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ABSTRACT

Empirical Mode Decomposition, an adaptive data-driven
technique which can be used to extract non-stationary
signals buried in noise, seldom admits theoretical calcula-
tion of the statistical properties of the extracted signals.
Instead, numerical experiments are required. In this pa-
per we use Monte Carlo simulations to investigate the
accuracy of the amplitudes of sinusoids extracted from
synthetic noisy signals using Empirical Mode Decompo-
sition. We show that even for relatively low signal-to-
noise data, the amplitude of the extracted signal is close
to true amplitude. We also show that edge effects due to
the spline curves which are used to calculate the decom-
position do not affect the amplitude estimate beyond the
first two oscillations.

Index Terms— Empirical mode decomposition, am-
plitude estimation, low signal-to-noise data

1. INTRODUCTION

Empirical Mode Decomposition (EMD) was developed
by [1] to decompose non-stationary multi-component data
into a set of Intrinsic Mode Functions (IMFs) for which
a meaningful instantaneous frequency could be defined
everywhere. Since EMD is a signal-dependent adaptive
technique for which theoretical analysis is seldom possi-
ble, numerical experiments are often required to under-
stand its properties. For example, [2] show that even
for a pure tone, EMD may not extract the single mode
correctly if the sampling period is insufficient. They also
give an empirical relationship for the minimum distance
necessary between frequencies for them to be correctly
resolved. [3] show that the EMD of noisy signals can act
as a dyadic filterbank, similar to wavelet analysis; based
on this, [4] discuss the selection of true signal modes from
noisy decompositions, and the construction of confidence
intervals for the extracted modes in the case of fractional
Gaussian noise.

EMD can be used to extract quasi-periodic oscilla-
tions buried in noisy data, and allow their amplitudes to

be measured directly. It is important, however, to as-
sess how accurately the amplitude of an extracted quasi-
periodicity reflects the amplitude of the true signal am-
plitude. The purpose of this paper, therefore, is to in-
vestigate the amplitudes of signals recovered from noisy
data using EMD. We create synthetic noisy signals and
compare the average amplitude of the extracted signals
with the (known) signal amplitudes, over a range of noise
levels. This provides a simple method of testing the
degree to which we can trust the amplitudes of signal
extracted using EMD, when the true amplitude is un-
known.

Section 2 gives a brief overview of Empirical Mode
Decomposition, and discusses a few of the implementa-
tion issues encountered with this method. In section 3
we discuss the construction of the synthetic data and the
Monte Carlo method we have used in our analysis. We
discuss the results of our simulations in section 4, and
conclude with section 5.

2. EMPIRICAL MODE DECOMPOSITION

It is assumed that the data have at least two extrema
(one maximum and one minimum) and that the charac-
teristic time scale (of each IMF) is defined by the time
lapse between extrema. This does require that the data
are oversampled sufficiently that the extrema are well-
defined [2]. If the data contain no extrema, only inflec-
tion points, then differencing the data once or more will
reveal the extrema, and the final results can be obtained
by summing the components.

To extract the IMFs from the original data, x(t), a
sifting process is followed:

1. All local maxima are identified, and an upper en-
velope, emax(t) is constructed by interpolating be-
tween the local maxima with a cubic spline. The
procedure is repeated for the local minima, forming
a lower envelope, emin(t).

2. The mean m1(t) of the upper and lower envelopes



is calculated:

m1(t) =
(emax(t)− emin(t))

2

3. By subtracting m1(t) from x(t) the first IMF, h1(t),
is calculated:

h1(t) = x(t)−m1(t)

h1(t) contains the finest scale or shortest period
component of the data.

4. The process is repeated, using m1(t) as the new
data, until the extracted mean is monotonic.

The time series is thus decomposed into n IMFs and
a residual, mn(t) which is either the mean trend or a
constant:

x(t) =
n∑

j=1

hj(t) + mn(t) (1)

Unless the spline ends are correctly constrained, they
have a tendency to propagate unwanted oscillations into
the envelopes, affecting the calculated mean, and hence
the decomposition. To constrain the spline ends accu-
rately, we have added ∼5 oscillations at each end of the
time series, constructed to bring the splines gradually to
zero. The oscillations mimic the behaviour of the data
near the end, ensuring that the splines do not oscillate
wildly.

Ideally, h1(t) should be an IMF. However, a gentle
slope may be amplified to become a local extremum in
changing from rectilinear to curvilinear coordinates, so
the sifting process is repeated at each step using h1 as
the input until the extracted signal is an IMF. The usual
criterion for stopping is when the number of extrema
equals the number of zero crossings [5]. An additional
constraint sometimes used is that the mean of the upper
and lower envelopes has to be ‘close’ to zero, for some
threshold. [2] have extended this to include two thresh-
olds: one criterion to ensure globally small fluctuations
from the mean, and one to allow locally large deviations
from the mean. However, we have not found this neces-
sary for our data.

3. DATA AND METHOD

[6] use EMD to analyse rotation residuals of the solar
convection zone, and estimate the error in the EMD of
their signal by constructing realizations of their time se-
ries which they use for Monte Carlo simulations. Each
point in each realization is drawn from a distribution
with mean given by the value of the true data point,
and standard deviation given by the measurement error.
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Fig. 1. A sinusoid of period 30s, with gaussian white
noise of amplitude 0.6 added.

They find that the realization and the original IMF com-
ponents are in good agreement. However, this method is
not practical for large data sets; we propose an alternate
Monte Carlo simulation using purely synthetic signals to
find the average amplitude of extracted signals for vari-
ous levels of noise. This has the advantage that different
types of signals can be embedded in different levels of
noise, and comparisons made.

3.1. Data

We consider a simple test signal consisting of a sinusoid
of period 30s, length 1000s, sampled at 1s intervals, with
amplitude 1. We create the 5000 noisy signals used in
each Monte Carlo simulation by adding a realisation of
gaussian white noise with the required amplitude to the
test signal. Figure 1 shows one realisation of the noisy
sinusoid, with a noise level of 0.6.

3.2. Method

Each noisy signal is decomposed into five IMF compo-
nents; further IMFs could be extracted, but we found
that five is sufficient to capture the IMFs that contain
the signal. The left-hand panels of Figure 2 show the five
IMFs of the signal shown in Figure 1. h1 contains the
highest frequency components of the noisy signal; suc-
cessive IMFs contain longer period data. The IMFs h3

and h4 both contain regions of the sinusoidal signal. This
splitting of the signal over IMFs is a consequence of the
adaptive nature of EMD, and makes automated identifi-
cation of IMFs containing signal components non-trivial.
We use the highest peaks in the periodogram of each IMF
to initially identify IMF components containing (part of)
the signal component; the right-hand panels in Figure 2
show the periodograms of the calculated IMFs. It is clear
that both IMFs h3 and h4 contain significant power at
0.03Hz, corresponding to the 30s periodic signal.

Once the signal-containing IMFs have been found,
we identify the maxima and minima in the IMFs which
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Fig. 2. The left-hand panels show successive IMFs from
the Empirical Mode Decomposition of sinusoidal signal
corrupted with gaussian white noise of amplitude 0.6.
The panel to the right of each IMF shows the peri-
odogram of the IMF. Both IMFs h3 and h4 contain re-
gions of the underlying 30s sinusoid.

correspond to true signal maxima and minima: an ex-
tremum in an IMF is considered to correspond to a true
signal extremum if it occurs within 5s of the true signal
extremum, and has an amplitude greater than 0.6 times
the true signal extremum. Figure 3 shows the IMF h3.
The positions of the true signal maxima are indicated
by open triangles, while the IMF maxima identified as
corresponding to a signal maximum are shown by open
circles.

Thus from each realisation, we extract the times and
amplitudes of extrema corresponding to true signal ex-
trema. Averaging over the 5000 realisations, we are find
the average amplitude and standard deviation of each
extracted extremum.

4. RESULTS

Figure 4 shows the noise-free signal (solid line), with
the average amplitude and standard errors of each ex-
tremum (black dots) calculated from 5000 realisations
with a noise level of 0.6. Edge effects, due to the fitting
of the spline curves, are evident in the extrema at either
end of the data, where the average amplitude is some-
what lower than the true value. However, these effects
do not propagate inward beyond two oscillations.

Averaging the average extrema and standard devia-
tions over all extrema gives us an average amplitude and
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Fig. 3. The IMF h3 (solid line) and the IMF maxima
identified as corresponding to a signal maximum (open
circles). The positions of the true signal maxima are
indicated by open triangles.
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Fig. 4. The noise-free signal is indicated by the solid
line. The average extrema and standard deviations found
by Monte Carlo simulations (using a noise level of 0.6)
are indicated by black dots and error bars.



Table 1. Average amplitudes and standard deviations
from Monte Carlo simulations of signal extraction from
noisy data.
Noise Average IMF Average
Level Amplitude std
0.1 0.98 0.13
0.2 1.01 0.10
0.3 1.02 0.16
0.4 0.99 0.20
0.5 0.96 0.20
0.6 0.95 0.19
0.7 0.98 0.19

error for the extracted signal, which can be compared
with the know amplitude of 1 of the noise-free signal.

Table 1 gives the average amplitudes and standard
deviations found for noise levels ranging from 0.1 to 0.7.
5000 realizations were used at each noise level. Even
when the noise level is 0.7, the average amplitude is close
to the true amplitude, and in all cases the true amplitude
(1) lies within the error bars.

5. CONCLUSIONS

We have developed a method for assessing the accu-
racy of the amplitude of signals extracted from compos-
ite noisy signals using Empirical Mode Decomposition.
We have shown that even for data with a relatively low
signal-to-noise ratio, the amplitudes of signal-containing
IMFs accurately reflect the amplitude of the noise-free
signal. Edge effects, due to the constraining of the spline
curves used in the fitting of the envelopes, do not appear
to propagate beyond the first two oscillations.

This method can easily be extended to investigate
more complicated test signals containing multiple peri-
odic components, and quasi-periodic components. Noise
models other than gaussian white noise can also be in-
vestigated. Another extension of this method is to test
the accuracy of the time at which extracted extrema are
detected in comparison to the times at which the real
signal extrema occur.
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