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Abstract 

  There is a wealth of scientific evidence associating the dietary intake of omega 3 

long-chain polyunsaturated fatty acids with beneficial health properties. In this study, 

alternative natural sources of these polyunsaturated fatty acids are sought from novel 

low temperature isolated fungi. Over 100 low temperature isolated fungi were screened 

for very long chain polyunsaturated fatty acids (VLCPUFAs), such as C20:5 n3 and C22:6 

n3. Of those screened, only ten fungi were capable of VLCPUFA production, with 

Mortierella the predominant VLCPUFA producing species. Four Oomycete species 

were also capable of VLCPUFA production. It is thought that only basal fungal 

lineages, such as species from the Chytridiomycota and Zygomycota, are capable of 

VLCPUFA production. It was also found that VLCPUFAs are not essential for growth 

at low temperatures, as Penicillium rugulosum, capable of producing fatty acids no 

longer or more unsaturated than C18:3 n3, demonstrated over 2 g of biomass per 100 ml 

of broth when grown at 5°C. This indicates that trienoic fatty acids are sufficient for 

maintaining membrane fluidity, although other factors may play a role in P. 

rugulosum’s low temperature growth. Comparatively, VLCPUFA producing 

Mortierella species produced 200-250 mg of biomass, whereas the majority of non-

VLCPUFA producing isolates produced 106-115 mg of biomass per 100 ml of broth. 

The total lipid unsaturation indices of nine isolates grown under three temperature 

regimes showed that the lowest growth temperature, 5°C, produced the highest 

unsaturation index value in six of the organisms. 15°C produced the highest 

unsaturation index value in two of the isolates. This suggests that temperature has an 

effect on fungal lipid composition, and that lower temperatures may increase lipid 

unsaturation levels. It was also found that the ∆6 elongase, initially identified from 

Mortierella alpina, is indicative for VLCPUFA producing fungi. The genomic 

conserved sequence found within ∆6 elongases was used to develop primer sets that 

could be used with a PCR based methodology to screen fungal isolates for VLCPUFA 

production. The method successfully identified VLCPUFA producing Mortierella and 

Allomyces species, and was not found to amplify non-∆6 elongases. Finally, 

recombinant Phaffia rhodozyma strains were developed using the ∆5 desaturase and ∆6 

elongase from Mortierella alpina. The fatty acid profiles of the recombinant strains 

displayed novel fatty acids such as C20:2 n6 and C20:3 n3, and putatively, C18:2 ∆5, 9 and 

C18:3 ∆5, 9, 12 which correlated with the inserted genes.  
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Nomenclature used 

In regards to nomenclature of fatty acids, C20 denotes an acid containing 20 carbons, 

with C20:5 denoting an acid containing 20 carbon atoms and 5 double bonds. The ω and 

n nomenclature of fatty acids are interchangeable, although the n nomenclature is the 

widely accepted standard to define the class of a fatty acid.  When specific fatty acids 

are stated, i.e. C18:3 n3, the n nomenclature will be used. Within the work, PUFA shall 

refer to all polyunsaturated fatty acids, LCPUFA shall refer to polyunsaturated fatty 

acids containing up to 18 carbon atoms i.e. C18:3 n3. VLCPUFA shall refer to 

polyunsaturated fatty acids containing 20 or greater carbon atoms i.e. C20:5 n3.   

In regards to nomenclature of organisms, the following capitalisations will be used: 

Ascomycota (Phylum) 

ascomycete/s (colloquial) 

Basidiomycota (Phylum) 

basidiomycete/s (colloquial) 

Chromista (Kingdom) 

chromist/s (colloquial) 

Chytridiomycota  (Phylum) 

chytrid /s (colloquial) 

Oomycota (Phylum) 

Oomycetes (Class) 

Zygomycota (Phylum) 

zygomycetes (whilst this term is a Class name, it shall be used as a colloquial form of 

Zygomycota, hence the use of a lowercase z) 
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1 Introduction 

A wealth of scientific evidence now exists linking health benefits to the dietary intake 

of polyunsaturated acids in the human diet to maintain overall good health (Beardsell et 

al., 2002). The western diet has seen an increase in the levels of saturated fatty acids 

and trans-fatty acids, and a reduction in polyunsaturated fatty acids (Bulliyya, 2002) 

(Bates et al., 2010). More recently as the consumer has demanded better quality and 

more nutritious foodstuffs, manufacturers have reduced the content of saturated fatty 

acids and replaced them with mono- and polyunsaturated fats. This drive to increase the 

health “credentials” in food has meant that manufacturers are now including 

polyunsaturated fatty acids, such as omega-3 (ω3/n3) fatty acids in their products. In 

addition to food, the market for polyunsaturates as health supplements is rapidly 

growing. Aquaculture is another area where polyunsaturates are utilised to mimic the 

feed available in the wild. The increasing demand for polyunsaturated fatty acids 

coupled with the currently declining fish stocks has resulted in the use of microbial 

based sources. Microbial production of these oils is not a new idea, as algal sources are 

already available as alternative sources to fish (Doughmann et al., 2007). Fungi are also 

used to produce certain polyunsaturated oils, such as arachidonic acid. Further, the 

isolation of fungi from cold environments such as the Antarctic could yield novel fatty 

acid profiles from these organisms. Whilst the discovery of ω6/n6 fatty acids is 

commercialy less attractive, the mechanism by which they are produced and induced 

would advance our understanding of VLCPUFA formation within the fungi. The 

discovery of VLCPUFAs within fungal species is itself a novel discovery in its own 

right, as VLCPUFAs are a rarity among true fungi.   

The aim of this work is to identify novel VLCPUFA producing fungi isolated from 

low temperature environments as an alternative source to the non-sustainable oily fish 

and phototrophic algae. Low temperature isolates will be studied as it is thought 

temperature plays a key role in microbial fatty acid composition and as such the effects 

of temperature on the fatty acid profiles of several isolates will also be studied. Finally, 

a more efficient PCR based screen for VLCPUFA producing fungi will be described 

which saves time and solvent usage. A key elongase is described which allows the 

detection of VLCPUFA producing fungi.  
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1.1 Structure and nomenclature 

Polyunsaturated fatty acids (PUFAs), such as those found in fish oils are becoming 

widely recognised as having a positive impact on human health (Ruxton et al., 2005, 

Tapiero et al., 2002). These health benefits have stimulated a rapidly growing market 

for PUFAs as health supplements, additives and feed for aquaculture. There are several 

important polyunsaturates, which can be divided into the n3 and the n6 families. The 

long chain n3 polyunsaturates are found predominantly in fish oils, accumulated 

through a diet of algae. The most important n3 PUFAs with known nutraceutical 

properties are eicosapentaenoic acid, (C20:5 n3) and docosahexaenoic acid, (C22:6 n6). 

The other class, the n6s are typically found in meat, and can be synthesised by plants, 

with notable fatty acids being γ-linolenic acid, (C18:3 n6) and arachidonic acid, (C20:4 

n6). The polyunsaturated fatty acids are aliphatic, long chain hydrocarbons, containing 

greater than one carbon-carbon double bond. They are usually 18 or more carbons long, 

and the position of the first carbon-carbon double bond when counted from the methyl 

end gives the fatty acid its ω/n- nomenclature (figure 1-1). Therefore the first double 

bond appears between carbons 3 and 4, counted from the terminal methyl group in an 

n3 fatty acid, whilst the first double bond appears between carbons 6 and 7 in an n6 

fatty acid. The naming schemes for elongases and desaturases however are derived from 

the carboxylic end and are given the ∆ nomenclature (figure 1-2). This indicates the 

position of a double bond counting from the carboxylic end. Hence, a ∆17 desaturase 

inserts a double bond between carbons 17 and 18 when counting from the carboxylic 

end. C20:5 n3, when using the common ∆ nomenclature becomes cis-5, 8, 11, 14, 17-

eicosapentaenoic acid.  
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Figure 1-1. The ω/n nomenclature of the fatty acids. The carbon adjacent to the functional 
group is referred to as the α carbon, whilst the terminal methyl carbon is referred to as 
the ω carbon. Counting from the ω carbon, if a double bond is found between carbons 3-4 
then the n3 nomenclature is given. If a double bond is localised between carbons 6-7 then 
the n6 nomenclature is given. The examples above from top to bottom are αLA (C 18:3 n3), 
EPA (C20:5 n3) and DHA (C22:6 n3) which are all n3 fatty acids. Next is γLA (C 18:3 n6) and 
ARA (C20:4 n6) which are both n6 fatty acids. The majority of fatty acids within the fungi 
are in the cis configuration.  
 

 
Figure 1-2. The ∆ nomenclature of the fatty acids. This method counts from the carboxyl 
carbon and is the preferred system for naming fatty acids. The example above is C20:5 n3 
(cis- 5, 8, 11, 14, 17- eicosapentaenoic acid). In the case of the desaturases and elongases, 
the mode of action is usually referenced using the ∆ nomenclature.  

1.2 The role of PUFAs in health and disease 

Polyunsaturated fatty acids play a role in human health primarily due to their close 

association with the signalling molecules the eicosanoids. The word eicosanoid is 

derived from the word eicosa- meaning twenty, and it comes as no surprise that two of 

the major precursors to the eicosanoids are C20:5 n3 and C20:4 n6 (figure 1-3). The 

production of eicosanoids is primarily found in complex multi-cellular organisms to 

instigate inflammatory and anti-inflammatory responses, with the membrane lipids 

liberated by calcium regulated cytoplasmic phospholipases. Following physical or 

receptor induced calcium influxes, phospholipases migrate to the phospholipid 

membrane, whereby they cleave the acyl chains in the sn2 position (Clark et al., 1991). 
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Using C20:4 n6 as an example, the free fatty acids can be converted initially into two 

products; leukotrienes, named after their three conjugated double bonds, or the 

prostaglandins, which are modified from the fatty acids by the cyclisation and 

subsequent formation of a 5 member ring. Prostaglandins can then be further modified 

by the appropriate synthases to prostacyclins or thromboxanes.  

The eicosanoids are produced locally within the cell exerting their effects on the cell 

that synthesised them and adjacent cells. This is in opposition to hormones where 

production is usually at a localised site, usually within an organ, and distribution occurs 

throughout the body targeting various cell types. C20:4 n6 is predominantly linked to the 

inflammatory pathway, with platelets and other cell types converting C20:4 n6 to 

thromboxanes, which have strong vasoconstriction effects and induce platelet 

activation. In the leukocytes C20:4 n6 is converted to leukotrienes, which again exhibit 

strong vaso- broncho- constriction effects and increase endothelial permeability (De 

Caterina & Basta, 2001). According to De Caterina et al. C20:5 n3 in the endothelia is 

converted to prostaglandins, as is C20:4 n6 with the derived compounds strong 

vasodilators and platelet activation inhibitors, with leukotriene and thromboxane 

derivatives from C20:5 n3 much weaker than those from C20:4 n6.  

Other modes of action include products derived from DγLA (C20:3 n6), such as 15-

hydroxyDγLA, which inhibits lipoxygenases, in turn reducing production of pro-

inflammatory C20:4 n6 based leukotrienes (Zurier, 1993), C22:6 n3 regulating 

cyclooxygenase transcriptionally and the role of C20:5 n3 as a poor substrate for C20:4 n6 

metabolising enzymes, which reduces the net quantity of eicosanoid product (De 

Caterina & Basta, 2001) are some of the ways the inflammatory pathway is kept in 

check. Fatty acids can also have a direct effect with C20:3 n6 and C20:4 n6 inhibiting 

interleukin-2 production (Santoli & Zurier, 1989). Conditions that are thought to have 

underlying inflammatory causes are rheumatoid arthritis, with C20:5 n3 and C18:3 n6 

supplementation shown to subjectively ease the condition (Belch et al., 1988), 

inflammatory bowel disease with C20:5 n3 showing in several studies beneficial effects 

(Belluzzi et al., 2000) and atherosclerosis, with C20:5 n3 having been shown to increase 

plaque stability resulting in decreased incidence of plaque rupturing, possibly leading to 

myocardial infarction (Cawood et al., 2010). It is therefore thought that many human 

conditions are linked to eicosanoid biosynthesis, which directly stems from fatty acid 

consumption and biosynthesis. The imbalance of fatty acids through the change in the 

Western diet, specifically the increased intake of n6, which can lead to the 
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overproduction of eicosanoids from the precursor arachidonic acid, is one potential 

mechanism. 

 

Figure 1-3. The eicosanoids. The n6 fatty acid arachidonic acid (C20:4 n6), is converted into 
several eicosanoid classes which are generally thought to be pro-inflammatory. 
Arachidonic acid can be converted to the leukotrienes (LTA4) through 
hydroperoxyeicosatetraenoic acid (HPETE) through the action of a lipoxygenase. 
Prostaglandins (PGH2) are formed through the action of cyclooxygenase followed by 
subsequent conversion to either the thromboxanes (TXA 2) or the prostacyclins (PGI2).  
 

The role diet plays in our health is profound, most noticeably in Western societies, 

with easy access to high calorie and high fat foods. In the case of lipids it is not just the 

amount of lipid but the composition that is thought to be affecting our health. Precursors 

to the VLCPUFAs and their uptake from the diet can directly impact the biosynthesis of 

VLCPUFAs. This in turn has an effect for example on eicosanoid biosynthesis, 

although not all health related claims may be associated with eicosanoid formation. The 

relationship between diet and health is more complex than just fuelling eicosanoid 

biosynthesis directly. As in most organisms, mammalian fatty acid synthesis occurs 

through a series of elongation and desaturation steps, However, humans along with 

other mammals lack the ability to desaturate C18:1 n9 further, and thus must obtain C18:2 

n6 and C18:3 n3 from their diet (Burr & Burr, 1930). The fatty acids synthesised by 
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mammalian cells are predominantely C16-18 and are synthesised within the cytoplasm 

(Leonard et al., 2004) utilising the fatty acid synthase (FAS) complex, with C18:0 formed 

within the endoplasmic reticulum (ER) and C18:1 formed through a subsequent 

desaturation. The n3s and n6s are derived from the two aforementioned essential fatty 

acids, α-linolenic acid (n3 synthesis) and linoleic acid (n6 synthesis). These can then be 

converted in vivo into their long chain counter parts C22:6 n3 and C20:4 n6 respectively. 

The conversion of C18:3 n3 to C22:6 n3 however is inefficient (Ruxton & Reed, 2004) in 

part due to two steps in the pathway. Firstly, an alternative C20:5 n3 to C22:6 n3 synthesis 

route in mammals exists, in which C24:5 n3 undergoes β-oxidation to form C22:6 n3 in a 

process known as Sprecher’s shunt (Voss et al., 1991). Secondly, C18 ∆6 desaturase is 

required for both n3 and n6 pathways, for the conversion of C18:2 n6 to C18:3 n6 as well 

as C18:3 n3 to C18:4 n3, with increased consumption of linoleic acid (C18:2 n6) resulting in 

the n6 route taking precedence over the n3 pathway reducing the synthesis of n3 

VLCPUFAs.  

Therefore to counteract this lowered biosynthetic production, n3 VLCPUFAs such as 

C20:5 n3 and C22:6 n3 need to be contained in the diet either through fortification of food, 

consumption of oily fish or diet supplementation. In the western world the ratio of n3:n6 

contained within the diet is out of proportion, with the ratio being as low as 1:10 

(Horrocks & Yeo, 1999), with the recommended ratio being 1:2.3 (Kris-Etherton et al., 

2000). This is quite clearly an issue, with fatty acids such as linoleic acid (C18:2 n6) 

reducing the throughput of n3 biosynthesis and increasing the production of the n6 

series, whilst direct consumption of C20:4 n6 allows greater C20:4 n6 incorporation into 

membranes followed by modification and utilisation later as pro-inflammatory 

eicosanoids. C20:4 n6 however does have commercial applications as companies such as 

Martek, using the fungus Mortierella alpina have shown by producing this fatty acid for 

infant replacement milk. However, as C20:4 n6 can be produced within the body from the 

more abundant precursors and is consumed in the diet from animal products, its value is 

not as great as the n3 class VLCPUFAs. The identification of fungal isolates capable of 

C20:4 n6 production would be useful as the genes responsible for the n6 VLCPUFA 

biosynthesis would aid our understanding of VLCPUFA formation. The discovery of 

C20:4 n6 producing fungi would also be of interest taxonomically due to the lack of fungi 

capable of producing this and other VLCPUFAs. Therefore the commercial value of 

C20:4 n6 is lower than that of the n3 VLCPUFAs. 
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Polyunsaturated fatty acids, especially the long chain n3 class have an integral role in 

health due to their close association with inflammatory regulation. VLCPUFAs are also 

associated with other health benefits, which may be independent of the inflammatory 

response. It has been shown that C22:6 n3 and C20:4 n6 are required for the development 

of the infant brain (Horrocks & Yeo, 1999) and infant sight, and that the developing 

brain is highly influenced by the fatty acids consumed in the diet (Anderson, 1994). 

VLCPUFAs consumed by the mother benefit the child when in utero and whilst 

lactating. Therefore the mother should endeavour to increase her C22:6 n3 intake whilst 

lactating. However, after a certain point during development, dietary fatty acids do not 

significantly affect the grey matter fatty acid make up, presumably due to the ability of 

the organism to synthesise the VLCPUFAs, and due to the decreased production of 

neurones. Studies suggest infants fed on an omega 3 supplemented diet, of which breast 

milk is a key source of C22:6 n3 (Helland & Saarem, 1998), have a higher IQ than those 

fed on a C22:6 n3-deficient diet (Helland & Smith, 2003). It has been found that children 

suffering from conditions such as attention-deficit hyperactivity disorder (ADHD) and 

dyslexia and adults suffering from depression have a lower concentration of 

VLCPUFAs in their tissues (Ruxton & Reed, 2004). Supplementing the diet of children 

suffering from dyslexia has in some cases been shown to help alleviate the symptoms 

(Stordy, 2000). Supplementation with C22:6 n3 may also help in the treatment of 

conditions such as ADHD (Richardson, 2004), cystic fibrosis and depression (Nemets & 

Stahl, 2002). 

 It has been shown that consumption of oily fish, first observed in populations whose 

diet contain primarily fish, which are rich in n3s especially C22:6 n3 and C20:5 n3 benefit 

from a lower incidence of chronic heart disease and display lower serum triacylglycerol 

(TAG) and cholesterol levels (Simopoulos, 2002) and that increased levels of high-

density lipoprotein (HDL) cholesterol and a higher ratio to low-density lipoprotein 

(LDL) may be partially responsible (Bulliyya, 2002). Other factors thought to be jointly 

responsible for chronic heart disease, of which n3 VLCPUFAs are thought beneficial, is 

the lowering of blood TAG levels (Simopoulos, 2002), lowering chemoattractants 

(Sperling et al., 1993), growth factors (Baumann et al., 1999) and adhesion molecules 

in the elderly (Miles et al., 2001). n3 VLCPUFAs are also thought to have anti-

arrhythmic effects (Calder, 2004). Coupled with the previously mentioned anti-

inflammatory effects of n3 VLCPUFAs, arteriosclerosis is slowed or prevented, 

reducing the incidence of chronic heart disease followed by death by myocardial 

infarction or stroke caused by thrombosis (Mclennan & Howe, 1996). However, the 
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benefits of fish oils may be reversed, if consumed in large enough quantities by 

pollutants such as mercury, which may negate the effects of VLCPUFAs (Rissanen & 

Voutilainen, 2000). It is now recommended to consume less n6, and increase n3 through 

an estimated weekly intake of 2-4 portions of fish per week for non-pregnant and 

lactating women (FSA, 2004), which constitutes around 0.45-0.9 g C22:6 n3 per day. 

C22:6 n3 has also been shown to correlate with a reduction in the incidence of 

Alzheimer’s disease by up to 60%, by the regular consumption of oily fish or C22:6 n3 

supplements (Morris & Evans, 2003). It can be seen that these fatty acids have a 

profound role on our health and that increased consumption of n3 fatty acids through 

natural or enriched foods may help reduce and alleviate certain conditions.  

 

1.3 Introduction to fungi 

Man’s exploitation of fungi dates back thousands of years with the process of 

fermentation yielding ethanol and CO2, utilised in baking and brewing. The most direct 

application of the fungi has been as a food source, although many are harmful to 

humans when consumed due to the presence of mycotoxins. The fungal kingdom has 

provided us with a wealth of compounds, with Fleming’s discovery of antibiotics 

initially from the genus Penicillium propelling medical science forward in the treatment 

of bacterial infection. Other compounds of use include fatty acids, carotenoids 

(Frengova & Beshkova, 2009) and organic acids such as citric acid (Tran et al., 1998), 

and cholesterol-lowering statins (Manzoni & Rollini, 2002). Other uses of fungi include 

the production of specialist cheeses such as Camembert, using the species Penicillium 

camemberti, the use of organisms such as Trichoderma sp. as biocontrol agents (Viniale 

& Marra, 2006), plant growth enhancers (Naseby & Pascual, 2000) and a source of 

enzymes (Chand & Aruna, 2005). The wealth of enzymes which can be obtained from 

fungi is large and diverse, ranging from amylase, cellulase, proteases and lipases. 

Enzymes involved in the degradation of insect cuticle walls, as found in the fungus 

Metarhizium anisopliae are a key component in its insecticidal role (Smith et al., 2001), 

which is now used to control locusts. The enzyme itself does not directly kill the insect, 

rather the colonisation of the host insect by the fungus. Therefore fungi as insect 

biocontrol agents have been studied to protect agricultural crops from herbivorous 

insects. The Entomophthorales are one of the most studied fungal classes in regards to 

insect biocontrol, with fungi such as Entomophthora and Zoophthora pathogens of 



Chapter 1  25 

gypsy moths and alfafa aphids for example, which feed on oak trees and legume plants 

respectively (Shah & Pell, 2003). 

It is estimated that there are around 1.5 million different species of fungi 

(Hawksworth, 2001) although this estimate is conservative, with figures ranging up to 

several million species. Many of these are classified as saprotrophs, which utilise dead 

organic matter as a nutrient source, which is digested extracellularly. Others parasitise 

plants and animals, with fungi forming the majority of plant infections with organisms 

from the genus Puccinia and class Ustilaginomycete causing common plant diseases, 

which are commonly known as rusts and smuts respectively. In fungi, the vegetative 

cells which propagate throughout the substrate source are referred to as hyphae, which 

increase the surface area by which secreted digestive enzymes may act upon the 

complex substrate followed by the subsequent absorption of the digested material. It is 

these hyphae which form the visible mycelium, the mass of fibrous cells which usually 

permeate into the growth substrate. The hyphal cell wall is composed of chitin with the 

hypha itself composed of multiple cells. With the exception of the zygomycetes, the 

hyphal cells are divided by septa which allow trans-cellular movement of nutrients and 

organelles through multiple pores present in the septa. The hyphae elongate from the tip 

through the polymerisation of the cell wall precursor, as well as the expansion of the 

cell membrane. With respect to reproduction, fungi can propagate though two modes of 

reproduction; the asexual form (anamorph), or the sexual form (teleomorph). The spore 

forming structures and the spores themselves are utilised to morphologically 

characterise the species. A brief overview of each phylum will be given. According to 

the dictionary of the fungi (Kirk et al., 2008), the Kingdom fungi is split into six phyla; 

Chytridiomycota, Glomeromycota, Microsporidia, Zygomycota, Ascomycota and 

Basidiomycota of which the last two are sometimes classified within the sub-Kingdom 

Dikarya. The Microsporidia are specialised organisms which were once classified as 

protozoa and are largely parasitic. As they were not studied in the work, they shall not 

be described further.  

1.3.1 Oomycota 

The Oomycetes are classified within the Chromista and have several differing 

biochemical pathways compared with the fungi, however before detailed molecular 

analysis, species from the Oomycota were classified as fungi due to similar 

morphological features (Kendrick, 2001). Organisms such as the genus 

Thraustochytrium whilst residing in the Chromista under the phyla Labyrinthista were 
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not classified by Kendrick and the majority of others as fungi however. The Oomycota 

are differentiated from the fungi as they contain cellulose in their cell wall as opposed to 

chitin, and are diploid as oppose to haploid as is the case with most fungi. Like chytrids, 

the Oomycetes have coenocytic hyphae and produce a sporangium (Link et al.). The 

Oomycota are also known to be parasitic with the infamous Phytophthora infestans 

causing the Irish potato famine and Saprolegnia species causing saprolegniasis in fish. 

The Oomycota produce flagellate zoospores similar to the chytrids and are also capable 

of VLCPUFA production with Saprolegnia and Pythium species capable of producing 

up to C20:5 n3. 

1.3.2 Chytridiomycota 

The Chytridiomycota are thought to be the ancestors of the other phyla of terrestrial 

fungi (James et al., 2006) (figure 1-4), and are found to be the predominant species in 

the Devonian period along with the zygomycetes (Taylor & Taylor, 1997). One of the 

defining features of these organisms is the production of motile zoospores which are 

flagellate, which allow the organism to sexually reproduce in the aqueous environment 

in which they are predominantly found. In some instances they have been known to 

infect hosts such as amphibians, which has been found to be the case with the chytrid 

Batrachochytrium dendrobatidis (Berger et al., 1998). The fact that these organisms 

posses flagella alludes to the fact that the majority of these organisms spend a portion of 

their life cycle in an aqueous environment, which suggests that these organisms predate 

the terrestrial fungi. The Chytridiomycota unlike the other phyla of fungi do not 

produce hyphae, but produce supportive structures called rhizoids, which may be 

extensive enough to be called a rhizomycelium (Kendrick, 2001). This in turn supports 

the differentiated sporangia, which produce the haploid or diploid zoospores. The 

Chytridiomycota are also known for producing long chain polyunsaturated fatty acids, 

producing up to C20:4 n6 from Allomyces, as discussed later.  

1.3.3 Zygomycota 

The zygomycetes are thought to be the closest relatives of the Chytridioycota (James 

et al., 2006, van de Peer et al., 1993). This is due to molecular data as well as 

morphological similarities such as the presence of sporangia in chytrids and 

zygomycetes as well as zygomycetes being coenocytic (O'Donnell et al., 2001). The 

Zygomycota can reproduce both sexually and asexually with the asexual form the most 

prevalent form of reproduction. In this form of reproduction, the hyphae bearing the 



Chapter 1  27 

reproductive structure are called sporangiophores with the spore producing structures 

called mitosporangia from which are produced haploid spores called mitospores. Sexual 

reproduction occurs through the fusion of two compatible hyphae as well as the nuclei, 

which in turn produce gametangia. This then matures into a diploid zygosporangium 

which under goes meiosis returning the cells to a haploid state. Germination of the 

zygosporangium results in the formation of a mitosporangium containing haploid spores 

formed through mitosis (Kendrick, 2001). It is also known that some of the organisms 

residing in the Zygomycota, such as Mortierella can produce VLCPUFAs up to C20:5 

n3.  Some Zygomycota infect insects, other fungi and nematodes, as well as colonising 

mammal dung.  

1.3.4 Glomeromycota 

Species within the Glomeromycota were formerly found within the Zygomycota, 

however have relatively recently, been elevated to a Phylum. It was shown that those 

species found within the Glomeromycota were in fact monophyletic and are thought to 

share common ancestry with the Dikarya, as opposed to the Zygomycota (Schüβler et 

al., 2001). Species from within the Glomeromycota are predominantly arbuscular 

mycorrhizal fungi. The fungi form a symbiotic relationship with vascular plants to 

obtain macronutrients such as carbohydrates, whilst the plant benefits from labilised 

phosphate ions (Helgason & Fitter, 2009). Fungi from this Phylum typically inhabit soil 

and form close associations with plant roots. They generally reproduce asexually, 

producing chlamydospores at hyphal tips. Like the Zygomycota however, they are 

predominantly coenocytic. 

1.3.5 Ascomycota and Basidiomycota; the sub-Kingdom Dikarya 

The Dikaryomycota contain two phyla, the Ascomycota and the Basidiomycota.  The 

term Dikaryomycota comes from the fact that both phyla produce dikaryotes, which is a 

cell containing two individual haploid nuclei. In the Ascomycota this occurs through the 

fusion of two compatible haploid hyphae in a process called anastomosis. This produces 

a diploid dikaryotic zygote which then produces many diploid dikaryotic hyphae. After 

the hyphae have reached specific positions the separate nuclei fuse and meiosis occurs, 

leading to the formation of ascospores within the ascus. The asci may also be contained 

within an ascocarp, a fruiting body sometimes diagnostic of the species. A round of 

mitosis then occurs within the ascus leading to the formation of around eight spores, 

which are haploid (Deacon, 1997). The spores are then, in a large proportion of 
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Ascomycota ejected from the top of the ascus at high speed, also leading to the ejection 

from the ascocarp. In the Basidiomycota the sexual spore forming structure is called the 

basidium with the meiotically formed haploid spores referred to as basidiospores (Kirk 

et al., 2008). The sexual form of propagation in the Basidiomycota is similar to that of 

the Ascomycota, however after the merging of the nuclei and the subsequent meiosis 

only four basidiospores are formed as opposed to eight ascospores which occurs due to 

the extra round of mitosis in ascomycetes. Also of note, ascospores are found inside the 

ascus as opposed to basidiospores which migrate to the exterior of the basidia. The 

spores of the anamorphic phase of the Ascomycota are called conidia and are 

mitospores, in reference to their mitotic origin. The spores themselves are produced 

from hyphal cells and the aggregation of spores can occur on a conidiophore, a hyphal 

cell which supports the spores. The spores may also be enclosed in a conidioma which 

typically occurs within a host plant. The Dikaryamycota also constitute the vast 

majority of extant fungal species, with 64000 species within the Ascomycota known 

(Kirk  et al., 2008). 

Fungi

Zygomycota
Chytridiomycota

Dikarya Oomycota

Protozoa

Current Phyla

Proposed Evolution of the Fungi

Animalia Chromista

Common ancestor

 

Figure 1-4. The proposed evolution of the fungi from a common ancestor (Carr & Baldauf, 
2011, Cavalier-Smith, 2009). The fungi are thought to have evolved from the primarily 
aquatic Chytridiomycota, losing their flagella to become terrestrial Zygomycota followed 
by morphological and biochemical adaptations to become the Dikarya. The fungi are also 
thought to be more closely related to the Animalia than the Plantae.  
 

1.3.6 The role of PUFAs within the fungi 

In regard to the role PUFAs play within fungi it is believed that one of their functions 

may be the maintenance of membrane fluidity in response to temperature. This is 

because these PUFAs are usually incorporated into phospholipids. Due to their 
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amphipathic properties they form the cell and organelle membranes, with the fluidity of 

the membrane regulated by the attached fatty acids. Long chain, saturated fatty acids 

have a higher melting point than shorter chain saturated fatty acids due to the greater 

interaction experienced by the larger carbon chains. Two forms of interaction are 

present within the membrane, adjacent fatty acid interaction and overlapping fatty acid 

interaction. Adjacent interaction occurs between fatty acids next to one another in the 

membrane, with long saturated chains providing the maximum area for interaction. 

Overlapping interaction occurs between fatty acids attached to opposing sides of the 

membrane with interaction occurring across a proportion of the carbon chain. A long 

saturated chain, as oppose to a shorter chain, will experience greater interaction due to 

increased overlap with opposite chains. Interaction with adjacent chains also increases 

due to the greater charge separation experienced by longer acyl chains, resulting in a 

higher melting point. This increases order within the membrane creating a more rigid 

structure (Mykytczuk et al., 2007). The introduction of cis double bonds leads to the 

disruption of membrane fatty acid organisation and results in a less ordered system. 

This occurs because of the nature of cis double bonds, as they add a “kink” to the chain. 

Each double bond in effect changes the direction of the chain in essence curving it. This 

leads to less interaction with neighbouring chains due to the multitude of different 

shaped chains in the membrane, which in turn lowers the melting point. This system of 

altering the melting point of the fatty acids is a key aspect to the maintenance of 

membrane fluidity during cold conditions. 

Several studies seem to indicate that lower temperatures do indeed induce the 

formation of a more unsaturated membrane.  Maintaining membrane fluidity is essential 

for organisms such as bacteria (Wada et al., 1990), algae and for the more complex 

fungi, as well as plants as demonstrated by Arabidopsis (Miquel et al., 1993), which 

demonstrated low temperature induction and the subsequent transcription of a n3 

desaturase at 20°C growth (Gibson et al., 1994). Even mammals, whilst capable of 

maintaining a constant core temperature demonstrate decreased melting points of fats in 

tissues which are more exposed, such as snouts and hooves (Irving et al., 1957). The 

fluidity of the membrane is essential for processes such as endo- and exo-cytosis, the 

formation of vesicles, the turnover of the phospholipids, the movement of protein 

receptors as well as enzyme activity (Sandermann & Strominger, 1972) and their 

stabilisation (Dowhan, 1997) as well as conferring a certain amount of flexibility and 

tolerance to physical and osmotic strains. Therefore, organisms without the ability to 

regulate their temperature would need a mechanism by which their membrane fluidity 
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could be controlled when external temperatures fell. This is why organisms isolated 

from cold locations, such as the Antarctic, are thought to be more likely to produce 

PUFAs. In the subsequently discussed studies, lowering the growth temperature 

generally results in an increase in fatty acid unsaturation, and it is thought that 

organisms adapted to live in temperatures below freezing will display fatty acids with a 

greater degree of unsaturation, which allow them to survive the harsh climate. 

Fungi from the Antarctic are relatively unstudied, with little work having been 

published on profiling large numbers of fungi from the region. When organisms such as 

bacteria were isolated and screened from the Antarctic, many were wrongly classified to 

the species level and grouped with known species, even though they exhibited 

VLCPUFA production when other species in the genus did not.  This led to the re-

classification of these organisms, with the discovery of new species within the genus 

(Nichols et al., 1999). In these bacteria, VLCPUFAs such as C20:5 n3 (Nichols & 

Nichols, 1993) and C22:6 n3 were observed. Those organisms isolated from low 

temperature environments which survive in cold climates are usually designated 

psychrophilic, i.e. cold loving and therefore have growth maxima <15°C, whereas 

psychrotolerant organism have the ability to grow at <15°C, however their growth 

maximum is usually >20°C (Robinson, 2001). In regard to other bacterial studies, when 

subjected to a temperature change of 42°C to 24°C, E. coli responded with the 

desaturation of the fatty acids in the membrane within 30 seconds, with an increase in 

cis-vaccenic acid (C18:1 ∆11) (Garwin & Cronan, 1980). The mesophilic bacterium 

Arthobacter when exposed to cold stress with a decrease in temperature from 37°C to 

2°C increased unsaturated fatty acids by 19% (Thieringer et al., 1998). 

Several studies have shown the effects of temperature on fatty acid profiles. In certain 

bacteria such as Listeria monocytogenes, low temperature growth promotes the 

formation of anteiso-C15:0 (Annous et al., 1997), a branched chain saturated fatty acid, 

as well as the formation of short chain saturates. However, increases in unsaturation 

levels were negligible. Fungal culture temperature experiments have also been 

conducted. Three Antarctic fungal isolates were subjected to two culture conditions at 5 

and 15°C (Weinstein et al., 2000). It was found for all three organisms, Humicola 

marvinii, Geomyces pannorum and Mortierella elongata that when grown at the lowest 

temperature of 5°C, the most unsaturated fatty acid, C18:3 n3 or C20:5 n3 in the case of 

Mortierella were produced at the highest levels. It was also found, with Mortierella that 

the second most highly unsaturated fatty acid, C20:4 n6 had the highest abundance at 
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15°C. The unsaturation indices for both Geomyces and the Humicola showed increasing 

unsaturation with the decrease in temperature although Mortierella showed a small 

counter trend, experiencing slightly greater unsaturation at 15°C. The explanation for 

this was the increased levels of trehalose at 5°C which acted to maintain separation 

between polar head groups, and maintain the structure of the membrane during 

desiccation or freezing events. At the other end of the spectrum, thermophilic fungi 

when compared to their mesophilic counterparts demonstrated a lack of C18:3 n3/n6 in a 

majority of cases (Mumma et al., 1971). Whilst not all the mesophiles demonstrated the 

capability to produce the trienoic fatty acids, two thirds were able to produce LCPUFAs 

whilst only 28% of thermophiles demonstrated this capability. When the unsaturation 

levels were studied, it was found that the mesophiles demonstrated unsaturation indices 

in the region of 1.01-1.61 for polar lipids, whilst thermophiles showed consistently 

lower indices in the range of 0.75-1.04, with higher unsaturation indices representing 

greater levels of unsaturation. Neutral lipids were typically found to be more saturated 

than the corresponding polar fraction, although several exceptions were noted. In 

general the neutral fraction was also more unsaturated within the mesophiles than in the 

thermophiles. However, the study used only one growth temperature for the mesophiles, 

and a higher temperature for thermophiles. This means that direct comparison of the 

unsaturation indices is misleading as the profiles of thermophiles may become more 

unsaturated as the temperature is lowered. In fact thermophiles may not grow at all in 

colder temperatures, in part due to their inability to modify their fatty acid profile 

sufficiently.  

Several exponentially growing fungi were studied in relation to the effect of 

temperature on the total fatty acid profile (Suutari, 1995). The temperature range used 

was 10-35°C. For one of the organisms, Penicillium chrysogenum, the lowest culture 

temperature of 10°C produced the greatest abundance of C18:3 (class not known), with 

Aspergillus niger showing elevated levels at 15°C. Trichoderma reesei showed that 

20°C culture produced the highest levels of C18:3, whilst Neurospora crassa produced 

the largest quantity at 20°C. Unsaturation levels demonstrated a large degree of 

variance, with A. niger having the highest unsaturation levels at 15°C, but dropping 

suddenly with the lowest unsaturation at 10°C. P. chrysogenum almost demonstrated a 

bell shaped curve for unsaturation index when plotted against culture temperature, with 

20°C growth yielding the greatest unsaturation. T. reesei demonstrated a similar trend, 

with a gradual rise in unsaturation from 10 to 20°C growth, with the fatty acid profile 

reaching its maximum unsaturation level at 26°C, followed by a sharp drop in 
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unsaturation levels when grown at 30 and 35°C. Finally, N. crassa demonstrated a 

relatively constant unsaturation index regardless of temperature. All the organisms 

studied however were mesophilic, with none demonstrating optimal growth below 

20°C. The fact that none of the organisms demonstrated the greatest unsaturation index 

at 10°C would imply that the organisms are incapable of unsaturation levels beyond that 

observed at warmer culture temperatures. This may possibly be due to low temperature 

inactivation of enzymes. Therefore if we assume that mesophiles exposed to low 

temperature are not adapted sufficiently in other areas, such as protein function at low 

temperature, we can see that the organisms that demonstrate optimal growth at 

temperatures in the region of 20-35°C demonstrate increased unsaturation when the 

culture temperature is lowered from 35°C to 20°C. However, at temperatures below 

20°C the organisms seem unable to grow in an optimal manner, with substantially 

decreased growth rates and declining unsaturation levels.    

  Whilst little fatty acid profiling of fungi from Antarctica has been carried out, 

studies looking at lowering growth temperatures of mesophiles to increase VLCPUFA 

production, lead to the belief that low temperatures induce desaturation. The species 

Mortierella verticillata produces C20:5 n3 at around 7.7% TFA (Shinmen & Shimizu, 

1989)  as well as other Mortierella species, which produced lesser amounts. The results 

also showed that culture at the lower temperature of 12°C induced the formation of C20:5 

n3, at the expense of C20:4 n6. This gives an indication that lower temperatures induce 

the formation of VLCPUFAs. Mortierella alpina was found to produce 1.88g/l of C20:5 

n3 (Shimizu & Kawashima, 1989), and it was suggested that two routes were used to 

accumulate C20:5 n3. The first was the conversion of C20:4 n6 to C20:5 n3 when the 

culture was incubated at low temperatures and the second route was through the 

supplementation of a precursor to C20:5 n3, such as C18:3 n3. By combining both these 

routes it was speculated that the C20:5 n3 yield would increase.  

The response to cold is an attempt to retain the fluidity of the organism’s membrane 

with the mechanism explored by Mikami et al. (Mikami & Murata, 2003). Whilst the 

mechanism for this response was studied in a prokaryote, the general principle of 

modifying the membrane to maintain fluidity still holds true. The author suggested that 

desaturases are switched on at low temperatures, and that decreasing temperatures do in 

fact cause the membrane to rigidify, as shown by Fourier transform infrared 

spectroscopy (FTIR). It was also shown that deactivating desaturases resulted in 

increased rigidification, with the FTIR frequency dropping considerably, demonstrating 
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the need for PUFAs during cold conditions. This was shown for the cyanobacterium 

Synechocystis, although similar principles are likely to affect fungi as well. Another 

point noted by Mikami et al. is that whilst cold temperatures increased unsaturation of 

the lipids in the membrane, fatty acid synthesis decreased. This is possibly to stop the 

introduction of saturated fatty acids into the membrane, as well as the possibility of the 

cell being metabolically less active at low temperatures. It was also shown how 

influential temperature is on membrane fluidity, with several examples of reduction in 

the external temperature leading to the rigidification of the membrane, with the reverse 

occurring during temperature increases. It is thought that the cold may not directly 

influence the fatty acid profile, but rather the rigidity of the membrane, through the 

decrease in temperature. Again, Mikami et al. mentions that once a fluidity equilibrium 

is reached, that is, the membrane reaches an optimum fluidity, the genes transcribing the 

desaturases become down regulated or cease to be transcribed. Therefore this would 

indicate that the membrane itself contains some way of detecting fluidity or rigidity. 

The studies by Mikami also show there to be a protein, Hik33 (histidine kinase 33) that 

regulates desaturation of the membrane. This is a trans-membrane protein which is 

speculated to respond to the change in membrane fluidity and regulate several cold 

induced proteins by dimerising during the rigidification of the membrane. This 

dimerisation would lead to a phosphorylation reaction, which in turn would instigate a 

signal cascade, initiating the transcription of cold shock genes, such as desaturases. This 

again is found in bacteria, although a similar homolog and mechanism may be present 

in fungi.  

1.3.7 Fatty acid biosynthesis within the fungi 

1.3.7.1 Elongation 

Fatty acid biosynthesis is a highly conserved process in terms of the reactions 

involved. The specific enzymes vary between prokaryotes and eukaryotes, however 

their functions remain similar. The process of fatty acid biosynthesis occurs via two sets 

of reactions, elongation and desaturation. The elongation process up to C16:0 is referred 

to as fatty acid synthesis, whilst the process that elongates fatty acids after this point is 

referred to as de novo elongation. The process of fatty acid synthesis is carried out by 

the fatty acid synthase complex, whilst elongation is carried out by specific elongases. 

Fatty acid synthesis in fungi occurs within the cytoplasm whilst fatty acid elongation 

occurs on the endoplasmic reticulum (Jakobsson et al., 2006). The fatty acid synthesis 
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pathway is shown in figure 1-5. During the elongation process the acyl chain to be 

elongated is combined with a malonyl subunit (C3) in a condensation reaction. This 

subunit is added to the carboxyl end of the growing acyl chain through the action of 

either the β-ketoacyl synthase domain or an elongase. Following this is a reduction step 

followed by a decarboxylation step, which removes CO2. A final reduction step 

completes the elongation of the chain by two carbons. More specifically, in fatty acid 

synthesis the acetyl-CoA and malonyl-CoA both bind to the acyl carrier protein (ACP) 

domain of the FAS complex forming thioester bonds, although the acetyl/acyl chain 

attaches to the β-ketoacyl synthase subunit once the malonyl-CoA attaches to the ACP 

domain. This allows both acyl chains to be attached to the FAS complex permitting the 

condensation reaction to occur, which results in the acyl group being attached to the 

malonyl group, with the release of CO2. At this point the elongated chain is attached to 

the ACP domain, although during the next round of elongation the growing chain will 

again be transferred to the β-ketoacyl synthase arm. The fatty acid C16:0 is the 

predominant product of fatty acid synthesis, but shorter chain FAs such as C12:0 and 

C14:0 may be released from the FAS complex but require either an acyl-transferase or an 

acyl-ACP-thioesterase (Bonaventure et al., 2003).  

Unlike fatty acid synthesis whereby the reactions are localised to the FAS complex, 

fatty acid elongation involves four independent enzymes not associated as a complex, 

which are associated with the ER membrane and utilise acyl-CoA substrates exclusively 

(Ohno et al. 2010), (Domergue et al., 2003). The elongation after fatty acid synthesis is 

shown in Figure 1-8. When referring to elongases it is important to note that the 

condensing enzyme, or the β-ketoacyl CoA, the enzyme responsible for the merging of 

the acyl chain and the malonyl-CoA is in scientific literature referred to as the elongase. 

This is because the condensing enzyme is the substrate specific step, recognising the 

chain length as well as the number and position of double bonds, and is also the rate 

limiting step (Venegas-Calerón et al., 2010). The other three components, when 

recombinant technology is utilised, are not cloned from the target organism and are 

produced endogenously by the host cell and can complete the further elongation steps 

regardless of the condensing enzyme used. It has been found that engineering non-

endogenous elongases (condensing enzymes only) of similar (Parker-Barnes et al., 

2000) and dissimilar (Paul et al., 2006) classes leads to the initial condensation reaction 

carried out by the cloned elongase being finished by the native complement of enzymes 

within the ER. Therefore it is believed that different elongases are synonymous with 

different condensing enzymes. 
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Figure 1-5. The fatty acid synthase pathway which is responsible for generating fatty acids up to C16:0. The FAS complex is capable of catalysing all four 
reactions; condensation, reduction, dehydration and reduction. The FAS complex is found within the cytoplasm and binds to the acyl substrates using an 
acyl carrier protein (ACP). The elongation itself adds two carbons to the acyl chain at the carboxyl end with the two carbons taken from malonyl-CoA.    
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As mentioned earlier there are different classes of elongases. In fungi and mammals, 

the ELO class of elongase is used, found first within the yeast Saccharomyces 

cerevisiae, whilst in plants the FAE class of elongases is present. The ELO class of 

elongases are also present in plants, although the FAE class is not found within fungi or 

mammals. In yeast there have been several elongases identified, ELO1, ELO2 and 

ELO3. It is found that Saccharomyces cerevisiae produces mainly saturated fatty acids 

up to C26:0 with the longest unsaturated fatty acid being C18:1 as produced by the strain 

used by Paul et al. (Paul et al., 2006). This work concluded that the elongase ELO1 

elongates C14:0 to C16:0, that ELO2 elongates sequentially C16:0 to C22:0, although 

elongation to C24:0 was possible and that ELO3 elongates again sequentially C20:0 to 

C26:0. It has also been shown that ELO2 and ELO3 can elongate the respective 

monounsaturated fatty acids as well (Oh et al., 1997). Structurally the ELO class 

contains 5-7 trans-membrane domains, a conserved histidine motif (Pereira et al., 

2004,Tan et al., 2011), with the amino acid sequence F-L-H-V-Y-H-H, as well as an ER 

retrieval motif (Jakobsson et al., 2006). This is in contrast to the evolutionarily distinct 

FAE class, which contain 1-2 transmembrane domains (Joubès et al., 2008), do not 

contain the conserved histadine motif, but rather a catalytic triad of amino acids and are 

are around 500 amino acids long, compared with around 300 amino acids for the ELO 

class (Venegas-Calerón et al., 2010). The review by Leonard et al. (Leonard et al., 

2004) states the majority of ELO class elongases discovered so far and it can be seen 

that the majority of the characterised elongases are found within the mammals.  

Within fungi, only the yeast ELO and Mortierella  γ linolenic acid elongase 

(GLELO), Mortierella alpina elongase (MAELO) and Mortierella alpina long chain 

elongase (MALCE1) have been characterised, although the ∆6 elongase in 

Conidiobolus obscurus has been recently elucidated (Tan et al., 2011). The yeast ELOs 

and their function have been described previously, though it would seem likely that the 

majority of fungi contain similar homologs for the production of C18-24 saturates and 

monounsaturates. The ELO1 elongase’s main role appears to complement the FAS 

complex by elongating fatty acids greater than 8 carbons to C16:0, which the FAS cannot 

utilise (Dittrich et al., 1998). ELO2 as well as the functionally similar elongase 

MALCE1 from Mortierella alpina carry out the predominant formation of C18:0, though 

both elongases have been shown to act on longer saturated fatty acids producing up to 

C20:0 and C22:0 from MALCE1 and ELO2 respectively, as well as their equivalent 



Chapter 1  37 

monounsaturated fatty acids (Sakuradani et al., 2008). MAELO appears functionally 

equivalent to ELO3 as both catalyse the elongation of saturated fatty acids up to C26:0 

(Sakuradani et al., 2008). The final rare elongase found within fungi is a ∆6 elongase 

named GLELO characterised by Parker-Barnes et al. (Parker-Barnes et al., 2000). This 

elongase predominantly catalyses C18:3 n6 and STA from the 18 carbon precursors to 

C20:3 n6 and C20:4 n3 respectively.  

The Thraustochytriaceae, which comprise of organisms capable of producing C20:5 n3 

and C22:6 n3 have been found not to follow the same mechanism of fatty acid synthesis. 

Polyketide synthesis, which is a bacterial, fungal as well as a chromist process for the 

production of secondary metabolites can also be used for the production of fatty acids. 

The process is outlined in Figure 1-6. The process is similar to that of fatty acid 

synthesis, namely the addition of the acetyl and the malonyl subunits. However, instead 

of removing the double bond from the intermediates, they are isomerised and the chain 

continues to grow with the double bond intact (Ratledge, 2004). This process is then 

speculated to continue with more double bonds being formed and isomerised. The 

process takes place on a polyketide synthase, similar to the fatty acid synthase in as 

much as they are both polypeptides containing multiple domains with enzymatic 

activity.  

1.3.7.2 Desaturation 

The other major modification of fatty acids is desaturation, the process of introducing 

double bonds into the chemical structure of the fatty acid through an oxidative process, 

involving an electron transfer system. The combined action of elongases and 

desaturases results in the biosynthesis of the long chain unsaturated fatty acids as shown 

in Figure 1-8. There are two types of desaturases, soluble and membrane associated 

with three substrate specificities; acyl-ACP, acyl-CoA and acyl-glycerolipid (Pereira et 

al., 2003). Soluble desaturases can be found within plastids in plants, which catalyse the 

first desaturation to C18:1 (Shanklin & Cahoon, 1998). Membrane bound desaturases 

then further desaturate FAs within the plastids in plants (Gibson et al., 1994), or in the 

ER in plants (McCartney et al., 2004) and mammals. 
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Figure 1-6. The polyketide synthesis pathway. The elongation reaction occurs through the 
addition of malonyl-CoA to acetyl-CoA or the growing polyketide chain. The condensation 
reaction is catalysed by a keto-synthase with the elongated polyketide product growing by 
two carbon units with the loss of CO2. Continuous elongation results in a carbon chain 
with keto functional groups every two carbons. In the example above, the first elongated 
polyketide product (C4) undergoes reduction, dehydration and hydrogenation by an enoyl 
reductase followed by an additional elongation to form C6. The keto-reductase and 
dehydratase are required to remove the keto group from the elongated chain. The double 
bond can be removed using a enoyl-reductase and NADPH or the trans- double bond can 
be relocated and converted to a cis- bond through the action of an isomerase. This 
synthesis pathway is thought to be responsible for C22:6 n3 production in 
Thraustochytrium.  
 

The desaturases found within the endoplasmic reticulum in animals and plastid 

membranes in plants utilise acyl-CoA as a substrate, though soluble, plastid localised 

desaturases utilise ACP substrates. However some ER membrane localised fungal and 

plant desaturases can use acyl moieties attached to glycerolipids (Kendrick & Ratledge, 

1992c), (Talamo et al., 1973), (Domergue et al., 2003) and it was found by Kendrick et 

al. that desaturation within phospholipids is region-specific. It was found that n3 

synthesis occurred at position one, whereas n6 synthesis occurred at position two on the 

glycerol backbone. This means that specific desaturases may only desaturate correctly 

positioned acyl substrates. Also of note are that some desaturases are referred to as front 

end desaturases. This is due to the fact that they introduce a double bond between an 
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existing double bond and the carboxyl group (Pereira et al., 2003). The mechanism by 

which fatty acids are desaturated is similar between cellular localisations, although there 

are differences in reducing agent and electron donor. In the ER associated system, the 

reducing agent is usually NADH. This provides two electrons to the desaturase, as well 

as two protons for the water formation. The other two electrons and protons are 

produced from the formation of the double bond in the fatty acid. Hence, NADH 

oxidises and passes electrons to the FAD containing cytochrome b5 reductase, which 

then reduces cytochrome b5. The cytochrome b5 domain is found to be fused to the N-

terminus of front end desaturases (Sperling & Heinz, 2001). The cytochrome b5 then 

reduces the desaturase, which in turn removes two hydrogen and two electrons from the 

fatty acid at a specific carbon number along the FA chain, introducing a carbon-carbon 

double bond (Shanklin & Cahoon, 1998). The pathway is shown in Figure 1-7. 
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Figure 1-7. The mechanism of desaturation. Desaturases utilise an electron transfer chain 
to convey electrons from a reducing agent, NADH, to oxygen to remove two hydrogen 
from the acyl chain to create a double bond and water.   
 

Fatty acids have to undergo several desaturation steps within fungi to become 

polyunsaturated fatty acids. Firstly within most fungi, C18:0 is desaturated by a ∆9 

desaturase to C18:1. This desaturase was previously thought to have a separate 

cytochrome b5, although several organisms such as S. cerevisiae and M. alpina have 

demonstrated a fused C-terminal cytochrome b5 domain (Sakuradani et al., 1999). 

Other features typical of this desaturase, as well as the majority of other membrane 

bound desaturases, is the presence of typical motif features such as three histidine-box 

motifs and two hydrophobic trans-membrane domains (Pereira et al., 2003). Next a ∆12 

desaturase converts C18:1 to C18:2 n6. This desaturase is lacking within mammals, which 

explains the necessity of incorporating C18:2 n6 into the human diet. This desaturase has 

been characterised from two Fusarium species as well as from Magneporthe grisea 
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(Damude & Zhang, 2006). It was also found that the desaturase had weak substrate 

affinity for C18:2 n6 and could convert it into C18:3 n3 and was thought to be the ancestor 

of the ∆15 desaturase, which is also present within the previously mentioned species. In 

fact it was shown that the ∆15 desaturase had substrate specificity for C18:1 and could 

form C18:2 n6. This overlap in desaturase specificity alluded to the common ancestry of 

the two enzymes. The role of the ∆15 desaturase is to convert C18:2 n6 to C18:3 n3, 

allowing for further fatty acid elongation and desaturation along the n3 route if 

subsequent enzymes are present.  

A further two desaturases are involved in both the n3 and n6 PUFA pathways. The ∆6 

desaturase is responsible for the formation of C18:3 n6 from C18:2 n6, as well as C18:4 n3 

from C18:3 n3. The ∆5 desaturase is responsible for the formation of C20:4 n6 and C20:5 n3 

from C20:3 n6 and C20:4 n3 respectively (Domergue et al., 2002, Parker-Barnes et al., 

2000). The two enzymes have also been characterised in the fungus Thamnidium 

elegans (∆6) (Wang & Li, 2007) and the oomycete Phytophthora megasperma (∆5) 

(Hornung et al., 2005). The last desaturase that is known to occur within the fungi is a 

∆17 desaturase, which is responsible for the conversion of C20:4 n6 to C20:5 n3 and has 

been found within Mortierella alpina (Shimizu & Kawashima, 1989) as well as the 

Oomycete Saprolegnia diclina (Pereira & Huang, 2004) with the production of C20:5 n3 

only occurring in M. alpina at low temperature growth. In S. diclina it was found that 

the desaturase only desaturated C20 polyunsaturated fatty acids and had no activity on 

C18 fatty acids. The enzyme was found to display the two trans-membrane domains and 

three histidine motifs thought to be involved with iron binding. It was also shown to be 

separate from the cytochrome b5 domain as well as being able to utilise acyl-CoA 

substrate.  
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Figure 1-8. The fatty acid elongation and desaturation pathway. Once C16:0 has been released from the FAS complex the fatty acid chain may be further 
elongated and desaturated. Both processes occur at the ER membrane in fungi, however elongation requires four separate enzymes to carry out the 
individual steps. The rate limiting condensation enzyme is referred to as an elongase. 
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1.3.8 Oleaginicity 

A fungus is described as oleaginous if the lipid accounts for 20% or more of the dry 

weight, where most of the lipid is stored as triacylglycerides (Zhang & Ratledge, 2007).  

The synthesis of fatty acids in most fungi requires a sustainable production of acetyl-

CoA and NADPH, as both are required for fatty acid elongation. Increased production 

of these two products can lead to a fungus becoming oleaginous. The method for 

differentiating oleaginous fungi is to grow them on a high carbon, low nitrogen media, 

which will induce oleaginous organisms to increase their fatty acid production. The 

pathway which leads to the accumulation revolves around three key enzymes; the first 

two are ATP : citrate lyase, and isocitrate dehydrogenase. Isocitrate dehydrogenase is 

found in the citric acid cycle which converts isocitrate to oxalosuccinate followed by 

conversion to α-ketoglutarate. A difference between oleaginous and non-oleaginous 

organisms is the regulation of isocitrate dehydrogenase by adenosine monophosphate 

(AMP). By restricting nitrogen levels in the media, AMP is degraded by the enzyme 

AMP deaminase, with its gene up regulated. This in turn releases NH3 allowing the 

organism to survive, which also leads to the inactivation of isocitrate dehydrogenase 

due to it’s regulation by AMP, resulting in an accumulation of isocitrate. This is 

converted back to citrate, which is transported into the cytoplasm via a citrate/malate 

transporter. Citrate is then acted upon by ATP : citrate lyase converting citrate to acetyl-

CoA and oxaloacetate (Ratledge, 2004) as shown in Figure 1-9. This acetyl-CoA can 

then be used for fatty acid biosynthesis.  

The third enzyme responsible for oleaginicity described by Kendrick and Ratledge is 

malic enzyme (malate dehydrogenase decarboxylating) as it releases NADPH from 

malate (Kendrick & Ratledge, 1992a), which is also required for fatty acid synthesis as 

a reducing agent. The cycle was originally thought to occur in the cytoplasm, although a 

second, membrane bound malic enzyme was also discovered. The cytoplasmic enzyme 

was postulated to provide NADPH for fatty acid biosynthesis, whilst the membrane 

bound enzyme was thought to supply NADPH for desaturation and elongation. It was 

thought that the acyl-lipid ∆6, ∆12 and ∆15 desaturases utilised NADPH for their 

reducing agent. The mechanism of action involves the conversion of pyruvate to 

oxaloacetate through the addition of CO2 and ATP, followed by hydrogenation by 

NADH to malate. Malate is subsequently converted to pyruvate with the loss of CO2 

and NADPH. The addition of non-endogenous NADPH along with other NADPH 

producing enzymes does not increase the yield of fatty acids according to Kendrick et 
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al. However, if malic enzyme is expressed constitutively, fatty production can increase 

by up to two and a half fold (Zhang & Ratledge, 2007). The oleaginicity pathway is 

shown in Figure 1-9. Therefore oleaginous organisms are defined by their regulation of 

isocitrate dehydrogenase by AMP, the presence of ATP : citrate lyase and an NADPH 

generating enzyme such as malic enzyme. Under low nitrogen conditions this results in 

the accumulation of acetyl-CoA and NADPH, which is fed predominantly to the FAS 

complex increasing fatty acid biosynthesis. It is also thought by Ratledge that a general 

NADPH pool does not exist in oleaginous organisms, and that NADPH production is 

integrated with the fatty acid production machinery (Ratledge, 2004). 
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Figure 1-9. The pathways associated with oil accumulation in oleaginous fungi (Ratledge, 2004). The regulation of AMP deaminase by AMP and the 
presence of ATP : citrate lyase and malic enzyme are thought to be indicative of oleaginous organism leading to the accumulation of acetyl-CoA and 
NADPH, which is funnelled predominantly into the FAS complex.
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1.3.9 Genetic engineering  

 Several attempts have been made to introduce or increase PUFA levels within plants 

and fungi, utilising genes from known fungal and algal sources. Initially, to identify and 

characterise the desaturases and elongases, individual or multiple genes were expressed 

in organisms which were simple to grow and only produced a limited fatty acid profile, 

such as Saccharomyces cerevisiae. The next step was to express genes of interest in 

more relevant and commercially viable hosts. As plant oils such as palm, soy and 

rapeseed account for around 75% of the global vegetable oil production (Damude & 

Kinney, 2008), and in the case of palm oil, contain a high proportion of saturated fatty 

acids, creating healthier oils from these plants is desirable. Attempts have been made 

with Brassica juncea (rapeseed) to modify the fatty acid profile. Rapeseed oil contains 

C18:3 n3 as the most unsaturated fatty acid, however with the addition of a ∆6 desaturase 

from Pythium irregulare it was found that C18:3 n6, the n6 counterpart of C18:3 n3 was 

produced at levels ranging from 25-40% of the total seed oil (Hong & Datla, 2002). 

C18:4 n3 was also produced in smaller quantities at 2-10% of the total fatty acids (TFA). 

Tobacco has also been modified with a ∆6 desaturase from Borago officinalis (borage) 

which resulted in the formation of C18:3 n6 and C18:4 n3, which was formed due to the 

presence of C18:3 n3 in the wild type plant (Sayanova et al., 1997). The presence of both 

n3 and n6 products was due to the presence of a ∆15 desaturase, which converted C18:2 

n6 to C18:3 n3 which was then acted upon by the inserted ∆6 desaturase. Knocking out 

enzymes such as the ∆15 desaturase gene can be beneficial if a desired product is 

required, as it allows for greater availability of specific substrate and prevents 

competition for enzyme activity, as n3 and n6 pathways compete for desaturases and 

elongases (Chen et al., 2006).  

The next step was the insertion of two desaturases into a host plant, with a ∆6 and a 

∆15 desaturase inserted into Glycine max (soybean). The host plant was capable of 

producing C18:3 n3 and therefore contained a ∆6 desaturase, however the addition of the 

∆6 desaturase from borage and the ∆15 desaturase from Arabidopsis led to the 

formation of C18:4 n3, with levels greater than 29% of the TFA (Eckert et al., 2006). It 

was found that the increased levels of LCPUFAs were primarily incorporated into the 

TAG fraction, although some were attached to phospholipids. Because of this, levels of 

C16:0 and C18:0 were found to increase within the phospholipid fraction, which was 

thought to compensate for the increased fluidity caused by the increased LCPUFA 

abundance. Soybean has also been modified with several genes to produce C20:4 n6. The 
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three genes used were all isolated from the fungus Mortierella alpina and consisted of a 

∆5 and ∆6 desaturase as well as a ∆6 elongase known as GLELO (Chen et al., 2006). 

The control plant was able to synthesise small quantities of C18:3 n3 however, the 

insertion of the 3 aforementioned genes allowed the production of VLCPUFAs up to 

C20:4 n6, albeit in low abundance with C20:4 n6 constituting around 2.1% of the TFA.  

The modification of microorganisms is also an important consideration as a large 

proportion of genes utilised for plant modification are of microbial origin. Several 

attempts have been made to modify organisms from the fungi. A similar transformation 

to that undertaken in tobacco and rapeseed was undertaken in the yeast Hansenula 

polymorpha, which normally produces C18:3 n3. With the insertion of a ∆6 desaturase, it 

was capable of producing C18:3 n6 as well as C18:3 n3 and C18:4 n3 (Laoteng & Ruenwai, 

2005). The fungus Aspergillus oryzae was modified with a ∆9 desaturase from 

Mortierella alpina which resulted in greater quantities of C16:1 and C18:1 being produced 

within A. oryzae (Sakuradani et al., 1999). As mentioned previously, certain organisms 

are classified as oleaginous and their potential has not gone unnoticed. The yeast 

Yarrowia lipolytica has been utilised for VLCPUFA production because of its ability to 

accumulate large quantities of lipid as TAG within its cells. However, many of these 

modifications have subsequently been covered by patents by companies such as 

DuPont, with the wild type fatty acid profile of Y. lipolytica, with fatty acids up to C18:2 

n6, being elongated and desaturated further up to C22:6 n3 utilising a myriad of genes 

(Beopoulos et al., 2010).  

It is noticeable that transformations utilise genes isolated from the same organisms, 

one of them being Mortierella alpina. One recent method involved transforming M. 

alpina itself using Agrobacterium tumefaciens, which is primarily used for plant 

transformation. This is in contrast to the usual role of Mortierella whereby its genes are 

cloned into other hosts. Ando et al. (Ando et al., 2009) showed that the over expression 

of a ∆17 desaturase in M. alpina resulted in a dry weight yield of C20:5 n3 of just under 

six times that of the wild type. The method of A. tumefaciens is also applicable to other 

filamentous fungi as was demonstrated by de Groot et al. (de Groot, M. J. A. et al., 

1998) and such transformations of VLCPUFA containing species could become more 

common as recombinant strategies for fungi become more effective and widespread as 

seen in plant biotechnology. In general, crop plants are a viable, as well as economic 

source of polyunsaturated fatty acids due in part because of their ubiquitous use in food. 

Crop modification appears to have predominantly focussed on increasing the yields of 
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C18:3 n3 and C18:4 n3 namely because achieving yields of C20:5 n3 would require large 

numbers of genes and many years of optimisation. Whether plants can accumulate large 

quantities of VLCPUFAs such as C20:4 n6 and C20:5 n3 is another consideration, as it is 

possible they could disrupt plant growth making plants unsuitable for large scale 

VLCPUFA production, as plants try to compensate for the increase in fluidity in their 

membranes. However if the n3 pathway up to C20:5 n3 is achieved commercially in 

plants, then even small amounts may have a profound impact on our health due to the 

large number of products these crops find themselves in. However, it would seem likely 

that microorganism transformation and optimisation will provide a more cost effective 

and efficient solution to longer chain polyunsaturated fatty acid production. This is due 

to the greater efficiency with which they are produced and the natural ability of certain 

species to produce and accumulate them, as well as the developing technology to 

modify these species. The next section will briefly cover the considerations for 

industrial production of VLCPUFAs as well as currently known fungal producers of 

these compounds.  

 

1.4 Fungal PUFA producers  

1.4.1 Market 

In the past there have been industrial attempts to create microbial oil, from the 

production of C18:3 n6 from Mucor circinelloides (Ratledge, 2004) to the production of 

cocoa butter substitutes (Ward & Singh, 2005). Currently companies such as Martek 

market C20:4 n6 from the organism Mortierella alpina. It is estimated that in 2005 the 

infant formula market, of which companies such as Martek supply VLCPUFA, is worth 

approximately $10 billion per year (Ward & Singh, 2005). It was suggested by Ward et 

al. that the addition of microbial VLCPUFA to infant formula added an extra 10-20% to 

the retail price, which is thought to dissuade some consumers from purchase due to the 

high price. Markets that are expected to show greater growth are the health food 

(nutraceutical), aquaculture and animal feed industries. Direct inclusion of VLCPUFA 

into food and liquid products is thought to be problematic due to lipid oxidation, 

although technologies such as micro-encapsulation may circumnavigate this problem 

(Jimenez et al., 2004). In regards to industry and lipid production the cost associated 

with producing these desirable fatty acids determines whether a specific organism is a 

viable lipid producer. The environmental impact of the lipid producing process is also 
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worth considering due to the energy intensive processes required. Ideally, VLCPUFA 

producers need to accumulate large percentages of lipid and produce substantial 

biomass with a high rate of growth according to Ward et al. In oleaginous organisms, 

the percentage composition of the oil is also important, with oils containing one 

predominant fatty acid desirable. The VLCPUFA should also be in a TAG form for 

human consumption.  

Algae are one of the currently exploited groups of organisms for VLCPUFA 

production due to their high accumulation of lipid and relatively large biomass. Algae 

however are predominantly phototrophic, requiring light and CO2 to photosynthesise, 

which in turn produces NADPH from the light dependent reaction and acetyl-CoA from 

the action of pyruvate dehydrogenase on pyruvate or from β-oxidation of lipids. The 

requirement for light however, drives costs up as artificial lighting is expensive to 

continually run, and scaling of algal cultures is difficult and expensive due to this 

requirement (Li et al., 2008). According to Li et al., natural sunlight can be used in 

conjunction with photo-bioreactors, which capture solar energy in a similar manner to 

photovoltaic panels to reduce costs. However, natural lighting is not controllable and 

therefore variations in light level are a consistent problem. Another algal culture method 

is the raceway pond, which are also naturally lit. However both methods require energy 

to continually pump algal broth around the system, remove oxygen produced from 

photosynthesis and harvest the algal culture. Large quantities of water are also required 

for the circulating algal culture. With increased efficiency, algae could be a viable 

source of VLCPUFA and in the future may act as a net carbon sink as oppose to a CO2 

emitter. Fungi and several Oomycetes are heterotrophic which reduces the cost of their 

growth. They can also be grown on waste products such as glycerol i.e. from biodiesel 

production (Papanikolaou & Aggelis, 2002), food waste (Zhu et al., 2008) (Xue et al., 

2006) and sewage (Angerbauer et al., 2008).  

Other benefits of microbial production are that there is no requirement for arable land, 

can be used directly as aquaculture feed and are not generally affected by the season or 

climate. However, organisms requiring artificially maintained temperatures require 

increased energy, resulting in increased costs. Microorganisms are also liable to 

contamination, which would result in the decontamination and destruction of the current 

batch due to quality control. Plants however are liable to infection, which is remedied 

by pesticides, but drives up costs and are associated with detrimental environmental 

effects. This may be remedied by crops genetically modified to resist infection and 
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insect attack, with the pesticide usage estimated to drop by 14.5 million kg per year if 

50% of all maize, oil seed rape, sugar beet and cotton were GM within the EU (Phipps 

& Park, 2002). Plants are generally not capable of VLCPUFA production, however 

several mosses such as Marchantia polymorpha are capable of C20:4 n6 and C20:5 n3 

production (Shinmen et al., 1991), however production of these VLCPUFAs is usually 

very low, with slow growth rates and low biomass further reducing their usefulness.  

Therefore in crop plants recombinant technology approaches are often used, however 

VLCPUFA yields are often low (Chen et al., 2006, Damude & Kinney, 2007) which 

make them uneconomical for VLCPUFA extraction. Bioreactors for microbial growth 

require a substantial capital investment compared with traditional farming practices. In 

the long term, the availability of land to grow crops on is the limiting factor, with both 

food crops and relatively recently, fuel crops competing for arable land. If all soybean 

and corn production in the USA were reallocated to biodiesel production, it would 

provide 6% of the country’s diesel (Hill et al., 2006). This small percentage 

demonstrates the required amount of plant material needed to sustain an industry, with 

VLCPUFA production in direct competition with biodiesel production. Biodiesel 

according to Hill et al. is also much less energy intensive to produce, possibly leading to 

a reduction of crops grown for bio-ethanol production. Developing a crop solely to 

produce VLCPUFAs at high levels seems uneconomical as such crops cannot be used 

for biodiesel and vice versa and reduces the land available for food crops. However, it 

does seem feasible that food crops will be modified to increase levels of 

monounsaturated and polyunsaturated fats, although at levels much lower than that 

found in microorganisms, which most likely will be developed for high purity 

VLCPUFA containing oils.  

 One of the targeted markets for microorganism based VLCPUFAs is the aquaculture 

sector, which has the potential for sustainable and controlled production of fish. 

Overfishing is foreseen in lowering natural stocks of oily fish such as salmon and tuna, 

with open water fish stocks being at increased risk of contamination from 

polychlorinated biphenyls and methyl mercury, which in high enough quantities can be 

detrimental to health (Yokoo et al., 2003). This puts greater pressure on farm fisheries 

to produce increased numbers of high quality fish, comparable to their natural open 

water counterparts. The problem with sustainable farm fisheries is that the feed used 

usually derives from smaller pelagic fish such as herring and sardine (Pauly et al., 2005) 

(Hannesson, 2003). This practice is therefore not sustainable and an alternative fish feed 
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which can supply VLCPUFAs such as C20:5 n3 and C22:6 n3 is desirable (Harel et al., 

2002). The state of the aquaculture industry according to the Food and Agriculture 

Organization of the UN (FAO) was in 2007 expanding, with levels of fish produced by 

aquaculture reaching 50.3 million tonnes. Human consumption of fish reached a high of 

113.7 million tonnes, with trade in fish again showing growth at $98.1 and $93.5 billion 

dollars for the world import and export respectively (FAO, 2007). Alternative sources 

of VLCPUFAs have been found in algal species such as Crypthecodinium, 

Phaeodactylum tricornutum and Tetrahymena pyriformis (Conner & Stewart, 1976) and 

some of these are used commercially to produce the valuable VLCPUFA oils. Algae are 

responsible for the VLCPUFAs found in open water oily fish, as they are consumed by 

smaller prey fish which leads to the subsequent bio accumulation within larger 

predatory fish. The aquaculture sector is a viable market for high value VLCPUFA 

containing oils due to the high nutritional value of oily fish. Aquaculture and 

supplementation of fish stocks with fungal sources are discussed further in chapter 6.  

 

1.4.2 Currently known producers 

In respect to fungal producers of PUFAs, it is found that the majority of fungi have 

the capability of producing trienoic acids. There is however a distinct divide between 

the phyla in relation to fatty acid class. Figure 1-10 outlines the trends in fatty acid 

production within the fungi. It appears that for the most part, the majority of 

ascomycetes and basidiomycetes produce C18:3 n3 as their most unsaturated fatty acid 

whereas zygomycetes are characterised by their production of C18:3 n6 bar the few C20 

VLCPUFA forming species (Kock & Botha, 1998). There are however a few species 

capable of further elongation and desaturation, although such known VLCPUFA 

producers are located within the Zygomycota, Chytridiomycota and the chromistan 

Oomycota. The majority of fungi however terminate fatty acid production at C18:3 n6 

and C18:3 n3. Therefore in regards to producers of C18:3 n6 nearly all literature points to 

zygomycetes as the primary producers of the fatty acid. The genus Mucor contains 

many species capable of producing C18:3 n6. Mucor circinelloides, M. rouxii and M. 

mucedo are just some of the species able to produce C18:3 n6. M. circinelloides has been 

found to produce 0.25 g/l (Jackson & Fraser, 1998) and 0.8 g/l (Shimizu & Certik, 

1999) of C18:3 n6. M. mucedo was found to have a mycelial C18:3 n6 content of 28.4 

mg/g (Certik & Sereke, 1993) and M. rouxii was found to produce C18:3 n6 up to 18.1% 

of the total fatty acids (Jeennor & Laoteng, 2006). It was also found by Jeennor et al. 
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that different life cycle stages of the organism, the yeast and filamentous form had 

different fatty acid compositions. These morphologies were induced through the use of 

culture conditions, such as limiting oxygen or the addition of phenethyl alcohol. The 

zygomycete Rhizopus has also been found to produce C18:3 n6, which produced 4.37 

mg/g of dry substrate (Conti & Stredansky, 2001). 

The Mortierellaceae family contains the genus Mortierella, which is well studied for 

the production of VLCPUFAs. The Mortierella genus was once split into two sub-

genera, the Micromucor and the Mortierella, with each sub-genus characterised by their 

differing fatty acid profiles, with the Micromucor only producing up to C18:3 n6 and the 

Mortierella sub-genus producing C20 VLCPUFAs (Amano & Shinmen, 1992). The 

Micromucor were raised to the genus level (Arx, 1982), which contained the species 

Mortierella isabellina and Mortierella ramanniana. However, it was shown that species 

within the Micromucor were more related to the Mucoraceae and these species were 

transferred to Umbelopsis (Meyer & Gams, 2003). Hence M. isabellina and M. 

ramanniana are now Umbelopsis isabellina and U. ramanniana respectively. Literature 

predating this change in taxonomy uses the Mortierella genus and as such will be 

referred to by that genus name in this work where it applies. 

The old Micromucor species of Mortierella are found to produce up to C18:3 n6. 

Mortierella isabellina has been shown to produce 2.44 mg/ml of C18:3 n6 (Xian & Yan, 

2001) on a media containing 2% hexadecanol. The mycelium was incubated at 5°C for 

15 days, which increased the C18:3 n6 concentration. This incubation step indicates that 

low temperatures can increase the level of desaturation. M. isabellina strains have also 

been shown to accumulate up to 22.9% of the TFA as C18:3 n6, with the species M. 

elongata, M. alpina and M. ramanniana having been shown to produce 7.4%, 10.9% 

and up to 31.4% of the TFA as C18:3 n6 respectively (Amano & Shinmen, 1992) in  

liquid medium. A M. ramanniana isolate was found to produce C18:3 n6 by Hansson et 

al. (Hansson & Dostalek, 1988) and the levels could be increased by decreasing the 

culture temperature to 20°C. It was also found that the overall unsaturation index of the 

fatty acids increased with the decrease in temperature. Total lipid levels however 

decreased when M. ramanniana was subjected to low temperature growth.  
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Figure 1-10. Fungal and chromistal producers of polyunsaturated fatty acids. The vast majority of VLCPUFA producers are found within the Chromista, 
Chytridiomycota and Zygomycota. The Ascomycota and Basidiomycota are thought to be capable of producing up to C18:3 n3 only, having acquired a ∆15 
desaturase whilst losing a ∆6 elongase and a ∆6 desaturase. Those organisms not in coloured boxes are profiled within this study. Several species in 
coloured boxes were also profiled within this study. 
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Another family in the Zygomycota is Cunninghamellaceae. Cunninghamella 

echinulata has been shown to produce 25.1 mg/g of C18:3 n6 in the mycelial biomass 

(Certik & Sereke, 1993), with the species Cunninghamella elegans producing 9.26 mg/g 

of C18:3 n6 when grown on dry substrate (Conti & Stredansky, 2001). The cultures were 

grown directly on varied grains, which could simulate an industrial process for culturing 

the organisms. It was found that greater yields of C18:3 n6 could be produced by 

lowering culture temperature with the optimum temperature for C18:3 n6 being 21°C. 

Finally, Thamnidium elegans was found to contain C18:3 n6 at 30% of the total fatty 

acids (Wang & Li, 2007) when cultured on PDA containing 15% glucose and at 10°C. 

The strain of T. elegans studied by Stredansky et al. (Stredansky & Conti, 2000) was 

found to produce varying quantities of C18:3 n6 depending on the culture conditions. The 

vast majority of fungi within the Ascomycota and Basidiomycota are only capable of 

trienoic fatty acid production, producing the n3 LCPUFA C18:3 n3 (Kock & Botha, 

1998). Examples are the fungus Fusarium moniliforme, which has been shown to 

contain the enzyme required for the production of C18:3 n3, a ∆15 desaturase (Damude 

& Zhang, 2006). It was found by Laotang et al. (Laoteng & Ruenwai, 2005) that the 

yeast Pichia (Hansenula polymorpha) produced C18:3 n3 at 10.9% of the total fatty acids 

(TFA). It would be expected that unknown organisms isolated from cold conditions 

would produce at least C18:3 n6 or C18:3 n3. This is due to both fatty acids’ 3 double 

bonds, and their potential fluidising effect within the membrane. 

Longer chain C20 and C22 VLCPUFAs are predominantly produced by organisms 

within the Zygomycota, Chytridiomycota and the Oomycota. Starting with the 

zygomycetes, C20 VLCPUFAs are produced by the genus Mortierella. These 

Mortierella species are found to produce large quantities of the VLCPUFA C20:4 n6, 

which is demonstrated by M. alliacea, with the fatty acid comprising 44% of the TFA 

(Aki  et al., 2001). Shimizu et al. (Shimizu et al., 1988) demonstrated with several 

Mortierella species the capability of the genus to produce C20:4 n6 and C20:5 n3. The 

species studied were M. alpina, M. hygrophila, M. zychae, M. elongata, M. parvispora 

and M. schmuckeri. The C20:5 n3 and C20:4 n6 content was also studied in relation to 

temperature, with C20:5 n3 levels increasing with decreasing temperature and C20:4 n6 

increasing with increased temperature. C20:5 n3 was found not to be produced at the 

highest temperature of 28°C. Rising levels of C20:4 n6 with increased temperature were 

attributed to the linked biosynthetic pathway of C20:4 n6 and C20:5 n3, whereby C20:5 n3 
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is formed from the desaturation of C20:4 n6. Mortierella alpina was found to produce 

1.88 g/l of C20:5 n3 (Shimizu & Kawashima, 1989), and it was suggested that two routes 

were used to accumulate C20:5 n3. Whilst Mortierella does not appear to contain an 

endogenous ∆15 desaturase, supplementation with C18:3 n3 allowed for greater 

accumulation of C20:5 n3. This would suggest that the ∆6/5 desaturases as well as the ∆6 

elongase are capable of acting upon n6 as well as n3 substrates. Other documented 

zygomycetes capable of producing VLCPUFAs are Entomophthora exitalis and 

Conidiobolus nanodes which were found to produce up to C22:6 n3, albeit in small 

quantities, up to 3 and 0.8% respectively within the sphingolipids and glycolipids, up to 

1.2 and 2.3% within the neutral lipids and up to 1.6% for C. nanodes within the 

phospholipids (Kendrick & Ratledge, 1992b,Kendrick & Ratledge, 1992c). The 

formation of these VLCPUFAs within these two organisms however, could be the result 

of already known enzymes acting on C20:5 n3 for example, further elongating and 

desaturating the product as oppose to being the products of novel desaturases and 

elongases. Within the Chytridiomycota two organisms were identified as producing up 

to C20:4 n6, Allomyces macrogynus and Monoblepharella sp. with C20:4 n6 comprising 

13.8% and 9.4% respectively (Southall et al., 1977). Another parasitic chytrid 

Zygorhizidium was found to be capable of producing C20:4 n6 within its zoospores at 

around 8% of the total fatty acids (Kagami et al., 2007).  

The chromists contain a large proportion of VLCPUFA producing organisms. Those 

that were once classified as true fungi are located within the Oomycota. Within this 

phylum is the genus Pythium, which has been shown to produce C20:5 n3, with the 

species P. ultimum producing around 0.4 g/l (Shimizu & Certik, 1999). Another 

Pythium strain was shown to elongate C20:5 n3 to C22:5 n3 (Singh & Ward, 1998), 

however it is most likely, as with Conidiobolus that a non-specific reaction has occurred 

with a ∆6 elongase predominantly responsible for C18-20 elongation. The paper also 

showed that Saprolegnia species were also capable of C20:4 n6 production, although 

only Saprolegnia diclina was capable of C20:5 n3 formation at 8.6% of the TFA. 

Saprolegnia diclina has also been noted for its n3 desaturase (Pereira & Huang, 2004). 

A paper by Aki et al. (Aki et al., 1998) shows that Achlya is capable of producing up to 

C20:5 n3. The effect temperature had on the fatty acid profile of Achlya was also studied. 

The lowest growth temperature of 15°C promoted the greatest production of C20:5 n3 at 

14% of the TFA, whilst C20:4 n6 levels were found to be greater at the higher 

temperatures of 20 and 28°C. It was found that when fatty acids were split into neutral 

and polar lipids, C20:5 n3 was in greater abundance in the neutral lipids at the lowest 
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temperature of 15°C whilst C20:4 n6 was found to be greatest at 20°C. In regards to the 

polar lipids, phosphatidylcholine (PC) was the predominant phospholipid class at all 

temperatures with the greatest percentage of C20:5 n3 found within the 

phosphatidylethanolamine (PE) fraction at 20°C, although 15°C growth produced the 

greatest combined total of C20:5 n3 within the  PE and PC fractions. C20:4 n6 was found 

as the greatest percentage at 20°C growth in the PE fraction. Finally, the organism 

Haliphthoros philippinensis has been found to produce C20:4 n6 and C20:5 n3, as well as 

trace quantities of C22:5 n3 (Kim et al., 1998). 

The final group to produce VLCPUFAs are those organisms found within the 

Chromista but within the phylum Labyrinthulomycota. Within this phylum reside 

species such as Thraustochytrium aureum which has been found to produce C20:5 n3 at 

levels of 9.1% w/w (Bajpai & Bajpai, 1991). Other thraustochytrid strains have been 

found to produce C20:5 n3 up to 8.19% of the TFA (Bowles & Hunt, 1999), however the 

percentage of this fatty acid when compared to C22:6 n3 was low. It is within this 

phylum that several C22:6 n3 producers reside with the most well studied C22:6 n3 

producer being the previously mentioned Thraustochytrium, with Thraustochytrium 

aureum being shown to produce 0.166 g/l C22:6 n3 (Iida & Nakahara, 1996). Other 

cultivations have produced values of C22:6 n3 at 48.5% of the TFA (Bajpai & Bajpai, 

1991) and T. roseum was found to produce C22:6 n3 at 48% of the TFA (Shimizu & 

Certik, 1999). Another genus related to the Thraustochytrium is Schizochytrium, with 

these organisms also having been shown to produce C22:6 n3. A similar quantity of C22:6 

n3 compared with Thraustochytrium was obtained from an isolate which resembled 

Schizochytrium mangrovei, producing 2.17 g/l of C22:6 n3 (Bowles & Hunt, 1999). 

Other isolates of Schizochytrium, S. SR21, were found to produce 15.5 g/l (Shimizu & 

Certik, 1999), with others shown to have the fatty acid comprising 36.1% of the TFA 

(Kamlangdee & Fan, 2003).  
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1.5 Objectives and strategy 

1.5.1 Objectives 

To identify novel fungal or chromistal producers of VLCPUFA  from the CABI 

and BAS collection. 

Over 100 low temperature isolated fungi and several chromist species to be grown 

using two culture media at 15°C to induce VLCPUFA formation.  Fatty acid profiles of 

isolates to be analysed using GC-FID and GC-MS. The fatty acids extraction, 

derivitisation and analysis protocols to be confirmed suitable for lipid analysis. 

 

To investigate whether low temperature induces greater lipid unsaturation 

within fungi.  

Several psychrophilic/psychrotolerant fungi, as well as mesophilic isolates are to be 

grown at 3 temperatures and the total lipid profiles analysed by GC-FID and GC-MS. A 

preliminary investigation into which glycerolipid fractions primarily experience lipid 

modification in response to temperature in the fungal isolate Mortierella alpina will be 

explored using TLC and subsequent fatty acid analysis using GC-FID and GC-MS. 

 

To develop a novel PCR based screening methodology to identify VLCPUFA 

producing fungi. Further to this, to utilise the genes identified for the screen to 

create a recombinant VLCPUFA producing Phaffia rhodozyma strain.  

A PCR methodology using primers designed from the ∆6 elongase from Mortierella 

alpina will be developed and tested on both VLCPUFA producing and non-VLCPUFA 

producing fungi. The ∆6 elongase, as well as the ∆5 and ∆6 desaturases identified as 

potential PCR targets for the screen, will be cloned and inserted into Phaffia rhodozyma 

to create a C20:5 n3 producing strain. The fatty acid profiles of the recombinant strains 

will be analysed by GC-FID and GC-MS.  
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1.5.2 Strategy 

Table 1-1. The overall strategy of the project, with the priority indicating the order in 
which the objectives where to be met. 
 

Objectives Strategy Priority 

Fatty acid analysis using 

GC-FID and GC-MS and 

refinement of extraction and 

derivitisation. 

GC-FID and GC-MS platform analysis will 

be carried out prior to fatty acid screening to 

ascertain suitability. The extraction and 

derivitisation procedures will be refined 

based on the results obtained from the FA 

screen of low temperature isolates.  

1 

Investigation into the role of 

temperature on fatty acid 

profile and localisation of 

lipid modification in 

response to temperature. 

Analysis of several low temperature and 

mesophilic organisms with respect to 

temperature will be undertaken first. 

Localisation studies will be carried out 

subsequently.  

2 

The development of a novel 

PCR based screen and the 

creation of recombinant 

C20:5 n3 producing Phaffia 

rhodozyma strains.  

The novel PCR based screen and 

recombinant Phaffia both require shared 

primer development and gene cloning and 

will be undertaken in parallel.  

3 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals and Kits 

The majority of chemicals were sourced from Sigma-Aldrich Ltd, UK. All other 

compounds were purchased from the following companies:  

2.1.1.1 Media 

Potato dextrose agar, yeast extract, tryptone and agar no. 3 were from Oxoide, Potato 

dextrose broth was from Difco. 

2.1.1.2 Biochemical reagents 

 No. 3 filters were from Whatmann, Silica gel 60 plates were from Sigma-Aldrich, 

30% acrylamide was from Protogel, Sepharose gel was from Amersham, Comassie blue 

G250 was from Biorad, antibodies were from Promega, SDS-PAGE running buffer was 

from National Diagnostics, Molecular rainbow marker for SDS-PAGE was from 

Amersham. 

2.1.1.3 Molecular biology reagents 

Plant and fungal DNA extraction kit, blood and tissue DNA extraction kit and plant 

tissue RNA kit were from Qiagen, DNA loading buffer, ladder and agarose were from 

Bioline, reverse transcription kit was from Promega, Taq polymerase beads were from 

GE Healthcare, KOD polymerase was from Novagen, Gel and PCR purification kit and 

mini-prep kits were from Promega, restriction enzymes were from Promega, TOPO 2.1 

vector was from Invitrogen, pET23-b vector was from Novagen, primers were ordered 

from Operon MWG, TOP10 E.coli cells were from Invitrogen, BL21(DE3)pLysis* E. 

coli cells were from Novagen. 

 

2.1.2 Fungal isolates 

All isolates used within this work were provided by CABI (Bakeham lane, Egham, 

Surrey, UK, TW20 9TY) except isolates NCYC 874, 825 and 1464, which were from 



Chapter 2  

 

59 

the National Collection of Yeast Cultures (Institute of Food Research, Norwich 

Research Park, Colney, Norwich, UK, NR4 7UA). 

Table 2-1. List of organisms used for fatty acid screening with their isolation location and 
isolation substrate where available. 
 

IMI No. ID Location Isolation substrate 

403002 Herpotrichia sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403004 Ascomycota/Sarcosomataceae King George Island, 
Potter Cove, site 3 Colobanthus quitensis 

403008 Ascomycota/Sarcosomataceae Léonie Island, site 1 Colobanthus quitensis 

403010 Ascomycota/Sarcosomataceae Léonie Island, site 1 Colobanthus quitensis 

403011 Leptodontidium sp.  Léonie Island, site 1 Colobanthus quitensis 

403012 Leptodontidium sp.  Léonie Island, site 1 Colobanthus quitensis 

403014 Herpotrichia sp. South Georgia Colobanthus quitensis 

403015 Herpotrichia sp. South Georgia Colobanthus quitensis 

403016 Herpotrichia sp. South Georgia Colobanthus quitensis 

403017 Ascomycota/Sarcosomataceae Livingston Island, 
Hannah Point, site 1 

Deschampsia 
antarctica 

403019 Ascomycota/Sarcosomataceae Coronation Island Colobanthus quitensis 

403020 Ascomycota/Sarcosomataceae Coronation Island Colobanthus quitensis 

403021 Ascomycota/Sarcosomataceae Livingston Island, 
Hannah Point, site 1 Colobanthus quitensis 

403023 Ascomycota/Sarcosomataceae Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403024 Ascomycota/Sarcosomataceae Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403025 Ascomycota/Sarcosomataceae Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403026 Pleosporales sp. Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403027 Pleosporales sp. Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403028 Pleosporales sp. Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403029 Pleosporales sp. Livingston Island, 
Hurd Peninsula, site 2 Colobanthus quitensis 

403030 Pleosporales sp. King George Island, 
Point Thomas, site 1 Colobanthus quitensis 
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403032 Pleosporales sp. King George Island, 
Point Thomas, site 1 Colobanthus quitensis 

403033 Pleosporales sp. King George Island, 
Point Thomas, site 1 Colobanthus quitensis 

403037 Herpotrichia sp. King George Island, 
Point Thomas, site 1 Colobanthus quitensis 

403038 Pleosporales sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403040 Pleosporales sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403041 Pleosporales sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403042 Pleosporales sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403043 Pleosporales sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403045 Pleosporales sp. King George Island, 
Point Thomas, site 2 Colobanthus quitensis 

403046 Pleosporales sp. King George Island, 
Potter Cove, site 3 Colobanthus quitensis 

403049 Pleosporales sp. King George Island, 
Point Thomas, site 2 

Deschampsia 
antarctica 

403051 Leptodontidium sp. King George Island, 
Potter Cove, site 3 

Deschampsia 
antarctica 

403058 Cadophora/polyscytalum South Georgia Colobanthus quitensis 

403059 Cadophora/polyscytalum Léonie Island, site 1 Colobanthus quitensis 

403060 Leptodontidium sp.  Léonie Island, site 1 Colobanthus quitensis 

403061 Leptodontidium sp.  South Georgia Colobanthus quitensis 

403061 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403062 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403063 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403065 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403066 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403067 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403069 Leptodontidium sp. Lynch Island Colobanthus quitensis 

403070 Leptodontidium sp. Léonie Island, site 1 
Deschampsia 

antarctica 

403072 Leptodontidium sp. King George Island, 
Potter Cove, site 3 Colobanthus quitensis 
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403073 Leptodontidium sp. King George Island, 
Potter Cove, site 3 Colobanthus quitensis 

403074 Leptodontidium sp. King George Island, 
Potter Cove, site 3 Colobanthus quitensis 

403075 Leptodontidium sp. King George Island, 
Potter Cove, site 3 Colobanthus quitensis 

403077 Leptodontidium sp. Léonie Island, site 2 Colobanthus quitensis 

403078 Leptodontidium sp. Léonie Island, site 2 Colobanthus quitensis 

403079 Leptodontidium sp. Léonie Island, site 2 Colobanthus quitensis 

403080 Leptodontidium sp. Léonie Island, site 2 Colobanthus quitensis 

403082 Leptodontidium sp. Léonie Island, site 2 Colobanthus quitensis 

403087 Mollisia sp.  Anchorage Island, site 
1 

Deschampsia 
antarctica 

403088 Mollisia sp. Anchorage Island, site 
1 

Deschampsia 
antarctica 

403090 Mollisia sp.  Signy Island, site 3 
Deschampsia 

antarctica 

403091 Mollisia sp.  Signy Island, site 3 
Deschampsia 

antarctica 

403092 Mollisia sp.  Léonie Island, site 2 
Deschampsia 

antarctica 

403093 Mollisia sp.  Léonie Island, site 2 Colobanthus quitensis 

403094 Mollisia sp.  Léonie Island, site 2 Colobanthus quitensis 

403099 Mollisia sp.  Signy Island, site 2 
Deschampsia 

antarctica 

403100 Mollisia sp.  Signy Island, site 2 
Deschampsia 

antarctica 

403102 Rhizoscyphus ericae strain King George Island, 
Point Thomas, site 1 Colobanthus quitensis 

403104 Helotiaceae 
Livingston Island, 

Hannah Point, site 1 
Deschampsia 

antarctica 

403109 Gyoerffyella sp. Anchorage Island, site 
2 

Deschampsia 
antarctica 

403110 Penicillium rugulosum Coronation Island, H Colobanthus quitensis 

403111 Gyoerffyella sp. Anchorage Island, site 
2 

Deschampsia 
antarctica 

403112 Gyoerffyella sp. Coronation Island, H Colobanthus quitensis 

403116  Coronation Island, H 
Deschampsia 

antarctica 

403119  Coronation Island, H Colobanthus quitensis 
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403123 Ascomycota  King George Island, 
Point Thomas, site 1 

Deschampsia 
antarctica 

403124 Ascomycota 
King George Island, 
Point Thomas, site 1 

Deschampsia 
antarctica 

403125 Ascomycota  King George Island, 
Point Thomas, site 1 

Deschampsia 
antarctica 

403127 Ascomycota  King George Island, 
Point Thomas, site 1 

Deschampsia 
antarctica 

403129  Signy Island, site 3 
Deschampsia 

antarctica 

403131  Signy Island, site 3 
Deschampsia 

antarctica 

403133 Mollisia sp.  Signy Island, site 3 
Deschampsia 

antarctica 

403134 Mollisia sp. Signy Island, site 3 
Deschampsia 

antarctica 

403135  King George Island, 
Point Thomas, site 1 Colobanthus quitensis 

403136  King George Island, 
Point Thomas, site 1 Colobanthus quitensis 

403142  Coronation Island, 
Mansfield point 

Deschampsia 
antarctica 

403143  Léonie Island, site 2 
Deschampsia 

antarctica 

403145  Signy Island, site 2 
Deschampsia 

antarctica 

403147  Livingston Island, 
Byers Peninsula, site 3 Colobanthus quitensis 

403151  Livingston Island, 
Byers Peninsula, site 3 Colobanthus quitensis 

403158  Livingston Island, 
Hurd Peninsula, site 2 

Deschampsia 
antarctica 

403159  Signy Island, site 2 
Deschampsia 

antarctica 

403177  South Georgia 
Deschampsia 

antarctica 

403178  South Georgia Colobanthus quitensis 

403302 Geomyces sp.  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Wood Bait 

403303 Geomyces sp.  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Wood Bait 

403306 Anarctomyces psychrotrophicus 
Adelaide Island, 

Rothera, South Cove Sediment 

403307 Anarctomyces psychrotrophicus 
Adelaide Island, 

Rothera, South Cove Sediment 

403308 Thelebolaceae 
Adalaide Island, 

Rothera Point, North 
Cove 

Drift Wood 
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403310  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Ash Bait 

403310    

403316 Cadophora malorum 
Adalaide Island, 
Rothera Point, 
Honeybucket 

Ash Bait 

403318 Geomyces sp.  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Pine Bait 

403321 Pleospora/ulocladium  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Pine Bait 

403323 Tetracladium sp.  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Beech Bait 

403330 Ascomycota  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Eucalyptus Bark Bait 

403332  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Sepele Bait 

403333 Geomyces sp.  
Adalaide Island, 
Rothera Point, 
Honeybucket 

Sepele Bait 

NCYC 
874 

Phaffia rhodozyma NCYC 
Exudate of Fagus 

crenata 

NCYC 
825 

Yarrowia lipolytica NCYC  

NCYC 
1464 

Sporobolomyces roseus NCYC Solanum tuberosum 

Dis 206 Umbelopsis isabellina   

Dis 195 Umbelopsis sp.   

Dis 169 Clavicipitaceae   

89319 Trichosphaeria pilosa 
Antarctica, South 

Orkney Construction material 

396413    

378423 Alternaria alternata 
Antarctica, Edmonson 

Point Soil 

377828 Cladosporium sp. Antarctica, Edmonson 
Point Soil 

369800 Chrysosporium Antarctica Air 

369795 Thelbolus microsporus 
Antarctica, Signy 

Island Air 

369790 Geomyces pannorum 
Antarctica, Signy 

Island Air 

369788 Leptodontidium elatius var. elatius 
Antarctica, Signy 

Island Air 
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340093 Thelebolus Antarctic  

312277 Aureobasidium Antarctica Soil 

312275 Acremonium Antarctica Soil 

256351 Penicillium echinulatum 
Antarctica, South 

Georgia Festuca contracta 

215092 Embellisia sp. Antarctica, Antarctic 
continent Soil 

82072 Mortierella alpina Great Britain Senecio squalidus 

330997 Mortierella alpina  Cucumis sativus 

196057 Mortierella alpina Australia Eucalyptus 

403530 Bjerkandera adusta Antarctic  

17313 Mucor racemosus UK Meat in cold storage 

403341 Penicillium sp. Antarctica  

398213 Mortierella sp. Antarctica  

398216 Mortierella sp. Antarctica  

398217 Mortierella sp. Antarctica  

398220 Mortierella sp. Antarctica  

398111 Mortierella sp. Antarctica  

344320 Achlya americana Canada Soil 

340618 Phytophthora richardiae Netherlands Zantedeschia 

328662 Daedaleopsis confragosa   

332398 Allomyces macrogynus Myanmar  

308259 Saprolegnia diclina   

308153 Pythium irregulare   

140468 Mortierella polycephala Great Britain  
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2.1.3 Media 

For sterilisation, all media was autoclaved at 121°C for 20 minutes unless otherwise 

stated.  

2.1.3.1 Potato dextrose (PD) media 

Potato dextrose agar (CM0139) from Oxoid was prepared using the manufacturer’s 

instructions. Potato dextrose from Difco (254920) was prepared using the 

manufacturer’s instructions. 

2.1.3.2 Malt extract (MA) broth media 

Table 2-2. Malt extract broth media composition. 
 

Component Amount 

Amber malt extract 

(Thomas Coopers, Coopers 

Brewery, Southern 

Australia) 

20 g 

dH2O 1 litre 

pH 6.0 +/- 0.5 

 

2.1.3.3 Yeast extract sucrose (YES) broth media 

Table 2-3. Yeast extract sucrose broth media composition. 
 

Component Amount 

Yeast extract, Oxoid 

(LP0021) 
20 g 

Sucrose, Fisher 

(S/8560/64) 
150 g 

dH2O 1 litre 

pH 7.0 +/-0.2 
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2.1.3.4 Lysogeny broth (LB) media 

Table 2-4. Lysogeny broth media composition. 
 

Component Amount 

Yeast extract, Oxoid 

(LP0021) 
5 g 

Tryptone 10 g 

NaCl 10 g 

dH2O 1 litre 

Agar, Oxoid No.3 (for 

plates) 
15 g 

 

 

2.1.3.5 Antibiotic media additions 

Antibiotics were purchased from Sigma-Aldrich and were made up as stock solutions 

in the appropriate solvent as detailed in Table 2-5. The ampicillin stock solution was 

filter sterilised using 0.2 µm filters before use. 

Table 2-5. List of antibiotics and concentrations used within the study.  
 

Antibiotic Stock concentration Media concentration 

Ampicillin 50 mg/ml in water 100 µg/ml 

Chloramphenicol 34 mg/ml in ethanol 34 µg/ml 
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2.1.4 Buffers and Solutions 

2.1.4.1 DNA gel electrophoresis buffers and solutions 

TAE buffer: 

Table 2-6. 50x TAE buffer composition 
 

Compound Amount 

Tris base 242 g 

Glacial acetic acid 57.1 ml 

0.5M EDTA pH 8.0 100 ml 

dH2O Made up to 1 litre 

 

• Agarose gels were run with a 1x TAE buffer solution, using a 1:50 (v/v) 

dilution with distilled water.  

TBE buffer: 

Table 2-7. 5x TBE buffer composition 
 

Compound Amount 

Tris base 54 g 

Boric acid 27.5 g 

0.5M EDTA pH 8.0 20 ml 

dH2O Made up to 1 litre 

 

• Agarose gels were run with a 0.5x TBE buffer solution, using a 1:10 (v/v) 

dilution with distilled water. 
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Bioline molecular markers: 

Table 2-8. The base pair sizes of the components in Hyper ladder 1 and 2 used in this 
study.  
 

Hyper ladder I  

bp bp 

10,000 2,000 

8,000 1,500 

6,000 1,000 

5,000 800 

4,000 600 

3,000 400 

2,500 200 

Hyper ladder 
II 

 

bp bp 

2,000 600 

1,800 500 

1,600 400 

1,400 300 

1,200 200 

1,000 100 

800 50 

700  
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2.1.4.2 Primers 

Table 2-9. Primer names and associated sequences used within the study. Red text 
indicates a restriction site.  
 
Primer 
name Description Sequence 

Uni 1 
125 bp ∆6 elongase conserved region 
amplification, forward 

CTACTTCTCCAAGVTCAT 

Uni 2 
125 bp ∆6 elongase conserved region 
amplification, reverse 

TGACCAACCACCAGATGGT 

Uni 3 
125 bp ∆6 elongase conserved region 
amplification, forward 

CTACTTCTCCAARVTCAT 

Uni 4 
125 bp ∆6 elongase conserved region 
amplification, reverse 

TGACVAACCACCAGATGKT 

F1 Allomyces elongase amplification, forward  ATGGAGGCGACGACCGACCT 

F2 Allomyces elongase amplification, forward  CTACCTGTCTAAGATCCTCG 

F3 Allomyces elongase amplification, forward  TTACGACGACTTCTTGGCCAC 

R1 Allomyces elongase amplification, reverse  CTCAACTCGGGCATCCAT 

1 ∆6 desaturase amplification, forward ATGGCTGCTGCTCCCAGTGTG 

2 ∆6 desaturase amplification, reverse TTACTGTGCCTTGCCCATC 

3 ∆5 desaturase amplification, forward ATGGGTGCGGACACAGGAAAAAC 

4 ∆5 desaturase amplification, reverse TTACTCTTCCTTGGGACGAAG 

5 GLELO amplification, forward ATGGAGTCGATTGCGCCATTC 

6 GLELO amplification, reverse TTACTGCAACTTCCTTGCC 

P1 
GLELO amplification, Nde1 restriction, 
forward 

CGGACATATGGAGTCGATTGCGCCATTC 

P2 
GLELO amplification, Hind III restriction, 
reverse 

CGGAAAGCTTCTGCAACTTCCTTGCC 

 

2.1.4.3 His-tagged protein purification buffers 

Table 2-10. Buffers utilised for His-tagged column purification. All buffers are made up in 
dH2O. 
 

Solution Compound Concentration 

Charging Buffer NiSO4 100 mM 

   

Binding Buffer Tris-HCl pH 7.5 50 mM 

 NaCl 0.5 M 

 Imidazole 5 mM 
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Wash Buffer 50 mM Tris-HCl pH 7.5 50 mM 

 NaCl 0.5 M 

 Imidazole 50 mM 

   

Wash Buffer 100 mM Tris-HCl pH 7.5 50 mM 

 NaCl 0.5 M 

 Imidazole 100 mM 

   

Eluting Buffer Tris-HCl pH 7.5 50 mM 

 NaCl 0.5 M 

 Imidazole 400 mM 

   

Strip Buffer EDTA 100 mM 

 Tris-HCl pH 7.5 50 mM 

 NaCl 0.5 M 

   

SDS Sample Buffer 0.5 M Tris-HCl pH 6.8 6 ml 

 Glycerol 4.8 ml 

 10% SDS (w/v) 9.6 ml 

 
0.05% Bromphenol 

blue (w/v) 
1.2 ml 

 dH2O 24 ml 

 β-Mercaptoethanol 
14 µl/ml added before 

use 
 

 

2.1.4.4 SDS-PAGE buffers and solutions 

Table 2-11. Composition of polyacrylamide gels used within the study.  
 

Solution Compound Amount 

12% separating gel dH2O 7.9 ml 

24 ml 30% acrylamide 9.6 ml 

 1.5 M Tris HCl pH 8.8 6 ml 

 10% SDS (w/v) 240 µl 
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10% Ammonium persulphate 

(w/v) 
240 µl 

 TEMED 24 µl 

   

6% stacking gel dH2O 7.9 ml 

15 ml 30% acrylamide 3 ml 

 0.5 M Tris HCl pH 6.8 3.75 ml 

 10% SDS (w/v) 150 µl 

 
10% Ammonium persulphate 

(w/v) 
150 µl 

 TEMED 15 µl 

 

Amersham Rainbow marker: 

Table 2-12. Size and colour of components within Amersham polypeptide rainbow 
markers.  
 

KDa Colour 

225 Blue 

150 Pink 

102 Green 

76 Yellow 

52 Purple 

38 Blue 

31 Orange 

24 Beige/green 

17 Blue 

12 Pink 
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2.1.4.5 Western blot buffers and solutions 

Table 2-13. Composition of buffers used for Western blotting within the study. 
 

Solution Compound Amount 

Transfer Buffer Tris 3.03 g (25 mM) 

 Glycine 14.41 g (192 mM) 

 Methanol 200 ml (20% v/v) 

 dH2O 800 ml 

 pH 8.1-8.4  

   

TBS Tris 6.055 g (50 mM) 

Tris buffered saline NaCl 8.76 g (150 mM) 

 pH 7.4  

   

TBST Tris 6.055 g (50 mM) 

Tris buffered saline tween NaCl 8.76 g (150 mM) 

 Tween 20 0.05% (v/v) 

 pH 7.4  

 
Table 2-14. Accession numbers of protein sequences used for elongase comparison.  
 

Elongase ID Accession no. 

3 ketoacyl CoA synthase Arabidopsis NP 199189.1 

∆6 elongase Allomyces macrogynus WGS ACDU01000340 

∆6 elongase Saprolegnia parasitica WGS ADCG01000825 

ELO1 Saccharomyces cerevisiae NP 012339.1 

ELO2 Saccharomyces cerevisiae NP 009963.1 

ELO3 Saccharomyces cerevisiae NP 013476.1 

ELO2 Candida dubliniensis XP 002417837.1 

∆6 elongase Phaeodactylum tricornutum ABQ18315.1 

∆6 elongase Pyramimonas cordata ACR53359.1 

∆6 elongase Parietochloris incisa ACK99719.1 
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∆6 elongase Marchantia polymorpha AAT85662.1 

GLELO Mortierella alpina AAF70417 

GLELO Mortierella alpina BAF97073.1 

MAELO Mortierella alpina AAF71789.1 

MALCE1 Mortierella alpina BAI40363.1 

Elongase Physcomitrella patens XP 001789388.1 

ELOVL1 Mus musculus NP 062295.1 

ELOVL2 Mus musculus NP 062296.1 

ELOVL3 Mus musculus NP 031729.1 

ELOVL4 Mus musculus NP 683743.2 

ELOVL5 Mus musculus NP 599016.2 

ELOVL6 Mus musculus NP 569717.1 

ELOVL5 Salmo salar NP 001130024.1 

ELOVL5 Capra hircus BAF49682.1 

 

2.1.4.6 Software used 

Table 2-15. Software used within the study. 
 

Program Source 

AMDIS NIST 

ClustalW2 EMBL-EBI 

TMHMM 
Technical University of 

Denmark 

BLAST NCBI 

CLC sequence viewer CLC Bio 

Genome workbench NCBI 
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2.2 Methods 

2.2.1 Fungal growth for fatty acid and genomic screening 

2.2.1.1 Plate growth 

Fungal cultures were resuscitated from cryopreservation, lyophilisation and oil. 

Cryopreserved samples were immersed in a 30°C water bath, followed by plating the 

spore suspension or mycelial plugs onto PD plate media. Lyophilised samples were re-

hydrated in sterile, distilled water for 30 minutes and the suspension then plated on PD 

plate media. Oil sample plugs were washed in Tween (0.05% v/v Tween 80), then 

washed in sterile, distilled water, with the plugs then plated on suitable plate media. 

Culture plates were inoculated using a tri-point inoculum on suitable media. After a 

week, the organisms were re-cultured using a tri-point inoculum by taking small 

portions of mycelia with a sterile needle and plating onto fresh plates. The organisms 

were grown for a minimum of 1 week prior to broth culture, and were re-cultured at 2-4 

week intervals. 

 

2.2.1.2 Broth inoculation for fatty acid screening 

 Broth culture was carried out in 250 ml Erlemeyer flasks, with a media volume of 

100 ml, with organisms being grown in MA, YES and PD broth. All cultures were 

inoculated into broth using agar plugs. This was done primarily due to the unreliability 

of propagation when a spore suspension was used. A 5 mm cork borer was used to 

extract 10 agar/mycelium plugs per broth, which were then inoculated into the broth. 

Broths were incubated in the dark in a rotary incubator at 15°C, with a rotation speed of 

110 rpm, with an incubation period of one to three weeks, depending on mycelial 

growth.  

 

2.2.1.3 Mycelial broth extraction 

The mycelial mass was extracted after 1-3 weeks, depending on the growth of the 

organism. The aqueous extract from the mycelium was separated through a Whatmann 

No. 3 filter paper, using a Buchner filter vacuum conical flask and a vacuum pump. The 

mycelium was washed with distilled, sterile water and the mycelium removed and 
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frozen at -20°C for a period of 24 hours, followed by freeze drying over a period of 24 

hours. The dry weight was then taken, and the mycelia frozen until needed at -20°C.  

2.2.2 Fungal growth for temperature and its effect on fatty acids 

The organisms were grown and maintained on PD plates, followed by culture in 

triplicate into PD broth for up to 3 weeks at 3 temperatures, 5, 15 and either 20 or 25°C. 

For two organisms, both of which were Herpotrichia, 25°C resulted in no growth. 

Therefore the organisms were re-grown at 20°C. Because of the slow growth of most 

organisms at 5°C, all were given an additional 1 week to allow sufficient biomass 

formation. After harvesting the mycelia from broth, the samples were freeze-dried 

followed by chloroform/methanol extraction and trans-esterification stated in section 

2.2.3.1. Samples were then analysed by GC-FID and GC-MS to confirm the identities of 

the fatty acids. 

Table 2-16. List of organisms grown at three temperatures and their respective length of 
growth before broth harvest.  
 

Organism Growth  temperature °C Days of broth growth 

5 14 

15 7 Mucor racemosus (17313) 

25 7 

5 21 

15 14 Herpotrichia sp. (403016) 

20 14 

5 21 

15 14 Herpotrichia sp. (403002) 

20 14 

5 7 

15 7 
Penicillium rugulosum 

(403110) 
25 7 

5 14 

15 7 
Bjerkandera adusta 

(403530) 
25 7 

Mortierella alpina (82072) 5 14 
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15 7 

25 7 

5 14 

15 7 
Mortierella alpina 

(330997) 
25 7 

5 14 

15 7 
Umbelopsis isabellina 

 (Dis 206) 
25 7 

5 14 

15 7 Umbelopsis sp.(Dis 195) 

25 7 

 

2.2.3 Analytical methods 

2.2.3.1 Fatty acid extraction 

A 2:1 (v/v) chloroform/methanol (C/M) solution (2ml) was added to 65 mg dry 

weight of mycelia. The sample was also labelled with 100 µl of 1 mg/ml heptadecanoic 

acid methyl ester in hexane. The sample was sonicated for 3 minutes and then agitation 

on a rotary shaker for 30 minutes. The samples were then centrifuged at 3500 rpm to 

pellet the sediment, and the supernatant removed. A chloroform/methanol re-extraction 

of the pellet was carried out, with the supernatant pooled with the first extraction. 0.9% 

(w/v) KCl solution (800 µl) was added to each sample, followed by centrifugation at 

3500 rpm to partition phases. The upper methanol layer was removed and the lower 

chloroform layer dried down under nitrogen. Both fatty acid extraction and trans-

methylation were carried out in Pyrex reaction tubes. 

2.2.3.2 Fatty acid trans-methylation 

The dried chloroform extract was dissolved in hexane (2 ml) and 1% (v/v) sulphuric 

acid in methanol (4 ml). The mixture was heated at 85°C for 2 hours, cooled, followed 

by the addition of hexane (2 ml) and 5% (w/v) KCl solution in water (1 ml). The 

samples were centrifuged at 3500 rpm to separate the phases. The upper hexane phase 

was removed using a Pasteur pipette. A further hexane extraction was carried out on the 
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methanol phase with 2 ml of hexane per sample, with the hexane phases pooled 

together. The samples were dried under nitrogen and stored at -20°C (Christie, 1989). 

2.2.4 TLC purification procedure 

2.2.4.1 Separation of phospholipid fractions 

Mortierella alpina strain 330997 was grown at 5, 15 and 25°C for 1 week, extracted 

from broth and then freeze dried. 25 mg of mycelia was extracted using the 

chloroform/methanol procedure, dried under nitrogen and re-suspended in 100 µl of 

chloroform. 25 µl (6.25 mg of sample) were loaded onto a preconditioned, glass backed 

Silica gel (250µl thickness), 20 cm x 20 cm plate. The plate was conditioned and 

developed using the following solvent system; 58:38.4:2.7:0.9 by volume of chloroform 

: methanol : acetic acid : water (Kendrick & Ratledge, 1992c), and developed for 1.5 

hours. A standard mix of the four phospholipid standards was used to localise the 

phospholipids. After drying the plate, the phospholipid standards were stained using 

molybdenum blue stain (Sigma). Areas corresponding to the standards were scraped off 

from the sample runs. 

Rf Compound

0.71 Phosphatidyl ethanolamine

0.49 Phosphatidyl inositol

0.34 Phosphatidyl serine

0.17 Phosphatidyl choline

 

  

Figure 2-1. TLC separation of phospholipid components and their respective Rf values. 
Visualised using molybdenum blue stain.  

2.2.4.2 Elution of TLC fractions 

1 ml of 1:1 (v/v) chloroform : methanol solution was added to the scraped silica 

fractions, and extracted for 30 minutes at room temperature. The samples were then 
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centrifuged at 3500 rpm and the solvent layer removed. The silica was re-extracted with 

the same solvent mixture, with the extracts then pooled. The extracts were dried under 

nitrogen, and then trans-methylated prior to GC-MS.   

2.2.5 GC-FID analysis 

 
The samples were analysed on a Varian 8400 GC-FID, with an 1177 injector, a flow 

rate of 0.8 ml/min of helium, and a 50 m Varian CP-Sil 88 column. Running conditions 

were as follows; injector set at 250°C, FID at 260°C, with a column oven program of 

140°C initially, ramped to 225°C at 4°/min and held for 20 minutes, for a total 45 

minutes. The split ratio was 1:50, with a 1 µl injection. Samples were run with a blank 

(n-hexane) and standard (heptadecanoic acid methyl ester at 1000 ng/µl) preceding the 

sample runs, with a wash step between each sample. Standards were obtained from 

Sigma, UK.  

Fatty acid identification was carried out using relative retention times, calculated 

using a 37 FAME component mix spiked with individual FAME standards. Quantitative 

data analysis was carried out, as response factors were calculated using known 

quantities of internal standard and fatty acid standards.  

 

2.2.6 GC-MS analysis 

 
The samples were analysed on an Agilent 7890A GC with an Agilent 5975C MS, a 

flow rate of 1 ml/min of helium and a 30 meter DB-5MS+DG column. The running 

conditions used were: injector at 250°C, source at 230°C, quadrapole at 150°C. The 

column oven temperature program was 100°C initially, ramped to 240°C at 4°C/min. 

The split ratio was 1:50, with a 1 µl injection. The GC-MS was operated using Chem 

station. Automated mass spectral deconvolution and identification system (AMDIS) and 

the NIST 05 libraries were used to de-convolute and identify peaks. The AMDIS library 

was created using the 37 FAME component mix and single FA standards. A retention 

index and mass spectral database was established to enhance identification of peaks. 

Quantification of peaks was carried out using AMDIS, with extracted ion areas used to 

resolve co-eluting compounds and improve quantification.  
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2.2.7 Molecular biology methods 

2.2.7.1 DNA and RNA extraction 

DNA was extracted from fungal samples using the Qiagen plant tissue DNA 

extraction kit, following the manufacturer’s instructions. Mouse DNA was extracted 

using the Qiagen blood and tissue DNA extraction kit, following the manufacturer’s 

instructions. Extracted DNA was stored at -20°C. DNA was quantified using a Nano 

drop (Thermo Scientific) at 260 and 280 nm. Fungal RNA was extracted using the 

Qiagen plant tissue RNA extraction kit, following the manufacturer’s instructions. RNA 

was stored at -80°C.  

2.2.7.2 Reverse transcription  

Reverse transcription of RNA was carried out using the following method, with 

reagents from Promega: 

Attachment of oligo dT primers to RNA: 
 

• RNA (36 ng/µl) = 13 µl 

• oligo dT = 1 µl 

• water = 1 µl 

 

The reaction was incubated at 70°C for 5 minutes, and then placed on ice. 
 
Reverse Transcription reaction: 

 

• Water = 2.25 µl 

• Nucleotides = 1.25 µl 

• M-MLV buffer = 5 µl 

• RNAase inhibitor = 0.5 µl 

• M-MLV Reverse transcriptase = 1 µl 

 
The reaction was incubated at 42°C for 1 hour. 50 µl of sterile water was added after the 
reaction. The cDNA product was stored at -20°C. 
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2.2.7.3 PCR 

PCRs were carried out using two polymerases, Taq and KOD. The actual PCR varied 

with the product to be amplified and will be discussed in the relevant sections. All 

primers were at a stock value of 100 pmol/µl and at a working concentration of 10 

pmol/µl. 

Taq polymerase:  

Taq polymerisation was carried using the Taq bead kit (GE Healthcare). One Taq 

bead was used for each reaction, which contained the same measure of polymerase per 

bead. Water, primers and DNA were added to the reaction mix, followed by briefly 

mixing and centrifuging. The PCR was then thermocycled, the conditions of which 

depended on the product being amplified. A standard Taq PCR reaction mixture is 

shown in Table 2-17 with a standard thermocycler program shown in Table 2-18. 

Table 2-17. Standard PCR mixture using Taq polymerase beads from GE Healthcare. 
Values are subject to change depending on the application. However, modifications to the 
standard procedure are noted.  
 

Reagent Amount 

Taq bead (GE healthcare) 1 bead 

Primer 1 1 µl at 10 pmol/µl 

Primer 2 1 µl at 10 pmol/µl 

DNA template 1 µl 

dH2O 22 µl 

 
Table 2-18. Standard PCR thermocycler temperature program. Any modifications to the 
procedure are mentioned. 
 

Temperature Time Function 

95°C 2 minutes Initial melting step 

94°C 30 seconds Melting step 

50-56°C 30 seconds Annealing step 

72°C 30 seconds Elongation step 

72°C 5 minutes Final elongation step 

 

• Number of cycles = 

o Uni primers 1-4 = 35 
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o Primers 1-6 and P1 and P2 = 30 

o F1-3 and R1 = 35 

KOD polymerase: 

KOD polymerisation was carried out using the same method throughout the study. 

The reaction mixture was as follows: 

Table 2-19. PCR reaction mix utilising KOD polymerase. 
 

Reagent Amount 

10x buffer 2.5 µl 

MgSO4 3 µl 

dNTPs 2.5 µl 

Primer 1 1 µl at 10 pmol/µl 

Primer 2 1 µl at 10 pmol/µl 

cDNA 3 µl 

KOD polymerase 0.5 µl 

dH2O 22 µl 

 
The thermocycler conditions were as follows: 
 
Table 2-20. PCR thermocycler temperature program for KOD polymerase reaction. 
 

Temperature Time Function 

95°C 2 minutes Initial melting step 

94°C 20 seconds Melting step 

55°C 1 minute Annealing step 

70°C 30 seconds Elongation step 

70°C 5 minutes Final elongation step 

 
• 20 cycles 

 
 

2.2.7.4  Agarose gel electrophoresis 

Agarose gels (1 to 3%) (w/v) were prepared depending on the size of the PCR 

product. 15 ml of agarose solution was used for one 6 or 8 well gel.  Agarose was added 
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to 1x TAE buffer and heated in a commercial microwave for 45 seconds on full power. 

The solution was allowed to cool slightly before ethidium bromide was added to a final 

concentration of 0.5 µg/ml. The solution was poured into a mould with a 6 or 8 finger 

comb and allowed to set. The electrophoresis tank (Embi Tec) was filled with 1x TAE 

buffer, and the solidified agarose gel placed in the correct orientation.  

2 µl of loading buffer was added to 8 µl of PCR reaction, mixed and then centrifuged. 

All 10 µl of solution was added to one well. 5 µl of DNA ladder was added for 

reference. The tank was run at 100 V for 20 minutes, followed by UV visualisation and 

image capture at 312 nm.  

2.2.7.5 Gel purification of PCR products 

PCR bands were separated using agarose gel electrophoresis. The gel was visualised 

on an open gel imager, with a UV shield. The band of interest was excised using a clean 

scalpel, and the weight of the agar piece noted. The PCR and gel purification kit from 

Promega was used to extract the DNA from the agarose, following the instructions from 

the manufacturer. The extracted DNA was stored at -20°C. 

2.2.7.6 DNA restriction reaction 

DNA restriction reactions were carried out using restriction enzymes from Promega. 

The restriction enzymes used depended on the DNA product. The reaction protocol used 

for the restriction reaction is as follows: 

• DNA = 5 µl 

• BSA = 1 µl (0.1 mg/ml) 

• HindIII+Nde1 = 0.5 + 0.5 µl 

• Multicore buffer = 1 µl 

• Water = 2 µl 

The reaction was left for 2 hours at 37°C, followed by the reaction mix being purified 

by the PCR and gel purification kit from Promega. The restricted DNA was stored at -

20°C.  

2.2.7.7 TOPO-DNA ligation reaction 

The TOPO 2.1 kit from Invitrogen was used using the following reaction mix: 
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Table 2-21. TOPO 2.1 ligation reaction mixture.  
 

Reagent Amount 

PCR insert 4 µl 

Salt solution (MgCl2 and 

NaCl) 
1 µl 

TOPO 2,1 vector 1 µl 

• The ligation reaction was shaken gently and incubated at room temperature for 5 

minutes. The reaction was then left on ice for transformation into chemically 

competent cells.  

2.2.7.8 pET-23b ligation reaction 

pET-23b ligation calculation: 

pET-23b : GLELO = vector to insert is 4.8x larger 

Using 100 ng of vector pET-23b gives: 

100 ng/4600 bp = 0.022 

0.022x950 bp = 20.7 ng GLELO 

pET-23b : GLELO ratios of 1:1 and 1:3 were used. 

 1:1 = 100:20.7 ng 

 3:1 = 100:62.0 ng 

Table 2-22. pET-23b ligation reaction mix.  
 

Reagent Amount 

Vector at 37.4 ng/µl 3.79 µl 

Insert at 37.4 ng/µl 0.56 µl 

10x buffer (?) 1 µl 

Ligase 1 µl 

dH2O 3.65 µl 
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• The ligation reaction was incubated at 37°C for 3 hours and then kept on ice for 

transformation into chemically competent cells.  

2.2.7.9 Transformation of TOP10 E. coli cells 

TOPO 2.1 and pET23b vectors were transformed into TOP10 chemically competent 

E. coli cells by heat shock. Chemically competent cells were first thawed on ice, and 

then 5 µl of ligation reaction mix was added to the cells and incubated on ice for 5-30 

minutes. The cells were then heat shocked at 42°C for 30 seconds, then placed on ice 

for 2 minutes, followed by the addition of SOC media (250 µl) to the cells. The culture 

was then incubated at 37°C for 1 hour on a rotary incubator, then plated onto ampicillin 

LB plates with 50 µl and 200 µl of culture used for inoculation. Plates were incubated 

overnight at 37°C. Four colonies were selected and grown overnight in ampicillin LB 

broth (5 ml) at 37°C in a rotary incubator. After overnight growth, 1 ml of culture was 

taken and added to glycerol solution (500 µl), mixed and then stored at -80°C as a 

glycerol backup. The remaining 4 ml of LB culture was centrifuged and DNA extracted 

using the mini-prep kit from Promega, following the manufacturer’s instructions. The 

extracted DNA was stored at -20°C. 

2.2.7.10 Colony PCR 

Colony PCR was used to determine whether E. coli colonies had up taken plasmids 

containing the gene of interest. Transformed colonies were grown overnight on LB agar 

plates at 37°C. A colony was selected using a sterile Gilson tip, gently removing the 

colony from the plate. The tip with colony was then introduced into the following PCR 

reaction mixture: 

• Reaction bead (Taq) from GE healthcare 

• Water = 23 µl 

• Primers = 1+1 µl 

 
The reaction was thermocycled using the following program: 
 

• 95°C initial melting step, 2 minutes 

• 94°C melting step, 30 seconds 

• 54°C annealing step, 30 seconds 

• 72°C elongation step, 30 seconds 

• 72°C final elongation step, 5 minutes 
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• 30 cycles 

 

The tip was then deposited into LB broth (5 ml), with the appropriate antibiotic added 

and cultured overnight in a rotary incubator at 37°C. The PCR reaction was then run on 

an agarose gel and visualised as described in section 2.2.7.4. Several colonies from one 

plate were screened, with those displaying the correct size insert being utilised for 

further study. 

2.2.7.11 Growth of E. coli BL21(DE3)pLysis* cells for expression 

An initial cell culture of BL21(DE3)pLysis* cells (Novagen) were first streaked out 

onto LB plates with chloramphenicol at a concentration of 34 µg/ml. The plates were 

incubated overnight at 37°C. One colony was then picked and inoculated into 5 ml of 

LB broth with chloramphenicol. The culture was incubated overnight at 37°C in a rotary 

incubator. 20 ml of fresh LB broth, containing the same concentration of 

chloramphenicol, was inoculated with 200 µl of the 5 ml starter culture. The broth 

culture was grown at 37°C in a rotary incubator until an OD578 nm of 0.3-0.8 was 

achieved. The culture was then transferred to a 50 ml Falcon tube, where the cells were 

cooled on ice for 10 minutes. The cells were then centrifuged at 3000 rpm for 10 

minutes at 4°C. 

The LB media supernatant was decanted and 4 ml ice cold, filter sterilised 

CaCl2/glycerol (0.1 M/10% v/v) was added to the cells, which were re-suspended and 

kept on ice for 20-60 minutes. The cells were then centrifuged at 3000 rpm at 4°C for 

10 minutes followed by the removal of the supernatant. The cells were again re-

suspended in 400 µl ice cold CaCl2/glycerol solution. 25 µl aliquots were taken and 

dispensed into 1.5 ml Eppendorf tubes, and stored at -80°C. 

2.2.7.12 Transformation of BL21(DE3)pLysis* cells with pET23b-

GLELO 

The pET23b vector containing GLELO (pET23b-GLELO) was transformed into 

BL21(DE3)pLysis* cells. The transformation procedure was the same as previously 

mentioned for the transformation of TOP10 cells, however the following changes were 

made. Agar plates and LB broth media contained both ampicillin and chloramphenicol 

as selection antibiotics, at the concentrations stated earlier. Glycerol backups of the 5 ml 

LB media liquid culture colonies were made, and colony PCR of the plated cells was 
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also performed to check for gene insertion. However, the overnight 5 ml LB broth 

culture was not harvested the following day for DNA extraction. Instead, fresh LB broth 

(400 ml) with corresponding amounts of ampicillin and chloramphenicol were made up 

in 2 litre flasks, and 2 ml of overnight broth starter culture was inoculated into these 

broths. These broths were cultured at 37°C for around 3 hours in a rotary incubator until 

an OD578 nm of 0.6-1.0 was observed. 160 µl (stock 1 M) of the inducer IPTG was added 

to the culture flasks to a final concentration of 0.4 M. The flasks were then transferred 

to rotary shakers at 25°C overnight. The broths were then transferred to 500 ml 

centrifuge tubes, and centrifuged at 4000 rpm for 20 minutes at 4°C. The supernatant 

broth was decanted off, and the pellet re-suspended in protein binding solution (10 ml). 

The re-suspended cell suspension was then frozen at -20°C. An aliquot of re-suspended 

cell pellet was then taken. SDS sample buffer (30 µl) mixed with β-mercaptoethanol (14 

µl) was added to 30 µl of cell suspension, and then boiled for 5 minutes in sealed 

Eppendorf tubes. The samples were then frozen at -20°C. 

2.2.8 Protein Analysis 

2.2.8.1 Purification of His-tagged GLELO from BL21(DE3)pLysis* cells 

BL21(DE3)pLysis* cells suspended in protein binding solution were defrosted and 

lysed by sonication. The sonicator was 20 - 25 W (20% power). Samples were kept cool 

by placing them into ice water whilst sonicating. Samples were sonicated 5 times for 30 

seconds, with a 30 second break between each sonication. A 30 µl aliquot was taken of 

the sonicated lysed cells and boiled with SDS buffer (30 µl) (table 2-10). The lysate was 

aliquoted in 2 ml fractions and centrifuged for 5 minutes at 14000 rpm at 4°C. A 30 µl 

aliquot of the supernatant from the centrifuged sonicated cell solution was taken, and 

boiled with SDS buffer (30 µl) (pre-column supernatant).  

Columns containing approximately 4 ml of resin (Chelating Sepharose Fast Flow, 

Amersham) were used to purify His-tag proteins from LB cultures. The resin was first 

cleaned by running distilled water through the column and resin. The column was then 

loaded with charge buffer and equilibrated with binding buffer. The supernatant of the 

sonicated extract was applied to the column, and the eluent collected. 30 µl of eluent 

was removed and boiled with SDS buffer (30 µl). The cell pellet from the centrifugation 

of lysed cell material was re-suspended in of binding buffer (2 ml), and a 30 µl aliquot 

taken and boiled with SDS buffer. The column was then washed with several buffer 

solutions to elute unbound proteins. The first buffer used was binding buffer (20 ml), 
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followed by 50 mM (20 ml) wash buffer, finally followed by 100 mM (20 ml) wash 

buffer. The fractions were collected in falcon tubes, and 30 µl of each eluent was boiled 

with SDS buffer. The bound protein was eluted in approximately 2 ml fractions in 

separate Eppendorfs with eluting buffer. Each fraction was tested using comassie blue 

G250 dye (BioRad). Drops (10 µl) of distilled water were applied to a parafilm strip, 

with 5µl of comassie added to each drop. A 5 µl aliquot of each eluted fraction was 

mixed with a comassie spot, with the formation of a distinct blue colour indicating the 

presence of protein. Any fraction eluted with eluting buffer and found to contain protein 

had a 30 µl aliquot removed and boiled with SDS buffer (30 µl). The resin was 

regenerated by applying a 1:5 dilution of strip buffer to the column, and collecting the 

nickel eluent. Protein containing fractions were analysed by SDS PAGE. 

2.2.8.2 SDS PAGE 

The separating gel was loaded into the gel apparatus after first adding TEMED (24 

µl). A thin layer of water saturated butanol was poured on top of the gel, which was 

allowed to set. Once set, the butanol was poured off and the top of the gel rinsed with 

distilled water. The stacking gel was then added, with the addition of TEMED (15 µl) 

shortly beforehand, to the already set lower separating gel. Combs were then placed into 

the stacking gel and the gel allowed to set. The gel was then transferred to the running 

tank, which was filled with 1x running buffer (National Diagnostics). Samples were 

then loaded onto the gel, with 5 µl of molecular rainbow marker (Amersham) loaded, 10 

µl of all other samples except those eluted with elution buffer, of which 20 µl was 

loaded. The gel was run for 2 hours at 100 V. The gel was then stained using the silver 

staining kit from Sigma Aldrich, following the manufacturer’s instructions. 

2.2.8.3 Western blotting 

The cooling block used in the Western blotting apparatus was filled with distilled 

water and frozen overnight. The following day the SDS PAGE gel was run. Whilst the 

gel was running, a polyvinylidine fluoride (PDVF) membrane was cut to the size of the 

gel, and then equilibrated in methanol for 10 seconds. The membrane was then rinsed in 

distilled water, followed by equilibrating in transfer buffer at 4°C. Any visible air 

bubbles were removed. Two pieces of filter paper with a thickness greater than 3mm 

were cut to the size of the gel. These as well as the fibre pads were emerged in the cold 

transfer buffer, with visible air bubbles removed. The blotting equipment was 

thoroughly washed with distilled water. The buffer tank was filled half way with 
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transfer buffer, and a magnetic stirrer placed at the bottom. The frozen Bio-ice cooling 

unit was inserted to cool the buffer. The gel from the SDS PAGE was rinsed in transfer 

buffer, and the stacking gel removed with a scalpel. The holder cassette was removed 

from the trans-blot electrode casing. The cassette was opened and membrane and gel 

loaded. Briefly, a pre-soaked fibre pad was placed on the cathode plate, followed by a 

piece of saturated filter paper on the top. Around 2 ml of transfer buffer was poured 

onto the surface and the pad and paper compressed to remove air bubbles from the 

apparatus. The gel was aligned in the centre of the filter paper and the surface again 

flooded with transfer buffer. The other pre-soaked membrane was placed on top, with 

light compression to remove any air bubbles. The surface was flooded with transfer 

buffer, with the last piece of saturated filter paper followed by the second pre-soaked 

fibre pad placed on top. Finally, pressure was applied to remove trapped air bubbles. 

The cassette was carefully closed, and inserted into the electrode housing in the correct 

orientation. The electrode housing was then inserted into the buffer tank, which was 

then filled with transfer buffer and run at 100 V for 1 hour.  

After the transfer procedure, the membrane was removed and placed into a clean box. 

The membrane was placed so that the side in contact with the gel was facing upwards.  

0.1 ml of blocking solution (TBST with 1% BSA w/v) per cm2 of membrane was added 

and incubated for 1-2 hours at room temperature or overnight at 4°C with gentle 

agitation.  

After incubation, the blocking solution was discarded. The membrane was then 

immediately incubated with the primary antibody (anti-His). The membrane was 

incubated in 15 ml TBST with a 1:3000 dilution of anti-His antibody, as well as 1% 

(w/v) BSA. The blot was incubated for 1 hour at room temperature with gentle 

agitation.  After incubation, the solution was discarded and the membrane rinsed 3 times 

for 10 minutes with TBST. The membrane was then incubated in 15 ml of TBST with a 

1:5000 dilution of anti-mouse peroxidase and 1% (w/v) BSA for 1 hour with gentle 

agitation. The membrane was rinsed 3 times for 10 minutes in TBST buffer, followed 

by rinsing in TBS twice for a minute each. The membrane was visualised using 

BCIP/NBT stain (Sigma). Briefly, a tablet was dispensed into 20 ml of distilled water 

and vortex thoroughly for 2-5 minutes. The solution was then poured over the 

membrane and the stain allowed to develop for 5-10 minutes. The staining was stopped 

using copious amounts of distilled water, followed by rinsing the membrane with 
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distilled water. The membrane was then air dried in a dark, dry environment for 

visualising.  
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3 Fatty acid profiling of novel fungal strains 

isolated from psychrophilic environments 

3.1 Introduction 

Alternative producers of fatty acids are sought to supplement the primary source of 

VLCPUFA production, oily fish. Algal fermentation is an alternative source of these 

polyunsaturates although the high energy cost required to culture algae is a major 

consideration for any company wishing to exploit this source. Alternative organisms 

which have been studied derive from the fungi and the Chromista. Fungi offer the 

attraction that they are not phototrophic, can be grown on waste material due to their 

saprotrophic nature and can be grown in liquid or solid culture. The main issue is that 

only a handful of true fungi are capable of producing these VLCPUFAs. Fungi such as 

Mortierella have been studied extensively because of their ability to produce the 

VLCPUFAs arachidonic acid and eicosapentaenoic acid. Many parameters have been 

studied in relation to increasing the yield of these fatty acids, and this Fungus is utilised 

in the industrial production of C20:4 n6. The migration from an aqueous to a terrestrial 

habitat led to the formation of the zygomycetes, which retained several features that 

highlight their ancestry to the chytrids such as the lack of septate hyphae, the presence 

of sporangia as well as the prevalence of the n6 over the n3 pathway. The Dikarya 

evolved predominantly from the zygomycetes but have lost the n6 pathway as well as 

the ∆6 elongase. Therefore these organisms primarily produce up to C18:3 n3. It has been 

found that low temperatures stimulate the production of unsaturated fatty acids to 

increase the fluidity of the membrane. It was reasoned that organisms isolated from low 

temperatures may have adapted to the conditions through selection. Therefore, 

organisms were studied which were isolated from the Antarctic, which endures 

constantly low temperatures. It was thought that either organisms such as zygomycetes 

or chytrids would predominate due to the presence of a ∆6 elongase capable of 

producing VLCPUFAs, or that if ascomycetes or basidiomycetes were isolated, they 

would have retained the ∆6 elongase or developed a similar elongation or desaturation 

mechanism. One of the themes within this chapter with regard to fungi is the role of 

taxonomy as an indicator of VLCPUFA production and whether temperature is a 
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selection factor for VLCPUFAs, or whether other factors are responsible for the 

presence of these novel fatty acids. Organisms from the recently deposited British 

Antarctic Survey (BAS) collection and those organisms isolated from low temperature 

environments will be studied utilising a lipid screening methodology using GC-FID and 

GC-MS as the analysis platforms.  

3.1.1 Aim 

  The aim of this part of the study is the fatty acid profiling of a novel collection of 

Antarctic and low temperature isolated fungi utilising GC-FID and GC-MS as the 

analysis platforms, with the initial aim of identifying long chain polyunsaturated fatty 

acids from novel fungal producers.  

3.2 Results 

3.2.1 GC-FID and GC-MS fatty acid screening development 

3.2.1.1 Extraction efficiency and reproducibility 

The extraction and derivitisation procedure was assessed by studying the extraction 

recovery efficiency and the quantification reproducibility on four isolates using three 

technical repetitions per sample (table 3-1). The recovery and quantification were 

carried out using the internal standard (IS) heptadecanoic acid. The recovery was 

calculated by spiking a known amount of heptadecanoic acid into the sample matrix and 

comparing it to the value a 100% conversion would give of heptadecanoic acid methyl 

ester. The majority of instances saw recovery values over 100% indicating that error had 

been introduced during the procedure. Likely sources of error could come from 

increased dilution of the heptadecanoic acid methyl ester stock solution or from pipette 

error when spiking samples. Slight sample concentration may have occurred prior to 

autosampler injection. The high values of IS spike compared with the control would 

indicate an efficient method for the analysis of fatty acids even though the current data 

cannot be quantified. The reproducibility data favoured using the IS to eliminate 

technical repetitions as standard error between technical replicates was low. The high 

error associated with sample 398111 was due to an outlier, although for the purposes of 

screening only one technical repetition was deemed necessary as the internal standard 
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compensates for the majority of error associated with the extraction, derivitisation and 

analysis methodology.  

Table 3-1. Reproducibility between three technical repetitions using GC-FID as the 
analysis platform. The use of the internal standard heptadecanoic acid when used for fatty 
acid extraction and derivitisation negates the need to perform technical repetitions due to 
the proportionally low standard error of the mean (SE). The error associated with isolate 
398111 was due to an outlier. Fatty acid values are in mg/g of biomass.   
 

FA 398111 SE NCYC 
825 

SE 330997 SE 82072 SE 

C12:0 0.84 0.08 0.00 0.00 0.00 0.00 0.00 0.00 

C14:0 6.54 0.59 0.19 0.01 1.27 0.01 0.88 0.03 

C15:0 0.00 0.00 0.18 0.00 0.60 0.02 0.64 0.00 

C16:0 32.85 3.39 23.87 0.51 21.23 0.21 8.12 0.11 

C16:1 0.28 0.03 11.69 0.11 0.00 0.00 0.00 0.00 

C17:1 0.00 0.00 1.77 0.03 0.11 0.01 0.30 0.01 

C18:0 24.09 2.90 16.97 0.45 13.04 0.24 4.17 0.06 

C18:1 cis 76.65 9.78 107.63 1.71 4.79 0.58 6.11 0.05 

C18:2 cis 10.28 0.76 44.70 0.25 0.84 0.24 0.82 0.07 

C20:0 0.86 0.10 1.07 0.04 0.97 0.05 0.23 0.01 

C18:3 n6 8.22 0.67 0.00 0.00 0.51 0.15 0.51 0.02 

C20:1 1.97 0.27 0.25 0.01 0.40 0.03 0.40 0.00 

C21:0 0.00 0.00 0.00 0.00 0.14 0.02 0.00 0.00 

C20:2 n6 0.26 0.04 0.24 0.04 0.31 0.05 0.33 0.04 

C22:0 1.48 0.21 1.08 0.04 2.35 0.05 0.54 0.02 

C20:3 n6 11.09 1.33 0.00 0.00 1.13 0.45 0.30 0.01 

C22:1 n9 0.24 0.03 0.00 0.00 0.00 0.00 0.00 0.00 

C20:4 n6 8.71 0.84 0.00 0.00 1.42 0.52 0.51 0.03 

C24:0 1.61 0.22 2.61 0.10 2.77 0.06 0.45 0.07 

C20:5 0.95 0.07 0.00 0.00 0.32 0.03 0.00 0.00 

C24:1 n9 2.07 0.29 0.00 0.00 0.42 0.04 0.22 0.01 
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3.2.1.2 GC-FID and GC-MS parameters 

Fatty acids were identified using a 37 fatty acid methyl ester (FAME) standard to 

calculate the relative retention time compared with the internal standard heptadecanoic 

acid methyl ester on the GC-FID as shown in figure 3-1 The 37 FAME standard was 

also utilised for creating a fatty acid mass spectral library with associated retention 

indices for more accurate identification using the GC-MS. Response factors for both 

GC-FID and GC-MS in relation to heptadecanoic acid methyl ester were also calculated 

using the 37 FAME standard. The response factor is a corrective factor to account for 

the differing response of the detector to different compounds relative to the internal 

standard, i.e. the same amount of internal standard and compound of interest may result 

in different integrated areas. The resolution of the CP-Sil 88 column used in the GC-

FID is sufficient for resolving cis-trans isomerism as well as C18:3 n3 from C18:3 n6. This 

column is more polar in nature and hence elutes fatty acids with a greater numbers of 

double bonds after those that are more saturated. 

 

Figure 3-1. GC-FID trace of 37 FAME standard using the CP-Sil 88 column. Good 
resolution is achieved using the column and oven program specified in the materials and 
methods section. For compound identification, the most accurate method is to calculate 
relative retention times (RRT) to the internal standard, methylated heptadecanoic acid. 
The RRTs are calculated as the ratio of the eluted compound’s retention time over the 
retention time of the internal standard. Absolute retention times can lead to false 
identifications as compounds may elute slightly earlier or later although RRTs can help 
minimise this.    
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Table 3-2. Table showing the parameters used for identification and quantification using 
the GC-FID. RRT = relative retention time, MQ = minimum quantifiable limit in ng, RF = 
response factor, SE = standard error of the response factor. The minimal quantifiable 
amount for C4:0, C6:0 and C8:0 resulted in values that were negative due to the shallow slope 
of the response vs. amount in ng plot.   
 

FA RRT MQ/ng RF SE FA RRT MQ/ng RF SE 

C4:0 0.31 N/A 0.21 0.02 C18:2 cis 1.218 0.86 1.06 0.02 

C6:0 0.34 N/A 0.57 0.09 C20:0 1.248 0.91 1.08 0.03 

C8:0 0.38 N/A 0.76 0.06 C18:3 n6 1.277 0.97 1.04 0.03 

C10:0 0.459 0.65 0.87 0.04 C20:1 1.295 0.85 1.08 0.03 

C11:0 0.514 0.86 0.90 0.02 C18:3 n3 1.311 0.88 1.05 0.02 

C12:0 0.58 0.89 0.94 0.03 C21:0 1.33 0.87 1.09 0.03 

C13:0 0.656 0.89 0.99 0.05 C20:2 n6 1.378 0.82 1.05 0.04 

C14:0 0.739 0.91 1.01 0.03 C22:0 1.408 0.89 1.08 0.03 

C14:1 0.812 0.84 1.00 0.03 C20:3 n6 1.44 0.92 1.04 0.03 

C15:0 0.825 0.89 1.02 0.02 C22:1 n9 1.46 0.58 1.07 0.03 

C15:1 0.903 0.93 1.00 0.03 C20:3 n3 1.474 0.92 0.99 0.03 

C16:0 0.914 0.92 1.05 0.03 C20:4 n6 1.486 0.96 1.46 0.04 

C16:1 0.976 0.85 0.99 0.03 C23:0 1.497 1.17 0.64 0.10 

C17:0 1 1.01 1.00 0 C22:2 n6 1.55 0.78 0.99 0.05 

C17:1 1.062 0.95 1.04 0.02 C24:0 1.583 0.84 1.04 0.04 

C18:0 1.086 1.00 1.06 0.02 C20:5 n3 1.603 0.97 1.03 0.02 

C18:1 trans 1.123 0.85 1.12 0.02 C24:1 n9 1.648 0.78 1.12 0.04 

C18:1 cis 1.142 0.98 1.06 0.02 C22:5 n3 1.841 N/A 1.00 N/A 

C18:2 trans 1.183 0.93 1.03 0.02 C22:6 n3 1.91 0.77 0.92 0.05 

    

For the GC-FID the response factors for most fatty acids are around 1, as shown in 

table 3-2, indicating that the fatty acids produce the same area as the IS when the same 

amount is introduced into the detector. The response factors were calculated over five 

concentrations and the standard error of these responses was taken. The generally low 

standard error indicates that the response factors vary little over the concentration range. 

The minimum quantifiable amount was calculated by plotting amount against integrated 
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area and using y = mx + c for each compound, where y is the integrated area and x is the 

amount. The GC-FID would not integrate any compound with an area less than 1000, so 

x was calculated when y = 1000. In general the minimal quantifiable amount by the GC-

FID was just under 1 ng. The plots (figures 3-2 to 3-4) were also used to determine the 

detector linearity over several concentrations. In general the R2 value for most of the 

compounds was around 0.99 indicating that there was a strong linear correlation 

between area and amount. The saturated fatty acids were in higher abundance within the 

standard mixture and still maintained good linearity over the concentration range. 
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Figure 3-2. GC-FID detector linearity of saturates. The detector linearity with regards to 
area and concentration with the saturated fatty acids is high with the exception of C6:0, 
although C8:0 and C10:0 also exhibit lower responses when compared to the other saturated 
fatty acids. The saturated fatty acids were in higher abundance within the standard 
mixture, up to twice the concentration of the remaining fatty acids although good linearity 
was maintained throughout the range.  
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Figure 3-3. GC-FID detector linearity of unsaturates. Lower abundance saturates and 
unsaturates also demonstrated good detector linearity with all values excluding C18:3 n6 
having R2 values above 0.99. The deviation in the points at 4 and 8ng is possibly due to 
error in sample preparation.  
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Figure 3-4. GC-FID detector linearity of PUFAs. The GC-FID detector linearity is again 
high for predominantly VLCPUFAs with the majority o f compounds displaying R2 values 
around 0.99. C20:4 n6 demonstrates an erroneous point at 1ng although was found to 
partially co-elute with C23:0, which could explain the larger than average area.  
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The GC-MS was equipped with a DB-5MS+DG column (figure 3-5) which is more 

non-polar than the CP-Sil 88 column, which resulted in the elution of unsaturated fatty 

acids prior to saturates. The column had adequate resolution for fatty acid separation, 

however the fatty acids C18:3 n3, C18:1 and cis-C18:2 co-eluted. This meant that total ion 

count (TIC) integrated areas were inaccurate for these fatty acids if in high abundance. 

Therefore extracted ions (EI) as oppose to TIC were used to quantify fatty acids, as they 

allow single ions which distinguish between co-eluting fatty acids to be selected and 

provide greater accuracy. The fatty acid mass spectrums were added to a custom 

AMDIS library to allow accurate identification of the compounds as were retention 

indices (RI). Retention indices allow for more accurate identification of compounds by 

attributing an index value to that compound. The index values are based on a 

homologous series such as the n-alkanes, or in this case the saturated fatty acids C10-

C24:0 with values of 1000-2400 given to the homologous series. These can be plotted 

against retention time and the remaining compounds can be assigned RIs. If the column 

or running conditions are changed, a calibration can be performed to readjust the RI vs. 

retention time plot. The EIs and RIs are shown in table 3-3.  
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Figure 3-5. GC-MS trace using the DB-5MS+DG column and the 37 FAME standard. 
Resolution between most fatty acids was high however the C18 series suffers from co-
elution due to the large abundance of these compounds within fungi. Extracted ions were 
used to quantify all compounds and this increased the accuracy of quantification of co-
eluting fatty acids. The saturated fatty acid series were used to calculate the RI values due 
to the strong correlation of fatty acid length and retention time.  
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Table 3-3. GC-MS parameters used throughout the work. m/z = ion selected for EI 
quantification, EI RF = extracted ion response factor, SE = standard error of EI RF, RI = 
retention index. The EI RF are more variable than with the GC-FID as individual ions are 
used. To prevent co-elution from other peaks influencing quantification, unique ions were 
selected which where not present in the co-eluting compound. These ions in some instances 
are in low abundance, resulting in a large correction factor needing to be used when 
compared to an abundant ion, as found in the internal standard. The response factors are 
slightly more variable than with the GC-FID as is seen by the standard error over the 
range of concentrations.  
 

FA m/z EI RF SE RI FA m/z EI RF SE RI 

C10:0 74 1.05 0.07 1000 C20:0 74 1.06 0.06 2000 

C11:0 74 1.07 0.05 1100 C18:3 n6 79 0.25 0.03 1750.4 

C12:0 74 1.15 0.06 1200 C20:1 74 0.14 0.01 1974.8 

C13:0 74 1.12 0.03 1300 C18:3 n3 79 0.35 0.05 1776.8 

C14:0 74 1.26 0.08 1400 C21:0 67 0.76 0.04 2100 

C14:1 55 0.43 0.01 1386.6 C20:2 n6 98 0.31 0.02 1967.9 

C15:0 74 1.19 0.05 1500 C22:0 74 0.74 0.04 2200 

C15:1 55 0.45 0.02 1487.7 C20:3 n6 81 0.21 0.01 1949.1 

C16:0 74 1.17 0.07 1600 C22:1 n9 74 0.33 0.02 2172.6 

C16:1 55 0.31 0.02 1577.2 C20:4 n6 119 0.03 0.01 1930.3 

C17:0 74 1 0 1700 C23:0 74 0.47 0.01 2300 

C17:1 55 0.35 0.02 1678.5 C22:2 n6 74 0.26 0.02 2167.9 

C18:0 74 1.14 0.06 1800 C24:0 74 0.13 0.02 2400 

C18:1 trans 55 0.43 0.04 1781.1 C20:5 n3 80 0.07 0.02 1936.8 

C18:1 cis 84 0.20 0.05 1775.5 C24:1 n9 74 0.17 0.03 2367.5 

C18:2 trans 67 0.34 0.04 1777.2 C22:5 n3 TIC 0.47 N/A 2137.4 

C18:2 cis 67 0.38 0.02 1766.8 C22:6 n3 55 0.20 0.04 2121.9 
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Figure 3-6. GC-MS detector linearity of saturates. The saturates show good detector 
linearity up to an area of 4x106, however beyond this point detector linearity is lost. 
Saturates were quantified using the major ion m/z 74 which accounts for the large 
detector response with low amounts of compound. The selection of a less abundant ion 
may allow for greater linearity over a greater concentration range. The R2 scores of C11:0, 
C17:0, C18:0, C20:0 and C22:0 are lower then that found for the GC-FID scores.  
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Figure 3-7. GC-MS detector linearity for mono, di and polyunsaturates. In general the 
linearity for most fatty acids was high, although C18:1 cis showed an unusually low R2 
score. Comparable quantities of fatty acid resulted in lower area values compared to the 
saturates due to less abundant ions being selected for quantification. C 18:2 cis, C18:1 cis, 
C18:3 n3 and C18:2 trans were found to have a higher linearity when using the GC-FID.  
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Figure 3-8. GC-MS detector linearity. The linearity of the remaining compounds is 
relatively high however R2 scores for the GC-FID for C20:1, C20:2, C21:0 and C22:2 are slightly 
higher. It is to be noted that higher concentrations of fatty acids are used on the GC-MS, 
and this is due to the final concentration being achieved through decreasing the split value. 
The GC-FID was not capable of this and so the highest concentration was not achieved.  

 

3.2.2 Screening of BAS and low temperature isolated fungi.  

In total 142 organisms were screened for novel VLCPUFAs. All were initially 

screened using GC-FID, and those that demonstrated retention times in accordance with 

fatty acids of interest were run on GC-MS for confirmation. All BAS isolates were 

screened utilising two media, PD and YES or MA at 15°C. Cultures such as Mortierella 

were only grown on PD after it became apparent that this media was sufficient for 

production of VLCPUFAs and that different media were unlikely to result in the 

production of VLCPUFAs from ascomycetes and basidiomycetes. Cork bores of plate 

mycelia were utilised for broth culture throughout the entire study as broth growth using 

spore suspensions of several isolates resulted in poor or no growth. Organism 

identification remains putative due to the lack of spore forming structures which 



Chapter 3 

 
 
 

101 

prevented morphological identification. The lack of spore forming structures may 

partially explain the difficulty in broth culture using spore suspensions. Initial molecular 

identification was obtained from BAS and CABI, however in a large proportion of cases 

identities were made only to the phylum, order or genus levels. In multiple instances no 

identity was achieved at all. More detailed molecular analysis is currently underway to 

determine isolates to genus or species levels. Organisms were grown at 15°C as a 

compromise between mycelial growth and possible VLCPUFA production, with 

temperatures above 15°C inhibiting C20:5 n3 production in Mortierella alpina as will be 

shown in the next chapter. 

In all but 13 organisms the primary long chain polyunsaturated fatty acids detected 

were C18:3 n3 or C18:3 n6. In general the fatty acid profiles of the organisms contained 

C16:0, C16:1, C18:0, C18:1, C18:2 and in the majority of cases C18:3 n3. C18:3 n6 was detected 

exclusively in organisms found within the Zygomycota, Chytridiomycota and 

Oomycota whilst the n3 C18 LCPUFA was found within organisms distributed within 

the Ascomycota and Basidiomycota. Table 3-4 shows the majority of fatty acid profiles, 

many of which are BAS isolates as well as several non-BAS organisms. All these 

organisms however share the inability to elongate past C18:3. Small amounts of C20:0 and 

C22:0 as well as the monounsaturated forms where also found within isolates. It is 

probable that more samples contain these longer chain saturates and monounsaturates, 

although due to a period of poor column resolution owing to column degradation on the 

GC-FID, the shift in retention times resulted in unidentified compounds or were merely 

hidden within the much larger C18 peaks due to poor resolution.  

The initial hypothesis that stated low temperature environments would promote 

organisms to produce a greater complement of unsaturated fatty acids appears not to be 

the case within the ascomycetes and basidiomycetes. Several samples though were 

found to produce VLCPUFAs up to C22:5 n3. These are identified in table 3-5. A large 

number of these are Antarctic Mortierella species. Other organisms capable of 

producing VLCPUFAs are those located within the Oomycota such as Saprolegnia 

diclina, Pythium irregulare and Achlya americana. The chytrid Allomyces macrogynus 

is also capable of producing the VLCPUFA C20:4 n6. Several organisms were studied 

which were found to produce uncharacteristic fatty acid profiles and on isolate 

sequencing, it was found that three organisms were not the initially isolated organisms. 

The first was identified when two strains of Phytophthora richardiae demonstrated 
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strikingly different fatty acid profiles which appeared linked to their isolation location, 

with one isolated from Antarctica whilst the other from a warmer climate (figure 3-9). 

The Antarctic strain showed the ability to produce VLCPUFAs such as C20:4 n6 and 

C20:5 n3 whereas the mesophilic strain clearly showed the absence of these long chain 

unsaturated fatty acids. The Antarctic strain also produced elevated quantities of C14:0. It 

was also noted that the Antarctic isolate was capable of producing both C18:3 n3 and 

C18:3 n6, with this n6 LCPUFA the most likely precursor for the C20 VLCPUFAs. The 

mesophilic strain however lacked C18:3 n6, instead producing C18:3 n3 as the most 

unsaturated fatty acid. The lack of VLCPUFAs and the sole presence of C18:3 n3 

indicated that the mesophilic isolate may not be an Oomycete and sequencing confirmed 

the isolate as Daedaleopsis confragosa. The other two identified contaminants will be 

discussed shortly.  

 

 

Figure 3-9. Comparison of two strains, 328662 and340618, thought to be Phytophthora 
richardiae. The upper trace shows a strain thought to be a mesophilic isolate whilst the 
lower trace shows a strain isolated from a psychrophilic environment. The low 
temperature isolated strain (bottom) clearly demonstrates the ability to produce fatty 
acids up to C20:5 n3 (35-38 minutes) whereas the contaminant organism does not produce 
PUFAs beyond C18:3 n3. 

 

The genus Mortierella provided some notable results, not least its ability to produce 

long chain polyunsaturates. It was found that Mortierella alpina strain 330997 was 
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capable of producing trace amounts of C22 VLCPUFA such as C22:5 n3 (up to 0.1 mg/g 

of dry biomass, 0.18% of total lipid) shown in figure 3-10. Due to the low levels of 

these fatty acids, it was thought that their formation was a side reaction of an already 

known elongase enzyme utilising C20 VLCPUFAs such as C20:4 n6 and C20:5 n3. 

However the discovery of this side reaction prompted further investigation into the 

biosynthesis of VLCPUFAs within the fungi, which will be elaborated upon in the 

discussion. Two of the Umbelopsis isolates demonstrated C18:3 n3 production as oppose 

to the commonly observed C18:3 n6 and it was these isolates which were also considered 

to not be the original identified organism. The isolates that demonstrated this preference 

were Dis 169, a mesophilic organism, and 403341 an Antarctic isolated organism. On 

returning to the original cultures it was found that they produced the same fatty acid 

profiles. This indicated that during the initial isolation or transfer to the culture 

collection contamination had occurred, or the isolate had been outgrown by a co-isolate 

which now replaced the original strain. These isolates were molecularly identified and 

found to be a Penicillium isolate (403341) and an unknown species from within the 

Clavicipitaceae (Dis 169). The analysis of the fatty acid profiles, as will be described 

shortly, also acted as a quality control screen indicating that in this case contamination 

had occurred. The other Mortierella species studied all contained the fatty acid C18:3 n6 

either as the most unsaturated fatty acid or as a precursor for the synthesis of C20:4 n6 

and C20:5 n3. In regards to the production of VLCPUFAs such as C20:4 n6, Mortierella 

strain 398216 accumulated the fatty acid at 67.84% of its total lipid, with the second 

highest accumulation being 34.92% from Mortierella alpina strain 196057. C20:4 n6 

levels were subsequently between 8-14% of total lipid for the other strains of 

Mortierella. Production of C20:5 n3 was at a much lower level, ranging from 1.40-5.04% 

of the total lipid with production in the high C20:4 n6 strain reaching 3.18%. The greatest 

proportional producer of C20:5 n3 was Saprolegnia diclina at 19.9% of the total lipid, 

with the majority of the Oomycetes producing C20:5 n3 in the range of 12.09-14.3% of 

the total lipid. In absolute value terms, Pythium irregulare produced the greatest C20:5 

n3 quantity at 20 mg/g of dry biomass, Achlya americana at 12 mg/g and Saprolegnia at 

4 mg/g. Comparatively Mortierella alpina, strain 196057, produced C20:5 n3 at 6.9 mg/g 

of the dry biomass. The sole chytrid, Allomyces macrogynus was capable of producing 

C20:4 n6 at 11.2% of the total lipid although was incapable of further desaturation to 

C20:5 n3.   
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Figure 3-10. Mortierella alpina strain 330997 is capable of producing C22 VLCPUFAs up 
to C22:5 n3. However it can be clearly seen that they are trace fatty acids. C22:6 n3 and C22:5 
n3 were spiked to confirm the identity of the fatty acid.  
 

Table 3-4. Fatty acid profiles of 128 low temperature isolated fungi incapable of elongation 
beyond C18:3. The majority of the organisms are ascomycetes, with several zygomycetes 
such as Mortierella and Mucor species and a few basidiomycetes, such as Phaffia and 
Sporobolomyces. Those isolates with IMI numbers starting 403xxx are from the BAS 
collection. Fatty acid values are stated as the % (w/w) of the total lipid fraction. 
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Organism IMI C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 C18:2 C20:0 C18:3 n6 C20:1 C18:3 n3 C22:0 C22:1 C24:0 C24:1 T o tal lipid mg/ g

Mucor racemosus 17313 6.7 0.0 21.2 0.0 0.0 13.3 18.7 13.7 0.4 17.5 0.0 0.0 0.0 0.0 1.9 0.0 52.8

Mucor hiemalis 17363 1.7 0.0 16.7 3.0 0.0 9.4 25.0 26.4 0.0 14.1 0.0 0.0 0.0 0.6 0.0 1.1 48.3

Trichosphaeria pilosa 89319 0.0 0.0 20.5 1.0 0.0 6.8 37.0 26.1 0.5 0.0 0.0 7.5 0.3 0.0 0.4 0.0 194.0

Curvularia inaequalis 114060 0.0 0.0 18.3 0.0 0.0 10.7 12.5 35.8 0.0 0.0 0.0 17.9 0.0 1.0 0.0 1.7 9.5

Thielavia peruviana 135024 0.0 0.0 15.1 1.2 0.0 3.0 8.2 65.3 0.0 0.0 0.0 7.2 0.0 0.0 0.0 0.0 34.4

Mucor hiemalis 138261 3.7 0.3 18.9 3.7 0.2 5.3 23.2 18.7 0.0 20.4 0.0 0.4 0.0 0.5 0.0 1.2 68.7

Embellisia sp. 215092 0.0 0.0 20.6 0.5 0.0 7.1 31.3 31.8 0.0 0.0 0.0 8.3 0.0 0.0 0.3 0.0 218.2

Penicillium echinulatum 256351 0.0 0.0 12.3 0.9 0.0 5.6 10.0 56.6 0.0 0.0 0.0 13.6 0.0 0.0 1.0 0.0 50.5

Acremonium  sp. 312275 0.7 0.0 26.7 3.9 0.0 1.9 40.0 25.1 0.0 0.0 0.0 1.5 0.0 0.0 0.2 0.0 361.6

Aureobasidium  sp. 312277 0.3 0.0 0.0 2.8 0.1 1.2 54.4 25.0 0.1 0.0 0.2 0.5 0.1 0.0 0.0 0.0 695.1

Thelebolus  sp. 340093 0.4 0.0 20.6 1.1 0.0 5.8 45.1 18.6 0.5 0.0 0.0 6.2 0.6 0.0 1.2 0.0 192.0

Leptodontidium elatius var. elatius 369788 0.0 0.0 23.5 0.0 0.0 4.9 20.5 30.7 0.0 0.0 0.0 18.7 0.0 0.0 0.9 0.0 122.7

Thelebolus microsporus 369795 0.5 0.0 23.5 3.5 0.0 2.8 35.9 28.6 0.0 0.0 0.0 4.4 0.0 0.0 0.5 0.3 191.4

Chrysosporium  sp. 369800 0.3 0.3 18.8 0.6 0.0 5.4 36.0 35.0 0.4 0.0 0.0 2.9 0.3 0.0 0.0 0.0 288.6

Cladosporium cladosporioides 377828 0.0 0.0 15.0 1.0 0.0 5.7 42.7 32.5 0.3 0.0 0.0 2.7 0.0 0.0 0.0 0.0 171.2

Alternaria alternata 378423 0.5 0.0 20.7 0.6 0.0 18.1 12.9 42.8 0.5 0.0 0.0 3.7 0.0 0.0 0.0 0.0 209.7
396413 0.0 0.0 16.3 0.8 0.0 8.1 19.4 31.9 0.4 0.5 0.0 21.9 0.0 0.0 0.0 0.0 211.3

Cladosporium cladosporioides 396505 0.0 0.0 19.8 0.6 0.3 5.6 18.9 42.4 0.0 0.0 0.0 12.2 0.0 0.0 0.0 0.0 29.4
Herpotrichia sp. 403002 0.0 0.0 12.2 0.7 0.2 4.5 13.3 38.7 0.2 0.0 0.1 14.3 1.1 0.0 0.2 0.4 42.1

Ascomycota 403004 0.0 0.0 16.3 1.6 0.0 5.4 21.3 49.9 0.0 0.0 0.0 4.2 0.7 0.4 0.0 0.0 34.9

Ascomycota 403008 0.0 0.0 16.5 1.8 0.0 7.8 26.8 39.7 0.0 0.0 0.0 6.2 0.7 0.0 0.0 0.0 49.9

Ascomycota 403010 0.0 0.0 14.1 1.1 0.0 6.1 18.7 42.7 0.0 0.0 0.0 11.8 1.1 0.6 0.6 0.2 35.0

Leptodontidium  sp. 403011 0.4 0.3 16.8 0.9 0.3 3.5 33.0 32.0 0.0 0.0 0.1 10.1 0.0 0.4 0.0 0.2 59.2

Leptodontidium  sp. 403012 0.0 0.0 13.8 0.5 0.0 0.4 19.9 28.1 0.0 0.0 0.6 33.6 0.0 0.3 0.0 0.4 38.0

Herpotrichia 403014 0.0 0.0 14.2 0.5 0.0 4.7 16.8 50.9 0.0 0.0 0.0 9.8 1.2 0.0 0.0 0.0 37.3

Herpotrichia 403015 0.0 0.0 14.2 0.8 0.0 3.8 15.9 55.1 0.0 0.0 0.0 10.1 0.0 0.0 0.0 0.0 23.9

Herpotrichia 403016 0.0 0.0 15.5 0.3 0.1 8.4 22.6 42.0 0.1 0.0 0.0 9.9 0.5 0.0 0.0 0.0 39.3

Ascomycota 403017 0.0 0.0 17.8 3.3 0.2 4.8 22.0 43.3 0.0 0.0 0.0 7.8 0.0 0.0 0.0 0.0 38.5

Ascomycota 403019 0.0 0.0 14.4 1.4 0.3 7.6 17.8 46.2 0.0 0.0 0.0 11.1 0.0 0.5 0.0 0.0 32.9

Ascomycota 403020 0.3 0.0 20.9 0.8 0.0 4.1 31.9 32.9 0.4 0.0 0.0 7.6 0.5 0.0 0.0 0.0 87.2

Ascomycota 403021 0.0 0.0 18.3 0.9 0.0 6.9 36.5 31.6 0.3 0.0 0.0 5.2 0.2 0.0 0.0 0.0 76.6

Ascomycota 403023 0.0 0.0 18.8 1.0 0.0 7.0 40.9 30.0 0.0 0.0 0.0 1.8 0.4 0.0 0.0 0.0 44.2

Ascomycota 403024 0.0 0.0 13.2 0.6 0.0 6.4 32.9 37.9 0.3 0.0 0.0 8.1 0.4 0.0 0.0 0.0 61.2

Ascomycota 403025 0.0 0.0 13.9 0.4 0.0 7.7 32.7 38.2 0.0 0.0 0.0 7.1 0.0 0.0 0.0 0.0 52.4

Pleosporales 403026 0.0 0.0 17.5 1.4 0.0 7.6 23.2 41.3 0.0 0.0 0.0 8.0 0.6 0.0 0.0 0.5 49.9

Pleosporales 403027 0.0 0.0 14.1 1.0 0.0 2.5 25.6 52.2 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 38.1

Pleosporales 403028 0.0 0.7 15.3 0.8 0.9 4.6 24.4 36.1 0.0 0.0 0.7 16.0 0.0 0.0 0.0 0.0 15.7

Pleosporales 403029 0.0 0.0 13.8 0.6 0.0 6.0 43.5 31.9 0.0 0.0 0.0 3.7 0.2 0.0 0.0 0.0 74.0

Pleosporales 403030 0.0 0.0 16.1 1.0 0.0 5.2 38.8 34.5 0.2 0.0 0.0 4.0 0.3 0.0 0.0 0.0 82.4
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Organism IMI C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 C18:2 C20:0 C18:3 n6 C20:1 C18:3 n3 C22:0 C22:1 C24:0 C24:1 Total lipid mg/g

Pleosporales 403032 0.0 0.0 13.4 1.2 0.0 4.3 39.0 38.3 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0 27.8
Pleosporales 403033 0.0 0.0 13.9 0.7 0.0 8.0 31.0 42.2 0.0 0.0 0.0 3.4 0.0 0.4 0.0 0.0 31.1

Herpotrichia sp. 403037 0.0 0.0 15.3 1.3 0.0 3.8 25.0 45.0 0.0 0.0 0.0 8.8 0.3 0.0 0.0 0.0 57.2
Pleosporales 403038 0.0 0.0 13.4 1.0 0.0 4.2 23.9 51.1 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 25.4
Pleosporales 403040 0.0 0.0 16.2 0.5 0.0 7.3 21.0 47.0 0.0 0.0 0.0 6.2 0.7 0.0 0.0 0.0 34.5
Pleosporales 403041 0.4 0.6 19.0 0.6 0.4 3.1 14.6 38.9 0.0 0.0 0.0 14.7 2.9 1.5 0.0 0.0 22.1
Pleosporales 403042 0.0 0.0 12.5 1.7 0.3 2.7 43.3 36.5 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 26.2

Herpotrichia juniperi 403043 0.0 0.0 13.9 1.2 0.9 6.0 22.3 49.8 0.0 0.0 0.0 5.9 0.0 0.0 0.0 0.0 29.5
Pleosporales 403045 0.0 0.0 13.3 2.4 0.4 5.6 22.1 36.5 0.0 0.0 0.0 14.0 1.4 0.8 0.6 0.0 59.7
Pleosporales 403046 0.0 0.0 16.6 2.5 0.0 6.5 25.3 44.5 0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0 33.2
Pleosporales 403049 0.0 0.6 13.3 0.7 0.0 4.1 15.6 49.0 0.8 0.0 0.0 10.7 0.7 0.0 0.0 0.0 36.8

Leptodontidium  sp. 403051 0.4 0.3 24.1 1.1 0.1 6.8 34.5 26.5 0.0 0.0 0.3 3.9 0.0 0.0 0.0 0.0 99.6
Cadophora/polyscytalum 403058 0.0 0.0 19.8 1.1 0.0 3.6 30.9 34.7 0.0 0.0 0.0 9.2 0.0 0.0 0.0 0.0 20.3
Cadophora/polyscytalum 403059 0.3 0.0 18.2 0.8 0.5 4.9 41.0 21.5 0.0 0.0 0.0 11.7 0.6 0.0 0.0 0.0 76.2

Leptodontidium sp. 403060 0.0 0.3 19.8 1.0 0.3 7.5 25.4 36.1 0.0 0.0 0.0 8.1 0.5 0.0 0.0 0.0 6.7
Leptodontidium sp. 403061 0.0 0.3 14.8 0.4 0.4 3.8 34.7 36.9 0.0 0.0 0.0 5.9 0.0 0.5 0.0 0.0 32.2
Leptodontidium sp. 403061 0.3 0.0 20.7 0.5 0.4 8.4 37.0 24.2 0.0 0.0 0.0 6.5 0.9 0.0 0.0 0.0 53.9
Leptodontidium sp. 403062 0.0 0.0 15.7 0.0 0.0 4.1 36.4 35.4 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0 29.3
Leptodontidium sp. 403063 0.0 0.3 22.0 0.7 0.3 5.6 35.6 21.3 0.0 0.0 0.0 10.8 0.0 0.0 0.0 0.0 69.5
Leptodontidium sp. 403065 0.0 0.0 15.9 0.6 0.4 3.8 36.1 31.4 0.0 0.0 0.0 9.7 0.0 0.5 0.0 1.0 29.7
Leptodontidium sp. 403066 0.0 0.0 19.7 0.0 2.3 4.5 33.4 28.8 0.0 0.0 0.0 11.3 0.0 0.0 0.0 0.0 10.6
Leptodontidium sp. 403067 0.0 0.0 16.1 0.4 0.0 4.8 36.7 27.9 0.0 0.0 0.0 12.3 0.0 0.0 0.0 0.0 48.9
Leptodontidium sp. 403069 0.0 0.3 16.2 0.6 0.6 4.4 34.7 31.1 0.0 0.0 0.0 10.2 0.0 0.5 0.0 0.3 31.9
Leptodontidium sp. 403070 0.0 0.2 15.9 0.6 0.2 1.9 16.2 38.7 0.0 0.0 0.7 22.9 0.0 0.4 0.0 0.3 41.1
Leptodontidium sp. 403072 0.0 0.0 19.2 0.0 0.0 4.9 31.1 32.3 0.0 0.0 0.0 12.5 0.0 0.0 0.0 0.0 30.9
Leptodontidium sp. 403073 0.0 0.0 24.7 0.9 0.0 4.6 40.7 27.5 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 54.4
Leptodontidium sp. 403074 0.0 0.0 23.8 0.7 0.0 4.9 39.8 29.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 48.0
Leptodontidium sp. 403075 0.0 0.0 16.1 0.0 0.0 3.2 22.7 32.2 0.0 0.0 0.0 25.9 0.0 0.0 0.0 0.0 17.2
Leptodontidium sp. 403077 0.0 0.0 22.3 0.0 0.0 6.7 14.3 45.5 0.0 0.0 0.0 11.2 0.0 0.0 0.0 0.0 17.1
Leptodontidium sp. 403078 0.0 0.0 16.0 0.0 0.0 3.3 16.1 57.9 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 24.4
Leptodontidium sp. 403079 0.3 0.0 22.0 0.6 0.0 5.5 36.1 26.2 0.3 0.0 0.0 8.7 0.0 0.0 0.0 0.0 68.2

Rhexocercosporidium sp. 403080 0.0 0.0 17.8 0.0 0.0 2.6 31.5 31.7 0.0 0.0 0.0 16.5 0.0 0.0 0.0 0.0 23.1
Thelebolus microsporus 403082 0.0 0.0 15.4 0.0 0.0 2.9 22.5 31.1 0.0 0.0 0.0 28.1 0.0 0.0 0.0 0.0 15.7

Mollisia sp. 403087 0.0 0.0 19.1 0.6 0.0 3.9 16.7 36.9 0.0 0.0 0.0 22.7 0.0 0.0 0.0 0.0 20.9
Geomyces sp. 403088 0.5 0.0 26.2 0.6 0.0 5.7 30.8 31.2 0.0 0.0 0.0 4.7 0.0 0.0 0.0 0.0 63.6

Mollisia sp. 403090 0.0 0.0 28.2 0.0 0.0 6.1 21.4 36.0 0.0 0.0 0.0 4.5 0.0 0.0 0.0 0.0 18.8
Mollisia sp. 403091 0.5 0.0 29.1 0.6 0.0 5.2 29.0 30.6 0.0 0.0 0.0 5.1 0.0 0.0 0.0 0.0 37.0
Mollisia sp. 403092 0.8 0.0 32.0 0.5 0.0 5.3 26.2 29.7 0.0 0.0 0.0 4.8 0.0 0.0 0.0 0.0 38.9
Mollisia sp. 403093 0.0 0.0 20.4 2.3 0.3 9.0 27.5 32.5 0.0 0.0 0.0 6.5 0.0 0.0 0.0 0.0 63.9

Ophiostoma stenoceras 403094 0.0 0.0 14.7 6.2 0.8 2.1 27.0 36.3 0.0 0.0 0.0 6.2 0.5 0.3 0.0 0.0 28.5
Mollisia sp. 403099 0.3 0.0 23.0 0.4 0.0 4.4 28.8 34.8 0.0 0.0 0.0 6.7 0.0 0.4 0.0 0.4 40.4
Mollisia sp. 403100 0.5 0.0 28.5 0.4 0.0 7.5 33.1 24.6 0.0 0.0 0.0 4.9 0.0 0.0 0.0 0.0 102.6
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Organism IMI C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 C18:2 C20:0 C18:3 n6 C20:1 C18:3 n3 C22:0 C22:1 C24:0 C24:1 Total lipid mg/g

Rhizoscyphus ericae  strain 403102 0.0 0.0 18.3 0.0 0.0 3.8 26.3 43.6 0.0 0.0 0.0 6.6 0.0 0.0 0.0 0.0 28.9
Helotiaceae 403104 0.0 0.0 19.3 1.0 0.0 3.3 17.8 36.1 0.0 0.0 0.0 22.0 0.0 0.0 0.0 0.0 46.0

Gyoerffyella  sp. 403109 0.0 0.0 18.4 0.7 0.6 3.4 27.0 44.2 0.0 0.9 0.0 1.8 0.0 0.0 0.0 0.0 31.4
Penicillium rugulosum 403110 0.0 0.0 13.6 0.9 1.4 5.2 24.3 29.3 0.0 0.0 0.0 23.5 0.0 0.0 0.0 0.8 19.6

Gyoerffyella  sp. 403111 0.0 0.0 18.4 0.6 0.0 5.8 22.1 38.5 0.4 0.0 0.0 8.3 0.6 0.0 0.0 0.0 40.6
Gyoerffyella  sp. 403112 0.0 0.0 14.9 0.9 0.5 7.7 8.7 45.1 0.6 0.0 0.6 21.0 0.0 0.0 0.0 0.0 17.2

403116 0.0 0.0 0.0 2.0 0.0 9.6 30.6 27.7 0.5 0.0 0.0 2.2 0.0 0.0 0.0 0.4 62.1
403119 0.0 1.0 12.9 0.8 0.0 10.4 9.7 47.5 1.8 0.0 0.0 11.8 0.0 0.7 0.0 1.2 11.7

Ascomycota 403123 0.0 0.0 21.2 0.4 0.0 0.6 14.5 41.3 0.0 0.0 0.0 17.4 0.0 0.5 0.0 0.0 22.6
Ascomycota 403124 0.0 0.4 15.8 0.0 1.0 4.1 28.1 33.1 0.0 0.0 0.0 9.4 0.0 0.5 0.0 0.0 19.8
Ascomycota 403125 0.0 0.0 21.1 0.4 0.0 0.5 11.9 39.8 0.0 0.0 0.4 20.0 0.0 0.6 0.0 0.0 24.2
Ascomycota 403127 0.0 0.7 18.9 0.5 0.9 5.0 21.7 40.7 0.0 0.0 0.0 7.9 0.0 0.5 0.0 0.0 20.9

403129 0.6 0.0 27.2 0.6 0.0 5.4 28.4 32.1 0.0 0.0 0.0 5.3 0.0 0.0 0.0 0.0 45.0
403131 0.4 0.0 23.6 0.4 0.0 5.9 29.6 32.2 0.0 0.0 0.0 6.8 0.4 0.0 0.7 0.0 50.2

Mollisia sp. 403133 0.4 0.0 22.5 0.0 0.0 6.8 20.6 27.5 0.0 0.0 0.0 9.9 0.6 0.0 0.9 0.0 53.8
Mollisia sp. 403134 0.3 0.0 19.5 0.3 0.0 5.9 22.6 27.3 0.3 0.0 0.0 12.0 0.5 0.0 1.1 0.0 62.7

403135 0.0 0.0 19.3 0.0 0.0 6.1 21.8 27.3 0.3 0.0 0.0 12.3 0.5 0.0 1.1 0.0 53.9
403136 0.0 0.0 21.9 0.0 0.0 5.9 31.3 30.6 0.0 0.0 0.0 6.6 0.0 0.0 0.0 0.0 12.5
403142 0.0 0.0 12.5 0.0 0.0 1.9 9.4 26.0 0.0 0.0 0.0 11.6 0.0 0.0 0.0 0.0 41.1
403143 0.0 0.0 19.7 0.3 0.0 5.4 23.2 36.9 0.0 0.0 0.0 12.7 0.5 0.0 1.4 0.0 52.7
403145 0.0 0.0 17.3 0.5 0.0 3.9 25.4 29.3 0.3 0.0 0.0 2.6 0.4 0.2 1.0 0.0 77.9
403147 0.0 0.0 4.6 0.0 0.0 0.0 7.1 7.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.9
403151 0.0 0.0 10.4 0.0 1.0 3.7 11.9 27.8 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0 20.0
403158 0.0 0.0 11.0 0.0 1.0 3.5 11.6 27.0 0.0 0.0 0.0 19.7 0.0 0.0 0.0 0.0 19.8
403159 0.0 0.0 15.8 0.0 0.9 3.8 23.2 31.7 0.0 0.0 0.0 24.6 0.0 0.0 0.0 0.0 17.9
403177 0.0 0.0 21.0 1.3 0.0 4.9 20.3 36.4 0.0 0.0 0.0 16.1 0.0 0.0 0.0 0.0 34.1
403178 0.0 0.0 11.2 0.0 0.0 2.8 14.3 23.7 0.0 0.0 0.0 14.1 0.0 0.0 0.0 0.0 41.3

Geomyces sp. 403302 0.3 0.2 22.7 1.3 0.0 4.9 52.3 16.5 0.0 0.0 0.6 0.5 0.0 0.0 0.0 0.0 101.6
Geomyces sp. 403303 0.0 0.2 21.6 1.4 0.0 3.5 53.4 17.8 0.0 0.0 0.5 0.6 0.0 0.0 0.0 0.0 67.2

Anarctomyces psychrotrophicus 403306 0.4 0.0 18.1 1.1 0.3 3.7 40.7 23.5 0.0 0.0 0.2 10.1 0.0 0.6 0.0 0.0 47.5
Anarctomyces psychrotrophicus 403307 0.5 0.0 21.7 0.9 0.8 4.0 39.7 23.8 0.0 0.0 0.0 7.7 0.0 0.0 0.0 0.0 32.8

Thelebolus microsporus 403308 0.0 0.0 17.4 2.3 0.0 3.3 31.1 34.7 0.0 0.0 0.0 10.2 0.0 0.0 0.0 0.4 20.7
403310 0.0 0.0 14.3 0.4 0.2 10.9 11.4 43.2 0.0 0.0 0.0 18.4 0.0 0.3 0.0 0.0 36.4

Cadophora malorum 403316 0.2 0.1 21.2 0.4 0.0 10.8 41.5 19.9 0.0 0.0 0.7 1.7 0.0 0.0 0.0 0.0 77.0
Geomyces sp. 403318 0.2 0.2 19.0 0.7 0.1 6.5 44.2 26.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 111.9

Pleospora/ulocladium 403321 0.3 0.0 26.5 0.8 0.2 8.8 37.3 21.8 0.0 0.0 0.0 3.5 0.3 0.0 0.0 0.0 55.0
Tetracladium sp. 403323 0.0 0.0 19.9 1.0 0.0 5.3 25.8 31.6 0.0 0.0 0.0 16.5 0.0 0.0 0.0 0.0 22.7

Ascomycota 403330 0.3 0.2 22.0 1.2 0.0 5.5 51.6 17.1 0.0 0.0 0.0 1.0 0.6 0.0 0.0 0.0 176.8
Geomyces sp. 403333 0.0 0.0 20.2 1.4 0.0 3.4 44.4 28.6 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 70.9  
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Organism IMI C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 C18:2 C20:0 C18:3 n6 C20:1 C18:3 n3 C22:0 C22:1 C24:0 C24:1 Total lipid mg/g

Penicillium sp. 403341 0.0 0.0 11.7 0.5 0.0 8.9 8.9 40.8 0.0 0.0 0.0 27.1 0.0 0.0 0.5 0.0 25.8
Bjerkandera adusta 403530 0.0 0.0 20.0 0.0 0.0 1.3 3.5 69.5 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.3 9.7

Clavicipitaceae dis 169 0.2 0.0 20.4 1.8 0.2 6.4 24.5 34.1 0.9 0.0 0.0 8.7 0.2 0.0 0.6 0.0 84.7
Umbelopsis isabellina dis 195 0.6 0.0 19.1 1.9 0.0 3.9 52.1 11.2 0.5 10.3 0.0 0.0 0.0 0.0 0.4 0.0 135.3

Umbelopsis sp. dis 206 0.7 0.0 22.3 2.4 0.0 3.8 46.6 10.8 1.0 11.0 0.3 0.0 0.3 0.0 0.3 0.3 224.0
Sporobolomyces roseus ncyc 1464 0.9 0.0 13.5 0.8 0.0 3.5 43.5 20.9 0.0 0.0 0.0 14.7 0.0 0.0 0.9 0.0 39.5

Yarrowia lipolytica ncyc 825 0.0 0.0 16.8 11.3 0.9 5.6 34.6 27.7 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 46.3
Phaffia rhodozyma ncyc 874 0.0 0.0 14.0 0.8 0.0 2.6 46.0 30.5 0.4 0.0 0.0 4.5 0.5 0.0 0.7 0.0 140.9

Daedaleopsis confragosa 328662 0.40 0.19 12.46 0.27 0.00 1.91 7.81 68.83 0.23 0.00 0.00 5.71 0.25 0.0 0.51 0.0 54.3  

Table 3-5. The fatty acid profiles of 14 isolates, from both the fungi and Oomycetes capable of VLCPUFA production. In general Mortierella species 
produce the greatest proportion of C20:4 n6 whilst species from the Oomycetes produce the greatest proportion of C20:5 n3.   
 

Organism IMI C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 C18:2 C20:0 C18:3 n6 C20:1 C18:3 n3
Mortierella alpina 82072 1.43 0.00 17.61 0.08 0.05 11.47 23.55 7.59 1.94 4.03 1.67 0.00

Mortierella polycephala 140468 1.45 0.68 15.96 0.40 0.75 5.69 42.57 3.73 0.75 3.31 1.22 0.26
Mortierella alpina 196057 1.42 0.15 15.21 0.14 0.00 7.34 11.75 4.65 0.40 7.60 0.41 0.16
Pythium irregulare 308153 5.47 0.00 13.39 11.51 0.58 1.97 23.45 9.15 0.55 1.38 4.60 0.00
Saprolegnia diclina 308259 11.20 0.65 15.86 3.64 0.00 5.10 11.97 10.04 0.99 2.28 0.00 0.00
Mortierella alpina 330997 0.69 0.00 21.47 0.30 0.26 9.50 20.48 6.60 1.73 3.64 0.97 0.00

Allomyces macrogynus 332398 1.17 0.00 17.83 0.00 0.00 3.78 5.81 13.87 2.33 19.13 1.57 0.00
Phytophthora richardiae 340618 11.41 0.00 17.71 2.79 0.00 5.15 16.24 17.05 1.38 1.31 1.31 1.14

Achlya americana 344320 13.55 0.00 21.11 2.58 0.00 5.36 15.92 6.59 1.21 1.82 0.00 0.00
Mortierella sp. 398213 1.99 1.11 23.63 0.85 1.14 4.12 48.18 3.42 0.29 1.84 1.26 0.00
Mortierella sp. 398216 0.32 0.08 4.02 0.05 0.00 4.16 2.94 3.36 0.52 4.33 0.53 0.00
Mortierella sp. 398217 4.34 0.48 17.21 0.45 0.30 8.42 37.03 3.08 0.30 5.17 0.98 0.00
Mortierella sp. 398220 1.46 0.59 14.52 0.36 0.25 7.93 47.70 2.12 0.55 3.17 2.06 0.00
Mortierella sp. 398111 3.38 0.00 16.76 0.15 0.00 12.00 37.80 5.53 0.39 4.40 0.97 0.00  
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Organism IMI C21:0 C20:2 n6 C22:0 C20:3 n6 C22:1 C20:4 n6 C22:2 n6 C24:0 C20:5 n3 C24:1 C22:5 n3 Total lipid mg/g

Mortierella alpina 82072 0.00 0.00 2.58 8.46 0.34 13.00 0.00 2.13 1.40 0.86 0.00 133.9
Mortierella polycephala 140468 0.09 0.16 0.83 5.18 0.12 6.81 0.05 0.64 4.11 0.78 0.00 57.0

Mortierella alpina 196057 0.00 0.33 0.88 5.98 0.00 34.92 0.27 1.79 5.04 0.64 0.00 137.8
Pythium irregulare 308153 0.00 0.55 1.19 1.36 0.80 3.81 0.00 0.00 14.30 0.00 0.15 144.5
Saprolegnia diclina 308259 0.00 0.00 0.00 2.26 0.00 9.87 0.00 0.00 19.90 0.00 0.00 41.4
Mortierella alpina 330997 0.00 0.00 1.86 9.84 0.00 14.43 0.00 2.77 1.55 0.42 0.18 53.8

Allomyces macrogynus 332398 0.00 2.24 0.00 16.60 0.00 11.20 0.00 0.00 0.00 0.00 0.00 34.4
Phytophthora richardiae 340618 0.00 0.33 1.93 4.17 0.92 2.71 0.00 0.00 12.09 0.00 0.00 36.3

Achlya americana 344320 0.00 0.00 0.00 3.43 0.00 8.51 0.00 0.00 13.35 0.00 0.00 93.6
Mortierella sp. 398213 0.08 0.08 0.57 1.40 0.19 6.16 0.06 0.52 1.14 1.01 0.00 72.8
Mortierella sp. 398216 0.00 0.80 0.00 3.57 0.00 67.84 0.05 2.85 3.18 0.33 0.00 231.0
Mortierella sp. 398217 0.00 0.08 0.62 3.81 0.00 13.57 0.08 0.90 1.51 1.20 0.00 106.4
Mortierella sp. 398220 0.03 0.18 0.80 3.25 0.13 7.93 0.04 0.72 4.34 0.76 0.00 135.7
Mortierella sp. 398111 0.00 0.10 0.72 5.59 0.11 4.60 0.00 0.78 0.50 1.01 0.00 173.7  
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 The above data are presented as the percentage of the total lipid as a means of 

normalisation, as well as allowing for direct comparison between isolates. Other fatty 

acid profiling studies of fungi have also utilised the same methodology (Stahl & Klug, 

1996). The aim of the work by Stahl & Klug was not to identify fungi, but rather to 

characterise and differentiate them. In the case of this study, the data collected was not 

intended for taxonomic classification, but the resulting data were used to identify trends 

within groups of isolates, e.g. within genera for example. The analysis of large sets of 

data containing multiple variables can be more readily studied in a visual format, 

whereby the multiple variances in variables can be condensed into several variables 

which express the majority of the variance within the data. The analysis of multiple 

variables such as metabolites can be visualised using a technique called principle 

component analysis (PCA). A similar study was carried out in the fungus Histoplasma 

capsulatum (Zarnowski et al., 2007), whereby strains were grouped by their fatty acid 

profiles. By utilising this type of analysis, samples displaying similar trends within their 

multiple variables will be clustered together. Such a technique can be used in an 

exploratory or predictive fashion, with exploration allowing for example, the 

identification of the fatty acids which contribute to the clustering of organisms. In the 

predictive sense it can be used as a taxonomic tool to place organisms based on their 

metabolite profile. Due to the relatively unspecific classification of isolates coupled 

with the lack of replication, PCA failed to provide any clear separation of isolates into 

clear groupings. However, a related technique, partial least squares discriminant 

analysis (PLS-DA) was used which provided much clearer separation between the 

groups of organisms. The technique effectively sharpens the separation between groups 

of observations by utilizing class information, however the ability of this method to 

accurately predict further classifications based on unknown data has been called into 

question (Westerhuis et al., 2008). Due to this limitation and the lack of replication and 

detailed taxonomic information regarding the BAS isolates the presented cluster 

analysis cannot be utilised for taxonomic identification, but rather the differentiation of 

a large number of isolates into similar groupings based upon characteristic trends. 

A PLS-DA was performed utilising the major known groupings of organisms using 6 

fatty acid components, C14:0, C16:0, C16:1, C18:1, C18:2 and C18:3 n3 shown in figure 3-11. 

C18:3 n6 wasn’t used for the initial PLS-DA as the majority of organisms contained C18:3 

n3 and excluding C18:3 n6 resulted in clearer separation. The organisms were split into 
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Pleosporales, Leptodontidium sp., Mollisia sp., Oomycota, zygomycetes capable of 

producing C18:3 n6 only and Mortierella species. Longer chain fatty acids were not 

utilised for the analysis due to the spurious and trace quantities present in the majority 

of organisms. The cluster analysis discriminates between the VLCPUFA producing 

organisms and those incapable of elongating past C18:3 n3. Mortierella, Oomycete and 

the majority of zygomycete isolates effectively form an out group from what is 

effectively an Ascomycota cluster, with the fatty acids C18:0, C18:2 and C18:3 n3 

contributing largely to component 1, which predominantly segregate the two groupings. 

The PLS-DA loading plots are found in the appendix, section 7.3.  

The C18:3 n3 producing contaminant isolate 328662, initially thought to be a 

Phytophthora isolate, was removed to improve the clustering of the groups. It was 

shown to lie outside both clusters although appeared to be an outlier of the Ascomycota 

cluster rather than the Oomycete/Mortierella cluster. The two Umbelopsis isolates Dis 

206 and 195, from the zygomycetes were shown to cluster toward the fringes of the 

Ascomycota grouping separated primarily by the first component. The Umbelopsis 

isolates do group in proximity to the Mucor hiemalis isolates, suggesting that similar 

fatty acid profiles are shared by zygomycetes. Mucor racemosus and M. hiemalis 

however group more definitively within the Mortierella/Chromista cluster, with the two 

M. hiemalis isolates grouping closer together than to the M. racemosus isolate. The 

inter-species and intra-species separation based on fatty acid profiles highlights the 

potentially large variation found in fatty acid composition between organisms. This 

inter/intra-species variation is found within the Mortierella, as the species Mortierella 

alpina shows some intra-species variation with isolates 330997 and 82072 clustering 

together, whilst 196057 groups away. The relatively loose clustering of the Mortierella 

indicates differing species, especially for isolate 398216, which produces high C20:4 n6 

levels. This large degree of variation is also found within the ascomycete isolates 

studied, as most species level identities are not known. It is this level of variation 

between multiple species which prevents PCA from clustering these organisms. The 

C18:3 n3 producing isolates Dis 169 and 403341, initially identified as Umbelopsis 

isolates are seen embedded in the centre of the Ascomycota cluster. This correlates with 

the DNA identification of the isolates, as an isolate from the Clavicipitaceae and a 

Penicillium sp. which confirms their grouping within this cluster. The Pleosporales can 

be seen to form a distinct grouping away from the intermingled Leptodontidium and 

Mollisia species suggesting a set of fatty acid profiles unique to the Pleosporales. The 
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intermingled nature of the Leptodontidium and Mollisia species indicates that they share 

similar fatty acid profiles.  
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Figure 3-11. PLS-DA of fatty acid profiles grown in PD media.  = Pleosporales  = 
Leptodontidium sp.  = Mollisia sp.   = Oomycetes   = Umbelopsis and Mucor sp. = 
Mortierella. The PLS-DA generated 3 components which explained 60% of the variance 
and had a cumulative fit to the Y-data (R2Y) of 0.34.  
 

A second PLS-DA was run using only the three most abundant organism classes 

identified from BAS, the Pleosporales, Leptodontidium and Mollisia species as shown 

in figure 3-12. The analysis was run using only 6 components as C18:3 n6 is not present 

in any of the isolates. It was found that several samples, particularly Leptodontidium 

isolates overlapped or in some cases were significantly removed from their grouping. 

This is possibly due to the fact that multiple species may have been studied as 

identification was made only to the genus level. It may also suggest that several 

organisms may be incorrectly identified, as their fatty acid profiles more closely 

resemble that of the other species. Variation amongst different strains may also account 

for some of the variability. The Pleosporales group which contained several identified 

Herpotrichia sp. isolates formed the most cohesive group, whilst Mollisia isolates 

predominantly clustered together. The fatty acids C16:0 and C18:2 primarily explained the 

separation along component 1, whilst C16:1, C18:0, C18:1 and C18:3 n3 explain the majority 

of the separation along component 2. Mollisia segregation was found to be associated 

with C16:0 levels, Pleosporales with C18:2 levels and Leptodontidium isolates with C18:1 
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and C18:3 n3 levels. However, the variation within these fatty acids was exemplified by 

class information which allowed for greater segregation than PCA provided alone.  
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Figure 3-12. PLS-DA of BAS Leptodontidium, Mollisia and Pleosporales isolates grown in 
PD broth.  = Pleosporales  = Leptodontidium sp.  = Mollisia sp. The PLD-DA 
generated 3 components which accounted for 73% of the variation and had a cumulative 
fit to the Y-data (R2Y) of 0.46.  
 

A further analysis was undertaken using the fatty acid profiles from isolates grown on 

YES media shown in figure 3-13. The table of MA and YES fatty acid profiles is given 

in the appendix, section 7.3. Fewer organisms were utilised for this analysis as several 

were grown in MA media and weren’t included in the PLS-DA. The Mollisia clustering 

is relatively tight separated by C16:0 levels, whereas Pleosporales isolates form a distinct 

but looser cluster separated by C16:1 and C18:2 levels. The Leptodontidium isolates again 

coalesce to form a grouping separated by C18:0, C18:1 and C18:3 n3. Their wide spread 

however indicates variation within the fatty acid profiles, and several isolates lay within 

the Pleosporales and Mollisia clusters indicating that these isolates share greater 

similarity in fatty acid profiles to these organisms than to their actual class.  
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Figure 3-13. PLS-DA of BAS Leptodontidium, Mollisia and Pleosporales isolates grown in 
YES broth.  = Leptodontidium sp.  = Pleosporales  = Mollisia sp. The PLS-DA 
generated 2 components which explained 57% of the variance and had a cumulative fit to 
the Y-data (R2Y) of 0.49. 
 

Finally, a PLS-DA was run using Oomycete, Mortierella and representative 

zygomycete isolate fatty acid profiles shown in figure -3-14. The number of fatty acids 

components was increased to 16 including the VLCPUFAs such as C20:4 n6 and C20:5 n3, 

as the majority of compounds were common to a greater proportion of organisms and in 

higher abundance. The Oomycetes clustered loosely together, predominantly because 

the isolates were of different species but appear to contain enough similarity within their 

fatty acid profiles to distinguish them from the other groupings. The Mortierella form a 

tight grouping indicating their similar fatty acid profiles, with the non-VLCPUFA 

producing zygomycete isolates clustered away based on C18:2 and C18:3 n6 levels. Within 

the zygomycete cluster, in contrast to the initial PLS-DA, fatty acid profiles between 

Umbelopsis and Mucor hiemalis appear to be substantially different with Mucor 

racemosus displaying much greater similarity to the Umbelopsis isolates. The separation 

between the two Mucor species is again due to C18:2 levels as well as C16:1.  The 

Oomycetes cluster due to their levels of C20:1, C20:2 n6, C16:1, C24:1 and C20:5 n3 with the 

genus Mortierella forming a cluster based upon the levels of C20:3 n6 and C20:4 n6. It 

comes as little surprise that Mortierella species segregate due to their C20:4 n6 levels as 

values as high as 67.8% have been observed within these isolates. Oomycete isolates 

also display a higher percentage of C20:5 n3 than that produced by Mortierella strains 

justifying their segregation by this fatty acid.  
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Figure 3-14. PLS-DA of VLCPUFA producing organisms.  = Mortierella sp.  = 
Umbelopsis and Mucor sp.  = Oomycetes. The PLS-DA generated 2 components which 
explained 40% of the variance and had a cumulative fit to the Y-data (R2Y) of 0.79. 

 

The majority of BAS isolates were grown in two media, PD and YES, with organisms 

thought to be of the same species analysed together to give an indication of the effect 

media plays on the major fatty acid components. Averages were taken between different 

isolates of the same species due to the lack of replication. Organisms from the 

Pleosporales were found to produce on average larger proportions of C16:0, C18:0 and 

C18:1 when grown on PD media (Figure 3-15) whereas YES media on average induced a 

slight increase in C18:2 production and a more significant increase in C18:3 n3. 
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Figure 3-15. The major fatty acid components of 9 fungi from within the Pleosporales, 
most likely Herpotrichia species grown in two media YES and PD. The averages are 
calculated between different isolates.  
 

Isolates from the species Leptodontidium showed increased production of C16:0, C18:2 

and C18:3 n3 when grown in PD broth, whilst YES media in general increased C18:0 and 

C18:1 levels (figure 3-16). Leptodontidium appears to demonstrate opposite FA trends 

compared with the Pleosporales isolates in regards to culture media, with the only 

consistency between the two groups of organisms being the elevated level of C16:0 when 

grown in PD media.  
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Figure 3-16. The major fatty acid components in 16 Leptodontidium species grown in two 
media YES and PD.  
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Mollisia species demonstrated lower percentages for all the major components when 

grown in YES media (Figure 3-17) although C18:0 and C18:3 n3 level differences were 

much smaller. The reason for this was a peak which eluted around the same time point 

as C17:1 which comprised up to 16.8% of the TFAs in several of the isolates. This peak 

was not found when the organisms were grown in PD media, and explains the overall 

lower values found with YES media. The identity of the peak was not pursued. In 

general Pleosporales cultures demonstrated the greatest proportion of C18:2, which is in 

contrast to the lowest levels found on average within Mollisia isolates. C16:0 levels 

conversely were highest in Mollisia species but found to be lowest in Pleosporales, with 

these two fatty acids primarily segregating these two clusters in PLS-DA when grown in 

PD media. Leptodontidium isolates are found to group away from Mollisia and 

Pleosporales isolates based on C18:1 and C18:3 n3 levels, which are found to be highest 

within Leptodontidium isolates. Lower levels of C16:1 and C18:0 although small, are also 

responsible for the grouping of Mollisia species away from Leptodontidium species 

along the second PLS-DA component, with Mollisia isolates containing higher 

proportions of both fatty acids compared with Leptodontidium. Leptodontidium and 

Mollisia cultures produce roughly equal amounts of both C18:1 and C18:2, which in 

Leptodontidium are the predominant FAs. Mollisia cultures also produced equal 

amounts of C16:0, making C16:0, C18:1 and C18:2 the three most abundant FAs. C16:0 was 

found to be the third most abundant FA within both Pleosporales and Leptodontidium 

cultures. Levels of C18:3 n3 and C18:0 are consistently lower in level, usually comprising 

the 4th and the 5th most abundant FAs within the studied groups of organisms. 
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Figure 3-17. The major fatty acid components in 7 Mollisia species grown in two media 
YES and PD.  
 

3.3 Discussion 

3.3.1 GC-FID and GC-MS conditions 

The methodology used for fatty acid analysis was studied to ascertain whether the 

analysis platform was suitable. The extraction recovery values whilst higher than 100%, 

which are most likely attributed to dilution error or pipetting error, still indicate a high 

recovery rate. It is to be noted that the internal standard is likely easier to extract and 

derivatise as it is not highly associated with a complex matrix such as fatty acids within 

the membrane or within the cell. Whilst the recovery figure could not be quantified the 

introduction of an appropriate internal standard, C17:0 was used to account for loss 

during the procedure. It follows that as the IS is a fatty acid which resides roughly in the 

middle of the fatty acid series any loss affecting the sample will equally affect the IS. 

Any loss occurring through extraction, derivitisation and machine error should be 

reflected by the internal standard, in essence reducing the need for technical repetition. 

Quantification without an internal standard requires either fold difference as compared 

to a control or calibration curves. Fluctuations within the integrated area however 

cannot be normalised and hence lead to intrinsic error, which would be shown between 

technical repetitions. The reproducibility between technical repetitions when spiked 

with an IS, demonstrates that only one technical repetition needs to be used for fatty 

acid analysis. The benefits of this include less sample preparation and less solvent use. 
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The removal of technical replicates means that greater numbers of biological replicates 

could be used, where the greater extent of compound variation exists. Factors which 

enable technical replicates to be removed in this work also include total homogenisation 

of samples which allows for fatty acid homogeneity throughout the sample. Another 

factor to consider is that only one compound class is being studied as oppose to a 

complete metabolomics approach, whereby several compound classes are studied. In 

such a case, each compound class may experience loss and differential derivitisation 

leading to fluctuation within technical repetitions. In such a scenario multiple internal 

standards may be utilised to compensate, which may allow for the removal of technical 

replicates. The majority of the work was also focussed as a screening approach for the 

identification of VLCPUFAs and as such did not warrant technical replication.       

The GC-FID and GC-MS response factors show little variation between different 

concentrations however, response factors on the GC-MS using TIC were more variable 

and subsequently showed greater standard error. Because of this EI was used for GC-

MS quantification. Linearity for both machines was high; however the linearity of the 

GC-MS response was reduced and started to plateau above 5x106 area units. TIC 

measurements showed the least linearity predominantly because they had the greatest 

area and hence detector saturation was noticed at lower concentrations. As EI only 

focuses on one ion, saturation occurred at higher concentrations leading to a more linear 

response. GC-FID provided a linear response over the entire range tested. However, the 

GC-FID was only tested with lower concentrations due to the lack of the ability to 

change the split ratio, whereas the GC-MS was capable of allowing more analyte into 

the detector increasing the concentration. Due to the high abundance of saturates within 

the FAME standards, these compounds were usually the most affected by detector 

saturation. Whilst a greater range was looked at using the GC-MS, when comparable 

quantities of saturates were studied between the GC-MS and GC-FID, the GC-FID 

maintained linearity up to 50 ng whereas equivalent amounts run on the GC-MS 

resulted in areas greater than 5x106 and resulted in detector saturation. It is reasonable to 

assume that all the fatty acids on the GC-FID would display high linearity up to 35-45 

ng as shown with the saturates. Saturation of the detector and the subsequent decline in 

detector response to analyte at higher concentrations, can to a degree, be mitigated by 

selecting less prominent ions to quantify, which in turn leads to lower area counts and 

subsequently greater linearity. Selecting an appropriate ion depends largely on whether 

many closely co-eluting compounds are present as is demonstrated by the C18:0 fatty 

acid series. An ion needs to be selected which is unique to each compound and allows 
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for reliable quantification. In summary, GC-MS linearity is lost above a certain 

integrated area which makes TIC the most inaccurate quantification method and EI the 

most accurate, with the ion selection dependent on co-elution and the concentration 

range being studied. The GC-FID however showed no such saturation effects at the 

concentrations studied. GC-FID however lacks definitive identification of compounds 

due to time being the only identifying measure, whereas a custom mass spectrum library 

provides reliable identification.  

 

3.3.2 Fatty acid profiling of novel low temperature fungal isolates.  

After screening over 100 organisms isolated from low temperature environments it 

was found that only zygomycetes, Oomycetes and chytrids were capable of producing 

VLCPUFAs, with those within the Ascomycota found only to produce up to C18:3 n3. It 

has to be noted that a large proportion of the organisms studied were from several 

distinct groups and although 102 BAS isolates were studied, several hundred isolates 

remain unstudied. A large proportion of the BAS collection are not identified to the 

species or genus level, though it is thought new species may be present within this 

collection. Whilst the use of uncharacterised and potentially novel samples for screening 

can provide unexpected results, it can however come with consequences. The lack of 

highly characterised organisms for example leads to a broad and non-targeted approach 

to organism selection as well as the possibility of unintentional redundancy. If a broader 

range of Antarctic ascomycetes and basidiomycetes were studied and it was found that 

none were capable of VLCPUFA production then one would assume that the taxonomic 

ranking of the organism would play a greater role as a marker for VLCPUFA 

production as oppose to environment alone. Hence, if further screening were to occur 

utilising a fatty acid screening technique then organism selection from the collection 

would focus predominantly on Oomycetes, chytrids and zygomycetes due to the 

increased prevalence of VLCPUFA production within these organisms. Even though the 

screen itself did not describe any new species capable of producing VLCPUFAs, it does 

raise some interesting questions. Firstly why did the higher fungi lose their ability to 

produce VLCPUFAs and switch to the n3 route, and parallel to that what function do 

long chain n3/6 fatty acids play in the basal lineages of fungi? It also highlights that in 

low temperature environments, specifically those in contact with air, C18:3 fatty acids are 

sufficient for maintaining membrane fluidity and allowing growth at 15°C, and in some 

cases growth at 5°C, although the growth of the majority of organisms was slow 
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requiring 2 to 3 weeks before sufficient mycelial biomass was produced. Whilst no 

growth rate studies were carried out some incidental data would indicate that several of 

these organisms are psychrophilic, which shall be highlighted in the next chapter.  

The use of two media was to ensure growth of the organisms as well as ascertaining 

whether cultures were capable of VLCPUFA production. It appears that the BAS 

isolated organisms studied, which were predominantly ascomycetes, are incapable of 

producing fatty acids longer and more unsaturated than C18:3 n3. There were some fatty 

acid compositional changes when different media were utilised, with organisms from 

the Pleosporales showing greater production of C16:0 and C18:1 on PD media, whilst YES 

stimulated a slight increase in C18:2 and a more substantial increase in C18:3 n3. The 

elevated levels of C18:2 are most likely responsible for the increase in C18:3 n3 due to its 

role as a substrate, as well as depleting levels of C18:1 which itself is a substrate for C18:2. 

Leptodontidium species demonstrated higher production of more unsaturated fatty acids 

with PD media with elevated levels of C18:2 and C18:3 n3, in contrast to Pleosporales. 

Levels of C16:0 and C18:0 remain around 15% and 5% respectively between both groups, 

however the FAs C18:1 and C18:2 are the main components which distinguish the two 

groups. This is confirmed by PLS-DA, figure 3-12, which clusters the Pleosporales and 

Leptodontidium by C18:1 and C18:2, with the Pleosporales demonstrating on average just 

under 27.0% and 43.6% C18:1 and C18:2 respectively whereas Leptodontidium species 

show C18:1 and C18:2 levels of 30.1% and 32.9% respectively, with the values used from 

PD media. The Mollisia species were found to produce an unknown peak which 

comprised a large proportion of the fatty acid profile when grown on YES media, 

however only a few of these isolates demonstrated this high abundance peak. However 

this was one of the principle reasons why the other major peaks were lower than their 

PD media counterparts. Comparison of Mollisia species with the other two groups 

shows increased production of C16:0 at 26.6% of the TFA compared with 18.8% and 

14.9% for Leptodontidium and Pleosporales respectively. Again, PLS-DA clustered the 

Mollisia species away from the other two groupings based on this character. C18:3 n3 

levels are also noticeably lower in Mollisia species when grown on both media with 

Leptodontidium species producing the highest TFA percentage at 11.8% although this 

value drops to 8.9% when grown on YES media. The high C18:3 n3 production on PD 

media therefore distinguishes Leptodontidium species from the other two groups. 

However, values are much closer when grown on YES media where Pleosporales shows 

the highest production at 10.1%. The differences in fatty acid composition are 

predominantly due to the carbon source used in the media. All three media 
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predominantly use monosaccharides (glucose) or disaccharides (sucrose) as the carbon 

source with little lipid present within the media. If fatty acids are present within the 

media, they may be transferred to the acyl-CoA pool whereby they are acted upon by 

elongases or desaturases. As sugars and starch, in the case of PD media, are the primary 

components, it can be assumed that lipid production is predominantly de novo. It was 

found that in Mortierella ramanniana glucose produced the lowest C18:3 n6 value (% 

w/w) whilst sucrose resulted in both higher C18:3 n6 levels and overall increased 

unsaturation levels of lipid. Starch however resulted in the highest values for both C18:3 

n6 and total lipid unsaturation levels (Hansson & Dostalek, 1988). Another study by 

Jang et al. (Jang et al., 2005) found that varying the concentration of both glucose and 

starch in the media resulted in differing compositional fatty acid profiles. It was found 

that the concentration of the carbon source greatly affected the absolute values of fatty 

acids, however this is likely due to the oleaginous nature of the Mortierella species. 

Yeast extract was found to lower the overall unsaturation of the lipids when compared 

with media lacking this component.   

 Whilst the hypothesis of low temperature environments inducing VLCPUFA 

formation seems to be untrue in light of the present data, subsequent data discussed in 

the next chapter reinforces the validity of the hypothesis that low temperatures increase 

FA unsaturation levels. What can be stated according to the presented data is that 

ascomycetes and basidiomycetes are no more likely to contain fatty acids longer than 

C18 and with more than three double bonds when isolated from low temperature 

environments than if they were isolated from warmer climates. However what was not 

taken into account in this study are the numerous other modifications that the organisms 

may have undergone such as protein modification to allow for enzyme function at low 

temperatures, which play an equally large role in organism survival. 

During the analysis several isolates demonstrated curious fatty acid profiles, which if 

taken with their taxonomy would have illustrated an unknown fatty acid biosynthesis 

pathway within the zygomycetes. However on DNA sequence analysis the 

identifications of the organisms were found to lie within the Ascomycota cluster, which 

correlates with the observed fatty acid profiles. Whilst the PLS-DA was not intended for 

taxonomic inference, the analysis highlighted the grouping to which the contaminant 

organisms belonged. Isolates 403341 and Dis 169, Penicillium sp. and an organism 

from the Clavicipitaceae respectively, were found to cluster centrally within the 

Ascomycota cluster alluding to their actual identities. Isolate 328662, found to be 
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Daedaleopsis confragosa, whilst not shown on the PLS-DA due to it being an outlier 

and its removal improved clustering lay further towards the Ascomycota cluster than to 

the Zygomycota and Oomycete cluster. The fact that all three contaminant organisms 

produced C18:3 n3 as oppose to C18:3 n6 was one of the key issues which highlighted the 

possibility that these organisms were in fact contaminants, although the presence of 

C18:3 n3 within a Mortierella species has been described albeit in low levels and was co-

produced with C18:3 n6 in Mortierella polycephala (Weete & Gandhi, 1999). It also 

highlights that fatty acid profiles may still be used to taxonomically identify fungi, with 

basic yet fundamental checks such as the preference for C18:3 n3 or C18:3 n6 and the 

presence or absence of VLCPUFAs confirming or raising doubt on the initial taxonomic 

classification. Going further, by creating an accurate fatty acid database coupled to 

proven taxonomic identities would allow for multivariate techniques such as PCA to 

classify unknown isolates. Such a model however would require multiple biological 

replications as well as a model for each media type due to the variation which can occur 

when grown on various media. It also highlights the dangers of accepting the taxonomy 

of isolates at face value, even from well established culture collections, especially if one 

is unfamiliar with the organism, or if multiple varied isolates are being studied.     

Of the organisms capable of producing VLCPUFAs, the genus Mortierella was one of 

the few fungal species capable of producing such fatty acids. This genus whilst being 

well studied does present some interesting findings. Firstly, the production of small 

quantities of C22:5 n3 and associated C22 VLCPUFAs hinted at an unspecific reaction, 

with the most likely target being a ∆6 elongase referred to as γ-linolenic elongase 

(GLELO). The role of this elongase is to elongate C18 polyunsaturated fatty acids to C20 

VLCPUFAs. The subsequent elongation of C20 to C22 VLCPUFAs was therefore 

thought to be a small unspecific reaction. The only other organism to produce C22:5 n3 

was Pythium irregulare, which again was most likely a secondary reaction of a ∆6 

elongase. Whilst the C22 VLCPUFA production of this enzyme is relatively negligible, 

its role as a recombinant gene has already started to be appreciated, with its 

recombination into Glycine max (Damude & Kinney, 2008). Its use as a staple 

recombinant gene is not its only further use however, as the gene itself is most likely 

indicative of the presence of VLCPUFAs such as C20:4 n6 and C20:5 n3. Hence designing 

a specific genomic screen for this gene to predict VLCPUFA formation is yet another 

way in which this gene may assist in discovering novel VLCPUFA producing 

organisms, as well as the characterisation of these potential homologs. Both these 

strategies will be pursued in the following chapters. Of the Mortierella isolates, 398216 
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is notable for its sizeable production of C20:4 n6, which comprises 67.84% of the total 

fatty acids. In fact, all Mortierella isolates, regardless of isolation location were capable 

of VLCPUFA production. It was found for the majority of Mortierella isolates that 

proportionally, C20:4 n6 and C20:5 n3 levels varied little in respect to isolation location. 

The Antarctic isolate 398216 however was found to produce the greatest proportion of 

C20:4 n6 by a substantial degree, although isolate 196057 isolated from Australia, still 

produced C20:4 n6 at 34.9%. Whilst temperature did not appear to influence fatty acid 

complement within the Ascomycota and Basidiomycota, the fact that no other BAS 

zygomycetes were studied, other than Mortierella may still partially validate the 

hypothesis that low temperatures select for VLCPUFA producers, due to the more basal 

nature of the Zygomycota. Isolates capable of high percentages of VLCPUFAs are 

valuable in industrial applications due to the decreased cost associated with producing 

marketable oil. Modification of such a high C20:4 n6 producing organism could yield 

substantial quantities of C20:5 n3 through the addition of more efficient or additional ∆17 

desaturases. However, it appears only select zygomycete species such as Mortierella, 

the Chytridiomycota and Oomycetes are capable of producing these VLCPUFAs. The 

majority of the zygomycetes, as represented by Umbelopsis and Mucor species are 

incapable of producing fatty acids beyond C18:3 n6. 

 The retention of, or gain of a functional elongase capable of elongating C18 

polyunsaturated fatty acids does not appear to have occured within low temperature 

isolated ascomycetes and basidiomycetes, although it appears the loss of the VLCPUFA 

pathway occurred during the evolution of the zygomycetes. The majority of 

zygomycetes are capable of elongation only up to C18:3 n6, as demonstrated by the 

Umbelopsis and Mucor isolates. When plotted on a PLS-DA the Umbelopsis isolates are 

found to sit on the outside of the Ascomycota grouping indicating that they share 

similarities in fatty acid profile with both the ascomycetes and zygomycetes/Oomycetes. 

The Mucor isolates sit further in the zygomycete/Oomycete cluster, with the two Mucor 

hiemalis isolates grouping closer together. Mucor racemosus segregates based on its 

heightened C18:0 levels and lowered C18:2 levels compared with the other Mucor species. 

The separation of the Umbelopsis and Mucor isolates from zygomycetes and Oomycetes 

is explained by their lack of VLCPUFAs, which in turn leads to greater percentages of 

other fatty acids such as C18:2 and C18:3 n6, which are used as substrate in Mortierella 

and Oomycete species. The lack of VLCPUFAs within the Ascomycota also results in 

increased C18:2 levels when compared with the zygomycetes and Oomycetes. The 

Oomycetes and Mortierella segregate into separate clusters based on C20:5 n3 for the 
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Oomycetes and C20:4 n6 for the Mortierella.  Fatty acids such as C16:1 and C20:2 n6 help 

define the Oomycetes with C20:3 n6 levels shaping the Mortierella clustering as well.  

The production of fatty acids longer and more unsaturated than C18:3 appears to be a 

trait of the basal fungal lineages, such as Allomyces macrogynus from the most basal 

lineage the Chytridiomycota. Mortierella, Conidiobolus and Entomophthora (Kendrick 

& Ratledge, 1992b) are from the second divergence from the fungal lineage, the 

Zygomycota.  In the transition from the Chytridiomycota to the Zygomycota the loss of 

the flagella is thought to have occurred several times (James et al., 2006) indicating that 

several ancestors may have existed for the Zygomycota. Those zygomycetes capable of 

VLCPUFA production could be considered basal to the rest of the phyla due to their 

shared trait with the ancestral Chytridiomycota. They may represent an intermediary 

stage where certain morphological and biochemical processes are retained but others are 

lost, such as flagella. The unique fatty acid profile of Mortierella species appears to 

support this, with the loss of VLCPUFA production separating them from the vast 

majority of the phyla. The fatty acid profile therefore appears to follow the evolution of 

the fungi, with the Chytridiomycota and early zygomycetes capable of C20 VLCPUFA 

production. The establishment of the zygomycetes resulted in the loss of a ∆6 elongase, 

with the majority of organisms capable of producing only up to C18:3 n6. The next step 

was the divergence to the Dikarya (Gehrig et al., 1996), which resulted in the shift to 

the n3 pathway. This was most likely through the change in function of a desaturase, 

which enabled the insertion of double bond between carbons 15 and 16. The ancestral 

protein to the ∆15 desaturase may have been the ∆12 desaturase (Damude & Zhang, 

2006), as it was found that the ∆12 desaturase could catalyse the formation of C18:3 n3 

from C18:2 n6, and that the opposite was true, that the ∆15 desaturase could catalyse the 

formation of C18:2 n6 from C18:1. Therefore, it is possible through gene duplication, that 

the ∆12 gradually changed function and became the ∆15 desaturase found in the 

Dikarya. During the evolution of the Dikarya, the ∆6 desaturase responsible for C18:3 n6 

formation appears to have also been lost. The Dikarya further demonstrate this trend of 

fatty acid loss with multiple species incapable of trienoic and even dienoic fatty acid 

production (Kock & Botha, 1998).  

It is quite clear from the acquired data as well as existing literature regarding higher 

fungi and their lack of VLCPUFAs that at some point the basal fungal lineages lost key 

enzymes involved with the biosynthesis of fatty acids longer and more unsaturated than 

C18:3. The loss of enzymes and change in function over the course of evolution suggests 
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that changes in fatty acid composition must have been driven by, or lack of external 

pressures. This returns then to the question of the true function of VLCPUFAs within 

fungi, and possibly within the earlier ancestors of all these organisms. Several roles of 

VLCPUFAs have been put forward although the majority of them have been 

demonstrated within organisms other than true fungi. Several of them rely on the key 

property of highly unsaturated fatty acids and their contribution to the fluidity of the 

membrane. One suggestion is that flagella require fluid membranes (Thomashow & 

Rittenberg, 1985) and that incorporation of VLCPUFAs such as C20:5 n3 would maintain 

the fluidity of the membrane to allow for the most efficient flagella operation. 

Zoospores have also been documented to contain VLCPUFAs such as C20:4 n6 (Kagami 

et al., 2007) as have Human spermatozoa which have been demonstrated to show a 

greater fatty acid unsaturation at later developmental stages, which in turn is thought to 

enable sperm motility (Haidl & Opper, 1997). Sperm early in development which had 

lower levels of unsaturation were immobile. Spermatozoa show similar fatty acid 

profiles with that found within the Chytridiomycota and Oomycetes, with chytrids and 

spermatozoa sharing striking similarities physiologically. It was therefore thought that 

fungi and the Animalia were more closely related than once thought and have been 

grouped together as the Opisthokonts, literally meaning posterior flagellum. It is also 

thought that both the fungi and Animalia shared a common ancestor with the motile 

sperm cells the remnants of our ancient evolutionary ancestors (Cavalier-Smith, 1998). 

 The correlation between flagellated cells and VLCPUFA production is also seen 

within the plant Kingdom. The Kingdom Plantae is split into two, the Chlorophyta and 

the Charophyta (Lewis & McCourt, 2004), with the former comprising the majority of 

the green algae and the latter leading to the evolution of the terrestrial embryophytes 

(Kenrick & Crane, 1997). The most basal terrestrial plants are those from the 

Liverworts, followed by the Mosses with the higher vascular plants evolving last (Qiu et 

al., 2006). Like the chytrids, the most basal terrestrial plants still produce flagellated 

reproductive cells (Renzaglia et al., 2000,Shimamura et al., 2008) indicating their algal 

ancestry. The ability of the Liverwort Marchantia polymorpha to produce up to C20:5 n3 

(Kajikawa et al., 2004) reinforces the idea that VLCPUFA production is linked to 

flagellated cell production. As is the case in fungi, the higher vascular plants, to our 

knowledge, are incapable of VLCPUFA production and do not produce a flagellated 

cell type during their lifecycle. Fungi do however appear to demonstrate an 

intermediary stage, as seen in Mortierella species, the production of VLCPUFAs 

without producing a flagellated cell type.  
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Flagella are not the only mechanism by which zoospores disperse, with amoeboid 

spores having been documented from the phylum Blastocladiomycota (Hoffman et al., 

2008). It is thought that locomotion involving crawling or gliding also requires a fluid 

membrane to permit efficient movement (Johns & Perry, 1977) with the bacterium 

Flexibacter polymorphus being documented as producing C20:5 n3. Chytrid zoospores 

demonstrate a varied degree of cell coat material but ultimately they are not thought of 

as rigid structures (Powell, 1994). Because of this, the plasma membrane is thought to 

regulate osmotic control through its permeability. High salinity solutions have been 

shown to lower the fluidity of membranes (Fontana & Haug, 1982) as well as increase 

levels of saturated and mono-unsaturated fatty acids whilst lowering levels of 

polyunsaturated fatty acids (Xu & Beardall, 1997). This mechanism of lowering fluidity 

is thought to rigidify the membrane and reduce its permeability to Na+ ions. The 

expansion and shrinkage of the membrane due to osmotic pressure may also act as a 

turgor sensor and in some cases increase intracellular levels of glycerol to counter the 

elevated external solute levels. In regards to the Chytrids, the majority of them are 

found within fresh water, low salinity environments (Gleason et al., 2008) indicating 

that the VLCPUFAs may play a role in these environments. As it can be seen, the 

aqueous environment in which the zoospores exist most likely contributes to the 

presence of VLCPUFAs. These fatty acids therefore appear essential for the motility 

and survival of the spore stage. In regards to algae and some Chromista, it is well 

known that these organisms thrive in saline sea water which would appear to contradict 

the previous statement that high salinity conditions impair unsaturated fatty acid 

production. There are two possible reasons for algae production of VLCPUFAs that will 

be briefly mentioned. The first is the production of algal pheromones, whereby the fatty 

acids C20:4 n6 and C20:5 n3 are utilised for the formation of C11 signalling molecules 

(Pohnert & Boland, 2002) utilised in part for male gamete chemotaxis. Shorter chain 

fatty acids such as C18:3 n3 were found not to be utilised in the formation of these 

pheromone molecules suggesting the importance VLCPUFAs play in algal 

reproduction. Another role VLCPUFAs may play within photosynthesising marine 

microorganisms is the protection of photosystem II. It is thought that VLCPUFAs 

provide protection by acting directly in the thylakoid membrane to protect the oxygen 

evolving machinery, as well as providing sufficient fluidity for the Na+/H+ anti-porter 

pump which reduces cytoplasmic Na+ levels (Allakhverdiev et al., 1999). 

It is most likely then that several of these explanations account for the differentiation 

in fatty acid profile between the higher fungi, Oomycetes, Zygomycota and 



Chapter 3 

 

128 

Chytridiomycota. The shift from an aqueous habitat to a terrestrial one is a probable 

cause for the shift in fatty acid profile. Once on land other factors may have 

compounded the loss of VLCPUFAs from the newly established terrestrial fungi. It is 

known that the fatty acid C20:4 n6 is a plant elicitor found within the plant pathogen 

Phytophthora. An elicitor is a compound which triggers a response within the plant, 

with the aim of the response to prevent microbial propagation and host cell damage. In 

the case of the Phytophthora-potato interaction, C20:4 n6 is converted by potato 

lipoxygenase (LOX) into compounds such as hydroperoxy-eicosatetraenoic acid (Ricker 

& Bostock, 1994) which are thought to mediate the plant response to the pathogen. The 

loss of C20:4 n6 from plant pathogens would have most likely been an advantage, 

however C18:3 n3 has been shown to increase transcription of lipoxygenase in tobacco 

and is also converted by LOX and several subsequent reactions to jasmonic acid, which 

is also involved in plant wounding and defence responses (Veronesi et al., 1996). The 

source of C18:3 n3 however could come from either plant membranes or the fungal 

pathogen themselves, as the large majority of fungal species studied contain this fatty 

acid. As to why fungi contain C18:3 n3 is most likely due to its role as the precursor to 

the fungal oxylipins, which modulate diverse functions such as cell growth and 

proliferation, apoptosis and spore differentiation (Christensen & Kolomiets, 2010).  

Whilst the majority of terrestrial fungi have lost the ability to produce VLCPUFAs it 

hasn’t stopped them from benefitting from them, by utilising host VLCPUFAs instead 

to biosynthesise oxylipin mediators. This ironic mechanism by which compounds 

intended to provide resistance against pathogenic attack are turned against the host by 

modulating and increasing the growth of the pathogenic invader, would provide another 

reason for the redundancy of VLCPUFA responsible genes. This mechanism by which 

fungi utilise host fatty acids is observed within the Human pathogen Candida albicans, 

with the Fungus utilising host C20:4 n6 to produce carbohydrates and fungal eicosanoids 

such as 3,18-dihydroxy-5,8,11,14-eicosatetranoic acid, with 3(R)-hydroxy-oxylipins 

thought to regulate morphogenesis and reproduction as well as modulating cell 

signalling in neutrophils (Deva et al., 2000).  

3.4 Conclusion 

Low temperatures do not appear to increase the likelihood of finding VLCPUFA 

producing ascomycetes, as it appears that trienoic fatty acids are sufficient for 

maintaining membrane fluidity under low temperature conditions. Whilst temperature 

was not shown to be a sufficient driving factor to retain key genes for VLCPUFA 
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synthesis it is likely that temperature will lead to the modulation of the fatty acid 

profile. Organisms capable of producing VLCPUFAs were Mortierella species, 

Allomyces macrogynus and organisms from the Oomycetes. Both Antarctic and 

mesophilic isolated Mortierella species were all found to produce C20:4 n6 and C20:5 n3. 

Fatty acid composition between the isolates was similar, however the Antarctic isolate 

398216 was found to contain C20:4 n6 at 67.8% of the total lipid profile whereas the 

mesophilic isolate 196057 was found to produce the fatty acid at 34.9% of the total lipid 

profile. The fatty acid C20:4 n6 was proportionally higher in Mortierella species, which 

distinguishes them from the Oomycetes which contain the highest proportional C20:5 n3 

levels. The Mucor and Umbelopsis isolates were distinguished from the Mortierella 

isolates based partially on higher C18:3 n6 levels as well as C16:1 and C18:2 levels. The 

ascomycetes primarily group together away from the zygomycetes and Oomycetes 

based on high C18:2 levels. 

As it can be seen, there are many roles that PUFAs play within fungi as well as other 

microorganisms. The fact that the higher fungi lost the ability to produce VLCPUFAs 

can possibly be attributed to the transition from the aqueous to terrestrial environment. 

The loss of flagella and reliance on aerial spore dispersal, as well as the lack of osmotic 

potentials most likely resulted in the gradual loss in key enzymes responsible for 

VLCPUFA production. To date, the vast majority of VLCPUFA producing organisms 

such as algae, plants, chromists and fungi are usually associated with water and produce 

a flagellated cell type. Therefore VLCPUFA production appears to be correlated with 

flagella production, which to a large degree correlates with the organism’s habitat. This 

generalisation however does include exceptions such as the zygomycete Mortierella and 

VLCPUFA producing plants. Mortierella does not produce a flagellated form and 

neither is intrinsically linked to an aqueous environment however, both reside in basal 

phyla which evolved from a flagellated ancestor. It is these conditions which seem to be 

most indicative in regards to VLCPUFAs formation and therefore any further screening 

of novel fungi should focus on the Zygomycota and Chytridiomycota initially. The 

taxonomy of the organism in regards to VLCPUFA production appears to be crucial in 

screening for novel producers of these high value fatty acids.  
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4 Fatty acid analysis of total lipid under three 

temperature regimes 

4.1 Introduction  

Maintaining a constant membrane fluidity in response to differing external conditions 

is referred to as homeoviscous adaptation (Sinensky, 1974). The role of fatty acids and 

their modification within the membrane are essential to maintaining the viscosity of the 

membrane. Cell damage may be experienced when the plasma membrane undergoes the 

transition from the liquid crystalline state to the gel state, which alters the permeability 

of the membrane, allowing osmotic induced damage to occur (Crowe et al., 1987). The 

membrane is also required for other roles including protein function, of which a large 

proportion are membrane bound. It is generally believed that to maintain membrane 

viscosity, several modifications can be made to the fatty acid composition including 

incorporation of short chain saturates, branched chain saturates or the desaturation of 

fatty acids (Suutari & Laakso, 1994). In addition, other compounds are responsible for 

the resilience against low temperatures. Polyalcohol sugars such as trehalose have been 

shown to act as cryoprotectants (Weinstein et al., 2000) as well as glycerol, which are 

routinely used in the process of cryopreservation to prevent osmotic and freeze related 

damage (Smith et al., 1986). Other membrane associated compounds such as ergosterol, 

in the case of the fungi, or the lack of it may be beneficial to the survival of the 

organism at low temperature, due to the rigidifying effect of the sterol on the membrane 

(Weinstein et al., 2000).  

Due to previous studies suggesting that low temperature can lead to the production of 

elevated levels of the most unsaturated fatty acid (section 1.3.5), as well as increasing 

the overall unsaturation index of the cell, it was decided that several psychrophilic fungi 

were to be studied and their fatty acid response to temperature analysed. Psychrophilic 

organisms were studied for two reasons; firstly little research has been carried out on 

psychrophilic fungi in relation to fatty acid modification in response to temperature. 

Secondly, it was thought that culture at 15°C may not have induced the formation of 

VLCPUFAs such as C20:5 n3 within these psychrophilic organisms. Therefore culture at 

5°C was hoped to induce expression of polyunsaturate elongases and desaturases. This 
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was be done by analysing the total extractable fatty acids under three temperature 

growth regimes. In total nine organisms were studied with regard to the temperature 

effects on fatty acid profiles. Fungi from the genus Herpotrichia, Mucor, Penicillium 

and Mortierella were studied, predominantly as these organisms were associated with 

low temperature environments, except two Mortierella isolates which were mesophilic. 

Fatty acid unsaturation indices were calculated using the following formula: 

 

∆mol-1 = Σ(% monoene + (2 x % diene) + (3 x % triene) + (4 x % tetraene) + (5 x % 

pentene))/100 (Suutari, 1995) 

 

The unsaturation index takes into account the fatty acid composition and attributes a 

higher value the greater the level of unsaturation. Fatty acid such as C18:3, for example, 

are more heavily weighted than a monoene such as C18:1. Hence, higher levels of 

polyunsaturates and lower levels of monounsaturates will lead to an increased index 

score. Saturates are accounted for as the percentage of each fatty acid is used to 

calculate the index, so high saturate levels will result in decreased unsaturate 

percentages, which in turn give a lower index score. A list of organisms studied, culture 

temperature and period of growth are given in the materials and methods section, table 

2-18. 

4.1.1 Aim 

The aim of this study was to explore the effect of temperature on the fatty acid 

complement of seven Antarctic or low temperature isolated fungi and two mesophilic 

fungi. The hypothesis was that low temperature growth induces greater unsaturation 

within the fatty acids. The experiment set out to confirm this postulation. Further to this, 

Mortierella alpina strain 330997 was analysed further with individual phospholipid 

components studied to determine whether membrane associated lipids showed greater 

unsaturation under low temperature conditions.   

 

 



Chapter 4 

 
 
 

132 

4.2 Results 

4.2.1 Total fatty acid analysis 

4.2.1.1 Mucor racemosus 

Mucor racemosus (17313) was capable of producing a variety of fatty acids (figure 4-

1). At 5°C it was apparent that all fatty acids increased in content with the exception of 

C24:0. This is clear when the total fatty acid as a percentage of dry weight is plotted 

(Figure 4-11), with the total fatty acid production levels highest at 5°C, although total 

dry biomass at this temperature was not noticeably different from that observed at the 

two other temperatures (Figure 4-12). The lowest biomass level was found at 15°C, with 

25°C producing the greatest biomass. Upon increasing the temperature to 15°C, TFA 

production declined from 8.4% to 4.6% of the dry weight, with 25°C demonstrating a 

marginally higher value of 5.5%. The majority of the compounds were produced at the 

lowest concentrations at 15°C with the exception of C18:3 n6. The levels of C18:3 n6 

showed a negative correlation, with increasing temperature resulting in decreased 

abundance of this LCPUFA, with growth at 25°C producing 8.3 mg/g compared with 

the highest value at 5°C of 14.9 mg/g.  

The majority of the other fatty acids, which are mainly saturated FAs, decreased 

initially with the lowering of the temperature from 25-15°C, but then showed a 

subsequent rise at 5°C. C18:2, the second most unsaturated FA within Mucor, produced a 

similar quantity at 15°C to that at 25°C, with 5°C growth producing almost a two fold 

increase from 5.4 mg/g to 10 mg/g. It is also worth noting that short chain saturates can 

confer fluidity due to their lower melting point. C10:0 levels were highest at 5°C (0.6 

mg/g) as observed with all fatty acids at this temperature, although levels appear to stay 

constant between 15 and 25°C. The negative correlation seen with C18:3 n6 was also 

observed with C12:0, with decreasing FA level seen with increasing temperature. C14:0 

showed a similar trend to C10:0, with the highest levels at 5°C but with 15 and 25°C 

cultures showing similarly lower levels. By applying the unsaturation index calculation 

to the data (figure 4-10), growth at 15°C produced the greatest unsaturation levels 

followed by 5°C growth. This elevated unsaturation at 15°C is due to the high C18:3 n6 

TFA percentage and lower saturate and monounsaturated TFA percentage. Even though 

5°C growth produced a higher total level of C18:3 n6, increased levels of all the FAs 

were also observed with C18:3 n6 representing 17.6% of the total fatty acids compared 
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with 22.6% at 15°C. Results were subjected to a single factor analysis of variance 

(ANOVA) statistical test to ascertain whether individual fatty acid components were 

significantly different from one another. A p value of p ≤ 0.05 was considered 

statistically significant.  
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Figure 4-1. The fatty acid profiles of Mucor racemosus grown under three culture 
temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
 

4.2.1.2 Penicillium rugulosum 

Penicillium rugulosum produced the greatest biomass of any of the samples (figure 4-

12); with a mycelial dry weight of 2.4 g per 100 ml at 15°C. With the definition of a 

psychrophile being an organism displaying maximum growth below 20°C, this 

Penicillium strain appears to be classified as a true psychrophile. Growth at 5°C 

promoted the greatest production of C18:3 n3 comprising 47.6% of the fatty acid profile 

(figure 4-2) making it the predominant FA with levels of other unsaturates such as C18:1 

and C18:2 and saturates such as C16:0 at their lowest levels. Culture at 15°C produced 

elevated levels of C18:1 and C18:2, as well as significant amounts of C18:3 n3, at 24.4% of 

the total fatty acids. The levels of saturates stay relatively unchanged with the increase 

in temperature, although saturates within Penicillium make up a small fraction of the 

total FAs. At 25°C, a marked increase in C18:2 is observed although the lowest levels of 

C18:3 n3 at 8.3% and the highest levels of C16:0 are also found, with C18:1 levels also 
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slightly increased. The unsaturation index showed the highest value at 5°C (figure 4-

10), which can be attributed to the high C18:3 n3 levels relative to the lower saturate, 

mono and di-unsaturate levels. As the temperature increased, a negative correlation 

between the unsaturation index and temperature is observed, with increased temperature 

leading to decreased unsaturation within the fatty acids. Although total FA levels in this 

organism are comparatively low, a positive correlation is seen with the increase in 

temperature leading to an increase in lipid content (figure 4-11).  
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Figure 4-2. The fatty acid profiles of Penicillium rugulosum grown under three culture 
temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
 

4.2.1.3 Herpotrichia sp. 

 Both Herpotrichia species contained small quantities of trace compounds, which 

were thought to be sterols. These low abundance compounds appear to be characteristic 

of these two organisms, although have little affect on regulation in response to 

temperature. Biomass levels for 403016 showed increasing biomass with increased 

temperature although 403002 produced its maximum biomass at 15°C. Strain 403016 

produced elevated levels of C18:3 n3 at 5°C, producing more than twice the absolute 

value as that found at 15°C, which corresponds to 20.1% and 11.4% of the TFA 

respectively (figure 4-3). With the increase in temperature all the fatty acids decreased 

except C18:2, which maintained a relatively constant level regardless of temperature. 

C18:3 n3 experienced the sharpest drop with the increase in culture temperature. When 
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the unsaturation index was calculated as shown in figure 4-10, culture at 20°C showed 

the highest unsaturation level, due partly to the high level of C18:2 compared to the 

relatively low levels of other fatty acids. Culture at 5°C showed the second most 

unsaturated index, bolstered by the high levels of C18:3 n3. Levels of saturates were 

highest at 5°C, with C16:0 and C18:0 peaking at this low temperature. Herpotrichia strain 

403002 also showed a temperature driven trend for C18:3 n3. C18:3 n3 comprised the 

greatest percentage of the total fatty acids at 5°C at 19.1%, whilst making up 15.6% of 

the TFA at 15°C (figure 4-4). The two species of Herpotrichia do differ in their fatty 

acid profiles in regards to temperature. Strain 403002 produced the greatest saturate, 

mono- and di-unsaturate levels at 20°C, with the second highest levels produced at 5°C. 

This is in contrast to strain 403016 which displayed the greatest fatty acid production at 

5°C. 15°C produced the lowest fatty acid levels except for C18:3 n3 in 403002 whereas 

this temperature promoted the second highest levels in strain 403016. The unsaturation 

index for strain 403002 reveals that 5 and 15°C culture produce similar unsaturation 

indices, due to high levels of C18:3 n3 and C18:2 with reduced levels of saturates. The total 

FA content in strain 403016 shows a counter trend in relation to biomass, with 

increasing temperature resulting in increased biomass production, however this also 

results in a decrease in total fatty acid production. Strain 403002 does not display a 

clear trend, although the highest biomass production at 15°C produced the lowest total 

fatty acid level.  
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Figure 4-3. The fatty acid profiles of Herpotrichia sp. (403016) grown under three culture 
temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
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Figure 4-4. The fatty acid profiles of Herpotrichia sp. (403002) grown under three culture 
temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
 
 

4.2.1.4 Bjerkandera adusta 

Bjerkandera adusta produced only two measurable fatty acids, C16:0 and C18:2, 

although C16:1, C18:0, C18:1, C20:1 and C22:0 are present although as minor compounds 

(figure 4-5). No trienoic acids were detected. Growth at 5°C resulted in the highest 

levels of C18:2, comprising 79.6% of the TFA compared with 71.6% at 15°C. Levels of 

C16:0 and C18:1 also decreased slightly with the increase in temperature. Total FA levels 

showed an increase with the decrease in temperature, with the unsaturation index 

highest at 5°C growth presumably because of the limited repertoire of fatty acids at the 

organism’s disposal, forcing an increase in the only substantial unsaturated fatty acid 

produced by this organism. The unsaturation indices between 15 and 25°C are marginal, 

in part because so few fatty acids constitute the profile of this organism. The biomass 

was found to be at its lowest at 5°C with a steady increase observed with the increase in 

temperature.  
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Figure 4-5. The fatty acid profiles of Bjerkandera adusta grown under three culture 
temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 

    

4.2.1.5 Mortierella spp. 

Two organisms from the genus Mortierella, were studied, both species of M. alpina.  

The Mortierella alpina species were studied as they are one of the few true fungi 

capable of producing VLCPUFAs such as C20:5 n3 (section 1.4.2). Strains Dis 195 and 

206 are from the former sub-genus Micromucor, now classified as Umbelopsis and are 

therefore incapable of producing VLCPUFAs. They were initially studied as a 

comparison to the VLCPUFA producing Mortierella species as both are capable of C18:3 

n6 production. Two Umbelopsis species were studied in respect to culture temperature 

and fatty acid profile. In Mortierella alpina strain 82072 the most unsaturated fatty acid 

C20:5 n3 is present at both 5 and 15°C growth (figure 4-6). Growth at 15°C produced 

increased levels at 3.1 mg/g compared with 2.9 mg/g at 5°C growth, with C20:5 n3 

production at 25°C resulting in trace levels of the fatty acid. Growth at 5°C resulted in 

C20:5 n3 TFA levels of 4.7% whereas at 15°C it represented 2.6%. In absolute value 

terms, C20:5 n3 values remain relatively constant although proportionally, levels 

decreased. Due to the presence of 5 cis double bonds it would be expected that this FA 

would have a substantial role in fluidising the membrane. The second most unsaturated 

fatty acid, C20:4 n6, was at its lowest level at 5°C at 5.3 mg/g, with 20.1 mg/g produced 
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at 15°C growth and 20.3 mg/g produced at 25°C. Levels of C18:3 n6 and C18:2 were 

highest at 15 and 25°C growth, with marked decreases at 5°C. The saturate FA C16:0 is 

at the lowest level at 5°C, as is the FA C18:0. C16:0 is produced to the greatest extent at 

15°C, although C18:0 shows an intermediary value. C16:0 levels drop slightly at 25°C 

whereas C18:0 levels increased with the subsequent rise in temperature. The two 

saturated FAs C16:0 and C18:0 are the predominant saturates within this strain, with C20:0, 

C21:0, C22:0 and C24:0 forming much smaller fractions. All the saturated FAs bar C21:0 

showed an increase with temperature, with C21:0 not produced at 5°C. The increase in 

saturates as well as mono-unsaturates should prevent membrane fluidity from increasing 

with the elevation in temperature. The most appreciable monounsaturated fatty acid 

C18:1 is produced in the highest quantity at 25°C with declining production observed 

with declining temperature. C20:1 production increases with the increase in temperature 

although to a much lesser extent. C18:2 levels peak at 15°C, though 25°C growth results 

in slightly lower levels, with 5°C significantly reducing C18:2 production. Total fatty 

acid levels show 25°C culture followed by 15°C culture produced the highest 

accumulation of lipid, with levels higher than that found within strain 330997. The 

unsaturation index at 15°C showed the fatty acid composition of the cell was at its most 

fluid, with 5 and 25°C growth demonstrating nearly equal unsaturation indices. The 

increased unsaturation at 15°C is likely the cause of high levels of C20:4 n6, C20:3 n6 and 

C18:3 n6, and lower levels of C18:1 at this temperature. It would seem therefore that 5°C 

growth is not optimal for this strain of Mortierella alpina due to the low fatty acid 

content and low biomass production.  

Mortierella strain 330997 demonstrates a nearly identical fatty acid complement, 

although the levels between strains 330997 and 82072 are distinct. The most 

unsaturated fatty acid C20:5 n3  is only produced at the lower two temperatures of 5 and 

15°C, with 5°C growth promoting the greatest production at 2.2 mg/g (8.1% of the 

TFA) and 15°C producing 1.1 mg/g (2.1% of the TFA) (figure 4-7). Unlike strain 

82072, both absolute and proportional values decrease with the decrease in temperature 

although both strains show negligible production at 25°C. The FA C20:4 n6 is produced 

at elevated levels at 25°C followed by a marked decrease with the drop in temperature 

which is not observed within strain 82072. This trend occurs with all the fatty acids 

except C20:5 n3, with levels of all FAs decreasing sharply with the drop in temperature. 

When compared to strain 82072, it is noticeable that the previous strain produces a 

similar profile at both 15 and 25°C, with exception to C18:0 and C18:1, whereas strain 



Chapter 4 

 
 
 

139 

330997 produces distinctive profiles at both these temperatures. The total fatty acid 

levels are highest at 25°C, followed by the expected decline with the drop in culture 

temperature. The unsaturation indices for strain 330997 are highest at 5°C followed by 

15 and 25°C growth respectively. The high index observed at 5°C is in part due to the 

relatively high C20:5 n3 level. The biomass for strain 330997 showed a steady increase 

with the increase in temperature, which was inline with the total fatty acid level, with 

both values lowest at 5°C.  
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Figure 4-6. The fatty acid profiles of Mortierella alpina (82072) grown under three culture 
temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
 



Chapter 4 

 
 
 

140 

*

*

*

*

*

*

*

*

*

0

5

10

15

20

25

30

C
6:

0

C
14

:0

C
15

:0

0.
84

8

0.
84

7

C
16

:0

C
16

:1

C
17

:1

C
18

:0

C
18

:1
 c

is

1.
17

1

C
18

:2
 c

is

1.
20

8

C
18

:3
 G

LA

C
20

:0

C
20

:1

C
21

:0

C
20

:2

1.
36

8

C
20

:3
 n

6

C
22

:0

C
20

:4

C
22

:1
n?

C
23

:0

C
20

:5

1.
52

4

C
24

:0

C
24

:1
 n

9

C
22

:5
 D

P
A

1.
71

3

1.
76

8

FA

F
A

 m
g
/g

 d
ry

 b
io

m
as

s

5 °C

15 °C

25 °C

 
Figure 4-7. The fatty acid profiles of Mortierella alpina (330997) grown under three 
culture temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
 

4.2.1.6 Umbelopsis spp. 

The Umbelopsis isolates were studied as representatives of the zygomycetes, which 

are typically non-VLCPUFA producing and characteristically produced C18:3 n6 as 

oppose to C18:3 n3. Several of the Umbelopsis isolates were until relatively recently 

classified within the Mortierella genus. Therefore, these two isolates were used to 

compare mesophiles with psychrophiles, and to also compare true Mortierella species 

with representatives of the majority of the zygomycetes. The two Umbelopsis species 

did not produce polyunsaturates beyond C18:3 n6. These organisms were also isolated 

from mesophilic environments, so initial predictions would point to these organisms 

being ill suited to low temperature growth. Strain Dis 206 (Umbelopsis isabellina) 

produced the greatest level of C18:3 n6 when cultured at 5°C, with an absolute value of 

31.4 mg/g (13.9% of the TFA) which subsequently decreased with increasing 

temperature to 13.2 mg/g and 8.2 mg/g at 15 and 25°C respectively (figure 4-8). Levels 

of the C18:1 unsaturate also increased with the decrease in temperature, although C18:2 

levels showed little change when grown under the three temperature conditions. The 

other major fatty acid present was C16:0 and this showed an increase in abundance with 

the decrease in temperature, as did C16:1. The unsaturation index showed a negative 

correlation, with decreasing temperature leading to an increase in FA unsaturation, due 

to the elevated C18:1 and C18:3 n6 levels. The total fatty acid level showed this organism 
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to contain the highest content of lipid of any of the organisms studied reaching 22.4% 

lipid content at 5°C culture.  

Isolate Dis 195 (Umbelopsis sp.) demonstrated the same complement of fatty acids, 

although different ratios were observed. However, high levels of C18:3 n6 at 5°C, 15.6 

mg/g (21.4% of the TFA) were similar, followed by reduced quantities at 15 and 25°C 

with 7.2 mg/g (10.0% of the TFA) and 7.4 mg/g (7.2% of the TFA) respectively (figure 

4-9). The negative correlation between C18:3 n6 and temperature was not as evident here, 

as levels between 15 and 25°C remained relatively consistent. This strain demonstrated 

a reversal in C18:1 and C16:0 levels, with the lowest quantities produced at 5°C growth 

and the highest at 25°C. C18:2 displayed a similar pattern to strain Dis 260, with elevated 

levels at 5 and 25°C compared with 15°C culture. The unsaturation index shows clearly 

that 5°C growth results in the most unsaturated fatty acid production, predominantly due 

to the relatively low C18:1 levels and high C18:3 n6 level. The differences between 15 and 

25°C growth in regards to fatty acid unsaturation however are minimal. Whilst C18:3 n6 

at 15°C has the same absolute concentration, it represents a greater percentage of the 

TFA, which in turn offsets the increased C18:1 in the 25°C samples.  

The differing strategies to coping with temperature variation would lead to the 

conclusion that these two Umbelopsis isolates are in fact differing species. It is 

surprising to see these mesophilic organisms cope with these low temperatures, as 

previous studies which looked at several mesophilic organism such as Penicillium and 

Aspergillus, found that they had difficulty adapting to the low temperature with 

fluctuating unsaturation indices and low growth rates. The biomass of both Umbelopsis 

isolates show a clear response to temperature, with low growth experienced at 5°C 

whilst subsequent increases in temperature see marked increases in biomass. Strain Dis 

195 showed an increase from 164.3 mg at 5°C to 406.3 mg at 15°C, peaking at 626.0 

mg at 25°C. Strain Dis 206 produced 111.3 mg of biomass at 5°C, with an increase to 

340.3 mg at 15°C with a maximum biomass of 654.6 mg at 25°C. The response of 

growth to temperature is more substantial with Umbelopsis than with Mortierella.  
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Figure 4-8. The fatty acid profiles of Umbelopsis isabellina (Dis 206) grown under three 
culture temperatures. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
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Figure 4-9. The fatty acid profiles of Umbelopsis sp. (Dis 195) grown under three culture 
temperatures. p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
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Figure 4-10. Fatty acid unsaturation indices of isolates when cultured under three 
temperatures. In general 5 or 15°C growth produces the greatest unsaturation, with 
several isolates 403110, 403002, 403530, 330997, Dis 206 and Dis 195 producing the most 
unsaturated fatty acid profile at 5°C. Isolates 17313 and 82072 produced the greatest 
degree of unsaturation at 15°C although Herpotrichia sp. isolate 403016 was found to 
produce the greatest unsaturation at 20°C. The isolates 17313 and 82072 which show 15°C 
as producing the highest unsaturation levels are also known to produce large quantities of 
storage lipid which may result in lower UIs due to the unknown localisation of the fatty 
acids. * = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
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Figure 4-11. The percentage total lipid produced by isolates when grown under three 
temperature regimes. Two main trends are seen with the percentage composition of lipid 
in regards to temperature. Several isolates such as 17313, 403016, 403530 and Dis 206 
produce the highest percentage of lipid at 5°C. Isolates 403110, 403002, 82072, 330997 and 
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Dis 195 produce an opposite trend by showing elevated lipid levels at 25°C. * = p ≤ 0.05, n 
= 3 and error bars are standard error of the mean. 
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Figure 4-12. Biomass production of isolates when grown under three temperature regimes. 
Biomass production is found to be highest in the majority of isolates at 25°C. Biomass was 
highest at 15°C for 403110 and significantly higher than that found in any other isolate 
indicating that P. rugulosum is a true psychrophile. p ≤ 0.05, n = 3 and error bars are 
standard error of the mean. 
 

4.2.2 Fatty acid analysis of phospholipid fractions under different growth 

temperature regimes in Mortierella alpina strain 330997 

 

4.2.2.1 Phosphatidylcholine fraction 

The most unsaturated fatty acid C20:5 n3 was produced in the greatest quantity at 5°C 

in the phosphatidylcholine (PC) fraction (figure 4-13), as was seen with the total fatty 

acid extract (Figure 4-7). Again the C20:5 n3 abundance decreased with the increase in 

temperature, a trend observed in the total FA extract. Levels of the second most 

unsaturated fatty acid, C20:4 n6 were found to be highest at 25°C, following a positive 

correlation with the rise in temperature. Levels of the third most unsaturated fatty acid, 

C18:3 n6 were found to be highest at 5°C followed by the second greatest production at 
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25°C. The fatty acid C18:1 was found to be highest at 25°C, with lower but almost equal 

levels found at 15 and 5°C. C18:2 levels were found to be relatively even between all 

three temperatures. The trends encountered in the TFA profile are represented in the PC 

fraction for several of the compounds such as C16:0, C18:0, C20:4 and C20:5 however most 

of the trends are somewhat subdued, as level differences between temperatures are far 

less prominent. The PC fraction contains a balanced profile of saturates and unsaturates, 

with the majority of compounds found in the TFA profile present in the PC fraction. 

Temperature variation seems to a have a less drastic effect on this phospholipid fraction, 

with the majority of FAs experiencing a moderate change in level with change in 

temperature. Saturates experience an increase in level with rise in temperature, possibly 

due to their rigidifying effect on the membrane. The VLCPUFA C20:5 n3 experiences a 

large level increase when temperatures reach 5°C, although the levels of C20:4 n6 

experience a similarly large increase when 25°C is reached. When the unsaturation 

index is calculated (figure 4-19), 5°C culture growth promotes the most unsaturated 

membrane fatty acid composition, although 25°C demonstrates the second greatest 

unsaturation index in part due to the elevated C20:4 n6 and C18:1 levels.  
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Figure 4-13. The PC fraction of Mortierella alpina grown under three temperatures. The 
PC fraction contains a similar fatty acid profile to that seen within the total lipid fraction. 
* = p ≤ 0.05, n = 3 and error bars are standard error of the mean. 
 



Chapter 4 

 
 
 

146 

4.2.2.2 Phosphatidylinositol fraction 

The phosphatidylinositol fraction (PI) contained very few fatty acids, and at relatively 

low levels (figure 4-14). The predominant fatty acids present were C16:0 and C18:0 and 

they showed a slight increase in abundance with the increase from 5 to 15°C. C16:0 

experienced a large decrease at 25°C growth with C18:0 experiencing a smaller decrease 

with the increase in temperature. Minor components of this PL fraction were C14:0 and 

C18:1, with C18:1 showing little significant change with temperature though C14:0 levels 

decrease at 25°C. The fraction lacks the majority of the VLCPUFAs as C18:3 n6 and the 

majority of the C20 VLCPUFAs are either absent or in trace quantities. The fatty acid 

C20:4 n6 is present however, albeit at low quantities at 15°C, showing an increase in 

level with the increase to 25°C. When the unsaturation index was calculated for the 

fraction it was found that 25°C displayed the greatest unsaturation value (figure 4-19). 

However, the values calculated were comparatively low, with the increased level of 

C20:4 n6 and substantially decreased C16:0 in the 25°C culture contributing to the higher 

UI. It would seem that this fraction contributes little to the fluidity of the membrane due 

to the limited fatty acid complement, of which the main components are saturated. The 

relatively small profile changes, excluding C16:0 in response to temperature also appear 

to confirm this idea, although the rise in C20:4 n6 will be discussed shortly.  
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Figure 4-14. The PI fraction of Mortierella alpina grown under three temperatures. * = p ≤ 
0.05, n = 3 and error bars are standard error of the mean. 
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4.2.2.3 Phosphatidylserine fraction 

The phosphatidylserine fraction (PS) is similar to the PI fraction, due to its large 

percentage of C16:0 and C18:0 and limited unsaturate content (figure 4-15). Both the 

aforementioned saturate levels increase with the increase in temperature from 5 to 15°C, 

however decrease with the further rise to 25°C, although levels remain above that 

observed at 5°C. All forms of PUFA within this fraction at 5°C are absent, although 

small traces of C18:1 are present. Levels of C18:3 n6 and C20:3/5 are found in small 

quantities although levels stay relatively constant at 15 and 25°C growth. C20:4 n6 is the 

predominant PUFA within this fraction, although levels are relatively low, they 

experience a small increase with the rise in temperature from 15 to 25°C. When the 

unsaturation indices are calculated, 5°C demonstrates the lowest UI. This is due to the 

absence of any major unsaturates within this PL fraction at this temperature. A modest 

increase in unsaturation index is seen with the increase in temperature, due in part to the 

C18:3 n6 and C20:4 n6 fatty acids. This fraction seems to resemble that of the previous PI 

fraction, in that the complement of fatty acids as well as the variation in the profiles is 

relatively minor. Although the UI is contrary to what would be expected, the 

contribution to total phospholipid fluidity of the PS fraction is probably relatively minor 

due to the low absolute values of polyunsaturates. 
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Figure 4-15. The PS fraction of Mortierella alpina grown under three temperatures. All 
peaks gave p values > 0.05, n = 3 and error bars are standard error of the mean. 
 



Chapter 4 

 
 
 

148 

4.2.2.4 Phosphatidylethanolamine fraction 

The phosphatidylethanolamine (PE) fraction demonstrates the greatest diversity in 

fatty acid levels (figure 4-16). However it is suspected that the PE fraction also contains 

a large proportion of the neutral lipid fraction. This is evident from the increase in lipid 

observed with the increase in temperature, which is seen with the total lipid extract in 

Mortierella. The increase in lipid was not as extensive within any of the other 

phospholipid fractions. A subsequent TLC to separate the neutral and the PE fraction 

was run, although the results were inconclusive. The lack of separation between the 

neutral lipid and PE fraction is due to the large quantities of neutral lipid found within 

Mortierella species. Therefore any subsequent separations would require a silicic 

column separation of phospholipids from neutral lipids, followed by TLC of the eluted 

polar lipid fraction. In the combined fraction, 5°C growth results in much lower fatty 

acid abundances than at 15 and 25°C. The complement of fatty acids is similar to that 

observed within the TFA extract with VLCPUFAs such as C20:5 n3 and C20:4 n6 found 

within this combined fraction. 5°C growth results in the lowest fatty acid levels and is 

most likely the most representative of the PE fraction, due to the decreased total lipid at 

this temperature as shown with the total lipid extraction, indicating low neutral lipid 

levels. C20:5 n3 is not produced to the greatest extent at 5°C as is seen within the PC 

fraction or in the TFA extraction, indicating that some C20:5 n3 may be found within the 

neutral lipids due to the large increase observed at 15°C, when PE and neutral lipid 

fractions appear to merge. 

 Long chain saturates such as C20:0, C22:0 and C24:0 appear to be mainly absent at 5°C 

growth, but experience rapid increases at both 15 and 25°C growth again indicating the 

amalgamation of the two fractions. The rapid rise in C20:4 n6 levels at 15 and 25°C 

growth resembles that seen with the TFA fraction, indicating that both PE and neutral 

lipid fractions contain this highly unsaturated fatty acid, although the neutral lipid 

appears to contain the majority of this fatty acid due to the highly elevated levels. The 

third most unsaturated fatty acid, C18:3 n6 demonstrates a similar trend to C20:4 n6, with 

increasing temperature resulting in greater production. Other unsaturated C20’s such as 

C20:1/2/3 were absent or in low abundance in 5°C culture, although warmer temperature 

growth resulted in low levels of C20:1/2 but higher abundances of C20:3 n6 for both 15 and 

25°C growth. The increased quantity of C20:3 n6 comes as no surprise as this fatty acid is 

the precursor to C20:4 n6. The localisation of C20:3 n6 appears to be in both the neutral 
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and PE fraction, as it is present albeit at low quantities at 5°C growth with the 

substantial increase at 15 and 25°C indicating that a fraction may reside in the neutral 

lipids. The saturates C16:0 and C18:0 do not appear to be as prominent as in the TFA 

extract indicating that the neutral lipids may contain a large proportion of unsaturated 

fatty acids. Using a solvent system of hexane, acetic acid and water, it was found that 

polyunsaturated fatty acids had lower Rf than saturates, which would explain the lack of 

the saturates C16:0 and C18:0 detected in the PE fraction. The fatty acid C18:1 also 

demonstrates lower levels, as the TFA show abundances similar to C20:4 n6 at 25°C 

growth. 

The unsaturation index of the PE fraction therefore is skewed due to the fact that it is 

thought to contain a large proportion of neutral lipid. 25°C growth produced the most 

unsaturated fatty acid profile, whereas 5°C growth produced the least unsaturated FA 

profile. The large error associated with the 5°C growth index was caused by several 

highly unsaturated fatty acids not being detected in one of the biological replicates. This 

resulted in a lower unsaturation index for the PE fraction at 5°C. This demonstrates that 

the TLC separation of phospholipid components can be prone to error. This error is 

carried forward to the total phospholipid unsaturation index, which shows 5°C growth 

producing the most saturated fatty acid profile whereas 25°C growth produces the most 

unsaturated fatty acid profile. If the PE fraction is removed from the calculation then 

5°C and 25°C growth produce similar unsaturation indices around 0.8, although 25°C 

growth still produces the higher unsaturation index predominantly because of the C20:4 

n6 found in the PS fraction. It appears that the PE and PC fractions are responsible for 

the majority of fatty acid regulation within Mortierella alpina as these fractions contain 

the majority of the VLCPUFA, with the PC fraction demonstrating greater unsaturation 

with the decrease in temperature. However, it also appears that neutral lipid within the 

species comprises a large proportion of C20 VLCPUFA such as C20:4 n6, especially at 

25°C growth. 
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Figure 4-16. The PE fraction of Mortierella alpina grown under three temperatures. The 
PE fraction appears to be an amalgamation of the PE and neutral lipid fractions due to 
the high lipid production at 15 and 25°C. n = 3 and error bars are standard error of the 
mean. ANOVA was not performed on the data, due to the suspected mixing of the PE and 
neutral lipid fraction. 
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Figure 4-17. Comparison of phospholipid classes using a culture temperature of 5°C. The 
comparable lipid levels of the PE fraction indicates that 5°C growth results in minimal 
neutral lipid production and therefore the PE fatty acid profile suffers little contamination 
from the neutral lipid fraction. It can be clearly seen at the lowest growth temperature, the 
PE and PC fractions of Mortierella alpina appear to be responsible for membrane fluidity 
regulation. n = 3 and error bars are standard error of the mean. 
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Figure 4-18. Comparison of phospholipid classes using a culture temperature of 25°C. The 
significantly increased levels of fatty acid associated with the PE fraction at 25°C growth 
indicate that neutral lipid has been incorporated into the TLC fraction. The large 
abundance of C20:4 n6 indicates that this VLCPUFA is found as a major component of the 
neutral lipids. The greatly elevated levels of C20:3 n6 and the saturates C20:0, C22:0 and C24:0 
compared with the other phospholipid fractions would indicate their predominant 
localisation within the neutral lipids as well. n = 3 and error bars are standard error of the 
mean. 
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Figure 4-19. The unsaturation indices for the individual phospholipid components 
predominantly show an increase in desaturation with increasing temperature. The PC 
fraction however shows the greatest unsaturation at 5°C growth, and this phospholipid 
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fraction is thought to be one of the modulators of membrane fluidity within Mortierella. 
The increase seen in the PI fraction is due to a small quantity of C20:4 n6 which is also 
responsible for the increase in desaturation found in the PS fraction. The small levels of 
precursors to C20:4 n6 may indicate that this VLCPUFA may be a contaminant due to its 
high levels at higher temperatures. The PE fraction is proposed to contain neutral lipid, 
and as such demonstrates the highest unsaturation at 25°C due to the high proportion of 
C20:4 n6. The total unsaturation index for all the fractions shows 25°C producing the 
greatest unsaturation. This is in contrast to the TFA extract, indicating that a large 
proportion of saturated lipid was not extracted. n = 3 and error bars are standard error of 
the mean. ANOVA was not performed, due to the suspected contamination with neutral 
lipid.  

4.3 Discussion 

In Mucor racemosus one of the primary responses to low temperature culture is to 

increase the quantity of fatty acids, with the majority of classes experiencing a 

substantial rise in abundance at 5°C. Culture at 15°C showed a decrease in a large 

number of fatty acids compared with 5°C and 25°C culture, specifically C16:0, C18:0 and 

C18:1, although C14:0 and C18:2 demonstrated this trend albeit with levels much closer to 

25°C growth. The second response to low temperature culture was the high abundance 

of C18:3 n6, with levels peaking at 5°C culture and then subsequently declining with the 

increase in temperature. For all the organisms studied except M. alpina strain 82072, the 

highest absolute amount of the most unsaturated fatty acids C18:3 n3/6 or C20:5 n3 was 

produced at the lowest culture temperature. However, although strain 82072 did not 

contain the greatest absolute concentration of C20:5 n3, it did contain the greatest 

proportion of C20:5 n3 as a percentage of the total fatty acids. This would appear to 

reinforce the theory that a mechanism exists that translates the rigidity of the membrane 

into the production of the most unsaturated fatty acid through the expression of several 

desaturases. In several of the cases examined, where C18:3 n3/6 is the most unsaturated 

fatty acid, it could be inferred that 5°C culture appears to promote increased expression 

of either a ∆15 or a ∆6 desaturase. In the case of Mucor racemosus for example, 

increased C18:3 n6 may partially be the result of increased levels of C18:2 n6, the substrate 

for the ∆6 desaturase. In the case of C20:5 n3, cold temperature growth appears to 

stimulate the expression of a ∆17 desaturase. The reason for incorporating the most 

highly unsaturated fatty acids is predominantly to maintain the fluidity of the membrane 

during cold conditions. The rise in the entire complement of fatty acids within M. 

racemosus during cold temperature growth indicates that FAs are being sent for storage. 

The logical conclusion would be the conversion of excess fatty acids into TAG lipids. 

When the unsaturation index values were studied for M. racemosus, it revealed that 
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culture at 15°C produced the most unsaturated fatty acids. What is not evident from the 

unsaturation index, as will be applicable to all samples, is the localisation of the FAs. If 

saturates were localised as storage lipids, then it may be found that the majority of 

unsaturates are localised within the membrane, which would increase the unsaturation 

index of these functional lipids. However, the initial extraction procedure used assessed 

total cellular lipids and therefore, no definite conclusion can be drawn as to where the 

unsaturation occurs or whether neutral lipids increase with the decrease in temperature. 

The most efficient growth of Mucor racemosus in terms of fatty acid and biomass 

production would be achieved by culture at 5°C, due to the minimal loss of biomass 

coupled with the substantial increase in total FA production as well as increases in C18:3 

n6, the most unsaturated FA produced by this organism. 

Penicillium rugulosum demonstrates the highest unsaturation index of any of the 

organisms studied when grown at 5°C. It also produced the greatest biomass with over 2 

g of per 100 ml of PD broth. This is quite remarkable as this organism contains the 

same fatty acid complement as the majority of the other fungi studied, but has fewer 

unsaturated fatty acids when compared with the Mortierella alpina strains. It appears 

that possessing the ability to produce fatty acids longer and more unsaturated than C18:3 

n3/6 is not a requisite for optimal low temperature growth. This highlights two points; 

firstly P. rugulosum contained the highest percentage of C18:3 n3 at 5°C, accounting for 

47.6% of the total fatty acids. When the other trienoic values are studied, values of 

17.6% (Mucor), 20.1% and 19.1% (Herpotrichia strains 403016 and 403002), 13.9% 

and 21.4% (Umbelopsis strains Dis 260 and 195) are produced. Whilst all these 

organisms can produce the same fatty acids, the percentage composition of the most 

unsaturated seems to play an important role in the adaptation of the organism to low 

temperature environments. Bjerkandera adusta produced its most unsaturated fatty acid 

C18:2 at 79.6% at 5°C. The unsaturation index of 1.65 is still lower than that observed for 

Penicillium which produced a value of 1.95. The predominant strategy for B. adusta, 

which only produced two major fatty acids, is to increase production of C18:2 under low 

temperature conditions, again supporting the theory that cold temperatures favour 

unsaturated fatty acid production. Due to the low growth and low lipid levels it could be 

assumed that C18:2 on its own is not sufficient to maintain optimal membrane fluidity.   

The second point is that whilst Penicillium demonstrates the highest percentage of 

C18:3 n3, is most likely adapted in other ways. The ability of proteins to function at such 
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low temperatures is also critical for the survival of the organism, with Penicillium most 

likely having evolved these adaptations, compared with the other organisms studied, 

which show relatively slow growth at low temperatures compared with Penicillium 

biomass production. Further, the low lipid level indicates low neutral lipid abundance. 

Another point in regards to cold adaptation is the fact that several organisms exhibited 

increases in lipid levels with decreasing temperature. It is thought that this may be a 

feature of restrictive protein synthesis whereby under low temperature conditions the 

inability to regulate fatty acid production leads to increased production (Suutari, 1995) 

(Bensch et al., 1961). Protein malfunction at low temperatures may also explain the 

lower biomass levels for these organisms at low temperature. P. rugulosum compared 

with the other studied isolates appears to be a true psychrophile, indicating that a high 

proportional value of C18:3 n3/6 is important for optimal growth at low temperatures. 

Whilst the majority of isolates studied were also capable of producing trienoic fatty 

acids they did so to a lesser degree. It also suggests that trienoic fatty acids can be 

equally or more effective than tetra- and pentaenoic acids at maintaining membrane 

fluidity at low temperatures. In regards to the Bjerkandera isolate, the importance of 

unsaturated fatty acids in relation to cold temperature survival is again highlighted, with 

the correlation between the most unsaturated fatty acid and the growth temperature. As 

to why only two fatty acids are predominantly made is unknown, although the fact that 

very low levels of precursors to C18:2 are present would indicate either very efficient 

synthesis of C18:2 or a novel synthesis route. The low biomass at 5°C coupled with the 

predominantly unsaturated fatty acid profile suggests that other factors may also be 

responsible for low growth at 5°C.   

The unsaturation indices and fatty acid profiles suggest that the Herpotrichia strains 

employ different strategies to survive low temperatures. One of the common features 

between the two strains is that C18:3 n3 abundance is directly linked with the growth 

temperature, with peak levels achieved at 5°C growth. Whilst strain 403016 shows 

elevated fatty acid levels at 5°C, strain 403002 has the most abundant lipid levels at 

25°C. The elevated lipid levels at low temperatures could again be the result of 

restricted protein synthesis as discussed previously. C18:2 levels in strain 403016 remain 

relatively constant throughout the temperature range, which is not found within any of 

the other samples. This fatty acid is probably utilised to maintain sufficient fluidity to 

counter the decrease in C18:3 n3 levels at warmer temperatures, but it may also be stored 

as a non-membrane associated fatty acid due to its constantly high levels. In regards to 
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unsaturation index strain 403002 achieves a slightly higher unsaturation index than 

strain 403016, with strain 403002 showing the hypothesised decrease in UI with 

increase in temperature. Strain 403016 opposes this by demonstrating a marginally 

higher UI value at 25°C compared with 5°C. The reason for the high index is due to the 

lowering of all the fatty acid levels except C18:2, which remains at a consistently high 

level. Why this fatty acid remains at such a constant level whilst all other fatty acids 

decline is unknown. The variation between the two isolates of Herpotrichia could be 

attributed to intraspecific variation, however this may lead to the classification of a new 

strain which is biochemically distinct. This can be ascertained through the use of 

multiple isolates and data analysis techniques such as PCA, as described in the previous 

chapter, whereby strains cluster together and intraspecific variation is observed by the 

scatter of the points making up the cluster. In this case, as no species identification was 

made it is impossible to deduce whether the variation is inter- of intra- species variation.    

The genus Mortierella is worthy of note due to several factors. Firstly the capability 

of Mortierella spp. to accumulate large quantities of lipid, large proportions of which 

are thought to be stored as TAG in lipid droplets (Sorger & Daum, 2003) (Beopoulos et 

al., 2010). The abundance of neutral lipids may interfere with accurate UI estimates due 

to the much larger ratio of neutral to polar lipid. As neutral lipid in storage is less likely 

to play a role in membrane fluidity the UI value may be lower than expected, as it is 

generally thought that neutral lipid is more saturated than in polar lipids (Mumma et al., 

1971) (Kendrick & Ratledge, 1992b) (Tonon et al., 2002). High levels of saturates and 

monounsaturates would decrease the total fatty acid percentage of polyunsaturates such 

as C18:3 n6, which in turn would lead to a lower unsaturation index. This lack of 

knowledge regarding localisation in high lipid producing organisms such as Mortierella 

may account for the 15°C culture in strain 82072 producing the most unsaturated 

profile. The unsaturation profile of strain 330997 correlated with other works (Jang et 

al., 2005) and the proposed hypothesis. In regards to lipid accumulation, Umbelopsis 

strain Dis 206 produced the most lipid at 5°C with the greatest constituent being C18:1. 

This negative correlation of increased temperature leading to decreased fatty acid 

production appears to differentiate this strain from both Mortierella isolates and 

Umbelopsis strain 195. As to why such large lipid quantities are produced at 5°C are 

unknown, although it is possible that protein regulation at low temperature growth may 

have a role as this strain is mesophilic. M. alpina strains are thought to be adapted to 

low temperature environments due to their production of VLCPUFAs such as C20:5 n3, 
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however the mesophilic Umbelopsis isolates demonstrated that growth is possible 

without VLCPUFAs, although lesser unsaturation indices were achieved by both Dis 

206 and 195 strains. This is in comparison to other mesophilic organisms, such as those 

studied by Suutari (Suutari, 1995), where mesophilic Penicillium, Aspergillus and 

Trichoderma demonstrated either bell shaped unsaturation index curves in relation to 

temperature, with an average temperature of 26°C producing the greatest unsaturation, 

or with sudden drops in unsaturation from 15°C to 10°C growth. This indicated that 

these mesophiles were unable to cope with low temperature growth, whereas in this 

study the unsaturation indices of the mesophilic Umbelopsis isolates seem to 

demonstrate the ability to cope with low temperature, with 5°C producing the greatest 

unsaturation indices.  

Mortierella alpina is one of the few true fungi capable of producing VLCPUFAs. As 

has been demonstrated with the previously discussed samples, trienoic fatty acids seem 

to provide enough fluidity to allow survival in low temperature environments. In the 

case of Penicillium rugulosum, it affords more than adequate membrane fluidity at high 

proportional values. The VLCPUFA producing M. alpina at 5°C growth still showed 

reduced growth at low temperatures which subsequently increased with increasing 

temperature. It could be hypothesised that if such an organism possessed the ability to 

produce greatly unsaturated fatty acids, especially in light of the capabilities of fatty 

acid production within the majority of the fungi, it would thrive in low temperature 

environments. One can then only assume that other factors limit the growth of such an 

organism at low temperatures. Whilst M. alpina isolates 330997 and 82072 do not 

thrive as does Penicillium, when compared with the Umbelopsis isolates, biomass 

production at 5°C is enhanced. Compared with the majority of the other isolates 

biomass production at 5°C is also greater. At 15°C however any benefits that were 

attributed to VLCPUFAs in regards to membrane fluidity are lost as Umbelopsis 

isolates show a substantial increase in growth, with biomass production higher than in 

the Mortierella. The final point to consider is C20:4 n6 and the high levels detected at the 

warmer growth conditions of 15 and 25°C. As to why such an unsaturated fatty acid is 

produced at warmer temperatures is unclear. If the fatty acid was localised to the 

membrane then one would assume that the membrane would be in a very fluid state, and 

if localised to neutral lipids what role does it play to warrant its accumulation, as so few 

true fungi have this capability. The fact that Mortierella are oleaginous organisms, 

would provide fatty acid biosynthesis with increased substrate, however depending on 
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the expression of specific elongases and desaturases, accumulation of specific fatty 

acids could occur anywhere within the pathway. This raises the question as to the 

function of VLCPUFAs within Mortierella alpina. It can be seen that the presence of 

VLCPUFAs correlate with an increase in biomass at 5°C, although when compared with 

Penicillium the apparent benefit they provide is small. However, low temperatures do 

induce C20:5 n3 production indicating low temperature growth is a trigger for ∆17 gene 

expression. The roles of VLCPUFAs were discussed in the previous chapter but the 

relationship between the Mortierella and Chytridiomycota may indicate that VLCPUFA 

production may be a remnant, possibly vestigial phenotype from the Zygomycota 

ancestry. The fact that the majority of the Zygomycota have lost the ability to produce 

VLCPUFAs also indicates the redundant roles these VLCPUFAs may play in these true 

fungi. Counter to this is the fact that VLCPUFA production is still selected for and 

would indicate that some environmental pressure confers a benefit, leading to their 

perpetuation within the Mortierella.  

 Total fatty acid analysis provides a good indication that temperature affects the 

composition of the fatty acids within the cell. The unsaturation indices in some isolates 

demonstrated that the lowest temperature did not always induce the greatest 

unsaturation. This is possibly due to the increase in total fatty acid levels, with the 

unknown localisation of the unsaturated fatty acids. The segregation of lipids allows for 

a more definite conclusion on the role that fatty acids play within membrane lipids. The 

fungus Mortierella alpina was studied further as it is capable of producing fatty acids 

such as arachidonic acid and eicosapentaenoic acid. The TLC separation procedure 

alone failed to separate the neutral lipid from the PE fraction although in other cases the 

TLC method alone has been sufficient (Domergue et al., 2003, Tan et al., 2011). 

However the large increase in neutral lipid promoted by the increase in temperature led 

to insufficient separation and further analysis would require the prior separation of 

neutral lipids from polar lipids using a silicic column. On analysis of the phospholipid 

fractions, only the PC fraction produced the greatest unsaturation index value at the 

lowest culture temperature. When the total unsaturation index from all phospholipids 

fractions was analysed, a positive correlation with relation to temperature was observed. 

The low value of the 5°C unsaturation index was exacerbated primarily by the lack of 

detection of several PUFAs in the PE fraction replicates. Even with the removal of the 

merged PE fraction from the total phospholipid calculation, growth at 25°C still yielded 

the greatest unsaturation index. This is in opposition to the hypothesis that decreasing 
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culture temperature results in greater unsaturation within the phospholipids. Whilst the 

phospholipid fraction is thought to contain the majority of the polyunsaturated fatty 

acids, the Mortierella species studied contained a large proportion of the unsaturated 

fatty acids, specifically C20:4 n6 within the neutral lipids, which was also shown by Aki 

et al., who showed that within Mortierella alliacea around 86% the total arachidonic 

acid was stored in neutral lipids. They also showed that VLCPUFAs were localised to 

the PC and PE fractions (Aki et al., 2001) which was also found to be the case with the 

studied Mortierella isolate. The localisation to the PE and PC fractions was also 

described by Tan et al. (Tan et al., 2011) on their study of the Zygomycete 

Conidiobolus obscurus which contains C20:4 n6 and C20:5 n3 and like the majority of 

fungi, the phospholipids were the most unsaturated fraction. PC and PE localisation of 

VLCPUFAs has also been documented in Achlya species (Aki et al., 1998) and the 

Zygomycetes Conidiobolus and Entomophthora spp. (Kendrick & Ratledge, 1992c) 

although they also contained VLCPUFA within the PI fraction. The PC fraction is also 

thought to be the substrate for fungal ∆5, ∆6 (Domergue et al., 2003) and ∆12 

desaturases (Jackson & Fraser, 1998) and the observed increase in desaturation with 

decreased temperature seems to correlate with this finding. The low unsaturation at 5°C 

observed within both the PI and PS fractions would indicate these phospholipids play 

little role in membrane fluidity regulation, although the PS fraction shows a linear 

increase in unsaturation with increasing temperature whilst the PI fraction only 

experiences a large increase in unsaturation at 25°C. The lack of substrate for C20:4 n6, 

as well as the small quantities found of this FA within these two fractions, alludes to the 

fact that the presence of this fatty acid is possibly due to the large proportion of neutral 

lipid contaminating other fractions, or that it was transferred from PC via an acyl-

transferase. As such both the PS and PI fractions are unlikely to be heavily involved in 

membrane fluidity regulation and likely contain large proportions of C16:0 and C18:0. 

If PC is indeed the substrate for the ∆5 desaturase, then the high levels of C20:4 n6 

found within the neutral lipids must be the result of efficient transfer between the two 

lipid fractions. It would also imply that the PE fraction is enriched with VLCPUFA 

from the PC fraction. Another point raised by Domergue et al. was the presence of 

bottlenecks which appeared in recombinant organisms transformed to produce C20:4 n6. 

It was thought the differing substrate requirements for fungal and algal desaturases and 

elongases, acyl-PC and acyl-CoA respectively, resulted in inefficient conversion past 

C18:3 n6 due to the requisite of elongases requiring acyl-CoA substrate. Mortierella 
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alpina appears to have an efficient method by which to produce sufficient C20:3 n6 

through elongation, followed by transfer to the PC fraction, which then drives the 

substantial C20:4 n6 production due to desaturation, followed by subsequent transfers to 

the PE/neutral lipid fraction. Again, why C20:4 n6 is produced in such large quantities 

when grown at temperatures above 15°C and subsequently stored in neutral lipid is 

unknown. What is noticeable within the PE and PC fraction is the lack of production of 

C20:5 n3 at 25°C, mimicking the TFA profile. This would indicate the down regulation 

of the ∆17 desaturase at temperatures at or below 25°C. The PE fraction also 

demonstrated a lack of C20:0, C22:0 and C24:0 at 5°C growth, which was also shown in the 

TFA profile at 5°C growth. This would indicate the down regulation or complete 

cessation of MALCE1 and MAELO, the elongases involved in these saturate’s 

production. A small increase in total fatty acid associated with the phospholipid 

fractions, excluding the merged PE fraction, was seen between growth at 5 and 15°C, 

which then showed a small decline at 25°C growth compared with 15°C. This is 

possibly due to the increase in neutral lipid production which is usually stored in 

vesicles surrounded by phospholipid mono-layers. Hence, by increasing the number and 

size of vesicles, the more phospholipid is required to encapsulate these storage vesicles. 

The reason as to why Mortierella alpina produces C20:4 n6 to such a large degree is 

unknown, however the attachment of VLCPUFAs to the PC and PE phospholipids is 

possibly due to the physical properties of the head groups. Both PC and PE exhibit 

significantly higher melting temperatures than PI and PS with values on average of 

230°C and 196°C compared with 160°C and 136°C (Chapman, 1975). However it is not 

just the melting points that determine the fluidity of the phospholipids, but rather the 

endothermic transition state, a mesomorphic state whereby the acyl chains “melt” and 

display greater molecular motion as described by Chapman. The transition to this state 

within the PE and PC lipids is directly correlated to the attached acyl chains, with 

shorter and more unsaturated chains resulting in lower transition temperatures, in 

essence increasing fluidity. PC demonstrates a much wider degree of transition 

temperatures with respect to attached acyl chains, with C12-18 acyl chains affording 

transition temperatures from 0-50°C. This in effect means that fluidity can be 

maintained over a wide temperature range by altering only the chain length. This gives 

the organism much finer control over membrane fluidity. The PE fraction however 

demonstrates for acyl chains C14-18 a transition temperature range of around 70-80°C. 

This range is much smaller and higher than that from PC, therefore highly unsaturated 
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fatty acids such as C20:4 n6 and C20:5 n3 would allow lower transition temperatures. 

Therefore, the PC fraction provides tight control over the membrane fluidity due to its 

large transition range achieved through acyl chain length and unsaturation. This would 

explain the specificity of ∆5 and ∆6 desaturases for the PC fraction as this fraction has 

the greatest impact on fluidity. The PE fraction has a small transition range which sits 

above ambient temperature and therefore necessitates the need for polyunsaturated fatty 

acids to maintain its fluidity. Once the acyl chains have passed through the transition 

temperature, the phospholipids are then in a liquid crystalline state. The significance of 

maintaining this liquid crystalline state is that acyl chains passing back through the 

transition temperature return to the phospholipid gel state. It is thought that during the 

transition between liquid crystal and gel states, temporary defects occur within the 

membrane resulting in membrane leakage (Crowe et al., 1987), potentially causing 

cellular damage. To prevent leakage therefore, phospholipids must be prevented from 

transitioning to the gel state and is achieved through acyl chain modification, which 

maintains the phospholipids above their transition temperature. In the case of the PE 

fraction, which has a narrow but high transition temperature range, a high degree of 

unsaturation is required to maintain the liquid crystalline state. 

4.4 Conclusion 

It was found that low temperature growth resulted in the greatest formation of the 

most unsaturated fatty acid, in most cases the trienoic acid C18:3 or C20:5 n3. Mortierella 

alpina strain 82071 however displayed equal proportions of C20:5 n3 when grown at 5 

and 15°C. Six of the nine isolates studied demonstrated the greatest unsaturation index 

at 5°C, with two out of the nine isolates displaying the greatest unsaturation at 15°C 

growth. Herpotrichia sp. strain 403016 produced the greatest unsaturation at 25°C, 

which was marginally greater than that found at 5°C growth. Penicillium rugulosum 

demonstrated that trienoic acids are sufficient for survival in low temperature 

environments with the isolate demonstrating prolific growth at 5°C. The large degree of 

growth shown by the Penicillium isolate would indicate that other non-fatty acid factors 

also play a role in optimal growth under low temperature conditions, as isolates 

displaying the same fatty acid complement did not match the growth of Penicillium. 

Two of the isolates, Mucor racemosus and Herpotrichia sp. strain 403002, which   

produce trienoic fatty acids as their most unsaturated component, showed comparable 

biomass to Mortierella alpina isolates at 5°C growth. Other trienoic containing isolates 
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such as the Umbelopsis species showed noticeable lack of growth when compared to 

VLCPUFA producing Mortierella alpina isolates at 5°C growth, indicating VLCPUFAs 

confer some benefit at very low temperature growth. It was suggested that due to the 

lack of C20:5 n3 production at 25°C in both Mortierella alpina strains that ∆17 

desaturase transcription or translation was down regulated. The lack of long chain 

saturate production at 5°C growth in both Mortierella alpina strains suggested that 

either MAELO or MALCE1 production was down regulated, as both elongases are 

responsible for long chain saturate formation.  

Whilst the PE and neutral lipid fractions from Mortierella alpina strain 330997 were 

not resolved the resulting data supports the role of PC as a major modulator of the 

membrane fluidity within Mortierella alpina due to the increased unsaturation observed 

with decreased temperature. This highlights PC’s role as a key modulator of membrane 

fluidity due to its wide transition temperature range which makes it a suitable substrate 

for ∆5 and ∆6 desaturases. The 5°C profile of the PE fraction is most likely 

representative of the fraction and corresponds to reports of both PC and PE containing 

elevated levels of PUFAs, with those PUFAs located within the PE fraction lowering 

the transition temperature. As to how the PE fraction acquires PUFAs, as PC is the 

proposed major substrate for desaturation is unknown, although it is likely that PUFA 

from the PC fraction is transferred to the PE lipid. Conidiobolus obscurus is known to 

contain the majority of PUFA within the phospholipid fraction, although Mortierella 

displays a different strategy by placing large quantities of C20:4 n6 and C20:3 n6 into the 

storage lipids. Again, it is proposed that PUFA from the PC fraction is transferred to the 

neutral lipid fraction either through a phospholipase route or acyl-transferase route. It 

also appears that Mortierella alpina is highly efficient in producing VLCPUFA, due to 

the proposed differential specificities of fungal elongases and desaturases. Mortierella 

alpina appears to have developed, by current elongation and desaturation mechanics, an 

efficient transfer system between the acyl-CoA pool and PC bound lipid to sustain the 

high production of C20:4 n6. 
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5 Development of a novel genetic screen for the 

detection of long chain polyunsaturated fatty 

acids within the fungi  

5.1 Introduction 

The favoured analysis of PUFAs from fungi, as well other organisms such as algae, is 

to extract and derivatise the fatty acids, followed by their separation on a suitable 

analytical platform such as GC-FID or GC-MS. This method is relatively simple and 

sensitive and enables a fatty acid profile of the organism to be acquired, which can be 

utilised in taxonomical classification. However, screening for a particular set of high 

value fatty acids such as the omega 3s, the relatively long growth and processing time, 

as well as the expense incurred from solvent use can be significant, especially when 

hundreds of samples are to be analysed. Typically, for an organism isolated from a 

hostile environment such as the Antarctic, growth on plates and in broth is slow and 

growth conditions are usually un-optimised. In addition, under sub-optimal growth 

conditions certain fatty acids may not be produced, as shown with Mortierella alpina 

and the lack of C20:5 n3 production during 25°C culture. To complement metabolic 

analysis, DNA based approaches can be used for targeted screening, which can then be 

complemented by analytical technologies to validate production of the compound. This 

requires a specific DNA based target, which can differentiate the presence or absence, 

of a target gene. For poorly studied organisms or metabolic pathways this is not always 

possible, due to the lack of information available regarding the genome of that 

organism. Another problem, when analysing a wide spectrum of organisms is the lack 

of homology at the nucleotide level which may prevent efficient PCR based analysis. 

With the careful selection of gene and primers, it is possible to reduce the incidence of 

missing a novel producer of a desirable metabolite. Primers must be specific enough to 

bind only to the gene of interest but be lenient enough to allow polymorphisms within 

the sequence. Benefits of PCR based methods include shorter sample analysis times, 

due in part because broth culture is not required, and solvent use is also greatly reduced. 

The method also allows for the detection of the metabolites regardless of the culture 

conditions, due to the fact that genomic DNA is utilised for the screen, and not mRNA. 
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 The aim of this section of work was to develop a PCR based screen to detect the 

presence of VLCPUFAs within fungal populations. The target gene utilised for the 

screen was GLELO, as it is responsible for the elongation of C18:3 n6 to C20:3 n6 as well 

as having been shown to have activity on the n3 substrates. The ∆6 elongase GLELO 

was selected due to its essential role in the formation of C20 VLCPUFAs such as C20:3 n6 

which are then subsequently desaturated by ∆5 and ∆17 desaturases to form C20:4 n6 

and C20:5 n3 respectively. The elongase can also be utilised for both the n3 and n6 

pathways, although GLELO has only been documented to be involved with the n6 

pathway. Using a ∆5 or ∆17 desaturase as found in Mortierella may result in producers 

of VLCPUFAs not being detected due to the nature of their biosynthesis. A ∆17 

desaturase as a genomic marker for VLCPUFAs is not viable due to the lack of 

organisms capable of producing C20:5 n3. Organisms that produce C20:4 n6 would be 

missed, as a ∆17 desaturase is not required for its formation. This argument cannot be 

applied to the ∆5 desaturase, as many organisms are capable of producing C20:4 n6 

limiting the incidence of missing VLCPUFA producers. However the ∆5 desaturase 

gene cannot be used because analysis of the genomic DNA revealed that there was no 

conserved region to develop primers for. There was also a lack of fungal ∆5 desaturase 

DNA sequences indicating that this enzyme is present in few fungi or in those that do 

contain it, has not been characterised. The ∆6 elongase, GLELO, whilst only being 

documented within Mortierella contains a conserved genomic region when compared to 

similar ∆6 elongases. This meant that primers could be designed around the conserved 

region of GLELO, which would allow for the detection of VLCPUFAs at the genomic 

level. The conserved genomic region and primer development are discussed in detail in 

section 5.2.1. 
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5.1.1 Aims 

The aim of this study is to determine whether a suitable gene marker is present by 

which VLCPUFA production can be inferred. Once identified, suitable primers will be 

developed to allow amplification across a wide array of organisms within the fungi. The 

primers will then be tested to determine the correlation of the gene product and the fatty 

acids C20:3 n6, C20:4 n6 and C20:5 n3.  

5.2 Results  

5.2.1 The identification of conserved regions of homology within ∆6 

elongases from diverse species 

The interrogation of known and putative ∆6 elongase sequences present in the public 

databases revealed conserved sequences unique to ∆6 elongases. The GLELO PCR 

primer pairs were based on the conserved region found within multiple ∆6 elongase 

sequences. For example GLELO cDNA from Mortierella alpina was BLAST searched, 

shown in figure 5-1. These sequences when aligned revealed an apparent 123-125 bp 

conserved region with other ∆6 type elongases from other organisms. Therefore it was 

hypothesised that this conserved region could be used to develop a PCR based screen to 

detect elongases from unstudied fungi, with Mortierella alpina the only true Fungus to 

have a ∆6 elongase characterised.  
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Figure 5-1. The ∆6 elongase (GLELO, top sequence) cDNA sequence from Mortierella 
alpina strain 330997 was BLAST searched. Within the sequence lies a 123-125 bp 
conserved region shared by ∆6 and ELOVL5 class elongases from other organisms which 
indicated that this region may correlate with VLCPUFA production. Red areas denote 
base pair differences from GLELO.  

 

The design of these primers took into account other closely related ∆6 elongase 

sequences. The 123-125 bp conserved fragment contains within it nucleotide variations 

between organisms, although the first and last 18 bp were sufficiently conserved 

throughout different species to enable the generation of efficient degenerate primers.  

There were several base pairs however that varied between Mortierella and other 

species consistently, shown in figure 5-2. These variants were taken into consideration 

when designing several sets of robust primers. For example set two differed from set 

one due to the presence of 4 degenerate base pairs whilst the first set contained only 

one. The first set of primers, designated Uni 1 and Uni 2 were more specific for 

Mortierella, whilst the second pair, designated Uni 3 and Uni 4 were less specific but 

adapted for a wider range of organisms. The primer sequences are shown in table 5-1. 
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123-125 bp
 

Figure 5-2. Two sets of primers were designed for the relatively conserved end regions of the 125 bp conserved region, highlighted by the two blue boxes. 
When the conserved region was compared between Mortierella and other organisms, several consistent base pair changes were evident in the primer design 
regions 
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Table 5-1. Primer sequences for pairs Uni 1 and 2, Uni 3 and 4. The primer pairs are 
designed to amplify the 125 bp region. Primer set 1+2 (Uni 1 and Uni 2) were designed to 
be more specific for the Mortierella sequence and contained only one degenerate base, 
whereas primers 3+4 (Uni 3 and Uni 4) contained four degenerate bases to account for the 
consistent base pair variations. 
 

Primer name Primer sequence 

Uni 1 CTACTTCTCCAAGVTCAT 

Uni 2 TGACCAACCACCAGATGGT 

Uni 3 CTACTTCTCCAARVTCAT 

Uni 4 TGACVAACCACCAGATGKT 

 

The conditions for the PCR were established using the isolated GLELO gene inserted 

into TOPO 2.1, as described in Materials and Methods section 2.2.7.7, with this 

construct used as a positive control. Further to that, Mortierella cDNA was used as well 

as mouse genomic DNA, isolated from mouse liver as shown in figure 5-4. Mouse DNA 

was utilised as a ∆6 elongase exists in mice and no other true fungi have been 

documented to contain a ∆6 elongase. The PCR reaction and conditions were optimised 

as shown in figure 5-3, utilising several reaction conditions. It was found that the 

optimal reaction mix was: 

• 1 µl DNA  

• 2+2 µl primers at 10pmol/µl 

• 20 µl DNA free water 

• 1 taq bead (GE healthcare) 

It was also found that a 3% agarose gel was required to resolve the 125 bp band 

sufficiently. The optimal PCR conditions were found by running the PCR reaction 

stated above, with an annealing temperature gradient. The optimal PCR thermocycler 

conditions are described in table 5-2.  
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Table 5-2. Thermocycler conditions for amplifying the 125 bp region using primers Uni 1 
+ 2 and Uni 3 + 4.  
 

Temperature Length Role 

95°C 2 minutes Initial melting 

94°C 30 seconds Melting step 

52°C 30 seconds Annealing step 

72°C 1 minute Elongation step 

35 cycles   

   

72°C 5 minutes Final elongation 

 

Uni 1 +
Uni 2

Uni 3 +
Uni 4

a ab bc cd d

100bp
200bp

 

Figure 5-3. Optimisation of the ∆6 elongase PCR screen reaction mix for Uni primers. a = 
1 µl TOPO positive control DNA, 1+1 µl primers, 22µl dH20, 1 Taq bead. b = Addition of 1 
µl 4% DMSO. c = Increase to 2+2 µl primers. d = Increase to 2 µl of TOPO positive 
control DNA. The initial trial conditions indicated  2 µl of primer produced the best 
amplification.  The thermocycler conditions for Uni 1 and 2 primers were; Melting step - 
94°C for 30 seconds, Annealing step – 50°C for 30 seconds, Elongation step – 72°C for 1 
minute, 30 cycles. For primers Uni 3 and 4; Annealing – 48.5°C for 30 seconds. All other 
parameters kept the same. Thermocycler parameters were subsequently changed to an 
annealing temperature of 52°C and increased the number of cycles to 35. 
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200bp

100bp
125bp

a b c d e

 

Figure 5-4. Amplification of ∆6 like elongase from Mus musculus using both sets of Uni 
primers. a = Blank primer Uni 1 and Uni 2, b = TOPO positive control Uni 1 and Uni 2, c 
= Mortierella alpina 330997 GLELO cDNA Uni 3 and Uni 4, d = Mus musculus DNA Uni 1 
and Uni 2, e = Mus musculus Uni 3 and Uni 4.  Mus musculus DNA at 296.9 ng/µl. The 
annealing temperature was set to 52°C with the number of cycles set to 35. The mouse 
genomic DNA was only amplified using the non-specific primers Uni 3 and 4. This 
indicated that the strategy to include four degenerate bases into the primers was effective 
at detecting the conserved region in an organism not related to the fungi. 

5.2.2 Mortierella GLELO screen 

In total, 9 Mortierella species were screened and compared with two mesophilic 

Umbelopsis isolates. The Umbelopsis isolates were used to represent typical 

zygomycetes with most species incapable of elongating past C18:3 n6 unlike Mortierella 

species. It was therefore thought that Umbelopsis spp. would not display the 125 bp 

band, whereas those from the Mortierella would. Another two isolates were studied 

which were initially thought to be Mortierella species, but were subsequently identified 

as a Penicillium sp. and an isolate from the Clavicipitaceae, both from the Ascomycota. 

The fatty acid profiles were confirmed using GC-MS, as described in materials and 

methods, section 2.2.7. The first PCR utilised three Mortierella alpina species, IMI 

330997, 82072 and 196057, two Umbelopsis species, Dis 195 and Dis 206 and an 

isolate from the Clavicipitaceae, Dis 169. Figures 5-5 and 5-6 show the absence of the 

125 bp band from both Umbelopsis species and the isolate from the Clavicipitaceae, 

which correlates with the lack of fatty acids longer than C18:3 found with GC-MS. All 

three M. alpina species demonstrated fatty acids up to C20:5 n3 which correlated with the 

presence of the 125 bp fragment. M. polycephala (140468) and two uncharacterised 

Antarctic Mortierella strains were also studied. Strain 403341 was thought to be a 

Mortierella strain but was subsequently found to be contaminated with Penicillium. The 

Penicillium species demonstrated fatty acids up to C18:3 n3, correlating with the lack of 

the 125 bp band. This was in contrast to M. polycephala, which clearly demonstrated 

the 125 bp band as well as producing C20 VLCPUFAs as did the uncharacterised 

Antarctic Mortierella strain 398111. The 125 bp fragments from 330997 and 196057 

were sequenced to confirm the identity of the fragment. Three other fragments from 
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82072 (approx. 200 bp), 140468 (approx. 200 bp) and 398111 (approx. 300 bp) were 

sequenced which were larger than the GLELO fragment, and in the case of sample 

82072, had a much greater concentration than the target 125 bp fragment. The 

sequencing results did not determine the identities of these larger fragments. It would 

therefore appear that in some cases the primers have a greater affinity for unknown 

genomic sequences rather than the conserved region. Both sets of primers were capable 

of amplifying the conserved region from Mortierella although primer set Uni 1 and 2 

produce stronger bands indicating greater amplification. This is in line with the greater 

sequence similar between primer and target in this case.   

 

100bp

200bp

FA >C20:3
present?

a b c d e f g h i j

XXX

 

Figure 5-5. ∆6 elongase PCR screen of fungal isolates using primer set Uni 1 and 2. a = 
Blank, b = TOPO positive control, c = Dis 206, d = Dis 195, e = Dis 169, f = 330997, g = 
196057, h = 82072, i = 140468, j = 398111. DNA concentration = 11 ng/µl excluding TOPO 
control. The amplification was performed using primers Uni 1+2.  
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100bp

200bp

FA >C20:3
present?

a b c d e f g h i j k

X X X X

      

Figure 5-6.  ∆6 elongase PCR screen of fungal isolates using primer set Uni 3 and 4. a = 
Blank, b = TOPO positive control, c = Dis 206, d = Dis 195, e = Dis 169, f = 330997, g = 
82072, h = 196057, i = 140468, j = 398111, k = 403341. DNA concentration = 11 ng/µl 
excluding TOPO control. The amplification was performed using primers Uni 3+4. 

 

The remaining four uncharacterised Antarctic Mortierella isolates, and an additional 

Allomyces macrogynus (332398) and Geomyces sp. (140037) were also screened as 

shown in figure 5-7. A. macrogynus is reported as producing C20:4 n6 (C20:4 n6) and the 

Geomyces isolate was isolated from the Antarctic. The four Antarctic Mortierella were 

found to produce C20 VLCPUFAs and were also found to produce the 125 bp band, 

again indicating the role GLELO plays in VLCPUFA formation. Allomyces macrogynus 

was also found to produce fatty acids up to C20:4 n6 and clearly demonstrates the 

presence of the 125 bp band, however only with primers Uni 1 and 2. Subsequent PCR 

allowed amplification utilising Uni primers 3 and 4. Geomyces did not possess any fatty 

acids beyond C18:3 n3, and the lack of the 125 bp fragment correlates with this. 

Mortierella isolate 398217 was found with both sets of primers to display a much 

brighter 125 bp band compared with the other isolates even though DNA concentrations 

between isolates were kept constant. This brighter band did not correlate with any 

significant increase in C20 VLCPUFA production. 
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Uni primers 1+2 Uni primers 3+4

100bp

200bp

FA >C20:3
present?

a b c d e f g h a b c d e f g h

X X

 

Figure 5-7. ∆6 elongase PCR screen of Antarctic Mortierella isolates. a = Blank, b = TOPO 
positive control, c = 398216, d = 398220, e = 332398, f = 398213, g = 398217, h = 140037.  
DNA concentration = 8.4 ng/µl excluding TOPO control. Both sets of primers amplified 
the 125 bp conserved region in all the uncharacterised Mortierella species   
 

5.2.3 Identification and elucidation of ∆6 elongase in Allomyces 

macrogynus and Saprolegnia parasitica 

The GLELO like enzyme detected in Allomyces was initially localised in the genome 

by searching the translated GLELO sequence from Mortierella with the whole genome 

shotgun sequence (WGS) of Allomyces. The search identified two possible contig 

sequences. The highest match sequence (accession no. ACDU01000340) was studied 

and was deemed to be the most likely candidate due to an intact open reading frame.  

The 125 bp conserved region also aligned within this open reading frame, 

corresponding to the PCR product observed in the genomic screen. However the entire 

conserved region was not matched, with 64 nucleotides matched out of 125. The 

matching nucleotides were located at the end of the conserved sequence. The 

explanation for this will be explored subsequently. Four primers were then developed to 

allow for the sequencing of the gene; primers F1, F2, F3 and R1. Primer F1 when 

coupled to the primer R1 was designed to amplify the entire gene, F2 when coupled 

with the primer R1 was designed to amplify roughly 2/3rds of the gene, whilst the F3 

and R1 primers where designed to amplify a third of the gene. The primer sequences 

have been described in the Materials and Methods section 2.1.4.2. The PCR reaction 

was modified to; 
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• 1 taq bead 

• 3 µl DNA at 8.4 ng/µl 

• 1 µl primers F1, F2, F3 at 10 pmol/µl 

• 1 µl primer R1 at 10 pmol/µl 

• 20 µl dH20 

 The temperature program was modified with a 54°C annealing step for 30 seconds 

and still included 35 cycles. The F1xR1 fragment failed to amplify, the F2xR1 fragment 

produced a weak band and the F3xR1 fragment produced a strong 400 bp band (figure 

5-8). 

200bp
400bp

a b c d

 

Figure 5-8. Amplification of the Allomyces ∆6 elongase. a = blank, b = F1xR1 primers, c = 
F2xR1 primers, d = F3xR1 primers. Amplification using primers F1 and R1 resulted in no 
band however, primers F2 and R1 produced a very weak band approximately 700 bp in 
size with primers F3 and R1 producing two bands, with the approximately 400 bp band 
the strongest. The amplified F2xR1 and 400 bp F3xR1 bands were excised from the gel 
and purified for sequencing.  

 

The F2xR1 fragment failed to insert into the vector however the F3xR1 fragment was 

sequenced successfully. The 467 bp F3xR1 fragment yielded a high percentage match 

with the contig sequence (figure 5-9), indicating that this position on the contig 

sequence was indeed the location for the Allomyces ∆6 elongase. 

 

Figure 5-9. Alignment of the putative Allomyces ∆6 elongase with the F3xR1 fragment. 
The suspected Allomyces ∆6 elongase within the contig 3-340 (highlighted in blue) matched 
with; in orange, the 125 bp conserved region, in red, the sequenced F3xR1 fragment which 
is 467 bp. The open reading frame within the contig sequence is shown highlighted in 
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purple. Only part of the conserved region matched the genomic sequence when BLAST 
searched. This was found to be because of an inserted intron as shown in figure 5-12.   
 

The translated Mortierella GLELO sequence when matched with the contig sequence, 

demonstrated a non-continuous alignment, indicating that introns were present within 

the contig sequence. Merging the exons yielded the putative cDNA for the Allomyces 

∆6 elongase, whereas the entire ORF on the contig sequence is thought to be the 

putative genomic sequence. The putative introns and exons are shown in Figure 5-12.  It 

was noted that the conserved genomic region contained an intron, which accounted for 

the incomplete BLAST search. The PCR amplification of the conserved region should 

produce a 220 bp band. This however, was found not to be the case with the genomic 

DNA producing a 125 bp band upon amplification. The cDNA sequence was translated, 

as shown in Figure 5-10, followed by protein BLAST searching to establish the closest 

match for the putative protein. The closest match was from a Mortierella GLELO 

(BAF97073.1, score 266), and long chain polyunsaturate elongases from other 

organisms. This leads to the conclusion that the function of this protein is indeed a ∆6 

elongase. 

 

Figure 5-10. The putative translated ∆6 elongase from Allomyces macrogynus strain 
332398.  
 

It was found that the cDNA of the Allomyces ∆6 elongase had the highest match to a 

Mortierella GLELO. When BLAST compared, a region comprising 24% of the total 

gene had a similarity of 76% to the closest Mortierella GLELO (Accession 

AF206662.1). When the amino acid sequences against the best match Mortierella 

GLELO (BAF97073.10) were BLAST searched, it was found that 198 residues matched 

out of 319 (62%), although the first two residues failed to match when NCBI BLAST 

searched, shown in figure 5-11.  
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Figure 5-11. Comparison of the Allomyces and Mortierella ∆6 elongase sequences. The top 
sequence is the translated M. alpina GLELO and the bottom sequence is the translated 
Allomyces macrogynus ∆6 elongase. When the sequences were aligned it was found that 
198 out of 319 residues matched giving a similarity of 62%.  
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Figure 5-12. Comparison of the putative genomic Allomyces ∆6 elongase with the cDNA. 
Black boxes indicate the putative location of introns whilst red boxes indicate the location 
of the conserved region. It can be seen that in the case of Allomyces an intron sequence is 
found to separate the genomic conserved region.  
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Other organisms were also studied to identify whether they contained a ∆6 elongase. 

One of these organisms was Saprolegnia, which is a well known VLCPUFA producer. 

The translated GLELO sequence was found to match a region on a WGS contig 

(accession no. ADCG01000825) and the open reading frame was located. The 

conserved region was found to partially bind within this ORF, with 69 bp matching. 

However, it was found that PCR would not amplify this region due to the lack of 

binding of the reverse primer. Introns were not found by comparison to the Mortierella 

GLELO and so the sequence was converted to the amino acid sequence. When the 

amino acid sequence was BLAST searched, the most similar protein was a putative long 

chain fatty acid elongase from Phytophthora infestans. A ∆6 elongase from 

Phaeodactylum tricornutum was also highly similar suggesting that this protein is a ∆6 

elongase.  

 

Figure 5-13. The translated putative sequence of Saprolegnia parasitica ∆6 elongase. No 
introns were detected whilst matching the Mortierella alpina GLELO sequence with the 
Saprolegnia parasitica WGS sequence.  

5.2.4 Location of the conserved region 

The conserved region amino acid sequence was elucidated in the correct frame from 

Mortierella alpina strain 330997, which is shown in Figure 5-14. The structure of 

several ∆6 elongases was studied further to see if a role for the conserved region could 

be found. The ∆6 elongases from Mortierella alpina, Allomyces macrogynus and 

Saprolegnia parasitica were found to share structural similarities further confirming 

their role as VLCPUFA elongases. The amino acid sequences were analysed using 

SMART from EMBL to elucidate functional domains, and TMHMM from CBS was 

used to generate probability graphs for trans-membrane regions. All three elongases 

were found to contain the ELO domain, which in turn contained 6-7 trans-membrane 

regions, as shown in Figures 5-15 to 5-17. It is possible that the Saprolegnia ∆6 

elongase contains seven trans-membrane regions due to the elevated probability around 
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residues 220-245. The conserved region for all the elongases contained the third and 

fourth trans-membrane regions and a small extracellular region 6-21 residues long.  

 
Figure 5-14. The amino acid sequence of the conserved region found within Mortierella 
alpina strain 330997. The conserved DNA was translated in the correct frame resulting in 
the removal of the first and last base pairs.  

 

Figure 5-15. Probability plot of the trans-membrane domains found within the Mortierella 
GLELO. Trans-membrane domains are found between residues; 75-92, 105-127, 154-173, 
180-202, 207-229, 241-263, 273-295. The ELO domain is between residues 69-307 and the 
conserved region between residues 158-198. The conserved region contains within it two 
trans-membrane domains and a small 6 amino acid hydrophilic region. 

 

Figure 5-16. Probability plot of the trans-membrane domains in the Allomyces ∆6 
elongase. Domains are found between residues; 65-87, 100-122, 137-159, 180-199, 209-231, 
251-268, 283-302. The ELO domain is located between residues 60-314 and the conserved 
region between residues 151-196. The conserved region is found within two trans-
membrane domains and an external hydrophilic domain. 
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Figure 5-17. Probability plot of the trans-membrane domains in the Saprolegnia parasitica 
∆6 elongase. Domains are found between residues; 60-82, 95-117, 137-159, 166-183, 193-
215 and 254-276. A seventh trans-membrane domain might be found around residues 220-
245 due to the elevated probability calculated by the algorithm. The ELO domain is 
located between residues 55-287 and the conserved domain between residues 144-183. The 
conserved region again is found to contain two trans-membrane domains and a small 6 
residue hydrophilic region.  
 

The amino acid sequence similarity was studied between ∆6 elongases and other 

elongases, such as those responsible for saturated and mono-unsaturated fatty acid 

elongation using the UPGMA method (Figure 5-18). Sequences from NCBI were used 

for the analysis as well as the putative ∆6 elongase sequences discussed previously. 

Interestingly, elongases responsible for saturated and mono-unsaturated fatty acid 

elongation grouped together, with the exception of ELOVL1 from Mus musculus and 

MALCE1. The MALCE1 elongase from Mortierella alpina shares greater similarity to 

the polyunsaturate accepting elongases, though it has been shown to elongate C18:3 n6 

its main function is the elongation of C16:0 to C18:0. The elongases from yeast, ELO1-3 as 

well as MAELO from Mortierella alpina form a clade distinguished by the fact that 

they are all saturate and mono-unsaturate accepting elongases, as well as being isolated 

from fungi. The basal nature of MAELO to the ELO elongases may indicate its 

ancestral nature. The next closest set of elongases are ELOVL3 and 6, again saturate 

and mono-unsaturate elongases from Mus musculus, alluding to the role of amino acid 

sequence and function. Several of these elongases have shared functionality in that they 

catalyse similar reactions. ELO1 catalyses a similar set of reactions to ELOVL6, ELO2 

shares functional similarities to ELOVL3 and MALCE1, and ELO3 shares functional 

similarities to ELOVL1 and MAELO. It might be expected that elongases with similar 
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functions would cluster together, however it appears that the organism from which they 

are isolated plays an equally large role in their clustering. ELOVL1 demonstrates this to 

a large degree by grouping with LCPUFA accepting elongases and not saturate and 

mono-unsaturate accepting elongases. It does however, show greater similarity to 

elongases from vertebrates. Elongases that utilise PUFAs as their substrate cluster 

together, but several internal clades are observed. Primarily there are those isolated from 

vertebrates such the ELOVL2, ELOVL4 and ELOVL5 elongases which cluster 

together, with those from the same class showing greater similarity. The Plantae also 

demonstrate a defined PUFA elongating elongase clade, with members from terrestrial 

plants and algae. The putative Allomyces macrogynus ∆6 elongase falls into the fungal 

∆6 elongase grouping indicating that the elongase identified is indeed a PUFA 

elongating enzyme. Finally, the putative Saprolegnia parasitica ∆6 elongase is found to 

group with the algal Phaeodactylum tricornutum ∆6 elongase, adding support for its 

function as well as illustrating the separation of the Chromista from the fungi. These 

two ∆6 elongases are the most distinct, as they separate out from the main grouping of 

PUFA accepting elongases.  

Analysis of sequences with ClustalW2 (Figure 5-19) from EMBL-EBI, then displayed 

as a phylogram, showed similar trends. Predominantly, three clades are visible; one 

comprising saturate and mono-unsaturate fatty acid elongases from both fungi and 

vertebrates, one comprising PUFA accepting elongases from fungi and the Plantae and 

the final clade included PUFA accepting elongases from vertebrates. The Allomyces 

macrogynus ∆6 groups with GLELO and the Saprolegnia parasitica putative ∆6 falls 

into the fungal and plant PUFA accepting elongase clade. Also of interest is the early 

branching of the MALCE1 and MAELO elongases from the other fungal saturated and 

mono-unsaturated elongases. ELOVL1 from Mus musculus groups closer to the PUFA 

accepting ELOVL class of elongases.  
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Figure 5-18. UPGMA sequence similarity analysis of PUFA and non-PUFA accepting elongases. The UPGMA method was run in CLC sequence viewer. 
There appear to be two major clades, with the polyunsaturate accepting elongases grouping together and the saturated/mono-unsaturated accepting 
elongases grouping together. Within the polyunsaturate clade, the ELOVL class form a grouping with ELOVL1 clustering on family rather than function. 
The Mortierella and Allomyces ∆6 elongases cluster together indicating their fungal lineage, however they are more similar to plant ∆6 elongases than 
animal elongases. The putative Saprolegnia ∆6 elongase is most similar to the algal elongase from Phaeodactylum tricornutum. The 3-Ketoacyl-CoA 
synthase from Arabidopsis was added to the analysis due to its similar function and in this analytical method, roots the tree. 
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Figure 5-19. ClustalW2 sequence similarity analysis of PUFA and non-PUFA accepting elongases.  The phylogram was created using ClustalW2 from 
EMBL-EBI. Three major clades are visible; Saturate and mono-unsaturate accepting elongases from fungi and vertebrates, PUFA accepting elongases 
from fungi and Plantae and PUFA accepting elongases from vertebrae. Both the putative Allomyces macrogynus and Saprolegnia parasitica ∆6 elongases 
cluster within the PUFA accepting elongase clade.  
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In order to identify the key parameters that differentiate polyunsaturate and 

saturate/monounsaturate accepting elongases, a closer look at the amino acid sequence 

is necessary. When the sequences are aligned, it can be seen that several residues appear 

conserved within the polyunsaturate accepting elongases. Within the conserved region, 

which contains highly conserved residues common to both classes of elongases, 

position 229 in the aligned sequence shows a conserved glutamine residue whilst at 

position 235 a conserved valine residue is found. At position 245 and 246, two 

conserved tryptophan residues are found. PUFA accepting elongases also display in 

general two extra residues located in positions 225-226, whilst the Saprolegnia 

parasitica and Phaeodactylum tricornutum display an addition residue at position 224. 

Allomyces macrogynus displays an additional five residues when compared to the other 

PUFA excepting elongases. It is found that Saprolegnia parasitica and Phaeodactylum 

tricornutum do not always display the conserved amino acids found within the PUFA 

elongating enzymes, which is one reason why these elongases find themselves grouped 

away from the main body of this class of elongase. Similarly, ELOVL1 displays several 

conserved amino acids found within the PUFA elongase class, which partially led to its 

grouping with the other ELOVL PUFA elongating enzymes. Other residue changes 

outside of the conserved region can be found at positions 161 and 162, where a 

conserved tyrosine and methionine residue are located. Position 255 shows a conserved 

glycine residue, whilst at position 273 a conserved serine is found. Finally, three 

conserved residues are found at positions 412, 413 and 422 with the amino acids being 

tyrosine, methionine and asparagine, respectively. These conserved amino acids are 

shown in Figures 5-20 to 5-23. 
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Figure 5-20. Sequence alignment of several ELO class elongases within the conserved 
region with the green boxes highlighting PUFA accepting elongases and the orange boxes 
highlighting saturated/mono-unsaturated accepting elongases. Arrows indicates residues 
which differ between PUFA accepting and saturate/monounsaturated accepting elongases. 
Notable distinguishing residue changes are located in positions 229, 235, 245 and 246 
where the conserved amino acid residue is different between saturated and 
polyunsaturated substrate elongases. At residue number 225-226 there are extra amino 
acids present consistently within PUFA accepting elongases, which are absent from 
saturated/mono-unsaturated elongases. The conserved region contains two highly 
conserved amino acid regions indicated in red from 203-218 and 232-238, with the first 
region permeated with non-conserved amino acids.  
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Figure 5-21. Sequence alignment of several ELO class elongases. Several changes to 
conserved amino acid residues occur at residue numbers 161 and 162, with the changes 
differentiating PUFA substrate from saturated/mono-unsaturate substrate elongases. 
ELOVL4 does not however have the amino acid residues common to PUFA elongating 
elongases. The green boxes highlight PUFA accepting elongases and the orange boxes 
highlight saturated/mono-unsaturated accepting elongases. Arrows indicates residues 
which differ between PUFA accepting and saturate/monounsaturated accepting elongases. 
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Figure 5-22. Two more distinguishing residue changes are detected at residue numbers 
255 and 273 which separate PUFA and saturate/mono-unsaturate elongating elongases. 
ELOVL1 contains the same residue however as PUFA accepting elongases at position 255 
whilst Saprolegnia and Phaeodactylum do not display the conserved amino acid residue at 
position 273 common to PUFA accepting elongases. Two highly conserved amino acid 
residues are present which are found within all the elongase, except residue number 277 
which is not present within the FAE class 3-Ketoacyl-CoA. The green boxes highlight 
PUFA accepting elongases and the orange boxes highlight saturated/mono-unsaturated 
accepting elongases. Arrows indicates residues which differ between PUFA accepting and 
saturate/monounsaturated accepting elongases. 
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Figure 5-23. The final three distinguishing amino acid residues are detected at positions 
412, 413 and 422. The first residue, 412, is also shared by ELOVL1 with residue 413 not 
shared by Saprolegnia, Phaeodactylum or ELOVL4. The final residue 422 is shared by 
ELOVL1 again but not Saprolegnia and Phaeodactylum. The region also contains three 
highly conserved amino acid residues found within all the elongases bar the FAE class 3-
ketoacyl-CoA elongase. The green boxes highlights PUFA accepting elongases and the 
orange boxes highlights saturated/mono-unsaturated accepting elongases. Arrows 
indicates residue changes. 
 
 

It is interesting to note that a highly conserved amino acid sequence is found within 

the conserved nucleotide region for both substrate classes of elongase, with two regions 

of conserved amino acids present within the conserved region with the sequences Y-X-

S-K-X-X-E-F-X-D-T and F-L-H-V-Y-H-H. The conserved nucleotide sequence 

however, only appears to apply to PUFA accepting elongases and not saturate/mono-

unsaturate accepting elongases. There are subtle differences in the conserved region 

amino acid sequence which distinguish the two classes, but it is possible that this region 

has some functional role within the elongase even though it is speculated to be within a 

trans-membrane domain. The conserved nucleotide sequence was sequence aligned 

using ELOVL1-6 class elongases from Mus musculus, ELO1-3 from Saccharomyces 

cerevisiae, MAELO and MALCE1 from Mortierella alpina to determine whether the 

conserved nucleotide sequence was present within these mainly saturate/mono-

unsaturate accepting elongases (figure 5-24). The conserved sequence was also aligned 
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with the four ∆6 elongases from the Plantae. It was found that only ELOVL2, ELOVL5 

and the ∆6 elongases from Pyramimonas cordata and Parietochloris incisa displayed 

any significant sequence alignment with the conserved sequence from Mortierella 

alpina. MAELO showed limited sequence alignment and ELOVL3 and ELOVL4 

showed similarity in a small fragment. ELOVL1, ELO1-3 and MALCE1 showed no 

sequence similarity. This would indicate that the conserved region primers are unlikely 

to amplify genes coding for saturated and mono-unsaturated accepting elongases. It also 

indicates that the conserved nucleotide sequence is prevalent within vertebrates as well 

as the Kingdom fungi. The Oomycete Saprolegnia parasitica demonstrated a fragment 

of the conserved region however sequence similarity was lost at the primer binding 

region leading to the conclusion that the sequence is unlikely to be amplifiable using the 

current primer set. In regards to amplification of the conserved region, it is possible that 

ELOVL2 class elongases may not be amplified due to the loss of similarity toward the 

3’ end. The ELOVL4 class, which is thought of as an elongase capable of producing 

C22:6 n3, does not show a significant proportion of the nucleotide conserved region. 

When the elongases from the Plantae were analysed, both organisms that demonstrated 

the conserved region were algae, whereas Marchantia and Physcomitrella are both 

terrestrial plants. Whilst all four elongases have the same function it appears that some 

amino acid residue and genomic changes have taken place between the algal and 

terrestrial Plantae. The terrestrial ∆6 elongases are more similar to one another than to 

the algal elongases and this is true genomically, due to their lack of the genomic 

conserved region. The algal elongases are more varied in regards to amino acid residues 

however both contain the genomic conserved region.  

 

 

Figure 5-24. The genomic GLELO conserved region from Mortierella alpina was aligned 
with all ELOVL and ELO class elongase sequences as well as MAELO and MALCE. It 
was found that the sequence would only align with ELOVL2 and ELOVL5 sequences and 
partially aligned with the MAELO sequence. ELOVL3 and ELOVL4 showed a small 
fragment which aligned. This indicates that the primers will only bind with ELOVL2 and 
ELOVL5 class sequences which are PUFA elongating elongases.  
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5.3 Discussion 

The ability to screen fungal samples for VLCPUFAs utilising a PCR based screen as 

oppose to a fatty acid GC-FID/MS screen at least as an initial exploratory probe seems 

feasible. The method has been shown to work for the genus Mortierella as well as for 

Allomyces, which is a chytrid. The fact that the PCR method correlated with the fatty 

acid profiles of all the isolates studied indicates that new, untested organisms will not be 

falsely flagged as containing VLCPUFAs. In general then it would be expected that this 

PCR approach would be successful in identifying VLCPUFA producing organisms 

from the Zygomycota as well as those from within the Chytridiomycota. The method 

has also been shown to work on mouse genomic material with the possibility of two 

PUFA accepting elongases being amplified, ELOVL2 and ELOVL5. This method in 

theory could be applied to invertebrates, however the actual application of such a probe 

for ELOVL2 and ELOVL5 is unclear. The primers did not amplify any genomic 

material from organisms within the Ascomycota, which correlated with the fatty acid 

profiles. Whilst only two organisms from this phylum were studied it is more than likely 

that the majority of ascomycetes and basidiomycetes will not contain ∆6 elongases due 

to their proposed evolutionary loss of such genes. Whilst not all organisms contain a 

PUFA elongating enzyme, all contain a complement of elongases capable of producing 

saturated and mono-unsaturated fatty acids.  

The amino acid sequences show how similar the elongases are, especially within the 

conserved region, and this similarity could lead one to think that the nucleotide 

sequence would follow suit for all elongases. However, on aligning the genomic 

conserved region with elongases capable of elongating saturated and mono-unsaturated 

fatty acids it was found that no significant similarity existed, leading to the conclusion 

that the conserved primers will not amplify non-PUFA elongating elongase genes and 

that the region is specific for ∆6, ELOVL2 and ELOVL5 class elongases. What is 

interesting is that even though the conserved nucleotide sequence similarity is lost 

between classes, the amino acid sequences still share a high proportion of sequence 

similarity, which may have arisen because of preferential codon usage. Because of this, 

the conserved nucleotide region can be used as a conformational probe to deduce the 

function of the elongase, especially of putative identity. This was demonstrated when 

attempting to identify the ∆6 elongase from Allomyces macrogynus and Saprolegnia 

parasitica, that whilst arachidonic acid and eicosapentaenoic acid production in 

Allomyces and Saprolegnia has been documented respectively, the genes responsible for 
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this biosynthetic pathway have yet to be characterised to our knowledge. The 

elucidation of the sequence of the putative ∆6 elongases was primarily possible due to 

whole genome shotgun reads. This allowed for amino acid sequence matching, followed 

by confirmation by the identification of the nucleotide conserved region. Whilst this 

does not provide certain functional identification it does however provide further 

evidence that functional characterisation will likely yield a PUFA elongating elongase. 

It has to be noted however that there is a cut off point by which the conserved 

nucleotide region is deemed non-confirmatory. This is demonstrated with MAELO 

which does not display PUFA elongating capabilities but still contains a fragment of the 

genomic conserved fragment.  

Regarding the conserved nucleotide sequence, Allomyces demonstrated a 125 bp 

fragment however, the whole genome shotgun read indicated that an intron was present 

between the two halves of the sequence. This would have lead to a noticeably larger 

fragment, but this was not the case. Explanations for this finding could be inaccuracies 

within the WGS sequence data or that the gene within the Allomyces macrogynus strain 

studied was different. It is also noticed that the Allomyces conserved region contained 

several extra amino acid residues, which most likely contributed to the larger internal 

region predicted by TMHMM. These extra residues could be spliced out with the 

conserved region intron and the fact that they were included may have been due to the 

algorithm used when the translated Mortierella GLELO and Allomyces WGS were 

aligned. The most definitive way to determine the sequence of the Allomyces 

macrogynus ∆6 elongase is through sequencing. The initial attempt to sequence the 

whole gene failed. This would indicate either that the PCR conditions need optimising 

or that the WGS sequence is not entirely accurate for the Allomyces strain in question 

and therefore revised primers may be needed. Both sets of primers were capable of 

amplifying the conserved region from all the Mortierella strains, however primers Uni 1 

and 2 failed to amplify the conserved region from mouse DNA whilst primer set Uni 3 

and 4 initially failed to amplify the conserved region from Allomyces macrogynus. 

When screening fungal isolates for VLCPUFAs, primer set Uni 1 and 2 appear to be the 

best choice as they detected all fungal conserved regions. Whilst Uni primers 3 and 4 

detected the conserved region in mouse DNA, it is likely that fungi will contain ∆6 class 

elongases as oppose to ELOVL2 and 5 class elongases as found within mouse and other 

animals. In conclusion, the discovery of new elongases would allow greater 

diversification in biotechnological applications, as currently the Mortierella GLELO 

has been used to transform crop plants such as soybean. In conclusion, it can be seen 
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that this screening method is effective at identifying producers of VLCPUFAs, with it’s 

detection of a putative ∆6 elongase in Allomyces and Saprolegnia. This detection across 

phyla makes the screen useful for a wide range of fungal species, not just Mortierella. 

5.3.1 The ∆6 elongase GLELO distinguishes Mortierella from the rest of 

the Zygomycota  

One of the characteristic features of the Mortierella genus since the reassignment of 

Mortierella isabellina and related species to Umbelopsis is the unique capability to 

elongate fatty acids beyond C18:3 n6. Umbelopsis isolates were used as a comparison 

against Mortierella isolates as they represent the typical fatty acid profile exhibited by 

the majority of the zygomycetes; a preference for C18:3 n6 over C18:3 n3 and the inability 

to elongate past C18:3 n6. Whilst testing the functionality of the conserved region 

primers the phenotypic trait which separates Mortierella spp. from the majority of the 

zygomycetes was confirmed genetically. The Umbelopsis strains Dis 195 and 206 were 

found not to contain the 125 bp fragment, which indicated the lack of GLELO. The 

ascomycetes Penicillium sp., Geomyces sp. and isolate from the Clavicipitaceae also did 

not contain the 125 bp band which correlated with the lack of fatty acids longer and 

more unsaturated than C18:3 n3. On amplification of the genomic material from 

Mortierella alpina isolates 330997, 82072 and 196057 it was found that all three 

isolates demonstrated the 125 bp band, which correlated with the production of fatty 

acids longer and more unsaturated than C18:3 n6. This was also found to be the case for 

Mortierella polymorpha, as well as the five Antarctic isolated Mortierella spp. studied. 

It can be assumed that the presence of the conserved fragment is indicative of a ∆6 

elongase. The conclusion therefore is that the genus Mortierella is distinct from the rest 

of the zygomycetes due to the presence of the ∆6 elongase, GLELO. This allows for the 

production of fatty acids such as C20:4 n6 and C20:5 n3 not common in the zygomycetes. 

Exceptions to this however are Entomophthora sp. and Conidiobolus sp. (Kendrick & 

Ratledge, 1992b) which are capable of VLCPUFA production and reside within the 

Entomophthorales. The Entomophthorales have recently been classified within the sub 

phylum Entomophthoromycotina (Hibbett et al., 2007), which groups these organisms 

away from the Mortierella sp. which can be seen in figure 5-25. Also of interest is the 

formation of the new phylum, the Blastocladiomycota formally part of the 

Chytridiomycota, which contains within it Allomyces spp.  
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Figure 5-25. The formation of the new zygomycete sub-phyla Entomophthoromycotina as 
set out by Hibbet et al. (Hibbett et al., 2007). Diagram adapted from the Tree of Life Web 
Program (James & Kerry). 
 

It is also postulated that in fact the Entomophthorales are more related to the 

Blastocladiales (Tanabe et al., 2004) with both Allomyces sp. and Conidiobolus 

coronatus clustering together based on the DNA dependent RNA polymerase II 

largest subunit sequence homology (RPB1) (Figure 5-26). It has been recognised that 

both the Zygomycota and Chytridiomycota are polyphylectic (James et al., 2006) and 

the creation of new phyla and sub-phyla may be the first step to resolving this. The 

separation of the Blastocladiales and creation of the new sub-phylum 

Entomophthoromycotina, coupled with species from both groupings clustering 

together when analysed using RPB1 sequence homology could indicate that the 

Blastocladiales led to the evolution of the Entomophthorales. The loss of flagella is 

most likely the result of exploitation of a terrestrial niche by the newly evolved 

Entomophthorales. Therefore based on similarity, it could be postulated that the 

Blastocladiales diverged separating them from the Chytridiomycota. The move to a 

terrestrial environment resulted in flagellum loss and the evolution of the first 

zygomycetes, as evidenced by the apparent similarity between Allomyces sp. and 

Conidiobolus coronatus. Of note is the grouping of the two organisms away from the 

chytrids and the bulk of the zygomycetes, possibly indicating the transitional stage 

from chytrid to zygomycete. Both Allomyces and Conidiobolus (Tan et al., 2011) are 

capable of VLCPUFA production, and both contain a ∆6 elongase not present in 

higher fungi suggesting gene retention between phyla. Mortierella spp. are also found 

to have a ∆6 elongase, unlike the majority of the zygomycetes, which are capable of 

only C18:3 n6 production, indicating the basal nature of the Mortierella species. Based 

on these data, it is possible that the Entomophthorales are progenitors to some of the 
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zygomycetes. The fact that Mortierella elongata appears basal to the rest of the 

Mucorales and has a ∆6 elongase may lead to the conclusion that a Mortierella like 

organism was a progenitor of the Mucorales. The same can be speculated about 

Basidiobolus ranarum from the Entomophthorales, that such an organism may be the 

progenitor to the rest of the zygomycete sub-phyla. It is probable that there are several 

ancestral organisms to the zygomycetes, as it is thought that the loss of the flagellum 

occurred independently several times from the transition from the Chytridiomycota to 

the Zygomycota (James et al., 2006).  

 

Figure 5-26. RPB1 sequence homology, diagram reproduced from Tanabe et al. (Tanabe et 
al., 2004). As both the Chytridiomycota and Zygomycota are polyphylectic there are 
possibly multiple evolutionary lineages. The proposed chytrid to zygomycete lineage can 
be explained by the Blastocladiales being segregated from the rest of the Chytridiomycota, 
whilst the Entomophthorales due to their unique morphology, compared with other 
zygomycetes, have been designated a sub-phyla. When organisms from both the 
Blastocladiales (Allomyces sp.) and the Entomophthorales (Conidiobolus coronatus) are 
compared using RPB1 sequence homology it can be seen that both organisms group 
together. The rest of the flagellated chytrids group together, away from the zygomycetes 
and the Blastocladiales/Entomophthorales grouping.  
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 The production of fatty acids longer and more unsaturated than C18:3 n6 with the 

presence of the 125 bp fragment confirms the reported role of GLELO as a ∆6 elongase. 

In regards to the evolution of the fungi, as to whether the fatty acid biosynthesis was 

immediately halted at the ∆6 elongase stage or whether the process was gradual due to 

the loss of later stage ∆5 or ∆17 desaturases first is unknown. The underlying reasons 

for the evolutionary loss of VLCPUFAs in fungi is unknown, but it is suspected they 

were an adaption to the aqueous environment in which the ancestors of the fungi 

inhabited, but with the migration to land permitted their loss. As to why the Mortierella 

maintain this phenotype is unknown, although the observation that M. alpina strains 

when compared with Umbelopsis species, as shown in chapter 4, display improved 

growth at 5°C and cease C20:5 n3 production at warmer temperatures, indicates that low 

temperature is one of the key factors responsible for ∆6 elongase continuation within 

the genus. Also of interest is the grouping of the fungal saturated and mono-unsaturated 

substrate elongases when compared using ClustalW2 (figure 5-19). It can be seen that 

MALCE1, an elongase responsible for predominantly C16:0 to C18:0 elongation diverges 

earlier than the other similar function elongases. The fact that the zygomycete 

Mortierella predates Saccharomyces cerevisiae would lead to the conclusion that the 

ELO class elongases, especially ELO2 are derived from the zygomycete class of 

elongases. This appears to be the case using this type of analysis whereby the ELO class 

are more similar to themselves, with MALCE1 sitting outside the grouping. MAELO is 

also found to sit outside the grouping, which shows greater similarity to the ELO class. 

It again could be thought that MAELO is an ancestral protein to ELO3 as both share 

similar functionality. Therefore in regards to Allomyces and Mortierella ∆6 elongases, it 

would be thought that the chytrid elongases would be ancestral to zygomycete 

elongases due to the evolutionary theory regarding the two phyla. The putative 

Saprolegnia ∆6 elongase sits outside the main PUFA accepting elongase clade and 

groups with Phaeodactylum tricornutum another chromistan organism.  

5.3.2 Elucidation of the ∆6 elongase from Allomyces macrogynus and 

Saprolegnia parasitica 

A putative ∆6 elongase was identified from both Allomyces macrogynus and 

Saprolegnia parasitica. Allomyces was the first ∆6 elongase to be studied due to direct 

observation of the VLCPUFA complement. The detection of the 125 bp conserved 

region confirmed the presence of a GLELO like elongase and alignment of WGS 

translation sequences yielded a putative gene and protein. The same method was used 



Chapter 5 

 

195 

for Saprolegnia parasitica although this organism’s fatty acid complement was not 

directly observed, however the related species Saprolegnia diclina was analysed. Owing 

to the lack of WGS sequence data for S. diclina, the sequence data of S. parasitica was 

utilised. The structure of the putative ELO sequences were analysed using TMHMM 

and SMART to locate functional domains within the sequences. It was found that both 

amino acid sequences displayed the ELO family domain, and all were characterised by 

6-7 trans-membrane domains characteristic of this class of elongase. The translated 

conserved region was found to fall within trans-membrane regions 3 and 4 and also 

contained a small extra-membrane region which was larger within Allomyces 

macrogynus. It is this region that is thought to be in fact one large trans-membrane 

region due to the small size of the extra-cellular amino acid sequence.  

Table 5-3. Calculated number of trans-membrane domains using TMHMM and the 
location of the conserved region amino acid sequence. TM = Trans-membrane region OM 
= outside membrane region No. = Number of trans-membrane domains. 
 

ID No. Trans-membrane domains Conserved region Lies within 

3-Ketoacyl-CoA 3 42-64, 84-106, 235-257   

d6 elongase Allomyces macrogynus 7 
65-87, 100-122, 137-159, 180-199, 209-

231, 251-268, 283-302 
151-196 TM 3-4 

d6 elongase Saprolegnia parasitica 6 
60-82, 95-117, 137-159, 166-183, 193-

215, 254-276 
144-183 TM 3-4 

d6 elongase Phaeodactylum tricornutum 7 
48-70, 77-99, 119-141, 148-165, 175-

197, 210-232, 247-269 
126-165 TM 3-4 

d6 elongase Pyramimonas cordata 7 
54-73, 93-115, 135-157, 164-183, 193-

215, 228-250, 260-282 
142-182 TM 3-4 

d6 elongase Parietochloris incisa 7 
51-68, 92-114, 129-151, 158-180, 185-

207, 220-242, 257-274 
136-176 TM 3-4 

d6 elongase Marchantia polymorpha 7 
42-64, 77-99, 125-147, 154-173, 183-

205, 217-239, 249-271 
132-172 TM 3-4 

Elongase Physcomitrella patens 7 
44-66, 85-107, 127-149, 156-175, 185-

207, 219-241, 251-273 
134-174 TM 3-4 

GLELO M. alpina AAF70417 7 
75-92, 105-127, 154-173, 180-202, 207-

229, 241-263, 273-295 
158-198 TM 3-4 

GLELO M. alpina BAF97073.1 7 
75-92, 105-127, 154-173, 180-202, 207-

229, 241-263, 273-295 
158-198 TM 3-4 

GLELO M. alpina 330997 7 
75-92, 105-127, 154-173, 180-202, 207-

229, 241-263, 273-295 
158-198 TM 3-4 

MALCE1 Mortierella alpina 6 
18-40, 71-93, 120-142, 172-194, 209-

231, 238-255 
127-163 TM 3, OM 4 

MAELO Mortierella alpina 5 
55-72, 85-104, 180-202, 222-244, 259-

281 
138-167 OM 3 

ELOVL1 Mus musculus 7 
20-42, 63-85, 108-130, 137-154, 174-

196, 203-221, 231-253 
116-153 TM 3-4 

ELOVL2 Mus musculus 7 
28-50, 62-84, 116-135, 142-164, 179-

201, 208-225, 235-254 
120-160 TM 3-4 

ELOVL3 Mus musculus 6 
45-67, 79-98, 126-148, 176-198, 213-

235, 248-270 
135-164 TM 3, OM4 

ELOVL4 Mus musculus 7 
58-75, 88-110, 136-158, 165-184, 194-

216, 228-250, 260-277 
143-182 TM 3-4 

ELOVL5 Mus musculus 7 
26-48, 68-90, 110-132, 139-158, 168-

187, 207-224, 229-251 
117-157 TM 3-4 

ELOVL6 Mus musculus 6 
45-62, 77-99, 148-165, 170-192, 205-

227, 242-264 
130-164 OM 3, TM 3 

ELOVL5 Salmo salar 7 
32-50, 63-85, 110-132, 139-161, 176-

198, 205-227, 232-251 
117-157 TM 3-4 

ELOVL5 Capra hircus 7 
28-50, 63-85, 110-132, 139-158, 168-

187, 207-224, 229-251 
117-157 TM 3-4 

ELO1 Saccharomyces cerevisiae 5 
64-83, 96-118, 191-213, 233-255, 270-

292 
148-178 OM 3 

ELO2 Saccharomyces cerevisiae 7 
68-90, 97-119, 123-142, 147-169, 197-

219, 232-254, 274-296 
154-184 TM 4, OM 5 
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ELO3 Saccharomyces cerevisiae 6 
73-95, 110-127, 181-203, 208-227, 240-

262, 282-304 
161-191 OM 3, TM 3 

Candida dubliniensis ELO2 like 7 
45-67, 87-109, 131-153, 160-179, 183-

205, 222-244, 259-281 
138-168 TM 3-4 

 

When compared with the other classes, the PUFA elongating class contain seven 

trans-membrane domains with the exception of the Saprolegnia elongase. The 

conserved region also consistently falls within the third and fourth trans-membrane 

domains. Elongases which accept saturated and mono-unsaturated fatty acids display a 

varied number of trans-membrane domains from 5-7. It is possible that some 

cytoplasmic domains may in fact be trans-membrane regions as in some instances equal 

probabilities for both trans-membrane and extra-membrane domains were calculated for 

the same region. The number of trans-membrane domains and the localisation of the 

conserved region seem to follow the groupings seen by UPGMA and ClustalW2 with 

ELOVL1/2/4/5 showing seven trans-membrane domains, with the conserved region 

localised within the 3rd and 4th domain. ELOVL3 and 6 however only display six trans-

membrane domains with the conserved region lying between a trans-membrane region 

and an extra-membrane region. The ELO2 elongase in Saccharomyces and Candida 

show greater similarity with each other and with the PUFA elongating class, as both 

have seven trans-membrane regions and Candida has a conserved region localised to the 

3rd and 4th trans-membrane region.  

The ELO and ELOVL class show differences in terms of localisation of conserved 

region and number of trans-membrane domains when shared functionality between 

elongases is observed. ELOVL1 contains one more trans-membrane domain compared 

with ELO3, with MAELO containing a further reduction in trans-membrane domains at 

five compared with the ELO counterpart, as well as the conserved region being wholly 

located within an extra-membrane region. ELOVL3 and MALCE1 share six trans-

membrane regions as opposed to ELO2’s seven trans-membrane domains. Both 

MALCE1 and ELOVL3 also share the same conserved region localisation, whereas in 

ELO2 it is located around trans-membrane domain four and not domain three. Finally 

ELOVL6 contains six trans-membrane regions compared with ELO1’s five, with the 

conserved region localised completely to an extra-membrane region within ELO1. The 

consistency however between ELOVL5 and GLELO for example, seems to indicate the 

importance of seven trans-membrane domains in the function of PUFA accepting 

elongases. The consistent localisation of the conserved region to the third and fourth 

trans-membrane regions also appears to be a dominant feature of PUFA accepting 

elongases. As to why the conserved region localises to extra-membrane regions in 



Chapter 5 

 

197 

saturated and mono-unsaturated elongases is unknown although as mentioned earlier it 

is possible that the regions calculated as lying outside the membrane are in fact trans-

membrane regions. 

 Within this region, there exists a large proportion of conserved amino acid residues 

indicating its importance, with the amino acid sequences Y-X-S-K-X-X-E-F-X-D-T and 

F-L-H-V-Y-H-H being highly conserved between the different classes. There are four 

residue changes that appear to be class specific within the conserved region, as well as 

the presence of up to seven additional amino acids which occur only within the PUFA 

elongation elongase class. The MALCE1 elongase does however contain an additional 

residue compared to the other saturated and mono-unsaturated elongases. The reasons 

for these residue changes and the protein elongation may be to allow the binding of the 

preferred substrate. It is assumed that the mechanism of action between all elongases is 

the same, the addition of two carbon units at the carboxyl terminus from malonyl-CoA 

via a condensation reaction. Therefore one would assume that any structural changes 

would be to accommodate the differing substrates. The introduction of cis double bonds 

subsequently causes the acyl chain to bend, with saturated fatty acids being relatively 

linear molecules. The addition of residues to PUFA accepting elongases may allow a 

greater degree of flexibility to bind, in the case of C18:3 n6 and stearidonic acid, these 

curved carbon chains. To determine whether these additional amino acids as well as the 

conserved residues are instrumental for the substrate specificity of PUFA accepting 

elongases, it could be proposed that further work would aim to remove these additional 

residues or change conserved residues to those found within saturated/mono-unsaturate 

accepting elongases. This would give us a greater understanding of how substrate and 

elongase interact.  

In regards to substrate specificity and whether the substrates shape as a whole or the 

shape adjacent to the carboxyl end only is important for acceptance by the elongase, it 

appears that the former is the case. The reason is highlighted by two examples. Firstly 

ELO1 is capable of elongating up to C18:0 whereas ELO2 is capable of further 

elongation up to C22:0. If only the shape near the carboxyl group where the modification 

occurs were the regulatory factor, then it would seem plausible that one elongase could 

elongate all the way up to C26:0. Secondly ELO2 is capable of elongating both saturated 

and mono-unsaturated fatty acids however if the carboxyl terminus again was the 

regulating factor then why is C20:2 not found as a major constituent, if at all, elongated 

from C18:2? The elongation from C18:1 to C20:1 should be similar to the elongation of C18:2 
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if the carboxyl terminus shape were the regulating factor as both C18:1 and C18:2’s closest 

double bond is at the ∆9 position. It can be assumed then that the shape of the acyl 

chain as a whole is the key factor as to whether it can be acted upon by an elongase. 

 Other amino acid residue changes are found throughout the sequences which 

distinguish PUFA and non-PUFA accepting elongases, although in several cases 

ELOVL1 is shown to contain residues which are conserved within PUFA accepting 

elongases whilst the Saprolegnia and Phaeodactylum elongases show a lack of several 

residues which appear consistent throughout the PUFA accepting class. This is 

visualised with the UPGMA, as well as with the ClustalW2 analysis, with ELOVL1 

clustering together with the PUFA accepting ELOVL class, as oppose to the saturated 

and mono-unsaturated accepting ELOVL class. As to why the ELOVL1 enzyme groups 

with the PUFA elongating ELOVL class is unknown, but it is possible that this 

elongase, whose role it is to elongate up to C26:0 may be derived from the PUFA 

elongating ELOVL class, and whose amino acid sequence was modified enough to 

accept long chain saturated fatty acids. The Saprolegnia elongase sits outside the main 

grouping of PUFA accepting elongases using the UPGMA analysis indicating its 

lowered similarity when compared to the rest of the class. In general though, the 

majority of elongases group according to their function, forming the PUFA accepting 

and the non-PUFA accepting elongase groupings as was also shown by Leonard et al. 

(Leonard et al., 2004). However a division between the ELOVL and ∆6 class elongases 

is seen, as is a division between the ELOVL and ELO class. This division in protein 

similarity appears linked to the Kingdom from which the elongases are isolated, with 

fungi forming one distinct grouping with the ELO class and ∆6 class, and vertebrae 

forming another distinct grouping with the ELOVL class.  

Interestingly the division seen in the PUFA accepting elongase appears to correlate 

with Cavalier-Smith’s 6 Kingdom theory (Cavalier-Smith, 1998). Firstly, Saprolegnia 

groups with Phaeodactylum tricornutum both of which are chromists. Whilst both 

organisms are relatively distant from one another, the clustering of their ∆6 elongases 

confirms their grouping within the Chromista, indicating a possible shared lineage 

between the photosynthetic Phaeodactylum and the non phototrophic Saprolegnia. As 

stated by Cavalier-Smith, it is thought that animals and fungi derived from a common 

protozoan ancestor and this can be seen with the UPGMA analysis. It can be seen that 

the animal and fungal PUFA accepting elongases are more similar to themselves than to 

the chromist ∆6 elongases. Therefore it appears that the protozoan ancestor to the fungi 
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and Animalia diverged from the protozoan ancestor to the Chromista. The fact that 

Animalia and fungi shared a common ancestor means that the ∆6 elongase sequence 

from their ancestor experienced independent residue changes from the ∆6 elongase of 

the chromist ancestor, which is shown by the greater similarity experienced by animals 

and fungi. The point at which the Animalia and fungi diverged is the point at which 

independent differences in the ∆6 elongase sequences between the two Kingdoms 

developed, differentiating the two classes of elongase. However the reason as to why 

plant ∆6 elongases cluster with related fungal elongases is unknown. If the Chromista 

and Plantae had separate ancestors comparable with the relation exhibited by Chromista 

and fungi/Animalia then it would be expected the ∆6 elongase from plants would form a 

distinct cluster away from Animalia/fungi and the Chromista. Another theory proposed 

by Cavalier-Smith would have the Plantae and Chromista grouping closer together. This 

is because it is thought the protozoan, which merged with a cyanobacterium may have 

formed either an intermediary organism or an early plant, which may have been the host 

organism for the amalgamation with a red alga. This is thought to have been the 

ancestor to the Chromista. However the UPGMA method clearly shows plant ∆6 

elongases clustering with fungal ∆6 elongases. Only a few terrestrial plants from the 

mosses and related liverworts appear to be capable of producing these VLCPUFAs. 

Also of interest is the division within the Plantae itself. It was shown that the genomic 

conserved region was only present in algae and not terrestrial plants. The fact that the 

terrestrial plant ∆6 elongases share similar amino acid sequences and lack the genomic 

conserved region confirms their shared lineage. Like the Animalia and fungi, the 

terrestrial plant ancestor, from the Charophyta, most likely lost the genomic conserved 

region at a point after the division of the Clorophyta from the Charophyta, with this loss 

passed on to the terrestrial plants, as observed with Marchantia and Physcomitrella. The 

greater sequence similarity between the terrestrial plants is because both are from the 

Charophyte lineage, with their elongase sequence experiencing independent change 

from the algae, which are more similar to themselves and further removed from the 

terrestrial plants as they are from the Chlorophyta lineage. It therefore seems the 

ancestral history of the elongases plays a role in their amino acid sequence and 

subsequent clustering. 
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5.4 Conclusion 

The search for a PCR based method by which VLCPUFA production may be detected 

within the fungal kingdom appears to be a success. The screen is capable of identifying 

producers from the Zygomycota as well as from the Chytridiomycota. The method was 

also shown to work on mammalian ELOVL class elongases. It is unlikely that fungi 

from the Ascomycota or the Basidiomycota will contain the gene and to our knowledge 

no VLCPUFA producing isolate from these phyla has been identified. The method was 

extended to the Oomycete Saprolegnia which resides within the Chromista. However 

the conserved region was not amplifiable due to the loss of conservation at the primer 

binding sites and whether the primers would work on other Chromista is unknown. 

Mortierella and other fungal species containing the ∆6 elongase are thought to be basal 

organisms due to the loss of this gene from the higher fungi. Due to the similarity of 

Allomyces sp. with Conidiobolus coronatus using RPB1 sequence homology, it is 

proposed that the Blastocladiales are ancestral to the Entomophthorales as both species 

also contain the ∆6 elongase. The similarity in RPB1 sequence, which sets the 

Blastocladiales/Entomophthorales grouping apart from the other chytrid and 

zygomycete groupings, could indicate the transitional period between the two phyla. As 

Mortierella species are more removed from the rest of the Mucorales and contain the ∆6 

elongase, it is proposed that they are one of the progenitors of this ∆6 elongase deficient 

phylum. The PCR screen offers a quick method for detecting the gene and therefore 

aiding in taxonomic classification. In regards to the conserved region, it’s presence in 

the nucleotide sequence appears to be indicative of a PUFA accepting elongase, 

however at the protein level the conserved region is still found within all classes of 

elongase excluding 3-Ketoacyl-CoA elongases. Therefore it appears it is not the 

presence or absence of the amino acid conserved region which determines the 

elongase’s function but rather the several residue changes found throughout the protein, 

as well as the additional amino acids present within trans-membrane domains three and 

four. As to why the nucleotide conserved region is indicative of PUFA accepting 

elongases is unknown. This is most evident between elongases within the same class, 

with the differentiation between ELOVL2/5 and ELOVL3/6. As these elongases are 

found together within the same organism it is possible that this nucleotide 

differentiation is an indication of the elongase’s ancestry.   



Chapter 6 

 

201 

6 Heterologous transformation of Phaffia 

rhodozyma with ∆5, ∆6 desaturases and ∆6 

elongase from Mortierella alpina 

6.1 Introduction 

The zygomycete fungus Mortierella alpina is a well studied organism, due in part 

because of its commercial use as an arachidonic acid producer. Because of this, many of 

the elongases and desaturases responsible for the formation of C20:4 n6 and C20:5 n3 are 

well characterised, with several desaturases being used in recombinant systems (Chen et 

al., 2006). Plants such as soybean (Glycine max) (Damude & Kinney, 2008) and 

Arabidopsis (Qi et al., 2004) have been modified with ∆5 and ∆6 desaturases, as well as 

the GLELO elongase to produce modest amounts of polyunsaturated fatty acids.  M. 

alpina is used commercially because of its oleaginous nature and can produce large 

quantities of the desired fatty acid C20:4 n6. M. alpina has also been trialled directly as a 

fish feed (Harel et al., 2002) to supply the VLCPUFA C20:4 n6. The aquaculture industry 

seeks to complement and replace existing feeds with those that are high in 

polyunsaturates. Mortierella has also been modified using Agrobacterium tumefaciens 

(Ando et al., 2009), an organism traditionally associated with plant modification. 

Amenability to genetic manipulation should enable the tailoring of longer chain fatty 

acid production within this organism, as well as increase yields of already existing fatty 

acids. To date, the method has been utilised to improve levels of C20:5 n3, although 

through the addition of an elongase and desaturase, the production of C22:6 n3 in 

Mortierella is not difficult to envisage. Because of these factors, Mortierella alpina is a 

valuable organism and as such fully understanding the regulation of fatty acid synthesis 

would be beneficial industrially, as strain improvement and recombination within this 

organism seem likely. With respect to the elongases and desaturases of Mortierella, the 

fatty acid C22:5 n3 as well as other C22 VLCPUFAs, were identified within Mortierella 

alpina strain 330997. Therefore one goal was the identification, expression and 

functional characterisation of the ∆6 elongase, GLELO.  

As mentioned previously, the aquaculture sector is a major consideration for the 

development of VLCPUFA containing microorganisms. One factor in creating 
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nutritionally comparable fish is the addition of a polyunsaturated fatty acid source, 

traditionally from fish sources, and in the case of salmon the inclusion of an astaxanthin 

source to allow the production of the distinct colouration of the flesh of the fish, as well 

as the potential health benefits associated with this anti-oxidant xanthophyll. Health 

benefits include maintenance of retinal health and possible prevention of age related 

macular degeneration, reduction in inflammation, heart health through prevention of 

oxidation of LDL cholesterol and protection from certain tumour types such as prostate 

cancer  (Guerin et al., 2003). Astaxanthin is a C40 hydrocarbon, classified as a 

carotenoid. The general structure is a 20 carbon aliphatic chain, with methyl branches 

with cyclization of the terminal 6 carbons to form two ring structures. The aliphatic 

chain and ring structures are linked by a series of conjugated π bonds, which allow for 

delocalisation of the electrons. This in turn acts like a standing wave system, which has 

set integer values of energy which can be absorbed. When a photon carrying the correct 

energy arrives (energy being related to wavelength) at the system, the delocalised 

electrons absorb the energy removing that wavelength from the spectrum. As the 

delocalised system grows through the addition of carbon-carbon double bonds and keto 

groups for example, the wavelength absorbed increases. This results initially in UV 

range wavelengths being absorbed, resulting in a white colour being observed, due to 

UV not being observable to the human eye. Following UV absorption, wavelengths 

within the blue visible range are absorbed, leading to the colours observed within the 

carotenoids such as orange, pink and red. Astaxanthin displays a pinkish red colour, 

with the oxygenated rings which contain hydroxyl and keto groups classifying this 

molecule as a xanthophyll. The majority of carotenoids within nature are found to be in 

the trans- configuration and astaxanthin, due to the presence of the hydroxyl groups on 

both the 3 and 3' positions contains two chiral centres. This allows 3 enantiomers to 

exist, with the 3S, 3S' predominating. It is also possible, due again to the hydroxyl 

group, that fatty acids may form an ether bond with astaxanthin (Higuera-ciapara et al., 

2006) (Higuera-ciapara et al., 2006). Astaxanthin has been found to be a potent 

antioxidant (Edge et al., 1997), and it is this property that has been linked to many of its 

health promoting benefits. 

 The supplementation of salmon with astaxanthin has been linked to optimal growth 

of the juvenile fish, increased lipid content and increased astaxanthin content 

(Christiansen & Torrissen, 1996). Polyunsaturated fatty acids are also liable to oxidation 

due to their high level of unsaturation, forming reactive free radicals which can damage 

membranes through the propagation reaction of the radicals. Most feeds containing high 
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levels of PUFAs are in danger of becoming oxidised, which in turn when ingested by 

fish lead to oxidative stress (Nakano et al., 1999). By combining astaxanthin, a potent 

anti-oxidant which is believed to be found within the phospholipid membrane with 

polyunsaturated fatty acids, several benefits may be observed. Firstly, astaxanthin is 

required by salmon to reduce the levels of reactive oxygen species and free radicals 

which in turn can lead to poor health. Secondly the polyunsaturates within the yeast 

Phaffia rhodozyma, which will be discussed later, will be protected from lipid 

peroxidation allowing more non-oxidised PUFAs to be taken up by salmon. Thirdly, by 

extracting the oil of Phaffia, one would hope that the pigment would decrease the rate 

of rancidification within the oil. As mentioned previously, most carotenoids are thought 

to be localised within the membrane, due to their predominantly hydrophobic nature. 

Astaxanthin, which contains two polar end groups due to the hydroxyl moieties, is 

thought to span the membrane (Britton, 1995) with the polar groups interacting with the 

phosphate region of the phospholipids. Due to this spanning of the membrane, free 

radicals and reactive oxygen species may be dealt with within both the aqueous and 

interior hydrophobic phases, unlike carotenoids such as β-carotene, which are thought to 

remain fully within the interior non-polar region, allowing them to only access free 

radicals and harmful species within this region. By having a molecule span the 

membrane, such as astaxanthin, it is also thought that membrane rigidity increases. This 

may however, lead to increased desaturation of FAs within the membrane. Therefore 

one would expect a higher proportion of PUFAs within the membrane to compensate. 

As seen in chapter 3, VLCPUFAs such as C20:5 n3 are rarely produced by fungi, so it is 

likely that in Phaffia more C18:3 n3 will be introduced into the membrane to maintain 

fluidity.  
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Figure 6-1. The structure of astaxanthin (3, 3’-dihydroxy-β-carotene-4, 4’-dione). A C40 
hydrocarbon with polar cyclic groups, enabling it to reside between membrane layers. The 
pink colouration is due to the delocalised electron system from the conjugated double 
bonds (π bonds). 

 

A combination of PUFAs and astaxanthin are required for the breeding of salmon as 

well as other fish, and a feed organism which could provide both compounds would be 
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beneficial due to its cost effectiveness. As mentioned previously, the organism chosen 

to incorporate the elongase and desaturase system is Phaffia rhodozyma, which is used 

as an astaxanthin feed for salmon (Whyte & Sherry, 2001). The organism itself could be 

used as a human dietary supplement, or following lipid extraction the compounds may 

be encapsulated. Phaffia is a budding pigmented yeast from the Basidiomycota, which 

produces carotenoid, primarily astaxanthin, compared with other pigmented yeast such 

as Rhodotorula and Sporobolomyces which produce torulene and torularhodin (Miller et 

al., 1976). Utilising the elongase and desaturases of M. alpina it is hoped that a dual 

compound producing organism can be created. By utilising the organism Phaffia 

rhodozyma, which naturally produces astaxanthin in large quantities it is hoped the fatty 

acid synthesis pathway can be expanded to produce C20:5 n3. The proposed alteration to 

the biosynthetic pathway in Phaffia is shown in Figure 6-2. In Mortierella alpina the 

fatty acid biosynthetic pathway follows the n6 route progressing from linoleic to C18:3 

n6 via a ∆6 desaturase. Following this, the ∆6 elongase elongates C18:3 n6 to C20:3 n6, 

which is then desaturated to C20:4 n6 by a ∆5 desaturase. A ∆17 desaturase then crosses 

the n6-n3 bridge by forming C20:5 n3. The three enzymes, GLELO and the ∆5/6 

desaturases were isolated from M. alpina. 

Phaffia rhodozyma produces C18:3 n3 as opposed to C18:3 n6 as found in M. alpina, 

which raises questions about substrate specificity. The GLELO has been shown to have 

specificity for stearidonic acid (Parker-Barnes et al., 2000), which was converted to 

C20:4 n3, as was demonstrated by supplying the yeast, which heterologously expressed 

the elongase, with stearidonic acid. Parker-Barnes et al. also showed that the ∆5 

desaturase had specificity for C20:4 n3, converting it to C20:5 n3, as well as demonstrating 

the extension of the fatty acid biosynthetic pathway. The ∆6 desaturase has also been 

shown to convert the n3 substrate C18:3 n3 into stearidonic acid (Domergue et al., 2002). 

A similar method was tried by Chen et al. (Chen et al., 2006), with all three enzymes 

described previously used to transform Glycine max. In this case however, the n3 route 

was blocked by RNAi to prevent the formation of C18:3 n3, therefore mimicking the path 

taken in M. alpina. The result showed that C20:4 n6 could be formed in a recombinant 

system, which utilised 3 genes from the fungus M. alpina. However, the yields for the 

majority of FAs after C18:2 were low. This was probably due to the low percentage of 

C18:3 n6 within the cells. Without an efficient conversion from C18:2 to C18:3 n6, all 

subsequent fatty acid yields would be expected to be low. In this case, a more efficient 

∆15 desaturase inhibition could have resulted in an increased C18:3 n6 substrate pool, 

available for elongation to C20:4 n6.  
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Figure 6-2. The fatty acid biosynthesis pathway in Mortierella alpina and the proposed 
recombinant fatty acid biosynthesis pathway in Phaffia rhodozyma. Mortierella alpina 
follows the n6 biosynthetic route, by elongating C18:3 n6 to C20:3 n6, followed by the 
subsequent ∆5 desaturation resulting in C20:4 n6 and crossover desaturation by a ∆17 
desaturase to produce C20:5 n3. Phaffia rhodozyma produces C18:3 n3 and so the 
recombinant strain will contain a ∆6 desaturase to produce C18:4 n3, which will be acted 
upon by the ∆6 elongase (GLELO) to produce C20:4 n3. The final ∆5 desaturase will result 
in the formation of C20:5 n3. The C22:5 n3 found within Mortierella alpina is proposed to be 
formed by the ∆6 elongase acting upon C20:5 n3. 

 

This highlights the issue of selecting a suitable organism for modification, one trait of 

which should be the pool of starting substrate available to the organism. With the 

Phaffia transformation only one substrate is available for enzyme action, which in turn 

should increase the efficiency of conversion. Recently the fatty acid biosynthetic 

pathway was extended in Saccharomyces cerevisiae using a novel ∆6 elongase and ∆6 

desaturase from the zygomycete Conidiobolus obscurus to produce the fatty acid C20:4 

n3 (Tan et al., 2011). It was also confirmed that the ∆6 desaturase and elongase could 

act upon the n3 substrates and that low temperature growth induced greater transcription 

of both recombinant genes.  

In conclusion, two recombinant Phaffia rhodozyma strains will be produced; one 

expressing only the ∆6 elongase, whereas the other strain will express all three genes to 

extend the fatty acid profile in Phaffia rhodozyma. E. coli BL21(DE3)pLysis* will also 
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be transformed with the ∆6 elongase to ascertain whether the bacteria is capable of 

expressing the elongase, which can then be functionally characterised. In regards to ∆6 

elongase expressing strains of Phaffia and E. coli the substrate specificity of the 

elongase can be determined either through growth of the organisms inoculated with 

precursor fatty acid followed by cellular fatty acid extraction (Domergue et al., 2003, 

Tan et al., 2011), or through microsomal/membrane fraction separation, purification and 

testing in vitro with acyl-CoA substrates to determine elongase substrate specificity 

(Jump, 2009, Moon et al., 2001, Ohno et al., 2010). It is hoped that by incubating with 

various fatty acid substrates such as C18:3 n6 and C20:5 n3 the specificity of the ∆6 

elongase can be determined.  

6.1.1 Aims 

The aim of this study is to establish whether the Mortierella alpina fatty acid 

elongation pathway can be heterologously reconstituted in the astaxanthin producing 

yeast Phaffia rhodozyma. The elucidation of the substrate specificity of the ∆6 elongase 

expressed in Phaffia and E. coli was also attempted, to ascertain whether the elongase 

can accept C20:5 n3, in turn producing C22:5 n3.  

6.2 Results 

All three genes were first identified using the NCBI database and primers developed 

based on these sequences. cDNA from Mortierella alpina strain 330997 was obtained 

from reverse transcription of Mortierella alpina RNA. Primers 1+2 were used for ∆6 

desaturase amplification, primers 3+4 were used for ∆5 desaturase amplification and 

primers 5+6 were used for ∆6 elongase amplification. Primer sequences are described in 

the materials and methods section 2.1.4.2 and contained no intentional restriction sites. 

Taq polymerase was used for amplification as the TOPO 2.1 vector required a single 

adenine residue overhang at each 3’ end. All three genes were amplified successfully, 

confirmed using agarose gel electrophoresis, ligated with the sequencing vector TOPO 

2.1 and amplified in TOP10 chemically competent E. coli cells as shown in figure 6-3. 

Aliquots of the purified DNA were sent for sequencing which confirmed the identities 

of the amplified products. The sequences of the three genes are shown in figures 6-4, 6-

5 and 6-6. The three genes were sent to Prof. Gerhard Sandermann at Goethe 

University, Frankfurt for transformation into Phaffia rhodozyma.  
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Δ6 1374bp Δ5 1341bp GLELO 957bp

1000 bp

 

Figure 6-3. Colony PCR to detect the presence of the three amplified genes within TOP10 
E. coli cells. Those colonies displaying the correct size amplification product were then 
harvested from broth and the DNA extracted. Following DNA extraction, aliquots were 
sent for sequencing to confirm the TOPO 2.1 gene inserts.  
 

 
Figure 6-4. Mortierella alpina isolate 330997 ∆6 elongase (GLELO) cDNA sequence. 
 

 
Figure 6-5. Mortierella alpina isolate 330997 ∆5 desaturase cDNA sequence. 
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Figure 6-6. Mortierella alpina isolate 330997 ∆6 desaturase cDNA sequence.  
 

The ∆6 elongase was also expressed in BL21(DE3)pLysis* E. coli cells. The ∆6 

elongase was amplified using primers P1+P2 which contained NdeI and HindIII 

restriction sites for insertion into the pET-23b vector, as well as removing the stop 

codon to allow the translation of the attached His tag protein. The ∆6 elongase was 

successfully amplified using the primer set and ligated with the pET-23b vector. The 

vector was successfully inserted and amplified in BL21(DE3)pLysis* E. coli cells. After 

induction with IPTG, the total cell lysate underwent SDS-PAGE and silver staining 

which revealed no apparent expression of the ∆6 elongase as shown in figure 6-7. 

Western blotting followed by anti-His antibody and BCIP/NBT staining showed a band 

with a molecular mass of around 38 KDa for BL21(DE3)pLysis* cells expressing the 

∆6 elongase within pET-23b shown in figure 6-7, with the molecular weight of the His 

tagged ∆6 elongase being 38.3 KDa. Negative control cells demonstrated a much fainter 

band which was not uniform throughout the lane indicating possible contamination from 

the adjacent sample. This would indicate the successful expression of the ∆6 elongase 

within E. coli cells.    
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Figure 6-7. Sonicated BL21(DE3)pLysis* E. coli cells run on SDS-PAGE with silver 
staining (left) and Western blot using anti-His antibodies, stained with BCIP/NBT. A = 
pET-23b-blank B = pET-23b-∆6 elongase C = E. coli lysate expressing 36KDa His-tagged 
protein D = Purified 41KDa His-tagged protein. The silver stained gel failed to highlight 
the production of the 38.3KDa His tagged ∆6 elongase protein, however following 
antibody binding a band corresponding to the size of the elongase is detected in the E. coli 
cells containing pET-23b-∆6 elongase. The negative control cells however do display a 
faint, non-uniform band possibly indicating contamination from the adjacent lane. The 
relative production of the putative ∆6 elongase is low compared to the E. coli cells in lane 
C. 
 

Protein purification through His-tagged affinity column chromatography failed to 

isolate the location of the ∆6 elongase when used with silver staining. This is probably 

due to the low expression of the elongase, as seen with the antibody stain and the 

comparison with the other two His-tagged proteins. It is likely however that the 

elongase is located within a membrane due to the seven trans-membrane domains, as the 

elongase usually localises to the ER, which is absent within Bacteria. This may account 

for the slower growth of the ∆6 expressing strain, as expressed elongase may interfere 

with membrane processes or other cellular functions.  

Of the three genes sent for transformation into Phaffia rhodozyma, only the ∆5 

desaturase and the ∆6 elongase were successfully transformed into individual isolates. 

The ∆6 desaturase and isolates containing different combinations of the three genes 

were not successful. Freeze dried material of two control strains, two ∆5 desaturase 

recombinant strains and ten ∆6 elongase recombinant strains were received. These were 

subjected to fatty acid analysis by GC-FID and GC-MS as stated in the materials and 

method sections 2.2.5 and 2.2.6. The fatty acid profiles are shown in table 6-1. It was 

initially noted that both control strains contained much lower abundances of total lipid 

compared with the recombinant strains, in most cases containing values half or less that 

of the recombinant isolates. Whilst the complete pathway was not successfully 
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incorporated into Phaffia to allow end point production of C20:5 n3, the inserted 

enzymes did display minor activity. The ∆5 desaturase demonstrated an additional three 

peaks compared against the control, with the ∆6 elongase also producing an additional 

three peaks, one of which was shared with the ∆5 desaturase. The addition of the ∆5 

desaturase was thought to produce C18:3 n6 and two C18:2 isomers, with C18:2 isomer (a) 

putatively identified as C18:2 ∆14, 17 based on the NIST GC-MS library as the highest 

hit compound. The retention time of isomer (a) fell around the elution time of C18:1 on 

both GC-FID and GC-MS (figure 6-9). The mass spectrum of isomer (a) indicated two 

double bonds, although the isolate is characteristically more non-polar as it elutes earlier 

on the more polar GC-FID column, and elutes later on the more non-polar GC-MS 

column compared with the standard C18:2 ∆9, 12 isomer. Further structural detail will be 

discussed in the subsequent section. The second C18:2 isomer detected by GC-FID 

(figure 6-8), found to be produced by the ∆5 desaturase could not be identified by GC-

MS as it was presumed to elute at the same time as the high abundance C18:1 or C18:2 ∆9, 

12 fatty acids. Therefore the putative C18:2 isomer identity was given based on the GC-

FID retention time, eluting after C18:2 ∆9, 12 but before the C18:3 fatty acids. This isomer 

was given the designation (b) in the following table. 

 

 
Table 6-1. Total lipid fatty acid composition of each recombinant Phaffia isolate. Isolates 
6938 and 6939 are controls with non-recombinant plasmids. ∆5 isolates contain the 
addition of the ∆5 desaturase, whilst elo isolates contain the addition of the ∆6 elongase 
(GLELO). Distinguishing peaks were a putative C18:2 isomer (a), found in all elo isolates 
and ∆5 n7 isolates, another putative C18:2 isomer (b), found only in ∆5 n7 isolates. C18:3 n6 
was found only in isolate ∆5 n7. C20:2 n6 and C20:3 n3 were found only in elo isolates. 
Unknown compounds were given their relative retention times as identifications. Fatty 
acid values are stated as the % (w/w) of the total lipid fraction
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Organism 
ID % FA C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:2 

isomer (a) C18:1 cis 1.17 1.198 1.206 C18:2 cis C20:0 C18:2 
isomer (b) 

6938 Avg 0.34 0.00 12.54 0.80 0.00 3.55 0.00 24.17 0.00 0.24 0.00 49.03 0.72 0.00 

 St Err n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

6939 Avg 0.31 0.00 12.73 0.80 0.00 3.57 0.00 24.50 0.00 0.11 0.00 49.41 0.72 0.00 

 St Err 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.03 0.00 0.06 0.00 0.12 0.01 0.00 

∆5 n2 Avg 0.49 0.15 14.28 0.42 0.26 4.41 0.00 29.57 0.33 0.18 0.00 45.15 1.03 0.00 

 St Err 0.00 0.00 0.07 0.00 0.00 0.05 0.00 0.01 0.00 0.00 0.00 0.24 0.01 0.00 

∆5 n7 Avg 0.44 0.13 13.75 0.30 0.17 3.74 0.54 32.45 0.13 0.59 0.39 40.81 1.57 0.67 

 St Err 0.00 0.00 0.04 0.00 0.00 0.05 0.08 0.04 0.00 0.06 0.05 0.11 0.00 0.01 

elo n2 Avg 0.57 0.11 14.52 0.62 0.11 3.03 0.20 27.80 0.00 0.31 0.11 45.66 0.91 0.00 

 St Err 0.00 0.00 0.09 0.01 0.00 0.05 0.04 0.15 0.00 0.06 0.05 0.27 0.00 0.00 

elo n3 Avg 0.63 0.12 14.18 0.75 0.12 2.35 0.24 25.93 0.10 0.42 0.19 47.80 0.83 0.00 

 St Err 0.00 0.00 0.02 0.00 0.01 0.02 0.01 0.16 0.00 0.01 0.01 0.02 0.00 0.00 

elo n4 Avg 0.57 0.19 15.78 0.45 0.53 3.63 0.34 36.58 0.58 0.40 0.00 35.49 1.34 0.00 

 St Err 0.00 0.00 0.03 0.00 0.00 0.02 0.14 0.06 0.00 0.12 0.00 0.16 0.00 0.00 

elo n5 Avg 0.78 0.22 17.77 0.90 0.34 2.31 0.32 27.71 0.15 0.37 0.12 43.79 0.54 0.00 

 St Err 0.00 0.00 0.10 0.01 0.00 0.01 0.00 0.11 0.00 0.09 0.00 0.49 0.00 0.00 

elo n6 Avg 0.52 0.18 13.92 0.39 0.37 3.26 0.87 28.30 0.41 0.53 0.31 44.29 1.18 0.00 

 St Err 0.01 0.00 0.08 0.02 0.01 0.04 0.27 0.24 0.01 0.04 0.05 1.17 0.02 0.00 

elo n7 Avg 0.39 0.19 12.14 0.30 0.47 4.10 0.13 28.90 0.34 0.19 0.00 43.43 1.23 0.00 

 St Err 0.01 0.00 0.21 0.01 0.00 0.03 0.00 0.56 0.00 0.00 0.00 0.94 0.02 0.00 

elo n7a Avg 0.51 0.24 14.43 0.40 0.66 3.64 0.03 33.27 0.68 0.18 0.00 39.99 1.32 0.00 

 St Err 0.00 0.00 0.05 0.00 0.00 0.03 0.00 0.21 0.01 0.00 0.00 0.40 0.02 0.00 

elo n8 Avg 0.56 0.24 15.59 0.45 0.65 3.80 0.06 34.93 0.92 0.16 0.00 36.47 1.29 0.00 

 St Err 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.07 0.01 0.00 0.28 0.01 0.00 

elo n9 Avg 0.56 0.23 15.07 0.48 0.64 3.38 0.20 33.33 0.66 0.30 0.08 40.36 1.22 0.00 

 St Err 0.00 0.00 0.16 0.00 0.00 0.03 0.07 0.43 0.00 0.06 0.04 0.76 0.03 0.00 

elo n10 Avg 0.66 0.10 15.21 0.62 0.10 2.66 0.65 29.92 0.11 0.50 0.28 40.10 1.03 0.00 

 St Err 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.07 0.02 0.06 0.06 0.23 0.01 0.00 
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Organism ID C18:3 n6 1.284 1.289 C20:1 C18:3 n3 C21:0 C20:2 n6 C22:0 1.43 C20:3 n3 1.487 C24:0 total lipid mg/g 

6938 0.00 0.00 0.00 0.00 1.37 0.00 0.00 0.35 0.00 0.00 0.00 0.35 14.55 

 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

6939 0.00 0.00 0.00 0.00 1.36 0.00 0.00 0.36 0.00 0.00 0.00 0.35 14.44 

 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.26 

∆5 n2 0.00 0.00 0.00 0.00 1.08 0.00 0.00 0.66 0.00 0.00 0.00 0.65 29.42 

 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.59 

∆5 n7 0.09 0.00 0.00 0.18 1.27 0.00 0.00 1.16 0.10 0.00 0.02 0.95 42.39 

 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.01 1.04 

elo n2 0.00 0.00 0.00 0.17 1.00 0.00 0.90 0.81 0.00 0.18 0.03 0.96 30.68 

 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 

elo n3 0.00 0.00 0.10 0.39 1.04 0.00 2.31 0.78 0.00 0.37 0.06 0.95 36.82 

 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.13 

elo n4 0.00 0.01 0.09 0.19 0.41 0.05 0.67 0.95 0.10 0.07 0.04 0.81 50.38 

 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 6.32 

elo n5 0.00 0.03 0.07 0.15 1.14 0.00 0.82 0.61 0.07 0.18 0.05 0.68 49.98 

 0.00 0.00 0.01 0.00 0.03 0.00 0.10 0.05 0.00 0.00 0.00 0.00 0.99 

elo n6 0.00 0.13 0.11 0.17 0.57 0.00 1.25 0.98 0.11 0.23 0.00 0.64 36.53 

 0.00 0.00 0.01 0.00 0.03 0.00 0.29 0.11 0.00 0.07 0.00 0.01 1.20 

elo n7 0.00 0.12 0.05 0.00 0.84 0.00 0.20 0.90 0.00 0.00 0.00 0.79 42.39 

 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.02 0.00 0.00 0.00 0.01 1.04 

elo n7a 0.00 0.12 0.09 0.21 0.47 0.06 0.77 0.94 0.00 0.04 0.04 0.75 34.97 

 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.01 0.32 

elo n8 0.00 0.06 0.07 0.34 0.44 0.06 1.33 0.90 0.06 0.15 0.04 0.78 50.71 

 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 4.96 

elo n9 0.00 0.12 0.09 0.10 0.51 0.06 0.35 0.86 0.00 0.00 0.04 0.74 50.35 

 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.02 0.45 

elo n10 0.00 0.00 0.00 0.88 0.44 0.00 3.73 0.91 0.16 0.31 0.04 0.90 53.72 

 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.01 2.82 
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Figure 6-8. GC-FID trace of elo n2 (top), ∆5 n7 (middle) and control 6939 (bottom). 
Highlighted peaks thought to be the result of the recombination are; a = C18:2 isomer (b), b 
= C18:3 n6, c = C20:2 n6, d = C20:3 n3. The putative C18:2 isomer (a) is not shown. The identity 
of (b) as an isomer of C18:2 was made on the basis of elution time, as the peak elutes after 
C18:2 ∆ 9, 12 but before C18:3 n6. No GC-MS data was obtained for this peak. Also of note 
are the much lower lipid levels of the control.  
 

The two ∆5 isolates however are different as the ∆5 no. 7 isolate contains all three 

novel fatty acids whilst isolate no. 2 contains none of the novel fatty acids. The fatty 

acid complement of isolate no. 2 is therefore very similar to the control isolates 

although strain ∆5 no. 2 does contain C15:0, C17:1 and a peak with the RRT of 1.17, as 

well as higher lipid levels, similarities shared with the other recombinant isolates. The 

absence of the three peaks from the control samples may be due to the general low 

abundance of lipid found in these isolates. The ∆6 elongase recombinant isolates share 

the production of C18:2 isomer (a) with isolate ∆5 no. 7, as well as producing two unique 

peaks, identified as C20:2 n6 and C20:3 n3. C20:2 n6 was identified by retention index on 

both GC-FID and GC-MS, as well as through the custom built fatty acid mass 

spectrometry library. C20:3 n3 could not be detected using GC-MS due to the low 

abundance of the compound but was again identified by retention index.  

 

a b

c
d
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Figure 6-9. GC-MS trace of ∆5 n7 (top), ∆5 n2 (middle) and elo n3 (bottom). Highlighted 
peaks thought to be a result of the recombination are; a = C18:3 n6, b = C18:2  isomer (a), c = 
C20:2 n6. C18:3 n6 was found present in isolate ∆5 n7 only, although a peak of similar elution 
time was found in elo isolates using GC-FID. C18:2 (a) was searched using the NIST library 
and putatively identified as C18:2 ∆14, 17. This peak was only found in elo and ∆5 n7 
isolates. C20:2 n6 was found only in elo isolates though C20:3 n3 was not identified using GC-
MS, due to low abundance.  
 

6.3 Discussion  

The initial aim of transforming Phaffia rhodozyma with the three genes responsible 

for C20:5 n3 production was unsuccessful. However the individually inserted genes 

exhibited some minor activity by producing novel fatty acids within the yeast. The 

identities of the fatty acids were made either through retention indices or mass 

spectrum, although the new complement of fatty acids could mostly be explained 

through the action of the inserted enzymes. Starting with the recombinant elo isolates, 

C20:2 n6 and C20:3 n3 could be explained by the action of the ∆6 elongase on C18:2 n6 and 

C18:3 n3 respectively. The ∆6 elongase is reported to act predominantly on C18:3 n6 and 

C18:4 n3, presumably because both share a double bond in the ∆6 position. The catalysis 
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by the ∆6 elongase of C18:2 n6 and C18:3 n3 however, is relatively minimal although the 

higher abundance of C20:2 n6 over C20:3 n3 is likely explained by the much higher 

abundance of the precursor C18:2 n6 to C18:3 n3 respectively. The average conversion rate 

was estimated to be 2.8% and 17.2% for C18:2 and C18:3 n3 respectively. The most 

effective method for calculating substrate conversion is the isolation of the ∆6 elongase 

into microsomes, followed by the supplementation of single fatty acids in CoA form. 

The data presented here would indicate that C18:3 n3 is more effectively used by the ∆6 

elongase than C18:2, implying that the number of double bonds is important for the 

function of the elongase even though neither fatty acid contains a double bond in the ∆6 

position. These results also demonstrate that the ∆6 elongase from Mortierella alpina 

can work with the other endogenous components of the fatty acid elongation system 

found within Phaffia rhodozyma, such as the two reductases and dehydrase, which are 

separate from the condensing elongase enzyme.  

The C18:2 isomer (a) was found in all ∆6 elongase isolates as well as ∆5 desaturase 

isolate no. 7. This was putatively identified as C18:2 ∆14, 17 due to NIST mass 

spectrometry library searching. The localisation of double bonds in mono- and dienes 

using electron impact mass spectrometry is considered not particularly feasible due to 

the relocation of double bonds during the ionisation process. The only definitive method 

for double bond localisation is to derivatize the double bond into more stable structures 

such as dimethyl disulphide abducts (Christie, 1998). The mass spectrum data do 

indicate that the C18:2 (a) isomer shares features of both a monoene and a diene. The 

molecular ion for C18:2 (a) is predominantly at 294 m/z, indicating a diene. The 

subsequent loss of the CH3O (M-31+) group indicates that the isomer is a monoene, as a 

mass peak of 264 m/z is predominant in both C18:1 and in C18:2 (a) with (M-32+) common 

for this class, indicating a loss of an addition proton. The isomer also produces a clear 

ion at 222 m/z, shared with C18:1. This is possibly the product of a dual fragmentation as 

shown in figure 6-11. An ion at 180 m/z is also shared with the monoene C18:1. 

Evidence for the isomer being a diene lies in the homologous series of smaller 

fragments, with ions such as 67, 81 and 95 m/z distinguishing the isomer from the 

monoene C18:1 and placing it with the diene C18:2 ∆9, 12. The consistent mass difference 

of 2 m/z units between the isomer and C18:1 in the mid-range m/z homologous series 

also indicates the presence of another double bond. Finally, the retention index of the 

compound places it with the monoenes, however it is likely that it is a diene which 

shares monoene characteristics. Regarding the ∆5 desaturase’s activity it is possible that 
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C18:1 ∆9 has been desaturated further to C18:2 ∆5, 9, although how this would be 

produced via the ∆6 elongase is unknown.  
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Figure 6-10. Mass spectrums of C18:1 ∆9, C18:2 ∆9, 12 and the proposed C18:2 isomer (a). 
Isomer (a) shares features with both mono and dienes. The molecular mass indicates that 
the isomer is a diene (294 m/z), however the three subsequent ions (264, 222, and 180 m/z) 
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are indicative of a monoene. The homologous series of 55, 81, 95 and 109 m/z fragments 
indicate that the isomer contains two double bonds.  
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Figure 6-11. The proposed fragmentation pattern displayed by C18:1 ∆9 and C18:2 ∆9, 12. 
Electron impact mass spectrometry of mono and dienes is less effective at localising double 
bond positions, due to the migration of double bonds to the omega end of the chain. This 
migration of bonds explains the fragmentation pattern differences between monoenes and 
dienes. The cleavage of the CH3O group results in a mass loss of (M-31+) for dienes, 
though monoenes experience (M-32+) resulting in a fragment of 264 m/z and not 265 m/z 
as shown here, indicating an additional proton has been lost. The fragment at 222 m/z can 
be explained through a double fragmentation, whereby the terminal propyl group is lost, 
as well as the CH3O group. 

 

The C18:2 isomer (b) was only detected using GC-FID, possibly because the peak was 

obscured by the much larger C18:1 ∆9 and C18:2 ∆9, 12 peaks on the GC-MS. Therefore 

the only information regarding this peak is the retention time, which places the fatty 

acid as a late eluting C18:2 isomer or as an early eluting C18:3 isomer. This could mean, 

taking into account the activity of the ∆5 desaturase, the fatty acid in question may be 

C18:3 ∆5, 9, 12, with C18:2 ∆9, 12 acting as the substrate. The presence of C18:3 n6 in the 

∆5 desaturase isolate no. 7 is difficult to explain, as a double bond is inserted into the 

∆6 position, which may be an unspecific reaction of the ∆5 desaturase. In general the 

conversion efficiency for both enzymes was relatively poor, due to the fact that the 

intended substrate was not present for the inserted enzymes to act upon. Also of note 

was that the C18:3 n3 pool was relatively low within this strain of Phaffia rhodozyma and 

that if all three genes had been successfully inserted into the yeast, the yield of end 

product C20:5 n3 would likely be low in abundance. Therefore additional strains of 

Phaffia rhodozyma require examination in search of elevated levels of C18:3 n3. The 

specificities of the two inserted enzymes have been studied with the ∆5 desaturase 
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having been found by one group to desaturate only fatty acids containing a ∆8 double 

bond (Hornung et al., 2005), although the recombinant yeast did not produce any C18:2.  

This was confirmed by Domergue et al. who also showed that the ∆5 desaturase had 

activity on C20:2 ∆11, 14 (Domergue et al., 2003). The ∆5 desaturase has been found to 

minimally desaturate C18:1 ∆9 to C18:2 ∆5, 9 as well as C18:1 ∆11 to C18:2 ∆5, 11 (Saito et 

al., 2000). The ∆5 desaturase studied was from the slime mould Dictyostelium 

discoideum, although the production of C18:2 ∆5, 9 in ∆5 expressed recombinant yeast 

supports the putative production in Phaffia. The production of C18:2 ∆5, 11 is less likely 

in Phaffia as the ∆5 desaturase recombinant yeast was supplied with exogenous C18:1 

∆11. The yeast however was incapable of producing any trienoic fatty acids and 

therefore it is increasingly likely that isomer (b) is in fact C18:3 ∆5, 9, 12. The ∆6 

elongase was found to have additional activity on C18:2 ∆9, 12 by converting it to C20:2 

∆11, 14 (n6) as was documented in a patent by Mukerji et al. (Mukerji et al., 2003), 

although supplementation with C18:3 n3 did not yield C20:3 n3. The elongation of C18:2 

∆9, 12 was also reported in a recombinant Aspergillus expressing the ∆6 elongase 

(Takeno et al., 2005). 

The expression of the ∆6 elongase within E. coli appeared to be successful due to the 

presence of a 38.3 KDa band on the Western blot, detected using anti-His antibodies 

and stained using BCIP/NBT. The possible presence of the same band in the control 

may be due to contamination from the adjacent lane, inferred due to the non-uniformity 

of the band. The initial aim of inserting the ∆6 elongase into E. coli was as an 

alternative route to determining the substrate specificity of the elongase. With the 

successful ∆6 elongase transformation of Phaffia rhodozyma, functional 

characterisation of the elongase could be carried out within the yeast using previously 

mentioned exogenous fatty acid supplementation studies or endosome production 

methods. The bacterial expression of the elongase and the establishment of whether 

ELO class elongases can function within bacteria and utilise the other components 

required for successful elongation may in itself be novel. There are several points that 

need to be considered regarding recombinant systems and their use for VLCPUFA 

production in both yeast and plants. Firstly, the low production of fatty acids longer and 

more unsaturated than C20:3 stems from the poor conversion between substrate classes. 

As discussed in the introductory chapter, elongases in fungi require acyl-CoA substrates 

whereas fungal desaturases require phospholipid linked acyl substrate. Specifically, it is 

thought that one problem arises after the ∆6 desaturation step, which occurs in 

phosphatidylcholine, position sn-2. Endogenously produced C18:3 n6 formed in PC is 
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thought to be transferred to neutral lipid via several acyl-CoA independent pathways 

(Domergue et al., 2003). This segregation of C18:3 n6 from the acyl-CoA pool reduces 

the substrate available for the ∆6 elongase. As explored by Domergue et al. 

supplementation of exogenous C18:3 n6 results in an increase in the C18:3 n6 acyl-CoA 

pool which is subsequently elongated to C20:3 n6. The acyl-CoA pool in yeast it appears 

can be indiscriminately transferred by a variety of acyl-CoA transferases into most lipid 

classes. Therefore, it is the transfer between substrate carriers that is thought to be a 

major bottleneck for the efficient production of VLCPUFA. For efficient production of 

fatty acids beyond C20:3, alternating pools of phospholipid linked substrate are required 

for desaturation, specifically PC in position sn-2, although the ∆12 desaturase has been 

found not to be head group or position specific (Domergue et al., 2003). The acyl chain 

then needs to be converted to acyl-CoA by an acyl-CoA:lyso-phosphatidylcholine to 

increase the available substrate for elongation. Following elongation, the acyl chain 

needs to be attached again to PC by the same enzyme. It is this enzyme which in plants 

is thought to also be bottleneck, with some plant transferases incapable of transferring 

acyl chains with a ∆6 double bond (Domergue et al., 2005). Therefore an efficient acyl-

CoA:lysophospholipid acyltransferase (LPLAT) enzyme capable of accepting acyl 

chains with a ∆6 double bond is essential for efficient VLCPUFA production. Currently 

the LPLAT from C. elegans has been studied as a potential transferase to improve 

VLCPUFA yields (Renz et al., 2009). It is also possible that Mortierella alpina contains 

an efficient transferase system which allows for high accumulation of C20:4 n6. Other 

issues which could effect VLCPUFA production may arise if acyl chains are transferred 

to the wrong phospholipid class or to the wrong position. This would prevent efficient 

desaturation by specific desaturases. One proposed solution is the use of mammalian 

like desaturases which use acyl-CoA substrates instead, such as the ∆6 desaturase from 

Marchantia polymorpha (Kajikawa et al., 2004). This would mean only one pool of 

substrate is required for elongation and desaturation with both sets of reactions being 

able to occur sequentially. 

 

6.4 Conclusion 

The initial reconstitution of the Mortierella alpina fatty acid elongation pathway 

within Phaffia rhodozyma was unsuccessful. However some enzymatic activity was 

detected which correlated with the inserted gene. The insertion of the ∆6 elongase 

resulted in the elongation of C18:2 n6 and C18:3 n3 to C20:2 n6 and C20:3 n3 respectively. 
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The recombinant Phaffia strain expressing the ∆5 desaturase was found to produce two 

novel fatty acids, one thought to be C18:2 ∆5, 9 and the other putatively identified as 

C18:3 ∆5, 9, 12. The expression of all three genes however would likely lead to a poor 

conversion to the end product C20:5 n3, due to a low C18:3 n3 substrate pool within the 

Phaffia strain used. The fact that elongation and desaturation require different substrate 

pools, that endogenous ∆6 desaturation may result in desaturated product being 

sequestered within neutral lipid in an acyl-CoA independent manner, and that LPLAT in 

certain organisms may select against fatty acids to transfer between the acyl-CoA pool 

and phospholipid carriers, may also contribute to low conversion efficiency. The 

identification however of these bottlenecks may allow for their circumvention by 

selection of substrate specific and efficient LPLAT enzymes, the use of acyl-CoA 

accepting desaturases and selection of high C18:3 n3 producing strains of Phaffia. The 

first goal however is the successful VLCPUFA biosynthesis pathway within Phaffia 

rhodozyma. The expression of the ∆6 elongase within E. coli appears to be successful 

with the visualisation of a protein using His tag Western blotting matching the expected 

size of the protein. The function of the expressed bacterial protein was not tested, 

however the expression within Phaffia may provide a more reliable method for 

establishing substrate specificity.  
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7 Conclusions  

In the search for novel producers of VLCPUFAs it was found that the location of 

isolation was not the only consideration when identifying new sources of VLCPUFA 

producing fungi. A key consideration is the taxonomy of the organism. Organisms from 

the Zygomycota, Chytridiomycota and Oomycota have been demonstrated to be the few 

phyla capable of producing these desirable fatty acids and as such should be the primary 

targets in further screening efforts (Table 3-5). Studying species within these phyla 

isolated from low temperature environments may increase the chance of finding 

VLCPUFA producing fungi. Whilst the majority of zygomycetes produce only up to 

C18:3 n6 the fact that several known species such as Mortierella, Conidiobolus and 

Entomophthora are capable of VLCPUFA production would indicate that more species 

from within this phyla are capable of VLCPUFA production. The current suggestion 

that Blastocladiales and Entomophthorales are more related than to other organisms 

from within their traditional phyla may suggest an ancestral link from the 

Chytridiomycota to the Zygomycota (section 5.3.1). The presence of the ∆6 elongase, 

which appears only in basal organisms, and its position within the Mucorales cluster 

(Figure 5-26) suggests that Mortierella like species may have led to the evolution of the 

Mucorales. Additionally chytrids and Oomycetes, both of which are capable of 

inhabiting aqueous environments are very likely to contain VLCPUFAs due to the 

proposed role these highly unsaturated fatty acids play in the motility of the flagellated 

zoospore stage, as well as possible protection from osmotic stress (section 3.3.2). The 

move to terrestrial ecosystems has led to the loss of VLCPUFA production from the 

Zygomycetes, the direct descendants of the Chytridiomycetes, having lost the 

flagellated zoospore stage as well as VLCPUFA production in most cases. What 

remains is the precursor, C18:3 n6 which once led to the production of C20:4 n6 and C20:5 

n3.  

It was found that the loss of VLCPUFA production was in part due to the loss of a ∆6 

elongase known as GLELO which catalyses the reaction C18:3 n6 to C20:3 n6 within the 

genus Mortierella. The loss of this elongase differentiates Mortierella from the majority 

of the zygomycetes as well as the ascomycetes and basidiomycetes. The correlation 

between fatty acids longer and more unsaturated than C18:3 n6 and the presence of the 

GLELO gene, confirms the gene’s proposed function, as without it polyunsaturated 

fatty acid production halts at C18:3 n6 (Figures 5-5, 5-6). The Ascomycota and 
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Basidiomycota have evolved further and lost the similarities shared between the 

Zygomycota and the Chytridiomycota with the total loss of the ∆6 elongase and the 

shift in fatty acid pathway to the n3 route as oppose to the n6 route (Table 3-4). Low 

temperature environments have not appeared to prevent the loss of the ∆6 elongase, nor 

has it stimulated a change in function of an elongase to elongate past the end point fatty 

acid C18:3 n3. However it does appear that this complement of fatty acids is sufficient for 

organism growth at low temperatures as was demonstrated with Penicillium rugulosum, 

which produced the greatest growth at 5°C, greater than any other organism studied 

(Figure 4-12). This would appear to indicate that other factors limit growth at low 

temperatures such as protein adaptation, and that either trienoic fatty acids provide 

enough membrane fluidity at low temperatures or other unstudied compounds within the 

membrane assist in maintaining the required fluidity. The role of unsaturated fatty acids 

was highlighted by 5°C growth promoting the greatest production of the most 

unsaturated fatty acid in all isolates studied except Mortierella alpina isolate 82072, 

where almost equal amounts of C20:5 n3 at both 5 and 15°C growth were produced. This 

highlights the importance highly unsaturated fatty acids play in low temperature 

survival. In regards to unsaturation index, total fatty acid unsaturation indices showed 

six out of nine organisms displaying the greatest unsaturation at 5°C growth, whilst two 

of the nine displayed the greatest unsaturation at 15°C growth. Herpotrichia sp. isolate 

403016 showed the greatest unsaturation index at 25°C although 5°C gave a very 

similar average value (Figure 4-10). This confirms the idea that low temperatures 

generally induce the greatest unsaturation of fatty acids as well as promoting the 

greatest formation of the most unsaturated fatty acid.  

The localisation of the fatty acid to individual lipid components failed to conclusively 

segregate the lipids due to the large proportion of neutral lipid within the Mortierella 

isolate. However it does appear that PUFAs reside within the PE and PC fractions as 

well as within the neutral lipids (Figures 4-13, 4-16). Whilst the total phospholipid 

unsaturation index displayed a positive correlation against temperature the PC fraction 

illustrated the expected greatest unsaturation value under the lowest culture temperature 

(Figure 4-19). The localisation of VLCPUFAs to the PC fraction is confirmed by the 

finding that acyl linked PC is the substrate for the ∆5 and ∆6 desaturases. As such, it is 

possible that the PC fraction is the primary modulator of membrane fluidity, as the acyl 

chains attached to this membrane lipid are directly desaturated. Other supporting 

evidence for the localisation of VLCPUFAs to the PC and PE fractions is due to the 

physical properties of the head groups. PC has a wide ranging transition temperature 
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range allowing for precise alteration in fluidity in response to temperature by acyl chain 

modification. PE on the other hand has a high and relatively narrow transition 

temperature range, requiring highly unsaturated fatty acids to maintain the fluidity of 

the acyl chains when attached to this phospholipid (Section 4-3). Finally it was thought 

that Mortierella alpina possesses an efficient mechanism for transferring acyl chains 

between the acyl-CoA pool and the phospholipid head group due to the high levels of 

C20:4 n6, allowing for elongation in the CoA form, and desaturation in the phospholipid 

form. It is this transfer of acyl substrate from phospholipid to acyl-CoA pools and back 

which poses a significant bottleneck to engineering high yield VLCPUFA producers 

(section 6-3). Utilising and directly modifying organisms capable of transcending this 

apparent bottleneck, such as Mortierella alpina, is one solution whilst another is the 

introduction of efficient acyl-CoA:lysophospholipid acyltransferase like enzymes 

alongside the required desaturases and elongases. Such limitations are likely to reduce 

initial yields of VLCPUFAs from new recombinant organisms engineered for high 

value lipid production. Initial fatty acid modification studies in the yeast Phaffia 

rhodozyma have shown that the ∆5 desaturase and the ∆6 elongase are functionally 

active when expressed individually, even when the preferred substrate is not present 

(Table 6-1). The production of C20:2 n6 and C20:3 n3, elongated from C18:2 n6 and C18:3 n3 

respectively, demonstrate the functional activity of the ∆6 elongase. The putative 

identification of C18:2 ∆5, 9 and C18:3 ∆5, 9, 12 indicates that the ∆5 desaturase 

expressed in Phaffia rhodozyma is also functional. It is hoped that the co-expression of 

both aforementioned genes and a ∆6 desaturase within Phaffia rhodozyma will result in 

the production of C20:5 n3. The potential value of a high astaxanthin, C20:5 n3 producing 

Phaffia strain is of potential interest to the aquaculture industry, where both compounds 

are essential for the growth of farmed fish such as salmon.  

Regarding the future screening of novel low temperature isolated fungi, ascomycetes 

and basidiomycetes do not appear to be prime targets for VLCPUFA production due to 

their evolutionary loss of the ∆6 elongase as well as the ability of trienoic fatty acids to 

regulate membrane fluidity sufficiently under low temperature conditions. The close ties 

to the chytrid ancestors make the zygomycetes a good choice when screening for 

VLCPUFAs, which under low temperature environments may promote the continued 

selection of the ∆6 elongase within a species, as well as inducing more efficient 

production of these desirable fatty acids. Chytrid and Oomycete isolates are also prime 

candidates for further screening due to their physiology and habitat, as well as being 

documented producers of VLCPUFAs. The screening of several hundred isolates 
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however is costly and time consuming. The development of a novel genomic screen was 

undertaken, which eliminates the need for preliminary fatty acid screening. A screen 

based on one gene, which allows for the prediction of specific metabolites across phyla 

is not always a simple task, and sometimes not possible at all. Specific issues that were 

demonstrated in this work for example were lack of conserved regions between genes 

and lack of characterised fungal gene sequences. This was shown by the ∆5 desaturase 

which demonstrated no highly homologous regions for which robust primers could be 

developed, as well as a lack of characterised fungal ∆5 desaturases. In other situations 

the presence of the gene does not specifically correlate with the production of the 

metabolite. In certain cases transcriptional regulation may prevent the metabolite from 

being produced, for example high temperature culture of Mortierella alpina strains 

resulted in the cessation of production of C20:5 n3 (Figures 4-6, 4-7), presumably 

through down regulation of the ∆17 desaturase. Therefore for poorly studied metabolic 

pathways or novel metabolites, the first stage of screening will usually require 

biochemical analysis using platforms such GC-MS or HPLC. Only with greater 

understanding, is it possible to develop more efficient and less time consuming and 

resource intensive screening procedures. In this instance however, the screen was 

effective at identifying all Mortierella isolates that contained VLCPUFAs (Figures 5-5 

to 5-7) and did not amplify elongases with different functionalities. The screen was also 

shown to work with the chytrid Allomyces macrogynus indicating that the screen may 

be utilised for both zygomycete and chytrid preliminary screening.  

 The ∆6 like elongase gene from Allomyces macrogynus was described utilising 

whole genome shotgun data and the amino acid sequence was hypothetically confirmed 

utilising SMART, which identified seven trans-membrane regions which constituted the 

ELO domain (Figure 5-16). When BLAST searched, the closest match for the protein 

was GLELO from Mortierella alpina. The putative Allomyces ∆6 elongase is 

sufficiently different to the currently used Mortierella alpina GLELO to warrant its use 

in a recombinant system (Figure 5-11). Currently, the ∆6 elongase from the zygomycete 

Conidiobolus obscurus (Tan et al., 2011) is the most recent to be isolated and 

functionally characterised, with the final aim of fatty acid pathway elongation. The 125 

bp conserved genomic region shared by all ∆6 like elongases from the fungi and 

Animalia was used for primer construction with the sequence found in only PUFA 

elongating elongases such as the ∆6, ELOVL2 and ELOVL5 classes (Figure 5-24). 

Conservation of the genomic sequence meant that ELOVL2 and ELOVL5 elongases 

can be detected within mammalian systems such as within Mus musculus, which was 
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used to test the specificity of the primer sets. The chromist Saprolegnia parasitica was 

found to contain a smaller fragment of the genomic conserved region preventing 

amplification. The genomic conservation was not found within terrestrial plants such as 

Marchantia polymorpha and Physcomitrella patens, however was found within the 

algae Pyramimonas cordata and Parietochloris incisa with all four organisms found 

within the Plantae. The close resemblance of the two terrestrial plant’s ∆6 elongases 

when compared with the chlorophyte green algal elongases appear to confirm that 

Liverworts and mosses, which diverged from the Charophyta green algae, may have 

shared a common ancestor. The early branching of the Liverwort and Mosses from the 

terrestrial plant lineage bears resemblance to the evolution of the fungi. With the 

emergence of terrestrial species from aquatic environments, the presence of a flagellated 

cell during the life cycle and the capability of VLCPUFA production appear to be 

retained in basal plants and fungi. Several zygomycetes demonstrate an intermediary 

stage, producing VLCPUFA but no flagellated cell, which culminated in the 

abandonment of VLCPUFA production, as can be seen in the majority of zygomycetes 

and higher fungi. As with the higher fungi, no known vascular plant species is capable 

of VLCPUFA production, suggesting the loss of the ∆6 elongase. The elongase 

clustering also showed the relationship between the fungi and Animalia (Figures 5-18, 

5-19), which are thought to have stemmed from a common ancestor, whereas the 

Chromista followed a different evolutionary path out from the Protozoa. This 

fungal/animal ancestor underwent change independently from the Chromista and 

incorporated changes that are both common to fungi and Animalia. The subsequent 

divergence of the two Kingdoms fungi and Animalia led again to independent changes 

between the two. This is seen in the elongase clustering, with the fungi grouped away 

from the Animalia, but both Kingdoms cluster together when compared with the 

Chromista, due to their common ancestor. As to why Plantae share similar sequence 

homology to the fungi is unknown. It is possible perhaps that residue changes occurred 

independently within both phyla which have coincidentally led to their greater 

similarity. 

The amino acid translation of the conserved region was present in all elongases 

studied (Figure 5-20). The amino acid conserved region was consistently located 

between the third and fourth trans-membrane regions in PUFA accepting elongases 

(Table 5-3) indicating some possible functional role within this class of elongase 

although the location of the sequence within other elongase classes varied. The 

predicted number of trans-membrane domains for Animalia and fungal PUFA 
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elongating elongases was seven although the Oomycete Saprolegnia parasitica was 

calculated to contain only six. Non-PUFA elongating elongases contained five to seven 

trans-membrane domains, however these are predicted and may account for the varied 

numbers of domains as well as the differential localisation of the amino acid conserved 

region. Several amino acid residues were detected which distinguished PUFA accepting 

from non-PUFA accepting elongases (Figures 5-20 to 5-23) as were additional residue 

which characterised PUFA accepting elongases, and these were thought to play a role in 

substrate binding, possibly in allowing greater flexibility of the enzyme to accept the 

non-linear structure of PUFAs as functionally, the elongation procedure is identical. On 

comparing the elongases amino acid structure, the elongases clustered predominantly 

based on their function with the non-PUFA elongating ELO class grouping together and 

the PUFA elongating ∆6, ELOVL2 and ELOVL5 classes forming another large 

grouping (Figure 5-18, 5-19). In support of the evolutionary origins of the ascomycetes, 

protein analysis using ClustalW2 revealed the Mortierella elongases MALCE1 and 

MAELO branched away and were basal to the ELO class, indicating that these two 

elongases may be the progenitors of the ELO class found within Saccharomyces 

cerevisiae.  

The development of this novel genomic screen based on the ∆6 elongase should 

provide an effective initial screen which will reduce the time and resources required for 

searching for novel VLCPUFA producers. The conserved nucleotide and amino acid 

sequences allow for a degree of elongase function determination, with whole genome 

sequences allowing for the subsequent isolation and functional characterisation of novel 

∆6 elongases. Whilst the discovery of completely new fungal producers of VLCPUFAs 

is comparatively rare, the genetic recombination route provides an alternative pathway 

for the production of these desired fatty acids. Whilst novel fungal isolates may be 

capable of VLCPUFA production their amenability as an industrial organism may be 

questionable, with factors such as growth rate, biomass production, growth conditions 

and fatty acid composition playing a key role. This then makes the genes responsible, 

such as the ∆6 elongase valuable as they may be inserted into more industrially 

favourable organisms. 
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7.1 Future work 

Further work would primarily focus on elongation of the fatty acid profile in Phaffia 

rhodozyma. Initial studies demonstrated that the individual expression of the ∆5 

desaturase and ∆6 elongase within Phaffia resulted in minor modification of the fatty 

acid profile. It is hoped that all three genes may be successfully expressed within the 

yeast resulting in C20:5 n3 production. With a successful transformation, the efficiency 

of VLCPUFA production can be studied, as can the effect fatty acid modification has on 

astaxanthin production. The efficiency of VLCPUFA production may be enhanced 

through the use of alternative LPLAT enzymes to enable efficient transfer of acyl 

substrate between phospholipid and CoA substrate pools. Such an enzyme may be 

found within Mortierella alpina due to the proficiency with which this organism 

produces C20:4 n6, indicating efficient transfer between the two substrate pools. 

Identification, characterisation and expression of this gene/s may allow for greater 

yields of VLCPUFA within recombinant organisms. Further future work could continue 

the study of the remaining BAS isolates, however it should focus primarily on those 

species found from within the phyla Chytridiomycota and Zygomycota. The expression 

of the ∆6 elongase within E. coli may also be studied further to ascertain whether fungal 

elongases may function within Bacteria and to further characterise the ∆6 elongase 

through exogenous fatty acid feeding experiments. Finally, the separation of 

phospholipid components in Mortierella could be refined to allow more accurate 

localisation of fatty acids and in turn result in unsaturation indices which support the 

hypothesis that low temperature result in greater unsaturation within phospholipid 

fractions. 
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Figure 7-1. PLS-DA score plot for Figure 3-11. 
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Figure 7-2. PLS-DA score plot for Figure 3-12. 
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Figure 7-3. PLS-DA score plot for Figure 3-13. 
 

-0.5

-0.4

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

0.4

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4

p[
2]

p[1]

R2X[1] = 0.240896 R2X[2] = 0.158606 

C16:0

C16:1

C18:0C18:1 cis

C18:2 cis

C20:0

C18:3 GLA

C20:1

C20:2 n6

C22:0

C20:3 n6
C20:4 ARA

C24:0

C20:5 n3

C24:1 n9

SIMCA-P+ 12 - 2011-08-02 16:30:21 (UTC+0)  

Figure 7-4. PLS-DA score plot for Figure 3-14. 
 
 
 
 
 
 
 
 
 
Table 7-1.  Fatty acid profiles of  low temperature isolated fungi incapable of elongation 
beyond C18:3 grown on MA and YES. Fatty acid values are stated as the % (w/w) of the 
total lipid fraction.
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Organism IMI/media C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 cis C18:2 cis C20:0 C20:1 C18:3 ALA C22:0 C22:1 n9 C24:0 C24:1 n9 Total lipid mg/g

396505 yes 0.2 0.0 17.0 0.6 0.3 3.7 19.0 45.0 0.0 0.2 10.4 0.0 0.1 0.0 0.0 57.3
Herpotrichia sp. 403002 yes 0.0 0.0 15.4 1.7 0.0 6.0 18.6 41.1 0.0 0.0 7.7 0.0 0.0 0.0 0.0 9.6

Ascomycota 403004 yes 0.0 0.0 14.5 0.0 0.0 4.5 23.3 49.5 0.0 0.0 8.2 0.0 0.0 0.0 0.0 2.9
Leptodontidium sp. 403011 yes 0.0 0.5 13.5 1.2 0.5 1.9 42.5 26.8 0.0 0.0 8.6 0.0 0.0 0.0 0.0 18.5
Leptodontidium sp. 403012 yes 0.2 0.2 15.3 0.7 0.2 0.5 17.2 29.6 0.0 0.5 28.6 0.0 0.4 0.0 0.0 44.7

Herpotrichia sp. 403014 ma 0.0 0.0 23.2 1.5 0.0 5.4 33.2 33.5 0.0 0.0 2.3 0.4 0.0 0.0 0.0 61.3
Herpotrichia sp. 403015 ma 0.2 0.0 22.4 1.9 0.2 4.9 41.4 26.6 0.2 0.0 1.5 0.3 0.0 0.0 0.0 119.6
Herpotrichia sp. 403016 ma 0.0 0.0 16.1 1.3 0.0 2.6 20.8 53.1 0.0 0.0 5.6 0.6 0.0 0.0 0.0 25.8

Ascomycota 403017 ma 0.8 0.0 25.9 9.4 3.1 2.4 21.1 33.3 0.0 0.0 4.0 0.0 0.0 0.0 0.0 65.8
Ascomycota 403019 ma 0.2 0.0 21.6 6.5 0.6 4.0 34.7 28.6 0.0 0.0 3.7 0.0 0.0 0.0 0.0 52.5
Ascomycota 403020 ma 0.2 0.2 17.7 0.5 0.1 12.3 23.1 29.9 0.0 0.0 14.1 0.0 0.7 0.0 0.0 117.2
Ascomycota 403021 ma 0.0 0.0 21.4 1.6 0.2 5.5 49.6 19.1 0.3 0.0 1.6 0.2 0.0 0.0 0.0 174.4
Ascomycota 403023 ma 0.0 0.0 15.9 1.6 0.0 4.6 48.5 28.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 56.0
Ascomycota 403024 ma 0.0 0.0 18.8 1.6 0.0 4.1 43.5 26.2 0.0 0.0 2.4 0.0 0.0 0.0 0.0 56.9
Ascomycota 403025 ma 0.1 0.1 15.6 0.1 0.1 21.3 34.3 19.7 0.0 0.0 6.8 0.0 0.3 0.0 0.0 151.0
Pleosporales 403026 ma 0.2 0.0 21.6 5.3 0.4 4.0 43.7 22.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 114.3
Pleosporales 403027 yes 0.0 0.2 10.5 0.9 0.5 2.3 15.7 50.7 0.0 0.4 18.1 0.0 0.0 0.0 0.0 37.7
Pleosporales 403028 yes 0.0 0.0 12.2 1.4 1.8 5.0 17.0 38.3 0.0 0.0 22.1 0.0 0.0 0.0 0.0 9.0
Pleosporales 403029 ma 0.0 0.0 17.1 2.0 0.0 3.6 49.2 24.7 0.0 0.0 3.4 0.0 0.0 0.0 0.0 52.0
Pleosporales 403032 yes 0.0 0.0 11.7 0.9 0.5 2.6 22.5 49.9 0.0 0.0 8.8 0.0 0.0 0.0 0.0 18.3

Herpotrichia sp. 403037 yes 0.0 0.0 12.0 0.0 0.0 3.7 21.7 51.7 0.0 0.0 11.0 0.0 0.0 0.0 0.0 24.0
Pleosporales 403038 yes 0.0 0.0 11.0 0.0 0.0 3.4 19.5 42.3 0.0 0.0 5.0 0.0 0.0 0.0 0.0 21.9
Pleosporales 403041 yes 0.0 0.0 17.4 0.0 0.5 2.3 8.7 39.8 0.0 0.0 12.2 0.0 0.0 0.0 0.0 16.0
Pleosporales 403042 yes 0.0 0.0 11.3 1.0 0.0 2.2 24.1 42.8 0.0 0.0 4.0 0.0 0.0 0.0 0.0 29.8
Pleosporales 403043 yes 0.0 0.0 11.3 0.6 0.1 6.5 16.3 37.7 0.0 0.0 4.4 0.0 0.4 0.0 0.0 62.7
Pleosporales 403046 yes 0.0 0.0 13.3 2.9 0.7 3.3 24.2 47.7 0.0 0.0 5.2 0.0 0.0 0.0 0.0 17.2

Cadophora/polyscytalum 403059 yes 0.0 0.0 10.7 0.0 0.0 6.0 16.3 54.5 0.0 0.0 8.5 0.0 0.0 0.0 0.0 17.0
Leptodontidium sp. 403060 yes 0.0 0.0 14.1 0.0 6.2 3.5 18.5 40.4 0.0 0.0 9.9 0.0 0.0 0.0 0.0 31.9
Leptodontidium sp. 403061 yes 0.0 0.0 17.8 0.0 1.7 11.2 46.1 18.3 0.6 0.0 2.8 0.0 0.0 0.9 0.0 36.8
Leptodontidium sp. 403062 yes 0.4 0.0 19.2 0.6 0.0 6.6 44.8 20.3 0.0 0.0 3.7 0.0 0.0 0.0 0.0 57.5
Leptodontidium sp. 403063 yes 0.0 0.0 11.1 0.0 0.0 4.3 43.2 30.7 0.0 0.0 7.6 0.0 0.0 0.0 0.0 16.6
Leptodontidium sp. 403065 yes 0.0 0.0 13.0 0.0 0.0 4.1 40.3 33.6 0.0 0.0 6.7 0.0 0.0 0.0 0.0 12.8
Leptodontidium sp. 403067 yes 0.0 0.0 16.0 0.0 1.2 7.0 36.0 29.7 0.5 0.0 7.2 0.8 0.0 1.7 0.0 38.6
Leptodontidium sp. 403069 yes 0.0 0.0 15.6 0.0 0.0 5.6 46.6 27.2 0.0 0.0 4.3 0.0 0.0 0.0 0.0 13.9
Leptodontidium sp. 403070 yes 0.0 0.2 12.6 0.4 0.3 2.4 11.6 31.4 0.0 0.6 36.8 0.2 0.5 0.0 0.0 41.8
Leptodontidium sp. 403073 yes 0.0 0.0 19.1 0.4 3.6 7.4 27.8 17.4 0.4 0.0 0.9 0.4 0.0 0.0 0.0 41.3
Leptodontidium sp. 403074 yes 0.0 0.0 21.9 0.0 0.0 6.7 27.0 18.7 0.0 0.0 1.1 0.0 0.0 0.0 0.0 39.0
Leptodontidium sp. 403075 yes 0.0 0.0 15.7 0.0 10.0 4.5 21.6 28.4 0.0 0.0 19.8 0.0 0.0 0.0 0.0 13.4
Leptodontidium sp. 403077 yes 0.0 0.0 14.2 0.0 0.0 5.2 39.7 32.9 0.0 0.0 8.0 0.0 0.0 0.0 0.0 9.3
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Organism IMI/media C14:0 C15:0 C16:0 C16:1 C17:1 C18:0 C18:1 cis C18:2 cis C20:0 C20:1 C18:3 ALA C22:0 C22:1 n9 C24:0 C24:1 n9 Total lipid mg/g

Leptodontidium sp. 403078 yes 0.0 0.0 12.6 0.9 0.3 3.2 15.4 58.4 0.0 0.0 9.2 0.0 0.0 0.0 0.0 33.2
Leptodontidium sp. 403079 yes 0.0 0.0 21.4 0.0 4.4 8.6 35.8 25.1 0.0 0.0 4.7 0.0 0.0 0.0 0.0 27.8
Leptodontidium sp. 403080 yes 0.0 0.0 18.1 0.4 2.1 10.2 38.3 20.9 0.6 0.0 7.6 0.8 0.0 1.1 0.0 48.5
Leptodontidium sp. 403082 yes 0.0 0.0 13.2 0.4 1.7 5.2 34.8 30.2 0.4 0.0 11.5 0.6 0.0 0.7 0.0 32.6

Mollisia sp. 403087 ma 0.0 0.0 20.6 1.5 0.6 3.1 16.9 48.3 0.0 0.0 8.4 0.0 0.0 0.0 0.0 28.8
Mollisia sp. 403088 yes 0.0 0.0 21.2 0.0 15.0 5.8 23.5 22.4 0.0 0.0 4.8 0.0 0.0 0.0 0.0 26.6
Mollisia sp. 403090 yes 0.0 0.0 19.7 0.0 0.0 6.4 20.2 26.1 0.0 0.0 4.1 0.0 0.0 0.0 0.0 22.8
Mollisia sp. 403091 yes 0.4 0.0 20.3 0.0 0.0 6.3 30.1 15.2 0.0 0.0 3.2 0.0 0.0 0.0 0.0 47.3
Mollisia sp. 403092 yes 0.0 0.0 17.8 0.0 0.0 3.9 19.2 22.5 0.0 0.0 5.9 0.0 0.0 0.0 0.0 14.8
Mollisia sp. 403099 yes 0.4 0.0 22.7 0.0 16.8 4.9 24.0 23.8 0.0 0.0 5.8 0.0 0.0 0.0 0.0 40.6
Mollisia sp. 403100 yes 0.0 0.0 14.7 0.0 0.0 2.8 18.7 14.7 0.0 0.0 4.3 0.0 0.0 0.0 0.0 14.3
Helotiaceae 403104 yes 0.0 0.0 16.2 0.8 0.0 2.9 20.7 41.3 0.0 0.0 10.2 0.0 0.0 0.0 0.0 38.2

Gyoerffyella  sp. 403109 yes 0.4 0.0 19.0 1.4 0.0 4.0 36.5 17.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 41.6
Penicillium rugulosum 403110 yes 0.0 0.8 11.2 1.2 0.7 6.6 21.4 29.9 0.0 0.9 26.9 0.0 0.0 0.0 0.0 27.0

Gyoerffyella  sp. 403111 ma, 0.0 0.0 16.0 0.0 0.0 4.8 17.5 46.5 0.5 0.0 7.6 0.8 0.4 0.0 0.0 49.8
Gyoerffyella  sp. 403112 yes 0.0 0.0 12.6 1.1 0.0 5.6 8.5 47.3 0.0 0.0 23.1 0.0 0.0 0.0 0.0 28.2

403116 yes 0.0 0.0 17.4 2.5 0.5 9.6 22.8 41.9 0.0 0.0 2.6 0.4 0.0 0.0 0.8 58.2
403119 yes 0.0 0.4 10.4 1.0 0.0 13.2 7.7 44.0 0.0 0.0 17.8 0.0 0.7 0.0 0.0 20.5

Ascomycota 403127 yes 0.0 0.0 11.6 0.0 0.0 2.9 9.8 20.2 0.0 0.0 9.1 0.0 0.0 0.0 0.0 6.5
403131 yes 0.0 0.0 19.7 0.0 6.2 7.3 27.1 20.7 0.0 0.0 3.7 0.4 0.0 0.0 0.0 45.5

Mollisia sp. 403134 yes 0.0 0.0 14.0 0.0 13.9 4.2 16.0 19.2 0.0 0.0 11.6 0.0 0.0 0.0 0.0 29.7
403142 yes 0.0 0.0 14.5 0.0 0.8 2.5 9.1 24.8 0.0 0.0 9.7 0.0 0.0 0.0 0.0 22.1
403143 yes 0.0 0.0 18.3 0.0 0.0 4.2 20.7 36.9 0.0 0.0 5.9 0.0 0.0 0.0 0.0 10.1
403147 yes 0.0 0.0 16.7 0.6 2.7 3.5 29.4 23.5 0.0 0.0 3.4 0.0 0.0 0.0 0.0 35.8
403151 yes 0.0 0.0 13.3 0.0 1.8 6.9 9.3 45.5 0.0 0.0 20.3 0.0 0.0 1.6 0.0 21.4
403158 yes 0.0 0.0 8.7 4.1 0.0 3.2 8.1 48.8 0.0 0.0 8.1 0.0 0.0 0.0 0.0 9.7
403178 yes 0.0 0.0 13.3 0.0 0.8 5.0 20.2 28.3 0.0 0.0 17.4 0.0 0.0 0.8 0.0 42.7

Anarctomyces psychrotrophicus 403306 yes 0.0 0.0 3.7 0.4 0.3 0.9 33.8 21.3 0.0 0.7 30.1 0.0 0.3 0.0 0.0 73.4
Anarctomyces psychrotrophicus 403307 yes 0.0 0.0 6.8 0.5 0.0 3.7 29.8 42.6 0.0 0.0 10.1 0.0 0.0 0.0 0.0 37.1

403308 yes 0.0 0.0 3.2 1.7 1.2 1.0 61.2 25.6 0.0 0.0 4.1 0.0 0.0 0.0 0.0 50.0
Thelebolaceae 403310 yes 0.0 0.0 5.3 0.0 0.0 2.6 8.2 20.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 27.4  

 
 




