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For a special class of bipartite states we calculate explicitly the asymptotic relative entropy of entanglement
Eg with respect to states having a positive partial transpose. This quantity is an upper bound to distillable
entanglement. The states considered are invariant under rotations of the fo@mwhere O is any orthogonal
matrix. We show that in this cadg;, is equal to another upper bound on distillable entanglement, constructed
by Rains. To perform these calculations, we have introduced a number of results that are interesting in their
own right: (i) the Rains bound is convex and continuo(is; under some weak assumption, the Rains bound
is an upper bound t&g; (iii) for states for which the relative entropy of entanglemgptis additive, the
Rains bound is equal tBg.
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I. INTRODUCTION ment[3], which is itself defined as an optimization:
In spite of the impressive recent progress in the theory of Er(p)= inf S(pl||o).
entanglemenitl], many fundamental questions or challenges oeD

still remain open. One of these issues is to decide whether a
given state is entangled or not. Another question is to findn this formula, S(p||c)=Tr(pIn p—pIn o) is the relative
criteria for the distillability of a state, i.e., whether pure stateentropy (the quantum mechanical analog of the Kullback-
entanglement can be recovered from the original state biceibler divergenceand the minimum is taken over all states
means of local operations and classical information exo in the convex seD. The relative entropy between two
change. states is a measure of distinguishability and can intuitively be
Since entangled states are a resource in many basic prtegarded as a kind of distance measure, although it violates
tocols in quantum computation and quantum communicationmnost of the axioms that are required of a distance measure
a need has emerged to quantify entanglement. This leads [8]. In the originally proposed definition of the relative en-
more advanced challenges: how much entanglement igopy of entanglement is the set of separable states, so that
needed to create a given state and how much entanglemeag(p) expresses the minimal distinguishability between the
can be recovered? given state and all possible separable states. When &sing
Since these questions lead to very high dimensional optias an upper bound to distillability, however, it is fruitful to
mization problems, it is often helpful or even inevitable to enlarge the seD to the set of states with positive partial
restrict oneself to states exhibiting a very high symmetrytransposéPPT) [4]. The corresponding minimal relative en-
The two most common one-parameter families of symmetridropy, the relative entropy of entanglement with respect to
states are the so-called Werner stdi2sand the isotropic PPT state§REEB, is generally smaller than thseparabil-
states, which are related to one another via the partial transty) relative entropy of entanglement while it still is an upper
position operation. A larger set of symmetric states, containbound to distillability; this is so because all PPT states have
ing these two sets as special cases, are the OO-invariadistillability zero. Hence, the REEP is a sharper bound on the
states, which are the states considered in this paper. distillability than the separability relent. This enlargement of
So far it is not known how to calculate distillation rates D has the additional benefit that the set of PPT states is much
for arbitrary states, and even for symmetric states this optieasier to characterize than the set of separable states, for
mization seems to be intractable. One possible way to pamwhich no general operational membership criterion exists.
tially circumvent this problem is to calculate good bounds Nevertheless, neither for the REEP nor for the relative
for the distillation rates. A well-known upper bound for the entropy of entanglement is there a general solution known of
distillable entanglement is the relative entropy of entanglethe optimization problem for arbitrary states, not even for the
otherwise simple case of two qubits. However, the calcula-
tions become tractable when restricting oneself to symmetric
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Er(p1® p,)<ERg(p1) + Egr(p,) is a strict inequality for some Lemma 1 (Rains Additivity) et p be a state and a PPT
states. It is expected, however, that this nonadditivity willstate, such thaEg(p)=S(p||o) and[p,o]=0. If the con-
become less severe for ttesymptotic relative entropy of dition

entanglement with respect to PPT statdREEP), which is

defined as the regularization l(po~1)T2|<1 (2
Ex(p)= IimEER(p@’”), holds, then the REEP is weakly additive pn i.e., Ex(p)

n—soll =ERg(p). If it satisfies the stronger condition
and which at the same time provides yet a sharper bound to 0<(po HTe=<] (3)

distillable entanglement.
The calculation of the AREEP was first done on Werner, ; " ;
X X hen the REEP is strongly additive, i.&Eg(p®@ 7)=E
stateq 10], showing that the asymptotic value can be a goodl+ Ex(7) holds for an arbgilt?/ary state. R ) =Er(p)

deal smaller than the single-copy value. Surprisingly, it turns Knowing the optimalo for a given state, it is straight-

out that on Werner states the AREEP is equal to anothefyyyard to check condition(2). Checking the additivity
upper bound on distillability, the so-called Rains boulB¢l therefore only requires one to calculate the REEP.

R(p)=inf S(p||o)+InTrlo 2. (1)
o IIl. CONVEXITY OF THE ASYMPTOTIC RELENT

One of the things we will show in this paper is that this By definition, the asymptotic version of a given gquantity
equality remains valid over the larger class of OO-invariantnherits most of the important properties directly from its
states. single-copy “parent” quantity. One such property, which will
To calculate the AREEP on OO-invariant states in a relaturn out to be very helpful to calculate the AREEP, is con-
tively simple way, we will make use of four ingredients: vexity. The REEP itself is known to be convex, but it is not
(1) First of all, the REEP is additive on a large part of the obvious that quantities of the fori,(p) :=E(p®")/n should
state space. This will be discussed in Sec. II. For this additivée convex functions ip too and, in fact, this does not hold
region, the calculation of the AREEP is trivial, as {lsengle-  in general. Although convexity might not hold for finite
copy) REEP for OO-invariant states has been calculated befor the REEP it becomes valid again in the asymptotic limit.
fore. Lemma 2 [9] Let E be a positive, subadditive, convex,
(2) We will make use of the convexity of the AREEP and tensor-commutative functional on the density matrices of
(recollected in Sec. IJland of the Rains bountoroven in  a Hilbert space. Then the asymptotic measuEé(p)
Sec. V). In Sec. Il we use this convexity to define the :=lim,_ ..(1/n)E(p®") exists and is convex and subadditive.
“minimal convex extension” of the AREEP from the addi- In the first calculation of the AREERL.0] great effort was
tive areas to the full state space. necessary to construct a lower bound to the AREEP. Utiliz-
(3) In Sec. V we will present a close connection betweening the convexity we are now able to do this in a much
the Rains boundR(p) and the AREEP. We will establish an simpler way. Indeed, for any convédifferentiable function
upper bound to the AREEP that will turn out to be tight onf, a lower bound td is given by any of its tangent planes
OO-invariant states.
(4) In Sec. VIB we will recall the basic properties of f(x)=f(y)+VIi(y)(x—y).
OO-invariant states resulting from their symmetry. It is ex-

actly this symmetry that makes the calculation feasible.  Gjven an open subs& where the functiorf is known, we

Using these results, we will give a complete calculation ofcan define the “minimal convex extension” of the function
the AREEP of OO-invariant states in Sec. VI and prove thaty

this quantity is equal to the Rains bound for these states. We

will summarize the results of the paper in Sec. VIl and state o _
a number of open problems. f(x)—ysggf(Y)Jer(Y)(X y).

II. ADDITIVITY OF RELATIVE ENTROPY

OF ENTANGLEMENT Note thatf is equal tof on D. Furthermoref is smaller than

or equal to any convex function that equélen D. As a
The additivity of the REEP was a folk conjecture, sup-maximum over affine functions it is itself convex.
ported by various numerical calculations and analytical case To make this bound a good candidate for an estimation to
studies. Nevertheless, it turned out to be wrplg The mis-  the AREEP, we need to know the AREEP on a sufficiently
leading numerical result can be explained in hindsight by théarge part of the state space. In fact the AREEP is easy to
fact that, indeed, in great parts of the state space the REEP ¢glculate on PPT states, where it is simply zero. But this is
perfectly additive; the nonadditive regions seem to be negliobviously too trivial a result, because this gives a lower

gible in size compared to the whole state space. bound equal to zero on the whole state space. The next
The following lemma of Rain§4] can be utilized to pin- greater set for which we can easily calculate the AREEP is
point regions where the REEP is additive. the set of states whetg;, is additive. A subset of this set can
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be found using the lemma of Rains. It will turn out that this R(p)=min{S(p||7):7=0, T r"2|<1}.

subset is large enough to yield a bound that eq&glsat

least for OO-invariant statgs The Rains bound itself is a continuous and convex function
of p.

IV. CONVEXITY AND CONTINUITY

OF THE RAINS BOUND
V. RELATION BETWEEN RAINS’ BOUND

Although the function that is to be minimized in Rains’ AND THE AREEP
bound, S(p||o) +InTrla 2|, is not convex ino over state
space, the minimum itself turns out to be convexpinWe
prove this by first showing that the minimization problem in
the calculation of the Rains bound can be converted to
convexproblem.

The results of the calculation of the AREEP on Werner
states sugge$¥] that this quantity might be connected with
5he qguantity(1) defined by Rains, and, moreover, that there
are connections between the minimizimgn Rains’ formula

To begin with, we can add a third term to the function to 2nd the asymptotic PPT stateappearing irEy,. Indeed, it
be minimized, namely—In Tr[ o], because this term is zero turns out that one can give a simple relation between these
anyway. Secondly, we can enlarge the set over which one hdwo quantities, if we require as an additional restriction that
to minimize from the set of normalized states to the et ¢ N Ed. (1) satisfies|o™2 2=0. If the restriction does not
—{s=0, T{s]<1}. This is so because the sum of the first hold the lemma might still be true, but we have not been able

e e imdan : to prove this.
two terms is independent of [le] and the third one mono- L
tonically decreases with increasing[ &i]; hence, the mini- Lemma 4An upper bound for the AREEP is given by
mal value must be found on the boundarySagorresponding ) . . .
to T{o]=1 and is, therefore, equal to the original minimum. R’ (p):=inf} S(p[|o) +In(Tr|o"2[) =ERx(p), (4)
The second and third terms can now be absorbed in the first
term: S(p||o) +InTrlo 2| —In Tro=S(p||o(Tr a/Trlo"2)).  where the asterisk means that the infimum is to be taken over
Defining all stateso satisfying
r=o(TralTr|o'?]), |oT2|T2=0, 5)

it is easy to check thatre S if and only if re 7={t _ _ -~ _
=0, Tit"2|<1}. Hence, the calculation of the Rains bound We will refer to the quantityR’(p) as themodified Rains

has been transformed to the minimization problem bound _ _ o
Proof. It can easily be seen that the lemma is valid if we
R(p)=minS(p||7). restricto to be a PPT state, since then the second term in Eq.
Te? (4) vanishes and we get the trivial inequalitif(p)

The i £ thi f . f he <ERg(p). This means that we can restrict ourselves to the
e importance of this transformation stems from the fact, o\ oo o 2 hon-PPT state, i.e., [Br72|>1.
that the resulting optimization problem is a so-called convex _ —
optimization problem: the function to be minimized is now LeTt g be an arbitrary non-PPT state such that
convex in 7, while the set over which the minimization is *=|o 2 2=0; then

performed is still convex. The latter statement follows di- .
rectly from the convexity of the negativity. Indeed,7if and 0@+ g®n
75 are inZ, then they are positive and have negativityl . g n:m
Hence, any convex combination of and 7, is positive and

has negativity<1 as well, and, therefore, belongs to the set i i , i
T is a PPT state. Taking this PPT state as a trial state in the

It is now easy to prove continuity and convexity of the OPtimization for the AREEP, we get

Rains bound itself. Continuity follows by noting that the

proof of continuity of the quantity inf.» S(p||o) in [11], on on onl| @M+ 0°"

whereD is a compact convex set oformalizedstates con- Er(p®")=S(p®"|[on) =S| p m

taining the maximally mixed state, does not actually depend 7

on the trace of the various in D. Hence, the theorem is also on

true for convex set® containing non-normalized states, and, <S| p®"|| ———

specifically, for the sef. 1+(Tro)"
Convexity is also proven in the standard way, as has been —

done forEg [3]. The standard proof again depends only on =nS(pl|o) +In[1+(Tra)"]. ®)

the convexity of the feasible set and not on the normalization

of the states it contains. In Eqg. (6) we have used the fact that the relative entropy is
In this way we have proven the following lemma. operator antimonotone in its second argumeé@orollary
Lemma 3 The calculation of the Rains bound can be re-5.12 of[8]), i.e., S(p|[o+ 7)<S(p|| o) for positive 7. Tak-

formulated as a convex minimization problem: ing the limitn— and using Tr>1 we get
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1 |n[1+(-|-r;)n] ral_question to ask is \_/v_hether there reaIIy_are s_t_a;te‘zar
Er(p)=lim=Eg(p®M=<lim S(p||o)+ ———— which |22 is not positive. We call states like thignega-
n—eell n—o n tive states. If they did not exist, then the modified Rains
— bound would just be equal to the original Rains bound. We
=S(p|lo) +InTro. (7 have performed numerical investigations that have shown

hat, indeed, binegative states exist, provided the dimensions
f the system are higher thanx2. For 2x2 systems, ex-
tensive calculations failed to produce binegative states,
* which suggests they might not exist in such systems. For
En(p)<inf S(p||o)+InTr|a| 2, higher dimensions, binegative states have been produced,
o and they always appear to be located close to the boundary
o ] o of state space, i.e., have a smallest eigenvalue which is very
WhTerTe the infimum is taken over all states satisfying  gmall. In the present setting, this is good news, because it
|o'2'2=0. u implies that the modified Rains bound will typically be close
Itis easy to see that, for PPT states|o'2[2=0. Hence, g the original Rains bound.
the feasible set in the minimization ER is a subset of the AS one Of the feW exact resu'ts on the existence Of bin_
one forR’, which is again a subset of the one RrThere-  egative states, we have been able to prove that pure states are

In order to get the best bound, we take the minimum over al
feasible states in Eq. (7), giving

fore, we have the inequalities never binegative.
' Lemma 5For any pure statgy), ||¢){]"2|T2=0.
Rip)=R'(p)=<Exr(p). Proof. Let |#) have a Schmidt decomposition

We also have the following theorem: [¥)=Zikilu@lv;); then

Theorem 1. For Eg-additive statesp [i.e., Egr(p) T T
=Eg(p)], the Rains bound is equal to the AREEP and is [90( 2= Nk jfui(us | @ o) o
additive.
Proof. We have, in generaR’ (p)<Eg(p). On the other and, exploiting the orthogonality of the vectdig) and of
hand, for additive statesEq(p)=EZ(p), and Ei(p) e vectorgv;),
<R’(p) by Lemma 4. ThereforeR’(p)=Eg(p)=Eg(p)
for all additivep. This also implies that the PPT statethat Tyl — 3. A/
is optimal forEg is also optimal forR’. v Zl_(i,j%,l MUl fugdu
To show thatR is also equal tdEg, we need to show that
this o is optimal forR as well. We use the reformulation of N/ T
the Rains bound as a convex minimization probl&(p) ® (o (oilloiv;])
=min{Sp||"):Tr|7'2|<1}. For the modified Rains bound, 2
we have the additional restriction on the feasible set that — 2 T
|772|T2=0. For clarity, let us writer for the optimalr for R (IE] (Nid)uiulfo;)vj] ) ’
and 7’ for the optimal one foR’. We have to show that
=7/, i.e., thatr is in the set for which72|"2=0. since only the terms with=I and j=k survive. Again by
Supposer were outside this set, then, following a general orthogonality, taking the square root amounts to removing
property of convex optimization problems, would have to  the square on the factok(\;)2. Now, one clearly sees that
be on the boundary of the set, i.ex] 72|72 would have to be  the resulting expression corresponds to a product state, i.e., a
positive and rank deficient. On the other hand, we alreadgeparable state. Hence, the partial transpose is still a state,
showed that the optimar’ for R’ for additive p must be  which proves thaty) is not binegative. [}
PPT, so that’ =o' and|o’"2|T2=¢"'. Therefore, the rank One might infer from this lemma, using convexity state-
deficiency of| 7' 2| "2 implies thato’ itself should be rank ments, that actually not even mixed states are binegative, but
deficient. However, ifp is not itself rank deficient, then this this is incorrect because the set of states that are not binega-
cannot be, because’ appears as second argument in thetive is not convex. Indeed, the absolute value mapping does
relative entropy and would then give an infinite relative en-not preserve convexity of a set.
tropy, contrary to the statement that actually minimizes it. In Sec. VI B we will show that no OO-invariant state is
This proves thaR'(p) =R(p) for full-rank, additivep. By  binegative either. We will see that conditi¢®) will be ful-
continuity of the Rains bound this must then also hold forfilled for the states we are considering in this paper. There-
rank-deficientp. fore, we will henceforth make no distinction betweRrand
Additivity of R for Eg-additive states follows by regular- R’.
izing both sides of the equalitiR(p) =Eg(p), and noting
that the right-hand side does not change. |
We have introduced the operation>|o 2|2 as a math-
ematical tool, and we doubt whether it has any real physical We will now apply the tools obtained in the previous sec-
significance(as was the case for the partial transpodiev-  tions to the complete calculation of the AREEP of OO-
ertheless, its usefulness is apparent from Theorem 1. A natiRvariant states.

1/2

VI. OO-INVARIANT STATES
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A. Calculating the AREEP on Werner states defined as the unique operator for whitlt® ¢= p® s for
To illustrate how the calculation of the AREEP on OO- all vectorsy and ¢, and the unnormalized projection on the
invariant states will proceed, we apply the method first onmaximally entangled stafé= Eij|ii Yjj|=d|¥)¥]|; hered

Werner states, reproducing the resultg 1. is the dimension of either subsystem. Every operator con-
Werner states can be written as tained in this commutant can be written as a linear combina-
p p tion of these three operators. To be a proper state such an
—p—+(1—p)— operator has to fulfill the two additional constraints of posi-
p(P)=p (1-p)—, " b
r_ Iy tivity and normalization.

As coordinates parametrizing the OO-invariant states, we
whereP, (P_) denotes the normalized projection onto the choose the expectation values of the three operatdrsand

symmetric(antisymmetri¢ subspace of dimension.=(d?> T in the given state. The expectation value of the identity,

+d)/2 andp is a real parameter ranging from 0 to 1. (1), gives us just the normalization, so we are left with the
First of all, we need to knog on these states. All states

with p<3 are PPT and, therefore, have bd and Eg

equal to zero. For all non-PPT Werner stapess, the mini-
mizing PPT state is the state with=3. Knowing this state,
we can easily write down the REEP for all Werner states. To

two free parameters:=(I') , andf:(JF),J. For future refer-
ence, we collect the basic formulas here for performing cal-
culations in this representation.

The traces of the basis operators are given by

calculate the AREEP we use the three steps introduced in the T 1]=d?,
previous three sections.

In the first step we use the lemma of Rains and check the T F]=d,
additivity condition(2). An easy and straightforward calcu-
lation leads to the result that all Werner states satisfyang Tr[}f?‘]=d.

<1/2+1/d are additive and, therefore, hakg equal toEy .

In the second step we calculate the Rains bound forhe inner products between them are easily calculated from
Werner states. Due to the high symmetry this is an easy taskze relations
already done by Rainb]. In fact, we do not need to com-

pute the Rains bound for all states. For our purposes, we will F?=1,
only need the Rains bound far=1.
In the last step we calculate the tangent to the REEP at the FF=FF=F

point p=1/2+1/d, which gives us the minimal convex ex-

tension for all states witip>1/2+1/d. It turns out that this ~o
minimal extension touches the Rains bound again at the F=dF.

point p=1. This is sufficient to prove that the minimal con- ) . N ' _

vex extension is equal t&5 everywhere. Indeed, by the From this basis{1,,I'}, an orthogonal basis of projectors
convexity of E; the tangent yields a lower bound and, fur- an be constructed. The operatois not positive and can be
thermore, also implies that the tangent is an upper bounyitten asl’=I", —F_; herel’, and'_ denote the positive

betweenp=1 andp=1/2+ 1/d, because at the end points it and negative parts df, respectively, and are defined by the
equalsE? . equationsX=X, —X_, |X|=X,+X_ (note that both the

In fact, for Werner states, the same result can easily b (_)sitive and negative parts are positive by this definjtion

obtained by the observation that the Rains bound and th incef?=1, ', +F_=1landF"_ = (1—F)/2. Furthermore, as
minimal convex extension are equal on the whole range of I'I'=F, I'<I*, . Therefore, the following operators form an
But for OO-invariant states the task of proving equality of orthogonal set of projectors and add up to the identity:
these two quantities will become quite difficult. Fortunately,

we can restrict ourselves to proving equality only on the Uzlﬁ‘/d,
border of the state space as this will be sufficient for the
calculation. Equality of the Rains bound arftf on the V=(1-1)/2,
whole state space will follow automatically from the convex-
ity of both quantities. W=(1+]F)/2—]l}/d
We will now turn to the calculation for the OO-invariant '
states. The traces of these projectors are
B. Using symmetries Triul=1,
The class of states we want to look at commute with all Tr[V]=d(d—1)/2,
unitaries of the form @ O, where O is an orthogonal matrix.
These so-called OO-invariant states lie in the commu&int Tr[W]=(d+2)(d—1)/2.

of the groupG={0O®O0}. The commutant is spanned by
three operators, the identity operatirthe flip operatorl’  The original basis is related to the orthogonal one by
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1=U+V+W,
F=U-V+W,
F=du.
For a general OO-invariant, we write

p=al+bF+cF.

The relation between the coefficieratsb, andc andf andf
is given by

1 d 1 1][a
fl=dl1 d 1||b],
f 1 1 dllc
and, inversely, by
a d+1 -1 -1 1
bjl=— | -1 d+1 -1 ||f
d(d—1)(d+2) R
c -1 -1 d+1]|f

In terms of the orthonormal basigs,can be written as

1—f d+df—2f
Taa—n Y T da—narn W ®

=3
The positivity of p thus amounts to the conditions
o=<f,
f<1,

f<d(1+f)/2.

The representation of the partial transpose a$ very easy,

sincelF and I are just each other’s partial transpose. Hence

the partial transpose @f is obtained by exchangingandl.

PHYSICAL REVIEW 46, 032310 (2002

(F)

3

0.5 T ®

FIG. 1. State space of OO-invariant stateased=3). These
states are parametrized by the two paramefterél’) and f=(F).
The outer triangle represents the values corresponding to states
(positivity). The gray area is the set of PPT OO-invariant states. The
region of non-PPT states is subdivided further into the three trian-
gular regions labeled, B, and C. For each of these regions the
optimal o appearing in the definition of the REEP is of a different
form.

From these formulas one can see that the set of OO-

invariant states constitutes a triangle in tHefj parameter
space, as plotted in Fig. 1. Taking the partial transpose

amounts to taking the mirror image around the livef.
Therefore, the set of PPT states are those contained in the
gray square &f, f<1 in Fig. 1.

What will make the calculation of the REEP easy for
these OO-invariant states is the existence of a “twirl” opera-
tion [2], a projection operatiofi that maps an arbitrary state
p to an OO-invariant stat€(p) and that preserves PPT-ness,

In the basiﬂ,]F,F}, taking the partial transpose corresponds,i.e., that maps every PPT state to an OO-invariant PPT state.

therefore, to interchanging the parametesd f. The par-
tial transposes of the projectot V, andW are easily cal-
culated to be

1
UT2=a(U—V+W),

vi= 9y Ty Ty
-2 2° 27"

w191
2 d

11
2°d

Vv L lW
+§—a .

Since

TABLE |. Expectation values in the optimal PPT state.

Region S s
A 1+(d—1A)f—f 1
d—f
o f
B 1+f
C 0 1
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S(p|la)=S(T(p)|[T(0)) ing PPT states be given by(F),=s and (F),=S. Then

this guarantees that the minimum relative entropy for an 0O0Jable | gives the expressions ferand s, depending on
invariant state is attained on another OO-invariant PPT stat&hich region the statg is in.

[4,6]. Hence, we can reduce the very high dimensional opti- To end this section, we give the formulas for the relative
mization problem to an optimization in our two-dimensional entropy and the negativity of OO-invariant states. Let the
OO-invariant state space. This optimization has been donstatesp ando be determined by their expectation valdeb

[6] and the m?nimizing PPT states are as follows. Let a statgq 5,5, respectively. Using the state representatig) in

p be determined by the expectation valug,=f and e orthogonal basifU,V, W}, the relative entropy o with
(F),=t. Similarly, let the expectation values in the optimiz- respect tao is given by

Sollo) fl f —_— 1—f | (1—f)_|_ Ve d+df-2f | d+df—2f
=—In| x| TrU+ ————In| ——|Tr n z
PHOT= ™ 5 did-1) \1-s d(d—1)(d+2) | d+ds—2s
fl f+1—fI 1—f+o|+o|f—2fI d+df—2f ©
=—Inz n n ~.
d's 2 '1-s 2d d+ds—2s
|
Recollecting that taking the partial transpose corresponds to i
interchangings and s, the negativity ofo is given by u= §
S VU . PPN M RV M VY 1-f
o =13 TV ga | "V [dd @i " V=1

s ]1-8 [d+ds-2s y )
=gt > } (10 d+df-2f

W= ——"—+.
d+ds—2s

The positivity condition onr implies that the absolute value

sign on the third term is superfluous. ~Inorder to perform the partial transpose, we replec¥’, W
In a similar way, we can show that for any OO-invariant py their partial transposes and express them in the original
stateo, the operatofo 2|2 is a state again, as we had prom- ,V,W again. This yields

ised. Indeed,
- R (po HTle=u'U+v'V+W'W,
S 1-s d+ds—2s
To|To— | T T T .
o=V G|V laa—nary W > with

An easy but somewhat lengthy calculation shows that this U= Wtuv W-uv u-w

expression can be rewritten in terms ©Of V, and W with 2 2 d ’
positive coefficients.

. WHv  u—w
C. Additive areas VT d ’

In the first step we want to identify the areas within the
state space triangle where the REEP is additive. W= W L
Lemma 6 Eg(p) is additive for all OO states satisfying 2 d -’

(Iy=-2/d and(I)<3—4/d+ (d—1)(I). . . e . ,
Proof. Utilizing Lemma 1 we only have to check condi- C0ndition(2) is then satisfied if and only ifu’(, [v’], and

tion (2) for every OO-invariant state and the corresponding |W'| are all<1. Forsands we have to insert the values of
optimal PPT states. In the {U,V,W} basis,po ! is di- the optimal PPT state, obtained at the end of the previous

rectly given by section.
After a tedious calculation, we get six conditions an ad-
po t=uU+vV+wWw, ditive state has to satisfy for each of the three regianB,
and C of Fig. 1. Fortunately, only two of this total of 18
with conditions can be violated by expectation values belonging
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(# the AREEP(Table Il). The two additivity conditions of the
Lemma correspond to the boundary line segments CD and
BC, respectively.

D. Rains upper bound

In the second step we want to calculate the Rains bound
(4) on the OO-invariant state space. All OO-invariant states
satisfy|o"2|T2=0, and we therefore restrict the optimization
to OO-invariant stategr. Since we want to use the Rains
bound as an upper bound, we do not need to know that our
o, thus restricted, is really the optimal one. But due to the
high symmetry of the OO states it can easily be shown that
the optimum over all possible statesis attained on OO
states anyway.

For additive states we have noted already tBatp)
=Egr(p)=R(p) so that calculating the REEP directly gives
the Rains bound. To calculate the Rains bound in the nonad-
ditive region ABCD, we have to perform the minimization
explicitly. Let the statep and o be determined by their

" expectation value$,f ands,s, respectively. Using the for-
mula for the relative entropy op (9) with respect to the
optimal o for the REEP(see Table | ih yields the Rains

FIG. 2. Additive areas for OO-invariant statemased=3). The  bound for additive states.

state space has been subdivided in three regions. According to For nonadditive states we have to include the negativity

Rains’ lemma, the states in the light-gray region are strongly addiof o, given by Eq.(10):

tive and those in the dark-gray region are weakly additive. The

region of additivity is delineated by the line segments BC and CD. |3| N |1_§| d+ds—2s

The points A, B, C, D, and E are defined in the text. TrloT2|= r > o

to normalized positive states. In tiferegion all states are

additive, in regiorB we must havé = —2/d, and in regiorC ~ As we will only use the above formula fgr in the nonad-

the condition isf<3—4/d+(d—1)f. These conditions give ditive region ABCD, it is immediately clear from Fig. 2 that

us the border between the additive and nonadditive alkas. the optimalo will have negatives. We can, therefore, sim-
The additive area for OO states is plotted in dark gray inplify the formula for the negativity to

Fig. 2 for the dimensiord=3. States in the light gray area

fulfill the condition of strong additivity. ~s |1-s| d+ds—2s 25
For later use, we have marked some points in the state Tr|o'2|= T3 T g =max15s)— R
space that will become important in the further calculation of
TABLE II. Points in state space of Fig. 2. Because of the “max” function appearing in this formula, we
- - - have to consider two cases ferand, in the end, choose the
Point (F) (I solution that gives the smallest value for the Rains bound.
A 1 o Consider first the casg>1; then the negativity equats
B d—a d_2 —2s/d and we have to minimize
d ~ ~
c 2 d-2 nS 2 e+ (d—df)in—
— 2 g tag|2tingrid-dhingy
d d
D -2 0 . d+df—2f
o +(d+df-2f)In———=
d+ds—2s
E 0 1
X 4-6d+d? d*(d-2) over s and s. This function has a single stationary point
d(d+2)-4 d(d+2)—-4 given by
Y —d? d(d—2) i
d(d+2)-4 d(d+2)-4 ~d?—df-2
(d?—2)f—df’
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. —2% quadratic equation. The end result is that, for the states on
S=———. the segment YX, the Rains bound is given by
(d?—2)f—df
However, the minimum we are looking for is a constrained 1+f 1-f d(1-f)

Ryx(p)= T“’l d(l+f)+ Tln

one: the parametersand s must be expectation values of d-1

positiveo. On inspection, the positivity conditions are never

satisfied at the stationary point for any choicefof corre- +1n dd+2)-4 —In2
sponding to a positive. Therefore, the stationary point is d?

outside the feasible sdthe state triangleand the con-
strained minimum will be found on the boundary of the fea-
sible set. This fact alone already rules out the present cade®
s>1, because we know that the optimaimust be closer to

the set of PPT states thanitself, in the sense that should 1+f -1d

have lower negativity thap. Indeed, settingr=p (which is Rxe(p) = ——In(d=2)+ ——Ing. (16)
certainly not optimal in the Rains bound yields a lower
value than one would get for ary with a larger negativity

(19

r the states on the segment XB the bound is given by

Figure 3 shows the Rains bound along the line segment
AB, for several dimensiond=3,4,5.

thanp.
We can, therefore, restrict ourselves to the casd. As
the negativity is then + 2s/d, the function to be minimized E. Minimal convex extension
is In this third and final step we calculate the minimal con-

vex extension of the additive aré8ee Fig. 4 This will turn

| d—2s 1| . f -1 out to be more complicated than in the Werner states ex-
n——+ ==| 2f Inx +(d—df)In— . ; ) ;
d 2d S s—1 ample. We will look at straight lines, each connecting one
point on the additivity border with one, well-chosen point on
. d+df-2f the line segment AB.
+(d+df-2f)In = 1y The simplest case is the part of the additivity border con-
d+ds—2s sisting of the line segment CD, because this line lies com-
The stationary point is pletely_in the “Werner” region, regiorB in Fig. 1, where,_
according to Eq(14), the REEP depends only on the flip
2+df expectation valué So, here, the two-dimensional problem is
S= qr2f (120 reduced to a one-dimensional one. The REEP in the Werner
triangle is given by
. (2+d)f
“ A 13 RE)

Again, s ands must be expectation values of positiveand
we must have thag<1. It turns out that the positivity con-
ditions are always fulfilled. The conditis<1, on the other 08
hand, is only satisfied for statgson or below the line going
through points C and Y. Therefore, the stationary point is the® 71
constrained minimum only for statgs in the quadrangle

09 b

AYCD. This leads to the solution for AYCD: 08¢ A
1 05
Raveolp)= 5[(1+f)|n(d—2)—2 Ind—(f—21)In(d+2)],
(14) 041
which now only depends on the flip expectation valnd %2
is an affine function of. . . . . . . f
For stateg in the remaining triangle CYB, the stationary %2 08 -06 -04  -02 0 0.2 04

point is outside the feasible set, so that the constrained mini- ) ] ] )
FIG. 3. Rains bound on the line segment Agee Fig. 2 in

mum will lie Orj the lines=1. Minimization of Eq.(11) over terms of the parametéy for three different values af=3,4,5. The

s, while fixing s=1, yields a quite cumbersome looking for- pound consists here of a linear pdgegment AY, Eq.(14)], a

mula. For later use, however, we will only need to know thecurvilinear part[segment YX, Eq.(15)] and again a linear part
resulting Rains bound on the line segment YB. The solutiorfsegment XB, Eq.(16)]. In this figure, R is measured in ebits,
consists of two cases, corresponding to either solution of aorresponding to base 2 logarithms.
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TABLE lll. Summary of results.

Region Er
PPT 0
A _ 1+ d-1)f-f .
Er, Eq.(9), with s= T ands=1
. f
B\AYCD Er, Eq.(9), with s=0 ands= ——
1+f
C\CYB Er, Eq.(9), with s=0 ands=1
AYCD Eq. (14)
CYB Affine along lines(18) between YX and BC
YX Eq. (15

On the line segment XY, the Rains bound is given by Eq.
(15). On the segment BC, and in fact to the right of it as well,
the Rains bound is equal #83=Eg and is given by Eq(9)
with s=0 ands=1 (region C of Fig. 1). Moreover, this
formula holds for all points on the ling4d8) within the ad-
ditivity region, allowing for the calculation of the derivative

FIG. 4. Aclose-up of the nonadditive OO-invariant states in Fig.of the Rains bound along the lin¢%8). Doing this at the
2, for the purpose of calculating the minimal convex extension topoints on the additivity border BC yields the result that, for
the AREEP. In region AYCD, the minimal convex extension de-every line (18), the tangent to the Rains bound at the start

pends only, affinely, ori [Eq. (17)]. In region BCY, the minimal
convex extension is affine along the lines depicted ligieen by
Eq. (18)].

(1+6) 1+
2 "2

(- 1-f
2 "o

ER(f):In 2+

As lower bound for the AREEP we get

U JER(T)
ER(1,T)=Ex(—20d) + (f +20d) —
d f=—2/d
P A 1

which happens to be identical to the Rains bo(t) in the

whole region AYCD. So the upper and lower bounds equal

each other within this region and, henés, is equal to the
Rains bound in AYCD.

NG
The situation for the remaining triangle YCB is somewhat -1 -

more complicated. To calculatEg we consider a set of

straight lines connecting points on the line segment BC with

points on the segment XY and given by

p[d*~2+(d—2)p]

=P =2 - 2p

(18

These lines are parametrized pywhich runs from—2/(d
+2) to —d/2. Recall that the line XY is given by=(1
+f)d/2 and BC byf=3—4/d+(d—1)f.

point (on segment BCtouches the Rains bound again at the
end point(segment XY. By convexity of E; and of the
Rains bound, and by the fact that the Rains bound is an upper

oo
R
16<.
1ad.
12
1o
08d.
06 o

044

024

FIG. 5. Contour plot of the AREEE for the OO-invariant
states, parametrized tf)andf (d=3). Superimposed on this plot
are the lines separating the different regions defined in the text
(regionsA, B, andC, the PPT set, the set of additive states, and the
regions AYCD and CYB. In this figure,Ef is measured in ebits,
corresponding to base 2 logarithms.
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bound onEg and the tangent a lower bound, it follows that the AREEP and the Rains bound and seems to suggest that
bothEj; and the Rains bound must coincide with this tangenboth regularize to the same quantil. Unfortunately, in its
and, hence, be affine along each of the lin&®). We con-  current form, the lemma is weakened by the additional re-
clude thatE}; is equal to the Rains bound also in the remain-quirement on the states, over which the Rains bound is
ing region YCB. minimized, that the quantityo 2|2 should be positive. We
have coined the term binegative states for those states that
violate this requirement and we have made some initial in-
o _ B _ _ vestigations into the question of their existence. Specifically,
We finalize the calculation oEg on the OO-invariant e showed that for the case of OO-invariant statess not
states by summarizing all the results obtained for the differpinegative, so that the lemma can be used here at full
ent regions in Table IIl. Figure 5 shows a contour ploEgf  strength. If it turned out that the extra requirement can al-
for the casel=3. Furthermore, the Rains bound is equal toways be removed, in one way or another, then the lemma

F. Summary of results

Eg in any of these regions. could directly be used to prove Rains’ suggestion tBat
=R".
VII. CONCLUSION For the time being, we have been able to show that at

) ) ) least forEg-additive stateg the Rains bound and the REEP

In thlsxpaper, we have considered the calculation of theyre equaland, of course, also equal to their regularized ver-
AREEPEG, for the class of OO-invariant states, generalizinggjong.
the results of10], which dealt only with the class of Werner  ysing these results, we have calculated the AREEP for
states. This has been achieved using four basic ingredient§o-invariant states and it followed as a by-product of the
properties of the REEER, properties of the Rains bou®l  ca|culation that the Rains bound is identical B§ for the
(1), and a deep connection between these two quankifes oQ-invariant states.
andR. The final cornerstone of the calculation is the symme- This last result could be taken as a hint that the Rains

try inherent in the OO-invariant statg§]. bound might be additive everywhere, in contrastg. If
The relevant properties of the REEP are that it is an adtnjs were true, then this would imply that the AREEP is

ditive entanglement measure in a large region of state SPagfecisely equal to thénonregularizeRains bound and, fur-

[4] and that the AREEP is convex everywhe®. This con-  thermore, that it can be calculated efficiently.

vexity allows us to use the “minimal convex extension” con-

struction as a lower bound.

We have shown here that the Rains bound is also convex
and continuous, and that the calculation of it can be reformu-
lated as a convex optimization problem, which implies, by This work has been supported by Project No. GOA-
the way, that this problem can be solved efficiently and doe#efisto-666 (Belgium), the EPSRC(U.K.), the European
not suffer from multiple local optima. Union project EQUIP, the Deutsche Forschungsgemeinschaft

We have also made explicit the techniques that were aliGermany, and the European Science Foundation. K.A.
ready employed if10] implicitly, resulting in Lemma 4. wishes to thank J. Eisert, M. Plenio, F. Verstraete, J. De-
This lemma shows that there is a deep connection betwedmene, and E. Rains for fruitful discussions and remarks.
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