Projective Aspects of the AES Inversion

Wen-Ai Jackson and Sean Murphy

(2005)

Wen-Ai Jackson and Sean Murphy (2005) Projective Aspects of the AES Inversion.

Our Full Text Deposits

Full text access: Open

Full Text - 217.6 KB

Links to Copies of this Item Held Elsewhere


Abstract

We consider the nonlinear function used in the Advanced Encryption Standard (AES). This nonlinear function is essentially inversion in the finite field $\GF (2^8)$, which is most naturally considered as a projective transformation. Such a viewpoint allows us to demonstrate certain properties of this AES nonlinear function. In particular, we make some comments about the group generated by such transformations, and we give a characterisation for the values in the AES {\em Difference} or XOR {\em Table} for the AES nonlinear function and comment on the geometry given by this XOR Table.

Information about this Version

This is a Published version
This version's date is: 25/11/2005
This item is peer reviewed

Link to this Version

https://repository.royalholloway.ac.uk/items/22002586-af18-cae9-419d-4bfa4f2a0ebb/1/

Item TypeMonograph (Technical Report)
TitleProjective Aspects of the AES Inversion
AuthorsJackson, Wen-Ai
Murphy, Sean
DepartmentsFaculty of Science\Mathematics

Deposited by () on 12-Jul-2010 in Royal Holloway Research Online.Last modified on 13-Dec-2010

Notes

References

1. K. Aoki and S. Vaudenay. On the use of GF-Inversion as a Cryptographic Primitive. In Selected Areas in Cryptography (SAC) 2003, volume 3006 of LNCS, pages 234{347. Springer-Verlag, 2004.

2. M. Aschbacher. Finite Group Theory. Cambridge University Press, 1986.

3. E. Biham and A. Shamir. Di®erential Cryptanalysis of DES-like Cryptosystems. In A.J. Menezes and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO 90, volume 537 of LNCS, pages 1{21. Springer-Verlag, 1991.

4. E. Biham and A. Shamir. Di®erential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4:3{72, 1991.

5. A. Canteaut. Di®erential Cryptanalysis of Feistel Ciphers and Di®erentially
uniform mappings. Selected Areas in Cryptography (SAC) 1997, 1997.

6. C. Cid, S. Murphy, and M. J. B. Robshaw. An Algebraic Framework for Cipher
Embeddings . In 10th IMA International Conference on Coding and Cryptography,
LNCS. Springer-Verlag, 2005. To appear.

7. N.T. Courtois. The Inverse S-Box, Non-linear Polynomial Relations and Cryptanalysis of Block Ciphers. In V. Rijmen H. Dobbertin and A. Sowa, editors, Advanced Encryption Standard - AES: Fourth International Conference, volume 3373 of LNCS, pages 234{347. Springer-Verlag, 2005.

8. J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, 2002.

9. W. Stephan G. Hornauer and R. Wernsdorf. Markov Ciphers and Alternating
Groups. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT 93, vol-
ume 765 of LNCS, pages 453{460. Springer-Verlag, 1994.

10. R. A. Games. The geometry of m-sequences: Three valued cross correlations and quadrics in ¯nite projective geometry. SIAM J. Alg. Disc. Meth., 17:42{52, 1986.

11. J. W. P. Hirschfeld. Projective Geometry over Finite Fields. Oxford Mathematical Monographs, 1998.

12. D. R. Hughes and F. C. Piper. Design Theory. Cambridge University Press, 1985.

13. T. Jakobsen and L. Knudsen. Attacks on Block Ciphers of low Algebraic Degree.Journal of Cryptology, 14:197{210, 2001.

14. T. Jakobsen and L. R. Knudsen. The Interpolation Attack on Block Ciphers. In E. Biham, editor, Fast Software Encryption { FSE97, volume 1267 of LNCS, pages 28{40. Springer, 1997.

15. X. Lai, J. L. Massey, and S. Murphy. Markov Ciphers and Di®erential Cryptanalysis. In D.W. Davies, editor, Advances in Cryptology - EUROCRYPT 91, volume 547 of LNCS, pages 17{38. Springer-Verlag, 1991.

16. R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Applications.Cambridge University Press, 1994.

17. S. Murphy, K. Paterson, and P. Wild. A Weak Cipher that Generates the Sym-
metric Group. Journal of Cryptology, 7:61{65, 1994.

18. S. Murphy and M. J. B. Robshaw. Essential algebraic structure within the AES. In M. Yung, editor, Advances in Cryptology - CRYPTO 2002, volume 2442 of LNCS,pages 1{16. Springer-Verlag, 2002.

19. K. Nyberg. Di®erentially Uniform Mappings for Cryptography. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT 93, volume 765 of LNCS, pages55{64. Springer-Verlag, 1994.

20. National Institute of Standards and Technology. Federal Information Processing Standards Publication (FIPS) 197: The Advanced Encryption Standard. 26 November 2001.

21. K. Paterson. Imprimitive permutation groups and trapdoors in iterated block ciphers. In L.R. Knudsen, editor, Fast Software Encryption, volume 1636 of LNCS,pages 201{214. Springer-Verlag, 1999.

22. J.J. Rotman. Theory of Groups. Wm. C. Brown Publishers, 1988.

23. T. Tsuzuku. Finite Groups and Finite Geometries. Cambridge Unversity Press,1976.

24. R. Wernsdorf. The One-Round Functions of the DES Generate the Alternating
Group. In R.A. Rueppel, editor, Advances in Cryptology - EUROCRYPT 92,
volume 658 of LNCS, pages 99{112. Springer-Verlag, 1993.

25. R. Wernsdorf. IDEA, SAFER++ and Their Permutation Groups. Second NESSIE
Workshop, 2001.

26. R. Wernsdorf. The round functions of rijndael generate the alternating group. In J. Deamen and V. Rijmen, editors, Fast Software Encryption - FSE02, volume 2365 of LNCS, pages 143{148. Springer, 2002.


Details