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Abstract

This paper extends several existing learning models to investigate
their fixed points (their long run predictions of play). The fixed points
of the model are not necessarily at the Nash equilibria of the payoff
matrices but are a function of both the Nash equilibria and the pa-
rameters of the model. The stability of these fixed points also depends
on both the characteristics of payoff matrix used and the parameters
of the model. These new findings indicate that behaviour previously
thought to be inconsistent with theory may not necessarily be so.
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1 Introduction

All of economics deals with notions of equilibrium. These notions serve us
well in a static world, but as soon as we begin to apply these models we
encounter unanswered questions: how does one get to the equilibrium? how
long will it take? and where will we actually end up?

Nash equilibrium theory, applicable in some cases, is incomplete in the
case of multiple equilibria. Bayesian updating has been used to model peo-
ple’s adjustments over time but its reliance on priors (and its assumptions
on the rationality of the players) precludes its use in all but the most basic
applications. What is needed, is a model of adjusting behaviour that can
predict where we will end up, how we will get there and how fast. This
could then be used in conjunction with models of equilibria to more ac-
curately predict out-of-equilibrium behaviour. Learning models may well
provide such an adjustment mechanism.

The models I will be considering have roots in the behavioral school of
psychology that was dominant in the first half of the century. Much of the
psychology research on learning ended in the 1950’s as the behavioral school
fell into disfavour (and was replaced by cognitive approaches). Recently,
there has been renewed interest in learning in psychology including work
by Friedman, Massaro, Kitzis & Cohen (1995) and Kitzis, Kelley, Berg,
Massaro & Friedman (1998).

Out of the pre-1950 tradition came the rote learning model (also known
as reinforcement learning, stimulus response or the law of effect). In these
models, successful strategies are reinforced and are more likely to be used
again. First formalized by Bush & Mosteller (1955); recent work on rein-
forcement models has come from Harley (1981), Cross (1983), Borgers &
Sarin (1996), Roth & Erev (1995),Erev & Roth (1998), and Tang (1996).

Belief models are another type of learning mechanism. Here, players

form beliefs about the state of the world next period and optimally respond



to these beliefs and individuals are allowed to take into account things they
have not personally experienced. Examples of the simplest of this type of
learning include Cournot best response (Cournot 1863) and fictitious play
(Brown 1951). As mentioned previously, in Cournot learning, what hap-
pened last period is assumed to be the best predictor of what will happen
next period. In fictitious play, the opponent’s average play over time is used
as the best predictor of their action next period. Other models of this type
include Cheung & Friedman (1997) and Fudenberg & Levine (1998) which
both allow for the weighting of past periods. Still more sophisticated are
the ”sophisticated belief” models that provide complex models of opponent
behavior (Selten 1991, Stahl 1993, Stahl 1996, Stahl 19994, Stahl 1999b).
Most recently, Camerer & Ho (1998c¢) show that the previously competing
simple belief and rote learning models can be nested in their Experience
Weighted Average (EWA) model, a hybrid model with belief and rote learn-
ing as special cases.

The goal of this paper is to present a model that allows the investiga-
tion of asymptotic stability in learning models and to investigate how these
models describe actual learning behaviour. The paper focuses on three by
three bimatrix games because they provide a crucial stepping stone from the
two by two bimatrix world to the more flexible multi-choice world.

Learning models model the behaviour of individuals. In order to do this,
they build propensities for each possible action. As the relative propensity
for a particular action increases, the probability of playing that action in-
creases. Propensities are built out of the stream of payoffs perceived by
a player. Reinforcement learning rules give weight to payoffs from actions
experienced while belief learning rules incorporate all possible payoffs.

Empirical work so far has concentrated on comparing different models
in terms of their fit and predictive ability with experimental data. Camerer

& Ho (1998b) and (1998a) find that their hybrid model performs better



than either of the other two approaches. Erev & Roth (1998) find that
reinforcement models perform better and Feltovich (1998) finds that specific
model performance depends both on the design of the experiment and on
the comparison criterion.

The work to date has generally neglected two fundamental issues: the
implications of these models on the location, and the stability of the fixed
points. If players were acting in a way consistent with the model, what long
run behaviour would we expect to see? Fudenberg & Levine (1998) and
Ellison & Fudenberg (2000) have begun to look at these issues for special
cases. However, the most common models are lacking this analysis.

This paper proposes a model that combines insights from Fudenberg &
Levine (1995) and Camerer & Ho (1998¢) which in turn was built on Cheung
& Friedman (1998) and Roth & Erev (1995). The questions of fixed points

and stability are examined.

2 The Model

The games I will be considering in this dissertation have payoffs that depend
on both your own action and the action of your opponent (your opponent
can be a single person or you can be playing against a group of opponents).
These games are repeated for a number of periods. Every period you and
your opponent simultaneously make choices among the available actions.
Everyone gets to see the payoff consequences of these actions and you get to
make your next period’s choice!. The payoffs are used to build the propen-
sities for each action which are then used to predict probabilities of play.

The propensity Ptiyj of individual i at time t for each action j is:

!The model can be applied more generally than this discussion indicates. The structure

of this game is introduced here for illustrative purposes only.
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The numerator is a discounted sum of the stream of payoffs over time

and ¢' € (0,1] is the discount. The payoff at time t to action j is 7r§]() The
denominator normalizes the propensity so that the propensities at different
times can be directly compared. A discount near zero, would indicate a
Cournot type player who only uses payoff information from the last period.
A player with a discount ¢* = 1, would have a propensity:

I 1(t_7)7ri,j(5i c,st)dr
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by f[f 17 dr @)
. f()t Trﬂi',j((sia Cg'a 32-) dr

- t (3)

which is the average of the payoffs to each choice over time (this is also
known as a Fictitious Play player).

The payoff, or profit, to action j is the jth element of the vector 7} (07, ci, s%)
and is a function of §°, a weight on the importance of the payoffs to actions
not chosen relative to that chosen. As d approaches 0, actions not chosen
have a smaller and smaller weight (they are no longer used) which corre-
sponds to reinforcement learning. At § = 1 we get pure belief learning and
the propensities are updated with all the payoff information. Intermediate
values of § can be thought of as weak belief learning where you don’t put as
much weight on actions you have not experienced. The action chosen by i
at time t is a vector ¢} (and is assumed to be a pure strategy vector?). The
state faced by i (what i’s opponents are doing) at time t is s¢. Note that in
both ¢} and s, the elements sum to one since they represent distributions
of play over possible actions.

The actual payoff function used in this analysis and in the experiments
is a function of a payoff matrix M (with elements my,;). For a three choice

game, M is a 3x3 matrix and the payoff function is:

2This assumption is not necessary but simplifies the presentation of the model.
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If an individual i had played ¢ = [1,0,0]" period 2 and had been faced

by as state sb = [%, %, %]’, her payoffs that period would be:
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If 6 = 1, this model is equivalent to a belief model where all possible
payoffs are weighted equally. If § = 0, we have the reinforcement learning
model where only the action chosen is used in the propensity. Relaxing
the assumption that the discount values in the numerator and denominator
are equal makes this model asymptotically equivalent to a continuous time
version of the EWA model?.

The model is a probabilistic model, the probability of an individual

choosing an action increases as the propensity for that action increases. To

3The EWA model, as presented in Camerer and Ho (1998a,b,c), consists of the obser-

vation equivalent of past experience N(t) and the propensity Pij (t) for action j at time t.



map the propensities on to actions, the Logit probability response function

is used so that the probability of i’s jth action ci,j at time t is:

e)\ Pt,j

Prob(ci j = j) = (9)

J

where A is the parameter. A \* near zero would indicate a misspecified
model while a large A’ would indicate that the propensities do a good job of
explain the observed play. Negative A\’ values would suggest misspecification,
possibly due to higher order reasoning and anticipatory play in the sense of
Selten (1991).

The Logit has been used widely used in the literature on Learning
(Mookherjee & Sopher 1994, McKelvey & Palfrey 1995, Fudenberg & Levine
1998, Camerer & Ho 1998b). Other mapping functions are possible, but work
by Camerer & Ho (1998¢) has shown little difference between the Logit and
power response functions. Tang (1996) had similar results looking only at

reinforcement models. The Logit has the additional benefit of allowing neg-

ative payoffs.

The initial N(0) and P(0) are updated after period 0 so that:
Nt)=p-Nt—-1)+1,t>1

and,

_ @ N@E=1)-P/(t -1 +[5+ (1 —0)-I(s],5i()] - mi(s], 5-i(1))
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This is equivalent to
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For 0 < ¢, p < 1, this is asymptotically equivalent to
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The Logit is invariant to an additive constant on the propensities. In
order to estimate the model the probabilities are normalized relative to one
of the actions. The use of the Logit assumes the independence of irrelevant
alternatives: that the ratio of the probabilities of any two actions j and k,
P;/ Py, be independent of the remaining probabilities (Green 1993). This
implies that adding an alternative to the model, or changing the charac-
teristics of another alternative that is already included, will not change the
odds between actions j and k (Davidson & Mackinnon 1993), a plausible
constraint in this class of games.

It is important (but neglected in the literature so far) to look at this
model in terms of two characteristics: the fixed points of the model in rela-
tion to the Nash equilibrium of the payoff matrix, and the model stability
around each fixed point. Fudenberg & Levine (1998) argue that learning
models can suggest useful ways to evaluate and modify the traditional equi-
librium concepts (including Nash Equilibria). Also, in order to apply learn-
ing models in anything but the shortest time frames, it is necessary to have
some idea of the long run predictions of the models. I consider the fixed

points and stability of this model in turn.

3 Fixed points

The fixed points for this model depend both on the Nash equilibria of the
payoff matrix used and on the parameters of the model.

A fixed point is a set of probabilities (Q*) that map back on to them-
selves. In other words, players facing the state defined by a fixed point choose
actions with probabilities that again yield the same fixed point. Assuming

identical parameter across individuals the propensities satisfy:

pr = BTG =0 =@ dr (10)

[y #7dr




m(0,Q*) [y ' T dr
J3 7 dr
= 7(6,Q%). (12)

Thus, propensities are static when play remains at (Q*).

The fixed point(s) (Q*) is defined by the equation:

i + g5 + g3
Q*=F | Xdiag | 6gt + g5 +6q% | - M- Q* (13)

oqt + g5 + ¢

where F(-) is the Logit function and Q* = [¢f, ¢35, ¢4]' is the probability of
play at the fixed point.

This is a transcendental equation and not analytically solvable. The
smaller the Logit parameter (\), the more there is a tendency towards the

center of the simplex (1/3,1/3,1/3) so that:

A=0 = Q" =(1/3,1/3,1/3) (14)

A—>oo = Q°=NE. (15)

and continuous between. As mentioned previously, A is assumed non nega-
tive and small values would indicate a misspecification of the model.

The parameter ¢ (the weight on actions not chosen relative to that cho-
sen) is bounded between 0 and 1. Larger values equally weight all actions by
their potential payoffs and should slow down the movement away from the
center of the simplex as A becomes large. The effects of the interactions of
the parameters and how they interact with the payoff matrices (and there-
fore the NE of the payoff matrices) are difficult to quantify. As a result, we
will rely on numerical simulations.

Tables 1 and 2 and Figures 1 and 2 show how the fixed points change

as the parameters (§, A\ and ¢) change using two different payoff matrices.



Figure 1: Matrix 2- Distribution of fixed points using different parameters

(5 €[0,1] by 0.01 and A € [0,2] by 0.1)
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Figure 2: Matrix 4- Distribution of fixed points using different parameters

(5 €[0,1] by 0.01 and A € [0,2] by 0.1)
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Table 1: Matrix 2 Fixed points and stability simulations

Eigen- | Eigen-

5 | A | ¢ || %Top | %Middle | %Bottom || valuel | value2 || Stable
0 0 | 0.1 0.33 0.33 0.33 -6.91 -2.30 1
0.5 | 0.33 0.33 0.33 -2.08 -0.69 1

1 0.33 0.33 0.33 0.00 0.00 0
0.5]0.1 0.37 0.19 0.44 -1.10 -1.10 1
0.5 0.37 0.19 0.44 -0.33 -0.33 1

1 0.37 0.19 0.44 0.00 0.00 0

1 (0.1 0.96 0.02 0.02 0.54 0.54 0
0.5 || 0.96 0.02 0.02 0.16 0.16 0

1 0.96 0.02 0.02 0.00 0.00 0

1.5 ] 0.1 0.99 0.00 0.00 1.68 0.23 0
0.5 | 0.99 0.00 0.00 0.50 0.07 0

1 0.99 0.00 0.00 0.00 0.00 0

2 101 1.00 0.00 0.00 2.07 -1.09 0
0.5 1.00 0.00 0.00 0.62 -0.33 0

1 1.00 0.00 0.00 0.00 0.00 0

05| 0 (0.1 0.33 0.33 0.33 -6.91 -2.30 1
0.5 0.33 0.33 0.33 -2.08 -0.69 1

1 0.33 0.33 0.33 0.00 0.00 0

0.5 (0.1 0.46 0.15 0.39 -4.25 -1.49 1
0.5 0.46 0.15 0.39 -1.28 -0.45 1

1 0.46 0.15 0.39 0.00 0.00 0

1 10.1 0.82 0.05 0.13 -1.50 -1.50 1
0.5 0.82 0.05 0.13 -0.45 -0.45 1

1 0.82 0.05 0.13 0.00 0.00 0

1.5 (0.1 0.96 0.01 0.03 -1.11 -1.11 1
0.5 0.96 0.01 0.03 -0.34 -0.34 1

1 0.96 0.01 0.03 0.00 0.00 0

2 0.1 0.99 0.00 0.01 -1.33 -1.33 1
0.5 | 0.99 0.00 0.01 -0.40 -0.40 1

1 0.99 0.00 0.01 0.00 0.00 0

1 0 | 0.1 0.33 0.33 0.33 -6.91 -2.30 1
0.5 | 0.33 0.33 0.33 -2.08 -0.69 1

1 0.33 0.33 0.33 0.00 0.00 0

0.5 ] 0.1 0.50 0.12 0.38 -7.39 -1.79 1
0.5 0.50 0.12 0.38 -2.22 -0.54 1

1 0.50 0.12 0.38 0.00 0.00 0

1 10.1 0.71 0.04 0.24 -4.25 -4.25 1
0.5 0.71 0.04 0.24 -1.28 -1.28 1

1 0.71 0.04 0.24 0.00 0.00 0

1.5 ] 0.1 0.83 0.02 0.15 -3.70 -3.70 1
0.5 0.83 0.02 0.15 -1.11 -1.11 1

1 0.83 0.02 .. 015 0.00 0.00 0

2 101 0.90 0.01 H0.10 -3.32 -3.32 1
0.5 0.90 0.01 0.10 -1.00 -1.00 1

1 0.90 0.01 0.10 0.00 0.00 0




Table 2: Matrix 4 Fixed points and stability simulations

Eigen- | Eigen-

5 | A | ¢ || %Top | %Middle | %Bottom || valuel | value2 || Stable
0 0 | 0.1 0.33 0.33 0.33 -6.91 -2.30 1
0.5 | 0.33 0.33 0.33 -2.08 -0.69 1

1 0.33 0.33 0.33 0.00 0.00 0
0.5]0.1{ 0.35 0.29 0.37 -1.73 -3.29 1
0.5 0.35 0.29 0.37 -0.52 -0.99 1

1 0.35 0.29 0.37 0.00 0.00 0

1 10.1 0.02 0.02 0.95 2.49 -1.53 0
0.5 || 0.02 0.02 0.95 0.75 -0.46 0

1 0.02 0.02 0.95 0.00 0.00 0

1.5 ] 0.1 0.00 0.00 0.99 6.18 -1.38 0
0.5 || 0.00 0.00 0.99 1.86 -0.42 0

1 0.00 0.00 0.99 0.00 0.00 0

2 10.1) 0.00 0.00 1.00 7.43 -1.40 0
0.5 0.00 0.00 1.00 2.24 -0.42 0

1 0.00 0.00 1.00 0.00 0.00 0

05| 0 (0.1 0.33 0.33 0.33 -6.91 -2.30 1
0.5 0.33 0.33 0.33 -2.08 -0.69 1

1 0.33 0.33 0.33 0.00 0.00 0

0.5 (0.1 0.35 0.26 0.39 -2.60 -4.50 1
0.5 | 0.35 0.26 0.39 -0.78 -1.35 1

1 0.35 0.26 0.39 0.00 0.00 0

1 10.1 0.25 0.15 0.61 -1.40 -2.87 1
0.5 0.25 0.15 0.61 -0.42 -0.86 1

1 0.25 0.15 0.61 0.00 0.00 0

1.5 0.1 0.03 0.01 0.95 1.50 -2.67 0
0.5 0.03 0.01 0.95 0.45 -0.80 0

1 0.03 0.01 0.95 0.00 0.00 0

2 0.1 0.01 0.00 0.99 2.13 -2.59 0
0.5 || 0.01 0.00 0.99 0.64 -0.78 0

1 0.01 0.00 0.99 0.00 0.00 0

1 0 | 0.1 0.33 0.33 0.33 -6.91 -2.30 1
0.5 | 0.33 0.33 0.33 -2.08 -0.69 1

1 0.33 0.33 0.33 0.00 0.00 0
0.5]0.1{ 0.35 0.25 0.40 -5.74 -3.43 1
0.5 0.35 0.25 0.40 -1.73 -1.03 1

1 0.35 0.25 0.40 0.00 0.00 0

1 (0.1 0.32 0.18 0.51 -4.42 -4.42 1
0.5 0.32 0.18 0.51 -1.33 -1.33 1

1 0.32 0.18 0.51 0.00 0.00 0

1.5 ] 0.1 0.23 0.09 0.67 -4.76 -3.06 1
0.5 | 0.23 0.09 0.67 -1.43 -0.92 1

1 0.23 0.09 . 0.67 0.00 0.00 0

2 101 0.14 0.03 t40.83 -4.43 -2.48 1
0.5 0.14 0.03 0.83 -1.33 -0.75 1

1 0.14 0.03 0.83 0.00 0.00 0




Figure 3: Matrix 2- How the fixed points depend on A allowing § to vary.
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Matrix2 (from Stahl and Wilson,1994)

4 1 7
Matrix2=12 8 0 (16)
3 10 6

has a single Nash equilibrium at (1,0,0), Matrix 4 is a HDB matrix (from
Cheung and Friedman 1997) where:

-2 8 3
Matrix 4 = 0 4 2 (17)
-1 6 4

with a mixed Nash equilibrium at (2/3,1/3,0) and a pure Nash equilibrium
at (0,0,1).
The location of the fixed points depends only on A and § and not ¢. Fig-

ures 3 and 4 show how the fixed points change as lambda changes (allowing

13



Figure 4: Matrix 4- How the fixed points depend on A allowing § to vary
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for different values of ¢ and §). As expected, in both matrices, small values
of lambda do ”pull” the fixed point to the center of the simplex. As the
multiplier becomes large, the fixed points move towards a pure strategy NE
action. The importance of the underlying matrix can be seen by comparing
the behavior in the two matrices. Matrix 4 has all of the fixed points in a
narrow band between the center of the simplex and the Nash. Matrix 2 how-
ever exhibits a more complex arrangement, where the fixed points depend
heavily on 6. When § < 0.1 the fixed points are between the center of the
simplex and (0,0,1). This is highly inconsistent with the Nash equilibrium
of the payoff matrix. Further work is needed to determine why this is the
case. Figures 5 and 6 show how the fixed points depend on § by identifying
the points were 6 <= 0.5 and § > 0.5. Note that the in Matrix 2, effect of
small § values (§ < 0.1) can be clearly seen and in Matrix 4, the mixed NE

is mot the limit of the fixed points.

14
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4 Stability

4.1 Single population games

To look at the stability of the fixed points of a model we need to look at
the behavior predicted by the model in the region around the fixed point.

Using the time limit of the model to find the asymptotic equivalent of the

model,
t o
P o= fim (D2 (0, ¢r, 5r) dr (18)
t—o0 f[) ¢T dr
L fg ¢ "m;i(6,¢ry87) AT
N tlggo ( (—1+¢t) (19)
In(¢)
t
~ —In(¢) / i (8, cry50)dT (20)
0
Looking at how the model changes over time,
X P t
P ~ — <— In(¢) / " T (6, cry 8r) dT) (21)
ot 0
o t
~ —Ilng — (/ ¢y (0, CT,ST)dT> (22)
ot \Jo
t
~ —Ing <1n¢ / ¢ (0, ¢y 87) AT + (6, ct, st)> (23)
0
~ In¢g-P—In¢-m. (24)
p1 — (814 ds2 4 ds3)(m11s1 + ma 282 + My 383)
~ In(d) | po— (651 + sz + ds3)(ma,151 + Mo 252 + M2 353) -(25)
p3 — (0s1 4 0s2 + s3)(m3,181 + m32s2 + m33s3)
Substituting,
e*P1
51 = P11
A
52 = orrows o (26)
e P3
83 = e P1 e P2 e P3
gives,

(e P14§ePP2 L 5err3 mi1,1e*P14my 2e P2 4+m; 3e P3
Y4t e Pl }e P2 4 e P3 e P1 { eAP2 1 e P3

Pt =In(p) | py— (66*131—1—6*132-}—6&?3% (m2,1e/\pl+m2,2e>‘1’2+m2,3e>‘1’3) . (27)
) :

e P1 e P2 1 e P3 e P1 e P2 - eP3

ma,1e Pl +mg 2e*P2+mg 3e*P3
e)\pl +6Ap2+e)\p3

[ §e*P1L4§erP2 erP3
p3 e)\pl +e/\p2+8)\p3

17



Using a first order Taylor expansion to linearize P, around the interior

fixed point Q* = [¢] ¢5 ¢3]’, and using the Jacobian Jy- = Pé*,

P, = Pp+4Jg-(P-Q%) (28)
Pt — Pq* ~ Jq* . (P — Q*) (29)

redefining W = P — Q*,
Wt ~ Jq* -W (30)

where,

O p 0p 0p

op1 Op2 Op3
R 07 07 07
Jq a2 a2 aps b2 . (31)

3%11‘33 3%21'33 3%3?3 P1=q] ,P2=q5,P3=q5
Appendix A explicitly lists the elements of the Jacobian.

Although this is a three choice game, the system (assuming a single
population game) is actually two dimensional since probabilities sum to
one. Using Haigh’s (1975) theorem to reduce the matrix, the entries of the
2 by 2 transformation matrix Z are 25 = 1 — Jik+1 — Ji+1,k T Ji+1,k+1- S0

that,

Z11 21,2

7 = (32)

221 222
see Appendix A for the elements of the Z.
For the model to be asymptotically stable, the eigenvalues of the lin-
earized equation around the fixed point have to have negative real parts

(Hirsch & Smale 1974). The eigenvalues of the Z matrix (Equation 32) are:

1 1 1
210+ 522+ 54/2112 — 2211200 + 2022 + 4210201

(33)

1 1 1
3211+t 5222— 3 \/21,12 — 2211220 + 2292 + 4212221

Proposition 1 Let M be a 5z3 single population game, and P be the equa-
tion of movement over time. Let Z be the matriz defined above with ele-

ments {z;j}. Then, an interior fized point Q* is asymptotically stable iff
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. 2 2
21,1 + 22,2 > 0 and either z11 - 220 > 212 - 22,1 0r 21,17 — 2211222 + 222° +

4210291 <0

Proof: For a interior fixed point to be asymptotic stable, both eigenvalues
of the Z matrix must have negative real parts. If %21,1 + %22,2 < 0, the
second eigenvalue will have negative real parts. The asymptotic stability
then depends on the first Eigenvalue and its square root term. If there
are only imaginary roots (21,12 — 221,122 + 22,22 + 4212201 < 0) there is

stability. If there are real roots, to have stability,

1
> 5\/21’12 — 2211222 + 2’2,22 +4 2192701 (34)

1
‘5(2’1,1 + 2’1,2)

and since %zlyl + % 292 <0,

1 1
§(Z1,1 +z212) < 5\/ 112 — 2211222 + 2222 + 4212221 (35)
(21,1 + 21,2)2 < 21’12 -2 Z1,1%2,2 + 22,22 +4 Z1,2%2,1 (36)
2 2 2 2
210t 2211220+ 250 < 2107 — 2211222 + 2227 + 4212221 (37)
2211220 < 22292+ 4212201 (38)
21,1222 < 212221 (39)

Conversely, if % 21,1+ % 299 > 0, the first eigenvalue can not be negative and
thus, there is no asymptotic stability.

The role of In ¢ in determining asymptotic stability is important since all
of the elements of Z are factors of In ¢ (and thus both eigenvalues are factors
of In¢ as well). When ¢ = (0,1), In¢ < 0. Values of ¢ > 1 lead to In¢p > 0
and thus change the signs of the eigenvalues. Matrices and parameter values
that are asymptotically stable with ¢ = (0,1) will not be asymptotically
stable with ¢ > 1 (though the converse is not necessarily true). Values of ¢ >
1 correspond to a discount rate consistent with ”imprinting”: where initial

periods have more weight than subsequent periods. The special case ¢ =1
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corresponds to Fictitious play and leads to asymptotically neutral stability?.
It is also important to note that this is the only place the parameter ¢ enters
in the asymptotic stability of a fixed point @Q*. Assuming ¢ = (0,1), it is
the underlying matrix and A and ¢ determine stability. Of course, ¢ affects

the convergence rate for stable fixed points.

4.2 Stability in two population games

In the case of two (or more) population games, the stability requirement
changes. The P, vectors for each of the populations are stacked. For
two populations, P; = [p} p} ,pi p? p3,p% ], and Z includes all of the cross

derivatives so that,

In(¢")pi — In(p')(s] + 6 )(m%,151 +m3 252 +my 33§)
In(¢t)py — In(¢p') (6 st + s5 + d's )(m%,131 +m3 232 +mj 335)
P In(@)ps — In(p') (61 s] + 6tsy + 33)(m§,131 +m3 232 +m3 335)
t ~
In(¢?)pi — In(¢?)(s7 + )(mhsl + mi 252 +my 33%)
In(¢?)p5 — In($?)(6%s7 + 53 + 0%s )(m%,131 + mj 232 +my 35%,)
i In($?)p3 — In(¢?)(6%s] + 6255 + 33)(m%,131 +m3 232 +mg3 33§) ]
(40)
Substituting,
sl eklpi §2 = e>‘2p%
! e/\lpbre/\ip% +errs RN +e,\§p§ +eMP3
A A
3% = 3,0 /\11’2 BE 3% =z 213; 2,2 (41)
e p1+ p2+ P3 NPl Po NP
= oS %=
)\11137 - A2

Alpl 2,2 22
e pl—l—e p2+e e Plye’ P24e™ P

*The intuition is that with Fictitious play the process stagnates: people don’t respond

appreciably to the last payoff since it averaged with an infinite set of previous payoffs.
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gives,

2 2 2 2 2 2
1 A°p 1 _A°p 1 _Ap
my € 1+m1,2e 2+m1,3e 3

2,2 2,2 2,2
NPT e Pr P P

n(¢')p1 — In(4")

Al p1+51 Al p2+51 Al p3
T T 1
e p1+ p2+e>‘ 2

§let p1+e/\ p2+51 Al P3

n(¢')p; — In(4')

T T
A P1+e P2+g>‘ p3

n(¢')ps — In(¢') T 7

252 22,2
e Plye’ Page’ P8

&

Pt 1.1 1.1 1,1
2 A'p 2 e P 2 AP
e/\ p1+52 A2 p2+52 A2 p3 mye” Fl+my 24+my 3

n(¢2)p% - 1n(¢2) 2,2 2

T
Pyt P2+e>‘ r3

AT
e

Py +8A Pz +8A p3

1.1 1.1
2 _A'p 2 Alpl A'p
my € 1+m2,2e 2+m2,3e 3

In(¢?)p3 — In(¢?)

2 2 2
1 AP 1 AP 1 AP
) my e” Tl4mg ,e” T24my ge” T3
2252 2252 2252
e Piye’ P24e” 3
2 2 2 2 2 2
sl p1+51 At p2+e p3> m_]‘s,leA p1+m§,2e>‘ p2+m§,3e>‘ P3

52e>\ p1+e>\ p2+52 A2 p3
e

2,2 oL Al Al
p1+ p2+e P3 e Plye’ P24e” P3

n(¢?)p3 — In(4?)

A2p2 | A2p2
e Plye

(
&
(-
(%5
(

1.1 1.1 1.1

2 A'p 2 A'p 2 A'p

s2eM” p1+62 i p2+e/\ P3\ [ m3ae Plamg et P2im] gt T3
2,2 1,1 1.1 1,1
A%py A 1’1+eA 1’2+eA P3

(42)

P2+e

and using the same Taylor expansion and re-definition of P as with a single

population (Equations 28-30), J = Pq’ becomes,

6p1 2 .p % 2 .p o1 2 .p 6p1 2. p a%%Pl a%%Pl
0Py Py 3—%P2 0.Py 3% P, 323) P,
s P(;I*’qm _ 3—:,,{1‘33 3—:,,51‘33 3%51‘33 3—:,,%1.33 3%31.33 3%%1.33
apT P ap! P 825 Py op? P ap2 Py aig Py
apl 1§ 8]72 1§ 825 Py apl 1§ a2 Py aig Py
L o} P6 op P6 ap§ P6 ap? P6 32% PG 32?, P J pl=ql* p2=g2*

(43)
see Appendix B for all of the elements of this matrix.

The dimension of this matrix must then be reduced (although there are
three choices available to both groups, the probabilities of these three choices
must sum to one, thus there are only two dimensions for each group). As is
the case with the single population, for there to be asymptotical stability,

the eigenvalues of the reduced matrix must have negative real parts.
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Figure 7: Matrix 2: Stable and non-stable fixed points assuming ¢ = 0.5
and allowing ¢ to increment between 0 and 1 by 0.01 and A to increment

between 0 and 3 by 0.1
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Figure 8: Matrix 4: Stable and non-stable fixed points assuming ¢ = 0.5
and allowing ¢ to increment between 0 and 1 by 0.01 and A to increment

between 0 and 3 by 0.1
100% 5
90% |
80% |
70% |
60% 1

50% 1

% Middle

40%

30%

20% 4

10% 4

0% T T T T T T T T T )
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

% Top

#Stable  [INon-stable  Nash Equilibria

23



4.3 Stability in specific matrices —Single population games

Tables 1 and 2 show the eigenvalues and stability characteristics for Matrices
2 and 4 for a variety of fixed points. In both cases, when § is very small
it is very difficult to achieve stability®. Since rote learning models require
0 = 0, rote learning models would generally not be stable in these cases. As
predicted, for both matrices, ¢ = 1 leads to non-stability. In Matrix 4, this
leads to the points around the pure strategy NE not being stable while the
fixed points nearer to the center of the simplex are stable. The larger A, the
more likely the fixed point is to be stable. Figures 7 and 8 show the same
information graphically. As can be seen from the figures, there are definite
regions of stability and non-stability.

Figures 9 and 10 show the regions of stability and non-stability as a
function of the parameter space. As was shown in the previous section, the
discount parameter (¢) does not affect the region of stability.

It is now possible, in conjunction with actual estimates of parameters
from experimental data to have specific predictions of long run behaviour

for a matrix ??.

5 Conclusion

This paper has set out to fill gaps in the theory of learning in games. A
continuous time model is proposed and the conditions for its fixed points
and their stability properties are derived. This, together with the payoff
matrix, provides a prediction about expected behaviour. As expected, the
Nash equilibrium of the payoff matrix is important. However, the parame-
ters of the model also play a large role in both the location of the fixed points
and in their stability. One of the features of this model is that with slight

modifications —adding initial propensities, allowing the discounts in the nu-

5Unless A is also small.
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Figure 9: Matrix 2 stable fixed points by parameter values when ¢ = 0.1

and 0.9
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Figure 10: Matrix 4 stable fixed points by parameter values when ¢ = 0.1
and 0.9
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merator and denominator to be independent of each other and adding an
initial experience term— the Camerer & Ho (1998¢) EWA model can be re-
covered and hence the Cheung & Friedman (1997) and Roth & Erev (1995)
models as well.

The location of the fixed points depends only on the underlying matrix,
A, and §. The A parameter pulls the fixed points towards the center of the
simplex as A becomes small. The role of § is harder to quantify. For Matrix
2, very small § values (0 < ¢ < 0.1) lead to fixed points in the region of
(0,0,1) which is very far form the Nash equilibria of the payoff matrix. In
both matrices however, small § values "pull” the fixed points away from
(0,0,1), these points are only stable for very small A\ values (A < 0.5 for
Matrix 2 and (A < 0.7 for Matrix 4).

The stability of fixed points depends both on the underlying payoff ma-
trix and on the parameter values ¢ and ¢. In the single population case, as
long as ¢ = (0,1), ¢ has no effect on stability. If ¢ = 1 (Fictitious play)
there is neutral stability.

Looking at two matrices, the ”"pure” rote learning version of this model
(constraining 0 = 0) does not lead to stable fixed points (unless A is very

small which would indicate a poorly specified model).
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A Some more on single population stability

Using a first order Taylor expansion to linearize P, (Equation 25) around
the fixed point Q* = [¢{ ¢5 q3]', and using the Jacobian J;« = P,

S .
P, ~ Pp+Jq (P—-Q) (44)
. . - .
Pt—Pq* ~ Jq*'(P—Q) (45)
. _ *
redefining W = P — Q*, .
Wi Jp - W (46)
where,
o0 T o0 T 0 T
_ p! _
SR . 0
53 5-P3 5-P3
9p1 Op2 9p3 P1=0} P2=0} P3=0}
and,
b} P = 0 In(6) _ e 1 4 §erP2 4 §elPs my 1Pt +my 2e*P2 + my ze’P?
Op1 b Op: b1 eAP1 + eAP2 4 eArs erP1 4 eAP2  eAPs
e PL(my 1 Pl 4my 0e P2 4my 3 P3)
ln(¢) (1 - (e%m +ekp2+ekp3)2
- _ )xml,lekpl (ekpl +58AP2+58AP3) + 2Xe?P1 (expl +58AP2+58AP3)(m1‘1e>‘p1 +m1,26>‘p2+m1,3e>‘p3)
(XP1 P21 e2p3)? (APL4eAp2edp3)?
O p - 2 In(¢) | p1 — et 4 572 4+ 5e 3\ (my1ePt + mapeP? + my e
2" Ops P eAPL 4 eAP2 4 eAp3 erPL 4 eAP2 + ePs
_6A8AP2 (m1,1e*P14+mq 2e P2 4my 3¢ P3)
B ln(¢) ( (E)\pl +8Apz+exp3)2
_>\m1,28>‘p2 (e>‘p1 +58>‘p2+58>‘p3) 2Xe P2 (expl +58>\p2+58>\p3)(m1‘16>\p1 +m1,26>‘p2+m1,3exp3)
(expl +expz+exp3)2 (e*m +e>\1’2+e>‘1’3)3
O p = 2 In(e) (e 4 5eM +5eM0 N\ (maaet 4+ mapet?? 4 magett
dps = Ops P eAP1 + eAP2 4 eps erP1 + erPz  eAps

ln(¢) _ SXe*P3(my 1e Pl 4my 2e*P24my 3e7P3)
(e)\pl +8Ap2+exp3)2

)\m1’38>‘p3 (e P145erP245erP3) + 2Xe P3 (e*P1 +58>‘p2+58>‘p3)(m1_1 e*P1 +m1,gexp2 +m1,3exp3)

(e>"’1 +e*P2+e*P3)2 (e*pl +e*P2+e*P3)3
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o0 - 0 Je P14 P2 4 §ePs 77”L2,16/\p1 —l—m2,2€>‘p2 +m2,36>‘p3
2B = () (p2 - (54)
Op1 op1 e PL 4 eAP2 4 eAP3 e PL 4 eAP2 4 eAP3
ln(¢) _ SAe Pl (m2,1:“’1 g 0e*P2 J;7'12,36“’3)
(e P1+8AP2+6>\1¢3) 5)
_ >\m2,18>‘p1 (58AP1 +e>‘p2+z§e>‘p3) + 2)\e?P1 (Sexpl +e>‘p2+58>‘p3)(m2‘1 eAP1 +m2,26>‘p2 +m2,3e>‘p3)
(expl +e>\p2+e)\p3)2 (expl +e>\p2+e>\p3)3
o0 - 0 §e P 4 A2 4 §elPs mz,leApl + m2,26>‘p2 + mz,ge>‘p3
>—P = Z—In(¢)(p2— (56)
Op2 Op1 e P1 4 eAP2 4 eAP3 e P1 4 eAP2 4 eAP3
In(¢) (1 - /\8“’2(m2,1i“’1+m2,ze“’2+2m2,3e“’3)
(e P1+e>\p2+e>\p3) ( 7)
_Amg)gekp? (58AP1 +8AP2+58APS) + 2)\e P2 (Sexpl +eAP2+5eAPS)(m2_1eM’1 +m2,23“’2+m2,3e“’3)
(ekm +exp2+exp3)2 (exm +exp2+exp3)3
o0 - 0 Je P14 P2 4 §ePs 77”L2,16/\p1 —l—m2,2€>‘p2 +m2,36>‘p3
Db = () (p2 - (59)
Jps op1 eAP1 4 eAP2 4 eAP3 eAP1 4 eAP2 4 eADP3
ln(¢) _ SXeP3 (m2,1:“’1 g 0e*P2 J;7'12,36“’3)
(e P1 +8AP2+EAP3) 9)
_>\m2,3e>‘p3 (58AP1 +e>‘p2+z§e>‘p3) + 2\e*P3 (Sexpl +e>‘p2+58>‘p3)(m2‘1exp1 +m2,26>‘p2+m2,3exp3)
(expl +e>\p2+e)\p3)2 (expl +e>\p2+e>\p3)3
0 - 0 §e P 4 §erP2 4 s m3,1eAp1 + m3,26>‘p2 + m3,3e>‘p3
>—P = Z—In(¢)(ps— (60)
Op1 Op1 e P1 4 eAP2 4 eAP3 e P14 eAP2 4 eAP3
In(¢) | — drerri (m3,1xexp1 +mg,2eP2 -‘;m3‘33>‘p3)
(e P1 +e>‘1’2+e*P3) 1)
_ )\mg,lekpl (5 P145e P2 4 P3) + 2Xe*P1 (5 P1 +eAP2+5eA1’3)(m3_1 e P1 +m3,gexp2 +m3,33“’3)
(ekm +exp2+exp3)2 (exm +exp2+exp3)3
o - 0 JerP1 4 §erP2 4 oAP3 ma1e™Pl + ma 0e P2 4 mg 3eP3
-—Ps = ——In($)|ps— (62)
Opa Op2 eAP1 4 eAP2 4 eAP3 eAP1 4 eAP2 4 eAP3
ln(¢) _ SxerP2 (m3,1:“’1 +mg 0e*P2 J;7'13,36“’3)
(e P1+8AP2+6>\1¢3) ( 3)
_>\m3,28>‘p2 (58AP1 +z§e>‘p2+e>‘p3) 2\e*P2 (Sexpl +e>‘p2+58>‘p3)(m3‘1exp1 +m3,26>‘p2+m3,3exp3)
(expl +e>\p2+e)\p3)2 (expl +e>\p2+e>\p3)3
0 - 0 §e P 4 §erP2 4 s m3,1eAp1 + m3,26>‘p2 + m3,3e>‘p3
>—P = Z—In(¢)(ps— (64)
Ops Ops e P1 + eAP2  eAps e P1 + eAP2 + eAps

In(¢) (1 - Ae*P3 (mg 1€ Pl 4mg 2e*P2+mg 3e P3)
(e”l +e>\p2+e)\p3)2

5)

)\mg,gekp3 (5eMP145eAP2 1 AP3) + 22e*P3 (5 P1 +eAP2+5eA1’3)(m3_1 eMP1 +m3,gexp2 +m3,33“’3)

(ekm +exp2+exp3)2 (exm +exp2+exp3)3

Using Haigh’s (1975) theorem to reduce the matrix, the entries of the n
by n transformation matrix Z are z;x = jirp — Jik+1 — Ji+1,k T Ji41k+1- SO
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that,

z z
Z — 1,1 1,2 . (66)
221 222
Letting,
* * *
X, = ml,le)‘ql + ml,ze)‘qZ + m1,3€/\q3 (67)
Xy = m2,16)‘q1 + m2726)‘q2 + m2,36/\q3 (68)
X3 = m3,16)‘q1 + m3726)\q2 + m3,36/\q3 (69)
E = M4 M4 (70)
By = Mi4§eM 4 gt (71)
Ey = 0 M4 e e 5l (72)
E; = 0 M 45’ 4 s (73)
In(¢) (2 + 2A(eMT — eM3) (%) +
21,1 = A ((&axq; 7e>‘qf)X1+(5exq; 7e>‘q§)X3+(m1‘3e>‘q§ 7m1,1exq;)E1+(m1‘3eAq; +m3,3exq§)E3 )34
2
In ¢ (1 + 2\(er2 — eM3) (%) +
21,2 = by ((5(6)\(1; —ekqg)Xrl-((seAq; —ekqg)X;;—i-(ml,gekq?f —ml,zexq;)EH—i-(mg_gexq; +m3,3exq§)E3 )35
E2
In ¢ (1 + 2\ (eM1 — erez) (%) +
22,1 = by 6(exqi§ 7e>‘qf)X2+(t56Aq; 7e>‘q§)X3+(m2,3e>‘q§ 7m2,1exq;)Ez+(m3‘1exq; 7m3‘3e>‘q§)E3 )?
2
Ing (2 +2\(e 2 — M5 ) (E2X2=FaXa)
Z272 = )\ ((SEMI; —EAqE)XQ-‘r((Se)\q; —ekqg)Xg—i—(mQ,ge)‘q?f —mz,Qexq;)EQ—F(ms,zexq; +m3,36M§)E3 )37
E2

For the model to be asymptotically stable, the eigenvalues of the lin-
earized equation around the fixed point have to have negative real parts
(Hirsch & Smale 1974). The eigenvalues of the Z matrix (Equation 32) are:

1 1 1
210+ 522+ 54/2112 — 2211200 + 2022 + 4210201

1 1 1
3211t 52223 \/21,12 — 22112090 + 2222 + 421222 1.

(78)
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B Two population stability

The Pt vectors for each of the populations are stacked. So that P;

[p1 p2 p3 p1 p2 p3] and,

1y,.1 1 1 2 2 2
In(¢")pi — In(') (s} +4d's )(m1,151 + i 985 + M7 353)
1\,.1 1 1 2 2 2
ln(¢1)p% — ln(¢1)(6 + s% +4's )(mglsé + m%gs% + m% 333)
P~ In(¢")p3 — In(p') (6" s + 5 5+ 53)(m3 57 + M3 985 + M3 353)
~ 2\2 2 2 2.2 1 1 1
In($?)pt — In(¢?) (s + d%s + 6%s )(m1,131 +mj] 983 + My 353)
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and using the same Taylor expansion and re-definition of P as with a single
population (Equations 28-30), J = P,. becomes,
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