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ABSTRACT

The aim of the dissertation is to try and relate the various 

effects of high frequency sound waves on biological materials to the 

parameters of the wave and, also, to indicate hov/ these parameters can 

be measured, A brief survey of the early work done in this field is 

follov/ed by a discussion of the various absorption mechanisms v/hich 

are responsible for the observed biological effects. This consists of 

two sections. The first deals with the absorption of ultrasound in 

cellular suspensions and intact tissue that causes purely thermal 

effects. These effects are characteristic of waves of small amplitude. 

The second section deals v/ith higher amplitude waves which, although 

they cause heating effects, can also cause other more dramatic changes. 

The mechanisms considered are the mechanical stresses exerted on cells 

and the altered permeabilities of cell membranes due to the acoustic 

streaming effects of the direct beam and microstreaming effects due to 

the presence of bubbles or inclusions of resonant size. Also, the 

mechanical effects and production of free radicals associated 7d.th 

collapse cavitation are described. Then, follov/s a discussion of the 

possible absorption mechanisms in intact tissue. The vai'ious 

applications of ultrasound in medicine are mentioned. These are for 

diagnostic and diathermic procedures and in the trea.tment of 

Parkinson’s and M6nieres^ diseases.
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A discussion of the various parameters that should be 

measured in order to try and explain the observed biological 

effects is then made and. this is followed by a description of a 

number of techniques that are available for this purpose. The 

parameters described are the frequency; transducer output; 

intensity distribution; temperature rise; physical characteristics 

of the media and the occurrence of cavitation and measurement of 

its intensity. The conclusion sums up the rather unsatisfactory 

position of this field at the present time.
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1,1 Introduction

Although the biological applications of ultrasound are now 

well-established in the medical field and for disrupting cells in 

order to study their contents, little is really known about the 

interaction of ultrasonic:v/aves with cells. The position can bo 

likened to the early days in the use of x-rays where, although 

used a great deal, little was known about the interaction of 

ionising radiations v/ith colls. The main problem in both cases 

has been the difficulty of mailing the necessary measurements.

Many hundreds of papers have been published on the biological 

effects of ultrasound but the vast majority have been qualito.tive 

in nature and little or no information has been given about the 

parameters of the wave. Also, any figures quoted for values of 

the parameters are, in many cases, suspect. More recently, the 

position started to change and now many workers have conducted 

series of rigourously controlled experiments in order to elucidate 

the relevant mechanisms, À number of methods and devices have 

now been developed for measurement of the parameters in this field. 

The dissertation aims to explain what mechanisms are responsible 

for the observed effects on cells. To be successful, it should bo 

possible to relate those effects to one or more parameters of the 

wave. This has not really been achieved as detailed knowledge of 

the mechanisms is still incomplete.



1.2 History
The first person to observe any biological effects due to 

ultrasound was Langevin who, in 1917, during the course of his 
work on the propagation of ultrasound through water, found that 
small aquatic animals could be kn.lled on prolonged exposure to the 
beam. The first detailed paper on this topic was due to Wood and 
Loomis (1927) v/ho subjected a large number of different biological 
materials to the effects of ultrasound. Since then a vast number 
of papers have appeared on the biological effects of ultrasound, 
but it is to be regretted that in the majority of these, little 
consideration has been given to measurement of the various parameters 
o"*̂ the wave. Thus, they are not very helpful in the elucidation 
of the physical mechanisms involved. It is only since the War that 
the fundamental importance of the need for accurate measurements 
has been sufficiently appreciated and the steps taken to remedy this.

It has been knov/n for a long time that ultrasound causes 
destruction and death of simple organisms such as bacteria, viruses 
and cells (e,g, Harvey et al, 1928, Harvey, 1930 and Chambers and 
Gaines, 1932). The specimens were placed in a liquid medium, 
usually water, for irradiation purposes, The destruction of these 
was generally found to take place only in the presence of 
"cavitation” (this term generally meant that the intensity of the 
sound wave was high enou^ to cause grovrth and collapse of bubbles 
within the liquid. The exact meaning of this term will be discussed 
later). Variation of sensitivity to ultrasound was found among 
different strains of the same type of bacteria (Anderson et al, 1948).
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A good summary of the early work done in this field has been 

given by Grabar ( 1953) .
The effects of ultrasound on the complex molecules of very 

high molecular weight found in cells have been extensively studied. 
Changes in protein structure were first observed by Wu et al (l93l) 
and changes in the structure of carbohydrates by Szent-Gyorgyii 
(1933). Knowledge of the structures of the various macromolecules 
found in cells has increased considerably since these first 
observations v/ere carried out and it is now possible to relate 
changes in molecular weight to actual changes in the structure 
of the molecule.

Following the publication of the initial paper of V/ood and 
Loomis in 1927, a large number of different living organisms were 
subjected to the effects of ultrasound. It v/as found that uni­
cellular organisms, such as eggs and larvae, and small animals 
were easily Icilled. Resistance to the effects of ultrasound v/as 
found to vary among different species. The effects on living 
animals and humans have been extensively studied.

Lesions have been produced in most parts of a living body by 

different workers. Brain lesions have been of interest since 

Lynn et al (1942) first demonstrated hov/ to obtain these in the 
brains of dogs. Irradiation of the central nervous system has 

produced both reversible and irreversible changes (Fry, 1958).
As is to be expected, very high intensity ultrasound can completely 

destroy tissue and organisms.



4
The usG of ultrasound for diathermy v/as the first medical 

application and was introduced in the thirties. The heating 

of body tissues due to the passage of ultrasonic waves has been 

of consi.derable use in the treatment of complaints that require 

some form of conventional heat treatment. Dussik, just after the 

War, was the first to try and visualise structures within the 

body. It is now a. highly developed method of diagnosis especially 

in the soft tissue regions of the body (Gordon, 19 3̂). Ultrasound 

has been used to treat a number of nervous diseases (the main one 

being Parkinson’s disease) by implanting lesions deep within the 

brain. Another application is to Manières disease, an affliction 

of the inner ear causing vertigo and deafness, Newell (19^3) has 

given a survey of the medical applications of ultrasound.

By treating cellular suspensions with ultrasound, it is 

possible to release many of their components into solution. This 

method has been used for a number of years (Stumpf et al, 1946) 

and is now a standard way of extracting components such as 

chloroplasts, enzymes, proteins and mitochondria in a relatively 

pure state.



2, Theory -

2.1 Introduction

Vdien dealing ivith the propagation of mechanical waves through 

biological media, it is possible to treat most of them as liquids 

(Fry and Dunn, 1962). This means that the only type of wave that 

can be successfully propagated is a longitudinal one, due to the 

inability of liquids to withstand shearing stresses. The densities 

and velocities of propagation for soft tissues have been found to be 

of the sane order of magnitude as those for water. Densities vary 

between 1 .0 2  and 1 .0 7 gm.cm."^ and velocities are from 1450 to 

1610 m.sec."^ (the only real exception is bone). However, their 

absorption coefficients are much larger than that for water.

Sound waves are produced at megacycle frequencies by means of 

piezoelectric crystals. Pond (l963)has described some of the 

transducers used in this field. Until recently, quartz was the 

only substance used, but now the relative fragility of the ceramic 

materials available (e.g. barium titanate and lead zirconate) has 

greatly improved and these are being used more and more. They 

possess the advantage that they can be shaped for focussing purposes. 

Magnetostrictive devices are also used and these usually operate 

in the lower ultrasonic range (up to about 30 Icc/s) . Cavitation 

effects are more easily produced at these frequencies than at the 

megacycle frequencies used v/ith piezoelectric crystals.

In attempting to elucidate the mechanisms responsible for the 

biological effects of ultrasound, both progressive and stationary 

wave systems have been employed. For concentrating the power 

available, focussing is used.



2,2 Plane waves 6

Considering a plane wave vibrating into an unbounded and 

non-dissipative medium may oversimplify the actual experimental 

conditions but it gives an idea of the amplitudes of the various 

acoustic parameters. This is helpful as biological effects could 

depend on these values.

Assuming no attenuation and a plane wave, the following

equations may be derived by means of simple wave theory:- 
pcÛI “ ’ 2 . » * . • •  eqn. 2,1

I = "2"^c . . • • • •  eqn. 2 ,2

X zz cE eqn. 2.3
Where I = acoustic intensity 

p = mean density 

c = velocity of sound 

U = particle velocity amplitude 

P = pressure amplitude 

E = energy density 

For such a wave the acoustic impedance is equal to the 

characteristic impedence (density x velocity). This is not true 

if attenuation occurs or the wave diverges. In practice, a plane 

wave will be approximated to if the dimensions of the transducer are 

very much larger than the wavelength of the generated sound. At 1 Mc/s 

the wavelength of the sound wave in water is 0 .1 5 cm,

2.3 Reflection and Refraction
If a wave passes from one medium to another of different 

characteristic impedance, part of the energy is transmitted and the
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rest reflected back into the first medium (assuming no absorption). 

With normal incidence, the reflection coefficient, and the 

transmission coefficient, are given by the following equations:-

..................

■-  e<in. 2.5
Where p denotes characteristic impedance of 1st medium 

" " " ” ” " 2nd medium

If the angle of incidence is other than at 90^ to the interface, 

then the possibility of mode conversion occurs (i.e. generation of 

shear waves). If the second medium cannot withstand shearing stresses, 

then the transverse v/ave produced is quickly damped with the consequent 

production of heat.

If or then most of the incident

energy is reflected back into the first medium. Under favourable 

conditions this reflection gives rise to a stationery wave pattern 

which can be considered as the superposition of two progressive waves 

travelling in opposite directions.

2,4 Absorption

In all real media, a sound wave will be attenuated by various 

absorption mechanisms. If the absorption per unit path length is 

constant, then it is possible to define an absorption coefficient^ot 

by means of the expression:-

Ax = . • • • eqn. 2 .6

Where Â  ̂= initial value at x = o of parafe ter (usually prcssui*e) 

Ax = amplitude of parameter at distance x away.
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Since the intensity is proportional to the square of the 

amplitude of any of the acoustic parameters, the intensity 

absorption coefficient, |a , is given by: -

= 3L(K . . . .  eqn. 2.7
The amplitude absorption coefficient ̂<x ̂ is the one usually 

quoted but it can be described in a number of different ways. These 

are: -

(i) the absorption per unit path length i.e.occm"^ or as the 

absorption per unit wavelength i.e. ocX

(ii) the attenuation in the parameter from its initial value

to of this value. The units are nepers. It is usually expressed 
"e

in nepers cm.“  ̂or per wavelength.

(iii) the usual decibel notation.

The relationships between these are as follows :- 

1 neper = 8.7dB 

1 dB = 4.35

2.5 Diffraction

In practice, a transducer v/ill not generate a plane v/ave and, 

especially at the megacycle frequencies encountered in this field, 

diffraction effects become quite important. The diffraction theory 

quoted below assumes a transducer vibrating as a solid piston in an 

infinite baffle into a non-absorbing medium (Kins1er and Frey.1962). 

The acoustic field may be divided into two sections

(i) Fresnel region (or near field)

This is the space adjacent to the transducer and it is found 

that the axial acoustic intensity Iq goes through a number of maxima
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and minima according to the equation:-

Io= 2 e C u2 Sin2 k ( / 7 7 I T -  r)

'̂There Uq = velocity amplitude at surface of transducer

r = distance along perpendicular to plane of transducer

2a = diameter of transducer

and other symbols have their usual meaning.

The last minimum occurs at a distance given by a£
2\

While travelling this distance, theory indicates that the beam 

remains the same v/idth as the transducer i.e. 2a. If the absorption 

coefficient is large, this picture is modified,

(ii) Fraunhoffer region (or far field)

The far field begins after the last axial minima. The 

intensity falls off according to the inverse square lav/ and divergence 

of the wave occurs. The intensity at a polar angle Ü to the line 

perpendicular to the axis of the crystal, I, is given by:-

I = pclc^Ypa^
8

2 Jq (ka sin 9 )
ka sin 0

Where J-̂ denotes a Bessel function of the first Icind and 

first order

r = distance of point from centre of transducer and

the rest of the symbols have usual meaning.

This differs from the equation for the intensity of a simple

source by reason of the presence of the directivity factor,

2 Jq(ka sin 0 ) which indicates the existance of side lobes, 
ka sin 0
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The main lobe contains most of the energy but as the ratio ^  

increases more energy is transferred to these lobes.

When I = 0, ka sin 0 = 3.83

0 = sin~^ 0.6l ^ 
a

This is called the half angle of spread and indicates the 

approximate angle of divergence (fig.l). The existence of side 

lobes oUb®de this major lobe, however, further complicates the field,

2,6 Focussing of sound waves

Focussing is used in order to concentrate the power available 

from a given transducer thus increasing the acoustic intensity at 

a particular point. Another use is to minimise diffraction effects 

in the far field. The usual methods involve either converging plastic 

lenses or specially shaped ceramic transducers. A survey of the 

actual systems used has been given by Gordon (*1 9 6 4)..

(i) Plastic lenses are generally made of polystyrene or 

perspex and are plano-concave ; the back is coupled directly to the 

crystal. Different lenses with different focal lengths may easily 

be used, but to obtain a good focus a complex shape to the concave 

side of the lens is required. The main disadvantages are reflections 

due to impedance differences between the crystal, the lens and the 

medium and absorption losses in the lens itself. For a lens with a 

spherical concave surface and a small aperture, the focal length, f, 

is given by;-

f = n - 1
Where r = radius of curvature of concave face 

n = refractive index of material of lens
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(ii) Shaped transducers are made of cerejnic materials and 

are able to withstand high intensities for long periods. They have 

a fixed focus. Unfortunately, the resonant frequency of these 

materials varies with temperature and so the focal length will vary 

slightly. The field at the focus is similar to the Praunhof^er 

region already considered; there being a main lobe and several 

side lobes of much smaller intensity, 8 4 % of the available energy 

passes through the main lobe. Assuming a spherical lens, the 

radius of the main lobe, ^  , is determined by the condition that
the directivity factor 2Ji(k8. sin Q) = 0.

^^ka sin ©
From this %  = -6l ü Aa

%ere a = radius of transducer
_ a

^ - aperture of lens
If the total output is W, then the average intensity in the

main lobe in the focal plane is given by:-

I = 0 ,7 1 w (
Details of acoustic wave theory can be found in a number of 

text books on the subject e.g. Hueter and Bolt (1955), Blitz (1963)5  

Kinsler and Frey (1962) and Stephens and Bate (1 966). Fry and

Dunn (19 6 2) have given a detsdled account of most of the theory

required in this field.
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3. Absorption of Ultrasound Leading to thermal effects

3.1 Introduction

When an ultrasonic wave is propagated throu^ a medium it is 

attenuated and, assuming a wave of small amplitude, the energy 

absorbed appears mainly as heat. With large amplitude waves, other 

effects become important and those are discussed in section 4.1 

Elucidation of the absorption mechanism is complicated by the 

inhomo go neous nature of biological materials with the consequence 

that reflection and refraction effects add to the dissipation of the 

available energy. Since also the majority of the attenuation now 

appears to occur at molecular level the complexity of biological 

materials makes a complete understanding of the absorption mechanisms 

impossible at the present time (Ackerman, 1962).

3.2 Absorption coefficients

A knov/ledge of the values of absorption coefficients and their 

variation v/ith frequency and temperature of as many biological 

structures as possible is needed to elucidate absorption mechanisms.

Not enough work has been done in this respect and the various values 

obtained by different workers tend to be inconsistent. The reasons 

for this are probably differences in the intensities used in the 

physical state of the media and in experimental and measuring procedure.

The only comprehensive list of values for absorption coefficients 

(and velocities of propagation) for mammalian tissues and organs based 

on the work of a number of workers in this field has been quoted by 

Goldman and Heuter (1956, 1957). Figs. 2 to 4 show the variation of 
absorption with frequency for a number of biological materials. It has 

been found that the absorption coefficient for most biological materials
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is a direct power function of the frequency where the value of the 

power, in general, lies between 1,0 and 1.3 (Schwann, 1959).

The velocities of propagation of a compressional wave in soft
— •tissues are mostly in the range 3^50 to 1,610 metres sec. The 

velocity of sound in fatty tissues is less than that in water while most 

other tissues (e.g. muscle, liver, kidney and brain tissue) have 

velocities exceeding that of water. The only real exception is bone 

v/hich has a propagation velocity of about 3,350 metres sec! For most 

purposes, the velocity can be assumed to bo independent of frequency 

(Schwann, I9 6O).

The dependence of the absorption coefficient on the temperature 

of the medium has been studied for very few media. Carstenson and 

Schwann (1953) showed that blood exhibited a negative dépendance. 

Kishimoto (1958), investigating ultrasonic absorption in bone, found 

an increase in absorption ivith temperature while Dunn (1962), 

irradiating the nerve tissue of young mice, found a positive temperature 

coefficient of absorption which was given by the empirical formula;-

«  ^  “  <2. J

where t = temp, of tissue in

3.3 Absorption mechanisms

Absorption of ultrasound by a medium occurs when there are time 

lags for the energy exchanged between the different degrees of freedom 

of the molecules and those time lags are not negli,gible compared v/ith 

the period of the v/ave. This type of absorption is termed re Taxational.

The classical absorption processes of viscosity .and thermal 

conduction (the latter is not important in liquid-like structures) 

lead to a calculated value of the absorption coefficient v/hich only
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agrees with that observed in very simple media, and for all others is 

only a small fraction of the observed value. Classical theory indicates 

that, for a single relaxation mechanism operative, the absorption shows 

a maximum at a particular frequency known as the relaxation frequency. 

Also, the absorption exhibits a quadratic dependence on frequency 

(i.e. = constant) well below the relaxation frequency (Blitz, I9 6 3).

Prom fig. 3 it can be seen that as the number of operative relaxation 

mechanisms increases, the graph of absorption per wavelength against 

frequency tends to become more horizontal, and ivith en infinite number 

of mechanisms the graph would be horizontal, (A graph of absorption 

against frequency would be linear in this case). This v/ould indicate 

the presence of high molecular weight compounds with many degrees of 

freedom. For many biological materials there is an approximately linear 

relationship bctv/eon absorption and frequency over the frequency ranges 

as far investigated. To explain these results it is necessary to assume 

a large number of relaxation mechanisms uniformly distributed with 

frequency. With relaxation effects velocity dispersion must also occur.

A hys tore tic type of absorption v/ill exhibit 0. linear dependence on 

frequency (Blitz, I9 6 3) but no velocity dispersion. This type of 

absorption mechanism has been used to explain the absorption coefficients 

at frequencies observed for bone (section 3.5).

To explain the observed absorption coefficients in biological 

materials, it is necessary to treat them as viscoelastic media possessing 

both shear and bulk (i.e. volume) viscosities (Ackerman, I9 6 2). Pry and 

Dunn (19 6 2) have said that cellular material can bo treated as Newtonian 

systems (i.e. no viscosity changes with velocity gradient) and that above 

100 kc/s only the bulk viscosity need be considered. The bulk viscosity
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is composed of a number of different relaxation mechanisms about which 

only little is really loiov/n. These are thermal, structural and 

chemical relsccaticns. Thermal relaxations involve exchanges of energy 

between the external and the internal degrees of freedom of the molecule. 

Structural relaxations involve changes in the actual structure of the 

molecules (ê g. orientation of the molecules) due to the passage of the 

wave. Chemical relaxations involve changes in chemical equilibrium due 

to the sound wave.

Pry (19 5 2) tried to explain the observed absorption by just a 

shear viscosity effect due to relative motion between particles and the 

suspending medium, and with a suitable choice of parameters obtained a 

linear relationship between absorption and frequency. Hueter et al.

( 1953) 5 working on absorption of ultrasound in milk, found that this 

approach was not really justified and postulated a bulk viscosity with 

an appropriate distribution of relaxation times to explain the observed 

results. Since then, workers have used the bulk viscosity approach.*

Knowledge of the temperature dependence of the absorption 

coefficient is also useful, A positive coefficient indicates the 

existence of unassociated molecules (Hueter and Bolt, 1955) and nerve 

tissue (Dunn, 19&2) has such a coefficient. It rules out shear viscosity 

as an important mechanism as this decreases with increasing temperature,

A negative coefficient is indicative of associated types of molecules. 

Blood shows a negative coefficient (section 3.4). The main difficulty 

in obtaining information about temperature coefficients is that living 
adult mammals are homeostatdc.
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3.4 Absorption of ultrasound by Blood

A large amount of work has been done by Carstcnscn and Schwann

to try and work out the absorption processes that occur in mammalian

blood. They chose blood initially as it is acoustically homogeneous

and yet contains cells (however, these have no nucleus). They

investigated a wide range of experimental conditions in the frequency

range 800 kc/s tollO Mc/s, The intensities used are not mentioned in
•*2the papers but El*Finer (1964) quotes them as being between 1 ̂  W cm 

and 1 lW cm7^ Their experimental technique is described in section 6,7.

Carstensen e± al. (1953) first showed that proteins were responsible 

for most of the absorption. The cell structure itself and the water 

present contributed an almost negligible amount to it. The main 

protein in the blood cell is haemoglobin while in the surrounding plasma 

it is albumin (it contributes 60 % to the total plasma protein content, 

the rest is made up of globulins). It was found that the absorption 

was a direct function of the protein concentration and that it did not 

matter vbether the haemoglobin v/as still in the cell or a suspension :n 

water, thb absorption figures v/erc the same.

In two further papers, Carstensen and Schwann (1959, u, b) 

continued the study of the protein absorption in blood. They again 

used haemoglobin from various mainmalian bloods. This was prepared by 

treating the red cells with toluene to cause haemolysis. Centrifuging 

removed the stromata and lighter elements leo-ving the high molecular 

weight protein, haemoglobin. Pig. 6 shows the absorption for various 

mammalian haemoglobins from 0,1 to 10 Mc/s. It can be seen that the 

absorption per v/avelength shows small dependence on frequency i.e, a 

large number of relaxation mechanisms is operative. If relpucation
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effects are the cause of the absorption^ velocity dispersion must 

also occur. Although the actual dispersion was small it Was definitely 

shown to be present (fig.7). They also showed the negative temperature 

coefficient of absorption for blood (fig,8).

However, it was found that the totol absorption could not be 

completely explained by assuming an infinite number of relaxation 

mechanisms occurbing within the complex protein molecules and this 

led to the idea of a non-protein process occurring (Carstensen and 

Schwann, 1957). This part of the absorption decreased with frequency 

and increased v/ith dilution of the blood cells. It was explained by 

the relative motion betv/een the cells and the suspending medium 

(the plasma) due to differences in their densities. The cells ore 

not able to follow the oscillatory motion due to alternating forces, 

caused by the passage of the wave, as fast as the lov/er density plasma. 

Thus, there is a viscous effect talcing place with consequent 

absorption of energy. An expression for the absorption due to this 

mechanism has been given by Pry and Dunn (I9 6 2). This was derived by 

considering elements stiff in shear compared with the surrounding 

medium. The formula indicates another type of relaxation process. An 

absorption curve taking into effect relative motion is shov/n in fig.9. 

It results in the levelling of a typical absorption curve containing 

a small number of relaxation times. Relative notion explains the 

observed facts since it is less effective the greater the percentage 

of red cells present (less motion possible) but increases with 

increasing frequency (less likely that the cells can follov; the 

periodic motion due to the wave) .Carstensen and Schwann (1957) derived 

a similar expression for the absorption due to relative motion. They
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considered that a longitudinal wave on hitting a spherical object 

(e.g. a cell) was partially converted into a transverse wave and that 

this transverse wave was quickly damped because of the liquid medium, 

causing absorption of the ultrasonic energy.

It would now appear that the absorption of low amplitude 

ultrasound in blood is due to the large number of different relaxation 

processes associated with the protein molecules and, to a lesser extent, 

the relative motion between the cells and the plasma. Carstensen and 

Schwann (l959^b) developed a theory to confirm this idea of an 

infinite number of relaxation processes. By consideration of an 

infinite number of relaxation processes uniformly distributed with 

frequency, the derived equations fitted the experimental curves quite 

well. They are of the opinion that the wave disturbs the chemical and 

structural equilibrium v/ithin the protein molecules or in the protein- 

water complex. The range of the relaxation frequencies would be at 

least from 30 kc/s to 10 Mc/s. More recently Edmonds (1 9 6 2) has 

extended these results up to 23O Mc/s. He used haemoglobin solutions 

which were prepared by the same methods as those used by Carstensen and 

Schwann and employed similar experimental conditions. He found that 

the same typo of relaxation spectrum existed up to this frequency with 

a broad maximum in the region 10 to 100 Mc/s. Fry and Dunn (I9 6 2) say 

that there could be a large number of discrete relaxation frequencies 

(perhaps masked by the effects of relative motion). In fact, they 

showed that by the choice of two suitable relaxation frequencies it is 

possible to obtain an absorption curve that only increased 20 % over 

a ten-fold (O.6 6 to 6 ,6  Mc/s) range of frequencies. Fig.10 shows the
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reaultQiit curve, the two relaxation curves being indicated by dotted 
lines. One curve has a peak at about 1 Mc/s and the other at such a 
high frequency that only the quadratic part is present, Ackerman (1962) 
has favoured the idea of a large number of relaxation mechanisms with a 
uniform distribution of relaxation frequencies, but recognised that this 
is artificial as the origin of the relaxations is unknown,
3a5 Absorption of ultrasound bv intact tissue and bone

It has been found that the absorption coefficients for intact 
tissues are between two and ten times greater than those for a cellular 
suspension such as blood, though the coefficients show the same type of 
frequency dependence. Fig,11 shows graphically the results assembled 
by Goldman and Hue ter (1956, 1957). The sprea.d of the results, shown 
by the shaded regions, indicates the different physical states of the 
specimens and experimental techniques used by the investigators from 
v/hom these results were obtained. In general, the more complicated 
structures (e.g. kidney and muscle) absorb ultrasound more strongly 
than the less complicated structures (e.g. fatty tissue).

Schwann (1959) mentioned that Pauly studied the effects on the 
absorption coefficient of grinding dovm liver tissue in a series of 
steps until the cellular structure was completely destroyed and then 
removed. Finally only a solution of the liver proteins was left. He 
found that 20fo of the absorption coefficient disappeared with- the . 
initial step of grinding dov/n the tissue, but the remaining 80 % did 
not change at all and must then have been of molecular origin. Changes 
in the hydrogen ion concentration (pH values) were found to cause
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changes in the absorption values but did not alter the type of 

frequency dependence at all.

The actual macro-structure of the tissue is probably 

responsible for part of the absorption, as in the case of the liver 

tissue, but this will not completely explain the high observed values. 

The macro-structure contains inhomogeneities and,if these are much 

larger than the wavelength of the sound, will cause reflection and 

refraction effects due to the impedance differences (equations 2,4 

and 2,5) Smith and Schvrann (1957) have shov/n that the nuclei of liver 

cells absorb ultrasound more strongly than the proteins (the absorption 

coefficient was twice that for haemoglobin) and that if the proteins 

in intact tissue absorbed mechanical energy at the same rate as the 

nuclei then this v/ould explain completely the observed values.

Ackerman (1 9 6 2) said that these high absorption coefficients could 

be due to protein differences or scattering at cell walls. Hawley 

et al (1965) determined the absorption coefficients of aquoous 

solutions of dextran of various molecular weights. They found that 

the absorption spectra være very similar to those obtained for beef 

haemoglobin solutions by Carstensen and Schwann (1957). From this 

they concluded that the absorption in tissue was not completely due 

to the proteins present but non-proteincous material could play e. 

considerable part.
Variation in the absorption coefficient depending on the 

direction of orientation of the material to the wave has been found. 

This acoustic anisotropy is of tv;o types. One is where the tissue 

has long connective fibres (e,g, nerves and muscles) and the second
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where the tissue consists of a number of separate layers (e.g. skin, 
tongue), The absorption coefficient in the human sciatic nerve in 
the direction of the fibre axis was 0,35 cm} vdiile in the direction 
perpendicular to the fibre axis it was 0.55 cm} at 3.4 Mc/s 
(Goldman and Hue ter, 195^) For a wave travelling at right angles to 
fibres or tissue layers, impedance differences will cause reflections 
and, thus, higher values of the absorption coefficients will occur.
It has been found that velocity anisotropy also occurs. (Goldman and 
Richards, 1954).

The age of the specimen appears to have considerable effect on 
the value of its absorption coefficient. In Pig.12, the effect of 
aging on liver is shovm. About nine hours after death, the absorption 
coefficient starts to decrease. At about twenty hours, this ceases 
and the value for the coefficient levels off.

Bone has a much higher absorption coefficient than any of the 
soft tissues. Frederick (19&5) has quoted values of 1,5 dB/cm for 
brain tissue at 1 Mc/s compared with 13 dB/cm,for skull bone at the 
same frequency. (The large variation found in values for absorption 
coefficients observed in bone is due to their inhomogeneous nature 
and variation in physical characteristics such as density).
Absorption in bone shows a frequency squared dependence bôlow 2 Jio/a 

but, above this frequency changes to a lower power frequency 
dépendance, (Dunn I965). Kishimoto (1958) had found this to be a 
linear relationship and put forward the idea of a hyteresis type 
of absorption. The velocity of sound in bone is about 336O metres 
sec"^ (the actual value depends on the type and the state of the 
specimen) and this is about twice the value for any of the soft
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tissues. Bone density is also much larger (average 1.85 ©n.cm.” )̂ 

and this means a Isrge diffence in characteristic impedance between 

bone and a soft tissue. Consequently, there is a large change in 

acoustic impedance encountered by a sound wave in a tissue meeting 

a tissue-bone interface. Besides scattering and reflection, Herrick 

(1 5 5 4) has suggested a mode conversion also occurs vd.th shear waves 

being formed a'c the Interface. These are rapidly attenuated with 

the consequent production of heat. Also, bone is a good absorber of 

ultrasound. These facts would explain the large temperature increases 

observed in bone (Herrick 1953).
In conclusion, it may be said that although the absorption 

coefficients vary from tissue to tissue, they all show the same type 

of frequency dependence. This appears to be due to the large number 

of relaxation mechanisms uniformly distributed with frequency. At 

present, details of these mechanisms ere not nvojleble due to incomplete 

knowledge of the structure of the cell and the molecules within it, 

especially the proteins, which appear to play a considerable part in 

the absorption processes. It is to be regretted that there appears 

to be very little being done on the elucidation of these mechanisms 

at the present time.
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if. Absorption of ultrasound leading to non-thermal effects
4.1 Introduction

With higher intensity sound waves, appreciable heating of the 

medium does occur and, in some cases, this heating alone is 

responsible for observed lethal effects in cells and small animals. 

However a further series of effects, quite distinct from those due 

to thermal action, are also found to occur « In many situations, their 

occurrence can be observed at intensities well below those resulting 

in appreciable heating, althoii^ in some cases it is necessary to 

employ a pulsed sound source in order to achieve a sufficiently high 

peak intensity for their production v/ithout consequent generation of 

heat.

The mechanisms that cause non-thermal effects appear to be 

acoustic streaming, the presence of bubbles and cavitation. It is 

not easy co separate the effects due to each of these mechanisms, 

but it is instructive to treat them separately at first.

4.2 Biological effects due to acoustic streaming.
It is a well loiown property of classical wave theory that 

second order effects give rise to a steady radiation pressure. If 

the medium is an absorbing one, then this pressure falls off with 

distance giving rise to a force that tends to accelerate the medium. 

Due to the effect of viscous forces, a uniform motion will exist and 

this is loiomi as acoustic streaming (Stephens and Bate, 19̂ 6).

These streaming effects can cause important tangential motions 

along interphase boundaries giving rise to viscous stresses. The 

greater the velocity gradient in the region of the boundary the
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the greater will be the stress (- viscosity x velocity gradient)

acting ̂although its value v/ill depend on a number of other factors

and it is difficult to predict values in the neighbourhood of

complicated cellular structures although a lot of work has been done

In connection with simpler media (Nyborg, 19^5). Although the stresses

occuring are not very large (compared with those obtained due to

cavitation) they can disrupt weak cellular structures and change

permeability of cells as vd.ll be shov/n,

NyboiS and Dyer (l96o) investigated the effects of a vibrating

needle at 25 Kc/s on the v/alls of plant cells. They used a small

section of elodea leaf which was mounted on a microscope slide. The
were

effects on the cell/yievæd microscopically. At low amplitudes of 

vibration, O.lp or less, there occurred an intracellular streaming 

which was orderly and occurred only within the cell in direct 

contact with the needle (Fig. 13). On increasing the vibration 

amplitude, (these values were calculated by measuring the vibration 

blur with a microscope eye-piece micrometer) chaotic motions resulted 

within the cell, cytoplasm being removed from the walls and the walls 

themselves ruptured. The tip of the needle did not have to be even 

in contact with the cell v/all althougjri this was its most effective 

position (these effects happened v/ith vibration amplitudes between 

5 and 10^). They concluded that the boundary flovf was great where 

the vibration amplitude varied rapidly with distance but it also 

depended for a complete explanation of the eddying motions on the 

location cf the boundaries, the amplitude distribution and the



25
viscosity of the medium. In a further paper Dyer and Nyborg (I961) 

reported similar results obtained with other plant cells.

Wilson et al (19 6 2) undertook similar experiments to determine 

the effects of ultrasound on marine eggs. They used a steel needle 

driven at 83 Ivc/s on the unfertilised eggs of Asterias and Spisula. 

With the eggs, diameters were about 100 held at the end of a 

micropipette under water and the needle applied directly to the 

surface of the eggs, two effects were noticed. The vibrations 

either caused the nucleolus to move around inside the nucleus, or 

the nucleolus remained still but rotated about itself, the rate of 

rotation increasing with increased ultrasonic intensity. In one 

Asterias egg, the nucleolus was abserved to split into two halves.

The effects of subjecting Asterias eggs in a suspension of salt 

water to similar vibrations v/as also studied. They found that the 

eggs tended to move towards the tip of the vibrating needle. It 

was observed that the part of the surface of the egg that approached 

closest to the tip was deformed and in several of the experiments 

large cone-like projections appeared on the egg surfaces. Wilson 

et al (1 9 6 6) have reported siiïiilar results to these but have included 

full details of the experijmental arrangements used and photographs 

illustrating the various motions observed.

Hu^es and Nyborg (19̂ 2) undertook a series of experiments to 

try and differentiate between the various mechanisms that could 

be responsible for biological effects and one such experiment was to 

obtain cellular destruction without the presence of bubbles or any
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cavitation effects. Suspensions of fresh erythrocytes (blood cells) 

were irradiated with a vibrating needle. The amount of cell breakage 

at different vibration amplitudes was determined by the amount of 

haemoglobin released into the solution. This was measured after 

centrifugation. The number of cells ruptured increased with increasing 

vibration amplitude as shovm in Fig, 14. They concluded that the cell 

brealcago was due to the stresses set up by the acoustic strecuning 

(no bubbles were present). The streaming velocity was the order of 

10 m.sec"^ close to the actual tip of the needle. The streaming 

motions v/ere circular as shov/n in Fig. 15.

Similar results were obtained using the protozoan, Tetrahymena 

pyriformis, a single-celled animal, with the same type of irradiation. 

However, using a low vibration amplitude and high speed photography 

(3 0 0 0 frames per second), it was seen that not only were the cells 

distorted near the needle-tip (region of greatest streaming velocity) 

but their contents were seen to move in a circular fashion relative 

to the actual cell motion. They also studied the effects of using a 

vibrating needle on bacteria which need a much higher shear rate for 

disruption. Escherichia coli wore used. By employing long periods of 

irradiation - up to one hour - only a small number of the cells were 

ruptured, the actual number being estimated by the amount of protein 

released into solution. The amount depended linearly on the amplitude 

of Vibration. Subsequent light and electron microscopy confirmed the 

existence of broken cells.

Ackerman (I9 6 3) investigated the effects of ultrasound on canine 

erythrocytes both with cavitation present and with cavitation suppressed
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by means of hydrostatic pressure. The sajiio intensity was used in 

both ernes. He found that rupture of the cells ( this was measured 

spectrophotometrically) occurred without the presence of cavitation, 

though the number was much smaller than that obtained when cavitation 

effects wore present. No mention is made of how cavitation was 

judged to occur and the intensity of the wave (frequency 495 Kc/s) 

was described as being intermediate between those used for physical 

therapy and surgery.

A series of experiments to study degradation of a suspension of 

the biomacromolecule, deoxyribonucleic acid (DiN.A.) was made by 

Hawley et al (I9 6 3). Although the measured intensities were high 

(2 5 and 31 W.cmT^) great care was talcen to suppress' cavitation by 

means of externally applied hydrostatic pressure. The frequency used 

v/as 981 Kc/s. Three devices were used to ascertain if cavitation did 

occur. A thermoelectric detector was inserted in the suspension 

( its response v/ould become completely erratic in the presence of 

cavitation). Im electrical meter v/as inserted in the feedback circuit 

of the transducer ( cavitation would produce changes in the meter 

reading due to alteration of the load impedance presented to the 

transducer), With the onset of cavitation, the refractive index of 

the medium changes considerably due to bubble formation and ultra­

violet light of wavelength 259 m}A was monitored in order to detect 

this. They found that there was a rapid initial decrease in molecular 

weight ( as shown by ultracentrifuge and ultra-violet absorption 

studies) followed by a period in which little or no change in mole­

cular weight occurred (Fig. lé). No change in optical density
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of the suspension v/o.s observed (i.e. no dénaturation occurred) 

implying that degradation was only due to breaks occurring along 

the backbone of the molecule. Similar results had been obtained with 

this molecule by Doty et al (1958). Hawley et al concluded that the 

mechanism of degradation was due to relative motion between the 

higher density D.N.A. molecules and the lower density solvent and 

the consequent stresses set up.

This behaviour is characteristic of a number of biomacromolecules 

but usually no changes are detected v/ithout "cavitation" being present 

(see section 4.6). The original molecule cannot be broken down into 

pieces of smaller find smaller molecular weight. There is a limit to 

this degradation (for D,N„Ac the final molecular weight is ̂ 3  x 10  ̂- 

its initial molecular weight being ~1 0  ̂or 10 )̂ and it may indicate 

that only certain molecular bonds can be fractured. With D.N.A., the 
mechanism is purely mechanical and is thought to produce breaks in 

the phosphate - sugar backbone of the molecule. "Cavitation" produces 

different effects to these according to Hughes and Nyborg (I9 6 2).

It is well known that the presence of acoustic streaming increases 

the transfer of material through semi-permeable membranes (Nyborg 1̂957) 

such as occur in cells. Hughes (I9 6 5) has pointed out that it is 

possible to completely empty red blood cells of their haemoglobin 

content without rupturing the cell wall, though this requires very 

delicate instrumentation. It would appear that using soluble proteins 

and enzymes as an indication of cell rupture is thus not a completely 

reliable method.

Acoustic streaming could help in accounting for the stimulation
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of grov/th that has been reported. El'Piner (1964) studied the effects 

on maize seeds. They were immersed in v/ater, and those irradiated 

for 5 mins. with a beam of intensity 5 W.cmT^ (frequency 3 8O Kc/s) 

were found to germinate more quickly than ordinary seeds but those 

irradiated for 10 to 15 mins. at the same intensity tended to be 

killed, A possible explanation is that the acoustic streaming induced 

by the sound beam alters the permeability of the cell wall increasing 

the water taken up by the plant. Gordon (I9 6 3) has said that this 

could be increased by 10^ to 35̂ . Earlier, Bronskaya and El*Finer 

(1 9 5 9) reported that replacing the oxygen in the water with hydrogen 

produced no stimulating effects (oxygen plays a large part in the 

biochemical processes of plants). This is not the v/hole picture and 

El*Finer (I964) has suggested that also the ultrasound loosens the 

submicroscopic structures of the cells, causing sv/elling and assisting 

in the interaction with oxygen.

Changes in the permeability of the blood-brain barrier have been 

found by Bakay et al (1959). They noticed that, after irradiation 

of cat brains in order to cause lesions, there occurred greater 

transfer of tracer materials (trypan blue and radioactive phosphorus) 

from the blood plasma to the damaged tissue than to normal tissue,

A possible explanation is that of altered permeability due to streaming.

Although it is tempting to assume that the prime mechanism in 

the quoted examples is that of acoustic streaming and its effects, 

the possibility of the presence of invisible bubbles or inclusions 

especially in the examples involving cellular structures has to be 

admitted.
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4.3 Resonant bubble activity in a sound field

The propagation of sound waves in liquid-like media is 

complicated by the presence of bubbles containing gas. The presence 

of these will have a number of different consequences on the sound 

propagation, depending in particular on the size of the bubbles 

relative to the wavelength of the sound in the liquid.

The bubble is a very good source of microstreaming due to its 

volume oscillations (or other modes of oscillation) in the presence 

of a sound wave. This type of microstreaming cadi occur near siny 

solid object in a sound field but a bubble, being compressible, is

extremely effective. Nyborg (1959) has said that the streaming speeds
6can be greater by a factor of 10 compared with a sound field in 

which no bubbles are present. This bubble activity can occur at 

pressure amplitudes well below those required for collapse 

cagitation .

The microstreaming motions around bubbles in simple media such 

as water have been the subject of a great deal of study. The 

streaming patterns even in a medium like water are not simple.

Elder (1959), investigating microstrearning around a bubble close to 

a rigid boundary, found four different types. The actual type of 

streaming that occurred depended on the intensity of the sound wave 

and the viscosity of the medium. The change from one type to another 

corresponded to a different mode of vibration of the bubble. He 

calculated that for a bubble in water and a sound wave of frequency 

10 Kc/s, the velocity gradient in the neighbourhood of the bubble 

surface was of the order of 1,5 x 10^ cm.secT^ per centimetre. It
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is not surprising, therefore, that bubbles are a source of greatly 

increased streaming. It v/as also found that the effects were 

greatest when the bubble was of resonant size i.e. v/hen the natural 

frequency of vibration of the bubble coincides with the frequency of 

the sound wave. The formula for this natural frequency is:-

Ydiere. f = frequency
r = radius of bubble 

ratio of principal 
specific heats 

P^= external pressure 
density of liquid

For a bubble in water and with atmospheric pressure acting 

this formula reduces to:-

r = 0 .3 2 8 %ere f is frequency in Kc/s and
f r is radius in cm.

For example at 1 Mc/s a resonant bubble v/ill have a radius 

of about 3|a.

An example of the increased biological effects of ultrasound 

in the presence of bubbles has been described by Kolb and Nyborg (1956) 

and was due to Ackerman et al. They found that, using a single cell 

organism Paramecium caudatum, destruction of the cells occurred 

within a few minutes if bubble-induced streaming were present (the 

sound source was a small whistle and maximum pressure amplitude v/as 

0,1 atmos.). In the absence of this streaming, the destruction took 

more than ten minutes.

Jackson and Nyborg (1958) put forward the idea that bubble- 

induced streaming could be responsible for certain biological effects. 

They had studied the streaming patterns above a pliable membrane
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driven by a vibrating probe of small area underneath it and considered 

that the presence of a bubble close to a cell v/all could similarly 

induce streaming in the cytoplasm. However, it was not possible to 

predict the streaming patterns due to the inhomogeneous nature of 

this material.

Hughes and Nyborg (I9 6 2) have used a brass probe drilled with

a series of 50 holes, each of diameter just smaller than that of a

resonant bubble at the frequency used,20 Kc/s, to provide a source 

of bubbles. The amplitudes used were below those required for 

collapse cavitation effects. The results they obtained are discussed 

in more detail in section 4 .6 . They found that the bubbles were a 

good source of streaming and caused cell destruction.

4.4 Sound propagation in media containing gas bubbles

The size of the bubble is important in connection vvith the 

scattering of sound energy. If the bubble is the same order of 

size as or larger than the wavelength of the sound, it acts as a 

scatter of sound waves due to the large impedance differences

between the gas in the bubble and the sui'rounding medium (see

section 2.5). If the bubble size is less than the wavelength a 

number of processes become important (e.g. at 1 Me/s, wavelength 

in water is 0.15 cm.). The bubble acts as a secondary source end 

a great deal of energy is scattered since ?n oscillating non- 

cavitating bubble can set the surrounding medium in motion due to 

its contractions and expansions. By considering the motion of a 

vibrating bubble as being similar to that of a simple damped 

oscillating system with one degree of freedom, Devin (1959) found
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that energy was absorbed from the beam by a number of different 

mechanisms which ho called the thermal, viscous and dissipation 

effects. The energy absorbed is due to heat conduction with the 

alternate compressions and expansions of the gas within the bubble, 

viscosity effects at the liquid-gas interface and the re-radiation 

of spherical sound waves from the actual bubble. The total 

absorption is due to the sum of these effects, but the proportion 

due to each depends on the frequency of the incident sound.

An interesting biological application of Devin's equations

has been their application to explain the absorption figures for

lung tissue by Dunn̂ iand Pry (l9él). They used excised dog lung

tissue, irradiated at a frequency of 980 Kc/s and a thermocouple as

detector. For transmitted energy, the amplitude absorption

coefficient was found to be 4.7 cn7^ To try and explain this high

figure, the following model was used. The lungs v/ere assumed to

consist of a uniform distribution of spherical gas bubbles (radius

.03 cm.) imbedded in a medium similar to water. Assuming that the

sound wave causes the bubbles to vibrate and then to lose enerĝ r

only by radiation, it was found by applying Devin's equations that
—1the amplitude absorption coefficient should be 5.7 cm. at 1 Mc/s.

The similarity betv/een the tv/o figures suggests that the absorption 

process in lung tissue is primarily one of radiation. It is extremely 

difficult to obtain ultrasonic pictures of the lung due to the 

enclosed air, but Dunn and Fry deduced the most favourable frequency 

at which to work, if any success was to be obtained. They assumed
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ths.t the absorption in actual lung tissue (no aii’ present) v/as 

-10.1 cm. at this frequency and increased linearly with frequency.

Hov/ever, the absorption effects due to the presence of the bubbles
increased,

decreased as the frequency/. Since the total absorption was the 

sum of both, it was simple to deduce the frequency at which the 

minimum value for the absorption coefficient occurred* This was 

found to be é Mc/s (see fig.17). This frequency would then be the 

most appropriate at which to work.

4.5 Cavitation

Real liquids will normally be found to contain microbubbles 

(those having a radius of the order of 10 ĉm. are essentially 

stable) anc impurities such as dust porticlos. Under the action 

of a sound v/ave these nuclei grow, mainly by rectified diffusion.

At comparatively low amplitudes, stable oscillations of the bubbles 

are observed. At somewhat higher amplitudes, the bubbles become 
unstable and. break up into a number of microbubbles, which form the 

basis for new bubble gravth. At higher amplitudes, sudden and 

rapid growth and collapse of bubbles is found. These phenomena 

are referred to as "cavitation".
In many papers, no distinction is made between the collapse 

and stable forms of co.vitation. Since these give ris& to different 

effects, this is to be regretted, Stabje cavitation occurs at lower 

intensities end gives rise to loss violent effects than collapse 

cavitation. The collapse of bubbles ccn produce very high temperatures 

and pressures at the centre of the bubble (Noltingk and Noppiras, 1950



35
put these as high as 10,000^0 and 10  ̂atmospheres under suitable 
conditions) v/ith the consequent transmission of a high intensity 
shock wave through the adjacent medium. Hueter and Bolt (1955) 
have said that for a bubble of initial radius 100 ̂  at 10 Kc/s and 
a sound pressure amplitude of 1 atmosphere, the subsequent collapse 
gave rise to a shock v/ave v/hich had a measured pressure of betv/een 
200 and 500 atmospheres at a distance of 0,1 cm, from the bubble 
centre. Only collapse cavitation produces ions and free radicals 
in the solution. The nature of these depends on the medium itself 
and any gas dissolved in it.

The actual grov/th of the nuclei occurs in tv/o different ways.
The first talces place over a large number of cycles of the v/ave 
(probably, of the order of hundreds) and gives rise to the stable 
form of cavitation. The nuclei usually grow by a process known as 
rectified diffusion. During the rarefaction phase of the passage 
of a sound wave, gas diffuses into the cavity since the solution 
surrounding it is supersaturated with gas and during the compression 
phase the gas tends to leave the space as the solution surrounding 
it is now under saturated, Since the surface area of the bubble space 
is greater during the rarefaction phase, there will be a net growth. 
Thus, the bubble grows with each cycle of the wave until it reaches 
its resonant size for the frequency used. Further increase in size 
makes the bubble unstable. It undergoes violent surface perturbations 
and oscillations and then collapses with the generation of a large 
number of microbubbles which stream away at high speed and form the 
nuclei for further bubbles. If the frequency is not high enough,
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then the bubble v/ill become buoy cat before reaching its resonant 

size ancl v/ill rise to the liquid surface. This is a franiliar 

action Imov/n as ’de-gassing* of the liquid. The nuclei can also 

grow by a second method, that of coalescence. Nyborg (1957) has 

shov/n that a bubble of less thrin resonmt size is attracted tcv/scrds 

like bubbles.

The collapse form of cavitation appears to involve vapour- 

filled cavities or even voids in the liquid rather then, the gas- 

filled bubbles encountered with stable cavitation. The growth and 

subsequent collapse of such cavities takes place over very few cycles. 

The negative pressure v/hich occurs in the rarefaction phase must be 

large enough to overcome the cohesive forces in the liquid. Thus, 

violent expansion is succeeded by collapse with the production of 

very high peak pressures and other dramatic effects, such as 

sonoluminescence and the production of free radicals.

The occurrence and mechanisms of these different bubble 

phenomena are not completely understood at the moment. A good 

survey of the state of the work in this field is given by Flynn(l9é4;. 

However, a number of different factors on v/hich the onset of 

cavitation depends has been determined experimentally end, in some 

cases, theoretically. These are discussed by a number of authors 

(Noltingk and Neppiras, 1951, Webster, 1963 and Frederick, 19&5 

among others). These factors are as follows

1) The threshold intensity increases with frequency and an 

upper limit for the generation of cavitation is about 15 Idc/s.
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2) The threshold intensity increases with increasing viscosity 

of the medium.

3) Increasing the hydrostatic pressure on the medium raises 

the threshold intensity.

if) The gas content of the liquid affects the threshold 

intensity. The more thoroughly a liquid is de-gassed, the more 

difficult it is to cause cavitation. Also, the distribution of 

impurities which act as nuclei for the initial cavities is also 

important,

5) It is found that the threshold intensity increases with 

increasing surface tension or decreasing vapour pressure of the 

liquid.

if.6 Biological effects due to cavitation

It is well knov/n that certain types of cells can only be 

fractured in the presence of "cavitation". The actual type of 

cavitation is generally not specified but in the vast majority of 

reports, it appears to be the collapse form. The more fragile cells, 

as has been seen, can be ruptured purely by the mechanical stresses 

due to acoustic streaming or bubble-induced microstreaming. Generally 

spealdng, it is the larger cells that are more fragile while the 

smaller ones are resistant to all but large amplitude sound waves.

It has been found that the destruction rate of cells in the presence 

of collapse cavitation is frequency independant (Ackerman, I9 6 2).

Also, the number of cells remaining in a suspension decreases 

exponentially with time (Horton and Horwood, 1950, and Davies, 1959). 

This means that a graph of log^ N/N^ plotted against t, where Nq =
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original number of cells and N = the number after time ,t, will be 

a straight line (fig,18). This type of graph indicates that a 

single phenomenon may be responsible for the cell destruction. If 

cavitation is suppressed in a suspension of such cells, only a very 

small number are found to be ruptured even with long periods of 

irradiation (Neppiras and Hughes, 1 9 6 4). The main problem concerning 

the mechanism responsible is whether this is due to additional 

chemical effects produced by collapse cavitation or the much greater 

mechanical stresses caused by the violent vibrations and colla.pse 

of bubbles. A third possibility is a combination of the two,

A set of experiments was carried out by Hughes and Nyborg (l9é2) 

to try and differentiate betv/een the streaming and viscous effects 

due to vibrating bubbles (purely mechanical in nature) and those due 

to collapse cavitation (mechanical and chemical), and to see whether 

cells could be ruptured without the more violent effects of the 

latter. They used a brass bar driven at 20 Kc/s in a suspension 

containing E.0 0li (bacteria). The lower face of the bar was drilled 

with 50 holes whose size (200|ax 200^ ) was slightly smaller than 

that of a resonant bubble at 20 Kc/s. The bubbles grew from adr 

trapped within the holes. At low vibration amplitudes, the bubbles 

grew but remained on the face of the bar. As the amplitude was 

increased, the bubbles wore seen to be vibrating until eventually 

a point was reached at viiich there was movement of the bubbles from 

the bar through the liquid with the subsequent grov/th (by coalescence) 

and collapse of bubbles v/ith much consequent streamer activity and 

microbubble throv/-off. This vibration amplitude (6.3|A) was



39
identified as that for the onset of collapse cavitation as at this 

point iodine was released from potassium iodide present in the 

solution (an indication of H2O2 production).

It can be seen from fig. 19 that destruction of the E, < coli., cÈils 

occurs readily without the presence of collapse cavitation. Also, 

on the same graph, are the results obtained using a smooth polished 

probe without holes (cavitation was not observed here until much 

higher amplitudes of vibration were used) . Similar results v/ere 

obtained using a suspension of D.N.A. This important macromolecule 

can be degraded in two ways. It can be broken purely by the 

mechanical stresses set up in the medium due to streaming as 

discussed in section 4.2. However, free radical attack due only 

to the collapse form of cavitation produces the brealcing of the 

hydrogen bonding betv/een the bases and a reduction in hyper- 

cromicity (very probably mechanical attack is present as well).

Below the 6.3|a vibration amplitude, there was a brealcdov/n of the 

molecule as indicated by a viscosity decrease (fig. 20), There was 

no reduction in hyper cromicity. After the 6.3^ amplitude was 

reached, the breakdown occurred more rapidly and an increase in the 

optical density was found due to dénaturation. In this case, the 

mechanical and chemical effects due to the passage of the sound wave 

have been elegantly separated.

Hughes (1 9 6 1) had studied the effects of collapse cavitation 

on yeast cells, which are extremely resistant to ultrasonic waves.

Tv/o magnetostrictive transducers were used with stated electrical 

inputs of 5 0 W. and 500 W. at a frequency of 19-20 Kc/s (the transducer
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output was not measured), The number of cells ruptured was 

estimated by determining the amount of nitrogenous material released 

from the cells into the solution or, whei-e this method v/as incon­

venient, the amount of protein released. Added nuclei in the form 

of particles v/hose diameters were 10 -■ I5 |a increased cavitation

effects and thus the numbers of cells fractured (increased 

cavitation effects were probably due to the fact that the particles 

contained trapped air which served as nuclei for bubble growth). 

Hughes also shov/ed that increasing the viscosity of the suspending 

liquid or lowering the surface tension lessened the rate of 

destruction (also, decreasing cavitation effects). It was also 

found, (Hughes and Rodgers, I9 6I) that there was no connection 

between the rate of radical formation (this was estimated by 

determining the amount of iodine released from potassium iodide 

present in the solution) and the rate of cell destruction. Hov/ever, 

the inactivation of certain enzymes was found to depend on the 

free radicals present. Comparison of the rate of inactivation of 

the enzyme alcohol dehydrogenase by a. probe that caused little 

free radical formation with that by one that caused a great deal 

of it showed that the latter was much more successful. Also,

Hughes found that certain components lealced from the cells before 

the walls v/ere ruptured. When the yeast cells wore irradiated for 

tv/o to three minutes with the 50 W. probe, it was observed that 

although very few cells were empty or even damaged ( shown by 

phase-contrast and electron microscopy), protein, alcohol de­

hydrogenase and 260 m|4 absorbing material were present in the
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solution. It was found that small nucleotides v/ere released 

early v/hile the large nucleic acid molecules v/ere released at 

a later stage.

The question of the part that free chemical radicals play

in the biological mechanisms is fairly complex and not yet completely

understood, Weissler (I9 6 0) investigated this aspect using a

suspension of haemoglobin. He used a focused concave transducer

operating at 4OO Kc/s with an output of 20W. (measured by substitution

calorimetry), The estimated focal intensity was of the order of a

few hundred W, cm̂ . The absorption spectrum of the suspension was

observed by means of a Beckman spectrophotometer. The haemoglobin

molecule consists of the protein globin which is attached to the

haeme, a complex iron-containing substance. After irradiation for
oabout three minutes, the absorption peak changed from 4150 A to 

4 0 5 0 & indicating the formation of methehaemoglobin (due to the 

sonochemical oxidation of the ferrous part of the molecule to 

ferric). There v/as then a decrease in the absorption peak until 

after about thirty minutes it v/as completely flattened. By means 

of an ultracentrifuge it was f)und that the haeme and globin parts 

of the molecule were no longer attached. There was also found to 

be some aggregation or degradation of the protein though which of 

these happened depended on the gases present in the solution (and, 

thus, the free radicals formed). In the presence of dissolved air, 

Weissler showed that the sonochemically formed nitrous and nitric 

acids were responsible respectively for the formation and destruction 

of the methohaeaoglobin.The free radicals formed from the water
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such as H2O2 , OH and HO^ were much less important and did not 

affect the reaction. El'Finer (1 9 6 1) has investigated the effects 

of various gases dissolved in the medium on different biomacro­

molecules and found that oxygen caused degradation with consequent 

repression of their functional characteristicq (or even complete 

inactivation) while hydrogen caused aggregation with consequent 

preservation of these functional charactertistics. Fig.21 shows 

the effects on the molecular weight of bvvo enzymes, pepsin and 

trypsin, in the presence of various dissolved gases and with 

collapse cavitation present.

Ackerman (19&2) investigated the effects of high intensity 

ultrasound on red blood cells. By means of electron microscope 

studies, he shov/ed that the cells were torn mechamically, concluding 

that the cell v/alls were torn by the shearing stresses set up by 

the collapsing bubble cavities. Although various free radicals v/ere 

formed from the v/ater, he considered that the concentration of 

radicals was several magnitudes too small to be responsible for 

brealcing down the cell wall by chemical attack.

Definitely cavitation plays a major part in the mechanisms.

If cavitation is suppressed, the effects on cells are severely 

limited. Other mechanisms, however, must play a part. Streaming 

effects can cause certain changes as has been shown but only on 

the wealcer cells. The chemical effects due to collapse cavitation 

have been shown to cause changes only to the molecules released 

after destruction of the cell walls. A mechanical mechanism would 

appear to be the main one and is connected with the bubble collapse
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phase of the cavitation. But v/hê ther it is due to radical 

resonance just before the bubble collapses, the production of the 

shock waves associated with the collapse of the bubble or the 

resultant microstreaming and viscous stresses set up in the region 

of the collapsed bubble is a matter for conjecture at the moment.

4.7 High amplitude effects in intact tissue

It has been found that other effects, quite distinct from 

the purely thermal effects discussed in section 3.5j occur when 

high amplitude v/aves are used or focussing is employed in intact 

tissue. The elucidation of mechanisms then becomes more complex.

It has not been possible to raalce satisfactory measurements cit the 

site of irradia.tion even in experimental anbnals and any d.amage 

caused by the wave can only be investigated alter the animal is 

killed. Generally, focused ultrasound is used to increase the 

available intensity and most of the observed damage is found within 

the main focal lobe (section 2,6).

Pry et al (1950) irradiated the spinal cords of frogs and

paralysis of their hind legs was taken as the end-point. The
were _2

frequency used was 0,98 Mc/s end intensitie^of the order of 35̂ «7cm.

By using pulsed waves, they showed that paralysis was not dependant

on the temperature rise. In a further paper (l95l), they found

that paralysis of the frogs still occurred even if an external

hydrostatic pressure, which they considered was sufficient to

inhibit any chance of cavitation at the frequency used, was applied.

The effects were, however, reduced at the higher external pressure

(fig,22). Prom the graphs, it can be seen that there is a minimum
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pressure amplitude below which no effects occurred, Lehmann (1953)

put forward the theory that selective heating was important

together vath a mechanical effect such as diffusion. Y.'ellcowitz (1955)

suggested a mechanical mechanism based on the unidirectional forces

produced by the wave itself. Later work (Dunn, 1957) tended to

contradict this theory. Hue ter et al (1956), on the basis of their

work on irradiating the spinal cords of mice and using paralysis

of the hind legs as an end-point, postulated a temperature dependant

mechanical effect originating at weak points within the tissue.

Although it is agreed that cavitation is not a main mechanism,

the part played by the heating of the medium is not easy to determine.

If the biological effects were solely due to heating then the dosage

for a given effect (e,g, paralysis of the hind legs) can be expressed

as I X t where I is intensity and t the time of irradiation

(assuming no heat losses). On the other hand, if the amplitude of

one of the parameters (e,g, pressure) is responsible then a relation-
1

ship of the type A x t (or Î  x t), where A is amplitude of parameter, 

should apply. Some authors have found the first type of relation­

ship occurring (e.g. Curtis, I9 6 5, who investigated the effects of 

ultrasound on the intact mouse liver end used hepatic lesions as 

the end-point) and other authors the second (e.g. Fry, 1958). These 

results need not contradict each other. Hueter et al (1936) have 

pointed out that the reaction kinetics of the molecules in cellular 

materials are extremely temperature dependent, making it very 

difficult to separate thermal and non-thermal effects. A great 

deal depends on the temperature of the specimen and the rate at
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which heat is removed from the irradiated area* Various authors 

(e.g. Lehmann et al, 1957 and Ackerman, 1962) have shovm that the 

effects on cellular materials due solely to heating are different 

from those observed with ultrasound.

On the bases of a large amount of work on the irradiation of the 

spinal cords of mice, the following empirical formula relates the 

intensity with the time for paralysis of of the sample using 

results such as shovm in fig. 22 (Fry, 1958) ’

= 0.209 - 1.42

Where I = intensity (W.cmT^), t = time of irradiation (secs.)

It has been found that using intensities on the C.N.S. less 

than those required for irreversible effects, can result in 

temporary blockings of nerves (Herrick, 1955, Young and Henneman, 

1 9 6 1). The intensity range for these effects is small. Fry (1958) 

has suggested that this could be a good method of obtaining inform­

ation about neural pathways. By interrupting these v/ith ultrasound, 

it is possible to relate thorn to identifiable changes in behaviour.

At the present time, the whole subject of high amplitude effects 

in tissue is a matter of controversy and the literature contains 

many contradictions. The main mechanism appears to bo mechanical 

and very temperature dependent. The occurrence of cavitation is very 

difficult to prove one way or the other. Evidence appears to suggest 

that it does not occur (Fry, 1958) but vacuolization of the protoplasm 

has been observed in the subsequent histological examination of onion 

roots irradiated at intensities of 110 W.omT^ by Lehmann et al (1957).
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Bell (1 9 5 7) observed this, also, in liver tissue, the diameter of the 

holes being about 1|4. .

The technique of using pulsed waveforms has not been used very 

much. It would appear that this could be a good way of separating 

effects that are due to heating from those that are purely mechanical 

in nature.

4.8 Discussion of other effects of ultrasound
In the previous sections an attempt has been made to explain 

the interaction of ultrasound vmth biological material. The examples 

Y/ere chosen as they helped to elucidate some of the mechanisms 

responsible. This is probably not the complete picture and various 

other mechanisms could play a smaller part. There are a large number 

of variable quantities present in a sound wave and it is extremely 

difficult to sepai'ate the effects due solely to one of them.

Little consideration has been given to the effects of the direct 

sound beam on an object placed in its path. Simple calculations 

(equations 2.1 to 2.3) indicate values for the different parameters. 

For instance v/ith a IW.cmT^ intensity beam at 1 Me/s in v/ater, the 

pressure amplitude oscillates between + 1.73 end - 1.73 atmospheres. 

This occurs 1,000,000 times each second. The mojcimum acceleration 

of the medium under those conditions is 73,000 x g. Though these 

values are fairly large, they act for only short periods of time. 

Fatigue could occur to or object in the medium due to repeated 

oscillations. The direct sound beam could have a number of indirect 

effects such as the brealcage of weak molecular bonds.



47
It has been shovm that the destruction rates of cells in a 

suspension is largely frequency-independ&nt. Ackerman (I9 6 2), 

however has shown that at certain frequencies the sensitivity of 

cells to ultrasound was greatly increased. It is loiown that 

mechanical systems have certain resonant frequencies. His 

interpretation for cells was that it is a mechanical resonance 

involving the cell v/alls and that loiowing the values for the 

resonant frequencies leads to some knov/ledge of the physical 

properties of the cells. He proposed two types of cell model to 

explain the resonances and, with a suitable choice of physical 

constants, these both agree with experimental results. 7/hat part 

this resonant effect can play in the operative mechanisms is not 

very clear at the moment.

Another interesting effect is the combination of sound waves 

and X-rays. Conger (1943) found that the number of chromosome 

aberrations on Tradescantia paludosiwas increased by a factor of 

1,3 when using sound waves (the frequency used was 9J Kc/s) and 

X-rays together than with X-rays alone. His explanation was that 

the sound waves stirred up the broken chromosomes preventing any 

reunions (this could occur v/ith X-rays alone), Woeber (1954) has 

used ultrasound in conjunction v/ith X-rays in the treatment of various 

types of skin cancer. The first subjects were 120 rats. It was 

found that the addition of ultrasound enabled a reduction of the 

X-ray dose by up to 40^. Woeber (1 9 6 5) has reported that the results 

obtained with humans have been very encouraging.
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Chromosomal aberrations, v/hich lead to permanent changes 

in succeeding generations, ha.ve been obtained using ultrasonic 

radiation. These mutations have mainly been observed with 

plant cells (Wc.llace et al, 1946 and Newcomer, 1954). Most 

mutations observed have been of the point type, Selmcn and 

Counce (1953) have observed that, in eggs subjected to the 

effects of ultrc.sound, the nucleus and cytoplasm v/ere left in 

unusual positions and abnormal development followed in some 

cases. The mechnism operative in causing mutations is not clear 

but Cordon (I9 6 3) has suggested that a depolymerising action 

occurs similar to that observed with some biomacromolecules.
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3. Applications of ultrasound

3.1 Diathermy

This application of ultrasound is a direct consequence of the

fact that when ultrasound passes through a medium, energy is

absorbed and appears ultimately as heat. The greater the value of

the absorption coefficient, the greater the amount of heat produced.

In addition to heat, some authors consider that "stirring" of the

cells and their contents occurs, especially in the soft tissues of

the body, although the evidence for this is very difficult to prove

one way or the other. Diathermy is used to treat certain rheumatic

and arthritic conditions. The use of ultrasound is usually a better

method of heating body tissues than other conventional heat treatments

such as microwave therapy due to the more effective distribution of

the heat generated within the tissue. The actual heat produced

depends on the absorption coefficient of the tissue at the frequency

used. At low frequencies, absorption is small but increases linearly

with increasing frequency. Since the impedance of the tissues does

not change, the actual penetration of the sound beam will decrease

v/ith increasing frequency. Schwann (i9 6 0) defines the depth of

penetration as the distance covered by the wave in order to reduce

its amplitude to i  (= 0.37) of its original value. Some values
e

for these figures at different frequencies are given in Fig, 24 

From these figures it can be seen that ultrasound is very effective 

for heating muscle under a layer of fat due to the small absorption 

coefficient of the latter. As mentioned before, the absorption 

coefficients of tissues with a high water content are small and.
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hence, depth of penetration is large. The reverse is true for 

those tissues with a high degree of structural order. Bone is a 

good absorber of ultrasound and, in addition, causes mode 

conversion (section 3.5). This means that bone v/ill be strongly 

heated compared with surrounding tissue.

Ultrasound is applied to the tissue by means of a 

conventional transducer (Frederick, 1965) v/ith v/ater or oil as the 

coupling medium. The intensities used vary with different workers 

and complaints but the maximum appeeers to be about 3 W. cm. ̂  Above 

this, pain is experienced by the patient. The frequency employed 

depends on the depth of the tissue to be irradiated. If the tissue 

is near the slcin a higher frequency can be used (more absorption, 

greater heating) than for a tissue deep in the body. The range of 

frequencies used is between 1 and 3 M c/s.

Aides (19 5 7) has stressed that a daily check of intensities,

duration of irradiation and frequency used should be undertaken.
— 9 —9He normally used intensities betw :;n 0.2 W.cmT and 1.5 W.cmT at 

frequencies betv/een 0.8 and 1 Kc/f on a large number of arthritic 

patients. During a five year period and the treating of about

4,000 cases, it was found that 7Q% of these obtained overall relief 

after one series of irradiations (12 doses, the periods varying 

from 3 to 20 minutes at intervals of 48 hours). The remaining 

22/c were not completely free of syi^toms after the one series and 

had to have another one or tv/o series before complete relief v/as 

obtained. To prevent permanent damage to the tissue of the patient, 

if acute discomfort v/as registered by the patient due to excessive
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temperature rise, the intensity was cut dovrn. This appears to be the 

only way in current practice of preventing too large an intensity being 

applied, Noltdn^ and Terry ( 1958)have quoted other results obtained 

using ultrasound for diathermic applications,

Patrick (I9 6 6) has mentioned more recent applications of this 

form of diathermy for treating such ailments as painful scars, fractures 

and nerve root pains. Details of intensities and dosages are given.

She is of the opinion that pulsed ultiasound is more effective than the 

unpulsed type as the latter can lead to the production of too much 

heat if adequate precautions are not talcen. This v/ould tend to imply 

a non-thermal mode of action,

5#2 Diagnosis

The physical basis of this application depends on the fact that 

the body consists of many materials of different acoustic impedances. 

When a travelling v/ave crosses a boundary between two media of different 

impedance then part of the incident energy is reflected and the rest 

transmitted. According to equation 2,4 the greater the difference in 

impedance of the two media, the greater the fraction of the energy 

that is reflected. For two given media, the reflected fraction is 

greatest when the incident v/ave ̂is at right angles to the boundary.

The reflected energy is detected by the same transducer (a pulsed 

waveform is usually employed) and the pulse displayed on a suitable 

oscilloscope. This method is especially useful in the diagnostic 

investigation of soft tissues v/hero X-ray techniques are not of much 

value. The main difficulty is the similarity of the values for all 

soft tissues. The density of most mammalian soft tissues varies between
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1.02 and 1 , 0 7  gm,cm,^ and this leads to values of the characteristic 

impedance betv/een 1,5 and 1,7 gm.cm, sec. Thus, the rejected signals 

are small. Added to this, absorption reduces the amplitude of the 

wave further. Strictly speaking, the complex acoustic impedance 

should be considered if a diverging beam is employed or absorption 

occurs.

The equipment and techniques have developed considerably since 

Dussik and his co-v/orkcrs tried, just after the war, to get ultrasonic 

pictures of the ventricles of the brain by transmitting sound through 

one side of the brain and using a second transducer on the opposite 

side as a receiver. The results were not very successful, ov/ing to 

the short time intervals between transmitted and received pulses. It 

was only with the advent of high speed oscilloscopes that satisfactory 

progress could be made.

The general idea is to send out a triggered pulse, lasting a few 

millionths of a second, from the transducer into that part of the body 

under investigation, using a suitable coupling medium, and then to 

display the received pulse together with the initial pulse on an 

oscilloscope. If the speed of the sound in the tissue is loiov/n, then 

its thicloaess can be determined. By means of complicated scanning 

equipment, tv/o dimensional pictures can be built up (Howry, 1937). 

Althou^ the peak intensity of the pulse is high, the average sound 

intensity is very low - thus, no appreciable heating of the medium occurs

The choice of frequency is generally a compromise. To receive 

discernable echoes from two objects close together is only possible 

theoretically v/hen their distance apart is equal to or greater than
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the wavelength of the sound. In practice, it is generally at least 

tv/o or three times the wavelength. Consequently, it v/ould be best 

to employ as high a frequency as possible. However, since absorption 

increases with frequency, the deeper the site to be investigated, the 

lower the frequency that must be used to receive a discernable echo.

The frequencies in use vary from 1 Mc/s (wavelength = 0.15 mm. in 

water) v/hen large distances such as those in the brain are encountered, 

up to 15 Mc/s (wavelength — 0,01 mm.) when investigating such structures 

as the eye. Due to absorption the signal amplitude v/ill be reduced 

to e"^^^of its original value v/here x is the depth of the interface 

and oc the absorption coefficient.

Information about the intensities used is not plentiful. Elder

(1 9 6 3) has discussed the intensities ho used in his investigations of

the heart, 200 pulses per second v/ere used with a maximum duration of

5|x secs, each. Thus, the actual period during which the ultrasound is

propagated is l/lOOOth. of each second, Pealc intensities of 80, 40 and 
220 W.cmT-' were employed at frequencies of 1, 2,5 and 5 Mc/s, respectively 

and these give mean intensities of 0,08, 0,04 and 0,02 W.cmT^ These 

values, according to Elder, are one tenth of the intensity required to 

produce any sensation of v/armth in the body. Gordon (1959) irradiated 

a cat* s skull at twice the normal operating voltage and three times 

the repetition rate for five minutes. Killing of the animal and 

subsequent histological examination revealed no apparent damage to 

the brain.
Ultrasound has been used to visualise a number of different parts 

of the body. The detection of tumours is sometimes possible ov/ing to
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the fact that malignant tissue reflects more sound than normal tissue 

(Wild and Reid, 1957). Various eye complaints such as detachment of 

the retina can be rapidly diagnosed, and the measurement of ocular 

distances determined with a high degree of accuracy (Î 0,2 mm.) 

according to Baum (1 9 6 4). Although initial v/ork on the brain v/as 

disappointing due to interference of the slcull and the actual complexity 

of the brain itself, it is now possible to visualise the structure 

(de Vlieger, 1963) &-nd to detect the presence of tumours by displace­

ment of the mid-line structure (Pell, I9 6 4). Much v/ork has been done 

on the abdomen and associated organs (Howry and Gordon, I9 6 4).

Kossof et al (I9 6 5) have visualised the pregnant uterus. For safety 

reasons, they irradiated approximately 100 pregnant mice for tv/o 

minutes with continuous 1 Mc/s sound at full output (about 15 W). The 

mice were apparently unharmed if the transducer was properly coupled 

to their skin. The average power .af. the pulsed wave employed in 

practice was about 1 mW,

Though now a widely used and successful method of diagnosis, 

little is really Icnown about the mode of propagation of a sound wave 

through a structure as complicated as the human body, Schwann (1 9 6 3) 

has stressed this fact, pointing out it is not a very satisfactory 

position in which to be,

5.3 Neurosurgery
It has been known for many years that lesions can be obtained in 

practically all parts of the body using ultrasound of sufficient intensity 

but the only area in which practical use of this has been made is the 

brain and the central neiwous system. By using focused b®ams of
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sound, very high intensities can be obtained within the focal 

volume and discrete lesions can be formed deep within the brain 

v/ithout disturbing the intervening medium. Lesions as small as 

2 mm^ at 1 Mc/s have been obtained by Fry (1958) and 0,2 mm^ at

2,5 Mc/s by Ballantine et al (1956) in this way. The lesions that 

occur consist of a central region of Icilled tissue surrounded by a 

peripheral region of disturbed and damaged tissue. Although clinical 

effects are immediately apparent (i.e. v/ithin a few seconds), lesions 

do not shov/ up in subsequent histological examination until at least 

ten minutes after irradiation. The v/hite matter of the brain is more 

easily damaged than the grey. The resistance of components in the 

white matter to the effects of ultrasound increases in the following 

order: myelin sheaths, axis cylinders, cells glia and then blood

vessels (Fry, 1958). Ultrasound brealcs down the blood-brain barrier 

though the blood vessels themselves are not impaired, as has been 

mentioned before (Bakay et al, 1959).

By destroying specific small areas of the brain, it is possible 

to eliminate or minimise certain diseases that occur due to malfunction 

of the central nervous system such as Parkinson’s disease, a number of 

types of involuntary movement and tractible pain. The majority of cases 

treated have involved ParIcinson’s disease, (Meyers et al, I9 6 0), This 

disease causes unsteady movements and rigidity of limbs. The 

frequencies used vary betv/een 1 and 3 Mc/s depending on the depth to 

be irradiated (the absorption coefficient for brain matter at 1 Mc/s 

is about 0,1 cmT^). The intensity v/ithin the focal volume can be as 

high as 9 0 0 W,cm7^ and the total time of irradiation up to three Seconds,
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In using ultrasound for neurological applications, it is 

essential that the lesions are accurately placed and that effects are 

reproducible. Because of this, very expensive equipment and expert 

handling are required (Fry and Dunn, I9 6 2) . This method has a number 

of limitations, (Hughes, I9 6 4), A good description of the physical 

factors involved has been given by Dele (1962a)and a statistical 

evaluation of their results has been given by Basauri and Dele (I9 6 2), 

Meyers et al (I9 6 0) have given clinical results of their work. Since 

the work done in this field has been fairly successful, it is probable 

that it will be extended to other sites such as the spine or malignant 

tumours.

The mechanisms which appear to be responsible for biological 

effects in intact tissue have been discussed in section 4<7.

5.4 Manières Disease

This is an affliction of the inner ear and causes dizziness and 

vertigo. It is due to a fault .in the fluid-filled cavities of the 

semicircular canals. Conventional surgery is needed for about 10^ of 

the cases but usually results in loss of hearing. By using ultrasound 

the vestibular apparatus can be destroyed but there is the possibility 

of causing facial paralysis due to proximity of the facial nerves. 

However, it does preserve the hearing. The method was initially 

developed by Arslan who has used it with much success. The canal is 

surgically exposed from behind the ear and the bony section is 

flattened to receive the probe (Arslan, 1964). The ultrasound destroys 

the neuroceptor cells in the semicircular canals. The beam must be

narrow because the facial nerves are very close and a small rise in
R.H.B.N.C. 
UBRARY
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temperature vd.ll destroy them. No histclog-ical change is visible 

inmediately after irradiation, it being days before any is apparent.

The end-point is determined as follows. If v/arm or cold v/ater is 

added to the ear, the eyes turn to one side or the other. This 

happens due to stimulation of the nerve endings. If the vestibular 

nerve endings are destroyed then this does not happen. The irradiation 

is generally kept up for a fev/ more minutes to ensure that the end­

point or nystagmus has been reached. The same type of surgery has 

been used to cure certain types of vertigo by Wolfson (I9 6 5).

It v/ould appear that the mechanism hero is primarily a thermal 

one, but there is histological evidence that the answer is more 

complex than this (Arslan, I9 6 5).
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6. Measurements

6.1 Introduction

If certain assumptions are made about a medium, namely that a 

plane wave is considered and no attenuation of it occurs, then a 

set of simple relationships exist relating the various parameters 

(equations 2,1 to 2.3). While such assumptions are approximately 

valid for many media, considerable departures from them are to be 

found in the case of media containing macromolecules and membrane 

structures characteristic of biological materials. Because of this, 

only measurement of all the various parameters v/ill give a detailed 

picture of the behaviour of the wave. Also, any device used for 

measuring a parameter must necessarily alter the characteristics of 

the medium due to differences in acoustic impedance, absorption, 

thermal capacity and conductivity.

It is necessary to loiow how the available energy is distributed 

and what biological changes it causes during its passage through 

tissue or biological suspension. It is not possible to describe 

the effects satisfactorily due to incomplete knowledge of absorp­

tion mechanisms and the complexity of biological structures. Also, 

the difficulty of making measurements in intact tissue creates 

difficulties.

In order to try and elucidate biological mechanisms and to 

obtain reproducible results, the following parameters at least 

should be knovm: the frequency and method of operation of the

transducer; the total output of the transducer; the intensity
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distribution and geometry of the beam in the medium; the rise in 

temperature produced by the wave; the physical chacteristics of 

the medium and the occurrence and intensity of any cavitation 

effects. The first part of the section will consist of a brief 

discussion about the various necessary measurements and the second 

part an account of the available methods v/ith special reference to 

those designed specifically for work in this field.

6.2 Parameters to be measured

(a) Frequency and method of operation

A transducer is usually driven at its resonant frequency 

(especially for power applications) or one of the higher harmonics 

of it. The determination of the frequency of operation is important 

both in explaining the behaviour of the sound wave and in elucidation 

of any frequency-dependent effects.

A complete description of the experimental arrangements one 

essential for repeatable results to be obtained. Very little 

description is found in many papers which helps to lead to lack of 

reproducibility of results in this field.

(b) Total output of the transducer

The total output of a transducer is an important parameter to 

know. Only with the advent of the medical applications of ultra­

sound has the accurate measurement of output been the subject of 

much study, and a number of devices developed for this purpose. 

Obviously, the dosage applied to a patient is critical. In some 

papers, the output or the intensity per sq.cm. of the emitting
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surface is quoted but little or no idea is given of how the value 

v/as obtained.

(c) Distribution of the intensity

Even when considering a transducer vibrating as a simple piston 

source into an unbounded homogeneous medium, the resultant intensity 

distribution does not follov/ the simple pattern of the plane wave. 

The theoretical equations for this are given in section 2,5.

Adjacent to the transducer lies the region known as the Fresnel 

region in which the axial intensity passes through a number of 

maxima and minima, the width of the wave pattern being the same as 

the transducer diameter. Due to the large absorption coefficients 

of biological materials, this region is important especially in 

diathermic applications. After the last minimum, the beam enters 

the Fraiinhof/er region in v:hich divergence occurs and the intensity 

falls off with the square of the distance. Most of the acoustic 

energy for a given transducer is concentrated in the main lobe and 

the energy’’ carried by the side lobes decreases v/ith increasing 

frequency. The distribution obtained with mathematical techniques 

does help to explain wave patterns in simple media. In practical 

media, the sides of the container give rise to reflection and 

standing wave effects, and bubbles further complicate the intensity 

distribution. In intact tissue, no real picture is, at present, 

possible.
Location of the focal region and the intensity distribution 

within it are important if focussing of the sound wave is employed.
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This is especially true in the neurosurgical applications of 

ultrasound where focal intensities are extremely high. It v/as 

mentioned in section 2.6 that the focal area consists of a main 

lobe surrounded by a number of much smaller lobes. Up to 8 4^ of 

the acoustic energy flows through the main lobe. Knowledge of the 

focal position can be worked out by theory but is not of too much 

value when considering complex biological media.

(d) Temperature

Since most of the energy absorbed by a medium is ultimately 

degraded to heat, a knowledge of the temperature rise is required 

especially v/hen dealing v/ith the propagation of ultrasound through 

living structures. The temperature rise produced vd.ll depend on the 

absorption coefficient and thermal capacity of the medium. This 

rise will also depend on the rate at v/hich heat is removed from the 

irradiated region ( this is especially important in tissue 

irradiation) .
ic

(e) Physical characteristg of the medium

Elucidation of the mechanisms requires some Imowledge of the 

physical chact eristics of the medium. Examples of these are the 

density, viscosity and presence of any dissolved gases. To describe 

the progression of a sound wave through a biological structure, the 

nature of the materials that compose it and the locations of the 

interfaces are required. Also, the absorption coefficients and 

velocities of propagation are essential. The absorption coefficients 

quoted generally mean the gross coefficient since they talce into
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arc mint all I'̂ sscs from the main beam flue to reflection, refraction 

and diffraction effects. The different values of absorption 

coefficients of tissues obtained ax’O probably due to differences in 

age, preparation and tension of the specimen. The propagation 

velocity is needed to calculate the characteristic impedance of the 

medium in order that reflection coefficients at the different 

interfaces can be determined (section 2 3 ).

(f) Occurence of cavitation end measurement of its intensity 

Detection of the occurrence of cavitation and the ability to 

distinguish between the stable and collapse forms are essential in 

the elucidation of mechanisms. Although many of the dramatic effects 

of ultrasound occur in the presence of ca'̂ /itation, in other cases, 

steps must be talcen to ensure that it does not occur. Some indication 

of the actual intensity of the cavitation would also be of interest 

for obvious reasons.

6o3 Measurement of frequency
The measurement of the frequency of operation is done in the 

usual way. If a high impedance oscilloscope is connected across 

the input to the transducer, then the frequency can be determined 

if the speed of the trace ±3 knovm,. Resonance of the crystal 

will be indicated by a maximum of the received signal. Alternatively, 

the frequency can be compared v/ith that of a vauriable frequency 

generator by means of Lissajou’s figures (Stephens and Bate, 1966).

The frequency stability of piezoelectric crystals appears to be quite 

good (Hughes,1 9 6 3) but a meter in the input circuit (e.g. oscillator
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plate voltage) can be used to monitor any electrical change due to 

frequency drift.

In connection with magnetostrictive transducerHughes (I9 6I) 

has mentioned that it was possible to tune his transducer 

(resonant frequency was 19 Kc/s) by listening to changes in the 

noise emitted. This noise v/as not of a frequency of 19 Kc/s but a 

mixed noise produced by the cavitation. Neppiras and Hughes (196 4) 

used an accelerometer device to detect resonance. The transducer 

was megnetostrictive and a small prepolarized crystal of lead 

zirconate titanate was attached to a threaded base v/hich v/as 

screwed into the transducer face. The output from the crystal was 

monitored on a valve voltmeter and any drift from resonance was 

shown on this,

6,4 Measurement of total output
One method, which is to be regretted, is of assuming that the 

transducer is perfect so that the acoustic output is equal to the 

electrical input. This would mean an energy conversion efficiency 

of lOCfo whereas in practice this efficiency may only be of the order 

of 4 0% or even less, Tui accurate but time consuming method of 

obtaining the output is to work out the efficiency by means of cn 

7irgand diagram (Frederick, I9 6 5) • For the loaded condition, the 

transducer must be vibrating into the medium for which the output 

is required. Neppiras (I9 6 5) using this method at fairly high 

intensities ( 4  - 10 W,cmT^ at 20 Kc/s) obtained reliable figures 

for efficiency and pov/er that agreed with calorimetric methods,

r .h .b.n .c. 
library
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Radiation pressure devices are reliable and simple to operate. 

They work on the principle that a second order effect in sound 

waves produces a steady component of force on an interface of 

different acoustic impedance placed in the beam* s path. Measurement 

of this radiation pressure force, P, (usually by means of a beam 

balance arrangement) leads to a value for the power, P, given by the 

equation:-

P = P X c Where c = velocity of sound in the
medium

For this simple formula to apply, the interface must be either 

a perfect absorber or reflector of sound or be mounted at an angle 

of to the incident beai:i. The force on the interface corres­

ponding to a power of 1 watt is 0,069 gm. for the absorbing surface 

and 0*138 gm, for the reflecting surface (water being the medium). 

The main problems with these devices is the elimination of standing 

v/aves which give rise to resonance effects. Also, results at high 

intensities are not accurate due to streaming and cavitation. A 

number of radiation pressure devices have been designed to measure 

the output of transducers used in medical applications.

The radiometer due to Wells et al (I9 6 3) was of classical 

design (fig, 25), consisting of a balance arm which pivoted about 

its midpoint. On one side v/as an absorbing (or a reflecting) 

surface mounted at 45° to the incident beam while on the other side 

of the fulcrum was an adjustable counterweight. The beam was 

directed vertically downwards onto the angled plate. The instrument 

was immersed in water. With the beam incident on the plate, the
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adjustable counterweight was moved until the balance ai-'m became 

horizontal again. By consideration of the principle of moments, 

the force on the plate was determined and hence the pov/er of the 

beam evaluated. A perfect absorber v/as approximated to by lining 

the plate surface v/ith neoprene. A perfect reflector was obtained 

by using two thin metal sheets cemented together with an air gap 

between them. The relQected beam was eventually directed into a 

multiple absorber lined v/ith neoprene. Using a transducer working 

at its resonant frequency, they found that using the reflecting 

surface the intensity was found to be 1.33 ± 0,03 v/atts but the 

absorbing surface led to a value of 1,31 + 0.02 watts. The second 

result was considered to be more accurate as the relecting surface 

introduced angulation errors due to beam divergence,

A similar radiation pressure device has been designed by 

Newell (1 9 6 3) for the measurement of the output of medical trans­

ducers but possesses the advantage that it can measure powers from 

watts down to the order of milliv/atts by changing the wires that 

compose the framework of the balance. With the apparatus at its 

most sensitive (using thinnest wires), Newell obtained a deflection 

of 1mm, for a weight of 0.004 gm. This corresponds to the force due 

to a 60 n&V, beam. If it is calibrated for fixed v/ires (deflection 

per centimetre is known), then the output of a transducer may be 

readily determined.

Wells et al (I9 6 4) designed another radiometer to v/ork at the
of

very low power outputs of pulsed transducers or |J;he tiny transducers
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used in some medical applications. This method depends on the 

principle that a small sphere or interface suspended by a v/ire 

will be deflected from its rest position due to the radiation 

pressure of the beam. In Well’s instrument (fig. 26), a hollow 

metal vane, 5.5 cm, in diameter, was mounted at 45° to the on­

coming beam. Two heavy members were cemented either side of the 

vane to keep it in this position (the vertical force is always much 

greater than the horizontal force), It was suspended by two 

phosphor bronze v/ires, 83.7 cm. in length, from the top of the 

apparatus. The beam was deflected vertically down by the vane 

into a multiple absorber lined v/ith neoprene. Assuming a v/ire of 

zero weight and cross-section, the following equations are derived 

by resolving the forces in two directions (fig. 26);- 

F = T sin 0

W = T cos 0 Where F = horizontal force (radiation
force)

W = vertical force (v/eight)

T = tension in wire 

© = angle of deflection

From these tv/o equations, F̂  = tan 0
W

Since d = tan 0, where 1 = length of the wire, d = horizontal
Î

displacement of vane^ the follov/ing relationship follows:-
F = ̂

1

Thus, by measuring d and loiowing W and 1, a value for F and 

hence P, can be found. The actual deflection v/as measured by a
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travelling microscope and it v/as v/orkcd out theoretically that a 

1 mW, beam v/ould cause a deflection of about 0.02 cm. However, 

several errors arise v/ith this type of instrument. Investigation 

showed that any error due to the weight of the v/ires, their 

resilience and any changes in length was negligible; as v/as that 

due to surface tension effects. In practice, the main error (_+ 2 fo) 

was found to be due to dust particles that occur on the surface of 

the v/ater. However, this could be avoided by totally immersing the 

suspension vdres. A lighter vane would increase the sensitivity but 

its weight becomes more temperature and pressure dependent. The 

apparatus needs a very substantial base if vibration effects are 

to be elnmnated. They claimed that the instrument is accurate to 

within ̂  for a power of 2 mW. This value for the error was 

obtained from the mean of a series of ten measurements from the 

source of 2 nW. The minimum deflection that could be detected 

corresponded to a beam of 0,01 mW, but it is very difficult at 

these powers to separate any deflection due to draughts and 

vibrations from that due to a sound beam.

Other methods have been developed by workers to monitor 

power outputs. Gordon (I9 6 3) developed an instrument known as the 

Friston ultrasound intensitymetor at the Royal Ear Hospital. Again 

the basic arrangement is similar to Well’s original pressure 

balance. However, it is very sensitive and can record forces as 

small as 0.00017 gm.v/t. with the aid of sophisticated additional 

apparatus. In normal use, it can record powers dov/n to 1,7
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Kossoff (1 9 6 2) described a method in which the radiation pressure 

due to a sound beam was used to depress a float partially 

immersed in carbon tetrachloride (fig. 27). The sfcem of the 

float was usually calibrated directly in watts.and intensities 

of up to 25 watts could bo measured v/ith an accuracy of ±

More recently, Kossof (I9 6 5) has greatly improved the sensitivity 

by using a Mettler balance. Using a reflecting target a sensitivity 

of 0 , 0 4  mV/ has been obtained.

Calorimetric methods are of two types; the constant flov/ 

method (Brown and Goodman, I9 6 5) and the thermal isolation method 

(Mildiailov, 196 4) but neither appears to have proved populejr for 

biological applications. The calorimeters work on the principle 

that all the sound energy is used to heat the liquid and from the 

temperature rise it is possible to calculate the transducer power. 

The best results with thes instruments are obtained at high 

intensities even with cavitation present (Neppiras, I9 6 5). The 

main difficulty appears to be to stop any heat generated within 

the transducer being transfered to the absorbing medium. At lov/ 

intensities, this heat swamps any heat due to the absorption of 

ultrasound by the liquid due to imperfect thermal insulation 

between the source and the calorimeter.

The only application of a calorimeter measurement in this 

field appears to be that of Wells et al (I9 6 3). Their calorimeter 

is shov/n in fig. 28. It v/as filled with carbon tetrachloride 

which has a much larger absorption coefficient than the sphere
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containing it (this means that the sphere will absorb little pov/er 

from the beam). The entry tube was off-set to prevent the beajn 

being re-radiated out of the calorimeter. The entry tube v/as filled 

with constantly flomng water to remove any heat generated within 

the transducer. There is only a small loss in power due to any 

reflections at the water/carbon tetrachloride interface as their 

characteristic impedances differ by only 0.67 .̂ Original trials 

with the instrument had used v/ater instead of carbon tetrachloride 

but, due to very slow heat transfer, non-line an? responses v/ere 

obtained. The temperature rise in the calorimeter was found by 

means of a number of thermocouples suspended inside the sphere.

The acoustic power can be calculated loiowing the rate of temperature 

rise and the mass of the absorbing liquid. Using a tiansducer v/hose 

output was 1 watt ( as determined by a radiometer) , a value of

1 ,0 6  + 0 ,0 7  watt was obtained with the calorimeter. The discrepancy 

was probably due to possible errors in the volume estimation of the 

calorimeter and divergence of the beam. For clinical v/ork, it wa.s 

maintained that such results were of sufficient accuracy.

6,5 Measurement of the intensity distribution

Measurement of the intensity distribution is important because 

of the complex nature of the acoustic field radiated by a transducer. 

The main drawback again to all the methods described is that 

observations can only be made in a simplified medium, usually v/ater.

In a biological medium, especially tissue, this picture will naturally 

be modified but at the present time there is no method of obtaining
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any picture of this distribution. It has be to assumed that the 

intensity distribution both in a simple medium and a complex 

biological rnateria.1 is similar, A suiiinary of the various methods 

used to visualise acoustic fields in order to study intensity 

distribution has been given by Rosenberg (1955). The main methods 

of interest are those of ultrasonically sensitive chemicals and 

Schlieren photography. The acoustic field can also be investigated 

vd.th the aid of a small piezoelectric probe or thermocouple.

Chemical methods are a simple and cheap v/ay of visualising an

acoustic field. i\n interesting method developed by Kossof (19̂ 2)

after an idea by Bennett (1952) gives fairly accurate results

(+ 13̂ ) of the intensity distribution. The transducer under test

was allowed to vibrate into an iodine solution. Arranged at

intervals and mounted at right angles to the path of the beam, were

a number of thin polyethylene sheets (these are transparent to

ultrasound) on which was deposited a film of starch. The effect

of ultrasound is to accelerate the well known starcViodine

reaction \diich turns the starch blue. When the beam is propagated

it takes about 3 to 10 seconds for the patterns to develop. Where

the intensity is greatest, the colour change will be greatest

(Kossof showed that the density of the colour was directly

proportional to the ultrasonic intensity at that point in the
— prange 0,2 to 2 W.cm. Above this value, cavitation effects begin 

to occur and these complicate the results). Due to the rapid 

deterioration of the sheets, it is advisable to film them as soon
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as possible in order to obtain a permanent record of the intensity 

distribution.

/inothor method described by ArkLangel’sldLi (I9 6 7) could be 

used in a similar manner. It concerns the accelerated developing 

rates of photogra.phic paper in the presence of ultrasound. There 

is the usual darkening effect which increases with increasing 

sound intensity. By using an arrangement similar to Kossof’s, 

except that the iodine is replaced by developing solution and the 

sheets with photographic paper, v/hich must be transparent to 

ultrasound^similar measurements can be made. Arklangel’skii 

found that silver iodide gave the best results. He also found that, 

using undeveloped photographic paper, cavitation produced develop­

ment of the paper if there were no developing agents present in 

the solution and it occurred after a few minutes irradiation. This 

was probably due to sonoluminescence. If cavitation effects do not 

occur, then a developing agent is necessary and complete develop­

ment of the paper requires a time of the order of tens of minutes.

Schlieren photography has proved to be of considerable use 

in visualising the side lobes and, thus, the divergence of ultra­

sonic beams emitted from transducers. This system depends on the 

fact that a mechanical wave propagated through a medium causes 

density changes. Light is shone through the medium and any density 
gradients are manifested as intensity change^ in the image. Two

interesting applications of Schlieren photography have been those 

due to Bullen (1 9 6 3) and Kossof (I9 6 4). Both were investigating
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the design for a focussed, transducer for treating Menieres disease. 
This necessitated a transducer of very small emitting surface but 

high intensity. Knowledge of the divergence of the beam v/as 

essential due to the proximity of the facial nerve during irradia­

tion.

The intensity distribution can be scanned mechanically by 

means of a small piezoelectric probe. However, its presence irill 

tend to distort the fields even v/hen its physical size is extremely 

small. It can also give rise to standing wave systems which will 

cause resonant effects. At megacycle frequencies the receiver can 

cause cavitation effects because of imperfect wetting of the crystal 

face due to surface discontinuities which encourage bubble forma­

tion, (Lele, 1 9 6 2), This can be avoided by using a crystal covered 

with silicone rubber. The voltages produced by the pressure 

charges at the crystal are generally displayed on an oscilloscope.

The intensity of the wave is proportional to the square of the 

pressure and hence to the square of the voltage. The main 

advantage of using such probes is the wide range of intensities to 

which they will respond. Intensities from microwatts to the order 

of watts per sq.cm. can be satisfactorily measured.

A thermocouple designed specifically for this field has been 

developed by Fry and Pry (1934,a and b) . The instrument, shown 

in fig.2 9, consists of two separated polyethylene diaphragms 

containing an imbedding medium with the tiny thermocouple, 0 ,0 0 0 3 in. 

in diameter, fixed at the centre. The imbedding medium, v/hich
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should be chosen to ensure a good acoustic impedance match, is 

usually castor oil when v/orking v/ith v/ater or similar liquids.

Also in fig, 29, there is shov/n the thermoelectric e.m.f. generated 

due to the passage of a one second pulse of ultrasound. There is 

an initial sharp rise due to viscous forces between the wire of the 

thermocouple and the imbedding medium. Then follows the effects due 

to true absorption and this section is approximately linear. When 

the pulse has passed, there is an initial rapid decrease of the 

e.m.f. due to removal of the viscous forces. The subsequent slow 

decrease is due to the cooling of the medium. Pry and Fry used

0.1 sec. pulses for intensity distribution studies as thermal

recovery was quicker. They have shovm (1954̂ 0.) that considering

the linear portion of the graph:-

I = PC dT 
dt

Where I = acoustic intensity

pC = heat capacity/unit volume of imbedding medium

Y = intensity absorption coefficient of imbedding medium

dT = temperature gradient 
dt

If certain criteria are satisfied, then the intensity 

absorption coefficient, , can be found if the acoustic intensity,

1, is known. If ̂  is known then I can be found. The intensity 

absorption coefficient is equal to twice the pressure amplitude 

coefficient.
The main advantages of this thermocouple method are that it is



74
very small and stable; it does not distort the acoustic field to 

any great extent and can determine an absolute value for the 

acoustic intensity. It has been used by Dunn and Bryer (1 9 6 2) for 

frequencies as high as 2000 Mc/s, The main disadvantages are 

that an intensity of 1 W/cm is needed for a suitable output and the 

instrument cannot be used to investigate the temporal waveform of a 

wave. For measuring purposes, the thermocouple is connected to an 

oscilloscope via a low noise amplifier. The results are then seen 

visually or photographed, A magnetic oscillograph can also be used.

The focal length of a concave transducer and the distribution 

of the intensity v/ithin the focal region are of critical importance 

especially in irradiation of brain material in order to produce 

lesions, Hughes (I9 6 4), discussing dosimetry in neurophysical uses 

of ultrasound, said discrepancies of 0,6 mm. had occurred beir/7een 

computed and observed values of the focal length in work on animals. 

Due to the temperature dependence of the focal distance and the 

inhomogeneity of brain tissue, the focal length must necessarily 

alter from that calculated in simple media.

A simple method of determining the focal point of a concave 

transducer has been mentioned by Gordon (1 9 6 4). The transducer 

vibrated into water and was coupled to a commercial flaw detector, 

thus acting as transmitter and receiver. A small metal sphere, 3 cm. 

in diameter, was moved in two directions, one along the axis of the 

crystal and the other at right angles to this axis until the maximum 

echo was received by the transducer. This meant that a maximum of
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the transmitted energy was reflected back and denoted the focal 

point. This method is claimed to measure focal lengths to v/ithin 

small fractions of a millimetre.

The focal intensity can be calculated from theory (section 2.6). 

The main lobe, which carries up to 82^ of the incident energy, is 

the most important. It can be investigated by means of a piezo­

electric probe or thermocouple. Due to the fact that these instru­

ments can cause cavitation effects in the medium, because of the 

high intensities vdthin the focal region, it is sometimes necessary 

to talce measurements using lower transducer outputs and then 

extrapolate the graph of focal intensity against some parameter of 

the electrical input, such as the transducer driving voltage.

Lele ( 1962a)has given an excellent survey of the physica.1 problems 

associated with focal measurements and the production of lesions 

v/ith ultrasound. The actual shape of lesions formed in living tissue 

has been found using subsequent histological examination to be 

ellipsoidal. This method means the sacrifice of a number of animals 

and an elegant method developed by Lele ( 1962b)has been used to 

study the effects of the various acoustic parameters on the size and 

shape of the lesions formed. The irradia.tion of strain-free me thy 1- 

methacrylate with focused ultrasound caused 'lesions' (due to 

structural changes) to be formed below the surface. This mterial 

becomes double refracting when strained and the strained areas are 

visualised as interference patterns if viewed between a polariser 

and analyser. This method was initially developed to study
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roproducibility of * lesions' and the effects on their size and 

shape duo to chejige of the various acoustic parameters. A linear 

relationship was obtained between the log. of the volume and the 

log, of the pulse duration and, also, between the log. of the volume 

and the log, of the intensity. These results were obtained using 

three different frequencies. It is thus possible to get the desired 

size of lesion by a suitably chosen intensity and pulse duration.

Also, the actual shape of the 'lesion' was investigated* The effect 

of pulse interval on the ' lesion' was of interest. It v/as found 

that if the pulses were separated by a time interval of less than 

3 0 0 secs* the effects ŵere cumulative. Above 300 secs, transient 

'lesions' were obtained which disappeared before the next pulse 

was propagated. These transient 'lesions' were also obtained using 

threshold intensities. Lele concluded from this that the mechanism 

responsible for the 'lesions' was of a thermal origin. Reproducible 

and consistent results were obtained v/ith this method.

6,6 Measurement of temperature

The usual method of measuring temperature changes involves 

using a calibrated thermocouple such as the developed by Fry and 

Fry. A thermocouple, because of its small size, possesses the 

advantage that it can be directly imbedded in the medium of interest.

Fry and Fry (1953) have investigated the temperature rise in the 
spinal cords of rats v/ith this method and Herrick (1953) the temperature 
rise in the femurs of dogs. This method is not practical in humans, 
and in diathermic applications the only indication of temperature
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rj.se is provided by the patient himself.

Chemical methods relying on the use of thermosensitive 
substances (Ernst and Hoffman, 1953) could be employed v/ith 
biological suspensions but do not appear to be of any importance,
6.7 Measurements of physical characteristics of the media

A number of the physical characteristics (e.g. density. Viscosity 
etc.) can be measured by well-known methods and v/ill not be described 
here. The only two which will be discussed in detail are the 
measurement of absorption coefficients end the velocity of sound,

a) Absorption coefficients
Fry and Dunn (1962) have described the principles behind the 

usual methods of determining the absorption coefficients of 
biological materials, This is to send the sound beam through 
different thicknesses of the specimen mounted at normal incidence 
to the beam. These are immersed in a simple medium, such as 
water, between a transmitter and receiver, A probe (e.g. piezo­
electric) can be used to measure the amplitude of the received 
sound wave. By plotting the received voltage against the thickness 
of the specimen, a value for the amplitude absorption coefficient,

, can be found. Using a calibrated thermocouple (such as that 
developed by Fry and Fry) as detector leads to a volue for the 
intensity amplitude coefficient, ̂  , Continuous v/o.ve methods can 
be used but pulse methods are more convenient and result in little 
heating of the medium. By using the refjected waves, it is possible 
to find the absorption coefficient. By using two thicloiosses of
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the specimen, both reflection and absorption coefficients can bo 
found. If continuous wave or pulse methods are not possible at 
normal incidence, the beam can be made to intercept the material 
at an oblique angle. This method avoids any reaction on the 
transducer due to direct reflected energy and eliminates any 
energy in the transmitted beam due to multiple reflections in the 
tissue.

Schwann and Carstensen (1952) have used the arrangement shovm 

in fig. 30 for the measurement of absorption coefficients in blood 

and this method employs the usual pulse method. The separation 

between the two transducers was kept constant and they were moved 

along a fixed axis. The blood was separated from the water by a 

thin membrane permeable to ultrasound. In fact, any reflections 

due to impedance differences v/ere very small. The received and 

initial pulses were displayed on the oscilloscope. By means of an 

accurate decade attenuator, the loss in amplitude was determined. 

Knowing the value for the absorption in water to a high degree of 

accuracy, the absorption coefficient for blood was determined. This 

method v/as also used for measurements with solid tissue. The vessel 

was completely filled with water and the tissue was supported 

between two plastic windows. The transmission loss was found by 

oomparing the output amplitude v/ith and without the tissue being 

present.
The measurement of absorption coefficients in tissue presents 

more difficulties since the tissue has first to be excised from
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the animal and then suitably supported in a simple medium for 

irradiation. This leads to changes in the physical properties of 

the tissue, A typical arrangement was that used by Dunn and Fry 

(1 9 6 1) and shown in fig. 31. A special absorption chamber con­

taining castor oil was used to eliminate reflections and the 

coupling medium was degassed saline solution. The detector was a 

calibrated thermocouple. By using tv/o thicknesses of excised 

lung tissue, a value for the intensity amplitude coefficient,^ , 

was determined. Placing the thermocouple between the lung tissue 

and the source and then altering the path length yielded a value 

for the reflection coefficient by analysis of the standing wave 

system formed. For bone, the method used is similar, slices of 

the bone being placed between the transducer source and a suitable 

receiver (Kishimoto, 1958 euid. Bullen et al, I9 6 3). Bullen et al 

(1963) used their data on transmission to calculate a value for the 

velocity of sound in bone,

b) Velocity of propagation
The first measurements on the velocity of sound in biological 

media to appear in the literature seem to be those of Ludwig (1950). 

His experimental arrangement, ahovm in fig, 32, was based on the 

original pulse techniques developed by Pellam and Galt (1946). 

Ludwig, however, used separate crystals o.s transmitter and receiver. 

X-cut quartz crystals wore used. Triggered pulses were used to 

drive a radio frequency oscillator at the resonant frequency of the 

crystal. The pulse was propagated through the tissue, mounted
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between the two crystals. The received pulse was then amplified 

and displayed on an oscilloscope. Since the speed of the oscilloscope 

was îoiown, the time for the pulse to pass through the specimen was 

determined and hence the velocity was found. Anisotropy of velocity 

with fibre direction in samples of beef muscle was also demonstrated. 

Frequencies of 1.25 Mc/s and 2.5 Mc/s were used for the measurements.

Schv/ann and Carstensen (1952) also used their experimental 

arrangement (fig. 3 0) to measure the velocities of propagation in 

blood. The separation of the crystals in this case could be varied 

by means of a micrometer screw control. The wavelength of the 

sound was found by comparing the phase of the received signal v/ith 

that obtained directly from the generator while the distance between 

the two crystals v/as altered. Knowing the v/avelength and the 

frequency of the sound, the velocity was calculated. During the 

course of their work, knowledge of velocity dispersion, if present, 

was needed. The same form of apparatus was used (Carstensen, 1954).

A bariumtitanate crystal driven at frequencies between 0.3 Mc/s 

and 10 Mc/s v/as used as transducer. The separation between the 

crystals was arranged for a minimum response between the input and 

output signals. The separation was then altered until the initial 

and transmitted signal v/ere again out of phase. Knowing the 

v/ave length, the velocity v/as found. An accuracy of one part in ten 

thousand is said to be possible with this method,

Goldman and Richards (1954) used an interferometer technique 

to measure velocities in biological liquids and tissues (fig. 33).
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Two quartz crystals wore used, one of them movable. The frequencies 

used wore 1, 2, 4̂  12 and 36 Mc/s, The input and received signals 

were mixed separately with the frequency generated by a common 

oscillator to produce two audio signals. These were then displayed 

as Lissajou’s figures on an oscilloscope. The movable crystal was 

mounted on a micrometer screw and the wavelength was determined 

from the distances between the positions of phase coincidence 

observed on the oscilloscope. Knovring the frequency (to an accuracy 

of one part in tv/enty thousand) the velocity was found. The • 

temperature was controlled v/ithin 0.1° C and the velocity was 

determined to v/ithin one part in a thousand. Tissue could be used 

with this apparatus but must necessarily be compressed as the path 

length was altered.

El'Finer (I9 6 4) has described a more recent method using an 

interferometer to measure velocities in acqueous solutions of 

molecules. It is based on the fact that when a sound wave is 

passed through a layer of material^maxima and minima of transmission 

occur depending on the thiclmess of the layer. A maximum occurs if 

the thickness is a v/hole number of half wavelengths and a miniLium 

if it is an odd number of quarter v/ave lengths. In the arrangement 

(fig. 3 4), the layer of liquid v/as varied in thickness by adjusting 

the distance between tv/o glass rods, 10,cm. long, to which the 

transmitting and receiving crystals were attached. The separation 

could be measured to v/ithin + 3 . By measurement of the number

of maxima, n, for a particular change in thicloiess, d, it was
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possible to determine the wavelength ( \= 2d) of the sound,

n
Knowing the frequency (in this case it was 1,4 Mc/s), the velocity 

of sound v/as found. This method has been used to study the variation 

of velocity in acqueous solutions of biopolymors which had been 

irradiated in the presence of dissolved oxygen or hydrogen, in 

order to determine degrees of hydration.

Hawley et al (1965) used standard pulse-echo techniques in 

their investigations v/ith acqueous solutions of dextran. An 

absorption chamber v/as used in v/hich the path length was varied by 

moving the quartz transducer relative to an acoustic reflector.

The echo traces were displayed on an oscilloscope. From the 

oscillographs obtained of the exponential time-amplitude relations 

of the trace of the initial echo as the path length was varied, 

values for the velocity of sound (estimated accuracy 4̂  3̂ ) and the 

absorption coefficient (4̂  5 %) were calculated in the normal way.

Knowing the velocity, it is possible to calculate the real 

part of the acoustic impedance of the medium i.e. the characteristic 

impedance, p c. The contribution due to the complex part involves 

consideration of absorption data. Lugwig (1950) found that the 

complex component of the impedance in tissues was negligible.

Most of the methods described for measurement of absorption 

coefficients and velocity apply only to liquids. Tissues, particularly 

those with irregular structures such as bone, present many difficulties 

and the published data on such measurements is very meagre.
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6,8 Occurrence of cavitation and its measurement

The methods of determining the onset of cavitation are really 

only applicable to liquids or suspensions. At the present time, 

the occurrence of cavitation in intact tissue appears to be unlikely . 

because of the high viscosity.

The visual method is sometimes employed. By passing light 

(or other electromagnetic radiation) through the solution, the 

onset of cavitation is determined by increased opacity of the 

medium due to the generation of bubbles and streamers^ A change 

in volume of the solution also occurs and this, too, can be observed. 

By analysis of the noise spectrum, it is fairly easy to determine 

the onset of cavitation and to differentiate between the stable and 

collapse forms. This method has been referred to by Hue ter and 

Bolt (1955). A v/ide-band hydrophone is used to examine the spectrum. 

Although bubbles may be formed by degassing of the medium, no noise 

spectrum is obtained. With stable cavitation present, a line spectrum 

is observed containing the generated frequency and various harmonics 

of it. If collapse cavitation occurs, a spectra is obtained formed 

by harmonics and sub-harmonics of the generated frequency and these 

are superimposed on a v/hite noise backgraound. Neppiras (1 9 6 5) said 

that the sub-harmonics are due to non-linear radial motions of bubbles 

driven above their natural frequency and that they will have a strong 

sub-harmonic component if the generated frequency is an integral 

multiple of the natural frequency of vibration.
The impedance of a medium decreases drastically at the onset of 

cavitation due to bubble formation. By electrical measurements of the
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input to the transducer, it is possible to determine the point at 

which the cavitation 'unloading' occurs since the power supplied to 

the transducer v/ill alter considerably.

The other methods of interest are based on the sonochemical 

effects of collapse cavitation (they will not occur if stable 

cavitation only is present), The traditional method is the liberation 

of iodine from potassium iodide dissolved in the liquid. However, it 

is only qualitative. A recent method has been described by Neppiras 

(1 9 6 5) using this chemical to give an idea of the intensity of 

cavitation. Potassium iodide with carbon tetrachloride and starch 

are dissolved in the solution, A measured quantity of sodium bi­

sulphite is added. This delays the iodine reacting v/ith the starch 

to give the v/ell-knov/n blue colour until the follov/ing reaction has 

been completed:-

+ I2 — 2NaI +

When this is finished, the iodine mll“ react v/ith the starch and 

the blue colour v/ill appear first where the cavitation effects are 

greatest. Knov/ing the quantity of sodium bisulphite added and the 

time before the blue colour appears will give an indication of the 

cavitation intensity,

Weissler and Hine (l9&2) have suggested another method to 

determine cavitation intensity. They used the liberation of chlorine 

from carbon tetrachloride. The chlorine formed reacted with an 

orthotolidine reagent to give a yellow colour, whose intensity was 

measured by means of a spectrophotometer. An accuracy of + lOfo has
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been claimed for this method. The optical density of the solution 
is a direct function of the amount of chlorine present and it 

would appear that this is also linearly related to the cavitation 
intensity,

6,9 Other measurements
The field is not completely specified by measurement of the 

previous parameters. Until the mechrjiisms are completely explained, 

it is not possible to say which measurements are the essential ones. 

At present, as many as possible are needed in order to try and relate 

the observed effects to one or more parameters of the wave. The 

importance of such factors as the ambient pressure and temperature, 

pressure of dissolved gases, non-uniformity of the field, the 

intensity and the intensity gradient is not completely understood.

There are other measurements which would be useful, but at 

present there -are no satisfactory techniques for mald.ng them.

These are:-
i) the measurement of micro streaming effects and the 

calculation of the stresses that they exert on cell walls 

and biomacromolecules,

ii) more detailed knowledge of the physical properties 

of cells e.g. the elastic properties of the walls and 

viscosities of the liquids inside the cells,

and iii) the ability to make measurements in intact tissue 

and especially to detect ca.vitation ( if it occurs),
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Conclusion

Ultrasound acts on living materials by means of a number of 

different mechanisms. Heating of the medium occurs due to 

absorption of the ultrasonic energy. The viscous stresses due to 

acoustic streaming effects of the direct sound beam or, more 

important, microstreaming due to presence of resonant bubbles or 

inclusions cause stirring of cellular contents, alter cell wall 

permeabilities and even cause disruption of weak cells. Finally, 

collapse cavitation produces gross disruptive effects which are 

associated with the collapse phase of the bubbles. In intact 

tissue, although there is considerable evidence that, in 

addition to heating, mechanisms that are non-thermal in nature 

may operate under certain conditions, an adequate account of the 

basis for the observed effects has not yet been given.

Each of these mechanisms will depend for its mode of action on a 

different set of parameters describing the sound wave and the 

medium. At the moment, it is not certain which are the important 

parameters. The acoustic intensity distribution of the wave ia the 

medium is of primary importance for any discussion of the mechanisms. 

Considering the heating effect, the frequency must be known since 

the absorption coefficient is a function of the frequency. For 

calculating the magnitude of viscous stresses, the velocity gradient 

needs to be known. For collapse cavitation the pressure amplitude 

is of great importance, determining the onset of the growth and 

subsequent collapse of bubbles but this also depends on the amount
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and nature of any dissolved gasos, the ambient pressure and the 

viscosity of the medium. In intact tissue, which parameter is 

the most useful is a matter for conjecture but it is useful to 

knoY/ (if possible) the value of the pressure amplitude.

In specifying conditions for any irradiation, it is desirable 

to know the following: the frequency of the wave, the output of

the transducer and the intensity distribution of the acoustic 

energy v/ithin the medium. Also, measurable physical characteristics 

of the medium and any other parameters of the wave (e.g. pressure 

and velocity amplitudes) that can be determined should be knov/n. 

Indication of any occurrence of cavitation is most important.

Measuring techniques for the following arc available: the

frequency, the output of the transducer, the intensity distribution 

(only in a simple medium), the rise in temperature and the 

occurrence of cavitation (the methods are restricted to consideration 

of solutions.)
At the moment, there are no satisfactory techniques for 

visualising the intensity distribution within intact tissue nor of 

detecting the onset of cavitation if, indeed, it takes place at 

all. Calculation of the stresses set up by microstreaming effects 

would be very helpful. Information about the physical properties 

of cells such as viscosity of cytoplasm and nucleus and elastic 

properties of the cell walls would be of the utmost importance.
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In helping to explain the biological effects of ultrasound, the 

following lines of research would appear to be very useful, 

Ackerman's work on cellular resonances could lead to increased 

knowledge of the physical properties of cells. He has developed 

a suitable mathematical treatment to try and explain the observed 

maxima in cell destruction rates. Two simple cell models were 

proposed and, with a suitable choice of the physical constants, 

both led to values for the resonant frequencies that agreed with 

observed values. Development of more sophisticated cell models 

could be tested in this way.

Nyborg has tried to explain the streaming motions observed in 

the cytoplasm and nucleus of suitably suspended cells irradiated 

by ultrasound in terms of the classical acoustic theory developed 

to explain non-linear effects in simple Newtonian liquids.

Although the compexity of cellular structures makes any sort of 

explanation extremely difficult, this method could prove very 

useful in explaining the effects of acoustic waves on cells.

In general, there would appear to be a need for a much more 

critical investigation of the basis for the mechanisms that appear 

to be non-thermal and non-cavitational in nature and the studying 

of these effects in situations where neither heating nor cavitation 

are present.
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Fie. 5 Variation of absorption per wavelength with
frequency when relaxation mechanisms operative 
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Fig. 6 Absorption of sound in solutions of various
mammalian haemoglobins ( Carstensen and Schv/ann, 1957)
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function of aging time (Dunn̂ , 19 5̂)
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Arrows show path of motion of particles

Fig, 13 Ultrasonically induced motion in cells. 
(Dyer and Nyborg, 196o) .
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Pig, 14 Effect of amplitude of vibration on human 
erythrocytes as measured by haemolysis 
(Hughes’and Nyborg, 1 9^2).
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Pig. 15 Diagram of streaming motions due to the vibrating 
needle (Hughes and Nyborg, 1962").
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Pig. 16 Sedimentation coefficient of D.N.A. v. irradiation 
time (Hawley et al7 19̂ 3).
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Pig. 21 Change in mol, weight and activity of pepsin, and
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Fig, 25 Schematic diagram of a radiation-type soundof a
intensity meter. (Frederick/ 1965^7
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Fig, 26 Radiometer designed to measure small intensities 

(Wells et al, I9 6 4).
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Fig. 28 Calorimeter (Wells et al, 1963)
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Pig. 31 Measurement of absorption in lung tissue (Pry and 
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Pig, 32 Schematic diagram of apparatus for measuring velocity 
of sound through tissues TLucLvvig, 1950)
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GLOSSARY

Asteriass a member of the starfish family.

Bacteria: unicellular organisms having no nucleus.

Chloroplasts: minute bodies found in plant cells. They
contain chlorophylls.

Chromosomes: thread-like structures found in the nucleus ; they
carry the genes.

Cytoplasm: substance v/ithin the cell exclusive of the nucleus.

Deoxyribonucleic acid (abbrev. D.N.A. ) : a nucleic acid. Found
only in the nucleus of the cell.

Elodea; an underwater plant.

Enzymes: catalysts produced in living organisms. All known
enzymes are proteins.

Erythrocytes: red blood cells.

Escherichia coli (abbrev. E. coli): bacterium found in human
intestine.

Haemoglobin: red, respiratory pigment in blood cells.
Mol. wt. ~68,000.

Haemolysis: the lysis or solution of red blood corpuscles.

Mitochondria: bodies found in cytoplasm that are responsible for
nearly all energy production.

Mutations: the spontaneous production of new genetic traits
in organisms.

Nucleolus: dense rounded mass in the cell nucleus.

Nucleotides: basic units from which the nucleic acids are built. 

Nucleus: complex spheroidal mass essential to life of most cells.
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Paramecium caudatum: a unicellular animal found in fresh

water. Length up to 3 rasR.

Pepsin: enzyme found in human stomach.

Plasma: the fluid portion of blood. It contains soluble
proteins and inorganic salts.

Protein: high molecular weight compounds found in cells
consisting of aggregates of amino acids.

Spisula: a bivalve mollusc.

Stromata: transparent filmy framework of red blood corpuscles.

Tetrahymena pyriformis: a unicellular animal found in water,
similar to Paramecium cauda.tum.

Tradescantia paludosa: a tropical and sub-tropical herb.

Trypsin: enzyme found in the pancreatic juice.

Tumour: a growth formed by abnormally dividing cells. Can be
malignant or non-malignant.

Virus : composed of protein and nucleic acid. Recognised by its
toxic effect on cells.


