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Superconducting proximity effect through a magnetic domain wall
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We study the superconducting proximity effect in a superconductor-ferromagnet-superconductor heterostruc-
ture containing a domain wall in the ferromagnetic region. For the ferromagnet we assume an alloy with an
exchange splitting of the conduction bands comparable to the superconducting gaps. We calculate the modi-
fication of the density of states in the center of the domain wall as a result of the proximity effect. We show that
the density of states is sensitive to domain-wall parameters due to triplet-pairing correlations created in the
vicinity of the domain wall. We present a theoretical tool which in a very effective way enables retaining the
full spatially dependent spin-space structure of the problem.
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Most promising candidates for mesoscopic devices with
novel functionality are hybrid structures containing super-
conducting elements. The key phenomenon that controls the
behavior of such systems is the proximity effect. When a
superconducting material is placed in contact with a normal
metal (N), the superconducting pair correlations leak over to
the normal-metal side, changing its conduction properties in
the vicinity of the separating interface. Quite similarly, the
properties on the superconducting side are also changed (the
energy gap A, is suppressed) due to the contact to a normal
metal. An alternative but equivalent way of thinking about
the proximity effect is through Andreev-reflection' pro-
cesses: an incoming electron from the normal side is trans-
mitted together with another one as a Cooper pair into the
superconducting side. This phase-coherent electron-hole con-
version results in a nonzero pair amplitude in the normal
metal.

In the diffusive limit, the correlations relating to an inci-
dent electron with an energy E (the range of energies being
set by the temperature 7) above the che_mical potential ex-
tend a characteristic distance of &y=+VD/E into the normal
metal;2 here D is the diffusion constant in N. If the extent of
the N region is finite, another energy scale, Ep~ D/L?, enters
the problem; L denotes the width of N. This so-called Thou-
less energy has associated with it one of the generic features
of diffusive superconductor-normal-metal heterostructures,
the minigap: the density of states in the normal metal devel-
ops a gap around the chemical potential in a manner similar
to a superconductor (S) but with a smaller magnitude.

If the normal conductor is replaced by a ferromagnet (F),
a multitude of new effects arises due to the emergence of yet
another energy scale, that of the exchange splitting J of the
two spin bands. Both on the theoretical®!! and on the
experimental'>~?° side, interest has grown recently in the rich
physics of such systems. One source for new behavior is that,
in the case with a singlet superconductor, the induced pair
amplitude in the ferromagnet is oscillatory.?! However, the
exchange splitting also gives rise to dephasing, which, in
turn, results in the decay of induced correlations over a char-
acteristic distance &=+/D/(E+J).?? Unfortunately, since J is
of the order of the Fermi energy Ef in typical ferromagnetic
metals, this distance is very short. Still, experimental indica-
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tion of the oscillatory behavior has been obtained in thin
ferromagnetic layers and, relevant to the present paper, in
weakly ferromagnetic alloys with J < Ej.!>13

Another question of current interest in SF proximity sys-
tems is the role of equal-spin triplet correlations.”2* If cre-
ated, e.g., near magnetic inhomogeneities, such correlations
would not be affected by the exchange splitting but could
penetrate considerably longer distances into F.?* Finally, the
importance of domain walls has also been stressed for the
Andreev conductance.?>?

In this paper, we study a superconductor-ferromagnetic-
superconductor (SFS) structure, shown schematically in Fig.
1, in equilibrium. The ferromagnetic region consists of two
domains with magnetizations oriented in opposite directions.
The domains are separated by a domain wall, where the mag-
netization rotates continuously between the asymptotic val-
ues. While varying in direction, the magnitude J is assumed
constant throughout the F region. We show that the local
density of states (LDOS) in the F region is strongly modified
by the presence of the domain wall. In particular, we show
that it can be very sensitive to the thickness of the domain
wall in a certain parameter region.

Proximity effect is a spatially inhomogeneous phenom-
enon. An appropriate theoretical tool to treat such a problem
is the quasiclassical theory of superconductivity,?”-?® which
in its diffusive version has been formulated by Usadel.”® In
equilibrium, the physical information is contained in the re-

tarded Green functions é(z,E). Here, we assume spatial de-
pendence in the coordinate z only, and E denotes the energy
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FIG. 1. (Color online) SFS structure with two magnetic domains
oriented along the z axis and separated by a domain wall of width
dy; dr denotes the length of the F region and é=VD/A, is the
superconducting coherence length.
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as measured from the chemical potential. The 4 X4 matrix
structure, arising from particle-hole and spin degrees of free-

dom, is denoted by the hat (A) accent,

(20
G=J;_§. (1)

The off-diagonal elements determine the superconducting
pair amplitude. Quantities denoted with the “tilde” are re-

lated to those without one through A(z,E)=A(z,-E")". All
the elements in Eq. (1) are 2X2 spin matrices: e.g., G
=Gap With @, 8={1, | }. The Green functions satisfy the Us-
adel equation,29

. . Dd[. di\ s
[E%3—A—J-&,G]®+——(G®—G>=0, 2)

where the symbol ® denotes matrix multiplication, and
[A,B],=A®B-B®A. In writing Eq. (2) we have followed
the standard way to describe ferromagnetic materials through
a spin-dependent energy shift,”> which has the form E7;
—E7;—J-6. Here, 73 denotes the third Pauli matrix in
Nambu space, the vector J denotes the effective exchange

field of the ferromagnet, and A is the superconducting order
parameter (appropriate for weak-coupling spin-singlet pair-
ing). The components of the vector ¢ and the order param-
eter are given by

Gy
7=\o o) TT\a" o

where o; are Pauli spin matrices, i=x,y,z, and A:Aoioy.
The above procedure is appropriate for describing situations
for which J<Epg, which holds, e.g., for the ferromagnetic
alloys used in Refs. 12 and 13. In writing Eq. (2), we have
chosen the normalization according to

G®G=—1. (4)

The spin-dependent nature of SF proximity systems calls
for a formulation of the quasiclassical theory that retains the
full spin-space structure, especially in studying situations
where the exchange-field orientation varies in space (such as
in a domain wall). Within the Eilenberger theory, a very con-
venient formulation already exists,’ employing the so-called
Riccati parametrization.®'3> The extension of this method to
the Usadel theory was achieved only recently,® and has been
applied to nonequilibrium situations,>* and to FSF systems
with homogeneous magnetizations.>> Here we demonstrate
its usefulness by applying it to an SFS system with a spa-
tially changing magnetization in a domain wall, a case where
the conventional so-called @ parametrization®® is not appli-
cable. The spin-dependent Riccati parametrization,

. ((1+'y® ) 2y

G=-inN® - . ) (5)
-2y -(1+y®%)

with
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= (6)

. (-yep! 0 )
N ( 0 (1-yey"/)

automatically accounts for the normalization (4), which is
essential for practical numerical calculations. It is enough to
determine one 2 X2 matrix in spin space, y. The other, ¥,
follows from the above-mentioned (fundamental) symmetry.
The transport equation for 7y follows from Eq. (2), and
reads®?

dy (dy) F (dy) i .

—_ —_ — PR - — A

2\ )2\ plres ey
—(E-J-o)@y-y@(E+J -0)-Al (7)

Here, the expression for F is obtained by comparing Eq. (1)
with Egs. (5) and (6).

Additionally, boundary conditions are required for the dif-
ferent interfaces of the system. Such conditions have been
formulated by Nazarov.’” The outer surfaces (z=z,) of the
superconductors are assumed to border an insulating region,

and the appropriate condition is r?zé(zo,E)=0, ie.,
d
(e B)=0. (8)
dz

On the other hand, the two inner SF interfaces (Z=Z,-S for the
S side, z=zf for the F side) are assumed in the following
fully transparent (for the case of weak transparency in a simi-
lar system, see Ref. 23). The corresponding boundary condi-

tions in this case are é(zis,E):é(zf,E), o-so'rzé(zf,E)
=070,G(z! ,E), leading to

Wz} E) = Yz} E),

d d
0s L (5.E) = 0L (F E), 9)
dz dz

where og and o refer to the conductivities of S and F, re-
spectively. For simplicity, we have assumed og=o0F, imply-
ing the continuity of the derivative at the interface. We ex-
pect a qualitatively similar picture when assuming a finite,
however not too strong, mismatch in electronic properties.
With the boundary conditions (8) and (9), we have solved
Eq. (7) numerically by an iterative procedure (relaxation
method) in the entire SFS system.

We apply the outlined theory to study the SFS structure of
Fig. 1 in equilibrium. Lengths are given in units of the su-
perconducting coherence length, é&=vD/A,. The spin-singlet
superconductors are chosen to have the same gap magnitude.
The contact areas at the SF interfaces are assumed to be
small enough, so that any gap suppression can be neglected.
The two superconducting regions and the intermediate ferro-
magnet are taken to have fixed lengths of d¢=5¢ and dp
=2¢. We model the domain wall by a varying direction of
J=0,.J,.J,) (keeping the magnitude J=|J| constant), with
J,=0 and
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FIG. 2. (Color online) LDOS as a function of energy for the
system of Fig. 1, calculated in the middle of the F region for dif-
ferent widths dy, of the domain wall. Here, J=0.5 A, dp=2.0 &
For comparison, the dotted line shows the corresponding depen-
dence in the normal-metal case (J=0). The inset shows for J
=0.5 A, the value of the LDOS at the chemical potential (E=0) as
a function of dy.

Je\ _ [cos 0(z) B -2
(J ) —]( sin 6(2) ), 0(z) = — arctan i

Here, dy, isZ an effective domain-wall width parameter. In the
following, we study the influence of the width dy, of a do-
main wall centered in F (zo=dp/2) on the density of states in
the center of the domain wall (z=z).

Knowing y(z,E) from the solution of Eq. (7) with bound-
ary conditions (8) and (9), the quasiclassical Green function
and the (total) LDOS

(10)

N,
Nlz,E) =~ ;"T Im Tr G(z,E) (11)

is determined via Egs. (5) and (6); N, is the normal-state
density of states and Tr denotes the spin trace.

An important characteristic of the value of the LDOS in
superconductor—normal-metal proximity systems is the mini-
gap: the density of states in the normal-metal region shows a
gap of width E, <A, induced by proximity to a supercon-
ductor. The energy E, can be thought of as that of the lowest-
energy Andreev bound state in a finite normal-metal layer.
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FIG. 3. (Color online) LDOS as a function of energy for several
phase differences ¢ between the superconductors, calculated in the
middle of F. Here, J=0.5 A, dr=2.0 & The width of the domain
wall is dyy=0.2 & The inset shows the corresponding LDOS at the
chemical potential (E=0) as a function of ¢.

This convenient physical picture can easily be extended to
single-domain ferromagnets.® The corresponding spin-
dependent energy shift of the quasiparticle and the Andreev-
reflected quasihole by +J leads to a reduction of the energy
of the lowest-lying bound state, and correspondingly of the
minigap, from the expression for a normal metal by J, van-
ishing altogether when J=E, ;_,. This picture is confirmed
by our numerical calculations.

In the inhomogeneously magnetized case of Fig. 1, the
above picture is modified. The effect of the domain wall on
the LDOS is summarized in Fig. 2, which shows N, as a
function of energy for different domain-wall widths dy,. Al-
though the value of J=0.5A, is larger here than the value of
the normal-state minigap E,~0.25A (as seen from the dot-
ted curve in Fig. 2 for J=0), the minigap is reduced to zero
only for larger domain-wall widths dy,=~ 2¢&. For the smallest
width dy=0.2¢, the minigap is only reduced by about 40%.
The additional states which fill the minigap with increasing
domain-wall width are due to spin triplet correlations, which
are sensitive to the direction of J. Our calculations show that
the influence of equal-spin pairing components created by
the domain wall increases. This is reflected by the appear-
ance of additional Andreev bound states inside the gap,
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modifying the LDOS. The relative importance of the triplet
correlations depends on J and dy: as clearly manifested by
Fig. 2, the efficiency of the triplet-inducing mechanism
grows with increasing dy. The inset of Fig. 2 shows the
value of the LDOS at E=0 as a function of dy,. The interest-
ing observation here is that the LDOS at the chemical poten-
tial is very sensitive to the domain-wall width when the latter
is comparable to &.

Finally, with a view toward studying the possible effects
of the domain walls on the supercurrent flowing in an SFS
structure, we have studied the LDOS in the case where there
is a phase difference ¢ between the two superconductors.
This phase difference adds to the one accumulated by the
quasiparticles and quasiholes in the ferromagnetic region
and, thus, modifies the spectrum of Andreev bound states.
Figures 3 and 4 present the LDOS in the middle of the F
region for three domain walls with different widths. In the
inset of Fig. 3, we also show the zero-energy LDOS for a
domain wall of width dy=0.2¢ as a function of the phase
difference. As can be seen in Fig. 4, by a possible tuning of
the domain-wall width dy, one can always find a region of
strongest sensitivity for a given phase difference ¢ and vice
versa. This increases the possibilities of controlling the zero
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energy density of states in the domain wall. The rich struc-
ture exhibited by these results could easily result in highly
nontrivial behavior of the transport current both in equilib-
rium and nonequilibrium situations.

We have studied numerically the LDOS in a heterostruc-
ture consisting of a ferromagnetic alloy sandwiched between
two singlet superconductors. We find strong modifications of
the LDOS caused by the presence of a domain wall. As only
triplet superconducting correlations are sensitive to the direc-
tion of the exchange field, the strong variations in the LDOS
result from the presence of triplet correlations induced by the
spatially varying magnetization. We also find a strong depen-
dence of the density of states in the domain wall on a pos-
sible phase difference between the superconducting order pa-
rameters, giving an additional tool to control its value. This
motivates future studies of the interplay of a supercurrent
and the domain wall (Josephson effect). We hope that the
variety of features observed in our calculations motivates
further experimental research on proximity systems involv-
ing weak ferromagnets.
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