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ABSTRACT

Arrays of edge magnetic coils and an intertable magnetic probe have been 
used to study the behaviour of the magnetic fluctuations in the HBTX1A 
Reversed Field Pinch.

EDGE COILS: In the sustainment phase of the discharge poloidal arrays of 
edge coils show that the superficially random fluctuations can be 
attributed almost entirely to global modes of poloidal mode number m = 0 
and 1 provided account is taken of the toroidal distortion of these 
instabilities. A toroidal array of edge coils discloses a broad spectrum of 
toroidal mode numbers with a peak at |n| = 10 and significant variation 
with time and frequency. Cross correlation between signals from poloidal 
and toroidal edge coil arrays establishes that the |n| = 10 is m = 1, a set 
of helical modes resonant inside the reversal surface and also shows the 
presence of m = 0, |n| = 0. Timescales of the measured fluctuations
indicate that the instabilities are probably resistive in character and 
mode amplitudes are such that island overlap and magnetic field 
ergodization should occur. The energy confinement time due to stochastic 
transport, estimated directly from the measured fluctuations, is consistent 
with that experimentally observed.

Studies of the edge magnetic fluctuations have been applied to 
discharges of differing conditions and in the termination and current
set-up phases. Results show that, although systematic trends in the 
amplitude of the fluctuations occur, mode numbers and frequencies appear 
invariant with respect to changes in plasma current and filling pressure. 
At high values of 0 an |n| = 3 mode becomes of equal significance to the 
m = 1, |n| = 10 modes. Estimates of the safety factor indicate that,
although the observed timescale of this mode would label it resistive, it is 
not resonant. The structure of the global fluctuations in the current
set-up phase appears very similar to that during sustainment, although the
amplitude is higher. In the termination phase the fluctuations show several
differences in the frequency and mode numbers. However, after reversal is 
lost, the observed frequencies correspond to resistive timescales rather 
than the Alfven timescale expected for ideal modes.

INTERTABLE PROBE: A statistical method for determining the radial amplitude 
distributions of instabilities is presented. This is used to analyse probe 
data from which it is possible to distinguish three types of instability. At 
low frequencies (4-20 kHz) the dominant internal fluctuations are to be
associated with the global m = 1, |n| = 10 resistive modes seen by the edge 
coils. These modes possess a radial structure in agreement with that
predicted by a linear tearing mode stability analysis of the measured 
equilibrium. At similar amplitudes to these modes there is also a short 
correlation component (Ap = 3 cm) which is peaked in the central regions of
the discharge. At high frequencies (>30 kHz) this local turbulence
dominates over the global modes. Finally, at about 1/4 the peak power of the 
dominant global modes and with a similar frequency dependence, an m = 1 
mode with some ideal characteristics is observed. Stability calculations 
show that ideal modes that are either destabilised by a resistive shell or 
whose growth rates are reduced by a resistive liner would have the same 
radial structure and timescales as this mode.
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INTRODUCTION

This thesis presents an experimental study of the magnetic fluctuations 

in the Reversed Field Pinch (RFP) HBTXIA using arrays of edge coils, an 

insertable probe and statistical analysis techniques.

In the RFP fluctuations are thought to be of importance concerning the 

plasma behaviour. A prime example is the phenomenon of self-reversal, where 

a reversed toroidal field is created and sustained by the growth and 

interaction of instabilities. Such ’turbulence’, which manifests itself in 

fluctuations of the discharge parameters, such as the temperature, density 

and magnetic field, is also widely believed to be responsible for the RFP’s 

anomalous confinement properties. Studying the fluctuations in an RFP thus 

offers a way to the understanding of these two key phenomena; field reversal 

and transport.

In contrast to the Tokamak where the dominant fluctuations are usually 

temporally coherent, the RFP is characterised by fluctuations showing 

little periodicity in time. For this reason statistical techniques such as 

correlation and spectrum analysis have been employed in this thesis in the 

analysis of the fluctuation measurements. These techniques allow the 

discrimination of spatial and temporal structures not directly apparent 

from the measurements themselves.

We will see that,although the magnetic fluctuations in HBTXIA appear to 

be temporally incoherent,their spatial structure is fairly coherent. In 

addition the majority of the fluctuations may be shown to be explicable in 

terms of fluid theory. A possible cause for the anomalous energy transport 

is offered in terms of ergodic field line behaviour due to the overlap of 

magnetic islands associated with the dominant fluctuations. On the subject 

of field-reversal, tentative evidence is found that reversal is sustained 

by a quasi-cyclic process involving the same modes responsible for the 

stochastic transport.
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In chapters 1 and 2 we review the ■theoretical and experimental 

background of the study of fluctuations in the RFP. Chapter 1 deals with 

theory and chapter 2, with experiment. The theory chapter starts with the 

particle formalism and shows how, in some cases, this can lead to a useful 

fluid theory. In this way we are led to the MHD equations for one fluid. 

Instabilities are discussed in terms of this fluid model and the linearised 

perturbation theory is introduced. In particular we will draw the 

distinction between ’ideal' and ’resistive’ modes and discuss the formation 

of magnetic islands. The overlap of these islands is seen to lead to field 

line stochasticity and the resulting effect on radial energy transport is 

discussed. The dominant quasi-linear effects of plasma instabilities are 

mentioned principally in terms of results from fluid codes. Lastly 

theoretical models concerning the important property of field reversal are 

discussed in some detail (e.g. Taylor’s relaxation theory, the Tangled 

Discharge model and the Mean Field Electrodynamics model).

In the ’experimental’ review of chapter 2 previous work on fluctuation 

measurements is discussed. In particular we will review the work performed 

on ZETA and MK IV TORUS, where various types of insertable probes were 

employed and interpretation concentrated mainly on small-scale fluctuations 

and fully developed (fluid-like) turbulence. Similar studies, concentrating 

on large-scale fluctuations, on the series of fast programmed pinches, in 

particular HBTXI, are also reviewed. Finally a brief discussion of 

contemporary measurements on machines other than HBTXIA is given.

Chapter 3 is devoted to a discussion of the experimental and theoretical 

techniques used in this thesis. The first section deals with experimental 

aspects, discussing the HBTXIA machine, the insertable magnetic probe and 

the arrays of edge coils. Methods of data acquisition are also briefly 

reviewed. The second section deals with the techniques of data analysis 

used in this thesis. We start by reviewing correlation and spectrum 

analysis. This is then applied to the problem of interpreting data obtained
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from the edge coils and the insertable probe. In the case of the edge coils, 

the poloidal and toroidal mode spectra are introduced. Various ways of 

obtaining the toroidal spectrum (for instance by correlation techniques, 

linear deconvolution, or Maximum Entropy) are presented and the relative 

advantages of each method are discussed. This naturally leads to a 

discussion of the ’Association’ spectrum which approximates the

two-dimensional mode power spectrum under certain assumptions. Lastly, 

using the probe data, a method is developed for determining the radial 

structure of the many instabilities present in the plasma by way of a 

correlation matrix fitting technique.

The basic measurements, about which this thesis revolves, are described 

in chapters 4,5 and 6. Chapter 4 is concerned with the derivation of the 

equilibrium magnetic fields from probe data. The results of this chapter 

facilitate the interpretation of the fluctuation measurements to be 

reported in chapters 5 and 6. For instance the measured q profile allows one 

to distinguish whether a certain (observed) helicity is resonant or

non-resonant. In addition the equilibrium fields may be tested for linear 

stability and the outcome of such tests compared with fluctuation 

measurements. Chapter 4 should thus be viewed as providing an essential 

background for the interpretation of the measurements of chapters 5 and 6.

Chapter 5 deals with the edge coil measurements. Here we present a

detailed study of the fluctuation activity at the plasma edge in the

sustainment phase of the discharge using the analysis techniques discussed 

in chapter 3. This is then extended for different time regions of the 

discharge; the termination and set-up phases. Differences in the structure 

of the dominant global instabilities are discussed. Then results from 

parameter scans are presented showing how the fluctuations evolve with 

pinch parameter, plasma current and filling pressure. Finally, we discuss 

the results at length, presenting the consequences of our observations in 

terms of anomalous transport and reversal mechanisms.
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Chapter 6 returns to the insertable probe. Here we discuss the internal 

structure of the fluctuations. By the technique of correlation matrix 

fitting developed in chapter 3 we are able to derive the radial structures of 

the dominant instabilities. These are compared with the results from a 

linear stability analysis of the measured equilibrium field profiles 

(obtained in chapter 4) and with the edge coil measurements.

Chapter 7 brings all the results together and discusses the observations 

and deductions as a whole and in relation to previous investigations. In 

this way the contribution of this thesis to the current understanding of the 

subject is outlined. Further areas of investigation are also discussed.



CHAPTER 1 

REVIEW OF THEORY

1.1 OVERVIEW OF THEORETICAL PLASMA MODELS

Fluctuations in the magnetic field of a plasma arise from many types of 

plasma instability which are, in principle, describable by a set of 

governing equations which constitute a mathematical model of the plasma. In 

this thesis extensive use will be made of the predictions of a relatively 

simple single fluid model. It is thus appropriate to review the derivation 

of this model from the much wider ’particle' description, stressing the 

various approximations employed. The reader familiar with such a derivation 

may wish to proceed to section 1.2.

1.1.1 Particle Theory

The task of theoretical plasma physics is to provide an understanding of 

the behaviour of an ensemble of interacting ions and electrons in the 

presence of an electromagnetic field, which may be self-generated or 

applied. Perhaps the most obvious way towards such an understanding is 

through a knowledge of the behaviour of an individual charged particle in an 

electromagnetic field. In principle this problem is far simpler than the 

many-particle problem and in cases of low collisionality can provide a 

fruitful avenue. Such an approach is termed ’Orbit Theory’ [1].

When collisions between the particles of a plasma cannot be ignored 

orbit theory cannot provide an adequate framework for the understanding of 

plasma phenomena. In this case a statistical approach is fruitful. Instead 

of attempting to describe the phase-space trajectories of individual 

particles, we now consider the average properties of a given species of
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particle. So we smear out the particles,a so that they no longer have 

discrete velocities but are described by a distribution function f(%(r»Z* t) 

such that represents the number of particles in the region

(r,r+dr) having velocities (v,v+dv) at the time t. 'f(%(r,v,t)’ is thus the 

density of particles a in a 6-D phase space. By considering a closed region 

in this phase space it is possible to derive a generalised continuity 

equation for f̂ .̂ In the collisionless limit this is the Vlasov equation:

= 0 . - (1-1)

where F̂  ̂ is the force acting on the particles a each having mass m̂ .̂ When 

collisions are considered the RHS of this equation is simply replaced by a 

term (9fa/3t)Qoll• This form is known as the Boltzmann equation.

In principle the Boltzmann equation coupled to Maxwell’s equations 

provide a complete set of equations determining f̂  ̂ for any number of 

particle species. These equations provide a very detailed and complete 

picture of plasma behaviour. On the one hand they contain microscopic 

information about the orbits of the individual charged particles and on the 

other hand they accurately describe macrosopic phenomena. It is thus hardly 

surprising that the model is mathematically intractable, even with 

numerical techniques, for many of the realistic problems posed in the 

fusion field.

1.1.2 MAGNETOHYDRODYNAMICS

The realisation that the Boltzmann-Maxwell set of equations could not be 

applied to many of the more realistic problems led to the development of 

simpler models with narrower physical content. Ideal [2] and 

resistive [3.4] Magnetohydrodynamics (MHD) are particularly successful 

examples, capable of describing a wide range of macroscopic plasma
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phenomena and yet remaining mathematically tractable.

1.1.2.1 Two-Fluid Equations

The first step to a simplification of the Boltzmann-Maxwell system of 

equations is the formulation of the two-fluid equations. Here we consider 

just two particle species, ions and electrons. Then we rewrite the 

resulting two Boltzmann equations by taking moments of the form:

^ I;*- (iE*)coll}dv9t “ (1.2)

where 5 = 1 ,  m̂ v̂ and mnV^/2. This gives three equations for each a (=i,e) 

corresponding to the conservation of mass, momentum and energy. Together 

with the Maxwell relations, these are the two-fluid equations:

n^V.Vg . 0

B) + V.Po =
dt

9 dT
2 ^#dt^* —a*^Za

V X  E = -9B/at

V X  B . Woe(nili " "eYe) * P  ^

V.E = - (n^ - ng) 
^o

V.B = 0

1.3)

1.4)

1.5)

1 .6 )

1.7)

1.8) 

1.9)

Here n, q, E, B, c ,Gq and Pq are respectively the density, charge, electric 

field, magnetic field, light velocity, vacuum permittivity and vacuum 

permeability.

In the above equations we have assumed that F^ in equation 1.1 is simply 

the Lorentz force and that ions and electrons have the same charge.
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Equation 1.3 expresses the conservation of mass. Equation 1.4 expresses 

conservation of momentum, the LHS representing transfer of momentum between 

like particles and from the electromagnetic field and the RHS representing 

momentum transfer between unlike particles. In this equation P is the total 

pressure tensor. Equation 1.5 is the energy conservation equation. This 

states that a change in the energy of either the ions or the electrons must 

come from the heat generated due to unlike collisions, and is

independent of the electromagnetic field. Here T̂ j represents the 

temperature of the species a and ĥ  ̂ is the heat flux due to random motion. 

The remaining equations (1.6-1.9) are simply the Maxwell relations.

The two-fluid equations derive directly from the Boltzmann-Maxwell 

system and are thus exact. However, they do not constitute a complete set, 

since as yet we have not introduced any method for closing the sequence of 

higher order moments. Hence no matter how many moments we care to take (as 

per equation 1.2) there will always be too few equations to determine all 

the variables. In order to establish a useful model we must thus close the 

equations with further assumptions.

1.1.2.2 The MHD Equations

The derivation of the MHD equations from the two-fluid equations 

requires the following steps. First of all the Maxwell equations are 

replaced by their low-frequency form (Eg+O) which eliminates the 

displacement current EgSE/Bt and the charge CgV.E. Neglect of the 

displacement current constrains electromagnetic waves of interest to have 

phase velocities much less than that of light and excludes relativistic 

motion. In addition, the neglect of Eq V.E dictates charge neutrality 

(ng=nj^sn) and restricts attention to plasma phenomena of frequencies much 

less than the electron plasma frequency w «  Wpes(ng*/meEo)^/* and length 

scales much longer than the Debye length L >> X(jHV-pe/wpe*
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The second approximation that is made is the neglect of electron inertia 

in the momentum equation (mg+0). This means that time scales of interest 

must be long compared with those of the electron plasma frequency wpg and 

the electron cyclotron frequency Wce=GB/mg and that length scales must 

similarly be much greater than the electron larmor radius rie=VTe/wce arid 

the Debye length X(j.

Both the neglect of high frequencies in Maxwell’s equations and the 

neglect of electron inertia in the momentum equation are assumptions which 

are very well satisfied when considering the macroscopic behaviour of 

fusion plasmas. However it should be noted that the latter assumption 

precludes a coTnpLete descTiptio-a a class long wavelength modes called Drift 

waves [5,6] which are strongly affected by resonant particles moving along 

the field lines.

The next step in the derivation of the MHD equations is to combine the 

individual ion and electron equations into a set of single fluid equations. 

This is accomplished by introducing single fluid variables. Thus the total 

mass density is defined as:

p = m^n , -  (1 .10)

since we ignore m@. Likewise the fluid velocity is given by:

V  = Vi . -  (1.11)

The current density is then defined as:

J = e n ( v i - V g )  . -  ( 1 .12 )

Finally the single fluid pressure and temperature are written:

P = Pe + P i  =2nT -  (1 .13)

8T = Tg + T i  . -  ( 1 .14 )

We may then rewrite the two-fluid equations in terms of these single fluid 

variables. Now if we assume that both the ions and electrons are collision 

dominated then the ion and electron distribution functions will be
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Maxwellian and in this case established theory [7] may be used to close the 

equations by expressing higher order moments in terms of transport 

coefficients. In particular, under the additional approximations of large 

collisionality but small resistivity we may derive the Ideal MHD equations;

Continuity ; ^  + pV.v = 0  - (1.15)

DvMotion : p—= ~J x B + Vp = 0  — (1.16)
Dt -

Energy ; ̂  = -YpV.v - (1.17)

Convection ; ~  = V x (v x B) - (1.18)

Ampere’s ; V x B = pgJ , - (1.19)
Law

where T is the ratio of the specific heats and D/Dts3/9t+(v.V) is the 

’substantive’ or ’convective’ derivative.

It turns out that for fusion type plasmas (n = 10^*-10^*cm"^, 

T = 0.1-10keV) strictly speaking this model is invalid since the 

collisionality criterion is not satisfied. However there is overwhelming 

empirical evidence [8,9,10,11] that Ideal MHD provides a rather accurate 

description of a broad class of plasma phenomena. The reasons for this 

necessitate a detailed discussion of the perpendicular MHD model which is 

valid for plasmas of fusion interest and yet makes almost the same 

predictions as ideal MHD. The interested reader is referred to the 

excellent review article by J.P.Freidberg [2].

An important generalisation of Ideal MHD is the inclusion of 

resistivity, n. This modifies the convection equation by including a 

resistive diffusion term:

= V X  (v X  B) - V X  ( -  V X  B) - (1.20)at “  ~  Po
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and in addition an ohmic heating term supplements the energy equation:

^  + YpV.y = (Y-l)n|j|' . - (1.21)

Now at first sight, including resistivity would not seem to make a great 

deal of difference since fusion plasmas are almost infinitely conducting. 

However, the resistive MHD equations permit fundamentally different types 

of motion than the ideal equations. To see this one must realise that the 

ideal convection equation implies that the magnetic flux is convected with 

the fluid so that the flux through any contour following the material motion 

remains constant in time. This is known as Alfven’s theorem [12] and 

effectively dictates that the magnetic topology must remain invariant. Now 

adding resistivity, however small this is, relaxes this topological 

constraint and allows field lines to break and reconnect. A similar problem 

arises in fluid mechanics [13] where, in the inviscid fluid theory, vortex 

lines are constrained to move with the fluid but with the introduction of 

even infinitesmal viscosity this constraint is relaxed and fundamentally 

different motions can ensue.

So we see that a small amount of resistivity introduced into the 

convection equation can yield new phenomena. However, if n really is small 

the ohmic heating term can become negligible in which case the resistive MHD 

energy equation is simply the adiabatic gas law (1.17). In some cases the 

energy equation can be replaced by the condition of incompressibility, 

V.v = 0. This approximation allows the definition of velocity stream 

functions [14] and hence lowers the number of dependent variables rendering 

the equations more tractable both analytically and numerically.
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1 . 2 THE REVERSED FIELD PINCH

By a simple consideration of the MHD equations it may be shown that, for 

a plasma of finite extent and (small mass), no equilibrium is possible 

without the application of external fields. This dictates the need for some 

form of confinement system in a potential fusion reactor [see 15,16,17,18]. 

One such system is the Reversed Field Pinch which is a class of toroidal 

pinch in which the toroidal field, B̂j,, reverses near the edge of the plasma. 

Unlike the Tokamak, where B̂j, >> Bq (Bg is the poloidal magnetic field) the 

RFP has B^ = Bg. As we will see in section 1 .3 this makes the RFP 

potentially unstable to many plasma instabilities. Nevertheless a reversed 

toroidal field acts to stabilise these instabilities and as a result it is 

thought that the RFP may be able to sustain far higher plasma pressure than 

the Tokamak. Together with the weak toroidal field this makes the RFP a very 

plausible confinement system.

a

0

Figure 1.1 Toroidal (B*) and Poloidal (B@) magnetic field variation 

with radius (r) for a typical RFP.

Figure 1.1 shows a typical RFP field configuration and for comparison 

figure 1.2 shows a similar diagram for the Tokamak. In order to 

characterise, in a simple fashion, the types of RFP fields possible, the
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6

0
0 r,r w

Figure 1.2 Toroidal (B^) and Poloidal (Bg) magnetic field variation 

with radius (r) for a typical Tokamak.

following parameters are often used:

0 = 89(a)
<BA>

F a M a i  
<BL>

- (1.22)

- (1.23)

where a is the plasma radius and triangular brackets indicate radial 

average. 0 is known as the Pinch parameter and measures the relative 

magnitudes of the current and toroidal flux. For The RFP 0 « 1 whereas for 

the Tokamak 0 << 1. The parameter F is known as the Field-reversal ratio and 

simply indicates how reversed the toroidal field is. For typical RFP 

configurations F = -0.2. For the Tokamak F = 1. Another important parameter 

is the plasma poloidal beta defined as:

_  2 y o < p >

Be"(a)
- (1.24)

This is a measure of how much plasma kinetic pressure can be supported by a 

given magnetic pressure. Obviously, for a reactor, $9 should be as large as 

possible. Current values for the RFP, as we will see in chapter4-,, are about 

10%.
The basic pinch equilibrium is the pressureless fully relaxed minimum 

energy state given by Taylor [19] which has Bessel function fields
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(BFM)(see section 1.6 of this chapter):

B(|) = BgJofpr) - ( 1.25)
Bg = BoJi(yr) . - (1.26)

The parameter y is related to 0 (= 20/a) and is constant over r. The model

gives a reversed field when yr > 2.405 and predicts the ratio |j |/|b | to be

constant with r.

Many other models for the RFP field configurations exist, some more 

realistic and others less so. Particularly fruitful are the Bessel Vacuum 

Model (BVM) and the Modified Bessel Function Model (MBFM) [20]. In these 

models the standard Bessel function description is used in the inner 

regions of the plasma but in the outer regions account is taken of the

non-uniformity of |j| which must, in reality, fall to zero at the walls. 

Both these models thus specify a sensible y(r) profile and then solve the 

force-free relation VxB=y(r)B for the fields.

1 .3 LINEAR INSTABILITY THEORY

An unstable plasma is one in which an initial perturbation will always 

grow. On the other hand a stable plasma is one in which an initial 

perturbation will always decay. By instability we refer to the condition of 

an unstable plasma and also to the form and behaviour of the growing 

departure from the equilibrium situation.

A very powerful tool for investigating the stability of general systems 

is the energy principle. This states that if the potential energy of a 

system is increased for all perturbations then the system is stable whereas 

if the potential energy is decreased for any one form of the perturbation 

then the system is unstable.
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1.3.1 The Linear Theory

In principle the MHD equations provide a complete description of how an 

initial perturbation to an equilibrium configuration will evolve. However, 

since the equations are non-linear, an analytic treatment along these lines 

is seldom fruitful. It should be noted that this is not necessarily true for 

numerical studies. To gain insight into the physics of instabilities one 

thus restricts attention to such times when the perturbations are small in 

comparison with the neighbouring equilibrium. In this case the MHD

equations describing the instabilities are linear and hence are

analytically far more tractable than their non-linear counterparts.

Another frequent simplification that is made is to study instabilities 

in a (periodic) cylindrical rather than a toroidal geometry (figure 1.3). 

This simplifies the algebra considerably while essentially predicting 

similar results to more complete toroidal investigations. It should be 

noted, however, that this approximation precludes a class of toroidal

instabilities known as ballooning modes [21].

a )

Periodic
cylindrical
( r ,  6 , z  )

b)

Minor axis

Major axis

Toroidal : 
( r , e , $  )

Figure 1.3 Toroidal and periodic cylindrical geometric systems.
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The analytical technique used in the linear theory is perturbation 

analysis. This consists of writing each dependent variable in the MHD 

equations as an equilibrium and perturbation component. Thus the velocity 

field, V ,  would be written^

V = Vo + V - (1.27)

where Vo represents the equilibrium velocity flow and 7, the velocity 

perturbation. Then the assumption that the perturbed quantities are smaller 

than the neighouring equilibrium allows us to neglect non-linear terms such 

as v.v or v.B etc and so we are led to a set of linear differential 

equations describing the perturbation. In a cylindrical geometry we may 

fourier analyse in space and time, taking the 6, z and t dependence of all 

perturbed quantities to be;

^rt + i(me + kz) _ _ (1.28)

where r, m and k are respectively the growth rate, poloidal mode number and 
longitudinal wavenumber. The ratio m/n (where n = kRo is the toroidal mode 

number) is known as the helicity of the perturbation.

1.3.2 Ideal Instabilities

Ideal MHD instabilities may be conveniently divided into two classes. 

The first are fixed boundary [22] or internal instabilities where the 

plasma boundary remains fixed and the second are free boundary [22] or 

external instabilities where the plasma surface is allowed to move. In the 

first case, to determine the stability of a given equilibrium, only the 

potential energy associated with the plasma need be investigated whereas in 

the second case the potential energy of the vacuum fields must also be taken 

into account. In the RFP fixed boundary modes represent the most important 

instabilities.
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1.3.2.1 Fixed Boundary Modes

The linearised ideal MHD equations may be combined into a single 

relation [23] for the perturbed displacement;

t
l(r,t) = v(r,T)dT . “ (1.29)

This relation reads:

3 ̂ FP = V(YpV.^ + Ç.Vp) + (VxB)x(Vx(ÇxB))

+ (Vx(Vx(ÇxB)))xB = F(Ç) , - (1.30)

where the operator F may be shown to be Hermitian. After a little algebra 

equation 1.30 caTi be iTâ.Hsfof'niect iriio :

tt‘ 2 Ifl p - 211
Vplasma ^plasma

S.F(S)dr) = 0 , - (1.31)

which simply states that the rate of change of kinetic (first term) and 

potential (second term) energies must be the same. As we noted above, by 

examining whether the potential energy of a system increases or decreases 

when it is perturbed, we may learn if the system is stable. Hence much 

insight into the stability problem may be gained by a careful formulation of 

the second term in this equation. A particularly fruitful form is that given 

by Furth et al [24] which reads:

«W ' 2 111 < B„ - B (i.Vp)/|B'| ' + YplV-iF
Vpiasma 

J B ~
+ . (BxC).B - 2Ç.VPÇ.K }dr , - (1.32)

|B:|    - -  -

where k is the curvature and ’j_' and ' indicate perpendicular and parallel
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to the equilibrium field.

The first three terms in this expression are respectively the energy 

stored in Alfven, magnetosonic and sound waves. Clearly all are positive 

definite and hence are stabilising. The last two terms, however, are not in 

general positive and can thus decrease the potential energy and drive 

instabilities. The first of these terms represents instabilities driven by 

parallel current (kink modes) while the second represents modes driven by 

the interaction of pressure and curvature and are known as Suydam or 

interchange modes.

If we fourier analyse in space (0,z) we may use the calculus of 

variations to minimise 6W with respect to and This tells us that 6W 

is minimised by velocity perturbations obeying the equation V.^=0 which in 

turn allows a simplified form of ÔW to be derived in terms of ip alone:

r./ w
{ f (5r)'+ gSr'idr

where f(r) = ^mBe + krB^) _ 
(m' + k'r')

2k=r (k=r=B-= - m=BA=) , - (1.33)(m^ + k=r=)

and ry is the wall radius.

Clearly the first term in the integrand is positive definite and so this 

always represents a stabilising term. The second term, however, is not 

constrained to be positive and so may be destabilising. For the case of 

m = 0 the second term simplifies to the following form:

g(r) = 2yo^ + Bz=(k*r*+ 1)/r - (1.34)dr

This dictates that, in the absence of pressure gradients, all m = 0 ideal
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modes are stable. Further, if the pressure gradient is included, it must be 

negative to be destabilising. However, since the second term in 1.34 is 

positive definite, a large enough toroidal field, Bg or a high enough k will 

always produce stabilisation. In addition, as g becomes less negative, so 

the range of the instability will decrease. This is because if 6W is only 

slightly negative then the integrand will only be negative for large ip.  

Thus, as the toroidal wavenumber or the applied toroidal field increases 

pressure driven m = 0 modes will get more and more localised. In reality 

dissipative and kinetic effects such as finite Larmor radius limit this 

localisation.

For the case of m = 1 it is possible to perform a similar analysis as 

above. In particular Shafranov [25] has shown that if dp/dr is negative the 

ensuing instabilities are not local but are of a global nature being 

contained within the entire plasma region where nq < 1 (q » rBg/RoBg is the 

safety factor). If, on the other hand, the Kruskal-Shafranov limit [26,27], 

nq > 1, is satisfied then these modes are stable. For m > 1 the picture is 

similar to that of m = 0.

The Suydam Criterion

From the energy principle it is possible to derive a necessary condition 

for the stability of a given equilibrium to pressure driven ideal modes. 

First we must note that the radius, rg, where mBg/rg + kBg = 0 represents a 

regular singularity of the ideal MHD equations. At this surface, 

perturbations require the least energy to bend field lines and so this 

surface is energetically most favourable for a given fourier mode to occur.

If we define x = r-rg then at this surface:

«<> ■ f B + ... . - (1.35)
r-
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Now, the Schwartz inequality [28] may be used to dictate that:

)dx > 0 , - (1.36)

where a and b are two points either side of the singular surface at which 

^rla  ̂ Crib = O' Thus for 6W to be positive definite this inequality 

implies:

1 -1 Ilf 
8 9x^ + g(ro)}dx > 0 (a,b small) . - (1.37)

a

In turn, for this to be true, the integrand must also be positive definite 

and hence, after a little algebra, we arrive at the Suydam criterion [29]:

Essentially this criterion says that if you raise the shear of the magnetic 

field at a certain radius, pressure driven modes, whose singular surface is 

at this radius, can be stabilised. In toroidal geometry this criterion maps 

to the Mercier criterion [30]:

In pinches q << 1 and so toroidal effects do not modify the cylindrical 

results. In Tokamaks, however, the term (1-q^) is generally negative and so 

stability is possible without shear. In general, comparing the ideal 

stability of pinches and Tokamaks, the former are stabilised by conducting 

walls and magnetic shear, while the latter depend mainly on periodicity and 

toroidal effects with shear playing a role for localised modes.
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Newcomb*s Method

A general method for testing an arbitrary cylindrical equilibrium for 

stability to internal modes has been given by Newcomb [31]. Since this 

technique is used extensively in chapter 6 we will briefly review the 

relevant theory.

The starting point is the equation for 6W(6̂ ), equation 1.33. By 

minimising 6W with respect to ip we obtain the Euler-Lagrange equation for 

the lagrangian L = -5W:

The solution of this equation represents the smallest value of 6W and hence 

the most unstable ip. However, it is not possible to solve this equation and 

then simply substitute ip into equation 1.33 to determine 6W since in 

general there will not exist a solution for ip under the appropriate 

boundary conditions. To guarantee a solution the growth rate T must be 

included and an Euler-Lagrange equation derived for the Lagrangian;

2
L = r p C*dr - ÔW . “ (1.41)

First of all consider the case where m and n are such that there exists 

no singular surface. Then equation 1.40 is non-singular and has two 

independent solutions of the form (r) + B6a(r). Now, as we have

discussed above, Çi(r) can be chosen to be regular at the origin but in 

general Çi(a) * 0. Similarly ^2(r) can be chosen so that i z i a ) = 0 but in 

general 62(r) is not regular at r = 0.

The main result we will show is that if i i i r )  has a zero anywhere within 

the interval [0,a] a trial function for ip may be constructed which, on 

substitution into equation 1.33, gives a negative 6W and thus instability. 

On the other hand, if there are no such zeros then 6W > 0 and there is



$1 REVIEW OF THEORY 22

stability. The analysis is based on the separation theorem which applies to 

Sturm-Liouville forms [32] such as equation 1.40. This theorem proves that 

the zeros of any two independent solutions of a Sturm-Liouville equation 

interlace.

Consider the trial function shown in figure 1.4(a) using and 2̂ in 

the inner and outer regions of the discharge respectively. Here it is 

assumed that has just one zero at r 1 (this does not affect the generality 

of the argument). Now the above theorem tells us that Ç2 must then have a 

zero at ra such that 0 < ra < ri. In addition, ^a may not have a second zero 

in the range ra < r < a.

0

Trial functions illustrating Newcomb's methodFigure 1.4

showing (a) instability and (b) stability for 

the case of no resonances in the range 0 & r i a.

Substituting the above trial function into equation 1.33 gives an 

expression for ÔW:

ÔW a n (Si'(ro) - E2'(ro)) = fis, - (1.42)
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where fi is a positive function and rg is the intersection point of and 

^2. Now because of the separation theorem s < 0 and so 6W < 0 which implies 

instability. If now we consider the case where has no zeros in the

interval (0,a) the only type of trial function we may construct is that 

shown in figure 1.4(b) which gives s > 0 and so predicts stability. Thus 

the condition that has no zeros in the interval (0,a) is a necessary and 

sufficient condition for stability.

In the case where the Euler-Lagrange equation is singular due to the 

existence of singular surfaces the above analysis may be extended to each 

interval between the singularities. Then the necessary and sufficient 

condition for stability for a given m and n is that the Suydam criterion be 

satisfied in each interval and has no zeros in each interval.

Other Stability Criteria

The Suydam criterion provides a necessary condition for stability to 

pressure driven modes. In addition to these modes, however, there also 

exist current driven instabilities which depend for their stability on the 

profile of pitch, P = R^q. Figure 1.5 shows the four possible types of 

basic pitch variation. It can be shown by a consideration of equation 1.33 

that some of these forms are always unstable. For instance (a) shows a pitch 

minimum which is always destabilising to a mode located in the vicinity of 

the minimum. This may be seen to be true by the construction of an m = 1 

trial function which is constant in the region of the pitch minimum and 

falls sharply to zero at the two singular surfaces. Equation 1.33 then 

shows 6W to be negative. It is interesting to note that if the pressure 

gradient is negative then consideration of the Suydam criterion shows a 

pitch minimum to be destabilising to pressure-driven modes as well.

The pitch variation in figure 1.5(b) is similar to that for Tokamaks. As 

with pressure driven modes, if nq < 1, then there is instability for the
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Figure 1.5 The four basic types of pitch variation:

(a) Exhibiting a minimum in the outer regions as in the 

stabilised pinch surrounded by a vacuum region,

(b) monotonically increasing as in the Tokamak,

(c) monotonically decreasing as in the stabilised pinch 

with currents extending to the wall and

(d) decreasing and changing sign as in the RFP.

cylindrical case but not necessarily for the toroidal case. The pitch 

profile of 1.5(c) corresponds to that of a stabilised pinch. If a vacuum 

region surrounds the plasma then there will always be a pitch minimum and 

hence instability. A pitch minimum occurs in this case because, in the 

plasma region, the pitch will be decreasing owing to the paramagnetic 

nature of the pinch and the pitch of a vacuum field is always increasing for 

positive Bg and Bg since B@el/r and Bg^constant. Thus if the toroidal field, 

Bg, is made to reverse in the outer regions of the discharge, as in the RFP, 

a vacuum region will now be associated with decreasing pitch and so there 

will be no pitch-minimum and the configuration can be stable 

(figure 1.5(d)).

By further consideration of equation 1.33 it is possible to show the 

total longitudinal flux:

= I BnRgBzdr, 
’'o

- (1.43)
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roust be greater than zero for stability. Hence, in the RFP, as the field 

reversal is increased so the wall position for stability becomes smaller.

At the minor axis the shear and pressure gradient are zero and the local 

stability thus depends on how the second derivatives of these quantities 

behave. The condition for stability to current driven instabilities is:

P df.P 
2 dr^

For the BFM the LHS of this expression is -1/2 and so for m > 0 this 

criterion is satisfied. For on-axis pressure driven instabilities a 

modified Suydam criterion may be derived which states that the second 

derivative of pressure must be zero or negative. Hence Suydam stability on 

axis requires a flat or. hollow pressure distribution.

1.3.2.2 Free Boundary Modes

In early experiments on pinches the plasma was observed to contort into 

various helical shapes due to the growth of instabilities which deformed 

the plasma surface. Inevitably the onset of such behaviour signalled the 

termination of the discharge since these modes generally grew exponentially 

until confinement was lost. In RFP's these modes are generally far less 

important than fixed boundary instabilities since usually a conducting wall 

is close to the plasma edge. Nevertheless, historically these modes played 

a very important role and so we will briefly review them.

As with fixed boundary instabilities we may assign mode numbers m and n 

to a given perturbation (assuming a cylindrical geometry). Figure 1.6 shows 

an example of an m = 0, n 0 instability which is known as a sausage mode. 

This mode occurs in the linear pinch where there is no Bg field. In this 

case, if part of the plasma moves in, as in the narrow regions shown in 

figure 1.6, then, since magnetic flux is convected with the plasma, the JxB 

* term in the motion equation will increase and that element will move in
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Plasma

Ba weak00  (weak)l 00  (strong)

figure 1.6 A Sausage mode (m - 0, n ■ 0).

00 Strong

a )

m = 2

b)

Figure 1.7 A kink mode (m - 1, n • 0).

further. This process continues until the plasma ’necks off at each narrow 

region. This mode may be stabilised by the application of a longitudinal 

field, Bg. In this case as each narrow region compresses, so compresses 

producing a gradient in Bg which creates a force opposing the inward

compression.

Modes with m = 1 and n 0 are

known as kink modes. Figure 1.7 

shows an example. These modes are

unstable in the linear pinch since the 

magnetic pressure on the concave side of 

the kink is higher than on the convex 

side. Again, the introduction of a 

longitudinal field serves to stabilise 

the modes because in this case field

lines are under greater tension on the 

convex side of the kink. Stabilisation 

may also be obtained by the proximity of 

a conducting wall where image currents 

oppose the plasma motion.

Modes with m > 2, n  ̂0 correspond to a longitudinal ’fluting’ of the

plasma column (figure 1.8). These higher mode deformations are

theoretically less dangerous than the m = 0 and m = 1 modes because they 

tend to be localised in the radial direction and so do not cause such large

m = 3

c)

m = 4

Figure 1.8 Examples of flute modes
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scale motion at the plasma edge. Also these instabilities may be shown to 

have lower growth rates.

1.3.2.3 Summary Of Ideal Stability

We have now discussed most of the general stability criteria applying to 

pinches. In particular we have seen that there exist basically two stable 

regimes. The first is the Tokamak regime where topology and toroidicity 

dictate stabilisation and the second is the RFP where the reversed toroidal 

field allows stability. The reversed field acts in two ways. First it allows 

the presence of a vacuum field outside the plasma without the consequence of 

a pitch minimum which is always destabilising and second, it dictates high 

shear and so allows, via the Suydam criterion, stability with large plasma 

pressure. In fact ideally stable RFP configurations with 

3o 5 = 31% are possible under the ideal MHD theory.

1.3.3 Resistive Instabilities

As we discussed in section 1.1.2.2 the inclusion of resistivity, even if 

vanishingly small, allows fundamentally different types of plasma motions 

to occur. Specifically, in the Ideal MHD model the magnetic field topology 

is fixed, whereas with the inclusion of resistivity this constraint is 

relaxed and field-lines may break and reconnect.

1.3.3.1 Magnetic Islands

In order to elucidate the phenomena which may occur only when 

resistivity is added to the Ideal MHD description let us consider the 

linearised ideal Ohms law:

E + V  X  B = 0 . - (1.45)
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Dotti-ng w'lfh k^this yields for the r-component; 

(k.B) Cr = Br, - (1.46)

which states that at the resonant surface where k.B = 0 (r = rg), the

radial magnetic field component is constrained to be zero. If we now

introduce resistivity, equation 

1.45 will be supplemented 

by an pj term and By, will in 

general be non-zero at r = rg.

For simplicity let us consider 

a single instability of helicity 

k = (0,m/r,kz). Then we may define

0 r,w

Figure 1.9
Example of T(r) for an equilibrium situation (for any t).

W  T  ►
Figure 1.10
Contour plot of figure 1.9 showing parallel flux surfaces.

«■yv a flux function as follows;

where t = m6 + k^z. Y has the 

property that B.VY = 0 and hence 

field lines are constrained to lie 

on the surfaces of Y = constant. 

By forming contours in the (r,i) 

plane we may thus trace out the 

intersection of field-lines with 

this plane. For an equilibrium 

situation Y has the form shown in 

figure 1.9. In this case there is 

no variation with t  and so a 

contour plot in (r,x) space

reveals parallel flux-surfaces.This is shown in figure 1.10. If we now
'Vconsider a non-equilibrium case but constrain Bp to be zero at rg (an ideal 

* k is the wave vector.
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Figure 1.11 Contour plot of Y(r,?) for the case of a resistive 

instability where Bp(rg) • 0.

mode) then we have a similar situation but now with the flux surfaces being 

I only strictly parallel in (r,i) at r = rg and r = 0. However,if we relax the 

constraint that Bp = 0 at r = rg then Y(rg) may vary with t  and the flux ' 

surfaces will now take on an ’island' structure as shown in figure 1.11. The 

outermost flux-surface of the island is known as the separatrix, the point 

where it crosses the resonant surface as the X-point and the point at the 

centre of the island as the 0-point.

The importance of island structures is that a given field line is no 

longer confined to a given radius as in figure 1.10 but now fills a region 

in r. Since parallel transport along field lines is very much larger than 

cross-field transport this amounts to a degradation of the confinement and 

insulation properties of the magnetic field. This aspect is accentuated 

when islands are nested side by side. Furthermore, when any two islands 

overlap significantly, the field lines take on random trajectories leading 

to even worse confinement. This particular problem will be discussed 

further in section 1.5.
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1.3.3.2 Overview Of The Analytic Theory

Resistive instablities were first considered by Furth, Killeen and 

Rosenbluth in 1963 [33] for a slab geometry and subsequently by Coppi, 

Greene and Johnson in 1966 [34] for a linear pinch. The fundamental idea 

used in these papers is that since resistivity is small it may be 

disregarded in all but a small region centred around the singular surface. 

The analysis of resistive modes is thus a boundary layer problem: most of 

the plasma may be approximated by an Ideal MHD description, but in the layer 

around the singular surface the full resistive MHD equations must be 

solved. The matching of the solutions for these two regions together with 

appropriate boundary conditions essentially gives the dispersion relation 

for the relevant instabilities.

In both papers use is made of various orderings which determine which 

terms in the governing equations are dominant. The two most important 

orderings are the ’slow-interchange’ and ’tearing’. Under the approximation 

of these orderings the growth rate of resistive modes is much smaller than 

the Alfven frequency and so the ideal outer region (away from the singular 

surface) is simply described by the marginal Euler-Lagrange equation of 

1.40 which is a second order ODE. The inner solution (at the resonance 

region) depends on the growth rate and in general is a fourth order ODE. In 

the approximation of infinite Lundquist number (S a %%/%%) the resistive 

layer thickness tends to zero and then this equation may be solved in terms 

of Hermite polynomials under the so-called constant-Y approximation [33].

Three important new instabilities arise from the inclusion of 

resistivity, all with growth rates intermediate between the resistive 

diffusion time tr s 4iraâ  and the hydromagnetic transit time 

tr h a(4iTp)^^^/|b |. First there is the tearing mode, corresponding to the 

breakup of the resistive layer along current flow lines. This mode is driven 

by the parallel current gradient and is the resistive equivalent of the kink
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mode of ideal hydrodynamics. Then there is the rippling mode which is caused 

by the flow of current across resistivity gradients in the resistive layer 

and finally the g-mode, which is due to the interaction of pressure and 

curvature and is the resistive counterpart to the ideal interchange mode. 

Of these the most dangerous for the RFP appears to be the g and tearing 

modes, the rippling modes being heavily damped by thermal conduction even 

at quite low electron temperatures.

As we noted above, inertia only becomes important for resistive 

instabilities in the region directly surrounding the singular surface. This 

means that the fluid motions associated with these instabilities will be 

localised to this layer. However, in general, the field eigenfunctions will 

not possess this local character. To clarify this, figure 1.12 shows the 

field and velocity eigenfunctions of an m = 0 resistive g-mode and

figure 1.13 shows similar graphs for an ideal Suydam mode. Note that the

resistive mode has Bp * 0 at r = rg whereas the ideal mode, as we discussed

above, is constrained to have Bp = 0 at r = rg.

0 *w 0

0

Figure 1.12 Field and velocity eigenfunctions for an ■ - 0 resistive 

g-mode. (^=(0*3



$1 REVIEW OF THEORY 32

(r) S e ( r )

w

0

w

Figure 1.13 Field and velocity eigenfunctions for an ideal Suydam 

mode (same helicity as figure 1.12).

1.3.3.3 A’ Stability Tests ; The Tearing Mode

It has been shown in the two papers referenced above [33,3%] that for 

the tearing mode there exists a very simple form for the dispersion relation 

in the limit of infinite Lundquist number. This may be written in the form:

r = f+(A'), 

where A’ = (ô^^)/^(rg),

r'/= Br(r)and

- (1.48)

(m= + k p S r * ) ' / :

Here is the jump of ip* in the marginal ideal Euler-Lagrange equation 

across the singular surface and f*" indicates a positive function. Thus the 

sufficient and necessary condition for stability to tearing modes (with 

S+m) is A* <• 0. It is thus possible to test an arbitrary equilibrium field
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configuration for the stability to tearing modes by simply integrating the 

marginal ideal Euler-Lagrange equation from the axis to the resonance and 

then from the wall to the resonance to compute A'. Such a procedure has been 

used by Robinson [35] (in a slightly different form) to investigate the 

marginal stability points of various equilibria. In chapter 6 we will use 

this technique to analyse experimentally measured field configurations.

1.3.3.4 General Stability To Resistive Modes

In general, realistic resistive stability calculations must be treated 

numerically. However, for the tearing mode an on-axis analytic criterion 

can be derived [35] in the limit of S->“. This states that for stability:

^ > 2m - 7, where Y = ^ - (1.49)

and P is the field line pitch. Combined with the ideal stability criterion 

on-axis for m = 1 modes this dictates that:

- • | > Y > - - ^ .  “ (1.50)

To satisfy this condition the current distribution must be peaked on axis; a 

flat distribution has Y = -1.

A range of field configurations have been tested for stability to 

tearing and g-modes using finite S computer codes such as RIPPLE 4A [36]. 

Perhaps the most important result for tearing modes is that a conducting 

wall is vital for stability to m = 1 perturbations which tend to have the 

largest growth rates. Indeed, the presence of even a small vacuum region can 

lead to instability. Despite this, tearing mode stable field distributions 

have been shown to exist with zero 3 and 0 up to 3.7. These configurations 

can be stable to Ideal MHD pressure driven modes with values of 3 on axis in 

the range 10-30% but are unstable to the resistive g-mode. In general the 

tearing mode is stabilised by shear.
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Unlike the tearing mode, in the linear pinch the resistive g-mode is not

stabilised by shear or a conducting wall. At low values of S (<10^) 

resistive dissipation tends to stabilise these modes due to their local 

nature. For S > 10^, ignoring viscosity, a general result appears to be 

that the poloidal mode number of the most unstable m «t 0 g-mode increases 

with S as does the growth rate itself. So that at S = 10^ the most unstable 

m 0 mode is m = 1 whereas for 3 = 1 0 “ it is m = 3* At even higher values 

of S poloidal mode numbers as high as 11 have been seen (in codes) to be 

dominant. As it turns out the inclusion of anisotropic viscosity [37] 

prevents this cascade to higher m and current belief is that the m = 1 

g-mode is generally the fastest growing m  ̂0 mode even at S = 10’. In this 

case stability may be possible with 3 < 10% although here the pressure 

gradient at the reversal surface is very critical due to m = 0 modes being 

fairly immune to parallel viscosity.

1.4 QUASI-LINEAR EFFECTS

So far we have discussed only the linear theory of collective plasma 

instabilities. This theory holds when the perturbations of the various 

plasma parameters are small enough so that quadratic and higher order 

perturbation products are negligible compared to the linear terms. The 

theory thus comprises a set of linear differential equations which may be 

Fourier analysed in time and with suitable geometry, space; hence 

instabilities are characterised by independent modes of wavevector k and 

complex growth rate T. In both the ideal and resistive linear theories the 

instabilities of interest have real or complex growth rates and thus grow 

exponentially with time. The question then arises as to what happens when 

this exponential growth raises the level of perturbations to such a degree
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that the linear theory no longer holds.

At this point there is an important distinction to be drawn. In general, 

when the perturbation amplitude is large, various non-linear effects can 

occur. In particular, different Fourier modes are no longer independent but 

are non-linearly coupled together, both in frequency and wavevector space. 

If the perturbations are large enough this can lead to a situation known as 

strong turbulence [38,39]. However, if the perturbation amplitude is 

relatively small then it is possible for this non-linear mode-mode coupling 

to be weak and its only effect is to modify the growth rate through 

quadratic terms coupling to the equilibrium. This situation is much more 

amenable to analytic and numerical treatment than the strong-turbulence 

case since the degrees of freedom are far more limited. We distingish the 

two cases by refering to those where instabilities act only on the 

equilibrium to modify the growth rate as quasi-linear and those in which 

strong mode-mode coupling occurs as fully non-linear. Since the typical 

level of fluctuations in the RFP is of the order of a percent or so, 

significant progress can be made by considering the quasi-linear theory. 

The importance of this and any more precise non-linear theory is that a 

method is provided for the saturation of instabilities at the finite 

amplitude observed in experiment.

Significant work has been done concerning the quasi-linear theory of the 

tearing and resistive g-modes and we shall now briefly review this topic. 

Notable contributions concerning the tearing mode have been made 

analytically by Rutherford [40] and both analytically and numerically by 

White et al [41]. Numerical studies of the g-mode have been carried out 

fairly recently by Hender and Robinson [42,43] in both the quasi-linear and 

more non-linear regimes.

Quasi-linear effects of both the tearing and g-modes first appear when 

the island size becomes comparable to the resistive layer thickness. In the 

case of the tearing mode the parallel current density is flattened at the
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singular surface leading to a reduction in the growth rate. For the g-mode 

the equilibrium pressure is flattened. The tearing mode can actually 

saturate completely due to current flattening whereas, in the 

incompressible case, the g-mode growth rate can only be reduced. This is 

because of the ’overheating effect’ where a g-mode quasi-linearly not only 

flattens the pressure at the singular surface but also raises the average 

pressure which acts to increase the growth rate. Numerical studies indicate 

that saturation can occur if a non-physical energy loss term is included in 

the model. Figure 1.14 shows a typical scenario of the quasi-linear 

evolution of the pressure profile for an m = 0 g-mode.

=)<
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Figure 1.14 Quasi-linear evolution of the pressure profile during the 

growth of an B - 0 g-mode for S - 10*.

Another important quasi-linear mechanism which affects the g-mode, but 

nevertheless has its analogue in tearing mode theory, is the 

destabilisation of modes by the pressure flattening of another mode. For 

instance an m = 0 mode in the RFP may grow and flatten the pressure at its 

singular surface. But this flattening of the pressure at the singular
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surface must necessarily be accompanied by an increase in pressure either 

side of the surface which means that m = 1 modes, whose resonances are 

directly next to the reversal surface, are destabilised, Hender [43] has 

shown that the interaction of these two modes can give rise to ergodic field 

line behaviour (see next section) which may explain the inherently bad 

confinement properties of the RFP experimentally so far observed.

1.5 ERGODICITY AND STOCHASTIC TRANSPORT

The existence of magnetic surfaces in toroidal containment devices is a 

crucial ansatz for the high degree of thermal and particle insulation 

needed to contain a thermonuclear plasma. This is, of course, because 

transport along field lines is many orders of magnitude greater then across 

field lines. Perfect magnetic surfaces are known to exist rigorously in 

cases of special symmetry, but then only in the equilibrium situation. An 

important question thus arises as to the effect of magnetic perturbations 

on these surfaces. In answer to this question Rosenbluth, Sagdeev and 

Taylor [44] showed in 1966 that the overlap of magnetic islands within a 

region actually destroyed magnetic surfaces and that a Brownian motion of 

flux lines within that region ensued. The condition for this ’stochastic’ 

or ’ergodic’ behaviour of field lines may be expressed in terms of the 

stochasticity parameter;

8 5 —  ( Ajnn ^mn “ ^m’n ’l* “ (1.51)

where m,n and m’,n’ represent two resistive modes which have neighbouring 

resonant surfaces. If s > 1 then magnetic surfaces are destroyed in the

region between r^n and r^’n’ and the field lines wander ergodically.

In 1977 Rechester and Rosenbluth [45] gave an expression for the

electron thermal conductivity for ergodic plasmas in both the collisional 

and collisionless regimes. As can be appreciated, if the entire plasma is
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ergodic a field line starting at the hot central core will eventually wander 

to the wall and thus the effective perpendicular heat transport will be much 

worse than classical. In the collisionless regime Rechester and Rosenbluth 

show that the radial thermal diffusion coefficient may be written:

Xr = DgtVeT, - (1.52)

where Dgt s <(Ar)*>/(2L),

and VgY is the electron thermal speed. Dg^ is the spatial diffusion 

coefficient which describes the Brownian motion in radius of the 

field-lines; a given field line thus undergoes a random walk spreading in 

radius an amount (Ar)^ in a (field-line) parallel distance L. For the 

collisional case a similar result applies but here heat transport is 

reduced somewhat by collisions.

To illustrate ergodic behaviour
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Interaction of two islands of differing helicity 

illustrating the onset of stochastic behaviour when s ■ i .

figure 1.15 shows a sequence of 

graphs depicting the interaction of 

an m = 0, n = 1 g-mode and an m = 1, 

n = -4 g-mode for three values of the 

stochasticity parameter. For s = 0.79 

a closed flux surface is clearly 

visible (the x’s) between the m = 0 

and m = 1 islands. For the s = 1.0 

case this flux surface has been 

destroyed, whilst for the s = 1.14 

case all the m = 1 surfaces have been 

destroyed.

In chapter 5 we will see that 

there is strong evidence from the 

measurements reported in this thesis 

to believe that the observed
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fluctuations act to create at least an inner ergodic region and may be 

responsible for the poor energy confinement observed in the RFP.

1 .6 FIELD REVERSAL IN THE RFP

The observation that a reversed field configuration can be set-up and 

sustained in a steady state cannot be explained in terms of a simple 

equilibrium Ohm’s law of the form E + vxB = nJ in the context of the MHD 

theory [46]. This is because the sustainment or creation of reversed B̂jj 

configurations requires Jg currents to be driven at the reversal surface 

and a simple Ohm’s contains no such prescription (with Eg=0). The 

resolution of this paradox may come from several effects. First, non-linear 

effects of instabilities may modify the equilibrium Ohm’s law by coupling 

to the zeroth order harmonic (i.e. the equilibrium). In this way 

instabilities could be responsible for the generation of the required Jg 

currents to sustain reversal. A second equally likely possibility is that 

stochasticity enforces a global Ohm’s law rather than a local one. In this 

way Jg currents at the reversal surface could be driven by emfs originating 

in the core of the plasma.

1.6.1 Taylor’s Theory

Taylor [19] has considered the problem of reversal as an example of the 

more general process of relaxation to a minimum energy state. In his theory 

it is assumed that the plasma is a conducting viscous fluid enclosed in a 

perfectly conducting shell. The

initial state of the plasma is arbitrary providing boundary conditions are 

satisfied. In general the plasma will move and in so doing will lose energy 

(e.g. due to turbulence) until it reaches a state in which its energy is a 

minimum. This final state t-Vuis be the state of minimum
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energy subject to a set of constraints determined by the fact that 

the plasma is only allowed certain types of motion described by its 

dynamical governing equations.

For a perfectly conducting plasma in the ideal MHD approximation the 

relevant constraints arise because the magnetic field topology is fixed and 

hence the helicity of the field configuration, which is a measure of the 

number of topological field-line knots, defined as;

K 5 [ A.B dt - (1.53)
V

(where A is the magnetic vector potential defined through the relation 

V X  A = B) is an invariant on every field line. Minimising the magnetic 

energy subject to these constraints yields the relations V x B »  XB where X 

is different for each field line. Under this picture the value of K on each 

field line in the final state is a direct mapping of its initial value. 

Experimentally, however, this is not observed to be the case. It is 

therefore necessary to consider the effect of including vanishingly small 

resistivity. As we have discussed above this allows the magnetic topology 

to change and so the constraint that K be invariant on each field line 

clearly no longer applies. However, since the resistivity is small, current 

redistribution will occur on a timescale short compared to the resistive 

diffusion time and so the integral of K over the entire plasma volume will 

still be approximately invariant. Miraimising the magnetic energy subject to 

this single constraint yields the equation V x B * pB describing the 

relaxed state, where p is now a single constant having the same value on all 

field lines.

The importance of Taylor's model is that it shows that, given any 

initial conditions, there exists just one final relaxed state depending only 

on p. In a cylinder the solution of this relaxed state Is the 

equations 1.25 and 1.26;
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Bz “ BgJoCur) , Bg = BoJi(ur) , Bp = 0. “  (1.54)

The parameter y, being simply |J|/|b|, is related to the pinch parameter by 

the equation ya = 20. Hence the relaxed state depends crucially on 0. In 

fact by plotting the field reversal parameter F against 0 a universal curve 

is seen to exist. If Taylor’s theory is correct experimental measurements 

of F and 0 should lie near to this curve. Figure 1.16 shows an example where 

experimental points from ZETA, ALPHA and HBTXI have been overlaid on the 

theoretical curve. The agreement is certainly very good although the 

experimental points seem to be displaced slightly to the right of the 

diagram. Note that for 0 > 1.2 the BFM possesses field reversal.

When 0 > 1.56 the BFM is no longer the lowest energy solution of the 

equation V x B = yB but rather a helical state which posseses field 

reversal is more energetically favourable. In this region 0 saturates with 

increasing applied volt-seconds and the amplitude of the helix grows. It is

a (cm) I(k A ) %r (m s)

HBTXI o 6.5 100-200 .00 5 -.0 15
ALPHA ♦ 45 300 .5
ZETA o 48 500 1.5

0 w a ll/00 average  

® ^6 w all /00 average

À

L. 0.0 2.01.0

BFM

figure 1.16 F -e  loci for the BFM and experimental points from ZETA, 

ALPHA and HBTXI.
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perhaps an interesting coincidence that the condition 0 = 1.56 is both the 

point at which the Taylor relaxed state becomes helical and where resistive 

kink instabilities for the BFM are marginal.

1.6.2 Mechanisms Of The Reversal Process

Taylor’s theory is a very general argument for the form of the basic RFP 

equilibrium. It poses the question as to how a reversed field configuration 

may arise in the context of the energy principle but it does not say 

anything concerning the dynamical route through which such a relaxation 

must travel. Indeed, feasible dynamical routes do not, a priori, have to 

exist as is the case in the Tokamak where (partial) relaxation only occurs 

very seldom in the form of disruptions. To elucidate possible dynamical 

routes for relaxation in the RFP much work has been performed both 

numerically and analytically.

1.6.2.1 Reversal By Direct Instability Action

Gimblett and Watkins have shown that if quadratic effects are included 

in the resistive MHD equations and suitable assumptions are made to remove 

turbulence terms (the assumption of so-called first order smoothing) then 

the equilibrium Ohm’s law is effectively modified to the following form:

qj = E + aB “ 3J. - (1.55)

This Ohm’s law now caters for the Jg currents required to sustain reversal 

through the a-effect. An additional effect is a turbulent resistivity, the 

6-effect.

Mathematically both the a and g-effects come from the cylindrically 

averaged component of the quadratic Lorentz perturbation term . 

Physically the &—effect may be explained with the aid of figure 1.17 which
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a)

b)

c)

Figure 1.17 Diagram illustrating the a-effect.

shows the (non-linear) evolution of a flux-tube, initially in a plain slab, 

when the fluid motion possesses helicity. The upward linear motion combined 

with rotation forms a twisted loop giving rise to a current parallel to B. 

By solving the appropriate dynamo equations in an infinite cylinder 

Gimblett and Watkins have shown that the fields are Bessel functions 

depending on 0 and a structural parameter s = aa/pR.

Similar quasi-linear scenarios such as the dynamo model above have been 

around for quite a long time. In fact the idea that a single large amplitude 

kink could amplify the flux in the plasma core and hence create reversal by 

flux-conservation was first proposed by Colgate [47] in 1958. Sykes and 

Wesson [48,49,50] studied this type of interaction numerically in 1976 and

found clear evidence for such a process. In addition, in fast programmed

experiments such as ETA BETA 1 [51,52], FRSX [53] and HBTXl [53,54] the

actual magnitude of the reversed field could be explained using such a

model.
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Recently Hutchinson [55] has considered reconnection processes as in the 

Tokamak disruption scenario of Kadomtsev[56,57] but proceeding in an 

inverse direction appropriate to the energetics of the RFP, He shows that, 

providing islands from interior m = 1 type resistive instabilities overlap 

the reversal surface, then field reversal may be maintained. Evidence for 

these inverse reconnections has been seen in 2-D computer simulations [58] 

although in this case they do not directly sustain reversal.

1.6.2.2 The Tangled Discharge Model

We discussed in the introduction to this section that stochastic 

behaviour of the field lines can mean that a local Ohm’s law is no longer 

valid and must be replaced by a global Ohm’s law which specifies the local 

current density in terms of the electric field throughout the plasma. If 

this is the case reversed fields could in principle be created and sustained 

without direct effect from turbulence; this now being relegated to merely 

maintaining the stochastic behaviour by the overlap of adjacent islands. 

This is the basic theme of Rusbridge’s Tangled Discharge 

Model (TDM) [59,60,61] which treats a plasma of a varying degree of 

ergodicity under the assumption that current flows only along field-1ines. 

Physical insight into this model may be gained by regarding the field lines 

or ’flux-tubes’ as electrical wires, which due to ergodicity wander in 

radius. If one imagines one such wire which wanders from the centre of the 

plasma to the edge, then since the toroidal electric field will, in general, 

vary as a function of radius, there will exist a potential across the wire 

and hence a current will flow along it. The magnitude of this current will 

essentially be independent of the direction of the wire at any point in 

space, since when, the direction is not aligned with the driving potential, 

charges will accumulate in such a way as to make the current constant along 

the wire. Of course, this is the same reason why the current in a wire
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connected to the two terminals of a battery is independent of the wire’s 

topology. Clearly if our wire has a component of its direction vector in the 

0 direction at the reversal surface then a Jg current will flow at this 

surface.

As we outlined above the TDM

treats plasmas of varying degrees of 

ergodicity. In the limit of good flux 

3 surfaces (zero ergodicity) the 

resulting global Ohm’s law simply 

reduces to the Force-free Paramagnetic 

model (FFPM) whereas in the other 

limit, that of complete ergodicity, it 

figure 1 .IB gives a BFM. Figure 1. 1 8  shows a
F-e loci for the TDM and experimental points from ZETA.

comparison of the F-0 locus for an 

optimised TDM distribution and that of experimental points obtained from 

ZETA.

The importance of the Tangled discharge model and later non-local 

resistivity models [62] is to show that, on the basis of a physical picture 

involving the breaking and rejoining of flux lines, relaxation to a

reversed field configuration similar to that experimentally observed can be

explained.

1.6.3 Summary On Field Reversal

Relaxation to a reversed field configuration appears to be explicable 

from a number of different view-points and by quite a few different 

mechanisms. However, there do appear to be two distinct classes of 

mechanism; the first in which plasma instabilities directly create the 

reversed field, and the second, in which plasma instabilities act only to 

sustain stochasticity and reversal is caused by non-local effects. It may
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well be that in different regimes different mechanisms occur. Indeed, as 

stated above, for low Lundquist number pinches, evidence seems to favour 

the direct dynamo mechanism (at least at high 0). However for present day 

slow-pinch devices it may well be that the Tangled discharge approach is the 

more relevant mechanism. If this is so then stochastic transport could be an 

inherent property of the RFP at high values of the Lundquist number.
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CHAPTER 2 

REVIEW OF EXPERIMENT

2.1 INTRODUCTION

RFP experiments may be broadly divided into two categories. These are 

the ’fast pinch’ experiments such as HBTXI, ZT1 and ETA-BETA and the slow 

pinch experiments such as ZETA, MkIV and most of the contemporary devices. 

The fast pinch is characterised by rapid field programming by which the

reversed field configuration is set up on a timescale shorter than that

required for profile relaxation. The slow pinch, on the other hand, uses the 

plasma’s own self-reversal properties with optional slow-field control to 

set up the field configuration on a timescale longer than that required for 

profile relaxation. Of the two concepts there is little doubt that the slow 

pinch represents the best alternative for fusion. However, from a physics 

point of view, the fast pinch experiments were very productive.

2.2 SLOW PINCH EXPERIMENTS i ZETA AND THE MkIV

The main results concerning fluctuation studies in pre-contemporary slow 

pinch experiments came from the ZETA machine and to a lesser extent the MkIV 

both of which were operated at the AERE Harwell laboratory in England during 

the fifties and sixties. The ZETA machine was not specifically designed for 

reversed field operation as the RFP concept was essentially founded by the 

observation of improved discharge conditions in ZETA - ’quiescence’ - when 

operating under this mode and within a specific parameter space. In fact, 

nearly all the fluctuation measurements on ZETA pertain to reversed 

discharges but quiescence was not attained. This fact should be kept in mind 

when comparing the fluctuations observed in ZETA with those observed in the 

reversed discharges of contemporary machines.
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The ZETA experiment has been described in detail by Butt et al [1] and 

Burton et al [2]. The main parameters of the machine were minor radius 

48 cm, aspect ratio 3:1, plasma current up to 1 MA, rise time to peak 

current k 0.8 ms and pulse length up to 5 ms with passive crowbar and 20 ms 

with power crowbar. The measured values of the energy and particle 

confinement times were approximately 100 ys in the unreversed mode, 

increasing markedly in reversed (quiescent) mode.

The MkIV experiment was a much smaller toroidal pinch than ZETA. Its 

main parameters were minor radius 15 cm, aspect ratio 4:1, plasma current 

up to 50 kA, rise time 200-400 ys and pulse length 1 ms.

2.2.1 - Observations Of Coherent Global Fluctuations

The first observations of regular fluctuations in a toroidal pinch were 

reported from the MkIV in 1961 by Rusbridge et al [3]. Langmuir and magnetic 

probes were used to measure the electric and magnetic fluctuations as a 

function of radius in partially ionised discharges. Figure 2.1 shows an 

example of the raw data. The oscillations are characterised by a frequency

Ee
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el

"V.Vyyvv-
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Figure 2.1 Correlation of electric end magnetic fields showing regular 

oscillations in the MkIV.

Of 2-15 kHz dependent on the equilibrium. Measurements of the phase 

relation of the oscillations at different points along the discharge tube
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were made with a T-shaped probe which measured the electric field at 4 

toroidal locations. Results showed that the oscillations were to be 

associated with a wave propagating in the direction of conventional current 

at a uniform speed of 3.5x1Ô ras"̂

Figures 2.2 and 2.3 show respectively 

k*, the measured fluctuating (b) and mean (B) 

magnetic fields as a function of radius. 

The fluctuating field amplitude was

deduced by inspection. Clearly
Figure 2.2

Amplitude of the fluctuating 
part of the magnetic field vs 

radius in the MkIV.

50

lO ID IS cm

- 5 0

TORUS 4

|br| = |bQ| * 0 on axis and so the 

oscillations must be associated with

Figure 2.3 Measured equilibrium 
magnetic field profiles in the MkIV.

fields). This is also substantiated by 

the ’odd' form of bg.

By using a special probe designed to 

measure the ExB velocity it was shown 

that there existed a large inward 

velocity during the peak of the electric 

field fluctuation. Between peaks there 

also existed a small outward velocity. In 

addition to measuring the ExB velocity the probe was used to measure density 

as a function of time and radius. Results indicated the presence of a 

helical notch of low density which propagated toroidally. These 

observations were interpreted at the time as the signature of a growing 

sound wave.

A similar analysis of magnetic and electric fluctuations was carried out 

on ZETA in 1962 by Rusbridge, Lees and Saunders [4]. The amplitudes and 

frequencies of the fluctuations were studied as a function of various 

equilibrium parameters. In addition a model configuration similar to the 

measured field profiles was tested for linear ideal stability to current
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driven modes by the technique due to Newcomb (see chapter 1 sect 1.3.2.1). 

These calculations showed that only m = 1 modes were unstable and then only 

for a narrow band of k centred on -2.0. To compare the predictions of the 

linear theory with the measured radial variation of the magnetic 

fluctuations a simple analytic form for the radial displacement of the 

m = 1 modes was assumed:

Sr = So (1 - X ) . - (2 .1)

Gauss
200

100

Figure 2.4 DISTANCE fro m  OUTER WALL [cm)

The ideal hydromagnetic equations (i.e. a small amplitude helical 

equilibrium) were then used to calculate the radial behaviour of the 

fluctuating field. Figures 2.4 and 2.5 show the comparison of these

Gauss calculated variations with those 

measured for bg and bg. Clearly the 

agreement is good indicating that the 

observed oscillations are attributable to 

m = 1, |k|a = 0.4 helical modes which are 

stable under the hydromagnetic
The measured amplitude of the fluctuating poloidal 
field in ZETA compared with a theoretical curve a p p r o x i m a t i o n ,  

assuming an instability of ka - -0.4.
Electric field fluctuations were 

measured and compared with those 

predicted by the hydomagnetic theory in 

association with the magnetic 

fluctuations. Results indicated that only 

part of the electric fluctuations could 

be explained in this way. The origin of 

the dominant part of the electric 

fluctuations was not understood but it

7S B) »

DISTANCE FROM OUTER WALL I  cm)

Figure 2.5

As for figure 2.4 but for the toroidal field component.

was hypothesised that they could be due to drift waves or an anomalous

non-uniform resistivity.
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2.2.2 Observation Of Localised Turbulence In The ZETA Discharge

So far we have addressed the observation and Interpretation of large 

scale coherent modes. These appeared In ZETA and the MkIV as the dominant 

phenomena at low frequencies. At high frequencies, however, shorter scale 

length phenomena occurred. These fluctuations were addressed In three 

papers by Robinson, Rusbridge and Saunders [5] and by Robinson and 

Rusbridge [6,7], where Interpretation concentrated on the theory of fluid 

turbulence developed by Edwards[8] In 1964 and extended to the presence of a 

magnetic field by Robinson [9] In 1966. In this theory turbulent eddies are 

envisaged to be produced of a scale length comparable to that of the mean 

flow. These eddies arise due to Instabilities and. In the case of Isotropic 

turbulence, non-llnearly couple to eddies of a smaller scale. The energy 

flow Is thus towards smaller scale lengths where dissipation eventually 

occurs due to viscosity. In the case of 2-dlmenslonaI turbulence the 

direction of the energy flow Is actually reversed and the small scale 

lengths couple to the larger scale lengths, dissipation ultimately 

occurring due to effects such as eddle currents In the conducting shell.

a s

^  Separolion (cm)

o 0  5 ^

Scparotion (cm)

Electric field correlations <eoeQ>p and <egee>QFigure 2.6

in ZETA (1/2 mTorr Dg 1-150 kA, applied axial 

field 0.37 T).
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The first paper [5] reports results concerning the electric and magnetic 

fields as measured by insertable probes for frequencies greater than 

10 kHz. The data were analysed using an analogue ’correlator’ [10] which 

could form the correlation function between two time signals. Figure 2.6 

shows the correlations <e@e0>r and <e0O0>0, the curves being fitted under 

the assumption that the electric field is irrotational (’<>’ indicates a 

time and ensemble average). Remembering that the ZETA machine had a minor 

radius of 48 cm it is clear that the observed electric field fluctuations 

are relatively localised in both radius and poloidal angle and that their 

form agrees well with the assumption of irrotationality. Figure 2.7 shows 

the correlation <b0b0>p and for comparison that predicted by isotropic 

turbulence (upper) and 2-dimensional turbulence (lower). The form of the 

measured correlation is similar to that of the electric field, being 

localised in radius, and the best fit with theory is obtained for the 

two-dimensional case.

10
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-0 2-

Scparation (cm)

figure 2.7 Magnetic field correlation <beb@>r in ZETA. Fitted ourvea 

correspond to isotropic (upper) and 2-dimensional (lower) 

turbulence.

Further studies concentrated on determining a turbulent velocity which 

was used to calculate the Reynolds number. This was found to be large enough 

to be comparable with that obtained from laboratory fluid-flow experiments.



$2 REVIEW OF EXPERIMENT 53

Estimates of the partition of energy between mechanical and magnetic modes 

revealed a value of about unity at high operating pressures consistent with 

theory. However, at low pressures this value increased to as much as six and 

for consistency with theory an anomalous resistivity had to be assumed.

The second paper concerning localised turbulence in ZETA [6] reported 

measurements from a double Langmuir probe. Again low frequencies ( <10 kHz) 

were filtered out to exclude the global phenomena. Density fluctuations 

with an amplitude of up to 25% were observed. Figure 2.8 shows the density 

correlation function versus radius for two different filling pressures.
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Density correlation functions in ZETA for two filling 

pressures.

These graphs show similar results to the electric fluctuations discussed 

above, being localised in radius. In particular the correlation function 

possesses no tail, negative or positive, but ends fairly abruptly at about
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7 cm separation. Now it can be shown that this can only be consistent with 

density fluctuations arising from particle motions along the lines of 

force. This fact was substantiated by measurements made in the direction of 

the magnetic field which showed a correlation length of at least 30 cm.

Another check that density fluctuations arise from motions along the 

field lines is to compute the time delayed correlation 

R ( 6 , t ) = <n(r,t)n(r+6,t+T)>. If the density fluctuations arise from a 

diffusive process then the radial scale length of the delayed correlation 

should .increase with time delay ( t ). From the behaviour of this scale 

length with t it is possible to derive a radial diffusion coefficient. Such 

a procedure was carried out for the ZETA data but no significant broadening 

was observed. This should be contrasted with earlier measurements by 

Robinson [9] and later measurements to be reviewed below where broadening 

was observed in the magnetic fluctuations and a diffusion coefficient 

calculated.

In addition to measuring the density fluctuations Robinson and Rusbridge 

also used their Langmuir probe to measure temperature fluctuations. Results 

indicated that, at high pressures, the fluctuations were adiabatic whereas 

at low pressures a negative correlation between temperature and density was 

observed. To explain this negative correlation it was hypothesised that a 

differential heating mechanism was operative.

Attempts to detect the presence of drift waves in the outer region of 

the discharge using a time delayed correlation for axially separated probes 

were not successful although a velocity was measured of about the right 

value. In order to see whether the confinement properties of the ZETA 

discharge were explicable by the density perturbations being in phase with 

the electric field perturbations the correlation function between these two 

variables was measured at the edge of the discharge. Results indicated that 

this effect could explain the observed confinement time.

The final paper concerning local turbulence in ZETA [7] returns to the
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high frequency ( > 10 kHz) magnetic and electric fluctuations. These were 

again measured by intertable probes. The paper concentrates on extending 

the previous work on the comparison with fluid-Iike turbulence.

Similar results to those reviewed above were found concerning the 

magnetic fluctuations; notably that they possessed a correlation scale 

length of about 5 cm. This scale length was found to be relatively 

unaffected by changes in pressure or indeed virtually any equilibrium 

parameter. Exceptions to this were found to be that the correlation length

decreased slightly either towards the edge of the discharge or as 0 was

increased. This indicated that the correlation length depended weakly on 

the shear of the magnetic field.

At high values of 0 the correlation 

length was observed to increase 

markedly. This is shown in figure 2.9.

It is clear, however, that the

correlation function may be represented 

by two distinct scale lengths, one of

about 4 cm which is consistent with the

values at lower 0, and one of about

30 cm, comparable to the size of the

discharge tube. Robinson and Rusbridge concluded that this phenemenon was 

indicative of the larger scale length motions of the lower frequencies

extending to higher frequencies at larger 0.

Time delayed radial correlations were calculated to test the hypothesis 

that the magnetic fluctuations diffused radially outwards. Significant

broadening was observed for a delayed correlation (figure 2.10) with 

respect to the undelayed correlation and it was thus concluded that the 

magnetic fluctuations did indeed diffuse radially. Note that the density

fluctuations reviewed above did not share this behaviour.

There was some difficulty in measuring the correlation function in the
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figure 2.9

Magnetic field correlation function <bpbp>p 

in ZETA at high 6 showing large and small 

scale length components.
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Figure 2.10

Magnetic field correlation function <brbp>r in 
ZETA with one signal delayed with respect to 
the other by 28 us.
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direction of the magnetic field. However 

a lower limit of 60 cm was measured 

which confirmed previous results 

(reviewed above) showing that the 

density fluctuations also had long

parallel correlation lengths. It was

thus concluded that the turbulent 

elements should be thought of as ’rolls’ 

aligned along the magnetic field lines 

of length at least ten times their

width.

Regarding the frequency dependence of the magnetic fluctuations it was 

shown that within the range 10-300 kHz P(v) « v“ .̂ The exponent n typically 

varied between 3 and 6 depending on the equilibrium pressure.

Electric fluctuations measured by a Langmuir probe were measured and a 

classical Ohm’s law was used to predict a fluctuating fluid velocity of

around 10® cms“  ̂ in agreement with an extrapolation from doppler broadening

measurements [11]. The actual correlation function appeared similar to that 

of the magnetic fluctuations being characterised by a correlation length of 

typically 5 cm. As with previous measurements reviewed above the form of 

the electric field correlation functions indicated that Vxe = 0. The 

frequency dependence was found to be adequately described by a power law of 

exponent n = 2.8 ± 0.3.

Finally non-linear coupling was briefly studied by way of the triple 

correlation <eQe0*>r which is a measure of the mode-mode energy transfer. A 

significant result is that such higher order correlations were found to 

exist within the statistical errors. A comparison was made between the 

measured triple correlation and the form of those deduced from isotropic 

and 2-dimensional turbulence. Results indicated that the measurements 

slightly favoured 2-dimensional turbulence but this was contradicted by
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tentative measurements of the energy path which showed evidence of a 

cascade to small wavelengths, a characteristic of isotropic turbulence.

2.2.3 ZETA Quiescence

As we mentioned above, the ZETA device was not actually designed as an 

RFP but rather as an unreversed pinch. All the work reviewed above on the 

fluctuation activity was, in ĵact, performed in reversed conditions. However 

it was found that under the condition of reversed magnetic and electric 

toroidal fields the fluctuation activity quietened down considerably and 

the temperature and confinement time rose. This situation came to be known 

as quiescence [12,13,14,15,16] and effectively demonstrated the potential 

of the reversed pinch over the unreversed pinch. The requirement of a 

reversed electric field does not seem to apply to contemporary devices 

which experience quiescence simply by reversal of the toroidal magnetic 

field.

Unfortunately there are very little data on the structure of the 

fluctuations during quiescence in the ZETA machine, this being one of the 

major motivations for the topic of this thesis. However we will briefly 

review what information there is.
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Figure 2.11 dl/dt trace from ZETA showing a marked reduction in 

amplitude in the quiescent period.

Figure 2.11 shows a graph of dl/dt for a typical discharge where a 

quiescent period is observed. Only in the middle portion of the graph are
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the toroidal magnetic and electric fields reversed. It is clear that there 

is a significant difference between the unreversed and reversed time 

regions (a factor of 5-10). Semi-quiescent periods where the fluctuation 

reduced by 2 or 3 times were observed for small positive electric 

fields [16].

An important property of the quiescent condition was found to be that it 

was ideal MHD stable both at the edge of the discharge and near to the 

axis [13]. In non-quiescent conditions this was not found to be the case.

2.3 FAST PINCH EXPERIMENTS

The major results concerning fluctuations on fast pinch experiments came

from the HBTXI machine at Culham, England. This device had minor radius 

6 cm, major radius 100 cm, peak current of 30 - 300 kA and rise time

3 “ 15 us.

2.3.1 Observations Of The Relaxation To A Universal F-0 Curve

It had been found on the slow pinch experiments such as ZETA that the 

range of observed field configurations followed a universal F-0 curve. In 

1974 Taylor [17] explained this phenomenon in terms of the relaxation to a 

minimum energy state (chapter 1 section 1,6.1). Experiments done on the 

HBTXI experiment were able to produce configurations away from this relaxed 

F-0 curve by programming the fields faster than the relaxation time. This 

allowed the experimenter to exite the relaxation mechanism at will and to 

study its dynamics. Studies were reported in a Culham report by

Butt et al [18] in 1977 where data from FRSX, a 3.5 m linear pinch and HBTXI 

were analysed.

Figure 2.12 shows a diagram of the F-0 trajectory for an FRSX discharge 

where the current was sustained by a power crowbar. For reference the BFM
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Figure 2.12 Trajectory of F-0 for FRSX power crowbarred discharge. HBM 

and BFM are shown for comparison.

locus and that of an Inflated BFM, ’the HBM' are plotted. The configuration 

was programmed to the point at 5 ys. The plasma is then seen to relax by- 

travelling back and forth roughly orthogonally to the BFM and HBM loci. 

These relaxation oscillations appeared to sustain the field reversal 

against diffusion. In order to study these oscillations further 

measurements were taken with a set of sine and cosine wound Rogowski coils 

to reveal the m = 1 activity at the plasma edge. At the onset of the 

discharge a toroidal drift motion outwards to 0.5 cm was clearly seen. 

During the growth of the self-reversal this drift was reversed and in this 

and subsequent phases irregular displacements of the plasma of about 0.5 cm 

were observed. When FRSX was operated without the power crowbar in what was 

termed ’overswing’ mode the relaxation oscillations were not prominent and 

the F-0 trajectory was much smoother.

Figure 2.13 shows an example of the F-0 trajectory from HBTXI where the 

discharge is set up as a stabilised z-pinch (SZP). The plasma is formed by
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Figure 2.13 Trajectory of F-0 for HBTXI stabilised z-pinch showing 

rapid self-reversal and helix formation. Times are in 

jis. HBM, BFM and FFPM are shown for comparison.

4 ys with 0 = 2.2 and positive. Then an instability occurs and the

plasma relaxes within 1 ys to a helix with X = 45 cm and a large 

self-reversal. The helix and reversal decay until 20ys when a second but 

weaker relaxation occurs. With differing currents a similar behaviour was 

observed but with different X. After each relaxation significant m = 0 

activity was observed.

Finally, to illustrate the very general nature of the relaxation 

process, data were analysed from a 3.5 m linear pinch. Figure 2.14 shows an 

F-0 curve for discharges similar to those of the FRSX device where it can be 

seen that similar relaxation oscillations are occurring. The fluctuations 

in Bzwaii were seen to be larger in amplitude than in FRSX by a factor of 5 

and were comparable to the initial equilibrium field. Investigations with 

search coils showed the reversal to be localised with a correlation length 

less than the tube diameter and to be transient in nature.
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Figure 2.14 Trajectory of F-e for the 3.5 m linear pinch. HBM and 

BFM are shown for comparison.

2.3.2 Large Amplitude Coherent Fluctuations in HBTXI

Results from the main fluctuation studies on the HBTXI machine were 

reported in a paper by Verhage, Furzer and Robinson in 1978 [19]. This paper 

concentrated on explaining the field-reversal observed in stabilised 

z-pinches in terms of MHD instabilities. Measurements were made using a 

poloidal array of magnetic edge coils, some edge integral coils and an 

insertable magnetic probe.

Verhage et al found that the appearance of field reversal was correlated 

to the presence of large amplitude m = 1 instabilities. This is shown in 

figure 2.15 where the toroidal field at the wall is plotted with signals 

representing the m = 1 and 2 activity. The growth and subsequent decay of 

such m = 1 instabilities was found to repeat several times during a typical
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BflwaU
(a)

discharge, each time increasing the 

reversed field at the wall. The

evolution of a typical cycle was 

investigated and it was found that 

during the initial phases of growth the 

dl/dt signal dropped. This was 

interpreted as an increase in the

inductance of the plasma column

corresponding to a transition from 

cylindrical to helical symmetry. The 

displacement of the plasma column was

deduced during an instability from

streak photographs and from sine and 

cosine coils. This indicated a marked 

Figure 2.15 outward motion during the final stages
Diagram showing the correlation between the production

of reversed toroidal field and m ■ 1 activity in HBTXI. Of ^ cycle with the plasma inevitably

hitting the wall. Another effect that 

was observed was a systematic rotation. 

This was measured by plotting the phase angle between the m = 1 sine and

0.2

t (;js)

( b )

m=l

m*2
m«0

-0 1 
0.2

*®wall

cosine signals (figure 2.16).
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Figure 2.16

Position of the centre of the HBTXI plasma in the \  

azimuthal plane (r,6) as a function of time during an 

Instability.
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Figure 2.17 Radial dependence of the measured perturbations

in Bg and during the growth of an m - 1 helical 

instability in HBTXI.

In order to investigate the helical nature of the instabilities more 

thoroughly data were analysed from a poloidal array of edge coils. From such 

a study the poloidal fourier modes were separated and the equations VxB = 0 

and V.B = 0 were used to define the toroidal wavelengths for each m. Results 

indicated that the early stages of instability were entirely attributable 

to m = 1 and to a decreasing value of k which on average was 60 m“  ̂ (this 

corresponds to a value of |k|a of about 3.6). This m = 1 mode was found to 

be resonant at about r = 2 cm. By calculating the poloidal and toroidal 

fluxes it was shown that over a cycle of an instability the sum of the two 

was constant. This indicated that the helical flux was conserved.

By analysing data from an insertable magnetic probe radial distributions 

of the fluctuating magnetic field were obtained as a function of time. This 

is shown in figure 2.17 from which it was deduced that thd perturbations 

grew exponentially with a growth time of 0.4 ps. Both the radial
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Figure 2.18 Comparison of the measured field perturbations in HBTXI

with those predicted by the ideal MHD theory at two times.

dependences and this measured growth rate were compared with linear 

stability calculations using the measured equilibrium profiles. Results 

indicated that ideal MHD predicted the observed m, k and growth time 

provided dissipative effects were included. The field eigenfunctions for 

m = 1 predicted by ideal and resistive MHD showed good agreement with those 

measured (figure 2.18).

The interpretation of the various observations reviewed above was that 

an m = 1 ideal (or odd parity resistive) mode grew linearly due to the 

equilibrium being unstable to such a mode. The amplitude of this mode 

increased exponentially until it was about 30% of the mean field. At this 

high amplitude the linear approximation would not hold and quadratic terms 

in the governing dynamical equations were shown to give rise to the 

'solenoidal effect’ where helical currents associated with a gross kink act 

to increase the central axial flux. Due to flux conservation this would 

create a decrease and possible reversal of the axial field at the wall. 

Estimates of the magnitude of reversal produced by the m = 1 modes showed
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very good agreement with this non-linear effect. In addition the non-linear

field eigenfunctions were shown to be compatible with the probe

measurements.

Subsequent to the paper by Verhage 

et al, in 1978 Carolan et al [20] 

reported some more fluctuation results 

from the HBTXI machine. The aim of these 

studies was to identify resistive 

interchange modes since before only 

ideal type instabilities had been 

observed. Measurements were again made 

with an insertable probe and various 

edge coils. In certain configurations it 

had been shown that the measured 

equilibrium field profiles were the most
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Figure 2.19

Evolution of the radial field at 12 radial positions during 

a sustained discharge set up by field reversal in HBTXI. The 

insets show the radial profile at t - I8ps and t - 28ws. U n s t a b l e  t O  r e s i s t i v e  g - f f l O d e S . H o w e v e r

these were low current discharges and 

the value of S was too low for the radial profiles of to be used to 

distinguish ideal from resistive modes. At higher currents a measured 

equilibrium was found which was unstable both to ideal and resistive modes 

and for these discharges the form of By, showed that a mixture of ideal and 

resistive modes were present. This is shown in figure 2.19 where the first 

inset shows a resistive type mode with even parity and the second shows a 

resistive mode of odd parity (Bp(rg) = 0).

2.4 CONTEMPORARY FLUCTUATION RESEARCH

During the past couple of years, contemporary to this thesis, there have 

been some interesting measurements regarding fluctuations in various slow
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pinch devices. Notable contributions have been from OHTE [21], n$“II [22] 

and ZT-40 [23,24]. Results from the HBTX1A machine form the topic of this 

thesis and so will not be reviewed here.

In OHTE [21] results were reported from an insertable magnetic probe and 

various edge coils. The equilibrium and fluctuation magnetic profiles were 

measured (without recourse to statistical analysis). The edge coils showed 

that the dominant activity was m = 1. By the equation VxB = 0 an n number of 

19 was associated to this (|k|a % 3). The direction of the perturbed field 

at the wall showed that the mode was resonant inside the reversal surface. 

Stability calculations using the measured equilibrium field profiles 

indicated that the observed instability was predicted by the linear tearing 

mode theory. Figure 2.20 shows a graph of the measured fluctuating field 

profiles and figure 2.21 shows the calculated field eigenfunctions of the 

most unstable resistive tearing mode. Lastly, scaling of the measured 

fluctuating magnetic field was investigated and shown to be consistent with

|B|/|b | a s - / \
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Figure 2.20 Measured profiles of the fluctuating magnetic field in OHTE.
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Figure 2.21 Theoretical profiles for the fluctuating magnetic field 

in OKIE.

Other investigations on the OHTE machine have concentrated on using the 

measured equilibrium magnetic fields to impose limits on the dynamo 

mechanism. These results are very tentative owing to the statistical errors 

of measurement and are also not directly connected with actual fluctuation 

measurements. For this reason they will not be reviewed. The same logic is 

applied to similar studies on the ETA^-BETA-II machine.

In 1983 Antoni and Ortolani [22] reported results from an intertable 

magnetic probe on nB“II where a statistical analysis was employed similar 

to that used in the study of local turbulence by Robinson and Rusbridge 

(reviewed above). The theme of the paper was an investigation of magnetic 

field fluctuations as a function of density, time and radius. Measurements 

shpwed that the frequency behaviour of the fluctuations was in qualitative 

agreement with the ZETA behaviour, low frequencies being dominant and the 

power falling off with increasing frequency as about the second power.

Antoni and Ortolani studied fluctuations as a function of three
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frequency bands. These were 5-15 kHz, 15-50 kHz and greater than 50 kHz, 

Figure 2.22 shows the correlation <bf,bp>p for these three frequency bands. 

It was deduced from this graph (and others similar) that there existed two 

characteristic regimes; one at low frequencies associated with long 

correlation lengths and one at high frequencies where activity was much 

more radially localised. Again this agreed qualitatively with the ZETA 

picture. Cross component correlations of the form <b^bp>p were measured and 

these were found to be much smaller than the autocomponent correlations.
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Figure 2.22 Magnetic field correlation function between the innermost 

insertable magnetic probe coil and the rest in nB-H.

To investigate the temporal behaviour of the fluctuations a normalised 

rms level was defined. This was found to peak towards the end of a discharge 

and just inside the reversal surface. In addition scans over density 

indicated that the higher frequencies were strongly dependent on density 

and thus also on the streaming parameter. This was likewise found to be the 

case for stabilised z-pinch discharges.

For a comparison with theory the measured equilibrium field profiles 

were tested for linear stability to ideal and resistive modes. Results 

indicated that the low frequency large correlation length phenomena could 

be explained by the predicted m = 1 amd m = 0 instabilities. However no
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detailed comparisons of the mode numbers, timescales or radial dependences 

were made to substantiate this. Estimates of island sizes fran linear code 

predictions and the measured fluctuation amplitude suggested that island 

overlap should occcur. Stochastic diffusion estimates were in agreement 

with the observed energy confinement time.

Some interesting results concerning fluctuations have come from the 

ZT“40(M) machine in Los Alamos. This machine has the longest pulse lengths 

of any of the present RFPs mainly because field-errors are very small. As a 

result the fluctuations observed in this machine are sometimes 

fundamentally far more coherent than in usual RFPs, resembling, at times, 

Tokamak-like activity.

In 1982 Jacobson and Rusbridge reported some observations of the 

termination mechanism [23] concentrating on measurements from an array of 

interferometers and electrical diagnostics. Particularly interesting were 

the observations of precursor quasi-regular diamagnetic spikes and a 

toroidally propagating m = 0 annular density disturbance. Figure 2.23 shows 

the diamagnetic spikes seen on Egwaii. These spikes appeared only just

5

0050

Figure 2.23 Current, toroidal field at wall and loop voltage traces in 

ZT-40(M) showing the occurrence of diamagnetic flux spikes 

just before termination.
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before termination and were shown to be rotating in the -I<j, direction. The 

width of each spike appeared only to be about 10 ys in contrast to the more

usual resistive timescale of about 100 ys.

The density disturbance appeared after a few milliseconds into the

discharge and persisted thereafter, becoming more coherent and of larger

amplitude at termination. By correlating the signals from an array of 

interferometers at one toroidal location with a single interferometer at 

another, it was found that the density disturbance had a good toroidal 

correlation length but was localised in an annular region near to the edge 

of the discharge. By forming similar correlations but with a time delay, a 

velocity of about 10^ ms”  ̂ was computed. This gave a repetition rate of 

about 80 ys which agreed with that obtained from the flux spikes. In fact, 

by cross correlating magnetic and density signals it was found that the two 

phenomena were phase locked such that negative voltage spikes coincided 

with density cavitations. This is shown for some 'raw’ data in figure 2.24 

where at least four narrow flux spikes can be seen to coincide with the 

broader troughs of the density disturbance.

The correlation of the diamagnetic 

flux spikes with the travelling density 

disturbance was explained in terms of 

two-stream turbulence: when a density

trough passes a certain toroidal 

location the drift parameter is 

increased (in the annular region) and 

two-stream turbulence excited causing 

the current to be locally suppressed and 

flux expelled.

To investigate the density
Correlation between density disturbance (top two traces)

disturbance more precisely a series of
and the flux spikes (bottom) in ZT-*0(M).

discharges were chosen where the

ooos

Figure 2.24
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Figure 2.25

Normalised amplitude and phase of 

major-radial chord position (comparison 

of model with experiment) in ZT-40(M).

G)fx)««cNT'#74eo ' oscillation was very (temporally)
I THEORY; em. yb/w «3.4 cm

coherent. The fourier amplitude and 

phase at the relevant frequency were 

then plotted. These measured profiles 

were compared with predictions from a 

diffusion model which assumed that the 

density fluctuations were concentrated 

in an annular region with a time 

dependence sin(wt) and diffused out into 

the rest of the discharge. Figure 2.25 

shows the results which yielded good 

agreement and predicted a particle loss 

rate of the same order of magnitude as 

the observed particle confinement time.

In addition to direct measurements of fluctuations Jacobson and 

Rusbridge also showed that there was significant evidence for termination 

being associated with a limit on 1/n. This was interpreted as strong 

evidence that termination was directly caused by two-stream turbulence.

Another interesting publication concerning fluctuations in the ZT-40(M) 

RFP appeared in 1983 by Watt and Nebel [24]. Analysis concentrated mainly 

on high 0 discharges where discrete toroidal flux increases were 

observable. Fluctuations were also observed in the ultrasoft X-ray flux 

(USXR), temperature, line density and C-V emission. Figure 2.26 shows a 

comparison of the USXR signal with B^^all dB^/dt from which it was

deduced that the USXR fluctuations were locked into the flux excursions. 

Similar results were reported to hold for the other measurements; notably 

that the density profile was flattened at the time of a flux increase and 

the central temperature fell. The interpretation given was similar to the 

mechanism for sawteeth in Tokamaks; overheating on axis would induce a 

corrective instability which would grow and then flatten the temperature
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and density profiles by a reconnection. 

This process appeared also to act as the 

’dynamo’.

An analysis using edge coils revealed 

that the magnetic fluctuations during a 

flux spike were a combination of m = 0 

and m = 1, the latter having 

|n| = 12 (|k|a = 3). Figure 2.27 shows a 

graph of the number of m = 0 and m = 1

events with respect to the time from a

USXR burst. It was deduced that the 

m = 1 occurs before the USXR pulse and that the m = 0 pulse occurs at the 

same time as the USXR. This was interpreted as being consistent with 

’sawtooth’ explanation in that the m = 0 could be regarded as a non-linear

consequence of the m = 1 . This would not have been the case if the m = 0

preceeded the m = 1.

Figure 2.26

Sample waveforms showing the high degree of 
•correlation between the USXR sawteeth and m - 1 
activity at the wall in ZT-40(M).

in
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Figure 2.27 Histogram showing the time at which m - 0 and 

disturbances begin relative to the initiation 

sawtooth.

m - 1 

of a USXR

An analysis was carried out similar to that reviewed above to discover 

the variation with 0. Results showed that below 0 » 1.5 no m = 0
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disturbances were observed. However the m = 1 modes seemed roughly 

independent of 0. The USXR bursts increased in repetition with decreasing 0 

but decreased in amplitude. These observations were interpreted as implying 

that the same dynamo mechanism that was suggested for high 0 should apply 

for low 0.

A fair number of other papers concerned with fluctuation activity in 

present day slow pinches have been very recently published in journals or as 

laboratory preprints. However, since these papers really do constitute work 

along side this thesis or even subsequent to it, they will not be reviewed 

here. Notable examples are given in refs 25 and 26.



74

CHAPTER 3 

TECHNIQUES

This thesis is about the measurement and interpretation of fluctuations 

in an RFP. Unlike the Tokamak, where fluctuations in the magnetic field are 

of a fairly deterministic nature, the RFP is characterised by the presence 

of random fluctuations. It is therefore not possible to use simple 

deterministic methods of data analysis but rather statistical forms must be 

applied. In addition to reviewing the HBTX1A machine and the construction 

and experimental techniques concerning the two diagnostics employed in this 

thesis, this chapter is therefore also devoted to a review of current 

statistical methods and to a discussion of their application and extension.

3.1 THE HBTXIA MACHINE

HBTX1A is one of five large RFPs now operating. Table 3.1 specifies the 

main machine parameters, figure 3.1 shows a schematic diagram and 

plates 3.1 to 3.3 show photographs. The plasma is contained in a stainless

TEMPERATURE 
ELECTRON DENSITY

UP TO 200 eV
10'* “ 10*0 m-3

MAJOR RADIUS 0.8 m
MINOR RADIUS 0.26 m

INITIAL TOROIDAL g 0.32 TMAGNETIC FIELD
PLASMA TOROIDAL 0.1 “ 0.5 MACURRENT

RISE TIME OF CURRENT 0.3 “ 4.5 ms
DURATION OF CURRENT UP TO 12 ms

Table 3.1 

HBTXIA parameter»
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SHELL
VACUUM VESSEL 
PORT SECTION

I, FEED

FEED CABLE
ductings

CORE

VACUUM VESSEL 
BELLOWS LINER

VACUUM PUMPING 
SYSTEM V

I,WINDING SPACER 
(I^WINDING FORMER)

I*WINDING CLAMP 
BAND

, GATE VALVE

TURBOMOLECULAR
PUMP LOAD ASSEMBLY 

SUPPORT TO FLOOR

DIAGNOSTIC
PORTS

Schematic diagram o f HBTXIAFigure  3.1

Plate 3.1 HBTXIA.
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m

P la te  3 .2  The HBTXIA torus before  mounting on the iro n  core .

P la te  3.3 Photograph showing the HBTXIA torus disassembled to  re v e a l 

the bellows vacuum l i n e r .



$3 TECHNIQUES 77

Steel toroidal vacuum vessel (the liner) which is surrounded by a thick 

aluminium shell required for the stability to MHD modes and the maintenance 

of plasma equilibrium. The vacuum vessel is pumped by two turbomolecular 

pumps to insure a UHV quality vacuum. In order to prevent plasma contact 

with the liner a band of graphite limiters dictates the plasma radius.

The two sets of windings on the machine are both made from standard 

cable. The Ig windings for the toroidal field are closest to the shell to 

minimise stray inductance. Outside these are the I^ windings which induce 

the toroidal plasma current; these are set on a displaced circle to reduce 

magnetic field errors at the insulated shell-gap (this allows penetration 

of the toroidal flux). The Îj, windings are coupled to the plasma by a 1 Vs 

iron core.

Capacitor banks located on the two floors above the experimental area 

are used to drive the Ig and I^ currents in the windings. The full value of 

current can be reached in less than a millisecond using 40 kV banks and then 

may either be maintained by an 8 kV power crowbar or by a passive clamp. The 

total energy available is 2 MJ.

3.2 EXPERIMENTAL TECHNIQUES

3.2.1 The Insertable probe

3.2.1.1 Introduction

An insertable magnetic probe is a device which will measure the rate of 

change of magnetic field as a function of both radius and time inside a 

plasma discharge. Usually it will consist of one or more very small coils 

mounted inside a protective silica-glass tube. In general, if a coil of n 

turns and cross-sectional area A is placed in a magnetic field B parallel to 

the coil axis, the induced electromotive force V is given by;
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V = '"A dt ' - (3.1)

Thus, according to the orientation of a given coil within the plasma 

discharge it is possible to obtain information about any component of the 

magnetic field. In general, insertable probes are really the only 

diagnostic that can provide detailed measurements of the internal magnetic 

structure. This is particularly true for the RFP where Faraday rotation 

effects [1] have not yet been used successfully. However probes have one 

serious drawback in that their insertion can lead to appreciable 

disturbance of the discharge. When this happens serious doubt must be cast 

on the relevance of the measurements since the internal structure of a 

seriously perturbed discharge may bear no resemblance to that of an 

unperturbed discharge. The aim is thus to make probes as small as possible 

to minimise their effect on the plasma. However, if one wants to keep a 

reasonable number of coils this becomes rapidly very difficult. In the end a 

compromise is sought where a certain amount of perturbation to the 

discharge is tolerated, but allowing a useful number of coils to be 

included. As will be seen later, the probe used in this study actually 

affects the discharge only very slightly and yet contains a very useful 

number of coils, thus permitting a detailed analysis of both the 

equilibrium and fluctuation magnetic structure of the plasma.

3.2.1.2 Construction

The magnetic probe used in this study is illustrated in figure 3*2 and 

in the photographs of plates 3.4 and 3.5. In all there are twenty-seven 

coils divided into nine sets of three. Each set of three comprises a radial, 

toroidal and poloidal coil thus defining the time varying magnetic field in 

nine equally spaced radial positions. The coils consist of 42 swg enamelled 

copper wire wound on alumina ceramic formers at fifty turns each, the mean 

coil radius being just over 1 mm. Each coil is set into a PTFE rod 33.5 cm
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Fused  s i l ica
tube

PTFE fo rm er  
(co l ls  em bedded in 

th is  )

Poloidal
coil Coil a s s e m b ly

-Toroida
coil

■Radial
coil' > V acu um

■Wires to junction box 
tw is te d  to g e th e r

PTFE fo r m e r

B e l lo w s  
a s s e m b ly  <

Vacuum s e a l  
(g la s s  to m e ta l )

S crew  th r e a d

W heel  to push and  
co n trac t  b e l lo w s

O O O O O O O O O O O O I
O O O O O O O O O O O O '
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-Junction box

NOT TO SCALE

Figure  3 .2  Schematic i l lu s t r a t io n  o f the in s e r ta b le  magnetic probe.

d

P la te  3 .4  Photograph o f the in s e r ta b le  magnetic probe.
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L .
P la te  3 .5  The probe t ip .

D C o n t r a c t e d

E x p e n d e d

Figure  3 .3  The probe bellows assembly.

long, machined with grooves along its length to allow for the passage of 

connecting wires. The inset of figure 3.2 shows the details of this 

assembly which is then inserted into a protective silica glass tube. This 

tube connects through a metal-to-glass seal to a bellows assembly which 

enables the probe to be inserted or retracted from the discharge vessel. 

Figure 3.3 details this assembly. Point A locates the metal-to-glass seal. 

By turning the wheel B, the bellows C expand and push the point A ,  together
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with the entire coil assembly, into the discharge vessel. By turning this 

wheel from one extreme to the other, a coil-assembly movement of 

twenty-seven cm is obtained. Hence, in the retracted position, the probe 

does not penetrate the plasma at all whereas, in the other extreme, the tip 

of the probe extends all the way to the minor axis of the torus. In order to 

achieve the correct orientations of the toroidal and poloidal coils the 

junction box D in figure 3.3 is designed to turn, producing a rotation of 

the coil assembly inside the fused-silica tube.

3.2.1.3 Calibration

In order to calibrate the probe a Helmholtz coil assembly [2] was used. 

This is shown in figure 3.%. By driving this coil with a 300 Watt audio 

oscillator and comparing the output of the probe coils, situated in the

Probe

Coil 1

Coil 2 

^  Calibration coil

Audio
generator AM 502

H elm holtz
coil

Driving circuit

Probe
coil Scope

DVM

Calibration circuit

Calibration coi

AM 502

^  Scope 

DVM

Figure 3.*t Calibration aet-up for the probe Coil monitoring circuit
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region of greatest field uniformity, with a calibration coil of known 

cross-sectional area and turns, we were able to calibrate the probe coils to 

an accuracy of better than Estimates as to the alignment accuracy of the 

various coils showed a standard error of ±1 degree.

By mounting a small coil on the silica glass envelope of the probe and 

by energising it with a high frequency oscillator we were able to calculate 

the frequency dependence of the probe coils. This is shown in figure 3.5 

where it can clearly be seen that the coils have a fairly flat frequency 

response up to at least 1 MHz.

1 1.0 ■ w 
111

c

I
0.5

j I I I I— i-i I I j I I i_j I I I I J 1---1__I— I I I 11
10* 10' 10'

f ( H z )  ►

Figure 3.5 Frequency response for a typical probe coil.

3.2.2 EDGE COILS

Edge coils, as their name implies, are small coils mounted at the edge 

of the discharge vessel. HBTXIA, in its present form, possesses several 

hundred of these coils mostly grouped together into poloidal arrays 

encircling a minor cross-section of the torus. In addition to these 

poloidal arrays, HBTXIA also posseses a unique toroidal array spanning some 

sixty degrees around the length of the torus.
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Liner

 Interspace
toroidal array

,60»

'15»
■Internal 
poloidal orroy

Shell

Interspace 
poloidal a rrayR o n

Shell,

Interspace poloidal 
a rra y

Liner

■Interspace toroidal 
array

Section

Figure 3.6 Edge-coil layout.

The magnetic coils used in this study consist primarily of three sets 

illustrated in figure 3.6. Outside the vacuum liner, in the ’interspace’ 

between the liner and the conducting shell we use a poloidal array of coils 

measuring the toroidal and poloidal components of the field (B^xBg) at 

sixteen poloidal angles (0). In addition, adjacent to this poloidal array, 

is the toroidal array which measures B̂j, and B@ at fourteen toroidal 

positions. This array is at a poloidal angle of -40 degrees. Inside the 

vacuum vessel are poloidal arrays similar to the interspace array but with 

the coils recessed into special sections of the bellows liner. These 

internal coils are more sensitive to higher frequency fluctuations because 

they do not require the fields to penetrate the liner.
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c m  7

P la te  3 .6  In d iv id u a l edge c o ils  and th e ir  mounts

84

P la te  3 .7  Photograph showing a p o lo id a l a rra y  o f edge c o i ls .  The curved' \ 
m etal band in to  which the c o i l  form ers are fix e d  f i t s  in to

the in s id e  o f the bellows l i n e r .
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3.2.3 DATA ACQUISITION

The problem of acquiring data from diagnostics on a plasma discharge 

experiment is not trivial. The signals produced by a diagnostic may be very 

weak and these have to be detected in the presence of large rapidly varying 

magnetic fields. Consequently, much attention must be paid to screening and 

the proper matching of transmission cables to the loads presented by both 

the diagnostic and the electronic receivers.

Machine

Area

Screened

SCREENED

AREA

P IC K -U P
COILS

Data acquisition for the probe and edge coils.

____ I

TERMINATOR
SCREENED
JUNCTION

BOX

COMPUTER

(OPT)
INTEGRATOR

AMPLIFIER
BANDW IDTH
1MHz

DIGITISER
LECROY
8210

Acquisition area

The basic theme of data acquisition used for both edge coils and the 

insertable probe is depicted in figure 3.7. For each coil on the machine a 

twisted pair of wires connects to a screened junction box whose outer casing 

is earthed. From here every coil is connected to the outside world via a 

double core screened cable. To be effective the screening must be connected 

to the outer case of the junction box. The other end of each of these cables 

connects to an earthed metal box in which is contained the electronic
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acquisition equipment. Each channel is fed into a differential amplifier 

which amplifies the signal between the two cores of cable, disregarding the 

common mode. The amplified signal is then either fed directly into a 10 bit 

analogue-to-digital converter or first into an analogue integrator with a 

470 us time constant.

When acquiring data from the insertable probe or from the internal 

poloidal arrays, both of which might, in fault conditions, connect to the 

plasma, we use shielded electronics in the vicinity of the machine to encode 

the signals onto fibre-optic transmission lines which may be fed out of the 

machine area with no danger of carrying high voltages. When using the 

interspace coils, however, no such precaution is needed and cables are run 

directly from the diagnostics to the acquisition area. In all cases the 

signals are digitised at a sampling rate of typically 2 \is for a period of 2 

to 4 ms and encoded on RL01 digital equipment discs using LSI11/23 

computers.
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3.3 THEORETICAL TECHNIQUES

3.3.1 Correlation And Spectral Analysis

3.3.1.1 Introduction

Physical phenomena may be broadly divided into two classes; 

deterministic and random. Deterministic phenomena follow unique 

mathematical laws which describe their behaviour. As an example we may 

consider the motion of a simple pendulum. When the bob is raised to a 

certain height and then released, the pendulum oscillates. If we plot the 

amplitude of oscillation against time we obtain a graph describing the 

trajectory of the pendulum in phase space. If we were to repeat this 

experiment again, we would obtain exactly the same graph. In fact no matter 

where we performed the experiment (on the earth) and at what time, we would 

always get the same answer. This is a deterministic system. In contrast to 

this there are many systems where the same initial conditions do not lead to 

exactly the same behaviour. Such processes are termed random [3,4,5] and 

typify the class of fluctuating phenomena inherent to the RFP.

In order to investigate random processes we cannot simply apply the 

normal deterministic methods. Rather statistical quantities must be used to 

reveal the information contained within the data. A simple example would be 

the calculation of the mean value of wind velocity at a certain place and 

time of year calculated from many measurements made year after year (an 

ensemble). This quantity, which may be different from year to year, will 

allow a prediction of what on average the wind velocity at this location is. 

If this particular problem was tackled from the deterministic point of 

view, every time the wind velocity was measured a different value would be 

obtained. So the answer would depend on when the measurement was taken and 

would thus essentially contain no useful information.
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3.3.1.2 Stationary And Ergodlc Processes

The philosophy of random data analysis [3,4,5] is to describe the random 

process in terms of statistical quantities. The simplest example of such a 

quantity, as we have already discussed, is the mean value. This is defined 

for a random process {x(t)} as;

1 ^ ix(t) = Lim - I x(t) , - (3.2)
N-»-»  ̂ i = 1

where the index i sums over the members of an ensemble. In an exactly 

similar fashion we may define the mean square value, (which is defined for 

zero-mean processes as):

2 1 ^ i 2a (t) = lim - Z ( x(t)) , - (3.3)
N->oo  ̂ i = i

and a quantity known as the autocorrelation at time delay, t :

1 N . .

Rxx(t,x) = lim - Z x(t) x(t+x). - (3.4)
 ̂ 1=1

All of these quantities are known as statistical moments of the random 

process (x(t)}. We may define any number of higher order moments in exactly 

the same fashion by simply including higher powers of x and different time 

delay parameters. In principle, a knowledge of all the moments of a given 

process will define the probability distribution function characteristic of 

that process.

If one or more of the moments defined in equations 3.2 to 3.4, or indeed 

a higher order moment, varies with time then the data is said to be 

nonstationary with respect to that moment. If, on the other hand, the
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moments of interest are not functions,of time, then the data is said to be 

stationary and in most cases the sums over an ensemble in equations 3*2 to 

3.4 may be replaced by time averages:

X = lim ^  
T->oo

2 1 0 = lim -

T
x(t)dt - (3.5)

x^(t)dt - (3.6)

Rx x (t ) = lira ^
T -> 0 0

T
x(t)x(t+i)dt . - (3.7)

In such cases the observed process is terraed ergodic. This result, known as 

the ergodic theorem, is a very powerful tool, since in very many cases time 

histories of a given process are far more easily obtained than large 

ensembles.

3.3.1.3 Correlation Functions

In the previous section we introduced the time delayed autocorrelation 

function R^x as an example of a statistical moment. This function, which 

will appear many times in this thesis, essentially tells you how ’linearly 

similar’ a given process is at one time compared to a fixed time later. 

Hence if the time delayed autocorrelation function defined in equation 3.7 

had the form of a gaussian of some suitably defined width W, then we would 

be able to infer that events happening at a time greater than (t+W) would be 

linearly independent of events happening at the time t. A useful 

qualitative way of understanding the implication of this is to think of the 

process having a finite (linear) memory. Events happening at a time greater 

than (t+W) have no memory of events happening at the time t or less. Hence
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they behave linearly independent of these earlier events. On the other 

hand, if two events are separated by a time smaller than W, then the later 

event will have a memory of the prior event and will not be linearly 

independent.

Many situations arise in the study of random phenomena in which two 

measured time histories are required to be compared and a relationship 

established between them. In many cases this may have to be done in the 

presence of large amounts of uncorrelated noise. This may be formalised for 

a simple case by considering two random processes {x(t)} and {y(t)} and 

hypothesising that x(t) may be expressed as ay(t)+z(t), where z(t) and y(t) 

are linearly uncorrelated. The problem is now to find the constant a. By 

extending the definition of equation 3.7 it is easily seen that a is given 

by the following relation:

a = lim -
T-»-oo

x(t)y(t)dt / Y y^(t)dt. - (3.8)

The numerator in this expression is termed the cross-correlation function 

at zero time delay between the processes {x(t)} and {y(t)}. A 

generalisation of this is the time delayed cross-correlation function 

defined (for ergodic processes) as:

^xy(x) " T T-)>®

T
1 x(t)y(t+x)dt. - (3.9)

To see how this function arises we may consider the following rather

deterministic problem. Suppose we have two closely spaced detectors

measuring the level of water in a pond. Suppose further that a stone is

dropped into the water near one of the detectors. A wave will propagate out 

past one detector and, shortly after, past the other. As this wave passes 

each detector in turn it will cause a signal to be emitted which is
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proportional to the amplitude of the water disturbance. Now suppose that we 

want to find the velocity of propagation of the wave. If we denote the 

signal from one detector by x(t) and the other by y(t) then the time delayed 

cross-correlation function defined in equation 3*9 will peak at a certain 

time delay t such that the velocity of propagation is simply the distance 

between the two detectors divided by this time delay. This is evident from 

the fact that the two signals will be the most 'linearly similar' when one 

is delayed by the time required for the wave to travel the intervening 

distance between the two detectors.

Until now we have only discussed linear relationships between two 

processes. We have used phrases such as 'linearly similar' and 'linearly 

correlated'. But suppose there exists a nonlinear relationship between two 

processes. In this case we must use higher order correlation functions to 

expose this relationship. For instance, if we have two ergodic processes 

{x(t)} and {y(t)}, then we might look for a relationship of the form 

x(t)=y(t)^. This would be exposed by investigation of the Triple 

correlation function at zero time delay defined as:

^xy = T x(t)y^(t)dt. - (3.10)

However great care is required here since the theory of non-linear 

correlation functions is very complex. In this thesis we will only very 

rarely mention these higher order moments.

3.3.1.4 Spectrum Analysis

So far we have discussed methods for dealing with random processes in 

the time domain. Spectrum analysis [3,4,5], however, is a system of data 

analysis which operates in the frequency domain. As we will see, the 

functions defined in one field are related to similar functions in the other
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field by Fourier transforms.

The theory of Fourier analysis tells us that a given periodic time series 

x(t) may be expressed in terms of the coefficients of a complete set of 

orthogonal harmonic functions (such as sine and cosine). This is known as a 

Fourier series. When the constraint of periodicity is relaxed the discrete 

coefficients map to a function and the series becomes an Integral. In this 

case x(t) may be expressed as:

' + 00
x(t) =

where x(w) is given by:

X(o.) =
+ 00

x(t) e ^^^dt. - (3.12)

The function X(w) is known as the Fourier transform of x(t). It essentially 

contains all the information that is inherent to the signal x(t) and, being 

a complex function, may be expressed in polar form as:

X(w) = |X(w)| e - (3.13)

The function |x(w)|̂  is known as the auto-power spectrum for the record x(t) 
and #(w) as the auto-phase spectrum. These definitions may be extended for 

two signals x(t) and y(t) to the cross-power spectrum, defined as X(w)Y*(w) 

and the cross-phase spectrum, defined as Ox(w)-#y(w). If we regard the 

signals, x(t) and y(t), as members of an ensemble of two ergodic random 

processes then we may also extend these definitions so as to define the 

spectral functions pertaining, not to a single record, but to the process 

itself. For instance, the cross power spectrum for the two processes (x(t)} 

and (y(t)} is defined as |<X(w)Y*(w)>|, where the triangular brackets 

indicate an ensemble average, similarly the cross-phase spectrum would be 

defined as arg<X(w)Y*(w)>.
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Spectral functions are very easily understood. The auto power spectrum, 

which is sometimes known as the auto-spectrum or just the power spectrum, is 

a measure of the power of the signal as a function of frequency. For 

instance, if the signal is a pure sine wave then the auto-spectrum would be 

a delta function at a value of w corresponding to the frequency of the sine 

wave. The auto-phase spectrum gives the relative phase of each frequency 

component with respect to a common baseline.

The cross-spectrum between two signals x(t) and y(t) is simply the union 

of their individual auto-spectra. Hence if the two signals share a common 

peak in their auto-spectrum, then that peak will also enter in their 

cross-spectrum. To understand the cross-phase spectrum let us suppose that 

both signals were pure sine waves. Then the cross-phase, at the frequency of 

this sine wave, would be zero indicating that both signals were in phase. 

If, alternatively, one signal were a sine wave and the other a cosine wave 

the cross-phase would be ir/2. So the cross-phase spectrum simply gives the 

phase difference between two signals as a function of frequency.

3.3.1.5 The Wiener-Ktnichine Theorem

We have now introduced the two basic fields of random data analysis; 

correlation and spectrum analysis. As we hinted above, these two fields 

are, for ergodic processes, intimately related. In fact, if a process 

(x(t)} is ergodic, then we may define the auto-spectrum T(w) as the Fourier 

transform of the auto-correlation function R(x):

rxx(w)
+ 00

Rx x^t) e ^^^dt . “ (3.14)

For two ergodic processes an exactly similar expression exists relating the 

cross-spectrum to the cross-correlation function. By inverting this and the 

above expression we can equally well express correlations in terms of
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spectral functions. By extending this correspondence to higher order 

moments in the correlation field we may also define similar corresponding 

moments in the spectral field. Thus a two-dimensional Fourier transform 

relates the Triple correlation function to a higher order spectral function 

known as the Bispectrum [6]. A three-dimensional Fourier transform 

similarly defines the Trispectrum, and so on. Hence we see that the two 

fields of correlation and spectral analysis are indeed just two ways of 

looking at the same thing. However, as will become apparent in the course of 

this thesis, different problems are suited sometimes preferentially to one 

or other of these two fields.

3.3.2 Application Of Correlation And Spectral Analysis

In this section we will discuss the application of the techniques 

reviewed above to the analysis of data obtained from the intertable probe 

and edge coils. We start by summarising the statistical quantities used 

throughout this thesis, most of which have already been introduced above.

3.3.2.1 Definitions

Given ergodic processes {x(t)} and (y(t)} during a finite time period T 

with Fourier transforms {X(v)}, {Y(v)}, which we calculate numerically by 

FFT programs, we define the power spectrum (or auto-spectrum) of x by;

Ixx(v) = j < |X(v)|^> , - (3.15)

where triangular brackets indicate an average over ensembles (i.e distinct 

time periods or different shots) and the time T is short enough such that 

stationarity and hence, hopefully, ergodicity is ensured. The cross 

spectrum is likewise defined as:
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TjjyCv) . 1 < X(v) Y*(v) > . - (3.16)

We define |rxy| to be the cross power spectrum and arg(r) to be the 

cross-phase spectrum. In addition to these we also define a normalised 

version of the cross-spectrum which we term the coherence;

^ -(3.17)

In the time domain we define the usual cross-correlation function:

T
x(t)y(t+T)dt > - (3.18)

Again, as with the cross-spectrum, we define a normalised version of this 

which we call the cross-correlation coefficient:

p(t) = R^y(x) / [ Rxx(O) Ryy(O) - (3.19)

3.3.2.2 General Methods Of Data Analysis

Finite Data

Since the data which will be analysed in this thesis consist of 

finite-length time series, problems occur if the definition of the power 

spectrum, and indeed the cross spectrum, defined above is used directly. 

This is because a finite signal Xf(t) may be regarded as the product of two 

signals; the real x(t) and a box function. This is illustrated in 

figure 3.8. On taking the Fourier transform of a finite signal, one is 

actually computing the Fourier transform of the product of the real signal 

with a box function. By the convolution theorem [7] this is equivalent to 

convolving the Fourier transform of the complete infinite signal x(t) with
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Xf (t)

X( t )

A

W(t )

X , ( t ) =  X ( t )  X W( t )

t

figure 3.6 Illustration that a finite tiëe series Xf(t) may be ragarded 

as the product of the real infinite time series x(t) and a 

box function W(t).

the Fourier transform of a box function, which is a sine function. It is 

clear that if we proceed to square the Fourier transform of such a finite 

signal then false features will appear in the power spectrum. This may be 

thought of as a leakage of power from a given frequency to surrounding 

frequencies. The problem is of course that of resolution. If you have 

information only about a certain time period then you cannot expect to have 

perfect knowledge of the power spectrum. Rather this dictates a finite 

resolution, given in the above case by the half-width-half-maximum of the 

sine function.

This does not, however, mean that it is impossible to improve matters. 

For, in addition to the imposed box function apodisation due to the finite 

nature of the data, we are at liberty to impose, on top of this, our own 

apodisation. Hence we could, say, dictate a triangular apodisation by 

multiplying our finite time series with a triangular function. This would 

change the resolution by altering the convolving function. Information
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theory will tell you that if you choose an instrumental function which gives 

poor resolution then the inherent errors in the derived power spectrum 

improve. If, on the other hand, you choose an apodising function which gives 

high resolution, the reverse will occur. Also, in general, apodising 

functions which give high resolution (such as a box) are associated with 

extensive side-lobes whereas poorer resolution apodisations (such as a 

gaussian) are not. If resolution is not a problem there is thus significant 

motivation for using a poor resolution apodisation.

In practice we don’t actually use a gaussian but the function:

W(t) = ^ ( 1 - cos(2nt/T)) , - (3.20)

which is known as a Hanning window. It is worth noting that the resolution 

given with a Hanning window is about twice as bad as a box function. 

However, since T is relatively long this small sacrifice is well worth it. 

We shall see later on in this chapter that a similar problem enters into the 

calculation of the toroidal mode spectra and in this case a similar 

sacrifice is most definitely unacceptable. In such cases there are 

deconvolution techniques which ' allow one to obtain the best resolution 

while also being free of side-lobe phenomena.

Filtering

It is most often essential to perform time domain correlation analysis 

on signals which have been filtered to exclude very low frequencies which 

correspond to an equilibrium evolution. It is also convenient at times to 

study specific frequency ranges. For this purpose we have developed a 

numerical bandpass filtering algorithm. This is depicted in flow-chart form 

in figure 3.9. For a given signal x(t) we form the Fourier transform X(v), 

after weighting the signal with a Hanning window. This is then multiplied by
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Figure 3.9 Flow chart for the numerical filtering algorithm.

a box window, thus defining the bandpass frequency range. We then inverse 

Fourier transform this to form the filtered time histories, from which it is 

possible to calculate the various correlation functions. This type of 

algorithm compares well Witfi algorithms which operate in the time domain 

such as REMEZ.



$3 TECHNIQUES 99

3.3.2.3 Application To Edge Colls

We will now concentrate on the application of the correlation and 

spectral analysis techniques developed so far to data obtained from the 

various arrays of edge coils. In particular, emphasis will be placed on the 

calculation of the toroidal and poloidal spectra and the problems one 

encounters in their evaluation. The Helical Association spectrum will also 

be introduced and again the problems of evaluation discussed.

Poloidal Spectra

The poloidal arrays of edge coils provide information on the structure 

of fluctuations in the poloidal direction. One of the most useful ways of 

presenting this is to define the poloidal mode power spectrum. This is 

analogous to the power spectrum defined above for the time domain, except 

that since we are dealing with a periodic system, we must use a Fourier 

series. We therefore define the poloidal mode power spectrum as;

Pm = <

T
I I + I s^(t) |dt> , - (3.21)

0

2 N _
where c (t) = - Z B, (t) cos ( me.)m N , . K KK=1

2 N _
and s (t) = - Z B (t) sin ( me ).m N , , K KK = 1

Here B^ft) represents the signal obtained from the poloidal coil at 

poloidal angle e^. N is the total number of coils and m is the poloidal mode 

number, defined to be positive. As usual T defines the time interval over 

which data sampling occurs.

Since the poloidal arrays contain only a finite number of coils there
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will exist a restriction on the highest mode number described by equation 

3.21. In general, sampling theory will tell you that this mode number, 

termed the Nyquist frequency in relation to the time domain, is given by 

“max N/2. So if all of the coils in a poloidal array (16 for each field 

component) are used, it is possible to investigate mode numbers up to and 

including m = 8. In practice, however, we usually find that it is 

sufficient to use half the array, restricting attention to mode numbers 

less than m = 5.

It is worth noting that since each poloidal array covers the full 2n 

radians, the power spectrum, as defined above, has perfect resolution. As 

we shall see, this is definitely not the case with the toroidal array.

Toroidal Spectra

We define the toroidal mode power spectrum in an exactly analogous 

fashion to the poloidal mode power spectrum:

T
2I c^(t) I + I S^(t) |dt> , “ (3.22)

2  N ~
where c (t) = - Z B (t) cos ( n*.)n w K K

2 N .
and s (t) = - Z B.(t) sin ( n*.).

n w k=1 *

In this case, however, Bĵ (t) represents the signal from the toroidal 

array coil at the toroidal position defined by (|))̂ and n is the toroidal mode 

number.

Using this definition, it is possible to directly calculate the toroidal 

mode power spectrum. However, if one proceeds in this fashion, only very 

poor resolution is obtainable. This is, of course, due to the finite extent
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of the toroidal array. As we discussed above, a finite signal may be 

described as the product of the true infinite signal with a suitable 

instrumental or apodisation function. On Fourier transforming this signal 

one thus obtains the true Fourier transform convolved with the Fourier 

transform of the apodising function. When this is squared to form the power 

spectrum this then determines the resolution by the width of the convolving 

function. If we apply this logic to the toroidal array which spans only 

sixty degrees, the best resolution we may obtain turns out to be about 

An = ±6 (choosing sensible well-behaved apodisations). However this is 

using a centred box window, whose Fourier transform has significant 

side-lobes (a sine function). If we wish to get rid of this unpleasant 

feature then, by using a Hanning window, our resolution becomes about 

An = ±12. Clearly this is not acceptable given that the Nyquist frequency 

associated with the toroidal mode spectrum is only about four times this 

number.

There is therefore significant motivation for investigating other 

techniques of estimating the toroidal mode power spectrum. One particularly 

fruitful avenue is through the zero-time cross correlation function in 

toroidal angle. This may be defined as;

T
BXt,(f)) B(t,*+a*) dt >. - (3.23)

Now, following exactly the same reasoning as we applied to the time domain 

in section 3.3.1.5, if the process {B} is ergodic in 4>, which amounts to 

different Fourier components having random phases, we may apply the 

Wiener-Kintchine theorem to show that the toroidal mode power spectrum is 

simply defined by the real part of the Fourier transform of R(ô$):

fTT
R(a*) cos (n64>) d(6(J)). “ (3.24)
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Note that we have used the fact that, since the process {B} is ergodic, the 

function R is independent of That this is true is apparent from the

ignorability of the coordinate (|) (due to symmetry). As it turns out,

however, the ergodic assumption is not fully born out due to the presence of

portholes around the machine which lead to preferential phasing. As a 

result, the spatial correlation function R(5#) appears slightly different 

when calculated using different reference coils. However, this effect is 

not very large and the approach we take is to symmetrise the spatial 

correlation by averaging R(ô$) as calculated by two extreme reference

coils;

R(6(j)) = -̂ ( R ((f)j,ô(()) + R (<})ĵ,ô({)) ) . - (3*25)

This method has one great advantage over the direct method. It allows 

twice the resolution with a simple sync convolving function. This is 

essentially because we have put in extra information in assuming that the 

underlying process is iiidGpfehdfertt oÿ an assumption certainly warranted. To 

see this in terms of apodisation functions one must realise that equation 

3.24 defines a shifted box function, the width of which is determined by the 

span of the toroidal array. However the integral is taken from 0 to it  and so 

the resultant convolving function is equivalent to that obtained from a 

centred box of twice the width in the case of the integral ranging from - it  

to +TT. This latter case is of course analogous to the case arising in the 

direct computation of the toroidal mode power spectrum, except that there 

the box width was the array span. So it’s simple to see that the resolution 

is doubled.

This method is also advantageous for the reason that it predicts a mode 

power spectrum which is linearly convolved with a simple sync function. 

This should be contrasted with the direct method where the power spectrum is 

predicted as the square of two functions, both of which are linearly 

convolved with a sync function.
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Deconvolution

For many cases the fact that the toroidal mode power spectrum is 

convolved with a known apodisation function is of little consequence. 

However, when one wishes to interpret the finer structure in the spectrum, 

this can become a large problem. In such cases deconvolution techniques are 

available.

Deconvolution is the process whereby, given a convolved spectrum and the 

convolving function, one is able to predict the true (un-convolved) 

spectrum. The simplest method of deconvolution is known as ’linear 

deconvolution’. To understand this let us denote the convolved power 

spectrum by and the true spectrum by X^. Then, further denoting the 

convolving function by C^, we may express mathematically what we mean by a 

convolution:

Pn ' ( X(n+6)- C(S)) • - (3-26)—00

If one now assumes that tends to zero as n gets large, it is reasonable

to truncate the sum to a finite length. On doing this we may rewrite the 

above equation in vector form as follows:

P = A . X , - (3.27)

where A is a matrix whose elements are defined by C^. Clearly the true 

spectrum is now obtainable by inverting this equation:

X = P . - (3.28)

This is essentially the method of linear deconvolution. Given that we know 

exactly the convolved spectrum and the convolving function, this is what 

one wants. However one very rarely has an exact knowledge of the spectrum.
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Rather, the spectrum is known to some finite accuracy. This then casts a 

slightly different tune; for in this case the method of linear 

deconvolution will generate false features on the deconvolved spectrum due 

to even very slight errors on the convolved spectrum. For this reason linear 

deconvolution is regarded as being notoriously unsafe.

A solution to this dilemma is provided by the increasingly popular 

non-linear technique known as Maximum Entropy [8,9,10,11]. Owing to the 

complicated nature of this technique we will only discuss here the 

rudimentary theory. Since, however, it is a technique which will be used in 

this thesis to calculate the toroidal mode power spectrum when increased 

resolution is required, appendix A discusses the subject at greater length, 

giving details of various algorithms used.

The technique of Maximum Entropy, in relation to spectral estimation, 

can be broadly explained as follows. The algorithm is iterative. An initial 

spectrum is chosen and then transformed to calculate the correlation 

function. By comparing this correlation function with the true function, a 

new spectrum is predicted which is closer to the real spectrum than the 

previous estimate. If this process is continued indefinitely it would 

converge to the same estimate as that predicted by a linear deconvolution. 

However there are certain constraints imposed. The algorithm, which chooses 

a better estimate of the spectrum each time around, is conditioned so as to 

choose the smoothest possible positive function. In addition, the iteration 

is stopped before complete convergence is reached by an error test which 

senses when the noise level is being fitted. The outcome is that the Maximum 

Entropy spectrum is the smoothest possible positive definite deconvolved 

spectrum which is consistent with errors. It is thus uniquely safe as it 

contains the least information possible. In practice thisisa very useful 

technique in the estimation of the toroidal mode power spectrum when 

increased resolution is required.
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Helical Association Spectrum

The poloidal and toroidal mode power spectra provide information as to 

the power contained by given n and m modes. However, these spectra do not 

tell us what the association is between a given n and m number. For 

instance, if the poloidal mode power spectrum had two peaks, one at m = 1 

and one at m = 3, and the toroidal spectrum had similarly two peaks, the 

first at n = 7 and the second at n = 16, how can we relate these? Is the 

m = 1 to be associated with the n = 7 or the n = 16? And so on. What is 

required is a two-dimensional power spectrum which would give information 

as to the power contained by a given (m,n) pair. Such a spectrum, following 

our definitions of the individual spectra, would be defined as;

P — K mn 2T I + I s^^(t) |dt> . - (3.29)

where c (t) ^ I E B, .(t) cos ( me, + n^ )mn ĵ .| Kj k j

N' N _
and s (t) oc E E B, . (t) sin ( m6,+ n#.).mn ,,,, j.i kj k j

However, to calculate this spectrum, information is needed about the field 

B(t) at all poloidal and toroidal angles, which in turn requires a matrix of 

edge coils covering a large proportion of the torus. At least, this is the 

case when one performs the calculation in a direct manner. In fact it can be 

shown that, adopting a similar stategy to the correlation function approach 

to calculating the toroidal mode power spectrum, one can prove the 

following theorem;

’If the coordinates 0 and <}> are ignorable, then the two dimensional power 

spectrum is given by:
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1
mn ' (27t)P__ = Re ( Q (8,40 exp (-i(me + n^)) ded* ),- (3.30)

where Q (8,4), the poloidal-toroidal correlation matrix, is defined as:

Q (8,4) = Y <
T

*
B (8,4„,t) B (8„,4,t) dt >.

Further, P^^ is always positive definite and the imaginary part of 

equation 3.30 is identically zero.’

By using this theorem, it is possible to determine the two-dimensional 

power spectrum without having a complete matrix of edge coils. We will refer 

to this spectrum, when calculated in this fashion, as the ’Association 

spectrum’. There are, however, several problems, some of which are quite 

severe. The first and most obvious of these is the fact that the 8 direction 

in a torus is not ignorable and hence different m numbers will not be 

linearly independent. This will cause spurious features to arise in the 

Association spectrum some of which may be negative. It will also cause the 

imaginary part of the spectrum to be non-zero.

Another severe problem is that of finite data which we encountered in 

the calculation of the toroidal mode power spectrum. However, here the 

problem can be much worse. The reason for this is that the poloidal and 

toroidal arrays do not intersect at their midpoints. This means that the 

Fourier transform of the apodisation function has both real and imaginary 

components which couple the real and imaginary parts of the power spectrum 

together. Denoting the Association spectrum by the true two

dimensional power spectrum by P^n, this may be expressed:

( Amn) = “nn® I" ' ‘

Re ( -  ®  Im  ( ,

where the operator <S> indicates convolution and the matrices a and § are
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determined by the apodisation function. Now clearly, if 6 and 4 were 

ignorable, we would not have a problem, since in this case lm(Pmn)=0 and so 

the real part of the Association spectrum would simply define the convolved 

two dimensional power spectrum. But this is not the case and in fact the 

imaginary part generated through the non-ignorability of 0 couples into the 

equation relating Aĵ n to P^m* Hence what one really needs to do is to solve 

equation 3.31 for Pmn* However this amounts to a linear deconvolution and 

owing to the inherently large errors involved, would not work as such. 

Rather a Maximum Entropy approach would be more fruitful. In this thesis, 

however, we do not use this approach. Instead, by realising that mode-mode 

linear coupling induced by the non-ignorability of 0 is relatively small, 

we simply take the real part of the Association spectrum as an estimate for 

the true two dimensional power spectrum. This does lead to spurious 

features though, and as a consequence one has . to be careful in the 

interpretation.

The resolution obtainable in the Association spectrum is determined in 

part by the intersection point of the two arrays. The best resolution is 

found when the intersection is located at the end of the toroidal array. 

This corresponds to 6n = ±3. With the intersection at the half way mark, 

this resolution is halved. The intersection point is, of course, fixed by 

the physical location of the various edge coil arrays which dictates two 

possible intersections, one near the end of the toroidal array and one 

fairly near the centre. The central intersection has the further problem, 

however, that the poloidal array is internal to the liner and the toroidal 

array is external. This means that data must be corrected for penetration 

effects through the liner (see appendix B), which can themselves depend on 

helicity.
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3.3.2.4 Intertable Probe Techniques

: Determination Of The Radial Structure Of Instabilities

An intertable magnetic probe provides information on the time-history of 

the magnetic field at a finite number of radial locations. In the case of 

the fluctuations being due to just one instability, this information can 

easily be translated into the radial amplitude distribution of that 

instability. For instance, this may be accomplished by taking the 

square-root of the radial power distribution. However, when there is more 

than one instability present the problem of determining the various radial 

amplitude distributions becomes non-trivial. Since this case typifies the 

RFP it is of considerable importance to formulate algorithms which solve 

this problem to some extent. In this section we will thus develop an 

effective solution which will then be used extensively in interpreting 

probe data in chapter 6.

Introduction To Correlation Matrix Fitting (CMF)

To a certain approximation the fluctuating magnetic field may be 

regarded as the sum of several (linearly) independent gaussian processes of 

zero mean. In such a case the first order statistical moments completely 

define the combined probability distribution function and hence the 

correlation matrix, defined as:

^ij " T
T
bi(t)bj(t)dt > , *“ (3.32)

represents the totality of information obtainable from the probe data. In 

this definition bi(t) is the fluctuating magnetic field at the radial 

position dictated by the suffix i. The integral is a time integral and 

should be taken over a statistically stationary region of the time history
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described by the region (0,T). Triangular brackets indicate an ensemble 

average over many statistically similar shots.

The approach we take is thus to assume a finite number of linearly 

independent processes, global or local modes, and then to use the 

correlation matrix to define the various radial amplitude distributions 

characteristic of each process. On a physical basis we use the linear 

independence or random phasing of different modes to discriminate them. In 

this way we sacrifice information about the time variation to gain more 

information concerning radial structure.

2-Process Model

To begin with we will assume that the fluctuating magnetic field may be 

decomposed ' into just two components; a global mode with a radial 

correlation length of the order of the minor radius and a local component 

defined in terms of the correlation matrix;

Rij . a 1 1 = j _ (3.33)
0 1 J .

We denote the time dependence of the local contribution by l^Ct) and that of 

the global contribution by gi(t). Then, further assuming that there is no 

radial propagation associated with the global mode, by using equation 3.32 

we may calculate the correlation matrix:

Rij - T <

T

T
di(t)+gi(t))(lj(t)+gj(t))dt>

0
T
li(t)gi(t)dt> -(i)
0 
T

Y < j li(t)lj(t)dt> “(ii)

y < I gi(t)gj(t)dt> “(iii)

J  < f gi(t)lj(t)dt> -(iv). - (3.34)
J n
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Terms (i) and (iv) vanish since we assume that the local turbulence is not 

linearly correlated to the global instability (this essentially defines 

what we mean by linearly independent). Term (ii) will also vanish when i*j 

since this was our definition of local turbulence. Hence we may rewrite 

equation 3 as follows;

0
li(t)lj(t)dt + gi(t)gj(t)dt>

T

0

= + giSj , - (3.35)

where the operator ' denotes a signed root-mean square over the interval 

(0,T), the sign depending on whether g^ and gj are in or out of phase. Given 

the measured correlation matrix this equation may now be solved for the g^ 

by minimisation of the quantity,

Q = I I ( Rij “ gigj)^, “ (3.36)
i*j

which is essentially a non-linear optimisation problem and may be solved 

numerically by the method of steepest descents [eg 12]. Denoting the n^h 

successive estimate of g^ by gi(n) we use the following algorithm:

- + 8 S i

9Q — — —
where — -4 Z gj (R^j *- gigj ) ” (3.37)

and B is a small positive constant. If desired this procedure can be much 

improved for speed by the use of conjugate gradients [12]. However we find 

that with LSI 11/23 computers and N310 this is unnecessary. Note that when 

the gi’s are known, the profile of local turbulence may easily be 

calculated:
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^1= /{ Rii" g^g^}. - (3.38)

This follows directly from equation 3.35.

In the above model we have made several very particular assumptions. 

Notably that the fluctuation activity is due only to two components; A 

global instability and a local contribution. In equation 3.36, where we 

eliminate the local turbulence by not summing with i=j, we are thus fitting 

the correlation matrix with an N-parameter family. However the correlation 

matrix itself (ignoring diagonals) is a function of N(N-1)/2 independent 

parameters. Hence the value of Q is a strong indication of whether or not 

the initial assumptions were correct. In fact a better indication is

furnished by a chi-squared parameter:

 ̂ "n(N-D  ̂ ^ij" Gigj} /Oij » (3.39)

where Oij is the error (stm) associated with the measured Rij. If x^/N is

approximately unity then the fit is good and we will have confidence in the 

initial assumptions. If, on the other hand, x^/N is much greater than one, 

the fit is not consistent with errors and we must adopt another model.

Many Process Model

The fact that Q depends on many more variables than the number of 

signals, N allows us to consider more complicated cases than that of just 

one global mode and local turbulence. In fact we may generalise our model to 

the case of there being p linearly independent global modes present in

addition to the local turbulence. Extending our previous notation, we 

denote the time history of the global mode,i by Igj, where j ,as usual, 

indicates radial position. Then in the same fashion as we derived 

equation 3.35 we may write:



$3 TECHNIQUES 112

P
Rij = lilj^ij + I ( ®g?gj ) , - (3.40)

s=1

where quadratic terms involving different modes cancel due to the linear 

independence of each global mode. Again we may now solve this equation for 

the ®gi*s by the minimisation of a modified Q function:

Q = I I ( Rij - I ( ®gfgj)) , - (3.41)
i * 3  s = i

which leads to a similar algorithm as that in equation 3.37. The limitation 

as to the number of modes that it is possible to include must come from two

factors: firstly the size of the error bars so that one does not fit the

noise level and secondly from the criterion:

p «  (N-D/2 , - (3.42)

which corresponds to there being a lesser number of parameters to fit the

correlation matrix than the matrix itself depends on.

Propagation Effects

We have assumed above that the temporal phase of each gi(t) is the same

so that no propagation effects occur. We will now look briefly at the

effects of relaxing this assumption. To start, let us Fourier decompose 

kgi(t):

kg^(t) “ I kg^(w) cos (w^t + ^4i) , “ (3.43)
m

where *̂ 4̂  is the phase of the i^^ element of the k^^ global process. By 

substitution in equation 3.32 this yields the following form for Q:

Q = I I { Rij ' a I kg kg cos( k^ _ K4 - (3.44)
i^j k J

where a is a constant. Now this equation may also be written as follows:
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Q = I I { Rij - a I [kg 003(4 )][kg cos(4> )] “ (3.45)
i^j k

- a l  [kg.sin(4 )][kg sin(4 )]}. 
k J J 1 1

And so we see immediately that the effect of propagation is to create two 

processes for every k; a 'sine' process and a 'cosine' process. Hence if we 

know that there is just one global mode and we find two statistically 

significant processes then we may infer the module and phase distributions 

of the real process. However, if there are more than a single global process 

there is in general no way of labeling different processes as sine or cosine 

components of a single propagating real process. In this case outside 

information must be used to match the sine and cosine processes correctly to 

obtain the various module and phase distributions.

Non-Gaussian Signals

Finally we come to an interesting point which will not be used in this 

thesis but nevertheless should be mentioned. The motivation for the above 

model is that the magnetic coil signals frcan an RFP have an approximately 

gaussian nature. This means that essentially all the information about 

spatial structure contained in the signals from the magnetic probe may be 

extracted by fitting the first order correlation matrix, R^j. Suppose now, 

however, that the signals have an appreciable, although small, non-gaussian 

component. Then higher order correlations such as the triple correlation 

defined as;

Tij - Y <
T :
b .(t)b . (t)dt> - (3.46)
0  ̂ ^

now contain information. If we first fit R^j to obtain the linearly 

independent processes kg^ and then use these in 3.46 we may calculate the 

quadratic inter-process coupling coefficients. Similarly, by fitting higher
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order correlations, we may hope to estimate an expansion for the full 

non-linear coupling between linearly independent processes. The method 

outlined in this section thus presents an avenue to the possible 

elucidation of non-linear coupling measurement.
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CHAPTER 4 

EQUILIBRIUM STUDIES

We now turn to the results and interpretation of measurements made with 

the insertable probe and arrays of edge coils. In this chapter, probe 

measurements will be discussed in the context of evaluating the magnetic 

equilibrium. In particular, emphasis will be placed on determining the 

equilibrium magnetic field profiles. Once these have been evaluated, other 

profiles such as those of current density, safety factor and pressure may be 

derived. The importance of such an equilibrium study to the-topic of this thesis 

is to form a background in which the fluctuation measurements of chapters 5 

and 6 may be interpreted.

4.1 TECHNIQUES

In order to obtain the best estimate of the equilibrium magnetic field 

profiles, the signals from the insertable probe are averaged over both a 

limited time window and many discharges. In this way a set of average field 

profiles for a specific time range are produced which are not affected by 

random fluctuations. The probe insertion is varied slightly between 

consecutive discharges so that small misalignments of the individual coils 

tend to cancel out. The profiles obtained are then fed into a least-squares 

algorithm to fit even and odd polynomials to B̂j, and Bg respectively. The 

coefficients of these polynomials are altered in such a way as to correct 

for the horizontal plasma displacement characteristic of toroidal devices.

In the sustainment phase of discharges, where liner currents are 

dominated by easily calculated resistive effects, the edge-field polynomial 

fit is improved by including points from hairpin coils at the shell and a 

toroidal current Rogowski. A vacuum field configuration is also strongly
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weighted from the limiters to the shell by including calculated points with 

a '1/r' dependence for Bg and a constant dependence for B<j,. Once the final 

polynomial expressions for the field profiles have been obtained it is a 

simple matter to calculate the various derivable quantities by simple 

algebraic manipulation of the polynomial coefficients.

4.2 RESULTS

4.2.1 General

The evolution of the main discharge parameters and various probe signals

for typical discharges discussed in this chapter are shown in figure 4.1.

These shots are short (2 ms) decaying 

current discharges (100 kA) suitable for 

probe insertion. We present here results 

only from these type of discharges, 

although comparisons with discharges 

where the current is sustained reveal no 

obvious qualitative differences.

In figure 4.2 we plot the plasma 

current with the probe (a) retracted and 

(b) fully inserted. The main differences 

are that termination occurs about 7% 

earlier with the probe inserted and that 

the current decay rate is slightly
Figure 4.1

Typical parameter traces: toroidal current (Ip), loop increased. The effect O f  the p r O b e  O n

I p( kA)

V * ( v )

^  (mT)

♦  (mT)

Bg(mT)

By (mT)

I ( ms)

voltage (V^), toroidal field at wall (B,*), toroidal 

flux (♦), Bg probe trace (BgP)and Bp probe trace (BpP)
this plasma is thus rather small, an

increase in resistivity of only about

20%, so we anticipate that the magnetic fields measured are representative

of such discharges even without the probe inserted.
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Figure i|.2 Torlodal plasma current with probe retracted (a) and probe 

Inserted (b).

4.2.2 Magnetic Field And Current

■ Figure 4.3(a) shows 'raw' data from the probe plotted in profile form 

for a 0.2 ms time-slot in the middle of the sustainment phase (1.0-1.2 ms 

in figure 4.1) utilising a data-base of around 20 shots. The radial 

coordinate in this diagram refers to a vertical minor radius as the probe 

was inserted vertically. The scatter in points is due to shot to shot 

variation. The curve fitted to Eg in this case includes a constant term as 

well as the odd powers of r in the polynomial expansion. However the 

least-squares fit is found to make this term very small so that the curve 

essentially intersects the origin. This shows that there is no vertical 

plasma shift.

In a toroidal system the plasma column will experience a horizontal 

shift due to curvature in the toroidal direction. Any radial field, which we 

measure with the probe, will give us information about this shift. 

Specifically, the shift, 6 of the centre of the flux surface (assumed 

circular) passing through r, in relation to the geometrical axis is given 

by;

6 — r Bp/Bg , - (4.1)
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(a )
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Figure 4.3 (a) 'Raw' Magnetic field profiles and (b) measured plasma

displacement vs radius compared with theoretical 

displacement calculated from the field profiles.

where r is the geometrical minor radius. We may compare this measured 

displacement with that predicted by formulae given by Shafranov for 

toroidal equilibrium [1]. In particular, the displacement of the flux 

surfaces A, as a function of radius r, is given by the following formula if 

we neglect plasma pressure (justified for this purpose since G << 1) and

assume a << :
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A(r) = 2R, - (4.2)

where A^(a) = { In
àlrir

+ ( 1 -  a V b ^ ) ( « , i ( a )  -  1 )  } - (4.3)

and &i(r') = 2
0

Bg(r) r dr / (r' B^(r’)) - (4.4)

Here a is the plasma minor radius, Rq the major radius of the torus and b, 

the minor radius of the shell. 5,̂ is the internal plasma inductance.

Figure 4.3(b) shows a comparison between this predicted displacement 

using the measured Bg profile and that obtained from equation 4.1. The 

scatter in the displacement calculated by the latter method is rather 

large. This is mostly due to small alignment errors in the radial coils 

which then pick up the much stronger Bg or B̂jj fields. However, agreement is 

certainly reasonable showing that in the central region of the plasma the 

displacement is about 2.8 cm falling to around 1.7 cm at the limiters. The 

value of central displacement agrees well with that measured by X-ray 

emission profiles (see appendix of published papers - paper 2).

We may deduce from figure 4.3(b) that the plasma takes on the form of a 

uniformly shifted equilibrium in the central region of the discharge, since 

in this region the displacement appears approximately flat. Accordingly we 

may correct the field profiles so that we plot them, not as a function of 

the geometrical minor radius, but as a function of the radial coordinate 

whose origin is the shifted axis of the displaced flux-surfaces. Denoting 

the polynomial expansions of the two uncorrected field components as:

n n’
B (x) = 1 a B (x) = Z b X

j=0 * j=0 J
2j - (4.5)

where x now represents the geometrical minor radius, the corrected field
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profiles may, in fact, be written (see appendix C):

B (r) = I a (1 - ^
j=0 r

- (4.6)

B (r) . Z b (1 - .
*  J = 0  J

where A represents the central plasma displacement. These corrected 

profiles are shown in figure 4.4. In the outer regions, of course, they are

B (

0.1

0
0 10 20

r  ( c m )

Figure 4.4 Shift-corrected magnetic field profiles.

virtually indistinguishable from the uncorrected ones, as expected. 

However, near the axis there are substantial differences. In particular, 

inspection of figures 4.3(a) and 4.4 show that on axis is about 7 mT 

higher once the profiles have been corrected. While this may not be an 

enormous effect on the field profiles themselves, when estimating the 

pressure profile, this correction is very important.

Since we now have the field profiles as a function of the radial 

coordinate whose axis is the plasma axis, we may assume cylindrical 

symmetry in the derivation of quantities which depend on the fields. As we 

have noted above, this is due to the very constant form of the displacement 

as a function of radius in the inner region of the
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discharge (figure 4.3(b)). Hence, by differentiating the corrected field 

profiles according to the equation:

Curl (B) = uoJ , - (4.7)

written in cylindrical coordinates, we may calculate the current density 

profiles. These are shown in figure 4.5. The accuracy in the outer regions 

of the discharge is not sufficient to distinguish whether the toroidal 

current density reverses as expected from certain force-free models-.

KlO'

20100
r (cm)

Figure 4.5 Current profiles Jg and J^.

Figure 4.6 shows profiles of the parallel and perpendicular current 

densities J.B/B^ and JxB/B^. To a good approximation we see that the 

discharge is force-free. In fact, by inspection of this figure, the ratio

■I 1 — ~i —  1--- 1 — I— m3--- L

r (cm )

Figure 4.6 Profiles of parallel and perpendicular current densities, 

J.B/B* and |J X B|/B*
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may be seen never to be less than about 10 and in the central region 

of the discharge around 50. Within errors the y (= J.B/B^ ) profile is flat 

from the axis out to about 15 cm where it falls monotically to zero at the 

wall. Accordingly we can deduce that the profiles which we observe are in 

good agreement with a modified Bessel description (MBFM) [2].

Figure 4.7 shows a profile of the safety factor q = rB^/RBg which 

appears monotonie. This observation excludes the presence of instabilities 

driven by ’pitch minima’. The value of q on axis is about 0.2, signifying 

that resonant m = 1 instabilities in the inner region of the plasma must 

have a toroidal mode number greater than |n| = 5. Lastly the value of q at 

the limiters is about -0.04. In a similar fashion this imposes a lower limit 

on the toroidal mode number of |n| = 25 for m = 1 modes to be resonant 

outside the reversal surface.

0.10

000

0 10 20
r (cm)

Figure ^.7 Profile of the safety factor q » rB^/RB@.

4.2.3 Estimation Of The Pressure Profile

By integrating the equilibrium pressure balance equation:

Grad ( p ) = J x B  - (4.8)
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in cylindrical form from the limiters inwards it is possible to obtain the 

pressure profile. It must be stressed that the computation of this profile 

is extremely sensitive to experimental errors and is thus very uncertain 

with low B values. This is because the pressure profile is directly related 

to the perpendicular current density which in our case is very small. 

However, with the type of corrections we have applied to our estimates of 

the field profiles, we find that we can estimate the pressure profile with 

useful accuracy in the sustainment phase of the discharge. In particular, 

this is because we can improve the edge-field fit in this period by using 

external coils to weight a vacuum-field configuration from the limiters 

outwards. This is accomplished by including extra points, calculated from 

the external coils, with a *1/r’ dependence for Bg and a constant value for 

B(jj. This process improves not only the edge-field fit, but also the central 

region fit as it allows higher order polynomials to be fitted to the data 

without introducing spurious oscillations at the edge. In addition to this, 

an equally important factor is the correction we have made to the field 

profiles to take into account plasma displacement. Without this, we would 

expect false features to appear on the pressure profile near the axis. 

Lastly, and not by any means least important, is the fact that our probe

perturbs the plasma only very slightly.

Figure 4.8 shows a best estimate of the pressure profile obtained by 

averaging over several polynomial fits for each of many different random 

realisations of the initial data. The error bar shown in this graph pertains 

to the on-axis pressure and is calculated as the standard deviation over the 

many polynomial fits and random realisations and decreases monotonically to 

zero at the limiters, where we assume that the wall pressure is zero. The

profile may be characterised by the following values of the various B

parameters:

i 5% - (4.9)
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= 5% ± 2%

~ “ 9% ± 3% ,

where here a represents the plasma radius

- (4.10)

- (4.11)

0.1

o
CM ̂  0.05 m

0 10 20
r (cm)

Figure 4.8 Profile of kinetic pressure normalised to the on-axis 

magnetic pressure.

The overall shape of the best estimate pressure profile is peaked on 

axis. At the extreme of the error estimate the profile could be flat (or 

slightly hollow) out to about 8 cm but not beyond.

In the sustainment phase of the discharge we find that the pressure 

profile is essentially constant in shape and evolves in magnitude so as to 

keep B approximately constant. During periods of the discharge when the 

plasma current varies very quickly, the termination and set-up phases, it 

is not generally possible to use edge coil measurements to improve the 

fitting procedure owing to inductive effects in the liner. So any study of 

the evolution of the pressure profile will inherently be subject to much 

greater inaccuracy. Despite this, however, we are able to say that in the
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time-interval just before termination the pressure peaks on axis 

(increasing by a factor of about 1.5 in absolute magnitude) indicating that 

the plasma undergoes a sharp compression before extinction.

4.2.4 Electric Field and Energy Confinement

In the approximation of cylindrical symmetry the Faraday equation;

Curl (E) = -dB/dt - (4.12)

defines the toroidal and poloidal electric field distributions as a 

function of minor radius given suitable boundary conditions at the wall, 

which are provided by loop voltage measurements. Typical profiles, obtained 

by subtracting successive estimates of the field profiles, are shown in 

figure 4.S.

1 2 --

10 --

' E>
UJ

10 20
r(cm)

Figure 4.9 Electric field profiles E@ and E^.

Since we have the plasma kinetic energy from our pressure measurements 

and the ohmic dissipation power from E and J we may obtain the energy
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confinement time as:

I p dV / JJjE.J dV , - (4.13)
Vplasma ^tot

where we have ignored dp/dt since it is small in our case compared to E.J. 

Our measurements yield a value of Tg = 70ys in which the uncertainty is 

virtually all in the pressure and so is about 30/5 as with <B>.

4.2.5 Conductivity

Since we have profiles of E and J we can obtain profiles of an effective 

parallel conductivity defined as :

QeffS (J.B)/(E.B). - (4.14)

This is shown in figure 4.10. Now if the plasma obeyed a simple Ohm’s law of 

the form:

o.(E + vxB) = J - (4.15)

(which it does not) then naturally Qeff would be equal to the actual 

(Spitzer) conductivity a

The true conductivity o may be obtained directly from an estimate of

the electron temperature profile. We may derive this crudely by assuming

that the electron and ion temperatures are equal and that the shape of the 

density profile is the same as the electron temperature so that T@ « P^/^. 

Then, using the Spitzer formula [3] for the conductivity with an assumed 

constant resistivity anomaly Z, we can find the conductivity a-p 

corresponding to the electron temperature profile deduced. This is shown in

figure 4.10 for Z = 2 and 4.

The current-to-field ratio aeff has a clearly hollow profile even in 

these decaying-current discharges whereas the Spitzer estimate, oy, is 

naturally peaked on axis because the temperature profile we deduce is
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iFigure 4.10 Profile of Oeff“ (J.B)/(E.B) compared with several 

profiles estimated from the pressure for Z - 2,4.

monotonically decreasing. Plausibly, one could argue that virtually any Tg 

profile would become monotonie because of thermal deposition and the 

transport equations regardless of our somewhat cavalier assumptions about 

the density profiles.

It seems most unlikely that the discrepancy between Ogff and 07 could be 

explained by spatial variations of Z since this would require Z < 1 at the 

edge. We conclude, as noted above, that the plasma does not satisfy the 

simple ohm's law of equation 4.15 but experiences some type of 'dynamo 

effect' sustaining the reversal [4].

4.3 DISCUSSION

That the flux-surface shift deduced from Bp is consistent with the 

Shafranov value is, of course, no surprise, although it is reassuring. 

Perhaps the most important point is that, once measured, the shift can be 

properly corrected for in further analysis of the measurements from the
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viewpoint of the cylindrical approximation. Without proper correction 

serious errors might occur.

The y profile of parallel current confirms the observations 

elsewhere [5,6] and also the theoretical expectation that the central 

regions of the RFP relax to the minimum energy, y = constant, state but that 

y + 0 at the wall. It thus supports descriptions such as the modified Bessel 

function and Bessel vacuum models as a reasonable approximation to RFP 

profiles.

The absence of a ’pitch minimum’ in the outer regions of the discharge 

is an important result. As well as excluding instabilities driven by such a 

configuration it also confirms the rationale for choosing the RFP over 

'unreversed’ pinches.

The deduction of pressure profiles from magnetic probe measurements is, 

as we have seen, subject to considerable uncertainty owing to the 

accumulation of calibration, alignment and other errors. Nevertheless it is 

believed that the profile presented represents a reasonable approximation 

to the actual profile. In confirmation of this we note that, at this time in 

the discharge, interferometer measurements show that the chord averaged

electron density is about 2.7x10^* m“ .̂ Assuming a parabolic distribution 

for which ngo = 3<ng>/2, taking the central electron temperature to be 

twice the mean conductivity temperature (as indicated by Thompson

scattering for different discharges [7]), Tg = 50 eV, and taking Tg = T^ 

and ng = n^ gives an independent rough estimate of the central beta of 0.07. 

This then agrees quite well with the value 0.09 in figure 8, considering the 

uncertainties of the assumed ng and Tgg as well as pg.

The accuracy we estimate for p(r) enables us to rule out the possibility 

that the pressure profile is rather flat out to a radius close to the 

reversal surface and then steeply falling from there to the wall. The

importance of this observation is in excluding certain radial dependences 

of the transport coefficients. In chapter 5 we will see that there is
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considerable evidence that the magnetic field lines inside the reversal 

surface are stochastic and that the transport associated with such 

stochasticity is sufficient to explain the observed energy losses. However 

these measurements are not able to establish whether or not the field is 

stochastic at the reversal surface and beyond. This is an important point 

since recent 3D^MHD simulations [8] seem to indicate that even if the 

centre of the RFP is stochastic, the edge region, from about the reversal 

surface outward, may have well defined magnetic flux surfaces and hence 

much smaller electron diffusivity.

If such a situation of good ’edge confinement’ were to occur then the 

temperature would, in order to satisfy the diffusion equations, adopt a 

profile flat in the centre, where the electron diffusivity is large, and 

steep at the reversal surface and beyond, where it is small. Less obviously 

the density profile might also be expected to take on this form and and in 

this case the pressure profile would follow suite. However this is 

precisely the profile shape which is ruled out by our measurements.

Of course, in the absence of actual ambipolar stochastic transport 

calculations, the assumption that the density profile must follow the 

temperature is weak and thus, within errors, our measurements cannot rule 

out the existence of a stochastic interior and non-stochastic edge. 

However, if we do assume that the plasma is only stochastic inside the 

reversal surface, then the density profile consistent with our measurements 

will have to be very peaked.

Our measurements of Ogff and their deviation from the expected profile 

shape of the ohmic conductivity are a rather direct observation of the 

’dynamo mechanism’ at work, even in decaying discharges. Of course, in 

steady state discharges the persistence of magnetic field reversal is 

itself a manifestation of this reversal sustaining mechanism. 

Unfortunately, the measurements do not presently enable us to distinguish 

between the various possible detailed mechanisms which may be responsible
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for the 'dynamo’ effect (for example, the mean-field electrodynamics 

approach [9,10], the tangled, discharge model [11] or some form of non-local 

resistivity due to stochasticity). Further theoretical refinement of these 

models in the future may reveal characteristics which are sufficiently well 

defined as to be testable against our present results.

4.4 CONCLUSIONS

Equilibrium results from the insertable probe have been presented. The 

effect of the probe on the plasma is to increase the resistance by only 

about 20^ and therefore it is assumed that the measurements have a direct 

relevance to discharges where the probe is not inserted. The magnetic field 

profiles obtained agree well with an MBFM description. Measurements of

horizontal plasma displacement as a function of radius agree, within

uncertainty, with the predicted theoretical variation according to

Shafranov. In particular the value of displacement in the centre of the

discharge is 2.8 cm falling to about 1.7 cm at the limiters. No vertical 

plasma shift is observed.

Examination of the pitch profile reveals that there are no pitch minima 

and that m = 1 modes with |n| < 5  in the core or |n| < 25 at the edge, if 

present, would be non-resonant.

The pressure profile has been calculated which appears consistent with 

independent values of the temperature and electron density and is peaked on 

axis. Typically gg = 14%, <B> « 5% and Bo = 9%. Electric field profiles have 

also been obtained. These have been used to calculate an effective parallel 

conductivity which has been compared to that calculated from the pressure 

profile, assuming a suitable density profile. The very great difference 

between these two estimates requires the presence of some kind of a dynamo 

mechanism acting in such a way as to sustain field reversal.
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CHAPTER 5 

EDGE COIL MEASUREMENTS

In this chapter measurements obtained from the various arrays of edge

coils are presented and discussed in terms of fluctuation activity.
200     _ Extensive use will be made, both in this 

chapter and in chapter 6, of the

techniques reviewed and developed in 

chapter 3. The reader may thus find it 

convenient to flick back occasionally to 

recap on some of the definitions.

The majority of this chapter is 

devoted to the analysis of the

sustainment phase of optimal 'power 

crowbar' discharges. Figure 5.1 shows 

the evolution of the main discharge 

parameters for this type of shot. 

Towards the end of section 5.1, however, 

results from extensive scans over a

h
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Figure 5.1
Time history of a typical discharge used for edge coll

measurements: Plasma current (Ip); toroidal loop voltage r e l e v a n t  p a r a m e t e r  S p a c e  a n d  a n  

(V*); average toroiodal magnetic field (<B*>); average line

Of sight sis.tr.. osnsity (..)= toroidal .agnsti. fisid investigation Of the termination and
at the liner (B*); time rate of change of the poloidal set“Up phaSeS iS presented,
magnetic field at the liner (dBg/dt).

5.1 RESULTS

5.1.1 General

To achieve an understanding of why the relatively complicated techniques 

of random data analysis have to be used in the investigation of fluctuations
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in the RFP, it is instructive to compare 

typical raw-data traces from HBTX1A 

running as a Tokamak and as an RFP. 

Figure 5.2 shows such a comparison. The 

top graph in this diagram is clearly 

quite periodic, discrete events being 

observable. This is an edge coil signal 

for a Tokamak discharge. The bottom 

graph, however, shows no such signs of 

periodicity. This is the RFP discharge.

To reveal the dependence of the 

fluctuations on the frequency v, we may 

calculate the power spectrum T^xC^) as 

defined in equation 3*15. This is shown 

in figure 5.3 for two internal edge 

coils, one measuring Bg and one B̂j,. The 

spectra are averaged over five shots so as to illustrate the trends, 

although substantial variation in the detail occurs from shot to shot. It is

6

 time (A U. )
Raw data traces from a edge coll for 
HBTX1A running as (a) a Tokamax and (b) 
an RFP.

-B T

IBI

I

i
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100 2000
Frequency kHz

Figure 5.3 Power spectrum of (B^/|b |)* and (Bg/jBl)' during the 

sustainment phase obtained from the internal coils.
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clear that the dominant power is at low frequencies and that above about

40 kHz the spectra fall off approximately as v'^. It is also apparent that

there is little difference between the spectral shape of the two field 

components, although below about 40 kHz Bjjj is systematically slightly 

stronger than Bg.

Another basic measurement is the rms 

fluctuation level. This is plotted in 

figure 5.4 as a fraction of the total 

poloidally averaged magnetic field, 

(B^^+Bg^)^/^, and as a function of the 

poloidal angle 6. The mean value for Bg 

is typically 1 % and for B̂jj, 1.5%. In the 

set-up and termination phases of the 

discharge this rises considerably for

Figure 5.4 both components to 6-10%. Also apparent
Ensenble averaged amplitude of B a /|b | and B a /|b | as a . from figure 5.4 is the significant
function of poloidal angle during the sustainment phase

In the frequency band 5-250 kHz. Variation of the rms level with 0. This

effect, being particularly obvious for 

Bg ,  is indicative of the importance of toroidicity in the RFP.

5.1.2 Poloidal mode structure

As we discussed in chapter 3, to determine the poloidal structure of the 

fluctuations we may evaluate the poloidal mode power spectrum 

(equation 3.21). Figure 5.5 shows an example of this spectrum, pertaining

to an internal poloidal array, for the two field components. Clearly the B^

spectrum is dominated by mode numbers m = 0,1 with negligible contribution 

at higher m. The Bg spectrum relates a similar story, except that there

appears to be relatively less m = 0 and more m = 2.

An alternative approach to determining the poloidal mode structure is to
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use correlation analysis. For instance, 

we may calculate the spatial 

autocorrelation by forming the cross 

correlation coefficient (equation 3.19) 

between the various coil signals in a 

poloidal array. Figure 5.6 shows 

examples of this for Bg using coils on 

the inner (a) and outer (b) equator as 

reference. Clearly the choice of 

reference makes a great deal of 

difference. This reflects the fact that 

6 is not an ignorable coordinate, and

hence the fluctuations do not possess 

rotational symmetry in their statistics. 

However, in principle, this does not

alter the fact that inspection of such autocorrelations will allow the

nature of the fluctuations to be deduced. In fact, to lowest order.

2 -x 1 0 ” T

1

2 310

Figure 5.5
Poloidal mode power epectrum for and Eg during the 

sustainment phase in the frequency band 5-250 kHz

Figure 5.6

Equal time eross-oorrelation coefficient (spatial 

autocorrelation) for B̂ g as a function of displacement in 

poloidal angle; (a) reference coil at e - v; (b) n  

ooil at e > 0. Sustainment phase: filter 5-50 kHz.

(a)
1-i

2n

(b)

- T t
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disregarding the lack of rotational symmetry, the shape of the 

autocorrelation is that which would be expected from swLa.r proportions of 

linearly independent m = 1 and m = 0. In other words it is the sum of a 

constant plus a cos(6) dependent part. The lack of symmetry and hence the 

non-ignorability of 6 indicates that 'm = 1’ component is distorted due to 

toroidicity so that its phase varies more rapidly at the outer equator 

(6 = 0) than the inner (e = ir).

An equivalent picture to this is that each independent mode is not 

simply a fourier mode but a combination of fourier modes linearly coupled 

together. Hence the independent *m = 1' mode is actually expressible as;

M^ = cos (0 - ttj) + e^GOS (28 - + ..., - (5.1)

where à'nd af& dfbltraTJ phases and sz is a coupling coefficient. The equation 

(curl B)p=0, written in toroidal geometry, in principle determines this 

expansion. To see this we write this equation:

~~sin(6) Ba + ~ -     -^8 = 0 “-(5 2)Ro+rcos(8)'  ̂ r 98 Ro+rcos(8)‘ 9(J)

Here Rq represents the major radius of the torus and r the minor radius. If

we now Fourier expand the toroidal field component in the following 

fashion:

g* = I -(5.3)
m

where, as usual, the coefficients a^ are complex and the real part is taken 

implicitly, then on substitution into equation 5.2 we are led to a similar 

expansion for Bg:

n V r m+1 18 mRo m-1 -i8 i(m8+n<J))
‘  ̂ ‘ 'Tï; " I T "  • - (5-4)m

Now, from the poloidal mode power spectrum we have observed that there is
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virtually no in = 2 toroidal component. Also the spatial autocorrelations 

show much less distortion for this component. So that to a good 

approximation:

Ml i( 8+n*)

And so equation 5.4 tells us that

(5.5)

B Ml = e^®] - (5.6)

Coherence

= ̂/{ [ ^°cos(e) + — cos(28)] + i[ ^®sin(8) + ^ sin(28)]}e^"^.

And hence the signature of the toroidal distortion is that the cos(8) and 

cos(28) components (and similarly the sin(8) and sin(28)) are always in 

phase with each other. This is readily confirmed by figure 5.7 which shows 

the cross-spectrum between the cos(8) and cos(28) signals (formed as

weighted sums of the various poloidal 

array signals). At low frequencies the 

coherence is very high( >0.8) 

indicating that about 60% of the power 

is linearly coupled. In addition the 

phase is zero showing that the cos(8) 

and cos(28) components are in phase at 

the outer equator (8=0); a result 

expected from the autocorrelation 

data. The fact that the level of 

coherence tends to drop at high 

frequencies, accompanied by a 

randomisation of the phase, is 

indicative of the increasing 

importance of electronic system noise

  Phase

200
Frequency kHzFigure 5.7

Coherence and cross-phase spectrum between the m > 1 and the 

m - 2  cosine modes for Bg (ensemble average over 10 shots, 

sliding averaged over 3 frequency points during the OWing tO the decrease Of abSOlute
sustainment phase).
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  Coherence

aA V a/Va

power with frequency. Coherence 

spectra obtained by using unintegrated 

signals do not suffer from this 

problem and possess high values of 

coherence right out to the Nyquist 

ifrequency.

Another type of linear coupling is 

illustrated in figure 5.8. This shows 

the cross-spectrum for B̂jj between m=0 

and m=1 (cos(0)). At high frequencies 

the cross phase can be seen to be t t ,  

showing that the modes add
0 100 200 

Figure 5.8

Coherence and cross-phase spectrum between the m - 0 and 

m . 1 cosine modes for B* (averaged as in figure 5.7). the toroidal distortion O f  the m=0

Frequency kHz constructively at the inner equator.

This may be thought of most simply as

mode due to the fact that = 1/R = 1-(a/Ro)cos(0). The lower coherence at 

low frequencies may be interpreted as indicating that the major parts of the 

m=0 and m=1 are independent.

So the poloidal structure is very simple. There are basically just two 

types of statistically independent modes present. We may label these as Mg 

and M-| . These modes correspond to the fourier modes 'm=0' and ’m=1 ’ along 

with their concomitant toroidal distortions. The fact that these toroidal 

distortions are greater for the 8 component is not a priori explicable in 

any simple fashion. However, knowing this fact the equation (curl 6)^=0, 

written in toroidal geometry, dictates the nature of the toroidal
«Vdistortion on B̂j,. In fact it is possible to extend this type of argument to 

establishing a general algorithm capable of completely determining the 

eigenmodes of the system in terms of the fourier modes. However a discussion 

of this topic is not within the scope of this thesis. The presence of higher 

poloidal mode numbers than m = 1 is not established. If they do exist,
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however, their power is certainly less than 3% of that contained in the Mg 

and M-| modes.

5.1.3 Toroidal mode structure

In chapter 3 we discussed a variety of different methods for estimating 

the toroidal mode spectrum. The two most favourable methods relied on

calculating the toroidal autocorrelation 

in space. Figure 5.9 shows an example of 

this for Bjj). The left hand side of this 

diagram is computed by using a reference

P(n)
Retaftve
units

figure 5.9 Autocorrelation in space, p($) for 
(frequency band (5-15 kHz).

(scale % 2)

Convolution Line Shape

\  3 5 -6 5 k H z

A 5 -5 5 k H z

1 _____1------------------- 1------------------- 1
20 30 *0

^  coil at one end of the array and the 

right hand side using a reference coil 

at the other end. As is apparent, the 

diagram is not completely symmetric, 

indicating that portholes, shell gaps, 

etc tend to introduce asymmetries which 

distort the ignorability of cj). However, 

by using the prescription of equations 

3.25 and 3.24, we may use this graph to 

estimate the toroidal mode power 

spectrum. This is shown in figure 5.10 

for a variety of different frequency 

ranges. It is apparent that, 

irrespective of the frequency range, the 

spectrum shows a broad band of n numbers 

centred on |n| = 8 with some evidence of 

a higher harmonic at |n| * 16. It is 

important to remember that, due to the 

finite extent of the toroidal array, the
Figure 5.10 Toroidal mode power spectrum for 

for various frequency bands.
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plotted spectra are in fact the 'real' spectra convolved with an 

instrumental function (shown in the inset). However it is clear that the 

width of the convolving function is less than the width of the spectrum, 

indicating that the real spectrum is truly broad and not simply a delta 

function. This is also easily seen direct from the spatial autocorrelation 

function since this has the form of an exponential cosine which, by 

definition, fourier transforms to a broad spectrum. Other features to note 

are the relatively higher importance of the higher harmonic at high 

frequencies and the near absence of any power below about |n| = 5. This last 

feature corresponds to the statement that all modes are resonant inside the 

plasma, given that we only have m = 0,1, since the q profile as measured by 

the probe in chapter 4 peaks at 0.2 on axis.

(AU)

25

20

15

10

5

0

0 10 20 30

Figure 5.11 Toroidal mode power spectrum for IBg for the frequency band 

5-15 kHz.

Figure 5.11 shows a similar toroidal mode spectrum for Bg. Broadly, the 

characteristics are the same, although there seems to be, in addition, a 

very low n feature. There are two possible explanations for this. Firstly 

the mode could be an m = 0. However, if this was true, the equation 

(curl B)r=0, written in cylindrical geometry, would tell us that the

associated n number must also be zero. So it could be an m = 0,n = 0 mode.
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which amounts to an oscillation of the toroidal current. The second 

possibility is that it is an m = 1 mode. If this was the case, the fact that 

this feature only appears on the poloidal component of the spectrum would 

naturally be explained by the low n number. Again this is simply due to the 

equation (curl B)p=0 which may, in fact, be written:

^  - (5.7)

So we can see that for a given kink mode the power in B^ is about O.ln^ 

times the power in B g ,  which if |n| = 1 would amount to a tenth. So either 

of these two mechanisms could account for the low n feature on Bg .  However, 

as we have discussed before, the poloidal mode spectrum for Bg reveals 

significant power in the m = 0. But by equation 5.7 we know that any m = 0 

power in Bg must also be n = 0. So given information on the poloidal mode 

spectra we would expect a low n feature on the Bg toroidal mode spectrum due 

to this effect. Whether or not, however, this is augmented by a low n kink 

mode is not clear. We will return to this question in sections 5.1.7.1 and 

5.1.8.2.

5.1.4 Helical mode structure

Although the results presented so far give a general description of the 

individual poloidal and toroidal structure, they do not in themselves allow 

us to unequivocally determine the helical mode structure and to associate 

given m ’s with given n's. As we discussed in chapter 3 this requires, in 

principle, a two dimensional array of measurements which can then be 

decomposed in helical fourier components of the form exp i(m8+n#). Since we 

don’t have such an array the best we can do is to calculate the Association 

spectrum as defined in equation 3.30 by computing the double Fourier 

transform of the 0-(j) correlation matrix.

Figure 5 . 1 2  shows an example of a typical correlation matrix for Bg



$5 EDGE COIL MEASUREMENTS 141

obtained from the toroidal array and 

an interspace poloidal array, whose 

cross-over point is (6,40=(-40°,60°). 

Clearly the diagram peaks, as 

expected, at the intersection point. 

In addition the correlation appears 

dominantly diagonal indicating that 

the structure is indeed helical.

By transforming figure 5.12 

according equation 3-30 we may derive 

the Association spectrum. This is 

shown in figure 5.13. Since we have 

seen from the poloidal mode spectra

that there is negligible power at mode

numbers greater than m = 1 we adopt the policy of displaying this spectrum

as several toroidal mode spectra, each pertaining to a given m number. Owing 

to the the fact that the correlation matrix has no imaginary part the

Association spectrum respects the symmetry A^n = A*-mn" This allows us to

Tl

-u 0
Figure 5.12

Correlation matrix for 8$ between the poloidal and toroidal 

arrays (frequency band 5-50 kHz) indicating a dominantly 

helical structure.

V 7

!

I
m  r 2

m = 3

-20-40 200 40

Figure 5.13 Association spectrum for . Inset shows convolution 

line function (frequency band 5-50 kHz).
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adopt the convention of m always being positive definite and n ranging from 

-» to +®, negative n values refering to modes resonant inside the reversal 

surface.

It can be seen from figure 5.13 that the dominant feature is a kink mode 

at n = -7. As in the complete toroidal spectrum, this should not be thought 

of as representing one mode, but rather a broad band of instabilities, as 

the width of this feature is greater than the convolution function width. 

Indeed this feature appears to have a tail which extends out to n = -20. In 

addition there are also peaks near n = 0 and n = +9 on the ra = 1 spectrum 

and a negative feature on the m = 0 spectrum coinciding with the main m = 1 

peak. Further, the m = 2 spectrum appears to be a reflection of the m = 1.

We discussed at length in chapter 3 the various short-comings of the 

Association spectrum. In particular we showed that the non-ignorability of 

the e coordinate, combined with the finite toroidal array length, would 

generate spurious features. It would thus be a mistake to interpret all the 

features, visible on the Association spectrum of figure 5.13, as 

representing independent modes with a physical existence. Indeed, we would 

interpret virtually all the m = 2 features as arising from linear coupling 

effects due to toroidal distortion. Also we must interpret the m = 0 

feature as likewise spurious since, by definition, power is positive 

definite, and second by equation 5.7 we know that there can be no poloidal 

field component for a true m = 0, n 0 perturbation.

The m = 1 features near n = 0 and n = +9 are less easily disposed of. 

Inspection of the correlation matrix reveals little evidence of opposite 

helicity modes which would be resonant outside the reversal surface. We 

should also note, from our studies of the equilibrium q-profile in 

chapter 4, that an m = 1 mode resonant in this region must have n > 20. And 

so, if ,we are to regard the m = 1,n = +9 feature as representing an 

independent mode, we must realise that it will be non-resonant. It is thus 

likely that this feature is an artifact arising from linear coupling
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although we cannot fully rule out the possibility of it representing an 

independent mode. The m = 1, n = 0 may well indicate a true mode, in which 

case it represents an oscillation of the equilibrium shift. However, again 

this could be explained, at least in part, by sidelobes arising from the 

dominant m = 1, n = -7 modes.

I

-40 -20 0 20

iFigure 5.14 Association spectrum for Inset shows convolution 

line function (frequency band 5-50 kHz).

Figure 5.14 shows the Association spectrum for B̂jj obtained from an 

internal poloidal array and the (interspace) toroidal array. Since these 

two arrays are separated by the liner, we correct the resulting Association 

spectrum assuming a single 10 ys penetration time. The m = 1 component 

looks similar to the Bg spectrum although the peak is shifted to n = -10. 

This effect may be explained by B̂j, being more sensitive to high n numbers 

than Bg because of the direction of the perturbed field at the 

wall (equation 5.7). As expected from our identification of the Bg m = 2 

spectrum as being due to linear coupling, the B^ m = 2 is much smaller, 

consistent with weaker toroidal distortion. There is still a negative 

feature on the m = 0 spectrum, slightly shifted with respect to the m = 1, 

n = -10 peak, the shift being explicable in terms of incomplete correction
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for liner induced phase shifts. The m = 1, n = +10 peak is much less 

significant than with Bg,  consistent with its interpretation as a toroidal 

distortion artifact. There then remains the m = 0, n = 0 component which we 

take as real and indicating a definite contribution from those modes; and 

m = 1, n = 0 which most probably can be attributed to toroidal distortion 

of the m = 0, n = 0.

As we have mentioned above, these Association spectra are corrected for 

liner penetration effects only by assuming a single 10 ys penetration time, 

whereas the theoretical liner penetration time is different for different 

modes (see appendix B ) . In particular, for m = 0, n = 0 the penetration 

time for B̂j, is about ten times longer, causing attenuation by a factor of 

ten. If this effect is allowed for, the m = 0, n = 0 feature on B̂j, is 

significantly enhanced over that shown.

5.1.5 Propagation

5.1.5.1 Poloidal

In order to determine propagation and rotation effects we must examine 

the time delayed correlation (defined in equation 3.18-3.19) between 

different coils in either the toroidal or poloidal arrays. Figure 5.15(a) 

shows the result for Bg in the poloidal array for which clear evidence of 

rotation is found. The direction of rotation is with the electron poloidal 

current flow and so is in the ion diamagnetic drift direction inside the 

reversal surface. The rapid fall-off with time or distance of the peak value 

of the correlation coefficient is indicative of the relative incoherence of 

the modes due either to a broad spread of rotation rates or to growth and 

decay rates of the same order of magnitude as the rotation.

That there are different rotation rates is emphatically confirmed by 

figure 5.15(b) in which the time-delayed correlation for B^ shows rotation



$5 EDGE COIL MEASUREMENTS 145

-40 Tt

Figure 5.15

Time delayed cross-correlation coefficient as a function 

of e, ensemble averaged in the sustainment phase, filter 

5-50 kHz: (a) Bg (b) B^; showing evidence for rotation.

for nominally identical shots in the opposite direction to the Bg rotation. 

This cannot be explained by shot-to-shot variation since this phenomenon is 

observed on single shots. Hence the explanation must presumably lie in the 

fact that Bg and B̂j, have different sensitivities to different helicities 

determined by the direction of the perturbed field at the wall. So we must 

imagine that the fluctuations to which B̂j, is most sensitive rotate in the 

opposite direction to those which Bg is most sensitive. Other sets of 

discharges of nominally similar parameters sometimes show almost no 

significant rotation. The reasons for this are unclear.

5.1.5.2 Toroidal

As with the poloidal array, to investigate toroidal propagation we must 

calculate the time delayed correlation between various coils in the
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It

0
0

T pS
Figure 5.16

Correlation function p vs time delay,t and toroidal angle,
«V

#1 for (frequency band 5-15 kHz) showing evidence of 

toroidal rotation.

toroidal array. Figure 5.16 shows an 

example. The propagation is generally 

even less pronounced than that 

observed in the poloidal direction 

indicating the incoherence of the 

modes. At low frequencies (5-15kHz) 

the rotation is generally least 

ambiguous and the observed direction 

of preferred rotation is in the 

direction of (conventional) toroidal 

plasma current. The velocity is 

essentially given by the phase 

velocity of the dominant modes, 

consistent with the perturbations 

being of the form sin(wt+n#+m6), and 

is typically 10** ms"^.

5.1.6 Evolutionary phenomena

So far we have restricted our observations to frequencies greater than 

about 5 kHz. This enables us to exclude the evolution of the equilibrium

fields. However, on a large proportion of the discharges there exist
\evolutionary phenomena at frequencies as low as 1 kHz which justify the 

designation 'perturbation’ since they are not, as such, simply evolutions 

of a quasi-cylindrical equilibrium.

Because these features turn out to be spatially fairly coherent, even 

though they exist for no more than typically one time cycle, we can 

illustrate their characteristics by plotting directly the temporal 

evolution of the edge field profiles. Figure 5.17 shows a particular clear 

example of polar plots from a single discharge of the toroidal field



$5 EDGE COIL MEASUREMENTS 147

-0 s 0

0.75 1.0 1.25

1.751.5

Figure 5.17 Polar plots of B^: evolution In time (ms) showing low 

frequency m - 1 rotation.

amplitude as a function of e referred to the mean Bjj, at each 0 (over the 

time plotted) as zero. The clear m = 1 character slowly rotating in azimuth 

is evident from inspection. By a similar analysis using the toroidal array 

we are able to identify the associated n number as being n * -8. Hence we 

should regard this evolutionary structure as an m = 1, n = -8 helical mode 

resonant inside the reversal surface. The (peak) amplitude of this mode is 

sometimes as great as B^/|b| = 5% which, for typical reversal levels, is 

* 50%. These perturbations tend to be present only during the 

first msec or so of the sustainment phase, their amplitude decaying with 

time.

A second point which must be emphasised under the heading of 

evolutionary phenomena concerns the various spectra presented earlier. 

These are time and shot averages over typically 1 ms and 5 - 10 shots. 

However, we find that the characteristics of the fluctuations vary with 

time in a systematic though not reproducable manner. Indeed the
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fluctuations occur in bursts separated 

by quieter periods and are not in the 

statistical sense stationary random 

signals. One striking observation is a 

form of cyclic behaviour in the

evolution of the n-spectrum. 

Figure 5.18 shows this evolution, the 

individual n-spectra being calculated 

by a sliding average over 128 ys 

during a period of 0.6 ms in the

sustainment phase. During this period 

the spectrum evolves from
n

Figure 5.18 single-peaked high power to
Time evolution of the n-spectrum for (frequency band

5-50 kHz). double-peaked lower power and back

again, going through about two cycles in 0.6 ms. The average spectra of 

figure 5.10 are dominated at lower frequencies by the higher power single

peaked type of spectrum but it is evident that at other times, other

wave-numbers are dominant.

5.1.7 Fluctuations In Different Discharges

Up until now we have only discussed ’optimal' discharges characterised 

by a toroidal plasma current of 200 kA and a value of the pinch parameter, 

0, of about 1.8. In this section we will discuss the differences observed in 

the structure of the fluctuations in different discharges. In particular we 

will present the results from a series of scans carried out by varying the 

pinch parameter, plasma current and filling pressure.
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5.1.7.1 Variation of G

Figure 5.19 shows the variation with 0 of the rms fluctuation level 

(filtered in the band 3 ~ 250 kHz). Clearly the optimum value of 0 is about

1.7 - 1.8, corresponding to a minimum 

in the fluctuation activity. Thus, as 

we decrease or increase 0 away from 

this optimum value the level of 

fluctuations begins to rise. To see if 

this increase in the absolute level of 

fluctuations corresponds simply to an 

increase in the amplitude of the mode 

structure we have previously 

discussed, or whether it signifies the 

onset of fundamentally new phenomena, 

we may plot the m and n spectra for a 

variety of 0 values. This is shown in 

figure 5.20 for Bg and figure 5.21 for

<̂j) •

Clearly the main m = 1 , n = -8 mode remains broadly the same with

variation in 0. However, as 0 increases the n = 0 feature on the Bg spectrum

grows, until at 0 = 2.4 it is of the same amplitude as the n « -8. The B̂j,

n-spectrum does not show this feature indicating that the responsible mode

is either an m = 0, n = 0 or a low n m = 1 mode. However, since the m = 0 
*\/

component of the Bg m-spectrum does not increase appreciably with 0, we must 

favour the m = 1, n = 0 explanation. The exact n number we should associate 

with this mode is unclear. Maximum Entropy spectra indicate |n| * 3. In 

order to substantiate this, however, we may plot a complete toroidal 

spatial autocorrelation function by correlating coils in the toroidal array

0.10-

I p -  2 0 0 . KA 

Pq - l.SmTorr 
High-pass filter 
3.0 kH,

008

0.06

0.02

1.5 2.0 2.5

Figure 5.19

Variation of ^/|b| with 6 (Po - 1.5 nTorr, Ip - 200 kA)

with other coils from various arrays at the same poloidal angle around the
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Figure 5.20 Toroidal and poloidal mode spectra for B@ (frequency band 

5-50 kHz) in the sustainment phase for several different 

values of 6 (Po - 1.5 BTorr, Ip - 200 kA).
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Figure 5.21 Toroidal and poloidal mode spectra for (frequency band 

5-50 kHz) in the sustainment phase for several different 

values of 6 (Po - 1 . 5  mlorr. Ip - 200 kA).
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Figure 5.22 Complete toroidal autocorrelation for Bg in the sustainment 

phase (frequency band 5-50 kHz). Each point represents a 

correlation between two coils displaced toroidally.

machine. In principle we could then fourier transform this to provide the 

exact (perfect resolution) n-spectrum. Figure 5.22 shows an example of this 

for 0 = 2.4. Clearly there are large errors due to port holes and shell-gaps 

distorting the ignorability of (j). However, by inspection of this spatial 

correlation we can see that the dominant long wavelength mode is an

I n I =>3.

By forming the Association spectra for these high 0 discharges we are 

able to show that this mode has the same sign of helicity as the previous 

m = 1 modes. From calculations of the safety factor, q, on axis using the 

Bessel Vacuum Model (BVM) we may deduce that this mode is non-resonant.

Another feature of interest is that as 0 is increased, the width of both
«V A/

the 00 and the B̂jj |n| * 8 features decrease. Thus, as the absolute amplitude 

of these modes increases, so the actual number of modes seems to decrease.
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5.1.7.2 Variation Of Plasma Current And Filling Pressure

Figure 5.23 shows the variation of the rms fluctuation level with plasma 

current, Ip. The variation is consistent with previous measurements [1] 

which showed two regimes, one at low current where B/|B| scales 

approximately as Ip~^, and another at high current where the scaling is much 

weaker. By calculating the various mode spectra for different values of Ip 

we find that there is no significant variation in the actual structure of 

the fluctuations.
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Variation of B/|b | with plasma current Ip ( filter: 
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i

Variation of B/(b | with filling pressure Po (filter: 

3-250 kHz. e - 1.8, Ip - 200 kA).

Figure 5.24 shows the rms fluctuation level as a function of filling 

pressure. Unfortunately, at the time of the scan, there was no independent 

measurement of the electron density and so the relatively flat nature of 

this graph could be explained by differing amounts of pumpout. Again, a full 

calculation of the various mode spectra at different filling pressures 

reveals no significant changes in the fluctuation structure.
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5.1.8 Termination And Set-up Phases

So far we have been concerned only with the sustainment phase of the 

discharge. In this section we turn to the more turbulent phases of the 

discharge where the reversed field configuration is first set up (the 

set-up phase) and when the discharge violently ends (the termination 

phase). In both these regions of the discharge the rms value of the 

fluctuation level is about 5 to 10 times higher than in the sustainment 

phase. However, as we shall see, different processes appear to be occurring 

in each phase.

5.1.8.1 Set-up Phase

Figures 5.25 and 5.26 show examples of the n amd m spectra for Bg and

xIO'̂ T̂
respectively in the set-up phase. It is clear that the general picture is

Î
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Figure 5.25 Poloidal and toroidal mode power spectra

for Bg in the set-up phase (frequency band 5-50 kHz).

200

100

-►  In I- ►
Poloidal and toroidal mode power spectra for in

 m
Figure 5.26

the set-up phase (frequency band 5-50 kHz).
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fairly similar to the sustainment phase but with a higher amplitude of

fluctuations. In particular there do not seem to be any low n kinks as

observed above at high values of the pinch parameter. A power spectrum

analysis also reveals no qualitative change in frequencies from

sustainment,

5.1.8.2 Termination Phase

Termination

In figure 5.27 we plot on a relative scale, power spectra for the

termination and sustainment phases. Clearly, for termination, the shape is

significantly altered, showing a rise 

up to about 50 kHz; thus high

frequencies become more important. 

Another characteristic of the

termination phase is that the rotation 

is much more coherent. This is shown 

clearly on the time delayed 

cross-correlations illustrated in 

figure 5.28. The rotations are always 

in the same direction during 

termination, being toroidally in the 

direction of electron current flow and 

Frequency kHz poloidally in the electron diamagnetic

drift direction.
and termination.

Another effect which shows clearly in figure 5.28 is that the toroidal

wavelength and coherence length increase. This is a progressive effect but

of course our figure captures only one period during the current decay. At 

the time of figure 5.28 0 is about 1.0. The poloidal structure is always 

dominantly m = 1 and the helicity corresponds to negative n; For

figure 5.28 n = -3 to -4 for Ba and * -1 to -2 for Bg.

S u sta in m en t

Figure 5.27
Relative power spectra for B@ during the sustainment phase
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Figure 5.28 Time delayed cross-correlation coefficient for (top) and 

Eg (bottom) as a function of 6 (left) and * (right) during 

the termination phase (filter: 5-50 kHz).

In order to investigate more thoroughly the spatial and temporal 

structure of the fluctuations in the termination phase of the discharge we 

adopt the policy of defining three time regions of equal length, measured 

from the time at which reversal is lost. In general each shot in an ensemble 

will then have different times associated with each such region since 

reversal is lost at slightly different times for each discharge. This 

enables us to distinguish phenomena which occur before and after the loss of
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Figure 5.29 Magnetic fluctuations in termination.
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Figure 5.30

Evolution of toroidal mode spectrum for 

(time slots shown in 5.29, filter; 5-50 kHz),

field-reversal. Figure 5.29 shows these time regions in relation to the 

traces of and Ip for a typical shot. Figure 5.30 shows the evolution of 

the Bg n-spectrum. In the first time region (end of sustainment) the 

dominant activity is the usual |n| * 7, m = 1. This remains the same until 

the third time region, after the loss of reversal. Here the n-spectrum shows 

the presence of low n features; Maximum Entropy and total toroidal 

autocorrelation studies indicate |n| =2-3 and Association spectrum studies 

indicate m = 1.

By performing a similar 'relative time slot' analysis for the power 

spectrum we are able to associate the appearance of high frequencies (as in 

figure 5.27) with solely the second time interval.
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5 . 2  DISCUSSION

The measurements reported in this chapter show that the fluctuation 

activity is attributable to low poloidal mode numbers Mq and Mi 

corresponding to the fourier modes m = 0 and m = 1 along with their 

concomitant toroidal distortions. Of course, the nature of our measurements 

naturally favour large scale perturbations such as these, since fine scale 

perturbations originating well inside the plasma will generally fall off 

more rapidly with radius and would therefore be proportionately smaller at 

the edge. In chapter 6 we will see that these internal fluctuations are 

indeed present and that they are in fact negligible at the wall.

We have seen that the difference between the poloidal mode spectra for 

Bg and B̂j, for m > 1 is explicable by consideration of the details of the 

toroidal distortion effects. In particular we have shown that writing the 

condition (Curl B)p = 0  in toroidal geometry provides a relationship 

between the fields outside the plasma for a given helical mode. Hence, if we 

assume that B̂ j, is purely m = 1 then Bg will have an m = 2 component of 

amplitude a / R o .  That the toroidal distortion of Bg is stronger than B^ 

cannot, a priori, be explained by this simple relation, but rather must be 

determined by a full set of equations describing the behaviour of the 

plasma. The outward (Shafranov) shift of the plasma in the shell is at least 

partly responsible for these toroidal distortions but this cannot be easily 

distinguished from the departure of the internal mode structure from the 

quasi cylindrical approximation. Experiments conducted with a vertical 

field to centre the plasma and hence remove any shift should be able to shed 

light on this area.

Perhaps the major advance of this work is the detailed information we 

have obtained on the toroidal mode structure. In order to see the 

significance of this we need to consider the radial profile of the safety 

factor,q. Now it is well known that the RFP relaxes to a configuration which
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may be satisfactorally described by various quasi-cylindrical models such 

as the MBFM [2] or the BVM. For discharges of interest calculations using 

these models indicate that the on-axis q is about 0.2 and that the reversal 

surface where q = 0 is at about r/a = 0.75. At the liner q * -0.04. In

chapter 4 we measured the q-profile for low-current passive decay

discharges where very similar results were obtained.

Helical perturbations are resonant at a radius where the equilibrium 

field-line pitch matches the pitch of the perturbation. This means that a 

mode characterised by poloidal and toroidal mode numbers m and n will be 

resonant at a radius where q = -m/n. At this radius non-zero radial 

magnetic field perturbations will lead to the formation of magnetic islands 

by the 'tearing* of magnetic field lines. Our main peak in the n spectrum at 

n = -10 is a mode which is resonant at r/a = 0.5 and the broad spectrum 

which we see extending from n = -5 to -20 indicates modes which are resonant 

at radii from r = 0 out to quite close to the reversal surface. We cannot 

exclude, with our modest resolution, modes which are non-resonant (i.e.

|n| < 5) but their contribution in the sustainment phase and at optimum 

values of 0 is at any rate small. However, in the termination phase of the 

discharge and at high values of 0 m = 1 modes of n = -3 are found which may 

well be non-resonant although there is significant doubt concerning the 

estimates of q. Nevertheless these modes appear to share the same

timescales as the other resonant modes. In addition to the m = 1 modes the 

m = 0 perturbations are always resonant at the reversal surface.

The perturbations we see seem to correspond qualitatively quite well 

with the expectations of resistive instability theory [3] in that we see 

m = 1 perturbations resonant from the origin out to near the reversal 

surface and also m = 0 perturbations of long toroidal wavelength. For the 

wide range of discharges studied here we have not observed perturbations 

Tesoraaii outside the reversal surface although the statistical accuracy of our 

measurements only allows us to put an upper bound of 5% of the fluctuation
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power in such modes. This corresponds to an rms amplitude of B/|b | < 0.2%.

In chapter 6 we will return to the problem of comparing the observed 

fluctuations with that predicted by a linear stability analysis of the 

measured equilibrium.

It is possible to obtain an estimate of the growth (and decay) times for 

the dominant fluctuations by inspection of the frequency spectra presented. 

Taking the overall width of the spectrum as the relevant frequency 

spread (30 kHz) this gives a growth time of about 5 ys. Alternatively, 

taking the individual features to define the spread yields 30 ys. This

should be compared with the poloidal Alfven transit time of about 0.5 ys and 

Lundquist number S * 10^ (valid for the 'optimal* discharges). Taking our 

second estimate of the growth time as being the more relevant this 

corresponds a value of in resistive units. This suggests, although it

is admittedly only a single point, that we should take the perturbations as 

being 'resistive* rather than ideal MHD in character. Of course, the states 

we are observing are non-linear and so this distinction is of debatable 

significance except that we may assume that changes in magnetic topology 

occur. In chapter 6 we shall see that this resistive character is confirmed 

for the dominant instabilities although evidence will also be presented to 

show that there is an 'ideal* type component at lower powers.

The present analysis does not allow us to distinguish whether the m = 0 

perturbations arise independently from the m = 1 or as a non-linear

consequence. Preliminary studies employing toroidal mode bispectra and 

triple correlations, although not reported here, have shown disappointing 

results. Much further study is needed in this area. In addition we are not 

able, as such, to distinguish the driving energy sources for any of the 

perturbations which provide the usual theoretical distinction between

tearing and pressure driven g-modes.

Given that we believe that the dominant perturbations are of a resistive 

nature it is interesting to estimate the island size. In principle we could
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integrate the linearised forms of Curl (JxB) =0 and Div (B) = 0 from the 

wall to the resonance to find Bp(rg). However, as we shall see in chapter 6 

and as tearing mode studies [3] have shown in the past, the radial 

derivative of Bp is approximately constant outside the resonant surface for 

modes whose resonance is not too close to the axis. Hence given that we 

measure our fluctuating fields near to the shell where Bp = 0, the equation 

Div (B) = 0 alone allows us to estimate Bp(rg) by linear interpolation. 

Thus:

B^(rg) = (a-rg)! 2 Be + | . - (5.8)

The island width, W, is then given by the standard linear formula [4]:

W = 4 Bprgq 1/2
- (5.9)

mBgq’

For m = 1, n = -10, typically |rgq/q'| = 1 and Bg(rg) = 1,5|B(a)| so:

W/rg = 4|b / B | . - (5.10)

In order to determine the amplitude |B| to be ascribed to each mode we may 

assume that 1/2 of the 2% rms fluctuation level is attributable to m = 1 and 

take this as being spread over about six toroidal modes as indicated by the 

n-spectrum. This then indicates a single mode rms level of 2//12 = 0.5%

which gives an island size of W/rg = 0.3.

The separation, 6, of (m = 1) resonant surfaces in this region of the

plasma is given by:

6 = q^/q’ » O.irg . “ (5.11)

Thus the island overlap condition [5] W > 6 is easily satisfied, 

corresponding to a value of the stochasticity parameter of = 3. If the
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different helicities are simultaneously present with this typical amplitude 

we would thus expect the magnetic field lines to be stochastic throughout 

the region occupied by the m = 1 resonances and that magnetic surfaces 

should no longer exist. That the different helicities are simultaneously 

present is not immediately obvious in view of the 'bursting nature'

revealed by the evolutionary n-spectrum. However, it seems most improbable 

that the different modes would be sufficiently separated in time for 

stochasticity to be avoided. Estimates of the m = 0 island sizes give

similar values for W, though in this case we are less certain of the 

resistive MHD character. Indeed, much of the Mo power may arise

non-linearly from the M%.

So we have shown that, assuming simultaneity of the various m = 1

helicities, the central region of the plasma is expected to be stochastic 

and hence a field line passing through the centre of the discharge will 

eventually pass through all other points in the stochastic region. Further 

assuming that this stochastic region extends totkedge of the plasma enables 

us to calculate an energy confinement time determined by stochastic 

diffusion. Of course, if only the central region of the plasma is stochastic, 

this being surrounded by an insulating non-stochastic layer, then our 

estimate will not apply. However, adopting this assumption we may express 

the field-line diffusion coefficient quite generally as (see appendix D);

. 2
<Ar^/L> = < Br

B
> A,, , - (5.12)

r,s
where is the parallel coherence length. Now since = A^B/B^, where

A(j) is the toroidal correlation length.

2
<Ar^/L> = < BB, > Aa . “ (5.13)

Taking rg = a/2, = 2a and using our previous arguments to relate the

values of B at rg to those at the wall this becomes:
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2 R ^<Ar /L> = a —
D

- (5.14)

From this we may calculate the effective perpendicular energy 

diffusivity [6] Xeff * VeT<Ar^/L> (assuming a collisionless regime) where
ry/

Vgx is the electron thermal speed. For |b /B|q = 0.01 and Tg =100 eV this 

leads to an estimate of the energy confinement time,

Tg = (8Xeff) = 50 ys . - (5.15)

This value, while being consistent with experimentally observed parameters, 

should be regarded as an order of magnitude estimate only because of the 

sensitive (squared) dependence on Bp which has been estimated somewhat 

crudely. Nevertheless it should be pointed out that this is a direct 

estimate based on the measured longitudinal correlation lengths and not, 

like earlier stochastic transport estimates[7,8], on theoretical estimates 

of longitudinal correlation.

Given that the m = 1 modes observed above 5 kHz lead to stochastic 

behaviour, it is of interest to estimate the island size for the larger 

slowly rotating perturbations that we discussed under 'evolutionary 

phenomena'. The linearised estimates are somewhat questionable for such 

large perturbations but nevertheless, taking the peak perturbation 

amplitude we obtain W/rg = 1. This is about 3 times the size of our smaller 

scale ra = 1 islands and as such this island would not quite overlap the 

reversal surface.

The poloidal and toroidal propagation effects that we have observed seem 

to be consistent with the magnitude expected from estimates of the 

diamagnetic drifts. However the ambiguity of direction observed indicates 

that a simple interpretation in terms of these drifts is hardly adequate. It

should be noted that the magnitude of plasma rotation can also be explained

as being due to an electrostatic potential of about 100 V.
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Results from a systematic scan over different discharges have shown the 

mode numbers and frequencies of the dominant fluctuations to be relatively 

invariant with respect to changes in plasma parameters. This emphasises the 

fundamental nature of these instabilities. The observation at high values 

of 0 of a low-n non-resonant kink mode is interesting as the characteristic 

frequencies associated with this mode are resistive rather tham ideal.

Investigations into the set-up and termination phases of discharges 

indicate that the structure of the global fluctuations in the set-up and 

sustainment phases is very similar whereas fundamentally different 

processes appear to be occuring in the termination phase. If we thus assume 

that the observed global modes are indeed a vital ingredient to the reversal 

process, this indicates that the production and sustainment of reversal 

rely on the same mechanism.

Finally the apparently cyclic behaviour observed in the evolution of the 

n-spectrum leads to a rather persuasive picture of the overall behaviour. 

Suppose that the evolution of the field profiles leads to a situation in 

which resistive m = 1 modes at r/a = 0.5 are preferentially destabilised. 

These modes will then grow for a time (the linear phase) after which 

quasi-linear effects dominate and the modes stabilise themselves via 

non-linear modifications to the profiles. Their amplitude then decreases. 

However the profile changes tend to destabilise other modes (with n greater 

and smaller). These other modes then grow and, in a similar fashion, enforce 

profile changes which compete with those of the first modes. This 

competition continues, establishing a quasi-equilibrium in which cyclic 

variations of mode-amplitude maintain the mean profile such that no set of 

modes achieves complete dominance. The quasi-linear tearing [9] and 

g-mode [10] effects discussed in chapter 1 would certainly substantiate 

this type of picture and indeed theoretical ideas of such cyclic processes 

have been proposed [11] in the context of the Tokamak disruptive 

instability. However, here we seem to have direct experimental evidence in
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the RFP for the importance of this MHD mode competition.

5.3 CONCLUSIONS

Results from an extensive analysis of edge coil measurements have been 

reported. In the sustainment phase of the discharge it has been shown that 

the superficially random fluctuations are attributable to global modes of 

poloidal mode number m = 0 and m = 1 provided account is taken of the 

toroidal distortion. A toroidal array of edge coils shows a broad spectrum 

of toroidal mode numbers with a peak at |n| = 10 and significant variation 

with time and frequency. Cross correlation establishes that the |n|= 10 is 

m = 1, a set of helical modes resonant inside the reversal surface and also 

shows the presence of m = 0, |n| = 0. Further studies indicate that the

m = 0 feature is composed of two linearly independent modes, the first
fW I Ibeing an n = 0 Bg oscillation and the second an |n| - 0 B̂jj, Timescales of 

the measured fluctuations indicate that the instabilities are probably 

resistive in character and mode amplitudes are such that island overlap and 

magnetic field ergodization should occur. The energy confinement time due 

to stochastic transport, estimated directly from the measured fluctuations, 

is consistent with that experimentally observed.

Studies of edge magnetic fluctuations have been applied to discharges of 

differing conditions and in the termination and current set-up phases. With 

respect to change in Ip and pg, the mode numbers and frequencies of the 

fluctuations appear invariant. At high values of 0, however, an m = 1, 

n = -3 mode becomes of equal significance to the more usual m = 1, n = -10 

activity. Although the observed timescale of this mode appears 'resistive’ 

estimates of the safety factor indicate that these modes are not resonant. 

The mode numbers and frequencies of the global fluctuations in the current 

set-up phase appears very similar to those during sustainment although the 

amplitude is higher. However, in the termination phase the observed
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fluctuations show several differences. Nevertheless, after reversal is lost 

the observed frequencies correspond to resitive timescales rather than the 

Alfven timescales expected for ideal modes.
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CHAPTER 6 

INSERTABLE PROBE MEASUREMENTS

We now turn to an investigation of the radial structure of the magnetic 

fluctuations by an analysis of data from the insertable probe. This is 

principally accomplished by the technique of correlation matrix 

fitting (CMF) developed in chapter 3. The problem of the linear stability 

of the equilibrium configuration measured in chapter M is also addressed. 

The results presented in this chapter pertain to the same type of low 

current discharges discussed in chapter 4.

6.1 RESULTS

6.1.1 Time History Analysis

VaA-_/^

§g(rs17.0cni)
The most obvious way of analysing

B@(rm 1.0cm)

Figure 6.1

Filtered time histories (frequency band 4-20 kHz) of 7 

probe traces from the probe.

probe data is to look for similarities 

B0(r=i4Ocm) the individual time histories 

pertaining to a single shot. This type
Bg(r=11.0cm)

of analysis has, for instance, been 

(̂r=8.ocm) Very successful in Tokamaks. 

Figure 6.1 shows an example of this
§g (r= 5.0cm)

technique for the Bg signals obtained 

Bg(rr2.ocm) the probe in the frequency range

4-20 kHz. It is clear from this 

diagram that there is no unique 

relationship between the various 

signals at different radial locations. 

Rather, on close inspection, it is
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apparent that many features appearing on one trace do not seem to relate to 

features on the other traces. Some features, however, can be related and for 

these it is apparent that maxima on traces of large radial position seem to 

associated with minima on traces of small radial position. This is shown 

rather well in figure 6.2 where a least squares linear fit has been computed 

for each time-step and plotted in a 3-D format. By doing this, features 

peculiar only to one trace are heavily damped whereas the global traits are 

accentuated.

figure 6.2 Linear profile fit to figure 6.1 showing 'flipping' motion. r ( 0 - 2 8  cm)

t (0 .4 -1 .7  m s)

So the picture we have is that many of the features visible on the 

individual time-histories of the probe data are peculiar to just one coil. 

These are then local fluctuations. In addition to this, however, we also see 

the presence of common features to all traces, which represent global 

fluctuations. For Bg these global fluctuations are characterised by the 

outer and inner regions of the discharge being 180° out of phase. The null 

point of this * flipping' motion is at about 10 cm. With a similar analysis 

is found to behave in the same fashion but with a null point near the
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reversai surface. Bp, on the other hand, seems to be in phase throughout the 

discharge radius. The absolute magnitude of the combined fluctuations is 

typically about 2 to 3>% of the spatially averaged equilibrium field at low 

frequencies and falls off inversely with increasing frequency as 1/v.

6.1.2 Radial Propagation And Perturbation Phasing

To gain more information about the character of both these local and 

global fluctuations we must resort to a statistical analysis. One very 

important question concerning the global modes of a system is the existence 

of radial propagation. Such propagation, if it occurs, will be accompanied 

by a concomitant energy transport which might explain the bad confinement 

properties inherent to the RFP. In order to investigate propagation effects 

we define the normalised time-delayed cross correlation matrix as:

f X %
< 6 . ( t )  8 . ( t + T )  d t >

J n J nJ
{ <  D . ( t ) d t > }  { <  6 . ( t + T ) d t > }

O'

where B^Ct), as usual, represents the fluctuating magnetic field at the 

radial location dictated by the suffix i and t is a time delay parameter. 

Figure 6.3 shows an example of this matrix for B̂  ̂ in the sustainment phase 

of the discharge, where it is clearly apparent that Rĵ jCx) has its greatest 

value at zero time delay for each i and j. In fact, from an estimation of 

the associated errors we may say that the greatest phase difference between 

any two coils is at most tt/IG. Exactly similar results are found to hold for
'V .V
Bjo and Bg and so we may conclude that there is no evidence for global 

propagation within the statistical accuracy and therefore an explanation 

for the poor energy confinement must be sought in other areas.

In order to investigate the phasing between the various fluctuating 

field components it is useful to define the phase spectrum between two
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Tloe-delayed correlation matrix for probe signala 

in the sustainment phase (frequency band 4-20 kHz) showing 

that there is no observable radial propagation.

signals x(t) and y(t) :

= Arg < X (v) y (v) >. - (6.2)

’(J)xy(v)’ represents the average phase difference, as a function of the 

frequency v, between the two signals. denotes complex congugate.

Essentially, computing all possible phase spectra between the probe signals 

amounts to the same information as computing all possible time delayed 

correlations. However, the phase technique has the advantage of being able
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Figure 6.4 Cross-phaae spectrua for B@,B* and Bp.Bg.

to discriminate different phases at 

different frequencies. Figure 6.4 

shows the two examples of and

4(B^,Bp) computed at r * I4cm. 

Clearly, in the region of 4-20 kHz B̂j,
Af A/

and Bg are in phase whereas B̂j, and Bp
/
are about tt/2 out of phase. At higher 

frequencies, particularly for <j>(B̂ ,Bp) 

the phase becomes randomised largely 

due to a rapid decrease in absolute 

power. In some discharges *(B^,Bg) 

appears to be a little less than it/2. 

However 4^B^,Bg) tends always to 

remain at zero.

By considering the equation V.B = 0 in cylindrical geometry one can show
A/ /V

that the spatial phasings are such that B̂j, and Bg are an integer multiple of
A/

TÏ out of phase. Further Bp must be an odd multiple of tt/2 out of phase with
^ «VBg and B^. This phasing is what we see except that we are looking at the 

temporal and not the spatial phasing. This means that we must regard the 

global perturbations as being of the form sin(wt+kzZ+m8+#) which is a 

travelling wave. The fact that in some discharges #(B^,Bp) < tt/2 is 

indicative of the presence of a standing wave component in addition to the 

travelling waves. This picture is closely substantiated by the observations 

of poloidal and toroidal rotations discussed in chapter 5.
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6.1.3 Radial Structure

Now that we understand some of the basic properties of these 

fluctuations, we would like to have a more detailed knowledge of their 

radial structure. Since we have already discovered from a cursory

inspection of the individual time histories that there is more than one 

process at work we must rely on the CMF analysis model developed in 

chapter 3. Indeed, because there is no evidence for propagation this model 

is very appropriate. It is worth noting that it is possible to formulate 

similar models which account for propagation effects although they all

suffer from non-uniqueness problems in the predicted radial structures. 

This was emphasised in chapter 3*

6.1.3.1 2-process CMF Model

As a first approximation we will thus regard the fluctuations as being 

composed of two linearly independent processes; a global component and a 

local component. As we have seen above this would represent our best guess 

at the simplest possible structure. With this approximation we can use the 

zero-time delay correlation matrix defined in equation 3.32 to choose the 

most likely radial distributions of the local and global modes by using the 

iterative algorithm outlined in equation 3.37. As it turns out, however, it 

is better to use a quasi-normalised version of the correlation matrix 

defined as;

f 6 (t) 6.(t) dt

■ < - 7 1 ^ ----------------- > ■
6 (t)dt }
0u, -i;

but otherwise to proceed as we have outlined above. The reason for adopting 

this stategy is that for each discharge the fluctuation structure appears 

to remain roughly the same but at widely varying amplitudes. Hence, if we
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were to use the definition given in equation 3.32, the error bars which we 

would calculate, a standard error in the mean over many shots, would be 

largely linearly dependent. By using this quasi-normalised form what we are 

essentially doing is restricting errors so that they pertain to the 

structure of the fluctuations and not to the absolute amplitude. Using this 

method we are thus able to predict accurate relative amplitude 

distributions for the assumed component processes. These may then be 

translated into absolute estimates by means of multiplication by a 

spatially averaged fluctuation amplitude.
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Figure 6.5 shows the measured 

correlation matrix for B̂j, taken for 

twelve shots in the frequency band

J 4-20 kHz. Also shown in this diagram

is the computed correlation matrix 

representing the best fit for a

that the fit is quite good on all 

off-diagonal components. In fact the 

chi-squared parameter defined in 

equation 3*39 has a value of about 

2.5 and so we may express confidence 

our initial assumptions.

Figure 6.5
Correlation matrix for (frequency band 4-20 kHz) in the

0 10 20 in
rj (cm)

Figure 6.6 shows the predicted

sustainment phaae and best fit assuming a two-process model.
global-mode radial amplitude

distribution for this fit and also 

for Bg and B^ obtained from similar fits. Now, in principle, the local 

turbulence profile is defined by the mismatch between the measured and 

fitted correlations (e.g. equation 3*38). However it would be a mistake to 

interpret all the mismatch on diagonal elements in figure 6.5 as being due 

to local turbulence. In particular we will see that by assuming more than
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one global mode it is possible to 

obtain better diagonal fits. At this 

point we should also mention that 

there are problems associated with the 

fact that the probe extends to the 

geometrical minor axis rather than the 

plasma axis, which is 3 cm shifted due 

to toroidal equilibrium (see

chapter 4). This essentially means 

that the central Bp coil actually 

measures Bg and vice-versa. However, 

it turns out that these effects

.i— i

(A.U.)

r(cm)

1.0
(A.U.)

r(cm)

1.0
(A.U.)

} j —-j"
Shell

r(cm )

largely cancel for the global modes

Figure 6.6 due to their 'm = 1’ symmetry and the
Best fit normalised global radial amplitude distributions ^

for Tia two-process fit as in figure 6.5. f * C t  that Bp i S  Tt/ 2 O U t  O f  phase with

Bg (appendix E).

So far then we have been able to elucidate the relative radial structure 

of the three field components of the dominant global instabilities. 

However, since we have calculated these stuctures separately, how do we 

know that they are all associated? For instance, suppose there were 

actually several global modes present in the plasma, of which the dominant 

instability had virtually no field component in one direction. In such a 

case our algorithm would choose, for this field component, the next most 

dominant mode. And so we would obtain a set of three radial amplitude 

distributions which were not all associated. To confirm that our above 

radial estimates, given in figure 6.6, are in fact associated we can fit the 

cross-component correlation matrix. For instance, to obtain the associated 

radial structures for B̂j, and Bg we simply minimise:

- (6.4)



$6 INSERTABLE PROBE MEASUREMENTS 175

where and are the 6 and 4)-components of the global radial amplitude

vector and Rij is the quasi-normalised theta-phi cross-component

correlation matrix defined as:

B (t) 6 (t) dt
0

i 'J, f N
&q(t)dt } . { I
0

> .“(6.5)

k=1
6"(t)dt
0

(**) ,<®«) The fit to this matrix is shown in

figure 6.7 where it is apparent that 

we have good agreement corresponding 

to a chi-squared parameter of around 

three. Figure 6.8 shows the two 

associated radial amplitude
<V A,

distributions for Bg and B^ which 

appear fairly identical to our 

previous estimates. So we can be 

sure that these 6 and f radial

amplitudes are to be associated with 

the same mode. In addition

figure 6 . 8  tells us that B g  is in

(temporal) antiphase with B<j, in both 

the inner and outer regions of the
Figure 6.7-V jf,  ̂ w  ̂ discharge but is in phase in theoro88-coaponent correlation matrix (frequency band °  ^

4-20 kHz) in the auatainment phaae and best fit assuming a central region - i.e. it giveS US 
two process model.

the relative phasing. This agrees 

well with phase spectral estimates. 

It is worth noting that the cross-component matrix contains twice the 

information as the auto-component matrix since it is not Hermitian. This 

allowed us in equation 6.4 to fit twice as many parameters as usual but with
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Figure 6.8 Best fit (individually)’ normalised global radial amplitude
«ir

distributions for Bg.B* for figure 6.7.

the same accuracy. So one could envisage the possibility of using both auto 

and cross matrices to predict all three field components by minimising a 

combined Q function defined as;

® L j  ' 8gj] + R?T - g^. g^j]

- T[  ̂6[ R®5 - i^j]“

^  « 1 J  -  «8 1  4 j  « r j ] ' ) '
(6.6)

where the constants a to ç should be suitable chosen so as to weight the fit 

to each correlation matrix according to its statistical errors. In 

principle this would let us estimate the amplitude vector associated with a 

given mode at three times our normal accuracy. Further, this method defines 

the relative phasings between the field components and of course there is no 

association problem. However there is one problem in that we already know
" - " A /  0 Athat Bjo is about tt/ 2  out of phase with Bg and B̂j, and so Rij®^ and R i j p r  are
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by definition very small (and hence prone to large errors). This can be 

resolved by forming a new Bp(t) time-history by taking the fourier 

transform of the initial Bp(t), shifting the phase by ir/2 and then inverse 

fourier transforming. By renormalising the resultant radial amplitudes we 

are then able to plot our best possible estimate of the amplitude vector 

associated with the dominant global instability. This is shown in 

figure 6.9.

1.0
5(1)

J1>
B_, [max]

0.5

-0.5 <— X'

0 2 U 6 8 10 12 U  16 18 20 22 24 26
r(cm)

Figure 6.9 Best fit global radial amplitude vector using 2-process 

multi-component fit.

There are a number of points we may extract from this graph. Firstly the 

B<j, trace appears to almost intersect the minor axis with a positive 

gradient. This tells us that the instability must be associated with an odd 

m number. The fact that there is a small discrepancy here may be explained 

by linear coupling effects due to toroidicity. Secondly we see that on axis
/V /V/
Bf. * -B@. By considering the single valuedness of the fields at the origin 

in a cylindrical geometry this restricts the value of m to one. Hence we may 

deduce that the dominant instability is m = 1. Further, by the fact that at
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Figure 6.10 Poloidal and toroidal mode power spectra for Bg and 

In the sustainment phase (filter: 4-20 kHz).

the wall B̂j, = 2Bg and using (VxB)^ = 0 we may calculate the n-number to be 

(very) approximately six and by the fact that Bp does not cross zero at any 

point in the discharge radius we may identify the mode as resistive.

In order to relate this picture to other measurements we may use arrays 

of edge coils to plot the poloidal and toroidal mode spectra. The details of 

this type of analysis has been discussed in chapter 5. Figure 6.10 shows 

these spectra plotted for both the 6 and (f)-field components. From this 

diagram we see that the dominant feature on the n-spectrum is a band of 

instabilities centred around |n| = 8. Likewise the m-spectrum shows 

dominantly m = 1. By forming the ’Association spectrum’, we may link these 

two features and show that the dominant modes are a band of resistive m = 1 

kinks of n = 8 resonant inside the reversal surface. In addition to this,
A/

however, there also appears to be some m = 0 on B^ and some m = 2 and low 

n-numbers on Bg. Virtually all the m = 2 may be explained by linear coupling
A/

due to toroidicity. The low n-number features on Bg are indicative either of
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m = 0, n = 0 modes or low n m = 1 modes.

So the picture related by the edge coil measurements is in good 

agreement with the CMF model predictions for the dominant global 

instability. However, as we have seen, the edge coils also predict other 

less powerful modes such the m = 0.

6.1.3.2 3“process CMF Model

By assuming a two-process fit we have seen that it is possible to obtain 

fits to the various correlation matrices with a chi-squared parameter of 

around three. There is thus information to be gained by including another 

process. Indeed, as we have discussed above, this may lead to identifying 

other modes predicted by the edge-coils. Therefore we will now assume two 

linearly independent global modes and a local component. As before we start 

by fitting the auto-component matrices. These are shown for Bg and B̂j, in 

figures 6.11 and 6.12 and figure 6.13 shows the two radial amplitude 

distributions obtained for all three field components. The fits are 

typically much better now, being characterised by a chi-squared value of 

about unity.

There are several points we may obtain from figure 6.13. It is clear 

that the first process obtained with this model is almost exactly the same 

as our previous results. So including another process has not altered in any 

way the previous one. The second process however does not appear to be an 

m = 0 mode. Rather the Bp trace indicates an ideal type kink similar to the 

resistive modes already discussed. A question which now arises is whether 

this mode might be explained by phase distortions or a plasma shift 

phenomenon. In chapter 3 we showed that propagation effects, which lead to 

different phasing of different coils, act to create spurious processes. 

However, taking the component as an example, if one regards the second 

process as a phase distortion of the first, one is led to the belief that



$6 INSERTABLE PROBE MEASUREMENTS 180

( AU)

(**)
2.0

1.0

0.0

0 10 20

2.0

1.0

0.0

100 20

(**)2.0

1.0

0.0

0 10 20

2.0

(A.U.)

1.0 -

0.0

0 2010

2.0 2.0

1.0 -

0.0 0.0

0 2010 200 10

(00)2.0

(A.U.)

1.0

0.0

0 10 20

2.0

1.0

0.0

200 10

2.0

1.0

0.0

0 2010
T j ( c m ) T j (c m ) T j (c m )

Figure 6.11 Correlation matrix for in the sustainment phase

(frequency band 4-20 kHz) and best fit assuming a 3-proeess 

model.
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Figure 6.12 Corrélation matrix for Bg in the sustainment phase

(frequency band 4-20 kHz) and best fit assuming a 3-process 

model.
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have seen in section 2.2, we know

that the phase of B^ is the same on 

all coils to within about tt/10. So 

we cannot explain the second process 

in terms of a phase distortion. So 

what about a plasma shift? Again the 

answer is negative since excluding 

the first two coils, which are the 

ones effected by this shift, does 

not alter the results. Also a 

theoretical analysis of the expected 

I effects of such a shift do not
1— r

Figure 6.13 explain the observed form of the
The two global radial amplitude distributions for the fits

of figures 6.11 (B^), 6.12 (Bg) and not shown Bp. radial distributions of the second

process.

So we must conclude that the second process is a real effect. But, 

having established this, we are faced with our old association problem. Are 

all three components of this second process to be associated with one mode? 

To answer this we must proceed by the prescription of equation 6.6. In this 

way we find that again all three components are indeed associated and as 

before we may plot the combined renormalised second-process vector. This is 

shown in figure 6.14. As before, since Bp = -B g  on axis and B̂j, 

approximately intersects the origin with a positive gradient we may 

conclude that m = 1. This is substantiated by the edge coil measurements 

which do not detect the relevant amount of power in m > 1. In addition, we 

may strongly disfavour an m = 0 exfîanation by, for instance, the fact that 

Bg does not go to zero at the wall and that Bp does not go through zero at 

the reversal surface.

Returning to figures. 6.11 and 6.12, which show the fits to the 0 and <(> 

auto-component correlation matrices, we can now use the type of
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Figure 6.14 Best fit for the second global radial amplitude vector using 

a 3-process multi-component fit.

prescription outlined in equation 3.38 to calculate the profile of local 

turbulence. We must be careful however, since the probe is inserted to the 

geometrical minor axis and not to the plasma axis, the two being separated 

by the Shafranov shift. As we discussed briefly before this means that the 

first Bg coil actually measures B^ and vice-versa. Nevertheless it can be 

shown (appendix E) that the Shafranov shift does not affect the local 

turbulence profiles for Bg and Bp deduced from the diagonal element 

mismatch apart from interchanging the two components on axis. For 

however, the Shafranov shift acts to create a spurious quasi-local process 

producing anomalous diagonal and next-to-diagonal mismatch on the first two 

coils. With this in mind it is apparent that the Bg local turbulence is 

peaked on axis falling, within errors, to zero at the edge of the discharge. 

For Bj|) much of the diagonal mismatch on the first two coils is explicable in 

terms of the Shafranov shift and hence for this component the local 

turbulence appears to peak a little further out but nevertheless falls, 

within errors, to zero at the edge of the discharge. For both and Bg the 

peak amplitude of the local turbulence is seen to be roughly equal to that
A/

of the global modes. For Bp, the local activity is subject to some
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uncertainty due to a lack of coils at large radial positions. However 

evidence suggests that it follows the Bg behaviour but at a lower 

amplitude.

6.1.3.3 High Frequency And Set-up/Termination Results

Up until now we have only discussed the sustainment phase of the 

discharge for the frequency band 4-20 kHz. A similar analysis has however

(A.U.)

(A.UJ

fj (cm)
10 20 
f j  (cm)

Figure 6.15 ^
Correlation matrix for in the auatainment phase 

(frequency band 50-100 kHz).

been applied to both the set-up and 

termination phases and to higher 

frequencies. A very striking feature 

which appears is that, as one 

increases the frequency, the local 

turbulence becomes dominant over the 

global instabilities. In fact in the 

range 50-100 kHz the global modes 

are barely visible. This is shown 

for B(j, in figure 6.15, where we plot 

a normalised cross correlation 

matrix. This observation agrees well 

with measurements performed on the 

ETA-BETA-11 machine at Padova [1].

Regarding the set-up and 

termination phases of the discharge.

our study again reveals the same qualitative picture for the global and 

local modes. However there are two effects of interest concerning the local 

turbulence profile. In the set-up phase, while the B^ local component 

remains at the same amplitude in relation to the global component, the Bg 

term becomes much stronger. In the termination phase both the Bg and the B^ 

components become stronger in relation to the global modes.
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6.2 LINEAR STABILITY OF THE EQUILIBRIUM FIELDS

6.2.1 Introduction

In this section we will report results obtained from testing the 

equilibrium field profiles measured in chapter 4 for linear stability to 

ideal current and pressure driven modes and, in the limit of infinite 

Lundquist number, to tearing modes. By means of this analysis we will 

compare our detailed observations of the actual fluctuation structure with 

the predictions of the linear theory.

6.2.2 Ideal Stability

A good algebraic guide to the stability to ideal pressure driven 

instabilities is furnished by the Mercier criterion (for stability) (see 

chapter 1):

As we discussed in chapter 1 the first term in this criterion, which 

represents the shear of the magnetic field lines, is positive definite and 

hence always represents a stabilising influence. However the second term is 

generally negative for typical RFP configurations and is accordingly 

destabilising. Both terms are plotted separately in figure 6.16. It is 

apparent that the shear term is, within errors, dominant at all Radii and 

there is thus no evidence for pressure driven ideal instabilities.

In order to test the ideal linear stability to current driven modes we 

use the testing procedure introduced by Newcomb applied to deflated field 

profiles which possess no pressure. The algorithm used for the deflation
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Figure 6.16 Variation with radius of the two terms in the Mercier 

criterion.

process is to calculate the y profile, defined as j_.B/B̂ , and to then solve 

the force-free relation VxB=yB for the fields. In practice we find complete 

stability to all current driven ideal modes when the liner is regarded as an 

infinitely conducting wall. However, if we disregard the liner and take the 

shell as being the relevant infinitely conducting wall, at near-extreme 

values of our error estimates, we find marginal ideal instability for 

on-axis m = 1 current driven modes.

6.2.3 Resistive Tearing Mode Stability

A’ tests offer a very simple solution to investigating the linear 

stability properties of tearing modes in the limit of infinite Lundquist 

number. These were briefly reviewed in chapter 1. It has been shown that 

these tests agree well on the prediction of marginal stability points with 

finite Lundquist number codes as long as S > 10^ [2]. Since estimates of 

the Lundquist number in HBTX1A range from about 10** to 10® we can 

accordingly express confidence in this method.

To recap, the basic element involved in a A* test is to calculate, for
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Figure 6.17 (b) t ’ as a function of resonant radius for m - 1 modes,

(a) A' as a function of k^a for m - 0 modes using the Full line refers to the unperturbed equilibrium of

unperturbed equilibrium of figure 6.18(a). figure 6.18(a) and dotted line refers to adjusted

equilibrium of figure 6.18(b).

given m and n numbers, a parameter A' such that if A’ > 0 there is

instability and if A’ < 0 then there is stability [3,4,5]. In the case of

A' > 0 the value of A’ is directly related to the growth rate of the

particular mode pertaining to that A'. As for ideal current driven 

instability tests, for consistency, we eliminate pressure from the field 

profiles by the deflation process described above.

Figure 6.17(a) shows A' as a function of the parameter kga (a is the 

liner radius) for poloidal mode number, m = 0. In this case the liner has 

been taken as the relevant infinitely conducting wall. Clearly for low kg, 

corresponding to n S 2, there is instability whereas for high kg there is

stability. Similar m = 0 stability calculations where a vacuum region is

included, the liner conductance assumed negligible and the shell taken as 

the relevant infinitely conducting wall indicate slightly higher A' but

otherwise very similar results. The m = 0, |n| = 0 activity observed by the

edge coils (figure6.10) would thus seem to be explicable in terms of the

linear theory.

The picture for the m = 1 instabilities is not quite so simple. 

Figure 6.17(b) (trace 1) shows A’ plotted as a function of the resonant



$6 INSERTABLE PROBE MEASUREMENTS 188

radius. As with the m = 0 case the relevant infinitely conducting wall has 

been taken as the liner. It is clear that A' certainly peaks at about 

r=0.4a, where edge coils predict a dominant instability, but it never 

actually goes positive. By ignoring the liner conductance and taking the 

shell, as the infinitely conducting wall this picture does not qualitatively 

change although A' does increase. However, by perturbing the input field 

profiles to the edge of the estimated error bars (figure 6.18) an 

instability can be generated. This is shown in trace 2 of figure 6.17(b). 

The overall impression acquired is thus that the m = 1 linear tearing mode 

stability is about marginal.

lia

\(b)

3

2

1

1.00.50
r/a

Figure 6.18 (a) Equilibrium y profile calculated from probe ■easurementa

and (b) adjusted p profile on the limits of experimental 

error.

In order to further pursue the question concerning the origin of the 

dominant kink instabilities it is possible, for the ’perturbed' equilibrium 

y profile of figure 6.18 to compare the eigenfunctions associated with the 

consequent instability with the radial amplitude distributions reported in
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Figure 6.19 Calculated linear m - 1 eigenfunctions corresponding to the 

largest value of A' in figure 6.17(a).

section 6,1 of this chapter. Figure 6.19 shows these eigenfunctions. 

Comparing them with the measured ’first process’ eigenfunctions shown in 

figure 6.9 it is apparent that there is good agreement. It should be noted 

that calculating the stable eigenfunctions using the non-perturbed y 

profile yields very similar results.

Stability calculations for m è 2 show A’ << 0 indicating complete 

stability.

6.3 DISCUSSION

In this chapter an analysis of the internal structure of magnetic 

fluctuations has been presented. To distinguish linearly independent 

processes the technique of correlation matrix fitting (CMF, chapter 3) has 

been applied to the probe data. As a result, in the sustainment phase of the 

discharge, it has been possible to distinguish three linearly independent 

processes simultaneously and to obtain, to a good accuracy, their radial 

distributions. Previously this type of discrimination has not been
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possible. Hence the advantage of applying the relatively sophisticated 

technique of CMF has been demonstrated.

The largest process distinguished by CMF at low frequencies (4-20 kHz) 

possesses a radial structure which identifies it with the global m = 1,

InI = 8 instabilities seen by the edge coils. The fact that Bp * 0 for any 

r < r^aii is consistent with the timescale arguments of chapter 5 showing 

that these modes are resistive. In addition, the close agreement of the 

radial amplitude distributions predicted by CMF with the 

field-eigenfunctions of most unstable tearing mode, computed for the 

measured equilibrium of chapter 4, demonstrates the close connection with 

the linear or quasi-linear theory. For non-resonant radii, of course, such 

agreement is at least partly to be expected as here the form of the 

resistive (or ideal) MHD field-eigenfunctions simply depends on a small 

amplitude helical equilibrium (only partly, since the solution of a small 

amplitude helical equilibrium in the region between the resonance and the 

wall depends on the boundary condition at the resonance which is 

essentially given by A’).

In this study we have not addressed the stability of pressure driven 

modes. This is because the pressure profile deduced in chapter 4 is not 

accurate enough for such a study. Indeed it is very hard to see that further 

measurements will change this situation. However, it has been shown that 

the observed m = 1 fluctuations can be adequately interpreted in terms of 

tearing modes of almost marginal stability. This is consistent with the 

m = 1 modes not being continuously unstable. In chapter 5 we saw evidence 

of a cyclic process in which unstable modes grew and then were 

quasi-linearly stabilised. This process would fit in nicely with the 

observation of marginal stability. However it is not possible to exclude 

the g-mode as a possible source of the observed m = 1 fluctuations.

For the case of the m = 0 tearing instability it has been shown that the 

measured equilibrium is in fact always unstable. Edge coil measurements do
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predict a mode of this type although there is a slight uncertainty about the 

n-number which might possibly be zero as well. In this case the observed 

m = 0 modes might well be associated with mode-mode coupling effects 

produced by m = 1. Further investigation will be required to elucidate 

this.

The second largest process discernable by CMF corresponds to local 

fluctuations of a correlation length of about 3 cm. This local turbulence 

is peaked in the central regions of the discharge at an amplitude similar to 

the dominant global process and falling, within errors, to zero at the 

plasma edge. At high frequencies (>30 kHz) these fluctuations dominate over 

the larger correlation length phenomena.

Observation of such local modes has been reported before, notably in 

ZETA and more recently in ETA-BETA-II. In all cases these observations have 

been confined to high frequencies where the global instabilities are less 

apparent. The importance of the observations reported here is that, even at 

low frequencies, local fluctuations are of a comparable importance to the 

larger scale lengths.

The final process discernable by CMF is a global mode characterised by 

Bĵ =0 SOTOr>oô'ïî({ ̂ r^. The peak amplitude of this process is about 1/2 that 

of the dominant first process and the frequency dependence is broadly 

similar. These two facts suggest that this process should obey a small 

amplitude helical equilibrium given by the linearised forms of Vx(JxB)=0 

and V.B=0 (for r * Vq ) since small frequencies indicate that inertial terms 

are negligible and the relatively large amplitude in relation to the 

dominant fluctuations disfavours an origin due to non-linear effects. To
/V

test this conjecture figure 6.20 shows B0(r) and B^(r) as calculated by the 

equations (Vx(JxB))j^=0 and V.B=0 given Bp(r) as predicted by CMF. The 

resemblence to figure 6.14, which shows the radial amplitude vector as 

deduced by CMF, is clearly apparent. Hence the third process discernable by 

CMF appears to obey a small amplitude helical equilibrium and thus we may
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Figure 6.20 Calculated profiles of and Bg derived from the measured 

second-process B^ using the equations Vx(JxB)-0 and V.B-0.

conclude that this mode has a linear or quasi-linear origin in the sense 

that it need not arise non-linearly from the dominant m = 1 modes.

As we have seen from the ideal stability analysis, at the edge of our 

error estimates the measured equilibrium is unstable to on-axis current 

driven modes if we ignore the stabilising effect of the liner. Clearly the 

radius at which B^ = 0 for this third process is not on axis. However, by 

inspection of the q-profile determined in chapter 4 we see that the nearest 

integral mode number to the axis is actually n = -6 which is resonant at 

r = 8 cm. Thus, taking into account the toroidal nature of the pinch, we 

realise that the most unstable ideal mode will have Bp = 0 at precisely the 

radius observed. Within errors this mode has approximately marginal 

stability.

The timescales observed are clearly not consistent with direct ideal 

instability. However we have seen that if the liner is taken as the relevant 

infinitely conducting wall then there is no instability. The fact that the 

liner is resistive means that instability can occur [6] but at a timescale
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functionally determined by field diffusion through the liner. At low 

frequencies this timescale may be estimated by matching the value of
A/

(1/Bp)dBp/dr at the liner as computed by the integration of the linearised 

forms of Vx(JxB)=0 and V .6=0 from the resonance to the liner and by the 

solution of Laplace’s equation in the vacuum region between the liner and 

shell. Such a procedure gives w < 50 kHz. We would thus conclude that the 

frequencies of the 3^^ process are explicable in terms of a

’liner-liberated’ current driven ideal instability.

Since the ideal stability is, within errors, marginal it should be 

mentioned that there exists another explanation for the observed

timescalesof the third CMF process. It has been shown [7] that for the 

near-marginal case hybrid growth rates can be obtained for a resistive 

wall. Thus if we consider the shell to be resistive and further that the 

marginal point for stability is just outside the shell then we might expect 

’resistive-shell’ hybrid timescales. These timescales would, of course, be 

modified by the resistive liner. Owing to the critical dependence on the 

condition of marginal stability we are unable to estimate exact growth 

rates. However we cannot rule out this shell-hybrid explanation.

Finally we come to the question of radial propagation. Within errors we 

find that there is no such propagation and hence there is no evidence that 

energy is directly carried out of the plasma by this mechanism. The

observation that there exists an almost tt/2 phase shift between B^ and Bg 

(or B(j)) is indicative of propagation in the toroidal or poloidal 

directions, which substantiates the more direct observations of such 

propagation discussed in chapter 5.

6.4 CONCLUSIONS

In this chapter we have discussed results from an analysis of probe and 

edge coil data designed to elucidate the internal structure of the magnetic
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fluctuations. The CMF technique developed in chapter 3 has been applied to 

the probe data with good results. It is possible, in the sustainment phase 

of the discharge, to distinguish three types of instability. At low 

frequencies (4-20 kHz) the dominant internal fluctuations are to be 

associated with the global m = 1 |n| = 8 resistive kink modes seen by the 

edge coils. These modes possess a radial structure in agreement with that 

predicted by a linear tearing mode stability analysis of the measured 

equilibrium. At similar amplitudes to these modes there is also a short 

correlation component (A^ = 3cm) which is peaked in the central regions of 

the discharge. At high frequencies this local turbulence dominates over the 

global modes. Finally at about 1/4 the peak power of the dominant global 

modes and with a similar frequency dependence, an m = 1 mode with some ideal 

characteristics is observed. Stability calculations show that ideal modes 

that are either destabilised by a resistive shell or whose growth rates are 

reduced by a resistive liner would have the same radial structure and 

timescales as this mode. No evidence is found for radial propagation but 

phasing of the fluctuating field indicates that toroidal and poloidal 

propagation occur. The internal structure of fluctuations in the 

termination and set-up phases have been studied. Results indicate a similar 

scenario to the sustainment phase but poorer statistics do not allow the 

clear observation of the resistive wall mode.
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CHAPTER 7

SUMMARY

7.1 CONCLUSIONS OF THIS THESIS

This thesis has presented an experimental study of the fluctuation 

activity in the RFP HBTX1A using arrays of edge coils, an intertable 

magnetic probe and statistical analysis techniques.

Chapter 5 presented the results concerning edge coil measurements. These 

measurements give an accurate description of the fluctuation activity at 

the plasma edge. It has been shown that, in the sustainment phase of 

discharges, the superficially random signals observed from these edge coils 

can in fact be attributed almost entirely to global modes of poloidal mode 

number m = 0 and 1 provided account is taken of the toroidal distortion of 

these instabilities. For the first time results have been presented from a 

toroidal array of edge coils which discloses a broad spectrum of toroidal 

mode numbers with a peak at |n| = 10 and significant variation with time and 

frequency. Cross correlation between signals from the poloidal and toroidal 

edge coil arrays establishes that the |n| = 10 is m = 1, a set of helical 

modes resonant inside the reversal surface and also shows the presence of 

m = 0, In| * 0. Further studies indicate that the m = 0 feature is composed 

of two linearly independent modes, the first being an n = 0 Bg oscillation
I Iand the second, an |n| = 0 B^.

Timescales of the measured fluctuations indicate that the instabilities 

are probably resistive in character. Estimates of the mode amplitude at the 

resonant surface, using the approximation of a small amplitude helical 

equilibrium, indicate island overlap should occur, leading to magnetic 

field ergodization. The energy confinement time due to stochastic 

transport, estimated directly from the measured fluctuations, has been
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shown to be consistent with that experimentally observed.

Studies of the edge magnetic fluctuations have been applied to 

discharges of differing conditions and in the termination and current 

set-up phases. Results have shown that, although systematic trends in the 

amplitude occur, the general structure of the fluctuations is invariant

with respect to changes in plasma current and filling pressure. At high 

values of 0 however, an m = 1, n = -3 mode becomes of equal significance to

the more usual m = 1, n = -10 activity. Estimates of the safety factor

indicate that, although the observed timescale of this mode appears

resistive, it is not resonant.

The structure of the global fluctuations in the current set-up phase 

appears very similar to that during sustainment, although the amplitude is 

higher. If the observed fluctuations are essential to the relaxation 

process this indicates that the production and sustainment of reversal rely 

on the same mechanism. In the termination phase the observed fluctuations 

show several differences in the frequency and mode numbers. However, after 

reversal is lost the observed frequencies correspond to resistive 

timescales rather than the Alfven timescale expected for ideal modes.

An investigation of the radial structure of magnetic fluctuations under 

low current conditions using the intertable probe has been reported in 

chapter 6. In order to analyse data from the probe in terms of linearly 

independent modes the technique of correlation matrix fitting has been 

developed. In the sustainment phase of discharges this technique allows the 

identification of three simultaneous processes. At low 

frequencies (4-20 kHz) the dominant process can be shown to be due to 

resistive modes characterised by m = 1 and n = -10. A stability analysis of 

the measured equilibrium field profiles predicts a radial structure of the 

most unstable m = 1 tearing mode in good agreement with this process.

At a roughly equal peak amplitude the second process discernable is due
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to modes localised in radius. This local turbulence is peaked on axis and

falls to zero within errors at the discharge edge. At high

frequencies (50-100kHz) this process dominates over the global modes.

The third process discernable, which has a peak power of around 1/4 of 

the dominant global instabilities, has been shown to possess the same

radial structure and timescales as ideal modes of m = 1 , n = -6 which are

either destabilised by a resistive liner or whose growth rates are reduced 

by a resistive shell.

In the case of the termination and current set-up phases only the 

resistive global modes and the local turbulence can be discriminated due to 

statistical errors. However, the results in these phases are structurally 

very similar to those of the sustainment phase.

In order to be able to interpret the measurements of fluctuations in 

terms of equilibrium quantities chapter 4 was devoted to a determination of 

the equilibrium of low current discharges. While being used throughout the 

thesis in relation to fluctuations, the results of this chapter have also 

contributed valuable information on their own. In particular the form of 

the magnetic equilibrium has been confirmed to be in agreement with an MBFM 

description, the variation with radius of the flux-surface displacement due 

to toroidicity appears consistent with Shafranov's theory and pressure 

profiles have been deduced which appear peaked on axis and show 3g = 14%. In 

addition an important result concerning stability is that no pitch minima 

are observed.

As we discussed in chapter 2, previous measurements of global

instabilities in the RFP all relied on the observation of coherent modes.

The toroidal variation of these instabilities was never studied in depth 

and the radial structures measured were, in the past, obtained by

inspection or at best as the square root of the radial power distribution.
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In addition, until recently, measurements on slow pinches were only 

compared with the ideal MHD theory. The contribution of this thesis is thus 

principally a systematic study of incoherent global instabilities in the 

RFP by statistical techniques and a detailed comparison with current MHD 

theory. In addition some progress, at least, has been made to a better

understanding of the two key questions; field reversal and transport.

7.2 FURTHER AREAS OF STUDY

There are principally two areas open for obvious further investigation. 

These are the continuation of the study of linearly independent modes, with 

additional comparison to the linear theory, and an investigation into

non-linear inter-mode coupling. We will start by listing the more important 

topics of the first area.

More detailed measurements with the edge coils using a larger toroidal 

array may be able to elucidate the n number of the m = 0 instabilities.

Once this is known an accurate island size may be calculated and the

question of whether the stochastic field-line region extends throughout the 

plasma or whether it is confined to the core could be answered.

In chapter 3 we discussed the large number of problems with the 

Association spectrum due to linear coupling effects. An obvious way around 

these problems is to use the technique of correlation matrix fitting on the 

signals from the poloidal array to disciminate the linearly independent 

modes. By a mutual orthogonalisation of these poloidal distributions a set 

of spatial filters could be constructed akin to the fourier filters used in 

this thesis. Application of these filters to the signals from the poloidal 

array could then be used to obtain the poloidal eigenmode spectrum and a 

type of Association spectrum without linear coupling problems. The 

benefits of such an investigation would be the possible identification of 

positive helicity kink modes resonant outside the reversal surface and the
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accurate determination of how much independent m = 0 activity is present. 

This would again tie in with the stochasticity estimates.

In this thesis we have discussed the evolution of the n-spectrum in 

terms of relaxation oscillations which could account for the reversal 

process. Better time resolved measurements from both the edge coils and 

other internal diagnostics could shed significant light on the relevant 

mechanisms.

Concerning linear phenomena, finally we must point out that the 

resistive g-mode has not been discussed in this thesis. However it is 

difficult to see how a realistic stability analysis, as has been performed 

here for the tearing mode, could be carried out as experimental estimates of 

the pressure profile are unlikely to improve in the foreseeable future.

Turning now to non-linear effects, significant progress may perhaps be 

made by applying the correlation matrix fitting technique to higher order 

correlations. From the intertable probe measurements this might answer the 

question of whether the local turbulence is non-linearly correlated to the 

global modes. In the context .of edge coil measurements the m = 2/m = 1 and 

m = 0/m = 1 non-linear couplings could be addressed. Such an investigation, 

if successful, could significantly enhance the understanding of the 

field-reversal mechanism.
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APPENDIX A

MAXIMUM ENTROPY ESTIMATION OF THE TOROIDAL MODE POWER SPECTRUM

Measurements from the toroidal array of edge coils can be used to 

construct the spatial auto-correlation function, R(5#) for 

0 < < 4"max=G0°. In principle the toroidal mode power spectrum P^ can be

calculated from this information through an expression of the form:

R(6#) = L(Po,,,,) , - (AA1)

where L is a linear operator. The problem with such direct calculation 

through ’linear deconvolution' is that R is only known to a certain 

accuracy. On inversion of equation AA1 large amplitude spurious features in 

P^ can arise from such errors. Essentially the presence of statistical 

errors in R may be thought of as generating an infinite family of possible 

R's each of which map to an element of a similar family in P. The family of 

possible P's dictate the probability of a certain realisation of P being the 

'true' power spectrum given the (gaussian) distributions of R. Clearly what 

is wanted is an estimation of the most likely P consistent with R within the 

statistics. The reason why linear deconvolution is not successful is that 

the most likely P is not the most likely R.

Clearly it would be impractical to estimate the most likely power 

spectrum by evaluating the mapping of different R realisations to their 

counterpart P's as this would involve enormous computer time. However it 

can be argued that the smoothest power spectrum consistent with the 

measured R is the most likely. This is the basis of the Maximum Entropy 

Method (MEM).
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Maximum Entropy Procedure

Suppose we estimate R(6<}>). In practice we only have a finite number of 

toroidal array coils, N and so we will refer to R(ô^) as R^. Then we define 

a 'smoothness function' which is known as the Configurational Entropy as:

S = - I hi &n (hi) - (AA2)
i

where hi = % Pi
i

Now consider the quantity:

Q s S(Po,...) “ X I { Ri - L(Po,...))% - (AA3)
1

where X is a Lagrange multiplier. If X=0 and we maximise Q we will calculate 

that hi = 1/e for all i, which is the smoothest possible solution since 

there is no variation with respect to i. On the other hand if X+«, 

maximising Q leads to the same result as an exact linear deconvolution. Thus 

there will exist some X, intermediate to the two extremes, X = 0 and X^®, 

which represents the smoothest possible power spectrum consistent with the 

measured spatial autocorrelation function (within errors). This will be the 

most likely power spectrum. The trick with the Maximum Entropy method is to 

devise algorithms which will maximise Q(X) such that X effects the correct 

balance between smoothness and information content in P as determined by 

the errors in R.

Outline Of Algorithms

Figure AA1 shows a flow diagram of a basic MEM algorithm. Initially a 

very small value of X is chosen. Q is then maximised by a non-linear 

optimisation routine and an error test is performed which dictates if X is 

too high to be consistent with the errors in R. If X is not too high it is
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NO

w YES

START

INCREASE X

MAXIMISE Q

STOP

ERROR TEST 
POSITIVE ?

CHOOSE INITIAL

Figure AA1

incremented and the procedure iterates. The error test is simply a test.

After each Q optimisation a power spectrum P^ is predicted. This is used to

calculate a predicted R^ by equation AA1. Denoting the predicted R^ by RP^ 

and the measured R by R̂ ĵ  the test is:

I { RPi - R®i)V Oi^< N , - (AA4)
i

where Oi is the standard error in R^. If the test is positive then X is 

large enough whereas if it is negative X should be increased to allow extra 

information in the predicted power spectrum.

Numerical Schemes

Two principle numerical schemes have been implemented to calculate the 

Maximum Entropy toroidal mode power spectrum. Both use the type of 

algorithm outlined in figure AA1 differing only in the method for 

optimising Q for a given X. It should be stressed that this numerical
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problem is not trivial and for an efficient solution the algorithms become 

very complicated. Since the problem in hand is relatively small the two 

algorithms used were constructed with simplicity and not efficiency in 

mind. This means that instead of taking a few seconds to calculate a 

toroidal mode power spectrum the programs developed take typically a few 

minutes.

Scheme One;

We require to optimise the function:

Q “ “I { T^p X I { Pi - L( Pi _)} “ (AA5)i 4 4 if  p / "  f
J J

Since Q has only one minimum in the function space { P i }  we may reduce the 

optimisation of Q to the solution of the equations 8 Q / 9 P i = 0 .  These 

equations may be written in the form:

P i  = expt Z [ P o , . , . ] }  , - (AA6)

where Z is some non-linear functional. An obvious implicit algorithm is:

Pi^"^^) = exp{ Z[Po|"],]}, - (AA7)

where the superscipt n indicates successive iteration. This algorithm has 

the advantage that Pi must always be positive definite and in addition 

should be able to cope with large dynamical ranges (due to the exp). However 

the algorithm as it stands is susceptable to numerical instability. In 

order to escape this problem a modified form must be used:

= a p / " ’ + (l-a)exp{ Z[P,|"].]) , - (AA8)

Where a is a constant in the interval [0,1]. In highly unstable cases a must 

be increased to 0.999 making convergence rather slow.
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Scheme Two:

The second method that has been used to optimise Q is a steepest ascents 

algorithm of the form:

p.(n+1)  ̂ p(n)  ̂ g {^}  ̂ if > 0  - (AA9)

= Small positive number otherwise , 

where the coefficient g is reduced as n increases to effect convergence.

The main problem with this algorithm is that it spends most of its time 

adjusting the small values of P^ produced by the second alternative in the 

above equation.
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APPENDIX B 

LINER PENETRATION

Because some of our measurements are made outside the liner it is 

important to estimate the effect of the liner on the observed fluctuations. 

If we treat the liner as thin with conductivity o and thickness 6 having 

radius a concentric within a shell, assumed infinitely conducting, of 

radius b and consider perturbations of the form exp i(m0 + n# - wt). Then 

provided

{ ( % ) + ( % ) }(b-a) << 1 “ (AB1)a n 0

we can treat the outward penetration of magnetic field across the liner (Bg) 

as related to that inside (B^) by :

Bq = Bi/(1 + iojT) , - (AB2)

where t = y^a 6 (b-a) .

This shows that the effect of the liner is to integrate the field with a 

passive time constant t .

An important complication is that the liner has a bellows construction 

so that the effective 6 is different for currents flowing in the toroidal 

and poloidal directions. Denote these by 69 and Then it may be shown 

that, approximating the liner as thin, we have

g  ,  _ _ (*63)
69 (m/a)^ + 6^(n/Ro)^

For the liner of HBTX1A "’̂0 = yoo6 9(b-a) = 30 ys and = 69/16 from which 

the penetration time constant of any mode may be calculated. For example, if 

m = 0, n #  0, then T =  30 ys while for m = 1, n =  8  t  « 10 ys, 

corresponding to frequencies of = 5 kHz and 15 kHz respectively.
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Additional complications arise beacause the convolution depth is not 

small compared to (b-a); however the above treatment is regarded as 

sufficient to first order. Finally, for m = 0, n = 0 the shell gaps prevent 

it from acting as a flux conserver and the penetration time depends on the 

equivalent flux out to the windings. The penetration times are then 

estimated as = lOOys for and = 20 ys for Bg. It should be noted

therefore, that m = 0 perturbations (and particularly for n = 0) suffer 

significantly greater attenuation in general than those for higher m.
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APPENDIX C

CORRECTION OF THE FIELD PROFILES FOR

A UNIFORM HORIZONTAL PLASMA SHIFT

We have seen that, in the central region of the discharge, the plasma 

equilibrium may be characterised by a set of concentric magnetic surfaces 

whose centre is shifted a distance A from the geometrical minor axis (GMA). 

Figure AC1 shows the situation. Our probe is inserted vertically to the 

GMA, the individual coils measuring B^xCy),Bjny(y) and Bmz(y). The problem 

we address is to determine the true poloidal and toroidal fields B^fp) and

B z ( p ) .  Major
oxis

Figure AC1

Probe co ils

P la s m a  
ax is  \

Z (out of p a p e r)

GMA

Diagram showing the shifted plasma equilibrium. The point 

p-0 represents the centre of symmetry of the innermost flux 

surface and the point marked GMA represents the geometrical 

minor axis.

AC.1 Toroidal Field

By definition we may write

B^^(y) = B^(p) = B^(/[y + A ]).

And so,on expansion,this yields

Bg(p) = B^(y + ly) . Bz(y) +

- (AC1)

- (AC2)2y dp ’

which is valid provided A^/y* «  1. Using AC1 again this may be recast 

in the following form
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- ly - (ACS)

Obviously, near the axis this formula is not justified. However, in this 

region we may expand in the following manner :

Bz(p) = Bz(0) + P ^
P=0

mz

provided
3 3A . d B 

6Bmz dy
mz « 1 .

2
Now since near the axis mz = 1 âimz

- (ACM)

(ACS)

- (AC6)

we again obtain equation ACS.
0 y dy

So this equation in fact holds subject to the condition AC6 which is not 

difficult to satisfy. Our correction scheme for Bg is therefore to use

- (ACT)Bz(y) = B^^(y) - f n z  .

Hence if we expand the measured field as an even polynomial in y so that

N 2j “ (AC8)

the corrected toroidal field may be written
N ..2B (y) = I b (1 - ^r) y .

^ j=0 J
- (AC9)

AC.2 Poloidal Field

In the outer region of the discharge we may expand as follows

- (AC10)ü̂)(p) _ Bmx(y) s. Bmx(p)-  ̂ *̂(̂ mx^
P y P 2p 3p P

provided -A , É fBmx^
2®mx ^P P

« 1 . - (AC11)

Changing variables this gives the following correction scheme;

Bai(y) - Bmx(y) 2 dy y - (AC12)

However near the axis the condition AC11 will break down and we must then
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expand as follows;

“ f “ -P - (AC13)

dRAnd so Bmx(y) = ^ yp
,3T - (ACIM)

Bjy) + i y A' #;#mx - (AC15)

However in the inner region

2y dy(^) = 6 ^
1 2 d B

dy
mx - (AC16)

since ^mx = ÉËmx 
y dy

+ É^mx 
dy

y_
J! - (AC17)

Hence AC!5 leads to the correction scheme of AC12. This is valid provided

«  1 . - (AC18)A d _ ^ x
6 d r

/ dBjnx 
/ dy

If we thus expand B^x as an odd polynomial series so
N

Bmx(y) = I  a.y 
J=0 P

( 2 J + 1 ) - (AC19)

then the true poloidal field is given by

B „ C y ) . I ( l - 4 ) y ' ? j ^ ' ^  
j=0 y

(AC20)
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APPENDIX D 

DERIVATION OF THE FIELD-LINE DIFFUSIVITY

When field-lines are thoroughly stochastic one expects that the 

quantity

^Ar /L^ = Dg^ (ADI)

has a well defined non-zero limit as L -»■ «> (here Ar is the radial 

displacement experienced in following a field-line a distance L).

Now Ar = B, dA - (AD2)
0 |B|

all quantities being evaluated at the resonance r = rg. So assuming |b | and 

Bjo have negligible variation over Ar,

z  1Dg^ s <Ar /L) = <%2B'L Br(A') Br(A) dA dA'> “ (AD3)
0

B^L 0
L-A

< Bp(A) Bp(A+s)> ds dA. - (AD4)
0

If we now assume that the fluctuations are translationally symmetric so 

that <Bp(A) bp(A+s)> is independent of A and also L > parallel correlation 

length, then

Bst < Br(0) Br(s)>ds - (AD5)

where A is the parallel coherence length
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APPENDIX E

THE EFFECT OF THE SHAFRANOV SHIFT ON THE CMF ALGORITHM

Owing to the toroidal nature of the HBTX1A pinch the longitudinal plasma 

axis does not coincide with the geometrical minor axis (GMA) but is shifted 

by a distance A = 3 cm (the Shafranov shift). The magnetic probe refered to 

in this thesis is inserted into the plasma vertically and the end coil is 

situated at the GMA. Figure AE1 shows the situation. It is clear that near 

to the GMA the probe signals measure linear combinations of the various 

field components rather than single components. In this appendix we address 

the question of what effect the shafranov shift has on the various m = 1 

processes deduced by CMF.
probe

Figure AE1

Diagram showing the position of the intertable probe in

relation to the shifted plasma equilibrium. The point r - 0

(out of page)represents the centre of symmetry of the innermost flux

surface and the point marked GMA represents the geometrical

minor axis. The first probe coil is at x - 0.

Major
axis Plasma 

axis

We start by fourier decomposing the 'true' fluctuating fields in a 

manner consistent with the equation V.B = 0 and the observation that the 

temporal phase of B^ is tt/2 out of phase with Bg and B̂j,. We assume that 

there is just one fourier mode present and consider a plane of constant <J):
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Bp(t) = bp(r) % ç(ü3 )cos(m0 + o) t)a aa
BgCt) = bgCr) I ç(ü) )sin(me+o) t) - (AEl)

a
B(j,(t) = b^(r) I G(w^)sin(me+w^t)

a
From figure AEl we see that the probe actually measures (Bx,By,Bz). These 

are related to the true field components by the following expressions:

Bx(r,e) = Bp(r,e)cos6 - Bgfr.ejsinG
By(r,e) = B0(r,e)cos0 + Bp(r,0)sin0 - (AE2)
Bz(r,0) = B^(r,0).

For the y-component, using equations AEl this gives:

By(r,0) = 'l { bjo(r)ç(ü)^)sin0cos(m0+a)^t)

+ bg(r)ç(ü)^)cos0sin(m0+£ü^t)} - (AES)

which, for m = 1, may be written:

By (r,0) = I ç(o) ){ sin(wat)̂  x*b@(r) - A^bp(r)]

+ cos(Wgt) ^  [ bp(r) + b0(r)]). - (AE4)
r

Using this expression we may calculate the auto correlation matrix, Rŷ ;

R^^(x,x’) a I By(r,0)By(r’,0*)dt - (AE5)

“  I Ï  I  c (w ^ ) ; (w  ) {  s i n ( w ^ t ) b y ^ ( r )  + c o s ( w ^ t ) b y ^ ( r ) }  
a 0

X { sin(wpt)by^(r') + cos(o)^t)by^(r’) }dt

2 2 where by (r) = Ax{br(r) + b@(r)}/(r )

and by^(r) s {x^bg(r) - A^bp(r)}/(r ) .

Terms such as sin(wQt)sin(wgt) will now cancel and we are left with:

R^^(x,x’) a by^ (x) .by^x') + by^(x) ,by^(x’) - (AE6)
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If we substitute this form of into equation 10 (section 2 of this paper) 

assuming two global processes and then proceed to minimise Q, the two 

processes that we will calculate are simply by^ and by^. Thus, assuming that 

the fluctuations are solely due to m = 1, the Shafranov shift acts to create 

another process (by2) and distort the true m = 1 Bq ’eigenfunction’ (byl).

Away from the centre of the discharge x = r >> A and so in this region 

by^ is simply the undistorted m = 1 eigenfunction. As we approach the 

centre of the discharge x becomes comparable to r and A. At the GMA x = 0 

and r = A and so by^ = -bp. However, due to single-valuedness of the 

magnetic field, in this region (for m = 1) bp = -bg and so by^ is, to a good 

approximation, the true ra = 1 Bg eigenfunction for all r.

Regarding by2, this is a global process of about one third of the 

amplitude of the true Bp and Bg eigenfunctions. Figure AE2 shows its 

general form. By using a four-process CMF fit we are sometimes able to 

distinguish this process although < 1•

(2)

10 c m

Figure AE2 Form of the ahift-induced second (m • 1) process for

Exactly similar results may be shown to hold for B^. For Bg the effect 

of the Shafranov shift is to create a second-process localised to the first 

two coils of the probe (nearest to the GMA) and to weight the true B̂j, 

eigenfunction in the vicinity of the GMA with a function that goes to zero 

at X = 0. This latter restriction is relaxed when an m = 0 component is
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considered in addition to the m = 1, the two being linearly coupled 

together.

We should thus conclude that the large diagonal element mismatch for 

r < a/2 in figure 6.12 is not expicable by the Shafranov shift. However, in 

figure 6.11 we should interpret nearly all of the mismatch on the first two 

coils as being due to this shift. In addition, the Bg and Bp m = 1 

eigenfunctions of figures 6.9 and 6.14 are not affected by the shift and the 

Bjj, is simply weighted towards zero on the first two coils. The fact that 

B(jj 0 at X  = 0 is indicative of m = 1 being linearly coupled to m = 0 in 

this region.
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APPENDIX F

DPRIME ; A DELTA PRIME TEARING MODE STABILITY CODE

In order to investigate the tearing mode stability of the measured 

equilibrium field profiles (discussed in chapter 5) a delta prime code 

'DPRIME* was written (using FORTRAN and implemented on an LSI 11/23 digital 

equipment computer). In this appendix we will briefly discuss this code and 

outline the equations it solves.

In the approximation of cylindrical geometry, small but finite 

resistivity and no equilibrium pressure gradient we consider a perturbation 

of the form Bp = bp(r) exp(im6 + ikz + cot). This perturbation can be shown 

to satisfy the following second order ODE (obtained from the linearised 

form of the equations Vx(JxB)=0 and V.B=0):

2
^  + AY = 0 - (AF1)

«here Ï =

4 2 2 2 4 4̂  2 2 22. 2amk . (m + 10 m k r - 3k r ) m + k rand A . + ^2 ;■ 7  “ ~ P

_ (MBs - krBg) 
dr (mBg + krBg)

and 0 = —
B=

Close to the singular surface this equation breaks down and a higher order 

finite resistivity equation must then be used.

In order to determine the tearing mode stability of a given equilibrium 

(determined by Bg.Bg) to a helical instability with mode numbers (m,n) we 

integrate the above equation out from the origin (where Y=0 and Y* 

determines the scaling) to the resonance, where the last term in the 

definition of A diverges leading to a logarithmic singularity in dY/dr. In 

this region we use the asymtotic solution:
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Y (x) = C (1 - gxln|x|) + B (x - gx /2), - (AF2)
where g = - ^  ,(mB^/r -kB*)

dr dF/dr

and F = ̂  + kByr ^

and X  = (r-re).

By matching Y and Y’ just before rg we can determine the two constants C and 

B and so fully determine the solution from the axis to the resonance. By 

choosing another ’B’ constant (denote this by D) we can determine the outer 

solution in the region of the resonance and from this we can integrate the 

full equation out to the wall. By a shooting iteration we can find the value 

of this last constant at which we obtain Y(r„)=0. Then the mismatch in 

gradients at the resonance, A’, is given by

D - rA' = . - (AF3)

Finite resistivity analysis [1,2,3] shows that the condition for 

instability is A' > 0  with growth rate (in resistive time units) given by

W = 0.55 (A')'/^(n/4n)*/^(dF/dr)^/*/(*wp)'/^, *- (AF4)

where n is the resistivity, p the density and dF/dr is evaluated at the 

singular surface.

NUMERICAL ASPECTS

Pressure Removal

Since we deal only with current driven instabilities , for consistency, 

we must remove the pressure from the equilibrium field profiles. DPRIME 

therefore accepts as input a digitised y profile (which it then
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interpolates using cubic splines). The fields are solved for by using the 

force-free equation VxB = yB. The iterative algorithm used is

Bgl- A - (AF5)

Bg^*T= ri+1(A Bgh/(r^''’+ A),

the on-axis boundary conditions being Bg = 0 and Bg To check the
/I 9r

calculation, the program automatically calculates the pressure gradient via 

JxB and y once it has calculated the force-free fields.

Main Integration

For both the inner and outer solutions we use the following algorithm :

Y^(2 - A^A^) - - (AF6)

The boundary condition is Y = 0 at r = 0 and we shoot for Y = 0 at r = r% 

using a newton-raphson iteration on the coefficient D. Typically we use 500 

mesh points, 10 of which comprise the asymtotic solution. We find that in 

99$ of cases only three shooting iterations are necessary after which we 

calculate A’ as above.

Eigenfunction Calculation

When the shooting iteration is complete we have effectively solved for 

the Bp eigenfunction. In fact we have actually solved for Y but this is 

related to bp as described above. In order to compute the Bg and Bg 

eigenfunctions we use the linearised forms of (Vx(JxB))p = 0 and V.B = 0. 

These may be written:

- bg - kbg = ybp ; " bg + kbg = - - g^(rbp) (AF7)
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Facilities of the code

The code has several modes of operation. It can be used to calculate the 

eigenfunctions and A’of a given (m,n) set. Alternatively it may be used to 

compute a stability diagram. For m = 0 resonances the code will produce a 

diagram of A* against ka. For m > 0 the code will plot A’ against the 

resonant radius. In addition to these two modes, the code has an integrated 

test facility allowing the calculation of stability boundaries using 

certain analytic pitch profiles. It also has the facility to accept 

measured Bp perturbation eigenfunctions (say from a magnetic probe) and to 

compute the other two field eigenfunctions.

DPRIME has been tested by comparing the stability boundaries of certain 

analytic pitch profiles given in [4]. Also the analytic on-axis criterion

2P d P 
2 dr^ > ---„ (m * 0) , - (AF8)

r-0

and the marginal point of 0 = 1.56 for the BFM have been verified.
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THE STRUCTURE OF MAGNETIC FLUCTUATIONS 
IN THE HBTX-IA REVERSED FIELD PINCH

I.H . H U T C H IN S O N *, M. M A L A C A R N E **, P. N O O N A N ,
D. B R O T H E R T O N -R A T C L IF F E ***
Culham Laboratory,
Abingdon, Oxon,
(Euratom -UK AEA  Fusion Association),
United Kingdom

ABSTRACT. Arrays of edge magnetic coils and statistical analysis techniques have been used to  investigate 
the magnetic fluctuation structure in the HBTX-1A reversed field pinch. The superficially random fluctua
tions can in fact be attributed almost entirely to global modes with poloidal mode num ber m =  0 and 1, 
provided account is taken of toroidal distortion of the modes. A toroidal array o f coils discloses a broad 
spectrum of toroidal mode numbers with peak at Ini ~  10 and signiGcant variation with time and frequency. 
Cross-correlation establishes that | n | '^  10 corresponds to m =  1, a helical mode resonant inside the reversal surface, 
and also shows the presence of m =  0, n ~  0, The time-scales of the fluctuation indicate that the instabilities are 
probably resistive in character, and the mode amplitudes are such that island overlap and magnetic field 
ergodization should occur. The energy confinement time due to stochastic transport, estimated from the 
measured fluctuations, is consistent with that observed experimentally.

1. IN T R O D U C T IO N

In the Reversed Field Pinch (R FP), even during 
relatively quiescent periods, a significant level o f fluc
tuation in the magnetic field exists. It is widely 
accepted that the appearance and sustainment o f a 
reversed magnetic field by plasma action requires such 
magnetic fluctuations, although the detailed mecha
nisms by which self-reversal occurs are generally not 
yet understood. It  also seems that usually the energy 
confinement in the RFP is determined by enhanced 
transport arising from the fluctuations. Detailed study 
o f the fluctuations therefore offers the possibility o f 
elucidating these two vital topics: self-reversal mecha
nisms and energy transport. We present here a study 
o f magnetic fluctuation in the HBTX-1 A RFP using 
magnetic coils outside the plasma edge.

Magnetic fluctuations have long been observed in 
stabilized pinch discharges, and in early experiments 
on Z E T A  and the M k -IV  torus [1 ,2 ]  clear evidence 
o f principally kink (m =  I )  modes was obtained. Later 
Z E T A  experiments [3] concentrated on higher fre
quencies and interpretation in terms o f fully developed

* Present address: Nuclear Engineering Department, 
Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA.

•*  Euratom-supported fellow and Oxford University, UK.
Royal Holloway College, London University, UK.

turbulence, and less attention was paid to the larger 
scale lengths. In fast programmed experiments on 
H B T X  [4 ], coherent m =  1 kinks were also observed 
during sustainment; these perturbations appeared to be 
a mixture o f ideal and resistive modes.

More recently, on present-generation pinches, studies 
have been reported on ETA -B ET A  I I  [5 ] and O H TE  [6 j. 
In the latter case, results very similar to those for the 
early Z E T A  and the M k -IV  torus were obtained, 
indicating dominantly m =  I modes.

The experimental techniques for studying magnetic 
fluctuations, using magnetic coils o f various sorts, are o f  
course well developed. In  addition to magnetic probes 
inserted into the plasma, which have been used both in 
RFPs [6 ] and tokamaks [7 ], coils outside the plasma 
in the form o f discrete coils or coils specially wound to 
measure Fourier components (sine and cosine coils) 
prove to be o f considerable help in diagnosing plasma 
instabilities and are now used routinely in tokamaks.

Two im portant factors distinguish our techniques 
from those which are most frequently used. The first 
is that in the RFP the most dangerous M H D  instabilities 
[8, 9] have poloidal mode number m =  0  or I and a 
variety o f possible toroidal mode numbers n. This is 
the converse o f the tokamak situation with dominantly 
n =  1 (or 2) and various m, and implies that it is o f  
considerable interest to have arrays o f coils round the 
toroidal circumference rather than just the poloidal 
circumference as is more usual. The second factor is
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that the majority o f RFP fluctuations do not have the 
obvious periodicities in time which are typically seen 
in tokamaks; rather, the fluctuations appear to be 
fairly stochastic and turbulent. The consequence o f 
this is that in many cases it is not possible to distinguish 
the evolution o f particular types o f modes simply by 
inspection. It  is therefore usually necessary to adopt 
statistical forms o f analysis in order to extract from 
the apparently random signals the required information.

Our studies here concentrate on the sustainment 
phase o f the RFP discharge during which the fluctua
tions are weakest and also typically least coherent. We 
present a systematic analysis o f the poloidal and 
toroidal mode structure and o f helical perturbations.
In addition, we present observations o f the evolution 
o f the perturbations, very-low-frequency oscillations 
and some observations o f the termination phase. In 
the final section we discuss the interpretation o f our 
results in terms o f the resistive M H D  instabilities 
expected in RFP configurations.

2. TEC H N IQ U ES

Details o f the HBTX-1 A  experiment have been 
published in Ref.[ 10]. The magnetic coils used in these 
studies consist primarily o f three sets, illustrated in 
Fig. 1. Outside the vacuum liner, in the interspace 
between the liner (inner minor radius 0.26 m, major 
radius R =  0.8 m ) and the conducting shell (inner minor 
radius 0.29 m ), we have a poloidal array oE coils 
measuring toroidal and poloidal components o f the 
field (B^ , Bg) at 16 poloidal angles (fi). Also, adjacent 
to the poloidal array is a toroidal array measuring B^ 
and Bg at 14 toroidal positions covering 60® in toroidal 
angle. The toroidal array is at a poloidal angle o f —40°. 
Inside the vacuum vessel are poloidal arrays similar to 
the interspace array but with the coils recessed into  
special sections o f the bellows liner. These internal 
coils are more sensitive to higher-frequency fluctuations 
because they do not require the fields to penetrate the 
liner.

The signals from these coils, either integrated or 
unintegrated, are digitized typically at 500 kHz sampling 
frequency, using 10-bit ADCs (LeCroy 8210). Because 
o f the nature o f the signals this is fast enough to avoid 
aliasing problems (except possibly at high frequencies 
with the unintegrated internal coils) and to cover the 
frequency band in which virtually all the fluctuation 
power lies.

A variety o f forms o f statistical analysis has been 
applied to the signals obtained which we summarize

Liner

 Interspace
toroidal a rray

,60"

15"
■Internal 
poloidal a rra y

Shell

Interspace  
poloidot a rra y

R o n

Shell

Interspace poloidal 
a rra yLiner

In te rspace  toroidal 
a rra y

Section 

F IG .l. Discrete co il layout.

here. Given signals x (t), y (t )  during a finite time 
period T  with Fourier transforms X (y), Y (y ), which 
we calculate numerically by F F T  programs, the power 
spectrum o f x is

(1)

where < ) denotes the average over ensembles (i.e. 
distinct time periods or different shots). The cross
spectrum is given by

1W=Y<X(i^) W ) > (2)

and I r l  is commonly called the cross-power-spectrum 
and arg(F) the phase spectrum; these are useful for
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discovering any systematic phase relationships between 
the signals x and y. The normalized cross-spectrum

7= in /IPxPyl'"

is called the coherence.
In the time domain we use the cross-correlation 

function

(3 )

= ■ (—  /  x ( t )  y ( t  4- r ) d t (4 )

which we often normalize to give the cross-correlation 
coefficient:

p(r) =  Rxy(r)/[Rxx(0) Ryy(O)] 1/2 (5 )

We note that for signals which are statistically stationary 
the Wiener-Kintchine theorem states that P%(y) is the 
Fourier transform o f R ** .

It is often convenient to perform time-domain corre
lation analysis for signals which are frequency filtered 
in various ways. For example, this may be used to 
remove the slow variations due to equilibrium evolu
tion. In order to do this, we m ultip ly the Fourier 
spectrum X(i^) by an appropriate filtering function (e.g. 
a ‘box’ f(x ) =  I for t'j < v  <v^, zero elsewhere) and 
then transform back to obtain the filtered time history 
x '(t )  which can then be used to obtain correlations. In  
this way we can concentrate on fluctuations in a limited 
frequency range, excluding others.

The structure o f the fluctuations in the spatial co
ordinates 6 and <t> is often most easily expressed as an 
expansion in terms o f spatial Fourier harmonics: 
exp i(m 0 +  n0). We can form linear combinations o f  
the discrete coil signals in order to obtain the time 
histories o f various poloidal or toroidal harmonics.
These can then be used as input to the various statistical 
coefficients outlined above. An alternative approach is 
to investigate the cross-correlation o f the magnetic 
fluctuations at various positions, e.g. forming the 
autocorrelation in space. In essence, this approach 
contains the same information as the spatial harmonics; 
however, it sometimes provides a more transparent 
interpretation and sometimes allows greater resolution.
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F IG .2. Time history o f  a typical shot: plasma current ( Ip ), 
toroidal loop voltage (V^), average toroidal magnetic fie ld  
(<B^), average line-of-sight electron density (n« ), toroidal 
magnetic fie ld  at the liner (B*), and time derivative o f  poloidal 
magnetic fie ld  at the liner (Bg).

3. RESULTS

3.1. General

The evolution o f the main discharge parameters for 
a typical shot o f interest is shown in Fig.2. We present 
mostly data for shots such as this whose plasma current 
is sustained approximately constant at ~  200 kA . Brief 
surveys o f other discharges show little  substantial change 
in the character o f the fluctuations in shots with 
decaying currents. Substantial surveys over different 
current level, pinch parameter or filling pressure have 
not yet been carried out.

Also shown in Fig.2 are example traces from single 
coil probes: integrated, giving field B^, and uninte
grated, giving Bg. The apparently stochastic nature o f 
the fluctuations is evident from these traces.
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F IG .3. Power spectrum I* and Bg/lB 1̂  during the
sustainment phase, obtained from  the internal coil ensemble 
averaged over five shots.

The power spectrum, P(r'), during the current 
sustainment phase o f such signals is shown in Fig.3. 
These spectra are averaged over five shots to illustrate 
the trends, though substantial variation from shot to 
shot occurs in the details o f the spectra. I t  is clear 
that the dominant power is at low frequencies. Above 
about 40 kHz the spectra fall o ff  approximately as

. As can be observed in the figure, there is little  
obvious difference in the spectral shape for Bg and B^, 
although the power at the lower frequencies 40 kHz) 
is systematically slightly higher for B^.

The total root-mean-square fluctuation levels 
expressed as a fraction o f the (poloidally averaged) 
total magnetic field, (B^ +  Bg)'/^, are plotted in Fig.4 
as a function o f poloidal angle 6. The significant varia
tion particularly in Bg is indicative o f the importance 
o f toroidicity in HBTX-1 A. The mean fluctuation  
levels are typically 1.5% for B^ and 1% for Bg during 
sustainment, and considerably greater, 6 —10% for 
both, during current rise and termination.

3.2. Poloidal mode structure

In order to determine the structure o f the fluctua
tions, we may Fourier decompose in Q by forming the 
sums over coils k;

N

- ^ ^  %  cosm^k
k =  1

(6)

1.5

0.5
IBI

2tl

N

FIG.4. Ensemble-averagedamplitude o f  I\B \ andBg/ l Bl  
as a function o f  the poloidal angle during the sustainment phase 
(frequency band 5 -2 5 0  kHz).

=  ^  ^  Bk sin mOk 

k =  1

Pm= 2 iSrnl')

(7 )

(8)

which then gives the total power in each Fourier mode. 
The resultant poloidal mode power spectra obtained 
from the internal coil array during the sustainment 
phase are plotted in Fig.5. The spectrum o f B^ is 
dominated by m =  0, 1, with very rapid fall-ofi at 
higher m; for Bg the spectrum, though similar, shows 
relatively rather greater levels o f m =  2 and less m =  0.

Another approach to the poloidal mode structure is 
to form the cross-correlation coefficient (in itia lly  with 
zero time delay) between the various coils, thus giving 
the spatial autocorrelation. This is shown for Bg in
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Fig.6, using coils approximately on the inner (a) and 
outer (b ) equator as reference coils. There is a very 
clear difference in the autocorrelation obtained with 
these different reference coils; using reference coils at 
Ô ± 90° gives autocorrelations which are asymmetric. 
These differences indicate that the fluctuations do not 
possess rotational symmetry in their statistics: i.e. 6 
is not an ignorable co-ordinate. The nature o f the 
fluctuations may be deduced from inspection o f such 
autocorrelations. To  lowest order, disregarding for a 
moment the lack o f rotational symmetry, the auto
correlation is that which would be expected from  
dominantly m =  0  and m =  1 modes o f similar magni
tude, i.e. it is the sum o f a constant plus a cos 6 depen
dent part. The lack o f symmetry indicates that, in fact, 
the ‘m =  r  component is distorted because o f toroi
dicity so that its phase varies more rapidly at the outer 
equator (6 0 ) than at the inner equator (0 ~  180°).

(o)

2lt

“ 1 -L

(b)
1

-Tt

-1  - L

FJG.6. Equal-time cross-correlation coefficient (spatial auto
correlation) fo r  Be 05 a function o f  displacement in poloidal 
angle; (a) reference coil at 6 ^  it; (b) reference co il at 6 Si 0. 
(Sustainment phase: f ilte r  5 -5 0  kHz.)

0 I 2 3 *

Expressed in terms o f  the Fourier decomposition, 
this means that the fluctuation mode consists o f a sum 
o f poloidal Fourier components

-*10'® T*

®e

M, = cos(0 - a) + Cj cos(20 - a) -b . (9 )

F IG .5. Poloidal mode power spectra fo r  and Bg during the 
sustainment phase (frequency band 5 -2 5 0  kHz).

where a is some (random) phase, these Fourier compo
nents being coupled (linearly) together. The signature 
o f this linear coupling is that the cos 0 and cos 20 (and 
also sin 0 and sin 20) components are always in phase 
with each other. This characteristic is readily con
firmed by forming the cross-spectrum between cos 0 
and cos 20. Figure 7 shows this spectrum. The 
coherence at lower frequencies is very high (^  0 .8), 
indicating that about 60% o f the power in the modes 
is linearly coupled. The phase is zero, indicating that 
cos 20 and cos 0 are in phase at 0 =  0 (the outer 
equator) as expected from the autocorrelation data.
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FIG. 7. Coherence and cross-phase spectrum between the 
m = I  and m -  2 cosine modes fo r (ensemble average over 
ten shots, sliding averaged over three frequency points during 
the sustainment phase).

The fa ll-o ff o f coherence and the accompanying rando
mization o f the phase at higher frequencies for this 
spectrum appear to be caused by the increasing impor
tance o f electronic system noise due to the fall in 
power. Coherence spectra obtained by using uninte
grated 6  signals do not suffer from this problem and 
coherence is high up to 250 kHz. I t  is possible also 
that different modes become important at higher 
frequency.

The spatial autocorrelation o f shows less asym
metry than Bg, although the m =  1, m =  2 coherence 
spectrum is qualitatively similar, indicating that there 
is some linear coupling. This is consistent with the 
mode spectra showing smaller m =  2 power for B^ 
than for B g .

Figure 8 illustrates a different type o f linear coupling 
observed in the m =  0, m =  1 cross-spectrum of B^.
In this case, at the higher frequencies the cross-phase 
is 180°, indicating that the modes add constructively 
at the inner equator. This is consistent with the toroidal

distortion o f the m =  0 mode, i.e. B^ «  I /R  sè 
1 -  ( a /R o )  cos 6. The lower coherence at low  fre
quencies indicates that the major parts o f the m =  0 
and m =  1 power there are independent.

Thus, the poloidal mode structure is that there are 
dominantly only two statistically significant types o f  
modes, M q and M , , which may be identified as the 
modes corresponding to m =  0 and m =  1 plus their 
concomitant higher harmonics generated by the toroidal 
distortions. These linear coupling effects are stronger 
for Bg than B^, which is partly why the mode spectra 
are different. The presence o f higher-order modes 
independent o f Mo, M , is not established; however, 
their power is certainly less than 3% o f the M q and M , 
power.

In order to determine propagation and rotation  
effects, we examine the time-delayed cross-correlation 
between coils in the poloidal array. Figure 9(a) shows 
the result for Bg in which evidence o f rotation is indeed 
present. The rotation is in the direction o f the ion 
diamagnetic drift (which is in the direction o f electron 
poloidal current flow) inside the reversal surface. The 
rapid fa ll-o ff with time (or distance) o f the maximum

Coherence

200100
Phase

200
Frequency (kHz)

1000

FIG .8. Coherence and cross-phase spectrum between the 
m = 0 and m = 1 cosine modes fo r  (averaged as in Fig. 7).
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X ( m s )

-It

to

-Tt

- to

F IG .9. Time-delayed cross-correlation coefficient as a function  
o f  6, ensemble-averaged over the sustainment phase (filte r  
5 -5 0  kHz}: fa) fo r  Bg, (b) fo r '^ ^ ;  showing evidence o f  
poloidal rotation.

value o f the time-delayed correlation coefficient indi
cates the relative incoherence o f the modes due either 
to a broad spread o f rotation rates or to growth and 
decay rates o f the same order o f magnitude as the 
rotation.

That there are different rotation rates is emphati
cally confirmed by Fig.9(b) in which the time-delayed

cross-correlation for shows rotation for nominally 
identical shots in the opposite direction to Bg rotation. 
This is not due to shot-to-shot variation, since it is 
observed on a single shot, but must presumably be inter
preted as an indication that in this case the fluctuations 
to which B^ is most sensitive preferentially rotate in the 
opposite direction to those to which Bg is most sensi
tive. Other sets o f discharges o f nominally similar 
parameters sometimes show almost no significant 
rotation. The reasons for this are unclear.

3.3. Toroidal mode structure

We have used the toroidal array o f coils to determine 
the toroidal mode structure o f the fluctuations initially 
by forming cross-correlations within the toroidal array 
to give the toroidal autocorrelation in space, i f  the 
machine were completely toroidally symmetric, then 0 
would be an ignorable co-ordinate and the cross
correlation between two angles 0, and 0% would 
depend only on |0, — 02 I. Figure 10 shows the spatial 
autocorrelation averaged over the sustainment phase 
obtained for 0 >  0 using coil 1 o f the toroidal array 

as reference and for 0 <  0 using coil 14 as reference. 
The symmetry obtained is not perfect, indicating 
that the properties o f the fluctuations are not 
perfectly toroidally symmetric, presumably because 

of the presence o f ports, shell gaps, etc., which intro
duce asymmetries into the machine.

FIG. 10. A utocorrelation in space, p(0), fo r  B^ (frequency 
band 5 -1 5  kHz).

NUCLEAR FUSION, Vol.24. No.l (1984) 65



HUTCHINSON et al.

5-15kHz (s c d e  *  2)

Convolulion Lire Shape

15-25  kHz

2 5 -3 5  kHz

6 5 - 5 5  kHz

10 20 300

F IG .l 1. Toroidal mode power spectra o fB ^  fo r  various 
frequency bands.

The spatial autocorrelation has a rapidly damped 
form , indicating a fairly broad spectrum o f toroidal 
wavelengths. It  is clear that a close-spaced array o f 
the type we use is essential for obtaining a reasonable 
estimate o f the toroidal structure since the correlation 
length is o f the order o f or less than the 60° in 0  which 
we have available. Thus, it would not be possible to 
obtain detailed information on the toroidal structure, 
except with arrays whose spacing is considerably less 
than this 60° correlation length. I t  would be preferable 
to have a toroidal array whose extent is much greater 
than the correlation length. Unfortunately, the present 
array does not meet this criterion and the result is that 
our resolution o f toroidal wave number is o f the same 
order as the width o f its spectrum. This enforces upon 
us the need to maximize the resolution in our data 
analysis.

In order to obtain the toroidal wave number spec
trum, which we express in terms o f the mode number 
n (=  27rRk^), we symmetrize the autocorrelation func
tion by averaging the two sides o f Fig. 10 and then 
Fourier transform. This is equivalent to taking the 
cosine transform only o f the unsymmetrized auto
correlation and discarding the sine transform. This 
process provides nearly twice the resolution obtainable 
by forming directly weighted sums o f coil signals, but 
requires us to invoke the approximate ignorability o f0 . 
The results we obtain are consistent with the direct 
method.

The resulting n-spectra o f are shown in F ig .l 1. 
The inset shows the shape function we obtain by this 
process, the spectra obtained being the convolution o f 
this shape function with the true spectra. We show 
results for several frequency bands obtained by digital 
filtering. It  may be observed that the detailed shape 
o f the spectrum changes with frequency. The dominant 
feature at most lower frequencies is at n =  8 -  12, and

FIG. 12. Correlation function p versus time delay, T , and 
toroidal angle, <l>, fo r  (frequency band 5 -1 5  kHz), showing 
evidence o f  toroidal rotation.
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sometimes there appears to be a higher harmonic 
structure to the spectrum. Generally, very little power 
appears for n <  5, although some other spectra show 
power close to n =  0.

Propagation in the toroidal direction has been 
observed from time-delayed cross-correlation coeffi
cients. Figure 12 shows a typical example. The propa
gation is generally even less pronounced than that 
observed on the poloidal array in Fig.7, indicating the 
incoherence o f the modes. A t the lower frequencies, 
where the rotation is generally least ambiguous, the 
observed preferred rotation is in the direction o f (con
ventional) toroidal plasma current (i.e. opposite to the 
electron flow). The speed is essentially given by the 
frequency and preferred n, and is typically 10^ ms"'.

3.4. Helical mode analysis

Although the results presented so far give a general 
picture o f the m and n spectra separately, they do not 
of themselves allow us to determine the mode structure 
and to associate given m ’s with certain n’s. This requires 
in general a two-dimensional array o f measurements 
which can then be decomposed into helical Fourier 
components o f the form exp i(m0 +  n0). Our situation 
is less complete than this in that we have only two per
pendicular one-dimensional arrays.

I f  we form the ‘correlation m atrix’,

the correlation between m and n components. We 
expect the linear-coupling toroidal effects to  generate 
‘spurious’ associations on A in adjacent m numbers, but 
allowance can be made for this in interpreting the 
spectra produced.

Figure 13 shows an example o f a correlation matrix 
for Bg obtained from the two interspace arrays. Its 
maximum is near 6 =  —40®, 0  =  60 °, at the intersection

FIG. 13. Correlation matrix between the po lo idal and toroidal 
arrays fo r  B@ (frequency band 5 -5 0  kHz), indicating a 
dominantly helical structure.

Q ( 0 ,0 )  = < x (0 ,0 o )x * (0 o .0 )> (10)

by correlating at zero time delay the signals from the 
poloidal array with those from the toroidal array, we 
obtain a two-dimensional measure o f the statistical 
properties. In  a situation in which 6 and 0 are ignor
able, it may be shown that Q is sufficient to determine 
essentially completely the second-order statistics (i.e. 
power spectra, etc.). In particular, the Fourier trans
form o f Q

(2ir)
e x p ( - i (m 0  +  n0)] Q (0 ,0 )  d0 d0

(11)
is then equal to the two-dimensional power spectrum.

As we have shown above, toroidal effects are quite 
strong so that 6 is not ignorable and some asymmetries 
exist even in the 0  direction. Nevertheless, we can 
form Q and transform it to obtain A, which we refer 
to as the ‘association spectrum’ since it is a measure of

m s 0

I

S

a.

20 400-20-40

FIG. 14. Association spectrum fo r  Bg. Inset shows convolution 
line function (frequency band 5 -5 0  kHz).
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of the arrays, and it clearly shows a dominantly dia
gonal correlation profile indicating a helical structure.

Transforming Fig. 13, we get the corresponding 
association spectrum shown in Fig. 14. The symmetry 
A m n  =  allows US to adopt the convention that m
is taken always non-negative and then n ranges from  
-oo  to 4-00. Our sign convention is that magnetic 
field lines inside the reversal surface have helicity cor
responding to negative n. Since the power is negligibly 
small for higher m, we show only m < 3 ;  also we plot 
only the real part o f the transform since in the ideal 
case, where 6, 0 are ignorable and the 0  range measured 
is 0 -2 n  (neither o f which is the case here), the imaginary 
part is zero. The inset shows the line width (convolu
tion) function.

The dominant feature peaks at m =  1, n s  - 7 ,  with 
evidence o f a tail extending out to n ~  -2 0 .  Additional 
peaks appear near n =  0 and n =  4-9 on m =  1, and 
the m =  2 spectrum appears to mimic the m =  1 
spectrum. The m =  0 spectrum shows a negative 
feature coinciding with the main m =  1 peak; the 
m =  0 spectrum is, by definition, symmetric in n.

It would be a mistake to interpret all these features 
as representing independent modes existing in the 
plasma. Almost certainly, virtually all the m =  2 
spectra should be regarded as arising from the toroidal 
linear coupling effects previously discussed. The m =  0 
feature must also be regarded as spurious for two 
reasons: first, it is negative, whereas in the idealized 
case the spectrum would be positive definite; second, 
there can be no Bg component o f a true m =  0, n f  0 
perturbation outside the plasma since, there, c u rl^  =  0. 
Thus the m =  0 spectrum here contains little  power 
which we can interpret as ‘true’ .

The features o f m =  1 near n =  0 and n ss 4-9 are 
less certain. Inspection o f the correlation matrix reveals 
little  evidence o f opposite helicity modes, so probably 
we should regard the n s  4-9 feature as an artifact 
arising from linear coupling, although we cannot rule 
out the possibility o f its representing an independent 
mode. The m =  1, n ~  0 may well be a true mode, in 
which case it represents an equilibrium shift type o f  
behaviour. However, it may partly arise from the side- 
lobes o f the convolution function.

Figure 15 shows the association spectrum for 
obtained from the internal poloidal array and the 
toroidal array. The m =  1 component looks similar 
to that o f the Sg spectrum, although the peak is now 
near n =  - 1 0 .  This, we believe, should be interpreted 
as a bias effect in that 5^  is more sensitive to high 
I nI and Bg is more sensitive to low In i because o f the 
direction o f the perturbed field for a given mode at the

I

I

20 AO-20 0-40

F IG .15. Association spectrum fo r  B^. Inset shows convolution  
line function (frequency band 5 -5 0  kHz).

ITS

FIG. 16. Polar plots  o /B ^ . evolution in time (ms), showing 
low-frequency m = 1 rotation.

edge (which is given by curl B = 0). The m = 2 spec
trum is much smaller than for Bg, consistent with a 
weaker toroidal distortion. There is still a negative 
feature on m =  0, slightly shifted with respect to 
the n =  - 1 0  peak; we regard this phase shift as an 
effect due to incomplete cancellation o f liner-induced 
phase shifts. The m =  1, n =  4 -10 peak is much less 
significant than for Bg, which is consistent with its 
interpretation as a toroidal distortion artifact. Then 
there remains the m =  0, n ~  0 component, which 
we take as real and indicating a definite contribution  
from those modes; and m =  1, n ~  0, which is probably 
mostly a toroidal distortion o f m =  0, n ~  0.
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40

FIG. 17. Time evolution o f  n-spectrum fo r  (frequency band 5 -5 0  kHz).
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It should be noted that these association spectra are 
corrected for liner penetration effects only by assuming 
a single 10 /xs penetration time for the liner, whereas 
the theoretical liner penetration time (see Appendix) 
is different for different modes. In particular, for 
m =  0, n =  0, the penetration time is about ten times 
longer for 5 ^ , causing attenuation by a factor o f ten.
I f  this effect is allowed for, the m =  0, n ~  0 feature 
on is significantly enhanced over that shown.

3.5. Evolutionary phenomena

So far, several important phenomena have not been 
mentioned in our presentation o f the results. First, 
it must be noted that our statistical techniques have 
concentrated on frequencies above about 5 kHz, which 
are high enough to exclude the global evolution o f the 
equilibrium plasma parameters, such as current and flux. 
However, it is observed that on a good proportion o f 
discharges evolutionary phenomena exist at frequencies 
as low as 1 kHz which justify the designation ‘perturba
tion’ since they are not simply evolutions o f a quasi- 
cylindrical equilibrium. Since these turn out to be 
spatially fairly coherent, even though they exist for 
typically no more than one time cycle, we can illustrate 
their characteristics by plotting directly the temporal 
evolution o f the edge field profiles. Figure 16 shows a 
particularly clear example o f polar plots from a single 
discharge o f the toroidal field amplitude as a function 
o f â, referred to the mean at each 0 (over the time 
plotted) as zero. The clear m =  1 character slowly 
rotating in azimuth is evident by inspection. Such 
perturbations as this are also evident on the toroidal 
array and indicate that it is again a helical perturbation
with typical toroidal wave number  ------ 10. The
(peak) amplitude o f the mode is sometimes as great 
as 5 ^ / 1 Bl 5%, which for typical reversal levels is 

1 B^g ~  50%. These perturbations tend to be 
present only during the first millisecond or so o f the 
sustainment phase, their amplitude decaying with time.

A second characteristic which must be emphasized 
under the heading o f evolutionary phenomena concerns 
the various spectra presented earlier. These are time 
and shot averages over typically I ms and 5—10 shots. 
However, we find that the characteristics o f the fluc
tuations vary with time in a systematic though not 
reproducible manner. The fluctuations occur in bursts, 
separated by quieter periods, and are not in the statisti
cal sense stationary random signals. One striking obser
vation is a form o f cyclic behaviour in the evolution o f 
the n-spectrum. Figure 17 shows the evolution o f the

Termination

5

5

Sustainm ent

2000 too
Frequency (k H z )

FIG. 18. Relative power spectra fo r  B@ during the sustainment 
phase and during termination.

2.2

I (ms)

1.6 -

FIG. 19. Time-delayed cross-correlation coefficien t fo r  
§0  (top} and Bg (bottom), as a function o fB  (le ft) and ip (right), 
during the termination phase ( f ilte r 5 -5 0  kHz).
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n-spectrum calculated by a sliding average over 128 /is 
during a period o f 0,6 ms in the sustainment phase. 
During this period the spectrum evolves from single
peaked high power to double-peaked lower power and 
back again, going through about two cycles in 0.6 ms. 
The average spectra o f Fig. 11 are dominated at lower 
frequencies by the higher-power single-peaked type o f 
spectrum, but it is evident that at some times other 
wave numbers are dominant.

Finally, we should present some observations con
cerning the termination phase. As Fig.2 illustrates, the 
amplitude o f fluctuations rises considerably once 
reversal is lost. Figure 18 shows on a relative scale 
how the fluctuation power spectrum during termina
tion differs from that during sustainment. The shape 
is significantly altered, showing a rise up to ~  50 kHz; 
thus higher frequencies become more important.
Another characteristic o f the termination phase is 
that the rotation is much more coherent. This shows 
clearly on the time-delayed cross-correlations illustrated 
in Fig. 19. The rotations are always in the same direc
tion during termination, namely toroidally in the direc
tion o f electron current flow and poloidally in the 
electron diamagnetic drift direction (these directions 
are equivalent for our helical perturbations).

Another effect which shows clearly in Fig. 19 is that 
the toroidal wavelength (and coherence length) increases. 
This is a progressive effect, but o f course our figure only 
captures one period during the current decay. A t the 
time referred to in Fig. 19, 6 is about 1.0. The poloidal 
structure is always dominantly m =  I and the helicity 
corresponds to negative n; for Fig. 19, n ~  —3 to 4  for 
Bÿ a n d  1 to 2 fo r Bg.

4. D ISCUSSION

Our measurements show that the overwhelming 
proportion o f the fluctuations observed at the plasma 
edge is attributable to low poloidal mode numbers M q 
and M ,. O f course, the nature o f the measurements 
tends to favour large-scale perturbations such as these, 
since fine-scale perturbations originating well inside 
the plasma will generally fall o ff  more rapidly with  
radius and would therefore be proportionately smaller 
at the edge. Nevertheless, the fact that the fluctuation 
power in Fourier modes m >  2 is only about 3% o f 
that in modes m ^  2 for B^ appears to be a quite 
strong indication that the low m-modes are indeed 
dominant throughout the plasma.

The difference fo r m >  0 between the poloidal mode 
spectra for Bg and is explicable by consideration

of the details o f th^toroidal distortion effects. Writing 
the condition curl B =  0 in toroidal geometry provides 
a relationship between the fields outside the plasma 
for a given helical mode; for example, i f  B^ is purely 
m =  1, Bg has an m =  2 component o f amplitude a/R . 
The outward (Shafranov) shift o f the plasma in the 
shell is at least partly responsible for these toroidal 
distortions, but this cannot easily be distinguished from  
departure o f the internal mode structure from the 
quasi-cylindrical approximation.

A major advance in the present results is the detailed 
information we have obtained on the toroidal mode 
structure. In order to see its significance we must 
consider the radial profile o f the field line pitch, which 
we express in terms o f the safety factor q =  rB^/RBg.
As is well known, the RFP adopts a field configuration 
in which the profile may be estimated by using one o f 
the quasi-cylindrical models such as the modified 
Bessel function model or the Bessel vacuum model.
For the HBTX-1 A  discharges o f interest here, such 
calculations indicate the on-axis q^ to be about 1/5; 
q falls to zero at r/a ~  0.75, the reversal point; at the 
liner it reaches s  —0.04. Internal magnetic probe 
measurements on different discharges confirm these 
estimates which are relatively insensitive to the model 
employed.

Helical perturbations are resonant at the radius 
where q =  -  m /n, which fo rm  =  1 is where q'* =  — n.
At this radius, non-zero radial field perturbations will 
lead to magnetic island formation. Our main peak in
the n-spectrum at  ------10 is a mode which is resonant
at r/a ~  0.5; the broad spectrum we see, which extends
from n — -5 to  ------20, indicates modes which are
resonant at radii from r ~  0 out to quite close to the 
reversal surface. We cannot, with our modest resolution, 
exclude modes which are nomresonant (i.e. I n l <  5), 
but their contribution, i f  any, is small. In  addition to 
these m =  1 modes, the m =  0  perturbations are always 
resonant at the reversal surface.

The perturbations we see seem to correspond quali
tatively quite well with the expectations o f resistive 
instability theory [9] in that we see m =  1 perturba
tions resonant from r =  0 outward and also m =  0  
perturbations o f long toroidal wavelength. For the 
discharges studied here we have not observed pertur
bations resonant outside the reversal surface (m =  1, 
n >  + 2 5 ) , although the statistical accuracy o f our 
measurements only allows us to put an upper bound 
o f 5% o f the fluctuation power in such modes. This 
corresponds to a root-mean-square amplitude upper 
bound o f B / IB I<  0.2%.
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Our present analysis does not allow us to distinguish 
whether the m =  0 perturbations arise directly from  
linearly unstable resistive modes or indirectly as a non
linear consequence o f the m =  1 modes. Further 
studies employing higher-order correlations and focus
ing on the time non-stationarity may be able to shed 
further light on this topic. We are also not able to 
distinguish the driving energy sources for any o f the 
perturbations which provide the usual theoretical 
distinction between tearing and pressure-driven ‘g’ 
modes.

One may obtain an estimate o f the growth (and 
decay) times for these perturbations from the fre
quency spectra presented. Taking the width o f the 
overall spectrum as the relevant frequency spread, i.e.
~  30 kH z, one would estimate a growth time o f ~ 5  /is. 
This might be rather shorter than the required estimate 
since the relevant frequency width might more appro
priately be taken as the width o f the individual features 
on the spectrum, i.e. approximately 5 kHz, leading to 
~  30 /IS. This should be compared with the poloidal 
Alfvén transit time o f ~  0 .5 /is for these discharges 
and the magnetic Reynolds number S ~  10*. Thus 
the perturbation lifetim e is approximately (in 
resistive time units), although this is only a single 
measurement, not a scaling. This lifetime suggests 
that we should take the perturbations as dominantly 
‘resistive’ rather than ‘ideal’ M H D  in character. O f  
course, the states we are observing are non-linear so 
that this distinction is o f debatable significance, except 
that we may assume that magnetic reconnection and 
island form ation are occurring. This resistive character 
has been qualitatively confirmed by observations o f 
radial magnetic field perturbations inside the plasma 
on H B TX -1 A  as well as elsewhere [6], i.e. S j does not 
reverse sign inside the plasma.

In order to estimate the size o f magnetic islands 
inside the plasma arising from a specific helicity mode, 
we could in principle integrate the linearized M H D  
equations inward from the edge until we reach the 
resonant surface. The island width, W, may then be 
estimated from the standard formula [11]

W =  4
mBg q'

1/2

(12)

This would require a detailed knowledge (or assump
tion) o f the equilibrium field profiles in order to carry 
out the integration. We may instead get an order-of- 
magnitude estimate by appealing to the observation 
that theoretical studies [9] o f tearing-mode stability

perform essentially this integration and indicate that, 
roughly speaking, the radial derivative o f is approxi
mately constant outside the resonant surface for modes 
whose resonant surface is not too close to the axis.
Now we measure the perturbations close to the shell, 
where B^ =  0, so V  -1& =  0 gives

5 - ' -
(13)

Thus, our estimate is

B f(rs) -  (a — rj) (14 )

For n ~  -  IO (m  =  1), typically Iq/qYg I s  1 and 
Bg(rg) ~  1.5 I B(a) I, so

W /r, s  4 (a -  r .) ■ • • • r » .
ImBg(rg)

1/2

~ 4 l B / B i
1/2

(15)

In order to determine the amplitude IB I to be ascribed 
to each mode, take half o f the ~  2% root-mean-square 
fluctuation level as being in m =  1 and take this as 
spread over about six toroidal modes as indicated by 
the n-spectrum; this then indicates a single-mode root- 
mean-square level o f 2 A / Î2  s  0.5%. Hence the above 

estimate o f island size is W /rg~ 0.3.
The separation, 6, o f (m =  1) resonant surfaces in 

this region o f the plasma is given by

Ô =  Iq ^ /q 'l ~  q r g -  0.1 rg (1 6 )

Therefore, the island overlap condition [12] W >  6 is 
easily satisfied. So, if  the different helicities are 
simultaneously present with this typical amplitude, 
we expect that the magnetic field lines are stochastic 
throughout the region and magnetic surfaces no longer 
exist. Strictly, our analysis has not shown unequivo
cally that the different helicities are truly simultaneous 
in view o f the ‘bursting’ character o f the fluctuations; 
however, it seems most improbable that the different 
modes would be sufficiently separated in time for 
stochasticity to be avoided. Estimates o f m =  0  island 
sizes give similar values for W, though in this case we
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are less certain o f the resistive M H D  mode character. 
Much o f the M q mode power may arise non-linearly 
from the M ; mode.

Given the mode amplitudes and the fact that field 
lines are stochastic, we can estimate the energy trans
port due to stochastic diffusion. The field-line diffu
sion coefficient [13] is, for our case, typically 
< Ar^/L> — a I B/BI^ , giving effective perpendicular 
energy diffusivity [12] Xeff ~  Vg<Ar^/L>, where Vg 
is the electron thermal speed. For fB/Bl^ =  0.01 and 
Tg — 100 eV, this leads to an estimate o f energy con
finement time Tg — 50 /is, assuming that the whole 
o f the plasma experiences this stochastic diffusion.
This value is consistent with experimentally observed 
parameters. However, it should be regarded as an 
order-of-magnitude estimate only because o f the 
sensitive (squared) dependence on the internal B  ̂
which has been estimated somewhat crudely. Never
theless, it should be emphasized that this is a direct 
estimate based on measured longitudinal correlation 
lengths and field perturbation amplitudes and not, 
like earlier stochastic transport estimates [5, 14], on 
theoretical estimates o f longitudinal correlation.

It  is o f interest too to estimate the island size for 
the large, coherent, slowly rotating perturbations o f  
Fig. 16. The linearized estimates are somewhat 
questionable for such large perturbations; however, 
taking the peak perturbation amplitude, we obtain 
W — rg, indicating a very large island but not extending 
to the magnetic axis. More careful non-linear calcula
tions might be appropriate in this case to obtain more 
reliable estimates.

The rotation speeds observed are o f the same order 
of magnitude as estimates o f diamagnetic drifts. How
ever, the ambiguity o f direction observed indicates 
that a simple interpretation in terms o f these drifts is 
hardly adequate. It  should be noted also that an 
electrostatic potential o f about 100 V  would be suffi
cient to cause plasma rotation o f this order o f 
magnitude.

The rather cyclic behaviour observed in the evolution 
o f the n-spectrum leads one to a rather persuasive pic
ture o f the overall behaviour. Suppose that the evolu
tion o f the field profiles leads to a situation in which 
resistive modes at r/a — 0.5 are preferentially destabi
lized. These grow and then stabilize themselves via 
non-linear modifications to the profiles; their ampli
tude then decreases. However, the profile modifica
tions tend to destabilize other modes with n greater 
(and smaller) than those just discussed. Therefore, 
these other modes tend to become dominant and 
enforce profile changes which compete with those of

the first modes. This competition continues, establish
ing a quasi-equilibrium in which cyclic variations o f 
mode amplitude maintain the mean profile such that 
no mode achieves complete dominance. Theoretical 
ideas o f this sort have been proposed [15]  in the context 
of the tokamak disruptive instability. However, here we 
seem to have direct experimental evidence in the RFP  
for the importance o f this M H D  mode competition.

Many further fluctuation topics remain to be investi
gated; notably, how the amplitudes and the character 
of the perturbations vary with plasma parameters and 
also what are the non-linear characteristics, mode 
coupling and so forth. However, the present study 
has revealed many interesting and significant character
istics o f the magnetic fluctuation structure in the RFP, 
which should serve as a basis from which to pursue 
these investigations.

Appendix

Since some o f our measurements are made outside 
the liner, it is important to estimate the effect o f the 
liner on the observed fluctuations. I f  we treat the 
liner as being thin, with conductivity a and thickness 6, 
having the radius a concentric within a shell (assumed 
infinitely conducting) o f radius b, and consider pertur
bations o f the form exp i(m 0 +  n 0 — cot), then, 
provided

l(?) -G)!-  ( b - a ) : < l ( A l )

we can treat the outward penetration o f magnetic field 
across the liner (B q ) as related to that inside (B^) by:

Bo =  Bj|/(1 +  icor) 

where

T =  fioo6(b- a)

(A 2 )

(A 3 )

This shows that the effect o f the liner is to integrate 
the field with a passive time constant r .

An important complication is that the liner has a 
bellows construction so that the effective 6 is different 
for currents flowing in the poloidal and toroidal direc
tions. Denote these by 6^; then it may be shown 
that, approximating the liner as being thin, we have
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For the liner o f H B TX - \ A , t q =  (ioaÔQ  (b -  a) 30 /is 
and from which the penetration time
constant o f any mode may be calculated. For example, 
i f  m =  0, n ^  0, r  =  30 /is, while for m =  1, n =  8, 
r  10 /IS, corresponding to frequencies o f ~  5 kHz 
and 15 kHz, respectively.

Additional complications arise because the convolu
tion depth is not small compared with (b -  a); how
ever, the above treatment is regarded as sufficient to 
first order. Finally, for m =  0, n =  0, the gaps o f the 

shell prevent it from acting as a flux conserver and the 
penetration time depends on the equivalent flux out 
to the windings. The penetration times are then esti
mated as ~  100 /IS for and ~  20 /is for Bg. It  
should be noted, therefore, that m =  0 perturbations 
(particularly for n =  0) suffer significantly greater 
attenuation in general than those for higher m.
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ABSTRACT

Profiles of X-ray emissivity have been 
measured that show an outward displacement 
and a central region of uniform emissivity. 
The fluctuations are concentrated in an 
annular region around the reversal surface. 
Edge coil measurements indicate the presence 
of an m = 0, n = 0 mode on B . The B 
component also shows an m = 0, n = 
component and an m = 1, n ~ 8 kink is the 
dominant mode. An additional m = 1, n ~ 2 
kink is visible at high values of the pinch 
parameter.
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1. INTRODUCTION

We present here studies of fluctuations which have been undertaken on 
the RFP HBTXIA at Culham Laboratory (for details of the HBTXIA experiment 
see Ref [1 ]). Magnetic fie ld  fluctuations have been observed using several 
arrays of edge coils and X-ray emission monitored by means of an array of 
Silicon Surface Barrier Diodes (SBD). In section 2 the measurements with the 
SBD array are described. The major numerical algorithms used in the data 
analysis are also introduced. The following section (3) is devoted to the 
measurements with edge coils .

2. MEASUREMENTS OF X-RAY EMISSIVITY

The experimental set-up of the f ir s t  diagnostic system consists of an 
array of 24 diodes divided into three pinhole cameras viewing a minor cross 
section of the plasma through three neighbouring vertical ports (Fig 1 
shows details of the central array). To this f ir s t  group of diodes one or 
two more can be added at different positions in toroidal angle, although as 
yet only one has been used. The diodes comprising the array are Silicon 
Surface Barrier Diodes (ORTEC BA-100-023-50-100). In order to screen 
unwanted visible ligh t a thin silver fo il (3000 A) is placed in front of 
each detector. This gives a low-energy cut-off in the photon efficiency at 
100 eV.

Emission from the plasma is the effect of various atomic processes such 
as bremsstrahlung, recombination radiation and line emission. Because of 
the complicated dependence of these processes on density, temperature and 
impurity, i t  is d if f ic u lt  to obtain absolute estimates of these parameters 
from the broad band measurements we are concerned with. Usually therefore 
one concentrates on the relative variation of the intensity in deducing the 
nature of various profiles and in s ta b ilities , relying on the fact that the 
intensity is a strong (exponential) function of temperature to ensure that 
temperature variation is the dominant effect. We adopt essentially this 
approach.

The discharge is divided into three phases: setting-up, where the loop
voltage is high and plasma current is rising fast, followed by a sustainment 
phase with steady plasma current, steady fie ld  reversal and a re lative ly  low 
level of MHD activ ity; this eventually leads to the termination where major 
chaotic disruptions occur; see the example of Fig 6. Here we investigate 
the sustainment phase.
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Profiles of line-of-sight integrated emissivity can be derived from the 
average signal level of the diodes in the array. Averages are taken over a 
short time interval (typical discharge duration 3 - 6  msec; averaging time 
from 50 psec to 500 psec) and/or on several consecutive discharges (ensemble 
averages). In the case of a cylindrical plasma, this can yield  the actual 
radial profile by means of an Abel's inversion [Ref 2]. In our case helical 
in s tab ilities  and plasma shifts play a significant role in modifying this 
situation. With several arrays at different poloidal angles or with the 
assumption of uniform rotation of the plasma column (equivalent to an 
in fin ite  series of poloidal views as time proceeds) the problem could be 
solved by means of an expansion in poloidal Fourier modes: each mode would
be "inverted" separately by a simple extension of the original Abel's 
algorithm. Unfortunately this is not the case so that the simple 
approximation must be made that the only dominant distortion to the 
cylindrical symmetry depends on e like cos e (which is consistent with the 
measurements using the edge coils). In this case the symmetric and 
antisymmetric part of the integrated profile  are inverted separately to 
reconstruct an average two-dimensional plot of the X-ray emissivity.

I t  is seen from Fig 2 that the discharge is shifted radially outwards 
by about 3 cm through its  time evolution. This was predicted by toroidal 
equilibrium calculations using Shafranov's formula and confirmed by 
electrical diagnostics. A new and unexpected feature is that the profile of 
emissivity tends to become f la t  soon after the setting-up phase. By 
frequency f ilte r in g  each signal (with digital techniques) i t  is also 
possible to determine the profile of the fluctuation intensity in different 
frequency bands. In this case the approximation of a single helical 
distortion is certainly less rigorous and the results of the inversion must 
be taken as purely qualitative. What is apparent though is that, whichever 
frequency band is chosen, the fluctuation are concentrated in a rather 
narrow annular region of thickness A, with A/a 0.2 at the edge of the 
plasma approximately centred, in fact, on the reversal surface (where the 
toroidal magnetic fie ld  is zero (see Fig 3 )).

Before we proceed i t  is convenient to introduce some of the 
numerical algorithms carried out in the data analysis. The techniques 
followed here are commonly referred to as spectrum and correlation analysis 
and they are routinely adopted in the study of random signals (Ref 3 ) *  The 
fundamental idea is that of a Fourier analysis in the independent variable 
which in most cases is time, but can also be space.
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Appendix 1 gives a summary of relevant definitions. These formulae can 
be regarded as useful only I f  the condition of stationarity is satisfied, 
that is , i f  the quantities do not depend on the choice of time. Ensemble 
averages can be replaced with time averages i f  one makes the further 
assumption of ergodicity. These conditions are not usually satisfied except 
for very short periods. On the other hand, a short time interval means a 
poor frequency resolution so that a compromise must be found between the two 
conflicting requirements. This can become extremely delicate in the case 
of the setting -up and termination phases which have a very limited 
duration.

The cross-spectra and cross-correlation functions are but two facets of
the same idea and, as the Wiener-Kintchine theorem shows, can be obtained
from each other with a Fourier transform. This means that information can
be easily exchanged between the two types of analysis we are performing.
Cross-spectra of signals from two neighbouring diodes show good 
coherence only in the region of low frequencies (up to 50 kHz; the high 
frequency cut-off of the preamplifier being 250 kHz; indeed most of the 
signals we deal with are sampled and digitized with a frequency of 500 
kHz).

We expect to find modes at low frequency that are coherent over a long 
distance (global modes) whereas fluctuations at higher frequencies can be 
due to more local turbulence. This is confirmed by measuring the auto
correlation function in space (or its  normalised form called the cross
correlation coefficient). I t  can be done by taking one diode as a reference 
and correlating at zero time delay with a ll the others. F iltering the 
signals in a low frequency band the results one obtains show that the cross
correlation coefficient is always positive and remains at an almost constant 
level of ~ 30% after an in it ia l rapid decrease when moving away from the 
reference diode (Fig 4). The correlation length of this more local 
component decreases rapidly as the frequency increases and the level of
background correlation fa lls  rapidly to zero.

Measurements with one diode at 90® away from the fixed array have shown
that the global modes observed in the low frequency region maintain a good
coherence even at such distance as one meter (the major radius of the 
machine is 81 cm).

No attempt has been made so far to evaluate transport coefficient 
associated with the level of fluctuation as this would imply a better 
knowledge of the emission processes. The overall picture that we can 
therefore derive from th is  prelim inary study of X-ray em issivity
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fluctuations is that symmetric modes (m = 0) are dominant (although at times 
m = 1 and m = 2 modes are observed) together with a background of more 
localized turbulence. The fluctuations are concentrated in a narrow region 
around the reversal surface and the plasma column shows a significant 
outward sh ift in agreement with electrical diagnostics.

3. MAGNETIC FLUCTUATION MEASUREMENTS

Several sets of discrete coils are used to measure the poloidal and 
toroidal components of the magnetic fie ld  at the edge of the plasma. Most 
of these coils are arranged in arrays that encircle the plasma in the e 
direction (poloidal arrays) with sixteen sets of coils. There are five of 
these arrays inside the vacuum vessel and four outside distributed along the 
toroidal direction. Besides this there is a toroidal array of 28 coils (14 
fo r Bq and 14 fo r B ) spanning 60® in the toroidal direction (see Fig 5) 
(this is equivalent to a resolution in toroidal mode number of An ~ ± 4).

By Fourier analysing in e each poloidal array can provide an expansion 
of the magnetic fluctuations for a total of eight independent poloidal modes 
(0 < m < 7 ). The toroidal array plus other coils from different poloidal 
arrays serves the same purpose in the ^-direction (although with a broader 
resolution).

In fact each coil measures the time derivative of B (no analogue 
integration is applied) but for those coils that l ie  outside the vacuum 
vessel an effective integration is provided at frequencies higher than about 
5 kHz due to the skin time for the penetration of fluxes through the metal*. 
In the measurements we describe here data were taken simultaneously from the 
toroidal array and from one internal poloidal array intersecting i t .  
A systematic analysis of poloidal and toroidal mode structure is presented 
which derives from the same statistical techniques used for the SBD array; 
magnetic fluctuations also appear fa ir ly  stochastic and turbulent (as i t  can 
be observed in the example of Fig 6). Helical structures are also studied 
by correlating the two arrays together. Some interpretation of these 
results is discussed in terms of the resistive MHD instab ilities  expected in 
RFP configuration.

In order to determine the structure of the fluctuations we may Fourier 
decompose in 6 or * by forming sums over coils with a weighting function cos 
me and sin me (sim ilarly for * ) .  The sum of the squares of these two 
components gives the total power in each Fourier mode.

*  (A more detailed calculation shows that this time is different for modes 
with different helic i t ie s .)
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The poloidal mode-spectra are dominated by the m = 0 and m = 1 
component both for and B̂  (see Fig 7). The toroidal mode-spectra on the 
other hand show variations according to the frequency band the signals are 
filte re d  within. In general, the dominant feature at the lower frequencies 
is at n = 8 -  12. At higher frequencies there is some evidence for harmonic 
structure.

Another approach to the poloidal mode structure is to form the cross 
correlation coefficient ( in it ia l ly  with zero time delay) between the various 
c o ils  thus giving the spatial autocorrelation. For the case of B ,̂ i f  the
coil on the inner and outer equator are used as a reference there is a clear
difference in the auto-correlation obtained although both are symmetric 
(see Fig 8). Using references at 0 = ±90® gives auto-correlations which are 
asymmetric. These differences indicate that the fluctuations do not possess 
rotational symmetry in their statistics: i .e .  e is not an ignorable
coordinate. The nature of the fluctuations may be deduced from inspection
of such autocorrelations. To lowest order, disregarding for a moment the
lack of rotational symmetry, the autocorrelation is that which would be 
expected from dominantly m = 0 and m = 1 of similar magnitude. The lack of 
symmetry indicates that in fact the "m = 1" component is distorted due to 
toroidicity so that its  phase varies more rapidly at the outer equator (e ~ 
0) than the inner (e ~ 180®). Expressed in terms of the Fourier
decomposition, this means that the fluctuation mode consists of a sum of 
poloidal Fourier components:

Ml = C0S(@ -  a )  + G2 COS(2e -  a )  +

where a is some (random) phase, these Fourier components being coupled
(linearly) together. The cose and cos2e (and also sine and sin2e)
components are always in phase with each other. This characteristic is 
readily confirmed by forming the cross-spectrum between cose and cos2e 
The coherence at lower frequencies is very high (> 0.8) indicating that 
about 60% of the power in the modes is linearly coupled. The phase is zero 
indicating that the cos2e and cose are in phase at e = 0. The spatial
autocorrelation of shows less asymmetry than although the m = 1 on 
m = 2 coherence spectrum is qualitatively similar in the two cases. The 
poloidal mode structure is thus that there are dominantly just two 
s ta tis tic a lly  significant types of mode Mq and M  ̂ which may be identified as 
the modes corresponding to m = 0 and m = 1 plus their concomitant higher 
harmonics generated by the toroidal distortions.
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In the toroidal direction the auto-correlation in space is almost truly  
independent of the choice of origin. This reflects the axisymmetry of the 
torus, apart from small imperfections due to fie ld  errors (ports, iron core 
coils e tc .) . The spatial autocorrelation has a rapidly damped form 
indicating a fa ir ly  broad spectrum of toroidal wavelengths. I t  is clear 
that a closely spaced array of the type we are using is essential for 
obtaining a reasonable estimate of the toroidal structure since the 
correlation length is of the order of or less than the 60* in  ̂ which we 
have available. I t  would be preferable to have a toroidal array whose 
extent was much greater than the correlation length. Unfortunately the 
present array does not meet this criterion and the result is that our 
resolution of toroidal wave number is of the same order as the width of its  
spectrum.

In order to determine propagation and rotation effects we examine the 
time delayed cross correlation between coils in the poloidal array and in 
the toroidal array. In the former case evidence of rotation is indeed 
present. In the la tte r  i t  is less clear but nevertheless can be shown to 
exist.

So far an independent analysis of the poloidal and toroidal structure 
has been performed. I f  a correlation is carried out between the two arrays 
i t  is possible to reconstruct the actual he lica l pattern of the 
in s tab ilities . From the time delayed cross-correlation coefficient for 
pairs of coils in the two arrays i t  is possible to deduce the presence of a 
dominant m = 1, n ~ 8 -  12 helical perturbation. A more precise calculation 
involving a double Fourier transform was carried out [Ref 5]. In what we 
refer to as the "association spectrum" each poloidal mode (mostly m = 0, 1, 
2) has an associated n-spectrum. The main features of this spectrum confirm 
the presence of the m = 1 n ~ 8 - 12 mode and indicate the presence of an 
m = 0 n = 0 mode for B . The n-spectrum of the m = 2 mode on the other 
hand is mostly due to lin ear coupling from the m = 1 whose shape i t  
reproduces.

Now helical perturbations are resonant at the radius where the safety 
rB

facto r q = is given by q = -m/n [re f  4 ]. At this radius, non zero

radial f ie ld  perturbations w ill lead to magnetic island formation. All the 
helical perturbations found in the association spectrum of m = 1 correspond 
to resonant surfaces inside the reversal surface. In addition to this m = 1 
mode, the m = 0 perturbations are always resonant at the reversal surface 
(for n * 0). A comparison with known theoretical calculations [4] permits 
us to deduce the presence of island overlapping and consequent stochastic 
behaviour. An estimate of the transport coefficient that results from this 
agrees with measured values of confinement times (Ref [5 ]) .  I t  can also be 
shown [5 ] that the perturbations that we see seem to correspond 
qualitatively quite well with the expectations of resistive ins tab ility  
theory in that we see m = 1 perturbations resonant from r = 0 outward up to 
the reversal surface and also m = 0 perturbations of long toroidal 
wavelength.
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Our present analysis does not allow us to distinguish whether the m = 0 
perturbations arise directly from linearly unstable resistive modes or 
indirectly as a non-linear consequence of the m = 1 modes. Further studies 
employing higher order correlations and focusing on the time non- 
stationarity may be able to shed further lig h t on this topic. Nor are we 
able to distinguish the driving energy sources for any of the perturbations 
which might indicate whether the modes are tearing or pressure driven 'g' 
modes.

Finally a scan was carried out in the pinch parameter, e, (where e = 
2%al /$ , I being the toroidal current and $ the toroidal flux) to study how 
the MHD activity  changes its  structure. Fig 9 shows the variation with e of 
the relative RMS fluctuation level (after f ilte r in g  in the frequency band 3 
-  250 kHz) At the value of e ~ 1.7 * the toroidal spectrum (computed for 
the frequency band 5 - 5 0  kHz) shows a peak at n ~ 8 and also some power for 
n ~ 0 (Fig 10). B̂  shows only the peak at n ~ 8. As we vary e two trends 
become apparent:
(a) As e is increased, the n ~ 0 component of B̂  becomes stronger, until at

e ~ 2.4 this mode is equal to the n ~ 8 and
(b) At higher values of e, the n ~ 8 peak becomes narrower on both B and

The poloidal spectra confirm that for each value of e the power is 
confined to the m = 0 and m = 1 modes, as i t  can be seen in Fig 11 and 12. 
The m = 2 mode, e s p e c ia lly  for B ., is shown to be due to a toroidal 
distortion of the m = 1 to which i t  is strongly linearly coupled for all 0 
values except the very lowest.

We have also calculated cross-spectra between poloidal and toroidal 
modes (this is equivalent to the technique of the association spectra, but 
is more detailed in the frequency domain once the relevant poloidal and 
toroidal modes have been identified). The results of this study of helical 
structure confirm the presence of an m = 1, n ~ 8 kink, visible on both B̂
and B , and two m = 0, n = 0 modes for both B̂  and B̂  (the la tte r  is not
seen on the toroidal spectrum for B̂  because of its  absorption by the liner: 
for this mode in fact, the penetration time, necessary to reach the 
interspace toroidal array, is much longer than for the other modes and is 
estimated to be ~ 100 ps). Furthermore, i t  is possible to detect a 
s ig n ific a n t corre lation  between m = 1 and n = 2 (mainly for B ), which 
becomes stronger as 0 is increased. This mode is non resonant by its  nature 
and could be an interchange mode due to a pressure profile  peaked on axis.
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APPENDIX

Given the time history of two signals

kj^(t) . ŷ(t) (index k is for an element of the ensemble)

we can Fourier transform to obtain

*‘x ( f )  ky(f )

The "power Spectrum" is defined

P^(f) = <|kx(f) |2> P ( f )  = <|' 'Y(f)|2>;

Given the function r = <*'x(f) ^Y(f) >xy

we define the "cross spectrum" as: 
arg(r ). The "coherence" is as fol

, __________ I " - . / " !

r  and the "phase spectrum" as: xy
ows

{P^(f) P y (f)}l/2  

The "cross-correlation function" is given by R (?) =
t +T

/  ° <^x(t)^y(t+%)>dt where the two signals are previously filte re d  to
to
eliminate the influence of the D.C level. The Wiener-Kintchine theorem 
links spectra with correlation functions

Rxy(%) = 2 /  df r ^ ( f )

Finally we can normalize R to give the "cross-correlation coefficient"xy

P„„(t ) = Ry^/ ( /  ° <^x2(t)> dt /  ® <*^y2(t)> dt)^'^
xy %y ' i t0 0

I f  X = y "cross" is replaced by "auto".

- 10 -
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FIGURE CAPTIONS

Fig 1 Geometry of Surface Barrier Diodes array (details of central array
only).

Fig 2 Chord integrated and "Abel inverted" radial profile  of X-ray
emission.

Fig 3 Profile of the fluctuation level (filte re d  in the frequency band 5
- 50 kHz).

Fig 4 Cross-correlation coefficient at zero time delay for X-ray diodes,
taking SBD 4 as a reference, (frequency band 5 - 5 0  kHz).

Fig 5 Geometry of discrete coil arrays.

Fig 6 Time h is to ry  of a ty p ic a l discharge: plasma current ( I  );
toro idal loop voltage (V^); average toroidal magnetic f i§ ld  
(<B >); average lin e -o f-s ig h t electron density (n^); toroidal 
magnetic f ie ld  at the lin e r  (B^); time derivative of poloidal 
magnetic fie ld  at the liner (6^).

Fig 7 Poloidal mode power spectrum for and ÏÏ for e ~ 1.7 (filte red
in the band 5 - 5 0  kHz).

Fig 8 Equal time cross-correlation coefficient (spatial autocorrelation)
fo r  Bq as a function of displacement in poloidal angle; (a)
reference coil at 6 = it; (b) reference coil at G = 0. ( 5 - 5 0
kHz)

Fig 9 RMS re la tiv e  fluctuation level for B̂  and B̂  as a function of e.
(high-pass f i l t e r  from 3. kHz)

Fig 10 Toroidal mode power spectrum for and ÏÏ for e ~ 1.7. (5 - 50
kHz)

Fig 11 Evolution of power in the poloidal modes for as a function 
of e (5 - 50 kHz).

Fig 12 Evolution of power in the poloidal modes for t( as a function of
e (5 -  50 kHz).
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VARIATIONS OF MAGNETIC FLUCTUATIONS WITH PLASMA CONDITIONS IN HBTXIA RFP

M Malacarne** and D Brotherton-Ratcliffe*
Culham Laboratory, Abingdon, Oxon, 0X14 3DB 

(Euratom/UKAEA Fusion Association)
*Royal Holloway College, University of London 

**Euratom supported Fellow and University of Oxford

ABSTRACT : Arrays of edge magnetic coils have been used to study the
structure of fluctuations in the HBTXIA Reversed Field Pinch in the 
sustainment phase of discharges in a variety of plasma conditions: 
variations in relative amplitude are observed but no change in the mode 
numbers, except at high values of the pinch parameter. The current rise 
and the termination phases have been considered and i t  is found that only 
in termination are the fluctuation frequency and mode numbers different 
from sustainment.

1. INTRODUCTION
I t  has previously been shown̂  that the dominant global instab ilities  

in the sustainment phase of standard discharges in the HBTXIA Reversed 
Fie ld  Pinch (RFP) (0 -1 .8 , I^-ZOOkA, p^~ 1.5 mTorr) (the value of 0 is 
measured at the liner) are a broad band of m=l kink modes centred on 

n|~7 and resonant inside the reversal surface. In addition, two 
■ ndependent m=0 modes have been observed with n|-0. In this paper we 
extend the previous analysis to study the differences in the global 
fluctuations for discharges of different conditions (varying I , p̂  andp 0
0) and in the current rise and termination phases.

2. RESULTS
By forming weighted sums of signals from arrays of edge coils in the 

e and <j> directions we are able to evaluate the power associated with 
poloidal and toroidal Fourier modes, m and n. Figure 1 shows two 
examples of these spectra for b̂  (frequency band 5-50 kHz) in the 
sustainment phase of discharges with 0-1.8 and 2.4 (1^=200 kA, p^= 1.5 
mTorr). By correlating signals from the two arrays i t  is possible to
identify the peaks at h -7 in this figure as m=l. At high values of 0
part of the n-0 features is ascribable to m=l modes, in addition to the



to the usual m=0, n~0 activity; detailed studies show =2-3 for these
modes. By carrying out a similar analysis for discharges with different 
Ip and d iffe re n t p^, we find no changes from the modal structure of 
fluctuations in standard discharges. Figure 2 shows how b/B varies with 
Ip, Pq and 0 (other parameters constant), for frequencies >3 kHz.

Figure 3 defines three time intervals in the termination phase for 
which Fig 4 shows how the n-spectrum evolves (frequency band 5-50kHz).

n the f ir s t  interval (end of sustainment) the dominant activ ity  is at 
n ~7. This remains the same until the third time interval, after the 
OSS of reversal. Here the n-spectrum shows the presence of low n kinks; 

further studies indicate |n =2-3. Power spectra in the frequency domain 
show that during sustainment the dominant modes are approximately in the 
region 5-15 kHz. However, in the second time interval there is an 
increase in power in the region 20-50 kHz, followed by a return to low 
frequency dominance as soon as reversal is lost. At no time are 
significant fluctuations observed at frequencies higher than 70 kHz. In 
the current rise phase, as in termination, the amplitude of the 
fluctuations is 6 to 10 times higher than in the sustainment phase. 
However, a detailed spectrum analysis shows the same power distribution, 
both in frequency and in mode number, as in the sustainment phase; in
particular no low n kinks ( n ~2) are observed.

3. DISCUSSION AND CONCLUSION
That the mode numbers and frequency distribution of the fluctuations 

are the same with respect to changes in plasma parameters is indicative 
of the fundamental nature of these instab ilities . At high values of 0 
the presence of an m=l, n ~3 instab ility  with resistive time scales is 
interesting as estimates of the safety factor indicate that this mode 
would be non-resonant, suggesting that i t  should be ideal. The scaling 
of the relative fluctuation amplitude with 0 shows an optimum value at 
about 1.8. Variation with plasma current agrees with previous 
measurements  ̂ which showed two regimes, one at low current where b/B 
scales approximately like l / I ,  and another at high current where the
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scaling is much weaker. Pressure variations, on the other hand, do not 
seem to alter strongly the relative fluctuation level.

The structure of the global fluctuations in the current rise phase 
is very similar to that during sustainment, although the amplitude is 
higher. I f  these modes are essential to the relaxation process, this 
indicates that the production and sustainment of reversal rely on the 
same mechanism. In the termination phase of the discharge the 
fluctuations have larger amplitudes and show several differences in the 
frequency and mode numbers. However, after reversal is lost the observed 
frequencies correspond to resistive timescales rather than the Alfven 
timescale expected for ideal modes.
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STUDIES OF X-RAY AND MAGNETIC FLUCTUATIONS IN HBTXIA RFP

D Brotherton-Ratcliffe* and M Malacarne**
Culham Laboratory, Abingdon, Oxon, 0X14 3DB 

(Euratom/UKAEA Fusion Association)
*Royal Holloway College, University of London 

**University of Oxford and Euratom Research Fellow

ABSTRACT: X-ray detectors, magnetic insertable probes and edge coils
have been used to study the global fluctuations in the HBTXIA Reversed 
Field Pinch. The results are compared and in both cases several 
independent m=0 and m=l modes are observed and their toroidal and radial 
structure is analysed.

1. INTRODUCTION
A Reversed Field Pinch (RFP) discharge^ is characterised by the 

presence of random MHD-type fluctuations. Indeed, the generation and 
sustainment of a reversed toroidal fie ld  and the energy transport 
observed in the RFP are believed to be related to such fluctuations. In 
this paper we present and compare results from X-ray and magnetic 
measurements concerning the detailed structure of the dominant global 
in s tab ilities  observed in the HBTXIA RFP?. Statistical techniques 
(spectrum and correlation analysis)^ have to be applied in order to 
identify coherent phenomena out of apparently featureless data.

2. RESULTS
By forming weighted sums of signals from arrays of edge coils in the 

e and  ̂ directions i t  is possible to evaluate the power distribution in 
poloidal and toroidal Fourier mode numbers (m and n, respectively). 
Figure 1 shows these spectra (calculated by maximum entropy techniques) 
fo r  ÏÏq and ïï^ in the cu rren t sustainment phase of the discharge 
(Ip=200kA, p^=1.5mTorr, 0=1.8) in the frequency band S-SOkHz. By cross 
correlating signals from the two arrays we conclude that the dominant 
modes are m=l kinks with a broad band of toroidal numbers centered on 
|n|=7 and two independent m=0 modes, one for 'B (n=0) and one for B



(n~0)'+. By using the technique of correlation matrix fitt in g ,s  we are 
able to interpret data from the insertable probe in terms of the radial 
magnetic fie ld  profile of the dominant global instab ilities . We can 
distinguish two independent modes, shown in Fig 2 and 3 (frequency band 
4-20kHz). Results from a linear tearing mode s tab ility  analysis^ show 
similar fie ld  eigenfunctions to the f irs t  mode which corresponds to the 
m=l kink. The nature of the second mode is more uncertain, although 
symmetry considerations indicate i t  to be m=l. The change in sign of 
suggests an ideal origin; however the characteristic time scales are 
resistive.

An analysis of data from an array of 24 Surface Barrier Diodes (SBD) 
viewing a minor cross section of the discharge, using the same technique 
as above, shows the amplitude of the dominant global fluctuations in X- 
ray emissivity as a function of radius. This is shown in Fig 4 for the 
chord integrated profiles ( i )  and the corresponding Abel inverted 
profiles ( i i ) .  Symmetry indicates that modes a and b are m=0 while c is 
m=l; data from single detectors displaced toroidally indicate that the 
two m=0 modes are n~0 whereas the m=l mode is |n » 0 . I t  has not been 
possible so far to measure directly a significant correlation between the 
m=l activ ity  from the edge coils and the SBDs. However a good 
correlation is shown to exist between X-ray fluctuations and fluctuations 
in plasma current; Figure 5 shows the zero time delay correlation 
between the time h is to ry  of the B̂  m = 0 component and the diodes 
(frequency band 5-50 kHz).

4. DISCUSSION AND CONCLUSIONS
The overall picture deduced from edge magnetic measurements 

indicates the presence of a broad band of m=l helical instab ilities  
resonant inside the reversal surface augmented by m=0 activ ity . Values 
of Bp/B at the resonant surface of the m=l modes confirm e a r lie r  
estimates'* that magnetic islands should overlap and stochastic transport 
ensue. A mode with m=l resonant inside the reversal is also observed 
with the insertable probe and its  measured radial amplitude variation



agrees with linear theory; this favours a quasi-linear description of 
the mode evolution. The presence of a second mode with some ideal 
features is not yet fu lly  understood. The X-ray fluctuations indicate 
modes with the same values of m and n as from the magnetic fluctuations; 
however, the absence of significant correlation between the m=l X-ray and 
magnetic components suggests that independent fluctuations with the same 
helic ity  occur simultaneously.
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