

```
Thesis Submitted for the Degree of
    Doctor of Philosophy.
    1968.
```

Ecological and Taxonomic studies of the Alge of Slow Sanc Filter Beds. Algae
Edward George Bellinger, B.Sc.

R. H. C.	LIBR+RY
CLASS	FLGG
No.	BeL
ACC.NO.	85,799
IATE ACQ	Jan. 1969
	Jan

ProQuest Number: 10096741

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096741
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Ecolorical and Taxomomic studies of filter bed almae.

Abstract.

An investigation has been carried out on the algal flora of slow sand filter beds. Ecological field studies were made from August 2963 until December 1965 and experimental work was continued until June 1966. The filter beds studied were located at the Ashford Cormon Vorks of the Metropolitan Vater Board, London. The major chemical nutrients, ($\mathrm{N}=4-\mathrm{N}, \mathrm{HO} 3-\mathbb{N}, \mathrm{NO}-\mathbb{N}, \mathrm{P} 04-\mathrm{P}$ and SiO2), and pH were determined throughout the period together with temperature and penetration of ligeht into the water. Biomess, interpreted from calculated cell volumes, of the major species of algae enoountered was used to express the results of cell concentrations.

The periodicity and distribution of the algae in the filter beds was investigated. The algal populations present were sub-divided into planktonic, epipelic and attached bottom living species and each one was found to have a distinct seasonal periodicity. Observations suggested that the filter bed algal populations were not often limited by nutrient concentrations but the algae on the send surfece may on several occssions have been limited by low light levels.

Irperiments to determine the toxicity of copper sulphate to certain species of algae were carried out. The ability of algae to penetrate the sand and to suxvive was also investignted experimentally. These experiments showed that cells could stay alive in the filter bed sand after cleaning and act as population imoouls when the bed was refilled. The floza of the sand surfece was compared with that of
an in-situ polytheme bag to ascertain the offects of nutrient

1imitation.

Kxis Whe
The variation in cell sizes of Stephenodiscus astraes and Asterionella Ioxmosa were investigated together with the relative growth rate, k^{t}, of S. astraes, and seasonal variations in both were found.
Rart ung; inthady
2RE,

as batratites ene
Ro chroutulyy

F2. The aikerat at the inetcer watent S

Beological and Taxonomic studies of the Algae of Slow Sand Fillar Beds.
Contents
Page No.
Part One: Introduction. 5
I. Introduction 6
II. The supply of water to the slow sand filters and their 8
operation
Part Two; Methods. 17
III. Methods*
A. Collecting 18
B. Chemistry 21
C. Meteorological and Physical determinations 23
D. Inumeration 24
IV. A consideration of the use of algal volumes in interpreting algal populations. 28
Part Three; Results and Discussion. 34
V. Meteorological data, Physies and Chemistry of the inflow water. 35
VI. The algae of the inflow water. 61
VII. A. The algae of the supernatant water. 73
B. The unattached bottom living forms. 94
C. The attached bottom living forms. 124
D. Distribution of algae on the sand surface. 142
VIII. A polythene bag experiment. 149
IX. Culture experiments.
A Toxicity of copper sulphate 161
B. Growth rate experiments 165
X. Penetration of algae into the sand 171
XI. Seasonal variations in the cell sizes of Stephanodiscus astraea and Asterionella fomma. 178
Part Four. 190
XII. Taxonomic notes. 191
Iist of algal species. 210
XIII. Summary and conclusions. 219
Appendix 1. The construction and operation of the submersible jight moters. 223
Appendix 2. Statistical analyses. 226
Reference list. 231
I. Introduction.

Slow sand filter beds of waterworks are small man-made bodies of water with a continuous inflow, usually at one ond, and a contimuous outflov by percolation through a layer of sand covering the bottom. In area and depth they are very much like ponds except that they have vertical sides.

Although there has been much woric on the algae of larger bodies of water such as lakes (Reviewed in Lund, 1965 and Mutchinson, 1967) and resorvoirs (Reynolds, 1950; Maylor, 1954; Holsinger, 1955 and Ridley, 1964) and on rivers (Butchen, 1946; Rice, 1938), there has been little detailed work on bodies of water the size ol ponds. Fritsch (1906), Fritsch \& Rich (1913), Hodetts (1921) and Howland (1931) studied the periodieity of algae in amall lakes and ponds but mainly with reference to meteorological conditions, littlo work being done on the chemistry of the water. Atkins (2926-7) and later Lind (1938) oxtended the 81 gel periodicity studios to includo parallel chemical studies of the water. Fiore recently Reo (1953-55) studied the algae of sir ponds and attempted to correlate seasonal changes in algae with chemical changes in the water. All of these investigations on ponds concentrated upon phytoplamkton aleae. The only detailed. studies of the unattached bottom living algal flora of fresh waters are those of Iund (2942) and Brook (1954). The work of the lattor author is the only other detailed study of the algae of slow sand filter beds of watorworiks. The woutk of Beook (2952-54-55) was un of concerned mainly with the bottom living attaohed and unattached flosas

of fillter beds which had been in operation for varying lengths of time, with relatively little attention being paid to the chemistry of the water. No account was taken of the algae in the supernatant water. Brook (1954) stated that the environmentel conditions in the slow sand filter beds were in many respects like those of a river and he compared his results with those of Butcher (1932, 1940, 1946).

In the present investigation an attempt has been made to relate both physical and chemical changes in the water to the seasonal periodicity of the algal flora of slow sand filter beds. Chemical factors such as pH, silica, anmoniacal and nitrate nitrogen and. phosphate phosphorus together with physical factors such as light and temperature were investigated. Ecological field work was started in August 1963 and continued until December 1965 although certain experiments were continued until June 1966. Observations are thus available for more than two complete annual growth cycles. Rather than sample from various filter beds which had been in use for the same length of time (see Chapter II), the same four filter beds were examined continuously throughout the period of study. Local variation from one filter bed to another was thus taken into account. In conjunction with the field work certain laboratory studies were carried out to elvcidate some of the field results. Reference has also been made to species of algae which are of taxonomic interest.

A11. It was hoped that this study might help explain some of the differences, observed by waterworks authorities, in the performance of slow sand filter beds within individual worics. This could in turn lead to a more efficient use of slow sand filter beds.
II. The supply of water to the Slow Sand Filters and their operation The slow sand filter beds studied are situated in the Thames valley west of Iondon at the Ashford Common Works of the Metropolitan Water Board (0.s. msp reference TQ $087 / 700$). The position of the Ashford Common Works in the relation to the main storage reservoirs supplying the works and to the River Thames is shown in Figure 1.

Figure 1. The location of the Ashford Common Works and the supply reservoirs in the Thames Valley.

All of these reservoirs receive their water via intake channels and puming stations from the River Themes. Unlike many reservoirs in other parts of the country, those in the Thames Valley are entirely
Figure 2. A plan of the Ashford comon purification works showing the passage
of water (indicated by arrows) through the works.
man-made basins, not just damnod valleys. The construction of these reservoirs is desoribed by Ridley (1964). The water is genorally alkalino and rich in dissolved organic and inorganic substances.

The water from the reservoirs passes, by means of an underground tumel, to the purification worke (Figure 2). As the reservoir weter surface is well above the surrounding ground level, the flow along the tumel is entirely due to the natural pressure head of the reservoir water, For mechanical reasons this pressure head has to be reduced before the purification treatment begins. To reduce the pressure head, and also to mix and oxygenate the water thoroughly, it is passed from the tunnel into two aeration basin fountains (See Plate 1). The purification works at Ashford Common is divided into two parts, each one being supplied by an aeration basin fountain. It must be stressed, however, that the original water supply for esch half is exactly the same. The division into two was made for reasons of waterworks engineoring and menagement. The water passes from the aeration basins into a series of rotary mionostrainors (two sets of twelve). These consist of revolving durms, the walls of which are mede of a fine stainless steel wire mesh with s mean pore size of $38 \mu \times 45 \mu$. The water passes in through the center of the drum end and out through the drum sides. Full desoriptions of the detailed action of rotary microstrainers and their removal of algae are given by Bellinger (1968) and Taylor (2963 \& 1965). The object of rotary mierostrainors is to reduce the filtration load on the secondary slow sand filter beds onto which the water next pesses, by removing particles exceeding a linear

Plate I. An aeration basin fountain.

Plate II. The in-situ hydraulic sand washer ('hydra').

aimension of approximately 35μ.

The slow sand filter bods are conorete basins with vertical sides and axea of $\frac{3}{3}$ acre (approximately $3000 \mathrm{~m}^{2}$). The bottoms of these basing are covered with ofther porous tiles or a layor of porous n and concrete (see Figure 31). This is overlaid with coarse, then fine an eravel. These in tum are overtaid with coarse and fine sand. The fine sand layer is usually between 1 and 3 feet $(0.3-1.0 \mathrm{~m})$ deep depending upon the numbor of times the bod has boon oloaned. (Soe poge1 3). Above the fine layer of sand is a water layer between 4 (1.3 m) and 6 feet (2.0 m) in depth. The water to be filtered enters the filter bed at one ond just above sand level. It then percolates slowly through tho sand at a rate of about 4 inches (10 oms .) an hour ($48 \mathrm{mals} / \mathrm{sq} . \mathrm{ft} . /$ day, $240 \mathrm{mls} . / \mathrm{cm}^{2} \cdot /$ day), and is collected in the tiles or porous concrete to be piped away for chlorination.

Surspended particles in the mator which have not already been removed by the rotary microstrainers are trapped on the sand surface firstly by purely physical or mechanicel means and then lator, after the filter bed has been in use for a week or two, by means of a "Zoogles1" film (Possrall et 是., 1946). This trapping of susponted particles on the film is more efficient at removing suspended matter from the water than the sand alone. As the amount of trapped material increases, and growth and reproduction of algae takes place, the resistance to the pessage of water through the zooglool lajor and the sand column alao increases. If a manometer tube were connected to the outlet pipe of the filtor bed and the height to which the water rose
in that tube were measured, the longer a bed had been in use, the greater would be the disonepanoy between the height to which the vater would rise in the manometer and the level of the water in the filter bed. This difference is of course a mensure of the resistance to flow in the filtor bod and might be as moch ns four feet. The inorease in the resistance to the passage of vater through the sand arises from an accumulation of particles in the zoogleal film at the send surface. When the pressure difference (lnow as head loss) hes reached a level of betweon two and four feet the filter beds are drained down for cleaning. Two methods of cleaning have been used on slow sand filter beds. The first method, whioh is still employed, involves mechanical skimming. In this method the top $\frac{1}{-1}$ inch of sand and detritus are skimmed off by means of a nechanical skimmer (see Plate III), and removed for cleaning, The surfece of the sand is then raked smooth and the bed refilled from underneath with water. This prevents any air from being trepped in the sand. The bed is then put beok into use. Whenever the depth of sand is reduced to about 12 inches (30 cms .) the bed is resanded, i.e. it is cleaned and then an appropriate depth of sand placed over the surface to bring it back to its original level. The second method of oleaning, whioh was not used after January 1964 on the filter beds studied, is by means of an in-situ hydraulic sand washint plant. Full descriptions of the plent and its method of operation are given by Laval (1952) and Bumman \& Lewin (1960). The actual machine is shown in Plate II. Briofly the method is as follows: a washing caisson is lowered into the sand to a depth of

Plate III. A mechanical skimmer removing the surface sand and silt.

PlateIV. Close up view of skimming mechanism.

6 inches (15 cms .). The upper part of the oaisson consists of a tube of thistle shaped oxoss seotion connected by means of flexible hoses to a suction pump. Intering the top of the caisson are many guide tubes through each of which passes a lance with a radial jet orifice at its end. The machine wes originally operated by lowering the caisson onto the sand surface. The lances are lowered through the guides into the sand and water is forced through them. The water may bo removed through the caisson tube and the flexible hoses by means of the suotion pump. Arter about one minute the lances and oaisson are lifted elear of the sand and moved to the next gosition in the filter bed and the operstion is repeated. The main object of this method of cleaning is to wesh the-send in-Bitu, i.e. to remove the algae and accumulated organic matter from the sand without having to remove the sand from the filter bed. It hse, however, one ereat disadvantage in practice. Unless the suotion velooities are precisely set, algae tend to be trapped by sand paxiticles falling back onto the sand surface after boing washed into suspension by the lance jets. This results in a ro-innoculation of the bed with algae whieh then grow vigorously due to reduced competition, hence the abendonment of this method.

Tho hydraulic in-situ sand vasher (honceforth referred to as the "hydra") was used to olean beld 30 and 32 up to the end of January 1964 (see Figure 3.) The chechanical gikimping was used throughout the period of study in beds 12 and 13 and after January 1964 in beds 30 and 32.

Figure 3. The periods of cleaning of the four filter bods studied. $\quad=$ mechanical
skimning, $\quad=$ hydra eleaning, $\boldsymbol{\Pi}=$ resanding.

IEI. Hothods. peaple Jweoosvad fos socmbiaes

a E. Semplos wore colleoted at weelily or fortniehtily intervals throughout the peri.od August 2963 to December 1965waiketer for chemioal anolysis was colleoted from the veter passing out of the rotary mioroatrainers (see page 10), and, occesionally from the waps supornatant and the filtered vater of the filiter beds themselves. Water samples for oxysen determinations were collected from the reservois outlet before treatment by filitretion. Thie avoited any changes in the oxygen concentration due to treatment.o powas into a

Filter bed supernatant water for phytoplankton detemsinations was collected by means of a rubber hose (Iund, 1949) (from at least ton stations around each SCIter bed (see Appendix 2). Alt Semples from the various stations more thoroughly mixed mad an aliquot removed for counting. Oocasionally samples throughout the depth of the super-ib nataht water wore obtained. Those were collected at vertical intervals on I eti- (30.5 ema .) by olipping a subber tube to varione pointe on a pole placed veitically at different stations in the filter bed. feoc. Samples vere obtained by applying suction to the shoge end, of the tube. Io minimise contomination of the semple by mateziale remaining in the tilbe; a double bottile technique ûas used (Figure 4.) In this nethod the valve was used to maintain the reduced pressure developed by the hama suction frumpr The vater perged fitet into the smala bottle (B) and thon, when thib was fall, in to the larger bottle (A) Bottle B vas allowed to refill approximately twice over before the bung wasjsy1),
removed and the sample preserved for counting.
Samples of the unetteched bottom Living flera were obtained using a modification of the suction pump technique of Brook (1954). Two bottlea were used (Figure 4.), the larger one (A) acting as vacuum reserve. A twelve foot length of rubber tubing was attached to the sama11 bottle (B) at one end and to a 7.5 cm . diamoter filter furnel which was weighted by a lead ring (Pigure 4.b.) at the other ond. The Nunnel was lovered onto the sand surfece and left in place. Water containing the unatteched algee was thon sucked up into bottle B . When this was full the bung was removed and the sample poured into a 5L. flask. Samples were colleoted from several stations to take into accoumt local agcregations as it hed been found (see Chapter VII and also Appendix 2, page 226) that the sand surface aid not support an even growth of algne as was auggested by Brook (1954). Care vas taken to operate, as nearly as possible, a constant rate of pumping at each samplinge The separate semples from each station were thoroughly sheken together in the 5L. flask and an aliquot preserved for counting.

The atteohed algal flora was present mainly on the sand surface. The concrete valls of the filter beds, which were regularly peinted with copper sulphate/lime paint, ravely supported apprecisble erowths of algee and vere usually ignored in these investigations, Sand surfece samples could only be colleoted when the filter bed had been drained dom for oleaning. To investigate the attached algal flora during the filter bed runs a horisontal slide technique was used involving two main methois. In the fingt, dexived from Butoher (1931),

Pigure 4. The double bottle collecting apparatus.
twelve glass microscope slides ($7.5 \mathrm{~cm} . \times 2.5 \mathrm{~mm}$) were fitted into weighted wooden frames and lowered through the water onto the sand surface. At the end of each subsequent week two slides were removed from the frome for eramination, In the second method groups of four slides were elipped at intervals of 30 cm from the vater isurface down the length of a vertical pole standing in the filter bed about one metre from the edge. At fortnightly intervals one slide was removed from each depth for examination. In all these experiments the slides were carefully prepared by chemically cleaning and flame sterilising. Algae were removed from one half of the slide by scraping with a razor blede. The removed algae were carefully washed into a measuring cylinder. They wore then preserved in lugol's iodine for counting. A coverslip was then placed over the slide and the surface observed microseopically. The scraped ares vas observed to oheck that most of the algae had been removed and the unscraped area observed to ascertain the distribution and species of algae present. Th, The pelle vase then thuth On ocossions, when the filter beds had just been dreined forcutg, oleaning, oone samples, or samples from different depths, of sand were taken to deterinine the distribution of al eae through the sand. wound

 of Pmosphates, nitrates and silicates were detemained absorbtiofletrically $8 s$ in Mackereth (1961). Dissolved oxygen was determined using the Pomoroy-Kirchman-Alaterberg modification of the Winkler teohnique (Pomeroy and Kirohmen 1945). VAmmonie was determined
spectrophotometrically using sodium phenate reagent (Riley, 1953). Hydrogen ion concontration was dotermined using an E.I.I. model 23A pH meter and following the procodure outlined in the Standard Methods (American Public Heelth Association 1960). The dry wreight of the suspended matter and its loss on ignition were detemnined by filtration through a Whatman Gi/C 7.0cm. glass fibre filter paper (Fusbaum, 1958). The pads were proparod by dxying in an oven at $105^{\circ} \mathrm{C}$ and storing in a dessicator. The pad was weighed before use and an appropriate volume (one to fous litres) of water filterod doponding upon the mumbers of algae present. The pad was sucked dxy and washed with distilled water. It was then oven dried at $105^{\circ} \mathrm{C}$ to constant weight before roweighing and ashing at $405^{\circ} \mathrm{C}$ to detexaine the loss on ignition.

Total particulate earbon was detemined by wet oxidation using acid dichromate. Gless Iibre pads (Whatman GF/C) were out into 25 mm . dises and inmersed in chromic-sulphuric acid mixture, to remove any traces of carbon, for at least twenty four hours. The pads were then washed free of the acid with distilled water. Between 25 and 500 mls . of sample, depending upon the concentration of algse, were then filtered and the pad suciced dry. It was then placed in a 50 ml . round bottomed flask togother with the sulphuric acid-dichromate oxidant made up according to Strickland \& Paroons (1960). To this was added 5 ml . of morcuric chloride-silver sulphate catalyst. This was then refluxed. for one hour using cold finger condensors over a bolling water bath. The excess dichromate was thon titrated against ferrous amonium sulphate solution using fermoin indioator as dosoribed in Standard.
transparenoy readings could only be taken in fairly calm conditions as the offoct of surface mipples wes tvery marked. Whenetbu possible measuroments were taken et 0.1 metre intervels throughout the depth of the wetor, On some occasions only the 0.1 motre and the sand surface readings were taken. Computation of underwater light intensitios were mide using the Kew Obsorvstory total radiation figures and following the method outlined by Talling (1957) and Jenkin (1937).

D. Thumeration.

Alsal celle were enumerated using the inverted microscope technique of Utermoh? (1931), (see also Iund 1951, and Lunic, Kipling and LeCren 1958).

A modification of the basic method, Involving the use of bipartite counting chambers, as developed for routine quantitative phytoplankton determinations in the Boteny Depertment of Royal Holloway College by Dr.- J.ㅍ. TVans (see also Lovegrove; 1960) tran used. The top pert of the modified counting chamber (Figure 5) congisted of a fth inch (3.0 mm)) thick perspet slite with s^{13} th inch $(9.0 \mathrm{~mm}$.$) hole pessins$ through the centre. A persper tube of internal diameter $\frac{3}{5}$ th inch (9.0 mm .) wes cemented vortichliy over the hole. " The lensth of the tube depended upon the volume of liquid that it was desined to sediment. The bottom part consisted of a matching perspor slide without a tube cemented in place but with the inch (3.0 mm .) perspex spacers comented to the underside of eech end.
alma The method of use was as follows. A $\frac{7}{8}$ th inch (22.0mm.) square

Nethods (A. P. H. A., 1960).

the -Nitrites were determined using the Greiss-Ilosvey method thanling (Vackereth, 2961). Albuininoia nitirogon was determined using the fixfu direct method of Kitto (1938). The ugecu alitho sati tulbe repa then

C. Meteorological and Thysical detominations. \qquad
The resulte for air temperature, mainfall, evaporation, sunshine and solar zadiation were obtained from the Moteonological Observetory, Kev.

Section

upper

sedimentaition
Water temperatures were obtained using a themintor, readincs being taken to 0.2 degrees C . Undervater illumination vas measured using a nodel 123 selenium rectifier photoelectric cell manufactured

Chamber
 sccording to Aticins et al (1938). The photometers were used in conjunction with red, green, blue and yellow filters. These were types OB1, OG1. OXZ and OR2 by Chance (Theland) havinc tranamission maxima at $480,530,625$ and 675 mi respectively (see Appendix 1). The cells were wired into an electrical cirouit so that they were back to beck, i.e. the difference in reading between the submerged photocell and the surfece referance cell was read directly ion the miononimeter (see Appendix I for circuit diegram). The transparency of the water was measured according to Atkins ett al (1938) ts. Residings were alvays taken between 11.00 n .mp and 2.00 p .m.land a note mince of weather conditions. IHo comrections were made for changes in solar elovation. Since the filter bed supernatant water was relatively shallow,
coverslip was smeared with vaseline at the edges and then stuck to the underside of the bottom penspex slide making sure that no vaselino entered the hole in the slide and that a complete seel was made between the slide and the coverslip. The upper slide and tube were then smeared on the underneath with vaseline and sealed onto the top surface of the bottom slide. Care vas again taken to ensure that no vaseline

Bigure 5 v- Split counting chamber for inverted mioroscope counting.
entered the hole and that the seal was complete, It was also imperative to make sume that the holes and the tube of the top and bottom halves vere exactly lined up. If any vaseline did enter the hole it was carefully removed with a needle. The sample to be counted, already
preserved in Irgol's iodine, was then mun into the tube and the chamber pleood in the shade on a horizontal sumface to milow sedimontation to talce place. One hour was allowed for each milliletre of sample to be sodimonted, after which timo the top have was slid gently sideways and the excess Iiquid pipetted off. The top was then completely removed leaving the lower chamber with only about 3.0 mm . depth of Iiquid. A coverslip was then placed over the surface of the liquid, oare being taken not to trap any air bubbles or to disturb the liquid in the ohamber.

This system ereatly reduces the option disedvantages of the basic sedimentstion technique. Using this ohmmer it was possible to use both high and low power mionoscope objectives without difficulty and, when required, a $1 / 12$ th oil immersion objective.

The Thtrached algde growing on the glass mioroscope slides were either counted direatly at $x 200$ magnifieation, if the population density Was low, of more waually, when the growth was luxuriant, by the following method. The algee on one half of the slide were carefully and oompletely romoved. by means of a razor blade into a moasuring oylinder. Tugol's iodine was added to preserve and weight the algae and the volume made up to 1 Iltre with distilied water, The resulting suspension was thoroughly shaken to break up any elimps or filaments and a volumo for oounting withdramn (Butchor, 1940), A elass covorslip was placed on the specimen slide and both the oleared and the untouched halves observed at $x 200$ magnification. This onsbled a cheok to be kept on the efficiency of the olearing and on the speoies and natucal
distribution of algee on the slides.
Fow centain series of samples and individusl experiments where only the major constituents of the aleal populations were being tats of detemnined the mombrane filter technique desoribed by Moltabb (2960) was used. The samples were preserved in Trgolis fodine rather thanlat fut formalinito When the algee had beon concontrated on the membwane, it wss placed in some immersion oil alwesdy on a microscope slide. This was to avoid any possibility of the algee being disturbed. $A \quad$ A waning up stop to accelerste the clearing of the membrance ves then employed as reoommended by Moore (1963) , The tomperature used vas $65^{\circ} \mathrm{C}$ which cleared the membranoo within 30 minutes. $55 y$ Thatstily 29521 ind whe ,

327 Core and separato depth samples were either observed direotly under a microsoope or the sample was shaken with a lmown volume of water and algae poured off. This vas repeated seversl times to ensure maximum nemoval of algea: Aliquots of the resulting suspension were

\qquad

IV. A consideration of the use of almal volumes in intompeting alcal populations.

Al.though counting methods for detomining the pogulation aizes of alghe have many advantagors (Iund \& Talling, 1957), expressing the results as mubers of cells per litre may be misleading. This is due to the wido range of cell ox colony size which may exist even within a woll-defined speaies. In addition, for some algee, espeoially for example in the coenobial Volvocales and Chlorococcales, there may be a very large difference in size between the young and mature stages. Partial componsation may be sohieved by oxprossing the results in volumes of cells per Litre (Holainger, 1955; Verduin, 2951; Whipple, 1927). To do this one has to knov , with reasonable accureoy, the average cell volume of eech species and variety encountered. With some algae this is not too difficult as their volume may be adequately calculated by geometric formulee, e.g. πr^{2} for Stephonodiscus astrgea. For others, however, volume detemninations must necessamily be only approximate due to their complex shape. Plastioine models were used to detemine the volume by displecement of water, e.E. with Staumstinum speoies.

Thichover method is used to detemine the volume, accurate neasumomonts of cell dimensions are essential. At least one hundred colls for each species quoted wore measured and in some osses, 0.5 . Stemhanodicous astrges, over one thousend were measuxed. The results are given in table 1. The results obtained during this study axe compared with those of Mauwerk (1963).

With the exception of Sterhanodiscus astraea and its varieties

the volumes quoted were used in calculating the woicht of algec present.
A specific gravity of 2.0 was assumed forz all algao, thus thoir woight
= volume $\times 1.0$. A eloser seasonal study of the cell volume of
S.astraea was made. Neasurements of cell diameter and where possible ce11 heights were taken throughout three years on soid cleaned
frustules. When the population density allowed, over fifty cells from each sample were measured. The arithmetic mean was calculated and the average cell volume determined for each sample. The results are given in Pigure 6. A distinct seasonal variation can be seen with marimum average cell dianeters occurring in the winter and mininum diameters in the surmer periods. \square Buate

The onset of the spring maximum comesponded to a rapid decrease in the average cell volume. The spring of 1966 initially had a similar trond but applications of copper sulphate reduced cell mumbers considerably. Jy May the population density was again inoreasing and a second spring maximum ocourred in mid-sumer hence the less regular shape of the curve for 1966. The autum-early vinter period was marked by an increase in the avorage coll volume.

An attempt to ascertain whother the average cell diameter of a sincle population of S.astrgee could vary as much as recorded in natural populations was made. For thia purpose unialgal cultures vere started in various media (Rodhe VIII; Rodhe, 1948; Chu, 10; Chu, 1942; and natural steam sterilized reservoir water) with or without soil extract added but without success. The cultures were able to

Table 1. The volumes of algae in cubie microns calculated from personal observations (column 1) comparea with the results of Naumoric; 1963, (column 2).

1

Chzorophytia

Chlanyadomonas angulosa	1760	*
Pandorina morum (col.)	2000	3000
Sudorina elogans (col.)	4200	3000
Volvox aureus (col.)	2.71×10^{4}	3.0×10^{4}
Vlothrix tenusseime	1200	-
U. sonata	7000	*
U. tenerrima	400	-
Pediastrum boryanum (col.)	1.6×10^{4}	8000
Coelastrum mieroporum (col.)	6500	3000
Ch3orvila ap.	30	20
Cocystis solitaria	440	500
O. erasesa	3050	-
O. 2moustris	*	200
Anlatstrrodesmus felcatus	320	250
As Feloetus $\mathrm{v}_{\text {, mirabils }}$	850	-
Schrcederia setigera	660	500
Setraeaxon miniraux	200	30
Scenedesmus acutus	-	1000
S. bijuga	700	-

1

Cryptophyta

Cryptomonas ovata	1000	-
Rhodononas minuta	400	-
Gyanophyta		
Microcystis aeruginosa	32 per cell	1×10^{5} per 200μ
Oscillatoria 2 dmosa per cm.	2×10^{6}	
O. tenuis ..	2×10^{5}	1.5×10^{5}

survive for about six weeks but then died. Thus no information is at present available as to whether the variations in average cell diameters of this alge were due to changes within the same population or due to the developmont of different populations at different timos of the year. The results obtained and their relationship to othor environmental factors such as light and temperature are discussed fully in Chapters IX and XI.

Whatever the reasons for the seasonal variations in cell volumes it is important to take them into account when oaloulating the volunes of populations in periodicity studies, This variation also illustrates the need for more comprehensive records of all cell dimensions for use in surface area or volume calculations if errors are to be avoided.

Pigure 6. The seasonal variation in the average cell diameters of
V. Matoonologion data, Physios and Chemistry of the inflov vater. Recoxds of rainfall, evaporation, air temperature and radiation were obtained from the Meteorological Office, Kew. The natural flow of the giver Thames over Teddington Veis throughout the period was obtainad from the Thames Conservancy Board.

The results, expitessed as monthly totals in millions of gallons, for the Llow of the Riven Thames are given in Figure 7. The highest recorded flowe were durine the winters of $1963-4$ and 1965-6, Duxing the winter of 1964-5 however, the flow was fainly low being onily a little above the sumener levals. The clow of the ziver can be comelated to total zainfall but mone olosely to Plood rainfall (Figume 8.)

$$
1963 \quad 1064 \quad 1965 \quad 1966
$$

Figure 7. The flow of the River Thames at Teddington Weir.
Mood rainfall is the mount of water remeining after evaporation has taken place and is an indication of the amount of surface vater sun off into the river. The ifgures for flood rainfall were obtained by subtracting the total weelcly evaporation in m. from the total weekly rainfall in me. The poriods of highest flood rainfall, in November

V. Matooxologiond data, Fhysiog and Chemistry of the inflow wator.

Recoxds of xainfall, evaporation, air temporature and radiation were obtained from the Meteonological Office, Kew. The natural flow of the 马iver Themes over Teddington Veir throughout the period was obtained from the Thames Conservancy Board.

The resulte, expriessed as monthly totals in millions of gallons, for the flow of the River ghames axe given in Figure 7. The highest recorded flows were during the winters of 1963-4 and 1965-6. Durincs the winter of 1964-5 however, the flow wis fainly low being only a little above the sumer levals. The flow of the ziver can be correlated to total rainfall but more olosely to slood rainfall (Figure 3.)

1966

Figure 7. The flow of the River Thannes at Meddington Weir.
Flood rainfall is the amount of water remaining after evaporation has taken plece and is an indication of the amount of surface water sun off into the river. The figures for flood rainfall were obtainod by subtracting the total weelcly evaporation in mus. from the total weekly rainfall in me. The periods of highest flood rainfall, in Hovember

1963, Narch and June 1964 and most of the winter and spring period of 1965-6, comresponded to periods of hich miver flow-

Pigure 8, The total and flood rainfall (shaded areas represent flood rainfall).

There was a high reoorded flood rainfall in September 1965 but only a small inorease in wiver flow was recorded, Iowest flood rainfalls and smalleat river flows usually occurxed during the sumer and autum months. The magnitude of the River Thames flow did appear to affect the concentration of chomical mutrients in the water and thus affect their availability to algne in the filter beds (see pages 55 to 58). The temporature of the water was taken in the seration basin, (this gives the temperature of the water flowing out of the reservois and entering the filter beds), and in the supernatant water of the filter beds near to the sand surface to avoid any surfece heating

water temperature in the reservoir and the filter bed supernatant
filter bed temperature.
effects, (or in winter, cooling effocts). The results ane given in Pigure 9. The tempersture of the supermatant water in the filter beds was talien before midday and vas usually a lititle below that of the resorvois, especially during the vinter months when thin layers of ice werie often observea to sem on the sumfeee: Atm temposetures were usually below that of the water at night and above that of the water, in the aftermoon. Although turbulence and vorticel transport usually maintained the supernatant water in the filter beds in an isothermal condition, on calm summer days and also then ice cover stopped any Wind action, vertionl themal stratification of the water did occur. Ip to $3.5^{\circ} \mathrm{C}$ airference was recorded betueen the water at the sand surface and that just below the ice in Fobruary, 1965. Also surface vater temperatures of $23.5^{\circ} \mathrm{O}$ were recorded in late July and early Auguat 1965 during some afternoons. It is very aifficult on many occasions to separate the effects of temperature and 14 cht on natural popuiations of algae as low temperatures are often coupled, in cold teimperate olimates, with lou light intensities. There is some evidence, however, (discussed moxe fully in Chapters VI and VII), that many algae present in these wators will grow and reproduce at low temperatures if other conditions are suitable. In the winter and early spring periods of 1964 and 1966 Asterionella fornose and aty Stenhanodiscus astraga both inoreasod considerably in numbers while water temperatuxes wexe near to thein lowest levels.

Solar Madiation

The figures for total radiation yere obtained from the Meteorological office, Kow, and were exymessed in milliswatt hours per cm^{2} per second (marr/an ${ }^{2} /$ sec.). They wore converted to ghotosynthetio radiation (i.e, that radiation falling in the range $3800 \AA$ to 7200 A) by multiplying the results by 0.5 ap recormended by Bamondson (1956). They wore thon converted to calories per $\mathrm{cm}^{2} \mathrm{per} \min$. (cals $/ \mathrm{cm}^{2} / \mathrm{min}$.) as these units rendered the results moxe easily comparable with other published data and these, or othen closely related units, have been used by many other workera (Voatlake, 1965).

Jron measurements using the subversible light meter, describod in Appendix 1, over the period of investigation, an average extinction coefficient, k, of 0.68 was obtoined. This is equivalent to a roduction in the inoident radiation of 50% sor evory metre depth of vater. In the slow aand filter beas the sand was overlaid with about 1.5 - 1.75 metres of wheres so that only 30% - 35% of the incident radiation reached the sand surface.

The results of the photosynthetio radiation froident on the vater surface are given in Digure 10, each plot representing the average for three consecutive dnys. To obtain the figure for photosynthotic radiation inoident on the send surfece 30% - 35% of the results given must be takcon. On all but five occasions there was less than $100 \mathrm{cals} /$ $\mathrm{cm}^{2} / \mathrm{min}$. of photonynthetio wadiation reaching the sand surfece. Talling (1957) in photosynthetic exporiments with Astoriono11a fornoga, found that light saturation occurred at about $48 \mathrm{cals} / \mathrm{cm}^{2} / \mathrm{min}$.

representing the average for three consecutive days.
at $5^{\circ} \mathrm{C}$. SEyther (2956), working within the temperature range $18-23^{\circ} \mathrm{C}$, found for marine diatoms that saturation occurred at ebout 25 cals/ $15 \mathrm{em}^{2} / \mathrm{min}, 966$ Fo also found that the saturation levels, in the same temperature range, for the Chlorophyta and some dinoflagellates were 10 and $60 \mathrm{cs} 1 \mathrm{~s} / \mathrm{cm}^{2} / \mathrm{min}$. respectively.

From October to March of each winter period studied the water 4 temperatyres were alvays below $74^{\circ} \mathrm{C}$ and often as low as $4^{\circ} \mathrm{C}$. If it asis essumed, on theobesis of then results of Byther (1956) and Talling 9(1957), 6 that for diatons generally light saturation occurs at about $435 \mathrm{gal} / \mathrm{cm}^{2} / \mathrm{min} .$, thenofor thispleyel of photosynthetic radiation to 4soptain at the sandosurface a values of about $100, \mathrm{cals} . / \mathrm{cm}^{2} / \mathrm{min}$. would 49 be required at theowater surface, 5 s Throughout most of the period 4 Novembos to February incident photosynthetic radiation levels were 14 wel3 below this figure and light limitation of photosynthesis for 44 diatoms at the sand surfice probably occurred. 0 , 274
20. 9 The penetration of light into the supernatant water in filter bed 14ITo. 12 was measured throughout most of the period Jamuary 1965 to JJune 1966. Technical faults in, the apparatus prevented measurements I beinc made during July and August 1965 and lanch and April 1966. The resulta given in table 2 are expressed in terns of vertical gextinction coeffioient, k, caloulated according to Talling (1960)

11.6 .66
$0,835 \%=3 / k 0,850$
0,225
where 55% is the depth interval in which light is reduced to 5% of its initial value. Throughout the period green light showed the

Table 2. The vertical extinotion coefficient is for red, blue and green light in the supernatant water of filter bed No. 12 during 1965 and 1966.

Date
Red
32100
Green

15.1 .65	0.735	1.510	0.635
22.1 .65	0.430	0.572	0.338
9.2 .65	1.200	1.335	0.560
12.3 .65	0.660	0.668	0.255
15.4 .65	0.514	0.555	0.316
19.4 .65	0.440	0.565	0.240
4.5 .65	0.550	1.850	0.470
11.5 .65	0.294	0.314	0.200
11.6 .65	0.575	0.800	0.271
20.9 .65	0.740	1.200	0.265
11.10 .65	0.925	1.130	0.272
3.1 .66	0.730	1.620	0.224
12.1 .66	1.430	1.540	0.230
2.2 .66	0.835	1.500	0.170
9.5 .66	1.090	1.850	0.340
20.5 .66	0.260	0.340	0.222
11.6 .66	0.800	0.860	0.224

greatest and blue liggt the least ponetration. The enount of penetration of each wave band varied on each occasion. The penetration of green 3 Sht vas at a minimum in January, March and llay 1965. Blue light penotration was at a maximun in Maroh, April and liay 1965 and Ney 1966, Several feotors oan operate to prevent light penatration into the wates. Colouring of the water reduces the penetration of light at the shorter wave lengths, indeed the reduced penetration of blue lifent in these watexs was almost oextainly due to this. Suspended. particulate matter slso prevents licht penetration. Seuborer and Butiner (1941) and Talling (1960) have reported reduced penotration of 1 Ifont the to lange phytopiankton ponulations.

Figure 11. The penetration of licht into the supernatant water of bed 12 on April 19th, 1965.

In February 1965 there was a large amount of silt and organic debris in the wator togethen with large'numbers of Stephenodiscus hantzschit. These caused a reduced penetration of light at all wave lengths. In June 1965 the vater was coloured groan by large numbers of Chlanydomones sp. On this occasion the penetration of both red and blue light was sreatly reduced but the green was only slightly affected. In April 1966 reduced penetration at all wave lengths occumed when high numbers of Stemhanodiscus astraea and Astorione11a Cormosa were present in the water.

Figure 12. The penetration of light into the supernatant water of bed 12 on June lst, 1965. = blue,... . $=$ red. and $\quad=$ white light.

Qu. On two oocesions in 1965 the penetration of 1ight into the supernatant water was measured at 0.2 metre intervals. The first ocoasion
 zegultes, exppessed as percentege trenomiasion of the incident 14cht, are given in Figure 12. Onty small mumbers of algae were gresent in the water: which wes also free from silt and oreanic debris, Over 68\% of the lisht at each wave bend measured renched the sand surface. The percentage tronsmission deoroased moxe rapidly near to the sand gurfece with blue and zed vave bendis. This vas possibly due to larger numbers of algse being yresent in the vater at this depth (see Chapter VII). The second ocoestion was on Jum lat whan large numbers of Chlarydomongs sp, vere present in the water (see Chapter VII). The zesults ere eiven in Figure 12. On this occaaion less than 4\% of, the blue light reached the sand surface. Only 34\% of the red and 42\% of the ereen 2isht reaohed the sand surface. At the levels of incidont radistion recorded on Jume lst, this would cortainly have ceused the algee on the sand surface to be liert limited (Nyther, 2956). 2hthough the filter bods are but hallov basins of vater, cocasions could occur when there vas insuffiolent light for maximas aleal growth at the sand surface. . One example of such an ocossion is given blove. Iarge mumbers of green slagellates wese not uncommon in the supernatant water. Another occasion when licht would have been limiting was when lange anounts of filamentous green algae, e.g. Whothrix spy. developed on the sand surfeco. These would most cortainly have caused 2ooal: shading and perhaps modified the distribution of other algee on the sand surface (see Chapter VII).

Chemical Rosults and Discussion.
Concontiations of the various chemicals axe expressed in miosogramio atoms per litive ($\mu \mathrm{g} . \mathrm{at} . / \mathrm{L}$) ow inioro-grambio nolecules per litre ($\mathrm{pg}, \mathrm{mol} . / \mathrm{L}$), These unith axe obtained by dividing the concentration in mioxo-grames per litixe of the atom or molecules (i.e. MO3-II or Si02) by their appropriate atomic or molecular veight.
(15ccthe forms of nitrogen usually available for the exowth of freshwater organisms are well lonown (Hutahinson, 1957). Of these, the concentration of molocular nitrogen was not determined and that of nitrite nitrogen only infrequently eietermined as they were considered to be of lesser importance in these waters. Amoniacal nitrogen, nitrate nitrogen and albuminoid (organic) nitrogon weve determined regularly, usually at weekly intervela, duxing the period of atudy. Only small quantities of albuminoid nitiogen were detected, the ght concentrations ranging betreen $7 \mathrm{\mu g}$. at. $/ \mathrm{L}$ and $26 \mathrm{\mu g}$. at. $/ \mathrm{L}$. Ho 81 cornelation between the levels of albuninoid nitiogen and phaytoplankton growth could be found. The method used (Kitio, 193e), however, is paobably not sufficiently sensitive to detect smail differencos in concentrations and has been assumed to provide only an approxinustion ofte proteinaceous nitiogen present (Standard Nethods, A.P.H.A. 1960). 7.5 Amoniacal nitrogen may be present in the rater in two forms, IFH4 ${ }^{+}$and WH/OF. The xelative proportions of these two forms deponds upon the ph. This balance may be of ecological sienificance according 66 to Cooper (1938). At $18^{\circ} \mathrm{C}$, for example, the ratio of 1034^{+}to $1 H 40 \mathrm{H}$

1957). Thus at high pHi values toxic concentrations could develop of 2m40II. Rodhe (2948) in his work on the roguiroments of planieton algee Pound that toxic anounts of myop could be formod in cultuze media having amontum compounds ass a source of nitrogon amd is high pH value. Concontrations of about $24 \mathrm{\mu g}$. at. $/ \mathrm{L}$ wexo thought to be toxic. The pH of the water passing onto the silter beds ranged. betweon 7.5 and 8 (Figure 13). The ratios of 124^{+}to MHYOI at these pil linits are about mat 90 to 1 and 30 to 1 reepeotively and the maximus suount of NH4OH nitrogen prosent would only have beon 20 品. at. /Le Iooal photom whan aynthetio activity in the filter beds could have raisod the pll to above
 above $10 \mu \mathrm{~g}$. ato/Le These Levels mey have impaixed the eroirth of

Figure 1.j. The gill of the waten pasaing onto the ililter bods.
certain algee present in the silter beds.
Concentrations of amoniacal nitrogen (Iigure 17) wore usually lowest in the surimer and autuman and hictiont in tho winter and/spring. Hutchinson (2957) states that amioniacal nitrogon concontrations are generalily at a maximm during periods of circulation and that minima occur during the wiater. There wore inozeases in concontration in the eavily winter gnd late autumn of 1963 and 1964 and duzing the winters of these two years diutinot naxims in concentiations occurxed. The winter of 2965 to 1965, however, differed froen tho previous two winters and wes indeed unusual (raviox, 1964) as the concentrations of arnoniacal nitrogen remained low throughout. This osn be accounted. for by the unusually hich natural flow of the River Thames during the winter of 1265 to 1966 (21 gure 7). This incroased flow vas associated with a reduction in amoniacal nitrocen concentrations in the river water and this was reflected in the water passing into and out of the reservoiss. CNensel and Spaeth (2962) found, in the Sargasso Sea, that the highest concentrations of armoniacal nitrogon ocourred during and after periode of macimual gaytopiankton develognont. This to relationship dia not seem to hola fox the wator passing out of fueon Nary Reservoie possibly beceuse of the relatively hidi, ecmpared with the Sargasso Sea, concentratione of particulato organio matter present throughout the year (Figure 24) Wut nore probably beoanse of the overriding influence of the River cheilee aminoniacel milzogen ooncentrations on the reservois anu subsequentiy the watex pasaing- onto the filter beds.

Bigure 14. Concentrations of particulate organic matter present in the water passing onto the filter beds.
th Mitrification in the surface waters of Lake Nendotal was found to be at a maximum in April, Why and Ootover (Domogalla, fred and Poterson, 1926). If the same seasonal changes in (nitrification occurred-in the filter bed water this could possibly acoount for the Low conoentrations of $\mathbb{N H}_{4}-\frac{\pi N}{}$ obseived during the late spring and auturm posiods. The highest conconitiations of anfoniacal nitiogen occurred during the late winter and eaxly syring of 2963 to 1964 and 1964 to 1965 when water temperatures wexe at their lowest (Bisuie 9, p. 37).

It was not until temperatures sose above $5^{\circ} \mathrm{C}$, that concentrations fell belor 40 Mg . at. $/ \mathrm{T}$. It is possible that temporntures belor $5^{\circ} \mathrm{C}$ be greatly roduce the activity of fitrogen oxidising bactexia thus during the winter amoniacal nititogen romained in a reduced state.

Wi.trate nitrogen concentrations were usually in the range 100 to 400 jg. at. /L (Pigure 27) and were many timen higher than the ammoniscal nitrogen concentrations. As both the filter beds and the reservoirs have a continuous flow through of water the concentrations of nitrate nitrogen in the water will be greatly influenced by the concentrations of nitrate nitrogen in the Rives Thames where it was high during the period of study. Maximum concontrations ocoumed in the springe. slightly lator in the year than the maximum conoentrations of amoniacal nitirogen. This suggests that amonia oxidation might contribute towards the nitrate maxima.

20xy Silicon dioxide (Silica) was present in highest concentrations during the winter snd summer periods and in lovest ooncentrations during the spring and sutum periods. Concentrations renged from 6 Mg. mol. $/$. . to over $300 \mu \mathrm{~g}$. mol./L (Pigure 27). Watimum concentretions aid not alweys comespond with either high or flood rainfalle (Piguro 8) as of was suggested in the theory of distom periodicity (Pearsall, 2923). ${ }^{\text {a }}$ In such a complez and hichly eutrophic system as the Biver Thomes -reservoins-Lilter beds it is difficult to denonstrate such a simple? frolationohip as that proposed by Pearsall (1923). Sisfica concontrations were indeed high during the vinter when rainfall was high but increases in summer concentrations the not comerpond with oithor high or flood
rainfell. Wuch silios is contributed to the upper lavers of Gueen Wary Reservoir by partisl turnovers, i, in, intermediate bneakioums of themal stratification, in the late sumener. Lowest concentrations of silica wore recosded during or soon after the occurrence of maximum numbers of diatoms (see Chanten VI), As soon as these diatome populations subsided, either naturally or because of copper sulphate applications, silioa concentrations increased probably duo to xeplonishment by the inflowing water.

Althouch the concentrations of phosphate phosphorus were the Lowest of the recorded majox inorganic mutrients compared with the recorded concentrations in Ieke Windermere, not mone than 2 res P / s $(0.0645 \mathrm{\mu g}$, at. $/ \mathrm{L})$, Nackereth (1953), they were relatively high throughout the year, the minimum concentration being $0.8 \mu \mathrm{G}$ a at, P / L ely As it has been recorded that $1.0 \mu \mathrm{~m} . \mathrm{B} / \mathrm{L} \cdot(0.0322 \mu \mathrm{me}$ ats $/ \mathrm{L})$ can produce a population of $26 \times 10^{6} \mathrm{celle}$ per 1 litre of Agtorionella fornoga (Mackoreth, 2953) phosphorus would not seem to have limited algal growth in Themes Valley waters. Concentrations were usually above $20 \mathrm{Mg}, ~ a t . / \mathrm{L}$ and ranged between 0.8 to $61.8 \mathrm{\mu g}$. at $/ \mathrm{L}$ (קigure 27). Naximan concentrations were recorded during the anturms and winters of 1963 to 1964 and 1964 to 1965. Minimun concentrations wexe recorded in the late summer periods. The winter of 1965 to 1966 was again unusual in that hich concentrations of phosphate phosphomus were not recorded (as with anmoniacel nitrogen), and levels never exceeded $30 \mu \mathrm{~g} \cdot$ at. / he. This nay again be explained by the high flow of the River Thames causing considerable dilution of nutrients, Although rapid
fluctuations in concentration did not occur as much as with nitrate nitrogen or silica this did not necessardiy indicate a less rapid tum over of phosphorus. Riglen (1964), using radiosctive P_{35}, found that, slthough gross weelcly concentrations of phosphorus were more or less constant, the inorganic phosphorus was being re-cyoled in less than ten minutes in many lakes. Thus even though weelcly records of concentiations did not indicate it, rapid utilisation and re-cycling of phosphorus might have been taking place.

At the end of September 1964, after phosphate phosphorus was at a minimum, a fifty-fold increase in concentration was recorded, (Figure 17). This increase was observed to occur within two weeks and about a month after the autum recirculation in the reservoir (Taylor, 1963). The recorded increase in concentration was probably not entirely due to this autwon recirculation, no such rapid increase was observed in 1963 and only a slight increase was observed in late August 1965 (from $18-28 \mu \mathrm{~g}$. at. $/ \mathrm{L}$). A small increase in phosphorus did ocour in the River Thames in 1964 just before this period but this would not have contributed more than $10 \mathrm{\mu g}$. at. $/ \mathrm{s}$ to the reservoir increase in concentration. There are many records of high phosphoms release during vigorous phytoplankton growth or in dying populations (Antia et al. 1963; Watt \& Hayes 1963). During the period of phosphate phosphorus increase there were large populations of several algee actively growing in the water, e.g. Rhodomones minuta, Scenedesmus spg. and Oocystis spp.. One population of Stemhanodiscus astraea, previously present in high numbers but then declining, was also present.

Johannes (1964) foune that Acnanthes subhyaline couga release 80% of the dissolved orgenie phosphorus found in solution durinis sixteen days in culture. He did not state whether this release was from living or dead cells. If this organic phosphate release was coupled with mineralisation by phosphateses as indiceted by Johamese (1964) the aleal populations present could have contributed to the observed increase d althouch the amount involved would only have represented a small propontion of the totel. Wielor (1961) sieo found that phosphate replenishment by algal decomposition and remineralisation were negligible in lake water. Heron (1961) found a marked correlation between rainfell and surface vater phosphorus, Ho such maxked correlation was observed during this study in oither the river, the reservoir or the filler bed watere.
nublu Determinations were mado on the phosphate phosphorus content of rain vater, The mean ves found to be 2.15 pg . ats. $/ \mathrm{L}$ P which would a have had a diluting effect rather than increasing the phoaphorus: concentration in the Themes Valley vators, If sa aimilar level of rainfell-phosphate had been obtained in the Lake Distriot the reverse effect would be expected.
pht Concentrations of phosphorus vere observed to fall in the spring at about the same time as did those of silica. Thet phosphoms lavy removal did not occur to any great extent before docreases in silica concontration agrees with the results of Heron (1961) for the Finglish Jake District. There in a correlation between the inerease in distoms and the decrease in phosphorve concentrations in the spring (see

Chapter VI). This is in agreement with Nackereth (1953) who suggested that in mhosphorus-rioh waters, ells of Astarionolla formosa remove large amounts of phosphorus from the water to maintain a high cell phosphorus content.

The results for the dissolved oxygen percentage saturation are given in Figure 15. The most obvious regular feature vas the marked depletion of oxygen in the autumn months and throughout the winter periods. The onset of each of these periods of depletion coincides with the autumn turnover times (indicated by amos in Figure 15) in the reservoir. The destratification of the reservoir could cause a redistribution of dissolved and particulate matter from the hypolimnion and mid surface. This could have a two fold effect on the water. Firstly there would be a redistribution of organic and inorganic nutrients possibly leading to an increase in the algal and bacterial populations. Secondly reduced substances such as amononiacol nitrogen and hydrogen sulphide would be redistributed throughout the water depth. These would exhibit a marked chemical oxygen demand on the water. If the growth of mainly non-photosynthetic bacteria greatly exceeded algal growth, or if the chemical demand on the water were high enough, oxygen consumption would have been in excess of production resulting in an overall undersaturation. Figure 16 gives the colony counts (B.coli and 37 Agar plate colony counts per ml. obtained from the Metropolitan Mater Board) in the outlet water of queen Mary Reservoir. Higher numbers were present throughout the autumn and winter periods of each year corresponding to periods of underssturation

in the water. There were also large numbers of bacteria present in June 1964. This was also reflected by a reduction-in the dissolved oxygen. Kuznetzow \& Karsinkin (1931) working on Lake Giabokoye estimated that a bacterial population of 2×10^{6} cells $/ \mathrm{L}$ would consume $0.24 \mathrm{mg} . / \mathrm{I}$ oxygen per day. This was considered to be a conservative estimate by these authors as populations of up to $4.5 \times 10^{2} 6^{3} \mathrm{cell} \mathrm{s} / \mathrm{L}$ had been found in the hypolimnion. This rate of confumption, were it to have occurred, would seem to be adequate to explain the observed reduced concentrations of oxygen. Periods of supersaturation followed a less regular patterm. Supersaturation of the water did occur when large numbers of algae were present (see Chapter VI) although the two occurrences could not always be correlated. In April, May and September 1964 large numbers of algae were present in the water (mainly Stemhanodiscus astraes, Asterionella formosa, Phodomomas minuta and 0ogystis spp.) and the water was supersaturated with oxycen. In June 1964 Oocystis spp. and Ancigtrodesmus falcatus were present in large mumbers byt the oxygen content of the water was between 4% above and 5\% below saturation. Bither the algae-present were not photosynthesising at a maxirum rate or the oxygen consumption of other matter in the water exceeded the production by the algae, No marked correlation between the percentage saturation of dissolved oxygen and rainfall was observed.

फ फी स ल ते
The nutrient concentrations in the water passing out of the reservoir onto the filter beds did beer some relation to the populations of algae present in the reservoir. It was, however, difficult to show
any such relationship with the algal populations within individual filter beds. There are two main possible effects of these mutrient concentrations on the algae. Firstly they could affect the covar physiological state of the incoming algae and possibly determine whether or not they reproduce in the filter beds, Secondly, nutrient concentrations in the inflowing water may have been low enough to limit the growth of algae in the filter beds. It has been found, for example, that the minimum requirements of Asterionella formose for phosphorus is $0.002 \mu \mathrm{~g}$. at. / L at a concentration of 10^{6} cells/s. (Mackereth, 1953) and that $0.5 \mu \mathrm{~g} . \mathrm{mol} . / \mathrm{L}$ silicate was the lower limit for growth (Jorgensen, 1957). Filter beds have a constant flow of water through them. At an average rate of flow through the sand of four inches an hour, each square centimetre of sand surface would have 240mils, of water passing it per day, i.e. approximately II of water passes every $4 \mathrm{cms} .^{2}$ of sand surface per day. At the minimum concentrations recorded in the filter bed supernatant waters (see Figure 17) this would have made available $0.8 \mu \mathrm{~g} . \mathrm{at} . / \mathrm{I} P$ and $6.0 \mu \mathrm{~g} . \mathrm{Mol} . / \mathrm{I}$ SiO. This concentration of PO4-P is capable of supporting a population of 100×10^{6} cells $/ \mathrm{cm}^{2}$ of A.formose (Nackereth, 1953) and the concentration of Si 02 was twleve times the recorded minimum concentration required for growth. Total population densities on the sand surface reached 2×10^{6} cells/cm. ${ }^{2}$ at the end of a filter bed run (see Chapter VII). It seems unlikely, then, that nutrient concentrations were limiting except perhaps towards the end of a filter bed run when local cell concentrations may have exceeded the recorded averages for the

Abstract

sand surface (see Chapter VII D). Nutrient concentrations were measured on occasions in the water passing out of the filter beds but due to re-solution of chemicals on the way through the sand column these were found to bear no relationship to the concentrations of nutrients in the supermatant water or of algee on the sand surfece.

VI. The A1 8 ge of the inflon water.

ain Observations were made throughout the period August 1963 to June 1966 on the numbers of algae in the aeration basin water. The water passing out of the reservoir goes through the aerstion basins before entering the rotary microstrainers, (See Chapter II). Although the concentrations of algae present in the aeration basin water broadly reflected the concentrations of those present in the reservoir they were not always precisely similar. This was because vater was in is abstracted from the reservoir at one or more different depths at different times of the year depending upon the quality of the water for waterworks purposes. The changes in the abstraction depth was under the control of the vaterworks engineers and of ten no prior lnowledge of such changes was obtained. The sample from the aeration basin did not, therefore, always form a representative sample of the reservoir and changes in the abstraction level could cause a change in the phytoplankton composition of the aeration basin water. The zesults obtained are expressed as total volumes of cells/ml. x $10^{-3} / \mathrm{M}$ (or veights in $\mu \Leftrightarrow \times 10^{3}$) and are glven in Piguxes 18 and 19.

There was a fairly well marked seasonal sequence of diatoms in the spring and auturn and Chlorophyta and Xanthophyte in the sumenor $/ 5$), and autumn. This sequence was often modified by applications of copper sulphate to the reservoir and, depending upon environmental conditions, the Erovth of different speoies often overlapped. Copper sulphate was usually applied at the tip of the baffle or to the area east of the baffle (see Chapter II) at a final concentration of
between 0.5 and $2.0 \mathrm{mg} . / \mathrm{L}$ CuS04, The times of applications are shown as vertical amows on Figures 18 and 19. of the algae recorded in the semples, only thirteen genera or species occurred in hich concentrations (oeloulated volume $=100 \times 10^{3} \mu / \mathrm{ml}$.) and only these will be considered in detail.
ta0 Stephanodiscus astraea was the most abundant diatom recoxded, being present throughout the entire period of atudy. It was not in reported as a major constituent of the Fiver Thanes phytoplankton by Piice in 1938 and is possibly meinly a lacustrine form. Although applications of copper sulphate often modified the extent of its erowth, it developed a epring and an eutum maximur eeoh year; the in spring being laiger than the autumn maxirum. of the major dissolved inorganio nutrients only silica concentretions showed a olose relationship to the ginounts of si, Astraes present. The deonease in cell numbers, after the spring naxirum, started as silica concentrations fell to a minimum (Figure 17). It is probable that the true growth pioture had been masked by copper sulphate applications and this, not nutrient depletion, ceused the decline of the spring miaximum. Pearsall et al. (1946) reported that S. astraes could increase even when the concentration of silica was below 0.5 p.p.m. ($8.35 \mu \mathrm{~m} . \mathrm{mol} /$.L). The relationship between autum concentrations of silice and algal biomass was not so distinct and might have been masked at times by reoivculation of silica during the autumn overtum.

274 Stephanodiscus hantzechit has been mecorded in the River Themes and other rivers as one of the major constituients of the phatoplaniston
(Rice, 1938; Swale, 1962). Its occurrence in the queen llary Reservoir coincided with large populations being present in the River Thanes. Rice (1938) reported that it produced only a sumaner neycimum. Althouch there, wes a suwner maximum in 1964, and it was absent for the reat of the year, these was a spring and an auturn maximum in 1965 with no real sumper maximume Cell concontrations decyeased after September 2965 but small mumbers persisted throughout the winter, increasing in 1966 to produce a spring maximum in Maxch. Although these was a d oomelation betwoon silice concentrations and the spring maximun of Se hantzsiohits, this was pot so appapont for the surumer and autwom of populations. There was, for exanple, an increase in cell mumbers in Hav 1964 when silioa concontrations were as 1ou as 8 . Mg. mol./ $/ \mathrm{L}$ ($0.5 \mathrm{ge} / \mathrm{Ir}$) The winter population of 1965 mas most probably limited by low light levels and Low tomporatures.

Agtorionolla formosa wes present in the River Thames during the winter and speing periods from August 1963 to Deconbor 1965. It has been recozded as a common constituent in larger atanding bodies of mal water (Iund, 1949; Reynolds \& Tavior, 1950; Tay10r, 1954.) It developed a spring marimum in each of the years studied and also a amall maximum in the late autum of 1965 in the Cueen Mary Reservoir. Iund (1964) states that the growth of Astemionolla is limited by chemical conditions in the suxumer and by physioal conditions in the wintex. It was found that the decline of the sprints population of 1964 to 1965 occurred vhile silica concentrations were decreasing but before they were near to their reported limiting levels. This
deoresse in numbers bofore allica linitation was also roported by Pearsall et al. (1946). St the spping maximen in 1966 aid not deorease until silica concentrations wero below 20 Mg. mol./L ($1.3 \mathrm{mg} . / \mathrm{L})$. Thore was then a catastrophic decrease in numbers. Ime auturan population of 1965 did not completely aie ouf duwing the winten, itnafoc indeed growth inoreased from Deceinber onvards to produce a largor spring maximum than in previous years. LHeht and temperature vere not significantly higher during the ointer of 1965 to 1966 but aide Increase more rapidily in Pebxuary 1966 than in previous years. 19 (The largor epring maximum in 1966 can be attiributed to the porsistance of Iarger numbers of cells through the previous Minter and, to some with, extent, to slightly moxe favouxable physical conditions towarad the ond of that winter, sothroughout the poriod of study some ohytrid infected cells wexe obseived buit these foimed only a siall proportion of the total population. It is doubtrui thet parasitisain was an 66 . important factor during this period in limiting Astorionel1a populations. Mrapilapia corotonengis was rpresont during the euturmi of 1965 and 1965 and auping the spuing of 1966 having persisted through the of previous winter. The onset of the auturimimaxima corresponded with higher silios and lowew nitrate nittrogen concentrations. Coineident With the autumn maxiiuum of 1964 was a zapid rise in phosphatel it phosphozus concentrations but these did not fluetuate greatiy duxing the growths of auturin 1965 land spring 1966. Lund (1964) pointed out that, as the growth rates of P . oxotonensis and Astexionalla fomosa were very similar in the spring period, one would expect these two
diatoms to compete very closely. In the autump of $\mathbf{1 9 6 5}$ such competition did occur and I. erotonensis produced a larger, earlier, maximum than did A. formose. (Iund (2964) also stated that the resson that they aid not usually compete in the spring is that the numbers of Pragilaria cells usually decreased greatly during the winter whereas cell mumbers of Asterione11a did not. This means that Astemionolla would have a better start in the subsequent spring. Although such a decrease in numbers of Fragilaria did occur in Queen Nary Reservoir during the winters of 1963 to 1964 and 1964 to 1965 the autumn population persisted throughout the winter of 1965 to 1966 . In the spring of 1966 mpagilaria was able to compete vexy closely with, and indeed reached its matimum before, Asterionel1d. The spring maximum produced by Asterionells was, however, langer and longor lasting. The eaply decline of the Pragilaria populations was probably due to the repeated copper sulphate applications during March 1966. This also retarded the growth of Mstexionella but it later recovered. yoctiothe only other diatom to occur regularly in relatively high concentrations in the reservoir phytoplankton during the period of study was Symedra ulng. It produced regular spring and autumn maxims. The occurrence of regular double maxima was reported by Rice (1938) in the River Thames. Tejlor (1964) reported that it ${ }^{3}$? was abundant in the spring diatom growth in Sedaineton Resezvoir, Leicestershire. It was, however, less abundant than the other diatoms mentioned from Queen liary Reservoir and only contributed at a maximum $220 \times 10^{3} \mu^{3} / \mathrm{ml}$. to the total calculated algel volume.

Qubl Tribonema Dombroinum (see Taxonomse Notes) occumed during the aunmor and auturn periods. It produced only a mall mavitium in 1964 but in 1965 it was preasent from May until Ootobey reaching concentriations of ovor $3,000 \times 10^{3} \mu^{3} / \mathrm{ml}$, It Its meximn comesponded to powiods of lias lower nitrate nitrogon and phosphate phosphozus concontrations and it Hilight have beon able to utilise os take up these elements moire bustag efficiently than other algne present at the sene timesas Io bombyoinum was present at tined of hich solar radiation and high temperatures ie but these do not seam to be requirements for its growth as it has been frequently oboerved as abindant in winter popalations in iothor locel zeservoirs (personn2 obsexvation),

Thodomonss minuta and several species of Cxyptomongs, which have been grouped together for convenience, were the math members of the Gryptophyceas present. Of these Rominuta was the most abupdant and was present throughout most of the poriod. Innd (1962) reported that this alge was common it maxy bodies of wator and recorctod its periodicity in certain lakes of the Inglish Leke Distriot. Ho reported that it waa least common in the winter period. This was true in Queen Mary Resorvoir although a relatively large population porsisted. throughout the winter of 1964 to 1965. Naximum concentrations generally occurred in April and May (occasionally reaching 6.0×10^{3} delle por ml.). This vas followod by a marked decrease in nuilbors in early summex, as in Blelhan Tam and Bothwaite Water (Iund, 1962). on After this fell there was an increase to give a amallor autuin inartimum. Some of the fluctuations in its growth could be attilibuted to
applioations of copper sulphate but these offects did not seen to be long lasting and the populations soon reoovered. There did not appear to be any cormelation between the Sluctuationg and dissolved nitrate nitrogen, amnonisoal nitrogon, phosphate phosphoms and silion concontrations. Although lifent might seem to be a limiting feetore Auring the winter poxiod (Jund, 2962), these ves no moro 1ight during the winter of 1964 to 2965 when the population porsisted than in 1965 to 1966 when it died out. Temperatures were a 12 thto highep in the winter of 1964 to 1965. \qquad
Tuth The fumbers of Gryptomonag spp, fluctuated grestly thiroughout the period. These fluctuations did not seem to have axy direct correlation with changes in concentinations of major dissolved mutrients or with physical conditions, Idttle onn be said about the possible al yeasone for these fluoturations and no wee said by Tond (1962) the ecology of Cryptomonads is a myitery.

Pive members of the Chlorophyoese, thitoe Chlorococodles and two: Volvoceles, occurred as important constituents of the phytoplenston. The tro volvooaleans wore Cayterio quadranculata and soveral species of Chinmydothones which, as thoy occurned as mixed populations, have is bogn grouped together.
TEn Gaxtoria quadranmigta occumed in lange numbers on two occasions in 1964. In September a small poyulation developed which died out by the end of the monthe In November and Docember a larger population developed and formed the major part of the non-diaton phytoplankton at that time. There does not seem to be any commelation between
these growthe and dissolvod mutrionts. a The growth of C . quadnangulata does not seen to be dopendent on 11 ght and tempezature levols.
2.0. Chlarydononas spen, were present mainly in the syming and autum. The spring maxima decroased rapidiy in Apzil and Nay. In 1964 the poyulation recovered and ynoduced a second amaller mastinum in July. In autum maximan developed in 1963 and 1964 but not in 1965 possibly because of repeated coppor sulghate applications in the sumen of $\mathbf{2 9 6 5}$, although on other occasions (e.g. June, 1954 and Maroh, 1966) this did not appoar to affect the populations. .i. As with some other algne, cell numbers of Chlatydononas smg, were lower during periods of lowest. licht and temperature. They wore also lover or completely absent during pexiods of lowest nitrate nitsogen concentrations.

Thiree chlorococcelean genets weze present, ench beins zepresented by at least two speaies which, as they oocurred together have been erouped umler the genomio nemer

Oocratis app. (mainly 0, ollistice and 0 . solstaria) were prosent throughout the early surner until the wintex of each year studied. These ves usually a maximm in July with a second later in the autumn. There were lower conoentrations of cells present during 1965 and this may be attributed to repeated coppor sulphate applioations that year. The early sumber populations arose after the docline of the main syring diatom grouths and coincided with periods of high solar radiation and high water temperatures.) The autum macimum, however, coincided with periods of lower light and lower temperatures indicating that neither of these factors was liniting aven at their lover eutum
 gulyhate application. Nratoncy and Palmes (1956) repowted that oven laine
 Indicating that it may-polzesiotant to smallen or eincle apprieations at the concentmettions usked,n thenpated applleations, hovever, imny have

 contributo as lauge a proppostion of the phytonlonkton volume ne dia ${ }^{1964 \text {) }}$ Oocystia spo, they vere present theinly during the spising period aracu

 developed after the speing maximin had declined. As with Oocinatig spp., AnkistroAempra gnp have been yeporteal to be sble to tolerate higher ooncontrations of jopper suiphate (B agg. I I) and their jerouth does not aturays seem to be affooted by the eonoentixations ejpplied. Ihal groirth jertod of /Ankfatrodespas spp. boinosdeal with the spering as atom growths
 Anks strodesmas was Found to paeas through the rotaing milorostroiners onto
 Sconodermasgins, wore present clusing the autumin months of 1963 and 1964 and also during the winter of 1963 to 1964. The taxin eutum the ghowth perfod ocowred duxing periods of high light and temperature and population maxime corresponded to times of Iow nitrate nitrogen and
emmoninoal nitrogen concentrations. S. quadricauda is able to grow under conditions of very low nitrogen and phosphome concontrations by utiliting its cell resources, (Rodhe, 1948). This would favour the gxowth of Scenedesmag during periods of intense competition for nutrients.

From the aoration basin the water passes through rotary mionostrainexs before Rlowing into the slow mend filter beds. The construction of rotary microstrainers has beon explaincd in Chaptor II and their effect on algal populations deseribed by Ridley (1967), Bellinger (1968) and in the 41 st annual Foport of the Motropolitan Water Board. Iarger algee (above 45 u in their minimam dimension) are strained out from the water. The zomoval of smaller algae (below 45 u in minimum dimension) depends upon their concentration in the water and whether or not they form colonies. Astorione11a, colonies aro usualiny 100\% removed as are Eragilaria and various filenentous species. Stephanodiscus astraea and Sconedegmus spe. aro removed. if cell concentrations are high enough to clog the straining fabric or if colonial forms produce a secondary filtering mesh inside the drum. Small algse suoh as Stephanodiscus hantggohit and Bhodomonas mimuta are only memoved if the straining fabric has been blocked by other algee. The overell effect of the then rotary miorostrainers is to allow most of the small algae to pess onto the slow sand fllters but the largor algae may be removed in varying amounts. The sctual concentrations of algee in the roservoir do not, therefore, nocessarily have any bearing on the numbers passing onto the slow sand filtoxs.

Figure 18. The periodicity of the algae passing out of the reservoir. The vertical arrows represent times of copper suiphate application to the reservoir. Chlorine was applied to the reservoir outlet pipe during the spring and late summer periods. Key to lower figure; $-=$ Stephanodiscus astraea, $\ldots . .=\mathrm{S}$, hantzschii, ----- = Asterionella formosa.

Figure 12. The periodicity of the algae passing out of the reservoire The vertical arrows represent times of copper sulphate application to the reservoir. Chlorine was applied to the reservoir outlet pipe during the spring and late summer periods.

VII. A. The Aleae of the supematant vater. apocies valdes

Tumithe algal floma lesving Eneen Mary Reservoir ves eneatly modified by the rotary microstrainers before pessinc onto the slow sand filter beds (see Chapter II and also Bellinger, 1968). (on In spite of these modifications, however, for a large part of the year, the algal elora of the supernatant water of the filten beds was very similar to that of the reservoir. The rotary miorostrainers did allow smaller species to pass onto the filter beds in preference to the larger ones (Bellingex, 1968). Throughout most of the period of study the cell numbers of all speoies of algae passing from the reservoir onto the filter beds were reduced by between 5 , and 95%.
tertur Cortain species present in the filter beds were observed to increase in number in the supernatant watex merely by accumulation and not by notive division, e.g. Agtexionella fomoge and Stenhonodigeus hantzschii. Other species, although present in but small numbers in the reservoir water, were observed to actively proliferate in the slow sand filter bed basins producing large local populations, e.g. Scenedesmus spp, and Chlanydomonas sp. The algse in the former eategory, i.e, those which did not actively proliferate but merely accumulated in number, are not dealt with in detail in this present discussion as their periodioity wes very similar to that of the inflow water (see Chapter VI and Figuxes 18 \& 19, pages $71 \& 72$). . These species generally increased in number throughout the run of a filter bed at a rate depending upon cell concentrations in the inflow water. These species were also only recorded in the filter bed at times when
they were also present in the reservoir. The species which proliferated in the filter beds will be dealt with in detail. Species of Chlamydomonas and Carteria quadranculata wore present throughout the period of study in mixed populations. On most occasions Cartoria quadranculata formed only a small percentage of the mixed population and so, for the purposes of this study, it has been grouped together with Chlanydomonas.

Although present throughout most of the poriod of study, Chlarydomongs was most abundant during the late spring and sumerer of each year (see Figure 20). Its periodicity wes similar in esch of the four filter beds studied. The exception to this was in the sutumn of 1963 when beds 30 and 32 were being cleened by the "hydra". As this method of cleaning did not involve draining the fillter bed dom, the supernatent vater was not completely roplaced at any one time. The algae were thus able to grow undisturbed for a much longer period and, especially in bed 32, produce consistantly high cell concentrations.

Rapid decreases in cell mumbers were observed on several occasions, e.E. October 1963, June 1964 and June 1965 in bed 30. These decreases ocourmed after a period of onlm wam westher when the algel populations in the supernatant water became stratified (see page 87). With the onset of more windy weather the stratification was broken down, the population dispersed and there was an overall decresse in cell numbers.

Oocystis spp. were common in the supernatant water of the filler

Figure 20. The periodicity of Chlamydomonas spp. in the filter bed supernatant water, The results are expressed as volumes of algae in $\mu^{3} \times 10^{3}$.

beds at times when they were abundant in the reservoir. Nany cells wore, howevor, observed to be actively afviding in the filter bod. water. Oogyatis spe wore most comon during the suraner and auturm poriode (see Fisume 22). Then large populations of plamktonie crustaceans were present Oocystis spp. were observed to decrease because of graming by these animals. Cells of sreen algne, probably Qocystis, were observed in the guts of Daphnis pulex and Chironomid larvac (seo also page 133).

Nost of the other species of algee recorded occursed only infrequently in hign concentrations in the supernatant water. Hany were also present for short periods, e.g. bottom living forms were occasionally swept up into the supernatant water by wind induced
expensesed as volumesa of algea in p 3 iv. turbulence. These, however, soon sedimented out again as soon as conditions became calm. The highest concentrations of algae, other than those normally present in high concentrations or of Chlarrydomonss or Oogyatis, oocurrod during the period March 1964 to May 1965. Both before and after this period there were but occasional amall Erowths of algae.

Thodomonss minuta resched its highest concentrations during the spring months (Figure 22). Lerger populations developed in beds 30 and 32 than in bods 12 and 33 . It was absent from all four filter bods during Movember and Decombor 1964 even though relatively large mumbers of cells (over 50 per ml .) were present in the inflow water. As the major nutrient concentrations vere similar in the filter bed water and in the reservoir water it would seem probable that physical

Pigure 21. The periodicity of oocystis spp in the filler bed supernatant wafor. The results are expressed as volumes of algae in $\mu^{3} \times 10^{3}$.

conditions were Limiting the growth of Phodonongs minutg in the filter bods. Both 14 ght and tomporatume wore also similar int both the -avin reservois and filtert bed waters. Water turbulence was, however, much
 of a slightly different character, the wster being more choppy in the filtor Dods.

Thuc Geyptonongs spp, occurred in all four filter beds but at different timen of the yoar (pigure 22). During March 2964 it whas presont in all four filter beds although in all but bed 13 mumbers were low. In bod 12 it atd not then meocour until May 2965. In bed 23, howover; a large population developed in late June 1964 but no cells were Eocorded from then until the ond of the poriod. 3 In June 1964 in bed 32 and in Pebruaxy and liay 2965 in beds 30 and 32 amall populations of Guyptomonnes smp. doveloped. As with phodomonas mimute in Gueen Maxy Reservoin, there did not seom to be any cormelation between the Growth of Gumtomonas spp: and either chemical or physical conditions.

2ribonema bombyoinum occurred in all foux filton beds during June and $J u l y ~ 2964$ but only when it was abundant in the reservoir. Whis species was effectively removed from the incoming water by the rotary mitorostrathoxs (Bellingers, 196s) so that lange mumbers of colls eld not pess onto. the filter beds. The cells which wore present in the supormatant water did appear to be dividing and the populations inoreased. Growth could not have been vexy active, however, as the filter bed populations wexe never large and only persisted while populations wore present in the reservoir water.

Three species of distoms were comonly present in the filter bed suyprmatant vater. All three vere normally abundent in the epipelic or attached poprlations on the sand surface. Their presonce in the tuppomstant water war probebly are to water turbulonco which provontod. Whom from sedimonting out. All. three spacies vere most abundant at
 3 throughout the poriod (Figure 22) although it was sbsent from all four filtor bods during tho winter period. Iargo populations wore present in peds 12 and 30 but not in beds 23 and 32 , during the late sprinc, the shumer of 1964 and the mpring of 1965 . Surinella ovete Was prosent in al1 four fillter beds in large numbers in the spring of 1964 but much sumaller smounts in the syring of 1965 . It too was absent throughout the winter period. As with Surirella ovata,
 than that of 1965. Cell concentrations were also moh higher in bed 132 than the other filter boils.

Then the weather was calm there was very littlo water movement in the supermatant water. Because of their higrer specific eravity, Aistons rould tend to sedtmont out under such eelem condifions. An oxample of such sedimentation can be seen in the third week in Narch 1964. Durime thit wook onlm condstions provailed and there was a general decreaso in all species of diatoms in the supernatant water. Then filter beds 30 and 32 were cleaned using the "hydra", large numbers of diatons were resuspended. from the sand surfece into the supernatant water. If condtilions wore onlm after cleaning these

Pigure 22. The periodicity of algae in the supernatant water of bed 12. Key; $\mathrm{A} \cdots=$ Cryptomonas spp. $-=$ Rhodomonas minuta. B•• = Tribonema bombycinum $-=$ Cymbella spp. c \cdots Surirella ovata. - $=$ Nitzschia iinearis.

Figure 22. The periodicity of algae in the supernatant water of bed 13. Key; $A \cdots=\underline{\text { Gryptomonas spp. }}-=$ Rhodomonas minuta $B \cdots=$ rribonema bombyoinum - =Cymbella spp. C• =Surirella ovata $-=$ Nitzschia linearis

Figure 22. The periodicity of algae in the supernatant water of bed 30.

```
Key; A = Cryptomonas spp. = Rhodomonas minuta. B =Tribonema
bombycinum = Cymbella spp.C = Surirella ovata = Nitzschia lineari s
```


Figure 22. The periodicity of algae in the supernatant water of bed 32. Key; $A=$ Cryptomonas spp. $=$ Rhodamonas minuta $\cdot B=\underline{\text { Tribonema }}$ bombycinum $=$ Cymbella spp. $C=$ Surirella ovata $=\underline{\text { Nitzschia }}$ Iinearis.

Abstract

đistoma" soon" settied out again onto the sand surface. One example

 bed. 32 two days after "Fydza" cleaning.
\qquad

Bach of the fillter beds reoeived vater from the same source and hotloe rocoivod in siminat supply of mutmients, the phymion? hesk bleblyekt.
conditions in aeoh filtor bod, with the excoption of the poriod of
 explain the Morsiatio difference of the various filter beds. One pogesble ontree coule be vanfationg in the mubhers of enimnle ymesent, lut these weze only obsorved to diffor greatly on one or two oconaiong and theno were often when the alcal poyulations of the filter beds Wowe finthat, Tho main factor of veriation botweon asfferont filter bods ves that they vere olesnod at different tines. This vould mean that the seeding pogulations at the start of each filtor bed run would
 bo dipforont, the lencth of the silter hod mm and nlac the speoies present dotermined the depth to which these species penetrated through
the sand suxface (see Chapter 20). This depth of penotration together With the offiofomoy of cloaning, would detemine how much of a seealne population was oamied over from one filter bed mun to the next, Thimco also pleys s port, ant, if a fow colls ano prosont in tho wator, any given speoies may be oompletely eliminated by the grazing of animals before it has had time to roproduce (see pege 108). Becauce of these variable factors one world expect, therefore, a cortain mount of vaciation in the flozas of different filter beds.

On several occasions samples vere collected at intorvals of one foot (30.5 cm) through the depth of the filter bed supernatent water. The results of these collections are given in Figures $23-25$. On many occasions a definite stratification of algee was recorded. These occesions were during tho spring, sumer or auturm months when calmer conditions prevailed. During the winter months no stratification was observed.

Tho main types of stratification wexe observed. The first was When motile algae were present and these were able to maintain themselves in a position most favourable to grovth. Tho of the occasions on which this type of stratification occured ane given in Figure 23. On tho fixst chlerwiomonas sn. and on the second Coxtenis aundreneniete were present in laige numbers. On July 12th 1965 Chlanydomones sp. was presont in concentrations excoeding $10^{8} \mu^{3} / \mathrm{ml}$. Weather conditions wexe calm over this period. Cell concentrations were found to be highest at the surface, deoreasing towards the bottom. It should be pointed. out that on this occastion not all of the celle at the surface were

Figure 23. The stratification of chlamydanonas sp. in Juiy 1965 and of carteria quadrangulata in September 1965 in the filter bed supernatant water.
motile but some were floating eggregations of cells in the palmelloid stage. On' some ocoasionts, fhom ansiven by a gontle broozo to ano comer of a filter bed, thase aggregations of palmolloid Chlemviomonas heve been obsorved to form a setm at the surface mond than a centimotre deope Cantomis quangmoulata was present in ainilar concontrations, exoeedine $10^{8} \mu^{3} / \mathrm{ml}$ n in September 1965. Agein a atstinct stratiesication occumed. but the highest densities occursed between 1-31 (30.5-91.5 cm.) and the lowest at the suxface and just above the sand surfece. Garteria was nevor observed to form a pelmollosd stago nor to scum at the surface. Motile algue have beon reported to avoid the actual water sumfece yosstbly the to 1ight inhibition (Golaman of 21.2963). In Septenber and Ootober 1964, Ghlargydomones. sp, was present in high concentrations but weather conditions woro less favourable and wind induced water turbulonce tended to prevent any algal stratification at that time. On Ootober lat, 1964, a atratified population of Zhodonongs mimita Mas present (Pigure 24), Highest concentrations occumed between of \&o $21(0-61.0 \mathrm{~cm})$ and 4^{1} \& $6^{1}(122.0-183.0 \mathrm{~cm})$ There was a distinct drop in concentretion around $3^{11}(91.5 \mathrm{~cm}$) The presence of high muabers near to the surface can be explained by photosensitive movement and the fact that the cells oan aotively move. less setive and mosibund cells would tend to sediment and fome high concentrations near to the bottom. The large reduction in cell. numbers at $3^{2}(91.5 \mathrm{am})$ might have boen merely a reflection of these tro processes but as this patterm of stratification also occurred with non-motile as well as motile forms other factors may have been
involved.
On Eeptomber 14th, 1965, a gimilar pattem of stratification was observed of the diatons Velostra variens, Stemhnodiscus, astreen and
 tho same sort of depth concentration profile. Ifinimum concentzations oocumad at tho sand surface and botweon 3^{t} \& 4^{1} ($21.5-122 \mathrm{cms}$) and maximun concontrations betwaen 11 \& 27 (30.5-61 cms.) and just Above the sutriface of the sand. Of those atatofts only Mituschin Iipeasis is oapable of active movement and then only of gliding over a fruffoce and not sifiming througit the vater. mist mubors neaz to tho sand surface would be expected with non-inotile founs due to fedinentation. As there is no possibility of botive movenont other factors must be involved to account for the hifh corioontrations around $1^{1}-2^{2}$. One poessible explanstion is the existonce of a proyency mechanime. HOHelogima vationg has been observed on othor oecentions to produce gas bubbles during active photonynthesia and so be buoyed up from the sand surface into the supermatant water (see pages 133). This mechanism mey have been in operation for all three apeoies of diaton onabling then to maintain thenoelves in the most favourable light olimate. An altermative explemation to the broyancysedinentation hypothesis for the paueity of cells at $3^{\prime}-4^{\prime}$ involves the physical intratification of the water. This cowld heve mointained the inflow vates, containing much lower densitios of algae, at the $31-41$ Ievel, hs aigtinet Iayers.

When the weather-conditions wexe-ealh after a pexiod of atrons

Figure 24 The stratification of algae in the supernatant water of the filler beds, Key; $\cdots \cdots=$ =Chlamydomonas $s p .-=$ Oocystis $\mathrm{spp} . \ldots$
$=$ Stephanodiscus astraea $x-x-=$ Nitzschia linearis \cdots = Melosira varians
--oो $=$ Rhodomonas minuta

vinds and vetor turbulence, as on Ootober 9th 1963, a typical sodimentation profile mas observed. Cell concentrations in the surface waters were low but near to the sand they were hith (see Pigume 25). This type of profile was more maricod in the diatons Heloginh raciang and Stenimodisous sotitgea than in the green algae Coelastrum microporym or Oocystis sop. possibly because of the higher spooifio crayity of the diatoms and thus their highor sinking rate. On ootobex 2/th 1964, M. yeriang was pivesent in mich higher Conncontrations near to the sand surface than in the upper leyers. The other alcas present at that time did not shovy such a marked increase in cell conconirationg towards the bottom. They wexe oither hoinogoneously astiticibuted or, as in the case of ghodononag nimute, had a minimum at 3^{1} (91.6 cms)

The presence or absence of stratification in the supernatant (water could have an effeet on the distribution of algae on the sand gurfece. Alpee forming scuns at the exurace snd then blown to one cormer of the filter bed vould have a very uneven distribution if sedimented onto the sand surface. Algse suspended in the inflow water dud not sediment out evenly (see paces 142-148) possibly due to stratification of the vater as itientered the bed or to changes in the water yelooity. The stratification of algae in the supernatent water also affected the watervorles managoment of the filter beds. Lerye concontrations of algse at or near to the surface could be dram Vofurne in micrens 8 . 15 per in. off noar to the surface of the filiter bed and rum to veate along overspill ohamels proventing the algae from sedimenting onto and ologeing the sand surface.

Figure 25. The stratification of algae in the supernatant water. Key: a.0-0-0 Coelastrum micreporum, - Oocystis spp.
b. Stephanodiscus astraea, ... Melosira varians. c and d. 0 S. astraea, - Oocystis spp.

B. The unatiached botton Jiving forms.

than The unattached bottom living, on epipelic, aleal poyulation consists of two main components, (i) non-motile forns resting on the sand surfece and (ii) motile forms living on and anongst the sand grains and zoogleal film. These algee are living in a contimuous flow of water containing dissolved chomicesls and are not usually linited by lack of mitrients except perhaps at the end of a Pilter bed run when the algal populations become very large (soe Chapter V.) Because of the continuous flow of vater Brook (2954) likened the filiter beds to slow flowing rivers. Tight is another fector essential for the ghouth of these algse. They were always covered with wator to a depth of $1.5-1.75 \mathrm{~m}$. and received only about $30-35 \%$ of the inoident radiation (see Chapter V_{t}) Throughout the period Movember to February of each yoar photosynthetic radiation levels at the sand surface were below $35 \mathrm{cals} . / \mathrm{cm}^{2} / 2 / \min$. and were possibly limiting for some of the algee.

Species of algae nomally planktonic in habitat were often found surviving and even reproducing on the sand surface, e.g. Stemhenodiscus astraeg and Oocystis spp. Althouch those algae are not true members of the opipelic population, they are included in this section as they are living and coupeting for nutrients and light in the sane environmental situation. In the inflow water there were fluctuations in oell mumbors (see Chapter VI) and whon these fell to 10 cells $/ \mathrm{ml}$. thore were no measurable increases in concentration on the sand surfece. This indicates that increases on the sand aurfece of planictonic algee
such as Astorionelis formosa were laxgely, if not entirely, due to
 mioxoscopical observations (when few or no division stages were found). stephanodiscus astyrag tres piesent throughout the ontre period in . varying concentrations (Figure 26.) Although the maximum concentretions on the sand sumfece comrospondea to periods of maxcimum grouth in the reservoix, the length of the filter bed zum also played an importent part in its inorense. As this alga wers prosent aln the time in the inflow water, the longer the filter bed was kept in operation, the ord. 3onger the period for the acounin2ation of algac on the sand surface. If all of the algge survived, neximum numbers would be reached at the ond of tho filtog bed run. This was found to bot often, though not always, true for S. astreeg. In October and Hovember 1963 the living col1 concontrations dectrensed towerds the onds of the filter bed Iuns in beds 12 and 30 , Whis could be correlated with large growthe of Melosime vamime and Wlothomix tomuissime on tho samd sumfece: (seo Bigure 26.). Filaments of these algee tonded to grow up into the supermatant water causint considerable licht cut off to the underlying algee. The reduction in numbers in S. astreeg at these times was possibly tue to 2ight limitation. Deorenses in coll concentrations also occumed towaxds the end of filter bed runs in llay and June 1964 in beds 12,13 and 30. This was also possibly duo to lignt limitation. In these cases the shading was eaused by large populations of Chlanydomonas sips. in the superhatant water (seè Figure 20). These populations of Chlamydomonas spp. were oapeble of ousing considexsble
light attemuation (see page 45). Self shoding by lange populations actually on the send surfece could also be a problem for non-motile forms such as S. astraes as they would tond to be buried. under sedment and not be able to move to more favouxable positions. Oocystis spp, were recorded on the sand surface only when cells werte present in the inflow watons (Figure 19). They oocurved mainly duning the summer and autumn periods and occesionaliy pexsisted until the winter. Increases in mumbers on the sand sumface sgain seothed mainly to be due to accumulation, few actively dividing cells being obsexved. Although no quantitative data is available, observations showed that cells of Docystis were being grazed by animals. Both Daninnia pulox and Denhnis minga vere found with cells of Docygtis in their gut. Brook reported several species of algae similar in size to Oocytitis present in the guts of insect Zarvec (Brook, 1952). Grazing may thus have played an important part in reducing the populations of Oogystis as orustaceans, insect larvee and other animels were present on the sand surface.

The tirue epipelic flors was composed mainly of distoms with members of the Ghlorophyceae becoming co-dominant at times. With the exception of MeIosixa varians the most abundant speoies of atatoms were members of the biraphid. Permales. These motile diatoms are able to avoid burisi and to maintain thomselves in a position favourable to photosynthesis by theix movements in the epipelic envixoment. Mo varians and Whothifte tonuissimg, as non Hotile filementous fomns, overcame the peoblem of being buxied by growing upwards into the
supernatant watex. The filounints were often made broyant by the th protuction of gas lubstes, The onty other non motile fozife abundant on the sand Burface were Scenedesmus spp. and the palmelloid stages of Chrayytononas sipg.

Melosire variong hes been reported as a summer (Pearsall et al., 1946) and en autumm (Brook, 1954) constituent of the floma of slow sand filter beds. During this present study it was found to be mose abundant durine the spring, autum and vinter periods and only ocossionaliy so during the summer (Pigure 26). In filter beds 12 . and 13. Mo vaioigns was present in fairly higi concentrations throughout most of the period with the exception of the autum of 2964 and the spring and winter of 1965 . The largest concentrations occurred between Oetober 1963 and Februsiry 1964. In eiliter beds 30 and 32 it vas pwesent in lange concontrations betweon August 1963 and Appil 1964 and also July and October 2965. During the intervening poriod it was either present in low concentrations or not recorded at all. The persistence of high concentastions in beds 30 and 32 between 0ctober 1963 and February 1964 compesponded, not only to a period. favourable to erowth (large concontrations were prosent ifl other bele at the same time), but also to the period during which these two bods wore cleaned by the "hydra" process (see Chapter II). The beds were not then drained dorm and skimmod thus any algne romaining in tho bod after cleming could quiclely recolonise any bare areas of sand surfece. Whothrix spo. (mainly a mixture of U. tenuisgima and U. tenerrima) Were present mainly duning the nutum of 1963 , the late spring of 1964
and the sumers and auturn of 2965. Recosded concentrations on the sand sumenoce wore nover very hieh and did not excoed $6 \times 10^{5} \mathrm{H}^{3} / \mathrm{dm}$. On many occastons, however, especially during 1965, mats of these al gae wera observed flogting on the sumface of the supomatant water buoyed up by gas bubblen probably largely of oxygen produced during Vigorous photosynthesis. On very bright, sunny doys vory many such mats could be obsolved in each of the filter beds. This detaching of mats voula groat 1 y reduce the sind surface pophtations, thus the ovesall populations of these alche on the sand surfece was probably much hiftuer then that zocoribed. The numbers of most eflantontous forms tended to be undorestimated due to the method of sempling. It Wes very difficult to obtein a representative somple per unit area of sand surface, especially when the filaments wore many contimetres in Zonsth, as they wrere not sutirod up ly the pump, The occurrence of Uhothrix spig. on the sand surface, as was found for other chlorophyceans such as Snirorgrth gn, by Brook (1954), whe mainly during the sumer period. The presence of large numbers of Ulothrix spp. on the sand surface of bed 22 during the sprine of 2964^{\prime} commosponded with a period of copper sulphate application to that bed. Copper sulphate was applited to sive a concontration of $0.5 \mathrm{me} / \mathrm{s}$. There follorred a poriod of increase of certain algee, espeoially Hlothrix. (For a fuller discussion of this application of copper sulphate, see pages 103 to 105). Numerous species and varieties of diatoms of the Biraphidinese wore present throughout the entire period. The most abundant diatoms presont wexe pinmulanis mictosteuson, Surixel1a ovata, Gymbe17a spp.

Mitzsohia Dolen, Mo. notcularis and Mo. 1inearis. Other species present ocoumed in smaller numbers, usually in mixed populations with the more conmon species.

Pimularia mionostguren ocoursed mainly during the spring period (Bigure 26). Although Po microstauron was the most cormon speoies of Pimularia present, Po, vimidid, Po, Debesi, Po, divespens and P_{0} mionostauron var. Brobisgonit also occumed with it in amall mumbers at various times. Cell concentrations were slichtly lower in beds 30 and 32 during the peniod of "hydra" cleaning (up to Jamuary 1964) and in all four beds during the autum of 1964. The populations produoed during the auturn of 1965 were renoved by oleaning in beds 12 and 13 and never recovered, whereas those in beds 30 and 32 vere able to inoroase throughout the period and survived in higher conoontrations throughout the winter. Cell concentrations gonerally inoroased throughout the xum of a filter bed, exceptiona being the lato spring of 1964 in bed 13 and the autum and wintor of 1965 in beds 30 and 32.

Suminella ovath (Figure 26) was most abundant during the spring periods and least abundant during the late suturn and eariy winter periods. It was generally present in creater concentrations in beds 30 and 32 than in beds 12 and 13 . This did not seem to be a function of the "ace" of the bed, indeed the highost concentrations recorded were in bed 32 during the spring of 1964 when grouth wes intempupted by oleening. These large populations in early 1964 in beds 30 and 32 may heve beon a direct result of the large residuum of living cells

Left on the aend surfeoe after the previous cleaning. Throughout the period August 1963 to Jamuary 1964 these two beds wese cleaned by the "hydra" process. This method of cleaning tended to allow organio material to accumulate in the upper layers of sand. It is possible that simivella ovata feqvouned high concentrations of organic matter and was thus able to grow moze readily in these two beds.
 found in hifeh concentrations. It ocourred mainly during the spring and autum poriods although large growths did ocour during the sumer of 1965 in beds 13 and 32 . Cell concontrations were generally higher in beds 30 and 32 untiI the syring of 1964. As wioh Suminel1a ovata, this can possibly be coxrelated with the higher content of organio matter in these beds assooiated with "hydra" oleaning. After the period of "Lydra" cleaning beds 30 and 32 wore resanded (seo Chapter II). The coll concentrations of II. Iinearia then fell to levels similar to those in beds 12 and 13. Cell conoentrations were low in ell of the beds stuaded duxing the sumer and autum of 1964 and the autumn of 1965.

AKitzachia goicularis (Pisure 26) was not abundent in any of the filiter beds between August 1963 and Pebruary 1964. There was then a period, until June 1964, of rapid growth and large populations developed. Throughout the rest of the period concentrations remained fairly constant, only increasing slightly in bed 30 in Nay and June 1965. Cell concontrations weze reduced in beds 30 and 32 in 1964 after resanding. This poriod of resanding corresponded to a period
of low coll mumbers in the inflou water. The re-establifinnont of the populetions was thus mich slowes, II. noloulnmis is also noted for its rapiasty of movenent (West a Fritsch 1932), a fedture of ereat edvantage in competing for a favourable position on the send surface. This ebility to miove setively fogethen usth the nampoumess of the fruetulee, probabily accounts for its abslity to penatriate the depths of the seand. IAving cells wese obseived in the filtesed water pessing out of the filter beds on sevemel ocoasions indicating that N , metcularis was able to pasa through the ontize sand colum in the dark and still sumvive.

Mitzacilia pales (Bigume 26) was the thitd species of MEtrachia to coour sbumaently. It was present mainly during the late spring and eacly summer periods but hifh concentrations sometimes persiated into the sutuin periods. In all beds cell concentrations deareased during the winter of 1964 to 1965 and 1965 to 1966. The apping Erowth commenced at about the seme time as that of If. soicularis but extended into the sumer powiod. Coll concentrations were never very high, seldom exceeding $2 \times 10 \mathrm{\mu} / \mathrm{cm}_{*}{ }^{2}$ The widespread occumence of y 0. malea in soils (Iand, 1946) and sediments (Round, 1957) is well lenoim espeoially in axeas rioh in dissolved substances. It did not appear to be more abundint in beds 30 and 32 between August 1963 and January 1964, however, when concentrations or organio matter were hicher.

> The apeoies of Gymber1a prosent wore mainly C. turgida, C. ventricosi and G. Janceolata. They occumed as mixed populations. These algae did not occux in hich numbers in any particular season but
at varioub tines of the year (PIguse 26). In bed 12 coll
 2965. In bed 13 concentrations were relatively low until the late
 In the spsing and submer of 2964 and the spring, summer and autumin of
 of 1964 and the summet of 1965 . Wach of the itantiried species of
 pioduoing large populations quiclcly (see Chapter VIII). This potential nbvits soemod to to motlisod in the opipolie population. Indbed Gymbelta wes the dominant species of the attached aleal populations (see pege 135) and it is posesble that those should be contidorod as nome on less permonontiy attached foums rather then opipelia forns.

Chlenvegomoning sup, often occumed in Inorge mumbers in the supornatant vater (see pace 74), and duming these periods celle vere also foumd living on the sand surface (Iigure 26). Mang of these cells had meroly sodimontod onto the sand murfece and there survived. At timen, hovever, the cells shed theis flogelle and fomod a pelmelloid stage, covesing parts of the sand surface with a layer of "jelly". It mat on these lattor occastone thet mectimm col2 concentmations of Ch7mydomonag. gpy, on the asind suxface were reached. Those pelmollotd steges ocourred Aluring Moy and Junc 1964 med to a $200 s e r$ extent in June and July 1965. The conditions beinging about thege palmolloza stafos atro not oleanly undomstood (xattish, 2935). Thome may, perchaps, be some cormelation between the applioations of copper
sulghate to Oroen llary Resorvoir and subsequent growths of Chlarvilomiones spy. both in the resorvoir (see page 68) and in the filtor beds, These is a closbr compelation, however, botween the periods when the supply main from the reservoir was chlorinated for the purpose of maseel continol (Creenohielas \& Rialey, 1957) and the Gevelognent of the palmolvoid stage of Ghlemvelonongs sipp. on the filter beds. Periods of ohlogingtion axo indicsted by solid bonds in Wigure lat . It is possible that very amall amountr of chlowine were silowed to pass onto the Pilter beds in the inflow water and this Inifet have been ehough to atimulate the development of tho pelmelloid stage. Coll concentritions were low in all four filter beds during the periods Ootober to December 1964 and 1965. These reductions in concentration were probably not due to low light and temperature levels but to other factors as hicher moasurable populations weso prosent in Jouruary and Pebruary of each of these years whon light was oqually 2 ow and temporature levels were lower.

Scemodesmus spp. vere present throughout most of the poriod in each of the filtor beds studied. Cell concontretions were not ubually high. Marimum concentrations occumed just after periods of chlorination (solid black bends, Pigure 26), however, indicating possible stimulation of growth or the ability to survive highor than nomal concentrations of chlorine. This comelation was moxe clearly seem in bods 12 and 13 than in beds 30 and 32 . Cell concentrations zesohed $10^{8} \mathrm{~F}^{3} / \mathrm{cm}$, in bed 12 at one time. Apart from the period of Vigorous growth coll conoentrations rarely exoeeded $10^{6} \mathrm{H}^{3} / \mathrm{cm}$.

Sotween Warch 26th and Ayxil 24th, 1964, copper sulphato was adted to hod 12 et a concentration of 0.5 mg. $/ \mathrm{t}$. for 8 hre, every any in hen attompt to control the algao on the sand surface. The results of these applications aro given in Table 4. Bed 12 wes almeedy in use whon the coppox sulyhate treatmenta were started and results for Whe two woolos provious to Varoh 26 th are also inoluled in mable 40 Concontrations of Guranydomonas spp. ©ecrensed throughout the rum of the bod. Th1s dearesse had stayted bofore the appliontions of copper suighate and cannot, therofore, be attributed to it. Ankistroilesme folcatus, a planktonic alga, did not fluctuate eroatly in oonoomtrations. Sconodegnus, anps, and Mrothrix sing, vome either prosent in very low numberg or not rocorded at all before lharch 26 th. After this date Whothrix spp, inoreased rapidy in concentration and Sopnedasme spy, after an initial lag, started to inaxease by the end of the filtor bod zun. A11 of the distons but Sterhanodisous satraes had inoreased in concontration by the end of the filiter bed run after the arpytiontion of copper sulyhato on the 27th March.

The largest incresses in algal pogulations, after the start of the copper sulphating, were pinnularis microstguron, HKLzschia notoularis, IF linoaris, and Sumirella ovata, Waoh of these species inoreased at least forty-fold in conoentration in the four weeks following the firat application, Another alga which occurred. in ooncentretions hifter than usual tovends the end of the filter bed mun ves Immedys versicola, This was not recorded on the send surface before the start of copper sulphating.

Tohlo 4．The ooncontrotions of adgae，in oubic microns per squate contimoter，on the sand aurface of bed 42 betweon IKaych 3 th and Apzi2． 24 th 196%

Species	March				Ageed 2		
	13	20	8	27	3	10	24
ChJoaydenonas syps	474	134	\％	172	60	10	16
Anidisterodenmus fazoatus	81	． 236	E	180	142	192	208
Scenedesaus sppo	1	1	\％	4	2	1	40
U2othrias sppe	0	0	8	10	105	532	600
Heloatra varians	0	－ 260	骨	180	296	624	1280
䯇すghancas＊eus astraea	1365	4050		5040	9060	4660	1150
Pinnularla miorostaurom	6	0		84	450	390	450
Witaeohta ackeuzaris	8	－ 33		360	6810	12220	9200
N．Jinearia	45	117		1500	1680	9000	14，000
No ga3ea	0	0		7	82	300	1300
Suxdre22a ovate	117	708		764	2580	28200	3200
Cymbelda appe	0	39		48	84	1038	3000
Iynglya versicola	0	0		0	8	200	1600

englu the nopyer mulghnte dose of 0.5 meg / would eive a concentration of 0.39 fis. f 4 louppor in the stuperngtant water. In waters such as Amo found in tho Thmmes Valley, rioh in orgenic materials and of high
 Dib yeopipitfated an besic coppen earbonete or bound up into organic
 a torcta aubetanoes will Thue although certein diatoms have been found to
 AAnogitug to havoiftg crouth retancled st the sene concentration: (Chantien TV), the monint of tawio coppor in the filter bed water Auring this serien of apmilications: ves probably mich zess than this. Whach wovta nino havo hoon a contitmoun Fons to tho syistam of coppor afsiolved in the water passing out of the filter bed, the ovexall
 yoprutations of most of the nlgoe present. It is not known whether this when ano to otimmention of frotith or to othor factors such an refuced erauting by lcilling tho animale poesont.
lept Pesosistemt vomtical mignations have boon lmown in populations of opalpolio algno for namy yones (Brnohor, 1919) and have boen secently ine-imvoistignted (Aloom, 1950; Fopkins; 2963; Pnither \& Round, 1965; Bomnt of polmer, 1966). Thase investicntiong wome onmeiod out on tidal watean tut repently the morki has been extended to fresh water habitats (Rouma A. Thton, 1966; Enton \&/Mons, 1966). Such diumel verticol.
 bods but no diroct observational data vas available. Iatemvoriks
engineers have long lonown that blankets of algae, buoyed up from the sand surfece during photosynthesis, left bare patchos of sand thich increased the volume of water which was able to pass through the filiter bed (Penrsall ot al. 1946). A Iarge popruation of opipelic algae present on the send surface would be expected to offer less reaistance to the flow of water then el gae that had migrated into the sand interstices and partially blocked them. Similarly, filamentous algee, buoyed up into the supernatant vater, would offer less resistance to the flow of water through the filter bed than filamenta lying on the sand surfece. If the rosistance to flow did varry with the position of the algae one might be able to detec: this movement by observing changes in head loss (see Chaptor II for full explanation of head loss). These changes would only be clear if the flow through the bed vore also constant as this can also affect hesd loss. As the flow rate of water through the filter beds often had to be varied. to moet changing consumor demmads there wore only a limited number of periods for which data axe available for head losses when flows were kopt constant. Several suoh periods are shom in Pisure 27. Periods of darlmess, i.e. the sun below the horizon, are indicated by black bars. From these figures a olear diumal fluctuation in hoad loss oan be seon with highor head Iosses at night and lover ones duxing the day. The algal floras of each of these beds on the occasions recorded in Migure 27 are given in Pigures 20 to 26. Many of these species are capable of movement and some have been roported. as showing a verticel migration (nound \& Maton, 1965; Eston \& Noss,

Figure 27. The variations in head loss in inches (horizontal scale) over three day periods. The shaded areas represent periods of darkness. The occasions recorded are as follows ; 1. September 10-12th 1964. 2. December 5-7th 1964. 3. January 21st-23rd. 1965. 4. March 18th-20th 1965. 5. June 19th-21st. 1965.
1966). As other physioal fectors in the filter beds, such as inflow and outflow, were constant during the poriods secorded, othor factors must have caused the recorded diumal fluctuations in head loss. It is possible that thèse other factors were the eifumal upvand iligerations out of the top layers of sand onto the send surface duxing the day and beok again at night and also the felling becie onto the and sumfece at night of filamentous algae normally buoyed up during photosynthetic poriods.
kuog The sand surface of a newly cleaned filter bed offers an ideal situation for colonisation by algae. Although the sand suxiace is homogeneous the algae are by no means ovenly distribited as was suggested by Brook (1954). Dritsch (1931), in refeming to the plankton, pointed out that when an algal species is introduced into a. body of vator, its succosstul ostablishment depends not only upon physical and chomical properties in the water but also uyon the time of the yoar. Fie also pointed out that a slight infection by a fev spores or individuels could probebly be succeasful only if the miforoscopio fauma wore at a minimum. The alightifie of ant alea upon any partioular part of the sand surface depends upon such factors as curront volocities and sodimentation rates (see page 142) and the establishment of the alga upon the factors outlined by Iritsch. Unlike most lacustrine sediments the chomical conditions dominating the flora on the sand surface are not so much the intexface conditions between the sand and water but the chemical conditions in the supernatant water as this is continuously flowing dom past the sand surface
(see Chapter VIII). The epipelic Slore was dominated by diatoms and these were generally more abundant during the spring and autumn than in the winter or sumer. The sumer floza included members of the Chlorophyceae which at times assumed co-dominance. As there vas a constant deposition of organic material on the sand surface thore was alvays a tendency to bury the algee there. To overcome this, and to keep at the surface, requires either active movement and utilisation of energy or, in the oase of filamentous forms, being buoyed up into the supernatant water by means of gas bubbles. At times certain populations shaded others on the aand surface, e.g. growths of Ulothrix sop. and Melosira varians, have been obsorved to shade the sand surface populations reducing photosynthesis and limiting growth. At other times lerge growths of Chlonydomonas. spp. and Scenedeamue spp. developed on the sand surface and those may have inhibited the Grouth of other algae chemically (see Chapter VIII) as well as by shading. Feeding by animals has also been shown to play a part in the regulation of slegal population sizes (Mrook, 1952 \& 1954). As well as the species discussed in detail here many others ocourred but only in small numbers or infrequently.

Migure 26. The perioaicity of the algae on the sand surface. The results are expreased as volumes of algae in cubic mierons $\times 10^{3}$ per mm^{2}.

Scenedesmus spp.

C. The attached sand surface aleae.

Several difficulties were experienced in sampling the attachod.
algal flora of the slow sand filter beds. It was hoped to erow these algee on clese slidos sulborged in the vator but this only proved possible if the greatest caxe was taken over oleaning the glass (see Chapter ITI). It was nlso found that the reeke of glides could not sotually be placed on the sand surface as they wore liable to become covored with sand and organic dobris. This covering wes not due to nommel sedimontation but probably to ocoesional hydraulio back prossures vithin the filter bed aaused by adjustments in the rate of flow of water through the bod. These back pressures resulted in 100001J attached sand grains and other particles being washed up into the supernatent water and thon possibly settling on the glass slides. As this effect did not extend more than an inch or so sbove the sand surface it was posaible to overcome it by suspending the slidea about two inches above the sand surface. Some authors have recomonded. the use of vertical instead of horizontal slides (e.5. Sladocicova, 1960). Aecording to this author the relative disadvantages of horizontal slides vere pointed out as being (i) they colloot a great smount of settling seston as well as true attached forms, (ii) there is a mariced differenco in all populations (both plonts and animais) betweon the upper and lower surfaces of the slide, (iii) development on vertioal slides is more even. Pinally it was suggested that the vertical position was more convenient in use. Two initial trial exposures vere made in 1964 to compare the horizontal and vertical

5able 5. The ealculated volume of adgee/am. ${ }^{2}$ in oubie miarons on horizontally orposed ocmpared with vertica $23 y$ exposed slides.

S3sdos removed	Sept. 8		60t. 20	
length of expposure in days	28		23	
Type of exposuy	縣	V	3	V
Tetrentarua				
staurogoniaerorme	18	4	2100	1209
Coeystis sppe	7950	6720	n22	nad
Sconedosaus oppo	9200	2770	2312	322
Stoghanodisous astraea	640	320	4700	1209
S. hanteschas	46	18	850	10
Tragdiome orctononssis	780	350	364	155
Synedra uing	1280	\$300	3640	1400
Aehnanthes apo	800	325	36	10
Coxaghonoma parvulua	na2	nil	172	100
Gymbe23a sppo	1008	1240	110400	25200
Aaphora ovalis	40	20	364	432
Attzsehia jaioa	620	400	121	144
Iyngbye spo	8000	5204	na3.	n32

methods. The results are given in Table 5. From these two sets of exposures it can be seen that thene wene obviously grester numbens of certain species of algae on the horizontal slides than on the vertical slides. Scenedesmus spp., Stephanodisous hantzschit, Acmanthes sp, and Gymbella spn, hed populations over twice as large on the horizontal slides. Only infrequently were there fewer cells of eny perticular species on the horizontal slides and on those ocossions there were less than 15% fewer cells. There were usually more cells of planktonic species on the horizontal slides than on the vertical slides.

Some of the objections of Sladeckova (1960) to the use of horizontal slides oan be overcome. The difficulty over the differences between the upper and the lower surfeces, for example, oen be dealt with by counting, for comparative prixposes, the upper surface only. It was found that the growth of algee on the sand surfece did not seem to correspond to the vertiosl any more then the homizontal slide, in fact there were probebly more horizontal areas on the sand surface than vertical. Because of the generally lower growth found on the vertical slides, horizontal exposure of slides ves adonted and the error due to any inoreased settled seston accepted.

Duy There were three distinct groups of algee colonising the class slides (a) pemnate diatoms, (b) filamentous algae and (c) motile or coccoid unicells or coenobia other than diatoms. The first group, pennate diatoms, included stalked diatoms, i.e. those loosely attached
by a mucilaginous pedicel (e.g. Symedra, Gomphonema and Cymbe1.1a), diatoms atteched by the whole of one sumfece (e.E. Cocconeis, Acnanthes and Amphora), free Iiving forms (e.g. Pimmularia and Mitzschia) and contaminant diatom species from the phytoplanicton such as Stonhenodiscus, Asterionella and Frgailaris grotonensis. The filamontous algae included diatoms e.E. Melosira, somo Chlorophycoso e.E. Cladophora and Stipeoclonium, and also some Cyanophyceae e.s. Iynebya and Oscillatoria. Also included vere some thalloid algae e.g. Ulvella and Coleochgetae which did not occur in large numbers. The third group consisted mainly of members of the Chlorophyoese 0.E. Scenedesius, Cnlamydomonas and Tetrastrum, which, during the sumer months, were present in large numbers. Occasionally cells of Mexismonedia were present and these vere also included in the third group.

The relative abundance of each of these three groups of algae throughout the period and the total volume of algee taken from slides of the same age (four weeks) throughout the period are given in Figures 28 and 29. There was a more or less distinct seasonal variation in the total volume of algee present, with mininum growth during the winter months and lato Aprin and maximum growth during March, the sumer and the auturm. A similar seasonal vamiation has boon previously recorded by Brook (1954) and Butchor (1946). Superimposed upon this seasonal variation of total algae was a variation within each of the three groups. This variation can be briefly summarised as follows: in January and. February pemnate diatom and filamentous algae were equally Bbundant. The pennate forms then
Figure 28. The relative abundance of peanate diatoms (solid line), filamentous algae
(fine dotted line) and motile or coccoid unicells or coenobia (heavy dotted line) on
glass slides of the same age throughout the period of study.

deoreased and the filamentous forms incroessed becoming doninnent. Iron Aymil to early Jine the pennate foxms inaronned reachine marimun numboza in Jume and remaining in high mumbers until August.) Abs pilariantous former deoseased in April and remained at similar, thouch slightly fluctusting levels, thromghout the ment of the period. Aftor the midale of Wey the other alene, mainly Scomedosmens and Chlamydonones, increased repidly reaching hichest cell concontrations in emrly August and mid Soptember, to They then deovensed rapidly during Ootober and Movembers. the guperatant ustay by an hablest

There were several factors which could have influenced both the totel geovth of elgae and the grouth of individunl species on the slides. Nyom the chemical analyses of the inflow water it seemed probable that major mutrient concentrations vere soldor limiting (see Chapter IV) although it should be pointed out that there would be a greater flow of water and dissolved substances past the alese on the sand grains than those on the slides. This is beaause the sand grains Pomm a porous layer offering loss rosistance to the flow of vater then does a solld glass plide. The two factors probably having the ereatert influence on the winter populations were light and temperature. The low cell numbers between November and Decombor occurned at a period of lowest light intensities (see pece 40). The growth curves wese not smooth for either the total algee or for each of the individual groups but showed some imregulan fluctuations, These irregular fluctuations were also found by Brook (1954) and Butcher (1946). Butcher, who compared results from static and
running water, attributed these imegularities to (i) quickly changing extermal factors, (ii) the browsing of animals, (iii) the detachment of algal films through the formation of gas bubbles and (iv) the erosive effect of foreign bodies camied by the current. Brook (1954) suggested that only the second and third factors need be considered in relation to the filter bed flore, the others applying to rivers. Filamentous 'species, especially Melosina varians, Ulothrix temuissims and Cladophora sp. were observed to become detached from the sand surface and be buoyed up into the supematant water by gas bubbles, carrying other algae with them. This phenomenon was not, however, directly observed to have occumed on the slides although there was no reason why it should not have done so. The browsing of animals most probably contributed greatly to the fluctuations of the algae on the slides. On occasions large numbers of certain species of algae were removed by animals, mainly Chironomid larvae. It was observed thet this removal by animals occurred mainly on the longer exposed slides.

The glass slides provided a clean surface for colonization by algae. The rates of colonization varied throughout the year depending upon the species of algae present and the environmental conditions. Tigure 30 gives the volumes of the pennate diatoms, filamentous algae and motile or coccoid unicells or coenobia other than diatoms on exposed slides for various lengths of time throughout the run of the filter bed. The actual rate of colonization is reflected by the slope of the curve, the steeper the slope the faster the rate of

Pisure 30. The rates of colonization of glass slides, measured as rolumes of cells/cm. $\times 10^{-3}$ of the pennate diatoms, filementous algae and the motile or coccoid unicells or coemojia throughout the period. - pennate diatoms,

थ. = filamentous algae, = motile or coccoid unicells or coenobia.

colonization.
 The rate of colonization of pennate diatoms inoreased during the spring and reached its maximum in the summer period. 啠is increase in the rate of colonimation duminc the summer wes also reported by Brook (1954). After two or three weeks, or when the populations ereeeded $107 \mathrm{~s}^{3} / \mathrm{cm}^{2}$, the rate of colonization decrensed. Butcher (2946) reported a similar decrease in the rate of colonization after about 20 dayg in the spring and summer or $30-40$ days in the winters "mis slowing dow occurred as the mount of free apece on the slides deoressed and the compotition for 2ifht and dissolved solide incroased, The population curve thus tended to level out. The most mariked dacroase in the rate of colonization occumed in Januaxy and Febiruaxy. This was probably due to light limitation as not only vere incident radiation lovels low, (see page 41), but there, was also à lamge population of filamentous algee present at the same time, competing for nutrients and light, which tended to overnhadow the pennate forms. whan Itxcept during Jamuany and Pebruary, filanentous algae either did not colonize the slides on did not increase so rapidyy as did the permate diatons. The colonization sate of the iflementous foms decreased slightly lator than that of the pennste diatoms or the decrease occurred at a lower concentration of cells. This may have been due to a slower growth rate by the filamentous forms or their need for a larger ares of olear substratum for the establishment of now iflaments. The pommate diatoms, for exranple, were observed on occasions to form layers on top of each other and to be epiphytic on
filanentous forms. Although filaments, once established, could grow upwands away from the slide and into the supernetant wator, ir they becane too long there was a denger that animals or wator turbulence would mreak them off thus reducing the sise of the fitanentous populations.

The popritations of motile or coccoid unicells or coenobis present on the alides (consisting mainly of Soenedesmas spg, and Chlamydomongs sp.) were present on2y in smn21 numbors throughout the winter and spring. They reached maximum numbers during the summer and early autum. on three occosions, in eamly March, Iate May and Mid-August, the poprulations decressed towards the end of the filter bed run, i.e. with inorossing time of exposure. This docrease could be attributed. to grazing by animals. large concentrations of Chironomid larvae and other aninals were present, especialy in Tay, on the slides. These animals were observed to have green algae in theis guts,

A simple measure of the sate of ynotuction of algee on eless slides was suggested by Sladecek and Sladeckova (1963). They divided the amount of standing orop on the mlides (expmessed as oven-dury weight) by the exposuse time in days. This was slightly modipied. into the folloring convenient form for the prosent study:-

$$
\text { production rate (uncorrected) }=\frac{\text { volume in } u^{3} \times 10^{-3}}{\text { exposuse in days }}
$$

The texm uncorrected production rate was used as no account could be taken of losses from the slitios of cells breaking off and being washod. away, being buoyed up by gas bubbles and detached, being geazed by
animals or lost in any other woy. The ficure is thus an approximation to the net rate of production. The results for each of the three eroups of algae for each of the filter bed runs are given in Table 6.

Table 6. The uncorrected Production Rate of the three main groups of algae on glass slides for each of the filter bed runs throughout the perioa October 1964 to December 1965.

Period ending

Length of exposure
in days

Pennate diafons

Filamentous algae unicells or coonobia
23.10 .6430 .12 .6411 .3 .6520 .4 .6525 .5 .6517 .7 .6514 .8 .6523 .10 .6518 .12 .65

28	63	63	28	28	40	21	63	28
18,000	6568	690	1650	4910	8290	2154	6150	1066
208	375	4035	555	247	118	344	298	142
6	0	8	29	30	3790	365	289	6

These resulta illustrate the seasonal variation in rates of produotion. The production rates for the eqlemontour algee and the motile or coocoid unicells or coenobial foms wexe usually mah lover than those for permate Aistoris. The exsoptions wero the poriod ending 11.3 .65 when the filamentous forms were dominant and the period onding 17.7 .65 thon the motile on coccoid unicells on coenobisl foms become sub-dominant. This index figure oan be usod to indicate simply
the importance, based on production, of any particular group of algee. In the present study pernate diatons usually had much hicher production raten than the other algne present reflecting their dominanoe throughout most of the perioc.

SuCs Table $7 \mathrm{a}, \mathrm{b}$ and e gives the volumes of the major species of algne present on the gings slides of incxeasing length of exposure during the filiter bed zun throuchout the period of study. Certain syecies vere cormon and could be rogarded as either dominant or co-doninent throughout. Bremples of such algee were Cymbella appe and Melosixa yaniang. Other species became comen at various times of the year and, althoush these altered the species composition of the flowa, they tended to be additions to rather than replacements of the basic commuity. INost of the species of pennate diatoms were present, $=$ though et times in mall mumbers, throughout the entixe period. Certain speoies, hovever, wexe absent during some of the months, e.E. Suxirella ovata in Movember and Decouber 1964, Brapilaria capucina in July 1965, Diatoma vulgare in November and December 1964 and Cocconeis placentula during the spring and sumener of 1965. Certain other species, which were very common in the epipelic comanity (see pages 94 to 123), were present at imegular intervals on the glass slides, These imegularities were probebly a reflection of their preference for the sand surface. The pemate diatoms which occurred in large numbers as additions to the basic community were Symedra ulna in November and December 1964, from Appil to July 1965 and November to Decomber 1965; Pinmularia sppe in May 1965;

Achnonthos ninutisgima from April to ootober 1965; Amphora ovalis in Ootober 1964 and 1965; Exaritaria capridina in Jecomber 1964, Apri1 to JuIy 1965 and October 1965; Cocconets ntacentuIe in December 1964 and October 1965 and Sureirelly ovata in April 1965 and July to December 1965. Although these species may, at tines, have been co-dominant with Gymbelle spp, they never superseded it. Other silsmontous forms also occumsed throughout the poriod but these again were menely ocoasionsl to the community. The most notable of these additions
 falletondicum during the sumer and sutum of 2965 . The other algae present, notably Scenedosmus spp, and Chlanydomonas gp., were very common at times becoming co-dominent, e.g. in July 1965, but their presence was probebly enoouraged by unusual enviromental conditions suoh as the addition of copper sulphete or ohlorine to the vater (see pages 61 to 72). These algae can also be zegarded as additions to the basic coumunity.

Thore also appeared to be little or no succession of algee on the slides with ineressing lengths of exposure. Only the concentrations of each species, after their first appearance, inoreased with time. This aitustion, of adaition and inoreasing concentration rather than grecession of species, conforms to the desoription of the elimar association by Butcher (1946). Only on occessions when conditions wore sltered artificially, e.g. after the addition of copper sulphate or chlorino to tho vater, atd species other than the olimax dominants ocour in very largo munbers.

Two trial exposures were made, in April and July 1965, of slides at various depths in the supernatant water. The length of exposure was four weeks on each occasion. Little difference in the algal flora of these slides could be found.

2abzes 7ab o . . The volunes of the major speoies of slgae, in $\mu^{3} \times 10^{3}$,present on glass slides of inoreasing length of exposuxe auring the filiter bed runt

Date	2.10	9.10	16.10	23.10	6.11	13.11	20.11	27.11	4.12	11.12	18.12	30.12
Diatoma vulgare												
Fragilaria capucina		p	100	250	\%	p	p	210	696	1640	2800	8100
Synedra ulna	526	1440	5600	4260	9	221	656	1109	2997	7696	20700	26750
Cocconeis placentula					p	141	421	734	1811	3760	9100	16400
Achnanthes minutissima	p	p	p	280	p	p	p			p	111	241
Pinnularia spp.												
Amphora ovalis	p	265	1140	8400	p	p	183	266	311	371	489	778
Cymbella spp	3110	9540	18810	493800	149	741	2320	9764	28894	49760	128000	34,9000
wituschia pelea	p	p	121	365						P	121	230
No acioulays	p	p	p	p	p	p	p	p	160	256	381	771
No linearis					p	p	9	p	108	171	240	130
Surimella ovalis												
Cladophora sp.												
Stigecolonium fallelandicum?												
Melosira varians	p	990	2730	7600	308	326	789	1676	1869	3676	8270	18824
M. granulata							p	344	844	1506	1414	1840
Tribonema bombyoinum												
Chlamydomonas sp.												
Ankistrodesmus falcatus												
Scenedesmus spp.	p	p	100	160								
Tetrastrum staurogeniaeforme												
Merismopedia glavea												

rate	4.5	11.5	18.5	25.5	8.6	15.6	22.6	29.6	3.7	10.7	17.7	31.7	7.8	14.8
ndetone vulgare	P	380	1580	3118	p	130	224	652	2159	3310	4210		200	767
Prag13eria capucina	P	290	1384	2900	p	191	470	1117	3232	7198	7110			
Synedre uine	350	6780	12110	17400	p	170	330	760	1240	6900	11640	140	2760	15364
cocconeis placentula														
Achnanthes minutissima	580	3000	7760	15780	p	200	800	1500	4100	8960	11000	370	1870	14870
Pinnularla sppo	260	1000	3110	6200	p	1								
Amphora ovalis														
Cymbela sppo	367	7767	154,00	67800	576	1200	4200	15870	76670	260000	393000	710	1990	4040
Titesohia palea	310	1990	3898	6810	P	176	368	967	1464	5674	8760	160	326	1485
We acioularis	610	1300	2810	3000			P	9	p	p	$\bigcirc \mathrm{p}$	266	770	7315
No linearls	228	770	4770	11477		P	241	777	1187	4532	17190		P	310
Surirella ovalis					9	P	160	640	1190	2610	3980		p	270
cladophore spo												108	580	2144
Helosira varians	156	720	2000	6484	2	111	200	964	1670	2800	3190	p	p	774
U. granulata				$2 \downarrow 0$										-...
Tribonems bombyoinua		P	P	180		P	380	460	1110	2211	4220		260	1080
Chlemydononas spe					490	1340	6420	19660	60100	101000	128000	108	6016	3060
Arkistrodesaus felcatus														
Scenedesaus sppo	294	1880	6644	800	168	476	1798	5760	16000	58800	84,000	410	2470	4185
Tetrestrua ataurogenisef	p	100	260	P										
Merlsmopedia glavo														280

D. Distribution of algae on the sand sumface.

During 1965 two survegrs of the ovemall distribution of algee on sand surfaces were camiled out, on May 15th on bed 12 and on July 24 th on bed. 13 . Samples of the filter skin of fmotm area ($10 \mathrm{cms}{ }^{2}$) were obtsined. from moxe than twenty places in each bed and the numbers and species of algae prosent detemined. The overall distrivution of al.gae on the sand sunface of bed 12 on May 15th is given in Pigure $37 \mathrm{a}, \mathrm{b}$ and c . The romults ame expressed as ealeulnted volumes per $\mathrm{cm}^{2} \times 10^{-6}$. Figure 31 3. represents algae normally planktonic in habitat, 31 b. non-filamentous mainly free living pemnate diatoms and 31 c. filamontous algeo (mainny ylothrit tenuissima).

The main planictonic constituents were Stephanodiscus astrges, S. hantzschis, Astomione17a fomose, Antistrodesmus falcatus and Phodomonas minuta, and these increased in number towards the centre of the bed and away from the entrance. The mumbers then decreased towards the far end. There was a broad bend across the centre of the bed from side to side of high cell concentrations. This could be accounted. for by considering the flow of water through the bed. The water passes into the bed through relstively nampow inlet. The velooity of the water is then reduced as the incoming water mizes with the water already there. If the minimum critical velooity for koeping these algae in suspension was reached near the centre of the bed maximum deposition would take place thore and then decrease further from the contro.

The non-filamentous free living foums consisted mostly of Nitzschia acicularis, \mathbb{N}_{0}, linearis, \mathbb{N}. palea, species of Cymbella and Surimel1a
and species of Scenodosmes. These alese vere not usually preaent in large numbers in the incoaing water and their presence on the sand surffice in bith oonoentiations is tue to oolonization and population exowth. Some of those alcae (c.go species of Hitrgchia) ane motile and cein stide over the send surface and could be expected to concentrate where optimum crovith conditions prevailed. The loveat muibers were near. to the inlet possibly fue to tho scouring action of the incoming vator on the sand surface. The highert numbers were present in e band atretching from the centro of the vest side of the bed towards the far end and somoss the iniddle. This hand comesponded to areas of low numbers in the planktonio and filamentous forms. This was particularly true in the II.E. cornor whese thare were only suall numbers of nonfilanentous but very high mumbers of filenentous forms. Irmediately alongside, to the west, was an area of hich mubers of non-filanontous and correspondingly low numbers of filanontous forms. Conditions ? were not favourable for the non-filasientous forme on the samd surface anongst the Pizemontous forms probebly due to competition for nutrients and also because of shading oussing 2ight limitation (see also pace 41). Unothrix tomuigsimg was the mein filenontous foum present. Some I. tonompima also ocoursed and noam to the edgos of the bed Nelogima vayians was present in high numbers. The highest concentrations of filanentous forns oocurzed in the cornove at the noxth end and in a band across the centre. Again there wese low numbers at the entrance to the bed and at the contre of the noyth end. One reason for langer numbers being present in the comons is beoause detachod fregnents of

Figure $31 \mathrm{a}, \mathrm{b}$ \& c . The distribution of algae on the sand surface of bed 12 on May 15 th 1965 . The figures represent the calculated algal volume $/ \mathrm{cm}^{2} \times 10^{6}$. The filter bed inflow is at the bottom of the figure.

Pilanents which berame broyed up by gas lubbles produced. during

 photosynthosis tentio! to lo camsied tinto the odmors of the hod hy wind sotion and were doposited on the sand surface whon the bed was drained. down for oleaning.Tho socond sumvoy was carried out on July 24th on bed 13. Dowing the previous two weeks wind apeeds had beon slightly above avengeg (sbout 7.8 lmots) and south mesterly in dixection. Whilat the bed was beine drained fowm vesterly rinds of 10 lonots were reoorded.
(data from the Met. Office Kew Observatory). This had a considerable effect on the cuments in the supernatant weter. This effect ves investigated by following the path of polythene bottles floating just below the surface as the bed was drained down. The general pattem of the currents, on the surface at least, is given in figure 32. The area enclosed by the dotted Iine was oalm and shaded. from the wind. Four bottles were launched just west of the entrance. Their passage across the bed is represented. by amows and thein final positions by the numbers 1 to 4 .

Figure 32. The cument directions at the surface of the supernatant water in bed 13 on July 24th, 1965.

The distribution of filamentous algae, mainly URothrix temuissima, was plotted by dreving the observed patches of ereen filanents on the sand surfece. Their distribution is given in Pigure 33 o. The shided areas are patches of filaments and the caloulated cell volumes $/ \mathrm{an}^{2}$ are superimposed. Pigures 33 A . and b. give the remults for plenictonic and non-filamentous mainly pemnate bottom living forms respectively. The filamentous algso were present in much higher numbers in the aheltered part of the bed. The patohes indiosted that the wind blowing obliquely across the bed (see Figure 32) ney have induced a clockrise motion in the supernatant water. The straseling filaments were deposited in a circular manner around the bed. 8 the vind -nduced the flow of water towarde the IT.E. corner with probably a resultant return cumrent towards the S.E. corner. This was supported by the observed surface flow and the directions of the deposited filaments. The planktonic forms were egain most concentrated near the middre of the bed but this time displaced to the east. Planktonic forms were less dense at each end, very similar to the pattern observed in bed 12 and might also be explained by sedimentation ourrents, in this onse displaced eastwards by the wind. The non-filementous free Iiving forms (rigure 33 b .) consisted of the same species as before but Mijtzschia aoiculawis formed a larger percentage (85%) of the population. The highest concentrations occurred near the centre and in the \mathbb{H}.E. comer and the lowest concentrations at the ontrance and the If. end. The largest numbers were in between the areas of maximum filaments and maximum plankton deposition.

Figure 33 s . b, and c . The distribution of algae on the sand surface of bed 13 on July 24th, 1965. 2 The figures represent the osloulated algal volume pos on ${ }^{2} \approx 20^{-6}$.

These two surveys show that the sand surface of the slow sand filter bods was by no means homogeneous as Pound by Brook (1954). Populations of algae would develop depending upon the deposition of cells from the incoming water or the relative favourability of the local environment. Deposition of planktonic algae, which did not seem to increase in cell numbers on the sand surface to any great extent, probably depended upon sedimentation currents, whilst filamentous algae growing from the bottom broke away and were redistributed by windinduced currents. Non-filamentous free living alger tended to
scouralate aivay from the entrence and in arose where mumbers of other elene whing lover, this uneven fistipivition einhegisen the need for composito wangline of sand surface oxgenisins (see Chapter III) if xapresentative samples axe to be obtained. th the retor (sos Gaptex Y),

 miturivinte mairt fhom.

 4. 3 tomen 34 , a.

VIII. A Polythene Bag Bxperiment.

During the investigations on slow sand filter beds difficulty was experienced in attempting to relate algal successions with the Iargo moasured changes in nutriont lovels in the water (see Chapter V). This was mainly because slow sand filters have a continuous flow through thom, thus the algae on the sand surface, even though they themselves mey not be moving, have a contimuous flow of water and nutrionts past them.

In an attempt to find out more about the requirements of the algae a susponigion of fllter bed algae in natural water was enclosed in a polythene bag and their growth followed for over a month. The bag was placed in a slow sand filter bed for 33 days during May and June. Samples of the unattached algae on the sand surface in the polythene bag were collected at varying intervals throughout the exporiment.

Practical considerations ruled out the use of a large bag as hanaling it would have required more than one person. A bag one metre in diameter and two metres in length and of 800 I capacity was used. It was accepted that this size system is open to critioism concerning wall effecta, shading etc. and these factors have been taken into account when considering the results.

The construction of the bag and its method of suspension are given in PIguxe 34.a.

The bag was suspended from the end of a rod stretching out three feet from the bank. The aspect was southerly. The bag vas attached to the rod by means of a double funnel. The neok of the bag fitted

Tiguxe 34.a.

over the maller inner fumel and was attached to it. This smaller fumnel was then fiming pushed inside the larger outor funmel and fired in place by means of the support tube. The bag was thus fixed in place botween the two finnels and val protected from tho surface weve aotion by the outer one which just dipped below the water aurfece. The couble fumel amrongemont also sorved. to reduce the exposure of the enclosed water to atmospheric pollution. The sampling and stirring tube was passed through the supporting tube and through the f.mor fumnel into the bag. The bag was suapended so that the bottom was just above the mend surface.

The bag vas filled with glass fibse filtered, filter bed supernatant
water free from plants and animals. It was then imoculated with oOL of coarso filltored. filtor bed water free from larger organisms such as crustations and larger notifers. The innoculum contained various dietome, Ohlorophyeese, Gyenophycese, euclenoide and exypbomonads. Before each sample was removed the contents were well mixed by bubbling ain through the bag. Samples were removed by means of a suotion pump and chemically anslysed (see Chapter III), Algal numbers were estimated using the membrane filter technique described by Mollabb (1960). The experiment was terminated after 33 days as the filter bed was drained for cleaning purposes.

The tempersture of the water was $9.5^{\circ} \mathrm{C}$ at the beginning of the experiment and had increased to $13.0^{\circ} \mathrm{C}$ by the end. Between days 12 and 18 growths of epiphytic diatoms and filamentous green algae appeared on the outside of the bag. These were eventually removed by brushing but during this period the ponetration of light into the bag would have been reduced.

The concontrations of $M O 3-11,1 \mathbb{H} 4-11$ and P04-P pessing onto the slow sand filter bed did not vary greatly throughout the period and Levels were at all times constantly high (Figure 34b.) silicon concentrations ranged betweon 67-100 $\mu \mathrm{g}$. at./L $(4-6 \mathrm{mg} \cdot / \mathrm{L})$.

In the polythene bag $\mathrm{NO} 3-\mathbb{1}, \mathrm{P} 04-\mathrm{P}$ and Si concentrations were initially high being similar to the filter bed water from which it was filled. After an initial increase of 95 $\mathrm{\mu c}$. at./Ir, WOZ-N decreased. throughout the experiment. After the fifth day the P04-P concentration also decreased but more rapidly than NOX-1N.

Changes in concentration of nitrate, nitrite, ammonia, silicon and phosphate.

Piguxe 34.b.

After day 23 PO4-P reached its lowest level although thore was a slicht inomease in ooncentration from day 25 to the end of the
 decreased until day 12. After day 16 it rose steadily in concentration until the ond of the experiment. NO2-15 romained at a constantly low level throughout.
stan The initial imocumul of algae into the polythene bag and also those pessing onto the filter bed contained 90\% by algal volume and

Figure 34 c .
60% by number of diatoms.
Throughout the period of the experiment the sand surfeace vas dominated by diatoms (Piguxe 34c) although about 30% of the total volume consistod of filamentous green algne and blue green algae by dey 33.

The flora of the polythene bag, although initially diatom dominated changed botween days $23-23$ to complete green algal domination. In the bag the diatom population did not increase after day 20 , indeed apart from Surirella ovata the distom species present had reached their maximum by or before day 12 (Pigure 34d). Stephonodiscus astraes did not initially increase and after day 7 it decreased rapidiy. This was probably due to unfavourable environmental conditions. A small, still body of water, as existed in the polythene bac, alloved planktonic diatoras to settle out. At the bottom of the beg they formed a self

shading fedinont probebly with locel nutiziont limitations. Silioon

 Zevela momo below greg. at./L after day 12 and by day 20 they had of ailioa vere probably the cause of the deczeases in other diatoms in the nolythene bag after day 20. Another factor might have been the reluced light intensity due to the extermal erowths on the bag which qocumed between davs 12 and 10. The light inside the beg vas found to have been reduced from about 60% to 30% of the surfece -intemaity, Ryther (2956) has show that green algae are better adapted to photosynthesis at lower light intensities than are diatoms. The exeen algae may thus have increased in the hag as they were better edapted to the reduction in light intensity.

Figure 34d. Solid line represents the algae on the sand surface;broken line represents the algae in the polythene bag.

Diatoms on the sand surface would not have suffered from mutrient limitation duxing this period. Self shading and subsequent light limitation could have occurred but there was no evidence for this. The numbers of individuals per square centimetre increased until the end of the experiment.

Certain species of algee occurxed in large numbers in either the polythene bag or on the sand surface but not both. The growth of

Pigure 35.
these is indicated in Figure 35. Dy day 25, certain filamentous algne established themselves and inoxeasod rapidly on the sand surfece until day 33. By this time they accounted for 30% by calculsted volume of the total sand surface flore. The two major forms present wore a species of Ingsbya and Unothrix tenerrema. They became established only after there had been time for organio matter to build up on the sand suxface. In the polythene bag green algse started to increase aftor day 5 and had reached considerable numbers by day 20. Neither Ghlamydomonas sp. nor Chlorella sp. showed mariced increases after this day although the caloulated weight of the latter was ton times higher than that of the former. Scenedesmus spp. contimued to increase up to the end of the experiment.

A species of Buglena inoreased steadily until day 26 as the organic matter increased. Although no measurements vere made, it is considered that dissolved organic matter also inoreased providing substrates for hoterotrophic growth.

Lefevre (1950) proposed that when a particular species of alga multiplies abundantly it might socrote active substances which might prevent the growth of other forms and it is not until the population is reduced or dies off that other resistant speoies can flourish. Rice (1954) reported natural antagonism between Mitzschia nalea and Chlorel1a sn, and such a system may have operated in the bag although the green algae started to increase even while the numbers of diatoms were still high. Another possible reason for the rapid increase in green algae is that the diatoms might have released accessory growth
factors, by excretion or upon dying, which were necessary for the growth of the green algae. Stimulation by organic growth factors of Scenedesmus quadricauda and Chlorella was referred to by Saunders (1957) but without giving clear reference to the original work. The substances (Chlorellin and Scenedesmin) were reported to be self stimulating to the algae secreting them at low concentrations but self inhibiting at high concentrations.

The minimum calculated doubling time of the major species of diatoms in the polythene bag was, with the exception of Mitzschia acicularis, usually less than one half that of the same species on the sand surface. W. acicularis vas about the same i.e. 41-46 hrs. Y. palea and the species of Cymbella had vexy short doubling times

in the bag of less than 24 hrs . The green algee both on the sand surfece and in the polythene beg all had minimum doubling times of less than 24 hrs .

Difficulty was experienced in determining the amount of algal material present on the sand surfece and in the polythene beg by means other than counting. This was due to accumulations of algal debris and, on the sand surface, other organic matter. The relation between the weight of algee caloulated from their volume, particulate oarbon, dry weight and loss on ignition in the polythene bas are given in Figure 36. Although the last three show a elose correlation the caloulated weight of the algae deviated greatly. The percentage loss on ignition ranged from 48 to 48 during the period of diatom and 70 to 77 during the green algal dominance (Figure 33).

Figure 37.

The percentage carbon of the ash free dry weight was 50 to 59 for the diatom and 60 to 64 for the green algal dominance. These figures are in agreement with those of other workers on diatoms (Iund, 1965) and for green algae (Burlew, 2964).

In the polythene bag, bacterial development was high especially towards the end of the experiment when large amounts of organic matter were present. The bacterial population was determined to be at least $100,000 \mathrm{cells} / \mathrm{ml}$. by dey 30 . This could contribute up to $10 \mathrm{mg} . / \mathrm{L}$ wet weight. Also large numbers of empty diatom frustules had accumulated By the end of the experiment together with organic debris. As the calculated weight of algae was based only on live cells present considerable discrepancies would be expected. Algal weights calculated. from counts would only seem to be valid where there are no accumulations of other extraneous organic particles.

The results from the experiment indicate that, during the period studied, the algae on the sand surface did not suffer from major nutrient limitation, unlike the algae in the polythene bag. This was probably the major reason why the flora of the sand surface remained diatom dominated throughout. This also applied to the sand surface flora throughout most of the period of study (see Chapter VII). Species other than diatoms only started to contribute obviously to the sand surface flora as the amount of blological material present increased. This was also found to be true throughout the rest of the study on the slow sand filter beds when filamentous green algae were usually abundant only towards the end of a filter bed run (see

Chapter VII and Ridley, 1967). If the diatoms were prevented from growing, as in the polythene bag due to nutrient depletion or on the sand surface by copper sulphate applications or infiltration of chlorine, green algae succeeded in dominating the flora.

 te bevengl spodes af alohas.

 $\left.30^{8} 0\right)=$

IX. Culture Experiments
(a) Toxicity of Coppor Sulphate.

During March and April 1964, filter bed No. 12 was treated with copper sulphate for 8 hres, a day to give a final concentration of $0.5 \mathrm{mg} . / \mathrm{L}$. The overall effect of this treatment on the algae in the filter bed are discussod elsomhere (see Chapter VII) but during this period some detailed laboratory experiments were carried out to detemine the toxicity of various concontrations of copper sulphate to several species of algae.

Several concontrations of copper sulphate were added to Laboratory cultures of Asterionella formoss, Frasilaria crotonensis and Scenedosmus aimornhus, The cultures had previourly beon grovm in glass fibre filtered Cueen Mary Reservoir water which had been steem sterilised. Mo this vater was added 1% soil extract solution.

Pive sets of aix 250 ml . exlenmeyer flasks, each containing 140 mls . of oulture solution (in this case glass fibre filtered filter bed supernatant wator which had been steam sterilised and was known to have Lass than $0.05 \mathrm{mg} \cdot / \mathrm{L}$ copper present) and 20 mls of algel suspension to give a final concentration of about $1,000 \mathrm{cells} / \mathrm{ml}$. . were placed under controlled conditions of lieht and temperature (two 40 watt fluorescent tubes placed ono foot away and a temperature of $18^{\circ} \mathrm{C}$). Copper sulphsto was then added to give final oonoentrations of $0.1,0.2,0.5$ and $1.0 \mathrm{mg} . / \mathrm{L}$ copper in four of the five sets. The fifth set was used as a control. Growth was measured by filtering the contents of a flaak through a glass fibre filter paper (Whatman GF/c)
and then determining the loss on ignition. Determinations were made after $2,7,15,24,29$ and 35 days. The results are given in Figures 38,39 and 40.

Figure 38. The growth of Scenedesmus dimorohus at different concentrations of copper sulphate. $=$ control, $\cdots=0.1 \mathrm{mg} / \mathrm{L}, x \cdots \cdots \cdots \cdot x=0.2 \mathrm{mg} \cdot / \mathrm{L}, \quad \longrightarrow=0.5 \mathrm{mg} \cdot / \mathrm{L}$, $\bullet \bullet=1.0 \mathrm{mg} \cdot / \mathrm{L}$

At none of the concentrations used was Scenedesmus dimorphus prevented. from growing (Figure 38). The addition of copper sulphate slowed dow the rate of growth and also decreased the final yield per culture. The growth curves at $0.1 \mathrm{mg} . / \mathrm{L}$ and $0.2 \mathrm{mg} . / \mathrm{L}$ were similar in shape and close to each other as were those at $0.5 \mathrm{mg} . / \mathrm{L}$ and $1.0 \mathrm{mg} . / \mathrm{L}$. The final yields were about two thirds for $0.1 \mathrm{mg} . / \mathrm{L}$ and $0.2 \mathrm{mg} . / \mathrm{L}$ and one third for $0.5 \mathrm{mg} . / \mathrm{L}$ and $1.0 \mathrm{mg} . / \mathrm{L}$ of that of the control.

Pragilaria crotonensis (Figure 39), unlike Scenedesmus dimorphus, showed little or no grovth in the presence of copper above $0.1 \mathrm{mg} . / \mathrm{L}$. At $0.2 \mathrm{mg} . / \mathrm{L}$ there was a small increase but at $0.5 \mathrm{mg} . / \mathrm{L}$, after an

Figure 39. The growth of Fragilaria crotonensis at different concentrations of copper sulphate. $-=$ control $, \cdots=0.1 \mathrm{mg} / \mathrm{I}_{1}, \times \cdots \cdot x=0.2 \mathrm{mg} / \mathrm{I}_{, ~}, 0 \ldots=\mathrm{mg} / \mathrm{I}_{\text {, }}$, $\bullet \cdots \cdot \bullet=1.0 \mathrm{mg} / \mathrm{I}_{\bullet}$
initial inoresse, the final yield was less than the imoculum on day 1. At $1.0 \mathrm{mg} / \mathrm{L}$ there vas no growth but on the contrary a steady decrease in biomass occumed from day 1 onvards. Growth at 0.1 mg. $/ \mathrm{L}$ was vory similar and only slighty less than the control. The initial rate of increase was slightly less as was the total yield. Agtorionel19 formosa (Pisuro 40) showred no growth at $0.2 \mathrm{mg} / \mathrm{L}$ and decreases at $0.5 \mathrm{mg} . / \mathrm{L}$ and $1.0 \mathrm{mg} . / \mathrm{L}$. After an initial lag phase at $0.1 \mathrm{mg} . / \mathrm{L}$ the growth increased after day 13 to give a final yield of

Figure 40. The growth of Asterionolia formose at different

$$
\begin{array}{lll}
\text { concentrations of copper sulphate. } & =\text { control, }, \\
=0.1 \mathrm{mg} / \mathrm{L}_{2}, & =0.2 \mathrm{mg} / \mathrm{L}_{,} & =0.5 \mathrm{E} \\
1.0 \mathrm{mg} / \mathrm{L}_{0} & &
\end{array}
$$

just under hale that of the control. The growth rate in culture was much less for Astorionella formose than for the other two algee.

Unlike the previous two algae the growth curve for the control was
atill ahowing evidence of erowth, albeit slowly, after 35 days. The growth at $0.1 \mathrm{mg} . / \mathrm{L}$ was also atill inoreasing at 35 days and the final yield could conceivably have been mitich highor at this concentration.

In this experiment the two diatoms ahowed little or no growth above $0.1 \mathrm{mg} / \mathrm{L}$ copper whilst the green alga was able to increase at all concontrations tested. The final concontration of copper in the water of the filter bed would have beon about $0.19 \mathrm{mg} / \mathrm{L}$, enough to virtually provent the two diatoms from increasing. Sconedespus aimornhug would, however, have boen able to crow althouch at a lower rate. (see Chapter VII).

(b) Goyth Bate Expopiments

Grouth rate experimonts were carried out on one speoies of alge, Sterhanodiscus astreee. The experiment vas carried out from September 1964 until September 1965. The algne were groun from net haula obtainod from the Cavon Mary Eeservoir and, although not unialgal, the hauls contained over 95% of the reguired speaies. The oultures were grom in Chu Io. 10 medium (Chu, 2942) mede up in stean sterilised Gueen Nary Reservoir vater and modified by the use of the iron source as was recommended by Foathe (1948) and alao the inclusion of 1\% soil extract.

The cultures were grown at a temperature within $5^{\circ} \mathrm{C}$ of the proposed exposure temperature. The algse were exposed in 250 ml . round bottomed glass stoppored flasks whith wore lowered onto the sand surface of a filter bod on an aluminium franoworks. The concontration
of cells in the bottle at the tine of exposure was about 100-200 cells/ml. Three bottles were carried on each framework. These were shaken once every two days to avoid stegnation of the cultures. After seven days the bottles were removed and the samples fixed in Iugol's iodine for inverted mioroscope counting.

The relative growth rate k^{\prime} was calculated for each occasion using the formulat

$$
k^{\prime}=\frac{\log \pi-\log I I 0}{t}
$$

where $\mathbb{Y} 0=$ original number and $\mathbb{H}=$ number after time t in days.
Stephanodiscus astraen showed a distinct seasonal variation. The results are given in Figures 41 and 42 ; in the former, $k{ }^{4}$ is plotted against photosynthetic radiation (see Chapter V) and in the latter against the water tempersture. Dach point on the eraphs represents the arithetic mean of the inorease in numbers in each of the three licht bottles in the seven days. The line in both fisures can be divided into three sections; 1. September 1964 to January 1965; 2. January 1965 to April 1965, and 3. April 1965 to September 1965. Ficure 41 shows the relationship between photosynthetic potential, as indicated by the anount of photosynthetic radiation available at 2.5 metres depth, and k^{1}. It is doubtinul that light intensities were ever so high as to inhibit growth during the period of atudy.

During September 1964 to Jamuary 1965 (line 1) there was a steady decrease in kt^{t} and in the photosynthetic radiation. From January 1965 to April 1965 (line 2) although the photosynthetic radiation

Figure 41. The variation of the relativo growth constant, k with the photosynthetic radiation.
increased considerably, k^{t} remained fairly constant. Between April 1965 and Soptember 1965 (ine 3) k' inoreased rapidIy even though there vas a slight deorease in photosynthetic radiation. There is a somowhat similar relationship between k^{\prime} and tomperature (Figure 42). As the temperature decreased between September 1964 and Jenuary 1965 (1ino 1) so did k\%. It thon romained steady until April 1965 (1ine 2) although the tempersture increased. There was then a rapid rise in Kt until September 1965 (Line 3) assooiated with a further inorease in temperature.
\qquad

Figume 42. The variation of the relative growth constant, $k \mathbf{k}$, with water temperature.
the For growth to occur, carbon fixation must take place, and the efficioncy of this fiscation will detemine the rate of growth. Photosynthesis consists of two series of reactions. The first of these is indopondent of 11 ght but dependont on tomperatume wilst the second is dependent upon light but independent of tempersture within the nomal ranges anoountered in nature. These are the so called photosynthetic "dark and light" reactions.

Figures 41 and 42 show the effect on k of the light and temperature envirommonts during the experiment. In each figure soction 1 indicates the period of deorease for both temperature and
light. This deorease would have produced a comesponding decrease in the rate of both the 2ight and the dark reactions. In section 2 both 1ight and tomperature inoreased but k' remained constant. A possible explanation of this was that tho amount of enzymes yresent per cell in January 1965 had been reduced by successive cell divisions, even though the rate of division had boon decreasing, so that tho antount was inadoquate to support an increased growth rate due to linitation of the dark reaction, even though the temperature had inoreased. Some supporting evidonce for this can be found by examining the changes in the average coll volume throughout the porlod. These increases and decreases correspond approximately to increases and decreasea in cell diameters recorded in the open water (see Chapter IV and Figure 6). The average cell volume, calculated from cell diemeters, increased. from August 1954 reaching a martmum betweon October 2964 and January 1965. Between Jamuary and Narch 1965 there was a rapid decrease in the average coll volume. Presumably the cells were dividing but not producing enough new materials to meet their metabolic demende and so were utilising stored products. As the volume deoreased so the amount of enzyme per cell would also possibly have decreased and it was not until lator in the spring that the colls, enaynio activity ceased to limit the light reaction. It was then that the recorded. increase in It in section 3 ocourred. Althouch the spming marimum, in terms of cell mumbors, for Stephgnodiscus sstrges appeared to ocour in the late apping, whon its growth was not modifiod by coppor sulphate application (as in 1964 and 1965), it continued increasing until June,
well into section 3 in Figures 41 and 42.
After the spring maximum the average cell volume steadily increased, together perhaps with an increase in storage products, to reach a maximuin volume in the winter. At the start of the spring growth the average cell volume decreased. This cycle corresponded in timing to the observed growth rate cycles (Figures 41 and 42).

 sen pasiond ieth the hettom os the trabe to hald the thand in piaceo

X. Penetration of Algae into the sand.

Although the downard vertical flow of water through a slow sand. filter bed should remove algae within the top few millimetres of ased, in practice this is not alvays so. Many diatoms and other algae are known to migrate vertically through mud and sand (Round and Happey, 1965; Round and Palmor, 1966) and this may happen with the sand surface flora (see Chapter VII). Algae are also carried into the sand during the first few days of operation of the slow sand filter bed before the formation of a zoogleal film.

The extent of this penetration can be estinated by taking core samples of the sand but this was not always possible as the filter beds were often irained, cleaned and refillod botween sampling times. An attempt was made, using the apparatus described below, to follow the penetretion of algae into the sand. The apperatus was designed. to simulate as far as possible a column of sand through a slow sand filter bed and was arrangod as in Figure 43. A Pyrox glass tube 11 inches (3.75 cm .) in diameter and 24 inches (60 om 。) in length was used. The bottom vas sealed with a zubber buns, the inside surface of which was concesve, with a single glass tube running through its centre. The concave imer surface vas designed to prevent settlement and trapping of particles on the bung. The outflow was controlled by means of a elass stop cock. About I inch depth of glass wool was packed into the bottom of the tube to hold the sand in place. The sides of the tube were then blackonod to within 4 inches of the top so that no light was sdmitted to the lower parts of the tube.

Figure 43. The experimental slow sand filter column.

The outlet tube was also blackened. The tube was then clamped into a vertical position, the outlet closed, and half filled with vater. Weshed and sterilised filter bed sand was then added from the top of the tube till its depth was 1 foot 6 inches (45 cmo). The presence of water in the tube helped to prevent air from being trapped in the sand. The sand was pecked down carefully with a rod. Fritra sand was added to bring the level to $\frac{1}{\mathrm{z}}$ " below the top of the blaakened section. Glass fibre filtored Gueen Mary Reservoir water was then added by upward flow through the sand until there was $2^{\prime \prime}$ of supernatant water above the sand. The top of the tube was then sealed with a zubber bung having a aingle inlet tube passing through 14 . The end of the tube Just dipped beneath the level of the supernatant water. This tube was then connected to an aspirator of vater containing an algal surpension. The outlet led into a fleak containing Ingol's iodine so that any algae passing through the column were inmediately preserved. The apparatus was placed near to a north light which enabled the sand surfece to be partially illuminated.
IV. The alcal suspension was mede up from a not havl obtained from Queen Nary Resexvoir resuspended in 40 litres of sterile reservoir water. The algae were leapt in susponsion by contimuously bubbling air through the aspirator. The rate of flow of water throuch the column vas $3^{\prime \prime}$ per hour (approx, $82 \mathrm{cc} / \mathrm{he}$.). The flow was continuous and was kept up for 21 days. The outflow was examined every 2 days and the algae present counted. After 21 days the sand was oarefully removed in quarter inch layexs and the algae were separated from the
sand and counted. The numbers of algae in the aspirator at the beginning and end of the experiment were elso determined. The results are given in table 8 and are expressed as cells per ml. of water or per ce. of sand $\times 10^{-1}$.

The mumbers of oelle/ml. of Scenedesmus spgo and Ankistrodesmus falcatus in the aspirator water increased throughout the experiment but those of Oooystis solitaria and Pediastrum boxyanum deoreas ed. All of the diatoms, with the exception of Melosira varians, had decreased in number by the end of the experiment. This was expected due to the artificial environmental conditions in the aspirator. A "pot" Plora had started to develop. Ankistrodesmus falostus, the smallest alga present, occurred in the largest numbers in the outflow water. Sconedesmus spp. wore also frequent but only occasional diatoms ocourred. Wo cells of Ooovstis solitaris on Pediastrum boryanum were observed below $\frac{x_{4} n}{}$ and $\frac{\lambda_{4}^{n}}{}{ }^{n}$ respectively. Large numbers of Scenedespus spp. were found throughout the top $2^{\prime \prime}$ of sand although their numbers decreased with depth. Three diatoms, M_{0} varians, Fhoicosphenia curvata and Surirella ovata, were not observed below $1^{\prime \prime}$, the last two, however, were only present in small numbers so that accurate counting was difficult. The remaining diatoms were present throughout the top $2^{\prime \prime}$ either as seemingly healthy or as dead frustules. As nany, if not more, live than dead cells of Stephanodiscus astraea and Iavicula sp. were present in the lover sand samples. The reverse, however, was true of Mitzschis linearis and Cymbella spg. Some syecies were present in laxger numbers between in and lidn depth
than through the rest of the colum. This could have been due to accumulation specifioally at this depth either because of the rate of flow or because the algae preferentially maintained themselves in this position.

Larger algae, such as P_{0} borysnum and Mo varians were removed in the uppermost layers. This was because the interstices between the sand grains were too small to allow the passage of these relatively large algee. Live cells of many other species were only present in small numbers below $1^{\prime \prime}$. S. astraea and Navicula sp., both of which were below 35 u in their maximum dimension, were present throughout the top $2^{\prime \prime}$. It is possible that both of these algae penetrated the sand before a biological filtering layer (zoogleal film) had developed on the sand surface. This could also have occurred with the smaller green algae, but if the sub-surface environmental conditions were unfavourable they would have died and decomposed leaving little or no trace (having no siliceous frustules). This may account for the apparent lack of green algae deeper into the sand. Scenedesmus spp. occurred in the largest numbers of all the algae present throughout the depth of the sand column. Although they were not able to photosynthesise at these depths the cells appeared to be healthy. There is evidence that this genus can live heterotrophically (Taylor, 1950; Bristol-Roach, 1926). The dissolved organic matter formed from decomposing cells in the upper layers may have provided sufficient nutrients for Scenedesmus to grow.

Live cells of most of the algae present were recorded below a
depth of 1^{11}. When a slow sand filter bed is cleaned the usual practice was to skim off the top $1^{1 \prime}$ or less of sand. This practice would have left live cells in the sand to act as a seed when the bed was next filled for use.

It was possible, on two occasions, to compare core samples from a filter bed with the results of the penetration experiment. The distribution of algae in these core samples was similar to that in the experimental sand column. Larger species of algae, such as So astraes and Mitzschia linearis, were confined to the top 2 ma. Very few diatoms, with the exception of Mitzsohia acicularis, were present below $\frac{1}{2} "$. In both core samples there were large numbers of № acicularis (exceeding 500 cells/cc. of sand) between $1^{\prime \prime}-1_{\varepsilon^{\prime \prime}}$ depth. About $\frac{3}{4}$ of these cells were living, the rest being empty frustules. I. acicularis is know by waterworks to be able to penetrate slow sand. filter beds so its presence below the surface layers of sand is not unexpected. The sccumulation at a specific depth, as with certain algae in the sand penetration experiment, was possibly an effect caused by the rate of flow of water through the bed.

Table 8. Cell concentrations in the inflow and outflow water and in the top two inches of sand. The results are expressed as cells per m. of water or cells per om^{3} of sand $x 10^{-1}$

XI. Seasonal variations in the cell sizos of Stephanodiscus astraea and Asterionella formose.

During the period October 1963 to June 2966 the mean cell size of populations of cells referred to Stephanodiscus astraea (Mhr.) Grun. was observed to change. To investigate this cell size change samples of these algae collected from the reservoir and filter beds at various times were cleaned in hot concentrated sulphuric-nitric acid mixture (50% by volume of each). The cells were then washed in distilled. water and concentrated by centrifugation. The diameters of at least 50 cells from each sample were measured and the size frequency distribution calculated. The results are given in Figure 44. During the spring diatom growth period of 1966 , weekly (or on one occasion fortnightly) samples were taken between February 21 st and April 12th. During this period the samples were cleaned as above and. measurements made of the diameters of S. astraea and also the length of Asterionella formoss frustules. The size frequency distributions were calculated and the results are given in Figure 45a. and 45 b .

During the spring growth period of 1966, assuming that all the cells of S. astraea were growing actively and dividing equally fast, an overall movement of the population mode from a larger to a smaller diameter would have been expected. Cells would presumably only be able to return to their original size by auxospore formation. Although this mechenism has been referred to (Hustedt, 1930), auxospores were never observed during the present investigstion.

Figure 44. The size frequency distribution of the cell diameters of populations of Stephanodiscus astraea.

The winter populations of \underline{S}. astraes had a diameter mode between 30-35u (Figure 44). At the time of the onset of the spring exowth period this mode shifted to the left (i.e. to the smaller average diemeter). When the spring populations had reached, or just passed their spring maximum (see periodicity eraph, Chapter VI, Figure 18) the mode vas at its minimum level. The mode then shifted to the right (indicating an increase in average diameter). This shift was particularly mariked when no large populations occurred in the early summer after the spring maximum. If growth contimued throughout the spring period and was not greatly reduced in the summer, as in 1966, then no such rapid shift to the right ocourred. No rapid decreases vere observed in the average cell diameter during the autum growths of S. astraes, These were never as large nor as long in duration as the spring populations (see Pigure 44).

Wore detailed measuremonts at shorter time intervals vere made during the spring of 1966 (see Figure 45 a.) On February 21st, the population had a mode between 32-34u. At this time numbers were still increasing towards their spring maximum. On February 28 th, the main mode hrd deoreased in si:ze and a secondary mode between $28-30 \mathrm{p}$ had developed. By Varch 14th, both the primary and the secondary modes had increased in size and had sharpened, i.e, the population spread was narrower. The mode at $32-34 / \mathrm{p}$ had ereatly reduced by Narch 2lst, and was replaced by a new main mode between $28-30$ a. This new main mode then sharpened, a "shoulder" in the curve being all that remained of the $32-34 \mathrm{p}$ mode. The nev mode then decreased and the curve became

Figure 45a, The size frequency distribution of the cell diameters in microns (horizontal scale) of the spring population of Stephanodisous astraea in 1966.
more rounded until by April 12 th the mode spread between $28-320$. After April 22th there was an inorease in number in cells of langer diameter which caused a shift in the mode to the right (see Figure 45a). This decrease in the average diameter of the population, followed. by size mestitution, could possibly be expleined by the normal decrease in diameter in the valvar plane during division. The observed, size restitution might possibly be explained by aurospore fommation, although auxospores were never observed during the period of study. Another possible explanation is that one population may have been replaced by another one adspted to slightly different environmental conditions. This would require a continuous replacoment over a period. of time in the water being abstracted from the River Thanes. S. astrgea was not, however, present in the River Thames during this period. Ifight and electron mioroscope studies of the soulptuxing of the frustules throughout the period did not reveal any such change (see page 184 et seq.) Wesenberg-Lund (1908), as reported in Hutchinson (1967), recorded a similar size change within a population of S. astrges in Iake Iureso in Donmark but as only limited data was available, fow conclusions were dram.

During the spring period of 1966 the length of Astemionella fommoss frustules was measured and the size frecquency distributions determined for the population at various times. There were two distinct modes present on February 2lst (Figure 45 b) the larger between 57-62 μ and the smaller between 77-89, By the 14th Marah both of these modes had shifted slightly to the right, their nev

Piguro 45b. The size frequency distribution of the cell lengths in microns (horizontal scale) of the spring population of Asterionella formosa in 1966.
positions being at 68 and $83 p$. After March 24 th the 33μ mode shifted to the left and decreased in size, completely disappearing by Appil 12th. The 68μ mode also moved slightly to the left but this sharpened. and incressed in height.

Ale Although the period of observation for Asterionella formosa was short (being only through the spring growth) and no information is available for other times of the year, the results suggest that two populations were present. the larger one having a mode between 77-83u was present in smaller numbers, whereas the shorter one, having a mode between $57-63 \mu$ was present in larger numbers. A similar, although more complicated situation, was observed by Lozeron (1903) referred to in lutchinson (1967), in the Ober-Furichsee. He found three populations having slightly different oycles in the lake. WesenbergIund (1908), as referred to in Hutchinson (1967), found evidence of size reduction in some Danish lakes. He also observed rapid size restitution over short periods of time, at times as short as three weeks,
18. Cells from esch population sample were observed in detail to ascertain whether or not there was any difference in the species or varieties at various times of the year. The cells of both populstions of Astorionella could be reforred to Asterionella formoge Hass.

A number of varieties of Sterhanodiscus astraea have been desoribed. A sumnary of these is given in Table 9.

Sting few cells were found of diameter above 40p, the majority being between $20-40 \mu$. This diameter range could include all of the
varieties described by Hustedt (1930) and Cleve-Buler (1951). The punctae were generally coarse in most of the speoimens regardless of their size. The radial rows were formed from either single trows of pores or in many cases groups of two or three rows tapering to a single row near the centre of the frustule (Figure 46). The mumbers of rows at the circumference ranged from $8-10$ in 10μ and the numbers of pores 11-18 in 10 μ. Most specimens were in the range $9-10$ pores/10 at the oircumference and 12-14 pores/10p along the radius.

If one considers only the oell diameters then two main "varieties" were present, var, "typical and var. intermedia, although the desoriptions of Cleve-Muler indicate that these overlap. Some cells of less then 20μ were present and these could be reforred to var, minutula. The majority of cells, which on the basis of diameter could be called var. "tynica", had 8-10 pores/10p at the oiroumference and between 12 and 16 pores/10p along a radius. The pores were usually in groups of two at the frustule edge although certain cells (Figuxe 46) had single rows to the very edge. This latter feature has only been desoribed in var, incertus Cleve-maler. The cells desoribed as var, intermedia, on the basis of diameter, had $8-9$ pores $/ 10 \mathrm{p}$ at the circumference and $14-16$ poses $/ 10 p$ along a radius. The pores wore usually in groups of $2-3$ at the edge of each ray but some were single and some were in eroups of 4 (Figure 46). A group of frustules, representing only a small percentage of the total, had a single xow of coarse dots. These had $8-10$ pores $/ 10 \mathrm{n}$ at the circumference and 11-13 pores $/ 10 \mathrm{p}$ along a radius. Their diemeters ranged from 2qu to 32.5 p . These

Table 9. A sumany of the main chagacteristics of the variettea of Sterthanodiseus astrees as doserdbed by Hustedt (1930) and Gleve-3uler (1951).
nela. Rows/iOu Pores/MOu Pores/row Commente
in mierons at edge
Husteat

Cleve-

Ve "eyptee"	20-70	10-15	-
จ. utautula	8×25	-	-

| V. incortise | - | - | 1 |
| :--- | :--- | :--- | :--- | :--- |
| ve niagersee up to 70 | - | - | $4-5$ |

aiseribution restrieted to Horth America.

Figure 46. Some of the observed variations in the punctation of frustules of Stephanodiscus astraea.

Pit the description of Cleve-Euler's vars. incertus. There was, howevor, no obvious diminishing of the hyalino rays towards the odge of the frustules and although the syines vere sometimes smaller this feature was also presont in 0011s of othos varieties.

With the observed changes in cell diameter at different times of the year, unlens the frustules of S_{0} agtraea ame dofinitely large enough, i.e. above 40 p , to be callod vas. "typiog" xather than vas. intermedia or definitely small enough i.e. below 20p, to be called var. minutula, there is extreme difficulty in separating out the different described varieties. The size ranges of all the named varieties overlay between 20 and 40 miorons. The punotuation throughout the range of diameters soens to be variable. There was a tendency, though not very markod, for cells in the range of vars intermedia to have brooder rays then other varieties (plate 5). There is also a small proportion of cells fitting the description of yaro incertha (Cleve-luler, 1951) (see Plate 6). As there is considerable difficulty in separating the varieties of $\mathrm{S}_{\text {. astragea }}$ and as these varieties overlap each other there is a need for more detailed studies. Blectron microscopy would be an ideal method of investigating the punctuation but due to varistions within a single population, mumerous samples collected over a period of time need to be studied.

Plate V. Light microscope photograph of a frustule of Stephanodiscus astraea attributed to var. intermedia.

Plate VI. Electron microscope photograph of a frustule of Stephanodiscus astraea attributed to var. incertus.

XII. Teronomic Notes.

of the algee wich were identified during this ecological investigation, many occurred in small populations, or only for short poxiods. Such algae have not beon doalt with in detail in the foregoing account but are described as many of them have been recoxded. only infrequently in this country. A complete list of all species found is given at the and of this chapter.

CHIORORKYHA

VOLVOCATESS
Syematozopais exsultans Korchilcov. (Pigure 48).
This species was zeooxded on several occasions betwoon the months of June and September in 1964 and 1965. It occurred in smail mumbers in the supermatant water of all four filter beds studied. The cells were $7-10 \mathrm{j}$ long and 3 -4 μ wide. Although most of the cells had four equal thagella some vere observed with only two. This variation in the number of flagella has also been reported by Korshikov (1913). This species has not been cormonly recorded in the British Isles but there are two previous records from the London ares. Swale (1964) recorded S. exmyltans from the River Lee and. Scourfield (1944) recorded. it in bomb craters in Epping Forest. Canteria quadransulata Pasoher (Figuxe 47).

Cells of this speoies were ovoid with broadly rounded base and a trunoated top. The anterior ond four protruding lobos. No papilla was observed. The chromatophore was cup shaped, filling most of the

Pisure 4.
Cartoria quadrangulata Pascher.
cell, with a pyrenoid at its base. This species was recorded in late June and eanily July of 1964 and 1965 in the supernstant water of each of the filter beds.

CHLOROCOCCAHAS

Ankistrodesmus psendomirabilis Korshikov
This The cells were $25-50 \mu$ long and about $2-3 \mu$ wide at the centre. The cells were crescent shaped with attemuated ends. The distance acxoss the ends of the arc varied from $30-40$ a. Cells of this species vere observed throughout the vinter months of 1964 and 1965 in small numbors in the reservoir wates.

Totrasizum Chodat
Weat and Iritsch (1927) maintain that the division between Tetrastrum and Czucimenis is artificial being besed purely on the presence or absence of spines and of occasional syncoenobia. They keep the division only for convenience. The species recorded were identified according to Koxshikov (1953). West and Fritsch (1927) stated that species of this gemus were uncommon in the British Isles. Petrastrum stauromenigoforme (Schroed) Lomm (Figure 49).

The coenobia wore 4 celled with a small space between the cells at the centre of the colony. The cells were triangular in shape with the outer auxface rounded. The outside margin bore 3-5 thickened spines. The chromatophore had a aingle pyrenoid. The cells, without spinea, were $5-7.5 \mu$ long and the coenobia were $10-20 \mu$ across. The spines were $3.5-7, \mu$ long. This species occurred commonly on the send
surface especially during the summer months.
Tetrastrum heterocanthum (Troxdst.) Chod. (Tigure 49).
130 The coenobia were 4 celled with a fairly large spece at the centre. The cells were kidney shaped and bore 2 spines of unequal length. There was a single chromatophore and pyrenoid in each cell. The cells were $6-8.5 \mu$ wide, the coenobia $12-18 \mu$ across and the spines $3-9 \mu$ Iong. This species was uncomon occurring during the summer months on the sand surface.

Tetrastrum hastiferum (Amoldi) Korshikov (Figure 49).
2ter The coenobia consisted of 4 cells forming a square with a very small space in the centre. The outside wall of each cell bore a single, long, delicate spine. Jach cell had one chromatophore and pyrenoid. The cells were $3-5 \mu$ wide and the spines $7.5-12 \mu$ long. This species was recorded on July 3 and 101965 from filter bed No. 12 sand surface.

Tetrastrum हlabrum (Roll) Ahlstr, et Tiff. (Figure 49).
(1) The coenobia consisted of 4 triangular shaped cells with rounded

10μ

Figure 48. Spermatozopsis exsultans Korshikov

\qquad
Figure 49. 1. Tetrastrum staurogeniaeforme. 2. heterocanthum. 3. T. hastiferum. 4.I. हlabrum.
outer surfaces. The coenobia had a mucilaginous envelope. The cells had a single chromatophore with pyrenoid. The cell valls vere perfectly smooth having no spines. The cells were $4.5-7 p$ wide and the coenobia were $10-15 \mu$ across. No syncoenobia were observed. This species was found in small numbers on the sand surface during the summers of 1963 and 1964.

SCIMEDESYUS Meyen

Certain species of Scenedesmus occurred in large numbers in the slow sand filter beds. Only on rare occasions was one species present at a time, often many species were present with one or perhaps two predominating. For the puxpose of the preceding ecological study all of the species were grouped together under the generic name. A more detailed description of the species recorded is now given. The species were identified according to Therkovich (1966) but reference was also made to Smith (1916), Shen (1956), Korshikov (1953) and Hortobagyi. (1959, 1960 a \& b). Complete descriptions and lists of synonyms for the following species are given in Wherkovich (1966).

Scenedesmus acutus Meyen

The coenobia consisted mostly of 4 but occasionally $2-8$ cells in a linear series. The cells were spindle shaped with a more or less cuspidate end (Figure 50 (1)). Cells $8-12 \mu$ long and 2.5-4. 5μ wide. This species was very common especially on the sand surface where on occasions it was one of the co-dominant algae.

Figure 50. la, Scenedesmus acutus. $1 b$, B. acutus $f_{\text {. }}$ tetradesmiformis. $1 c$, S. acutus f. alternans. ld, S. acutus f. semiellipticus. $2 a, \quad S_{0}$ acuminatus. $2 b$, S_{0} acuminatus f_{0} maximus. $2 c, S$. acuminatus f. tortuosus. $3 a$ and b, S. ecornis. $3 c, S_{0}$ ecornis var. disciformis.
S. scutus f . tetradesmiformis (Voloz) Uherkovich (Pigure 50 (1)).

Coenobia similar to the basic form but the cells are curved along thoir longitudinal axis and nearly tetradosmoid in form. The cells were $8-10 \mu$ long and $2.5-4 \mathrm{p}$ wide. Occasionsl coenobia were found in the reservoir water and filter bed supernatent water during the late sunmer of 1965.
S. poutus f. alternang Hortob. (Figure 50 (1)).

Coenobia of 8 and occasionally 4 alternating cells, 10-15 $\mu^{\text {long, }}$ 3.5-4.5 wide. This species occumred frequently throughout the period thoueh not in large numbers.
S. acutus \&. semiellipticus Uherkovich (Figure 50 (1)).

Coenobia of 4 cells in a linear series. The outer cells were curved and spindle shaped, the imer ones straight and oylindrical. The ends of all of the colls were rounded. The cells were 10-15p long and $3-4.5 \mathrm{p}$ wide. This species was only recorded on two occasions, both during September 1965, in the supermatant water of filter bed \%०. 12.

Scenedesmus acuminatus (Legerh.) Chod. (Diguxe 50 (2)).
The coenobia usually consisted of 4 cells in a linear series. The cells were spindle shaped with attenuate onds. The inner cells vere mone or less straight but the outer cells were curved. The cells were $14-20 \mu$ long and $2.5-5 \mu$ wide. This was a common species in the reservoir and filter beds throughout the period. S. ecuminatus fo maximus Uherkovich (Figure 50 (2)).

The coenobie were of 4 or 8 cells similar in shape to the main
species but much larger. The and cells of the coenobia were $28-36 \mu$ long and $4-5 p$ wide. This form could be distinguished from the main specios as it was distinctly larger. It occurced occasionally during the sumnor periods of each of the years studied both in the superngtant water and on the sand surface of the filter beds.
S. acuminatus fo tortuosus. (Skuja) Uherkovich (Figure 50 (2)).

The coonobis consisted of 4 strongly curved or spirally twisted cells of similar size to that of the main species. It occurred in 3 samples collected in July 1964 from the sand surface of filter bed number 32.

Scenodesmus ecomid (Ralfs) Chod. (Figure 50 (3)).
The coenobia consiated of $2-4-8-16$ and on rare occasions 32 colls in a flat plate. The cells were oval $7-15 \mu$ long and 3 - $5 p$ wide. This was a very comon species especially on the sand surface during the summer months when it was at times one of the co-dominant species. S. ecomis var. disciformis. Chod. (Figure 50 (3)).

The coenobia were 8 celled. 9 , The cells vere ovoid and formed an alternating plate $1 i k e$ series. They were $7-10 \mu$ long and $3-5 \mu$ wide. This species was common on the sand surface, often forning agregations around particles of organic detritus. Scenedoamus ovaltermus. Chod. (Fisure 51 (1)).

The coenobia were of 8 cells which were in contact for but a small part of the length of their lateral walls and formed a drawn out regularly alternating series. The cells were $5-8 \mu$ long and $3-4 \mu$ wide. This species was not conmon and ocourred only occasionally during the

Figure 51. 1, Scenedesmus ovalternus. $2 a$ and b, S. arcuatus. $3 a$ and b, S. peosensis. 4, So naegeli. $5 a$ and b, S. acutiformis. $6 a$ and b, S. armatus.
summer of 1964 on the sand surface of the filter beds. Scenedesmus arouatus Lemm, (Figure 51 (a)).

The coenobia consisted of $4-8-16$ cells which were oval or slightly curved in shape. The cells were arranged in two rows with spaces between the imer cells of the coenobium, The cells were $7-12 \mu$ long and 3-6 wide. This species was comon on the sand surfsee especially during the sumer months.

Scenedesmis neegly Breb. (Figuxe 51 (4)).
of the coenobia consisted of 2 or 4 oells which formed an alternating series. Fach cell was pear shaped with the ends rounded or with small papillae or with a single cuxved spine 5-Sn long. Soveral specimens were recorded on the sand surface of bed 12 during September 1964. It was not recorded on any other occasions. Scenedesims ? peosensis therkovich, (Figuxe 51 (3).)
chat The colls observed were either solitary or in pairs. They were broadly oval in shape sometimes being slightly naxrow towards one end. Adjacent cells of coenobis were only in contant for about $\frac{1}{2}-\frac{3}{3}$ their lencth. Bech cell had, at its pole, 1 or 2 strong spines. There wes no consistency between different cells in the number of spines per cell, the cells were 12-10p long and 5-7a wide. This species occursed on one occasion during September 1965 from the sand surface of finter bed 12. It was in a mixed population with S. acutus and. S. quadricaude. Svale (1967) found cells similar to S. pecsonsis in a clone culture isolated as Chodatella quadrisetg. There were also 4 cell coonobis in the cultuxe which resembled S. quadricoudg. It is
possible that the cells recorded from the filter beds and tentatively identified as S , neosensis represented a case of pleomorphism being merely indepondent stages of S , quadricouda.
Scenedesmus gcutifornis Schroeder. (Figure 51 (5)).
The coenobia consisted of $2-4$ broad oval to spindle shaped cells in a single linear row. Each cell had a straight rib dom either side. The cells were $9-14 \mu$ long and $3-4.5 \mu$ wide. Coenobia of this species were recorded occasionally throughout the summer monthe in each of the filter beds.

Scenedeamus sumatus Chod, (1iguxe 51 (6)).
The coenobia were of $2-4$ cylindrical to spindle shaped cells, $8-14 \mu \mathrm{plong}$ and 3 - 6μ wide, in a linear series. The ond cells of the coenobia bore a spine $\frac{2}{3}$ the length of the cell at osch pole. There was a rib extending down the side of esch cell. These ribs were not alvays complete. Coenobia of this speoies vore found in cultured material colleoted from the supernatant water of filter bed mumber 12 on September 13th, 1963.

Scenedeshus guadricanda (Iurp.) Brob. (Figuxe 52 (1)).
The coenobia $2-4-8$ cells in a linear row, The cells were oval to cylindrical with rounded ends. The outer cells of the coenobium had one curved spine at each pole. The cells were $8-20 \mu$ long and $2.5-7 \mu$ wide. Both the size of the cells and the length of their spines was variable. This was a coumon speoies occurring frequently throughout the period in all of the locstions studied.

Althouch there are several varieties of S. quadricauda desoribed,

Figure 52. $1 a$, Scenedesmus quadricauda. $1 b$, S.quadricauda var. longispina. Ic, S. quadricauda var. quadrispina.
1d, S. quadricauda var. westii fo hoterospinosus. le, S. quadricauda var. biornatus. 2, S. bicaudatus.
3 a and b , S . intermedius var. bicaudatus. $3 \mathrm{c}, \mathrm{S}$. intermedius var. balatonicus.
many of these are thought to be local races which have developed due to varying physiological conditions and the inherent variability of the cells (Korshikov 1953). Some of the moxe distinctive varieties are described below. S. quadriognde var, mexinus $W_{\text {. et }}$ G.S. West.
:ud The coenobia were 4 celled. The cells were larger than in the main species being $20-29 \mu$ long and $8-11 \mu$ wide with spines almost as long as the cell. This variety occasionally occurred in the reservoir water mostly during the summer months.
S. quadricauda var, longisping (Chod) G.M. Smith (Figure 52 (1).

The coenobia consisted of 4 cells which were slightly smaller than those of the main species and were at least $2 \frac{1}{7}$ times as long as they were wide. The spines were much longer than in the main species. Coenobia occurred occasionally on the sand surface. S. quadricauda var. quadrispina (Chod) G.M. Smith (Figure 52 (1)).

The coenobie were mostly 4 but occasionally 2 celled. These cells were oval and smaller than the main species being only $7-8 \mu$ long and $2.5-3.5 \mu$ wide. The spines on the outer cells were much finer and shorter ($\frac{1}{6}-\frac{1}{3}$ the lensth of the cell) than in the main species. This variety occurred occasionally in the filter beds during the spring of 1965.
S. quadricauda var. Westii f. heterospinosus (Hortob.) Wherkovich Figuxe 52 (1)).

Only 8 celled coenobis were recorded, the cells being $8-10 \mu$ long and $3-4 \mu$ wide. One pair of diagonally opposite corners on the end
cells bore long spines 4.5 -8y long whilst the other pair bore short spines 1.5-3p long. This speoies was recorded on one occasion, Ootober lst, 1964, from the sand surfece of filter bed No. 12. S. quadriconda var. biomatus Kiss (Pisure 52 (1)).

Thi The coenobia were all of 4 longish eliptioal celle $9-11 \mu$ Ions and $3.5-5 p$ wide in a linear sories. The outside cells had a long spine (? cells either had a shorter finer spine at their poles or hed rounded smooth ends. This variety was recorded on two ocossions, Oetober lat and 8 th, 1964, from the sand surface of filter bed No. 12. Scenedesmas biogudatug (Hansc.) Chod. (Fisure 52 (2)).

The coonobia conaisted of $2-4$ oval cells $7-9 \mu$ long and $2-3 \mu$ wide. The poles of the cells were regularly rounded. The outside cells had, on one pair of diagonally opposite poles, one curved spine $\frac{3-3}{3}$ the length of the cell. The other pole, together with the poles of the inner cells, was smooth. This speoies was not conmon ocourwing ocossionally in the reservoir water during the spring and summer months. S. bicaudatus var. brevicaudatus Hortob.

4 and occasionally 2 celled coenobia ocourred. The colls were $7-8 \mu$ long and $3.5-4 \mu$ wide. This variety vas similar to the main species but the spines were much shorter and finter being loss than the length of the cell. Occasional coenobia were recorded in the reservoir and filler bed supernatant water during the sumer months. Scemedesmus intermodius vax, bicaudatus Hortob. (Pigure 52 (3)).

The coenobia consisted of 4 loosely attached oval to elipticel
cells. These cells were attached for less than $\frac{1}{8}$ the length of their adjacent walle. The colles were $5-6 \mathrm{ga}$ long and $2,5-3.5 \mu$ wide. The diagonally opposite pair of poles of the end cells hed one spine弯-1 times the length of the coll. The other pair of poles, together with the poles of the inner cells, were emooth. Coenobis of this species wore recorded on July 3rd 1964 on the sand surface of filter bed 12.

S, intemeilus var, balatonicus Hortob. (Figure 52 (3)).
The coonobia were of 4 altermating oval cells $7-8 \mu$ long and $3-4 \mu$ wide. Fach pole of the outside cells had one spine about $\frac{3}{3}-\frac{1}{2}$ the length of the cell. One pair of diagonally opposite poles of the two inside cells also bore a spine. Coenobia of this variety were recorded in May 1965 from the sand surface of filter bed 30. Scenedesmus miorosping Chod. (Figure 53 (1)).

The coenobia were composed of $4-8$ cylindrical shaped cells, 4.5-6y long and 1.5-2.5p wide, in a linear series. The poles of the outside cells each had one fine spine about h- the length of the cell. Coenobia of this speoies vere recorded from a mixed culture of filter bed algese colleoted from-filter bed mmber 12 on June 18 th, 1965. Sconodesmus spinosus Chod. (Pisure 53 (2)).

The coenobia were of $2-4$ cells in a linear series. The cells were $17-204$ long and 4 -Ga wide and were cylindrioal in shape. Tach pole of the outside cells bore a spine $\frac{1}{3}-\frac{3}{4}$ the length of the cell. The outside cells also bore $1-3$ spines near the centre of the outside edge and at right angles to the cell. These latter spines were $\frac{1}{2}-\frac{1}{2}$

Figure 53. 1, Senedosmus microspina, $2 \mathrm{a}, \mathrm{S}$. spinosus. $2 b$, S. spinosus var. bicaudatus. $2 c, S_{0}$ spinosus var. brovisauda. $3 a$ and b, S_{0} spicatus, 4, So longispina var. - asymmotricus fo crassicaudatus.
the length of the cell. The inner cells were either free of spines or bore one short spine at their poles. This species was recorded. from the same culture as S . microspina. Although the morphology of the cells recorded was the same as those described by Uherkovich (1966) they were of much larger size, $17-20 \mu$ long and $4-6 \mu$ wide as compared with $5.5-12 \mu$ long and $2-4.5 \mu$ wide. It is possible that the incressed size was due to exceptionally favourable growth conditions in the culture.

Scenedesmus spicatus W. et G.S. West. (Figure 53 (3)).
The coenobia consisted of $2-4-8$ oval to eliptical cells 5-8p long and 2.5-5 p wide in a linear series. The outside cells bore a fine, short $\left(1 / 6-\frac{1}{3}\right.$ the length of the cell) spine at each pole and two spines on the lateral wall of similar length. The inner cells were without spines. Coenobis of this species were recorded on May 29th, 1964, from the sand surface of filter bed number 32.

Treubaria setigera Bermard (Figure 54).
The cells were 3 and sometimes 4 angled. The angles were rounded and extending from each was a long delicately tapering spine thickened. at the base. The cells were pyramidal or cruciform in shape with the surfaces between the angles concave. There appeared to be one or more chromatophores and at least one pyrenoid in each cell. The cells were $6-8 \mu$ wide and the spines 17-20ja long. This species was observed during the late summer periods in the reservoir water.

Figure 54. Treubaria setigera.

XATMHOPHCTA

Tritbonema Debres \& Solier.
This alga often ocoursed in laxge numbers in the inflow water to the slow sand filter beds. A large percentage of these algae was removed by the rotary miarostrainers and those which were not did not seen to pley an important part in the eoology of the filter beds. As the populations often consisted of a nixture of species they were, for convenience, grotuped under the specific name of Th bombroinum (Ag。) Debr. \& Sol. This species and its varieties has, more recently, been sub-aividod into soveral distinot gyocies, (Ruber-Pestalozzi, 1962). Two of these species vere commonly present; To Viride Pasch. cells
 cel.1s $6-80 \mathrm{br}$. and about $3-4$ times as long as broad. The former species was the moxe cormon.

BACTTTARTOPEYYA

Crolotella pseudostelligers Fustedt (Figure 56).
Cells were $6-10 \mu$ in diameter and $3-7.5 \mu$ deep. Spines were present but, oving to thein small size, could only be observed with difficulty and their arrangement could not be determined. The markings on the valve wore varisble. The striae around the margin were between 1 and 3 p long. The contral area was approximately circular and bore an inner ring of $5-8$ striae (Figure 56). Cells of this species were found on the sand surface of each of the filter beds during April 1965, but not in large numbers. Owing to the small size

Figure 55.
Rhodomonas minuta

Figure 56. Electron micrograph of Cyclotella pseudostelligera. Cells 6 microns in diameter.
of the cells and the fact that the cell contents were often indistinct after preservation, C. pseudostelligera may have occurred more often than they were observed during normal routine counting.

CRYPTOPHYYA

Rhodomonas minuta Skuja (Figume 55).
The cells were pyriform and were distinctly curved in the side view (Figure 55). They were $8-15 \mu$ long and $4-7 \mu$ wide. There was one greenish brown parietal chromatophore which ended either at or just above a shining globule, possibly volutin (Skuja 1948), at the base. There was a prominent pyrenoid sheathed with starch. This starch sheath appeared to be bipartite (see Iund, 1962). Most of the cells observed had a curved acute base. The range in size of the cells recorded covers both the type and the variety namoplanctica (size $8-9 \mu$ long and 5-6 wide). All sizes of cell occurred commonly in mixed populations and often in large numbers (see Chapter VI) in the reservoir throughout the period of study. As stated by Irund (1962), it may be open to doubt whether R_{o} minuta should be separated into two varieties.

Iist of Algal Specieg.

A complete list of species recorded from all habitats studied has been prepared and is given below. The frequency of occurrence of each species is indicated by one of the following symbols:$a=$ abundant,$c=$ compon, $0=$ occasional, $x=$ rare.
CHLOROPHYTA
Volvocales
Spermatozopsis exsultans Korshikov -
Carteria quadrangulata Pascher c
Chlamydomonas spp. a
Chlorogonium elongatum (Dangeard) France r
Gonium pectorale Mull. 0
Pandorina morum (frill.) Bory c
Budorina elegans Fhr. c
Volvox aureus Bhr. c
Chlorococcales
Pediastrum boryanum (Iurp.) Menegh c
P. clathratum Lemm, c
P. duplex Meyen c
P. tetres (Hhr 。) Ralfs -
Chlorella sp. 0
Micractinium pusillum Fres. c
Oocystis elliptica West a
0. lacustris 0
0. crassa Wittr. c
0. solitaria Wittr. c
Chodatella subsala Lemm. 0
Tetraedron minimum (A. Br.) Hansg. c
T. caudatum (Corda) Hansg. 0
T. regulare Kitz. c
Actinastrum hantzschil Iagorh. 0
Dietyosphaerium pulohellum Wood 0
Cruoigenia tetrapedia (Kirch.) W. et E.S. West 0
Ankistrodesmus feloatus (Coride) Relfs a
A. pseudomirabilis Korshikov 0
Tetrastrum staurogoniaeforme (Schroed.) Ierm. c
T. heterocanthum (Mordst.) Chod, 0
T. hastiforum (Arnolai) Korshilkov 2
T. Elabrum (Roll) Ahlstr. et Tiff. -
Sconodosmus acutus Meyen a
S. acutus f. tetradesmiformis (Voloz) Uherk. 5
S. acutus f. alternans Hortob. σ
S. acutus $£_{0}$ semielliptious Therk, 2
S. acuminatus (Lagerh.) Chod. c
(12. S. acuminatus f. maximus Therk. 0
S. acminetus P . tortuosus (Slouja) Wherk. ¥
S. ecomis (Ralls) Chod. a
S. ecomis var. disciformis Chod. 0
S. ovalalternans Chod. -
S. arcuatus Lemm. -
S. naegli: Brob r
S. ? peesensis Therk. x
S. acutifozmis Sohroeder 0
S. arnatus Chod. 2
S. quadricauda (Turp.) Breb. c
S. quadricauda var. maxima W. et E.S. WestS. quadricauda var. Iongispina (Chod.) E.M. Smith0
S. quadricauda var. quadrispina (Chod.) E.M. Smith 0
S. quadricauda var. westuf. heterospinosus (Hortob) r
S. quadricauda var. biomatus Kiss r
S. bicaudatus (Hansg.) Chod. 0
S. bicaudatus var. brevicaudatus Hortob 0
S. intermedius var. bicaudatus 2
S. intermedius var. bslatonicus Hortob r
S. miorospina Chod. \boldsymbol{r}
S. spinosus Chod. r
S. spicatus W. et E.S. West r
Coelastrum microporum Nag. c
Ulotrichales
Ulothrix zonata (Web, et Mohr) Kutz. 0
U. tenuissima Kitz。 a
U. tenerrima a
Geminella sp. r
Cladophose sp. a
Cheetophorales
Chsetophora sp. r
Stigeoclonium temue Kutz. 0
S. ? falklandicum Butcher c
 r
UIvella sp. c
Thetorit sutpord Ada
Conjugales
Spirogyre varians (Hass.) Kutz. x
Closterium moniliferum Thr. 0
C. gracile Breb. 0
Cosmarium sp. -
Arthrodesmis incus (Breb.) Hass. r
Staurastrum sp. -
BACITTARIOPHYTA
Centrales
Melosira varians C.A. Ag. a
M. granulata (Mr.) Ralfs 0
M. granulata v. angustissima 0
Cyclotella meneghiniana, Kutz 0
C. compta (Mhr.) Kutz. -
C. pseudostelligera Hustedt 0
Stephenodiscus astraea (Fhr.) Grun c
S. astraes vo intermedia Fricke a
S. astraea v_{0} minutula (Kutz。) Gxunow c
S. astraea ? v. incertus Cleve. 0
S. hantzschii Grun. a
Pennales
Mabellaria fenestrata (Iyngb.) Kutz o
Meridion circulare (Grev.) Ag. -
Diatoma vulgare Ag. c
D. elongatum Ag. -
Fragilaria crotonensis Kitton a
F. capucina Desmazieres c
Asterionalle formosa Hass a
Synedra ulna (Nitzsch) Thr. c
S. acus Kutz. c
Achnanthes minutissima Kutz. a
A. affinis Grun. -
Achnanthes sp. r
Cocconeis placentula Thr. c
Thoicosphenia curvata Grun. c
Navicula cryptocephala Kutz. 0
N. vimidis Kutz. 0
N. radiosa Kutz. r
N. anglica Ralfs r
II. hasta Pantocsek r
Pinnularia microstauron Thr. Cl. c
P. microstauron V. Brebisonii (Kutz.) Hustedt 0
P. vixidis (Nitzsch.) Ehr. 0
P. debesi Husteãt 0
P. divergens W. Sm. 0
Stauroneis sp. 0
Gyposigna ap. r
Gomphonema parvulum Fhr. 0
Amphora ovalis Kutz. c
Cymbella turgida (Greg.) C1. c
C. ventricosa Kutz. a
C. lanceolata Fhr a
C. prostrata Berk. 。
C. oistula Hemp -
C. subaequalis Grun. et Van Heurck. -
C. caespitosa Kutz. c
Hantzschia amphioxys (Thr.) Grun. -
Nitzschia tryblionella Hantz -
N. dissipata (Kutz.) Grun. \circ
N. palea (Kutz.) W. Sm. c
Nr. sigmoidea (Thr.) V. Sm. -
IV. acicularis W. Sm. a
N. Iinearis W. Sm. a
N. baccata -
IT. dubia W. Sm. r
I. recta Hantzsch. o
Cymatoploura solea (Breb.) W. Sm. c
C. elliptica (Breb.) V. Sm. -
Surirella turgida W. Sm. \circ
S. ovata Kutz. a
S. robusta Fh r. 0
S. ovalis Breb. o
Campylodiscus noricul v. hibemica (Hhr.) Grun. r
CHRYSOPMYTA

Synura ulvella Fhr. -
Dinobryon divergens Imhob. r
Mallomonas sp. r
 0
XANITHOPHYTA
Tribonema viride Pasch. c
T. vulgare Pasch. 0
EUGTHTOPRHYTA
Fuglena viridis Fhr. 0
Fuglena sp. 0
Phacus sp. 0
bysurtathe
CEYPMOPHYTA
Cryptomonas ovata Thr. c
C. curvata Ther. 0
Rhodomonas minuta Skuja a
PYRROPHYYA
Gymnodinium sp. r
Peridinium sp. r
2. Ceratium hirundinella O.F.M, 0

CYANOYHYTA
Merismopedis glauca (Thr.) Mag. 0
M. elegrns A. Br. 0
Microoystis aeruginosa Kutz. 0
M. flos-aquae (Wittr.) Kirch. 0
Oscillatoria 1imosa Ag. 0
0. tomuis Ag. 0
O. rubescens D.C. 0
Spirulina major Kutz. r
Iyngbya sp. 0
L. versicola c
Anabaena flos-aquae (Iyngb.) Breb. 0
A. circinalis (Kutz.) Hansg. 0
Aphanizomenon flos-aquae (J*) Ralfs 0
Phomidium sp. 0

XIII. Summary and ConcIusions.

1. During the period August 1963 to June 1966 an investigation of the algal flora of slow sand filter beds was carried out. This investigation included more than two years field observations (August, 1963 to December, 1965) of the algal flora in the filter beds.
2. A. Three groups of algae were studied: (i) Planktonic, (ii) Epipelic and (iii) Attached bottom living. B. Several aspects of the ecology of the algae were investigated. The major chemical inorganic nutrients were measured and meteorological data was obtained from Kew Observatory. All of these factors were analysed with respect to the environmental conditions in the filter beds.
3. The algal flora of a filter bed can be divided into two categories:
(i) Those which are present in large numbers simply because of accumblation. These species, planktonic in oriein, were derived from large populations in the supply reservoix. They passed onto the filter beds in large numbers and accumulated but did not increase in numbers to any extent by active division. Algae in this category include Stephanodiscus hantzschit, S. astraga, Asterionella formosa and Fragilaria crotonensis.
(ii) The second category includes those species which entered the filter beds, often in small mumbers, and then produced large populations by active division. Algae in this category include Chamydomonas sp., Scenedesmus spp., Melosira Varians, Nitzschia linearis and Cymbella spp.
4. Certein broad conclusions can be drem concerning the periodicity of the algae in the filter beds.
(i) Certain species, which increased by accumulation, had an amnual periodicity which was a close reflection of the reservoir populations, e.g. Stephanodiscus astraea and Asterionella formosa.
(ii) The species which inoreased greatly by active division in the filter bed supernatant water often had their growth initiated by unusual conditions such as the treatment of the water with chemicals, e.g. chlorine and copper sulphate.
(iii) The epipelic populations were dominated by diatoms throughout most of the year. On occasions when chemical treatments were applied to the water, other algae became co-dominant, e.g. Scenedesmus spp. (iv) The attached algal flora was dominated by pennate diatoms for most of the year. During the spring filamentous became dominant. Species such as Scenedesmus spp. became co-dominent after periods of chemical treatment. The highest rates of colonization of the glass slides were usually shown by the pennate diatoms. In January and February, however, filamentous algae showed a higher rate of colonization.
5. The distribution of the algae both in the supernatant water and on the sand surface was also investigated. During oelm periods the algae in the supomatant vater were found to form stratified populations often with minimum concentrations between $3^{\prime}-4^{\prime}$ ($91.5-122 \mathrm{cms}$.) possibly because the inflow water did not mix immediately with the water already there. Motile forms maintained themselves near the surface in a position most favourable to photosynthesis. When present in large numbers, however, they often shaded the sand surfaco populations and
may have caused light limitation. The sand surfece populations were distributed socording to their orisin. Planktonic species which had settled out occurred in maximun numbers near to the centre of the bed. The distribution of the filamentous species was variable but often depended upon wind induced current directions. The unattached bottom living diatoms often avoided areas densely populated by filamentous forms, possibly to avoid shading and thus light limitation and also because of nutrient competition.
6. During the period of study certain experiments were carried out to clarify some of the ecological data. They were as follows:(i) The flora of an 800 L in-situ enclosed polythene bag, filled with filitered filter bed supernatant water and seeded with filter bed algae, was compared with that of the sand surface of a filter bed at the same timo. The flora of the sand surface, which was probably not subject to nutrient limitation, was diatom dominated, whoreas in the polythene bag Chlorophycese assumed dominance after silicon beoame limiting. It was possible that there was some interaction between certain species causing inhibition. It is believed that this occurred between Mitzschia palea and Chlorella gy. In addition, it is possible that seli-stimulation and inhibition ocoumrod, e.g. in Soenedogmus (Saunders, 1957).
(ii) a. The toxicity of copper sulphate to laboratory oultures of Astorionella fornosa, Pracilaria crotonensis and Soenedesmus dimorphus was tested. The growth of the two distoms vas severely impaired at concentrations above $0.1 \mathrm{mc} / \mathrm{L}$ copper whereas that of Soonedesmus dimornhus
was only sliehtly reduced. Copper sulphate treatment of the reservoir and filter bed water gave finsl concentrations of $0.19 \mathrm{mg} / \mathrm{L}$ copper, enough to virtually prevent these two diatoms from increasing. (ii) b. Growth rate experiments were carried out on oultuxed populations of Stephonodiscus satraee exposed in gleas bottles in filter beds throughout one year. A three phase cycle was observed dependent upon light and temperature. The timing of the growth rate cycles corresponded to observed incroases and deoroases in the average coll dimotors of the natural populations.
(iii) An experiment to determine the penetration of the algae into the sand of a slow sand filter bed wes camped out. Live cells of most of the species of algae recorded in the inflow water were found below a depth of 7^{n} (2.50ms.). At this depth many celle would be left behind after a filter bed was cleaned to act as an innoculum when the bed was filled for use.
7. Observations wore made on the cell aizes of Stephanodiscus astraea and Asterionella formosa, An annual increase and deorease in size of frustules of these species was observed. The variation in the ormanentation and dize of the frustules of S, astraes was also investigated, Considerable veriation within each population was discovered, oovering all of the namod varieties of Stephenodiscug with the exception of S , sstrgea v . ningarge. It is possible that some of the differences in ormementation ascribed to difforent varieties is Just variation within one population.

Appendix 1.

The Construction and operation of the submersible light meters.

Dac The rate of photosynthesis and hence the potential growth rate of algae is dependent upon the amount and quality of the available light. Data for solar radiation incident upon the water surface was obtained from the Meteorological Office Kew Observatory (see Chapter III). To measure the percentage of this incident radiation reaching the sand surface of the filter beds a submersible light meter was constructed. The design of Atkins et al. (1938) was used for the construction of the submersible light meters, but with brass and not gun metal as the housing material. A matched pair of Sangamo Weston model 127 electroselenium cells were used as light sensors. The current produced was messured on a 500 microampere galvonometer of low effective intermal resistance. The cells and the meter wore wired into an electrical circuit as shown in Figure 57. The circuit was arranged so that the cells were back to book (i.e. the +re of one was connected to the -ve of the other) so that, with both of them in circuit, the difference between the surface and submerged cells could be read directly on the galvonometer.

For the purpose of this study it was sufficient to be able to measure the undervater illumination as a percentage of the surface illumination at the same spectral band. It was thus only necessary to standardise the two cells relative to each other and not to calibrate them absolutely. The cells were standardised by placing them side by side on the shore, filling the filter wells with water, placing
diffuser glasses in each holder and then balancing the two cells by means of the potentiometer to give a zero reading on the galvonometer. Care was taken to ensure that both cells were receiving the same amounts of light during the procedure. The cells were standardised before taking measurements at each of the wavebands studied.

Measuremonts were made, after standardisation, by placing one cell on the side and lowering the other cell into the filter bed to the required depth. The cell at the suxface was then switched on to glve the total incident radiation reading. Both cells were then switched on to give the difference between the surface and the subinerged. illumination. The percentage of the surface illumination at any given depth could thus be determined. Readings were taken at several wavebands by using coloured glass filters of known absorption (see Chapter III). Care was taken, when using filters, to have the filter well of both cells full of water before inserting the filter glass so as not to trap any air bubbles between the filters and the elass of the cell holder. The diffuser glass was always placed on top of the filters. These precautions minimised light losses through the layers of glass and also by reflection at the glass surface. Care was also taken to ensure that both the shore and the submerged cells remained horizontal whilst readings were being taken.

Figure 57. The circuit diagram for the wiring of the submersible light meters.

Statistical analyses.

In planning the sampling programe for the algae in the filter beds a preliminary series of collections were made and the results tested. statistically. Several arbitrary sampling stations (between 6-10) were decided upon and all samples from the supernatant water and the unattached algae of the sand surface were subsequently taken from, or near to, these stations. The traditional belief of Metropolitan Water Board. Blologists has been that the algal populations on the sand. surface of a filter bed are homogeneous. This belief was also stated by Brook (1954). As the earliest samples colleoted, however, suggested. that this thesis is not always true for all of the species, present tests were made, species by species, and by ecological groups, as to its general validity. For the purpose of this study representative samples of the filter bed algae were required so the randommess of distribution of the algee was tested.

For the first series of samples, collected on July 28 th, 1963 , the filter bed was divided into six plots, each plot consisting of two samples. The variance within each plot and betweon separate plots of the various algae present was then determined using Snedecor's F test (Snedecor, 1940). The results are given in table 11. Included in the table are the degrees of freedom and the variance ratio, F, and conclusions at a significance level $p=0.05$. From this analysis it is clear that the planktonic species were homogeneously distributed both in the supernatant water and on the sand surfece. The epipelic algae

Table ll. The variance ratio, F, of individual species within samples and between groups of samples collected on July 28 th 1963.

Species	Sample	nl	n2	F	$\begin{gathered} \text { Conclusion (at } \mathrm{p}= \\ 0.05 \text {) } \end{gathered}$
Oocystis spp.	Supernatant water	6	5	2.18	Homogeneous
	Sand surface	6	5	3.14	
Rhodomonas minuta	Supernatant water	6	5	3.81	.
	Sand surface	6	5	3.42	-
Stephanodiscus astraea	Supernatant water	6	5	2.16	.
	Sand surface	6	5	2.73	.
Melosira varians	.	6	5	11.63	Several populations
Nitzschia palea	-	6	5	2.22	Homogeneous
N. linearis	.	6	5	2.72	-
Cymbella spp.		6	5	3.66	-
Lyngbya sp.	.	6	5	30.60	Several populations

were also homogeneously distributed but the filamentous algae, such as Melosina and Iynsbya, wexe present as several distinct populations. A second series of samples from the sand surface was collected on 17th September, 1963. The filter bed was again sub-divided but this time into five plots, each plot consisting of two samples. With this series of samples one half of each sample was counted separately and the other half from each of the ten samples shaken together in a 5 L flask. Ten aliquots were then removed for counting. The variation of these aliquots from the original individual samples was then determined. The variance ratio, F, was again determined and the results are given in table 12, togother with conclusions at a significance lovel of $p=0.05$. The planktonic algae on the sand surface were homogeneously distributed but both the epipelic and the filamentous algae came from several distinct populations. A possible explanation for the epipelic population being homogeneous in the first collection and not in the second is that the first sexies were colleoted from a filter bed which had been in operation for a much longer time and the populations were much larger. Instead of forming discreet patches the populations had grown to such an extent that they overlapped each other. The result was one large population formed by the smaller ones coalescing. The aliquots taken after shalcing together one set of halves of the samples were not significantly different from the individual sample means for each of the population types.

To obtain a representative sample of the algae on the sand surface, therefore, one could not just take one sample from one station. To

Table 12. The variance ratio, F, of each ecological group within and between samples collected on September 17 th 1963 and between aliquots from a bulked somple and the original samples.

Ecological group	Sample	mi	n2	F	Conelusion
Planktonic	sand surface	5	4	1.67	Homogeneous
Epipelic	-	4	5	8.14	Several populations
Filamentous	-	4	5	5.14	*
Planktonic	Aliquots	14	1	34.87	Homogeneous
Epipelic	-	14	1	4.51	**
Filamentous	-	N4	1	51.39	-

obtain such a representative sample collections were made from at least ton stations axound the iflter bed. These samples were then shaken together in a 5L. flask and an sliquot removed as the representative sample for counting.

Reforence Kist

Aloem A.A. (1950). The diatom community inhabiting the mud-flate at Mitstable. Mow Paytol., 42, 174-180.

American Public Health Association (1960). Standared Mothods for the Themination of Mater and Wastevater. 11th oc. Tfew York.

Strici-Tand, J. $D_{0} H_{0}(1963)$. Further measurements of primary production using a large volume plastic sphere. Limnol. Oceanogr. 8, 166-183. Attins, V. R.G. $(1926-7)$. Seesonal chenges in the silice content of natural waters in relation to the phytoplankton. J.Mar.Biol. Ass. U.K. 14, 89-99.

Atking, M.R.Ge, Clarke, G.I.e, Pottorgson, 耳e, Poole, सo 耳e, Utterback C.I.e and Angstriom, A. (2938). Nessumemont of subnarine daylight. J. Cons. Int. MxpIor. Mer., 13, 37-57.

Bellinger, $\mathcal{B}_{0} G_{0}$ (1968). The removal of algne by microstraining. Proc.Soc, Mat. Treatm. \& Tream. 17, 60-66.

Beschers. Ro (1919). Observations on Buclena deses.Ann.Bot., 33, 93-108. Bristol-Roech, Bom. (1926). On the melation of certain soil algae to some soluble organic compounds. Amm. Bot., 40, 149-201.

Brook, A.J. (1952). Some observations on the rooctng of protozos on Presh water algae. Hydrobiologia 4, 281-293.

Brook, A.J. (1954). The bottom-livine algal Iloma of slow sand filter beds of waterworks. Hydrobiologia 6, 333-351.

Brook. A.J. (1955). The attached algel flore of slow sand filter beds of watemorics, Hydrobiologia 7, 103-117.

Burlev, J.S. (1964). Algal Gulture. From laboratory to pilot plant. Carnegie Tnst. Weshington Publ. $600,357 \mathrm{pp}$.

Burnan, K. P., \& Ievin, Jo (1960). Microbiologioal and operationsl investigntion of relative effocts of skimming and in situ sand washing on two experimental slow sand filters. J.Instn, Wat. Mngrs. 14, 1-12.

Butcher, BiOH_{6} (2931). An apparatus for stuaying the geowth of epiphytic algae with special reference to the River Pees. Trans. Forthem Nat. Union, 1, 1-15.

Butchor, Rul. (1932). Studies in the ecology of rivera. II. The microflore of rivers with special reforence to the alge on the river bed. Ann.Bot. 46, 813-861.

Butoher, RoH. (1940). Stuatios in the ecology of rivon algne IV. Observations on the growth and distribution of the sessile algee in the River ITul1, Yorke. J. Mool. 28, 210-223.

Butchers H.W. (1946). Studies in the ecology of rivers, VI. The algal Growth in cortain highly caloaroous streans. J. Hocol. 23, 268-283.
Chus. S. Pa (1942). The influence of the nineral compogition of the medium on the erouth of planktonic alcne I. liothods and enlture medis. J.ECOL. 30, 284-325.

Clove-DuIor, A, (1951). Die Diatomeen Von Schweedon und Finland 12, 1-163.
Cooper, Iu I. $_{0}$ (1938). Redefinition of the anomoly of the nitratephosphate ratio. J.mar,biol.Ass. U. I. 23, 179.
Domoralla, BoPo, Bred, E.Bo? and Petorson, VoH. (1926). Seasonal. variations in tho nitrate and amonia content of Iake waters. J. Amer. W.WLs.Ass. 15, 369-395.

Eaton, J.V. \& Noss, Bo (1966). The estimation of numbers and piement content in epipelic algal populations. Ismmol. Ocesogr. 11, 584-595. Eamondson, W.T. (1956). The relation of photosynthesis by phytoplankton to light in lakes. Eoology 31, 161-174.

Eritsch, FoEo (2906). Problems in aquatio biology with special reference to the study of algal periodioity. New Phytol. 5, 149-169.

Exitsche FoIg (1931). Some aspects of the ecology of freshwater algae. J. Feol. 19, 233-272.

Fritsch, F. . . . (1935). The structure and reproduction of the algae Vol.1. C.U.P., 791pp.

Exitsch, ‥E. \& Rich, Ro (1913). A four year observation of a fresh water pond (Barton's Pool) near Harpenden. Ann.Biol. Lacust. 6, 33-115. Goldman, CoRe, Mason, D.To, and Wood, B.J.Be (1963). Light injury and inhibition in Antarctic freshwater phytoplankton. Limnol.0ceanogr. 8, 313-322.

Greenshields, Po, \& Ridrey, J.E. (2957). Some researches on the control of mussels in water pipes. J.Instn.Vat. Engrs. 11, 300-306.

Heron, J. (2961). The seasonal variation of phosphate, silioate and nitrate in waters of the Inglish Lake District. Limmol.Oceanogr. 6, 338-346.
Hodgetts, W. J. (1921-2). A study of some of the factors controlling the periodicity of fresh water algae in nature. New Fhytol. 20,21, 150-164; 195-227; 15-33.

Holsinger, E.C.T. (1955). The distribution and periodicity of the phytoplankton of three Celon lakes. Hydrobiologia 1, 25-35.

Hoxtobaryi, T. (1959). Algen aus den Fischteiohen von Buzsak I. Scenedesmas-Arten. Hove Hedmigia, 1, 41-64.
Hortobgeyi. To (1960a). Algen aus den Fischteiohen von Buzsak II. Scenedesums-Arten. Nova Heavieia, 1, 345-381.

Hortobasyi, T. (1960 b). Algen ans den Pischteichen von Buzsak III. Scenedesmus-Arten. Nova Hedwigia, 2, 173-190.

Hopkins, P.J. (1963). A study of the diatoms of the Ouse estuary, Sussex. J.mar.biol.Ass, U.K. 43, 653-663.
Howland, 工. (1931). A four year investigation of a Hortfordshire pond. New Phytol. 30, 221-265.

Hustedt, Fo (1930). Rabenhorsts Kryptogamentlora 7, Kieselalgon 1, Leipsig.

Hutchinson, G.E. (1957). A treatise on limology.1. Geography, Chemistry and Physics. New York. 1015pp.

Hutchinson, G.E. (1967). A treatise on limnology. 2. Biology.
Jenkin, Pol. (2937). Oxygen production by the diatom Coscinodiscus excentricus in relation to sub-marine illumination in the Thelish Chamel. J.mar.biol.Ass.U.K. 22, 302-343.

Johannes, RoEe (1964). Uptake and release of dissolved organic phosphorus by representatives of a coastal marine ecosystem, Lsmnol.Oceanogr. 2, 224-234.

Joreonsen. BoGe (1957). Diatom poriodicity and silica assimilation. Dansk. Bot.Ark. 18, 6-54.

Kitto, V.H. (1938). A contribution to water analysis.III. Comparison of distillation and direct methods of estimating free and albuminoid
amonis in waters. Analyst. 63, 172-175.
Korshikov, A (2913). Spematozopsis exsultans novegen. et sp.aus der Gruppe der Volvocales. Ber.dtsch.bot.Ges. 31, 174-183.

Korahikove. O.A. (2953). Viznachnike gromovodnich vodorstei Ukrains'koi R.S.R. 5, Pldcies protokokovi (Protococcineae), Kiev.

Kumetzor, S.Ien \& Karsinkin, G.S. (2931). Direot method for the quantitative study of becteris in water, and some consideration on the causes which produce a zone of oxygen minimum in Lake Glubokoye. Sbl. Bakt. II, 83, 269-174.

Iaval, Me (1952). A method of washing filter sand. J.Instn。Wat. Ingrs. 6. 155.

Lefeyse, H_{0} (1950). Compatibilities et antagonisms ontre algues d'eau douce dans les collections dieau naturelles. Proc.Int,Assoc. Tinn. 11, 224-229.

Lind, BoM. (1938). Studies in the periodicity of the algae in Beauchief ponds, Sheffield. J. Bool. 26, 257-274.

Loverrove, To (1960). An imgroved form of sedimentation apparatus for use with an inverted microscope. J.du Conseil int. Explor. Mer, 25, 279-284.

Tund, J. $\mathrm{H}_{0} \mathrm{G}_{0}$ (1942). The marginal algee of certain ponds, with special reference to the bottom deposits. J.Beol. 30, 245-283.

Iumd. J. W.G. (1946). Observations on soil algae I. The ecology size and taxonomy of British soil diatoms. New. Phytol. 45, 196-219.

Iund. JoW.G. (1949). Studies on Asterionolla fomosa Hass.I. The origin and nature of the cells produoing the seasonal maxima. J. Wcol. 37, 389419.

Iund, J.V.G. (1962). A rarely recorded but very common British alga, Phodomonas minuta Skuja. Be.phycol. Bull. 2, 133-139.
Iand, J.V.G. (2964). Peimary production and periodicity of the phytoplankton. Verh. int.Ver.Wirmol. 25, 37-56.

Irund, J.V.G. (1965). The ecology of the freshwater phytoplankton. Biol. Rev. 40, 231-293.
 method of estinating algal mumbers and the stastioal basis of estimations by counting. Hydrobiologia 11, 144-170.

Lund, JoHoGe \& Talling, Jo.s. (1957). Botanioel limnologicel methods with special reference to the algae. Bot.lev. 23, 489-583.
Hackereth, F.J.H. (1953). Phosphorus utilization by Asterionella

Wackereth, P.J.H. (1963). Some methods of water analysis for 1immologists. Sci. Publ. Preshwat.biol.Ass, 21, 1-71.

Malonery, w. Be, a Peimex, C.M. (2956). Toxicity of six ahemicel compounds to 30 cultures of algee. Wat.Sewge.mks. 103, 509-513.
Mallabb, C.D. (1960). Fmumeration of freshwater phytoplankton concentrated on the membrane filter. Limnol.0ceanogr. 5, 57-67.

Monze 1, D.V. \& Sppeth, J.R. (2962). The occurrence of ammonia in Sargasso sea waters and in rain water in Bermuda. Limnol.Oceanogr. 72. 159-162.

Yoore, J.K. (1963). Refinement of a method for filtering and preserving marine phytoplanicton on a membrane filter. Limnol.0ceanogr. 8, 304305.

Nawork, A. (1963). Dei Bezeihungen Zwischen Zooplankton und Phytoplankton Im Soe Trekom. Symb.bot. Upsel. 17. Nr. 5, 163pp.

Wusboum, I. (1958). New method for determining suspended solids. Sevage and industrial wastes 30, 1066-1069.

Palmor, J. D. \& Round, F.E. (1965). Persistant vertical-migration rythms in bonthic mioroflore I. The offect of light and tomperature on the rythaic behaviour of Buglena obtusa. J.mar.biol.Ass. U. K. 45, 567-582.

Peargal1, Yo I. (1923). A theory of diatom periodicity. J. Fool. 11, 165-183. Peargal1, V. Ho, Gardiners A.C.o \& Greenshields, Fo (1946). Freshwater biology and water supply in Britain. Sci.Publ. Freshwat.biol.Ass. 11, 1-90.

Pomezoy. Re. \& Kirchnan, Ho. . . (1945) . Determinations of dissolved. oxygen: Proposed modification of the Winklex method. Anal. Chem. 17, 715. RaO, C.Bo (1953). On the diatribution of algae in a group of six small ponds. J. Beol. 42, 62-71.

RaO, C.Be (1955). On the distribution of algae in a group of six small ponds II. A1gal periodioity. J. Bcol. 43, 291-308.

Reymolds, Hos of Paylor, RoJ. (1950). Notes on the algee of Swithland Reservoir, Leicestershire. Naturalist , 49-55.

Hice, C.H. (1933). Studies on the phytoplankton of the River Thames. Amn.Bot. $\mathrm{H} / \mathrm{S}, 2,559-581$.

Rice, ToRo (1954). Biotic influence affecting population growth of planktonic algae. U.S. Fish \& Wilduife serv: Fish Bull. 87.
Pidleys. J.E. (1964). On Thermal stratification and thernocline control in storage reservoins, Proc.Soc.Wat.Ineatm. \& Exam. 23, 275-297.

Bialove J. ت. (1967). Ecperiences in the use of slow sand filtration, double send filutration and microstraininc. Proc.Soc. Wat. Treatm. \& Eram, 16, 170-191.

Pt-1es, For (1961). The uptake and reloase of inorganio phosphorus by Daphnia magna Straus, Linnol.0ceanogr. 6, 165-174.
Rigler, $\mathrm{F}_{\mathrm{o}} \mathrm{HE}_{\mathrm{E}}$ (1964), The phosphorus fractions and tumover time of inorganic phosphoxus in different lakes. Limnol.0ceanogr. 2, 511-518. Piley, J.P. (1953). The spectrophotometric determination of amonis in natural waters with particular reforence to sea water. Anal.Chim. Aeta. 9, 575-589.

Poahe, H. (1948). Trvinonmontal roquiremonts of freah water plankton algae. Symb.bot.Upsal. 10, 149.

Pound, F.E. (2957). Studtos on the bottom living algao in the Maglish Iake Distriot I. Some chemical features of the sediments related to algal productivity. J.EcoI. 45, 133-148.
Rounde F. E., \& Eaton, J.H. (2966). Porsistant vertical migration rythons in benthie mierofloma III. The wythm of opipolic algne in a fresh watex pond. J.Ecol. 54, 609-615.

Round, P.E., \& Pappey, C.M. (1965). Porsiatant vertical migration rythms Sin benthic microfloza IV. A diumal yythm of the epipelic diatom association in non tidal flowing water: Drit. Phycol. Mul1. 2, 463-471. Round, PoEo, \& Palmer, J.D. (1966). Persistant vertical migration zythras in benthic microflora II. Field and laboratory studies on diatoms from the banks of the River Avon. J.mar.biol.Ass.U.K. 46, 191-214.

Bythes, J.H. (1956). The measurement of primary production. Iimnol. Oceanogr. ㄴ, 72-84.

Sauberex, F., \& Futtnex, F. (1941). Die Stahlungssverhalitnisse der Binnengewasser. Prob.Kosm. Fhys. 21pp. Leipsig.

Saunders, G.W. (1957). Interrelations of dissolved organic matter and phytoplankton.Bot.Rev, 23, 389-409.

Scourfield, D.J. (1944). The namnoplankton of bomb-crater pools in Fpping Forest. Essex Nat. 27, 231-241.

Shen, I. Y.F. (1956) Studies on the freshwater algae of Maiwan. Scenedesmaceae from Taiwan. Rep.inst.Fish Biol. Taiwan 1.

Sladecek, V_{0}, \& Sladeokova, A. (1963), Limnological study of the reservoir Sedlice near Zeliv XXIII. Periphyton production. Sci.Pap. Inst. chem. Techn. Frague.Techn.Wat. I, 77-132.
Sladeckova, Ao (1960). Application of glass slide method to the periphyton study in the reservoir Slapy. Sci.Pap. Inst.chem.Techn. Prague.Techn.Wat. 4, 403-434.

Smith, GoMe (2916). A monograph on the genus Scenedesmus, based upon pure culture studies. Trans.Wis.Acad.Sci.Arts Lett. 18, 422-530. Snedecor, G.W. (1940), Statistical methods. Iowa state college press. Striokland, J.D.H., \& Parsons, T.R. (1960). A manual of sea water analysis. J.Fish. Res.Bd.Can.Bull. 125.

Swale, E.M. F. (1962). Studies in the phytoplankton of a calcareous river. Ph. D. Thesis, Univ. of London.

Swale, E.M.F. (1964). A study of the phytoplankton of a calcareous river. J.Ecol. 22, 433-446.

Talling, J.F. (1957). Photosynthetic characteristios of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56, 29-50.

Tallinge J.F. (1960). Self-shading effects in natural populations of a planktonic diatom. Wett.u. Leben. 12, 235-242.

Ta, 11ing, J.P. (1966). Photosymthetic behaviour in stratified and unstratified lake populations of a planktonic diatom. J. Jcol. 54, 99-127.

Iaylor, Fiv. (1955). The reservoirs of the Motropolitan Water Board and their influence upon the character of stored water. Proc. Intermat.Ass. Thooret. \& applied Limnol. 12, 48-65.

Taylor, E.H. (1963). 40th Report of Director of Water Ircam. Metropolitan Water Board, Iondon.

Taylor, E.W. (1965). Slst Report of Director of Water Ikxan. Metropolitan Water Board, London.

Taylor, F.J. (1954). Notes on the phytoplankton of Saddington Reservoir, Leicestershire. The Naturalist, 141-148.

Paylor, P.J. (1950). Oxidative assimilation of Elucose by Scenedesmus quadricauda. J. Tkx.Bot. 2, 301-321.

Whorkovich, Ge (1966). Die Scenedesmus-Arten Ungans. Aksdomiai Kiado Budapest.

Utermoh1, H. (1931). Uber das ungekehrte Mikroskop. Arch. Hydrobiol. (Plank.) 22, 643-645.

Verduin, J. (1951). Comparison of spring diatom crops of Western Lake Erie in 1949 and 1950. Ecology 32, 662-668.

Watt, W.D. \& Hoves, F.R. (2963). Tracer study of the phosphorus cycle in sea vater. Itmnol. Oceanogr. $\underline{8}, 276$-285.
Westlake, D.F. (1965). Some problems in the measurement of radiation undor vator: A roviev. Photochem. Photobiol. 4, 849-868. G. Buest, G.So, \& Fritsch, F.F. (1927). A Treatise on the British freshwater algee'. Cembridge University Press.

Whinole, G.C. (1927). The microscopy of drinking water (revised by Fair, GoMo, and Whipple, M.O.) , 4th Bdition, Hew Yorlc,

Mr E. G. Bellinger (Metropolitan Water Board and Royal Holloway College)
Slow sand filter bed algae and their production in an in situ polythene bag
An 800 1. enclosed polythene bag was suspended in a slow sand filter bed and filled with glass-fibre filtered filter bed water free from plants and animals. It was then inoculated with a natural population of filter bed algae. Their growth was followed and compared with that of the algae on the sand surface of the filter bed. Regular analyses were made for particulate carbon, dry weight, loss-on-ignition, nitrogen, phosphorus and silicon.

The flora of the sand surface, which was probably not subject to limitation by nutrients, was predominantly diatom dominated, whereas in the polythene bag Chlorophyceae assumed dominance after silicon became limiting. The possibility of stimulation and inhibition by growth factors was discussed and a comparison was made between production as measured by particulate carbon, loss-on-ignition, dry weight and weight calculated from volume.

Br. phycol. Bull. (1967) 3 (2) 410

THE REMOVAL OF ALGAE BY MICROSTRAINING

By

E. G. BELLINGER, B.Sc., M.I.Biol.
(Metropolitan Water Board)*

INTRODUCTION

Rotary microstrainers have been in use as first stage filters at the Ashford Common Works of the Metropolitan Water Board since 1958. The efficiency of rotary microstrainers and rapid gravity sand filters as alternative methods of first stage filtration has been discussed in terms of filterability indices (Mackenzie ${ }^{1}$ and Windle Taylor ${ }^{2}$). The relative merits of these two systems of removing suspended matter and the subsequent effects on slow sand filters have been reported by Ridley ${ }^{3}$. In this paper an attempt has been made to determine the numbers and size range of algae which are either retained by or pass through the mark 1 mesh of the rotary microstrainers.

EXPERIMENTAL

The source of supply to Ashford Common Works is normally Queen Mary reservoir (Windle Taylor ${ }^{4-8}$). The inflowing water and the effluent from the rotary microstrainers were examined at weekly intervals during 1964 and 1965. The numbers of algae were determined according to Lund ${ }^{9}$ and Lund et al ${ }^{10}$. Fourteen genera of algae, varying considerably in shape and size, occurred as major constituents of the phytoplankton during the period of study. They included unicellular algae, colonial forms, filaments and loosely attached chains. Expressing the results as numbers of algal cells per ml is somewhat misleading because of this

Table 1

Size Range and Volume of Single Ceils of the Algae Recorded

Average
Species
Melosira varians
Asterionella formosa
Fragilaria crotonensis
Tribonema bombycinum
Chlamydomonas spp
Scenedesmus spp
Cryptomonas spp
Rhodomonas minuta
Oocystis spp
Dimensions in microns Maximum Minimum
35
130 1502 150 2 $45 \quad 6 \quad 1080$ 30 - 6 $30 \quad 3$ $60 \quad 5$

Ankistrodesmus spp 150
Stephanodiscus astraea
S. hantzchii

Synedra spp
Nitzschia spp
Microstrainer mesh

[^0]variation in size and form; for example, when trying to compare a large alga (e.g. Cladophora) with a small one (e.g. Ankistrodesmus). To overcome this difficulty results are here expressed as the total volume of each algal species present per ml of water (for detailed discussion see Bellinger ${ }^{11}$). The average volume and the maximum and minimum dimensions of the major species of algae present are given in Table 1.

The maximum and minimum dimensions of the micromesh screen are 45 and 38 microns respectively. Table 1 shows that any of the algaz present could pass through the micromesh screen provided they were presented to an orifice at an angle which ensured alignment with their smallest dimension. Some algae were present as filaments or colonies and these were more likely to be retained by the strainers. When, however, the colonies or filaments were broken up, either by water turbulence or by algicidal treatment, individual cells or small aggregations were able to pass through the screens.

Fig. 1. Total volume of algae and percentage retention by microstrainers (Note: Solid black portion is volume of A.formosa, M. varians, F. crotonensis and T. bombycinum)

Fig. 1 gives the results of periodic counts expressed as volumes of algal material in the water before and after microstraining. Fluctuations in biological quality can be seen, but substantial reductions in numbers of algae in the incoming water were often due to algicidal control measures in the reservoir supplying the microstrainers. The removal of algae ranged from below 10% to above 90%. As the process of filtration by microstrainers is entirely physical, the removal of algae is discussed according to their physical shape and size.

Filamentous Colonial Algae

The algae in this group included the diatoms Melosira varians and Fragilaria crotonensis and the yellow green alga Tribonema bombycinum. Of these, M. varians was the least abundant throughout the period, occurring in but small concentrations during the spring and summer of 1964. In early December, 1964, the highest numbers were recorded and over 90% removal by the microstrainers was effected. This high removal occurred on other occasions when high numbers were present. T. bombycinum occurred for a short time during the autumn of 1964 and for a longer period during the summer and autumn of 1965. High percentage removals were obtained on all of these occasions. F. crotonensis occurred during the autumns of 1964 and 1965. On all occasions removals were high, usually above 80%.
Non-Filamentous Colonial Algae
Asterionella formosa, a diatom, and Scenedesmus spp, chlorophyceans, were the main species recorded in this group. A. formosa forms stellate colonies of up to 32 cells; it occurred mainly during the spring of 1964, and on every occasion percentage removals were high. Scenedesmus spp form 2-4-8 celled colonies which may tend to clump together during periods of rapid growth. These algae were present throughout most of the period, maximum numbers of cells being recorded during the summer and autumn months, but the percentage removal was almost always extremely low.

Unicellular Algae

This group included members of the Chlorophyceae, Cryptophyceae and Bacillariophyceae. Chlamydomonas spp, motile chlorophyceans, occurred in greatest numbers during the late winter and early spring of 1964 and also in the autumn of 1964. The percentage removed by the microstrainers was high when the growths were at their maxima. Cryptomonas spp and Rhodomonas minuta, both cryptophyceans, are also motile forms. Cryptomonas spp were recorded on a number of occasions but were not efficiently removed by the microstrainers. Rhodomonas minuta, one of the smallest algae recorded, occurred throughout most of the period. The densest populations were present during both the spring and autumn of 1964 and also the autumn of 1965. On only two occasions did removal exceed 50%.

Non-motile chlorophyceans present included Oocystis spp and Ankistrodesmus spp. The former occurred mainly during the summer and autumn of 1964 and 1965. Removal exceeded 50% on only one occasion, even though the number of cells present in the inflow water often exceeded $250 / \mathrm{ml}$. Ankistrodesmus spp included the smallest algae recorded and were present throughout the entire period, the highest
concentrations occurring during the spring of 1964. High percentage removals were recorded on only two occasions.

Stephanodiscus hantzschii and S. astraea were the discoid, and Nitzschia spp and Synedra spp the pennate, diatoms present. Of these S. hantzschii occasionally occurred in loose chains of 6-8 cells. When it was present during the late spring of 1964 the percentage removed by the microstrainers was low but in the summer and autumn of 1965 percentage removals were fairly high on two occasions. S. astraea was present throughout the entire period with maximum numbers occurring in the late spring of 1964. High percentage removals were obtained frequently during the spring of 1964 but only once during September 1964, when numbers in the inflow water reached 1200 cells per ml. Synedra spp occurred only intermittently throughout the period and ce'l concentrations were always low. Nitzschia spp were nearly always present and reached maximum numbers during the summer and autumn of 1964. Neither of these pennate diatoms was efficiently removed by the rotary microstrainers.

DISCUSSION

The main purpose of rotary microstrainers is to remove the larger organic and inorganic particles from the inflow water, and thus to reduce the amount of suspended material passing to the slow sand fil'ers. Improved secondary filtration economy is not necessarily always attained, despite high percentage removal of algae by the microstrainers. This applies to rapid sand filtration as well as to microstraining (Ridley'). Certain types of algae, small enough to pass through the micromesh screen, will effectively clog the surface of slow sand filters at a rate depending upon the numbers in the microstrainer effluent. Other algae. however, whilst passing through the rotary microstrainers in only sma!l numbers, rapidly multiply in the supernatant water and on the sand surface of the secondary filter basin and clog the sand interstices. During these studies both of the above types of algae were encountered. Typisel of the first type was S. hantzschii and of the second Chlamydomonas spp and Scenedesmus spp.

Every alga recorded could have passed through the microstrainer mesh if present as single cells. As they do not always do so other factors must be involved.

Algae present as colonies may have been too large to pass through the micromesh screen and this would account for the high removal of A. formosa, F. crotonensis and T. bombycinum. When these species were retained they tended to form a mesh-like layer on the inside surface of the micromesh gauze. This would have acted as an important additional filtering mechanism, although only for short periods as the gauze was backwashed every few minutes as the drum rotated. This additional layer would have a smaller effective orifice size and would thus retain smaller particles. Some evidence of this effect is shown in Table 2 where occasions on which 50% or more removal occurred are recorded. On these occasions either A. formosa, F. crotonensis and T. bombycinum or the filamentous diatom Melosira varians was present. When these larger algae were absent, the percentage of algae retained by the microstrainers was usually reduced. Removal of the algae by the microstrainers was not solely a function of the numbers present but also of the size or shape of particular genera or species.
Occurrence and Removal of Algae

Chlamydomonas spp
Oocystis spp

Ankistrodesmus spp

Stephanodiscus astraea
S. hantzschii
Synedra spp
Nitzschia spp Rhodomonas minuta
Cryptomonas spp

Some exceptions did occur as, for example, when high percentage removals of some algae were obtained even when the larger algae were absent. On September 4th, 1964, S. astraea contributed more than 90% of the total algal population present, a cell count of 1280 per ml being recorded in the inflow water. These cells were fairly large, with an average diameter of 36 microns, and as they were present in such large numbers they could themselves have formed a secondary filtering layer within the microstrainer and thus accounted for the high percentage removal.

Scenedesmus spp were also retained in large numbers on some occasions. Some species of Scenedesmus form colonies which tend to group together in clumps, for example S. bijuga. When this species formed a high percentage of the population, removal by the microstrainers was high, probably because the clumps were too large to pass through the micromesh apertures. On one occasion over 50% of the cells of Chlamydomonas spp and Cryptomonas spp were retained by the microstrainers. At this time none of the algae capable of forming an additional filtering layer was present in large numbers. As both of the above species are unicellular forms which do not tend to form aggregations, the removal of large numbers by microstraining cannot be explained.

Large volumes of cells do not necessarily cause an increasz in filtering efficiency (see Fig. 1). In the spring and summer of 1964 large numbers of unicellular chlorophyceans and cryptophyceans were present in the incoming water but the percentage removal was low. The microstrainers worked most efficiently in the spring and autumn, when a variable mixture of species was present, and in the summer if larger filamentous and colonial forms were present.

Rotary microstrainers, using meshes of various sizes, are in use all over the world (Lynch et al^{12}, Evans ${ }^{13}$) and can be an extremely efficient method of increasing the volume of water obtained during the run of a slow sand filter. There are of course limitations, for example when the source contains large amounts of very small particles, but this applies to many methods of first stage filtration, including rapid gravity sand filters, unless coagulation processes are included. Despite these limitations the rotary microstrainer has often proved to be a valuable contribution to waterworks economy.

ACKNOWLEDGMENTS

The author wishes to thank Dr. E. Windle Taylor, C.B.E., M.A., M.D., D.P.H., F.C.Path., Director of Water Examination, for permission to publish this paper, although the views expressed are not necessarily those of the Metropolitan Water Board. The author also acknowledges the contributions of Dr. J. E. Ridley, Senior Biologist, Metropolitan Water Board, and of Dr. J. H. Evans, Botany Dept., Royal Holloway College.

REFERENCES

1. MACKENZIE, E. F. W. Res. bact. chem. biol. Exam. Lond. Waters, 1947-52, 35.
2. windle taylor, e. Res. bact. chem. biol. Exam. Lond. Waters, 1955-56, 37.
3. RIDLEY, J. E. Experiences in the use of slow sand filtration, double sand filtration and microstraining. Proc. Soc. Wat. Treat. Exam., 1967, 16, 170-191.
4 -8. windle taylor, e. Res. bact. chem. biol. Exam. Lond. Waters, 1957-66, 38-42.
4. Lund, J. W. G. A sedimentation technique for counting algae and other organisms. Hydrobiologia, 1951, 3, 390-394.
5. LUND, J. W. G., KIPLING, C. \& LE CREN, E. D. The inverted microscope method of estimating algae numbers and the statistical basis of estimations by counting. Hydrobiologia, 1958, 11, 143-170.
6. bellinger, e. G. Ecological and taxonomic studies of fiter bed algae. Ph.D. Thesis, University of London, 1968.
7. LYNCH, W. O., BAKER, C. R. \& HABERER, J. H. Experiences with microstraining at Ilion. J. Am. Wat. Wks Ass., 1965, 57, 1422-30.
8. EVANS, G. R. Review of experience with microstrainer insta lations. J. Am. Wat. Wks Ass., 1957, 49, 541.

Aâdondum
To the eaytions of Plgures 20,21 ,22 and 26 add; Vertical lines indicate the times of filter bed eleaning and the vertical stippling indicates the thines of filter bed resanding.

To the eaptions of Pigures 45 a and 45 b adiz The dates of the sample collections are given on the 20 oft hand side.

Aclonpuledernenta
I would Like to thank Prof. K. Wilson of the Iepartmont of Botany, Rojal l lolloway College for permitting ne to worlr in his departnent. I would also Litre to thant $7 x_{*}$ J. M. Hvans of Moyal Molloway College and Dx. J. Fidiey and Ir. A. Steel of the Iotropolitan Weter Board for their help and assistance.

[^0]: Now with the Science Dept., Bolton Institute of Technology, Bolton, Lancs.

