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Asymptotic relative entropy of entanglement for orthogonally invariant states
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For a special class of bipartite states we calculate explicitly the asymptotic relative entropy of entanglement
ER

` with respect to states having a positive partial transpose. This quantity is an upper bound to distillable
entanglement. The states considered are invariant under rotations of the form O^ O, where O is any orthogonal
matrix. We show that in this caseER

` is equal to another upper bound on distillable entanglement, constructed
by Rains. To perform these calculations, we have introduced a number of results that are interesting in their
own right: ~i! the Rains bound is convex and continuous;~ii ! under some weak assumption, the Rains bound
is an upper bound toER

` ; ~iii ! for states for which the relative entropy of entanglementER is additive, the
Rains bound is equal toER .
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I. INTRODUCTION

In spite of the impressive recent progress in the theory
entanglement@1#, many fundamental questions or challeng
still remain open. One of these issues is to decide wheth
given state is entangled or not. Another question is to fi
criteria for the distillability of a state, i.e., whether pure sta
entanglement can be recovered from the original state
means of local operations and classical information
change.

Since entangled states are a resource in many basic
tocols in quantum computation and quantum communicat
a need has emerged to quantify entanglement. This lead
more advanced challenges: how much entanglemen
needed to create a given state and how much entangle
can be recovered?

Since these questions lead to very high dimensional o
mization problems, it is often helpful or even inevitable
restrict oneself to states exhibiting a very high symme
The two most common one-parameter families of symme
states are the so-called Werner states@2# and the isotropic
states, which are related to one another via the partial tr
position operation. A larger set of symmetric states, conta
ing these two sets as special cases, are the OO-inva
states, which are the states considered in this paper.

So far it is not known how to calculate distillation rate
for arbitrary states, and even for symmetric states this o
mization seems to be intractable. One possible way to
tially circumvent this problem is to calculate good boun
for the distillation rates. A well-known upper bound for th
distillable entanglement is the relative entropy of entang
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ment @3#, which is itself defined as an optimization:

ER~r!5 inf
sPD

S~ruus!.

In this formula, S(ruus)5Tr(r ln r2r ln s) is the relative
entropy ~the quantum mechanical analog of the Kullbac
Leibler divergence! and the minimum is taken over all state
s in the convex setD. The relative entropy between tw
states is a measure of distinguishability and can intuitively
regarded as a kind of distance measure, although it viol
most of the axioms that are required of a distance mea
@3#. In the originally proposed definition of the relative e
tropy of entanglement,D is the set of separable states, so th
ER(r) expresses the minimal distinguishability between
given state and all possible separable states. When usinER
as an upper bound to distillability, however, it is fruitful t
enlarge the setD to the set of states with positive partia
transpose~PPT! @4#. The corresponding minimal relative en
tropy, the relative entropy of entanglement with respect
PPT states~REEP!, is generally smaller than the~separabil-
ity! relative entropy of entanglement while it still is an upp
bound to distillability; this is so because all PPT states h
distillability zero. Hence, the REEP is a sharper bound on
distillability than the separability relent. This enlargement
D has the additional benefit that the set of PPT states is m
easier to characterize than the set of separable states
which no general operational membership criterion exists

Nevertheless, neither for the REEP nor for the relat
entropy of entanglement is there a general solution known
the optimization problem for arbitrary states, not even for
otherwise simple case of two qubits. However, the calcu
tions become tractable when restricting oneself to symme
states.

Contrary to earlier conjectures, neither the REEP nor
relative entropy of entanglement is additive, i.e
©2002 The American Physical Society10-1
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ER(r1^ r2)<ER(r1)1ER(r2) is a strict inequality for some
states. It is expected, however, that this nonadditivity w
become less severe for theasymptotic relative entropy o
entanglement with respect to PPT states~AREEP!, which is
defined as the regularization

ER
`~r!5 lim

n→`

1

n
ER~r ^ n!,

and which at the same time provides yet a sharper boun
distillable entanglement.

The calculation of the AREEP was first done on Wern
states@10#, showing that the asymptotic value can be a go
deal smaller than the single-copy value. Surprisingly, it tu
out that on Werner states the AREEP is equal to ano
upper bound on distillability, the so-called Rains bound@5#

R~r!5 inf
s

S~ruus!1 ln TrusT2u. ~1!

One of the things we will show in this paper is that th
equality remains valid over the larger class of OO-invari
states.

To calculate the AREEP on OO-invariant states in a re
tively simple way, we will make use of four ingredients:

~1! First of all, the REEP is additive on a large part of t
state space. This will be discussed in Sec. II. For this addi
region, the calculation of the AREEP is trivial, as the~single-
copy! REEP for OO-invariant states has been calculated
fore.

~2! We will make use of the convexity of the AREE
~recollected in Sec. III! and of the Rains bound~proven in
Sec. IV!. In Sec. III we use this convexity to define th
‘‘minimal convex extension’’ of the AREEP from the add
tive areas to the full state space.

~3! In Sec. V we will present a close connection betwe
the Rains boundR(r) and the AREEP. We will establish a
upper bound to the AREEP that will turn out to be tight
OO-invariant states.

~4! In Sec. VI B we will recall the basic properties o
OO-invariant states resulting from their symmetry. It is e
actly this symmetry that makes the calculation feasible.

Using these results, we will give a complete calculation
the AREEP of OO-invariant states in Sec. VI and prove t
this quantity is equal to the Rains bound for these states.
will summarize the results of the paper in Sec. VII and st
a number of open problems.

II. ADDITIVITY OF RELATIVE ENTROPY
OF ENTANGLEMENT

The additivity of the REEP was a folk conjecture, su
ported by various numerical calculations and analytical c
studies. Nevertheless, it turned out to be wrong@6#. The mis-
leading numerical result can be explained in hindsight by
fact that, indeed, in great parts of the state space the REE
perfectly additive; the nonadditive regions seem to be ne
gible in size compared to the whole state space.

The following lemma of Rains@4# can be utilized to pin-
point regions where the REEP is additive.
03231
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Lemma 1 (Rains Additivity). Let r be a state ands a PPT
state, such thatER(r)5S(ruus) and @r,s#50. If the con-
dition

u~rs21!T2u<1 ~2!

holds, then the REEP is weakly additive onr, i.e., ER
`(r)

5ER(r). If it satisfies the stronger condition

0<~rs21!T2<1 ~3!

then the REEP is strongly additive, i.e.,ER(r ^ t)5ER(r)
1ER(t) holds for an arbitrary statet.

Knowing the optimals for a given stater, it is straight-
forward to check condition~2!. Checking the additivity
therefore only requires one to calculate the REEP.

III. CONVEXITY OF THE ASYMPTOTIC RELENT

By definition, the asymptotic version of a given quanti
inherits most of the important properties directly from
single-copy ‘‘parent’’ quantity. One such property, which w
turn out to be very helpful to calculate the AREEP, is co
vexity. The REEP itself is known to be convex, but it is n
obvious that quantities of the formEn(r)ªE(r ^ n)/n should
be convex functions inr too and, in fact, this does not hol
in general. Although convexity might not hold for finiten,
for the REEP it becomes valid again in the asymptotic lim

Lemma 2 [9]. Let E be a positive, subadditive, convex
and tensor-commutative functional on the density matrice
a Hilbert space. Then the asymptotic measureE`(r)
ª limn→`(1/n)E(r ^ n) exists and is convex and subadditiv

In the first calculation of the AREEP@10# great effort was
necessary to construct a lower bound to the AREEP. Uti
ing the convexity we are now able to do this in a mu
simpler way. Indeed, for any convex~differentiable! function
f, a lower bound tof is given by any of its tangent planes

f ~x!> f ~y!1¹ f ~y!~x2y!.

Given an open subsetD where the functionf is known, we
can define the ‘‘minimal convex extension’’ of the functio
by

f̄ ~x!5 sup
yPD

f ~y!1¹ f ~y!~x2y!.

Note thatf̄ is equal tof on D. Furthermore,f̄ is smaller than
or equal to any convex function that equalsf on D. As a
maximum over affine functions it is itself convex.

To make this bound a good candidate for an estimation
the AREEP, we need to know the AREEP on a sufficien
large part of the state space. In fact the AREEP is eas
calculate on PPT states, where it is simply zero. But this
obviously too trivial a result, because this gives a low
bound equal to zero on the whole state space. The n
greater set for which we can easily calculate the AREEP
the set of states whereER

` is additive. A subset of this set ca
0-2
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be found using the lemma of Rains. It will turn out that th
subset is large enough to yield a bound that equalsER

` ~at
least for OO-invariant states!.

IV. CONVEXITY AND CONTINUITY
OF THE RAINS BOUND

Although the function that is to be minimized in Rain
bound,S(ruus)1 ln TrusT2u, is not convex ins over state
space, the minimum itself turns out to be convex inr. We
prove this by first showing that the minimization problem
the calculation of the Rains bound can be converted t
convexproblem.

To begin with, we can add a third term to the function
be minimized, namely,2 ln Tr@s#, because this term is zer
anyway. Secondly, we can enlarge the set over which one
to minimize from the set of normalized states to the seS
5$s>0, Tr@s#<1%. This is so because the sum of the fir
two terms is independent of Tr@s# and the third one mono
tonically decreases with increasing Tr@s#; hence, the mini-
mal value must be found on the boundary ofS corresponding
to Tr@s#51 and is, therefore, equal to the original minimum
The second and third terms can now be absorbed in the
term: S(ruus)1 ln TrusT2u2 ln Tr s5S(ruus„Tr s/TrusT2u)….
Defining

t5s~Tr s/TrusT2u!,

it is easy to check thatsPS if and only if tPT5$t
>0, TrutT2u<1%. Hence, the calculation of the Rains bou
has been transformed to the minimization problem

R~r!5min
tPT

S~ruut!.

The importance of this transformation stems from the f
that the resulting optimization problem is a so-called conv
optimization problem: the function to be minimized is no
convex int, while the set over which the minimization i
performed is still convex. The latter statement follows
rectly from the convexity of the negativity. Indeed, ift1 and
t2 are inT, then they are positive and have negativity<1.
Hence, any convex combination oft1 andt2 is positive and
has negativity<1 as well, and, therefore, belongs to the s
T.

It is now easy to prove continuity and convexity of th
Rains bound itself. Continuity follows by noting that th
proof of continuity of the quantity infsPD S(ruus) in @11#,
whereD is a compact convex set ofnormalizedstates con-
taining the maximally mixed state, does not actually depe
on the trace of the variouss in D. Hence, the theorem is als
true for convex setsD containing non-normalized states, an
specifically, for the setT.

Convexity is also proven in the standard way, as has b
done forER @3#. The standard proof again depends only
the convexity of the feasible set and not on the normaliza
of the states it contains.

In this way we have proven the following lemma.
Lemma 3. The calculation of the Rains bound can be

formulated as a convex minimization problem:
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R~r!5min$S~ruut!:t>0, TrutT2u<1%.

The Rains bound itself is a continuous and convex funct
of r.

V. RELATION BETWEEN RAINS’ BOUND
AND THE AREEP

The results of the calculation of the AREEP on Wern
states suggest@7# that this quantity might be connected wit
the quantity~1! defined by Rains, and, moreover, that the
are connections between the minimizings in Rains’ formula
and the asymptotic PPT states appearing inER

` . Indeed, it
turns out that one can give a simple relation between th
two quantities, if we require as an additional restriction th
s in Eq. ~1! satisfiesusT2uT2>0. If the restriction does no
hold the lemma might still be true, but we have not been a
to prove this.

Lemma 4. An upper bound for the AREEP is given by

R8~r!ª infs* S~ruus!1 ln~TrusT2u!>ER
`~r!, ~4!

where the asterisk means that the infimum is to be taken o
all statess satisfying

usT2uT2>0. ~5!

We will refer to the quantityR8(r) as themodified Rains
bound.

Proof. It can easily be seen that the lemma is valid if w
restricts to be a PPT state, since then the second term in
~4! vanishes and we get the trivial inequalityER

`(r)
<ER(r). This means that we can restrict ourselves to
case wheres is a non-PPT state, i.e., TrusT2u.1.

Let s be an arbitrary non-PPT state such thats̄
ªusT2uT2>0; then

sn5
s ^ n1s̄ ^ n

11~Tr s̄ !n

is a PPT state. Taking this PPT state as a trial state in
optimization for the AREEP, we get

ER~r ^ n!<S~r ^ nuusn!5SS r ^ nUU s ^ n1s̄ ^ n

11~Tr s̄ !nD
<SS r ^ nUU s ^ n

11~Tr s̄ !nD
5nS~ruus!1 ln@11~Tr s̄ !n#. ~6!

In Eq. ~6! we have used the fact that the relative entropy
operator antimonotone in its second argument~Corollary
5.12 of @8#!, i.e., S(ruus1t)<S(ruus) for positive t. Tak-
ing the limit n→` and using Trs̄.1 we get
0-3
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ER
`~r!5 lim

n→`

1

n
ER~r ^ n!< lim

n→`

S~ruus!1
ln@11~Tr s̄ !n#

n

5S~ruus!1 ln Tr s̄. ~7!

In order to get the best bound, we take the minimum over
feasible statess in Eq. ~7!, giving

ER
`~r!< inf

s

*
S~ruus!1 ln TrusuT2,

where the infimum is taken over all statess satisfying
usT2uT2>0. j

It is easy to see that, for PPT statess, usT2uT2>0. Hence,
the feasible set in the minimization ofER is a subset of the
one forR8, which is again a subset of the one forR. There-
fore, we have the inequalities

R~r!<R8~r!<ER~r!.

We also have the following theorem:
Theorem 1. For ER-additive states r @i.e., ER(r)

5ER
`(r)], the Rains bound is equal to the AREEP and

additive.
Proof. We have, in general,R8(r)<ER(r). On the other

hand, for additive statesER(r)5ER
`(r), and ER

`(r)
<R8(r) by Lemma 4. Therefore,R8(r)5ER(r)5ER

`(r)
for all additiver. This also implies that the PPT states that
is optimal forER is also optimal forR8.

To show thatR is also equal toER , we need to show tha
this s is optimal forR as well. We use the reformulation o
the Rains bound as a convex minimization problemR(r)
5mint$S(ruut):TrutT2u<1%. For the modified Rains bound
we have the additional restriction on the feasible set t
utT2uT2>0. For clarity, let us writet for the optimalt for R
andt8 for the optimal one forR8. We have to show thatt
5t8, i.e., thatt is in the set for whichutT2uT2>0.

Supposet were outside this set, then, following a gene
property of convex optimization problems,t8 would have to
be on the boundary of the set, i.e.,ut8T2uT2 would have to be
positive and rank deficient. On the other hand, we alre
showed that the optimals8 for R8 for additive r must be
PPT, so thatt85s8 and us8T2uT25s8. Therefore, the rank
deficiency ofut8T2uT2 implies thats8 itself should be rank
deficient. However, ifr is not itself rank deficient, then thi
cannot be, becauses8 appears as second argument in t
relative entropy and would then give an infinite relative e
tropy, contrary to the statement thats8 actually minimizes it.
This proves thatR8(r)5R(r) for full-rank, additiver. By
continuity of the Rains bound this must then also hold
rank-deficientr.

Additivity of R for ER-additive states follows by regular
izing both sides of the equalityR(r)5ER

`(r), and noting
that the right-hand side does not change. j

We have introduced the operations°usT2uT2 as a math-
ematical tool, and we doubt whether it has any real phys
significance~as was the case for the partial transpose!. Nev-
ertheless, its usefulness is apparent from Theorem 1. A n
03231
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ral question to ask is whether there really are statess for
which usT2uT2 is not positive. We call states like thisbinega-
tive states. If they did not exist, then the modified Rai
bound would just be equal to the original Rains bound.
have performed numerical investigations that have sho
that, indeed, binegative states exist, provided the dimens
of the system are higher than 232. For 232 systems, ex-
tensive calculations failed to produce binegative sta
which suggests they might not exist in such systems.
higher dimensions, binegative states have been produ
and they always appear to be located close to the boun
of state space, i.e., have a smallest eigenvalue which is
small. In the present setting, this is good news, becaus
implies that the modified Rains bound will typically be clo
to the original Rains bound.

As one of the few exact results on the existence of b
egative states, we have been able to prove that pure state
never binegative.

Lemma 5. For any pure stateuc&, uuc&^cuT2uT2>0.
Proof. Let uc& have a Schmidt decompositio

uc&5( il i uui& ^ uv i&; then

uc&^cuT25( i , jl il j uui&^uj u ^ uv i&^v j uT

and, exploiting the orthogonality of the vectorsuui& and of
the vectorsuv j&,

zuc&^cuT2z5S (
i , j ,k,l

l il jlkl l uui&^uj uuuk&^ul u

^ (uvk&^v l uuv i&^v j u!TD 1/2

5S (
i , j

~l il j !
2uui&^ui u ^ uv j&^v j uTD 1/2

,

since only the terms withi 5 l and j 5k survive. Again by
orthogonality, taking the square root amounts to remov
the square on the factor (l il j )

2. Now, one clearly sees tha
the resulting expression corresponds to a product state, i.
separable state. Hence, the partial transpose is still a s
which proves thatuc& is not binegative. j

One might infer from this lemma, using convexity stat
ments, that actually not even mixed states are binegative
this is incorrect because the set of states that are not bin
tive is not convex. Indeed, the absolute value mapping d
not preserve convexity of a set.

In Sec. VI B we will show that no OO-invariant state
binegative either. We will see that condition~5! will be ful-
filled for the states we are considering in this paper. The
fore, we will henceforth make no distinction betweenR and
R8.

VI. OO-INVARIANT STATES

We will now apply the tools obtained in the previous se
tions to the complete calculation of the AREEP of OO
invariant states.
0-4
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A. Calculating the AREEP on Werner states

To illustrate how the calculation of the AREEP on OO
invariant states will proceed, we apply the method first
Werner states, reproducing the results of@10#.

Werner states can be written as

r~p!5p
P2

r 2
1~12p!

P1

r 1
,

whereP1 (P2) denotes the normalized projection onto t
symmetric~antisymmetric! subspace of dimensionr 65(d2

6d)/2 andp is a real parameter ranging from 0 to 1.
First of all, we need to knowER on these states. All state

with p< 1
2 are PPT and, therefore, have bothER and ER

`

equal to zero. For all non-PPT Werner statesp. 1
2 , the mini-

mizing PPT state is the state withp5 1
2 . Knowing this state,

we can easily write down the REEP for all Werner states.
calculate the AREEP we use the three steps introduced in
previous three sections.

In the first step we use the lemma of Rains and check
additivity condition~2!. An easy and straightforward calcu
lation leads to the result that all Werner states satisfyinp
<1/211/d are additive and, therefore, haveER equal toER

` .
In the second step we calculate the Rains bound

Werner states. Due to the high symmetry this is an easy t
already done by Rains@5#. In fact, we do not need to com
pute the Rains bound for all states. For our purposes, we
only need the Rains bound forp51.

In the last step we calculate the tangent to the REEP a
point p51/211/d, which gives us the minimal convex ex
tension for all states withp.1/211/d. It turns out that this
minimal extension touches the Rains bound again at
point p51. This is sufficient to prove that the minimal con
vex extension is equal toER

` everywhere. Indeed, by th
convexity of ER

` the tangent yields a lower bound and, fu
thermore, also implies that the tangent is an upper bo
betweenp51 andp51/211/d, because at the end points
equalsER

` .
In fact, for Werner states, the same result can easily

obtained by the observation that the Rains bound and
minimal convex extension are equal on the whole range op.
But for OO-invariant states the task of proving equality
these two quantities will become quite difficult. Fortunate
we can restrict ourselves to proving equality only on t
border of the state space as this will be sufficient for
calculation. Equality of the Rains bound andER

` on the
whole state space will follow automatically from the conve
ity of both quantities.

We will now turn to the calculation for the OO-invarian
states.

B. Using symmetries

The class of states we want to look at commute with
unitaries of the form Ô O, where O is an orthogonal matrix
These so-called OO-invariant states lie in the commutantG8
of the groupG5$O^ O%. The commutant is spanned b
three operators, the identity operator1, the flip operatorF
03231
n

o
he

e

r
k,

ill

he

e

d

e
e

f
,

e

ll

defined as the unique operator for whichFc ^ f5f ^ c for
all vectorsc andf, and the unnormalized projection on th

maximally entangled stateF̂5( i j u i i &^ j j u5duC&^Cu; here,d
is the dimension of either subsystem. Every operator c
tained in this commutant can be written as a linear combi
tion of these three operators. To be a proper state suc
operator has to fulfill the two additional constraints of po
tivity and normalization.

As coordinates parametrizing the OO-invariant states,
choose the expectation values of the three operators1, F, and

F̂ in the given state. The expectation value of the ident
^1&r , gives us just the normalization, so we are left with t

two free parametersfª^F&r and f̂ª^F̂&r . For future refer-
ence, we collect the basic formulas here for performing c
culations in this representation.

The traces of the basis operators are given by

Tr@1#5d2,

Tr@F#5d,

Tr@ F̂#5d.

The inner products between them are easily calculated f
the relations

F251,

FF̂5F̂F5F̂,

F̂25dF.

From this basis$1,F,F̂%, an orthogonal basis of projector
can be constructed. The operatorF is not positive and can be
written asF5F12F2 ; hereF1 andF2 denote the positive
and negative parts ofF, respectively, and are defined by th
equationsX5X12X2 , uXu5X11X2 ~note that both the
positive and negative parts are positive by this definitio!.
SinceF251, F11F251 andF25(12F)/2. Furthermore, as

FF̂5F̂, F̂,F1 . Therefore, the following operators form a
orthogonal set of projectors and add up to the identity:

U5F̂/d,

V5~12F!/2,

W5~11F!/22F̂/d.

The traces of these projectors are

Tr @U#51,

Tr @V#5d~d21!/2,

Tr @W#5~d12!~d21!/2.

The original basis is related to the orthogonal one by
0-5
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15U1V1W,

F5U2V1W,

F̂5dU.

For a general OO-invariantr, we write

r5a11bF1cF̂.

The relation between the coefficientsa, b, andc and f and f̂
is given by

F 1

f

f̂
G5dF d 1 1

1 d 1

1 1 d
GF a

b

c
G ,

and, inversely, by

F a

b

c
G5

1

d~d21!~d12! F d11 21 21

21 d11 21

21 21 d11
GF 1

f

f̂
G .

In terms of the orthonormal basis,r can be written as

r5
f̂

d
U1

12 f

d~d21!
V1

d1d f22 f̂

d~d21!~d12!
W. ~8!

The positivity ofr thus amounts to the conditions

0< f̂ ,

f <1,

f̂ <d~11 f !/2.

The representation of the partial transpose ofr is very easy,
sinceF and F̂ are just each other’s partial transpose. Hen
the partial transpose ofr is obtained by exchangingF andF̂.
In the basis$1,F,F̂%, taking the partial transpose correspon
therefore, to interchanging the parametersf and f̂ . The par-
tial transposes of the projectorsU, V, andW are easily cal-
culated to be

UT25
1

d
~U2V1W!,

VT25
12d

2
U1

1

2
V1

1

2
W,

WT25S 11d

2
2

1

dDU1S 1

2
1

1

dDV1S 1

2
2

1

dDW.
03231
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,

From these formulas one can see that the set of O

invariant states constitutes a triangle in the (f , f̂ ) parameter
space, as plotted in Fig. 1. Taking the partial transp

amounts to taking the mirror image around the linef 5 f̂ .
Therefore, the set of PPT states are those contained in

gray square 0< f , f̂ <1 in Fig. 1.
What will make the calculation of the REEP easy f

these OO-invariant states is the existence of a ‘‘twirl’’ ope
tion @2#, a projection operationT that maps an arbitrary stat
r to an OO-invariant stateT(r) and that preserves PPT-nes
i.e., that maps every PPT state to an OO-invariant PPT s
Since

TABLE I. Expectation values in the optimal PPT state.

Region s ŝ

A
11(d21) f 2 f̂

d2 f̂
1

B 0
f̂

11 f

C 0 1

FIG. 1. State space of OO-invariant states~cased53). These

states are parametrized by the two parametersf 5^F& and f̂ 5^F̂&.
The outer triangle represents the values corresponding to s
~positivity!. The gray area is the set of PPT OO-invariant states.
region of non-PPT states is subdivided further into the three tr
gular regions labeledA, B, and C. For each of these regions th
optimal s appearing in the definition of the REEP is of a differe
form.
0-6
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S~ruus!>S„T~r!uuT~s!…

this guarantees that the minimum relative entropy for an O
invariant state is attained on another OO-invariant PPT s
@4,6#. Hence, we can reduce the very high dimensional o
mization problem to an optimization in our two-dimension
OO-invariant state space. This optimization has been d
@6# and the minimizing PPT states are as follows. Let a s
r be determined by the expectation values^F&r5 f and

^F̂&r5 f̂ . Similarly, let the expectation values in the optimi
s

e

n
-

th

he

g

i-

03231
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ing PPT states be given by^F&s5s and ^F̂&s5 ŝ. Then

Table I gives the expressions fors and ŝ, depending on
which region the stater is in.

To end this section, we give the formulas for the relati
entropy and the negativity of OO-invariant states. Let t
statesr ands be determined by their expectation valuesf , f̂
and s,ŝ, respectively. Using the state representation~8!, in
the orthogonal basis$U,V,W%, the relative entropy ofr with
respect tos is given by
S~ruus!5
f̂

d
lnS f̂

ŝ
D Tr U1

12 f

d~d21!
lnS 12 f

12sDTr V1
d1d f22 f̂

d~d21!~d12!
lnS d1d f22 f̂

d1ds22ŝ
D Tr W

5
f̂

d
ln

f̂

ŝ
1

12 f

2
ln

12 f

12s
1

d1d f22 f̂

2d
ln

d1d f22 f̂

d1ds22ŝ
. ~9!
inal

f
s

d-

ing
Recollecting that taking the partial transpose correspond
interchangings and ŝ, the negativity ofs is given by

TrusT2u5UsdUTr U1U 12 ŝ

d~d21!
UTr V1U d1dŝ22s

d~d21!~d12!
UTr W

5
usu
d

1
u12 ŝu

2
1

ud1dŝ22su
2d

. ~10!

The positivity condition ons implies that the absolute valu
sign on the third term is superfluous.

In a similar way, we can show that for any OO-invaria
states, the operatorusT2uT2 is a state again, as we had prom
ised. Indeed,

usT2uT25UsdUUT21U 12 ŝ

d~d21!
UVT21U d1dŝ22s

d~d21!~d12!
UWT2.

An easy but somewhat lengthy calculation shows that
expression can be rewritten in terms ofU, V, and W with
positive coefficients.

C. Additive areas

In the first step we want to identify the areas within t
state space triangle where the REEP is additive.

Lemma 6. ER(r) is additive for all OO states satisfyin

^F&>22/d and ^F̂&<324/d1(d21)^F&.
Proof. Utilizing Lemma 1 we only have to check cond

tion ~2! for every OO-invariant stater and the corresponding
optimal PPT statess. In the $U,V,W% basis,rs21 is di-
rectly given by

rs215uU1vV1wW,

with
to

t

is

u5
f̂

ŝ
,

v5
12 f

12s
,

w5
d1d f22 f̂

d1ds22ŝ
.

In order to perform the partial transpose, we replaceU,V,W
by their partial transposes and express them in the orig
U,V,W again. This yields

~rs21!T25u8U1v8V1w8W,

with

u85
w1v

2
1

w2v
2

d1
u2w

d
,

v85
w1v

2
2

u2w

d
,

w85
w1v

2
1

u2w

d
.

Condition ~2! is then satisfied if and only ifuu8u, uv8u, and
uw8u are all<1. Fors and ŝ we have to insert the values o
the optimal PPT states, obtained at the end of the previou
section.

After a tedious calculation, we get six conditions an a
ditive state has to satisfy for each of the three regionsA, B,
and C of Fig. 1. Fortunately, only two of this total of 18
conditions can be violated by expectation values belong
0-7
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to normalized positive states. In theA region all states are
additive, in regionB we must havef >22/d, and in regionC
the condition isf̂ <324/d1(d21) f . These conditions give
us the border between the additive and nonadditive areaj

The additive area for OO states is plotted in dark gray
Fig. 2 for the dimensiond53. States in the light gray are
fulfill the condition of strong additivity.

For later use, we have marked some points in the s
space that will become important in the further calculation

TABLE II. Points in state space of Fig. 2.

Point ^F& ^F̂&

A 21 0
B d24

d
d22

C 22
d

d22
d

D 22
d

0

E 0 1
X 426d1d2

d(d12)24
d2(d22)

d(d12)24

Y 2d2

d(d12)24
d(d22)

d(d12)24

FIG. 2. Additive areas for OO-invariant states~cased53). The
state space has been subdivided in three regions. Accordin
Rains’ lemma, the states in the light-gray region are strongly a
tive and those in the dark-gray region are weakly additive. T
region of additivity is delineated by the line segments BC and C
The points A, B, C, D, and E are defined in the text.
03231
n

te
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the AREEP~Table II!. The two additivity conditions of the
Lemma correspond to the boundary line segments CD
BC, respectively.

D. Rains upper bound

In the second step we want to calculate the Rains bo
~4! on the OO-invariant state space. All OO-invariant sta
satisfyusT2uT2>0, and we therefore restrict the optimizatio
to OO-invariant statess. Since we want to use the Rain
bound as an upper bound, we do not need to know that
s, thus restricted, is really the optimal one. But due to t
high symmetry of the OO states it can easily be shown t
the optimum over all possible statess is attained on OO
states anyway.

For additive states we have noted already thatER(r)
5ER

`(r)5R(r) so that calculating the REEP directly give
the Rains bound. To calculate the Rains bound in the non
ditive region ABCD, we have to perform the minimizatio
explicitly. Let the statesr and s be determined by their
expectation valuesf , f̂ and s,ŝ, respectively. Using the for-
mula for the relative entropy ofr ~9! with respect to the
optimal s for the REEP~see Table I in! yields the Rains
bound for additive states.

For nonadditive states we have to include the negativ
of s, given by Eq.~10!:

TrusT2u5
usu
d

1
u12 ŝu

2
1

d1dŝ22s

2d
.

As we will only use the above formula forr in the nonad-
ditive region ABCD, it is immediately clear from Fig. 2 tha
the optimals will have negatives. We can, therefore, sim
plify the formula for the negativity to

TrusT2u5
2s

d
1

u12 ŝu
2

1
d1dŝ22s

2d
5max~1,ŝ!2

2s

d
.

Because of the ‘‘max’’ function appearing in this formula, w
have to consider two cases fors and, in the end, choose th
solution that gives the smallest value for the Rains boun

Consider first the caseŝ.1; then the negativity equalsŝ
22s/d and we have to minimize

ln
dŝ22s

d
1

1

2d F2 f̂ ln
f̂

ŝ
1~d2d f !ln

f 21

s21

1~d1d f22 f̂ !ln
d1d f22 f̂

d1ds22ŝ
G

over s and ŝ. This function has a single stationary poi
given by

s5
d22d f̂22

~d222! f 2d f̂
,

to
i-
e
.

0-8
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ŝ5
22 f̂

~d222! f 2d f̂
.

However, the minimum we are looking for is a constrain
one: the parameterss and ŝ must be expectation values o
positives. On inspection, the positivity conditions are nev
satisfied at the stationary point for any choice off , f̂ corre-
sponding to a positiver. Therefore, the stationary point i
outside the feasible set~the state triangle! and the con-
strained minimum will be found on the boundary of the fe
sible set. This fact alone already rules out the present c
ŝ.1, because we know that the optimals must be closer to
the set of PPT states thanr itself, in the sense thats should
have lower negativity thanr. Indeed, settings5r ~which is
certainly not optimal! in the Rains bound yields a lowe
value than one would get for anys with a larger negativity
thanr.

We can, therefore, restrict ourselves to the caseŝ<1. As
the negativity is then 122s/d, the function to be minimized
is

ln
d22s

d
1

1

2d F2 f̂ ln
f̂

ŝ
1~d2d f !ln

f 21

s21

1~d1d f22 f̂ !ln
d1d f22 f̂

d1ds22ŝ
G . ~11!

The stationary point is

s5
21d f

d12 f
, ~12!

ŝ5
~21d! f̂

d12 f
. ~13!

Again, s and ŝ must be expectation values of positives and
we must have thatŝ<1. It turns out that the positivity con
ditions are always fulfilled. The conditionŝ<1, on the other
hand, is only satisfied for statesr on or below the line going
through points C and Y. Therefore, the stationary point is
constrained minimum only for statesr in the quadrangle
AYCD. This leads to the solution for AYCD:

RAYCD~r!5
1

2
@~11 f !ln~d22!22 lnd2~ f 21!ln~d12!#,

~14!

which now only depends on the flip expectation valuef and
is an affine function off.

For statesr in the remaining triangle CYB, the stationar
point is outside the feasible set, so that the constrained m
mum will lie on the lineŝ51. Minimization of Eq.~11! over
s, while fixing ŝ51, yields a quite cumbersome looking fo
mula. For later use, however, we will only need to know t
resulting Rains bound on the line segment YB. The solut
consists of two cases, corresponding to either solution o
03231
-
se

e

i-

n
a

quadratic equation. The end result is that, for the states
the segment YX, the Rains bound is given by

RYX~r!5
11 f

2
ln d~11 f !1

12 f

2
ln

d~12 f !

d21

1 ln
d~d12!24

d2
2 ln 2. ~15!

For the states on the segment XB the bound is given by

RXB~r!5
11 f

2
ln~d22!1

f 21

2
ln

d

4
. ~16!

Figure 3 shows the Rains bound along the line segm
AB, for several dimensionsd53,4,5.

E. Minimal convex extension

In this third and final step we calculate the minimal co
vex extension of the additive area~See Fig. 4! This will turn
out to be more complicated than in the Werner states
ample. We will look at straight lines, each connecting o
point on the additivity border with one, well-chosen point o
the line segment AB.

The simplest case is the part of the additivity border co
sisting of the line segment CD, because this line lies co
pletely in the ‘‘Werner’’ region, regionB in Fig. 1, where,
according to Eq.~14!, the REEP depends only on the fli
expectation valuef. So, here, the two-dimensional problem
reduced to a one-dimensional one. The REEP in the We
triangle is given by

FIG. 3. Rains bound on the line segment AB~see Fig. 2! in
terms of the parameterf, for three different values ofd53,4,5. The
bound consists here of a linear part@segment AY, Eq.~14!#, a
curvilinear part@segment YX, Eq.~15!# and again a linear par
@segment XB, Eq.~16!#. In this figure, R is measured in ebits
corresponding to base 2 logarithms.
0-9
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ER~ f !5 ln 21
~11 f !

2
ln

11 f

2

1
~12 f !

2
ln

12 f

2
.

As lower bound for the AREEP we get

ER
`~ f , f̂ !>ER~22/d!1~ f 12/d!

]ER~ f !

] f U
f 522/d

5
1

2
~11 f !ln

d22

d12
1 ln

21d

d
, ~17!

which happens to be identical to the Rains bound~14! in the
whole region AYCD. So the upper and lower bounds eq
each other within this region and, hence,ER

` is equal to the
Rains bound in AYCD.

The situation for the remaining triangle YCB is somewh
more complicated. To calculateER

` we consider a set o
straight lines connecting points on the line segment BC w
points on the segment XY and given by

f̂ 52p f1
p@d2221~d22!p#

21d~p22!22p
. ~18!

These lines are parametrized byp, which runs from22/(d
12) to 2d/2. Recall that the line XY is given byf̂ 5(1
1 f )d/2 and BC byf̂ 5324/d1(d21) f .

FIG. 4. A close-up of the nonadditive OO-invariant states in F
2, for the purpose of calculating the minimal convex extension
the AREEP. In region AYCD, the minimal convex extension d
pends only, affinely, onf @Eq. ~17!#. In region BCY, the minimal
convex extension is affine along the lines depicted here@given by
Eq. ~18!#.
03231
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t

h

On the line segment XY, the Rains bound is given by E
~15!. On the segment BC, and in fact to the right of it as we
the Rains bound is equal toER5ER

` and is given by Eq.~9!

with s50 and ŝ51 ~region C of Fig. 1!. Moreover, this
formula holds for all points on the lines~18! within the ad-
ditivity region, allowing for the calculation of the derivativ
of the Rains bound along the lines~18!. Doing this at the
points on the additivity border BC yields the result that, f
every line ~18!, the tangent to the Rains bound at the st
point ~on segment BC! touches the Rains bound again at t
end point ~segment XY!. By convexity of ER

` and of the
Rains bound, and by the fact that the Rains bound is an up

.
o
-

TABLE III. Summary of results.

Region ER
`

PPT 0
A

ER , Eq. ~9!, with s5
11(d21) f 2 f̂

d2 f̂
and ŝ51

B\AYCD ER , Eq. ~9!, with s50 andŝ5
f̂

11 f

C\CYB ER , Eq. ~9!, with s50 andŝ51
AYCD Eq. ~14!

CYB Affine along lines~18! between YX and BC
YX Eq. ~15!

FIG. 5. Contour plot of the AREEPER
` for the OO-invariant

states, parametrized byf and f̂ (d53). Superimposed on this plo
are the lines separating the different regions defined in the
~regionsA, B, andC, the PPT set, the set of additive states, and
regions AYCD and CYB!. In this figure,ER

` is measured in ebits
corresponding to base 2 logarithms.
0-10
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bound onER
` and the tangent a lower bound, it follows th

bothER
` and the Rains bound must coincide with this tang

and, hence, be affine along each of the lines~18!. We con-
clude thatER

` is equal to the Rains bound also in the rema
ing region YCB.

F. Summary of results

We finalize the calculation ofER
` on the OO-invariant

states by summarizing all the results obtained for the dif
ent regions in Table III. Figure 5 shows a contour plot ofER

`

for the cased53. Furthermore, the Rains bound is equal
ER

` in any of these regions.

VII. CONCLUSION

In this paper, we have considered the calculation of
AREEPER

` for the class of OO-invariant states, generalizi
the results of@10#, which dealt only with the class of Werne
states. This has been achieved using four basic ingredie
properties of the REEPER , properties of the Rains boundR
~1!, and a deep connection between these two quantitiesER

`

andR. The final cornerstone of the calculation is the symm
try inherent in the OO-invariant states@6#.

The relevant properties of the REEP are that it is an
ditive entanglement measure in a large region of state sp
@4# and that the AREEP is convex everywhere@9#. This con-
vexity allows us to use the ‘‘minimal convex extension’’ co
struction as a lower bound.

We have shown here that the Rains bound is also con
and continuous, and that the calculation of it can be reform
lated as a convex optimization problem, which implies,
the way, that this problem can be solved efficiently and d
not suffer from multiple local optima.

We have also made explicit the techniques that were
ready employed in@10# implicitly, resulting in Lemma 4.
This lemma shows that there is a deep connection betw
.
.
,
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the AREEP and the Rains bound and seems to suggest
both regularize to the same quantity@7#. Unfortunately, in its
current form, the lemma is weakened by the additional
quirement on the statess, over which the Rains bound i
minimized, that the quantityusT2uT2 should be positive. We
have coined the term binegative states for those states
violate this requirement and we have made some initial
vestigations into the question of their existence. Specifica
we showed that for the case of OO-invariant states,s is not
binegative, so that the lemma can be used here at
strength. If it turned out that the extra requirement can
ways be removed, in one way or another, then the lem
could directly be used to prove Rains’ suggestion thatER

`

5R`.
For the time being, we have been able to show tha

least forER-additive statesr the Rains bound and the REE
are equal~and, of course, also equal to their regularized v
sions!.

Using these results, we have calculated the AREEP
OO-invariant states and it followed as a by-product of t
calculation that the Rains bound is identical toER

` for the
OO-invariant states.

This last result could be taken as a hint that the Ra
bound might be additive everywhere, in contrast toER . If
this were true, then this would imply that the AREEP
precisely equal to the~nonregularized! Rains bound and, fur-
thermore, that it can be calculated efficiently.
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