"SOME OBSERVATIONS MADE ON THE

GROWTH OF CEDOGONIUM SP."

by

JOAN M. BAIN, B.SC.

DEPARTMENT OF BOTANY ROYAL HOLLOWAY COLLEGE (UNIVERSITY OF LONDON) ENGLEFIELD GREEN SURREY

A THESIS Presented for M.Sc. Examination December, 1951. ProQuest Number: 10096356

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10096356

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

> ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ABSTRACT

SOME OBSERVATIONS ON THE GROWTH OF CEDOGONIUM SP.

The growth of an unidentified species of the green fresh water alga <u>Ocdogonium</u> has been investigated under natural conditions and under varying conditions of culture.

The material used in the investigation was collected from a pond in the Botany Garden, Royal Holloway College. Cultures were established in the laboratory in a number of different solutions of which soil extract solution proved to be the most satisfactory.

Observations were made on filaments of different ages both in the material grown in the pond and in the material grown in culture, and records were made of :-

- 1. The variation in the cell size of the filaments by means of measurements of cell length;
- 2. The distribution and the size of the groups of caps which were found in the filaments.

Attempts were made to discover whether the addition of growth substances to the culture medium affected the growth of the filaments. The substances used singly in the various cultures were as follows:-

1. Yeast extract

2. Thiamine

3. Indole-3-acetic acid

4. &-naphthalene-acetic acid.

Records similar to those made on the filaments from the pond and from soil extract solution were repeated on these cultures. Attempts were also made to investigate the effect of these substances on the rate of cell division in the filaments.

Cultures were set up with the addition of colchicine to find the effect of this substance on cell division in Oedogonium sp.

An attempt has been made to use these results to interpret the general pattern of growth and development in the species of Oedogonium used in this investigation.

CONTENTS

1.	INTRODUCTION			Pp. 1-3
2.	1.1.A	4-11		
3.	EX			
	Α.	Nor	12-21	
		(a)	Long filaments developed in previous season	12-14
		(b)	The development of filaments in the first season of growth	14-18
		(0)	The effect of time of year on cell length and zoospore formation '	18-20
		(d)	The pattern of cell division in developing filaments	20-21
	в.	Gro	wth of Filaments in Culture	21-31
		(a)	Cell size and cap grouping in filaments from the pond grown in culture	22-23
		(b)	Cell size and cap grouping in filaments entirely grown in culture	23
		(0)	The order of cell division in filaments developing in culture	23-27
		(d)	Cell size and cap grouping in a clone grown under controlled conditions	· 27 - 28
		(e)	The effect of temperature, light and pH on the growth of the filaments	28-31

.

	C.	Growth in Culture with Additional Growth Substances	Pp.	32-43		
		(1) The effect of yeast extract and thiamine on cell size, rate of cell division and cap grouping		32-34		
		(2) The effects of indole-3-acetic acid and a-naphthalene-acetic acid on cell size, rate of cell division and cap distribution.		34-43		
		(a) The effect on cell size (b) The effect on the rate of		35-38		
		cell division		38		
		and grouping of the caps		38-43		
	D.	Growth in Cultures Containing Colchicine		44-48		
		(a) Growth in cultures containing colchicine (1.0 gms. per litre)		45-46		
		(b) Growth in cultures containing colchicine (0.1 gms. per litre)		46-48		
4.	DIS	SCUSSION		49-57		
5.	SUMMARY			58-60		
	Bil	Bibliography				
	Apj	pendix I		65		
	Key	Key to Figures Shown				
	Fi/	gures 1 - 41				

Tables 1 - 22 not included in text.

SOME OBSERVATIONS ON THE GROWTH OF OEDOGONIUM SP.

1. INTRODUCTION

Early in 1950, an opportunity arose to study the growth of certain freshwater algae in their natural habitat and in laboratory culture simultaneously. The scope of the investigation was widened to include a study of the effects of some growth promoting substances and of colchicine on the cultures.

For the purpose of this study <u>Oedogonium sp</u>. was chosen partly because of its abundance at Royal Holloway College, the ease with which it may be cultured and because its peculiar method of cell division makes it possible to determine precisely where growth is about to take place and where growth has occurred. An additional reason in favour of using a filamentous alga was that practically all the work concerning the effects of growth promoting substances has been done on cultures of unicellular algae.

The colchicine produced effects so different from the normal growth in culture or growth in culture with additional growth promoting substances, that the results of the work on the effects of colchicine will be considered separately. The classic work on the growth of fresh water Chlorophyceae under controlled conditions is that of Klebs (1896) which was concerned primarily with the effect of different physical conditions upon reproduction. Very little work appears to have been done on the effect of culture conditions on vegetative growth in the filamentous Chlorophyceae, although there is considerable literature on the growth of unicellular Chlorophyceae under controlled conditions (Bristol-Roach (1926) (1927), Pearsall and Loose (1937), Pratt (1940) (1941), Bold (1942)).

Work on growth promoting substances in the Chlorophyceae has been confined largely to the unicellular forms (Yin (1937), Leonian and Lilley (1937) (1941), Pratt (1938), Brannon and Bartsch (1939) and Brannon and Sell (1945)). <u>Ulva</u> and <u>Enteromorpha</u> have been used as experimental material by De Valera (1940), Kylin (1941), and Suneson (1942). The results of some of this work are contradictory but the general conclusion reached is that growth promoting substances do not affect the cell size in the algae investigated but that the rate of cell division is increased by their presence.

Some effects of colchicine on the growth of <u>Cladophora</u>, <u>Oedogonium</u> and <u>Hydrodictyon</u> have been observed by Gorter (1943).

There is little known concerning the factors which influence the growth of <u>Oedogonium</u>. According to Tiffany (1936), the genus tolerates a wide range of pH as some of /the

- 2 -

the species grow at pH 3.4 - 6.8 while others grow at a pH of 8.8; phosphates, nitrates and perhaps calcium and magnesium salts are important in its growth. An alteration in the conditions of light, temperature or culture medium causes an increase in zoospore formation. These effects are summarized by Pringsheim (1949). Gussewa (1930) states that the amount of free carbon dioxide is the important factor causing zoospore formation. According to Mainx (1931), sexual reproduction is likely to occur if the medium is slightly alkaline.

- 3 -

- 4 -

2. MATERIALS AND METHODS USED IN THE INVESTIGATION

The <u>Oedogonium</u> used in this investigation was obtained from a small cement pond in the Botany Garden, Royal Holloway College, the level of which is maintained by tap water during dry periods. It was present at all times of the year on the sides of the pond and as an epiphyte on various water plants including <u>Typha latifolia</u>. Growth was largely concentrated close to the water level of the pond. The filaments were in greatest abundance during April to October and were then found in addition on the petioles of an unnamed waterlil_Xy. Growth appeared to be perennial since filaments of all ages were found in the pond at the beginning and the end of the winter and there was little cell division in the filaments during this period of the year. Zoospore formation was infrequent during October to April.

It has, unfortunately, been impossible to name this <u>Oedogonium</u> specifically, since at no time in the present investigation nor in previous observations have sexual organs been found.

The cells are between $40 - 240 \mu$ long and $24 - 40 \mu$ wide. There are, however, two distinct groups of vegetative cells in the filaments: there are cells of $140 - 240 \mu$ long which rarely exceed 32 μ in diameter and there are cells of less than 140 μ with a diameter of $32 - 40 \mu$. The shorter cells are a darker green colour and sometimes /they they tend to be broader at their upper end. The basal cell of the filament is usually $80 - 120\mu$ long and has as average diameter of 40μ . This cell has a holdfast which is a deeply lobed circular plate with an irregularly serrated margin (Fig.1,1(a)). The apical cell of the filament does not differ appreciably from the other cells of the plant.

Certain isolated cells in either an apical or intercalary position in the filament may become greatly enlarged (Fig. 2). These cells always have a group of caps and measure as much as $144 - 200 \mu$ in length and $52 - 92 \mu$ in diameter. The contents of these cells are dark green. Generally the two cells immediately beneath the enlarged cell show a smaller increase in diameter. It is believed that these cells are akinetes. Occasionally the contents of the enlarged capped cells become rounded and a wall is formed around them. These cells appear to have degenerated and may be unfertilized oogonia although no pore or split has ever been seen in the cell wall.

Normal growth in the pond was investigated in two ways. In the first method, groups of filaments were removed from the pond. These were measured for cell size and were examined to find the distribution of caps in the filaments. During April to October, it was possible to distinguish the long filaments of the previous season on the pond wall and the filaments of the current season on the water/lily plants.

/In

In the second method, <u>Oedogonium</u> was induced to grow on slides placed just beneath the surface of the water in the pond. Each slide had a hole bored in it at one end and was attached to a piece of string across the pond. The slides were temporarily removed at intervals and the filaments on them were examined without disturbing the holdfasts.

Preliminary cultures were set up using Knopp's solution, an inorganic tissue culture solution (White (1943)), solution 42 (Reynolds (1950)), pond water and soil extract solution. The best growth was produced in soil extract solution and this was used in all the subsequent culture work. Mainx's method of obtaining the soil extract and of making up the soil extract solution was used (1927).

Although the soil solution extract proved to be the best culture medium for <u>Oedogonium</u> filaments, it is not possible to repeat the exact conditions of the previous extract when a fresh one is made. This is a disadvantage in controlled experiments.

The pond water had a pH 7.0 and this pH was used for the culture medium. The soil extract only needed a slight adjustment with dilute sodium hydroxide or dilute hydrochloric acid to bring it to this value. The pH adjustment in the early part of the work was done with a comparator and later electrometrically.

Attempts were made to produce the experimental material

/as

- 6 -

as a clone but these were not very successful. Single filaments were washed several times in distilled water and placed in sterile soil extract solution. Zoospores were formed by these single filaments but, only produced a small number of filaments in each culture and their growth was very slow in sterilized solution. It was not practicable to use any of the small clones to set up the cultures. Since this material has only been found in the vegetative state, it seemed likely that the genetical constitution of the individual filaments would not differ greatly.

Cylindrical pyrex vessels (approximately 2[%]/₄" diameter by 2" deep) were used for the cultures. loOccs of culture solution were placed in each vessel and this quantity came to within an inch of the top. <u>Oedogonium</u> filaments growing on leaves of <u>Typha latifolia</u> were placed in each vessel. Pieces of waterlily petioles were unsatisfactory to use as they became mucilaginous and the solution became brown. Two glass slides were placed back to back and were put diagonally in each vessel. The vessels, covered with a glass lid were placed in a window facing north-east and were illuminated continuously from above by a 40 watt lamp. The lamp was 16 inches above the vessels. It was not practicable to introduce temperature control for the greater part of the experimental work.

Following this change of growing conditions, zoospore /formation

- 7 -

formation was usually very rapid and within a few days zoospores had become attached to the vessel walls and to the slides just beneath the level of the culture medium. The greatest concentration of attached cells was towards the source of greatest light, although some filaments developed on the base of the vessels.

When the cultures were established, the propagating filaments were usually removed. The well established cultures were aerated for two hours every few days by means of a small pump. The culture solutions were changed every ten days. This renewed the nutrients and eliminated some of the other filamentous and unicellular algae which were introduced by the original filaments and which grew quickly in soil extract solution. Some of the contamination remaining on the filaments was removed by a small camel hair brush. This was done as little as possible because the filaments broke very easily. The aeration of the cultures decreased the contamination in the filaments.

When growth substances were used in the culture work they were dissolved in soil extract solution. Yeast extract (Difco), thiamine, indole-3-acetic acid and a-naphthaleneacetic acid were used in the following concentrations:-

Yeast extract100 mgs. per litre (Reynolds 1950)Thiamine0.1 " " " (White 1943)

/indole

- 8 -

Indole-3-acetic acid	0.1 gms	per	litre
	0.05	11	Ū.
	0.025	π	u
	0.0125	n	u -
	0.00625	ų	17
a-naphthalene-acetic acid	0.4 gms	ti.	11
	0.3		11
	0.2	tt.	n
	0.1	n	11
	0.05	11	11
	0.025	п	n
	0.0125	n	11
	0 00625		11

9

Soil extract solution was used in the control cultures. The yeast and thiamine were easily dissolved but the indole-3-acetic acid and the a-naphthalene-acetic acid were difficult to dissolve completely, even by boiling, unless a small quantity of 95% alcohol was first added to the crystals. Heat does not destroy the activity of these substances: Brannon and Bartsch (1939) found that they could autoclave indole-3-acetic acid without altering its activity. The solutions of indole-3-acetic acid and a-naphthalene-acetic acid were made up in the strongest concentration required in a series of cultures and diluted to give a range of concentration. These solutions needed considerable adjustment to bring them to pH 7.0 before the /dilutions dilutions were made. The solutions containing yeast extract and thiamine were approximately pH 7.0.

Cultures were grown for several months in indole-3acetic acid and a-naphthalene-acetic acid but the cultures in yeast extract and thiamine could only be maintained for a few weeks because zoospore formation occurred in so many cells over this short period that the filaments disintegrated: moreover the bacterial contamination became excessive. The yeast extract and thiamine solutions were changed more frequently than at 10-day intervals if they became badly contaminated.

The colchicine cultures were set up using 1.0 gms and 0.1 gms in a litre of soil extract solution: the pH of these solutions did not require adjustment. The filaments used to set up the cultures were not removed from the vessels and were kept under observation for two months. In addition, filaments of 2 - 3 cells growing on slides were placed in the colchicine solution for a week and were then fixed.

When observations were made on the filaments from the pond and from the cultures, records of the cell size and the distribution of the groups of caps within a filament were made simultaneously: 10 filaments were examined in each group. Since the cells varied but little in diameter, measurements of cell length were used to show cell size. These measurements were taken in order from the base of the

/filament

- 10 -

filament and are recorded in the accompanying tables to the nearest 4 μ . As single caps were often difficult to distinguish, records of cells with only one cap are not included in the tables.

Cell shape was recorded by means of a reflex drawing apparatus.

Oedogonium filaments proved to be very sensitive to environmental changes and when continual observations were being made, care had to be taken to cut down the illumination and to prevent any pressure of the coverslip on the filaments. Even so, entire filaments or some cells in the filaments were often killed in the process of observation.

The cell walls, the groups of caps and the rings were easily seen in the living condition but not so the nucleus. Cytological techniques were principally used on the colchicine treated material but difficulties were encountered in making permanent preparations of the filaments. The most satisfactory results were obtained by fixing the material in weak chromo-acetic fixative or in Navaschin's solution. The material was mordanted in 4% iron alum before staining it with aceto-carmine. The preparations were mounted in glycerine jelly.

- 11 -

3. EXPERIMENTAL DATA AND RESULTS

A. Normal Growth in the Pond

Long filaments which had developed in the previous season and filaments developing in the current season on slides and on waterlily petioles were used to obtain measurements of cell size and to find the distribution of the caps. The pattern of cell division was observed in young filaments on the waterlily petioles.

(a) Long filaments developed in the previous season.

Many of the long filaments taken from the pond wall consisted of 70 to 100 cells. The appearance of these cells is shown in Fig. 3 and 3a. Enlarged cells as described on page 5 and shown in Fig. 2 were found in the filaments. throughout the year. Variation in cell size was obvious in these filaments and the measurements of cell length ranged from 40 - 240 µ and the cell width from 24 - 40 µ . Although the range in cell length and in cell width was continuous, it appeared that there were two types of cells in the filaments. These cells were distinguished by their shape and by their colour. There were longer, pale green cells which were usually greater than 140 µ long and were about 28 µ wide and there were shorter, darker green cells which were less than 140 μ long and were about 36 μ wide. A length of 140 μ was used to distinguish long and short cells as it was found that the majority of the cells in /the

•

the young filaments were longer than $140\,\mu$ and that the shorter wider cells only developed as the filament aged. The longer cells/usually grouped in the basal part of the filament and the shorter cells were in isolated groups in the apical part of the filament. The distribution of cell length measurements in the filaments taken from the pond in July 1951 is shown in Table 1. and in Fig. 4. The mean cell length in 10 of these filaments was $160.1\,\mu$ and the standard deviation was 234.1.

Intercalary groups of 2 - 6 caps were frequent in the filaments. Groups of more than ten caps were rarely found, although as many as 20 caps were counted in a single group. Abnormalities were found in these large groups and these are described on page41 and are shown in Fig. 28 (8, 9, 10 and 11). It was difficult to distinguish every single cap present in the filament because of epiphytic growth but groups of two caps were easily seen. Small groups of caps or single caps were seen on some of the apical cells but in the majority of the filaments the apical cell was devoid of caps even though ring formation was common at the apex of the filaments. The apical cells were frequently seen to lose single caps or groups of caps. (Fig. 5).

Cell division was not confined to definite regions in the filament. It was not unusual to find contiguous cells each with a number of caps or to find small groups of caps between two larger groups. Several adjacent cells were seen to form

/their

their first ring at the same time. In many-celled filaments little cell division occurred in the long cells at the base of the filament: there were only a few small groups of caps found in these cells.

Theoretically, the number of caps in the filaments should be one less than the number of cells. The number of cells counted in these filaments always exceeded the number of caps. This discrepancy was accounted for by the loss of caps from the apical cells, by the inability to count all the single caps and by the disintegration of the filaments following zoospore formation.

The examination of the fully developed filaments from the pond raised two problems which required further investigation. There was, firstly, the problem of the great variation in cell size and secondly, that of determining the pattern of cell division in the filaments. Both these problems were investigated further by using filaments which were developing in the first growing season.

(b) The development of filaments in the first season of growth

Filaments of one, two or three cells which had been grown on slides in culture were placed in the pond November 17th, 1950. These filaments were started in culture because an earlier attempt to establish zoospores on slides in the pond in October was unsatisfactory. Filaments from the slides were examined at intervals until September 1st, 1951 so that any changes in the cell size of the filaments could

/be

be observed throughout the growing season. It was impossible to measure the same filaments each time the slides were removed from the pond. These examinations were made at monthly intervals because filaments often died after temporary removal from the pond. Until April, it was possible to recognize the filaments which had been growing on the slides since November. When zoospore formation began in the pond during April, the identification of the original filaments on the slides was less certain. In the subsequent examinations the longest filaments were assumed to the older filaments.

During December and January, the surface of the water was often frozen and there was no cell division in the filaments on the slides. The first measurements were made on February 17th. The filaments then averaged four cells in number and the cell length ranged from $80 - 140\mu$. Several rings were found and these were mostly in the apical cells. One ring was found in a basal cell of a filament. By March 21st, the cell number had increased to five or six cells but there was no alteration in the cell length. By April 19th, when the filaments were 10 - 20 cells long, isolated cells of $140 - 168\mu$ long had developed and intercalary groups of 2 - 4 caps had formed.

The filaments examined on May 9th were on a slide which had not been previously removed from the pond. When compared with the previous record these filaments showed no

/increase

increase in cell number but the newly formed cells showed an increase in cell length. The newly formed cells measured as much as 208 μ long and they were a paler green colour than the first formed cells in the filaments. Their distribution is shown in Fig. 6. Zoospores became plentiful in the pond during April and filaments of 2 - 4 cells were covering the slides at the time when these measurements were made. The cell length in these young filaments was the same as that of the cells then forming in the older filaments (Fig. 6(a)). The cells which formed in the original filaments on the slides during February and March were smaller than those then developing in the young filaments as they had been formed before normal cell division began in the pond filaments.

On the slides which were examined on June 18th, the filaments measured were approximately 30 cells long and the majority of the cells were $140 - 200 \,\mu$ long. Measurements made on July 17th, when filaments were 25-42 cells long, showed for the first time isolated intercalary cells of $60 - 140 \,\mu$ in length. By September 1st, the numbers of these shorter cells had increased to such an extent that they formed the greater proportion of the filaments. These shorter cells were found singly or in groups in these filaments composed of 32 - 68 cells. Isolated groups of enlarged cells were found in these filaments and they

/resembled

resembled those shown in Fig. 2.

Before the first growing season was ended, the longest filaments growing on the slides showed the same variation in cell length measurements as was found in the long filaments which are described in the previous section. The two types of cells were present in both these groups of filaments of varying age although the filaments from the slides were younger and much shorter.

Cell lengths of filaments at different times of the year are recorded in Fig. 7 and in Table 2. Changes in the distribution of cell length in the filaments are indicated by the mean values for cell length and by the Standard deviations (Table 3). The larger deviations correspond with the increased proportion of the shorter cells in the filaments.

TABLE 3			Mean cell length	Standard	deviation
17.11.50	-	17.2.51	109.0 µ.	<u>+</u>	17.9
'n	-	21.3.51	113.6	<u>±</u>	17.8
	-	19.4.51	119.0	<u>+</u>	21.2
n	-	9.5.51	142.0	<u>+</u>	43.2
11	-	18.6.51	177.4	±	35.6
.0	-	17.7.51	157.2	±	35.2
11		1.8.51	153.8	+	46.9

A more satisfactory indication of this change in the composition of the filaments during the time of the observations is given by dividing the range of cell length into units of $20\,\mu$ and calculating the percentage number of cells in each group at each examination (Table 4).

Similar changes in filament composition were observed in filaments growing on the waterlily petioles. These filaments had been left undisturbed in the pond: a series of them was measured late in May and another in the middle of July. In May they were 12 - 20 cells long and were at the most six weeks old. The cell length was $140 - 220\mu$ (Table 5). The mean cell size in individual filaments was as shown in Table 6.

TABLE 6	Mean cell length	Standard deviation		
	158.8 M	<u>+</u> 26.2		
	177.0	± 20.3		
	156.6	<u>+</u> 19.3		
	172.0	<u>+</u> 23.6		
	169.2	<u>+</u> 31.5		

By July filaments of 40 cells were found and the shorter cells of 60 - 140 μ long were evident in the apical part of these filaments. The average cell length of ten filaments was 153.3 μ and the standard deviation was \pm 27.4. The variation in cell length was as great, after three months, as that in the long filaments from the pond wall (Table 7).

(c) The effect of the time of year on cell length and Zoospore formation.

It seemed possible that the shorter cells had formed

in the filaments developing in the first season of growth because of changes in the environment. A second series of slides was therefore placed in the pond for short periods between June 18th, 1951 and October 29th, 1951 to investigate the effect of the time of year at which a zoospore was formed on the cell lengths of the young filament developing from it. The slides were placed in the pond for the following periods:-

June	e 18th,	1951	-	July	18th,	1951
July	y 6th		-	u	18th	
11	17th		-	Augus	st 6th	
	30th		-		6th	
"	30th		-	U	22nd	
Augu	ast 6th		-	u	22nd	
,ú	30th		-	Octob	ber 3rd	1
Octo	ber 3rd	1	-		29t1	1

Zoospore formation was frequent until early October and filaments developed on all the slides placed in the pond. When these filaments were examined at the end of each of the above time intervals, it was found that practically all of their cells were 140 - 220 μ long (Table 8). This indicated that the length of cells forming in the developing filament was not influenced by changes in the external conditions of the pond during June to October. The formation of the smaller cells of 60 - 140 μ long in the filaments which had been growing in the pond for three months, was not caused by the /decrease decrease in the temperature of the pond water.

Cells of 140 - 220 μ long were formed in the young filaments during the growing season irrespective of the time of their origin. The formation of the shorter cells in the filaments appeared to depend on the stage of development in the filament rather than on the external conditions of growth.

(d) The pattern of cell division in the developing filaments.

Young developing filaments were investigated to discover the position of the cell divisions. Filaments of varying age were scraped from the waterlily petioles in July 1951. The cells in these filaments numbered from 1 - 40 and the cell length ranged from $140 - 200 \mu$. An attempt was made to find the pattern of cell division in these filaments by closely examining each cell to locate either a cap or the apical break in the cell wall formed by a stretched ring (Fig. 8). There was little epiphytic growth on the filaments and single caps were easily recognized as a slight swelling at the apex of the cell.

Ring formation was often seen in the apical cells of the filaments, but few of these cells accumulated groups of caps. Single caps were frequently seen to separate from the apical cell. Occasionally, in filaments of approximately five cells, an apical group of caps was found with the cap number one less than the cell number.

In the majority of the filaments of 3 - 12 cells no /intercalary

intercalary groups of caps were found but as the cell but as the cell number increased above 10 or 12, small groups of caps were present (Fig. 8). The apical cell continued to divide even after intercalary growth began. At first intercalary growth tended to occur in isolated positions in the filament but very soon, the divisions spread to neighbouring cells. This was evident in filaments with approximately 20 cells.

In spite of the absence of intercalary growth until the filaments were 10 or 12 cells in length, the majority of the filaments had no groups of apical caps. Approximately ten caps had therefore been lost from the apical cell before intercalary growth began. For example in Fig. 8 in filaments of 20 and 38 cells there were only 7 and 25 caps, respectively, instead of the expected 19 and 37. If it is assumed that approximately ten caps had been lost from the apical cell before the intercalary groups were formed, a closer agreement between the observed number of caps and the theoretical number is obtained. The correlation of the cap number and the cell number in even longer filaments is even more difficult because the apical cell continues to lose caps after intercalary growth begins. The correlation of the two numbers in very long filaments is impossible because of the continued loss of caps from the apical cell and because of zoospore formation. B. Growth of the Filaments in Culture

Two types of <u>Oedogonium</u> cultures were set up. There were those in which the filaments had begun their development in the pond and those in which the filaments had entirely developed in soil extract solution. Both types of filament were examined to find the effect of the conditions of culture on the cell size and the distribution of the groups of caps. Some observations were made on the order of cell division in the young filaments and on the cell size and cap grouping in filaments of a clone. Limited observations were made on the effects of external factors on the growth of the cultures.

(a) <u>Cell size and cap grouping in filaments from the pond</u> grown in culture.

<u>Oedogonium</u> filaments, which had started development on leaves of <u>Typha latifolia</u> in the pond, were placed in soil extract solution and also in pond water. These filaments were approximately 20 celled when placed in culture and they had few caps. The cell length varied between $140 - 220\mu$. After two months in culture the cell number in these filaments had doubled but the majority of these new cells, in both soil extract solution and in pond water, were less than 140μ in length (Figs. 9, 10, 11 and 11(a)). The shorter cells were usually confined to the apical end of the filaments. The range in cell length of these filaments /after after they had been in culture was similar to that of filaments grown completely in the pond (Table 9).

(b) <u>Cell size and cap grouping in filaments entirely</u> grown in culture.

The range in the cell length in the filaments which developed entirely in culture was not as great as in the filaments developed entirely or partly under natural conditions (Table 10). Very few cells of the longer length group were found. Most of the cells were in the group of 40 - 140 µ long. Sometimes the longer cells were entirely lacking from the basal part of the filaments. The mean cell length in the filaments from several cultures grown throughout the experimental period was not constant. The lowest value found was 86.5µ and the largest value was 139.84 Approximately half of the filaments examined had small groups of 2 - 4 caps on the apical cell and occasionally apical groups of 10 or 12 caps were counted; the rest had no apical caps at all. The filaments seemed to retain their caps for a longer time in culture than they did under natural conditions. When intercalary caps occurred the number of caps in each group was small.

Filaments developing in culture were never as long as those of comparable age growing on slides in the pond. (c) The order of cell division in filaments developing

in culture.

To make possible the mapping of the order of cell . /division division a method was devised whereby identified filaments could be examined at frequent intervals. Narrow glass rings, approximately λ " diameter and λ " deep, were suspended in cultures of Oedogonium so that zoospores would become attached to them. The ground end of the glass ring was divided into segments by pencil markings so that the position of the attached cells could be recorded (Fig. 12). A double line was placed in one position on the ring so that it could be orientated. The glass rings were placed in culture and the identified filaments were examined daily. Records were made of cell length, of cell shape and of the position of cell division. During the examination, the glass rings were placed in a small petrie dish of soil extract solution and the filaments projected from them.

Observations were continued until the filaments became overgrown with other algae or until zoospore formation caused them to disintegrate.

The records of cell length were constant from day to day unless a ring had formed and stretched in a cell. Once a ring stretched to form a cell there was no further increase in the size of the new cell: there was a decrease in length of approximately 4μ in a cell which had divided. Cell division often took place during the night but rings were seen to stretch during the daytime. Usually it was possible to locate the position of the new cell by the record of the formation of a ring in previous observations. If, between

/observations

observations, the cell number increased without a ring being recorded, the position of the upper daughter cell could be located by comparison with the records of cell size and cell cell shape on the previous day and recognised by its brighter green colour. The formation of a new intercalary cell was easier to recognise than the formation of a new apical cell because the latter frequently lost its cap between the observations.

These filaments did not form more than nine cells before they became overgrown or before they completely disintegrated through zoospore formation but it was evident that apical growth alone or apical and intercalary growth was taking place in the young filaments. This was in contrast to the order of cell division in the majority of the young filaments developing in the pond.

The order of cell formation in some of the observed filaments is recorded in Fig.12(a). The cells of the filaments are represented diagrammatically and the Figure is a combination of two sets of data. When the initial cell of a filament divided the upper daughter cell was labelled 1 and when this in turn divided the upper daughter cell formed was labelled 2, so that a series of numbers placed beside the filaments represent the order in which the cells were formed in the filaments. The date when the cell formed is recorded beneath it. The arrows placed beneath the filaments indicate the cells which were lost in zoospore formation ; the

/ date

- 25 -

date of zoospore formation is also recorded. When cells have been lost from the filament, brackets are placed round the numbers representing the order of the formation of these cells.

If the apical cell alone was responsible for cell formation in the filament, the numbers representing the order of cell formation in that filament would be in a series of ascending order. For example, in a filament showing such apical growth, the order of cell formation is represented in Fig. 12(a) in the following way:- 1, 2, 3, 4, 5, 6, 7. In several of these filaments the apical part was lost in zoospore formation. After this happened the cell in the apical position frequently divided and apical growth was continued. An example of this is shown in the following series in which brackets indicate where the cells have been lost:- 1, 2, 3, 4, (5, 6, 7,) 8, 9. Where there is intercalary as well as apical growth, the numbers representing the order of cell formation are not in an ascending series. An example of this is the series 1, 5, 2, 3, 4, 6. If apical and intercalary cell division was taking place simultaneously there is duplication of some of the numbers representing the order of cell formation in the filaments. Examples of this are seen in the following:- 1, 2, 3, 6, 7, 5, 4, 7. and 1, 2, 4, 6, 3, 5, 4, 5.

One celled filaments did not generally form a ring until /approximately

approximately ten days after the development of the holdfast but there was variation in this respect. The rate of cell division in the individual filaments over the period of the observations differed. Cell division occurred at regular intervals in some filaments and in others it occurred at irregular intervals. Sometimes a ring formed in a cell several days before it was seen to stretch. The variation in the rate of cell division in the developing filaments during 31 days is represented in Fig. 13. The decrease in cell number caused by zoospore formation is also indicated. Then the final disintegration of filaments took place, the basal cell was left attached to the glass ring and it did not form a zoospore.

(d) Cell size and cap grouping in a clone grown under controlled conditions.

A series of clones were set up in an incubator designed to keep the cultures under constant conditions of temperature $(20^{\circ}C \pm 1^{\circ})$ and of illumination. The light was supplied by a 60 watt lamp from behind a glass screen. These conditions were not available until the later part of the experimental work was in progress.

Clones were established by placing a long filament in a vessel of sterilized soil extract solution. The solution was only changed infrequently to avoid loss of zoospores and the remains of the original filaments were discarded when

the solution was first changed.

/Growth

Growth was very slow under these conditions and the filaments of the clones did not become very long. After six weeks, the largest clone was one with 17 filaments. These filaments were of different ages because some of the first formed filaments of the clone had produced zoospores.

The cells of these 17 filaments grown under controlled conditions showed the same variation in cell length as did the filaments grown in the laboratory with no control of temperature or light (Table 11).

There was no group of caps on the apical cell of the filament which gave rise to the clone. Of the 17 filaments of the clone two showed intercalary growth and nine had apical caps. Five of these nine filaments had apical groups of 3, 4 or 5 caps and the other four had single caps. These observations seem to indicate that the presence or absence of a group of caps on the apical cell is not genetically determined.

(e) The effect of temperature, light and pH on the growth of the filaments.

There was no temperature control available for most of the experimental work but since the same variation in cell size occurred in the filaments grown in the incubator as in those grown in the laboratory, it was inferred that the temperature did not effect cell size. It has been shown that the smaller cells developing in the fully grown filaments in the pond at the end of the growing season were

/not

- 28 -

not formed because of a decrease in temperature. The cells of the filaments withstood freezing*when the cultures were taken from the refrigerator zoospores were quickly formed.

It is possible that illumination, which in a pond shaded by waterlily leaves must be weak, exerts an influence on cell division and cell size and this may account for the differences observed between growth in culture and growth in the pond. At the time, it was not possible to carry out experiments to investigate the effects of illumination on growth. There was no difference seen in the growth of filaments in daylight or under the continuous light from a 40 watt lamp (Table 12).

When light intensity was further increased by the use of a 100 watt lamp there was a decrease in the rate of cell division: very few rings were seen in these filaments. This effect does not agree with the observations made by Freund (1928), who reported a decrease in the time interval between cell divisions in increased light in <u>Oedogonium</u> pluviale.

Increase in light intensity caused increased zoospore formation and a large number of the zoospores developed abnormal holdfasts. The contents of many of these cells were set free again as a zoospore: the zoospores escaped by means of a lid at the apical end of the cell. The /formation

- 29 -

formation of these abnormal holdfasts was seen in the cultures illuminated by a 40 watt lamp but the numbers of these cells were relatively few.

The filaments growing in high light intensity were short because of the combined effects of increased zoospore formation and decreased rate of cell division (Table 13). Table 13 High light intensity (100 watt lamp)

> Cell numbers: 4, 3, 4, 5, 6, 4, 4, 2, 4, 4 Low light intensity (40 watt lamp)

16, 10, 10, 13, 12, 9, 10, 8, 10, 18.

Although the filaments in culture were grown in continuous light, cell division was not entirely confined to the nighttime as rings were found to be stretching in filaments taken from the vessels during the day. Kretschmer (1930) examined <u>Oedogonium pachyandrium</u> and found that cell division usually occurred at midnight and that division could be induced at 2 - 3 p.m. in artificial light. Cell division frequently took place in filaments of <u>Oedogonium sp</u>. during the day, under natural conditions.

Attempts to investigate the control of pH on the growth of <u>Oedogonium sp</u>. were not successful. When series of cultures were set up with a range of pH of 4, 5, 6, 6, 5, 7, 8 and 10, the soil extract solution behaved as a buffer and the pH values gradually reverted to approximately 7.0. The filaments which had been placed in pH 6.5 and 7.0 were the only filaments which appeared normal when the cultures were

/examined
cxamined after a week: those in solution of pH 4, 5, 8 and 10 were dead. A series of phosphate buffer solutions ranging between pH 5.7 and 8.2 were made up according to Sorenson (Clarke 1927) using soil extract solution as the basis. The filaments were killed in all the solutions.

- 32 -

C. Growth in Culture With Additional Growth Substances

Observations of growth in yeast extract and thiamine cultures were only possible during short periods because of contamination by bacteria and increased zoospore formation, whereas growth in cultures with indole-3-acetic acid and a-naphthalene acetic acid was observed over a period of several months. Because of this, the effects of yeast extract and thiamine and of indole-3-acetic acid on growth were considered separately.

1. The effect of yeast extract and thiamine on cell size, rate of cell division and cap grouping.

The cultures were set up using soil extract solution and then, when they were established, the propagating filaments were removed from the vessels and the culture solution was replaced by soil extract solution containing yeast extract (100 mgs. per litre) or by soil extract solution containing thiamine (0.1 mg. per litre). This method of setting up the cultures helped to reduce the bacterial contamination in the yeast and thiamine cultures. Control cultures were set up using soil extract solution.

Filaments were removed from each culture after 14 days and again after 20 days. The cell length was measured and compared with that of the cells in the filaments in the control (Table 14). The shape of the cells which was recorded with a reflex drawing apparatus is shown in Figs. 15 (a), (b) and (c) and the appearance of the filaments after 20 days is seen in Figs. 16 (a), (b) and (c).

/The

The addition of yeast or thiamine to the solution had a definite effect on the size of the cells of the filaments. The cells were smaller than the cells in_{L}^{the} control and cell lengths of 40 - 60 μ were frequently recorded. The cells were somewhat barrel shaped and this gave an unusual appearance to the filament. The cells were very dark green with a light patch indicating the position of the nucleus. The filaments in yeast extract had a peculiar jointed appearance and they broke easily into segments (Fig. 15(a)).

The mean cell length in the filaments from each solution was as follows (Table 15).

Table 15	Mean cell length &	standard deviation
	after 14 days	after 20 days
Culture + yeast extrac	ot 94.0 µ ± 20.0 1	80.0µ ± 18.8
" + thiamine	97.2 ± 23.6	76.4 ± 21.2
control	101.0 ± 14.0	107.2 ± 27.2
In yeast extract ar	nd in thiamine culture	the formation

of very small cells in the filaments was obvious after 14 days' growth and the numbers of these small cells increased with time.

The rate of cell division was increased by the addition of yeast extract and thiamine to the culture solution. During 14 days, growth was most active in the yeast extract and the number of cells in these filaments was from 10 to 19 (Fig.15(a), (b) and (c)). The number of cells in the filaments in thiamine varied from 5 to 12 and those in soil extract solution from

/5 to 8

5 to 8. The length of some of these filaments is shown in Table 16.

Table 16			Cell	num	ber	afte	r 14	day	S		
yeast extract	16	19	12	10	11	13	12	12	14	14	
thiamine	8	9	7	9	10	5	12	7	8	11	
soil solution	7	6	6	8	7	5	6	5	7	7	

After 20 days, zoospore formation had become so frequent in yeast extract and in thiamine cultures that it was impossible to determine the effect of the growth substances on the rate of cell division.

Very few groups of caps were found in any of these filaments and there was no increase in the number of apical cells which were accumulating caps.

2. The effects of indole-3-acetic acid and a-naphthaleneacetic acid on cell size, rate of cell division and the distribution of the caps.

When preliminary cultures of indole-3-acetic acid and a-naphthalene-acetic acid (0.2 gms. per litre) were set up, the filaments in indole-3-acetic acid were killed within a few days but those in a-naphthalene-acetic acid continued to grow. The concentration of indole-3-acetic acid was then reduced to 0.1 gms. per litre and that of a-naphthalene-acetic acid was increased to 0.3 gms. per litre. The filaments in these solutions were healthy and zoospores formed. Later the concentration of a-naphthalene-acetic acid was increased to 0.4 gms. per litre. Zoospores were formed and developed /into into filaments in this concentration.

Two types of culture were set up in both indole-3-acetic acid and a-naphthalene-acetic acid. In one, the propagating filaments were removed from the vessel when the culture was established and in the other, the propagating filaments were left in the culture vessel. A series of concentrations of indole-3-acetic acid or a-naphthalene-acetic acid was used for both types of culture. The concentrations used were:-

	Indole-3-acetic acid	0.1	gms.	per	litre	
		0.05				
		0.025				
		0.0125				
		0.00625				
	a-naphthalene-acetic acid	0.4*	gms. per	per	litre	
		0.3				
		0.2				
	* not used in the first	0.1				
	series of experiments.	0.05				
		0.025				
		0.0125				
		0.00625				

Control cultures were set up in soil extract solution. (a) The effect on cell size.

The propagating filaments which had cells of 140 - 220 p long when placed in culture, were grown in these different solutions of indole-3-acetic acid or a-naphthalene-acetic /acid acid for three months. After this period the cell length in filaments taken from all the indole-3-acetic acid and a-naphthalene-acetic acid cultures was measured and was compared with that in the control culture.

The range in cell length of the filaments growing in all concentrations of indole-3-acetic acid and a-naphthaleneacetic acid was similar to that in the control cultures. Cells of $60 - 140 \,\mu$ had formed in all cultures so that the addition of the growth substances in any of the concentrations used had not prevented the smaller sized cells from forming in culture. The cell lengths of filaments grown in a-naphthalene-acetic acid (0.3 gms. per litre) are compared with those of the control in Table 17. The distribution of cell length measurements in some of the filaments is seen in Fig. 17.

A more detailed examination was made of the filaments which had grown from zoospores in varying strengths of indole-3-acetic acid or 0.00625 a-naphthalene-acetic acid. These cultures were grown over a period of three months.

Measurements of cell length in a few of the filaments grown in varying concentrations of indole-3-acetic acid and a-naphthalene-acetic acid are given in Tables 18 and 19. The means and the standard deviation for cell length in ten filaments grown in the series of cultures using both these substances are shown in Table 20.

Table 20

- 36 -

Table 20

Indole-3-acetic acid cultures					Mean Cell	Standard	
(0.1 cult	ture be	came ve	ry conta	minated.)	Length	Deviation	
.05	gms.	per 1	itre		104.68 µ	± 20.12	
.025	D.	.H	H		121.48	± 20.44	
.0125	n	-11	n		108.80	± 30.0	
.00625	12		n		100.8	± 18.92	
Soil so	lutior	n			113.0	± 18.28	
a-napht	halene	-acet	ic acid	oultures			
0.4	gms.	per	litre		122.16 µ	± 25.2	
.2	11	n	17		119.04	± 18.8	
.1	u.	18	и		117.08	± 16.8	
.05	п	U			113.04	± 19.6	
.025		n	19		112.04	± 17.2	
.0125	11	11	u.		97.80	<u>+</u> 18.4	
.00625	ti	u	19		104.80	± 18.0	
Soil so	lution	1			105.04	± 19.2.	

The range of the measurements of cell length found in the filaments grown in each concentration of indole-3-acetic acid and a-naphthalene-acetic acid was divided into groups of 20 μ and the percentage number of cells in each of these groups was estimated in the filaments examined in each of the cultures. These figures are recorded in Tables 21 and 22. In all but the two weakest concentrations of a-naphthalene-acetic acid the largest proportion of the cells in the filaments was in the group 104 - 120 μ . In the two other /concentrations concentrations the largest proportion of the cells was found in the group $84 \div 100 \,\mu$. In the indole-3-acetic acid series the group containing the largest proportion of the cells varied from concentration to concentration.

Statistical analysis was applied to the cell length measurements in order to find if there was any correlation between the concentration of the two substances used in the cultures and the mean cell length (See Appendix I). The correlation coefficient was calculated for the indole-3-acetic acid series and for the a-naphthalene-acetic acid series of cultures. A correlation coefficient of ± 0.286 which was obtained for the indole-3-acetic acid series was shown by the variance ratio test not to be significant; whereas a correlation coefficient of ± 0.865 in the a-naphthalene-acetic acid series of concentrations was shown to be significant at the 5% level. A tendency for the mean cell length to increase with increase in the concentration of a-naphthalene-acetic acid is indicated in Table 20.

(b) The effect on the rate of cell division.

It was not possible to estimate the effect of indole-3-acetic acid and a-naphthalene-acetic acid on the rate of growth over long periods as zoospore formation made comparisons of the rate of cell division inaccurate.

(c) The effect on the distribution and grouping of the caps.

When filaments from the pond had been growing in indole-3-acetic acid and a-naphthalene-acetic acid for three months,

- 38 -

an accumulation of large numbers of caps was found in many of the filaments. These large groups were more frequent in the filaments in a-naphthalene-acetic acid than in indole-3-acetic acid. The majority of these large groups in a-naphthalene-acetic acid numbered 15 to 20 caps but groups as large as 21 to 30 were often found. Large groups were common on the apical cell of filaments in a-naphthalene-acetic acid (Figs. 19, 20 and 20(a)). In the control filaments the cap number rarely exceeded ten.

Comparable amounts of material were taken from each of the concentrations of a-naphthalene-acetic acid and from the control, and records were made of the groupsof caps in the filaments. The position of the capswas recorded as intercalary, intercalary which had become apical or apical. The results obtained in this manner were plotted as a series. of histograms in Fig. 21. These records only indicate the general effect of a-naphthalene-acetic acid on cap grouping since unequal numbers of filaments of varying ages were examined: they do show, however, that there was an accumulation of caps to form large groups in a-naphthalene-acetic acid. This increase was not so obvious in the examined filaments grown in the two weakest solutions. Groups of caps were infrequent in the control material.

Similar records were also made of filaments which had been produced and grown in indole-3-acetic acid and a-naphta-

- 39 -

lene-acetic acid for three months. These results are recorded in figs. 22 and 23. The number of caps recorded for the filaments in a-naphthalene-acetic acid (0.2 gms. per litre) were not representative of the culture because the growth of diatoms and other algae made it difficult to count the number of caps in a group.

Since these filaments were shorter than those which had been taken from the pond and grown in culture, the number of cans in each group was smaller: the largest group recorded numbered 22. The formation of large groups of caps in the filaments was more obvious in a-naphthalene-acetic acid than in indole-3-acetic acid and these large groups in a-naphthalene-acetic acid were usually apical. Although the records of cap grouping in these figures cannot be expressed quantitiatively there is no doubt that large groups of caps had formed in both indole-3-acetic acid and a-naphthalene-acetic acid. There were usually only one or two large groups of caps found in a filament which suggested that cell division had been concentrated in a few positions in the filament, a-naphthalene-acetic acid caused many of the apical cells to retain their caps and the formation of these large groups showed that apical growth was common in the filaments. In contrast indole-3-acetic acid did not cause the caps to accumulate on the apical cells, so that it was not possible to decide how much apical growth had occurred. The large groups of caps which formed in the filaments

/treated

- 40 -

treated with indole-3-acetic acid and with a-naphthaleneacetic acid were conspicuous because of the increased cap number and because of the abnormalities within the cap. group which accompanied this increase. Some of these abnormalities are shown in Figs. 19, 25, 26 and 27. The increase in the thickness of the caps caused a decrease in the size of the protoplast of the cell.

As the number of caps in a group increased beyond ten, the group became thickened on the inside towards the apical end of the cell. The thickening did not appear to extend along the transverse wall of the cell (Fig. 24). In many of the cells, the thickening was uneven and the group had the appearance shown in Fig. 27. In large groups of caps, the cap material became so extensive that it appeared to cut off the apical part of the protoplast from the rest of the protoplast. In apical groups of 15 to 30 caps it was frequently found that the cap material completely filled the apex of the cell (Fig. 25). Abnormalities which were still more complex were found in some cells as shown in Fig. 26. In such cases it was often found that the portion of the protoplast adjacent to the upper transverse wall of the cell appeared to be cut off by a solid ingrowth of cap material and that a second portion of the protoplast appeared to be isolated by the formation of another ingrowth of cap material further towards the base of the group of caps (Fig. 26). More than two such ingrowths of thickening were /sometimes

Abnormal ring formation was frequently recorded in the large groups of caps. Single rings were often formed within a group of caps and not at the base of the group (Fig. 19, 28(7)), and occasionally in the filaments treated with a-naphthalene-acetic acid, more than one ring was formed in the group (Fig. 28a(2)(3)). The majority of such rings did not stretch; many of these appeared to be embedded in the cap material which extended across the cell. (Figs. 26, 28(3), 28a(1), 29(2)).

Similar abnormalities in wall thickness and ring formation were occasionally found in the long filaments from the pond when a group of more than ten caps was found and these are illustrated in Fig. 28(1)(8)(9)(10)(11). Indole-3-acetic acid and especially a-naphthalene-acetic acid had the effect of increasing the frequency of the occurrence of these abnormalities by increasing the number of caps in many of the groups.

- 42 -

/Examples

Examples of very abnormal cell structure found in filaments from the pond and in filaments from the indole-3-acetic acid and a-naphthalene-acetic acid cultures are shown in Figs. 28(1), 28(2) and 29(1), 28a(4) respectively. In these cells with large groups of caps, normal cell division appeared to have been hindered and an increase in cell length had probably taken place by the stretching of abnormal rings formed inside the group of caps. Part of the latest formed caps had separated from the group and was attached to the wall of the cell.

Horizontal striations are apparent in the surface view of any group of caps and have always been used to determine the number of caps present. When the large groups described here were examined in optical section the material of the group of caps appeared as if it was laminated. These layers were not evident in the small amount of thickening on the transverse wall at the cell apex (Fig. 24). In a later section these facts will be considered in relation to the normal process of cell division.

- 43 -

D. Growth in Cultures Containing Colchicine.

A series of cultures were set up using soil extract solution to which colohicine had been added in the two concentrations of 1.0 gms. per litre and 0.1 gms. per litre. Control cultures were set up in soil extract solution. Filaments which had been growing in the pond were placed in the cultures and were left for two months and filaments of two to three cells which were growing on slides in culture were placed intculture for a week.

At the end of this time in solutions containing colchicine of concentrations 4.0 and 0.1 gms. per litre, the cells of the filaments were bright green and in the younger filaments the chloroplasts were distinctly reticulate. The ampearance of the chloroplasts may have been caused by unfavourable conditions of growth although the filaments all appeared healthy. Zoospore formation and ring formation was frequent in the filaments in all the cultures. Abnormal cell divisions with a swollen apical end.

Observations were mainly confined to the effect of colchicine on cell division. Similar observations on colchicine treated filaments of a species of Oedogonium were made by Gorter (1943) using a colchicine concentration of 1.0 gms. per litre.

The observations made on the filaments in the two concentrations of colchicine are treated separately.

(a) Growth

(a) Growth in cultures containing colchicine (1.0 gms.per litre).

Most of the observations made on the material from these cultures agree with those made by Gorter (1943).

Normal cell division was entirely suppressed by this concentration of colchicine. Although apparently normal ring formation continued and the rings stretched there was no division of the nucleus and no cross wall formation in the cells. The stretched ring became swollen under the influence of colchicine and these swellings gave an abnormal appearance to the filaments (Figs. 30, 31). Frequently several rings formed and stretched in succession in a cell, when the cell became even more abnormal in shape. Very few abnormalities were found in the basal part of the older filaments: the abnormal cells were usually confined to the apical part of the filaments (Fig. 31).

The colchicine caused rings to form in abnormal positions in some of the cells of the filaments and frequently more than one ring was found in a cell. These abnormal rings which did not stretch were found in the following positions in the cell:-

1. in the swollen apical part of an abnormal cell

 in the swollen apical part of an abnormal cell and at the base of the swelling

3. at the apex and at the base of a cell (Fig. 36, 37).
4. at the apex and in the central region of a cell (Fig. 30).
The nuclei in cells in which a ring had stretchtwere large

/and

and their outline was indefinite. The position of these nuclei varied: sometimes they were in the swollen apex of the cell and sometimes they were in the original part of the cell.

The zoospores rounded off and secreted a wall but none of these cells developed a holdfast. A series of rings formed at one end but none of these rings was found to have stretched (Fig. 32). There was no indication that nuclear division had begun in these cells.

(b) Growth in cultures containing colchicine (0.1 gms. per litre).

After two months, it was found that the effects of the weaker concentration of colchicine on cell division were more varied. Both normal and abnormal divisions had taken place in this material.

Many of the zoospores produced in these cultures developed into apparently normal several-celled filaments on the walls of the vessels: these filaments were similar to filaments developing in the control (Fig. 33). Similar growth was also seen in the filaments which were developing on slides placed in the cultures for a week. The filaments were 2-3 celled when placed in colchicine and observations after a week showed that the cell size and the rate of cell division in these filaments was similar to the cell size and the rate of cell division in the control (Figs. 34, 35, 35(a)). However, many of the apical cells in these young filaments became expanded at the tip and the nucleus was often found in this expansion (Fig. 34, 35).

- 46 -

When abnormal cell division took place the cell had a similar appearance to that already described for the stronger concentration of colchicine. Successive rings had stretched in some of the cells without any cross wall form tion: this was frequently the case in the germlings developing from zoospores, although strong holdfasts were developed (Fig. 33).

Ring formation was very obvious in the filements and many of these rings were abnormal in position and number in the cell. These abnormalities were similar to those found in the stronger concentration and representative examples of them are shown in Figs. 36, 37, 38.

When the filaments were stained with aceto-carmine, variations were found in the behaviour of the nucleus. Nuclear division was generally normal in the filaments which had been formed in colchicine and it had also taken place in some of the cells in the filaments which had been placed in the culture. In some of these cells the nucleus had divided and a ring had stretched without any cross wall formation, so that a nucleus was found in both parts of the cell (Fig. 37). In others, the nucleus had divided but no rings had formed in the cell (Fig. 39). Frequently the nucleus had divided in the cells in which both apical and basal collars were formed (Fig. 36, 37).

Occasionally abnormal nuclear behaviour was seen in cells in which otherwise normal cell division had occurred.

/Binucleate

Binucleate cells were found with an adjacent cell lacking a nucleus (Fig. 40); other cells had a single nucleus although the adjacent cell only contained a nucleolus.

Abnormal nuclear behaviour was more obvious in cells in which other abnormalities were found. In many of the abnormal cells, the nuclei were similar to those in the abnormal cells in the stronger concentration of colchicine: they were large bodies which had no clearly defined outer limit. Occasionally the nucleus appeared to have disintegrated into matches of deeply staining material in the cytoplasm of the cell. The large nuclei were found either in the apical swelling of the cell (Fig. 39) or in the position where the cross wall should have formed or below it.

These observations made on the effects of colchicine on cell division in <u>Oedogonium sp</u>. show that the processes of nuclear division and ring formation and stretching, normally closely related, may take place independently under abnormal conditions of growth. A concentration of 1.0 gms. per litre inhibits nuclear division and cross wall formation but it does not prevent ring formation and ring stretching. A lower concentration of colchicine (0.1 gms. per litre) may have the same effect on some dividing cells in the filaments but no obvious effect at all on other similar cells in the same filament.

- 48 -

5. DISCUSSION

Oedogonium sp. proved to be satisfactory material for use in a growth study because the frequency of vegetative reproduction ensured an unlimited supply of material in all stages of development under natural and under cultural conditions and because the peculiar method of cell division in the genus facilitated observations on the pattern of development of the filaments. The nature of the material, however, was not well suited to quantitative comprisons of the effects of the varying conditions on growth. The continual disintegration of the filaments after zoospore formation made it impossible to compare the rate of cell division under varying conditions of growth over long periods and made it difficult to obtain quantitative measurements of the distribution of caps and the size of the cap groups. Because of unequal rates of cell division in the filaments and the loss of cells in zoospore formation, filaments of equal length were not necessarily of equal age.

Soil extract solution is not an ideal medium to use in experimental work carried on over a long period because it is impossible to reproduce the exact conditions of the previous solution in successive extracts. Neither is it an ideal solution to use in control cultures in the work concerned with the effects of additional growth substances, as this solution possibly already contains traces of growth substances extracted from the soil. Soil extract solution was used in /the the control cultures because it produced the best growth of <u>Oedogonium</u> and it was expected that the effects of the additional experimental growth substances on cell size and on the rate of cell division would be so great that any effects due to the growth substances in the soil extract solution would be negligible.

An interesting feature of the growth of Oedogonium sp. under natural conditions was the loss of cans from the anical cell of the filaments. Caps were frequently observed flaking off the apical cell of the filaments either singly or in groups. A loss of cap material has been referred to by Fritsch (1902). (1904) and by Van Wisselingh (1908). This loss of caps generally occurred after the division of the first cell of the filament, although it was also found to occur in some of the apical cells of many celled filaments. Instead of a ring of additional material forming in these cells the new cell wall material formed as a dome shaped structure at the cell apex, the rim of the dome being thickened. In cell division, the apical thickening became divided into two layers and the outer layer was lost as the cap. The inner layer stretched to become the wall of the new upper cell of the filament. In the present study neither the structure of the cap material nor the stages in its loss from the apical cell of the filaments were investigated.

Normal ring formation certainly occurred in apical cells /of older

-50-

of older filaments although unfortunately no detailed study of the first division of the zoospore was made.

Nost of the available literature reporting the effects of prowth substances on the prowth of algae deals with work on cultures of unicellular algae. The references to this work have been given in the Introduction. Some of these results are contradictory, possibly on account of variations in the culture conditions, but in general, growth substances have been found not to affect cell size in such algae but to increase their rate of cell division. A similar effect for multi-cellular algae was found when indole-3-acetic acid and thiamine were added separately to cultures of <u>Ulva</u> and Enteromorpha. (Kylin, 1942).

The observations reported here on the rate of cell division in filaments of <u>Oedogonium sp</u>. in yeast extract and thiamine cultures are in agreement with these general conclusions but the observations on cell size are not. The addition of these substances to the culture caused a decrease in the cell size in the filaments. The records of mean cell length in filaments growing in varying concentrations of indole-3-acetic acid and a-naphthalene-acetic acid were subjected to statistical analysis to determine whether the addition of these growth substances in varying concentration made a significant difference to the mean cell size of the filaments. This showed that the variation in the mean cell /length

-51-

length in the different concentration of indole-3-acetic acid was not significant but that in the different concentrations of a-naphthalene-acetic acid mean cell length was correlated with concentration. These results cannot, however, be regarded as conclusive; cell size may have been affected by the partially uncontrolled conditions of culture and a better estimate of cell size would possibly have been obtained if at each sampling, a definite number of cells, rather than a definite number of filaments, had been taken at random.

The most significant effect of indole-3-acetic acid and a-naphthalene-acetic acid is that of increasing the number of caps found in some of the large groups of caps in the filaments and of causing abnormalities to form in these groups. The possible interpretation of these abnormalities will be referred to in the section which now follows.

The unusual method of cell division in <u>Oedogonium</u> in which a ring of additional material forms in the upper part of the cell and stretches to become part of the lateral wall of the upper daughter cell has attracted the attention of many Botanists. The stages in cell division, the structure of the wall of the cell and the structure and formation of the ring have been investigated by several workers including Van Wisselingh (1908) and Ohashi (1930). The wall of the cell is usually represented as consisting of two layers, the outer layer being cuticular and the inner being made of

/cellulose.

-52-

cellulose. Some workers claim that the wall consists of three layers, the outer layer being chitinous while the middle layer is pectose and the inner layer cellulose (Smith 1938).

According to Van Wisselingh (1908) the ring is formed in the inner layer of the cell wall by intussusception. When the ring stretches it is intercalated between the small part of the original cell wall at the cell apex and the remainder of the old cell wall which is referred to as a "sheath". Later, after cross wall formation is complete a cellulose wall is laid down in both the daughter cells inside the existing wall layers. The cap, which is evident in the apical part of the cell following cell division, is caused by the splitting of the outside layer of the cell wall to enable the ring to stretch.

Under natural conditions of growth, the groups of caps in the material investigated here were usually small and there was no indication of additional wall thickening in the vicinity of the caps : with added growth substances, the groups of caps were often large and very thick walled. If a new cellulose wall is laid down after the formation of the two daughter cells, an increase in thickness in the wall beneath the caps is to be expected. This increase in thickening might become obvious as the number of caps greatly increase so that the abnormalities observed in the groups with a large number of caps in indole-3-acetic acid and a-naphthalene-acetic acid and beer in the occasional large groups from the pond may possibly have/

- 53 -

caused by the laying down of this additional cell wall material.

The abnormal thickening in the large groups of caps appears to be laminated (Fig.24). Each of the layers begins in the apical part of the cell and extends downwards: the inner layers extending further towards the base of the group of caps. Each of the layers in the thickened wall material is associated with one of the areas between the striations on the surface of the group representing a cap. The laminated appearance of the thickening suggests that it has been laid down at successive intervals of time. As the thickness of the wall beneath the caps increases with each successive cell division, the area available for the formation of additional layers would decrease so that the abnormalities associated with the large groups of caps might then result. In many of the cells with large apical groups and in some of the cells with large intercalary groups of caps the apex frequently appears to be filled with ce/ll wall material(Fig. 25).

As the walls of the cell beneath the group of caps became thickened laterally, the apical part of the protoplast would become restricted and the n with further increase in the number of cell divisions a continuous layer of cell wall material might be formed across the cell so that the apical par t of the protoplast became cut off from the rest of the protoplast of the cell. The successive cell wall layers would then be formed beneath the continuous layer: of cell wall material. If further cell division continued to increase the /lateral

-54-

Lateral

Lthichening, a secon portion of the protoplast might become isolated by the formation of a second continuous layer across the cell. . condition which is possibly similar to this is illustrated in Fig. 26.

The occurrence of localized cell division, indicated by the large accumulation of case, seems to interfere with the efficiency of cell division and is associated with the formation of many abnormal rings. The formation of wall material around non expanding rings would account for the fact that the rings apperared to be embedded in the abnormal material in the apical part of a cell with a large group of caps(Fig 26).

The formation of abnormal caps in both apical and intercalary position was observed in an unnamed species by of Oedogonium by Fritsch (1904). Cap material accumulated on the apical cells of some filaments and to a lesser extent in some intercalary cells. The apical addition of this cap material gave an abnormal rectangular appearance to the apex of the filament. This material was formed between the outer and the inner layer of the cell wall and probably represented successive non stretching dome shaped layers of ring material formed in the cell apex. These abnormal accumulations of cap material were ultimately seen to drop off the apical cell. Their formation was probably due to unfavourable conditions of growth as they were only found in filaments which were exposed above the level of the culture solution; the normal division of the cell was suppressed by these unfavourable conditions. A similar interpretation given to /the

-55-

abnormalities described here in the large groups of caps in both apical and intercalery position could account for the accumulation and lamination of the thickening in the cells but it would not account for the fact that each of the layers was associated with a single cap.Since normal ring formation and stretching has often been observed during the accumulation of these groups of caps, it seems much more likely that the abnormalities here are due to the number of cell divisions which have occurred in a localized position.

In normal cell division the processes of nuclear division followed by cross wall formation and ring formation and its subsequent stretching to form part of the lateral wall of the upper daughter cell seem to be coordinated, the ring forming as the nuclear division proceeds.

Nuclear division was suppressed in all the cells in a culture containing colchicine in the concentration of 0.1 gms. per litre, ring formation, however, continued and many of these rings stretched to give an abnormal appearance to the cells. Sometimes rings continued to form in these cells but the additional rings did not stretch. The weaker concentration of colchicine may have been close to the critical concentration necessary for any effect to be apparent because normal and abnormal cell division took place in the cells of the filaments treated with colchicine in the concentration of 0.1 gms. per litre. In this concentration some of the cells had two nuclei and although nuclear division had occurred there was no formation of the ring

/required

L'for cell division. In other cells, with more than one ring, the nucleus had divided but none of the rings had stretched.

The observations made on the colchicine treated material indicate that although the processes of nuclear division and of ring formation and ring stretching seem to be coordinated in normal cell division, they may be made to occur independently when the filaments are grown under abnormal conditions in culture containing colchicine.

The observations reported on the growth of Oedogonium sp. are of a preliminary nature and much more work needs to be done. In further work, it is necessary to discover the conditions of culture which will produce material similar to that growing under natural conditions in the pond, and then to re-investigate the possibility of producing the experimental material as a clone. The experimental work concerned with the effects of varying conditions on cell size needs to be repeated using the controlled conditions of light and temperature now available and it would be more satisfactory statistically to take a definite number of cells at random in each observation rather than to make measurements on a definite number of filaments. It would be interesting to extend the investigations reported here to other species of Oedogonium to find if a common plan of filament development exists in the genus and if all species of Oedogonium react in the same way to the varying experimental conditions of culture used.

-57-

5. SUMMARY

The growth of an unidentified species of <u>Oedogonium</u> growing in a pond in the Botany Garden, Royal Holloway College has been investigated under natural and cultural conditions with and without the addition of various organic substances. Records were made of the cell size, the rate of cell division and the grouping of the caps in the filaments. The observations made on this growth are summarised here.

- 58 -

 Long filaments growing in the pond showed great variation in cell size. Two types of cells were recognized in these filaments, longer narrower pale green cells and shorter wider dark green cells. The shorter cells formed in the filaments as they aged but their formation was not a response to changes in environmental conditions.
 Although the growth of the young filaments in the pond was usually apical for the first ten or so divisions, the apical cell rarely accumulated groups of caps. Single

caps and groups of caps were frequently observed flaking off the apical cells.

(3) Groups of caps occurred in the filaments in intercalary positions and each group generally numbered fewer than ten caps. Larger groups were rare and when they occurred they were abnormal in form.

(4) It was impossible to correlate the number of caps and the number of cells in the filaments because of the loss of

/caps

caps from the apical cell and because of the disintegration of the filaments when zoospores were formed.

(5) Cell size was less variable in the filaments grown for long periods in culture in soil extract solution than in the long filaments from the pond. The longer cells, when present, were few in number and more often were completely absent.

(6) In culture, growth was often intercalary in the very early stages of the development of the filaments.

cap groups in the cultured filaments but the proportion of the filaments with groups of apical caps was increased, possibly because caps were retained for a longer time before flaking off from the apical cell.

(7) There was no increase in the number of the caps in the

- (8) The addition of yeast extract or thiamine to the cultures decreased the size of the cells but increased the rate of cell division.
 - (9) No satisfactory conclusions can be drawn as to the effect of indole-3-acetic acid and a-naphthalene-acetic acid on cell size or on the rate of cell division.

(10) The addition of indole-3-acetic acid and a-naphthalene-

acetic acid to the cultures increased the size of the groups of caps; groups numbering 15 to 20 were common and groups numbering as many as 20 to 30 were found in cultures with additional a-naphthalene-acetic acid. This also proportion of the filaments with large groups of apical caps.

- 59 -

(10) contd:

The increase in cap number in indole-3-acetic acid and a-naphthalene-acetic acid was accompanied by abnormalities in the large groups of caps.

(11) The addition of colchicine (1.0 gms. per litre)

caused the suppression of nuclear division while ring formation continued; such rings stretched in the absence of cross wall formation. A weaker solution of colchicine (0.1 gms. per litre) produced the same effects on some of the cells in the filaments but apparently normal cell division continued in many of the cells. In other cells the nucleus had divided in the absence of ring formation. These observations show that the processes of nuclear division and ring formation can be made to take place independently of one another.

In conclusion I wish to thank both Professor F.W.Jane and Dr. M.A.P.Madge for the help they have given me. I am especially grateful to Dr. Madge for suggestions made during her supervision of my work. I also wish to thank Mr.R.Brinsden who is responsible for the photographs.

- 60 -

-61-

BIBLIOGRAPHY

Bold, H.C.	1942	"The Cultivation of the Algae". Bot. Rev. 8, p.69
Brannon, U.A. & Bartsch, Á.F.	1939	"Influence of growth substances on growth and cell division in green Algae". Amer. Journ. Bot. 26, 271-279
Brannon, M.A. M. Sell, M.M.	1945	"The effect of indole-3-acetic acid on the dry weight of Chlorella pyren- oidosa. Amer. Journ. Bot. 32, 257-258.
Bristol-Roach	1926	"On the Relation of Certain Soil Algae to some Soluble Carbon Compounds. Ann. Bot. 40, 149-201
Clarke, W.H.	1927	The Determination of Hydrogen Ions.
Chu, S.F.	1942	"The Influence of the Mineral Compos- ition of the Medium on the growth of Planktonic Algae. I. Method & Culture Medium. Journ. Ecol. 30, 284-325.
De Valera, M.	1940	Note on the difference in growth of Enteromorpha species in various culture media. Forh. Kgl. Fysiografiska Sallsk. i Lund 10 (Reference Chap. 10 Manual of Phycology 1951).
Freund, H.	1928	"Conditions of growth in Oedogonium pluviale".
		Zeits Wiss. Biol. Abt. E. Planta 5(3), 520-538.
Fritsch, F.E.	1902	"The germination of the Zoospores in Oedogonium". Ann.Bot. 16, 412-417.
		"The Structure and Development of Young Plants in Oedogonium". Ibid.467-484
	1904	"Some points in the Structure of a young Oedogonium". Ann. Bot. 18, 648-653.
Gorter, CHr ^e J.	1943	"Abnormale groei van eenige Zoetwater- wieren in Oplossingen met Colchicine". Verslagen Ned. Akad. V. Wetensch Afd. Natuurkunde, Vol. LIT. No.6.

....

		-62-
Gussewa, K.	1930	"Uber die geschlechtliche und unge- schlechtliche Fortpflanzung von Oedogonium capillare im Lichte der sie bestimmenden Verhaltnisse". Zeitschr. Wiss. Biol. Abt. E. Plant 12(2), 293-326.
Klabs, G.	1896	Die Bedingungen der Fortzpflanzung bei einigen Algen und Pilzen. Jena.
Kretschmer, H.	1930	"Beitrage zur Cytologie von Oedogonium pachyandrium (?grande)". Arch. Pro- tistenk 71(1), 101-138. (Biological Abstracts, 5176, 1934).
Kylin, H.	1941	"Biologische Analyse des Meerwassers". Forh. Mgl. Fysiografiska Sallsk i Lund II, 21, 1-16. (Reference Chap. 10 Manual of Phycology 1951).
Ϊ	1942	"Uber den einfluss von Glucose, Ascorbin- saure und Heteroauxin auf die Keimlinge von Ulva und Enteromorpha". Ibid. 12, No. 12, 1-14. (Reference Chap. 10 Manual of Phycology 1951).
Leonian, L.H. & Lilley, V.G.	1941	"Some factors affecting the dry weight of Chlorella vulgaris". Amer. Journ. Bot. 28, 569-572.
Mainx, F.	1927	"Beiträge zur morphologie und Physiologie der Eugleninen". I, II. Arch. F. Pro- tistenk Bd. 60.
	1931	"Physiologische und genetische Unter- suchungen an Oedogonium". Zeitschr. Bot. 24, 481-529.
Ohashi, H.	1930	"Cytological Study of Oedogonium". Bot. Gaz. 90, 177-197.
Pearsall, W.H. & Loose, L.	1937	"The Growth of Chlorella vulgaris in pure culture. Proc. Roy. Soc. Lond. B. 121, 451-501.
Pratt, R.	1938	"Influence of auxins on the growth of Chlorella vulgaris". Amer. Journ. Bot. 25, 498-501.
tt	1940	"Influence of the size of inoculum on the growth of Chlorella vulgaris in freshly prepared culture medium". Amer. Journ. Bot. 27, 52-56.

Pratt, R.	1941	"Studies on Chlorella vulgaris. IV. Influence of the molecular proportion of KNO ₃ , KH ₂ PO ₄ and MgSO ₄ , in the nutrient solution on the growth of Chlorella". Amer. Journ. Bot. 28, 492-497.
Pringsheim, E.G.	1949P	ure Cultures of Algae. Cambridge Univ- ersity Press.
Reynolds, N.	1950	"Methods of Culturing Epiphytic Algae". New Phytol. 49, 155-162.
Smith, G.M.	1938	Cryptogamic Botany, Vol.I, 68-78. McGraw-Hill publication.
Suneson, S.	1942	"Uber wachstumsfordernde Wirkung von Algenextrakten auf Ulva und Enteromorpha. Forh. Kgl. Fysiografiska Sallsk i Lund 12, 183-202. (Reference Chap. 10 Manual of Phycology 1951).
Tiffany, L.H.	1936	"The Oedogoniales". Bot Rev. 2. 456-473.
White, P.R.	1943	Handbook of Plant Tissue Culture.
Yin, H.C.	1937	"Effect of Auxins on the growth of Chlorella vulgaris". Proc. National Acad. Sci. (U.S.A.) 23, 174-176.
von Wisselingh, C	.1908	"Über den Ring und die Zellwand bei Oedogonium". Beih. Bot. Centralb. 23, 157-190.

r.

-63-

-64-

General References.

Fritsch, F.E.	1935	The Structure and Reproduction of the Algae. Vol 1. Cambridge University Press.
Oltmann, F.	1922	Morphologie und Biologie der Algen. Vol. 1 and 2. Jena.
rascher,	1914	Die Susswasserflora Deutschland s, Osterreichs und Der Schwiez. Heft 6. Chlorophyceae 3.
Rabenhorst. L.		Kryptogamen-Flora XII.Band. Abt.4. Lieferung 1,2 and 3. 1938,1939,1940.
Smith, G (Editor).	1951	Manual of Phycology. Published by Chronica Botanica Company.

-65-APPENDIX 1.

The method of calculating the correlation coefficient.

Correlation coefficient is represented by .r

$$r \stackrel{\text{sy}}{=} \sqrt{\left[\left\{\frac{Sx^{2} - (Sx)^{2}}{n}\right\} \left\{\frac{Sy^{2} - (Sy)^{2}}{n}\right\}\right]}$$

The variance ratio of the correlation coefficient was found from the following formula.

$$\frac{(n-2) r^2}{1 - r^2}$$

In Table 20 in the indole -3- acetic acid cultures:-

х	=	value of the concentration	
У	*	mean cell length.	
n	=	number of observations = 5.	1
Sx	=	0.094	
Sy	=	548.8	
Sxy	=	11.26	
$S(x)^2$	*	0.0103	
Sy)2	=	60,393.0	

In the a-naphthalene-acetic acid cultures;-

=	8
=	0.794
-	891.12
=	0.213
=	99,673:0
=	94.73

Key to Figures.

Filaments grown under natural conditions

Microghotograph of the structure of the Fig. (1) holdfast in Oedogonium sp. Material fixed and stained with aceto-carmine. Holdfast is attached to a slide. x 600. Camera lucida drawing of the structure of (1)athe holdfast. Microphotograph of the enlarged cells which (2)are possibly akinetes. x 50. Natural condition. Microphotograph of filaments from the pond. (3)Natural condition. x. 70. Microphotograph of filaments from the pond. (3)aFixed and stained with aceto-carmine. x 160. Graphical representation of the distribution (4)of cell length and cap grouping in long filaments from the pond. Cell length is recorded in micrometer units (10 units = 40μ .). (5) Diagrammatic representation of the loss of caps by the apical cell of filaments taken from the pond. November 17th, 1950 (Drawing apparatus). The variation in cell length in filaments (6)growing on slides in the pond in May 1951. The filaments were placed in the pond November 17th, 1950. (Drawing apparatus). Cell lengths in filaments developing in the (6)apon dMay, 1951. (Drawing apparatus). (7)Graphical representation of the cell length measurements in filaments developing on slides in the pond during November 1950 to September 1951. The figure represents filaments taken from the pond at intervals during this time. Cell length is recorded in micrometer units $(10 \text{ units} = 40 \mu.).$ (8) Diagrammatic representation to show the lack of correlation in cap and cell number in young filaments from the pond.
Filaments grown under cultural conditions

- Fig. (9) Microphotograph of the smaller sized cells formed in culture in soil extract solution. x 70. Filaments were mounted in dilute gl cerine.
 - (10) Variation in cell size in a filament grown in culture in soil extract solution. (Drawing apparatus).
 - (11)&(11)a Formation of smaller cells in filaments in culture in soil extract solution and in pond water. (Drawing apparatus).
 - (12) Diagram illustrating the method used to identify the position of filaments growing in culture.
 - (12)a Diagrammatic representation of the order of cell division in young filaments grown in culture.
 - (13) Graphical representation of the rate of cell division in young filaments in culture.
 - (14) Diagrammatic representation of the irregular holdfasts formed in filaments developing under increased light intensity.

Filaments grown in culture with additional growth substances

- Fig. (15)a,b,c. The appearance of filaments grown for 14 days in cultures containing (a) yeast extract (100 mgs. per litre) (b) soil extract solution and (c) thiamine (0.1 mgs. per litre). (Drawing apparatus).
 - (16)a,b,c. Microphotographs of the appearance of the above filaments after 20 days. x 25. Natural condition.
 - (17) Graphical representation of cell length measurements and cap distribution in filaments taken from the pond and grown in culture containing a-naphthalene-acetic acid (0.3 gms. per litre) and in culture with soil extract solution. Cell length is recorded in micrometer units (10 units = 40 μ.).
 - (18) The abnormal appearance of the apical cell in filaments grown in culture containing a-naphthalene-

- (19) The appearance of large groups of caps formed in a culture containing a-naphthalene-acetic acid (0.3 gms. per litre). (Drawing apparatus).
- (20)&(20)a Microphotographs of filements growing in culture with a-naphthalene-acetic acid (0.1 gms. per litre) and in soil extract solution illustrating the lorge groups of caps found in the culture with the growth substance. x 15. Natural condition. The large groups of caps accumulated on the filaments in a-naphthalene-acetic acid are illustrated.
 - (21) A series of histograms showing the size and the number of the apical and intercalary groups of caps in filaments placed in varying concentrations of a-naphthalene-acetic acid.
 - (22) A series of histograms showing the size and number of the apical and intercalary groups of caps in filaments produced and grown in varying concentrations of indole-3-acetic acid.
 - (23) A series of histograms showing the size and number of the apical and intercalary groups of caps in filaments produced and grown in varying concentrations of a-naphthalene-acetic acid.
- (24-27) Microphotographs of large groups of caps formed in filaments grown in culture containing a-naphthalene-acetic acid (0.3 gms. per litre). Filaments were fixed and mounted in dilute glycerine. (See below).
 - (24) Laminated appearance of a group of caps. x 750.
 - (25) Apical cell showing thickened apical region. Cell contents have plasmolysed. x 600.
 - (26) Intercalary cell with large group of caps showing possible separation of the protoplast by the formation of a continuous layer of cap material. A ring appears to be embedded in this material. Cell contents slightly plasmolysed. x 600.
 - (27) Unequal lateral thickening in a large group of caps. x 700.

-68-

- Fig. (28) Diagrammatic representation of abnormalities formed in large groups of caps in the filaments in the pond and in culture containing various amounts of indole-3acetic acid.
 - (28)a Diagrammatic representation of abnormalities formed in large groups of caps in filements from cultures with a-naphthaleneacetic acid (0.5 gms. per litre).
 - (29) Diagrammatic representation of abnormalities formed in large groups of caps in filaments from cultures with indole-3-acetic acid. (0.1 gms. per litre).

Filaments grown in culture with additional colchicine

- Fig. (30)&(31) Abnormal cell division in cells of filaments treated with colchicine (1.0 gms. per litre). (Drawing apparatus). Rings have formed and stretched without cross wall formation. Abnormal rings have also formed in the cells.
 - (32) Abnormal development of zoospores in colchicine culture (1.0 gms. per litre). A series of wall thickenings have formed in the apical part of the cell, cell divisions being suppressed. (Drawing apparatus).
 - (33)&(34) Normal and abnormal cell division in filaments treated with colchicine (0.1 gms. per litre). (Drawing apparatus).
 - (35)&(35)a Microphotographs showing comparable growth in filaments grown on a slide for a week in colchicine culture (0.1 gms. per litre), and in soil extract solution. x 25. Material was fixed and stained with acetocarmine.
 - (36)&(37) Abnormal ring formation and nuclear behaviour in cells in filaments treated with colchicine (0.1 gms. per litre). (Drawing apparatus).
 - (38) Microphotograph of abnormal ring formation in a cell treated with colchicine (0.1 gms. per litre). Rings have formed in both the apical and central part of the cell and the nucleus is a patch of deeply stained material. Material fixed and stained

/with

with aceto-carmine. x 300.

Fig. (39-41)

Microphotographs of nuclear behaviour in cells treated with colchicine (0.1 gms. per litre). Material fixed and staimed with aceto-carmine.

- (39) Abnormal cell division in colchicine. The ring has stretched but the nucleus has not divided and also the nucleus in the apical cell has divided without a ring being formed. x 320.
- (40) One cell of the filament has two nuclei and the other cell in lacking a nucleus. x 320.
- (41) The nucleolus is shown to have separated from the nucleus and is found in the apical part of the cell formed by the stretched ring. x 320.

Figs. 1 and 1a. The structure of the holdfast in filaments of Oedogonium sp.

1.

x600

la.

Fig 2. Enlarged cells in filaments from the pond which resemble akinetes.

XSO

Figs. 3 and 3a. Filaments of <u>Oedogonium sp</u> growing under natural conditions.

x 160.

Fig.4. Distribution of cell length and cap grouping in six fully developed filaments from the pond. The basal cell is represented first in each filament. (IO units equal 40 μ.)

Fig. 5. The loss of caps from the apical cell of a filament. (diagrammatic.)

Fig. 6. Filaments developing on slides in the pond. The hatched cells represent the small dark green first formed cells.Filaments were placed in the pond November 17 th. 1950.

Fig. 6a. Filaments developing on slides from zoospores formed in the pond.

Fig. 7. Cell size measurements in filaments which were grown on slides in the pond. The measurements were made at intervals from November 17. 1950 until August 1. 1951 (10 UNITS EQUAL 40µ)

B (9/5/51) FILAMENTS DEVELOPING ON SLIDE FROM ZOOSPORS.

(continued on the next page.)

Fig.8. The lack of correlation of cap and cell number in filaments developing in the pond.

Fig.9. The formation of shorter cells in the filaments grown in culture in soil extract solution.

Fig.10. The cell size variation in a filament grown in culture in soil extract solution. The shorter cells formed in culture.

Fig.11. Filaments from the pond which were grown in culture in soil extract solution.

Fig.lla. Filaments from the pond which were grown in culture in pond water.

POND WATER CULTURE.

Fig.12. Method used for identifying individual filaments. The end of a glass ring was divided into segments by pencil markings and the double line made the orientation of the ring possible.

Fig.12a.

The order of cell division in young filaments grown in culture. The date of cell formation is recorded by the day and month of the year beneath each cell and the order of cell formation is recorded beside each filament. The arrows underneath the filaments indicate the disintegration of the filaments by zoospores.

ORDER OF CELL DIVISION .	
15/2 14/2 19/2	1234
15/2 20/2 1/2 1/2 1/2 20/2 	152345
12/2 19/2 11/2 14/2 11/2 25/2.	152346
12/2. 15/2. 19/2. 23/2. 4/2. 24/2. 79/2. 24/2.	12463545
	12364(5)6
	1623(45)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1234(567)89
	123456
عداد عام مراج عداد عام مراد عداد عداد عام مراد د/د	12345
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1234(56)7
22/5 24/5 25/5 26/5 20/5 2/6 7/6 9/6	123456
	15234
21/5 24/5 26/5 7/6 8/6 24/5 26/5 1/6	12367547
19/5 21/5 23/5 24/5 26/5 26/5 3/5 6/ 19/5 21/5 23/5 34/5 36/5 36/5 3/5 6/	1234567
	12374(65)

Fig. 13. The rate of cell division in young filaments in culture. Zoospore formation is indicated by hatching.

Fig.14. The formation of irregular holdfasts in increased light intensity.(not drawn to scale.)

Figs. 15. a,b and c. Filaments grown for 14 days in a)yeast extract (100 mgs. per L.) b) soil extract solution and c) thiamine (0.1 mgs. per L.).

SOIL SOLUTION AND

ORGANIC SOLN.

a.

b.

C (this

c. (thiamine.) Figs. 16 a,b and c. The appearance of filaments grown for 20 days in a) yeast extract (100 mgs. per L.)b)thiamine (0.1 mg per L.) and c) soil extract solution.

Fig.17. Cell length measurements and cap distribution in filaments taken from the pond and grown in culture with in(0.3gms. per litre)naphthalene-acetic acid and in soil extract solution.(10 units equal 40 µ.)

Fig. 18. The appearance of filaments which were produced and grown in culture containing naphthalene-acetic acid (0.4 gms per litre).

a-NAPHTHALENE - ACETIC

ACID. 04 GMS/L

Fig. 19. The accumulation of darge groups of caps in filaments grown in a culture containing naphthalene-acetic acid (0.3 gms. per litre).

Figs. 20 and 20a. Cap grouping in filaments grown in (C.1 gms. per litre) naphthalene-acetic acid (20) CULTURE. and in soil extract solution.

20.

×15

20a.

× 15

Fig.21. Histograms showing the number and the size of apical and intercalary groups of caps in filaments which were taken from the pond and grown in varying concentrations of naphthalene-acetic acid.

Histograms showing the number and the size of groups of apical and intercalary caps in filaments which were grown in culture in varying concentration of indole-3-acetic acid.

Fig.22.

Fig 23. Histograms showing the number and the size of apical and intercalary groups of caps in filaments which were grown in culture in varying concentrations of naphthalene-acetic acid.

Fig. 24. Groups of caps found in filaments which were grown in(0.3 gms. per litre)naphthalene-acetic acid.contorc.

24. × 750

25. x 600.

Fig.26. Groups of caps in filaments which were grown in(0.3 gms. per litre)naphthalene-acetic acid, contore.

26. × 600.

27.

× 700.

Fig. 28. Abnormalities formed in large groups of caps.

Fig. 28a. Abnormalities formed in large groups of caps found in filaments grown in(0.05 gms per litre) naphthalene-acetic acid contore.

Fig. 29. Abnormalities found in large groups of caps formed in filaments grown in(0.1 gms. per litre) indole-3-acetic acid Luture.

Fig. 32. Abnormal development of zoospores formed in (1.0 gms. per litre)colchicine culture.

OI% COLCHICINE.

Fig. 33. Normal and abnormal development in filaments produced in(0.1 gms. per litre) colchicine culture.

.01% COLCHICINE.

Fig. 34. Normal and abnormal development in filaments growing on slides after a week in(0.1 gms. per litre) colchicine currore.

Fig. 35. and 35a. Filaments grown on slides for a week in soil extract solution and in 0.1 gms per litre colchicine.Control is Fig. 35a.

35. x 25.

35a.

Fig. 38. Abnormal RING formation in a cell of a filament grown in(0.1 gms. per litre) colchicine fulture.

Fig. 39. The behaviour of the nucleus in a cell of a filament grown in(0.1 gms. per litre)colchicine.

×320.
Fig. 40. Nuclear behaviour in a cell of a filament: Fig. 41. grown in(0.1 gms. per litre) colchicine collove.

40. × 320.

41. x 320.

120,00	112	88-4	80,1	112-8	80-11	168	88.11	164
160	152	200	188	148	120	212	128	136
100	160-2	72	196	168	160	192	112	160
.96	140	56	100	176	120	128-2	132	144
140	176	60	128	152	108	180	152	160
164	136	100	164-2	100	92	172	188	124-2
160	168	40-3	140	100	112	128	160	112-10
168	172	100	152	112-12	140	120	176-2	164
92	172	100	200-3	160	148	120	120	212-5
.92	172		140	164	132	100	160-6	136
120	176		208	200	140	72	164	152
108	168-2		184-3	172	128	60 80	172	200
120	176		152	172	160	84	156	192
112	188		204 220-6	156	152	168	160	152
152	172		192	164	160	140	168	152
160-2	128-2		192	164	160	152	164-4	144
160	108		124	120	140-3	100	116	2.02
152-2	112		140	112	140	100	136	
172	108		144	92	148	84	128	
168	112		168-2	120	140	96	176	
173	140-7		164	120	140	90	160	
160-8	128		160	100	140		156	
180	208		176	150	192-4		160	
172	136		160		160 '		172-2	
192	132		160		176		140	
192	120		164		208-10		160	
192	168-2		152		112		160	
152-2	132-3		132		136		172-2	
172	128		120		128		164	
172	132		84		172		164	
152	120		80		160-4		140-5	
168	160-4		88-2		120		164	
100-4	160		100		152		180	
160	120		84-2		152		160	
192	120		80		140		160-4	
156	92		96		168		152	
208-2	0 92		68		180		168	

Table 1. <u>Cell length measurements in fully developed</u> filaments from the wall of the pond.

Table 2. Cell length measurements and cap grouping in filaments grown for a long period on slides in the pond. The filaments were examined at intervals from November 17 th. 1950 until September 1st. 1951.

Feb.2.	Mar.21.	April.	19.	May.9		June 1	8.
92,0	116	881	108-2	6011	84.	801	a a m t
115	108	120	100-1	110	00	110	cont.
124	120	120	120	112	80	112	160
	120	120	108	128	88	160	180
120	110	124	100	160-2	124	160	160
120		128	140	52	122	180	126
124	92	132-4	100	100	720	180	120
100	124	128	100	100	164	100	100
	100	140	140	120	132	199	164
112	120	140		56	164	208	180
124	128	100-5	80	132	176	200	
124	124	128	140	116	180	240	100
100		160	140	188	100	180	100
115	84	164	12	2004	192	100	130
	104	169 2	96	204	112-3	510	140
	130	100-2	100	224	168	212	200
104	115	112	96	216	192	172	180
110	128	136	124-2	176	188	160	176
112		156	100	196	200	160-2	102
00	88	144	104	+10	200	180	172
116	112	128	104	00	0.5	100	100
88	100	120	115-5	80	80	180	180-2
	120	150	80	120	112	100-3	180
212	115	-	112	72	144	180	184
110	1.00	80	108	128	132-2	160	188-2
LLC		128	128-2	152-2	122-2	140	100-5
140	96	140	120-5	100-2	140	140	104
140	112	120	00	00	140	140	190
	112	120	124	132	132	160	160
120	112	144-2	124	152-2	160	140	160
112	100	128	120-2	120	152	180	192
116	128	124	104	160	156	160	160
92		128	120.2	176	100	100	100
96	80	128-2	120-2	1/0	1/2		100
96	110	100	100	100	200	72	192
	112	100	124	200	156	100	160
100	88	108	100		200	160	168
100	128	88	140	96		164	112
120	80	100		80	80	106	168
132	120	120		84	170	190	100
124	TLO	112		100	115	100	100-5
88	100	TTC		150	144	200	160
88	100			136	132-2	172	152
84	140	96		168	80	200	144
04	132	128		124	140	220	160.2
	100	140		184	140	226	100-2
104-c	100	140		104	132	230	1/2
116	100	140		1/2	160	192	168
100		132		196	152	i64	172
150		128		116-3	156	168-3	164
		120		172	172	232	184-4
	•	144		192	200	196	107-4
		132-4		184	200	1/0	192
		06		104	150	TOO	100
		70		212	200	168-3	180
		115				200	
		140				188	

Table.2. (continued)

Nov.17th.-July 17th.

September 1 st.

÷

Table 4. The changes in the cell size composition in filaments growing on slides in the pond from November 1950 to September 1951. The percentage number of cells in each group of cell length measurements of 20 µ are shown.

Fe	eb.2.	Mar.21.	Apr.19.	May.5.	June.18.	Aug.17.	Sept.1.
0- 20 u	0	0	0	0	0	0	0
2440	0	0	0	0	0	0	0
44- 60	0	0	0	0	l	1	2
64- 180	7	2	4	9	2	3	7
84-100	33	28	24	LO	4	5	14
104-120	<u>41</u>	<u>43</u>	32	13	2	5	27
124-140	19	25	33	18	5	13	18
144-160	2	0	7	13	20	36	9
164-180	0	2	2	13	<u>28</u>	15	7
184-200	0	0	0	16	22	14	7
204-220	0	0	0	4	8	6	5
224-240	0	0	0	2	7	3	5

Table 5. Cell length measurements in filaments growing on waterlily petioles in May.

100M	96µ	100µ	88µ	1001	100µ
152	80	192	152	136	164
168	152	220	176	168	172
176	176	204	180	192	192
180	192	184	172	200	176
200	192	168	200	196	128
200	210	100	216	192	150
196	208	172-1	200	176	1/2
200	184	220	120	160	172
192	192	208	196	188	168
160	192	192	160	196	204
176	- 188	196	172	192	180
	160	156	100	176	192
	188	168		188	196
	140	164			144
	140				160-3
					180
					184

Table 7. Cell length measurements in filaments growing on waterlily petioles in July.

$ \begin{array}{c} 84\mu \\ 152 \\ 184 \\ 160 \\ 140 \\ 164 \\ 156 \\ 160 \\ 132 \\ 144 \\ 172-3 \\ 188 \\ 164 \\ 156-3 \\ 124 \\ 128 \\ 128 \\ 128 \\ 128 \\ 128 \\ 140-3 \\ 132 \\ 124 \\ 140 \\ 120 \\ 140-3 \\ 124 \\ 140 \\ 168 \\ \end{array} $	96 100 112 160 140 128 176 168 168 140 128 152 152 152 152 152 152 152 152	100µ 148 184 160 160 168 172 160 112 160 128 128 156 160 168 152	100μ 120 140 152 160 192-2 196 204 180 180 180 168 128 144 140 140 80-3 168 160 160 132-3 140 152 128-2 140 152 128-2 140 152 128-2 140 152 15	88 116 176 184 192 176 92 152 120 120 120 120 120 120 120 12	cont. 200 80 80 100 120 120	88µ 120 140 184 200 196 200 196 180 200 192 192 156 112 128 132 120 132 140 144 152-3 140 128 144	cont. 140 160-4 160 156 132 152 136-3 128 152-2 152 140 160 152
---	--	---	--	---	---	--	--

Table 8. Cell length measurements in filaments growing on slides in the pond for short periods of time. The measurements were made during June to October 1951.

June.20- July.18.	July.6- July.18.	July.17- Aug.6.	July.30- Aug. 22.	Aug.6- Aug.22.	Oct.3- Oct.29.
96µ 112 156 160 152 180 188 168 180 192 112 120 172 180 168 152 180 168 152 180 168 152 172 180 160 172 180 172 180 160 172 180 192 112 152 180 192 112 152 180 192 112 152 180 192 112 152 180 192 112 152 180 192 112 152 180 192 112 152 180 192 112 152 180 192 152 180 192 152 180 192 152 180 192 152 180 192 152 180 192 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 152 180 176 152 152 160 152 152 160 152 152 152 152 152 152 152 152	112µ 144 144 176 192 192 192 188 104 120 160 156 168 172 120 136 160 184 188 192-2 104 92 140 128 168 208 180	80µ 120 160 168 144 140 80 120 144 128 160 172 80 72 120 160 168 148 100 132 128 140 120	92µ 132 184 184 180 180 204 176 192 192 200 176 180 192 172 92 128 164 160 172 176 180 200 184-3 160 172 176 180 200 184-3 160 172 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 192 172 172 92 128 164 160 172 176 180 200 176 180 200 176 180 200 176 180 200 176 180 192 172 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 176 180 200 172 176 180 200 172 176 180 200 172 176 180 200 172 176 180 200 172 176 180 200 172 176 180 200 172 176 180 200	112 n 100 132 160 184 180 172 192 188 160 160 160 160 160 160 160 160	112 100 176 208 112 156 192 168 112 152 180 192 104 140 192 192 92 172 92 152 152 92 152 92 152 92 152 92 152 92 152 92 152 92 152 92 152 152 152 152 152 152 152 15
96 108 152 172 160 200 168 168 188	88 120 184 160 196 200 208		152 168	132 200 204 196 192 172 192 168 180	TTS

Table 9. Cell length measurements in filaments taken from the pond February 19 th. and grown in culture for two months in soil extract solution and in pond water.

Filaments from the pond Feb. 19th.	Soil e soluti	xtract on culture.	Pond w cultur	e.
100µ 204 212 240 224 200 208 208 176 160 176 160 136 152 132 144 128 112 112 112	84µ 140 144 192 184 188 216 196 220 184 200 188 172 192 104 104 120 112 120 104 120	cont. 72 80 72 104 100 96-3	100 µ 204 220 208 216 224 220 216 224 220 212 204-3 204 204 204 204 204 204 204 204 204 204	88 152 180 184 144 160 164 156 100 124 132 124 132 124 132 124 132 124 132 124 132 124 132 128 120 96 128 120 92 108 128
120 152 212 208 121 192 224 216 216 192 204 196 176 168 152 160 164 152 144 172	132 124 112 144 140 152 148 48 72 80 80 84 112-3 64 80 64 80 64 80 72 84 112 96 112 72	•	136 152 100 88 84 92 60 200-7 140 180 72 152 64 84 80 160 84 60 76 80 40 80	120 92 108 128 104 60-5 108 104 120 84 120 128 104 156 124 88 84 72 72 64-5 152 120 104 120

Luly 20	-Oct.	23 1950	Nov.	3-Dec. 12.	May 5-Ju	une 20 1951.
102 11	cont.	/ II		cont.		
120 0	140-5	1562	100	4 92	88	100-
120	110	140	120	100	144	132
194	130	140	72	132	192	128
160	130	120	112	96	140	120
160	152	112	100	112	80	120
164	156	100	04	00	120	120
148	160	126	00	90	152	100
160	120	1.24	116	92	140	120
128	60	148	26.	160	112	140
160		160	92	96		160
132		132	30	108		144
120		160	92	112	100	128
152	160	128	80	104	152	152
120	180	156	84	112	200	144
120	148	136	93	72	200	213
112	144	104	80	104	192	
112	100	112	88	120	- 80	
152	108	128-2	112	112	128	108
140	116	144		128	128	148
140	120	60		*	128	152
130	112	108	120		128	120
120	140	140	100	00	80	160
132	132	112	00	88	92	144
175	150		00	.92	140	152
	148		12	108	120	136
152	60	140	112	100	120	1/2
156	112	160	110	110 .	112	160
180	148	140	80	108	140	120
132	128	120	120	64	T 50	152
148	128	124	100	96		1)2
168	128	152	112	88		
144	120	132	80	96	80	
160	120	132	112	104	152	
152	120	140	80	108	120	
152	136	140	128	100	168	
160	128	140		76	168	
152	140	136		84	152	
140	144	148		80	120	
140	108	120	112	92	148	
120		116	136	112	168	
132		116	108		160	
140		136	100		152	
116		128	94		152	
116-2		120	72			
108		120	00			
112		110	00			
		128	-20			
		110	88			
		104	00			
		150				

Table 10. Cell length measurements in filaments developed from zoospores in soil extract solution.

Table II.	The variation in cell length in filaments of a clone grown under controlled conditions of light and temperature.

4

*

100µ	80µ	80 µ	96µ	80 u	1121
136	112	112	136	112	120
148	152	128	136	136	128
132	128	132	152	120	144
140	104	112	160	152	120
100	108	128	122	160	100
122	120	126	120	172	100-4
124	124	124	120	176	T00=4
120	152-5	140	112	128-2	
132			120	124	92
132	100	100	84-3	124	136
132	80	80		124	152
	160	136	0.	144	140
100	180	132	122	112-3	136
160	100	152	106	120	172
200	184	116	200	124	152
148	184	128	200		136
176	160	136	196		96
176	172	128	192	100	
168	172	152-1	196	112	
176	168		160	156	100
168	120	~		160	144
176	128	96	00	180	164
100	110	140	128	120	164
172	140-3	168	172	128	168
184	132	180	152	140	164
108	160-1	160	152	- 10	120
160		136	172		120
132		120	136	80	128
112	88	96	160	120	144
140	132	128	160	172	128
144	160	112-5		160	104-1
	124			180	
	128			140	
	120			168	
	120			160	
	128				
	140-3				

Table 12. Cell length and cell number in filaments grown in normal daylight and under continuous light from a 40 watt lamp. August8 th. until October 18th.

Daylig	ht			Contin	nuous li	ght
80 u 128 144 140 116 124 140 136 160 156 92 84 120 124 124 124 124 126 136 140 126 136	104μ 132 144 140 140 136 160 144 152 144 140 144 160-5 120 128 148 120 128 148 120 144 104 104 100	cont. 80 108 108 108 124 128 116 140 132 128	•	108µ 148 140 160 112 116 140 156 100 140 160 140 128 92 136 160 152 112 120	88 µ 180 156 108 180 152 152 140 144 112 160 156 100 128 140 128 140 128 144 136 128 148	112 µ 128 120-2 100 96 108 108-3
160 172 80 100 116 120 108 124 120 100 120 132 160-3 136 100 120 140 160 140 160	148 160 Loo 120 100 96 160 112 116 152-2 124 100 80 152 100 152 100 120 180 100 112 120 88			140 160 116 132 100 124 120 132 96 80 140 152 152 152	148 100 80 112 132 116 140 120 140 140 152 140 148	

Table.14. Cell length measurements in filaments grown in culture in soil extract solution and in solutions of yeast extract(100mgs.per litre) and in thiamine (0.1mgs.per litre) for 14 and 20 days.

AIter 14 days.		AIter 20 days.					
Soil Yeast Th	<u>iamin</u> e	Soil extract	Yeast extr.	<u>Thiamin</u> e			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 88 \\ 80 \\ 68 \\ 100 \\ 60 \\ 52 \\ 88 \\ 64 \\ 112 \\ 72 \\ 60 \\ 44 \\ 100 \\ 60 \\ 92 \\ 80 \\ 100 \\ 72 \\ 48 \\ 44 \\ 48 \\ 60 \\ 926 \\ 72 \\ 96 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100 H 96 76 76 104 968 8564 584 584 584 584 584 584 584 584 584 58			

Table 17. Cell length and cap grouping in filaments taken from the pond and grown for three months in soil extract solution and 0.3 gms. per litre naphthalene-acetic acid.

Soil extract.

naphthalene-acetic acid.

168 192 200 192 208 192 192 160-2 184 168 144 156 168 172 168 128 108 128 120-3 128 120-5 136 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 120 128 128 128 128 128 128 128 128 128 128	$ \begin{array}{c} 120\\ 120\\ 96\\ 104\\ 80\\ 104\\ 80\\ 102\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80\\ 80$	120-2 112 104 104 104 104 104 108 72 112 108 88 172 188 176 192 188 200 180 180 160 196 144 164-2 132 132 80 88 92 169 160 136 80 88 92 160 136 80 88 92 160 160 196 148 152-2 128 132 132 132 160 160 196 144 152-2 132 132 160 160 196 144 152-5 160 136 80 88 92 160 160 196 148 152-5 160 136 80 88 92 160 160 196 144 152-5 160 136 80 88 92 160 160 196 148 152-5 160 136 80 88 92 160 160 196 148 152-5 160 136 80 88 92 160 160 160 196 148 152-5 160 136 80 88 92 160 136 80 88 92 160 136 80 88 92 160 136 80 80 80 80 80 80 80 80 80 80	90 136-5 144 108 104 128 116-2 152 140 116 80 100	100 184 184-2 192 184 180 176-2 176 188 152-2 132-2 136 104-2 124 144 132-3 132 140 144 10	$132 \\ 124-2 \\ 136-4 \\ 144 \\ 160 \\ 128 \\ 140 \\ 100 \\ $	168 204 208 180 192 192 232 232 232 232 232 232 232 232 232 2	112-6 160 80 108 108 120 108 120 108 120 124 104 96 $12-2$ $140-6$ 92 112 108 120 124 128 120 112 124 104 $112-2$ $140-6$ 92 112	100 96 120 112 116 120 124 128 128 132 136 120 92 100-3 112 112-6 136 128 124 140 100 124 88 120 200 188-919 152 152 152 152 152
---	--	--	--	--	--	--	--	--

Table 18. Distribution of cell length and cap grouping in filaments grown for three months in varying concentrations of indole-3-acetic acid. (gms. /L). Basal cell omitted.

0.00

30 u	12010	0.0125	0.00625	control.
120	150	120 µ	120 µ cont.	100 H cont
140	128	176	152 120-5	128 108
112	108	120	140 108	140 06
140	06	112	124 96	108 104
120	96	.92	96 100	100 104
92	112-2	100	80 104	80 120
88	100	112	80 100	100 128
104	112	108	• 96 104	124
100	140-2	104	76 104	92
120+2	100	100	100 92	96
84	140	112	80 116	96
100	136	100	80 88	136-4
128-5	150	140-9	100-4 104	124
128	136	00	92 100-6	<u>30</u>
80	128	10	100	120
100	150	110	100	100
112	140	112	20-2	80
120	140	132 .	00	120-3
100	168-2	104	92	136
120	100-3	116-3	100-3	128
128		110	920 .	92
120	84	120	00	120
80	122	124	00	80
128-7	136	100	00	116-2
84	104	100	115	128
188	100	100		112
-92	88	150	3.00	
112	104		100	
	96	88	120	92
104	112	164	100	120
136	120	80	1 20	132
136	128.	60	120	92
72	136	80	120	116
108	124	92	104	80
128	132	100	100	132
136	112	120-3	100	140
124	140	44	96	124
116	100-2	96	112	104
120	140	108	120-4	136
108	140	112-2	100	112
182	128	88	112	96-2
-84	60	108	100	80
100	1 20	124-3	100	84
108	124	4.4	90	100
100	140.	72	90	120
84	136-2	80	112	104
100 8	200 0	104	100	128-4
112-0		108		
132		112		
120		120-5		

•

1

Table 19. Distribution of cell length and cap grouping in filaments grown for three months in varying concentrations of naphthalene-acetic acid.(gms./L.) Basal cell omitted.

0.4 112 A 140 140 132 124 120 120 120 120 144 148-5	9.2 88 µ 140 116 112 108 112-2 120 104 136-5	$\begin{array}{c} \underline{0.1} \\ \underline{112} \mu \\ 160 \\ 104 \\ 148 \\ 124 \\ 120 \\ 124-3 \\ 120 \\ 84 \\ 124 \\ 126 \\ 124-2 \\ 108 \\ 104 \\ 92-2 \\ 100 \\ 120 \\ 80-3 \end{array}$	0.025 120 A 100 150 120 116 92 104 112-5 120 92	0.0125 100 A 128 120 124 128 112 84 92 100 80	0.00625 96 JU 144 144 140 80-2 128 112 104 104-3 116	control 1084 108 124 120 116 120 116 128 112
112 160 160 44 120 200 112 120 112 72	120 112 108 112 72 100 96-2 100 100 120 136-4 100 124-4	112 88 100 100 104 100-2 120-5 100 120 128-4 120 120 112 120 112 112-2 108 96 108 112 116 112 116 140 120 128	72 92 96 136 112 104 108 100 108-4 92 112 112 112 112	100 136-7 120 112 100 104-3 124 76 140 120 96 116-5 1088	108 96 100 104 112-6 120 104 120 108 104 116 128-3 112	128 106 120 128 116 112-2 128 136 128 120 80 88
136 116 96 72 112-3 116 96-2	100 128 72 112 120 120-3 108-2 120 104 100 108 100 116 108	$\begin{array}{c} 108\\ 96\\ 100\\ 144\\ 128\\ 136\\ 152\\ 132\\ 128-3\\ 128\\ 124\\ 112\\ 84\\ 108\\ 132\\ 108\\ 132\\ 108\\ 132\\ 108\\ 132\\ 108\\ 124\\ 124\\ 120\\ 128-4\\ 108\\ 128\\ 124\\ 124\\ 122\\ 124\\ 86-2\\ 120\\ 112\\ 136-3\\ 108-2\\ 144\\ 72\\ 120\\ 116\\ 128\\ 120\\ 128-2\\ 128\\ 136\\ 120\\ 132\\ 132\\ 132\\ 132\\ 132\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108\\ 108$	120 112 128 124 120 124 120-3 108 120 88-2 92 92 92 92 92 100-3 120 122 104 112-3 108 104 120 128 120 128 120 128 120 128 120 120 124 120-3 120 120 120 120 120 120 120 120	2 5 2 5 4 3 11111111111111111111111111111111111	120 104 120 107 120 109 109 109 109 109 109 109 109 109 10	88 72 76 72 72 72 72 72 72 72 72 72 72 72 72 72

20

Table 21. The percentage number of cells occurring in each size group of 20 AL in varying concentrations of indole-3-acetic acid. (gms. per litre.)

	Control	0.05.	0.025.	0.0125.	0.00625.
- 20ju	1.8	-	-	-	-
24+ 40	-	-		-	-
44- 60		1.5	.6	3.1	2.6
64- 80	5.1	11.3	1.4	11.5	12.4
84-100	24.7	37.8	17.7	30.4	43.5
104-120	45.3	34.0	32.0	31,5	34.8
124-140	23.0	12.1	40.0	13.0	4.7
144-160	4.5	3.4	6.8	7.0	14.6
164-180	- 4	-	1.4	2.3	-
184-200	-	-	-	-	-
204-220	-	-	1.4.1	-	-
220-240	-	-	-	-	-

Table 22. The percentage number of cells occurring in each size group of 20p in varying concentrations of naphthalene-acetic acid. (gms. per litre.)

	Control	0.4	0.2	0.1	0.05	0.025	0.0125	0.00625
- 20)	u -	-	-	-	-	-	-	-
24+ 40	-	-	-	-	-	-	-	÷.
44- 60	0.9	1.14	1.4	0.6	1.22	0.6	7.9	7.45
64- 80	19.0	6.9	1.4	2.4	5.7	4.6	29.9	30.7
84-100	17.2	16.0	14.4	11.2	21.6	23.0	47.8	47.3
104-120	51.5	33.0	42.5	57.5	44.0	49.6	19.5	9.1
124-140	11.7	22.7	33.9	23.7	23.1	20.7	3.5	5.4
144-160	-	10.2	6.5	4.8	4.5	1.7	-	-
164-180	-	3.4	-	-	-4	-	-	1.40
184-200	-	1.1	-	+	-	-	-	-
204-220	-	-	4	-	-	-	-	4
224-240	-	-	+	4	-		-	i de la composición de la comp