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We present a calculation of tieandD meson decay constants in lattice QCD with tvidy € 2) flavors of
light dynamical quarks, using a®(a)-improved Wilson action for both light and heavy quarks and a
renormalization-group improved gauge action. Simulations are made at three values of lattice spacing
=0.22,0.16,0.11 fm and four values of sea quark mass in the ramgém,~0.8—0.6. Our provisional
estimate for the continuum values of the decay constants #&g=208(10)(29) MeV, fgq
=250(10)(35) () MeV, fpq=225(14)(40) MeV,fps=267(13)(48)(3% MeV for Ny=2 where the statis-
tical and systematic errors are separately listed, and the third errbgfandf s shows the uncertainty of the
determination of the strange quark mass. We also carry out a set of quenched simulations using the same action
to make a direct examination of sea quark effects. Taking the ratio of resuli& fo2 andN;=0, we obtain
fol 2ty O =1.16),fy 2/fy " O=1.145), N/ f O=1.036),f 5%/ N °=1.015). They show a 10—
15 % increase in th&l;=2 results over those dfi;=0 for the B meson decay constants, while evidence for
such a trend is statistically less clear for haneson decay constants.
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I. INTRODUCTION

. (Bgby,(1—v5)qby,(1— v5)q|Bg)
BBq:RB(M) d £ > L > 3 )

The accurate determination of the Cabibbo-Kobayashi- %féqMéq
Maskawa(CKM) matrix elements is one of the most impor-

tant tasks of flavor physics. The standard model prediction o\f/vhere Rg(n) denotes a renormalization group factor to

the unitarity of the matrix still has to be tested, especially for . . o :
the unitarity relation involving the most off-diagonal ele- eliminate the variation dueE) the sce)dew'here t.he four
ments, which contain the source of tB& violation in the ~duark operatorby,(1-ys)qby,(1-ys)q is defined. In
standard model. this paper we shall focus on the decay constzﬁ}sleavmg

Two of the matrix element$V,q| and |V, can be ex- the bag parametdsy for future studies.
tracted from the experimental data of the oscillation fre- Experimentally. the Cabibbo-allowed leptonic deday
quency Amg of By-B, systems ¢ denotes eithed or s, " hag peen measured and the recent valued foare

quark through the relatiof1] 285+ 20+40 MeV (ALEPH [2]) and 28G-19+44 MeV
(CLEO[3]). On the other hand, a measurement of the decay

o 5 = i constantfg is difficult, since B*—1%», is Cabibbo sup-
Amy=——MySo(Xt) 78M quBqBBqlvthtb| .+ (D pressed in the standard model. Herfigehas to be provided

AT s 2
67
from theory, whilefDq can be used to check the calculational

. method.
where the factors other thﬁf'ﬁqBBq are known either experi-  The calculation of these decay constants have been car-
mentally or through perturbative calculations in QCD. Theried out extensively in the quenched approximation in lattice
nonperturbative coefficientss andBg_are defined as QCD, where vacuum polarization effects are neglected in
q 4 order to reduce the computational requirements. A recent
summary of these attempts is given in Rg#5]. Although
0lb- B =if 2 the approximation provides a useful first step in a lattice
(ol 7M75q| aP)) 2Pk @ QCD determination of the decay constants, the size of the
resulting systematic error is not clear. In the quark potential
and model, the decay constant is proportional to the wave func-

()
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tion at the origin squared and the potential at such shorand 1X 2, respectively, and the sums run over all possible

distance scales can be expressed in terms of the running cosites and orientations. The parameteis related to the bare

pling constant. Therefore, one can demonstrate, on a heurigauge coupling through8=6/g3. The coefficients, and

tic level, that the decay constant is affected by the number of, are defined as

flavors N¢, whereN;=0 corresponds to the quenched ap-

proximation. Additionally, a recent study of the light hadron Co=3.648, ()

spectrum in the quenched approximation indicates a devia-

tion of about 10% from experimef6]. For the decay con-

stants, quenched chiral perturbation theory suggE&®

that the deviation introduced by the approximation may be

significant. which are chosen so as to approximate the renormalization
The elimination of this approximation is numerically group trajectory in two dimensional operator space.

highly intensive and has become realistic only recently. The For quarks we employ th@(a)-improved(cloven action

MILC Collaboration[9] and Collinset al. [10] have per- [11] defined by

formed first calculations of the decay constants on the lattice

with two degenerate sea quark flavors, and found an indica- C_N' |l pW_

tion that fg_is considerably larger in the presence of sea S xzy Ux Dy CSV\'K,;V TP | Yy, )

quarks. In these studies the discretization of the sea quarks is W _ ) .

defined using the staggered fermion action, which is differenVh€re€ Dy is the standard Wilson formulation of the Dirac

from that used for the light valence qudiiilson fermion in ~ férmion matrix

Ref. [9] and theO(a)-improved (cloven fermion in Ref.

[10]]. It could introduce an additional source of systematic DX‘{,: Sxy— K>, {(1— YUy O iy

error in the results. In fact, a rather differemt(the lattice © ’ ’

spacing, dependence iifig is observed in Refl9] between + .

guenched and unquenched calculations, even though the for- (1Y) Ux Oy it ®)

mulations for valence heavy and light quarks are the sameg 4 the matrixF ,, is the simplest definition of the field
In our work we apply a consistent formulation where for strength "

both sea and light valence quarks we use the same action, ’

and study thex dependence by performing three sets of two- 1

flavor calculations aa=0.22, 0.16, and 0.11 fm. For com- F,WZE(f,w—f,Tw), 9

parison, we carry out quenched calculations at ten different

values ofa covering the range studied in the two flavor cal-\here f,, is the standard clover-shaped definition of the
culations. We employ th®(a)-improved quark actiofill]  gauge field strength. The leading discretization error in the
for both sea and valence light quarks. The same action i§jison fermion action ¢sw=0) is removed by appropri-
used for the heavy quark, applying the nonrelativistic rein'ately tuning the parametex,,. We apply a mean field ap-
terpretation of Ref[12]. The gauge field is described by a proximationcsy~= P~ 34 whereP = (W, ;). To avoid a tun-

renormalization group improved acti¢t 3], which reduces ing of csy depending on the hopping parametsr a
the descretization error on the coarse lattices on which OU}Serturbative expansion at one-lo&p= 1_0.140@3 is used
calculations are made. _ to evaluateP, since we find that the one-loop estimate ap-
_The rest of this paper is outlined as follows. In Sec. Il we . imates the observed value Bfvery well for our range
discuss the lattice actions and the formulation to treat heavgf parameters, the difference being at worst £24]. Fur-

guarks. The computational details involved in the calculatioqhermore there is also good agreement between the above

are described in Sec. Ill, and our analysis procedures in S_eaefinition of cey and the one-loop value computed in Ref.

V. t\'NeI prﬁsent the trgsutltst;]n Selc. V_w?ﬁre W?. d'SCUTS ! 15]. With this choice, the leading contributions among re-
particular how we estimate the values in the continuum fimi maining discretization errors a@( a.a) andO(a?) for light
and their errors, and make a comparison betweenNhe uarks

=0 andN¢=2 results. Our conclusions are summarized in The efficacy of this choice of actions over the standard
Sec. VI. action has been demonstrated in HR&6] by examining the
rotational invariance of the static potential and the scaling
Il. LATTICE ACTIONS behavior of the light hadron spectrum. In using the clover
fermion action, we also note that care must be taken in de-
fining currents, which will be discussed below.

1
Clzg(l_CO):_O.SSl, (6)

A. Light sector

The renormalization grougRG) improved gauge action

we employ takes the forrfil3] B. Heavy quarks

It seems implausible to examine hadrons containing
R—_
Sg= 6 COE W1X1+C12 Wiz, (4) heavy quarks with massipa>1 on a lattice with the spac-
ing a, as one expects the discretization effects to become
whereW, ., and W, ., are the Wilson loops of size X1 uncontrollably large for such large masses. However, this is
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not necessarily true for heavy-light mesons. The spatial moaction. Hence we employ the tadpole improvemie#] of
mentum of the light degrees of freedom in the heavy-lightthe above relation, which is obtained by simply replacing
system is controlled by the QCD scalg,cp rather than the amy with 8K am,.

much larger heavy quark mass scale. In the limit of infinite  The heavy-light meson masaMyqer defined in the
Mg, the heavy quark mass decouples from the dynamics oflQET is then obtained d25,26

the system, and the heavy quark effective the@#QET)

[17] becomes a good approximation. At a finite,, the aMpioer=aMpget (aM§—aMy), (12
correction may be incorporated as an expansion mgl/ ¢ h | M qf h il
which is a basis of the nonrelativistic QQIRQCD). rom the pole mas@M,,, exiracted from the exponentia

On the lattice, it is straightforward to formulate the staticfa" off of the heavy-light propagator. The supersciipor Q

; in Eqg. (12) distinguishes the mass of the heavy-light meson

E18] and NRQCD [19,20 actions, and a number of (M) from the heavy quark mas®). The parameteraM$
quenchedl calculations offg have been performed using 0 _ eV
them. Another formulation to realize the idea of HQET on@ndaMs are the tree-level defined pole and kinetic masses
the lattice[12] is also useful, as it uses the same relativisticOf the heavy quark. _ _
form of the quark action as that for light quarks except that An alternative way to obtain the heavy-light meson mass
the bare heavy quark mass, may be taken to be arbitrarily 1S to. measure its energy-momentum dispersion relation and
large. fit with the form E(p) =M et p?/(2Myin) +O(p*) to ex-

For the heavy-light system, where the typical spatial modract the “kinetic” massMy, (as employed in Ref27]).
mentum of the heavy quark is small compared to the inversé/nfortunately, for the lattices which were used to quote our
lattice spacing, one can construct an effective Hamiltoniardinal results the statistical ensemble was not large enough to

starting from a relativistic action optain an accurate mgasurementl\atin. For this reason,
this choice of the kinetic mass will not be further discussed
- D2 i3.B [y-D,y-E]| - here.
H~W| M+ yoAo— - ~ %0 > ) The axial current to be measured should also be modified
2M 2 2M B 8M E

(10 to obtain the results correct @(1/M) according to

h—(1—ad;y-D)h, (13
whereD is the covariant derivativel, the Pauli spin matri- o
ces, andB andE are the chromomagentic and chromoelec-whereh is the heavy quark field and equivalently for and
tric fields, respectively, and an expansion in small spatiathe parameted, is a function ofam,. At the tree level, it is
momentum or equivalently iaD on the lattice is performed. given by[12]
This Hamiltonian is equivalent to the standard nonrelativistic
Hamiltonian if the “mass” parametersl,, M,, Mg, and ad. = l+am, 1
Mg are equal to each other. Those are, however, different T amg(2+amg)  2aM,’
functions ofamy and not necessarily equal to each other,
unless the parameters in the initial relativistic action are apand the axial vector current for heavy-light mesons, correct
propriately tuned. The strategy suggested in R&f] is, to O(1/M), takes the form
therefore, to take the action as an effective theory to generate _ _
the dynamics described by E(L0). The appropriate mass AL(X)=1(X) ¥57,h(x) —adil (X) ysy,y-Ah(x), (15)
parameter in the nonrelativistic effective theory is the “ki- i ) i i
netic” massM., while the “pole” massM, does not affect wherel is the light guark flgld. The tadpole improvement of
the dynamics of heavy quark and plays merely a role oflt_May be applied again with the replacemeatn,
energy shift in this formalism. To obtain a correct action at— 8Kcam.

order 1M, the mass parameter which characterizes the spin- 11¢ ;o!lowi_“g point_ should also bednote?]. Tlhe_action be-
magnetic interaction ; must be equal ., which is sat-  Ng used is still a relativistic action and as the lattice spacing

isfied for theO(a)-improved(clover action up to perturba- becomes smaller, it is ex.p.ec.ted that theory should smoothly
tive corrections. On the other hand. there is no tunabl&©SS overto a fully relativistic theory. That means the mass
parameter in the clover action to maki- equal toM, and paramete.rsM 's become identical agmp decrea;es. The lat-
Mg, S0 that the contributions &(1/M?2) and higher are not tice spacing dependence of physical quantities, suchgas

correctly described by the clover action and f, is, however, highly nontrivial unlessy, is much
At tree level, the kinetic masMl, of the heavy quark is smaller than H, and the continuum extrapolation in such a

given by[12] situation would not be justified with any simple ansatz, e.g.,
linear or quadratic ira. The formulation is, therefore, treated
5 1 1 as an effective theorisuch as NRQCI and the discretiza-
= + ' (11)  tion error should be reasonably small at fix@dh order to
amg(2+amp) l+am obtain reliable results.

Despite the caveat of the preceding paragraph, this ap-
where the bare masam, is defined asamy=3;(1/K proach has been successfully implemented in the quenched
—1/K.). The one-loop relation is also knoya1—-23 for the  approximation in Refd.26,27] using the plaguette gauge ac-
standard plaquette gauge action but not for our choice of théon. Since we use a gauge action which has been unused in

(14)

aM,
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TABLE I. Simulation parameters fdl;=2 lattices used in the TABLE II. Chirally extapolated parameters fdi;=2 lattices
heavy quark calculation. For the number of trajectories those irused in the heavy quark calculation. The lattice spacing is fixed by

parentheses show the full ensemble generated. p meson mass.
B Csw Kea Mps/my No.traj. Ky (K)™ Ky(¢)™* B g5s(1/a) a(Gev?)
1.8 1.60 0.1409 0.8Q7) 56806250 6.9293) 7.0376) 1.8 3.162 1.0941)
0.1430 0.758]) 52005200 6.9454) 7.0458) 1.95 2.812 0.78885)
0.1445 0.69€) 65307000 6.9563) 7.0447) 2.1 2.562 0.55d.1)

0.1464 0.54®) 40705250 6.9694) 7.0288)
1.95 1.53 0.1375 0.804) 68107000 7.1442) 7.1903)

0.1390 0.75@) 50007000 7.1542) 7.1963)  chiral limit of sea quark. The four sea quark masses are tuned
0.1400 0.69(1) 68007000 7.1642) 7.2023)  go that the pseudoscalar-to-vector mass raja;/my be-
0.1410 0.581) 48707000 7.1662) 7.1934)  comes roughly 0.80, 0.75, 0.70, and 0.60, which correspond
2.1 147 0.1357 0.81@) 19904000 7.2833) 7.3086) o the range of quark mass of-3.5 times physical strange
0.1367 0.75®) 20004000 7.2822) 7.2984)  quark mass. The simulation parameters are listed in Table I,
0.1374 0.698) 19104000 7.2852) 7.2994) where the number of HMC trajectories is also shown. We
0.1382 0.57(6) 19454000 7.2853) 7.2995) note that aj8= 2.1 the configurations analyzed constitute the
first half of the ensemble for each sea quark mass. The full

. . L set of configurations is used @=1.95 and 1.8. The mea-
the previous heavy quark calculations it is important for us,

o .~ “surements are performed on configurations separated by 10
that we repeat the calculation in the quenched approximatio

in order to see if the quenched results obtained with thtBMC trajectories af3=1.8 and 1.95 and by 5 trajectories at

“ » . B=2.1. The statistical analysis is done using the jackknife
standard” plaquette gauge action are reproduced. method in order to take the correlation of successive trajec-

tories into account. The bin size is 50 trajectories forlNll

Ill. COMPUTATIONAL DETAILS =2 runs, which has been determined to be a suitable length
for eliminating autocorrelationgl4].

The lattice spacing is determined for eg8hvalue using

Gauge configurations were generated fig=0 and N; the p meson mass as input at the physical sea quark limit.
=2 using the renormalization groufRG) improved gauge The chiral extrapolation of light hadrons is discussed in Refs.
action and theD(a)-improved Wilson quark action as dis- [28,29,14. The lattice spacings are listed in Table II.
cussed in Sec. Il A. Technical details on the configuration In order to see the sea quark effect consistently using our
generation forN;=2, carried out with the hybrid Monte choice of gauge and quark actions, we prepared ten sets of
Carlo algorithm, are described in our dynamical QCD calcuthe quenchedN;=0) gauge configurations. The values@®f
lations paper$28,29,14. are chosen so that the string tension matches with each of

In theN¢=2 calculations, we performed three sets of cal-full QCD configurations a3=1.95 or 2.1 at four sea quark
culations at bare gauge couplinggs=1.8, 1.95, and 2.1, masses and also in the chiral limit. For calculating lattice
which correspond to the lattice spaciag-0.22, 0.16, and spacing and hence the physical value of the decay constants,
0.11 fm, respectively. The lattice size is>%224 (3=1.8), the p meson mass is used as input in conjunction with the
16°x 32 (1.95), and 24x 48 (2.1), with which the physical vector masses measured on the lattice extrapolated to the
volume is approximately2.5 fm) 3. For each set, we carried light quark masses. The detail of our parameter choice in the
out runs at four values of sea quark mass in order to take thguenched runs is summarized in Table III.

A. Gauge fields

TABLE lIl. Simulation parameters folN;=0. The lattice size employed is 3832 for 3=2.187
—2.281 and 2#x 48 for B=2.416-2.575. The lattice spacing is fixed ymeson mass.

B Csw Oie(lla) a(GeV'') No.conf. NoK, No.K, Ky(K)™* Kg¢)*
2187  1.439  2.809 1.0170) 200 7 2 7.2760)  7.3289)
2214 1431 2767 0.96850) 200 7 2 7.298)  7.3408)
2247 1422 2716 0.919) 200 7 2 7.3164)  7.3567)
2281 1412  2.664 0.8980) 220 7 2 7.348%)  7.3958)
2334  1.398 2587 0.829 200 6 3 7.378)  7.4206)
2.416  1.378 2477 0.789) 190 8 2 7.4184)  7.4527)
2.456  1.370  2.432 0.678) 190 8 2 7.422)  7.4494)
2.487  1.363  2.401 0.652) 200 8 2 7.43B)  7.4625)
2528  1.355  2.349 0.618) 195 8 2 7.440)  7.4714)
2575  1.345  2.298 0.578) 200 8 3 7.45@)  7.4804)
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TABLE IV. Smearing parameters used. The gauge-fixed smeariteration of the solver is applied a minimum o< times,
ing function takes the fornA exp(-Br). whereT is the temporal extent of the lattice, before applying
the maximum residue criterion.

ﬁ Nf Ksea A B
1.8 2 0.1409 1.09 0.91 C. Heavy-light current
18 2 0.1430 1.09 0.91 We compute the correlation functions constructed from
18 2 0.1445 1.09 0.91 the following operators:

1.8 2 0.1430 1.09 0.91 o

1.95 2 0.1375 1.28 0.58 P(x)=1(x)ysh(x), (16)
1.95 2 0.139 1.28 0.58

1.95 2 0.140 1.23 0.71 A(x)=1(x)ysyoh(X), (17
1.95 2 0.141 1.27 0.6

1 > omer 12 ose SA0)=T00 7707400 (19
2.1 2 0.1374 1.28 0.54 The heavy and light quark fieldsand| are normalized with
5'187 % 0'1382 1122: (()):84 \/1—3K/4KC, which is mot?vated with the'nonrelativistic in-
2'214 0 ~ 1'28 0'58 terpretaﬂor{_lZ] together vylth the tadpole |mproveme{m4_]._

: : ' The derivative currenbA is used to construct the modified
2.241 0 - 1.28 0.58 current according to Eq15), andA is the discretised cova-
2.281 0 - 1.28 0.58 riant derivative defined as
2.416 0 - 1.28 0.54
2.456 0 - 1.28 0.54 1 A A A
2.487 0 - 1.28 0.54 Aih(x)=E[Ui(x)h(x+i)—UiT(x—i)h(x—i)]. (19
2.528 0 - 1.28 0.54
2.575 0 - 1.28 0.54

Specifically, we measure the correlation functions

B. Valence quarks 2 (PL()Z,t)Pg(O)), E (PL()Z,t)PI(O)),

The heavy and light quark propagators are calculated on
each set of the gauge configurations for @@)-improved
Wilson action with the same choice ok, as used in the - -
configuration generation. For each set of gauge configura- E <A(X’t)P£(O)>v 2 <A(X’t)PE(O)>’ (20)
tions, eight values of the heavy quark mass are chosen so X X
that their HQET mas$12) lie roughly on the interval of the
b andc quark masses. 2 (SAXDPY0)), 2 (SAX.HP(0)),

The light quark mass on the dynamical configurations is X X
the same as their sea quark mass. In addition, we choose
another quark mass for each set of configurations so that where the subscriptS andL on the pseudoscalar operators
satisfiesmpg/m,=0.688. To compute any of the obsery- indicate whether smeared or local operators are employed.
ables at the strange quark mass, the relevant observables dige axial currentA and the derivative current are always
interpolated to the strange quark mass defined from the madecal.
of the K or ¢. The light quark masses fod;=0 are chosen

to take values approximately the same as those for the IV. ANALYSIS
equivalent latticeqi.e., those lattices with matched string
tension for Ny=2. A. Correlators

The gauge configurations are fixed to the Coulomb gauge The correlation functions defined above take the follow-
with a global maximum residue for T#(A;)* set to 10 or  ing form for large Euclidean time separatiome takea=1
less. The light quark propagators are solved with locakor simplicity):
sources while the heavy quark propagators are computed
with local and smeared sources. The smearing is made WitE P ()P (0
the exponential functio® exp(—Br), with the mean radius = (PLX,D) L9(0)

1/B chosen to approximately reproduce the heavy-light wave

function. The parameters andB are listed in Table IV. Zp 2p s VI,
Both light and heavy quark propagators are obtained with =€ P9 = costiM o T/2—1)]
a solver based on the BiCGStab algorithm. For large values
of heavy quark mass, stopping the solver if the residue be- z z
comes smaller than some minimum is not sufficient for ob- A PR VI, 7 / _
T : | | : + e Vpole“cosh M T/2—1)], (21
taining the solution at large time separations. In this case, the 2M’
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2.6 L —

2 (AP (0)) I O am‘fffl Local Source ]
X s [ ® o0 am" Smeared Source |
_ ATPLs —MpoleT/2 i _ Ksea:O'1430 6218 1
BTV R SINH M pod T/2—1)] 24 K, = 0.0954 N
ZaZe g ,
We”\"polemsmi{Mr’Jo|e(T/2—t)], (22)
2 (SAXDPLg(0))
X
5ZAZP(L 9 .
=T’e*MpoleT’23|nr[Mpo|e(T/2—t)]
8ZpZp , 0 5 10
+——— e Muo2sin{ M, T/2—1)], (29
2M FIG. 1. Typical effective mass plots gt=1.8 forN;=2. The fit

. . range is from 3 to 11.
whereT is the temporal extent of the lattice, aMlandM’

are masses of the ground and the first excited pseudoscal@nd a double-exponential fit. This condition increases our
states, respectively. The masses extracted front tepen- ~ confidence that higher state contamination is eliminatiedl.

dence of the correlation functions are the pole masses, whilé the double-exponential fit the ground and excited state
the M’s appearing in the denominator come from the nor-€nergies must be statistically resolvable, i.e., there must be

malization of states, and their definition need not be specifie’0re than one standard deviation between their central val-
for calculating the combination dfs\M ues(since we expect the physical states to be distinctly sepa-

) ) rated.
The matrix elementst are defined as The effective mass plots for théPP) correlators, to-

z =(0|P,_&(0)|P(0)) (24) gether with fit curves, are shown for a typical heavy-light
Py (L.9) ’ meson mass in Figs. 1—%4(=2 casg¢ and in Figs. 4 and 5
_ (quenched caseFor the 16 32 lattices(Figs. 2 and 4, for
Za=(0[A(0)|P(0)), (29) which the correlated fit can be done, thé/Npg is also
shown in the plots.
5Z,=(0| 5A(0)|P(0)), (26) P

. B. Heavy-light decay constant
where|P(0)) represents the heavy-light pseudoscalar meson

state at rest. The primed quantities are defined in a similar The heavy-light decay constafi is obtained through
manner for the first excited state.

We carry out a simultaneous fit of the three correlators i
(21)—(23). Formally, for large Euclidean times, the contribu- \/M
tion of the excited state will be negligible. However, it is
included in the fit so as to use a wider range of Euclidean o 4

a¥(fp M) =Zp——=(Z2x—ad;52,). (27)

times and reduce the size of the statistical error. For those

, . : X ) 3.0 — K., =0.1400 $=1.95 —
sets of configurations with lattice volumes of size’%124 L K, = 0.0900 1
and 16x 32 the sample size is large enough to perform a L K, = 0.1400 _

correlated fit of the local and smeared source data, where the
correlation among different time slices are also taken into
account. For the largest lattice 2448, such a correlation
matrix appeared to be too large to achieve a stable fit with
our statistics. We, therefore, use the uncorrelated fit through-
out our statistical analysis, and check that the results are
unchanged within statistical errors with the correlated fit

x?/dof=88/38

when it is possible. o 1z

The fit criteria we apply for selecting the fit range are as r ] am‘;’ff Local Source
follows [30]. (i) The quality of fitQ should be acceptable, r o ami’“ Smeared Source |
e.g.,Q>0.1.(ii) The results for the chosen fit range should i ol ]
agree to within one standard deviation of the results when 0 5 10 15

the minimum time slice is increased or decreased by one

time slice. (i) There should be agreement between the FIG. 2. Typical effective mass plots gt=1.95 forN;=2. The
ground state results obtained using a single-exponential ffit range is from 4 to 15.
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22— T ] 1.2 T
i 1 - 0 am$” Local Source
2.1:_ K ,=0.1374 ﬁ=2.1_: - 0 am$" Smeared Source
! K, = 0.0850 ] - o n,=0 f=2.456 ]
I K, = 0.1374 ] - K, = 0.1200 ]
2o - 11 K, = 0.1342 —
1o "" g éiéﬁ__ | |
L o am$" Local Source ] i |
1.8:_ IO Ianlliffl Sme.are.d ISO}Jche | _: o I L | %@I »
0 10 20 10 20 30

FIG. 5. Typical effective mass plots gt=2.456 forN;=0. The

FIG. 3. Typical effective mass plots gt=2.1 forN;=2. The fit . i
fit range is from 5 to 21.

range is from 5 to 21.

In the massless limit, the renormalization constZptwas  malized coupling is not yet available for the RG gauge ac-
previously calculated perturbatively to one-loop order for thetion, we use the continuum modified minimal subtraction

RG-improved actiof31]. Here we use a recent extension of scheme M_S) coupling as an alternative.

this result to finite heavy quark masses made by Ishikawa The one-loop perturbative relation between the bare and
et al.[32]. The results can be expressed in the form (MS) couplings for the RG improved gauge action and the
O(a)-improved Wilson quark action is known §31]

: (28)

1
Zp=1+ag pat p log(amy)

1
where the one-loop coefficieniy=ps— (1/7) log(am) is —=E+0.1000+0.0315\lf.

2
plotted in Fig. 6 as a function amy, for the cases whed, Ois(w=1/a) 6
takes the tree-level value and when it is ignored.

It is well known that perturbative expansions in lattice ] )
QCD are ill behaved when one uses the bare coupling conlhe tadpole improvemei24] may be applied to reduce the
stantgZ, and the use of some renormalized coupling defined!ltraviolet dominated pieces from the perturbative expan-
through short-distance quantities gives a more convergeroNS Py reorganizing the above relation as
expansion[24]. Since a two-loop calculation of short-
distance quantities necessary to define an appropriate renor-

(29

=(coP—8c,R) g —0.1006+ 0.0313\;,

3.5 _m T T T | T T T T | T T T T |_ gf/l_S(M: 1/a)

- B=2.247 ] (30)

s K, = 0.0700 ]

I Ké = 0.1355 1 whereP=(W,,,) andR=(W,,) are the expectation val-
30— x"/dof=55/34 | ues of plaguette andx2 rectanglg13], and the one-loop

0 am$" Smeared Source |

eff

expression®=1-0.1402)> andR=1-0.268%?> are used
to obtain the modified one-loop coefficient in E§Q). The
values ofgf,l—s(,uz 1/a) obtained with this formula are 3.162,
2.812, and 2.562 g8=1.8, 1.95, and 2.1, respectively, for
the Ny=2 lattices. The same quantity for the quenched lat-
tices is listed in Table IlI.

In Fig. 7 we plotZ, as a function of the bare heavy quark
mass for the plaquette and RG-improved actions for an in-

verse lattice spacing of around 1.8 Geg=5.9 for the Wil-
son andB=2.528 for the RG action in the quenched ap-
proximation. In contrast to the large one-loop correction of
order—20% for the case of the plaquette gauge actinis
close to unity for the RG-improved action.

1 1 |
10 15

- O a Local Source
2 0 1 1 1 1 I]]’lll 1 1 1 § 1 1
5

0

FIG. 4. Typical effective mass plots gt=2.247 forN;=0. The
fit range is from 4 to 14.
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T T ' T T T T 0.08 T I T I T I T
L i . ® ]
0.06 - o) © © 0} -
+ d,=TreeLevel [ Oo o ]
of [ X %=0 i N 1
0.04 |- X X -
X
~ : v ¥V Yv ]
E ¢ 1 [ v ]
g . O Ng=2,p=2.1,K=0.1357 -
0021~ x N=2, p=2.1, K=0.1382| ]
ool _ i T I/MB v N=0, p=2.575 ]
i | A | . ] ]
0096 0.2 0.4 0.6 0.8
UM (GeV')
045 : L : . ' L ' . FIG. 8. Ratiof [S'aqf yetaed_ 7 of decay constant including
the current rotation to the lowest order current to that without the
o correction forNy=2 (circles and cross¢sand N;=0 (triangles.
FIG. 6. The function po(am,) where Z(amy)=1 The gauge couplings were picked so that the lattice spacing roughly

+agpo(amy). Pluses show results when theviLkorrection to the ~matched with each other.

current is includedi.e., d; takes its tree level valjigand crosses
are those without the correctiod(=0). Solid curves are interpo-

lations. funrotated Care must be exercised in this comparison to use

the appropriate renormalization fact&g for the rotated and
unrotated currents shown in Fig. 6 since the diagram origi-
nating from the rotation term should be excluded for calcu-
lating fu""@*d The Jattice spacing foB=2.575 atN;=0 is
approximately equal to the lattice spacing, extrapolated to

We first examine the effect of field rotatigh3), which is ~ the chiral limit, for 3=2.1 atN=2, which allows a more
reflected in Eqs(15) and(27) as a correction proportional to "élevant comparison of the ratios. As one can see, the mag-
d;. An order counting suggests the size of the correction ofiitude of correction is of the order of-37 %, which is
the order ofad;Aocp, Which is aboutd; X 15% at 14~2 larger than our expectation and cannot be ignored. N
GeV if Agcp=300 MeV. Since the tree-level coefficiedt The large magnitude of this correction may partly origi-
given by Eq.(14) is smaller than 0.1 for any value of the hate from a power divergence of the matrix element of the

bare quark masamy, the size of the correction is naively higher dimensional operatafA defined by Eq.(18), with
estimated to b&©(2%). which the naive order counting @(aA ocp) is changed to a

In Fig. 8 we plot the quantityfo@ejfumoated 1 55 5 size of O(1). In principle this power divergence should be
function of the meson mass fod;=2 and N;=0, where compensated by that in the perturbative matching. However,

V. RESULTS

A. Effect of field rotation to the heavy-light current

froted includes the rotation term while it is ignored in & the one-loop order in the calculation of R¢B2), the
compensation is incomplete.
1~3 T I T I T | T
12 -_ & RG gauge action, =2.528
L O Wilson gauge action, p=5.9| |
11 —
10 —
NC  lessse s e & ¢
09} —
08O O o =
07t — o4l | © K=0.1409 ]
L | | | . “[ | o K=0.1430 J
Y S [ | o K=0.1445 ]
x K=0.1464
amo - |
0.0 . | : | . |
FIG. 7. The renormalization constafdf as a function ofam, 0 0.2 0.4 06
for the Wilson(at 8=5.9) and RG(at 8=2.528) gauge actions. In laM

the case of the RG actiod, is computed to specifically include the

1/M correction to the current while in the Wilson action it is not. FIG. 9. A plot of ®(aM) vs 1aM for Ny=2 at 8=1.8. The

The inverse lattice spacing is roughly 1.8 Gé the quenched data for four different sea quark masses are shown, and the light
approximation for both cases. valence quark mass is set equal to the sea quark mass.

034505-8



DECAY CONSTANTS OFB AND D MESONS FROM . .. PHYSICAL REVIEW D64 034505

1.0 T | T T | T I T I T T T T T | T T T T | T T T T | T T T T i
B=2.334 |
N=0 ]

04
3
& L ]
g | i
(a1
02 -
B g E:gggg - - 0 K=0.1337 7
o2 |5 K=01400 . [ |5 K013 3
| | x K=0.1410 1 i — .
I I I I I I I I I I . 0‘0 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
095 0.1 02 03 0.4 0.5 0 02 04 06 08
1/aM

1/aM

FIG. 10. Same as Fig. 9, but fgt—1.95. :ZF:LC;.1 12. A typical plot of®(aM) vs 1aM for N;=0 at g3

B. Extrapolation to physical quark masses . .
P . Py . d The renormalization group factdrag(M)/ag(Mg)]¥#° is

In order to obtain the heavy-light decay constépt/M  evaluated with a two-loop running coupling coefficient

for the physical mass ) andD ) mesons, we fit the data adoptingA ocp=300 MeV for bothN;=2 andN;=0. We

with the following form: have checked that the resulting decay constants are stable
1 well within statistical errors under a variation &focp by a
324, — 2 factor 2.
a%’dp=Ay+Ajamy+ Ay(amy)?+ —[By+Bam
P=Aot Ayt Az(amy) aM[ ot Biam] The form(31) is a truncated expansion of the matrix ele-

ment in 1AM and inamy. It is possible to include higher

order terms; however, the resulting fit coefficients are statis-
(3D : . .

tically not well determined, and we do not include such

terms in our analyses.

where we define the renormalization group invariant decay In determiningfg intheN;=2 case, we only employ the

+——C,,
(am)2 °

constantb, as matrix elements where the sea and valence light quark
" masses are matched. Fbgs we interpolate, at each sea
sog | @s(M) Fo 32 quark mass, the matrix element in the valence light quark
a%p = a¥(fp M), (32) . : :
ag(Mp) mass to the physical strange quark determined using the par-

tially quenched analysif28,29,14. The values of the hop-
with Bo=11—3N;. The light quark mass is defined as ping parameteK corresponding to the strange quark are
amg= 3(1/KK—1/K.), whereK, denotes the value at which
pion mass made of sea quarks vanishes, and the HQET mass 1.4 i I A
definition (12) is used for the heavy-light meson mass

. f=1.8 N,=2 ]
0-5_ T I T T I T T I T i 12 __ __
0.4 N.=2 - L =
f ] 1.0 — —
—_ ] < i .
§ 0.3 —: 3“ r
o 1
S 02

0 K=0.1357 7 ]

o K=0.1367 4 —

0.1 ¢ K=0.1374 7] q

x K=0.1382 . P ]

ool— L v 111 ] oal o oy ]

0 0.2 0.4 0.6 0.8 1 0.0 0.1 0.2
1/aM am,

FIG. 11. Same as Fig. 9, but f@=2.1. FIG. 13. A plot of @ vs am, for 8=1.80 andN;=2.
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0.9 T T T T | T T T T | T T T T 0.5 T T T T | T T T T | T T T T | T T

f=2.334 N;=0 g

™

(l
=
©
o
Z

[l
W
T

0.8

0.7

0.6

a%? ¢
a¥? ¢

0.5

0.4

0~3 1 1 1 1 | 1 1 1 1 | 1 1 1 1 |

0.2 1 1 1 1
0.00 0.00

0.05 0.10

FIG. 14. A plot of ¢ vs am, for 8=1.95 andN;=2.

FIG. 16. A typical plot of® vsam, for N;=0. ForN{=0, am,
is the bare quark mass.
listed in Tables | and I, for th&k and ¢ meson masses as
physical input. The critical hopping paramet€f necessary It is also illustrative to plot the data at fixed heavy quark
for evaluating the light quark mass, is also listed in these masses as a function afn,, which is shown in Figs. 13-15
tables. . . for Ny=2 and Fig. 16 foN;=0. Since the results are given
The quenched data are analyzed with the same fit ansafg; fixed Ky, the heavy hopping parameter, we interpolated
except that the term, is set to zero, as the number of light the curves foraM as a function oK}, andam, and hence
quark masses in this case precluded a quadratic fitfEOr reexpressed the coefficients of Eg1) as a function oK},
andfpg, the termsA; andB; are also set to zero, since there gpg am,. For N;=2 we find clear curvature, which moti-
iS no remaining Iight quark mass dependence once thgated us to introduce the termz(amq)z in Eq. (31). We,
strange quark mass is fixed. o then, find good agreement of the fits to the data points. The
Fits with the form(31) are represented in Figs. 9, 10, and fjt parametersA;, B, and C, are summarized in Tables
11 for three lattice spacing fa¥;=2 and in Fig. 12 folN; V—X for each set of configurations.
=0. Data_points and fit curves are plotted as a function of TheB andD meson decay constants in physical units are
1/aM for fixed am,, from which one can see that the ansatzgptained from Eq(31) with their physical meson masses as
(31) represents the data quite well, except for a few points afnput, and the numbers are summarized in Tables XI and
B=1.8. XlI, respectively. The lattice scale is set using fheneson
mass.

0.4 T T T

T | T T T T
g=2.1 Nf:2 ] C. Discretization effect

The decay constants are plotted as a functioa iof Figs.
17 (fg ), 18 (fz), 19 (fp ), and 20 €p ). For fg_ (Fig. 18

TABLE V. Chiral HQET fit parameters foN;=0.

a¥? ¢

FIG. 15. A plot of®g vs am, for 8=2.10 andN;=2.

B Ao Aq Bo B: Co
2.187 067027 1.106) -0.798) —1.179) 0.48560)
2214 059R9 1.049) -0.668 —0.9513 0.37355)
2.247 055625 1.008) -0.577) -0.8911) 0.29651)
2.281 0485 1.0013) -0.436) -0.8617) 0.19636)
2.334 04122 0.93100 -0.365) -0.7814) 0.17331)
2.416 0.31812) 0.845 -0.202) -0.605) 0.05510)
2456 0.31®) 0.5224 -0.243) -0.3122 0.0657)
2.487 0.26410) 0.784) —0.162) —0.474) 0.0446)
2.528 0.23716) 0.8234) —0.131) -0.5023) 0.0324)
2575 0.238) 0.6715 —0.141) —0.364) 0.0434)
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TABLE VI. Strange(defined from theK) HQET fit parameters TABLE VIII. Chiral HQET fit parameters foN;=2.
for Ny=0.
B Ao Ay Az Bo B1 Co
B Ao Bo Co

1.80 0.9%2) 0.484) —0.102) -—-1.276) —0.343) 0.763)
2.187 0.78823) —0.897) 0.45663) 1.95 0.512) 0.616) —0.144) —0.728) —0.497) 0.588)
2.214 0.69822) -0.757) 0.36657) 2.10 0.2%1) 0.569) —0.3415 -0.181) -0.252) 0.065)
2.247 0.65(0) —0.656) 0.29351)
2.281 0.588L5) —0.54(5) 0.228398)
2.334 0.49213) —0.424) 0.17232) =0, theN;=2 data would be already close to the asymptotic
2.416 0.36615) —0.243) 0.06322) flattening at arounda=0.7 GeV ! and the data ap=2.1
2.456 0.35710) -0.252) 0.07611) may be taken as an estimate of the continuum limit. Since we
2.487 0.3189) —-0.192) 0.0498) cannot do better with the present data, we provisionally take
2.528 0.28812) —0.162) 0.03013) the point at3=2.1 as the continuum value, allowing for the
2.575 0.2787) —-0.171) 0.0516) possibility that the true value may be somewhat smaller than

our estimate. From the shape of tjfedependence of the
N;=2 data and their error bars, however, it seems likely that
andfp_(Fig. 20, we use the mass ¢f to define the strange the continuum value is somewhat larger than thalef 0.
quark masgas a short hand, we will refer to this &g (K) The extraction of the continuum limit for thB meson
andfp (K)] s decay constant is more subtle, since we see a Iarge_zr drop
D\ 1 , from B=1.95 to 3=2.1 rather than3=1.8 to 1.95. While

For the quenched dat&l¢=0), where ten data points are \ye take the data g8=2.1 as our provisional estimate for
available, we observe a r"l"p'd decrease as the lattice spacing ihere is a possibility that the true value is smaller. Re-
decreases from~1 GeV " to a~0.8GeV -, followed by  yargless, it can be concluded that the dynamical effecDfor
an almost constant behavior within statistical fluctuations bepesons is appreciably smaller than that Bbmesons. We
low a~0.8GeV *. We therefore fit the five data points for employ the same strategy as above for estimating the ratios
a<0.8GeV ! as shown in the figures, and take this as OUrf. /fay andfps/fpg @s shown in Figs. 21 and 22.
central value for the quenched result of the decay constant.
From our data it is also possible that the decay constant is
still decreasing in the regioa<0.8 GeV ! toward the con-
tinuum limit and that the continuum result is about 10% We now examine the issue of systematic errors in our
lower than our estimate. This possibility can be accountedesults for the decay constants. For this purpose we list the
for by our estimate of systematic uncertainty as we discuss if0ssible leading order errors and estimate their magnitude

the next section, where we consider systematic errors déising naive power counting. . .
pending ona. Generically these errors appear in three forms. First, we

There is no evidence thi;=2 data becomes indepen- Use tree-level mean-field estimates of the coefficients in the
dent of the lattice spacing. So we are not able to safely estiactions and currents and hence there will be radiative correc-
mate theB meson decay constant from our data. We maytions, which are proportional to some poweraa{ n). Since
discuss, however, our results in the following way. The slopghe dominant part of the radiative corrections comes from a
of the decrease ofg from 8=1.8 to 1.95 quite resembles short distance region in the lattice four-momentum integral,
that for Ny=0 for stronger couplings, while the decreaseWe assume the scale to be 1A. Secondly, discretization
from B=1.95 to 2.1 is somewnhat reduced. If we suppose thagffects in the Lagrangians will be of the order a|g|)",

the N;=2 data behaves in a way similar to those foy Wheren is an .integer ang _is some soft momentum scale
that characterizes the spatial momentum of the system. We

TABLE VII. Strange(defined from thap) HQET fit parameters  take these soft modes to be of the orderAqfcp. Finally,
for Ny=0. there are power corrections to the heavy quark effective
Hamiltonian, which are of the order of some power of
B AO BO C:0 AQCD/M .
In detail we expect the following corrections in our case.

D. Systematic errors

2.187 0.81422) —0.957) 0.49260) . . . . .

5914 0.7280) —0.806) 0.30355) (i) Gluon and light quark actions: For the RG-improved
2.247 0.66720) —0.676) 0.30052) ) )

2281 0.61115) ~0.595) 0.25746) TABLE IX. Strange(defined from theK) HQET fit parameters
2.334 0.51213) —0.45(4) 0.18828) for Ny=2.

2.416 0.38013) —0.253) 0.063198)

2.456 0.36%7) —0.252) 0.07610) B Ao Ar Az Bo By Co
2.487 0.3263) —0.201) 0.0478) 1.80 1.092) 2.5728) —6.83119 —1.434) —1.1418) 0.783)
2.528 0.30120) —0.17(4) 0.03622) 1.95 0.602) 2.5837) —4.71(225 —0.797) —2.0643) 0.576)
2.575 0.281) -0.191) 0.0526) 2.10 0.301) 1.3236) —3.86287 —0.201) —0.5810) 0.065)
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TABLE X. Strange(defined from thep) HQET fit parameters  the QCD scaleA ocp=300 MeV. Therefore, we also make
for N¢=2. the similar estimates with ocp=600 MeV. In Fig. 23 we
replot de for Ny=2 as a function of lattice spacing. The

statistical error is shown by thick error bars, while thin lines
1.80 1.182) 2.6426) —7.25156 —1.493) —1.1318) 0.843)  represent the total error for which the statistical and esti-
1.95 0.623) 2.6537) —5.55217) —0.828) —1.9742) 0.597)  mated systematic errors are added in quadrature. The system-
2.10 0.311) 1.2236) —2.69282) —0.21(1) —0.639) 0.0714)  atic errors are estimated withocp=300 MeV (circles or
Aqcp=600 MeV (diamondg. The systematic error is the
smallest at the finest lattice spacing=2.1) as one can see
gauge action, the leading discretization error is of the sami Table XIll. This confirms our expectation that the result
order as the plaquette gauge action, WhiChQiA&cD)z- For  from this B value provides the best estimate fiyy, in the

the O(a)-improved Wilson quark action for light quarks, the ¢oniinyum limit. It is also important to note that the data at

Leadlcr;gterror IIS OK?(“S?A?CDg sgﬂce the C?elfg(?'emsw IS (coarser lattice spacings are consistent with the resul@ at
uned at one-loop [evel only by theé mean Tield Improvement_ 5 1 it e take the systematic error into account with

(i) Heavy quark actl_on: For th@(a)—lmproved Wilson Aocp=600 MeV. It suggests that our estimate of systematic
quark action, the leading error appears in thildterm at errors is realistic for oep=600 MeV, which we employ in
the tree level in the effective Hamiltonain, which is a source Q '

; - uoting the systematic errors in the following.
of systematic error oO[(AQCD/M)Z]. An additional error g g y g

S : . The systematic errors can also be examined by taking
comes from the radiative correction that changes the relatiog,o, quantities to set the lattice scale, with which the sys-
between M, and Mg, and yields an uncertainty of ’

o .~ tematic errors enter in a different way. To see this, instead of
O(asAqcp/M). (iii) Current corrections: The renormaliza- yhe rho meson mass employed in this work, we take the pion
tion coefficientZ, is computed only to one-loop accuracy,

: L % decay constant,. to normalize the decay constant, while the
hence higher order uncertainties are of the orderfOther  |aytice scale fromm, is used to fix the physical quark masses.

corrections to the current are present, but these are of thghe result is plotted in Fig. 24 fdis_and in Fig. 25 forf, .
d d

:cs(;ir:?:n order as those in the heavy quark effective Ham”bne can see that the lattice spacing dependence is rather

The size of these corrections are estimated in Tables XII[\T'Ider whentf ; is used for normalization for boiy=2 and
and XIV for the B and D mesons. Numerical values are V=0 Furthermore, with our estimation of the systematic
evaluated adopting thelS coupling at the scalg.— 1/a de- error as presented above, the decay constants calculated with

i f » normalization are contained within the error band of those
fined by Eq.(30) and A ocp=300 MeV orA ocp=600 MeV, obtained with them, normalization. It should be noted that
and substituting iM the physicaB or D meson mass. In the P

case ofN.—0. we onlv choose three representatggalues lattice spacings determined usiiig are larger than that de-
= y P w termined fromm,,. As a result, and this is particularly true at

as the variation of th_e errors is so mild across t_he av_allabl oarser lattice spacings, the perturbative corrections will be
range of lattice spacings. The total uncertainty is estimate : .

) o X rger, as will the systematic error.
by adding all individual sources in quadrature.

Since the estimates attempted in these tables are not more
than an order counting exercise, the evaluated systematic er-
rors may be underestimated. For instance, the typical mo- In Figs. 17—20 we plot our final results, including the
mentum scale of the system can easily be twice as large astimated total error, for the continuum value of the heavy-

B Ao A Az Bo B, Co

E. Continuum estimate

TABLE XI. Decay constantszy andfgg at each bare gauge coupling.

N B feq (GeV) fas(K) (GeV) fes(¢) (GeV) fes(K)/fgqg fes(P)/frg
2 1.80 0.2877) 0.3315) 0.3405) 1.15219) 1.18126)
2 1.95 0.2348) 0.2767) 0.2839) 1.17943) 1.211(45)
2 2.10 0.20810) 0.25Q10) 0.25810) 1.20329) 1.24136)
0 2.187 0.2207) 0.2685) 0.2765) 1.17113) 1.12116)
0 2.214 0.22(8) 0.2585) 0.2655) 1.16920) 1.20225)
0 2.247 0.228) 0.2605) 0.2665) 1.16516) 1.19419)
0 2.281 0.2047) 0.2444) 0.2543) 1.19631) 1.24340)
0 2.334 0.1967) 0.2324) 0.2404) 1.18629) 1.22735)
0 2.416 0.1885) 0.2125) 0.2205) 1.12611) 1.16915)
0 2.456 0.20411) 0.2284) 0.2323) 1.11158) 1.10339)
0 2.487 0.186) 0.2174) 0.2263) 1.18214) 1.221(18)
0 2.528 0.18211) 0.2196) 0.2289) 1.190104) 1.235130)
0 2.575 0.19%5) 0.221(4) 0.2274) 1.15118) 1.18321)
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TABLE XII. Decay constantdy andfpg at each bare gauge coupling.

N B fog (GeV) fos(K) (GeV) fos(#) (GeV) fos(K)/fpg fos(#)/ fpa
2 1.80 0.3019) 0.3467) 0.3526) 1.15118) 1.16824)
2 1.95 0.28413) 0.31211) 0.31611) 1.09740) 1.11139)
2 2.10 0.22614) 0.267113) 0.27713) 1.18239) 1.22347)
0 2.187 0.258%) 0.2953) 0.3003) 1.1437) 1.1658)

0 2.214 0.247) 0.2843) 0.2903) 1.1499) 1.17212)
0 2.247 0.250%) 0.2873) 0.2933) 1.1468) 1.16910)
0 2.281 0.2364) 0.2742) 0.2822) 1.16017) 1.19122)
0 2.334 0.2204) 0.2633) 0.2693) 1.14812) 1.17514)
0 2.416 0.2224) 0.2443) 0.2533) 1.1049) 1.13511)
0 2.456 0.2268) 0.2543) 0.2573) 1.129793) 1.11946)
0 2.487 0.218) 0.2492) 0.2562) 1.1597) 1.1889)

0 2.528 0.216L0) 0.2504) 0.2566) 1.13367) 1.15981)
0 2.575 0.2164) 0.2453) 0.2513) 1.13813) 1.16316)

light decay constants at=0. For theN;=2 calculation with

dynamical quarks, the central value is taken from the data at

the finest lattice spacing3=2.1), and the total error shown

fos| N2
( ) =1.18239)(25)(*gH. (38)

foa

is obtained by quadratically adding the statistical and sys-

tematic errors. Numerically, we find, fod;=2,

f1 %=20810)(29) MeV, (33
fl~?=25010)(35)(*) MeV, (34)

fag| N2 s
(f_Bd) =1.20329)(28)(5), (35
fo%=22514)(40) MeV, (36)
f17?=267(13)(48) ("% MeV, (37

0-400 T T T I T I T I T I T
= 0300 - . -
w = -
&}

N— -

]
w2 .

0.200 .

I R R SRR BRI B B

1

0100002z 04 06 08 10 1z

1
a(GeV')

FIG. 17. fgq for N;=2 (filled circles andN;=0 (open circles
as a function of lattice spacirg The error bar for the data points

represents the statistical errors only, while those in the continuum

The first error is statistical, and the second error is the cu-
mulative systematic error outlined above. For the ratios, as
ambiguities due to the renormalization coefficient are elimi-
nated, only the effect of the gluonic and light quark errors are
included. In the case of those quantities involving the strange
quark, the central value was taken from the strange quark
mass defined fronmy, while a systematic error was esti-
mated from mass of thé. If instead of adding the system-
atic errors quadratically, we added them linearly, the final
results, taking fgg as an example, would befggy
=208(10)(50) MeV. It is encouraging that our prediction
for fDS with N;=2 is consistent with the recent experiments
285+20+40 MeV (ALEPH [2]) and 280-19*+44 MeV
(CLEO[3])).

We also quote the results for the quenched ddse0,
for which we employ a constant fit to the five data points in
the region a<0.8 GeV ! corresponding toB=2.575

0-400 T I T I T I T I L I L I L
i ° i
S 0300 —
W - ® E
SD' B ng [0 o .
o~ L .
J o0 0.0 ]
“270.200 o .

.1 1 | 1 | 1 I 1 I 1 I 1 I 1

0100002 04 06 o0s 1.0 1.2
-1
a(GeV ')

limit (a=0) are the systematic and statistical errors added in

quadrature.

FIG. 18. Same as Fig. 17, but fd)gS(K).
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0.400 I T T T I T I T I T I T i 1.4 | I T I T I 1 I 1 I 1 I 1 I 1 i
I 1 13F .
__ 0300 — i ]
> 1 ]
° ] M 12 7]
Q° i = i
™ 0200 . e L 4; ____________________ ?} 0} CPD(DG) + ]
i ] L1 <D+ —
0109 — 0'2 ' 0'4 ' '6 ' ols ' 1'0 . 1'2 . oll o 1 v 1y 1]
- : - 0: : . : 00 02 04 06 08 10 12
-1
a(GeV') a (GeVI)
FIG. 19. Same as Fig. 17, but f6p,. FIG. 22. Same as Fig. 21, but f6p<(K)/fpq.
—2.416. The estimated systematic error varies only slightly
0.400 — . — T T T T T T in this region, and we find, foN;=0,
I ® ] fn~°=1883)(26) MeV, (39)
< 0300 . _
3 ] fN1=0=2202)(32)(*8) MeV, (40)
Q ]
g ] fes M=o +3
«£ 0.200 - de) =1.1488)(20)(*3), (41)
i ] N;=0
i ] fof °=2182)(39) MeV, (42)
0.100 1 I 1 I 1 I 1 I 1 I 1 I 1
00 02 04 06 08 10 12 fgf:o: 250(1)(45)(*5) MeV, 43)
a(Gev')
) TABLE XIll. Estimates of systematic errors fdt;=2. Agcpis
FIG. 20. Same as Fig. 17, but fép (K). taken to be 300 Me\(top half or 600 MeV (bottom halj.
AQCD: 300 MeV
1-4 | I 1 I 1 I 1 I 1 I 1 I 1 I 1 i E 1.8 1.95 2.1
i ] (Agen/Mg)?, (Agen/Mp)? <1%, 3% <1%, 3% <1%, 3%
1af . a? 6% 5% 4%
~T ] (aAgep)? 11% 6% 3%
m’“ : : asaAQCD 8% 5% 3%
“5 X + 1 ahgop/Mg, ashocp/Mp 1%, 4% 1%, 4%  1%,3%
1.2 .
~) [ o) ]
< [ b + c|>cl> ] total 15%, 16% 9%, 11% 6%, 7%
I S N
11 4 Agcp=600 MeV
i ] B 1.8 1.95 2.1
[ | | | | | | | i (Aoco/Me)?, (Aocp/Mp)? 1%, 10% 1%, 10% 1%, 10%
-1- 1 1 1 1 1 1 1
%0 02 04 08 08 10 12 ad 6% 5% 4%
P (aAgcp)? 42% 22% 11%
a(GeV') asaAocp 16% 11% 7%
aSAQCD/M B aSAQCD/M D 3%, 7% 3%, 7% 2%,6%

FIG. 21. A comparison of the ratibg(K)/fgq for Ny=0 and

N;=2. The error bars of the continuum limit results are the system+otal 45%, 47%

25%, 28%

14%, 18%

atic and statistical errors added in quadrature.
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TABLE XIV. Estimate of systematic errors fod;=0. Agcp is 0.400 — . — T T T T T T
taken to be 300 MeV(top hal) or 600 MeV (bottom halj. r .
B 2.187 2.416 2.575 0300 -
N L i
(Agcn/Mg)?, (Agep/Mp)? <1%, 3% <1%, 3% <1%, 3% 3 | i
a? 5% 4% 3% N L i
=
(aAocp)? 9% 5% 3% 2 - " .
as@Aqcp 7% 4% 3% 0.200 = @ n P N
aSAQCD/M B aSAQCD/M D 1%, 4% 1%, 3% 1%,3% L m¢| m m ¢I o i
total 13%, 13% 8%, 9% 5%, 7% i i
1 I 1 I 1 I 1 I 1 I 1 I 1
Aqcp=600 MeV 0'10%.0 0.2 0.4 0.6 0.8 1.0 1.2
-
B 2.187 2.416 2.575 a(GeV')

2 2 0 0, 0, 0 0 0
(Aqep/Me) 'Z(AQCD/MD) 1%, 10% 1%, 10% 1%, 10% FIG. 24. fgq for N;=2 (filled squares and N;=0 (open

a 5% 4% 3% . . . . ) -
S, . ) . squarepsas a function of lattice spacirg gy is normalized using
(@Aqcp) 37% 19% 12% f .. The error bar for the data points represents the statistical errors

asalqep 14% 9% 6% only. The systematic error will be roughly the same size as that for
aSAQCD/M B asAQCD/M D 3%, 7% 2%, 6% 2%,6% F|g 23.

total (linean 60%, 73% 35%, 48% 24%, 37%

total (quadrati¢ 40%, 42% 22%, 24% 14%, 18% in our results into account, our quenched results with the
RG-improved action are consistent with the previous data
obtained with the plaquette gauge action.

st Ni=0 +2
— =1.1385)(18)(*39), (44)
Dd F. Quenching effects
where the systematic errors are assigned with the same strat- |, order to see the effect of introducing sea quarks it is
egy as for the case &d;=2. instructive to take the ratio of the results fidf=2 andN;

These quenched decay constants lie at the upper end whery for which we find
compared with those from previous quenched lattice calcu-

lations, whose recent summary figy=170(20) MeV, fgq fNi=2
=195(20) MeV [4], and fp3=200(20) MeV, fpg Bd
) _ i N.—o—1.116), (45
=2zo(,23) MeV [5]. However, taking the systematic errors foh
[ T I T I T I T I T I T I T ]
| _ _ 0.400 T T T I T I T I T I T
0.400 |- — I iy
g 0.300:— _ = 0.300 - 1
\.,-q | | 6\) | _
S ] = ‘ ]
0200~ - w3 i m |
20T i 0.200_— @ ® o oo . §
P T P R IR MR R i i
01005 0.2 0.4 0.6 0.8 1.0 1.2 i | | I I I I i
0.100 1 1 1 1 1 1 1
] 0.0 0.2 0.4 0.6 0.8 1.0 1.2
a(GeV') ;
a(GeV’)

FIG. 23. fg, with combined statistical and systematic errors for
N;=2. The statistical error is shown by thick error bars, while thin ~ FIG. 25. fpy for Ny=2 (filled squares and N;=0 (open
lines represent the total error for which the statistical and estimatedquaresas a function of lattice spacirg fpq is normalized using
systematic errors are added in quadrature. Circles emplgyy f .. The error bar for the data points represents the statistical errors
=300 MeV for estimating systematic errors, and diamonggp only. The systematic error will be roughly the same size as that for
=600 MeV. Fig. 23.
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§Ni=2 available, the heavy quarks are treated using an effective
%:1_14(5), (46)  field theory approach, and the light quark and gluon fields
Bt actions are improved to minimize the discretization error.
The calculation is also made in the quenchéj=0) case
fes Ng=2 fes Ni=0 since these decay constants have not been calculated before
faq faq =1.043), (47 \ith this combination of actions.
In comparing ourN;=0 andN;=2 results we see that
gNi=2 fgq and fgg for Ny=2 are significantly larger than thi;
%:1.036), (48) =0 results by 2—3 standard deviations, indicating a shift of
foy 10-15%. On the other hand, the same cannot be said for the
decay constantbyy andfps. It is encouraging that our pre-
fa=? diction fp_=267("2) MeV with Ny=2, where the total er-
fm_:o:1-07(5)’ (49 ror is obtained by quadrature, is consistent with recent ex-
Ds periments. In conjunction with the available experimental
fog| Ni=2 | =0 data, our values for thé;=2 B+r3r;eson decay constants
(E) /(E =1.043). (50) de 208(31) MeV andes 250("3¢) MeV are consistent

with the hypothesis that the Wolfenstein paramet¢B3] is

The errors quoted above are statistical only. We observe th&0sitive. Given our results foN(=0 andN¢=2, it is rea-
the central value increases by 10—15 % for Bnmeson de- sonable to think that additional flavors of sea quarks will
cay constants when two flavors of dynamical quarks are inincreasefgy and fgs still further, which in turn favors a
troduced, which has statistical significance of 2 to 3 standar@ositive value forp even more.
deviations. For thédD meson decay constant, on the other The unsatisfactory aspect of our results is a sizable varia-
hand, the observed increase is only 3—7 %, and the effect {#on of the decay constants with lattice spacing. A possible
statistically not very significant. For the ratio of decay con-0rigin of this problem is a necessity to includ¥(a) and
stants we find only a small change frddh=0 to N;=2. higher improvement terms in the axial vector current. Higher

We assumed that the systematic errors cancel in the rati@rder corrections in the renormalization constants may also
This assumption is supported by the simiedependence of be important at the coarse lattice spacingsaof'~1—2
fg for Ny=2 and forN;=0. To be convincing, however, GeV explored in the present simulation. The study of these
more data is necessary especially in the smallexgion. issues is clearly needed to consolidate the resultiNfer2

An increase o8 meson decay constants in the presenceand further explore the final goal of predicting the heavy-
of dynamical sea quarks has already been suggested in Relight decay constants for the realistic spectrum of dynamical
[9,10]. Our results also show this trend, providing further sea quarks.
evidence that the upward shift is real.

ACKNOWLEDGMENTS

VI. CONCLUSIONS . .
The authors would like to express their thanks to K.-I.

In this paper we have presented a calculation of thdshikawa for providing expressions for the axial renormaliza-
heavy-light axial decay constanfsy, fgs, fpg, fps @nd  tion coefficient. This work is supported in part by the Grants-
their ratios in lattice QCD with two degenerate flavors of sean-Aid of Ministry of Education(Nos. 09304029, 10640246,
quark (Ny=2) where the same discretization scheme had0640248, 10740107, 11640250, 11640294, 11740162
been employed for the sea and light valence quarks. In ordér.M. and A.A.K. were supported by the JSPS Research for
to carry out the calculation with the computational resourceshe Future ProgranProject No. JSPS-RFTF 97P01102

[1] A.J. Buras, M. Jamin, and P.H. Weisz, Nucl. Phg847, 491 [9] C. Bernardet al, Phys. Rev. Lett81, 4812 (1998; Nucl.
(1990. Phys. B(Proc. Supp). 83-84, 289 (2000.

[2] ALEPH Collaboration, contributed paper to XXXth Interna- [10] S. Collins, C.T. Davies, U.M. Heller, A. Ali Khan, J. Shige-
tional Conference on High Energy Physics, 2000, Osaka, mitsu, J. Sloan, and C. Morningstar, Phys. Rev6@® 074504

Japan, ALEPH 2000-062. (1999.

[3] CLEO Collaboration, M. Chadhat al, Phys. Rev. D58, [11] B. Sheikholeslami and R. Wohlert, Nucl. PhyB259 572
032002(1998. (1985.

[4] S. Hashimoto, Nucl. Phys. BProc. Supp). 83-84, 3 (2000. [12] A.X. El-Khadra, A.S. Kronfeld, and P.B. Mackenzie, Phys.

[5] T. Draper, Nucl. Phys. BProc. Supp). 73, 43 (1999. Rev. D55, 3933(1997).

[6] CP-PACS Collaboration, S. Aolét al, Phys. Rev. Lett84, [13] Y. Iwasaki, Nucl. Phys.B258 141 (1985; University of
238(2000. Tsukuba Report No. UTHEP-118, 1983.

[7] M.J. Booth, Phys. Rev. 31, 2338(1995. [14] CP-PACS Collaboration, A. Ali Khaet al. (in preparation

[8] S.R. Sharpe and Y. Zhang, Phys. Rev58) 5125(1996. [15] S. Aoki et al, Nucl. Phys.B540, 501 (1999.

034505-16



DECAY CONSTANTS OFB AND D MESONS FROM . .. PHYSICAL REVIEW D64 034505

[16] CP-PACS Collaboration, S. Aokét al, Phys. Rev. D60, [26] JLQCD Collaboration, S. Aokt al, Phys. Rev. Lett.80,

114508(1999. 5711(1998.

[17] E. Eichten and B. Hill, Phys. Lett. B34, 511 (1990; H.  [27] A.X. El-Khadra, A.S. Kronfeld, P.B. Mackenzie, S.M. Ryan,
Georgi, ibid. 240, 447 (1990. and J.N. Simone, Phys. Rev. 53, 014506(1998.

[18] E. Eichten, Nucl. Phys. BProc. Supp). 4, 170(1988. [28] R. Burkhalter, Nucl. Phys. BProc. Supp). 73, 3 (1999.

[19] B.A. Thacker and G.P. Lepage, Phys. Rev4® 196 (199).  [29] CP-PACS Collaboration, A. Ali Khaet al, Phys. Rev. Lett.

[20] G.P. Lepageet al, Phys. Rev. D46, 4052(1992. 85, 4674(2000.

[21] B.P.G. Mertens, A.S. Kronfeld, and A.X. El-Khadra, Phys. r30] ykQCD Collaboration, H.P. Shanahanal, Phys. Rev. 55,
Rev. D58, 034505(1998. 1548(1997.

[22] Y. Kuramashi, Phys. Rev. B8, 034507(1998.

23] S. Aok, S. Hashimoto, K-I. Ishikawa, and T. Ondginpub- [31] S. Aoki, K. Nagai, Y. Taniguchi, and A. Ukawa, Phys. Rev. D

58, 074505(1998.

lished. . .
. [32] K.-I. Ishikawa, T. Onogi, and N. Yamada, Nucl. Phys(ABoc.
[24] 8.;9.3Lepage and P.B. Mackenzie, Phys. Reva® 2250 Suppl) 83, 301 (2000; K.-I. Ishikawa (private communica-
[25] C. W. Bernard, J. N. Labrenz, and A. Soni, Phys. Rev® tion). )
2536(1994). [33] L. Wolfenstein, Phys. Rev. Leth1, 1945(1983.

034505-17



