
Securing the Sage Notebook

Yoav Aner

Technical Report
RHUL–MA–2010–04

31st March 2010

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Royal Holloway, University of London
MSc Information Security

Securing the Sage Notebook

Yoav Aner

Student Number: 100628630
Supervisor: Dr Carlos Cid

Co-Supervisor: Martin Albrecht

Submitted as part of the requirements for the award of the MSc in
Information Security at Royal Holloway, University of London.

I declare that this assignment is all my own work and that I have acknowl-
edged all quotations from the published or unpublished works of other people.
I declare that I have also read the statements on plagiarism in Section 1 of
the Regulations Governing Examination and Assessment Offences and in ac-
cordance with it I submit this project report as my own work.

Signature:

Date:

September 1, 2009

Acknowledgements

Thanks firstly to my parents, who keep encouraging me to further my education
and convinced me to sign up to this MSc.

Claire, who had to sacrifice most of her social life in the last few months. Your
patience means much to me.

Dr Carlos Cid for helping structuring the analysis methodology and support
throughout the project. Your advice, knowledge and guidance made the project
work so much easier and more enjoyable.

Martin Albrecht for proposing the project and supporting it every step of the
way, explaining the software architecture, helping with the threat analysis and
introducing me to key people on the Sage project.

William Stein and so many others on the Sage community, who have been
friendly, helpful and inspiring in their dedication and knowledge.

Raquel Caparrós and the organisers of Sage Days 16 in Barcelona for their
hospitality.

Contents

Executive Summary 1

1 Introduction 2

1.1 Sage Notebook . 4

2 Threat Modelling Methodology 6

2.1 Why Threat Model? . 6

2.2 Threat Modelling Approach . 8

2.3 Threat Modelling Process . 9

2.3.1 Application Analysis / Diagraming 10

2.3.2 Threat enumeration . 10

2.3.3 Threat rating . 13

2.3.4 Mitigation options . 14

2.4 Threat Model Analysis . 16

2.5 Caveats and Limitations . 16

3 Development Process Threat Model 19

3.1 Threat Model Information . 19

3.2 Data Flow Diagrams . 20

3.2.1 Sage Open Source Development Process 20

3.3 Threats and Mitigations . 21

3.3.1 Elements . 21

3.3.2 Add/Change Code . 21

3.3.3 Load . 22

3.3.4 Retrieve Code for Installation 23

3.3.5 Update . 23

3.3.6 Use . 24

3.3.7 Code Base . 24

3.3.8 Contributors . 25

i

3.3.9 System Owners . 25

3.3.10 Users . 25

3.3.11 Sage . 25

3.3.12 Development Process . 27

3.4 External Dependencies . 28

3.5 Implementation Assumptions . 28

3.6 External Security Notes . 29

4 Sage Notebook Threat Model 30

4.1 Threat Model Information . 30

4.2 Data Flow Diagrams . 32

4.2.1 Sage Notebook . 32

4.3 Threats and Mitigations . 33

4.3.1 Elements . 33

4.3.2 Data Store/Retrieve . 33

4.3.3 External Req/Res . 34

4.3.4 Notebook Req/Res . 34

4.3.5 Process Req/Res . 35

4.3.6 Processing Data . 35

4.3.7 Publish . 37

4.3.8 Register . 37

4.3.9 Send Worksheet . 39

4.3.10 Notebook Data Store . 39

4.3.11 Any External Entity . 41

4.3.12 Registered User A . 42

4.3.13 Registered User B . 43

4.3.14 Unregistered User . 44

4.3.15 Sage Notebook . 44

4.3.16 Sage Processors . 49

4.4 External Dependencies . 53

4.5 Implementation Assumptions . 53

4.6 External Security Notes . 54

5 Sage Threat Model Analyses 55

5.1 Overview . 55

5.2 Development Process Threat Model Analysis 55

5.3 Sage Notebook Threat Model Analysis 56

5.4 Untrusted Code . 57

ii

5.4.1 Operating System Protection 58

5.4.2 Security Add-ons . 59

5.4.3 Network Isolation . 60

5.4.4 Virtualisation . 61

6 Conclusion 63

iii

Executive Summary

This paper looks at some of the information security challenges of Web based
Open Source applications through a case study of the Sage Notebook applica-
tion.

Considering the core underlying issues of open source and web based applica-
tions, predominately the fact that the source code of the application is exposed
to any potential attacker, the paper investigates methodologies to examine and
improve upon the security of such applications.

The Sage Notebook application provides some unique information security chal-
lenges, both in terms of analysis and mitigation. The paper uses a structured
threat modelling process based on industry methodologies to identify threats
and vulnerabilities to both the Sage open source development process and the
application itself. It rates the discovered threats and suggests several mitigation
options to consider.

The paper analyses the findings, focusing on several architectural and design
mitigation options, and investigates some of the technologies and tools to ad-
dress the discovered threats and vulnerabilities most effectively. It covers generic
open source and web based security challenges as well as issues affecting cloud
computing, software as a service, virtualisation, process isolation and contain-
ments and others.

1

Chapter 1

Introduction

“Open source is a development method for software that harnesses the power
of distributed peer review and transparency of process. The promise of open
source is better quality, higher reliability, more flexibility, lower cost, and an
end to predatory vendor lock-in” [43]
The Free Software Foundation (FSF) further defines Free Software as: “... a
matter of the users’ freedom to run, copy, distribute, study, change and im-
prove the software.”, and specifically in relation to Open Source Software “The
freedom to improve the program, and release your improvements (and modi-
fied versions in general) to the public, so that the whole community benefits
(freedom 3). Access to the source code is a precondition for this.” [25]

Whilst there are a number of open source applications specifically delivering se-
curity functionality (e.g. GPG [27], Truecrypt [102], IPTables [67], OpenSSH [69];
The author of [40] dedicated an entire book covering over 40 of the leading open
source security tools in detail), many open source applications are not necessarily
focused on security. With the source code readily available and with the freedom
to improve and modify it there is a great potential for security improvements
and robust security, but such potential is not guaranteed. Kerckoff’s princi-
ple [50] states that the security of a cryptographic system should not rely on
secrecy of the algorithm, but rather on the key. Similar arguments [83] [110] [37]
are made on the merits of open source software and its potential for improved
security. However, open source software also provides opportunity for attackers,
not only to detect and misuse software vulnerabilities, but also to directly affect
the code, add insecure code, and more easily distribute tainted versions of the
software.

The opportunity for security improvement does not necessarily translate or lead
to better security in practice. What seems to be agreed by most Information
Security leading experts however, is that hiding the source code of an application
does not guarantee better security. Whitfield Diffie summarised it as “A secret
that cannot be readily changed should be regarded as a vulnerability” adding
further that “If you depend on a secret for your security, what do you do when
the secret is discovered? If it is easy to change, like a cryptographic key, you do
so. If it’s hard to change, like a cryptographic system or an operating system,
you’re stuck. You will be vulnerable until you invest the time and money to

2

design another system.” [17].

Web based applications appear to increase in popularity and gain more accep-
tance and support every day. The relative simplicity and uniformity of web
browsers and the ability to reach users from across the globe using the Internet,
a single, standardised and robust infrastructure, means that web applications
provide a cost effective and efficient way of providing service. Users can nowa-
days access a wide range of applications and services online. From email and
social networking applications like Hotmail, Facebook and Twitter, through web
based banking, to purchasing groceries, travel tickets, sharing photos online and
much more. Many software services are increasingly provided over the Internet,
and are not simply browser based applications, but available as an online ser-
vice. Further enhancements such as AJAX (Asynchronous Javascript + XML)
technologies provide much improved user experience and usability approaching
those of more traditional desktop applications [31] [74]. Such a delivery model
provides many benefits, but also opens up opportunities for misuse. Bounderies
and physical locations no longer play a part, notions of trust change, definitions
of inside or outside lose their meanings. Web applications and browsers are an
increased target for attacks and there is a continuous growth in Web application
vulnerabilities [42].

Open Source and Web based applications, when combined, present some inter-
esting yet dawnting Information Security challenges. Opening up the source
code means risking exposing potentially harmful information about the inner
working of the application. Such information, in the wrong hands, can allow
attackers to abuse the system. Simultaneously, the aim of such applications is
to provide an online, always available service to (usually) as large a community
as possible. Balancing these two seemingly conflicting aims is difficult, even if
the underlying assumption that the application is developed with good secu-
rity practices and that no major vulnerabilities exist. Such conflicting aims can
collide even further if, for example, vulnerabilities are discovered, or when the
confidence in the security of the application is undermined. Particularly with
smaller open source projects, and those who lack dedicated or qualified resources
focusing on improving Information Security. John Viega, the original author of
Mailman [58] and an author of several Information Security books, states that
“...the benefits open source provides in terms of security are vastly overrated, be-
cause there isn’t as much high-quality auditing as people believe, and because
many security problems are much more difficult to find than people realize.
Open source programs which appeal to a limited audience are particularly at
risk, because of the smaller number of eyeballs looking at the code.”. [105]

Other than relying on open source developers to spot security vulnerabilities
and fix them, or worse, wait for attacks to take place and ’learn’ from the
experience, which options are available to open source projects? If an open
source project does decide to improve security, what is the most effective and
efficient route? Does it involve having teams of people trawl through the entire
code base in search for security vulnerabilities? Should the web application run
through automated or manual penetration testing? Should static code analysis
tools be used? Chapter 2 investigates and attempts to answer some of these
questions and presents one potential approach adopted and used on this paper.

3

1.1 Sage Notebook

Sage is an open source tool for studying and experimenting with mathematics,
including algebra, calculus, number theory, cryptography, numerical compu-
tation, commutative algebra, group theory, combinatorics, graph theory and
more [94]. Sage Notebook is a web based front-end to Sage, allowing users to
use Sage online, over the network and on-demand without necessarily installing
and running Sage locally. Users or groups can set up their own Sage installa-
tions and share work, collaborate or provide a service to others. Services range
from providing local installation for a small group of users, through campus
networks, and up to providing global free and anonymous service [93].

The free open source nature of Sage means anybody can use it, modify it and
provide services based on Sage to others. Sage is licensed under the GNU
General Public License (GNU GPL) [26], which does not prevent companies or
individuals selling Sage, nor does it stop companies or individuals from providing
a paid-for service based wholly or partly on it [28].

Sage uses and relies upon numerous other open source projects and tools as much
as possible [92]. This approach allows great flexibility in terms of modularity, re-
usability, extensibility and keeps the Sage code base smaller and more efficient.
However, it comes at a cost of reliance on third parties, a dependence that can
become risky from security perspective some times. If a third party component
contains a vulnerability or a flaw, Sage will also be vulnerable or suffer from
the same flaw. Even if a vulnerability is discovered by the Sage open source
community, it may be hard to fix. The Sage developers may be able to apply
a patch for a specific easy-to-fix issue. However, if the problem is harder and
require more detailed knowledge of the component, they have to rely on the
third party to provide a fix. Third parties may have different priorities when it
comes to applying fixes.

On first impression, the Sage Notebook can be viewed as not much different
from many other web applications or from a simple web front-end to a legacy
application. In essence, it operates using a very basic request-response model.
It receives a request for calculation (e.g. formula), processes it by passing it
to a backend ’engine’, and produces a response (e.g. a result, graph, equations
etc). However, the unique nature of the data being processed and the flexible
architecture creates security challenges. Sage is a mathematics application, and
as such, processes mathematical formulas or in some cases, application source
code or embedded system calls. The execution can be carried out on different
back-end systems, such as Singular [35] and GAP [29], as well as using direct
access to system calls via the Unix shell [7]. Chapter 4 and Chapter 5 explore
the security challenges created by using the variety of back-end systems in such
a way. Such a processing model is considered quite unique and dissimilar to
most other web based applications. Furthermore, unlike other web applications,
where the user-supplied data is relatively predictable and constrained, Sage
mathematic formulas and user code cannot easily conform to certain rules or
formats and it is therefore extremely difficult to distinguish between valid and
malicious user-supplied data. Input validation and sanitization is one of the
main security issues faced by web applications [82] [95] [103], and one of the
methods of dealing with untrusted input is using validation constraints and

4

transformation rules [84]. Due to the complex nature of user input in Sage,
such approach may not be viable, or at least not trivial to implement.

Another element of risk, much less unique to Sage and which applies to many
other open source applications, is the ability of adversaries to affect the prod-
uct itself. By actively contributing tainted or deliberately insecure code to the
code base, they not only rely on existing vulnerabilities in the applications, but
can also introduce new vulnerabilities into particular areas. If such contribu-
tions are accepted into the code base unnoticed, they are then included in all
subsequent versions (binary or code) versions of the application (at least until
they are detected, by which time the attackers may have already carried out
their plan). Chapter 3 uses the same methodology to explore such threats and
suggest mitigation options.

5

Chapter 2

Threat Modelling
Methodology

2.1 Why Threat Model?

Before describing the threat modelling process, it’s important to consider the
reason(s) for using threat modelling as a methodology of analysing the security
of an open source web application. Assuming the aim of the process is to
reduce the risks to an application’s Confidentiality, Integrity and Availability,
there might be other alternative approaches to solving the same ’problem’. i.e.
identifying threats, vulnerabilities and risks to an application, and finding the
best way(s) to reducing those to an acceptable level. Some possible directions
were mentioned briefly on Chapter 1 and are to be considered.

When an adversary chooses to attack an application, they might opt to use one
or more of these approaches, and it seems sensible to at least consider these tech-
niques or methods when trying to identify vulnerabilities and protect against the
most likely attacks. It’s important to remember, the attacker has many advan-
tages over those protecting the system. The authors of [38] describe 4 principles
showing the difficulties faced by attempting to protect an application against
attacks and the advantages adversaries are assumed to have. Similar attitude
is taken when considering the ability of an adversary against a cryptographic
system [66].

Some of the alternative security analysis and attack methods include:

• Code Auditing - involves going through source code of the application,
searching for security bugs and vulnerabilities in the code itself. With
an open source application, an attacker can easily perform the very same
task. The auditing process can be manual, automated or using a mixed
approach. For example, in C code an attacker can grep (search) for known
functions vulnerable to buffer overflow (e.g. strcpy) [38], then manually
investigate which call can most easily be manipulated.
Whilst Code Auditing can identify many bugs, it’s unclear whether it
is very cost effective. Code auditing is also limited to uncovering pro-

6

gramming flaws, and miss out on perhaps more important design and
architectural flaws. As described by John Viega, Code Auditing “is not
a very cost-effective way to find bugs, even when you’re paying for tools.
Not only is it expensive, but also the bugs you do find with code auditing
often won’t be the same ones the bad guys will find. As a result, even if
you’re finding lots of bugs, it’s tough to show the value of an audit be-
cause you might not have gotten the stuff that the bad guys will find most
easily” [106]

• Penetration Testing - utilises active attempts at ’breaking’ (or hacking
into) an application. This type of testing simulates a real attack on the
system, and therefore can be considered a prominent form of analysing
an application’s security - trying to emulate what the adversaries would
attempt and learn how to protect the system better from it. Open source
applications are easier to penetration test (than e.g. a proprietary sys-
tem installed in a location with limited access and strict monitoring),
since a copy of the application can easily be used in a lab environment.
Once the attack is ’perfected’, it can be launched on a real system. This
gives attackers another advantage of avoiding detection. However, pen-
etration testing has some fundamental limitations on all but the most
simple applications. Whilst penetration testing can prove the existence of
vulnerabilities, it fails to provide evidence of their absence. Even if the
penetration test results in no successful attacks, the system may still be
vulnerable to other attacks, which simply weren’t attempted. In addition,
penetration testing may achieve most if it is driven from an architecture
review or a threat modelling [38], but it may not be sufficient on its own or
as an alternative to threat modelling. “Penetration testing is also useful,
especially if an architectural risk analysis is specifically driving the tests.
The advantage of penetration testing is that it gives a good understand-
ing of fielded software architecture in its real environment. However, any
black-box penetration testing that doesn’t take the software architecture
into account probably won’t uncover anything deeply interesting about
software risk. Software that falls prey to canned black-box testing which
simplistic application security testing tools on the market today practice
is truly bad. This means that passing a cursory penetration test reveals
very little about your real security posture, but failing an easy canned
penetration test tells you that you’re in very deep trouble indeed.” [62]

• Static Analysis Tools - allow automatically inspecting source code for
known security issues, or use heuristics to detect unsafe functions and
libraries and therefore discover potential coding vulnerabilities. Static
Analysis Tools are similar to Code Auditing to the extent of concentrat-
ing on the actual source code, but uses gained knowledge and known
issues more effectively and focuses the attention on areas of the code more
likely to be vulnerable. “Techniques to detect and correct software flaws
include human code reviews, testing, and static analysis. Human code re-
views are time-consuming and expensive but can find conceptual problems
that are impossible to find automatically. However, even extraordinarily
thorough people are likely to overlook more mundane problems. Code
reviews depend on the expertise of the human reviewers, whereas auto-
mated techniques can benefit from expert knowledge codified in tools” [18].

7

There are many open source and commercial Static Analysis Tools, e.g.
RATS [86], Coverity [16], Yasca [85], Klocwork [52] covering different pro-
gramming languages and using different analysis methods. The authors
of [41] demonstrate an approach for static code analysis specifically for
web applications. However, Static Analysis Tools also have limitations,
particularly in identifying design and architecture issues and vulnerabili-
ties.

“Static analysis can’t solve all your security problems. For starters, static
analysis tools look for a fixed set of patterns, or rules, in the code. Al-
though more advanced tools allow new rules to be added over time, if a
rule hasn’t been written yet to find a particular problem, the tool will
never find that problem. When it comes to security, what you don’t know
is likely to hurt you, so beware of any tool that says something like, “zero
defects found, your program is now secure.” The appropriate output is,
“sorry, couldn’t find any more bugs.” ... Knowledgeable people still need
to get a program’s design right to avoid any flaws although static analysis
tools can find bugs in the nitty-gritty details, they can’t critique design.
Don’t expect any tool to tell you, “I see you’re implementing a funds
transfer application. You should tighten up the user password require-
ments.”” [13]

2.2 Threat Modelling Approach

ISO/IEC 27005:2008 states that “A threat has the potential to harm assets such
as information, processes and systems and therefore organizations.” [44].

Threat Modelling is defined as “a method of assessing and documenting the
security risks associated with an application. This methodology can help de-
velopment teams identify both the security strengths and weaknesses of the
system and can serve as a basis for investigating potential threats and testing
and investigating vulnerabilities.” [96].

Threat Modelling is primarily meant to be used in the design and develop-
ment phases of applications, rather than to analyse existing applications [38].
However, as this paper attempts to demonstrate, the same methodology can
be employed when trying to analyse an existing system. The threat modelling
approach, with slight modifications, can aid in the identification of security vul-
nerabilities for applications or systems which are already developed. Application
design and architectural threats and vulnerabilities can be identified using the
threat modelling approach, as well as assisting in focusing the investigation of
coding issues and implementation mistakes.

The differences between threat modelling new or existing applications as well
as the modifications to the ’traditional’ threat modelling methodology are rela-
tively minor. However, they are important to highlight clearly. When designing
a new application, it’s important to consider as many threats as possible, and
try to counter those threats using various means, based on the perceived risk
and the cost/benefit to mitigate. During the design and development phase,
it may be sensible to drop some functionality to mitigate a threat. For ex-
ample, if the functionality is not a ’must-have’ yet it exposes the application

8

to serious threats, it might be easier to drop it from the design. Cost will be
substantially lower. However, when the functionality is already developed and
used, it’s much harder to take it away, even if psychologically. Time and effort
were already put into implementing it, and it’s difficult to ’throw’ all this effort
away. On the other hand, even if the application was developed with no for-
mal threat modelling process, some threats may have already been mitigated.
For example, numerous applications implement authentication and authorisa-
tion (even if trivial), or using cryptographic tools to protect communication
links (e.g. using SSL). One of the bigger advantages of identifying threats early
on in the development process is the ability to prevent threats from becoming
vulnerabilities [39] [96]. Threats identified early on can be fixed before they
are implemented. Threats that are identified later on, once the application is
already implemented, are harder and more costly to mitigate (The authors of [6]
claim that the cost of fixing a software issue after implementation is often 100
times more expensive than during the design phase; Similar stance is taken
by [98], albeit with an estimated cost factor of 30). In addition, threats which
were not considered and mitigated (either formally or informally) as part of
the design and development process, are not only threats, they are most likely
vulnerabilities in the application.

The threat modelling process used on this paper is therefore likely to also iden-
tify vulnerabilities rather than just threats. In addition, some threats may have
been omitted if they were already known to be mitigated in the design or im-
plementation. For that reason, the terms threat and vulnerability may be used
interchangeably on some instances.

One further addition and modification to the threat modelling process used on
this paper is the mixed approach used to model the process and application.
Section 2.1 mentions some techniques which may be used by attackers. From
security analysis perspective (both an attacker’s and on this paper), having
an existing system provides some benefits to a completely ’hands-off’ threat
modelling approach. Some of these benefits are directly linked to the open
source nature of the application, allowing easy access to both the application
and its code. Part of the investigation process of threats therefore included
some level of practical experimentation with the application, reviewing code
segments, searching for keywords in code and to a limited extent, focused and
specific elements of penetration testing. Leveraging threat modelling for code
reviews and penetration testing is already documented in [39], [96]. However,
instead of using a linear process, where the threat model feeds into code review
and penetration testing, this paper used a more ’symbiotic’/’hybrid’ approach.
It is important to note however that due to limited timescales, and in order
to keep the attention focused, the process largely involved ’traditional’ threat
modelling and only a small contribution was made using those additional tech-
niques. Nevertheless, such contribution was noted in a number of threats and
vulnerabilities which might have not been easily identified otherwise.

2.3 Threat Modelling Process

The threat modelling process used on this paper is based predominately on the
one pioneered by Microsoft since 1999 [88]. The process itself evolved over the

9

years and is now incorporated into the Microsoft Secure Development Lifecycle
at the core of the Risk Analysis process [39].

Threat modelling incorporates 4 key stages:

1. Application Analysis / Diagraming

2. Threat enumeration

3. Threat rating

4. Mitigation options

The following sections describe each stage in more detail.

2.3.1 Application Analysis / Diagraming

Analysing the application from a flow of data perspective. All assets which make
up the application are catalogued, and then the relationships between them are
identified in terms of data exchange. Data Flow Diagrams (DFD) [56] [55] help
both visualise elements of the applications and the flow of data between them.
The Microsoft threat modelling further enhanced the ’classic’ DFD by adding
a ’trust boundary’ element [38]. Trust boundaries aid in analysing different
privilege and trust levels and better assess threats. Table 2.1 lists the various
types of elements on the diagram, their description/use and gives some examples
of typical elements of each type.

Other background information which is used in the analysis process includes:

• Use Scenarios - identify typical as well as atypical use (including unau-
thorised use scenarios). This allows better understanding of the applica-
tion and its components and makes sure no data flow diagram elements are
missing. Considering unauthorised use scenarios can give a direction and
flag potential threats even before going through more elaborate analysis.

• External dependencies - any 3rd party components, libraries, tools and
services which may affect the security of the application.

• Security Assumptions - assumptions relating to the security provided
by any 3rd party or relied-upon components.

• External Security Notes - notes which are made available to users of the
application about the security provided by default or which can or cannot
be configured. Notes can also include limitations, recommendations and
warnings.

2.3.2 Threat enumeration

Each element on the Data Flow Diagram is analysed against a list of poten-
tial threats depending on the element type. Threats are categorised based on
STRIDE taxonomy:

10

DFD Element
Type

Description Example Shape

Complex Pro-
cess (also called
multiprocess)

An entity which performs
many complex operations,
which can be broken down
further to other processes

An application compo-
nent, a web server/service

Double
circle

Process An entity which performs
a distinct task or a func-
tion. The distinction be-
tween complex and simple
process is arbitrary, and
depends on the level of de-
tail which needs to go into
the threat model and anal-
ysis

A web server/service, an
executable, library object

Circle

External Entity
(also called In-
teractor)

An entity which uses or
activates elements within
the application, outside
the control of the applica-
tion or process

Typically users, but also
asynchronous events, ex-
ternal processes or third
parties

Rectangle

Data Store Persistent data storage el-
ement

Typically files or
databases

Parallel
Lines

Data Flow A flow of data between di-
agram elements

Networking links, func-
tion calls, remote proce-
dure calls

Arrowed
line

Trust Boundary Mark where data flow tra-
verses between different
trust levels

Typically crosses between
external entities and the
application, but can also
be used within the appli-
cation, e.g. functionality
that resides in system or
user space

Red dot-
ted line

Table 2.1: DFD Element Types (based on [39])

11

• Spoofing - Masquerading, stealing or disguising one identity with an-
other. Spoofing does not solely apply to user identities and individuals.
Server spoofing can also take place, e.g. in Phishing attacks [46].

• Tampering - Altering, modifying, adding or retracting data. Tampering
includes any unauthorised or unintended modification and compromise of
data integrity. Tampering threats not only apply to to data, but also to
communication links and processes.

• Repudiation - Denying having performed an action, or covering tracks
after a malicious act or misuse.

• Information Disclosure - An attack on information confidentiality. Ob-
taining unauthorised access to information.

• Denial of Service - Compromising system or application availability.
Reducing or denying access to resources.

• Elevation of Privilege - Obtaining unauthorised elevated access to ser-
vices or resources. Elevation of Privilege attacks primarily aim at ob-
taining the highest level of access (Administrator, or root), but it is not
limited to it. Elevation from anonymous user to a registered one, from a
registered user to ’power’ user etc are also of concern.

STRIDE can be considered the flip side of the core information security goals:
Confidentiality, Integrity and Availability (CIA), Authentication, Authorisation
and Non-Repudiation. STRIDE enables focusing on the attackers perspective
and investigate which techniques can be used to breach the security of an ap-
plication or system. Some threat types are only applicable to certain objects.
For example, an external entity may be subject to spoofing threats, whereas the
notion of a data flow (communication link) being ’spoofed’ doesn’t make logi-
cal sense. Table 2.2 shows each DFD element and its corresponding potential
threats. Each element is listed against STRIDE threats, and a checkmark is
used to indicate whether or not the threat applies to the data element. On the
intersection of Data Store and Repudiation there’s a dagger symbol (†). It is
there to illustrate that repudiation threats apply to a data store if it is used to
store audit records / log trail. Repudiation can take place if the data is linked
to actions by individuals, and (unauthorised) modification of the data can cover
the tracks for misuse or allow the individual to deny having performed certain
actions.

When threats are analysed, a consideration is given whether or not a control is
in place to partially or fully mitigate the threat. When the analysis is carried
out on a new application, controls may or may not be part of the design. At
this stage, the threat modelling process should avoid trying to ’fix’ the design
when weaknesses are identified or controls are highlighted as missing [101]. Any
such fixes may apply later on, once the process is complete. When analysing
an existing system this process is slightly different. Controls are either already
implemented or they are missing. It may be useful to enumerate all threats,
including those which are addressed/mitigated by existing controls. However,
in some cases, fully mitigated threats are not listed in order to keep the analysis
brief and flag only realistic threats and actual vulnerabilities (i.e. lack of control)
that need to be considered and potentially addressed.

12

DFD Element
Type

Spoofing Tampering Repudiation Information
Disclosure

Denial of
Service

Elevation of
Privileges

External Entity X X
Data Flow X X X
Data Store X † X X
Process X X X X X X

Table 2.2: Mapping of STRIDE to DFD Elements (Source: [39])

2.3.3 Threat rating

Rating threats is essential to determining the most cost effective approach for
remediation and mitigation. It helps to ensure the necessary resources, time
and attention are given to the more critical threats. The most effective threat
rating is therefore a scaling based on risk. The higher the risk to the application
caused by the threat, the higher the priority or rating of the threat. There are
different risk rating or estimation methods, including various qualitative and
quantitative techniques. Even though the threat modelling process is, as its
name suggests, looking at threats, the process is in fact equivalent to risk rating
as described in [44]. When rating a threat, the following aspects have to be
considered:

• Application assets (e.g. components, data flows) - described on the
Data Flow Diagram, as covered in section 2.3.1.

• Threats to assets (e.g. spoofing, tampering) - threats are identified and
enumerated, as described on section 2.3.2.

• Identification of existing controls - when analysing an existing ap-
plication, as is the case on this paper, some controls would already exist.
However, even with an application not yet implemented, some controls
may have already been designed. Also covered in section 2.3.2

• Identification of vulnerabilities - Vulnerabilities may exist at the ar-
chitecture level even before the application is implemented. Existing im-
plementation vulnerabilities are also considered as part of section 2.3.2.
See section 2.2 for more information about identification of vulnerabilities.

• Identification of consequences - The impact of a threat ’materialising’
by exploiting a vulnerability to an asset.

Therefore, when determining the risk levels for each of the enumerated threats
and establishing a rating of threats, all those considerations are analysed to-
gether with the estimated likelihood/probability of the consequences taking
place.

One of the risk rating approaches recommended and used historically in the
Threat modelling process is DREAD [96] [88]:

• Damage Potential - The maximum potential impact to the asset.

• Reproducibility - How often an attack attempt is likely to succeed.

• Exploitability - How easy or hard it is to exploit the vulnerability, in-
cluding necessary pre-conditions.

13

• Affected Users - The percentage of application users affected by an
exploit.

• Discoverability - How easy or difficult it is to discover the vulnerability.

However, the authors of [39] maintain that this process is highly subjective and
explain the difficulty in keeping consistent rating.

In the context of this paper, the DREAD approach was chosen to only be used
implicitly. When considering the DREAD elements in the context of threat
modelling an open source project, the following observations can be made:

1. Discoverability is high for all threats. Sage is an open source system
and as such it is safer to assume threats can easily be discovered. In
addition, the results of this paper are published and shared with the Sage
development community, and such sharing is in fact encouraged.

2. Reproducibility and Exploitability are closely linked and difficult to
assess independently. They represent the likelihood/probability of the
threat materialising.

3. Damage Potential and Affected Users are also linked. They both
represent the impact to assets.

Therefore, whilst the Threat rating analysis would consider DREAD elements,
it does not attempt to map or rate each element separately, but rather amalga-
mate the elements into an assessment of risk rating as a product of impact and
probability.

The rating chosen for this paper is a simple categorisation into High, Medium
and Low. Rating is not arbitrary and is subject to discussion. The threats
as well as their ratings are put forward to the Sage open source development
community to comment on. All feedback is considered as part of the process, and
as a result, the ’many eyeballs’ benefit of Open Source projects can come into
play when performing threat modelling. It’s also important to highlight that
the rating is not absolute, but is in many cases environment and deployment
dependent. For example, in one deployment, Information Disclosure threats may
be rated much higher than in another, where more concern may be placed on
Denial of Service. The rating on this paper attempts to look at the sagenb.org
deployment as a reference, but it is by no means limited to this particular
instance.

2.3.4 Mitigation options

Threat mitigation is provided to reduce the risk associated with threats to an
acceptable level. Mitigation is subject to cost/benefit analysis and considera-
tion into the best ways to address particular threats or vulnerabilities. Threat
mitigation of already developed applications is more constrained than with ap-
plications still in the design process (as already discussed in section 2.2), pri-
marily because mitigation tends to be more complex and costly and the pressure
to fix vulnerabilities might be higher. In such circumstances, a quick-fix or a
patch may be preferable to resolve the problem in the most economical way.

14

Such solution may be appropriate or acceptable, but it may not be the most
robust and long term option (which may have been implemented if the threat
was identified earlier).

There are several types of mitigation options available:

• Removing functionality - Such approach may be relatively simple to
implement, but it means delivering less functionality to users. This option
may only be available if the functionality is seldom used and there is no
dependence on it (either by software components, third parties or users).

• Patching - patching involves adding or modifying existing code to close
a gap or fix a problem. Patches are used by software vendors to resolve
security issues identified in their products after release. Vendors attempt
to release patches as soon as possible after a vulnerability is discovered
and try to reduce the window of vulnerability [48]. Patches are a fairly
effective fix for problems, bugs and security vulnerabilities that can be pin-
pointed to a limited area of code or functionality. However, design flaws
and vulnerabilities are much harder to fix using a patch. For example, if
no authorisation system was designed, it often can’t simply be patched.
A whole subsystem may be required.

• Adding controls - additional or compensating controls can be added to
the application in some cases. For example, placing an external Firewall or
an Intrusion Prevention System in front of a server may provide sufficient
mitigation for some network related threats. Such approach may have the
advantage of little or limited modification to the application code itself,
and can therefore be relatively easier to implement. However, adding
controls might not be sufficient to address certain threats. Threats which
are inherent to the application design and architecture may be impossible
to fix with such an approach, as those threats are at the core of the
application. For example, authentication issues may not be fixed by a
completely independent additional control.

• Re-Designing - Re-Designing an application should provide the most
comprehensive mitigation alternative. Re-design can range from being
limited to a subset of functionality, to a complete overhaul and re-design of
the entire application. Re-design enjoys the benefits of applying fixes early
and having the benefits of early threat modelling. Obviously, this is the
most ’extreme’ option, and as such is usually cost/time prohibitive. Re-
design is usually considered ’the last resort’. However, in some cases, re-
designing a subset of the application can in the long run be more beneficial
than solving it using patches and external controls. Re-factoring (and
to a more limited extent throwing away and starting from scratch) is
necessary and considered ’healthy’ within the software community [22].
Similar arguments can be made for the benefits of re-factoring and re-
designing for threat mitigation.

• Accepting - Some threats may be acceptable to the application, or in
certain deployments. If the cost/benefit ratio of applying a fix is above a
certain threshold, a decision can be made to leave the threat unmitigated
or accepted. In such cases, the external security notes (see section 2.3.1)

15

should be updated to make sure users are aware of such threats when
using the application.

On this paper, an attempt was made to suggest at least one, but preferably
several mitigation options for the threats and vulnerabilities identified as part of
the modelling process. The alternative suggestions tried to consider the amount
of effort required to implement versus the potential benefit from implementing
the mitigation. However, the final decision as to the most appropriate mitigation
option, if any, is left to the Sage project to consider. Such decision is based on
a cost/benefit analysis that depends on many circumstances mostly outside the
scope of this paper. For example, one environment which already has certain
infrastructure in place may consider one option relatively cheap and easy to
implement, whilst in a different environment such infrastructure would be costly
to acquire. Similar arguments were mentioned on section 2.3.3.

Furthermore, some mitigation options may have other security, performance or
other indirect impact. For example, implementing SSL may be highly desirable,
but might potentially introduce some performance bottlenecks and increase the
chances of Denial of Service. Attackers can abuse the SSL handshake mecha-
nism, which is relatively ’costly’ in terms of processing on the server [9]. Other
examples include a typical trade-off when designing lock-out periods for authen-
tication failures. With longer lock-out period and fewer failed attempts accept-
able, the chances of a successful brute-force or dictionary attacks are reduced,
but at the cost of potential denial of service, by locking out multiple accounts
on the system. The implications and other potential indirect impacts need to
be further considered by the Sage project before implementing a mitigation.

2.4 Threat Model Analysis

The process described on section 2.3 is highly structured and therefore fairly
rigid. It goes through each and every element and lists potential threats and
mitigations. As such, the output from the threat modelling process makes
it difficult to ’see the wood for the trees’. The threat models in chapters 3
and 4 highlight a number of threats and vulnerabilities, and suggest numerous
mitigation options. However, going through each element, and a list of threats
for the elements can become difficult to digest. Chapter 5 attempts to provide
further analysis and interpretation of the information on the threat models in a
more ’digestable’ form. The analysis tries to distill the key findings and provide
more detailed information and further insight into the most crucial threats,
vulnerabilities and mitigation options. It also attempts to identify themes and
threads going through more than one threat and applying to several elements.
Such themes are harder to identify when viewing each threat independently.

2.5 Caveats and Limitations

As robust, thorough, accurate or methodical as any process can be, there are
always limitations, issues and caveats to consider and be aware of. It is impor-
tant to understand the limitations and caveats of the threat modelling process

16

in order to get the right value out of it, and particularly so to avoid a false
sense of security. Any process that attempts to map or identify weaknesses,
deficiencies or vulnerabilities is particularly prone to such conditions. A failure
to identify an issue of such nature may lead to the conclusion that the issue
does not exist, or does not need addressing. However, the lack of identification
of a problem, does not make the problem go away. In the context of threat
modelling, a failure to identify a threat, vulnerability or a problem might mean
the problem does not get addressed, whereas the threat or issue does in fact
exist. In an ideal situation, the output of the threat modelling process is acted
on fully, all threats are mitigated to an acceptable level and no threats remain
unaccounted for. However, what if the threat model itself failed to identify a
deficiency or a threat? The threat can then go unmitigated. If (or once) the
unidentified threat materialises, the system can be compromised. This concern
over unidentified or unaccounted for threats is much greater considering the
changes in technology, attacker’s abilities and motivation. Systems are rarely
static, and the environment keeps changing. As new threats emerge and attacks
get better, the threat model may become obsolete in a relatively short period
of time. Considering and realising there may be unknown threats, and under-
standing that the threat model is neither permanent, nor gap-free is therefore
highly important.

A typical threat model may have difficulty covering or giving assurances in the
following areas:

• Secure coding practices - a threat model is unlikely to discover specific
insecure coding issues which a security code review, audit or static analysis
tools may help identify.

• Vulnerabilities - Threats identified may be exploited if a vulnerability
exists, but the threat model does not prove existence of vulnerabilities nor
their exploitability. A penetration test may give better indication of such
conditions.

• Dependencies - A part of the threat modelling process identifies external
dependencies (see section 2.3.1). Other dependencies and assumptions
may not be explicitly covered, but are still made. In such circumstances,
threats or vulnerabilities to any of those external factors might not be
fully considered as part of the modelling process.

• Future threats and patterns - exploits and attacks evolve and change
constantly. Attackers change their patterns or interest and new techniques
gain focus or ’go out of fashion’. For example, Integer overflow vulnera-
bilities climbed to number 2 for operating system advisories in 2007, after
barely included in the top 10 list in the previous few years [14]. As such,
not only do new threats and exploit techniques emerge, existing threats
may change their profile and rating over time.

• Human elements - Some human elements are covered by a typical threat
model. For example, spoofing of an external entity or a process takes into
account potential to tricking humans to place trust where they should
not. However, some human elements are not fully addressed by the threat

17

model. Social engineering attacks are not impossible to identify, but more
difficult to capture using the threat model than more direct threats.

• Broader risks - Other aspects, such as those pertaining to organisational
risks, operational risks, change management, documentation and knowl-
edge sharing, environmental risks, disaster recovery and business continu-
ity are also not easy to identify and address using the threat modelling
methodology. Threat modelling tends to be application / system / process
centric and it is therefore not particularly suitable to address wider areas
of information security risks.

18

Chapter 3

Development Process
Threat Model

3.1 Threat Model Information

This threat model tries to capture threats to the Sage open source development
and contribution processes. The threat model is focused on the development
process, code changes / contributions, and distribution of code and packages.
The sage development process is not radically different from many other open
source applications or systems, or even not purely open source ones. However,
the model captures at a high level the data flows and some of the technology
and manual processes that apply to Sage.

The Sage development process is fairly robust, and a great degree of care and
consideration has already been put into it. Every bit of code must get reviewed
and ’earn’ its way into the codebase. The primary concern is to avoid buggy,
incorrect or even not fully tested and documented code from entering into the
product. The standards set and followed by the community seem to be fairly
high, and the review process in most cases is thorough.

However, the threat model shows there are still ways of bypassing at least some
aspects of the review process (e.g. faking positive reviews, modifying code or
Trac records after review etc). How feasible or likely these threats to become
attacks depends on the level of sophistication, effort and determination of a
potential attacker, as well as the existence or absence of vulnerabilities in some
of the underlying processes and / or technology. The base assumption is that
there is still fairly low motivation to sabotage Sage in such a way. As such, most
of these threats are considered low risk.

The threat model does not cover an element which perhaps could be considered
as an ’anti-threat’, i.e. the fact that Sage is an open source, means that contrib-
utors can identify security vulnerabilities in the code, and contribute changes
or new code to reduce or remove those vulnerabilities.

19

3.2 Data Flow Diagrams

3.2.1 Sage Open Source Development Process

Figure 3.1: Open Source Development Process Data Flow Diagram

20

Figure 3.2: Legend

3.3 Threats and Mitigations

3.3.1 Elements

ID Type Name
38 DataFlow Add/Change Code
40 DataFlow Load
42 DataFlow Retrieve Code for Installation
39 DataFlow Update
36 DataFlow (Out of Scope) Use
37 DataStore Code Base
33.3 Interactor Contributors
33.14 Interactor (Out of Scope) System Owners
33 Interactor (Out of Scope) Users
32 MultiProcess Sage
34 Process Development Process
35 TrustBoundary Trust Boundary

3.3.2 Add/Change Code [DataFlow 38: Contributors →
Development Process]

Threat
ID 48
Type Tampering
Risk Rating Low
Description Code submitted might contain deliberate or accidental se-

curity vulnerabilities.
Mitigation Code is being reviewed and validated by at least one Sage

contributor. The code review does not necessarily focus
on security, but mostly on good coding practices and cor-
rectness. Obvious security ’backdoors’ are unlikely to filter
through, but less obvious security bugs and vulnerabilities
may still get included in the code base unnoticed.

21

Threat
ID 110
Type Tampering
Risk Rating Medium
Description External packages are not code reviewed. This presents an

easier route to inject malicious code into Sage, by tamper-
ing with the external package. Note the external depen-
dency on external code being secure (the Sage project can-
not realistically fix security issues in all of its components).
However, this threat is about tampering with the packaged
external code, i.e. introducing vulnerabilities that may not
exist in the external component in the first place.
(All third party packages in Sage are also Open Source and
must have a compatible license).

Mitigation Ensure packages of third party code are generated securely
from trustworthy code retrieved and updated from the third
party. Spot checks on packages.

DenialOfService: No Threat Certification
Description Extremely unlikely that any DoS would affect the code con-

tribution process as a whole. Process is long and does not
require high availability.

InformationDisclosure: No Threat Certification
Description This is an open source system, so code is always public.

3.3.3 Load [DataFlow 40: Code Base → Sage]

Threat
ID 54
Type Tampering
Risk Rating Low
Description Code from mercurial version control system might be tam-

pered with when being loaded / packaged for release.
Mitigation Code changes are visible on inclusion as patch files, and

the integration is performed by a trustworthy release man-
ager. It is assumed unlikely (but not completely infeasible)
that the release manager will tamper with code, or that
the communication link or storage of the code base will be
intercepted and / or tampered with

InformationDisclosure: No Threat Certification
Description This is an open source system, so code is always public.

DenialOfService: No Threat Certification
Description Very little impact of DoS for loading new code to the Sage

public website.

22

3.3.4 Retrieve Code for Installation [DataFlow 42: Sage
→ System Owners]

Threat
ID 106
Type Tampering
Risk Rating Low
Description Tampering with downloaded code can allow injection of ma-

licious components. Sage is provided in many available for-
mats, including code, virtual machine image and packages
for various OS.

Mitigation MD5 signatures are published together with the download-
able tar files, but if data tampering is achieved, those sig-
natures could easily be forged.

Threat
ID 108
Type DenialOfService
Risk Rating Low
Description DoS on the public Sage website may prevent potential users

from obtaining code. However, code can be replicated
across many servers online.

Mitigation Threat is minimal. Code/distribution packages are avail-
able on many locations online (mirror sites)

InformationDisclosure: No Threat Certification
Description This is an open source system, so code is always public.

3.3.5 Update [DataFlow 39: Development Process→ Code
Base]

Threat
ID 51
Type Tampering
Risk Rating Low
Description Threat of tampering / intercepting communication between

the release manager and the server where the final packaged
version is stored before release.

Mitigation Assuming SCP or another secure method of sending the
file(s), this seems like a negligible risk

Threat
ID 53
Type DenialOfService
Risk Rating Low
Description Extremely unlikely that any DoS would affect the code

base, which can also be replicated easily.
Mitigation Threat is likely to be acceptable.

23

InformationDisclosure: No Threat Certification
Description This is an open source system, so code is always public.

3.3.6 Use [DataFlow 36: Users → Sage]

Out of Scope
Reason Usage Threats are covered in chapter 4

3.3.7 Code Base [DataStore 37]

Threat
ID 44
Type Tampering
Risk Rating Low
Description All packaged releases (including older releases) are stored

on sage.math. Tampering with those copies may lead to
tainted versions of Sage being released, or even carried over
on future releases.

Mitigation Access to the packages is restricted to a few trustworthy and
named individuals, and therefore the threat is considered
low risk.

Threat
ID 45
Type Repudiation
Risk Rating Low
Description The code repository does have an element of logging

(recording of who committed which changes and additions
to the code base). If tampered with can also lead to repu-
diation threats. See Tampering threat ID 44.

Mitigation See threat ID 44.

Threat
ID 47
Type DenialOfService
Risk Rating Low
Description Extremely unlikely that any DoS would affect the code

base, which can also be replicated easily.
Mitigation Threat is likely to be acceptable.

InformationDisclosure: No Threat Certification
Description This is an open source system, so code is always public.

24

3.3.8 Contributors [Interactor 33.3]

Threat
ID 33
Type Spoofing
Risk Rating Low
Description Authentication processes aren’t very robust (users are gen-

erated by request / email / IRC), but there isn’t much to
gain by spoofing an identity. All users have the same level
of access and access is easily obtained.

Mitigation This is a negligible threat. However, if deemed necessary,
more robust online or offline authentication processes can
be employed to reduce authentication threats.

Repudiation: No Threat Certification
Description No obvious threat or gain by repudiating actions. Con-

tributors are primarily volunteers, any ’mistake’ should be
spotted by fairly rigorous code review process to prevent
unstable/wrong/erroneous code from being accepted.

3.3.9 System Owners [Interactor 33.14]

Out of Scope
Reason Anonymous web users who download the Sage code and use

it

3.3.10 Users [Interactor 33]

Out of Scope
Reason Usage Threats are covered in chapter 4

3.3.11 Sage [MultiProcess 32]

Threat
ID 25
Type Spoofing
Risk Rating Low
Description DNS spoofing or redirection can lead to a fake website.

This can be used to distribute tampered code / packages
and / or damage the project reputation. Low motivation
and relatively high degree of effort is involved.

Mitigation Can use SSL trusted certificates, e.g. by Verisign.

25

Threat
ID 26
Type Tampering
Description Tampering threats on Sage Notebook are covered in chapter

4.
Mitigation None

Threat
ID 27
Type Repudiation
Risk Rating Low
Description The public facing website is managed by a limited number

of trusted individuals. Any repudiation threats to website
changes/actions is therefore limited.

Mitigation Other than placing trust in individuals, logging mechanisms
and change control processes can be used to increase au-
ditability of actions and reduce repudiation threats.

Threat
ID 109
Type Tampering
Risk Rating Low
Description Public facing website holds static data and is unlikely to be

a subject for attack (however see spoofing threat as well as
tampering threats on ’Retrieve Code for Installation’ data
flow).

Mitigation ’Standard’ public website security best practice should ap-
ply (patching, monitoring etc) - see dependencies

InformationDisclosure: No Threat Certification
Description This is an open source system, so no information is withheld

or secret.

DenialOfService: No Threat Certification
Description Very little impact achieved by preventing access to the Sage

public server, apart from reputation and unavailability for
system owners / users.

ElevationOfPrivilege: No Threat Certification
Description Public website does not have different levels of privileges.

Read-Only website. Sage Notebook threats are covered on
a separate threat model.

26

3.3.12 Development Process [Process 34]

Threat
ID 35
Type Spoofing
Risk Rating Low
Description Adding users to Trac (wiki and ticketing system) is fairly

informal and involves emailing or IRC chats. All channels
are currently unencrypted / unauthenticated. Passwords
are known to more than one person (the user and the ad-
ministrator creating the account), do not seem to follow a
particular policy and cannot be changed by the user with-
out assistance from the Trac administrator. Gaining access
to Trac however does not provide much other than ability to
interact with open tickets and submit code patches. Spoof-
ing an identity would not achieve much from an attacker’s
perspective.

Mitigation Current process may be considered acceptable.

Threat
ID 36
Type Tampering
Risk Rating Medium
Description Altering data in Trac tickets may be relatively easy to ac-

complish. ’Faking’ positive code reviews and/or changing
patches/code already reviewed may be easy. Such tamper-
ing can lead to insecure or malicious code included in the
code base.

Mitigation Trac does have internal revision control system, which
should record any changes to tickets, who initiated the
change and when. Circumventing the Trac internal con-
trols may still be possible however.
The main focus should be on including code and ensuring
the reviews are genuine and that code was not tampered
with after review. A manual process / spot checking is
already performed by the release manager, but can poten-
tially be further enhanced, particularly to better focus on
security (e.g. include a second reviewer, whose task is to
spot any security issues which may affect the release).

27

Threat
ID 37
Type Repudiation
Risk Rating Low
Description Whilst Trac / Mercurial both associate any change to in-

dividual user, it is not infeasible to circumvent its mecha-
nisms or abuse privileges on the system and attribute them
to another user.

Mitigation Relatively high level of involvement of individuals on the
project mean that each developer / user may spot any
changes made on their behalf.

DenialOfService: No Threat Certification
Description Development process is fairly disconnected and not reliant

on a centrally available system. Other than the most ex-
treme DoS scenario (which is highly unlikely), DoS threats
are deemed acceptable.

ElevationOfPrivilege: No Threat Certification
Description There are no different levels of privileges. Any ’privileges’

are defined outside automated processes, and assigned to
highly trusted individuals.

InformationDisclosure: No Threat Certification
Description Sage is an open source system and all information is readily

available.

3.4 External Dependencies

ID Name Origin
1 Trac External
2 Mercurial External
3 Apache (with mod proxy) External
4 Ubuntu Linux External
5 Third Party packages (bundled with Sage) External

3.5 Implementation Assumptions

ID Element
Impacted

Assumption

1 All Server OS running Sage servers is patched and config-
ured securely

2 All DNS is hosted externally and secured for unauthorised
updates/modification

28

3.6 External Security Notes

There are no external security notes.

29

Chapter 4

Sage Notebook Threat
Model

4.1 Threat Model Information

This threat model tries to capture threats to the Sage Notebook system. Sage
and the Sage Notebook can be installed on many supported platforms and in
different configurations. In order to keep the analysis focused and more effective,
one deployment / setup was chosen to represent a ’typical’ Sage Notebook instal-
lation. The typical configuration is based on the Sage default ’out-of-the-box’
settings (also called ’Vanilla’), but also referring to the Sage Notebook public
server [93], which is available for users to experiment and use, and is maintained
by the Sage project. One of the main differences between the ’out-of-the-box’
settings and the Sage Notebook public server, is that the latter is running on
a virtual platform [100]. Running the server in a virtual environment provides
some of the benefits covered in more detail on the analysis in Chapter 5, section
5.4.4. Amongst the benefits, the ability to limit resource usage, monitoring, and
the ability to start from ’scratch’ by restoring from a snapshot, in case of an
issue or corruption. The Sage project does not give much guarantees or war-
ranty as to the availability, confidentiality or integrity of data on the sagenb.org
server, and it is provided on an ’as-is’ basis.

The components and processes represented in the model remain at a fairy high
level. Whilst a more detailed analysis and further breakdown of components
may have been possible, the threat model is still effective, as it uncovers nu-
merous threats and vulnerabilities. Some of the threats are fundamental at the
architecture and design level, whilst others are more specific to implementation
methods and environment configuration. It is therefore felt that the level of
analysis and the modelling process is sufficient at this stage and further break-
down will not be cost-effective.

Unlike the Sage Open Source development process, which is relatively simi-
lar to other open or closed source projects (covered in Chapter 3), the Sage
Notebook service provides unique functionality not likely to be found on other
web-based applications. The flexibility given to essentially anonymous users,

30

in terms of allowed functionality, and specifically: running code directly on the
server, presents interesting challenges from a security perspective. This flexibil-
ity ’violates’ basic security design tenets, such as preventing access to the layer
below [34] and the least privilege principle [81]. The threat model identifies
several areas which can benefit from architectural and implementation improve-
ments. It also raises some ideas on improving security which aren’t necessarily
technical measures - simply by reducing available functionality to users (or at
least not all users). Nevertheless, the threat model recognises the desire of the
Sage community to remain open, allow flexibility and provide more, rather than
less functionality and power to its users. The decision remains with the Sage
community and each of its users and installation owners (Universities, organi-
sations or individuals choosing to deploy and use Sage). However, it is hoped
that a more informed decision can be taken based on this threat analysis.

Some of the threats and vulnerabilities require substantial effort and re-design
to fix, and therefore may not necessarily get implemented. However, many of
the threats can be mitigated by relatively simple means. For example, ensuring
SSL is used between users and the Sage Notebook would completely eliminate
a number of threats. The ability to run the Sage Notebook over HTTPS is
available to users and does not require any modification of the code base.

31

4.2 Data Flow Diagrams

4.2.1 Sage Notebook

Figure 4.1: Sage Notebook Data Flow Diagram

32

Figure 4.2: Legend

4.3 Threats and Mitigations

4.3.1 Elements

ID Type Name
21 DataFlow (Out of Scope) Data Store/Retrieve
20 DataFlow (Out of Scope) External Req/Res
16 DataFlow Notebook Req/Res
18 DataFlow (Out of Scope) Process Req/Res
25 DataFlow Processing Data
14 DataFlow Publish
17 DataFlow Register
15 DataFlow Send Worksheet
13 DataStore Notebook Data Store
19 Interactor (Out of Scope) Any External Entity
9 Interactor Registered User A
8 Interactor Registered User B
10 Interactor (Out of Scope) Unregistered User
11 Process Sage Notebook
12 Process Sage Processors
23 TrustBoundary External Boundary
24 TrustBoundary Processor Boundary
22 TrustBoundary User Trust

4.3.2 Data Store/Retrieve [DataFlow 21: Sage Notebook
→ Notebook Data Store]

Out of Scope
Reason Data storage and retrieval takes place on the same host

and within the same trust boundary. Any threats to the
internal storage channel are either attributed to a lower-
level dependency (e.g. Operating System security) or is
already accounted for on the Sage Notebook / Notebook
Data objects.

33

4.3.3 External Req/Res [DataFlow 20: Sage Processors
→ Any External Entity]

Out of Scope
Reason External requests/responses data flow represents unautho-

rised use case, and are there to highlight potential for at-
tacks on the Sage Processors of affecting other external en-
tities. Such threat is an indirect threat, as it does not
affect any of the Sage entities. However, it is a threat not
to ignore as it might have severe impact on the project, its
reputation, and the various installation hosts/sites. There
are no direct threats to the data flow itself and therefore it
is out of scope. Threats and mitigation are already covered
on the Sage Processors entity (see threat IDs 38-42)

4.3.4 Notebook Req/Res [DataFlow 16: Registered User
A → Sage Notebook]

Threat
ID 53
Type Tampering
Risk Rating Medium
Description Communication between users and the Sage Notbook is per-

formed over HTTP, but can be SSL protected. However, by
default, and on the sagenb.org public web server, no SSL is
currently being used.
User requests can be relatively easily tampered with.

Mitigation It is not clear how much can be gained by tampering with
user requests, particularly considering the fact that other
attacks (such as stealing the user credentials, see threat ID
54) may be more effective and easier to accomplish.
Tampering threats on communication links could easily be
mitigated by using SSL with a trusted certificate.

34

Threat
ID 54
Type InformationDisclosure
Risk Rating High
Description All web server communication is over HTTP by default

- sniffing the network can allow obtaining authentication
credentials.
In some use cases, such as in some research environments,
the computation data itself may be sensitive or confidential.
Protection of data from eavesdropping may be highly de-
sirable in such situations. Sniffing the network is relatively
easily achievable within a small physical environment, such
as departmental network.
The Sage public Notebook server (sagenb.org) does not cur-
rently use HTTPS. Other Notebook installation can run
with SSL if required.

Mitigation Use SSL with a trusted public CA certificate.

DenialOfService: No Threat Certification
Description Denial of service attack on the link to the Sage Notebook

public server (sagenb.org) is possible, but unlikely. Other
forms of denial of service are available, which are easier to
accomplish. This threat is considered low and acceptable.

4.3.5 Process Req/Res [DataFlow 18: Sage Notebook →
Sage Processors]

Out of Scope
Reason Sage Notebook and the processors are considered to be on

a separate trust boundaries. However, the link between the
two is usually secure using Secure Shell (SSH) [113] with
keys and contained within a small physical location, some
times on the very same host. Therefore, there are virtually
no threats to the link itself. Other threats are covered on
the Sage Notebook and Sage Processors entities.

4.3.6 Processing Data [DataFlow 25: Notebook Data Store
→ Sage Processors]

Threat
ID 70
Type Tampering
Risk Rating High

35

Description Using the default set-up of Sage Notebook, Processors (e.g.
Sage, Python, r, Shell) run on the same host as the Note-
book server. However, code running on the processors is
user-controlled and therefore untrusted. In this situation
the trust boundary crosses the same host and puts the
Notebook and other processes at much higher risk. Ma-
licious user code can easily access the filesystem or run sys-
tem calls. It can therefore tamper with the Notebook Data
Store and other processes (including the Notebook process).
Even if the processors are running on a separate host or in
tighter isolation (e.g. chroot’d jailed environment on the
same host or virtualised), as long as the processors have
access to the same file system, many of the aforementioned
threats apply.

Mitigation Separation of processors from other components is highly
desirable. Restrictions and constraints on the running pro-
cessors in addition to limits imposed on users should also
be considered carefully. File system access should not be
shared between the Notebook data and processor data (ef-
fectively removing this data flow completely).
Limit filesystem quota per process, allow only temporary
storage space, separated via filesystem permissions between
processors.
Also see threats to Sage Processors.

Threat
ID 71
Type InformationDisclosure
Risk Rating High
Description See tampering threat ID 70. Information Disclosure may

also result from similar conditions.
Mitigation See tampering threat ID 70 mitigation.

Threat
ID 72
Type DenialOfService
Risk Rating Medium
Description Sage Processors can relatively easily be used to launch a

denial of service attack, either on external entities (see Sage
Processors threats), or on shared storage area. Attacker-
supplied code can very easily delete files on the filesystem,
create masses of data and store it on the filesystem to create
a Denial of Service attack.

Mitigation Limit filesystem quota per process, allow only temporary
storage space, separated between processors. Prevent shar-
ing of filesystem space between processors and Notebook
data.

36

4.3.7 Publish [DataFlow 14: Registered User B → Sage
Notebook]

Threat
ID 47
Type Tampering
Risk Rating High
Description Tampering with published worksheets are assumed to be

a ’higher value’ target, particularly if tampering results
in injected code to be executed on the client side - e.g.
javascript. The more trustworthy or popular the pub-
lisher, the higher the motivation to tamper with their pub-
lished worksheets, since those worksheets are more likely
to be opened and copied by other Sage users. Injecting a
javascript worm onto such worksheet can potentially allow
the attacker to take over many accounts on the system. The
communication is over HTTP by default and the Sage pub-
lic Notebook server does not currently use HTTPS. Note
that the high impact of this threat is not purely achieved
by tampering the data flow, but rather relies on injection
/ Cross Site Scripting (XSS) [10] vulnerabilities on the ap-
plication as well.

Mitigation Notebook supports SSL/HTTPS. Use SSL with a trusted
public CA certificate to provide channel integrity and data
origin authentication.

InformationDisclosure: No Threat Certification
Description published worksheets are meant to be public, therefore no

information disclosure threats are applicable.

DenialOfService: No Threat Certification
Description Any Denial of Service threats are not specific to the publish

channel and considered fairly minimal.

4.3.8 Register [DataFlow 17: Unregistered User → Sage
Notebook]

Threat
ID 57
Type InformationDisclosure
Risk Rating Medium
Description Communication links are unencrypted and unauthenti-

cated. Usernames and passwords used through registration
process can be relatively easily obtained through network
sniffing, arp / dns spoofing, phishing / fake registration
screens etc.

Mitigation Implement SSL with a certificate issued by a trusted CA
(e.g. Verisign)

37

Threat
ID 58
Type DenialOfService
Risk Rating Low
Description The registration process does not use email verification,

captchas or any anti-scripting mechanisms. It should be
very easy to ’bombard’ the system with spurious registra-
tions, contaminating the user storage and potentially lead-
ing to denial of service of the registration process for legit-
imate users.

Mitigation Use captchas to prevent scripting. Use a two-step registra-
tion process: First step: provide email address
A confirmation email will be sent out to the email with a
random string.
Second step: confirm email and complete registration.
Note: The email generation itself might become a target
for another type of DoS attack (e.g. by trying to register
with someone else’s email address, causing them to receive
unwanted emails).
Alternatively, when using a 3rd party user directory for au-
thentication, no registration / enrolment is necessary, and
registration can be disabled on the Sage Notebook (an op-
tion already available). Similarly in smaller user groups,
registration can remain disabled and only re-enabled tem-
porarily for an ’enrolment time window’.

Tampering: No Threat Certification
Description Tampering a registration request / response would not

achieve much other than perhaps DoS (see DoS threats).
Any user can generate registration requests.

38

4.3.9 Send Worksheet [DataFlow 15: Registered User A
→ Registered User B]

Threat
ID 50
Type Tampering
Risk Rating Medium
Description Worksheets are not integrity protected or authenticated, so

can easily be tampered with when being sent from one user
to another. Tampering can include malicious code which
would then be executed using the recipient’s credentials if
uploaded to Sage.
If the recipient runs Sage locally, the malicious code will
execute on their local machine.

Mitigation Add some form of integrity and data origin authentication
to worksheets (e.g. HMAC with a shared key, or public key
digital signatures)
Users should be made aware of the risk of accepting work-
sheets, especially from untrusted sources, or when there is
higher likelihood of worksheets being tampered with. (see
external security note 1)
When trust exists between two (or more) users, third party
and non Sage-specific security tools can be used to prevent
tampering - e.g. PGP, S/MIME.

Threat
ID 51
Type InformationDisclosure
Risk Rating Medium
Description Worksheets are not encrypted, so can easily be captured

over the network (e.g. by sniffing) when being sent from
one user to another. In some situations, confidentiality of
worksheet data is a concern.

Mitigation Third party and non Sage-specific security tools can be
used to prevent information disclosure - e.g. PGP, SCP,
SFTP. Information Disclosure affecting user-to-user com-
munication is outside the direct scope of the Sage Notebook
server. However, perhaps Sage can enforce encryption of
worksheets when exported.

DenialOfService: No Threat Certification
Description There are many possible channels to send, receive and share

worksheets between users.

4.3.10 Notebook Data Store [DataStore 13]

Threat
ID 43

39

Type Tampering
Risk Rating High
Description Notebook Data is stored on the filesystem of the same host

and within the same trust boundary. However, notebook
data (stored in .sobj files, which are essentially python
’pickled’ objects) may contain untrusted code injected into
the file. When notebook data is loaded from file (Python
’unpickling’ process), it can execute arbitrary code running
on the Sage Notebook process.
.sobj files are normally created by the Sage Notebook it-
self, and hence would not normally contain malicious code.
However, notebook data can be imported into Sage.
Python programs must never unpickle data from untrusted
or unauthenticated source [76] [59]

Mitigation Consider an alternative mechanism for pickling to store
notebook / worksheet data.
Implement robust validation and santisation of sobj files
and constrain the unpickling process to validated, trusted
data. Avoid uploaded data unpickling and ensure sobj files
are generated with validated data so that no code can be
injected and then executed when unpickled. Beware the
false sense of security provided by safe for unpickling
set to 1, or by being registered in a global registry,
copy reg.safe constructors [104]

Threat
ID 44
Type Repudiation
Risk Rating Low
Description Only minimal logging of security or system events is per-

formed, and the logging is not integrity protected or se-
cured. An attacker may be able to easily manipulate any
log records stored on the file system.

Mitigation This is considered a relatively low priority issue at this
stage, however more robust logging should be considered,
perhaps also incorporating logging into external sources
(e.g. SYSLOG)

40

Threat
ID 45
Type InformationDisclosure
Risk Rating Medium
Description Notebook Data is stored on the filesystem of the same host

and within the same trust boundary. Information disclosure
can however be achieved if data files are accessed either di-
rectly or indirectly (e.g. utilising a flaw in the Notebook
process). File permissions and ownership is currently set
so that any Notebook process can access all notebook files
of all users. Also see threat ID 43 covering potential pick-
ling issues, which can also lead to information disclosure.
In addition, if filesystem is shared between the Sage Note-
book and Processors, without privilege separation on the
filesystem, an attacker can access worksheet data as well as
Notebook username and passwords by using the processors
(see threat ID 40)

Mitigation Utilise separation of privileges on the filesystem or use a
database. Tie each Sage Processor process and the note-
book process to different system user ID for each session,
e.g. using sudo -u to assume a user’s identity for a pro-
cess/operation. Resolve any known vulnerabilities or func-
tionality which may lead to direct file access.

Threat
ID 46
Type DenialOfService
Risk Rating Low
Description There are no storage limits or quotas set on the filesystem.

Users may potentially fill the storage area so there’s no
space left, leading to a Denial of Service.

Mitigation Consider applying user-based quotas on the filesystem and
/ or on the Notebook process to prevent maxing out of disk
space. Use monitoring to alert of low disk space and allow
quick mitigation before space is fully exhausted.

4.3.11 Any External Entity [Interactor 19]

Out of Scope
Reason This entity is a placeholder to represent any external entity

/ system on the Internet, which may be subject to attack
by processes running on Sage (see threats related to Sage
Processors and External Req/Res Data Flow)

41

4.3.12 Registered User A [Interactor 9]

Threat
ID 28
Type Repudiation
Risk Rating Low
Description The ability to trace back to individuals and track actions

is very limited and virtually non-existent. However, be-
fore a more robust authentication and authorisation mech-
anisms are put in place, it’s hard to imagine very robust
non-repudiation controls being implemented.

Mitigation Any solution which logs user actions should be aware of
user privacy concerns and enforce the necessary means to
balance between repudiation threats and threats to user
privacy.

Threat
ID 73
Type Spoofing
Risk Rating High
Description Bruteforce / Dictionary attack on users / passwords - No

lockout mechanism in place. Users are free to choose trivial
passwords.

Mitigation Improve authentication mechanism to include stronger
password controls, including:

• password complexity requirements

• failed authentication lockout or (preferably) a time-
out mechanism to drastically reduce the effectiveness
of automated attacks, whilst still allowing legitimate
access

• minimum password length

• logging / alerting mechanisms to monitor attacks

Usage of captchas or other anti-scripting techniques can
increase the complexity of scripting attacks. Alternatively,
or in addition, use a 3rd party back-end authentication (e.g.
LDAP [54] [36])

42

Threat
ID 74
Type Spoofing
Risk Rating High
Description Cross Site Scripting - javascript code can easily get embed-

ded in worksheets, which can be published and shared, al-
lowing injecting malicious code and obtaining session cook-
ies.

Mitigation Consider disallowing javascript code and using input vali-
dation and anti-scripting mechanisms, e.g. libraries, input
filtering, white/blacklisting, stripping of invalid characters.
Note: Character filtering may seriously hinder the proper
operation, particularly when mathematical forumlas are
used. In addition, the ability to use javascript is currently
enabled deliberately and almost encouraged, to create more
interactive worksheets, and give the user higher degree of
flexibility. Any filtering needs to take into account users
ability to generate javascript ’on-the-fly’ from python or
other code allowed to run on the backend processors. A de-
cision needs to be made to balance security and flexibility.
Perhaps a compromise could involve limiting input based
on user privilege level(s). i.e. Certain users will be permit-
ted greater flexibility than others (those users will therefore
need to be highly trusted)

Threat
ID 78
Type Spoofing
Risk Rating Low
Description Standard random functions are used for HTTP sessions.

Such pseudo-random sources are considered insecure. Pre-
dicting session values can lead to session hijacking and
spoofing.

Mitigation Use more cryptographically robust random generators /
sources.

4.3.13 Registered User B [Interactor 8]

Threat
ID 25
Type Spoofing
Risk Rating Low
Description Spoofing of identities and trust issues between Users (i.e.

User A and User B) are to some extent out of scope of
the Sage Notebook. However, sharing or distribution of
worksheets is not authenticated or digitally signed.

Mitigation Consider implementing a mechanism for verification of in-
tegrity and data origin authentication of worksheets

43

Threat
ID 26
Type Repudiation
Description see threat ID 25 (Spoofing Registered User B)
Mitigation see threat ID 25 (Spoofing Registered User B)

Threat
ID 75
Type Spoofing
Description see spoofing threats for Registered User A (threat IDs 73,

74, 78)
Mitigation see spoofing threats for Registered User A (threat IDs 73,

74, 78)

Threat
ID 76
Type Repudiation
Description see repudiation threats for Registered User A (28)
Mitigation see repudiation threats for Registered User A (28)

4.3.14 Unregistered User [Interactor 10]

Out of Scope
Reason Unregistered user cannot be spoofed or repudiated. There

are no threats to the external user

4.3.15 Sage Notebook [Process 11]

Threat
ID 31
Type Spoofing
Risk Rating Medium
Description Creating a clone of the Sage Notebook server is relatively

easy, since the code is readily available and anybody can
install it to create an exact copy of the spoofed server.
Spoofing can be achieved by various means, e.g. DNS spoof-
ing, Man-in-the-Middle, Redirecting etc.
The notebook server can be configured with SSL support.
However, the public key certificates generated are self-
signed, hence can also created by an attacker.
Spoofing by itself would not achieve much, but can be used
to assist in obtaining authentication credentials, tampering
and other attacks.

Mitigation Use SSL with trusted certificates. Educate users to pay
attention to certificate details, URL address bar etc.

44

Threat
ID 32
Type Tampering
Risk Rating High
Description Very limited input validation is performed on the Notebook

server for worksheet data, and Cross Site Scripting (XSS)
is currently easily achievable using javascript inside HTML
embedded in worksheets (either uploaded, entered directly,
or published and shared with all or some other notebook
users). Cross site scripting is one of the dominant and most
powerful attacks against web applications [14], as they al-
low session hijacking, unauthorised actions and distributed
denial of service attacks. XSS attacks usually involve clever
crafting of input to bypass any filtering and input/output
encoding. However, Sage notebook does allow javascript
code to be included by design, substantially reducing the
complexity of such potential attack.

Mitigation Consider removing functionality which allows javascript or
other browser executable code. Introduce input and output
filtering and anti-XSS libraries. Scripting functionality may
be enabled only on certain set-ups, or to specific trusted
users as a compromise, as long as the risk is understood
and communicated to notebook users. See external security
note 2.

Threat
ID 33
Type Repudiation
Risk Rating Low
Description System logging on the Notebook is very minimal if not non-

existent. Tracing back to user actions is therefore extremely
difficult or impossible.

Mitigation Implement logging mechanisms tied to identities of users.
Consider sending log items to a separate host/entity (e.g.
using SYSLOG), to avoid tampering with log records on
the filesystem.
Any solution which logs user actions should be aware of
user privacy concerns and enforce the necessary means to
balance between repudiation threats and threats to user
privacy.

45

Threat
ID 34
Type InformationDisclosure
Risk Rating Medium
Description Notebook user passwords are stored using Unix crypt mech-

anism [19] (based on a modified DES algorithm), and with
static hard-coded salt value. Password hashes, if obtained,
can easily be dictionary attacked or brute-forced.

Mitigation Implement a more robust one-way hashing with variable
salts to store user passwords.
Consider using 3rd party user repositories for authentica-
tion and authorisation, so to remove password storage in-
side the Notebook completely (e.g. LDAP, Unix authenti-
cation, Kerberos [53])

Threat
ID 35
Type DenialOfService
Risk Rating Low
Description The Notebook system does not enforce any processing, stor-

age space, bandwidth or other usage limits. Users can po-
tentially abuse the system and create many worksheets, up-
load very large files and launch other attacks which may
result in DoS. In addition, processors may generate load if
placed on the same host (for other processor related threats,
please see Sage Processors).

Mitigation Consider implementing some level of throttling or limits
to prevent system resources being over-utilised to result in
DoS.

Threat
ID 36
Type ElevationOfPrivilege
Risk Rating Low

46

Description Privilege levels on the system are basic and minimal. There
are three types of users:

• admin - Administrative user, can set Notebook set-
tings and access all resources

• user - a registered user account, may access their own
worksheets or those explicitly shared with them (as
collaborators)

• guest - an unregistered user, may only view public
worksheets and cannot make any changes

It is unclear whether there are any vulnerabilities which
could expose the Notebook server to elevation of privilege.
However, the entire authentication and authorisation func-
tionality was implemented inside the notebook (instead of
using a 3rd party component).

Mitigation Using a third party authentication and authorisation mod-
ules can greatly increase the confidence level in its robust-
ness (as long as the third party component is well known
and was subject to more scrutiny). A number of third party
components to consider, include but are not limited to:

• LDAP, e.g. OpenLDAP [70], Active Directory [63]

• Kerberos

• Linux/Unix users and groups

• built-in user management frameworks for web appli-
cations, e.g. AuthKit [30], repoze.who [60] and re-
poze.what [64], django’s built-in and extensible au-
thentication and authorisation [23]

Using a third party component can also reduce the size and
complexity of the Sage notebook code itself.

47

Threat
ID 77
Type Tampering
Risk Rating Medium
Description No anti Cross Site Request Forgery (CSRF) [108] tech-

niques are in use currently. CSRF attacks allow submitting
requests on behalf of another user, e.g. publishing work-
sheets, deleting worksheets, submitting processing requests
etc.

Mitigation Use anti CSRF techniques or libraries, normally involve
including a random nonce on each form, and checking for
its value on the submitted request. Project is currently
in transition between twisted web to pylons. There are 3rd
party CSRF middleware for pylons which can be used. Note
that any CSRF protection techniques are irrelevant if XSS
attacks are available. If the attacker is able to launch an
XSS attack, they can relatively easily obtain any randomly
generated form values (apart perhaps from Captchas)

Threat
ID 79
Type InformationDisclosure
Risk Rating Low
Description The administrative user account is called ’admin’ and there-

fore can become a primary target to brute force / dictionary
attacks. The admin account can be renamed.

Mitigation Allow admin user to be renamed

Threat
ID 80
Type InformationDisclosure
Risk Rating Low
Description When authenticating to the Notebook server, an attacker

may be able to identify and enumerate existing accounts on
the system.
When an existing user account is used to login using an
invalid password, the system returns ’Error: Wrong pass-
word’ response. Whereas, if the user does not exist, the
error response is ’Error: Username is not in the system’.

Mitigation Provide an error response that does not give information
which may be abused by an attacker. User returned error
messages (not just for the login page), should just provide
the minimal necessary information to understand there was
a problem. More detailed error information can be logged
on the server, and can aid in troubleshooting and inves-
tigation. Please note that once a user is registered and
attempts to share a worksheet with another user, similar
enumeration is possible as well.

48

Threat
ID 81
Type InformationDisclosure
Risk Rating Low
Description In certain environments sharing (or publishing) of work-

sheets may not be a desired feature. For example, some
academic environments may use Sage in an examination
conditions, where each user must work independently of
others. Any sharing of worksheets will compromise the in-
tegrity of the examination.

Mitigation Change all worksheet publishing and sharing functionality
as a configurable parameter or option.

4.3.16 Sage Processors [Process 12]

Threat
ID 37
Type Spoofing
Risk Rating Low
Description Spoofing a processor may be possible, but fairly hard to

accomplish (e.g. may involve dns poisoning and or redi-
recting at the notebook end), and would not achieve much.
The cost/benefit ratio of spoofing a processor is very high,
making any such threat minimal.

Mitigation SSH can already be in use to connect the Notebook server
with the processors. Using host key authentication should
be easy to implement and would mitigate processor spoof-
ing threats.

Threat
ID 38
Type Tampering
Risk Rating High

49

Description Each processor is capable (by design) of running arbitrary
user-supplied code and therefore tampering is extremely
easy to accomplish and impact is likely to be high.
Whilst processors are considered to reside on a separate
trust boundary, they are in many cases running on the same
host as the Sage Notebook server. Any threats to processors
in this scenario becomes a threat to the Notebook server as
well.
Tampering and running malicious code can:

• tamper with other processors, modify results or inter-
rupt processing

• Denial of service to other processors by exhausting
system resources - see threat ID 41

• Launch attacks against the Sage Notebook server
(which may reside on the same host) or the processing
host itself - see threat ID 42

• Launch attacks on external targets - e.g. spam, dis-
tributed Denial of Service, install and run a bot, relay
communication, peer to peer traffic etc

• eavesdrop on communication to/from the processor
host - see threat ID 40

50

Mitigation There are several mitigation options to consider. Ideally,
several of these options, or even elements of each, should
be used to reduce the threat.
Mitigation options include:

• Consider disallowing some users from running arbi-
trary code, e.g. by restricting processing capability
to as narrow list as possible. Whitelist filtering is
preferable to blacklist, but neither is guaranteed to
completely mitigate running arbitrary and potentially
malicious code. The more restrictive the filtering is,
the harder it is to inject code.

• Sage processors are considered ’untrusted’ and should
run on a separate host if possible. Techniques such as
virtualisation can be used to reduce cost and simplify
running of Sage as a single platform, but physical
separation of the processors from the Sage Notebook
and other external entities is highly recommended if
possible.

• Run each processor in its own separate space. Each
system process will run with a different userid to an-
other, limiting interaction between processes. Use
techniques like chroot, jail shell, sudo -u etc.

• Limit the available resources to each processor. Re-
source constraints should include: cpu time, memory,
elapsed running time, disk space usage, number of
threads, number of sockets etc.

• Use a firewall to restrict network access to/from the
processors and other hosts - e.g. Sage Notebook or
external entities

• Remove or tightly restrict access to filesystem shared
between the processors and the Sage Notebook - see
threat IDs 70,72

51

Threat
ID 39
Type Repudiation
Risk Rating Low
Description System logging on each processor is very minimal if not non-

existent. Tracing back to user actions is therefore extremely
difficult or impossible.

Mitigation Implement logging mechanisms tied to identities of users
and / or callees of the processors. Consider sending log
items to a separate host/entity (e.g. using SYSLOG), to
avoid tampering with log records on the filesystem.
Any solution which logs user actions should be aware of
user privacy concerns and enforce the necessary means to
balance between repudiation threats and threats to user
privacy.

Threat
ID 40
Type InformationDisclosure
Risk Rating High
Description Information disclosure can take place if one processor can

eavesdrop on communication of other processors, and also
if filesystem access is available and depending on filesystem
permissions.
If filesystem is shared between the processors and the Sage
Notebook, then it increases the likelihood of threats to note-
book usernames and passwords as well as worksheet data
(see threat IDs 34, 45 respectively)

Mitigation see mitigation for threat ID 38.

Threat
ID 41
Type DenialOfService
Risk Rating High
Description Denial of service can take place by exhausting system re-

sources, and ’suffocating’ other running processors.
Denial of service is also more likely to result from simple
user error, experimentation or lack of knowledge. If a user
is unaware of the processing time for a request, or includes a
mistake - it can lead to infinite loops, recursions, large mem-
ory allocation, disk space over-use, high processing time etc.

Mitigation see mitigation for threat ID 38.

52

Threat
ID 42
Type ElevationOfPrivilege
Risk Rating Low
Description All processors run using the same privileges. However, a

processor can elevate its system privileges (e.g. using an op-
erating system exploit), to gain less restricted access to sys-
tem resources, as well as higher privileged access to filesys-
tem, memory, processes etc. If root access is obtained, it
can lead to a compromise of the entire host running the pro-
cessors, and if this host is shared with the Sage Notebook
it means taking over the entire system.

Mitigation see mitigation for threat ID 38.

4.4 External Dependencies

ID Name Origin
1 Third Party packages (bundled with Sage) External
2 Linux / Unix / Mac OS External

4.5 Implementation Assumptions

ID Element
Impacted

Assumption

1 All Server OS running Sage services is patched and config-
ured securely

53

4.6 External Security Notes

ID Note
1 Users should be aware that worksheets received by untrusted third parties, or

sent via insecure communication channels may be tampered with and poten-
tially contain malicious code. Worksheets should be inspected before uploaded
and used.

2 Sage notebook currently allows worksheets to contain scripts inside HTML.
This provides a very easy way to launch Cross Site Scripting (XSS)attacks,
undermining any authentication and authorisation mechanisms in place.

3 Unless the Sage processors are isolated / separated from the Sage Notebook,
any threats and vulnerabilities applicable to the Sage Processors will in all like-
lihood also apply to the Sage Notebook and its data store. Therefore, security
of worksheet data, user account information or any information residing on the
same platform as the processors is easily accessible to attackers.

4 When deploying Sage, deployers/users should be aware that threats to Sage are
not confined only to Sage itself, but can also affect other external or internal
systems. Attacks on the Sage platform may allow launching further attacks on
other system across the internal and external networks. Until such threats are
mitigated or contained within Sage, deployers should use 3rd party controls
when possible. Controls such as firewalls, intrusion detection or prevention
systems and host/network monitoring tools are recommended.

54

Chapter 5

Sage Threat Model
Analyses

5.1 Overview

The threat model on chapter 3, covering the Sage Open Source Development
process, documented 17 threats, 15 of which are rated Low and only 2 rated
Medium. In contrast, the Sage Notebook threat model on chapter 4 raised
35 threats: 11 rated High, 9 Medium and 15 Low. It is difficult to compare
one threat model with another, particularly when attempting to count or rate
threats. Any such quantitative comparison runs the danger of giving a (poten-
tially misleading) qualitative rating or measurement. The threat models were
deliberately separate from each other to avoid such situation. Even though
both threat models cover Sage, they cover completely independent aspects of
the application. The methodology, process and rating system for threats is the
same across both threat models, but a Low threat on one threat model is not
equal to a Low threat on the other. In addition, threats may be ’linked’, if they
relate to the same component, vulnerability and most importantly, mitigation
option(s). If one control mitigates more than one threat, the number of threats
is almost irrelevant from a practical perspective. With that considered, it is
still apparent that the Sage Notebook threat model highlights more significant
threats and vulnerabilities than those to the development process. The two
threat models are further explored on the following sections.

5.2 Development Process Threat Model Analy-
sis

As reflected on the threat model, the Sage development process is robust and
thorough. The two Medium rated threats identified are both tampering threats.
One (Threat ID 110), raises a concern over third party software packages, which
may be tampered with to inject malicious code or vulnerabilities. The other
(Threat ID 36), identifies potential threats to the ticketing system, potentially

55

allowing bypass of some of the peer review processes. The latter is partially
mitigated, and arguably can be ’downgraded’ to Low, and the former can be
relatively easily mitigated using more robust processes and ensuring the integrity
of 3rd party packages from the source. It is interesting to note that the author
of [33] raised a very similar concern after (and in all likelihood without knowledge
of) threat ID 110 was first identified and a draft threat model shared with
the Sage project [2]. Most other Low rated threats are to a large extent at
least partially mitigated already, are at an acceptable level of risk, or can be
resolved with comparatively easy means (most of which are process rather than
technology driven).

This paper’s view is that there is little concern over the development process,
even though some enhancements are recommended. It is felt that other open
source or commercial projects could ’learn’ from the Sage development process.
By and large, the Sage project takes advantage of the ’many eyeballs’ princi-
ple [78] in their development code review process. In addition, as mentioned
previously, the Sage development process is not much different from other pro-
cesses used within the open source community or business environments. It is
therefore hoped that other projects can learn from the Sage experience, use the
threat model presented on this paper, adapt it for their own processes or needs,
or create a completely new threat model. Such approach could potentially fur-
ther enhance the security of other development processes.

Using a threat model in this case demonstrated the ability to identify both
process and technology related security issues. The threat model assisted an-
swering questions such as “What assurances or confidence can we get about
the protection from a malicious party injecting insecure code or backdoor into
our product?”, “How can we be sure insecure code gets inspected and rejected
before it goes into the codebase?”, “What might be the ’weakest link’ in the pro-
cess?”, “Are these issues technology related or process driven?”. Furthermore,
the threat modelling process not only provided answers, but also some level of
assurance. As long as the model itself is accurate and comprehensive, it ensures
a methodical walkthrough of each and every entity with respect to potential
security threats. Such ’coverage’ may not be possible by simply ’brainstorming’
ideas or trying to answer these questions directly.

5.3 Sage Notebook Threat Model Analysis

The Sage Notebook provides an interesting combination of security related prob-
lems. On one hand, it is not much different from other web based applications,
and as such, some of the threats are to a certain degree similar to those ex-
pected of many other web based applications. Threats to data integrity and
confidentiality are not unique to Sage, and for that reason, mitigation options
are widely available and relatively easy to install and use. A fairly substantial
number of Medium and High rated threats (Threat IDs 53, 54, 47, 57, 31, 50, 51
and others) can be very easily mitigated with the usage of ’standard’ informa-
tion security tools. Using SSL, which is already enabled on the Sage Notebook
- but not set by default, can fully mitigate the majority of these aforementioned
threats. Similarly, albeit in this case at a more substantial mitigation effort,
using 3rd party authentication and authorisation packages can support more

56

robust separation of privileges and protect against a number of different threats
(Threat IDs 73, 34. 36, 45, 40). On the other hand, Sage provides unique
functionality not commonly available in other applications, and much less so
web based ones. This unique functionality and user flexibility comes at a rather
substantial ’price tag’ from a security perspective. The Sage Notebook threat
model identified a number of threats that boil down to the core architecture
as well as the range of possibilities available to users. Those type of threats
are much more difficult to mitigate and address, but there are still a number of
possibilities to explore. The following sections will explore those unique features
from a security standpoint, and cover a number of directions for mitigation in
more depth.

From a practical point of view, it is advised that the Sage project starts ad-
dressing the more generic, and easy to mitigate threats first. These ’low hanging
fruit’ present very cost effective way to reduce the threats to the Sage Notebook
with relatively minimal effort and cost. In fact, some of these efforts are already
underway. This project is actively engaged trying to assist the Sage project in
getting and installing a signed SSL wildcard certificate for all sagenb.org do-
mains. Obtaining such certificate would allow the Sage Notebook public server
to run over HTTPS without users getting unnecessary browser alerts (for ’un-
trusted’ certificates). All communication between users and the Sage Notebook
servers will be encrypted and integrity protected, the Sage Notebook server will
be authenticated by users, and a number of threats fully mitigated. At the point
of writing, it is not clear whether the certificate will be generated and imple-
mented before the submission due date for this project paper. This is a result
of limited availability of key people within the Sage project, whose involvement
is necessary for implementation.

5.4 Untrusted Code

One of the key challenges and perhaps the most substantial threat to Sage
stems from the nature and architecture of the application. Sage allows users
to not only run calculations and formulas, but to directly execute code on the
server, using various programming languages and back-end processing engines.
Such powerful feature comes at a great cost from security perspective. Allowing
users to run any code on the server means that users are also capable of running
malicious code. Malicious code can not only place the Sage users, information
and platform at risk, but can also threaten external systems and resources. Sage
deployments can therefore become a ’launching ground’ for attackers, botnet
operators and other malicious parties. Such scenario puts the Sage project and
server operators at an additional, indirect risk. They may be held responsible
(and perhaps even legally liable [49]) for unauthorised or illegal actions launched
from their server(s).

Therefore, one of the principal approaches of mitigating such risk is trying to
contain and isolate processes running untrusted user-supplied code from other
processes, systems and resources. Additional mitigation options which can be
used in unison with any containment and isolation techniques include filtering
for untrusted instructions, limiting the availability of certain ’insecure’ func-
tions, as well as using the least privilege concepts and only allowing a subset of

57

users such access.

As unique and as flexible as the Sage architecture is, and as complex it may be
to solve its security challenges, it appears to share some of the security problems
that are faced by service providers of one of the increasingly popular areas in
Information Technology, namely: Cloud Computing and Software as a Service.
Those problems however, are far from new, and are at the core design principles
for secure systems: e.g. separation of privilege, least privilege [81], preventing
access to the layer below [34] and compartmentalization [61].

“Cloud Computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the datacenters that provide
those services. The services themselves have long been referred to as Software
as a Service (SaaS). The datacenter hardware and software is what we will call
a Cloud.” [3]

Software as a Service (SaaS), Service Oriented Computing (SOC), Service Ori-
ented Architecture (SOA) [4] [73] and Cloud/Grid/Utility Computing usually
run different user applications or services on shared data centre resources in
order to ensure economies of scale and lower cost of ownership, utilising virtu-
alisation technologies [107] [8].

This project paper does not attempt to go into much detail covering the dif-
ferent types of risks associated with cloud computing and service oriented ar-
chitectures. However, one area of commonality with Sage which is going to be
explored further, is the usage of shared resources by different users. In cloud
computing, if a user introduces malicious code or a misbehaving application - it
can potentially affect other applications and user data on the shared resource.
This scenario is similar to the Sage architecture, where users run computations
and code directly on the Sage server.

The following sections attempt to give a brief overview of some of the available
process isolation and containment methods available today, as they apply to
shared resource environments. Such environments range from modern operating
systems to virtualised platforms and cloud computing resources. Each method
will be assessed based on the Sage requirements, perceived benefits or drawbacks
and ease or difficulty of implementation.

5.4.1 Operating System Protection

Most modern operating systems provide at least a basic level of security for
processes. User and System level processes are executed using different privi-
lege levels, and each process memory space, registers and process control block
data is protected by the operating system based on its protection domain [97].
However, user processes are still able to perform a variety of operations on a
typical Unix/Linux platform, including binding to sockets, spawning threads
and child-processes, consuming CPU, memory and disk space, accessing the
filesystem etc. Such access can be used to launch attacks on other processes
or systems or used locally in order to elevate privileges (e.g. via exploiting of
a buffer overflow attack on a vulnerable library or local process). Therefore,
these operations can and should be limited by using standard operating system
facilities where possible. Sage should utilise as many of the following process

58

constraining, isolation and protection techniques:

• Each Sage process should run using a different Unix UID/GID to utilise
the operating system built-in protection domains.

• Ensure file system permissions are set to the minimal required to allow
a process to run. Typically read/write access will only be enabled to a
per-process storage area with the sticky bit set. Setting the sticky bit may
also help protecting against race conditions [5].

• Run processes in a chroot environment [75]. However note chroot envi-
ronments consume more disk space, require configuration, and can still be
’escaped’ from by some attacks, particularly if not configured securely [15].

• Enforce resource limits per user / process - using mechanisms such as
ulimit. (The authors of [20] suggest ulimit, as well as additional operating
system security enhancements for securing untrusted mobile code; Some
of their suggestions are reflected on other items on this list).

• Use logging and monitoring mechanisms to track misbehaving processes
and suspicious error messages.

5.4.2 Security Add-ons

The controls and options mentioned on the previous section demonstrate a num-
ber of options to reinforce the built-in (Unix based) operating system security.
However, some areas are not natively supported by the operating system, and
can be augmented by adding enhanced security mechanisms to further restrict
processes running on the system. This section touches briefly on some of the
leading tools in this area.

• SELinux - Security-Enhanced Linux [65], provides a flexible policy to al-
low an extensive set of security controls, including (but not limited to):
confining the potential damage caused through an exploit, protecting priv-
ileged process from executing malicious code and preventing user processes
from interfering with system processes [89]. SELinux provides a powerful
set of security mechanisms. However, it is considered difficult to configure
and fine-tune even for security experts [57].

• AppArmor [68] - is similar to SELinux, but is considered less comprehen-
sive yet much simpler and easier to maintain and manage [77]. AppArmor
seems relatively suitable to an application like Sage, since it is applica-
tion and process centric. However, a system-wide protection is preferable
from a security perspective. AppArmor is an open source project, and
is still bundled with a number of Linux distributions, but support from
Novell has been dropped in 2007, which puts the future of the project in
question [87].

• LIDS - Linux Intrusion Detection System [112] enhance the basic Linux
security by introducing mandatory access control and system-level poli-
cies. LIDS support a concept referred to as Trusted Domain Enforcement

59

(TDE). TDE aids in application sandboxing, a more powerful version of
chroot [109]. LIDS uses an Access Control List (ACL) system similar
to IPTables [67]. It allows restricting access in several ways: file system
protection, devices, important system processes, network restrictions (in-
cluding sniffing protection, socket binding restrictions and port scanning
detection) and others [111].

• RSBAC - Rule Set Based Access Control [72] is a similar framework to
SELinux (both in terms of capabilities and complexity of implementation
and management). RSBAC is based on the Generalized Framework for
Access Control (GFAC) [1]. Out of the box, RSBAC does not come with
a pre-defined policy and may therefore be difficult to set up initially [47].
In terms of flexibility, stability and extensibility, it appears to provide a
good alternative to SELinux and LIDS to consider.

• grsecurity [91] offers configuration-free operation and protection of ad-
dress space attacks such as buffer overflow and fork bombs. grsecurity
also uses an ACL system which includes IP and TCP based restrictions
as well as robust auditing and logging system. It is considered simpler to
install and use than SELinux [24] and also provides chroot hardening.

If used appropriately, any one of these add-ons should increase the Sage process
compartmentalization and isolation and could prevent attacks on other pro-
cesses, hosts and networks. It is difficult to recommend any particular add-on
from the above list as the most suitable one for Sage. The decision should be
made on the balance of ease of installation, use, maintenance and simplicity of
inclusion as a Sage package or as an add-on option.

5.4.3 Network Isolation

Network isolation is an important element to protect Sage against attack prop-
agation and reduce exposure of internal and external systems. If a malicious
code is running on Sage, it may attempt to attack external systems, establish a
covert channel to its operator, or send and retrieve information. Blocking exter-
nal network access and isolating the process from other network resources can
mitigate such threats. Any network filtering, firewall or intrusion detection and
prevention techniques can be used. IPTables [67] is probably the simplest and
easiest tool to implement as a first line of defence. Network isolation can also
assist in creation of a barrier to enforce the trust boundary between the Sage
Notebook and the Sage Processors. More elaborate network restrictions can be
implemented by using security add-on techniques mentioned in section 5.4.2.
It is important to understand that network isolation by itself does not provide
much protection for localised attacks and attacks which utilise existing resources
(e.g. filesystem, memory) as well as attacks over existing authorised communi-
cation channels. Network isolation, as its name suggests, assists in containment
and isolation of processes and therefore aid in limiting attack propagation.

60

5.4.4 Virtualisation

The use of virtualisation in the context of grid and cloud computing was men-
tioned briefly on Section 5.4. Virtualisation is not a new technology, and was
first used in the 1960s. It however offers a number of benefits and seems to be-
come more and more popular, with numerous commercial and research projects
available on commodity hardware. Amongst the many benefits, the ability to
provide separation of services can improve security and portability [12]. Vir-
tualisation can take several forms, from virtualisation of the filesystem (as the
case in chroot, mentioned in section 5.4.1, or a more elaborate copy-on-write
filesystem called Solitude [45]), via operating system virtualisation using con-
tainers [90], through to hardware abstraction and emulation techniques using
hypervisors [80] and hardware virtualisation support, such as Intel VT and
AMD-V [21]. Whilst virtualisation vendors and research papers appear to men-
tion the potential for increased security [51] [21], security and isolation in a
virtualised environment isn’t guaranteed. As several research papers suggest,
security of the virtualisation platforms can be compromised and improved fur-
ther [71] [32] [79].

Nevertheless, in the context of Sage, even if virtualisation does not guarantee
the ’ultimate’ solution from a security perspective, it can serve a number of
purposes by improving process isolation and for running untrusted code:

• De-coupling of the Sage Notebook and processors can be easily achieved
using virtualisation. One of the core architectural issues covered in the
threat model, was the lack of separation between the Notebook and the
processors, which are placed on separate trust areas. Separation of the
two is therefore key to improving security. The Sage project is likely to
prefer to ’bundle’ both the notebook and the backend processors into one
distributable package. Bundling a virtual machine, or packaging Sage
into virtual machine components can assist in creating better separation
between the two components.

• Virtualisation could provide potentially simpler to implement isolation
than some of the techniques mentioned on previous sections. Simplicity
and ease of implementation can translate to better security in practice
if the choice is between (theoretically insecure) virtualisation, and not
implementing any isolation techniques at all. Security of virtualisation
software is also likely to increase and become a concern of many. Sage is
not the only software to benefit from improved security in virtualisation
platforms.

• Performance can also be better controlled through virtualisation. Con-
trolling performance of misbehaving processes can assist in prevention of
denial of service, and provide more stability. In addition, multiple virtual
machines can be used on multiple hardware platforms for load balancing
and added redundancy.

• File system isolation may be easier to implement using virtualisation. ch-
root techniques are effective, but perhaps not as easy to maintain and not
necessarily more secure.

61

• Processor virtual machines can be ’disposable’. Since no persistent data
is normally stored on the processing engines, virtual machines can be
restarted to a ’clean’ state. Such an approach can also help against rootkits
and malware which may have penetrated. The more frequent the disposal
process, the smaller the window of attack.

• Portability can improve across different hardware platform. This is not
a pure security advantage. However, having Sage optimised for one plat-
form ensures the code is less complex, which aids in auditing and proving
security.

As mentioned on section 4.1, the sagenb.org server is already running on a virtual
server and therefore enjoys some of the benefits virtualisation can offer. It’s
important to remember that the sagenb.org server runs both the notebook server
and processing engines on the same virtual machine. Virtualisation technologies
are therefore recommended to be used further with Sage and particularly to de-
couple the notebook from the processor engine(s). Usage of virtualisation should
augment the techniques mentioned on previous sections, not replace them.

62

Chapter 6

Conclusion

The Sage open source project presents several interesting information security
challenges. Some of the identified security threats and vulnerabilities can be rel-
atively easily mitigated, whilst others may require more substantial investment
in time and resources.

When considering Sage, it is difficult to come to a clear conclusion whether the
open source nature of the project contributed to its security, or detracted from
it - by the fact that the source code and other information is readily available.

It appears that very few of the threats were discovered purely by looking at
the source code of the application. The majority of the threats would still be
relatively easy to identify simply by using the application, even with no access
to code. In that respect, publishing the source code did not appear to put
the application at much additional risk. However, leaving this project paper
aside1, the open source nature of Sage, and the ’many eyeballs’ principle did
not seem to provide much insight and contribution from an information security
perspective. The Sage project is comprised of many highly dedicated, multi-
faceted and very talented individuals. However, it appears that most of those
members of the community aren’t particularly concerned with security. The
open and friendly nature of the project is to a large extent opposed to putting
barriers and mounting protection. It promotes collaboration and trust instead.

It is not anticipated that the Sage project would implement all of the recom-
mendations on this paper, perhaps only a small part of them. However, it is
hoped that the paper can serve as a basis for further discussion and future work.
Some improvements have already been initiated, and others are in discussion or
planned for the future. A recent online discussion [11] has begun, suggesting
a rewrite of the notebook and de-coupling it from the processing engine. This
discussion was generated by developers from a ’spin-off’ project, similar to Sage
Notebook, called codenode [99], providing users with web access to Python and
Sage.

1although some can claim this paper does in fact prove the opposite, and it cannot therefore
be discounted.

63

The work presented on this paper would hopefully assist not only Sage but
also codenode. Other open and closed source projects can perhaps compare
their development process to the Sage one, and use similar threat modelling
methodologies to analyse threats to their code review and approval process
as well as their application itself. Some of the coverage of process isolation
and protection techniques might give ideas to other application developers and
system owners, particularly when dealing with untrusted code.

Finally, contribution to open source projects can take many forms. Humbled
by the talent and dedication of so many volunteers and collaborators and their
achievements, it is hoped that this paper provided a welcome contribution to at
least one such project.

64

Bibliography

[1] M.D. Abrams, KW Eggers, L. LaPadula, and I. Olson. A generalized
framework for access control: An informal description. In Proceedings of
the 13th National Computer Security Conference, pages 135–143, 1990.

[2] Y. Aner. Sage Development Process Threat Model. Available at http://
groups.google.com/group/sage-devel/msg/1f851e27f5500712. Last
accessed, 18 August 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Kon-
winski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, et al. Above
the clouds: A Berkeley view of cloud computing. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28,
2009. Available at http://www.eecs.berkeley.edu/Pubs/TechRpts/
2009/EECS-2009-28.pdf. Last accessed, 28 August 2009.

[4] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, and
M. Munro. Service-based software: the future for flexible software. In
Software Engineering Conference, 2000. APSEC 2000. Proceedings. Sev-
enth Asia-Pacific, pages 214–221, 2000.

[5] M. Bishop and M. Dilger. Checking for race conditions in file accesses.
Computing systems, 2(2):131–152, 1996.

[6] B. Boehm and V.R. Basili. Software defect reduction top 10 list. IEEE
Computer, 34(1):135–137, 2001.

[7] S R Bourne. Unix time-sharing system: The unix shell. Bell System
Technical Journal, (57):1971–1990, 1978.

[8] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud
computing and emerging IT platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation Computer Systems,
25(6):599–616, 2009.

[9] C. Castelluccia, E. Mykletun, and G. Tsudik. Improving secure server
performance by re-balancing SSL/TLS handshakes. In Proceedings of the
2006 ACM Symposium on Information, computer and communications
security, pages 26–34. ACM New York, NY, USA, 2006.

[10] CERT Coordination Center, Software Engineering Institute,Carnegie Mel-
lon University. malicious HTML tags embedded in client web requests.

65

Technical report, CA-2000-02, 2000. Available at http://www.cert.org/
advisories/CA-2000-02.html. Last accessed, 28 August 2009.

[11] O. Certik. notebook rewrite. Available at http://groups.google.
com/group/sage-devel/browse_thread/thread/65ca1e0489a0a980/
c3abd60f1e13a3a3. Last accessed, 24 August 2009.

[12] P.M. Chen and B.D. Noble. When virtual is better than real. In Proceed-
ings of the 2001 Workshop on Hot Topics in Operating Systems (HotOS),
pages 133–138, 2001.

[13] B. Chess and G. McGraw. Static analysis for security. IEEE Security &
Privacy, pages 76–79, 2004.

[14] S. Christey and R.A. Martin. Vulnerability type distributions in CVE.
Common Weakness Enumeration, version, 1.1, 2007. Available at http:
//cwe.mitre.org/documents/vuln-trends.html. Last accessed, 30 Au-
gust 2009.

[15] A. Chuvakin. Using Chroot Securely. Available at http://www.
linuxsecurity.com/content/view/117632/49/, 2007. Last accessed, 21
August 2009.

[16] Coverity. Coverity Prevent - Static Analysis. Available at http://
www.coverity.com/products/coverity-prevent.html. Last accessed,
27 July 2009.

[17] W. Diffie. Risky business: Keeping security a secret. Available at http:
//news.zdnet.com/2100-9595_22-127072.html, 2003. Last accessed,
14 July 2009.

[18] D. Evans and D. Larochelle. Improving security using extensible
lightweight static analysis. IEEE software, pages 42–51, 2002.

[19] D.C. Feldmeier and P.R. Karn. UNIX Password Security-Ten Years Later.
In Proceedings of the 9th Annual International Cryptology Conference on
Advances in Cryptology, pages 44–63. Springer-Verlag London, UK, 1989.

[20] V. Felmetsger and G. Vigna. Exploiting OS-level mechanisms to imple-
ment mobile code security. In 10th IEEE International Conference on
Engineering of Complex Computer Systems, 2005. ICECCS 2005. Pro-
ceedings, pages 234–243, 2005.

[21] J. Fisher-Ogden. Hardware support for efficient virtualization. Available
at http://cseweb.ucsd.edu/~jfisherogden/hardwareVirt.pdf, 2006.
Last accessed, 25 August 2009.

[22] B. Foote and J. Yoder. Big ball of mud. In Pattern Languages of Program
Design, pages 653–692. Addison-Wesley, 1999.

[23] Django Software Foundation. User authentication in Django. Available
at http://docs.djangoproject.com/en/dev/topics/auth/. Last ac-
cessed, 25 July 2009.

66

[24] M. Fox, J. Giordano, L. Stotler, and A. Thomas. Selinux
and grsecurity: A case study comparing linux security kernel en-
hancements. Available at http://www.cs.virginia.edu/~jcg8f/
GrsecuritySELinuxCaseStudy.pdf, 2003. Last accessed, 27 August
2009.

[25] Free Software Foundation. The free software definition. Available at
http://www.fsf.org/licensing/essays/free-sw.html. Last accessed,
14 July 2009.

[26] Free Software Foundation. GNU General Public License. Available at
http://www.gnu.org/licenses/gpl.html. Last accessed, 28 July 2009.

[27] Free Software Foundation. The GNU Privacy Guard. Available at http:
//www.gnupg.org/. Last accessed, 28 July 2009.

[28] Free Software Foundation. Selling Free Software. Available at http:
//www.gnu.org/philosophy/selling.html. Last accessed, 28 July 2009.

[29] The GAP Group. GAP - Groups, Algorithms, Programming - a System for
Computational Discrete Algebra. Available at http://www.gap-system.
org/. Last accessed, 28 July 2009.

[30] J. Gardner. Authkit - WSGI Authentication and Authorization Tools.
Available at http://authkit.org/. Last accessed, 25 July 2009.

[31] J.J. Garrett et al. Ajax: A new approach to web applications. Adaptive
path, February 18, 2005. Available at http://www.adaptivepath.com/
publications/essays/archives/000385.php. Last accessed, 27 August
2009.

[32] C. Gebhardt and A. Tomlinson. Security consideration for virtualiza-
tion. Technical Report RHUL–MA–2008–16, Department of Mathematics,
Royal Holloway, University of London, 2008. Available at http://www.
ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-16.pdf. Last ac-
cessed, 28 August 2009.

[33] A. Ghitza. checklist for reviewing an spkg? Available at
http://groups.google.com/group/sage-devel/browse_thread/
thread/030ff5c32e632936#. Last accessed, 18 August 2009.

[34] D. Gollmann. Computer security. John Wiley & Sons, second edition,
2005.

[35] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular A computer
algebra system for polynomial computations. Available at http://www.
singular.uni-kl.de. Last accessed, 28 July 2009.

[36] R. Harrison. Lightweight Directory Access Protocol (LDAP): Authenti-
cation Methods and Security Mechanisms. RFC 4513, Internet Engineer-
ing Task Force, June 2006. Available at http://tools.ietf.org/html/
rfc4513. Last accessed, 28 August 2009.

[37] J.H. Hoepman and B. Jacobs. Increased security through open source.
COMMUNICATIONS–ACM, 50:79–84, 2007.

67

[38] M. Howard and D.E. Leblanc. Writing secure code. Microsoft Press,
second edition, 2002.

[39] M. Howard and S. Lipner. The Security Development Lifecycle. Microsoft
Press, 2006.

[40] T. Howlett. Open Source Security Tools: Pratical Guide to Security Ap-
plications, A. Prentice Hall PTR Upper Saddle River, NJ, USA, 2004.

[41] Y.W. Huang, F. Yu, C. Hang, C.H. Tsai, D.T. Lee, and S.Y. Kuo. Se-
curing web application code by static analysis and runtime protection.
In Proceedings of the 13th international conference on World Wide Web,
pages 40–52. ACM New York, NY, USA, 2004.

[42] IBM Internet Security Systems. X-Force R©2008 Midyear Trend Statis-
tics. Available at http://www-935.ibm.com/services/us/iss/xforce/
midyearreport/xforce-midyear-report-2008.pdf. Last accessed, 17
August 2009.

[43] Open Source Initiative. Available at http://www.opensource.org. Last
accessed, 14 July 2009.

[44] ISO/IEC. ISO/IEC 27005:2008 Information technology - Security tech-
niques - Information security risk management. First edition, Interna-
tional Organization for Standardization, Geneva, Switzerland., 2008.

[45] S. Jain, F. Shafique, V. Djeric, and A. Goel. Application-level isolation and
recovery with solitude. In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, pages 95–107. ACM
New York, NY, USA, 2008.

[46] M. Jakobsson. Modeling and Preventing Phishing Attacks. In Financial
cryptography and data security: 9th international conference, FC 2005,
Roseau, The Commonwealth of Dominica, February 28-March 3, 2005:
revised papers, page 89. Springer Verlag, 2005.

[47] M. Jawurek. RSBAC–a framework for enhanced Linux system security.
In Dependable Distributed Systems, Laboratory of dependable distributed
systems, RWTH Aachen University, 2006. Available at http://rsbac.
org/doc/media/rsbac-marek2006.pdf. Last accessed, 28 August 2009.

[48] A. Joshi, S.T. King, G.W. Dunlap, and P.M. Chen. Detecting past and
present intrusions through vulnerability-specific predicates. In Proceedings
of the twentieth ACM symposium on Operating systems principles, pages
91–104. ACM New York, NY, USA, 2005.

[49] E. Kenneally. Stepping on the digital scale–Duty and Liability for Neg-
ligent Internet Security. ;login: The Magazine of USENIX & SAGE,
26(8):62–77, 2001.

[50] Auguste Kerckhoffs. ”la cryptographie militaire”. Journal des sciences
militaires, vol. IX, 1883. available at http://www.petitcolas.net/
fabien/kerckhoffs/, Last accessed, 14 July 2009.

68

[51] N. Kiyanclar. A survey of virtualization techniques focusing on secure on-
demand cluster computing. Arxiv preprint cs/0511010, 2005. Available
at http://arxiv.org/pdf/cs/0511010. Last Accessed, 30 August 2009.

[52] Klocwork. Klockwork Insight. Available at http://www.klocwork.com/
products/insight.asp. Last accessed, 27 July 2009.

[53] J. Kohl and C. Neuman. The Kerberos network authentication service
(v5). RFC 1510, Internet Engineering Task Force, 1993. Available at
http://tools.ietf.org/html/rfc1510. Last accessed, 28 August 2009.

[54] Vassiliki Koutsonikola and Athena Vakali. LDAP: Framework, Practices,
and Trends. IEEE Internet Computing, 8(5):66–72, 2004.

[55] K.A. Kozar. Representing systems with data flow diagrams. Available at
http://spot.colorado.edu/~kozar/DFD.html, 1997. Last accessed, 27
August 2009.

[56] P.G. Larsen, N. Plat, and H. Toetenel. A formal semantics of data flow
diagrams. Formal aspects of Computing, 6(6):586–606, 1994.

[57] N. Li, Z. Mao, and H. Chen. Usable mandatory integrity protection for
operating systems. In IEEE Symposium on Security and Privacy, 2007.
SP’07, pages 164–178, 2007.

[58] Mailman, the GNU Mailing List Manager. Available at http://www.gnu.
org/software/mailman/index.html. Last accessed, 18 July 2009.

[59] A. Martelli and D. Ascher. Python cookbook. O’Reilly Media, Inc., 2005.

[60] C. McDonough. repoze.who - wsgi authentication middleware. Available
at http://docs.repoze.org/who/. Last accessed, 25 July 2009.

[61] G. McGraw and Viega J. Software security principles: Part 3. Available
at http://www.ibm.com/developerworks/library/s-priv.html, 2000.
Last accessed, 21 August 2009.

[62] Gary McGraw. Software security. IEEE Security & Privacy, March/April
2004.

[63] Microsoft. Windows Server 2008 Active Directory. Avail-
able at http://www.microsoft.com/windowsserver2008/en/us/
active-directory.aspx. Last accessed, 5 August 2009.

[64] G. Narea. repoze.what - authorization for wsgi applications. Available
at http://what.repoze.org/docs/1.x/. Last accessed, 25 July 2009.

[65] National Security Agency. Security-Enhanced Linux. Available at http:
//www.nsa.gov/research/selinux/index.shtml. Last accessed, 21 Au-
gust 2009.

[66] R.M. Needham and M.D. Schroeder. Using encryption for authentication
in large networks of computers. COMMUNICATIONS–ACM, 21(12):993–
999, 1978.

69

[67] Netfilter.org. The netfilter.org iptables project. Available at http:
//www.netfilter.org/projects/iptables/index.html. Last accessed,
28 July 2009.

[68] Novell. Project AppArmor. Available at http://forge.novell.com/
modules/xfmod/project/?apparmor. Last accessed, 21 August 2009.

[69] OpenBSD. OpenSSH. Available at http://www.openssh.com/. Last
accessed, 28 July 2009.

[70] OpenLDAP Foundation. OpenLDAP - community developed LDAP Soft-
ware. Available at http://www.openldap.org/. Last accessed, 5 August
2009.

[71] T. Ormandy. An empirical study into the security exposure to host of
hostile virtualized environments. In CanSecWest 2007: Applied Security
Conference, 2007.

[72] A. Ott. RSBAC – Rule Set Based Access Control. Available at http:
//www.rsbac.org/. Last accessed, 22 August 2009.

[73] M.P. Papazoglou. Service-oriented computing: Concepts, characteristics
and directions. In Proceedings of the Fourth International Conference
on Web Information Systems Engineering, pages 3–12. NW Washington:
IEEE Computer Society, 2003.

[74] LD Paulson. Building rich web applications with Ajax. Computer,
38(10):14–17, 2005.

[75] V. Prevelakis and D. Spinellis. Sandboxing applications. In Proceedings of
the USENIX Technical Annual Conference, Freenix Track, pages 119–126,
2001.

[76] Python Software Foundation. pickle - Python Object Serialization. Avail-
able at http://docs.python.org/library/pickle.html. Last accessed,
28 July 2009.

[77] N.A. Quynh, R. Ando, and Y. Takefuji. Centralized security policy sup-
port for virtual machine. In LISA ’06: Proceedings of the 20th conference
on Large Installation System Administration, pages 79–87, Berkeley, CA,
USA, 2006. USENIX Association.

[78] E. Raymond. The cathedral and the bazaar. Knowledge, Technology, and
Policy, 12(3):23–49, 1999.

[79] J.S. Reuben. A Survey on Virtual Machine Security. Helsinki University of
Technology, 2007. Available at http://www.tml.tkk.fi/Publications/
C/25/papers/Reuben_final.pdf. Last accessed, 30 August 2009.

[80] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. Van Doorn, J.L. Grif-
fin, and S. Berger. sHype: Secure hypervisor approach to trusted
virtualized systems. IBM Research Report RC23511, 2005. Avail-
able at http://domino.watson.ibm.com/library/cyberdig.nsf/
papers/265c8e3a6f95ca8d85256fa1005cbf0f/$file/rc23511.pdf.
Last accessed, 30 August 2009.

70

[81] J.H. Saltzer and M.D. Schroeder. The protection of information in com-
puter systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[82] J. Scambray, M. Shema, and C. Sima. Hacking Exposed Web Applications.
McGraw-Hill Osborne Media, second edition, 2006.

[83] Bruce Schneier. Open source and security. Crypto-Gram. Counterpane
Internet Security, Inc., September 15, 1999. Available at http://www.
counterpane.com/crypto-gram-9909.html. Last accessed, 25 July 2009.

[84] D. Scott and R. Sharp. Specifying and enforcing application-level web
security policies. IEEE Transactions on Knowledge and data Engineering,
pages 771–783, 2003.

[85] Michael Scovetta. YASCA - Yet Another Source Code Analyzer. Available
at http://sourceforge.net/projects/yasca/. Last accessed, 27 July
2009.

[86] Secure Software Inc. RATS - Rough Auditing Tool for Security. Avail-
able at http://www.fortify.com/security-resources/rats.jsp. Last
accessed, 27 July 2009.

[87] S. Shankland. Novell lays off AppArmor programmers. Available
at http://news.cnet.com/8301-13580_3-9796140-39.html?part=
rss&subj=news&tag=2547-1_3-0-5, 2007. Last accessed, 21 August
2009.

[88] A. Shostack. Experiences Threat Modeling at Microsoft. In Modeling
Security Workshop. Dept. of Computing, Lancaster University, UK, 2008.
Available at: http://blogs.msdn.com/sdl/attachment/8991806.ashx. Last
accessed, 27 August 2009.

[89] S. Smalley and T. Fraser. A Security Policy Configuration for the Security-
Enhanced Linux. 2001. Available at http://www.artware.qc.ca/~fil/
banned/selinux/policy-200012181053.pdf. Last accessed, 28 August
2009.

[90] S. Soltesz, H. Pötzl, M.E. Fiuczynski, A. Bavier, and L. Peterson.
Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors. In Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
pages 275–287. ACM New York, NY, USA, 2007.

[91] B. Spengler. grsecurity. Available at http://www.grsecurity.net/
index.php. Last accessed, 22 August 2009.

[92] W. A. Stein et al. Sage Components. The Sage Development Team.
Available at http://www.sagemath.org/links-components.html. Last
accessed, 28 July 2009.

[93] W. A. Stein et al. Sage Notebook Public Server. The Sage Development
Team. Available at http://www.sagenb.org/. Last accessed, 28 July
2009.

71

[94] W. A. Stein et al. Sage Mathematics Software (Version 4.1.1). The
Sage Development Team, 2009. http://www.sagemath.org. Last ac-
cessed, 25 August 2009.

[95] Z. Su and G. Wassermann. The essence of command injection attacks in
web applications. In Annual Symposium on Principles of Programming
Languages, pages 372–382. ACM New York, NY, USA, 2006.

[96] F. Swiderski and W. Snyder. Threat Modeling. Microsoft Press, 2004.

[97] A.S. Tanenbaum. Modern Operating Systems. Prentice Hall Press, Upper
Saddle River, NJ, USA, third edition, 2007.

[98] G. Tassey. The economic impacts of inadequate infrastructure for software
testing. National Institute of Standards and Technology RTI Project, 2002.
Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.122.3316&rep=rep1&type=pdf. Last accessed, 30 August 2009.

[99] The codenode group. codenode. Available at http://codenode.org/.
Last accessed, 24 August 2009.

[100] G. Tornaria. Question about notebook server setup in a VM.
Available at http://groups.google.com/group/sage-devel/browse_
thread/thread/3927795c8f1c8a8f/2f21594bd6486d6. Last accessed,
29 August 2009.

[101] P. Torr. Demystifying the threat-modeling process. IEEE Security &
Privacy, pages 66–70, 2005.

[102] TrueCrypt Foundation. Truecrypt - Free open-source disk encryption
software for Windows Vista/XP, Mac OS X, and Linux. Available at
http://www.truecrypt.org/. Last accessed, 28 July 2009.

[103] K. Tsipenyuk, B. Chess, and G. McGraw. Seven pernicious kingdoms: A
taxonomy of software security errors. IEEE Security & Privacy, 3(6):81–
84, 2005.

[104] G. van Rossum and T. Peters. PEP-307 Extensions to the pickle proto-
col. Available at http://www.python.org/dev/peps/pep-0307/. Last
accessed, 28 July 2009.

[105] J. Viega. The myth of open source security. Available at http:
//www.developer.com/tech/article.php/10923_626641_1, 2000. Last
accessed, 18 July 2009.

[106] J. Viega. The Myths of Security: What the Computer Security Industry
Doesn’t Want You to Know. O’Reilly Media, Inc, 2009.

[107] M.A. Vouk. Cloud computing–Issues, research and implementations. In
Information Technology Interfaces, 2008. ITI 2008. 30th International
Conference on, pages 31–40, 2008.

[108] P. Watkins. Cross Site Request Forgeries (CSRF). BugTraq posting, 2001.
Available at http://www.tux.org/~peterw/csrf.txt. Last accessed, 27
August 2009.

72

[109] Y. Wilajati Purna. LIDS Trusted Domain Enforcement (TDE):
An Introduction. Available at http://www.lids.org/document/
LIDS-TDE-feature.txt, 2004. Last accessed, 21 August 2009.

[110] B. Witten, C. Landwehr, and M. Caloyannides. Does open source improve
system security? IEEE SOFTWARE, pages 57–61, 2001.

[111] H. XIE. LIDS Hacking HOWTO. Available at http://www.lids.org/
lids-howto/lids-hacking-howto.html, 2000. Last accessed, 21 August
2009.

[112] H. XIE, P. Biondi, Y. Wilajati Purna, S. Klein, and K. Omo. LIDS –
Linux Intrusion Detection System. Available at http://www.lids.org/.
Last accessed, 21 August 2009.

[113] T. Ylonen. The Secure Shell (SSH) Authentication Protocol. RFC 4252,
Internet Engineering Task Force, January 2006. Available at http://
tools.ietf.org/html/rfc4252. Last accessed, 28 August 2009.

73

