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Abstract

When a prediction is made in a classification or regression problem, it is

useful to have additional information on how reliable this individual prediction

is. Such predictions complemented with the additional information are also

expected to be valid, i.e., to have a guarantee on the outcome. Recently devel-

oped frameworks of confidence machines, category-based confidence machines

and Venn machines allow us to address these problems: confidence machines

complement each prediction with its confidence and output region predictions

with the guaranteed asymptotical error rate; Venn machines output multiprob-

ability predictions which are valid in respect of observed frequencies. Another

advantage of these frameworks is the fact that they are based on the i.i.d.

assumption and do not depend on the probability distribution of examples.

This thesis is devoted to further development of these frameworks.

Firstly, novel designs and implementations of confidence machines and

Venn machines are proposed. These implementations are based on random

forest and support vector machine classifiers and inherit their ability to pre-

dict with high accuracy on a certain type of data. Experimental testing is

carried out.

Secondly, several algorithms with online validity are designed for proteomic

data analysis. These algorithms take into account the nature of mass spec-

trometry experiments and special features of the data analysed. They also

allow us to address medical problems: to make early diagnosis of diseases and

to identify potential biomarkers. Extensive experimental study is performed

on the UK Collaborative Trial of Ovarian Cancer Screening data sets.

Finally, in theoretical research we extend the class of algorithms which

output valid predictions in the online mode: we develop a new method of

constructing valid prediction intervals for a statistical model different from

the standard i.i.d. assumption used in confidence and Venn machines.
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Chapter 1

Introduction

1.1 Motivation

In many applications of machine learning, it is crucial to know how reliable

predictions are rather than have predictions without any estimation of their

accuracy. For example, in medical diagnosis, this would give practitioners

a reliable assessment of risk error; in drug discovery, such control of the error

rate in experimental screening is also desirable since the testing is expensive

and time consuming.

In addition, it would be useful to obtain information regarding how strongly

we believe in each individual prediction rather than a whole group of predic-

tions for all objects. We will call complementing a prediction with such addi-

tional information hedging a prediction. In medical diagnosis, this would allow

us to distinguish more confident predictions from uncertain ones; in drug dis-

covery, this would make it possible to select compounds that are more likely

to exhibit bio-active behaviour for further experimental screening.

In this thesis, we are interested in machine learning algorithms which ad-

dress both of these problems: they provide a guarantee on the overall outcome

and hedge each individual prediction (provide additional information regarding

how strongly we believe in it).

There are different approaches that allow users to assess total accuracy or

hedge each prediction. Among them are such well known ones as statistical

learning theory (probably approximately correct learning, or PAC learning),

13



Bayesian learning and hold-out estimates.

In PAC learning [61], we can preset a small probability δ and have a the-

oretical guarantee that with a probability at least (1 − δ) predictions will be

wrong in at most ε cases, where the error rate bound ε is calculated depending

on δ. However, these bounds of error may often be useless as ε is likely to be

very large. Only problems with the large number of objects can benefit from

PAC learning application. In addition, PAC learning does not provide any

information on the reliability of a prediction for each object.

In contrast, Bayesian learning [28] and other probabilistic algorithms may

complement each individual prediction with such additional information. How-

ever, the main disadvantage of these algorithms is that they often depend on

strong statistical assumptions used in the model. When the data conforms

well with the statistical model, Bayesian learning outputs valid predictions.

However, if the data do not match the model (or the a priori information is

not correct), which is usually the case for real-world data, predictions may

become invalid and misleading ([65], Section 10.3).

This thesis focuses on machine learning frameworks of confidence and Venn

machines, which were introduced in [65] and represent a new generation of

hedged prediction algorithms. These newly developed methods have several

advantages. Firstly, they hedge every prediction individually rather than esti-

mate an error on all future examples as a whole. As a result, the supplementary

information which is assigned to predictions and reflects their reliability is tai-

lored not only to the previously seen examples (a training set) but also to

the new object. Secondly, both frameworks of confidence and Venn machines

produce valid results. Validity is an important property of algorithms and in

this case has a form of a guarantee that the error rate of region predictions

converges to or is bounded by a pre-defined level when the number of observed

examples tends to infinity or that a set of output probability distributions on

the possible outcomes agrees with observed frequencies. The property of va-

lidity is based on a simple i.i.d. assumption (that examples are independent

and identically distributed) or a weaker exchangeability assumption and does

not depend on the probability distribution of examples. The latter assumption

can be often satisfied when data sets are randomly permuted. The property
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of validity is theoretically proved [65] in the online mode, when examples are

given one by one and the prediction is made on the basis of the preceding

examples. Throughout this thesis, we will refer to the class of confidence ma-

chines (together with their modification, category-based confidence machines)

and Venn machines as algorithms with online validity.

Most of the methods considered in this thesis are based on the i.i.d. as-

sumption. However, in Chapter 5 we extend a class of algorithms with online

validity beyond this assumption. Our first move in this direction is a new

algorithm with the property of validity based on the following model: a linear

regression model with the i.i.d. errors with a known distribution.

Let us first briefly cover algorithms with online validity based on the i.i.d.

assumption.

Confidence machines [24; 65] and category-based confidence machines [65;

66] allow us to assign confidence to each individual prediction. This notion

of confidence should not be confused with confidence in statistical conclusions

with confidence intervals (see Section 2.2.2 for details).

Confidence machines are region predictors: in the event that a unique

prediction cannot be achieved with required confidence, the method outputs a

set (region) of possible labels. We will call such region prediction erroneous if

it does not contain a true label. The main advantage of confidence machines

is their property of validity: the rate of erroneous region predictions does

not asymptotically exceed the preset value ε, called significance level. Please

note that here and every time when referring to the error rate or accuracy

of confidence machines, we imply the error rate of region predictions rather

than singleton predictions. Confidence machines can also be forced to output

singleton predictions, but in this case we will refer to forced accuracy.

Category-based confidence machines, which are the development of confi-

dence machines, allow us to split all possible examples (combinations of an

object and a label) into several categories and set significance levels εk, one

for each category k. Category-based confidence machines can guarantee that

asymptotically we make errors on objects of type k with frequency at most

εk. Again, by errors we imply region, not singleton, predictions that do not

contain a true label.
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Thus, category-based confidence machines allow us to tackle the following

problems.

Firstly, we can guarantee not only an overall accuracy in terms of region

predictions but also a certain level of accuracy within each category of exam-

ples. In particular, in medical diagnosis we can preset the level of accuracy

within groups of healthy and diseased samples, which is similar to controlling

specificity and sensitivity. This will allow avoiding classifications when low

region specificity is compensated by high region sensitivity, or the other way

around.

Secondly, if we preset different significance levels in different categories,

we can treat accuracy within these categories in a different way. E.g., in

medical diagnosis, we can put region sensitivity or specificity first and consider

misclassification of a diseased sample more serious that misclassification of a

healthy sample.

Thus, confidence machines and category-based confidence machines output

a set of possible labels for a new object. In different applications, it can be

more useful to predict a probability of a label; e.g., in medicine clinicians may

need to predict the probability of a disease. There is a range of methods that

can output a probability distribution of a new label. However, these methods

are usually based on strong statistical assumptions about example distribution.

Hence, if the assumed statistical model is not correct, predicted probabilities

may be incorrect too. We suggest producing a set of probability distributions

by the use of another framework — Venn machines [65; 67]. A Venn machine

outputs several probability distributions, one for each candidate label. This

output is called multiprobability prediction. Similarly to confidence machines,

Venn machines are valid regardless of the example distribution: the only as-

sumption made is i.i.d.

Confidence machines, category-based confidence machines and Venn ma-

chines are not single algorithms but flexible frameworks: each of them de-

pends on a core element, and practically any machine learning method can

be used to define this core element (it is called an underlying algorithm in

this case). These core elements are a strangeness measure for confidence ma-

chines; a strangeness measure and a taxonomy for category-based confidence
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machines; a Venn taxonomy for Venn machines. Thus, the framework can

give rise to a set of different algorithms which may potentially perform well on

different types of data.

This thesis covers several problems but all of them are devoted to develop-

ment of algorithms with online validity.

The first area of research is devoted to novel designs and implementations of

such algorithms. Algorithms with online validity are flexible: practically any

known machine learning algorithm can be used as an underlying algorithm.

While these algorithms output valid predictions, the question is how informa-

tive these predictions are. For example, if the confidence machine outputs all

possible labels as a prediction, this prediction is vacuous. We refer to how

well an algorithm can make informative predictions as efficiency. Algorithms

with online validity usually inherit advantages of their underlying algorithms,

and their efficiency tends to be in line with accuracy of the underlying algo-

rithm and therefore varies across the range of underlying algorithms and also

depends on the type of data analysed. For this reason, it is crucial to develop

new implementations of algorithms with online validity that could result in

efficient predictions.

In this research we focused on random forest and support vector machine

(SVM) classifiers as underlying algorithms since both of them proved to per-

form well on certain types of data. We designed confidence and Venn ma-

chines to inherit the abilities of SVMs and random forests to perform with

high accuracy on many data sets. As a result, we developed several new

strangeness measures derived from random forests (which could be used in

confidence machines or category-based confidence machines), several versions

of Venn taxonomies based on random forests and a few implementations of

Venn taxonomies which deploy SVMs. Some of these algorithms were applied

to the analysis of microarray data of Salmonella provided by the Veterinary

Laboratories Agency (VLA) of the Department for Environment, Food and

Rural Affairs. The results are provided in Appendix C.

Another big part of research investigates application of algorithms with

online validity to data from mass spectrometry experiments, which represent

an attractive analytical method in clinical proteomic research.
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The aim of this investigation was to develop algorithms which, on the one

hand, could hedge predictions by providing a measure of reliability tailored to

each individual patient and, on the other hand, are adjusted to the analysis

of mass spectrometry data. These algorithms take into account the nature of

mass spectrometry experiments and format of mass spectrometry data as well

as special features of the data we analysed. After pre-processing is applied,

mass spectrometry data are represented by intensities of mass spectrometry

profile peaks, some of which can be crucial for different medical and veterinary

problems. Our methods could help identify profile peaks which would allow

solving such problems.

Originally, the algorithms designed in this thesis for mass spectrometry

data analysis were applied to the veterinary data provided by VLA. The ob-

jective of this study was to differentiate the vaccine Salmonella strains from

wild type strains of the same serotype (see Appendix C for data description

and the analysis results). However, the sample size was not big enough; there-

fore, to illustrate our algorithms we carried out experiments on the data of

the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS). The

results of these experiments are presented in Chapter 3.

The UKCTOCS data pertains to mass spectrometry samples taken from

women diagnosed with ovarian cancer, breast cancer or heart disease, and

healthy controls. The advantage of these data is that for each diseased sample

it is known how long in advance of the moment of clinical diagnosis or the

moment of death it was taken. In addition, for ovarian cancer, we can also

observe the dynamics of diseased patients: the data comprises serial measure-

ments taken at different moments from the same ovarian cancer patients.

These features of the UKCTOCS data allow us to investigate more complex

issues and investigate a problem of early diagnosis of diseases. Therefore, we

aimed at developing methods which would be able to contribute to medical

research and to answer the following questions:

• How early in advance of the moment of clinical diagnosis / the moment

of death can we make reliable predictions of disease diagnosis?

• Which mass spectrometry profile peaks carry information important for
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identifying diseased patients and could be potential biomarkers for early

diagnosis of diseases?

We are interested in the answer to the first question because, for such dis-

eases as ovarian cancer, it is crucial to identify the disease as soon as possible:

if ovarian cancer is diagnosed at the early stage, it may be possible to cure the

patient. Thus, we are aiming at designing the methodology which would allow

us to determine how well in advance of the moment of diagnosis/death we can

make reliable diagnosis predictions.

The second question is important since the identification of informative

mass spectrometry profile peaks would reduce the amount of work and time

required to make a new prediction.

Thus, the main thrust of the work presented in this thesis is devoted to

development of the frameworks of confidence, category-based confidence and

Venn machines, all of which are based on the i.i.d. assumption. However, as it

was mentioned earlier, in the final part of the thesis, we consider a statistical

model different from the standard i.i.d. assumption and extend the class of

algorithms with online validity. We design a new algorithm of constructing

prediction intervals for the linear regression model with the i.i.d. error with a

known distribution but not necessarily Gaussian. Even though this algorithm

is not based on the i.i.d. assumption, it has the property of validity similar to

the property of validity of confidence machines: in the online mode the errors

made by prediction intervals are independent of each other and are made with

the same probability equal to the significance level.

The code for implemented algorithms can be found on http://clrc.rhul.

ac.uk/publications/techrep.htm.

1.2 Main Contributions

The following theoretical and experimental results were achieved during the

work on this thesis.
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1.2.1 Design of Algorithms with Online Validity

New implementations of known algorithms with online validity were designed.

Among them are:

• several strangeness measures based on random forests, which can be used

in confidence machines and category-based confidence machines

• several versions of Venn taxonomies derived from random forests

• several versions of Venn taxonomies based on SVMs

We performed extensive experimental study on different data sets (includ-

ing Salmonella microarray data provided by VLA) to ensure that proposed

algorithms are applicable; we further gave recommendations on their use.

1.2.2 Algorithms with Online Validity for Proteomics

Several algorithms with online validity were developed for mass spectrome-

try data analysis. These algorithms take into account the nature of mass

spectrometry experiments, the format of mass spectrometry data and special

features of the analysed data: serial samples and triplet setting. In addition,

they allow us to pinpoint important mass spectrometry profile peaks, which

could be potential biomarkers for early diagnosis of diseases.

The designed algorithms are the following:

• a category-based confidence machine with the strangeness measure based

on linear rules

• a Venn machine with the Venn taxonomy derived from logistic regression

(developed in collaboration with Ilia Nouretdinov)

• confidence machines in the triplet setting

Extensive experimental study was performed on the UKCTOCS data sets in

order to confirm algorithm applicability. The methods were also applied to

the mass spectrometry data provided by VLA (see Appendix C).

Besides application of algorithms with online validity, we carried out other

types of analysis of mass spectrometry data:

20



• triplet statistical analysis of serial samples of the UKCTOCS ovarian

cancer data set (see Appendix B)

• machine learning analysis of the UK ovarian cancer population study

(UKOPS) data [56; 59]

All these studies allowed us to make tentative conclusions related to med-

ical research. Firstly, we achieved good classification results on experimental

mass spectrometry data of ovarian cancer and breast cancer. Secondly, pro-

posed methodologies allowed us to estimate how long in advance we can output

accurate predictions for these diseases. Thirdly, developed algorithms with on-

line validity confirmed mass spectrometry profile peaks which were identified

in the triplet analysis as carrying statistically significant information for dis-

crimination between healthy and diseased patients. These mass spectrometry

profile peaks could be potential biomarkers.

1.2.3 An Algorithm with Online Validity in the Linear

Regression Model

A new method of constructing region predictions for the linear regression model

with the i.i.d. error with a known distribution, not necessarily Gaussian, was

designed. The method has the property of validity. The coverage probability

of prediction intervals is equal to the preset confidence level not only uncon-

ditionally but also conditionally given a natural σ-algebra of invariant events.

As a result, in the online mode the errors made by prediction intervals are in-

dependent of each other and are made with the same probability equal to the

significance level. The experiments were carried out on artificially generated

data and the real-world ChickWeight data ([14], Example 5.3; [30], Table A.2).

My contribution to this research comprises a proof of Lemma 5.1, which

made the construction of prediction intervals consistent, and computational

experiments laid out in Section 5.7.
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sis of TSE proteomic data”.
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1.4 Outline of the Thesis

This introductory chapter has given the motivation behind the research car-

ried out in this thesis and has briefly described areas of research. The main

contributions and publications have also been summarised.

The rest of the thesis is organised as follows.

Chapter 2 gives the background of the problem. It is devoted to known al-

gorithms with online validity (confidence machines, category-based confidence

machines and Venn machines) and compares them to other algorithms which

hedge predictions or estimate algorithm accuracy.

In Chapter 3, new implementations of algorithms with online validity are

proposed and investigated: confidence machines constructed by the use of

random forests, Venn machines based on random forests and Venn machines

with a taxonomy derived from an SVM.

In Chapter 4, we design and apply methodologies which provide valid pre-

dictions for mass spectrometry data analysis.

Chapter 5 extends the class of algorithms with online validity and intro-

duces a new interval predictor which has the property of exact validity under

the linear regression model with i.i.d. errors with a known distribution.

Chapter 6 gives the conclusion to the thesis, outlines its main contributions

and provides directions for further research.

In Appendix, the reader can find additional experimental results, the triplet

analysis of the UKCTOCS ovarian cancer data set and results of the application

of algorithms with online validity to the data sets provided by VLA.
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Chapter 2

Overview of Algorithms with

Online Validity

In this chapter, we describe known algorithms which estimate algorithm ac-

curacy or hedge each individual prediction complementing it with additional

information about how strongly we trust it.

Firstly, we cover the methods we are focusing on in this thesis: confidence

machines [24; 65] and category-based confidence machines [65; 66], which out-

put region predictions, as well as Venn machines [65; 67], which output multi-

probability predictions. We unite these methods under the term of algorithms

with online validity. We give precise definitions and describe related notions

that will be used throughout the thesis. We explain how performance of their

predictions is measured by means of validity and efficiency and what guaran-

tees are provided by these methods. We also show some implementations.

In addition, we demonstrate advantages of frameworks with online validity:

we compare them with other known approaches that estimate overall accu-

racy or hedge individual predictions, including confidence intervals, statistical

learning theory and probabilistic approaches.

2.1 Algorithms with Online Validity

Most of the definitions and notation presented in this section follow [65], where

algorithms with online validity were proposed and described in detail.
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2.1.1 The Problem and Assumptions

Throughout the thesis, we consider the problem laid out below.

Let us assume that we are given a training set of successive pairs

(x1, y1), . . . , (xn−1, yn−1),

which are called examples. Each example consists of an object xi ∈ X (a vector

of attributes) and a label yi ∈ Y. Objects are elements of a measurable space

X called the object space, labels are elements of a measurable space Y called

the label space. We denote examples by zi = (xi, yi), and they are elements of

a measurable space Z = X×Y called the example space.

Finally, we are given a new object xn and are later announced its label yn.

Our general goal is to predict the label yn for xn.

According to the type of the label space, the problem usually falls into one

of the following two categories: classification and regression. If the space of

labels consists of a finite number of labels, that is, Y = {yn}, n = 1, . . . , N ,

this problem is called a classification problem. This category includes prob-

lems of medical diagnosis and hand-written digit recognition. The problem of

predicting a label out of a set of real numbers (Y = R) is called regression.

This type of problems is considered in stock price prediction and many econo-

metric problems. There are problems different from both classification and

regression (for instance, ordinal regression), but we are not considering them

in this thesis.

To construct a reliable algorithm, we need to make some assumptions on

the data generating mechanism. Our standard assumption used in the most of

the thesis (for confidence machines, category-based confidence machines and

Venn machines) is the i.i.d. assumption. The examples zi are assumed to be

generated independently by the same probability distribution P on Z, i.e., the

infinite sequence of examples z1, z2, . . . is drawn from the power probability

distribution P∞ on Z∞ (Z∞ is the set of all infinite sequences of elements of

Z).

Usually the assumption which is needed is slightly weaker. This is the

exchangeability assumption that the infinite sequence z1, z2, . . . is drawn from
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the probability distribution Q on Z∞, which is exchangeable. This means

that for every positive integer n, every permutation π of {1, . . . , n} and every

measurable set E ⊆ ZN ,

P{(z1, z2, . . .) ∈ Z∞ : (z1, . . . , zn) ∈ E}

= P{(z1, z2, . . .) ∈ Z∞ : (zπ(1), . . . , zπ(n)) ∈ E} . (2.1)

Both exchangeability and i.i.d. assumption are much weaker than most

probabilistic assumptions since we do not require to know the distribution

itself. The exchangeability assumption can be often satisfied when data sets

are randomly permuted.

2.1.2 Confidence Machines

If in a problem of classification or regression we simply attempt to predict a

label for a new object, we look for a function of the type

F : Z∗ ×X → Y,

which we call a simple predictor. Such predictor for any finite sequence of

labelled objects (x1, y1), . . . , (xn−1, yn−1) and a new object xn without a label

outputs F (x1, y1, . . . , xn−1, yn−1, xn) as its prediction for a new label yn.

However, as it was mentioned in the introduction, it is useful to have any

information regarding how much we trust this predictions. For this reason, we

would like a predictor to output a range of predicted labels, each one comple-

mented with a degree of its reliability. Such predictor would output smaller

subsets of the label space which it finds less reliable and bigger subsets which

are more reliable. This can be achieved by the use of confidence machines,

whose framework was introduced and described in detail in [24; 65]. Here

we lay out the basic concepts and mostly follow the notation used in these

publications.

According to the type of their output, confidence machines are confidence

predictors rather than simple predictors. Confidence predictors have an ad-
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ditional parameter ε ∈ (0, 1) called the significance level. Its complementary

value 1− ε is called the confidence level and reflects our confidence in the pre-

diction. Confidence predictor for any given finite sequence of labelled objects

(x1, y1), (x2, y2), . . ., a new object xn without a label and significance level ε

outputs a subset of the label space:

Γε(x1, y1, . . . , xn−1, yn−1, xn),

so that

Γε1(x1, y1, . . . , xn−1, yn−1, xn) ⊆ Γε2(x1, y1, . . . , xn−1, yn−1, xn) (2.2)

for any ε1 ≥ ε2. This means that prediction regions for different ε represent

nested subsets of Y and by changing the significance level ε we can regulate

the size of the output prediction.

Thus, a confidence predictor is a measurable function Γ : Z∗×X× (0, 1) →
2Y that satisfies (2.2) for all significance levels ε1 ≥ ε2, all n ∈ N and all data

sequences x1, y1, . . . , xn−1, yn−1, xn.

We say that a confidence predictor makes an erroneous prediction if the

output region Γε(x1, y1, . . . , xn−1, yn−1, xn) does not contain a true label yn.

When the error rate or accuracy of confidence predictors is mentioned in this

thesis, we imply errors made by region predictions rather than singleton pre-

dictions.

The main advantage of confidence machines is their property of validity :

the asymptotic number of errors, that is, erroneous region predictions, can be

controlled by the significance level — the error rate we are ready to tolerate

which is predefined by the user (the prediction is considered to be erroneous if

it does not contain the true label). All precise definitions will be given later.

However, the property of validity is achieved at the cost of producing re-

gion predictions : instead of outputting a single label as a prediction, we may

produce several of them any of which may be correct. Predictions that contain

no labels are called empty predictions, those that contain one label are called

certain predictions, and those comprising more than one label multiple predic-

tions. Such multiple predictions are not mistakes: they are output when the
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confidence machine is not provided with sufficient information for producing

valid predictions at a certain error rate. Informativeness, or in other words

efficiency, of a confidence machine can be translated as its ability to produce

as small region predictions as possible. Thus, we have to balance validity (the

error rate) and efficiency (the number of labels in each prediction): lower error

rates will result in larger region predictions, and vice versa. This feature makes

confidence machines a very flexible tool.

2.1.2.1 Definitions

The general idea of confidence machines is to try every possible label y as a

candidate for xn’s label and see how well the resulting pair (xn, y) conforms

with (x1, y1), . . . , (xn−1, yn−1). The ideal case is when exactly one y conforms

with the rest of the sequence and all others do not — we can then be confident

in this prediction.

First, we need to define the notion of a strangeness measure, which is the

core of confidence machines. A strangeness measure is a set of measurable

mappings {An : n ∈ N} of the type

An : Z(n−1) × Z → (−∞, +∞] ,

where Z(n−1) is the set of all bags (multisets) of elements of Z of size n−1. This

strangeness measure will assign a strangeness score αi ∈ R to every example

in the sequence {zi, i = 1, . . . , n} including a new example and will evaluate

its ‘strangeness’ in comparison with the rest of the data:

αi := An(Hz1, . . . , zi−1, zi+1, . . . , znI, zi), i = 1, . . . , n , (2.3)

where H. . .I denotes a multiset. A specific strangeness measure An depends

on a particular algorithm to be used and can be based on many well-known

machine learning algorithms.

When considering a hypothesis yn = y and after finding the corresponding

strangeness scores α1, . . . , αn for a full sequence with label y for the last ex-

ample, a natural way to compare αn to the other αis is to look at the ratio of
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examples that are as least as strange as the new example, that is, to calculate

pn(y) =
|{i = 1, . . . , n : αi ≥ αn}|

n
.

This ratio is called the p-value associated with the possible label y for xn.

Thus, we can compliment each label with a p-value that shows how well the

example with this label conforms with the rest of the sequence in comparison

with other objects in the sequence.

Finally, the p-values calculated above can produce a confidence predictor:

the confidence machine determined by the strangeness measure An, n ∈ N and

a significance level ε is a measurable function

Γ : Z∗ ×X× (0, 1) → 2Y

(2Y is a set of all subsets of Y) that defines the prediction set Γ(ε)(x1, y1, . . . ,

xn−1, yn−1, xn) as the set of all labels y ∈ Y such that pn > ε. Thus, for any

finite sequence of examples with labels, (x1, y1, . . . , xn−1, yn−1), a new object

without a label xn and a significance level ε, the confidence machine outputs

a region prediction Γ(ε) — a set of possible labels for a new object.

Confidence machines defined above are conservatively valid [65, Section

2.1]. To explain what it means, we need to introduce some formal notation.

Let ω = (x1, y1, x2, y2, . . . ) denote the infinite sequence of examples. Let us

express the fact of making an erroneous prediction as a number:

errε
n(Γ, ω) :=

1 if yn 6∈ Γε(x1, y1, . . . , xn−1, yn−1, xn),

0 otherwise.

If ω is drawn from a probability distribution P , which is assumed to be ex-

changeable, the error at the n-th step errε
n(Γ, ω) is the realised value of a

random variable, which may be denoted by errε
n(Γ, P ).

Confidence predictor is called conservatively valid if for any exchangeable

probability distribution P on Z∞ there exist a probability distribution with
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two families

(ξ(ε)
n : ε ∈ (0, 1), n = 1, 2, . . .), (η(ε)

n : ε ∈ (0, 1), n = 1, 2, . . .)

of {0, 1}-valued random variables such that:

• for a fixed ε, ξ
(ε)
1 , ξ

(ε)
2 , . . . is a sequence of independent Bernoulli variables

with parameter ε, i.e., the sequence of independent random variables each

of which is equal to one with probability ε and zero with probability 1−ε;

• η
(ε)
n ≤ ξ

(ε)
n for all n and ε;

• the joint distribution of errε
n(Γ, P ), ε ∈ (0, 1), n = 1, 2, . . ., coincides

with the joint distribution of η
(ε)
n , ε ∈ (0, 1), n = 1, 2, . . ..

To put it simply, a confidence predictor is conservatively valid if it is dominated

in distribution by a sequence of independent Bernoulli random variables with

parameter ε.

It can be shown [65, Proposition 2.2] that the property of conservative va-

lidity leads to the property of asymptotical conservativeness: asymptotically,

the frequency of errors made by a confidence machine (that is, cases when the

prediction set Γε does not contain a real label) does not exceed ε subject to

the i.i.d. assumption. Strictly speaking, confidence predictor is called asymp-

totically conservative if for any exchangeable probability distribution P on Z∞

and any significance level ε,

lim sup
n→∞

∑n
i=1 errε

n(Γ)

n
≤ ε

with probability one.

It is shown in [65] that all confidence machines are conservatively valid and

therefore asymptotically conservative. Throughout this thesis, when using

the term validity with respect to confidence machines, we will imply both

properties of conservative validity and asymptotical conservativeness (since

the latter is the consequence of the former).

The property of validity is proved only for the online mode, that is, when we

observe each example one by one and make each prediction taking into account
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the information only regarding the examples considered before rather than

predict on the basis of a certain rule extracted from a fixed set of examples. The

latter setting is called the offline mode. Nevertheless, validity is empirically

proved to remain in the offline mode [65].

For each individual object, it is possible to choose such a significance level

that the confidence machine outputs a singleton prediction. It is equivalent to

predicting a single label with the highest p-value (as for now let us assume that

there exist the only highest p-value). However, in this case significance levels

will vary across the range of objects and the property of validity will not hold.

We will refer to this alternative way of presenting the results of confidence ma-

chine application as forced prediction and will use it in this thesis for artificial

comparison with simple predictors, which output singleton predictions. The

accuracy of forced prediction is called forced accuracy.

Finally, each prediction can be complemented with two indicators:

• confidence: sup{1− ε : |Γε| ≤ 1}

• credibility : inf{ε : |Γε| = 0}

In the case of classification, credibility is equal to the maximum value of all

possible p-values, and confidence equals 1 less the second maximum p-value.

When the number of classes is two, credibility is a maximum of two p-values,

confidence equals 1 less the other p-value.

Confidence and credibility can be very informative when forced predictions

are made. The confidence shows how confident we are in rejecting the other

labels, and high confidence means that the alternative hypothesis is excluded

by having a low p-value. The credibility demonstrates how well the chosen

label conforms with the rest of the set, so high credibility checks whether the

prediction itself does not have too small a p-value.

Thus, these two characteristics reflect how reliable predictions are. The

forced prediction is considered to be reliable if its confidence is close to 1 and

credibility is not close to 0 (because if a label does not match an object, the

p-value must be close to 0). An interesting case of low credibility indicates

that a new object itself is not representative of the training set.
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P -values in Statistics and Confidence Machines

The definition of p-values introduced in this section differs from the classical p-

value definition in statistics. These two types of p-values are different notions,

but they bear the same name because of similar properties. For confidence

machines, the probability of the event that the p-value does not exceed 0 < γ ≤
1 is not greater than γ for any i.i.d. probability distribution on Z∞. Moreover,

for smoothed confidence machines, which are the modification of confidence

machines and are described in Section 5.1, similar property coincides with the

property of statistical p-values:

P(p-value ≤ γ) = γ

for any 0 < γ ≤ 1 and any i.i.d. probability distribution P on Z∞.

In order to avoid confusion, it should be noted that in this thesis we are not

working in a classical statistical context: there is no estimation of the risk —

the probability that the classifier errs — on the whole population of objects.

On the contrary, we calculate p-values for each object and each hypothetical

label, aim at rejecting the hypothesis that the resulting sequence is i.i.d. and

estimate our confidence in individual prediction.

Throughout the thesis we always use p-values as defined for confidence

machines, not statistical p-values. The only exception is Appendix B, where

we carry out statistical analysis of the UKCTOCS ovarian cancer data set and

calculate statistical p-values by the use of the Monte-Carlo method in order to

estimate statistical significance of classification results we obtain.

2.1.2.2 Strangeness Measure Examples

There are different ways to define the strangeness measure, the core element of

any confidence machine. Almost any machine learning algorithm can be used

to construct it. There are known implementations based on such algorithms as

SVMs [27; 52], k-nearest neighbours [49], nearest centroid [6], linear discrim-

inant [60], naive Bayes [60], kernel perceptron [37]. The most successful and

the most widely used ones have been strangeness measures derived from k-

nearest neighbour and SVM algorithms. Confidence machines based on these
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strangeness measures will be referred to as CM-kNN (where k is a number

of nearest neighbours) and CM-SVM, respectively.

A k-nearest-neighbour strangeness measure proved to produce confidence

machines highly efficient on many data sets in spite of its primitivity [49; 65].

It is applicable in the case of classification. We are given a bag of exam-

ples H(x1, y1), . . . , (xn, yn)I and need to define a strangeness score of example

(xi, yi):

αi = An(H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I, (xi, yi)) .

We assume that the objects are vectors in a Euclidian space. We then define

the strangeness measure using the idea of the k-nearest neighbour algorithm.

We calculate distances from the object xi to all other objects in a bag

d(xj, xi), j = 1, . . . , i−1, i+1, . . . , n and find the k objects that are the closest

to xi among those who have the same label yi as xi. We denote these selected

k examples by (xis , yis), s = 1, . . . , k. Similarly, we find the k objects that are

the closest to xi among the ones with labels other than yi; they will be denoted

by (xjs , yjs), s = 1, . . . , k. Finally, we define the strangeness measure as

An(H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I, (xi, yi))

:=

∑k
s=1 d(xi, xis)∑k
s=1 d(xi, xjs)

. (2.4)

This implies that an object is considered to be nonconforming if it is far from

objects with the same label and close to objects labelled in a different way.

Another strangeness measure considered in this thesis is based on the SVM

algorithm, which was proposed in [61]. This strangeness measure was originally

designed and used in [25; 27; 52; 65] for the problem of binary classification

when possible labels are Y = {−1, 1}.
We assume that objects in the bag H(x1, y1), . . . , (xn, yn)I are vectors in a

dot product space H and consider the quadratic optimisation problem

1

2
(ω · ω) + C

(
n∑

i=1

ξi

)
→ min,
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where C > 0 is fixed and the variables w ∈ S, ξ = (ξ1, . . . , ξn)′ ∈ Rn, b ∈ R are

subject to the constraints

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.

If this optimisation problem has a solution, it is unique. We will denote it

the same way: w, ξ = (ξ1, . . . , ξn)′, b. The hyperplane w · x + b = 0 is called

the optimal separating hyperplane. It determines predictions for new objects:

if w · x + b > 0, then we output 1 as prediction, −1 otherwise.

If we apply a transformation F : X → H mapping objects into the feature

vectors F (xi) ∈ H, where H is a dot product space, this will replace xi by

F (xi) in the optimisation problem above. Then one can apply the Lagrange

method assigning a Lagrange multiplier αi to each inequality above. If we

define K(xi, xj) = F (xi) · F (xj), the modified problem (also called the dual

problem) is the following:

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj) → max,

n∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n.

Lagrange multipliers αi found as solutions of this problem can be inter-

preted the following way: αi > 0 only for support vectors, which are bound-

ary examples, define the hyperplane and are therefore considered as the least

conformal training examples; αi = 0 for examples which conform well with

the SVM model. Hence the solutions of the dual problem αi can be used as

strangeness scores.

The SVM strangeness measure introduced above is applicable only to bi-

nary classification problems. However, we can also use it when addressing

multilabel classification (i.e., when |Y | > 2). In such cases, we will apply the

one-against-one procedure: when calculating strangeness scores, we will con-

sider several auxiliary binary classification problems instead of one multilabel

classification. In these auxiliary problems, we will discriminate between every
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two available classes.

If A is an SVM strangeness measure, the strangeness measure A′ for mul-

tilabel classification is calculated as

A′(H(x1, y1), . . . , (xl, yl)I, (x, y)) := max
y′ 6=y

(A(By,y′ , (x, 1))),

where By,y′ is the bag obtained from the original bag H(x1, y1), . . . , (xl, yl)I
the following way: we remove all examples (xi, yi) with yi 6∈ {y, y′}, replace

each (xi, y) with (xi, 1) and replace each (xi, y
′) with (xi,−1). In words, each

strangeness score is the maximum one out of all strangeness scores obtained

in auxiliary binary classification problems.

Thus, when computing one strangeness score, we consider |Y |−1 auxiliary

binary classification problems. When applying a conformal predictor, we have

to compute strangeness scores for all examples and for all hypotheses y ∈ Y,

and 3|Y |(|Y | − 1)/2 auxiliary binary classification problems are required.

2.1.3 Category-Based Confidence Machines

Confidence machines allow us to obtain a guaranteed error rate which does not

exceed the predetermined value. However, we may encounter certain applica-

tions, when we know that certain objects are easier to correctly classify than

others. For example, in medical diagnosis men may be more easily diagnosed

than women, or it is more likely to misclassify a healthy patient than a dis-

eased one. In this case, confidence machines will guarantee the overall error

rate; however, they may result in the higher actual error rate on harder groups

of objects and the lower one on easier groups of objects. We will therefore not

be able to guarantee the error rate within these groups.

Category-based confidence machines, also known as Mondrian conformal

predictors in [65; 66], represent the extension of confidence machines and allow

us to tackle this problem. They split all possible examples into categories (such

as, healthy and diseased patients, or categories according to their sex, age etc)

and set significance levels εk, one for each category k. As a result, category-

based confidence machines can guarantee that asymptotically the predictions

for objects of each type k are erroneous with frequency at most εk.
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Thus, category-based confidence machines allow us to solve two main prob-

lems:

• We can guarantee not only an overall accuracy, but also a certain level

of accuracy within each category of examples. In particular, in medical

diagnosis we can preset required accuracy rates among healthy and dis-

eased samples. We will call these rates regional specificity and regional

sensitivity, respectively. This will allow avoiding classifications when low

regional specificity is compensated by high regional sensitivity or the

other way around.

• If we preset different significance levels for different categories, we can

treat them in a different way: e.g., in medical diagnosis we could put

regional sensitivity first and consider a misclassification of a diseased

sample more serious that misclassification of a healthy sample.

The difference in constructing category-based confidence machines is that

we compare strangeness of (xn, y) not with all examples in the sequence but

only with the category that can correspond to certain types of labels, objects

and (or) the ordinal number of the example. This approach will allow us to

achieve validity within categories (or conditional validity): the asymptotic er-

ror rate within these categories will not exceed the significance level determined

beforehand.

2.1.3.1 Definitions

Let us again assume that we are given a training set of examples (x1, y1), . . . ,

(xn−1, yn−1) and our goal is to predict the classification yn for a new object xn.

Division into categories is determined by a Mondrian taxonomy, or simply

taxonomy. It is a measurable function κ : N × Z → K, where K is the

measurable space (at most countable with the discrete σ-algebra) of elements

called categories, with the following property: the elements κ−1(k) of each

category k ∈ K form a rectangle A × B, for some A ⊆ N and B ⊆ Z. In

words, a taxonomy defines a division of the Cartesian product N × Z into

categories.
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A category-based strangeness measure related to a taxonomy κ is a family

of measurable functions {An : n ∈ N} of the type

An : Kn−1 × (Z(∗))K ×K × Z → R̄,

where (Z(∗))K is a set of all functions mapping K to the set of all bags of

elements of Z. This strangeness measure will again assign a strangeness score

αi to every example in the sequence zi := (xi, yi), i = 1, . . . , n including a new

example and will evaluate ‘nonconformity’ between a set and its element:

αi := An(κ1, . . . , κn−1,

(k 7→ Hzj : j ∈ {1, . . . , i− 1, i + 1, . . . , n} & κj = kI), κn, zi) ,

where κi := κ(i, zi) for i = 1, . . . , n such that κi = κn.

When calculating a p-value, we will compare αn not to all other αis but

only to those within the category of the new example, that is, the p-value

associated with the possible label y for xn is defined as

pn(y) =
|{i = 1, . . . , n : κi = κn & αi ≥ αn}|

|{i = 1, . . . , n : κi = κn}|
.

Finally, the category-based confidence machine determined by the category-

based strangeness measure An and a set of significance levels εk, k ∈ K is

defined as a measurable function Γ : Z∗ × X × (0, 1)K → 2Y such that the

prediction set Γ(εk:k∈K)(x1, y1, . . . , xn−1, yn−1, xn) is defined as the set of all

labels y ∈ Y such that pn > εκ(n,(xn,y)). Thus, for any finite sequence of

examples with labels (x1, y1, . . . , xn−1, yn−1), a new object without a label xn

and a set of significance levels εk, k ∈ K for each category, the category-based

confidence machine outputs a region prediction Γ(εk:k∈K) — a set of possible

labels for a new object.

The category-based confidence machine defined above is conditionally con-

servatively valid : asymptotically, the frequency of errors made by category-

based confidence machine (that is, cases when prediction set Γεk does not

contain a real label) on examples in category k does not exceed εk for each k.
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Strictly speaking, for any exchangeable probability distribution P on Z∞, any

category k ∈ K and any significance level εk,

lim sup
n→∞

∑
1≤i≤n,κ(i,(xi,yi))=k errεk

n (Γ)

|{i : 1 ≤ i ≤ n, κ(i, (xi, yi)) = k}|
≤ εk

with probability one, where errεk
n (Γ) is equal to 1 when the prediction set Γεk

does not contain a real label yn and 0 otherwise. Thus, we guarantee the as-

ymptotical error rate not only within all examples but also within categories.

Similarly to validity, the property of conditional validity is proved only for the

online mode, but it is empirically shown to remain in the offline mode [65].

When referring to conditional validity of category-based confidence machines

throughout this thesis, we will always imply the property of conditional con-

servative validity.

Category-based confidence machines can be forced to make singleton pre-

dictions the same way as confidence machines: they can output labels with

the highest p-values. In this case, we can similarly compute forced predic-

tions, their confidence, credibility and overall forced accuracy. Examples of

the output of category-based confidence machines are given in Table 4.1, which

provides true labels (‘True diagnosis’), forced predictions (‘Predicted diagno-

sis’), p-values for two possible labels (0 and 1), confidence and credibility. The

detailed explanation is also provided in Section 4.4.1.1.1.

2.1.3.2 Taxonomy Examples

Category-based confidence machines are defined by two elements: a strange-

ness measure and a taxonomy. Any strangeness measure embedded in con-

fidence machines could be used when defining a category-based strangeness

measure.

Important types of category-based confidence machines according to the

type of their taxonomies are the following.

• Confidence machines. A category-based confidence machine with one

single taxonomy κ(n, (xn, yn)) = 1 turns into a confidence machine.

Hence confidence machines represent a type of category-based confidence
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machines, not the other way around.

• Label-conditional confidence machines. The category of an exam-

ple is determined by its label κ(n, (xn, yn)) = yn, i.e., the taxonomy

consists of several categories each of which corresponds to a single label.

Hence p-values are calculated as follows:

pn(y) =
|{i = 1, . . . , n− 1 : yi = y & αi ≥ αn}|+ 1

|{i = 1, . . . , n : yi = y}|
, (2.5)

For example, in medical diagnosis we can consider categories of healthy

and diseased patients. This taxonomy will allow us to guarantee the

accuracy within these classes: regional specificity and regional sensitivity.

• Attribute-conditional confidence machines. The category of an

example is determined by its attributes: κ(n, (xn, yn)) = f(xn). For

instance, we can consider categories which correspond to old/young pa-

tients, men/women or different combinations of these features.

• Inductive confidence machines. The category of an example is deter-

mined only by its ordinal number in the sequence. We fix the ascending

sequence of positive integers 0 < m1 < m2 < . . ., which are the bor-

ders of different categories, and consider examples with ordinal numbers

{1, . . . ,m1}, {m1 + 1, . . . ,m2}, {m2 + 1, . . . ,m3} etc as examples of cat-

egories 1, 2, 3 etc, respectively.

The p-values are then defined in the following way. If n ≤ m1,

pn(y) :=
|i = 1, . . . , n : αi ≥ αn|

n
,

where

αi := An(H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn−1, yn−1),

(xn, y)I, (xi, yi)), i = 1, . . . , n− 1 ,

αn := An(H(x1, y1), . . . , (xn−1, yn−1)I, (xn, y)).
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Otherwise, we find the k such that mk < n ≤ mk+1 (e.i., find the category

of the sample) and set

pn(y) :=
|{i = mk + 1, . . . , n : αi ≥ αn}|

n−mk

,

where the strangeness scores αi are defined by

αi := Amk+1(H(x1, y1), . . . , (xmk
, ymk

)I, (xi, yi)), i = mk + 1, . . . , n− 1,

αn := Amk+1(H(x1, y1), . . . , (xmk
, ymk

)I, (xn, y)).

2.1.4 Venn Machines

Machine learning applications may require prediction of a label complemented

with the probability that this prediction is correct. For example, in medical

diagnosis, one may need to predict the probability of a disease (disease risk)

rather than make a diagnosis. Different machine learning methods can output

probabilistic predictions, i.e., a probability distribution of the unknown label

y for a new object xn. We will call this type of methods probability predic-

tors. However, most of probability predictors are based on strong statistical

assumption which do not hold true for real-world data. Therefore, when the

assumed statistical model is incorrect, the algorithm may output invalid pre-

diction (Detailed description of limitations of probabilistic methods, including

Bayesian approach, is given in Section 2.2.4.). The framework of Venn ma-

chines, which were introduced in [65; 67], also allows us to produce probability

distributions, but their predictions are valid under a simple i.i.d. assumption.

Venn machines output multiprobability predictions — a set of probability

distributions of a label. This output can be also interpreted in a different way:

as a prediction with the assigned interval of probability that this prediction

is correct. Venn machine outputs are always valid (precise definitions will be

given later). The property of validity is based only on the i.i.d. assumption,

that the data items are generated independently from the same probability dis-

tribution. This assumption is much weaker than any probabilistic assumption,

which allows Venn machines to produce valid predictions without knowing a
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real distribution of examples.

Venn machines represent a framework that can generate a range of different

algorithms. Similarly to confidence machines, practically any known machine

learning algorithm can be used as an underlying algorithm in this framework

and thus result in a new Venn machine. However, regardless of the underlying

algorithm, Venn machines output valid results.

In brief, Venn machine functionality can be described as follows. First, we

are given a division of all examples into categories. Then since we do not know

the true labels of the new object, we try every possible label as a candidate

for its label. For each hypothesis about the possible label, we classify the

new object into one of the categories and then use empirical probabilities of

labels in the chosen category, that is, frequencies of true labels, as predictable

distribution of the new object’s label. As a result, the category assigned to

an example depends not only on the example itself but also on its relation to

the rest of the data set. Thus, the Venn machine outputs several probability

distribution rather that one, one for each hypothesis about the new label.

2.1.4.1 Definitions

Venn machines can be applied only to the problem of classification (|Y| ∈
N). Let us consider a training set consisting of object, xi, label, yi, pairs:

(x1, y1),. . . ,(xn−1, yn−1). To predict a label yn for a new object xn, we check

different hypotheses

yn = y , (2.6)

each time including the pair (xn, yn) into the set.

The idea of Venn machines is based on a taxonomy function An : Z(n−1) ×
Z → T , n ∈ N, which classifies the relation between an example and the bag

of the other examples:

τi = An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I) . (2.7)

Values τi are called categories and are taken from a finite set T = {τ1, τ2,

. . . , τk}. Equivalently, a taxonomy function assigns to each example (xi, yi) its

category τi, or, in other words, groups all examples to a finite set of categories.
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This grouping should not depend on the order of examples within a sequence.

As one can see, Venn taxonomies are different from Mondrian taxonomies

used in category-based confidence machines. The category assigned in a Mon-

drian taxonomy does not depend on other examples in the training set but

may be dependent on the ordinal number of the example in the sequence.

In contrast, categories of Venn taxonomies are determined by the rest of the

training set but cannot be dependent on their order in the sequence.

The conventional way of using Venn ideas was as follows. Categories are

formed using only the training set. For each non-empty category τ , the follow-

ing values are calculated: Nτ is the total number of examples from the training

set assigned to category τ , and Nτ (y
′) is the number of examples within cat-

egory τ that are labelled with y′. Then empirical probabilities of an object

within category τ to have a label y are found as

Pτ (y
′) =

Nτ (y
′)

Nτ

. (2.8)

Now, given a new object xn with the unknown label yn, one should assign

it somehow to the most likely category of those already found using only the

training set; let τ ∗ denote it. Then the empirical probabilities Pτ∗(y′) are

considered as probabilities of the object xn to have a label y′. The idea of

confidence machines allows us to construct several probability distributions of

a label y′ for a new object. First we consider a hypothesis that the label yn

of a new object xn is equal to y (yn = y). Then we add the pair (xn, y) to

the training set and apply the taxonomy function A to this extended sequence

(x1, y1), . . . , (xn−1, yn−1), (xn, y). This groups all the elements of the sequence

to categories. Let τ ∗(xn, y) be the category containing the pair (xn, y). Now for

this category we calculate, as previously, the values Nτ∗ , Nτ∗(y′) and empirical

probability distribution

Pτ∗(xn,y)(y
′) =

Nτ∗(y′)

Nτ∗
, y′ ∈ Y . (2.9)

This distribution depends implicitly on the object xn and its hypothetical

label y. Trying all possible hypotheses of the label yn being equal to y, we
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obtain a set of distributions Py(y
′) = Pτ∗(xn,y)(y

′) for all possible labels y.

These distributions in general will be different as when changing the value

of y, we, in general, change grouping into categories, the category τ ∗(xn, y),

containing the pair (xn, y), the numbers Nτ∗ and Nτ∗(y′). Thus, as the output

of Venn predictors, we obtain as many probability distributions as the number

of possible labels.

Venn machines are valid in the sense of agreeing with the observed frequen-

cies (for details, see [65]). Among the first writers on frequentist probabilities

we could name John Venn ([62]) and Richard von Mises ([41], [42]). The va-

lidity of Venn machines is based on special testing by supermartingales and

is a generalisation of the notion of valid probabilistic prediction. A formal

definition of validity is beyond the scope of the thesis and can be found in [65].

We will just state a corresponding theorem here:

Theorem 2.1 (Vovk, Gammerman and Shafer, 2005) Every Venn pre-

dictor is an N-valid multi-probability predictor. 2

In this thesis we do not consider theoretical properties of Venn machines but

run an empirical study of different implementations of this framework.

The original output of Venn machines is complex: it consists of several

label probability distributions. However, this output can be interpreted in a

simpler way. We can force Venn machines to make singleton predictions so

that each prediction is complemented with an interval that the prediction is

correct. Similarly to confidence machines, we will call this type of singleton

predictions forced predictions and corresponding accuracy — forced accuracy.

Forced predictions are made as follows. After calculating empirical proba-

bility distributions Py(y
′), y, y′ ∈ Y we compute the quality of each prediction

y′: q(y′) = miny∈Y Py(y
′) and then predict the label with the highest quality

ypred = arg maxy′∈Y q(y′). We complement this singleton prediction with a

probability interval

[min
y∈Y

Py(ypred), max
y∈Y

Py(ypred)] (2.10)

as the interval for the probability that this prediction is correct. If this interval

is denoted by [a, b], the complementary interval [1− b, 1−a] is called the error
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probability interval, and its ends 1− b and 1− a are referred to as lower error

probability and upper error probability, respectively.

In a binary classification problem (when Y = {0, 1}), Venn predictor out-

put can be translated in the following way. It comprises only two probability

distributions, both of which can be represented by Py(1) — the probability of

the event yn = 1. Thus, the output of Venn predictor can be interpreted as

the interval

[P−
new, P+

new] = [min{P0(1), P1(1)}, max{P0(1), P1(1)}] , (2.11)

which is an estimation of probability that yn = 1. We will refer to P−
new and

P+
new as lower Venn prediction and upper Venn prediction, respectively.

The examples of Venn machine output for a binary classification prob-

lem are provided in Table C.5. This table contains true labels, lower Venn

predictions P−
new and upper Venn predictions P+

new. Interpretation of Venn

predictions is also given in Section 4.4.2.1.

2.1.4.2 Venn Taxonomy Example

A Venn machine is entirely defined by its Venn taxonomy, which can be con-

structed by the use of practically any machine learning algorithm. Here is an

example of a taxonomy based on a 1-nearest neighbour algorithm. We will

denote it by VM-1NN and will use throughout the thesis.

We assume that all examples are vectors in a Euclidean space and set the

category of an example equal to the label of its nearest neighbour

An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I) = yj ,

where

j = arg min
j=1,...,i−1,i+1,...,n

||xi − xj|| .

This Venn machine was proposed in [65] and proved to output accurate pre-

dictions with narrow prediction intervals.
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2.2 Comparison with Other Approaches

Confidence machines, category-based confidence machines and Venn machines

represent one type of algorithms which produce predictions complemented with

the information on their reliability. In this section we compare them with other

approaches.

Firstly, we compare algorithms with online validity with two big classes

of algorithms: simple predictors (that output a label but do not provide any

additional information) and probability predictors (that output a probability

distribution of a new label).

Secondly, we will briefly describe other methods that provide information

on how reliable predictions are, compare them with confidence and Venn ma-

chines and demonstrate their limitations. These methods include confidence in-

tervals, statistical learning theory (PAC theory) and probabilistic approaches.

2.2.1 Comparison with Simple Predictors and Proba-

bility Predictors

To begin with, we classify different types of algorithms considered so far in

Table 2.1 according to their output: first, according to the output element

(a label or a label probability distribution) and, second, according to a number

of such elements in the output (one or several). This table demonstrates how

algorithms with online validity relate to other machine learning algorithms:

simple predictors and probability predictors.

Table 2.1: Classification of algorithms according to their output

Output . . . label(s) . . . probability distribution(s)

One . . . Simple predictor Probability predictor
(e.g., SVM) (e.g., logistic regression)

A set of . . . Confidence machine, category- Venn machine
based confidence machine

In contrast to simple predictors, confidence and Venn machines hedge pre-
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dictions, i.e., express how much a user can rely on them. In the introduction of

this thesis we described two measures of performance of confidence and Venn

machines: validity and efficiency. Validity demonstrates how correct predic-

tions are; efficiency is concerned with how informative they are.

For confidence machines, validity implies that the number of errors is close

to the preset significance level, and efficiency means outputting as few as pos-

sible multiple predictions.

For Venn machines, validity results in output probability distributions

agreeing with observed frequencies. A probability interval output by Venn

machine is efficient if it is narrow and close enough to 1.

Table 2.2: Comparison of confidence and Venn machines with simple and
probability predictors

Predictor Simple Confidence Probability Venn
type predictors machines predictors machines

Output Singleton pre-
diction

Set of predic-
tions

Probability
distribution

Multiproba-
bility predic-
tion

Validity Depends on
the algorithm

Guaranteed Guaranteed
under strong
statistical
assumption

Guaranteed

Efficiency Guaranteed Depends on
the strange-
ness measure

N/a Depends on
the Venn
taxonomy

When considering simple predictions, we can also use notions of validity and

efficiency. In this respect, simple predictors and confidence machine demon-

strate opposite approaches to learning. This is summarised in Table 2.2. In

simple predictions, the efficiency is guaranteed since each prediction is single-

ton, but validity is not. In confidence machines, the validity of predictions

is guaranteed, but efficiency depends on the strangeness measure. In addi-

tion, confidence machines allow us to balance efficiency and the error rate:
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lower preset error rates produce larger region predictions, and vice versa. This

feature makes confidence machines a flexible tool.

The applicability of different algorithms depends on the learning goal of

the application, that is, what we put first: validity or efficiency. In the case

of confidence machines, we sacrifice efficiency of predictions to control the risk

of error. This is suitable for application where low risk of error is required,

for example, in medical diagnosis. In simple predictions, we put validity first

instead.

Probability predictors usually produce valid predictions under statistical

assumptions that are stronger than i.i.d., whereas Venn machines produce pre-

dictions with guaranteed validity subject to the i.i.d. assumption. One should

also keep in mind that the property of Venn machine validity is expressed dif-

ferently from the same property of confidence machines due to the difference

in the output.

2.2.2 Comparison with Confidence Intervals

The term of the confidence level, which we use when defining confidence ma-

chines and category-based confidence machines, is also widely deployed in sta-

tistics when constructing confidence intervals. Here we emphasize that this

term has different meanings when applied in the context of confidence ma-

chines and confidence intervals. Hence values of such confidence levels should

be directly compared when used as different notions.

Confidence intervals are deployed in statistics as an interval estimate of

a population parameter: we produce confidence intervals (instead of a single

value) that estimate the parameter, and a confidence level indicates how likely

the value of the parameter lies within the confidence interval. The calculation

of a confidence interval generally requires assumptions about the statistical

model (usually it is a parametric population). For example, it may be based

on the assumption that the distribution of the sample population is normal.

Confidence intervals can be also applied in machine learning. In this case,

we fix a simple predictor and consider an error rate of a predictor (i.e., an

expectation of the loss of the simple predictor) as a parameter to estimate. We
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can then produce confidence intervals which estimate predictor’s error relying

on errors at different steps. This approach is called hold-out estimates [65,

Section 10.1].

• Thus, the machine learning algorithm is fixed, and confidence intervals

provide an estimate of a true error rate of this algorithm with a confi-

dence level as an indicator of interval’s reliability. The upper bound of

this confidence interval could be a useful estimate of the algorithm error

rate. In confidence machines, we generate a new algorithm with the ac-

curacy rate which is asymptotically guaranteed under simple statistical

assumptions and is equal to the preset confidence level. Hence, confi-

dence levels in confidence machines and confidence levels in confidence

intervals can be both used in machine learning but for different purposes.

Their interpretations are therefore not similar, and their values should

not be compared.

• Confidence intervals output an estimation of the accuracy of the algo-

rithm in general and do not supply any information regarding how reli-

able a prediction for each individual object is. However, algorithms with

online validity — confidence and Venn machines — provide the level

of uncertainty for each individual prediction in the form of confidence

and credibility in the case of (category-based) confidence machines or

probability interval in the case of Venn machines.

• Confidence intervals and algorithms with online validity use different

statistical assumption. Confidence and Venn machines are based on the

i.i.d. assumption or a weaker exchangeability assumption, which can be

usually satisfied by randomly permuting the data. Meanwhile, confidence

intervals when used in hold-out estimates are based on the assumptions

that the errors (rather than examples) are i.i.d. However, this assumption

does not take the nature of learning process into consideration, because

in real learning, algorithms take into account the information on pre-

viously made errors. This approach has been therefore criticised ([13],

Section 4.1).
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2.2.3 Comparison with Statistical Learning Theory

Statistical learning theory began as Vapnik-Chervonenkis theory in the 1960s

and was partially rediscovered by Valiant (see [61] for the review).

In brief, in statistical learning theory, a simple label prediction is produced

for each object based on the training set, and there is a theoretical guarantee

that these predictions become more accurate with greater probability while

the training set of objects increases in size: they are probably approximately

correct. This implies that the probability of error will not exceed a certain

threshold ε unless an event of the preset probability δ has happened. We set

the value of probability δ and calculate ε, which is an expected loss of the total

population and is called true risk.

• The main problem of applying statistical learning theory is that the

derived error bounds ε are too loose to be informative: these bounds

often have large values (there may be some exceptions) and sometimes

are greater than one. The only problems that can benefit from these

error bounds are the “easy ones” with the large number of objects.

Loose error bounds have been obtained even for the relatively clean

United States Postal Service data described in [61, Section 12.2]. Loose

error bounds were also confirmed in [20; 34; 46]. Thus, experiments

demonstrate that PAC bounds are not a good practical tool for estimat-

ing the true accuracy of a learning algorithm. By contrast, confidence

machines are valid and provide tight and useful bounds.

• Error bounds provided by statistical learning theory are not preset but

are computed; while confidence machines allow users to control error

bounds by predefined confidence levels.

• Statistical learning theory estimates the approximate error rate for the

algorithm in general without giving a measure of uncertainty for an in-

dividual object; but both confidence machines and Venn machines com-

plement each individual prediction with the information which indicates

how reliable each prediction is, and this information depends on the ob-

ject.
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2.2.4 Comparison with Probabilistic Algorithms

There is a range of probabilistic algorithms, which are based on posterior

probabilities and use strong statistical assumptions on the data distribution.

Bayesian classifiers (e.g., a naive Bayes algorithm and Bayesian ridge regres-

sion [65, Section 10.3]) and Platt’s calibration [48] are among them.

• The main drawback of such algorithms is that they assume a model of

data distribution. We can be sure in the statistical model only for arti-

ficially generated data. However, for real-world data model assumption

may not hold true and be misleading. For example, Bayesian ridge re-

gression allows us to output prediction intervals in regression problems.

When the chosen probability distribution conforms with the statistical

model, output intervals are valid. Otherwise, the produced intervals may

make more errors than expected. This was in explored in [65, Section

10.3].

Meanwhile, confidence machines and Venn machines rely only on data

exchangeability, which can be usually satisfied when data examples are

randomly permuted.

If a Venn taxonomy depends on a statistical model, this underlying model

is not required to be correct for the corresponding Venn machine to be

valid. The worst thing which may happen if the underlying model is

incorrect is that the Venn machine will output uninformative predictions

(wide probability intervals not close enough to 0 or 1) as opposed to

misleading prediction intervals that can be produced by probabilistic

algorithms. Empirical comparison of Venn machines with a probabilistic

algorithm is carried out in Section 4.4.2 of this thesis. It demonstrates

that a probability prediction may be misleading while Venn machine

outputs a narrow probability interval which almost always covers the

empirical label probability.

• When applied to classification problems, most probabilistic algorithms

output a singleton prediction with assigned probability, which is a label

with the highest posterior probability. This implies that the probability
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of the output is not controlled whereas when applying confidence ma-

chines we can control the total error asymptotically. However, the pro-

cedure can be changed so that we output the set of labels with highest

posterior probabilities with the sum greater than the preset confidence

level. Such approach will allow us to output region prediction with the

preset posterior probability.

In general, posterior probabilities and p-values represent different no-

tions; hence outputs of confidence machines and probabilistic algorithms

are interpreted in different ways (for example, such probabilistic predic-

tions cannot guarantee the asymptotical error rate in the online mode)

and therefore should not be directly compared.

• Some Bayesian methods assume the independence between features (for

example, a naive Bayes classifier). But this is a further restriction on the

model, and it does not usually hold true for real-world data. Another

option is to accept that different features are not independent. Then

a model of dependencies, called a Bayesian belief networks, has to be

learned or imposed. However, in this case the solution of the problem

gets computationally inefficient (see [43], Section 6.11).

At the same time, confidence machines and Venn machines produce valid

predictions without these restrictions.

2.3 Summary

In this chapter we introduced the frameworks of confidence machines, category-

based confidence machines and Venn machines. These algorithms were recently

introduce in [65] and represent a new generation of algorithms with online

validity. They assign information on how reliable the prediction is to each

individual example, and this information is valid when the online mode is

applied.

We demonstrated that these algorithms have distinct advantages over other

methods that hedge predictions or estimate overall performance. These advan-

tages could be summarised as follows:
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1. Algorithms with online validity can express our confidence about each

individual prediction rather than all predictions in total, and this confi-

dence in a new prediction is tailored to the new object.

2. Property of validity is based on a simple i.i.d. assumption (or a weaker

exchangeability assumption), which can be often satisfied when data sets

are randomly permuted. Valid predictions do not depend on the assumed

probability distribution of examples.

3. In the case of confidence machines and category-based confidence ma-

chines, the error rate can be controlled rather than computed, which

makes these methods a flexible tool.

4. Methods with online validity are not single algorithms, but a flexible

framework: each of them depends on a core element (a strangeness mea-

sure for confidence machines; a strangeness measure and a taxonomy

for category-based confidence machines; a Venn taxonomy for Venn ma-

chines), and practically any machine learning algorithm can be used to

define this core element. Thus, the framework can give rise to a set of

different algorithms which can perform well on different types of data.
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Chapter 3

Design of Algorithms with

Online Validity

Algorithms with online validity represent a flexible framework and can use

practically any known machine learning method as an underlying algorithm

for designing a strangeness measure (for confidence machines and category-

based confidence machines) or a Venn taxonomy (for Venn machines).

Since these algorithms have theoretically guaranteed property of validity,

their performance can be measured by their efficiency. Good performance in

terms of accuracy of the underlying algorithm is usually translated into good

efficiency of the corresponding confidence or Venn machine. Therefore, effi-

ciency of algorithms with online validity varies across the range of underlying

algorithms and depends on the data analysed. For this reason, we are look-

ing for new strangeness measures and Venn taxonomies that could result in

efficient predictions on certain types of data.

In this chapter we propose new implementations of algorithms with online

validity: confidence machines constructed by the use of random forests, Venn

machines based on random forests and Venn machines with a taxonomy derived

from SVMs. We expect the designed confidence and Venn machines to inherit

advantages of their underlying algorithms — random forests and SVMs — and

to maintain the property of validity.
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3.1 Designed Algorithms

3.1.1 Confidence Machines Based on Random Forests

We propose several strangeness measures based on a random forest classifier.

These strangeness measures can be used in confidence machines or category-

based confidence machines.

We can speculate that confidence machines based on a random forest will

not suffer drop in forced accuracy in comparison with random forest accu-

racy. As a result, confidence machines are likely to provide high forced point

prediction accuracy and good efficiency of region predictions.

We also expect designed confidence machines to inherit advantages of ran-

dom forests, in particular to perform well on noisy data.

3.1.1.1 Random Forests

The random forest is a classifier which proved to have certain advantages over

different machine learning methods. In this work we consider the type of

random forests described in [7].

The initial motivation to apply random forests in our research was the

fact that they outperformed other machine learning methods in the Leiden

Clinical Mass Spectrometry Proteomic Diagnosis Competition [3; 29], whose

data we used in our analysis along with other data sets. Theoretical results [7]

demonstrate that the random forest do not overfit when more trees are added.

It also empirically proved to have the following advantages [7; 8]:

1. It produces high accuracy for many data sets.

2. It can process data with a large number of features where each feature

is weak, that is, carries a small amount of information.

3. It is relatively robust to mixed variable types, missing data, outliers and

noisy data.

4. Constructing random forests is relatively fast (faster than bagging and

boosting).
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In brief, a random forest is a classifier that consists of decision trees, each of

which provides a vote for a certain class. An important problem, especially in

medical and veterinary diagnosis, is that we often have to process data with a

large number of features, each of which contains small amount of information.

For this reason, a single decision tree classifier may overfit the data and not

result in high accuracy. Combining a large number of trees in a random forest

can lead to more reliable predictions.

When growing decision trees, random forests apply bagging and random

feature selection. We construct a large number of decision trees as follows.

Each tree has its own training set, which is drawn with replacement from the

original training set (i.e., is a bootstrap sample). After defining the training

set, we grow a tree randomly selecting at each node a small number q of

variables to split on; q is fixed for the whole random forest.

At each node, we then calculate the best split based on selected q variables

in the training set. The best split is defined as one that does the best job

of separating the data into groups where a single class predominates in each

group. This is done by the use of purity or diversity measure, which evaluates

a potential split: at each node we make a split that has the highest purity

measure (or the lowest diversity measure). One of the examples of diversity

measure is the Gini measure, which is equal to a sum of the squared proportions

of the classes in nodes produced by the split.

All trees are grown fully, that is, remain unpruned. After a large number

of trees is generated, each tree can be considered as a separate classifier that

makes a prediction for a new object. These predictions, that may be different

for different trees, are called votes. As a result, trees vote for the most popular

class, and the random forest predicts the class with the highest rate of votes.

Since for each decision tree, a training set is a bootstrap sample taken from

the original training set, each example is not considered in this training set in

about one third of decision trees. This allows us to obtain an internal estimate

of the accuracy of a classifier without applying a random forest to a test set or

launching the leave-one-out procedure. For each example, we select the trees

where this example was an out-of-bag example, that is, was not in the training

set, and consider votes of these trees only. As a result, we obtain predictions
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for each example in the original training set. This is called the out-of-bag

classifier.

Another useful feature of random forests we are going to use is a proximity

matrix. Proximities Prox(i, j), i, j = 1, . . . , n − 1, where n − 1 is the number

of examples in a training set, are defined by a given random forest as follows.

First, set all proximities equal to 0. After a random forest is grown, the data

are run down each decision tree. If objects i and j both land at the same

terminal node, Prox(i, j) increases by 1. At the end of the run, all proximities

are divided by the number of trees in the run. Thus, all proximities Prox(i, j)

form a matrix with diagonal elements equal to 1.

Random forest proximities provide a measure of how close to each other

two objects are regardless of their labels and can substitute Euclidian distance

in some algorithms. Benefiting from robustness of random forests, proximities

have proved to be robust to mixed variable type, noisy and missing data. The

advantages of random forest proximities were verified in clustering [8; 50] and

locating outliers [8].

3.1.1.2 A Strangeness Measure Derived from Random Forests

A confidence machine is defined by its strangeness measure. In this subsection

we designed strangeness measures based on random forests.

In each case we use the following notation: suppose we are given a bag

H(x1, y1), (x2, y2), . . . , (xl, yl)I, (xi, yi) ∈ Z, and we need to define a strangeness

score A(x, y) = A(H(x1, y1), (x2, y2), . . . , (xl, yl)I; (x, y)). Alternatively, we can

define a conformity score B(x, y) = 1− A(x, y) when it is more intuitive.

The strangeness/conformity measures we propose are the following:

1. A random forest is constructed from a training set {(x1, y1), (x2, y2), . . . ,

(xl, yl)}. The conformity score of another example (x, y) is then equal to

the percentage of correct predictions given for x by decision trees in the

constructed random forest, that is, the proportion of trees in the random

forest that vote for label y for object x.

2. Conformity measure 1 is the most natural one, however, it is compu-

tationally inefficient: when considering example n we have to construct
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random forests nL times, where L is the number of labels. For this reason

we propose another conformity measure, which will require only one ran-

dom forest when making a prediction for a new object. This conformity

measure is based on the internal error rate of a random forest. The ran-

dom forest is grown for the union of a bag H(x1, y1), (x2, y2), . . . , (xl, yl)I
and another example (x, y). Recall that for each decision tree, the train-

ing set is a bootstrap sample so that a new example is not included in

this training set in about one third of decision trees. For each (x, y) we

aggregate the votes for this example only of those decision trees where

this example is out-of-bag. The conformity score is then equal to the

proportion of correct votes for (x, y) among these trees.

We will refer to a confidence machine based on this strangeness measure

as CM-RF.

3. These measures are based on random forest proximities Prox(i, j), i, j =

1, . . . , l + 1. To calculate a strangeness measure, we construct a random

forest for the union of a bag H(x1, y1), (x2, y2), . . . , (xl, yl)I and a separate

example (x, y) and form the corresponding (l + 1) × (l + 1) matrix of

proximities for objects x1, x2, . . . , xl, xl+1 = x.

a) For this type of confidence machine, the strangeness measure of an

example is the ratio of the average proximity of the example with

examples of other classes to the average proximity of the example

to examples of the same class.

Strictly speaking, the strangeness score is defined as follows:

A(x, y) =
A(x, y)−

A(x, y)+
,

where

A(x, y)+ =

∑
yi=y Prox(i, l + 1)

|{i = 1, . . . , l : yi = y}|
,

A(x, y)− =

∑
yi 6=y Prox(i, l + 1)

|{i = 1, . . . , l : yi 6= y}|
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are the mean values of proximities with examples from the same

class and examples from the other classes, respectively. This strange-

ness measure was proposed by Huazhen Wang and Fan Yang in our

personal communication. Below you can find its more efficient mod-

ification.

b) This strangeness measure is similar to the one described above. The

modification is analogous to the k-nearest neighbour method: when

calculating A(x, y)− and A(x, y)+, we consider only proximities of

those k examples that have the greatest values of proximities among

examples of the same class y and among all the other examples,

respectively:

A(x, y)+ =
k∑

s=1

Prox(is, l + 1),

A(x, y)− =
k∑

s=1

Prox(js, l + 1),

where is and js are the numbers of examples with s-st greatest value

of proximity with example (x, y) among examples labelled with the

same label y and among all the other examples, respectively.

This strangeness measure can be also obtained from the k-nearest

neighbour strangeness measure described in Section 2.1.2 by substi-

tuting Euclidian distance by random forest proximities.

We will refer to a confidence machine based on this strangeness mea-

sure as CM-RF-kNN, where k is a number of nearest neighbours

considered.

3.1.2 Venn Machines Based on Random Forests

We embedded random forests in confidence machines. Now we will deploy this

algorithm when constructing taxonomies for Venn machines. We propose sev-

eral implementations of a Venn taxonomy based on a random forest classifier.

Similarly to confidence machines, we expect designed Venn machines to inherit
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advantages of random forests.

The notation we are going to use is the following: suppose Y = {1, 2, . . . ,
M}; we are given a bag H(x1, y1), (x2, y2), . . . , (xn, yn)I, (xi, yi) ∈ Z, i =

1, . . . , n; and we need to partition this bag into categories.

We have to define the set of categories T = {τ1, . . . , τK} and taxonomy

functions An : Z(n−1) × Z → T , n ∈ N, which classify the relation between an

example and the bag of the other examples:

τi = An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I) . (3.1)

Even after fixing the underlying algorithms, we can define categories in

different ways. We propose partition into categories according to random for-

est predictions, votes or proximities. The sets of categories and taxonomy

functions are laid out below.

1. The first version of Venn machines is based on random forest predictions

and is referred to as VM-RF1. A random forest is grown for the whole

bag H(x1, y1), (x2, y2), . . . , (xn, yn)I, and out-of-bag predictions ỹ1, . . . , ỹn

are calculated for each object.

Each category corresponds to a single label: T = Y; and the class of

a relation between an example and a bag of the other examples is an

out-of-bag prediction for this example:

An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I) = ỹi.

In other words, two examples belong to the same category if and only if

their out-of-bag predictions coincide.

The number of categories in this case is equal to the number of classes

M .

2. Another version of Venn machine taxonomies is based on random for-

est votes. Again, a random forest is grown for the whole bag H(x1, y1),

(x2, y2), . . . ,(xn, yn)I, and for each example (xi, yi) we calculate its votes

vi
1, . . . , v

i
M for different classes output by the out-of-bound classifier.
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A) In a binary classification problem (M = 2), votes produce two val-

ues for each example: vi
1 and vi

2 = 1− vi
1. We first fix a parameter,

a positive integer K ′, which will be equal to the number of cate-

gories K. We consider the set of out-of-bag votes for class 1: {vi
1},

i = 1, . . . , n and divide them into K ′ groups of similar size by the

use of quantiles as described below.

Let L0 = 0 and L1, L2, . . . , LK′ be the integers closest to n/K ′,

2n/K ′, 3n/K ′, . . . , n. Let {wi
1}, i = 1, . . . , n be the sorted sequence

of {vi
1}, i = 1, . . . , n. We partition the set of non-negative real

numbers by division points wL0
1 , wL1

1 , . . . , w
LK′
1 . The category τi of

example (xi, yi) is then defined as the number of the interval formed

by these division points where value vi
1 falls:

An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I)

= {j = 1, . . . , K ′ : wj−1
1 < vi

1 ≤ wj
1} .

Thus, two examples belong to the same category if and only if their

votes for class 1 fall into the same interval formed by quantiles of

the set of these votes.

We construct categories of equal size because the small size of cat-

egories may result in overfitting and will lead to probability distri-

butions very different from each other. This will be punished by

the large diameter of a probability intervals. On the other hand,

large categories may result in underfitting and may be punished by

producing forced predictions with probability intervals close to 0.

In both cases, output predictions will be not reliable.

This kind of Venn machine is further denoted by VM-RF2A. In

this case, the number of categories is not fixed and can be equal to

any positive integer K = K ′.

B) In a multilabel classification problem (M > 2), votes produce at

least three values for each example, and the intuitive approach de-

veloped for a binary classification is not natural to apply. In the

case of a multilabel problem, we will combine both partitions by
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predictions and partitions by votes.

We first fix a positive integer K ′. It will determine, but will not

equal, the total number of categories. We divide all example into

groups according to their out-of-bag predictions. Then within these

groups we perform subpartitioning according to votes. However,

instead of the set of votes for class 1 as in binary classification, we

consider the following sets (let us assume we partition a group of

examples with the out-of-bag predictions equal to l):

– maximum votes for each example vi := maxj vi
j = vi

l , i =

1, . . . , n : ỹi = l, that is, votes for class l;

– or differences between the maximum vote (a vote for class l) and

the second maximum vote for this example vi = vi
l −max{vi

j :

j = 1, . . . , l − 1, l + 1, . . . , K ′}, i = 1, . . . , n : ỹi = l.

Corresponding Venn machines are denoted VM-RF2B1 and VM-

RF2B2, respectively.

Then within each group with the same out-of-bag prediction l we

put L0 = 0 and define L1, . . . , LK′ similarly to the way used in a

binary classification problem: as integers closest to nl/K
′, 2nl/K

′,

3nl/K
′, . . . , nl, where nl is the number of examples predicted to

be of class l. We then sort a corresponding set of values {vi :

i = 1, . . . , n : ỹi = l} into a sequence {wi
l}, i = 1, . . . , nl and

partition the set of non-negative real numbers by division points

wL0
l , wL1

l , . . . , w
LK′
l . The category τi of example (xi, yi) is then de-

fined as a pair of numbers: an out-of-bag prediction ỹi and the

number of the interval formed by division points {wi
l} where value

vi falls:

An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I)

= {ỹi, {j = 1, . . . , K ′ : wj−1
ỹi

< vi ≤ wj
ỹi
}} .

Thus, two examples belong to the same category if and only if they

are predicted to be of the same class and their votes for this class
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(or difference between them and the second maximum votes) fall

into the same interval.

The total number of categories is K = M × K ′ and can be any

number divisible by the number of classes M . Taxonomies VM-

RF2B1 and VM-RF2B2 can be also applied to binary classification

problems; in this case they produce identical Venn machines.

3. The last version of Venn taxonomies is based on random forest proximi-

ties and is denoted by VM-RF3. A random forest is grown for the whole

bag H(x1, y1), (x2, y2), . . . , (xn, yn)I, and proximities between each pair of

examples Prox(i, j), i, j = 1, . . . , n are generated. We then launch the

procedure used when constructing a 1-nearest neighbour taxonomy (see

Section 2.1.4) but maximise random forest proximities p(i, j) instead of

minimizing Euclidian distances d(xi, xj), that is, the category of example

xi, yi is defined as the label of the example with the highest proximity in

the bag:

An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I) = yj ,

where

j = arg max
j=1,...,i−1,i+1,...,n

Prox(i, j) .

This taxonomy has the number of categories K equal to the number of

classes M .

All Venn taxonomies designed above use random forests in the out-of-bag

mode. These implementations can launch random forests in a leave-one-out

procedure, but it will be computationally inefficient. Venn machines defined

above require to grow M random forests when a new object xn is added,

where M is a number of classes. Should we use the leave-one-out mode, the

number of random forests to be grown increases in n times. For this reason,

in all computational experiments out-of-bag versions of Venn taxonomies are

applied.
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3.1.3 Venn Machines Based on SVMs

The SVM is a widely used machine learning classifier. There are known im-

plementation of confidence machines based on SVMs (see Section 2.1.4), but

no Venn machines have been developed by the use of SVMs so far. In this

section we are filling this gap and proposing several implementations of Venn

taxonomies based on SVMs. Our implementations are based on SVM predic-

tions, Lagrange multipliers and distances to the optimal separating hyperplane.

They are all developed for a binary classification problem.

We are going to use the same notation for a classification problem: suppose

Y = {−1, 1}; we are given a bag H(x1, y1), (x2, y2), . . . , (xn, yn)I, (xi, yi) ∈ Z,

i = 1, . . . , n; and we need to partition this bag into categories. We are required

to define the set of categories T = {τ1, . . . , τK} and taxonomy functions An :

Z(n−1) ×Z → T , n ∈ N, which classify the relation between an example and a

bag of the other examples:

τi = An ((xi, yi), H(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)I) .

The notation related to SVMs is introduced in Section 2.1.2.

1. The first option is based on predictions output by an SVM and is denoted

by VM-SVM1. An SVM is constructed for the bag H(x1, y1), (x2, y2),

. . . , (xn, yn)I with the optimal separating hyperplane w · x + b = 0.

The categories correspond to different labels: T := Y = {−1; 1}. The

relationship between an example and other examples is set to be a label

which is predicted by this SVM

An ((xi, yi), {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)})

:= sgn(w · xi + b) .

In other words, objects belong to the same category if and only if they are

predicted as of the same category by the SVM. As a result, the number

of categories is equal to two.

2. This Venn taxonomy is based on signed distances to the optimal separat-
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ing hyperplane and is further referred to as VM-SVM2. It represents a

generalisation of the first version of a Venn machine which allows us to

have any number of categories.

We fix the number of categories K = K ′. We then launch an SVM for

the whole bag H(x1, y1), (x2, y2), . . . , (xn, yn)I and construct the optimal

separating hyperplane w · x + b = 0. For each example we calculate the

signed distance to this hyperplane di = w ·xi + b (or we can equivalently

consider w·xi) and divide the set of di into K ′ categories of approximately

the same size the same way as we did when constructing Venn taxonomy

based on random forest votes.

We set L0 = 0 and L1, L2, . . . , LK′ to be integers closest to n/K ′, 2n/K ′,

3n/K ′, . . . , n. Let {d′i}, i = 1, . . . , n be the sorted sequence of {di},
i = 1, . . . , n. We then partition the set of non-negative real numbers

by division points d′L0
, d′L1

, . . . , d′LK′ . The category τi of example (xi, yi)

is then defined as the number of the interval formed by these division

points where the corresponding distance di falls:

An ((xi, yi), {(x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn)})

:= {j = 1, . . . , K ′ : d′j−1 < di ≤ d′j} .

3. The last version of a Venn machines is based on Lagrange multipliers (de-

noted by VM-SVM3). We launch an SVM for the bag H(x1, y1), (x2, y2),

. . . , (xn, yn)I and calculate the optimal values of Lagrange multipliers

obtained by solving the dual problem αi, i = 1, . . . , n.

Since values of Lagrange multipliers reflect their strangeness, we can

use them for constructing Venn machines grouping together examples

with close Lagrange multiplier values. Examples with αi = 0 are the

ones which conform with the SVM model and will form two separate

categories:

(a) {xi : αi = 0 & w · xi + b > 0},

(b) {xi : αi = 0 & w · xi + b < 0}.
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We therefore group non-strange SVM examples in two categories dis-

criminating between those examples that are located on different sides

of the optimal separating hyperplane w · xi + b = 0.

The other examples — with αi 6= 0 — represent support vectors, which

define the separating hyperplane. Again, we consider separately the

ones on different sides of the optimal hyperplane, and within these two

groups we partition examples in a preset number K ′ of categories of ap-

proximately similar size. The partitioning of these groups ({αi : i =

1, . . . , n, αi ∈ (0; C] & w · xi + b > 0} and {αi : i = 1, . . . , n, αi ∈
(0; C] & w · xi + b < 0}) is carried out by their K ′-quantiles. The pro-

cedure is analogous to the one described in the previous Venn machine

implementation.

Thus, the total number of categories is equal to K = 2 + 2K ′ , where

K ′ ∈ N.

3.2 Algorithmic Testing

Several implementations of confidence and Venn machines were designed in

the previous section. Here we perform testing of proposed algorithms. We

describe the set of experiments and discuss the obtained results.

3.2.1 Data

To check how useful the new confidence machines and Venn machines can

be, we applied them to real-world data. The data sets we analysed include

medicine-related data sets, among them mass spectrometry and microarray

data. We pay much attention to medical data because medicine is an important

area of machine learning application, and medical data sets are usually difficult

to classify. More details on mass spectrometry can be found in Section 4.1.

In our experiments we used six mass spectrometry data sets, two medical

non-proteomic data sets and two non-medical data sets. Below we first give

the data set name used throughout the thesis and then its brief description.

Proteomic data sets comprise:
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• UKOPS : pre-processed mass spectrometry data of ovarian cancer from

the UKOPS [56]. Each object is represented as a list of peak intensities

and is classified as healthy, benign and malignant. The data comprises all

patients of both training and test sets without borderline samples. Out

of all mass spectrometry profile peaks we considered only those 109 that

are presented in at least 10% of mass spectra. More detail about mass

spectrometry can be found in Section 4.1.2. The data were pre-processed

as described in Section 4.2.1.

• UKCTOCS OC, UKCTOCS BC, UKCTOCS HD : pre-processed mass

spectrometry data of ovarian cancer, breast cancer and heart disease

samples, respectively, collected in the UKCTOCS [38; 57]. For more

detail on mass spectrometry data, see Section 4.1.2; more information

on the UKCTOCS data can be found in Section 4.2. Each object is a list

of peak intensities. In the data sets, all samples provided in triplets are

considered; if there are several measurements taken from the same case

patient in the UKCTOCS OC data, we consider only the one closest

to the moment of the diagnosis, eliminating the others together with

corresponding controls. Only those peaks are analysed that are present

in at least one third of all mass spectra in the corresponding disease data

set.

• Competition: mass spectrometry data provided by the Leiden Clinical

Mass Spectrometry Proteomic Diagnosis Competition and preprocessed

as described in [22]. The data comprise 2 classes: 77 healthy controls

and 76 breast cancer patients.

• 7 biomarkers : Ciphergen’s 7 biomarkers of the UKOPS data [45].

The other medical data sets are:

• Abdominal pain: shortened Abdominal pain data [23], which comprises

135 binary features, symptoms of acute abdominal pain. Each patient

is diagnosed with one of several diseases or labelled as ‘Other’. In this

thesis we considered only diagnoses 1, 5 and 8 out of 9 available. In

addition, out of these 1,889 samples, we randomly selected 300 samples.
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• Microarray : a shortened training set of microarray data of lung cancer,

colon cancer and breast cancer patients provided in the International

Conference on Machine Learning and Applications (ICMLA) 2009 Chal-

lenge [44]. In this thesis, we consider only the training set (400 samples

instead of 650 of the combined training and test sets); 447 features were

preselected out of 54,613 available features by means of statistical tests.

Two non-medical data sets were taken from the University of California,

Irvine, (UCI) Machine Learning Repository 1:

• Sonar : Sonar data comprising signals obtained by bouncing off metal

cylinders and rocks from a variety of different aspect angles;

• Iris : Iris plant characteristics classified into different types of Iris.

The number of examples, features and classes for these data sets is sum-

marised in Table 3.1. Majority rate shown in the last column is the percentage

of examples in the dominating class, that is, the accuracy of a primitive simple

predictor which predicts all objects to be of this class. We will further compare

accuracy of algorithms with corresponding majority rates.

Confidence machines based on random forests were also tested on the

Salmonella microarray data provided by VLA. However, it is demonstrated

in Appendix C that this data set is so clean that we can achieve the accuracy

of up to 100% by both confidence machines and simple predictors. For this

reason, no Venn machines were applied to this data set.

3.2.2 Noise Robustness Testing

Random forests are relatively robust to outliers and noise [7]. And we expect

noise robustness of this underlying algorithm to be translated into noise ro-

bustness of confidence machines and Venn machines based on random forest

classifiers. Since noise and outliers are often present in data and medical data

in particular, noise robustness is a desirable property. We performed test-

ing of proposed confidence and Venn machines for robustness against noise

1http://archive.ics.uci.edu/ml/datasets.html
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Table 3.1: Data sets used in algorithmic testing

Number of Number of Number of Majority
Data set examples features classes rate

Mass spectrometry data
UKOPS 321 109 3 53.0%
UKCTOCS OC 312 68 2 66.7%
UKCTOCS BC 162 79 2 66.7%
UKCTOCS HD 561 41 2 66.7%
Competition 153 392 2 50.3%
7 biomarkers 327 8 3 52.6%

Other medical data
Abdominal pain 300 135 3 42.3%
Microarray 400 447 3 50.0%

Non-medical data
Sonar 208 60 2 53.4%
Iris 150 4 3 33.3%

and compared it with noise robustness of other known confidence and Venn

machines.

The following procedure was used. We applied the same algorithm in the

leave-one-out mode in several runs. The first run was on the data without any

noise introduced. All other runs are carried out with 10% noise injected: we

changed at random labels of 10% of examples in the training set selecting a new

label uniformly from other labels. In each case we calculate forced accuracy

and other characteristics of performance: rates of erroneous region predictions,

multiple, certain, correct certain and empty predictions for confidence ma-

chines; the average ends and length of prediction intervals for Venn machines.

We run five repetitions with injected noise, and performance characteristics

are averaged across these repetitions. We then compute an increase/dicrease

in these values due to the noise.

This method was applied to newly implemented confidence and Venn ma-

chines as well as to known machines. Noise robustness of different methods
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was compared.

3.2.3 Results on Confidence Machines

For experimental testing, we implemented confidence machines CM-RF and

CM-RF-kNN (for details, see Section 3.1.1). The experiments were carried out

in two settings: online, to demonstrate the advantages of region predictions,

and offline in the leave-one-out procedure, to compare the performance of

confidence machines with simple predictors and to maximise the size of the

training set.

We used the following parameters for random forest construction: the num-

ber of trees is 1000, the number of features selected at each node to split on

equals a square root of the number of features. These values are recommended

in [7], where it is also theoretically proved that the results converge when we

increase the number of trees in random forests. In addition, our further investi-

gation demonstrated that performance of designed confidence machines based

on random forests does not considerably depend on the number of features to

split on at each node. The results are given in Table A.1 in Appendix A.

We compare designed confidence machines with known implementations

CM-kNN and CM-SVM (for details see Section 2.1.2.2) since both of these

machines demonstrated ability to produce accurate predictions [65]. Compar-

ison with methods other than confidence machines is beyond the scope of this

thesis.

Before CM-kNN and CM-SVM are applied, the data sets are pre-processed

by standardisation so that all features have zero mean and the same variance:

x′i,j :=
xi,j − x̄j

σj

, (3.2)

where xi = {xi,1, . . . , xi,m}; x̄j and σj are a mean and a standard deviation

of xi,j, i = 1, . . . , n. We did not apply any normalisation to the data before

applying CM-RF or CM-RF-kNN because performance of random forests is

not affected by normalisation.

First and foremost, the designed confidence machines proved to be valid,

that is, for a given significance level ε > 0 the rate of erroneous predictions
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(predictions not containing an actual label) is close to ε up to statistical fluc-

tuations. The example of the erroneous prediction dynamics is shown in Fig-

ure 3.1a. The figure demonstrates validity of the CM-RF-1NN applied to the

Microarray data for significance levels ε = 5% and 10% : solid lines, which

represent the actual number of errors, are close to dotted lines, which demon-

strate the expected number of errors for different significance levels. Validity

was confirmed for both settings: online and offline, even though it is theoreti-

cally proved for the online setting only.

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

Number of samples

N
um

be
r 

of
 e

rr
or

s

Errors at 5%

Errors at 10%

(a) Validity

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

Number of samples

 

 
Number of predictions = 0
Number of predictions = 1
Number of correct predictions = 1
Number of predictions > 1

(b) Efficiency

Figure 3.1: Validity and efficiency of CM-RF-1NN applied to the Microarray
data in the online mode

Figure 3.1b demonstrates the dynamics of efficiency characteristics at the

significance level of 10% of the CM-RF-1NN applied to the Microarray data in

the online mode. The characteristics shown are the number of multiple predic-

tions (with more than one label), the number of certain predictions (comprising

one label) and the number of empty predictions (with no labels output). The

figure demonstrates that while the number of analysed examples is low, they

do not carry enough information to make certain predictions without losing

validity. But starting from example 50, we have accumulated enough informa-

tion so that multiple predictions cease to occur and most of region predictions

contain exactly one label, which is in most cases correct. The dynamics on

the plot also conforms with the empirical fact established in [65] that when

multiple predictions disappear, empty predictions start to occur.

As mentioned before, all implemented confidence machines have a theoreti-

cally proved property of validity, and the general aim is to design a strangeness
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measure that could improve efficiency, that is, make the algorithm output as

few multiple predictions and as many empty predictions as possible. Compari-

son of efficiency of CM-RF and CM-RF-kNN with known confidence machines

demonstrated that CM-RF and CM-RF-kNN produce at least as few multiple

predictions and as many correct certain and empty predictions as the known

machines, and they perform much better in terms of efficiency on all mass spec-

trometry data sets. This allows us to speculate that confidence machines based

on random forests benefit from the advantages of the underlying algorithm and

perform well on noisy data and data with a lot of weak inputs. Tables 3.2, 3.3

and 3.4 summarise rates of multiple predictions, empty predictions and correct

certain predictions for different confidence machines.

Table 3.2: The rate of multiple predictions for significance level ε = 10% in
the leave-one-out mode

CM-

RF RF- RF- 1NN 5NN SVM SVM
Data 1NN 5NN RBF, 5 poly, 5

UKOPS 46.1% 47.0% 45.8% 74.8% 72.0% 59.2% 69.8%
UKCTOCS OC 16.0% 16.0% 13.8% 44.6% 30.8% 38.5% 79.8%
UKCTOCS BC 77.8% 78.4% 77.8% 80.9% 80.9% 81.5% 82.7%
UKCTOCS HD 56.0% 58.1% 57.2% 64.7% 59.5% 66.1% 64.0%
Competition 11.1% 18.3% 17.0% 26.8% 19.6% 32.7% 30.7%
7 biomarkers 51.1% 55.4% 53.8% 67.0% 61.2% 97.9% 96.9%

Abdominal pain 0.3% 1.0% 0.0% 3.0% 0.0% 0.0% 1.0%
Microarray 0.0% 1.5% 0.3% 13.5% 3.5% 8.5% 40.4%

Sonar 14.9% 11.1% 13.0% 13.9% 16.4% 32.2% 30.8%
Iris 0.0% 0.0% 0.0% 0.0% 0.0% 86.7% 8.0%

Confidence machines have been developed to provide region predictions

with the preset error rate. However, in order to compare them with bare

predictions output by simple predictors, we can ignore the nature of confidence

machines and force them to always make a certain prediction. After assigning

a p-value for each label to every object, we can output forced prediction —

a single label with the highest p-value. If several labels have the highest p-
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Table 3.3: The rate of empty predictions for significance level ε = 10% in the
leave-one-out mode

CM-

RF RF- RF- 1NN 5NN SVM SVM
Data 1NN 5NN RBF, 5 poly, 5

UKOPS 0.0% 0.0% 0.0% 0.0% 0.3% 0.0% 0.0%
UKCTOCS OC 0.0% 0.0% 0.0% 0.0% 0.0% 0.3% 0.0%
UKCTOCS BC 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
UKCTOCS HD 0.0% 0.0% 0.0% 0.0% 0.0% 0.5% 0.4%
Competition 0.0% 0.0% 0.0% 0.0% 0.0% 2.6% 4.6%
7 biomarkers 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Abdominal pain 5.3% 2.3% 2.7% 0.0% 4.0% 5.0% 2.0%
Microarray 5.3% 4.5% 5.3% 0.0% 0.5% 2.0% 0.6%

Sonar 0.0% 1.9% 0.0% 0.0% 0.0% 6.7% 7.7%
Iris 9.3% 18.0% 7.3% 6.0% 8.7% 6.7% 3.3%

Table 3.4: The rate of correct certain predictions for significance level ε = 10%
in the leave-one-out mode

CM-

RF RF- RF- 1NN 5NN SVM SVM
Data 1NN 5NN RBF, 5 poly, 5

UKOPS 46.1% 45.5% 45.5% 17.8% 21.8% 33.0% 24.0%
UKCTOCS OC 73.7% 73.7% 76.9% 45.5% 59.3% 51.6% 10.7%
UKCTOCS BC 13.0% 12.3% 13.0% 9.3% 9.3% 8.6% 7.4%
UKCTOCS HD 33.9% 32.8% 32.6% 25.3% 30.5% 23.9% 26.0%
Competition 78.4% 73.2% 74.5% 63.4% 70.6% 57.5% 59.5%
7 biomarkers 38.5% 36.4% 37.9% 25.7% 31.5% 0.6% 0.9%

Abdominal pain 89.0% 89.7% 90.7% 87.3% 90.0% 90.0% 89.0%
Microarray 89.8% 89.3% 89.5% 79.0% 87.8% 83.8% 49.7%

Sonar 77.4% 80.3% 78.8% 76.4% 74.0% 58.2% 59.6%
Iris 89.3% 80.7% 90.7% 90.0% 90.0% 3.3% 82.0%

value (we call this situation a tie), we make a random prediction. Thus, we

launched confidence machines and random forests in the leave-one-out mode
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Table 3.5: Accuracy of forced point predictions in the leave-one-out mode

CM-

RF RF- RF- 1NN 5NN SVM SVM
Data RF 1NN 5NN RBF, 5 poly, 5

UKOPS 72.6% 72.3% 71.5% 72.6% 55.1% 61.7% 66.7% 55.5%
UKCTOCS OC 84.9% 84.8% 83.8% 84.6% 72.3% 80.6% 78.9% 77.9%
UKCTOCS BC 66.0% 66.7% 59.0% 62.4% 50.3% 62.4% 56.2% 54.3%
UKCTOCS HD 71.8% 72.3% 69.2% 71.4% 63.2% 67.9% 62.4% 62.1%
Competition 83.7% 85.3% 83.7% 83.3% 82.0% 84.6% 86.3% 87.6%
7 biomarkers 74.6% 74.8% 72.2% 73.9% 64.5% 73.7% 60.9% 59.0%

Abdominal pain 91.7% 92.7% 91.8% 91.5% 88.0% 92.2% 91.7% 90.7%
Microarray 92.0% 91.3% 92.8% 91.4% 86.1% 89.4% 88.3% 89.5%

Sonar 85.1% 84.6% 88.7% 85.6% 86.3% 82.9% 84.6% 85.3%
Iris 95.3% 94.7% 95.0% 95.3% 93.3% 97.0% 89.3% 89.7%

and compared the accuracy of forced predictions made by confidence machines

and bare predictions output by random forests.

Experiments demonstrated that, when forced to make point predictions,

confidence machines perform similarly to random forest algorithm (see Ta-

ble 3.5). This can be explained by the fact that each random forest is a

combination of a large number of trees constructed randomly and each sample

is not included in the training set for about one third of all trees in a random

forest.

This implies that we can add the framework of conformal prediction to

the random forest algorithm without losing in accuracy while benefiting from

conformal predictions: we can produce valid region predictions and compliment

each prediction with confidence.

The results of comparison of forced accuracy of different confidence ma-

chines (Table 3.5) were in line with efficiency comparison: CM-RF and CM-

RF-kNN considerably outperformed other predictors on most mass spectrom-

etry data sets and were at least as good as the known confidence machines on

all data sets.

Confidence machines based on random forests were also tested on robust-
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ness against noise (see Section 3.2.2 for algorithm description). We expected

accuracy of CM-RF and CM-RF-kNN to change insignificantly when noise

is introduced and also aimed at comparing noise robustness of CM-RF and

CM-RF-kNN with other confidence machines. The experiments demonstrated

that CM-RF and CM-RF-kNN proved to be robust against noise in the data:

there was a slight loss of at most 2.5% in forced accuracy when 10% noise was

introduced in the training set. This can be seen in Tables A.2 and A.3 in Ap-

pendix A. The tables represent the difference in accuracy, erroneous prediction

rate, empty prediction rate, certain prediction rate, correct certain prediction

rate and multiple prediction rate at significance level of 10% caused by injected

10% noise. The UKCTOCS BC data set is not included in the tables because

all experiments on this data set resulted in forced accuracy below the majority

rate.

Other confidence machines also appeared to be noise robust; however, they

can experience higher loss in forced accuracy: up to 5.1% and 8.3% for CM-

SVM and CM-kNN, respectively, when 10% is injected. In addition, one should

take into account that CM-RF and CM-RF-kNN have substantially higher

forced accuracy than other confidence machines on mass spectrometry data

and their performance does not suffer decrease when noise is introduced.

When we consider performance of confidence machines as region predictors,

one could notice that after noise injection the number of erroneous predictions

plunged due to an increase in the number of multiple predictions. Meanwhile

corresponding characteristics of CM-SVM and CM-kNN changed only slightly.

This fact allows us to speculate that confidence machines with strangeness

measures derived from random forests treat noise as not sufficient information

for making certain predictions.

3.2.4 Results on Venn Machines

We investigated designed Venn machines based on random forests and SVMs

and compared their performance with the known implementation VM-1NN

based on a 1-nearest-neighbour algorithm described in Section 2.1.4.2. Com-

parison of designed multiprobability predictors with methods other than algo-
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rithms of the same class (that is, Venn machines) is beyond the scope of this

thesis.

When constructing random forests we used the same parameters as for

confidence machines based on random forests: the number of features to split

on in each node is equal to the square root of the total number of features.

Investigation (given in Table A.4 in Appendix A) demonstrated that the results

do not substantially depend on the number of features to split on at random

forest nodes.

The experiments were carried out in the offline mode by means of the

leave-one-out procedure. Before the Venn machines based on an SVM and a

1-nearest neighbour are applied, the data sets are pre-processed by standardi-

sation so that all features have zero means and the same variance. There was

no normalisation applied before Venn machines based on random forests since

the performance of random forests does not depend on normalisation.

Let us also recall that Venn machines constructed by the use of an SVM

can be applied only to a binary classification problem while Venn machines

derived from random forest and 1-nearest-neighbour algorithms can be used

for any number of classes.

3.2.4.1 Validity

The output of Venn machine is a set of label probability distributions and is

therefore complex. However, it can be interpreted as a singleton prediction

with the interval of probability that it is correct (probability interval), or its

complementary interval — error probability interval (see Section 2.1.4).

The plots that were constructed for error probability intervals of designed

Venn machines applied to different data sets confirmed validity of Venn ma-

chine predictions. An example of Venn machine validity demonstration can be

seen on Figure 3.2: it represents results of VM-RF2A applied with 5 categories

to the Sonar data set. The horizontal axis shows the number of observed ex-

amples. The vertical axis shows the cumulative values of: (1) errors (a solid

line); (2) lower and (3) upper error probabilities (two dot-dashed lines). It

can be seen from the plot that the cumulative number of errors is covered or

almost covered by the area between the cumulative lower error probabilities
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Figure 3.2: Validity of Venn machine VM-RF2A with 5 categories applied to
the Sonar data in the leave-one-out mode: the number of errors lies between the
cumulative lower error probabilities and cumulative upper error probabilities
up to statistical fluctuations

and cumulative upper error probabilities.

One of implications of validity is that forced accuracy on the whole data

set falls between the average lower and upper probabilities or is close to one

of them. This can be seen in further experimental results in Tables A.5–A.12

in Appendix A.

If we applied a probability prediction method (i.g., Bayesian approach), we

could output a singleton label prediction with assigned probability that this

prediction is correct. But we can see from Figure 3.2 that error probability

intervals output by Venn machines are narrow (0.06 on average); hence their

interpretation is close to singleton probabilities. This also makes probability

predictions informative since the upper error probability is close to the error

rate and therefore is not too high on average.

However, this is not the case for all data sets, Venn machines and their

parameters we used in our experiments. For this reason, when considering

different Venn machines, we should compare how accurate forced predictions

are by calculating forced accuracy. Second, we should evaluate efficiency —

how informative probability intervals are. If lower probability of a predicted

label is small, this prediction cannot be considered as reliable. There may
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be another label with empirical probabilities slightly worse than probabilities

of a predicted label. In this case, since both of labels have low empirical

probabilities, we cannot be sure in either of them.

3.2.4.2 Preliminary Analysis on the Sonar Data

We designed several taxonomies based on SVMs and random forests, and each

of them depends on a number of parameters. We carry out thorough analysis of

all taxonomy types with the different number of categories and different values

of taxonomy parameters (e.g., SVM kernels) only on the Sonar data. We will

make preliminary conclusions and will then apply only selected taxonomies to

the rest of the data to confirm these conclusions. The Sonar data set comprises

only two classes; we can therefore apply all types of Venn taxonomies designed

in this chapter, including the ones based on SVMs.

Table 3.6 summarised which Venn machines and with which parameters are

applied to the Sonar data. The corresponding number of categories in Venn

taxonomies is shown in the last column.

Table 3.6: Venn taxonomies applied to the Sonar data set, their parameters K ′

and the corresponding number of categories K

Venn taxonomy K ′ Number of categories K

VM-1NN N/a 2
VM-RF1 N/a 2
VM-RF2A 2, 5, 10 2, 5, 10
VM-RF2B2 1, 3, 5, 7 2, 6, 10, 14
VM-RF3 N/a 2
VM-SVM1 N/a 2
VM-SVM2 2, 5, 10 2, 5, 10
VM-SVM3 1, 2, 4 4, 6, 10

When Venn machines based on SVMs are applied, the following kernels

and their parameters are used:

• Gaussian radial basis function (RBF) with a scaling factor σ = 0.2, 1, 5

• linear kernel
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• polynomial kernel of order 5 and 10

The detailed results of these experiments can be found in Tables A.5

and A.6 in Appendix A.

The experiments allowed us to make the following tentative conclusions on

Venn machines based on random forests. Forced accuracy of VM-RFs

does not substantially depend on the type of Venn taxonomy and the number

of taxonomy categories. The accuracy is always in the range of 84.1–86.5%,

while accuracy of a bare random forest is 85.1%. Thus, the framework of Venn

machine allowed us to obtain singleton predictions with the same accuracy as

the underlying algorithm, but each individual prediction is complemented with

the interval of probability that this prediction is correct, and these probability

intervals are valid.

As for probability intervals, the larger the number of categories, the more

output probabilities differ from each other, hence the wider the probability

intervals we obtain (when the type of Venn machine is fixed). This was con-

firmed in our experiments. Output probability intervals were narrow (at most

0.08 in most cases). As a result, due to the property of validity, which holds

true, average lower probabilities were close to forced accuracy, but for larger

numbers of categories lower probability tends to be lower than for smaller

numbers of categories.

Since Venn machines based on random forests did not demonstrate consid-

erable dependance on the type of Venn machines, on the other data sets we

will consider only several types of them: VM-RF1, VM-RF2A for binary clas-

sification or RF2B2 for multilabel classification, but we will vary the number

of categories where it is possible.

When it comes to Venn machines based on SVMs, we can observe that

forced accuracy fluctuates from 53.4% (which is the ratio of the dominating

class in the Sonar data) to 100% and considerably depends on Venn taxonomy

type, kernel selection, a kernel parameter and sometimes on the number of

categories.

Comparison with bare SVMs with corresponding kernels and parameters

(their accuracy is provided in Table A.7 in Appendix A) does not reveal any

apparent connection between accuracy of SVMs and forced accuracy of Venn
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machines based on these SVMs.

The probability interval output by Venn machines based on SVMs can be

very wide (up to the whole [0, 1] interval, in which case the multiprobability

prediction is vacuous).

The results show that VM-SVM3 does not perform well on the Sonar data:

either the accuracy is close to the majority rate (53.4%) or the probability

interval is too wide (at least 0.75). For this reason, we will exclude VM-SVM3

from experiments run on the other data sets.

VM-SVM2 performs better: there are combinations of kernels, their pa-

rameters and the number of categories which provide accuracy considerably

higher than the majority rate (such as 73.6–88.5%) and average probability

intervals with the width of 0.20–0.63. Therefore, distances to the optimal

separating hyperplane may be more useful than Lagrange multipliers for con-

structing Venn taxonomies.

VM-SVM1 has very few implementations with good performance, and we

will not use this Venn machine in our further analysis of the other data sets.

We also prefer VM-SVM2 to VM-SVM1 because these VM-SVM2 are more

flexible in terms of the number of categories.

Thus, VM-SVM2 is the only Venn machine based on SVMs which will be

applied to the other data sets. The following kernels/paramteres of SVMs will

be considered:

• a linear kernel

• a polynomial kernel of order 5

• an RBF kernel with a scaling factor σ = 5

The number of categories is varied (K = 2, 5, 10).

When Venn machines based on different algorithms are compared, one can

see that all underlying algorithms can provide accuracy of about 87–88%, but

random forests produce it regardless of the taxonomy type and the number

of categories while only certain combination of a Venn machine type, a kernel

and its parameter result in such high accuracy. As for the probability interval

length, VM-1NN outputs the narrowest intervals (average width of 0.01), and

Venn machines based on SVMs output the widest intervals.
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3.2.4.3 Analysis of the Other Data Sets

Table 3.7 represents the shortened list of designed Venn machines which are

applied to data sets other than Sonar. As one can see, the list of applied

Venn machines depends on the number of classes: two or three. VM-SVM2

is applied only with kernels and parameters listed at the end of the previous

subsection.

Table 3.7: Venn taxonomies applied to data sets other than Sonar, their para-
meters K ′ and the corresponding number of categories K

Number of classes Venn taxonomy K ′ Number of categories K

2 VM-1NN N/a 2
VM-RF1 N/a 2
VM-RF2A 2, 5, 10 2, 5, 10
VM-SVM2 2, 5, 10 2, 5, 10

3 VM-1NN N/a 3
VM-RF1 N/a 3
VM-RF2B2 1, 2, 3 3, 6, 9

Detailed results of designed Venn machine performance on different data

sets can be found in Appendix A: Tables A.8–A.11 for two-class data sets other

than Sonar and Table A.12 for three-class data sets. These tables represent

forced accuracy and average start, end, length of output probability intervals.

First, we compared forced accuracy of designed Venn machines with the

accuracy of corresponding underlying algorithms. Experiments demonstrated

that forced accuracy of Venn machines based on random forests was similar to

the accuracy of a bare random forest and substantially higher on the UKOPS

data: forced accuracy of 77.1–84.3% versus random forest accuracy of 72.6%.

For VM-SVM2, there was no always connection between forced accuracy

and accuracy of bare SVMs with the same kernels and parameters. For exam-

ple, on the Competition data, bare SVMs can achieve accuracy (88.2%) higher

than the one provided by random forests or Venn machines based on random

forests (up to 84.3%), but VM-SVM2 does not achieve this accuracy (up to

77.1%). Similarity of forced accuracy and accuracy of the underlying SVM
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was still detected on the UKCTOCS OC data (when linear and RBF kernels

were used) and the UKCTOCS HD data (when linear and polynomial kernels

were used).

The experiments show that when the random forest is used as an underlying

algorithm, forced accuracy does not substantially depend on the Venn machine

type (VM-RF1 or VM-RF2A) and the number of categories. Forced accuracy

of VM-SVM2 considerably depends on the kernel and often on the number of

categories.

Now we can compare forced accuracy of different Venn machines with each

other. We will skip the UKCTOCS BC data because all Venn machines and

underlying algorithms perform badly on this data set: accuracy does not exceed

the ratio of the dominating class in the data. On the other data sets, Venn

machines based on random forests outperform all other machines (except for

the Sonar data where all underlying algorithms can produce the accuracy of

87–88%). As for SVMs, VM-SVM2 can usually provide high accuracy, at

least higher than the one of VM-1NN. However, this accuracy is not robust to

changing kernels and the number of categories.

When investigating informativeness of probability intervals, we will mainly

compare interval width as it reflects how close lower probability is to forced

accuracy (subject to Venn machine validity). The experiments confirm prelim-

inary conclusions made on the Sonar data. The narrowest probability intervals

are output by VM-1NN (at most 0.015). Prediction intervals output by Venn

machines based on random forests are reasonably narrow: not wider than 0.09

and in most cases much narrower. Finally, VM-SVM2 may produce vacuous

predictions with probability interval covering almost the whole [0, 1] interval.

3.2.4.4 Noise Robustness for Venn Machines Based on Random

Forests

Random forests are known to be noise robust [7], and we expect Venn ma-

chines based on random forests to inherit this property from their underlying

algorithm. We applied the test robustness proposed in Section 3.2.2 to the

designed Venn machines based on random forests. Corresponding results can

be found in Tables A.13–A.15 in Appendix A. The experiments are included
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in these tables only if they result in forced accuracy higher than the majority

rate of the data (majority rates are provided in Table 3.1. For example, no

experiments are presented for the UKCTOCS BC data since all of them pro-

vided accuracy at most 66.7%, which is the ratio of the dominating class in

this data set.

The tables show that Venn machines derived from random forests demon-

strated high noise robustness: when 10% noise was introduced, their forced

accuracy increased by at most 4%. Meanwhile, similar noise injections led

to forced accuracy rises of up to 6% and 7% when we applied VM-1NN and

VM-SVM2, respectively.

3.2.4.5 UKCTOCS OC Test for Venn Machines Based on SVMs

In all experiments above, Venn machines based on SVMs were outperformed

by the ones based on random forests. Our previous experience of application of

bare SVMs showed that this algorithm usually performs well when the number

of informative features is comparable to the half of the total number of features.

Similar performance is expected from Venn machines based on SVMs.

We decided to investigate our hypothesis of SVM applicability on the UKC-

TOCS OC data set. The triplet analysis of this data showed that most of the

information statistically significant for discrimination between two classes is

contained in three features (CA125, peak 2 and peak 3; see Chapter 4 and

Appendix B for more details). We could therefore process the UKCTOCS

OC data changing the number of features contained in the object but always

keeping three informative features among them.

Figure 3.3 demonstrates forced accuracy achieved when different numbers

of features (68, 21, 6 and 4) are considered in each object. The plot represents

experiments with VM-1NN (dashed line), VM-RF1 and VM-RF2A with 5 or

10 categories (solid lines) and VM-SVM2 with a linear kernel, a polynomial

kernel of order 5 and an RBF kernel with σ = 5 with 5 or 10 categories

(dotted lines). Results that correspond to the same processing algorithm but

have different numbers of processed features are connected with a line.

On the one hand, when we reduce the number of peaks, we may get rid of

some useful information; on the other hand, this way we can eliminate excessive
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Figure 3.3: Forced accuracy of VM-1NN (dashed line), VM-RF1/VM-RF2A
(solid lines) and VM-SVM2 (dotted lines) applied to the UKCTOCS OC data
with the different number of features
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noise. And the latter is assumed to be the case as we know that most useful

information is concentrated in only three features.

The plot demonstrates that, when we consider all 68 features, all Venn

machines based on random forests outperform the others, while VM-1NN and

some implementations of VM-SVM2 have forced accuracy below 66.7% — the

accuracy that we could achieve when predicting that all objects belong to

the dominating class. When we reduce the number of features, performance

of Venn machines based on random forests does not considerably change, but

forced accuracy of VM-SVM2 improves and in most cases reaches the accuracy

of algorithms based on random forests.

These observations have two important implications. First, they confirm

that Venn machines based on random forests are robust to noise, which is

presented in non-informative features. Second, the results conform well with

our hypothesis that Venn machines based on SVMs perform well when the

number of features is comparable with the half of the total number.

3.3 Summary

In this chapter new implementations of confidence and Venn machines were

proposed: confidence and Venn machines based on random forests as well as

Venn machines with the taxonomy derived from SVMs.

Experiments demonstrate that proposed confidence machines based on ran-

dom forests are more efficient than known confidence machines on mass spec-

trometry data (and at least as efficient on other type of data) while maintaining

the property of validity: they output fewer multiple predictions, and the ratio

of mistakes does not exceed the preset level. Experimental results also confirm

validity of Venn machines based on random forests.

When forced to produce singleton predictions, confidence machines and

Venn machines based on random forests result in accuracy similar to random

forest accuracy. This implies that frameworks of confidence machines and Venn

machines could be applied to random forests and produce algorithms with the

same accuracy, but in addition they complement each individual prediction

with the measure of its reliability. That is, although confidence and Venn
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machines are designed to produce valid region and multiprobability prediction,

they can also be a useful tool when making singleton predictions.

In comparison with other algorithms with online validity, forced accuracy

of all methods derived from random forests is at least as high as accuracy

produced by other algorithms of the same class (i.e., confidence machines or

Venn machines) and sometimes is considerably higher. In addition, all methods

based on random forests proved to be robust to noise, robust to parameters of

random forest construction and, in the case of Venn machines, comparatively

robust to the type of Venn taxonomy and the number of categories. All these

characteristics make Venn machines based on random forests an attractive

analytical tool.

Venn machines based on SVMs also proved to be valid. Their performance

substantially depends on the type of the Venn taxonomy, kernel selection,

a kernel parameter and the number of categories. They may produce high

accuracy, but when using taxonomy based on SVMs, one should be cautious

with the choice of taxonomies and the number of categories. Thus, these

methods may be not very consistent and may require tuning in order to find

good parameters. Venn machines based on SVM often produce wide prediction

intervals, which can make predictions uninformative.

However, experiments with Venn machines derived from SVMs conformed

with the hypothesis that these methods perform well on the data with the num-

ber of informative peaks comparable to the half of the total number. Therefore,

we could advise that methods be applied when this requirement is expected to

be satisfied.
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Chapter 4

Algorithms with Online Validity

for Proteomics

Prediction of ovarian cancer, breast cancer and heart disease is a critical task.

For some of these diseases (e.g., ovarian cancer), it is especially crucial to make

a diagnosis in their early stages, when the disease has no clinical symptoms.

Proteomics and its mass spectrometry techniques can be used to address these

problems.

When making a diagnosis based on mass spectrometry data, the classical

machine learning approach is to predict the diagnosis without any measure of

how accurate this prediction is. For this purpose, a wide range of machine

learning algorithms can be applied, e.g., SVMs or decision trees.

However, it would be useful if prediction of diagnosis could be made with

a level of confidence so that practitioners could have the assessment of risk

error. In addition, we would like the information on prediction reliability to

compliment each individual patient rather than a whole set of patients. This

would allow clinicians to distinguish more confident predictions of diagnosis

from uncertain ones.

Another issue we would like to address is prediction of diagnosis well in

advance of the moment of clinical diagnosis or the moment of death. For

example, for ovarian cancer it is crucial to identify the disease as soon as

possible: if ovarian cancer is diagnosed at the early stage, it may be possible

to remove the single affected ovary and fallopian tube. Thus, we are aiming
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at designing the methodology which would allow us to determine how well

in advance of the moment of diagnosis/death we can make reliable diagnosis

predictions.

Thus, we would like to introduce the methodology of mass spectrometry

data analysis which focuses on these two particular problems:

• Can we develop a methodology which provides a measure of reliability

tailored for each individual patient?

• Can we develop a methodology which would determine how early in

advance of the moment of clinical diagnosis / the moment of death we

can make reliable predictions?

In this chapter we apply frameworks of confidence and Venn machines

in order to develop such methodologies. These frameworks will allow us to

provide additional information on prediction reliability for each patient, and

this information will be valid. Here, we develop algorithms for the analysis

of mass spectrometry data rather than general algorithms with online validity

designed in Chapter 3. Algorithms developed in this chapter are adjusted to

address the second problem listed above, to determine how early in advance

one can make reliable predictions, and allow us to pinpoint mass spectrometry

profile peaks which are important for disease diagnosis and therefore could be

potential biomarkers. These algorithms also take into account the nature of

mass spectrometry experiments and special features of the data we analysed:

serial samples and triplet setting.

4.1 Proteomics and Mass Spectrometry

In this section we give description of proteomics, mass spectrometry experi-

ments as a tool in proteomics research and the format of output mass spec-

trometry data.
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4.1.1 Proteomics

Proteomics is a study of proteins. Understanding the proteome, structure and

functions of different proteins is crucial for development of effective diagnostic

techniques and treatments of diseases.

One of applications of proteomics is identification of biomarkers, proteins

which can be used as an indicator of a particular disease, disease state or

another physiological state of the organism. This approach relies on the infor-

mation in genome and proteome to identify proteins that can reflect a disease.

For example, if the level of a particular protein in serum samples of diseased

patients is higher than in serum samples of healthy patients, this protein could

be a potential biomarker, and higher level of this protein in a new serum sample

could point at the risk that the patient is diseased.

Thus, the most intuitive use of biomarkers is disease diagnosis. Their an-

other application is identification of potential new drugs for disease treatment:

identified biomarkers associated with the disease can be used as targets for

new drugs.

One of the main diseases we focus on in this thesis is ovarian cancer. Several

biomarkers for ovarian cancer have been identified [18; 21; 33; 55]. The most

extensively assessed biomarker is cancer antigen 125 (CA125), that is typically

elevated in the blood of ovarian cancer patients [5; 47].

4.1.2 Mass Spectrometry Experiments and Data

A number of various techniques allow us to test the level of proteins in serum,

blood, urine or tissue samples. Among these techniques are Western blot,

enzyme linked immunosorbent assay (ELISA) and mass spectrometry. Mass

spectrometry [53] is an attractive analytical tool because it enables researchers

to simultaneously analyse hundreds of biomolecules [12; 35; 68; 69].

There are several types of this technique, and the one which is used when

processing data used throughout this thesis is matrix-assisted laser desorption

and ionisation—time-of-flight (MALDI-TOF) [31; 32; 58]. The general de-

scription of this technology, according to [68], is presented below: “The basic

operating principle . . . consists of ionising prepared biologic samples (such as
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blood serum or plasma) through application of a laser beam. The ionisation

process creates a vaporous mixture of charged particles which is accelerated

down a so-called flight tube through application of an electric field. As the

time-of-flight of any particle within the mixture will depend on its mass-to-

charge ratio (m/z), we may determine the m/z-distribution of the constituent

particles in the ionised mixture by recording the flight times.” The unit of

m/z-ratio measurement is Dalton (Da).

“The mass spectrometer produces a sequence of intensity readings for each

sample on a pre-defined, fixed and ordered set of contiguous bins within a

given m/z-range, which discretises the signal. The recorded intensity for any

bin thus corresponds to the total number of particles detected within the m/z-

range spanned by that bin . . . The mass spectrum may thus be thought of as

an extremely high-dimensional histogram, as the number of bins will typically

be in the thousands, recording the distribution of ionised particles within a

serum sample. Bins are usually chosen to be of equal length at the time scale,

which implies bin widths will be exponentially increasing with m/z-value at

the transformed scale [68].”

Thus, a mass spectrum can be visually represented as a set of narrow peaks

of various intensity. These peaks may overlap, which makes separate peak
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Figure 4.1: Example of a mass spectrometry plot (a UKCTOCS OC sample)
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detection difficult. Figure 4.1 gives a graphical representation of one of mass

spectra analysed in this thesis. Each mass spectrum consists of three elements:

signal itself, baseline and noise. In the figure, one can see the baseline, a hump

at the range of m/z-values closer to 0, which peaks at 1500–2000 Da and then

gradually decreases back to zero towards the larger m/z-values. On top of this

baseline, one can see a dense mixture of narrow peaks. Thus, to identify the

peaks we need to subtract the baseline. In addition, mass spectra plots can

be noisy because of physical, electrical or chemical artefacts. Pre-processing is

applied to mass spectra to get rid of this systematic noise. Auxiliary goals of

pre-processing are to normalise the spectra from different samples and reduce

the dimensionality of the data. Pre-processing can include the following steps:

smoothing, baseline subtraction, normalisation to make sure that the total

amounts of ions across different samples are the same. After the true signal

is extracted from mass spectra, peaks are identified in each spectrum and

then aligned, that is, peaks from different spectra get related to each other

and are considered as one peak. Finally, the intensities of identified peaks

are calculated. The pre-processing steps applied in this work can be found in

Section 4.2.

4.1.3 Limitations of Proteomics Application

Even though current proteomics methods are powerful and widely used for

disease diagnosis and drug development, most current diagnostic tests focus

on the same biomarkers [70]. This may happen due to limitations that pro-

teomics approach has. Proteomic technologies are able to detect proteins in

high concentrations but cannot detect single molecules. The concentration

sensitivity limit of currently used approaches varies: for example, SELDI-

TOF mass spectrometry has detection limit of 10−6-10−8M [64], and ELISA

— 10−9–10−12M [1]. Therefore, proteomic methods enable detection of up to

20% of the protein species that are in plasma. The rest of protein species are

beyond the detection ability of proteomics. This limitation is a serious obsta-

cle of future development of proteomics technologies. The fact that the most

of the proteome is not accessible by means of proteomics may be the reason
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why proteomics application were not very efficient recently: the quantity of

new diagnostic tests declined in recent years [1]. Some important biomarkers

may be at ultra-low concentrations and therefore among those proteins that

are not detected by proteomics methods.

There are new methods, such as atomic force microscopy molecular detec-

tor [2], which enable detection of single molecules. Prototypes of devices that

could detect single molecules are developed. These detectors will enable iden-

tification and measurements of proteins at the level of concentration close to

the reverse Avogadro number, i.e., 10−24M, and thus will be highly sensitive

to presence of proteins in plasma.

4.2 The UKCTOCS Data

In this chapter, we develop methodologies for mass spectrometry data analysis

and apply them to subsets of the UKCTOCS 1 biobank. The UKCTOCS

is an extensive study, and its biobank contains serum samples and data of

202,638 women participating in this trial [40]. The women were recruited

between 2001–2005 by the use of random selection from the age/sex registers

of health authorities geographically related to the 13 regional collaborating

centres [71]. To participate in the trial women had to be aged 50–74 years

and be postmenopausal, that is, with more than twelve months amenorrhoea

following a natural menopause or hysterectomy or more than twelve months of

hormone replacement therapy commenced for menopausal symptoms [39; 71].

The exclusion criteria were the following [71]:

• women with history of bilateral oophorectomy;

• women with currently active non-ovarian malignancy (excluding skin

cancer);

• women who have had an ovarian malignancy;

• women with high risk of familial ovarian cancer;

1For more information see www.cancerresearchuk.org.
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• woman who participate in other ovarian cancer screening trials.

The women included in the trial were randomly divided into two groups

of equal size (100,000 patients each): a study group and a control group.

The study group was further randomly split into an ultrasound group and

multimodal group (50,000 patients each). The ultrasound group experienced

annual screening with transvaginal ultrasound of the ovaries. The multimodal

group received annual screening with the Risk of Ovarian Cancer algorithm

for serum CA125 as a primary test and ultrasound as a secondary test. No

screening was applied to the control group. More details can be found in [71].

Women in the study group experienced annual screening with repeat sam-

ples collected if an abnormality was detected [38]. The serum samples under-

went prefractionation using a reversed-phase batch extraction protocol prior

to MALDI-TOF mass spectrometry data acquisition. The unique feature of

this trial was that the women were screened for up to 5 years.

Two studies of samples from women diagnosed to have ovarian and breast

cancer respectively and healthy (no cancer at follow up) patients was under-

taken. A third sample set consisted of women who had died of myocardial

infarction (heart disease) and healthy patients. In this study, we analyse avail-

able ovarian cancer and breast cancer data sets and to a lesser extent the data

related to heart disease. The mass spectrometry data of ovarian cancer and

heart disease are provided by the University of Reading; breast cancer data

were processed by University College London.

The information regarding which patients were followed-up and which were

missing cannot be disclosed. Hence, the interpretation of results obtained

in this chapter is subject to the missingness pattern being random or the

percentage of missing data being small.

The data pertain to serum samples collected from patients diagnosed with

the disease (we will call them cases) and healthy patients (they will be referred

to as controls). Originally, each case was accompanied by two controls matched

on patient age, sample collection location and sample collection date/time

to minimise differences in sample processing [57]. A case accompanied with

two matched controls is called a triplet. In the ovarian cancer data, several

measurements could have been taken from the same case patient. In such case,
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a set of triplets corresponding to the same case patient is called a triplet group.

Due to the triplet setting, the number of controls in each data set is twice

as greater than the number of cases:

• 208 controls and 104 cases in the ovarian cancer data set (312 samples

in total);

• 108 controls and 54 cases in the breast cancer data set (162 samples in

total).

As it was mentioned before, ovarian cancer has a widely used biomarker

CA125 [5; 47]. Its level is usually elevated in the blood of ovarian cancer

patients. However, the potential role of this protein for the early detection of

ovarian cancer is unproved and still subject to clinical trials. One of the main

problems related to the use of CA125 is its low predictive ability at early-

stages of the disease. Another problem is that CA125 can be produced by

other mesothelium-derived tissues [57] and therefore may also be elevated in

women with benign gynaecological conditions and other types of cancer (such

as breast, bladder, pancreatic, liver, lung) [9]. Thus, CA125 deployment lacks

sensitivity [19; 51]: if the level of CA125 is elevated, an operation is needed

to confirm the disease, and this operation may result in death of the patient.

Thus, it is thought that CA125 alone may not be accurate enough for detection

of early-stage ovarian cancer [4].

When carrying out the analysis of the UKCTOCS OC data, we attempt to

identify certain mass spectrometry profile peaks which could, in combination

with CA125, result in accurate ovarian cancer diagnosis well in advance of the

moment of clinical diagnosis. Thus, each mass spectrum of the ovarian cancer

data set is assigned a level of CA125, and we will make predictions of the

diagnosis based not only on MALDI-TOF mass spectrometry data but also on

CA125 levels.

Each sample is assigned a non-negative value T — time to diagnosis con-

firmed by histology/cytology for ovarian and breast cancer patients and time

to death for heart disease patients. Controls are assigned the same value T as

the case they match. We will refer to this value as time to diagnosis. Since we
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have the information regarding when each sample was taken, we can consider

sets of samples taken in different time slots before the time of diagnosis.

The UKCTOCS data sets were applied to the statistical analysis (see Ap-

pendix B and [10; 11; 15]) which was introduced in [26] using the so-called

triplet setting. We will refer to this analysis as the triplet analysis through-

out the thesis. This analysis of the UKCTOCS data demonstrated that there

are certain time slots when mass spectrometry profile peaks carry statistically

significant information for discrimination between controls and cases for the

analysed diseases, i.e., we can reject the null hypothesis that the diagnosis is

independent of the information contained in peak intensities at significance

level of 5% well in advance of the moment of diagnosis. For example, for ovar-

ian cancer, mass spectrometry data allow us to reject the null hypothesis for

detection up to 15 months in advance of the moment of diagnosis.

In the triplet analysis, we used the information that there is exactly one

diseased patient in each triplet and assumed that measurements can be com-

pared only if they are matched. In this chapter, we mostly develop algorithms

which merge all samples together and check whether samples from different

triplets can be compared to each other although they are not matched by

sample collection location and time. However, the algorithm we develop in

Section 4.3.4 applies confidence machines in the triplet setting.

The triplet analysis also allowed us to determine statistically significant

peaks which could be potential candidates for biomarkers. For example, we

identified certain mass spectrometry profile peaks that in combination with

CA125 level can provide reliable long term prediction of ovarian cancer. The

peaks with m/z-values 7772 Da and 9297 Da were the most informative in

extending the period of significant discrimination, and in combination with

CA125 they proved to be able to predict the disease up to 6 and 4 months

earlier than CA125 alone, respectively.

4.2.1 Applied Pre-processing

This section briefly describes the pre-processing applied to the UKCTOCS

data. The data are provided in a two-column format: the first column is a
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list of m/z-values, the second column is a list of corresponding intensities.

Calibration had been performed prior to the data being distributed; therefore,

all our further pre-processing steps were applied only to the intensities, m/z-

values remained unchanged. We applied the pre-processing deployed in [26].

The details of each steps are provided below.

1. Down-sampling was performed in order to decrease the number of m/z-

values for computational optimisation purposes.

2. For noise elimination, we performed smoothing by averaging the inten-

sities within a moving window.

3. Baseline subtraction ensured that the spectra sit on the intensity = 0

axis. The algorithm applied is based on finding the lowest points be-

tween some dominant local maxima (troughs). We define a dominant lo-

cal maximum as the point with the highest intensity within some range,

the width of this range is a parameter of the algorithm. We then ap-

ply Piecewise Cubic Hermite Interpolating Polynomial to all the points

marked as troughs in order to construct a baseline. Further steps are

applied to correct the baseline for any points where the baseline is above

the spectra.

4. We performed normalisation to make sure that the total amount of ions

across different samples were the same. The algorithm involved dividing

the intensity of each point in a spectra by the sum of all intensities.

5. The goal of the peak identification step was to generate a list of peaks

for each sample. This was achieved by identifying all local maxima in

the mass spectra above an intensity threshold and above a certain signal-

to-noise ratio threshold. As a result of this algorithm we had a table for

each sample with the following columns:

(a) Unique sample ID — for any single sample this column has the

same number for each entry, the reason for this column will become

apparent in the next step

(b) Number of peak in the initial array of m/z-values
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(c) M/z-value of a local maximum

(d) Signal-to-noise ratio within a window of the certain width

(e) Corresponding intensity

6. Peaks obtained in the previous step do not strictly coincide because of

the noise and possible presence of different isotopes. Therefore, the next

step (called peak alignment) is to find common peaks (that is, peaks

with m/z-values close to each other) among the samples. We combined

all peak lists constructed for individual samples into one list and sorted

in descending order relative to column 5 — peak intensity. We then

worked down the list taking one of the following actions for each peak:

(a) If the peak is within some predefined range of an existing peak

group and there is no other peak from the same sample in that

group, then the current peak can be added to the group; else the

peak is ignored.

(b) If there are no groups close to the current peak, then a new peak

group is created containing the single peak.

7. The result of the previous step is a set of peak groups, each of which

can potentially contain between 1 peak and Nms peaks, where Nms is

the number of samples in the data set. Now we have to compute peak

intensities for each sample for each peak group. For those peak groups

that have less than Nms peaks, we need to estimate the intensities for the

remaining samples. For this purpose, we set a mass separation parameter

which we use to define a range in the m/z-vector given a single m/z-

value — the maximum m/z-ratio of all the peaks in the group. Then

the intensity of each missing sample is defined as the maximum intensity

within this range in the spectrum of the sample.

So the data we apply to our methodology are represented as intensities of

identified peaks. The peaks are usually sorted by their frequency: the greater

the number of mass spectra containing a peak, the higher the rank of that peak.

We usually consider a certain number of the most frequent peaks only. The
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number of most frequent peaks was determined by the properties of specific

data sets. These are 5 peaks for ovarian cancer, 20 peaks for breast cancer and

41 peaks for heart disease.

Thus, every xi is a vector of features — intensities of the most frequent

peaks. Later, peak numbers are used; the lower the peak number, the more

common the peak is. Please note that sets of peaks vary for different data sets;

therefore, peaks with the same number from various data sets have different

m/z-values.

4.3 Algorithms for Proteomic Analysis

Here we describe algorithms with online validity designed for mass spectrom-

etry data and the UKCTOCS data in particular. On the one hand, these

algorithms hedge predictions by complementing them with additional infor-

mation on their reliability; on the other hand, they are specially developed for

mass spectrometry data and take into account peculiarities of the UKCTOCS

data.

4.3.1 Category-Based Confidence Machines Construc-

ted on Linear Rules

Here we develop a category-based confidence machine with the strangeness

measure based on linear combinations of a small number of peaks (and CA125

for ovarian cancer). The framework of category-based confidence machines

allows us to assign confidence to each individual prediction and have a the-

oretical guarantee on the asymptotical error rate of region predictions. The

taxonomy used is label-conditioned and allows us to control regional speci-

ficity and regional sensitivity by presetting significance levels for categories of

healthy and diseased samples.

Practically any known machine learning algorithm can be plugged into

the framework of category-based confidence machines and thus result in a

new algorithm of prediction with confidence. In this section we developed the

strangeness measure which produces results both comprehensible and useful for
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medical researchers. It also allows to pinpoint mass spectrometry profile peaks

that correlate with a disease and therefore could be potential biomarkers, while

other strangeness measures designed or considered in this thesis do not give

such an opportunity. Thus, we describe the application of linear rules within

the framework of category-based confidence machines used for discrimination

between mass spectrometry samples taken from healthy and diseased patients.

When designing a new strangeness measure, we will use simple linear rules

of the following type:

h∑
k=1

wk log I(nk) > θ , (4.1)

where I(nk) is the intensity of peak nk, wk ∈ R, k = 1, . . . , h are weights,

θ ∈ R is a threshold. A rule classifies a patient as diseased if it returns the

value true, healthy otherwise. If a rule of this type can discriminate healthy

samples from diseased, the peaks which are included in the linear rule could

be potential biomarkers. In addition, weights wk, k = 1, . . . , h, can reflect the

importance of each peak (the larger the absolute value of a peak’s weight, the

more important the peak is) and whether the higher or lower protein level is

a risk factor (depending on the sign of the corresponding weight).

In order to design a category-based strangeness measure, we first need to

define taxonomy of the category-based confidence machine. We will consider a

category-based taxonomy κ(n, (xn, yn)) = yn, i.e., the taxonomy which consists

of two categories that correspond to two different diagnoses: a category of

healthy patients and a category of diseased patients. Such taxonomy will

allow us to guarantee regional sensitivity and regional specificity. Hence, a

p-value for the hypothesis yn = y is calculated as follows:

pn(y) =
|{i = 1, . . . , n : yi = y & αi ≥ αn}|

|{i = 1, . . . , n : yi = y}|
, (4.2)

that is, the p-value is calculated as the ratio of healthy (diseased) patients

that are at least as strange as the new healthy (diseased) patient to the total

number of healthy (diseased) patients.

We apply category-based confidence machine with this taxonomy rather
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that confidence machine or another category-based confidence machine be-

cause this taxonomy seems to be most natural to use in combination with the

strangeness measure we are proposing.

The strangeness measure was calculated using the classification method

described below. We fix the number h of peaks used in a rule. We then

consider a set of possible linear rules of type (4.1) where parameters of the

rules can possess the following values: wk ∈ Wk ⊆ R, θ ∈ R, {n1, . . . , nh} ∈
P ⊆ {1, . . . , N}h. Out of these rules, we select the following one:

{w̃1, . . . , w̃h, θ̃, ñ1, . . . , ñh}

= arg max
wk∈Wk,θ∈R,
{n1,...,nh}∈P

(min(TPR(w1, . . . , wh, θ, n1, . . . , nh),

TNR(w1, . . . , wh, θ, n1, . . . , nh))) , (4.3)

where TPR(w1, . . . , wh, θ, n1, . . . , nh) and TNR(w1, . . . , wh, θ, n1, . . . , nh) are

the true positive rate (sensitivity) and the true negative rate (specificity) of

the rule (4.1) with parameters (w1, . . . , wh, θ, n1, . . . , nh), respectively, on the

set of patients including a new patient with a new hypothetical diagnosis. If

there are more than one set of parameters which provide maximum in arg max

expression, we choose the one with the smallest absolute values of parameters

giving priorities in the following order: w1, . . . , wh, n1, . . . , nh, θ.

We can then define the strangeness score of a new patient with a diagnosis

on the basis of the chosen rule. The value of the chosen linear combination∑h
k=1 w̃k log I(ñk) is used as a strangeness score for healthy patients or as

a value negative to a strangeness score for diseased patients. Thus, when

calculating a p-value, we compare the value of the chosen linear combination

for the new patient with the value of the same combination for patients with

the same diagnosis. If the new patient was healthy, the larger the value of the

linear combination, the more non-conformal the patient is, and the other way

around if the patient is diseased.

In our experiments, the significance level was the same for the classes of

healthy and diseased patients. However, if we wanted to put regional sensitivity

or specificity first, we could consider different significance levels for healthy and
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diseased samples.

Cross-validation of the method using a leave-one-out approach was per-

formed: each patient (xi, yi) is considered as if it was a new test sample and

all the remaining patients in the data are treated as the training set.

4.3.2 Logistic Venn Machines

The category-based confidence machine designed in the previous section out-

puts sets of potential labels. Now we would like to focus on probability that the

patient is diseased. This is known as risk of a disease. For this purpose, we ap-

ply a framework of Venn machines which allows us to output multiprobability

predictions that are valid in terms of agreement with the observed frequencies.

In order to process mass spectrometry data, we design a novel Venn tax-

onomy which will allow us to obtain ranking of all mass spectrometry profile

peaks in terms of their importance for disease diagnosis. We can then identify

peaks with the highest ranks and investigate them as potential biomarkers.

Other Venn machines designed in this thesis do not have such an ability to

pinpoint the most important features.

The proposed Venn taxonomy is based on a logistic regression algorithm.

Since logistic regression outputs probability distributions, this Venn taxonomy

will also allow us to compare performance of a Venn machine (with multiproba-

bility outputs) and its underlying algorithm (with probabilistic outputs). This

way we can get an insight into whether multiprobability predictions have any

advantages over probabilistic predictions.

This Venn machine based on logistic regression was designed in collabora-

tion with Ilia Nouretdinov.

4.3.2.1 Logistic Regression

When implementing logistic regression, we followed [54]. This algorithm out-

puts probability distribution of a new label as follows.

Suppose each object out of the training set x1, . . . , xn−1 is an m-dimensional

vector, each with corresponding labels y1, . . . , yn−1 ∈ Y = {0, 1}. The statis-

tical model of logistic regression is based on the assumption that yi is 1 with
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probability Pi and 0 with probability 1− Pi, where

Pi =
1

1 + e−<xi,b>
(4.4)

and

1− Pi =
1

1 + e<xi,b>
. (4.5)

The m-dimensional vector b is an unknown parameter of the model and can

be interpreted as signed weights of different attributes. An additional value of

‘1’ may be appended to each xi to allow a free additive term to < xi, b >.

The optimisation goal for logistic regression is:

n−1∑
i=1

log
(
1 + e(−1)yi 〈xi,b〉

)
+ a 〈b, b〉 → min

b
. (4.6)

This formula is based on the maximum likelihood estimation for logistic re-

gression with an added regularisation term a 〈b, b〉 to ensure that a minimum

always exists and to avoid overfitting. In this work we always set a = 0.1. The

above minimisation problem can be solved by the gradient descent method.

Denote by b̂ the solution of the optimisation problem above.

For a new object xn, the probabilistic prediction based on logistic regression

will be

Pn = Pnew =
1

1 + e−〈xn,b̂〉 , (4.7)

which estimates the maximum likelihood probability that yn = 1 if the data

are generated by a distribution from a logistic model. We will call Pnew a

direct prediction to distinguish it from multiprobability predictions produced

by Venn machines.

4.3.2.2 Logistic Venn Taxonomy

Now we can describe how logistic regression can be embedded in Venn machine

as an underlying algorithm. As earlier, the aim is the predict labels yi, which

are equal to 0 for controls and 1 for cases, by objects xi — vectors of features,

which are intensities of the most frequent peaks in the logarithm scale.
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The probabilistic method of logistic regression allows us to create a new

type of taxonomy: the logistic taxonomy τi, i = 1, . . . , |Y|, which is defined

as follows. The solution b̂ of the optimisation problem (4.6) is calculated for

the whole set (x1, y1), . . . , (xn−1, yn−1), (xn, y) as a training set and is used to

make direct predictions P1, . . . , Pn on the same (training) examples. These

predictions are not fair leave-one-out predictions, but it is correct to use them

for taxonomy construction.

Let P ′
i , i = 1, . . . , n be direct predictions Pi sorted in ascending order. Set

a number of taxonomy categories K. Let L0 = 0 and L1, L2, . . . , LK be the

integers closest to n/K, 2n/K, 3n/K, . . . , n. The category τi of the example

(xi, yi) is then defined as the number of the interval formed by division points

P ′
L0

, P ′
L1

, . . . , P ′
LK

where value Pi falls: τi = {j = 1, . . . , K : P ′
j−1 < Pi ≤ P ′

j}.
Thus, we divide the examples into several groups of approximately equal

size being grouped by the similarity of their direct predictions. The division

is carried out by K-quantiles of a set of direct predictions. We construct cate-

gories of equal size because the small size of categories will result in overfitting

and will be punished by the large diameter of a probability intervals. On the

other hand, large categories will result in underfitting.

When the direct prediction is obtained, the solution of the optimisation

problem b̂ = {b̂k} can be interpreted as implicit peak ranking. Since the

solution is used as weighting of peak intensities in the logistic regression model〈
xi, b̂

〉
, the larger the absolute value of a corresponding weight b̂k, the more

important peak k is. This way Venn predictions can pinpoint peaks which

could potentially reflect the absence or presence of the disease.

4.3.3 Time Dependency

Identification of diseases in their early stages can be crucial for successful

treatment. For this reason, one of the important questions we would like

to answer when analysing mass spectrometry data of diseased and healthy

samples is the following: How long in advance of the moment of diagnosis can

we provide reliable predictions? In this section we describe the methodology

which could answer this question. The methodology was previously applied
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in [26]; we are going to use it in combination with the developed algorithms

with online validity (category-based confidence machine based on linear rules

and logistic Venn machine).

Since the samples were collected over a long period of time (up to five

years) and we have the information regarding how long in advance of the

moment of diagnosis these samples were taken, we can take advantage of this

fact. We consider different time slots of a fixed width; for example, 6 or 12

months. The higher the number of available samples, the narrower window we

can consider. The time slots finish t = 0, 1, 2, . . .months in advance of the

moment of diagnosis. After fixing the time slot, we pick all the patients whose

measurements were taken in this time slot, together with matched controls.

The feature of the ovarian cancer data is that several measurements were taken

from the same patient at different moments. If several measurements of the

same patient from the ovarian cancer data fall in the time slot, we consider

only the one closest to the moment of diagnosis, eliminating the others together

with corresponding controls.

We then can apply designed algorithms with online validity to patient mea-

surements in time slots moving away from the moment of the diagnosis and

observe how validity and efficiency of designed algorithms change over time.

We expect output predictions to maintain the property of validity (as long as

the number of patients fallen in each time slot is large enough). However, the

efficiency of predictions is expected to deteriorate as the time slot is moving

away since we assume that, further from the moment of diagnosis, mass spectra

contain less information useful for discrimination between cases and controls

4.3.4 Confidence Machines in the Triplet Setting

The UKCTOCS data sets were originally provided in a triplet setting: each

case is accompanied by two controls. In this section we design confidence

machines which can take the advantage of the triplet setting. The approach

laid out here can be naturally generalised for the situation when each case is

complement with a fixed number of matched controls. For example, we could

consider quadruples out of which only one sample is diseased and the others

104



are healthy. However, we will apply our approach only to a triplet setting

because the UKCTOCS data were structured this way.

Each object in this setting is a triplet of mass spectra rather than a single

spectrum. Mass spectra are arbitrarily ordered within objects-triplets. Each

label is then the number of the sample in a triplet which is a case. There are

therefore three possible labels: {1, 2, 3}. The proposed strangeness measure

is also based on linear combinations of peak intensities and possibly CA125.

This strangeness measure designed for a triplet setting will allow us to pin-

point informative mass spectrometry profile peaks, which could be potential

biomarkers.

Let us assume we have objects xi = {x1
i , x

2
i , x

3
i }, i = 1, . . . , n, where xj

i ,

i = 1, . . . , n, j = 1, 2, 3, are samples represented by mass spectra. Label

yi ∈ Y = {1, 2, 3}, i = 1, . . . , n, is a number of a case in a triplet xi.

In order to design a strangeness measure, we consider linear rules of the

following type

r(xj
i ; w1, . . . , wh, n1, . . . , nh) =

h∑
k=1

wk log I(nk) , (4.8)

where I(nk) is the intensity of peak nk; wk ∈ R; k = 1, . . . , h are weights.

These are the same rules as (4.1) only without a threshold. Such a rule

identifies a diseased sample as the one with the highest value of the rule:

yi(r) = arg maxj r(xj
i ).

The strangeness measure was calculated using the classification method

described below. We fix the number h of peaks used in a rule. We then consider

a set of possible linear rules of type (4.8) where parameters of the rules can

have the following values: wi ∈ Wi ⊆ R, {n1, . . . , nh} ∈ P ⊆ {1, . . . , N}h.

Out of these rules we select the one with the maximum value of accuracy

on the set of all objects-triplets including a new one with a new hypothetical

label. We denote it by r̂. We can then define the strangeness score for triplet

xi:

αi = −(r̂(xcase
i )−max(r̂(xcontrol1

i ), r̂(xcontrol2
i ))) ,
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where xcase
i = xyi

i is a case in triplet xi, and xcontrol1
i and xcontrol2

i are controls.

Thus, the better the rule r̂ performs on a triplet xi, the less strange the triplet

is. The rule was derived from the whole set of triplets; therefore, the strange-

ness measure defined above could reflect how strange a triplet is in relation to

other samples.

The rule r̂ which is chosen when strangeness scores are calculated is the best

in terms of discriminating between healthy and diseased samples in a triplet

setting. Hence the peaks that are included in r̂ are the most informative

ones and could be potential biomarkers. In addition, weights wi, i = 1, . . . , h

can reflect the importance of each peak (the larger the absolute value of a

peak’s weight, the more important the peak is) and whether the higher or

lower protein level is a risk factor (depending on the sign of the corresponding

weight).

The application of confidence machines in this setting seems to be more

intuitive and more useful when the number of samples in a group is big. In this

case we need to identify a diseased sample out of a group of matched patients

and can state that some of them are more likely to be diseased than others.

Confidence machines in a triplet setting can also be useful for the following

reason. When we are given a diseased patient, and she is accompanied by

several controls, in reality we can never be sure that the controls are not in

an early stage of the disease. Application of confidence machines in a triplet-

like setting could help identify such situations. For example, if credibility or

confidence is low, this may mean that some of controls could be potential cases.

4.4 Experimental Results

In this section, we present the results of application of designed methods to

the UKCTOCS data sets. Results of application of the same algorithms to

the Salmonella mass spectrometry data provided by VLA are shown in Ap-

pendix C.

Here we first demonstrate results of application of category-based confi-

dence machines based on linear rules; then results on logistic Venn machines;

and finally, confidence machines in a triplet setting. All experiments are run
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within the time dependency analysis framework.

It should be noted that, in Chapter 3, we applied designed algorithms to

the whole UKCTOCS data sets, while in this chapter we apply algorithms

developed for proteomic data only to subsets of the same data sets (which

fall in time slots of 6 or 12 months). Therefore, the results of application of

different algorithms to the UKCTOCS cannot be compared.

4.4.1 Category-Based Confidence Machines

In order to demonstrate how the proposed methodology works in practice, we

applied the designed category-based confidence machine to MALDI-TOF mass

spectrometry data: the ovarian cancer, breast cancer and heart disease data

sets.

For the ovarian cancer data we are looking for mass spectrometry profile

peaks that could in combination with the biomarker CA125 provide accurate

predictions. Hence for ovarian cancer we consider the simplest possible combi-

nations (4.1) of CA125 and one peak (h = 2); n1 corresponds to CA125 level, n2

is any peak, w1 ∈ W1 = {0, 0.5, 1, 2} is a CA125 weight, w2 ∈ W2 = {−1, 0, 1}
is a peak weight. Because of the small number of samples, any additional

terms in the rules (4.1) considered would bring overfitting.

For the breast cancer and heart disease data sets we did not have any

known biomarkers and considered cut-off rules (4.1) with one peak involved

(h = 1) with w1 ∈ W1 = {−1, 1}, a weight that determines whether the peak

has higher or lower intensities for cases.

No normalisation/standardisation was applied; however, designed category-

based confidence machines have embedded logarithm transformation.

We will first aim to provide predictions with confidence just before the

moment of the diagnosis, and then we will investigate how long in advance of

the moment of diagnosis we can provide reliable predictions.

4.4.1.1 Prediction before the Moment of Diagnosis

Thus, we now consider only patients whose measurements were taken not long

in advance of the moment of diagnosis: not earlier than 6 months in advance for
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ovarian cancer patients and 12 months in advance for breast cancer patients.

We are using these periods to be consistent with the triplet analysis of these

data [10; 11; 15], where we considered time slots of the same width.

We accumulate all cases which were taken not earlier than 6 (12) months

in advance, together with controls which match these cases (and hence have

the same time to diagnosis values). In case of the ovarian cancer data, if

several measurements of the same patients were taken in this time window,

we considered only the latest one (i.e., with the minimum value of T ), all the

other case measurements and their matched controls were eliminated.

When analysing the heart disease data, we will consider all patients to-

gether regardless how early these measurements were taken for two reasons.

First, for heart disease it is not essential to produce reliable predictions as

early in advance as possible since once the disease is identified, a successful

operation may be performed on a patient. Second, when we did analyse heart

disease patients in shorter time slots, we could not achieve performance better

than on the whole data set.

4.4.1.1.1 Region Predictions. At first, we will demonstrate how predic-

tion with confidence works. The implemented category-based confidence ma-

chine provides two p-values for each patient: one for the ‘healthy’ diagnosis,

another for the ‘diseased’ diagnosis. On the basis of these p-values, we calcu-

late confidence and credibility for each patient as described in Section 2.1.3.

After assigning each patient with two p-values, we make forced prediction, that

is, predict the diagnosis with the highest p-value.

Table 4.1 represents p-values, confidence and credibility for ovarian cancer

measurements taken not earlier than 6 months in advance of the moment of

diagnosis; several examples are given for illustrative purposes.

Recall that p-values reflect how well the hypothetical label conforms with

the rest of the sequence; therefore, confidence is close enough to 1 and cred-

ibility is not close to 0, the prediction is considered to be reliable. We will

demonstrate this in detail on several examples from Table 4.1. For instance,

measurement 141100 in Table 4.1 has two p-values one of which is high (0.99),

another — low (0.01). This results in high confidence of 0.99 and high credibil-
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Table 4.1: Examples of the output of category-based confidence machines ap-
plied to the ovarian cancer data in a 0–6 month time slot: true and predicted
diagnoses, p-values for both diagnoses (0 — healthy, 1 — diseased), confidence
and credibility for several patients

Measurement True Predicted p-value p-value Confi- Credi-
ID diagnosis diagnosis for 0 for 1 dence bility

141100 0 0 0.99 0.01 0.99 0.99
146384 0 1 0.12 0.13 0.88 0.13
232604 1 0 0.51 0.28 0.72 0.51
245401 1 1 0.01 0.97 0.99 0.97

ity of 0.99 and identifies the prediction as reliable: only one diagnosis conforms

well with the rest of the set. If this patient were a case (diagnosis value of 1) and

the underlying model were i.i.d., this would mean that an event of probability

≤ 1% occurred. Here by ‘probability’ we mean any probability distribution P
on Z∞ which is i.i.d. This is the consequence of confidence machine p-value

property:

P(p-value ≤ 0.01) ≤ 0.01

for any i.i.d. probability distribution P on Z∞. Thus, this statement is not

related to the estimation of the error on the whole population: we just calculate

the probability of the event that individual p-value for a particular object

and a particular label does not exceed 0.01, and this probability is calculated

according to any i.i.d. distribution on Z∞.

For this reason, we expect the patient to be healthy, which she is. In

contrast, measurement 232604 has p-values, neither of which is close to zero.

These p-values do not produce high confidence (0.72) or high credibility (0.51),

which means that neither of the diagnoses is likely to be correct and, hence,

there is not enough information to confidently classify the patient. As a result,

the output prediction for measurement 232604 is indeed incorrect.

We further observe the accuracy of forced predictions. In this section, we

would like to demonstrate the advantage of category-based confidence ma-

chines as region predictors: their output is always conditionally valid. We

implemented region predictors, which, for each significance level ε > 0, pre-
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dict a set of diagnoses with p-values greater than ε. Significance levels ε we

considered are 1%, 5%, 10% and 20%.

The category-based confidence machines implemented in our work proved

to be conditionally valid for all data sets, that is, the rate of erroneous predic-

tions among healthy patients and among diseased patients does not exceed the

significance level in a leave-one-out procedure. (Recall that conditional valid-

ity is proved under i.i.d. assumption only for the online mode.) The property

of conditional validity means that we could guarantee a certain level not only

for accuracy, but also for accuracy within healthy and diseased samples. This

is demonstrated in Table 4.2, which shows the error rate for the ovarian cancer

data in the time slot of 0–6 months for different significance levels.

We could also consider different significance levels for classes of healthy and

diseased patients. This would lead to different guaranteed values of regional

sensitivity or specificity if we need to put one of these characteristics first.

Table 4.2: Validity and efficiency of category-based confidence machines ap-
plied in the offline mode to the ovarian cancer data in months 0–6: accuracy,
regional sensitivity and regional specificity are not less than the preset confi-
dence level (1− ε); rates of empty, certain and multiple predictions reflect the
efficiency of the region predictor

Confidence level (1− ε) 99% 95% 90% 80%

Regional accuracy 99.5% 95.6% 90.7% 80.4%
Regional sensitivity 100.0% 95.6% 91.2% 80.9%
Regional specificity 99.3% 95.6% 90.4% 80.2%

Empty predictions 0.0% 0.0% 3.9% 18.1%
Certain predictions 25.5% 91.7% 94.1% 81.4%
Multiple predictions 74.5% 8.3% 2.0% 0.5%

To demonstrate the property of conditional validity in dynamics, we ran

the analogous experiments in the online mode: considering one patient after

another as a test set and adding all processed patients to a training set. Fig-

ure 5.1 shows the erroneous prediction dynamics for the ovarian cancer data in

the time slot of 0–6 months processed in the online mode for different signifi-

cance levels. The horizontal axis represents the number of patients, the vertical
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axis is the number of erroneous region predictions. The figure demonstrates

conditional validity of implemented predictors: solid lines, which represent the

actual number of errors, correspond to dotted lines, which demonstrate the ex-

pected number of errors (equal to a significance level multiplied by the number

of patients).
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Figure 4.2: Validity dynamics in the online mode for the ovarian cancer data
in the time slot of 0–6 months

Having the guaranteed error rate, we may still obtain several diagnoses as

a prediction. This is shown in the bottom half of Table 4.2. The table provides

the number of multiple predictions, certain predictions and empty predictions

for the ovarian cancer data in the time slot of 0–6 months in advance. These

characteristics describe efficiency of the predictor. As we can see from Ta-

ble 4.2, the higher the confidence level, the more multiple predictions appear

in experiments to maintain validity. It is also shown in the table that, at confi-

dence levels of 95% and 90%, more than 90% of all region predictions comprise

exactly one label, that is, are similar to the output of simple predictors.

4.4.1.1.2 Accuracy of Forced Predictions. So far we output region

predictions by presetting the error rate we would like to obtain. Now we change
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the significance level for each patient so that each prediction is singleton and

examine the accuracy of forced predictions.

We can compare the accuracy of forced predictions with the accuracy of

the underlying algorithm, which we will refer to as bare threshold predictions.

The underlying algorithm is the following. We consider the same sets of cut-off

rules (4.1) we considered in category-based confidence machines. Such rules

classify a patient as diseased if the true value is returned, healthy otherwise.

Out of the set of rules we also select the one (4.3) which maximises the mini-

mum value of sensitivity and specificity on the training set. The selected rule

is then applied to the test set (a left-out sample).

Table 4.3 demonstrates the accuracy of forced predictions output by catego-

ry-based confidence machines and bare threshold predictions for the three data

sets. It can be seen from the table that forced prediction accuracy of category-

based confidence machines is comparable to the accuracy of its underlying

algorithms for all data sets.

The highest accuracy was obtained for the ovarian cancer data: 92.2%.

The breast cancer data resulted in the accuracy of 71.9%. The accuracy of the

application of category-based confidence machines to the heart disease data

is much lower (59.7%). Nevertheless, this accuracy is comparable with the

accuracy of its underlying algorithm — 59.4%. One could speculate that the

accuracy of heart disease experiments is not high enough, because we consider

all measurements in the data set taken as early as three years before the

diagnosis. But as it was mentioned before, when we analysed heart disease

patients in shorter time slots, we could not make highly accurate predictions

either.

Thus, designed predictors, when forced to make singleton predictions, result

in accuracy similar to the accuracy of their underlying algorithms, but, when

interpreted as region predictions, they can guarantee the preset error rate

asymptotically.

4.4.1.2 Prediction in Advance of the Moment of Diagnosis

Here we attempt to answer the second question stated at the beginning of this

chapter: How long in advance of the moment of diagnosis can we make reli-
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Table 4.3: Forced point predictions output by category-based confidence ma-
chine and bare predictions output by the threshold method for measurements
taken not long in advance of the moment of diagnosis

Forced predictions Bare threshold predictions

Accuracy Sensiti- Specifi- Accuracy Sensiti- Specifi-
Data set vity city vity city

Ovarian cancer 92.2% 91.2% 92.7% 92.7% 89.7% 94.1%
Breast cancer 71.9% 73.7% 71.1% 71.9% 73.7% 71.1%
Heart disease 59.7% 59.9% 59.6% 59.4% 59.4% 59.4%

able predictions? It was shown in [10; 15] and in Appendix B that, for ovarian

and breast cancers, there are certain time slots when mass spectrometry pro-

file peaks carry statistically significant information for discrimination between

controls and cases, i.e., we can reject the null hypothesis that the diagnosis

is independent of the information contained in peak intensities at significance

level of 5% well in advance of the moment of diagnosis. In this section, we will

be able to confirm this tendency and also to check whether measurements from

different triplets are comparable. In the triplet analysis, we assumed that we

can compare only measurement which were combined in triplets, that is, were

matched by the location and time of sample collection. Here we are merging

all samples together and check whether we can compare them with each other

and output highly accurate predictions.

In order to do this, we will investigate dynamics of output predictions over

time using the time dependency analysis laid out in Section 4.3.3. We will

consider different time slots of the fixed length (6 months for ovarian cancer

and 12 months for breast cancer) shifting away from the moment of diagnosis.

These time slots finish 1, 2, 3, . . . months in advance of the moment of the

diagnosis.

After fixing the time slot, we pick all the patients whose measurements were

taken in this time slot together with matched controls. For the ovarian cancer

data, if several measurements of the same patients fall in this time slot, we

consider only the one closest to the moment of the diagnosis, eliminating the

others together with corresponding controls. We then apply designed category-
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Table 4.4: The rate of certain predictions output by category-based confidence
machines at significance levels ε = 5%, 10%, 20% in different time slots for the
ovarian cancer and breast cancer data sets

Time slot Ovarian cancer Breast cancer

end ε = 5% ε = 10% ε = 20% ε = 5% ε = 10% ε = 20%

0 91.7% 94.1% 81.4% 5.3% 15.8% 50.9%
1 78.6% 94.6% 84.5% 8.3% 23.6% 62.5%
2 58.2% 80.1% 90.1% 7.7% 24.4% 76.9%
3 25.9% 48.2% 88.9% 7.7% 24.4% 76.9%
4 27.2% 56.8% 91.4% 8.3% 19.4% 93.1%
5 21.7% 44.9% 71.0% 8.3% 29.2% 88.9%
6 18.3% 41.7% 58.3% 10.0% 36.7% 90.0%
7 9.8% 21.6% 62.8% 5.3% 14.0% 59.7%
8 2.0% 29.4% 60.8% 3.9% 17.7% 62.8%
9 18.3% 33.3% 73.3% 1.9% 14.8% 64.8%
10 11.9% 29.8% 67.9% 1.9% 14.8% 35.2%
11 9.5% 22.6% 58.3% 1.9% 16.7% 50.0%

based confidence machines to patient measurements in time slots moving away

from the moment of the diagnosis.

4.4.1.2.1 Efficiency Dynamics. All region predictions output by design-

ed category-based confidence machines proved to be valid in all time slots: the

number of erroneous predictions within healthy patients and diseased patients

corresponded to the preset value up to statistical fluctuations.

We therefore need to investigate the dynamics of region prediction effi-

ciency. Table 4.4 shows the ratio of certain predictions output by category-

based confidence machine in different time slots at significance levels of ε = 5%,

10%, 20% for the ovarian cancer and breast cancer data sets. The table demon-

strates that for the ovarian cancer data efficiency deteriorates when we move

away from the moment of diagnosis: the number of certain predictions de-

creases. As for the breast cancer data, efficiency improves first, achieves the

maximum of certain prediction rate in months 4–6 and then also deteriorates.

114



Table 4.5: Accuracy dynamics of forced point predictions output by category-
based confidence machine and bare predictions output by the threshold method
on the ovarian cancer data set

Forced predictions Bare threshold predictions

Time No of Accu- Sensiti- Specifi- Accu- Sensiti- Specifi-
slot samples racy vity city racy vity city

0–6 204 92.2% 91.2% 92.7% 92.7% 89.7% 94.1%
1–7 168 89.9% 89.3% 90.2% 89.3% 89.3% 89.3%
2–8 141 83.7% 83.0% 84.0% 85.1% 80.9% 87.2%
3–9 108 78.7% 80.6% 77.8% 76.9% 80.6% 75.0%
4–10 81 79.0% 74.1% 81.5% 84.0% 85.2% 83.3%
5–11 69 73.9% 73.9% 73.9% 76.8% 73.9% 78.3%
6–12 60 66.7% 65.0% 67.5% 65.0% 65.0% 65.0%
7–13 51 68.6% 64.7% 70.6% 68.6% 82.4% 61.8%
8–14 51 66.7% 70.6% 64.7% 72.6% 64.7% 76.5%
9–15 60 73.3% 75.0% 72.5% 73.3% 70.0% 75.0%
10–16 84 70.2% 71.4% 69.6% 71.4% 71.4% 71.4%
11–17 84 66.7% 67.9% 66.1% 66.7% 64.3% 67.9%

4.4.1.2.2 Accuracy of Forced Predictions over Time. When applied

in different time slots, category-based confidence machines can also be forced

to output singleton predictions and compared with the corresponding bare

threshold prediction.

Tables 4.5 and 4.6 demonstrate the accuracy of forced predictions and

bare predictions in the moving time window. It can be seen from the tables

that forced prediction accuracy of category-based confidence machines is again

comparable to the accuracy of its underlying algorithms. At the same time,

in their natural setting category-based confidence machines can output region

predictions with the preset regional sensitivity and specificity.

On the whole, the tables demonstrate that forced predictions produced by

category-based confidence machines are reasonably accurate well in advance

of the moment of the moment of diagnosis. For example, the accuracy on

the ovarian cancer data set in the time slot 10–16 (the latest time slot when

CA125 on its own does not carry statistically significant information for disease

discrimination, see Appendix B and [57]) is 70.2%. This is quite good given
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Table 4.6: Accuracy dynamics of forced point predictions output by category-
based confidence machines and bare predictions output by the threshold
method on the breast cancer data set

Forced predictions Bare threshold predictions

Time No of Accu- Sensiti- Specifi- Accu- Sensiti- Specifi-
slot samples racy vity city racy vity city

0 – 12 57 71.9% 73.7% 71.1% 71.9% 73.7% 71.1%
1 – 13 72 77.8% 79.2% 77.1% 77.8% 79.2% 77.1%
2 – 14 78 76.9% 76.9% 76.9% 76.9% 80.8% 75.0%
3 – 15 78 76.9% 76.9% 76.9% 76.9% 80.8% 75.0%
4 – 16 72 77.8% 79.2% 77.1% 75.0% 75.0% 75.0%
5 – 17 72 75.0% 75.0% 75.0% 75.0% 75.0% 75.0%
6 – 18 60 73.3% 75.0% 72.5% 76.7% 75.0% 77.5%
7 – 19 57 71.9% 73.7% 71.1% 68.4% 68.4% 68.4%
8 – 20 51 70.6% 70.6% 70.6% 70.6% 70.6% 70.6%
9 – 21 54 70.4% 72.2% 69.4% 70.4% 72.2% 69.4%
10 – 22 54 48.2% 55.6% 44.4% 72.2% 66.7% 75.0%
11 – 23 54 70.4% 72.2% 69.4% 68.5% 72.2% 66.7%

that the diagnosis is made not earlier than 10 months in advance before the

diagnosis. For comparison, when we make predictions with the same method

for measurements taken just before the moment of diagnosis (in a 0–6 time

slot), the accuracy is equal to 92.2%. As we move away from the moment of

diagnosis, accuracy of predictions decreases. Low accuracy 6, 7 and 8 months

in advance may be explained by a small number of samples in this period

(below 70 samples for any time slot). In general, category-based confidence

machines produce predictions with accuracy higher than 66% up to 11 months

in advance of the moment of ovarian cancer diagnosis.

Similarly, category-based confidence machines achieve accuracy higher than

70% for the breast cancer data up to 9 months in advance of the moment of

diagnosis. However, there is no apparent decreasing trend in accuracy; it

fluctuates in the range of 70.4–77.8%.

4.4.1.2.3 Prediction Dynamics over Time. As mentioned before, the

feature of the ovarian cancer data set is that ovarian cancer cases can have
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several measurements taken at different moments. For this reason, we can

observe the change in the output of category-based confidence machines for

this data set. As an illustration, we will consider several ovarian cancer cases

that have measurements taken over a long period of time and will show how

confidence and credibility are changing when the patient is approaching the

moment of diagnosis.

We select patients with at least three measurements. For each measure-

ment, we train the category-based confidence machine on the samples in the

earliest 6-month time slot containing the measurement leaving out the mea-

surement itself. For example, if a measurement was taken 6.5 months in ad-

vance, we consider the time slot from month 12 to month 6. If an ovarian

cancer case has several measurements fallen in this time slots, all except for

the one closest to the moment of diagnosis were eliminated from the train-

ing set. We then apply the category-based confidence machine to the left-out

measurement and output a forced prediction, its confidence and credibility.

All other parameters were the same as in previous experiments.

Dynamics of confidence and credibility for measurements of several patients

is shown in Table 4.7.

Table 4.7: Dynamics of confidence and credibility for measurements taken from
two ovarian cancer cases

Case ID Months in advance Prediction Confidence Credibility

39 10 1 89.5% 67.9%
4 1 90.9% 44.4%
2 1 99.0% 66.0%
1 1 99.1% 76.8%

42 24 1 69.0% 71.4%
15 0 45.0% 78.1%
3 1 98.6% 100.0%

Recall that we can trust a prediction if its confidence is close to 1 (that is,

all p-values for alternative diagnoses are close to 0) and its credibility is not

close to 0 (that is, the maximum p-value is not close to 0). This implies that if

a category-based confidence machine makes correct predictions about the case,
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we expect confidence to be approaching 100% when measurements are getting

closer to the moment of diagnosis. Meanwhile, credibility is expected not to

be getting close to 0%. Table 4.7 demonstrates that patient 39 confirms our

expectations.

Patient 42 represents a more interesting example: we make an erroneous

prediction 15 months in advance. However, its confidence is not close to 100%,

which reflects that we cannot be sure in this prediction. When we make a final

prediction for this patient 3 months in advance, both confidence and credibility

are close to 100%.

4.4.1.3 Summary

When applied to the UKCTOCS data sets, designed category-based confidence

machines prove to be conditionally valid: the number of erroneous prediction

within healthy and diseased patients corresponds to the preset significance

level.

Moreover, when making predictions for the ovarian cancer data just before

the moment of diagnosis, more than 90% of output region predictions contain

exactly one label at confidence levels of 95% and 90%. This makes them

similar to simple predictors; however, category-based confidence machines can

also guarantee the error rate within groups of healthy and diseased patients.

Even though category-based confidence machines produce region predic-

tions, their output can be interpreted as singleton predictions. It was demon-

strated that when forced to make single predictions, our methodology provides

accuracy close to the accuracy of its underlying algorithm (threshold rule).

As a result, accuracy on the ovarian cancer data rises from 70.2% 10 months

in advance of the moment of diagnosis to up to 92.2% just before the moment

of diagnosis. When applied to the breast cancer data, the methods allowed us

to achieve accuracy of 70.4–77.8% for up to 9 months in advance of diagnosis.

The same approach has been applies to the heart disease data without time

dependency although the achieved accuracy was not high.
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4.4.2 Logistic Venn Machines

In this section, we apply logistic Venn machines to the UKCTOCS data sets:

ovarian cancer, breast cancer and heart disease. Again, for ovarian cancer and

breast cancer we consider different time slots of the fixed length (6 months

for ovarian cancer and 12 months for breast cancer) shifting away from the

moment of diagnosis. After fixing the time slot, we select all the patients whose

measurements were taken in this time slot together with matched controls. We

then apply logistic Venn machine to selected patient measurements.

For the heart disease data, we analyse all samples without considering time

slots for the same reasons as for category-based confidence machines: there was

no incentive from the practical point of view and there were no better results

achieved on the data in time slots.

In all experiments, we use leave-one-out mode: each example (xi, yi) is

considered as if it were a new test example and all the remaining examples in

the data are treated as the training set. We applied a logistic Venn taxonomy

with 5 categories to avoid a small number of categories and a small number of

samples in each category. Before logistic Venn machine is launched, logarithm

transformation is applied to the data. No standardisation was applied. Hence

each object xi is a vector comprising the following features: intensities of the

most frequent peaks on the logarithmic scale, value ‘1’ for possible absolute

term in logistic regression model and logarithm of the CA125 value for the

ovarian cancer data set.

4.4.2.1 Multiprobability Predictions

Since the underlying algorithm — logistic regression — also produces proba-

bility distributions, we can compare the results of the application of the Venn

machine based on logistic regression and the probabilistic predictor of logistic

regression itself.

Results of experiments for several controls and cases of the heart disease

data are shown in Table C.5 for illustrative purposes. For each example, the

table contains the true label y = ynew, and a Venn prediction — the interval

[P−
new, P+

new] of probability that y = 1. To avoid confusion, we would like

119



Table 4.8: Leave-one-out Venn predictions for the heart disease data

No. True label Venn prediction Direct prediction

1 0 0.313–0.321 0.508
2 1 0.616–0.616 0.689
3 0 0.321–0.330 0.510
4 0 0.143–0.259 0.371
5 0 0.616–0.634 0.622
6 0 0.321–0.321 0.484
7 1 0.313–0.321 0.516
8 0 0.616–0.634 0.558
9 0 0.143–0.161 0.333
10 1 0.616–0.625 0.703

to point out that in Chapter 3, where some of the classes are multilabel, we

used intervals (2.10) of probability that the predicted label is correct. They

are different from the ones we show in this chapter: the latter are probability

intervals [P−
new, P+

new] (2.11) for label 1, regardless of whether it is correct or

not. We can use these intervals since all UKCTOCS data sets comprise two

classes.

Let us look at some of the example in Table C.5. One can see that logistic

Venn machine outputs prediction intervals [0.321, 0.508] and [0.616, 0.689] for

probabilities that examples 1 and 2 are cases (y = 1). As prediction inter-

vals indicate, the correct labels for example 1 and 2 are 0 and 1, respectively.

The table also includes predictions Pnew output by logistic regression for each

example. Recall that we refer to these predictions as direct predictions as op-

posed to Venn predictions output by Venn machines. The table demonstrates

that both direct and Venn predictions can be correct or erroneous. The per-

formance of such predictions will be analysed in Section 4.4.2.3.

First of all, we attempt to demonstrate implications of logistic Venn ma-

chine validity. We aim to show that true probabilities of label distribution are

covered or almost covered by the interval between lower Venn prediction and

upper Venn prediction. Since we do not know true probabilities of label dis-

tribution, we compare empirical probabilities, that is, mean true labels, with
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mean direct and Venn predictions.

Figure 4.3 is a graphical representation of corresponding cumulative results.

The horizontal axis shows the number of observed examples. The vertical axis

shows the cumulative values of: (1) true labels ynew (a solid line); (2) lower and

upper Venn predictions P−
new, P+

new (two dot-dashed lines) and (3) cumulative

direct predictions Pnew (a dashed line). The examples are sorted according to

direct predictions.
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Figure 4.3: Cumulative Venn and direct predictions for the heart disease data
(all samples)

Firstly, the plot conforms with validity of Venn machine outputs. Secondly,

we can see that probability intervals output by Venn machines are narrow

(0.025 on average for the heart disease data); therefore, they are almost as

precise as single probabilities.

Finally, Figure 4.3 demonstrates that probability intervals can be more ac-

curate than single probabilities produced by logistic regression. It can be seen

from the figure that the true labels are very different from the direct predictions

but are only slightly above the upper Venn prediction up to approximately 210

examples and within the upper and lower Venn predictions for the remaining
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examples after this point. Thus, direct predictions can be misleading, while

Venn predictions always cover or almost cover true labels.

Similar plots for the ovarian cancer and breast cancer data sets can be

found in Appendix A (Figures A.1 and A.2). They also confirm the property

of validity of Venn machines: the line corresponding to cumulative true la-

bels is covered or almost covered by the space between lines for cumulative

Venn predictions. For ovarian cancer the area between cumulative Venn pre-

diction lines is also narrow (with average probability interval width of 0.026)

and almost covers the cumulative true label line, while the line representing

cumulative direct predictions diverges from the true label line for up to 180

first examples. For breast cancer, the average interval width is much larger

(0.332), hence, probability intervals are not as precise and informative.

It can be said that both algorithms relied on the assumption of the mech-

anism generating the data — logistic regression statistical model. However,

probability predictions used this mechanism directly, and Venn machines de-

ployed the mechanism when defining the taxonomy. As a result, since the

statistical model does not hold true (the opposite can be guaranteed only for

artificially generated data), probabilities output by logistic regression are dif-

ferent from empirical probabilities. In contrast, Venn machine’s validity was

not affected by the fact that the model is not correct. Hence, Venn machine

predictions appeared to be more accurate than singleton probability predic-

tions.

4.4.2.2 Prediction Dynamics over Time

Now, for illustrative purposes, we will consider several ovarian cancer cases

that have measurements taken over a long period of time and will show how

probability intervals output by Venn machines are changing when the patient

is approaching the moment of diagnosis.

The setting is the same as with designed category-based confidence ma-

chines. We select patients with at least three measurements. For each mea-

surement, we train the machine on the samples in the earliest 6-month time slot

containing the measurement leaving out the measurement itself. If an ovarian

cancer case has several measurements fallen in this time slots, all except for
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the one closest to the moment of diagnosis were eliminated from the training

set. We then apply the machine to the left-out measurement and output a

Venn prediction.

Table 4.9: Dynamics of prediction intervals output by Venn machines for mea-
surements taken from the same ovarian cancer case

Personal ID Months in advance Prediction interval

29 13 0.22–0.39
10 0.59–0.71
4 0.88–0.94

39 10 0.53–0.71
4 0.44–0.94
2 0.96–1.00
1 0.97–1.00

Table 4.9 shows the dynamics of prediction intervals output by Venn ma-

chines for samples 29 and 39. Each row corresponds to a single measurement.

Column 2 demonstrates how early in advance this measurement was taken.

These samples with multiple measurements illustrate two trends in probabil-

ity interval change. First, the interval is getting narrower when the moment

of diagnosis is approaching, which means that two probability distributions

produced by Venn machines are getting closer to each other, and as a result,

the overall prediction is getting more precise. Second, the interval is moving

towards 1 (the prediction that the sample is diseased). This implies that we

have more trust in our prediction and the prediction is indeed correct (because

all the samples considered were cases).

4.4.2.3 Accuracy of Forced Predictions

It was shown in [10; 15] that in a triplet setting for ovarian cancer and breast

cancer, there are certain time slots when mass spectrometry profile peaks carry

statistically significant information for discrimination between controls and

cases. Here we would like to check that samples from different triplets can

be compared to each other and be merged while providing high accuracy of

prediction.
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Even though Venn machines and logistic regression produce multiprobabil-

ity and probability predictions, respectively, their outputs can be interpreted

as singleton predictions (forced predictions). In this section we examine the

accuracy of forced predictions when we are not able to use advantages of mul-

tiprobability predictions.

We can extract forced predictions out of Venn machines and logistic regres-

sion the most intuitive way: we classify a new sample as 1 (case) if and only

if Pnew > 0.5 for direct prediction or P+
new + P−

new > 1 for Venn prediction.

This will also allow us to compare accuracy of Venn predictions with direct

predictions.

For the ovarian and breast cancer data sets, we again consider the dynamics

of predictive ability of mass spectrometry profile peaks across the timeline.

Table 4.10 allows us to compare accuracy of forced predictions produced on

the ovarian cancer data by logistic Venn machine and its underlying algorithm,

logistic regression, in different time slots. The table demonstrates that Venn

machines are comparable with logistic regression in terms of forced prediction

accuracy: in time slots close to the moment of diagnosis Venn machine is

slightly outperformed by logistic regression, then in months 5–7 they have

equal accuracy, and in months 8–11 (time slots we are mostly interested in)

Venn machine beats logistic regression.

Table 4.10 demonstrates that forced predictions produced by Venn predic-

tions are reasonably accurate well in advance of the moment of diagnosis. For

example, the accuracy on the ovarian cancer data set just before the moment

of diagnosis (a 0–6 time slot)is 90.2% whereas the accuracy in the time slot

10–16 (the latest time slot when CA125 on its own does not carry statistically

significant information for disease discrimination) is 73.8%. In general, Venn

machines produce predictions with accuracy higher than 73% up to 10 months

in advance of the moment of diagnosis.

Venn machines do not produce high accuracy on the breast cancer data.

We can speculate that this fact can be explained the following way: we showed

earlier [10] and will show in this thesis that the breast cancer data set contains

only one peak which carries statistically significant information (peak 19).

When we consider more features, we include more peaks that carry more noise,
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Table 4.10: Dynamics of Venn machine and logistic regression performance on
the ovarian cancer data set

Venn machine Logistic regression

Time Accuracy Sensiti- Specifi- Accuracy Sensiti- Specifi-
slot vity city vity city

0–6 90.2% 95.6% 87.5% 93.6% 85.3% 97.8%
1–7 88.1% 91.1% 86.6% 92.9% 83.9% 97.3%
2–8 76.6% 59.6% 85.1% 87.9% 78.7% 92.6%
3–9 83.3% 58.3% 95.8% 83.3% 69.4% 90.3%
4–10 75.3% 59.3% 83.3% 82.7% 66.7% 90.7%
5–11 79.7% 52.2% 93.5% 79.7% 56.5% 91.3%
6–12 81.7% 55.0% 95.0% 81.7% 55.0% 95.0%
7–13 70.6% 35.3% 88.2% 70.6% 35.3% 88.2%
8–14 82.4% 52.9% 97.1% 78.4% 47.1% 94.1%
9–15 75.0% 45.0% 90.0% 71.7% 35.0% 90.0%
10–16 73.8% 67.9% 76.8% 67.9% 25.0% 89.3%
11–17 66.7% 50.0% 75.0% 64.3% 17.9% 87.5%

which results in poor performance of Venn machines. The early diagnosis of

breast cancer also gets more complicated because of the following feature of

the breast cancer data set: all breast cancer samples were taken at least three

months in advance of the moment of diagnosis.

Finally, for heart disease we consider the whole data set rather than dy-

namics across the timeline since it is sufficient to predict this disease at any

moment to prevent the consequences. The accuracy of the application of Venn

machines to the heart disease data is 69.9%. The accuracy is again comparable

with the accuracy of underlying algorithms: 67.9%.

Thus, designed Venn machines when forced to make one single prediction

result in accuracy similar to the accuracy of their underlying algorithm. Mean-

while, when interpreted as multiprobability predictions, Venn machines have

the theoretically guaranteed property of validity.
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4.4.2.4 Summary

The experiments showed that probability intervals constructed for ovarian can-

cer and heart disease are narrow, that is, the output of the multiprobability

predictor is similar to a single probability distribution. Meanwhile, plots con-

firmed that property of validity holds true even in the offline mode. In addi-

tion, probability intervals produced for ovarian cancer and heart disease were

more accurate than the output of corresponding probability predictor of logis-

tic regression: probability predictions can be misleading while multiprobability

predictor outputs a narrow probability interval which almost always covers the

empirical label probability.

When Venn machines are forced to make point predictions, the accuracy of

such predictions is comparable with the accuracy of the underlying algorithm

of logistic regression. As a result, the accuracy of the proposed method on

the ovarian cancer data rises from 73.8% 10 months in advance of the moment

of diagnosis to up to 90.2% before the moment of diagnosis. However, Venn

machines do not produce high accuracy on the breast cancer or heart disease

data. On the heart disease data taken as a whole data set, we achieved forced

accuracy of 69.9%.

4.4.3 Confidence Machines in a Triplet Setting

In this section, we apply confidence machines in a triplet setting to the UKC-

TOCS ovarian cancer and breast cancer data sets. We consider the same time

slots — 6 months for ovarian cancer and 12 months for breast cancer — in or-

der to be consistent with the previous analysis. However, this time slot width

leads to a small number of triplets falling in these windows as the number of

objects gets three times as smaller. We mostly consider this launch of exper-

iments as a trial since the number of triplets is not large enough to produce

reliable predictions. The larger number of patients per group would also make

the outcome of confidence predictor more useful.

For each time slot, we launch a confidence machine in a triplet setting

on the set of triplets within this time window. We then calculate two char-

acteristics: forced accuracy and mean confidence. Forced accuracy describes
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performance of a confidence machine as a simple predictor, and mean confi-

dence is a characteristic of region predictions. These values are summarised

for different time slots of the ovarian cancer and breast cancer data sets in

Tables 4.12 and 4.13, respectively.

No normalisation/standardisation was applied; however, designed confi-

dence machines have embedded logarithm transformation.

4.4.3.1 Predictions for Individual Triplets over Time

First, we will illustrate how predictions with assigned confidence work in a

triplet setting and how this confidence changes over time for measurements

taken from the same sample. Several examples of p-values, confidence and

credibility are provided in Table 4.11. The table represents predictions for

UKCTOCS OC triplets with a case patient whose ID can be found in the

first column; the prediction is made on the basis of the training set within the

six-month time slot whose end is shown in the second column of the table.

Table 4.11: Confidence machines in a triplet setting: dynamics of confidence
and credibility for triplets with measurements taken for the same ovarian can-
cer case

Case Months Prediction p-values for Confi- Credi-
ID in advance 1 2 3 dence bility

39 10 1 0.82 0.21 0.11 0.79 0.82
4 2 0.70 0.74 0.04 0.30 0.74
2 1 0.85 0.02 0.06 0.98 0.85
1 1 0.71 0.02 0.05 0.98 0.71

42 24 1 0.50 0.29 0.43 0.71 0.50
15 3 0.10 0.10 0.65 0.90 0.10
3 1 1.00 0.47 0.03 0.53 1.00

All samples are sorted within triplets so that the first sample in a triplet

is a case; therefore, the correct label for each triplet (which is a case num-

ber) equals 1. Columns ‘p-values’ provide p-values for three possible labels

(hypothetical case numbers). Then follow the columns with confidence and

credibility calculated the way it was described in 2.1.2. Column ‘Prediction’
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Table 4.12: Confidence machines in a triplet setting applied to the ovarian
cancer data

Time slot No of triplets Accuracy Mean confidence

0–6 68 97.1% 0.93
1–7 56 92.9% 0.92
2–8 47 89.4% 0.89
3–9 36 80.6% 0.82
4–10 27 77.8% 0.80
5–11 23 73.9% 0.73
6–12 20 75.0% 0.72
7–13 17 76.5% 0.71
8–14 17 82.4% 0.72
9–15 20 80.0% 0.68
10–16 28 64.3% 0.63
11–17 28 50.0% 0.56
12–18 28 42.9% 0.55
13–19 30 43.3% 0.58
14–20 25 40.0% 0.53
15–21 20 40.0% 0.55
16–22 10 50.0% 0.58

represents the predicted number of a case in a triplet, which was determined

as the one with the highest p-value.

Table 4.11 also provides examples of triplets with case measurements taken

from the same ovarian cancer samples: cases 39 and 42 (dynamics for mea-

surements of the same cases was provided in Table 4.7 when category-based

confidence machines based on linear rules were applied). As before, for each

measurement, we considered the earliest 6-month time slot containing the mea-

surement and then used all measurements taken in this time slot as a training

set.

For example, one can see from Table 4.11 that for triplets with case 39 we

can achieve high confidence only 1 and 2 months in advance, whereas 4 months

in advance we are making an incorrect prediction. For a triplet taken 4 months

in advance, label 3 is rejected because it has a small p-value of 0.04; however,

p-values for labels 1 and 2 are close to each other (0.70 and 0.74, respectively),
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which results in low confidence (0.30) of the prediction. And the prediction is

indeed incorrect.

4.4.3.2 Forced Accuracy

Table 4.12 demonstrates than when making predictions for ovarian cancer just

before the moment of diagnosis, we can output predictions with accuracy of

97.1% and most predictions are highly confident: mean confidence equals 0.93.

When we move away from the moment of diagnosis, both accuracy and mean

confidence deteriorate. However, we can still make predictions with accuracy

of at least 73.9% as early as 9 months in advance.

Table 4.13: Confidence machines in a triplet setting applied to the breast
cancer data

Time slot No of triplets Accuracy Mean confidence

0–12 19 63.2% 0.55
1–13 24 83.3% 0.65
2–14 26 80.8% 0.63
3–15 26 80.8% 0.63
4–16 24 83.3% 0.63
5–17 24 79.2% 0.64
6–18 20 35.0% 0.50
7–19 19 47.4% 0.45
8–20 17 47.1% 0.44
9–21 18 44.4% 0.42
10–22 18 44.4% 0.39
11–23 18 33.3% 0.41
12–24 20 35.0% 0.39
13–25 17 47.1% 0.44
14–26 18 55.6% 0.54
15–27 20 55.0% 0.57
16–28 20 55.0% 0.57

Figure 4.4 shows that the dynamics of forced accuracy in a triplet setting

corresponds to the trend in forced accuracy in a usual setting. A dashed

line in the figure demonstrates values of forced accuracy for a category-based

confidence machine based on linear rules applied to individual patients; a solid
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line represents forced accuracy produced by a confidence machine in a triplet

setting. However, one should keep in mind that we cannot compare these

two types of forced accuracy directly: if we make predictions at random, the

accuracy in an individual patient setting is 50%, while in a triplet setting

it equals 33.3%. Also, the difference is that, in a triplet setting, we have

additional information that exactly one sample in each triplet is a case and

the others are controls.
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Figure 4.4: Dynamics of forced accuracy in a triplet setting and in an individual
patient setting for the ovarian cancer data

Forced accuracy achieved on the breast cancer data (Table 4.13) is lower:

it fluctuates around 80% from month 1 to month 5 in advance of diagnosis and

is considerably lower in other months. However, achieved forced accuracy is

still higher than the accuracy of 33.3%, which would be achieved on random

data.
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When we compare forced accuracy in a triplet setting and in an individual

patient setting on the breast cancer data (see Figure 4.5), it can be easily

observed that forced accuracy on individual patients remain high much longer

(at least 9 months in advance), while in a triplet setting high forced accuracy

is achieved much later, about 5 months in advance. By ‘high’ accuracy we

mean values around or above 70%. This threshold is chosen because of clear

visual separation in Figure 4.5.
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Figure 4.5: Dynamics of forced accuracy in a triplet setting and in an individual
patient setting for the breast cancer data

In general, the results achieved by confidence machines in a triplet setting

may be not reliable because the number of triplets in each time slot is not

high enough. This confidence machine requires further investigation on mass

spectrometry data sets with a a larger number of examples.

In addition, these confidence machines would be more useful if the number
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of patients per group were larger than three: in this case we would have to

output patients (maybe, several of them) within groups which are more likely

to be diseased with a preset long-run error rate.

4.5 Contributions to Proteomics

The principal goal of the whole chapter is to develop machine learning method-

ology for analysis of mass spectrometry data. However, implementation and

application of such methods to real world data allowed us to make preliminary

conclusions of medical nature.

Firstly, we achieved good classification results on real world proteomic data

of ovarian cancer and breast cancer. For example, when making predictions

for the ovarian cancer data set just before the moment of diagnosis, both

category-based confidence machines based on linear rules and logistic Venn

machine achieve accuracy higher than 90%. This confirmed the hypothesis

that samples can be compared to each other even if they are not matched,

that is, triplets can be merged and still provide high accuracy of prediction.

Secondly, proposed methodologies allowed us to speculate how long in ad-

vance we can output accurate predictions for these diseases. For the ovarian

cancer data, we can predict with output predictions with accuracy of 91.7%

just before the moment of diagnosis and at least 66.7% up to 11 months in

advance of the moment of diagnosis; for the breast cancer data, we can achieve

accuracy of 70.4–77.8% for up to 9 months in advance of diagnosis.

Thirdly, algorithms allowed us to confirm mass spectrometry profile peaks

previously identified as carrying statistically significant information for dis-

crimination between controls and cases.

4.5.1 Selection of Peaks

Our previous research of the UKCTOCS data [10; 11; 15] devoted to triplet

analysis allowed us to determine potential candidates for biomarkers. We iden-

tified certain mass spectrometry profile peaks that carry statistically significant

information for the diagnosis of the diseases. Both category-based confidence
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machines and Venn machines can also indirectly pinpoint potential biomarkers.

Despite the different nature of these three methods, category-based confidence

machines and Venn machines confirm mass spectrometry profile peaks that

carry statistically significant information for discrimination between controls

and cases.

The triplet analysis was carried out for the same data sets but in a differ-

ent experimental setting: the data were normalised against such factors as age,

sample collection time and location, storage and transportation conditions. All

samples were grouped in triplets comprising one case and two controls matched

by these factors. Thus, when making predictions, we had additional informa-

tion about label distribution: we knew that exactly one sample is diseased in

a triplet.

We will consider the time slots when Venn machines and category-based

confidence machines produced high accuracy on the data sets: 6-month win-

dows finishing 0–11 months in advance for ovarian cancer and 12-month win-

dows finishing 0–9 months in a advance for breast cancer. For ovarian cancer

we are especially interested in time slots at least as early as month 10 because

this is the first time slot when CA125 on its own does not provide statistically

significant discrimination between cases and controls. We will again consider

one time slot including all samples for heart disease.

Category-based confidence machines help us identify potential biomarkers

in the following way. When we run the leave-one-out procedure, for each pos-

sible label we choose the best rule w1 log(C) + w2 log I(n1) > θ (for ovarian

cancer) or w1 log I(n1) > θ (for breast cancer and heart disease), which con-

tains peak n1. The selected peak may not be the same for every possible label

and every possible left out sample, but in the time slots we are mostly inter-

ested in, the same peak was selected as a part of the best rule, that is, we chose

the same weights and peak number when leaving out an example. These are

peak 6 for heart disease (the whole data set); peak 19 for breast cancer in time

slots finishing with months 0–9, 11, 12; peak 3 for ovarian cancer in time slots

finishing with months 9–11. The detailed results for ovarian cancer and breast

cancer samples taken in different time slots are represented in Table 4.14. The

table shows the peak which was selected most often (‘Top peak’ column) and
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Table 4.14: Top peaks pinpointed by category-based confidence machines
(‘CCM’) and Venn machines (‘VM’) in different time slots for the ovarian
cancer and breast cancer data sets

Ovarian cancer Breast cancer

CCM VM CCM VM

Time slot Top Peak Top Top Peak Top
end peak frequency peak peak frequency peak

0 1 96.1% 4 19 100.0% 19
1 1 83.0% 2 19 100.0% 19
2 1 72.7% 2 19 100.0% 19
3 2 56.0% 2 19 100.0% 19
4 2 98.2% 2 19 100.0% 19
5 1 95.7% 1 19 100.0% 19
6 1 69.2% 2 19 100.0% 19
7 4 94.1% 2 19 100.0% 19
8 3 73.5% 2 19 100.0% 19
9 3 100.0% 3 19 100.0% 19
10 3 100.0% 3 19 87.0% 19
11 3 100.0% 3 19 100.0% 19
12 2 85.7% 5 19 100.0% 2
13 3 95.0% 5 6 78.4% 1
14 3 85.3% 2 15 100.0% 15
15 2 89.2% 2 14 67.5% 15
16 5 63.3% 3 14 67.5% 15

how often it was selected (‘Peak frequency’ column).

Logistic Venn machine also produces an explicit ranking of peaks. It can be

extracted from the coefficients of the optimal value for parameter b calculated

in Venn predictions. The optimal parameter b̂ is recalculated for each example

and each of two hypotheses; to summarise the coefficients for all runs, we

calculate the mean value of coefficients. The most important features are

those with the highest absolute value of their coefficients.

Table 4.14 shows the peak with the highest ranking produced in different

time slots by Venn machines for ovarian cancer and breast cancer. The table

demonstrates that peak 3 is the top ovarian cancer peak in months 9–11 and

peak 19 is the highest ranked breast cancer peak in months 0–11.
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Table 4.15: Numbers of the most important peaks selected with different meth-
ods for the heart disease, breast cancer and ovarian cancer data sets (corre-
sponding m/z-values are shown in Table A.16 in Appendix A)

Ovarian Breast Heart
Method cancer cancer disease

Triplet analysis 2, 3 19 7, 6, 4
Category-based confidence machine 3 19 6
Venn machine 3 19 4, 6, 7

Table 4.15 summarises all peaks selected by three different approaches: the

triplet analysis in a triplet setting, category-based confidence machines and

Venn machines. Those peaks are shown that were selected in time slots of

high interest: slots finishing with months 10–11 for ovarian cancer, 0–9 for

breast cancer and the whole data set for heart disease. For heart disease, the

three peaks with the highest ranking produced by Venn machines are provided.

The m/z-values of the peaks shown in the table are given in Table A.16 in

Appendix A. Table 4.15 demonstrates that algorithms with online validity

confirm the peaks identified as carrying statistically significant information in

the triplet setting.

For the ovarian cancer data in time slots finishing with month 10 or 11

all three methods select peak 3 (9297.8 Da). These are the time slots when

CA125 on its own does not carry statistically significant information as shown

in previous research (Appendix B and [57]). Ovarian cancer peak 3 was also

pinpointed in research on other data sets. It is similar to the peak CTAPIII

with m/z-value 9288 Da, which was validated in another study using clinical

samples from ovarian cancer women and controls [56]. In this study too lower

intensities were noted for ovarian cancer samples. In addition, peak 3 coincides

with peak 7 (m/z-value range 9294.7–9319.7 Da) previously found in the analy-

sis of similar serial ovarian cancer samples and controls in the pilot [26; 40]

trial which preceded UKCTOCS.

The predictive ability of CA125 on its own and in combination with ovarian

cancer peak 3 is represented in Figure 4.6 [57]. The figure shows the median

dynamics of values log C versus log C − log I(3) for case measurements. For
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Figure 4.6: Median dynamics of rules log C and log C − log I(3) (for ovarian
cancer cases only) [57]
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Figure 4.7: Median dynamics of peak 19 for cases and the median of peak 19
for controls in the breast cancer data [16]

each time moment, the latest available case measurement for each triplet group

is taken into account. These measurements are averaged by median through

all samples. The figure illustrates that the combination of CA125 with peak 3

starts to grow earlier than log C. However, the CA125 growth at the moments

close to diagnosis is quicker due to the exponential growth of CA125.

For the breast cancer data, we will observe the dynamics of peak 19 iden-

tified as a potential biomarker, whose intensities are supposed to be lower for

cases rather than for controls according to our research. In Figure 4.7 [16], a

solid line represents the median dynamics of peak 19 for breast cancer cases,

a dashed line represents the peak 19 median calculated for all breast cancer

controls. The values in the figure were calculated for samples within 9-month

windows ending with the month shown on the horizontal axis.

One can see from Figure 4.7 that peak 19 median intensity drops about

15 months in advance of the moment of the diagnosis, which confirms our

hypothesis about predictive ability of peak 19 and explains the results we

obtained using this peak when discriminating between breast cancer cases and

controls.
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4.6 Summary

This chapter introduced algorithms with online validity for the analysis of mass

spectrometry data. We designed algorithms which have guaranteed validity

and are adapted to the needs of proteomics research. The algorithms are the

category-based confidence machine based on linear rules, the logistic Venn

machine and the confidence machine in a triplet setting. All of them are

applied in this chapter within the framework of time dependency analysis.

We applied the designed methods to real-world MALDI-TOF mass spec-

trometry data sets or the UKCTOCS and demonstrated how they work. First

of all, all of these algorithms allowed us to complement each individual predic-

tion with additional information on its reliability (confidence or a probability

interval). Second, the property of validity was proved to hold true on all data

sets and all algorithms. At the same time in certain time slots, algorithms pro-

vided high efficiency, especially on the ovarian cancer data set. Close to the

moment of diagnosis most region predictions produced by the category-based

confidence machine contained exactly one label, similarly to the output of sim-

ple predictors. As for logistic Venn machines, probability intervals produced

by them for the heart disease and ovarian cancer data were more accurate than

the output of corresponding probability predictor of logistic regression: prob-

ability predictions can be misleading while multiprobability predictors output

a narrow interval which almost always covered true label probability.

Even though category-based confidence machines and Venn machines are

designed to output region and multiprobability predictions, they can be forced

to output singleton predictions. Their forced accuracy was approximately the

same as the accuracy of underlying algorithms. Confidence machines in a

triplet setting output lower forced accuracy. Since the number of triplets was,

in general, small, the method requires further investigation on larger data sets.

Forced predictions allow us to speculate how long in advance we can output

accurate predictions for these diseases. For example, for the ovarian cancer

data, we could achieve accuracy of 91.7% (or 90.2%) just before the moment

of diagnosis and at least 70.6% up to 10 months in advance of the moment

of diagnosis; for the breast cancer data, we could output predictions with
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accuracy of 70.4–77.8% for up to 9 months in advance of diagnosis. This

demonstrated that samples can be compared to each other even if they are

not matched by sample collections location and time, that is, we can merge

triplets and still make accurate predictions.

Finally, the designed methods confirmed mass spectrometry profile peaks

previously identified as carrying statistically significant information for dis-

crimination between controls and cases. Ovarian cancer peak 3 was pinpointed

in the triplet analysis and confirmed by category-based confidence machines

and Venn machines. The analysis of median dynamics showed that the combi-

nation of CA125 with peak 3 starts to grow earlier in advance of the moment

of diagnosis than CA125 on its own. Breast cancer peak 19 was confirmed as

a potential biomarker whose intensities are lower for cases rather than for con-

trols. Further analysis demonstrated that peak 19 median intensity of breast

cancer cases drops about 15 months in advance of the moment of diagnosis.
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Chapter 5

An Algorithm with Online

Validity in the Linear

Regression Model

All algorithms with online validity investigated in this thesis are based on the

i.i.d. assumption. In this chapter, we aim to extend the class of algorithms

which output valid predictions beyond this assumption. Our first attempt is

related to the linear regression model with i.i.d. errors with a known distrib-

ution. We introduce a new interval predictor which has the property of exact

validity under this statistical model.

Exact validity is stronger that validity of confidence machines considered

before. Confidence machines make predictions with the error rate which does

not exceed the preset significance level asymptotically while the property of

exact validity implies that the error rate converges to the significance level.

This property does not hold true for confidence machines but does hold true

for their modification — smoothed confidence machines — under the standard

i.i.d. assumption.

This theoretical research was carried out in collaboration with Peter Mc-

Cullugh, Vladimir Vovk, Ilia Nouretdinov and Alexander Gammerman. My

contribution comprises a proof of Lemma 5.1, which made the construction

of prediction intervals consistent, and computational experiments described in

Section 5.7.
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5.1 Exact Validity of Smoothed Confidence

Machines

First, we will state the property of exact validity. It was proved in [65] for

smoothed confidence machines.

A confidence predictor is said to be exactly valid with respect to the sta-

tistical model on Z∞ if for any distribution P from this statistical model,

errε
1(Γ, P ), errε

2(Γ, P ), . . . are a sequence of independent Bernoulli random

variables with parameter ε, i.e., are equal to 0 with probability 1 − ε and 1

with probability ε. In other words, exact validity implies that the confidence

predictor makes errors independently with probability ε at each step.

The immediate consequence of exact validity and the law of large num-

bers is the property of asymptotic validity. The confidence predictor Γ is

asymptotically exact with respect to a statistical model if for any probabil-

ity distribution P from this model generating examples and any significance

level ε,

lim sup
n→∞

Errε
n(Γ, P )

n
= ε

with probability one. In words, the error rate asymptotically converges to the

preset significance level in the online mode.

It was shown that no confidence machine is exactly valid, however, their

modification, smoothed confidence machines, have this property. A smoothed

confidence machine is also a confidence predictor, and the general framework is

the same as for confidence machine: we use the same problem setting, the same

i.i.d. assumption, define the strangeness measure An and calculate strangeness

scores αi according to 2.3.

A new element in this framework is a sequence of random variables τ1,

τ2, . . . which are independent and uniformly distributed in [0, 1], i.e., they

are outcomes of a classical random number generator. They are involved in

calculating p-values:

pn(y, τn) =
|{i = 1, . . . , n : αi > αn}|+ τn|{i = 1, . . . , n : αi = αn}|

n
.
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Smoothed confidence machine determined by the strangeness measure An

is then defined as a function

Γ : (X× [0, 1]×Y)∗ × (X× [0, 1])× (0, 1) → 2Y

which outputs the following region prediction:

Γε(x1, τ1, y1, . . . , xn−1, τn−1, yy−1, xn, τn) = {y ∈ Y|p(y, τn) > ε}.

We define errε
n(Γ, ω) and Errε

n(Γ, ω) the same way as for confidence machines

(Section 2.1.2), only now these values depend on τi, i = 1, . . . , n. Finally, if Γ

is a smoothed confidence machine, P is an exchangeable distribution on Z∞,

n ∈ N, random variables

errε
n(Γ, (x1, τ1, y1, x2, τ2, y2, . . .))

and

Errε
n(Γ, (x1, τ1, y1, x2, τ2, y2, . . .)) ,

where (x1, y1), (x2, y2), . . . are drawn from P , and τi are independent and

uniformly distributed on [0, 1], will be denoted by errε
n(Γ, P ) and Errε

n(Γ, P ),

respectively.

Smoothed confidence machines are exactly valid in respect to the i.i.d. as-

sumption: for any exchangeable distribution P a smoothed confidence machine

makes errors independently with probability ε at each step.

5.2 Statistical Model and Fundamental σ-al-

gebras

Now we consider a new statistical model different from the standard i.i.d.

assumption, and we attempt to construct region predictions which have the

same property of exact validity with respect to the new statistical model.

The new model we are considering is the linear regression model with i.i.d.

errors with a known distribution, not necessarily Gaussian.
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Let x1,x2, . . . be a given sequence of vectors in Rm; their elements (explana-

tory variables) will be denoted xi,j, i = 1, 2, . . ., j = 1, . . . ,m. Our statistical

model (Pθ), parameterised by θ = (β, σ) ∈ Rm × (0,∞) is that the sequence

of observations y1, y2, . . . is generated by

yi = β′xi + σξi , (5.1)

where ξ1, ξ2, . . . is a sequence of i.i.d. noise variables with a known distribu-

tion P . Each Pβ,σ is a probability measure on R∞ (the distribution of the

sequence of labels, with the instances fixed). P is a continuous probability

measure on R with density p.

This model may appear narrower than the i.i.d. model, standard in algo-

rithms with online validity, but its advantage is that the instances xi can be

controlled rather than chosen independently from the same distribution.

Let G be the group of all transformations

ga,b : (y1, y2, . . .) 7→ (a′x1 + by1, a
′x2 + by2, . . .) ,

where a ∈ Rm and b > 0, acting on R∞. We consider two fundamental σ-

algebras on the set R∞ of all infinite sequences (y1, y2, . . .) of real numbers.

The σ-algebra F consists of all Borel sets in R∞ (it will be our default σ-

algebra on R∞); by events we mean elements of F . For i = 1, 2, . . ., let

Yi : R∞ → R be the projection onto the ith component: Yi(y1, y2, . . .) := yi.

For each n = 0, 1, . . ., the σ-algebra Fn on R∞ is defined as Fn := σ(Y1, . . . , Yn).

The σ-algebra K on R∞ consists of all invariant events in R∞, i.e., all events

that are invariant with respect to the group G. The σ-algebra Kn on R∞ is

defined as Kn := Fn ∩ K.

5.3 Normalisation

Let (x1, y1), . . . , (xn−1, yn−1) be the training set of the fixed size (n − 1). We

will consider the linear transformation ν : Y → Y on a label of the next object
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(called normalising transformation):

zn = ν(yn) =
yn − β̃xn

σ̃
, (5.2)

where the pair (β̃, σ̃) is the solution of the the following maximisation problem:

n−1∏
i=1

(
1

σ̃

)
q

(
yi − β̃′xi

σ̃

)
→ max , (5.3)

where q is a probability density function that corresponds to a continuous

probability measure, but not necessarily to distribution P . This optimisation

problem is equivalent to likelihood maximisation problem for the same model

as described above, but only when ξ1, ξ2, . . . is a sequence of i.i.d. noise variables

with a distribution Q and a probability density function q.

Lemma 5.1 The distribution of zn does not depend on true (β, σ).

Proof

n−1∏
i=1

(
1

σ̃

)
q

(
yi − β̃′xi

σ̃

)
=

n−1∏
i=1

(
1

σ̃

)
q

(
β′ − β̃′

σ̃
xi +

σ

σ̃
ξi

)
, (5.4)

where (β, σ) are true values of model parameters.

Transformation ν can be then presented in the following way:

zn = ν(yn) =
yn − β̃xn

σ̃
=

β′ − β̃′

σ̃
xn +

σ

σ̃
ξn . (5.5)

It is sufficient to prove the two following facts:

1. The distribution of zn is the same for (β, σ) = (β1, σ0) and (β, σ) =

(β2, σ0).

2. The distribution of zn is the same for (β, σ) = (~0, σ1) and (β, σ) = (~0, σ2).

To prove the first statement, we will notice that there is a bijective mapping

between (β̃, σ̃) and
(

β′−β̃′

σ̃
, σ̃
)

when β and σ are fixed. Thus to solve the
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optimisation problem (5.3), we need to find a pair of values
(

β′−β̃′

σ̃
, σ̃
)

that

maximises (5.4).

This means that for pairs (β1, σ0) and (β2, σ0) with the same σ = σ0,

solutions of the corresponding maximisation problems (β̃1, σ̃1) and (β̃2, σ̃2) will

satisfy
β′
1−β̃′

1

σ̃1
=

β′
2−β̃′

2

σ̃2
and σ̃1 = σ̃2; therefore, the distribution of zn will be the

same for (β, σ) = (β1, σ0) and (β, σ) = (β2, σ0).

Fact 2 is proved as follows. Let (β̃1, σ̃1) and (β̃2, σ̃2) be the solutions of

the maximisation problem (5.3) with (β, σ) = (~0, σ1) and (β, σ) = (~0, σ2),

respectively, and σ2 = aσ1, a > 0.

Since (β̃1, σ̃1) maximises (5.3), then ∀σ̂ > 0, β̂

n−1∏
i=1

(
1

σ̃1

)
q

(
− β̃′

1

σ̃1

xi +
σ1

σ̃1

ξi

)
≥

n−1∏
i=1

(
1

σ̂

)
q

(
− β̂′

σ̂
xi +

σ1

σ̂
ξi

)
. (5.6)

It is then easy to see that β̃2 = aβ̃1 and σ̃2 = aσ̃1 because, for arbitrary

σ̂ > 0 and β̂ and β̃2 = aβ̃1 and σ̃2 = aσ̃1,

n−1∏
i=1

(
1

σ̃2

)
q

(
− β̃′

2

σ̃2

xi +
σ2

σ̃2

ξi

)
=

(
1

a

)n−1 n−1∏
i=1

(
1

σ̃1

)
q

(
− β̃′

1

σ̃1

xi +
σ1

σ̃1

ξi

)

≥
(

1

a

)n−1 n−1∏
i=1

(
1

σ̂/a

)
q

(
−(β̂/a)′

σ̂/a
xi +

σ1

σ̂/a
ξi

)

=
n−1∏
i=1

(
1

σ̂

)
q

(
− β̂′

σ̂
xi +

σ2

σ̂
ξi

)
,

that is, (aβ̃1, aσ̃1) is a solution of a maximisation problem for (β, σ) = (~0, σ2).

Hence β̃2 = aβ̃1, σ̃2 = aσ̃1 and zn = − β̃′
1

σ̃1
xn + σ1

σ̃1
ξn for both (β, σ) = (~0, σ1)

and (β, σ) = (~0, σ2). �

Considering different distributions Q, we can obtain different normalisa-

tions:

1. Q = P .

2. If Q is the Gaussian distribution N(0, 1), β̃ is a solution for the min-
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imisation problem
∑n−1

i=1 (yi − β̃′xi)
2 → min (the least square estimate);

σ̃ =
√

1
n−1

∑n−1
i=1 (yi − β̃′xi)2.

3. If Q is the Laplace distribution (0, 1), β̃ is a solution for the minimisation

problem
∑n−1

i=1 |yi − β̃′xi| → min; σ̃ = 1
n−1

∑n−1
i=1 |yi − β̃′xi|.

We are going to consider normalisation 2 based on the Gaussian distribu-

tion.

5.4 Prediction Intervals

By the Gosset measure G (with respect to the density p, transformation ν

defined above and sample size (n− 1)) we will mean the image Pβ,σν
−1 of any

measure Pβ,σ under the normalising transformation ν. Lemma 5.1 says that it

does not matter which β and σ we take.

In this section a training set (x1, y1), . . . , (xn−1, yn−1) of the fixed size n−1

will usually be represented as the (n − 1) × m matrix X whose rows are the

vectors x′i, i = 1, . . . , n − 1, and the (n − 1) × 1 vector y of all yis. We will

always assume that n− 1 > m + 1 and that X is a full rank matrix. Our goal

is to predict the label of a new instance xn.

Fix a significance level ε ∈ (0, 1). An interval predictor is a pair of mea-

surable functions L : Rn−1 → R and U : Rn−1 → R such that L ≤ U . Another

representation of the interval predictor is as the function

Γ(y) := [L(y), U(y)]

mapping the labels to the corresponding prediction interval. The interval pre-

dictor is called unconditionally valid (for a given statistical model) if its cover-

age probability is 1−ε: P(errε
n) = ε under each probability measure in the given

model, where errε
n = errε

n(Γ; Y1, Y2, . . .) is the event {Yn /∈ Γ(Y1, . . . , Yn−1)}
(which is called an error).

An interval predictor is called Kn−1-valid if P(errε
n | Kn−1) = ε a.s.

There exist many interval predictors Γ such that

G(errε
n | Fn−1) = ε a.s. (5.7)
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(assuming that the conditional distribution of Yn given Fn−1 with respect to

the Gosset measure is continuous; this assumption is satisfied for the noise

distributions used in our empirical studies in Section 5.7).

Given an interval predictor Γ for the Gosset measure G, we can define an

interval predictor Γ′ for the original linear regression model (Pβ,σ) as

Γ′(y1, . . . , yn−1) := σ̃yΓ

(
y1 − β̃′

yx1

σ̃y

, . . . ,
yn−1 − β̃′

yxn−1

σ̃y

)
+ β̃′

yxn , (5.8)

where we again use the notation β̃y := β̃(y1, . . . , yn−1) and σ̃y := σ̃(y1, . . . ,

yn−1). In words, to obtain Γ′(y1, . . . , yn−1) we first normalise (y1, . . . , yn−1),

then apply Γ to obtain a prediction interval and finally apply the inverse

transformation to that prediction interval.

Proposition 5.1 If Γ is an interval predictor satisfying (5.7), the interval

predictor Γ′ defined by (5.8) is Kn−1-valid. 2

Proof can be found in [36].

Now we can define our interval predictor. Among the interval predictors

Γ satisfying (5.7) we choose the symmetric one, i.e., the interval predictor

Γ = [L, U ] such that G(Yn < L | Fn−1) = G(Yn > U | Fn−1) = ε/2 a.s. Such

an interval predictor is essentially unique. The predictor Γ′ defined by (5.8)

will be called the symmetric pivotal interval predictor (abbreviated to SPIP).

Proposition 5.1 says that it is Kn−1-valid. Hence it is unconditionally valid.

5.5 Validity in the Online Mode

In this section we will consider the online mode: we start from the empty

training set and add each new example (xn, yn), n = 1, 2, . . ., to the training

set after predicting its label yn.

The SPIP defined above can be considered as a confidence predictor —

a predictor which for any given finite sequence of labelled objects (x1, y1),

(x2, y2), . . ., a new object xn without a label and a significance level ε outputs

147



a subset of the label space:

Γε(x1, y1, . . . , xn−1, yn−1, xn),

so that

Γε1(x1, y1, . . . , xn−1, yn−1, xn) ⊆ Γε2(x1, y1, . . . , xn−1, yn−1, xn)

for any ε1 ≥ ε2. This means that prediction regions for different ε represent

nested subsets of Y, and by changing significance level ε we can regulate the

size of the output prediction. Thus confidence machines and designed SPIP

belong to the same class of confidence predictors.

It follows from Proposition 5.1 that for SPIP P(errε
n | errε

1, . . . , err
ε
n−1) = ε

a.s. for each n = 1, 2, . . .. This implies that interval predictors are exactly

valid with respect to the model (Pβ,σ): for any distribution from the statistical

model (Pβ,σ), errε
1, err

ε
2, . . . are a sequence of independent Bernoulli random

variables with parameter ε, that is, output erroneous prediction intervals in-

dependently with probability ε at different steps. This is the same property

as the property of exact validity of smoothed confidence machines. Similarly,

SPIPs are asymptotically valid with respect to model (Pβ,σ): for any probabil-

ity distribution P from this model generating examples and any significance

level ε,

lim sup
n→∞

∑n
i=1 errε

i

n
= ε

with probability one. In our empirical studies (Section 5.7), we will demon-

strate that SPIPs are asymptotically exact in the offline mode.

5.6 MCMC Implementation of the Algorithm

Suppose (Y1, Y2, . . .) are distributed according to P0,1 = P∞. Let Zi := ν(Yi),

i ∈ N, and let B and Σ be the random vector β̃(Y1, . . . , Yn−1) and random

variable σ̃(Y1, . . . , Yn−1), respectively. If A and B are random elements, we

let fA|B(a | b) stand for the conditional density of A at point a given B = b.

We will also use similar notation for unconditional distributions: fA(a) stands
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for the density of A at a. We will be interested in continuous versions of

conditional distributions, and so will omit the qualification “a.s.”

The following lemma plays the main part in our prediction algorithm im-

plementation.

Lemma 5.2 Suppose β = 0 and σ = 1. The conditional density of (B, Σ)

given Z1 = z1, . . . , Zn−1 = zn−1 is proportional to σ̃n−m−2p(β̃′x1 + σ̃z1) · · ·
p(β̃′xn−1 + σ̃zn−1) (with the coefficient of proportionality a function of z1, . . . ,

zn−1). 2

Proof can be found in [36].

Our prediction algorithm, given as Algorithm 1, uses Markov chain Monte

Carlo (MCMC) sampling [17] from the conditional distribution of (β̃, σ̃) given

ν(y1), . . . , ν(yn−1). Its inputs are the training set x1, y1, . . . ,xn−1, yn−1 and

a new object xn. The duration of the burn-in period is B, and B + M is

the overall duration of the random walk. Let sβ and sσ be small positive

constants (the standard deviations of the Gaussian proposal distributions for

B and log Σ, respectively) and I be the identity matrix (whose size will be

clear from the context). Fix a significance level ε ∈ (0, 1/2); for simplicity we

assume that Mε/2 is an integer.

The correctness of the algorithm is in detailed justified in [36]. In our

empirical studies reported in the next section we use B = M = 100,000 and

sβ = sσ = 0.1.

5.7 Empirical Studies

In our empirical studies we apply Algorithm 1 to the following noise distri-

butions: the Gaussian distribution with density p(y) ∝ e−y2/2, the Laplace

distribution with density p(y) ∝ e−|y|, and Student’s t-distribution of 4 de-

grees of freedom with density p(y) ∝ (1 + y2)−5/2 (up to scaling).

First we investigate the behaviour of our prediction intervals on artificially

generated data sets. Figure 5.1 shows four validity plots, each of which is a

graph of the error rate against the significance level for data generated by p1

and the algorithm using p2 (where p1 and p2 are to be defined later). For each
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Algorithm 1 MCMC SPIP based on noise distribution with density p

Compute β̃, σ̃ from the training set;
for i = 1, . . . , n− 1 do

zi := (yi − β̃′xi)/σ̃;
end for
set β0 := 0, σ0 := 1, and p0 := p(z1) · · · p(zn−1);
for j = 1, . . . , B + M do

set βj := βj−1 + N(0, s2
βI) and log σj := log σj−1 + N(0, s2

σ);

set pj := σn−m−2
j p(β′

jx1 + σjz1) · · · p(β′
jxn−1 + σjzn−1);

if pj < pj−1 then
with probability 1− pj/pj−1,
redefine βj := βj−1, σj := σj−1,

end if
sample ξj from p and set ζj := (ξj − β′

jxn)/σj;
end for
order ζB+1, . . . , ζB+M into an increasing sequence
output the prediction interval [β̃′xn + σ̃ζ(Mε/2), β̃

′xn + σ̃ζ(M(1−ε/2))].

plot we generated 5,500 examples (xi, yi) from the model (5.1) with m = 1,

β = σ = 2, xi generated independently from the uniform distribution on [0, 1],

and ξi generated independently (among themselves and x1, . . . ,x5500) from a

distribution with density p1. The first 500 examples were used as the training

set (n = 501) and the remaining 5,000 examples as the test set. We ran Algo-

rithm 1 (with n+k−1 in place of n) based on a noise distribution with density

p2 to predict the label yn+k−1 of each test instance xn+k−1, k = 1, . . . , 5000, for

a fine grid of significance levels ε ∈ (0, 0.2]. Each of the four plots shows the

percentage of the test examples (xn+k−1, yn+k−1), k = 1, . . . , 5000, for which

yn+k−1 was not covered by the prediction interval produced for xn+k−1 by Al-

gorithm 1 as function of ε. We call them validity plots since the function

being close to the bisector of the first quadrant means that the predictor is

asymptotically valid: the prediction algorithm’s frequency of error is close to

the nominal significance level. We concentrate on the most interesting range

of small ε, which includes, in particular, the standard values of 5% and 1%.

Since the results of our experiments are random, each validity plot is shown

for five different initial states of the MATLAB random number generator.
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Figure 5.1: Validity plots for the Gaussian prediction intervals on Gaussian
(top left) and Laplace (bottom left) data and for the Laplace prediction inter-
vals on Gaussian (top right) and Laplace (bottom right) data. The horizontal
axis is ε ∈ (0, 0.2], and the range of the vertical axis is also [0, 0.2].

The top left plot has both p1 and p2 equal to the Gaussian distribution,

and the bottom right plot has both p1 and p2 equal to the Laplace distribution.

These two plots demonstrate empirically the validity of our prediction algo-

rithm: when it is provided with the correct model, its predictions are valid.

The top right plot describes an application of a robust prediction algorithm

(based on the Laplace distribution) to benign (Gaussian) data. The algorithm

is rather conservative: at significance level 5% it typically makes between 1%

and 2% of errors, while at 1% the percentage of errors is typically below 0.05%.

The bottom left plot describes an application of an optimistic prediction al-

gorithm (based on the Gaussian distribution) to somewhat unruly (Laplace)

data. For interesting values of the significance level, the predictions are not

valid: at significance level 5%, the percentage of wrong predictions is around
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6–7%, and at 1% it is around 2–3%.

In Figure 5.2 we give the median widths of the prediction intervals at

significance levels ε ∈ (0, 0.2], with p1 being the Gaussian distribution for the

two top plots and the Laplace distribution for the two bottom plots, and with

p2 being the Gaussian distribution for the two left-hand plots and the Laplace

distribution for the two right-hand plots.
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Figure 5.2: The median widths of prediction intervals for various ε ∈ (0, 0.2],
with the same layout as Figure 5.1. The range of the vertical axis is always
[0, 40]

We know that the unconditional, and conditional on Kn−1, coverage prob-

ability of our prediction intervals is equal to the confidence level 1− ε; this is

illustrated by the top left and bottom right plots of Figure 5.1. An interesting

question is how stable the fully conditional, i.e., conditional on Fn−1, coverage

probabilities are. The results for our experimental setup are shown in Figure

5.3. We generated five training sets, each of size 500; box plots 1 to 5 describe

the results for the first training set, 6 to 10 for the second training set, etc.
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For each training set we generated five test sets of size 5,000 following the

same distribution. For each of the test examples (x, y) we computed the fully

conditional coverage probability of the corresponding prediction interval (com-

puted from the instance x and the corresponding training set, with the label y

ignored). Box plot 1 gives some statistics for the first test set generated for the

first training set, box plot 2 gives statistics for the second test set generated

for the first training set, etc. Namely, each box plot gives the median coverage

probability, the quartile coverage probabilities, and the maximum and mini-

mum coverage probabilities for the prediction intervals generated for the test

instances. We can see that for the same training set the box plots are very

similar (because of the large size of the test sets), but the variation of coverage

probabilities between the training sets is substantial.

We have also applied three kinds of prediction intervals to the ChickWeight

data set ([14], Example 5.3; [30], Table A.2; part of the standard R distribution,

package datasets). The data set gives weight versus age of chicks on different

diets. The body weights of the chicks were measured at birth, every second

day thereafter until day 20 and on day 21. The range of the body weights is

35 to 373 grams. There are four groups of chicks on different protein diets.

Our task was to predict a chick’s weight given its age. We used the chicks on

diets 1 and 2 as the training set (of size 340) and the chicks on diets 3 and 4

as the test set (of size 238).

It is clear that all three models that we have discussed are wrong for this

data set, for a multitude of reasons, and our question is which is more useful

for predicting the weights of the chicks in the test set. Figure 5.4 shows that

the Laplace prediction intervals (i.e., those produced by Algorithm 1 based

on the Laplace distribution) are fairly asymptotically valid over our range of

significance levels, and that the t4 prediction intervals (i.e., those produced

by Algorithm 1 based on the t distribution on 4 degrees of freedom) are not

very different. Figure 5.5 gives the median widths of the prediction intervals

at significance levels ε ∈ (0, 0.2], as in Figure 5.2.

In general, we have found that the best validity was usually achieved by the

Gaussian prediction intervals (with the Laplace and t4 ones somewhat conser-

vative) or by the Laplace and t4 prediction intervals (with the Gaussian ones
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somewhat invalid). The performance of Laplace and t4 prediction intervals

was broadly similar, despite the different nature of the tails of the correspond-

ing noise distributions (decaying exponentially fast in the case of Laplace and

polynomially fast in the case of t4).

To be on the safe side, our recommendation would be to use the Laplace

or t4 prediction intervals when in doubt. Alternatively, a safe prediction al-

gorithm could output the union of the Gaussian, Laplace, and t4 prediction

intervals.

5.8 Summary

The research covered in this section extended the class of algorithms which pro-

duce valid predictions. The main difference of SPIPs from the other algorithms

with online validity investigated in this thesis is that SPIPs are based on the

assumption different from the standard i.i.d. assumption used in confidence

machines, category-based confidence machines and Venn machines. Neverthe-

less, SPIPs are exactly valid and asymptotically valid.

The experimental studies confirmed the property of validity on artificially

generated data. We also investigated application of SPIPs to real world data

and came up with a general recommendation to use prediction intervals based

on Laplace or Student’s t-distribution noise.
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Figure 5.3: The fully conditional coverage probabilities of Gaussian (top) and
Laplace (bottom) prediction intervals for ε = 5%
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Figure 5.4: The validity plots for the ChickWeight data set, with ε ∈ (0, 0.2]
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Figure 5.5: Median widths of the prediction intervals for the ChickWeight data
set
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Chapter 6

Conclusions and Future Work

This final chapter concludes the thesis and provides possible directions for

future work.

6.1 Conclusions

This thesis was devoted to algorithms with online validity. Such algorithms

allow us to complement each individual prediction with its reliability measure,

and these predictions have a guarantee on the overall outcome. The majority

of the thesis focuses on frameworks of confidence machines, category-based

confidence machines and Venn machines; however, the last part is devoted to

development of a new algorithm with online validity.

The following new developments and results were presented in this thesis.

• New implementations of confidence and Venn machines were proposed:

confidence machines based on random forests, Venn machines based on

random forests and Venn machines with the taxonomy derived from an

SVM.

• Experimental testing of designed confidence and Venn machines was car-

ried out. It demonstrated that proposed confidence machines based on

random forests are more efficient than the known ones on mass spec-

trometry data (and at least as efficient on other types of data) while

maintaining the property of validity. The designed Venn machines also
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empirically proved to be valid in the offline mode. When forced to pro-

duce singleton predictions, confidence and Venn machines based on ran-

dom forests result in accuracy similar to random forest accuracy. In

comparison with other algorithms with online validity, forced accuracy

of all methods derived from random forests is at least as high as accuracy

produced by other algorithms of the same class (i.e., confidence machines

or Venn machines) and sometimes is considerably higher. In addition, all

methods based on random forests proved to be robust to noise, robust

to parameters of random forest construction and in the case of Venn

machines — comparatively robust to the type of Venn taxonomy and

the number of categories. All these characteristics make Venn machines

based on random forests an attractive analytical tool.

• The designed Venn machines based on SVMs also empirically proved to

be valid in the offline mode. Their performance proved to substantially

depend on the type of the Venn taxonomy, kernel selection, kernel para-

meter and the number of categories. They may produce high accuracy,

but when using taxonomy based on SVMs, one should be cautious with

the choice of taxonomies and the number of categories. Thus, these

methods may be not very consistent and may require tuning in order

to find good parameters. Venn machines based on SVMs often produce

wide prediction intervals, which can make predictions uninformative.

However, experiments with Venn machines derived from SVMs con-

formed with the hypothesis that these methods perform well on the data

with the number of informative peaks comparable to the half of the total

number. Therefore, we could advise that these methods be applied when

this requirement is expected to be satisfied.

• Algorithms with online validity for the analysis of mass spectrometry

data were designed. The algorithms are a category-based confidence

machine based on linear rules, a logistic Venn machine and a confidence

machine in a triplet setting. These algorithms have guaranteed validity

and are adapted to the needs of proteomics research.
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• The designed methods were applied to experimental MALDI-TOF mass

spectrometry data sets of the UKCTOCS. First, all of these algorithms

allowed us to complement each individual prediction with additional in-

formation on its reliability (confidence or a probability interval).

Second, the property of validity was empirically proved to hold true on

all data sets and all algorithms. Meanwhile, in certain time slots, algo-

rithms provided high efficiency, especially on the ovarian cancer data set.

Close to the moment of diagnosis most region predictions produced by

the category-based confidence machine contained one label, similarly to

the output of simple predictors. As for logistic Venn machines, proba-

bility intervals produced for ovarian cancer and heart disease were more

accurate than the output of a corresponding probability predictor of

logistic regression. Forced accuracy of the designed algorithms was ap-

proximately the same as the accuracy of the underlying algorithms.

• Forced predictions on the UKCTOCS data sets allow us to speculate how

long in advance we can output accurate predictions for ovarian and breast

cancers. For the ovarian cancer data, we could make predictions with

accuracy of 91.7% (or 90.2%) just before the moment of diagnosis and

at least 70.6% up to 10 months in advance of the moment of diagnosis;

for the breast cancer data, we could achieve accuracy of 70.4–77.8% for

up to 9 months in advance of diagnosis.

• Experiments on the UKCTOCS data demonstrated that samples can be

compared to each other even if they are not matched by sample collection

location and time. This implies that triplets can be merged and still

provide accurate predictions.

• Mass spectrometry profile peaks previously identified as carrying statis-

tically significant information for diagnosis of ovarian and breast cancers

were also pinpointed by our methods.

• A new algorithm with online validity (SPIP) was designed for linear

regression statistical model. This is a model different from the standard
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i.i.d. assumption; however, SPIPs are exactly valid and asymptotically

valid.

• The experimental studies of SPIP confirmed the property of validity on

artificially generated data. We also investigated application of SPIPs

to real-world data and came up with a general recommendation to use

prediction intervals based on Laplace or Student’s t-distribution noise.

6.2 Future Work

This research has left some questions open and raised some new questions.

Here we describe possible directions of further research. We divide them into

three areas corresponding to different chapters of the thesis.

6.2.1 Design of Algorithms with Online Validity

1. The designed Venn machines based on SVMs were developed for a binary

classification problem only. To extend the area of application of such

Venn machines, we should also define Venn taxonomy based on SVMs

for multilabel classification without significantly raising computational

complexity.

2. The performance of confidence and Venn machines is usually in line with

the accuracy of the underlying algorithm. Meanwhile, accuracy of differ-

ent simple predictors varies across different types of data, and there is no

perfect simple predictor that outputs the highest accuracy on any data.

Therefore, it would be beneficial to deploy new underlying algorithms

in order to design new strangeness measures and Venn taxonomies to

inherit their ability to perform well on certain types of data.

3. To estimate performance of designed confidence and Venn machines, we

can compare them with methods which hedge individual predictions (for

example, Platt’s calibration [48]) when such comparison is possible.
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4. Methods based on random forests and SVMs are less computationally

efficient than the ones based on k-nearest neighbour method. To miti-

gate this disadvantage, we can attempt to improve their computational

efficiency. It could be achieved by both modifying strangeness measures

/ Venn taxonomies (an example could be the use of out-of-bag predic-

tions instead of leave-one-out predictions for methods based on random

forests) and proposing their more efficient implementations.

6.2.2 Algorithms with Online Validity for Proteomics

1. There are general concerns about effectiveness of proteomics research. As

it was mentioned in Section 4.1.3, proteomics technologies are capable

of detecting only up to 20% of the protein species presented in plasma.

Hence lots of information useful for early diagnosis of diseases may be

at ultra-low concentrations and therefore not accessible for proteomics

methods. However, there are newly developed methods based on nan-

otechnologies which allow users to detect single molecules of proteins.

Should we have data produced by these methods, we could adjust our

algorithms to the output of these methods and test their accuracy and

efficiency. Since we managed to produce informative results on proteomic

data, the application of designed algorithms to more complete data may

allow us to achieve even better results.

2. More experimental work is required to verify applicability of designed

algorithms. Application of the methods to other mass spectrometry data

sets with a larger number of samples would be beneficial. In addition,

for confidence machines in a triplet-like setting, we need data sets with a

larger number of patients in each group (for example, groups of at least

five matched patients only one of which is diseased).
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6.2.3 An Algorithm with Online Validity in the Linear

Regression Model

1. In this part of the thesis, we started extending the range of statistical

models where we can develop algorithms with online validity, in par-

ticular, algorithms which in the online mode make errors at each step

independently and with the preset probability. We considered a linear

regression model rather than the standard i.i.d. assumption. Further re-

search can be carried out in order to develop algorithms with the property

of validity under other statistical assumptions.

2. We proved that SPIPs have the property of validity, however did not

investigate efficiency of these predictors, which is another useful char-

acteristic of their performance. Further research should be carried out

on the efficiency of output intervals (that is, their width): we should

attempt to discover theoretical bounds and obtain experimental results.

These theoretical bounds could be dependent on the number of samples

or the whole training set.

3. In order to estimate the risk of miscalibration when the model used in the

SPIP algorithm does not correspond to the data (for example, when the

noise is Guassian, but the model used in the SPIP is Laplace), ideal dis-

tributions for validity plots (Figure 5.1) can be generated and compared

with experimental results. That is, we can attempt to explicitly com-

pute the probability of an error made on data generated by probability

distribution p1 by the SPIP algorithm using probability distribution p2

for significance level ε, where p1 and p2 are Gaussian and Laplace distri-

bution, respectively, or vice versa. Similar ideal distributions for validity

plots would be beneficial for the case when one of distributions is the

Student’s t-distribution since this is one of distributions we recommend

to use when SPIPs are applied to real-world data.

4. When the noise distribution P is the Student’s t-distribution, we should

attempt to design normalisation that leads to the distribution of zn be-

ing invariant not only of β and σ but also the number of degrees of
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freedom for Student’s t-distribution. If Proposition 5.1 holds true for

this normalisation, it would allow us to construct prediction intervals

with the property of online validity for statistical model 5.1 with Stu-

dent’s t-distribution noise without knowing the exact number of degrees

of freedom.

5. In our work we investigated only three types of noise: Gaussian, Laplace

and Student’s t-distribution. However, there exist other distributions

which could be potentially useful when the SPIPs are applied to real-

world data, e.g.:

• the uniform distribution with the probability distribution function

p(y) = I[−1,1];

• the triangular distribution with the probability distribution func-

tion p(y) = (1− |y|)+;

• the logistic distribution with the cumulative distribution function

(1 + e−y)−1 and the probability distribution function p(y) = (2 +

ey + e−y)−1.

Further empirical studies should be carried out using these noise distri-

butions, in order to investigate their applicability.
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Appendix A

Additional Experimental

Results

In this appendix, we provide additional plots and tables for experimental re-

sults presented in the thesis.
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Figure A.1: Cumulative Venn and direct predictions for the ovarian cancer
data (all samples)
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Figure A.2: Cumulative Venn and direct predictions for the breast cancer data
(samples in the 5–17 month time slot)
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Table A.1: Dependence of confidence machine performance on the number
of features to split on at random forest nodes: forced accuracy of confidence
machines CM-RF, CM-RF-1NN and CM-RF-5NN applied to the Sonar data
(the number of features used in experiments in Chapter 3 is 7)

Number of features CM-RF CM-RF-1NN CM-RF-5NN

1 84.6% 89.9% 86.1%
2 86.1% 88.9% 84.6%
3 84.6% 90.4% 86.1%
4 84.6% 90.4% 84.6%
5 85.1% 90.4% 86.1%
6 84.6% 89.9% 83.7%
7 84.6% 89.9% 84.6%
8 85.1% 88.0% 83.7%
9 85.1% 89.4% 84.1%
10 83.2% 87.0% 82.7%
11 83.2% 86.1% 84.1%
12 84.1% 86.1% 82.7%
13 84.1% 86.5% 84.1%
14 84.1% 85.1% 83.7%
15 82.2% 88.5% 83.2%
16 84.1% 84.6% 83.2%
17 84.1% 87.0% 83.2%
18 83.7% 84.1% 81.7%
19 84.6% 86.5% 83.2%
20 83.7% 83.7% 81.7%
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Table A.2: Noise robustness testing of confidence machines: difference in accu-
racy, erroneous prediction rate, empty prediction rate, certain prediction rate,
correct certain prediction rate and multiple prediction rate at significance level
of 10% caused by injected 10% noise

Decrease in

accuracy error empty certain correct multiple
Data set / Machine certain

UKOPS

CM-1NN 0.036 0.010 0.039 -0.039 -0.010 0.000
CM-5NN 0.024 0.011 0.021 -0.021 -0.011 0.000
CM-RF 0.025 0.050 0.000 0.199 0.150 -0.199
CM-SVM (poly, 5) -0.010 0.008 0.011 -0.011 -0.008 0.000
CM-SVM (RBF, 5) -0.022 0.009 0.016 -0.016 -0.009 0.000

UKCTOCS OC

CM-1NN 0.023 0.003 0.010 -0.010 -0.003 0.000
CM-5NN 0.013 0.006 0.012 -0.012 -0.006 0.000
CM-RF 0.017 0.040 0.000 0.297 0.257 -0.297
CM-SVM (poly, 5) 0.026 -0.054 -0.039 0.039 0.054 0.000
CM-SVM (RBF, 5) 0.041 0.004 0.005 -0.005 -0.004 0.000

Competition

CM-1NN 0.029 0.007 0.013 -0.013 -0.007 0.000
CM-5NN 0.007 0.011 0.011 -0.011 -0.011 0.000
CM-RF -0.014 0.041 0.000 0.246 0.205 -0.246
CM-SVM (poly, 5) 0.031 -0.058 -0.048 0.048 0.058 0.000
CM-SVM (RBF, 5) 0.030 0.003 0.003 -0.003 -0.003 0.000

Abdominal pain

CM-1NN 0.083 0.011 0.019 -0.019 -0.011 0.000
CM-5NN 0.005 0.011 0.011 -0.011 -0.011 0.000
CM-RF -0.001 0.080 0.047 0.247 0.206 -0.294
CM-SVM (poly, 5) 0.011 -0.008 -0.008 0.008 0.008 0.000
CM-SVM (RBF, 5) -0.003 0.005 0.005 -0.005 -0.005 0.000
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Table A.3: Noise robustness testing of confidence machines: difference in accu-
racy, erroneous prediction rate, empty prediction rate, certain prediction rate,
correct certain prediction rate and multiple prediction rate at significance level
of 10% caused by injected 10% noise (continued)

Decrease in

accuracy error empty certain correct multiple
Data set / Machine certain

Microarray

CM-1NN 0.040 0.003 0.010 -0.010 -0.003 0.000
CM-5NN 0.005 0.003 0.003 -0.003 -0.003 0.000
CM-RF 0.004 0.078 0.055 0.247 0.221 -0.302
CM-SVM (poly, 5) 0.024 -0.152 -0.159 0.159 0.152 0.000
CM-SVM (RBF, 5) -0.007 0.004 0.004 -0.004 -0.004 0.000

Sonar

CM-1NN 0.043 0.009 0.009 -0.009 -0.009 0.000
CM-5NN 0.020 0.007 0.007 -0.007 -0.007 0.000
CM-RF 0.002 0.038 0.000 0.159 0.120 -0.159
CM-SVM (poly, 5) 0.045 0.006 0.036 -0.036 -0.006 0.000
CM-SVM (RBF, 5) 0.051 0.004 0.005 -0.005 -0.004 0.000

Iris

CM-1NN 0.073 0.009 0.011 -0.011 -0.009 0.000
CM-5NN -0.001 0.004 0.004 -0.004 -0.004 0.000
CM-RF 0.023 0.075 0.080 0.241 0.243 -0.321
CM-SVM (poly, 5) -0.001 0.001 -0.004 0.004 -0.001 0.000
CM-SVM (RBF, 5) 0.035 0.007 0.011 -0.011 -0.007 0.000
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Table A.4: Dependence of Venn machine performance on the number of fea-
tures to split on at random forest nodes: results of application of Venn machine
VM-RF2A with 5 categories to the Sonar data (the number of features used
in experiments in Chapter 3 is 7)

Number Forced Average Average Average
features accuracy lower upper interval

probability probability length

1 86.5% 0.810 0.887 0.076
2 87.0% 0.813 0.888 0.075
3 85.6% 0.814 0.875 0.061
4 82.7% 0.818 0.878 0.060
5 85.6% 0.799 0.870 0.071
6 84.1% 0.804 0.868 0.064
7 85.1% 0.807 0.870 0.062
8 86.5% 0.803 0.862 0.059
9 84.1% 0.807 0.861 0.055
10 87.0% 0.803 0.865 0.062
11 85.1% 0.807 0.857 0.051
12 86.5% 0.809 0.864 0.055
13 84.6% 0.800 0.856 0.056
14 83.2% 0.803 0.856 0.054
15 83.2% 0.799 0.850 0.052
16 83.7% 0.804 0.857 0.053
17 85.1% 0.799 0.852 0.053
18 82.7% 0.802 0.852 0.050
19 83.7% 0.800 0.850 0.051
20 82.7% 0.798 0.851 0.053
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Table A.5: Performance of Venn machines on the Sonar data in the leave-one-
out mode: forced accuracy, average probability interval start, end and length

Average interval

Venn machine Kernel Parameter K ′ Accuracy start end length

VM-1NN 87.5% 0.87 0.88 0.01

VM-RF1 85.1% 0.81 0.85 0.04
VM-RF2A 2 86.5% 0.81 0.86 0.06
VM-RF2A 5 85.1% 0.81 0.87 0.06
VM-RF2A 10 85.6% 0.80 0.88 0.08
VM-RF2B2 1 86.1% 0.82 0.85 0.03
VM-RF2B2 3 86.5% 0.81 0.88 0.07
VM-RF2B2 5 85.1% 0.80 0.87 0.07
VM-RF2B2 7 84.1% 0.80 0.88 0.08
VM-RF3 86.5% 0.81 0.88 0.07

VM-SVM1 linear 84.6% 0.55 0.95 0.40
VM-SVM1 poly 5 55.3% 0.58 0.82 0.25
VM-SVM1 poly 10 53.4% 0.53 0.53 0.00
VM-SVM1 RBF 0.2 100.0% 0.01 1.00 0.99
VM-SVM1 RBF 1 100.0% 0.01 1.00 0.99
VM-SVM1 RBF 5 100.0% 0.41 1.00 0.59

VM-SVM2 linear 2 73.6% 0.56 0.95 0.40
VM-SVM2 linear 5 76.4% 0.60 0.97 0.38
VM-SVM2 linear 10 75.5% 0.56 0.98 0.43
VM-SVM2 poly 5 2 69.7% 0.60 0.80 0.20
VM-SVM2 poly 5 56.3% 0.51 0.82 0.31
VM-SVM2 poly 10 59.1% 0.53 0.86 0.34
VM-SVM2 poly 10 2 53.4% 0.53 0.54 0.00
VM-SVM2 poly 5 53.4% 0.53 0.54 0.00
VM-SVM2 poly 10 53.4% 0.53 0.54 0.00
VM-SVM2 RBF 0.2 2 54.3% 0.13 1.00 0.87
VM-SVM2 RBF 5 59.1% 0.15 0.96 0.81
VM-SVM2 RBF 10 54.3% 0.07 0.98 0.91
VM-SVM2 RBF 1 2 84.1% 0.38 0.98 0.59
VM-SVM2 RBF 5 78.9% 0.46 1.00 0.54
VM-SVM2 RBF 10 84.1% 0.37 1.00 0.63
VM-SVM2 RBF 5 2 82.2% 0.45 0.98 0.52
VM-SVM2 RBF 5 88.5% 0.54 0.95 0.41
VM-SVM2 RBF 10 82.2% 0.46 0.99 0.53
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Table A.6: Performance of Venn machines on the Sonar data in the leave-one-
out mode: forced accuracy, average probability interval start, end and length
(continued)

Average interval

Venn machine Kernel Parameter K ′ Accuracy start end length

VM-SVM3 linear 1 72.6% 0.22 0.98 0.75
VM-SVM3 linear 2 72.6% 0.22 0.98 0.75
VM-SVM3 linear 4 72.6% 0.22 0.98 0.75
VM-SVM3 poly 5 1 55.3% 0.57 0.84 0.27
VM-SVM3 poly 2 55.3% 0.57 0.84 0.27
VM-SVM3 poly 4 55.3% 0.57 0.84 0.27
VM-SVM3 poly 10 1 53.4% 0.53 0.54 0.00
VM-SVM3 poly 2 53.4% 0.53 0.54 0.00
VM-SVM3 poly 4 53.4% 0.53 0.54 0.00
VM-SVM3 RBF 0.2 1 53.4% 0.00 1.00 1.00
VM-SVM3 RBF 2 53.4% 0.00 1.00 1.00
VM-SVM3 RBF 4 53.4% 0.00 1.00 1.00
VM-SVM3 RBF 1 1 53.4% 0.00 1.00 1.00
VM-SVM3 RBF 2 53.4% 0.00 1.00 1.00
VM-SVM3 RBF 4 53.4% 0.00 1.00 1.00
VM-SVM3 RBF 5 1 71.6% 0.13 1.00 0.87
VM-SVM3 RBF 2 71.6% 0.13 1.00 0.87
VM-SVM3 RBF 4 71.6% 0.13 1.00 0.87

Table A.7: Accuracy of simple predictors (random forests and SVMs) on the
Sonar data in the leave-one-out mode

Algorithm Kernel Parameter Accuracy

Random forest 85.1%
SVM linear 76.9%
SVM poly 5 70.2%
SVM poly 10 48.6%
SVM RBF 0.2 53.4%
SVM RBF 1 54.3%
SVM RBF 5 85.6%
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Table A.8: Performance of Venn machines on the UKCTOCS OC data in the
leave-one-out mode: forced accuracy, average probability interval start, end
and length. Accuracy of corresponding simple predictors (random forests and
SVMs) is provided for comparison.

Average interval

Algorithm Kernel, parameter K ′ Accuracy start end length

VM-1NN 66.7% 0.66 0.67 0.01

Random forest 84.9%
VM-RF1 84.9% 0.83 0.85 0.02
VM-RF2A 2 76.0% 0.69 0.73 0.04
VM-RF2A 5 83.7% 0.80 0.85 0.05
VM-RF2A 10 83.0% 0.80 0.86 0.07

SVM linear 77.6%
VM-SVM2 linear 2 73.1% 0.56 0.83 0.26
VM-SVM2 linear 5 78.2% 0.64 0.93 0.29
VM-SVM2 linear 10 78.2% 0.63 0.94 0.31

SVM poly, 5 59.0%
VM-SVM2 poly, 5 2 66.7% 0.62 0.69 0.07
VM-SVM2 poly, 5 5 60.3% 0.58 0.74 0.15
VM-SVM2 poly, 5 10 62.8% 0.55 0.77 0.22

SVM RBF, 5 78.5%
VM-SVM2 RBF, 5 2 73.4% 0.46 0.87 0.41
VM-SVM2 RBF, 5 5 77.6% 0.37 0.98 0.61
VM-SVM2 RBF, 5 10 56.7% 0.29 1.00 0.71
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Table A.9: Performance of Venn machines on the UKCTOCS BC data in the
leave-one-out mode: forced accuracy, average probability interval start, end
and length. Accuracy of corresponding simple predictors (random forests and
SVMs) is provided for comparison.

Average interval

Algorithm Kernel, parameter K ′ Accuracy start end length

VM-1NN 66.7% 0.66 0.67 0.01

Random forest 66.0%
VM-RF1 66.0% 0.66 0.68 0.02
VM-RF2A 2 66.7% 0.65 0.68 0.03
VM-RF2A 5 62.3% 0.62 0.70 0.07
VM-RF2A 10 66.0% 0.61 0.74 0.13

SVM linear 53.1%
VM-SVM2 linear 2 53.7% 0.49 0.84 0.35
VM-SVM2 linear 5 42.0% 0.39 0.94 0.55
VM-SVM2 linear 10 48.8% 0.38 0.95 0.58

SVM poly, 5 46.3%
VM-SVM2 poly, 5 2 66.7% 0.64 0.68 0.03
VM-SVM2 poly, 5 5 66.7% 0.62 0.68 0.06
VM-SVM2 poly, 5 10 61.1% 0.60 0.72 0.12

SVM RBF, 5 64.2%
VM-SVM2 RBF, 5 2 58.6% 0.41 0.92 0.51
VM-SVM2 RBF, 5 5 42.0% 0.19 1.00 0.81
VM-SVM2 RBF, 5 10 32.1% 0.06 1.00 0.94
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Table A.10: Performance of Venn machines on the UKCTOCS HD data in the
leave-one-out mode: forced accuracy, average probability interval start, end
and length. Accuracy of corresponding simple predictors (random forests and
SVMs) is provided for comparison.

Average interval

Algorithm Kernel, parameter K ′ Accuracy start end length

VM-1NN 54.0% 0.67 0.67 0.00

Random forest 71.7%
VM-RF1 72.0% 0.70 0.72 0.02
VM-RF2A 2 66.7% 0.66 0.68 0.02
VM-RF2A 5 72.7% 0.68 0.72 0.04
VM-RF2A 10 72.0% 0.68 0.74 0.06

SVM linear 71.7%
VM-SVM2 linear 2 62.4% 0.63 0.69 0.06
VM-SVM2 linear 5 70.1% 0.70 0.78 0.08
VM-SVM2 linear 10 70.2% 0.68 0.80 0.12

SVM poly, 5 65.4%
VM-SVM2 poly, 5 2 65.1% 0.49 0.84 0.36
VM-SVM2 poly, 5 5 66.0% 0.37 0.89 0.51
VM-SVM2 poly, 5 10 47.1% 0.29 0.89 0.60

SVM RBF, 5 70.9%
VM-SVM2 RBF, 5 2 64.4% 0.54 0.83 0.29
VM-SVM2 RBF, 5 5 64.4% 0.52 0.95 0.43
VM-SVM2 RBF, 5 10 65.8% 0.49 0.95 0.47
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Table A.11: Performance of Venn machines on the Competition data in the
leave-one-out mode: forced accuracy, average probability interval start, end
and length. Accuracy of corresponding simple predictors (random forests and
SVMs) is provided for comparison.

Average interval

Algorithm Kernel, parameter K ′ Accuracy start end length

VM-1NN 75.8% 0.75 0.76 0.01

Random forest 83.7%
VM-RF1 84.3% 0.81 0.84 0.04
VM-RF2A 2 84.3% 0.82 0.84 0.02
VM-RF2A 5 75.8% 0.79 0.84 0.05
VM-RF2A 10 81.7% 0.77 0.86 0.08

SVM linear 88.2%
VM-SVM2 linear 2 23.5% 0.24 1.00 0.76
VM-SVM2 linear 5 77.1% 0.45 0.94 0.49
VM-SVM2 linear 10 40.5% 0.22 1.00 0.78

SVM poly, 5 49.0%
VM-SVM2 poly, 5 2 0.0% 0.50 0.51 0.01
VM-SVM2 poly, 5 5 0.0% 0.50 0.51 0.01
VM-SVM2 poly, 5 10 0.0% 0.50 0.51 0.01

SVM RBF, 5 74.5%
VM-SVM2 RBF, 5 2 11.1% 0.12 1.00 0.88
VM-SVM2 RBF, 5 5 79.7% 0.47 0.97 0.49
VM-SVM2 RBF, 5 10 39.9% 0.11 1.00 0.89
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Table A.12: Performance of Venn machines on three-class data sets in the
leave-one-out mode: forced accuracy, average probability interval start, end
and length. Accuracy of a bare random forest is also provided

Average interval

Data Machine K ′ Accuracy start end length

UKOPS VM-1NN 58.6% 0.58 0.59 0.01
VM-RF1 84.3% 0.81 0.84 0.03
VM-RF2B2 1 84.3% 0.81 0.84 0.04
VM-RF2B2 2 77.1% 0.78 0.84 0.06
VM-RF2B2 3 83.7% 0.77 0.86 0.09
Random forest 72.6%

7 biomarkers VM-1NN 57.2% 0.56 0.58 0.01
VM-RF1 73.1% 0.72 0.76 0.04
VM-RF2B2 1 75.2% 0.72 0.76 0.04
VM-RF2B2 2 74.9% 0.72 0.76 0.04
VM-RF2B2 3 74.6% 0.71 0.76 0.04
Random forest 74.6%

Abdominal pain VM-1NN 89.3% 0.88 0.89 0.01
VM-RF1 92.0% 0.89 0.92 0.04
VM-RF2B2 1 92.0% 0.89 0.92 0.03
VM-RF2B2 2 91.3% 0.88 0.93 0.05
VM-RF2B2 3 92.0% 0.88 0.94 0.06
Random forest 91.7%

Microarray VM-1NN 90.0% 0.89 0.90 0.01
VM-RF1 92.0% 0.88 0.92 0.03
VM-RF2B2 1 92.0% 0.89 0.92 0.03
VM-RF2B2 2 92.0% 0.88 0.92 0.04
VM-RF2B2 3 91.8% 0.88 0.93 0.05
Random forest 92.0%

Iris VM-1NN 55.8% 0.55 0.56 0.01
VM-RF1 96.0% 0.93 0.96 0.03
VM-RF2B2 1 96.0% 0.94 0.96 0.02
VM-RF2B2 2 95.3% 0.93 0.96 0.04
VM-RF2B2 3 95.3% 0.92 0.96 0.04
Random forest 95.3%
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Table A.13: Noise robustness testing of Venn machines on two-class data sets
except for the Competition data: difference in accuracy, average probability
interval start, end and length due to injected 10% noise (only those experiments
are shown which resulted in forced accuracy higher than the majority rate)

Decrease in

average interval
Data/Machine Kernel, parameter K ′ accuracy start end length

Sonar
VM-1NN 0.03 0.05 0.05 0.00
VM-RF1 0.03 0.07 0.07 0.00
VM-RF2A 2 0.04 0.08 0.09 0.02
VM-RF2A 5 0.000 0.065 0.069 0.005
VM-RF2A 10 0.034 0.077 0.057 -0.020
VM-SVM2 linear, 5 2 0.04 0.00 0.08 0.08
VM-SVM2 linear, 5 5 0.04 0.04 0.06 0.02
VM-SVM2 linear, 5 10 0.06 0.00 0.05 0.05
VM-SVM2 rbf, 5 2 0.06 0.07 0.02 -0.05
VM-SVM2 rbf, 5 5 0.06 0.08 -0.02 -0.11
VM-SVM2 rbf, 5 10 0.01 0.08 0.01 -0.07

UKCTOCS OC
VM-RF1 0.01 0.07 0.07 0.00
VM-RF2A 2 0.02 0.03 0.04 0.00
VM-RF2A 5 0.01 0.07 0.06 -0.01
VM-RF2A 10 0.00 0.08 0.07 -0.02
VM-SVM2 linear, 5 2 0.02 -0.03 0.02 0.06
VM-SVM2 linear, 5 5 0.03 0.01 0.05 0.04
VM-SVM2 linear, 5 10 0.05 0.02 0.06 0.04
VM-SVM2 rbf, 5 2 0.02 0.05 -0.04 -0.09
VM-SVM2 rbf, 5 5 0.04 0.15 -0.01 -0.16
VM-SVM2 linear, 5 5 0.01 0.05 0.05 0.00

UKCTOCS HD
RF1 0.01 0.06 0.06 0.00
RF2A 5 0.01 0.06 0.06 0.00
RF2A 10 0.02 0.06 0.06 0.00
VM-SVM2 linear, 5 5 0.01 0.05 0.05 0.00
VM-SVM2 linear, 5 10 0.01 0.03 0.06 0.03
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Table A.14: Noise robustness testing of Venn machines on the Competition
data: difference in accuracy, average probability interval start, end and length
due to injected 10% noise (only those experiments are shown which resulted
in forced accuracy higher than the majority rate)

Decrease in

average interval
Data/Machine Kernel, parameter K ′ accuracy start end length

Competition
VM-1NN 0.03 0.06 0.06 0.00
VM-RF1 0.01 0.03 0.04 0.00
VM-RF2A 2 0.00 0.03 0.03 0.00
VM-RF2A 5 -0.04 0.05 0.04 -0.01
VM-RF2A 10 -0.01 0.05 0.04 -0.01
VM-SVM2 linear, 5 5 0.00 0.10 -0.05 -0.15
VM-SVM2 rbf, 5 5 0.04 0.10 -0.03 -0.13
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Table A.15: Noise robustness testing of Venn machines on three-class data
sets: difference in accuracy, average probability interval start, end and length
due to injected 10% noise

Decrease in

average interval
Data/Machine K ′ accuracy start end length

UKOPS
VM-1NN 0.02 0.06 0.06 0.00
VM-RF1 0.00 0.05 0.04 -0.01
VM-RF2B2 1 0.00 0.05 0.06 0.01
VM-RF2B2 2 -0.03 0.04 0.04 0.00
VM-RF2B2 3 0.01 0.05 0.04 -0.01

7 biomarkers
VM-1NN 0.01 0.02 0.02 0.00
VM-RF1 0.00 0.07 0.07 0.00
VM-RF2B2 1 0.01 0.07 0.07 0.00
VM-RF2B2 2 0.01 0.08 0.08 0.00
VM-RF2B2 3 0.00 0.05 0.06 0.01

Abdominal pain
VM-1NN 0.07 0.13 0.13 0.00
VM-RF1 0.00 0.08 0.09 0.01
VM-RF2B2 1 0.00 0.09 0.08 -0.01
VM-RF2B2 2 0.00 0.08 0.08 0.00
VM-RF2B2 3 0.00 0.08 0.08 0.00

Microarray
VM-1NN 0.06 0.09 0.09 0.00
VM-RF1 0.03 0.07 0.07 0.00
VM-RF2B2 1 0.00 0.10 0.09 0.00
VM-RF2B2 2 0.00 0.08 0.08 0.00
VM-RF2B2 3 0.01 0.09 0.09 0.00

Iris
VM-1NN 0.07 0.11 0.11 0.00
VM-RF1 0.04 0.13 0.13 0.00
VM-RF2B2 1 0.03 0.12 0.11 -0.01
VM-RF2B2 2 0.02 0.10 0.10 -0.01
VM-RF2B2 3 0.03 0.13 0.12 -0.01
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Table A.16: M/z-values of statistically significant peaks for the UKCTOCS
data sets

Data set Peak number M/z-value

Ovarian cancer 2 7772.1
3 9297.8

Breast cancer 19 6637.8

Heart disease 4 4211.1
6 4055.0
7 5338.3
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Appendix B

Triplet Analysis of the

UKCTOCS OC Data Set

This appendix presents the triplet analysis of the UKCTOCS OC data. The

description of the original mass spectrometry data and applied pre-processing

is given in Section 4.2. The triplet analysis was carried out in a triplet setting:

we took into account that each case sample is accompanied by two controls

taken from healthy individuals, and these controls were matched on patient

age and on when and where sample were collected.

Let us recall that each sample is represented by intensities of 67 most

common profile peaks I(1), . . . , I(67) and a CA125 measurement C. Each

triplet τ is assigned time to diagnosis T (τ) > 0, the time to diagnosis confirmed

by histology/cytology for the case patient in the group.

B.1 Problem Statement

We consider different time slots as described in Section 4.3.3. The slots are

six months wide and finish t = 0, 1, 2, . . .months in advance of the moment

of diagnosis. In each of these time slots, we consider St, the set of triplets

of measurements taken t months before the diagnosis, or as little earlier as

possible and not exceeding t+6 months. Two triplets with case measurements

taken from the same patient are not allowed to be used in the same set because

they can be dependent on each other. Hence, if there are two measurement

182



taken from the same patient which fall in the time slot, only the latest one is

considered, together with corresponding controls.

We will use a rather limited class of rules for triplet classification, i.e.,

identification of the labelled sample within a triplet. These will be the simplest

linear combinations 4.1 of CA125 and one peak with h = 2, n1 corresponding

to CA125 levels, n2 corresponding to a peak number.

Therefore, each classification rule can be specified by three numbers (n2, w1,

w2), which are a peak number n2 ∈ P (P is a set of peak numbers and can be

equal to {1, . . . , 67} or one peak number) and weights w1 ∈ W1 = {0, 0.5, 1, 2},
w2 ∈ W2 = {−1, 0, 1}. For each triplet, the classification rule (n2, w1, w2)

assigns a ‘case’ label to the sample with the largest value of

w1 log C + w2 log I(n2) , (B.1)

where C and I(n2) are the CA125 level and the intensity of peak n2, respec-

tively. The logarithms are taken to remove the arbitrary units of measure-

ments.

If w1 6= 0 (that is, CA125 is taken into account), the rule has an equivalent

form: log C + w2

w1
log I(n2). Thus, we are looking for a term additional to

CA125, w2 is responsible for the possible sign of its influence (whether it is

expected to be larger at cases or at controls), and 1/w1 determines to what

degree it is taken into account.

Let err(τ ; n2, w1, w2) be 0 if (n2, w1, w2) correctly identifies the labelled

sample in a triplet τ and 1 otherwise (in the case of a wrong classification),

and

Err(S; n2, w1, w2) :=
∑
τ∈S

err(τ ; n2, w1, w2)

stand for the number of errors made by (n2, w1, w2) on a set S of triples. As

our test statistic we take the pair (E0, n0) of the least number of errors and

the number of the most frequent peak where it is achieved. Formally,

E0 := min
n2∈P,w1∈W1,w2∈W2

Err(St; n2, w1, w2) ,

n0 := min{n2 : ∃w1∃w2 Err(St; n2, w1, w2) = E0} .
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Pairs (E0, n0) are ordered lexicographically, and n0 is added to break ties: if

two rules lead to the same error rate, the rule involving a more frequent peak

has priority when we calculate p-values.

B.2 Summary of the Main Findings

For each set of samples St, the best pair (E0, n0) was selected for certain sets

of parameters P , W1 and W2 as described above. Tests were designed in order

to check the significance of our findings. The p-values given by these tests for

the set of all 67 peaks (P = {1, . . . , 67}) and separately for peak 2 (P = {2})
and peak 3 (P = {3}) are represented in Table B.1. The tests check the null

hypothesis that the assignment of labels within triplets is independent of the

information contained in CA125 levels and intensities of certain peaks: all

peaks, peak 2 only or peak 3 only. The methodology of p-value calculation is

described in detail in Section B.3.

The first column of Table B.1 shows the time to diagnosis t, which is the

most recent end-point of the time window. The second column shows the size

of St — the number of samples in the considered 6-month time slot. The

other columns represent p-values for the set of all peaks (these p-values do not

require adjustment) and adjusted p-values for peak 2 and peak 3 separately.

The table demonstrates that CA125 and 67 peak intensities allow us to

reject the null hypothesis at significance level of 5% for up to 15 months with

a single exception of month 12, which still has a p-value less than 6%, while

the information contained in CA125 and peak 2 or CA125 and peak 3 provide

significant p-values for detection up to 15 and 13 months before diagnosis,

respectively.

B.3 Statistical Analysis of All Peaks

In order to check the robustness of our triplet classification using mass spec-

trometry profile peaks, we designed three types of statistical tests which reject

the following null hypotheses about classification of St:
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Table B.1: Summary of p-values for triplet classification of the UKCTOCS OC

t |St| p-values Adjusted p-values Adjusted p-values
for all peaks for peak 2 for peak 3

0 68 0.0001 0.001 0.001
1 56 0.0001 0.001 0.001
2 47 0.0001 0.001 0.001
3 36 0.0001 0.001 0.001
4 27 0.0001 0.001 0.001
5 23 0.0006 0.004 0.007
6 20 0.0028 0.010 0.046
7 17 0.0141 0.017 0.098
8 17 0.0019 0.020 0.020
9 20 0.0076 0.010 0.009
10 28 0.0003 0.001 0.001
11 28 0.0042 0.008 0.004
12 28 0.0585 0.033 0.049
13 30 0.0168 0.007 0.015
14 25 0.0304 0.015 0.301
15 20 0.0464 0.022 0.577
16 10 0.4101 5.165 5.979

1. The null hypothesis that assignment of labels within triplets is indepen-

dent of CA125 and peak intensities.

2. The null hypothesis that assignment of labels within triplets is indepen-

dent of CA125 levels.

3. The null hypothesis that when assigning labels within triplets, pairs (la-

bel, CA125) are independent of peak intensities, that is, peak intensities

do not contain any information useful to improve the predictive ability

of CA125.

The detailed explanation of corresponding p-value calculation and their

meaning is given below.
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B.3.1 Main p-values

The main p-value (or just ‘p-value’) is based on the null hypothesis that the

assignment of the case label within each triplet in St is independent of the

information contained in CA125 and all mass spectrometry peaks.

We calculated these and all other p-values experimentally, using the Monte-

Carlo method. Suppose P = {1, . . . , 67} (which implies that any peak can com-

plement CA125 in a linear rule); E0 := minn2∈P,w1∈W1,w2∈W2 Err(St; n2, w1, w2),

that is the minimum number of errors occurring in prediction by CA125 and

one of the peak intensities, and n0 := min{n2 : ∃w1∃w2Err(St; n2, w1, w2) =

E0}, the peak with the highest commonality that can provide this minimum

error rate.

The statistic equal to the pair (E ′, n′) calculated the same way as (E0, n0)

is collected for a large number N (we used N = 104) of times on the same data

set with randomly reassigned case labels.

We then calculate the number Q of times the statistic is as good as or

better than the statistic (E0, n0) computed from the true labels, where ‘as

good as or better than’ is understood in the sense of the lexicographical order:

(E ′, n′) ≤ (E0, n0) means that either E ′ < E0 or E ′ = E0 and n′ ≤ n0. The

p-value is then estimated as (Q + 1)/(N + 1).

Algorithm 2 Main p-value calculation

Input: t, time to diagnosis.
Input: N = 104, number of trials.
E0 := minn2,w1,w2 Err(St; n2, w1, w2)
n0 := min{n2 : ∃w1∃w2Err(St; n2, w1, w2) = E0}
Q := 0
for j := 1, . . . , N do

Assign the case label to a randomly chosen sample in each triplet in St

Recalculate E ′ := minn2∈P,w1∈W1,w2∈W2 Err(St; n2, w1, w2)
Recalculate n′ := min{n2 : ∃w1∃w2Err(St; n2, w1, w2) = E ′}
if (E ′, n′) ≤ (E0, n0) then

Q := Q + 1
end if

end for
Output: (Q + 1)/(N + 1) as the p-value.
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B.3.2 CA125 p-values

The previous p-value demonstrates significance of predictions provided by

CA125 levels in combination with peak intensities. To compare discriminating

ability of the combination of CA125 and peaks with the well-known bench-

mark, CA125 on its own, we need to calculate CA125 p-values. This test

checks the null hypothesis that labels at St are independent of CA125 levels.

These p-values can be calculated theoretically as follows. Suppose E0 =

Err(St; n2, w1, w2). In this case, random prediction leads to 1/3 probability to

guess the correct result in each of |St| independent cases. Probability to make

at most E0 errors by chance is

CA125 p-value =

E0∑
i=0

(2/3)i(1/3)|St|−iCi
|St| , (B.2)

where Ck
n = n!

k!(n−k)!
is the number of combinations of k elements without

repetitions out of n elements.

Formula B.2 provides theoretical calculation of CA125 p-values. However,

we will again use the Monte-Carlo method. Suppose E0 = Err(St; 1, 1, 0),

that is, the number of errors occurring in prediction by CA125 only. The

statistic equal to number of errors is collected for N = 104 times on the

same data set with randomly reassigned case labels, and then the algorithm

counts the number Q of times the statistic is as good as or better than the

statistic E0 computed from the true labels. The p-value is then estimated as

(Q + 1)/(N + 1).

B.3.3 Conditional p-values

In this study we also introduced conditional p-values, in addition to main p-

values and CA125 p-values that had been considered in [26].

Suppose that the main p-value is significant. That means that CA125 with

mass spectrometry profile peaks are able to discriminate between controls and

cases. In this case we wish to separate contributions of CA125 and mass

spectrometry profile peaks. This can be achieved by the use of conditional

p-values.
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Algorithm 3 CA125 p-value calculation

Input: t, time to diagnosis.
Input: N = 104, number of trials.
E0 := Err(St; 1, 1, 0)
Q := 0
for j := 1, . . . , N do

Assign the case label to a randomly chosen sample in each triplet in St

Recalculate E ′ := Err(St; 1, 1, 0)
if E ′ ≤ E0 then

Q := Q + 1
end if

end for
Output: (Q + 1)/(N + 1) as the p-value.

The null hypothesis to consider is the independence between a pair (label,

C) and (I(1), . . . , I(67)) as opposed to the main p-value hypothesis that can

be interpreted as the independence between a label and (C, I(1), . . . , I(67)).

The only difference from the computation of the main p-values is the fol-

lowing. At each loop step instead of assigning the case label randomly, we

generate a random permutation of three elements for each triplet and apply

the permutation to both labels (‘case’, ‘control’, ‘control’) and CA125 levels

of triplet measurements.

Neither of p-values described above require adjustment. Main p-values as

well as conditional p-values do not require any adjustment as the numbers of

errors are calibrated by the Monte-Carlo procedure taking into account all the

rules at the same stage. CA125 p-value does not require any adjustment, since

in this case there is no set of rules to select from.

B.3.4 Experimental Results

Given that we have only a limited number of samples, we considered 6-month

time slots starting in different months. For each of these slots we checked

hypotheses of random label distribution, calculating p-values described above,

and looked for certain peaks that carry the most useful information for dis-

crimination between cancer and healthy samples. The initial results of the
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Algorithm 4 Conditional p-value calculation

Input: t, time to diagnosis.
Input: N = 104, number of trials.
E0 := minn2,w1,w2 Err(St; n2, w1, w2)
n0 := min{n2 : ∃w1∃w2Err(St; n2, w1, w2) = E0}
Q := 0
for j := 1, . . . , N do

for each triplet in St do
Consider a random permutation s : {1, 2, 3} → {1, 2, 3}
Apply s to the labels (case, control, control) of this triple
Apply the same s to the CA125 values (C1, C2, C3) of this triple

end for
Recalculate E ′ := minn2∈P,w1∈W1,w2∈W2 Err(St; n2, w1, w2)
Recalculate n′ := min{n2 : ∃w1∃w2Err(St; n2, w1, w2) = E ′}
if (E ′, n′) ≤ (E0, n0) then

Q := Q + 1
end if

end for
Output: (Q + 1)/(N + 1) as the p-value.

analysis are represented in Table B.2.

The first and second columns of Table B.2 are the same as in Table B.1.

Columns 3 and 4 represent analysis results for prediction with CA125 only.

Columns 5–9 show results for prediction with CA125 in combination with the

set of all peaks.

The third column provides the number EC of errors made on the triplets

St by the classification rule log C, i.e., classification by CA125 only.

The fourth column (CA125 p-values) is the measure of significance for this

result, the probability to obtain an equal or even more extreme result, by

chance doing classification at random. Recall that the expected probability of

error in triplet classification is 2/3, so misclassifying 16 of 30 triplets (as for

t = 13) is not significant (p-value = 9%) but still better than random. The

results for classification using CA125 only are significant for up to 9 months.

The fifth column EC,n2 gives the best quality (the smallest number of errors)

which may be achieved by a classification rule from our list. The following rules

are considered: classification by w1 log C +w2 log I(n2) where n2 ∈ {1, . . . , 67},
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Table B.2: Initial statistical analysis of the UKCTOCS OC. The columns are:
time t to diagnosis in months; the number |St| of cases with measurement taken
between t and t + 6 months before diagnosis; the number EC of errors when
classifying the triplets in St with CA125 alone; CA125 p-value; the minimal
number EC,n2 of errors when classifying with CA125 (taken with weight w1 ∈
{0, 1/2, 1, 2}) and intensity I(n2) of a peak (taken with weight w2 ∈ {−1, 0, 1});
number n2 of this peak; w2/w1; the main p-value for overall significance of this
result; the conditional p-value for significance of non-CA125 component.

CA125 only CA125 and all peaks

EC CA125 EC,n2 n2 w2/w1 Main Conditional
t |St| p-value p-value p-value

0 68 2 0.0001 1 01 +1 0.0001 0.3164
1 56 4 0.0001 2 07 +1 0.0001 0.2446
2 47 6 0.0001 3 15 −2 0.0001 0.1795
3 36 8 0.0001 4 15 −2 0.0001 0.0746
4 27 7 0.0001 4 15 −2 0.0001 0.6734
5 23 7 0.0008 4 15 −1 0.0006 0.4885
6 20 6 0.0010 4 15 −1 0.0028 0.6973
7 17 6 0.0071 4 01 −1 0.0141 0.6034
8 17 5 0.0021 3 01 −1 0.0019 0.1523
9 20 7 0.0042 5 02 −1 0.0076 0.4497

10 28 14 0.0503 6 03 −1 0.0003 0.0013
11 28 15 0.1028 8 03 −1 0.0042 0.0078
12 28 17 0.3164 10 02 −2 0.0585 0.0658
13 30 16 0.0895 10 02 −2 0.0168 0.0428
14 25 16 0.4661 8 02 −2 0.0304 0.0206
15 20 13 0.5211 6 02 −2 0.0464 0.0609
16 10 6 0.4406 2 67 +1/0 0.4101 0.5066
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w1 is any of 0, 1/2, 1, 2, w2 is 1, 0 or −1. Equivalent form for the rule is

log C + (w2/w1) log I(n2) where w2/w1 is any of −1/0, −2, −1, −1/2, 0, 1/2,

1, 2, 1/0. Notations 1/0 and −1/0 mean that the peak I(n2) is used alone

without CA125. The sixth and seventh columns of the table are n2 and w2/w1

for the best classification rule.

Experiments show that any result can be more or less improved in such a

way (EC,n2 is less than EC), but we need to check that this is not obtained

by chance, due to large choice of classification rules. Moreover, we need to

check both the probability to obtain low error rate EC,n2 by chance and the

probability to decrease it from EC to EC,n2 by chance. Two types of p-values

answer these two questions. Main p-values measure the chance to obtain the

error rate not worse than EC,n2 at random, and conditional p-values the chance

to get the error equal to or less than EC,n2 if peak intensities are reshuffled,

but the CA125 value is real. Actually, conditional p-values are much more

important for us as we know in advance that CA125 is a useful biomarker;

therefore, we are mainly interested in whether addition of anything else to it

may lead to statistically significant improvement.

Main and conditional p-values are represented in the last two columns of

Table B.2. Main p-values are also shown in the summary table, Table B.1.

From ‘Main p-value’ column, we can see that the null hypothesis can be rejected

at level 5% for up to 15 months (with the only exception being 12 months where

it is about 6%). This contrasts with using CA125 alone (‘CA125 p-value’

column), which produces significant results for up to 9 months. Conditional

p-values show that contribution of the added mass spectrometry peak becomes

essential only from 10 to 15 months, so we should pay more attention to the

best quality rules for these months, that is, peaks 2 and 3 with corresponding

coefficients w1 and w2.

B.4 Statistical Analysis of Peaks 2 and 3

In this section, we check significance of peaks 2 and 3 identified as the most

informative. Thus, we check whether a specific peak (2 or 3) contains some

information useful to improve triplet classification in comparison with the use
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of CA125. These peaks are plotted in Figure B.3.

Main p-values and conditional p-values presented before are adjusted to

this problem. Main p-values are given by the test checking the null hypoth-

esis that assignment of labels within triplets is independent of CA125 and

peak 2 (3). Conditional p-values are calculated by the test checking the null

hypothesis that, when assigning labels within triplets, pairs (label, CA125) are

independent of peak 2 (3).

The only difference in calculation of these p-values from Algorithms 2 and 4

is the set of rules we are selecting from. In this case, we consider the follow-

ing sets of parameters: P is peak 2 (or peak 3), W1 and W2 are the same

({0, 0.5, 1, 2} and {−1, 0, 1}, respectively).

B.4.1 Experimental Results

Tables B.3 and B.4 represent the results for prediction by CA125 and peak 2

or CA125 and peak 3, respectively. Error rates and p-values for prediction

using CA125 only are included in the beginning of the tables for comparison

(columns 3 and 4). ‘Rule’ columns show the best rules selected: CA in this

columns means log C, p2 means log I(2), p3 means log I(3). Three last columns

represent error rates for the best rule, main p-values and conditional p-values.

Conditional p-values show that improvement achieved by adding informa-

tion from peak 2 or 3 is not significant up to 9 months as CA125 itself is good

for separation, and it cannot be improved considerably by adding a peak-

dependent term.

The table demonstrates that in time slots finishing in 10–16 months, main

p-values and conditional p-values are similar, hence significant or insignificant

at the same time. This confirms that possible improvement in the predictive

ability of CA125 with a peak is achieved due to information contained in this

peak.

Main and conditional p-values shown in the table require adjustment. When

we adjust by 10 peaks, the threshold for significance is 0.05/10 = 0.005 and

thus the results are statistically significant for up to 15 months (with peak 2)

and 13 months (with peak 3), respectively. Main p-values for peak 2 and peak
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Table B.3: Experimental results for triplet classification with peak 2

CA125 only CA125 and peak 2

t |St| Errors p-value Rule Errors p-value Cond. p-value

0 68 2 0.0001 2CA−p02 2 0.0001 1.0000
1 56 4 0.0001 2CA−p02 4 0.0001 1.0000
2 47 6 0.0001 2CA−p02 5 0.0001 0.5295
3 36 8 0.0001 2CA−p02 7 0.0001 0.8340
4 27 7 0.0001 2CA−p02 6 0.0001 0.9297
5 23 7 0.0008 CA−p02 6 0.0004 0.4103
6 20 6 0.0010 CA−p02 5 0.0010 0.1618
7 17 6 0.0071 CA−p02 4 0.0017 0.1612
8 17 5 0.0021 CA−p02 4 0.0020 0.3303
9 20 7 0.0042 CA−p02 5 0.0010 0.0830

10 28 14 0.0503 CA/2−p02 7 0.0001 0.0007
11 28 15 0.1028 CA/2−p02 9 0.0008 0.0020
12 28 17 0.0895 CA/2−p02 10 0.0033 0.0045
13 30 16 0.3164 CA/2−p02 10 0.0007 0.0014
14 25 16 0.4661 CA/2−p02 8 0.0015 0.0011
15 20 13 0.5211 CA/2−p02 6 0.0022 0.0011
16 10 6 0.4406 CA/2+p02 5 0.5165 0.4836

3 represented in Table B.1 are adjusted.

Figures B.1a and B.1b illustrate the performance of classification rules

log C − 2 log I(2) and log C − log I(3), respectively, in comparison with the

performance of log C. The horizontal axis shows time to diagnosis, the vertical

one — triplet groups (corresponding to case patients) in this time interval.

A circle means that a triple was correctly classified by both rules. A cross

means misclassification in both cases. A triangle shows either improvement

(up-directed) or deterioration (down-directed) after addition of a −2 log I(2)

or − log I(3) component. The figures demonstrate that most triplets with the

measurement date close to diagnosis date are predicted correctly even by the

log C rule. Most samples where addition of a peak to CA125 allows correct

classification are in the interval of 13–16 months before the diagnosis.

Figures 4.6 and B.2 show the median dynamics of log C versus log C −
log I(3) and log C − 2 log I(2) for case measurements. For each time moment,
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Table B.4: Experimental results for triplet classification with peak 3

CA125 only CA125 and peak 3

t |St| Errors p-value Rule Errors p-value Cond. p-value

0 68 2 0.0001 2CA−p03 2 0.0001 0.9114
1 56 4 0.0001 CA+p03 4 0.0001 0.8815
2 47 6 0.0001 2CA−p03 5 0.0001 0.5279
3 36 8 0.0001 2CA−p03 7 0.0001 0.6777
4 27 7 0.0001 CA+p03 6 0.0001 0.8735
5 23 7 0.0008 2CA−p03 6 0.0007 0.6316
6 20 6 0.001 CA−p03 6 0.0046 0.6872
7 17 6 0.0071 CA−p03 5 0.0098 0.5735
8 17 5 0.0021 CA−p03 4 0.002 0.2781
9 20 7 0.0042 CA−p03 5 0.0009 0.0693

10 28 14 0.0503 CA−p03 6 0.0001 0.0002
11 28 15 0.1028 CA−p03 8 0.0004 0.0005
12 28 17 0.0895 CA−p03 10 0.0049 0.0049
13 30 16 0.3164 CA−p03 10 0.0015 0.0016
14 25 16 0.4661 CA−p03 10 0.0301 0.0181
15 20 13 0.5211 CA−p03 8 0.0577 0.0683
16 10 6 0.4406 CA/2+p03 5 0.5979 0.7643
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Figure B.1: Comparison of log C with log C − 2 log I(2) and log C − log I(3)
rules on time/patient scale
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Figure B.2: UKCTOCS OC: median dynamics of rules log C and log C −
2 log I(2) (for cases only)

the latest available case measurement for each triplet group is taken into ac-

count. These measurements are averaged by median through all triplet groups.

The figures illustrate that rules combining CA125 with peak intensity start to

grow earlier than log C. However, the CA125 growth at the moments close to

diagnosis is quicker due to the exponential growth of CA125.

B.5 Conclusions

The purpose of this study has been to demonstrate that mass spectra carry

significant information to make an early diagnosis of ovarian cancer and to

identify peaks that allow making this early diagnosis. Intensities of certain

peaks combined with the level of CA125 provide statistically reliable infor-
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mation for cancer prediction. The predictive power of CA125 alone is more

limited.

We can pinpoint two peaks that can make early detection of ovarian cancer

possible and deserve much attention:

• peak 2 (m/z-value = 7772 Da);

• peak 3 (m/z-value = 9297 Da).

These groups 2 and 3 plotted together for all cases and controls are shown in

Figure B.3. As the peak plots show, there is no clear visual separation between

cases and controls that was achieved in [63]. And this cannot be caused by

the difference in pre-processing since the preprocessing described in this thesis

was applied to the data described in [63] and confirmed visual separation.
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Figure B.3: Peak groups 7772 Da (peak 2) and 9297 Da (peak 3): blue plots
correspond to controls, red plots correspond to cases

The detailed results of our current research are shown in Tables B.2, B.3

and B.4. The main findings are accumulated in Table B.1. The difference

between Tables B.2 and B.3–B.4 is in the hypothesis being checked:

• Hypothesis 1 checked in Table B.2 is that all the peaks contain some

information useful to improve triplet classification in comparison with

the use of CA125.

• Hypothesis 2 checked in Tables B.3–B.4 is that a specific peak (peak 2

or peak 3) contains such useful information.

197



In [26], it was found out that Hypothesis 1 could be confirmed statistically;

here we also checked Hypothesis 2.

In general, we see that CA125 itself is enough for satisfactory prediction

for up to 9 months before the diagnosis. It follows from conditional p-values

that, in this range, other peaks cannot add significant improvement to this,

and the quality of non-conditional p-values is caused by CA125 itself.

For more than 9 months before the diagnosis, CA125 produces less informa-

tion, and this can be significantly completed by other peaks. The time where

combination with mass spectrometry profile peaks works varies for different

hypotheses. This time is 15 months for Hypothesis 1 and 15 or 13 months for

Hypothesis 2 for peaks 2 or 3, respectively. These results are summarised in

Table B.5.

Table B.5: The predictive ability of CA125 on its own, with all peaks and
certain peaks

Features Period of significant discrimination

CA125 9 months
CA125 + all peaks 15 months
CA125 + peak 2 15 months
CA125 + peak 3 13 months

Thus, we can come to the following conclusions:

1. Mass spectra contain information extending the period of statistically

significant discrimination between controls and cases provided by CA125

to up to 15 months in advance of the moment of diagnosis.

2. Peak 2 (m/z-value = 7772 Da) and peak 3 (m/z-value = 9297 Da) sep-

arately contain such information for up to 15 and 13 months in advance

of the moment of diagnosis.

An interesting point in this discussion is that the moment T = 0 is the

moment of the diagnosis confirmed by histology/cytology but not the clini-

cal diagnosis. The women had no clinical symptoms and were picked up by

the screening either by the CA125/Risk of Ovarian Cancer Algorithm (ROC)
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strategy [40] or the ultrasound strategy. The time of clinical diagnosis is not

known for any of these women since the doctors involved in the study did

not wait for the women to become symptomatic and have a clinical diagnosis.

They operated on them and diagnosed the cancer earlier. Previous studies

suggested that screening may be able to pick up ovarian cancer 18 months be-

fore they would have presented clinically as ovarian disease. This means that

CA125 and mass spectrometry profile peaks are able to discriminate between

healthy samples and samples with ovarian cancer up to 33 months in advance

of the clinical diagnosis.

To sum up, different techniques allow us to provide statistically significant

predictions of ovarian cancer up to 33 months in advance of the date of clinical

diagnosis. This period can be broken down by the cause of discrimination:

• 18 months due to screening methods;

• 10 months due to information contained CA125 levels;

• 5 months due to information contained in mass spectrometry profile

peaks.
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Appendix C

Application of Confidence and

Venn Machines to the VLA

Data

This appendix represents the results of application of confidence and Venn

machines to data provided by VLA. There are two data sets:

1. Salmonella microarray data

2. Salmonella mass spectrometry data

Both sets represent Salmonella strains. However, they are not related to each

other, and the objectives of their analysis were different. The aim of microarray

data study was to differentiate Salmonella serotypes from each other whereas

mass spectrometry data were processed in order to discriminate vaccine strains

from wild type strains of the same serotype.

We applied different types of confidence machines (including the ones de-

veloped in Chapter 3) to the microarray data. The mass spectrometry data set

was analysed by logistic Venn machines designed in Chapter 4 for proteomic

data.
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C.1 Application of Confidence Machines to the

Microarray Data

C.1.1 Microarray Data of Salmonella

The microarray data of Salmonella pertain to strains collected from epidemi-

ological surveys from food animals that are likely to be a source of Salmonella

contamination for humans. The task is to discriminate among three Salmonella

serotypes: S. Enteritidis, S. Newport and S. Typhimurium. Each strain is rep-

resented by at least two replicates. There are 56 strains (120 replicates) in

total. The numbers of analysed strains and replicates of each serotype are

provided in Table C.1. Each replicate has 3858 features — real numbers be-

tween 0 and 1. Only genes without missing information are used. These

features were averaged across replicates and rounded to 0 and 1.

Table C.1: The number of analysed strains and replicates in each serotype of
the Salmonella microarray data

Serotype Number of strains Number of replicates

S. Enteritidis 24 51
S. Newport 14 33
S. Typhimurium 18 36

C.1.2 Results

The Salmonella microarray data were applied to different confidence machines,

including the ones designed in Chapter 3: CM-RF, CM-1NN and CM-RF-5NN

(see Section 3.1.1 for details).

Table C.2 represents p-values, confidence and credibility for CM-RF applied

to the first 25 strains of the microarray data in the online mode, for illustrative

purposes: the first column shows the number of strains we consider, the others

contain p-values for three serotypes, confidence, credibility, predicted serotype

(or a tie) and a true serotype.
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Table C.2: Classification with confidence for the CM-RF applied to the
Salmonella microarray data in the online mode: each strain is complemented
with p-values, one for each serotype, as well as values of confidence and credi-
bility

No. p-value for p-value for p-value for Confi- Credi- Predicted True
Enteritidis Newport Typhimurium dence bility label label

3 100.0% 66.7% 100.0% 0.0% 100.0% Tie 1
4 75.0% 75.0% 75.0% 25.0% 75.0% Tie 2
5 40.0% 100.0% 40.0% 60.0% 100.0% 2 2
6 33.3% 50.0% 33.3% 66.7% 50.0% 2 1
7 28.6% 28.6% 14.3% 71.4% 28.6% Tie 3
8 75.0% 12.5% 12.5% 87.5% 75.0% 1 1
9 11.1% 11.1% 11.1% 88.9% 11.1% Tie 1

10 70.0% 10.0% 10.0% 90.0% 70.0% 1 1
11 9.1% 9.1% 45.5% 90.9% 45.5% 3 3
12 8.3% 8.3% 8.3% 91.7% 8.3% Tie 2
13 7.7% 7.7% 84.6% 92.3% 84.6% 3 3
14 7.1% 7.1% 100.0% 92.9% 100.0% 3 3
15 6.7% 26.7% 6.7% 93.3% 26.7% 2 2
16 81.3% 6.3% 6.3% 93.8% 81.3% 1 1
17 5.9% 41.2% 5.9% 94.1% 41.2% 2 2
18 5.6% 5.6% 100.0% 94.4% 100.0% 3 3
19 5.3% 15.8% 5.3% 94.7% 15.8% 2 2
20 10.0% 5.0% 5.0% 95.0% 10.0% 1 1
21 4.8% 4.8% 95.2% 95.2% 95.2% 3 3
22 4.5% 4.5% 9.1% 95.5% 9.1% 3 3
23 30.4% 4.3% 4.3% 95.7% 30.4% 1 1
24 4.2% 4.2% 50.0% 95.8% 50.0% 3 3
25 4.0% 4.0% 68.0% 96.0% 68.0% 3 3

Let us consider several strains to illustrate the outputs. Strain 21 has three

p-values one of which is high (95.2%), the others are low (4.8%). This results

in high confidence and high credibility of 95.2% and identifies the prediction

as reliable: only one serotype conforms well with the rest of the set. If this

strain were classified as S. Enteritidis or S. Newport, this would mean that an
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event of probability ≤ 4.8% occurred. For this reason, we expect this strain

to be S. Typhimurium, which is correct.

In contrast, both strains 12 and 22 have low p-values for each serotype,

which means that we cannot be confident when assigning these strains to any

of the serotypes. These low p-values produce high confidence (91.7% and

95.5%) and low credibility (8.3% and 9.1%). For this reason, we are likely to

make an erroneous prediction. As a result, the output for strain 12 is a tie,

but prediction for strain 22 is correct.

In general, one can see from Table C.2 that when the number of strains is

relatively low (up to 12 examples), the situations occur when forced predictions

make errors or output ties. However, starting from strain 13, we never output

erroneous predictions, confidence is always high (it has the maximum possible

value), but credibility varies a lot. High value of confidence implies that we

are confident in rejecting the serotypes that are not true. This tendency can

be observed starting from example 8.

These experiments demonstrated that the Salmonella microarray data set is

clean, and it is enough to process 12 strains to start making correct predictions

with high confidence. This will be further confirmed when identifying the

number of strains starting from which confidence machines stop producing

multiple predictions.

Table C.3: Forced accuracy of confidence machines applied to the Salmonella
microarray data in the leave-one-out mode

Algorithm Forced accuracy

CM-RF 98.2–100.0%
CM-RF-1NN 98.2–100.0%
CM-RF-5NN 98.2–100.0%
CM-1NN 98.2–100.0%
CM-5NN 98.2–100.0%
CM-SVM (rbf, 5) 92.9–94.6%
CM-SVM (poly, 5) 98.2–100.0%
Max bare prediction 100.0%
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Since the Salmonella microarray data set is so pure, when we launched ex-

periments in the leave-one-out mode, most confidence machines provided high

forced accuracy on the data: 55 correct predictions and 1 tie for 56 objects.

The accuracy of different confidence machines can be seen in Table C.3. The

lower boundary of the range shown is the accuracy when all ties make erro-

neous predictions, the upper — when all ties are correct. The last row of the

table represents the maximum accuracy of simple predictors achieved on the

data. Among these predictors we considered random forests, SVM and kNN.

Comparison shows that confidence machines are not beaten by simple predic-

tors in accuracy when forced to output singletons as predictions. At the same

time, they assign confidence to each prediction and produce the second type

of predictions — region predictions, which are always valid.
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Figure C.1: Validity of CM-RF-1NN applied to the Salmonella microarray data
in the online mode: the horizontal axis represents the number of examples in
the online mode, dotted and solid lines demonstrate the expected and actual
numbers of errors for different significance levels, respectively

To demonstrate the validity of confidence machines, we launched them as

region predictors. These predictors proved to be valid, that is, for a given

significance level ε > 0 the rate of erroneous predictions (predictions not con-

taining an actual label) does not exceed ε. This was the case in all experiments.
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The validity example is demonstrated in Figure C.1. The figure displays

the erroneous predictions dynamics and confirms the validity of the CM-RF-

1NN applied to the Salmonella microarray data: solid lines, which represent

the actual number of errors, are close to dotted lines, which demonstrate the

expected number of errors.

Not only did our predictions have a guaranteed error rate, but also most

predictions obtained in the experiments were certain, that is, the algorithm

usually output one label as a prediction. In addition, all certain predictions

were correct, which implies that most errors were made by empty predictions.

The exact rates of certain predictions and correct certain predictions are shown

in Table C.4.

Figure C.2 demonstrates the dynamics of efficiency characteristics at sig-

nificance level of 10% of the CM-RF-1NN applied in the online mode to the

data. The characteristics shown are the number of multiple predictions, cer-

tain predictions and empty predictions. The figure demonstrates that while

the number of analysed strains is low (up to 9 examples), they do not carry

enough information to make certain predictions without losing validity, that’s

why most predictions are multiple. But starting from Salmonella strain 10,

we have accumulated enough information so that multiple predictions stopped

Table C.4: Efficiency of confidence machines in the leave-one-out mode: certain
prediction and correct certain prediction rates for different confidence machines
at significance levels ε = 5% and 10%

ε = 10% ε = 5%

Confidence machine Certain Correct certain Certain Correct certain

CM-RF 91.1% 91.1% 96.4% 96.4%
CM-RF-1NN 91.1% 91.1% 98.2% 98.2%
CM-RF-5NN 92.9% 92.9% 98.2% 98.2%
CM-1NN 91.1% 91.1% 96.4% 96.4%
CM-5NN 91.1% 91.1% 96.4% 96.4%
CM-SVM (rbf, 5) 94.6% 91.1% 94.6% 91.1%
CM-SVM (poly, 5) 91.1% 91.1% 96.4% 96.4%
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Figure C.2: Efficiency at significance level of 10% for the CM-RF-1NN applied
to the Salmonella microarray data in the online mode

occurring, all region predictions contain exactly one label, and this label is cor-

rect. The plot confirms purity of the Salmonella microarray data and allows

us to determine the number of strains required for producing correct predic-

tions in the online mode: ten strains contain enough information to make valid

correct predictions at the significance level of 10%.

C.2 Application of Confidence and Venn Ma-

chines to Proteomic Data of Salmonella

C.2.1 Proteomic Data of Salmonella

The aim of this study is to discriminate Salmonella vaccine strains from wild

type field strains. We analysed the set of 50 vaccine strains (Gallivac vaccine

strain) and 43 wild type strains. Both vaccine and wild type strains belong to

the same serotype S. Enteritidis.

Each strain was represented by three spots; each spot produced 3 spot repli-

cates. Therefore, there were 9 replicates per strain. Pre-processing described
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in Section 4.2.1 was applied to each replicate and resulted in representation of

each mass spectra as a vector of 25 features corresponding to the most common

peaks. The median was later taken for each feature across replicates of the

same strain.

C.2.2 Results

The proteomic data of Salmonella strains were processed by methods designed

for mass spectrometry data analysis in this thesis. Here we show the results

of application of logistic Venn machines (Section 4.3.2). Categorized confi-

dence machines based on linear rules (Section 4.3.1) were also applied, but the

accuracy we could achieve was low (65.6%).

The logistic Venn machines were applied with the taxonomy comprising

5 categories to avoid a small number of categories and a small number of

strains in each category. Before logistic Venn machine was launched, logarithm

transformation was applied to the data. Hence each object was represented

by a vector comprising the following features: intensities of the most frequent

peaks on the logarithmic scale and value ‘1’ for possible absolute term in

logistic regression model.

When applied in the leave-one-out mode, logistic Venn machines output

forced predictions with the accuracy of 79.6% whereas accuracy of its under-

lying algorithm, logistic regression, on the same data is 75.3%. In addition,

the logistic Venn machine complements each prediction with the interval of

probability that this prediction is correct. Several examples can be found in

Table C.5.

For each example, the table contains the true label y = ynew, and a Venn

prediction — the interval [P−
new, P+

new] of probability that y = 1. Label 1

corresponds to vaccine strains, label 0 to wild type strains. From Table C.5

one can see that logistic Venn machine outputs prediction intervals [0, 0.167]

and [0.944, 1] for probabilities that examples 1 and 45 are cases (y = 1). As

prediction intervals indicate, the correct labels for example 1 and 45 are 0

and 1, respectively. The table also includes direct predictions Pnew output

by logistic regression for each example. The table demonstrates that both
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Table C.5: Leave-one-out Venn predictions for the Salmonella mass spectrom-
etry data

No. True label Venn prediction Direct prediction

1 0 0–0.167 0.039
2 0 0.111–0.684 0.427
3 0 0–0.053 0.003
4 0 0.632–0.944 0.792
5 0 0.111–0.684 0.409
6 0 0.111–0.737 0.433
7 0 0.111–0.684 0.174
8 0 0.111–0.632 0.118
9 0 0–0.278 0.005
10 0 0.111–0.737 0.633
11 0 0–0.053 0.000
12 0 0–0.222 0.031
13 0 0–0.684 0.038
14 0 0–0.222 0.035
15 0 0–0.278 0.002

. . .
44 1 0.111–0.632 0.307
45 1 0.944–1 0.986
46 1 0.889–1 0.914
47 1 0.579–0.944 0.814
48 1 0.579–0.632 0.674
49 1 0.833–1 0.963
50 1 0.684–1 0.908
51 1 0.526–0.944 0.736
52 1 0.526–0.944 0.880
53 1 0.111–0.632 0.304
54 1 0.895–1 0.983
55 1 0.579–1 0.950
56 1 0.889–1 0.919
57 1 0.111–0.632 0.268
58 1 0.056–0.111 0.146

. . .

direct and Venn predictions can be correct or erroneous. For example, for wild

type strain 4 and vaccine strain 44, both direct and Venn predictions are not
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correct.

Now we will demonstrate implications of validity of logistic Venn machines.

We aim to show that true probabilities of label distribution are covered or

almost covered by the interval between lower Venn prediction and upper Venn

prediction. Since we do not know true probabilities of label distribution, we

compare empirical probabilities, that is, mean true labels, with mean direct

and Venn predictions.

Figure C.3 is a graphical representation of corresponding cumulative re-

sults and conforms with validity of Venn machine outputs. The horizontal

axis shows the number of observed examples. The vertical axis shows the

cumulative values of: (1) true labels ynew (a solid line); (2) lower and upper

Venn predictions P−
new, P+

new (two dot-dashed lines) and (3) cumulative direct

predictions Pnew (a dashed line). The examples are sorted according to direct

predictions.
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Figure C.3: Cumulative Venn and direct predictions output by the logistic
Venn machine applied to the Salmonella mass spectrometry data
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