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IM PA IRED  REFLEX  SENSITIVITY - CAUSE AND EFFECT

When a voluntarily contracting human muscle is stretched its surface 

reflex electromyographic response has both short-latency (M l) and long-latency 

(M2) components. The M l component occurs at a latency compatible with 

monosynaptic reflex activation. The long-latency component results from 

stimulation of skin and other subcutaneous receptors.

In the initial experiment, using the first dorsal interosseous muscle (FDI) 

of the hand, the reflex sensitivity in normal human subjects was studied by 

comparing the various components of the electromyographic response generated 

by briefly stretching the voluntarily contracting muscle in subjects of various 

ages. It was found that age-related changes occur in the reflex response of 

human subjects. Although it is already known that the reflex response in 

human muscle slows with age, the result of the experiment showed that the size 

of that reflex response becomes smaller. The evidence suggests an impaired 

reflex sensitivity in older people which could be reflected in other motor 

control systems within the body. A detailed investigation was then undertaken 

to discover the causes of this change.

Although the reflex response (M l) was found to alter with age the M2 

component did not. This would seem to rule out neuromuscular block (NMB). 

NMB as a cause of the change was investigated and was found not to occur in 

the paradigm employed in this investigation.

Possible changes in the mechanical properties of muscles and joints were 

looked for in a series of experiments using an accelerometer. No changes large 

enough to account for the reflex impairment could be found.

In a further series of experiments the effects of fatigue and the effects 

of training on the electrical response of the FDI were studied.

In a final series of experiments the changes with age, in the effects of 

coffee upon blood pressure were investigated.
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SUMMARY AND GEN ERA L IN TRO D U CTIO N

The nervous system, together with the endocrine system, provides the 

majority of the control functions for the human body. The nervous system 

comprises the brain and spinal cord (the central nervous system), and the 

sensory and motor nerve fibres that enter and leave the central nervous system 

or are completely outside it (the peripheral nervous system). Organisation of 

this system in human beings is enormously complex involving integration of 

both its central and peripheral components. There is therefore, the possibility 

of the existence of a general condition in which the sensitivity of reflex 

responses is changed. The work described in this thesis is largely concerned 

with the effects of the ageing process on reflexes and their function in the 

human. The experimental work in this thesis is primarily about a simple reflex, 

the stretch or myotatic reflex.

A reflex is an involuntary response to a specific stimulus. When a muscle 

is stretched, the elongation causes excitation of muscle spindle primary endings. 

This excitation is conducted to the spinal cord via afferent fibres and results in 

an increased motor discharge which produces reflex contraction of the muscle.

The electrical response of a muscle to stretch has several components 

representing several distinct groups of action potentials. The initial component. 

M l, is now generally accepted as being the spinal stretch reflex since its latency 

is compatible with the monosynaptic activation of alpha motor efferents by 

group la afferents. The second component, M2, has a longer latency and it is 

likely to be due to activation of skin afferents.

In human subjects, examination of the amplified, rectified and summed 

electrical records from the first dorsal interosseous muscle of the hand reveals 

age differences. The stretch reflex. M l, is smaller, and has a higher mechanical 

threshold in older people, whilst the skin response, M2, is not impaired with age.
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Experiments were conducted to investigate the cause of these changes in 

the reflex response with age. To discover whether the changes lay in the reflex 

centre or in the muscle receptors, electrical stimulation of the muscle nerve was 

employed. The ulnar nerve was electrically stimulated at the wrist and the 

electromyographic response recorded in the biceps muscle. In this way the 

primary afferents were stimulated just as they would be if the muscle spindles of 

the FDI were stretched by a prod to the index finger. Stimulating the la 

afferents, as well as producing a reflex response in the FDI electrically, produces 

a reflex response in the biceps. The theory behind this experiment is that if 

electrical stimulation produces changes in the M l component with increasing age, 

in the same way that the mechanical stimulation of the muscle spindles had 

done, it would indicate that the change does not lie in the muscle receptors. 

Alternatively, if the M l component in the biceps muscle showed no alteration 

with increasing age the result would lend support to the idea that the changes 

with age were occurring peripherally.

Possible changes in the mechanical properties of muscles and joints were 

looked for in a series of experiments using an accelerometer. No changes in the 

mechanical response associated with age that were large enough to account for 

the reflex impairment could be found.

Nerve conduction was also studied and appears to play no part in the 

change observed with age.

In experiments where the muscle was fatigued by a strong voluntary 

contraction, the stretch reflex was abolished for up to one minute; this 

impairment did not appear to depend upon the age of the subject. 

Neuromuscular block as a cause of the change was investigated and was found 

not to occur in the paradigm employed in this investigation. However, 

neuromuscular block was found to occur in single muscle fibres in the one
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minute immediately following a strong fatiguing contraction. The block lasted 

for up to one minute.

It is possible that the effects of age on reflexes (described above) could be 

due to a negative "training-effect" (disuse atrophy). In other words old people 

use their muscles less and in consequence the reflex size is diminished.

Accordingly in another series of experiments, the effect of training on the 

electrical response of the FDI was looked at. Statistically significant changes 

occurred in the M l and M2 components of the stretch reflex; both increased in 

amplitude during the training period.

The evidence suggests an impaired reflex sensitivity in older people which 

is progressive. If other control systems in the body show a similar impairment 

with age, various disease processes such as essential hypertension, hypothermia 

and respiratory failure could stem from the abnormality.

Several reflex adjustments are known to make physiological compensations 

in the circulatory system when caffeine is administered. If the foregoing 

assumptions about reflex impairment have any validity, it might be predicted 

that the response to ingestion of caffeine (in the form of coffee or tea) would 

be abnormal in older subjects. Therefore, the effects of coffee on blood 

pressure were compared in young and old subjects. In a significant number of 

the older subjects, coffee caused a highly significant rise in blood pressure 

which lasted for several hours after the intake of caffeine.
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H ISTO RICA L IN TRO D U CTIO N

The functional activity of muscle was one of the earliest branches of 

physiology to be investigated. Aristotle, who lived in 384-322 B.C., incorporated 

in his writings the beliefs of the Greeks concerning the functions of the body.

It is clear that the ancients, especially Aristotle, took shortening for granted 

and considered the geometrical relations of muscles and joints. But it was 

Galen (131-201 A.D.), a young Asiatic Greek who settled in Rome, who is 

considered to be the founder of experimental physiology. In the history of 

biology he was the first to look to experiment for an answer to questions 

confronting him. He put forward the theory, which gave expression to ideas 

then current, that the nervous system controlled muscle through the passage of 

fluid ("animal spirits") down the nerve trunks.

The work and writings of the philosopher Rene Descartes (1596-1650), 

show that he dimly grasped the concept of reflex action - but did not recognise 

the significance of his ideas - as the following extract from his writings shows:

"The animal spirits resemble a very 
subtle fluid, or rather a very pure and lively 
flame, and are continually generated by the 
heart, and ascend to the brain as a sort of 
reservoir. Hence they pass into the nerves 
and are distributed to the muscles, causing 
contraction, or relaxation, according to their 
quantity.

In proportion as the animal spirits enter 
the cavities of the brain, they pass thence 
into the pores of its substance, and from 
these pores into the nerves; where according 
as they enter, or even only tend to enter, 
more or less, into this or that nerve, they 
have the power of changing the shape of the 
muscles into which the nerves are inserted 
and by this means making all the limbs 
move."
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However, Descartes concept of reflex action was an assumption 

unaccompanied by any experimental justification. Throughout the middle ages 

and in the seventeenth and eighteenth centuries the theory of animal spirits 

formed the basis of all experimentation. There were, of course, those who 

opposed this theory, Francis Glisson (1597-1677) being the first. As a result of 

his experiments he reasoned that animal spirits could not be the immediate 

cause of movement since the volume occupied by muscle during contraction did 

not increase but actually seemed to diminish. No one heeded his experiments 

(Fulton, 1930).

The concept of reflex action formed the beginning of the modern 

interpretation. Some of the first experiments were made in about 1730 by 

Hales & Stuart who found that decapitated frogs lost the flexion reflex if the 

spinal cord was destroyed, a result which strongly suggested that the nervous 

pathway ran via the spinal cord. But it was Robert Whytt (1714-1766), a 

neurologist from Edinburgh, in his remarkable book, "An essay on the vital and 

other involuntary motions of animals", who, with adequate experimental 

justification for his conclusions, established that the spinal cord is essential for 

reflex action and described the pupillary response to light - still known as 

Whytt’s reflex. The book indicates that he also grasped fully the mechanism 

and significance of reflex action.

In 1791 Aloysio L. Galvani (1737-1798) presented his theory of animal 

electricity and the idea of animal spirits gradually lost favour in scientific 

circles. The classical "nerve fluid" was, in fact, none other than electricity.

The work of Georgius Prochaska (1749-1820), an anatomist of Vienna, 

attempted a more precise allocation of the elements of a reflex to known 

structures in the nervous system. In the 1780’s he introduced the concept of a 

"sensorium commune" - that region of the central nervous system which
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"reflects" to the motor nerves the sensory impressions received by the brain. He 

made no suggestion in his writings of sensory or motor roots, but sensory and 

motor fibres are implicit. He had generated the concept but had no significant 

experimental data.

Back in Edinburgh in the School of Anatomy, Alexander Walker (1779- 

1852) deserves the credit for having insisted, prior to Bell and Magendie, on the 

separate functions of the posterior and anterior roots of spinal nerves. But, 

having based his conclusions purely on anatomy, he thought that posterior roots 

were concerned with motor functions and anterior roots sensory. He published 

a paper in 1809.

The chief credit for elucidating the function of the posterior as well as 

anterior roots belongs to Francois Magendie (1783-1855), a pioneer experimental 

physiologist in France. He began a new era in physiology. He established the 

fact that the functions of the anterior spinal roots subserved motion, and the 

posterior belong to sensation.

Sir Charles Bell (1774-1842) was yet another anatomist from Edinburgh. 

His claim to the discovery of the functions of the anterior and posterior roots 

of the spinal cord have been the subject of prolonged controversy. Privately he 

printed a paper in 1811. From studying this it is clear that Bell’s claim rests on 

his having demonstrated the motor functions of the posterior roots; he did 

prove incontestably that the function of nerves differ. In 1821 the concept was 

published. The paper was reprinted several times - Bell changed the original 

text several times after Magendie’s discovery but kept the 1821 date.

It was Herbert Mayo (1796-1852), a physiologist at the Middlesex 

Hospital in London, who took the next step after Bell and Magendie towards 

clarifying the problem of reflex action. In 1822, in the first part of his 

Anatomical and Physiological commentaries, he described the function of the 

nerves of the face, ascribing motor power to what is termed the V llth and
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common sensibility to the Vth. This started an unfortunate controversy with 

Bell who claimed, as in the controversy with Magendie, that he had made the 

discovery and had presented it in the 1821 paper. But he had not.

Marshall-Hall (1790-1857), a neurologist, read a paper to the Royal 

Society in 1833. In it he introduced the concept that the spinal cord is a chain 

of segments whose functional units are separate reflex arcs, and although he 

had had several other papers printed shortly before this, he was denounced in 

this country as a propagator of absurd and idle theories, despite the enthusiastic 

reception of this work abroad.

In any study of the history of reflexes there are other major advances in 

the understanding of nervous tissue which should be mentioned. So far 

nothing has been said about transmision of excitation. Modern understanding 

of the nerve impulse began with Hermann von Helmholtz (1821-1894). In 1850 

he demonstrated that the influence, whatever it was, that passed down the 

nerve from the point of stimulation to the muscle and made it contract, 

travelled at a definite velocity which he measured. About the same time Emil 

Du Bois-Reymond (1818-1896) and others were investigating the electrical 

phenomena of nerve and muscle which led eventually to the electrical theory of 

nerve conduction - the resting  po ten tia l and the action po ten tia l. A little later 

in 1871 Henry Pickering Bowditch (1840-1911) published his paper in which the 

"all or none" principle of contraction of cardiac muscle was for the first time 

enunciated.

Sir Charles Scott Sherrington - Waynflete Professor of Physiology at 

Oxford - began the modern analysis of reflex physiology in the late nineteenth 

century (Sherrington, 1906). He developed an experimental preparation using 

cats whose brain stems had been transected surgically at the level of the 

midbrain between the superior and inferior colliculi. Later, in examining the 

reflexes in the hind limb of a decerebrate cat Sherrington, in collaboration with
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Edward Liddell, found that when they attempted to force the rigidly extended 

limb passively into a flexed position, the limb resisted the force by active 

muscular contraction. They called this the s tre tch  reflex or m yotatic reflex. 

This was in 1924 (Liddell & Sherrington, 1924). By 1925 Sherrington and 

Liddell had carefully characterized the stretch reflex in the knee extensor 

(quadriceps) and had concluded that the stretch reflex enhances the springlike 

properties of muscle and offers a graded resistance to change in length 

(Sherrington, 1931). Stretch reflexes are seen in both flexor and extensor 

muscles, but they are most highly developed in the latter. It is the change in 

length of the muscle that excites the stretch reflex and not the change in 

tension.

About this time the vacuum tube entered physiology and with it the 

possibility of amplifying small electrical events without distortion and delay. 

The principle of valve amplification and the use of an inertialess recording 

system (cathode ray oscillograph) was introduced by Herbert S. Gasser & Joseph 

Erlanger in 1922. Erlanger and Gasser together with their co-workers in St. 

Louis solved the problem of conduction velocity; conduction velocity was found 

to be proportional to fibre diameter. In investigating the properties of nerve 

fibres in the 1920’s, Erlanger and Gasser were the first to look at the different 

sizes of fibre. They categorized the myelinated fibres of peripheral nerve, 

calling them the A group. The A group of fibres was subdivided into alpha, 

beta, gamma and delta fibres according to diameter. They also allocated 

function to the various waves in their action current records.

The discovery of the stretch reflex, when correctly conceptualised by 

Sherrington, has served as a firm stepping stone in experimental 

neurophysiology for the rest of the twentieth century. Nonetheless there is 

some evidence that Sherrington himself thought that his measurement, charting 

and analysis of spinal inhibition , and the innate pattern of reciprocal
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innervation  were the most important results that he ever obtained. The 

principle of reciprocal innervation means in the first instance merely that such 

a mechanism exists; it had, in fact, been observed before Sherrington made 

something out of it by systematic analysis. Sherrington investigated the 

conditions under which the mechanism is operative, to what extent it can be 

overridden by central control, and whether it is symmetrical with respect to 

flexors and extensors. Sherrington’s results on inhibition were briefly 

summarized by him in 1932:

"Inhibition like excitation can be induced 
in a ‘resting’ centre. The only test we have 
for inhibition is excitation. Existence of an 
excited state is not a prerequisite for the 
production of inhibition; inhibition can exist 
apart from excitation no less than, when
called forth against an excitation already in
progress, it can suppress or moderate it. The 
centripetal volley which excites a ‘centre’ 
finds, if preceded by an inhibitory volley, 
the centre so treated is already irresponsive 
or partly so."

It was Sherrington who, round the turn of the century, found out where 

the afferents came from that gave typical reflex patterns. A reflex, after all 

had to begin somewhere peripherally in a sense organ. Back in 1865, Kuhne 

had discovered m uscle spindles and had speculated that they were some form of 

contractile element in skeletal muscle,but it was Sherrington who proved that

the mammalian muscle spindle was a sense organ, and in the same experiments

he also showed that the Golgi tendon organs were sensory endings.

For Sherrington it was essential to know how cells were interconnected and 

intuitively he headed straight for the contact or neurone theory since there was 

one good argument in favour of this notion: W aller’s fine discovery (Wallerian 

degeneration) which had shown that degenerations generally stopped short of 

the next neurone. It was the work of Ramon y Cajal (1852-1934) that
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ultimately provided him with the facts that he needed. In 1949 Sherrington 

wrote of Cajal;

"He solved at a stroke the great question 
of the direction of the nerve-currents in 
their travel through brain and spinal cord.
He showed, for instance, that each nerve- 
path is always a line of one-way traffic only, 
and that the direction of that traffic is at all
times irreversibly the same The nerve-
circuits are valved, he said, and was able to 
point out where the valves lie, namely, where 
one nerve cell meets the next one."

With the discovery of the actual contact points by Hans Held & Leopold 

Auerbach (the second) - Held published his work in 1897 - Sherrington 

incorporated the end-feet, or bouton term inaux, in his ideas. In fact, in that

very year (1897) and still unaware of Held’s work, Sherrington, contributing to

the new edition of Foster’s textbook, had written:

"So far as our present knowledge goes, we 
are led to think that the tip of a twig of the 
arborescence is not continuous with but 
merely in contact with the substance of the 
dendrite or cell-body on which it impinges.
Such a special connexion of one nerve cell 
with another might be called a synapsis."

Today Sherrington’s "synapsis" is, of course, the synaptic knob or synapse 

from the Greek word meaning contact.

By the early twentieth century it was definitely understood that the 

nervous message was likely to be an action-current travelling along the nerve at 

a finite velocity and setting up some intermediate process when it arrived via 

afferent fibres through dorsal roots into the spinal cord. On the ventral or 

efferent side it would again resume the character of an action-current and 

travel out to effector organs or muscles.
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TH E M OTOR U N IT AND M OTOR CONTROL

At this stage it is necessary to introduce some terms commonly used in 

this field. Muscles and joints contain a variety of receptors. Among these 

different receptors, two have been most thoroughly studied and have important 

and specific actions on motor neurones. These are the m uscle spindles and the 

Golgi tendon organs. Although both of these receptors discharge when the 

muscle is stretched, differences in their anatomical arrangement within the 

muscle are reflected in differences in the information they convey to the 

central nervous system. Muscle spindles, because they are arranged in parallel 

with the muscle fibres, provide information about the length of the muscle. 

Golgi tendon organs because they are arranged in series with the muscle fibres, 

inform the nervous system of the tension exerted by the muscle on its tendinous 

insertion to the bone (Figure 1.1).

M uscle spindles

Mammalian muscle spindles are receptors that are distributed throughout 

the fleshy parts of skeletal muscle. Each spindle, which consists of an 

encapsulated group of specialized muscle fibres, is tapered at each end and 

expanded at its centre in a fluid-filled capsule (Matthews, 1972).
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FIGURE 1.1 PHYSIOLOGICAL SET-UP OF MUSCLE SPINDLES
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Within this capsule the muscular elements are entwined by the terminal 

branches of afferent fibres. The small muscle fibres within the spindle - 

typically around three to ten in number - are called in trafusa l fib res; they are 

innervated by gamma motor neurones. They are pointed at their ends and are 

attached to the sheaths of the surrounding extrafusal skeletal muscle fibres, 

which are innervated by alpha motor neurones. The central portion does not 

contract. The physiological organization of the muscle spindle is illustrated in 

Figure 1.2.

Muscle spindles contain two types of intrafusal muscle fibres called 

nuclear bag fib res  and nuclear chain fib res. The bag fibres have nuclei 

clustered in twos or threes; the chain fibres have nuclei in single file and are 

shorter and more slender than the bag fibres. The bag and chain fibres also 

differ in the kind of contraction they exhibit: bag fibres produce slow 

contractions, whereas chain fibres produce fast (or twitch) contractions.

There are two types of afferent terminals in muscle spindles: primary 

and secondary. Prim ary endings (annulospiral) innervate every single intrafusal 

fibre within a spindle irrespective of whether they are nuclear bag or nuclear 

chain fibres. This type of sensory ending gives rise to large Group la afferent 

nerve fibres. The secondary endings (flower spray) lie almost exclusively on 

nuclear chain fibres and give rise to smaller Group II afferent nerve fibres.

Now, although Sherrington showed that the muscle spindle was a sensory 

receptor, it was not until 1930-33 with the work of B.H.C. Matthews, that its 

functional significance as a stretch receptor was realised. Matthews (1933) 

found that there were two sensory routes. One from the muscle spindle and 

another from the tendon. In the tendon the sensory nerve breaks down into a 

series of branches forming the structure known as the Golgi tendon organ.
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Golgi tendon organ

The Golgi tendon organ is a slender capsule approximately 1mm long and 

0.1mm in diameter. Each organ is in series with about 15-20 extrafusal skeletal 

muscle fibres that enter the capsule through a tight-fitting, funnel-like collar. 

The muscle fibres terminate in musculo-tendinous junctions after entering the 

capsule and give rise to collagen fibre bundles that become braided and run the 

length of the capsule. An afferent fibre enters the capsule in the middle and 

branches many times becoming twisted within the collagen fibre bundles. They 

respond to a rise of tension whether this is due to contraction of the muscle 

fibres or to externally applied stretch.

B.H.C. Matthews, in the classic series of experiments at Cambridge 

University in 1933, first analyzed the relationship between muscle spindles and 

Golgi tendon organs. His results showed that passive stretching of the muscle 

distorts and thereby activates both the tendon organ and the muscle spindle 

receptors. Contraction further stretches the tendon organ. However, active 

contraction of the extrafusal muscle fibres makes the intrafusal fibres go slack, 

unloading the spindle so that it is no longer stretched. The discharge of tendon 

organs is increased and the discharge of spindle organs is decreased during 

muscle contraction (Matthews, P.B.C., 1972).

Reciprocal innervation

The work on reflexes led Liddell & Sherrington (1924) to the discovery 

of a key principle of reflex organization; reciprocal innervation. It revealed to 

Sherrington the large part played by inhibitory processes in the nervous system 

and that it was a common feature of movement. The principle, stated very 

simply, was that when a limb moves, the muscles in it that would oppose the 

movement are caused to relax. This can be seen clearly in the flexion reflex 

elicited in the leg of a decerebrate cat. The rigid extensor muscles of the knee
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immediately relax; this occurs even if the flexors of the knee are detached from 

their insertion so that the knee is not moved, or even if the motor nerves to the 

flexors are cut so that they do not contract at all (Lippold & Winton, 1979).

The inhibition is produced by the activation of interneurones which 

inhibit the antagonist motoneurones. This inhibition of antagonist motor 

neurones facilitates shortening of synergistic muscles during the stretch reflex.

In addition to being present at the muscles of a joint this inhibition also 

arises between the two halves of the spinal cord. With reciprocal inhibition, an 

incoming nociceptive stimulus can excite flexor motor neurones and, while 

inhibiting the ipsilateral neurones of the antagonistic muscles, also can excite 

the contralateral motor neurones of extensor muscles (crossed extensor reflex).

The mechanism of reciprocal innervation appears to be in the spinal grey 

matter. Movements elicited by electrical stimulation of the motor cortex also 

exhibit reciprocal innervation (Gottlieb, Myklebust, Penn & Agarwal, 1982). 

They gave their support to the expansion of the traditional concept of spinal 

reciprocal innervation to include both inhibitory and excitatory connections. 

Other workers have, in recent years, continued to expand our knowledge of this 

mechanism not only in animals but also in humans.

Tanaka (1980) and Kagamihara & Tanaka (1985) showed that the 

excitability of the la inhibitory pathway from the ankle flexors to the extensors 

was directly proportional to the voluntary dorsiflexion of the foot. In 1981 and 

1984 Day, Marsden, Obeso & Rothwell illustrated the peripheral and central 

components of the reciprocal inhibition between the extensor and flexor muscles 

in the human forearm.

In 1984 Day et al., presented work which indicated that there was a 

decline in transmission in the inhibitory pathway from the extensor muscle 

Group I afférents as voluntary flexor activity increased. Also in 1984, Shindo 

et al., showed that there is a close parallelism between the excitability of
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agonist motor neurones and the exicitability of the la inhibitory pathway to the 

antagonist.

Although the majority of the inhibition arises from excitation of la 

inhibitory interneurones in the spinal cord, there is modulation of intemeuronal 

activity from supraspinal centres and peripheral input from agonist muscle 

spindle la afferents. Supraspinal command can excite agonist muscles whilst 

inhibiting their antagonists centrally via the la inhibitory interneurone. In 

1985, Wetts, Kalaska & Smith and a separate paper by Smith in the same year 

proposed that the supraspinal control of reciprocal inhibition comprises a 

contribution from the cerebellum, which could exert an important function in 

switching excitation and inhibition between antagonist muscles.

It is important to note, however, that not all types of muscular action 

employ reciprocal innervation. It is very clear that flexors and extensors can 

readily be made to contract together by voluntary effort, and the same thing 

occurs automatically to fix the joints in standing. In this instance the limbs are 

stationary; there is reciprocal innervation only when movement occurs.

Renshaw inhibition

Another important inhibitory spinal interneurone is the Renshaw cell, 

named after its discoverer, Birdsey Renshaw. In 1941 he found that an 

antidromic volley excites a burst of action potentials of extremely high 

frequency, up to 1500 per second, in interneurones - now known as Renshaw 

cells - lying in the ventral horn of grey matter.

This neurone receives direct excitation from collateral branches of spinal 

motor neurones, and in turn inhibits many motor neurones, including the one 

that gave rise to its input. This process is called recu rren t inhibition . It is 

believed that normal, orthdromic, discharge of motor neurones activates the 

Renshaw cells via the axon collaterals in just the same way as do antidromic
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impulses. Renshaw inhibition can be thought of as a local negative feedback 

loop onto synergistic motor neurones. It tends to curtail the motor output from 

a particular collection of motor neurones called the motor pool. It may also 

highlight the output of motor neurones that are strongly activated, because 

those motor neurones exert strong feedback inhibition to other neighbouring 

motor neurones, suppressing their output. Although the strongly activated 

motor neurones themselves also receive recurrent inhibition, their output, 

though diminished, can still be expressed because they are highly activated. 

This shows that the motor system utilizes the principle of lateral inhibition to 

focus, or sharpen, its signals. The Renshaw cell can limit the duration and 

magnitude of a la afferent-mediated reflex response, since la afferent 

activation of a homonymous motor neurone will in turn produce Renshaw 

inhibition of that motor neurone and, at the same time, disinhibition of the 

antagonist motor neurone by inhibiting the la inhibitory interneurone. It is 

widely accepted that Renshaw inhibition is part of the mechanism ensuring that 

motor neurone firing is asynchronous (Hammond, Merton & Sutton, 1956).

Although recurrent inhibition via Renshaw cells is widespread, it is not 

universal. In cats, the discharge from the recurrent collaterals of the larger 

phasic motor neurones (those recruited last) to the gastrocnemius-soleus muscle 

has been proposed as the major source of excitation of Renshaw cells (Wand & 

Pompeiano 1979). And Datta & Stephens in 1980 found that human FDI 

motor neurones innervating fast twitch muscle units (those 

ordinarily recruited only in the largest reflex responses)

directed more recurrent axon collaterals towards the Renshaw cell 

area than motor neurones innervating slow twitch units (recruited first).

In 1980 Ellaway & Murphy wrote that Renshaw cells, in addition to 

mediating recurrent inhibition from motor neurone axon collaterals to alpha
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motor neurones and la inhibitory intemeurones, mediated recurrent inhibition 

to other Renshaw cells and gamma motor neurones to muscle spindles.

Presynaptic inhibition

In 1981 lies & Roberts found vibration of the Achilles tendon or belly 

of the soleus in normal subjects depressed soleus monosynaptic reflexes. Back 

in 1973 Delwaide said that this effect is usually attributed to presynaptic 

inhibition of la afferents by those afferents activated by vibration. He also 

found that presynaptic inhibition of soleus reflexes is reduced in some subjects 

with spasticity. This was also found by lies & Roberts, 1983.

In 1984 Morin, Pierrot-Deseilligny & Hultborn attributed inhibition of 

soleus la fibres to vibration of the tendon of tibialis anterior. lies & Roberts 

(1983) suggested that there may be separate pathways in the spinal cord 

controlling the level of inhibition and its modulation during movement. They 

proposed a type of inhibition which acts upstream of the motor neurone by 

reducing the amount of transmitter released from the excitory synaptic ending 

by each impulse.

In this type of inhibition, terminals of the inhibitory neurone form 

synaptic connections on to presynaptic terminals of other neurones. This type 

of inhibition is more selective than postsynaptic inhibition which is produced 

by a membrane hyperpolarization. The result is to reduce the effectiveness of 

all excitory synaptic input to that neurone.

In presynaptic inhibition, the effectiveness of a given presynaptic 

neurone can be reduced while leaving other inputs unaffected. Similarly, 

presynaptic inhibition could act selectively at certain terminals of a particular 

presynaptic neurone.

The time sequence needed for this type of inhibition differs from that 

of postsynaptic inhibition. Although it requires many milliseconds to develop.
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once it does occur, it can last for as long as half a second or perhaps even 

longer. Postsynaptic inhibition, at least of the anterior motor neurones, lasts 

for anything up to 60ms.

Presynaptic inhibition occurs especially at the more peripheral synapses 

of the sensory pathways. Shortly after a strong sensory signal enters the 

sensory pathways, negative feedback automatically causes increasing 

presynaptic inhibition. This, in turn, reduces the degree of transmission of the 

sensory signals. Therefore, the greater the intensity of the input signal, the 

greater also becomes the negative feedback inhibition. In this way presynaptic 

inhibition acts as a sensitivity control on the sensory input. It also sharpens the 

boundaries between stimulated and non stimulated areas of the sensory pathway 

because it prevents excessive spread of the sensory signals to the unexcited 

neurones - a process called "contrast enhancement".
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A REVIEW OF EMG COMPONENTS M l AND M2

From studies of reflex organization a great deal of knowledge has been 

gained about human motor control. The stretch reflex in particular has been 

the subject of continuing study, probably because of the ease with which 

muscles can be stretched and their activity recorded.

A rapid stretch of a voluntarily contracting human muscle results in a 

reflex contraction which evokes an increase in electromyographic (EMG) 

activity. Hammond (1955) was the first to study the stretch reflex in intact 

human muscles. While his subject maintained a voluntary flexion effort, he 

recorded the involuntary activity in biceps following a sudden stretch of the 

muscle; he found the EMG records had a diphasic wave which occurred about 

18ms after the stretch, a delay which accorded well with the time required for 

transmission round the reflex arc. Following this wave there was a ‘silent 

period’ (Merton, 1951) which was interrupted abruptly if the subject was 

instructed to ‘let go’ when the muscle was stretched. During the next few years 

further work (Hammond, 1956; Hammond, Merton & Sutton, 1956 and 

Hammond, 1960) expanded upon the first paper and their findings confirmed 

that the sudden stretch of upper limb muscles in humans resulted in two 

distinct periods of increased EMG activity that occurred at a short- and long- 

latency relative to the onset of muscle stretch.

It is now well established that the electromyographic response to the 

sudden stretch of a voluntarily contracting muscle in a human subject usually 

has two reflex components: one which has a latency consistent with it being the 

segmental, monosynaptic tendon jerk (M l) and a later, commonly larger, one 

(M2) occurring at a longer latency. (Hammond, 1956, 1960; Melvill Jones & Watt, 

1971; Tatton, Forner, Gerstein, Chambers & Liu, 1975; Allum, 1975; Evarts & 

Granit, 1976; Marsden, Merton & Morton, 1976b, 1977b; lies, 1977 and Evarts & 

Vaughn, 1978).
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It is generally thought that the short-latency component (M l) of the 

stretch reflex response is mediated by a spinal pathway since its latency is 

compatible with monosynaptic activation of fast afferents (Magladery et al., 

1951).

But what is the physiological basis of the long-latency (M2) component? 

This is proving difficult to establish, and has given rise to several hypotheses;

1. TRANSCORTICAL

2. RESONANCE

3 SPINDLE SECONDARY AFFERENT 

4. LARGE CUTANEOUS AFFERENT

More detailed evidence for each hypothesis will now be given in 

individually headed sections, followed by a general discussion of the current 

position, based on these findings.
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1. TRANSCORTICAL LOOP HYPOTHESIS

Hammond (1956, 1960) was the first to draw attention to the ability of 

normal subjects to enhance or suppress the longer latency response (M2) 

according to their preformed intention to ‘resist’ or ‘let go’ upon presentation of 

an unexpected stretch. This ability has now been demonstrated in several 

different human muscles, and in different experimental situations (Newsom 

Davies & Sears, 1970; Evarts & Granit, 1976; Iles, 1977 and Evarts & Vaughn 

1978).

Now, as Hammond et al., (1956) had shown that the long latency response 

could be largely negated by a voluntary intention not to oppose the impending 

stretch, it was thought possible that if impulses could be relayed to the 

cerebellum and/or Deiter’s nucleus (Eccles, 1966) it might account for this 

capability of modifying the stretch reflex response according to circumstances.

In 1971 Melvill Jones & Watt using the human gastrocnemius, like Hammond et 

al., in 1956, also concluded that the late response, like the early one, was a 

reflex response since its latency was shorter - by about 25% - than the fastest 

voluntary response.

It was Eccles, in 1966, who interpreted the findings of other earlier 

workers as demonstrating the presence of a ‘long-loop’ reflex. He suggested 

that this loop originated in group la muscle afferents; that it travelled up to the 

cerebellum and back down the spinal cord, exciting or inhibiting motor 

neurones bilaterally at all levels. His proposal was supported by Yap (1967), 

Taborikova & Sax (1969) and Starr et al., (1981).

Phillips (1969) was the first to point out the possibility of a transcortical 

stretch reflex loop via pyramidal tract neurones (PTN) by way of group la 

fibres, in his experiments with baboons as this extract from his 1968 Ferrier 

Lecture indicates:
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"It remains to consider the 
possibility that in the case of the 
primate’s hand this segmental 
circuit...has been overlaid in the 
course of evolution by a transcortical 
circuit....".

Indeed, he found that both group la and II muscle afferents were 

capable of activating PTN’s after some 20ms (Phillips et al., 1971; Wiesendanger, 

1973 and Lucier et al., 1975). This is in agreement with the observation that, 

by applying sudden displacements to a handle which a monkey had learned to 

hold in a given position (Evarts, 1973), or to move from target to target (Conrad 

et al., 1975), precentral cortical neurones (some identified as PT cells) could be 

found discharging at a minimum latency of 20-40ms. In 1973 Evarts suggested 

that these PT cells may play a role in mediating the EMG activity which began 

at 30-40ms in the stretched muscles.

Supporting Evarts’ work, Marsden et al., (1973 and 1976a) on their own 

calculations - based on the conduction of afferent information from the hand to 

the cortex, as indicated by somatosensory evoked potentials, and from the 

cortex back to the forearm muscles, as taken from the results of direct cortical 

stimulation in man - thought that there did appear to be time for a supraspinal 

response (Marsden et al., 1982 and 1983). It should be noted that Marsden et 

al., in 1972 thought that a transcortical stretch reflex was "very much on the 

cards" although "jumping ahead of the evidence".

Evidence which suggested the possibility of a transcortical stretch reflex 

loop with input from both group la and group II muscle afferents - and which 

reinforced Evarts work - came from Rosen & Asanuma, (1972) and from Fetz et 

al., (1976).

Newsom Davis & Sears (1970) presented another view of the long-latency 

response. They envisaged, as a result of their experimental work with 

expiratory intercostal muscles, a process of neural ‘evaluation’ going on in the
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time between presentation of a load and the reflex response to it. Their 

conclusions were like those described by Hammond and others in which the 

response recorded could be enhanced or reduced according to the instruction 

given to the subject prior to the loading. The long latency of the reflex was 

seen as a delay permitting central evaluation of the load and resulting in a 

reflex response which was appropriate to intent (that is matched to the 

succeeding voluntary response).

This hypothesis could be taken to suggest that the long latency of the 

reflex could be modified, in a period shorter than a voluntary reaction time, 

according to a process of evaluation which commences on presentation of the 

load; a mechanism which ‘conjoined load perception with servo action’ (Sears,

1974). If correct, this possibility would significantly blur the distinctions 

presently recognized between ‘voluntary’ and ‘reflex’ actions.

However, Colebatch et al., (1979) did not give their support to this idea. 

They said that Newsom Davis & Sears (1970) instructed subjects prior to a 

perturbation that they should ‘resist’ or ‘let go’, ‘when they perceived the load’. 

But, they state, that in neither Newsom Davis & Sears’ experiments, nor in 

theirs, was it necessary for the perturbations to be perceived before the long- 

latency responses could be modified. Colebatch et al., concluded that by pre­

setting excitability levels within the long-latency pathway according to 

instruction and intent, responses to a perturbation could be pre-set, whether or 

not perception of those perturbations occurs.

Support for this idea came from Tanji & Evarts (1976) and Evarts & 

Tanji (1974) in their work with monkeys; they revealed instruction-induced 

changes of neuronal activity during the period intervening between the 

instruction and the perturbation-triggered movement. Again they had the two 

dissociable components M l and M2; changes in the latter being dependent upon 

prior instruction.
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Newsom Davis & Sears (1970) pointed out that the latent period between 

perturbation and long-latency response allows ‘the subsequent phase of reflex 

action to be matched in sign and intensity to the voluntary movement occurring 

consequent on perception of the unexpected load’ (Sears, 1974).

Colebatch et al., (1979) found no evidence of such matching. They found 

that in a series of stretches in which simultaneous instructions were given, long- 

latency reflex responses frequently occurred without subsequent voluntary 

activity, and marked voluntary activity frequently occurred without prior long- 

latency reflex responses.

In 1973, Chan & Catchlove put forward evidence for a supra-spinal 

contribution to the M2 response to sustained stretch. Chan et al., (1979a and 

1979b) found, in their experiments with primates, strong evidence that their 

cortically mediated long-loop pathways probably did originate from muscle 

afferents (Phillips, 1969 and Wiesendanger, 1973).

Indirect evidence for a transcortical route for M2 is available from 

studies involving monkeys or human subjects with lesions of structures along 

the transcortical route. In 1975 Tatton et al., in their work with monkeys, 

found that unilateral postcentral cortical lesions abolished M2 in the 

contralateral limb for up to ten months after the lesion while M l was 

unaffected. Since, they argued, the mechanisms for control of distal upper limb 

musculature appear to be very similar in man and higher primates, it should be 

possible to use the results of primate studies as a basis for investigating the 

manner in which motor control mechanisms are altered in patients with 

neurological disorder. And this they did, and found homology in man and 

monkeys (Tatton etal.,  1975). In another paper of the same year (Lee & Tatton,

1975), they put forward the results of an investigation into the responses of a 

young woman with multiple sclerosis and this provided further evidence for the 

supraspinal hypothesis (see also Lee, Murphy & Tatton, 1983).
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It was in 1972 that Marsden et al., first wondered whether M2 employed 

a pathway via the sensorimotor cortex and their later work (1976a, 1977a, 

1977b) provided a variety of indirect evidence to support this suggestion.

Marsden et al., (1976b) reported that M2 had longer latencies in muscles 

of the lower limb than in those of the upper limb, and pointed out that this was 

consistent with the idea that the afferent signal elicited by stretch of the 

muscle traversed a supraspinal loop before reactivating the muscle. This 

observation that the latency of M2 increased in muscles located at increasing 

distances from the brain was backed up by the later work of Chan et o/.,(1979a 

and 1979b).

On the other hand, it has been shown that M2 responses similar to those 

seen in healthy subjects can also be obtained in spinal cats and monkeys (Ghez 

& Shinoda, 1978 and Tracey, Walmsley & Brinkman, 1980).

In 1978 Hendrie & Lee found that vibration, a potent activator of 

muscle spindle primary endings, suppressed the M l response to angular 

displacements of the wrist in normal subjects, but not the M2 response to the 

stretch stimulus. They considered this supported the supraspinal theory. A 

short time later, in 1980, Agarwal & Gottlieb showed that vibration produces 

similar selective supression of the early component of reflexes in the lower 

extremity elicited by torque perturbations at the ankle.

The observation that the latency of M2 increased in muscles located at 

increasing distances from the brain (Chan et al., 1979a, 1979b and Marsden et 

al., 1976a) is consistent with the idea of a supraspinal loop.

Gottlieb & Agarwal (1979) found that the gain of M2 could be influenced by 

the nature of the instructions given to the subject, and agreed with earlier 

workers that supraspinal centers can alter the general level of segmental 

excitability. Their findings also showed that postural gain was not a factor; 

only when there was a deliberate contraction was there any significant change.
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In their work with Cebus monkeys, Miller & Brooks (1981) concluded

that the reflex EMG response to a perturbation could be produced in the

primate spinal cord and brainstem with facilitation by the sensorimotor cortex 

being possible.

More recently, during a variety of different manoeuvres using the 

human wrist flexors, parallel changes in cortical potentials and in the long- 

latency stretch reflexes were found (Abbruzzese, Berardelli, Rothwell, Day & 

Marsden, 1985).

Another group, working with subjects with spinal and central lesions, 

also provided supporting evidence using the leg muscles, triceps surae and 

tibialis anterior (Diener et al., 1985).

Also in 1985, Noth, Podoll & Friedemann provided more supporting

evidence in their experiments using the first dorsal interosseous and thenar 

muscles of the human hand.

Providing support for the spinal mediation of the stretch reflex, Angel & 

Weinrich (1986) found that the subject’s preparatory set produced no significant 

modulation of the reflex response in the FDI which improved the performance 

of an intended voluntary movement.
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2. RESONANCE HYPOTHESIS

According to their studies in man, Hagbarth et al., (1980a; 1980b; 1981 

and Eklund et al., 1982a and 1982b), a sudden joint displacement, and other 

types of brisk muscle perturbations, may give rise to successive peaks of 

afferent spindle discharges. They suggested that these resulted from mechanical 

oscillations initiated by the impact (Dominant oscillations were within the 30- 

50Hz range).

With initial background contraction in the stretched muscles, 

synchronous volleys of spindle discharges produce, via segmental reflex arcs, 

modulation of the EMG with the appearance of two or three EMG peaks 

separated by intervals of 20-30ms. They suggested that the segmented response 

could be due, at least in part, to rhythmical excitability changes in the motor 

neurone pool.

They also suggested that the relationship between mechanical 

oscillations and segmentation of the EMG response was backed up by the fact 

that variations in the interval between the first and second accelerometer 

deflexions (in ramp stretch as compared to tendon tap experiments) were 

accompanied by similar variations in the interval between the M l and M2 

peaks.

To test this hypothesis Darton et al., (1985) , using a brief mechanical 

stimulus to stretch the FDI, perf ormed two experiments; one in which the finger 

was free to oscillate after the stimulus and a second where it was not. Their 

findings showed that no consistent differences in the nature and timing of the 

M l and M2 responses resulted from the change in mode of stimulation. If M l 

and M2 were due to a damped train of mechanical oscillations within the 

muscle, fixation as opposed to free oscillation might have been expected to 

abolish or diminish M2. It did not.
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They found that the waveform recorded by the accelerometer could not 

usually be satisfactorily aligned with the EMG responses - their frequencies 

were different. Furthermore, they reported that the time intervals between the 

successive EMG peaks were dissimilar and thought it unlikely that the 

components M l, M2 and M3 that resulted from muscle stretch were due to 

oscillation in the muscle.

Nonetheless, since the hypothesis was first put forward by Hagbarth et 

aL, (1980a and 1980b) it has received support from various quarters. The latency 

measurements in the experiments of Eklund et al., (1982) indicated that the 

oscillation-induced modulation of the stretch reflex response was mediated by a 

spinal, probably mono-synaptic pathway.

The observations of Prochazka and Wand (1981) were also in accordance 

with the hypothesis. In their work with cat calf muscle they reported a 

grouping of the afferent discharges during the stretch phase, and a tendency 

for EMG responses to occur at latencies of about 10ms after the onset of each 

afferent burst. With a lower speed of stretching, the second afferent burst was 

delayed and a shift in latency was then noted for the second EMG burst; it was 

also delayed.
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3. GROUP II HYPOTHESIS

Matthews & Stein (1969) suggested that the la fibres did not provide the 

sole source of the autogenetic excitation elicited by muscle stretch. By 1973 

McGrath & Matthews were testing the hypothesis that the Group II fibres from 

the secondary endings of the muscle spindle provided an excitatory contribution 

to the tonic stretch reflex of the decerebrate cat. The findings then, and later, 

(Matthews, 1983a, 1983b, and 1984) supported such a hypothesis. The essential 

finding was that in contrast to the effect of stretch, vibration largely failed to 

elicit the long-latency response. Matthews reasoned that if vibration produced 

its action by la excitation, then the long-latency response to stretch must 

depend on something else. In addition the latency of M2 was about right if the 

conduction velocity of the group II afferents was about half that of t ^  la 

afferents. Of course, if the group II hypothesis is correct, there is not 

sufficient time available for it to have been mediated transcortically. 

Additional evidence to support this concept was provided by Stanley (1978), 

who investigated the early and late EMG responses from the intrinsic hand 

muscles following electrical stimulation of peripheral nerves. He concluded 

that M2 was mediated by slower conducting afferent pathways than M l, and 

suggested that Group II afferents might contribute to the M2 response.

However, it should be noted, two communications from Matthews in 1987 

(Matthews, 1987a and 1987b) in which he looked at the effects of cooling on 

long-latency reflex responses in the FDI, concluded that "it may contain 

components elicited by fast afferent fibres from both muscle and skin".

However, the original Matthews hypothesis has received support from 

Cody, Goodwin & Richardson (1986 and 1987a) in their stetch and vibration 

experiments with the human wrist flexor and flexor carpi radialis. They found 

that during ischaemic conduction block. M l stretch responses declined more 

rapidly and to a greater extent than did M2 reponses (see also Jaeger et al,.
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1982a and 1982b) and upon recovery from the block, M2 returned before M l. 

The results suggested that the M l and M2 responses used reflex afferents of 

different diameters, the large diameter fibres being affected by the block more 

and sooner than those of smaller diameter. They thought it possible that these 

smaller diameter afferents were Group II muscle spindle afferents, the slower 

conduction velocity would, of course, result in the extended latency.

In spastic and normal subjects (Cody et al., 1987b) vibration of flexor 

carpi radialis failed to elicit M2 despite being maintained for a similar period 

to stretch (i.e., it would be expected to produce strong la afferent discharge). 

They concluded that the long-latency stretch reflexes of the normal flexor carpi 

radialis depended upon Group II afferent activity rather than that of la 

afferent activity.

Dietz et al., (1987) recording EMG responses of the leg musculature in 

man following perturbation of the limb during walking on a treadmill also gave 

their support for muscle proprioceptive input from Group II afferents.

There has also been support from Berardelli, Sabra & Hallett (1983) in 

triceps surae and tibialis anterior again in man. They found abnormal long- 

latency reflexes in Parkinson’s disease patients which were not abolished by 

vibration. Since Brown et al., (1967) had shown that Group II afferent 

terminals are not sensitive to vibration in the cat, Berardelli et al., considered 

their finding provided evidence in favour of the Group II hypothesis. 

Kirkwood & Sears (1975) in cat intercostal and triceps surae muscles, measured 

the conduction velocity of individual intercostal afferents and showed that the 

conduction velocity was consistent with Group II afferents 

monosynaptically exciting alpha motor neurones

The hypothesis that Group II muscle afferents are responsible for M2 is 

supported by the observation by Lee & Tatton (1982) that a shortening of
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stimulus duration from 200ms to an abrupt cessation at 30-40ms causes a 

decrease in the amplitude of M2 with a preserved M l.
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4. LARGE CUTANEOUS AFFERENT HYPOTHESIS

Evidence for the contribution of cutaneous afferents to the long-latency 

response have come from a variety of experimental paradigms, and include 

experiments making use of nerve blocks - using local anaesthetics or ischaemia - 

and the use of electrical stimulation. Cooling experiments have also contributed 

to the understanding of these cutaneous inputs to reflex responses.

Perhaps the most notable conclusion which can be drawn from the 

numerous experiments involving nerve blocks is the variability of responses 

obtained depending upon which muscle had been studied, and in some cases 

upon the subject.

In 1971 Marsden et aï., found that anaesthesia of the thumb could 

abolish M2 in the human flexor pollicis longus, and that, in addition. M l was 

also abolished or greatly reduced. These results were surprising since the 

anaesthesia should not have affected the muscle spindles in the long flexor. In 

1975 Marsden et al., reported that a dissociation of the M2 and M l components 

had been made in the hand, and this suggested that signals from the skin of the 

thumb or possibly joint contributed to stretch reflexes. Anaesthesia of the hand 

produced by a cuff distal to the muscle had greatly depressed M2 in the long 

flexor of the thumb, without affecting M l.

However, they found the stretch reflexes for the infraspinatus, 

pectoralis major and the long flexor of the big toe were unaffected by 

anaesthesia, and presumed their servo action to be based predominantly on 

muscle receptors. They did acknowledge that skin or joint receptors were 

playing an important part, perhaps the key part in the M2 responses in the 

thumb (Marsden et al., 1975 and 1977a).

In later years, several groups (Marsden, Rothwell & Traub, 1979; 

Matthews, 1984; Loo & McCloskey, 1985 and Marsden, Merton & Morton, 1985) 

found no regularly reproducible reduction in M2 in flexor pollicis longus as a
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result of anaesthesia. What other evidence is there for a cutaneous afferent

input to the stretch response? There have been a number of experiments

involving electrical stimulation which provide support for the theory. In 1980

Garnett & Stephens looked at the reflex responses of single motor units in

human FDI following cutaneous afferent stimulation, and were impressed by:

"the powerful reflex effects of quite 
modest and restricted cutaneous 
stimuli. For the most responsive first 
dorsal interosseous motor units,light 
mechanical taps applied to the nail of 
the index finger can produce large 
changes in their pattern of firing, the 
size of the late excitatory response 
reaching 2-3 x the control level."

They felt that their results emphasized the important role cutaneous 

input played in modifying motor outflow during movement, not only by the size 

of the responses but also that - for a given muscle - they could only be elicited 

from skin areas, the natural stimulation of which would normally be expected 

to be associated with movements involving activités in that muscle.

Similar large changes in surface recorded EMG activity were found in 

human abductor pollicis brevis following mechanical stimulation of the same 

finger (Caccia et al., 1973). The mechanical stimulus consisted of a series of 

taps delivered to different regions of the index finger by an observer using a 

blunt probe.

Garnett & Stephens (1980) felt tempted to suppose that the long-latency 

EMG effects of both muscle (Duller et al., 1980) and skin were mediated along 

some common final pathway, since pre-central neurones (including pyramidal 

tract neurones) receive input from both cutaneous and muscle afferent inputs 

(Lemon & Porter, 1976a, 1976b and Goldring & Ratcheson, 1972).

Chan et al., (1979a and 1979b) noted that skin and joint afferents must 

have been activated, and refer to Meier-Ewert et al., (1973) who showed that
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cutaneous stimulation had elicited long-loop spino-bulbo-spinal reflexes in man. 

But the results of their ankle block experiments in man showed that no 

significant change in response characteristics occurred with blockage of 

impulses arising from cutaneous and joint receptors in the ankle and foot. 

Chan (1983) reported that her findings, like those of Marsden et al., 1977a, 

suggested that any contribution from cutaneous receptors was probably 

negligible in the initiation of response. The findings could not be generalized to 

all muscles.

In 1981, Bawa & McKenzie elicited reflexes before and after anaesthetic 

blocks of palm cutaneous and wrist joint afferents in human subjects. They 

concluded that the contribution of joint and cutaneous afferents to the longer- 

latency reflexes in the wrist flexor muscles in humans was not significant. 

Their reasoning was as follows: cutaneous reaction times to electrical

stimulation of the hand via ring electrodes was more than 160ms, and although 

this decreased to 90ms as the voltage was increased - possibly resulting from 

excitation of deeper receptors in the hand - they thought that cutaneous 

afferents could not be responsible for M2. Cody et al., (1986 and 1989) when 

looking at EMG reflexes in human wrist flexors, concluded that both M l and 

M2 components in flexor carpi radialis arise mainly from intramuscular 

receptors and so supported the view of Bawa & McKenzie.

Working in human thenar muscles, Deuschl, Schenck & Lucking (1985) 

concluded that long-latency reflexes to electrical stimulation of the motor nerve 

were most likely to be mixed reflexes of motor and cutaneous afferents. 

Stimulation of pure cutaneous afferents mechanically or electrically, evoked a 

long-latency reflex similar to that of M2. The velocity of the cutaneous 

afferents mediating the long-latency reflex was in the range of group la 

afferents, whose long central delay would also be compatible with a 

transcortical reflex route.
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The same year Darton, Lippold, Shahani & Shahani showed that M2 is 

generated by the skin and subcutaneous tissue stimulation occurring inevitably 

in any experiment where muscle receptor activation is produced by limb 

displacement. Their conclusions are supported primarily by the following 

evidence:

1. Either one or both of the components M l and M2 can be elicited 

according to the siting of the stimulus. This depends on whether or not the 

mechanical stimulus is effective in stretching the muscle and whether or not the 

appropriate area of skin is stimulated.

2. If the skin and subcutaneous tissue that is transmitting the 

mechanical stimulus to the muscle (i.e. the skin beneath the prodder) is rendered 

anaesthetic, the second component M2 is abolished.

They contended that M2 was abolished in FDI only when the finger was 

completely anaesthetized, and this was achieved by a combination of arterial 

block and cooling - either one alone being insufficient.

Recently, further support for the cutaneous hypothesis has come from 

Matthews (1987b). He looked at the effect of arm cooling on long-latency 

responses from the human FDI, and it should be made clear that his findings 

supported the view that both muscular and cutaneous afferents can elicit M2 

responses from FDI by way of fast afferent fibres acting with a long central 

delay. His conclusion is right but his reasoning is wrong. He said that the skin 

of the finger is supplied by the median nerve. It is not. It is served by the 

radial nerve (Chapters 6, 7 and 8; Grays Anatomy, Figure 975). In recording F 

waves from muscles in the thenar eminence, which is indeed supplied by the 

median nerve, he thought that cooling slowed these fibres by only one third to 

one quarter as much as ulnar fibres, and presumed that this was because the 

former lie deeper. He reasoned, therefore, that for comparable-sized afferents, 

a cutaneous reflex should be slowed less than a muscular reflex and the ulnar-
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elicited F wave. In all three subjects such lesser slowing was found for the M2 

response elicited by a tap, suggesting that it was was due to a cutaneous reflex.
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GENERAL DISCUSSION

So what is the current position?

The idea of a transcortical loop has stimulated many studies and there is 

much compelling circumstantial evidence to support it. The evidence for the 

operation of this loop can be summarized as follows:

1. that the neuronal circuitry for this loop exsits,

2. that neurones in the various stages of the transcortical loop respond in 

the manner and with the timing predicted for this circuit when unexpected 

perturbations are introduced,

3. that the magnitude of the motor response thought to be the output of 

this circuit is related to the magnitude of sensory input, and

4. that lesions of various points along the transcortical loop diminish or 

abolish the motor response presumed to be the output of the loop (Wiesendanger 

& Miles, 1982).

Taken by themselves, however, the results of lesion experiments do not 

preclude the possibility that the effect of the lesions is caused by removal of 

cortical facilitation of a subcortical pathway for M2.

Gottlieb & Agarwal (1979 and 1980) found that the magnitude of each 

component of the EMG was linearly related to the velocity of stretch, but 

found that M2 was more labile, showing less consistency of shape than M l.

The dependence on the rate of stretch of M l is in keeping with the accepted 

behaviour of the reflex arc, but the longer latency of M2 would permit a more 

complex array of afferent inputs to participate in its generation. It is possible, 

therefore, that M2 represents the summed activity of several reflex arcs 

involving other peripheral receptors (Evarts & Tanji, 1976). Group Ib afferents 

from Golgi tendon organs and muscle spindle secondaries are two classes of 

inputs that could be expected to have significant segmental input and also to be 

influenced by voluntary contractions of their muscles. Tendon organs are well
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known to be extremely sensitive to tension changes of actively contracting 

motor units (Houk & Hennemen, 1967).

M2 responses are evoked by larger torque steps (Vilis & Cooke, 1976) and 

by higher velocity displacements (Dufresne et al., 1979). Vilis & Cooke also 

noted that with torque steps of increasing amplitude, the M l response became 

saturated before M2, leaving the latter as the only source of motor output 

related to the magnitude of the sensory input. It is important to emphasize that 

the segmental reflex response in man undoubtedly continues beyond the time of 

the monsynaptic peak, which only signals its onset (Houk, 1978). In addition, 

the size of the stretch reflex electrical response reflects inhibitory as well as 

excitatory components. Lee & Tatton (1982) reported that the gain of the M2 

response also appeared to be very dependent on the duration of the perturbation 

and on the type of ongoing motor task.

Hagbarth et al., (1980a, 1980b and 1981) have demonstrated with 

microneurographic techniques that abrupt wrist extensions produce grouped 

spindle discharges that could account for the grouped EMG responses. Eklund 

et al., (1982b) showed that as soon as muscle stretch exceeded a critical velocity, 

damped muscle oscillations and segmentation of the EMG appeared at the same 

time. From this the authors concluded that late EMG responses to sudden joint 

displacements "depend to a large extent on the inherent resonance 

characteristics of musculo-tendinous structures." The mechanical oscillations 

could be responsible for the previously demonstrated bursts of discharges of 

primary muscle spindle endings.

The demonstration that cutaneous afferents are involved in generating 

long-latency responses (Delwaide, 1973 and Darton et al., 1985) provides

yet more evidence for the extremely complex nature of these physiological 

responses.
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Chan et o/., (1979a and 1979b) and Marsden et al., (1976a) reported that 

the intervals between the early and late responses were shorter for arm muscles 

than for leg muscles, and shorter for head muscles than for arm muscles. 

Eklund et al., (1982a), also found similar variation in the interval between 

initial and second EMG peaks follwoing tendon taps to calf muscles, wrist 

flexors and jaw elevators However, they also demonstrated that "similar 

differences were observed with respect to the intervals between the damped 

intramuscular oscillations initiated by the impacts." Darton et al., (1985) found 

there was no such change in the interval between Ml and M2. From this it can 

be concluded that the impulses cannot have been delayed by traversing long- 

loop spinal pathways. Crago, Houk & Hasan (1976) and Nicols & Houk (1976) 

suggested that segmental stretch reflexes subserve a muscle stiffness-regulating 

system.

But what if Phillips was right when he said:

"It may well be that the most important 
function of fusimotor co-activation in the 
case of the hand is to maintain the inflow of 
information of muscle length to the cortex 
and cerebellum".

Time will tell.

From the foregoing discussion, it becomes apparent that the nature of 

control of the long-latency stretch responses remains a matter of dispute.
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THE EFFECTS OF AGE ON THE NERVOUS AND MUSCULAR SYSTEMS

The central nervous system (CNS) plays an essential role in the 

regulation of adaptive responses to the environment, and changes in its function 

can have vital repercussions on the ageing of the whole organism, manifested 

most dramatically in the general "slowing" of motor and sensory function. This 

involves alterations at several levels of the nervous system. Changes in motor 

function with advancing age are familiar phenomena; older people experience 

and exhibit varying degrees of loss of those abilities that require fine 

coordination and rapid initiation of movement.

It is evident that the efficacy of signals transmitted within the CNS may 

be disturbed not only by irregularities in the action of the cells carrying the 

signals but also by the amount of random background activity ("neural noise");

i.e. the signal-to-noise ratio may be impaired either by a reduction in signal 

strength or by an increase in noise level. Of the several electrophysiological 

characteristics of the aged CNS, those most likely to affect signal strength and 

noise level would seem to be, the reduction in number of functional cells, the 

increase in random activity, the longer after effects of neural activity and the 

decrease in arousal (Timiras, 1972).

Clinical observations in aged individuals show that many simple reflex 

phenomena that depend upon intact afferent pathways are decreased or absent. 

Although historically there seems to have been a considerable difference of 

opinion in the interpretation of changes in nerve fibres with age, many reports 

indicate a positive correlation between increasing age and decreasing number of 

fibres in a pathway or nerve trunk. These include: Cottrell (1940) in human 

median, femoral sciatic and peroneal nerves; Bruesh & Arey (1942) in human 

optic nerve; Corbin & Gardner (1937) and Gardner (1940) in human spinal roots 

and Bergstrom (1973) in human vestibular nerve. Bergstrom found around 35
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per cent decreases in fibre number in these structures, and also reported a 

decrease in the proportion of heavily myelinated nerves in the vestibular nerve.

Several studies have been made of the changes in conduction velocity of 

human motor nerves throughout the life-span. All have been in agreement that 

maximal velocity drops by 5 to 10 per cent in aged people (Magladery, 1959). 

This reduction may be explained in part by one or more of the following 

factors:

1. localized ischaemia due to vascular changes;

2. metabolic depression associated with changes in permeability and/or 

other transmembrane transport mechanisms of nerve fibres;

3. selective degeneration and subsequent loss of the fastest-conducting

fibres;

4. temperature changes in the nerve fibres and surrounding tissues.

Slowing of motor nerve conduction in association with increased age was

first described by Wagman & Leese (1952). However, when measured directly in 

the sciatic nerve, conduction time was not shown to change with age (Birren & 

Wall, 1956). Nerve conduction velocities of afferent fibres have not shown any 

differences among subjects of different ages.

Depression or loss of the ankle reflex is a common finding in the elderly 

(Critchley, 1931 and Howell, 1949), as is impaired appreciation of vibration 

sense in the feet (Pearson, 1928). The anatomical location of the lesions 

responsible for these changes has been suggested (Lascelles & Thomas, 1966) to 

be in the peripheral nerve, manifested as segmental demyelination and 

remyelination resulting in irregularities of the intemodal length. It is 

explained that this results in a loss of tendon reflexes and vibration sensitivity 

since both depend upon the ability of the nerve to conduct a synchronous volley 

of impulses.
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At the segmental level there is convincing evidence of increased synaptic 

delay with age (Wayner & Emmers, 1958). The increase with age is regular and 

unbroken, indicating decreased excitability at single synapses rather than 

conversion to a polysynaptic response. Whether these changes in central delay 

with age are related to changes inherent in the motor neurones themselves or 

other neuronal pathways converging on the motor neurone pool is not clear.

Since neuromuscular activity appears capable of strongly influencing 

neuronal function, it is conceivable that part, at least, of the decline with age 

in reactivity of the nervous system is secondary to the general physiological 

decline associated with ageing and lack of use.

The muscular atrophy characteristic of the aged has been related to:

1. disuse;

2. reduction or loss of the trophic function of the nerve cells, mediated 

by spontaneous quantal release of acetylcholine (ACh) and/or other 

neurotrophic agents;

3. decrease of hormonal control - as illustrated by the effect of gonadal 

hypofunction on motor activity and metabolism of muscle.

This marked deterioration of muscle mass which occurs with ageing is 

characterized by decreases in the size and number of muscle fibres, decreases in 

the muscles’ respiratory capacity, and increases in connective tissue and fat. In 

addition, it has been suggested that the average number of fibres per motor unit 

gets larger with advancing age. Ageing results in decreases in isometric and 

dynamic strength, and speed of movement. There is a loss of fibres from 

individual motor units - generally held to be due to a loss of the nerve cells 

that supplied them. This results in less available contractile force when a motor 

unit is recruited.

The decreased speed of contraction in old age, which is observed before 

senile muscle wasting becomes manifest (LarSson & Edstrom, 1986), has been
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proposed to be secondary either to a loss of fast-twitch motor units or to 

changes in the properties of the contractile material during ageing, or to both 

(Campbell et al., 1973). However, in further experiments in 1987, Edstrom & 

Larsson concluded that the reduced speed of contraction in old age is primarily 

due to alterations in contractile properties in remaining motor units in both 

fast- and slow-twitch muscles and that the age-related decrease in the number 

of type II fibres (rat soleus muscle) is of considerably less importance. 

Preliminary results also indicated that fibre type proportions were altered prior 

to the muscle fibre loss and this they thought suggested a transformation of 

type II muscle fibres to type I followed by an unselected loss of motor units in 

middle age. This age-related loss of functioning motor units has been supported 

in man (Campbell et al., 1973) and in the mouse and rat (Caccia et al., 1979).

Additionally, the nature of the motor units changes: there is a selective 

loss of fast twitch muscle fibres which diminishes available strength and power.

The loss of the muscle’s biochemical capacity is characterized by 

decreases in succinate dehydrogenase, pyruvate and malate dehydrogenase, and 

cytochrome oxidase. In very old age, there is evidence of the formation of 

incomplete or inactive enzymes. Decreases in mitochondrial mass may also 

occur. All of these changes will affect ATP production and thus impair 

physical working capacity.

The mechanisms involved in muscle contraction are also impaired, which 

contributes to the loss of strength and power. Ageing muscle is less excitable 

and has a greater refractory period. Thus a greater stimulus is needed for 

contraction (i.e., a higher threshold potential is required for the all or nothing 

response), and a longer period of time is required before the muscle can respond 

to another stimulus. Myosin-ATPase activity, ATP and CP are also reduced, 

particularly in fast-twitch muscle, which further impairs muscle function.
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The decrease with age in the response to various environmental stimuli 

may be due partially to impaired excitation of receptor organs, in particular 

muscle spindles. Swash & Fox (1972) studied the effect of age on the 

morphology and innervation of the muscle spindles in 22 subjects from birth to 

81 years and reported that the mean capsular thickness increased linearly with 

age with a slight decrease in the mean number of intrafusal fibres in the oldest 

subject. They also found some changes in the spindles consistent with 

denervation and changes in the fine structure of the muscle spindle innervation 

consisting of spherical axonal swellings and expanded abnormal motor end 

plates. (Gutmann & Hanzlikova 1972a, 1972b and 1975).

Age changes in human motor nerve endings in distal muscles were 

studied by Harriman, Taverner & Wolf (1970). They reported spherical axonic 

swelling of the longest axons of the motor nerves and elaborate and multiple 

motor end plates with elevation of terminal innervation ratio to be expressions 

of ageing in motor end plates.

There is some random degeneration of end plates and changes in muscle 

similar to those after denervation (e.g., the increase in proteolytic activity and a 

shift to synthesis of sarcoplasmic proteins) which suggest a neurotrophic 

disturbance in addition to a decline in nerve impulse activity. Specifically, the 

muscle end plates show a decrease of synaptic surface and cholinesterase 

activity, an unfolding and retraction of the postsynaptic membrane and an 

increase of lysosomal structures, suggesting that the stability of membrane 

components at the end plate and in other regions of the muscle is disturbed. 

These changes are associated with a marked reduction of frequency of 

miniature end-plate potentials to 25 per cent of values observed in young 

animals, indicating a marked decrease in transmitter release. This might 

suggest that the atrophy of the senile muscle may combine features both of 

disuse and of trophic malfunction of the nerve cell. However,
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electrophysiological studies have shown that the profound ultrastructural 

alterations in the neuromuscular junction in old age (Gutmann et al., 1971) do 

not impair neuromuscular transmission and that they are either not rate- 

limiting or are well compensated for (Banker, Kelly & Robbins, 1983).

Age changes in motor unit threshold firing rate in the FDI in man have 

been reported by McDonagh et al., (1987). They found a significant decrease in 

the threshold firing rate with age, apparently independent of the voluntary 

force threshold; this is consistent with the longer contraction time found in the 

FDI in older subjects.

Joint stiffness and loss of flexibility are common in old people; joints 

become less stable and less mobile with age. Ageing can be associated with 

degradation of collagen fibres, fibrous synovial membranes, joint surface 

deterioration and decreased viscosity of synovial fluid.

Collagen - together with elastin and ground substance - is a component 

of connective tissue. Connective tissue functions in a number of important 

ways in the body, serving as mechanical support, means of exchange of 

metabolites between blood and tissues, storage of fuel in its adipose cells, 

protection against infection and repair of injury. In particular, it is found 

around the structural elements that constitute organs and tissues.

Collagen

Collagen is a protein, is ubiquitous in the body and undergoes 

identifiable changes with age. It is a macromolecule deposited in the form of 

fibres (Figure 1.3). It occurs as almost chemically pure collagen in the tendons, 

and as interstitial fibrous tissue between muscle fibres. The fibres have great 

tensile strength and are designed for resistance to elongation at the amino acid 

level. The two principal amino acids are 5-hydroxylysine, a very short 

molecule, and 4- hydroxyproline, a five-membered ring with four carbon atoms
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and one of nitrogen (Figure 1.3). Together these two amino acids form 

polypeptides with little or no possibility of rearrangement to permit elongation.

The amino acids are assembled into a polypeptide chain, four of which 

link together to form a coiled helix with a molecular weight of about 110,000, 

called an alpha- chain. Three such helices then combine to form a single 

molecule of tropocollagen, with a molecular weight of about 336,000 consisting 

of some 3000 amino acids. Tropocollagen molecules are thin structures 260 nm 

in length and about 1.5 nm wide.

The molecules of tropocollagen polymerize, head to tail, and the 

resulting threads cross-link with other threads in a characteristic pattern. The 

heads of the molecules in one thread are displaced by one quarter of the length 

of the molecule, relative to the neighbouring thread. Collagen fibrils contain 

variable numbers of such threads but, because of the characteristic linking 

between threads, all have transverse bands clearly demonstrable by electron 

microscopy. The bands occur every 64 nm.

Synthesis takes place within a fibroblast up to the formation of alpha- 

chains; these are secreted in modified form by the cell as procollagen, and are 

converted to alpha-chains by an enzyme at the cell surface. The formation of 

soluble tropocollagen from these chains and the polymerization of tropocollagen 

into collagen fibres occur outside the cell.

Collagen solubility decreases with age and this decrease has been related 

to increased cross-linking. Cross-linking represents the formation of new bonds 

between molecules, and is brought about by the presence of reactive groups, 

either found normally on the macro-molecules or produced by various agents, 

such as free radicals (formed by ionizing radiation), aldehydes (produced 

during energy metabolism or lipid peroxidation), peroxides (produced by lipid 

peroxidation), quinones (present in the electron transport system) and 

sulphydryl groups (derived from déméthylation of methionine) and oxidation
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of sulphydryl amino acids. As a result of these changes with age, collagen 

becomes tougher, more crystalline, its tensile strength is reduced and its 

plasticizing function is lost.

Elastin

Elastic fibres are thin, single and branching. These fibres can be 

stretched, each fibre extending by up to 50 per cent of its original length. 

When the stretching force is removed these fibres spring back to their former 

length. In connective tissue, the collagen and elastic fibres are finely balanced 

so that the collagen resists forces that would be strong enough to rupture the 

elastic fibres. One of the changes that occur in the body in old age is a loss of 

elastic fibres.

Examination of elastin in tissues also reveals changes with age, in that 

old elastin appears frayed, fragmented, more brittle and more yellow in colour. 

These changes could be interpreted as signs of wear and tear.

In general there is a significant decrease in the sensitivity of the nervous 

system and its motor control with advancing age. In this thesis, changes in 

reflex sensitivity of older people have been investigated using standard 

electrophysiological techniques. An effort has been made to discover where in 

the reflex arc such changes are taking place, their cause and their effect.
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M USCLE FA TIG U E

Muscular fatigue is defined as a failure to maintain the required or 

expected force. In this brief introduction to the subject, the emphasis will be on 

the electrophysiological and excitatory aspects of muscular fatigue rather than 

those concerned with energy metabolism.

The fundamental question would seem to be: Is the force that can be 

generated by a muscle limited by the capacity of the nervous centres and 

conducting pathways to deliver motor impulses to the muscle fibres or by the 

intrinsic contactile properties of the fibres themselves? Does fatigue have a 

peripheral or central origin? Does tension fall because the degree of voluntary 

innervation drops or because the fibres are biochemically incapable of 

maintaining their contraction, or is it the result of both?

Bigland & Lippold (1954) and Merton (1954) showed that a maximal 

voluntary effort developed the same tension as a maximal tetantic electrical 

stimulation of the muscle (this maximum occurred at frequencies between 35 

and 40/s), and went on to demonstrate that the same equality persisted during 

fatigue. These results implied that the limitation of strength was peripheral, 

since the tension dropped while voluntary effort was continuing to activate the 

muscle fully (electrical stimulation to the motor nerve during a voluntary 

contraction resulted in no superimposed twitch).

In addition, Merton (1954) showed that fatiguing a muscle to which the 

blood flow was occluded resulted in the continuation of force loss in the muscle 

which had been fatigued. The muscle did not recover until the blood supply 

was restored. This provided further proof that the fatigue was peripheral.

Merton (1954) also concluded that neuromuscular block (NMB) was not 

important in the fatigue resulting from a maximum voluntary contraction 

(MVC), since he found, even in extreme fatigue, action potentials evoked by 

nerve stimulation were not significantly diminished. In these experiments
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Merton was recording from several small muscles (because of the electrode 

positions he used), but was only fatiguing adductor pollicis. His results and 

conclusions were correct, however, but fortuitously.

Before Merton’s paper in 1954 it was generally accepted that the 

transmission at the motor end plate was the first function to fail during 

artificial stimulation. Furthermore, this type of fatigue was not thought to be 

of any importance for the modification of the naturally induced contraction 

since application of electrical stimuli to the nerve through the skin was said to 

elicit powerful contractions when the voluntary produced contraction was 

fatigued. Naess & Storm-Mathisen (1955) agreed with Merton as to the 

peripheral origin of fatigue during voluntary tetanic contractions, and that it 

was of the same nature as that during artificial indirect stimulation. Like 

Merton they thought that the facts seemed to exclude the possibility that 

changes in the transmission at the motor end plate played any significant role 

in the fall of tension. Direct stimulation of the muscle did not produce a 

stronger or more prolonged effect than indirect stimulation (Brown & Burns,

1949) even when the strength of stimulation in the experiments was decidedly 

supramaximal (Naess & Storm-Mathisen, 1955). In addition they found that it 

was impossible to produce a stronger or more prolonged tetanic contraction by 

indirect supramaximal stimulation than by maximal voluntary effort, and that 

the contraction in man was abolished subsequent to superposition of artificial 

stimulation during MVC’s.

This conclusion does not agree with results reported by Brown & Burns 

(1949), who demonstrated that a contraction may be restored to normal 

amplitude during the fall in tension under indirect stimulation by exchanging 

indirect sitmulation with direct for short periods; i.e. neuromuscular block must 

exist and the muscle cells cannot be exhausted. However, they also considered 

that the development of block contributed little or nothing to the decline in
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tetanic tension; that complete block was certainly not the dominant 

phenomenon, and probably never occurred.

Stephens & Taylor (1972), using the FDI, showed that impaired 

neuromuscular transmission did occur in fatigue in sustained MVC’s, (the 

contractions lasted up to three minutes) particularly in high threshold units 

since the early part of the contraction force and surface electrical activity fell 

in proportion. This, they added, was followed later by contractile element 

fatigue particularly affecting the low threshold units.

The increase in electrical activity of the fatigued muscle, required to 

maintain the same voluntary tension, is due to a decrease in the contraction 

strength of the muscle fibres (Edwards & Lippold, 1956). As a contraction 

continues, more fibres become active. They measured the integrated EMG at 

various steady contraction strengths and found a linear relation between force 

and the EMG values. The same test in fatigued muscle yielded a similar result, 

but with a greater slope of EM G-force relation.

Bigland-Ritchie, Jones & Woods (1979) studied the relation between force 

in response to electrical stimulation and EMG activity by intermittent nerve 

stimulation in brief pauses in between periods of direct electrical muscle 

stimulation. Again a good correspondence between EMG amplitude and force 

was found.

Using a technique for recording the surface EMG simultaneously with 

electrical stimulation of human skeletal muscle, Hultman & SjOholm (1983) 

showed that there was a good relation between EMG amplitude and force 

during fatiguing contractions in knee extensors, but reported that during 

recovery the relation was completely lost. For this reason they considered that 

EMG measurements alone as an index of fatigue could be very misleading, since 

a given EMG amplitude could be recorded in a muscle producing quite 

different force levels. From this they concluded that excitation failure
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contributed only partly to the decline in tension, and that the excitation- 

contraction mechanism or contractile machinery were more likely as fatigue 

sensitive sites.

In 1983 Bigland-Ritchie et al., used tungsten micro-electrodes to record 

the electrical acitivty of single muscle fibres in the human adductor pollicis 

during MVC’s. Spike trains of 10-20s duration were obtained, which originated 

continuously from a single muscle fibre. Now, although the frequency of firing 

declined smoothly, there was no sudden discontinuity as would have been 

expected if NMB had occurred. In addition, periodic monitoring of the evoked 

M-wave showed no sign of neuromuscular block. These authors also noted that 

not all units appeared to behave in a similar manner; some evidence suggested 

that those with the highest initial frequencies changed rates most rapidly.

During fatigue produced by a sustained MVC of the biceps brachii 

muscle, discharge frequency of motor neurones falls, as does the maximum 

force that can be exerted (Bigland-Ritchie et al., 1986b). They thought this 

reduction in motor neurone firing rates during fatigue an unlikely cause of the 

observed loss of force since the force could not be increased by supramaximal 

electrical stimulation of the ulnar nerve. During a 60s sustained MVC there is a 

two- to threefold slowing of relaxation rate such that high degrees of tetanic 

fusion would be maintained despite the observed reduction in mean discharge 

rate (Bigland-Ritchie et al., 1982a).

In a further experiment using FDI, Bigland-Ritchie et al., (1986b) looked 

at the effects of 3 minutes’ ischaemic rest between a first and second MVC. 

Recovery with the blood supply intact was 95% complete after 3 minutes rest, 

but with the blood supply occluded the force and motor neurone firing rates in 

the second contraction remained depressed (both values were close to those seen 

at the termination of the initial MVC). Ischaemia did not appear to influence 

the force generated when brief additional contractions were injected at Imin
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intervals during the period of rest when the blood supply was occluded. From 

this they concluded that if increasing degrees of transmission failure occurred 

during this time the capacity to generate force should decline continuously, and 

it had not (see also Bigland-Ritchie et al., 1986a).
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NEUROM USCULAR BLOCK

Block of conduction has been found in both invertebrate (Castel et al., 

1976; Grossman et al., 1973 and Van Essen, 1973) and vertebrate preparations 

(Farel & Thompson, 1976 and Krnjevic & Miledi, 1959). Very often, it was 

found that block occurred at sites of axonal b ifurcation , and sometimes 

occurred differentially; i.e. only one branch of the bifurcation would block.

Sodium channel density, which is lower in the parent branch than in the 

daughters, will result in a low safety factor, but will not give rise to 

differential conduction. But a difference in the membrane channel density 

between daughters could give rise to differential conduction, since the 

membrane with the higher channel density will be "leakier" even at rest. As a 

result, a greater current will be necessary to bring this membrane to threshold, 

and when the safety factor is low it will be the first branch to fail. The term 

low safety fac to r is used in conditions under which there is an increased 

probability of failure of an action potential to propagate.

Some unbranched axons have regions of low safety factor which affect 

the firing rate. These regions are constrictions in axon diameter (Castel et al., 

1976 and Smith, 1980a and 1980b), or regions of dense connective tissue (Smith 

& Hatt, 1976), which restrict the extracellular space.

Grossman & Gutnick (1981) working on the giant axon of the cockroach 

found the accumulation of extracellular potassium was linked to block of 

conduction. Whether this mechanism is at work in branched axons in which 

differential conduction occurs is uncertain. However, in this connection, 

Krnjevic & Miledi (1959) found presynaptic block in vitro  was not at all 

sensitive to substantial variations of potassium, calcium or hydrogen ion 

concentrations in their experiments with rats; the nerve fibres were protected 

from changes in their environment by the low permeability of their perineural 

sheaths (Krnjevic, 1954).
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Interestingly, recent work by Stockbridge & Stockbridge (1988) and 

Stockbridge (1988), working with the squid giant axon, showed (under 

artificial conditions which favoured conduction block at a bifurcation) 

differential conduction resulting from differences in electrotonic length (with 

membrane properties uniform). The effect of a short electrotonic length on a 

daughter branch is to increase membrane current density , resulting in a lower 

threshold.

Krnjevic & Miledi (1958 and 1959), in their work with rats, concluded 

that presynaptic block, commonly associated with intermittent firing, is 

probably caused by anoxic changes in the intramuscular portion of the motor 

nerve. They presented evidence which showed that when the muscle 

contraction is abolished or kept to a minimum by curare or excess magnesium 

(15mM), anoxia does not develop readily and then conduction block is only seen 

after prolonged high-frequency stimulation (100/s or more for several minutes). 

Their work suggested, that at frequencies of stimulation of less than 19 per 

second, random fluctuations of fibre threshold and/or spike height in the 

region of block are responsible for the observed intermittent conduction of 

impulses; at higher frequencies the part played by post-spike subnormality or 

supernormality would become increasingly predominant. In addition they found 

presynaptic block was sensitive to variations in temperature; higher 

temperatures allowed greater frequency of stimulation but earlier block.

Acetylcholine (ACh) undergoes two reactions at the motor end-plate: it 

combines with a receptor molecule (which leads to an increase of ion 

permeability in the end-plate membrane), and it combines with a hydrolytic 

enzyme (Dunant, 1986). In terms of ACh there are three possible ways by 

which NMB may occur: the end plate becomes less sensitive to the depolarizing 

action of ACh, or too much ACh is released so that depolarization spreads
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beyond the end-plate region, or insufficient amounts of ACh are released by the 

nerve impulse (Feldburg, 1951).

An intermittent pre-junctional failure of transmitter release has been 

demonstrated during tetanic stimulation (Krnjevic & Miledi, 1958), but the 

occurrence is not regular and it cannot alone explain transmission block. It does 

not account for the progressive diminution of the end plate potential during 

prolonged repetitive activity (Liley & North, 1953; Krnjevic & Miledi, 1958). 

Several changes may be involved, but perhaps the most important is the 

decrease in the sensitivity of the end-plate to ACh (Thesleff, 1955; Katz & 

Thesleff, 1957 and Thesleff, 1959). With the discovery that brief application of 

ACh to the end-plate reversibly reduced the chemical sensitivity of that region 

it became possible to assume that during high-frequency stimulation, 

transmission failure could be due to desensitization of post-junctional receptors 

by the released transmitter. The end-plate becomes refractory to ACh. In 

addition it has been suggested (Axelsson & Thesleff, 1958) that the 

concentrations of ACh which produce desensitization are, at least in certain 

mammalian muscles, within the range of concentrations normally produced at 

the end-plate by motor nerve impulses, and that consequently desensitization 

may develop during repetitive motor nerve stimulation.

If the nerve fibre is artificially stimulated at rates in excess of 100 times 

per second for several minutes, the quantal release of acetylcholine (ACh) is 

diminished to such an extent that propagation failure results (Rosenblueth,

1950). However, Hatt & Smith (1976), working on the opener muscle of the 

crayfish walking leg, found that the rate of spontaneous quantal release did not 

decrease, arguing against transmitter depletion. They found axon conduction 

blocks occurred at points of bifurcation along the entire length of the 

presynaptic nerve. They concluded that repetitive stimulation eventually leads
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to depolarization of the axon membrane, and this causes impulse propagation 

failure which reduces the number of synaptic release sites that are activated.

In putting forward the hypothesis that there are changes in reflex 

sensitivity with increasing age, the possible development of neuromuscular 

block has to be investigated as an explanation for it. Can block occur under 

normal physiological conditions in healthy subjects? Does the likelihood of it 

occurring under such conditions increase in older people?

Since the literature on muscle fatigue and NMB are inextricably linked 

further reference to the latter will be found in the Introduction to Fatigue.
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TREM OR

Physiological tremor may be defined as the ripple which is 

superimposed upon a normal voluntary muscular contraction, and which arises 

solely from it. It is involuntary and occurs spontaneously. Physiological tremor 

is distinguished from the tremor of Parkinson’s disease by the details of its 

frequency analysis. Normal tremor has a major peak at 8-12Hz, whilst 

Parkinsonian patients have tremor which has most of its energy concentrated in 

a frequency band around 5Hz (Lippold, 1973). Normal tremor generally occurs 

at lower frequencies (around 6Hz) in young children and elderly persons 

(Marshall, 1968).

By the end of the nineteenth century it had become clear that, normally, 

all voluntary muscular contraction was accompanied by fine regular, 

superimposed oscillations and it was at about this time that the phenomenon 

came to be termed "Physiological tremor". Schafer (1886), working at 

University College London, had clearly defined a lOHz rhythm in the 

mechanical record of the contraction of muscles and limb movements in normal 

human subjects. Most subsequent invetigators have found this to be the 

predominant frequency of physiological tremor in man.

Physiological tremor, with suitable recording techniques, can be 

demonstrated in nearly all normal subjects. Although it is most apparent in the 

outstretched fingers, physiological tremor occurs in other parts of the body, 

including the lower extremities, the head and even the tongue.

Physiological tremor is not present in the totally relaxed extremity but 

increases in parallel with the tonic activation of muscles to maintain a fixed 

posture opposing gravity or other external forces (postural tremor).

Possible mechanisms contributing to physiological tremor can be 

considered under three broad categories: 1. mechanical factors, 2. reflex 

oscillations and 3. central oscillations.
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Ballistic effect of heartbeat

Yap & Boshes (1967) concluded that cardiac action was the origin of 

normal finger tremor. They obtained "average patterns" of normal finger 

tremor, the ballistocardiogram and the electrocardiogram (using a computer of 

average transients) and found them to be related.

Marsden et at., (1969) investigated the ballistic effect of the heartbeat 

using cross-spectral analysis and coherence of tremor between the two hands, 

and concluded that less than 10% of the tremor recorded from the outstretched 

fingers could be accounted for by the heartbeat. Oscillations occurring in time 

with the heartbeat can be recorded in completely denervated limbs or after 

paralysis with succinylcholine (Marsden, 1978).

Lippold (1973) commented that a muscle swelled slightly with each 

heartbeat and that this was enough, on occasion, to synchronize the spindle 

discharge with the pulse; he considered that the phenomenon was an example 

of introducing a mechanical stimulus into the reflex arc.

"Servo-loop" hypothesis of tremor

Several lines of evidence suggest that physiological tremor is due to 

oscillations occurring as a result of instability of the servomechanism associated 

with the spinal stretch reflex. Oscillations can develop if there are inherent 

delays in a mechanical system with negative feedback. Halliday & Redfearn 

(1956 and 1958) were the first to advance the servo-loop theory of tremor. 

They found that physiological tremor was absent in the disorder tabes dorsalis, 

in which the afferent part of the reflex loop is interrupted.

Lippold, Redfearn & Vuco (1959) obtained the same result in 

experiments on the anaesthetized cat. They showed that cutting of the dorsal 

roots coming from the limb in question abolished the rhythmical tremor peak.
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Further evidence suggesting involvement of segmental reflex mechanisms 

was provided by Lippold (1970) who showed that physiological tremor could be 

modified or reset by perturbations applied to the outstretched fingers.

The effect of ischaemia

The effects of ischaemia on finger tremor were first reported by 

Halliday & Redfearn (1954). All frequencies of tremor were affected by 

ischaemia. A sphygmomanometer cuff inflated, just above the elbow to 

200mmHg, led to the depression of the amplitude of tremor at all frequencies 

within 1 to 2 minutes. In many subjects tremor was abolished after 3 or 4 

minutes, but the stretch reflex was not affected during the first 5 minutes. 

Following removal of the cuff, tremor returned within about 1 minute and 

usually regained the control amplitude in less than 5 minutes.

The reduction in tremor did not occur if a venous cuff (70mmHg) was 

applied; if anything this tended to increase tremor amplitude; in addition, nerve 

block was ineffective in altering tremor (Lippold, 1973).

Imposing ischaemia on a muscle is equivalent to altering the loop gain at 

its peripheral component. Reduction or abolition of tremor results because the 

gain in the loop - in the reflex arc - is reduced below that needed to sustain 

oscillation by impairment of the sensitivity of muscle spindles. Matthews (1933) 

found that any impairment to the blood supply to a muscle of an anaethetized 

cat, resulted in its spindles giving a sustained high-frequency discharge and 

there was an accompanying loss of sensitivity to stretch. The spindles become 

completely insensitive to stretching; this would be the equivalent of opening the 

loop, and tremor would disappear.

Firing of motor neurones

Synchronization of motor unit discharges as a possible factor 

contributing to physiological tremor has been suggested. Normally motor 

neurones fire in an asynchronous manner, so during voluntary activation the
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normal firing of motor units would not be expected to produce substantial 

tremor, even though the firing rates at recruitment are close to the frequency 

of physiological tremor. However, during fatigue and isometric training there 

is a tendency for motor unit discharges to become synchronized (Milner-Brown 

et al., 1975). Muscle fatigue increases the amplitude and slightly raises the 

frequency (Lippold et al., 1960) of physiological tremor.

C entra] oscillations

The possibility that physiological tremor is driven by central oscillations 

arising from supraspinal structures has also been considered. It may be possible 

that synchronization of motor unit firing could occur in response to 

synchronous discharges originating at higher levels in the nervous system. 

However, Rietz & Stiles (1974), using an animal model, found that the tremor 

frequency was largely independent of the rate of stimulation of motor neurones.

Allum et al., (1978) have proposed that the firng rate of motor neurones (about 

10 impulses/s), together with the filtering properties of muscle, directly 

determine the frequency of physiological tremor.

A lpha Rhythm

The similarity in frequency between the alpha rhythm of the 

electroencephalogram (EEC) and physiological tremor has led to speculation 

that some common form of central nervous system mechanism modulates 

electrical activity and may be giving rise to both types of oscillation. They 

vary with age in much the same way (Marshall & Walsh, 1956), and Jasper & 

Andrews (1938) found that both were altered similarly by a number of factors. 

The response of both is the same to sudden stimuli (such as a loud sound), to 

anaesthesia, sleep, or to general alerting. But, Jasper & Andrews (1938) 

demonstrated that the tremor of limb muscles did not remain in phase with the 

EEG; the frequency is never quite the same.
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Other theories

The existence of a "pacemaker" within the spinal cord has been 

suggested. However, Marsden et al., (1969) observed that the phase and 

frequency of physiological tremor in a subject’s two hands were not necessarily 

the same and this argued against the idea of a single CNS pacemaker.
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AGE CHANGES IN THE NEUROMUSCULAR SYSTEM AND  

THE EFFECT OF TRAINING

The effects of training can be considered as the long-lasting 

physiological responses of the body to intensive and repeated motor activity. 

Peak physiological function, for the most part, occurs at about 20 to 30 years of 

age. After that, most factors decline at a rate of about 0.75% to 1% a year. 

The decline in physical capacity is characterized by a decrease in maximal O 2  

consumption (V 0 2  max), maximal cardiac output, muscle strength and power, 

neural function, flexibility and increased body fat. All of these factors can be 

positively affected by training. Exercise training does not retard the ageing 

process; it just allows the individual to perform at a higher level.

Marked deterioration in muscle mass usually occurs with ageing. It is 

characterized by decreases in the diameter (Rowe, 1969) and number (Rowe, 

1969 and Gutmann & Hanzlikova, 1966) of muscle fibres, decreases in the 

muscles’ respiratory capacity and increases in connective tissue and fat. Ageing 

results in decreases in isometric and dynamic strength, and speed of movement.

There is a loss of fibres from individual motor units. This results in less 

available contractile force when a motor unit is recruited. Additionally, the 

nature of motor units changes: there is a selective loss of type II fibres (fast- 

twitch muscle), which diminishes available strength and power.

The loss of the muscle’s biochemical capacity is characterized by 

decreases in succinate dehydrogenase, pyruvate and malate dehydrogenase, and 

cytochrome oxidase. In very old age, there is evidence of the formation of 

incomplete or inactive enzymes. Some researchers have found decreases in the 

mitochrondrial mass. All of these changes will affect ATP (adenosine 

triphosphate) production and thus impair physical working capacity.

The mechanisms involved in muscle contraction are also impaired, which 

contributes to the loss of strength and power. Ageing muscle is less excitable
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and has a longer refractory period. Myosin-ATPase activity, ATP and CP 

(creatine phosphate) are also reduced, particularly in fast-twitch muscle, which 

further impairs muscle function (Brooks & Fahey, 1984).

Relative strength changes resulting from training are similar in the 

young and old, at least in short-term programmes. There is a fundamental 

difference in the way the elderly increase strength. The young improve the 

contractile capacity of the fibres, whereas the elderly rely on improved motor 

unit recruitment (i.e., improve the force/unit cross-section of the muscle). 

Physical training seems to have little effect on the deterioration of neural 

function. Suominen et al., (1980) could find no difference in neurobiological 

factors between extremely fit elderly endurance athletes and elderly sedentary 

men. They concluded that the effects of endurance training in the elderly are 

largely limited to functions that are apparently relevant to physical 

performance. Exercise training will improve performance in the elderly, but it 

will not affect the ageing process itself.

Regularly performed endurance exercise results in a twofold increase in 

the capacity of skeletal muscle for aerobic metabolism (Holloszy, 1967). 

However, oxygen supply by the circulatory system does not appear to be the 

main limiting factor for performance (Kaijser, 1973). The functional capacity 

of old people with endurance training is certainly higher than in "untrained" 

people The former endurance athlete has a cardiopulmonary system in many 

respects "younger" than his age group (Karvonen, 1969; Skinner, 1973). General 

effects of training include the increase of enzyme activities (Keul et al.,1969) 

and smaller fluctuations in cellular (e.g. in decrease and resynthesis of glycogen 

in muscle; Gutmann et al., 1953) and systemic functions related to a process of 

more economic functional integration.

On the other hand, disuse resulting in lack of mobilization of adaptive 

capacities of the organism (Frolkis, 1970) can be expected to lead to marked
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senescent changes in the neuromuscular system. This is also indicated by the 

less marked senescent changes in muscles continuously activated, e.g., the 

diaphragm and heart muscle.

Senescent muscle atrophy shows specific features, primarily with respect 

to neuronal regulation. Neuronal impulse and nonimpulse ("neurotrophic") 

activities may be distinguished, and a decline of the trophic function of the 

neurone is assumed. This disturbance is caused by a decrease in the synthesis 

of neurotrophic agents and probably by a slowing of axoplasmic transport. The 

result of this is a slowly progressing disturbance of neuromuscular contact, 

resulting in a loss of muscle fibres. The random character and the slowness of 

the process make it difficult to identify the final stage of the event, i.e., 

disconnection of the neuromuscular contact. Generally there is an absence of 

ultra-structural evidence of endplate degeneration and of electrophysiological 

evidence of denervation. Maintenance of the number of motor neurones - at a 

time at which muscle fibre number decreases - and the marked reduction of 

spontaneous transmitter release, reveal the specific features of senescent muscle 

atrophy (see Gutmann & Hanzlikova, 1972a and 1972b).

Intensive motor activity induces considerable changes in muscle and 

glucose metabolism. The "training" process, developing as a reaction to repeated 

motor activity and varying with the type of motor activity, will accordingly 

affect all functions of the body. This adaptation process leads to "fitness", i.e., 

capacity to react to exertion efficiently with a high level of functional 

performance. The "training" process is essentially a process of conditioning 

implied in the adaptation to repeated motor activity.

The overshoot reaction, i.e., the increase in glycogen or protein levels in 

muscle above initial levels after its stimulation, which is missing after 

denervation, suggests the great importance of nervous mechansims in this 

training effect (Gutmann, 1964). It is also missing in the muscles of old age
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(Drahota & Gutmann, 1961) and suggests a disturbance of recovery processes in 

nerve and muscle cells. In the training process, the "overshoot" reaction is 

modified. The "repeated overshoot reactions" result in a higher level of 

metabolites in the muscle cell, a more "economical" smaller decrease after 

stimulation, a faster return to initial levels and a smaller increase of 

metabolites above initial levels in the following recovery phase (Gutmann et al., 

1953). Metabolic recovery processes are very much disturbed in senile muscles 

(Drahota & Gutmann, 1962) and this defect may be very important in the 

decline of functional capacity of old people.

Hormone-dependent changes in muscle may be due to:

1. reduced secretion;

2. decreased hormone secretion in response to m o to r^ tw ity  ;

3. decreased utilization of the hormone, and

4. altered responsiveness of the muscle cell.

A number of hormones, especially the somatotrophic and thyrotrophic, 

are of great importance in the regulation of protein metabolism during 

developmental growth, and changes in synthesis of these hormones might be 

significant in the development of senescent muscle atrophy. Reduced secretion 

of growth hormone (somatotrophin) (Laron, et al., 1970) in old age and 

decreased mobilization of glucose (Jakovlev et al., 1963) in response to exercise 

imply a diminished output of hormones and might potentiate the decrease of 

adaptive functions despite increased sensitivity of some organs to hormonal 

influences with old age (Frolkis, 1970).

Decreased secretion is probably the result of a decreased utilisation 

which results from accompanying general atrophy (Gussek, 1972). The changes 

in senescent muscle are probably not directly related to changes in activity of 

pituitary hormones (Finch & Hayflick, 1977).
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Androgens are potent stimulators of muscle hypertrophy, protein 

synthesis and red blood cell production. These factors have effects on oxygen 

transport and the aerobic production of ATP. There is a decrease of gonadal 

function with age, and the diminished capacity for hypertrophy in older males 

may be related to decreases in testosterone and/or other anabolic steroids.
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TH E EFFECTS OF CO FFEE ON TH E CARDIOVASCULAR SYSTEM

A complete chemical analysis of the coffee bean is difficult because of 

the complex nature of the molecular structure of its many components. 

Caffeine is an alkaloid structually identified as 1,3,7-trimethylxanthine. It is 

one of several xanthine derivatives which occur naturally in coffee beans, tea 

leaves, kola nuts and cocoa beans; theophylline (1,3-dimethylxanthine) and 

theobromine (3,7-dimethylxanthine) are two others. All three are structurally
to

related^metabolically important compounds such as the purines, xanthine and 

uric acid. All three affect similar parts of the body. The differences in their 

pharmacological effects lie principally in their relative potencies.

Caffeine is readily extracted from plant sources and is very soluble in

water, from which it crystallizes as a monohydrate with one molecule of water; 

from organic solvents it crystallizes as an anhydrous material, melting at 235° 

to 237°C.; it sublimes at 176°C at atmospheric pressure without decomposition. 

Pure caffeine is odourless, has a distinctly bitter taste and is stable at 

temperature, pH and salt concentrations normally encountered in food 

processing. Caffeine forms unstable salts with acids, but forms stable, water 

soluble combinations with sodium benzoate and sodium salicylate.

Coffee is by far the most important source of caffeine; it is responsible

for about 75% of the total caffeine consumption in the diet. Tea is next in

importance, followed by Cola beverages (one half from kola nut and one-half 

from added caffeine). Thus, dietary caffeine is consumed almost entirely in 

beverages. A smaller, but for some individuals a highly significant amount, 

comes from use of caffeine in drugs, usually of the over-the-counter variety.

Ingested caffeine is rapidly absorbed, metabolized and excreted in the 

urine as methylxanthine derivatives. Within a few minutes after ingestion, 

caffeine enters all organs and tissues, and reaches peak levels after one hour 

when it is distributed in proportion to tissue water content. The metabolic
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half-life of caffeine in the plasma and most organs is about three hours. 

Excretion is primarily renal, with little appearing in the faeces. Most of the 

ingested caffeine is metabolized, with only 3 to 6 per cent appearing in the 

urine as unchanged caffeine. The major urinary excretion product of caffeine 

in man is 1-methyl uric acid, formed by déméthylation of caffeine. The usual 

pharmacologically active dose of caffeine is 200mg.

As well as its CNS stimulant effect, other biological effects of caffeine 

include: elevation of plasma free fatty acids and glucose, diuretic, cardiac 

muscle stimulant, smooth muscle relaxant, and stimulation of gastric acid 

secretion (Graham, 1978; MacCornack, 1977 and Ashton, 1987).

The effect of caffeine on the cardiovascular system

Laboratory studies on animals show the intravenous administration of 

caffeine has paradoxical effects on the cardiovascular system. The heart 

muscular activity is increased {via Ca''” ^), producing an increased heart rate. 

There is vasodilation through peripheral depression of the vasoconstrictor 

mechanism. However there is also a central vasoconstrictor stimulation and 

cardiac irregularities often occur (Chapman & Miller, 1974).

The use of denervation procedures and blocking drugs in animal 

laboratory studies has shown that the blood pressure fall is due primarily to the 

peripheral vasodilation effects of caffeine. However, a secondary blood 

pressure rise occurs, thought to be due to a reflex vasoconstriction and cardiac 

stimulation. It has been suggested that the secondary pressor response 

represents a central effect of caffeine (Sollman & Pilcher, 1912a, 1912b and 

1912c).

Studies of the effect of caffeine on humans are segregated by 

therapeutic doses of caffeine and caffeine in coffee. To consider them together 

is a mistake; cardiovascular effects due to caffeine are duplicated only by 

heavy doses of coffee ingestion. Experimental studies of coffee consumption by
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humans have shown that blood pressure and pulse changes were slight in 

healthy young volunteers with administration of 3-4mg/kg of caffeine and 

coffee. Increases of lOmmHg in systolic blood pressure and decreases in pulse 

averaging 5 per minute have been reported (Horst, 1934). These alterations 

tended to diminish on repeated testing over a period of weeks. Older men (53-77 

years) showed a greater blood pressure rise than young men (21-25 years) after 

coffee consumption, but half the older subjects had very high control blood 

pressure levels.

Robertson et al., (1978) looked at the effects of caffeine upon blood 

pressure. Caffeine (250mg) or placebo was administered in a methylxanthine- 

free beverage. Although no significant changes in blood pressure followed the 

placebo, an elevation in both systolic and diastolic pressure was observed after 

caffeine and reached statistical significance at 30 minutes. The maximum 

change in blood pressure was seen 60 minutes after caffeine, when a mean 

increase of 14/lOmmHg was measured. Subsequently, blood pressure gradually 

moderated, but had not quite returned to normal 3 hours later. In addition to 

its effects on blood pressure Robertson et al., (1978) found that the acute 

administration of caffeine, in subjects who did not normally ingest 

methylxanthines, led to increases in heart rate, plasma epinephrine, plasma 

norepinephrine, plasma renin activity and urinary catecholamines. However, it 

should be noted, they undertook further experiments which showed that with 

chronic ingestion of caffeine, tolerance developed (Robertson et al., 1981).

The later study at the Chicago Western Electric Company (LeGrady et al., 

1981) did not find blood pressure was affected by the consumption of coffee. 

These results can be added to a mass of conflicting evidence which surrounds 

the subject, and serves to highlight the problem. Effectively controlling all 

variables would seem to the major difficulty in these studies, and further 

mention of these complicating factors will be made in the Discussion Section.
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Essential Hypertension

Approximately 90 per cent of all persons who have hypertension are said 

to have "essential hypertension", meaning that the hypertension is of unknown 

origin.

Hypertension can be very damaging because of two primary effects:

1. increased work load on the heart

2. damage to the arteries themselves by the excessive pressure.
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METHODS

Noie: The experimental set-up described in Section 1 ;PartA  is common to other 

experiments in later Sections. For this reason the procedure will not be repeated 

on each occasion; the reader will be referred back to this Section.

SECTION 1 : M 1/M 2 RATIO EXPERIMENTS : PART A

A sudden imposed movement of a limb results in a reflex response in 

some or all of its muscles. If a small voluntary contraction is being maintained 

in the muscle being stretched, the electromyographic record usually shows 

several peaks of activity. The components of this segmented reflex response 

have been recorded in a series of experiments and a comparison made between 

the M l (short-latency) and M2 (long-latency) responses in human subjects of 

various ages.

To study the reflex response in human subjects the first dorsal 

interosseous muscle (FDI) of the hand was used. The subjects were seated with 

the right upper arm in a vertical position. The horizontal forearm was 

supported by plaster casts and the hand restrained by elastic bands (see Figures 

2.1 and 2.2). It was essential that the arm and the hand, other than the index 

finger, were completely immobilised. The index finger had free range of 

vertical movement, and the subject was asked to keep as still as possible and to 

maintain exactly the same position throughout the experiment.

Surface recording electrodes were placed over the belly of the muscle 

and the subject was asked to maintain a small voluntary contraction of the 

muscle (about 5-10% of MVC - depending upon the level of MVC of the subject) 

by raising the index finger against a strain gauge, the output of which was fed 

to a meter which displayed the force. This steady contraction was maintained 

by the subject throughout the procedure. With the subject maintaining the 

small background voluntary contraction, the muscle was stretched briefly and



Figure 2.1 and Figure 2.2 Photographs of experimental explanation. set-up. See text for
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repetitively by an electro mechanical prodder which vertically tapped the 

finger (see Figure 2.3) The electrical response in the muscle was amplified, 

rectified and averaged. All records were measured by planimetry.

Subjects

Twenty-four subjects, male and female, ranged in age from 20-63 years. 

The older subjects were predominantly lecturers from the College, the younger 

subjects were mainly students. Local Ethical Committee approval was obtained 

and all subjects gave their informed consent.

Tension measurement

Calibration of the tension exerted by the subject on the strain gauge - to 

produce the small voluntary contraction - showed that a force of 1.09N was 

exerted, and was the same in all subjects.

Mechanical stimulation

The FDI was stimulated using a mechanical moving-coil prodder whose 

displacement could be varied between 0 and 2mm according to the voltage 

applied to it. The prodder was placed at the measured mid-point of the first 

and second joints of the index finger. A space of 1.0cm was kept between the 

index finger being stimulated and the rest of the hand. The hand and forearm 

were immobilised during the period of stimulation by a rig of plaster casts, 

hooks and elastic bands.

Electrical recording

Recordings of the response of the FDI to stretch were made using two 

surface electrodes in the form of silver chlorided discs 9.0mm diameter. The 

electrodes were filled with conducting jelly and stuck with micropore tape to 

the skin over the belly of the FDI. The inter-electrode distance was 25mm, 

midpoint to midpoint, and the inter-electrode resistance kept below 20kriin all 

subjects. To decrease electrical resistance in the skin, alcohol-soaked swabs
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Figure 2.3 Electro-mechanical Prodder used in M1/M2 Series.

Initially the prodder was 1mm above the surface of the 

skin.
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were used to cleanse the skin before the electrodes were applied. An earth 

electrode was attached to the forearm.

Processing of the electromyographic response

The electromyographic signal recorded by the surface electrodes on the 

FDI was amplified. A low-frequency filter with its 3-dB point set to 0.8Hz and 

a high-frequency filter set to 30kHz were used. The gain was xlOOO. The 

resulting record was displayed on an oscilloscope. The signal was then rectified 

and the full wave rectified signal was also displayed on the oscilloscope. This 

signal was then fed to an averager whose sweep was triggered 20ms prior to the 

mechanical stimulus.

Stimulation

A crystal-controlled oscillator timed events. An initial pulse started the 

averager sweep which was of 160ms duration. At 20ms after zero time the 

stimulus, a mechanical pulse of 4ms duration, was given. Between 32 and 256 

sweeps, according to the experimental requirements, were averaged. Repetition rate was 503ms.

The whole procedure was repeated four times with each subject, each 

time with a change in the voltage to the prodder. The voltages used were 5V,

9V, 13V and 17V, as measured by a digital volt meter. Calibration showed that 

these voltages exerted forces of 2.73N, 4.18N, 5.62N and 7.19N respectively. The 

forces were measured by using weights which would just stop the prodder from 

moving. Each experiment began with the highest stimulus strength of 17V, after 

which the remaining order was chosen randomly.

Measurement of the averaged response

To provide a permanent record, the averaged response was printed out 

on an XY recorder. The areas of the M l and M2 peaks were measured with a 

planimeter by three persons independently. The peaks were measured from the 

take off to the return points of the waveform; these points were established by 

comparison of all the records in a series, using a light box.
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A base line representing zero potential difference between the recording 

electrodes was made on all records at the end of each trace. This was achieved 

by earthing the signal at the amplifier input during the 147th to 157th ms of 

each recorded response.

SECTION 1 : PART B 

Control Experiments

Changes with increasing age were found in the electromyographic 

response of the FDI to stretch with increasing age. Control experiments were 

conducted to check that the findings were not due simply to altered physical 

properties of the neuromuscular system and/or the limb joints.

1 : To investigate muscle and joint stiffness

Increasing muscle and joint stiffness are known to occur with increasing 

age so it was necessary to discover whether or not such changes were 

contributing to the changes with age seen in the reflex response to stretch.

In this experiment muscle movement was directly measured. An 

accelerometer, weighing 13g, (see Appendix page 204) was placed over the belly 

of the FDI, held in the correct position by double-sided adhesive tape. The 

index finger of the subject was mechanically stimulated with the prodder at the 

four different voltages as described in Part A of this section. Records of the 

muscle displacement which occurred when the muscle was stretched were 

averaged and printed out on the XY recorder. The responses of ten of the 

subjects (with a wide age range) were recorded.
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II : Neuromuscular Block

This series of experiments was divided into three parts: 

i) the experimental set up was the same as in Part A of this section. In 

addition two 9.0mm diameter surface stimulating electrodes were positioned on 

the skin over the ulnar nerve at the elbow.

With a sweep time of 40ms, the responses to electrical stimuli were 

recorded. The maximal response for a 50ps pulse width was found in each 

subject.The maximal response was usually obtained with around 90V. After 

2ms the first electrical stimulus was applied, followed 25ms later by a second 

identical electrical stimulus. This was repeated eight times and the responses 

were digitized and stored.. The procedure was repeated, but gradually bringing 

the stimuli closer together. The initial stimulus was at 2ms and the delay 

before the second stimulus was progressively reduced by 2ms steps. Below 8ms 

the delay before the second stimulus was reduced in 1ms steps, the final record 

being made with a 2ms gap between the two.

In this experiment a larger strain gauge, which was linked to a meter, 

was used. After the control record, subjects were asked to make a maximum 

voluntary contraction (MVC) by raising the index finger against the strain 

gauge. The duration of the MVC varied betweeen subjects; it was sustained for 

up to 3 minutes. Although there was some subject variability, a maximum 

voluntary contraction was found to be around 250 divisions on the meter 

(6.25N). The subject was asked to maintain the MVC. During the last few 

seconds of the MVC the stimuli were switched on and the responses averaged.

ii) a concentric needle electrode replaced the two surface recording 

electrodes on the FDI, and one of the 9.0mm diameter electrodes over the ulnar 

nerve at the elbow was replaced by a plate electrode (5mm x 4mm). Motor unit 

action potentials were recorded from between the tip of the needle electrode 

and the shaft. A 40ms sweep was used. The maximal response for a 50\is pulse
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width was found in each subject and initially two electrical stimuli were given 

at 2ms and 24ms. Again a total of eight responses were averaged. The 

procedure was repeated as described in i) of this section.

The smallest time interval between the two stimuli was then chosen 

where two distinct responses were obtained.

The subject was asked to make a maximum voluntary contraction for up 

to three minutes in exactly the same way as described in i) above.

iii) a 0.2mm diameter, insulated tungsten micro-electrode was inserted 

into the FDI. The micro-electrode was varnished with several layers of 

Vollalac, the end was exposed for 15pm and electrolytically polished to a tip 

diameter of approximately 5pm. The electrode resistance was at least lOOkO. 

Another bare tungsten wire of the same diameter was inserted into the skin of 

the back of the hand to act as an indifferent electrode. Single muscle fibre 

potentials were recorded from the tip of the micro-electrode.

Potentials were identified as originating from single muscle fibres in 

three ways. First, the action potential duration was not more than 1.0-1.5ms. 

Secondly, the response was all or nothing as the electrical stimulus strength was 

varied. And, thirdly, regular trains of identical form were observed.

With a sweep time of 160ms a train of electrical stimuli, 20V and 50ps 

duration, was applied. There was an interval of 23ms between each stimulus.

The effects of fatigue were investigated. Firstly, responses were 

recorded after trains of stimulation, which were given for varying lengths of 

time. Second, the effects of MVCs on the response were recorded.
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III : Experiments on nerve conduction

An extremely remote possibility to account for smaller-sized reflex 

muscle responses in aged persons might be that there is some interference to 

conduction in the motor or sensory nerve fibres. It must be emphasised that 

nerve conduction impairment could not explain the differential decline in M l 

(as opposed to M2) with age. However, a rough preliminary study was carried 

out to see if any trends could be observed in nerve conduction parameters and 

age.

The ulnar nerve was stimulated at the elbow and the resulting compound 

action potential recorded at the wrist. Eight subjects, aged between 24 and 66 

years took part. No obvious relationship holds between the amplitude of the 

supramaximal nerve volley and the age of the subject.

Obviously, a larger sample of subjects would have to be recorded from, 

but in the circumstances, eight records would seem to be sufficient to 

demonstrate that there is no significant age effect on the size of the ulnar 

compound action potential.
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SECTION 2 : FATIGUE OF FDI

The next step was to look at the effect of muscle fatigue on the reflex 

response of the muscle to stretch, and to see what changes, if any, could be 

linked to the age of the subject. Again the FDI was used; this time to assess the 

effect of a strong voluntary contraction on the reflex response. The method 

here differed from the general procedure in that after the initial control 

records had been made the subject was asked to make a strong voluntary 

contraction for 2 minutes. Immediately after this contraction further records 

were made. The left arm was used in all subjects.

Subjects

The twelve subjects, male and female, ranged in age from 19-43 years. 

Tension m easurem ent

Calibration showed that the force exerted by the subject in maintaining 

the small steady voluntary contraction (50 divisions on the meter) was, in this 

series of experiments, 1.25N. (A different strain gauge was used in this 

experiment).

M echanical stim ulation

A different mechanical prodder was used in this experiment, the 

displacement of which varied between 0 and 6.5mm (see Figure 2.4). The 

prodder was positioned 1mm above the distal interphalangeal joint of the index 

finger.

S tim ulation

The averager sweep was 160ms as before, but the stimulating mechanical 

pulse had a duration of 6ms. A total of 128 sweeps were averaged. The voltage 

to the prodder was 12.2V which, when calibrated, equalled a force of 1.14N.
B

Repetition intervals were 379ms.



92

MOTOR BODY

SKIN CONTACT AREA

HAMMER

SHAFT

Figure 2.4 Mechanical Prodder used in Fatigue Series.
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Units of measurement of action potentials

The areas of the M l and M2 peaks have been given the units V.s since 

they represent voltage on one axis and time on the other. Ideally, the current 

flow generated by the muscle action potentials should be measured (Coulombs). 

However, paths of current flow vary between subjects and the series or parallel 

resistances that exist within the muscle, fascia and subcutaneous elements 

cannot be estimated. The voltage between two points on the skin over the 

muscle belly was measured; this is a good approximation to the calculated 

current flow, provided that tissue and electrode impedance does not change. 

Presenting the results as V.s, although not accepted units, is preferable to the 

use of cm^ or "arbitrary units" since it does enable some comparison to be made 

among different subjects.

It was, in fact, surprising that the amplitudes of M l were comparable in 

different subjects, and this must mean that the anatomy of the small hand 

muscles does not vary too much among typical subjects.
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SECTION 3 : NEUROMUSCULAR BLOCK

The FDI was used to investigate the possibility that neuromuscular block 

can occur in fatigued muscle. The subject was seated with the left forearm and 

hand horizontal and supported by plaster casts in the usual way. Action 

potentials were recorded from single motor units in the FDI (see below) using 

surface electrodes placed over the belly of the muscle, using electrical 

stimulation of the ulnar nerve at the elbow.

After the recording of controls the subject was asked to sustain a two 

minute strong voluntary contraction of the FDI by raising the index finger 

against the strain gauge. The subject was asked to sustain a force of 12.5N, 

(500 divisions on the meter).

Immediately after the strong contraction a further record was taken of 

the response of the single motor unit to the same electrical stimulation. The 

frequency of electrical stimulation at which neuromuscular block (NMB) 

occurred was also investigated.

Subjects

Fifteen subjects, male and female, age range 17-44 years, took part in the 

experiment.

Electrical stimulation

The ulnar nerve of the left arm was electrically stimulated by applying 

one 9.0mm diameter chlorided silver disc electrode to the skin over the 

olecranon fossa at the elbow and one large plate electrode placed proximally on 

the lateral surface of the upper arm. The inter-electrode distance was 60mm. 

The precise location of the nerve stimulating electrode was adjusted until a 

record from a single motor unit was obtained on the oscilloscope. It was 

necessary to investigate a single motor unit that responded to each electrical 

stimulus in an all or nothing fashion with a wide range of stimulating voltage 

free of a second one. Sometimes this was difficult but usually it was possible
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to record an action potential from a single motor unit using the surface 

electrodes. Initally a roving electrode was used to find the best position for the 

stimulating electrode. To ensure the electrode position did not alter during the 

strong voluntary contraction the electrode had to be firmly and immovably 

fixed to the skin using tape and cotton wool pads. An array of electrodes was 

used, and the two electrodes that provided the best record were employed.

Stimuli were of SOps duration and a single motor unit was usually found 

at about 45V. Needle electrodes could not be used as it was necessary to use the 

same single motor unit action potential throughout the MVC It is not possible 

to do this with needle electrodes; the MVC causes the needle tip to move 

relative to the motor unit..

In the first part of the experiment the subject received electrical 

stimulation at different frequencies; 3Hz, lOHz, 20Hz, 40Hz and 60Hz. On each 

occasion the stimulation lasted for Imin; there was 5 minutes rest allowed 

between each frequency of stimulation. The frequency of electrical stimulation 

which resulted in the loss of the action potential was noted.

After a five minute rest period a control record was again taken at 3Hz. 

When the action potential had fully recovered from the earlier stimulation the 

subject was asked to make a strong voluntary contraction of various forces, 

maintained using the strain gauge, for two minutes; no electrical stimulation 

was given during this contraction. Immediately after the strong contraction, 

with the electrical stimulation frequency set at the 3Hz necessary to record 

action potentials, a further record was taken. Additional records were then 

taken until the action potential returned, indicating that NMB was no longer 

present.

Electromyographic recording

In this experiment the recording electrodes were 35mm apart and a 

20mm wide band of aluminium foil around the forearm acted as an earth.
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Electromyographic processing

The action potentials recorded from the single motor unit were amplified 

using a low frequency filter with its 3-dB point set to 80Hz and a high 

frequency filter set to to give the best record, but remained the same during 

any one experiment. The gain was xlOOO. The signals were displayed on an 

oscilloscope and stored digitally to capture the response at a given moment.
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SECTION 4 : REFLEXES IN BICEPS

The electromyographic response which can be recorded in FDI in 

response to stretch also produces a response in the biceps muscle. The ulnar 

nerve was stimulated electrically, and the EMG response in biceps was recorded.

It has already been shown that the area of the M l component of the EMG in 

older people is reduced. If this reduction is the result of impaired reflex 

sensitivity i.e., the change lies in the muscle receptors, then eliciting the same 

reflex response by stimulating afferent nerves directly should show no such 

diminution.

Subjects

Twenty two subjects, male and female, ranged in age from 19-65 years. 

E lectrica l record ing

Chlorided silver disc recording electrodes of 9.0mm diameter were placed 

over the belly of the left biceps muscle 60mm apart, and a large plate electrode 

placed on the forearm acted as an earth.

E lec trica l stim ulation

Two stimulating electrodes were applied to the ulnar nerve at the left 

wrist; again using silver disc electrodes as described above. The inter-electrode 

distance was 30mm and the electrode resistance was kept below 40k^. The EMG 

response in the biceps muscle to stimulation at various voltages was recorded. 

Electrical stimulation ranged from 25-60V, and the pulse width was 50ps.

S tim ulation

An initial pulse started the averager sweep which was of 160ms duration.

At 20ms the electrical stimulus, which was of 50ps duration was given. 128 

sweeps were averaged.
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SECTION 5 : TREMOR

The tremor of the hand, rotating about the wrist joint, and the tremor of 

the middle finger were measured using an accelerometer. Tremor was examined 

in subjects taken from a wide age range to find out if there were any age- 

related changes.

Subjects were seated comfortably and the left elbow and forearm 

supported at a natural height, with the arm held in a horizontal position by a 

closely fitting plaster mould which was rigidly mounted on to a small recording 

stage. The forearm was further stabilized at a point immediately proximal to 

the wrist joint by the pressure of a metal bar also mounted on the recording 

stage. The arrangement permitted free wrist flexion and extension movements 

while eliminating, or minimizing, movements about other joints in the limb.

Finger tremor was recorded from the middle finger of the hand, which was supported up to the 

Subjects meta-carpo-phalangeal joint.

Twenty six subjects, male and female, ranged in age from 20-70 years.

A ccelerom etry

Tremor was recorded with an accelerometer (see Appendix page 204) 

which was attached to a plastic ring and placed over the middle finger of the 

hand. The output of the accelerometer was subjected to spectral analysis.

A nalysis

Frequency analysis of the signal was carried out in real time using the 

Hewlett-Packard 3582A spectrum analyser, remotely programmed with a type 

9528A desk-top computer and automatically plotted on a type 7225 graphics 

plotter. The frequency span was 0-25Hz, which gave a time record length (N&t) 

of 10s, and a calculated point spacing (ûf) of O.lHz. A Hann pass-band shape 

was used, to minimize leakage, giving 0.15Hz equivalent noise band width.

Since the sampling frequency was 102.4Hz (i.e., Nyquist frequency = 51.2Hz) 

alias contamination did not occur within the specified frequency range. Four
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separate, consecutive 10s power spectra were averaged to give 90% confidence 

limits between +4.7 and -2.9dB for each spectral point.

The smoothed spectra were obtained by the method of thirds. For each 

spectral power point the computer summed its value with that of the adjacent 

two points and calculated the mean. This process was repeated thirty two times. 

Before display, the square root of each smoothed point was extracted to produce 

the amplitude spectrum.

C alib ra tion

For accelerometry the calibration curves supplied with the transducer 

were employed. It will be noted that all spectral components are given as an 

amplitude in mV. This is so because the spectral values are expressed as the 

square root of their power when they are plotted (for reasons given in Gottlieb 

& Lippold, 1983).

The amplitude scales are referred to mV at the electrodes and were 

obtained by using a 3Hz sine wave of ImV peak-to-peak amplitude applied to 

the input plugs (with the electrodes disconnected and time constant set to 0.2s), 

the source impedance being 4M%. Gains were adjusted to give a full scale 

deflexion peak in the spectrum (= 40mV/spectral point) with the ImV 

calibrating signal. The accelerometer gave 31.6mV input to the analyser for a 

linear acceleration of Im /s^  and had 3dB cut-off points in the charge amplifier 

at O.lkHz and 0.2Hz. Gains were adjusted to give full scale deflexion ( = 

40mV/spectral point) for an acceleration of 5m/s^.



10 0

SECTION 6 : TRAINING IN FDI

The reduction in area of the M l component of the EM Gfrom  the FDI in 

response to stretch in older people could be the result of muscle disuse. To 

investigate this possibility the finger of a 44 year old subject was trained for 

eight weeks.

The experimental set up was as given in Section I :A.

Training

Each day for four weeks the subject lifted a 1.0kg weight, using FDI, 

suspended from the index finger and maintained a 2 min MVC. In the second 

four weeks of the programme, in addition to the 2 min MVC each day, the FDI 

was made to raise and lower the index finger 30 times with the 1.0kg weight 

suspended.

Electromyographic recording

9.0mm diameter surface recording electrodes, 35mm apart were placed on 

the belly of the FDI, and 128 responses were averaged. EMG records were

made before, during and after the training programme. The mechanical

prodder used to stretch the FDI is shown in Figure 2.5. At each recording 

session three records were made, and the average area of M l, the average area 

for M2, the M l amplitude and the Aspect Ratio were measured.
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Figure 2.5 Mechanical Prodder used in Training Series.

Repetition rate for stimulus was 379ms.
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SECTION 7 : COFFEE AND HYPERTENSION

If the change in the stretch reflex in older people is the result of an 

impaired reflex sensitivity of stretch receptors, it might be expected that other 

stretch receptors in the body would be similarly affected. The impaired reflex 

sensitivity could contribute to hypertension, for example, if the stretch 

receptors controlling blood pressure changed with age.

To investigate this possibility the effects of the caffeine in coffee on the 

blood pressure of a group of subjects with a wide age range was studied.

EMG recordings of the FDI response to stretch were made.

Protocol

The subject was seated comfortably on a chair and the blood pressure 

was taken. Fifteen minutes later the blood pressure was again recorded. The 

subject was then given a measured quantity of strong coffee. Fifteen minutes 

later the blood pressure was again recorded. Three more blood pressure 

readings were then taken at fifteen minute intervals.

The EMG response of the FDI to stretch was recorded and processed in 

the usual way. Subjects gave their age, smoking habits and caffeine intake. In 

addition their blood pressure history was investigated.

The technique of blood pressure recording has subjective elements in it, 

although the magnitude of the effects found in this study were most unlikely to 

be the result of this kind of error. Ideally, a hidden (random) zero 

sphygomanometer should be used; however, it was found entirely satisfactory to 

achieve double-blind readings by employing two persons to make the 

measurement. One person listened to the Korotkow sounds without visual 

monitoring; the other took the mercury reading.
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RESULTS

SECTION 1: PART A

CompaxisoD of M l. M2 and the M1/M2 ratio in subjects of different ages.

The short-latency component - M l

The spinal stretch reflex (M l) in the FDI is smaller in older people. 

Figure 3.1 shows records of the electromyographic response to a brief and 

repetitive stretch of the FDI by an electro-mechanical prodder. The top trace 

shows the response recorded from a 20 year old subject; the M l peak has a greater 

area than the M l peak in the 42 year old (bottom trace). The results of all 24 

experiments showed a consistently smaller area for the M l peak in older people 

(see Table 3.1).

The experimental set up, and the care taken to reproduce exactly similar 

conditions for each subject was of paramount importance. Without these 

precautions the results would have been so variable that comparison of EMG 

components would have been impossible. The rig, which had been specially

constructed for the experiment, completely immobilised the arm of the subject. It 

was lined with cotton wool so that the arm was as comfortable as possible, for it 

was important for the subject to feel completely relaxed. The prodder was 

positioned in exactly the same place with each subject, and the position on the 

skin marked with a pen. The subject was asked to keep as still as possible during 

the entire experiment, and to ensure that the prodder remained on exactly the 

same spot throughout the experiment.
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REPRESENTATIVE ELECTROMYOGRAPHIC RECORD SHOWING THE

SMALLER SIZE OF M l IN OLDER PEOPLE

2 5 6  X  

_ 2 0 y r

4 2 y r

Stim
100 ms

Figure 3.1 The averaged rectified surface EMG of the first dorsal
interosseous (FDI) to a brief stretch. The upper record represents the EMG 
recorded from a 20 year old subject. The lower record shows the response of a 
42 year old subject. 256 responses were averaged.

Top trace shows method for delineating areas to be measured.



TABLE 3.1 1 0 5

VALUES FOR Ml AND M2 cm^

EXP. # AGE Ml M2

8 . 0 0 3 8 . 0 0 1 . 8 0 4 . 1 8
1 3 . 0 0 5 1 . 0 0 2 . 1 3 6 . 3 8
1 4 . 0 0 4 2 . 0 0 0 . 5 5 2 . 7 5
1 9 . 0 0 6 0 . 0 0 0 . 0 5 4 . 5 0
2 3 . 0 0 6 3 . 0 0 0 . 4 5 3 . 5 8  OVER 30  YEARS
2 6 . 0 0 4 6 . 0 0 1 . 2 0 3 . 8 5
3 0 . 0 0 4 3 . 0 0 0 . 8 0 2 . 5 5
3 2 . 0 0 5 9 . 0 0 0 . 9 5 1 . 5 8
3 3 . 0 0 4 9 . 0 0 1 . 4 8 3 . 5 0
3 4 . 0 0 5 2 . 0 0 1 . 8 5 6 . 7 5

1 0 . 0 0 2 2 . 0 0 2 . 4 5 2 . 4 3
1 1 . 0 0 2 1 . 0 0 3 . 3 3 6 . 8 5
1 2 . 0 0 2 1 . 0 0 3 . 0 5 2 . 5 3
1 5 . 0 0 2 1 . 0 0 3 . 1 0 1 . 3 3
1 6 . 0 0 2 8 . 0 0 4 . 2 3 7 . 4 3
1 7 . 0 0 2 0 . 0 0 3 . 5 0 5 . 4 8
1 8 . 0 0 2 4 . 0 0 3 . 3 8 4 . 6 0  UNDER 30 YEARS
2 0 . 0 0 2 0 . 0 0 3 . 2 0 4 . 8 5
2 1 . 0 0 2 0 . 0 0 2 . 1 5 3 . 4 0
2 2 . 0 0 2 0 . 0 0 2 . 4 8 3 . 6 0
2 4 . 0 0 2 1 . 0 0 2 . 7 3 4 . 8 3
2 7 . 0 0 2 4 . 0 0 3 . 0 5 4 . 5 0
2 9 . 0 0 2 0 . 0 0 2 . 8 0 2 . 0 3
3 1 . 0 0 2 5 . 0 0 2 . 7 5 4 . 1 0
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Using a planimeter, the areas of the M l and M2 peaks for each subject 

were measured from the takeoff to the return points of the wavd'orm. The areas 

were measured by three people independently. The start and end points of the 

M l and M2 components were decided upon by visual inspection of all the records 

in a series, i.e., all records from one subject. Measurement of the records in this 

way provided consistent results when the independently measured values were 

compared.

When these results were studied, the subjects appeared to fall naturally 

into two groups - those under 30 years and those over 30 years. Because of this, 

it was decided that the "young group" should be those below 30 and the "older 

group" those over 30 years old. Thirty is the cut-off level that best divides the 

results into two groups.

The mean area of M l at each stimulus strength was plotted against the 

voltage applied to the prodder. Regression analysis gives the "best fit" line to the 

data in terms of having the least scatter. The results of such an analysis of the 

Ml values shows a statistically significant difference between the area of M l in 

the young and the old subjects at all forces of stimulation (Figure 3.2), The 

regression lines on Figure 3.2 indicate, by the significant difference in their 

slopes, that the sensitivity to muscle stretch is significantly different between 

young and old subjects. The difference in the intercepts of the two regression 

lines indicates that there is a higher stimulation threshold in the older subjects.

Table 3.2 gives values for M l at all stimulus strengths for both groups, and the 

results of the regression analysis of those values. Full details of the analysis can 

be found in the Appendix page 216.

The long-Iatency component - M2

When the area of M2 is measured in the same way, no such difference 

between young and old subjects is found. When the area of M2 is plotted against
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Figure 3.2 A graph showing the difference in the area 
age groups. The area of M l is plotted against stimulus strength.

of M l in the two



TABLE 3.2 108

VALUES FOR Ml AT ALL STIMULUS STRENGTHS cm^

EXP.  ̂ AGE 5V 9V 13V 17V
8.00 38.00 1.90 1.00 2.00 2.30

13.00 51.00 0.00 2.80 2.10 3.60
14.00 42.00 0.00 0.10 0.10 2.00
19.00 60.00 0.00 0.00 0.00 0.20
23.00 63.00 0.50 0.60 0.60 0.10
26.00 46.00 0.40 1.00 1.70 1.70 OVER 30
30.00 43.00 0.10 0.60 0.50 2.00 YEARS
32.00 59.00 0.60 0.20 1.90 1.10
33.00 49.00 1.00 1.00 2.10 1.80
34.00 52.00 0.30 1.30 3.30 2.50

y 0.48 0.86 1.43 1.73
SD 0.60 0.81 1.07 1.05
SE 0.19 0.26 0.34 0.33

10.00 22.00 1.00 2.40 2.90 3.50
11.00 21.00 2.10 3.90 3.20 4.10
12.00 21.00 2.70 2.50 3.10 3.90
15.00 21.00 1.50 3.20 2.80 4.90
16.00 28.00 2.00 3.80 5.30 5.80
17.00 20.00 2.20 3.00 2.60 6.20
18.00 24.00 2.90 1.80 4.90 3.90 UNDER 30
20.00 21.00 1.90 3.60 3.20 4.10 YEARS
21.00 20.00 0.50 3.20 2.60 2.30
22.00 20.00 2.10 2.40 2.10 3.30
24.00 21.00 1.90 4.00 2.90 2.10
27.00 24.00 1.30 2.20 4.20 4.50
29.00 20.00 1.10 2.40 2.60 5.10
31.00 25.00 1.80 3.80 1.70 3.70

y 1.79 3.01 3.15 4.10
SD 0.66 0.73 1.01 1.16
SE 0.18 0.20 0.27 0.31

RESULTS OF REGRESSION ANALYSIS ON Ml VALUES

OVER 30 YEARS Slope = 1.02 Intercept = - 0.06
UNDER 30 YEARS Slope = 2.84 Intercept 1.08

(when X = 10)
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the voltage applied to the prodder the regression lines show no significant 

difference between the young and older subjects (Figure 3.3). The least squares 

regression analysis of the M2 values can be found in the Appendix page 216.

M l and M2 have different physiological origins. The M l component is the 

spinal stretch reflex receiving its excitation from the primary endings of the 

muscle spindles, whereas M2 is the result of activation of predominantly skin 

afferents. Because they have different origins it is, perhaps, not surprising to 

find that the two components are not changed by age in the same way.

T h e M l / M 2  ra tio

Because factors such as inter-electrode distance, skin resistance, electrode 

position and hand size could have introduced an unwanted variability between 

subjects, the ratio of the areas of M l and M2 was calculated. In each subject M l 

and M2 would probably be affected equally by such variables. In Figure 3.4 the 

M1/M2 ratio has been plotted against age in years. All the subjects under 30 

years old had a ratio above 0.45 whilst all but one of those over 30 years were 

below that level.

Because values which are ratios are not normally distributed it is not 

possible to use parametric statistics in their analysis. In comparing two separate 

sets of observations the Wilcoxon rank sum test is an appropriate non-parametric 

(or distribution free) statistical analysis. This test is a very simple test of 

significance. Full details of the analysis can be found in the Appendix page 218, 

and the summarized results are in Table 3.4 together with the M1/M2 ratio values 

for the two age groups. There is a highly statistically significant difference in 

the M1/M2 ratio between the two age groups (p< 0.001).
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Figure 3.3 A graph of the area of M2 plotted against stimulus strength. 
There is no significant difference between the two age groups.



TABLE 3.3 111

VALUES FOR M2 AT ALL STIMULUS STRENGTHS cm^

EXP. a AGE 5V 9V 13V 17V
8 .00 38.00 3.40 3.10 4.20 6.00

13.00 51.00 4.30 7.50 6.80 6.90
14.00 42.00 1.70 1.90 3.20 4.20
19.00 60.00 4.20 0.00 5.10 8.70
23.00 63.00 1.60 4.40 4.30 4.00
26.00 46.00 1.90 4.70 3.80 5.00 OVER 30
30.00 43.00 1.50 3.80 2.80 2.10 YEARS
32.00 59.00 0.90 2.00 2.20 1.20
33.00 49.00 4.90 2.50 3.20 3.40
34.00 52.00 6.60 6.40 9.20 4.80

y 3.10 3.63 4.48 4.63
SD 1.86 2.23 2.11 2.21
SE 0.60 0.71 0.67 0.70

10.00 22.00 1.90 1.90 3.50
11.00 21.00 5.00 5.10 7.20 10.10
12.00 21.00 1.30 2.60 3.60 2.60
15.00 21.00 1.90 1.20 0.60 1.60
16.00 28.00 6.50 8.00 6.00 9.20
17.00 20.00 4.20 4.60 5.10 8.00
18.00 24.00 5.00 2.80 6.10 4.50 UNDER 30
20.00 20.00 3.50 4.10 5.40 6.40 YEARS
21.00 20.00 1.20 3.90 5.80 2.70
22.00 20.00 3.10 3.40 3.50 4.40
24.00 21.00 3.80 6.10 4.20 5.20
27.00 24.00 4.00 1.80 4.00 8.20
29.00 20.00 0.60 1.20 3.20 3.10
31.00 25.00 2.00 4.60 2.30 7.50

ÿ 3.24 3.66 4.21 5.50
SD 1.76 1.95 1.85 2.73
SE 0.28 0.52 0.49 0.73

RESULTS OF REGRESSION ANALYSIS ON M2 VALUES
AND STIMULUS STRENGTH

OVER 30 YEARS Slope = 3.82 Intercept = 2.46
UNDER 30 YEARS Slope = 3.98 Intercept = 2.13

(when X = 10)
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TABLE 3.4

113
M1/M2 RATIO VALUES FOR THE TWO AGE GROUPS

EXP # M1/M2 cm^ AGE
8.00 0.44 38.00

13.00 0.30 51.0014.00 0.14 42.00
19.00 0.01 60.00 OVER 30 YEARS23.00 0.15 63.00
26.00 0.30 46.0030.00 0.30 43.00
32.00 0.64 59.00
33.00 0.45 49.00
34.00 0.28 52.00

SUM 3.01
MEAN 0.30SD 0.18
SE 0.06

10.00 0.26 22.00
11.00 0.51 21.00
12.00 1.35 21.00
15.00 2.80 21.00
16.00 0.57 28.00
17.00 0.62 20.00 UNDER 30 YEARS
18.00 0.72 24.00
20.00 0.66 21.00
21.00 0.64 20.00
22.00 0.68 20.00
24.00 0.57 21.00
27.00 0.79 24.00
29.00 1.57 20.00
31.00 0.74 25.00

SUM 13.48
MEAN 0.96
SD 0.62
SE 0.17

RESULTS OF WILCOXON RANK SUM TEST
Sum of ranks M1/M2 over 30 years = 59.50 

(n=10)
Sum of ranks M1/M2 under 30 years = 240.50 

(n=14)
There is a statistically 
significant difference between the 
two groups (p<0.001)
For all ANOVA results see Appendix page 208
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Blood Pressure

The casual blood pressure of each subject was recorded whilst at rest.

Since a rough guide to normal systolic blood pressure, in mm Hg, can be made by 

adding the age of a subject to 100, the subjects were divided into two groups: 

those with a systolic blood pressure (SBP) < 130mmHg and those with SB?

> 130mmHg.

Figure 3.5 is a graph of the M1/M2 ratio plotted against systolic blood 

pressure for all subjects. Full details of the statistical treatment of the results 

(Wilcoxon Rank Sum Test) can be found in the Appendix page 219. A summary 

of the results, together with all M1/M2 ratio values and SBP for the two age 

groups can be found in Table 3.5. There is a statistically significant difference 

(p <0.01) between the two blood pressure groups. As the M1/M2 ratio falls the SBP 

rises. Since the size of the ratio is a reflection of the area of M l, the results 

show that a smaller stretch reflex response is associated with a rise in SBP.

Each subject completed a questionnaire. This provided the following

details:

1. Smoker or non-smoker

2. Caffeine intake

3. Diet - vegetarian or non-vegetarian

4. Amount of exercise

5. Musical instrument - play or not

6. Hypertensive relatives

A preliminary unpaired, two-tailed t-test, comparing the means of 

subjects above and below 30 years of age, showed that their M1/M2 ratios were 

highly significantly different. However, type I errors are introduced if data is 

not normally distributed, as is the case with ratios.
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The experiment involved 189 measures across 16 conditions for 24 subjects 

(see Appendix Table 5.1). The data were analysed by Analysis of Variance 

appropriate for a randomized blocks design where each variable formed a 

separate block in which between 5 and 19 observations were made. Post-hoc 

testing for significant differences among the means was performed using the 

method of Tukey and Snedecor (1967 and see Plutchick, 1983). The fixed range 

test (using LSR) gave the same result.

The F-value from the ANOVA was significant at the level p < 0.0001. 

Comparison of the group means after the ANOVA, revealed that the interactions 

between groups A & B (old and young) and A & H (young and non-coffee 

drinkers) just failed to reach significance at the p = 0.05 level. The other 

interactions were not significant (see Table 5.2)

This can be taken to indicate that the highly significant difference 

(p < 0.0001) found in the ANOVA carried out solely on the groups A & B (young 

and old subjects) is not completely independent of all the other factors 

investigated. In particular, there is a strong interaction between non-coffee- 

drinking and age. The details of the statistical methods employed can be found 

in Appendix p a g es209-214 ,
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TABLE 3.5

M1/M2 RATIO FOR THE 2 BLOOD PRESSURE GROUPS
1 1 7

EXP # SBP M1/M2 AGE
8.00 130.00 0.44 38.00

10.00 130.00 1.26 22.00
13.00 137.00 0.30 51.00
16.00 140.00 0.57 28.00
17.00 136.00 0.62 20.00
19.00 150.00 0.01 60.00
23.00 171.00 0.15 63.00
30.00 130.00 0.34 43.00
31.00 148.00 0.74 25.00
33.00 133.00 0.45 49.00

SUM 1405.00 1.68 399.00
MEAN 140.50 0.35 39.90
SD 12.89 0.28 15.77
SE 4.08 0.09 4.99

11.00 123.00 0.51 21.00
12.00 118.00 1.35 21.00
14.00 118.00 0.14 42.00
15.00 110.00 2.80 21.00
18.00 121.00 0.72 24.00
20.00 117.00 0.66 21.00
21.00 129.00 0.64 20.00
22.00 121.00 0.68 20.00
24.00 118.00 0.57 21.00
26.00 120.00 0.30 46.00
27.00 123.00 0.79 24.00
29.00 108.00 1.57 20.00
32.00 117.00 0.64 59.00

SUM 1543.00 10.01 360.00
MEAN 118.69 0.83 27.70
SD 5.42 0.71 12.74
SE 1.50 0.20 3.53

cm

SBP >130mmHg

SBP <130mmHg

RESULTS OF WILCOXON RANK SUM TEST
Sum of ranks M1/M2 <130mmHg = 186 

(n=13)
Sum of ranks M1/M2 >130mmHg = 90 

(n=10)
At p <0.01 there is a statistically 
significant difference between the 
two groups.
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SECTION 1 : PART B 

Control experiments

The aim of the control experiments was to check that the change in M l 

area in the older subjects was not the result of altered physical properties of the 

neuromuscular system and/or the limb joints.

I : Investigation of muscle and joint stiffness in the FDI.

An accelerometer placed over the belly of the FDI was used to measure the 

mechanical behaviour of the muscle during stretching. Figure 3.6 is a 

representative record of the traces recorded; the height from the zero 

displacement level of the first peak (displacement) was measured for each voltage 

and the peak displacement calculated. Not all traces had as many as 6 die-away 

oscillations. On the first of the two graphs in Figure 3.7 the peak displacement 

of the muscle has been plotted against the voltage applied to the prodder. The 

relationship was linear, the greater the stimulus the larger the displacement. The 

second graph (Figure 3.8) shows the peak displacement of the muscle against age 

in years. There was no correlation between peak displacement of the muscle and 

age. Table 3.7 gives the accelerometer values. It seemed unlikely from these 

results that the difference in the stretch reflex between the young and the older 

subjects was caused by age-related factors that altered the mechanical response of 

the muscle to the stimulus prod (e.g. arthritis, fibrosis etc.).
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ACCELEROMETER TRACES

160ms sweep

5V0.5mm

50ms

9V 13V 17V

Figure 3.6 Typical traces recorded from an accelerometer placed on the belly 
ofthe first dorsal interosseous (FDI) in response to four stimulus levels.
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TABLE 3.7 1 2 2

ACCELEROMETER VALUES mm

EXP. # AGE 17V 13V 9V 5V X

7 . 0 0 2 1 . 0 0 2 2 . 0 0 1 8 . 0 0 1 2 . 5 0 8 . 5 0 1 5 . 2 5
8 . 0 0 3 8 . 0 0 2 0 . 5 0 1 5 . 5 0 1 4 . 5 0 8 . 5 0 1 4 . 7 5
9 . 0 0 4 6 . 0 0 1 8 . 0 0 1 2 . 0 0 8 . 5 0 4 . 0 0 1 0 . 6 3

1 0 . 0 0 2 1 . 0 0 1 3 . 0 0 1 0 . 5 0 7 . 0 0 2 . 0 0 8 . 1 3
1 3 . 0 0 5 1 . 0 0 1 4 . 0 0 7 . 0 0 1 0 . 0 0 4 . 0 0 8 . 7 5
1 4 . 0 0 4 2 . 0 0 1 9 . 5 0 1 9 . 5 0 1 4 . 0 0 9 . 0 0 1 5 . 5 0
1 5 . 0 0 2 1 . 0 0 2 7 . 5 0 2 5 . 5 0 1 8 . 0 0 1 0 . 5 0 2 0 . 3 8
1 6 . 0 0 2 8 . 0 0 1 6 . 0 0 1 4 . 0 0 9 . 0 0 4 . 0 0 1 0 . 7 5
1 9 . 0 0 6 0 . 0 0 2 2 . 5 0 1 6 . 0 0 1 2 . 5 0 9 . 0 0 1 5 . 0 0
2 1 . 0 0 2 0 . 0 0 1 5 . 5 0 1 4 . 0 0 1 2 . 5 0 8 . 5 0 1 2 . 6 3
3 0 . 0 0 4 3 . 0 0 1 0 . 5 0 1 2 . 5 0 7 . 0 0 3 . 5 0 8 . 3 8

X 1 8 . 0 9 1 4 . 9 6 1 1 .4 1 6 . 5 0
SE 1 . 4 2 1 . 4 2 0 . 1 0 0 . 9 0
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II ; N eurom uscular Block

The presence of neuromuscular block (NMB) during the course of the 

experiment might be responsible for part or all of the change in the M l 

component of the reflex response. The following experiments were conducted in 

order to exclude this possibility.

i) The ulnar nerve at the elbow was electrically stimulated with two 

identical stimuli and the responses of the whole muscle, recorded with surface 

electrodes, were averaged. A stimulus strength, usually obtained with around 90V, 

which produced a maximal response was used. After 2ms the first electrical 

stimulus was applied, followed 25ms later by the second stimulus. This was 

repeated 8 times and the responses averaged. The procedure was then repeated, 

but gradually bringing the stimuli closer together. The time between the stimuli 

was varied until the time interval was only 1ms - see Figure 3.9. At this point 

the first response became muddled with the second and it was impossible to say if 

block had occurred or not.

The smallest time interval between the two stimuli was chosen where two 

distinct responses were obtained, and the subject was asked to make a MVC. The 

length of the MVC was 2min 45s. The electrical stimuli were switched on for the 

last few seconds of the contraction and the responses averaged. The MVC had 

the effect of decreasing the amplitude of the first action potential of the muscle, 

increasing its width and slightly increasing its latency so that the first action 

potential occurred later when compared with the control trace recorded before 

the MVC (Figure 3.10). The second peak was also reduced in amplitude, and in 

some cases was lost completely. The muscle action potentials (M-waves) were 

smaller presumably because the action potential of each individual muscle fibre 

was reduced in amplitude. The width of the peak probably increases due to the 

prolongation of the external increase in the concentration of potassium ions
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2 and 6ms
5Mv

2 and 5ms

2 and 4ms

2 and 3ms
ms

Figure 3.9 The responses (o electrical stimuli were recorded for FDl. Two 
identical stimuli were applied to the ulnar nerve at the elbow. This was 
repeated eight times and the responses averaged. The procedure was repeated, 
but gradually bringing the stimuli closer together.  There was a 40ms sweep.
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1 2 8
which occurs with fatigue. The prolongation may depend on increased external 

potassium ion concentration or interference with a potassium carrier mechanism.

The main point of this experiment was to look for evidence of NMB when 

the two stimuli were presented 21ms apart. The importance of the result becomes 

clear when it is remembered that there is a 21ms delay between M l and M2 on 

the EMG records. Figure 3.11 shows the result of giving identical electrical 

stimuli 21ms apart, immediately after a 2min 45s MVC of FDI. With this interval 

between the stimuli there is no evidence of NMB in the second action potential in 

the fatigued muscle.

ii) in this experiment motor unit action potentials were recorded using a 

concentric needle electrode instead of surface recording electrodes. The 

experimental protocol was exactly the same as that in i) above. Figure 3.12 is a 

record of the responses recorded. There is no evidence of NMB, and eventually 

the two motor unit APs become muddled together and it is impossible to tell if 

block is present. Figure 3.13 is the response after a 3 min MVC, and again no 

evidence of block of transmission can be seen.

iii) single motor unit potentials were recorded from the tip of a tungsten 

micro-electrode.

A train of stimuli, 23ms 

apart were given and the responses recorded (Figure 3.14). The effects of fatigue, 

induced by continuous stimulation and by a Imin MVC are also shown.
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10ms

2 and 24ms

2 and 22ms

2 and 20ms
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10ms

2 and 10ms

2 and 8ms

2 and 6ms

2 and 5ms

2 and 4ms

2 and 3ms

Figure  3.12 The  responses to electrical stimuli were  recorded f rom the FDI 
using a concent ric  needle electrode.  Two identical  stimuli were  applied to the 
ulnar nerve at the elbow. This was repeated eight t imes and the responses 
averaged.  The  procedure  was repeated,  but gradual ly bringing the stimuli 
closer  toge ther.  Th e re  is no evidence of neuromus cul ar  block.
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10ms

CONTROL

a f t e r  3MIN MVC

160ms sweep

Figure 3.13 Motor unit action potentials recorded from FDI using a concentric 
needle electrode. The traces show the response to two identical electrical 
stimuli 10ms apart. After a 3 minute MVC there is no evidence of 
neuromuscular block.
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SECTION 2 : FATIGUE OF FDI

Effççt of a strong voluptarv contraction on the reflex response.

During the one minute period immediately following the cessation of a 

two minute maximum voluntary contraction of the first dorsal interosseous, the 

stretch reflex was completely abolished in eight out of thirteen experiments. 

Twelve subjects had taken part in this series of experiments and in every case M l 

was abolished after the strong contraction of the muscle but in four of the 

subjects the action potential returned during the time taken to record the average 

and it appeared, but attenuated in size, on the permanent record. Figure 3.15 is 

typical of the responses recorded.

The control area of M l for all thirteen experiments was (5.3-0.3) x lO'^V.s. 

The area during the first minute after the maximum voluntary contraction was 

(0.7-0.2) X 1 0 '\ . s .

The results also indicated that a voluntary contraction did not have to be 

maximal in order to obtain diminution of the M l component of the 

electromyogram. When the area of M l was plotted against time it can be seen in 

Figure 3.16 that a contraction of 25 M V C  for 2 minutes almost

completely abolished M l and a 75 per cent one abolished it. Of course, a 25 per 

cent contraction at the beginning of a MVC is likely to reach 100 per cent after 

two minutes.

Fatigue in the first dorsal interosseous muscle did not affect M2 in the 

same way; it was not systematically altered in size (Figure 3.17). In seven of the 

experiments the area of M2 increased and in 6 it decreased. When it did increase 

it was often to a level considerably above that of the control.

Looking for the cause of these changes, involved a further series of 

experiments. Since an increase in the size of the electromyographic components
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TH E EFFECT OF A MAXIMUM VOLUNTARY CONTRACTION ON THE 

EMG OF THE FIRST DORSAL INTEROSSEOUS

PROD

AFTER
MVC

20^ VJ

CONTROL

j50m s

Figure 3.15 shows the effect of a 2 minute MVC on the EMG response in the 
first dorsal interosseous. In the control M l and M2 are both present. After the 
MVC, M l is almost abolished.

Note that the shorting pulse is large after the MVC; a fact indicating that 
the integrated electrical activity required to maintain the 10% MVC background 
contraction was increased. This would explain the larger amplitude of M2 after 
the MVC.
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A G R A P H  S H O W IN G  T H E  E F F E C T  OF  M AX IM U M  V O L U N T A R Y  

C O N T R A C T I O N S  ON M l  IN T H E  E M G  F R O M  T H E  FIRST D O R S A L

IN T E R O S S E O U S

25ZIVIVC 75% MVC

'E
3

o
<
LU
CC
<

4

3

2

1

60 705030 4020
TIME (min)

Figure 3.16 shows the effect of a 25% and a 75% 2 minute MVC on the M 1 
component  of the E M G  of the FDI.  It is almost  abolished by a 25% MVC and a 
75% MVC abolishes it completely.

Tension was reduced in most subjects by 30-50% by a two minute MVC.
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A G R A P H  SH O W IN G  T H E  E F F E C T  OF M A X IM U M  V O L U N T A R Y  

C O N T R A C T I O N S  ON M2 IN T H E  EMG F R O M  T H E  FIRST D O R S A L

I N T E R O S S E O U S

(f)4-*
'c
3
nk.
ro
N

o
<
HI
IT
<

25ZIVIVC 75% MVC
4

3

2

1

6030 50 70402010
TIME (min)

Figure  3.17 shows the effect  of a 25% and a 75% 2 minute  M VC on the M2 
comp onen t  of the E M G  of the F D L  It is not  abolished.
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is known to be caused by an increase in the force of background activity records 

were taken with the subject having increasing levels of background contraction, 

the prod remaining the same. Figure 3.18, in which is plotted M l, M2 and the 

M1/M2 ratio against increasing force of background contraction, showed that 

both M l and M2 increased in area. At each level of force, M2 area increased 

more than M l; the ratio, after a small reduction at the lower force levels, 

remained unaltered. In fatigue the contractile mechanism gradually fails, so an 

increased voluntary drive is necessary to maintain the required tension.

Every effort was made to immobilise completely the arm, and the finger 

position was kept constant by fixing it to the strain gauge with double sided 

adhesive tape. The exact position of the prodder was marked with a pen, and the 

subject asked to keep as still as possible throughout the experiment. The subjects 

were continuously urged to give their best effort during the MVC since it was 

vital to thoroughly fatigue the muscle.
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A GRAPH OF THE AREA OF M l, M2 AND THE M1/M2 RATIO VERSUS

FORCE

3-5

2 5

1 5

r \

52 5 3-751-25
FORCE (N)

Figure 3.18 shows ihe effect of increasing the force of the background 
contract ion on M l ,  M2 and M 1 / M 2  ratio
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SECTION 3 : NEUROM USCULAR BLOCK

The ulnar nerve was electrically stimulated at the elbow at various 

frequencies and the responses in the first dorsal interosseous were recorded.

Action potentials (AP) were recorded from single motor units in the FDI using 

surface electrodes. The ulnar nerve was stimulated at a voltage which produced a 

response from a single motor unit. A single motor unit could be recognised on 

the oscilloscope by its all or nothing behaviour.

If it was at a high enough frequency, electrical stimulation of the ulnar 

nerve at the elbow resulted in neuromuscular block (NMB) in every subject. The 

frequency at which block occurred in any one subject varied from lOHz to 60Hz, 

and block was not dependent upon the duration of the stimulation. Figure 3.19 

shows a typical record of such NMB.

The effect of fatigue on neuromuscular transmission was then 

investigated. Subjects performed a maximum voluntary contraction (MVC) of 

FDI for one or two minutes. During the last 10 seconds of the contraction 

the electrical stimulation was switched on and the responses recorded. After the 

MVC, block of transmission occurred in 80 per cent of subjects - Figure 3.20 

shows a typical record. The action potentials returned intermittently in an all or 

nothing fashion, in a time varying from 15 seconds to 7 minutes.

There did seem to be a link between age and the time taken for the AP to 

recover. A change in the recovery period might be related to changes in calcium 

regulation in older subjects. Smith (1988) found age-associated changes in 

calcium regulation for extensor digitorum longus muscles of old rats. Rates of 

calcium clearance from synaptic release sites were lower in the aged muscle. He 

suggested that this may be related to progressive disuse of the muscle, and a 

consequent decrease in the expression of calcium regulatory enzymes.
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N E U R O M U S C U L A R  BLOCK IN A S IN GL E M O T O R  UNIT

OF T H E  FIRST D O R S A L  IN T E R O S S E O U S  M U S C L E

STIM

BEFORE

AFTER
I 2min MVC

2 min LATER

j10ms 1mV

Figure 3,20 Neuromuscular block of a single motor unit in the first dorsal 
interosseous muscle. The response was recorded immediately after a 2 minute 
MVC of the FDI by the subject.
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Sometimes the response recorded represented more than one motor unit.

At the same latency, it was found that some units blocked and others did not (see 

Figure 3.21). The action potential on the oscilloscope became smaller but did not 

disappear completely.

A possible explanation of interruption of the response to repetitive 

electrical stimulation of the ulnar nerve at the elbow, is that for some reason, the 

appropriate nerve fibre beneath the stimulating electrode becomes inexcitable. 

Normally, this possibility is controlled for by using well-supramaximal stimuli.

However, since the aim of the experiments in this section is the investigation of 

single units, supramaximal stimuli cannot be used.

Changes in excitability at the point of nerve stimulation were negated as 

far as possible by choosing motor units that had as large a range of stimulating 

voltage (before a second unit obtruded) as possible; often this was 20-30V. Also 

care was taken to attach stimulating electrodes in such a way that they did not 

move relative to the underlying nerve trunk even during an MVC of the FDL

A check was carried out by recording not only the single motor unit 

potentials from the fatiguing FDI, but also the simultaneous nerve potentials in 

the arm, from the ulnar nerve between the elbow and the hand. These nerve 

records showed that block of motor unit firing could occur in the absence of any 

change in the amplitude of the nerve trunk action potentials (Figure 3.22).
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SECTION 4 : REFLEXES IN BICEPS

As has been described already, the M1/M2 ratio in FDI is smaller in older 

subjects. The fact that this is due to M l having a smaller amplitude in the older 

group, whilst M2 appears to be no different, can well be taken to mean that the 

nervous pathways underlying the two components are different.

It is now accepted that M l is the electrical waveform of the monosynaptic 

stretch reflex. The fact that in older subjects it is of smaller amplitude can be 

attributed either to central effects, or to peripheral factors e.g. in muscle

spindles. As M2 is normal in the old group, it would appear probable that the

phenomenon is due to muscle spindle differences with age.

A direct test of this hypothesis would be to compare reflexes elicited in

one case mechanically and in the other by electrical stimulation of afferent

fibres. There are insuperable difficulties in this approach as described on page 

179.

However, the mechanical stretch of FDI, and also electrical stimulation of 

the ulnar nerve at the wrist, can be demonstrated to result in the characteristic 

waveform M l, M2 and often M3 in biceps (Figure 3.23). As shown in Figure 3.24, 

the latency of M l in biceps is compatible with its being a monosynaptic response.

The ulnar nerve was stimulated electrically at the wrist and the EMG 

response in biceps was recorded. The responses were amplified, rectified and 

averaged in the normal way. The results are shown in Figure 3.25. The M1/M2 

ratio is plotted against the age of the subject.

Statistical analysis (Kendall’s Tau) showed no significant difference in the 

M1/M2 ratio between those subjects under 30 years old and those over 30 years.

There was no age related change in the M1/M2 ratio. Details of the numerical 

and statistical data are given in Table 3.25. A Student’s t-test was performed on 

the M l values for the two age groups and there was no significant age difference.
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THE ELECTRICAL RESPONSE TO MECHANICAL STRETCH 
OF THE FIRST DORSAL INTEROSSEOUS RECORDED IN BICEPS

AND FDI

FDI

lOmV

Mechanical artefact

Biceps

20V

Prod on Prod off M l M2 M3

Figure 3.23 EMG records from FDI and biceps in response to mechanical 
stimulation. The EMGs have a characteristic waveform; M l, M2 and often M3. 
There is a difference in the latency of the M l peaks of about 5ms, that of 
biceps being the shorter, as would be expected. The mechanical artefact in 
record B has been cut off. The sweep was 160ms duration; 128 sweeps of the 
rectified EMG were averaged.
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TABLE 3.25 150

VALUES FOR THE BICEPS SERIES

EXP # Ml M1/M2 AGE
32 0.08 0.41 58.00
33 0.15 0.42 31.00
34 0.15 1.14 62.00
36 0.25 0.66 46.00
38 0.14 1.04 65.00
39 0.17 0.95 49.00
310 0.18 1.23 39.00
311 0.14 0.98 23.00
312 0.40 2.69 21.00
313 0.15 1.12 45.00
314 0.27 2.11 27.00
316 0.31 1.16 49.00
318 0.25 0.63 40.00
319 0.38 0.83 20.00
320 0.27 1.01 23.00
321 0.55 0.98 29.00
322 0.46 0.95 24.00
323 1.04 1.14 44.00

T-TEST ON Ml VALUES

OVER 30 YEARS UNDER 30 YEARS
Ml = 0.26 Ml = 0.35
SD = 0.27 SD = 0.14
n = 11 n = 7
SE = 0.08 SE = 0.05
degrees of freedom == 16
t = 0.95
p >0.1
Therefore there is no significant
difference between the two groups.

KENDALL'S TAU ON M1/M2 VALUES

T = — 0.046 # = 18
p = 0.05 when n = 18 at tau of +0 .33

Therefore there is no significant
difference between the two groups

For details of statistical analysis see Appendix page 215
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SECTION 5 : TREMOR

It might be predicted that if physiological tremor is due to oscillation in 

the reflex arc at 8-12Hz (Lippold, 1973) there will be some difference in the 

tremor recorded from young or old people. On the basis that spindle sensitivity 

becomes less with age, it would be expected that older people would exhibit less 

tremor than young ones.

Wrist and finger tremor were measured with an accelerometer, and the 

output of the accelerometer subjected to spectral analysis (Figures 3.26a and 

3.27a). The results are plotted in Figures 3.26 and 3.27. The subjects were 

divided into two groups by age and the results subjected to statistical analysis 

(Student’s t-test; see Table 3.26). No significant difference in tremor amplitude 

was found between the two groups of subjects.

Note that tremor in the 8-12Hz range is rapidly abolished by ischaemia; 

testing at this time shows that there is no change in reflex sensitivity produced 

by the ischaemia.
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RESULTS OF TREMOR EXPERIMENTS TABLE 3.26 1 5 6

T# P# AGE M1/M2 FT WT
1.00 21.00 7.00 31.20
6.00 20.00 4.10 51.50
7.00 27.00 24.00 0.79 22.40 88.40
8.00 15.00 21.00 2.80 4.90 64.00
9.00 21.00 20.00 0.64 7.70 55.80

10.00 10.00 22.00 0.95 13.80 60.50
11.00 17.00 20.00 0.61 2.20 12.40
12.00 11.00 21.00 0.51 2.60 36.00
13.00 12.00 21.00 1.35 4.00 28.30
15.00 18.00 24.00 0.81 1.40 8.80
16.00 31.00 25.00 0.74 15.40 50.00
19.00 16.00 28.00 0.57 26.50 110.00

SUM 267.00 112.00 596.90
MEAN 22.25 9.33 49.74
SD 2.49 8.34 29.46

0.72 2.41 8.51

2.00 13.00 51.00 0.30 2.00 27.50
3.00 14.00 42.00 0.14 13.90 101.00
4.00 19.00 60.00 0.01 5.00 50.50
5.00 30.00 43.00 0.34 12.80 39.50

14.00 8.00 38.00 0.44 3.60 49.50
18.00 9.00 46.00 0.06 5.50 52.20
21.00 63.00 3.60 47.00
22.00 70.00 7.40 32.00
23.00 26.00 46.00 0.30 3.10 9.50
24.00 34.00 12.70 68.00
25.00 47.00 10.60 26.30
26.00 38.00 17.50 89.80

SUM 578.00 97.70 592.80
MEAN 48.17 8.14 49.40
SD 10.00 5.14 26.39
SE 2.89 1.49 7.63

T-TEST ON WRIST TREMOR VALUES
p >0.05 when df = 22 and t = 0.03
Therefore there is no significant
difference between the two groups.
T-TEST ON FINGER TREMOR VALUES
p >0.05 when df = 22 and t = 0.42

Therefore there is no significant
difference between the two groups.

UNDER 30

OVER 30

T = subject number see page 108 
P = subject number in Tremor series 
FT = finger tremor 
WT = wrist tremor
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SECTION 6 : TRAINING IN FDI

The first dorsal interosseous muscle was trained for two months. There 

was a training effect in the EMG of the muscle (Figure 3.28a) The amplitude of 

M l was greater after the two month training regime; some of the improvement 

was lost when training was discontinued (Figure 3.28). The amplitude of M l 

y before training began and the mean M l amplitude at the end of training were 

statistically analysed (Student’s t-test). The results showed a significant 

difference in M l amplitude before training and the M l amplitude that was 

recorded after training (p< 0.0005). If the pre-training responses were compared to 

responses recorded some time after the training regime ended, there was still a 

significant difference between the two groups (p < 0.025). The amplitude of M l 

was still greater than the pre-training levels two months after training was 

stopped.

^  It should be noted that this experiment was performed by only one subject.

The subject must have considerable motivation. The training regime must be 

adhered to conscientiously, and constant EMG records are necessary throughout 

the period. Such subjects are not easy to find!

.

^
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TABLE 3.28 1 6 0

RESULTS OF TRAINING SERIES

EX P. § Ml AMPLITUDE
mm

1 . 0 0 3 3 . 5 0
2 . 0 0 3 0 . 5 0
3 . 0 0 3 4 . 7 0
4 . 0 0 3 8 . 0 0
5 . 0 0 3 6 . 0 0  Training started
6 . 0 0 5 3 . 8 0
7 . 0 0 5 3 . 3 0
8 . 0 0 5 6 . 0 0
9 . 0 0 5 6 . 7 0

1 0 . 0 0 4 6 . 0 0
1 1 . 0 0 4 8 . 7 0
1 2 . 0 0 6 5 . 0 0
1 3 . 0 0 6 5 . 3 0
1 4 . 0 0 5 2 . 2 0
1 5 . 0 0 6 8 . 3 0
1 6 . 0 0 8 3 . 3 0
1 7 . 0 0 7 6 . 3 0
1 8 . 0 0 8 3 . 8 0
1 9 . 0 0 8 0 . 8 0
2 0 . 0 0 8 6 . 3 0
2 1 . 0 0 7 3 . 0 0
2 2 . 0 0 8 9 . 0 0
2 3 . 0 0 6 3 . 7 0
2 4 . 0 0 6 2 . 3 0
2 5 . 0 0 6 9 . 0 0
2 6 . 0 0 8 7 . 3 0
2 7 . 0 0 8 9 . 3 0  Training ended
2 8 . 0 0 3 3 . 0 0
2 9 . 0 0 6 2 . 0 0
3 0 . 0 0 6 6 . 0 0
3 1 . 0 0 6 4 . 0 0
3 2 . 0 0 5 3 . 0 0
3 3 . 0 0 5 8 . 0 0
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SECTION 7 : COFFEE AND HYPERTENSION

The results provide preliminary evidence of a significant difference in the 

effects of the caffeine in coffee on the systolic blood pressure in people of 

different ages.

Sixteen subjects took part in the experiment, and their blood pressure was 

monitored before and after drinking strong coffee. The subjects were divided 

into two groups, those under 30 years and those over 30 years old. The results are 

presented in Table 3.29. A Student’s t-test on the rise in blood pressure versus age 

showed that there is a significant difference (p < 0.0005) between the two groups.

The young group have a mean blood pressure rise of 4.38; the older group a mean 

of 20.75. Any minus values are treated as zeros, and no Bessel’s correction has 

been done. Details of the statistical analysis can be found in the Table.

Control experiments (done blind) with de-caffeinated coffee and tea 

showed that the effects were likely to be due to the action of caffeine and not to 

any placebo effects or observer bias.
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TABLE 3.29 1 63

COFFEE EXPERIMENT : BLOOD PRESSURE VALUES

SYSTOLIC BLOOD PRESSURE DIFFERENCES

OVER 30 YEARS UNDER 30 YEARS
mmHg mmHg
29.00 0.00
20.00 0.00
32.00 2.00
20.00 9.00

n=8 0.00 0.00 n=8
54.00 0.00
0.00 16.00

11.00 8.00

SUM 166.00 35.00
MEAN 20.75 4.38
SD 16.79 5.61

STUDENT'S t-TEST
(1-tailed; independent samples)
(minus values taken as zero)
Degrees of Freedom = 14 
No Bessel's correction done 
t = 4.23 p C&.0005

A significant difference exists 
between the young and the old groups
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DISCUSSION

The discussion is divided into sections that correspond to those in 

Methods and Results. The main experimental work was to investigate the EMG 

response to a brief stretch of the first dorsal interosseous, in particular the 

short latency response, M l and the second long latency response M2. Firstly, 

the EMG responses of groups of subjects in two age groups were recorded, and 

second the implications of the changes in the stretch reflex were examined.

The remainder of the experimental work was to look for the possible 

causes of the changes in the stretch reflex in older people. The effect of 

fatigue on M l and M2 was investigated, and the possibility that neuromuscular 

block might occur was examined. Changes in the EMG in response to training 

of the FDI highlighted the role played by muscle disuse in the observed 

changes in the stretch reflex in elderly people. Finally, pilot studies were 

conducted on the effects of drinking ordinary coffee on the blood pressure 

and heart rate of normal subjects. The theoretical basis for this last series 

rests on the premise that the syndrome of impaired stretch reflex sensitivity in 

older people involves stretch reflexes throughout the body and not only 

muscle stretch reflexes. In the circulatory system this impairment could result 

in reduced control of blood pressure changes, because of the effects upon the 

sensitivity of baroreceptors.
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SECTION 1 : M 1/M 2 RATIO EXPERIMENTS

It is already well known that the reflex response in human muscle is 

slower in older people. This change has been explained by an increase in 

conduction time through the reflex. Prolongation of contraction time, latency, 

and relaxation by about 13 per cent and a decrease of maximal rate of tension 

development in muscles have been described in the rat (Gutmann et al ., 1971) 

and in man (Campbell, McComas & Petito 1973).

Our studies have shown that there is a smaller reflex response in older 

people, in addition to it being slower. It is likely that this is the result of 

impaired reflex sensitivity of the muscle stretch receptors which occurs with 

age and is progressive.

When the FDI is stimulated mechanically by stretching, it responds 

reflexly. Displacement of the finger results in a double, and sometimes a 

triple EMG response. (Hammond, 1955 and Crago et al., 1976). The shorter 

latency response. M l, was found to be significantly smaller in older persons 

when two groups - young and old - were compared. M2, the longer latency 

component, was not smaller in the older group. This resulted in a lower 

M1/M2 ratio in the older subjects.

The possible mechanisms giving rise to the change in this reflex réponse 

with ageing were investigated.

Changes in m uscle spindles

The la afferent axons from the primary sensory endings of muscle 

spindles excite the alpha motor neurones of the muscle in which they lie. The 

pathways from spindle sensory endings to homonymous alpha motor neurones 

form the basis of the classical "stretch reflex". The monosynaptic la pathway 

involves synchronous excitation of numerous spindles and summation of 

monosynaptic volleys at alpha motor neurones. The la afferents are
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responsible for part of the stretch reflex; according to Boyd (1985) it is a large 

part.

Mammalian spindles contain three types of intrafusal muscle fibre 

which are structurally and functionally distinct. There are two types of 

nuclear bag fibres and one type of nuclear chain fibres (Boyd, 1985). Nuclear 

bag fibres are so named because of the accumulation of 100 or more nuclei at 

the spindle "equator" underlying the terminals of the primary sensory ending.

The nuclear chain fibres have a single row of nuclei in the equatorial region.

The nuclear bag fibres, because of their differing mechanical properties, are 

called dynamic nuclear bag fibres and static nuclear bag fibres. The principal 

action of the dynamic bag fibre is to increase greatly the sensitivity of the 

primary ending to length changes that occur during a change in length i.e., it 

increases the gain of the system during movement. Many human spindles 

contain three or four dynamic bag and static bag fibres and up to ten chain 

fibres making a total of up to 14 in all, but other human spindles contain 

about 6. Each spindle has one primary sensory ending. This consists of spiral 

or annular terminations encircling each of the intrafusal fibres of all three 

types, and all connected to the same group la afferent axon.

Swash & Fox (1972) found an increase in spindle capsular thickness in 

aged muscle which was due to an increase in the amount of collagen in the 

capsule, laid down in concentric lamellae. Excess collagen was also present in 

the spindle lumen in aged muscles. The cause of the gradual increase in 

capsular collagen with increasing age is unknown, although Cooper & Daniel 

(1963) suggested that it may come from thin fibrous septa, derived from the 

spindle capsule. These septa normally separate the intrafusal muscle fibres 

from each other, and are always thicker in the polar regions. In the spindles in 

the muscles of elderly subjects, these fibrous septa are increased in thickness 

and are prominent even in the equatorial region (Swash & Fox, 1972).
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The intrafusal muscle fibres are normally surrounded by a fine network 

of elastic tissue which is especially prominent in the polar regions (Cooper &

Daniel, 1967). Swash & Fox (1972) found this elastic network to be denser and 

to consist of more fibres in the muscle spindle in aged muscles. They found the 

fibres to be slightly coarser, although the distribution of the elastic tissue along 

the fibres remained the same.

With increasing age Swash & Fox (1972). found a slight, but consistent, 

decrease in the mean number of intrafusal muscle fibres counted in the 

spindles studied. In subjects over 60 years the fibres were granular, vacuolated 

and the normal compact arrangement of the myofibrils had been lost. In more 

severely abnormal spindles they found the muscle fibres were clumped together 

in the centre of the spindle lumen and surrounded by fibrous tissue. 

Sarcoplasmic nuclei were prominent and the normal differentiation of nuclear 

bag and nuclear chain fibres in the equatorial region was lost.

The properties of the primary endings of the muscle spindle are highly 

nonlinear - the sensitivity is extremely high for small changes in length, but a 

transition to a much lower sensitivity occurs when the length change is larger 

than a fraction of a millimeter (Hasan & Houk, 1975). Nichols & Houk (1976) 

suggested that muscle stiffness, rather than muscle length, is the regulated 

property of the stretch reflex. Reflex action was large and the mechanical 

response was small (due to muscular yielding) with lengthening. It is likely 

that these changes within the muscle spindle would result in impaired reflex 

sensitivity to stretch. In isolated spindle recordings in young and old animals 

Lippold (unpublished communication) found that the sensitivity to stretch of 

the tenuissimus muscle was greater in kittens than in adult cats.

A change in elasticity within the muscle spindle could result in the 

reduced M l response in older people. M2 is not altered by such a change, since 

there is very little elastic tissue in the skin.
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Changes in muscle and joint stiffness

The idea that a stiffening of the joint adjacent to the muscle 

undergoing stimulation (in this case the FDI) could reduce the reflex response 

seems a reasonable one to pursue. If a joint in an older subject moved less 

easily, then there would be less movement in response to a small displacement 

of the finger, and consequently a lowered activation of the muscle stretch 

receptors. The results however, show no difference in muscle or joint stiffness 

within the subjects tested.

Evidence of neuromuscular block

It is possible that with age, neuromuscular block (NMB) might develop 

and so reduce the number of muscle fibres activated when a "maximal" nerve 

volley reaches the motor end plates. This might reduce the size of the M l 

response and result in a smaller M1/M2 ratio. Further discussion of this aspect 

will be found in the NMB Discussion section.

Nerve and muscle changes with age

Muscle wasting is frequently observed in the elderly. Many extraneous 

factors can contribute to neuromuscular changes in the elderly. Some of these 

include disuse, malnutrition, circulatory impairment and joint stiffness leading 

to muscle atrophy. Campbell et al., (1973) found a progressive fall in the 

number of functioning motor units beyond the age of 60, and felt that this 

decrease was the most important factor contributing to wasting and weakness 

of ageing muscles. However, their study showed that the severity of the 

denervating process varied considerably among individuals and that it does not 

usually commence before the age of 60 years. Campbell et al. (1973) were 

working with the extensor digitorum of human subjects and their results 

contrasted sharply with those of Gutmann & Hanzlikova (1966). Gutmann & 

Hanzlikova, working with 30 month old rats, found no loss of motor axons.

In these animals, miniature end-plate potentials persisted, although their
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frequency of discharge was reduced (Gutmann et al., 1971). These last authors 

regarded senile muscle atrophy as a specific entity with both pre- and post- 

synaptic elements.

E ffects of fac ilita tion

During a train of afferent nerve impulses the number of motor units 

contributing to individual reflex responses increases progressively, indicating 

that the input becomes more and more effective in exciting motor neurones.

This process is known as fac ilita tion , and it is due to a combination of two 

factors. First, there is the summation of successive EPSPs in the postsynaptic 

membrane, each impulse producing a subthreshold depolarization that adds to 

the remainder of the preceding potential changes. A more important factor, 

however, is that the amount of transmitter released by each impulse increases 

during a repetitive series (Katz, 1966). Perhaps, in the older subjects, more 

individual motor units become blocked and consequently the degree of 

facilitation that is possible becomes less. This could result in a reduced mean 

M l area in the elderly.

Changes in con tractile  behaviour

As people get older, the contraction time, latency and relaxation time 

of their reflex responses have been found to get longer, and there is a decrease 

in the maximal rate of rise of tension in different fast or mixed senescent 

muscles (in the rat, Gutmann et al., 1971 and in man, Campbell et al., 1973). If 

this is the case, it may be that the second impulse of a pair is blocked if the 

interval between them gets too short.



SECTION 2 : FATIGUE

When a subject is asked to maintain a maximum voluntary contraction 

of the FDI, the force produced gradually falls. This failure to maintain the 

required force is due to muscle fatigue. The precise mechanisms for this 

decline in force with time has generated a great deal of research. Merton 

(1954) considered fatigue an entirely peripheral phenomenon that was located 

in the biochemical contractile mechanism. This contrasted with the findings 

of Naess & Storm-Mathisen (1955) who concluded that neuromuscular junction 

failure was more probable. Krnjevié & Miledi (1959) provided evidence for a 

presynaptic involvement; Thesleff (1959) favoured the neuromuscular junction 

itself; Paul (1961) produced evidence for changes in the contractile element 

with fatigue, and Hanson & Persson (1971) the muscle fibre action potential 

mechanism. Stephens & Taylor (1972) put forward evidence for transmission 

failure followed by contractile failure.

Present findings showed a loss of force during the time an MVC was 

maintained, indicating progressive fatigue. The M l component was usually 

abolished immediately after the fatiguing contraction, returning within the 

minute immediately following the fatiguing contraction. Is it possible that the 

reduced Ml component of the EMG in the older people is due to fatigue? Do 

the older people suffer muscle fatigue more quickly than the young ones? If 

so, where in the reflex arc is the fatigue occurring? If the change is in the 

muscle, is the atrophy resulting from disuse the cause of the fatigue? It was 

found that the M l component was abolished in subjects of all ages after the 

strong voluntary contraction, but if the young subjects were less liable to 

fatigue than the older subjects during the finger displacement experiments, 

then this phenomenon would only be apparent in the older group.
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Voss (1971) found a reduction in the diameter of the spindles, but no 

decrease in the number of spindles in the ageing muscle of man has been 

reported.

During an MVC, presumably the intrafusal fibres become fatigued as 

well as the extrafusal fibres. This would have the effect of reducing the 

response of the muscle spindles to a given degree of stretch, because the degree 

of coupling between extrafusal fibres and the stretch-sensitive mechanism in 

the equatorial regions of spindles would be reduced.
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SECTION 3: NEUROMUSCULAR BLOCK

Neuromuscular block (NMB) of some motor units can occur in the first 

dorsal interosseous muscle (FDI) under some conditions. In this series of 

experiments NMB was investigated in a number of ways. Initially, the ulnar 

nerve at the elbow was electrically stimulated at various frequencies and the 

responses in the FDI were recorded. In a further series of experiments, the 

effect produced on the muscle action potential (AP) was looked at when the 

subject performed a maximum voluntary contraction (MVC).

As a control experiment in the initial M1/M2 series, the ulnar nerve at 

the elbow was stimulated with two identical electrical stimuli. Motor unit APs 

were recorded from the FDI. The maximal response was found in each subject 

and the stimuli given at 2 and 24ms. The procedure was repeated, but the 

interval between the two stimuli was progressively reduced to see if there was 

any NMB. One AP acted as a control for the other and no evidence of NMB 

was seen. Integrated EMG records were also made.

Electrical stimulation of the ulnar nerve at the elbow resulted in 

neuromuscular block in FDI in every subject if at a high enough frequency. 

However, the frequency of stimulation at which this block occurred in any one 

subject varied from lOHz to 60Hz. The present results show that the NMB 

was dependent upon the frequency rather than the duration of stimulation. 

This failure of electrical propagation has been demonstrated in animal and 

human experiments (Brown & Burns, 1949; Naess & Storm-Mathisen, 1955 and 

Bigland-Ritchie et al., 1979). Earlier workers have also found that the rate at 

which NMB develops depends on the stimulus frequency employed. Bigland- 

Ritchie et al., (1979) found that a rapid reduction of stimulation frequency 

from 60Hz to 20 Hz during the first 30 seconds of continuous maximal nerve 

stimulation prevented propagation failure in the adductor pollicis. Krjnevié &
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Miledi (1958) found rapid failure in response to nerve stimulation at 50Hz but 

almost none after prolonged periods at lOHzfor the rat diaphragm.

The voltage required to excite axons electrically, increases as their 

diameter decreases; but according to Henneman (1957) this does not mean that 

large neurones can be more easily discharged synaptically than small ones. He 

found that the reverse occurs, and motor neurones may be graded according to 

the ease with which they can be discharged synaptically; the largest cells 

require the most intense stimulation. Small tonic motor neurones with small 

axons are reflexly excited at lower threshold than the larger phasic motor 

neurones with larger axons (Granit et al., 1957) while weak electrical stimuli to 

the motor axons, on the other hand, will exicte the larger ones first 

(Pompeiano & Wand, 1976). The larger a motor neurone the more extensive are 

the terminal branch points, and since branch points are susceptible to block 

there will be a greater probability of conduction failure in the large motor 

neurones. If the recording was from a single motor unit supplied by a large 

diameter motor axon, perhaps block would occur more often than when 

recording from small diameter axons.

During sustained isometric maximal voluntary contractions lasting for 1 

or 2 minutes the single unit action potential was abolished in some subjects.

The fatiguing contraction always resulted in loss of force but this was not 

always accompanied by a change in the action potential size. In this respect the 

results agree with earlier work (Merton, 1954; Bigland-Ritchie et al., 1979 and 

1982), who concluded that NMB is no ta  cause of force loss during an MVC of 1 

minute duration. However, the action potential was absent immediately after 

the strong contraction in some subjects. Could this be the result of 

neuromuscular block of some motor units? Why it happened in some subjects 

and not others is not clear. Motor fibre size could account for the difference.

To investigate this possibility the conduction velocity was roughly measured.
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The position of the stimulating electrode at the elbow could excite motor axons 

of different diameter depending on its exact location. This could result in some 

units becoming blocked and others remaining unaffected by the MVC. The loss 

of force was not necessarily accompanied by a reduction of the action potential 

in the FDI.

In some subjects, visual inspection of the records suggested that more 

than one unit was present. One motor unit could usually be recognised by the 

characteristics of each potential profile. Instead of the all or none response of a 

single unit, the MVC resulted in a reduction in the size of the action potential 

but not its complete abolition. Some units had blocked and not others. 

However, so long as the number of units contributing to each action potential 

stayed the same during the MVC, the change in size suggests that some of the 

units were no longer contributing to the response, although the size and shape of 

muscle action potentials does also change with fatigue but not in steps. This 

step decrease in action potential size was all or nothing and does suggest NMB.

Since the units were of the same latency, the NMB in response to the MVC can 

not have been associated with motor fibre size.

It might be suggested that slight movement of the stimulating electrode 

from its optimal position occurs during the MVC, and that this results in 

failure of nerve stimulation to the motor unit. The result would be what 

appeared to be block of the motor unit in the EMG record. Since the action 

potential was absent at the end of the MVC and subsequently returned at the 

same latency and with the same form as the control record taken immediately 

before the fatiguing contraction this explanation seems seems unlikely. 

Alternatively, or in addition to this, it is possible that the NMB in some 

subjects was the result of nerve compression. This is doubtful.

By simultaneously recording the ulnar nerve AP and the muscle AP 

recorded from the FDI, any interruption of the motor axon potential during
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the MVC would result in a change in the nerve AP pari passu  with the change 

in the EMG. It was found that NMB of one or more motor units could occur 

without the nerve AP becoming blocked, although it must be stated that this 

control was not carried out in all the experiments.

Krnjevic & Miledi (1959) produced evidence for the presence of 

differential conduction at sites of axonal bifurcation. By differential 

conduction is meant a condition in which only one branch of a bifurcation 

would block. Most of the branching of motor axons occurs immediately 

proximal to the point at which the nerve enters the muscle and particularly 

inside the muscle. If this is the case, the ulnar nerve AP recorded from the 

forearm would show no signs of transmission failure since it lies proximal to 

the branch point. Although the majority of bifurcation sites are very close to 

the muscle, it is advisable to position the nerve recording electrodes some 

distance from the muscle; Stâlberg & Trontelj (1970), in normal subjects, 

located branching in the tibial nerve as high as 10-15cm above the 

gastrocnemius muscle.

It has been demonstrated by Grossman et al., (1979a) that propagation of 

action potentials through a branch point that is geometrically equivalent to an 

unbranched axon of constant diameter fails at high frequencies. Also that this 

failure does not necessarily occur at the same time for each branch; conduction 

into the larger branch is blocked sooner.

The results provide further evidence that NMB does occur in some 

motor units. When recording from the nerve and the muscle simultaneously it 

is sometimes necessary to use a voltage which stimulates more than one motor 

unit so that the nerve AP is large enough to be recorded. Single motor units 

are recognised by their duration and all-or-nothing behaviour at threshold 

stimulation.
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In agreement with the findings presented here, Grossman et c/.,(1979a) 

showed that conduction block at high frequency (50Hz) could be produced in 

vivo  by stimulating the axon in the free-moving lobster, and that the axons in 

the animal fire at frequencies (100-400Hz) sufficient to produce a block of 

conduction after a few impulses. They showed that the frequency at which 

NMB can occur is one which can be encountered under normal physiological 

conditions, and not just under experimental conditions.

Smith (1980a) found in the crayfish leg opener muscle that propagation 

failed intermittently at branch points during prolonged repetitive stimulation 

at 50 per second. He showed that depolarization of the axon caused failure to 

occur first in the small terminal branches and then to spread centrally to 

larger branches. Later (Smith 1983a) also found conduction failure in the 

intact animal. He found that failure was related more closely to the frequency 

of the action potentials than to the duration of stimulation. My experimental 

results agree with this finding.

However, Smith (1983a) concluded that the occurrence of block could 

not be predicted solely on the basis of the rate or pattern of excitatory 

discharge, and that this indicated that some other process may influence the 

safety factor for conduction at the site of failure. A low safety factor for the 

propagation of an action potential concerns the presence of conditions under 

which there is an increased probability of failure of propagation down the 

motor axon. For example, branch points in the motor nerve are areas where 

the safety factor for propagation is low due to membrane properties and 

inhomogeneities of geometry.

Accumulation of extracellular potassium (K ^) has been proposed to 

underlie the blocking of action potential conduction in peripheral nerves 

(Grossman et al., 1979b). Parnas & Segev (1979) concluded that any mechanism 

which will introduce differences in the concentration around the daughter
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branches could provide an explanation for preferential conduction into one 

branch. However, Smith (1983b) presented evidence that the suggested 

membrane depolarization and consequent Na^ inactivation, due to

accumulation of extracellular during repetitive action potentials was not 

the cause of conduction block. Specifically, he found there was no evidence of 

a progressive increase in concentration to some critical level at which 

conduction block occurred. But he did think that some other dependent 

mechanism was probably involved. A rise in external K , by reducing the 

potassium concentration gradient across the nerve membrane, would tend to 

depolarise rather than hyperpolarise (Liley & North, 1953). From this Liley &

North concluded that changes in potassium concentration must influence ACh 

release by some mechanism other than that concerned with changes in 

polarisation.

However, Katz & Miledi (1979) found that in the presence of 

channel blockers, transmitter release was greatly potentiated and prolonged in 

time such that the calculated number of quanta far exceeded the number of 

active zones.

W edenskij inh ib ition  (at high stimulation rates) gives rise to an intense 

depression of neuromuscular transmission. This type of inhibition can result 

in postsynaptic as well as presynaptic failure. Nerve fibres can carry impulses 

at a rather higher frequency than muscle fibres, i.e., the motor nerve has a 

shorter refractory period than muscle. A nerve impulse arriving at an end- 

plate while the muscle fibre is still refractory produces only a local end-plate 

potential, which keeps the muscle membrane depolarized during the refractory 

period. It further delays the restoration of normal excitability and ionic 

permeability. Continued high frequency stimulation will maintain the local 

depolarisation and perpetuate the state of inexcitability. Action potentials will
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not be propagated over the sarcolemmal membrane and along the T-tubules of 

the muscle fibre.
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SECTION 4 : REFLEXES IN BICEPS

The monosynaptic reflex in man may be elicited by electrical 

stimulation of an afferent nerve from a large postural muscle in the leg and 

recording the EMG from the muscle - this is the Hoffman or H- reflex, and is 

due to the direct electrical excitation of la afferents. In the present work a 

series of experiments was made using this reflex. If the size of the H-reflex 

recorded in older subjects was no different from that recorded in younger 

subjects it would provide supporting evidence for age-related changes in M l 

originating in the muscle itself. Unfortunately, the series of experiments did 

not work. The size of the H-reflex at given voltages of stimulation varied 

greatly between subjects due, it was concluded, to the anatomical variation in 

the position of the medial popliteal nerve within the leg. In addition, maximal 

stimulation can not be used because of the antidromic collision that occurs 

when both afferent and efferent fibres are active. There was no way of 

overcoming these variables, and no comparison of inter-subject variations in 

amplitude could be made. The series was abandoned.

It is generally held that the H-reflex cannot be recorded in arm or small 

hand muscles because of antidromic collision. However, it is possible to 

stimulate electrically the ulnar nerve at the wrist and record a reflex response 

in the biceps muscle. There is no antidromic collison since the muscle is served 

by a different motor efferent path. No age difference in this reflex response 

was found.

The latency of the biceps response (around 20-22ms) was correct for a 

monosynaptic response from stimulated afferents in the ulnar nerve. The 

response cannot have been from skin afferents since these have a longer latency 

(Darton et al., 1985).
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This result showed that the cause of the age change in the reflex 

response must lie distal to the ulnar nerve at the wrist, i.e. at the

neuromuscular junction, in the muscle itself, or in the section of the motor 

axon between the wrist and the FDI. I can find no published evidence of age 

changes in motor efferents which preferentially affect only the most

peripheral end of a motor axon.

Changes at the neuromuscular junction are not responsible for the

reduced M l in older subjects since during fatiguing MVCs the M-wave

amplitude does not decline (Bigland-Ritchie et al., 1982).

It has been suggested that there are fewer fibres in the muscles of older 

people and that this results in a smaller response (Edstrom & Larsson, 1986 and 

1987; Gutmann & Hanzlikova, 1966). If this were the case. M l and M2 would 

be similarly affected; both would be smaller. The results of the present 

experiments show the size of M2 is not reduced in the elderly.
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SECTION 5 : TREMOR

Tremor is an oscillation; an oscillation is "any motion which is repeated 

at regular intervals of time". The tremor can normally be detected by the 

naked eye, and its presence can be established with a suitable recording 

device. Physiological wrist tremor and finger tremor at 8-12Hz arise from 

oscillation of activity in the proprioceptive reflex loop (Halliday & Redfearn,

1956, 1958; Lippold, Redfearn & Vul^o, 1957 and 1959; Lippold, 1970; Lippold,

1973 and Burne, Lippold & Pryor, 1984). Present findings show no age effect 

on the amplitude of 8-12Hz tremor in either the wrist or the finger. This 

suggests that there are no changes in the normal operation of the reflex loop in 

the older subjects, if it be supposed that the stretch reflex is the basis for the 

tremor. Alternatively, tremor in the 8-12Hz peak may not be dependent upon 

the functional normality of the gross stretch reflex.



182
SECTION 6 : TRAINING IN FDI

A period of training did produce an affect on the EMG of the first 

dorsal interosseous. These changes tended to be reversed when the training 

regime was discontinued.

If the reduced Ml component was the result of disuse, which allowed 

the muscle to atrophy, the effect of training the muscle might be expected to 

result in a change. Indeed, training might be expected to result in a change 

even in normally active muscle. This proved to be the case; the stretch reflex 

response. M l, had a greater amplitude after a two month period of training in 

a 44 year old subject. The increase in amplitude did not continue when the 

training regime stopped. Although this was only a pilot experiment, it would 

seem that whatever the cause of the change in the M l response that has been 

found in older people, training can go some way towards reversing it. The 

amplitude of the reflex response increased in size from quite early on in the 

training regime. The trend showed a continuing steady increase, but it would 

seem that continuous exercise would be necessary to maintain the change.

Care must be taken when drawing conclusions from this single experiment.

For instance, it is not known whether the greater reflex response would have 

continued to increase in size, would have been maintained or declined despite 

training, if the experiment had been undertaken for a longer period of time.

Would the same improvement occur in all people? And would such 

improvement be maintained for different lengths of time in subjects of 

different ages, or decline as quickly in all?
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SECTION 7 : COFFEE AND HYPERTENSION

There is considerable volume of data on the effects of coffee on 

humans. The results are conflicting and it is easy to understand why this is.

There are a large number of variables in experimental work of this nature, 

and the non uniform results are a reflection of this.

The present work was undertaken as a pilot study. Normal subjects 

were given strong coffee to drink, and their blood pressure was monitored.

Variables must be carefully controlled; this is not easy. The determination of 

the exact quantity of caffeine in the coffee given to the subject is fraught 

with problems. The caffeine content of different brands of coffee varies; it is 

important to be consistent. Every care must be taken to give subjects coffee of 

the same strength, and to give them the same quantity.

Experimental studies of coffee consumption by humans have shown that 

blood pressure and pulse changes were slight in healthy young volunteers with 

administration of 3-4mg/kg body weight of caffeine in coffee. Horst (1934) 

reported a greater blood pressure rise in older men (53-77 years) than young 

men (21-25 years) after the consumption of coffee. These findings are in 

agreement with the results presented here. The coffee resulted in very little 

change in systolic blood pressure in young subjects, but frequently produced a 

large effect in older subjects.

These preliminary findings lend support to the hypothesis of impaired 

reflex sensitivity in older people and the involvement of stretch reflexes 

thoughout the body.
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A PPEND IX

A CCELERO M ETER DESIGN AND CHARACTERISTICS 

G eneral

The basic construction of a piezoelectric accelerometer is shown in 

Figure 5.1.

The active element consists of a number of piezoelectric discs on which 

rests a relatively heavy mass. The mass is preloaded by a stiff spring and the 

whole assembly sealed in a metal housing with a thick base. When the 

accelerometer is subjected to vibration the mass exerts a variable force on the 

discs which, due to the piezoelectric effect, develops a variable charge 

proportional to the force and, therefore, to the acceleration of the mass.

For frequencies much lower than the resonance frequency of the 

assembly the acceleration of the mass is equal to the acceleration of the whole 

transducer. Therefore, the charge produced is proportional to the acceleration 

to which the transducer is subjected.

Design

A piezoelectric material is one which develops an electrical charge 

when subjected to stress. Materials which exhibit this property are intrinsic 

piezoelectric monocrystals such as quartz and Rochelle salt, and artifically 

polarized ferroelectric ceramics which are mixtures of different compounds 

such as barium titanate, lead zirconate and lead metaniobate.

B & K TYPE 4367 - DELTA SHEER DESIGN

Delta Sheer design gives a high sensitivity to mass ratio with relatively 

high resonance frequency and excellent isolation from base strain and 

temperature transients. It employs three piezoelectric elements each with their 

own mass which for reduced sensitivity to extraneous environmental forces are
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arranged in the shear mode around a triangular centre post. To maintain good 

linearity bonding of the piezoelectric elements and their masses is avoided using 

a high tensile strength preloading ring to clamp them solidly into position.

Figure 5.1 Accelerometer

D e lta  S h e a r 
(D S)
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Spring
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Discs

— O utpu t 
Term inal

Base



205

Û W

0

il
1 H

J  O <  œ 
Eh O

Z W 
O O 

Qen HH

z

T3ü

au
Bo.

*3crü
<u
bO

.S
IuaW3
aCQk.00_R3
’B
I
E

rq
w-i
ü
s
00



206

EQUIPMENT USED IN  THE EXPERIMENTS

Stimulator Devices
Gated Pulse Generator Devices
CRO Display Devices
Amplifier Devices
Time Base Devices
Differential Amplifier Tektronix
Digitimer Devices
Averager Biomac
Power Unit - Transtab Joyce, Loebl & Co 

(Stabilised DC Power Unit)
Chart Recorder 
Accelerometer

J.J.Instruments 
B & K

Type 3072 
Type 2521 
Type 3120 
Type 3160 
Type 3130 
Type 5A22N

Type 1000
Ltd.
Model F
PL4 Recorder
Type 4367
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ÀNOVÀ for whole set

(Zd2)T SUM OF SUM SQUARED
GROUP SQUARES 9 n

£x2 (EX)
A 1 . 196 9.06 10
B 18.007 181. 70 14
C 4 .220 39.69 12
D 15.009 104.60 12
E 1.401 4.97 8
F 15.883 109.00 14
G 7 . 532 88 . 70 17
H 11.697 50.50 7
I 15.256 159.00 19
J 3.973 15.40 5
K 5.108 51.40 12
L 14.121 87.60 12
M 3 . 469 2.82 10
N 15.762 100.00 13
0 3.169 9.50 5
P 16.060 181.00 19

£151.71 £1,195.00

= 152 -

n

1195
189

= 152 

= 146

—  6
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(Ix)2
n

A 0.90
B 13.00
C 3 . 30
D 8.70
E 0.60
F 7.80
G 5.20
H 7.20
I 8.40
J 3.10
K 4 .30
L 7 . 30
M 0.30
N 7.70
0 1. 90
P 9.50

£ 89.20

(Id^)Bet = 89.2 - 1195
189

= 8 9 . 2 - 6  

= 83.2



ANOVA for whole set

(Id ),p ^ 246
( Id M ) w = 6 3

83

F - ratio

211

= 5.19

w = 6 3 
189

= 0.33

= 15.72 df
df

n=15
n=188

From table p < 0 . 0 0 0 1

ANOVA TABLE

Source of 
Variation df

Sum of
squared
deviations

Variance
Estimates F

Between groups 15 83 5.19
15.72

Within groups 188 63 0.33

Total 203 146
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ANOVA for M1/M2 and aqe and coffee (= Groups A,B and H)

101 . 2 0

14182.018 .00

50.511.70

312 4 1 . 630.9

( Z x )
n

A

B

C

E =

0.'9

13 . 0 

7.2

21.1

Thus

W
2

( I d 2 )

> B e t  =

23.1
9 . 8

13.3

S Bet

. 2 
'W

2 _

(5Td2)^ = 30.9 - 7.

23.1

( Z d 2 ) Bet'
241.6

21.1 - 31

21.1 - 7.8 

13 . 3

= 13.3 = 4.4

9.8 = 0.31
31

F - ratio = 4.4 =
0 .31

= 14.36

n 2  — 3 

" 2  = 21

14.2

From table therefore p -0.01
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ANOVA for M1/M2 ratio and age

Z x

10

14182.018.0
24191.119.2

19.2

13.2

( t t j 2 ) B g t =  1 3 . 913.0

13.9
13,9

24

( Z d ^ ) ^  =

=

d ^ ) B e t =

=  6.0
13.2 

7.2 

6 . 0

'Bet

'W

= _ 6_  =  3.00
2

= 7.2 = 0.3
24

F- ratio = 3.00
0.30 

=  10.0
From table therefore p<0.001

n ^ —2 

" 2 = 2 4
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Group comparisons

0.33

0 . 167

0 . 80

largest difference in means is A - B 

0.30 0.96

0 . 6 6

(just not significant at p=0.05 level)

Using LSR

LSR

0.80

(just not significant at p=0.05 level)
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BICEPS SERIES : ANALYSIS OF RESULTS

M1/M2 r a t i o  an d  a g e

KENDALL'S TÀU

For full table of results see Table 3.25 page 150
(# = 18)
S'*" = 73
n = (n-1) X N 

2

= 17 X 18 = 153
2

s = (2 X 73) - 153
= -7

't = -7 
153

= —0.046
p = 0.05 when n = 18 at ̂  of +0.33 
Therefore No significant correlation
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M1/M2 SERIES : ANALYSIS OF RESULTS

1. Ml and age
2. M2 and age

REGRESSION ANALYSIS
1.
Ml over 30 years
X = 11.00
y = 1.125
x^ = 121
n = 4 0

" 5640
Ixy = 581.4
b = ( X V )  - nxy 

(x^) - nx^
= 581.4 - (40 X 11 X 1.125) 

5640 - (40 X 121)
= 0.108

a = y - bx
=1.125 - (0.108 X 11)
= -0.063

Let X = 10
y = a + bx

= -0.063 +(0.108 X 10)
t-

= 1.017
i1

Ml under 30 years
1

b = 0.176 a = 1.077
Let X = 10
y = 2.837 11

1
i1
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M2 over 30 years
2.4640.136

Let X 10
3.824

M2 under 30 years
2.1340.185

Let X 10
3.984

A Primer in Data Reduction, A.S.C. Ehrenberg
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ANALYSIS OF RESULTSM1/M2 SERIES :
Age and the M1/M2 ratio

WILCOXON RANK SUM TEST

Age : 2 groups
1. over 30 years 
2 under 30 years paired observations

Exp # Age Values Ranks
19 60 0.01 1
14 42 0.14 2
23 63 0.15 3
34 52 0.28 4
13 51 0.30 5.5
26 46 0.30 5.5
30 43 0.34 7
8 38 0.44 8
33 49 0.45 9
11 21 0.51 10
24 21 0.57 11.5
16 28 0.57 11.5
17 20 0.62 13
21 20 0.64 14.5
32 59 0.64 14.5
20 21 0.66 16
22 20 0.68 17
18 24 0.72 18
31 25 0.74 19
27 24 0.79 20
10 22 1.26 21
12 21 1.35 22
29 20 1.57 23
15 21 2.80

M1/M2
24

Sum of 
(n =

ranks ; 
10)

over 30 years

Sum of ranks : under 30 years
(n = 14)

= 59.5

= 240.5
Number of observations in the 2 groups = 10, 14 
Values from Table = 91, 159
There is a statistically significant difference between 
the two groups (p <0.001).

A Short Textbook of Medical Statistics, Hill, (Sir), A.B 
(1977).
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M1/M2 SERIES : ANALYSIS OF RESULTS

Systolic blood pressure and the M1/M2 ratio
WILCOXON RANK SUM TEST

Systolic blood pressure : 2 groups
1. SBP <130mmHg 
2 SBP >130mmHg
Values Ranks
0.01 1
0.14 2
0.15 3
0.30 4.5
0.30 4.5
0.34 6
0.44 7
0.45 8
0.51 9
0.57 10.5
0.57 10.5
0.62 12
0.64 13.5
0.64 13.5
0.66 15
0.68 16
0.72 17
0.74 18
0.79 19
1.26 20
1.35 21
1.57 22
2.80 23
Sum of ranks M1/M2 <130mmHg = 186 

(n = 13)
Sum of ranks M1/M2 >130mmHg = 90 

(n = 10)
Number of observations in the two groups = 10, 13 
Values from Table = 79, 161
There is a statistically significant difference between 
the two groups (p <0.01)
M1/M2 values taken from Table 3.4 page 113.



[From the Proceedings of the Physiological Society, 7-8 April 1988
Journal of Physiology, 403 , 74P, 1988]

The EMG response to stretch in a hum an hand m u sc le  (M l) d im in ish es w ith  
age
By M a r i a  C o r d  e n ,  O. C. J . L i p p o l d  and H e l e n  L o x l e y .  Department of H um an  
Physiology, Royal Holloway and Bedford New College, University o f London, London 
TW 20 OEX

A  brief stre tch  of muscle held a t a constant vo lun tary  tension gives rise to  a typical 
segm ented EMG response. The first com ponent. M l, is generally a ttr ib u ted  to  the 
m onosynaptic stre tch  reflex whilst the  second com ponent, M2, of longer latency, is 
likely to  be due to mechanical stim ulation of skin, subcutaneous and o ther afferents 
(D arton et al. 1985).

M easurem ent of the area of rectified and sum m ed electrical potentials recorded 
upon stretching the first dorsal interosseous muscle (EDI), shows m arked differences 
w ith age of >jects. The com ponent M l is sm aller and has a higher m echanical 
threshold in older persons. In  con trast M2 appears to  be unim paired w ith age (Fig. 1).

256 X 
20 years

2 0

42 years20 mV

Stim.10 100 ms

30 40 5020 60
Age (years)

Fig. 1, Graph A shows M1/M2 ratio from FD I plotted against age. Inset B is a record of 
the rectified and summed EMG in response to a brief stretch of FD I in a subject aged 20 
years, while C is the same in a subject aged 42 years. Subject held steady background 
contraction of 11 N throughout the contraction. Prodder set at 7 19 N.

The facts th a t  M2 does not appear to  vary  w ith age, th a t  the mechanical properties 
of the m uscle-joint system  do not show appreciable differences in older subjects, and 
th a t neurom uscular block does not occur in young or old persons during these 
experim ents, indicate th a t a possible origin of the age-dependent difference lies in the 
behaviour of muscle spindles.

E th ical Com m ittee approval was obtained for these experim ents.

REFERENCE

D a r t o n , K., L i p p o l d , 0. C. J ., S h a h a n i , M. & S h a h a n i , U. {1985). J. Neurophysiol. 53,1604-1618.



[From the Proceedings of the Physiological Society, 22-23 September 1988
Journal of Physiology, 409, 32P, 1989]

Abolition of the short-latency stretch reflex in a hum an hand m u sc le  by a 
brief m ax im al voluntary contraction
B y  D. M. C o r d e n  and 0 . C. J . L i p p o l d .  H um an Physiology, Royal Holloway and 
Bedford New College, London TW 20 OEX

Neurom uscular function is disrupted by strong voluntary  contractions lasting for 
a m inute or longer; the deficits in perform ance are usually term ed fatigue. Reflexes 
are generally thought of as being relatively resistan t to fatigue, bu t here we report 
th a t  after two m inutes of m axim al voluntary  contraction (MVC), the short-latency 
com ponent, Ml of the rectified and averaged electrical response of a muscle to stre tch  
is abolished for up to one m inute. In  contrast, the effect of fatigue on the size of M2 
(which follows M l) is inconsistent and relatively small.

The response Ml is usually regarded as the electrical concom itant of the 
m onosynaptic stre tch  reflex; M2, the longer-latency com ponent, is likely to  be due 
to the inevitable stim ulation of skin and subcutaneous afferents by the stim ulus 
employed to  stre tch  the muscle (D arton et al. 1985).

Action potentials were recorded from surface silver disc electrodes 0 9 cm diam eter 
and 2 5 cm apart, over the belly of the first dorsal interosseous muscle (FDI). They 
were amplified, rectified and averaged (128 x a t 0-579 ms intervals) w ith respect to 
the in stan t of delivery of a brief (5 ms) m echanical displacem ent of the  forefinger, in 
the palm ar plane, to stre tch  FD I. The areas M l and M2 were m easured between tak e ­
off and re tu rn  points of the  waveform.

O ut of 13 experim ents (performed on 12 subjects w ith E th ical Committee 
approval), 8 showed complete abolition of the M l com ponent during the 1 min period 
im m ediately following cessation of a 2 min MVC of F D I. The control area of M l for 
all 13 experim ents was (5-3+ 0*3) x 10“"̂ V s“L The area during the first m inute after 
the MVC was (0*7 ±0-2) x 10“’ V s“L In  7 of the  experim ents the  area of M2 
increased ; in 6 it decreased.

In the absence of any neurological abnorm alities in the subjects it seems unlikely 
th a t afferent or efferent nerve pathw ays were affected by the MVC. Thus the 
abolition of M l m ust be due to changes either in the m otoneurone pool or in the 
muscle itself. The tension exerted was reduced by 30-50%  of its initial value ; 
moreover, M2 was not system atically  altered in size. I t  is therefore unlikely th a t  the 
MVC is depressing reflexes through any direct action on the alpha pathw ay. A 
possibility is th a t  the  MVC is generating fatigue in the intrafusal fibres, which 
effectively decouples muscle spindles, although as yet we have no supporting 
evidence.
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