
Authorisation Issues for Mobile Code

in Mobile Systems

Eimear Gallery

Technical Report
RHUL–MA–2007–3

18 May 2007

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Authorisation Issues for
Mobile Code in Mobile

Systems

by

Eimear Gallery

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Department of Mathematics
Royal Holloway, University of London

2006

Abstract

This thesis is concerned with authorisation issues for mobile code in mobile
systems. It is divided into three main parts. Part I covers the development
of a policy-based framework for the authorisation of mobile code and agents
by host systems. Part II addresses the secure download, storage and execution
of a conditional access application, used in the secure distribution of digital
video broadcast content. Part III explores the way in which trusted computing
technology may be used in the robust implementation of OMA DRM version 2.

In part I of this thesis, we construct a policy-based mobile code and agent
authorisation framework, with the objective of providing both mobile devices
and service providers with the ability to assign appropriate privileges to incom-
ing executables. Whilst mobile code and agent authorisation mechanisms have
previously been considered in a general context, this thesis focuses on the special
requirements resulting from mobile code and agent authorisation in a mobile en-
vironment, which restrict the types of solutions that may be viable. Following
the description and analysis of a number of architectural models upon which a
policy-based framework for mobile code and agent authorisation may be con-
structed, we outline a list of features desirable in the definitive underlying archi-
tecture. Specific implementation requirements for the capabilities of the policy
and attribute certificate specification languages and the associated policy engine
are then extracted. Candidate policy specification languages, namely KeyNote
(and Nereus), Ponder (and (D)TPL) and SAML are then examined, and con-
clusions drawn regarding their suitability for framework expression. Finally, the
definitive policy based framework for mobile code and agent authorisation is
described.

In the second part of this thesis, a flexible approach that allows consumer
products to support a wide range of proprietary content protection systems, or
more specifically digital video broadcast conditional access systems, is proposed.
Two protocols for the secure download of content protection software to mobile
devices are described. The protocols apply concepts from trusted computing to
demonstrate that a platform is in a sufficiently trustworthy state before any ap-
plication or associated keys are securely downloaded. The protocols are designed
to allow mobile devices to receive broadcast content protected by proprietary
conditional access applications. Generic protocols are first described, followed
by an analysis of how well the downloaded code is protected in transmission.
How the generic protocols may be implemented using specific trusted comput-
ing technologies is then investigated. For each of the selected trusted computing
technologies, an analysis of how the conditional access application is protected
while in storage and while executing on the mobile host is also presented. We
then examine two previously proposed download protocols, which assume a mo-

2

bile receiver compliant with the XOM and AEGIS system architectures. Both
protocols are then analysed against the security requirements defined for secure
application download, storage and execution. We subsequently give a series
of proposed enhancements to the protocols which are designed to address the
identified shortcomings.

In the final section of this thesis, we examine OMA DRM version 2, which
defines the messages, protocols and mechanisms necessary in order to control
the use of digital content in a mobile environment. However, an organisation,
such as the CMLA, must specify how robust implementations of the OMA DRM
version 2 specification should be, so that content providers can be confident that
their content will be safe on OMA DRM version 2 devices. We take the require-
ments extracted for the robust implementation of the OMA DRM version 2
specification and propose an implementation which meets these requirements
using the TCG architecture and TPM/TSS version 1.2 commands.

3

Acknowledgements

I would like to thank my supervisor Chris Mitchell, who has been a constant
source of knowledge, advice and encouragement throughout the course of my
study.

My thanks to Mobile VCE (www.mobilevce.com), which funded the work com-
pleted in part I of this thesis. This work was completed as part of the Core 2
research program.

I would like to thank Vodafone (in particular Tim Wright and Nick Bone) for
many valuable comments and suggestions, and for originally suggesting the work
completed in part III of this thesis.

I would also like to thank the staff and the other post-graduate students in the
Information Security Group for making my time spent at Royal Holloway both
enjoyable and challenging.

Finally, I would like to thank my family and friends who have been so supportive
throughout this entire process.

4

Declaration

These doctoral studies were conducted under the supervision of Chris Mitchell
and Kenny Paterson. The work presented in this thesis is the result of original
research carried out by myself, in collaboration with others, whilst enrolled in
the Department of Mathematics as a candidate for the degree of Doctor of
Philosophy. This work has not been submitted for any other degree or award in
any other university or educational establishment.

Eimear Gallery

5

Contents

1 Introduction 26
1.1 Motivation and challenges . 28

1.1.1 Part I: Mobile host protection 28
1.1.2 Part II: Mobile code protection 29
1.1.3 Part III: Remote code protection 30

1.2 Structure of thesis . 31
1.3 Contribution of thesis . 35
1.4 List of publications . 39
1.5 Cryptographic primitives . 40

1.5.1 Hash functions . 40
1.5.2 Message authentication codes 41
1.5.3 Symmetric encryption . 42
1.5.4 Asymmetric cryptography 42
1.5.5 Asymmetric encryption 43
1.5.6 Digital signatures . 43
1.5.7 Public key infrastructure 44
1.5.8 Web of trust . 45
1.5.9 Privilege management infrastructure 45
1.5.10 Authentication protocols 46
1.5.11 Freshness mechanisms . 46

1.6 Trusted computing primitives . 47
1.6.1 Trust . 47
1.6.2 Roots of trust . 48
1.6.3 Integrity measurement . 50
1.6.4 Authenticated boot . 50
1.6.5 Secure boot . 51
1.6.6 Attestation . 51
1.6.7 Sealing . 51
1.6.8 Process isolation . 52
1.6.9 Secure I/O . 53

1.7 Definitions . 53

I Mobile host protection 57

2 Mobile code and agent authorisation 58
2.1 Introduction . 59
2.2 Agents . 62

6

CONTENTS

2.3 Mobile agents . 64
2.4 Mobile agent security . 64
2.5 Mobile agent authorisation techniques 66

2.5.1 Code and agent behaviour 66
2.5.2 Code and agent origin . 72
2.5.3 Code and agent integrity 76

2.6 Conclusions . 80

3 Architectural models for mobile code and agent authorisation 83
3.1 Introduction . 84
3.2 Entities involved . 86
3.3 Scenario 1 . 87
3.4 Scenario 2 . 91
3.5 Scenario 3 . 93
3.6 Scenario 4 . 98
3.7 Scenario 5 . 101
3.8 Scenario 6 . 104
3.9 Conclusions . 107

4 A policy engine for mobile code and agent authorisation 110
4.1 Introduction . 112
4.2 The policy engine . 113

4.2.1 Policy statements . 113
4.2.2 Attribute certificates . 114
4.2.3 Authentication evidence 115
4.2.4 Compliance values . 117
4.2.5 The PAP . 117
4.2.6 The PIP . 117
4.2.7 The AP . 118
4.2.8 The TEM . 119
4.2.9 The PDP . 119
4.2.10 The PEP . 119

4.3 Approaches to policy specification 119
4.4 KeyNote . 124

4.4.1 Scenario 1 . 128
4.4.2 Scenario 2 . 134
4.4.3 Scenario 3 . 139
4.4.4 Scenario 4 . 147
4.4.5 Scenarios 5 and 6 . 149
4.4.6 Conclusions . 151

4.5 Ponder . 159
4.5.1 Prior art . 163
4.5.2 Scenario 1 . 169
4.5.3 Scenarios 2 – 6 . 175
4.5.4 Conclusions . 176

4.6 SAML . 177
4.6.1 Scenario 1 . 184
4.6.2 Scenario 2 . 189
4.6.3 Scenarios 3 and 4 . 191
4.6.4 Scenarios 5 and 6 . 195

7

CONTENTS

4.6.5 Conclusions . 196
4.7 Conclusions . 196

5 A policy-based authorisation framework 201
5.1 Introduction . 202
5.2 Requirements . 203
5.3 The framework — A high level view 203
5.4 Design decisions . 207
5.5 Notation . 208
5.6 Assumptions . 209
5.7 Trusted domain server activity 211

5.7.1 Evaluating a mobile agent 211
5.7.2 Attribute certificates . 216
5.7.3 Authentication evidence 219

5.8 End host activity . 219
5.8.1 The PIP . 221
5.8.2 The AP . 221
5.8.3 The TEM . 223
5.8.4 Policy statements . 227
5.8.5 The PDP and PEP . 227
5.8.6 The PAP . 228

5.9 Conclusions . 229

II Mobile code protection 231

6 Conditional access in mobile systems 232
6.1 Introduction . 234
6.2 Conditional access systems . 236

6.2.1 DVB standards . 238
6.2.2 Simulcrypt . 238
6.2.3 Common interface . 239
6.2.4 Limitations of existing mechanisms 240
6.2.5 Modifications required for mobile receivers 241

6.3 Security issues . 242
6.3.1 Security threats . 242
6.3.2 Security services and mechanisms 243

6.4 Conclusions . 245

7 Protocols for secure application download 247
7.1 Introduction . 248
7.2 Model . 248
7.3 Prior art . 250
7.4 Notation . 252
7.5 Assumptions . 253
7.6 Protocol initiation . 257
7.7 Key exchange protocol . 258

7.7.1 Protocol specification . 258
7.7.2 Security analysis of the key exchange protocol 261

7.8 Key agreement protocol . 264

8

CONTENTS

7.8.1 Protocol specification . 264
7.8.2 Security analysis of the key agreement protocol 267

7.9 Conclusions . 269

8 Protocol implementation using trusted computing frameworks270
8.1 Introduction . 272
8.2 Notation . 272
8.3 Implementing the protocols using the TCG specifications 273

8.3.1 Key exchange protocol . 276
8.3.2 Key agreement protocol 286
8.3.3 Implementation specific security analysis 291

8.4 Implementing the protocols using the TCG specification set and
an integrated isolation kernel . 296
8.4.1 Key exchange protocol . 297
8.4.2 Key agreement protocol 298
8.4.3 Implementation specific security analysis 298

8.5 Implementing the protocols using NGSCB 302
8.5.1 Key exchange protocol . 303
8.5.2 Key agreement protocol 304
8.5.3 Implementation specific security analysis 304

8.6 Conclusions . 307

9 Secure application download using XOM and AEGIS architec-
tures 309
9.1 Introduction . 311
9.2 Model . 312
9.3 Notation . 313
9.4 Assumptions . 313
9.5 Protocol initiation . 315
9.6 The XOM application download protocol 316

9.6.1 The XOM system architecture 316
9.6.2 The XOM download protocol 317
9.6.3 Security analysis . 319
9.6.4 Proposed security enhancements/clarifications 325

9.7 The AEGIS application download protocol 327
9.7.1 The AEGIS system architecture 327
9.7.2 The AEGIS download protocol 328
9.7.3 Security analysis . 331
9.7.4 Proposed security enhancements/clarifications 337

9.8 Conclusions . 339

III Remote code protection 341

10 OMA DRM 342
10.1 Introduction . 343

10.1.1 The MPWG . 343
10.1.2 Digital rights management 344
10.1.3 Scope of part III . 345

10.2 DRM . 346

9

CONTENTS

10.3 The OMA . 347
10.4 Model . 348

10.4.1 Functional entities . 348
10.4.2 Functional components 349
10.4.3 Functional architecture 350

10.5 OMA DRM v1 . 350
10.6 OMA DRM v2 . 351
10.7 Conclusions . 354

11 Requirements for a robust implementation of OMA DRM v2 355
11.1 Introduction . 356
11.2 OMA DRM v2 agent installation 357
11.3 The rights object acquisition protocol (ROAP) suite 360

11.3.1 Notation . 360
11.3.2 The 4-pass registration protocol 363
11.3.3 The rights acquisition protocols 368
11.3.4 The 2-pass join domain protocol 373
11.3.5 The 2-pass leave domain protocol 376

11.4 Conclusions . 378

12 A robust implementation of OMA DRM v2 379
12.1 Introduction . 381
12.2 Requirements analysis . 382

12.2.1 Requirement 1 . 382
12.2.2 Requirement 2 – 5 and 8 – 21 384
12.2.3 Requirement 6 . 385
12.2.4 Requirement 7 . 386
12.2.5 Meeting the requirements using a TMP 386

12.3 Model . 387
12.4 Assumptions . 388
12.5 The trusted mobile platform architecture 390
12.6 Authenticated boot . 392
12.7 Secure boot . 394

12.7.1 Prior art . 394
12.7.2 Secure boot using a version 1.1 compliant TPM 398
12.7.3 Secure boot using a version 1.2 compliant TPM 399

12.8 Platform run-time integrity . 403
12.9 Fundamental TSS and TPM command sequences 405

12.9.1 TPM permanent flags . 405
12.9.2 TPM initialisation . 406
12.9.3 TPM startup . 406
12.9.4 Context management . 407
12.9.5 Endorsement key pair generation 410
12.9.6 Accessing the public endorsement key 410
12.9.7 TPM self testing . 412
12.9.8 Enabling the TPM . 412
12.9.9 The ownership flag . 413
12.9.10Taking ownership of the TPM 413
12.9.11TPM activation . 415

12.10Secure storage . 415

10

CONTENTS

12.10.1Key hierarchy . 415
12.10.2 Installing integrity and confidentiality sensitive OMA DRM

v2 data on the device . 416
12.10.3Secure storage of and access control to OMA DRM v2 data418
12.10.4Security of the OMA DRM v2 data while in use on the

device . 426
12.11Platform attestation . 426
12.12Demonstrating privilege . 429
12.13Random number generation . 434
12.14Trusted time source . 435
12.15Conclusions . 436

13 Conclusions 444
13.1 Summary and conclusions . 445

13.1.1 Part I: Mobile host protection 445
13.1.2 Part II: Mobile code protection 454
13.1.3 Part III: Remote code protection 458

13.2 Future work . 460

Bibliography 463

A The TCG specification set 488
A.1 Introduction . 489
A.2 Notation . 490
A.3 The TCG . 490
A.4 A trusted platform . 492
A.5 Entities involved . 493
A.6 The trusted platform subsystem 495

A.6.1 Roots of trust . 495
A.6.2 The TSS . 496

A.7 Properties of a TPM . 498
A.7.1 Protected capabilities and shielded locations 499
A.7.2 TPM functional components 499
A.7.3 PCRs . 502
A.7.4 The endorsement key . 503

A.8 Initialising the TPM . 503
A.9 Enabling, activating and taking ownership of the TPM 505

A.9.1 Enabling the TPM . 505
A.9.2 Enabling ownership of the TPM 506
A.9.3 Activating the TPM . 507
A.9.4 Taking ownership . 508
A.9.5 Clearing the TPM . 509

A.10 Platform identification and certification 510
A.10.1 An endorsement credential 510
A.10.2 A conformance credential 512
A.10.3 A platform credential . 513
A.10.4 Attestation identities . 513
A.10.5 DAA . 517

A.11 Integrity measuring, recording and reporting 518
A.11.1 Platform configuration registers 518

11

CONTENTS

A.11.2 Data integrity register . 520
A.11.3 Integrity measurement . 521
A.11.4 Assessing the software state of a platform 522

A.12 Locality . 524
A.13 Protected storage . 525

A.13.1 Object hierarchy . 526
A.13.2 Sealing . 528
A.13.3 Binding . 529
A.13.4 Wrapping . 530

A.14 Transport security . 530
A.14.1 Session establishment . 531
A.14.2 Transport encryption and authorisation 532
A.14.3 Transport logging . 535
A.14.4 Error handling and exclusive transport sessions 535

A.15 Monotonic counter . 536
A.16 Demonstrating privilege . 536

A.16.1 Physical presence . 537
A.16.2 Cryptographic authorisation 537
A.16.3 The OIAP . 538
A.16.4 The OSAP . 540
A.16.5 Changing authorisation data 543
A.16.6 The ADIP . 545

A.17 Context manager . 546
A.18 Delegation . 547

A.18.1 Family and delegation tables 547
A.18.2 The delegate-specific authorisation protocol (DSAP) . . . 551

A.19 Time-stamping . 553
A.20 Migration mechanisms . 554
A.21 Maintenance mechanisms . 556
A.22 Audit . 557
A.23 NGSCB . 559

A.23.1 The relationship between TCG and NGSCB 559
A.23.2 The NGSCB architecture 560
A.23.3 The tamper resistant crypto chip 560
A.23.4 The isolation kernel . 562

A.24 LaGrande . 564
A.24.1 The architecture . 565
A.24.2 Hardware enhancements and extensions 565

A.25 Conclusions . 567

B Technologies related to trusted computing 569
B.1 Introduction . 570
B.2 Secure co-processors . 570
B.3 Hardened processors . 571
B.4 XOM . 573

B.4.1 The abstract XOM machine 573
B.4.2 XOM machine implementation 574
B.4.3 Compartments . 578

B.5 AEGIS . 583
B.5.1 Secure computing model: Assumptions 584

12

CONTENTS

B.5.2 The AEGIS architecture 584
B.5.3 Tamper evident processing 586
B.5.4 Private tamper resistant processing 592
B.5.5 Conclusions . 595

13

List of Figures

3.1 Scenario 1 . 89
3.2 Scenario 2 . 93
3.3 Scenario 3 . 95
3.4 Scenario 3 . 96
3.5 Scenario 4 . 100
3.6 Scenario 5 — Domain server activity 103
3.7 Scenario 5 — Mobile device activity 103
3.8 Scenario 6 — Domain server activity 105

4.1 The KeyNote trust management system 127
4.2 Scenario 1 — Policy assertion . 128
4.3 Scenario 1 — Signed assertion/credential 130
4.4 Scenario 1 — Signed assertion/credential 130
4.5 Scenario 1 — Ordered compliance value set 131
4.6 Scenario 1 — Action attribute set 132
4.7 Scenario 1 — Action attribute set 133
4.8 Scenario 1 — Action attribute set 133
4.9 Scenario 2 — Policy assertion . 134
4.10 Scenario 2 — Policy assertion . 135
4.11 Scenario 2 — Policy assertion . 135
4.12 Scenario 2 — Signed assertion/credential 136
4.13 Scenario 2 — Ordered compliance value set 137
4.14 Scenario 2 — Action attribute set 138
4.15 Scenario 2 — Action attribute set 138
4.16 Scenario 2 — Action attribute set 138
4.17 Scenario 3 — Policy assertion . 139
4.18 Scenario 3 — Policy assertion . 140
4.19 Scenario 3 — Policy assertion . 141
4.20 Scenario 3 — Policy assertion . 141
4.21 Scenario 3 — Policy assertion . 142
4.22 Scenario 3 — Policy assertion . 143
4.23 Scenario 3 — Ordered compliance value set 144
4.24 Scenario 3 — Action attribute set 145
4.25 Scenario 3 — Action attribute set 145
4.26 Scenario 3 — Action attribute set 145
4.27 Scenario 3 — Action attribute set 146
4.28 Scenario 4 — Policy assertion . 147
4.29 Scenario 4 — Action attribute set 148

14

LIST OF FIGURES

4.30 Scenario 5 and 6 — Policy assertion 149
4.31 Scenario 5 and 6 — Action attribute set 150
4.32 Scenario 1 (Alternative) — Policy assertion 152
4.33 Scenario 1 (Alternative) — Policy assertion 153
4.34 Scenario 1 (Alternative) — Signed assertion/credential 155
4.35 Scenario 1 (Alternative) — Signed assertion/credential 155
4.36 Scenario 3 (Alternative) — Policy assertion 157
4.37 Scenario 3 (Alternative) — Policy assertion 157
4.38 Scenario 3 (Alternative) — Signed assertion 158
4.39 Scenario 3 (Alternative) — Action attribute set 158
4.40 The Ponder policy specification framework 163
4.41 The Extended April Agent Platform — Sample policy statement 166
4.42 The Extended April Agent Platform — Sample policy statement 166
4.43 SOMA — Sample policy statement 168
4.44 Scenario 1 — Policy statement 169
4.45 Scenario 1 — Policy statement 170
4.46 Scenario 1 — Policy statement 170
4.47 Scenario 1 — Policy statement 171
4.48 Scenario 1 — TE policy assertion 172
4.49 Scenario 1 — Signed assertion/credential 172
4.50 Scenario 1 — Action attribute set 173
4.51 SAML . 183
4.52 Scenario 1 — Attribute assertion 187
4.53 Scenario 1 — Attribute assertion request 188
4.54 Scenario 1 — Attribute assertion response 188
4.55 Scenario 2 — Attribute assertion 190
4.56 Scenario 3 — Attribute assertion 192
4.57 Scenario 4 — Attribute assertion 193
4.58 Scenarios 3 and 4 — Attribute assertion request 194
4.59 Scenarios 3 and 4 — Attribute assertion response 195

5.1 Architecture model . 204
5.2 Sample SAML attribute assertion generated by TDS 218
5.3 Sample SAML attribute assertion request 221
5.4 Sample SAML attribute assertion response 222
5.5 Sample DTPL policy statement 226
5.6 Sample Ponder composite policy statement 227

6.1 Scrambling broadcast services using DVB standards 238
6.2 Simulcrypt . 239
6.3 Common interface module . 240

7.1 Architecture model . 250
7.2 Key exchange protocol . 258
7.3 Key agreement protocol . 264

8.1 Key hierarchy for the download of AC 276
8.2 Key hierarchy for the download of AC 286

9.1 Architecture model . 313

15

LIST OF FIGURES

10.1 Architecture model . 348

12.1 Revised architecture model . 387
12.2 OMA DRM v2 agent installer key hierarchy 416

A.1 The protected storage object hierarchy 526

16

List of Tables

4.1 A summary of KeyNote’s applicability to the scenarios 198
4.2 A summary of Ponder’s applicability to the scenarios 199
4.3 A summary of SAML’s applicability to the scenarios 200

6.1 Conditional access system vendors 237

11.1 OMA DRM v2 agent installation 357
11.2 The 4-pass registration protocol 364
11.3 The 2-pass rights acquisition protocol 369
11.4 The 1-pass rights acquisition protocol 369
11.5 The 2-pass join domain protocol 374
11.6 The 2-pass leave domain protocol 376

12.1 The VALIDATION DATA structure 402
12.2 The TSS EVENT CERT structure 402
12.3 TPM permanent flags . 406
12.4 TPM initialisation . 406
12.5 TPM start-up . 407
12.6 Creating a context . 407
12.7 Creating a TPM object . 408
12.8 Connecting to a context . 408
12.9 Closing a context . 408
12.10Freeing memory allocated to the context 408
12.11The default policy object (created on TPM initialisation) 409
12.12TPM device driver communications 410
12.13Creating an endorsement key pair 411
12.14Accessing the public endorsement key 411
12.15Self testing . 412
12.16Physically enabling the TPM . 412
12.17Physically disabling the TPM . 413
12.18Enabling/Disabling the TPM . 413
12.19Setting the state of the TPM PF OWNERSHIP flag 413
12.20Taking ownership of the TPM . 414
12.21Activating the TPM . 415
12.22A transport session . 417
12.23Creating a wrap key . 420
12.24Loading a key . 422
12.25Sealing data using a storage key 423

17

LIST OF TABLES

12.26Wrapping a key to a PCR(s) . 425
12.27Creating a platform attestation identity key 427
12.28Platform attestation . 428
12.29TPM owner reading of the public endorsement key 431
12.30Authorising a load key and an object seal 433
12.31Random number retrieval . 435
12.32TPM commands required for a robust implementation of OMA

DRM v2 . 437
12.33TPM commands required in a MTPM 441

13.1 A summary of scenario description and analysis 447
13.2 Policy engine requirements . 450
13.3 Policy engine component analysis 452
13.4 A summary of the security threats, services and mechanisms per-

taining to secure software download and execution 455
13.5 TPM commands required for a robust implementation of OMA

DRM v2 . 458

A.1 TPM functional components . 500
A.2 The delegation process . 548
A.3 Tick session values . 554
A.4 The NGSCB tamper resistant crypto chip 561
A.5 Security primitives supported by the NGSCB crypto chip 561

B.1 XOM enter xom and exit xom instructions 581
B.2 XOM secure load and secure store instructions 581
B.3 XOM mv to shared and mv from shared instructions 582
B.4 XOM save register and restore register instructions 582
B.5 AEGIS TE processing instructions 586
B.6 AEGIS TE processing — protection of initial state 588
B.7 AEGIS TE processing — protection of state on interrupts 589
B.8 AEGIS TE processing — on-chip cache integrity 590
B.9 AEGIS TE processing — sign msg operation 592
B.10 AEGIS PTR processing instructions 592
B.11 AEGIS PTR processing — protection of state on interrupts . . . 593
B.12 AEGIS PTR processing — on-chip cache privacy 594

18

Acronyms

AC Attribute Certificate

ACL Access Control List

ADCP Authorisation Data Change Protocol

ADIP Authorisation Data Insertion Protocol

ADS Agent Directory Service

AIK Attestation Identity Key

AMS Agent Management System

AP Authentication Point

AR Authorisation Requestor

ASL Authorisation Specification Language

BIOS Basic Input Output System

BBB BIOS Boot Block

CA Certification Authority or

Conditional Access (depending on context)

CAPP Controlled Access Protection Profile

CDC Connected Device Configuration

CE Conformance Entity

CEK Content Encrypting Key

CI Common Interface or

Content Issuer or

Cryptographic Interface (depending on context)

19

CLDC Connect Limited Device Connection

CMK Certifiable Migratable Key

CMLA Content Management Licensing Administration

CPU Central Processing Unit

CRTM Core Root of Trust for Measurement

CRTV Core Root of Trust for Verification

CSA Common Scrambling Algorithm

CW Control Word

DCF DRM Container Format

DF Directory Facilitator

DIR Data Integrity Register

DMA Direct Memory Access

DRM Digital Rights Management

DSAP Delegate-Specific Authorisation Protocol

DTD Document Type Definition

DTPL Definitive Trust Policy Language

DVB Digital Video Broadcast

EAL Evaluation Assurance Level

ECM Entitlement Control Message

EMM Entitlement Management Message

FIPA Foundation for Intelligent Physical Agents

FIPS PUBS Federal Information Processing Standards Publications

GSM Global System for Mobile Communication

HMAC Hash Message Authentication Code

IA-32 Intel Architecture, 32-bit

IANA Internet Assigned Numbers Authority

ID Identifier

20

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

I/O Input/Output

IPSec Internet Protocol Security

ISO International Organization for Standardization

J2ME Java 2 Platform Micro Edition

KEK Key Encrypting Key

LDAP Lightweight Directory Access Protocol

LT LaGrande Technology

OMA Open Mobile Alliance

OpenPGP Open Pretty Good Privacy

OS Operating System

MAC Message Authentication Code

MAS Multi-Agent System

MCC Model Carrying Code

MExE Mobile Station Application Execution Environment

MGF1 Mask Generation Function 1

MIDP Mobile Information Device Profile

MPWG Mobile Phone Working Group

MS Mobile Station

MSB Most Significant Bit

MTPM Mobile Trusted Platform Module

MVCE Mobile Virtual Centre of Excellence

NGSCB Next Generation Secure Computing Base

NIST National Institute of Standards and Technology

NV Non-Volatile

OAEP Optimal Asymmetric Encryption Padding

OCSP Online Certificate Status Protocol

21

OEM Original Equipment Manufacturer

OIAP Object Independent Authorisation Protocol

OSAP Object Specific Authorisation Protocol

OSGi Open Service Gateway Initiative

PAP Policy Administration Point

PC Personal Computer

P-CA Privacy Certification Authority

PCC Proof Carrying Code

PCMCIA Personal Computer Memory Card International Association

PCR Platform Configuration Register

PDA Personal Digital Assistant

PDAP Personal Digital Assistant Profile

PDP Policy Decision Point

PE Platform Entity

PEP Policy Enforcement Point

PGP Pretty Good Privacy

PIP Policy Information Point

PKI Public Key Infrastructure

PKIX Public-Key Infrastructure (X.509)

PMI Privilege Management Infrastructure

PPC Place Permission Certificate

PPL Place Permission List

PROM Programmable Read-Only Memory

PRNG Pseudo-Random Number Generator

PRS Policy Repository Service

PSPL Portfolio and Service Protection Language

PTEC Page Table Edit Control

22

PTR Private Tamper Resistant

REK Rights Encrypting Key

RFC Request For Comments

RI Rights Issuer

RIM Reference Integrity Metric

RO Rights Object

ROAP Rights Object Acquisition Protocol

ROM Read Only Memory

RNG Random Number Generator

RSA Rivest, Shamir, and Adleman

– a public key cryptosystem named after its inventors

RTM Root of Trust for Measurement

RTR Root of Trust for Reporting

RTS Root of Trust for Storage

SAML Security Assertion Markup Language

SCM Secure Context Manager

SDL Standard Deontic Logic

SDR Software Defined Radio

SDRF Software Defined Radio Forum

SHA-1 Secure Hash Algorithm revision 1

SIM Subscriber Identity Module

SPC Sender Permission Certificate

SPID Secure Processor Identity

SPL Security Policy Language or

Sender Permission List (depending on context)

SSL Secure Socket Layer

TBB Trusted Building Block

TC Trusted Computing

23

TCB Trusted Computing Base

TCG Trusted Computing Group

TCP Transmission Control Protocol

TCPA Trusted Computing Platform Alliance

TCS TSS Core Services

TCSi TSS Core Services Interface

TCV Tick Count Value

TDD TPM Device Driver

TDDI TPM Device Driver Interface

TDDL TPM Device Driver Library

TDDLi TPM Device Driver Library Interface

TDS Trusted Domain Server

TE Tamper Evident

TEM Trusted Establishment Module

TIR Tick Increment Value

TLB Translation Lookaside Buffer

TLS Transport Layer Security

TMP Trusted Mobile Platform

TPL Trust Policy Language

TPM Trusted Platform Module

TPME Trusted Platform Module Entity

TRBAC Temporal Role Based Access Control

TSN Tick Session Nonce

TSP TSS Service Provider

TSPi TSS Service Provider Interface

TSS TCG Software Stack

TTP Trusted Third Party

UDP User Datagram Protocol

24

URI Uniform Resource Indicator

URL Uniform Resource Locator

URN Uniform Resource Number

UTC Coordinated Universal Time

VCGen Verification Condition Generator

VE Validation Entity

VMM Virtual Machine Monitor

WAP Wireless Access Protocol

WTLS Wireless Transport Layer Security

XML Extensible Markup Language

XOM Execute Only Memory

XVMM XOM Virtual Machine Monitor

25

Chapter 1

Introduction

Contents
1.1 Motivation and challenges 28

1.1.1 Part I: Mobile host protection 28

1.1.2 Part II: Mobile code protection 29

1.1.3 Part III: Remote code protection 30

1.2 Structure of thesis . 31

1.3 Contribution of thesis 35

1.4 List of publications 39

1.5 Cryptographic primitives 40

1.5.1 Hash functions . 40

1.5.2 Message authentication codes 41

1.5.3 Symmetric encryption 42

1.5.4 Asymmetric cryptography 42

1.5.5 Asymmetric encryption 43

1.5.6 Digital signatures . 43

1.5.7 Public key infrastructure 44

1.5.8 Web of trust . 45

1.5.9 Privilege management infrastructure 45

1.5.10 Authentication protocols 46

1.5.11 Freshness mechanisms 46

1.6 Trusted computing primitives 47

1.6.1 Trust . 47

1.6.2 Roots of trust . 48

1.6.3 Integrity measurement 50

1.6.4 Authenticated boot 50

1.6.5 Secure boot . 51

1.6.6 Attestation . 51

1.6.7 Sealing . 51

1.6.8 Process isolation . 52

1.6.9 Secure I/O . 53

1.7 Definitions . 53

26

This chapter describes the context of this research, and its contribution to

the field of authorisation for mobile code in mobile systems. The structure of

the thesis is presented, together with a summary of the main contributions. Def-

initions and notation used throughout the thesis are also given.

27

1.1 Motivation and challenges

This thesis is comprised of three parts, each of which tackles an aspect of the

problem of authorisation for mobile executables in a mobile environment. In

this section we highlight the motivation and challenges behind each of the three

aspects.

1.1.1 Part I: Mobile host protection

Mobile agents appear to be a potentially important software paradigm for the

mobile domain. If, however, these persistent, autonomous programs are per-

mitted to roam freely in networks, interacting with systems and other agents

to fulfil their predefined goals, the risk of a mobile agent with malicious intent

damaging any system on which it is executed becomes a very real danger. Thus,

determining whether or not a mobile agent should be executed on a particular

platform, and with what privileges, is a very serious issue. This becomes espe-

cially critical in a mobile environment, where limited bandwidth and processing

power may restrict the ability of a mobile node to perform detailed checking on

the agent. In part I of this thesis, we examine the authorisation of incoming

executables in a mobile environment.

While numerous schemes have been developed to support mobile executable

authorisation, and, more specifically, mobile agent authorisation, the solutions

proposed often place a substantial burden on the host machine. It is our aim in

part I of this thesis to develop a solution which makes minimal use of the end

host CPU and storage resources for authorisation procedures. It is moreover

required that the solution be flexible enough to be deployed on a range of dif-

ferent mobile platform types, and in a wide variety of operating environments.

The proposed solution should support mechanisms which provide assurance re-

28

garding the origin of the executable, executable code quality and/or the state

of an agent. The solution should be scalable, i.e. it should have the ability to

either handle growing amounts of work in a graceful manner, or to be readily

enlarged [18].

1.1.2 Part II: Mobile code protection

Recent developments in communications systems enable the delivery of complex

content to mobile devices. It is expected that the next generation of mobile

communications systems will be able to collaborate with broadcast networks to

provide wireless access to video content via a wide range of mobile devices [160].

For a service like this to achieve its full commercial potential, the owners of

the content will require assurance that their material is not illegally accessed.

Current broadcast systems accomplish this by using conditional access systems

to ensure that only bona fide subscribers have access to the content.

The Digital Video Broadcast (DVB) organisation has developed several stan-

dards defining a common interface to conditional access systems at both the

transmission site and at the receiver, while allowing the systems themselves to

remain proprietary [22, 44, 45]. Services broadcast today, therefore, are pro-

tected by a range of proprietary access control systems. While receivers remain

static, and consumers subscribe to one or two service providers, the DVB stan-

dards provide a practical solution. However, if a mobile subscriber requires

access to services protected by a range of conditional access systems, then the

current solutions become impractical. Part II of this thesis proposes a flexible

approach that allows consumer products to support a wide range of proprietary

content protection systems through the re-configuration of the mobile device to

be compatible with the appropriate conditional access system. This proposal is

dependent on the proprietary conditional access application being implemented

29

entirely in software.

We aim to develop a secure method by which a conditional access application

can be downloaded to and executed on a mobile device, thereby countering the

security threats introduced by re-configurable receivers. These threats include

unauthorised reading of the application code and data; unauthorised modifi-

cation of the application code and data; unknowingly communicating with an

unknown and potentially malicious entity; the inability to corroborate the source

of the conditional access application; replay of communications; unauthorised

reading or modification of any cryptographic keys used in the provision of con-

fidentiality and integrity protection to the conditional access application code

and data; and/or unauthorised reading or modification of the application code

and data while it executes on the mobile host. The protocols we propose are

not intended to supersede or replace the DVB standards or existing conditional

access systems. Instead, they are intended to co-exist with existing mechanisms,

so that the receipt of digital video broadcast may be achieved more efficiently

in a mobile environment.

1.1.3 Part III: Remote code protection

The Trusted Computing Group’s Mobile Phone Working Group (TCG MPWG),

is currently developing a specification set for a mobile trusted platform mod-

ule (MTPM). In order to identify the capabilities required of a trusted mobile

phone, a number of use cases, whose secure implementation may be aided by

the application of trusted platform functionality, have been identified by the

MPWG. Among these use cases are SIMLock, device authentication, mobile

ticketing, mobile payment and robust digital right management (DRM) imple-

mentation [159]. As stated by the MPWG [159], the use cases lay a foundation

for the ways in which:

30

• The MPWG will derive requirements that address situations described in

the use cases.

• The MPWG will specify an architecture based on the TCG architecture

that will meet these requirements.

• The MPWG will specify the functions and interfaces that will meet the

requirements in the specified architecture.

In part III of this thesis we describe the Open Mobile Alliance (OMA) DRM

v2 use case and extract the security threats that may impact upon devices, and

protected content received by devices, on which an OMA DRM v2 agent is not

robustly implemented. This threat analysis enables the derivation of require-

ments for a robust implementation of OMA DRM v2. Following this, a descrip-

tion is given of the architectural components, based on the TCG architecture,

and the functions and interfaces, as specified in the current trusted platform

module (TPM) and TCG software stack (TSS) specifications, which meet these

requirements. This has enabled the identification of those architecture compo-

nents and functionality not currently defined within the TCG specification set,

but required for the implementation of a robust and secure DRM solution on a

trusted mobile platform.

1.2 Structure of thesis

In the remainder of this chapter, the main contributions of this thesis are first

described. Following this, the notation, cryptographic primitives and trusted

computing primitives used throughout the thesis are specified. Finally, we define

the security terminology used in this thesis.

As stated above, the remainder of this thesis is comprised of three distinct

31

parts. Chapters 2 to 5 (Part I) describe a policy-based framework for the au-

thorisation of mobile executables in a mobile environment. Some of the work

presented in part I has been previously published in [53–55, 135]. Chapters 6

to 9 (Part II) describe two protocols for the secure download and execution

of a conditional access application to a mobile device. Some of the work pre-

sented in part II has been previously published in [56, 58–60]. Chapters 10 to

12 (Part III) describe the functionality required of a trusted mobile platform

in order to enable the robust implementation of OMA DRM v2. Some of the

work presented in part III has been previously published in [159] and has been

used to formulate contributions to the TCG MPWG. Two appendices describe

a selection of trusted computing and related technologies.

Chapter 2 introduces the agent paradigm, focusing specifically on the concept

of the mobile agent. The security issues surrounding the deployment of mobile

agents in a mobile environment are then examined. Finally, the state of the art

in technologies for mobile agent authorisation, and more generally mobile code

authorisation, are described.

Chapter 3 describes six possible architectural models upon which a policy-

based framework for the authorisation of incoming executables and, more specif-

ically, mobile agents, may be constructed. Each model is analysed with respect

to the level of security it can support, and with regard to its suitability for

implementation in a mobile environment.

In chapter 4, we examine three selected policy statement and attribute certifi-

cate specification languages, namely KeyNote, Ponder and SAML, and explore

the functionality of their supporting policy engine components. In doing so,

we conclude whether these three languages can express the policy statements

and attribute certificates required in order to implement the architectural mod-

32

els described in chapter 3, and support the necessary policy engine component

functionality.

Chapter 5 describes a policy-based framework for the authorisation of exe-

cutables and, more specifically, mobile agents, in a mobile environment.

Chapter 6 examines the DVB standards, which specify two mechanisms de-

signed to provide some flexibility in the application of proprietary conditional

access systems to broadcast services [33], and describes certain limitations which

arise when they are applied in a mobile environment. In order to overcome these

limitations, the mobile platform could be re-configured to be compatible with

the appropriate conditional access system, if the proprietary conditional access

application is implemented entirely in software. Such a software application

could be delivered to the mobile device on demand. The remainder of this

chapter explores the threats resulting from the introduction of reconfigurable

receivers in a mobile environment, and identifies the security services and se-

curity mechanisms required for the protected download of a conditional access

application to a mobile receiver.

Chapter 7 describes two protocols designed to meet the security requirements

described in chapter 6.

Chapter 8 explores three possible implementations of the generic key ex-

change and key agreement protocols described in chapter 7. The first implemen-

tation assumes the presence of a mobile device into which components described

in the TCG version 1.2 specification set are integrated. Following this, we ex-

amine the implementation of the protocols given a mobile device architecture

into which a version 1.2 compliant TPM and a core root of trust for measure-

ment (CRTM) are integrated and an isolation layer deployed. Finally, protocol

implementation given a Next Generation Secure Computing Base (NGSCB)

33

compliant platform, as described by Microsoft, is explored. Each implementa-

tion description is accompanied by an analysis examining how well the security

of the downloaded application is protected while in storage and while executing

on the mobile device.

In chapter 9, we examine two previously proposed download protocols, which

assume a mobile receiver compliant with the execute-only memory (XOM) and

AEGIS system architectures, respectively. Both protocols are then analysed

against the security requirements given in chapter 6. As a result of these anal-

yses, recommendations are made regarding possible protocol modifications de-

signed to address identified security issues.

Chapter 10 provides an overview of DRM, with particular focus on the OMA

DRM standards. The model to which the OMA DRM architecture applies is

introduced. A high level critique of OMA DRM version 1 is given, followed by

an examination of the OMA DRM version 2 specification set.

In chapter 11 the lifecycle of an OMA DRM v2 agent is considered. Each

lifecycle stage is analysed in order to derive a list of security threats that may im-

pact on devices, and protected content received by devices, on which an OMA

DRM v2 agent is not robustly implemented. The functionality required of a

trusted mobile platform on which an OMA DRM v2 agent is to be robustly im-

plemented, thereby thwarting any threats to the DRM agent and its associated

data, is also defined.

In chapter 12 the requirements extracted in chapter 11 are utilised in order

to examine which architectural components and functionality described within

the TCG version 1.2 specification set may be used to facilitate a robust im-

plementation of OMA DRM v2. This examination also allows us to identify

any architecture components and functionality not currently defined within the

34

TCG specification set but required for the implementation of a robust and secure

DRM solution on a trusted mobile platform.

Appendix A examines the specifications for trusted platform functionality

produced by the TCG. Microsoft’s NGSCB and Intel’s LaGrande Technology

are also briefly examined.

In appendix B three architectures are examined, each of which have been

developed with the goal of providing more secure and trustworthy computing

platforms, namely the IBM 4758 and the XOM and AEGIS architectures.

1.3 Contribution of thesis

On examination of state of the art in mobile agent and, more generally mobile

code authorisation, we conclude that, while numerous solutions enabling mo-

bile code and agent authorisation have been proposed, the majority of these

solutions are ill-suited to application in a mobile environment. Based on this

analysis we present a novel policy-based authorisation framework for mobile

code and agents. In order to construct this framework, we analyse a variety of

architectures upon which a policy-based framework for mobile agent, and more

generally mobile code, authorisation could be based. This analysis considers the

level of security each could support, and each architecture’s suitability for im-

plementation in a mobile environment, and enables us to extract requirements

for an optimal architecture model, which include the following.

• Minimal use of the end host’s CPU processing power and the end host’s

storage for authorisation data structures.

• Support for mechanisms which provide assurances regarding the origin of

the executable, executable code quality and the state of an agent.

35

• Incorporation of a policy engine, comprised of a policy administration

point, a policy information point, an authentication point, a trust estab-

lishment module, a policy decision point, and a policy enforcement point,

into each end host.

• Specification, storage and/or processing of policy statements and signed

attribute certificates by an end host.

Following this, a critical analysis of a selection of policy specification languages

is completed, in order that the most appropriate language can be chosen for

use in our policy-based framework for mobile executable authorisation. The

analysis of KeyNote, Ponder and SAML gives us new insights into each of the

expression languages and their accompanying policy engine components. While

KeyNote is a simple and expressive trust management framework, which en-

ables the expression of both policy statements and attribute certificates, issues

arose in relation to limiting delegation and the expression of fine-grained access

control policies. It also became clear that there is no way to create an attribute

certificate in which there is no inherent notion of delegation of authority. While

it is claimed by Damianou [37] that Ponder can support similar functionality to

that of TPL, this does not appear to be the case since policies cannot be spec-

ified in terms of subject or target attributes. While the expression of a large

set of different policy types is enabled, and the syntax and semantics of Ponder

are reasonably easy to understand, for our particular use case it can only be

deployed in conjunction with a trust management or trust establishment mech-

anism and an attribute certificate expression mechanism. SAML is a simple,

expressive language, which meets our requirements for attribute certificate ex-

pression. Finally, we present a policy-based framework for mobile agent and,

more generally, mobile code authorisation. A modified version of this frame-

work, designed to enable the authorisation of incoming mobile code, has been

36

integrated into the Software Defined Radio Forum (SDRF) technical specifica-

tions [135]. At the time of writing, we are unaware of any other published work

with the same scope as the policy-based framework outlined in part I of this

thesis.

In part II we propose the deployment of downloadable conditional access

systems, so that mobile devices can support an unlimited number of propri-

etary schemes. This would enable consumers to efficiently access a wide range

of video broadcast services within a mobile environment. In order to ensure that

this proposal is viable, we identify the threats resulting from the introduction

of reconfigurable receivers in a mobile environment, and identify the security

services and security mechanisms required for the protected download of a con-

ditional access application to a mobile receiver. We then define two protocols

which support the secure download and execution of a conditional access appli-

cation to a mobile device. Following this, we examine how the two protocols

may be implemented using a range of trusted computing technologies, namely

the TCG specification set, the TCG specification set in conjunction with an

isolation layer, or an NGSCB system. Both of the protocols and each of the

possible protocol implementations are analysed in terms of the security services

they were designed to meet. While both protocols meet the required security

services for secure application transmission, meeting the security requirements

for secure application storage and execution is dependent on the trusted com-

puting architecture upon which the protocols are implemented. Completion of

this analysis allowed us to conclude that, while TCG defined components enable

the implementation of a more trusted platform, in order to take full advantage

of the functionality provided, additional software and hardware elements must

be introduced, for example the integration of an isolation layer, and/or the mod-

ification or extension of the platform’s CPU and chipset. Finally, we examine

37

the download protocols proposed by the designers of the XOM and AEGIS ar-

chitectures, Lie et al. and Suh et al. We then analyse both of these protocols

against our pre-defined set of security requirements for the secure download

and execution of a conditional access system. As a result of this analyses, we

uncover security shortcomings in both protocols, which appear to arise for two

main reasons. Firstly, the sets of requirements used to develop the protocols

appear to be incomplete. Secondly, both sets of authors focus on ensuring that

their architectures and download protocols support the copy and tamper resis-

tant execution of software rather than the copy and tamper resistant download

and execution of software. We subsequently propose a series of enhancements

to the protocols designed to address the identified shortcomings. At the time

of writing, the key exchange secure download protocol described in part II of

this thesis is being considered for integration into the security architecture for

software defined radio.

In part III we describe the OMA DRM v2 use case, a shortened version of

which is included in the TCG MPWG Use Case Scenarios document [159]. We

then describe the threats that may impact on devices, and protected content

received by devices, on which an OMA DRM v2 agent is not robustly imple-

mented. The functionality required of a trusted mobile platform in order to

thwart these threats is also defined. These requirements have been included

in an internal TCG MPWG Requirements document. Finally, we examine the

architectural components and functionality within the TCG version 1.2 speci-

fications that can be used to facilitate a robust implementation of OMA DRM

v2. This examination has allowed us to identify architecture components and

functionality not currently defined within the TCG specification set but required

in order to support a robust implementation of OMA DRM v2, namely, secure

boot and run-time integrity protection mechanisms. This result will enable the

38

designers of future trusted mobile platforms to produce systems capable of ro-

bustly supporting DRM. This work has contributed to the MPWG MTPM

specifications, which are not yet published.

1.4 List of publications

• Eimear Gallery. Towards a Policy-Based Framework for Mobile Agent

Authorisation in Mobile Systems. In Proceedings of the 4th International

Conference on 3G Mobile Communication Technologies (3G 2003), num-

ber 494 in IEE Conference Publication, pages 13–18, Savoy Place, London,

UK, 25–27 June 2003. The Institute of Electrical Engineers (IEE), Lon-

don, UK 1.

• Eimear Gallery. Mobile Agent and Mobile Code Authorisation in Mobile

Systems: A Policy-Based Authorisation Framework. In Proceedings of the

10th Wireless World Research Forum Meeting (WWRF 10), New York,

USA, 27–28 October 2003. Wireless World Research Forum (WWRF).

• Eimear Gallery. A Policy-Based Authorisation Framework for Software

Download. In Proceedings of the 2nd Software Defined Radio Forum Tech-

nical Conference (SDR 2003), Orlando, Florida, USA, 17–19 November

2003. Software Defined Radio Forum.

• Eimear Gallery and Allan Tomlinson. Conditional Access in Mobile Sys-

tems: Securing the Application. In Proceedings of the 1st International

Conference on Distributed Frameworks for Multimedia Applications (DFMA

2005), pages 190–197, Besancon, France, 6–9 February 2005. IEEE Com-

puter Society.
1This paper received the Nokia “best paper prize”

39

• Eimear Gallery and Allan Tomlinson. Protection of Downloadable Soft-

ware on SDR Devices. In Proceedings of the Software Defined Radio Fo-

rum Technical Conference (SDR 2005), Orange County, California, USA,

14–18 November 2005. Software Defined Radio Forum.

• Eimear Gallery and Allan Tomlinson. Secure Delivery of Conditional Ac-

cess Applications to Mobile Receivers. In Chris J. Mitchell, editor, Trusted

Computing. IEE Professional Applications of Computing Series 6, chapter

3, pages 29–114, The Institute of Electrical Engineers (IEE), London, UK,

April 2005.

• Eimear Gallery. An Overview of Trusted Computing Technology. In Chris

J. Mitchell, editor, Trusted Computing. IEE Professional Applications of

Computing Series 6, chapter 7, pages 197–328, The Institute of Electrical

Engineers (IEE), London, UK, April 2005.

1.5 Cryptographic primitives

In this section we briefly describe the fundamental cryptographic primitives and

notation used throughout this thesis.

1.5.1 Hash functions

A hash function is a computationally efficient one-way function mapping binary

strings of arbitrary length to binary strings of some fixed length, called hash-

values [101]. A hash value, h, is generated by a hash function H, so that we

write

h = H(Z)

where Z is an arbitrary length binary string and h is a fixed-length binary string.

The purpose of a hash function is to produce a ‘fingerprint’ of a file, message or

40

block of data. There are a variety of well-established hash functions, (see, for

example, [38,101,128,142]).

A hash function may have the following properties [101].

• Pre-image resistance — given any hash value, h, for which a corresponding

input is not known, it is computationally infeasible to find an input, Z,

such that H(Z) = h.

• 2nd pre-image resistance — given an input, Z, it is computationally infea-

sible to find a second input, Z ′, where Z 6= Z ′, such that h(Z) = h(Z ′).

• Collision resistance — it is infeasible to find two distinct inputs, Z and

Z ′, such that H(Z) = H(Z ′).

Throughout this thesis we assume that hash functions fulfil the three security

requirements defined above.

Merkle hash trees are often used to protect the integrity of dynamic data

in untrusted storage [102, 144]. To construct a Merkle hash tree, each binary

string to be recorded in the Merkle tree is initially hashed. The resulting hash

values are divided into a number of groups. The hash values in each group are

then concatenated and hashed to output a parent hash value. Once these hash

values have been calculated, the resulting hash values are iteratively divided

into groups, concatenated and rehashed in a tree-like fashion until a single ‘root

hash value’ is created [102]. This ‘root hash value’ must be integrity-protected.

1.5.2 Message authentication codes

Message authentication codes (MACs) are designed to guarantee the source and

integrity of a message. A MAC is sent together with the message it is protecting.

41

For the purposes of this thesis

MACK(Z)

denotes a MAC computed on data Z using the secret key K.

There are a variety of well-established means for computing MACs, typically

either based on the use of a block cipher or a cryptographic hash function (see,

for example, [38, 101, 128, 142]). There are also standards for such schemes,

including, most notably, ISO/IEC 9797 parts 1 and 2 [82, 83]. Standards for

MACs are discussed in [38].

1.5.3 Symmetric encryption

Symmetric or secret key encryption uses a secret key and an algorithm to trans-

form a plaintext message into ciphertext, i.e. to encrypt the plaintext. The

same key is used to decrypt the ciphertext into the original plaintext. For the

purposes of this thesis

EK(Z)

denotes the symmetric encryption of data string Z using secret key K. We

use KX,Y to denote a secret key shared between X and Y , e.g. to be used to

compute a MAC or encrypt transferred data.

Many symmetric encryption algorithms have been proposed (see, for exam-

ple, [38,101,128,142]). Standards for symmetric ciphers are discussed in [38].

1.5.4 Asymmetric cryptography

Asymmetric cryptography, or public-key cryptography, involves the assignment

of two distinct keys, one public and one private, to each entity. For the purposes

of this thesis PX denotes the public key of X and SX denotes the private key

of X.

42

The private key is kept secret by its owner, while the public key can be freely

distributed. It must be ensured that the correct public key can be associated

with a user. This may, for example, be accomplished using mechanisms de-

scribed in sections 1.5.7 and 1.5.8. Asymmetric cryptographic schemes include

encryption schemes and digital signatures.

1.5.5 Asymmetric encryption

In an asymmetric encryption scheme, the public key is used for encryption and

the private key for decryption. For the purposes of this thesis

EPX
(Z)

denotes the asymmetric encryption of data string Z using the public key, PX ,

of entity X. Algorithms for public-key encryption may be found in [38, 101]

and include RSA (PKCS #1 [93]). Standards describing how to use asymmetric

encryption include [71] and are discussed in greater detail in [38].

1.5.6 Digital signatures

Digital signatures are used to guarantee the origin and integrity of a message.

In a digital signature scheme, the private key is used for signing and the public

key is used for digital signature verification. For the purposes of this thesis

SX(Z)

denotes the digital signature of X on the data string Z.

There are two main types of digital signature scheme. Digital signature

schemes with appendix require the original message as input to the verification

algorithm, which is used to verify that the signature is authentic [101]. Digital

signature schemes with message recovery do not require the original message as

43

input to the verification algorithm [101]. Instead, the original message is recov-

ered from the signature. We assume the use of a digital signature schemes with

appendix throughout this thesis. There are many signature schemes available

(see for example [101]), including a number of techniques which are interna-

tional standards; see, for example, the Digital Signature Standard [48], which

contains a scheme called the Digital Signature Algorithm (DSA), RSA [93], and

ISO/IEC 14888 [77–79], which describes digital signatures with appendix.

1.5.7 Public key infrastructure

In a public key infrastructure (PKI), certification authorities (CAs) issue digi-

tally signed certificates which bind a public key to an identity and possibly other

information (e.g. the certificate expiry date). X.509 [89] is a widely adopted

standard specifying the format of public key certificates. The structure of an

X.509 v3 public key certificate is as follows:

Certificate

Version

Serial Number

Algorithm ID

Issuer

Validity

Not Before

Not After

Subject

Subject Public Key Info

Public Key Algorithm

Subject Public Key

Issuer Unique Identifier (Optional)

Subject Unique Identifier (Optional)

Extensions (Optional)

Certificate Signature Algorithm

Certificate Signature

A self signed certificate is one in which the issuer and the subject are the

same. In order to trust a self-signed certificate its origin and integrity must be

44

guaranteed by external means. For the purposes of this thesis

CertX

denotes the public key certificate for entity X. Apart from X.509, standards

also exist for PKIs, see for example IETF PKIX2. For further details of PKI

and PKI related standards, see [38].

1.5.8 Web of trust

A web of trust is an alternative method by which a public key can be bound to

an identity. In a web of trust, any user can sign an identity certificate (which

includes a public key, an identity and, potentially, other key owner information

such as an expiry time) and in doing so endorses the association between the

identity and the public key contained within the certificate. A key owner may

acquire an unlimited number of identity certificates endorsing the link between

the key owner’s identity and public key. These certificates are then used by enti-

ties within the system in order to determine whether they trust that a particular

public key belongs to a specific identity. For further information see [142]. The

web of trust concept is deployed in PGP [169], OpenPGP [19] and GnuPG3

compatible systems.

1.5.9 Privilege management infrastructure

In a privilege management infrastructure (PMI), attribute authorities issue dig-

itally signed attribute certificates. An attribute certificate (AC) may contain

attributes that specify group membership, role, security clearance, or other

authorisation information associated with the AC holder [46]. Standardised

formats for attribute certificates include X.509 [74] and SAML attribute asser-

2http://www.ietf.org/html.charters/pkix-charter.html
3http://www.gnupg.org/

45

tions [112–118].

1.5.10 Authentication protocols

A unilateral authentication protocol provides one entity with assurance of the

other’s identity but not vice versa. A mutual authentication protocol provides

both entities with assurance of each other’s identities. For the purposes of this

thesis IdX denotes the identity of entity X.

International standards which describe authentication protocols include ISO/

IEC 9798-2 [83], ISO/IEC 9798-3 [85], ISO/IEC 9798-4 [86] and ISO/IEC 9798-

5 [87]. For further information on authentication protocols, see [38] and [101].

1.5.11 Freshness mechanisms

There are two main methods for freshness checking [38];

• the use of time-stamps; and

• the use of nonces.

If a timestamp is included in a message which is cryptographically protected,

the recipient can check if it is fresh [38]. In order to enable the use of this fresh-

ness method, both the sender and the recipient must have securely synchronised

clocks [38]. Alternatively, each pair of communicating entities may maintain a

pair of counters, CAB and CBA. Each time A sends a message to B the value

of CAB is included in the message and the counter value is incremented by A.

When B receives the message, the sequence number contained in the message is

compared to the value of CAB stored by B. If the sequence number contained

in the message received from A is less than or equal to the value of CAB stored

by B, the message is then rejected as old. If the sequence number contained in

46

the message received from A is greater than the value of CAB stored by B, then

the message is accepted as fresh, and the value of CAB stored by B is set to the

value of the received value.

Alternatively, nonces may be used to provide freshness. A nonce is a random

number that is included in a challenge message sent to B by A. The nonce is

then included in the response message sent to A by B in order to demonstrate

that the response could only have been generated after the nonce had been

received by B. For the purposes of this thesis RX denotes a nonce generated by

by entity X. For further information see [38].

1.6 Trusted computing primitives

In this section we briefly describe the fundamental trusted computing primi-

tives and notation used in this thesis. A more extensive description of trusted

computing technology is given in Appendices A and B.

1.6.1 Trust

In the context of trusted computing, a platform is trusted if it “behaves in an

expected manner for an intended purpose”[149]. This does not necessarily imply,

however, that a trusted platform (TP) is a secure platform. For example, if an

entity can determine that a platform is infected with a virus, whose effects are

known, the platform can be trusted by that entity to behave in an expected but

malicious manner [65]. In order to implement a platform of this nature, a trusted

component, which is usually in the form of built-in hardware, is integrated into

a computing platform [5]. This trusted component is then used to create a

foundation of trust for software processes running on the platform [5].

The concept of trust has been explored in greater depth by Balacheff et

47

al. [5], who classify trusted platform components into two groups, namely those

that satisfy the behavioural definition of trust and those that fulfil the social

definition of trust.

1. Social trust is static:

• it provides a means of knowing whether platform components should

be trusted; and also

• provides evidence as to whether platform components are capable of

behaving properly.

2. Conversely, behavioural trust is dynamic:

• it provides a means of knowing whether platform components can be

trusted; and

• it results from the dynamic collection of behavioural evidence.

1.6.2 Roots of trust

A root of trust is defined as a component that must be trusted for a platform to

be trusted [149]. Within the TCG, three roots of trust are defined upon which

a trusted platform can be built, the root of trust for measurement (RTM), the

root of trust for storage (RTS) and the root of trust for reporting (RTR). A

description of these roots of trust can be found in [5]. Standards describing the

RTM and RTS include [149,156–158].

1.6.2.1 RTM

The RTM is an engine capable of measuring at least one platform component,

and hence providing an integrity measurement, as described in section 1.6.3.

The RTM is typically implemented as the normal platform engine controlled by

48

a particular instruction set (the so-called ‘core root of trust for measurement’

(CRTM)). On a PC, the CRTM may be contained within the BIOS or the BIOS

boot block (BBB), and is executed by the platform when it is acting as the RTM.

1.6.2.2 RTS and RTR

The RTS is a collection of capabilities which must be trusted if storage of data

inside a platform is to be trusted [5]. The RTS is capable of maintaining an

accurate summary of integrity measurements made by the RTM, i.e. condensing

integrity measurements and storing the resulting integrity metrics, as described

in section 1.6.4. The RTS also provides integrity and confidentiality protection

to data and enables sealing, which is described in section 1.6.7. In conjunction

with the RTM and RTS, an additional root of trust is necessary for the imple-

mentation of platform attestation, which is described in section 1.6.6, namely

the RTR. The RTR is a collection of capabilities that must be trusted if reports

of integrity metrics are to be trusted [5]. The RTR and the RTS constitute

the minimum functionality that should be provided by a trusted platform mod-

ule. A TPM is typically implemented as a tamper-evident chip which must be

uniquely bound to a platform. In order to support RTS and RTR functionality,

a TPM incorporates various functional components such as: I/O; non-volatile

storage; a minimum of 16 platform configuration registers (PCRs), which are

used by the RTS to store the platform’s integrity metrics; a random number

generator; a hash engine; key generation capabilities; an asymmetric encryption

and digital signature engine; an execution engine; and an opt-in component.

If the roots of trust, essentially the TPM and the CRTM, once integrated

in a platform, are to be implicitly trusted, then there is an obvious need for

validation that they are working as expected. A set of credentials, including

an endorsement credential, conformance credentials, a platform credential and

49

attestation identity credential(s) must be generated for each TCG-conformant

trusted platform. This credential set describes the properties of the trusted

platform, as endorsed by a set of trusted third parties, thereby providing social

trust in the certified trusted platform components and properties.

1.6.3 Integrity measurement

An integrity measurement is defined in [104] as the cryptographic digest or

hash of a platform component. For example, an integrity measurement of a

program can be calculated by computing the cryptographic digest or hash of its

instruction sequence, its initial state (i.e. the executable file) and its input.

1.6.4 Authenticated boot

An authenticated boot process represents the process by which a platform’s

configuration or state is reliably measured, and the resulting measurement is

reliably stored. During this process, the integrity of a pre-defined set of platform

components is measured, as defined in section 1.6.3, in a particular order. These

measurements are condensed to form a set of integrity metrics which are stored

in a tamper resistant log. A record of the platform components which have

been measured is also stored on the platform. The TCG define two fundamental

roots of trust necessary for the implementation of an authenticated boot process,

namely the RTM and the RTS. For the purposes of this thesis, I2 denotes the

summary of the set of measurements stored to the tamper resistant log, i.e. the

integrity metrics of the platform. These integrity metrics represent the current

state of the platform.

50

1.6.5 Secure boot

A secure boot is the process by which the integrity of a pre-defined set of system

components is measured, as described in section 1.6.3, and these measurements

then compared against a set of expected measurements which must be securely

stored and accessed by the platform during the boot process. A secure boot

process is not defined by the TCG. The concept of a secure boot has been

widely discussed in the literature, however, most notably by Tygar and Yee [161],

Clark [27], Arbaugh, Farber and Smith [4] and Itoi et al. [88].

1.6.6 Attestation

Attestation is the process by which a platform can reliably export evidence of its

identity and its current state (i.e. the integrity metrics which have been stored

to the tamper resistant log, and the record of the platform components which

have been measured, as described in section 1.6.4) [7]. In conjunction with the

RTM and RTS, as described in section 1.6.4, the TCG define an additional

root of trust which is necessary for the implementation of platform attestation,

namely, the RTR.

1.6.7 Sealing

Sealing represents the action of associating stored data with a set of integrity

metrics representing a particular platform configuration, and encrypting it. The

data can only be decrypted and released when the state of the platform is the

same as that indicated by the integrity metrics sealed with the data. For the

purposes of this thesis SealI(Z) denotes the result of the encryption of data Z

concatenated with integrity metrics, I, such that Z can only be deciphered and

accessed if the platform is in a specified software state, where I includes I1 the

state that the platform must be in if subsequent use of the protected object is

51

to be permitted, and I2, the state of the execution environment at the time that

the command causing the data to be sealed was issued.

1.6.8 Process isolation

Process isolation provides assured memory space separation between processes

[7]. Both software and hardware mechanisms have been proposed in order to

enable process isolation.

An isolation layer has been defined as“providing separate execution environ-

ments for operating systems, applications and applets” [104]. Implementations

include those based on virtual machine monitors [61] and para-virtualisation

techniques [6, 127, 132]. Microsoft has also proposed an isolation layer, as de-

scribed in [24, 43, 126]. This latter isolation layer has been designed as part of

a complete platform architecture called the NGSCB. Within this architecture,

CPU and chipset extensions are required so that the isolation layer may be

physically protected in a separated environment. The isolation layer, in turn,

provides separate execution environments for operating systems, applications

and/or applets [104]. The CPU and chipset extensions required in order to im-

plement Microsoft’s NGSCB have been implemented by Intel as part of their

LaGrande Technology (LT) project [72]. These components support protected

execution (including prevention of DMA attacks) in an IA-32 platform.

While the execute-only memory (XOM) architecture and the architecture

for tamper evident and tamper resistant processing (AEGIS) are not strictly

examples of trusted computing platforms, they provide strong process isolation

through the development of hardened processors. The XOM architecture pro-

posed by Lie et al. [98, 99] attempts to fulfil two fundamental objectives: the

prevention of the unauthorised execution of software; and the prevention of any

software consumer from examining protected executable code. This is achieved

52

through the provision of on-chip protection of caches and registers, protection

of cache and register values during context switching and on interrupts, and

confidentiality and integrity protection of application data when transferred to

external memory.

The architecture for a single chip AEGIS processor bears a strong resem-

blance to the XOM architecture described above. “AEGIS provides users with

tamper evident (TE) authenticated environments in which any physical or soft-

ware tampering by an adversary is guaranteed to be detected, and private and

authenticated tamper resistant (PTR) environments, where, additionally, the

adversary is unable to obtain any information about software and data by tam-

pering with, or otherwise observing, system operation” [143].

1.6.9 Secure I/O

Secure I/O allows applications to be assured regarding the end-points of input

and output operations [7]. Intel have developed keyboard, mouse and graphic

subsystem enhancements as part of the LaGrande Technology project [72] in

order to facilitate this.

1.7 Definitions

In this section, security terminology used in the reminder of this thesis is defined.

This is by no means intended to be a complete list of security terminology.

Access control: The means of enforcing authorisation [51].

Authorisation: The granting of rights by the owner or controller of a

resource, for others to access that resource [51].

Authorisation data: The data that must be presented for access to be

allowed [5].

53

Availability: The property that resources, including data and processing,

are accessible to authorised entities [128].

Attribute authority: An authority trusted to create and assign attribute

certificates [74].

Certification authority: An authority trusted to create and assign public

key certificates. Optionally, the certification authority may create and assign

keys to the entities [75].

Confidentiality: The property that data is not made available or disclosed

to unauthorised individuals, entities, or processes [80].

Data integrity: The property that data has not been altered or destroyed

in an unauthorised manner [80].

Data origin authentication: The corroboration that the source of data

received is as claimed [80].

Digital certificate: A digitally signed data structure containing an iden-

tifier for an entity and certain information associated with that entity, e.g. a

public key or an access control attribute [47].

Entity authentication: The corroboration that an entity is the one claimed

[84].

Integrity measurements: Measurements about the state of the platform,

used in the process of deciding whether a platform can be trusted, condensed to

make integrity metrics, usually associated with explanatory history information

[5].

Integrity metrics: Data that is a condensed value of integrity measure-

ments, which indicate the history of the platform that relates to the platform’s

trustworthiness [5].

54

Non-repudiation of origin: Protects against the originator’s false denial

of having approved the content of a message and of having sent a message [76].

Non-repudiation of receipt: Protects against a recipient’s false denial of

having received a message [76].

Roots of trust: In TCG systems, roots of trust are components that must

be trusted because their misbehaviour might not be detected [149]. A complete

set of roots of trust has at least the minimum functionality necessary to describe

the platform characteristics that affect the trustworthiness of the platform [149].

Root of trust for measurement: A collection of capabilities that must

be trustworthy if integrity measurements of the environment inside a platform

are to be trusted; the component that makes the first integrity measurement of

a platform [5].

Root of trust for storage: A collection of capabilities that must be trust-

worthy if storage of data inside a platform is to be trusted; part of the function-

ality of the TPM [5].

Root of trust for reporting: A collection of capabilities that must be

trustworthy if reports of integrity measurements of the environment inside a

platform are to be trusted; part of the functionality of the TPM [5].

Trusted system or component: A system or component whose failure

can break the security policy [3].

Trustworthy system or component: A system or component that will

not fail [3].

Trusted third party (TTP): A security authority, or its representative,

trusted by other entities with respect to security related activities [78].

Security policy: A set of rules that apply to all security-relevant activities

55

in a domain [51].

56

Part I

Mobile host protection

57

Chapter 2

Mobile code and agent
authorisation

Contents
2.1 Introduction . 59

2.2 Agents . 62

2.3 Mobile agents . 64

2.4 Mobile agent security 64

2.5 Mobile agent authorisation techniques 66

2.5.1 Code and agent behaviour 66

2.5.2 Code and agent origin 72

2.5.3 Code and agent integrity 76

2.6 Conclusions . 80

This chapter introduces the agent paradigm, focusing specifically on the con-

cept of the mobile agent. The security issues surrounding the deployment of

mobile agents in a mobile environment are then examined. Finally, the state of

the art in technologies for mobile code and agent authorisation is described.

58

2.1 Introduction

As the benefits of mobile computing become more apparent, the deployment and

use of wireless technologies increases. Despite the fact that mobile computing

has become progressively more prevalent, Gray et al. [66] have identified several

remaining obstacles to the development of distributed applications that make

effective use of networked resources from mobile platforms. The fact that mobile

computers do not have a permanent connection and are often disconnected for

long periods of time is an obvious obstacle, as is the fact that connections are

often characterised by low bandwidth, high latency and may be error prone.

A mobile agent is defined as “an autonomous, reactive, goal-oriented, adap-

tive, persistent, socially aware software entity, which can actively migrate from

host to host” [131], and their deployment leads to considerable potential ben-

efit for both distributed applications and mobile computing. The deployment

of mobile agents can decrease the bandwidth required in order to complete a

transaction between a client and a server. In general, a transaction between a

client and a server may require many round trips to ensure its completion. If

many transactions are being completed concurrently, the communications re-

quirements may exceed the available bandwidth, leading to poor performance.

When an agent is used, the only transfer made is that of the agent from the

client to the server. The transfer of all intermediate results is eliminated, thereby

reducing the overall bandwidth requirement.

In the traditional client/server architecture, the roles of the client and the

server are often pre-defined, and decisions are often made as to where particular

functionality will lie during design. If incorrect or inaccurate decisions are made

at design time, an inefficient system will result. By contrast, however, agent

systems require very few decisions to be made at design time, making the system

59

more flexible in operation.

Agents also provide a solution to the problem of unreliable network connec-

tions. In the majority of systems in use today it is necessary that a network

connection remains for the duration of a transaction. Should the network con-

nection be lost, the client is required to re-establish the session and begin the

transaction again. If an agent is deployed, a connection is only required for

agent transmission and for the receipt of results. If the connection is lost at any

point after the agent is transmitted, the agent will continue to do its work and

return with the results when the connection is restored. This shows that the use

of a mobile agent can also reduce the amount of online time required in order

to complete a transaction [111].

If, however, these persistent, autonomous programs are permitted to roam

freely in networks, interacting as they please with systems and other agents in

order to fulfil their predefined goals, the risk of a mobile agent with malicious

intent damaging any system on which it is executed, becomes a real danger.

It therefore becomes apparent that the problem of determining whether or not

a mobile agent should be authorised to execute on a particular platform is a

serious one. This problem becomes especially critical in a mobile environment,

where bandwidth and processing power may often be limited; this, in turn,

restricts the capabilities of a mobile node either to contact the originator of the

agent or to perform detailed checking of the mobile agent code.

In part I of this thesis, we develop a policy-based framework for mobile agent

authorisation, and more generally, mobile code authorisation, for implementa-

tion within a mobile environment. Part I is structured as follows.

• In this chapter we examine the agent paradigm, with particular focus

on the mobile agent. The security issues surrounding the deployment of

60

mobile agents in a mobile environment are then explored. Following this,

state of the art technologies in mobile code and agent authorisation are

described.

• Chapter 3 describes six possible architectural models upon which a policy-

based framework for the authorisation of incoming executables and, more

specifically, mobile agents, may be constructed. Each model is then anal-

ysed with respect to the level of security it can support and with regard

to its suitability for implementation in a mobile environment. From this

analysis, we outline a list of features desirable in the underlying archi-

tectural model of a policy-based framework for mobile code and agent

authorisation.

• In chapter 4 the six possible architectural models, upon which a policy-

based framework may be constructed, are re-examined. As a result we de-

duce the functional requirements for the language chosen for policy state-

ment expression, the language chosen for attribute certificate expression,

and the supporting policy engine, in each of the six scenarios. Follow-

ing this, a selection of policy and attribute certificate specification lan-

guages are examined using these requirements, namely KeyNote, Ponder

and SAML, and conclusions drawn regarding their suitability for use in

our framework.

• Finally, in chapter 5, our policy-based framework for mobile code and

mobile agent authorisation is described.

In section 2.2 the properties that constitute an agent are specified. Following

this, a variety of well defined agent types are described. Section 2.3 focuses

specifically on the mobile agent paradigm.

Section 2.4 outlines the security issues surrounding the deployment of mobile

61

agents in a mobile environment. The threats specific to host security, which arise

from the circulation of malicious mobile agents, are then explored.

Section 2.5 examines the state of the art technologies for mobile code and mo-

bile agent authorisation. The authorisation techniques identified are grouped

into three categories: authorisation techniques based on code and agent be-

haviour; authorisation techniques based on code and agent origin; and, finally,

authorisation techniques based on code and agent integrity.

2.2 Agents

By examining the various agent definitions gathered by Franklin and Graesser

[52], we can extract certain generic properties that characterise an agent. Ideally,

agents are:

• Autonomous in their execution. They require no human or machine inter-

vention as regards execution. They have control over their actions.

• Perceptive with respect to their environment.

• Reactive, and thereby responsive to changes in their environment.

• Able to realise a set of predefined goals.

• Persistent software entities, unlike those that run and then come to an

end.

• Interactive with respect to other agents.

• (Sometimes) adaptive, where their behaviour changes based on previous

experience.

When compared to conventional software, there are two main differences [52]:

62

• The output of a program does not normally affect what it senses later;

and

• Most programs run once and then terminate until called on again, whereas

agents have temporal continuity.

Agents are programs, but not all programs are agents.

In conjunction with the properties highlighted above, an agent may possess

other attributes which allow it to be placed into one or more of the following

groups [111].

• Collaborative agents are capable of cooperating with other agents in order

to achieve their goals. They can negotiate between themselves in order to

reach mutually acceptable agreements.

• Interface agents are capable of learning. Over time they adapt to their

user’s preferences.

• Mobile agents are capable of roaming.

• Information agents are capable of managing and collating information from

many different sources.

• Reactive agents react to the environment into which they are put.

• Smart agents are defined as agents capable of both cooperation and learn-

ing.

• Hybrid agents are agents that contain two or more of the above charac-

teristics.

63

2.3 Mobile agents

In this thesis, we focus on the mobile agent paradigm. In order to understand

more deeply the focus of our study, we adopt a widely used definition of a mobile

agent as “a process that can actively migrate from one host to another host, and

based on locally computed decisions, can actively migrate to a third host” [131].

2.4 Mobile agent security

In practice, neither the agents nor the machines on which they execute are nec-

essarily considered trustworthy, see [28,91]. A malicious host can pose a serious

threat to an agent. If appropriate measures are not taken, a malevolent machine

on which an agent is executing may attempt to gain access to confidential in-

formation stored by the agent, alter the information held by the agent, or force

the agent to carry out unauthorised actions.

On the other hand, a malicious agent may pose numerous threats to a host

machine. It may use up an unauthorised amount of resources leading to a

denial of service attack, or it may attempt to access, destroy or disseminate

secret information stored on the host machine, if the appropriate access control

mechanisms are not put in place.

In part I of this thesis, we focus primarily on the latter problem, i.e. ma-

licious agents and host security. The confidentiality, integrity and availability

of data held on a host system must be ensured. Should malicious or corrupt

agents come into circulation, however, the successful provision of these security

services by the host may be threatened. The threat of downloading and exe-

cuting malicious, corrupted or incorrect program code from anywhere on the

Internet has been widely documented and discussed. The evolution of agent

technologies has, however, given rise to some new security challenges. In the

64

case of the mobile agent there is the added concern that agent state informa-

tion — program counters, registers, local environment, control stack, store, etc.

— may possibly have been changed in ways that adversely impact the agent’s

functionality [11]. Indeed, an initially benign agent may become malicious in

its behaviour.

Attacks that may be mounted by malicious mobile code include:

• Unauthorised access to resources, which may lead to the deletion of user

files or to the leakage of sensitive information.

• Flooding attacks caused by the replication of programs, which potentially

wreak havoc on networks and may crash distributed systems.

• Unauthorised monitoring of the execution environment.

• Modification or deletion of the host configuration.

• Insertion of back doors into a system, leading to possible future security

violations.

We must also consider the possibility of a malicious host that manipulates

the state information of the agent in order to attack hosts that the agent subse-

quently visits, or, simply, to change the agent behaviour in ways advantageous

to the host. Berkovits, Guttman and Swarup [11] give an example involving two

independent airline servers, a travel agency server and a consumer server. The

travel agency is responsible for programming an agent, which is then distributed

by the customer. The agent is designed to query airline databases to find details

of seat availability and cost. When queries on one server have been completed

and the results have been stored in the agent state, the agent moves on to query

the next server. When all servers have been visited, the agent compares flight

and fare information, chooses the most appropriate option, and returns to the

65

chosen airline server to reserve the flights. Finally, the agent will return to the

customer with the results.

If we assume that the number of reservations requested by the consumer is

stored as part of the state information of the agent, the first airline can mount

a simple attack on the second airline by increasing the number of reservations

requested by the customer (from 2 to 100 for example) causing the agent to

reserve 100 seats on the second (perhaps cheaper) airline. This will have the

effect that subsequent customers will book their tickets on the first airline, as

the second believes it is full and that it cannot sell any further tickets. This

illustrates the ease with which state information can be corrupted in order to

inflict economic damage. What is also highlighted here is the importance of

protecting any immutable state information — in this case the number of seats

specified by the user — as well as the source code of the agent.

2.5 Mobile agent authorisation techniques

In order to prevent a mobile agent, and more generally mobile code, from per-

forming unauthorised actions on a host machine, the development of an au-

thorisation framework is required. Within this framework, we need to devise a

method of deciding whether or not an incoming executable should be authorised

to execute, and what privileges (if any) should be assigned to an agent autho-

rised to execute. We will begin this process with an examination of existing

work on mobile code and mobile agent authorisation.

2.5.1 Code and agent behaviour

Recent approaches to mobile code and mobile agent authorisation analyse the

executable’s behaviour to determine the appropriate level of access to be at-

66

tributed to it. In this section, we will consider approaches of this type, includ-

ing proof-carrying code and model-carrying code, as well as some of the security

features built into certain languages.

2.5.1.1 Proof-carrying code

The objective of proof-carrying code (PCC) is to enable a computer system to

“conclude, automatically and with certainty, that program code, provided by

another system, is safe to install and execute” [107]. The mechanism involves

the code producer providing an encoding of a proof that the code adheres to

the security policy of the receiving entity/host. The proof is such that it can

be easily transmitted with the code, and checked via a simple proof-checking

process. At first glance, this approach seems very promising, offering the fol-

lowing advantages: the properties that can be proved as safe are not limited to

a specific set; it is low risk and automatic; it is efficient and flexible; and it does

not require the existence of trust relationships.

This particular mechanism may be implemented in the following way [107].

The code producer initially adds annotations to code it produces, either manu-

ally or automatically with a tool called a certifying compiler. These annotations

help the host understand the security relevant behaviour of the code.

The host, which has specified a security/safety policy, receives the code. The

host machine then uses a tool called a verification condition generator (VCGen).

This tool first checks all untrusted code for simple security properties. Secondly

VCGen watches for instructions that may violate the security policy laid down

by the host. From this, a predicate is extracted that highlights the conditions

under which the execution of the code is safe. This security predicate (set of

verification conditions) is then sent to the ‘proof producer’ which proves it and

sends it back to the host. If the proof is deemed valid by the host, when put

67

through a program known as the proof checker, the untrusted code is installed

and run.

On closer examination, however, it becomes clear that there are some funda-

mental hurdles accompanying the use of this mechanism, including how proofs

are constructed, in what formalism, and how it can be guaranteed that proofs

can be verified efficiently and simply. As of yet, it is also true that not all

properties can be captured in proofs [138]. Currently, only low level security

properties such as memory safety can be dealt with [107]. Also, in the case of

large executables, the size of the proof can sometimes be an order of magnitude

larger than the code.

2.5.1.2 Model-carrying code

A more recent approach to mobile code authorisation is a method called model-

carrying code (MCC) [138]. This technique involves a behavioural model being

sent in conjunction with the executable. The model is far less complex than the

program code it accompanies, and can therefore be checked with relative ease

by the host platform to see if it satisfies the relevant host security policies. As

opposed to proof-carrying code, where policies are rigidly set, this model offers

the host platform the option of making the relevant changes to the security

policy based on the requirements of the code and the behavioural guarantees

presented by the model accompanying the code.

There is, however, one remaining issue: how can the model be trusted to

be a true reflection of the executable? To address this issue, the deployment of

either run-time checking on the code as it is executing, model signing or the use

of PCC has been recommended [138]. Model signing may appear to be almost

identical to code signing, but in this case the signature attests that the model

reflects the behaviour of the code. Therefore, should anything go wrong, it is

68

easily proved whether or not the signer of the model acted fraudulently. In

contrast, should signed mobile code act in a destructive fashion, the signer may

be able to claim ignorance that the code could do any harm.

Alternatively, runtime checking may be employed. In this instance, an en-

forcement model is passed to the runtime monitor, which intercepts security rel-

evant events and compares them to the expected model behaviour. Should the

program deviate from the model while executing, it is immediately terminated.

It is the aim of this runtime enforcement to thwart the threat of inconsistent

mobile code and model production.

In lieu of model signing or runtime checking, a formal proof may be pro-

duced in order to prove that the model is a safe approximation of the program’s

behaviour [138].

2.5.1.3 Language security

A number of recent programming languages incorporate security features such

as type safety. Notable examples include Java [64], Safe Tcl [125] and C# [2].

These languages have made a considerable contribution to the security of mobile

code in recent years. In this section we will briefly examine some of the security

features of Java and Safe-Tcl in more detail, and comment on the contribution

each can make to mobile code security.

Firstly, the design of the language in which the executable is written may

have a major impact upon host security. With respect to the prevention of

integrity violations on the host, issues such as type safety are important. This

involves the compiler ensuring that programs do not access memory in ways

that are inappropriate or dangerous. As regards a confidentiality violation of

the host, there are many ways in which mobile code can leak secrets; for exam-

69

ple, information channels can arise from contention among processes for shared

resources. For more information on these language issues see, for example, Vol-

pano and Smith [163].

Secondly we examine the native security features of various languages, such

as Java and Safe-Tcl. In order to address security concerns, Java incorporates

a security model referred to as the sandbox. It is the job of the sandbox to

ensure that untrusted Java code cannot access sensitive system resources. The

sandbox consists of three main components [62].

• The byte code verifier performs static checks on the incoming code before

it is executed. These checks are concerned with the structure of the code,

such as whether or not all class files have the proper class file format,

rather than code behaviour.

• An applet class loader is responsible for downloading the classes which do

not already exist on the client machine, but are necessary for a particular

Java executable to run. The Java virtual machine then tags each of the

classes so that, when a class attempts access to a resource, the security

manager can use the class loader tag to determine whether the class has

come from the local machine or has been downloaded, and to determine

whether the access is authorised.

• The security manager performs dynamic checks on the code while it is

executing. It can enforce boundaries between classes to prevent one class

from accessing private variables or classes from outside its class, and it is

also consulted when any potentially dangerous methods are invoked.

Originally, the only differentiation made in Java was between trusted code

originating from the local file system, which was run on the system, and un-

trusted code, downloaded from the network and executed in the sandbox. In

70

later editions of the Java developer’s kit, signed code was introduced. In this

instance, if code could be authenticated via a digital signature as originating

from a particular source trusted by the host, then the code could be given free

access to the system; otherwise it was confined to the sandbox. The most recent

developments introduce multiple sandboxes/zones enforcing differing degrees of

restriction. The signature accompanying the code is used as the deciding factor

in determining the appropriate sandbox for code execution.

The scripting language Safe-Tcl [125] works on the ‘padded cell’ approach.

In order to execute code, two interpreters are used, a master interpreter and a

safe interpreter. Each executable is isolated in a safe interpreter, a restricted

virtual machine for the executing code, in which executables have access to

a minimum set of commands known as a ‘safe base’. All unsafe commands,

which may lead to a host security violation, are made inaccessible within the

safe interpreter. The execution environment of a safe interpreter is, however,

controlled by trusted scripts running in a master interpreter, which retains full

functionality.

In order to allow executables limited access to restricted commands, an alias

mechanism is used. An alias is used by executable code to request ‘unsafe’

services or access to protected resources from the safe interpreter, which in turn

invokes the commands in the master interpreter.

A different policy, which consists of the ‘safe base’ and a set of aliases, can

then be associated with each safe interpreter. This particular security model has

two main strengths. Firstly, trusted code is separated from untrusted code, as

was the case in Java. Secondly, Safe-Tcl does not prescribe any particular secu-

rity policy. Different security policies can be set by the particular organisation

by providing different sets of aliases in a safe interpreter. For example, highly

71

restrictive policies may be set for incoming code produced by unknown or un-

trusted code producers, and more liberal policies set for code accompanied by a

signature that shows it has originated from a trusted source. More information

on this particular model is given by Ousterhout, Levy and Welsh [125].

2.5.1.4 Authorisation and attribute certificates

Johnston, Mudumbai and Thompson [92] use two kinds of certificates in their

scheme for widely distributed access control.

• An ‘authorisation certificate’ contains a list of ‘use-conditions’ that need to

be satisfied before access to a resource on a host machine can be authorised.

• An ‘attribute certificate’ can be associated with a piece of executable code

or agent produced and signed by a third party that is trusted by the owner

of the host resources.

When an incoming executable requests authorisation to access a particular

resource, an access control gateway initially verifies the identity of the requesting

subject. This request is then passed to the policy engine, which collects the

authorisation certificates of the host machine and the attribute certificates of

the particular executable or agent. If the use conditions are satisfied by the

attribute certificates, a capability for use of a specified resource by a particular

executable is generated.

2.5.2 Code and agent origin

All of the systems we describe in this section rely on cryptographic methods to

establish the identity and trustworthiness of the code author, agent creator or

owner. In particular, the receiving host will check the validity of a digital signa-

ture and/or digital certificate that is associated with the incoming executable.

72

2.5.2.1 D’Agents

The D’Agents system [67] supports agents written in three different languages,

namely Tcl, Java and Scheme. In a D’Agents system, each agent may be classi-

fied by a D’Agents host as either owned or anonymous. An owned agent is de-

fined as one whose owner can be authenticated and is included in the D’Agents

host’s list of authorised users. An anonymous agent is defined as one whose

owner cannot be authenticated, or, alternatively, as one whose owner is not

included in the D’Agents host’s list of authorised users.

An agent owner can be authenticated if the agent has been signed using

the owner’s private key. Alternatively, an agent owner can be authenticated

if the agent has been signed with the agent sender’s private key, where the

sending machine was able to authenticate the agent owner and is trusted by

the receiving host. On arrival, the digital signature accompanying the incoming

agent is verified, and the agent classified accordingly as owned or anonymous.

If the agent is labeled anonymous, it may be rejected, depending on the host

policy.

A D’Agents host machine will also contain a set of security policies. One

category of policy that can be enforced on a D’Agents host are absolute policies,

for example“an agent can terminate another agent only if its owner is the system

administrator or if it has the same owner as the other agent” [67]. These policies

must be adhered to by all agents, irrespective of the language in which they are

written.

All other policy statements are defined and enforced using language-specific

security/enforcement modules and a set of language-independent resource man-

ager agents. When an agent requests access to a resource, the request is for-

warded by the language-specific security module to the correct resource man-

73

ager. The resource managers determine whether access should be allowed or

denied, based on a specified security policy. This decision is then enforced

by the security/enforcement module. In the version 2.0 implementation of

D’Agents [67], there are seven resource managers: a consumable resources man-

ager, a file system manager, a library manager, a program manager, a network

manager, a screen manager and a manager for other generic resources. There

are also three security/enforcement modules, one for each of the languages listed

above. Security policies typically specify access rights and limits for a partic-

ular agent owner. Anonymous agents are given very limited (if any) access to

resources.

The D’Agents system is based on a PGP-style web of trust, see section 1.5.8,

rather than a PKI, see section 1.5.7. Note, also, that once an agent leaves its

trusted domain it will be marked as anonymous by any host it visits, and will

therefore have very limited capabilities. These characteristics of the D’agents

system are likely to limit its use in an open environment — precisely the envi-

ronment where mobile agents have the most potential.

2.5.2.2 MExE

The mobile station application execution environment (MExE) [140] provides

a standardised execution environment for advanced mobile services and appli-

cations in mobile equipment. The resources available to an executable are de-

termined by the identity of the executable’s owner and the type of the device

upon which it executes. Three MExE device types are defined; classmark 1

wireless application protocol (WAP) devices, which have simple man-machine

interfaces and limited processing power; classmark 2 Java devices, which have

greater power and storage; and, finally, classmark 3 devices, which are based on

connect limited device connection (CLDC) and mobile information device pro-

74

file (MIDP) reference implementations for application development on devices,

such as mobile phones and PDAs, that have tight resource constraints. The

authorisation mechanisms differ depending on the classmark of the device.

The authorisation framework for classmark 1 and 3 devices is a simple one.

Such devices have tight resource constraints, as mentioned above, and thus will

not support signed content. All executables downloaded are treated as untrusted

and are run in a sandbox with limited privileges.

Classmark 2 devices have a more complex authorisation mechanism. Every

device incorporates the root public keys of the device manufacturer, the network

operator, the administrator, and any other relevant third parties. There are also

four MExE domains available on each device, including a third party domain,

an operator domain, a manufacturer domain and one general execution area,

which is referred to as the untrusted execution domain. These domains are used

for executables signed by the manufacturer of the mobile station, the network

operator or an independent third party, with executables signed by the network

operator receiving the most flexible set of access rights. In conjunction with

domain restrictions, user permission is also required before any action may be

performed.

2.5.2.3 Telescript

Telescript [145], the first commercial mobile agent system, also uses the iden-

tity of the executable’s owner in order to determine the level of access to be

attributed to an incoming agent by the host platform.

In conjunction with the inherent runtime object safety inbuilt into Telescript

engines, a number of explicit security mechanisms are also incorporated into

the architecture. Each agent carries cryptographic credentials which allow the

75

identity of the agent’s owner to be verified. In conjunction with this, a set of

permissions, which specify a set of access rights to utilise Telescript instructions

and host machine resources [67], are allotted to the agent.

The host machine then gives the incoming agent the permitted access rights.

Should an agent attempt to violate its restricted set of permissions, its execution

is immediately terminated. This system assumes, however, that all agents are

created and utilised within a trusted environment, and therefore does not scale

well.

2.5.3 Code and agent integrity

Agents consist of code, data and execution state, and it is the static code and

data that is protected when an executable is digitally signed by its author, as

described in 2.5.2. Some aspects of an agent’s state, however, cannot be signed

by the agent code author because of their transient nature. A malicious host

may, therefore, change the state of an agent so that the behaviour of the agent

is modified in ways advantageous to the host. A number of techniques have

been proposed to counter this threat. In this section we examine several such

techniques.

2.5.3.1 SPLs, PPLs and state appraisal functions

A state appraisal function is used to evaluate the state of an agent before its

execution is authorised. This process involves the host machine evaluating a

function to verify that the incoming agent is not in a harmful state. This

function is necessarily application-specific, so the most obvious entity to define

it would be the agent code author. The author then signs the state appraisal

function and the code.

Berkovits et al. [11] highlight a more specific application of the state appraisal

76

function in their authorisation framework. They place authorisation controls at

each point in the life cycle of an agent, from creation of the underlying program,

through the creation of the agent itself, to the migration of the agent. The author

prepares the source code of the agent and a state appraisal function (denoted

max), which is used to calculate the maximum set of permissions that should

be given to the agent, based on the state of the agent. If this state appraisal

function at a later time discovers that the state has been corrupted in some

way, the set of permissions the agent was originally to be given is diminished or

possibly made null.

A sender permission list (SPL) may also be defined in order to specify which

users are permitted to send the resulting agent. All this information — the

code, the state appraisal function, the SPL, and the identity of the code author

— is hashed to yield a message digest, known as the program name, which the

author signs with its private key. If it is not possible to identify all potential

senders at the beginning of this process, a sender permission certificate (SPC)

can be used in order to add senders to the SPL at a later date. This involves the

author of the program signing an attribute certificate containing the identity of

the sender in question and the name of the program.

The agent is then constructed by combining the agent code and its execution

state. At this stage, the agent creator prepares a second state appraisal function

(req), which calculates the set of permissions a sender wishes the agent to have

while executing. These permissions are calculated as a function of the agent’s

current state. The output of the function req may define a set of permissions

that are a subset of the permissions output by the function max, as the agent

creator may wish to limit its responsibility for any malicious behaviour that the

program may attempt.

77

The creator may also construct a place permission list (PPL), which specifies

the places/hosts that can run the agent on the creator’s behalf. The creator then

takes the agent, the name of the program (calculated by the agent code author),

the function req, the PPL and the identity of the creator, and creates a message

digest from the components. This digest is known as the agent name. The agent

creator then signs this digest with its private key. Places that have not been

included in the PPL can be authorised by the creator through the generation of

an attribute certificate, called a place permissions certificate (PPC), after the

agent has been launched.

When the agent arrives at a destination host, the digital signatures accom-

panying the agent are verified. Once the host has been assured of the identities

of the agent code author and agent creator; that the agent’s creator’s identity is

listed in the SPL; that its own identity is listed in the PPL; and that none of the

signed elements have been tampered with; the functions req and max are exe-

cuted. Should the output from the req function be neither equal to nor a subset

of the permissions output from the max function, no permissions are granted

to the agent. Equally, if either of the state appraisal functions detects that the

state has been altered in a malicious way, the function will return an empty

permission set. Otherwise, permissions requested by the agent are granted.

While this system has a number of desirable features, certain technical issues

must be addressed if this mechanism is to be deployed within an authorisation

framework. It is not clear how well the theory will hold up in practice, since

the state space for an agent could be quite large. While appraisal functions for

obvious attacks may be easily formulated, more subtle attacks may be signifi-

cantly harder to foresee and detect. It may not always be possible to distinguish

normal results from deceptive alternatives [91]. In conjunction with this, a prac-

tical implementation of such a mechanism has not been documented, so tangible

78

performance results are not available.

2.5.3.2 Tracing

Tracing [162] was originally developed with agent security in mind, but may also

be used to counteract the threat posed by malicious hosts tampering with an

agent in an attempt to damage hosts that the agent subsequently visits. Rather

than preventing a host maliciously altering an agent in any way, and thereby

causing damage to a future host on which the agent may execute, cryptographic

tracing acts as a log of all the operations performed by the agent over its lifetime.

Jansen and Karygiannis [91] describe the technique as follows. Each plat-

form on which an agent executes is required to create and retain an undeniable

trace of the operations performed by the agent while resident there, and to sub-

mit to the agent a cryptographic hash of the trace, known as a trace summary

or fingerprint. A trace is composed of a sequence of statement identifiers and

signature information from all platforms the agent has visited. The signature of

the platform is required only on those instructions that depend on interactions

with the computational environment maintained by the platform. For instruc-

tions that rely only on the values of internal variables, a signature is not required

and is therefore omitted.

The technique also defines a secure protocol to transmit agents and associ-

ated security related information between the various parties involved. There-

fore, assuming that the creator of the agent is trustworthy, and the original

agent was in no way malicious, traces and trace summaries can be used to de-

tect whether a host machine has altered the agent in a detrimental way, and

can enable a third party to pinpoint exactly which host is responsible for the

damage, thereby acting as a deterrent to tampering.

79

2.5.3.3 Code obfuscation

Another mechanism devised with agent security in mind, but which by implica-

tion has an impact on host security, is code obfuscation [69]. Code obfuscation

helps prevent original ‘safe’ code from being tampered with and thereby affecting

and possibly damaging future host machines it may visit. In this case, a series

of one or more transformations are applied to the code before it is sent on to an-

other site in such a way that makes re-engineering the code extremely difficult,

while still preserving the executable’s original functionality [69]. While code

obfuscation offers protection against both static and dynamic analysis attacks,

and is efficient in terms of the transformation process, which is automatic, the

memory and computational time required to execute obfuscated code increases

with each transformation applied to the executable [20].

2.6 Conclusions

In this chapter, the mobile agent paradigm has been introduced and the security

issues associated with the deployment of mobile agents in a mobile environment

have been described. Finally, a review of the state of the art in mobile code and

agent authorisation has been presented. While it is clear from this chapter that

the problem of mobile code and agent authorisation has been widely discussed,

many of the solutions described above are limited in terms of their application

in a mobile environment.

While the mechanisms described in section 2.5.1 focus on the behaviour of the

code rather than the entity which generated it, which is advantageous in an open

environment, PCC, MCC and language security are not without their problems.

While PCC is a promising area of research, there are questions regarding how

proofs of code should be constructed, in what formalism, and how it can be

80

guaranteed that proofs can be verified efficiently and simply. Currently, not all

properties can be captured in proofs [138], only low level security properties

such as memory safety [107]. In the case of large executables, the size of the

proof can sometimes be an order of magnitude larger than the code. While

the use of languages which incorporate security functionality is clearly helpful,

controls then become dependent on all incoming executables being written in

one of these ‘safe’ languages. MCC remains partially dependent on proofs of

code or identity-based means in order to ensure model soundness [138], which

may introduce another class of problem, as described below.

In the identity-based authorisation mechanisms described in section 2.5.2,

the authorisation of an incoming executable is dependent on the identity of the

its originator(s). If mobile agents, and indeed mobile code, are to be deployed

in an open mobile environment, where a host device may potentially need to

authorise an unbounded number of entities, the security value of an identity-

based authorisation mechanism quickly diminishes. In conjunction with this,

no consideration is given to the threat of a known entity generating a mali-

cious executable, or buggy code which results in an end host system security

vulnerability.

Of the mechanisms described in section 2.5.3, tracing facilitates the detection

of malicious activity rather than its prevention, which is not ideal, and, while

the concept behind code obfuscation is a simple one, there are currently no

known algorithms which enable this approach [91]. At the time of writing, state

appraisal functions represent the only mechanism by which the security threats,

introduced by potentially malicious agent state information, can be thwarted;

however, the implementation of such an approach requires a complex verification

process to be completed by the end host, which is disadvantageous in a mobile

environment, where devices may be limited in terms of processing power.

81

In the remainder of this part of the thesis we therefore work towards the

development of a policy-based framework for the authorisation of mobile ex-

ecutables in a mobile environment, where a minimal set of checks need to be

completed by the end device, and both the origin and/or the behaviour of the ex-

ecutable can be considered. In the next chapter, we start this process by describ-

ing and analysing a number of architectural models upon which a policy-based

framework for the authorisation of incoming executables and, more specifically,

mobile agents, may be constructed.

82

Chapter 3

Architectural models for
mobile code and agent
authorisation

Contents
3.1 Introduction . 84

3.2 Entities involved . 86

3.3 Scenario 1 . 87

3.4 Scenario 2 . 91

3.5 Scenario 3 . 93

3.6 Scenario 4 . 98

3.7 Scenario 5 . 101

3.8 Scenario 6 . 104

3.9 Conclusions . 107

This chapter describes six possible architectural models upon which a policy-

based framework for the authorisation of incoming executables and, more specif-

ically, mobile agents, could be constructed. Each model is analysed with respect

to the level of security it can support, and with regard to its suitability for im-

plementation in a mobile environment.

83

3.1 Introduction

In chapter 2, the state of the art in technologies for mobile code and agent

authorisation was examined. As we are concerned with mobile code and agent

authorisation in a mobile environment, for the remainder of part I of this thesis

we will focus on the development of a policy-based authorisation framework,

which provides both mobile devices and service providers with the ability to

assign the appropriate privileges to incoming executables and, more specifically,

mobile agents. This framework is designed to avoid the use of computationally

intensive procedures and to operate in a non-overly restrictive manner.

This chapter documents the preliminary analytical work necessary in the

construction of this policy-based authorisation framework for a mobile environ-

ment. The framework’s underlying architectural model must first be developed.

This includes identification of the parties involved; assignment of roles and re-

sponsibilities to each of the identified participants; definition of the protocols

associated with the architecture; and selection of the authorisation techniques

to be deployed within the framework based on state of the art mechanisms.

We depict six scenarios, each of which describes an architecture that sup-

ports policy-based authorisation of mobile code and agents. Each architecture is

analysed with respect to the level of security it can support and with regard to

its suitability for implementation in a mobile environment. This analysis is used

to compile a list of fundamental requirements for the underlying architecture of

a policy-based framework which enables mobile code and agent authorisation in

a mobile environment.

Section 3.2 introduces the participant roles involved in the six scenarios,

which are then described in sections 3.3 to 3.8.

84

• In the first scenario, described in section 3.3, executables are signed, and

authorisation of an executable by the mobile host is based solely on the

identity of the party signing the code.

• In the second scenario, described in section 3.4, an executable is permitted

to execute in one of four execution environments (each of which has a pre-

defined set of executable permissions associated with it) depending on the

role of the entity which signed the executable.

• In scenario three, described in section 3.5, each executable is tested by

a TTP, and an attribute certificate is generated describing the security

relevant properties of the executable as verified via analysis. Authorisa-

tion of an executable by the mobile host is based on the security relevant

properties of the executable, as described by the TTP.

• In scenario four, described in section 3.6, the security controls associated

with an incoming executable are verified by a domain server, with which

the destination mobile host is affiliated. An attribute certificate is then

generated by the domain server, which describes the security relevant prop-

erties of the executable. Authorisation of an executable by the mobile host

is based on the security relevant properties of the executable, as specified

in the executable’s attribute certificate.

• In the fifth scenario, described in section 3.7, the incoming executable is

executed on an emulator on a domain server with which the destination

mobile host is affiliated. The executable is then signed and forwarded

to the destination host by the domain server if no malicious executable

behaviour was detected. Authorisation of an executable by the mobile

host is based on the domain server signature on the executable.

• In scenario six, described in section 3.8, the state appraisal functions and

85

signatures appended to an incoming agent are verified by a domain server

to which the destination mobile host is affiliated. The executable is only

signed and forwarded to the destination host by the domain server if all

controls can be validated. Authorisation of an agent by the mobile host

is based on the domain server signature on the agent.

These six architectural models were chosen because they incorporate the mech-

anisms for mobile code and agent authorisation that are most widely discussed

in the literature. Based on the analyses of these six models, in section 3.9 we list

the minimum requirements for an architectural model supporting a policy-based

framework enabling mobile code and agent authorisation in a mobile environ-

ment.

3.2 Entities involved

We begin by introducing the participant roles involved in the scenarios described

in sections 3.3 to 3.8.

• An agent code author is responsible for the production of agent code.

More generically, we define a code author as the entity responsible for the

generation of executable code.

• An agent creator is responsible for agent creation, i.e. the combination

of the program code from the agent code author with data and initial

state information. The agent creator may also be responsible for agent

distribution.

• A mobile device represents a mobile host on which an executable may

execute.

86

• A service provider represents a host machine/server on which code may

execute, or an agent may execute and interact with other agents.

• A certification authority is responsible for the generation of public key

certificates.

• A device manufacturer is responsible for the manufacture of mobile de-

vices.

• A network operator is responsible for the provision of cellular communi-

cations functionality to a platform.

• A trusted third party is, in the broadest context, a third party trusted to

complete a specified task.

• A device user is an end user of a device.

3.3 Scenario 1

The first scenario involves four roles: the CA, the device manufacturer, the

(agent) code author, and the mobile device. The mobile device contains the

public key of its manufacturer and a public key store containing trusted root

CA public keys, so that the signatures on incoming executables can be verified.

Each (agent) code author and device manufacturer possesses a public/private

key pair and an X.509 certificate for its public key issued by their chosen CA.

When an (agent) code author wishes to distribute executables, he must first

apply to a device manufacturer for an attribute certificate which indicates that

the specified (agent) code author’s executables may be executed on mobile de-

vices manufactured by that particular device manufacturer. An (agent) code

author may repeat this process with one or more device manufacturers.

87

Individual device manufacturers may then respond with a signed attribute

certificate consisting of:

• an identifier element representing the requesting (agent) code author;

• an identifier element representing the signing device manufacturer;

• an attribute element, which indicates that the (agent) code author is

trusted to generate executables which will be executed on mobile devices

which that particular device manufacturer has manufactured; and

• the signature of the device manufacturer generated on the aforementioned

elements.

The decision of the device manufacturer to certify an (agent) code author may

be based on a variety of factors, including the quality of the code generated

by the author, compliance of the author with accepted industry standards for

code generation and testing, contracts and/or liability agreements, and/or per-

formance and reputation. If the device manufacturer does not deem the (agent)

code author to be trustworthy, no attribute certificate is generated.

The author may then create, sign and distribute an executable, together

with its attribute certificate(s). When the executable is received by a mobile

device, the signature of the author on the code is verified. The relevant device

manufacturer signed attribute certificate is retrieved (if it exists). The signature

of the device manufacturer on the appropriate attribute certificate is verified

and the presence of the code author’s identifier in the attribute certificate is

confirmed. Finally, the attribute element, which indicates that the author is

trusted to generate executables which will be executed on devices which that

particular device manufacturer has manufactured, is checked. If all checks are

positive, executable execution is authorised.

88

Verification of the signature appended to the incoming executable

Discard Attribute certificate in existence?

Verify the signature of the device
manufacturer on the attribute certificate

Discard

Discard
Examine the attribute element, which indicates that
the entity who signed the executable is trusted to
generate executables which can be executed on
devices which the particular device manufacturer

has manufactured

ExecuteDiscard

No signature appended to the
executable; or the
Signature cannot be verified

fail

pass

pass

Confirm that the identity of the entity who signed
the executable is the identity authorised in the attribute certificate

Discard

passfail

passfail

fail pass

Figure 3.1: Scenario 1

If the ‘executable’ is traditional mobile code, the above mechanism provides

a simple method of protecting mobile devices from incoming malicious code.

If, however, the ‘executable’ is a mobile agent, the protection of agent state

information must also be considered.

In order to protect static agent state information, agent creators may also

possess a public/private key pair and an X.509 public key certificate issued by

their chosen CA. They may then request an attribute certificate from a device

manufacturer, which indicates whether or not the specified agent creator’s mo-

bile agents may be executed on mobile devices manufactured by that particular

device manufacturer.

When agents are created, agent creators can then sign agent code in con-

junction with any associated static data and state information. On receipt of a

mobile agent, a mobile device will complete the verification process illustrated

in figure 3.1 not only for the agent code author, but also for the agent creator.

89

As the number of attribute certificates associated with either an (agent) code

author or, indeed, an agent creator grows, it may become more efficient for at-

tribute certificates to be stored in directories and accessed by a mobile device

when required, using a protocol similar to the lightweight directory access pro-

tocol (LDAP). In this way, an executable would not have to be transported with

all the relevant certificates, which could prove cumbersome and use a significant

amount of bandwidth.

This particular identity-based authorisation architecture is rather coarse-

grained. An (agent) code author or, indeed, an agent creator is labeled either

safe or unsafe, with no allowance made for the possibility that not all executa-

bles coming from a particular source are of a similar standard. In reality, it

may be the case that certain executables pose a threat to the mobile device

on which they are executed because of careless mistakes made by the (agent)

code author and/or agent creator. There is also the possibility that an employee

of an approved software provider company could circulate and have executed

malicious executables, by distributing them signed using a key/keys associated

with the company and which has/have been approved by one or more device

manufacturers. In conjunction with this, since code authors or agent creators

must be approved by the manufacturer of a device on which they require their

executables to be authorised to execute, the number of executables that a user

may be permitted to download and execute on their platform may be severely

restricted.

In this scenario, much responsibility is placed on the device manufacturer

— it is not clear, however, whether, or why, the device manufacturer should be

made the sole point of trust. Finally, while this architecture provides security

mechanisms to protect a mobile device from incoming malicious mobile (agent)

code and static agent data and state information, no consideration is given to

90

the protection of the mobile device from dynamic state information which may

cause an incoming agent to behave maliciously.

3.4 Scenario 2

The fundamental concept described in scenario two mirrors that implemented

in MExE [140]. Five participant roles are defined: the CA, the device manufac-

turer, the network operator, the TTP, and the mobile device. The mobile device

contains the public keys of its manufacturer, network operator and a selection of

TTPs, and a public key store containing trusted root CA public keys so that the

signatures on incoming executables can be verified. Each device manufacturer,

network operator and TTP possesses a public/private key pair and an X.509

public key certificate issued by their chosen CA. The device manufacturer, net-

work operator, and TTPs each have an associated execution environment on

the mobile device. Executables contained within the device manufacturer exe-

cution environment are permitted the broadest set of access rights. Executables

contained within the network operator domain receive a more restrictive set of

access rights, and executables contained within the TTP domain receive fewer

rights than executables in the device manufacturer or network operator domains.

There is also a fourth, restrictive, execution environment within which executa-

bles signed by unknown third parties may be contained. If the mobile device on

which an executable wishes to execute is not a mobile phone, it is possible that

only three execution domains are defined, i.e. the device manufacturer domain,

the TTP domain and the restrictive domain.

When an executable is received by a mobile device, the process illustrated

in figure 3.2 is completed. The signature of the (agent) code author on the

executable is verified. If the (agent) code author cannot be authenticated, either

91

because the incoming executable has not been signed or, alternatively, because

the signature cannot be verified, the executable is immediately discarded. If the

signature is verified, the executable is then permitted to execute in the domain

corresponding to the role of the executable’s signer. If the incoming executable

has been signed by an unknown entity, it will be permitted to execute only in

the restrictive domain with minimal privileges.

Alternatively, if the identity of the signer cannot be associated with one of

the roles listed above, an unknown entity who has signed the incoming exe-

cutable may present an attribute certificate signed, for example, by the device

manufacturer such that a chain of trust may be constructed between the mo-

bile device and the unknown entity. If this chain of trust can be verified, the

incoming executable may be executed in a less restrictive domain.

In this instance, the signed attribute certificate would typically contain:

• an identifier element representing the requesting entity;

• an identifier element representing the trusted signing entity (e.g. the de-

vice manufacturer);

• an attribute field indicating to what level the entity is trusted by the

trusted signing entity (i.e. the domain in which their executables should

be executed); and

• the signature of the trusted signing entity, e.g. the device manufacturer,

generated on the aforementioned elements.

As was the case with the architecture described in figure 3.1, this scenario

is rather coarse-grained. Authorisation is based solely on the identity of the

entity which signed the executable. This particular scenario also leads one to

query what intrinsic qualities make the device manufacturer more trustworthy

92

Verification of the signature
appended to the incoming

executable

Restrictive
execution domain

Associate the identity of the signing entity with a role,
which in turn will imply which domain the executable

shall be permitted to execute in

Network operator
execution domain

TTP execution
domain

pass

Most trusted code:
Given most freedom

Device manufacturer
execution domain

The identity of the signing entity
cannot be associated with
a role

fail

DiscardDiscard

No signature appended
to the incoming
executable

Figure 3.2: Scenario 2

than, say, a network operator? Finally, while this architecture provides security

mechanisms to protect a mobile device from incoming malicious mobile code or,

indeed, malicious mobile agent code, no consideration is given to the protection

of the mobile device from malicious agent state information, either static or

dynamic.

3.5 Scenario 3

Participant roles in this scenario include the CA, the TTP, and, as always,

the mobile device. In this case, the mobile device contains a selection of TTP

public keys and a public key store containing trusted root CA public keys. Each

TTP possesses a public/private key pair and an X.509 public key certificate

issued by their chosen CA. In this scenario, the (agent) code author submits an

executable to a chosen TTP for analysis following its production. The type or

level of analysis which the executable undergoes may vary considerably. For the

purposes of this chapter, we will examine two possible approaches to executable

93

analysis.

A TTP may analyse the behaviour of an executable through the formula-

tion and verification of proofs of code, see section 2.5.1.1, or by capturing a

behavioural model of the executable and the validating the behaviour described

in this model, as described in section 2.5.1.2. For the results of this type of

analysis to be meaningful to a mobile host (i.e. useable in making an authorisa-

tion decision regarding executable execution) there must be a pre-defined set of

security relevant attributes which are used to describe the executable following

analysis. Security relevant attributes might define, for example, a pre-set band-

width limit on network packets transmitted by the executable, or the number of

CPU cycles which will be used during execution. Both of these properties may

be established using proofs of code [107].

Once the analysis has been completed, the TTP assembles a signed attribute

certificate consisting of:

• an executable identifier (for example, a hash of the static executable code,

data and, potentially, any static state information);

• an identifier element representing the trusted signing entity, i.e. the TTP;

• the security relevant properties of the executable, as verified via analysis;

and

• the signature of the TTP generated on the aforementioned elements.

When the executable is received by a mobile device, the signature of the TTP

on the attribute assertion is verified and the executable identifier is validated.

Finally, the executable is authorised to execute if the security relevant properties

of the executable do not violate the security policy of the mobile device. This

architectural model is illustrated in figure 3.3. As described by Sekar [138], the

94

device security policy may be changed in order to facilitate the needs of the

incoming executable.

Verification of the signature on the attribute
certificate as belonging to a TTP

Comparison of security
relevant code attributes to the

device security policy

ExecuteDiscard

fail

Verification that the identity of the executable
is in the accompanying attribute certificate

Verification that the incoming executable
has an accompanying attribute certificate

pass

pass

pass

Discard

Discard

Discard

fail

fail

Figure 3.3: Scenario 3

Alternatively, a TTP may analyse the executable using a set of pre-defined

tools developed in order to test the security of code. “Static analysis tools try

to prevent attacks by finding the security vulnerabilities in the source code”

[168]. Tools deployed by a TTP may include the likes of BOON [165], which

aims to detect buffer overflow vulnerabilities; MOPS [23], which checks ordering

constraints; Mjolnir [167], which makes use of dependence graphs and constraint

solving to find buffer overflows in C code; or IPSSA [100], a tool which Livshits

and Lam have developed for finding buffer overflow and format string bugs.

The test set completed on the executable may be dependent on the request

made by the (agent) code author. If the (agent) code fails any of the tests com-

pleted by the TTP, it will notify the (agent) code author rather than generate

an attribute certificate for the executable.

Once the executable has achieved success in the requested test set, the TTP

95

assembles a signed attribute certificate consisting of:

• an executable identifier;

• an identifier element representing the trusted signing entity, i.e. the TTP;

• the tests successfully completed on the executable; and

• the signature of the TTP over the aforementioned elements.

When the executable is received by a mobile device, the signature of the TTP

on the attribute assertion is verified and the executable identifier is validated.

Finally, the executable is authorised to execute in one of a range of execution

domains, as shown in figure 3.4, depending on the nature of the tests completed

on the executable. If the signature on the attribute assertion is that of an

unknown third party, the executable is discarded.

Verification of the signature on the attribute
certificate as belonging to a TTP

Comparison of the list of successful
tests completed to the
device security policy

Least restrictiveRestrictive

fail

Verification that the identity of the executable
is in the accompanying attribute certificate

Verification that the incoming executable
has an accompanying attribute certificate

pass

pass

pass

Discard

Discard

Discard

fail

fail

Most restrictive

Figure 3.4: Scenario 3

In this scenario, a TTP is trusted to attest to the results of the analysis

completed on a particular executable, as opposed to the previous scenarios where

all executables signed by a particular entity are approved for execution. If a

96

malicious executable is detected, the TTP which signed its associated attribute

certificate may be held accountable, if the analysis of the executable was not

accurately or correctly completed as specified in the attribute certificate.

There are, however, a number of obstacles associated with the executable-

centric authorisation approaches described above. Using the first style of analy-

sis it might prove difficult to compile a comprehensive list of the security relevant

attributes under which an executable is described. In conjunction with this, cur-

rently, not all security relevant attributes can be verified using methods such as

proofs of code [138].

In the alternative approach, it may be difficult to decide on the permissions

that should be allotted to an incoming executable based on the tests successfully

passed by the executable. In conjunction with this, many of the test tools are

only applicable to executables written in a particular language; for example all

the tools listed above can only be used to analyse C code. There may also be a

problem with some tests in relation to false positives or, indeed, false negatives,

which mainly arise from the use of poor vulnerability databases [168].

As was the case with the previous scenario, while this architecture uses

security mechanisms to protect a mobile device from incoming malicious mobile

code or, indeed, malicious mobile agent code, no consideration is given to the

protection of the mobile device from malicious agent state information.

By integrating access control lists (ACLs) into mobile devices, the scenario

described above can be made either more secure or, alternatively, more efficient.

The integrated ACLs will contain the identifiers for trusted (agent) code authors

and, in the case of mobile agents, trusted agent creators. In this instance, each

(agent) code author and agent creator possesses a public/private key pair and

an X.509 public key certificate issued by their chosen CA.

97

One option allows executables signed by trusted code authors and, poten-

tially, trusted agent creators to bypass the security checks imposed on unsigned

executables. If a received executable has been signed by an entity/entities whose

identifier(s) are contained in the device ACL(s), it may immediately be autho-

rised to execute. If not, then the executable will undergo the checks outlined

above. This modification for the sake of efficiency could, however, jeopardise

the security of the device.

Alternatively, ACLs could be used to increase the security of the system. In

this case, an incoming executable must be accompanied by an attribute state-

ment, signed by a TTP, which not only describes the type and results of the

analysis completed on the executable, but also the identity of the (agent) code

author and, potentially, the identity of the agent creator. The identity of the

(agent) code author, and, potentially, the identity of the agent creator, must

be verified as present in the mobile device ACLs, before any further checks are

completed on the incoming executable. This set-up, however, may be too re-

strictive for the free flow of executables and, more specifically, mobile agents.

It may also necessitate the storage of large ACLs in resource-restricted mobile

devices.

3.6 Scenario 4

In this scenario, we assume that each mobile device belongs to a domain, and

that each domain has an associated domain server. Before any executable

reaches its destination host, the domain server responsible for that device will

process any security controls associated with the incoming executable on behalf

of the destination mobile device. Participant roles include the CA, the (agent)

code author, the agent creator and the domain server. The domain server con-

98

tains a public key store containing trusted root CA public keys, so that the

signatures on incoming executables can be verified. The mobile device contains

the public key of its associated domain server. Each (agent) code author, agent

creator and domain server possesses a public/private key pair and an X.509

public key certificate issued by their chosen CA. After (agent) code generation

and agent creation, the (agent) code author and agent creator formulate the

required security controls for distribution with the executable, e.g. digital sig-

natures, proofs of code and/or state appraisal functions. When a domain server

receives an incoming executable destined for a mobile device within its domain,

any signatures appended to the executable are verified, and any proofs, models

and/or state appraisal functions that accompany the executable are processed.

An attribute certificate is then generated and signed by the domain server,

containing the executable’s identity and the security relevant attributes of the

executable. This is sent to the destination mobile device. If the ‘executable’ is

an agent, then the agent’s identity may be represented by the hash of the agent

code, data and both static and dynamic state information. The mobile device

then verifies the signature of the domain server on the attribute certificate, and,

depending on the security relevant attribute values and the mobile device policy

statements, either authorises execution or not. This mobile device policy model

is illustrated in figure 3.5.

The deployment of a domain server in the validation of security relevant

attributes means that computationally intensive checks can be completed on the

executable without overburdening the mobile device CPU. In this particular

model, if the incoming executable is a mobile agent, checks can not only be

completed to ensure that the agent code is trustworthy, but also to ensure that

the agent’s state information is not malicious. For every mobile device on which

the agent wishes to execute, its corresponding domain server will validate any

99

Verification of the signature on the attribute
certificate as belonging to the mobile device

domain server

Comparison of security relevant
executable attributes to the

device security policy

ExecuteDiscard

fail

Verification that the identity of the executable
is in the accompanying attribute certificate

Verification that the incoming executable
has an accompanying attribute certificate

pass

pass

pass

Discard

Discard

Discard

fail

fail

Figure 3.5: Scenario 4

agent controls before forwarding the executable and, potentially, its associated

attribute certificate, directly to the device. If the validated controls include state

appraisal functions, the domain server can verify that the state of the agent has

not become malicious, and then forward the agent and its attribute certificate

to the device. The agent identity defined within the attribute certificate ensures

that the verified agent state cannot be modified before it reaches its destination

mobile device.

Efficiency and throughput/bottleneck issues may arise, however, as for every

destination host an agent wishes to visit, a domain server may have to process it

and its accompanying security controls. To reduce the load, trust relationships

could be formed between domain servers, allowing a domain server to request

previously constructed agent attribute statements from another domain server

that it trusts.

This model is more flexible than the model described in scenario three above,

as it leaves the (agent) code author and/or agent creator to decide what, if any,

100

controls should be transmitted with their executables. This, however, makes

the authorisation decision-making process completed by the mobile device more

complex, as a large number of policy statements may have to be defined in order

to cater for all the possible security relevant attributes which may be used to

describe the incoming executable. There may also be problems relating to the

consistency of security controls associated with incoming executables as different

(agent) code authors and agent creators could associate different controls with

their executables.

3.7 Scenario 5

A domain server is also used in this scenario. It provides two fundamental

components: a set of execution environments simulating device types which

exist within the domain, and a database. As described in section 3.6, before

any executable reaches its destination host, the domain server responsible for

that device will process the incoming executable on behalf of the destination

mobile device, as described below. Participant roles in this scenario include

the CA, the domain server, the (agent) code author, the agent creator, and, as

always, the mobile device, which contains the public key of its associated domain

server. Each (agent) code author, agent creator and domain server possesses a

public/private key pair and an X.509 public key certificate issued by their chosen

CA.

When an (agent) code author generates executable code it signs the (agent)

code and circulates it. If the code is for an agent, an agent creator then com-

bines the code with the necessary state information. All static agent code,

data and state information may then be digitally signed by the agent creator.

The executable can then be disseminated across the network. When a domain

101

server receives an incoming executable destined for a mobile device within its

domain, the signature(s) appended to the incoming executable are verified, and

the executable is then executed in a simulator mirroring the intended destination

device. If malicious behaviour is attempted by the executable in the simulator,

it is discarded and a record of the malicious behaviour is made in the profile

of the (agent) code author or, indeed, the agent creator (if the malicious agent

behaviour was caused by malicious state information).

Conversely, if the executable behaves as expected, a note is made of this in

the profiles of both the (agent) code author and, if relevant, the profile of the

agent creator. This method, rather than confining the examination of executa-

bles to specific tests, allows for the discovery of any security violations that the

executable may attempt. It does, however, mean that every executable may

potentially be executed twice for each of its destination hosts, which may lead

to efficiency problems. The profile database may, however, allow domain servers

to improve these efficiency issues. Code written by authors, or agents written

by authors and creators, who have built up a positive profile with a domain

server, could be immediately authorised to execute before simulated execution

has been completed. The activity of each domain server activity is illustrated

in figure 3.6.

Once the domain server has decided that the executable can be trusted by

the mobile device for which it is responsible, it signs the executable, and for-

wards it to the mobile device for execution. The mobile device would then

complete the checks described in figure 3.7, and discard or authorise the exe-

cutable accordingly.

102

Verification of the (agent) code author’s
signature appended to the incoming

executable

Discard
Verification of the (agent) code creator’s signature
appended to the incoming executable if applicable

Run the executable in CPU
emulator which matches

its destination device

Discard

Discard the executable and keep a
note of (agent) code author’s identity

and the identity of the agent
creator if applicable

Keep a note of the identity/identities of
the agent code author and agent creator

in profile database

fail pass

Attempts malicious
behaviour

Runs as
expected

Database
of profiles

for (agent) code
authors and

agent creators

Domain
server
activity

Sign and forward executable to the device

fail pass

Figure 3.6: Scenario 5 — Domain server activity

Verification of the signature of the domain server appended to the incoming executable

Discard Execute

No signature appended to the
executable; or the
Signature cannot be verified

pass

Figure 3.7: Scenario 5 — Mobile device activity

103

3.8 Scenario 6

The final scenario mirrors the authorisation model described by Berkovits et

al. [11], and is illustrated in figure 3.8. This architectural model may be used

only for the authorisation of incoming agents, as opposed to generic mobile

code. Participant roles in this scenario include the CA, the agent code author,

the agent creator, and, as always, the mobile device. In this case, the mobile

device contains the public keys of a selection of (agent) code authors and a

public key store containing trusted root CA public keys, so that the signatures

on incoming executables can be verified. Each agent code author and agent

creator possesses a public/private key pair and an X.509 public key certificate

issued by their chosen CA.

When agent code is generated, the author signs the program name. The

program name is defined as a hash of: the program, a state appraisal function

max which, as a function of the agent’s current state, outputs the maximum set

of permissions to be accorded to the agent running the program, and a sender

permission list, which includes every destination entitled to receive and use the

agent code. On receipt of the agent code, and following agent creation, the

agent creator, which has been listed in the SPL, then signs the agent name.

The agent name is defined as the hash of: an identifier for the agent creator,

the program, the program name, as defined above, a state appraisal function

req, used to calculate the permissions the sender wants the agent to run with,

and a place permission list. The PPL lists every destination host the agent is

entitled to visit.

When an incoming agent is received by a mobile device, the signature of

the agent code author on the program name is verified. The presence of the

agent code author’s identity in the list held by the mobile device is verified.

104

Verification of the agent code author’s signature
on the program name

Discard

Is the host’s name present in
the PPL?

Discard

Discard
Calculate both state appraisal

functions ‘max’ and ‘req’

Execute Discard

fail

Verification of the agent creator’s
signature on the agent name

If max < req If max > req

Verification that the code
author is trusted

pass

passfail

Discard

Is this agent creator’s identity
present in the SPL?

Discard

fail

fail

fail

pass

pass

pass

Figure 3.8: Scenario 6 — Domain server activity

The signature of the agent creator on the agent name is verified. The presence

of the agent creator’s identity in the SPL of the agent code author is verified,

and the presence of the mobile device’s identity in the PPL of the agent creator

is checked. Both the state appraisal functions are then calculated. If the output

of max is greater than or equal to the output of req, then access is granted;

otherwise the agent is discarded.

In this particular scenario, the agent code author is essentially responsible

for defining the authorisation policy for the agent, i.e. defining the maximum

set of privileges which can be allotted to the executing agent. The agent code

author must be trusted by the mobile device to complete such a task. Use of

this framework requires a considerable amount of processing to be completed

on the mobile device prior to agent authorisation. This scenario also requires

that the SPL and PPL be defined in advance, which is probably not the most

practical solution for a distributed mobile environment.

As an alternative, in order to reduce the processing to be completed on the

105

mobile device, we could assume that each mobile device belongs to a domain and

that each domain has an associated domain server, as was the case in scenarios 4

and 5. Before any executable reaches its destination host, the domain server

responsible for that device will process any signatures, SPLs, PPLs and state

appraisal functions associated with the incoming executable on behalf of the

destination mobile device.

In order to facilitate this modification to the architectural model, a domain

server, which contains the public keys of a selection of (agent) code authors

and a public key store containing trusted root CA public keys, is required. The

mobile device must contain the public key of its associated domain server. When

an incoming agent is received by the appropriate domain server, the signature

of the agent code author on the program name is verified. The presence of the

agent code author’s identity in the list held by the domain server is verified.

The signature of the agent creator on the agent name is verified. The presence

of the agent creator’s identity in the SPL of the agent code author is verified,

and the presence of the mobile device’s identity in the PPL of the agent creator

is checked. If any of these checks fail, the agent is discarded. Both the state

appraisal functions are then calculated. If the output of max is greater than or

equal to the output of req, the mobile agent is signed by the domain server and

forwarded to the mobile device for execution; otherwise the agent is discarded.

The mobile device then completes the checks described in figure 3.7 and discards

or authorises the executable accordingly. For the purposes of this thesis we will

focus on this latter modification to scenario six, where the computational burden

is placed on the domain server rather than the mobile device.

106

3.9 Conclusions

In this chapter, six architectural models facilitating the authorisation of incom-

ing mobile code and agents have been described. Each model has been analysed

with respect to its security and with regard to its suitability for implemen-

tation in a mobile environment. A summary of this analysis is tabulated in

section 13.1.1.

Using the scenarios described in this chapter we can compile a set of re-

quirements for the underlying architecture of a policy-based code and agent

authorisation framework for implementation within a mobile environment. As

a basic requirement, the underlying architecture should take into account the

limited nature of many of the end host devices, i.e. the use of the end host CPU

and storage should minimised. The underlying architecture should also ideally

support a mechanism which provides assurances regarding the origin(s) of the

executable, code quality, and the state of the agent. The use of a TTP, which

verifies proofs of code and executes state appraisal functions, for example, or

which completes a series of tests on an executable before it is sent to a mo-

bile host for execution, would mean that the end host is not burdened with an

intensive checking process.

It is required that each mobile device supports a policy engine. We define

a policy engine as the software that executes on a mobile host which inputs

an authorisation request from an authorisation requestor (AR) and outputs an

authorisation decision. In the context of this work, an authorisation request is

essentially a request from an incoming executable to execute on a specific mobile

device. The authorisation decision dictates whether or not an executable may

execute and/or the constraints under which executable execution is authorised.

We assume that the policy engine contains the following six fundamental

107

components.

• A policy administration point (PAP) which is used to administer the policy

statements of the mobile device. A policy repository is also associated with

this component.

• A policy information point (PIP) which is responsible for collating in-

formation pertaining to the authorisation requestor, for example, digital

signatures, public key certificates and/or attribute certificates.

• An authentication point (AP) which authenticates the authorisation re-

questor, i.e. the incoming executable, and/or the (agent) code author,

agent creator, TTP or domain server which ‘speaks for’ an incoming ex-

ecutable, where the ‘speaks for’ relationship implies that when P1 speaks

for P2, it follows that when P1 says s, P2 says s [11].

• A trust establishment module (TEM) which maps an unknown authorisa-

tion requestor to a system specific role/group based on AR attributes.

• A policy decision point (PDP), where policy decisions are made. A PDP

uses policy statements, written, managed and stored using the policy ad-

ministration point, attributes of the access requestor, the target resource,

and the execution environment, in order to make the appropriate decision.

• A policy enforcement point (PEP), which is responsible for enforcing the

policy decision output by the PDP.

In order for the policy engine to function it is required that a number of

additional elements can be defined within the system and processed by the

policy engine.

• Mobile device policy statements, which specify the rules that define a

108

choice in the behaviour of a system [36]. Policy statements are defined,

stored and accessed using the PAP, described above.

• Attribute certificates, which allow security-related attributes and data to

be associated with an access requestor.

• Authentication evidence, which is used to verify the identity of an au-

thorisation requestor, i.e. the incoming executable and/or the entity who

‘speaks for’ an incoming executable and facilitates the association of the

authorisation requestor with a principal. A principal is a name, for exam-

ple, a conventional name or a public key, associated with the authorisation

requestor [96].

• An ordered compliance value set, which specifies the set of decisions that

the PDP may output in response to an authorisation request. The PEP

must react accordingly to the compliance value output in order to facilitate

secure executable execution.

The six scenarios described in this chapter are re-used in chapter 4 to help

analyse selected components which could be utilised in the specification of the

framework policy engine. The policy engine itself is addressed in chapter 5.

109

Chapter 4

A policy engine for mobile
code and agent
authorisation

Contents
4.1 Introduction . 112

4.2 The policy engine . 113

4.2.1 Policy statements . 113

4.2.2 Attribute certificates 114

4.2.3 Authentication evidence 115

4.2.4 Compliance values 117

4.2.5 The PAP . 117

4.2.6 The PIP . 117

4.2.7 The AP . 118

4.2.8 The TEM . 119

4.2.9 The PDP . 119

4.2.10 The PEP . 119

4.3 Approaches to policy specification 119

4.4 KeyNote . 124

4.4.1 Scenario 1 . 128

4.4.2 Scenario 2 . 134

4.4.3 Scenario 3 . 139

4.4.4 Scenario 4 . 147

4.4.5 Scenarios 5 and 6 . 149

4.4.6 Conclusions . 151

4.5 Ponder . 159

4.5.1 Prior art . 163

4.5.2 Scenario 1 . 169

4.5.3 Scenarios 2 – 6 . 175

4.5.4 Conclusions . 176

110

4.6 SAML . 177

4.6.1 Scenario 1 . 184

4.6.2 Scenario 2 . 189

4.6.3 Scenarios 3 and 4 . 191

4.6.4 Scenarios 5 and 6 . 195

4.6.5 Conclusions . 196

4.7 Conclusions . 196

In this chapter we examine three selected policy statement and attribute cer-

tificate specification languages, namely KeyNote, Ponder and SAML, and ex-

plore the functionality of their supporting policy engine components. The main

goal of this analysis is to discover whether these languages can express the pol-

icy statements and attribute certificates required by the six scenarios described in

chapter 3, and also whether the necessary policy engine component functionality

can be supported. Our conclusions are then used in chapter 5 to choose the most

appropriate language(s) for policy statement and attribute certificate expression

in our policy-based framework.

111

4.1 Introduction

Six architectural models, each aimed at facilitating mobile code and/or mobile

agent authorisation, were described in chapter 3. Each architectural model was

analysed with respect to the level of security it can support and with regard to

its suitability for implementation in a mobile environment. From this analysis,

we derived a list of features desirable in the underlying architectural model

of a policy-based framework for mobile code and agent authorisation. The

constraints which must be considered when developing this architectural model,

arising from potential limitations of the devices upon which the executables will

execute, were also highlighted.

In this chapter we re-examine these six architectural models, in order to

compile the expression requirements that the language chosen for policy state-

ment and attribute certificate specification must meet, and the functional re-

quirements that the supporting policy engine must fulfil in order to facilitate

the implementation of each architectural model. Using these requirements, an

analysis of KeyNote, Ponder and SAML is performed to enable the most ap-

propriate language(s) to be chosen for policy statement and attribute certificate

expression in our policy-based authorisation framework.

In section 4.2 the scenarios described in chapter 3 are re-examined in or-

der to compile the functional requirements for the language(s) chosen for policy

statement specification, attribute certificate definition, compliance value expres-

sion and the supporting policy engine, in order to enable the implementation of

each architectural model. In section 4.3 we examine a selection of policy and

attribute certificate expression techniques, and select three, namely KeyNote,

Ponder and SAML, for detailed analysis. In sections 4.4, 4.5 and 4.6 we consider

the three selected languages in turn, in order to determine whether they meet

112

the requirements compiled in section 4.2 and, ultimately, whether they could be

used to implement the scenarios described in chapter 3.

4.2 The policy engine

Here we examine what is required of the language(s) chosen for policy statement

specification, attribute certificate expression, authentication evidence expression

and ordered compliance value definition. We will also list the functionality

required of the PAP, PIP, AP, TEM, PDP and PEP, as described in section 3.9.

4.2.1 Policy statements

In a policy-based framework for mobile code and/or mobile agent authorisa-

tion, receiving hosts will need to store policy statements to be used in deciding

whether or not to authorise executable execution and/or to dictate the con-

straints under which executable execution is permitted. This is a prerequisite of

all six scenarios described in chapter 3. The policy expression language chosen

to express the mobile device policy statements must meet the following require-

ments.

1. In scenario 1, and potentially in scenario 2, it is required that authority

for mobile executable execution authorisation can be delegated.

2. In scenario 1 it is required that an incoming executable, which has been

signed by an (agent) code author, which in turn has been certified by the

mobile device’s manufacturer, can be permitted to execute on the mobile

device (potentially under specified controls).

3. In scenario 1 it may be required that an incoming agent, which has been

signed by both an agent code author and an agent creator, which in turn

113

have been certified by the mobile device’s manufacturer, can be permitted

to execute on the mobile device (potentially under specified controls).

4. In scenarios 2, 5 and 6, and potentially in scenario 3, it is required that

an incoming executable, which has been signed by a particular entity,

for example, a device manufacturer, network operator, TTP, or domain

server, can be provisioned with the authority to execute under specified

controls.

5. In scenarios 3 and 4 it is required that particular entities, for example, a

domain server or a TTP, can be provisioned with the authority to create

attribute certificates for executables.

6. In scenarios 3 and 4 it is required that an incoming executable, whose

attributes have been certified by a trusted entity, as described in require-

ment 5, can be provisioned with the authority to execute (potentially under

specified controls) if the executable’s attributes meet specified conditions.

4.2.2 Attribute certificates

Incoming executables, or, indeed, (agent) code authors or agent creators, may

have associated attribute certificates, see scenarios 1, 2, 3 and 4. The language

chosen to express attribute certificates must fulfil the following requirements.

1. In scenarios 1, 3, 4, and potentially in scenario 2, signed attribute certifi-

cates are required.

2. In scenario 1, and potentially in scenarios 2 and 3, it is required that

an entity’s identifier can be expressed in a chosen form, for example as

a distinguished name or as a public key, in an attribute certificate. This

enables the attribute certificate to be associated with one particular entity.

114

3. In scenario 1 it is required that the device manufacturer can delegate to

chosen (agent) code authors and creators, by means of an attribute certifi-

cate, the authority to generate and sign executables, which will be autho-

rised to execute on a device for which that particular device manufacturer

is responsible.

4. In scenario 2 it may be required that the device manufacturer can delegate

to chosen TTPs, by means of an attribute certificate, the authority to

generate and sign executables, which will be authorised to execute in the

TTP domain on the device for which that particular device manufacturer

is responsible.

5. In scenario 3, and potentially in scenario 4, it is required that the identity

of an incoming executable can be expressed within an attribute certificate

(as the hash of the incoming mobile (agent) code or mobile agent, for

example). This enables the attribute certificate to be uniquely bound to

one particular executable.

6. In scenarios 3 and 4 it is required that the attributes of an incoming ex-

ecutable can be expressed within its associated attribute certificate. The

definition of attribute values may require the expression of bit strings,

character data, numerical or boolean values. The expression of an un-

bounded number of attribute element types must also be supported.

4.2.3 Authentication evidence

Authentication is defined by Berkovits et al. [11] as the “process of deducing

which principal has made a specific request”. Receiving hosts may, for example,

be required to authenticate an incoming executable and the entity who ‘speaks

for’ an incoming executable. This definition of authentication corresponds to

115

the notion of origin authentication (i.e. a connectionless service) rather than

entity authentication (i.e. a connection-oriented service).

1. In scenarios 1, 2, 5 and 6, and potentially in scenario 4, it is required

that the (agent) code author (and, potentially, the agent creator) or the

domain server can be authenticated through the verification of the digital

signature(s) generated on and appended to the incoming executable. In

this instance, the digital signature serves as the authentication evidence.

2. In scenario 1, and potentially in scenario 2, it is required that the device

manufacturer, which has generated and signed the attribute certificate

of an entity to whom authority is being delegated, can be authenticated

through the verification of the digital signature generated on the attribute

certificate. In this instance computed on the attribute certificate serves as

the authentication evidence.

3. In scenario 3, and potentially in scenario 4, it is required that the TTP or

domain server which has generated and signed the attribute certificate of

the incoming executable can be authenticated through the verification of

the digital signature generated on the incoming executable’s attribute cer-

tificate. In this instance, the digital signature serves as the authentication

evidence.

4. In scenarios 1 to 6 it is required that the incoming executable is authen-

ticated through the verification of the hash of the incoming (agent) code

and data, or the hash of the entire agent (including any agent code, data,

and static and dynamic state information), against the hash signed by the

entity/entities which ‘speak(s) for’ the executable. In this instance, the

incoming executable serves as the authentication evidence.

116

4.2.4 Compliance values

In each of the scenarios described in chapter 3 an ordered compliance value set

must be defined. This enables the PDP to output an authorisation decision to

the PEP, when given an authorisation request.

1. In scenarios 1, 3, 4, 5 and 6, a simple boolean ordered compliance value

set is required containing two values, namely: discard and execute.

2. In scenario 2, and potentially in scenario 3, a more complex ordered com-

pliance value set is required. In scenario 2 the ordered compliance value

set must contain five values, namely: discard, restrictive domain, TTP

domain, network operator domain, and device manufacturer domain. An

ordered compliance value set which contains the values: discard, most

restrictive domain, restrictive domain, and least restrictive domain, may

potentially be required in scenario 3.

4.2.5 The PAP

In order to support the scenarios described in chapter 3, the PAP implemented

on the mobile device must fulfil the following requirement.

1. In scenarios 1 to 6 the PAP must provide a means for specifying, managing

and organising mobile device security policy statements.

4.2.6 The PIP

In order to support the scenarios described in chapter 3, the PIP implemented

on the mobile device must fulfil the following requirement.

1. In scenarios 1 to 6 all security data relevant to the access requestor must

117

be collected by the PIP, for example, digital signatures and attribute cer-

tificates.

4.2.7 The AP

The authentication point is required to process the AR authentication evidence

submitted by the AR, or collated by the PIP.

1. In scenarios 1, 2, 5 and 6, and potentially in scenario 4, it is required

that the (agent) code author (and, potentially, the agent creator) or a

domain server can be authenticated through the verification of the digital

signature(s) generated on and appended to the incoming executable.

2. In scenario 1, and potentially in scenario 2, it is required that the device

manufacturer can be authenticated through verification of the digital sig-

natures on the attribute certificates of entities to whom authority has been

delegated.

3. In scenarios 3 and 4 it is required that the TTP or domain server, which

generated and signed the attribute certificate of the incoming executable,

can be authenticated through the verification of the digital signature on

the incoming executable’s attribute certificate.

4. In scenarios 1 to 6 it is required that the incoming executable can be

authenticated through the verification of the hash of the incoming (agent)

code and data, or the hash of the entire agent (including agent code, data

and any static and dynamic state information), against the hash signed

by the entity/entities which ‘speak(s) for’ the executable, see section 3.9.

118

4.2.8 The TEM

In order to support the scenarios described in chapter 3, the TEM implemented

on the mobile device must fulfil the following requirement.

1. In scenarios 1 to 6 the TEM must map the unknown authorisation re-

questor to a principal to which policies apply.

4.2.9 The PDP

In order to support the scenarios described in chapter 3, the PDP implemented

on the mobile device must fulfil the following requirement.

1. In scenarios 1 to 6 the PDP must compare all the information submitted

as part of the authorisation request with the relevant policy statements

on the mobile device, and respond with an authorisation decision from the

ordered compliance value set.

4.2.10 The PEP

In order to support the scenarios described in chapter 3, the PEP implemented

on the mobile device must fulfil the following requirement.

1. In scenarios 1 to 6 the PEP must enforce the decisions of the PDP.

4.3 Approaches to policy specification

A number of different types of security policy expression languages have been

devised including logic-based languages, for example, Authorisation Specifica-

tion Language (ASL) [90] and Standard Deontic Logic (SDL) [21, 164], which

may be used in the specification of security policies [32, 63]; role-based access

119

control specification languages such as Temporal Role Based Access Control

(TRBAC) [12] and Ponder [34–37]; and the event-driven policy language, Secu-

rity Policy Language (SPL) [129], to name but a few. Different policy languages

facilitate the expression of different policy types including, for example, au-

thorisation policies, delegation policies, refrain policies, obligation policies and

constraint-based policies.

• Authorisation policies define the activities principals are permitted to do

[35].

• Delegation policies define activities that principals are permitted to dele-

gate to other principals within the system [35].

• Refrain policies specify what a principal must refrain from doing [35].

• Obligation policies define activities principals are obliged to do. Obligation

policies are often triggered by events, for example, a security breach within

the system or a time-based trigger.

• Constraint-based policies limit the applicability of authorisation, obliga-

tion, delegation and refrain polices, based on factors such as subject or

target state, action/event parameters, i.e. past events (history-based pol-

icy statements), or time constraints.

The selection of policy types supported by a particular language is often depen-

dent on the application environment or the use cases upon which the developers

focused when specifying the language.

In all of the ‘traditional’ policy specification languages listed above, however,

policy statements are defined in terms of the identity of the AR or, indeed, the

group or role to which the identity of the AR can be associated. If the AR can

be successfully authenticated to the system, it is mapped to a principal, which

120

may, for example, be a UserID defined within the system. Policy statements

then map principals to permissions/capabilities. Alternatively, if an AR can

be successfully authenticated, it may be mapped to a UserID defined within

the system, which may in turn be associated with one or more roles or groups,

where role assignment or group membership is defined in terms of UserID. Pol-

icy statements then map principals (in this instance a role or group name) to

permissions/capabilities.

In both cases, policy statements are essentially defined in terms of the AR

identity. In Internet enabled applications, however, the AR may be an unknown

entity. If the AR is unknown, policies cannot be defined in terms of the AR

identity. Trust management refers to“the problem of deciding whether requested

actions, supported by credentials, conform to policies” [15]. This implies that

an unknown entity may be authorised to perform actions, obligated to perform

actions or permitted to delegate capabilities/permissions to other entities based

on their associated credential set. Trust management systems include policy

maker [15], KeyNote [13, 14, 16], Nereus [103] and REFEREE [26]. These trust

management systems enable the specification of both policy statements and

attribute certificates.

More recently, we have seen the advent of languages such as (Definitive)

Trust Policy Language ((D)TPL) [68], which, rather than trying to define a

complete trust management system, is designed to bridge the gap between tra-

ditional role-based policy specification languages and unknown entities. It does

this by facilitating the definition of trust establishment policies which allow un-

known entities to be mapped to roles based on their associated credential set. A

traditional role based policy specification language can then be utilised in order

to assign capabilities/permissions to roles.

121

It becomes clear, therefore, that in order to deploy a trust establishment sys-

tem such as (D)TPL, not only is a traditional role-based specification language

required for policy expression, but credential expression must also be considered.

X.509 public key certificates represent the best known form of credential, see

section 1.5.7. Other credential types exist, including X.509 attribute certificates,

see section 1.5.9, and SAML assertions [112,113].

Following a high-level analysis of a number of policy specification and at-

tribute certificate expression languages, namely ASL [90], SPL [129], Ponder

[37], KeyNote [13], Nereus [103], TPL [68], the Portfolio and Service Protection

Language (PSPL) [17], credential acceptance policies [137], the X.509 attribute

certificate [81] and SAML, [112, 113], three languages, namely KeyNote (and

Nereus), Ponder (and (D)TPL) and SAML were chosen for further analysis.

ASL [90], SPL [129] and Ponder [37] represent examples of ‘traditional’ policy

specification languages, as defined above. In ASL, SPL, and Ponder, policies

are defined in terms of entity identity or, similarly, group or role membership.

Of this language type, we have chosen to examine Ponder in further detail. Of

the three languages examined at a high-level, it is the easiest to understand.

It permits the expression of the widest range of policy types. It has also been

previously deployed in the mobile agent domain [10,30,94,105].

Trust management languages examined at a high-level include KeyNote [13],

Nereus [103], PSPL [17] and credential acceptance policies [137]. We also ex-

amined the trusted establishment language (D)TPL [68]. Of these trust man-

agement and trust establishment languages KeyNote, Nereus and (D)TPL are

examined in further detail in this chapter and the next. KeyNote is chosen as it is

a well established and well documented trust management framework. Nereus is

examined as it extends the functionality provided by KeyNote. Finally, (D)TPL

122

is chosen as it provides a bridge between traditional role-based policy specifica-

tion languages and unknown entities, rather than trying to specify a complete

trust management framework. While Bonatti and Samarati [17] present a frame-

work enabling the expression of both credentials and policy statements, which

define the credentials which must be provided by an AR on request of a service,

at the time of writing, this framework and its accompanying language specifi-

cation PSPL are still in development. Seamons and Winsborough [137] present

the notion of credential acceptance policies, which are used to define exactly

which credentials must be present in order to obtain specific services. They also

give a programming methodology for writing credential acceptance policies. We

have chosen not to examine this language because of its use of logic programs

(more specifically XSB Prolog) to express policy statements, which are often

deemed difficult to use and not always directly transferable into efficient imple-

mentation [34].

Following a high-level examination of X.509 attribute certificates [81] and

SAML [112, 113], SAML was chosen due to the expressive nature of XML, and

the extensibility of the language. XML is also easy to understand. The lan-

guage also enables the expression of various types of assertion which are closely

aligned with the attribute credential types required in the scenarios described

in chapter 3.

In the remainder of this chapter we analyse KeyNote, Ponder and SAML,

in order to determine whether they can meet the requirements outlined in sec-

tion 4.2.

123

4.4 KeyNote

KeyNote is described as “a unified approach to specifying and interpreting secu-

rity policies, credentials, and relationships and it allows direct authorisation of

security critical actions” [14]. It was designed by Blaze, Feigenbaum and Ioan-

nidis in conjunction with Keromytis, and is a descendent of the PolicyMaker

system [15].

For the purposes of KeyNote, a trust management system is defined as being

comprised of [13]:

• A language for defining actions which have consequences that impact on

security;

• A mechanism for identifying principals, i.e. entities that can be authorised

to perform actions;

• A language for specifying application policies which determine the actions

that principals are allowed to perform;

• A language for specifying credentials which allow principals to delegate

authorisation to other principals;

• A compliance checker which determines how a requested action should be

handled depending on the policy and credential set available.

A principal, as defined in the KeyNote trust management system, denotes an

entity within the system, for example, a public key or a process, with which the

authority to perform trusted actions can be associated [13]. Principals perform

two functions; they may issue assertions and they may also request actions.

Two types of assertion are defined within the KeyNote trust management

system, policy assertions and signed assertions/credentials.

124

• Policy assertions are issued by the ‘POLICY’ principal, which represents

the root of trust in KeyNote. ‘POLICY’ is authorised to perform any ac-

tion within the system. Policy assertions are used to delegate authority to

untrusted entities. If an untrusted entity in a policy assertion is identified

by a public key, it can then create signed assertions.

• Signed assertions permit authorised entities (either the ‘POLICY’ entity,

or entities authorised in policy assertions or signed assertions) to delegate

their authority to other untrusted entities.

An assertion is comprised of a series of fields [13], one of which is mandatory,

namely the <Authoriser> field, and six of which are optional, i.e. the <KeyNote-

Version>, <Comment>, <Conditions>, <Licensees>, <Local-Constants> and

<Signature> fields.

• The <Authoriser> field identifies the principal issuing the assertion.

• The <KeyNote-Version> field contains the version of the KeyNote trust

management system in use.

• The <Comment> field may be used to enter comments describing the

assertions.

• The <Conditions> field identifies the conditions under which the autho-

riser trusts the licensee(s) to perform an action.

• The <Licensees> field identifies the principal(s) which are delegated au-

thorisation in the assertion.

• The <Local-Constants> field allows short names to be associated with

cryptographic principal identifiers, e.g. public keys. The short names can

then be used in the <Authoriser> and <Licensees> fields, making these

fields easier to read.

125

• The <Signature> field identifies a signed assertion and holds the digital

signature of the authoriser. The digital signature is computed over the

assertion text from the first field to the signature field identifier.

All fields are case sensitive, and the KeyNote version field will always appear

first and the signature field last.

When a principal requests an action, an action attribute set describing the

action is generated. This action attribute set is then submitted to the KeyNote

compliance checker as part of a KeyNote query. A KeyNote query consists of

four components:

• the identifier(s) of the principal(s) requesting the action;

• the action attribute set which describes the action;

• an ordered policy compliance value set, which describes the compliance

values of interest to the PEP, in ascending order; and

• the applicable policy and signed assertions.

The KeyNote compliance checker returns the correct compliance value.

We now examine the KeyNote architecture, as illustrated in figure 4.1. The

objective is to determine which of the functional components, as described in

section 4.2, are provided by the KeyNote trust management system, and whether

KeyNote enables expression of policy statements, attribute certificates, authen-

tication evidence and ordered compliance value sets.

• KeyNote policy assertions, can be used to specify security policy state-

ments, as described in section 4.2.

• KeyNote signed assertions/credentials, can be used to specify attribute

126

AP

PAP

Keynote policy
compliance

checker

PIP

PDP
TEM

Incoming executable
(AR)

Keynote query:
Principal identifier
Action attribute set
Compliance value set
Policy assertions
Credential assertions

compliance
value

credential assertions

policy assertions

principal identifier
PEP

Executable
execution
environment

Figure 4.1: The KeyNote trust management system

certificates and to provide authentication evidence, as described in sec-

tion 4.2.

• An ordered policy compliance value set can be defined within KeyNote.

• Policy administration has been considered by the developers of KeyNote,

and a KeyNote toolkit has been developed 1.

• The KeyNote compliance checker inputs a query, containing a proposed

action attribute set from an identified principal or principals, and deter-

mines the appropriate compliance value from a set of possible responses.

The policy compliance checker essentially acts as the TEM and the PDP,

as defined in section 4.2. It also meets some of the criteria for the AP.

Neither policy enforcement, nor the collation of security data pertaining to the

access requester, have been considered in [13].

In sections 4.4.1 to 4.4.5 we consider the possible implementation of scenar-

ios 1 – 6, as described in chapter 3, using the KeyNote trust management system.

This will allow us to deduce whether the requirements outlined in section 4.2
1http://www.crypto.com/trustmgt/kn.html

127

can be met.

4.4.1 Scenario 1

In this section we explore how scenario 1 may be implemented using the KeyNote

trust management system.

4.4.1.1 Policy statements

In order to implement scenario 1, as illustrated in figure 3.1, three requirements

must be met with respect to policy statement expression — requirements 1, 2

and 3, as defined in section 4.2.1.

In order to meet these requirements the policy statement shown in figure 4.2

is defined. This policy statement delegates the authority for the ‘mobile ex-

ecutable execution’ application domain (app domain) to RSA:12345, the pub-

lic key of the device manufacturer. This statement unconditionally authorises

RSA:12345 for all defined actions within the app domain, ‘mobile executable

execution’. This policy also specifies that the device manufacturer is trusted to

delegate authority related to the app domain ‘mobile executable execution’. It

is assumed that the Internet Assigned Numbers Authority (IANA), or a simi-

lar organisation, will provide a registry of reserved app domain names. In this

registry the names and meanings of each app domain attribute must also be

defined.

KeyNote-Version: 2

Local-Constants: Device manufacturer == "RSA:12345"

public key of device manufacturer

Authorizer: "POLICY"

Licensees: Device manufacturer

Conditions: (app_domain == "mobile executable execution");

Figure 4.2: Scenario 1 — Policy assertion

This policy statement permits an incoming executable, which has been signed

128

by an (agent) code author, which has been delegated authority over the run com-

mand by the mobile device’s manufacturer, which in turn has been delegated

complete authority over the ‘mobile execution execution’ app domain, in the

policy statement defined in figure 4.2, to execute on the mobile device. In the

same way, this policy permits an incoming agent, which has been signed by an

(agent) code author and by an agent creator, which have been delegated author-

ity over the run command by the mobile device’s manufacturer, which in turn

has been delegated complete authority over the ‘mobile execution execution’

app domain in the policy defined in figure 4.2, to execute on the mobile device.

Therefore, the policy statement requirements for scenario 1 can be met using

the KeyNote trust management system.

4.4.1.2 Attribute certificates

In order to implement scenario 1 three requirements must be met with respect

to attribute certificate expression — requirements 1, 2, and 3, as defined in

section 4.2.2.

Following the generation of the policy statement defined in figure 4.2, the

device manufacturer is free to generate signed assertion/credentials for (agent)

code authors which he trusts to generate safe executables, as illustrated in fig-

ure 4.3. The signed assertion/credential shown in figure 4.3 permits the trusted

(agent) code author to have its signed executables executed on a mobile device

on which the policy statement specified in figure 4.2 has been defined.

The architectural model described in section 3.3 may require that an incom-

ing agent is signed not only by the agent code author but also by the agent

creator. In this case, the credential illustrated in figure 4.4 could be generated

by the device manufacturer.

129

KeyNote-Version: 2

Authorizer: "RSA: 12345"

#the public key of the device manufacturer

Licensees: "RSA: 654873" # a trusted (agent) code author

Conditions: (app_domain == "mobile executable execution") &&

(command == "run");

Signature: "RSA-SHA1: 1234534"

#signature of device manufacturer

Figure 4.3: Scenario 1 — Signed assertion/credential

KeyNote-Version: 2

Authorizer: "RSA:12345"

#the public key of the device manufacturer.

Licensees: ("RSA 332873" || # (agent) code author #1

"RSA 120873" || # (agent) code author #2

"RSA 454873") && # (agent) code author #3

("RSA 329873" || # (agent) creator #1

"RSA 954973" || # (agent) creator #2

"RSA 214873")

Conditions: (app_domain == "mobile executable execution") &&

(command == "run");

Signature: "RSA-SHA1: 1234534"

#signature of device manufacturer

Figure 4.4: Scenario 1 — Signed assertion/credential

The credential defined in figure 4.4 permits an incoming agent whose code

and data have been digitally signed by an agent code author whose public key is

listed in the <Licensees> field, and whose code, data and static state informa-

tion have also been digitally signed by an agent creator whose public key is also

listed in the <Licensees> field, to be executed on a mobile host on which the

policy statement defined in figure 4.2 has been defined. All attribute certificate

requirements for scenario 1 can be met using KeyNote.

4.4.1.3 Authentication evidence

In order to implement scenario 1, three requirements must be met with respect to

authentication evidence — requirements 1, 2, and 4, as defined in section 4.2.3.

The signature of the device manufacturer on the KeyNote attribute assertion

shown in figure 4.3 serves to authenticate the source of the assertion, thereby

fulfilling requirement 2.

130

4.4.1.4 Compliance values

In order to implement scenario 1, one requirement must be met with respect

to expressing the ordered compliance value set — requirement 1, as defined in

section 4.2.4.

The ordered compliance value set for scenario 1 can be defined using KeyNote

as shown in figure 4.5, thereby meeting this requirement. This compliance value

set is input into the KeyNote compliance checker as part of a KeyNote query.

{discard, execute}

Figure 4.5: Scenario 1 — Ordered compliance value set

4.4.1.5 The PAP

In order to implement scenario 1, one requirement must be met with respect

to the PAP — requirement 1, as defined in section 4.2.5. KeyNote assertions

can be written using a text editor (except for the signatures). A KeyNote

version 2.3 trust management toolkit and reference implementation for BSD

Unix and Linux is available for download2. The KeyNote toolkit offers services

such as asymmetric key pair generation, signature generation and signature

verification. It also provides a query tool, which completes policy compliance

checking on a KeyNote query. There are no toolkits available to enable the

management or organisation of policy or signed assertions.

4.4.1.6 The AP

In order to implement scenario 1, three requirements must be met with respect

to the AP — requirements 1, 2, and 4, as defined in section 4.2.7.
2http://www.crypto.com/trustmgt/kn.html

131

Requirement 2 can be met using the KeyNote compliance checker. Verifica-

tion of the agent code author and agent creator signatures, and the verification

of the incoming executable’s identity, must however be completed by an inde-

pendent component so that a KeyNote query can be submitted to the KeyNote

compliance checker. Therefore, requirements 1 and 4 cannot be met.

4.4.1.7 The TEM

In order to implement scenario 1, one requirement must be met with respect to

the TEM — requirement 1, as defined in section 4.2.8.

On receipt of a KeyNote query, comprised of:

• the identifier(s) of the principal(s) requesting the action;

• an action attribute set, for example, those illustrated in figures 4.6, 4.7 or

4.8;

• the compliance value set, as defined in figure 4.5; and

• the relevant policy and credential assertions;

the KeyNote policy compliance checker will verify the chain of trust between

the principal’s identifier, i.e. the ACTION AUTHORIZERS value input with

the action attribute set and the root authorisation point ‘POLICY’. The TEM

requirement can be met using the KeyNote trust management system.

_ACTION_AUTHORIZERS = "RSA:654873"

app_domain = "mobile executable execution"

command == "run"

Figure 4.6: Scenario 1 — Action attribute set

132

_ACTION_AUTHORIZERS = "RSA:888888"

app_domain = "mobile executable execution"

command == "run"

Figure 4.7: Scenario 1 — Action attribute set

_ACTION_AUTHORIZERS = "RSA:332873, RSA:329873"

app_domain = "mobile executable execution"

command == "run"

Figure 4.8: Scenario 1 — Action attribute set

4.4.1.8 The PDP

In order to implement scenario 1, one requirement must be met with respect to

the PDP — requirement 1, as defined in section 4.2.9.

The PDP requirement can be met using KeyNote. If the KeyNote query is

comprised of the action attribute set illustrated in figure 4.6, the ordered compli-

ance value set defined in figure 4.5, the policy assertion defined in figure 4.2, and

the signed assertion/credential defined in figure 4.3, then the policy compliance

checker will output the result {execute} to the PEP.

If the KeyNote query is comprised of the action attribute set illustrated in

figure 4.7, the ordered compliance value set defined in figure 4.5, the policy

assertion defined in figure 4.2, and the signed assertion/credential defined in

figure 4.3, then the policy compliance checker will output the result {discard}

to the PEP.

Alternatively, if the KeyNote query is comprised of the action attribute set

illustrated in figure 4.8, the ordered compliance value set defined in figure 4.5,

the policy assertion defined in figure 4.2 and the signed assertion/credential

defined in figure 4.4, then the policy compliance checker will output the result

{execute} to the PEP.

133

4.4.2 Scenario 2

In this section we explore how scenario 2 may be implemented using KeyNote.

4.4.2.1 Policy statements

In order to implement scenario 2, one additional requirement must be met

with respect to policy statement expression — requirement 4, as defined in

section 4.2.1.

In order to meet this requirement policy statements of the types shown in

figures 4.9, 4.10 and 4.11 must be defined. The policy assertion defined in

figure 4.9 delegates the authority to the device manufacturer with public key

RSA:78547 to have its signed executables executed in the device manufacturer

domain on the mobile device on which this policy statement has been defined.

KeyNote-Version: 2

Local-Constants: Device manufacturer == "RSA:78547"

public key of the device manufacturer

Authorizer: "POLICY"

Licensees: Device manufacturer

Conditions:(app_domain == "mobile executable execution") &&

(command == "run")

-> "Device Manufacturer domain";

Figure 4.9: Scenario 2 — Policy assertion

The policy assertion defined in figure 4.10 delegates authority to the network

operator with public key RSA:12345 to have its signed executables executed in

the network operator domain on the mobile device on which this policy state-

ment has been defined.

The policy assertion defined in figure 4.11 delegates authority to TTP1 with

public key RSA:12885 to have its signed executables executed in the TTP do-

134

KeyNote-Version: 2

Local-Constants: Network operator == "RSA:12345"

public key of the network operator

Authorizer: "POLICY" Licensees: Network operator

Conditions: (app_domain == "mobile executable execution") &&

(command == "run")

-> "Network operator domain";

Figure 4.10: Scenario 2 — Policy assertion

main on the mobile device on which this policy statement has been defined.

KeyNote-Version: 2

Local-Constants: TTP1 == "RSA:12885"

public key of the TTP1

Authorizer: "POLICY"

Licensees: TTP1

Conditions: (app_domain == "mobile executable execution") &&

(command == "run")

-> "TTP domain";

Figure 4.11: Scenario 2 — Policy assertion

It may transpire that the public key used to verify the digital signature

appended to the incoming executable is not contained in the <Licensees> field of

any of the policy assertions defined above. The unknown third party, which has

signed the incoming executable, may then be permitted to present an attribute

certificate signed, for example, by the device manufacturer such that a chain

of trust may be constructed between the mobile device and the unknown third

party, as described in section 4.2.1. Requirement 1 as defined in section 4.2.1,

must be met in order to facilitate this.

The first policy assertion defined in figure 4.9 delegates authority for the

‘mobile executable execution’ app domain to RSA:78547, the public key of the

device manufacturer. Based on this policy statement, the device manufacturer

is permitted to create signed assertions for TTPs which he chooses to trust,

thereby allowing them to execute in a domain less restrictive than the ‘restric-

135

tive domain’, described in section 3.4. The policy statement requirements for

scenario 2 can be met using KeyNote.

4.4.2.2 Attribute certificates

In order to implement scenario 2, no additional attribute certificate requirements

must be met. Requirements 1 and 5, as defined in section 4.2.1, must be fulfilled

if a device manufacturer is permitted to delegate authority to a chosen TTP (not

listed as one of the TTPs in the policy statement defined in figure 4.11) to have

its signed executables executed in a domain less restrictive than the ‘restrictive

domain’. In order to meet this requirement a signed assertion/credential of the

type shown in figure 4.12 must be defined by the device manufacturer for the

chosen TTP.

KeyNote-Version: 2

Local-Constants: Device manufacturer == "RSA:78547"

public key of the device manufacturer

TTP2 == "RSA:93445"

public key of TTP2

Authorizer: Device manufacturer

Licensees: TTP2

Conditions: (app_domain == "mobile executable execution") &&

(command == "run")

-> "TTP domain";

Figure 4.12: Scenario 2 — Signed assertion/credential

This signed assertion/credential permits TTP2 to have its executables exe-

cuted in the TTP domain on the mobile device in which the policy statement

described in figure 4.9 has been defined. The attribute certificate requirements

for scenario 2 can be met using KeyNote.

136

4.4.2.3 Authentication evidence

In order to implement scenario 2, no additional authentication evidence require-

ments must be met.

4.4.2.4 Compliance values

In order to implement scenario 2, one requirement must be met with respect

to expressing the ordered compliance value set — requirement 2, as defined in

section 4.2.4.

In scenario 2 the ordered compliance value set may be defined using KeyNote

as shown in figure 4.13.

{discard, restrictive domain, TTP domain, network

operator domain, device manufacturer domain}

Figure 4.13: Scenario 2 — Ordered compliance value set

4.4.2.5 The PAP

In order to implement scenario 2, no additional PAP requirements must be met.

4.4.2.6 The AP

In order to implement scenario 2, no additional AP requirements must be met.

4.4.2.7 The TEM

In order to implement scenario 2, no additional TEM requirements must be met.

On receipt of a KeyNote query, comprised of:

• the identifier(s) of the principal(s) requesting the action;

137

• an action attribute set, for example those illustrated in figures 4.14, 4.15

and 4.16;

• the compliance value set, as defined in figure 4.13; and

• the relevant policy and credential assertions;

the KeyNote policy compliance checker will verify the chain of trust between the

ACTION AUTHORIZERS value and the root authorisation point ‘POLICY’.

_ACTION_AUTHORIZERS = "RSA:78547"

app_domain = "mobile executable execution"

command = "run"

Figure 4.14: Scenario 2 — Action attribute set

_ACTION_AUTHORIZERS = "RSA:93445"

app_domain = "mobile executable execution"

command = "run"

Figure 4.15: Scenario 2 — Action attribute set

_ACTION_AUTHORIZERS = "RSA:10105"

app_domain = "mobile executable execution"

command = "run"

Figure 4.16: Scenario 2 — Action attribute set

4.4.2.8 The PDP

In order to implement scenario 2, no additional PDP requirements must be

met. If a KeyNote query is comprised of the action attribute set illustrated

in figure 4.14, the ordered compliance value set defined in figure 4.13, and the

policy assertions defined in figures 4.9, 4.10 and 4.11, then the policy compliance

checker outputs the result {device manufacturer domain} to the PEP.

If the KeyNote query is comprised of the action attribute set illustrated in

figure 4.15, the ordered compliance value set defined in figure 4.13, the policy as-

138

sertions defined in figures 4.9, 4.10 and 4.11, and the signed assertion/credential

defined in figure 4.12, then the policy compliance checker outputs the result

{TTP domain} to the PEP.

4.4.3 Scenario 3

In this section we will explore how scenario 3 may be implemented using the

KeyNote trust management system.

4.4.3.1 Policy statements

In order to implement scenario 3, two additional requirements must be met with

respect to policy statement expression — requirements 5 and 6, as defined in

section 4.2.1.

In order to implement the architectural model described in figure 3.3, we give

the policy assertion illustrated in figure 4.17. This policy statement delegates

authority for the run command defined within the ‘mobile executable execution’

app domain to TTP1, TTP2 and TTP3 when attribute 1 is less than the pre-

defined value, 50, and attribute 2 is equal to the pre-defined value, true.

KeyNote-Version: 2

Local-Constants: TTP1 = "RSA:76595"

TTP2 = "RSA:24357"

TTP3 = "RSA:02755"

public keys of selected TTPs

Authorizer: "POLICY"

Licensees: TTP1 || TTP2 || TTP3

Conditions:((app_domain == "mobile executable execution") &&

(command == "run")

-> { (@(attribute 1) < "50" &&

(attribute 2) = "true")

};

Figure 4.17: Scenario 3 — Policy assertion

In order to implement the architectural model described in figure 3.4, we give

the policy assertion illustrated in figure 4.18. This policy statement delegates

139

authority for the run command defined within the ‘mobile executable execution’

app domain to TTP1, TTP2 and TTP3 when test 1 is equal or not equal to

‘completed’ and test 2 is equal or not equal to ‘completed’.

• If test 1 and test 2 have been completed, the executable is authorised to

execute in the least restrictive domain.

• If test 1 has been completed and test 2 has not been completed, the exe-

cutable is authorised to execute in the restrictive domain.

• If test 1 and test 2 have not been completed, then the executable is au-

thorised to execute in the most restrictive domain.

KeyNote-Version: 2

Local-Constants: TTP1 == "RSA:76595"

TTP2 == "RSA:24357"

TTP3 == "RSA:02755"

public keys of TTPs

Authorizer: "POLICY"

Licensees: TTP1 || TTP2 || TTP3

Conditions:((app_domain == "mobile executable execution") &&

(command == "run")

-> {((test 1) == "completed" &&

(test 2) == "completed")

-> "least restrictive domain";

((test 1) == "completed" &&

(test 2) != "completed")

-> "restrictive domain";

((test 1) != "completed" &&

(test 2) != "completed")

-> "most restrictive domain";

};

Figure 4.18: Scenario 3 — Policy assertion

If ACLs are introduced in order to allow a selection of (agent) code authors

to have their untested executables executed on the mobile device, a policy state-

ment of the form shown in figure 4.19 must be specified, in addition to the policy

assertion defined in either figure 4.17 or figure 4.18. This policy statement del-

egates authority for the run command defined within the ‘mobile executable

execution’ app domain to authors 1, 2, 3 and 4.

140

KeyNote-Version: 2

Authorizer: "POLICY"

Licensees: ("RSA:12579" || # public key of (agent) code author 1

"RSA:14972" || # public key of (agent) code author 2

"RSA:26579" || # public key of (agent) code author 3

"RSA:32578") # public key of (agent) code author 4

Conditions:(app_domain == "mobile executable execution") &&

(command == "run");

Figure 4.19: Scenario 3 — Policy assertion

KeyNote-Version: 2

Authorizer: "POLICY"

Licensees: ("RSA:12579" || # public key of agent code author 1

"RSA:14972" || # public key of agent code author 2

"RSA:26579" || # public key of agent code author 3

"RSA:32578")&& # public key of agent code author 4

("RSA:56779" || # public key of agent creator 1

"RSA:18872" || # public key of agent creator 2

"RSA:86479" || # public key of agent creator 3

"RSA:46578") # public key of agent creator 4

Conditions:(app_domain == "mobile executable execution") &&

(command == "run");

Figure 4.20: Scenario 3 — Policy assertion

If ACLs are introduced in order to allow a selection of agent code authors

and agent creators to have their untested agents executed on the mobile device,

a policy statement of the form shown in figure 4.20 must be specified, in ad-

dition to the policy assertion defined in either figure 4.17 or figure 4.18. This

policy statement delegates authority for the run command defined within the

‘mobile executable execution’ app domain to an agent code author listed in the

<Licensees> field of figure 4.20 and an agent creator listed in the <Licensees>

field in figure 4.20.

If ACLs are, alternatively, introduced in order to increase the security of the

system, the policy statements defined in figures 4.17 and 4.18 must be modified

as illustrated in figures 4.21 and 4.22 below. The policy statement defined in

figure 4.21 delegates authority for the run command defined within the ‘mobile

executable execution’ app domain to TTP1, TTP2 and TTP3, where the code

author’s identity is listed as a value in the (agent) code author name element of

141

the <Condition> field, the agent creator’s identity is listed in the agent creator

name element of the <Condition> field, attribute 1 is greater than 50, and at-

tribute 2 is equal to true.

KeyNote-Version: 2

Local-Constants: TTP1 == "RSA:76595"

TTP2 == "RSA:24357"

TTP3 == "RSA:02755"

public keys of TTPs

Authorizer: "POLICY" Licensees: TTP1 || TTP2 || TTP3

Conditions:((app_domain == "mobile executable execution") &&

(command == "run") &&

((agent) code author name == "Micro Ltd" ||

(agent) code author name == "Orange Ltd") &&

(agent creator name == "Agents Ltd" ||

agent creator name == "Airline Ltd")

-> { (@(attribute 1) < 50 &&

(attribute 2) == "true")

};

Figure 4.21: Scenario 3 — Policy assertion

The policy statement defined in figure 4.22 delegates authority for the run

command defined within the ‘mobile executable execution’ app domain to TTP1,

TTP2 and TTP3, where the author’s identity is listed as a value in the (agent)

code author name element of the <Condition> field, the agent creator’s identity

is listed in the agent creator name element of the <Condition> field, test 1 is

equal or not equal to ‘completed’ and test 2 is equal or not equal to ‘completed’.

• If the code author’s identity is listed as a value in the (agent) code author

name element of the <Condition> field, the agent creator’s identity is

listed in the agent creator name element of the <Condition> field, test

1 has been completed, and test 2 has been completed, the executable is

authorised to execute in the least restrictive domain.

• If the code author’s identity is listed as a value in the (agent) code author

name element of the <Condition> field, the code creator’s identity is listed

142

in the agent creator name element of the <Condition> field, test 1 has

been completed, and test 2 has not been completed, the executable is

authorised to execute in the restrictive domain.

• If the code author’s identity is listed as a value in the (agent) code author

name element of the <Condition> field, the code author’s identity is listed

in the agent creator name element of the <Condition> field, test 1 has

not been completed, and test 2 has not been completed, the executable is

authorised to execute in the most restrictive domain.

The policy statement requirements for scenario 3 can be met using KeyNote.

KeyNote-Version: 2

Local-Constants: TTP1 = "RSA:76595"

TTP2 = "RSA:24357"

TTP3 = "RSA:02755"

Authorizer: "POLICY"

Licensees: TTP1 || TTP2 || TTP3

Conditions:((app_domain = "mobile executable execution") &&

(command == "run") &&

((agent) code author name == "Micro Ltd" ||

(agent) code author name == "Orange Ltd") &&

(agent creator name == "Agents Ltd" ||

agent creator == "Code Ltd")

-> {((test 1) == "completed"&&

(test 2) == "completed")

-> "least restrictive domain";

-> ((test 1) == "completed"&&

(test 2) != "completed")

-> "restrictive domain";

-> ((test 1) != "completed"&&

(test 2) != "completed")

-> "most restrictive domain");

};

Figure 4.22: Scenario 3 — Policy assertion

4.4.3.2 Attribute certificates

In order to implement scenario 3 two additional attribute certificate require-

ments must be met — requirements 5 and 6, as defined in section 4.2.2.

Signed assertions/credentials, as defined in the KeyNote trust management

143

system, do not enable the expression of signed attribute certificates in which the

attributes pertaining to an executable are described by a TTP. Another means

would therefore be required in order for a TTP to certify the attributes of an

executable which they have tested. Hence the attribute certificate requirements

for scenario 3 cannot be met using KeyNote.

4.4.3.3 Authentication evidence

In order to implement scenario 3, one additional requirement must be met with

respect to authentication evidence — requirement 3, as defined in section 4.2.3.

This requirement cannot be met however as the KeyNote attribute assertion

which the TTP is required to sign cannot be expressed, as described in the

previous section.

4.4.3.4 Compliance values

In order to implement the architectural model described in section 3.5 and

illustrated in figure 3.3, one requirement must be met with respect to expressing

the ordered compliance value set — requirement 1, as defined in section 4.2.4.

This ordered compliance value set has previously been defined in figure 4.5.

In order to implement the architectural model described in section 3.5, and

illustrated in figure 3.4, one requirement must be met with respect to expressing

the ordered compliance value set — requirement 2, as defined in section 4.2.4.

This ordered compliance value set is defined in figure 4.23. The compliance

value set requirement for scenario 3 can thus be met using KeyNote.

{discard, most restrictive domain, restrictive

domain, least restrictive domain}

Figure 4.23: Scenario 3 — Ordered compliance value set

144

4.4.3.5 The TEM

In order to implement scenario 3, no additional TEM requirements must be

met. On receipt of a KeyNote query, the KeyNote policy compliance checker

will verify the chain of trust between the principal identifier, i.e. the AC-

TION AUTHORIZER in the KeyNote query and the root authorisation point

‘POLICY’. For the architectural model described in figure 3.3, the KeyNote ac-

tion attribute sets shown in figures 4.24 and 4.25 are illustrative of what may

be input into the KeyNote compliance checker.

_ACTION_AUTHORIZERS = "RSA:76595"

app_domain = "mobile executable execution"

command == "run"

attribute 1 = "20"

attribute 2 = "true"

Figure 4.24: Scenario 3 — Action attribute set

_ACTION_AUTHORIZERS = "RSA:11115"

app_domain = "mobile executable execution"

command == "run"

attribute 1 = "20"

attribute 2 = "true"

Figure 4.25: Scenario 3 — Action attribute set

For the architectural model described in figure 3.4, the KeyNote action at-

tribute set shown in figure 4.26 is illustrative of what may be input into the

KeyNote compliance checker.

_ACTION_AUTHORIZERS = "RSA:76595"

app_domain = "mobile executable execution"

command == "run"

test 1 = completed

test 2 = completed

Figure 4.26: Scenario 3 — Action attribute set

For the architectural model described in figure 3.3, where ACLs are added

145

to provide improve efficiency, the action attribute set shown in figure 4.27 is

illustrative of what may be input into the KeyNote compliance checker.

_ACTION_AUTHORIZERS = "RSA:12579" || "RSA:18872"

app_domain = "mobile executable execution"

command == "run"

Figure 4.27: Scenario 3 — Action attribute set

4.4.3.6 The PDP

In order to implement scenario 3, no additional PDP requirements must be ful-

filled. If the KeyNote query is comprised of the action attribute set illustrated in

figure 4.24, the ordered compliance value set defined in figure 4.5, and the policy

assertion defined in figure 4.17, then the policy compliance checker outputs the

result {execute} to the PEP.

If the KeyNote query is comprised of the action attribute set illustrated in

figure 4.25, the ordered compliance value set defined in figure 4.5, and the policy

assertions defined in figure 4.17, then the policy compliance checker outputs the

result {discard} to the PEP.

If the KeyNote query is comprised of the action attribute set illustrated in

figure 4.26, the ordered compliance value set defined in figure 4.23, and the policy

assertions defined in figure 4.18, then the policy compliance checker outputs the

result {least restrictive domain} to the PEP.

If the KeyNote query is comprised of the action attribute set illustrated in

figure 4.27, the ordered compliance value set defined in figure 4.5, and the policy

assertions defined in figures 4.17 and 4.20, then the policy compliance checker

outputs the result {execute} to the PEP.

146

4.4.4 Scenario 4

We next explore how scenario 4 may be implemented using KeyNote. No ad-

ditional requirements in terms of policy statements, attribute certificates, com-

pliance values, the PDP or the TEM need to be met in order to implement

scenario 4.

4.4.4.1 Policy statements

To support the architectural model illustrated in figure 3.5, a mobile device

policy statement of the type shown in figure 4.28 must be defined. This policy

statement delegates authority for the run command defined within the ‘mo-

bile executable execution’ app domain to the domain server with public key

RSA:76595, when attribute 1 is less than the pre-defined value, 50, and at-

tribute 2 is equal to the pre-defined value, true.

KeyNote-Version: 2

Local-Constants: Domain server = "RSA:76595"

public keys of the mobile device domain server

Authorizer: "POLICY"

Licensees: Domain server

Conditions:((app_domain == "mobile executable execution") &&

(command == "run")

-> { (@(attribute 1) < "50" &&

(attribute 2) = "true")

};

Figure 4.28: Scenario 4 — Policy assertion

4.4.4.2 Attribute certificates

Signed assertions/credentials, as defined in the KeyNote trust management sys-

tem, do not allow the expression of signed attribute certificates in which the

attributes pertaining to an executable are described by the domain server to

whom the authorisation is delegated in the policy statement defined in fig-

147

ure 4.28. Another means would therefore be required in order for a domain

server to certify the attributes of an executable which they have tested.

4.4.4.3 Authentication evidence

In order to implement scenario 4, no additional requirements must be met with

respect to authentication evidence.

4.4.4.4 Compliance values

The ordered compliance value set required for scenario 4 has been previously

defined in figure 4.5.

4.4.4.5 The TEM

In order to implement scenario 4, no additional TEM requirements must be met.

In the architectural model described in figure 3.5, the action attribute set shown

in figure 4.29 is illustrative of what may be input into the KeyNote compliance

checker.

_ACTION_AUTHORIZERS = "RSA:76595"

app_domain = "mobile executable execution"

command == "run"

attribute 1 = "20"

attribute 2 = "true"

Figure 4.29: Scenario 4 — Action attribute set

4.4.4.6 The PDP

In order to implement scenario 4, no additional PDP requirements must be

fulfilled. If the KeyNote query contains the action attribute set illustrated in

figure 4.29, the ordered compliance value set defined in figure 4.5, and the policy

assertion defined in figure 4.28, then the policy compliance checker outputs the

148

result {execute} to the PEP.

4.4.5 Scenarios 5 and 6

In this section we explore how scenarios 5 and 6 may be implemented using

KeyNote. No additional requirements in terms of policy statements, attribute

certificates, compliance values, the TEM or the PDP need to be fulfilled in order

to implement the mobile device policy engine for scenarios 5 and 6.

4.4.5.1 Policy statements

In order to implement scenarios 5 and 6, one requirement must be met with

respect to mobile device policy statement expression — requirement 4, as de-

fined in section 4.2.1. In order to meet this requirement, a policy statement

of the form described in figure 4.30 must be defined. This policy statement

delegates authority for the run command defined within the ‘mobile executable

execution’ app domain to RSA:11345, the public key of the device manufacturer.

KeyNote-Version: 2

Local-Constants: Device server = "RSA:11345"

public key of domain server

Authorizer: "POLICY"

Licensees: Domain server

Conditions: (app_domain == "mobile executable execution") &&

(command == "run");

Figure 4.30: Scenario 5 and 6 — Policy assertion

4.4.5.2 Attribute certificates

No attribute certificate requirements are defined for scenarios 5 and 6.

149

4.4.5.3 Authentication evidence

In order to implement scenarios 5 and 6, no additional requirements must be

met with respect to authentication evidence.

4.4.5.4 Compliance values

The ordered compliance value set required for scenarios 5 and 6 has been pre-

viously defined in figure 4.5.

4.4.5.5 The TEM

In order to implement scenarios 5 and 6, no additional TEM requirements must

be fulfilled. In the architectural model described in figure 3.7, the action at-

tribute set shown in figure 4.31 is illustrative of what may be input into the

KeyNote compliance checker.

_ACTION_AUTHORIZERS = "RSA:11345"

app_domain = "mobile executable execution"

command == "run"

Figure 4.31: Scenario 5 and 6 — Action attribute set

4.4.5.6 The PDP

In order to implement scenarios 5 and 6, no additional PDP requirements must

be fulfilled. If a KeyNote query is comprised of the action attribute set illus-

trated in figure 4.31, the ordered compliance value set defined in figure 4.5, and

the policy assertion defined in figure 4.30, then the policy compliance checker

outputs the result {execute} to the PEP.

150

4.4.6 Conclusions

PIP functionality has not been considered within the KeyNote system, i.e. there

are no mechanisms to collect the required or missing signed assertions. The

KeyNote compliance checker meets the requirements of the TEM, the PDP and

some of the AP requirements. A basic toolkit also provides PAP functionality.

The syntax of the KeyNote assertion expression language is based on the

format of RFC-822 style message headers, and is reasonably easy for the non-

programmer to understand. The same language is used for both policy asser-

tion and signed assertion/credential expression, which simplifies the language

further. While the policy statement requirements could be met, issues arose in

relation to limiting delegation and the expression of fine-grained access control

policies. While the majority of attribute certificate requirements could be met,

it also became apparent that there is no way to create an attribute certificate

in which there is no inherent notion of delegation of authority. We now exam-

ine the areas where KeyNote falls short with respect to policy statement and

attribute assertion expression in further detail.

The policy statements defined throughout this section are coarse-grained. In

scenarios 1, 4, 5 and 6, and potentially in scenario 3, an executable is either per-

mitted to execute or is discarded. In scenario 2, and potentially in scenario 3, a

label indicating the ‘execution environment’ in which the executable should be

permitted to execute is output. It then becomes the responsibility of the execu-

tion environment (acting as the PEP) to interpret this policy decision and act

accordingly. If the decision output from the policy compliance checker is {exe-

cute}, for example, this could imply that the incoming executable is permitted

to execute with all privileges or, alternatively, there may be a specified set of

actions which the executable is permitted to perform. As a result, a separate set

151

of security policies may be required within the execution environment so that

the PEP can interpret what the decision of the KeyNote compliance checker

implies for executable execution.

Finer-grained policy statements could be specified using the KeyNote asser-

tion specification language. The policy statement defined in figure 4.2 could,

for example, be represented as a number of finer-grained policies which specify

the exact privileges over which the device manufacturer has authority and can

delegate. An example of such a policy is shown in figure 4.32. This policy as-

sertion specifies that the device manufacturer has authority for read and write

operations over two file directories, ‘directory 1’ and ‘directory 2’, where the

app domain is file system. This implies that the device manufacturer is autho-

rised to perform or to delegate these actions on these two directories.

KeyNote-Version: 2

Local-Constants: Device manufacturer == "RSA:12345"

public key of device manufacturer

Authorizer: "POLICY"

Licensees: Device manufacturer

Conditions:(app_domain == "file_system") &&

(directory == "directory 1" || directory == "directory 2") &&

(access == "read" || access == "write");

Figure 4.32: Scenario 1 (Alternative) — Policy assertion

A further policy could specify that the device manufacturer has authority

over a selection of actions defined within the app domain ‘outbound connec-

tions’. The policy assertion shown in figure 4.33 permits the device manufac-

turer to delegate the authority to accept, resolve or connect to particular IP

addresses using a specified set of port numbers, as shown in figure 4.33.

For each set of related security permissions, defined by an app domain, a sep-

arate policy statement must be defined. Following the generation of the policy

statements defined above, the device manufacturer can delegate the authority

152

KeyNote-Version: 2

Local-Constants: Device manufacturer == "RSA:12345"

public key of device manufacturer

Authorizer: "POLICY"

Licensees: Device manufacturer

Conditions: (app_domain == "outbound connections") &&

(ipaddress == ipadress1 ||

ipaddress == ipadress2) &&

(port == 3 || port == 777) &&

(connection_method == accept ||

connection_method == connect ||

connection_method == resolve);

Figure 4.33: Scenario 1 (Alternative) — Policy assertion

for a defined set of execution permissions to a set of trusted code authors, or a

set of agent code authors and agent creators.

When an incoming executable begins executing, every attempted action is

intercepted by the execution environment, and a request sent to the KeyNote

policy compliance checker with the required action attribute set, policy asser-

tions, signed assertions and an ordered compliance value set, for example {allow,

disallow}. A decision is then output by the policy compliance checker and en-

forced by the execution environment (acting as the PEP).

This approach, however, has a number of disadvantages.

• Firstly, in the example described above, the number of signed assertions

acquired by code authors (and potentially agent creators) may quickly in-

crease, particularly if each device manufacturer that certifies code authors

(and potentially agent creators) must issue them with multiple credentials

in order to delegate the required execution permissions. This problem is

compounded by the fact that the KeyNote trust management system does

not support a mechanism to collect required or missing assertions.

• Secondly, all permissions delegated in signed assertions become publicly

visible as they are distributed across the network, which may lead to a

security breach.

153

• Thirdly, on examination of the policy statements defined in figures 4.32

and 4.33, it becomes clear that if, for example, these policy assertions

are altered so that the authority delegated by ‘POLICY’ is made more

restrictive, then a device manufacturer would have to re-issue all signed

assertions pertaining to the modified permissions to each code author con-

sidered trusted, or, potentially, to each set of agent code authors and agent

creators considered trusted.

It would therefore appear better to implement KeyNote policies as described

in sections 4.4.1 to 4.4.5. In this way, a generic permission may be granted to

the executable, e.g. {Device Manufacturer domain}, and this decision can in

turn be mapped to a specific set of access rights by the execution environment

responsible for enforcing the decision output by the KeyNote policy compliance

checker.

While the majority of the attribute certificate requirements described in

section 4.2.2 can also be fulfilled through the use of KeyNote, there is no way to

create a credential in which there is no inherent notion of delegation of authority

[136]. Requirement 6, as described in section 4.2.2, cannot be fulfilled using

KeyNote signed assertions.

In conjunction with this, a problem may arise with respect to limiting dele-

gation. For example, the attribute certificate which delegates the authority to

a code author to run executables on the host device, as defined in figure 4.3,

also permits that code author to delegate his authority over the run command

to other untrusted entities, as illustrated in figure 4.34.

A way of specifying assertions such that authority cannot be delegated

further is presented by Foley et al. [49]. They suggest that by stating as a

<Condition> that the ACTION AUTHORISOR must be the licensee of the

154

KeyNote-Version: 2

Authorizer: "RSA: 654873"

#the public key of a trusted (agent) code author

Licensees: "RSA: 333455" # an entity chosen by the code author

Conditions: (app_domain == "mobile executable execution") &&

(command == "run");

Signature: "RSA-SHA1: 5634534"

#signature of (agent) code author

Figure 4.34: Scenario 1 (Alternative) — Signed assertion/credential

assertion, further delegation can be prevented. We now re-examine the signed

assertion described in figure 4.3 in the light of this proposal. The signed asser-

tion/credential described in figure 4.35 permits the trusted (agent) code author,

represented by RSA:654873, to have their signed executables executed on a

mobile device on which the policy statement specified in figure 4.2 has been

defined. If this author creates a signed assertion for another entity represented

by RSA:33337, who then attempts to have their executable executed on the de-

vice, a decision of {discard} would be output by the policy compliance checker

because the ACTION AUTHORISER value in the KeyNote query would not

meet the required condition.

KeyNote-Version: 2

Authorizer: "RSA: 12345"

#the public key of the device manufacturer

Licensees: "RSA: 654873" # a trusted (agent) code author

Conditions: (app_domain == "mobile executable execution") &&

(command == "run") &&

(_ACTION_AUTHORISOR == RSA: 654873);

Signature: "RSA-SHA1: 1234534"

#signature of device manufacturer

Figure 4.35: Scenario 1 (Alternative) — Signed assertion/credential

Alternatively, it would be useful if KeyNote could be extended to provide

additional functionality, as described in the Nereus authorisation framework, in

order to counteract these weaknesses. Nereus was developed by Miklos [103].

This policy authorisation framework is very similar to KeyNote. However, there

155

are three fundamental differences between KeyNote and Nereus [103]: use of

attributes; limited delegation; and a different compliance checker.

• Nereus allows attributes to be bound to public keys in signed binding as-

sertions. Binding of authorisations to attributes is also enabled in binding

policy assertions.

• Through the introduction of binding and delegation policy assertions, and

signed binding and delegation assertions, delegation can be limited.

• A different compliance checking method is used in Nereus.

In the Nereus system, two types of policy assertion and two types of signed

assertion are defined. Policy assertions include binding assertions and delegation

assertions.

• Binding policy assertions assign authorisations to attributes.

• Delegation policy assertions delegate the right to define policies.

Policy assertion definition is not limited to the principal whose identifier is ‘POL-

ICY’. Miklos does, however, describe a special policy assertion, which serves as

the trust root in the compliance checker and is generated by the principal, whose

identifier is ‘POLICY’.

Signed assertions include signed binding assertions and signed delegation

assertions.

• Signed binding assertions bind attributes to public keys.

• Signed delegation assertions delegate the right to bind specific attributes

to keys.

156

We now explore how the model described in figure 3.3 might be implemented

using Nereus. Instead of the policy statement specified in figure 4.17, the fol-

lowing policy statements can be defined using the Nereus assertion specification

language. The policy statement defined in figure 4.36 permits a principal with

the attributes listed in the <Licensees> field to have their executables executed

on the mobile device on which this policy is specified.

Nereus-Version: 2

Issuer: "POLICY"

Type: binding

Licensees: @ (attribute 1) < "50" &&

(attribute 2) = "true")

ASSERTED BY RSA:12345 || RSA:678910

public keys of TTP1 || TTP2

Conditions: (app_domain == "mobile executable execution") &&

(command == "run");

Figure 4.36: Scenario 3 (Alternative) — Policy assertion

The policy statement defined in figure 4.37 permits TTP1 or TTP2, repre-

sented by the public keys RSA:12345 and RSA:678910, to bind specific attributes

to a subject.

Nereus-Version: 2

Issuer: "POLICY"

Type: delegation

Licensees: RSA:12345 || RSA:678910

Attribute name: attribute 1

Attribute value: < "100"

Attribute name: attribute 2

Attribute value: "true" || "false"

Figure 4.37: Scenario 3 (Alternative) — Policy assertion

TTP1 or TTP2 can then generate a signed binding assertion, as shown in

figure 4.38, which binds the specified attributes to a particular subject.

Presumably, if a KeyNote query comprising the policy assertions described

157

Nereus-Version: 2

Issuer: TTP1

Type: binding

Licensees: ‘principal’

Attribute name: attribute 1

Attribute value: 42

Attribute name: attribute 2

Attribute value: true

Signature: "RSA-SHA1: f125dt"

Figure 4.38: Scenario 3 (Alternative) — Signed assertion

in figures 4.36 and 4.37, the signed assertion described in figure 4.38, an order

compliance value set {execute, discard}, and an action attribute set as defined

in figure 4.39 were input to the Nereus compliance checker, then the compliance

checker would output the value, {execute}.

_ACTION_AUTHORIZERS = ‘principal’

app_domain = "mobile executable execution"

command == "run"

Figure 4.39: Scenario 3 (Alternative) — Action attribute set

In the above example (and in figures 4.38 and 4.39), we require that ‘prin-

cipal’ is an identifier for the mobile executable, for example a hash of the ex-

ecutable. Unfortunately, in the Nereus system, unlike in the KeyNote trust

management system, where the <Licensee> field of an assertion can contain

a cryptographic key, or, indeed, an opaque identifier string, whose structure

is not interpreted by the KeyNote system, it is required that the <Licensee>

field contains a key identifier. This implies that the attribute assertion defined

in figure 4.38 and, therefore, the query described above, cannot be specified.

Further, difficulties in providing a definite assessment arise because a document

which describes the syntax and semantics of the Nereus assertion specification

language has not, as yet, been published.

If both cryptographic keys and opaque identifier strings were permitted in

158

the <Licensee> field of a Nereus assertion, then this authorisation system would

solve two problems, that of unlimited delegation and the requirement for bind-

ing assertions. Alternatively, KeyNote may benefit from re-examination and

extension.

4.5 Ponder

Ponder is a declarative, strongly typed, object-oriented policy specification lan-

guage [34, 35, 37]. It can be used in the specification of both management and

security policies. Every Ponder policy relates to objects with interfaces defined

in terms of methods using an interface definition language [36]. A subject ob-

ject refers to “an entity, i.e. a user or automated component, with management

responsibility” [36]. “A subject object can access a target object by invoking

methods visible on the target’s interface” [36]. The notion of a domain is also

used. A domain is defined as “a means of grouping objects to which policies

apply” [36].

• Ponder policies are expressed in terms of subject object and target object

sets called domains.

• Path names are used to identify domains, e.g. A/B/C.

• “Membership of a domain is explicit and not defined in terms of a predicate

on object attributes” [37].

• Domain scope expressions are used to combine domains to form a set of

objects for applying a policy [37].

Both basic and composite policy statements can be expressed. Basic policy

statements can be coarsely categorised into access control policies and obligation

159

policies. Access control policy types include authorisation polices, information

filtering policies and delegation policies.

• Authorisation policies define the actions that a member of a subject do-

main can perform on the objects in a target domain. Both positive authori-

sation policies and negative authorisation policies are supported. Positive

authorisation policies define the actions that subject objects can perform

on target objects. Negative authorisation policies define the actions that

subject objects are forbidden from performing on target objects, and prove

useful in the temporary removal of access rights from subjects.

• Information filtering policies transform the values of the input and/or

output parameters in an action.

• Delegation policies allow for the temporary transfer of access rights. A

policy of this type permits subject objects to grant privileges, which they

possess, to grantees, so that the grantees can perform actions on their

behalf. Delegation policies may be either positive, thereby allowing the

delegation of certain actions, or negative, thereby forbidding the delegation

of certain actions.

Obligation policy types include obligation policies and refrain policies.

• Obligation policies define the actions that must be performed by man-

agers within the system should certain events occur, for example, security

violations.

• Refrain policies define actions that subjects must not perform. They are

similar to negative authorisation policies but, rather than being enforced

by target object access controllers, as is the case with authorisation poli-

cies, they are enforced by subject objects.

160

The validity of each basic policy may be dependent on a set of conditions,

for example, subject/target state-based constraints, action/event parameters or

time constraints.

As well as the basic policy construction, composite policy construction is also

defined, so that policy specification and management in large complex systems

may be simplified. Constructs defined in order to enable policy specification in

large complex organisations include the following [35].

• Groups associate related policies so that policies may be organised effi-

ciently.

• Roles group policies with a common subject.

• Relationships group policies defining the rights and duties of roles towards

each other. Relationships may also group policies related to resources that

are shared by the roles [35].

• Management structures “define an organisation in terms of instances of

roles, relationships and nested management structures relating to organi-

sational units” [35].

• Meta policies specify constraints over a set of policies.

We now examine the Ponder policy specification framework, illustrated in

figure 4.40, in order to determine which of the functional components, as de-

scribed in section 4.2, are provided, and whether policy statement expression,

attribute certificate expression, ordered compliance value definition and authen-

tication evidence expression are supported.

• Management tools enable the specification and administration of policies.

The Ponder toolkit, which is available for download3, includes a domain
3http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml

161

browser; a policy editor; a policy compiler; a management console; a user-

role management tool; a GUI component; and a configuration manager

tool. A domain service manages the hierarchy of domain objects. These

management tools and the domain service provide the PAP component of

a policy engine, as defined in section 4.2.

• An access controller is defined as an agent which receives an authorisation

request, makes a policy decision, and then enforces this decision. One

access controller exists for each target object. In conjunction with this,

the access controller applies any authorisation filters to the action call

parameters and the returned values. Access controllers provide PDP and

PEP functionality, as defined in section 4.2.

• A policy management component is defined as an agent which enforces

obligation and refrain policies. One policy management component is

defined for each subject object. As obligation and refrain policies define

the actions that must or must not be performed by managers within the

system should certain events occur, these policies depend on input from

an event service. Policy management components provide PDP and PEP

functionality, as defined in section 4.2.

• A number of policy types can be specified, namely positive and nega-

tive authorisation policies, filtering policies, delegation policies, obligation

policies and refrain policies. A set of conditions under which each policy

specified is valid may also be specified. The Ponder policy specification

language also enables composite policy definition.

PIP functionality is not considered in the Ponder policy specification frame-

work. It is required that objects are explicitly added to domains. Membership of

domains cannot be defined in terms of a predicate on object attributes. There-

162

AP

Management
tools (PAP)

Incoming executable
(AR)

Subject object

Executable execution environment
(Target managed objects)

Domain
service

Policy
service (PAP)

Policy control
objects

Access controller(s) –
1 per managed object

Event
service

Policy
management
component(s)
– 1 per
managed
subject object

Policy objects

Policy objects Authorisation
control objects

Obligation/
Refrain

control objects

Figure 4.40: The Ponder policy specification framework

fore, there is no requirement to collect access requestor information. It is also

assumed that authentication is completed independently of the Ponder policy

specification framework, so AP functionality is not considered. As a result of

this, neither the expression of attribute certificates nor authentication evidence

are considered in the Ponder policy specification framework. Because policy

decision making and policy enforcement are implemented within the same com-

ponent, policy compliance values are not required.

In the following sections, we examine whether the requirements outlined in

section 4.2 for policy statements, the PAP, the PDP and the PEP are met by

Ponder. In order to do this, we attempt to express the architectural models

outlined in chapter 3 using Ponder.

4.5.1 Prior art

There are two notable examples of the use of the Ponder policy specification

framework to specify security policies for mobile agents. Knottenbelt [94] ex-

tended the April Agent Platform to support the management and evaluation

of security policies specified in Ponder. Montanari et al. [10, 30, 105] have also

163

demonstrated how the Ponder specification language may be utilised in order

to control agent execution in their agent infrastructure, SOMA.

The April Agent Platform is a Foundation for Intelligent Physical Agents

(FIPA) compliant agent platform. A FIPA compliant agent platform is defined

as a “physical infrastructure in which agents can be deployed” [50] and is com-

prised of three components: an agent management system; a message transport

service, and an optional directory facilitator component.

• An agent management system (AMS) is a central directory service con-

taining a list of identifiers for all agents registered with the agent platform.

An agent identifier is made up of a globally unique immutable agentName,

and other optional parameters, such as the transport addresses at which

the agent can be contacted. Each agent must register with an AMS in or-

der to get a valid agent identifier. An agent platform’s AMS can then be

queried by agentName to provide information about its registered agents.

An agent platform’s AMS is responsible for managing the operation of the

platform, such as the creation of agents, the deletion of agents, deciding

whether an agent can dynamically register with the platform, and over-

seeing the migration of agents to and from the agent platform (if agent

mobility is supported). Only one AMS will exist in an agent platform.

• A directory facilitator (DF) can be used by agents, for example, to discover

which agents provide particular services. Multiple DFs may exist within

an AP and may be federated [50].

• A message transport service provides the standard way of communicating

between agents on different agent platforms.

Knottenbelt [94] extends the basic April Agent Platform with four additional

components.

164

• A policy repository service (PRS), which stores compiled policies and an

indication as to whether policies are enabled or disabled.

• An agent directory service (ADS), which associates agents with their policy

domains.

• An agent station, which receives requests to start and stop agents. There

is generally one agent station per host machine within the agent platform.

• A controller, which represents the restricted environment in which an agent

is executed. Controllers apply policies to incoming and outgoing agent

messages. One controller is invoked per agent executing on a host machine.

On migration to an agent platform, a mobile agent must be registered with

the agent platform’s AMS. An agent station can then receive a request of the

form Agent(agentName, domain, runProc), where agentName is the name of

the agent registered with the AMS, domain is the name of the policy domain

to which the agent wishes to be associated, and runProc is the April byte-code

for the procedure which starts the agent [94]. The controller first queries the

ADS in order to resolve the agent to a domain. This can only be done if the

agent has been previously registered with the ADS. If the agent has not been

registered, the controller registers the agent/domain tuple with the ADS and

then downloads any policies relevant to the agent from the PRS and enforces

them. The agent station then forks off a controller process for the new agent.

In his report Knottenbelt [94] defines two examples of agents.

• The factorAgent, which has domain name services/computing/factoriser,

inputs a request of the form (factor, N), where N is the number to be

factorised. After performing the computation, it replies with a message of

the form (result, Factors) where Factors is the list of prime factors.

165

• The clockAgent, which has domain name services/clock/periodic, is an

even simpler agent, which raises a timer event of the form (tick, Time)

every five seconds. The Time is a floating point number indicating the

number of seconds elapsed since the Epoch (1st January 1970).

Two examples of Ponder policies are also defined [94]. The first policy, as

shown in figure 4.41, is called FactorPolicy. It is a negative authorisation policy

restricting the factorisation of very large numbers by the agent contained in

the domain /services/computing/factoriser, which contains a reference to the

factorisation agent defined above.

inst auth- FactorPolicy {

subject /;

target /services/computing/factoriser;

action factor(N);

when N >= 1000;

}

Figure 4.41: The Extended April Agent Platform — Sample policy statement

The second example policy statement, as shown in figure 4.42, is an obliga-

tion policy called ClockPolicy, which every three tick events requests the fac-

torisation of the current time divided by 100 from the factor agent.

inst oblig ClockPolicy {

on 3 * tick(Time);

subject /services/clock/periodic;

target /;

do factorAgent.factor(Time/100);

}

Figure 4.42: The Extended April Agent Platform — Sample policy statement

As is clear from the examples outlined in figures 4.41 and 4.42, all policies

are defined in terms of subject domains and target domains, of which particular

agents are members. As described above, when an agent is generated, it is

166

given an agent name. The agent is also associated with a domain name. When

a mobile agent migrates to an agent platform, the agent name must then be

registered with the AMS of the agent platform, and the agent/domain tuple

must be registered by the ADS, so that the policies pertaining to the domain

with which the agent is bound can be enforced.

This model assumes that a potentially unknown and/or malicious entity can

be trusted to name an agent and to choose the domain with which the agent

should be registered. In this way, a potentially unknown and/or malicious en-

tity is permitted to decide which policies should be applied to its agent. This

model also assumes that all agent creators can obtain the list of domains on

each agent platform on which they want their agent to execute, and this is not a

reasonable assumption in some scenarios. Another problem arises in relation to

the integrity of the domain name associated with the agent name. No mecha-

nisms are described in [94] in order to protect the domain name from malicious

alteration. The issue of establishing trust in the incoming agent is not tackled.

Montanari et al. [10,30,105] have also demonstrated how the Ponder specifi-

cation language may be utilised in order to control agent execution. The policy

architecture integrated into SOMA provides a number of services [30].

• A policy specification service enables policies to be edited, updated and

removed.

• A policy repository service stores all currently active policies, and can be

queried to retrieve policies.

• A policy coordinator service is responsible for distributing policies to run-

time entities at policy instantiation, and at any subsequent change.

• An authorisation enforcement service is responsible for applying run-time

167

access controls.

• An obligation enforcement service is responsible for the correct enforce-

ment of obligation policies.

Montanari et al. have also given examples of Ponder policy statements which

may be defined within their agent platform, SOMA [30]. The policy statement

shown in figure 4.43 specifies that backup agents have read access to all files of

managed machines nodes at backup hours, i.e. from 9 p.m. to 6 a.m., every day.

type auth+ backupP

(subject bkagents, target files) {

action read;

when time.between (2100, 2359) or

time.between (0000, 0600);

}

inst auth+ b = backupP (backup/agents, nodes/files);

Figure 4.43: SOMA — Sample policy statement

Once again, as is clear from the sample policy shown in figure 4.43, policy

statements are defined in terms of known domains which are assumed to contain

references to the agents to which the policy applies.

While it would appear that Ponder is quite expressive as regards policy

expression for mobile agents, both of these systems assume that the incoming

mobile agents can easily be mapped to pre-defined domains, about which policies

are specified. Neither Knottenbelt [94] nor Montanari, Tonti and Stefanelli

[10, 30, 105] tackle the issue of how trust is established between the incoming

agent and the host platform.

168

4.5.2 Scenario 1

In this section we explore how scenario 1, as described in section 3.3, may be

implemented using the Ponder policy specification framework.

4.5.2.1 Policy statements

In order to implement scenario 1, as illustrated in figure 3.1, three requirements

must be met with respect to policy statement expression — requirements 1, 2

and 3, as defined in section 4.2.1.

Let us assume that executables which are members of the /executables/

trustedMobileExecutables domain are executables which have been signed by

an (agent) code author, which in turn has been certified by the mobile device’s

manufacturer, which has been authorised to do so. Alternatively, we may assume

that executables which are members of the /executables/trustedMobileExecutables

domain are mobile agents which have been signed by an agent code author and

an agent creator, which in turn have been certified by the mobile device’s man-

ufacturer, which has been delegated this certification authority. Ponder then

enables us to define the execution permissions of these trusted mobile executa-

bles (i.e. executables which have been explicitly added to the /executables/

trustedMobileExecutablesdomain). The policy statement defined in figure 4.44

authorises a member of the /executables/trustedMobileExecutables domain to

perform any action on any target within the system.

Inst auth+ {

subject s = /executables/trustedMobileExecutables;

target /;

action *;

}

Figure 4.44: Scenario 1 — Policy statement

169

Alternatively, a more fine-grained set of policies may be defined for the

members of the /executables/trustedMobileExecutablesdomain. For exam-

ple, the policy defined in figure 4.45 authorises members of the /executables/

trustedMobileExecutables subject domain to read files which are members of

the target object domain /files/PublicFiles.

Inst auth+ {

subject s = /executables/trustedMobileExecutables;

target f = /files/PublicFiles;

action f.read();

}

Figure 4.45: Scenario 1 — Policy statement

The obligation policy defined in figure 4.46 triggers a system component

to terminate an executable which is a member of the target object domain

/executables/trustedMobileExecutables when the CPU usage exceeds 90.

inst oblig {

on CPU(load,90);

subject s = System;

target t = /executables/trustedMobileExecutables;

do t.kill();

}

Figure 4.46: Scenario 1 — Policy statement

Every permission associated with executable execution, i.e. members of the

/executables/trustedMobileExecutables domain, may be defined in this way

using positive and negative authorisation policies, information filtering policies,

delegation policies, obligation policies and refrain policies.

Ponder also facilitates the use of roles or groups in order to simplify policy

specification. Groups may be used to group policies which refer to the same

target, relate to the same department or apply to the same application. Roles,

170

on the other hand, provide a mechanism for grouping policies with a common

subject. The policies defined in figure 4.45 and 4.46 above, may be grouped as

illustrated in figure 4.47. Indeed all policies relating to executable execution,

or the domain /executables/trustedMobileExecutables , once defined, may be

grouped in this way.

inst group TrustedMobileExecutableExecution {

Inst auth+ {

subject s = /executables/trustedMobileExecutables;

target f = /files/PublicFiles;

action f.read();

}

inst oblig {

on CPU(load,90);

subject s = System ;

target t = /executables/trustedMobileExecutables;

do t.kill();

}

}

Figure 4.47: Scenario 1 — Policy statement

As regards the requirements listed above, it is not possible to delegate the

authority for the executable execution authorisation to the device manufacturer,

so that he can be permitted to certify (agent) code authors or agent creators,

whose identities are unknown at the time of policy specification. Neither can the

second or third requirements be met completely. Ponder can be used to specify

policies pertaining to members of the /executables/trustedMobileExecutables

domain, but polices cannot be specified in terms of subject or target attributes.

What is necessary, therefore, is a method by which unknown incoming executa-

bles can be mapped to the /executables/trustedMobileExecutables domain.

In order to do this, a separate trust management or trust establishment

mechanism is required. KeyNote, as described in section 4.4, could be utilised to

achieve this. In order to implement scenario 1, as illustrated in figure 3.1, using

both KeyNote and Ponder, we must initially specify the KeyNote policy state-

171

ment shown in figure 4.48. This policy specifies that the device manufacturer

is trusted to delegate authority related to the app domain “mobile executable

execution”.

KeyNote-Version: 2

Local-Constants: Device manufacturer = "RSA:12345"

public key of device manufacturer

Authorizer: "POLICY"

Licensees: Device manufacturer

Conditions: (app_domain == "mobile executable execution");

Signature: "RSA:787878"

Figure 4.48: Scenario 1 — TE policy assertion

Following the generation of the policy statement defined in figure 4.48, the

device manufacturer is free to generate signed assertion/credentials for (agent)

code authors which he trusts to generate safe executables, as illustrated in fig-

ure 4.49.

KeyNote-Version: 2

Authorizer: "RSA: 12345"

#the public key of the device manufacturer

Licensees: "RSA: 654873" # a trusted (agent) code author

Conditions: (app_domain == "mobile executable execution") &&

(command == "run") &&

(ACTION_AUTHORISERS == RSA:654873)

-> "/executables/trustedMobileExecutables";

Signature: "RSA-SHA1: 1234534"

#signature of device manufacturer

Figure 4.49: Scenario 1 — Signed assertion/credential

If a KeyNote query consisting of a principal identifer, RSA:65873; the action

attribute set illustrated in figure 4.50; the ordered compliance value set {discard,

/executables/trustedMobileExecutables }; the policy assertion defined in fig-

ure 4.48; and the signed assertion/credential defined in figure 4.49; is input into

the KeyNote compliance checker, then {/ executables/trustedMobileExecutables

} would be output.

172

_ACTION_AUTHORIZERS = "RSA:654873"

app_domain = "mobile executable execution"

command == "run"

Figure 4.50: Scenario 1 — Action attribute set

Once this decision has been output, the KeyNote policy enforcement compo-

nent could add the executable to the /executables/trustedMobileExecutables

domain. While executing, the authorisation and obligation policies defined in

figure 4.47, and indeed all policies relating /executables/trustedMobileExecutables

domain, could then be applied to the executable.

Alternatively a trust establishment framework could be deployed, such as

that proposed by Herzberg et al. [68]. The trust policy language ((D)TPL) was

designed in order to define the mapping of strangers to roles based on certificates

issued by third parties, such that a role-based access control mechanism can be

extended rather than completely replaced. It could be utilised in tandem with

the Ponder specification language in order to restrict the assignment of users

to domains. TPL focuses, however, on the mapping of entities, identified by

their public keys, to roles. There are components of this trust establishment

framework which may be utilised in our application in order to map incoming

unknown executables to roles, and it will be revisited in chapter 5.

4.5.2.2 The PAP

In order to implement scenario 1, one requirement must be met with respect to

the PAP — requirement 1, as defined in section 4.2.5.

As stated above, a set of management tools are provided to support the

deployment of a Ponder policy specification framework.

• A domain browser allows the navigation of objects within the domain

173

server. External tools may be invoked from within the browser tool or,

alternatively, other tools may interface with the domain browser through

an invocation interface implemented by the domain browser.

• A policy editor enables policy and role creation.

• A policy compiler compiles specified policies, after which they are stored

by the domain service.

• A management console is used to distribute policies to their enforcement

components. This management console tool can interface with the domain

browser to select policies and enforcement components from the directory.

This management tool may also interact with the policy compiler in order

to dynamically instantiate policies.

• A user-role management tool enables the management of user-roles.

• A GUI component provides a main console for accessing individual tools.

• A configuration manager tool enables the configuration of all Ponder tools.

The domain service manages a hierarchy of domain objects. Each domain object

holds references to the policy objects that currently apply to that domain.

4.5.2.3 PDP

In order to implement scenario 1, one requirement must be met with respect to

the PDP — requirement 1, as defined in section 4.2.9.

An access controller is defined as an agent which receives an authorisation

request, and makes a policy decision with regard to authorisation policies. It

also decides whether filters should be applied to the action call parameters or

the returned values. One access controller exists for each target object. A

174

policy management component is defined as an agent which decides, based on

events, whether obligation and refrain policies apply. One policy management

component is defined for each object.

4.5.2.4 PEP

In order to implement scenario 1, one requirement must be met with respect to

the PDP — requirement 1 as defined in section 4.2.10.

An access controller is defined as an agent which also enforces its policy

decision with regard to authorisation policies. In conjunction with this, the

access controller applies any authorisation filters to the returned values. A

policy management component is defined as an agent which enforces obligation

and refrain policies.

4.5.3 Scenarios 2 – 6

We do not investigate Ponder in the context of the five remaining scenarios.

The significant issues unearthed in the attempted implementation of scenario 1

also arise with the other scenarios. Section 4.5.2 above demonstrates the way in

which the Ponder policy specification framework may be utilised in each of the

scenarios. For example, as was the case in figures 4.44 - 4.47, policies pertaining

to executables which are members of, for example, domains named /executables/

deviceManufacturerExectuables, /executables/networkOperatorExectuables,

/executables/TTPExectuables and /executables/restrictedExectuables, could be

defined for scenario 2. The problem of ensuring that incoming executables be-

come members of the correct domain, however, remains one that requires the

use of an additional trust establishment mechanism.

175

4.5.4 Conclusions

PIP functionality is not supported by Ponder because of the assumption that

subject or target domain membership is explicit. AP functionality is not sup-

ported because it is assumed that ARs are authenticated independently of the

Ponder policy framework. Because of this, there is no supported means to col-

lect AR information. TEM functionality is also not supported. Neither the

specification of attribute certificates nor authentication evidence is covered by

the Ponder policy specification framework. Finally, because policy decision and

policy enforcement is implemented by the same component, policy compliance

value specification is not required.

Management tools enable the specification and administration of policies,

and provide PAP functionality. PDP and PEP functionality can be provided

by access controllers and policy management components defined within the

Ponder policy specification framework. A number of policy types can be speci-

fied using Ponder, namely positive and negative authorisation policies, filtering

policies, delegation policies, obligation policies and refrain policies. A set of con-

ditions under which each policy is valid may also be specified. The syntax and

semantics of the Ponder policy specification language are also reasonably easy

to understand. As regards specifying policies which define the permissions of an

executable which is a member of a particular domain, Ponder is an expressive

and useful language.

In summary, because policy statements are defined in terms of subject and

target domains, to which objects must be explicitly added, additional trust

establishment and attribute certificate expression mechanisms must be provided

in order to implement scenarios 1 – 6.

176

4.6 SAML

The security assertions markup language is an XML-based framework for ex-

changing security information over the Internet. It is standardised by OASIS4,

the organisation for the advancement of structured information standards, which

develops interoperable specifications based on XML. Version 1 of the standard,

and the version referred to throughout the remainder of this section, was pub-

lished in November 2002 [112,113]. Since this analysis was performed, versions

1.1 [112, 113] and 2.0 [116–118] have been published (in September 2003 and

March 2005, respectively). However, the fact that newer versions of SAML ex-

ist does not change our conclusions. The requirements which can be met using

SAML v1.0, as highlighted in this section, can also be met using later versions of

the specifications, as none of the functionality we require has been deprecated.

SAML defines the data format for three types of assertion.

• Authentication assertions assert that the issuer has authenticated a spe-

cific subject using a particular mechanism at a particular point in time.

• Attribute assertions assert that a subject has specific attributes.

• Authorisation assertions assert that a subject has been granted or denied

access to particular resources.

The SAML v1.0 Assertions and Protocols specification [112] defines “the

syntax and semantics for XML encoded SAML assertions, protocol requests

and protocols responses”.

Every SAML assertion contains an <Assertion> element which contains the

following mandatory attributes:
4www.oasis-open.org

177

• MajorVersion — holds the major version of the SAML assertion schema.

This number is incremented if the SAML assertion schema is changed in

ways that are not compatible with previous versions.

• MinorVersion — holds the minor version of the SAML assertion schema.

This number is incremented if minor changes are made to the SAML

assertion schema. These changes should not effect the compatibility of the

schema with older schema versions with the same MajorVersion number.

• AssertionID — holds the identifier of the assertion.

• Issuer — holds the name of the issuer provided as a string.

• IssueInstant — holds the time of assertion issue.

The <Assertion> element may also contain the following optional elements.

• <Conditions> — defines the conditions under which the assertion is valid.

It may contain the following elements and attributes.

1. NotBefore — holds the earliest time at which the assertion is valid.

2. NotOnOrAfter — holds the instant at which the assertion expires.

3. <Condition> — provides an extension point, allowing extension schemas

to define new conditions.

4. <AudienceRestrictionConditions> — specifies that the assertion is

addressed to a specific audience.

• <Advice> — contains information which assists assertion processing.

• <ds:Signature> — holds an XML digital signature on the assertion.

One or more of the following elements is also included in the <Assertion>

element.

178

• <Statement> — is an extension point that allows other assertion-based

applications to reuse the SAML assertion framework. It contains a state-

ment defined in an extension schema.

• <Subjectstatement> — is also an extension point that allows other assertion-

based applications to reuse the SAML assertion framework. It contains a

<Subject> element, in which an issuer describes the subject of an asser-

tion.

• <AuthenticationStatement> — contains an authentication statement.

• <AuthorisationDecisionStatement> — contains an authorisation state-

ment.

• <AttributeStatement> — contains an attribute statement.

The <AuthenticationStatement> element contains a statement supplied by

the issuer about how a particular subject was authenticated, and at what time.

It contains the following attributes and elements.

• AuthenticationMethod — holds a URI that specifies the type of authen-

tication that was completed.

• AuthenticationInstant — holds the time at which the authentication took

place.

• <SubjectLocality> — holds the IP address and the DNS domain name of

the machine on which the subject was authenticated.

• <AuthorityBinding> — holds additional information about the subject

of the statement.

An <AuthorisationDecisionStatement> element specifies the decision of the

179

issuer to allow or deny a particular subject access to a specified resource. It is

comprised of the following attributes and elements.

• Resource — holds a URI reference which specifies the resource in question.

• Decision — holds the decision of the issuer, i.e. one of the values permit,

deny or indeterminate.

• <Action> — holds the set of actions authorised on the specified resource.

• <Evidence> — holds the set of assertions on which the decision was based.

An <AttributeStatement> element contains a statement made by the issuer

regarding the attributes a specified subject possesses. It is comprised of one

of more <Attribute> elements, which in turn are comprised of the following

elements.

• <AttributeDesignator> — identifies the attribute name and the names-

pace in which the attribute name should be interpreted.

• <AttributeValue> — holds the value of the attribute.

A request-response protocol is also defined in [112], containing SAML request

and SAML response messages. A SAML request message allows an entity to re-

quest assertions from a SAML authority. The following attributes and elements

are associated with SAML request messages. The following four attributes are

mandatory.

• RequestID — an identifier for the SAML request.

• MajorVersion — the major version of the SAML request.

• MinorVersion — the minor version of the SAML request.

180

• IssueInstant — the time at which the request was issued.

The inclusion of the following elements in a request message is optional.

• <RespondWith> — holds the statement types acceptable to the requester.

Any number of <RespondWith> elements may be contained within a

request message.

• <ds:Signature> — holds an XML signature that authenticates the re-

quest.

• <Request> — specifies the SAML request. One of the following elements

is also contained in a request message.

– <Query> — an extension point that allows new SAML queries to be

defined.

– <SubjectQuery> — an extension point that allows new SAML queries

that specify a single SAML subject.

– <AuthenticationQuery> — holds a query for authentication state-

ments for a particular subject.

– <AttributeQuery> — holds a query for attribute statements for a

particular subject.

– <AuthorisationDecisionQuery> — holds a query for an authorisation

decision for a particular subject.

– <AssertionIDReference> — requests an assertion by reference to its

assertion identifier.

– <AssertionArtifact> — requests assertions by supplying an assertion

artifact that represents it.

181

A SAML response message can then be used by the SAML authority to

return the required assertions to the requester. A SAML response message is

defined by the following attributes and elements. The following five attributes

are required.

• ResponseID — an identifier for the SAML response.

• InResponseTo — a reference to the identifier of the request to which the

response corresponds.

• MajorVersion — the major version of the SAML response.

• MinorVersion — the minor version of the SAML response.

• IssueInstant — the time the response was issued at.

The inclusion of the following two elements in a request message is optional.

• <Recipient> — the intended recipient of the response.

• <ds:Signature> — an XML signature on the response.

• <Response> — specifies the status of the SAML request and contains a

(possibly empty) list of assertions. It is required to contain a <Status>

element, and may contain any number of assertions.

– <Status> — the status of the corresponding request.

– <Assertion> — specifies an assertion by value.

Transferring SAML assertions may be completed using a variety of proto-

cols, used either independently of, or in conjunction with, the SAML request

and SAML response messages, described above. The Bindings and Profiles spec-

ification [113] describes how widely deployed protocols may be used to transport

182

Incoming executable (AR) with
accompanying SAML assertion

Executable execution environmentPEP

PDP PAP

PIP

AP

3rd party
attribute
authority

Request
for a

ss
ertio

n if
not p

rese
nt

resp
onse

policy
statements

TEM

policy
statements

PAP

Figure 4.51: SAML

SAML assertions. For example, the SAML SOAP binding defines how SAML

protocol messages can be communicated within SOAP messages, whilst the

HTTP redirect binding defines how to pass protocol messages through HTTP

redirection [113].

We examine the SAML domain model, as illustrated in figure 4.51, in order

to determine which of the functional components, as described in section 4.2,

are provided, and whether policy statement, attribute certificate, ordered com-

pliance value definition and authentication evidence expression is supported.

• As stated above, [112] defines the syntax and processing semantics of asser-

tions made about a subject by a system entity and the structure of SAML

assertions. Signed attribute assertions can be used to specify attribute

certificates, as described in section 4.2.

• As stated above, [112] also defines the structure of an associated set of

request-response protocols, enabling the required information pertaining

to an AR to be collected. These protocols meet some of the criteria for

the PIP, as defined in section 4.2.

183

• Signed SAML assertions can be generated by SAML attribute authorities,

where the XML signatures generated on these assertions acts as authen-

tication evidence for signers of assertions.

Neither policy statement expression nor policy administration is covered by

the SAML specifications. The same is true of trust establishment. SAML does

not provide for trust negotiation between parties. Policy decision making and

point enforcement are also not within the scope of the specifications. A set

of compliance values (either permit, deny or indeterminate) can be described

using an authorisation decision assertion and sent from the PDP to the PEP.

However, it is likely that the compliance value set will be dependent on the policy

specification language and the TEM, PDP and PEP deployed. Authentication

point functionality is also beyond the scope of the SAML framework, although

some forms authentication are covered. In sections 4.6.1 to 4.6.4 we examine

whether the requirements for attribute certificates, authentication evidence, the

AP and the PIP, as described in section 4.2, can be met using SAML.

4.6.1 Scenario 1

In this section we will explore how scenario 1 may be implemented using SAML.

4.6.1.1 Attribute certificates

In order to support scenario 1, as illustrated in figure 3.1, three requirements

must be met with respect to attribute certificate expression — requirements 1,

2, and 3, as defined in section 4.2.2.

The SAML attribute assertion described in figure 4.52 shows the type of at-

tribute certificate that must be generated for a code author by a mobile device’s

manufacturer if they are to be permitted to have their executables executed

184

on the mobile host, as described in the scenario 1 architectural model. This

digitally signed statement asserts that the subject ‘CodeAuthor1’, which is in

possession of the associated public key, has a ‘CodeAuthorStatus’ of ‘Trusted’.

The assertion is valid for the period between the times listed in the NotBefore

and NotOnOrAfter attribute fields.

The subject of the assertion, ‘CodeAuthor1’ is defined in the <Subject> ele-

ment. The <NameIdentifier> element contained within the <Subject> element

defines the format in which the subject’s name will appear. The assertion shown

in figure 4.52 indicates that the content of the NameIdentifier field is in the form

specified for the content of <ds:X509SubjectName>. This is indicated by the

URI ‘urn:oasis:names:tc:SAML:1.0:nameid-format:X509SubjectName’ which is

defined by SAML. The NameQualifier attribute allows multiple username is-

suing authorities to work without causing any duplication [139]. The subject’s

name then appears as follows ‘CN=CodeAuthor1, OU=MOBILECODEGROUP,

O=MOBILEEXECUTABLESLTD’. The <SubjectConfirmation> contains in-

formation that allows the subject of the assertion to be authenticated. The first

element in the <SubjectConfirmation> element is <ConfirmationMethod>. The

<ConfirmationMethod> method specifies the method which can be used by the

host to confirm the relationship between the code author who signed the in-

coming executable and the code author who has been certified in the attribute

assertion. ‘urn:oasis:names:tc:SAML:1.0:cm:holder-of-key’ is contained in the

<ConfirmationMethod> element. This implies that the subject must prove

that they are the owner of a specified public key in order to confirm their iden-

tity. The key is either included in, or referenced by, the second element in the

<SubjectConfirmation> element, <ds:KeyInfo>. By verifying the signature of

the code author on the incoming executable, the host can check that the identity

of the code author is the subject of the attribute assertion.

185

The <Attribute> element contains two elements <AttributeDesignator>

and <AttributeValue>. The <AttributeDesignator> element has two attributes,

namely AttributeName and AttributeNamespace. The AttributeName attribute

is used to specify the name of the security attribute being asserted. In the at-

tribute assertion shown in figure 4.52, the attributeName is ‘CodeAuthorSta-

tus’. The AttributeNamespace attribute of the <AttributeDesignator> element,

identifies the attribute namespace, ‘http://www.mobileexecutable-authorisation-

vocab.org/attribute’ — a fictitious namespace, to which the security attribute

belongs. Inclusion of this AttributeNamespace URI (which does not hold an

XML namespace) allows organisations to have security attribute names with-

out the fear of any collision between names defined by different naming ser-

vices [139]. The attribute value, ‘Trusted’, is specified in the <AttributeValue>

element. A similar assertion may also be generated for an agent creator by the

device manufacturer if required.

We thus conclude that all the attribute certificate requirements for scenario 1

can be met using SAML.

4.6.1.2 Authentication evidence

In order to implement scenario 1 three requirements must be met with respect to

authentication evidence — requirements 1, 2, and 4, as defined in section 4.2.3.

The XML signature of the device manufacturer on the attribute assertion

shown in figure 4.52 serves to authenticate the source of the assertion, thereby

fulfilling requirement 2.

4.6.1.3 The PIP

In order to support scenario 1, the PIP implemented on the mobile device must

fulfil one requirement — requirement 1 as defined in section 4.2.6.

186

<?xml version="1.0" encoding="utf-8"?>

<Assertion

xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

MajorVersion = "1"

MinorVersion = "0"

AssertionID = "6738467-47378dj-hu234832"

Issuer = "DeviceManufacturer"

IssueInstant = "2001-05-31T13: 20:00-05:00"

<Conditions

Notbefore = "2001-05-31T13: 20:00-05:00"

NotOnOrAfter = "2002-10-31T13: 20:00-05:00">

<AttributeStatement>

<Subject>

<NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:nameid-format:X509SubjectName"

NameQualifier="https://www.mobilecode.mobileececutables.org/saml">

CN=CodeAuthor1,OU=MOBILECODEGROUP,O=MOBILEEXECUTABLESLTD

</NameIdentifier>

<SubjectConfirmation>

<ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</ConfirmationMethod>

<ds:KeyInfo>

<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

</SubjectConfirmation>

</Subject>

<Attribute>

<AttributeDesignator

AttributeName = "CodeAuthorStatus"

AttributeNamespace = "http://www.mobileexecutable-authorisation-

vocab.org/attribute"/>

<AttributeValue>Trusted</AttributeValue>

</Attribute>

</AttributeStatement>

<ds:Signature>...</ds:Signature>

</Assertion>

Figure 4.52: Scenario 1 — Attribute assertion

If the required attribute assertion(s) are not received with the incoming

executable, they can be requested by the end host from the device manufac-

turer. Figures 4.53 and 4.54 contain examples of request and response messages

which may be sent between the mobile host on which an incoming executable

wishes to execute, and the device manufacturer. The request message, shown in

figure 4.53, dictates that the responder must only <Respondwith> assertions

containing attribute statements. The <AttributeQuery> element identifies the

subject with which all returned assertions must be associated.

187

The response message, shown in figure 4.54, holds the identifier of the re-

quest message which this message is <InResponseTo>. The <Status> element

has been assigned a <StatusCode> value of Success, which indicates that the

request succeeded. The assertion illustrated in figure 4.52 would be contained

within the <Assertion> element. Both the request and the response messages

may be signed if required.

<?xml version="1.0" encoding="utf-8"?>

<samlp:Request

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

RequestID = "567.14.234.20.90123456"

MajorVersion = "1"

MinorVersion = "0"

IssueInstant = "2001-06-31T13:20:00-05:00">

<RespondWith>saml:AttributeStatement</RespondWith>

<AttributeQuery>

<saml:Subject>

<NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:nameid-format:X509SubjectName"

NameQualifier="https://www.mobilecode.mobileececutables.org/saml">

CN=CodeAuthor1,OU=MOBILECODEGROUP,O=MOBILEEXECUTABLESLTD

</saml:Subject>

</AttributeQuery>

</samlp:Request>

Figure 4.53: Scenario 1 — Attribute assertion request

<?xml version="1.0" encoding="utf-8"?>

<samlp:Response

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

ResponseID = "333.15.774.21.9012999"

InResponseTo = "567.14.234.20.90123456"

MajorVersion = "1"

MinorVersion = "0"

IssueInstant = "2003-06-31T13:20:00-05:00"

Recipient = "mobilehost4">

<Status

<StatusCode = "Success"/>

</Status>

<saml:Assertion> ... </saml:Assertion>

</samlp:Response>

Figure 4.54: Scenario 1 — Attribute assertion response

188

4.6.1.4 The AP

In order to implement scenario 1, three requirements must be met with respect to

the authentication point — requirements 2, 1, and 4, as defined in section 4.2.7.

A SAML processor can verify the signature of the device manufacturer on

the incoming attribute assertion, thereby meeting requirement 2. [112] defines a

set of constraints on the XML syntax for signing data“so that SAML processors

do not have to deal with the full generality of XML signature processing”.

4.6.2 Scenario 2

In this section we will explore how scenario 2 may be implemented using SAML.

In order to implement scenario 2 there are no additional requirements to be met

with respect to attribute certificates, authentication evidence, the AP, or the

PIP.

4.6.2.1 Attribute certificates

The attribute assertion described in figure 4.55 shows the type of attribute

certificate that must be generated for a code author by a mobile device’s man-

ufacturer if they are to be permitted to have their executables executed in the

‘TTP domain’ on the mobile host rather than the ‘restricted domain’. This

digitally signed statement asserts that the subject CodeAuthor1, who is in pos-

session of the associated public key, is ‘PermittedExecution’ (permitted to have

his signed executables executed) in the ‘TTPDomain’. The assertion is valid for

the period between the times listed in the NotBefore and NotOnOrAfter fields.

189

<?xml version="1.0" encoding="utf-8"?>

<Assertion

xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

MajorVersion = "1"

MinorVersion = "0"

AssertionID = "6738467-47378dj-hu234832"

Issuer = "DeviceManufacturer"

IssueInstant = "2001-05-31T13: 20:00-05:00"

<Conditions

Notbefore = "2001-05-31T13: 20:00-05:00"

NotOnOrAfter = "2002-10-31T13: 20:00-05:00">

<AttributeStatement>

<Subject>

<NameIdentifier

Format="urn:oasis:names:tc:SAML:1.0:nameid-format:X509SubjectName"

NameQualifier="https://www.mobilecode.mobileececutables.org/saml">

CN=CodeAuthor1,OU=MOBILECODEGROUP,O=MOBILEEXECUTABLESLTD

</NameIdentifier>

<SubjectConfirmation>

<ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:holder-of-key

</ConfirmationMethod>

<ds:KeyInfo>

<ds:KeyValue>...</ds:KeyValue>

</ds:KeyInfo>

</SubjectConfirmation>

</Subject>

<Attribute>

<AttributeDesignator

AttributeName = "PermittedExecution"

AttributeNamespace = "http://www.mobileexecutable-authorisation-

vocab.org/attribute"/>

<AttributeValue>TTPDomain</AttributeValue>

</Attribute>

</AttributeStatement>

<ds:Signature>...</ds:Signature>

</Assertion>

Figure 4.55: Scenario 2 — Attribute assertion

4.6.2.2 Authentication evidence

There are no additional authentication evidence requirements defined for sce-

nario 2.

4.6.2.3 The PIP

There are no additional policy information point requirements defined for sce-

nario 2. If the required attribute assertion is not received with the incoming exe-

cutable, an attribute assertion of the type shown in figure 4.55 can be requested

190

by the end host from the device manufacturer using the request message defined

in figure 4.53 and returned by the device manufacturer in a response message

similar to that shown in figure 4.54.

4.6.2.4 The AP

There are no additional authentication point requirements defined for scenario 2.

4.6.3 Scenarios 3 and 4

In this section we will explore how scenarios 3 and 4 may be implemented using

SAML.

4.6.3.1 Attribute certificates

In order to implement scenarios 3 and 4 two additional attribute certificate

requirements must be met — requirements 5 and 6, as defined in section 4.2.2.

The attribute assertion shown in figure 4.56 is an example of an attribute

certificate that a TTP can generate for an executable once it has been tested, as

required in the architectural model described in figure 3.4. The digitally signed

statement in figure 4.56 asserts that Test1 has been completed and Test2 has not

been completed on the subject, i.e. the incoming executable whose hash matches

that held in the <SubjectConfirmationData> element. The assertion is valid

for the period between the times listed in the NotBefore and NotOnOrAfter

fields.

The <SubjectConfirmation> element specifies a subject by supplying data

that allows the subject to be authenticated. In this assertion the <SubjectCon-

firmation> element contains two elements, <ConfirmationMethod> and <Sub-

jectConfirmationData>. The <ConfirmationMethod> element holds a URI ref-

erence that identifies a protocol to be used to authenticate the subject. Subject

191

confirmation methods are defined in the SAML bindings and profiles specifi-

cation, but none that satisfy our requirement. We require that the incoming

executable is hashed and compared to the hash value held in the <SubjectCon-

firmationData> element. This new method, which we have identified by the

fictitious URI, ‘urn:org:names:tc:SAMLExtn:1.0:cm:hash-of-executable’, in the

assertion shown in figure 4.56, can only be used once a new profile has been

defined for it, or, alternatively, if the parties involved agree on the use of this

method in advance.

<?xml version="1.0" encoding="utf-8"?>

<Assertion

xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

MajorVersion = "1"

MinorVersion = "0"

AssertionID = "6738467-47378dj-hu234832"

Issuer = "TTP1"

IssueInstant = "2001-05-31T13: 20:00-05:00"

<Conditions

Notbefore = "2001-05-31T13: 20:00-05:00"

NotOnOrAfter = "2002-10-31T13: 20:00-05:00">

<AttributeStatement>

<Subject>

<SubjectConfirmation>

<ConfirmationMethod>

urn:org:names:tc:SAMLExtn:1.0:cm:hash-of-executable

</ConfirmationMethod>

<SubjectConfirmationData>....</SubjectConfirmationData>

</SubjectConfirmation>

</Subject>

<Attribute>

<AttributeDesignator

AttributeName = "Test1"

AttributeNamespace = "http://www.mobileexecutable-authorisation-

vocab.org/attribute"/>

<AttributeValue>completed</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "Test2"

AttributeNamespace = "http://www.mobileexecutable-authorisation-

vocab.org/attribute"/>

<AttributeValue>NotCompleted</AttributeValue>

</Attribute>

</AttributeStatement>

<ds:Signature>...</ds:Signature>

</Assertion>

Figure 4.56: Scenario 3 — Attribute assertion

192

The attribute assertion shown in figure 4.57 is an example of the type of

attribute certificate that a domain server must generate for an executable once

its security relevant properties have been verified, as required in the architec-

tural model described in figure 3.5. This digitally signed statement asserts that

‘Attribute1’ is equal to ‘50’ and that ‘Attribute2’ is ‘true’ for the incoming

executable whose hash matches that held in the <SubjectConfirmationData>

element. The assertion is valid for the period between the times listed in the

NotBefore and NotOnOrAfter fields.

<?xml version="1.0" encoding="utf-8"?>

<Assertion

xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

MajorVersion = "1"

MinorVersion = "0"

AssertionID = "6738467-47378dj-hu234832"

Issuer = "DomainSever1"

IssueInstant = "2001-05-31T13: 20:00-05:00"

<Conditions

Notbefore = "2001-05-31T13: 20:00-05:00"

NotOnOrAfter = "2002-10-31T13: 20:00-05:00">

<AttributeStatement>

<Subject>

<SubjectConfirmation>

<ConfirmationMethod>

urn:org:names:tc:SAMLExtn:1.0:cm:hash-of-executable

</ConfirmationMethod>

<SubjectConfirmationData>....</SubjectConfirmationData>

</SubjectConfirmation>

</Subject>

<Attribute>

<AttributeDesignator

AttributeName = "Attribute1"

AttributeNamespace = "http://www.mobileexecutable-authorisation-

vocab.org/attribute"/>

<AttributeValue>50</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "Attribute2"

AttributeNamespace = "http://www.mobileexecutable-authorisation-

vocab.org/attribute"/>

<AttributeValue>true</AttributeValue>

</Attribute>

</AttributeStatement>

<ds:Signature>...</ds:Signature>

</Assertion>

Figure 4.57: Scenario 4 — Attribute assertion

193

4.6.3.2 Authentication evidence

In order to implement scenarios 3 and 4 two additional attribute certificate

requirements must be met — requirements 3 and 4, as defined in section 4.2.3.

The XML signature serves as authentication evidence for the TTP or do-

main server which has signed the SAML attribute assertion. The authentication

evidence for the incoming executable, i.e. the hash of the executable, can be con-

tained in the <SubjectConfirmationData> element of the attribute assertion.

4.6.3.3 The PIP

There are no additional policy information point requirements defined for sce-

narios 3 and 4. If the required attribute assertion is not received with the

incoming executable, an attribute assertion of the type shown in figure 4.57 can

be requested by the end host from the device manufacturer using a message

of the form given in figure 4.58 and returned by the device manufacturer in a

response message similar to that shown in figure 4.59.

<?xml version="1.0" encoding="utf-8"?>

<samlp:Request

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

RequestID = "567.14.234.20.90123456"

MajorVersion = "1"

MinorVersion = "0"

IssueInstant = "2001-06-31T13:20:00-05:00">

<RespondWith>saml:AttributeStatement</RespondWith>

<AttributeQuery>

</saml:Subject>

<SubjectConfirmation>

<ConfirmationMethod>

urn:org:names:tc:SAMLExtn:1.0:cm:hash-of-executable

</ConfirmationMethod>

<SubjectConfirmationData>....</SubjectConfirmationData>

</SubjectConfirmation>

</saml:Subject>

</AttributeQuery>

</samlp:Request>

Figure 4.58: Scenarios 3 and 4 — Attribute assertion request

194

<?xml version="1.0" encoding="utf-8"?>

<samlp:Response

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

ResponseID = "333.15.774.21.9012999"

InResponseTo = "567.14.234.20.90123456"

MajorVersion = "1"

MinorVersion = "0"

IssueInstant = "2003-06-31T13:20:00-05:00"

Recipient = "mobilehost4">

<Status

<StatusCode = "Success"/>

</Status>

<saml:Assertion> ... </saml:Assertion>

</samlp:Response>

Figure 4.59: Scenarios 3 and 4 — Attribute assertion response

4.6.3.4 The AP

In order to implement scenarios 3 and 4 two additional authentication point

requirements must be met — requirements 3 and 4, as defined in section 4.2.2.

A SAML processor can verify the signature on the incoming attribute as-

sertion, thereby meeting requirement 3. [112] defines a set of constraints on the

XML syntax for signing data so that SAML processors do not have to deal with

the full generality of XML signature processing. In order for a SAML processor

to authenticate the incoming executable, i.e. be able to process the <Subject-

ConfirmationData>, the TTP or domain server and the devices with which it

is communicating must have agreed on the stated <ConfirmationMethod>. Al-

ternatively, a new profile which described this authentication method may be

specified.

4.6.4 Scenarios 5 and 6

In scenarios 5 and 6 the expression of attribute certificates is not required,

nor is PIP functionality. No new requirements need to be met with respect to

authentication evidence or by the AP.

195

4.6.5 Conclusions

SAML meets all of the attribute certificate requirements defined in section 4.2.1.

However, if it were to be deployed in a policy-based framework for mobile ex-

ecutable authorisation, two requirements would have to be met. A namespace

or namespaces, defining the attribute names utilised within the attribute asser-

tions, would have to be established. In conjunction with this, in order to meet

the scenario 3 and 4 requirements, a new <ConfirmationMethod> would have

to be defined. This may be achieved through the specification of a new SAML

profile, or alternatively, by private agreement between TTPs or domain servers

and the devices which they protect.

4.7 Conclusions

In this chapter we have examined a selection of policy and attribute certificate

specification languages, namely KeyNote, Ponder and SAML, and explored the

functionality of their supporting policy engine components. We have inves-

tigated how well the requirements outlined in section 4.2 can be met using

KeyNote, Ponder, and SAML, by considering the possible implementation of

the six architectural models from chapter 3 using each system.

Table 4.1 summarises the results of the investigation of KeyNote (see sec-

tion 4.4); a tick denotes that a requirement can be met using KeyNote, a cross

denotes that a requirement cannot be met using KeyNote, and a blank denotes

that a requirement is not relevant to the specified scenario. The KeyNote asser-

tion expression language is easy to understand, as the language is based on the

format of RFC-822 style message headers and the same language and syntax is

used to express both policy and attribute assertions. As a result of our analysis

a number of issues have been uncovered with respect to use of this language in

196

our scenarios. Firstly, at stated above, KeyNote is more suited towards the ex-

pression of coarse-grained access control policies. Secondly, it is not possible to

create an attribute certificate in which attribute(s) are bound to a principal. All

KeyNote assertions have an inherent notion of delegation. Thirdly, a problem

may arise with respect to limiting delegation. In section 4.4.6, we investigated

a mechanism by which delegation may be limited. In conjunction with this, we

analysed Nereus, a language which builds upon and extends the functionality

of KeyNote. While full details of this language are not available, KeyNote may

benefit from re-examination and extension in light of the additional features that

may be incorporated into it. This may enable the issues surronding attribute

binding and delegation to be overcome.

Table 4.2 summarises the results of the investigation of Ponder (see sec-

tion 4.5); a tick denotes that a requirement can be met using Ponder, a cross

denotes that a requirement cannot be met using Ponder, a bullet denotes that

the requirement can be partially met using Ponder, and a blank denotes that a

requirement is not relevant to the specified scenario. The Ponder policy speci-

fication language is reasonably easy to understand. As a result of our analysis

a number of issues have been uncovered with respect to application of this lan-

guage in our scenarios. Ponder enables the specification of policies pertaining

to known entities, i.e. members of pre-defined domains. Once an executable has

been made a member of a domain, a wide range of Ponder policies may be ex-

pressed in order to define the executable’s execution permissions. Therefore, as

illustrated in table 4.2, the policy statement requirements can only be partially

met. Ponder can only support the six scenarios described in chapter 3 if it is

used in conjunction with a trust management mechanism such as KeyNote, or

a trust establishment mechanism such as (D)TPL.

Table 4.3 summarises the results of the investigation of SAML (see sec-

197

Table 4.1: A summary of KeyNote’s applicability to the scenarios
Requirements Scenario

1 2 3 4 5 6
KeyNote Policy statement req 1 X X

Policy statement req 2 X
Policy statement req 3 X
Policy statement req 4 X X X X
Policy statement req 5 X X
Policy statement req 6 X X
Authentication evidence req 1 ✗ ✗ ✗ ✗ ✗
Authentication evidence req 2 X X
Authentication evidence req 3 ✗ ✗
Authentication evidence req 4 ✗ ✗ ✗ ✗ ✗ ✗
Attribute certificate req 1 X X X X
Attribute certificate req 2 X X X
Attribute certificate req 3 X
Attribute certificate req 4 X
Attribute certificate req 5 ✗ ✗
Attribute certificate req 6 ✗ ✗
Compliance values req 1 X X X X X
Compliance values req 2 X X
PAP req 1 X X X X X X
PIP req 1 ✗ ✗ ✗ ✗ ✗ ✗
AP req 1 X X
AP req 2 ✗ ✗ ✗ ✗
AP req 3 ✗ ✗
AP req 4 ✗ ✗ ✗ ✗ ✗ ✗
TEM req 1 X X X X X X
PDP req 1 X X X X X X
PEP req 1 ✗ ✗ ✗ ✗ ✗ ✗

tion 4.6); a tick denotes that a requirement can be met using SAML, a cross

denotes that a requirement cannot be met using SAML, and a blank denotes

that a requirement is not relevant to the specified scenario. SAML is XML-

based, and therefore relatively easy to understand. SAML has been designed in

order to enable the exchange of security information across the Internet, and it

meets all our requirements with respect to attribute certificates. If it is to be

deployed in a policy-based framework for mobile executable authorisation two

additional issues need to be resolved. A namespace(s) defining the attribute

names utilised within the attribute assertions would need to be established.

In conjunction with this, a new <ConfirmationMethod> would need to be de-

198

Table 4.2: A summary of Ponder’s applicability to the scenarios
Requirements Scenario

1 2 3 4 5 6
Ponder Policy statement req 1 ✗ ✗

Policy statement req 2 •
Policy statement req 3 •
Policy statement req 4 • • • •
Policy statement req 5 ✗ ✗
Policy statement req 6 • •
Authentication evidence req 1 ✗ ✗ ✗ ✗ ✗
Authentication evidence req 2 ✗ ✗
Authentication evidence req 3 ✗ ✗
Authentication evidence req 4 ✗ ✗ ✗ ✗ ✗ ✗
Attribute certificate req 1 ✗ ✗ ✗ ✗
Attribute certificate req 2 ✗ ✗ ✗
Attribute certificate req 3 ✗
Attribute certificate req 4 ✗
Attribute certificate req 5 ✗ ✗
Attribute certificate req 6 ✗ ✗
Compliance values req 1 • • • • •
Compliance values req 2 • •
PAP req 1 X X X X X X
PIP req 1 ✗ ✗ ✗ ✗ ✗ ✗
AP req 1 ✗ ✗
AP req 2 ✗ ✗ ✗ ✗
AP req 3 ✗ ✗
AP req 4 ✗ ✗ ✗ ✗ ✗ ✗
TEM req 1 ✗ ✗ ✗ ✗ ✗ ✗
PDP req 1 X X X X X X
PEP req 1 X X X X X X

fined. This may be achieved through the specification of a new SAML profile,

or alternatively, by private agreement between TTPs or domain servers and the

associated devices which they protect.

Our conclusions will be used in chapter 5 to enable the most suitable mech-

anisms to be chosen for use in our policy-based framework, designed to support

the authorisation of mobile executables in a mobile environment.

199

Table 4.3: A summary of SAML’s applicability to the scenarios
Requirements Scenario

1 2 3 4 5 6
SAML Policy statement req 1 ✗ ✗

Policy statement req 2 ✗
Policy statement req 3 ✗
Policy statement req 4 ✗ ✗ ✗ ✗
Policy statement req 5 ✗ ✗
Policy statement req 6 ✗ ✗
Authentication evidence req 1 ✗ ✗ ✗ ✗ ✗
Authentication evidence req 2 X X
Authentication evidence req 3 X X
Authentication evidence req 4 ✗ ✗ ✗ ✗ ✗ ✗
Attribute certificate req 1 X X X X
Attribute certificate req 2 X X X
Attribute certificate req 3 X
Attribute certificate req 4 X
Attribute certificate req 5 X X
Attribute certificate req 6 X X
Compliance values req 1 ✗ ✗ ✗ ✗ ✗
Compliance values req 2 ✗ ✗
PAP req 1 ✗ ✗ ✗ ✗ ✗ ✗
PIP req 1 X X X X X X
AP req 1 X X
AP req 2 ✗ ✗ ✗ ✗
AP req 3 X X
AP req 4 ✗ ✗ ✗ ✗ ✗ ✗
TEM req 1 ✗ ✗ ✗ ✗ ✗ ✗
PDP req 1 ✗ ✗ ✗ ✗ ✗ ✗
PEP req 1 ✗ ✗ ✗ ✗ ✗ ✗

200

Chapter 5

A policy-based
authorisation framework

Contents
5.1 Introduction . 202

5.2 Requirements . 203

5.3 The framework — A high level view 203

5.4 Design decisions . 207

5.5 Notation . 208

5.6 Assumptions . 209

5.7 Trusted domain server activity 211

5.7.1 Evaluating a mobile agent 211

5.7.2 Attribute certificates 216

5.7.3 Authentication evidence 219

5.8 End host activity . 219

5.8.1 The PIP . 221

5.8.2 The AP . 221

5.8.3 The TEM . 223

5.8.4 Policy statements . 227

5.8.5 The PDP and PEP 227

5.8.6 The PAP . 228

5.9 Conclusions . 229

This chapter describes a policy-based framework for the authorisation of mo-

bile executables and, more specifically, mobile agents, in a mobile environment.

201

5.1 Introduction

This chapter describes a policy-based framework which enables incoming ex-

ecutables and, more specifically, incoming mobile agents to be authorised by

mobile devices, which may be limited in terms of CPU processing power and

data storage facilities. This framework incorporates several of the concepts in-

troduced in chapters 2, 3 and 4. It is dependent on the notion of a trusted

domain server, which is responsible for a set of mobile devices. This trusted

domain server intercepts and completes a pre-defined set of security checks on

incoming executables destined for a mobile device for which it is responsible.

Following the completion of these security checks, the trusted domain server

generates an attribute certificate for an executable before forwarding both the

executable and certificate to the destination host. The incoming executable is

then assigned to a domain defined on the mobile device based upon its asso-

ciated attributes. A set of pre-defined executable permissions are specified for

members of each domain. At the time of writing we are unaware of anything

in existence with the same scope as the policy-based framework outlined in this

chapter.

Section 5.2 outlines the requirements the policy-based authorisation frame-

work is designed to satisfy. In section 5.3 a high-level description of the frame-

work, including its associated components and how they inter-relate, is given.

Section 5.4 highlights the fundamental design decisions made when planning

the framework. Section 5.5 details the notation used in the specification of the

framework, and section 5.6 describes the assumptions upon which the framework

is based.

Section 5.7 describes how an incoming executable can be evaluated by a

trusted domain server and a trust profile associated with the executable. We also

202

describe how this trust profile can be expressed in a SAML attribute assertion.

Section 5.8 explores how the incoming executable and its associated attribute

assertion can be processed on the end host, and how the incoming executable

can be assigned a set of execution permissions. In section 5.9 we conclude part

I of the thesis.

5.2 Requirements

The requirements for the underlying architecture of a policy-based code and

agent authorisation framework for implementation within a mobile environment

were described in section 3.9. Here we provide a very brief summary of those

requirements that our framework is designed to satisfy.

The framework should make minimal use of the end host’s CPU process-

ing power and the end host’s storage for authorisation data structures. The

underlying architecture should support mechanisms which provide assurances

regarding the origin of the executable, executable code quality and the state of

an agent. It is required that a policy engine, which is comprised of a PAP, a

PIP, an AP, a TEM, a PDP and a PEP is incorporated into each end host. It

is also required that policy statements and signed attribute certificates can be

specified, stored and processed by the end host.

5.3 The framework — A high level view

We begin by introducing the participant roles involved in the framework, many

of which have been described in section 3.2. The relationships between the roles

are illustrated in figure 5.1.

• In the context of this work, an incoming executable is defined as either

mobile code or a mobile agent.

203

Trusted domain server

End host

(agent)
code

author

Accreditation
authority

Trusted domain server

proof
producer

agent
creator

Mobile code

Mobile agent

Figure 5.1: Architecture model

• Mobile code encompasses programs that can be executed on one or more

hosts other than the host from which they originated.

• A mobile agent is defined as“an autonomous, reactive, goal-oriented, adap-

tive, persistent, socially aware software entity, which can actively migrate

from host to host”, see section 2.1.

• A malicious executable, i.e. malicious code or a malicious agent, as defined

in section 2.4, is one which attacks the host system on which it is executing.

Attacks may include, but are not limited to, unauthorised reading, writing

or deletion of sensitive host information, monitoring the host execution

environment and exporting information, denial of service attacks, and/or

inserting a back door into a system, which may facilitate future security

violations.

• An agent code author is responsible for the production of agent code.

204

More generally, we define a code author as the entity responsible for the

generation of executable code.

• An agent creator is responsible for agent creation, i.e. the combination

of the program code from the agent code author with data and initial

state information. The agent creator may also be responsible for agent

distribution.

• A certification authority is responsible for the generation of public key

certificates.

• An accreditation authority is an entity which certifies that an (agent) code

author and/or an agent creator can be trusted.

• A proof producer is responsible for generating proofs of code. Typically,

the code author is also the proof producer for that code.

• A mobile device is a mobile host on which an executable may execute.

• A trusted domain server is responsible for completing a pre-defined set of

security checks on an incoming executable, and for generating an attribute

certificate for that executable which reflects the results of these checks.

Mobile code or agent code is produced by an (agent) code author. Once the

code has been written, the author may request that a proof producer generates a

proof/a set of proofs which allow computer systems to determine automatically

the security relevant properties of the code, see section 2.5.1.1. Alternatively,

the author may generate these proofs. An author may generate a state appraisal

function, max, which will calculate, as a function of the agent’s current state, the

maximum set of permissions to be accorded to an agent running the program,

as described in section 2.5.3.1. The author may then digitally sign the code it

has produced, in conjunction with any security controls.

205

If the code produced by the author is agent code, an agent creator then

combines it with execution state before it is distributed. If the agent code

has an associated state appraisal function, max, the agent creator may also

generate a state appraisal function req, which will calculate, as a function of

the agent’s current state, the requested set of permissions the sender wants

the agent running the program to have, as described in section 2.5.3.1. The

agent creator may then digitally sign the agent code, data, and any static state

information, in conjunction with any security controls. Following this, the agent

can be distributed.

The (agent) code author and/or agent creator may also possess third party

accreditation. This accreditation may be based on a variety of factors, including

the quality of the code/agents generated by the author or creator, compliance

of the author/creator with accepted industry standards for code or agent gen-

eration and testing, contracts and/or liability agreements, and/or performance

and reputation.

Every mobile device is affiliated with one trusted domain server at any given

time. A trusted domain server is responsible for protecting the mobile devices

within its domain against malicious executables. A trusted domain server es-

sentially acts as a firewall, which analyses the security properties of executa-

bles destined for execution on a host within its protective domain boundary.

This analysis may involve verification of a digital signature/digital signatures

appended to the incoming executable, the verification of code proofs or the ex-

ecution of state appraisal functions. Based on this analysis, a trusted domain

server will construct a SAML attribute assertion for the executable which com-

municates its security properties to the end host. Both the executable and its

attribute assertion are then forwarded to the destination host.

206

On receipt of the incoming executable, the mobile host verifies the signature

of the trusted domain server on the attribute assertion, and validates the identity

of the executable against the identifier contained within the assertion. Based

on the security properties of the executable, it is mapped to a domain defined

within the mobile device, using a policy specified in (D)TPL. Each domain

member is assigned a pre-defined set of permissions using Ponder.

5.4 Design decisions

We chose to deploy the notion of a trusted domain server to assess the secu-

rity properties of incoming executables because many mobile devices may not

have sufficient computational power to perform some of the checks that may be

necessary to guarantee the safety of incoming mobile code or mobile agents.

We chose SAML for assertion expression as it enables the transfer of signed

assertions describing the attributes of an executable. The number or type of

attributes that can be expressed is extensible. It is therefore possible for a

trusted domain server to add new attributes under which an executable can be

expressed at any stage. The identity of the executable may also be contained

within a SAML attribute assertion.

In order to map an incoming executable to a group, i.e. in order to establish

trust between the incoming executable and the mobile host, (D)TPL is used.

Finally, Ponder is used to specify the actions that members of the domain to

which an incoming executable has been assigned, are authorised to perform.

We chose to decouple trust establishment and the specification of execution

permissions. Integrated solutions to trust establishment and access control are

more complex, notably KeyNote as shown in section 4.4. As described in sec-

tion 4.4.3, the conditions field of the KeyNote policy assertion must be used in

207

order to specify the actions the subject of the statement is authorised to per-

form and, indeed, to delegate. In conjunction with this, the conditions field of

the KeyNote policy assertion must also specify the conditions under which the

actions are authorised, or the conditions which must be imposed on a subject

who is delegated authority over the actions described in the assertion. Using

an integrated solution may also impede the integration of the framework into

existing systems, as it requires all policy statements to be written in the chosen

language. Using separate trust establishment and access control mechanisms

means that incoming executables may be mapped to groups within the system

about which policies have already been defined. It also implies that, instead of

using Ponder, as used in the examples in this chapter for illustrative purposes,

this framework could be integrated into a platform which uses a different pol-

icy language for the expression of role-based or group-based platform security

policies.

5.5 Notation

The following notation is used in the specification of the framework:

M denotes the mobile device.
A denotes the (agent) code author.
B denotes the agent creator.
P denotes a proof producer which is capable of generating

proofs of code.
TDS denotes the trusted domain server with which the mobile

device M is affiliated.
C denotes the certification authority trusted by A, B, and TDS.
N denotes the accreditation authority trusted by TDS.
CertX is a public key certificate for entity X.
H denotes a hash function, as defined in section 1.5.1.
SX(Z) is the digital signature of data Z computed using entity

X’s private signature transformation.
PX is the public asymmetric key of X.
SX is the private asymmetric key of X.

208

max denotes a maximum state appraisal function which calcu-
lates, as a function of an agent’s current state, the maximum
set of permissions to be accorded to an agent, as described
in section 2.5.3.1.

req denotes a requested state appraisal function which calcu-
lates, as a function of an agent’s current state, the requested
set of permissions the sender wants an agent to have, as de-
scribed in section 2.5.3.1.

IdX is an identifier for X.
X||Y is the result of the concatenation of data items X and Y in

that order.
domain is a group of objects to which policies apply.

5.6 Assumptions

The following pre-conditions need to be satisfied for use of the framework de-

scribed later in this chapter.

1. There exists a certification authority, C, trusted by A, B and TDS. A, B,

and TDS possess a trusted copy of the public key of C, so that they can

both verify certificates generated by C .

2. There exists an accreditation authority, N, which is trusted by TDS. The

(agent) code author A and/or the agent creator B may be accredited as

trustworthy by N .

3. The accreditation certificates, if issued by N to A and/or B, must be made

available to TDS.

4. The (agent) code author A possesses a signature key pair.

5. The private signing key from the pair referred to in point 4, is securely

stored by A.

6. The (agent) code author A has a certificate, CertA, issued by C . This

certificate associates the identity of A with the public verification key from

the pair referred to in point 4. This certificate must be available to TDS .

209

7. The (agent) code author A can generate proofs for its code, or, alterna-

tively, can have proofs of code generated by a dedicated entity, P .

8. The (agent) code author A can generate a state appraisal function, max,

which calculates, as a function of the agent’s current state, the maximum

set of permissions to be accorded to an agent running the program, as

described in section 2.5.3.1.

9. The agent code author A can digitally sign the (agent) code it has written,

in conjunction with any security controls generated for that code, using

the key referred to in step 5.

10. The agent creator B possesses a signature key pair.

11. The private signing key from the pair referred to in point 10, is securely

stored by B .

12. The agent creator B has a certificate, CertB , issued by C . This certificate

associates the identity of B with the public verification key from the pair

referred to in point 10. This certificate must be available to TDS .

13. The agent creator, B, can generate a state appraisal function, req, which

calculates, as a function of the agent’s current state, the requested set of

permissions the sender wants the agent running the program to have, as

described in section 2.5.3.1.

14. The agent creator, B, can digitally sign agents it has constructed, in con-

junction with any security controls generated for that agent, using the key

referred to in step 5.

15. The trusted domain server TDS possesses a signature key pair.

16. The private signing key from the pair referred to in point 15, is securely

stored by TDS .

210

17. The public key of TDS is embedded in M in a public key store labeled

‘Trusted Domain Servers’.

18. TDS will intercept all executables destined for M .

19. M is initialised with a pre-defined set of (D)TPL and Ponder security

polices.

5.7 Trusted domain server activity

When an executable, destined for M, is intercepted by TDS, TDS attempts to

complete a pre-defined set of security checks on the intercepted executable. As

TDS completes these security checks, a trust profile, which describes the results

of each security check completed, is constructed. Once this trust profile has

been completed, it is recorded in a SAML assertion, which also holds a unique

identifier for the executable with which it is associated. TDS then signs the

SAML attribute assertion and forwards both the executable and the assertion

to M.

5.7.1 Evaluating a mobile agent

In this section, we describe the security checks that TDS attempts to complete

on an incoming executable and the process by which an executable’s trust profile

is constructed by TDS. These checks are used to complete a 10-variable trust

profile (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10), where each of the values is equal to

an integer, as defined below. A similar approach is described in [1].

1. TDS first checks whether the incoming executable is mobile code or a

mobile agent. This is then recorded in the first field, t1, of the trust

profile of the executable, which may have one of two values:

211

• 1, which implies that the executable is mobile code.

• 0, which implies that the executable is a mobile agent.

2. A rigorous virus check is then completed on the executable code. Once

this has been completed, the second field in the trust profile, t2, may be

assigned one of three values:

• −1, which implies that the virus check failed and the code may be

malicious.

• 0, which implies that the virus check was not completed.

• 1, which implies that the virus check was successfully completed.

3. TDS then verifies the (agent) code author’s digital signature. It then

compares the code author’s identifier, IdA, with lists indicating whether

TDS has assigned the author complete trust, high trust, medium trust,

or if it is considered distrusted. Once this has been completed, the third

field in the trust profile, t3, is assigned one of the following values:

• 3, which implies that IdA is contained in a list of authors in which

TDS has complete trust. Only an agent code author contained in this

list can generate a maximum state appraisal function, max, which

will be accepted and executed by TDS . The function max defines

the maximum privileges that should be allotted to the corresponding

agent when executing.

• 2, which implies that IdA is contained in a list of authors in which

TDS has high trust.

• 1, which implies that IdA is contained in a list of authors in which

TDS has medium trust.

• 0, which implies that IdA is not contained in any of the defined lists.

The author is unknown.

212

• -1, which implies that IdA is contained in a list of authors which TDS

distrusts. An author is also assigned the value −1 if its signature

cannot be verified.

4. The agent creator’s digital signature is verified. The identifier of the agent

creator, IdB , is then compared with lists indicating whether TDS has

assigned the creator high trust, medium trust, or if it is considered dis-

trusted. Once this has been completed, the fourth field in the trust profile,

t4, is assigned one of the following values:

• 2, which implies that IdB is contained in a list of creators in which

TDS has high trust.

• 1, which implies that the creator’s identity is contained in a list of

creators in which TDS has medium trust.

• 0, which implies that IdB is not contained in any of the defined lists.

The creator is unknown.

• -1, which implies that IdB is contained in a list of creators which

TDS distrusts. A creator is also assigned the value −1 if its signature

cannot be verified.

A creator of any trust level is permitted to generate a requested state

appraisal function, req, which will be executed by TDS if the agent code

author field, t1 has been allocated a trust value of 3 and A has generated

a max state appraisal function.

5. In certain cases, TDS may not have a trust relationship with A and/or B.

In such instances, TDS may contact a third party accreditation authority,

N, with which A and/or B may have registered, so that a basic level of

trust may be allocated to an incoming executable of unknown origin. Once

213

this has been completed, t5 and t6, the fifth and sixth fields in the trust

profile, which respectively represent whether the (agent) code author and

the agent creator have been accredited, are assigned one of the following

values.

• 1, which implies that A or B has been accredited.

• 0, which implies that A or B has not been accredited, or that TDS

did not complete this check.

6. TDS may verify any proofs of code appended to the incoming executable.

In order to utilise proofs of code in this context, we require that a pre-

defined set of security properties are proved by the proof producer. For

example, it may be useful to know that a executable terminates within a

given number of instructions, and that, if it sends network packets, the

volume does not exceed a preset bandwidth, two properties which can

be proved [107]. In this case, the seventh field in the trust profile, t7,

which indicates whether proofs of code were verified, is assigned one of

the following values.

• 1, which implies that the proofs of code were successfully validated.

• 0, which implies that the proofs of code were not validated or that

there were no proofs of code appended to the executable.

• -1, which implies that the proofs of code could not be successfully

validated.

In conjunction with this, the values of the properties can also be recorded

in the executable’s profile. So if, for example, it is proved that an agent

terminates within a given number of instructions, the number of cycles

could be recorded in t8, the eighth field of the trust profile. This field may

214

be assigned a value of 0 if the properties has not been proved. Depending

on the number of properties that have been proved, the number of fields

in the trust profile may be extended accordingly.

7. If an incoming agent has an associated set of state appraisal functions [11],

and A has been assigned ‘complete trust’, then both the max and req

functions are evaluated by TDS. In this case, the ninth field in the trust

profile, t9, which indicates the result of this security check, is assigned one

of the following values.

• 1, which implies that the output of max is greater than or equal to

the output of req.

• 0, which implies that the state appraisal functions were not executed,

either because there were no state appraisal functions appended to

the agent, or, because the trust value assigned to the (agent) code

author was not equal to 3.

• -1, which implies that the output of req is greater than the output of

max.

8. Finally, TDS may complete a pre-defined set of tests on the incoming

executable using static analysis tools, as described in section 3.5. In this

case, the tenth field t10 of the executable trust profile may be assigned one

of three values.

• 1, which implies that the pre-defined test set was successfully com-

pleted on the executable.

• 0, which implies that the pre-defined test set was not completed on

the executable.

• -1, which implies that the pre-defined test set uncovered a security

vulnerability in the executable.

215

The authorisation policy of TDS may require special actions in the case of

negative attribute values. For example, TDS may communicate an executable’s

trust profile to the end host, inclusive of ‘-1’ values, which indicate that a security

check has unearthed a potentially dangerous executable property. Alternatively,

TDS may simply choose to discard any executable whose profile contains a field

with a value of ‘-1’.

Whether a security check is completed is dependent on the security controls

appended to the incoming executable and the policy of a particular trusted

domain server. In conjunction with this, each trusted domain sever may choose

to, or may only be capable of, executing a specified number and type of security

checks. Alternatively, the trust profile may be extended to include more or

a different set of checks. Also, the completion of certain checks by a trusted

domain server may depend on the results output from other security checks

completed.

Indeed the sample set of 10 attributes listed above could be replaced by a list

of indeterminate length, with each required attribute name and value encoded

in XML.

5.7.2 Attribute certificates

Once a trust profile has been constructed, a SAML attribute assertion which

describes this profile is generated by TDS and sent with the executable to M .

In order to specify this trust profile, three requirements must be met.

1. It must be possible for TDS to sign attribute certificates.

2. The identity of an incoming executable must be expressible within an at-

tribute certificate (as the hash of the incoming mobile code or a mobile

agent) so that the attribute certificate can be bound to a particular exe-

216

cutable.

3. The trust profile of an incoming executable must be expressible within its

associated attribute certificate.

As demonstrated in section 4.6, all three of these requirements can be met

using SAML attribute assertions. SAML assertions can be signed using an XML

signature. An identifier for the certified executable, in this instance a hash of the

executable, can be held in the <SubjectConfirmationData> element. Each of

the executable’s trust profile field names and values can be recorded in an <At-

tribute> element. The SAML attribute assertion shown in figure 5.2 describes

an executable which has been assigned the trust profile (0, 1, 3, 2, 0, 0, 1, 20, 0, 0).

<?xml version="1.0" encoding="utf-8"?>

<Assertion

xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

MajorVersion = "1"

MinorVersion = "0"

AssertionID = "6738467-47378dj-hu234832"

Issuer = "TDS"
IssueInstant = "2001-05-31T13: 20:00-05:00"

<Conditions

Notbefore = "2001-05-31T13: 20:00-05:00"

NotOnOrAfter = "2002-10-31T13: 20:00-05:00">

<AttributeStatement>

<Subject>

<SubjectConfirmation>

<ConfirmationMethod>

urn:org:names:tc:SAMLExtn:1.0:cm:hash-of-executable

</ConfirmationMethod>

<SubjectConfirmationData>....</SubjectConfirmationData>

</SubjectConfirmation>

</Subject>

<Attribute>

<AttributeDesignator

AttributeName = "ExecutableType"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>0</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "VirusCheck"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>1</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "AuthorTrust"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

217

<AttributeValue>3</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "CreatorTrust"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>2</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "AuthorAccreditation"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>0</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "CreatorAccreditation"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>0</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "CodeProofs"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>1</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "CPUCycles"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>20</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "StateAppraisal"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>0</AttributeValue>

</Attribute>

<Attribute>

<AttributeDesignator

AttributeName = "Testing"

AttributeNamespace = "http://www.TDS.com/AttributeService"/>

<AttributeValue>0</AttributeValue>

</Attribute>

</AttributeStatement>

<ds:Signature>...</ds:Signature>

</Assertion>

Figure 5.2: Sample SAML attribute assertion generated by TDS

218

5.7.3 Authentication evidence

In order to implement the framework, two requirements must be fulfilled with

respect to authentication evidence.

1. It is required that the trusted domain server which generated and signed

the attribute certificate of the incoming executable can be authenticated

through the verification of the digital signature in the incoming executable’s

attribute certificate. The digital signature serves as the authentication ev-

idence.

2. It is required that an incoming executable can be authenticated through

the verification of the hash of the incoming (agent) code and data, or the

hash of the entire agent (including agent code, data and any static and

dynamic state information), against the hash signed by the entity/entities

who ‘speak(s) for’ the executable, see section 3.9.

The XML signature of TDS on the signed SAML attribute assertion, as

shown in figure 5.2, serves as authentication evidence for TDS . The authen-

tication evidence for the incoming executable, i.e. the hash of the executable,

is contained in the <SubjectConfirmationData> element of the attribute asser-

tion, as described in section 4.6.

5.8 End host activity

Once received, the attribute assertion, which specifies the trust profile of the

incoming executable, is used by M to assign the executable to a domain, which

is synonymous with a set of privileges to access resources on the device. Al-

ternatively, depending on its trust profile, the incoming executable may not be

permitted to execute. The end host maintains a set of mappings from the set of

219

trust profiles to the set of domains in the form of policy statements. A mapping

has the following form:

(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) → domaini.

The sandboxes (which correspond to permissions assigned to domains) on the

mobile device may implement a variety of access policies on the mobile device.

For example, it is possible for separation of duty policies to be implemented,

that prevent an executable performing a potentially damaging combination or

sequence of actions [42].

Once an executable’s SAML attribute assertion has been received, the fol-

lowing process is completed.

• The origin of the executable’s attribute assertion is authenticated by ver-

ifying the signature of TDS on the attribute assertion.

• The executable is authenticated by hashing it and comparing the result to

the hash value stored in the <SubjectConfirmationData> element of the

attribute assertion.

• The executable is assigned to a domain by M :

– The trust profile is recovered from the attribute assertion;

– The executable is assigned to a sandbox by the TEM based on its

trust profile.

• The execution of the executable is controlled:

– The policy decision point determines the execution permissions which

should be assigned to an executable, based on its domain assignment.

– Policy enforcement point enforces the decision of the policy decision

point.

220

5.8.1 The PIP

The PIP implemented on the mobile device must fulfil one requirement.

1. The PIP must collect security data relevant to the access requestor.

If the required SAML attribute assertion is not received with the incoming

executable, it can be requested by M from TDS. Figure 5.3 and 5.4 show exam-

ples of request and response messages which may be sent between M and TDS

so that the required attribute assertion can be retrieved, if it exists.

<?xml version="1.0" encoding="utf-8"?>

<samlp:Request

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

RequestID = "567.14.234.20.90123456"

MajorVersion = "1"

MinorVersion = "0"

IssueInstant = "2001-06-31T13:20:00-05:00">

<RespondWith>saml:AttributeStatement</RespondWith>

<AttributeQuery>

</saml:Subject>

<SubjectConfirmation>

<ConfirmationMethod>

urn:org:names:tc:SAMLExtn:1.0:cm:hash-of-executable

</ConfirmationMethod>

<SubjectConfirmationData>....</SubjectConfirmationData>

</SubjectConfirmation>

</saml:Subject>

</AttributeQuery>

</samlp:Request>

Figure 5.3: Sample SAML attribute assertion request

5.8.2 The AP

Once the attribute certificate has been received, two authentication point re-

quirements must be met.

1. It is required that the trusted domain server which generated and signed

the attribute certificate of the incoming executable, can be authenticated

221

<?xml version="1.0" encoding="utf-8"?>

<samlp:Response

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

ResponseID = "333.15.774.21.9012999"

InResponseTo = "567.14.234.20.90123456"

MajorVersion = "1"

MinorVersion = "0"

IssueInstant = "2003-06-31T13:20:00-05:00"

Recipient = "mobilehost4">

<Status

<StatusCode = "Success"/>

</Status>

<saml:Assertion> ... </saml:Assertion>

</samlp:Response>

Figure 5.4: Sample SAML attribute assertion response

by verifying the digital signature in the incoming executable’s attribute

certificate.

2. It is required that the incoming executable can be authenticated by veri-

fying the hash of the incoming (agent) code and data, or the hash of the

entire agent (including agent code, data and any static and dynamic state

information), against the hash signed by the entity/entities who ‘speak(s)

for’ the executable, see section 3.9.

A SAML processor verifies the signature of TDS on the incoming attribute

assertion, thereby meeting the first AP requirement outlined above. The SAML

Assertions and Protocols specification [112] define a set of constraints on the

XML syntax for signing data, so that SAML processors do not have to deal

with the full generality of XML signature processing, see section 4.6. In order

for a SAML processor to authenticate the incoming executable, i.e. be able to

process the <SubjectConfirmationData>, the trusted domain server and the

devices with which it is communicating must have agreed on the stated <Con-

firmationMethod>, as was described in section 4.6. Alternatively, a new profile,

which describes this new confirmation method, must be specified.

222

5.8.3 The TEM

The TEM implemented on M must fulfil the following requirement.

1. The TEM must map the unknown authorisation requestor to a principal

to which execution permission policies apply.

In order to meet this requirement we use components from the (D)TPL trust

establishment system. (D)TPL is “used to define the mapping of strangers to

predefined roles, based on certificates issued by third parties” and is explored in

a paper by Herzberg, Mass, Michaeli, Naor and Ravid [68]. Within this trust

establishment system, four components are defined:

• a generic trust establishment certificate object;

• a trust policy language, (D)TPL, specified by an XML DTD;

• a policy engine; and

• a certificate collector and repository.

This trust establishment policy language has two variants. The first is DTPL,

which is monotonic, i.e. it does not include negative rules. The second is TPL,

which is non-monotonic. For the purposes of this chapter, we consider DTPL.

In order to express a policy using DTPL, the following elements and at-

tributes can be used.

• <GROUP> — has one attribute, NAME. The group tag is used to define

the name of a domain to which the unknown entity (or more specifically

the public key of the unknown entity) will be mapped.

• <RULE> — defines the certificate set necessary to join a domain. It may

contain requirements on the groups of which certificate issuers must be

223

members, and requirements on the attributes of certificates. It is made up

of one or more <INCLUSION> elements and at most one <FUNCTION>

element.

• <INCLUSION> — is used to define a certificate which must exist for the

rule to hold. Its attributes include [68]:

– ID — a unique ID for the certificate, which will be used in the

<FUNCTION> element to refer to the certificate’s fields. This is

a local name used only in the scope of the RULE.

– TYPE — refers to the type of certificate required.

– FROM — identifies the name or one or more groups to which the

issuer should belong.

– REPEAT — defines the number of certificates of the specified type

that must exist.

– DEPTH — may be used to limit the length of a certificate chain.

• <FUNCTION> — is used to define other conditions which must be ful-

filled by the certificate field values [68].

5.8.3.1 TEM policy statements

We assume that there is at least one pre-defined group on every mobile device,

namely ‘Trusted Domain Servers’. When the mobile device requires the services

of a specific trusted domain server, TDS, the public key of the trusted domain

server is associated with the ‘Trusted Domain Servers’ group. On receipt of

an attribute assertion, the mobile device verifies the signature, and checks that

TDS is a member of ‘Trusted Domain Servers’.

An example of trust establishment policy statements which might be held

on M is illustrated in figure 5.5. These policy statements specify that an

224

executable which has a SAML attribute certificate, which has been signed

by an entity whose public key is contained in ‘Trusted Domain Servers’, and

has the listed attribute values, should be mapped to the domain ‘/executa-

bles/trustedMobileExecutables.

<?xml version="1.0"?>

<POLICY>

<GROUP NAME="Trusted Domain Servers">

</GROUP>

<!---->

<!-- preferred executables -->

<!---->

<GROUP NAME="/executables/trustedMobileExecutables">

<RULE>

<INCLUSION ID="ExecCert" TYPE="SAMLAttributeCertificate"

FROM="Trusted Domain Servers" DEPTH="1"></INCLUSION>

<FUNCTION>

<AND>

<EQ>

<FIELD ID="ExecCert" NAME="ExecutableType"></FIELD>

<CONST>0</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="VirusCheck"></FIELD>

<CONST>1</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="AuthorTrust"></FIELD>

<CONST>3</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="CreatorTrust"></FIELD>

<CONST>2</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="AuthorAccreditation"></FIELD>

<CONST>0</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="CreatorAccreditation"></FIELD>

<CONST>0</CONST>

</EQ>

225

<EQ>

<FIELD ID="ExecCert" NAME="CodeProofs"></FIELD>

<CONST>1</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="CPUCycles"></FIELD>

<CONST>20</CONST>

<EQ>

<EQ>

<FIELD ID="ExecCert" NAME="StateAppraisal"></FIELD>

<CONST>0</CONST>

</EQ>

<EQ>

<FIELD ID="ExecCert" NAME="Testing"></FIELD>

<CONST>0</CONST>

</EQ>

<AND>

</FUNCTION>

</RULE>

</GROUP>

</POLICY>

Figure 5.5: Sample DTPL policy statement

5.8.3.2 The TEM policy decision and enforcement points

A simple TEM policy decision point is required, which inputs the executable’s

SAML assertion, and outputs a domain name to which the executable should be

assigned (i.e. made a member). Given the assertion shown in figure 5.2, and the

TE policy statement described in figure 5.5, the executable would be mapped

to the domain, /executables/trustedMobileExecutables.

5.8.3.3 The TEM policy administration point

The TEM PAP implemented on the mobile device must fulfil the following

requirement.

1. The PAP must provide a means for specifying, managing and organising

mobile device security policy statements.

226

As the policy statements are defined in XML, they can be viewed or edited

using a text editor or graphically. A graphic editor has been developed by

Herzberg et al. [68], which displays the policy as a graph, where nodes are

groups and the edges are the rules defining the relationships between groups.

5.8.4 Policy statements

Once the incoming executable has been assigned to a domain, in this instance,

/executables/trustedMobileExecutables, it can be controlled using a pre-defined

set of Ponder policy statements. Figures 5.6 gives an example of the access rights

and constraints that could be enforced on an executable which is a member of

the domain, /executables/trustedMobileExecutables.

inst group TrustedMobileExecutablesExecution {

Inst auth+ {

subject s = /executables/trustedMobileExecutables;

target f = /files/PublicFiles;

action f.read();

}

inst oblig {

on CPU(load,90);

subject s = System ;

target t = /executables/trustedMobileExecutables;

do t.kill();

}

}

Figure 5.6: Sample Ponder composite policy statement

5.8.5 The PDP and PEP

The PDP and PEP must meet the following requirements.

1. The PDP must decide whether a particular access request should be per-

mitted.

2. The PEP must enforce the decisions of the PDP.

227

As was described in section 4.5, in the Ponder policy specification framework

an access controller is defined as an agent which receives an authorisation re-

quest, makes a policy decision with regard to authorisation policies, and enforces

this decision. It also decides whether filters should be applied to the action call

parameters or the returned values. One access controller exists for each target

object. A policy management component is defined as an agent which decides,

based on events, whether obligation and refrain policies need to be enforced.

One policy management component is defined for each object. This agent also

enforces obligation and refrain policies.

5.8.6 The PAP

In order to enable policy administration the following requirement must be met.

1. The PAP must provide a means for specifying, managing and organising

mobile device security policy statements.

As described in section 4.5, a set of management tools are provided to sup-

port the deployment of a Ponder policy specification framework.

• A domain browser allows the navigation of objects within the domain

server. External tools may be invoked from within the browser tool or,

alternatively, other tools may interface with the domain browser through

an invocation interface which is implemented by the domain browser.

• A policy editor enables policy and role creation and modification.

• A policy compiler compiles specified policies, after which they are stored

by the domain service.

• A management console is used to distribute policies to their enforcement

components. This management console tool can interface with the domain

228

browser to select policies and enforcement components from the directory.

It may also interact with the policy compiler in order to dynamically

instantiate policies.

• A user-role management tool enables the management of user-roles.

• A GUI component consists of a main console for accessing individual tools.

• A configuration manager tool enables the configuration of all Ponder tools.

The domain service manages a hierarchy of domain objects. Each domain object

holds references to the policy objects that currently apply to that domain.

5.9 Conclusions

Mobile code, and more specifically mobile agents, offer many potential benefits

in a mobile environment where a permanent connection is not always possible,

devices are often disconnected for long periods of time, connections are often

characterised by low bandwidth, high latency and may be error prone. The

ability of mobile agents to adapt and make decisions based on the distributor’s

preferences also makes them a versatile and powerful tool. The lack of resources

on mobile devices provides an additional incentive for the use of mobile agent

technologies. Nevertheless, before their widespread deployment, it is necessary

to address mobile code and agent security concerns.

In this part of the thesis we examined the threats to host security intro-

duced by the use of mobile code. In addition to the threats posed by mobile

code, a mobile agent may increase security risks through the introduction of

malicious state information. Following this, we examined the state of the art in

technologies for mobile code and agent authorisation, and examined the reasons

why many of the solutions proposed do not transfer well to the mobile environ-

229

ment. Based on this analysis, we proposed the development of a policy-based

framework for mobile code and agent authorisation.

In order to construct this policy-based authorisation framework, two steps

were completed. Firstly, we proposed six possible architectural models upon

which a policy-based framework for the authorisation of incoming executables

and, more specifically, mobile agents, could be built. Each model was then

analysed with respect to the level of security it could support, and with regard

to its suitability for implementation in a mobile environment. From this, we were

able to compile a set of requirements for the an optimal architecture model for

a policy-based code and agent authorisation framework.

Secondly we examined a selection of policy statement and attribute cer-

tificate specification languages, namely KeyNote (and Nereus), Ponder (and

(D)TPL), and SAML, and explored the functionality of their supporting policy

engine components. The main goal of this analysis was to discover whether these

languages could express the policy statements and attribute certificates required

by the six scenarios described in chapter 3, and also whether the necessary policy

engine component functionality could be supported. Our conclusions from this

analysis were then used in chapter 5 to choose the most appropriate language(s)

for policy statement and attribute certificate expression in our policy-based

framework.

In this chapter, we have proposed a policy-based framework that synthesises

techniques for establishing the origin, authenticity, safety and integrity of in-

coming mobile executables, and policy-specification and processing techniques,

in order to provide a rich and flexible authorisation framework. It is most suit-

able for deployment in an environment where end hosts may be limited in terms

of processing power or the checks they can complete.

230

Part II

Mobile code protection

231

Chapter 6

Conditional access in
mobile systems

Contents
6.1 Introduction . 234

6.2 Conditional access systems 236

6.2.1 DVB standards . 238

6.2.2 Simulcrypt . 238

6.2.3 Common interface 239

6.2.4 Limitations of existing mechanisms 240

6.2.5 Modifications required for mobile receivers 241

6.3 Security issues . 242

6.3.1 Security threats . 242

6.3.2 Security services and mechanisms 243

6.4 Conclusions . 245

A conditional access system is used to prevent unauthorised access to broad-

cast content. The Digital Video Broadcast organisation has developed standards

which enable an end user to acquire broadcast services from a variety of ser-

vice providers that use proprietary conditional access systems to protect their

content. This chapter examines these DVB standards and describes certain lim-

itations which arise when they are applied in a mobile environment. In order

to overcome these limitations, the mobile platform could be re-configured to be

compatible with the appropriate conditional access system, if the proprietary con-

ditional access application is implemented entirely in software. Such a software

232

application could be delivered to the mobile device on demand. The remainder

of this chapter explores the threats resulting from the introduction of reconfig-

urable receivers in a mobile environment, and identifies the security services and

security mechanisms required for the protected download of a conditional access

application to a mobile receiver.

233

6.1 Introduction

One of the driving forces behind recent developments in mobile communications

systems is the potential for such systems to deliver more complex content to

consumers. Current 3G systems are capable of delivering multimedia clips to

mobile phones. The next generation of communications systems is expected to

develop this service, and collaborate with broadcast systems to provide wireless

access to video content from a wide range of mobile devices. For a service

like this to achieve its full commercial potential, the owners of the content will

require assurance that their material is not illegally accessed. Current broadcast

systems accomplish this by using conditional access systems to ensure that only

bona fide subscribers have access to the content.

Services broadcast today, however, use a range of proprietary conditional

access systems. In order to enable an end user to acquire broadcast services

from a variety of service providers, which use proprietary conditional access

systems to protect their content, the DVB organisation1 has developed several

standard mechanisms. While receivers remain static, and consumers subscribe

to one or two service providers, the mechanisms specified in the DVB standards

provide a practical solution. However, if a mobile subscriber requires access

to services controlled by several different conditional access systems, then the

current solution becomes increasingly impractical. If future wireless devices are

to maximise their access to broadcast services, then a more practical and cost

effective means will be required to allow consumer products to support a wide

range of proprietary conditional access systems.

In part II of this thesis we consider the possibility of downloading legacy

conditional access applications on demand to the mobile device. Part II is
1www.dvb.org

234

structured as follows:

• This chapter explores the threats resulting from the introduction of re-

configurable receivers in a mobile environment, and identifies the security

services and security mechanisms required for the protected download and

execution of a conditional access application on a mobile receiver.

• Chapter 7 describes two protocols, a key exchange and a key agreement

protocol, designed to protect against threats 1 to 5, described in sec-

tion 6.3.1, for the protected download and execution of a conditional access

system in a mobile environment.

• Chapter 8 explores three possible implementations of the generic key ex-

change and key agreement protocols described in chapter 7. The first

implementation assumes the presence of a mobile device into which com-

ponents described in the TCG version 1.2 specification set are integrated.

The second implementation assumes a mobile device architecture into

which a version 1.2 compliant TPM and CRTM are integrated and an

isolation layer deployed. Finally, the third implementation assumes an

NGSCB compliant platform, as described by Microsoft. Each implemen-

tation description is accompanied by an analysis which examines how well

the security of the downloaded application is protected against threats 6

and 7, described in section 6.3.1.

• Finally in chapter 9 we examine two protocols for secure application down-

load which have been proposed by the designers of XOM and AEGIS, Lie

et al. and Suh et al. These protocols are based upon the assumption that

the host device contains a hardened processor rather than a trusted mod-

ule, as assumed in chapters 7 and 8. Both protocols are analysed against

the security requirements described in chapter 6. As a result of these anal-

235

yses, recommendations are made regarding possible protocol modifications

designed to address identified security issues.

Section 6.2 of this chapter examines the mechanisms currently used to pro-

tect broadcast content, and describes certain limitations which arise when they

are applied in a mobile environment. As stated above, in order to overcome these

limitations, the mobile platform could be re-configured to be compatible with

the appropriate conditional access system, as long as the proprietary conditional

access application is implemented entirely in software. Section 6.3 explores the

threats which result from the introduction of reconfigurable receivers in a mo-

bile environment, and identifies the security services and security mechanisms

required to securely download and execute a conditional access application on

a mobile receiver.

6.2 Conditional access systems

A conditional access system is defined as a “complete system for ensuring that

broadcast services are only accessible to those who are entitled to receive them”

[8]. A conditional access system conforming to the DVB standards is comprised

of two main components [33]:

• A scrambling subsystem; and

• A proprietary access control subsystem.

The scrambling subsystem scrambles broadcast services using the symmetric

common scrambling algorithm (CSA) and a key known as a control word (CW)

[44]. Since the cryptographic scheme is a symmetric algorithm, the CW must

be delivered to the receiver in a secure manner, i.e. so that its confidentiality

is protected. This is the function of the proprietary access control subsystem.

236

Table 6.1: Conditional access system vendors
CA System Vendor
Viaccess Viaccess SA www.viaccess.fr
NagraVision Kudelski www.kudelski.com
Videoguard NDS www.nds.com
Mediguard Canal+ www.canalplus-technologies.com
Mcrypt Irdeto www.irdetoaccess.com
PiSys Irdeto www.irdetoaccess.com
CryptoWorks Philips www.digitalnetworks.philips.com
BetaCrypt BetaResearch www.betaresearch.de
Conax Telenor www.telenorsbc.com
Digicipher Motorola www.broadband.motorola.com
PowerKey Scientific Atlanta www.sciatl.com

The control word and the program attribute information, which is used by the

receiver to determine whether a subscriber is entitled to view a program on the

basis of his or her subscription, is encrypted by the access control subsystem

using a service key [134]. The resulting encrypted bundle, called an entitlement

control message (ECM), is broadcast in advance of the scrambled service. The

service key and the subscription information of a particular receiver, are then

encrypted using a key unique to that particular receiver. This encrypted bundle,

called an entitlement management message (EMM) must also be communicated

to the receiver in advance of the scrambled service. An EMM may be broadcast

or may be communicated using an alternative method, such as by telephone.

As can be seen from table 6.1, there are many proprietary conditional access

systems available for broadcasters to choose from. Although the conditional

access systems remain proprietary, most vendors have adopted the DVB stan-

dard protocols. These protocols provide a well defined interface between the

proprietary conditional access system and the rest of the broadcast equipment.

The remainder of this section describes the DVB protocols and assesses their

suitability for use with highly mobile receivers.

237

Legend

Common Scrambling Algorithm
(CSA)

Proprietary access control
subsystem

Control Word
Generator

ECM Generator

Multiplexer

CW

CW

ECM = E(CW)

Services Scrambled services
+ ECM messages
+ EMM messages

= Defined by DVB

EMM Generator
EMMSubscriber

management
system

Figure 6.1: Scrambling broadcast services using DVB standards

6.2.1 DVB standards

The DVB standards specify two mechanisms that aim to provide some flexibility

in the application of proprietary conditional access systems to broadcast services

[33]. At the transmission site, the simulcrypt standard [45] allows a service

to be controlled by two or more conditional access systems. At the receiver,

the common interface standard [22] allows conditional access modules to be

plugged into pc-card slots in the receiver to configure the device for the required

conditional access system. Both systems rely on the service being scrambled

using the standard common scrambling algorithm [44]. Figure 6.1 illustrates how

an implementation of these standards would be used to scramble a broadcast

service.

6.2.2 Simulcrypt

If a second conditional access system is available to the broadcaster, then the

same control word may also be protected using this access control subsystem,

238

Scrambler / Mux

service ECW(service)

Proprietary
access control
subystem A

Proprietary
access control
subystem B

CW

ECM B

ECM A

EMM A

ECM B = EB(CW)

EMM B

ECM A = EA(CW)

Subscriber
management

system
EMM B

EMM A

Figure 6.2: Simulcrypt

as shown in figure 6.2. The simulcrypt standard [45] describes the interface to

the access control subsystems and the synchronisation protocols. All entitlement

messages are then broadcast in advance of the scrambled service. Thus, receivers

running either conditional access system are able to recover the control word and

access the scrambled service. As far as the consumer is concerned, the operation

of this system is completely transparent. The service provider, however, must

operate multiple conditional access systems.

While it may be commercially feasible for large networks to operate two

or three conditional access systems, the cost and logistics of running many

such systems simultaneously could prove to be prohibitive, especially for smaller

networks.

6.2.3 Common interface

A parallel means of supporting multiple conditional access systems is to pro-

vide a solution at the receiver. This is accomplished by specifying a standard

interface for the receiver that provides access to the scrambled service and the

encrypted control words [22]. Figure 6.3 shows how the scrambled service and

the entitlement messages can be passed to a separate pc-card module contain-

ing the hardware and software for a specific conditional access system. The

239

Common Scrambling Algorithm
(CSA)

ECM decipher

De -
Multiplexer

CW

ServicesScrambled
service

Viewing rightsEMM decipher

Proprietary access
control subsystem

Figure 6.3: Common interface module

encrypted control words can be decrypted by the proprietary access control

subsystem which resides on the module to provide access to the service.

By swapping modules, the receiver can thus be configured to match the

conditional access system used by the broadcaster. This system is therefore

transparent to the broadcaster but not the subscriber. As is the case with

simulcrypt, this mechanism may provide a solution for two or three conditional

access systems, but, as the numbers increase, the cost to the subscriber could

become prohibitive.

6.2.4 Limitations of existing mechanisms

The solutions described above are well suited to current technology, where ser-

vices are generally controlled by one or two conditional access systems and

subscribers generally only require authorisation from one or two broadcasters.

With a mobile receiver, however, subscribers will require authorisation from an

increasing number of service providers as they travel further afield.

The common interface solution would require mobile devices to have a pc-

card interface and the user to carry a number of modules. The cost of adding

such an interface as well as the practical design issues could make this infeasi-

ble. The cost of the modules may also deter some subscribers. The alternative

240

solution using current technology would be to broadcast each service under the

control of as many conditional access systems as possible, which could prove pro-

hibitively expensive for many broadcasters, especially those operating in small

niche markets.

Thus both current solutions have potential difficulties, which would signifi-

cantly restrict the content available to mobile receivers. These existing solutions

do not transfer well to mobile systems, and the problem would benefit from

reconsideration in the light of the new requirements which arise in a mobile

environment.

6.2.5 Modifications required for mobile receivers

The objective is to provide access controlled broadcast content to mobile devices.

This should be achieved with minimum impact on existing networks while at

the same time minimising the hardware overhead on the mobile device and the

cost to the user. An attractive solution is to re-configure a mobile platform to

be compatible with the appropriate proprietary conditional access system. The

implication of this is that the proprietary application is implemented entirely in

software and delivered to the mobile device on demand.

The main difficulty with such an approach lies in convincing the software

provider that the application, including any embedded secret keys, will be pro-

tected to at least the level offered by current solutions. This contrasts with

the more familiar problem of securing the platform against incoming malicious

code, as discussed in part I of this thesis.

To address this problem, the delivery mechanism must protect both the

integrity and confidentiality of the application. Moreover, the mobile device

must be able to demonstrate to the software provider that the platform on which

241

the application will execute can be trusted. The former can be accomplished

using well known security mechanisms such as symmetric encryption and the

use of message authentication codes, while the latter may be achieved by the

deployment of trusted computing primitives, as described in section 1.6.

6.3 Security issues

To ensure that any solution proposed for use in a mobile environment is at least

as secure as currently implemented DVB standard solutions, two fundamental

security requirements must be satisfied, namely:

Secure download: The confidentiality and integrity of the conditional access

application must be protected as it is transported from the software pro-

vider to the host platform, and while in storage on the host platform.

Secure execution: The conditional access application must be protected while

executing on the host platform.

This section summarises the security threats, security services, and poten-

tial security mechanisms relevant to the download, storage, and execution of a

conditional access application.

6.3.1 Security threats

The secure download, storage, and execution of a conditional access application

is subject to a number of threats including:

1. Unauthorised reading of the application code and data.

2. Unauthorised modification of the application code and data.

242

3. Unknowingly communicating with an unknown and potentially malicious

entity. More specifically, we will primarily concentrate on the threat of

a software provider unknowingly communicating with an unknown and

potentially malicious mobile platform.

4. The inability to corroborate the source of the conditional access applica-

tion.

5. Replay of communications.

6. Unauthorised reading or modification of any cryptographic keys used in

the provision of confidentiality and integrity protection to the conditional

access application code and data.2

7. Unauthorised reading or modification of the application code and data

while it executes on the mobile host.

6.3.2 Security services and mechanisms

The security services required to thwart the first five threats listed above may be

provided using standard cryptographic mechanisms, as described in section 1.5.

The services required to counter the remaining two threats require the applica-

tion of mechanisms associated with trusted computing or closely related tech-

nologies, as discussed in section 1.6. There is a direct mapping between the

security threats outlined in section 6.3.1 and the security services and potential

security mechanisms, outlined below, which may be deployed to prevent their

realisation.

1. Confidentiality of the application code and data: This service may be pro-

vided by symmetric or asymmetric encryption.
2This is essentially a secondary threat, i.e. a threat to the mechanisms which may be de-

ployed in order to thwart threats 1 and 2 above. As we can assume that symmetric encryption
is the most viable way of preventing unauthorised reading of the application code and data,
there will be, at the very least, one symmetric encryption key which needs to be protected.

243

2. Integrity protection of the application code and data: A message authen-

tication code or a digital signature can be used to provide this service.

3. Entity authentication:

(a) With respect to the authentication of the mobile host to the software

provider, trusted computing based platform attestation can be used

to meet this service requirement, see section 1.6.6.

(b) Authentication of the software provider to the mobile host can be

provided using a unilateral entity authentication protocol.

4. Origin authentication: The origin of the conditional access application

can be authenticated via the verification of the software provider’s digi-

tal signature on either the (possibly encrypted) incoming application, or

on keys used to protect the integrity and confidentiality of the incoming

application.

5. Freshness: This can be provided by the use of nonces or timestamps.

6. Confidentiality and integrity protection of the cryptographic key(s) used in

the prevention of unauthorised reading of, and the detection of unautho-

rised modification to, the application code and data: Threat 6, described

above, may be countered by providing the following services:

(a) Secure symmetric key generation: The key(s) must be generated in

an isolated environment, for example, in a secure dedicated hardware

device, or, alternatively, by an application executing in an isolated

compartment, as described in section 1.6.8.

(b) Secure symmetric key transmission: The confidentiality and integrity

of the symmetric key(s) whilst in transit can be provided by using

asymmetric encryption and digital signatures.

244

(c) Secure symmetric key storage: This service requires the availability

of protected storage on the host, see for example section 1.6.7. Alter-

natively, the mechanisms which confidentiality and integrity-protect

the symmetric key(s) whilst in transit may also be used to protect

the key(s) whilst in storage.

(d) Prevention of unauthorised access to the symmetric key(s): This ser-

vice can be provided by binding the symmetric key(s) to specified

access control information. A protected storage mechanism can be

used to ensure that the symmetric key(s) is/are only accessed when an

execution environment on a specific platform is in a particular state

and/or when valid authorisation data is provided, see, for example,

section 1.6.7. Alternatively, the symmetric key(s) may be bound to

a particular hardware component, such as a secure (co-)processor, so

that the symmetric key(s) can only be decrypted inside that partic-

ular hardware component.

7. Confidentiality and integrity protection of the application code and data

during execution: This service can be provided by using process isolation

techniques. These are mechanisms that allow applications and services

to run without interference from other processes executing in parallel, see

section 1.6.8.

6.4 Conclusions

In this chapter we have described the two standard mechanisms that have been

defined by the DVB organisation in order to ensure that an end user can ac-

quire broadcast services from a variety of service providers using proprietary

conditional access systems to protect the content. We have proposed the use of

245

reconfigurable mobile receivers in order to overcome the limitations which arise

when the DVB standard solutions are applied in a mobile environment. The

security threats relating to the secure delivery of the conditional access applica-

tion and the secure storage and execution of the application on a mobile device

have been defined. The security services and mechanisms required to thwart

the threats highlighted have also been described.

246

Chapter 7

Protocols for secure
application download

Contents
7.1 Introduction . 248

7.2 Model . 248

7.3 Prior art . 250

7.4 Notation . 252

7.5 Assumptions . 253

7.6 Protocol initiation . 257

7.7 Key exchange protocol 258

7.7.1 Protocol specification 258

7.7.2 Security analysis of the key exchange protocol 261

7.8 Key agreement protocol 264

7.8.1 Protocol specification 264

7.8.2 Security analysis of the key agreement protocol . . . 267

7.9 Conclusions . 269

This chapter describes two protocols designed to meet the security require-

ments described in chapter 6. That is, these protocols support the protected

download and execution of a conditional access system in a mobile environment.

247

7.1 Introduction

Having established the security threats pertaining to the secure download and

execution of a conditional access application, two protocols are now described

which have been designed to provide the necessary security services using a se-

lection of the security mechanisms outlined in section 6.3.2. These protocols are

not intended to supersede or replace the DVB standards or existing conditional

access systems. Instead, they are intended to co-exist with existing mechanisms,

so that the receipt of digital video broadcast may be achieved more efficiently

in a mobile environment.

In section 7.2 the model under consideration and its associated entities are

described. Section 7.3 describes current mechanisms which enable the secure

download of applications. Section 7.4 details the notation used in the protocol

descriptions, and section 7.5 outlines the assumptions upon which the protocols

are based.

Section 7.6 describes the events culminating in the initiation of one of the two

proposed download protocols. A key exchange protocol is specified in section 7.7

and an alternative key agreement protocol is described in section 7.8. Both

protocols are accompanied by an analysis focusing on how well the security of

the downloaded application is protected against threats 1 to 5, described in

section 6.3.1.

7.2 Model

The model under consideration is illustrated in figure 7.1, and involves three

parties: the user, who has a mobile receiver; the broadcaster; and the software

provider. A fundamental component in this model is the trusted module. This

tamper evident module is assumed to be bound either physically or crypto-

248

graphically to the mobile receiver, and is capable of performing a limited set of

cryptographic operations.

In this model the mobile user does not need to have a long term relationship

with the broadcaster, but is assumed to be aware of the content provision ser-

vices that are available. Some of these services may be scrambled, in which case

access is controlled by a conditional access system. For each scrambled service,

the associated conditional access application must be acquired by the mobile

receiver. One fundamental requirement for the application download protocol

is that the mobile receiver is able to demonstrate to the software provider that

it is a bona fide receiver and not in a malicious state that may facilitate the

modification, replication, or extraction of secret data from the downloaded ap-

plication. Once the receiver has proved itself to be trustworthy, the application

is made available only to that receiver. The chosen application download pro-

tocol must also ensure that the confidentiality and integrity of the application

is protected as it is transported to the mobile device.

The software provider in this model is required to supply the appropriate

conditional access application to the mobile receiver. This software provider

may, in practice, be the same entity as the broadcaster. Alternatively, it may

be a third party broker. The mobile user needs to be aware of which software

provider can deliver the required conditional access application. He may be

informed of this by either the broadcaster or the software provider. The mobile

receiver is then in a position to download the appropriate conditional access

application from the software provider and descramble the broadcast service,

subject to the relevant commercial agreements.

249

Application
Server

Software provider S

DVB-S
DVB-T

DVB-C

Broadcaster B

Mobile receiver M with an embedded trusted moduleTM

User Trusted module TM

Conditional access application AC
Broadcaster Content

Figure 7.1: Architecture model

7.3 Prior art

One method widely adopted in order to protect mobile code is to digitally sign

executables before they are distributed. Digital signatures are utilised in the

security models for Java, as described in section 2.5.1.3, and MExE, as described

in section 2.5.2, for example. Digital signatures are also utilised in order to

protect agent code, data, and static state information in mobile agent systems,

as described in part I of this thesis, see, for example, Safe-Tcl, as described

in section 2.5.1.3, and D’agents and Telescript, as described in section 2.5.2.

Digitally signing an executable enables the origin(s) of the executable to be

authenticated and the integrity of the executable to be verified. Digitally signing

an executable alone, however, does not fulfil the majority of the security services

listed in section 6.3.2. While security services 2, 4 can be met, services 1, 3, 5,

6 and 7 cannot.

Another method currently used in order to enable the protected download of

software is SSL/TLS, which makes use of TCP, or WTLS, which makes use of

250

UDP, to provide a reliable end-to-end secure tunnel [128]. Downloading software

using SSL/TLS or WTLS enables the confidentiality and the integrity of the

application code and data to be ensured; the origin of the downloaded executable

to be corroborated; and mutual authentication of the software provider and the

mobile device to be facilitated. The freshness of messages is also ensured. In

this way, security services 1, 2, 3, 4 and 5, as described in section 6.3.2, can be

met. If RSA is chosen as the key exchange method parameter in the cipher suite,

the symmetric keys for integrity and confidentiality-protecting the downloaded

application may be generated in a secure environment by the software provider,

and securely distributed to the mobile device using the public key of the mobile

receiver. In this way, security services 6a and 6b can be met. If, however, Diffie-

Hellman is chosen as the key exchange method parameter in the cipher suite,

the symmetric keys for integrity and confidentiality-protecting the downloaded

application are generated on the mobile host as well as on the software provider.

In this instance, while the symmetric keys do not need to be distributed, there is

no guarantee that the keys are generated in a secure environment on the mobile

host, thereby meeting security service 6a. Once the symmetric keys have been

agreed during the handshake protocol, there is no requirement in SSL/TLS or

WTLS that the keys are either confidentiality or integrity-protected while in

storage on the host and, therefore, no requirement that access to the symmetric

keys is controlled. Therefore, security services 6c and 6d cannot be met. Neither

can security service 7 be met.

As described in section 6.1 Lie et al. and Suh et al. have designed hardware-

based approaches to enable copy and tamper resistant software, namely XOM

and AEGIS, respectively. XOM aims to enable the confidentiality and integrity-

protection of software during download and while executing on the host machine.

AEGIS aims to integrity-protect or integrity and confidentiality-protect software

251

during download and while executing on the host machine. Both proposals are

examined, and analysed against the security requirements described in chapter 6,

in chapter 9.

In the mobile agent domain a number of mechanisms have been proposed in

order to prevent an attack against either the confidentiality and/or integrity of

a mobile agent. Using code obfuscation, as described in section 2.5.3.3, the code

is scrambled in such a way that no one is able to gain a complete understanding

of its function, or to modify the resulting code without detection [91]. While

a mechanism like this one could be considered as meeting security services 1,

2 and 7 and rendering security service 6 unnecessary, it seems that there is no

known algorithm or approach for robustly implementing such an approach [91].

7.4 Notation

The following notation is used in the specification of the protocols:

M denotes a mobile device or mobile receiver.
B denotes a broadcaster.
S denotes a software provider.
C denotes a certification authority trusted by both M and S.
TM denotes a trusted module bound to the mobile receiver M .
AD denotes an application, or agent, responsible for the secure

download of a conditional access application.
AB denotes a broadcast application.
AC denotes a conditional access application to be downloaded

to M .
CertX is a public key certificate for entity X.
KX,Y denotes a secret key possessed only by X and Y .

252

RX is a random number issued by entity X.
EK(Z) is the result of the encryption of data Z using the key K.
SealI(Z) is the result of the encryption of data Z concatenated with

integrity metrics, I, such that Z can only be deciphered and
accessed if the the platform is in a specified software state.

I is a pair of integrity metrics (I1, I2), where I1 specifies the
state that the execution environment must be in for subse-
quent use of the protected object, and I2 is the state of the
execution environment at the time of command execution.

H is a hash function, as defined in section 1.5.1.
MACK(Z) is a Message Authentication Code, generated on data Z us-

ing key K.
SX(Z) is the digital signature of data Z computed using entity X’s

private signature transformation.
PX the public asymmetric key of X.
SX the private asymmetric key of X.
p is a prime number.
g is a generator for Diffie-Hellman key exchange modulo p, i.e.

an element of multiplicative order q (a large prime dividing
p− 1) modulo p.

aX is entity X’s Diffie-Hellman private key (i.e. a positive inte-
ger satisfying aX < q).

bX is entity X’s Diffie-Hellman public key for secret key gener-
ation bX = gaX mod p.

IdX is an identifier for X.
X||Y is the result of the concatenation of data items X and Y in

that order.

7.5 Assumptions

The following pre-conditions need to be satisfied for use of the protocols de-

scribed later in this chapter.

1. There exists a certification authority C, trusted by both M and S . Both

M and S possess a trusted copy of the public key of C, so that they can

both verify certificates generated by C .

2. The designers of the relevant applications have agreed on the use of a

specific protocol presented in sections 7.7 and 7.8, and have also agreed

on all the necessary cryptographic algorithms and parameters.

253

3. A trusted module TM is inextricably bound to M . It is a self-contained

processing module with specialist security capabilities such as random

number generation, asymmetric key generation, digital signing, encryption

capabilities, hashing capabilities, MACing capabilities, monotonic coun-

ters as well as memory, non-volatile memory, power detection and I/O.

Support for platform integrity measurement, recording and reporting is

also provided. One possible implementation of the trusted module is as a

hardware chip, separate from the main platform CPU.

4. The mobile receiver M is running at least one protected execution envi-

ronment. Within this environment, different applications run in isolation,

free from being observed or compromised by other processes running in

the same protected execution environment, or by software running in any

insecure execution environment that may exist in parallel, see section 1.6.8.

5. The state of the platform has been measured and the integrity metrics

which reflect it stored in the trusted module.

6. All secret keys required by the mobile receiver in the implementation of

the protocols described below are protected by the trusted module, either

directly or indirectly.

7. A unique asymmetric encryption key pair is associated with the trusted

module.

8. The private decryption key from the pair referred to in point 7 is securely

stored in the trusted module.

9. The public encryption key from the pair referred to in point 7 is certi-

fied. The certificate contains a general description of TM and its security

properties.

254

10. Credentials have been generated indicating whether the particular design

of the trusted module TM in a particular class of mobile platform (to

which M conforms) meets specified security requirements.

11. A credential has been generated indicating whether the particular mobile

receiver M which incorporates TM is an instance of a certified class of

trusted mobile platform, as referred to in point 10.

12. The trusted module TM possesses a signature key pair, used only for

entity authentication.

13. The private signing key from the pair referred to in point 12 is securely

stored by the trusted module.

14. The public signature verification key from the pair referred to in point 12

is certified by C . The certificate issued, CertTM , binds the identity of

TM (the trusted platform containing TM) to a public key used for the

verification of digital signatures. This certificate must be obtainable by

the software provider S .

15. The software provider S possesses a signature key pair, used only for entity

authentication.

16. The private signing key from the pair referred to in point 15, is securely

stored by the software provider.

17. The software provider S has a certificate, CertS , issued by C . This cer-

tificate associates the identity of S with the public verification key from

the pair referred to in point 15. This certificate must be available to the

mobile receiver.

18. If the key agreement protocol specified in section 7.8 is to be used, all

parties must agree on the Diffie-Hellman system parameters g and p. This

255

could be achieved by including these values in the relevant certificates, or

by hard-coding them into relevant application software. Alternatively, the

Diffie-Hellman parameters could be standardised as has been done for the

Internet key exchange protocol version 2 in the IPSec architecture.

19. The trusted module is capable of generating an asymmetric encryption key

pair, where the public encryption key can be signed using the signature

key described in assumption 12. This thwarts the privacy and security

threats surrounding routine use of the public encryption key described in

assumption 7. The private decryption key from this pair is bound to a

particular platform configuration.

20. S is able to verify the configuration-related claims made by the platform

containing a particular trusted module. S is able to look up, or obtain

from a validation authority, the integrity measurement value that should

be obtained if a platform component is working as intended, or the set of

platform state integrity metrics that should be obtained if a platform is

working as intended [5].

21. Every mobile device wishing to receive a video broadcast has a trusted

broadcast application, AB , running in a protected execution environment.

22. Every mobile device has a download application, AD, running in the same

protected execution environment as AB . This download application will

perform two fundamental tasks. Firstly, it will complete one of the proto-

cols described in sections 7.7 and 7.8. Secondly, once AC is executing in

a protected execution environment, AD must prevent any interference by

another application. It may, for example, incorporate a monitoring func-

tion which adheres to a specified policy, such that once the conditional

access application is running on the device, any attempt by another ap-

256

plication to start up will fail. Alternatively, the start-up of any additional

applications will result in AD stopping AC , and erasing it from memory.

23. AB and AD execute within a protected execution environment. AC will

also execute within this protected execution environment once it has been

downloaded.

24. The attacker’s behaviour is bounded by the assumption of perfect encryp-

tion [40].

7.6 Protocol initiation

Both protocols begin when the user makes a request to the broadcast applica-

tion AB to view a specific video broadcast. If consumption of this broadcast

is controlled by a particular conditional access application, AB completes the

following process:

1. AB checks to see if the mobile device has dedicated hardware or software

installed to support the specific conditional access system.

2. If no dedicated hardware, for example a common interface module, is

present on the mobile device, then AB determines whether AC has previ-

ously been downloaded and is still available in secure storage.

(a) If so, the download application AD is called to retrieve AC from

secure storage and execute the application.

(b) If AC is not available on the mobile device, then AD is called to

download the application. The download of AC is accomplished by

deploying one of the protocols described in sections 7.7 and 7.8.

It is presupposed that a protocol run is completed every time a conditional

access application is to be downloaded, so that either the asymmetric encryption

257

EP (K1||K2) || SS (EP (K1||K2)) || EK1(AC || MACK2(AC))

 ADTM S

CreateAsymmetricKeyPair (PA , SA) RS

Sealed Storage

SA

Request AC

STM (RS || IdS || PA || I1)

SealI (SA)

PA || I

LoadKey (PA)

D D

D

D

Handle (PA)D

Certify (PA)D

D
RS || IdS || PA || I1 || STM (RS || IdS || PA || I1)DD

AD DA

D D

Figure 7.2: Key exchange protocol

key pair generated in the key exchange protocol described in section 7.7, or the

Diffie-Hellman key agreed in the key agreement protocol described in section 7.8,

is unique to a protocol run.

7.7 Key exchange protocol

In this section, a key exchange protocol is specified. The protocol is then anal-

ysed in terms of how the conditional access application is protected while in

transit between the software provider and the mobile receiver.

7.7.1 Protocol specification

The key exchange protocol is shown in figure 7.2 and consists of the following

sequence of steps, where X → Y : Z is used to indicate that the message Z is

sent by entity X to entity Y .

1. AD → S : Request for AC .

2. S : Generates a random value RS , and stores it for subsequent freshness

checking of received data. RS should be chosen in such a way that the

258

probability of the same value ever being used twice by S is negligible. The

random number must also be unpredictable to a third party.

3. S → AD : RS .

4. AD : Stores RS .

5. AD → TM : Requests the generation of an asymmetric encryption key

pair, PAD
and SAD

, and the sealing of SAD
to a set of integrity metrics

(I), i.e. SealI(SAD
). These integrity metrics should reflect the state that

the protected execution environment must be in if subsequent use of the

private key SAD
is to be permitted, I1, and also the state of the protected

environment at the time of key generation, I2, i.e. I = I1 || I2.

6. TM : Generates PAD and SAD , and seals SAD to I.

7. TM → AD : PAD || I.

8. AD : Keeps a record of the integrity metrics I2 to which SAD
was bound,

and what I2 represents.

9. AD → TM : Request to load the key pair.

10. TM : Loads the key pair.

11. TM : Outputs a handle to the loaded key pair.

12. AD → TM : Request to certify PAD . In conjunction with this request,

AD sends RS and IdS to the TM .

13. TM : Signs RS , IdS , PAD and I1, where RS is included so that the

freshness of the signature can be checked by the software provider, and

IdS is included so that the intended destination of the message can be

verified by the software provider,

STM (RS || IdS || PAD
|| I1).

259

14. TM → AD : RS || IdS || PAD
|| I1 || STM (RS || IdS || PAD

|| I1).

15. AD → S : RS || IdS || PAD
|| I1 || STM (RS || IdS || PAD

|| I1).

16. S : Retrieves CertTM and verifies it.

17. S : Verifies STM (RS || IdS || PAD
|| I1) using the public signature

verification key of TM contained in CertTM .

18. S : Verifies RS against the value generated and stored in step 2 to ensure

that the message is fresh.

19. S : Verifies that the message was intended for S through examination of

the identifier IdS .

20. S : Decides if I1 represents a sufficiently trustworthy state.

21. Assuming the signature from TM can be verified, the values of RS and

IdS are as expected, and the integrity metrics, I1, are acceptable, then:

S: Extracts PAD .

22. S : Generates secret keys K1S,AD
and K2S,AD

used for data encryption

and data integrity, respectively.

23. S : Computes a MAC on, and then encrypts, AC ,

EK1S,AD
(AC || MACK2S,AD

(AC)).

24. S : Encrypts the MACing and encryption keys used in step 23 with PAD
,

the public encryption key of the TM ,

EPAD
(K1S,AD || K2S,AD).

25. S : Signs the encrypted bundle from step 24,

SS(EPAD
(K1S,AD

|| K2S,AD
)).

26. S → AD : EPAD
(K1S,AD

|| K2S,AD
) ||

SS(EPAD
(K1S,AD

|| K2S,AD
)) || EK1S,AD

(AC || MACK2S,AD
(AC)).

260

27. AD : Retrieves CertS and verifies it.

28. AD : Verifies SS(EPAD
(K1S,AD

|| K2S,AD
)) using the public signature

verification key of S contained in CertS .

29. TM : Decrypts EPAD
(K1S,AD

|| K2S,AD
), if the platform is in the agreed

state, I1.

30. AD: Compares I2 to its record of I2 to which SAD
was bound in step 6,

to ensure that the request for key pair generation came from AD.

31. AD : Decrypts EK1S,AD
(AC || MACK2S,AD

(AC)).

32. AD : Verifies MACK2S,AD
(AC).

33. Once AC is executing, AD precludes the potential interference of any other

application with AC .

34. AD : Deletes AC , and all other keys, when they are no longer required.

The encrypted copy of AC may remain stored for future use, space per-

mitting.

7.7.2 Security analysis of the key exchange protocol

The analysis completed here focuses upon how well the conditional access appli-

cation is protected against threats 1 to 5, described in section 6.3.1. Protection

of the application against threats 6 and 7, described in section 6.3.1, will de-

pend on the functionality of the particular type of trusted module embedded

in the platform and, more generally, on the overall computing architecture of

the mobile receiver. Consequently, how well the application is protected against

threats 6 and 7 is analysed in chapter 8, following an exploration of the possible

implementations of the generic key exchange and key agreement protocols on a

variety of trusted platform architectures.

261

1. Confidentiality of the application code and data:

Symmetric encryption is deployed to protect the confidentiality of AC .

The confidentiality of AC is also dependent, however, on the confidentiality

of K1S,AD
being protected. How well K1S,AD

is protected is analysed in

chapter 8.

2. Integrity protection of the application code and data:

A MAC is deployed to protect the integrity of AC . The integrity of AC is

also dependent, however, on the confidentiality and integrity of K2S,AD

being protected. How well K2S,AD
is protected is analysed in chapter 8.

3. Entity authentication:

The software provider can authenticate the trusted platform by verifying

the signature of TM on RS , IdS , PAD
and I1. Steps 3 and 15 of the

above protocol conform to the two pass unilateral authentication protocol

described in clause 5.1.2 of ISO/IEC 9798-3:1998 [85], where PAD
serves

as the nonce in the response message sent by AD, by virtue of the fact

that an asymmetric key pair is generated for each protocol run.

It may be argued that the protocol outlined above also provides entity

authentication of the software provider to the mobile platform. If PAD
is

unique to the protocol run, PAD acts not only as a random nonce, but also

serves to represent the identity of the destination platform. The signature

of the software provider on the unique public key, PAD , in step 26, or

more specifically SS(EPAD
(K1S,AD

‖K2S,AD
)), allows the identity of the

software provider to be authenticated by the mobile receiver.

Alternatively, one of the following additions may be made to the protocol.

A random nonce may be included in the signed bundle sent to the software

provider in step 15, and returned in conjunction with RS and IdM in the

262

bundle signed by the software provider in step 26. If this modification

is made to the protocol, steps 3, 15, and 26 would conform to the three

pass mutual authentication protocol described in clause 5.2.2 of ISO/IEC

9798-3:1998 [85].

Instead of this, a timestamp, in conjunction with the identifier IdM , could

be included in the signed bundle from step 26. If this modification is made,

step 26 would conform to the one pass unilateral authentication protocol

as described in clause 5.1.1 of ISO/IEC 9798-3:1998 [85].

4. Origin authentication:

Since S signs K1S,AD
and K2S,AD

, M is able to verify that these keys

have been sent from S . As K2S,AD is used to compute the MAC on

AC , M can verify that AC has been sent from the same source. An

attacker attempting to deliver a malicious application would require the

collaboration of S .

5. Freshness:

It may be possible for an attacker to replace the message in step 26 with an

older message destined for the same mobile host, or with a corresponding

message destined for a different mobile host. However, since a unique

public key PAD
is generated for each protocol run, the verification in step

32 would detect this.

Alternatively, one of the following additions may be made to the protocol.

A random nonce could be included in the signed bundle sent to the software

provider in step 15 and returned in the bundle signed by the software

provider in step 26. Alternatively, a timestamp could be incorporated

into the message sent in step 26.

263

K1|| K2 bS || SS (bS || bM || IdM)

EK1(AC || MACK2(AC))

STM (bM || bS || IdS || I2)

Request AC || bM

SealI (K1|| K2)

Attest (bM || bS || IdS || I2)

 ADTM SSealed Storage

Figure 7.3: Key agreement protocol

7.8 Key agreement protocol

In this section, an alternative protocol based upon the Diffie-Hellman key agree-

ment protocol is specified. This protocol is shown in figure 7.3. As before, the

protocol begins when AD executing on the mobile device makes a request for

a conditional access application to be downloaded. This protocol is analysed

against the same criteria as the key exchange protocol described in section 7.7.

7.8.1 Protocol specification

1. AD : Chooses a Diffie-Hellman private value aM and calculates bM based

on g and p, where these latter values may have been hard-coded into the

relevant application software or, alternatively, may be retrieved from the

relevant certificates.

2. AD → S : Request for AC || bM .

3. S : Chooses a Diffie-Hellman private value aS and calculates bS using the

same values of g and p that were used by AD in step 1.

4. S : Signs the concatenation of bS , its public Diffie-Hellman key, bM , the

public Diffie-Hellman key of AD, and IdM , the identity of M, to whom

264

the message is being sent,

SS(bS || bM || IdM).

5. S → AD : bS || SS(bS || bM || IdM).

6. AD : Retrieves CertS and verifies it.

7. AD : Verifies the signature on the message received in step 5 using the

public signature verification key of S contained in CertS .

8. AD : Verifies that bM has been returned, thereby indicating that the mes-

sage is fresh.

9. AD : Verifies that IdM is contained within the signed message, to ensure

that the message was destined for M.

10. AD : Calculates the shared key KS,AD
using bS , the public Diffie-Hellman

value of S, and aM , the private Diffie-Hellman value of AD.

11. AD : Generates secret keys K1S,AD
and K2S,AD

used for data encryption

and data integrity, respectively, from KS,AD by an agreed method.

12. AD → TM : Request the encryption of K1S,AD || K2S,AD and their asso-

ciation with a specified protected execution environment state, I, which

consists of I1, the state the protected execution environment must be in

before access to K1S,AD
|| K2S,AD

is permitted, and I2, which represents

the current state of the protected execution environment at the time the

keys were encrypted,

SealI(K1S,AD‖K2S,AD).

13. TM : Securely stores K1S,AD and K2S,AD using the protected storage

mechanism, such that K1S,AD
and K2S,AD

can only be decrypted when

the protected environment is in a specified state I1, i.e. TM seals K1S,AD

and K2S,AD
.

265

14. AD : Keeps a record of I2 to which the sealed keys were bound and what

I2 represents.

15. AD → TM : Request platform attestation, i.e. the signature of TM on

(bM || bS || IdS || I2), where I2 represents the current state of the protected

execution environment.

16. TM → AD : STM (bM || bS || IdS || I2).

17. AD → S : STM (bM || bS || IdS || I2).

18. S : Obtains and verifies CertTM .

19. S : Verifies STM (bM || bS || IdS || I2) using the public signature verifica-

tion key of TM contained in CertTM .

20. S : Verifies bS to ensure that the message is fresh.

21. S : Verifies IdS to ensure that the message was destined for S.

22. S : Checks that the message has come from a trustworthy module, and

checks, using I2, that the state information represents a sufficiently trust-

worthy execution environment.

23. S : Calculates the shared key KS,AD
using bM , the public Diffie-Hellman

value of AD, and aS , the private Diffie-Hellman value generated by S.

24. S : Derives secret keys K1S,AD
and K2S,AD

used for data encryption and

data integrity, respectively, from KS,AD
by an agreed method.

25. S : Computes a MAC on, and then encrypts, AC ,

EK1S,AD
(AC || MACK2S,AD

(AC)).

26. S → AD : EK1S,AD
(AC || MACK2S,AD

(AC)).

266

27. AD → TM : Request to unseal K1S,AD
and K2S,AD

.

K1S,AD
and K2S,AD

can only be unsealed by the TM if the platform is

in the agreed state, I1.

28. AD: Compares I2 to its record of the value of I2 to which the symmetric

keys were bound in step 13, to ensure that the request for sealing the

symmetric keys came from AD.

29. AD : Decrypts EK1S,AD
(AC || MACK2S,AD

(AC)).

30. AD : Verifies MACK2S,AD
(AC).

31. Once AC is executing, AD precludes the potential interference of any other

application with AC .

32. AD : Deletes AC , and all other keys, when they are no longer required.

The encrypted copy of AC may remain stored for future use, space per-

mitting.

7.8.2 Security analysis of the key agreement protocol

As before, the analysis completed here focuses upon how well the conditional

access application is protected against threats 1 to 5, described in section 6.3.1.

1. Confidentiality of the application code and data:

Symmetric cryptography is deployed to protect the confidentiality of of

AC . The confidentiality of AC is also dependent, however, on the confi-

dentiality of K1S,AD being protected. How well K1S,AD is protected is

analysed in chapter 8.

2. Integrity protection of the application code and data:

As was the case in the key exchange protocol, a MAC is deployed to protect

the integrity of AC . The integrity of AC is also dependent, however, on

267

the confidentiality and integrity of K2S,AD
being protected. How well

K2S,AD
is protected is analysed in chapter 8.

3. Entity authentication:

As this protocol is based on the station-to-station protocol [38] (a type

of authenticated Diffie-Hellman protocol) it offers mutual authentication.

The mobile device can authenticate the software provider’s identity via

the verification of the digital signature which is generated over bS , bM and

IdM and sent by S in step 5. The software provider can verify the identity

of the TM and the state of the platform’s protected execution environment

using the trusted computing based platform attestation mechanism, see

section 1.6.6. This is achieved through the verification of TM ’s signature

upon bM , bS , IdS and the integrity metrics representative of the protected

execution environment, sent in step 17.

4. Origin authentication:

Since S signs bM and bS in step 5, and AC is protected using keys derived

from bM and bS , M is able to verify the origin of AC . As before, an

attacker attempting to deliver a malicious application would require the

collaboration of S.

5. Freshness:

The attacker could replace the message in step 26 with an older message

destined for the same mobile host, or with a corresponding message des-

tined for a different mobile host. However, since a unique secret key KS,AD

is agreed for each protocol run, the verification in step 30 would detect

this. As an additional measure, if deemed necessary, a timestamp could

be included in step 26 to prevent replay.

268

7.9 Conclusions

In this chapter, we have described two protocols which support the download

of a conditional access application to a mobile device. Both the key exchange

protocol, specified in section 7.7.1, and the key agreement protocol, specified in

section 7.8.1, ensure that the conditional access application is protected against

threats 1 to 5, described in section 6.3.1. This has been demonstrated through

the security analysis completed in sections 7.7.2 and 7.8.2.

269

Chapter 8

Protocol implementation
using trusted computing
frameworks

Contents
8.1 Introduction . 272

8.2 Notation . 272

8.3 Implementing the protocols using the TCG spec-
ifications . 273

8.3.1 Key exchange protocol 276

8.3.2 Key agreement protocol 286

8.3.3 Implementation specific security analysis 291

8.4 Implementing the protocols using the TCG spec-
ification set and an integrated isolation kernel . . . 296

8.4.1 Key exchange protocol 297

8.4.2 Key agreement protocol 298

8.4.3 Implementation specific security analysis 298

8.5 Implementing the protocols using NGSCB 302

8.5.1 Key exchange protocol 303

8.5.2 Key agreement protocol 304

8.5.3 Implementation specific security analysis 304

8.6 Conclusions . 307

This chapter explores three possible implementations of the generic key ex-

change and key agreement protocols described in chapter 7. The first implemen-

tation assumes the presence of a mobile device into which components described

in the TCG version 1.2 specification set are integrated. Following this, we exam-

270

ine the implementation of the protocols given a mobile device architecture into

which a version 1.2 compliant TPM and CRTM are integrated and an isolation

layer deployed. Finally, protocol implementation given an NGSCB compliant

platform, as described by Microsoft, is explored. Each implementation descrip-

tion is accompanied by an analysis which examines how well the security of the

downloaded application is protected against threats 6 and 7 from section 6.3.1.

271

8.1 Introduction

Chapter 7 contains a description of two secure application download protocols.

This chapter considers how three different trusted computing architectures may

be utilised in the implementation of the protocols. Development of the TCG’s

specification set and Microsoft’s NGSCB represent major industry initiatives in

the field of trusted computing, and it is important that the protocols proposed

in chapter 7 can be implemented using these technologies, if they are to find

practical application.

Section 8.2 details the notation used in the protocol implementation descrip-

tions. Section 8.3 illustrates how the generic application download protocols

may be implemented using a TCG version 1.2 compliant TPM and CRTM.

Section 8.4 describes how the protocols may be implemented on a platform sup-

porting not only a version 1.2 compliant TPM and CRTM, but also an isolation

layer, while section 8.5 examines how the protocols may be implemented on an

NGSCB compliant platform. Finally, for each of the three implementation op-

tions explored, an analysis is given of how well the security of the downloaded

application is protected against threats 6 and 7, from section 6.3.1.

8.2 Notation

The following notation is used throughout this chapter, together with some of

the notation given in section 7.4:

TPM denotes a version 1.2 compliant trusted platform module
bound to the mobile receiver M .

R denotes a CRTM bound to the mobile receiver M .
P denotes a privacy certification authority (privacy-CA)

trusted by both M and S.

272

8.3 Implementing the protocols using the TCG
specifications

In this section we investigate how the generic protocols described in chapter 7

can be mapped to a platform into which a version 1.2 compliant TPM and a

CRTM have been integrated. How the generic key exchange protocol, defined

and analysed in section 7.7, can be implemented using a TCG version 1.2 com-

pliant system is examined in section 8.3.1. The implementation of the generic

key agreement protocol, described and analysed in section 7.8, using a platform

into which a version 1.2 compliant TPM and a CRTM have been integrated is

explored in section 8.3.2.

In chapter 7, some generic assumptions were made about the software pro-

vider, the mobile receiver, the trusted module embedded within the mobile

receiver, and the download application. In this section, the trusted module, in-

troduced in chapter 7, is mapped to a version 1.2 compliant TPM and a CRTM,

as specified by the TCG. The assumptions pertaining to the trusted module and

the architecture of the mobile receiver defined in section 7.5 are re-examined here

in view of this mapping.

TPM, a TCG version 1.2 compliant TPM, is a tamper resistant self-contained

processing engine, inextricably bound to M, with specialist capabilities such as

random number generation, asymmetric key generation, digital signing, encryp-

tion capabilities, a SHA-1 engine, a HMAC engine, monotonic counters, as well

as volatile and non-volatile memory, power detection and I/O. The RTM, also

inextricably bound to M, is a computing engine which accurately generates at

least one integrity measurement event representing a software component run-

ning on the platform. For the foreseeable future, it is envisaged that the RTM

will be integrated into the normal computing engine of M with minimum pro-

273

tection, where additional instructions (i.e. the CRTM) are integrated into the

platform’s BIOS boot block or BIOS and cause the main platform processor

to function as the RTM. The CRTM, R, may, however, be part of TPM . See

section A.6 for further details.

A unique asymmetric encryption key pair is associated with TPM, called an

endorsement key pair, see section A.7.4. The endorsement key pair is used only

for encryption/decryption purposes. The private endorsement key is protected

within a TPM shielded location, see section A.7.1. The public endorsement

key is certified by a trusted platform management entity, see section A.5, in

an endorsement credential, see section A.10.1. A set of credentials including

the endorsement credential, in conjunction with conformance credentials and a

platform credential, are also generated for M , which we assume incorporates

TPM, see section A.10.

TPM has at least one identity and at least one attestation identity key (AIK)

pair associated with it, see section A.10.4. The private AIK is securely stored

by TPM and may be used both to sign attestation statements and to certify

non-migratable keys, see section A.13.1, generated within TPM . The public

key from this AIK pair is certified by a privacy-CA P in the form of an AIK

credential CertTPM , see section A.10.4. P is trusted by S .

TPM is also capable of generating an asymmetric key pair on demand, of

which the private key may be cryptographically linked to a set of integrity

metrics. The private key from such a pair is securely stored by TPM, and can

only be used when the platform is in a specified state. A newly generated public

key may be certified using the public AIK described in the previous paragraph.

TPM also provides secure storage and, more specifically, sealing, see sec-

tion A.13. This capability may be used to encrypt and store any symmetric

274

keys that are generated on the platform, and to ensure that access to these

symmetric keys is only permissible when the platform is in a specified state.

Finally, TPM is capable of signing 160 bits of external data, in conjunction

with I2, see section 7.4, thereby providing a platform attestation statement that

can be verified by S, see section A.11. Validation certificates can be generated

and made available so that a challenger of the platform, such as S, can validate

the configuration of the trusted platform’s software environment. Alternatively,

a trusted third party may be used in the validation of a challenged platform’s

software configuration, see section A.11.4.

The TCG 1.2 specifications do not, however, specify any components which

can be used in the implementation of isolated software domains or compartments

on a platform. In this scenario, it is therefore assumed that multiple isolated do-

mains or compartments do not necessarily exist on the platform. The ‘protected

execution environment’ which is assumed in chapter 7, can only be constructed

in a platform of this nature through the deployment of a trusted operating

system (which has been measured, and which has measurement capabilities)

and the enforcement of rigorous restrictions on the execution of software. It

is assumed that the state of the platform has been measured and the integrity

metrics which reflect it stored by TPM, see section A.11.

In defining the protocols, use of the version 1.2 TPM command set [158]

and data structures [157] is implied. TPM commands used include TPM

CreateWrapKey ; TPM CertifyKey or TPM CertifyKey2 depending on the

properties of the key to be certified and the certifying key; TPM Quote or

TPM Quote2 ; and TPM Seal. The data structures used include TPM Key,

which uses the TPM PCR INFO to define the platform configuration registers

(PCRs) in use, or TPM Key12, which uses TPM PCR INFO LONG structure

275

to more fully define the PCRs in use; and TPM Certify Info or TPM Certify Info2.

8.3.1 Key exchange protocol

Here we describe how the key exchange protocol defined in section 7.7 can be

implemented using a TCG version 1.2 compliant system. We assume a basic

TPM key hierarchy, for example, that described in figure 8.1, which contains

a TPM storage root key (SRK), an attestation identity key, which has been

generated and activated (AIK), and a storage key, i.e. a conditional access

application key (CAAK). We assume, prior to the initiation of the protocol

described below, that all three of these keys are in existence and that the SRK,

the CAAK and the attestation identity key, AIK, are loaded in TPM.

SRK

AIK CAAK

key to be created

Figure 8.1: Key hierarchy for the download of AC

The numbered protocol steps described below map directly to the generic

key exchange protocol steps described in section 7.7. TCG-specific functionality

is used in steps 5 to 17. In steps 5 to 8, TPM CreateWrapKey functionality is

used. In steps 9 to 11, TPM LoadKey2 functionality is deployed. Finally, in

steps 12 to 17, TPM CertifyKey functionality is used. Note that further details

of the TPM commands and structures used in the protocol are given in the text

276

following the numbered steps.

1. AD → S : Request forAC .

2. S : Generates a random value RS , and stores it for subsequent freshness

checking of received data. RS should be chosen in such a way that the

probability of the same value ever being used twice by S is negligible. The

random number generated must also be unpredictable to a third party.

3. S → AD : RS .

4. AD : Stores RS .

5. AD → TPM : TPM CreateWrapKey.

6. TPM : Generates PAD
and SAD

, and binds SAD
to I1 and I2, (the con-

catenation of which is referred to as I).

7. TPM → AD : TPM Key, which contains PAD , an encrypted SAD , and I.

8. AD : Keeps a record of I2 to which SAD was bound, the list of selected

target PCRs, and the selected PCR values.

9. AD → TPM : TPM LoadKey2 — Request to load TPM Key.

10. TPM : Loads TPM Key.

11. TPM : Outputs a handle to the loaded TPM Key.

12. AD → TPM : TPM CertifyKey. The hash of RS || IdS is sent to the

TPM as an input parameter to this command.

13. TPM : Signs H(PAD), H(RS || IdS), and I1, where H(RS || IdS) is

included so that the freshness of the signature can be checked by the

software provider, and so that the intended destination of the message

277

can be verified by the software provider,

STPM (H(PAD
) || H(RS || IdS) || I1).

14. TPM → AD : TPM Certify Info || STPM (H(PAD
) || H(RS || IdS) || I1).

15. AD → S : RS || IdS || PAD
|| TPM Certify Info ||

STPM (H(PAD
) || H(RS || IdS) || I1).

16. S : Retrieves CertTPM and verifies it.

17. S : Verifies TPM Certify Info and STPM (H(PAD
) || H(RS || IdS) || I1)

using the public signature verification key of the TPM contained in CertTPM .

18. S : Verifies RS against the value generated and stored in step 2, to ensure

that the message is fresh.

19. S : Verifies that the message was intended for S through the examination

of IdS .

20. S : Decides if I1 represents a sufficiently trustworthy state.

21. Assuming the signature, RS , IdS and I1 are acceptable,

S: Extracts PAD
.

22. S : Generates secret keys K1S,AD
and K2S,AD

, used for data encryption

and data integrity, respectively.

23. S : Computes a MAC on, and then encrypts, AC ,

EK1S,AD
(AC || MACK2S,AD

(AC)).

24. S : Encrypts the MACing and encryption keys used in step 23 with PAD
,

the public encryption key of TPM ,

EPAD
(K1S,AD

|| K2S,AD
).

25. S : Signs the encrypted bundle from step 24,

SS(EPAD
(K1S,AD

|| K2S,AD
)).

278

26. S → AD : EPAD
(K1S,AD

|| K2S,AD
) ||

SS(EPAD
(K1S,AD

|| K2S,AD
)) || EK1S,AD

(AC || MACK2S,AD
(AC)).

27. AD : Retrieves CertS and verifies it.

28. AD : Verifies SS(EPAD
(K1S,AD || K2S,AD)) using the public signature

verification key of S contained in CertS .

29. TPM : Decrypts EPAD
(K1S,AD

|| K2S,AD
).

Use of the corresponding private key, and therefore decryption of the

shared symmetric keys, will only be completed if the current state of the

platform software environment is reflected by the integrity metrics, I1, to

which SAD
was bound in step 6. Authorisation data may also be required,

depending on the value of the TPM Auth Data Usage field set in step 5.

30. AD: Compares I2 to its record of I2 to which SAD
was bound in step 6,

to ensure that the request for key pair generation came from AD.

31. AD : Decrypts EK1S,AD
(AC || MACK2S,AD

(AC)).

32. AD : Verifies MACK2S,AD
(AC).

33. Once AC is executing, AD precludes the potential interference of any other

application with AC .

34. AD : Deletes AC , and all other keys, when they are no longer required.

The encrypted copy of AC may remain stored for future use, space per-

mitting.

8.3.1.1 Steps 5 to 8

The TPM CreateWrapKey command is used in step 5 of the protocol to instruct

TPM to generate an asymmetric key pair PAD
and SAD

. The input parameters

associated with the TPM CreateWrapKey command include information about

279

the key-to-be-created, i.e. the TPM structure version, the operations to be per-

mitted with the key, an indication of whether the key-to-be-created should be

migratable, the parameters used to generate the key, the PCRs to which the

key-to-be-created is to be bound, and the conditions in which it is required that

authorisation data is to be presented for use of the key-to-be-created. Input of

the parent wrapping key usage authorisation data may also be required. En-

crypted usage authorisation data and/or migration authorisation data for the

key-to-be-created may also be input. For this particular use case we require

that the key-to-be-created is non-migratable. This implies that the key cannot

be migrated from the TPM in which it is created.

Alternatively, a certifiable migratable key could be created using the TPM

CMK CreateKey command instead of the TPM CreateWrapKey command. A

certifiable migratable key is one which may be certified by TPM and migrated,

but only under strict controls. This prohibits the key protecting the conditional

access application from being migrated to an arbitrary platform authorised by

the owner of TPM, but permits its migration to selected devices, e.g. other

TPMs owned by the same entity. Before key migration, the key owner must

authorise the migration transformation. The migration destination must also

be authorised, not only by the owner of TPM, but also by a migration selec-

tion authority. This authority could, for example, be the trusted download

agent, AD, or, alternatively, the software provider, S. We focus, however, on

the case where the key to be created is non-migratable and generated using the

TPM CreateWrapKey command.

In response to the TPM CreateWrapKey command, TPM returns either a

TPM Key or a TPM Key12 data structure (note that the above protocol de-

scription assumes the former). Both data structures contain the created public

key, PAD
, and the encrypted private key, SAD

. Both data structures also iden-

280

tify the operations permitted with the key and contain a flag indicating whether

or not the key is migratable. Both data structures may also identify the plat-

form configuration (the PCR info) to which SAD
is bound. The TPM Key

and TPM Key12 data structures differ only in the way in which the PCR info

parameter is described.

If a TPM Key data structure is returned from the TPM CreateWrapKey

command, a TPM PCR INFO structure will describe the platform configura-

tion to which the key is bound. A TPM PCR INFO structure contains three

fields:

• pcrSelection, which indicates the selected PCRs to which the key is bound;

• digestAtRelease, which is the digest of the PCR indices and PCR values

which must be verified when using the key bound to the PCRs; and

• digestAtCreation, which is the digest value of the selected PCR values at

the time of key creation.

Alternatively, if a TPM Key12 data structure is returned from the TPM

CreateWrapKey command, a TPM PCR INFO LONG structure will describe

the platform configuration to which the key is bound. A TPM PCR INFO

LONG structure contains six main fields:

• localityAtCreation, which contains the locality modifier set when the key

was created;

• localityAtRelease, which contains the locality modifier that must be set in

order to use the key created;

• creationPCRSelection, which contains the selection of PCRs active when

the key was created;

281

• releasePCRSelection, which contains the selection of PCRs to which the

key is bound;

• digestAtCreation, which contains the composite digest of the PCR values

when the key was created; and

• digestAtRelease, which contains the digest of the PCR indices and the

PCR values that must be verified when using the key that was bound to

the PCRs.

The use of the TPM PCR INFO LONG structure allows the values of a different

set of PCRs to be reflected in the digestAtCreation and digestAtRelease fields.

The TPM PCR INFO LONG structure also allows the locality modifier that

was set when the key was created, and the locality modifier required for key use,

to be defined. The locality mechanism permits trusted processes communicating

with TPM to indicate to TPM that a particular command has originated from

a trusted process, the definition of which is platform-specific; see section A.12

for further details.

As no assumptions are made regarding the existence of multiple isolated

compartments in this implementation, the locality feature is not required. Also,

as the software configuration we wish to reflect in the PCR info parameter is

represented by the entire PCR set, and is the same for both digestAtCreation

and digestAtRelease, we assume here that a TPM Key structure is used as an

input parameter to, and as an output parameter from, the TPM CreateWrapKey

command.

In this particular implementation, it is required that the pcrSelection rep-

resents the entire set of PCRs. The returned digestAtCreation should reflect

an execution environment which consists of correctly functioning broadcast and

download applications running on a particular trusted operating system, and

282

nothing more. Verification of the returned digestAtCreation by AD when using

the key assures the download application that the key was created in the correct

software environment and not by a rogue application.

The required digestAtRelease could be incorporated into the application,

AD, and then inserted as an input parameter to the TPM CreateWrapKey com-

mand by AD. The digestAtRelease could reflect, for example, a platform config-

uration in which a particular broadcast application and a particular download

application are running on a particular trusted operating system, but nothing

more.

The TPM PCR INFO structure in the returned TPM Key structure de-

scribes the state of the execution environment to which the key is bound. How-

ever, if this data is to be communicated to the challenger, S, proof must exist

that the data originated from a genuine TPM and that it has not been replayed.

This is discussed below.

The final part of the TPM Key structure to consider is the TPM Auth Data

Usage structure. This structure may take one of three values: TPM Auth

Never; TPM Auth Always; or TPM Auth Priv Use Only. In this scenario, AD

must use the private key to decipher the symmetric keys protecting AC . The

first option is to permit AD to use the private key without the submission of any

authorisation data. In this case the TPM Auth Data Usage structure is set to

TPM Auth Never. Alternatively, the TPM Auth Data Usage structure could

be set to TPM Auth Always or TPM Auth Priv Use Only, where, on key pair

generation, 20 bytes of authorisation data are associated with the public/private

key pair, or with just the private decryption key, respectively. In this instance

we assume that the TPM Auth Data Usage structure is set to TPM Auth Priv

Use Only.

283

To enable this, before a request for key pair generation, the user could be

requested to provide a password, from which the authorisation data for private

key use is derived. Thus, when use of the private decryption key is required,

the correct password would have to be re-entered by the user. Alternatively, a

known authorisation value could be used, or the authorisation value required

for the use of SAD
could be sealed to PCR values which represent a correctly

functioning AD running in a particularly configured execution environment.

8.3.1.2 Steps 9 to 11

Once a key pair has been created using the TPM CreateWrapKey command,

the key to be certified must be loaded using the TPM LoadKey2 command. The

handle of the parent key, CAAK, is input as a parameter to this command, in

conjunction with a parameter which proves to TPM that the parent key usage

authorisation data is known by the caller. The TPM Key structure of the newly

created key to be loaded is also input. TPM responds by sending an internal

TPM handle pointing to where the key is loaded.

8.3.1.3 Steps 12 to 17

The key handle returned from the load command is then used as an input

parameter to either a TPM CertifyKey or TPM CertifyKey2 command in a

request for the loaded key to be certified. A 160-bit string of externally supplied

data, which in this protocol is used to submit a hash of RS and IdS , is also given

as an input parameter to this command.

In response to the TPM CertifyKey command, TPM returns either a

TPM Certify Info or a TPM Certify Info2 data structure. Both certifyInfo

structures describe the key-to-be-certified, including any authorisation data re-

quirements, a digest of the public key-to-be-certified, 160 bits of external data,

284

and a description of the platform configuration data required for the release

and use of the certified key. In addition to this structure, TPM also signs and

returns a hash of the certifyInfo parameter.

Whether a TPM Certify Info or a TPM Certify Info2 data structure is

output, is determined by the localities and the PCRs the certified key is re-

stricted to. A key with no locality restrictions, and one which is not bound

to a PCR greater than PCR 15, will cause the command to return and sign a

TPM Certify Info structure. Otherwise, a TPM Certify Info2 data structure

is returned. The TPM CertifyKey command does not support the case where

the certifying key requires a usage authorisation to be provided, but the key to

be certified does not.

In response to the TPM CertifyKey2 command, a TPM Certify Info2 data

structure is returned. It supports the case where the certifying key requires a us-

age authorisation to be provided, but the key-to-be-certified does not. However,

this command does not support the case where the key-to-be-certified requires

a usage authorisation to be provided, but the certifying key does not. The

TPM CertifyKey2 command must also be used to certify certifiable migratable

keys.

Use of a particular command and a particular structure depends on whether

the parent certifying key or key-to-be-certified are associated with usage autho-

risation data, and whether the key-to-be-certified is a non-migratable key or a

certifiable migratable key. Use of a particular structure is also dependent on the

required PCR binding. For the purpose of this protocol, the TPM CertifyKey

command is used, and a TPM Certify Info structure is returned by TPM.

285

SRK

AIK CAAK

data to be sealed

Figure 8.2: Key hierarchy for the download of AC

8.3.2 Key agreement protocol

We now describe how the key agreement protocol defined in section 7.8 can be

implemented using a TCG version 1.2 compliant system. A TPM key hierarchy

similar to that described in section 8.3.1 is assumed. The key hierarchy described

in figure 8.2 also contains a TPM storage root key, SRK, an attestation identity

key, AIK, which has been generated and activated, and a storage key, CAAK.

We assume, prior to the initiation of the protocol described below, that all three

of these keys are in existence, and that the SRK, CAAK and AIK are loaded

in TPM.

The numbered protocol steps described below map directly to the generic key

exchange protocol steps described in section 7.8. This implementation involves

the deployment of TCG-specific functionality in steps 12 to 22 and in step

29. TPM Seal functionality is used in steps 12 to 14. Steps 15 to 22 utilise

TPM Quote functionality. Finally, in step 29, TPM Unseal functionality is

used. Note that further details of the TPM commands and structures used in

the protocol are given in the text following the numbered steps.

286

1. AD : Chooses a Diffie-Hellman private value aM and calculates bM based

on g and p, which may have been hard-coded into the relevant application

software or alternatively, may be retrieved from the relevant certificates.

2. AD → S : Request application AC || bM .

3. S : Chooses a Diffie-Hellman private value aS and calculates bS using the

same g and p that were used by AD in step 1.

4. S : Signs the concatenation of bS , its public Diffie-Hellman key, bM , the

public Diffie-Hellman key of AD, and IdM , the identity of M , to whom

the message is being sent,

SS(bS || bM || IdM).

5. S → AD : bS || SS(bS || bM || IdM).

6. AD : Retrieves CertS and verifies it.

7. AD : Verifies the signature on the message received in step 5 using the

public signature verification key of S contained in CertS .

8. AD : Verifies that bM has been returned, thereby indicating that the mes-

sage is fresh.

9. AD : Verifies that IdM is contained within the signed message to ensure

that the message was destined for M .

10. AD : Calculates the shared key KS,AD using bS , the public Diffie-Hellman

value of S, and aM , the private Diffie-Hellman value of AD.

11. AD : Derives secret keys K1S,AD and K2S,AD used for data encryption

and data integrity, respectively, from KS,AD by an agreed method.

12. AD → TPM : TPM SealI(K1S,AD‖K2S,AD).

287

13. TPM : Securely stores K1S,AD
and K2S,AD

using the protected storage

mechanism, such that K1S,AD
and K2S,AD

can only be decrypted when

the protected environment is in a specified state I1, i.e. the TPM seals

K1S,AD and K2S,AD .

14. AD : Keeps a record of I2 to which the sealed keys were bound, the list of

selected target PCRs, and the selected PCR values.

15. AD → TPM : TPM Quote(H(bM || bS || IdS) || I2).

16. TPM → AD : STPM (H(bM || bS || IdS) || I2).

17. AD → S : STPM (H(bM || bS || IdS) || I2).

18. S : Obtains and verifies CertTPM .

19. S : Verifies STPM (H(bS || bM || IdS) || I2) using the public signature

verification key of TM contained in CertTPM .

20. S : Verifies bS to ensure that the message is fresh.

21. S : Verifies IdS to ensure that the message was destined for S.

22. S : Checks that the message has come from a legitimate TPM, and checks

whether I2 represents a sufficiently trustworthy execution environment.

Given I2, S can verify that the AD is executing as expected, that it has

not been tampered with, and also that there is a legitimate broadcast

application executing on the mobile host. Thus S can be sure that K1S,AD

and K2S,AD have been sealed to the PCR data defined by I1.

23. S : Calculates the shared key KS,AD
using bM , the public Diffie-Hellman

value of AD, and aS , the private Diffie-Hellman value generated by S.

24. S : Derives secret keys K1S,AD
and K2S,AD

used for data encryption and

data integrity, respectively, from KS,AD
by an agreed method.

288

25. S : Computes a MAC on, and encrypts, AC .

EK1S,AD
(AC || MACK2S,AD

(AC)).

26. S → AD : EK1S,AD
(AC || MACK2S,AD

(AC)).

27. AD → TPM : Request to unseal K1S,AD
and K2S,AD

.

K1S,AD and K2S,AD can only be unsealed if the platform is in the agreed

state, I1. Furthermore, authorisation data may also be required, depend-

ing on the value of the TPM Auth Data Usage field set in step 12.

28. AD: Compares I2 to its record of I2, to which the symmetric keys were

bound in step 12, to ensure that the request for sealing the symmetric

keys came from AD.

29. AD : Decrypts EK1S,AD
(AC || MACK2S,AD

(AC)).

30. AD : Verifies MACK2S,AD
(AC).

31. Once AC is executing, AD precludes the potential interference of any other

application with AC .

32. AD : Deletes AC , and all other keys, when they are no longer required.

The encrypted copy of AC may remain stored for future use, space per-

mitting.

8.3.2.1 Steps 12 to 14

The TPM Seal command is used in step 12 to securely store the keys K1S,AD

and K2S,AD . The input parameters for this command include the data to be

sealed and the authorisation data required to unseal the data. The TPM Seal

command is also given information identifying the PCRs whose values are to be

bound to the protected data. In response, TPM returns either a TPM Stored Data

or a TPM Stored Data12 structure. Both the TPM Stored Data and the

289

TPM Stored Data12 structures contain the platform configuration to which the

sealed data is bound and a TPM Sealed Data structure. The latter contains

the encrypted data, and the authorisation requirements for access to the data.

The TPM Stored Data and TPM Stored Data12 data structures differ only in

the way in which the PCR info parameter is described. If a TPM Stored Data

data structure is returned from the TPM Seal command, a TPM PCR INFO

structure will describe the platform configuration to which the key is bound.

Alternatively, if a TPM Stored Data12 data structure is returned from the

TPM Seal command, a TPM PCR INFO LONG structure will describe the

platform configuration to which the key is bound. We assume here that the

TPM Seal command is used and the TPM Stored Data structure output.

For our application we require that the key used to seal the symmetric keys,

CAAK, is non-migratable. This implies that the private key cannot be migrated

from TPM, in which it was created. Alternatively, a certifiable migratable key,

created with the TPM CMK CreateKey command, may be used in the seal

operation. This migratable key may be certified by TPM and migrated, but

only under strict controls. This prohibits the sealing key, which essentially

protects the conditional access application, from being migrated to an arbitrary

platform authorised by the TPM owner, but permits its migration to selected

devices, e.g. to other TPMs owned by the same entity. We will focus, however,

on the case where the sealing key is non-migratable.

8.3.2.2 Steps 15 to 22

Finally, the TPM Quote or TPM Quote2 command is used to instruct TPM

to attest to the platform’s configuration. The parameters given to either com-

mand include the indices of the PCRs to be attested to. 160 bits of exter-

nal data may also be supplied, which, in this protocol, are used to submit a

290

one way hash of bM , bS and IdS for attestation. TPM Quote2 differs from

TPM Quote in that TPM Quote2 uses the TPM PCR INFO SHORT rather

than a TPM PCR COMPOSITE structure to hold information relating to the

PCRs. TPM PCR INFO SHORT holds locality information, thereby providing

the challenger with a more complete view of the current platform configuration.

Use of a particular structure is also dependent on the required PCR binding.

The TPM Quote command is used here.

8.3.3 Implementation specific security analysis

We now consider how/whether security requirements 6 and 7 from section 6.3

are met by the TCG-specific protocol implementations specified in sections 8.3.1

and 8.3.2.

6. Confidentiality and integrity protection of the cryptographic keys used in

the prevention of unauthorised reading of, and the detection of unautho-

rised modification to, the application code and data:

(a) Secure symmetric key generation:

In the key exchange protocol, the symmetric keys, K1S,AD
and K2S,AD

,

are generated by the software provider.

In the key agreement protocol, K1S,AD and K2S,AD are derived both

by the software provider and on the mobile receiver. It must be

ensured by S, therefore, that the symmetric keys are derived in an

environment which is indeed trusted by the software provider. S can

verify the software environment in which the symmetric keys were

derived, and also the value I1 to which AD requested that the keys

were sealed by verifying the attestation statement sent in step 17 of

the key agreement protocol.

291

In the scenario where the host platform has a version 1.2 compliant

TPM and a CRTM, but no mechanisms in place to facilitate the

construction of multiple isolated compartments on the platform, the

entire PCR set must be attested to by TPM, so that S can obtain

a full image of the platform’s software configuration. Ideally, only

a trusted operating system, a download application and a broadcast

would be running on the platform, or the verification of the platform’s

configuration by S may quickly become an overly complex task.

(b) Secure symmetric key transmission:

As stated above, in the key exchange protocol, the symmetric keys

are generated by the software provider and must therefore be securely

transmitted to the mobile host. In order to do this, the software

provider takes the public encryption key sent by the mobile host,

encrypts and signs the symmetric keys, and returns the encrypted

bundle. Because the corresponding private key is known only to

TPM embedded in the mobile platform, an attacker cannot com-

promise the confidentiality of the symmetric keys in transit. If the

encrypted MACing and encryption keys are modified in an accidental

or a malicious way, the verification of the signature on the MACing

and encryption keys will fail, and so this will be detected.

In the key agreement protocol, keys do not need to be transmitted

as they are derived locally on the mobile host.

(c) Secure symmetric key storage:

In the key exchange protocol, the symmetric keys are encrypted by

the software provider using the public encryption key sent by the

mobile host, and then signed. The keys remain encrypted and signed

while in storage on the mobile host, until their use. Because the cor-

292

responding private key is known only to TPM which is embedded in

the mobile platform, an attacker cannot compromise the confidential-

ity of the symmetric keys while in storage. If the encrypted MACing

and encryption keys are modified in an accidental or a malicious way

while in storage, the verification of the signature on the MACing

and encryption keys will fail, so this will be detected. K1S,AD
and

K2S,AD
must also be securely managed and protected by S, at least

to the same degree as AC itself is protected.

In the key agreement protocol the symmetric keys, when derived, are

encrypted by TPM and bound to a specific execution environment

state (sealed). Once the keys have been sealed an attacker cannot

compromise the confidentiality of the symmetric keys while in stor-

age, as the private key required to decrypt the symmetric keys is

known only to TPM . While the sealing capability does not explic-

itly integrity protect the sealed keys, the association of 20 bytes of

authorisation data with the sealed data provides implicit integrity

protection, as described in section A.13.

(d) Prevention of unauthorised access to the symmetric keys:

In the key exchange protocol, an asymmetric key pair is generated

by TPM. The symmetric keys, K1S,AD
and K2S,AD

, used to MAC

and encrypt the application, are then securely delivered to M by S

encrypted under PAD , as stated above. The non-migratable private

key, SAD , required to decrypt K1S,AD , is securely stored by TPM,

and its use is only permitted when the platform is in a particular

state, which has been verified as trustworthy by the software provider.

In conjunction with this, twenty bytes of authorisation data may

have been associated with SAD . However, a problem arises regard-

293

ing where this authorisation data may be stored. It may be securely

stored by TPM, i.e. sealed to AD, but this offers no additional pro-

tection as regards preventing unauthorised access to SAD
, than if

no authorisation data were associated with it. This is an important

issue, but one that is not dealt with in the TCG specifications.

As an alternative option, it may be relatively straightforward for a

user to provide the necessary password, during key pair generation,

from which the key usage authorisation data may then be derived.

This option may be acceptable so long as user interaction with AD

is permitted, and there is a secure link between the user entering the

password and TPM.

In the key agreement protocol the symmetric keys are encrypted by

TPM and bound to a specific execution environment state (sealed).

Twenty bytes of authorisation data are also associated with the sealed

MACing and encryption keys, for more stringent control against

unauthorised access.

Once the keys have been decrypted, they are protected using the

same mechanisms used to protect the decrypted AC as described in

the next section.

7. Confidentiality and integrity protection of the application code and data

during execution:

No mechanisms are described by the TCG for partitioning a system into

trusted and untrusted compartments or execution environments. On the

face of it, one could take this to imply that the ‘protected execution envi-

ronment’ we speak of in relation to the TCG protocol implementation must

encompass the entire platform. In order to gain some assurances about

the platform’s behaviour, the software provider/challenger of a platform

294

may potentially require that only a trusted operating system and a lim-

ited applications set (namely AD and AB) are running on the platform,

so that the state can be considered trustworthy for the download and ex-

ecution of AC . Consequently, the system would be rendered unusable for

any purpose other than broadcast for the duration of AC download and

use. Once K1S,AD
, K2S,AD

and AC have been decrypted, AD, as defined

in chapter 7, precludes the potential interference of any other application

with AC .

Alternatively, if platform use is to remain open, a challenger may be faced

with the task of verifying a large set of potentially complex integrity met-

rics, making the process of PCR verification and assessment almost cer-

tainly an impossible one. In conjunction with this, unless AD is running

in a controlled environment, for example on a trusted operating system in

conjunction with AB , then application controls provided by AD may be

circumvented.

In reality, however, it would appear that the TCG never intended the

security mechanisms they describe to be deployed in isolation. System

partitioning, for example, represents a vital facet of trusted computing,

but its implementation is left open. For our particular use case, therefore,

it is beneficial if the system can be compartmentalised into trusted and

untrusted environments. This facilitates simpler PCR verification, and

enables untrusted applications to be executed in parallel to, but in iso-

lation from, those running in the trusted environment. The deployment

of system partitioning may also be used to ensure that the conditional

access application may not be manipulated while executing on the mobile

host. It becomes clear that in order to implement the above protocols as

securely as possible, the entire system needs to be considered, not merely

295

the trusted components upon which that platform is built.

Although the functionality described in the TCG specification set provides

a solid starting point to implement the protocols, a more complete architecture

detailing the entire trusted platform, from the trusted foundation to the applica-

tion layer, would be advantageous. This complete architecture may be provided

using a combination of additional hardware and/or software built around the

TCG standard components.

8.4 Implementing the protocols using the TCG
specification set and an integrated isolation
kernel

The deployment of an isolation layer represents one of the most widely dis-

cussed and secure methods of implementing isolated compartments on a com-

puting platform, where an isolation layer “provides a means to isolate operating

systems, application and applets” [104]. Implementations include those based

on virtual machine monitors, hypervisors, microkernels and exokernels, see sec-

tion 1.6.8. Through the integration of an isolation layer into a TCG-defined

trusted platform containing a version 1.2 compliant TPM and a CRTM, the

protocols described in section 8.3 may be implemented in a more efficient and

secure way.

As was the case in section 8.3, the trusted module, introduced in chapter 7,

is mapped to a version 1.2 compliant TPM and CRTM as specified by the

TCG. In this particular implementation, the architecture also aims to provide a

high assurance runtime environment for trustworthy applications. It is assumed

that multiple isolated execution environments can be supported through the

deployment of an isolation layer, and that at least one protected execution

296

environment/protected compartment is running on the platform. Within this

environment, different applications run in isolation, free from being observed

or compromised by other processes running in any insecure partition that may

exist in parallel, see section 1.6.8.

Given that a version 1.2 compliant TPM and CRTM, as specified by the

TCG, is assumed to be integrated into the platform, the protocols we are propos-

ing will be executed in a way similar to that described in section 8.3. However,

because this architecture encompasses an isolation layer, which in turn facili-

tates the existence of isolated compartments on the platform, it is logical to

assume that locality modifiers could be used when describing the platform’s

configuration.

8.4.1 Key exchange protocol

When implementing the generic key exchange protocol described in section 7.7,

the protocol mapping will remain, in the most part, consistent with that de-

scribed in section 8.3.1. However, the required data structures output from

the TPM commands called may differ. When the TPM CreateWrapKey is

called in step 5 of section 8.3.1, the TPM Key12 structure, which uses the

TPM PCR INFO LONG structure to properly define the PCRs, is output rather

than the TPM Key structure. The TPM PCR INFO LONG structure allows

the definition of the locality modifier that was set when the key was created, and

the locality modifier required for key use. When the TPM CertifyKey command

is called in step 12 of section 8.3.1, a TPM Certify Info2 structure is returned

by TPM . This data structure must be returned when the certified key is limited

by locality.

297

8.4.2 Key agreement protocol

When implementing the generic key agreement protocol described in section 7.8,

the protocol mapping will remain generally consistent with that described in sec-

tion 8.3.2. However, when the TPM Seal command is used, a TPM Stored Data

structure is output. The TPM Quote2 command may be called instead of

the TPM Quote command. TPM Quote2 differs from TPM Quote in that

TPM Quote2 uses the TPM PCR INFO SHORT structure rather than the

TPM PCR COMPOSITE structure to hold information relevant to the PCRs.

The TPM PCR INFO SHORT structure holds locality information, thereby

providing the challenger with a more complete view of the current platform

configuration.

8.4.3 Implementation specific security analysis

We now consider how security requirements 6 and 7 from section 6.3 are met

when the protocols are implemented on a platform into which a TCG version 1.2

compliant TPM and CRTM and an isolation layer are integrated.

6. Confidentiality and integrity protection of the cryptographic keys used in

the prevention of unauthorised reading of and the detection of unauthorised

modification to the application code and data:

(a) Secure symmetric key generation:

In the key exchange protocol, the symmetric keys, K1S,AD
and K2S,AD

,

are generated by the software provider.

In the key agreement protocol, K1S,AD and K2S,AD are derived on

the platform. It must be ensured, therefore, that the symmetric keys

are derived in an environment which is trusted by the software pro-

vider. S can verify the software environment in which the symmetric

298

keys were derived, and also the value I1 to which AD requested that

the keys were sealed, by verifying the attestation statement sent in

step 17 of the key agreement protocol.

In this implementation, where it is assumed that isolated software

compartments are running on the platform, the PCR set attested to

by TPM can be greatly reduced. Ideally, PCRs reflecting the boot

process, the isolation kernel, and the compartment in which a down-

load application and a broadcast are running would be attested to

by TPM, making verification of the protected execution environment

by S much less complex.

(b) Secure symmetric key transmission:

In the key exchange protocol, keys are protected during transmission,

as described in point 6b in section 8.3.3.

(c) Secure symmetric key storage:

In both the key exchange and key agreement protocols, keys are se-

curely stored, as described in point 6c in section 8.3.3.

(d) Prevention of unauthorised access to the symmetric keys:

In both the key exchange protocol and the key agreement protocol,

the symmetric keys can only be decrypted when the host platform,

or, more specifically, a particular compartment which resides on the

host platform, is in a particular state. Knowledge of the required

usage authorisation data may also have to be demonstrated in order

to access the symmetric keys.

Once the keys have been decrypted, they are protected using the

same mechanisms used to protect the decrypted AC , as described in

the next section.

299

7. Confidentiality and integrity protection of the application code and data

during execution:

K1S,AD
, K2S,AD

, and AC , once decrypted, are protected within an iso-

lated compartment, which may be constructed using an isolation layer de-

ployed within the platform. How exactly these compartments are isolated

from one another is dependent on the particular isolation layer implemen-

tation, see section 1.6.8. Every isolation layer implementation, however,

aims to fulfil two basic requirements, isolation and assurance [126].

In order to fulfil the isolation requirement, a program must be able to exe-

cute free from external interference. In conjunction with this, a program’s

data or computations should not be observable by other entities, except for

data the program chooses to reveal through interprocess communication.

It is also required that the isolation layer behaves as specified. A high

degree of assurance in the behaviour of the isolation layer can only be

achieved if it is kept as small and as simple as possible.

While isolation layer implementations have aimed to meet both isolation

and assurance requirements, this has not always been achieved because of

problems which have arisen in relation to device support and backward

compatibility [126].

One approach used to support devices is to vitualise them, see section 1.6.8.

While the number of devices supported by a computing platform remains

small, this is a viable solution. However, in today’s consumer environment

there are an ever increasing set of devices which need to be supported.

With each device that is virtualised, the size of the isolation kernel grows,

and in turn moves further from meeting the assurance requirement [126].

As an alternative, devices may be exported to guests by the isolation ker-

300

nel, see section 1.6.8. In this case, device accesses by guests are made

directly to the device, without translation by the isolation layer. This im-

plies that device drivers need not be included in the isolation layer. Prob-

lems arise, however, in relation to direct memory access (DMA) devices

which are given full access to physical memory. This may in turn result in

problems as regards whether the isolation layer can fulfil the isolation re-

quirement. In the majority of isolation layers, protection mechanisms used

to isolate compartments from one another, for example virtual to physical

memory mappings, may be circumvented by the presence of DMA devices

which have direct access to physical memory [126].

Whether or not the isolation layer meets the assurance requirement may

also be affected by whether compatibility with current operating systems

is supported. While, ideally, an operating system (OS) developed prior to

the isolation layer could be executed without modification on the isolation

layer, problems may arise when exposing the original hardware to a guest.

More specifically, the x86 CPU is not virtualisable and, in order to deal

with this, the complexity of the isolation layer must be increased. As an

alternative, paravirtualisation techniques may be utilised. In this case, the

exact original machine model is not exported, requiring the original OS

code to be modified but keeping the isolation layer as simple as possible.

If the symmetric keys and AC are to be protected while exposed on the

platform, the issues surrounding DMA devices and backward compatibility

must be addressed.

As stated above, once AC is executing in the isolated compartment, AD

will prevent the potential interference of any other application with AC

within the isolated compartment.

301

8.5 Implementing the protocols using NGSCB

The NGSCB architecture encompasses a broader set of capabilities than the

TCG-defined trusted platform, see section A.4. In addition to the functional

components defined within the version 1.2 TCG specification set, NGSCB pro-

vides:

• An extended CPU to enable the efficient implementation of a minimal

isolation kernel (as described in [72], for example);

• A minimal isolation kernel;

• Memory controller or chipset extensions such that direct memory access

can be controlled (as described in [72], for example); and

• Hardware components enabling input and output to be efficiently secured

(as described in [72], for example).

In chapter 7, assumptions were made about the software provider, the mo-

bile receiver, the trusted module embedded within the mobile receiver, and the

download application. The assumptions pertaining to the trusted module and

the architecture of the mobile receiver defined in section 7.5 are re-examined in

view of this mapping.

As was the case in sections 8.3 and 8.4, we suppose here that the trusted

module, introduced in chapter 7, is mapped to a version 1.2 compliant TPM and

CRTM, as specified by the TCG. The NGSCB architecture also aims to provide

a high assurance runtime environment for trustworthy applications. Through

the deployment of various hardware extensions, as described in A.4, and the

integration of an isolation kernel, the platform can facilitate the execution of

multiple isolated compartments or domains. It is assumed that at least one pro-

302

tected execution environment/protected compartment is running on the plat-

form. Within this environment, different applications run in isolation, free from

being observed or compromised by other processes running in any insecure par-

tition that may exist in parallel, see section 1.6.8. The services described in

section 6.3.2 are assumed to be available in this environment.

Given that an NGSCB compliant system will incorporate a version 1.2 com-

pliant TPM and CRTM, as specified by the TCG, it is reasonable to assume

that the protocols we are proposing will be executed in a way similar to that

described in section 8.3. Because the NGSCB architecture encompasses an iso-

lation kernel, which in turn facilitates the existence of isolated compartments on

the platform, it is logical to assume that locality modifiers could be used when

describing the platform’s configuration, as was described in section 8.4 above.

8.5.1 Key exchange protocol

As was described in section 8.4.1, when implementing the generic protocol de-

scribed in section 7.7 on an NGSCB compliant platform, the protocol mapping

will remain, in the most part, consistent with that described in section 8.3.1.

However, the required data structures output from the TPM commands may

differ. When the TPM CreateWrapKey command is called in step 5 of sec-

tion 8.3.1, the TPM Key12 structure, which uses the TPM PCR INFO LONG

structure to properly define the PCR registers, is output rather than the TPM Key

structure. The TPM PCR INFO LONG structure also allows the locality mod-

ifier that was set when the key was created, and the locality modifier required

for key use, to be defined. When the TPM CertifyKey command is called in

step 12 of section 8.3.1, a TPM Certify Info2 structure is returned by the TPM.

This data structure must be returned when the certified key is limited by local-

ity [158].

303

8.5.2 Key agreement protocol

When implementing the generic protocol described in section 7.8, the proto-

col mapping will remain, in the most part, consistent with that described in

section 8.3.1. When implementing the key agreement protocol described in sec-

tion 7.8 on an NGSCB compliant platform, the TPM Seal command is used and

a TPM Stored Data structure is output, and the TPM Quote2 command may

be called instead of the TPM Quote command, as was the case in section 8.4.2.

8.5.3 Implementation specific security analysis

We now analyse the differences that the NGSCB architecture would make to

the security of the protocols described in section 8.3.

6. Confidentiality and integrity protection of the cryptographic keys used in

the prevention of unauthorised reading of and the detection of unauthorised

modification to the application code and data:

(a) Secure symmetric key generation:

In the key exchange protocol, the symmetric keys, K1S,AD
and K2S,AD

,

are generated by the software provider.

In the key agreement protocol, K1S,AD
and K2S,AD

are derived on

the platform. It must be ensured, therefore, that the symmetric keys

were derived in an environment which is trusted by the software pro-

vider. S can verify the software environment in which the symmetric

keys are derived, and also the value I1 to which AD requested that

the keys were sealed, by verifying the attestation statement sent in

step 17 of the key agreement protocol.

In this implementation, where isolated software compartments are

running on the platform, the PCR set attested to by TPM, can

304

be greatly reduced. Ideally, the PCR values communicated would

represent the boot process, the isolation kernel, and download and

broadcast applications running in an isolated compartment, making

verification much less complex.

(b) Secure symmetric key transmission:

In the key exchange protocol, keys are protected during transmission,

as described in point 6b in section 8.3.3.

(c) Secure symmetric key storage:

In both the key exchange and key agreement protocols, keys are se-

curely stored, as described in point 6c in section 8.3.3.

(d) Prevention of unauthorised access to the symmetric keys:

As was described in section 8.3.3, the NGSCB architecture will utilise

the TPM’s protected storage functionality to ensure that K1S,AD

and K2S,AD
are only accessible when the protected execution envi-

ronment is in a particular state. Additional authorisation data may

also be required for access.

Once the keys have been decrypted, they are protected using the

same mechanisms used to protect the decrypted AC , as described in

the next section.

7. Confidentiality and integrity protection of the application code and data

during execution:

The NGSCB architecture facilitates system partitioning through the im-

plementation of an isolation kernel. As described in section 8.4.3, this

system partitioning enables simpler PCR verification, as the number of

applications running in a particular protected execution environment may

be strictly controlled.

305

The NGSCB isolation kernel exposes the original hardware to one guest

OS, see section 8.4.3. This offers the advantage that legacy operating sys-

tems and applications may remain in use, despite the adoption of trusted

computing technologies. In order to facilitate efficient OS compatibility

without bloating the isolation kernel, a new CPU mode is introduced so

that the isolation kernel can run in a new ring -1, and guest operating

systems can still execute in ring 0. This avoids problems in relation to

the virtualisability of particular OS instruction sets which may arise if a

virtual machine monitor were to be deployed in ring 0.

With respect to memory partitioning, the NGSCB isolation kernel uses

an algorithm called page table edit control (PTEC) to partition physical

memory among guests. This is described in greater detail in appendix

B but, from a security perspective, protection is analogous to that of

traditional virtual memory protections such as those that use translation

lookaside buffers (TLBs) or page tables.

The NGSCB isolation kernel contains device specific code for a very small

number of devices, i.e. those needed for the operation of the isolation

kernel, see section 8.4.3. All other consumer devices are exported to guest

OSs. This leaves the issue of DMA devices. As described in section 8.4.3,

memory protection mechanisms do not help if an attacker can subvert or

bypass the operating system kernel controls via direct memory access).

In order to prevent this type of attack, Microsoft has encouraged chipset

manufacturers, for example Intel [72], to make changes to their hardware,

so that an access control policy map may be defined by software (for

example, the isolation kernel) and stored in main memory. This policy

map then indicates whether a particular subject (DMA device) should be

able to access (read or write to) a particular resource (physical address).

306

The enforcement of this policy map is completed by hardware. Further

details of this functionality are available in appendix B.

8.6 Conclusions

In this chapter we have examined the implementation of the abstract key ex-

change and key agreement protocols described in chapter 7 on a selection of

trusted computing architectures.

In a TCG compliant platform security service 6 can be met. Problems may

arise however in relation to the provision of security service 7. No mechanisms

are defined by the TCG for partitioning a system into trusted and untrusted

compartments. In order for a software provider to trust the execution environ-

ment in which the conditional access application will execute, he may require

that the platform is in a controlled state, running for example a trusted OS, a

download application, and a broadcast application, but nothing more. Essen-

tially, the end host may be required to become a more closed platform. If a TCG

compliant platform were to remain open in this scenario, it would become very

difficult for a software provider to verify the attestation statement generated

by the end host, and also to evaluate whether a platform should be trusted for

this particular purpose, i.e. the secure download and execution of a conditional

access application.

If an isolation layer is integrated into a TCG compliant mobile device, the

platform can be partitioned into both trusted and untrusted execution environ-

ments. In this way AC can be executed in an isolated execution environment,

which M has attested to, and S has verified and evaluated as trusted for the

secure download and execution of a conditional access application. The verifi-

cation of PCRs, which must be completed by S, is simplified and M can remain

307

open and useable. On implementation of an isolation layer, problems may arise,

however, in relation to OS compatibility and DMA attacks.

Issues surrounding device support and OS backward compatibility may be

tackled through the extension of the platform chipset and enhancement of the

platform CPU, as described as both Microsoft’s NGSCB and Intel’s LaGrande

initiatives.

308

Chapter 9

Secure application
download using XOM and
AEGIS architectures

Contents
9.1 Introduction . 311

9.2 Model . 312

9.3 Notation . 313

9.4 Assumptions . 313

9.5 Protocol initiation . 315

9.6 The XOM application download protocol 316

9.6.1 The XOM system architecture 316

9.6.2 The XOM download protocol 317

9.6.3 Security analysis . 319

9.6.4 Proposed security enhancements/clarifications 325

9.7 The AEGIS application download protocol 327

9.7.1 The AEGIS system architecture 327

9.7.2 The AEGIS download protocol 328

9.7.3 Security analysis . 331

9.7.4 Proposed security enhancements/clarifications 337

9.8 Conclusions . 339

The designers of XOM and AEGIS, Lie et al. and Suh et al., have both

proposed protocols for secure application download. These protocols are based

upon the assumption that the host device contains a hardened processor rather

than a trusted module, as assumed in chapters 7 and 8. In this chapter, we

309

examine these two download protocols, which assume a mobile receiver compliant

with the XOM and the AEGIS system architectures, respectively. Both protocols

are then analysed against the security requirements described in chapter 6. These

analyses have revealed serious security shortcomings in both of these protocols.

We subsequently give a series of proposed enhancements to the protocols designed

to address the identified shortcomings.

310

9.1 Introduction

Two protocols which enable the secure download and execution of an application

AC were specified in chapter 7. Chapter 8 then described three possible imple-

mentations of the abstract key exchange and key agreement protocols defined

in chapter 7, using trusted computing technologies. Having analysed whether

the security requirements listed in chapter 6 were fulfilled by the protocols de-

scribed in chapters 7 and 8, we now move on to examine two protocols for secure

application download and execution proposed by the designers of the XOM and

AEGIS system architectures, Lie et al. and Suh et al., see appendix B. These

protocols are based upon the assumption that the mobile receiver contains a

hardened processor rather than a trusted module, as assumed in chapters 7 and

8.

In section 9.2 the generic model under consideration and its associated enti-

ties are described. Section 9.3 details the notation used in the protocol descrip-

tions, and section 9.4 outlines the basic assumptions upon which the protocols

are based.

Section 9.5 describes the events culminating in the initiation of either down-

load protocol. Sections 9.6 and 9.7 examine how the XOM and AEGIS system

architecture developers intended application download to be implemented using

their respective technologies. A security analysis against the security require-

ments described in chapter 6 is also given for both protocol implementations.

A series of protocol enhancements designed to rectify the identified weaknesses

in the protocols is also provided.

311

9.2 Model

The model underlying both the XOM and AEGIS application download proto-

cols is illustrated in figure 9.1. It involves three parties; the mobile receiver, the

broadcaster and the software provider, as in figure 7.1. In this model, however,

the fourth fundamental component is a tamper resistant processor chip (a hard-

ened processor (HP)), modified to facilitate the secure delivery and execution

of software on M .

As previously described in section 7.2, the mobile user does not need to have

a long term relationship with the broadcaster, but is assumed to be aware of

the content provision services that are available. Some of these services may be

scrambled, in which case access is controlled by a conditional access system. For

each scrambled service, the associated conditional access application AC must

be acquired by the mobile receiver from a software provider.

One fundamental requirement for the application download protocols de-

scribed in chapters 7 and 8 is that the mobile receiver is able to demonstrate to

the software provider that it is a bona fide trusted receiver, and that it is not in

a malicious state that might enable the modification, replication, or extraction

of secret data from the downloaded application. Once the receiver has proved

itself to be trustworthy, AC can be delivered to the platform protected using

mechanisms that prevent access to (decryption of) AC unless the host platform

is in the state deemed trustworthy by the challenger. In the model illustrated

in figure 9.1, where M has an integrated tamper resistant hardened processor,

the application can be cryptographically bound to an individual processor au-

thorised to execute the code. The software provider need only ensure that AC

is encrypted such that it can only be decrypted by and executed on a hardened

processor verified as legitimate by S.

312

Application
Server

Software provider S

DVB-S
DVB-T

DVB-C

Broadcaster B

Mobile receiver M with an embedded hardened processor HP

User Hardened processor (HP)

Conditional access application AC
Broadcaster Content

Figure 9.1: Architecture model

9.3 Notation

The majority of notation used in the specification of this protocol has been de-

fined in section 7.4. The following additional notation will also be used:

HP denotes a hardened processor embedded in the mobile re-
ceiver M.

XOM HP denotes an XOM hardened processor embedded in the mo-
bile receiver M .

AEGIS HP denotes an AEGIS hardened processor embedded in the mo-
bile receiver M .

SK denotes a secure kernel executing on the mobile receiver M .

While in chapters 7 and 8 it is assumed that H is a 160-bit hash function,

for XOM, H is a 128-bit hash function, and for AEGIS, H is unspecified.

9.4 Assumptions

The following pre-conditions need to be satisfied for use of the protocols de-

scribed in sections 9.6 and 9.7.

313

1. There exists a certification authority (CA), trusted by both M and S .

Both M and S possess a trusted copy of the public key of CA, so that

they can both verify certificates generated by CA.

2. The designers of the relevant applications have agreed on the use of the

protocol, and have also agreed on all the necessary cryptographic algo-

rithms.

3. A hardened processor HP, is integrated into the mobile receiver. This

hardened processor enables the isolated execution of processes on the mo-

bile receiver. In order to achieve this, attacks must be prevented against

the following elements:

(a) the initial state of applications;

(b) on-chip caches and registers;

(c) application state on interrupts; and

(d) external memory.

The hardened processor must also provide a secure storage area.

4. All secret keys required by the mobile receiver in the implementation of

the protocols described below are protected by the hardened processor.

5. A unique asymmetric key pair is associated with the hardened processor.

This key pair is used for encryption/decryption.

6. The private decryption key from the pair referred to in point 5 is securely

stored in the hardened processor.

7. The public encryption key from the pair referred to in point 5 is certi-

fied. The certificate, CertHP , contains an identifier for HP, and a general

description of HP and its security properties. This certificate will most

probably be generated by the manufacturer of HP .

314

8. The manufacturer of HP, or indeed the entity who generated the certificate

described in point 7, must be trusted by S . S must possess a trusted copy

of the public key of this entity.

9. The software provider S possesses a signature key pair, used only for entity

authentication.

10. The private signing key from the pair referred to in point 9, is securely

stored by the software provider.

11. The software provider S has a certificate, CertS , issued by CA. This

certificate associates the identity of S with the public verification key

from the pair referred to in point 9. This certificate must be available to

the mobile receiver.

12. Every mobile device wishing to receive video broadcast must have a trusted

broadcast application, AB , running in a protected execution environment.

13. Every mobile device has a download application, AD, running in a pro-

tected execution environment.

9.5 Protocol initiation

As was the case in section 7.6, both application download protocols begin when

the user makes a request to the broadcast application, AB , to view a specific

video broadcast. If reception of this broadcast is controlled by a particular

conditional access application, AC , then AB carries out the following steps:

1. AB checks to see if the mobile device has dedicated hardware or software

installed to support the specific conditional access system.

2. If no dedicated hardware, for example a common interface module, exists

315

on the mobile device, then AB determines whether AC has previously been

downloaded and is still available in secure storage.

(a) If so, the download application AD is called to load the protected AC

from secure storage into HP, where it is executed.

(b) If AC is not available on the mobile device, then AD is called to

download the application. The download of AC can be accomplished

using either of the protocols described in sections 9.6 and 9.7.

9.6 The XOM application download protocol

The XOM architecture and application download protocol were proposed in

order to meet one general security requirement — to support the copy and

tamper resistant download and execution of software [98,99].

9.6.1 The XOM system architecture

The XOM system architecture aims to provide protected compartments for

XOM code to execute in. It provides on-chip protection of caches and regis-

ters, protection of cache and register values during context switching and on

interrupts, and confidentiality and integrity protection of application data when

transferred to external memory.

The platform subsystem used to provide the services listed above is called the

XOM machine. In a hardware implementation of the XOM machine, complete

trust is put in the modified CPU hardware, which provides the security services

listed above. Everything transmitted outside the main CPU is both integrity and

confidentiality-protected. However, an XOM virtual machine monitor (XVMM)

implementation of the XOM machine reduces the number of necessary CPU

extensions. In this case, a software XVMM, whose integrity is validated via

316

secure boot, is used to provide some of the security services provided directly

by the CPU in the hardware implementation. For a detailed description of the

XOM machine, see appendix B. For the purpose of this chapter, we focus on

the hardware implementation of the XOM machine.

9.6.2 The XOM download protocol

The XOM application download protocol is defined as follows.

1. AD → S : Request for AC || PXOM HP .

2. S: Verifies PXOM HP as belonging to a legitimate XOM HP by retrieving

and verifying CertXOM HP , most probably using the public key of the

manufacturer of the XOM HP.

3. S: Generates a symmetric compartment key K.

4. S: Encrypts AC using K, EK(AC).

5. S: Encrypts K using PXOM HP , EPXOM HP (K).

6. S → AD : EPXOM HP
(K) || EK(AC).

7. XOM HP: Loads EPXOM HP
(K) || EK(AC).

8. XOM HP: Decrypts K using SXOM HP .

9. XOM HP: Decrypts AC using K.

10. XOM HP: Ensures the protected execution of AC .

Using the XOM system architecture, the protocol begins when AD requests

download of the application, AC . In conjunction with this request, the public

key of the hardened processor upon which AD is executing is also sent to the

software provider.

317

S verifies that the public key received belongs to a genuine XOM hardened

processor. S then chooses a symmetric compartment key, K . S uses this key K

to encrypt AC . S then encrypts K using the public encryption key of XOM HP.

As a result, the compartment key, and consequently AC , cannot be accessed by

any entity other than the intended recipient (i.e. XOM HP, which has been

verified as legitimate by S). The following message is returned by the software

provider: EPXOM HP
(K) || EK(AC).

When the application is required, the enter xom instruction is called. The

input to this command indicates the starting memory address of EPXOM HP
(K),

the encrypted symmetric compartment key for AC . Execution of the enter xom

instruction causes the XOM machine to check whether the symmetric compart-

ment key has been decrypted on a previous occasion by comparing H(EPXOM HP (K))

with the hash values of all symmetric compartment keys securely stored in the

XOM key table.

If no match is found, an XOM key table entry is allocated to the XOM ap-

plication, AC . An XOM identifier (IDXOM) is assigned to AC . The symmetric

compartment key is decrypted and stored with the IDXOM assigned to AC . In

conjunction with this, a mutating register key is associated with the IDXOM

assigned to AC , which is used in the protection of register values on interrupts

and context switches. In order to prevent replay of registers, this key is updated

every time the XOM process is interrupted.

During execution of the protected application, XOM HP protects AC using

a variety of mechanisms, as detailed below.

318

9.6.3 Security analysis

The XOM application download protocol is now analysed against the security

requirements described in section 6.3.

1. Confidentiality of the application code and data:

Symmetric encryption is used to confidentiality protect AC , where AC

is encrypted with the symmetric compartment key K chosen by S . The

confidentiality of AC is also dependent, however, on the confidentiality of

K, which is analysed below.

2. Integrity protection of the application code and data:

According to [99], no mechanisms are deployed to protect the integrity

of the downloaded application, which in this case is AC . The software

distribution model, described in the more recent thesis of Lie [98], does

not explicitly mention integrity protection either. Such mechanisms are,

however, implied in the definition of the enter xom instruction in [98],

where the author states that the enter xom instruction must always be

followed by encrypted and MACed instructions. No mention is made in

[99] or [98] as to how this MAC key is derived.

3. Entity authentication:

The XOM application protocol does not provide authentication of the

XOM hardened processor by the software provider or authentication of

the software provider by the XOM hardened processor.

4. Origin authentication:

In the defined XOM application download protocol, the origin of AC can-

not be authenticated.

319

5. Freshness:

The freshness of the application received from the software provider cannot

be verified.

6. Confidentiality and integrity protection of the cryptographic keys used in

the prevention of unauthorised reading of and the detection of unauthorised

modification to the application code and data:

(a) Secure symmetric key generation:

In the XOM application download protocol the symmetric encryption

compartment key, K, is generated by the software provider. Assuming

the software provider also computes a MAC on AC before encrypting

it, the MAC key, N, is also generated by the software provider.

(b) Secure symmetric key transmission and storage:

AC is encrypted under a symmetric compartment key, K, which in

turn is encrypted by the software provider using the public encryp-

tion key associated with a specific tamper resistant XOM hardened

processor, XOM HP . Assuming the software provider also computes

a MAC on AC before encrypting it, K and N are encrypted by the

software provider using the public encryption key associated with a

specific tamper resistant XOM hardened processor, XOM HP . In

this way, only the intended XOM hardened processor, in which the

corresponding private key is embedded, can decrypt the symmetric

compartment key K and the MAC key N . There is no mention, how-

ever, in [98, 99] of the accreditation infrastructure that is necessary

in order to support the secure use of public key pairs, as described

above.

The MACing key and the compartment key used to MAC and encrypt

320

AC remain encrypted on the mobile receiver until they are decrypted

using SXOM HP and loaded into the XOM key table, see appendix B.

However, no mechanisms are described in [98,99] to prevent unautho-

rised modification of the keys sent by the software provider (assuming

the software provider also computes a MAC on AC before encrypting

it). As a result, an attacker can:

• replace AC with a malicious application, AM ;

• compute a MAC on AM using a key, N∗, generated by the at-

tacker, MACN∗(AM);

• encrypt AM and MACN∗(AM) using a key, K∗, generated by the

attacker, EK∗(AM || MACN∗(AM)); and then

• encrypt the newly generated symmetric keys, K∗ and N∗ using

the public key of XOM HP.

(c) Prevention of unauthorised access to the symmetric key(s):

The symmetric compartment key K, and N (assuming the software

provider also computes a MAC on AC before encrypting it), can only

be decrypted by the intended XOM processor using SXOM HP , where

SXOM HP is protected in hardware in XOM HP. When the symmet-

ric keys are decrypted using SXOM HP they are loaded into the XOM

key table, which is stored in protected memory on XOM HP.

7. Confidentiality and integrity protection of the application code and data

during execution:

On-chip caches and registers: Within the XOM chip, all XOM data

and code in caches and registers is tagged with a unique XOM identifier,

which is mapped to the associated application’s decrypted symmetric com-

partment key in the XOM key table. Programs that run in the clear have

321

a XOM identifier of 0. The size of the compartment key table and the

number of XOM identifier tags affect how many concurrently executing

principals can have data in the machine. At any one time, however, there

will be only:

• One active principal;

• One active XOM identifier; and

• One active compartment key.

When this active principal produces data, it is automatically tagged with

the active XOM identifier. Subsequently, if an attempt is made by an

active principal to read data, the tag on the data is compared with the

active XOM identifier, and access is only permitted if these values are

identical. By virtue of the fact that on-chip caches and registers are em-

bedded within a tamper resistant chip, they are also secure from physical

attack.

Context switching and interrupt support: Secure interrupts and

context switching are also supported by the XOM machine. When an

interrupt occurs, the register content for a XOM program remains in the

registers, and the tags, as mentioned above, prevent an untrusted and

potentially malicious OS from reading the register values. The OS may

then issue an instruction which causes register values to be MACed, en-

crypted, and cleared. Register contents are encrypted using the current

mutating register key, which is associated with the active XOM identi-

fier in the XOM key table. This allows an operating system to schedule

and interrupt XOM processes without violating the security of the XOM

application.

A mutating register key is used in order to prevent the replay of register

322

values on interrupts and context switches. If a static register key were

used, an adversarial OS could first interrupt a running process and save

the register state. The adversarial OS could then restore the process state

and restart the process. At a later time, the adversarial OS could interrupt

the process again, but instead of restoring the register values from the

most recent interruption, restore the values from a previous interruption.

When the process restarts, it will be using the replayed register values;

see appendix B.4 for further details.

To counteract this, a key, called the register key, is changed every time a

particular XOM compartment is interrupted. Therefore, the register key

used to protect the register values on the first interrupt will no longer be

valid when a register value is being restored after a second interrupt. Try-

ing to restore a replayed state value will therefore result in an exception.

While it is stated that the register values must be MACed and encrypted

before they are interrupted, no details of the key that must be used to

MAC the register values before they are encrypted are given in [98, 99].

It is advisable that a separate MACing key is used to MAC the register

values, before they are encrypted using the mutating register key.

External memory: Newly generated application data, when sent to ex-

ternal off-chip memory, must also be protected. In order to achieve this,

application data is MACed and encrypted using the symmetric compart-

ment key associated with the active XOM application identity in the XOM

key table, before it is exported. It is suggested that the compartment key

may be used for MACing and encryption. Alternatively, it is stated that

a separate key may be used for MACing, but how or where this key is

generated is not defined. It is, however, advisable that separate MACing

and encryption keys are used.

323

An attacker may also, however, try to replay the data securely stored in

external memory. To accomplish this, the attacker waits for the operat-

ing system to record MACed and encrypted data to memory, and then

overwrites the same location at a later time with the old MACed and

encrypted data.

To defend against this attack, a hash of the region of memory is made

and stored in a secure register. To replay a specified region in memory, its

associated hash stored in an on-chip register must also be replayed, but the

anti-replay mechanism used to protect register values, as described above,

defends against this type of attack. The overhead associated with this

mechanism may become excessive if the region of memory is large, or if

the values in the region change frequently. If, however, Merkle hash trees,

as described in section 1.5.1, are deployed for memory authentication then

the performance impact may be lessened.

It is stated in [99] that the most secure, but far from the most efficient,

implementation of hash trees is to calculate the hash function every time

a user writes to cache, and to verify the hash every time a value is read

into the cache from memory. This process is described in further detail in

appendix B.4.

There are two reasons why shortcomings in this protocol arise. Firstly, the

XOM designers do not require that security services 3, 4 and 5, as described

in section 6.3.2, are met by their download protocol. The generic requirement

explicitly listed by the designers, i.e. to support the copy and tamper resistant

download and execution of software, does however necessitate that security ser-

vices 1, 2 and 6 and 7, as described in section 6.3.2, are met. Of these four

security services, the XOM download protocol meets security service 7 but only

324

partially meets security services 1, 2 and 6, as described above. It appears that

the second reason for the protocol’s security shortcomings is due to the design-

ers focus on ensuring that their architecture and download protocol supports

the copy and tamper resistant execution of software, rather than the copy and

tamper resistant download and execution of software.

9.6.4 Proposed security enhancements/clarifications

Here we propose a number of enhancements to the XOM protocol which have

been designed to address the shortcomings identified in section 9.6.3.

• Integrity protection of the application code and data:

For our application, it is required that the integrity of AC is protected.

We therefore require that, before the application is encrypted under the

symmetric compartment key, it is MACed using an independent MACing

key N, as follows, EK(AC || MACN (AC)). This MAC key N must then be

securely transmitted to the mobile host using mechanisms which protect

both the integrity and the confidentiality of N.

It would be helpful if it could be made clear by the XOM designers whether

incoming XOM code is just encrypted or both MACed and encrypted.

Current papers, referenced in appendix B, are ambiguous. Use of separate

MACing and encryption keys is also advisable.

• Origin authentication:

In order to meet this requirement, the software provider should be required

to sign the encrypted symmetric compartment key used to encrypt AC

before it is transmitted, as follows, SS(EPXOM HP
(K)) || EK(AC). Prefer-

ably, the encrypted symmetric compartment and MACing keys would be

signed, as follows, SS(EPXOM HP
(K || N)) || EK(AC || MACN (AC)). In

325

this scenario, it would also be required that the signature of the software

provider on the symmetric keys is verified by AD using CertS before the

symmetric keys are decrypted.

• Freshness:

Assuming we include the signature of the software provider on the keys

protecting AC , it may initially appear that, if a protected XOM applica-

tion is replayed, the host only learns something he already knows. How-

ever, instead of being sent the new application requested, an old version

of the requested application, containing security vulnerabilities, could be

replayed by an adversary, and accepted by the mobile device. This at-

tack can be prevented by concatenating a timestamp with the application

before it is encrypted.

• Confidentiality and integrity protection of the cryptographic keys used in

the prevention of unauthorised reading of and the detection of unauthorised

modification to the application code and data:

– Secure symmetric key transmission and storage:

As was the case with the TCG-defined system architecture, if XOM

hardened processors were to be deployed, these hardened processors

would need to be tested, and their conformance with the definition

of a trustworthy XOM hardened processor validated. The public en-

cryption key would then have to be certified/endorsed, i.e. associated

with a statement regarding the ability of the processor to perform

specific tasks.

By encrypting K and N using the public encryption key associated

with a specific tamper resistant XOM hardened processor, XOM HP,

the software provider can be assured that only the intended XOM

326

hardened processor, in which the corresponding private key is embed-

ded, can decrypt the symmetric compartment key K and the MAC

key N, assuming that the software provider has verified that the pub-

lic key sent in the application request message has originated from a

legitimate XOM hardened processor, using certificates generated as

part of the aforementioned supporting accreditation infrastructure.

In order to prevent unauthorised modification of the keys used to

protect the application, they must not only be encrypted using the

public key of the XOM HP, but also signed using the private key of

the software provider.

In order to prevent unauthorised modification and copying of the

keys sent by the software provider, the symmetric MACing key and

the symmetric compartment key used to encrypt AC should remain

both signed and encrypted on the mobile receiver until their use.

9.7 The AEGIS application download protocol

The AEGIS architecture and application download protocol were proposed in

order to meet two security requirements — to support the download and execu-

tion of both tamper evident, and copy and tamper resistant software. For the

purpose of our application, we require the copy and tamper resistant download

and execution of a conditional access application.

9.7.1 The AEGIS system architecture

Within the AEGIS system architecture, both tamper evident and private tam-

per resistant environments can be provided for multiple mistrusting processes.

Tamper evident environments are defined as“authenticated environments, where

physical or software tampering can be detected” [143]. Private tamper resistant

327

environments are defined as “private and authenticated environments where an

adversary cannot gain any information about data or software within the envi-

ronment by tampering with or observing system operation” [143].

The platform subsystem used to enable tamper evident or private tamper

resistant execution of applications may be implemented in one of two ways.

The first secure computing model assumes a hardened AEGIS processor and an

untrusted operating system, whereas the alternate model assumes a hardened

AEGIS processor and a security kernel, which runs at a higher privilege level

than the regular operating system. In our analysis of this particular protocol,

we refer to the trusted computing base (TCB), which consists of an AEGIS

hardened processor and, optionally, the security kernel. For further details see

appendix B.

9.7.2 The AEGIS download protocol

The AEGIS application download protocol is as follows:

1. AD → S : Request for AC || PAEGIS HP || (IdSK).

IdSK is only included if the host TCB is comprised of the AEGIS HP and

a security kernel.

2. S : Verifies PAEGIS HP as belonging to a legitimate AEGIS HP by retriev-

ing and verifying CertAEGIS HP using the public key of the manufacturer

of HP.

3. S : Retrieves H(SK), where the H(SK) represents a configuration of the

security kernel, identified by IdSK , which S considers to be trustworthy.

This step need only be completed if the TCB of the mobile device from

which the request initiated consists of an AEGIS HP and a security kernel,

SK, as indicated in step 1.

328

4. S : Generates a static key K.

5. S : Computes the H(AC).

6. S : Encrypts AC using AEGIS HP.

7. S : Encrypts (H(SK) || H(AC) || K), using PAEGIS HP or, alternatively,

S : Encrypts (H(AC) || K), using PAEGIS HP .

8. S → AD : EPAEGIS HP
(H(SK) || H(AC) || K) || EK(AC); or

S → AD : EPAEGIS HP
(H(AC) || K) || EK(AC);

9. AEGIS HP : Decrypts EPAEGIS HP
(H(SK) ||H(AC) ||K) using SAEGIS HP ,

or, alternatively,

AEGIS HP : Decrypts EPAEGIS HP (H(AC) || K), using SAEGIS HP .

10. If there is a security kernel within the mobile device TCB:

AEGIS HP : Compares the hash value of the security kernel running

on the platform and measured at boot time (H(SK)∗) with the value of

H(SK) decrypted in step 9.

(a) If H(SK)∗ = H(SK), then H(AC) and K are released, and the AC

can be decrypted by the SK which is part of the TCB, as described

in step 12 below.

(b) If H(SK)∗ 6= H(SK), then H(AC) and K are discarded.

11. If the TCB contains only an AEGIS HP , or following step 10:

TCB: Decrypts EK(AC) using K.

12. TCB: Recomputes the hash value of AC , H(AC)∗, and compares it to the

value of H(AC), decrypted in step 9.

(a) If H(AC)∗ = H(AC), then AC can be executed.

(b) If H(AC)∗ 6= H(AC), then AC is discarded.

329

13. TCB: ensures the protected execution of AC

Using the AEGIS system architecture, the protocol begins when AD requests

download of the application, AC . In conjunction with the request for AC , the

public key of AEGIS HP is sent from AD to S. If the TCB of the mobile

receiver consists of both an AEGIS hardened processor and a security kernel

(SK), the identity of the SK (IdSK) running on the mobile receiver must also

be communicated to the software provider.

S verifies that the public key received belongs to a genuine AEGIS hard-

ened processor. The software provider then retrieves H(SK), where H(SK)

represents a configuration of the security kernel running on the mobile receiver,

identified by IdSK , which S considers to be trustworthy (if indeed IdSK was

included in the request message).

The software provider then generates a symmetric key K, known as a static

key, and encrypts AC using K . The software provider then composes one of the

following messages: EPAEGIS HP
(H(AC) || K) || EK(AC); or

EPAEGIS HP
(H(SK) || H(AC) || K) || EK(AC). The first message is sent to

a device into which AEGIS HP is embedded. If it has been indicated in the

request message that a particular SK is also running on the platform, the second

message is sent, where H(SK) represents the configuration of the security kernel

which the software provider deems to be trustworthy.

When this message is received by AD, the encrypted bundle is loaded into

AEGIS HP . If EPAEGIS HP
(H(AC) ||K) || EK(AC) has been received, (H(AC) ||K)

can only be recovered using the hardened processor’s secret decryption key if it

has been received by the intended AEGIS processor.

In the case that EPAEGIS HP
(H(SK) || H(AC) || K) || EK(AC), has been

received by AEGIS HP, (H(SK) || H(AC) || K) can only be decrypted using

330

the hardened processor’s secret decryption key if it has been received by the

intended AEGIS processor. H(AC) || K is then released only if the identity of

the security kernel running on the device matches the value of H(SK) sent by

S .

The static key is then used to decrypt EK(AC). When decrypted, a hash

of AC is generated, and if the output matches the value of H(AC) sent by

the software provider, the static key is assigned to the AC in the key table in

the TCB. This process is made possible by two AEGIS instructions which are

integrated into the protected application, enter aegis, which is used to start the

execution in a tamper evident environment, and set aegis mode, which is used

to enable a private tamper resistant environment from tamper evident mode.

We require that AC is executed in a PTR environment. During this process, a

dynamic key is also associated with AC in the key table in the TCB. This key is

randomly chosen by the TCB when enter aegis is called, and is used to encrypt

and decrypt data that is generated during program execution.

9.7.3 Security analysis

We now analyse the AEGIS trusted download process against the security ser-

vice requirements specified in section 6.3.

1. Confidentiality of the application code and data:

Symmetric encryption is deployed to confidentiality protect AC , where

AC is encrypted with the symmetric static key K chosen by S . The

confidentiality of AC is also dependent, however, on the confidentiality of

K, which is analysed below.

2. Integrity protection of the application code and data:

The authors use a hash of AC encrypted under the public key of AEGIS HP

331

to protect the integrity of AC during transmission. When the encrypted

bundle is received, the hash of the decrypted application is compared

against the hash value received from the software provider. Any discrep-

ancy found indicates that the application may have been maliciously or

accidently modified.

The integrity of AC is also dependent, however, on the integrity of H(AC)

being maintained both during transmission and while in storage on the

mobile device. The integrity of H(AC) cannot be guaranteed using the

mechanism described above, and therefore the application code and data

is not integrity-protected. This is examined further.

3. Entity authentication:

Neither authentication of the AEGIS processor by the software provider

nor authentication of the software provider by the AEGIS processor is

provided by the AEGIS download protocol.

4. Origin authentication:

The origin of AC cannot be authenticated using the AEGIS download

protocol.

5. Freshness:

The freshness of the application received from the software provider cannot

be verified.

6. Confidentiality and integrity protection of the cryptographic key and the

hash used in the prevention of unauthorised reading of and the detection

of unauthorised modification to the application code and data:

(a) Secure symmetric key generation:

332

In the AEGIS application download protocol the encryption key, K,

is generated by the software provider.

(b) Secure symmetric key and integrity verification data transmission and

storage:

AC is encrypted under a static key, K, which is in turn encrypted by

the software provider using the public encryption key associated with

a specific tamper resistant AEGIS hardened processor, AEGIS HP .

In this way, only the intended AEGIS processor, in which the corre-

sponding private key is embedded, can decrypt the symmetric static

key, assuming that the software provider has verified that the public

key sent in the application request message has originated from a le-

gitimate AEGIS hardened processor, AEGIS HP . The value H(AC)

is also encrypted by the software provider using the public encryp-

tion key associated with a specific tamper resistant AEGIS hardened

processor, AEGIS HP.

In the case that EPAEGIS HP (H(SK) || H(AC) || K) || EK(AC), has

been received by AEGIS HP, (H(SK) || H(AC) || K) can only be

decrypted using the hardened processor’s secret decryption key if it

has been received by the intended AEGIS processor. H(AC) || K is

then released only if the identity of the security kernel running on

the device matches the value of H(SK) sent by S.

The symmetric compartment key used to encrypt AC and H(AC)

remains encrypted on the mobile receiver until it is decrypted using

SAEGIS HP and loaded into AEGIS HP ’s key table.

In the description [143] of the AEGIS system architecture, however,

there is no mention of the accreditation infrastructure that is neces-

sary in order to support the secure use of public key pairs as described

333

above.

In conjunction with this, no measures are taken to prevent unautho-

rised modification of the key K and the value of H(AC) sent by the

software provider. As a result, an attacker can:

• replace AC with a malicious application, AM ;

• compute the hash of AM , H(AM);

• encrypt AM using a key, K∗, generated by the attacker, EK∗(AM);

and then

• encrypt the newly generated key, K∗, and hash, H(AM), using

the public key of AEGIS HP.

(c) Prevention of unauthorised access to the symmetric key and integrity

verification data:

The encrypted symmetric static key K and H(AC) can only be de-

crypted by the intended AEGIS processor using SAEGIS HP , where

SAEGIS HP is protected in AEGIS HP.

If the mobile host system architecture is composed of a security ker-

nel, its identity may also be included in the encrypted string. In

this case, the static key K and H(AC) are only decrypted and out-

put when the processor contains the corresponding public decryption

key, and the identity of the security kernel matches that sent by the

software provider.

When the symmetric static key K and H(AC) are decrypted using

SAEGIS HP , they are loaded into a table stored in protected memory

on AEGIS HP.

7. Confidentiality and integrity protection of the application code and data

during execution:

334

For our particular application, it is required that AC runs in a PTR envi-

ronment.

Process start-up: The enter aegis instruction is used to enter tamper

evident mode. Immediately after the enter aegis instruction is executed,

a piece of code is executed, which guarantees that the initial state of the

program, in this instance AC , is properly set-up. This code may reside in

the security kernel or, indeed, in the AEGIS processor, depending on the

chosen implementation of the AEGIS subsystem. Therefore, either the

AEGIS processor, or the security kernel, takes a hash of the program AC

after it has been decrypted, so that this hash can be compared to the copy

of AC sent by the software provider. Either the AEGIS processor or the

security kernel then checks any other code or data that the application

relies on. This code must also check the environment it is running in, for

example, whether its mode is TE or PTR.

On-chip caches: In terms of physical or hardware attacks, it is assumed

by Suh et al. [143] that an adversary cannot physically tamper with on-chip

caches; see appendix B.5 for further details. In the case where the TCB

is comprised of AEGIS HP, on-chip caches are protected from buggy or

malicious software using tags. Whenever a process accesses a cache block,

the block is tagged with the identity of that process. On future accesses

the identity of the active process is compared to the identity the cache

block has been tagged with, and access is only granted if they match.

In the case of a PTR environment, access is only granted if the active ID

matches the cache tag, and the active process is in PTR mode. In the case

where the TCB is comprised of both AEGIS HP and a security kernel, it

is assumed that on-chip caches are protected by a virtual memory manager

integrated into the security kernel.

335

On-chip registers: In the PTR environment, all registers are private

and protected. In the AEGIS system architecture, it is the TCB which

saves/clears the registers on an interrupt and restores them on a resume.

Therefore, there is no need to tag registers, as an untrusted and potentially

malicious operating system will not have access to register values even

following an interrupt or when context switching.

Context switching and interrupt support: In order to support con-

text switching and interrupts, register values are securely saved to the

TCB by the TCB. In the case of a PTR environment values are addi-

tionally flushed from the registers before a potentially untrusted interrupt

handler starts, in order to protect the integrity and confidentiality of reg-

ister values.

Externally stored memory values: Both hardware and software at-

tacks on off-chip memory must also be considered. Confidentiality of newly

generated cache data is protected via the symmetric encryption of cache

blocks before their transfer to external memory, using the dynamic key

associated with AC in the key table in the TCB. This key is randomly

chosen by the TCB when enter aegis is called, and is used to encrypt and

decrypt data that is generated during the program execution.

The integrity of dynamic data stored in untrusted off-chip memory is pro-

tected through the implementation of hash trees between the L2 cache

and the encryption engine, see section 1.5.1.

Suh et al. [143] criticise the XOM scheme [99] for focusing primarily on the

replay of registers and failing to recognise the potential for replay of data

in memory. This criticism, however, appears to be unjustified. While Lie

et al. do not explicitly detail their chosen method to prevent the replay of

data in memory, it is briefly mentioned in [99], and thoroughly explored

336

in [98].

There are two reasons why the shortcomings of this protocol arise. Firstly,

the AEGIS designers do not require that security services 3, 4 and 5, as described

in section 6.3.2, are met by their download protocol. However, on examination

of the generic requirement explicitly listed by the designers, i.e. to support the

download and execution of copy and tamper resistant software, security services

1, 2 and 6 and 7, as described in section 6.3.2, must be met. Of these four

security services, the AEGIS download protocol meets security service 7, but

only partially meets security services 1, 2 and 6, as described above. As with

XOM, it appears that the second reason for the protocol’s security shortcomings

is due to the designers focus on ensuring that their architecture and download

protocol supports the copy and tamper resistant execution of software rather

than the copy and tamper resistant download and execution of software.

9.7.4 Proposed security enhancements/clarifications

Here we propose a number of enhancements to the AEGIS protocol, which have

been designed to address the shortcomings identified in section 9.7.3.

• Origin authentication:

Using the AEGIS download protocol, the origin of AC cannot be authen-

ticated. In order to meet this requirement, the software provider should

be required to sign EPAEGIS HP (H(AC) || K) or

EPAEGIS HP
(H(SK) || H(AC) || K) before its transmission. In this sce-

nario, it would also be required of AD to verify the signature of the software

provider on the encrypted bundle using CertS , before the symmetric key

K, H(AC) and, potentially, H(SK), are decrypted by AEGIS HP.

• Freshness:

337

The freshness of the application received from the software provider cannot

be verified. Assuming the signature of the software provider is computed

on EPAEGIS HP
(H(AC) || K) or EPAEGIS HP

(H(SK) || H(AC) || K) be-

fore its transmission, it may initially appear that, if AC is replayed, the

host only learns something he already knows. However, instead of being

sent the new application as requested, an old version of the application,

containing security vulnerabilities, may be replayed by an adversary and

accepted by the mobile host. By concatenating a timestamp with the

application before it is encrypted, this attack can be prevented.

• Confidentiality and integrity protection of the cryptographic key and the

hash used in the prevention of unauthorised reading of and the detection

of unauthorised modification to the application code and data:

– Secure symmetric key and integrity verification data transmission and

storage:

As was the case with the TCG-defined system architecture, if AEGIS

processors were to be deployed, these hardened processors would need

to be tested and their conformance with the definition of a trustwor-

thy AEGIS processor validated/endorsed. The public encryption key

would then have to be certified, i.e. associated with a statement re-

garding the ability of the processor to fulfil specific tasks. Certificates

which illustrate configurations for security kernels which are behaving

as expected would also be required.

AC is encrypted using a static key, K, which is in turn encrypted by

the software provider using the public encryption key associated with

a specific tamper resistant AEGIS hardened processor, AEGIS HP.

In this way, only the intended AEGIS processor, in which the corre-

sponding private key is embedded, can decrypt the symmetric static

338

key, assuming that the software provider has verified that the public

key sent in the application request message has originated from a

legitimate AEGIS hardened processor, AEGIS HP, using certificates

generated as part of the aforementioned supporting accreditation in-

frastructure. The value H(AC) is also encrypted by the software

provider using the public encryption key associated with a specific

tamper resistant AEGIS hardened processor, AEGIS HP.

Unless K and H(AC) are both encrypted and signed by the software

provider, an attacker can replace AC with a malicious application

AM , compute H(AM), encrypt AM using a key generated by the

attacker, and then encrypt the newly generated symmetric key and

H(AM) using the public key of the destination AEGIS hardened pro-

cessor, AEGIS HP.

H(AC) and K should remain both signed and encrypted on the mo-

bile receiver until their use.

9.8 Conclusions

This chapter described two application download protocols that have been pro-

posed by the designers of XOM and AEGIS, Lie et al. and Suh et al. Both

protocols are based upon the assumption that the host device contains a hard-

ened processor rather than a trusted module, as assumed in chapters 7 and 8.

Both protocols were then analysed against the security requirements described

in chapter 6. These analyses have revealed security shortcomings in both of

these protocols. We subsequently proposed a series of enhancements to the

protocols designed to address the identified shortcomings.

The implementation of a secure application download protocol using either

339

the XOM and AEGIS system architectures meets some of the security require-

ments described in chapter 6. While neither protocol meets all of the require-

ments for the secure transmission of AC , the protocols can easily be modified

to fulfil the most crucial of these requirements, as suggested in sections 9.6.3

and 9.7.3. The requirements surrounding the secure execution of AC are met,

however, and strong isolation of AC is provided when executed on the hardened

processors described.

340

Part III

Remote code protection

341

Chapter 10

OMA DRM

Contents
10.1 Introduction . 343

10.1.1 The MPWG . 343

10.1.2 Digital rights management 344

10.1.3 Scope of part III . 345

10.2 DRM . 346

10.3 The OMA . 347

10.4 Model . 348

10.4.1 Functional entities 348

10.4.2 Functional components 349

10.4.3 Functional architecture 350

10.5 OMA DRM v1 . 350

10.6 OMA DRM v2 . 351

10.7 Conclusions . 354

This chapter provides an overview of Digital Rights Management, with par-

ticular focus on the Open Mobile Alliance DRM standards. The model to which

the OMA DRM architecture applies is introduced. A high level critique of OMA

DRM version 1 is given, followed by an examination of the OMA DRM version 2

specification set.

342

10.1 Introduction

10.1.1 The MPWG

“At the current time, the number of applications that use trusted computing is

quite limited, both in volume and in scope” [104]. However, as the advantages

of integrating trusted computing functionality into a wide range of devices have

become more apparent, the baseline TCG specification set has been expanded

by platform-specific working groups to include specifications describing specific

platform implementations for the PC client, servers, peripherals and storage

systems.

One such working group is the mobile phone working group, the main chal-

lenge for which is to determine the ‘roots of trust’, see section 1.7, required

within a trusted mobile phone. The functionality provided by each of these roots

of trust must also be specified. In order to identify the capabilities required of

a trusted mobile phone, a number of use cases, whose secure implementation

may be aided by the application of trusted platform functionality, have been

identified by the MPWG. Among the use cases described are SIMLock, device

authentication, mobile ticketing, mobile payment and robust DRM implemen-

tation [159]. As stated by the MPWG [159], the use cases lay a foundation for

the ways in which:

• The MPWG will derive requirements that address situations described in

the use cases.

• The MPWG will specify an architecture based on the TCG architecture

that will meet these requirements.

• The MPWG will specify the functions and interfaces that will meet the

requirements in the specified architecture.

343

10.1.2 Digital rights management

Part II of this thesis focused on the next generation of communications systems,

which are expected to collaborate with broadcast systems to provide wireless

access to streamed video content from a wide range of mobile devices. Currently

3G systems are already capable of delivering a wide range of digital content to

subscribers’ mobile telephones, for example, music, video clips, ring tones, screen

savers or java games.

As network access becomes ever more ubiquitous, and media objects become

more easily accessible, providers are exposed to the risks of illegal consumption

and use of their content. Just as conditional access systems were developed in

order to ensure that only authorised entities have access to broadcast content,

as described in chapter 6, similar rights management solutions are available

in order to facilitate the safe distribution of various forms of digital content

in a wide range of computing environments, and to give assurance to content

providers that their media objects cannot be illegally accessed.

A Digital Rights Management system is an umbrella term for mechanisms

used to manage the lifecycle of digital content of any sort. A DRM agent,

i.e. the DRM functionality of a device responsible for enforcing permissions

and constraints associated with protected content, must be trusted in terms of

its correct behaviour and secure implementation [120]. Stipulation of a trust

model, within which robustness rules are defined, is one method of specifying

how secure a device implementation of a DRM agent must be, and what actions

should be taken against a manufacturer that builds devices that are insufficiently

robust [73].

344

10.1.3 Scope of part III

In this part of the thesis we examine the evolution of the OMA DRM specifica-

tion set, with particular focus on OMA DRM v2. The security threats that may

impact upon devices, and protected content received by devices, on which an

OMA DRM v2 agent is not robustly implemented, are extracted. This enables

the derivation of requirements for a robust implementation of OMA DRM v2.

Following this, a description is given of the architectural components, based on

the TCG architecture, and the functions and interfaces, as specified in the cur-

rent TPM and TSS specifications, which meet these requirements. This enables

any architecture components, functions or interfaces not currently defined within

the TCG specification set, but required for the implementation of a robust and

secure DRM solution on a trusted mobile platform, to be identified.

The content of chapters 10 to 12 was contributed to the TCG MPWG.

A concise version of the use case described in this chapter has subsequently

been included in the TCG MPWG use case scenarios [159]. The functionality

required of a trusted mobile platform on which an OMA DRM v2 agent is

to be robustly implemented, defined in chapter 11, has been incorporated in

an internal TCG MPWG document describing the requirements for a trusted

mobile platform. Finally, the analysis in chapter 12, completed in order to

define which architectural components and functionality described within TCG

version 1.2 specification set may be used to facilitate a robust implementation

of OMA DRM v2, and in order to identify any architecture components and

functionality not currently defined within the TCG specification set but required

for the implementation of a robust and secure DRM solution on a trusted mobile

platform, contributed towards the TCG mobile TPM commands and structures

specification document, publication of which is expected in late 2006.

345

This chapter provides an overview of DRM with particular focus on the OMA

DRM standards. Section 10.2 gives the rationale for DRM solutions and outlines

the generic components of a DRM system. Section 10.3 introduces the OMA,

while section 10.4 describes the model to which the OMA DRM architecture

applies. Section 10.5 provides an overview of the first version of the OMA DRM

specification set, i.e. OMA DRM v1. Section 10.6 examines OMA DRM v2.

10.2 DRM

DRM solutions are designed to allow the distribution of digital content to clients

with some assurance that the client will use the content according to conditions

set by the content owner [73]. DRM has often been separated into two functional

areas [31]:

• The identification and description of intellectual property and the rights

pertaining to works and to parties involved in their creation or adminis-

tration (digital rights management); and

• The (technical) enforcement of usage restrictions (digital management of

rights).

A DRM system may therefore consist of a wide variety of technologies and

services, which contribute to one or other of the functional areas of DRM. The

most fundamental of these technologies and services are described in [31], and

are listed below.

• Identification technologies ensure that every item within a DRM system

has a unique label, so that unambiguous identification, see section 1.7,

may be completed across computer systems.

• Metadata technologies facilitate the description of digital content.

346

• Rights language technologies describe rights associated with content.

• Encryption technologies protect digital content against unauthorised ac-

cess.

• Persistent association technologies facilitate the permanent association of

metadata with content.

• Privacy technologies mitigate threats against the confidentiality and pri-

vacy of user personal data.

• Payment technologies provide secure and usable payment methods for dig-

ital content.

10.3 The OMA

The Open Mobile Alliance was founded in June 2002. One of the original ob-

jectives of the OMA was to define a DRM specification set for use in a mobile

environment. OMA DRM v1 was published as a candidate specification in Oc-

tober 2002, and was approved as an OMA enabler specification [123], after full

interoperability testing had been completed in 2004.

Following this, in 2004, work on OMA DRM v2 was completed and OMA

DRM v2 was published as a candidate specification in July 2004 [124]. OMA

DRM v2 builds upon the version 1 specifications to provide higher security

and a more extensive feature set [73]. Devices other than mobile phones are

also supported by OMA DRM v2. The OMA DRM version 2 specification set

defines [120]:

• the format and the protection mechanism for protected content;

• the format and the protection mechanism for rights objects;

347

• the security model for the management of encryption keys; and

• how protected content and rights objects may be transferred to devices

using a range of transport mechanisms.

10.4 Model

Next, we examine the model to which the OMA DRM architecture applies. The

model under consideration is taken from [120] and is illustrated in figure 10.1.

A mobile device
containing a DRM

agent

Content issuer Rights issuer

Other devices
containing DRM

agentsA network store
and removable

media

Protected content

Protected contentProtected content

Rights object Rights objects Device manufacturer

OMA DRM v2 agent
installer

User
CMLA

Figure 10.1: Architecture model

10.4.1 Functional entities

The following functional entities may exist within an OMA DRM system.

• An agent installer is responsible for the ‘robust’ implementation of an

OMA DRM v2 agent on a device.

• A device manufacturer is responsible for the manufacture of devices. The

device manufacturer may in practice be the agent installer.

348

• An OMA DRM implementation compliance authority provides a set of

robustness rules necessary to support the OMA DRM system. Implemen-

tations of the OMA DRM specification set can then be evaluated against

the defined rule set as either robust or not. The content management li-

censing administrator for digital rights management (CMLA DRM) is an

example of one such authority. This entity only came into existence with

the adoption of OMA DRM v2.

• A user denotes a human user of content. Users can only access protected

content through a DRM agent.

• A DRM agent is defined as an entity, present in a device, that is responsible

for enforcing permissions and constraints associated with content, and for

controlling access to protected content [120].

• A content issuer (CI) is an entity that delivers content. OMA DRM defines

the format of content delivered to DRM agents, and the way protected

content can be transported from a content issuer to a DRM agent using

various transport mechanisms [120].

• A rights issuer (RI) is an entity that assigns permissions and constraints to

content, and generates rights objects. A rights object is an XML document

expressing permissions and constraints associated with a piece of content

[120].

10.4.2 Functional components

We now move on to examine the functional components of OMA DRM systems,

as defined by the OMA [120].

• A device is defined as user equipment on which a DRM agent is installed.

349

• A rights object is a collection of permissions and other attributes which

are linked to protected content.

• A media object is a digital work, for example, a ring tone, screen saver,

java game or a composite object, which itself contains one or more media

objects.

10.4.3 Functional architecture

A user requests a media object from a content issuer. The requested content,

which is packaged in order to prevent unauthorised access, is then sent to the

user’s device. The packaging of the content may be completed by the content

issuer or, alternatively, by the content owner, before it is dispatched to the

content issuer. The rights object associated with the requested media object is

delivered to the user by the rights issuer. This rights issuer may, in practice, be

the same entity as the content issuer.

10.5 OMA DRM v1

Version 1 of the OMA specifications [119, 121] represents the initial attempt

to define a DRM solution for a mobile environment. Three main goals were

specified for OMA DRM v1 [73]. The solution was required to be timely and

inexpensive to deploy. It was also required to be easy to implement on mass

market mobile devices. Finally, it was required that the initial OMA DRM

solution did not necessitate the roll-out of a costly infrastructure. In the de-

velopment of OMA DRM v1 a trade-off was made, so that the objectives listed

above could be met ahead of some security requirements.

Three classes of DRM functionality are specified in OMA DRM v1 [119,121].

The first class of DRM functionality, forward lock, must be supported by an

350

OMA DRM v1 agent on a device. Provision of the second and third classes of

DRM functionality, i.e. combined delivery and separate delivery, by an OMA

DRM v1 agent is optional.

1. Forward lock prevents unencrypted content being forwarded from the de-

vice to which it was initially delivered. The protected content is wrapped

inside a DRM message, which indicates to the OMA DRM v1 agent on

the receiving device that the content is not to be forwarded. Protection is

dependent on the OMA DRM v1 agent acting accordingly.

2. Combined delivery involves wrapping unencrypted content and its associ-

ated rights object inside a DRM message.

3. Separate delivery involves the separate delivery of encrypted content and

the associated rights object. The content is encrypted and placed in a con-

tainer, in a format known as the DRM container format (DCF). Headers,

which allow a receiving device to associate the correct rights object with

the corresponding DCF object, are also contained in this file. The associ-

ated rights object, which contains the relevant permissions and constraints,

and the decryption key for the associated content, is delivered via SMS.

10.6 OMA DRM v2

OMA DRM v2 [120, 122] builds upon the original OMA DRM v1 specification

set, with the primary objective of providing a more secure DRM solution. The

following security vulnerabilities have been identified in OMA DRM v1 [73].

1. A rights issuer has no way of determining whether the requesting de-

vice supports DRM. When using the forward lock and combined delivery

features, where the content is not encrypted, this particular security vul-

351

nerability enables an attack in which unencrypted content is initially sent

to a PC made to look like a compliant phone. On receipt, content is then

extracted and illegally distributed.

2. In the separate delivery DRM class, where the content is encrypted, the

content encrypting key is not protected. This implies that the attack

described above in step 1 is also possible in this case, although it is more

complex, and more difficult to complete successfully [73].

3. The device has no way of authenticating the rights issuer, and therefore

may be sent bogus rights objects from an entity claiming to be the legiti-

mate rights issuer.

OMA DRM v2 addresses the above security weaknesses through the deploy-

ment of additional security mechanisms.

• Both device authentication and rights issuer authentication are provided.

• Mechanisms are deployed in order to protect the confidentiality of media

objects. Content is protected using a content encrypting key (CEK). This

CEK is encrypted in a rights object under a rights object encrypting key

(REK). In turn, the REK is encrypted using the public key of the device.

• Mechanisms are also deployed so that the OMA DRM v2 agent can deter-

mine whether a media object received from a RI has been modified in an

unauthorised way.

The OMA DRM v2 specification set is no longer mobile device specific, as

was the case with the v1 specifications. It also provides a richer feature set

which includes, most notably [73]:

• Support for the automatic preview of protected content.

352

• Support for subscription services.

• Support for continuous media such as streaming and progressive download

of content.

• Support for reward schemes.

• Support for domains. A domain, to which a specified number of devices

can be added, may be established by a user. Following this, content and

the associated access rights may be shared among the devices in this par-

ticular domain. In this case, rights objects must be explicitly acquired for

the domain rather than a specific device. A RI may control the number

of devices allowed in a domain, although the user is entitled to add and

remove devices at will, as long as the limit set by the RI is adhered to.

• Support for unconnected devices. This is a feature supported by the imple-

mentation of domains. An unconnected device may be added to a domain,

after which content and rights may be copied from a connected domain

device to the unconnected device.

In order to provide the additional security features described above, a ded-

icated suite of DRM security protocols, the rights object acquisition protocol

(ROAP) suite, was developed by the OMA.

In addition to the ROAP suite, it was agreed that the OMA DRM v2 spec-

ification set should be supported by a trust model. A trust model enables an

RI to obtain assurances about DRM agent behaviour, and the robustness of the

DRM agent implementation [120]. It is the responsibility of the CMLA DRM,

or a similar organisation, to provide a trust model, i.e. robustness rules, and to

define actions which may be taken against a manufacturer who builds devices

which are not sufficiently robust.

353

10.7 Conclusions

In this chapter, an overview of DRM has been provided, with particular focus on

the OMA DRM standards. The rationale for DRM solutions has been examined

and the generic components of a DRM system outlined. The activities of the

OMA have been briefly introduced, followed by a description of the model to

which the OMA DRM architecture applies. An overview of OMA DRM v1 and

v2 has also been provided.

354

Chapter 11

Requirements for a robust
implementation of OMA
DRM v2

Contents
11.1 Introduction . 356

11.2 OMA DRM v2 agent installation 357

11.3 The rights object acquisition protocol (ROAP) suite360

11.3.1 Notation . 360

11.3.2 The 4-pass registration protocol 363

11.3.3 The rights acquisition protocols 368

11.3.4 The 2-pass join domain protocol 373

11.3.5 The 2-pass leave domain protocol 376

11.4 Conclusions . 378

In this chapter the lifecycle of an OMA DRM v2 agent is considered. Each

lifecycle stage is analysed in order to derive a list of security threats that may

impact on devices, and protected content received by devices, on which an OMA

DRM v2 agent is not robustly implemented. The functionality required of a

trusted mobile platform on which an OMA DRM v2 agent is to be robustly

implemented, thereby thwarting any threats to the DRM agent and its associated

data, is also defined.

355

11.1 Introduction

Having described the model to which the OMA DRM architecture applies, and

having briefly examined the core elements of OMA DRM v1 and v2 in chap-

ter 10, we now consider certain aspects of the most recent version of the OMA

DRM specifications in greater detail. More specifically, we examine OMA DRM

v2 with a view to defining what functionality is required of a trusted mobile

platform if it is to support a robust implementation of an OMA DRM v2 agent.

The numbered list of functional requirements that is accumulated through the

course of this chapter will be utilised in chapter 12 in two ways. Firstly, they

enable us to determine the ‘roots of trust’, see section 1.7, required within a

trusted mobile phone. Secondly, they enable the evaluation of the capabilities

which must be provided by each of these roots of trust to support this particular

use case.

Section 11.2 describes the process by which an OMA DRM v2 agent and its

associated data are installed on a device. This process is analysed in order to

extract any threats which may arise if the OMA DRM v2 agent is not robustly

implemented. Following this, the functionality required of a trusted mobile

device in order to thwart these threats is described.

Section 11.3 examines the fundamental steps in each of the protocols defined

within the OMA ROAP suite [122]. Following each of the protocol descriptions,

the threats which may impact upon the security of the protocols, if the OMA

DRM v2 agent is not robustly implemented, are highlighted. As stated above,

the functionality required of a trusted mobile device in order to thwart these

threats is also described.

356

11.2 OMA DRM v2 agent installation

Before an OMA DRM v2 agent can be executed by a mobile device user to ac-

quire protected content, it must be installed on the device. The steps described

in table 11.1 must be completed when installing an OMA DRM v2 agent on a

mobile device. It is assumed that this will take place at the time of manufacture.

Table 11.1: OMA DRM v2 agent installation
Step Description

1 The OMA DRM v2 agent code must be installed on the device.
2 The OMA DRM v2 agent private key must be installed on the

device.
3 The OMA DRM v2 agent private key must be stored on the device.
4 The OMA DRM v2 agent certificate (chains), the device details,

i.e. the device manufacturer, model, and version number, and the
trusted RI authorities certificate must be installed on the device.

5 The OMA DRM v2 agent certificate (chains), the device details
and the trusted RI authorities certificate must be stored on the
device.

Every OMA DRM v2 agent is equipped with a unique key pair [120]. The

private key from this key pair is used by an OMA DRM v2 agent to generate

digital signatures, so that a rights issuer can authenticate a particular DRM

agent. The public key from this pair is used by rights issuers in order to dis-

tribute rights object (RO) encryption keys, which protect content encryption

keys that are used to encrypt content, as described in section 10.6.

An associated certificate, which identifies the DRM agent and binds the

agent to the public key described above, is also provided to the DRM agent.

The OMA DRM v2 certificate may also be integrated into one or more certifi-

cate chains. The OMA DRM v2 certificate comes first in a chain, and each

subsequent certificate contains the public key necessary to verify the certificate

preceding it [124]. When a rights issuer, with whom the OMA DRM v2 agent

is communicating, indicates its preferred trust anchor(s), the OMA DRM v2

agent must select and send a device certificate (chain) which points back to an

357

appropriate anchor [124], so that the RI can verify the OMA DRM v2 agent

certificate.

The device details indicate the device manufacturer, model, and version

number. Finally, the trusted RI authorities certificate is used to indicate which

rights issuer trust anchor(s) are recognised by the OMA DRM v2 agent. This

trusted RI authorities certificate may be a single root certificate, as is the case

in the CMLA trust model [29], where the trusted RI authorities certificate is a

self-signed CMLA root CA certificate, or, alternatively, may be a collection of

self-signed public key certificates representing the preferred trust anchors of the

OMA DRM v2 agent, see section 1.5.7.

Of the items described in table 11.1, the CMLA requires that the OMA

DRM v2 agent private key is both confidentiality and integrity-protected, and

that the device details and the trusted RI authorities certificate are integrity-

protected [29].

Unless the device implementation of the OMA DRM v2 agent is robust, a

number of threats may impact on the device, and ultimately on the protected

content received by the device. These threats include:

• Unauthorised modification of the OMA DRM v2 agent code on installation

onto the device.

• Unauthorised modification of the OMA DRM v2 agent code while in stor-

age on, or while executing on, the device.

• Unauthorised reading/copying of the OMA DRM v2 agent private key on

installation into the device.

• Unauthorised reading/copying of the OMA DRM v2 agent private key

while in storage on the device.

358

• Unauthorised modification of the OMA DRM v2 agent private key, the

OMA DRM v2 agent certificate (chains), the device details or the trusted

RI authorities certificate on installation into the device.

• Unauthorised modification of the OMA DRM v2 agent private key, the

OMA DRM v2 agent certificate (chains), the device details or the trusted

RI authorities certificate while in storage on the device.

Using the list of threats outlined above, a number of requirements can be

derived for a trusted mobile platform (TMP), if it is to facilitate the secure

installation of an OMA DRM v2 agent.

1. The TMP SHALL provide a mechanism so that “an OMA DRM v2 agent

can perform self-checking of the integrity of its component parts so that

unauthorised modifications will be expected to result in a failure of the im-

plementation to provide the authorised authentication and/or decryption

function” [29].

2. The TMP SHALL provide a mechanism so that the OMA DRM v2 agent

private key can be confidentiality-protected during its installation.

3. The TMP SHALL provide a mechanism so that the OMA DRM v2 agent

private key can be confidentiality-protected while in storage on the device.

4. The TMP SHALL provide a mechanism so that the OMA DRM v2 agent

private key, the device details and the trusted RI authorities certificate

can be integrity-protected during their installation.

5. The TMP SHALL provide a mechanism so that the OMA DRM v2 agent

private key, the device details and the trusted RI authorities certificate

can be integrity-protected while in storage on the device.

359

If the OMA DRM v2 agent certificate or an OMA DRM v2 agent certificate

(chain) is modified in an unauthorised way, it will be detected when the certifi-

cate (chain) is verified. Therefore, they do not need to be integrity-protected

during their installation or while they are in storage on the device. However,

as the trusted authorities certificate is defined in the CMLA trust model as a

self-signed CMLA root CA certificate, it needs to be integrity-protected.

11.3 The rights object acquisition protocol (ROAP)
suite

The ROAP suite is defined as the “the suite of DRM protocols between the RI

and the OMA DRM v2 agent on the mobile device” [122]. The ROAP suite is

composed of five protocols:

• The 4-pass registration protocol;

• The 2-pass rights acquisition protocol;

• The 1-pass rights acquisition protocol;

• The 2-pass join domain protocol; and

• The 2-pass leave domain protocol.

11.3.1 Notation

In our discussion of ROAP we use a large amount of standardised terminology.

This terminology is tabulated below.

360

Version represents the highest ROAP version supported
by the communicating entity.

Device ID identifies the device to the RI.
Supported Algorithms identifies the cryptographic algorithms that are

supported by the device.
Status indicates whether a message was successfully

handled by the receiving entity.
Session ID denotes the protocol session identifier selected

by the RI.
Selected Version indicates the ROAP version selected by the RI.
RI ID identifies the RI to the device.
Selected Algorithms identifies the cryptographic algorithms to be

used in subsequent ROAP interactions.
RI Nonce denotes a random nonce chosen by the RI.
Trusted Device Authorities identifies the trusted root certification authori-

ties recognised by the RI.
Server Info contains server specific information provided by

the RI, that must not be modified.
Device Nonce denotes a random nonce chosen by the device.
DRM Time denotes a secure non-changeable time source.
Request Time indicates the current DRM time, as measured

by the device.
Certificate Chain contains a certificate chain, including the public

key certificate of the communicating entity.
Trusted RI Authorities identifies the trusted root certification authori-

ties recognised by the device.
Signature contains a digital signature on the data sent in

the protocol so far.
RI URL indicates the URL that should be stored in the

RI context, and used by the device in later in-
teractions with the RI when sending ROAP re-
quests.

OCSP Response contains a complete set of valid online certificate
status protocol (OCSP) responses for the RI’s
certificate chain.

Domain Identifier identifies a domain.
RO Info identifies the requested rights objects.
Protected ROs contain the rights objects.
Domain Info carries domain keys, encrypted using the de-

vice’s public key.

In our discussion of ROAP the following extensions may be supported by a

device or a rights issuer. The optional extensions are tabulated below.

361

Certificate Caching In the device hello message of the registration
protocol, a certificate caching extension is used
by a device to communicate to an RI that it has
the ability to store information in the RI con-
text indicating whether an RI has stored device
certificate information.
In the RI hello message of the registration pro-
tocol, a certificate caching extension is used to
indicate to the device that the RI has the ca-
pability to store information about the device
certificate.

Peer Key Identifier In the RI hello message of the registration pro-
tocol, a peer key identifier extension is used to
communicate an identifier for a device public
key stored by the RI.
In the registration request, RO request and join
domain request messages, a peer key identifier
extension denotes an identifier for an RI public
key stored in the device.

Device Details In the RI hello message of the registration pro-
tocol, a device details extension indicates that
the RI is requesting that the device details be
sent in a subsequent message.
In the registration request message of the regis-
tration protocol, a device details extension spec-
ifies the device model, manufacturer and ver-
sion.

No OCSP Response In registration request, RO request and join do-
main request messages, a no OCSP response ex-
tension indicates to the RI that there is no need
to send any OCSP responses to the device.

OCSP Responder Key Identifier In registration request, RO request and join do-
main request messages, an OCSP responder key
identifier extension identifies a trusted OCSP re-
sponder key stored in the device.

Domain Name Whitelist In the registration response message of the reg-
istration protocol, a domain name whitelist ex-
tension allows an RI to specify a list of fully
qualified domain names regarded as trusted for
the purposes of silent and preview headers.

Hash Chain Support In the join domain request message of the do-
main management protocols, a hash chain sup-
port extension indicates that the client supports
a particular technique for generating domain
keys through hash chains.

362

In the join domain response message of the do-
main management protocols, a hash chain sup-
port extension indicates that the RI is using a
particular technique for generating domain keys
through hash chains.

Not a domain member In the leave domain request message of the do-
main management protocols, a not a domain
member extension is used by the device to indi-
cate to the RI that the device does not consider
itself a member of a particular domain.

Transaction Identifier In the RO request message of the RO acquisi-
tion protocols, a transaction identifier extension
allows the device to provide the RI with infor-
mation for tracking transactions.
In the RO response message of the RO acquisi-
tion protocols, a transaction identifier extension
allows the RI to provide the device with infor-
mation for tracking transactions.

11.3.2 The 4-pass registration protocol

The 4-pass registration protocol is defined by the OMA as a “complete secu-

rity information exchange and handshake between the RI and a DRM agent

in a device” [122]. The protocol enables the negotiation of protocol parameters

including protocol version, cryptographic algorithms, certificate preferences, op-

tional exchange of certificates, mutual authentication of the mobile device and

RI, integrity protection of protocol messages, and optional device DRM time

synchronisation [122]. The registration protocol is a 4-pass protocol, in which

two messages are sent from the device to the RI, namely the device hello and

the registration request, and two messages are sent from the RI to the device,

namely the RI hello and the registration response. The composition of these

messages is shown in table 11.2.

There are three occasions on which the 4-pass registration protocol may be

used [122].

• On first contact between the RI and the mobile device.

363

• When security information needs to be updated.

• When the device time source is deemed to be inaccurate by the RI.

Table 11.2: The 4-pass registration protocol
Step Message composition

Device hello Version, Device ID (both of which are mandatory), Sup-
ported Algorithms and Extensions—Certificate Caching
(both of which are optional).

RI hello Status, Session ID, Selected Version, RI ID, RI Nonce (all
of which are mandatory), Selected Algorithms, Trusted
Device Authorities, Server information and Extensions—
Peer Key Identifier, Certificate Caching and Device De-
tails (all of which are optional).

Registration
request

Session ID, Device Nonce, Request Time (all of which are
mandatory), Certificate Chain, Trusted RI Authorities,
Server Information and Extensions—Peer Key Identifier,
No OCSP Response, OCSP Response Key Identifier and
Device Details (all of which are optional) and the Sig-
nature of the DRM agent on all data sent so far in the
protocol run (which is also mandatory).

Registration
response

Status, Session ID and RI URL (all of which are
mandatory), Certificate Chain, OCSP Response and
Extensions—Domain Whitelist (all of which are optional),
and a Signature on all data sent so far in the protocol run
(which is also mandatory).

Once the 4-pass registration protocol has been successfully completed, the

device establishes a context for the RI. The elements in the RI context are

accumulated on the device over the course of the four protocol passes. On

completion of a 4-pass registration protocol, the RI context will contain five

mandatory elements — the RI URL, the RI ID, the agreed protocol parameters,

the protocol version, and information as to whether an RI has stored the OMA

DRM v2 agent certificate. It may also contain the following optional elements

— trusted device authorities, the OCSP responder public key certificate (chain),

the current (valid) OCSP response, the RI certificate (chain), the RI certificate

validation data, the domain name whitelist, and the context expiry time [29].

It is required by the CMLA that the device must maintain the confidentiality

and integrity of component information of the RI context until it expires [29].

364

In order to compose the device hello message, the OMA DRM v2 agent must

access the implicitly integrity-protected OMA DRM v2 agent certificate in order

to obtain the device ID, which is equal to the hash of the OMA DRM v2 agent’s

public key info, as it appears in the OMA DRM v2 agent certificate. All other

elements of the device hello message contain non-sensitive data.

In order to compose a registration request message, a device nonce must

be generated. On receipt of the registration request message, and before the

registration response message is sent, the RI may optionally perform a nonce-

based OCSP request for its own certificate, using the device nonce sent in the

registration request message [122]. An OCSP request may also be performed if

the RI deems the device DRM time source to be inaccurate, or if the device is an

unconnected device which does not support DRM time [122]. The device nonce

cryptographically binds an OCSP request and an OCSP response to prevent

replay attacks [106].

The device nonce, sent to the RI in the registration request message, and

returned in the signed RI registration response message, also allows the device

to authenticate the RI. The registration response message is susceptible to a

replay attack if the device nonce has been previously used. The registration

request message, which contains the device generated nonce is not, however,

open to a preplay attack because it is digitally signed. The OCSP response

message received by RI from the OCSP responder may also be susceptible to

a replay attack unless the device nonce has not been previously used. Whilst

realistic attack scenarios for preplay attacks seem a little difficult to construct,

there are possible issues with the fact that the OCSP request sent by an RI to

an OCSP responder is unsigned and contains a DRM agent generated nonce.

Hence, unpredictability of the device nonce is also desirable to rule out any

possibility of an attack.

365

Access may be required to the OMA DRM v2 agent certificate (chain), the

trusted RI authorities certificate, and the device details, in order to construct

the registration request message. The CMLA requires that both the trusted RI

authorities certificate and the device details are integrity-protected if the imple-

mentation of the OMA DRM v2 agent is to be considered robust [29]. Access

to an accurate DRM time source is also required. In order to complete the re-

maining registration response extension fields, i.e. Peer Key Identifier, No OCSP

Response and OCSP Responder Key Identifier, the RI context must be accessed

and the extension fields completed based on the RI certificate, OCSP responder

certificate and current valid OCSP response values (or lack thereof) stored in

the RI context. Finally, access to and use of the confidentiality-protected OMA

DRM v2 private key is required so that the registration request can be signed.

When the registration response has been received, access to the integrity-

protected trusted RI authorities certificate is required so that the RI certificate

(chain) can be validated and the digital signature of the RI on the registration

response message verified. Alternatively, the RI public key field of the RI context

may be accessed, if present on the device, so that the digital signature of the RI

can be verified. The presence of a valid OCSP response must also be checked by

the DRM agent before the RI signature is validated. This OCSP response may

be received by the DRM agent in the registration response or, alternatively,

accessed from the OCSP response field in the RI context, if present on the

device.

Unless the implementation of the OMA DRM v2 is robust, the following

additional threats may impact upon the device:

• Replay of the registration response message because of the generation and

use of a previously used nonce by the device.

366

• Replay of an OCSP response message as part of the OCSP protocol, per-

formed by the RI on receipt of the registration request, because of the

generation and use of a previously used nonce by the device.

• Preplay attack against the OCSP protocol between the RI and the OCSP

responder because of the generation of a predictable nonce by the device.

• Unauthorised modification of the RI context before its expiry time while

in storage on the device.

• Unauthorised access to the RI context, the OMA DRM v2 private key, the

OMA DRM v2 agent certificate (chain), the device details or the trusted

RI authorities certificate.

• Unauthorised reading/copying of the OMA DRM v2 private key while in

use on the device.

• Unauthorised modification of the OMA DRM v2 private key, the RI con-

text, the OMA DRM v2 agent certificate (chain), the device details or the

trusted RI authorities certificate while in use on the device.

While the inclusion of an inaccurate device DRM time in the registration

request message will not result in the realisation of a security threat, it may

result in a threat to the efficiency of the protocol run. If the device DRM time

included in the registration request is deemed to be inaccurate by the RI, an

OCSP exchange is completed by the RI, and the OCSP response received by

the RI, containing the correct time, is then communicated to the device in the

registration request message.

Using the list of threats outlined above, the following additional requirements

can be derived for a TMP, if it is to facilitate a robust implementation of an

OMA DRM v2 agent.

367

6. The TMP SHALL provide a pseudo-random number generator of good

quality.

7. The TMP SHALL provide an accurate and trusted time source.

8. The TMP SHALL provide a mechanism such that the RI context can be

integrity-protected while in storage on the device.

9. The TMP SHALL provide an access control mechanism such that the RI

context, the OMA DRM v2 private key, the device details and the trusted

RI authorities certificate, can only be accessed by authorised entities.

10. The TMP SHALL provide a mechanism so that the OMA DRM v2 private

key can be confidentiality-protected while in use on the device.

11. The TMP SHALL provide a mechanism so that the RI context, the OMA

DRM v2 private key, the device details and the trusted RI authorities

certificate can be integrity-protected while in use on the device.

If the OMA DRM v2 agent certificate or an OMA DRM v2 agent certificate

(chain) is modified in an unauthorised way, it will be detected when the cer-

tificate (chain) is verified, so mechanisms to protect either the OMA DRM v2

agent certificate or an OMA DRM v2 agent certificate (chain) from unauthorised

access while in use on the device are not required.

11.3.3 The rights acquisition protocols

Two rights acquisition protocols are defined in the OMA DRM v2 specification

set. The 2-pass rights acquisition protocol allows a device to acquire a rights

object from a RI. One message is sent from the device to the RI, i.e. the

RO request, and one message returned from the RI to the device, i.e. the RO

response. The composition of these messages is shown in table 11.3.

368

This protocol supports [122]:

• mutual authentication of the device and the RI;

• integrity protection for the RO request and RO delivery; and

• the secure transfer of keys necessary to process the RO.

Table 11.3: The 2-pass rights acquisition protocol
Step Message composition

RO request Device ID, RI ID, Device Nonce, Request Time and RO
Information (all of which are mandatory), Domain ID,
Certificate Chain and Extensions—Peer Key Identifier,
No OCSP Response, OCSP Response Key Identifier and
Transaction Identifier (all of which are optional), and the
Signature of the DRM agent on the entire message (which
is also mandatory).

RO response Status, device ID, RI ID, Device Nonce and Protected ROs
(all of which are mandatory), Certificate Chain, OCSP
Response and Extensions—Transaction Identifier (all of
which are optional), and the Signature of the RI on all the
data sent during the protocol run (which is also manda-
tory).

The 1-pass rights object acquisition protocol is initiated by the RI and con-

tains only one protocol message, as shown in table 11.4. It may, for example,

be used to support a content subscription [122].

Table 11.4: The 1-pass rights acquisition protocol
Step Message composition

RO response Status, Device ID, RI ID, Protected ROs, OCSP Response
(all of which are mandatory), RI URL, Certificate Chain,
Extensions—Transaction Identifier (both of which are op-
tional) and the Signature of the RI on all the data sent
during the protocol run (which is also mandatory).

We now examine how messages are composed and verified in both the 1-pass

and 2-pass rights acquisition protocols. In order to compose the RO request

message, access to the OMA DRM v2 agent’s certificate is required in order

to obtain the device ID, which is computed as the hash of the OMA DRM v2

agent’s public key info, as it appears in the OMA DRM v2 agent’s certificate.

369

The device nonce, sent to the RI in the RO request message, and returned

in the RO response message signed by the RI in the 2-pass protocol, allows

the device to authenticate the RI. If the nonce has been previously used, an

attacker may be able to launch a replay attack against the 2-pass RO acquisition

protocol.

The OMA DRM v2 agent requires access to the RI ID from the integrity-

protected RI context, the confidentiality and integrity-protected OMA DRM v2

private key and an accurate DRM time source. Access may also be required to a

domain ID from a domain context, which must remain integrity-protected, and

the OMA DRM v2 agent certificate (chain). In order to complete the remain-

ing RO request extension fields, i.e. Peer Key Identifier, No OCSP Response

and OCSP Responder Key Identifier, the RI context must be accessed and the

extension fields completed based on the RI certificate, OCSP responder certifi-

cate and current valid OCSP response values (or lack thereof) stored in the RI

context. A transaction identifier, which must be integrity-protected [29], may

also be generated on the device and communicated to the RI in the RO request

message.

When the RO response has been received, authorised access may be required

to the trusted RI authorities certificate, so that the RI certificate chain can be

validated and the digital signature of the RI verified. Alternatively, access may

be required to the RI context, if the RI public key has been previously stored

on the device, so that the digital signature of the RI can be verified. The

presence of a valid OCSP response must also be checked by the DRM agent.

This OCSP response may be received by the DRM agent in the RO response,

or, alternatively, accessed from the relevant RI context field already present on

the device. A transaction identifier, if generated by the RI and communicated

to the device in the RO response, rather than being generated on the device

370

and communicated to the RI in the RO request, will also need to be integrity-

protected by the device.

On receipt of the RO response, the content encryption key, the rights object

encryption key, the MAC key, and the random value (Z) used in the generation

of a key encryption key (KEK), all of which are contained in a protected RO

which has been received, must be confidentiality and integrity-protected [29].

Any permissions or constraints contained in received rights objects must also

be integrity-protected [29].

Unless the implementation of the OMA DRM v2 agent is robust, a number

of additional threats may impact upon the device on execution of the rights

acquisition protocols.

• Replay of the RO response in the 2-pass RO acquisition protocol because

of the generation and use of a previously used nonce by the device.

• Unauthorised reading/copying of the CEK, the value Z used to generate

the KEK, the KEK, the REK or the MAC key received in a protected RO

while in storage on the device.

• Unauthorised modification of the transaction identity, the permissions or

constraints, the CEK, Z, the KEK, the REK or the MAC key received in

a protected RO while in storage on the device.

• Unauthorised access to the domain ID from a domain context, the trans-

action identity, any permissions or constraints, CEK, Z, KEK, REK or

MAC key.

• Unauthorised reading/copying of any CEK, Z, KEK, REK or MAC key

while in use on the device.

371

• Unauthorised modification of the domain ID from a domain context, the

transaction identity or any permissions or constraints, CEK, Z, KEK, REK

or MAC key while in use on the device.

While the inclusion of an inaccurate device DRM time in the RO request

message will not result in the realisation of a security threat, it will result in

a threat to the efficiency of the 2-pass rights acquisition protocol completion.

If the device DRM time included in the RO request is deemed inaccurate by

the RI, a status value of DeviceTimeError will be returned to the device in

the RO response. Following this, the device is required to re-initiate a 4-pass

registration protocol.

With respect to rights object acquisition protocols, we can extract the fol-

lowing additional requirements.

12. The TMP SHALL provide a mechanism so that any CEK, Z, KEK, REK

and MAC key, received in a protected RO, can be confidentiality-protected

while in storage on the device.

13. The TMP SHALL provide a mechanism so that the transaction identity

and any permissions and constraints, CEK, Z, KEK, REK and MAC key,

received in a protected RO, can be integrity-protected while in storage on

the device.

14. The TMP SHALL provide an access control mechanism so that the domain

ID, the transaction identity, and any permissions and constraints, CEK,

Z, KEK, REK and MAC key, received in a protected RO, can only be

accessed by authorised entities.

15. The TMP SHALL provide a mechanism so that any CEK, Z, KEK, REK

and MAC key, received in a protected RO, can be confidentiality-protected

372

while in use on the device.

16. The TMP SHALL provide a mechanism so that the domain ID, the trans-

action identity, any permissions and constraints, CEK, Z, KEK, REK and

MAC key, received in a protected RO, can be integrity-protected while in

use on the device.

11.3.4 The 2-pass join domain protocol

Rather than requesting rights objects for individual devices, as illustrated above,

a domain may be established, devices added, and domain ROs requested. These

ROs can then be shared among the devices in the domain, and used to access

protected content.

A domain is defined as a collection of devices that typically belongs to a

single user. Once a domain has been established by a user, and after devices have

been added to the established domain, protected content and associated rights

objects, which have been explicitly created for domain use, may be copied and

moved between domain devices. Therefore, rather than requesting a separate

rights object for each individual device, only one domain RO need be requested.

The join domain and leave domain protocols are used to manage domains.

The join domain protocol may be attempted after the 4-pass registration

protocol has been successfully completed. It is used in the establishment of a

domain context in the device. On completion of a 2-pass join domain protocol,

the domain context will contain three mandatory elements — the domain ID,

the domain context expiry time and, if applicable, an indication that the RI

supports hash-chained domain keys [122]. The domain key and the RI public

key may also be stored in the domain context. This domain context is used by

the device to install and use domain ROs [122]. The device must maintain the

373

confidentiality and integrity of the component information for the domain [29].

In this protocol, the join domain request message is sent from the device to

the RI, and the join domain response message is returned from the RO to the

device, as shown in table 11.5.

Table 11.5: The 2-pass join domain protocol
Step Message composition

JoinDomainRequest Device ID, RI ID, Device Nonce, Request Time, Do-
main Identifier (all of which are mandatory), Cer-
tificate Chain, Extensions—Peer Key Identifier, No
OCSP Response, OCSP Response Key Identifier and
Hash Chain Support (both of which are optional) and
the Signature of the DRM agent on the message (which
is also mandatory).

JoinDomainResponse Status, Device ID, RI ID, Device Nonce, Domain
Information (all of which are mandatory), Certifi-
cate Chain, OCSP Response, Extensions—Hash Chain
Support (both of which are optional), and the Signa-
ture of the RI on the message (which is also manda-
tory).

In order to compose a join domain request message, a device nonce must be

generated and sent to the RI. The device nonce enables the device to authen-

ticate the RI. If the nonce has been previously used, a replay attack could be

mounted on the RI authentication exchange.

Authorised access is required by the OMA DRM v2 agent to the device

ID, the RI ID and the domain ID, which must be integrity-protected [29], and,

optionally, the OMA DRM v2 agent certificate (chain). Access to an accurate

DRM time source is also required. In order to complete the remaining join

domain request extensions, i.e. Peer Key Identifier and No OCSP Response, the

RI context must be accessed. Finally, access to, and use of, the confidentiality

and integrity-protected OMA DRM v2 private key is also required, so that the

join domain request message can be digitally signed by the OMA DRM v2 agent.

When the join domain response has been received, authorised access is re-

quired to the trusted RI authorities certificate so that the RI certificate chain

374

can be validated and the digital signature of the RI verified. As previously

stated, the CMLA requires that the trusted RI authorities certificate is integrity-

protected [29]. Alternatively, the RI public key field of the RI context may be

accessed, if present on the device, so that the digital signature of the RI can

be verified. Access may also be required to the OCSP details stored in the RI

context. Domain keys securely transmitted in the domain information field of

the join domain response must be confidentiality and integrity-protected by the

device [29].

Unless the implementation of the OMA DRM v2 agent is robust, a number

of additional threats may impact upon a device when using the join domain

protocol.

• Replay of the join domain response message because of the generation and

use of a nonce which has been previously used by the device.

• Unauthorised reading/copying of the domain key while in storage on the

device.

• Unauthorised modification of the domain key, the domain ID, the expiry

time or the RI public key, i.e. the domain context, while in storage on the

device.

• Unauthorised access to the domain context established as part of the join

domain protocol.

• Unauthorised reading/copying of the domain key while in use on the de-

vice.

• Unauthorised modification of the elements of the domain context while in

use on the device.

375

While the inclusion of an inaccurate device DRM time in the join domain

request message will not result in the realisation of a security threat, it will

result in a threat to the efficiency of the join domain protocol run. If the device

DRM time included in the join domain request message is deemed inaccurate by

the RI, a status value of DeviceTimeError will be returned to the device in the

join domain response message. Following this, the device is required to initiate

the 4-pass registration protocol.

11.3.5 The 2-pass leave domain protocol

This 2-pass protocol may be executed at any time after the join domain protocol

has been completed, but only after the domain context has been deleted from

the device. This protocol is used to remove a device from a domain. The two

messages passed between the device and the RI during the leave domain protocol

are described in table 11.6.

Table 11.6: The 2-pass leave domain protocol
Step Message composition

LeaveDomainRequest Device ID, RI ID, Device Nonce, Request Time, Do-
main Identifier (all of which are mandatory), Certifi-
cate Chain, Extensions—Not a Domain Member (both
of which are mandatory), and the Signature of the
DRM agent on the message (which is also mandatory).

LeaveDomainResponse Status, Device Nonce, Domain Identifier (all of which
are mandatory), and Extensions—None currently de-
fined (which is optional).

In order to compose a leave domain request message, a device nonce must be

generated and sent to the RI. Authorised access is required to the device ID, the

RI ID, the domain ID, all of which must be integrity-protected, and optionally,

the OMA DRM v2 agent certificate (chain). Access to an accurate DRM time

source is also required. Finally, access to and use of the confidentiality and

integrity-protected OMA DRM v2 private key is also required, so that the leave

domain request message can be digitally signed.

376

No additional threats may impact upon the device in relation to this protocol.

While the inclusion of an inaccurate device DRM time in a leave domain request

message will not result in the realisation of security threat, it will result in a

threat to the efficiency of the leave domain protocol run. If the device DRM

time included in the leave domain request message is deemed inaccurate by the

RI, a status value of DeviceTimeError will be returned to the device in the leave

domain response message. Following this, the device is required to initiate the

4-pass registration protocol.

The following additional requirements, derived from the threats to the join

domain and leave domain protocol runs, apply to a trusted mobile platform

(TMP):

17. The TMP SHALL provide a mechanism so that the domain key from the

domain context can be confidentiality-protected while in storage on the

device.

18. The TMP SHALL provide a mechanism so that the domain key, the do-

main ID, the expiry time and the RI public key from the domain context

can be integrity-protected while in storage on the device.

19. The TMP SHALL provide an access control mechanism so that the domain

context can only be accessed by authorised entities.

20. The TMP SHALL provide a mechanism so that that the domain key from

the domain context can be confidentiality-protected while in use on the

device.

21. The TMP SHALL provide a mechanism so that the domain key, the do-

main ID, the expiry time and the RI public key from the domain context

can be integrity-protected while in use on the device.

377

11.4 Conclusions

In this chapter, the lifecycle of an OMA DRM v2 agent has been examined, and

each stage analysed in terms of the threats that may impact on devices on which

OMA DRM v2 is not robustly implemented. In order to thwart these threats and

provide a robust implementation of OMA DRM v2, a trusted mobile platform

must meet the functional requirement set accumulated through the course of

this chapter.

378

Chapter 12

A robust implementation of
OMA DRM v2

Contents
12.1 Introduction . 381

12.2 Requirements analysis 382

12.2.1 Requirement 1 . 382

12.2.2 Requirement 2 – 5 and 8 – 21 384

12.2.3 Requirement 6 . 385

12.2.4 Requirement 7 . 386

12.2.5 Meeting the requirements using a TMP 386

12.3 Model . 387

12.4 Assumptions . 388

12.5 The trusted mobile platform architecture 390

12.6 Authenticated boot 392

12.7 Secure boot . 394

12.7.1 Prior art . 394

12.7.2 Secure boot using a version 1.1 compliant TPM . . . 398

12.7.3 Secure boot using a version 1.2 compliant TPM . . . 399

12.8 Platform run-time integrity 403

12.9 Fundamental TSS and TPM command sequences . 405

12.9.1 TPM permanent flags 405

12.9.2 TPM initialisation 406

12.9.3 TPM startup . 406

12.9.4 Context management 407

12.9.5 Endorsement key pair generation 410

12.9.6 Accessing the public endorsement key 410

12.9.7 TPM self testing . 412

12.9.8 Enabling the TPM 412

12.9.9 The ownership flag 413

12.9.10Taking ownership of the TPM 413

12.9.11TPM activation . 415

379

12.10Secure storage . 415

12.10.1Key hierarchy . 415

12.10.2 Installing integrity and confidentiality sensitive OMA
DRM v2 data on the device 416

12.10.3Secure storage of and access control to OMA DRM
v2 data . 418

12.10.4Security of the OMA DRM v2 data while in use on
the device . 426

12.11Platform attestation 426

12.12Demonstrating privilege 429

12.13Random number generation 434

12.14Trusted time source 435

12.15Conclusions . 436

In this chapter, the requirements extracted in chapter 11 are utilised in order

to examine which architectural components and functionality described within

the TCG version 1.2 specification set may be used to provide a robust imple-

mentation of OMA DRM v2. This examination also allows us to identify any

architecture components and functionality not currently defined within the TCG

specification set but which are required for the implementation of a robust and

secure DRM solution on a trusted mobile platform.

380

12.1 Introduction

In the previous chapter we examined the security threats that may impact upon

devices, and on the content received by devices, if OMA DRM v2 is not robustly

implemented. This enabled us to derive a set of requirements for a robust

implementation of OMA DRM v2. In this chapter, we consider the mechanisms

required in order to meet these requirements. We assume that the TMP is a

mobile platform within which a version 1.2 compliant CRTM, TPM and TSS

have been implemented. We then examine which of the required mechanisms are

provided by such a platform or, more specifically, by the trusted mobile platform

subsystem, namely, the CRTM, TPM and TSS, within such a platform. We also

explore the additional functionality that is required of a trusted mobile platform

subsystem if it is to meet all the identified requirements.

Section 12.2 summarises the requirements extracted in sections 11.2 and 11.3.

In section 12.3 the model defined in chapter 10 and illustrated in figure 10.1 is

re-examined and modified to support a trusted mobile platform. Section 12.4

lists the assumptions we make about the trusted mobile platform, and sec-

tion 12.5 describes the generic trusted mobile platform architecture assumed in

the remainder of this chapter.

Sections 12.6 and 12.7 examine authenticated and secure boot mechanisms.

Section 12.8 examines runtime integrity protection and verification mechanisms.

Section 12.9 explores the fundamental command sequences which need to be

completed on any version 1.2 compliant TPM before its security mechanisms

can be utilised. Section 12.10 shows how secure storage can be provided, while

section 12.11 describes the platform attestation mechanism. Section 12.12 de-

scribes the process by which an entity can demonstrate knowledge of an authori-

sation value/secret bound to a key object, data object, or an ‘owner authorised

381

command’ so that access to the object or use of an ‘owner authorised command’

can be permitted by the TPM. Sections 12.13 and 12.14 briefly examine the

random number generation capabilities and trusted time-stamping functional-

ity provided by a version 1.2 compliant TPM. Section 12.15 summarises the

conclusions of the analysis completed throughout the chapter.

12.2 Requirements analysis

We now re-examine the security mechanisms that must be provided by a trusted

mobile platform if it is to provide a robust implementation of an OMA DRM

v2. In doing so, we summarise the requirements extracted in sections 11.2 and

11.3.

12.2.1 Requirement 1

Requirement 1 necessitates that the integrity of an OMA DRM v2 agent can

be checked, and, if any unauthorised modifications are detected, that the OMA

DRM v2 agent implementation will fail to provide authorised authentication

and/or use of the decryption function [29]. This requirement may be fulfilled in

a variety of ways. We consider three possible approaches.

Firstly, an authenticated boot mechanism in combination with a secure stor-

age mechanism could be used to meet this requirement.

• An authenticated boot mechanism facilitates the accurate measurement

and secure storage of the software configuration of the TMP; and

• A secure storage mechanism ensures that security sensitive information,

such as the OMA DRM v2 agent’s private key, cannot be accessed and/or

utilised if the OMA DRM v2 agent code has been modified in an unau-

thorised way.

382

Secondly, a secure boot mechanism could be deployed in order to ensure that

only a legitimate and authorised OMA DRM v2 agent can be loaded at boot

time. Run-time integrity protection and/or verification mechanisms can then

be used in conjunction with a secure boot mechanism in order to ensure that

the software environment remains in a trustworthy state after boot.

• A secure boot mechanism enables the accurate measurement and verifi-

cation of the correctness of the software configuration of the platform at

start-up. An unauthorised, yet successful, attempt to modify the OMA

DRM v2 agent should result in one of the following three scenarios [4] at

boot time.

– The system could continue booting as normal but issue a warning.

This approach gives little protection against attack. Malicious or

corrupted software components can still be executed.

– The system could opt not to execute the component whose integrity

is compromised. This, however, leaves the system open to denial of

service attacks.

– Finally, the system could attempt to recover and correct the inconsis-

tency using a trusted source before executing or using the component.

• A runtime integrity-checking mechanism facilitates the accurate measure-

ment and verification of the correctness of the software configuration of

the platform while it is in operation. An unauthorised yet successful at-

tempt to modify the OMA DRM v2 agent while the platform is in use

should result in one of the following two scenarios.

– The system could continue as normal but issue a warning. This ap-

proach, however, gives little protection against attack. Attacks may

383

still be successfully executed against software components running

on the platform.

– The system could make unavailable the majority of its services if

the integrity of a software component is compromised. The platform

would then have to be rebooted in order to transition back into a

trusted state. This, however, leaves the system open to denial of

service attacks.

Thirdly, mechanisms which aim to prevent an attack impacting the runtime

integrity of the platform could be adopted.

In conjunction with the mechanisms described above, a platform attestation

mechanism would allow a TMP to attest to both the hardware and software

environment of the platform. In this way, a content provider or indeed a rights

issuer could be assured of the configuration of the OMA DRM v2 agent and

any platform security components implementing secure boot and/or run-time

integrity protection or verification mechanisms.

• A platform attestation mechanism enables the platform’s configuration,

which has been measured and securely stored on the TMP using the au-

thenticated boot mechanism, to be reported to a challenger of the plat-

form. On receipt of this report, a challenger can validate that the plat-

form’s configuration has not been modified in an unauthorised manner

before embarking on further interactions.

12.2.2 Requirement 2 – 5 and 8 – 21

Requirements 2 – 5 and 8 – 21 can be summarised as follows.

• A mechanism is required so that data may be installed on the TMP, where

384

either its:

– Integrity; or

– Integrity and confidentiality;

must be protected.

• A mechanism is required so that data stored on the TMP is protected

with respect to its:

– Integrity; or

– Integrity and confidentiality.

• A mechanism is required so that confidentiality and integrity-protected

data can only be accessed by authorised entities, i.e. a particular OMA

DRM v2 agent.

• A mechanism is required so that data in use on the TMP is protected with

respect to its:

– Integrity; or

– Integrity and confidentiality.

In considering whether (and how) TPM functionality can be used to meet

the above requirements, it should also be considered whether TPM functionality

could be used to generate (and not just protect) the OMA DRM v2 agent key

pair, described in section 11.2.

12.2.3 Requirement 6

Requirement 6 necessitates a pseudo-random number generator of good quality

to be provided by the TMP.

385

12.2.4 Requirement 7

Requirement 7 necessitates a mechanism which supports the implementation of

a trusted time source.

12.2.5 Meeting the requirements using a TMP

In the remainder of this chapter we examine ways of using trusted computing

functionality to meet the requirements outlined in sections 12.2.1 to 12.2.4.

Initially, in sections 12.3, 12.4 and 12.5 we list some fundamental assumptions

regarding a TMP.

In sections 12.6, 12.7, 12.8, and 12.11, we examine mechanisms which enable

us to meet requirement 1 as defined in section 12.2.1, namely, authenticated

boot, secure boot, run-time integrity protection and platform attestation.

Section 12.9 explores the fundamental command sequences which need to be

completed on any version 1.2 compliant TPM before its security mechanisms,

i.e. secure storage, platform attestation, random number generation and time

source functionality, can be utilised.

Section 12.10 investigates if and how requirements 2 – 5 and 8 – 21, as

described in section 12.2.2, can be supported using TPM version 1.2 secure

storage functionality.

Section 12.12 describes the process by which an entity can demonstrate

knowledge of an authorisation value/secret bound to a key object, data ob-

ject, or an ‘owner authorised command’ so that access to the object or use of an

‘owner authorised command’ can be permitted by the TPM. Use of the platform

attestation mechanism and provision of integrity protected secure storage are

dependent on this process.

386

Sections 12.13 and 12.14 briefly examine if and how requirements 6 and 7,

as described in sections 12.2.3 and 12.2.4, can be met using the random number

generation capabilities and trusted time-stamping functionality provided by a

version 1.2 compliant TPM.

12.3 Model

Rights issuerContent issuer

User

Rights object
Protected content

Device manufacturer

Attestation entities

OMA DRM v2 agent
installer

CMLA
The TMP which contains a trusted

platform moduleTPM and has an OMA
DRM v2 agent installed on it

TPM

Figure 12.1: Revised architecture model

We now revisit the model described in chapter 10 and illustrated in fig-

ure 10.1. The revised model is shown in figure 12.1, and involves eight entities.

Six of these, namely the device manufacturer; the OMA DRM v2 agent in-

staller; the CMLA; the user; the content issuer and the rights issuer are already

included in the model illustrated in figure 10.1, and described in section 10.4.1.

The revised model also includes two further entities, namely a trusted mobile

platform which is included in place of the mobile device illustrated in figure 10.1,

and a set of attestation entities, responsible for issuing a set of credentials for

a particular TMP to testify to their confidence in platform components, see

A.10. A CRTM and at least one TPM, see section A.6.1.1, is either physically

387

or logically bound to the trusted mobile platform. This TPM is supported by

a TCG software stack, as described in section A.6.2. All references to a TPM

and a TSS in this chapter are to a TPM and TSS conforming to version 1.2 of

the TCG specifications.

The TPM must first be manufactured and then integrated into a mobile

platform by the device manufacturer, as described in section 10.4. In order

for the manufactured device to be considered a trusted mobile platform, the

TPM, the integration of the TPM into the platform, and the platform design

must be certified by various attestation entities, see section A.5, namely the

trusted platform management entity (TPME), conformance entities (CEs) and

the platform entity (PE).

Once the device has been manufactured, an OMA DRM v2 agent is installed

by the agent installer, who may in practice be the device manufacturer. Privacy-

certification authorities (P-CAs) and validation entities (VEs), as described in

section A.5, must certify TMP identities and the trustworthy measurements

of software components respectively, if statements regarding the software and

hardware configuration of the TMP are to be made by the TMP and validated

by a TMP challenger.

The OMA DRM v2 agent implementation is required to fulfil robustness

rules specified by the CMLA [29] or a similar organisation. Once the OMA

DRM v2 agent has been robustly implemented, a user may utilise their TMP

or, more specifically, the OMA DRM v2 agent installed on their TMP, to acquire

protected content and their associated rights objects.

12.4 Assumptions

We make the following assumptions about the trusted mobile platform.

388

• At least one version 1.2 compliant TPM is inextricably bound to the TMP.

Support for platform integrity measurement, recording and reporting is

also provided. See appendix A for further details.

• The TPM and the platform to which it is bound must have a specified

set of credentials associated with it. This credential set is described in

section A.10.

• It is assumed that the TPM is supported by a version 1.2 compliant TSS,

see section A.6.2, such that applications may interface efficiently and easily

with the TPM.

• A TMP potentially has a number of stakeholders, for example the device

manufacturer, the network operator, third party service providers and the

end user.

• In order to serve the interests of each stakeholder associated with the

mobile platform, various trusted platform mechanisms need to be avail-

able. Each stakeholder may, for example, potentially need to call TPM

commands, generate their own storage key hierarchy to which only they

have access, and attest to platform state or certify keys using attestation

identity keys.

• The trusted mobile platform is running at least one protected execution

environment. Within this environment, an application can run in isolation,

free from being observed or compromised by other processes running in the

same protected partition, or by software running in any insecure partition

that may exist in parallel.

389

12.5 The trusted mobile platform architecture

As stated in section 12.4, every stakeholder requires access to TPM function-

ality. How this functionality is provided to each stakeholder is implementation

specific. With respect to the TCG trusted platform functionality, as described

in appendix A, we highlight some issues which must be considered in relation to

TPM command usage, storage key hierarchies and attestation identity key use

in a mobile platform architecture which incorporates multiple stakeholders.

The majority of TPM commands may be called by any entity with access

to the platform, as they do not require any authorisation data to be input be-

fore they can be executed. Some TPM commands, namely those in a category

called ‘TPM-owner authorised commands’, can only be executed on demonstra-

tion that the TPM owner authorisation data is known by the calling entity, see

section A.16.2. If someone other than the TPM owner needs to execute such

commands, either the TPM owner authorisation data must be transmitted to

that specific entity, or the TCG delegation functionality must be used, see sec-

tion A.18. The fact that access is required by stakeholders to these ‘TPM-owner

authorised commands’ must be considered as part of any security assessment.

Each individual stakeholder may also require their own storage key hierar-

chy, so that no other stakeholder on the platform can access the keys in their

hierarchy.

Finally, we examine the generation and use of attestation identity keys, which

require the input of TPM owner authorisation data. In order that a stakeholder

can attest to the platform’s configuration, or indeed certify other keys using

platform AIKs, he or she must be able to either generate and activate attes-

tation identity keys or, alternatively, utilise AIKs which the TPM owner has

generated and activated, when using a subset of TPM commands, for example,

390

TPM CertifyKey, TPM CertifyKey2, TPM Quote, TPM Quote2.

In order to satisfy the above requirements for individual stakeholders, we

describe an abstract trusted mobile platform architecture in which the required

TPM functionality is available to each individual stakeholder. This TPM func-

tionality may be provided to each stakeholder in a variety of ways.

• Each stakeholder’s ‘TPM functionality’ may be provided using ‘physical’

TPMs, implemented, for example, as hardware TPM chips, where a phys-

ical TPM is defined as a module with its own physical resources and meet-

ing a TCG TPM protection profile and target of evaluation.

• Alternatively, only a device manufacturers’s TPM is implemented by a

physical TPM. Other stakeholder ‘TPM functionality’ could then be pro-

vided through the delegation of owner authorised key and command use

by the device manufacturer, as described in section A.18. Unrestricted use

of unauthorised TPM commands, and the generation of an isolated branch

of keys in the physical TPM key hierarchy, would also be permitted.

• Other possibilities include the implementation of virtual stakeholder TPMs

with their foundations in a physical device manufacturer TPM. Such vir-

tual stakeholder TPMs may be constructed using emulations based on the

device manufacturer TPM, or as TSS instantiations which have their basis

in the device manufacturer TPM.

• As an alternative to a technical solution, legal or commercial agreements

could be drawn up between stakeholders, enabling multiple entities to

share a single TPM.

Whatever the chosen implementation, the mobile device must be capable

of supporting and protecting the interests of every stakeholder, either indepen-

391

dently or in cooperation with other trusted stakeholders.

Analysis of this use case, ‘a robust implementation of OMA DRM v2’, is

used below to identify the TMP subsystem functionality that may need to be

provided to the OMA DRM v2 agent installer by the TMP. In the remainder

of this chapter, we investigate whether the mechanisms provided by the TMP

(as defined in section 12.4) meet the requirements described in section 12.2.

If a particular mechanism is provided by a TMP we also examine the archi-

tecture components, i.e. the TPM and TSS commands, required to utilise the

mechanism. If a particular mechanism is not provided by a TMP, we describe

the additional functional components required within a TMP, as described in

section 12.4, in order that the mechanism can be provided.

12.6 Authenticated boot

Requirement 1, as described in 12.2, may be partially met through the deploy-

ment of an authenticated boot mechanism. Such a mechanism can be provided

by a TMP.

Such a mechanism would be supported primarily by the root of trust for

measurement and the root of trust for storage, as described in section A.6.1.

The TPM incorporates the RTS. The RTM is generally implemented in a PC

platform via the integration of additional instructions into the BIOS or BIOS

boot block (the CRTM), which cause the platform processor to act as the RTM.

It is envisaged that the authenticated boot mechanism for a mobile platform

will closely resemble that of the PC platform, as described in section A.11.3. In

this instance, the CRTM could be integrated, for example, into the BIOS boot

block (BBB) of the phone. Measurement functionality could be integrated into

various platform components, for example the BIOS, the OS loader, and/or the

392

OS. Precisely which components are used will depend on the specific platform

architecture. The authenticated boot mechanism could, for example, proceed

as follows:

• When the BBB starts the boot process, it measures its own configuration

and the configuration of the entire BIOS, saving the measurement to a

TPM PCR and a summary of the measurement to a log file in the TMP.

• The BIOS then continues the measurement process, saving measurements

of option ROMs and the OS loader, for example, to the TPM PCRs and

a summary to the log on the TMP. It then passes control to the next

component in the chain, the OS loader.

• This process continues until all the specified software on the platform has

been measured.

Measurements stored during the authenticated boot process may be utilised

in secure storage and attestation mechanisms, described in sections 12.10 and

12.11.

The architectural components required in order to provide such a mechanism

are already defined within the TCG specification set, as follows.

• A root of trust for measurement is required to accurately measure at least

one integrity measurement, and report the integrity measurement to the

TPM.

• A root of trust for storage is required to accept measured integrity mea-

surements and record them. This may be accomplished using the TSS

PCR extension methods, Tspi TPM PcrExtend and Tcsip Extend, and

the TPM PCR extension command, TPM Extend.

393

The corresponding entries in the TSS event log can be written using the

Tcsi LogPcrEvent command. The TSS PCR EVENT data structure is required

to provide information about an individual PCR extend event.

The exact process by which a trusted mobile platform is booted, its integrity

is measured and its integrity measurements stored, needs to be specified, just

as for the PC client in [153]. All RTM implementations are required to meet

the TBB protection profile, which defines what properties must be met by the

RTM, independently of how it is implemented.

12.7 Secure boot

Requirement 1, as described in section 12.2, may be partially met through the

deployment of a secure boot process. The authenticated boot process, as de-

scribed in the previous section, permits a platform to boot into any state. As

described in section 12.2, a trusted mobile platform implementation may require

a secure boot mechanism, rather than an authenticated boot mechanism so that

the platform is permitted only to boot into a specified state. Such a mechanism

has not been specified by the TCG.

In the following subsections we will examine previous work on secure boot

(section 12.7.1), suggested methods for secure boot implementation using a

version 1.1 compliant TPM (section 12.7.2), and suggestions/requirements for

implementing a secure boot process using a version 1.2 compliant TPM (sec-

tion 12.7.3).

12.7.1 Prior art

We begin by examining previous work on secure boot, that was conducted inde-

pendently of the TCG. The concept of secure boot has been widely discussed,

394

most notably by Tygar and Yee [161], Clark and Hoffman [27], Arbaugh, Farber

and Smith [4] and Itoi et al. [88]. Each of these papers describe a similar process,

in which the integrity of system components is measured, and these measure-

ments are then compared against a set of expected measurements which must

be securely stored and accessed by the platform during the boot process.

Tygar and Yee [161] were amongst the first to describe a secure boot mecha-

nism [4]. They discuss the possibility of using a secure co-processor to facilitate

a secure boot. The expected integrity measurements of system components are

stored within the secure co-processor non-volatile memory, where their integrity

and privacy can be assured. The secure co-processor is first to take control of

the system, and it checks system components, for example the bootstrap pro-

gram, the OS kernel and system utilities, before handing over to the host CPU.

Tygar and Yee also discuss issues surrounding the use of a secure boot floppy,

containing system verification code, rather than using a secure co-processor,

which requires significant architectural revisions to most computer systems [4].

Clark and Hoffman [27] present a system in which a personal computer

memory card international association (PCMCIA) card is used to facilitate a

secure boot. In this case, the host’s boot sector and a series of checksums for

boot files and host executables are stored on the PCMCIA card. When the

card is inserted into the host, the user is initially authenticated to the card by

entering a password. The card is also authenticated to the host after knowledge

of a secret shared between the card and the host has been demonstrated. If both

authentications are successful, the card allows the host to read the boot sector

and any required checksums from the card. When the boot sequence completes,

control is given to the operating system, whose configuration has either been

retrieved from the PCMCIA card or measured and verified against the expected

measurement value stored on the PCMCIA card [27]. The physical security of

395

both the host and the card are assumed.

Arbaugh, Farber and Smith [4] require the addition of a PROM board and

the modification of the system BIOS. Their AEGIS model is based upon four

fundamental assumptions. It is assumed that an attacker is unable or unwill-

ing to replace the motherboard, CPU and a portion of the system read-only

memory (ROM)/BIOS, which contains a small section of trusted software. It is

also assumed that an expansion card/programmable read-only memory (PROM)

board, which contains cryptographic certificates and copies of essential boot

process components for recovery, is present. The integrity of this expansion

card, called the AEGIS ROM, must also be maintained. It is implied by Ar-

baugh, Farber and Smith that the cryptographic certificates contained within

the PROM board enable the identities of entities, trusted to certify trustworthy

configurations of software components on incoming component certificates, to

be verified. These certificates may, for example, take the form of self-signed

public key certificates, see section 1.5.7, of entities permitted to certify trust-

worthy configurations of software components. Alternatively, they may take the

form of Keynote policy assertions, see section 4.4, in which the system admin-

istrator specifies the set of public keys which they trust to certify trustworthy

configurations of software components. A specific method by which entities are

authorised to certify trustworthy configurations of software components is not

specified. Finally, it is assumed that a trusted source exists to support the re-

covery of platform components, for example a network host or a trusted ROM

card located within the host.

Before a secure boot process can be completed the computing platform must

be initialised with a number of items (see [4] and [88]).

1. For every component on the platform which requires a secure boot, an

396

authorised entity must generate a hash of that software component (when

it is working as expected) and then create a credential which contains the

component hash, a component identifier and an expiry date. An autho-

rised entity is one trusted by the system to certify trustworthy configura-

tions of software components. Arbaugh, Farber and Smith imply that this

trust relationship is established through the use of ‘cryptographic certifi-

cates’ installed in the AEGIS ROM. As stated above, details of the trust

establishment mechanism are not defined.

2. The credential is digitally signed by the authorised entity.

3. This signed credential is then stored on the host, for example in the plat-

form component to be securely booted, or in a data block of a flash memory

device on the host’s motherboard.

4. The AEGIS ROM and BIOS block block contain a small section of trusted

software, signed credential(s), authorised entity public key certificates and

recovery code, whose integrity is assumed.

The secure boot process proceeds as follows (see [4] and [88]).

1. The first section of the BIOS executes, i.e. the part which contains a small

section of trusted software, and computes a checksum over its address

space and the address space of the AEGIS ROM. This process protects

against ROM failures.

2. A hash of the remainder of the BIOS is then computed.

3. Execution control is then passed to this second section of the BIOS if:

• Its associated credential has not expired;

• The signature on the credential is valid;

397

• The hash value stored in the credential matches the value computed

in step 2.

4. This BIOS component then hashes each of the expansion ROMs and ver-

ifies them against their expected values.

5. This hashing and verification continues until the system has been booted

into an expected state.

If at any stage during the boot process there is an integrity failure, the failed

component is replaced using components either stored on an AEGIS expansion

card/PROM board, or retrieved from a trusted network host. Itoi et al. [88]

extend the AEGIS system to work with smartcards.

12.7.2 Secure boot using a version 1.1 compliant TPM

We now examine suggested methods for secure boot implementation using ei-

ther a version 1.1 or 1.1b compliant TPM. Versions 1.1 and 1.1b of the TCG

TPM specification set define a data integrity register (DIR) as a storage reg-

ister that holds a 20-byte digest value, see section A.11.2. These versions of

the TCG specifications require that the TPM contains only one 20-byte DIR

in a TPM-shielded location, although the TPM could incorporate more than

one DIR. While the exact purpose of DIRs was not specified, their use in the

implementation of a secure boot process is briefly examined in [5], and is now

described.

If a TPM contains the same number of DIRs as PCRs, the expected value of

every PCR can be written to its corresponding DIR. Every time a PCR is filled

and its final value computed, it is compared to its corresponding DIR value.

If the two values match, the boot process continues; otherwise an exception is

called and the boot process halted.

398

Alternatively, if the TPM has access to non-volatile memory, all expected

PCR values may be held in unprotected non-volatile memory, and a summary,

i.e. a cumulative digest, is held in a single DIR. Every time a PCR is filled and

its final value computed, it is checked that:

1. Each PCR value, when calculated, matches the expected value held in the

non-volatile memory; and

2. The cumulative digest of the expected table of PCR values matches the

value held in the DIR.

Read access to DIRs must be provided without the need for any authorisation

data to be input as, typically, no authorisation information is available at the

early stage in the boot process when the DIR value must be read.

In the version 1.2 specifications, use of the DIR has been deprecated. The

TPM must still, however, support DIR functionality in the general-purpose non-

volatile storage area.

12.7.3 Secure boot using a version 1.2 compliant TPM

Following our examination of prior art in the area of secure boot, we now outline

a set of additional functional components which may be required within a TMP,

as described in section 12.4, in order that a secure boot mechanism can be

implemented on a TMP.

• Each software component on the platform whose integrity is to be mea-

sured and verified at boot time must have a corresponding reference in-

tegrity metric (RIM), which is equal to the hash of the component. In

order to ensure the secure boot of an OMA DRM v2 agent, it is required

that a correct reference integrity measurement for an OMA DRM v2 agent

399

(i.e. the OMA DRM v2 agent RIM) is present on the platform.

• Each component RIM, a component identifier and expiry data must be

digitally signed by an authorised entity to create a credential, as described

by Itoi et al. [88].

• A list of authorised entities must be securely stored within the TMP.

• A root of trust for verification (RTV) is required to verify at least one

integrity measurement.

• Just as the RTM has its foundation in an immutable instruction set, i.e. the

core root of trust for measurement, the RTV must also have its foundation

in an immutable and trusted instruction set, known as the core root of

trust for verification (CRTV).

• The CRTV shall act in conjunction with the CRTM to measure and verify

the first set of software components on the platform. It then passes control

to the RTM and RTV integrated into the first set of software components,

which continue the measurement and verification process.

As the platform boots, a specified set of platform software components (in-

cluding the OMA DRM v2 agent) need to be measured by the RTM and verified

by the RTV. For every software component:

• The RTM measures the component;

• The signature on the corresponding component credential is verified, and

the expiry date within the credential checked;

• If the signature is valid and the credential has not expired, the value

measured by the RTM is compared to its corresponding RIM;

400

• If no discrepancy is found between the measured value and its expected

RIM, the measurement is stored securely to the TPM PCRs and the boot

process continues;

• If a discrepancy is found between the measured value of the software com-

ponent and its RIM, appropriate action should be taken (for example, the

boot process aborted).

Three issues which also need to be discussed include recoverability of com-

ponents that fail the integrity check, the revocation of RIM certificates, and the

identities of the authorities responsible for signing RIM certificates.

While a secure boot mechanism is not described within the TCG specifica-

tions, we have already seen how current TCG-defined components, i.e. DIRs or

TPM non-volatile memory and the RTM, may be utilised to implement a secure

boot mechanism. We now examine two TCG structures which may be useful in

the definition of a secure boot mechanism.

The form and structure of ‘validation certificates’, as described in version 1.1

of the TPM main specification, could be used to represent RIM certificates.

However, the validation certificate structure is not included in the v1.2 TPM

specifications set. Currently, the specification of all TCG certificates and cre-

dentials are being re-defined by the TCG infrastructure working group. Current

versions of the infrastructure profile specification document, however, indicate

that the validation certificate may not be included in future releases. Whether

or not validation certificates need to be specified should be re-considered in light

of the trusted mobile platform requirements. The VALIDATION DATA struc-

ture, as given in the TCPA main specification version 1.1b [148], is shown in

table 12.1. The purpose of the validation data structure is to encapsulate the

integrity metric of a platform component that is behaving as expected.

401

Table 12.1: The VALIDATION DATA structure
Name Description

“TCPA Validation Data” The ASCII string “TCPA Validation Data”.
component manufacturer The name of the manufacturer of the compo-

nent (in ASCII).
component name The common name of the component (in

ASCII).
component version The version of the component (in ASCII).
instruction digest The digest of any component instructions that

are intended to execute on the main platform.
component distributed validation A reference to the security properties of the

component
VE reference An indication of the identity of the (validation)

entity that attests to the validation data.
TCPA VERSION The TPM version
validation data signature value The result of signing all the fields on the VAL-

IDATION DATA structure using the signature
key of the VE reference.

Once platform verification has been completed by the RTV, the

TSS EVENT CERT data structure, which is described in the version 1.2 TSS

specification (see [154]), could be utilised to indicate the result of a compari-

son/verification completed by the RTV. The structure of a TSS EVENT CERT

is outlined in table 12.2 below.

Table 12.2: The TSS EVENT CERT structure
Name Description

versionInfo Version data.
ulCertificateHashLength The length in bytes of the certificate hash parameter.
rgbCertificateHash Pointer in memory containing the hash value of the entire

validation entity certificate.
ulEntityDigestLength The length in bytes of the entity digest parameter.
rgbEntityDigest Pointer in memory containing the actual digest value of the

entity.
fDigestChecked TRUE if the entity logging the event checked the measured

value against the digest value in the certificate; FALSE if
no checking was attempted.
FALSE if no checking was attempted.

fDigestVerified Only valid when the value of the filled above is TRUE. The
value is TRUE if the measured value matches the digest in
the certificate, and FALSE otherwise.

ulIssuerLength The length in bytes of the issuer parameter.
rgbIssuer Pointer to the actual issuer certificate.

402

12.8 Platform run-time integrity

Requirement 1, as described in section 12.2, may be partially met through the

deployment of a run-time integrity checking mechanism. A secure boot mecha-

nism, as described in the previous section, offers assurances regarding the state

into which the platform has booted. Assurances are also required regarding the

run time integrity of the platform, so that any changes to the platform which

affect the trusted state into which it has booted may be prevented, or at least

detected and responded to. Neither preventative nor reactive measures are cur-

rently provided by a TMP, as described in section 12.4. This section outlines a

set of additional functional components that may be required within a TMP in

order that a run-time integrity checking mechanism can be implemented.

In order to develop a reactive mechanism, the components described in sec-

tion 12.7 could be re-deployed and their capabilities extended. In this case,

the RTM would be required not only to measure the platform software com-

ponents at boot time, but to re-measure software components running on the

platform periodically or, indeed, when triggered by a particular event. Rather

than compare the measured values to static reference integrity measurements

at boot time, as described above, the RTV would also compare measurements

taken during runtime to run-time RIMs whose values could change over different

instances of the boot sequence. How the set of run-time RIMs are generated

needs to be specified. In conjunction with this, the reaction of the RTV to an

integrity verification failure should also be discussed. Finally, the management

of the policy statement which describes the components to be checked during

run-time, and the frequency of checking, must also be considered.

Rather than deploy a mechanism which detects and reacts to unauthorised

modification of platform components during runtime, preventative measures

403

could be used. Depending on the system architecture, varying degrees of sep-

aration and isolation of software components can be provided. A relatively

simple approach involves storing critical and unchanging data in one time pro-

grammable memory or ROM.

Alternatively, the import of native code to the platform could be prohibited,

and the download of interpreted code permitted but only to managed compart-

ments within the platform. Two types of Java application management systems

exist for a mobile device, corresponding to specifications in Java 2 Platform

Micro Edition (J2ME) [39]. MIDP and PDA Profile (PDAP) are specifica-

tions designed to enable the use of Java on embedded resource constrained

devices1, i.e. CLDC devices such as cell phones and PDAs. The Open Service

Gateway initiative (OSGi) specification2 defines a life-cycle management model

for a Java program. Its reference implementation runs on Foundation Pro-

file, Personal Profile or Personal Basis Profile which are specifications designed

to enable Java on Connected Device Configuration (CDC) devices [39]. Both

MIDP/CLDC and OSGi define their own unique security model and policy [39].

A lower level mechanism which facilitates the isolation of compartments,

and one which permits the download of native code to a platform, can be pro-

vided through the deployment of a secure operating system on the platform.

Both SELinux and Trusted BSD are examples of operating systems which have

controlled access protection profile evaluation assurance level-4 (CAPP EAL-4)

Common Criteria certification and access control mechanisms which are finer

grained than mass market operating systems [39].

The most secure isolation mechanism, and one which has been widely dis-

cussed in the context of a PC, involves the deployment of an isolation layer, see
1www.java.sun.com/products/midp/
2www.osgi.org

404

section 1.6.8, which “provides a means to isolate operating systems, application

and applets” [104]. Proposed implementations include virtual machine moni-

tors, hypervisors, microkernels and exokernels, see section 1.6.8. More recent

work has seen the development of an ‘isolation kernel’ by Microsoft, see sec-

tion A.23. This work relies on the development of curtained memory facilities

by Intel, see section A.24, so that an isolation kernel can be isolated in a hard-

ware protected environment, and in turn can provide isolated environments to

higher level software components. The OpenTC project3 is currently examining

how an L4 microkernel can be ported onto an embedded system so that isolated

compartments can be supported.

12.9 Fundamental TSS and TPM command se-
quences

Before we examine the TPM and TSS version 1.2 commands, which can be

used to fulfil storage, attestation, random number generation and time-stamping

requirements, as described in section 12.2, we review a number of TPM and

TSS commands which need to be executed in order to initialise a TPM for use.

Further information on all commands listed below may be found in appendix A.

12.9.1 TPM permanent flags

Firstly, in table 12.3, we define a number of TPM permanent flags the use of

which is discussed in this chapter. TPM permanent flags are used to maintain

the state information for the TPM [157]. The values of these flags are not

affected by the TPM Startup command.
3www.opentc.net

405

Table 12.3: TPM permanent flags
Name Description

TPM PF READPUBEK This flag may be set to TRUE or FALSE. It indicates
whether the public endorsement key can be read with
or without owner authorisation. The default value is
TRUE.

TPM PF DISABLE This flag may be set to TRUE or FALSE and indicates
whether TPM is disabled or enabled. The default value
is TRUE.

TPM PF OWNERSHIP This flag may be set to TRUE or FALSE and indicates
whether or not an entity can be take ownership of the
TPM. The default value is TRUE.

TPM PF DEACTIVATED This flag may be set to TRUE or FALSE and indicates
whether the TPM is deactivated or activated. The de-
fault value is TRUE.

12.9.2 TPM initialisation

The TPM must first be initialised. TPM Init is a method of physically initial-

ising the TPM. This command puts the TPM into a state where it waits for

TPM Startup, a command which specifies the type of the initialisation required.

The TPM initialisation command is shown in table 12.4.

Table 12.4: TPM initialisation
TPM Init

12.9.3 TPM startup

After TPM initialisation, the TPM must then be started up. The TPM Startup

command is always preceeded by TPM Init. The TPM can start up in one of

three possible modes. The chosen mode depends on the platform event that

caused the reset, and the operations on the TPM that need to be completed

in response to the particular event. The three modes include: clear start, save

start and deactivated start. For an initial start up, a clear start would normally

be used, where all variables go to their default or non-volatile values. The TPM

startup command is shown in table 12.5.

406

Table 12.5: TPM start-up
TPM Startup

12.9.4 Context management

Every time an application is to participate in communication with a TPM via

the TCS, it must connect to a context, to ensure that the TSS service provider

(TSP) layer or, indeed, the application is talking to the correct TSS core services

(TCS) layer.

The focus of the context object is [154]:

• to provide a connection to a TSS core service. There might be multiple

connections to one or more core services.

• to provide functions for resource management and freeing of memory.

• to create working objects.

• to establish a default policy for working objects, as well as a policy object

for the TPM object representing the TPM owner.

• to provide functionality to access the persistent storage database.

Initially, a context must be created, using the series of commands shown in

table 12.6.

Table 12.6: Creating a context
Tspi Context Create Returns a context handle to a new context object.

Tspi SetAttribUint32 This method sets the 32-bit attributes of the context object.

Tspi SetAttribData This method sets a non 32-bit attribute of the context ob-
ject. A non 32-bit attribute is an attribute which may vary
in structure and size. Currently, no such attributes have
been defined for the context object.

A handle to the TPM object associated with the context must then be re-

trieved and its attributes set. As above, the Tspi SetAttribUint32 and the

407

Tspi SetAttribData commands may be used to set the attributes of the TPM

object, or all the necessary parameters may already be defined for the TPM

object by default. This handle represents the TPM with which the application

is communicating with via the TCS layer. The sequence of commands required

in order to achieve this are shown in table 12.7.

Table 12.7: Creating a TPM object
Tspi Context GetTPMObject Retrieves the handle of the TPM object associated

with a context. Only one instance of this object ex-
ists for a given context, and it implicitly represents
the TPM owner.

Tspi SetAttribUint32 This method sets the 32-bit attributes of the TPM object.

Tspi SetAttribData This method sets a non 32-bit attribute of the TPM object.

A connection must then be made to the chosen context, using the pair of

commands shown in table 12.8.

Table 12.8: Connecting to a context
Tspi Context Connect Establishes a connection to either a local or remote TSS

system.

Tcsi OpenContext Returns a handle to an established context.

When the communication has been completed, the context is closed, as

shown in table 12.9, and memory associated with the context is freed, using

the commands given in table 12.10.

Table 12.9: Closing a context
Tspi Context Close Destroys a context and releases all assigned resources.

Tcsi CloseContext Releases all resources assigned to the given context.

The FreeMemory calls may or may not be be necessary. The TCS developed

Table 12.10: Freeing memory allocated to the context
Tspi Context FreeMemory Frees memory allocated by TSP to the specified con-

text.

Tcsi FreeMemory Frees memory allocated by TCS to the specified con-
text.

408

by NTRU4, for example, cleans up everything related to a context when the

context is closed, whether or not the FreeMemory methods are explicitly called.

On creation of a context, a default policy object is created. Each newly

created object associated with that particular context is automatically assigned

to its corresponding default policy. The default policy for each working object

remains unless the Policy AssignToObject method is used to associate a new

policy object with the working object.

A handle to the default policy object can be retrieved using the method

shown in table 12.11. The default policy object has the following settings after

initialisation:

• Secret mode = TSS SECRET MODE POPUP, which means that the TSP

will display a dialogue to the user so that a pass phrase can be entered.

This pass phrase is then hashed using SHA-1 to obtain the authorisation

secret for the working object.

• Secret lifetime mode = SECRET LIFTIME ALWAYS, which implies that

once the pass phrase has been entered and hashed, it is cached by the TSP

and does not have to be re-entered by the user.

The attributes of the default policy object may, however, be changed using the

Tspi SetAttribUint32 and Tspi SetAttribData methods.

Table 12.11: The default policy object (created on TPM initialisation)
Tspi Context GetDefaultPolicy

Before any call to the TPM is made, a connection must be established with

the TPM device driver, after which the Tddli TransmitData function must be

used to send the TPM command directly to the TPM device driver, which in
4www.ntru.com

409

turn forwards the command to the TPM. After all the TPM commands have

been executed, the connection is closed. The three commands necessary to

achieve the above process are shown in table 12.12.

Table 12.12: TPM device driver communications
Tddli Open This function establishes a connection with the TPM device

driver. Following a successful response to the Tddli Open
function the TPM device driver must be prepared to pro-
cess TPM command requests from the calling application.

Tddli TransmitData This function sends a TPM command directly to a TPM
device driver, causing the TPM to perform the correspond-
ing operation.

Tddli Close This function closes the connection with the TPM device
driver.

12.9.5 Endorsement key pair generation

An endorsement key pair must be associated with each TPM, as described in

section A.7.4. This endorsement key pair can be generated using the sequence

of commands shown in table 12.13. Alternatively, the endorsement key pair

may be generated using an external key generator. When this process has been

completed the endorsement key must be certified by the TPME, as described in

section A.5.

Before generating an endorsement key pair, calls can be made to the

TPM GetCapability to determine whether or not an endorsement key already

exists.

12.9.6 Accessing the public endorsement key

Table 12.14 gives a sequence of commands enabling the public endorsement key

to be accessed. Access to the public endorsement key is required so that an

entity can take ownership of the TPM.

410

Table 12.13: Creating an endorsement key pair
Create key object:

Tspi Context CreateObject The key object provides information
about the endorsement key to be gen-
erated.

Tspi SetAttribUint32

Tspi SetAttribData

Create endorsement key:

Tspi TPM CreateEndoresmentKey

Tcsip CreateEndorsementKeyPair

TPM CreateEndorsementKeyPair

Table 12.14: Accessing the public endorsement key
Open access to the public endorsement key:
By default, the flag which indicates whether or not open access to the public
endorsement key is allowed, TPM PF READPUBEK, is set to TRUE so that the
public endorsement key can be read without the input of owner authorisation data.

Tspi TPM GetPubEndorsementKey Used during the taking ownership pro-
cess, before the TPM has acquired an
owner.
Outputs a handle to a key object rep-
resenting the endorsement public key.

Tcsip ReadPubek Returns the public portion of the en-
dorsement key to any entity.

TPM ReadPubek

Disable open access to the of public endorsement key:

Often by default, once the TPM has acquired an owner, the flag which in-
dicates whether or not open access to the public endorsement key is allowed,
TPM PF READPUBEK, is set to FALSE so that the public endorsement key
can only be read by the TPM owner. This flag may, however, be changed using
the TPM SetCapability command, which requires owner authorisation.

Tspi TPM SetStatus Used to set the status of
the TSS TPMSTATUS DIS-
ABLEPUBEKREAD to FALSE.

Tcsip DisablePubekRead

TPM SetCapability

TPM owner read of public endorsement key:

Tspi TPM GetPubEndorsementKey

Tcsip OwnerReadPubek

TPM OwnerReadInternalPub

411

12.9.7 TPM self testing

During the initialisation process, a minimal set of self tests are completed by

the TPM. In order to ensure a more thorough self test, the commands shown in

table 12.15 could be executed.

Table 12.15: Self testing
Continue self-test process:

Tcsip ContinueSelfTest Informs the TPM that it should complete the self test of
all TPM functions.

TPM ContinueSelfTest This command causes the TPM to test the TPM internal
functions not tested at initialisation.

As stated above, the TPM ContinueSelfTest command causes the TPM to test all
the TPM internal functions that were not tested at start-up. If the TPM is running
in compliance with FIPS-140 evaluation criteria, then the TPM ContinueSelfTest
command will cause the TPM to perform a complete self-test.

Or

Complete a full self-test:

Tspi TPM SelfTestFull Requests that the TPM completes a full self test.

Tcsip SelfTestFull

TPM SelfTestFull

The results of the self tests are held in the TPM.

12.9.8 Enabling the TPM

The TPM must be enabled; that is the TPM PF DISABLE flag must be set to

FALSE. This can be achieved using the commands shown in table 12.16.

Table 12.16: Physically enabling the TPM
Tspi TPM SetStatus Used to set the status of the

TSS TPMSTATUS PHYSICALDISABLE to FALSE.

Tcsip PhysicalEnable The TPM owner must enable the platform before any TPM
commands can be utilised.

TPM PhysicalEnable

In order to physically disable the TPM before it has acquired an owner, the

commands shown in figure 12.17 can be executed.

412

Table 12.17: Physically disabling the TPM
Tspi TPM SetStatus Used to set the status of the

TSS TPMSTATUS PHYSICALDISABLE to TRUE.

Tcsip PhysicalDisable

TPM PhysicalDisable

Once the TPM has acquired an owner, he or she may also enable or disable

the TPM using the TPM OwnerSetDisable command, which changes the state

of the TPM PF DISABLE flag to either TRUE or FALSE . This command is

shown in table 12.18.

Table 12.18: Enabling/Disabling the TPM
Tspi TPM SetStatus

Tcsip OwnerSetDisable Used to change the status of the TPM PF DISABLE flag.

TPM OwnerSetDisable

12.9.9 The ownership flag

In order for a user to take ownership of a TPM, the ownership flag, TPM PF

OWNERSHIP , must be set to TRUE, using the commands given in table 12.19.

The default value for this flag is TRUE, so this command need never be called.

Table 12.19: Setting the state of the TPM PF OWNERSHIP flag
Tcsip SetOwnerInstall Used to set the value of the TPM PF OWNERSHIP flag

to TRUE, so that an entity can take ownership of a TPM.

TPM SetOwnerInstall

12.9.10 Taking ownership of the TPM

In order for an entity to take ownership of a TPM, the following steps must be

completed.

1. The public endorsement key must be accessed, as described in table 12.14.

2. TPM owner authorisation data must be input into the TPM.

413

3. A storage root key (SRK) must be generated inside the TPM.

4. The authorisation data for the SRK must be input (if required) into the

TPM.

5. A tpmProof must be generated. A tmpProof is a 160-bit secret that

is generated by the TPM when the TPM TakeOwnership command is

executed [5]. This secret is associated with non-migratable objects so that

a TPM can identify the objects which it has created.

Steps 2 through 5 can be completed using the take ownership command

sequence shown in table 12.20.

Table 12.20: Taking ownership of the TPM

Create policy object (owner authorisation data):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi Policy SetSecret

Assign policy to the TPM object, whose handle can be retrieved using
the Tspi Context GetTPMObject, as shown in table 12.7:

Tspi Policy AssignToObject

Create a key object (SRK):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Create policy object for the SRK (SRK
authorisation data):

Tspi Context CreateObject

414

Tspi SetAttribUint32

Tspi SetAttribData

Tspi Policy SetSecret

Assign policy to the SRK object:

Tspi Policy AssignToObject

Read public EK — may be accomplished using the command sequences
described in table 12.14:

Take ownership:

Tspi TPM TakeOwnership

Tcsip TakeOwnership

TPM TakeOwnership

12.9.11 TPM activation

Finally, the TPM must be activated; this will result in the TPM PF DEACTIVATED

flag being set to FALSE. This can be activated using the commands shown in

table 12.21.

Table 12.21: Activating the TPM
Tspi TPM SetStatus Used to set the status of the TSS TPMSTATUS PHYSI-

CALSETDEACTIVATED to FALSE.

Tcsip PhysicalSetDeactivated

TPM PhysicalSetDeactivated

12.10 Secure storage

Requirement 1, as described in section 12.2, may be partially met through the

deployment of a secure storage mechanism, as can requirements 2–5 and 8–21.

12.10.1 Key hierarchy

Each stakeholder may build up their own key hierarchy. The method by which

this is done will depend on the TMP architecture. For the particular use case

415

considered here, the focus is on the OMA DRM v2 agent installer, the key

hierarchy for which is represented in figure 12.2.

OMA DRM v2 Agent
Installer SRK

OMA DRM v2 Agent Data
Specific Storage Key

Figure 12.2: OMA DRM v2 agent installer key hierarchy

The storage root key illustrated in this particular key hierarchy may, in fact,

be an SRK, as defined in the TCG v1.2 specifications, or it may represent the

root of the agent installer’s key hierarchy, which is a branch in a key hierarchy

which has as its root a TPM SRK as defined in the TCG v1.2 specifications.

12.10.2 Installing integrity and confidentiality sensitive OMA
DRM v2 data on the device

If sensitive OMA DRM v2 data is installed on the device in a controlled envi-

ronment, and is not entered into the TMP remotely, we can assume that the

confidentiality and integrity of the data will not be compromised before it is

protected using TPM v1.2 functionality. This appears to be the most likely

scenario.

Alternatively, a secure transport session may be set up with the TPM so

that all input parameters into the secure storage commands described below

may be protected while being communicated to the TPM.

Transport security enables the establishment of a secure channel between

the TPM and a secure process, offering confidentiality and integrity protection

of commands sent to the TPM. It also provides a logging function so that all

commands sent to the TPM during a transport session can be recorded.

416

Session establishment involves the generation of 20 bytes of transport au-

thorisation data by the caller, for use between the caller and the TPM. This

transport authorisation data has two purposes:

• It is used to generate a secret key for use in encrypting commands sent

from the application to the TPM; and

• It is also used to generate a secret HMAC key to provide origin authenti-

cation and integrity protection for the TPM ExecuteTransport command.

The authorisation data is generated by the caller and encrypted under a

public key whose corresponding private key is available only to the TPM. The

key used is pointed to by the encHandle field of the TPM EstablishTransport

command.

In the command sequence described in table 12.22, the context object which

is created, and to which the session is connected, will be required to possess

certain additional transport session specific attributes.

Table 12.22: A transport session

Create policy object (transport authorisation
data):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi Policy SetSecret

Transport key object:
A handle to the transport key object must be retrieved. By default the TSP uses
a non-migratable storage key to establish the transport session. If this key is not
to be used, any other key can be provided via a UUID or key handle using the
Tspi Context SetTransEncryptionKey command.

417

Set transport key:

Tspi Context SetTransEncryptionKey

Establish transport session:

Tcsip EstablishTransport

TPM EstablishTransport

Execute transport session:

Tcsip ExecuteTransport

TPM ExecuteTransport

Close transport session:
This command terminates the transport session, and, if logging is switched
on, a signed hash of all operations completed during the session is out-
put. In order to complete this command sequence, a signing key must have
been created for this purpose, and its handle communicated as input to the
Tspi Context CloseSignTransport method.

Tspi Context CloseSignTransport

Tcsip ReleaseTransportSigned

TPM ReleaseTransportSigned

We assume, however, for the purposes of this chapter that sensitive OMA

DRM v2 data is installed on the device in a controlled environment. Therefore,

we can assume that the confidentiality and integrity of the data will not be

compromised before it is protected using TPM v1.2 functionality.

12.10.3 Secure storage of and access control to OMA DRM
v2 data

OMA DRM v2 data which needs to be integrity protected, for example the de-

vice details and the trusted rights issuer authorities certificate, may be MACed

using cryptographic functionality provided by a TCG independent cryptographic

infrastructure (CI), implemented on the platform. This CI may then utilise the

TSP to access the TCS, and thus the TPM, so that a TPM Seal can be called

and the MAC key stored securely. This sealing mechanism can confidentiality

protect the MACing key and ensure that it is only accessible to the legitimate

OMA DRM v2 agent.

418

Alternatively, data which needs integrity protection, in conjunction with

data which is required to be both integrity and confidentiality protected, may

be directly sealed by the TPM such that it is only accessible to the legitimate

OMA DRM v2 agent.

Because of the limited size of the OMA DRM v2 data which needs integrity

protection, e.g. the device details and the trusted RI authorities certificate,

it would be more practical and efficient to directly seal the data rather then

MACing the data and sealing the key.

Integrity protection is not explicitly provided by the TPM. In order to in-

tegrity protect sealed data, 20 bytes of authorisation data needs to be associated

with it. This authorisation data may be entered by the TMP user via the PC

user interface, e.g. using a pop-up dialog box, or, it may be sealed to the OMA

DRM v2 agent (or, more specifically, to PCR values which represent a trust-

worthy execution environment in which a correctly functioning OMA DRM v2

agent is running). In this way, only the correctly functioning OMA DRM v2

agent can unseal the authorisation data and then unseal the OMA DRM v2

data. The OMA DRM v2 data can only be unsealed if knowledge of the cor-

rect authorisation data is demonstrated and the current platform environment

is represented by the PCR values bound to the OMA DRM v2 data when it was

sealed.

Therefore, all DRM data, both data which is required to be integrity-protected

and that which requires both integrity and confidentiality protection, should be

sealed so that only a legitimate OMA DRM v2 agent can access and utilise it.

In order to protect OMA DRM v2 agent data, a key hierarchy as described in

figure 12.2 must initially be set-up, and then the data sealed to the appropriate

PCRs using the ‘OMA DRM v2 data specific storage key’, (a non-migratable

419

storage key) so that it can only be accessed by the legitimate OMA DRM v2

agent. This can be achieved using the following sequence of steps.

1. Load the OMA DRM v2 agent installer SRK and obtain a handle to the

SRK.

If the OMA DRM v2 agent installer SRK is a TPM SRK, as defined in

the TCG v1.2 specifications, then it will not need to be loaded, since a

TPM SRK is permanently loaded. In this case, in order to access and

utilise the SRK, an SRK object must be created and a handle to the SRK

object retrieved. If, however, the OMA DRM v2 agent installer SRK is

the root of the agent installer’s key hierarchy, which is itself a branch in

a key hierarchy which has as its root a TPM SRK as defined in the TCG

v1.2 specifications, the key may need to be loaded before use, which can

be achieved using the command sequence described in table 12.24.

Clearly, the SRK must first be created before it can be used. If it is

a TPM SRK then it will have been created during the take ownership

process described in table 12.20. Otherwise it could have been created

using the command described in table 12.23.

2. The OMA DRM v2 specific storage key (OSSK) needs to be created under

the agent installer SRK, again using the command sequence shown in

table 12.23;

Table 12.23: Creating a wrap key
Create key object:

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

420

Create policy object (key authorisation data):

If we want to associate a policy object other than the default
policy to the key object, the ‘create policy object’ and the
‘assign policy to key object’ command runs are used.

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi PolicySetSecret

Assign policy to key object:

Tspi Policy AssignToObject

Create policy object (key migration data):
In this instance, however, we require the key to be created
to be non-migratable.

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi PolicySetSecret

Assign policy to key object:

Tspi Policy AssignToObject

Create PCR composite object (only required if the
key to be generated is bound to PCR values):

Tspi Context CreateObject
We assume that the PcrComposite object created is set to use a
TPM PCR INFO LONG structure or a TPM PCR INFO SHORT structure.

Tspi SetAttribUint32

Tspi PcrComposite SetPcrLocality
This method sets the LocalityAtRelease inside the PCR composite object using a
version 1.2 TPM PCR INFO LONG or TPM PCR INFO SHORT structure.

Tspi PcrComposite SelectPcrIndexEx
This method selects a PCR index inside a PCR composite object containing
a TPM PCR INFO LONG or TPM PCR INFO SHORT structure. For the
TPM PCR INFO LONG structure, the index may be selected for DigestAtCre-
ation or DigestAtRelease. For TPM PCR INFO SHORT, the index may be se-
lected only for DigestAtRelease.

421

Tspi PcrComposite SetPcrValue
This method sets the DigestAtRelease for a given PCR index inside the PCR
composite object. Multiple PCRs with different indexes can be set by calling this
method multiple times on the same PCR composite object.

Tspi Key Createkey

Tcsip CreateWrapKey

TPM CreateWrapKey

3. Load the OSSK, as shown in table 12.24.

Table 12.24: Loading a key
Assume we have the handle of the parent unwrap-
ping key of the key to be loaded: in this instance, in
the context of figure 12.23, this is the OMA DRM
v2 SRK handle:

There are four possible ways to load a key, depending on whether the key is regis-
tered in persistent storage or not and depending on whether the parent key requires
authorisation or not.

If the key is to be loaded by the input of a wrapped key
blob, where the wrapping key has been loaded and its han-
dle is available, the following command sequence is used.
Depending on the parent key, authorisation may or may
not be required.

Tspi Context LoadKeyByBlob

Tcsip LoadKeyByblob

TPM LoadKey2

If the key to be loaded is registered in persistent storage,
and if the parent key does not require authorisation, the
following command sequence is used:

Tspi Context LoadKeyByUUID

Tcspi LoadKeyByUUID

TPM LoadKey2

If the key to be loaded is registered in persistent storage,
if its parent key requires authorisation, and if the applica-
tion knows the registered key stack, the following command
sequence is used:

422

Tspi Context GetKeyByUUID

Tspi Key LoadKey

Tcspi LoadKeyByUUID

TPM LoadKey2

If the key to be loaded is registered in persistent storage, if
its parent key requires authorisation, and if the application
does not know the registered key stack, the following com-
mand sequence is used, after which the command sequence
continues as above:

Tspi ContextGetRegisteredKeysByUUID

Tspi Context GetKeyByUUID

Tspi Key LoadKey

Tcspi LoadKeyByUUID

TPM LoadKey2

4. Finally, seal the OMA DRM v2 data using the OSSK, as shown in ta-

ble 12.25.

Table 12.25: Sealing data using a storage key
Create an encrypted data object:

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Create policy object (the authorisation data to be
associated with the sealed data):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi PolicySetSecret

Assign policy to object:

Tspi Policy AssignToObject

423

Create PCR composite object (if the sealed data is
to be sealed to a PCR set):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi PcrComposite SetPcrLocality

Tspi PcrComposite SelectPcrIndexEx

Tspi PcrComposite SetPcrValue

Seal data:

Tspi Data Seal

Tcspi Seal

TPM Seal

In order to protect the OMA DRM v2 agent private key (if it has not been

generated on the platform) the following commands are executed so that it can

only be accessed by the legitimate OMA DRM v2 agent.

1. As was described in section 12.10.3, if the OMA DRM v2 agent installer

SRK is a TPM SRK, as defined in the TCG v1.2 specifications, it will

not need to be loaded, since the TPM SRK is permanantly loaded. If,

however, the OMA DRM v2 agent installer SRK is the root of the agent

installer’s key hierarchy, which is itself a branch in a key hierarchy which

has as its root a TPM SRK as defined in the TCG v1.2 specifications, the

key may need to be loaded before use, as described in table 12.24.

This key must also exist before it may be used. If it is a TPM SRK as

defined in the TCG v1.2 specification set then it will have been created

during the take ownership process as described in table 12.20. Otherwise,

it may have been created using the command sequence given in table 12.23.

2. An OSSK needs to be created as described in table 12.23 and loaded, as

described in table 12.24. In this way, the handle to the wrapping key,

424

Table 12.26: Wrapping a key to a PCR(s)
Create key object (which will contain the key to be
wrapped, in this instance the OMA DRM v2 key):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Create policy object (the authorisation data to be
associated with the wrapped key):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi PolicySetSecret

Assign policy to object:

Tspi Policy AssignToObject

Create PCR composite object (if the wrapped key
is to be bound to PCR values):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi PcrComposite SetPcrLocality

Tspi PcrComposite SelectPcrIndexEx

Tspi PcrComposite SetPcrValue

Wrap key:

Tspi Key WrapKey

OSSK, is retrieved.

3. Finally, the DRM agent key needs to be wrapped to specified PCR values

using the OSSK, using the command sequence given in table 12.26.

Generation of the OMA DRM v2 agent key pair on the TPM could have

significant security advantages.

425

12.10.4 Security of the OMA DRM v2 data while in use
on the device

The PCRs which represent the execution environment into which the OMA

DRM v2 data can be released, are presumed to represent a secure and trust-

worthy environment. The mechanisms described in section 12.8 can be used to

protect the OMA DRM v2 agent while it is executing on the platform.

12.11 Platform attestation

Requirement 1 may also necessitate a mechanism that allows a TMP to attest

to the integrity metrics of specified platform components, where the integrity

measurements have been generated by the root of trust for measurement.

In order to meet this requirement, RTM functionality, as described within

the TCG specifications, must first be utilised so that the integrity of the platform

can be measured and the resulting integrity values stored to TPM PCRs.

In order to attest to platform integrity metrics, the following command runs

must be completed.

1. Generate and activate a platform attestation identity key, using the com-

mand sequence given in table 12.27.

2. Attest to the requested PCR values.

3. Gather the corresponding event log and send it to the challenger.

Steps 2 and 3 can be completed using the platform attestation command

sequence shown in table 12.28.

426

Table 12.27: Creating a platform attestation identity key
Create key object (a new attestation identity key
pair):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Create policy object (authorisation data to be as-
sociated with the new attestation identity key):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi PolicySetSecret

Assign policy to key object:

Tspi Policy AssignToObject

Create key object (which represents the public key
of the P-CA):

Tspi Context CreateObject

Tspi SetAttribUint32

The TPM handle can be retrieved using the
Tspi Context GetTPMObject method, and a handle
to a SRK object can be retrieved by creating a SRK
object using Tspi Context CreateObject:
Make identity:

Tspi TPM CollateIdentityRequest

Tcspi MakeIdentity

TPM MakeIdentity

Activate identity:

Tspi TPM ActivateIdentity

Tcspi ActivateTPMIdentity

TPM ActivateIdentity

427

Table 12.28: Platform attestation
Load the attestation identity key as described in ta-
ble 12.24 and retrieve the handle to the attestation
identity key object:

Create PCR object:

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi PcrComposite SelectPcrIndexEx

TPM quote:

Tspi TPM Quote

Tcsip Quote

TPM Quote

The corresponding event log:

In conjunction with the output from the TPM Quote com-
mand, an event log, which describes what the integrity
metrics output from the TPM Quote command represent,
must also be sent to the challenger. This event log may
contain a single event, which is represented as a single
TSS PCR EVENT structure; a group of events, which are
represented as the group of selected TSS PCR EVENT
structures; or, the entire event log, which is represented
as an ordered sequence of TSS PCR EVENT structures.

If a PCR event for a given PCR index and event
number is required:

Tspi TPM GetEvent

Tcsi GetPcrEvent

If a specific number of events for a given PCR index
are required:

Tspi TPM GetEvents

Tcsi GetPcrEventsByPcr

If the entire event log is required:

Tspi TPM GetEventLog

Tcsi GetPcrEventLog

428

12.12 Demonstrating privilege

In order to demonstrate the level of privilege required to execute various TPM

commands:

• An entity may demonstrate physical presence at the platform; or, alter-

natively,

• An entity may demonstrate knowledge of the required authorisation data.

There are three particular occasions where demonstration of physical pres-

ence at the platform may be necessary in order to execute particular TPM

commands, usually in the case when cryptographic authorisation is unavailable.

These occasions include the operation of commands that control the TPM be-

fore an owner has been installed; when the TPM owner has lost cryptographic

authorisation information; or when the host platform cannot communicate with

the TPM.

As an alternative to physical presence, cryptographic authorisation mecha-

nisms may be used to authenticate an owner to his or her TPM, or to authorise

the release and use of TPM protected objects. An authorisation value must be

20 bytes long, and could, for example, be a hashed password or 20 bytes from

a smartcard. It must always be treated as shielded data and only ever used in

the authorisation process.

Many of the TPM commands (specifically the TPM owner authorised com-

mands) described in this chapter may require knowledge of the required autho-

risation data to be demonstrated before access to the command is permitted.

Similar constraints can also apply to a key or a data object. A variety of au-

thorisation data can be held by a TPM, including:

429

• Unique TPM owner authorisation data, input of which is required before

any ‘owner-authorised TPM command’ may be executed;

• TPM object usage authorisation data, input of which is required before

an object protected by the TPM may be accessed; and

• TPM object migration authorisation data, input of which is required be-

fore a TPM key object can be migrated.

In order to demonstrate knowledge of the relevant authorisation data to the

TPM, an entity may deploy one of two challenge-response protocols, namely

the object independent authorisation protocol (OIAP), or the object specific

authorisation protocol (OSAP).

OIAP is the more flexible and efficient of the two challenge-response autho-

risation protocols. Once an OIAP session has been established, it can be used

to demonstrate knowledge of the authorisation data associated with a particular

TPM object or TPM command.

In order to input the required authorisation data using OIAP, a number of

steps must be followed:

1. A working object, which represents the object to be used/accessed, must

be created, and the handle retrieved.

2. A policy object must be assigned to the working object so that the required

authorisation data can be collected.

3. The required Tspi method is then called.

4. An OIAP session is established using the Tcsip OIAP method. Tcsip OIAP

allows the creation of an authorisation handle and the tracking of the han-

dle by the TPM. The TPM generates the handle and nonce.

430

5. The required Tcspi method is called.

6. The TPM OIAP command is called.

7. Finally, the required TPM command is called.

We now re-examine how the TPM owner reads the public endorsement key

using the commands shown in table 12.14. Knowledge of the owner authorisation

data must be demonstrated in order to gain access to the public endorsement

key.

Table 12.29: TPM owner reading of the public endorsement key
Tspi TPM GetPubEndorsementKey Outputs a handle to a key object rep-

resenting the endorsement public key.

Assign a policy object to the key ob-
ject using the Tspi Policy AssignToObject
method, so that the TPM owner authorisa-
tion data can be collected.

Tcsip OIAP

Tcsip OwnerReadPubek

TPM OIAP

TPM OwnerReadInternalPub

The second protocol defined in the TCG specifications is OSAP. This pro-

tocol supports the establishment of a session to prove knowledge of the autho-

risation data for a single TPM object, and minimises the exposure of long-term

authorisation values. It may be used to authorise multiple commands with-

out additional session establishment but, as we discuss below, the TPM OSAP

handle specifies a single object to which all authorisations are bound.

During this protocol an ephemeral secret is generated (using the HMAC of

the session nonces exchanged at the beginning of the protocol, with the target

TPM object’s authorisation data acting as the HMAC key) by the TPM and

the caller, which is used to prove knowledge of the TPM object authorisation

data.

431

This particular protocol must also be used with operations that set or reset

authorisation data, e.g. sealing or creating a wrap key.

In order to input the required authorisation data a number of steps must be

followed:

1. A handle to the object to be used/accessed must be retrieved.

2. A policy object must be assigned to the working object so that the required

authorisation data can be collected.

3. The required Tspi method called.

4. An OSAP session is established using the Tcsip OSAP method.

5. The required Tcspi method is called.

6. The TPM OSAP command must be called. TPM OSAP creates the au-

thorisation handle and the shared secret, and generates nonceEven and

nonceEvenOSAP.

7. The required TPM command is called.

8. The shared secret which is generated can be used both to authorise use of

the parent object and to input the authorisation data for a newly created

child object, for example a new key or sealed data object.

9. Once this has been completed, the OSAP session can be kept open in order

to authorise another command which is bound to the same parent object.

We now re-examine the load key command sequence shown in table 12.24,

where we assume that the key, OSSK, is to be loaded by the input of a wrapped

key blob. It is also assumed that the agent installer SRK is loaded and its

handle is available, and that the parent key, i.e. the agent installer SRK, requires

authorisation.

432

In order to load the OSSK, knowledge of the agent installer SRK authori-

sation data must be demonstrated. When the OSSK has been loaded, a seal

command, as described in table 12.25, is called. Use of the OSSK must also be

authorised.

In this case, the user can demonstrate knowledge of the parent wrapping key

(the agent installer SRK) authorisation data when loading the non-migratable

key, OSSK, using an OIAP, for example. When sealing the OMA DRM v2 data

using the OSSK, knowledge of the OSSK authorisation data can be demon-

strated and the authorisation data for the sealed data inserted using the shared

key established during the initial steps of the OSAP. This process is shown in

table 12.30.

Table 12.30: Authorising a load key and an object seal

Assume we have the handle of the agent installer SRK

Assign a policy object to the agent installer SRK object using the
Tspi Policy AssignToObject method to authorise use of the SRK

Assuming OSSK is to be loaded by the input of a wrapped key blob, where the
wrapping key, i.e. the agent installer SRK, has been loaded and its handle is avail-
able, the following command sequence is then used.

Tspi Context LoadKeyByBlob

Tcsip OIAP

Tcsip LoadKeyByblob

TPM OIAP

TPM LoadKey2

Now we have the handle to OSSK

Assign a policy object to the OSSK object using the
Tspi Policy AssignToObject method to authorise use of the OSSK

Create an encrypted data object (for the OMA
DRM v2 data to be sealed):

433

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Create policy object (the authorisation data to be
associated with the sealed data):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi SetAttribData

Tspi PolicySetSecret

Assign policy to object:

Tspi Policy AssignToObject

Create PCR composite object (if the sealed data is
to be sealed to a PCR set):

Tspi Context CreateObject

Tspi SetAttribUint32

Tspi PcrComposite SetPcrLocality

Tspi PcrComposite SelectPcrIndexEx

Tspi PcrComposite SetPcrValue

Seal data:

Tspi Data Seal

Tcsip OSAP

Tcspi Seal

TPM OSAP

TPM Seal

12.13 Random number generation

Requirement 6 necessitates that pseudo-random number generator (PRNG)

functionality is provided by the TMP.

A TPM contains an RNG (which provides nonces which are both random

and unpredictable), and the commands listed in table 12.31 may be executed in

434

order to access a random number.

Table 12.31: Random number retrieval
Tspi TPM GetRandom

Tcspi GetRandom

TPM GetRandom

12.14 Trusted time source

Requirement 7 necessitates a mechanism which supports the implementation of

a trusted time source.

The version 1.2 TCG specifications include a design document which dis-

cusses time stamping [156]. This discussion explores the capability of a TPM to

apply a timestamp to a binary object. The timestamp provided by the TPM,

however, is not a coordinated universal time (UTC) value but the number of

ticks that the TPM has counted. It becomes the responsibility of the caller to

associate the tick count with the corresponding UTC time.

While no particular protocol is mandated by the TCG specifications in order

to accomplish this association of the tick count value with the UTC time, a

sample protocol is described.

In this particular use case, we are interested in the use of the trusted time

source to successfully update the time source available to the OMA DRM v2

agent, so that the protocols outlined in the OMA v2 specifications which deal

with clock drift and clock synchronisation may be deprecated. These protocols

involve OCSP interactions following the detection of an inaccurate time in a

registration request message.

On examination of the effort required to complete the OMA v2 protocols,

and the effort required to complete the TCG time stamping protocols, there

435

may, however, be little to be gained by using TCG protocols to update the

device time source.

12.15 Conclusions

In this chapter, the requirements extracted in chapter 11 were utilised in order

to examine which architectural components and functionality described within

TCG version 1.2 specification set could be used to facilitate a robust implemen-

tation of OMA DRM v2.

Table 12.32 summarises the subset of version 1.2 TPM commands required in

a mobile TPM in order to enable this use case. As can been seen from this table,

support for key migration or the availability of certifiable migratable keys is not

required for this particular use case. Neither is direct anonymous attestation

(DAA) functionality. It also appears unlikely, as described in section 12.22,

that transport protection will be required. The delegation mechanism is not

required in order to implement this use case. As is the case in the v1.2 TPM

specification, audit and maintenance denote optional functionality which may

be provided by the TPM manufacturer but are not necessarily required. In

order to implement this use case, it is required, however, that the TPM can be

taken ownership of. In conjunction with this, basic functionality, such as self

testing, is also needed. Measurement functionality is required; a root of trust

for measurement and TPM support for such a trust root, i.e. TPM Extend and

TPM PCRRead commands, must be provided. In conjunction with this, secure

storage, key management, attestation and command authorisation functionality

is mandatory in order to robustly implement OMA DRM v2.

436

Table 12.32: TPM commands required for a robust implementation of OMA
DRM v2

TPM version 1.2 command Mobile device TPM
TPM Init required
TPM Startup required
TPM SaveState optional
TPM SelfTestFull required
TPM ContinueSelfTest required
TPM GetTestResult required
TPM SetOwnerInstall required
TPM OwnerSetDisable optional
TPM PhysicalEnable required
TPM PhysicalDisable required
TPM PhysicalSetDeactivated required
TPM SetTempDeactivated optional
TPM SetOperatorAuth optional
TPM TakeOwnership required
TPM OwnerClear optional
TPM ForceClear optional
TPM DisableOwnerClear optional
TPM DisableForceClear optional
TPM GetCapability required
TPM SetCapability optional
TPM GetAuditDigest optional
TPM GetAuditDigestSigned optional
TPM SetOrdinalAuditStatus optional
TPM FieldUpgrade optional
TPM SetRedirection optional
TPM ResetLockValue optional
TPM Seal required
TPM Unseal required
TPM Unbind optional
TPM CreateWrapKey required
TPM LoadKey2 required
TPM GetPubKey optional
TPM Sealx optional
TPM CreateMigrationBlob optional
TPM ConvertMigrationBlob optional
TPM AuthorizeMigrationKey optional
TPM MigrateKey optional
TPM CMK SetRestrictions optional
TPM CMK ApproveMA optional
TPM CMK CreateKey optional
TPM CMK CreateKey optional
TPM CMK CreateTicket optional
TPM CMK CreateBlob optional
TPM CMK ConvertMigration optional
TPM CreateMaintenanceArchive optional

437

TPM LoadMaintenanceArchive optional
TPM KillMaintenanceFeature optional
TPM LoadManuMaintPub optional
TPM ReadManuMaintPub optional
TPM SHA1Start optional
TPM SHA1Update optional
TPM SHA1Complete optional
TPM SHA1CompleteExtend optional
TPM Sign optional
TPM GetRandom required
TPM StirRandom required
TPM CertifyKey optional
TPM CertifyKey2 optional
TPM CreateEndorsementKeyPair optional
TPM CreateRevokableEK optional
TPM RevokeTrust optional
TPM ReadPubek required
TPM OwnerReadInternalPub optional
TPM MakeIdentity required
TPM ActivateIdentity required
TPM Extend required
TPM PCRRead required
TPM Quote required
TPM PCR Reset optional
TPM Quote2 optional
TPM ChangeAuth optional
TPM ChangeAuthOwner optional
TPM OIAP required
TPM OSAP required
TPM DSAP optional
TPM SetOwnerPointer optional
TPM Delegate Manage optional
TPM Delegate CreateKeyDelegation optional
TPM Delegate CreateOwnerDelegation optional
TPM Delegate LoadOwnerDelegation optional
TPM Delegate ReadTable optional
TPM Delegate UpdateVerification optional
TPM Delegate VerifyDelegation optional
TPM NV DefineSpec optional
TPM NV WriteValue optional
TPM NV WriteValueauth optional
TPM NV ReadValue optional
TPM NV ReadValueAuth optional
TPM KeyControlOwner optional
TPM SaveContext optional
TPM LoadContext optional
TPM FlushSpecific required
TPM GetTicks optional
TPM TickStampBlob optional
TPM EstablishTransport optional

438

TPM ExecuteTransport optional
TPM ReleaseTransportSigned optional
TPM CreateCounter optional
TPM IncrementCounter optional
TPM ReadCounter optional
TPM ReleaseCounter optional
TPM ReleaseCounterOwner optional
TPM DAA Join optional
TPM DAA Sign optional

Each of the necessary TPM commands should also be supported by the TSS

commands described in sections 12.6 to 12.9, if the TMP is to support a TSS.

The requirements extracted in chapter 11 were also utilised in order to iden-

tify architecture components and functionality not currently specified within

the TCG version 1.2 specification set, but required for the implementation of a

robust and secure DRM solution on a trusted mobile platform. Two additional

mechanisms were identified, namely a secure boot mechanism and a mechanism

which ensures that the integrity of the platform is maintained after boot. In

order to implement secure boot, we identified a number of fundamental compo-

nents which need to be considered, including:

• Platform component RIMs;

• RIM certificates;

• The list of entities authorised to sign RIM certificates;

• A RTV;

• A CRTV;

• The interaction between the RTV and the RTM;

• Platform recovery; and

• RIM certificate revocation and update.

439

In order to maintain integrity after boot, a number of preventative ap-

proaches were examined in section 12.8 in conjunction with a high-level reactive

mechanism which is closely coupled to the concept of secure boot was identified.

When attempting to implement this use case using TCG functionality, every

effort was made not to require modifications to the OMA specifications. If,

however, TPM functionality were to be made available on all mobile devices, it

may be useful for the OMA to leverage the key generation capabilities of the

TPM in order to generate the OMA DRM v2 agent key pair.

While only a subset of the secure storage, key management, attestation and

command authorisation functionality is required in order to implement this use

case, on examination of the remainder of the use cases described in the MPWG

use case document [159], namely, SIMLock/Device personalisation, software

download, mobile ticketing, mobile payment, software use, proving platform

and/or application integrity to end user user data, and protection and privacy,

it appears that the functionality required in order to enable these use cases

would also include both secure boot and run-time integrity checking. It seems

highly likely, given a high-level examination of the use cases, that secure stor-

age, key management, attestation and command authorisation functionality, in

conjunction with the fundamental TPM command runs, would also be required.

Given these assumptions, it would seem highly likely that a MTPM profile would

need to include the functionality described in table 12.33. However, in order to

verify this hypothesis, further investigation must be completed on each of the

remaining use cases.

440

Table 12.33: TPM commands required in a MTPM

TPM version 1.2 command Mobile device TPM
TPM Init required
TPM Startup required
TPM SaveState optional
TPM SelfTestFull required
TPM ContinueSelfTest required
TPM GetTestResult required
TPM SetOwnerInstall required
TPM OwnerSetDisable optional
TPM PhysicalEnable required
TPM PhysicalDisable required
TPM PhysicalSetDeactivated required
TPM SetTempDeactivated optional
TPM SetOperatorAuth optional
TPM TakeOwnership required
TPM OwnerClear optional
TPM ForceClear optional
TPM DisableOwnerClear optional
TPM DisableForceClear optional
TPM GetCapability required
TPM SetCapability optional
TPM GetAuditDigest optional
TPM GetAuditDigestSigned optional
TPM SetOrdinalAuditStatus optional
TPM FieldUpgrade optional
TPM SetRedirection optional
TPM ResetLockValue optional
TPM Seal required
TPM Unseal required
TPM Unbind required
TPM CreateWrapKey required
TPM LoadKey2 required
TPM GetPubKey required
TPM Sealx required
TPM CreateMigrationBlob optional
TPM ConvertMigrationBlob optional
TPM AuthorizeMigrationKey optional
TPM MigrateKey optional
TPM CMK SetRestrictions optional
TPM CMK ApproveMA optional
TPM CMK CreateKey optional
TPM CMK CreateKey optional
TPM CMK CreateTicket optional
TPM CMK CreateBlob optional
TPM CMK ConvertMigration optional
TPM CreateMaintenanceArchive optional

441

TPM LoadMaintenanceArchive optional
TPM KillMaintenanceFeature optional
TPM LoadManuMaintPub optional
TPM ReadManuMaintPub optional
TPM SHA1Start optional
TPM SHA1Update optional
TPM SHA1Complete optional
TPM SHA1CompleteExtend optional
TPM Sign required
TPM GetRandom required
TPM StirRandom required
TPM CertifyKey required
TPM CertifyKey2 optional
TPM CreateEndorsementKeyPair optional
TPM CreateRevokableEK optional
TPM RevokeTrust optional
TPM ReadPubek required
TPM OwnerReadInternalPub optional
TPM MakeIdentity required
TPM ActivateIdentity required
TPM Extend required
TPM PCRRead required
TPM Quote required
TPM PCR Reset optional
TPM Quote2 optional
TPM ChangeAuth required
TPM ChangeAuthOwner optional
TPM OIAP required
TPM OSAP required
TPM DSAP optional
TPM SetOwnerPointer optional
TPM Delegate Manage optional
TPM Delegate CreateKeyDelegation optional
TPM Delegate CreateOwnerDelegation optional
TPM Delegate LoadOwnerDelegation optional
TPM Delegate ReadTable optional
TPM Delegate UpdateVerification optional
TPM Delegate VerifyDelegation optional
TPM NV DefineSpec optional
TPM NV WriteValue optional
TPM NV WriteValueauth optional
TPM NV ReadValue optional
TPM NV ReadValueAuth optional
TPM KeyControlOwner optional
TPM SaveContext optional
TPM LoadContext optional
TPM FlushSpecific required
TPM GetTicks optional
TPM TickStampBlob optional
TPM EstablishTransport optional

442

TPM ExecuteTransport optional
TPM ReleaseTransportSigned optional
TPM CreateCounter optional
TPM IncrementCounter optional
TPM ReadCounter optional
TPM ReleaseCounter optional
TPM ReleaseCounterOwner optional
TPM DAA Join optional
TPM DAA Sign optional

443

Chapter 13

Conclusions

Contents
13.1 Summary and conclusions 445

13.1.1 Part I: Mobile host protection 445

13.1.2 Part II: Mobile code protection 454

13.1.3 Part III: Remote code protection 458

13.2 Future work . 460

This thesis deals with authorisation issues for mobile executables in mobile

systems. In this chapter we summarise the main conclusions and original con-

tributions of this thesis, and give suggestions for future work in the area.

444

13.1 Summary and conclusions

This thesis deals with authorisation issues for mobile executables in mobile

systems and is subdivided into three parts. In this section we summarise the

main conclusions and original contributions of each of these three parts.

13.1.1 Part I: Mobile host protection

Part I focused on the authorisation of incoming mobile code and agents by a

mobile host. We began by introducing the mobile agent paradigm. We then

highlighted the security threats which may impact a mobile host on which ma-

licious mobile code, and more specifically a malicious mobile agent, executes.

Finally, we reviewed the state of the art in mobile code and agent authorisation.

Based on this state of the art review, it became apparent that, while solutions to

the problem of mobile code and agent authorisation have been proposed, many

are ill-suited for application in a mobile environment.

With the goal of assessing mechanisms which may be of use in meeting our

objective of assembling a scheme for code and agent authorisation, we initially

examined behaviour-based authorisation techniques. The deployment of this

type of mechanism is beneficial in an open environment. However, on exam-

ination of proof-carrying code, model-carrying code and language security, a

number of shortcomings were unearthed. While being able to “conclude, auto-

matically and with certainty, that program code, provided by another system, is

safe to install and execute” [107] is desirable, there are still questions surround-

ing how proofs of code should be constructed, in what formalism, and how it can

be guaranteed that proofs can be verified efficiently and simply. Currently, the

number and type of properties that can be captured in proofs is limited [138],

and in the case of large executables, the size of the proof can sometimes be

445

larger than the code itself. While ‘safe’ or secure languages, such as Java, are

effective in making the execution of mobile code and agents less hazardous,

security then becomes dependent on the incoming code or an incoming agent

being written in a specific language. In order for model-carrying code to be

securely deployed, either proofs of code or digital signatures must be employed

in order to ensure model soundness [138]. In this way, the limitations associated

with proof-carrying code and identity-based mechanisms also impact upon the

suitability and usefulness of model-carrying code.

Identity-based authorisation has limited value in an open environment, as

was highlighted on examination of a set of identity-based mobile code and agent

authorisation mechanisms. Firstly, a host may potentially need to authorise

an unbounded number of entities, many of whom will be unknown. Secondly,

such systems do not address the case where a known entity generates a mali-

cious executable, or buggy code, which results in an end host system security

vulnerability.

Finally, we examined authorisation mechanisms based upon the integrity

of the incoming code or agent. Of the three mechanisms examined, tracing en-

ables malicious activity to be detected rather than prevented, which is not ideal.

There are currently no known algorithms which enable code obfuscation [91].

While at the time of writing, state appraisal functions represent the only mech-

anism by which the security threats, introduced by potentially malicious agent

state information, can be thwarted, the implementation of such an approach

requires a complex verification process to be completed by the end host, which

is undesirable in a mobile environment, where devices may be limited in terms

of processing power. Each of these mechanisms also assume/depend on the fact

that the originator of the code or agent is trusted.

446

Based on these conclusions, therefore, we chose to develop a policy-based

framework for the authorisation of mobile executables in a mobile environment,

where a minimal set of checks need to be completed by the end device, and

both the origin and/or the behaviour of an incoming executable can be taken

into account when making an authorisation decision. In order to construct a

framework of this nature, two fundamental elements had to be considered:

• The framework’s underlying architecture; and

• The mechanisms required in order to express the policy statements and

attribute certificates, needed in the implementation of the underlying ar-

chitecture, and to support the necessary policy engine component func-

tionality.

We described six architectural models which facilitate the authorisation of

incoming mobile code and agents. We then analysed each model with respect

to its security, and with regard to its suitability for implementation in a mobile

environment. The results of this analysis are summarised in table 13.1.

Table 13.1: A summary of scenario description and analysis

Description Authorisation Security issues Implementation
1 Device

manufacturers
generate attribute
certificate(s) for
code authors (and
agent creators)
they trust.
Incoming
executables are
signed by code
authors (and
agent creators).

Determined by
code author (and
potentially agent
creator)
identity/identities.

Identity-based
authorisation is
not suitable in an
open environment.
Device
manufacturer is
the sole point of
trust.
Dynamic agent
state information
cannot be
protected.

Signature
verification:
Code author’s
(and potentially
agent creator’s)
on executable;
and
Device
manufacturer’s on
attribute
certificate(s).

447

2 Incoming
executables are
signed by code
authors.

Determined by
code author
identity.

Identity-based
authorisation is
not suitable in an
open environment.
Reasoning behind
the incremental
trust values
associated with
trusted third
parties, the
network operator
and the device
manufacturer?
Static or dynamic
agent state
information
cannot be
protected.

Signature
verification:
Code author’s on
executable.

3 Executables are
tested by a
trusted third
party, using for
example
proof-carrying
code,
model-carrying
code, static
analysis tools.
An attribute
certificate is then
generated by the
trusted third
party for the
executable.

Determined by
executable
behaviour
(security relevant
properties of the
executable).

Issues with
proof-carrying
code:
Formalism of
proofs;
Efficient proof
verification;
Provable
properties?
Proof size.
Issues with
model-carrying
code:
Not fully
developed;
Proof-carrying
code or
identity-based
issues may hinder
its deployment.
Definition of the
security relevant
property set?
Issues with tools:
What is a suitable
test-set?
Test-sets specific
to particular
languages;
False positives
and negatives;
Static or dynamic
agent state
information
cannot be
protected.

Signature
verification:
Trusted third
party’s on
attribute
certificate.
Burden of testing
pushed onto a
trusted third
party (away from
the mobile host).
Efficiency of
testing process?
(potentially eased
by access control
lists).
There may be a
difficulty in
mapping an
incoming
executable to a
set of execution
permissions (if
different trusted
third parties
consider different
security properties
relevant).

448

4 Executables are
tested by a
domain server
with which the
end host is
affiliated.
An attribute
certificate is then
generated by the
domain server for
the executable.

Determined by
code author (and
agent creator)
identity and/or
executable
behaviour
(security relevant
properties).

Flexibility in
security controls
associated with
executable.
Static and
dynamic agent
state information
can be protected.

Signature
verification:
Domain server’s
on attribute
certificate.
Burden of testing
pushed onto the
domain server
(away from the
mobile host).

5 Executables are
executed by a
domain server
with which the
end host is
affiliated.
If malicious
activity is not
detected,
executables are
signed and
forwarded by
domain server to
the end host.

Determined by
executable
behaviour.

Must potentially
test the
executable with
an unbounded
number of input
parameters to
ensure its safety.

Signature
verification:
Domain server’s
on executable.
Burden of testing
pushed onto the
domain server
(away from the
mobile host).
Efficiency issues?
(potentially eased
by profiling).
Emulation
difficulties -
growing number
of device
configurations.

6 Executable’s
signatures,
certificates and
state appraisal
functions verified
by domain server
with which the
mobile host is
affiliated.
If all checks are
validated the
mobile agent is
signed and
forwarded to the
mobile host.

Determined by
code author and
agent creator
identity and agent
behaviour.

Concrete
implementation of
state appraisal
functions – does
such a function
exist?
The agent code
author must be
trusted.

Signature
verification:
Domain server’s
on incoming
agent.
Burden of testing
pushed onto
domain server
(away from mobile
host).
Focus on mobile
agents rather than
mobile code and
agents.

Based on this analysis, we compiled a set of requirements for the underlying

architecture of a policy-based code and agent authorisation framework. In short,

we concluded that:

• the framework should make minimal use of the end host’s CPU processing

power and the end host’s storage for authorisation data structures;

• the underlying architecture should support mechanisms which provide as-

surances regarding the origin of the executable, executable code quality

and the state of an agent;

449

• a policy engine, which is comprised of a policy administration point, a

policy information point, an authentication point, a trust establishment

module, a policy decision point, and a policy enforcement point, should

be incorporated into each end host; and finally that

• an end host can specify, store and/or process policy statements and signed

attribute certificates.

We then drafted a set of specific requirements by which the specification lan-

guage and policy engine components defined as part of the KeyNote trust man-

agement system, the Ponder policy specification framework and SAML could

be analysed. These requirements are summarised in table 13.2.

Table 13.2: Policy engine requirements

Requirements Scenario
1 2 3 4 5 6

Policy
statements

1 Authority for mobile agent exe-
cution can be delegated.

X X

2 Executable signed by code au-
thor which is certified by device
manufacturer can be authorised
to execute under specified con-
trols.

X

3 Mobile agent signed by code au-
thor and agent creator which are
both certified by device manufac-
turer can be authorised to exe-
cute under specified controls.

X

4 Executable signed by particular
entity can be authorised to exe-
cute in a predefined domain.

X X X X

5 Authority for executable at-
tribute certificate generation can
be delegated.

X X

6 Executable whose attributes
have been certified by a specified
entity can be authorised to
execute under specified controls.

X X

Authentication
evidence

1 Digital signature on incoming ex-
ecutable.

X X X X X

2 Digital signature on entity at-
tribute certificate.

X X

450

3 Digital signature on executable
attribute certificate.

X X

4 Hash of incoming executable. X X X X X X
Attribute
certificates

1 Signed attribute certificates. X X X X

2 Expression of entity identity in
the attribute certificate.

X X X

3 Delegation of authority to code
authors and agent creators by
means of an attribute certificate.

X

4 Delegation of authority to
trusted third parties by means
of an attribute certificate.

X

5 Expression of executable identity
in the attribute certificate.

X X

6 Expression of attributes. X X
Compliance val-
ues

1 Boolean ordered compliance
value set.

X X X X X

2 A more complex ordered compli-
ance value set – containing pre-
defined domain names.

X X

The PAP 1 A means of specifying, managing
and organising security policies.

X X X X X X

The PIP 1 Collection of access requestor in-
formation.

X X X X X X

The AP 1 Verification of the digital signa-
ture on the incoming executable.

X X

2 Verification of the digital signa-
ture on the entity attribute cer-
tificate.

X X X X

3 Verification of the digital signa-
ture on the executable attribute
certificate.

X X

4 Verification of the incoming exe-
cutable’s identity.

X X X X X X

The TEM 1 Mapping the unknown authori-
sation requestor to a principal to
which policies apply.

X X X X X X

The PDP 1 Comparing all the information
submitted as part of the authori-
sation request with the relevant
policy statements on the mobile
device, and responding with an
authorisation decision from the
ordered compliance value set.

X X X X X X

The PEP 1 Enforcing the decisions of the
PDP.

X X X X X X

On examination of the three selected policy and attribute certificate speci-

fication languages, namely KeyNote, Ponder and SAML, and following an ex-

ploration of the functionality of their supporting policy engine components, we

investigated whether each of the architectural models summarised in table 13.1

could be implemented using each system, thereby allowing us to make some

conclusions about the suitability for each of the languages for use in our policy-

451

based framework. The results of this investigation are summarised in table 13.3:

a tick denotes that a requirement can be met using the specified policy frame-

work, a cross denotes that a requirement cannot be met, and a bullet denotes

that the requirement can be partially met.

Table 13.3: Policy engine component analysis
Requirement Specification Language

KeyNote Ponder SAML
Policy statement req 1 X ✗ ✗
Policy statement req 2 X • ✗
Policy statement req 3 X • ✗
Policy statement req 4 X • ✗
Policy statement req 5 X ✗ ✗
Policy statement req 6 X • ✗
Authentication evidence req 1 ✗ ✗ ✗
Authentication evidence req 2 X ✗ X
Authentication evidence req 3 ✗ ✗ X
Authentication evidence req 4 ✗ ✗ ✗
Attribute certificate req 1 X ✗ X
Attribute certificate req 2 X ✗ X
Attribute certificate req 3 X ✗ X
Attribute certificate req 4 X ✗ X
Attribute certificate req 5 ✗ ✗ X
Attribute certificate req 6 ✗ ✗ X
Compliance values req 1 X • ✗
Compliance values req 2 X • ✗
PAP req 1 X X ✗
PIP req 1 ✗ ✗ X
AP req 1 X ✗ X
AP req 2 ✗ ✗ ✗
AP req 3 ✗ ✗ X
AP req 4 ✗ ✗ ✗
TEM req 1 X ✗ ✗
PDP req 1 X X ✗
PEP req 1 ✗ X ✗

Finally, we proposed a policy-based framework that synthesises techniques

for establishing the origin, authenticity, safety and integrity of incoming mobile

executables, and policy-specification and processing techniques, in order to pro-

vide a rich and flexible authorisation framework. It is most suitable for deploy-

ment in an environment where end hosts may be limited in terms of processing

power or the checks they can complete. We assume the presence of a trusted

domain server, which is responsible for a set of mobile devices. This trusted

domain server intercepts and completes a pre-defined set of security checks on

incoming executables destined for a mobile device for which it is responsible.

452

On completion of these security checks, the trusted domain server generates an

executable attribute certificate before forwarding both the executable and cer-

tificate to the destination host. The incoming executable is then assigned to a

domain defined on the mobile device based upon its associated attributes. A set

of pre-defined executable permissions are specified for members of each domain.

SAML was chosen for assertion expression as it enables the transfer of signed

assertions describing the attributes of an executable. The number or type of

attributes that can be expressed is extensible. It is therefore possible for a

trusted domain server to add new attributes under which an executable can be

expressed at any stage. The identity of the executable may also be contained

within a SAML attribute assertion. DTPL was chosen in order to enable an

incoming executable to be mapped to a domain, i.e. in order to establish trust

between the incoming executable and the mobile host. Finally, Ponder was

chosen to specify the actions members of a particular domain, to which an in-

coming executable has been assigned, are authorised to perform. We chose to

decouple trust establishment and the specification of execution permissions. In-

tegrated solutions to trust establishment and access control are more complex.

In conjunction with this, the use of an integrated solution may also impede

the integration of the framework into existing systems, as it requires all policy

statements to be written in the chosen language. Using separate trust estab-

lishment and access control mechanisms means that incoming executables may

be mapped to groups/roles defined within the system about which policies have

already been defined. It also implies that, instead of using Ponder, as is used

in the proposed framework, this framework could be integrated into a platform

which uses a different policy language for the expression of role-based or group-

based platform security policies.

453

13.1.2 Part II: Mobile code protection

Part II focused on the authorisation of a mobile host upon which downloaded

code would execute. Initially, we described the two standard mechanisms that

have been defined by the DVB organisation in order to ensure that an end user

can acquire broadcast services from a variety of service providers using propri-

etary conditional access systems to protect the content, namely simulcrypt and

common interface. On examination of these standards however, it became ap-

parent that, when applied to the mobile environment, these mechanisms could

prove prohibitively costly and cumbersome. We then proposed the use of re-

configurable mobile receivers in order to overcome these limitations. Following

this, the security threats relating to the secure delivery of a conditional access

application and the secure storage and execution of the application on a mobile

device were defined. The security services and mechanisms required to thwart

the threats highlighted were also described. This work is summarised in table

13.4.

Following this, we described two protocols which support the secure down-

load of a conditional access application to a mobile device. Both these protocols

ensure that the conditional access application is protected against threats 1 to

5, described in table 13.4. This was demonstrated through a security analysis

completed on both protocols.

We then described how the two protocols might be implemented on a selec-

tion of trusted computing architectures, namely:

• a platform containing TCG trusted platform components;

• a platform into which a version 1.2 compliant TPM and CRTM are inte-

grated and an isolation layer deployed; and finally,

454

Table 13.4: A summary of the security threats, services and mechanisms per-
taining to secure software download and execution

Threat Service Mechanism
1 Unauthorised reading of

the application code and
data.

Confidentiality of the
application code and
data.

Symmetric or
asymmetric encryption.

2 Unauthorised
modification of the
application code and
data.

Integrity protection of
the application code and
data.

A message
authentication code or
digital signature.

3 Unknowingly
communicating with an
unknown and potentially
malicious entity.

Entity authentication. Entity authentication
protocols; and
platform attestation.

4 The inability to
corroborate the source of
the conditional access
application.

Origin authentication. The software provider’s
digital signature on
either the (possibly
encrypted) incoming
application, or on keys
used to protect the
integrity and
confidentiality of the
incoming application.

5 Replay of
communications.

Freshness. Nonces or timestamps.

6 Unauthorised reading or
modification of any
cryptographic keys used
in the provision of
confidentiality and
integrity protection to
the conditional access
application code and
data.

Secure symmetric key
generation.

Key generation in an
isolated environment.

Secure symmetric key
transmission.

Asymmetric encryption
and digital signatures.

Secure symmetric key
storage.

Protected storage on the
host; or the mechanisms
used to confidentiality
and integrity-protect the
symmetric key(s) whilst
in transit.

Prevention of
unauthorised access to
the symmetric key(s).

Protected storage on the
host; or the symmetric
key(s) may be bound to
a particular hardware
component, such as a
secure (co-)processor, so
that the symmetric
key(s) can only be
decrypted inside that
particular hardware
component.

7 Unauthorised reading or
modification of the
application code and
data while it executes on
the mobile host.

Confidentiality and
integrity protection of
the application code and
data during execution.

Isolation mechanisms.

455

• given an NGSCB compliant platform, as described by Microsoft.

Following this, we analysed whether the implementation of both protocols on

each of the trusted computing architectures enabled security services 6 and 7,

as described in table 13.4, to be met.

In a TCG compliant platform security service 6 can be met. Problems may

arise, however, in relation to the provision of security service 7. No mechanisms

are defined by the TCG for partitioning a system into trusted and untrusted

compartments. In order for a software provider to trust the execution envi-

ronment in which the conditional access application will execute, the provider

may require that the platform is in a controlled state, running, for example, a

trusted OS, a download application, and a broadcast application, but nothing

more. Essentially, the end host may be required to be a closed platform. If

a TCG compliant platform were to remain open in this scenario, it would be-

come very difficult for a software provider to verify the attestation statement

generated by the end host, and also to evaluate whether a platform should be

trusted for the secure download and execution of a conditional access applica-

tion. If an isolation layer is integrated into a TCG compliant mobile device,

the platform can be partitioned into both trusted and untrusted execution envi-

ronments. This means that the conditional access application can be executed

in an isolated environment which the mobile device has attested to, and the

software provider has verified and evaluated as trusted for the secure down-

load and execution of a conditional access application. It also implies that the

platform configuration register verification which must be completed by the soft-

ware provider can be simplified. Finally, it means that the platform can remain

open and useable. Problems may arise, however, in relation to OS compatibility

and direct memory access attacks. Issues surrounding device support and OS

backward compatibility may be tackled through the extension of the platform

456

chipset and enhancement of the platform CPU, as described as both Microsoft’s

NGSCB and Intel’s LaGrande initiatives.

Following this, we described two application download protocols proposed

by the designers of XOM and AEGIS. Both protocols are based upon the as-

sumption that the host device contains a hardened processor. Both protocols

were then analysed against the security requirements described in table 13.4.

These analyses revealed security shortcomings in both of these protocols.

There are two reasons why the shortcomings of the XOM and AEGIS proto-

cols arise. Firstly, the AEGIS designers do not require that security services 3, 4

and 5, as described in table 13.4, are met by their download protocol. However,

on examination of the generic requirement explicitly listed by the designers,

i.e. to support the download and execution of copy and tamper-resistent soft-

ware, security services 1, 2 and 6 and 7, described in table 13.4, must be met.

Of these four security services, both the XOM and AEGIS download protocols

meet security service 7, but only partially meet security services 1, 2 and 6,

as described table 13.4. It appears that the second reason for the protocols’

security shortcomings is due to the focus on ensuring that the architectures and

download protocols support the copy and tamper-resistent execution of software

rather than the copy and tamper-resistent download and execution of software.

We subsequently proposed a series of enhancements to the protocols designed

to address the identified shortcomings. While neither protocol meets all of the

requirements for the secure transmission of AC , the protocols can easily be

modified to fulfil the additional requirements. The requirements surrounding

the secure execution of AC are met, however, and strong isolation of AC is

provided when executed on these hardened processors.

457

13.1.3 Part III: Remote code protection

Part II focused on the authorisation of remote code residing on a mobile de-

vice. We initially provided an overview of DRM, with particular focus on the

OMA DRM standards. The rationale for DRM solutions were examined and

the generic components of a DRM system outlined. The activities of the OMA

were briefly introduced, followed by a description of the model to which the

OMA DRM architecture applies. An overview of OMA DRM v1 and v2 was

also provided. Following this, the lifecycle of an OMA DRM v2 agent was ex-

amined, and OMA DRM v2 agent installation and each protocol in the ROAP

suite analysed in terms of the threats that may impact on devices on which

OMA DRM v2 is not robustly implemented. We then accumulated a func-

tional requirement set which must be met by the platform in order to thwart

these threats and provide a robust implementation of OMA DRM v2. The re-

quirements extracted were then utilised in order to examine which architectural

components and functionality described within TCG version 1.2 specification

set could be used to facilitate a robust implementation of OMA DRM v2.

This enabled us to construct a partial profile for a mobile TPM for the OMA

DRM v2 use case, as illustrated in figure 13.5.

Table 13.5: TPM commands required for a robust implementation of OMA
DRM v2

TPM version 1.2 command Mobile device TPM
TPM Init required
TPM Startup required
TPM SaveState optional
TPM SelfTestFull required
TPM ContinueSelfTest required
TPM GetTestResult required
TPM SetOwnerInstall required
TPM OwnerSetDisable optional
TPM PhysicalEnable required
TPM PhysicalDisable required
TPM PhysicalSetDeactivated required

458

TPM SetTempDeactivated optional
TPM SetOperatorAuth optional
TPM TakeOwnership required
TPM OwnerClear optional
TPM ForceClear optional
TPM DisableOwnerClear optional
TPM DisableForceClear optional
TPM GetCapability required
TPM SetCapability optional
TPM GetAuditDigest optional
TPM GetAuditDigestSigned optional
TPM SetOrdinalAuditStatus optional
TPM FieldUpgrade optional
TPM SetRedirection optional
TPM ResetLockValue optional
TPM Seal required
TPM Unseal required
TPM Unbind optional
TPM CreateWrapKey required
TPM LoadKey2 required
TPM GetPubKey optional
TPM Sealx optional
TPM CreateMigrationBlob optional
TPM ConvertMigrationBlob optional
TPM AuthorizeMigrationKey optional
TPM MigrateKey optional
TPM CMK SetRestrictions optional
TPM CMK ApproveMA optional
TPM CMK CreateKey optional
TPM CMK CreateKey optional
TPM CMK CreateTicket optional
TPM CMK CreateBlob optional
TPM CMK ConvertMigration optional
TPM CreateMaintenanceArchive optional
TPM LoadMaintenanceArchive optional
TPM KillMaintenanceFeature optional
TPM LoadManuMaintPub optional
TPM ReadManuMaintPub optional
TPM SHA1Start optional
TPM SHA1Update optional
TPM SHA1Complete optional
TPM SHA1CompleteExtend optional
TPM Sign optional
TPM GetRandom required
TPM StirRandom required
TPM CertifyKey optional
TPM CertifyKey2 optional
TPM CreateEndorsementKeyPair optional
TPM CreateRevokableEK optional
TPM RevokeTrust optional

459

TPM ReadPubek required
TPM OwnerReadInternalPub optional
TPM MakeIdentity required
TPM ActivateIdentity required
TPM Extend required
TPM PCRRead required
TPM Quote required
TPM PCR Reset optional
TPM Quote2 optional
TPM ChangeAuth optional
TPM ChangeAuthOwner optional
TPM OIAP required
TPM OSAP required
TPM DSAP optional
TPM SetOwnerPointer optional
TPM Delegate Manage optional
TPM Delegate CreateKeyDelegation optional
TPM Delegate CreateOwnerDelegation optional
TPM Delegate LoadOwnerDelegation optional
TPM Delegate ReadTable optional
TPM Delegate UpdateVerification optional
TPM Delegate VerifyDelegation optional
TPM NV DefineSpec optional
TPM NV WriteValue optional
TPM NV WriteValueauth optional
TPM NV ReadValue optional
TPM NV ReadValueAuth optional
TPM KeyControlOwner optional
TPM SaveContext optional
TPM LoadContext optional
TPM FlushSpecific required
TPM GetTicks optional
TPM TickStampBlob optional
TPM EstablishTransport optional
TPM ExecuteTransport optional
TPM ReleaseTransportSigned optional
TPM CreateCounter optional
TPM IncrementCounter optional
TPM ReadCounter optional
TPM ReleaseCounter optional
TPM ReleaseCounterOwner optional
TPM DAA Join optional
TPM DAA Sign optional

13.2 Future work

The issue of mobile code and agent authorisation considered in part I of this

thesis has been widely discussed. At the current time, a large set of mobile

code and agent authorisation mechanisms exist. While behaviour-based code

and/or agent authorisation mechanisms such as proofs of code are promising in

an open environment, further efforts are required in order to expand the range

460

of properties which can be currently captured by proofs.

The issue of agent security and host authorisation, however, has proved more

difficult to solve. While a plethora of solutions tackling various aspects of this

problem have been proposed [70,130,133,141], a summary of which can be found

in [25,28], the issue would benefit from re-examination in light of the emergence

of trusted computing technologies. We are currently examining this problem

and have recently presented an efficient method by which trusted computing

can be used to protect a mobile agent against malicious hosts [57].

The work completed in parts II and III focuses on the use of trusted com-

puting technologies in a mobile environment. In part II we considered how

secure software download can be supported using trusted computing function-

ality, while in part III we stipulated the subset of version 1.2 TPM commands

required in a mobile TPM in order to enable a robust implementation of OMA

DRM v2. We also identified architecture components and functionality not cur-

rently specified within the TCG version 1.2 specification set, but required for the

implementation of a robust DRM solution on a trusted mobile platform, namely

a secure boot mechanism and a mechanism which ensures that the integrity of

the platform is maintained after boot.

While we proposed a list of TPM v1.2 functionality that might be required

in a mobile TPM in order to support all trusted computing use cases, further

investigation needs to be completed on key use cases to verify this hypothesis.

This problem is to some extent being addressed within the OpenTC project1,

where a selection of use cases, namely OMA DRM v2, IMEI, SIMLock, secure

software download, secure software use and secure wallet, are being described

and analysed in order to determine the security and policy requirements for a

trusted mobile computing platform.
1www.opentc.net

461

While secure boot is a concept that has been widely discussed, further work

is required to enable run-time integrity verification such that the integrity of a

platform can be validated periodically after boot.

Trusted mobile platform implementation represents another area for future

development. Given the number of potential stakeholders on a mobile device,

each of which needs access to TPM functionality and potentially, its own TPM,

the deployment of soft or virtual TPMs would be advantageous. The secure

implementation of a soft TPM is an open and interesting research topic.

462

Bibliography

[1] A. Abdul-Rahman and S. Hailes. A distributed trust model. In Pro-

ceedings of the 1997 Workshop on New Security Paradigms, pages 48–60,

Langdale, Cumbria, United Kingdom, 23–26 September 1998. ACM Press,

New York, USA.

[2] B. Albahari, P. Drayton, and B. Merrill. C# Essentials. O’Reilly, Se-

bastopol, California, USA, 2nd edition, March 2002.

[3] R. Anderson. Cryptography and competition policy - issues with ‘trusted

computing’. In Proceedings of the 23rd Annual Symposium on Principles

of Distributed Computing (PODC 2003), pages 3–10, St. John’s, New-

foundland, Canada, 25–28 July 2003. ACM Press, New York, USA.

[4] W.A. Arbaugh, D.J. Farber, and J.M. Smith. A secure and reliable boot-

strap architecture. In Proceedings of the 1997 IEEE Symposium on Se-

curity and Privacy (S&P 1997), pages 65–71, Oakland, California, USA,

May 1997. IEEE Computer Society Press, Los Alamitos, California.

[5] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted

Computing Platforms: TCPA Technology in Context. Prentice Hall, Upper

Saddle River, New Jersey, USA, 2003.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-

bauery, I. Pratt, and A. Warfield. XEN and the art of virtualization. In

463

Proceedings of the 19th ACM Symposium on Operating Systems Princi-

ples (SOSP 2003), pages 164–177, Bolton Landing, New York, USA, 19–22

October 2003. ACM Press, New York, USA.

[7] M.F. Barrett. Towards an open trusted computing framework. Masters

thesis, Department of Computer Science, The University of Auckland,

New Zealand, February 2005.

[8] European Broadcasting Union (EBU) Project Group B/CA. Functional

model of a conditional access system. EBU technical review, EBU, Geneva,

Switzerland, October 1995.

[9] M. Bellare and C. Namprempre. Authenticated encryption: Relations

amoung notions and analysis of the generic composition paradigm. In

Tatsuaki Okamoto, editor, Proccedings of Advances in Cryptology — ASI-

ACRYPT 2000, 6th International Conference on the Theory and Appli-

cation of Cryptology and Information Security, volume 1976 of Lecture

Notes in Computer Science (LNCS), pages 531–545, Kyoto, Japan, 3–7

December 2000. Springer–Verlag, Berlin–Heidelberg, Germany.

[10] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli. Policy-driven

binding to information resources in mobility-enabled scenarios. In M.S.

Chen, P.K. Chrysanthis, M. Sloman, and A.B. Zaslavsky, editors, Pro-

ceedings of the 4th International Conference on Mobile Data Management

(MDM 2003), volume 2574 of Lecture Notes in Computer Science (LNCS),

pages 212–229, Melbourne, Australia, 21–24 January 2003. Springer–

Verlag Berlin–Heidelberg, Germany.

[11] S. Berkovits, J.D. Guttman, and V. Swarup. Authentication for mobile

agents. In G. Vigna, editor, Mobile Agents and Security, volume 1419

464

of Lecture Notes in Comptuer Science (LNCS), pages 114–136. Springer–

Verlag, Berlin–Heidelberg, Germany, 1998.

[12] E. Bertino, P.A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based

access control model. ACM Transactions on Information and System Se-

curity (TISSEC), 4(3):191–233, August 2001.

[13] M. Blaze, J. Feigenbaum, J. Ioanndis, and A. Keromytis. The KeyNote

trust management system version 2. RFC 2740, Internet Engineering Task

Force (IETF), September 1999.

[14] M. Blaze, J. Feigenbaum, and A. Keromytis. KeyNote: Trust manage-

ment for public key infrastructures. In W.S. Harbison and M. Roe, edi-

tors, Proceedings of the 6th International Workshop on Security Protocols,

volume 1550 of Lecture Notes in Computer Science (LNCS), pages 59–63,

Cambridge, UK, 15–17 April 1998. Springer–Verlag, Berlin–Heidelberg,

Germany.

[15] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralised trust management. In

Proceedings of the 17th IEEE Symposium on Security and Privacy, pages

164–173, Oakland, California, USA, May 1996. IEEE Computer Society

Press, Los Alamitos, California, USA.

[16] M. Blaze, J. Ioannidis, and A.D. Keromytis. Experience with the KeyNote

trust management system: Applications and future directions. In P. Nixon

and S. Terzis, editors, Proceedings of the 1st International Conference

on Trust Management (iTrust 2003), volume 2692 of Lecture Notes in

Computer Science (LNCS), pages 284–300, Heraclion, Greece, 28–30 May

2003. Springer–Verlag, Berlin–Heidelberg, Germany.

[17] P. Bonatti and P. Samarati. Regulating service access and information

release on the web. In P. Samarati, editor, Proceedings of the 7th ACM

465

Conference on Computing and Communications Security, pages 134–143,

Athens, Greece, 1–4 November 2000. ACM Press, New York, USA.

[18] A.B. Bondi. Characteristics of scalability and their impact on perfor-

mance. In Proceedings of the 2nd International Workshop on Software and

Performance (WOSP 2000), pages 195–203, Ottawa, Ontario, Canada,

17–20 September 2000. ACM Press, New York, USA.

[19] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer. OpenPGP Message

Format. Internet Engineering Task Force (IETF), November 1998.

[20] J. Cappaert, B. Wyseur, and B. Preneel. Software security techniques.

COSIC internal report, Computer Security and Industrial Cryptogra-

phy (COSIC), Katholieke Universiteit Leuven, Leuven–Heverlee, Belgium,

2004.

[21] H. Castaneda. New Studies in Deontic Logic: Norms, Actions and the

Foundations of Ethics, chapter The Paradoxes of Deontic Logic: The Sim-

plest Solution to all of them in One Fell Swoop, pages 37–85. D. Reidel

Publishing company, Dordrecht, Holland, 1981.

[22] CENELEC. Common interface specification for conditional access and

other digital video broadcasting decoder applications. CENELEC Stan-

dard 50221, European Committee for Electrotechnical Standardization

(CENELEC), Brussels, Belgium, February 1997.

[23] H. Chen and D. Wagner. MOPS: An infrastructure for examining secu-

rity properties of software. In Proceedings of the 9th ACM Conference

on Computer and Communications Security (CCS 2002), pages 235–244,

Washington, District of Columbia, USA, 18–22 November 2002. ACM

Press, New York, USA.

466

[24] Y. Chen, P. England, M. Peinado, and B. Willman. High assurance

computing on open hardware architectures. Microsoft Technical report

MSRTR–2003–20, Microsoft Corporation, March 2003.

[25] D.M. Chess. Security issues in mobile code systems. In G. Vigna, editor,

Mobile Agents and Security, volume 1419 of Lecture Notes in Comptuer

Science (LNCS), pages 1–14. Springer–Verlag, Berlin–Heidelberg, Ger-

many, 1998.

[26] Y. Chu, J. Feigenbaum, B.A. LaMacchia, P. Resnick, and M. Strauss.

REFEREE: Trust management for web applications. The World Wide

Web Journal, 2(3):127–139, 1997.

[27] P.C. Clark and L.J. Hoffman. BITS: a smartcard protected operating

system. Communications of the ACM, 37(11):66–94, November 1994.

[28] J. Classens, B. Preneel, and J. Vandewalle. (How) can mobile agents

do secure electonic transactions on untrusted hosts? – a survey of the

security issues and the current solutions. ACM Transactions on Internet

Technology, 3(1):28–48, 2003.

[29] CMLA. Client adopter agreement. Technical Report Revision 1.00-050708,

The Content Management License Administrator Limited Liability Com-

pany (CMLA, LLC), August 2005.

[30] A. Corradi, N. Dulay, R. Montanari, and C. Stefan. Policy-driven man-

agement of agent systems. In M. Sloman, J. Lobo, and E. Lupu, editors,

Proceedings of the 3rd Workshop on Policies for Distributed Systems and

Networks (POLICY 2001), volume 1995 of Lecture Notes in Computer

Science (LNCS), pages 214–229, Bristol, England, UK, 29–31 January

2001. Springer–Verlag, Berlin–Heidelberg, Germany.

467

[31] J.P. Cunard, K. Hill, and C. Barlas. Curent developments in the field

of digital rights management. WIPO document SCCR/10/2, World In-

tellectual Property Organisation Standing Committee on Copyright and

Related Rights (WIPO SCCR), Geneva, Switzerland, August 2003.

[32] F. Cuppens and C. Saurel. Specifying a security policy: A case study. In

Proceedings of the 9th IEEE Computer Security Foundations Workshop

(CSFW 1996), pages 123–134, Kenmare, Kerry, Ireland, 10–12 March

1996. IEEE Computer Society Press.

[33] D.J. Cutts. DVB conditional access. IEE Electronics and Communications

Engineering Journal, 9(1):21–27, February 1997.

[34] N. Damianou, A.K. Bandara, M. Sloman, and E.C. Lupa. A survey of

policy specification approaches. Research report, Department of Comput-

ing, Imperial College of Science Technology and Medicine, London, UK,

2002.

[35] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. Ponder: A language for

specifying and managenent policies for distributed systems, the language

specification. Research Report Version 2.3, Department of Computing,

Imperial College of Science Technology and Medicine, London, UK, 2000.

[36] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder policy

specification language. In M. Sloman, J. Lobo, and E.C. Lupu, editors,

Proceedings of the 2nd International Workshop on Policies for Distributed

Systems and Networks (POLICY 2001), volume 1995 of Lecture Notes

in Computer Science (LNCS), pages 18–38, Bristol, England, UK, 29–31

January 2001. Springer–Verlag, Berlin–Heidelberg, Germany.

468

[37] N.C. Damianou. A Policy Framework for Management of Distributed Sys-

tems. PhD thesis, Department of Computing, Imperial College of Science,

Technology and Medicine, London, UK, February 2002.

[38] A.W. Dent and C.J. Mitchell. User’s Guide to Cryptography and Stan-

dards. Artech House, Boston, Massachusetts, USA, 2005.

[39] NTT DoCoMo, IBM, and Intel Corporation. Trusted mobile platform.

Software Architecture Description TMP SWAD rev1 00 20040405, June

2004.

[40] D. Dolev and A. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2):198–208, March 1983.

[41] J.G. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn, S.W. Smith,

and S. Weingart. Building the IBM 4758 secure coprocessor. IEEE Com-

puter, 34(10):57–66, October 2001.

[42] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control

for mobile code. In Proceedings of the 5th ACM Conference on Computer

and Communications Security, pages 38–48, San Francisco, California,

USA, 2–5 November 1998. ACM Press, New York, USA.

[43] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman. A

trusted open platform. IEEE Computer, 36(7):55–62, July 2003.

[44] European Telecommunications Standards Institute (ETSI). Digital Video

Broadcasting (DVB); Support for use of Scrambling and Conditional Ac-

cess (CA) within Digital Broadcasting Systems. ETSI Technical Re-

port ETR 289, European Telecommunications Standards Institute (ETSI),

Sophia Antipolis, France, October 1996.

469

[45] European Telecommunications Standards Institute (ETSI). Digital Video

Broadcasting (DVB): Head-End Implementation of DVB Simulcrypt.

ETSI Standard TS 103 197 V1.3.1, European Telecommunications Stan-

dards Institute (ETSI), Sophia Antipolis, France, January 2003.

[46] S. Farrell and R. Housley. An internet attribute certificate profile for

authorization. RFC 3281, Internet Engineering Task Force IETF, April

2002.

[47] J. Feghhi, J. Feghhi, and P. Williams. Digital Certificates – Applied In-

ternet Security. Addison-Wesley-Longman, October 1998.

[48] FIPS PUB 186-2, Digital Signature Standard (DSS). Gaithersburg, Mary-

land, USA, January 2000.

[49] S.N. Foley, T.B. Quillinan, J.P. Morrison, D.A. Power, and J.J. Kennedy.

Exploiting KeyNote in webcom: Architecture neutral glue for trust man-

agement. In Proceedings of the 5th Nordic Workshop on Secure IT Systems

(NORDSEC 2000), pages 101–119, Reykjavik, Iceland, 12–13 October

2000.

[50] Foundation for Intelligent Physical Agents (FIPA). FIPA agent man-

agement specification. Standard SC00023K, Foundation for Intelligent

Physical Agents (FIPA), March 2004.

[51] W. Ford. Computer Communications Security — Principles, Standard

Protocols and Techniques. Prentice-Hall, Upper Saddle River, New Jersey,

USA, 1994.

[52] S. Franklin and A. Graesser. Is it an agent, or just a program?: A tax-

onomy for autonomous agents. In J.P. Müller, M.J. Wooldridge, and

N.R. Jennings, editors, Proceedings of the Intelligent Agents III, the 3rd

470

International Workshop on Agent Theories, Architectures, and Languages

(ATAL 1996), volume 1193 of Lecture Notes in Computer Science (LNCS),

pages 21–35, Budapest, Hungary, 12–13 August 1996. Springer–Verlag,

Berlin–Heidelberg, Germany.

[53] E. Gallery. Mobile agent and mobile code authorisation in mobile sys-

tems: A policy-based authorisation framework. In Proceedings of the 10th

Wireless World Research Forum Meeting, New York, USA, 27–28 October

2003. Wireless World Research Forum (WWRF).

[54] E. Gallery. A policy based authorisation framework for software down-

load. In Proceedings of the 2nd Software Defined Radio Forum Technical

Conference (SDR 2003), Orlando, Florida, USA, 17–19 November 2003.

Software Defined Radio Forum (SDRF).

[55] E. Gallery. Towards a policy framework for mobile agent authorisation

in mobile systems. In Proceedings of the 4th International Conference

on 3G Mobile Communication Technologies (3G 2003), number 494 in

IEE Conference Publication, pages 13–18, Savoy Place, London, UK, 25–

27 June 2003. The Institute of Electrical Engineers (The IEE), Michael

Faraday House, Six Hills Way, Stevenage, UK.

[56] E. Gallery. An overview of trusted computing technology. In C.J. Mitchell,

editor, Trusted Computing, IEE Professional Applications of Computing

Series 6, chapter 3, pages 29–114. The Institute of Electrical Engineers

(IEE), London, UK, April 2005.

[57] E. Gallery and S. Balfe. Mobile agents and the deus ex machina. In

Workshop on Current and Emerging Research Issues in Computer Security

(CERICS 2006), Royal Holloway, University of London, July 2006.

471

[58] E. Gallery and A. Tomlinson. Conditional access in mobile systems: Se-

curing the application. In Proceedings of the 1st International Conference

on Distributed Frameworks for Multimedia Applications (DFMA 2005),

pages 190–197, Besançon, France, 6–9 February 2005. IEEE Computer

Society.

[59] E. Gallery and A. Tomlinson. Protection of downloadable software on

SDR devices. In Proceedings of the 4th Software Defined Radio Forum

Technical Conference (SDR 2005), Orange County, California, USA, 14–

18 November 2005. Software Defined Radio Forum (SDRF).

[60] E. Gallery and A. Tomlinson. Secure delivery of conditional access appli-

cations to mobile receivers. In C.J. Mitchell, editor, Trusted Computing,

IEE Professional Applications of Computing Series 6, chapter 7, pages

195–238. The Institute of Electrical Engineers (IEE), London, UK, April

2005.

[61] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS support and

applications for trusted computing. In Proceedings of the 9th USENIX

Workshop on Hot Topics on Operating Systems (HotOS-IX), pages 145–

150, Kauai, Hawaii, USA, 18-21 May 2003. USENIX, The Advanced Com-

puting Systems Association.

[62] A.K. Ghosh. E-commerce Security; Weak Links, Best Defences, chapter

Deadly Content: The Client Side Vulnerabilities, pages 31–96. John Wiley

and Sons, New York, USA, 1998.

[63] J.I. Glasgow, G.H. MacEwen, and P. Panangaden. A logic for reasoning

about security. ACM Transactions on Computer Systems (ACM TOCS),

10(3):226–264, August 1992.

472

[64] L. Gong. Inside Java 2 Paltform Security: Architecture, API Design, and

Implementation. Addison-Wesley Longman Publishing Co. Inc., Boston,

Massachusetts, USA, 2003.

[65] D. Grawrock. The Intel Safer Computing Initiative. Intel Press, Oregon,

USA, March 2006.

[66] R. Gray, D. Kotz, S. Nog, D. Rus, and G. Cybenko. Mobile agents for

mobile computing. Technical Report PCS-TR96 285, Dartmouth College,

Hanover, New Hampshire, USA, May 1996.

[67] R.S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Security in

multiple-language, mobile agent system. In G. Vigna, editor, Mobile

Agents and Security, volume 1419 of Lecture Notes in Computer Science

(LNCS), pages 154–187. Springer–Verlag, Berlin–Heidelberg, Germany,

1998.

[68] A. Herzberg, Y. Mass, J. Mihaeli, D. Naor, and Y. Ravid. Access control

meets PKI, or: Assigning roles to strangers. In Proceedings of the 21st

IEEE Syposium on Security and Privacy (S&P 2000), pages 2–14, Wash-

ington, District of Columbia, USA, May 2000. IEEE Computer Society.

[69] F. Hohl. Time limited blackbox security: Protecting mobile agents from

malicious hosts. In G. Vigna, editor, Mobile Agents and Security, vol-

ume 1419 of Lecture Notes in Computer Science (LNCS), pages 92–113.

Springer–Verlag, Berlin Heidelberg, Germany, 1998.

[70] F. Hohl. Time limited blackbox security:protecting mobile agents from

malicious hosts. In G. Vigna, editor, Mobile Agents and Security, vol-

ume 1419 of Lecture Notes in Computer Science (LNCS), pages 92–113.

Springer–Verlag, Berlin–Heidelberg, Germany, 1998.

473

[71] IEEE. Standard specifications for public key cryptography. IEEE 1363

standards documents IEEE 1363-2000, IEEE Computer Society, August

2000.

[72] Intel. LaGrande technology architectural overview. Technical Report

252491-001, Intel Corporation, September 2003.

[73] J. Irwin and T. Wright. Digital rights management. Vodafone internal

newsletter, Vodafone, Newbury, England, UK, August 2004.

[74] ISO/IEC 9594-8, Information Technology — Open Systems Intercon-

nection — The Directory: Public-Key and Attribute Certificate Frame-

works. International Organization for Standardisation, Geneva, Switzer-

land, 2005.

[75] ISO/IEC 11770-1, Information Technology — Security techniques — Key

management —Part 1: Framework. International Organization for Stan-

dardisation, Geneva, Switzerland, 1996.

[76] ISO/IEC 13888-1. Information technology — Security techniques — Non-

repudiation — Part 1: General. International Organization for Standard-

isation, Geneva, Switzerland, 2004. 2nd edition.

[77] ISO/IEC 14888-1. Information technology — Security techniques — Data

signatures with appendix — Part 1: General. International Organization

for Standardisation, Geneva, Switzerland, 1998.

[78] ISO/IEC 14888-2. Information technology — Security techniques — Data

signatures with appendix — Part 2: Identity-based mechanisms. Interna-

tional Organization for Standardisation, Geneva, Switzerland, 1999.

474

[79] ISO/IEC 14888-3. Information technology — Security techniques — Data

signatures with appendix — Part 3: Certificate-based mechanisms. Inter-

national Organization for Standardisation, Geneva, Switzerland, 1998.

[80] ISO/IEC 7498-2 / ITU-T X.800, Data Communication Networks: Open

System Interconnection (OSI); Security, Structure and Applications — Se-

curity Architecture for Open Systems Interconnection for CCITT Appli-

cations. International Organization for Standardisation, Geneva, Switzer-

land, 1991.

[81] ISO/IEC 9594-8, Information technology – Open Systems Interconnection

– The Directory: Public-key and attribute certificate frameworks. Interna-

tional Organization for Standardisation, Geneva, Switzerland, 2001.

[82] ISO/IEC 9797-1. Information technology - Security techniques — Mes-

sage Authentication Codes (MACs) — Part 1: Mechanisms using a block

cipher. International Organization for Standardisation, Geneva, Switzer-

land, 1999.

[83] ISO/IEC 9797-2. Information technology — Security techniques — Mes-

sage Authentication Codes (MACs) — Part 2: Mechanisms using a

hash-function. International Organization for Standardisation, Geneva,

Switzerland, 2002.

[84] ISO/IEC 9798-1 Information technology — Security techniques — Entity

authentication — Part 1: General. International Organization for Stan-

dardisation, Geneva, Switzerland, 1997. 2nd edition.

[85] ISO/IEC 9798-3 Information technology — Security techniques — Entity

authentication mechanisms — Part 3: Mechanisms using digital signa-

ture techniques. International Organization for Standardisation, Geneva,

Switzerland, 1998. 2nd edition.

475

[86] ISO/IEC 9798-4, Information technology — Security techniques — Entity

authentication — Part 4: Mechanisms using a cryptographic check func-

tion. International Organization for Standardisation, Geneva, Switzer-

land, 1999. 2nd edition.

[87] ISO/IEC 9798-5, Information technology — Security techniques — En-

tity authentication — Part 5: Mechanisms Using Zero-Knowledge Tech-

niques. International Organization for Standardisation, Geneva, Switzer-

land, 2004.

[88] N. Itoi, W.A. Arbaugh, S.J. Pollack, and D.M. Reeves. Personal secure

booting. In Proceedings of the 6th Australasian Conference on Informa-

tion Security and Privacy ACISP 2001, volume 2119 of Lecture Notes In

Computer Science (LNCS), pages 130–141, Sydney, Australia, 11–13 July

2001. Springer–Verlag, London, UK.

[89] ITU-T Recommendation X.509, Information technology — Open Systems

Interconnection — The Directory: Public-key and Attribute Certificate

Frameworks. International Organization for Standardisation, Geneva,

Switzerland, 2000. 4th edition.

[90] S. Jajodia, P. Samarati, and V.S. Subrahmanian. A logical language for

expressing authorisations. In Proceedings of the IEEE Symposium on Se-

curity and Privacy (S&P 1997), pages 31–42, Oakland, CA, USA, 4–7

May 1997. IEEE Computer Society, Washington, District of Columbia,

USA.

[91] W. Jansen and T. Karygiannis. Mobile agents and security. NIST Spe-

cial Publication 800-19, National Institute of Standards and Technol-

ogy (NIST), Computer Security Division, Gaithersburg, Maryland, USA,

1999.

476

[92] W. Johnston, S. Mudumbai, and M. Thompson. Authorization and at-

tribute certificates for widely distributed access control. In Proceedings

of IEEE 7th International Workshops on Enabling Technologies: Infras-

tructure for Collaborative Enterprises (WETICE 1998), pages 340–345,

Palo Alto, California, USA, 17–19 June 1998. IEEE Computer Society,

Washington, District of Columbia, USA.

[93] B. Kaliski and J. Staddon. PKCS #1: RSA cryptographic specifications

– version 2. RFC 2437, Internet Engineering Task Force (IETF), October

1999.

[94] J.A. Knottenbelt. Policies for agent systems. Masters thesis, Imperial

College of Science, Technology and Medicine, London, UK, June 2001.

[95] H. Krawczyk, M. Bellare, and R. Canetti. HMAC – keyed hashing for mes-

sage authentication. RFC 2104, Internet Engineering Task Force (IETF),

February 1997.

[96] B. Lampson, M. Abadi, and M. Burrows. Authentication in distributed

systems: Theory and practice. ACM transactions on computer, 10(4):265–

310, November 1992.

[97] J. Lettice. Bad publicity: Clashes trigger MS Palladium name change.

Press pass – information for jornalists, The Register, 27th January 2003.

[98] D. Lie. Architectural Support for Copy and Tamper Resistant Software.

Phd thesis, Department of Electrical Engineering, Stanford University,

Stanford, California, USA, December 2003.

[99] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and

M. Horowitz. Architectural support for copy and tamper resistant soft-

ware. In Proceedings of the 9th International Conference on Architectural

477

Support for Programming Languages and Operating Systems (ASPLOS-

IX), pages 169–177, Cambridge, Massachusetts, USA, 12–15 November

2000. ACM Press, New York, USA.

[100] V.B. Livshits and M.S. Lam. Tracking pointers with path and context

sensitivity for bug detection in C programs. In The 11th ACM SIG-

SOFT International Symposium on the Foundations of Software Engi-

neering (ESEC/SIGSOFT FSE–11), pages 317–326, Helsinki, Finland,

1–5 September 2003. ACM Press, New York, USA.

[101] A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryp-

tography, volume 6 of Discrete Mathematics and its Applications. CRC

Press, Boca Raton, Florida, USA, 1997.

[102] R.C. Merkle. Protocols for public key cryptography. In Proceedings of

IEEE Symposium on Security and Privacy, pages 122–134, Oakland, Cal-

ifornia, USA, April 1980. IEEE Computer Society Press.

[103] Z. Miklos. A decentralised authorisation mechanism for e-business applica-

tions. In Proceedings of the 13th International Workshop on Database and

Expert Systems Applications (DEXA 2002) - International Workshop on

Trust and Privacy in Digital Business - TrustBus, pages 446–450, Aix-en-

Provence, France, September 2002. IEEE Computer Society, Washington,

District of Columbia, USA.

[104] Chris Mitchell, editor. Trusted Computing. IEE Professional Applica-

tions of Computing Series 6. The Institute of Electrical Engineers (IEE),

London, UK, April 2005.

[105] R. Montanari, G. Tonti, and C. Stefanelli. Programming agent mobility.

In M. Klusch, S. Ossowski, and O. Shehory, editors, Proceedings of the 6th

478

International Workshop on Coorperative Information Agents - Intelligent

Agents for the Internet and Web (CIA 2002), volume 2446 of Lecture

Notes in Artificial Intelligence (LNAI), pages 287–296, Madrid, Spain,

18–20 September 2002. Springer–Verlag, Berlin–Heidelberg, Germany.

[106] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. Internet

X.509 public key infrastructure, online certificate status protocol – OCSP.

RFC 2560, Internet Engineering Task Force (IETF), June 1999.

[107] G.C. Necula and P. Lee. Safe, untrusted agents using proof-carrying code.

In G. Vigna, editor, Mobile Agents and Security, volume 1419 of Lecture

notes in conputer science (LNCS), pages 61–91. Spring–Verlag, Berlin–

Heidelberg, Germany, 1998.

[108] NIST. Security requirements for cryptographic modules. Federal Infor-

mation Processing Standards Publication FIPS PUB 140–1, National In-

stitute of Standards and Technology (NIST), January 1994.

[109] NIST. Security hash standard. Federal Information Processing Standards

Publication FIPS PUB 180–1, National Institute of Standards and Tech-

nology (NIST), April 1997.

[110] NIST. Common criteria of information technology security evaluation.

Technical Report Version 2.1, National Institute of Standards and Tech-

nology (NIST), August 1999.

[111] H.S. Nwana and D.T. Ndumu. An introduction to agent technology. In

H.S. Nwana and N. Azarmi, editors, Software Agents and Soft Computing:

Towards Enhancing Machine Intelligence, number 1198 in Lecture notes

in Artificial Intelligence (LNAI), pages 3–26. Springer–Verlag, Berlin–

Heidelberg, Germany, 1997.

479

[112] OASIS. Assertion and protocol for the OASIS Security Assertion Markup

Language (SAML) version 1.0. OASIS Standard Document oasis-sstc-

saml-core-1.0, OASIS, 5 November 2002.

[113] OASIS. Bindings and profiles for the OASIS Security Assertion Markup

Language (SAML) version 1.0. OASIS Standard Document oasis-sstc-

saml-bindings-1.0, OASIS, 5 November 2002.

[114] OASIS. Assertion and protocol for the OASIS Security Assertion Markup

Language (SAML) version 1.1. OASIS Standard Document oasis-sstc-

saml-core-1.1, OASIS, 2 September 2003.

[115] OASIS. Bindings and profiles for the OASIS Security Assertion Markup

Language (SAML) version 1.1. OASIS Standard Document oasis-sstc-

saml-bindings-1.1, OASIS, 2 September 2003.

[116] OASIS. Assertion and protocol for the OASIS Security Assertion Markup

Language (SAML) version 2.0. OASIS Standard Document saml-core-2.0-

os, OASIS, 15 March 2005.

[117] OASIS. Bindings for the OASIS Security Assertion Markup Language

(SAML) version 2.0. OASIS Standard Docuement saml-bindings-2.0-os,

OASIS, 15 March 2005.

[118] OASIS. Profiles for the OASIS Security Assertion Markup Language

(SAML) version 2.0. OASIS Standard Docuement saml-profiles-2.0-os,

OASIS, 15 March 2005.

[119] OMA. Digital Rights Management v1.0. Technical Specification OMA-

Download-DRM-V1 0-20040615-A, The Open Mobile Alliance (OMA),

June 2004.

480

[120] OMA. DRM architecture v2.0. Technical Specification OMA-DRM-

ARCH-V2 0-2004071515-C, The Open Mobile Alliance (OMA), July 2004.

[121] OMA. Drm architetcure specification v1.0. Technical Specification OMA-

Download-ARCH-V1 0-20040625-A, The Open Mobile Alliance (OMA),

June 2004.

[122] OMA. DRM specification v2.0. Technical Specification OMA-DRM-DRM-

V2 0-20040716-C, The Open Mobile Alliance (OMA), July 2004.

[123] OMA. OMA DRM V1.0 approved enabler specification. Technical Specifi-

cation OMA-DRM-V1 0-20040625-A, The Open Mobile Alliance (OMA),

June 2004.

[124] OMA. OMA DRM V2.0 approved enabler specification. Technical Spec-

ification OMA-ERP-DRM-V2 0-20060303-A, The Open Mobile Alliance

(OMA), July 2004.

[125] J.K. Ousterhout, J.Y. Levy, and B. B. Welsh. The safe TCL security

model. In G. Vigna, editor, Mobile Agents and Security, volume 1419

of Lecture Notes in Computer Science (LNCS), pages 217–235. Springer–

Verlag, Berlin–Heidelberg, Germany, 1998.

[126] M. Peinado, Y. Chen, P. England, and J. Manferdelli. NGSCB: A trusted

open system. In H. Wang, J. Pieprzyk, and V. Varadharajan, editors,

Proceedings of 9th Australasian Conference on Information Security and

Privacy, ACISP 2004, volume 3108 of Lecture Notes in Computer Sci-

ence (LNCS), pages 86–97, Sydney, Austrailia, 13–15 July 2004. Springer–

Verlag, Belin–Heidelberg, Germany.

481

[127] B. Pfitzmann, J. Riordan, C. Stuble, M. Waidner, and A. Weber. The

PERSEUS system architecture. Technical Report RZ 3335 (#93381), IBM

Research Division, Zurich Laboratory, April 2001.

[128] C.P. Pfleeger. Security in Computing. Prentice Hall, Upper Saddle River,

New Jersey, USA, 2nd edition, 1997.

[129] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An access control

language for security policies with complex constraints. In Proceedings of

Network and Distributed System Security (NDSS ’01), pages 89–107, San

Diego, California, USA, 7–9 February 2001. The Internet Society.

[130] J. Riordan and Bruce Schneier. Environmental key generation towards

clueless agents. In G. Vigna, editor, Mobile Agents and Security, vol-

ume 1419 of Lecture Notes in Comptuer Science (LNCS), pages 15–24.

Springer–Verlag, Berlin–Heidelberg, Germany, 1998.

[131] K. Rothermel and M. Schwehm. Mobile agents. In A. Kent and J.G.

Williams, editors, Encyclopedia for Computer Science and Technology,

volume 40, pages 155–176. M. Dekker Inc., New York, USA, 1999.

[132] A.R. Sadeghi and C. Stuble. Taming “Trusted Platforms” by Operating

System Design. In K. Chae and M. Yung, editors, Proceedings of Infor-

mation Security Applications, 4th International Workshop, (WISA 2003),

volume 2908 of Lecture Notes in Computer Science (LNCS), Jeju Island,

Korea, 25–27 August 2003. Springer-Verlag, Berlin–Heidelberg, Germany.

[133] T. Sander and C.F. Tschudin. Protecting mobile agents against malicious

hosts. In G. Vigna, editor, Mobile Agents and Security, volume 1419

of Lecture Notes in Comptuer Science (LNCS), pages 44–60. Springer–

Verlag, Berlin–Heidelberg, Germany, 1998.

482

[134] NHK Science and Technical Research Laboratories. Scrambling (condi-

tional access system). NHK Science and Technical Research Laboratories

Bulletin 12, Tokyo, Japan, Autumn 2002.

[135] Software Defined Radio Forum (SDRF). Security considerations for opera-

tional software for software defined radio devices in a commercial wireless

domain. SDRF Archived Approved Document 2004-A0010, 27 October

2004.

[136] K. Seamons, M. Winslett, T. Yu, B. Smith, E. Child, J. Jacobson, H. Mills,

and L. Yu. Requirements for policy languages for trust negotiation. In

Proceedings of the 3rd International Workshop on Policies for Distributed

Systems and Networks (POLICY 2002), pages 68–79, Monterey, Califor-

nia, USA, 5–7 June 2002. IEEE Computer Society, Washington, District

of Columbia, USA.

[137] K.E. Seamons and W. Winborough. Internet credential acceptance poli-

cies. In M. Falaschi, M. Navarro, and A. Policriti, editors, Joint Confer-

ence on Declarative Programming (APPIA-GULP-PRODE 1997), pages

415–432, Grado, Italy, 16–19 June 1997.

[138] R. Sekar, C.R. Ranalrishnan, I.V. Ramakrishnan, and S.A. Smolka. Model

Carrying Code (MCC): A new paradigm for mobile code security. In New

Security Paradigms Workshop (NSPW’01), pages 23–30, Cloudcroft, New

Mexico, USA, 10–13 September 2001. ACM Press, New York, USA.

[139] Bilal Siddiqui. Web services security. XML.com, 4 March 2003.

[140] M. Sihvonen. CC/PP negotiation of a mobile station in mexe service envi-

ronment. In International Conference on Information Systems Technology

and its Applications (ISTA 2001), pages 185–198, St. Augustin, Germany,

2001. Gesellschaft fuer Mathematik und Datenverarbeitung.

483

[141] D. Singelée and B. Preneel. Secure e-commerce using mobile agents on

untrusted hosts. COSIC internal report, Computer Security and Indus-

trial Cryptography (COSIC), Katholieke Universiteit Leuven, Leuven–

Heverlee, Belgium, 2004.

[142] W. Stallings. Cryptography and Network Security, Principles and Prac-

tices. Prentice Hall, Upper Saddle River, New Jersey, 2nd edition, 1999.

[143] E. Suh, D. Clarke, B. Gassend, M. van Dyke, and S. Devadas. The

AEGIS processor architecture for tamper–evident and tamper-resistant

processing. In 17th Annual ACM International Conference on Supercom-

puting (ICS’03), pages 160–171, San Francisco, California, USA, 23–26

June 2003. ACM Press, New York, USA.

[144] E. Suh, C.W. ’O Donnell, I. Sachdev, and S. Devadas. Design and imple-

mentation of the AEGIS secure processor using physical random functions.

ACM SIGARCH Computer Architecture News, 33(2):25–36, 2005.

[145] J. Tardo and L. Valente. Mobile agent security and telescript. In 41st In-

ternational IEEE Computer Society International Conference: Technolo-

gies for the Information Superhighway (COMPCON 1996), pages 58–63,

Santa Clara, California, USA, 25–28 February 1996. IEEE Computer So-

ciety Press.

[146] TCG. TCPA Main Specification. TCG Specification Version 1.1b, The

Trusted Computing Group (TCG), Portland, Oregon, USA, February

2002.

[147] TCG. Main specification changes. TCG Specification Version 1.2, The

Trusted Computing Group (TCG), Portland, Oregon, USA, October 2003.

484

[148] TCG. TCG Software Stack (TSS) Specification. TCG Specification Ver-

sion 1.1, The Trusted Computing Group (TCG), Portland, Oregon, USA,

August 2003.

[149] TCG. TCG Specification Architecture Overview. TCG Specification Ver-

sion 1.2, The Trusted Computing Group (TCG), Portland, Oregon, USA,

April 2003.

[150] TCG. TPM Main, Part 1 Design Principles. TCG Specification Version

1.2 Revision 62, The Trusted Computing Group (TCG), Portland, Oregon,

USA, October 2003.

[151] TCG. TPM Main, Part 2 TPM Data Structures. TCG Specification

Version 1.2 Revision 62, The Trusted Computing Group (TCG), Portland,

Oregon, USA, October 2003.

[152] TCG. TPM Main, Part 3 Commands. TCG Specification Version 1.2

Revision 62, The Trusted Computing Group (TCG), Portland, Oregon,

USA, October 2003.

[153] TCG. TCG PC client specific implementation specification for conven-

tional BIOS. TCG specification Version 1.2 Final, The Trusted Computing

Group (TCG), Portland, Oregon, USA, July 2005.

[154] TCG. TCG Software Stack (TSS) Specification. TCG Specification Ver-

sion 1.2, The Trusted Computing Group (TCG), Portland, Oregon, USA,

2005.

[155] TCG. TCG Work Group Charter Summary. TCG Specification, The

Trusted Computing Group, Portland, OR, USA, 2005.

485

[156] TCG. TPM Main, Part 1 Design Principles. TCG Specification Version

1.2 Level 2 Revision 85, The Trusted Computing Group (TCG), Portland,

Oregon, USA, February 2005.

[157] TCG. TPM Main, Part 2 TPM Data Structures. TCG Specification

Version 1.2 Level 2 Revision 85, The Trusted Computing Group (TCG),

Portland, Oregon, USA, February 2005.

[158] TCG. TPM Main, Part 3 Commands. TCG Specification Version 1.2

Level 2 Revision 85, The Trusted Computing Group (TCG), Portland,

Oregon, USA, February 2005.

[159] TCG MPWG. Use Case Scenarios. TCG Specification Version 2.7, The

Trusted Computing Group, Mobile Phone Working Group, Portland, Ore-

gon, USA, September 2005.

[160] W. Tuttlebee, D. Babb, J. Irvine, G. Martinez, and K. Worrall. Broad-

casting and mobile telecommunications: Interworking — not convergence.

European Broadcasting Union (EBU) Technical Review, 293:1–11, January

2003.

[161] J. Tygar and B. Yee. Dyad: A system for using physically secure copro-

cessors. Technical Report CMU-CS-91-140R, Carnigie Mellon University,

Pittsburgh, Pennsylvania, USA, May 1991.

[162] G. Vigna. Cryptographic traces for mobile agents. In G. Vigna, editor,

Mobile Agents and Security, volume 1419 of Lecture notes in computer

science (LNCS), pages 137–153. Springer-Verlag, Berlin Heidelberg, Ger-

many, 1998.

[163] D. Volpano and G. Smith. Language issues in mobile program security.

In G. Vigna, editor, Mobile Agents and Security, volume 1419 of Lec-

486

ture Motes in Computer Science (LNCS), pages 25–43. Springer–Verlag,

Berlin–Heidelberg, Germany, 1998.

[164] G.H. von Wright. Deontic logic. Mind, 60:1–15, 1951.

[165] D. Wagner, J.S. Foster, E.A. Brewer, and A. Aiken. A first step towards

automated detection of buffer overrun vulnerabilities. In The 7th An-

nual Symposium on Network and Distributed System Security Symposium

(NDSS 2000), pages 2–4, San Diego, California, USA, February 2000. The

Internet Society.

[166] R. Walsh. Q&A: Microsoft seeks industry wide collaboration for ‘Palla-

dium’ initiative. Press pass – information for journalists, Microsoft, 1 July

2002.

[167] M. Weber, V. Shah, and C. Ren. A case study in detecting software

security vulnerabilities using constraint optimization. In IEEE Inter-

national Workshop on Source Code Analysis and Manipulation (SCAM

2001), pages 3–13, Florence, Italy, 10 November 2001. IEEE Computer

Society.

[168] J. Wilander. Modeling and visualizing security properties of code using de-

pendence graphs. In L. Blankers, editor, The 5th Conference on Software

Engineering Research and Practice in Sweden (SERPS 2005), pages 65–

74, Väster̊as, Sweden, 20–21 October 2005. Malardalen University Press.

[169] Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press,

Boston, Massachusetts, USA, 1995.

487

Appendix A

The TCG specification set

Trusted computing has recently emerged as one of the most significant new infor-

mation security technologies. A trusted platform is one that behaves as expected

for a particular purpose. Through the incorporation of trusted functionality into

a computing platform, which offers services such as: cryptographic capabilities;

platform integrity measurement, storage and reporting; the creation of trusted

identities; secure storage; and platform attestation, it may be transformed into

a trusted platform, as defined above. This chapter examines the specifications

for trusted platform functionality produced by the TCG. NGSCB and LaGrande

Technology are also briefly examined.

488

A.1 Introduction

This appendix provides an overview of the work of the TCG, with particular

focus on the TPM version 1.2 specification set. Section A.2 details the notation

used throughout this appendix. Section A.3 provides a brief history of the TCG

and an overview of the TCG organisational structure. Section A.4 defines what

is meant by a trusted platform, and section A.5 examines the entities necessary

for the endorsement and use of a trusted platform. Section A.6 describes the

three fundamental components of a TCG-defined trusted platform.

Section A.7 examines the capabilities of a v1.2 compliant TPM. Section A.8

describes how a TPM can be initialised. Section A.9 examines how a TPM can

be enabled and activated. It also explains how an entity can take ownership of

a TPM and, finally, how a TPM can be cleared. Section A.10 describes the set

of credentials which each trusted platform should have associated with it. The

concept of TPM identity is also explored in this section. How a trusted plat-

form’s configuration can be measured and reported is described in section A.11,

and section A.12 explores the concept of locality. Section A.13 explores the

protected storage functionality of a TPM.

In section A.14 transport security is explored. This feature enables the estab-

lishment of a secure channel between a TPM and secure processes, which offers

confidentiality and integrity protection of commands sent to the TPM. The

TPM’s monotonic counter is described in section A.15. Section A.16 describes

the TPM authorisation framework. The TPM’s context manager is described

in section A.17. Delegation functionality is explained in section A.18 and the

TPM time-stamping capabilities are explored in A.19. Section A.20 describes

the TPM migration mechanisms, which are used for the backup and cloning of

migratable TPM-protected key objects. Sections A.21 and A.22 describe the

489

maintenance of the TPM and the TPM’s audit functionality, respectively.

In section A.23, Microsoft’s Next Generation Secure Computing Base, for-

merly known as Palladium, is investigated. In contrast to the TCG specification

set, however, little technical information on NGSCB has yet been published.

Section A.24 explores Intel’s LaGrande Technology initiative, which has led

to the production of a set of enhanced hardware components designed to evolve

the Intel Architecture–32 bit platform into a trusted platform.

A.2 Notation

The following notation is used in the remainder of the appendix.

SHA-1(Z) denotes the SHA-1 hash of data Z.
HMACK(Z) denotes a keyed-hash message authentication code on data

Z using key K,
PCR-i denotes the ith platform configuration register of the TPM,

for i=0,1.....,16.

A.3 The TCG

Trusted computing platform specifications were first developed by the Trusted

Computing Platform Alliance (TCPA), which was founded in January 1999.

After the release of the initial draft specification in October 1999, the original

alliance, which included HP, IBM, Intel and Microsoft, invited other companies

to become involved. By 2002, over 150 companies had joined and the specifica-

tions had become an open industry standard [5]. In April 2003 it was announced

that the TCPA was to be superseded by the TCG, which adopted the TCPA

specifications with the intention of expanding and developing them.

The TCG is made up of five fundamental organisational components: the

board of directors, the market working group, the advisory council, the admin-

istration and the technical committee. The technical committee advises to the

490

board by monitoring technical work groups for consistency and interoperability

of technical specifications and initiatives [155]. In turn, following guidance from

the board, the technical committee develops the agenda for the technical work

groups [155]. There are currently ten active technical working groups, whose

primary responsibilities are as follows [155].

• The trusted platform module work group is accountable for specifying how

the TPM architecture, as described by the technical committee, can be

implemented.

• The TCG software stack work group is responsible for the provision of a

set of APIs for application vendors wishing to utilise TPM functionality.

• The mobile phone work group is currently adopting the TCG concepts for

mobile devices.

• The peripheral work group is examining the trust-related properties of pe-

ripherals, where the trustworthiness of a computing platform is dependent,

at least in part, on the trustworthiness of peripheral devices connected to

that platform.

• The server-specific work group is responsible for the provision of defini-

tions, specifications, guidelines and technical requirements essential for the

implementation of TCG technology in servers.

• The storage systems work group focuses on standards for security services

on dedicated storage systems.

• The conformance work group will generate the necessary specifications

and documents required for the definition of protection profiles and other

evaluation criteria.

491

• The PC client work group is accountable for the provision of common

functionality, interfaces and a minimum set of security and privacy re-

quirements for a PC client which uses TCG components to establish its

root of trust.

• The infrastructure work group is responsible for the integration of the

TCG platform specific specifications into internet and infrastructure tech-

nologies. There is also a sub-group of the infrastructure work group, called

the trusted network connect sub-group, developing “an open solution ar-

chitecture which enables network operators to enforce policies regarding

endpoint integrity when granting access to network infrastructure” [155].

• The hard copy work group is accountable for the definition of a mini-

mum set of functional, interface and privacy requirements for hardcopy

components that use TCG components to establish their root of trust.

A.4 A trusted platform

A platform, as defined by Balacheff et al. [5], is any computing device, e.g. PC,

server, mobile phone or appliance, capable of computing and communicating

electronically with other platforms. A trusted platform (TP) is defined as a

computing platform with a trusted component that is used to create a foundation

of trust for software processes [5]. This ‘trusted component’, as defined by

the TCG, incorporates the core root of trust for measurement and the trusted

platform module.

We next explore the fundamental entities, components, mechanisms, and

protocols that constitute the trusted computing group’s trusted platform, where

core reference material consists of [5, 148–152].

492

A.5 Entities involved

The critical entities involved in the endorsement and use of a trusted platform

are described in this section. From the end user point of view, the main entities

include the following.

• The TPM owner has full control over the TP’s TPM.

• A TP user (who may differ from the TP owner).

• A challenger who needs to decide whether or not a particular TP can be

trusted for a particular purpose.

• A TPM operator who is permitted to temporarily deactivate the TPM,

see section A.9.3.

We also consider all entities involved in the establishment of trust in the

platform, i.e. attestation entities.

• The trusted platform module entity (TPME) attests to the fact that a

TPM is genuine by digitally signing an endorsement credential, see sec-

tion A.10, which contains the public endorsement key from the endorse-

ment key pair, see section A.7.4, associated with the TPM. The TPME

is likely to be the TPM manufacturer.

• The conformance entity (CE) guarantees, through the generation of con-

formance credentials, see section A.10, that the design and implementation

of the TPM and trusted building blocks (TBB) within a trusted platform

meet established evaluation guidelines. The TBB is defined in [149] as

the parts of the roots of trust, see section A.6.1, that do not have shielded

locations or protected capabilities, see section A.7.1, for example the RTM

or TPM initialisation functions.

493

• The platform entity (PE) offers assurance in the form of a platform cre-

dential, see section A.10, that a particular platform is an instantiation of

a TP design as described in conformance credentials, and that the plat-

form’s TPM is indeed genuine. The PE may be the original equipment

manufacturer (OEM).

• The validation entity (VE) certifies integrity measurements, i.e. measured

values and measurement digests, see section A.11, which correspond to

correctly functioning or trustworthy platform components, for example

embedded data or program code, in the form of validation certificates. The

VE may be a software component supplier. These validation certificates

can be used by a challenger wishing to evaluate the state of a challenged

TP based on signed integrity metrics provided to it.

• A privacy-certification authority is responsible for the generation of attes-

tation identity credentials, see section A.10, which confirm that particular

identities (public attestation identity keys) belong to a genuine TP.

• DAA issuers are responsible for the creation of DAA credentials for par-

ticular TPMs, which are generated as a result of an interaction between

the DAA issuer and the TPM.

• DAA verifiers use DAA credentials to decide whether or not a TPM is

indeed genuine, while preserving the anonymity of the TPM.

Other important entities include intermediaries, which may be utilised in

either the migration or maintenance procedures.

494

A.6 The trusted platform subsystem

The trusted platform subsystem (TPS) is composed of three fundamental ele-

ments:

• The RTM;

• The TPM, which is the RTS and the RTR; and

• The TSS, which encompasses the software on the platform that supports

the platform’s TPM.

A.6.1 Roots of trust

The RTM, the RTS and the RTR are defined by the TCG as the required roots

of trust for a TP.

A.6.1.1 The RTM

The RTM is a computing engine which accurately generates at least one in-

tegrity measurement event representing a software component running on the

platform [5]. The measurement digest is then recorded to a PCR in the TPM,

see section A.11.1, and details of the measuring process, namely a record of what

was measured, is then recorded to the stored measurement log (SML) outside

the TPM, see section A.11.3.

For the foreseeable future, it is envisaged that the RTM will be integrated

into the normal computing engine of the platform with minimum protection [5],

where the provision of additional BIOS boot block or BIOS instructions (the

CRTM) cause the main platform processor to function as the RTM. Ideally,

however, for the highest level of security, the CRTM would be part of the TPM

[5].

495

A.6.1.2 The RTS and RTR

The TPM incorporates the RTS and the RTR, where:

• The RTS is a collection of capabilities which must be trusted if storage

of data inside a platform is to be trusted. The RTS provides integrity

and confidentiality protection to data used by the TPM but that is stored

externally. It also provides a mechanism to ensure that the release of

certain data only occurs in a specific environment.

• The RTR is a collection of capabilities that must be trusted if reported

integrity metrics, which are representative of the platform state, are to be

trusted [150]. It is responsible for establishing platform identities, report-

ing platform configurations, protecting reported values and establishing a

context for attesting to reported values [156].

A.6.2 The TSS

The TCG software stack [148] is the software on the platform which supports

the TPM. The challenger must determine whether TSS functions can be trusted

by examining a challenged platform’s integrity metrics. The TSS architecture

consists of a number of software modules, which provide fundamental resources

to support the TPM (see also [148]).

A.6.2.1 The TPM Device Driver

The TPM Device Driver (TDD) is a kernel mode component which is TPM and

OS specific, and is likely to be provided by the TPM manufacturer or vendor. It

contains code that has an understanding of TPM behaviour. Because user mode

executables cannot directly access kernel mode executables, the manufacturer

must also provide the TCG Device Driver Library (TDDL) which provides a

496

user mode interface to the TPM.

The standard interface to the TDDL is called the TDDL interface (Tddli),

which facilitates the transition between user mode and kernel mode. This Tddli

is defined so that all TPMs will support the same interface.

The TDD receives byte streams from the TDDL, sends them to the TPM,

and returns any responses. The interface between the TDD and the TDDL

is called the TDD interface (TDDI), and is defined by the TPM vendor. The

interface between the TDD and the TPM device is also defined by the TPM

vendor.

A.6.2.2 The TSS Core Services

The TSS core services software module resides in user mode, executes as a sys-

tem service, and provides single threaded access to the TPM. The TCS provides

a common set of services to platform service providers, which cannot directly

access the TPM. There must be only one TCS per platform operating system.

The interface to this module is the TCS interface (Tcsi). It is anticipated that

in most environments the Tcsi will reside as a system process, separate from the

application and service provider processes.

• The TCS context manager provides dynamic handles that allow for effi-

cient use of both the service provider’s and the TCS’s resources.

• The TCS key and credential manager stores and manages keys and cre-

dentials associated with the platform, the user, or individual applications,

preventing unauthorised access to them.

• The TCS event manager provides the functions to store, manage and re-

port PCR event structures and their association with the correct PCRs.

497

• The TCS parameter block generator converts the parameters passed to

the TCS into the byte stream expected by the TPM.

A.6.2.3 The TSS Service Provider Module

The TSS service provider software module provides a common set of services

for applications running on a TCG-enabled platform, and may be accessed via

the TSP interface (Tspi). The TSP interface is an object oriented interface that

resides within the same process as the application. The TSP provides high-level

TCG functions required by applications, as well as a small number of auxiliary

functions not provided by the TPM, such as cryptographic hashing.

• The TSP context manager provides dynamic context handles that allow

for efficient use and management of both the application’s and the TSP’s

resources.

• The TSP cryptographic functions provide auxiliary cryptographic func-

tionality not provided by the TPM, such as hashing and byte stream

generation.

A.7 Properties of a TPM

The TPM is a computing engine which must be resilient against software attack

and some forms of physical attack. The TPM must be either physically or

cryptographically bound to the CRTM. The TPM comprises the RTS and the

RTR. We next examine the functional components offered by a typical TPM in

order to support RTS and RTR capabilities.

498

A.7.1 Protected capabilities and shielded locations

Protected capabilities and shielded locations are terms introduced by the TCG

to illustrate the protection level required for the implementation of TPM func-

tions and protected TPM data areas, without dictating any TP implementation

details.

• Shielded locations are areas in which data is protected against interference

or snooping.

• Protected capabilities are the set of commands with exclusive permission

to access shielded locations [149]. They are those capabilities whose correct

operation is necessary for the platform to be trusted [5].

A TPM manufacturer must ensure that the prerequisite properties of pro-

tected capabilities and shielded locations are satisfied by the chosen TPM im-

plementation.

A.7.2 TPM functional components

Table A.1 below describes the functional components of a version 1.2 conformant

TPM.

499

Table A.1: TPM functional components

Functional Component Contents Explanation

Input and output This component manages
information flow over the
communication bus:

It performs encoding/decoding for
communications over external and
internal buses;
It routes messages to the appropri-
ate TPM components;
It also enforces access control poli-
cies associated with TPM compo-
nents.

Key generation RSA asymmetric
key generation

The implementation of the
asymmetric key generation function
must be in accordance with IEEE
P1363 [71].
No requirements are made on key
generation times.
The generate function is defined as
a protected capability.

Nonce creation All nonces must use the n next bits
in the RNG.

Cryptographic
co-processor:

RSA engine Used for digital signature
generation and encryption.
RSA 512, 768, 1024 and 2048 [101]
must be supported. Use of RSA
2048 is, however, recommended.

Signature
operations

The TPM must use RSA for the
generation of signatures to be
verified by entities outside the
TPM.
Other algorithms may be used for
signature generation, but there is
no requirement that other TPM
devices either accept or verify such
signatures.

Symmetric
encryption engine

The symmetric encryption engine is
used to:

Encrypt authentication informa-
tion;
Provide confidentiality in trans-
port sessions; and
Provide internal encryption of
blobs stored off the TPM.

500

The TPM does not expose the
symmetric operations for general
message encryption.
A Vernam 1-time-pad [101] with
XOR is used to protect
authentication information and
transport sessions.
The shared secret key used for the
1-time pad is constructed from the
pair of nonces exchanged between
the parties.
If the data to be protected is larger
than the 1-time-pad, the mask
generation function, MGF1 [93], is
used to expand the entropy to the
size of the data.
For internal encryption the TPM
designer may, however, choose any
algorithm which provides required
level of protection.

Execution engine Runs program code to execute the
TPM commands received through
the I/O port. It ensures:

Operations are segregated;
Shielded locations are protected.

HMAC engine The HMAC engine provides 2
pieces of information to the TPM:

Proof that the request arriving is
indeed authorised; and
Proof that the command has not
been modified in transit.

TPM must support HMAC
calculation according to RFC
2104 [95].
The key size must be 20 bytes.
The block size must be 64 bytes.

SHA-1 engine SHA-1 must be implemented as
defined by FIPS 180-1 [109].

Power detection This component manages TPM
power states and platform power
states.

Random number
generator (RNG)

Entropy source The entropy source provides data
which is as unpredictable as
possible. This data may either be
inserted into, or generated inside,
the TPM.

501

Entropy collector The collector collects the entropy
and removes any bias.

State registers Hold the most recent RNG state.
The volatile
register

The volatile register is affected by
all input from entropy sources and
the mixing function.

The non-volatile
register

The volatile register is loaded from
the non-volatile (NV) register at
start up, and saved to the NV
register at power down.

The mixing
function

Takes the value from the volatile
register, puts it through a mixing
function to make it truly random,
and produces the RNG output.
Results are also recorded to the
volatile state register.
Output must conform to FIPS
140-1 [108] PRNG requirements.

NV memory Will hold persistent state and
identity information, e.g. the
endorsement key or storage root
key.

Volatile memory Used for storing keys in use by the
TPM (active TPM keys) for
signature generation or decryption.

Opt-in The opt-in component maintains
the state of persistent and volatile
flags, whose values signify whether
or not an entity is, or needs to be,
physically present at the TP at a
given instance, and how this
physical presence may be
demonstrated. This component
also enforces the semantics
associated with these flags.

A.7.3 PCRs

A TPM must contain a minimum of sixteen 20-byte PCRs, so that integrity

measurement digests collected by the RTM can be securely stored. All PCRs

are classified as shielded locations, see section A.7.1, inside the TPM. See

section A.11.1 for further details.

502

A.7.4 The endorsement key

A unique 2048-bit RSA key pair, known as an endorsement key, must exist

within every genuine TPM, where the private key is used for decryption only.

This endorsement key is stored in a TPM shielded location. The endorsement

key may be generated inside the TPM, using the TPM CreateEndorsementKeyPair

command, or, alternatively, by an outside generator. The entity that initiates

endorsement key pair generation is also the entity that creates a credential at-

testing to its validity, and to the validity of the TPM.

The private endorsement key must never be exposed outside the TPM. While

the public endorsement key may be revealed outside the TPM, overuse of the

public endorsement key may result in privacy issues. These issues are explored

in more detail in section A.10.

A.8 Initialising the TPM

Before the TPM becomes fully operational, it passes through several operational

states. The events or triggers which prompt the TPM to begin and complete

the initialisation process and to enter a fully operational state are summarised

below.

First the TPM must be initialised. The TPM Init command, a protected

capability, is a physical method of initialising the platform and may be executed

by applying power to the platform, or by physically resetting it. This physi-

cal method of initialising the TPM puts it into a state where it waits for the

TPM Startup command.

After the TPM has been initialised, limited self-tests are performed by the

TPM on a minimal set of TPM commands in order to ensure that they are

503

working properly. The TPM commands examined include:

• TPM SHA1xxx;

• TPM Extend, used for the extension of platform configuration register

values, see section A.11;

• TPM Startup; and

• TPM ContinueSelfTest.

The TPM Startup command then transfers the TPM from an initialisation

state to a limited operational state. The platform informs the TPM of the

required platform operation state by inputting one of the following values into

the ‘startupType’ parameter of the TPM Startup command.

• ‘Clear’ results in the TPM values being set to a default or non-volatile

operational state.

• ‘Save’ causes the TPM to recover state, including PCR values, saved to

non-volatile memory following the successful execution of the TPM SaveState

command.

• ‘Deactivated’ informs a TPM that any further operations should not be

allowed. The TPM turns itself off and can only be reset by performing

another TPM Init command.

Finally, the TPM is transformed to a fully operational state after the suc-

cessful completion of all remaining self-tests. This can be accomplished in one

of two ways:

• A complete self-test of the TPM capabilities can be explicitly requested,

using the TPM SelfTestFull command; or

504

• The TPM ContinueSelfTest command can be called, which causes the

TPM to test all the TPM internal functions that were not tested at start-

up. If the TPM is running in compliance with FIPS-140 evaluation crite-

ria [108], then the TPM ContinueSelfTest command will request that the

TPM perform a complete self-test.

Results of the self-test are stored within the TPM.

A.9 Enabling, activating and taking ownership
of the TPM

Once the above processes have been completed, the TPM is ready for operation.

Eight possible operational modes exist, based on whether the TPM is enabled

or disabled, active or inactive, and owned or unowned. The TPM command sets

which enable/disable the TPM, enable/disable the process of taking ownership

of the TPM, and activate/deactivate the TPM, can be used in combination so

that taking ownership of the TPM can be accomplished without the risk of

malicious TPM use.

A.9.1 Enabling the TPM

Initially, a TPM must be enabled so that the process by which a prospective

owner takes ownership of the TPM can be completed. A single non-volatile TPM

flag, pFlags.tpmDisabled, which is asserted in hardware, is used to represent the

enablement status. This flag cannot initially be changed to pFlags.tpmDisabled

= FALSE with normal computer controls. It may only be changed via the exe-

cution of the physical command TPM PhysicalEnable, which may be achieved

by flicking a dedicated switch on the platform. The effect of physically enabling

the TPM persists between boot cycles.

505

There are three fundamental commands associated with enabling a TPM.

• TPM PhysicalEnable physically enables a TPM.

• TPM PhysicalDisable physically disables a TPM.

Both of these commands may be used by anyone who can prove that they are

physically present at the platform, for example by accessing and changing a

dedicated switch or jumper, either before or after the TPM has acquired an

owner.

• TPM OwnerSetDisable is used to put a TPM into either an enabled or

a disabled state after the TPM has acquired an owner. The input of the

correct TPM owner authorisation data is required via a challenge-response

protocol, see section A.16.2, before this command can be executed.

Once ownership has been established, pFlags.tpmDisabled = TRUE causes

all TPM functionality to be turned off, with the exception of PCR value track-

ing. In this way, the TPM always has an accurate record of the platform state.

Changing the pFlags.tpmDisabled flag to FALSE permits the TPM to act nor-

mally, even after a period where the pFlags.tpmDisabled flag was set to TRUE

in the current boot cycle.

A.9.2 Enabling ownership of the TPM

The fFlags.OwnershipEnabled flag must be set to TRUE if the process by which

a prospective owner can take ownership is to succeed. In order for the

TPM TakeOwnership command to succeed, however, the TPM must also

be enabled. A single non-volatile TPM flag is used to represent the ownership

enabled status. This flag must be changed via a command which requires a

physical presence at the platform, but software may be used to demonstrate

506

physical presence, for example by using normal computer controls (e.g. by using

the keyboard). After the TPM has an owner, the status of this flag has no effect.

A.9.3 Activating the TPM

When a TPM is deactivated, the execution of commands that utilise TPM re-

sources is not permitted. A deactivated TPM is in a similar state to a disabled

TPM, with the exception that the TPM TakeOwnership command may be ex-

ecuted on a deactivated TPM.

There are two activate flags, a non-volatile TPM flag, which requires phys-

ical presence to change, and a volatile TPM flag, which is set to the same

state as the NV flag at power up. The NV flag, pFlags.tpmDeactivated, may

be changed using the TPM PhysicalSetDeactivated command, which requires

physical presence.

There is also a TPM SetTempDeactivated command which will set the volatile

flag, vFlags.tpmDeactivated, of an activated TPM, to true, i.e.

vFlags.tpmDeactivated = TRUE, thereby deactivating the TPM until it is

rebooted. This command requires an entity to demonstrate his/her physical

presence at the platform before it may be executed, or alternatively, demonstrate

knowledge of the operator’s authorisation data prior to the command’s execution

(this latter case can only occur after the operator authorisation data has been

set). If an entity’s physical presence at the platform was demonstrated before

the TPM SetTempDeactivated command was executed, e.g. through the use of

a dedicated switch or jumper, then the TPM will remain deactivated until this

jumper or switch is changed again. This can be done by anyone with physical

access to the platform.

The TPM may be activated and deactivated without destroying secrets pro-

507

tected by the TPM. When the TPM is deactivated, integrity measurements are

still calculated and stored by the TPM. The activate commands are designed

for use in conjunction with the ‘enabling ownership’ command, described in

the previous section, in order to prevent rogue software taking ownership of a

platform before the true owner does, and in turn taking control of all TPM

functionality [5].

When the TPM is enabled, i.e. OwnershipEnable = TRUE, and permanently

deactivated, i.e. the value of the NV flag tpmDeactivated = TRUE, the genuine

TPM owner can execute the taking ownership process, and then turn on the

remaining TPM functions by physically activating the TPM. However, if a

remote entity (software) successfully executes the take ownership command on

a deactivated TP before the legitimate owner, it will gain only restricted access

to TP functionality until the platform is activated. As physical presence is

required for TPM activation, the remote software cannot perform this step, and

thus the potential control that rogue software may have over a hijacked TPM

is limited.

A.9.4 Taking ownership

By default, a TPM is shipped with no owner, and taking ownership of TPM

is achieved in the following manner. Once the TPM has been enabled and the

fFlags.OwnershipEnabled flag has been set to TRUE, the following steps are

performed:

• Twenty bytes of TPM owner authorisation data, which is to be shared

between the owner and the TPM, is inserted into the TPM under the

protection of the TPM’s public endorsement key, see section A.7.4. This

data is labeled the ‘owner authorisation secret’ and will enable the TPM

508

owner to gain access to TPM commands that require the owner autho-

risation data to be input before they are executed (i.e. owner authorised

commands), see section A.16.2;

• The owner then informs the TPM which type of asymmetric key to create

as the storage root key, see section A.13.1;

• The authorisation secret for the SRK is sent to the TPM under the pro-

tection of the TPM’s public endorsement key;

• The TPM then generates a nonce (tpmProof), i.e. a 160-bit secret value.

This nonce is later associated with non-migratable TPM key objects by the

TPM, so that, when this value is later found associated with a particular

TPM key, the TPM knows that it generated the key. Non-migratable

TPM keys, see section A.13, are created inside the TPM, are locked to an

individual TPM, and are never duplicated. They are never available in

plaintext outside of the TPM.

The owner’s authorisation secret, the private part of the SRK, the SRK’s

authorisation secret, and the nonce, tmpProof, are all kept in non-volatile stor-

age in the TPM. If the TPM owner should forget his authorisation secret, the

old value may be removed and a new one installed. The removal of the old value

does, however, invalidate all information associated with the previous value.

A.9.5 Clearing the TPM

In order to clear a TPM, two commands are defined.

• The first is the owner clear command, TPM OwnerClear, an ‘owner-

authorised’ command. This command remains available for use by the

TPM owner unless the disable clear function, TPM DisableOwnerClear,

509

is executed. Once this has been invoked, the only way to clear the TPM

is via physical presence.

• The second command is the force clear command, TPM ForceClear, which

requires the assertion of physical presence. As above, this command

is available unless the owner executes the disable force clear command,

TPM DisableForceClear. In this instance, however, the force clear com-

mand only remains disabled until the next start-up.

The clearing of the TPM results in the following actions:

• Invalidation of the SRK;

• Invalidation of the tmpProof;

• Invalidation of the TPM owner authorisation data; and

• A reset of both volatile and non-volatile data to manufacturer defaults.

The endorsement key pair, however, is not affected.

A.10 Platform identification and certification

Each trusted platform will have an associated set of credentials, some of which

were briefly mentioned in section A.5.

A.10.1 An endorsement credential

A TPME, see section A.5, vouches that a TPM is indeed genuine via the instal-

lation of an asymmetric key pair in the TPM, called an endorsement key pair,

see section A.7.4, and an associated endorsement credential. This endorsement

credential, includes TPM type information and the public endorsement key, and

510

is signed by the TPME. The private endorsement key is held securely in the

TPM.

As mentioned earlier in this appendix, the endorsement key has the following

properties:

• It is an asymmetric key pair located in a TPM’s internal persistent mem-

ory;

• Each TPM has exactly one such key pair;

• The private key is used for decryption only, and cannot be exported from

TPM;

• The public encryption key can be exported from the TPM for use by other

parties;

• Generally, the endorsement key pair will be installed on or generated

within the TPM by the manufacturer before shipping.

The entity which embeds the endorsement key pair in the TPM, also certifies

the public encryption key from the pair by generating an endorsement credential,

and is known as a TPME. This credential contains:

• A statement reflecting the fact that it is an endorsement credential;

• The public endorsement key value;

• The TPM type and security properties;

• A reference to the TPME; and

• The signature of the TPME on the credential.

511

A.10.2 A conformance credential

Multiple conformance credentials may be issued for a single TP, one for the

TPM, for example, and others for disparate TBB components [149]. When

signing a conformance credential, the evaluator is attesting to an evaluation

result, details of which may be available for inspection [149].

The TCG has two protection profiles, i.e. methods used to describe the

security properties of equipment with respect to the common criteria [110].

• The first describes the TPM; and

• The second describes the attachment of a TPM to the platform.

Manufacturers write security targets describing their equipment designs and

how they meet particular protection profiles [5]. These security target docu-

ments are then scrutinised by conformance labs who can then issue a corre-

sponding conformance credential for each security target that meets the protec-

tion profile [5].

A conformance credential contains:

• A statement reflecting the fact that it is a conformance credential;

• The evaluator name;

• The platform manufacturer name;

• The platform model number;

• The platform version;

• The TPM manufacturer name;

• The TPM model number;

512

• The TPM version; and

• The signature of the evaluator on the credential.

A.10.3 A platform credential

The PE offers assurance in the form of a platform credential that a particular

platform is an instantiation of a TP. In order to create a platform credential,

a platform entity examines the endorsement credential of the specific TP; the

conformance credentials of the specific TP; and the platform to be certified.

Following this, the PE signs a credential containing:

• A statement that it is a platform credential;

• A reference to the endorsement key in the TPM, for example the identifier

of an endorsement certificate;

• A reference to conformance credentials;

• A platform type and security property description;

• A reference to the PE; and

• The signature of the PE on the credential.

A.10.4 Attestation identities

P-CAs, see section A.5, enable identities and attestation identity keys to be

assigned to trusted platforms. A P-CA will verify all TP credentials to ensure

that a particular TP is indeed genuine, and then create an attestation certificate

which binds a public attestation identity key to a TP identity label and generic

TP information. The private AIK may then be used by the TPM to generate

signatures.

513

A platform may have multiple TP identities, where a TPM identity or TP

identity is synonymous with an attestation identity or AIK pair. Such an iden-

tity must be:

• Statistically unique;

• Difficult to forge; and

• Verifiable to a local or remote entity [5].

The attestation identity guarantees that certain properties hold for the plat-

form associated with the identity. That is, it proves that a platform is a given

type of TP. AIKs also allow for past behaviour, linked to a particular TP iden-

tity, to be collated. Information associated with a particular AIK can only be

correlated with other TP identities by the P-CA, thereby providing a level of

anonymity to the platform.

A.10.4.1 AIK uses

TPM private attestation identity keys can only be used to sign data created by

the TPM, where fundamental uses include:

1. To prove to a challenger of the platform that data existed within the

platform when that platform was in a particular state. The TPM creates

a digital signature using a private AIK over the data in question and the

current PCR values. This signed bundle is then sent with the public AIK

credential, which attests to the TPM’s identity, to the challenger, who

then validates the signature and PCR values.

2. Certifying other keys generated within the TPM:

• Private AIKs can be used to sign statements about the properties of

secondary asymmetric keys generated within the TPM;

514

• These secondary keys must be fixed to the platform and cannot be

migrated.

A.10.4.2 AIK credentials

An attestation identity credential is constructed in the following way.

1. A P-CA uses the endorsement credential, the platform credential, and

the conformance credential(s), to verify that the platform is a TP with a

genuine TPM.

2. The P-CA then creates an identity credential containing:

• A statement that it is an identity credential;

• The identity allotted by the TPM owner to the public key;

• The public AIK to be associated with this identity;

• The TPM type and the security property description from the en-

dorsement certificate;

• The platform type and the security property description from the

platform certificate;

• A reference to the P-CA; and

• The signature of the P-CA on the credential.

The procedure used to allow a TPM owner to create a TPM identity and

obtain an AIK credential has two main steps: identity creation and identity

activation [5].

1. The platform sends a message to the TPM requesting the generation of

an AIK pair.

2. The AIK key pair is then generated by the TPM.

515

3. The private AIK is protected by encrypting it with the TPM storage root

key.

4. The TPM then signs the newly generated public AIK; the TP identity

name chosen by the TPM owner; and the identity of the P-CA chosen to

attest to the AIK. This is called an identity-binding.

5. A TSS command is called to assemble all data needed by the P-CA, i.e.

the platform credential set and the identity-binding, generated in step 4.

6. The assembled data is then sent to the chosen P-CA, encrypted under the

public key of that P-CA.

7. The P-CA decrypts the bundle received.

8. The P-CA inspects the credentials and checks whether it is indeed the

P-CA being asked to generate the new identity for the TP.

9. The P-CA then creates an AIK credential, encrypts it with a symmetric

key, and encrypts the symmetric key such that it can only be decrypted

by that specific TPM, verified as genuine (using the public endorsement

key of the TPM).

10. A hash of the AIK public key from the identity-binding, generated in step

4, is also generated and encrypted using the public endorsement key of

the TPM by the P-CA.

11. These items are then sent to the TPM.

12. The TPM decrypts the hash of the AIK public key and the symmetric key

used to encrypt the AIK credential.

13. The TPM then compares the decrypted hash of the AIK public key re-

ceived against the hashes of all its public AIKs (if the data was intended

516

for this TPM, then the hash will equal the hash of a public AIK belonging

to the TPM).

14. If a match is found, the TPM releases the decrypted P-CA symmetric key

to the host platform.

15. Release of the symmetric key permits the decryption of the AIK credential.

After public release of the specifications describing P-CA use, controversy

arose regarding the P-CA role. It was suggested that they represented a point

of weakness in the system, since, in order to assign attestation identities to

TPMs, P-CAs must collect an abundance of information about the specific TPM,

including the endorsement key of the TPM. This information, if disclosed, could

potentially compromise TPM user privacy.

A.10.5 DAA

In order to address the above criticisms of the role of the P-CA, an alternative

scheme known as direct anonymous attestation (DAA) was introduced. DAA

may be used by a TPM to convince a remote verifier that it is indeed valid

without the disclosure of the TPM public endorsement key, thereby removing

the threat of a TTP collating data which may jeopardise the privacy of the

TPM user. DAA is based on a family of cryptographic techniques known as

zero knowledge proofs [147]. In order to complete a DAA protocol-run:

• The TPM must first generate a set of DAA credentials through interac-

tion with a DAA credential issuer. This can be done multiple times. The

DAA-credentials are generated in an interaction between the TPM and

the issuer, in which the TPM employs a TPM-unique secret that remains

within the TPM. This TPM unique secret is used in every instance of

517

DAA-credential creation, and is distinct from, but analogous to, the en-

dorsement key [147].

• The DAA credentials are then used as often as necessary in interactions

with a second party called the verifier. At the end of the protocol the

verifier can determine if the TPM contains a valid set of DAA credentials

from a particular issuer, and may therefore decide whether the TPM is

genuine. The verifier will, however, have no knowledge that might allow it

to distinguish one particular TPM from others that also have valid DAA

credentials [147].

While DAA offers a more private way of demonstrating that a TPM is valid,

the trusted third party model which uses a P-CA and requires the disclosure

of a TPM’s public endorsement key as described above also remains a valid

approach.

A.11 Integrity measuring, recording and report-
ing

In this section we examine how the integrity of a trusted platform may be

measured, recorded and reported, so that a challenger can evaluate whether or

not a platform is in a software state that can be trusted for a particular purpose.

Following this, we explore how these integrity measurements can be used in the

provision of a secure boot mechanism.

A.11.1 Platform configuration registers

The measurement of a trusted platform’s software state results in the genera-

tion of measurement events. These events are of two types: measured values,

which are representations of embedded data or program code, and measurement

518

digests, which are hashes of these values. The measurement digests are stored

in platform configuration registers in the TPM using RTR and RTS functional-

ity. The measurement values are stored in the stored measurement log (SML),

outside the TPM.

• A TPM must provide sixteen or more PCRs each of which can be used to

record an aspect of the platform’s state;

• Each storage register has a length equal to a SHA-1 digest, i.e. 20 bytes;

• Each PCR holds a summary value of all the measurement values presented

to it, as this is less expensive than holding all the individual measurements

in the TPM. This also enables an unbounded number of measurements to

be stored;

• A PCR value is defined to be equal to SHA-1 (the existing PCR value ‖

latest measurement digest);

• A PCR must be held in a TPM shielded location, in which its confiden-

tiality and integrity are protected;

• A PCR is initialised to all zeros during system boot, but keeps existing

values during sleep; in fact a record of any sleep events may be kept in a

PCR (to avoid rogue activity during sleep mode);

• The fewer PCRs there are, the more difficult it is to determine the meaning

of the PCR. The more PCRs there are, the more costly a TPM becomes.

Potential uses of the PCR values include the following [5]:

1. To help provide a ‘platform attestation statement’, which gives evidence

of the state of the trusted platform at the time of signing;

519

• In this instance the TPM concatenates arbitrary data (usually a di-

gest of data to be signed and a nonce to provide freshness) and the

PCR values and then signs them.

2. They are also used in the protected storage mechanism, see section A.13,

so that it can be determined whether secrets should be revealed to the

platform in its present state.

• In this instance the current PCR values are compared with the in-

tended PCR values, stored with the data.

• Access is only granted, and data unsealed, if no difference is found

between the two.

A.11.2 Data integrity register

Data integrity registers are storage registers that hold digest values. Version 1.1

of the TCG specifications [146] requires that a TPM contains one 20-byte DIR

in a TPM-shielded location. A specific use of the DIR is not specified. However

a DIR may, for example, be used to aid the implementation of a secure boot

mechanism [5].

If a TPM contains multiple data integrity registers holding values represent-

ing all of the expected PCR values, then the following secure boot implementa-

tion may be deployed. Every time a PCR is filled and its final value computed,

its value is compared to the equivalent DIR value. If the two values match, the

boot process continues; otherwise an exception is called and the boot process is

halted.

Alternatively, if the TPM has access to non-volatile memory, all expected

PCR values may be held in unprotected non-volatile memory and their summary

or cumulative digest held in a single DIR. Every time a PCR is filled and its

520

final value computed, it is checked that:

1. Each PCR value, when calculated, matches the expected value held in

non-volatile memory; and

2. The cumulative digest of the expected table of PCR values matches the

value held in the DIR.

As is clear from the above, read access to DIRs must be provided without

the required input of any authorisation data, as typically authorisation data is

not available early in the boot process when the DIR value is read.

In the version 1.2 specifications, use of the DIR is deprecated. The TPM

must still, however, provide a general-purpose non-volatile storage area.

A.11.3 Integrity measurement

In a PC, where the CRTM may be integrated into part of the BIOS called the

BIOS boot block, integrity metrics may be measured and recorded as follows [5]:

1. The BBB starts the boot process, measures its own integrity and the

integrity of the entire BIOS, and stores the measured values in the SML,

saving the measurement digests in PCR-0, for example;

2. The BBB then passes control to the BIOS, which contains a measure-

ment agent (MA) responsible for measuring the option ROMs, storing the

measured values in the SML and the measurement digests in PCR-1 ;

3. Control is then passed from the BIOS to the option ROMs, which carry

out their normal operations and pass control back to the BIOS;

4. The BIOS then measures the OS loader, and stores the measured value in

the SML and the measurement digest in PCR-2 ;

521

5. Control is then passed to the OS loader, also containing an integrated MA,

which carries out its normal functions and then measures the OS;

6. Finally, the OS MA generates and stores the measured values and mea-

surement digests of OS components and any additional software loaded

onto the platform.

7. This measurement agent will remain, running on the OS, measuring addi-

tional software when it is loaded onto the platform.

Details of all events measured and recorded in PCRs are detailed in the SML.

A.11.4 Assessing the software state of a platform

Once the measurement digests of the platform have been generated and stored

in the PCRs, and their corresponding measured values stored in the SML, a

challenger may use these PCR values to assess whether the software state of a

platform can be trusted for a particular purpose.

A challenger presents the TP with an integrity challenge or nonce, which the

TPM signs in conjunction with the relevant PCR values, using a private AIK.

The TP agent then forwards this signed data on to the challenger, in conjunction

with the relevant SML entries and TP AIK credential. The challenger validates

the response, and makes a decision whether the challenged TP can be trusted

for the intended purpose.

It must be noted, however, that in any transaction that requires a challenged

platform to demonstrate its current state before any further interaction occurs,

there will be a window between the beginning and the end of the communication

during which the platform configuration may change. Therefore, the challenger

must request signed integrity metrics both before and after the transaction is

completed.

522

Alternatively, an exclusive transport session may be instigated between the

challenger and the TPM, such that only requests initiated by that particular

challenger of the TPM can be made within this session. If a TPM request is

made by some party other than the particular challenger, the exclusive transport

session is aborted and an exception generated. A change in the platform’s

software state could be configured to lead to a TPM Extend command being

called so that the platform PCRs can be updated/extended. An exception

would then be generated by the TPM and the challenger notified of this. This

mechanism could be used by a TP challenger to detect any changes that occur

in the platform’s state for the duration of the exclusive transport session. This

mechanism is described in greater detail in section A.14.

In order to simplify the verification that must be completed by a TP chal-

lenger in the generic protocol run described above, one of the following methods,

which are described in [5], may be used.

• In a constrained environment, where there are only a limited number of

acceptable software states, the PCR representations that correspond to

these software states may be directly certified by a validation entity. In

this way a challenger can check the entire software state of the challenged

platform in a single step.

• Instead of this, a third party could carry out intermediate validations

at regular intervals. In this instance, the chosen third party would then

certify that integrity information validated at a particular point complies

with a particular policy. Integrity information could then be replaced by

this single entry representing all of the previous certified history.

• Alternatively, a TTP may be trusted to evaluate the whole software state

on behalf of a challenger.

523

A.12 Locality

The introduction of platforms facilitating the execution of trusted processes in

protected execution environments, as described in sections 1.6.8, A.23 and A.24,

is increasingly being discussed. Locality modifiers permit trusted processes com-

municating with the TPM to indicate to the TPM that a particular command

has originated from a trusted process, the definition of which is platform-specific.

The trusted process sends the commands to be executed by the TPM in

conjunction with a modifier, which indicates that the process from which the

command has originated, is executing, for example, within a trusted system

partition.

The TPM cannot, however, validate the modifier received, but the TCG

specifications require that, in order to spoof a modifier to the TPM, some ex-

pertise and possibly specialist hardware should be required. The TPM is initially

expected to be capable of understanding four modifiers.

Locality modifiers may also be used in conjunction with PCRs to define

the platform configuration. Rather than allocating a specific PCR to record

integrity metrics for a particular subset of platform components, PCR attribute

fields may be defined at manufacturing time such that particular PCRs may be:

• Extended only by processes running in particular localities; and

• Reset at times other than TPM start-up, by calling processes in partic-

ular localities, such that trusted processes running in protected memory

locations can be started up and shut down without resetting the entire

PC.

When sealing an object, see section A.13, platform configuration data may

specify the PCRs reflecting the environment in which the sealing was completed

524

and the environment into which the data may be released. The value of the

locality modifier set when the data was sealed and the value of the locality

modifier that must to be set if the data is to be released, may also be specified.

A.13 Protected storage

The TPM protected storage functionality was designed so that an unlimited

number of secrets could be protected on a platform. The protected storage

feature only provides functions to access these protected secrets. Functionality

to control how they are used, or to protect them from deletion, is not provided.

Protected storage provides data confidentiality via asymmetric encryption

of data, where asymmetric cryptography is deployed for two reasons [5]:

• Asymmetric cryptography is already required to implement TPM identi-

ties, and therefore its reuse minimises the cost of a TPM; and

• If plaintext originates outside the TPM then it can be encrypted there

without revealing the decryption key (ensures that the TPM does not

become a bottleneck for encryption operations).

Protected storage also provides implicit integrity protection of data objects

in the form of an authorisation check [5]. A TPM protected object may include

encrypted authorisation data, which is compared to the authorisation data (of

length equal to a SHA-1 digest, i.e. 20 bytes) submitted to the TPM when access

to a protected object is requested; by this means, access is refused to entities

without the proper authorisation. The fact that 20 bytes of authorisation data

is required before a TPM protected object can be accessed, implicitly protects

it from tampering.

525

SRK

TPM Attestation Identity
Key

TPM Storage Key

TPM Legacy Key TPM Storage KeyTPM Bind Key

TPM Signature Key
Symmetric

key
DataData

TSS_Bind TPM_Seal

Data

Figure A.1: The protected storage object hierarchy

A.13.1 Object hierarchy

An example of a TPM protected storage object hierarchy is illustrated in fig-

ure A.1. It is comprised of both protected key objects and protected data

objects. The only TPM key to be permanently loaded in the TPM is the stor-

age root key, a non-migratable storage key, created inside the TPM. The public

portion of the SRK is used to encrypt the first layer of TPM key objects, and the

corresponding private key is used to decrypt the same objects when their use is

required. The entire object hierarchy of a TPM is essentially protected by the

SRK. Each TPM protected data object is encrypted using an encryption key

which is itself usually a TPM protected object stored outside the TPM. The set

of TPM protected key and data objects, therefore, comprise an object hierarchy,

where each child TPM protected object is encrypted using the encryption key

in the parent TPM protected object.

All keys within a trusted platform can be divided into two fundamental

categories, i.e. non-migratable keys and migratable keys. Non-migratable key

526

pairs have the following properties.

• In the case of non-migratable asymmetric key pairs, the private key is only

known to the TPM that created it. Non-migratable keys may be certified

using the AIKs of the TPM, or using general purpose signing keys.

– They are locked to a given TPM;

– They are never duplicated;

– They must be created by the TPM; and

– tpmProof, which is known only to the specific TPM, is attached to all

non-migratable objects in the placeholder of migration authorisation

information.

• In the case of migratable asymmetric key pairs, there are no guarantees

about the origin or use of the private key. Migratable keys have the fol-

lowing properties.

– They can be replicated ad infinitum by the platform owner;

– They can be created outside the TPM or by the TPM;

– They are protected by the TPM; and

– The owner of a migratable TPM object creates the migration autho-

risation information.

• The version 1.2 TCG specifications also describe a third type of key,

namely certifiable migratable keys, which are keys that can migrate but

still have properties which the TPM can certify. When CMKs are created,

control of their migration is delegated to a migration (selection) authority.

CMK migration is examined in section A.20.

The TCG specifications define many different types of key, including:

527

• Storage keys, used to encrypt or decrypt keys and data objects in the

protected storage hierarchy;

• Signature keys, used for signing operations;

• Attestation identity keys, used by TPM aware applications to prove that

data has come from a genuine TPM, see section A.10;

• Binding keys, used for TSS bind and TPM unbind operations, as described

below;

• Legacy keys, which are for systems in which the same key is used for

signing and encryption; and

• Change authorisation keys, which are ephemeral keys used during the pro-

cess of changing authorisation information, as described in section A.16.4.

A.13.2 Sealing

Sealing is an important aspect of protected storage. The seal and unseal op-

erations, TPM SEAL and TPM UNSEAL, are used in order to encrypt and

decrypt arbitrary data. The tpmProof field in the sealed data structure binds

the arbitrary data to be protected to an individual TPM, proving that the data

was sealed on that particular TPM. In conjunction with this, the data is bound

to platform configuration data (PCRinfo) so that it can only be revealed by the

TPM when the platform is in a particular software state.

When TPM SEAL is executed, a TPM STORED DATA structure is used

to represent the protected data, and is composed of:

• The TPM version;

• The size of the sealed info parameter;

528

• The sealed info parameter, which contains PCR information. The value

of this element may be set to null if the data is not bound to specified

PCRs. Alternatively it may contain information on: the locality modifier

when the data is created; the locality modifier required to reveal sealed

data; the selection of PCRs active when the blob is created; the selection

of PCRs to which the data or key is bound; the digest value of the PCR

values when the blob is created; the digest of the PCR indices and PCR

values to verify when revealing sealed data.

• The size of the encrypted data, encDataSize;

• The encrypted TPM SEALED DATA structure, encData, which contains

the following fields:

– The payload type;

– The authorisation data for the sealed object;

– The tpmProof;

– STORED DIGEST: A digest of the TPM STORED DATA fields ex-

cluding the encDataSize and encData fields;

– The size of the data parameter to be sealed; and

– The data to be sealed.

A.13.3 Binding

In the case of binding, external data, created outside the TPM, is encrypted

under a TPM parent bind key. Binding is not a TPM function, but a bound

object can only be unbound (unencrypted) by the target TPM using a TPM

command. A TPM bind key must always be used to create a bound object. The

bound data structure contains the following elements:

529

• The TPM version;

• The payload type; and

• The bound data.

The TPM unbind function takes the resulting stored data structure, de-

crypts it and exports it for use by the caller. The caller, however, must initially

authorise the use of the decryption key.

A.13.4 Wrapping

Wrapping is a TSS capability which allows an externally generated key to be

encrypted under a TPM parent key. Execution of the TSS WrapKey command

creates a migratable blob from a key presented externally. The key creator

can, however, prevent migration of the key by a user, by wrapping the key

using a non-migratable storage key and loading random data for the migration

authorisation data.

TSS WrapKeyToPCR is a TSS command which allows for an externally

generated key to be concatenated with the platform configuration data and

encrypted under a parent key.

Finally, the TPM CreateWrapKey command allows for the generation of a

key inside the TPM, after which it is concatenated with platform configuration

data and encrypted under a parent key.

A.14 Transport security

Transport protection enables the establishment of a secure channel between the

TPM and secure processes, offering confidentiality and integrity protection of

commands sent to the TPM. It also provides a logging function such that all

530

commands sent to the TPM during a transport session can be recorded.

Central to transport security is the concept of session creation, where the

creation of a session allows for:

• A set of commands to be grouped;

• A log of all commands to be recorded; and

• Confidentiality and integrity protection of commands sent within the ses-

sion to be provided.

A.14.1 Session establishment

The session establishment process launches a transport session, and, depending

on the attributes specified for the session, may lead to the creation of shared

keys and session logs.

Session establishment involves the generation by the caller of 20 bytes of

transport authorisation data, for use between the caller and the TPM. This

transport authorisation data has two purposes:

• It is used as input when generating an encryption key for use between the

TPM and the caller, to provide command confidentiality; and

• It is also used as a HMAC key when sending the TPM ExecuteTransport

command, so that the command can be authorised.

The authorisation data is generated by the caller and encrypted under a

public key whose corresponding private key is available only to the TPM. The

key used is pointed to in the encHandle field of the TPM EstablishTransport

command sent.

531

The TPM then decrypts the authorisation data and creates an internal trans-

port structure, which contains the following fields.

• authData, to the authorisation data received and decrypted.

• tranPublic, consists of:

– transAttributes, where information regarding the encryption of the

session, logging of the session, and whether the session is to be ex-

clusive is set;

– algoId, which refers to the properties the symmetric key to be gener-

ated will have; and

– encScheme, which refers to the encryption scheme to be used.

• transHandle, to which a value is assigned.

• transEven, is set to the value of the nonce generated, transNonce.

• transDigest, is initially set to NULL but is then used to reflect all logged

transport events.

If transport encryption is required, the TPM must validate that the re-

quested key generation algorithm and encryption scheme are supported. If log-

ging is required, the log in and log out structures must be created for each logged

event. If an exclusive session if requested, then the relevant flag must be set in

the transAttribute field.

A.14.2 Transport encryption and authorisation

Confidentiality protection of data transmitted inside the transport session is

provided through the encryption of the command to be protected or, more

532

specifically, encryption of the input and output parameters associated with the

command.

Authorisation of the execute transport command is provided by the calcu-

lation of a HMAC on a subset of elements from the wrapped command, the

command ordinal, header information and data fields, where the transport au-

thorisation data fixed during session establishment is used as the HMAC key.

This HMAC also allows the integrity of the bundle to be verified and a link

made between the establish session and execute transport commands.

A.14.2.1 Transport encryption

Following session establishment, the trusted process can call the execute trans-

port command which delivers a wrapped command to the TPM, which can, in

turn, unwrap and execute the command.

The execute transport command has the following structure:

• (Execute transport header ‖ wrapped command ‖ execute transport trailer),

where:

Wrapped command = (ordinal and header information ‖ key and other

handles ‖ data ‖ authorisations), where authorisations represents the usual

authorisation data required in order to utilise the specified wrapped com-

mand.

Due to resource management issues, encryption of the entire wrapped com-

mand is impossible. Therefore, the command data field contains the only infor-

mation to be encrypted.

Confidentiality of the transport session can be provided by XORing the

command data with the output of the MGF1 function, where the into the MGF1

function consists of:

533

• Transport session authorisation data, as generated by the caller; the odd-

nonce provided by the trusted process; the evennonce provided by the

TPM; and either the number 1 or 2, used to indicate the direction of the

communication.

A.14.2.2 Execute transport authorisation

The output from an HMAC computation is used so that knowledge of the trans-

port authorisation data required for use of the execute transport command can

be demonstrated by the caller and the integrity of the wrapped command as-

sured.

The caller calculates:

• H1 = SHA-1(ordinal and header information ‖ decrypted command data),

where both input strings are taken from the wrapped command above;

and

• HMACK(execute transport header and ordinal information ‖ H1 ‖ Trans-

port Nonce Even ‖ Transport Nonce Odd ‖ Continue Transport Session

value), where K is the transport authorisation data set up between the

caller and the TPM for this session.

This value is then sent to the TPM which validates it.

The TPM then:

• unwraps the command, validates the ExecuteTransport authorisation HMAC,

validates the wrapped command authorisation data, and executes the com-

mand;

• calculates H2 = SHA-1(The return code ‖ ordinal and header information

‖ output data) of the wrapped command;

534

• calculates S2 = SHA-1(The return code for the execute transport ‖ the

ordinal and header information for execute transport ‖ current ticks ‖

H2)

• returns to the caller HMACK(S2 ‖ Transport Nonce Even ‖ Transport

Nonce Odd ‖ Continue Transport Session value), where K is the transport

authorisation data set up between the caller and the TPM for this session.

A.14.3 Transport logging

A session log provides a record of each command using a particular session,

using a structure that includes the parameters and current tick count for each

logged command.

If transport logging functionality is set, entries are written to a

TPM TRANSPORT LOG IN structure on the receipt of each wrapped com-

mand to be logged. Similarly, for outgoing data, after the execution of the

wrapped command, entries are written to a TPM TRANSPORT LOG OUT

structure. The summaries of these internal structures are stored to the trans-

Digest field of the internal transport structure described above.

A.14.4 Error handling and exclusive transport sessions

Provisions are also made for error handling. The concept of exclusive transport

sessions is also discussed. In this case if a caller establishes an exclusive session

with the TPM, the session is invalidated if any TPM command outside the

established session should attempt to execute. Only one exclusive session may

be supported by the TPM at any one time.

535

A.15 Monotonic counter

A monotonic counter provides an incremental value. The TPM must support

at least four concurrent monotonic counters which may be implemented as:

• Four unique counters; or as

• One counter with pointers which keep track of the current values of the

other counters.

The fundamental counter components include the internal base and the ex-

ternal counters. The internal base represents the main counter. It is used

internally by the TPM, and is not accessible to processes running outside the

TPM.

External counters are used by external processes. They may be related to the

main counter via pointers, via difference values, or, alternatively, they may be

unique. The values of these counters are not affected by any use, incrementation

or deletion of any other external counter. External counters must allow for seven

years of increments taking place every five seconds. The output of the counters

is a 32-bit value. To create an external counter, TPM owner authorisation is

required. In order to increment an external counter, knowledge of the correct

authorisation data must be demonstrated. Finally manufacturers are free to

implement monotonic counters using any chosen mechanism.

A.16 Demonstrating privilege

In order to demonstrate the level of privilege required to execute various TPM

commands:

• An entity may demonstrate physical presence at the platform; or, alter-

536

natively,

• An entity may demonstrate knowledge of the required authorisation data.

A.16.1 Physical presence

There are three particular occasions where demonstration of physical presence at

the platform may be necessary in order to execute particular TPM commands,

usually in the case when cryptographic authorisation is unavailable. These occa-

sions include the operation of commands that control the TPM before an owner

has been installed; when the TPM owner has lost cryptographic authorisation

information; or when the host platform cannot communicate with the TPM.

The PhysicalPresenceV flag in volatile memory indicates whether physi-

cal presence has been confirmed, i.e. whether a particular dedicated switch or

jumper has been manipulated, for example. If this flag is set to TRUE, then

the following commands may be executed:

• TPM ForceClear;

• TPM PhysicalEnable;

• TPM PhysicalDisable;

• TPM PhysicalSetDeactivated; and

• TPM SetOwnerInstall, which enables the take ownership process.

It is advised that TPM designers take precautions to ensure that this flag is

not maskable, so that physical presence cannot be faked.

A.16.2 Cryptographic authorisation

As an alternative to physical presence, cryptographic authorisation mechanisms

may be used to authenticate an owner to their TPM, or to authorise the release

537

and use of TPM protected objects. An authorisation value, which must be

20 bytes long, could for example, be a hashed password or 20 bytes from a

smartcard. It must always be treated as shielded data and only ever used in the

authorisation process.

A variety of authorisation data is held by a TPM, including:

• Unique TPM owner authorisation data, input of which is required before

any ‘owner-authorised TPM command’ may be executed;

• TPM object usage authorisation data, input of which is required before

an object protected by the TPM may be accessed; and

• TPM object migration authorisation data, input of which is required be-

fore a TPM key object can be migrated, as discussed in A.20.

In order to demonstrate knowledge of the relevant authorisation data to the

TPM, an entity may deploy one of two challenge-response protocols, namely the

object independent authorisation protocol or the object specific authorisation

protocol. These protocols are described below.

A.16.3 The OIAP

The object independent authorisation protocol is the more flexible and efficient

of the two challenge-response authorisation protocols. Once an OIAP session has

been established, it can be used to demonstrate knowledge of the authorisation

data associated with a particular TPM object or TPM command.

It proceeds as follows.

1. A TPM OIAP command is used to start an OIAP authorisation session

(this command may be executed without the input of any authorisation

data).

538

2. The TPM creates a handle to track the authorisation session and a nonce,

and sends these to the caller.

3. The caller then requests the use of a specific TPM command, e.g.

TPM example1, where TPM example1 is a TPM command that uses the

key K1. This implies that, in order to use the command, the caller must

demonstrate knowledge of the authorisation data for K1.

• To prove knowledge of this authorisation data, the caller sends to the

TPM:

– the key handle of the key to be accessed;

– the command ordinal representative of TPM example1, the first

input argument, the second input argument, the handle assigned

to the authorisation session by the TPM, the nonce generated

by the caller, and an indication as to whether or not the session

is to be kept open; and

– HMACK(m), where K is the authorisation data required for ac-

cess to and use of the key K1, and message m is composed of:

SHA-1(the command ordinal representative of TPM example1 ‖

first input argument ‖ second input argument) ‖ (the handle as-

signed to the authorisation session by the TPM ‖ the nonce sent

by the TPM ‖ the nonce generated by the caller ‖ an indication

as to whether or not the session is to be kept open)

4. If the TPM successfully verifies this, and it is indicated that the session is

to be kept open:

• A new nonce is generated by the TPM to replace the last TPM nonce.

• The command TPM example1 is executed.

• The TPM then sends to the caller:

539

– the returnCode, the output argument, the newly generated TPM

nonce, an indication as to whether the session is to be kept open

or not; and

– HMACK(m1), where K is the authorisation data required for

access to and use of the key K1, and message m1 is composed

of:

SHA-1(the returnCode ‖ the command ordinal representative of

TPM example1 ‖ the output argument) ‖ (the handle assigned to

the authorisation session ‖ the newly generated TPM nonce ‖ the

caller nonce received ‖ an indication as to whether the session is

to be kept open or not).

5. The caller verifies that the returnCode and the output parameters are

correct.

6. The session may end here or, alternatively, if it has been indicated that the

session is to be kept open, the caller saves the new TPM nonce received,

creates a new caller nonce, calls a new command (which may demand

the demonstration of knowledge of new authorisation data to enable its

execution) and the process continues, as described above.

A.16.4 The OSAP

The second protocol defined in the TCG specifications is the object specific

authorisation protocol. This protocol allows for the establishment of a session

to prove knowledge of the authorisation data for a single TPM object, and

minimises the exposure of long-term authorisation values. It may be used to

authorise multiple commands without additional session establishment but, as

we discuss below, the TPM OSAP handle specifies a specific object to which all

authorisations are bound.

540

During this protocol an ephemeral secret is generated (via the HMAC of

the session nonces exchanged at the beginning of the protocol, with the target

TPM object’s authorisation data used as the HMAC key) by the TPM and

the caller, which is used to prove knowledge of the TPM object authorisation

data. This particular protocol is necessary for TPM functions that set or reset

authorisation data.

In conjunction with the terms defined above for the OIAP protocol, two

extra nonces are defined for use with OIAP: the nonceOddOSAP and non-

ceEvenOSAP. These nonces are HMACed with the authorisation data for the

protected object or the authorised command used as the HMAC key, to generate

the shared secret key. OSAP proceeds as follows:

1. A TPM OSAP command is used to start an OSAP authorisation session,

and this command is sent to the TPM in conjunction with the handle

associated with the object, K1, to be accessed and utilised, and an OSAP

nonce.

2. The TPM generates:

• a handle in order to track the authorisation session;

• an OSAP nonce;

• a shared secret by HMACing the caller OSAP nonce and the TPM

OSAP nonce, where the authorisation data needed for access to and

use of the key K1, is used as the HMAC key; and

• a TPM replay nonce.

3. The authorisation handle, the TPM OSAP nonce, and the TPM replay

nonce are then sent to the caller who also generates the shared secret key

541

as above; (this can only be accomplished by the caller if it knows the

authorisation data for K1).

4. The caller then requests use of a specific TPM command, TPM example1,

where TPM example1 is a TPM command that uses the key K1, which

implies that the caller must demonstrate knowledge of the authorisation

data for key K1 in order to use the command.

• In order to prove knowledge of this data, the caller generates and

sends to the TPM:

– the command ordinal representative of TPM example1, the first

input argument, the second input argument, the handle assigned

to the authorisation session by the TPM and the nonce generated

by the caller; and

– HMACK(m), where K is the shared secret and message m is

composed of:

SHA-1(the command ordinal representative of

TPM example1 ‖ first input argument ‖ second input argument)

‖ (handle assigned to the authorisation session by the TPM ‖ the

replay nonce sent by the TPM ‖ the replay nonce generated by

the caller above ‖ an indication as to whether or not the session

is to be kept open).

5. If the MAC is sucessfully verified by the TPM, and it is indicated that the

session is to be kept open:

• A new replay nonce is generated to replace the last TPM replay

nonce.

• The command is executed.

542

• The returnCode, the output argument, the newly generated TPM

nonce, an indication as to whether the session is to be kept open or

not; and

• HMACK(m1), where K is the shared secret, and message m1 is com-

posed of:

SHA-1(returnCode ‖ the command ordinal of TPM example1 ‖

output argument) ‖ (handle assigned to the authorisation session ‖

the newly generated TPM nonce ‖ the caller replay nonce received ‖

an indication as to whether or not the session is the be kept open or

not).

6. The caller verifies the correctness of the returnCode and parameters.

7. The session may end here or, alternatively, if it has been indicated that

the session is to be kept open, the caller saves the new TPM replay nonce,

creates a new caller replay nonce, calls a new command (which demands

the demonstration of knowledge of the same authorisation data to enable

its execution), and the process continues as described above.

A.16.5 Changing authorisation data

Once authorisation data has been associated with an object, it can be securely

changed at any stage. Two mechanisms are supported in order to accomplish

this objective. The first mechanism is the authorisation data change protocol

(ADCP):

• ADCP is used for changing authorisation data bound to TPM objects that

have a parent. For example, it can be used to change the authorisation

data associated with data (the child object) encrypted under a TPM key

(the parent object) which in turn has authorisation data associated with

543

it;

• In this instance, the owner of the parent object co-operates to set up an

OSAP session for the parent object;

• The OSAP ephemeral secret is generated, as described in section A.16.4,

and is then sent to the child object owner so that it can enter the new

child authorisation data into the TPM confidentially;

• This OSAP ephemeral secret is then xored with the newly generated au-

thorisation data for the child object.

However, as is clear from the description of the ADCP, the parent object

owner can gain access to the new authorisation information for the child object

by eavesdropping on TPM commands.

In order to overcome this issue, it is advised that a normal TPM ChangeAuth

command (the ADCP) is used inside a transport session with confidentiality, as

described in section A.14.

The second mechanism is a variant of ADCP:

• This protocol is specifically used in order to change the TPM owner’s

authorisation data, or the authorisation data associated with the storage

root key (i.e. TPM objects with no parents);

• In this instance, the TPM owner acts as the parent to the SRK, and also

as its own parent;

• The new authorisation value, be it for the TPM owner or the SRK, is

rendered confidential by xoring it with an ephemeral secret, generated

using an OSAP session based on the TPM owner’s authorisation data.

544

A.16.6 The ADIP

The protocol used to insert new TPM object authorisation data during the cre-

ation of a TPM object is called the authorisation data insertion protocol (ADIP).

A new TPM object must always created under an existing parent TPM object

but, in order to use the required parent object, knowledge of the associated

parent object’s authorisation data must be proved.

To demonstrate knowledge of the parent object’s authorisation data, an

OSAP authorisation session, as described in section A.16.4, is established, and

the OSAP nonce to be used for shared secret key generation is sent to the TPM.

The TPM then chooses a random OSAP nonce and generates the OSAP shared

secret from the TPM and caller OSAP nonces and the authorisation data asso-

ciated with the parent object. A nonce to be used for freshness is also chosen.

The caller then generates the shared secret using the same method as is used

by the TPM.

1. The parent object owner then passes K, computed as the SHA-1(the shared

secret key ‖ the freshness nonce sent by the TPM), to the child object

creator;

2. The creator of the child object then chooses 20 bytes of authorisation data

to be associated with the child object and protects it by xoring it with the

key K, received in step 1;

3. All information is verified by the TPM and, if all is in order, the new

authorisation data is extracted, the command used to create a new entity is

executed, the new entity is created, the new authorisation data is securely

associated with it, and the output parameters are delivered to the caller.

4. In order to protect the child object’s authorisation data against eavesdrop-

545

ping by the parent object’s owner, it was previously recommended that

ADIP should be closely followed by AACP, but since use of this scheme is

deprecated, the execution of ADIP followed by a normal TPM ChangeAuth

command used inside a transport session with confidentiality is recom-

mended.

A.17 Context manager

Because the TPM has limited resources, caching of resources may occur without

the knowledge or assistance of the application which has loaded the resource.

In version 1.1 two types of resources needed this mechanism, namely keys and

authorisation sessions, both of which had separate load and restore operations.

Version 1.2 introduced the concept of the transport session, which also requires

management.

In order to consolidate context management, a single context manager is

defined in the version 1.2 specifications, which all resources may use. In this

instance a resource manager can request that a resource be wrapped in a manner

that:

• Securely protects the resource when it is evicted from the TPM; and

• Allows for the resource to be restored onto the same TPM during the same

operational cycle.

The encryption scheme used to protect these cached objects may be symmet-

ric or asymmetric and the keys used for protecting the blobs may be temporary,

regardless of whether they are 2048-bit RSA keys or 128-bit AES keys. A new

key could, for example, be generated for this purpose at start-up. Alternatively

the TPM could generate a key for context management and store it persistently

546

in TPM persistent data.

A.18 Delegation

Prior to the version 1.2 specifications, the TPM owner had the privilege to

control all aspects of the TPM’s operation, i.e. use of all TPM commands in-

cluding the ‘owner-authorised’ command set, the set of TPM commands that

require TPM owner authorisation data to be entered before their execution is

authorised. Therefore, if any aspect of the TPM required management, it be-

came the direct responsibility of the TPM owner. As an alternative, privileged

information belonging to the TPM owner (the 20 bytes of TPM owner authori-

sation data) would have to be forwarded to another entity, trusted to perform

only a particular subset of operations, thereby potentially leaving the platform

vulnerable to attack.

In order to alleviate the risk associated with the above management method,

a delegation model has been included in the version 1.2 specifications, so that a

TPM owner can delegate particular privileges to individual entities or trusted

processes, through the construction of new authorisation data and the asso-

ciation of specified TPM ownership rights with this authorisation data. The

delegation process differs depending on the entity to which the specified privi-

leges are being given.

The delegation process is summarised in table A.2.

A.18.1 Family and delegation tables

In order to implement this delegation model, two tables, a family table and a

delegate table, are required.

The delegate table [156]:

547

Table A.2: The delegation process
Delegation to Requires Additional Information

A generic entity Privileges may be
associated with a generic
entity by:

The resultant blob is then
passed to the chosen entity

Dictating PCRs which
define a particular pro-
cess; and/or
Stipulating a particular
authorisation value;
to which privileges are
associated.

An external
entity

If privileges are to be
delegated to a specified
external entity:

The authorisation value may,
however, be sealed to a set of
PCRs on the remote platform

A null PCR selection;
and
An authorisation value;
are required.

A trusted process
provided by the
local OS

If privileges are to be
delegated to a trusted
process provided by the
local OS:

Generic authorisation data is
sufficient, since the OS has no
means of securely storing the
authorisation token.

A PCR that defines the
specific trusted process;
and
A known authorisation
value; are required.

If sealing is used to protect
the randomly chosen authori-
sation value associated with
the delegation, the security is
no stronger than associating
the delegation with a known
authorisation value.

0x111 111 is suggested by
the TCG specifications as
the known authorisation
value

548

• Lists ordinals for commands which may be used by a specified delegate;

• Holds the identity of a process which may use the commands represented

by the ordinal list; and

• Holds the authData value necessary to use the commands represented by

the ordinal list.

The family table provides a means for delegations to be validated, revoked

and edited.

The delegate table must have a minimum of two rows, whereas the family

table must have a minimum of eight rows and may have many more. The size

of these tables, however, does not restrict the number of delegations because

the TPM facilitates the caching of delegations off the TPM, should the number

of table rows become limited. When cached, the TPM protects both the con-

fidentiality and integrity of the delegations. A counter mechanism is also used

so that encrypted cached delegations can be validated as fresh when they are

loaded back onto the TPM.

Each entry in the delegate table contains six fields:

• PCR information, which defines a particular process to which the privi-

leges have been delegated;

• Authorisation data for delegated capabilities, which defines a particular

authorisation value to which delegated privileges have been associated;

• A delegation label;

• The family ID, identifying the family to which the delegation belongs;

• The verification count, which specifies the version of this row; and

549

• A profile of the capabilities delegated to the trusted process identified by

the PCR information or the authorisation data.

The TPM owner can also delegate the management of tables to particular

entries.

The family table provides a method of grouping rows in the delegate table.

It supports the validation and revocation of exported delegate table rows and

those stored in the table. The family table must have at least eight rows, and

each entry in the family table contains the following four fields:

• The family ID;

• The family label, which helps identify information associated with the

family;

• The family verification count, which represents the sequence number iden-

tifying the last outside verification and attestation of family information;

and

• The family flags.

In order to validate delegation rows, the following process is used. The TPM

produces a signed statement, grouping all delegations from the same family. This

signed statement then allows a verification agent to examine the delegations and

the processes involved, and then to make an assessment as to the validity of the

delegations.

Before any signed statement is produced, the verification counter is incre-

mented and inserted into selected table elements (all of which are from the same

family), including temporarily loaded delegations. Copies of these elements are

then made, signed and sent to a chosen TTP.

550

Alternatively, the counter may not be incremented before the platform del-

egations are sent for validation. This, however, leads to the possible use of

undesirable delegations which have not been validated, permitting undesirable

actions when loaded onto the delegate table. This occurs because these un-

desirable delegations were not on the platform when its delegation state was

validated, but have the same counter value as blobs that were, as no increment

of the verification counter took place prior to the validation process. In this

case there is no way, therefore, of differentiating between validated delegations

and undesirable, unvalidated, delegations.

The platform owner also requires assurance that no management of the ta-

ble is possible during the validation process. In order to ensure this occurs, the

transport session established during this verification process will have the exclu-

sive attribute set. This ensures that no other TPM operations can occur during

the validation process. The TTP then returns the results of the assessment.

A.18.2 The delegate-specific authorisation protocol (DSAP)

In order to delegate privileges, the delegation creation entity must initially

demonstrate knowledge of the authorisation information associated with the

key or command to which access will be delegated.

The delegation entity then creates a TPM Delegate Key Blob or a

TPM Delegate Owner Blob, depending on whether key use or TPM owner

command execution is being delegated.

This TPM Delegate Key Blob, TPM Delegate Owner Blob, or, alternatively,

a pointer to an entry in the internal delegation table, which contains the autho-

risation data necessary for use of delegated command or key, is encrypted such

that only the TPM can decrypt it. This encrypted value is then sent to the

551

entity being granted delegated use of the key or command, in conjunction with

the authorisation data necessary for use of delegated command or key use.

The entity which has been delegated restricted privileges can now start a

TPM DSAP session using TPM Delegate Key Blob, TPM Delegate Owner Blob,

or a pointer to an entry in the internal delegation table, as input. The protocol

proceeds as follows:

1. The TPM DSAP command is used to initiate the protocol. In conjunction

with the command ordinal, input parameters for this command include:

• a key handle associated with the object, K, to be accessed and utilised

or a handle to the privileges which have been delegated;

• a caller OSAP nonce;

• an entity type element; and

• an entity value element, where the entity type and entity value ele-

ments represent the delegation structure which has been allotted to

the caller, be it a TPM Delgate Owner Blob, a TPM Delegate Key Blob

or a TPM delegation table index value.

2. If a TPM Delgate Owner Blob or a TPM Delgate Key Blob is received,

its integrity is initially checked. Alternatively, if entityType is

TPM ET DEL ROW or TPM ET DEL KEY, the entityValue will con-

sist of a TPM DELEGATE INDEX, which points to a delegation entry

in the delegate table.

3. The encrypted authorisation data necessary for use of delegated command

or key is extracted by the TPM from either the TPM Delegate Key Blob,

TPM Delegate Owner Blob, or, alternatively, from an entry in the inter-

nal delegation table and decrypted. When the authorised data has been

552

decrypted by the TPM, it is used along with the TPM and caller OSAP

nonces to generate a shared key between the caller and the TPM.

4. The DSAP authorisation protocol then proceeds as did the OSAP protocol

where the shared key generated by the TPM and the entity requesting

access, by the process described above, is used by the entity requesting

access to prove to the TPM that usage of a particular command or key

should be granted.

A.19 Time-stamping

The TPM provides a service enabling time stamps to be applied to various data

strings. The timestamp provided, however, is not a universal clock time but

a representation of the number of ticks the TPM has counted. The caller can

then have this value associated with a universal time clock value externally.

No requirements are made regarding how the tick counter mechanism is

chosen and implemented. Neither are any requirements made regarding the

ability of the TPM to continually increment the tick counter. This is convenient,

in that a PC with continual power supply may deploy a more continuous reliable

timing method than a mobile platform with a limited battery, whose timing tick

maintenance capability may be limited because of power limitations.

For each tick session, the values specified in table A.3 are maintained by the

TPM.

A basic tick stamp result consists of a TPM digital signature computed over:

• The data to be time-stamped (a digest of the data to be time-stamped);

• The current tick counter value;

• The tick session nonce; and

553

Table A.3: Tick session values

Value maintained by TPM
for tick session

Description

The tick count value, TCV Counts the ticks for the session. Must be set to 0
at the start of every tick session. If the TPM loses
the ability to increment the TCV in accordance with
the TIR, the TCV must be set to null and a new tick
session started.

The tick increment rate,
TIR

The rate at which the TCV is incremented (its rela-
tionship with seconds is set during TPM manufacture).

The tick session nonce,
TSN

The TSN is set at the start of each tick session.
It must be set to the next value of the TPM RNG at
the beginning of each new tick session.
If the TPM loses the ability to increment the TCV in
accordance with to the TIR, the TSN must be set to
null.

• Some fixed text.

An example of a protocol illustrating how a tick counter value can be as-

sociated with a universal time clock value by employing the functionality of a

time-stamping authority is described in the specifications. The protocol speci-

fied, however, is merely illustrative. No particular protocol is mandated.

A.20 Migration mechanisms

Migration mechanisms are used for the backup and cloning of migratable TPM-

protected key objects. They allow the private keys from TPM protected key

objects to be attached to other TPM protected storage trees. Two methods

which facilitate the migration of the private part of a TPM protected key object

are described in [5].

Both mechanisms initially require that:

• The TPM owner has authorised a particular migration destination, i.e. the

use of a particular destination or intermediary public key for a particular

migration method, be it migrate or rewrap;

554

• The authorisation data to use the parent key currently wrapping the key

that is to be migrated has been submitted; and

• The authorisation data required for key migration has been submitted [5].

Once the TPM owner has authorised the use of a particular destination or

intermediary public key for a particular migration method, the target key to

be migrated may be decrypted at any stage and migrated, if the appropriate

authorisation data to enable access to the parent key currently encrypting the

key that is to be migrated and the authorisation data required for key migration

are submitted by the target key owner.

Then it is required that the source TPM encrypts the target key under

the destination public key. This is then forwarded to the destination TPM in

conjunction with a plaintext object describing the public key from the key pair

to be migrated.

The alternate migration method involves the use of an intermediary. In this

instance, the private key to be migrated is encoded using optimal asymmetric

encryption padding (OAEP) and XORed with a one-time pad. The resultant

data is then encrypted under the public key of the intermediary, which un-

wraps the key and rewraps it under the public key of the destination TPM.

The XOR encryption prevents the intermediary gaining unauthorised access to

the migrated key. The one-time pad must, however, be made available to the

destination TPM so that the migrated key can eventually be integrated into the

protected storage hierarchy of the destination TPM.

While the TPM will check that a particular destination or intermediary

public key is at least as strong as 2048-bit RSA, it is up to the TPM owner to

ensure that the public key does actually represent the desired destination TPM

or intermediary [5]. A migratory key can essentially be sent to any arbitrary

555

platform, not necessarily a trusted platform.

With respect to certifiable migratable keys:

• The TPM owner must authorise the use of a particular destination public

key;

• The authorisation data required for use of the parent key, under which the

key to be migrated is encrypted, must be submitted; and

• The authorisation data required for key migration must be submitted [5].

• In conjunction with this, a chosen migration (selection) authority must

authorise the migration destination.

In this way controlled migration of keys is made possible, where an entity

other than the TPM owner may have input into the decision as to where CMKs

are destined.

A.21 Maintenance mechanisms

Maintenance mechanisms are used to clone a broken trusted platform. This

cloning process can only be completed with the co-operation of the TPM owner

and the platform manufacturer, and the process must only be performed between

two platforms of the same manufacturer and model. Maintenance mechanisms

are optional, but if they are provided by the TPM, certain requirements as

described in [156] must be met. The maintenance capability may be disabled

until the current owner is erased.

556

A.22 Audit

The audit function allows the TPM owner to determine whether or not certain

operations on the TPM have been executed.

The audit function in earlier versions of the TCG specifications, TCPA main

specification, version 1.1, 2001, was shown to have security weaknesses [5], so

an updated method of audit is described in the version 1.2 document set. In

version 1.2 of the specifications, the audit mechanism consists of:

• A digest held internally to the TPM; and

• A log of all audited commands held externally to the TPM.

The securely stored internal digest allows for verification of the external log,

so that tampering of any kind can be detected. Re-synchronisation functionality

is also provided by the TPM, so that the internal digest and the external logs

may be kept consistent with each other.

The TPM owner has the capability to choose which functions generate an

audit log entry, and to alter this choice at any stage.

The auditing process itself consists of two fundamental steps:

• Auditing of the command and input parameter received; and

• Auditing of the response to the command and output parameters.

This method was chosen to diminish the amount of memory required to

complete the auditing process, as no memory is required to save any audit

information while the command is executing.

An internal audit record consists of:

557

• A non-volatile counter, which increments once per session when the first

audit event of a session occurs; and

• A digest, which holds the digest of the current session, most probably

volatile.

The audit process may therefore proceed as follows:

• An auditable command is called;

• The audit session opens when the volatile digest is extended from its null

state with the input parameter from the command;

• When this audit session is opened, the non-volatile counter is incremented;

• When the command has executed, the response to the command (the

return code) and the output parameters are then used to further extend

the digest value;

• The audit session closes when the TPM receives the command to get the

audit event signed and the close audit parameter. The explicit closing of

an audit session addresses the potential threat of undetectable audit log

truncation;

• The TPM then signs the concatenation of the non-volatile counter and

the volatile digest, and exports the following three values:

– The non-volatile counter value;

– The volatile digest value; and

– The signature.

558

A.23 NGSCB

In June 2002 [166] Microsoft released information on Palladium, a system which

combined software and hardware controls to create a trusted computing plat-

form. It was initially stated that Palladium was due to ship with the next major

version of the windows operating system, code named Longhorn, then planned

for release in 2004.

The name Palladium, however, has since been abandoned in favour of NGSCB.

According to John Lettice of the Register [97], this change was made for two

fundamental reasons: the name ‘Palladium’ had already been used by another

company for a product in a similar area and because of the initial controversy

and criticism surrounding the project. To date, however, few technical details

regarding Palladium or NGSCB have been published. Primary reference mate-

rial used in the writing of this section includes [43], [126], [24] and [104].

A.23.1 The relationship between TCG and NGSCB

Microsoft was one of the founding members of TCG and actively participates in

the organisation [5]. The NGSCB architecture, however, encompasses a broader

set of capabilities than the TCG-defined trusted platform, see section A.4. In

addition to the functionality offered by the TCG, NGSCB requires:

• An extended CPU to enable the efficient implementation of a minimal

isolation kernel;

• A minimal isolation kernel;

• Memory controller or chipset extensions such that direct memory access

can be controlled; and

• Hardware components enabling input and output to be efficiently secured.

559

A version 1.1 compliant TPM is not, however, supported by Microsoft Win-

dows unless a cryptographic service provider, which has been written to sup-

port the Windows cryptographic applications programming interface has been

provided by the hardware manufacturer and integrated into the platform. A

version 1.2 compliant TPM is expected to fulfil the role required crypto chip in

a NGSCB.

A.23.2 The NGSCB architecture

An NGSCB platform includes three fundamental components.

• A tamper resistant crypto chip, which is implemented in hardware and is

either physically or cryptographically bound to the platform.

• An isolation kernel, which facilitates the execution of several software com-

partments in parallel on the same machine, and controls the access of

software running in these compartments to system resources.

• Software components, which may be hosted by the isolation kernel in

isolated compartments, for example, an optional mass-market operating

system or high assurance component.

A.23.3 The tamper resistant crypto chip

The tamper resistant crypto chip is required to provide the security primitives

described in table A.4. It is required at a minimum to implement a variety of

cryptosystems, a random number generator, a small amount of memory, and a

monotonic counter. It must also contain at least one ‘process control register’

used to store the image of system software components, e.g. the isolation ker-

nel. A TPM conforming to version 1.2 of the TCG specifications is a concrete

implementation of an NGSCB crypto chip.

560

Table A.4: The NGSCB tamper resistant crypto chip

Component Definition Capabilities Provision

NGSCB
crytpo
chip

A tamper
resistant
crypto chip

The following functionality
must be provided to software
components running on the
platform into which the
chosen crypto chip
implementation is embedded.

The crypto
chip will be
inextricably
linked to the
motherboard.

Seal
Unseal
Quote
PKSeal
PKUnseal
ReadCounter
IncrementCounter

Details of the fundamental security primitives which must be supported by

the chosen crypto chip implementation are described in table A.5.

Table A.5: Security primitives supported by the NGSCB crypto chip

Primitive Input Output Description

Seal Source Identity
(Identity od the
caller)
AC Information
(The access
control
information, for
example, the
identity of the
software entity
allowed to
unseal the
secret) Data (to
be sealed)

C = Store
(Source Identity ‖
AC Information ‖
Data)

A cryptographic
implementation of
the store operation,
which satisfies the
requirements for an
authenticated
encryption scheme,
as described in [9], is
required.
Implementations also
require the crypto
chip to have the
functionality to
securely store and
access cryptographic
keys, so that
encryption and
integrity protections
can be performed.

Unseal C (an identifier
for the sealed
bundle)

Source Identity
Data Only
output if the access
control
information,
AC Information, is
fulfilled

561

Quote Data (arbitrary
data block)

SK (Data ‖
Source Identity) A
public key
signature is output
on the above data
with key K, which
is protected by the
crypto chip

PKSeal Target Identity
Data (data to
be protected) K
(a public key,
whose
corresponding
private key is
held in the
crypto chip)

D = Asymmetri-
cEncrypt K
(Target Identity ‖
Data)

PKSeal allows a
remote entity to
encrypt a secret such
that it is only
accessible by a
specified entity, the
Target Identity with
private key, K.
PKSeal does not
need to be
implemented in the
crypto chip.

PKUnseal D Decrypts D and
returns Data If
Target Identity is
equal to the
identity of the
caller identity.

Read
Counter

V Gets the value of the
monotonic counter

Increment
Counter

Increments the value
of the monotonic
counter

A.23.4 The isolation kernel

The isolation kernel [126] will execute in a CPU mode more privileged than the

existing ring 0, effectively in ring -1, which will be introduced in forthcoming

versions of the x86 processors. This allows the isolation kernel to operate in

ring -1 and all guest operating systems/software components to execute in ring

0. Thus, problems that may occur with virtualisation, in the scenario where the

isolation kernel executes in ring 0 and guest OSs or high assurance components

must execute in ring 1, can be avoided.

The isolation kernel utilises the PTEC algorithm in order to partition physi-

562

cal memory among guests hosted by the isolation kernel. Any attempt made to

edit a page map, which determines the physical to virtual mapping active for a

particular guest, traps to the isolation kernel, which consults its security policy

in order to decide whether or not the action may proceed.

The isolation kernel is also described as combining the merits of both virtual

machine monitors (VMMs) and exokernels [43] in relation to OS compatibility.

It resembles a minimised virtual machine monitor, in that it allows a mass

market OS to operate with few changes. However, rather than necessitating the

virtualisation of all devices, as a VMM does, the exokernel approach to devices

is adopted, where devices are assigned to guest OSs which contain drivers for the

devices they choose to support. Guest operating systems may then efficiently

operate directly on the chosen device.

This does, however, leave the problem of uncontrolled DMA devices, which

by default have access to all physical memory. In order to prevent DMA devices

circumventing virtual memory-based protections, the provision of chipset exten-

sions is required by the hardware manufacturers. A DMA policy map [43] is set

by software with write access to the memory region which holds the policy map,

usually the isolation kernel, and it is then stored in main memory. The DMA

policy map is then read and enforced by hardware, for example the memory

controller or bus bridges, where this policy map decides, given the state of the

system, if a particular subject (DMA device) has access (read or write) to a

specified resource (physical address).

Enhancements to input devices such as keyboards and mice may be deployed

to facilitate the MACing and encryption of data as it is communicated to a

trusted application on the platform. Secure graphics hardware may also be

deployed in parallel to the complex mass-market graphics system, and used

563

only by the isolation kernel and high assurance guests.

In a fundamental sense, however, these input and output hardware changes

are not strictly necessary. In principle, a piece of trusted code could be given

physical control of the keyboard and the graphics card by the isolation kernel,

and thus guarantee that input and output will not be observed or corrupted.

There are two reasons, however, why new hardware for input and graphics is

desirable:

• Minimising the size of the trusted computing base, which should ideally

be kept as small as possible to preserve security; graphics drivers, for

example, typically contain millions of lines of code.

• Performance and ease of running off-the-shelf legacy operating systems;

OSs expect to have direct access to the graphics card. While VMMs rou-

tinely solve this problem by exposing a virtual graphics card to their guest

OSs, in practice this solution entails significant performance degradation.

A.24 LaGrande

Following the description of NGSCB, we briefly examine LaGrande Technology,

born out of Intel’s initiative to address the challenges of trusted computing. La-

Grande is defined as “a set of enhanced hardware components designed to help

protect sensitive information from software-based attacks, where LT features

include capabilities in the microprocessor, chipset, I/O subsystems, and other

platform components” [72]. As was the case with NGSCB, detailed informa-

tion on LT remains limited. LaGrande Technology essentially provides all the

components needed to meet the requirements defined by Microsoft for hardware

enhancements and extensions necessary to support their NGSCB architecture.

564

A.24.1 The architecture

The generic LaGrande Technology architecture consists of three fundamental

concepts: the standard partition, the protected partitions; and the domain man-

ager.

The standard partition provides an environment identical to today’s Intel

Architecture – 32 (IA–32) environment [72]. In the standard partition, users

may freely run software of their choice. The existence of this standard parti-

tion implies that, despite the addition of supplementary security mechanisms

to the platform, code already in existence will retain its value, and software

unconcerned with security will have somewhere to execute unaffected.

The protected partition provides a parallel environment, in which software

can be executed with the assurance that it cannot be tampered with by soft-

ware executing in either the standard or protected partition. This protected

partition is hardened against software attacks by the implementation of a num-

ber of components, described below, which provide domain separation; memory

protection; protected graphics; and a trusted channel to peripherals.

The existence of a domain manager, which facilitates this domain separation,

is also assumed. This domain manager may be constructed in various ways, de-

pending on the architecture implemented. A concrete example of this domain

manager is the isolation kernel as described in section A.23. The domain man-

ager is physically protected via processor and chipset extensions and, in turn,

protects standard and protected partitions from each other.

A.24.2 Hardware enhancements and extensions

In order to facilitate the implementation of the above partitions, in conjunction

with protected input and output and TPM functionality to a platform, Intel are

565

in the process of extending and enhancing the following hardware components:

• The CPU;

• The memory controller or chipset;

• The keyboard and mouse;

• The video graphics card; and

• The graphics adaptor.

A v1.2 TPM must also be added.

A.24.2.1 The CPU

CPU extensions facilitate the efficient execution of standard and protected par-

titions, as described above. CPU enhancements, in conjunction with chipset

extensions, also provide more stringent access control enforcement with respect

to the use of hardware resources such as memory, thereby thwarting the threats

caused by DMA devices.

Secure event management may also be facilitated. Through the extension

of the CPU and chipset, the situation where an abnormal event may result in

the transfer of control to a malicious agent outside the protective environment’s

boundaries, can be detected and handled appropriately.

Instructions to manage the protected execution environment and to establish

a more secure software stack are also added.

A.24.2.2 The chipset

Chipset extensions allow for a memory protection policy to be enforced; facilitate

the creation of protected channels to and from input/output devices; include

566

enhancements, which protect against direct memory access (DMA); and provide

interfaces to a version 1.2 compliant TPM.

A.24.2.3 The keyboard and mouse

The keyboard and mouse extensions support secure communication between

the mouse and keyboard and trusted applications. Protected input allows for

protected channels to be established between input devices and applications

running in the protected environments. This protects the confidentiality and

integrity of input data against unauthorised or malicious software running on

the platform.

Keystrokes and mouse clicks may be encrypted or MACed, or both, using

keys shared between the protected domain’s input manager and the input device.

Only applications with the correct encryption key can then decrypt and use the

transported data [72].

A.24.2.4 The video graphics card

The video graphics card extensions allow for display information to be sent to the

graphics frame buffer without observation or compromise [72]. Protected output

allows applications running in protected execution environments to securely send

display information to the graphics frame buffer, with the assurance that it

cannot be observed or tampered with by malicious software running on the

platform [72].

A.25 Conclusions

In this appendix, the TCG specification set, NGSCB and LaGrande Technology

have been examined. It is clear that, despite the negative criticism often asso-

ciated with this particular area of computing, trusted computing technologies

567

offer a wide range of functionality which may be leveraged to improve computer

security. It must also be noted, however, that this chapter reflects these tech-

nologies as they are currently documented. This area is the subject of much

current research and development, and the specifications, functionality, archi-

tectures, mechanisms and implementations associated with trusted computing

technologies are evolving and changing rapidly.

568

Appendix B

Technologies related to
trusted computing

In parallel to the development of the trusted computing technologies described

in appendix A, a number of alternative architectures have been developed, with

the goal of providing more secure and trustworthy computing platforms. In this

appendix three architectures of this type are examined, namely the IBM 4758,

XOM and AEGIS architectures.

569

B.1 Introduction

Having examined current trusted computing initiatives in appendix A, this ap-

pendix provides an overview of closely related technologies.

Sections B.2 briefly introduces secure co-processors, and examines the IBM

4758. Section B.3 presents the concept of hardened processors and then exam-

ines the XOM and AEGIS architectures.

B.2 Secure co-processors

The most familiar of the alternative architectures involves platforms which con-

tain secure co-processors. A secure co-processor provides a tamper resistant

computing environment in which functions may be executed without interfer-

ence, despite physical or logical access to the device. The IBM 4758 is an

example of a user configurable, tamper resistant co-processor with the following

properties and capabilities [41]:

• A random number generator;

• A layered design, where each device should have at least two layers, one

responsible for implementing the security policy, which should be validated

as correct, and a layer for device personalisation;

• Outbound authentication, which allows external entities to determine the

exact applications running on the device;

• General co-processor and auxiliary processors, which, for example, allow

the efficient implementation of DES and modular arithmetic;

• Persistent storage, which may protect application data or arbitrary data

directly using the 4758 tamper response in battery backed RAM, or indi-

570

rectly by encrypting the data using keys stored in battery backed RAM;

and also

• A third party programmable interface.

Co-processors essentially provide a tamper resistant secluded area on a plat-

form, in which particular applications may be securely executed. As highlighted

above, a variety of security services may be offered to applications executing

or data processed within this region. In conjunction with this, outbound au-

thentication is often permitted, allowing external entities to verify the exact

applications running on the device. Co-processors are, however, separate from

the generic platform processor, providing specialised protection for a limited

set of applications and data, independently of what occurs on the generic plat-

form with which the co-processor is associated. A challenger need only trust

the specified co-processing environment. This segregated protection is relatively

expensive to provide [5].

B.3 Hardened processors

As an alternative approach, rather then implementing a secure co-processor,

which runs in parallel to the general platform processor, the primary processor

can be extended (hardened) so that certain applications can be run securely

in on-chip protected compartments. A process running in one compartment

has only strictly controlled access to application code or data from another

compartment. Off-chip compartment application code and data is also protected

through the deployment of encryption and integrity-protection mechanisms.

We begin with a brief examination of the XOM architecture [99] which pro-

vides protected environments/compartments for XOM code to execute in. The

XOM architecture essentially provides on-chip protection of caches and regis-

571

ters, protection of cache and register values during context switching and on

interrupts, and confidentiality and integrity protection of application code and

data when transferred to external memory. The platform subsystem used to

provide the services listed above is called the XOM machine.

In order to practically and efficiently implement an XOM machine, extensive

hardware additions must be made to the CPU. In a hardware implementation of

the XOM machine, all trust is put in the modified CPU hardware. Everything

transmitted outside the main CPU is encrypted.

On the other hand, however, the ‘XVMM implementation’ of the XOM ma-

chine, described below, significantly reduces the number of necessary CPU hard-

ware extensions. A software XVMM, whose integrity is validated via secure

boot, is used to provide many of the security services provided directly by the

CPU in the hardware implementation.

We subsequently explore the AEGIS architecture [143], which builds upon

concepts developed in the XOM architecture. Given the abstract AEGIS archi-

tecture, two potential architecture implementations are explored: an untrusted

operating system solution, which involves implementing all security mechanisms

within the hardened AEGIS processor, and a trusted security kernel solution,

where some of the core operating system functionality is trusted, thereby en-

abling the minimisation of CPU modifications.

As is the case with the more efficient hardware implementation of the XOM

architecture, the untrusted operating system implementation of the AEGIS ar-

chitecture puts all the trust in the CPU hardware, and therefore requires a

complete overhaul of current system architectures.

The ‘security kernel implementation’ of AEGIS, while also requiring CPU

modifications to be made, utilises a security kernel so that the requisite hard-

572

ware adjustments may be minimised. Through the addition of secure boot

and security services, loosely-coupled with the sealing and platform attestation

mechanisms as described in appendix A, the boundaries of trust may be moved

from the trusted hardware core to encompass the security kernel running on the

hardware.

B.4 XOM

Executable only memory [99] was proposed with the objective of preventing

software consumers from examining executable code, thereby protecting any

algorithms incorporated into the code. It also aimed to thwart the unauthorised

execution of software. While the XOM architecture is not an implementation of

trusted computing methodologies, it uses concepts closely linked to the notion of

trusted computing. Fundamental reference material for our discussion of XOM

includes [98,99].

B.4.1 The abstract XOM machine

In order to facilitate the execution of XOM code, an XOM machine, which

supports internal compartments, is proposed. Within this XOM machine, “a

XOM process executing in one compartment cannot read data from another

compartment” [99], and all data that leaves a particular compartment on the

XOM machine is integrity and confidentiality protected, as it is assumed that

external memory is not secure.

An XOM machine, as defined by Lie et al. [99], has three fundamental tasks

to fulfil:

• Decryption of the symmetric compartment key used to protect an incom-

ing application, using the private key from the asymmetric key pair em-

573

bedded in that particular XOM machine;

• Decryption of the program code using the symmetric compartment key;

and

• Isolation of the active principal, for example the decrypted code and its

data, where principals are separated into compartments between which

only strictly controlled information flow is possible.

B.4.2 XOM machine implementation

Lie et al. [99] consider two potential XOM machine implementations: a virtual

machine implementation of a XOM machine and a hardware implementation of

a XOM machine.

The virtual machine implementation of the XOM architecture involves run-

ning a special XOM virtual machine monitor on a slightly modified CPU, which

integrates special microcode that incorporates [99]:

• A private key from a unique asymmetric key pair assigned to the XOM

hardened processor;

• On-chip memory, which contains tagged shadow registers and the XOM

key table;

• The ability to trap on instruction cache misses (to the XVMM); and

• A privileged mode under which XVMM runs.

The actual XVMM may be implemented either in software, where imple-

mentations must be authenticated via a secure boot, or in microcode. However,

only the microcode XVMM implementation is explored by the authors.

574

The XVMM must execute as an authorised privileged program. It requires

the processor to be configured to trap on instruction cache misses, so that the

XVMM can then decrypt data and instructions coming from external memory.

The XVMM then stores decrypted instructions to the instruction cache. On

interrupts or context switches, where a copy of the encrypted XOM program

instructions remains in external memory, the instruction cache may be flushed,

as it contains no modified data.

While decrypted instructions may be saved to the instruction cache by the

XVMM; the XVMM may not, however, store decrypted XOM program data

to the data cache. Unlike decrypted XOM instructions, there are two types of

program data: shared data, i.e. data generated during XOM program execution,

which an XOM program may authorise other programs to access; and XOM pro-

gram private data. Shared data may be pushed from the caches unencrypted,

whereas XOM private data needs to be both confidentiality and integrity pro-

tected when evicted from the data cache. As there is no way to differentiate

between data types held in the data cache without additional hardware ex-

tensions, the data cache is not used by the XVMM to store decrypted XOM

program data.

In order to facilitate compartment access control in an XOM machine which

contains no cache or register tags, the XVMM must facilitate interrupts and

context switching by flushing instruction caches and clearing all registers. In

order to support register clears, the XVMM must maintain a set of shadow

registers for each compartment, where each of these registers stores a compart-

ment ownership bit indicating whether the register is in the private or shared

compartment and a saved bit indicating which registers were saved by the OS

on interrupt. When a compartment is interrupted, private compartment regis-

ter values are copied to protected shadow registers by the processor, and then

575

cleared, thereby protecting values from OS interrupt handlers. When the com-

partment is restarted, the values are restored. In order to support the above

functionality, the XVMM must implement the following eight additional instruc-

tions:

• enter xom, facilitates the initial decryption of the symmetric XOM appli-

cation compartment key and decryption of the XOM program code and

data, the registration of a handler for cache miss events and re-vectoring

of all CPU exceptions and interrupts;

• exit xom, unregisters the handler for cache misses and restores handlers

for all CPU exceptions and interrupts;

• secure store, is used to move data between private registers (where register

status is stored in shadow registers) and the data cache and, ultimately,

external memory. The XVMM computes a MAC on and encrypts private

register values before eviction;

• secure load, is used to import values into registers. The XVMM decrypts

the value from memory and verifies the MAC. If the MAC can be verified,

the register value is written and its ‘private’ status written to the shadow

registers;

• move from shared and move to shared, change the status of the registers

in the status register to and from ‘private’;

• save register, moves all register values whose status is ‘private’ to the

shadow registers; a record of the source register from which the value has

been saved is also stored; and

• restore register, restores shadow register values to the source registers.

576

The alternative hardware implementation:

• Facilitates the use of data caches;

• Alleviates the necessity to flush the instruction cache every time there is

a trap;

• Eliminates the overhead incurred through the use of the XVMM for cryp-

tographic operations; and, finally,

• XOM instructions are both interpreted and implemented in hardware,

thereby decreasing overhead.

Additional CPU hardware modifications required to facilitate a hardware

implementation of the XOM machine include the incorporation of:

• A private key from a unique asymmetric key pair assigned to the XOM

hardened processor;

• On-chip memory, which contains tagged shadow registers and the XOM

key table;

• On-chip cache and register ownership tags; and

• A hardware cryptographic engine for symmetric encryption/decryption

and MACing.

Because of the efficiency and performance issues associated with the XVMM

implementation of the XOM machine, we now examine the concept of XOM

in further detail, focusing in particular on the hardware implementation when

exploring XOM machine concepts and instructions.

577

B.4.3 Compartments

As stated above, each XOM processor chip has an embedded asymmetric key

pair, where the private decryption key is protected on-chip and the public en-

cryption key is made available so that anyone can encrypt code for the particular

chip. If, however, code for a particular chip is encrypted under its public key,

instruction loading would be extremely inefficient. Therefore, the header block

of the message contains a symmetric key, encrypted using the public key of the

XOM chip, and the program image is encrypted using this symmetric key. Each

application is encrypted using a different symmetric key.

In order to support trusted or secure execution environments, a ‘compart-

ment’ is used to isolate independent software applications running on the same

processor, where a compartment is built from, and defined by, the symmetric

compartment key used originally by the service provider to protect a distributed

program image. The null compartment is defined as one where regular unen-

crypted code may run; it has no associated compartment key.

It is worth noting that, in order to protect the incoming XOM program

image, not only should it be encrypted by the service provider before being

communicated to the host, but it should also be integrity protected using a

MAC or digital signature. According to [99], no mechanism is deployed in order

to protect the integrity of the incoming program image while in transit from

the service provider to the mobile host. The same holds for the more recent

thesis of Lie [98], where the deployment of an integrity protection mechanism

is not explicitly mentioned in the software distribution model. The integrity

verification of an incoming application is, however, implicitly implied in the

instruction definition, where Lie states that the enter xom instruction, described

below, must always be followed by an encrypted and MACed application. No

578

mention is made of how the MAC key is derived.

When a symmetric compartment key has been decrypted, the XOM machine

associates it with an arbitrary XOM ID and a 128-bit hash of the encrypted

compartment key in a key table stored in the XOM machine.

The isolation of active principals through the use of compartments, as defined

above, may be achieved by the provision of three fundamental services; secure

storage, security over interrupts and external memory protection.

B.4.3.1 Secure storage

On-chip, all XOM data and code in caches and registers is tagged with a unique

XOM identifier, which is mapped to the code’s decrypted symmetric compart-

ment key in a compartment key table. Programs that run in the clear have a

XOM identifier of 0. The size of the compartment key table and the number

of XOM identifier tags depend on how many concurrently executing principals

can have data in the machine.

At any one time, only one program will be executing; therefore there will

only be:

• One active principal;

• One active XOM identifier; and

• One active compartment key.

When this active principal produces data, it is automatically tagged with

the active XOM identifier. Subsequently, when an attempt is made by an active

principal to read data, the tag on the data is compared with the active XOM

identifier, and access is only permitted if these values are identical.

579

In order to implement the proposed functionality, a series of instructions

and additional functionality must be added to the abstract machine. Two basic

instructions are initially required of the abstract machine to facilitate compart-

ment establishment, namely enter xom and exit xom, as described in table B.1.

These instructions facilitate the decryption and integrity verification of XOM

code and data from external memory into the instruction stream.

The instructions defined for use when moving data between caches and reg-

isters in the active compartment on the abstract machine include those listed

in table B.2. These instructions act as normal load and store instructions for

XOM processes.

Although isolation of principals is required, complete isolation, where princi-

pals are separated by compartments, and between which no information flow is

possible, would prove impractical and a hindrance. In order to facilitate commu-

nication between protected principals, two further instructions are also defined

(see table B.3). The mv to shared and mv from shared instructions provide a

controlled way of changing tags associated with data values. Executing these

commands on data that was not originally tagged, results in an exception.

B.4.3.2 Interrupts

Extra consideration must also be given to interrupts, so that an untrusted oper-

ating system can save the register state of an XOM process without leaving the

register contents vulnerable to attack. Two further instructions are necessary

in order to protect register values. These instructions, described in table B.4,

package data in such a way that any principal, for example the OS, may be

permitted to move the data with the knowledge that it cannot be tampered

with in any way by the moving principal. This, therefore, provides the OS with

a means of scheduling XOM processes without violating compartment security.

580

Table B.1: XOM enter xom and exit xom instructions

enter xom exit xom

All XOM code is preceded by an
enter xom instruction.
The source register holds the starting
memory address of the encrypted
compartment key for the XOM code.
The enter xom instruction indicates
that all the following code belongs to a
principal associated with the
compartment key.
The machine checks to see if the
compartment key has already been
decrypted by comparing the 128-bit
hash of the encrypted symmetric key
with those stored in the XOM key
table.
If the compartment key is already in
the table, the active identifier is set to
that entry and the encrypted XOM
code is fetched.
If no matching entry is found: A free
entry in the XOM key table is found;
An XOM ID is assigned to the key;
The active identifier is set to this
entry; The encrypted symmetric key is
loaded and the asymmetric decryption
algorithm is run on the key. The
128-bit hash of the encrypted
compartment key and the decrypted
compartment key are then entered into
the key table.
All instructions following the
enter xom instruction must be
encrypted and accompanied by a valid
MAC; otherwise they are not loaded
into the instruction cache for
execution.

This instruction changes the active
identifier back to null and the machine
stops decrypting.
If an abnormal ‘trap’ or ‘interrupt’ oc-
curs, an implicit exit xom is executed
before the instructions from the inter-
ruption handler are executed.

Table B.2: XOM secure load and secure store instructions

secure load secure store

Used if the required value is found in
the cache.
If a line hits in the cache, the XOM
cache tag of the cache line is compared
with the active XOM ID.
If the values match, then the value in
the cache and the XOM ID are written
to the register.

The XOM processor verifies that the
source register tags matches the active
XOM ID.
If they match, the register value is
stored to the cache and the particu-
lar cache line is tagged with the active
XOM ID ownership tag.

581

Table B.3: XOM mv to shared and mv from shared instructions

mv to shared mv from shared

Changes the XOM ID tag on a register
to the null identifier.
After execution of this instruction,
access to data by the original principal
results in an exception.

Changes the tag on a register to the
tag of the active XOM identifier.

Table B.4: XOM save register and restore register instructions

save register restore register

The XOM processor takes the contents
of the register and creates an
encapsulated version that other
principals can move but cannot
manipulate.
To achieve this, the register contents
are MACed and encrypted with a
register key associated with the XOM
ID in the XOM key table.
Each XOM compartment register key
is regenerated every time a particular
XOM compartment is interrupted, to
prevent the replay of saved register
values.

Used to restore a register value.
This instruction decrypts the register
value, verifies the MAC and then re-
stores it.

B.4.3.3 External memory

The mechanisms described above would prove sufficient in the implementation

of XOM code if either external memory is secure or, alternatively, if there is no

need to use external memory. However it is rare for either of these cases to hold,

and it therefore became clear to the XOM designers that the compartments, as

defined above, would have to be extended to incorporate external memory. In

order to extend a compartment:

• Tagged data in caches is MACed and then encrypted with the appropriate

compartment key before it leaves the abstract machine;

• A secure hash is generated on regions of memory and stored in on-chip

582

registers so that the replay of data in external memory can be detected.

In turn, register keys prevent the replay of registers in which the memory

hashes are stored.

B.5 AEGIS

Suh et al. [143] describe the AEGIS architecture for a single chip processor,

which is designed to help build a system secure against physical and software

attack, assuming untrusted external memory. As is the case with the XOM

architecture, AEGIS is not an implementation of trusted computing, but it uses

concepts closely linked to the notion of trusted computing. More specifically, the

security kernel implementation of the AEGIS architecture incorporates concepts

such as secure booting and notions loosely coupled with platform attestation and

sealing, as described by the TCG; see appendix A.

It is claimed that, within this AEGIS architecture, both tamper evident

and tamper resistant environments can be provided for multiple mistrusting

processes. Tamper evident environments are defined as authenticated environ-

ments, in which physical or software tampering can be detected [143]. Tamper

resistant environments are defined as private and authenticated environments

where an adversary cannot gain any information about data or software within

the environment by tampering with or observing system operation [143].

Suh et al. also describe two implementations of their architecture:

• In the first implementation it is assumed that the core functionality of the

OS is trusted and implemented in a security kernel; and

• In the second implementation the use of an untrusted OS is assumed.

The fundamental reference material for the following description is [143].

583

B.5.1 Secure computing model: Assumptions

Before we examine the AEGIS architecture in detail, we highlight suppositions

made by the authors with respect to the computing model. Abstractly speaking,

the authors consider systems that are built around processing subsystems with

external memory and peripherals. The processor chip is assumed to be trusted

and protected from physical attacks, implying that the internal state cannot be

tampered with or observed by physical means. The processor chip may contain

secret information which identifies it and allows it to communicate with the

outside world securely, such as a physical random function, or the secret key

from a certified public key pair [143].

External memory and peripherals are assumed to be untrusted and therefore

may be observed and tampered with. Generally, the operating system is assumed

to be untrusted and, consequently, attacks by an OS or malicious software are

deemed feasible. However, in certain implementations, part of the OS (the

security kernel) may operate at a higher level than the remainder of the OS [143].

An adversary may also attack off-chip memory.

B.5.2 The AEGIS architecture

We now examine the security services Suh et al. specify as necessary for the pro-

vision of both tamper evident and tamper resistant environments. Interspersed

with the descriptions of these necessary security services, potential mechanisms

for their successful provision are described. Methods of implementing the secure

execution environments are highlighted, both in the scenario where a security

kernel is in existence within the TCB in conjunction with a hardened AEGIS

processor chip; and also in the scenario where no security kernel exists, i.e. there

is merely an untrusted operating system and a hardened AEGIS processor chip,

584

which alone constitutes the TCB.

In the first scenario the security kernel will operate at a higher level of

protection than the rest of the operating system, in order to prevent attacks

from untrusted parts of the OS, such as device drivers.

In the alternative scenario, where no security kernel exists, the processor

needs to be aware of all processes running in AEGIS mode so that their states can

be securely tracked. In this scenario, a secure context manager (SCM) is added

to the hardened AEGIS processor, to ensure protection of secure processes.

• The SCM assigns a secure process identity (SPID) to each secure process,

where a zero SPID represents regular processes.

• The SCM maintains a table for each process running in AEGIS mode

containing:

– The SPID of the program;

– The program hash;

– A field used to store register values;

– A field used to store a hash for memory integrity verification;

– A bit which indicates whether the process is in tamper evident or

tamper resistant mode; and

– A pair of keys for encryption (a static key and a dynamic key).

• A table entry is created by the initial enter aegis instruction, and is deleted

by the exit aegis instruction.

The SCM table may be stored on the processor, but this will obviously

restrict the number of processes that can be recorded in the table. Hence use of

585

virtual memory space to store the table, managed by the OS and stored in off-

chip memory, is recommended, where a memory integrity mechanism, described

below, is used to prevent a malicious OS tampering with the SCM table. A

special on-chip cache is used to store SCM table entries for recent processes.

When encryption keys and register values in the SCM table are moved off-chip,

they are protected using a master key held in the processor.

In the scenario where a security kernel is present within the TCB, in con-

junction with a hardened AEGIS processor chip, the security kernel completes

the function of the SCM.

B.5.3 Tamper evident processing

A tamper evident environment does not provide for the privacy of code or data.

Integrity protection is provided, however.

B.5.3.1 Additional instructions

In order to enable tamper evident processing, the instruction set described in

table B.5 is defined.

Table B.5: AEGIS TE processing instructions

Instruction Description

enter aegis Start execution in TE environment

exit aegis Exit TE environment

sign msg Generate a signature on a message and a program iden-
tity/hash with the processor’s secret key

The valid execution of a program on a general purpose time sharing processor

can be guaranteed, or a tamper evident environment constructed, by securing

the program against three potential forms of attack:

• Attacks on the initial state;

586

• Attacks to on-chip caches or off-chip memory; and

• Attacks on state information when interrupts occur, or during context

switching [143].

B.5.3.2 Protection of initial state

In order to guarantee that the initial state of a program is properly set-up:

1. The enter aegis instruction is used to enter TE mode;

2. This instruction specifies a region containing stub code, which is used to

generate the program hash;

3. This hash, when calculated, is then stored in protected storage for later

use;

• The stub code is executed directly after the enter aegis instruction,

and is responsible for verifying the hashes of any applications or data

upon which the application relies, by comparing their hashes with

hashes stored in the stub region;

• The stub code also checks the parameters of the environment it is

running in, i.e.

– The processor mode it is running in;

– The virtual address of the stub code; and

– The position of stack

must all be checked and validated.

This is summarised in table B.6.

587

Table B.6: AEGIS TE processing — protection of initial state

Implementation containing
a security kernel

Untrusted OS solution

Security kernel
start-up

The kernel identity should
be verifiable by a user,
where a user can identify a
TCB by the security kernel
hash and the processor’s
public/private key pair.

N/A

The processor computes the
hash of the kernel at boot
time.
After this, the kernel’s
integrity is protected using
the same methods used for
the protection of other
secure processes, i.e.
Trusted VM management;
Off-chip integrity
verification.

Initial start-up
of programs

Managed by the security
kernel which ensures the
initial state is correct.

The SCM implements the
enter aegis operation as a
processor instruction.
A hash of the program code
and data are calculated.
The hash is then stored in
the SCM table.
(In architectures such as
x86, the initial stack
pointer is checked to avoid
stack overflow, should an
interrupt occur).

B.5.3.3 Protection of state on interrupts

The integrity of program state must also be integrity protected during interrupt

handling — see table B.7.

B.5.3.4 Memory

The integrity of on-chip caches and off-chip memory must also be protected

against both physical and software attacks.

On-chip cache integrity

588

Table B.7: AEGIS TE processing — protection of state on interrupts

Implementation containing a
security kernel

Untrusted OS solution

Interrupts Managed by the security
kernel, which ensures that
states are correctly restored
after an interrupt.

The untrusted OS handles
all aspects of multitasking.
The processor must,
however, verify that the a
TE process’s state is
preserved when it is not
executing, so the SCM
stores all process register
values in the SCM table
when the interrupt occurs
and restores them
afterwards.

By virtue of the fact that on-chip caches are on-chip, they are implicitly

secure from physical attack and therefore need only to be protected from buggy

software — see table B.8.

Off-chip memory integrity

Off-chip memory is vulnerable to both physical and software attack. There-

fore, the integrity of a block needs to be verified whenever it is read from off-chip

memory.

Merkle trees or hash trees, see section 1.5.1, are used in order to verify the

integrity of dynamic data in untrusted storage. Before a cache block is sent to

off chip memory, it is hashed. A parent hash is then generated by hashing the

concatenation of a set of level 2 (L2) cache block hashes. The tree root is stored

in the TCB, where it cannot be tampered with. A separate hash tree is used to

protect the virtual memory space of each TE process.

In order to verify the integrity of a node:

• The processor reads the node hash and its siblings from memory;

• Concatenates the values;

589

Table B.8: AEGIS TE processing — on-chip cache integrity

Implementation containing a
security kernel

Untrusted OS solution

Protection of
on-chip caches

Physical Attacks:
The processor chip is assumed
to be tamper resistant,
therefore on-chip caches are
assumed safe from physical
attacks.
Software attacks:
The security kernel protects
on-chip caches from software
attacks.
Virtual memory protections
and privileges are considered
adequate to protect
applications from each other.
A virtual memory manager is
included within the security
kernel to protect the integrity
of memory from malicious
software.

Physical Attacks:
The processor chip is
assumed to be tamper
resistant; therefore on-chip
caches are assumed safe
from physical attacks.
Software attacks:
On-chip caches are
protected using SPID tags.
When a process accesses an
on-chip cache block, the
block is tagged with the
owner’s SPID.
This specifies the owner of
the cache block.
Each block will also contain
the virtual address used by
the owner process on last
accessing the block.
If a secure process later
wants access to a cache
block which requires
integrity protection, the
processor verifies the block
before using it:
If the active SPID = the
SPID of the cache block;
and
the accessing virtual address
= the virtual address of
cache block, access is
permitted.

590

• Checks the resulting hash matches that of the parent.

This process is repeated until the tree root is reached.

If, however, the entire memory space is protected, no sharing would be per-

mitted between processes, and no input from an I/O device could be received.

Therefore, a program should be able to access a part of memory with no integrity

protection [143].

The solution involves the use of the most significant bit (MSB) of an address,

which is used to indicate whether the integrity of the address should be protected

or not. This implies that the upper half of virtual memory is protected and the

lower half is not and, in view of this, the program must lay out its code and

data appropriately. This static division of memory restricts processes to only

half of the memory space for secure data, although this is not a problem for

64-bit architectures [143].

B.5.3.5 Trusting program execution results

In order that the results of a program’s execution can be trusted, in spite of the

fact that communication channels from a processor may be untrusted:

• The sign msg operation is used (see table B.9);

• The signature of the security processor is provided on the message (re-

sults) concatenated with the identity/hash of the program from which the

message originated.

If there is a security kernel within the TCB, the signature of the security

processor will be calculated on the message concatenated with both the hash

of the security kernel and the hash of the program from which the message

originated.

591

Table B.9: AEGIS TE processing — sign msg operation

Implementation containing a
security kernel

Untrusted OS solution

Signing operation Sign msg is implemented as a
system call

Sign msg is implemented as
a processor instruction

B.5.4 Private tamper resistant processing

In order to allow for the provision of tamper resistant processing, the tamper

evident environment described above may be extended to support private and

authenticated operations [143].

B.5.4.1 Additional instructions

As described in table B.10, one new instruction, the set aegis mode instruction,

is added to support this mode.

Table B.10: AEGIS PTR processing instructions

Instruction Description

set aegis mode Used to enable or disable the PTR environment from TE
mode.
When this instruction is called, a static key, concatenated
with the protected program identity/hash, encrypted un-
der the public key of the security processor, must be pro-
vided. The static key can only be decrypted by a partic-
ular AEGIS processor. It is then recorded as the static
key for the protected program if and only if the encrypted
program hash received matches the hash of the program
decrypted by the AEGIS processor.
If there is a security kernel, the input to set aegis mode
must include the concatenation of the security kernel hash,
the program hash, and the static key encrypted with the
public key of the security processor.
In this instance, the processor will only decrypt the static
key if the security kernel hash matches the encrypted hash
of the security kernel received. This static key may then be
used to decrypt the accompanying application, as above.

In a PTR environment:

• All register values are considered private and protected;

592

• Whether instructions and data exported to external memory are confi-

dentiality protected is dependent on the value of the second MSB of the

address. Data stored in virtual addresses with the second MSB set are

privacy protected.

B.5.4.2 Protection of initial state

The set aegis mode instruction is used to enable or disable privacy from tamper

evident mode. The initial state is therefore validated when the initial enter aegis

instruction is called, as described in section B.5.3.2.

B.5.4.3 Protection of state on interrupts

In order to ensure the privacy of registers against software attacks when inter-

rupts occur, the TCB saves the register values in private storage in the TCB,

and then clears the registers before the untrusted interrupt handler starts —

see table B.11.

Table B.11: AEGIS PTR processing — protection of state on interrupts

Implementation containing a
security kernel

Untrusted OS solution

Interrupts Managed by the security
kernel which ensures that
states are correctly restored
after an interrupt.

The untrusted OS handles
all aspects of multitasking.
As was the case in the TE
environment, the SCM
stores all process register
values in the SCM table
when the interrupt occurs,
and restores them at the
end. In addition, for a PTR
process, once the values
have been stored in the
SCM table, the working
copy is cleared so that
interrupt handlers cannot
see previous values.

593

B.5.4.4 On-chip/Off-chip memory

The TCB also protects on-chip caches and off-chip memory so that no process

can read the private data belonging to another process.

On-chip Cache Privacy. Once again, since on-chip caches are on-chip, they

are implicitly secure from physical attack and therefore only need to be protected

from buggy software. The issues are summarised in table B.12.

Table B.12: AEGIS PTR processing — on-chip cache privacy

Implementation containing a
security kernel

Untrusted OS solution

On-chip caches Physical Attacks:
The processor chip is deemed
tamper resistant, and
therefore on-chip caches are
assumed safe from physical
attacks.

Physical Attacks:
The processor chip is
deemed tamper resistant,
and therefore on-chip caches
are assumed safe from
physical attacks.

Software attacks:
The security kernel protects
on-chip caches against
software attacks.
Virtual memory protections
and privileges are considered
adequate to protect
applications from each other.
Therefore a virtual memory
manager is included within
the security kernel to protect
the integrity and
confidentiality of memory
from software attack.

Software attacks:
In PTR mode, accesses to
private cache blocks are
allowed if and only if the
cache block SPID = the
active SPID; and the active
process is in the PTR mode.
Otherwise the block is
evicted from the cache and
reloaded.

Off-chip memory encryption When data needs to leave the chip but remain

privacy protected, it is encrypted by the TCB using symmetric encryption. Each

process uses:

• A static key to decrypt instructions and data from the received program

binary. It is obtained, encrypted under the processor public key, as input

to the set aegis mode instruction. Following its initial use, it is used to

encrypt instructions and data from the program binary when exported to

594

off-chip memory.

• A dynamic key to encrypt data generated during program execution. It is

randomly chosen by the TCB when the enter aegis instruction is called.

The authors recommend the use of AES as the symmetric encryption al-

gorithm, although this is not compulsory. In both the implementation which

contains a security kernel and in the solution which contains an untrusted OS

it is advocated that a hardware encrpytion/decryption engine is deployed.

B.5.5 Conclusions

In this appendix, the IBM 4756, XOM and AEGIS architectures have been

described.

595

