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Abstract

An ultrametric topology formalizes the notion of hierarchical structure.
An ultrametric embedding, referred to here as ultrametricity, is implied
by a hierarchical embedding. Such hierarchical structure can be global in
the data set, or local. By quantifying extent or degree of ultrametricity in
a data set, we show that ultrametricity becomes pervasive as dimension-
ality and/or spatial sparsity increases. This leads us to assert that very
high dimensional data are of simple structure. We exemplify this finding
through a range of simulated data cases. We discuss also application to
very high frequency time series segmentation and modeling.

Keywords: multivariate data analysis, cluster analysis, hierarchy, ultrametric,
p-adic, dimensionality

1 Introduction

The lessons we will draw from this work are as follows.

• Very high dimensional spaces are of very simple structure.

• It becomes easier to find clusters in high dimensions.

• The simple high dimensional structure is hierarchical.

• Ease of handling high dimensional data, e.g. reading off clusters, emu-
lates the human perception system which similarly processes data with no
evident latency.
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There is a burgeoning crisis in high dimensional data analysis, and many
current approaches lack convincing performance guarantees. In Hinneburg, Ag-
garwal and Keim (2000), attention is focused on “relevant” dimensions only,
while Aggarwal, Hinneburg and Keim (2001) (cf. the revealing titles in the case
of both of these citations) state: “Recent research results show that in high
dimensional space, the concept of proximity, distance or nearest neighbor may
not even be qualitatively meaningful.” The last-mentioned work investigates Lp

norms including for fractional values of p.
In Breuel (2007), the focus is the ε-approximate nearest neighbor defined

as follows: if the nearest neighbor point y to some query point, x, has distance
d(x, y), then any vector y′ such that d(y′, x) ≤ (1+ε)d(x, y) is an ε-approximate
nearest neighbor of x. Then Breuel (2007) points out: “... the relationship be-
tween approximation and ’cost’ of a solution need not be linear. For example,
the cost of picking an ε-approximate nearest neighbor could be proportional not
to the difference of distances between the optimal answer and the approxima-
tion, but to the volume of the shell between the two, that is, as (1 + ε)m−1,
where m is the dimension of the space.” Various issues immediately ensue: (i)
“for large dimensions, even small values of ε include the entire database as ε-
approximate neighbors”; (ii) “analyzing the worst-case asymptotic complexity
of ε-approximate algorithms is meaningless”; (iii) for “large enough dimensions,
a randomly chosen point becomes an ε-approximate nearest neighbor with high
probability”; (iv) “the implicit assumption that a close approximation leads to
only a small increase in the cost of a solution is not justifiable in the context of
nearest neighbors”; and (v) an ε-approximate nearest neighbor algorithm is not
necessarily useless in practice but such an algorithm has “neither useful mean-
ing asymptotically (as the dimension grows), nor does it make useful predictions
about its behavior on practical problems”.

In this article, we propose an approach which we consider appropriate for
high dimensional data analysis, based on clustering and proximity searching.

1.1 The Ultrametricity Perspective and Overview of this
Work

The morphology or inherent shape and form of an object is important. In data
analysis, the inherent form and structure of data clouds are important. So the
embedding topology, with which the data clouds are studied, can be crucial.
Quite a few models of data form and structure are used in data analysis. One of
them is a hierarchically embedded set of clusters, – a hierarchy. It is traditional
(since at least the 1960s) to impose such a form on data, and if useful to assess
the goodness of fit. Rather than fitting a hierarchical structure to data (e.g.,
Rohlf and Fisher, 1968), our recent work has taken a different orientation: we
seek to find (partial or global) inherent hierarchical structure in data. As we
will describe in this article, there are interesting findings that result from this,
and some very interesting perspectives are opened up for data analysis and, po-
tentially, perspectives also on the physics (or causal or generative mechanisms)
underlying the data.
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A formal definition of hierarchical structure is provided by ultrametric topol-
ogy (in turn, related closely to p-adic number theory). We will return to this in
section 2 below. First, though, we will summarize some of our findings.

Ultrametricity is a pervasive property of observational data. It arises as a
limit case when data dimensionality or sparsity grows. More strictly such a limit
case is a regular lattice structure and ultrametricity is one possible represen-
tation for it. Notwithstanding alternative representations, ultrametricity offers
computational efficiency (related to tree depth/height being logarithmic in num-
ber of terminal nodes), linkage with dynamical or related functional properties
(phylogenetic interpretation), and processing tools based on well known p-adic
or ultrametric theory (examples: deriving a partition, or applying an ultramet-
ric wavelet transform). In Khrennikov (1997) and other works, Khrennikov has
pointed to the importance of ultrametric topological analysis.

Local ultrametricity is also of importance. This can be used for forensic data
exploration (fingerprinting data sets): see Murtagh (2005, 2007); and to expe-
dite search and discovery in information spaces: see Chávez, Navarro, Baeza-
Yates and Marroqúın (2001) as discussed by us in Murtagh (2004, 2006) and
Murtagh, Downs and Contreras (2007).

In section 2 we show how extent of ultrametricity is measured. Section 3
presents our main results on the remarkable properties of very high dimensional,
or very sparse, spaces. As dimensionality or sparsity grow, so does the inher-
ent hierarchical nature of the data in the space. In section 4 we then discuss
application to very high frequency time series modeling.

1.2 Review of Recent Asymptotic Statistical Findings

We can characterize clustering algorithms in terms of number of observables, n,
and number of attributes, m, where by “large” is meant thousands upwards: (i)
large n, small m; as is fairly standard in astronomy; (ii) large n, large m; as is
fairly typically the case in information retrieval; and (iii) small n, large m; as
is often the case in bioinformatics, and textual forensics. It is case (iii) which is
of most interest to us here. However our results also accommodate case (ii).

In Hall, Marron and Neeman (2005), it was shown that “under some con-
ditions on underlying distributions, as the dimension tends to infinity with a
fixed sample size, the n data vectors form a regular n-simplex in Rm” (Ahn,
Marron, Muller and Chi, 2007). These authors term the small n, large m case
“HDLSS, high dimension, low sample size”. In Ahn and Marron (2005), some
other unrelated work is cited, where the ratio of m/n tends to a constant. As
with these authors, our goal is to study the case of letting “m tend to infinity,
fixing n” (Ahn and Marron, 2005). Hall et al. (2005) discuss previous asymp-
totics work in the statistical literature. Our focus is not on a simplex but rather
on a hierarchy (even if trivial) in order to study implications for data analysis.

For “the asymptotic geometric representation of HDLSS data”, it is shown in
the work of Ahn and collaborators that “when m >> n, under a mild assump-
tion, the pairwise distances between each pair of data points are approximately
identical so that the data points form a regular n-simplex. In a binary classifi-
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cation setting, the training data from each class becomes two simplices ... any
reasonable classification method will find the same [discriminant result] when
m becomes very large.” (Ahn et al., 2007). This is a very exciting for the
discriminant analysis case pursued by Ahn et al., 2007; Ahn and Marron, 2005;
Hall et al., 2005) (naive Bayes, SVM or support vector machine, Fisher’s linear
discriminant, and the simplex structure in very high dimensions leading to the
“direction of maximal data piling”). In this paper, our interest is in clustering,
or unsupervised classification.

The mild condition for simplex structure formation, as m −→ ∞ is that
directionality of the Gaussian cloud is “diffuse”, defined in terms of eigenvalues:

m∑
j

λ2
j/

 m∑
j

λj

2

−→ 0 as m −→∞

Then it is shown that the covariance matrix approaches a constant times the
identity matrix.

In Donoho and Tanner (2005), the Gaussian case is also focused on. For a
Gaussian cloud, “not only are the points on the convex hull, but all reasonable-
sized subsets span faces of the convex hull”. Intuitively, if all points fly apart
from one another as dimensionality grows, then (i) each point is a vertex of the
convex hull of the cloud of points; (ii) each pair of points generates an edge
of the convex hull; and (iii) sets of points form a regional face of the convex
hull. These properties are proven by Donoho and Tanner (2005) who conclude:
“This is wildly different than the behavior that would be expected by traditional
low-dimensional thinking.”

We may ask why we (in this work) lay importance on the fact that the high
dimensional simplex additionally defines an ultrametric topological embedding.
An ultrametric topology requires (as will be described in sections to follow)
any triangle to be either (i) equilateral, or (ii) isosceles with small base. The
equilateral case corresponds fine with the simplex structure. But it is useful
to us to hang on to the isosceles with small base case, too, for inter-cluster
relationships. We will look later at examples to support this viewpoint.

2 Quantifying Degree of Ultrametricity

Summarizing a full description in Murtagh (2004) we explored two measures
quantifying how ultrametric a data set is, – Lerman’s and a new approach based
on triangle invariance (respectively, the second and third approaches described
in this section).

The triangular inequality holds for a metric space: d(x, z) ≤ d(x, y)+d(y, z)
for any triplet of points x, y, z. In addition the properties of symmetry and
positive definiteness are respected. The “strong triangular inequality” or ul-
trametric inequality is: d(x, z) ≤ max {d(x, y), d(y, z)} for any triplet x, y, z.
An ultrametric space implies respect for a range of stringent properties. For
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example, the triangle formed by any triplet is necessarily isosceles, with the two
large sides equal; or is equilateral.

• Firstly, Rammal, Toulouse and Virasoro (1986) used discrepancy between
each pairwise distance and the corresponding subdominant ultrametric.
Now, the subdominant ultrametric is also known as the ultrametric dis-
tance resulting from the single linkage agglomerative hierarchical cluster-
ing method. Closely related graph structures include the minimal span-
ning tree, and graph (connected) components. While the subdominant
provides a good fit to the given distance (or indeed dissimilarity), it suf-
fers from the “friends of friends” or chaining effect.

• Secondly, Lerman (1981) developed a measure of ultrametricity, termed
H-classifiability, using ranks of all pairwise given distances (or dissimilar-
ities). The isosceles (with small base) or equilateral requirements of the
ultrametric inequality impose constraints on the ranks. The interval be-
tween median and maximum rank of every set of triplets must be empty
for ultrametricity. We have used extensively Lerman’s measure of degree
of ultrametricity in a data set. Taking ranks provides scale invariance.
But the limitation of Lerman’s approach, we find, is that it is not reason-
able to study ranks of real-valued (values in non-negative reals) distances
defined on a large set of points.

• Thirdly, our own measure of extent of ultrametricity (Murtagh, 2004) can
be described algorithmically. We examine triplets of points (exhaustively
if possible, or otherwise through sampling), and determine the three angles
formed by the associated triangle. We select the smallest angle formed by
the triplet points. Then we check if the other two remaining angles are
approximately equal. If they are equal then our triangle is isosceles with
small base, or equilateral (when all triangles are equal). The approxima-
tion to equality is given by 2 degrees (0.0349 radians). Our motivation for
the approximate (“fuzzy”) equality is that it makes our approach robust
and independent of measurement precision.

A supposition for use of our measure of ultrametricity is that we can de-
fine angles (and hence triangle properties). This in turn presupposes a scalar
product. Thus we presuppose a complete normed vector space with a scalar
product – as one example, the real part of a Hilbert space – to provide our
needed environment.

Quite a general way to embed data, to be analyzed, in a Euclidean space,
is to use correspondence analysis (Murtagh, 2005). This explains our interest
in using correspondence analysis: it provides a convenient and versatile way to
take input data in many varied formats (e.g., ranks or scores, presence/absence,
frequency of occurrence, and many other forms of data) and map them into a
Euclidean, factor space.
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3 Ultrametricity and Dimensionality

3.1 Distance Properties in Very Sparse Spaces

Murtagh (2004), and earlier work by Rammal, Angles d’Auriac and Doucot
(1985) and Rammal et al. (1986), has demonstrated the pervasiveness of ultra-
metricity, by focusing on the fact that sparse high-dimensional data tend to be
ultrametric. In such work it is shown how numbers of points in our clouds of
data points are irrelevant; but what counts is the ambient spatial dimensionality.
Among cases looked at are statistically uniformly (hence “unclustered”, or with-
out structure in a certain sense) distributed points, and statistically uniformly
distributed hypercube vertices (so the latter are random 0/1 valued vectors).
Using our ultrametricity measure, there is a clear tendency to ultrametricity as
the spatial dimensionality (hence spatial sparseness) increases.

As Hall et al. (2005) also show, Gaussian data behave in the same way and
a demonstration of this is seen in Table 1. To provide an idea of consensus of
these results, the 200,000-dimensional Gaussian was repeated and yielded on
successive runs values of the ultrametricity measure of: 0.96, 0.98, 0.96.

In the following, we explain why high dimensional and/or sparsely populated
spaces are ultrametric. We use the Euclidean distances in the cosine formula
to determine angles. Note that there is no averaging of distances involved, nor
distances normalized by dimensionality.

As dimensionality grows, so too do distances (or indeed dissimilarities, if
they do not satisfy the triangular inequality). The least change possible for
dissimilarities to become distances has been formulated in terms of the smallest
additive constant needed, to be added to all dissimilarities (Torgerson, 1958;
Cailliez and Pagès, 1976; Cailliez, 1983; Neuwirth and Reisinger, 1982; and the
comprehensive review of Bénasséni, Bennani Dosse and Joly, 2007). Adding
a sufficiently large constant to all dissimilarities transforms them into a set
of distances. Through addition of a larger constant, it follows that distances
become approximately equal, thus verifying a trivial case of the ultrametric or
“strong triangular” inequality. Adding to dissimilarities or distances may be a
direct consequence of increased dimensionality.

For a close fit or good approximation, the situation is not as simple for
taking dissimilarities, or distances, into ultrametric distances. A best fit solution
is given by de Soete (1986) (and software is available in Hornik, 2005). If
we want a close fit to the given dissimilarities then a good choice would avail
either of the maximal inferior, or subdominant, ultrametric; or the minimal
superior ultrametric. Stepwise algorithms for these are commonly known as,
respectively, single linkage hierarchical clustering; and complete link hierarchical
clustering. (See Benzécri, 1979; Lerman, 1981; Murtagh, 1985; and other texts
on hierarchical clustering.)
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No. points Dimen. Isosc. Equil. UM

Uniform

100 20 0.10 0.03 0.13
100 200 0.16 0.20 0.36
100 2000 0.01 0.83 0.84
100 20000 0 0.94 0.94

Hypercube

100 20 0.14 0.02 0.16
100 200 0.16 0.21 0.36
100 2000 0.01 0.86 0.87
100 20000 0 0.96 0.96

Gaussian

100 20 0.12 0.01 0.13
100 200 0.23 0.14 0.36
100 2000 0.04 0.77 0.80
100 20000 0 0.98 0.98

Table 1: Typical results, based on 300 sampled triangles from triplets of points.
For uniform, the data are generated on [0, 1]; hypercube vertices are in {0, 1}m,
and for Gaussian, the data are of mean 0, and variance 1. Dimen. is the ambient
dimensionality. Isosc. is the number of isosceles triangles with small base, as a
proportion of all triangles sampled. Equil. is the number of equilateral triangles
as a proportion of triangles sampled. UM is the proportion of ultrametricity-
respecting triangles (= 1 for all ultrametric).
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3.2 No “Curse of Dimensionality” in Very High Dimen-
sions

Bellman’s (1961) “curse of dimensionality” relates to exponential growth of
hypervolume as a function of dimensionality. Problems become tougher as di-
mensionality increases. In particular problems related to proximity search in
high-dimensional spaces tend to become intractable.

In a way, a “trivial limit” (Treves, 1997) case is reached as dimensionality in-
creases. This makes high dimensional proximity search very different, and given
an appropriate data structure – such as a binary hierarchical clustering tree
– we can find nearest neighbors in worst case O(1) or constant computational
time (Murtagh, 2004). The proof is simple: the tree data structure affords a
constant number of edge traversals.

The fact that limit properties are “trivial” makes them no less interesting
to study. Let us refer to such “trivial” properties as (structural or geometrical)
regularity properties (e.g. all points lie on a regular lattice).

First of all, the symmetries of regular structures in our data may be of
importance. For example, processing of such data can exploit these regularities.

Secondly, “islands” or clusters in our data, where each “island” is of regular
structure, may be of interpretational value.

Thirdly, and finally, regularity of particular properties does not imply regu-
larity of all properties. So, for example, we may have only partial existence of
pairwise linkages.

Thus we see that in very high dimensions, and/or in very (spatially) sparse
data clouds, there is a simplification of structure, which can be used to mitigate
any “curse of dimensionality”. Figure 1 shows how the distances within and
between clusters become tighter with increase in dimensionality.

3.3 Gaussian Clusters in Very High Dimensions

3.3.1 Introduction

We will distinguish between cluster characteristics as follows:

1. cluster size: number of points per cluster;

2. cluster location: here, mean, identical on every dimension;

3. cluster scale: here, standard deviation, identical on every dimension.

These cluster characteristics are simple ones which serve to exemplify how
high dimensional clustering is quite different from analogous problems in low
dimensions. In the homogeneous clouds studied in Table 1 it is seen that the
isosceles (with small base) case disappeared early on, as dimensionality increased
greatly, to the advantage of the equilateral case of ultrametricity. So the points
become increasingly equilateral-related as dimensionality grows. This is not the
case when the data in clustered, as we will now see.

8



Dim 2000

3 sets of 100 pts, mean 0, var 1, 3, 7

F
re

qu
en

cy

100 200 300 400

0
15

00

Dim 20000

3 sets of 100 pts, mean 0, var 1, 3, 7

F
re

qu
en

cy

200 400 600 800 1000 1200 1400

0
50

00

Figure 1: An illustration of how “symmetry” or “structure” can become in-
creasingly pronounced as dimensionality increases. The abscissa shows distance
values. Displayed are two simulations, each with 3 sub-populations of Gaussian-
distributed data, in, respectively, ambient dimensions of 2000 and 20,000. These
simulations correspond to the 3rd last, and 2nd last, rows of Table 1.
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No. points Dimen. Isosc. Equil. UM

200 20 0.08 0 0.08
200 200 0.19 0.04 0.23
200 2000 0.42 0.20 0.62
200 20000 0.74 0.22 0.96

200 20000 0.7 0.28 0.98
200 20000 0.77 0.21 0.98
200 20000 0.76 0.21 0.98
200 20000 0.75 0.24 0.99
200 20000 0.73 0.25 0.98

Table 2: Results based on 300 sampled triangles from triplets of points. Two
Gaussian clusters, each of 100 points, were used in each case. One point set
was of mean 0, and the other of mean 10, on each dimension. The standard
deviations on each dimension were 1 in all cases. Column headings are as in
Table 1. Five further results are given for the 20,000-dimension case to show
variability.

3.3.2 Clusters with Different Locations, Same Scale

Table 2 is based on two clusters, and shows how isosceles triangles increasingly
dominate as dimensionality grows. Figure 2 illustrates low and high dimension-
ality scenarios relating to Table 2. There is clear confirmation in this table as
to how interrelationships in the cluster become more compact and, in a certain
sense, more trivial, in high dimensions. This does not obscure the fact that
we indeed have hierarchial relationships becoming ever more pronounced as di-
mensionality, and hence relative sparsity, increase. These observations help us
to see quite clearly just how hierachical relationships come about, as ambient
dimensionality grows.

3.3.3 Clusters with Different Locations, Different Scales

A more demanding case study is now tried. We generate 50 points per cluster
with the following characteristics: mean 0, standard deviation 1, on each di-
mension; mean 3, standard deviation 2, on each dimension; mean 5, standard
deviation 1, on each dimension; and mean 8, standard deviation 3, on each di-
mension. Table 3 shows the results obtained. Here we have not achieved quite
the same level of ultrametricty, due to slower growth in ultrametricity which is,
in turn, due to the more murky, less dermarcated, but undoubtdely clustered,
set of data. Figure 3 illustrates this: this histogram shows one dimension (i.e.,
one coordinate, chosen arbitrarily), where we note that means of the Gaussians
are at 0, 3, 5 and 8.

When we look closer at Table 3, as shown in Figure 4, the compaction of
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Figure 2: A further illustration of how “symmetry” or “structure” can become
increasingly pronounced as dimensionality increases, relating to the 200 × 20
and 200 × 20, 000 (first of the succession of rows) cases of Table 2. These are
histograms of all interpoint distances, based on two Gaussian clusters. The first
has mean 0 and standard deviation 1 on all dimensions. The second has mean
10 and standard deviation 1 on all dimensions.
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Figure 3: A projection onto one dimension, to illustrate the less than clearcut
clustering problem addressed. There are four Gaussians here, each of 50 real-
izations, with means at 0, 3, 5 and 8, and with respective standard deviations
of 1, 2, 1, 3.
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No. points Dimen. Isosc. Equil. UM

200 20 0.04 0.01 0.05
200 200 0.11 0.05 0.16
200 2000 0.28 0.06 0.34
200 20000 0.5 0.08 0.58
200 200000 0.55 0.11 0.66

Table 3: Results based on 300 sampled triangles from triplets of points. Four
Gaussian clusters, each of 50 points, were used in each case. See text for details
of properties of these clusters.

distances is again very interesting. We verified the 7 peaks found in the lower
histogram in Figure 4, and available but confusedly overlapping and ill-defined
in the upper histogram of Figure 4.

What we find for the 7 peaks is as follows. Distances within the clusters
correspond to: peaks 1, 2, 3 and (again) 1. That two clusters are associated
with one peak is clear from the fact that two of our clusters are of identical
scale.

We can examine inter-cluster distances and we found these to be associated
with peaks: 2, 3, 4, 5, 6, 7. Given 4 clusters, we could well have up to 6 possible
additional peaks.

Were we to be in a far higher dimensional ambient space then we could
expect even the inter-cluster distances to become equi-distant.

3.3.4 Identifiability of High Dimensional Gaussian Clouds

From these case studies, it is clear that increased dimensionality sharpens and
distinguishes the clusters. If we can embed data – any data – in a far higher
ambient dimensionality, without destroying the interpretable relationships in
the data, then we can so much more easily read off the clusters.

To read off clusters, including memberships and properties, our findings can
be summarized as follows.

For cluster size (i.e., numbers of points per cluster), sampling alone can be
used, and we do not pursue this here.

For cluster scale (i.e., standard deviation, assumed the same on each di-
mension), we associate each cluster, or a pair of clusters, with each peak. The
total number of peaks gives an upper bound on the number of clusters. (For k
clusters, we have ≤ k + k · (k − 1)/2 peaks.)

Using cluster scale also permits use of the following cluster model: suppose
that all clusters are defined to have intra-cluster distance that is less than inter-
cluster distance. Then it follows that the peaks of lower distance correspond to
the clusters (as opposed to pairs of clusters).

An example of this is as follows. In Figure 4, lower panel, we read from left
to right, applying the following algorithm: select the first k peaks as clusters,
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Figure 4: Compaction of distances with rise in dimensionality: 4 clusters, sub-
stantially overlapping are the basis for the histograms of all pairwise distances.
Top: ambient dimensionality 20. Bottom: ambient dimensionality 200,000.
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Figure 5: Histogram of interpoint distances. Three homogeneous clusters, each
of 30 points, in spaces of dimensions 1000 and 10000.

and ask: are there sufficient peaks to represent all inter-cluster pairs? If we
choose k = 3, there remain 4 peaks, which is too many to account for the inter-
cluster pairs (i.e., 3 · (3 − 1)/2)). So we see that Figure 4 is incompatible with
k = 3 or the presence of just 3 clusters.

Consequently we move to k = 4, and see that Figure 4 is consistent with
this.

A further identifiability assumption is reasonable albeit not required: that
all smallest peaks be associated with intra-cluster distances. This need not
be so, since we could well have a dense cluster superimposed on a less dense
one. However it is a reasonable parsimony assumption. Supported by this
assumption, Figure 4 points to a minimum of 4 clusters in the data, with up
to 4 peaks (read off from left to right, i.e., in increasing order of distance)
corresponding to these clusters.

Figure 5 shows peaks, sharpening with rise in ambient dimensionality, for
three clusters, distributed as Gaussians with respectively means and standard
deviations on all dimensions: (10, 0.5); (0, 4); (40, 10). We see the peaks
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Figure 6: Histogram of interpoint distances. Four homogeneous clusters, each
of 30 points, in spaces of dimensions 1000 and 10000.
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Figure 7: Histogram of interpoint distances. Four heterogeneous clusters, each
of 60 points (comprising two subgroups of 30 points each), in spaces of dimen-
sions 1000 and 10000.
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corresponding to the increasingly similar (and tending towards identical) intra-
cluster distances; and then the peaks associated with the 3 inter-cluster distance
sets: 6 peaks in total.

Figure 6 again shows peaks for four clusters, with the same characteristics
as for Figure 5, but with an additional cluster of mean and standard deviation
on all coordinates: (25, 7). Here we find, as expected, 4 intra-cluster distance
peaks, and 6 inter-cluster distance peaks: 10 peaks in total.

The success of cluster identification is clearly dependent on distinguishable
intra-cluster properties, which are also distinguishable from the inter-cluster
properties.

Figure 7 shows a more tricky case. For the first cluster, the (equally-sized
component) distributions had means and standard deviations on all coordinates
of: (10, 0.5) and (0, 0.5). For the second cluster, we used: (0, 4) and (10, 4).
For the third cluster we used (40, 10) and (0, 10). Finally for the fourth cluster
we used the same for all cluster member points: (25, 7). Here, therefore the
maximum number of peaks is: for the intra-cluster distances, 2 peaks for the
first, second and third clusters, and 1 for the fourth cluster, hence 7. For the
inter-cluster distances, assuming the cluster components are close enough, 6,
but if they are not, then, we have peaks between essentially 7 clusters, i.e. 21
peaks. Hence in total we could have up to 28 peaks. For the histogram sampling
resolution used, we read off, visually, 17 peaks.

Our approach is to have an upper bound on the number of peaks found in
the distance histogram. Now we turn to real (or realistic) data and see how this
work helps us to address the cluster identifiability problem.

4 Applications

4.1 Application to High Frequency Data Analysis

In this section we establish proof of concept for application of the foregoing
work to analysis of very high frequency univariate time series signals.

Consider each of the cases considered in section 3.3, expressed there as n×m
arrays, as instead representing n segments, each of (contiguous) length m, of
a time series or one-dimensional signal. Assuming our aim is to cluster these
segments on the basis of their properties, then it is reasonable to require that
they be non-overlapping. The n segments could come from anywhere, in any
order, in the time series. So for the case of an n×m array considered previously,
then implies a time series of length at least nm. The most immediate way to
construct the time series is to raster scan the n×m array, although alternatives
come readily to mind.

The methodology discussed in section 3.3 then is seen to be also a time series
segmentation approach, facilitating the characterizing of the segments used.

To explore this further we consider a time series consisting of two ARIMA
(autoregressive integrated moving average) models, with parameters: order, au-
toregression coefficients, moving average coefficients, and a “mildly longtailed”
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No. time series Dimen. Isosc. Equil. UM

100 2000 0.17 0.32 0.49
100 20000 0.15 0.5 0.65
100 200000 0.03 0.57 0.60

Table 4: Results based on 300 sampled triangles from triplets of points. Two
sets of the ARIMA models are used, each of 50 realizations.

set of innovations based on the Student t distribution with 5 degrees of freedom.
Figures 8 and 9 show samples of these time series segments. Figures 10 and 11
show histograms of these samples.

Table 4 shows typical results obtained in regard to ultrametricity. The di-
mensionality can be considered as the embedding dimension. Here, although
ultrametricity increases, and the equilateral configuration seems to be increas-
ing but with decrease of the isosceles with small base configuration, we do not
consider it of practical relevance to test with even higher ambient dimensional-
ities. It is clear from the data, especially Figures 10 and 11, that the two signal
models are very close in their properties.

Examining the histograms of all inter-pair time series segments, both intra
and inter cluster, we find the clearly distinguished peaks shown in Figure 12. As
before, we use Euclidean distance between time series segments or vectors. (We
note that normalization or other transformation is not relevant here. In fact
we want to distinguish between inter and intra cluster cases. Furthermore the
unweighted Euclidean distance is consistent with our use of angles to quantify
triangle invariants, and hence respect for ultrametricity properties.)

We find clearly distinguishable peaks in Figure 12. The lower and the higher
peaks belong to the two ARIMA components. The central peak belongs to the
inter-cluster distances.

We have shown that our methodology can be of use for time series segmen-
tation and for model identifiability. Given the use of a scalar product space as
the essential springboard of all aspects of this work, it would appear that gen-
eralization of this work to multivariate time series analysis is straightforward.
What remains important, however, is the availability of very large embedding
dimensionalities, i.e. very high frequency data streams.

4.2 Application in Practice: Segmenting a Financial Sig-
nal

We use financial futures, circa March 2007, denominated in euros from the DAX
exchange. Our data stream is at the millisecond rate, and comprises about
382,860 records. Each record includes: 5 bid and 5 asking prices, together
with bid and asking sizes in all cases, and action. We extracted one symbol
(commodity) with 95,011 single bid values, on which we now report results. See
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Figure 8: Sample (using first 2000 values) of a time series segment, based on
the first ARIMA set of parameters. (Order 2 AR parameters: 0.8897,−0.4858,
MA parameters: −0.2279, 0.2488.)
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Figure 9: Sample (using first 2000 values) of a time series segment, based on the
second ARIMA set of parameters. (Order 2 AR parameters: 0.2897,−0.1858,
MA parameters: −0.7279, 0.7488.)
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Figure 10: Histogram of sample (using first 2000 values) of time series segment
shown in Figure 8.
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Figure 11: Histogram of sample (using first 2000 values) of time series segment
shown in Figure 9.
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Figure 12: Histogram of distances from 100 time series segments, using 50
segments each from the two ARIMA models, and using an embedding dimen-
sionality of 200,000.
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Figure 13.
Embeddings were defined as follows.

• Windows of 100 successive values, starting at time steps: 1, 1000, 2000,
3000, 4000, . . . , 94000.

• Windows of 1000 successive values, starting at time steps: 1, 1000, 2000,
3000, 4000, . . . , 94000.

• Windows of 10000 successive values, starting at time steps: 1, 1000, 2000,
3000, 4000, . . . , 85000.

The histograms of distances between these windows, or embeddings, in re-
spectively spaces of dimension 100, 1000 and 10000, are shown in Figure 14.

Note how the 10000-length window case results in points that are strongly
overlapping. In fact, we can say that 90% of the values in each window are
overlapping with the next window. Notwithstanding this major overlapping in
regard to clusters involved in the pairwise distances, if we can still find clusters
in the data then we have a very versatile way of tackling the clustering objective.
Because of the greater cluster concentration that we expect (from discussion in
earlier sections of this article) from a greater embedding dimension, we use the
86 points in 10000-dimensional space, notwithstanding the fact that these points
are from overlapping clusters.

We make the following supposition based on Figure 13: the clusters will
consist of successive values, and hence will be justifiably termed segments.

To validate our approach we will pursue three separate attacks on the same
problem of time series segmentation. Firstly, from the distances histogram in
Figure 14, bottom, we will carry out Gaussian mixture modeling followed by use
of the Bayesian information criterion (BIC, Schwarz, 1978) as an approximate
Bayes factor, to determine the best number of clusters (effectively, histogram
peaks). Secondly we will use an adjacency-respecting hierarchical clustering
algorithm on the full-dimensional (viz., 10000) data. Thirdly, we will use a
reduced dimensionality mapping, principal coordinates analysis, using the inter-
point distances. Our assumptions in regard to what clusters are present in the
data are minimal. Furthermore our validation of segments is based on the three
different ways that we have of tackling the one segmentation problem.

We fit a Gaussian mixture model to the data shown in the bottom histogram
of Figure 14. To derive the appropriate number of histogram peaks we fit
Gaussians and use the Bayesian information criterion (BIC) as an approximate
Bayes factor for model selection (Kass and Raftery, 1995; Murtagh and Starck,
2003). Figure 15 shows the succession of outcomes, and indicates as best a
5-Gaussian fit. For this result, we find the means of the Gaussians to be as
follows: 517, 885, 1374, 2273 and 3908. The corresponding standard deviations
are: 84, 133, 212, 410 and 663. The respective cardinalities of the 5 histogram
peaks are: 358, 1010, 1026, 911 and 350. Note that this relates so far only to the
histogram of pairwise distances. We now want to determine the corresponding
clusters in the input data.
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Figure 13: The signal used: a commodity future, with millisecond time sam-
pling.
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Figure 14: Histograms of pairwise distances between embeddings in dimension-
alities 100, 1000, 10000. Respectively the numbers of embeddings are: 95, 95
and 86.
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Figure 15: BIC (Bayesian information criterion) values for the succession of
results. The 5-cluster solution has the highest value for BIC and is therefore
the best Gaussian mixture fit.
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While we have the segmentation of the distance histogram, we need the seg-
mentation of the original financial signal. If we had 2 clusters in the original
financial signal, then we could expect up to 3 peaks in the distances histogram
(viz., 2 intra-cluster peaks, and 1 inter-cluster peak). If we had 3 clusters in
the original financial signal, then we could expect up to 6 peaks in the dis-
tances histogram (viz., 3 intra-cluster peaks, and 3 inter-cluster peaks). This
information is consistent with asserting that the evidence from Figure 15 points
to two of these histogram peaks being approximately co-located (alternatively:
the distances are approximately the same). We conclude that 3 clusters in the
original financial signal is the most consistent number of clusters. We will now
determine these.

One possibility is to use principal coordinates analysis (Torgerson’s, Gower’s
metric multidimensional scaling) of the pairwise distances. In fact, a 2-dimensional
mapping furnishes a very similar pairwise distance histogram to that seen using
the full, 10000, dimensionality. The first axis in Figure 16 accounts for 88.4%
of the variance, and the second for 5.8%. Note therefore how the scales of the
planar representation in Figure 16 point to it being very linear.

Benzécri (1979, Vol. II, chapter 7, section 3.1) discusses the Guttman effect,
or Guttman scale, where factors that are not mutually correlated, are nonethe-
less functionally related. When there is a “fundamentally unidimensional un-
derlying phenomenon” (there are multiple such cases here) factors are functions
of Legendre polynomials. We can view Figure 16 as consisting of multiple horse-
shoe shapes. A simple explanation for such shapes is in terms of the constraints
imposed by lots of equal distances when the data vectors are ordered linearly:
see Murtagh (2005, pp. 46-47).

Another view of how embedded (hence clustered) data are capable of being
well mapped into a unidimensional curve is Critchley and Heiser (1988). Critch-
ley and Heiser show one approach to mapping an ultrametric into a linearly or
totally ordered metric. We have asserted and then established how hierarchy in
some form is relevant for high dimensional data spaces; and then we find a very
linear projection in Figure 16. As a consequence we note that the Critchley and
Heiser result is especially relevant for high dimensional data analysis.

Knowing that 3 clusters in the original signal are wanted, we will use an
adjacency-constrained agglomerative hierarchical clustering algorithm to find
them: see Figure 17. The contiguity-constrained complete link criterion is our
only choice here if we are to be sure that no inversions can come about in the
hierarchy, as explained in Murtagh (1985). As input, we use the coordinates in
Figure 16. The 2-dimensional Figure 16 representation relates to over 94% of
the variance. The most complete basis was of dimensionality 85. We checked
the results of the 85-dimensionality embedding which, as noted below, gave very
similar results.

Reading off the 3-cluster memberships from Figure 17 gives for the signal
actually used (with a very initial segment and a very final segment deleted):
cluster 1 corresponds to signal values 1000 to 33999 (points 1 to 33 in Figure
17); cluster 2 corresponds to signal values 34000 to 74999 (points 34 to 74 in
Figure 17); and cluster 3 corresponds to signal values 75000 to 86999 (points
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Figure 16: An interesting representation – a type of “return map” – found
using a principal coordinates analysis of the 86 successive 10000-dimensional
points. Again a demonstration that very high dimensional structures can be
of very simple structure. The planar projection seen here represents most of
the information content of the data: the first axis accounts for 88.4% of the
variance, while the second accounts for 5.8%.
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75 to 86 in Figure 17). This allows us to segment the original time series: see
Figure 18. (The clustering of the 85-dimensional embedding differs minimally.
Segments are: points 1 to 32; 33 to 73; and 74 to 86.)

To summarize what has been done:

1. the segmentation is initially guided by the peak-finding in the histogram
of distances

2. with high dimensionality we expect simple structure in a low dimensional
mapping provided by principal coordinates analysis

3. which we use as input to a sequence-constrained clustering method in
order to determine the clusters

4. which can then be displayed on the original data.

In this case, the clusters are defined using a complete link criterion, implying
that these three clusters are determined by minimizing their maximum internal
pairwise distance. This provides a strong measure of signal volatility as an
explanation for the clusters, in addition to their average value.

5 Conclusions

One interesting conclusion on this work follows. Traditionally, clustering algo-
rithms have generally been considered as distance-based or model-based. The
former is exemplified by agglomerative hierarchical clustering, or k-means par-
titioning. The latter is exemplified by Gaussian mixture modeling. (One moti-
vation for model-based clustering is the computational difficulty, in general, of
taking account of all pairwise distances.) The approach described in this work
is both distance-based and model-based.

What we have observed in all of this work is that in the limit of high di-
mensionality a scalar product space becomes ultrametric. It has been our aim
in this work to link observed data with an ultrametric topology for such data.
The traditional approach in data analysis, of course, is to impose structure on
the data. This is done, for example, by using some agglomerative hierarchical
clustering algorithm. We can always do this (modulo distance or other ties in
the data). Then we can assess the degree of fit of such a (tree or other) structure
to our data. For our purposes, here, this is unsatisfactory.

• Firstly, our aim was to show that ultrametricity can be naturally present
in our data, globally or locally. We did not want any “measuring tool”
such as an agglomerative hierarchical clustering algorithm to overly in-
fluence this finding. (Unfortunately Rammal et al., 1986, suffers from
precisely this unhelpful influence of the “measuring tool” of the subdom-
inant ultrametric. In other respects, Rammal et al., 1986, is a seminal
paper.)
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Figure 17: Hierarchical clustering of the 86 points. Sequence is respected. The
agglomerative criterion is the contiguity-constrained complete link method. See
Murtagh (1985) for details including proof that there can be no inversion in this
dendrogram.
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Figure 18: Boundaries found for 3 segments.

• Secondly, let us assume that we did use hierarchical clustering, and then
based our discussion around the goodness of fit. This again is a traditional
approach used in data analysis, and in statistical data modeling. But such
a discussion would have been unnecessary and futile. For, after all, if we
have ultrametric properties in our data then many of the widely used
hierarchical clustering algorithms will give precisely the same outcome,
and furthermore the fit is by definition optimal. (Our point here is that if
min{dik|i ∈ q, k 6∈ q, k 6= q} = max{dik|i ∈ q, k 6∈ q, k 6= q} for cluster q, at
all agglomerations, then single linkage and complete linkage are identical.)

We have described an application of this work to very high frequency signal
processing. The twin objectives are signal segmentation, and model identifica-
tion. We have noted that a considerable amount of this work is model-based:
we require assumptions (on clusters, and on model(s)) for identifiability.

Motivation for this work includes the availability of very high frequency
data streams in various fields (physics, engineering, finance, meteorology, bio-
engineering, and bio-medicine). By using a very large embedding dimensionality,
we are approaching the data analysis on a very gross scale, and hence furnishing
a particular type of multiresolution analysis. That this is worthwhile has been
shown in our case studies.
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