications of the Definition

(1) Turing Machines
Q(z) has already been defined for Turing machines.

(2) Recursive Expressions
One may represent any function expressed by

minimalisation and compostion in terms of Davis' functions

(2)-(6), p.4 1 ̂ on the alphabet:

{o#l, . . .9,x,y,z, (j) , 5 ,M,S,Uj-|-,--jxJ-

if one denotes

77

(a) subscripted variables such as as ”xl2” ;
(b) as "Ui” (the value of n in U? is obtainable

by counting the number of arguments) •
(c) minimalisation quantifiers such as ”min^” as ”My” •

3>
EXAMPLE. If f(x) is defined by S(S(S(x))) : S(S(x-x)),
then the spatial measure of this particular expression or
program for the function is 20, whereas the equivalent
program S(x) has a measure 4.

(3) Other Classes of Mathematical Expressions
One may augment the alphabet in (2) by constants

such as TT and e , and additional function letters
representing exponentiation, proper division, partial
products and sums, etc. .

(4) Kleene Systems of Equations
One can quite easily represent such a system on a

single string, separating the individual equations by
semicolons. Our definition of spatial measure may then
be applied.

(5) Computer Programs
Computer programs whether in machine language,

assembly language, or in a compiler language such as
Fortran, can be represented without difficulty as in (4) .

78

y 2 2________ X -y

viz: z - (x f 2 - y * * 2) ’̂* 1./2.
has length 20. .

Q(z)'s interpretation in other computation systems
may be made in ways similar to those given above.

DEFINITION tWe refer to Davis' functions (2)-(6) , p.4iy^,
(which correspond to Kleene's "basis A ”) as bas is D.
A recursive expression is a w.f.f. constructed from
basis D by composition and minimalisation.

Davis has produced an analysis whereby programs
given in the form of recursive expressions may (by means
of the programming techniques, examples and theorems
quoted in the proof of his Theorem 1.2 (Chapter 3, p.42))
be translated into ones for Turing machines, whereas on
the other hand (using defintions (1) to (26A) and
theorem 1.4 (Chapter 4, p.62)), the functions represented
by Turing machines may be defined by recursive expressions
Let Q^,Q^, respectively, denote the program length i K
functions in the computation systems of Turing machines

viz: S(x) r x-f-1; U?(x^, ... ,x^) = x ^ , 1 <n; x+y; x-y; xy

79

and recursive expressions. Then, by using the results
quoted, one can make the further observation:

THEOREM 18.
(a) There exists a constant k such that, if V

is any given recursive expression, a Turing machine Z ̂
can be effectively found which computes the same
function, and which is such that

0^(2) < k

(b) There exists a constant k such that, if Z
is any given Turing machine, a recursive expression V
can be effectively found which computes the same
function, and which is such that

Q r (v) ^ ^ y .

Generalising the problem, we consider translation
between arbitrary computation systems.

THEOREM 19
For finite significant sets:

It is effectively possible, given any program of one
computation system, to find a corresponding program for
it in another.

80

PROOF
Let be the computation system in which the

program is given and that in which it is required,
and let the programs of be, in order of increasing
length, ,Z^,Zg... . Calculate the values of the
function defined by over the significant set S.
Then consider successively, for increasing n, up to n
steps of the computations of Z^,Z^,Zg...,Z^ for each
of the arguments in S, until an algorithm is obtained
which calculates this function within the number of
steps examined.

Before going on to consider the problem of finding
programs of minimum length, we make some remajtrks about
the philosophical implications this question holds.

INDUCTION
In science the classical task is to induce an

underlying law from experimental evidence. What is
sought is not an algorithm which merely fits the data -
a simple list would suffice for this - but one which has
predictive capacity. It is felt that in general the
’simplest' explanation (algorithm) is most likely to be
the one associated with the law involved. The concept of
simplicity is an intuitive one, not capable of exact

81

definition. Simplicity and conciseness are however
closely related and it is of heuristic value to use the
latter as a measure of the former.

For example, assume we were investigating an unknown
function y = f(x^,...,x^) (such as Kepler may have
considered with regard to the variations in time of the
apparent positions of the planets). It would certainly
be of the greatest heuristic value for determining f, or
for fitting a graph, to find the shortest program (in a
computation system such as that of example (3)) which was
consonant to the accuracy known with the readings for
x^,...,x^,y. Though exceptions can be constructed,
our theorem 2 1 below provides that for a sufficiently
large number of readings, such a program will in general
be one which represents the underlying function concerned.

Conservation of Space
Shannon /29/ has shown that in order to store an

arbitrary set of numbers of maximum magnitudes
a^,ag,...,a^,

n
I log^a.

i=l ^ 1

bits of storage are necessary.
In particular cases, fitting the shortest program

J
and storing this instead of the numbers themselves,
allows us to conserve space.

82

e.g. 32 ;64; 128 ; 256 ; 9 ; 512 ; 1024 ,
which requires 24 letters, is more concisely stored as

2^, X = 5 to lO; 9 ,
which requires only 1 1 .

If the list of numbers is large, no matter how
arbitrarily they are selected, it is to be expected
that subgroups of the set will be connected by some
such laws as that above. The shortest program evaluating
the list will probably be much shorter than the list
itself, and it is possible in this case to store the set
in a space less than that of Shannon's measure.

We defined (z) as that Turing machine Z* n ' o' o
which calculates the same function as Zj.over S for which

p(x ,...,x) ji (z,x-, . . . ,x)

is a minimum. If instead of the computational measure
(z,x^, ... ,x^) , we employ that of programs, Q(z), we

obtain the following definition .I

DEFINITION
For any given computation system and significant

set S, (^o^ denotes that algorithm Z, of those which
calculate [z] over S, for which Q(z) is a minimum, o n '

^Or equivalently that for which
y ~ 7 p(x^,...,x^)0 (z) is a minimum.

83

Note that from the definition of significant set,
<()̂ (ẑ) is only defined if S c domain of (as was the

case for 4> (z)) .n o' '

DEFINITION
By a complete computation system C, we mean one

which
(a) contains algorithms for all the recursive functions;
(b) has the property that corresponding to any given

n-ary algorithm Z in C and any number k, it is
effectively possible to select a (n-l)-ary algorithm
in C which computes

t
[z]r|(k.Xj^, . . . ,x^)

^ A complete computation system and its associated
space-time measure is a particular type of 'M-computer'
as defined by Arbib ̂ 2/ and Blum # We have only
postulated (in property (b) of the definition) a form of
Kleene’s iteration theorem, whereas M-computers require
also that the recursion theorem be applicable under the
new interpretation of Gbdel numbers. However this require
ment is in fact superfluous, as the proof used in Kleene,
theorem 28,p.352 / l ^ (o r Davis, theorem 7.4, p. 176) remains
valid under such a reinterpretation of Gbdel numbers and
shows in each case that the recursion theorem follows
from the iteration theorem.

84

The first result we give follows from the 3rd
equivalence theorem and the property specified in the
definition above.

THEOREM 20
In any complete computation system, if the

significant set considered is infinite, is not
potentially partially recursive, nor is any subfunction
of it which is defined over a domain that includes the
indices of the primitive recursive functions.

PROOF
Let the computation system be C. Consider the

functions f ^ (r,x^,...,x^) = [g ^ (r)] ^(x^,...,x^) and
f _ (x_,...,x) = Tz 1 (x^,...,x) defined in theorem 5

2 1 n' ‘-s-'n l n'
for the computation system of Turing machines. By the
first property of completeness, C must contain a
n-f- 1 -ary algorithm and a n-ary such ,that

and [V 2 l„(x^,...,x^) = .

(We do not assume in the proof that and are
effectively determinable.) By the second property,

there exists a recursive binary function t such that t(v^,r)
is the Gbdel number of an algorithm in C for which

85

nfl
all ,

If H is the finite set of algorithms which calculate

fy 1 over S , we obtain by theorem 5 »*■ •2 -'n.

4*(t(v ,r)) e a » ->VT(r,r,y), and the .result followsTn\ \ / y

However, in analogy with theorem 14, we have the
following:

THEOREM 21
In any computation system, there exists à primitive

recursive function x* such that

X^(z, t) = ** (z) for almost all t.

PROOF

Let the algorithms of the computation system,
considered in order of program length, be Z^,Z^,Zg,....
and let the n-tuple arguments of the significant set S
arranged in some sequence be a^,a^,a^,... . Let

X*(z,o) z 1 and z 1.

To evaluate X^(z, t+l) and , examine up to t+1 steps
of the computations of Z^,Z^,.,.^^t+l each argument

86

a^, i=l(l) . If none of these algorithms is thereby
found to evaluate [z]^ over the arguments considered, let

Xn(z>t+1) = X^(z,t) and ;

otherwise select th^-index of the algorithm with the
shortest program as x^(z>t-(-l), and let = h^^i if s
is infinite, or if S is finite, let = min. (ĥ -}-l, the
number of elements in S) .

Of the finite set of algorithms which have shorter
programs than 4>^(z),all those that calculate values other
than Z's over S or are only defined on a proper subset
of S must eventually be permanently eliminated from
consideration in the selection of x * (z , t) » The resultn ' '

follows.

Changing our viewpoint, we now consider whether
there are functions which require programs of arbitrarily
great length.

THEOREM 22.
In any computation system and for any infinite

significant set S and number k, there exists a recursive
function which is such that the length of any program
calculating it over S is greater than k.

87

PROOF
Note we assert only that the function is effectively

calculable, not that the Turing machine computing it is
effectively determinable.

Let Z^,...,Z^ be those programs for singulary
functions of length 4 k which are defined for at least
some member of S, and let x^,...,x^ respectively be the
least such members and y^,...,y^ the corresponding function-
values. If X. , for j = 1(1)u., are the arguments in

y
{x^,...,x^} equal to x^, define f(x) by

. Uj ''ij
f(x.) = n Pr(i) for i = 1(1)t;

j - 1

and f(x) z o otherwise. Since f(x) is zero for all but
a finite number of arguments,it is effectively calculable;
but f(x) is different from any of the functions calculated
over S by Z^ for i = 1(1)t, and thus if Z is any program
which calculates it over S, Q (z) > k.

SECTION 2. ON THE NUMBER OF INSTRUCTIONS A PROGRAM CONTAINS

Closely associated with the length of a program is
the number of instructions it contains. Strictly speaking
this is not a true spatial measure (unless the number of

88

different instructions available is finite and all are
of equal length) . Lee /"l8 / has raised the general
problem of 's-minimisation', finding equivalent programs
with the least number of instructions. Wanabe
Minsky and many others have attempted in particular
to find the 'smallest' programs for the universal Turing
machine (computing Umin^T(z,x,y)) The criterion of
size used in the latter cases is a related measure due
to Shannon /3 q 7 * the number of s-symbols the Turing
machine contains * the number of q-symbols. We identify
the number of instructions with the number of quadruples,
and consider in this section the latter quantity, but all
our results remain applicable if Shannon’s measure is
substituted instead.

It is natural to attempt to modify the proofs we
have made in terms of program length so as to obtain
corresponding results for number of instructions. The
complication immediately arises, however, that there are
an infinite set of Turing machines with any given number
of quadruples. To meet this difficulty, we supply the
following two theorems:

NOTATION
The number of quadruples a Turing machine Z contains

is denoted by W(z).

89

THEOREM 23. FIRST REDUCTION THEOREM
There are a finite number of distinct Turing

machines of any given number of quadruples.

PROOF
We begin by making a definition, which is of use

both in the present and subsequent theorems.

DEFINITION OF *(z)
Let Z be any Turing machine with q-symbols, other

than q^, in ascending order ;

2 ^3

and s-symbols, other than s^,s^, in ascending order:

Now define

R = R ,
IL = L ,

= q̂ . f o r t = 2 (l)v ,

sj = s^ for t = 2 (l)u ;

further, if any of q^,s^,s^ are members of the alphabet
of Z, define

% = ^o '
s'l = Si ,

q'l = q% '

90

accordingly. Then, if Z consists 'of [a^b^c^d^j, where,
for each i, a^ is a q-symbol, b^ is a s-symbol, and c^
is either R or L or a s-symbol, and d^ is a q-symbol,
let 'l'(z) be the Turing machine {a^ ’ b^ ' c! d^ j .

It now follows immediately that for all Z

[gn q-(z)] ^ = [z]„ ,

and W(gn 'l'(z)) = W(z) .

Thus for any t, the finitexset of Turing machines which
consist of t quadruples on the alphabet

 ,q^^,

...... ’® 2 t ’

contains all the distinct Turing machines for which
W(z) = t.

We can in fact state the stronger result:

THEOREM 24. S E œ N D REDUCTION THEOREM
For any t, the recursive set of Turing machines Z

such that

W(z) = t
and »|»(z) = Z

is finite, and contains all the distinct Turing machines
with t quadruples.

91

DEFINITION

For any given significant set S, (z) is thatn ' o'
Turing machine Z of those which calculate [z 1 over S, ̂ o n
for which W(z) is a minimum.

The reduction theorems, and the 3rd equivalence
theorem, enable us to prove the following three theorems
in analogy with theorems 2 0 , 2 1 and 2 2 .

THEOREM 25
If the significant set considered is infinite,

<()̂ (z) is not potentially partially recursive, nor is
any subfunction of it which is defined over, a domain
that includes the indices of the primitive recursive
functions•

THEOREM 26
For each n there exists a primitive recursive

tfunction such that

X^(zjt) z 4^(z) for almost all t.

PROOF
Let the set of Turing machines such that

^Corresponding to the significant set employed.

92

W(z) = t
and i|;(z) = Z,

defined in the second reduction theorem, be denoted by
Then in place of the sequence Z^,Z^,Zg,..., defined in
order of program length in theorem 2 1 , consider instead
the sequence Z^ ,Z^ ^ ^ 3 >••• formed by writing all the
members of R ^ .in alphabetical order, then those of R^, Rg
etc. The present theorem may then be proved in an
analogous manner.

A similar adaptation of theorem 22, on arbitrarily
long programs, yields:

THEOREM 27
For any infinite- significant set S and any number

k, there exists a recursive function such that if Z is
any Turing machine that calculates it over S, then

W(z) > k .

SECTION 3. SECONDARY OPTIMISATION

In our proof of the optimisation theorem for finite
functions we took advantage of the case where £- = o, by

93

defining Turing machines in terms of sets of actions for
which the average value of E(z,x_,...,x) was as small

1 n'
as possible, but the size of the Turing machine obtained
exceptionally large. We consider now how one can in
fact determine the shortest such Turing machine, or
alternately, that with the least number of quadruples.

THEOREM 28

For any finite set of significant arguments S and
any Turing machine Z defined over it, it is effectivelyo
possible to pick out from aunong those Turing machines Z
which compute [z^] ̂ over S and for i^ich

Y(z) = p(Xi,...,x^) E(z,Xi,...,x^)
(x^,...,x^)

is a minimum, a Turing machine for which Q(z) is least,
IV for alternately, one for which W(z) is least.

LEMMA 1
I
Given two instantaneous descriptions a^, , it is

•i
effectively possible to decide whether or not there exists
a quadruple Q such that

> “ 2 (0) >

^ For the purposes of the theorem, y (z) could be
taken more generally as

p(Xi, ... ,x^)-[à M(z,Xi, .. . ,x^) -f- b E(z,Xi, .. . ,x^)|
(Xi,..‘. ,x^)

V

where b / o .

94

moreover if such a quadruple does exist, it is unique,
and effectively determinable.

PROOF
Obvious•

LEMMA 2

Given a finite set of finite sequences of
instantaneous descriptions

°"l' ”‘2........

for k = 1 (1) m, it is effectively possible to determine
whether or not there exists some Turing machine Z such
that each of the sequences is a computation of Z; moreover
if such Turing machines do exist, it is effectively
possible to find one. (We show how to find that one with
the least length and least number of quadruples.)

PROOF
Using lemma 1, consider whether or not there exist

quadruples Q ,for k = l(l)m, i - 1 (1)t . - 1 such that

a, — > a, (Q.) for each k = 1 (1) m, and i = 1 (1) t. - 1 k± \ K

If this is not the case, no Turing machine of the kind
sought does exist. If, on the other hand ,

95

(a) in each case such quadruples do exist,
(h) represents a Turing machine (which implies

that no two quadruples start with the same pair of
symbols),

(c) Q is final with respect to {Q 1 for each
th • î

h in 1 (1)m.
then Z 2 = (^k.} required Turing machine. Moreover
if there exists any Turing machine Z ^ , such that each of
the sequences a, is a computation of Z_ for k = l(l)m,

^1 ^t^ 2
then Z^C Z^, since by lemma 1 , each must be contained
in Z ^ ; further in this case Z^ is also a Turing machine
for which each of the sequences is a computation, since
conditions (a), (b), (c) clearly all then hold.

PROOF OF THEOREM 28
Let Z^ be any Turing machine and let

p be min. p(x^,...,x). Denote y (z) (which
(x̂ , •.. ,x̂)gS — ---

forms an upper bound for E(z^,x^,...,x^) over S) by u,
the number of significant arguments in S by d, and the
maximum length of (x^,...,x^) for (x^,,..,x^) G S by m
Then the size of the maximum instantaneous description
involved in the d computations over S of the optimum

4cTuring machine Z^ is ^ m u, since the size of an
instantaneous description can increase by at most one

96

symbol at a time; the number of different q-symbols
which could occur ̂ du; and the number of different
s-symbols ̂ d (2 -̂ u) (because only one new s-symbol can
be introduced at each step)•

Restricting ourselves for the moment to the letters

.......'^du '

 ’®d(2 +u) '

consider the finite class r of all sets of d sequences
of instantaneous descriptions of size ^ m-f-u formed using
letters given above, such that each sequence starts with
a different member of |q^(x^,•••,x^) | for (x^,...,x^) e S,
and is of length 4 u. Using lemma 2, we can determine
whether or not any such set of sequences represents a
set of computations for some Turing machine, and if it
does, effectively obtain a Turing machine of this kind.
On the other hand, any set H of d sequences of instantaneous
descriptions defined on an alphabet

9; '9; 'A; »^2 ^3 ^du
s. ,s . ,.#....,s . ,

^ 2 ^3 ^d(2 fu)

plus possibly q^,s^,s^, does or does not represent a set
of proofs on some Turing machine Z, according to whether

Ithis is or is not the case for a set H (F , which

97

is obtainable from H by leaving q^,s^,s^ unaltered, and
replacing

q. by q , for each t in [2 ,du] ,
^t

and s. by s , for each t in [2 ,d(2 -fu)] .
^t ^

I / ̂Further if H does represent a Turing machine (say) Z ,
it must follow that

Lz']n(Xi.....x^) = for all
(x^,e.•,X^) € S

and that y(z) = y(z) •
/Further Z = ^(z) ,

and so W(z^) = W(z)
and 0 (z) ^ 0 (z).

Thus it is sufficient to examine each of the finite
set of Turing machines obtained using lemma 2 from the sets of
d sequences of instantaneous descriptions in f ,. to select from
these all those Turing machines Z such that [2]^ =.[Zq]„> and

of these Turing machines to choose those such that Y(z)
is a minimum; we may then in turn select from this last
set an element for which Q(z) or W(z) is least. This
will be the required Turing machine.

98

CHAPTER 3

MEASURES OF COMPUTATIONS

SECTION 1. BLUM'S DEFINITION

If P(x^,.#.,x^) is a partially defined predicate
with domain D, let QP(x^,•..,x^) be a predicate defined
by

OP(x^,,..,x^) ()
P(x^, .. . ,x^) , for all (x^,...,x^) € D;
F., for all (x^,*..,x^) X D .

We may then express Blum's definition of a measure of
computation /'ÿ' (adapted to apply to Turing machines and
generalised to n-ary arguments) as any function
<î>(z,x^, .. . ,x^) such that

PROPERTY (1): <î>(z ,x^, ... ,x^) is partially recursive, and
is defined if and only if [z]^(x^,.,•,x^)
is defined;

PROPERTY (2) : O (4 > (z ,x^, . .. ,x^) = k) is recursive .

Since
Q(<P(z,x^, .. • ,x^) z k) is recursive

4-4" Q($(z,x^, ,.. ,x^) ̂ k) is recursive.

99

we may place property (2) by the right-hand side of the
above bi-implication which we call property (2) .

Intuitively our space-time measure of computation
fi(z, , . . . ,x^) is such a measure (and hence so are each of
the specific measures E(z,x^,...,x^) and M(z,x^,•..,x^) f i Q(z)
(or simply M (z ,x^,•..,x^))). The first property
holds because we can envisage a process for evaluating
H(z,x^,...,x^) which attempts first to generate all the

instantaneous descriptions involved, whereas to decide
the predicate specified in the second, we need only carry

k
out the computation *min.(k, k V(z) Y(z)^)

E a
steps, where Y(z) is the number of s-symbols in Z and
V(z) the number of q-symbols. These ideas are easily
expressed in a formal proof:

THEOREM 29
(z,x^, . •. ,x^) is a measure of the type defined

by Blum.

p r o o f '*'

Property (1)
This follows, as may readily be verified, from the

fWe employ here the following notation defined in Davis:
tIC(x) , AL(x) , Pr (i) , TYl P(y,x^, ... ,x^) , INIT^(x^, • . • ,x^) ,

y=o
YIELD (x,y,z) , R(x,y),j'xp x * y, T(z,x^, . . . ,x^, y) , a , U,
min^, Ji , GL. See Appendix II.

lOO

following recursive expressions for Q(z), M(z,x^,...,x^),
E(z,x^,...,x^).

If the number of binary digits representing a symbol
is denoted by BIN(x) ,

BIN(x) = [lC(x) -> min^(2'*^ > “3“]) ;
AL(x) —>• min^(2^ >[4 j ; T. 1%] ,

f(z) / 4and Q(z) is thus = % (4 + I BIN(j GL (i GL z)) \ •
i=l ^ j=l J

Let t(x) be as defined on page 22.
tIf MAX f(y,x_,...,x) denotes

r 'j (h » f (y,Xj^,... ,x^)) a (h = f (y,x^,... ,x^))

and if d(x) denotes the result of dropping left-hand and
right-hand blanks from an instantaneous description x,
with recursive expression

X X X u V
Ta \/ V (X - n Pr(i)^« y * n Pr(i)7) ,
y=o u=o v.o i=l i=i

then

M(z,x^,...,x^J = L n)in^|r(z,Xj, ... ,x̂ ,K(w)) a

L(w) = MAX (X(d(i GL K(w))) - |_IC(t (d(i GL K (w)))) ^ o ; T. _» lj)|

Finally E(z,x-,...,x) = Xmin T(z,x-,...,x ,y) .
1 n' y ' 1 n '

101

Property (2)

NOTATION
If P(x^,...,x^) is a predicate, we denote its

characteristic function by AP(x^,...,x
1 n'

Preliminary Recursive Expressions

(a) Let RES(z,x^,•.•,x^,t) be the Gbdel number of the
t^^ instantaneous description of the computation of
[z]^(x^,•..,x^) if this exists, and O otherwise. It
may be defined recursively as follows:

RES(z,x^,...,x^,o) = INIT^(x^,...,x^) ,

RES (z , x^ , . . . , x^, t-fl) =

YIELD (RES(z, x^, ... ,x̂ ,t) ,y,z) — ̂ y ; T,
y=i

^ T,(b) { — the least integer > — , = |̂ R (x, y) /o

(c) MIN(x, y) = j^x<y x ; T. -4 - y ̂ .

(d) The number of s-symbols Y(z) in Z

X(z) 4
I I a A(AL(j GL (i GL z)))

i=l j=l

(e) The number of q-symbols V(z) is recursively
expressible in a similar manner.

[i

102

Using the above, and our proof of property (1),
we obtain the partial recursiveness of

Q (p(z,x^,...,x^) < k)

from the recursive expression of its characteristic function:

RES(z,x^,#.#,x^,

[bro-*<^V(z) Y(z)®; a=o-»<|>; T. - MIN(<|> , <^ V(z) Y(z)^)J)

= 0} --> a(m(z,Xj^, . . . ,x^) < k) ; T. > o

Further, as RES is primitive recursive and p(z,x^,...,x^)
is defined if there exists t such that RES(z,x^,.,.,x^,t)= o,
0 (p(z,x^,...,x^) < k) is total, and hence recursive.

This last property prompts us to consider predicates,
central to the concept of computational measure, of the
form (or its negation)

0 ($(z,x^,...,x^) < g(x^,...,x^))
where $ is M or E,

and we refer to these as the measuring predicates. It is
well known for instance that “> \/T(x,x, y) is not computable,

ybut on the other hand, if $ denotes M or E,

V fT(x,x,y) A Q{ (p { x , x) < k)l
y

is computable, since

103

->V{T(x,x,y) A 0 (0 (x,x) < k) I is true
y

< — > the measuring predicate ”> O (0 (x,x) < k) is true,

giving the result by property (2)•
We shall see in fact that transformations such as

that of -I V T(x,x,y) into
y

-iV|T(x,x,y) A Q(<t>(x,x) < k)|

alter the limitations of the predicates concerned from
ones which bear upon their decidability, to ones applying
to relationships between the spatial and timing measures
M(z,x^,...,x^), E(z,x^,...,x^) and Q(z), that such
decisions entail. This is the subject matter of the
next seven theorems.

SECTION 2. THE MEASURING PREDICATES

SECTION 2.1 MEASURES E AND M CONSIDERED
IN RELATION TO Q

We give here the first of the modifications we offer
to Davis' model of Turing machines so as to produce a
closer correspondence to actual computers with respect to
efficiency criteria. A Turing machine will be allowed

104

to signify whether a predicate P(x^,...,x^) is true or
not as soon as this is 'determined', without the
requirement that it first erase all, or all but one, of
the ”l"s on the tape.

DEFINITION
We introduce the new special s-symbols Y and N,

and permit Turing machines to have quadruples of the
form

type (a)
type (b)
type (c)

, qi Sj Y ;

'j ^
N N q^ .

for any i ,j

DEFINITION
A Turing machine Z R-calculates a predicate

P(x^,...,x^) if it terminates its computations with
respect to (x^,#..,x^) by writing a Y or N respectively.
according to whether P(x^, ..,x) is true or false n'

R-calculation is our main concept. It also proves
technically useful, however,to define an auxilary concept,

IR -calculation.

DEFINITION
A Turing machine R -calculates a predicate

P(x^,... ,x^) if it terminates its computations with

105

respect to (x^,...,x^) by writing a Y if P(x^,...,x^)
is true, whereas if P(x^,...,x^) is false, it writes
a N and then loops.

DEFINITION

A Turing machine Z is said to reach its terminal
state when it either halts, or executes the last
instruction before beginning a one instruction loop such
as represented by type (c) .

The equivalence (from the point of view of
effectiveness) of these concepts is easily shown:

THEOREM 30.

P(x^,...,x^) is computable
P(x^,...,x^) is R-computable

/P(x^,...,x^) is R -computable.

PROOF
If Z computes P(x^,...,x^), using the method

described in Davis* proof of lemma 1, p.26, we can
/construct a Turing machine Z which also computes

P(x^,...,x^), but at the same time maintains special
markers at either end of the tape. It is then easy to
devise a Turing machine Z which behaves as Z , but instead

/of halting when Z does, searches the tape between the

106

markers, determines whether the number of tallies
contained is O or 1 , and, accordingly, writes either a
Y or a N.

A similar method enables the construction of a
MTuring machine Z , which computes P(x^,... ,x^) , by

modifying a Turing machine Z that R-computes it.
Finally if Z R-computes P(x^,.•.,x^), then

Z u |q^NNq^ R -computes it; whereas if Z R-computes
P(x^,...,x^) ,it must contain a quadruple of type (c) ,
and the predicate concerned is then R-computed by
Z - {q^NNq^}.

THEOREM 31
PART A . For any k ̂ 1, and any finite set of numbers S,
there exists a Turing machine Z which for all x 6 S,

/R - calculates the measuring predicate

-I Q (E(X , x) < k 1 (x)^ 5

yet, for all such x, reaches its terminal state in

^ k -f- 1 (x) steps.

PART B . For any such Turing machine Z^, / S . '

PROOF
PART A. We produce a Turing machine Z which in fact

107

reaches its terminal state in < 1 j- l(x) steps by a
straightforward table of values program, viz: if
S = |x^ I i = 1(1) tj , and m is its largest element,
let Z be o

^i ̂ ^ ^i+l i = l(l)m+l ;
^i ^ 1 fo]: i = 1 (1) t, where in each

case is Y or N according to whether
or not -I q(e(x,x) ^ k j- 1 (x)^ holds;

N N

Note that Z is effectively determinable since
^ t

- 1 Q^E(x,x) < k -|- 1 (x)^ is recursive.

PART B . If Z^ R-computes -n Q ̂ E(x,x) k j- 1 (x)^ for
all X G S, then for all such x

-I Q Te (x ,x) < k f l(x)A 4=4 \/T(z ,x,y) .
y

But if Z reaches its terminal state for all x & S in o
^ k -f- 1 (x) steps, then for all x f S

f The objection might be raised that this method of
determination requires all of Z^ * s values in S to be
calculated* in advance ; but the purpose of part A is
only to show that a Turing machine of the required
efficiency actually exists.

y
and thus

108

V T(z^,x,y) > q (e (z ^,x) < k f l(x)) ,

-I q (e (x ,x) « k + l(x))

< ■ > q(e(z^,x) < k j- l(x)^ for all x e s

Hence y S, for otherwise a contradiction arises if
we substitute z for x.o

In general Turing machines with large Q(z) have
large Godel numbers, and vice versa; z and Q(z) are in
a sense both measures of the size of the program involved.
This suggests that by redefining the Gbdel numbering
system so as to make the relationship between the two
quantities a more direct one, we may be able to adapt
theorem 31 to provide a limitation on Q(z^) instead of
the Gbdel number z^; then since programs for -computation
and their Q measures are simply related to corresponding
programs for R-computation, we should be able to modify
the result further to make it apply to R-computation.

DEFINITION
A R-Gbdel number of a Turing machine with program

. T-m 1 -m -t-m -i-m
1 ’ 2 ’ 3 4 ’....... *^1'^2'^3'^4'

is the number whose decimal digits are obtained by replacing
all commas by ’*2 **s, semicolons by ”3**s, "R"s by **4**s.

109

L*'s by **5s, **Yq̂ **s in quadruples of type (a) by **6 *’s
and **Nq^’*s in quadruples of type (b) by **7 **s or ’*8 **s
according to whether or not a quadruple of type (c)
occurs; the presence of a quadruple of type (c) (which
has constant coefficients) is thereby indicated, and the
quadruple itself may be deleted.

The representation of lists in this way, by means
of concatenation and spacing digits, has been
investigated by Quine £ 2 " ^ and Smullyan / 3 3 / , and using
the latter * s results, Ritchie £ 2 l£ has shown that the

commonly used recursive functions and predicates such as U
and T may be redefined so as to apply to Gbdel numbers of the
above kind. For the remaining theorems of the present
subsection, we reinterpret, similarly, references to
Gbdel numbers in E(z,x,,...,x), M (z,x_,..«,x_), and

' 1 n' ' 1 n'
Q(z)« It follows then that

Q(z) = the number of decimal digits *
in the R-Gbdel number of Z.

THEOREM 32
PART A. For any k ^ 1 and any h, there exists

a Turing machine Z^ which, for all x < h, R-calculates

O (E(x ,x) ^ k -f- l(x)) ,

110

yet satisfies the condition

E(z^,x) < k f l(x)

PART B . For any such Turing machine
Q(z^) > the number of decimal digits in h.

PROOF
PART A . Omit the quadruple q^NNq^ from the Turing

machine described in theorem 31.

PART B . Let Z^ be any such Turing machine. Then
for X ^ h, Z^ u j q^NNq^ j Recomputes
I Q^E(x,x) ^ k j- l(x)) and further reaches its terminal
state in ^ k -f- l(x) steps. Thus by theorem 31, if z^ is
the R-Gbdel number of Z^ u q^NNq^ j ,

1 f!- { 1 >2 ,....... ,h } ;

hence z^ > h ,

and as Q (z^) = the number of decimal digits in z^, the
result follows.

THEOREM 33
If Z^ R-computes

- 1 O (E(x,x) <: k -|- 1(x)̂ ,

then E(z^,x) > k -f l(x) for some x < 10^ ̂̂ o^

Ill

PROOF ‘
If not, then by theorem 32,

Q(z^) > the number of decimal digits in 10^^^o^
i.e. > Q(z^) f 1

which is impossible.

THEOREM 34
PART A . For any k and any h, there exists a Turing

machine which, for all x < h, R-calculates

-I O (M(x ,x) < k j- l(x)^ ,

yet satisfies the condition

M(z ^,x) < k l(x) .

PART B. For any such Turing machine Z _ , — — ——— o

Q(z^) > the number of decimal digits in h.

THEOREM 35.
If Z R-computeso

-I Q (m (x ,x) ^ k -f- l(x)) ,

then M(z ,x) > k -f- l(x) for some x < lo^(^o)

PROOFS
Similar to those for theorems 32 and 33, with

minor modifications to obtain the additions to the range
of k in theorem 34.

112
s e c t i o n 2.2 MEASURES E AND M CONSIDERED INDIVIDUALT.Y

Theorems 36 and 38 which we give below provide a
contrast to theorems 32 and 34 respectively.

THEOREM 36

For any n,k>o, there exists a primitive recursive

function f such that f (z) R-computes

“I O ^E(z,x^, ... ,x^) < k) ,
yet E(f(z),x^,...,x^) ^ k for all (x^,...,x^).

PROOF
If k = 1 the predicate concerned has a constant

trutb-value , and the problem of constructing f (z) is
trivial. Consider k > 1.
tru Representing quadruples of the form

Sj as (i,j,k,u),
q^ R q^ as (i,j,R,u),
qf sj L q^ as (i,j,L,u),

let Z be any Turing machine

f'Actually we produce a primitive recursive function
f(n,k,z) which for any n,k is that required by the theorem.
This comment applies also to the next ,two theorems,

t Thus for each t, k^ is either ’R* or *L* of a
coefficient•

113

If max. (i ,u) ̂ is w,
t = l(l)m ^ ^

let + (r-l)w

+ (r-l)w
for t = l(l)m.

Now let Z be the Turing machine ^

^ I t = l(l)m }

u (i^,x,N,l) j t = 1(1)% r = 1 (1)k
all X such that s^ e alphabet of Z, or is the blank
or tally but q. s is not the first two symbols
of any quadruple of Z f- .

That the Turing machine given above does calculate
“I Q ^E(z,x^, . .. ,x^) < k) , is shown as follows. Z and Z

each start in state q^; thus if Z takes on successive states

^1 ^2 ^3
and Z does not halt in < k steps, Z will take on
successively the corresponding states

.1 , . , .2 .3
t t ̂* t ̂ t^1 ^1 ^2 ^3

,Y
^k

t..i.e. Davis 9(Z) .

114

whereas if Z does halt in < k, (say) in h steps,. Z

takes on successively the states

ij .i^ ,N .
^1 ^2 ^h

It can be shown without difficulty that Z is expressible
as a primitive recursive function f(z).

In order to prove a similar result for
M(z,x^,...,x^) by devising a Turing machine z ! which
decides

-I Q (m (z ,x ^, . .. ,x^) < l(x^,...,x^) f k) , (A)

it is not sufficient to employ end-markers ;
[zj^(x^,...,x^) may loop without its tape length exceeding
the bound in question, in which case M (z ,x^ ,...,x^) is
not defined and (A) is true. To determine when this
happens and yet prevent itself looping, Z must count the
number of instantaneous descriptions examined in its
testing process. The problem is further complicated by
the fact that as blanks are written at one end and non
blanks beyond the other, the set of squares considered

• t We cannot, if course, use the same predicate as in
theorem 36 (with M substituted for E) , as
M(z,x^,...,x^) > l(x^,...,x^) for all z,x^,...,x^ .

115

in evaluating M(z,x^,.•.,x^) may be displaced in either
direction. To construct such a Turing machine Z within
the limitation that M (ẑ , x ^ , .. . , x^) < l(x^,...,x^) -f- k
is thus exceptionally complex; it would be quite
unwieldly to give an expression fof z ' explicitly in
terms of Z. Instead we develop a vocabulary which
enables us to define, in terms of its actions, how such
a Turing machine may be constructed. The rather * high-
powered ' programming techniques involved are of interest
in their own right, and should be of general utility
in Turing machine design.

Macro-Statement Vocabulary

s-channel
If C is a 1-1 correspondence between the s-symbols

of a Turing machine Z and a set of m-tuples, Z is said to
have m s-channels with respect to C. If s-symbol i
corresponds by C to (x^,...,x^), by the content of

t hthe t channel of this symbol we refer to x^, for
t z l(l)m, and if i is written on the tape, we talk,
similarly of the contents of the t^^ channel on that
square. By the contents of the highest channel we mean
x^, and by that of the lowest \ x^. Such a correspondence
C is called a s-symbol coding scheme.

116

q-channels are defined similarly, as are the
contents of the highest and lowest q-channels and the
concept of a q-symbol coding scheme.

Conventions
(a) We reserve the highest q-channel as a work channel,
corresponding in function to that of ordinary q-symbols>
whereas the other channels are used to store information.
(b) The highest s-channel is reserved for symbols which
serve as positional markers on the tape.
(c) All the correspondences C . between s-symbols and
m-tuples used to define channels, have the following
two closure properties:

(1) if (x^, ... ,x^) is in the
_ 2domain of C~ , so is (x_,...,x. -,0,x x)

1 t-l t-̂ l m'
for each t in 1 (1) m;

(2) o (the blank s-symbol) corresponds by C to
(o,o,....... o) .

Setting and Moving a Marker
Setting a marker on a square means changing the

symbol to one with a marker symbol in its first channel,
but with the same contents in the other channels. Moving
a marker is setting the first channel to zero without
changing the other channels, and setting up the marker
elsewhere.

117

m-tuple representation of tapes
If Z has m s-channels, we can represent its

s-symbols by the corresponding m-tuples •

\

Then
(1) for any t in [l,m] , the tape at the t channel
of one of Z's tapes

f - ! '

1
•

X
2 •e • •

1 # # •
• 1 * 2 'h
t ^t# # •

0 #
•l * 2 •hX X X\ m / \ m / . m

is the sequence of symbols • ,xjj) .
(2 a) moving the t^^ channel r places to the left, means
changing the contents of the t^^ channel of each square,
leaving those of the other channels unchanged to produce

118

0 1 • » • (h-r'
^1

V
^1

rxh-rf2 e # # ■
• • • • • • . ,
• • • * • . . •

j • • • • # • • . •
:

0 0 « • • 0 4.1 • • 0 44 t-l
xh-rt2
^t-1 • • • 4-1

1 2 * # e r
^t 4+' 4+' • • • 4 0 0 # # e 0

0 0 * # # 0 4,1 4,1
#

h-r
•

x^-r+1tfl xh-r+2^tfl • • • h
^tfl

• • • • # # . . .
• • • • • • • . •

0 0
7-rfl ^h-r+2 h• • • . m J ̂in J • • • ̂ m 7 . m J ̂m / # # # - m 7

(2 b) Moving the tape to the right is defined
s imilarly•

Imitation.
A Turing machine is said to imitate another Turing

machine Z at an instantaneous description using its t^^
s-channel and r^^ q-channel (with respect to a s-symbol
and a q-symbol coding scheme), if the contents of its

s-channel is a s-symbol of Z, and that of its
r^^ q-channel a q-symbol of Z, and if, according to whether
Z in such a state and scanning such a symbol, moves
left, moves right, or writes a symbol i, before going
into a state j , t! respectively moves left, or right,
or changes the t^^ channel of the scanned square to i,
before storing the value j in its r^^ q-channel.

119

z ! may, in the operation defined above, simultaneously
alter the contents of other s- or q-channels (usually,
however, this only occurs with regard to the work or
marker channels in the cases we consider)•

We refer to this type of operation as an imitation.

LEMMA TO THEOREM 38
For any n,k, there exists a primitive recursive

function f such that f(z) R-computes

-1 Q (m(z,x^, . •. ,x^) < l(x^, ... ,x^) f k) ,
yet M(f (z) ,x^, .. . ,x^) < l(x^,...,x^) -f k .

PROOF
Let Z be any Turing machine with (say) v q-symbols

and u s-symbols.' If Z*s successive instantaneous
descriptions, with respect to some argument, are

, a^, Gg,. consider an origin to be fixed on
each of these in turn according to the following
definition: the origin in is the leftmost square;
the origin in g^^^ is the leftmost square if
marked tape is « 1 (x^, .. . ,x^) -j- k long, otherwise
it is the same square as the origin in .

Let z ' be a Turing machine with 2 q-channels and
3 s-channels which computes an argument (x^,...,x^)
in the following manner:

120

Z initially sets up markers over the leftmost
tally and on the k^^ square past the rightmost tally.
To avoid involving a tape of length l(x^,..#,x^) -f- 1
in locating the right-hand end when k = o, it first changes
the leftmost tally to a blank, restoring the tally after
wards while setting up the right-hand marker. It then
begins to imitate, using its lowest s- and q-channels, the
successive operations of Z that do not produce a tape of
size > l(x-,...,x) 4- k.

1 n' '
Before each imitation, z ' moves its two markers

if necessary so as to maintain them over the positions
in its 3rd s-channel tape which correspond to the origin
and l(x^,...,x^) + k - 1 in the corresponding computation
by Z. Now Z can only increase its tape to a length
> l(x^,...,x^) k by moving right from square

l(x^,...,x^) + k- 1 , or moving left from the origin when
the tape is of length l(x^,«..,x^) -f- k (i.e. when square
no. l(x^,...,x^) -f- k-1 is a marked one). Clearly its
markers enable Z^ to distinguish when either condition
occurs, in which case it writes a Y and halts.

Let w r 2vu.
After each imitation, Z^ marks the scanned square

with a special marker, then adds 1 to a number coded to
a radix w which is stored in the squares of the 2 nd s-channel
with its low order end at the right-hand marker; this

121

number is moved correspondingly (one symbol at a time)
each time the markers are moved. finds the square
scanned after its most recent imitation by virtue of the
special marker, and thus is able to proceed with the
next cycle.

If Z eventually halts without producing a tape
> l(x^,...,x) 4- k, Ẑ writes a N and halts. If

1 n' '
however Z neither exceeds this tape length nor halts,
its operations must involve a loop, which moreover must
be of length less than the number of possible combinations
of Z's q-symbols and contents of squares
[o, l(x^,...,x^) + k - 1] ,

l(x^,...,x^)+k

So if overflow occurs in Z^ *s 2nd channel (i.e. a carry
from the highest order position at the origin), z ' writes
a Y and terminates it computation, for in this case it
will have imitated

l(x. , ... ,x)-fk I
w of Z 's operations,
l(x ,...,x)+k . l(x , . .. ,x)-Hk

and w = (2 vu)

1 (x.. , « . « , X) -j-k
^ (1 (x^ , . . « , x^) k) V u

Z is thus the required Turing machine.

122

In the lemma above, the initial and final tape
lengths need be no greater than 1 (x^,...,x^)> whereas all
the intermediate ones are bounded by l(x^,...,x^) -f- k.
In such circumstances it seems possible to strengthen
the result by increasing the number of q-channels, so
as to reduce the maximum tape length required. This
proposition, in general form is treated in the following
theorem.

THEOREM 37
For any n,k, there exists a primitive recursive

function f such that if Z is any Turing machine with the
property that, for all (x^,.#.,x^),

M(z,x^, .. . ,x^) ^ l(x^,...,x^) -f- k

and [z]n(*l'"""'*n) ^ l(x^,...,x^^,

then [f(z)]n = C^ln , ^
and M(f(z),x^,..•,x^) = l(x^,...,x^) ,

^ Trakhtenbrot ^ 3 ^ refers to a machine such as Z for
which M (z,x^, .. . ,x^) ^ l(x^,...,x^) k for all
(x^,...,x^) € S as one which ^processes S with bounded
extension (c orpaHHHeHHHM y^JiHHeHHeM) and to one such
as f(z) for which M (z,x^,...,x^) ^ l(x^,...,x^) for all
(x^,...,x^) 6 Sj as one which "processes S with bounded
expansion (c orpaHH^eHHHM pacTflxeHHeM)

123

PROOF
Let Z be any Turing machine with the property

specified above, and with (say) v q-symbols and u
s-symbols. Consider an origin to be fixed on each of
its successive instantaneous descriptions according
to the definition employed in the lemma given above.
Let z ' be a Turing machine with 2k-f-2 q-channels and
2 s-channels which computes an argument (x^,...,x^)
as follows : z ! initially sets up markers over the
left-hand and right-hand tallies using the method
described in the lemma. It then begins to imitate,
using its lowest s-and q-channels, the successive
operations of Z, maintaining its mariners over the squares
corresponding to Z *s origin and the square no.
l(x-,...,x)-1. The markers enable z ! to determine if ' 1 n'
Z ’s tape ever exceeds 1(x^,...,x^), since this entails
Z moving out of [o,l(x^,...,x^)-1J . By the hypothesis,
Z cannot, before returning to [o,l(x^,...,x^)-1J move ,
out of [-k, - 1] or [l(x^, .. . ,x^) , l(x^, .. . ,x^) k-l] as
the case may be. It must thus return or else halt in

k« kvu steps, and which of these courses it follows, its
resultant state, and the contents of squares -k, - 1]
or [l(x^,... ,x^) , l(x^, ... ,x^) k - 1] , are a function
of its original state on entering these squares and their
contents at the time. As there are a finite number of
such combinations, it is possible to program z ' to store

124

in a single step Z 's resultant state in its lowest
q-channel, and Z *s new contents for [-k, -1] or
[l(x^,... ,x^) , 1 (x^, • . . ,x^) -f k - 1] in q-channels 2 to
k -f- 1 or k -|- 2 to 2k -f- 1 respectively. After Z has
simulated the last of Z *s operations, the number of
tallies in its 2 nd s-channel, plus the number stored in
q-channels 2 to 2 k -f- 1 , are equal to [z (x^, •. • ,x^) .
Z^ is thus able to adjust the number of tallies on the
tape to this quantity.

It can clearly be shown that Z is a primitive
recursive function of n,k,z ; the theorem follows.

Using this result and the lemma preceding it, we
obtain immediately:

THEOREM 38
For any n,k, there exists a primitive recursive

function f such that f(z) R-computes

O (m (z ,x ^, .. . ,x^) 4 l(x^, .. . ,x^) f k) ,
yet M(f(z),x^,...,x^) = l(x^,...,x^) .

NOTE Theorems 36 and 38 remain valid if the negation
signs on the predicates, which f(z) is required to
R-compute in each case, are dropped, (The present forms
emphasise the contrast with theorems 32 and 34.)

125

SECTION 3. RELATED WORK

Myhill y^2/ considers the class of predicates and
functions which can be computed under the restriction

M(z,x^,...,x^) < l(x^,...,x^),

and in particular proves that Smullyan’s rudimentary
operations ^33/ are of this category.

A restriction of the form

E(z,x^,...,x^) < l(x^,...,x^) log l(x^,...,x^)

is examined by Trakhtenbrot /35/. He shows that
T(z,x^,..•,x^,y) is such a function.

Ritchie ^27/ describes a hierarchy of classes of
elementary functions such that F is the
class of functions computable on a finite automaton,
whereas the functions of F^^^ are those computable by
some Turing machine Z, such that
M (z,x^,...,x^) < g(x^,...,x^) for some function of
g e Fj. .

Stearns, Hartmanis and Lewis / 3 ^ also examine a
hierarchy based on memory requirement, on a variety of
dual tape Turing machines.

Cleave investigates, on a Shepherdson and
Sturgis type "J-limited machine", a related stratification

126

of primitive recursive functions based on a timing
criterion, the number of jump instructions executed.

Blum and Rabin ^ 2 ^ produce functions with
various categories of lower bound on the least value
that the measure of computation of any machine computing
them may have, if the arguments considered are
sufficiently large.

Arbib and Blum define ways of comparing machines
according to the timing measures of their corresponding
programs•

Less directly related to the - present work is the
field of real-time computation on multitape Turing
machines. Yamada /39/ examines the question of real
time counting, in which a Turing machine detects whenever
the total number of its input tallies adds up to the
next highest value of a monotonically increasing function;
Hartmanis and Stearns /l2/, and Hennie /l3/,/l-^, classify
sequences according to the time functions delimiting the
rate at which they can be generated . Ruby and Fischer ^28/
employ such time functions to extend the concept of real
time countability by defining a hierarchy of monotonically
increasing functions classified according to their
characteristic sequences. These are binary sequences
in which the n^^ digit is 1 if and only if n is a member
of the corresponding function’s range. Finally, Rabin

127

considers real-time definability, and shows that not
all sets definable on a 2-tape Turing machine can be
defined on a 1-tape Turing machine.

We wish to discuss three points in connection with
the above works.

Firstly there is an error in the paper by Arbib
and Blum (to which we refer the reader for the relevant
definitions). This is in theorem 2(1) which states:

M = N if and only if M = N and N = M. s s s

While the condition is necessary, it is not in all cases
sufficient. Consider a class of Turing machines as defined
by the authors, except that they require twice the amount
of time (number of steps) per instruction executed. In
other words, if T is one of Arbib and Blum's Turing
machines, and T^ one of ours consisting of exactly
the same quintuples as T and with the same encoding and
decoding scheme, then for all i,x,

T<p (i,x) = 2 <p(i,x) .

Taking S = (e(x,y)] , it is clear that T ^ T^ according
to their definition 2 but, on the other hand, it is not
the case that T ^ T̂ •s

128

Secondly, we prove a result arising out of the work
of Ritchie and Cleave concerning the function h(i,x),
which may be recursively defined by :

h(o,x) = X, h(ifl,x) =

This function is of particular interest. Bereczki
used it to show that Kalmar's elementary functions (K)
do not include all the primitive recursive ones. It thus
follows that h(i,x) is not a member of Ritchie's hierarchies,

» tsince (j F. = K;
i=o
On the other hand, h(i,x) is primitive recursive,

and thus must appear in the Cleave hierarchies. This
leads us to inquire as to its exact place there. The
following theorem is easily proved.

THEOREM 39
The lowest Cleave hierarchy h(i,x) belongs to.

^ In fact a simple proof that h(i,x) y K , follows
directly from Ritchie's work. Ritchie has shown that
h (i-|-l,X) F . for each i. If h(i,x) were a member of F
some t, it would follow, by the closure of the classes F^
under explicit transformation, that h(t-f-l,x) e F^.

129

PROOF
Since = K, we are assured that h(i,x) ^ E^

for t ^ CO.
Note first that 2 e E

where P^ is

R.

R^ = 2 R^

Hence h(i,x) belongs to since h(i,x) =[P^, i]

where the single function P^ employs is a member of E^

P^ is

^ 2 =
jgCia)

The answer appears in register 2.

R

The third point we discuss concerns Rabin's
definition of a measure on proofs, viz: any recursive
function m(L,y), where y is the Gbdel number of a proof
in a logic L, such that, for any k and L, the number of
proofs for which m(L,y) ^ k, is finite and primitive
recursive. The most natural interpretation of m(L,y),
as Rabin points out, is the length of the proofs concerned.

130

and this brings out an interesting difference between
Post systems and Turing systems , whose deductive

+equivalence is otherwise well known.

NOTATION
(1) If R(y,x^,...,x^) is a predicate, by

NyR(y,Xi,.•.,Xn) we denote the number of different values
for y such that R(y,x^,,,.,x^) is true.

(2) By M^(L,y), we denote the length of a proof
with Gbdel number y in the logic L.

THEOREM 40
There exists a Turing system with a single

axiom, and with a rule of inference R(y,x) such that
NyR(y,x) < 2 all X, for which Ny(M^(L^,y) < k) is not
recursive.

PROOF
Let L, be a Turing system defined on the alphabet

r X ^ +{1,HJ with the single axiom 1 H and rule of inference

^ Each consists of a finite set of axioms and rules
of inference, but whereas Post systems (as defined in
Rabin /~ 2 ^ and Arbib / \ /) have productions for rules of
inference, Turing systems (defined in Arbib / ^ \ / and
Davis (who calls them "Logics")) employ recursive
predicates on the Gbdel numbers of their formulae.t _X denotes,111 1 (as in Davis).

x + 1

131

u H — >Q,

if Q is (uj-l)H and, in the case that T(u,u,v), if Q is v .
Clearly a— >p is definable by a recursive predicate
R(gn(a) » g n (p))> for which N^R(x,y) ^ 2. We then have

k - 1

N (Mo(4,y) ^ k) = k + I N^T(u,u,v) ,
u=l

If the left-hand side were recursive^ so would be
k - 1

h(k) = I NyT(u,u,v)
U=1

But this is impossible as

N^T(k,k,v) = h(k+l) - h(k) ,

yet N^T(k,k,v) is not recursive since

V

COROLLARY 1

V t (u ,u ,v) <- > N^T(u,u,v) / o .

Length of proof, while a valid measure of proof
for Post systems, is not so for Turing systems.

COROLLARY 2
There are Turing systems which generate their

theorems in a different order from any equivalent Post
system.

132

CHAPTER 4

EXTENSIONS OF TURING MACHINES

Turing machines, considered from the point of view
of efficiency, are not a very authentic model of actual
computers. In investigating real-time computation,
Yamada /39/, and subsequent authors, consider an extension
of the basic machine by allowing for more than one tape.
Stearns, Hartmanis and Lewis / 3 - ^ > and Hennie ^ 1 3 / ,

study variations of the way the input may be received
in Turing machines, and of its memory structure, in
order to simulate off-line^ on-line and push-down computers

No means is provided in the classical formulation
of Turing machines for reflecting the savings in time and
space actual computers enjoy through special circuitry
to compute standard functions, such as addition, sub
traction, multiplication, division, exponentiation,
integration etc., or even of representing negative or
non-integer numbers. We consider here how the classical
definition may be modified to serve such ends. This

I
leads to a device sophisticated enough for the
investigation of actual computer languages such as

Fortran.

133

SECTION 1 . REPRESENTATION OF BUILT-IN FUNCTIONS

The method of representing the effect of built-in
functions which immediately suggests itself, is by means
of the concept of relative recursiveness. Davis defines
computation relative to a set A , by considering Turing
machines in which quadruples of the form q^^sjq^q^ are
allowed under the interpretation that if Pq^s^Q is an
instantaneous description,

Pq.s.Q— >Pq.s.Q, if the number of tallies in 1 J A r J
Pq^sjQ is a member of A;

— >Pq s .Q otherwise.A u J

This definition of relative computation is unsatisfactory
for our purposes because (a) it does not define relative
computability directly with regard to functions. The
device of employing the associated set instead, means
that a Turing machine can only make use of the value of
(say) F(x^,...,x^) in its calculations, by successively

n X.
generating n Pr(i)^Pr(nfl) for t = o,l,2,..«, and

i = l
checking in turn whether the number is a member; (b) it
defines relative computability with respect to only a
single entity, and there is no simple extension of the
concept. However it is possible to obtain a more
satisfactory formulation in these respects, by re
interpreting Davis ' type 4 quadruples q̂ ŝ jq^q^ in the
manner described below.

134

DEFINITION
If A is a finite ordered set of functions

we write a - ^ p (Z)
if and only if (a) a is of the form

PqiSj(>«l>x2.... .Xn^)Q ,

where Q is empty or else has a leftmost symbol other
than "1"land (b) q.s.q^q e Z for some u, and some t such

(n) ^ "
that f c A; and (c) p is of the form

(nt)
j f ^ (x^, . . . ,X^^)Q .

'A-computation', *RES^(a) ’> 'A-partial computability'
and 'A-computability' are similarly reinterpreted in the

Anotation 'A-computation', 'RES~(a) , 'A-partial computability'
and 'A-computability' respectively.

We can now give the following definitions :

DEFINITION OF RELATIVE SPACE-TIME MEASURE
If Z computes f(x^,...,x^) relative to a set of

functions A, the space-time measure relative to A of a

computation by Z is the quantity
a(M(z,Xj^,... ,x^) -f i Q(z))-(- b E(z,x^, ... ,x^) as employed
before, applied to the more general type of computation
defined above.

Each use of a built-in function then requires one
time unit, but no extra work space.

135

The space-time measure of a Turing machine relative
to a set of functions is defined similarly.

Church's thesis y?/ asserts the identification of
effective computability (Wiich in our case is defined in
terms of Turing machines) and recursiveness. Davis has
carried out this identification between relative
computability (in his restricted sense) and recursiveness
relative to a single quantity (definition 1.1). On the
other hand, his definition of relative partial recursiveness
with respect to a set of functions, which he gives in terms
of completely computable functionals, is a highly
artificial one. It serves the purpose, no doubt, of
introducing the concept which Kleene defines in terms of
sets of equations / 1 .7/, but there is no satisfactory
interpretation of the idea at the level of Turing machines,
or in Davis' definition of partial recursiveness. Having
extended his concept of relative computability to apply to
sets of functions, it seems natural to now extend his concept
of recursiveness relative to a single quantity according to
similar criteria, and to prove the equivalence of the two
extended concepts.

EXTENDED CONCEPT OF RELATIVE RECURSIVENESS
If A is an ordered finite set of functions, a

function is A-partial recursive if it can be obtained by
a finite number of applications of composition and

136

minimalisation, beginning with the functions of the
following list:

(1) the set of functions of A ;
(2) S(x) = X t 1 j
(3) u"(Xj^,... ,x^) = 1 < i < n ;
(4) X f y ;
(5) X - y ;
(6) xy .

A-recursiveness is defined correspondingly. We refer

to the above functions as basis A. (We previously defined
functions (2) - (6) as basis D.)

THEOREM 41
If A consists of a single function (say) f(x^,...,x^)

and A* is the associated set of f (x., ,... ,x) , then for' 1 n'
any function g

g is A^-recursive (in Davis' sense)
g is A-recursive (in our sense)•

PROOF

NECESSITY. If g is A*-recursive, it is definable, using
composition and minimalisation, in terms of functions
(2) - (6) and the characteristic function of A , C^(x) .

137

But (x) = aa|f (lGLx,2GLx, . . . ,nGLx) -(n-f-l)GLx I ,
and thus (x) is definable by composition in terms of
functions (2) - (6) and f(x^,...,x^)•

SUFFICIENCY. If g is A-recursive, it is definable in
terms of functions (2) - (6) and f(x^,...,x^) .

n X.. .
But f(x^,...,x^) = min^^C^» (n Fr(i) . Pr (nj-1) = o^ ,

i=1
from which the result follows.

THEOREM 42

g(x^,...,x^) is A-partially recursive
^ ^ 9(x^,...,x^) is A-partially computable .

PROOF
("i) ("g) (n^)Let A consist of the functions f, ,f« , . . .,f,

(n^)Necessity. If f^ € A, then f^ is A-computable,
since in fact the Turing machine

q^l L qj

qjb qt qg
q 2 b R qg
qgl b qg

A-computes it. Thus the functions in basis A are
A-computable. It is sufficient then to show that this
property of A-computability is closed with respect to

138

composition and minimalisation. The proof Davis gives
with respect to A-computability (lemma 1-4 and theorems
2.1 and 2.4) may be applied with minor modifications.

Sufficiency. Davis' proof that A-partial
computability implies A-partial recursiveness hinges on
his demonstration that the predicate T^(z,x^,...,x^,y)
is A-recursive. Davis does this by means of a series of
definitions ((1) - (26A)) in which each new concept is
shown to be recursively or A-recursively expressible in
terms of its predecessors. In interpreting A-computability,
A-recursiveness and the predicate T^(z,x^,...,x^,y) in
our sense, we need only modify definition (25A) for his
proof to remain valid. By H^(x,y,z) we now understand
that X and y, in that order, are Gbdel numbers of successive
instantaneous descriptions of a Turing machine with Gbdel
number z relative to a set of functions A. This
proposition may be recursively expressed as follows:

ID(x) A ID(y) A lM(z) A

V V V V V Y ° 2 *̂.q A IC(r) , AL(s) A IC(u) A IGLh/ 1 1 *pso q"O r"O s»o h»o u =o

I {tERM(2^3®5^7“,z) A Y W - ' ' W (q = MR (Xĵ) * 2̂ * MR (x)* 2^* . . . »MR (x h
^2=° A y = p̂ 2̂ ^^2 ^^MR(f ĵ (x̂ , . . . ,x^))2Kh)|

|tERM(2’̂3®5*'7“,z) A y y . . . y (q = MR (x^) * 2^»MR (x^)* 2^* . . .»MR (x^)* h
X^O X=0 X„ m Or 2 "k A y = pf2 ŷ 2^4^MR(f^(x^, . . . ,x^)* h)j J).

H A(x,y,z) is clearly A-recursive; the result follows

139

COROLLARY
From the previous two theorems it follows that:
If A consists of a single function f and A* is the

associated set of f , then for any function g

g is A-computable < ■ > g is A*-computable.

THEOREM 43
A function is partially recursive in a finite set

of functions according to our definition, if and only if
it is so according to Davis' (defiiition 5.1, p.171).

PROOF
("i) ("g) ("%)Let A consist of the functions f^ , f^ ,,..,f^

By Davis' definition we are required to prove that, if g^^^
is any function ,

g(") is A-partially recursive
> there exists a completely computable functional
F such that
9 / ("i) (n?) ("k) V)(x^,...,x^) = F ̂ f ̂ f 2

Necessity. If g is expressible in terms of basis A,
then considering its recursive expression as defining a
functional F, we obtain at once that F has both properties
of compactness (definition 2.2, p.164, Davis), and that

140

[n^
x^) = F(r^., x ^ , . « # , x^)

is partially recursive; this gives the complete
computability of F (by theorem 2.2, p.165, Davis).

Sufficiency. Assume
• /("l) ("k) Xg(x^,...,x^) = F^f^, ...,f^, x^,...,x^) . We show that

g is expressible in terms of basis A. Davis' theorem 5.2,
p.171, (Kleene's extended normal form), asserts that

fn1 , /("i) (nJ

— ^ there exists a number e such that

 ̂ '(x^,...,x^) = U min^T^ (eXf^ |y>,...,<fj^ | y >,x^, . . .x^,y)

The result follows since T^ (̂e, t^, .. ., t^,x^, .. . ,x^, y)
is primitive recursive and, if

i
A(t,x) = a(t - x) X ,

a recursive expression for\f |y/is provided by
("t)(Xj,.. ')

y y y x,+i Xj+i % -4.̂
x?o xOo'''x.QoPr(Pr(l) ^ ^ (2) • •-Pr(n^)) ,1 2 "f

 ̂Thus A(t,x) = X if t <: X ,
o otherwise.

141

COROLLARY
A function is partially computable in a finite set

of functions according to our definition if and only if
it is according to Davis’ (definition 5.1, p.171; Davis
uses the adjective ’partially computable’ in this sense,
as a synonym for ’partially recursive’).

SECTION 2. REPRESENTATION OF NEGATIVE AND
NON-INTEGER NUMBERS

Turing / 3 ^ originally introduced Turing machines
so as to define ’computable number’. However the theory
of computability subsequently developed has been restricted
to functions of non-negative integers, as has the parallel
study of recursiveness.

In order to extend these concepts, and consequently
the range of application of the results of the thesis to
encompass such basic operations as subtraction, or division
to a bounded number of steps (which all computers can
perform), we suggest a further modification to the definition
of Turing machines. Let special s-symbols be set aside
to represent the decimal point and minus sign. Arguments
allowed may then be any n-tuples of numbers, positive or

142

negative, coded to a bounded number of places in a
radix > 1 .

This provides a wider class of 'computable' functions.
Recursiveness may be similarly redefined by allowing
such numbers in Davis' basis D; the extended concepts
thus obtained remain equivalent.

Such Turing machines are powerful enough for computer
languages such as Algol, or Fortran (in which 80% of programs
written, are coded) to be directly compiled in terms of
the Turing machine operations. There are several advantages
to this property, and to obtaining formal proofs that
particular languages can be so represented:

(1) It allows our results on measures of computations
and algorithms to be applied to programs in these languages.

(2) More generally it allows results from the
theory of recursiveness, such as the unsolvability of the
halting problem, to be applied in this way. A further
step is obtained in the "rapprochement between the practical
and theoretical aspects of computation" supplied by
Wang /3§/, Shepherdson and Sturgis 9 and McCarthy ̂ 2 ^ ,

t _ _Arbib and Blum / y consider, for integer arguments, the
effect which the use of different radices has on the
associated measures of computation.

143

(3) Such languages provide means of defining
algorithms far superior to that of Turing machines, and
variants thereof could be specifically designed for use in
the theory of recursiveness. Davis definitions (1)— (26A)
are a first step in this direction. A further example
is McCarthy's conditional form, which we have found so
useful in this thesis. Algorithms in such languages
then represent proofs of recursiveness, and the formal
recursiveness of the vast library of functions already
coded in the computer languages is at once obtained.

We give an outline of the proof required with regard
to Fortran. (For a description of the language see e.g.
Jamison /l^*)

THEOREM 44
Any function coded in Fortran is partially recursive

t
in the functions defined by the subprograms it calls.

^ We are here using the words 'function', and 'partially
recursive' in the extended sense defined above. The
definition of the function which a Fortran program represents
is dependent on a specification of the assumed arrangement
of the input, and of how the output is to be interpreted.

144

PROOF
The specification statements such as DIMENSION,

COMMON, EQUIVALENCE, TYPE may be regarded as defining,
rather than being part of, the program. The DO statement,
e.g. DO 3 I = J, K, L ,where the highest statement no.
the program uses is (say) 1 0 0 , is equivalent to

101

102

I = J

program forming the DO loop’s range

IF (I.GE.K) GO TO 102
I = I + L
GO TO 101

instruction in program following
end of DO loop

The arithmetical and logical expressions are clearly of
the form y = f(x^,...,x^), where f is recursive, as are
the predicates involved in the control statements such as
the computed GO TO and the arithmetic and logical IF’s.
McCarthy /"19/ has shown that the function defined by any
program consisting of operations which change (the contents
of) registers according to functions of other registers
and transfer control according to predicates on the registers,
can be expressed in his conditional form in terms of the
predicates and functions involved. Thus by our theorem 4
the result now follows.

145

EXAMPLE The claim that the function X„ > defined in our
optimisation theorem for infinite functions, is primitive
recursive is based on a question of faith (supported by
Church’s thesis) that the algorithm we gave for it can in
fact be coded on a Turing machine. We could meet this
objection by actually presenting the Turing machine
concerned or, equivalently, a recursive expression in
terms of basis D, but this would be exceptionally tedious.
On the other hand, once a stock of standard library
functions, such as for T(z,x,y), were developed, a Fortran
type program of quite moderate length could be supplied
for Xp • This would then constitute the formal proof
required.

146

APPENDIX

Definition of the Travelling Salesman Problem

A travelling salesman is scheduled to visit n
cities and return to his starting point. The distance
between each pair of cities is known. His problem is
to select the order which requires the least travelling.

If {(̂ ±̂ y±) I ̂ = 1 (1)n j are the coordinates of
the cities, the problem may be phrased as that of finding
the permutation ^ which

1 2 * n

I /) + (Ya - ya ^i = l V ^ifl i ifl i

is least.
No general method has been found which involves

appreciably less than the n! operations required by an
exhaustive search. A discussion of the problem is to be
found in (e.g.) Flood ̂ IQ/#

Definition of the mxn Scheduling Problem

n objects are to be processed in turn by m machines
in a common fixed order of machine. As soon as an object

147

has been processed by the machine (i < m), it joins
the queue, if any, for the ij-1 The order in which
the objects are processed is the same for all the machines.
The problem is to determine which order involves the least
total processing time, from the start of the first object
on the first machine, to the completion of the last on
the m^^.

For a single machine (m = 1), the order of the
objects is irrelevant. For two machines, the following
algorithm has been shown to suffice: If the time the i^^
object takes on the j^^ machine is denoted t̂ ̂ y arrange
the set |t^ j I i = 1 (1) n, j = 1 ,2 } in order of magnitude
to produce (say) ^ 1 =
let i^ be the first object; if j^= 2 , let i^ be the last.
Determine in turn the order of object i^, for t = 2,3,...,n.
as follows. If j^= 1, let the object i^ follow all
those objects i^ (if any) such that j^ is 1 and x is
in 1 (1) t-l; whereas if j^= 2 , let it precede all those
(if any) for which j^ is 2 and x in 1 (1) t-l.

No such algorithm has been found for m ^ 3.
A discussion of the problem is to be found in

Johnstone •

148

APPENDIX II

DAVIS’ NOTATION

We list here notation, defined in Davis, which we
employ. In each case we give the page number in Davis
where the symbol concerned is introduced, plus an informal
description of its use or, alternately, the thesis page
where this is supplied.

PAGE NO.
IN DAVIS • SYMBOL DESCRIPTION

145 [=1 see p. 1 2 .

42 N(x) see p.17.

58 T(z,x^,...,x^,y)

60 U(x) " see p . 2 2 fn

38

16 * * ’ '*n) see p.78 fn

162 f (n) see p.18 fn

42 a(x) see p.19.

58 X
" see p.2 2 fn

58 GL

43 J see p.25.

149

PAGE NO.
IN DAVIS

44

44

147

42

12

15

SYMBOL

59

59

60

K

s'

[x/y]

S(x)

X - y

•P(Z)

n

IC(x)

AL(x)

DESCRIPTION

see p.25.

see p.29.

see p.70 fn.

see p.78 fn.

= x-y if X > y ; = o otherwise.

a and p , in that order,are
successive instantaneous
descriptions for a Turing machine Z

the tape expression
11...Ibll...1......bll...1 •

X is the Godel number of a
q-symbol•

X is the Gbdel number of a
s-symbol.

INIT (x_,...,x) the Gbdel number of the instan- n ' 1 n'
taneous description q^(x^,••.,x^)
(see description of (x^,,..,x^)
above)•

y-

150

PAGE NO.
IN DAVIS SYMBOL

61 YIELD(x,y,z)

54

52

43

59

25

21

Pr(i)

mp(y»x^,...,x^)
y=o

R(x,y)

X * y

0 (Z)

Q ^ p (Z)

DESCRIPTION

X and y , in that order, are the •
Gbdel numbers of successive
instantaneous descriptions for
a Turing machine with Gbdel
number z.

*ththe i prime in the sequence of
primes arranged in ascending order

= the minimum number y ^ x , such
that P(y,x^,...,x^) is true; = o,
if no such number exists.

X mod y.

the Gbdel number of the expression
formed by concatenation of the
expressions represented by the
Gbdel numbers x,y.

the largest coefficient of a
q-symbol occurring in the
Turing machine Z.

a and p , in that order, are
successive instantaneous des
criptions for a Turing machine Z
relative to a set A.

151

PAGE NO.
IN DAVIS SYMBOL

7 RES_(a)

22 RES^ (a) Z.

60 ID(x)

60 TM(x)

59 TERM(x,z)

60 MR(x)

62 H^(x,y,z)

DESCRIPTION

the resultant of a computation
on a Turing machine starting
with instantaneous description a .

as for RES^(a), except that
the computation concerned is one
relative to a set A.

X is the Gbdel number of an
instantaneous description.

X is the Gbdel number of a
Turing machine.

z consists of an unbroken,
ascending sequence of prime
factors starting with 2 , and x
is an exponent of one of these.

the Gbdel number of the tape
expression 1 1 . . . 1

V------- 'x+i
X and y 9 in that order, are
Gbdel numbers of successive
instantaneous descriptions for
a Turing machine with Gbdel no.
z, relative to a set A.

152

PAGE NO.
IN DAVIS SYMBOL DESCRIPTION

164 . X (x ^ ,••.,x^) the finite function represented
by the integer x.

168 T (e,r_ ,...,r, ,x_ , ..., x , y)and " 1 K 1 n
171 (see,first,description for x^"^

above.) y is a Gbdel number of
a proof for a Turing machine with
Gbdel number e, with respect to a
nj-k-tuple argument

^x,>...jx) such
[n]

that, for i = 1 (1)k, t. - is
[nja subfunction of r^ . Further

if V is any Gbdel number < y
which is a proof for the Turing
machine with respect to arguments
(s^,s_,...,s,,x_,...,x) where, 1 2 k 1 n [n]
for each i in 1 (1)k, s. and
[nJt . have a common extension, i

then the function-values for the
computations that y and v
represent, are equal.

167 f(^)I y the finite subfunction of the
n-ary function f , which is
defined over all (x^,.«.,x^) in

153

PAGE NO.
IN DAVIS SYMBOL DESCRIPTION

the domain of f (n) such that

163

< y for i = 1 (1) n and
\x^,...,x^) ^ y .

the integer which represents
the finite n-ary function f (n)

154

REFERENCES

yiy M.A.ARBIB, Monogenic Normal Systems are Universal,

J.Austr.Math.Soc., vol.3(1963), 301-306.

 , Speed-up Theorems and Incompleteness
Theorems, in Automata Studies (Ed.,E.R.Caianiello),
Academic Press Inc.,New York, 1966, 6-24.

y y M.A.ARBIB and M.BLUM, Machine Dependence of
Degrees of Difficulty, Proc.Amer.Math.Soc.,
vol.16 (1965), 442-447.

y y I.BERECZKI, On Recursive Functions which are not
Elementary, Acta Scientiarum Mathematicarum,
vol.13 (1951).

y^5/ M.BLUM, Measures on the Computational Speed of
Partial Recursive Functions, Quart.Progr.Rept.no.72,
Res.Lab.Electronics, M.I.T. ,1964, 237-253.

J.P.CLEAVE, A Hierarchy of Primitive Recursive
Functions, Zeitschr.Math.Logik Grundlagen Math.,
vol.9 (1963), 331-346.

£ l j A.CHURCH, An Unsolvable Problem of Elementary
Number Theory, Amer.J.of Maths.,vol 58 (1936),
345-363.

155

yë/ A#CHURCH, The Calculi of Lambda-Conversion,
Annals of Mathematical Studies no. 6 , Princeton
University Press, Princeton 1951.

y y M.DAVIS, Computability and Unsolvability,
McGraw-Hill, New York, 1958.

yio/ M.M.FLOOD, The Travelling Salesman Problem,
Op.Res.,vol.4 (1956), 61-75.

y i ^ G.M.HARDY and E.M.WRIGHT, The Theory of Numbers,
Oxford University Press, Oxford, 1945.

yï2/ J.HARTMANIS and R.E.STEARNS, On the Computational
Complexity of Algorithms, Trans.Amer.Math.Soc.,
vol.117 (1965), 285-306.

yi3/ F.C.HENNIE, One Tape, Off-Line Turing Machine
Computations, Information and Control, vol . 8

(1965), 553-578.

 , On-Line Turing Machine Computations,
I.E.E.E., Trans, on Elec.Computers, vol.EC-15
(1966), 35-45.

R.V.JAMISON, Fortran Programming, McGraw-Hill,
New York, 1966.

r:

ii

III
•; i
m

156

/ Ï 6 / S.M.JOHNSTONE, Optimal Two- and Three-Stage
Production Schedules with Set-Up Time Included,
Naval Res.Log.Quart.,vol.1 (1954), 61-68.

yïT/ S.C.KLEENE, Introduction to Metainathematics,
Van Nostrand, New York, 1952.

yis/ C.Y.LEE, Categorizing Automata by W-Machine
Programs, j. of ACM, vol . 8 (1961), 384-389.

yi9/ J.McCa r t h y , Recursive Functions of Symbolic
Expression and Their Computation by Machine, Part I,
Comm.of ACM, vol.3 (1960), 184-195.

y20/ ----- , A Basis for a Mathematical Theory of
Computation, in Computer Programming and Formal
Systems (Ed.,P.Braffort and D.Hischberg), North

:p
H

mHolland, 1963, 33-70. #

y"2^ M.MINSKY, Size and Structure of Universal Turing
Machines using Tag Systems: a 4-symbol 7 -state
Machine, Proc.Symp.on Recursive Function Theory,
Amer.Math.Soc.,Providence, R.I.,1962, 229-238.

y22/ J.MYHILL, Linear Bounded Automata, WADD Tech. î||
Note no.60-165, Univ.of Pennsylvania, Report no.
60-22, 1960.

157

W.V.QUINE, Concatenation as a Basis for
Arithmetic, J.Symb.Logic, vol.11 (1946), 105-114.

f 2 ^ M.O.RABIN, Degree of Difficulty of Computing a
Function and a Partial Ordering of Recursive Sets,
Tech.Report no.2, Hebrew University, Jerusalem, 1960

y25/ ------ , Real Time Computa.tion, Israel J.of
Maths., vol.l (1963), 203-211.

/ 2 ^ M.O. RABIN and H.WANG, Words in the History of
a Turing Machine with a Fixed Input, J.of ACM,
vol.10* (1963), 526-527.

p 2 l j R.W.RITCHIE, Classes of Predictably Computable
Functions, Trans.Amer.Math.Soc.,vol.106 (1963),
139-173.

/2§/ S.S.RUBY and P.C.FISCHER, Translational Methods
and Computational Complexity, Proc.5th Ann.Symp.
on Switching Theory and Logical Design, Princeton,
1964, 173-178.

/29/ C.E.SHANNON, A Mathematical Theory of
Communication, Univ.of 111.Press, 111.,1948.

ysg/ — --- , A Universal Turing Machine with
Two Internal States, in Automata Studies,
Princeton, 1956.

158

f 3 l / J.C.SHEPHERDSON and H.E.STURGIS, Computability of
Recursive Functions, J.of ACM, vol.lO (1963) ,217-225.

£ 3 '^ S.WATANABE, 5-Symbol 8 -State and 5-Symbol 6 -State
Universal Turing Machines, J.of ACM,vol . 8 (1961)
476-483.

£ 33/ R.M.SMULLYAN, Theory of Formal Systems, Annals of
Mathematical Studies, no.47, Princeton University
Press, Princeton, 1961.

£ 3^ R.E.STEARNS, J. HARTMANIS and R.M.LEWIS III,
Hierarchies of Memory Limited Computations, Proc.
6 th Annual Symp.on Switching Theory and Logical
Design, 1965.

£ 2^ B.A.TRAKHTENBROT, Turing Machines with Logarithmic
Delay (Russian), Algebra i Logika Sem.3, 1964, 33-48.

£ 3^ A.M.TURING, On Computable Numbers, with an
Application to the Entscheidungsproblem, Proc.Lond.
Math.Soc.,vol.42 (1937), 230-265.

£ 3 7 j J.V.VON NEUMANN and O.MORGENSTERN, Theory of
Games and Economic Behaviour, Princeton University
Press, Princeton, 1947.

£ 3^ H.WANG, A Variant to Turing's Theory of Computing
Machines, J.of ACM, vol.4 (1957), 63-92.

159

H.YAMADA, Real-Time Computation and Recursive
Functions not Real-Time Computable, IRE
Transactions on Electr.Computers, vol#EC-ll
(1962), 753-760.

EM EN D A TIO N OF AN AXIO M SYSTEM 135

Case Occ. of
y i n #

Occ. of
y in 91

Occ. of
F in 91

in a
scope
of y

Occ. of y
in 91 in an
argument
place of F

Occ. of
any of
X̂ , ...,Xn
in 93 in
a scope

of y (1)1

Permissibility of cases
substitutions according

restrictions
(2) 1 (3) |(1) & (2) & (3)

in
to

intu-
ition®

Case

In cases 1-16 y is to be taken as other than xi, 'n
1 y does not occur both in # and 91 V V V V V 1
2 free free none V V V V V 2
3 free free some V V V V V 3
4 free bound none none * * V « *7 4 .
5 free bound some none t * V « 5
6 free bound some some t * V * t« 6
7 bound free none none * V V « *7 7
8 bound free none some * V V $ ♦ 7 8
9 bound free some none * V * $ *7 9

10 bound free some some t V $ * t® 10
11 bound bound none none none V V V V V 11
12 bound bound none none some V V V V V 12
13 bound bound some none none * V V * ♦ 7 13
14 bound bound some none some * V V * *7 14
15 bound bound some some none * V * * ♦ 7 15
16 bound bound some some some « V * * ♦ 7 16
17 y is one of %i. Xn (irrespective of V V V V V® 17

of whether it occurs or not in 91)

V ' stands for 'all examples are admissible’.
stands for 'no examples are admissible’,

' t ' stands for 'inadmissible examples exist’.

Restriction (1) is necessary to rule out cases 7, 13, and 14.
Restriction (2) is necessary because intuitively unacceptable examples of

cases 5 and 6 exist, not ruled out by restriction (1).
Inadmissible example of case 5 .* In {Eu)(Ev)(G(w, «) G{w, %/))

(Ey){G{w, y) ^ F(w)) which is intuitively valid and derivable (obtainable
from //), we cannot substitute G(a, y) for F(a) as this gives (Ett)(Ev)
{G{w, u) G(w, v)) (Ey){G(w, y) ^ G{w, y)) which is not universally valid
since taking the natural numbers as individuals and z ^ % as G(z, x) renders
the formula false.

Inadmissible example of case 6: In (Ey)F(y) (Ey){[Ew)F[w) ^
(H{y) H{y))), we cannot substitute G(a, y) for F(a), as this gives

® The admissibility of case 1 includes that of case 17, even when y occurs also in 91,
since replacing value-expressions of F by value-expressions of . . . , %n+r] as
described above gives the same result as replacing them by value-expressions of
%[%!% ..., Xn, Xn+I, %n+r] where Xi, ..., Xn are any individual variables new
to , %n+r]i 91.

136 D A V ID PAGER

(Ey)G{y, y) ~ (Ey){{Ew)G{w, y) ^ {H(y) v H(y))), which is not universally
valid since taking natural numbers as -individuals, z > x as G{z, x) and
z = z as H(z) renders the formula false.

Restriction (3) is necessary because intuitively unacceptable examples of
case 10 exist, not ruled out by restriction (1).

Inadmissible example of case lo : In (Ew)[F[y) ^ F{w)). we cannot
substitute (y)(G(a) G(y)) for F(a) as this gives [Ew)({y){G{y) ^ G(y))
(y){G{w) ^ G { y))) , which is not universally valid since taking the natural
numbers as individuals and ‘z is even* as G(z) renders the formula false.

Now much weaker and simpler rules of substitution for sentential and
predicate variables may be used to supplant those of the authors within
the authors’ framework of axiom system and concept of w.f.f. (i.e. leaving
all else unchanged). Such a replacement is inherently desirable. The rules
in question have the advantage of being immediately intuitively apparent,
and requiring no such elaborate justification as that given here. We show
that they are as adequate as those of the authors in that the authors’ rules
can be derived from them. This at the same time provides a justification
for the sufficiency of the authors’ restrictions, since the derivations are
intuitively legitimate, making use as they do of the intuitively acceptable
rule of substitution for individual variables (a2)io and the amended rule
of relabelling (ô), intuitively acceptable after the analysis above.

N e w r u l e o f s u b s t i t u t io n f o r s e n t e n t i a l v a r ia b le s : For any
sentential variable X , any w.f.f. 91 in which X occurs, and any w.f.f. 93,
we can replace X wherever it occurs in 91 by 93, provided that 93 and 91
have no individual variable in common.

Adequacy: The authors provide restrictions, we saw above, for ruling
out instances of cases 3-7, i.e. they allow instances of cases 1 and 2 and
combinations of these, whereas we have only provided for instances of
case 1 being allowed (which is directly intuitively acceptable); however
we can deduce by (a2) the simultaneous admissibility of instances of case 2 ,
i.e. that 93 and 9f may have in common any variables that are free in both.
(We can further deduce the simultaneous admissibility of instances of
case 6 from (amended) (6), i.e. that 93 and 91 may have in common any
variables that are bound in both, provided that X does not occur in any
scope thereof in 91. One wonders why restriction (2) did not simply read
‘no free individual variable of 93 occurs in 91’.)

10 “ A free individual variable may be replaced by any other individual variable,
provided that the replacement be simultaneously effected at all the occurrences of
the free variable and that the substituted variable has no bound occurrence in the
original formula.”

EM EN D A TIO N OF AN AXIO M SYSTEM 137

N e w r u l e o f s u b s t i t u t io n f o r p r e d ic a t e v a r ia b le s : For any n-adic
predicate variable F, any w.f.f. 9f in which F occurs, and any w.f.f. with
n + ̂ free variables, 93[%i, . .., n̂+r], ̂ ^ 0 , we can replace value-ex
pressions of F wherever they occur in 91 by value-expressions of 93, according
to the rule that any expression F(ûi, . . . , â) is to be replaced by
93[ûi, . . . , ûn, Xn+i, . . provided that 93 and 91 have no individual
variable in common.

Adequacy The authors rule out instances of cases 4-10 and 13-16,
i.e. they allow instances of cases I, 2, 3, 11, 12, 17 and any combinations of
these. We have only provided for instances of case 1 being allowed, but this
includes the permissibility of instances of case 17 (see footnote 9), and we
can deduce from (a2) the simultaneous admissibility of instances of cases
2 and 3 (i.e. that 93 and 91 may have in common any variables that are free
in both (irrespective of whether any of these occurrences in 91 are in argu
ment places of F)) and by (amended) (6) we can deduce the simultaneous
admissibility of instances of cases 11 and 12 (i.e. that 93 and 91 may have
in common any variables that are bound in both, provided that F does not
occur in any scope thereof in 91 (irrespective of whether there are occurrences
of any of x\, ..., in such scopes in 93)).

An analysis similar to the foregoing may be applied to systems with a
wider concept of w.f.f., in that the same variable may occur both free and
bound in a formula, and scopes may contain scopes of the same variable
(e.g. Quine, M a t h e m a t i c a l Logic (1955), or Church, I n t r o d u c t io n to
M a t h e m a t i c a l Logic (1956)). Under such an interpretation of w.f.f.,
restriction (1) becomes vacuous in both rules (the other restrictions remain
necessary). Using a wider rule of relabelling, which is now obtainable!̂ .

For sentential variables, the categories of occurrence for y in 91, 93 must here be
denoted by ‘only free occurrences' and ‘some bound occurrence'. For predicate
variables (1) the table must be enlarged (to 27 cases) so as to encompass 3 categories
of occurrence for y in 93, namely: (a) y occurs free, does not occur bound, and is not
one of % i,__ Xn', (b) y occurs free, also occurs bound, and is not one of %i,
(c) either y occurs free, also occurs bound, and is one of x\, ...,Xn, or y does not
occur free, but occurs bound, and is not one of xi, ...,Xn', (2) the categories of
occurrence for y in 91 must be taken as ‘only free occurrences’ and ‘some bound
occurrence’ ; (3) case 17 must be replaced by ‘y occurs free but does not occur bound
in 93, and is one of %i, . . . , Xn (irrespective of whether it occurs or not in 9t)’. A little
reflection will show that the set of cases obtained is exhaustive.

12 We consider the exhaustive set of cases: The variable (call it y) is changed into
a variable (a) not occurring in the scope of a, (b) occurring in the scope of a either
free, or bound in a scope not contained in the scope of a, (c) occurring in the scope
of a only bound in scopes, contained in that of a, but which do not contain an
occurrence of y bound to a, (d) occurring in the scope of a bound in a scope, contained
in that of o, and which contains an occurrence of y bound to a. Consideration of these
cases shows that (a) and (c), and only these, are intuitively acceptable.

138 D A V Il)D A V ID PAGER

the authors’ rules, with restriction (1) omitted, can be derived from our
new rules, showing that the surviving restrictions are suflicient, and
establishing at the same time that our rules can be adopted in place of
those of the authors as before.

REFERENCES

[1] A. C h u r c h , In troduction to M athem atica l Logic, vol. I, Princeton (Prin
ceton University Press), 1st ed. 1944, revised ed. 1956 (Princeton Mathematical
Series, No. 17).

[2] D. H i l b e r t and W . A c k e r m a n n , Grundziige der theoretischen Logik,
Berlin (Springer), 1st ed. 1928, 2nd ed. 1938, 3rd ed. 1949, 4th ed. 1959 (Die Grund-
lehren d. Mathematischen Wissenschaften, Ed. 27), New York (Dover Publications),
reprint of 2nd ed. 1946, New York (Chelsea Pub. Co.), English translation of 2nd ed.
1950 {Principles o f M ath em atica l Logic).

[3] Reviews of [2] : 1st ed.: C . H . L a n g f o r d , B u lle tin o f the A m erican M a th e
m atica l Society, vol. 36 (1930), pp. 22-25. 2nd ed. : J. B. R o s s e r , B u lle tin o f the
A m erican M ath em atica l Society, vol. 44 (1938), pp. 474-5 and W . V. Q u in e ,
this J o u r n a l , vol. 3 (1938), pp. 83-84. Translation of 2nd ed. : H. B. C u r r y , B u lle tin
o f the Am erican M ath em atica l Society, vol. 59 (1953), pp. 263-7 and G. Z u b i e t a ,

this J o u r n a l , vol. 16 (1951), pp. 52-53. 3rd ed.: H. B. C u r r y as for translation of
2nd ed., and A. C h u r c h , this J o u r n a l , vol. 15 (1950), p. 59.

[4] D. H i l b e r t and P. B e r n a y s , G rundlagen der M ath em atik , vol. I , Berlin
(Springer), 1934, reprinted Ann Arbor, Mich. (J. W. Edwards), 1944.

[5] S. C. K l e e n e , In troduction to M etam athem atics, Amsterdam (North
Holland), Groningen (Noordhoff), New York and Toronto (Van Nostrand), 1952.

[6] W . V. Q u in e , M athem atica l Logic, Cambridge, Mass. (Harvard University
Press), 1955.

UNIVERSITY OF LONDON

T h e J o u r n a l o p S y m b o l i c L o g i c
Volume 27, Number 2, June 1962

Pfl<s-ea)

PkO). »Ll
AN EMENDATION OF THE AXIOM SYSTEM OF HILBERT AND
ACKERMANN FOR THE RESTRICTED CALCULUS OF PREDICATES

DAVID PAGER
The fundamental role of the restricted calculus of predicates in applications

of symbolic logic, and particularly in Hilbert's Beweistheorie as summed up
by Hilbert and Bernays, makes it important that this logical calculus should
be accurately defined. The first standard formulation of the calculus was
that of Hilbert and Ackermann’s G ru n d z i ig e der theoret ischen Logik,
This employed (in the first three editionŝ) a finite set of axioms and rules
of derivation, with rules of substitution included. A reaction by Hilbert
and Ackermann's successorŝ to persistent difficulty encountered with the
rules of substitution has been to omit these rules, and instead enlarge the
set of axioms and the other rules of derivation so as to encompass all possible
substitutions. Such an enlargement seems to me to be undesirable. As an
alternative, this note is designed to put the original approach of Hilbert
and Ackermann for once and for all on a sound basis. The third edition is
still erroneous, and there are also intuitively obscure portions of it, which
have a history of amendment, and which are now recommended to intuition
only on the grounds that no further errors have been detected. The present
paper firstly corrects and justifies these parts of the formulation as it stands;
then certain simplifying changes are suggested whereby the need of the
justifications is avoided, and the formulation rendered more natural.

To make the discussion which follows less cumbersome, we introduce
here some definitions:
(1) (a) A vahie-expression of a w.f.f. is the result of a substitution for some
or all of its free variables.

(b) A value-expression of an w-adic predicate variable F is a value-
expression of F(%i, . . ,,Xn).

(2) By a scope of an individual variable a, we mean a scope of a quanti
fier (a) or (Fa).

(3) A w.f.f. 93 with free variables ai, , Qn, and these only, is written
93[ai, . . . , Qn]* The result of substituting in % any n individual variables
ai, . . . , ai for ai, . . an respectively, is denoted 93[ai, . . . , ai].

(4) When we talk of a restriction on substitution for sentential and
predicate variables, we refer to the restrictions on the occurrences of the

Received May 21, 1960.
1 The present note does not refer to the recent fourth edition, which departs entirely

from what Kleene refers-to as a “Hilbert type” axiom system and uses instead a
Gentzen type one.

2 Such as Kleene In troduction to M etam athem atics (1952), Quine M ath e
m atica l Logic (1955), Church In troduction to M athem atica l Logic (1956).

131

132 D A V ID PAGER

same variable both in the formula in which the substitution is made and
in the formula substituted therein.

(5) When we talk of the necessity of a restriction, taken from a set of
restrictions, we refer to the question of whether it can be omitted, the other
restrictions being retained unchanged.

We begin by pointing out an omission in the rule of relabelling [6) which
has survived all three editions, as well as the reviews and criticism by
Langford, Rosser, Quine, Curry, Church, and Zubieta.

The rule in effect states: we may replace in a w.f.f. 9f an individual
variable in any occurrence cr in 91 of a quantifier binding it and in all its
occurrences in the scope of o, by another individual variable, subject to
the restriction that the result is a w.f.f.

Consider the following exhaustive set of cases :

Case
The variable is changed into a

variable occurring

Permissability of relabelling
according to

restriction^ | intuition

1 not at all in % V V
2 free only in the scope of a V t
3 free, outside * «
4 bound, in ,, ,, ,, ,, * *
5 bound, only outside „ „ „ „ V V

V ' stands for ‘all examples are admissible’.
‘♦’ stands for ‘no examples are admissible’.
‘ t ’ stands for ‘inadmissible examples exist’.

i
Inadmissible example of case 2: Consider the formula (Eu){Ev){G[ii)

It is intuitively universally valid, since the
l.h.s. asserts that G(z) assumes both truth values, truth and falsity for
appropriate z, while the r.h.s. asserts that for, some z, G(z) assumes a
particular truth value (i.e. that of G(h))\ and it is also derivable ;̂ but we
cannot relabel by replacing y with h, as this gives {Eu)(Ev){G(u) G{v))
(Eh)(G{h) ^ G{h)) which is not universally valid since taking the natural
numbers as individuals and *z is even* as G{z) renders the formula false.

Thus the authors' restriction is not sufficient, in that it allows case 2.
If we add to the authors' restriction a restriction on case 2 , this will be
equivalent to allowing only cases 1 and 5. We will then have the

3 I.e. the authors’ restriction that the result be a w.f.f.
4 Obtainable from (Eu) (Ev) (G (u) - » " (E y) (G (y) ^ X) /li. Outline derivation

of fi: [Z (IF - %)] -> [[Z -> (C - X)] [Z (IF - Ç)]]. Hence, by substitution,
[(y)(G(y) ^ A) -> {G{u) ^ X)] [[(y)(G(y) ^ A) -> {G{v) ^ X)] [(y)(G(y) ^ A) ->
(G(m) G(v))]]. Hence, (y)(G(y) ^ X) (G(w) ^ G(v)), and therefore (y) (G(y) ^ X)
{u){v){G{u) G{v)), and therefore {û){v){G{u) ̂ G{v)) -> {y){G{y) ^ X), from which
result follows.

EM EN D A TIO N OF AN AXIO M SYSTEM ̂ 133

A m e n d e d r u l e o f r e l a b e l l i n g : We may replace in a w.f.f. 9f an indi
vidual variable in any occurrence a in 9(of a quantifier binding it and in
all its occurrences in the scope of a, by an individual variable either new
to or else occurring bound in 91 in a scope lying outside that of a.

Now, in constructing an axiomatic model of a category of inference
(call it K) , as is done in the restricted predicate calculus, we are able to
systematise the role that intuition plays in determining the validity of
inference in K , We reduce the role of intuition to that of accepting a number
of initial premisses : these are that the axioms of the model mirror valid
inferences, and that the rules of derivation are such that only valid infer
ences are thereby derivable. These intuitive steps made, the determination
of various types of inference in K is made (or essayed at) by the purely
formal means provided by the axiom system.

Thus the basic requirement of such a mathematical model is that the
initial premisses provided by the axiom system should either be intuitively
apparent, or else be shown to depend on other intuitively apparent premisses.

It is on these grounds that we criticize the authors’ obscure rules of
substitution for the sentential and predicate variables. The complicated
restrictions on such substitutions are justified neither as to their sufficiency
nor as to their necessitŷ .

We supply this justification here. First we deal with the question of
necessity.

S u b s t i t u t io n f o r s e n t e n t i a l v a r ia b le s . The authors’ rule in effect
states: For any sentential variable X , any w.f.f. 91 in which X occurs,
and any w.f.f. 93, we can replace X wherever it occurs in 91 by 93 provided
that:

restriction (1): the result is a w.f.f. ;
restriction (2) : no individual variable of 93 occurs bound in 91.
Consider the following exhaustive set of cases for any particular individual

variable y :

5 The need of such justification is illustrated by the history of amendment of the
rules: The rule of substitution for sentential variables in the 1st edition of Hilbert
and Ackermann (1928) was erroneous. A new version was given in the 2nd edition
(1939). The rule of substitution for predicate variables in the 1st edition was also
erroneous. The error was noted and a more correct statement given by Hilbert and
Bernays, Grundlagen der M ath em atik , volume I (1934), and also by Quine,
A System o f Logistic, (1934). Also a revised statement was given in the 2nd edition
of Hilbert and Ackermann. According to Church, In troduction to M ath em atica l
Logic, part I (1944), none of these statements was correct (but it turned out that
Church’s attribution of error to Hilbert and Bernays in this regard was itself incorrect).
The 3rd edition of Hilbert and Ackermann (1949) contains a further revision of the
rule. (A discussion of these difficulties is to be found in the revised (1956) edition of

hurch’s In troduction to M athem atica l Logic).

134 D A V ID PACKER

Case
Occurrence

of y in #
Occurrence

of y in 91

Occurrence
of X in 91,
in a scope

of y

Permissibility of cases in
substitutions according to
restrictions intuition®

(1) (2) 1 (1)& (2) 1

1 y does not occur both in # and 91 V V V ' . ■ V2 free free V V V V
3 free bound none * « * • 7
4 free bound some t * • t®
5 bound free * V * *7
6 bound bound none V * * V
7 bound bound some * * * *7

V ’ stands for 'all examples are admissible'.
stands for 'no examples are admissible’.

' f stands for 'inadmissible examples exist’.

Restriction (1) is necessary to rule out case 5.
Restriction (2) is necessary to rule out case 4, for which there are intui

tively inadmissible examples not ruled out by restriction (1).
Inadmissible example of case 4: In {Eu)[Ev){G[u) G[v)) {Ey)

(G{y) Z), which is intuitively universally valid (c.f. previous inadmissible
example), and in point of fact derivable (see footnote 4), we cannot sub
stitute G(y) for X , as this gives (Eu)[Ev)[G{tc) ^ G(v)) -> (Ey)(G{y) G{y)),
which as before is not intuitively valid.
Substitution for predicate variables. The authors’ rule in effect

states: For any w-adic predicate variable F , any w.f.f. 91 in which F occurs,
and any w.f.f. with n -f r free variables 93[%i, . . . , r ̂ 0, we may
replace value-expressions of F wherever they occur in 91 by value-ex
pressions of 93 according to the rule that any expression F(a i, . . ûn) is
to be replaced by 93[oi, ..., ûn, %n+i, • • - , ̂n+r], provided that:

restriction (1): the result is a w.f.f.
restriction (2): none of %n+i, • • - , n̂+r occur bound in 91; .

* restriction (3): no individual variable occurring in a value-expression of
F in 91 occurs bound in 93.

Consider the following exhaustive set of cases for any particular indi
vidual variable y :

® While it is not strictly necessary for the present analysis to give all the entries
in this column, we do so in order to make the analysis applicable also for other sets
of restrictions.

These cases give results which are not w.f.f.’s.
8 Example given below.

