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M. MAYER

INVESTIGATIONS INTO TRAINABLE PICTURE PROCESSING SYSTEMS

ABSTRACT

This work concerns the development of a new type of
picture processing system for images represented as digital
arrays of pixels. This is a synthesis of two established
ideas, already under independent investigation. The first of
these 1s picture processing by look-up tables. This is a
fast method of generating pixel outputs as a result of input
pixels accessing a particular region of a look-up table,
pre-loaded with the required data. The second idea is the
use of RAMs as learning machines. Here, RAM elements are
connected together so as to be alterable in data content by
training stimuli 1in a coherent manner. This results in a
system able to exhibit definite responses to later test
stimuli, and thus identify these stimuli unambiguously.

The methods wused for bringing these two concepts
together are described here. A practicable picture processor
results, which can be trained by examples. That is, it can
perform a picture transformation simply by presenting to the
machine (in a prior training phase) examples of the process.
From this, the machine deduces the information necessary to
be able to perform the same transformation on unseen
patterns.

Experiments have been performed on a wide range of
variations on this theme. Different types of machines acting
on different data and tasks have been tried, under various

conditions. A description 1is given of these machine
variations, together with a generalized system for
describing such variations more formally. The machines were
simulated 1in practice on a microcomputer system; ‘The

simulation software used 1in these investigations is also.
described.

Finally, the 1implications and 1limitations of such
machines are discussed with reference to their ultimate
performance and possible applications in fields other than
picture processing.

ﬁix*czy



""Contrariwise,” continued Tweedledee, "if it was st, it might be;

and if it were so, it would be; but as it isn't, it ain”t.

That's logic.”
Lewis Carroll
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CHAPTER 1

LEARNING PICTURE PROCESSORS

1.1 Introduction

The advent of data processing that followed the
development of the digital computer brought with it many
entirely new disciplines. Amongst these 1is a set of
applications that requires deductive and intuitive
processing, related to the processes of reasoning and
perception in the brain. One of the more important examples
of this 1is <concerned with visual image processing and
classification, an area that has been ever more closely

studied over the last two decades.

1.2 Applications

There are many applications of machines able to process
and classify pictures, and several examples of these will be
given here.

Optical character recognition 1is of great use in the
world of business - many types of document formerly read by
human operators can be read and subsequently processed
entirely by machine (69,10). In medical applications, image
analysis may take many different forms (75), including X-ray
screening (34), cancer cell scanning (18) and radiograph
analysis (36). These all exhibit characteristic patterns,
enabling subsequent diagnosis of symptoms - also by machine

(56). A combination of OCR and the medical field results in



practical blind reading aids (54).

Military and space applications are also under
investigation  (29), although such applications may 'be
classified and consequently difficult to research. Automatic
identification and tracking of objects is often the goal
here, for the purpose of targetting weapons automatically
(39). Space satellites send picture data in need of
considerable processing in the form of filtering (eg. for
noise removal) or other tranformations (eg. to remove
distortions, blurring or compression and expansion for the
extraction of the maximum information (44) ). Video images
(of any subject) can make use of filtering operations or
even modifications for special effects. The present
generation of video effects mixers used on broadcast
television are examples of this. Security systems make use
of automatic monitoring of CCTV systems for alarm
situations, and subsequent matching and identification of
faces or fingerprints that may be recorded (17,62).

Scientific laboratories can make wuse of machine
scanning of signals (often comprising vast quantities of
data) in a search for a particular pattern or feature
(68,67). The type of features sought are often abstract, to
the extent that even human observers can sometimes be unsure
of identification.

Many industrial applications also exist - a robot
assembly device can benefit from visual input (3,8,46). This
must be suitably processed to give the relevant information
to help it as a capable and, more important, general-purpose
tool. This can be extended to transportation, where visual

inputs to an autonomous vehicle can greatly aid its



movements in unknown territory (33). This can be applied

across a wide range of complexities - from manoeuvering fork
1ift trucks to piloting aircraft,

There 1is obviously considerable scope in the choice of
a problem to be tackled. Unfortunately this may give rise to
a multitude of attempts at solutions - often 'tuned' to a
particular application. While this undeniably extracts the
maximum potential from a solution, many are left very
specific and over-adapted to a particular application. They
become no longer suited to a range of users. There are vast
numbers of alternatives to be explored even within each

attempt at a solution.

1.3 Alternatives in Picture Processing

At every level of the search for a picture processing
solution, there are alternatives to be considered, This may
slow the progress of research by directing it towards a
'tuned' solution, specific to a problem. It can also be
cited as a reason for assuming that no general solution
exists. It is in an attempt to generate at least a partially
general picture processing solution that the work deécribed
in this thesis has been carried out. While it is necessary
to make several specific choices before any form of picture
processing can commence, it will be shown here that a
single, simple machine <can readily perform a relatively

large range of tasks without further specialisation.
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1.3.1 Alternatives in the Representation of Picture Data

The alternatives that exist in picture processing begin
with the data. The data are in some form of organised,
reproducible representation of visual images, with a large
number of alternative storage methods available. Analogue
storage has been used (37) in the days before the advent of
cheap digital devices, yet today the latter method is used
almost exclusively.

Digital pictures are most often represented as two-
dimensional arrays of picture elements (pixels). The number
of elements and their spatial relationship are some of the
first alternatives to be specified in such picture
processing machines. Once the number of pixels per picture
and the tessellation have been defined, the quantity of
information per pixel is be decided. The representation can
vary from simple binary (black and white) to a full range of
colours at each point. Subsequently, if the picture is to
represent a moving image, a frame repetition rate must be
specified. Frequently, a single static picture is used in
experimentation, but ultimately many of the applications
mentioned above would require the use of moving pictures.

This is for two reasons:

1 many pictures change in time (which must be recorded),
2 mnmuch potentially useful information can be gathered

from the manner of these changes.

Normal TV video rates are often used as a standard, to
suggest some values for these variables. This rate is
equivalent to approximately 12 bits per pixel, 625 by 833

pixels per frame and 25 frames per second for a full colour,
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moving television quality image. This is equivalent to a

gross data rate of ~108 bits per second, and is cited as a
goal for many current devices (78). Alternative data rates

are well-known and documented in many books on the subject

(7,15).

1.3.2 Global or Local Processing of Data

Broad alternatives also exist in the processing carried
out on the data. The choice to be made is between local and
global approaches. In the former case, processed areas of
the picture are solely a function of the local area in the
picture before processing. Global processing allows any
processed picture area to be a function of any or all of the
regions 1in the unprocessed picture. Global operations lend
themselves well to transform processing - possibly by
optical means (47). At present this method has enormous
advantages in speed over discrete processing, being
effectively 1instantaneous. However, when implemented on
serial processors, global processing 1is necessarily much
slower than local processing. This is the predominant factor
accounting for the emphasis on the latter in much of the

image processing literature,.

1.5.3 Sequential or Parallel Processing

In the <case of 1local processing of discrete pixel
arrays, there exists the alternative of parallel or
sequential processing (63). In the former, all localities
are processed simultaneously (either actually or effec-

tively). Each resultant new local area 1is created in a

12



different picture space from the original picture. Several
hardware devices have been created with architecture to
implement this type of processing (16,26,28).

In sequential processing, each locality is processed to
finality before the process is applied to the next area in
an ordered scan., The processed results are inserted back
into the original picture space. This results in the input
to the processor being part processed, part unprocessed
pixels. This has important implications in many types of
picture processing where topological variables such as

connectedness are involved (70).

1.3.4 The Choice of the Size of the Locality

The size of the 1locality or neighbourhood mentioned
above 1is related to the overall picture size and the number
of pixels within it. This 'window' size is a major factor in
such processing and 1is chosen subject to two constraints:
with a large window there is the potential for more powerful
processing, yet the smaller the window the faster and

simpler the process.

1.3.5 The Choice of Algorithms

The final <choice, and possibly the most important of
all in picture processing is that of the actual algorithm
employed. At this point it is interesting that a distinection
can be drawn between an underlying strategy and the
device-dependent algorithm, giving rise to yet further

alternatives in approach.
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Here is considerable scope for what is often a rather
arbitrary variation, Algorithms are generated by
introspective analyses of how the process should be done,
and thereafter evaluated on the results of their
application. Comparisons between man and machine have been
made (57), which are inclined to suggest man's methods as a
suitable, if not the only source of solutions. Consequently,
this 1is the area of picture processing most subject to
'ad hoc' solutions, and 1is thus where the main thrust of
this thesis is aimed. A successful search will be made for a
method of generating algorithms not based on such 'ad hoc'
solutions, This will rely on examples of processed pictures
alone, rather than premeditated methods of achieving these

processed pictures.

1.4 Basic Problems in Picture Processing

The alternatives above lead to considerable problems in
finding picture processing solutions. These may be

summarized generally into three aspects:

1 there are vast quantities of information to be
stored and processed,

2 the time taken to process pictures in real time
must be controlled,

3 the processes to be executed are not known.

The ideal solution sought here will have to be fast,
efficient and capable of generating its own algorithms.
The problem of speed cannot be overlooked in many

applications which, once divorced from the laboratory, must
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ultimately work in real time. This requires efficient
algorithms capable of working quickly to generate outputs
from inputs: yet even this is usually insufficient. Special
purpose hardware is currently necessary to approach the data
processing rates required. Early attempts at reducing the
execution times of processors resulted in parallel machines
(79,80) as an approach to speeding up the hardware. The
current generation of programmable general purpose computers
is still far too slow to cope with the video data rates
cited above as a standard. The hardware that must be
produced 1is often grossly restricted in its adaptability to
even closely related problems. This may result in forced
simplifications of the algorithms that can be implemented in
the chosen application area.

Look-up tables are examples of such systems used for
pixel value transformations (1). Shift register delay lines
are examples that allow the processing of windows of pixels
that are spatially adjacent, but temporally distant in
serial data streams (42,74).

The solution proposed here will be based on a novel use
of 1look-up tables 1in a writing mode, as well as a reading
mode. '

Apart from speed, the other major problem is that the
algorithms required are unknown. That is, while the results
required of the picture processor can be defined (perhaps by
examples) there are no clues to the methods of solution.
Attempts at finding the human methods employed here (31,71)
have not been easily translatable into machine form. The
usual approach 1s to break down the process into a set of

‘primitives' - that is, a set of relatively well-defined
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tasks capable of at least some successful intuitive
solutions. These range from the trivial (such as inversion,
or the removal of 'salt and pepper' noise) to the complex
(such as thinning or object identification). These are often
combined in a particular sequence to produce the overall
image transformation required for a particular application.

Laudable attempts have been made at organising the
tools to search for these algorithms. Examples of these are
the VICAR software package developed at JPL, California
(15); and the SUSIE package at Southampton (9). These
command type languages relieve the researcher from the
mundane aspects of picture processing, allowing con-
centration on the actual image processing techniques under
investigation. A similar type of language has also been
developed for pattern recognition: JANSYS at Brunel
University (55).

However, solutions proposed as a result of these and
other methods are further complicated by the choices
highlighted in Section 1.3 above. This often confuses the
pursuit of a good solution. Good proposals can be lost in an
unfortunate combination of parameters (such as size, type of
picture, etc.) thus obscuring the way ahead. As Groh‘stated
in 1978 (32), it is for these reasons that "technical
picture processing is still in its infancy".

In an attempt to avoid this arbitrariness in the cycle
from problem definition to problem solution, the work in
this thesis 1is proposed. Indeed, the broad range of
solutions covered in several recent review papers (64,81)

illustrates the fact that no genuinely 'best' strategies

have crystallized.
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1.5 The Need to Avoid 'ad hoc' Development

An example of where this 'ad hoc' nature of the art has
resulted 1in an 1inefficient collection of algorithms is in
the task of thinning. Thinning here 1is defined as the
successive erosion of the edges of a figure until a unit
width, connected skeleton remains along the figure's limbs
(22). The algorithms that have been generated in the past
(70,10) are not generally guaranteed to work. They may break
the figure, or not discriminate between noise and limbs, or
simply produce inaccurate skeletons. This record of bad
performance has stimulated the generation of new, complex or
arbitrary algorithms; but unfortunately these are not
derived evolutionarily from earlier solutions (43). There is
a need for algorithms to be 'guaranteed' to do the job, and
one aid to achieve this 1is to define a 'requirements
specification' Dbefore attempting to find a solution to meet
it. Thereafter any proposed solutions can be tested to
ensure they meet these specifications.

Thinning has arisen as a non-trivial problem that has
been continually attempted because of its potential use, and
actual implementation, 1in many practical applications. It
has been used in printed circuit board manufacture (59),
inspection of fibres on air filters (24), fingerprint
classification (60) and chromosome analysis (38). The
requirements can be specified as a capability to simplify
the 1image by a reduction 1in 1limb width for subsequent
analysis or data compression purposes. The difficulty is
that this is a global problem where loﬁg—range features have
to be taken into account, and is thus not strictly solvable

with the often proposed local solutions.
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To define the problem explicitly, a set of requirements

can be expressed about the required thinning algorithm.

1 It must transform the image to a unit width skeleton.
2 It must maintain connectedness.,

3 It must retain any line ends that it locates.

4 It must modify the image isotropically.

5 It must complete its task in a reasonable length of time.

Algorithms have been developed under these conditions,
yet still found 1lacking, by breaking 1limbs (23), being
over-complex and hence slow, or having other shortcomings.
Although it 1is somewhat artificial to separate these
properties in this manner, this can focus attention on the
minimum requirements, Algorithms are usually proposed as
complete solutions - and failure to identify sub-tasks or
constraints properly 1is often the fundamental pﬁoblem.
Indeed, an attempt to meet all the requirements
simultaneously wusually results in not meeting some at all.
However, acceptance criteria are highly desirable for
quantifying the usefulness of a given algorithm. This may
also tend to generate algorithms designed from the 'top
down', with the advantage that they <can be tailored to
applications by re-adjustment of requirements at the design
stage. Different tesselations, noise characteristics and
noise levels are but three examples of variations that might
invalidate a given algorithm. Ideally an algorithm should be
readily modifiable to meet the new conditions. The only
requirement is to produce a skeleton of predictable accuracy

under given conditions. Until recently (22), there has been



no mention of such skeleton accuracy standards in the
literature,

Davies and Plummer (22) have approached the problem
with this methodology. A family of algorithms has been
proposed that <can be guaranteed to generate a skeleton
rigorously defined as 'adequate'. These algorithms can be
adapted to a range of conditions and thus are no longer
'ad hoc' solutions, but transportable between applications.

This structured approach to 1image processing 1is
preferable - execution of a cycle of requirement
specification, solution development, and validation.
However, an alternative 1is proposed in this thesis, which
even avoids the need to generate a solution by intelligent
considerations. If the requirements <can be specified
formally, a device <can in principle be created capable of
generating its own algorithms directly from these
specifications. The method used here for specifying the
problem 1is the provision of examples of processed data.
Additionally, this no longer restricts the task to thinning,
or any picture processing task. The device is capable of
performing any task that can be specified by the examples,
and is not subject to any 'ad hoc' proposals of solutions. A
device capable of such action will be described in the

following sections.

1.6 RAMs as Processors in Learning Machines

It has been suggested that the present work will try to
avoid any arbitrariness in finding solutions. Thus one of

the most suitable sources of information available to define
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the requirements is a set of examples. A picture set exists
(or can be created) to 1illustrate the processes to be
performed. The problem has consequently been modified to the
creation of a machine capable of responding coherently to
these examples, such that it can later copy the process onto
new data. The example data themselves are used to drive the
machine, to re-order it internally in such a way that it can
reproduce the picture processing task on which it was
trained.

RAMs have been identified as universal devices capable
of emulating any logic circuit (2). In particular, RAMs have
been examined 1in considerable depth by Aleksander et al.
as 'n-tuple' 1learning machines for pattern recognition
(4,82,83). Such machines <can be trained to respond to a
pattern/class pair, such that they can later generate
correct classes from unseen patterns (11,72,77). It will be
shown here that a similar type of machine can be created
that will react to a pair of examples, consisting of a raw
picture input, together with a processed picture input. Such
a machine will generate ‘'correct' output pictures from
unseen 1inputs, and should fulfil the requirements above for
avoiding arbitrary designs of algorithms.

The machine should be general in the sense that it will

be:

1 task-independent,

2 capable of handling different tasks with a
change of examples rather than re-programming,

3 able to handle different task complexities,

4 able to process different picture formats and

5 capable of generalisation.

20



This last point is of fundamental importance to any

intelligent machine. In this context, the property of
generalisation can be defined as the ability to process,
correctly, pictures not previously seen as examples. For a
learning picture processor to be of any use, this is vitally
important. The question of whether the performance is

'sufficient' to be useful is to be investigated here.

1.7 The Proposed Learning Picture Processing Machine

The characteristics of the machine proposed herein are
summarized below. This is an attempt at finding an optimum
solution to producing an output picture data set, correctly
transformed from an input picture data set. Assuming that
examples of these data sets are available for training, a
machine is proposed that can generate the required algorithm
autonomously. This machine will be 1implemented 1in RAM
devices used as modifiable 1look-up tables. This will be
shown to result in fast operation - as seen elsewhere with
this type of device (1,61,62). A practical version of the
machine will be described, which makes use of currently

available hardware technology.

1.8 A Summary of the Following Chapters

Chapter 2 will introduce the methods by which practical

learning machines may be organized to process digital

pictures, having learnt to do so only by example.
Chapter 3 will document preliminary practical ex-

periments on such systems, and illustrate the results with
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some proposals for modifications and improvements.

Chapter 4 will show a structured approach to the
generation and categorisation of variations on the basic
theme, and will propose a 'general machine'.

Chapters 5 and 6 represent the bulk of the ex-
perimental work which investigates a number of variations by
experiment. The evaluation of the results leads to a
convergence onto some general rules regarding such systems'
behaviour.

Chapter 7 documents the simulation process used
throughout these experiments, for creating and operating
this range of learning picture processors on a conventional
digital computer.

Chapter 8 will conclude by summarizing the implications
of the systems proposed here, in the light of the current
position of 1image processing; and also make some specific
suggestions for further work. Some rather more general
conclusions will also be drawn regarding the applicétions of

learning machines in the future.

While this work addresses itself to the practical aspects of two-
dimensional pattern learning, there aifeady exists a considerable
body of work on theoretical one-dimensional learning - grammatical
inference. This shows the potential power of a negative sample,
(ie. training indicating what not to do) which has interesting
implications for the work presented here. The following reference

will serve as an introduction to this sphere :

Feldman J. 'Some Decidability Results on Grammatical Inference

and Complexity.' Information and Control Vol 20 pp24ks-262 1972.
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CHAPTER 2

RAM DEVICES AS LEARNING PICTURE PROCESSORS

2.1 The General RAM Logic Device

It has long been known that practical pattern
recognition machines must incorporate RAM nets. These can
form the storage elements within machines wutilising
techniques such as n-tuples (13), nearest neighbours (19),
feature extraction (41) and template matching (37) for
pattern recognition. Machines can also be constructed
entirely of RAM nets - possibly of many layers - in a closer
analogy to a living neural net. These randomly
interconnected devices <can form nets with considerable
information processing abilities. This type of machine is
used in the multi-layer net (MLN) approach to pattern
recognition (21).

The wuse of RAM nets in various configurations for
pattern recognition comes from the fact that RAMs are
universal logic devices. This is a development of earlier
work on universal 1logic <circuits wusing RAMs or RAM-like
devices in single layer net (SLN) structures (2).

To illustrate the generality of RAMs, consider any
combinational logic block with n binary inputs and m
binary outputs. For any given n-bit input word, the block
generates an m-bit output word. Now consider a RAM element
with an n-bit addressing input and an m-bit data output.
This too can generate any combination of m-bit output words

when fed with n-bit input words. Evidently the RAM has to be
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programmed with the correct data initially to perform this
emulation properly. However, it can still in principle
perform any of the (2"1)2n functions that an n-bit input
logic device can exhibit at its m-bit output. Hence a RAM
loaded with the correct data <can emulate any other
combinational logic block.

While this has been shown to be possible in theory, the
large value of 2".m - the number of storage bits required in
the RAM block - would be impossibly large for a machine of
any useful size (4). 1In addition, the time taken to progranm
it would be inordinately long. However, techniques can be
applied to enable practically-sized RAM nets to be used
successfully in pattern recognition. These techniques

usually involve some form of reduction of the input data

resulting in realisable sizes of machine,

2.2 RAM Nets in Picture Processing and Pattern Recognition

The reduction of input data necessary for practical
pattern recognition machines usually involves the extraction
of subsets or functions from the input data (25,13). Common
examples of these subsets are n-tuples and local or global
features, which may possibly be combined into feature
vectors. These machines are internally composed of identical
sections arranged in parallel - one for each class of
pattern to be 1identified. This results in the size of a
pattern recognition machine being directly proportional to
the number of classes it is capable of resolving. The input
pattern passes through all these parallel channels
simultaneously and a decision 1s made as to the most

appropriate class label for the pattern.
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A process closely allied to pattern recognition is
picture processing, where a picture (possibly destined for
eventual classification) is transformed into an improved,
extended or otherwise modified version of 1itself. The
purpose of this is, typically, to facilitate later
processing the picture may undergo - whether by man or
machine. However, it 1is 1important to note that in the
present context when comparing picture processing with
pattern recognition, a processor is a single channel device,
whereas a classifier is a multi-channel device.

Thus, it may be predicted that such a machine would be
smaller in general than an equivalent classifier designed to
handle the same type of pictures. A picture processing RAM
machine would be of a size comparable with a single class
channel of a classifier. This will later be shown to be the

case in practice (see Section 2.7).

2.3 The Need to Train RAM Machines

As mentioned in Section 2.1, a RAM machine can emulate
any combinational logical device, provided it is programmed
with the correct data initially. This pre-programming or
'"training' phase is vitally important, as the performance of
the RAM machine - whatever its task - depends heavily on the
quality and quantity of training received.

For any RAM machine to perform usefully 1t must
generate some dependant output variable that is a definite
function of an independent input variable. In training, the
machine is presented simultaneously with examples of the
input wvariable (Atr) and the corresponding output variable

(B) - generated by the function (f) to be learnt
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(ie B=f(A,) ). In this manner, the RAM machine will learn
the function it is to perform on any input variable
presented to it in future.

Thus, if the training is adequate the RAM should be
able to show coherent performance in a test period. Here, it
will be presented with only a new input variable (A;.),
enabled to read, and expected to generate the new output
variable (C, where C:f(Ate)’ f being the function learnt

earlier).

Training Testing
Ay, —>>— Ay
Addr. Addr.
RAM RAM
B —m=>— ———
Data Data
In + + Out
'Write'! 'Read’

Fig 2.1 Training and Testing Phases of a
Learning KAM Device

The usual meanings of the data types Ay,,A;,,B and C
are given below 1in Fig 2.2 for pattern recognition: this

figure also shows a possible set of interpretations for the

case of image processing.
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Process Training Testing

Pattern Ay, Input Picture Aye Input Picture

Recognition (Example of (To be Classified
I/P Classification I/P by Machine)

Given Below)

B Example of Class C Class Label of

Label of Above Above, Generated
I/P 0/P By Machine
Picture Ay; Input Picture Ay, Input Picture
Processing (Example of (To be Processed
I/P Processing I/P by Machine)
Given Below)
B Example of C Processed Version
Processed Version of Above,
I/P of Above 0/P Generated by
Machine,

Fig 2.2 Meanings of Inputs and Outputs for RAM Pattern
Recognition and Picture Processing Machines

2.4 The Use of a Scanning Window to Reduce Data Input

There 1is a need in picture processing, as in pattern
recognition, to reduce the amount of storage required from
that wused by the 'brute-force' method shown above. For
pictures comprising n bits of data, the storage
requirement would be 2".n bits for such a brute-force
picture processing machine. Using practically sized pictures
(n=256 or more) this value reaches 1078 pits of storage - an
obviously impractical value.

The methods used for storage reduction 1in pattern
classification are not necessarily the best or even suitable
for doing the same job in picture processing. This is due to
the fundamentally different natures of the tasks to be

learnt. The former relies primarily on global features and
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is not concerned with the exact spatial relationship between

adjacent points in the input picture.

(This fact is to some extent justifiable, since if a
pattern recognition method is to remove the maximum amount
of redundant information from a picture in one major
process, 1in order to classify it, it must retain features
that are as nearly as possible uncorrelated. Hence pattern
recognition tends to be 1less concerned with what is
happening in local neighbourhoods of a picture.)

Picture pfocessing however, depends on these local
features and short range patterns in the input picture. This
equal dependence on local patterns - wherever they originate
in the picture space - would suggest the use of a small
scanning window as a suitable method of reducing the data
derived from the input picture.

The application of a scanning window extractor to an
n-bit input picture results in the generation of a w;-bit
window for each stage of the scan. This value ( Wi ) is much
less than the number of bits contained in the whole input
picture ( n ); hence a large reduction 1in the storage
requirements can be expected. (It has been assumed in this
early discussion that each picture element or pixel is
composed of a single binary digit to simplify the analysis.)

To cover the entire picture, this window extractor
requires two co-ordinate parameters (x,y) as input to define
the current position of the window to be extracted. One
complete run will involve the extraction of n separate
windows while cycling through all possible values of (x,y)

once (Fig 2.3).
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Scanning
Window
Extractor

;nput A RAM
Picture Picture
Processor
bits bits Vi
B C
——eeee
I/P 0o/p
(x,y)
Parameters

Fig 2.3 Application of a Scanning Window
Extractor To the Input Picture

This reduction in the number of 1inputs at A
considerably reduces the storage requirements - by a factor
(2wi/2n), which is very small. (It should be recalled that
wi<n thus 2%i<2™)

The wuse of a scanning window on the input picture
suggests further opportunities to reduce storage, and also
to reduce irrelevant data in the example picture at input B.
This irrelevant data is the part of the example picture that
is not inside the window being currently extracted from the
input picture. This stems from the earlier realisation of
the fact that a picture processor deals only with local
operators, so that only the region of the example picture
near (x,y) 1is of any use 1in determining the processing
operation to be performed on the region near (x,y) in the

input picture (Fig 2.4).
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Two Scanning

Window
Extractors
=We—>
gnput l A RAM
icture 7 Picture
l LK/ l I/P Processor
n Wi
bits bits
2%i
Example I B C
Picture < < .
l | 1/p VvV osp
n We
bits bits
(x,y)
Parameters

Fig 2.4 The Use of Two Synchronised Scanning Window
Extractors on the Input and Example Pictures

This suggests a method of generating the output
picture. In training the machine scans the pair of input
pictures sequentially. In testing it can similarly scan the
input picture to be processed, while synchronously
generating the output picture. This can be seen as
re-creating a large (n-bit) output picture from the smaller
(wo-bit) data output derived from the RAM memory matrix.

The machine described above wuses three synchronized
scanning window devices - although only two (shown as I and
II below) are used in training, and two (shown as I and III

below) are used in testing (Fig 2;5):
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Device Type Function
Window ) sequentially extracts

) W;- (or we-) bit windows from
)

Extractors ) an n-bit input (or example) picture

IIT - ( Picture ) sequentially generates
) an n-bit output picture from
)

( Generator successive Wg-bit windows

Device I acts on the Input Picture in training and testing;

Device II acts on the Example Picture in training only;

Device III acts to form the Output Picture in testing only.

Two Scanning One Scanning
Window Picture
Extractors Generator

Input f RAM
Picture Picture
W; Proccessor
bits
P

Picture

(x,y)
Parameters

Fig 2.5 The Use of Three Scanning Devices to Read Inputs
and Generate Outputs in a RAM Picture Processor

2.5 The Advantages of Using a Scanning Window

This wuse of a scanning device means that not only is

the storage requirement much reduced, but also the training



received from a single pair of input pictures Ay, and B

is much increased. This is because the number of training
sets received from each single pair of pictures is increased
to n sets of values. Since the machine receives many more
training sets of data from each pair of pictures and can
effectively intermix such feature subsets to recreate whole
patterns, it can begin to generalize. That is, it gains the
ability to be able to process pictures in the testing phase
not seen previously in the training phase. This is as
opposed to the brute-force machine seen earlier (in
Section 2.3) where there is no opportunity to generalize
over pictures. Here, each n-bit picture would have addressed
one unique <cell 1in the memory matrix, chosen from the 2"
cells present. This machine could not process pictures not
seen before, as the memory matrix cells corresponding to
those as yet unseen pictures would not have been set before.
This property of generalisation is one of the fundamental
reasons for wusing such an architecture, as it 1is an
essential requirement for any practical picture processor,

just as it is for any practical pattern recognition machine.

2.6 Processing within the RAM Picture Processing Machine

The actual use made of the incoming data by the RAM
machine will now be considered. It has been shown
(Section 2.4) that this decrease in the RAM storage
requirement results from two causes: the reduction in the
incoming data width from n to w; bits in the case of the

input picture, and from n to w, bits for the example

picture. This implies the simplest and, as will be shown

later, completely practicable arrangement for processing the
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incoming data.

The window extracted from the input picture forms the
address lines of the RAM, and the window extracted from the
example picture 1in training forms the data input lines of
the RAM. Consequently, the data output lines of the RAM will
be used to form the window for generating the output picture
during testing (Fig 2.6).

This implies that WKW and the simplest and again

e?
practical arrangement is to have Wy=We. That 1s, the output
window used to generate the output picture uses the whole of

the original example window stored in training.

/ <= We>
\ Memory Matrix -
Input Address 2%icells of
Picture| U] Wwe bits each.
w; bits
/ w.
2 |

Example

Picture]| L]
We bits Wo bits

\

(x,y)
Parameters

Fig 2.6 Data Handling in a Practical
RAM Picture Processing Machine
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2.7 Practical RAM Picture Processor Layout

In order to facilitate understanding of the machine in
this and the next section, some numerical values for the
variables introduced so far are given in Fig 2.7. This will
illustrate the layout and operation in actual learning and
application of a picture processing task with real data.
These numerical values are by no means optimum, but are
practical and have been shown to work. (A fuller treatment
of the type and range of possible values will be given later
in Chapter 4.)

This hardware layout results in the following features:

Window Extractor I

This wuses a 256-bit input pattern and a pair of U4-bit
(x,y) co-ordinates to define a 9-bit output window. The
latter contains the centre point value at (x,y) and its
surrounding 8 nearest neighbours. This 9-bit word is used to
address one of the 512 (:29) locations in the memory matrix

of the RAM.

Window Extractor II

This similarly takes a 256-bit example pattern and the
two U4-bit co-ordinates to define a 1-bit output window,
containing only the centre point value at position (x,y).

This is used as the data input for the RAM during training.

The RAM
This has 9 address lines, and 1 data input line, giving
a store size of 512 1-bit words. The control line defines

the mode of operation as being either 'write' or 'read' in

training or testing respectively.
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Variable Function Value Comment
n no.of pixels 256 (:162) : a coarsely
in picture field digitized two

dimensional picture

W, no.of pixels in g (:32) : i.e. 3x3 pixel
window extracted window with a centre
from input point and eight
picture neighbours (implies a

rectangular grid)

Wea no.of pixels in 1 the centre point value
window extracted only, with the same
from example X,y values as above
picture

W, no.of pixels in 1 a single point is
window used to inserted in the output
generate output picture at x,y
picture (recall : wy=w,.)

X,y length of side of 16,16 a square picture
digitized picture (n=xy)

b no.of bits per 1 a binary (black and
pixel white) picture

Fig 2.7 Numerical Values of Variables
in a Practical LPP Machine

Picture Generator III

This takes a 1-bit data output from the RAM and two
4-bit co-ordinates (x,y) to gradually define a 256-bit
output pattern in testing. The pixel value supplied is

inserted in the picture field at position (x,y).

(x,y) Co-ordinate Generator

This ecyclically scans through all values of X (from
0-15) and for each value of x scans through all values of

y (0-15). This covers the entire 256-bit picture
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systematically, and ‘'drives' the above Devices I, II and

ITTI.

16 9 to
6 512 1
25 9 ‘ .
IPP < WE _ \ \
16 I,r//
] Addr!
512
16 16
: 256 1 \ 1 256 16
EXP ,w\, D/ 0 <PG
16 E;/ II
Data Data
In WT Out
Control-
M—2x4 (Write/Read)
(Train/Test)
[%x (0-15)
—y (0-15)

Fig 2.8 Hardware of a Practical RAM Picture Processor

2.8 Mode of Operation

The operation of the machine described above will be

described in two phases of operation, training and testing.

Training

The machine is presented simultaneously with ¢two
256-bit pictures - the input pattern (IPP) and the example
pattern (EXP). (The example pattern should be a transform of

the input pattern, modified according to the processing task



the machine 1is to learn.) From each point in the input
picture the machine extracts a (3x3) window. This is used to
form the address, defining one of 512 1locations in a
512 by 1-bit RAM array. A single data bit point is
simultaneously extracted from the corresponding position in
the example picture. This value is written into the RAM
location now selected. This process is repeated for each
pixel in the pattern field, and then possibly for further
pairs of pictures, if the training is to involve more than

one pair of pictures.

Testing

The machine is presented with a single 256-bit picture,
the input pattern (IPP), and is expected to produce one
256-bit picture - the output pattern (OPP). (This output
pattern should ideally be a correctly transformed version of
the input pattern, modified according to the process learnt
earlier.) For each point in the picture, the machine again
extracts a (3x3) window from the input pattern, and uses
this to address one of the 512 locations in the 512 by 1-bit
RAM array. A 1-bit word is read from this location and is
inserted into the picture space of the output pattern at a
position corresponding to the current position of the
window. The output pattern is correspondingly built up as
all points are scanned sequentially.

As stated earlier, it is probable that there will be
more than one pair of training examples presented to the
machine in the training phase. It is also probable that in
the testing phase more than one picture will be presented to
the machine for processing, which will in turn be expected

to generate a set of output pictures. Thus, in both the
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ped

Training IPP EXP
=16 (y)—= =—16 (y)—=
3
For each ] 1
of 256 16— 3 TT—Q 16|—1 00—
Picture (x) (x)
Points » > ____9.\
\ . \
I \ \
\ \
9-bit word extracted 1-bit word extracted
-used as address input. -used as data input.
IPP and EXP scanned synchronously as
RAM is loaded with data - trained.
Testing IPP OPP
OPP gradually
builds up
as scan
progresses T
T —7—7“;7
7 22222 ////

pd

training
with a

Fig 2.9.

9-bit word extracted
-used as address input.

1-bit word generated

-from data output

IPP and OPP scanned synchronously
as RAM reads out data - tested,

Fig 2.9

and testing phases,

set of pictures, each set being operated upon as in

Mode of Operation on Picture Pairs

the machine will be presented

This is shown in Fig 2.10.
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Training LPP

_— Machine
A
. IPPs \\\§‘~\\\N
I/P

Set of Input Pictures

e

Set of EXample Pictures

Testing LPP

— Machine
A
IPPS~\$\\
,JI/P
Set of Input Pictures
un
\
o/P

Set of Output Pictures

Fig 2.10 Mode of Operation on Sets of Pictures

2.9 Preliminary Conclusions about RAM Picture Processors

This RAM learning picture processor <can be inter-
preted as a simple look-up table of all possible variations
in a 9-bit binary window. This 1is a perfectly valid
interpretation, although four additional points should be

noted:



1 The look-up table can be written into selectively, and

hence it can be generated by examples in training. Thus
there 1is no need to determine how to express the picture
processing algorithm analytically in terms of the input
window. If examples are available to illustrate the process,
this 1is now a sufficient condition to -enable machine

processing to be carried out.

2 In addition, the machine's memory matrix, once trained
by example, will represent the algorithm that has been used
to transform the picture. Thus even if an algorithm is not
known, wuse of such a RAM learning picture processor will
generate an expression for this algorithm in terms of a
window 1look-up table. Subsequent analysis of this internal
state of the machine will give insight into this initially

unknown algorithm.

3 The memory matrix of the machine can also be trained
directly, as opposed to being trained by example. If the
picture processing algorithm is known analytically, then the
memory matrix locations can be 1loaded directly with the
correct data. The machine then operating in the testing
phase would perform this picture processing algorithﬁ as if
it had been learnt earlier by example. This procedure would
have the particular advantage of rapid processing of known

algorithms (see below).

Yy The Learning Picture Processor can in principle operate
extremely rapidly, since the only processing time required
is the generation delay for a window (usually a simple
extraction of a subset of data from the input set), coupled

with the access time of the RAM, for each point in the
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picture. To take the simple example of the binary picture
used earlier with 256 (162) picture points and a RAM having
an access time of 200ns, then a picture could be processed
in approximately 50ps. Picture points are often generated
serially (as in, for example, a video system) and can be fed
into a shift register type processor, that effectively
extracts windows from high speed serial data in a 'shift
delay' period. If this delay period is less than or equal to
the access time of the RAM, then a processing time of 50us

would become realisable in practice.
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CHAPTER 3

EXPERIMENTS WITH BASIC LPP MACHINES

3.1 An Introduction to the Experimental Work

The hardware layout and mode of operation of a small,
simple Learning Picture Processor (LPP) have been described
in Sections 2.7 and 2.8. It will be appreciated that this
layout is neither the only possible nor even an optimum one.
It 1is evident that a very large number of variations is
possible. A simple layout was chosen merely to serve as a
workable example of an LPP machine. This particular layout
will be wused 1in the following experiments to show the
concept of machine 1learning of picture processing to be
practicable. Similarly, the mode of operation described is
one of the simplest possible, and will serve to show the
machine as described performing actual picture processing
operations,

Both these aspects <can be considerably extended and

ultimately improved. These improvements will stem from

1 theoretical considerations of the processes occurring
in the machine, which will suggest layouts and operating
modes more efficient in terms of speed, performance,

flexibility and quantity of hardware used,

2 results of practical experiments which will confirm or

suggest new methods of improving the machine,
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As the preliminary experiments are run, improvements
will gradually be 1incorporated into the machine and their
results noted. Eventually, a global view of the machine in
its most general form will emerge and will be fully
discussed in Chapter 4. More ambitious variations in the
layout and operation of an LPP machine will then be

investigated in the further experiments in Chapters 5 and 6.

3.2 Picture Processing Tasks for the Simple LPP Machine

In order to attempt picture processing with the LPP
machine, it 1is necessary to consider first the range of
tasks the machine should be able to tackle. Some physical
constraints are apparent with the machine as described in
Section 2.7. It 1is only within these limitations that the
machine can be expected to perform usefully. There are

essentially two such constraints

1 The wuse of a binary digitized picture; ie. only two
grey levels are used to define the brightness at each
picture point (most conveniently 1labelled 'black' and

'white'),

2 only the centre point and its immediate eight connected
neighbours on a rectangular lattice will be used to define

and execute the picture processing algorithm.

These constraints could well be relaxed later on: until

then several wuseful picture processes are still possible.
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Examples of such operations are:

Inversion

The swapping of the two brightness values to form a
'negative' image, ie. white objects on a black background.
(Here, and in what follows, an initial picture is assumed to

be composed of black objects on a white background.)

Cleaning

The removal of small isolated black (or white) specks
from a contrasting white (or black) background. This is a
well known operation which improves the picture by the

removal of 'salt and pepper' noise (66).

Shrinking
The removal of a single outer layer of black points
from black objects, often with a view to removing black

objects entirely below a certain size.

Expanding

The removal of a single outer layer of white points
from white objects, often to remove white holes entirely
below a certain size. Shrinking and expanding are sometimes
applied consecutively to remove both black and white ébjects

and holes (65).

Shifting
The movement of objects in a given direction with
respect to their (stationary) background. This serves as an

aid to subsequent position dependent analysis of objects

(45).
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Edge Finding

The 1location and marking of points on the boundary
between black and white areas resulting in the outline of
the objects - a wuseful aid in classification and scene

analysis (69).

Convex Hull Determination

The transformation of black objects into their minimum
enclosing convex shapes by the addition of black points into
concavities. This resulting convex hull can then be used in

certain methods of pattern recognition and shape description

(53).

Location of Objects

The identification and marking of objects of a

particular shape or size within the field.

Thinning

The production of a unit width black skeleton from a
black object with variable width limbs, whilst maintaining
limb ends and connectivity. This is a well known aid to

pattern analysis (70,10).

This 1list 1is clearly not exhaustive: it is limited to
include only those picture processing tasks that the LPP
machine described earlier could perform. However, it
contains examples of varying complexity from such trivially
simple tasks as inversion and cleaning, up to more involved
tasks such as the location of objects or thinning. (These
may require several passes through a small-windowed and thus
diameter-limited machine (50), performing the process

gradually on successive passes.)
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One important point should be mentioned at this stage

regarding the concept of a Learning Picture Processor and
the tasks it can perform. The above 1list of picture
processing tasks contains a range of well-defined separate
operations that may be of use in transforming a picture for
subsequent classification or identification. These tasks
have already been compartmentalized in that each one has
been graded in complexity and does a specific, limited job:
some suggestion has even been made of the algorithm that
might be used to do this job.

One of the predominant features of a Learning Picture
Processor to be demonstrated here is its generation of its
own processing algorithms when presented with examples of an
original and transformed picture. This transformation need
not be simple nor even immediately reducible to any of the
picture processing operations listed above. Provision of
examples showing the required transformation is sufficient
to train the machine, without recourse to direct

investigation of that transformation itself.

3.3 An Outline of the Computer LPP Simulator

An LPP machine was first constructed by software
simulation of the hardware on a small general purpose
digital computer. Since large-scale changes to the ultimate
layout were envisaged as the experimental investigation
proceeded, simulation had many advantages over actual
construction of working hardware. These included development
time, effort, flexibility, ease of connection to existing

picture handling peripherals and the possibility of
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including some form of rudimentary operating system. This
facilitated the handling of data and the automation of some
repetitive processes.

The software package developed to fulfil these
requirements was written in Assembly Language for a Motorola
M6800-based microcomputer (49,52). This use of a local
machine was aimed at making the maximum use of available
image input and output devices. A low level language was
used to maximize the machine's effective size and speed. The
program proceeds as a series of interactive exchanges
between the computer and the operator, taking the form of
machine prompts, operator responses and machine processing.

This description of the simulation software has been
provided here to facilitate understanding of how the
following experiments were performed in practice, A more

complete description is given in Chapter 7.

3.4 Experiment 1 : Proving Run

As an initial run using an LPP machine for the first
time, a simple picture processing task was attempted. This
task was the thinning down of a character with limbs of
three to five units width to limbs of two to three units. It
should be remembered that no precise definition of the
operation 1is necessary, as the provision of examples is

itself sufficient definition.

Data

The original letters used as the input patterns (IPPs)
in these early experiments were hand-written block capital

letters collected from volunteers and digitized on a binary
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16x16 matrix. Details of the collection of these data is
given in (58). The example patterns (EXPs) were produced by
subsequent manual editing of these pictures to remove noise
points and generally thin the limbs down to an approximately
constant width by eye. This produced a set of non-rigorously
transformed data - suitable for testing a LPP machine's

learning ability.

Training

The 1input pattern (IPP) and example pattern (EXP)
presented to the machine are shown in Fig 3.1. The EXP can
be seen as a thinned version of the IPP. This one pair of
pictures 1is presented to the machine and the RAM is enabled
‘to write - ie. it 1is trained. This occurs separately for
every pixel, as training occurs in parallel.for such a

machine,

Testing

To test the performance, another input pattern (IPP 1)
is presented to the machine and the RAM is enabled to read,
thus generating an output pattern (OPP 1) as the machine
scans through the picture field. This similarly occurs in
the parallel mode, as the machine builds up OPP.1 in a
different picture space from IPP 1. (Later experiments in
Chapter 6 will also use the sequential mode of operation.)

This testing IPP 1 1is shown together with the resultant

OPP 1 in Fig 3.2.

Results

The machine can be seen to have transformed the testing
IPP 1 in generally the same manner as the training IPP was

transformed - it has reduced the thick object to a thinner
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one. This ©been achieved after the use of only one pair of
training examples. The fact that the machine responded
correctly after only one such training pair is an important

point and will be referred to later.

Discussion

Despite the success in producing a thinning effect as
trained, there are some shortcomings in the performance
obvious from even a cursory inspection. The OPP 1 now has
erratic shape and 1limb widths when compared with the
original. Although the average limb width has decreased, it
now ranges from one to four units. This would appear to be
due to ‘'under-training' - ie. not all bits in the memory
matrix were actively set or reset by the training patterns.
The memory matrix was arbitrarily cleared (all bits set to
'0') before training. This means that bits actively cleared
to '0' by training are indistinguishable in testing from
bits initially cleared to '0' and thereafter not accessed in
training. Thus if, in testing, IPP 1 presents a (3x3) window
feature not seen before 1in training, this will address a
cell 1in the memory matrix not accessed since pre-training
initialisation. Consequently it will contain (and hence read
out) a '0' into this position of OPP 1. These additional 'Q!
points in OPP 1 can thus be attributed to insufficient
training. This will be investigated further in Section 3.6,
Experiment 3.)

As a further demonstration of the inadequacy of the
training received, an already thin pattern was also used to
test the same machine. This pattern IPP 2 and the machine's

output OPP 2 are shown in Fig 3.2.
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The resultant broken limbs again suggest insufficient

training. The machine has never seen patterns with features
like those in IPP 2 before, and consequently cannot be
expected to produce correct transformations of such
patterns. This 1is exactly analogous to the well-known RAM
pattern recognition machine that might exhibit poor
classification ability due to insufficient or unrepresen-
tative training. This results in too few discriminators
calling a co-incidence with the unfamiliar pattern and hence
an unreliable (and probably wrong) result occurs. Attempts
have been made to avoid this in established recognition
systems, 1involving choices of 'optimum' internal arrange-
ments (12).

In the case of the LPP machine, the wrong result takes
the form of the introduction of excessive '0' values into
the output picture space, here totally breaking the original

object.

3.5 Experiment 2 : Training Set Size

In an effort to improve the performance of the LPP
machine, it has been noted that it requires sufficient
examples in training to enable it to generalize over a

greater range of pictures in testing. This can be effected

in two ways

1 The training patterns themselves can be altered to
contain more varied features, in an attempt to train more
memory matrix cells per pattern. Every training pattern of

n pixels each effectively constitutes n training

patterns, as n wi-bit windows are extracted from each one.
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This explains the apparently reasonable picture processing
ability found after just one pair of training patterns in
the previous experiment. The single training pair generated
n (256) training patterns on scanning the input picture,
pausing at each of the 256 points. So, if as many different
features as possible (of all 29 possible window features)
can be introduced into a single training pair, then that
pair will train the machine to a far greater extent than one
with less variation. (This approach to increasing the

training will be attempted in Experiment 13.)

2 More training patterns can be used, in the hope that
more patterns will be likely to contain a wider variation of
features. This simple and obvious method of increasing the

amount of training will be tried here.

Training

A set of eight pairs of thick patterns (IPPs 1-8) and
corresponding thin patterns (EXPs 1-8) is presented to the
machine for training. These are shown in Figs 3.3 and 3.4.
The memory matrix of the RAM is initially cleared before

training such that all bits are reset to '0'.

Testing

Again, the parallel mode of operation 1is wused to
generate the OPP set. The test IPPs are shown together with
their corresponding OPPs in Fig 3.5; as are the two outputs
generated by the machine in Experiment 1 - to facilitate
comparison between these two machines with differing amounts
of training. This test set (IPPs 1-U4) contains the original
two characters used to test the machine in Experiment 1 (a

thick and thin letter 'C') and also two letters of a
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different alphabetic class - the letters 'D' and 'X'.

Results

The OPPs 1-2 (Fig 3.5) generated by this machine (in
the right hand column of the diagram) are to be compared
with the OPRs 1-2 generated by the same machine in
Experiment 1 (left hand column of diagram). In both these
cases the same IPPs 1-2 were used (centre column), the only

variation being the quantity of training received.

Discussion

It can be seen that in the case of IPP 1 both machines
produced a thinner version of the object. This is to be
expected, since both machines are now being tested with the
same type of data (ie. thick letter 'C's) as those on which
they were trained., However, when the second test patterns
are examined (IPP 2 to OPP 2) for both these machines, a
thinner object being presented as a test, the two results
begin to show the differences 1in training. The machine
trained on only one pair has broken the limbs completely at
one point, but the machine trained on eight pairs has
retained connectedness throughout the object, producing a
thinned, but not broken skeleton.

As a further test of this machine's ability, it was
tested with an object of a different class (IPP 3) : the
letter 'D'. The resultant output (OPP 3) shows that the
machine is capable of processing objects of a class
different from that on which it was trained. In hindsight,
this is to be expected since the machine as described relies
only on 1local features as a small (3x3) window is used.

Since there 1is no dependence on similarity between global
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features in the training and test set the machine is 'blind'’
to any large scale shapes of objects: it is essentially
'diameter-limited' (50).

A final test was made to find the limit of useful
performance of this machine. An object (IPP 4 : the
letter 'X') containing limbs of varying thickness, from one
to five units width, was presented to the machine. This and
the resultant OPP 4 are shown in Fig 3.5. The machine
removed the narrow limb entirely, illustrating that although
it has been more thoroughly trained than that of
Experiment 1, it is still deficient. In fact there are still
some memory matrix cells unset, as not all the possible 512

9 . ..
(=27 ) window features have been seen in training.

3.6 Experiment 3 : Initialisation

The fact that the training given to the LPP machines
was insufficient 1in the above two cases has been stated
without proof. To furnish proof, the following experiment
was performed.

The LPP machine was set up exactly as for'Experiments 1
and 2, except that the memory matrix cells were all
initialised before training commenced to contain the value

'1' prather than '0',

Training
The training given was exactly the same as that in

Experiment 2 so that a comparison of the ultimate results

can be drawn.
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Testing

For ease of comparison with the results of
Experiment 2, the same four picture objects are used again
here. These IPPs 1-4 are reproduced in the centre column of
Fig 3.6, with the corresponding OPPs 1-4 in the right hand
column. (The output of Experiment 2 (OPPs 1-4) is reproduced
in the left hand column of the same diagram.)

The only difference between this and the previous
experiment lies in the initial states of the machines -
training and testing being identical. This means that any
difference in the final outputs must be due solely to the
accessing of cells in testing that were not accessed at all
in training, and hence would be still in their (different)
initial states. The position and extent of these differences
will indicate the cells in the memory matrix not trained by

the training set.

Results
An examination of Fig 3.6 reveals the expected
differences in the OPPs of the two Experiments 2 and 3. The

differing pixels have been 'boxed' in the diagram.

Discussion

If these boxed regions are examined on the test IPPs
(centre column of Fig 3.6) they show that the very regions
where the OPPs differ is where the IPPs contain the type of
features not seen before in training. This leads to the
conclusion that the chosen training set is inadequate in the
sense that it has now been shown to have insufficient
variation (ie. range of features) to enable the machine to

generalize correctly. At least, the machine can generalize
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to a limited extent - to include IPPs 1-3 which are broadly

similar to the original training set, but not IPP 4 which
contains features (viz. thin limbs) not found at all in the
training set.

Thus, it can be seen that while increasing the training
set size demonstrably increases the quantity of training
received, the resultant machines could still be even more
fully trained. Experiment 3 has also shown how the machine's
performance 1s heavily dependent on the initialisation of
the memory matrix before training. To be specific, if the
machine 1is not fully trained (in that the training set does
not contain all possible features) then it will generate its
initialisation value when attempting to process an unseen
feature. This can have a considerable effect of the overall
appearance of an output when the test input varies greatly

from the training inputs.

3.7 Variations in the Memory Matrix Format

The previous experiments have shown how the performance
of the machine depends on a change in the initialisation of
the two-state memory cells. This raises the question of
which of the many possible internal arrangements of such a
machine is optimal.

A brief description of the format wused in the
experiments performed so far will be given as an aid to the
suggestion of variations on this arrangement.

The LPP machine used so far has consisted of a set of
bistable memory cells which are addressed by the contents of

binary windows extracted from the input picture IPP. In
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training, the memory matrix cells thus addressed assume the
binary values in the corresponding centre point positions in
the example picture EXP. This occurs for every point in the
picture field. In testing, windows from a new IPP address
memory matrix cells whose contents are placed in the output
field OPP in the positions corresponding to the current IPP
window.

These memory matrix cells have only two possible states
and so once a cell has been set, there can be no further
reaction by that <cell to any further setting stimuli
received 1in training thereafter. Similarly, a cleared cell
cannot respond to further clearing stimuli. The cells may
oscillate 1if the stimuli received set and clear the cells
alternately, but this condition only shows inconsistent
training. Repeated stimuli in the same sense contain
valuable information that a common feature has been found.
This information is effectively being lost.

A Dbetter LPP machine might well record this as the
number of sightings of each particular feature. This would
require the storage of a multi-level variable in the memory
matrix, as opposed’to the present two-level system.

In training, the Dbinary centre point value ex&racted
from EXP could be used to cause a fixed small increase (if
this point is '1') or decrease (if '0') in the current value
of the memory matrix cell being addressed by the IPP window.
These cells can be initialised to contain some intermediate
value, and the increment or decrement could be made small
compared to the maximum range of the values in the cells.
The machine should then be able to record reiatively

accurately the number of times each cell has been accessed,
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at the same time taking note of the polarity of the training

stimulus,

In testing, the cells addressed by the windows
extracted from IPP now effectively contain analogue
variables, These are high 1if a large number of positive
stimuli (EXP point ='1') were received or low if a larger
number of negative stimuli (EXP point ='0') were received, A
simple process to produce the required binary output would
compare the cell content with a threshold value and output a
'0' pixel (into OPP) 1if the contents are lower than this
threshold or a '1' pixel otherwise.

A summary of this new internal arrangement (which will
be labelled 'Format 2' for future reference) is compared
with the arrangement used earlier ('Format 1') in Fig 3.7.
This new Format 2 introduces four more parameters that must

be chosen before a working system is simulated

1 The new size of the memory matrix cell. As an eight-bit
computer was used for the simulation and eight bits give a
range of 256 levels, this was deemed a suitable starting

point for the investigations.

2 The effect of the EXP centre point value in training.
The increment or decrement chosen by the polarity of the
training stimulus causes a change in the cell contents of

one level. This is the obvious choice in this case.

3 The initialisation value of the cells. So that each
cell should be able to record a change in both directions an
intermediate value ('127') was chosen. This would stop cells
from reaching either the maximum ('255') or minimﬁm (ro")

levels prematurely. (If these levels are reached, the
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machine would not respond to further stimuli in the

direction of the limiting.)

Y The threshold 1level at which, in testing, a choice is
made of the binary OPP value to be generated. This was
originally set equal to the initial value of the cells, such
that any stimuli in either direction, however small, would

show up as a resultant change in output.

3.8 Experiment 4 : Two and Many Valued M.M. Cells

This experiment will investigate the relative
performances of the two types of LPP machine formats now

introduced

Format 1 (hereinafter referred to as 'Fi1')

where the memory matrix cells have just two levels, and
the «cells are set to equal the binary training stimuli
received from EXP 1in training; and are output directly to

generate OPP in testing,

Format 2 ('F2'")

where the memory matrix cells have 256 levels and are
incremented or decremented by one level according to the
polarity of each binary stimulus received from EXP in
training; and are 'thresholded' to produce a binary output

to generate OPP in testing.

Training
To ensure that neither the F1 nor F2 LPP machines is
undertrained, a large training set size of 200 pairs was

used. This should ensure that the majority of the cells in
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the F1 machine each receive some training, such that few are
left in their 'initialisation' state which can have a large
effect on the results (see Experiment 3). This should also
allow <cells 1in the F2 machine to assume values widely
distributed in the range of '0-255' levels.

Both machines received the same training set of 200
pairs of IPP and EXP patterns - again drawn from the stock
of manually thinned and cleaned characters, similar to those
in Fig 3.3. The exact character set used contained 100 pairs
of the 1letter 'C' and 100 pairs of the letter 'D' and are
not reproduced here. As each pair effectively generates 256
actual training pairs, it 1is assumed that the resultant
51200 (=256x200) sub-patterns would fully train the 512
cells in both memory matrices. The danger of
'overtraining' - a common problem in RAM pattern recognition
nets - should not arise here. This is because unlike many
pattern recognition systems, these cells can repeatedly be
set and cleared (F1) or adjusted (F2) to reflect ever more
accurately the training stimuli received. The nature of the
problem 1is also different: in picture processing an attempt
is Dbeing made to maximise the response, whereas in pattern
recognition a differential response between discriminators

is being sought.

Testing

The same test set (IPPs 1-12) was used to test both
machines, and is shown in the centre columns of Figs 3.8 to
3.10. The OPPs 1-12 generated by the F1 machine are shown in
the 1left hand columns, and the OPPs 1-12 of the F2. machine
on the right. A relatively 1large test set of various

character fonts was used in an attempt to show up any
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significant differences 1in the performance of the two

machines. The test set was composed of three character
styles
1 Four hand-drawn letters 'J' - collected 1in the same

manner as the training set of 'C' and 'D' letters. (IPPs 1-4

in Fig 3.8)

2 Four type-written numerals '1', '2', '3' and '4',
These were collected by the Post O0ffice from actual
type-written mail for use in pattern recognition research

work (54). (IPPs 5-8 in Fig 3.9)

3 Four type-written letters 'M' from the same Post Office
source as the above numerals. These were chosen for their
'unclean' appearance and dissimilarity from the training set
to act as a test of the machines' generalisation abilities.

(IPPs 9-12 in Fig 3.10)

The output threshold used in the F2 machine in this
experiment was set at the mid-range value of '127'. This
resulted in a pixel output of '0' if the addressed cell

contained '127' or less, or '1' if '128' or more.

Results

A comparison of the left hand (F1) and right hand (F2)
columns in Figs 3.8 to 3.10 vreveals the variations in
performance of the two machines. The most immediately
obvious feature of the comparison of the two results is that
they appear broadly similar. Both machines do generally thin
and clean the characters fed to them in test. This indicates
that both F1 and F2 are practicable and perform coherently,.

(This is a new result with the F2 machine.)
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However, on closer inspection 1t becomes obvious that

there are differences which are systematic and repeated
between the results of the two formats. These differences
are analysed in detail below.

(It should be noted that considerable caution has to be
exercised in analysing differences in performance of the two
machines, since they are not performing rigorous algorithms;
but rather they have been trained on the same rather ad hoc
set of characters. Thus, though the results are comparable,
it is not possible to place an absolute 'figure of merit' on

either performance.)

Discussion

References will be made to specific examples in the
test set to illustrate the point being made in the following
discussion, alfhough all of the points below generally apply
to all of the test patterns.

The F2 machine can be seen to follow the original shape
of the object more faithfully and to preserve its outline
through the thinning process. This can be seen in IPP 4 and
IPP 8 and their respective outputs. In the case of the
hooked end of the letter 'J' in IPP 4, this hooked
appearance is retained in OPP 4 - F2 but not OPP 4 - F1. The
sloping edge of IPP 8 has been stripped back and thinned
well, maintaining a straight edge in OPP 8 - F2 unlike that
of OPP 8 - F1.

An interesting variation in performance is seen in the
handling of vertical 1lines of two units width. The
F1 machine produces single width lines (centred on the right
hand of the two original lines); the F2 machine retaining

the whole double width 1line. This can be seen 1in
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IPPs 2, 4, and 5.

The F2 machine also produces smoother vertical edges
- resulting in a straighter 1line, as opposed to the
F1 machine's introduction (or retention) of small spurs and
nicks 1in such edges. Examples of these can be seen on the
left hand vertical side of IPPs 11 and 12. This does not
happen with the right hand edges (IPP 10) where Dboth
machines produce a similar result. This discrepancy must be
a result of the particular training set used, and hence
supplies 1little wuseful information regarding the relative
performances of the two machines.

Both the machines are capable of breaking a thin
character (IPPs 3 and 6) - again as a result of the training
set not containing 'correct!'! examples. As before, the fact
that both machines perform essentially identically on this
featureA conveys little 1information about their relative
merits.

A further point of this typé where the machines both
act similarly 1is the removal of noise points, as seen in
IPPs 3 and 5.

The F1 machine can be seen to thin features to a
considerable degree (often to a wunit width limb) whilst
retaining the original 1limb length; whereas the F2 machine
appears to strip off the outer layers of such limbs,
resulting in thinner but shorter féatures. This can be seen
in the lower limb of IPP 8, and in the bottom of the centre
'Vt in IPP 9. In both cases, the F1 machine retained the
full length with a single width result, the F2 machine

losing some length and not thinning to such a great extent.
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These results show that there are some demonstrable
improvements 1in performance when using an F2 machine as
opposed to an F1 machine. This difference is primarily due
to the fact that the F1 machine simply remembers the last
stimulus, giving equal preference to isolated 'bad' examples
as to the many 'correct' stimuli. The F2 machine essentially
ignores such noise points. However, the improvements in
performance are not large, and on the evidence of the
present data, it seems safest to conclude that the outputs
are 'broadly similar'. The small difference must be viewed
in the light of the cost of the more complex machine. This

cost can be divided into three categories

1 Memory Size

The F2 machine uses eight times the amount of memory of
the F1 machine. Recall that the F1 machine uses 512x1-bit
cells and the F2 machine uses 512x8-bit cells. While it is
debatable whether all 256 (=298 ) levels are necessary, any
machine with even a few levels will require several times

the storage capability of the simpler F1 machine.

2 Processing Complexity

The simple F1 machine reads data derived from fhe EXP
directly into the memory matrix cells. These data are later
read out - without further processing - to generate OPP. The
F2 machine tests the data derived from EXP, and as a result
of this test either increments or decrements the contents
already contained within the cell. The data, when later read
out, has to be compared with a threshold value and the

result of this comparison is used to generate the output

value used to generate OPP.
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3 Processing Speed

As a result of the increased processing required by the
F2 machine, the time taken to process a picture will be

necessarily longer, both in training and testing.

In the 1light of these considerations, the overall
efficiency of the F2 machine compared with that of the
F1 machine is debatable. While some processing improvements
have been seen, these have been made at a cost of
considerable increase in the processing requirements in
terms of size, complexity and time. A compromise solution
may, however, be more efficient, wherein more than one
threshold is used simultaneously to give more than two
output 1levels. This will be attempted later in Section 5.3

Experiment 7.

3.9 Experiment 5 : Variable Output Threshold and

Grey Level Output

The OPPs 1-12 generated by the F2 machine 1in the
previous experiment were all generated using a constant
threshold in the testing phase. That is, the oontgnts of
each memory matrix cell addressed were compared with a fixed
value, the result of this comparison being used to determine
the polarity of the output pixel. This threshold was set to
the 1initial value stored in each cell to show a response to
as little training as possible.

Direct examination of the internal state of this
machine (after training as described previously)~reveals
that the spread of memory matrix cells extends over all

possible values (0-255). Thus, a single threshold value is
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not capable of extracting all the information from the

memory matrix. This distribution of cells over the possible
values before and after training is tabulated in Fig 3.11.
For each value, the number of cells containing that value is
recorded.

It follows from this spread, that those cells with
values far removed from the initial value (ie. values near
'0' or '255') have received a larger amount of training than
those close to the initial value ('127'). Consequently, the
features corresponding to these particular cells have been
seen many times in training. As a result, these cells are
likely to be reliably set, reflecting accurately the picture
processing task being taught to the machine. This measure of
'reliability' of any cell is related to the difference in
the cell value before and after training.

The data in Fig 3.11 can be expressed as a histogram to
clarify the reliability distribution. (See Fig 3.12.)

From this figure 1t can be seen that the majority of
cells 1lie close to the original initial value ('127') as
they have received few or no stimuli in training. They are
therefore 1likely to be unreliable indicators of the picture
processing algorithm taught to the machine. The }everse
applies for the two peaks at the extremeties of the range.
As a result they are 1likely to be reliable and the
corresponding features are also more likely to occur in
testing. This is a pointer to the setting of the threshold
value in the test period.

The criteria for setting the threshold value is to
obtain the maximum information from the most reliablé cells.

This 1is apparently not possible with a single threshold,

74



Before Training

Cell |No.of
Value|Cells
0
¢ 0
126
127 512
128
¢ 0
255
After Training
Cell |No.of Cell | No.of Cell |No.of Cell |No.of
Value|Cells Value| Cells Value|Cells Value|Cells
0 30 103 1 128 27 156 1
24 1 105 1 129 11 157 1
28 1 106 1 130 8 160 1
30 1 107 1 131 4 163 1
36 2 109 2 132 3 168 1
42 1 110 1 133 1 178 1
50 2 114 1 134 1 188 1
56 1 115 2 137 2 195 - 1
57 1 116 1 138 1 203 1
60 2 117 1 139 1 227 1
70 2 118 1 141 2 239 1
80 1 119 4 144 1 254 3
87 2 120 1 146 1 255 10
89 1 121 3 147 3
91 1 122 11 148 1 Any other Value
94 2 123 9 151 1 in Range 0-255
96 2 124 18 152 1 NOT listed
99 1 125 27 153 1 Above
101 2 126 15 154 1
102 1 127 | 198 155 1 X | 0 ’
Fig 3.11 Distribution of Memory Matrix Cell Values in

the F2 m/c before and

after Training in Experiment 4
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Least Keliable Data

160
150 .
140
130 .
120 ]
110
Increasing Increasing
100 Epliability Reliability
0" 90 |
Cells
80
70 |
60 .
50 .
ko .
30
20
10
0 . ! BN s s B

0 32 64 96 128 160 192 224 255
16 48 80 112 144 176 208 240

Fig 3.12 Reliability Distribution of Memory Matrix Cells

since there are two maxima of 'reliable' cells either side
of a maximum of ‘'unreliable' cells. Hence a variable
threshold was applied in the following experiment to
determine the effect on the output. This threshold was swept

across the entire range of cell values.

There are two conflicting considerations when

attempting to predict the result of sweeping through the
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cell wvalues. The first is that the major change in output

may be expected when the threshold traverses the central
maximum, This is due to the very large proportion of memory
matrix cells located in that area, that will change their
output as the threshold passes them.

However, on further consideration, a second point
emerges, that a large number of these cells are in general
unlikely to be accessed at all in testing. As they have not
moved far from their original value they were obviously not
accessed much in training - the corresponding features were
relatively uncommon in the training set. If the test set is
similar it will also contain few features that will access
these cells remaining near the initial value. As a result,
the movement of the threshold causing these cells to output
different pixels may not affect the final result greatly.
Most of the change in output could be expected at the
extremities of the cell value range (around '0' and '255"')
as these are common cells and are likely to be used more in
generating the OPP. Nonetheless, it 1is 1important to

determine whether there are any configurations that are

common, yet appear in the centre of the range, reflecting.

inconsistent training.

Experiment

An F2 machine was trained on 200 pairs of manually
thinned and cleaned 'C's and 'D's; as in Experiment 4. The
resultant memory matrix is that which has been examined
above. A single test pattern was used - a letter 'J' from
the same set of hand drawn characters. The tests were
repeated with this pattern several times; each time using a

different output threshold. The threshold was swept through
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the cell wvalues 1in steps of 32 (ie. 16,48,80,112,144,
176,208,240). The test IPP 1 together with the resultant set

of OPPs '16-240' are shown in Fig 3.13.

Results

Examination of these OPPs vreveals that there is a
gradual change 1in output as the threshold scans across the
memory matrix values. The largest change in the ratio of
cells outputting '0' and '1' pixels occurs as the threshold
moves between 112 and 144, the respective outputs being
OPPs '112,144" in Fig 3.13. However, these pattern outputs
not wvastly dissimilar. This would confirm the infrequent
occurrence of these cells' features in the test set. The
changes here are comparable with the changes in OPPs as the
threshold moves to the extremes at the cell values (OPPs '16
to 48'; and OPPs '208 to 240'). In all these cases there are
only a few pixels difference between each adjacent pair of
pictures.

Fig 3.14 presents the degree of change in the output
pictures and the number of memory matrix cells on either
side of the threshold as it moves. These quantities are
recorded for OPPs '16-240' taken in pairs, the difference in
adjacent pairs of pictures being measured in terms of the
hamming distance between them.

Examination of these data reveals the following facts
about an F2 machine : the degree. of change in output (as
exhibited by actual patterns wunder test) 1is 1in no way
related simply to the number of memory matrix cells on
either side of the output threshold. The large number of
memory matrix cells clustered near the initial value must,

for this data, all represent rarely or never found features.
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A0

QPP Pair 16, g, 80 112, 144, 176, 208,
(Threshold) 48 80 112 144 176 208 240
No.M.M.Cells
Moving Across 6 8 20 313 16 4 2
Threshold
Hamming
Distance 5 16 6 7 8 2 3
Between OPPs

Fig 3.14 Table of OPP Changes against M.M Cells

Crossing Threshold

The converse 1is also true the small number of cells with
values far removed from the initial value are likely to
predominate in the outputs, as they represent common

features. This indicates that a greater variation could be
expected by increasing the amount of training than by moving

the threshold.

Continuous (Grey Scale) Output

Examination of the OPPs '16-240' in Fig 3.13 will

reveal that this series of binary patterns, generated using

an 1ncreasing threshold, effectively constitutes a single

scale pattern.

grey The F2 machine can be used to generate

many-valued output pixels in testing, by removing the

threshold and comparator of Fig 3.7. In this mode, the

binary input pattern addresses cells in the memory matrix

which contain digitally continuous values, which are output

directly. Examples of such pseudo-grey-scale OPPs are

illustrated in Fig 3.15, together with the corresponding

(binary) IPPs displayed 1in the same format. (This format

depicts grey levels as '00' for white, 'FF' (hexadecimal)

for black, '7F' as the 1initial value, and intermediate



8 88888888888 38¢8 8

8 §

g 8882838888 8 3

8 8

8 888888828838 &

i 8 8

8 8§ 377188888 88¢88828 3

FF
FF

8

8§ 888888 82338

8 8 8

Binary IPPs
IPP 2
00 00 00 00 00 00 FF FF FF
00 00 00 00 00 00 FF FF FF
00 00 00 00 00 00 FF FF 0O
00 00 00 00 00 00 FF FF
00 00 00 00 00 00 FF FF 00
00 0G 00 00 00 00 FF FF 00
00 00 00 00 0Q Q0Q FF >0
00 00 00 00 00 00 FF FF 00
00 00 00 00 0Q 00 FF FF 00
00 00 00 00 00 FF FF FF 00
Q0 00 00 OC 0Q 00 FF FF 00
00 00 00 00 00 FF FF 00 00
FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF
00 00 00 00 00 00 00 00 00
IPP 3
FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF 00 00 FF
FF FF FF 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 FF
00 00 00 00 00 00 00 FF FF
00 00 00 00 QO FF FF FF FF
00 FF FF FF FF 00 00 00 00
FF FF FF FF 00 00 0Q 00 %0
FF FF 00 00 00 00 00 00 00
FF 00 00 00 00 00 00 00 00
FF FF FF FF FF FF FF FF FF
FF FF FF FF FF FF FF FF FF
00 00 00 00 00 00 00 00 00
IPP 4
QQ FF FF FF FF FF FF FF FF
00 FF FF FF FF FF FF FF FF
0Q FF FF FF 00 00 00 FF
00 00 00 0O 00 00 00 00 FF
00 00 00 Q00 00 00 00 00 FF
00 00 00 00 0O 00 00 FF FF
00 00 00 FF FF FF FF FF FF
00 00 00 00 00 00 0Q FF FF
00 00 00 00 00 00 00 0Q FF
00 00 00 0Q 00 00 00 00 00
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00
FF FF FF 0Q 00 00 00 FF FF
FFFFFFFF.fFFFF"F'FFF‘F

FF FF FF FF FF FF FF FF
00 00 00 00 00 00 00 00 00

( Hexadecimal Notation
( 00=White,

Fig 3.15
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Grey-Scale OPPs
OPP 2
0G 00 00 00 00 00 00 00 32 46 78 00 0Q
00 00 00 00 00 00 00 00 FE FF &9 00 00
0Q 00 00 00 00 00 00 00 FE A3 40 44 00
00 00 00 00 00 00 00 00 FE 97 79 38 00
00 00 00 00 00 0Q 00 00 FE FF 00 00 00
00 00 00 0Q 00 00 00 00 FE FF Q0 00 00
0Q 00 00 00 00 00 00 00 FE FF 00 00 0O
00 00 00 00 00 00 00 00 FE FF 00 00 00
00 00 00 00 00 0O 00 00 FE FF 00 00 00
00 00 00 00 0O 00 2A SE 82 FF 00 00 00
00 00 00 00 00 00 3B 4A 82 69 00 00 00
00 00 00 00 00 00 80 78 7E 00 00
00 32 46 46 46 46 B2 FF FF BC 46 46 446
00 32 EF 93 FE 9A EF FF FF 99 FF FF FF
00 Q0 24 37 00 00 24 50 LC &4E 460 9A 9A
00 00 00 39 00 00 00 00 47 00 Q0 00
QPP 3
00 00 00 44 44 46 46 86 80 IF 83 44 46
00 3C FF FF FF FE 9A IC 00 24 40 EF FF
72 7A 9A- 9A 1C 00 00 00 0Q 00 00 24 C3
00 00 00 00 00 00 00 00 0G 00 00 00 00
00 00 00 00 00 00 00 00 0Q 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 3C
00 00 00 00 00 00 0O 00 00 00 00 B2 FF
00 00 00 00 00 00 00 00 00 3C FF FE IC
00 00 00 00 0Q 00 7E JF JF 7A LC 00 00
00 00 00 00 44 86 7E 7B 00 00 00 00 00
00 32 B2 FF FE IC 00 00 00 00 00 00 00
00 FE FF CB 00 00 00 00 00 00 00 00 0O
SE 82 A3 /8 7E 00 00 00 00 0Q 00 00 00
00 FF FF BC 46 46 46 46 44 44 44 44 34
00 32 94 9A FA 7A FA 9A FA FA FA FA A
00 00 00 00 00 00 00 00 00 00 00 00 00
OPP 4
00 00 00 32 46 46 456 46 46 46 46 24 OO
00 0D 00 FE FF FF FF FE 9A EF FF FF A8
00 00 00 32 94 9A LC 00 00 63 FF FF FF
00 00 00 00 00 00 00 00 00 00 FE FF FF
0G0 00 00 00 .00 00 00 00 00 00 FE FF FF
00 00 00 00 00 00 00 00 3C FF FF FF
00 00 00 00 2A- 7C 80 B0 7F 82 FF FF FF
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00 00 00 00 00 00 00 00 00 00 SE FE FF
JC JF 83 44.24-00 00 00 00 00 B2 FF CB
00 24 C3 FF FF BC 46 44 B2 FF FF CB 00
00 00 00 &0 9A 9A A 9A- 9A- 9A 1C 00 0O
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FF=Black )
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levels as intermediate numerical values.) The inputs are the
same as those wused earlier in Experiment 4 (IPPs 5-7,
Fig 3.9) as was the training received.

If the two effective grey-levels used in the case of
the binary patterns are assumed tc lie at the extremities of
the grey-scale (pure black and pure white) then this
processing constitutes a form of low-pass spatial filtering.
As such, it may be of use in certain picture processing and
scene analysis applications (40). It is effectively the
inverse transformation of 'thresholding' in the normal sense
when applied directly to a grey-scale digitized pattern.

This production of thinned and <cleaned grey-scale
pictures, from a machine having been trained only on binary
inputs forms an interesting investigation. Similar
techniques wusing 'fuzzy logic' have been employed elsewhere

to handle grey scale pictures with binary processes (30).

3.10 Summary of Experiments 1 - 5

The preliminary experiments describea in this chapter
have shown an LPP machine to be a workable proposition.
While this has been distinctly encouraging, and a épur to
further investigation, the results have not always been
clear cut, and the rather simple experiments tried have not
yet revealed final answers as to how to set up LPP machines.
For this reason Chapter 4 analyses the underlying theory and
possibilities in some detail, and Chapters 5 and 6 describe
further, more rigorous experiments on LPP machines. These
later chapters also move towards real applicatibns by

2 .
employing pictures with rather more than 16 resolution. In
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addition,

attempted.

sequential as well as parallel processing will be
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CHAPTER 4

THE GENERAL LEARNING PICTURE PROCESSOR

4,17 An Introduction to the Development of a General

LPP Machine

The experimental work performed so far on the learning
picture processor has suggested some departures from the
original machine as conceived in Chapter 2. These changes
have been 1in response to the need for improvements in
performance, but have been arbitrary. It is possible to
create a more formalized and structured concept of a general
learning picture processor. This framework will also aid the
generation of new variants, as a large family of machines
can be proposed. Evidently, the resulting large numbers of
machines cannot all be analysed by experiment within the
confines of one thesis. However, predictions of performance
can be made, based on theoretical considerations and
extrapolations from the modest machines described in earlier
chapters. There are several levels of development in this

general machine. These include

1 Variations in the internal data processing of a single,

simple LPP machine

2 Different modes of operation of such variants in

terms of the handling of test picture data
3 The use of feedback around a single stage machine

ot The cascading of machines
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These may in principle all be combined to produce large
and complicated machines. Such machines would be
exceptionally complex to analyse, and as such may well
illustrate the limit of the trainable picture processor type
of machine. The following sections discuss these levels of

development in more detail.

4.2 Variations in the Internal Data Processing of the

LPP Machine

This section proposes a generalized system by which a
LPP machine may operate. Implied by such a generalized

system are variations in the means by which

1 useful information is extracted from the training

patterns;

2 this data is used to modify a memory matrix to reflect

the task to be learnt;

3 data in the memory matrix is used to generate

subsequent output pictures in testing.

Examples of Data Transformation through 'Function Modules'

At each internal stage of such a machine, there is a

transformation of data. Some examples would be

1 The extraction of a window of pixels according to the
input picture and the current values of the x and y

co-ordinates,
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2 The transformation of this window into an address of a

cell in the memory matrix.

From these, it <can be seen that the data processing

occurs as a series of transformations which can be
represented as a series of interconnected 'function
modules'. Each module takes data inputs and performs a

particular function upon them, thus generating output data.
In the case of the above two modules, their functions could

be represented as

1 W= f,(IPP , x , y )
2 A = fb( W)
where : IPP ‘represents the binary input picture,
X , ¥ the cartesian co-ordinates of the window,
W the window contents,
A the memory matrix address,

and foand fy the functions to be performed on the

arguments above.

It 1is a change in these functions (fgand fyabove) that
represents a design change in the machine in general terms,.
Fig 4.1a shows how such function modules will be represented

both algebraically (as above) and diagrammatically below.

Function Module Representation of the General LPP Machine

The whole internal operation of the machine can be
represented as a set of these function modules. Such a
machine is illustrated in Fig 4.2, nomenclature being as

defined in Fig 4.1b.
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(a)

Function Modules

Function expressed algebraically as

L)

where : is the function

X

I,to I are the independent input variables

and Z is the dependent output variable

Functions will be expressed diagramatically in Fig 4.2 as

(b)

Nomenclature of Variable Names to be used in Fig 4.2

IPP Complete Input Picture (to be processed)
EXP Complete Example Picture (used in Training)

OPP Complete Output Picture (generated in Testing)

X Horizontal ) Cartesian Co-ordinates of
y Vertical g Current Scan Position

W Window Contents Extracted from IPP

A Address of Memory Matrix Cell

MM Original Complete Memory Matrix

mm(A) Original Single Memory Matrix Cell addressed by A
mm'(A) Updated Single Memory Matrix Cell addressed by A
MM! Updated Complete Memory Matrix

PO Centre point pixel in Window defined by x , vy
P1-P8 Immediate eight-connected neighbours of PO

Fig 4.1 General Function Module Description
and Variable Nomenclature
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Algebraic Representation

= w

7
8

W

A

£,0 W)
mm(A) = £, 0 MM, A)

EXP/PO = £,( EXP , x , y

fl( IPP , x , y )

88

Input Window Extractor
Address Calculator
Cell Extractor

Example Window Extractor

mm'(A) = f5( EXP/PO0 , mm(A) ) Cell Modifier

MM' = fe( mm'(A) , MM
OPP/PO = f,( mm(A) )

OPP = fg( OPP/PO , x ,

)

y

Cell Replacer
Qutput Pixel Generator

) Output Picture Generator

Diagrammatic Representation

MM! <

Functions used
in Training
and Testing

\5 \
m

EXP/PO

—_— —— — e e — — e —

f5 mm' (A4) :Ej

Functions used
only in Training

l r;1jfj OopPP
OPP/PO

A

x,y Co-ord
Generator

Functions used
only in Testing

Fig 4.2 Internal Function Modules in a General LPP Machine



When the functions themselves are specified, the
machine 1is transformed from a general one to a particular
variant. To illustrate this, the definition of the

F1 machine of Chapter 2 will be considered.

Specific Definitions of General Functions for F1 Machine

For each of the weight functions 1in Fig 4.2, there
follows a general explanation and a specific definition

related to the F1 machine described earlier

1 Input Window Extractor Ww=1¢(IPP , x,vy)

This 1is effectively the scanning window extractor
(WE I) of Fig 2.8 acting on the input picture. This device
takes a pair of co-ordinates x,y in the range 0-15 to define
a centre point and its adjacent eight-connected neigbours in
the input picture. These nine pixels (P0-P8) form the window

contents W.

2  Address Calculator A = f,( W)

This function re-arranges the window contents W to form

the 9-bit binary address - in this case the exact format of

the re-arrangement is arbitrary, but follows the pattern

below
Window Address
P2 P3| P4
P1|PO| P5 f2 =| P8(P7 P6 P5 P4|P3 P2 P1 PO
P8|PT|P6

(Both 9-bit binary variables)

This function (in this example) merely re-formats the data.
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3 Cell Extractor mm(A) = f,( MM , A )

This function extracts the single memory matrix cell
pointed to by the address generated above. This is simply
the accessing of a particular bit of storage in a table of

512 bits.

y Example Window Extractor EXP/P0 = £,( EXP , x , ¥y )

This is the scanning window extractor (WE II) of
Fig 2.8. This extracts the centre point PO from the example
picture according to the current value of the x and y
co~-ordinate generator. This pixel becomes EXP/PO. (This

function only operates in training.)

5 Cell Modifier mm'(A) = f5( EXP/PO , mm(A) )

This is the modification of the addressed cell
according to the value of the centre point extracted from
EXP/PO. This produces the new cell value, which, in this
simple example 1is set equal to EXP/PO0. (This function is

also only active during training.)

6 Cell Replacer MM' = fg( mm'(A) , MM )

This 1is the updating of the memory matrix as a whole,
after each training stimulus has been received into the
particular cell. Here, this is simply the replacing of the
cell (with its modified contents) 1into the table in its
correct position - the writing back into the RAM. (Training

only.)

7 Output Pixel Generator OPP/PO = f7( mm(A) )

This 1s the generating of a new output pixel from the
cell contents, for insertion into the OPP field. 1In the

simple example taken this OPP/PO is set equal to the value



of the addressed cell. (This operates only in the testing

phase.)

8 Output Picture Generator OPP = fg( OPP/PO , x , y )
This represents the picture generator (PG III) of
Fig 2.8 and is the generation of OPP, pixel by pixel, as

each value is computed by the LPP machine. (Testing only.)

This completes a description of the internal functions
of the machine when applied to a particular variant - the
F1 machine. To facilitate the description of how other
variants are defined by changes in these eight functions,
they are tabulated for two machines (F1 and F2) in Fig 4.3
below. (It will be noticed that they differ only in
functions fg and fy).

If Fig 4.3 is examined in conjunction with Fig 4.2 it
will be seen that these functions define the two machines

whose internal formats were illustrated in Fig 3.7.

Further Possibilities for Variations

A set of more complex machines may be devised by a
systematic examination of the above functions and
speculation of the range of possibilities available'at each
stage. Even the arrangement between these functions shown in
Fig 4.2 can be altered to give yet more variations.

For example, a system could be envisaged where the
scanning window does not move over the input picture in a
regular manner. The window could follow some feature of the
pattern 1itself : eg. an edge that has been defined as the
'driving' data, directing the generation of the x and y

co-ordinates of the window. The values x and y would then
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General Function

Particular Functions

F1 machine F2 machine

W=f, (IPP,x,y)

Input Window
Extractor

W becomes equal to the 9 pixel
values at points in IPP defined
by x+1,y+1, ie. centre point and
its eight immediate neigbours

]

A:fz(W)

Address Calculator

I
A formed by stacking two dimensional
binary window into a one dimensional
binary address

mm(A)=f4(MM,A)

Cell Extractor

I
mm(A) becomes equal to cell
in MM with address A

EXP/PO=f, (EXP,x,y)

Example Window

EXP/PO0 becomes equal to
pixel xalue at point in
EXP defined by x,y

Extractor
mm'(A)= mm'(A)=EXP/PO if EXP/P0O=1,
fc (EXP/PO,mm(A)) mm' (A)=mm(A)+1;
if EXP/P0=0,

Cell Modifier

mm'(A)=mm(A4)-1

MM'=fe (mm' (A),MM)

Cell Replacer

new cell contents written into MM
on top of old contents, remainder
of MM unaltered

OPP/PO=f7(mm(A))

Qutput Pixel
Generator

if mm(A)>Threshold,
OPP/P0=1;
if mm(A){Threshold,
OPP/P0=0

OPP/PO=mm(A)

OPP=fg(OPP/P0O,x,y)

Output Picture
Generator

OPP/P0O inserted into OPP field at
position defined by x,y, remainder
of pattern unaltered.

I

Fig 4.3 Functions (f,- fg) defined for F1 and F2 Machines



themselves be a function of IPP, rather than cycling through

all possible values autonomously as at present,

This could be formalized as

X fq( IPP ) x Co-ordinate Generator

fio( IPP ) y Co-ordinate Generator

"

y

This would obviously affect all the other functions
defined so far, as x and y appear in these functions either
implicitly as independent variables, or explicitly by
substitution.

For a coherent operation of the scanning window
extractor, the above functions fg and fy, could be formulated
in a machine programming style as suggested below. The
function fg might adjust the value of x such that the window
always produced a 'crossing number' of two. A similar, and
interacting function f,; might generate y such that the
window scanned along the edges of objects in the field of
view.

This 1is a somewhat simplified suggestion of a rather
more complex development of the internal workings of the LPP
machine. It serves to illustrate that although the above
formulation of LPP variants 1s comprehensive, it'is not
exhaustive. It provides one example of a framework upon

which a system of machine variants can be built.

Down-loading the Memory Matrix

An important variation that can be expressed in terms
of these functions is the down-loading of the memory matrix
contents directly from a host machine. The LPP machine 1is
trained by direct injection of data into all of the memory

matrix cells, rather than by the geﬁeration of these cells
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through training by example.

The functions above used in training (f4,f5 and fs) are
no longer implemented, and the variable MM - the contents of
the complete memory matrix - is introduced from an external
source into the system as a set of constants. For the value
of MM to be meaningful, it is necessary to be aware of how
the functions used in testing (f7 and f8) will operate. An
example of this use of a down-loaded memory matrix is shown

later in Experiment 12.

4.3 The Handling of Picture Data in the Testing Phase

All the machines described so far have been parallel
(as described earlier in Section 1.3.3). The possibility of
testing 'sequentially' also exists: the two methods of

generating the OPP are illustrated in Fig 4.4.

Sequential Parallel
IPP+0OPP share common IPP+0OPP have separate
picture space picture spaces

0P OPP IPP OPP
i gradually remains gradually
R overwrites 0 unaltered builds up
IPP in own
\ space
LPP , LPP
T m/c ¢ T m/c
IPP OPP IPP OPP
window pixel window pixel

Both machines shown in the testing phase.

Fig 4.4 The Operation of a Picture Processor in
Sequential and Parallel Modes
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The Effect of the Different Modes

The difference in effect of these two modes of
operation can vary depending on the actual picture
processing operation to be carried out. For example, if a
simple operation such as inversion is attempted, both modes
are likely to generate similar results. However, if a
process such as thinning (which is intended to preserve
connectedness) is attempted with the same training
algorithm, the results are 1likely to be significantly
different. The difference occurs because pixels are
processed individually, and would not be removed if doing so
would break the connnectedness of a limb. 1In the parallel
mode, as all pixels are processed simultaneously and
independently, connectedness might well be broken by removal
of pixels from a limb of two units width. As a 'limb-pixel’
is processed, it 1s assumed to still have a neighbouring
line of pixels and hence it is correctly removed, but this
being true for those neigbouring pixels as well, the entire
limb may be removed. Hence the result may be quite different
for sequential and parallel modes of operation. The two
modes will be compared later on the LPP machine in

Experiment 13.

4,4 Feedback around a Single Machine

The concept of feedback of pictures round these
machines may be usefully employed. The 'single pass mode' in
both training and testing has been implied so far, as
illustrated earlier in Fig 2.10. Here, each picturé passes

through the machine only once. The use of feedback, where
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pictures are repeatedly passed through the machine, may be
employed in the testing phase.

Assuming a LPP machine is already trained then the test
operation, which results in the generation of one output
picture from one input picture, lends itself well to this
mode of operation. The diameter-limited restriction (see the
discussion in Section 3.5) can be lifted also, or at least
partially relaxed, dependent on the number of feedback
passes to be made. That is, the machine can react to and
process features that are spread over a distance greater
than that seen by a single window at once. For example, if
the machine 1is attempting to find the centres of objects
larger than the window size, this could not be effected by a
single pass through the machine. However, multiple passes
could progressively strip the outer layers from the objects
until the machine is finally left with the centre points as
required.

The operation of the feedback mode 1in testing is
illustrated in Fig 4.5. The number of passes made through
the machine may clearly vary from one upwards without limit.

There are several criteria by which it could be. deemed
that sufficient passes have been made. A fixed number of
passes could be made (known by previous experience to be
sufficient) or the pattern could be passed continually
through the machine wuntil no fﬁrther changes occur in the
resultant output. Both these approaches have been employed

experimentally (see Chapter 6).
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m/c \‘ Feedback)

97
(a) Single Pass
LPP
(No

(b) - Double
LPP LPP Pass
m

m/c /c

OPP

(c)

Multiple
LPP Passes

m/c

Fig 4.5 Feedback in Testing

4.5 Cascaded Machines

As with any machine that produces output data in the
same format as the input data, a set of LPP machines can be
cascaded, That is, the output of one machine can be fed into
the 1input of the next, the complete set of machines now
being regarded as the whole picture processor. This is
illustrated in Fig 4.6b.

Again, as with the case of feedback, this mode of
operation may only wusefully be employed 1in the testing
phase, where the machine stages each produce an output. In
training, as each stage requires two inputs and produces no
output there is no obvicus method of cascading the machines.
Such cascaded stages must therefore be trained independently

from each other, and can only be cascaded to commence



(a) Testing - Single Stage Machine

LPP

m/c

98

(b) Testing - Cascaded Machines

IPP2, IPP3,
LPP OPP1 LPP OPP2 "/ -~ LPP
1 2 n
OPP
n
(¢) Training - Cascaded Machines
LPP LPP LPP
[ 2 |~ - n
1st Stage 2nd Stage nth Stage
Training Training Training

Links Temporarily Broken

Each Stage (1,2 and n shown) represents a particular section

of the Transformation from IPP 1 to OPP n

Fig 4.6

Testing and Training of Cascaded Machines



testing. Consequently, the training of each stage must

represent the particular (and probably different) process
required at each stage of the transformation. This

requirement is illustrated in Fig 4.6c.

4.6 Compounded Variants : The Problems of Complex

LPP Machines

It has been shown in the above sections how variations
can be introduced and to some extent formalized in the LPP
machines. These variations have been broadly divided into

four major classes

1 internal data processing,
2 parallel or sequential mode of operation on pictures,
3 the use of feedback around a machine, and

y the cascading of machines.

These last two classes together introduce the idea of
compounded machines, where feedback need not only occur
around single stages but possibly around more than one
stage.

In principle, feedback of data can occur any ndmber of
times around any number of stages, and this represents the
compounded machine both cascaded and with feedback. If the
individual stages are capable -of assuming any of the
internal or mode variations described earlier, then this
represents a more general machine.

However, this concept of the large and general machine
is of questionable practical use. A machine that exploited

all of these options simultaneously might be impossibly



complex to analyse by experiment. Thus it appears reasonable
to let such complexities evolve as necessity dictates.

In the experiments that follow, the machines used are
thus generally simple variants, to enable meaningful
comparisons of performances. At this early stage in the
development of trainable picture processing systems, these
experiments are aimed at producing results that can be

extrapolated to more complex systems later.
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CHAPTER 5

EXPERIMENTS WITH MORE ADVANCED LPP MACHINES

5.1 An Introduction to Further Experimental Work

As a result of the preliminary experiments in Chapter 3
some practical modifications have been suggested for the
basic LPP machine. A general set of theoretical
modifications has been described in the previous chapter,
and some more experimental variations will be attempted
here.

It will be noted that this is not primarily an
investigation of the picture processing tasks themselves,
rather an investigation into how the LPP machine performs
such tasks, and the effect of design and operational changes
on this performance. Hence a fixed range of picture
processing tasks will often be retained over several of the
experiments to permit comparative judgements of the results.

In performing these experiments it will be appreciated
that there 1is no easy way of accurately or rigorously
measuring the performance. Consequently, there will be a
heavy reliance on visual examination of the picture outputs

for assessment of the results.

5.2 Experiment 6 : A Range of Picture Processing Tasks

In the experiments performed so far, only one picture
processing task has been attempted. This was the manual

'tidying up' of alphabetic characters involving cleaning and
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thinning. To exercise the system on other tasks, an LPP
machine was trained to perform four different tasks. These
were : cleaning, inverting, thinning and thickening of

characters.

The machines used so far have operated on 162 patterns
as these were adequate to show wup the points raised
regarding the LPP system. However, in the following
experiments the picture resolution will be doubled - 32
samples will be taken in each direction. The 162 machine was
defined as format 'F1'; the 322 machine is referred to as
the 'F3' machine. It is otherwise identical internally, with

two-levelled memory matrix cells - initially set to '0'.

Train/Test Cycle

One IPP+EXP pair of patterns was found here sufficient
to train the machine, and one test IPP pattern sufficient to
establish the performance in general terms. This is because
each 322 pattern effectively generates 1024 training
patterns when wused with a scanning window device and
consequently trains the machine to a considerable extent.

For each of the four tasks to be learnt : clean,
invert, thin, thicken; this IPP+EXP pair is shown at the top
of a block of 4 patterns in Figs 5.1 to 5.4. Below these two
patterns are shown the test IPP and the resultant OPP

generated by the machine working in the parallel mode.

Results

The OPPs in Figs 5.1 to 5.4 illustrate that this
machine can learn different tasks. While there 1is an
unavoidable requirement of greater frame storage, the actual

Learning Picture Processor is internally the same size for
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both the 162 and 322 formats. This is an important point -
since both machines use a scanning window, which effectively
serializes the input picture; a machine of fixed size could
process a picture of any size given sufficient time.

In the experiments that follow, the 322 picture is
taken as the current standard for the LPP machine, which has
here been shown capable of 1learning different picture

processing tasks as a result of re-training alone.

5.3 Experiment 7 : Tri-state/Bi-state Memory Matrix Cells

It has been noted 1in Experiment 5 that the use of
multi-valued memory matrix cells (the F2 machine) may lead
to possible improvements in performance, by extracting more
of the useful information from the memory matrix. However,
with the F2 machine suggested earlier, the complex internal
processing 1is an expensive price to pay for the apparently
small gains in performance.

A compromise should be possible with the use of a
smaller range of memory matrix cell values. Ideally, this
could also simplify the processing requirement and hence
further improve the machine's efficiency. .

It 1is suggested here that just three cell values would
retain in the memory matrix most of the useful information
available in the training set. Referring to Fig 3.11 it can
be seen that the largest single group of memory matrix cells
remains at the initialisation value - even after the machine
has received considerable training. The only wuseful
information contained within these cells 1is that the

features they represent have not been seen in training. If a
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test pattern selects one of these untrained cells, by

presenting a feature not seen before, 1t would be
advantageous 1if the resultant output pixel could indicate
this lack of training. The resultant FU4 machine would
operate in the following manner.

Before training, all cells are preset to the
initialisation value, represented as '?'., During training,
the stimuli received from the training set cause the cells
addressed to be either set to '1' or reset to '0'. 1In
testing, those cells that have not been trained at all (and
hence still contain '?') can now be distinguished from those
that have been trained and contain either '0' or '1', An
appropriate output <can then be made into each OPP pixel to
reflect this. Repeated training in the same cell, but in the
opposite sense will immediately overwrite the o0l1ld cell
contents with the new value, without re-entering the '7?!
state.

The operation of the FU4 machine 1is represented in
Fig 5.5 1in terms of the response of the memory matrix to
training stimuli. The F4 machine's response 1s shown
compared to that of the F3 machine as used earlier. (The F3
response 1s shown for the two possible 1initialisation
values.)

It is clear from Fig 5.5 that the F4 (Tri-state) memory
matrix will retain all the information regarding the
training stimuli that 1is found 1in both <cases of the

F3 machine's initialisation.

Experiment
This situation is illustrated by the test run shown in

Fig 5.6 comparing these machines. This test was run in the
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Fig 5.5 Effect of Training Stimuli on Memory Matrices

parallel mode, and the three pixel values are depicted as

X if cell value = 1
? if cell value = ?
. if cell value = 0

(The training was shown in the top row of Fig 5.1).

Results
The OPP generated by the F4 machine in the centre row
can be seen to differentiate between the regions of the test

patterns over which it can legitimately generalize. This
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gives an 1indication of how suitable and complete was the

training received earlier.

Discussion

The F4 machine requires no more internal processing
than the F3 machine. The only changes involve the storage
and handling of potentially three-valued as opposed to
two-valued variables. This involves a slight increase in

storage by a factor (log23/log22).

Testing on Four Tasks

A more complete test of the performance of the
F4 machine was run. The range of picture processing tasks
(clean, invert, thin, thicken) attempted in Experiment 6
with an F3 machine was repeated with the new variant.

The training received in both cases was identical, and
corresponds to the top rows of IPP+EXP patterns in
Figs 5.1 to 5.4. The test IPPs and two OPPs (one from each
machine) are shown for each of the four tasks in Figs 5.7
and 5.8.

The F4 machine can be seen to generate '?' pixels in
regions where the training has been insufficient to allow
the machine to generalize. Since neither machine is éble to
generate preliable information 1in these areas, more useful
data ié conveyed to the OPP field if this distinction
between 'reliable' and ‘'unreliable' pixels 1s displayed.
Thus, in the experiments that follow this tri-state memory
matrix will be used predominantly as the new standard

machine layout.
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5.4 The Concept of a 'Trained Percentage'

The fact that a FU4 machine uses tri-state memory matfix
cells can be wused to generate a measure of the amount of
training received by the machine. This is primarily because
cells that are unaffected by training stimuli are now
distiguishable from those that have been set or cleared by
such stimuli. Consequently, the number of cells remaining in
the 1initial ('?') state after training can be compared with
the number of cells that have been altered (to contain '0!

or '1'). This ratio can be expressed as

( number of trained cells ) Percentage of
x 100 % =

( total number of cells ) Trained Cells

and will be referred to as the 'trained percentage'. 1In a

system of tri-state cells, it can be seen equivalent to :

( number of cells = 0 or 1 )

X 100%
( total number of cells )

or

( total number of cells ) - ( number of cells = ? )
x 100%

( total number of cells )

The F3 (bi-state) machine cannot be used to calculate
simply this trained percentage, but the F4 machine can give
it directly. Fig 5.9 shows these measurements being taken

from these machines (F3 in two cases, and F4). The data used
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% Cells % Cells % Cells
Before Training set to 0 set to ? set to 1
F3 Machine 1Init=1 0 - 100
F4 Machine Init=? 0 100 0
F3 Machine 1Init=0 100 - 0
After Training :
F3 Machine Init=1 21.9 - 78 .1
F4 Machine 1Init=? 21.9 6U4.4 13.7
F3 Machine 1Init=0 86.3 - 13.7
Key to Histograms s
F3 Machine Fl4 Machine F3 Machine
Init=1 Init=? Init=0
Before
- 5 2
Training : %ﬂ
1 B
Cells [
in e e
M.M. SRy
i T
s 5
After
0 21.9%
Training :
(Region 'R'- ? : 3
see text) = =
1 b 13.7% T
SRR S

Fig 5.9

Percentage Totals of Memory Matrix Cells



in this figure were obtained by examination of the memory

matrices after training in the first part of Experiment 7

(the pattern results having been shown in Fig 5.6).

Analysis

From Fig 5.9 it <can be seen that the operation
represented in Fig 5.5 1is occurring - where there 1is a
central band of residual cells in the machines which remain
in the arbitrary initialisation state. (These are marked as
'Region R' in Fig 5.9,) If this state is distinguishable
from the '0' and '1' states then the number of cells in this
state can be measured directly. Thus the trained percentage
can be most easily found from the F4 machine and is equal
to

( 100 - 64.4 ) % 35.6 %

This means that 35.6% of the cells were affected by the
training set, which in this case was the IPP+EXP pair shown
in the top row of Fig 5.1.

Prior to the wuse of this trained percentage value
('TP'), the only meaningful measure of the performance was a
subjective evaluation of the resultant test OPPs. Now'a more
exact measure has been developed, although it must be noted
that it only refers directly to the training quantity and
only indirectly to the testing performance (ie. it reflects
those cells whose value should have become either '0' or
'1', but gives no indication which of these values is the
more appropriate).

It should also be noted that this TP value can be a
misleading figure of merit as it has a limiting value of

100%, and ultimately cannot be proportional to any
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performance figure. A LPP machine with a TP of 100% ('fully

trained') may still not give optimal picture processing
performance. This only means that every cell has been
accessed by the training set, but not that this training was
necessarily correct. It will be shown later in Experiment 11
that while TP increases with a larger training set, again it
is not a proportional increase. There is an asymptotic limit
dependant on the quality of the training received.

Although these three factors : the quantity of
training, TP value and the test performance are all related,
and 1increase together, their relationship is neither linear
nor readily quantifiable. However, relative changes in TP
can can give <clear indications of the effect of varying
parameters in the LPP machine's operation. In this capacity,

the TP value will be found a useful measure.

TP and the Memory Matrix Size

It has been noted that TP depends on the size of the
memory matrix. This relationship may be more fully expanded.
For an 1input window of W bits, there are 2Wicells in the
memory matrix (assuming the cell addresses are formed by the
simple stacking of binary pixels). When the machine is
trained on a pattern of n bits, n accesses are made to
the memory matrix. These will access any number (up to n )
of different cells. The exact number depends on the
variation in features in the training pattern. On a randon

data model of the input pattern, we have:

Number of training examples per pattern { n

Number of memory matrix locations =2 1
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thus: Addition to TP value per pattern £ n.100%

for 'N' pictures in a training set:
Total TP value after receiving N patterns (

N.n.100% Total training received

2Wi Memory Matrix Size

(The inequality simply illustrates that pictures
generally contain a 1limited and repeated subset of all
possible o features.)

The TP value will remain constant for a variation in

N, norw if the expression
Wi
N.n / 2

remains constant. As an example, four extra binary pixels
could be added to the w; bit feature window. This would
require a training picture with sixteen times the number of
pixels, or alternatively sixteen times the number of
training pictures to reach the same TP value.

While this analysis contains gross assumptions
regarding the lack of redundancy in such training patterns,
it illustrates the problems that would be encountered if
very 1large windows were used. Enormous quantities of
training would be required to maintain a significant TP
value in the bigger memory matrix. The fact that the memory
matrix grows exponentially with'the window size results in
two 1limiting factors on this arrangement of a LPP machine

the storage needed and the training requireménts.
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The Use of TP in Analysing Experimental Results

In this subsection, an analysis is made of how the TP
varies with the picture processing task being learnt. The
TPs for the memory matrices (trained to perform four
separate tasks) in the latter half of Experiment 7 are given
in Fig 5.10. Also shown are the distributions of cells set

to the three possible states.

From these data, it can be seen that the TP value for
the tri-state machine (F4) is more or less task
independent - thin and thicken tasks have similar TP but
widely differing numbers of cells set to alternately '0' or
L L This means that the F4 machine is not muddled by
pictures that are mostly '0O's or mostly '1's, and TP can be
a valid measure of training.

However, the exact value of TP in this machine depends
only on the number of different 3x3 bit window features seen
in the training IPP. In the case of the tasks invert and
thin, the training IPP was the same. (See Figs 5.2 and 5.3 -
the 1left patterns in the top rows are identical : a solid,
thick 1letter A.) Consequently, these patterns accessed
exactly the same memory matrix éells in both cases, even
though the different EXPs then caused different data to be
loaded into these cells. As a result, the TPs for these two
tasks are identical, even though the number of cells equal
to '0' and '1' differ, reflecting the different training.
This highlights that TP is not, therefore, an ideal measure

in all respects.
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No. of No. of No. of No. of
TASK Cells=0 Cells="? Cells=1 Trained
Cells
Clean 112 330 70 182
(21.9%) (64.4%) (13.7%) (35.6%)
Invert 32 450 30 62
(6.2%) (87.9%) (5.9%) (12.1%)
Thin 61 450 1 62
(11.9%) (87.9%) (0.2%) (12.1%)
Thicken 1 436 75 76
(0.2%) (85.2%) (14.6%) (14.8%)
Histogram of Above Data : (Key as in Fig 5.9)
Clean Invert Thin Thicken

F4 Machines

Fig 5.10 Distribution of Exp 7

Memory Matrix Contents
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5.5 Experiment 8 : Augmenting Training by Window Symmetry

Operations

It has been noted how the effectiveness of the training
set can be measured by examining the TP value after
training. In an effort to increase this TP value it was
recognised that many of these feature cells correspond to
effectively identical features.

For example, many tasks show no dependence on the
feature direction in the pattern field. This results in
independence from rotation and reflection of the input
window 1in isotropic picture processing. The features shown

in Fig 5.11 should all generate identical OPP pixels.

e« « X X . . X . X . e e
o e e o e . X .+ . X . .
. X X X X . o e e X . X
X X . . X X « e . X . X
o« e e . e . « X . « X
X .+ . . +« X X . X « o+ e

Fig 5.11 Example Features requiring the same OPP Pixel
under any Combination of Rotation and Reflection

This indicates that more useful information could be
extracted from the +training set, if this principle of
rotation and reflection of the feature window is utilised. A
reduction in the memory matrix size would be an altérnative

as a number of cells are equivalent and hence redundant.



An  'F5' machine was devised to take advantage of such
rotation and reflection symmetries. This is similar to the
earlier FU4 version, changed only in the function 'f,' which
generates the address from the window contents (see
Fig 4.2). Each window extracted will be used to generate up
to eight addresses and these will all be used to train the
memory matrix repeatedly. These eight addresses will be
generated by the rotation and reflection of the window in

accordance with the layout shown in Fig 5.12.

P2 P3 P4 P8 P1::P2 P6 P7 P8 P4 P5 P6
P1::P0 PS5 PT PO P3 P5 PO::P1 P3 PO PT
P8 P7 P6 P6 P5 PY Py P3P P2::P1 P8
P8 P7 P6 P2::P1 P8 P4 P3 P2 P6 P5 P4
P1::P0 P5 P3 PO P P5  PO::P1 P7 PO P3
P> P3Pl P4 P5 P6 P6 P7 P8 P8 P1::p2

Fig 5.12 Eight Possible Rotations and Reflections
Of a 3x3 Pixel Window

The memory matrix cells corresponding to these eight
features will all be trained by the centre point value
derived from the EXP pattern. Some of these permutations
will generate identical addresses, dependent on the symmetry
of the feature involved. (Some cells may be trained more
than once with the same data, but the above method is used
as it saves processing and rationalises the operation for
any input window, whatever its symmetry. In any case, this

cannot give misleading results, as once a cell is set,
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setting it again has no additional effect with this machine.

Another 1important point is that the overhead of checking to
reduce the effort of such repeated training, might well
itself consume more effort than it saves.)

The retention of all 512 cells also simplifies the test
procedure, which is carried out exactly as in the
F4 machine., The test IPP windows address the relevant cells
(which may now have been trained by equivalent, rather than
identical features) and the contents are output as the new

OPP pixels.

Experiment

The same four tasks used for training the FU machine in
the previous experiment were used again here for comparison.
(This training data was shown at the top of Figs 5.1 to
5.4). The test IPPs and OPPs from both the F4 and
F5 machines are compared in Figs 5.13 and 5.14. The TP

values are tabulated in Fig 5.15.

Discussion

Examination of the data in Fig 5.15 reveals the
expected increase in TP as a result of rotating and
reflecting the input window from the training pattern. This
shows in testing as an improvement in the OPPs from the
F5 machine which have generally fewer '?' pixels, indicating
improved generalisation ability. fhis is most notable in the
case of the cleaning task, where there is a large reduction
in the undefined pixels - the TP value changes from 35.6% to
65.8% .

Also shown in Fig 5.15 are the average TPs for the two
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F4 m/c NO (r+r) F5 m/c with (r+r)
TASK Cells|Cells|Cells| T P |Cells|Cells|Cells| T P
% = 0% = ?2[% = 11(0+1)|% = 0{% = ?2|% = 1|(0+1)
Clean 21.9 |64.4 [13.7 [|35.6 |35.7 |[34.2 |30.1 |65.8
Invert 6.2 {87.9 5.9 |12.1 7.2 |84.0 8.8 |16.0
Thin 11.9 |87.9 0.2 (12.1 15.8 {84.0 0.2 ]16.0
Thicken 0.2 [85.2 |14.6 |14.8 0.2 |70.9 |28.9 |29.1

Average TP Average TP
= 18.6 = |31.7
F4 m/c F5 m/c

Histograms of Above Data

Clean

Invert

F4 F5
m/c m/c
Fig 5.15

F4U F5
m/c m/c

Thin

(Key as in Fig 5.9)

F4 F5
m/c m/c

Thicken

F4 F5
m/c m/c

Comparison of F4 and F5 Machines'
With/Without (r+r)

Memory Matrix Contents

126



cases of machines - Wwith and without rotation and
reflection. These are respectively 31.7% and 18.6% and
represent a 1.7 fold increase in TP as a result of using
this technique.

There 1s an 1important value that can be derived from
the theory to predict this effective increase in training
quantitively. It refers to the change in number of different
possible 3x3 window features with and without rotation and
reflection. Consequently, this factor of 1.7 will be
compared later (Section 5.7) with this maximum possible

theoretical increase (viz. 512/102).

5.6 Experiment 9 : The Effect of Scan Direction on an

Anisotropic Picture Processing Task

The above use of symmetry, which extracts more
information from the training set, relies on an isotropic
picture processing task for coherent results. All four tasks
used above were of this type and exhibited an increase in TP
on the adoption of window rotations and reflections.
However, the wuse of an anisotropic task (such as 'shift
laterally') illustrates how the machine's output depends on

the following

1 the relationship between the direction of movement of
the scanning window in training and the direction

defined by the anisotropic task (eg. shift direction),

2 the use or not of rotation and reflection of the input
window giving respectively incoherent or coherent

results.
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The combined investigation of these two effects gives

four combinations of outputs to be examined experimentally.

These are

1 Scan in a given direction - use of (r+r)
(eg. against the direction of shift) (F5 machine)
2 Scan in a given direction - NO use of (r+r)

(F4 machine)

3 Scan in opposite direction - use of (r+r)
(with the shift direction) (F5 machine)
y Scan in opposite direction - NO use of (r+r)

(F4 machine)

These four cases will be attempted below.

To facilitate execution of this experiment an
alternative, but equivalent, method of effectively reversing
the direction of scan will be used. Rather than physically
reversing the scan direction - which has so far been
arbitrarily set as left to right, top to bottom - the
direction of the shift will be reversed._ That is, cases 3
and 4 above will be run with a shift task in the opposite
direction (viz. towards bottom right) to that used in cases
1 and 2 (towards top left). This method of effeétively
reversing the direction of scan when using an anisotropic
picture processing task 1s used because it is simple to
implement - requiring only the interchange of the IPP and

EXP pair during training.

Experiment
The four cases specified above were run, using training

and test characters from the same stock of hand-drawn,
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binary 322 patterns used in the previous experiment. These

are illustrated in Figs 5.16 and 5.17.

Results
The resultant OPPs generated in these four cases can
all be seen to be quite different and will be briefly

described here.

Case 1 - Scan in opposite direction to shift, F5 machine

This results 1in very few pixels left in OPP 1, only a
few isolated points set to '1' or '?'. The object is

essentially removed entirely from the field.

Case 2 - Scan in opposite direction to shift, F4 machine

The OPP 2 generated is a shifted version (towards top
left) of the test IPP as required. However, some breaks in

the limbs can be seen at junctions.

Case 3 - Scan in same direction as shift, F5 machine

This results 1in a generally unshifted and 'ragged'
OPP 3 with many holes and spurs over the entire pattern in

all directions.

Case 4 - Scan in same direction as shift, F4 machine .

The OPP 4 1is a correctly shifted version of IPP,

towards the bottom right.

Discussion

The training of a FU4 machine on an anisotropic task
such as shift is relatively insensitive to ﬁhe direction of
shift compared to that of scan. That is, cases 2 and 4 above
performed coherently as trained and shifted the test IPP in

the required directions.
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However, in <cases 1 and 3 - the F5 machine - the
attempt at utilizing rotation and reflection has resulted in
widely differing results dependent on the shift direction.
This behaviour can be explained by the following
considerations,

In the <case of the shift direction being in the
opposite direction to the scan direction (Case 1), the
effect of the training set on the memory matrix must be
examined. It must be remembered that this is a temporal
process as patterns are scanned sequentially. The memory
matrix 1is gradually built up by successive applications of
the 1input and example window extractors (f1 and f‘4 of
Fig 4.2) to the training pair. Consequently, the stimuli
received towards the end of the scan will have the more
recent effect than those at the beginning. Normally this is
unimportant as in the case of isotropic tasks, the training
would be consistent - wherever it originated in the training
pair, and hence - whenever it was received in the scan
period. However, in the case of an anisotropic task ('shift
top left') the stimuli from the top of the picture
(beginning of scan) is different from that at the bottom of
the picture (end of scan). The stimuli could be forﬁalized

in general terms as follows

(a) stimuli from the top of the picture cause the
machine to generate '1' pixels,
(b) stimuli from the bottom of the picture cause the

machine to generate '0' pixels.

The rotation and reflection of the input window removes

the possiblity of dependence on orientation of the features



and hence no dependence on left, right, upper or lower edges

can remain. The stimuli are reduced simply to generate '0!
or '1' pixels from symmetrical features. That 1is, the
training 1is inconsistent and generates a state of dynamic
equilibrium in the memory matrix, where the contents at any
point are indeterminate.

This 1is illustrated in Fig 5.18a where the training
pair IPP+EXP are shown with sample windows extracted towards
both the beginning and end of the scan period. The stimuli
can be seen to vary from 'generate 1 pixels' to 'generate 0
pixels' as the scan proceeds in this case. Consequently, as
the later stimuli predominate, the test run in the
experiments Jjust performed reveals a memory matrix trained
to generate predominantly '0' pixels. This can be seen in
the lower left pattern of Fig 5.16 (Case 1).

The reverse 1is true in the case of the opposite shift
direction (Case 3). As shown in Fig 5.18b the training
stimuli received later in the scan result in the generation
of '1' pixels, resulting in a OPP (lower left of Fig 5.17)
that is generated by a memory matrix trained in this manner.
It should be noted that although this OPP is generally full
of spurs and holes, it 1is not shifted in any particular
direction. (The 'noisy' result is due to this inconsistent
training received from the beginning and end of the

characters, for they are not symmetrical.)

This experiment has demonstrated clearly that these
machines rely most heavily on the most recent information
received in training. This means, in the <case of a
sequential scan, the 'end' of a picture will predoﬁinate. If

this differs from the transformation seen at the beginning
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(a) SHIFT Towards Top Left

IPP Train EXP Train

( Start of Scan ‘

_ _ Generate _ _ _
'1' Pixels

: Generate
T— 7 '0' Pixels™ — 7
i)
End of Scan l

(b) SHIFT Towards Bottom Right

IPP Train EXP Train

‘ Start of Scan ‘

_l_ __ Generate_ _ _
'0' Pixels
Generate HL Y
|~ T '1' Pixels™ T Qéj
A A
, End of Scan l

Fig 5.18 Train&ng Stimuli Received at Start and End of
Scans for Two Shift Operations
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of the picture, the machine is subject to 'neurosis' - it

cannot resolve the inconsistency. (This 'neurotic' aspect of

behaviour is covered 1in some depth in Experiments 16 and

17.)

5.7 Experiment 10 : 5-bit Window and the Direct Examination

of the Memory Matrix

It has been mentioned in earlier sections that the
memory matrix can be examined directly after training as an
aid to wunderstanding how the LPP machine operates. This
direct examination of the memory matrix cells' contents has
not yet ©been implemented. Only the integrated totals of
numbers of cells set equal to particular values have been
examined so far, producing the type of data seen earlier in
Figs 5.9 and 5.&0.

However, the interrogation of the LPP simulator will
supply these cell data contents directly, albeit in a rather
unwieldy form - a table of 512 tri-state variables. In order
to appreciate these data, it will be helpful to temporarily
change the format of the LPP machine., This will result in
less bulk data to be examined, and will facilitate later

understanding of a larger (512 cell) memory matrix.

The 5-bit Window Format

The 9-bit window wused so far will now temporarily be
replaced by a 5-bit window, consisting of a centre point and
its immediate four-connected neighbours on a rectangular
lattice. This is transformed by the address calculator (f2

of Fig 4.2) into a 5-bit binary address in the range 0-31.



The remainder of this new machine ('F6' Format) is

identical to the F4 (9-bit window) machine. This new window

format is illustrated below in Fig 5.19.

5-bit Window 5-bit Address
p2

P1| PO P3 fz > | P4 | P3 P2 P1 PO
P4

Range 00-1F (Hex),

32 Cells in M.M.

Fig 5.19 5-bit Window Format used by F6 LPP Machine

Experiment

This F6 machine was trained on the same data as the
F4 machine in Experiment 7 : the four tasks : clean, invert,
thin, thicken. These training patterns were illustrated in
Figs 5.1 to 5.4. A listing of the addresses, corresponding
5-bit features and the resultant cell data contents are
shown below in Figs 5.20 and 5.21. This is given for each of
the 32 cells in the memory matrix and also for each.of the
four tasks involved.

This 1listing illustrates how the LPP machine has been
trained to react to each of the 32 possible 5-bit input
features. For each of the four ﬁasks, the output pixel that
the machine would generate 1in testing is shown in the
corresponding column. It may also be seen how TP values are
generated, and - their relevance to training of the memory

matrix. These TP values for each of the four tasks are shown
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M.M. Addresses,

5-bit Features and Cell Contents for

the Four Tasks : Clean, Invert, Thin, Thicken.
CELLS 00 - 15
M.M., Address Cell Contents trained to :
Frature
Llec Binary CLEAN INVERT THIN THICKEN | |
00 00000 e . X . . j
01 00001 . X . ? ? ? !
02 00010 X o . X . X
03 00011 X X . X ? ? X
X
04 00100 .o . X . X
be
05 00101 . X . ? ? X
.
X
06 00110 X o . ' . X
X
07 001t X X . . N X
*
08 01000 . e X . X . X
.
69 01001 . X X . ? ? ?
*
10 01010 X . X . 7 ? ?
11 o101t X X X X ? ? X
.
X
12 01100 e X X X . X
*
X
13 o110t . X X X ' . X
.
X
14 01110 X . X X X . X
X
15 01111 X X X X . . X
+
( 0 = . ? =7 1 X )

Fig 5.20

Memory Matrix Listing for F6 Machine - Part 1
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M.M. Addresses, 5-bit Features and Cell Contents for

the Four Tasks : Clean, Invert, Thin, Thicken.

CELLS 16 - 31

MM, Address Cell Contents trained to :
Feature

Dec Binary CLEAN INVERT THIN THICKEN ‘
L]

16 100Q0 voe o . . . X
X

17 10001 v X . ? ? X
X

18 10010 X o . X . X
X
L]

19 100114 X X f f . X
X
X

20 10100 . e . ? ? ?
X
X

21 10101 e X X ? ? ?
X
X

22 10110 X o X ? ? ?
X
X

23 10111 X X X . . X
X
.

24 11000 e X . X . X
X
.

25 11001 o X X ’ X . X
X
.

24 11010 X +« X X ? ? ?
X

27 11011 X X X X . . X
X
X

28 11100 e X X ? ? ?
X
X

29 11101 s XX X . . X
X
X

30 11110 X + X X ? ? ?
X
X

31 11111 X X X X . . X
X

( 0 = . ? =7 1 =X )

Fig 5.21 Memory Matrix Listing for F6 Machine - Part 2



below 1in Fig 5.22, with data taken from Figs 5.20 and 5.21

in accordance with the formulae in Section 5.14.

For the sake of completeness, the test OPPs actually
generated by this 5-bit F6 machine are shown in Figs 5.23
and 5.24, compared with the OPPs generated by the 9-bit
F4 machine in Experiment 7. These two machines have received
the same training and test inputs, and consequently the
outputs differ only as a result of the window size being
reduced. It is interesting to note that in the case of the
'thin' task the training appears too coarse for a smaller
5-bit window, yet the other tasks show reasonable results
from both machines,. (It 1is to be remembered that these
results were obtained with a memory matrix of only 32
tri-state variables.)

With the above data, it can be seen how the F6 machine
reacted to its training, and consequently generated the OPPs
shown in Figs 5.23 and 5.24. An examination of each pixel in
the test IPPs, together with its four neighbours, will
indicate (from the look-up table of Figs 5.20 and 5.21) the
corresponding OPP pixel.

For the 9-bit window machine, the equivalent look-up
table is, of course, sixteen times larger and hence a direct
examination of the full memory matrix would be excessively
tedious. Methods for effectively reducing the number of

cells to be examined are thus desirable.

Reduction in Memory Matrix size by Rotation and Reflection

Neither the F4 or F6 machines used above made use of
rotation or vreflection of the input window. However, this
has already been achieved with the F5 machine., In addition

to an effective increase in the training to be gained from a
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F6 m/c Tri-state M.M.
TASK No. of No. of No. of No. of
Cells=0 Cells=? Cells=1 Trained
Cells
Clean 17 0 15 32
(53%) (0%) (47%) (100%)
Invert 10 13 9 19
(31%) (41%) (28%) (59%)
Thin 19 13 0 19
(59%) (41%) (0%) (59%)
Thicken 1 9 22 23
(3%) (28%) (69%) (72%)
Histogram of Above Data : (Key as in Fig 5.9)
Clean Invert Thin Thicken

/]\ 0
?
%
Cells

in oo

M.M S
as s T 1

) I‘ > .m:::

Fig 5.22 Distribution of M.M Contents of F6 Machine
As Trained in Experiment 10
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given set, this can also effectively reduce the number of

cells in the memory matrix. Many features (and hence cells)
are equivalent and consequently redundant. Only a relatively
small proportion of the cells -~ corresponding to a
'preferred subset' of all possible features - need be
retained. To 1illustrate this subset of features, consider
again the 5-bit window as used above.

In this format, there is a maximum total of 32 unique
features, all shown in Figs 5.20 and 5.21. However, if any
feature that becomes redundant under rotation or reflection
is removed from this 1list, the number of different cells
drops to 12, as shown in Fig 5.25. These 12 features
constitute the subset of 'preferred locations' in the memory
matrix of this machine, and could in principle perform by
themselves any isotropic picture processing task as
competently as the full set of 32 cells.

It should be noted that these preferred features are in
pairs. That is, each adjacent pair of features has the same
neighbours, differing only in the centre point PO. If the
dependence on PO can be removed without detrimental effect
on the test performance, then the number of cells required
is halved - leaving only 6 distinct windows from the

original 32. (It should be mentioned that this. argdment

applies to the original 'full set' of features also -

independence from PO halves any memory matrix size.)

9-bit Window Memory Matrix Listing

In the case of the 9-bit F4 machine, the use of
rotation and reflection of the input window (producing the
F5 machine) reduces the total number of cells in the memory

" matrix from 512 to 102 preferred locations. A listing of all
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'Preferred' Location 'Non-preferred' Locations
Subset
Equivalent Features obtained
Address Feature by Rotation and Reflection
00 . : .
01 . X .
L] X L] L
02 X . . o4 . .. 08 . . X 16 . . .
. L] X
. X . .
03 XX . 05 . X . 09 . XX 17 .+ X .
. L] . X
X X L] L ]
06 X . . 12 . . X 24 . . X 18 X . .
. . X X
X X . .
07 XX . 13 . XX 25 .. XX 19 X X .
. . X X
- X
10 X . X 20 . . .
L] X
L] X
11 XXX 21 . X .
. X
X X . X
14 X . X 28 . . X 26 X . X 22 ‘X . .
. X X X
X X . X
15 XXX 29 . XX 27 X X X 23 X X .
. X X X
X
30 X . X
X
X
31 X X X
X

Fig 5.25 65-bit Window 'Preferred Features' and Equivalents
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these cells and their corresponding features appears

in Appendix 2a.

In Appendix 2a, these data are laid out 1in the

following manner, Each of the 512 cells in the memory matrix
is assigned a hexadecimal address in the range 000-1FF.
These are listed with the corresponding 3x3 bit window
feature shown Dbeneath in accordance with the re-formatting
arrangement already described in Section 4.2. The preferred
subset of features are ‘'boxed' throughout the listing.
Examination of the 'unboxed' features reveals that all these
features can be generated by rotation or reflection of those
boxed, and consequently the former are redundant in
isotropic picture processing. Again, note how these boxed
features occur 1in pairs throughout the listing. This is
because the - addresses are organised with the least
significant bit corresponding to PO - the centre point
value., Hence, the pairs of boxed features are identical
apart from this central point.

In the F5 machine devised earlier, all 512 cells were
retained despite the rotation and reflection of the input
window. This was because of the resultant minimal changes
required in the software simulator in the training phase.
The machine rotated and reflected each input feature in
training to one, two, four or eight equivalent features
(dependent on its degree of symmetry) and modified all these
cells, The testing phase 1looked up a single cell in the
normal manner. The maintenance of the complete memory matrix
(512 two-bit words) is a justifiable extravagance in this

case, in the light of the advantages of this approach.
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This software compatibility between machines with and
without rotation and reflection extends to the listing of
the addresses and data contents of the memory matrix. A
sample 1listing of the cell data contents of the F5 machine
as trained in Experiment 8 to 'thin' 1is shown in

Appendix 2b. The format follows that of the window feature

listings in Appendix 2a, and consists of each address listed
above the corresponding cell contents : one of '.', '?' or
X', The preferred subset of cells are again boxed to aid

interpretation. This is expanded upon below.

5.8 Interpretation of LPP Machine Algorithms

It has Dbeen noted in Section 2.9 that the examination
of the memory matrix constitutes an attempt to interpret the
machine's method of processing. The memory matrix contains
the information derived from the training set, although it
is in a form more suitable for assimilation by machine than
man. However, it does represent the algorithm generated by
the machine for processing pictures. | This leads to two

important possibilities

1 the examination of the memory matrix contents (albeit
hampered by their volume) gives insight into picture
processing algorithms that come directly from a source of
such processes - some exampleé. This is done without
intervention by man and a consequent bias on. how such a task
should 'best' be performed. The algorithm contained in the
memory matrix should reflect the training exactly, in the
sense that it was produced autonomously by machine. If these

data can be interpreted correctly, they may well represent a
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definitive, rather than arbitrary, algorithm. This 1is
ultimately what research into picture processing by machine
is seeking to achieve. This problem has thus been reduced
to

(a) the provision of suitable examples,

(b) the correct interpretation of the resultant

internal state of the machine.

2 the possibility of examining all possible algorithms
with such a machine is approaching. With a machine that does
not wuse rotation or reflection of a binary 9-bit window

there are 2512 150)

(~10 possible different algorithms. It is
obviously 1impossible to test these by automatic generation
of all these algorithms. However, on using rotation and
reflection this number falls to 2102(~1030). This is still
an impossibly 1large number, yet Dby selective additional
restraints it can be reduced further to a practicable,
although still 1large, number. Such restraints could be
generated by considering the task attempted. The process of
'thinning' for example, need only be restricted to regions
of the pattern (and hence windows) with a crossing number of
two. That is, a window straddling an edge of an objéot has
two changes of polarity of the neighbours surrounding the
centre point when examined as a ring. The 20 pairs of
features in a 9-bit window that fulfil this condition are
indicated with an asterisk in Appendix 2a. If the dependence
on the centre point PO can again be removed (which again
halves the number of features involved) the number of

possible different features drops to 20 single.examples.

These are shown in Fig 5.26 below with PO thus removed.
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X X % X
X . X X
X X X % X X * X % X X %
X . X X X
. . . . . . . X
2SI G < 2* X %
X X X X (PO has been removed)
- X X . X # - 'Don't care'

Fig 5.26 20 9-bit Windows with Crossing Number of Two

This leaves only 220 (~1OG ) possible different
algorithms, hence it would be feasible to attempt all these
cases by automatic generation and testing of these memory
matrices. Other such restraints on the features to be
examined could be tried for other picture processing tasks.
This would similarly enable the testing of an exhaustive set
of memory matrices as a step towards interpretation of such

machine generated algorithms,

5.9 Experiment 11 : The Variation of TP with

Training Set Size

The Trained Percentage value (TP) has been used in
Experiments 7 and 8 to determine how the changes 1in
operation and format of the LPP machine alter the effective

training received. Here the effect of a change in the
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training set size on TP will be examined, and how this

relates to the change in output when the machine is tested

on actual patterns.

Experiment

An F5 machine was set wup, with a tri-state memory
matrix and a 9-bit window rotated and reflected in training.
It was trained on a varying number of hand-drawn characters,
taken from the set used earlier in Experiment 2. (These were

2 format here, and not 162 as used

digitised 1in a 32
earlier.) The example pictures were manually cleaned and
thinned to a uniform limb width as described earlier. Five
training runs were made, with training sets of 1, 4, 16, 32
and 100 pairs of patterns. After each training session, the

memory matrix was tested with a fixed test IPP, thus

generating a set of OPPs.

Results

The data collected from the five memory matrices are
shown 1in Fig 5.27 as a table and histogram in the manner of
Fig 5.9. A graph of TP against 'Ntr' (the number of pairs of
patterns in the training set) is also included. The test IPP
and the five OPPs produced are shown in Fig 5.28. |

The TP shows a rapid rise as Ntr changes from 1 to 16,
but levels off as Ntr exceeds 16. This is reflected in the
OPPs - the 'quality' of processing increases rapidly as Ntr

reaches 16, but thereafter remains relatively constant.

Discussion

The set of OPPs shows machine behaviour that becomes
self-explanatory in the light of the TP data collected. The

increase in TP reflects an increase in performance seen in



% % %
Ntr Cells Cells Cells T.P
=0 = ? = 1
1 22.3 76.7 1.0 23.3
i 30.0 64,5 5.5 35.5
16 37.9 31.6 30.5 68.4
32 37.9 30.1 32.0 69.9
100 41,0 29.3 29.7 70.7

Histogram of Abcove Data

(Key as in Fig 5.9)
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the first three cases. Similarly, a relatively constant TP

appears as a constant processing performance in the last
three cases.

There only remains a need to explain the 'knee' in the
curve in the graph of Fig 5.27. This can be attributed to
the fact that of the 102 possible different features under
rotation and reflection, there is a large variation in the
likelihood of a particular feature occurring within a
particular processing application. For example, those
features having a large crossing number represent small
width, multi-limbed junctions. These are obviously uncommon
in this character set, and hence no amount of training is
ever likely to set those memory matrix cells corresponding
to such features, Since the TP curve levelled off around
70%, it may be inferred that 30% of the possible features
are 'uncommon' in this character set. The memory matrix
contents (after training with 100 characters) are listed in

Appendix 2c. Examination of this listing reveals that those

cells still 1in the initialisation state '?' after training
with 100 characters (boxed in this listing) do represent

uncommon features in the training set, as expected.

5.10 Experiment 12 : Down-Loaded Memory Matrix

It has been mentioned in Sgction 5.8 that an automatic
generation of memory matrix contents could be used to test
all possible picture processing algorithms. An alternative
to this 1is the production of a single set of cells,
generated externally and down-loaded into the LPP machine.

The machine may then be tested 1in the normal manner to



reveal how this matrix performs.

The 'Keyin' Facility of the Simulator

This acts by initially clearing the memory matrix of
the machine, then prompting the operator with each of the
102 preferred cell features. (This use of the subset of
cells greatly reduces the effort required, without
detracting fron the essential features of this method.) The
operator replies with the data cell contents (one of '0',
'?' or '1') to be placed in that cell corresponding to the
feature presented. This reply is inserted into that cell,
and also 1into all the equivalent cells under rotation or
reflection. In this manner, all 512 cells are filled with
data as the machine proceeds through the preferred subset.
The resultant memory matrix may then be stored permanently,

before testing begins.

Experiment

The 'keyin' facility was used to create a memory matrix
designed to 1locate the edges or outlines of objects. This
was done by consideration of each of the features presented
to the operator, then responding with the new pixel that
would ultimately leave only the edge of objects. That is, if
the feature would be centred on an edge point, the '1' reply
was made; if not, '0' was specified. Appendix 2d shows the
resultant memory matrix - the cells prompted (the preferred
subset) are shown ‘'boxed' together with the operator's
replies of cell contents. Examination of Appendix 2d and the
listing of the corresponding features (Appendix 2a) will
show how the operator responded to each feathre, in an

attempt to generate the 'edgeing' function. (This LPP
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machine was consequently to bypass the wusual training
period.)

The machine was tested in parallel with three objects
illustrated on the 1left of Fig 5.29 to ascertain its

performance. The resultant OPPs are shown on the right of

the diagram.

Results

The 'keyed in' memory matrix can be seen to have
correctly 'edged' the test IPPs - resulting in a single
width 1line 1located on the outermost egde of the objects.
(Interestingly, an 'error' has occurred at the bottom of
OPP 3, shown boxed in Fig 5.29. This is generated from the
input feature '0BD' in IPP 3. Examination of this cell in
Appendix 2d reveals that it does indeed contain an erroneous

'0', fed in by the operator.)

Discussion

It has been shown that manually generating a memory
matrix for a specific task is a practical alternative to
training by example. The edging operator 1s chosen as
particularly simple to implement, but serves as a suitable
illustration of the principle. However, it requires the
intelligence of the operator to supply the ability to
process pictures. This procedure does not constitute machine
learning in any useful sense, as the machine is being used
simply as a tool for executing the process defined by the
operator. Consequently, this avenue of research will not be
developed further here. It will merely be recorded as an
alternative mode of operation in which no machine learning

or trainability is exploited.
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5.11 Summary of Experiments 6 - 12

To ~consolidate the results achieved 1in this second
experimental chapter, there follows a brief summary of the
main conclusions. It should be noted that all the algorithms
described 1in this chapter have employed parallel ‘processing

in the testing phase.

A higher resolution (322) LPP machine was used in

Experiment 6, with an otherwise identical internal format.

This confirmed that such a machine can perform a set of
different tasks by re-training alone.
Tri-state memory matrix cells were used in

Experiment 7, enabling the machine to produce results which

illustrate not only the algorithm, but also the adequacy of
the training received. A ‘'trained percentage' (TP) was
defined which served as a measure of training quantity.
Rotation and reflection of the input window in training
resulted 1in an effective increase in training and thus in

performance (Experiment 8). However, this is only of use in

symmetrical picture processing. In Experiment 9 an

assymetrical operation was attempted with such an
arrangement - and illustrated behaviour heavily dependent on
factors such as the scanning window direction. That is, the
LPP is shown to retain recent training. If the training
varies the machine is being 'asked to do the impossible' and
hence becomes 'neurotic', This will be examined later in
Experiments 16 and 17.

In Experiment 10 a 5-bit window was used to allow the

generation, and hence examination of a small (32 cell)
memory matrix. This direct examination gives considerable

insight into how the memory matrix reflects the training,



the use of the TP wvalue, and the effect of rotation and
reflection of the input window. This 1leads to the
possibility of limited interpretation of the full sized (512
cell) memory matrix generated with a 9-bit window.

The effect of varying the training set size 1is examined

in Experiment 11, where the OPP results and TP values were

viewed in the 1light of this change.

Experiment 12 1illustrated the possibility of down-

loading the memory matrix, rather than training by example.

This alternative produces good results, yet relies on a

prior knowledge of the operation and layout of the machine.
Further experimental investigations will be made in the

following chapter.
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CHAPTER 6

EXPERIMENTS EMBODYING SPECIAL TRAINING TECHNIQUES

6.1 Experiment 13 : Training by Specially Prepared

Examples

Two possible methods of increasing the quantity of
training received by the machine were suggested in
Section 3.5. The first was the increasing of the size of the
training set, as demonstrated in Experiment 11 above. The
second was the creation o