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My research in Machine Vision,
improves motion recognition.
Unlike methods in tradition,

it tracks objects in transition,
no regard for their appearance,
or their modelling adherence.

No subtraction of the background,
is needed to be found.

By studying the Human Brain,

we hope to make massive gain.

For humans, when they’re seeing,
take The Motion from The Being,

and the pattern of the motion,

may provoke a smile... or caution!

In our system we use filters,

3D Haar and Gaussian,

applied to a spatio-temporal stack

of video frames in real-time...

...but unfortunately, that doesn’t rhyme!




ABSTRACT

THE HUGE NUMBER OF CCTV CAMERAS AND SECURITY APPLICATIONS
PLACES INCREASING REQUIREMENTS ON AUTOMATIC VISUAL TRACKING
AND BEHAVIOUR CLASSIFICATION SYSTEMS. THE BEST WORKING EXAM-
PLE OF SUCH A TRACKER IS THE HUMAN VISUAL SysTeEM (HVS) wHICH
CAN FLAWLESSLY DETECT, TRACK AND UNDERSTAND ALMOST ANY OB-

JECT OR EVENT.

THE RESEARCH DESCRIBED IN THIS THESIS USES LESSONS LEARNT FROM
STUDIES OF THE HVS TO DEVELOP A NOVEL APPROACH FOR COMPUTER-
BASED VISUAL TRACKING. IN THIS APPROACH, INITIAL DETECTION OF
MOVING OBJECTS IS ACHIEVED USING A NEW MOTION DISTILLATION
PARADIGM WHICH EMPLOYS SPATIO-TEMPORAL WAVELET DECOMPOSITION
OF VIDEO. THE METHOD IS SHOWN TO BE MORE ROBUST THAN TRADI-
TIONAL BACKGROUND MODELLING TECHNIQUES WHILE BEING COMPUTA-

TIONALLY LESS EXPENSIVE.

As wiTH THE HVS, THE APPROACH USES A DUAL-CHANNEL TRACKING
ARCHITECTURE TO PERFORM TRACKING. THE MOTION CHANNEL, GEN-
ERATED THROUGH MOTION DISTILLATION, HANDLES OBJECT DETECTION
AND INITIALISES TRACKING. THE FORM CHANNEL IS USED TO RESOLVE
TRACKING AMBIGUITIES AND OCCLUSIONS. QUALITATIVE AND QUANTI-
TATIVE TRACKING RESULTS ILLUSTRATE THE ADVANTAGES OF THIS AP-

PROACH.

THIS THESIS ALSO DESCRIBES A NEW APPROACH TO THE TASK OF OB-




JECT (E.G. HUMAN) BEHAVIOUR ANALYSIS - A SUBJECT WHICH IS OF
GREAT IMPORTANCE, YET WHICH IS STILL AN UNDER-RESEARCHED AS-
PECT OF VISUAL TRACKING. IN THE WORK DESCRIBED HERE, OBJECTS

ARE CATEGORISED INTO VEHICLES, PEDESTRIANS, RUNNERS, GROUPS AND

UNKNOWN PEDESTRIAN BEHAVIOUR.
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Chapter 1

Introduction

Automatic visual surveillance is a long held goal yet it is a relatively young
science. Researchers have been working on video since the beginning of
computer vision in the 1960’s. Initially video compression and storage was the
primary focus and it was not until the late 1970’s that the concept of object
tracking began to split off into a coherent and separate topic of research. One
of the key figures in this early work was J. K. Aggarwal of the University of
Texas at Austin. In 1979, Aggarwal, with N.I. Badler, held a workshop on
“Computer Analysis of Time-Varying Imagery”. This was followed in 1980
with the special issue of PAMI on Motion and Time-Varying Imagery and a
book in 1988 called Motion Understanding: Robot and Human Vision, both
of which introduced a wide range of new approaches. Some of these were
later abandoned but a few proved to have lasting success. By the 1990’s two
competing paradigms, background modelling and particle filters, were vying

for supremacy.
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Today the subject has also acquired great economic and political sig-
nificance due to the extraordinary number of CCTV cameras adorning city
streets. While politicians tout issues of security and civil liberty groups
question its impact on privacy, the CCTV industry is quietly questioning
its effectiveness. Between 1996 and 1998, three-quarters of the UK Govern-
ment’s crime prevention budget was spent on CCTV, yet studies have shown
that CCTV is less effective at preventing crime than simply improving street

lighting. !

Part of this failure is due to the human component. Human
operators are simply not able to pay attention to boring CCTV feeds for
long periods. On average there is one CCTV operator monitoring 60 camera

feeds, clearly too much for a human to deal with.

This is a clear case where computers could be usefully employed. The aim
is to detect and highlight only interesting or unusual events (such as a violent
crime or a fight) and to attract the attention of a human operator. Such a
system may also satisfy the misgivings of civil liberty groups. If only crimes
are detected, and all other video data is deleted, the privacy of law abiding
citizens is preserved. Unlike a human operator, a computer algorithm cannot

be secretly racist or corrupt [76].

1.1 Human Visual System

While the science is young, the goal of visual surveillance predates even

human evolution. The ability to detect and track a prey, or for the prey

L“Report says CCTV is overrated”, The Guardian, June 28, 2002.
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to avoid a predator, evolved many hundreds of millions of years ago. Yet it
is still largely a mystery how this is achieved. The Reverse Engineering of
the Human Visual System (RE:HVS) project, of which this thesis is a part,
has the aim of analysing the powerful structures of the visual cortex and

replicating them in software.

Humans Beings evolved as hunters, and as such, have a highly developed
tracking ability. Studies of the brain have shown that, while highly inter-
connected, tracking in the HVS can be divided into a number of stages:
(1) Motion is detected at a local level (Motion sensitive neurons with a
spatio-temporal response have been isolated in the visual cortex), (2) local
detections of motion are integrated into connected objects, (3) these objects
are then tracked using, according to some theories [75], a dual-channel form-
motion structure. (4) Following this, or perhaps concurrent with it, the brain

analyses the behaviour of the tracked object and categorises it.

The HVS is able to extract an enormous amount of information from
motion, sometimes even the mood of a pedestrian from the way he walks.
Figure 5.1 in Chapter 5 shows the classic ‘point light display’ set up where
various human actions are filmed with only points at each joint made visible.
Experiments have shown that while still images from such a video are mean-
ingless, when in motion even complex actions such as dancing can be clearly
seen. How does the HVS achieve this extraordinary feat? What signals are

extracted from the video and how are these signals processed?

These questions remain unanswered, although we can safely assume that

if the brain can achieve this trick the required information must be present
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and the only impediment to building an automatic recognition system is

finding the correct signal in the video data and processing it properly.

An interesting illustration of the presence of motion signals is in the work
of cartoonists whose trade depends on picking out salient motion features
and exaggerating them. This can be seen in figures produced by professional
animator Richard Williams: Figure 1.1 shows the difference between a char-
acter walking and running. Note the differences in the swing of the limbs
and the bobbing of the head. These are instantly apparent to the human
eye but very difficult to reliably assess by computer. While ‘walking’ and
‘running’ can be detected by our eyes as nearly invariant attributes of these
characters, it is quite difficult to consciously define those attributes. Car-
toonists are taught to find them. In Figure 1.2 the animator has altered the
characters to insert emotion into the walks. The left-hand character is made
to appear angry. The animator explained this as due to the tilt of the body.

The right-hand character is made to appear happy.

That our vision systems can so easily detect these complex differences
proves that there is invariant behaviour information available. That we find
it difficult to define this information suggests that the processing is at least

partly at the preconscious level.

An important aspect of the tracking problem is the question of how ob-
jects in the mind relate to reality. How do we match the partial informa-
tion we experience through our senses with notional objects we hold in our
minds, and where do we acquire these object models? This question has been

considered since antiquity. Plato discussed this in his “Theory of Forms”,
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Figure 1.1: Cartoonist Richard Williams illusirates the differences between
walking (left) and running (right) in terms of character posture and motion.
Extract from The Animator’s Survival Kit [184].

Figure 1.2: With relatively subtle changes to posture and motion, emotion
can be clearly seen in these characters. Left shows an angry walk, with a
note above by the cartoonist to explain how this was achieved. Right is a
happy walk. Extract from [184].
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explaining that the mind acquires ‘forms’ of perfect general objects from a
world beyond this universe. (Of course, modern neurology takes a different

view!)

In more recent times, the branch of philosophy called Phenomenology
explores the connection between the phenomenon, the detectable experience
of an object, and the noumenon, the notional object model stored in the
mind. This issue is seen by some as being the primary question in philosophy
and has been written about by such luminaries as Immanuel Kant, Georg

Hagel and Karl Marx.

These ancient philosophical ideas, which might seem esoteric, have gained
renewed significance in the context of computer science. The possibility of
analysing phenomena computationally in order to build and match noumena
is now a practical, and even commercial, research topic. From 1992-96 the
European Union funded an extensive collaborative study of philosophical and

computational approaches to phenomenology [20].

1.2 Aims and assumptions

This thesis addresses the task of analysing video to detect and track arbi-
trary moving objects and to understand and classify objects using behaviour
information. Due to the recent proliferation of security applications, and
their economic importance, research has been focused on CCTV surveillance

videos.
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The needs of CCTV applications allow the requirements of a successful

system to be defined:

e Flexibility — CCTV is recorded in a wide range of different formats,
video gualities, noise levels, etc. The algorithm must be robust to
indoor and outdoor conditions, changing lighting and changing weather

conditions.

e Object model - the algorithm must be able to quickly find and track
arbitrary moving objects as they enter the scene. This means making
as few assumptions as possible about object appearance and avoiding

the use of predefined object models.

e Short bootstrap — unlike assembly line machine vision applications,
the environment of CCTV cameras is uncontrolled and subject to change.
Installation time and costs are important. Therefore the algorithm
bootstrap time must be kept to a minimum. A scene specific learning
routine is impractical as it increases installation time and may fail if

the scene changes during operation.

Conversely, knowledge of CCTV allows sensible limitations and assumptions |

to be placed on these requirements:

e Small objects - CCTV cameras are generally installed in elevated
locations, looking down at an angle on the scene. Cars and pedestrians

will be small in size relative to the scene area.
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| Figure 1.3: Examples of two CCTV videos used in testing. The left hand
‘ image is taken from the CAVIAR database. The right hand image is from
the Home Office -LIDS database. These two frames illustrate differences
in viewing angle, colour, picture quality, and scene layout evident in CCTV
applications.

e Moving objects — while objects may start and stop within the scene,
\ it can be assumed that all objects of interest will enter and leave the

scene in motion.

e High Frame rate — it can be assumed that the video frame rate will
be sufficiently high so that interesting objects moving through the scene

appear in many frames.

e Static camera — CCTV cameras are at fixed locations. Some have
' fixed views while others allow the user to pan, tilt and zoom the im-
age. Here, it is assumed that the view is fixed; however, the practical

problem of a shaking camera is dealt with in Chapter 3.

; The algorithms developed in this project were tested on a wide range of

video types: see Figure 1.3 and Appendix A for details.

Many of the key questions of visual tracking remain not just unanswered
but rarely explicitly asked. Chapter 2 will show that many methods reported

in the literature contain a motion detection component while others do not.
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What is the appropriate role of motion detection in tracking? What is the
best way to achieve it? Are approaches which avoid motion detection valid

and what assumptions do they make?

Some methods, such as particle filtering, maintain a strong focus on an

object appearance model combined with location prediction. Others con-
tain neither component. Is location prediction necessary? What issues arise
with appearance models in visual tracking and how does this relate to other

aspects of the system?

As well as developing a new approach to all these tasks, this thesis also
aims to answer these fundamental questions. The final task of behaviour
analysis is largely an open question without a consensus evident in the liter-

ature. This thesis will take a novel approach which has been inspired by the

HVS.

1.3 Thesis structure

This thesis contains seven chapters, including this one, as follows:

1. Introduction

Chapter 1 discusses research motivations and context.

2. Literature review
Chapter 2 provides a thorough examination of the machine vision liter-
ature on visual detection and tracking, from the earliest days of “Image

Sequence Analysis” to recent developments in particle filters and Gaus-

26

—




sian mixture models. Methods are categorised by their approach to

the spatio-temporal nature of video data. Background modelling tech-

; niques, which work on 1D pixel processes, are described as 1D+2 ap-
proaches. Prediction based methods are described as 2D+ 1 approaches.

Motion Distillation is 3D.

3. Motion Detection
Chapter 3 covers the new ‘Motion Distillation’ method which detects
moving objects through spatio-temporal wavelet decomposition. Re-
sults are compared with those of background modelling methods. The
chapter concludes with an exploration of general spatio-temporal wave-

let theory.

4. Dual-Channel Tracking
Chapter 4 explains the problems with location prediction and offers
a novel dual-channel form—motion alternative. The dual-channel ap-
proach is used to track arbitrary objects through static and dynamic

occlusions.

5. Behaviour Analysis
Chapter 5 presents a new method of analysing the behaviour of tracked
objects based on the non-binary motion detection information gener-
ated by the Motion Distillation. Pedestrians may be distinguished from

vehicles and then further categorised into a range of behaviours.

6. Discussion

Chapter 6 ties together the full process of detection, tracking and un-

27
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derstanding and lays out suggestions for future work.
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Chapter 2

Literature review

Motion processing schemes can be divided into three primary categories, each
with its own spectrum of sub-categories. The first category, which includes
the range of methods from optical flow to Kalman and particle filtering, are
fundamentally frame-by-frame appearance-based with temporal prediction.
These can be thought of as ‘2D+1" methods, meaning 2D spatial appearance
search with temporal prediction. The position of a particular method in the
2D++1 spectrum depends on the number of features, their size and complexity

and the complexity of the temporal predictive model.

Another category is composed of those methods which exploit temporal
statistics of some form to segment moving regions in the video stream, with i
more complex methods being developed to counter unconstrained illumina-
tion states, noise and clutter. This can be called ‘1D+2’, because following
the 1D motion detection stage, 2D spatial tracking and object integration

must be carried out. This large range of methods stretches from frame dif-

29
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ferencing (still used in MPEG4 compression) through temporal mean, me-
dian and mode statistics, to linear prediction such as pixel-wise Kalman
filter-based background modeling. The final category is the rarely applied
spatio-temporal 3D methods. Included here are a number of hardware video
processing designs, a handful of interesting wavelet-based methods which
are sometimes labeled as optical flow calculations, the human visual system

(HVS) itself, and the work of this thesis.

This chapter will explore in detail the use, strengths and results of most
of these subcategories reported in the literature. Figure 2.1 shows a ‘map’
of visual tracking science representing the vast majority of reported systems.
Techniques follow a path from the Video data through Detection, Tracking
and finally some Behaviour Analysis method. The top path represents fore-
ground, ‘2D+1’ methods. This route to tracking is shown as a dotted line
because it is incomplete without a priori model. Techniques such as particle
filtering follow this route. The bottom route represents ‘1D+2’ methods,
primarily background modeling based motion detection. Some methods are
initialised using the ‘1D+2’ route, and then switch to the top route for track-
ing. Among them is BraMBLe [91] (discussed in detail below) which uses
background modeling to detect new objects and to acquire an appearance
model but tracks them using a particle filter. The middle route represents
true spatio-temporal 3D tracking. Behaviour analysis is carried out after
tracking is achieved. However, there is currently little consensus on how this

should be done.
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Figure 2.1: ‘Mindmap’ of Visual Surveillance Literature

2.1 2D+1 — Foreground techniques |

2.1.1 Optical flow

Methods in computer vision often derive either from HVS theory or as acci-
dentally discovered ad hoc solutions. Optical flow appears to fit both cate-
gories. The concept of optical flow originates in Gibson’s (1950) early neu-
rological work “The perception of the visual world” [74]. The technique, as
applied to computer vision, is based on the tracking of single pixels through
image sequences. The difficulties of this approach were recognized in the im-
portant 1981 paper by Horn and Schunck (1981) [84]. The intensity of a pixel
offers only one constraint but the velocity of a point has two components;
thus optical flow cannot be calculated locally. This effect is often referred to
as ‘the aperture problem’. The solution is smoothing [162] or (often implicit)

object model based constraints [4]. However, the former causes problems at
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real discontinuities and the latter fails when the limits of necessarily simple
models are reached in cases of 3D rotation or non-rigid motion. Aggarwal
(1998) [5] noted two classes of solution; using the piece-wise or region-wise
smoothness assumption and the course-to-fine multiscale approach. Research
through the 1990’s focused on hamdmsre implementations of these theories as
retinomorphic devices [57] and calculations of optic flow using wavelets [26].
However, as Horn noted in his 1993 retrospective on his earlier work, optical
flow still faced a fundamental sensitivity of illumination change. McFarlane
and Schofield (1995) [120] noted that in surveillance applications optical flow
fails because objects are small with respect to the scene and there are many
motion discontinuities. Added to this, a deeper understanding of the HVS
has eroded optical flow’s neurological foundations [192, 193]. Today, the
technique is still sometimes used in dense crowd situations when individual

objects cannot be segmented [10].

2.1.2 Feature tracking

Moving up the scale of feature size, we may attempt to track 2D features such
as edge sections [142, 189, 24] or corners [151]. These features are extracted
from each frame, and then inter-frame correspondence is established between
the features. To overcome noise and detection ambiguity issues, a network of
motion constraints is applied, usually in the form of a system of non-linear
equations [5]. This approach was introduced by Ullman (1979) [174] and
developed by many researchers through the 1980’s [150, 129]. An inherent

flaw in the method is its reliance on an explicit motion model and thus it
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breaks down in the presence of multiple objects [5] or non-rigid objects [3, 120]

comimon in surveillance.

2.1.3 Location prediction

As object models become more complex, it becomes necessary to avoid global
search and to predict the object motion and then to limit the search to that
area. The first successful predictor was the Kalman filter [72, 181], a lin-
ear filter borrowed from the world of radar and control theory. However,
it was quickly discovered that non-linearity was extremely advantageous
in visual tracking, and the Extended Kalman (EKF) [111, 40], Unscented
Kalman (UKF) [11, 178], Sequential Monte Carlo [88], Markov Chain Monte
Carlo [87], Condensation/particle filter [89] and EKF [50] and UKF directed
particle filters [153, 176] have been tried. The above papers often do not
make sufficiently clear that the filter stage serves only as a location pre-
dictor in order to direct the search. A separate appearance model, already
known or learned, must be tested at each candidate location suggested by

the predictor.

A Kalman filter is a type of on-line least-squares analysis system and
thus gives a linear response [181, 19, 72|. Harris (1992) [81] and Blake et
al. (1993) [33] were among the first to employ the Kalman to predict probable
object locations or search candidates in visual tracking applications [37, 13],
although it had been used for many years for object tracking in radar. The

algorithms are initiated with a target model and location, search for this
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model in the next frame, and use this position change to predict the next

location. Search is begun at the candidate location and worked outwards

( until a good match is found. The error (difference between predicted lo-
cation and actual location) is fed back to the tracker to improve the next
prediction. The Kalman fails when the data (object location over time) lis
non-linear or when the noise is non-Gaussian — which translates into poor
performance in cluttered scenes [89]. Results can be improved with the EKF
which uses Taylor series expansion to linearize non-linear functions [111, 40]
and the UKF which uses the ‘unscented transform’ [11, 178] to delinearise
predictions [97, 166]. These improved versions of Kalman still react poorly
in cluttered conditions due to their mono-modality, tending to get stuck on

local minima.

In 1996, Isard and Blake [88] proposed a tracker using Sequential Monte
Carlo methods. Imperfections of the motion model would be overcome by
introducing a random component into the search strategy. Each search can-
didate area (which would later become known as a particle) was assigned a
weight based on confidence. Multiple particles of different weights can be
maintained simultaneously to model a multimodal data field and thus ‘mul-
tiple hypotheses’ of the target location, resulting in better performance in
cluttered scenes. The particle location and weighting are altered using re-
sults fed back from the appearance matcher. Particle filters generally give
very good results but fail in cases of sudden change in motion. They are, of

course, only as good as the appearance model used in the search stage.

Isard and Blake (1998) extended their earlier work with the ‘ICondensa-
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tion’ algorithm [90] to include Importance Sampling in order to allow com-
bination of multiple separate appearance models (in this case, shape and
color). Other work has involved directing each particle using an EKF [50] or
UKF [153, 176] filter to improve location estimation. Particle filtering with
Sampling Importance Resampling has also been explored [130, 12]. Choo and
Fleet (2001) [43] reported a particle filter extended for tracking very complex
target models, calling it a ‘Hybrid Monte Carlo’. Hue et al. (2000) [87] gave

a detailed discussion of tracking multiple objects with particle filters.

2.2 Appearance models

Appearance models, or observation models, used in visual tracking are very
similar to techniques for object recognition in static images. The most basic
appearance models are those of optical flow and feature tracking techniques
(which consider single greylevel pixel values or corners plus relational con- |
straints). Farly Kalman filters generally used template matching [55] or |
color histograms [188]. Other reported possibilities include Harris ‘Interest
Points’ [73]. Interestingly, some techniques in this area seem not to have

changed greatly in recent years.

The appearance model used by Isard and Blake (1996) [88] was based
on curved segments, while their 1998 work [90] combined this with a colour
matcher. Other methods used corners or line segments but tend to be more
clutter sensitive. Rui and Chen (2001) [153] and others [136, 130] used colour

histogram matching with particle filtering. This has the advantage over shape
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matchers of being rotation invariant. Nummiaro et al. (2002) [136] also
claimed that colour histograms are robust to partial occlusion. However,
this is clearly conditional on the target’s structure. Nummiaro’s application
was face tracking where the target was of approximately uniform colour.
Zhou et al. (2004) [196] discussed techniques of adaptive appearance models

for use with particle filtering.

The choice of model is highly data and target dependent. Non-rigid pedes-
trians are generally harder to track than rigid vehicles for various reasons,
but notably because of deformations. Histogram matching gives more robust

results for pedestrians, while template matching is more suitable for vehicles.

Selinger and Wixson (1998) [156] used this very change in the appearance
of an object, i.e. the failure of their static model to match the true appearance
of some targets, to cheaply distinguish between rigid objects such as vehicles

and non-rigid pedestrians.

Boosting [68] is a general machine learning method for improving poor
recognition methods. Boosting occurs in stages, incrementally adding to the
current learned function. At every stage a weak learner (one that has an
accuracy only slightly greater than chance) is trained with the data. The
output of the weak learner is then added to the learned function, with some
strength proportional to the accuracy of the weak learner. The data is then
reweighted. Incorrectly matched examples are boosted in importance. In
the context of tracking, boosting can be used to improve appearance models
given poor data. Okuma et al. (2004) [138] boosted color histogram matching

in the context of particle filtering. Fan et al. (2006) [63] compared the ben-
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efits of this method with those achieved by improving the prediction stage,

concluding that boosting the appearance model gives better results.

Random sample consensus (RANSAC) [67] attempts to overcome the im-
perfect model problem and noise by working through a search space to find
the global minimum. The search is stopped after a certain number of tries;
this number may be calculated on-line or predetermined. The scheme has

been used for feature detection in noisy images [44].

2.2.1 TIllumination

Belhumeur and Kreigman (1996 and 1998) [21, 22] explored the key diffi-
culty of image and video processing; that truly illumination invariant image
features do not exist. They noted that in the case of face recognition the
variability in an image due to illumination may exceed that due to a change
in the subject’s identity. They proposed modeling appearance change as an
‘illumination cone’ as a way to predict appearance given a sparse illumina-
tion data set. These ideas were extended by Belhumeur et al. (1999) [23],
Chen et al. (2000) [42] and Baker et al. (2003) [15].

Drew et al. (1998, 1999, 2002) [59, 60, 58] detailed work on illumination
invariant colour image recognition. Drew found that invariance is improved
by matching the DCT compressed images. Black et al. (2000) [32] attempted
a direct model of appearance change due to illumination based on four causes
— object or camera motion, lighting source changes, specular reflection and

iconic changes.
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The issue of shadows can be viewed as an aspect of illumination. Prati
et al. (2001 and 2003) [147, 148] noted that while shadows will usually be
detected by backgrounding techniques, they can cause incorrect object merg-
ing and shape distortions. An object which transits to or from a shadowed
region may be lost due to incorrect segmentation. Even histogram match-
ing may fail under some conditions. Numerous shadow detection algorithms
have been proposed, mainly based on comparing motion detected regions for
texture or colour similarity with the background. Bevilacqua (2003) [28] sim-
ply used ‘darkness’ and smoothness to select shadows in a traffic monitoring

application.

2.3 1D+2 — Background modeling

2.3.1 Image differencing

While optical flow was at its peak of popularity in the 1980’s another, ad hoc,
method of motion detection was emerging. The first paper to discuss it was
Jain and Nagel (1979) [94], which proposed a method of ‘intraframe differenc-
ing operations’ (later known as ‘image’, ‘frame’ or ‘temporal’ differencing) for
image segmentation based on motion. A similar method had been popular
in the early 1970’s for detecting change in satellite imagery [106, 119]. Jain
and Nagel reported that this had only a limited applicability in surveillance
“because images [sic.| can be extracted only when they have been displaced

completely from their position in a specified reference frame, which is usually
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” This problem of incomplete segmentation,

the first frame of the sequence.
which would arise continuously over the coming years, was addressed in a
later paper; Jain and Aggarwal extended this work using partly segmented

regions as a ‘motion cue’ to extract the rest of the object using edge profiles

and morphological growing [93].

Many of the developments to image differencing explored in the 1980’s
would find later use. Then, as now, traffic surveillance was a promising ap-
plication which presented problems of robustness and speed [86]. In Jain's
(1981) paper [92] he extended his earlier work to a traffic monitoring appli-
cation and applied contemporary understanding of motion attention in the
HVS. Anderson (1985) [8] attempted a speed-up using “Image Pyramids”,
i.e. multiscale analysis. Tsukiyama (1985) [173] used Jain’s method coupled
with a motion model to detect single people in video, and Lee (1988) [105]
extended this for groups of people. Dinstein (1989) [53] proposed a similar
technique for a visual motion alarm and Brofferio (1989) [36] explained its
use for video compression of temporal redundancy. This simple technique is

used to this day in the MPEG4 video compression standard.

Due to the computational limitations in the 1980’s, the above techniques
were tested on relatively short video clips. With longer clips, complex il-
lumination changes reduce robustness. In 1989, Jain [161] proposed using
the difference of thresholded edge maps, rather than of the intensity images
themselves. In his perceptive review of this early work, Rosin (1997) [152]
noted that the key to this technique for motion detection is the choice of

thresholding level, with methods using adaptive and local thresholds being
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far superior to global, experimentally chosen levels. While using edge maps
does increase robustness in some ways, it removes important illumination in-

formation and makes automatic selection of local threshold levels impossible.

2.3.2 Statistical filtering

Frame differencing can be viewed as the simplest form of statistical back-
ground modeling, where in this case, the model is composed of pixel values |
taken from a single earlier frame. Long and Yang’s (1990) [110] influential |
paper set out a number of methods involving the computation of a running
average of pixel values in order to achieve ‘Stationary Background Genera-
tion’. They point out that the stationary parts of the image are present for
the majority of the time, and can be detected statistically. Using statistical
methods the background can be constructed even when some moving objects
are present in the video. The paper also addresses the issue of an imperfect |
background (mentioning the effect later known as the ‘transient background

problem’) and proposes a morphological solution. They tested the method

on both indoor and outdoor scenes. However the videos were quite short :
(54-71 frames) and so it is likely that they didn’t experience many problems
using the ‘mean’ as their statistic. It is easy to understand why the seem-
ingly obvious step of extending differencing to true statistical background
modeling arose only in the 1990’s by noting the comment from the final page

of Long and Yang’s paper:

“a complete run [of 54 frames] required approximately six hours
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on a 3 Mbyte SUN 2/170”

On a modern computer this process would be completed in under one sec-
ond. Many researchers continued to use the temporal mean filter due to its
simplicity [29, 122, 85]. However, simple statistics are not robust in com-
plex lighting situations, and thus require ad hoc post detection noise removal
steps [28]. The median or mode of the pixel statistics can be used as a more
robust measure of the background, because this is not so easily skewed by
outliers. This is particularly important when the background frame must be

calculated while objects are in motion in the scene.

As Kalivas (1990) [98] noted, “mean filtering is more effective in the case
of white Gaussian noise and median filtering in the case of salt-and-pepper
noise and burst noise.” Kalivas explored the use of temporal and spatio-
temporal mean and median filtering for video noise reduction. Gloyer et
al. (1995) [77] were perhaps the first to report use of a temporal median
filter for background modeling. They noted that the median’s robustness to
shot noise and outliers also made it robust in the presence of transient moving
objects. They used it to bootstrap a background model in the presence of
moving vehicles. McFarlane and Schofield (1995) [120] published a similar
method for tracking piglets. Lo and Velastin (2001) [109] formalized the idea,

calculated the median value of the last n frames as the background model, and
: compared it to other methods. Cucchiara et al. (2003) [47] argued that such
a median value provides an adequate background model even if the n frames
are subsampled with respect to the original frame rate by a factor of 10. In

f addition, they proposed to compute the median on a special set of values
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containing the last n sub-sampled frames and w times the last computed
median value. This combination increases the stability of the background

model.

Wren’s Pfinder (1997) [186] has been described (144, 47] as a form of
mode filter, calculating a ‘running Gaussian average’ for each pixel. This
has a memory advantage over temporal median filtering, in that only two
parameters (i and o) of the Gaussian pdf are stored for each pixel, and are

updated using the equation:

o =aly+ (1 — a)ps_; (2.1)

The Pfinder method has proved influential and has frequently been imitated
(see reviews in [47, 121, 146]). The influential W* system reported by Har-
itaoglu (1998) [80] used a simplified variation on Wren’s technique, finding
only the maximum and minimum pixel intensities and the maximum inter-
frame difference values, using a few seconds of sample scene video without
moving objects. W* has become a popular foundation of many reported sys-
tems (128, 175]. Lou (2002) [112] coupled W* with homomorphic filtering to

normalize for variations in illumination.

2.3.3 Other methods

An alternative to the usual statistics is to use a form of linear predictor to es-
timate the most probable pixel value at each location, thus constructing the

background image. The first paper to propose this approach was Karmann
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(1990) [99] who used a Kalman filter for each pixel. The Kalman has an ad-
vantage in that it directly provides the appropriate threshold level. Koller’s
influential 1994 paper [103] also used Kalman filtering for background mod-
eling for the application of traffic monitoring. Toyama'’s Wallflower system
(1999) [170] used a Wiener filter to to make probabilistic predictions of the ex-
pected background. This paper contains a very thorough comparison of eight
common background techniques. Wallflower became an important bench-
mark method for detecting quickly moving cars [116] in traffic surveillance.
It was later used in some commercial surveillance systems [46]. However, as
Mclvor (2000) noted in his review [121] “The Walifiower algorithm requires
the storage of over 130 images, many of which are float valued. This requires

significant statistical analysis per pixel per frame to adapt the coefficients.”

Some recent publications explore the use of nonparametric kernel density
estimation to calculate the pdf of intensity values for each pixel [61], giving

a multimodal result similar to GMM.

2.3.4 Maintenance

Cucchiara et al. (2003) [47] defined the principal difficulty of all statistical
backgrounding techniques as the conflict between the “stationary background
problem” (SBP) and the “transient background problem” (TBP). To accu-
rately segment moving objects, the background must be updated regularly
to reflect changing conditions (TBP). However, updating runs the risk of in-

cluding some part of a foreground object in the background, and this must be
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avoided (SBP). The result of failing SBP is false positive detections known
as ghosts, while TBP failures result in false negatives or inaccurate segmen-
tation. For a practical system, backgrounds must be updated to deal with
changing illumination conditions and motion clutter such as moving tree

branches. Some solutions to this difficulty will now be described.

As an extension to the mode filter methods mentioned above, Stauffer
and Grimson (1999, 2000) [164, 165], developed a multimode Gaussian Mix-
ture Model method (GMM). This has the advantage of allowing a pixel to
oscillate between a few different frequent values. This gives greater robust-
ness to motion clutter, such as oscillating tree branches. However, as Power
and Schoonees (2002) [146] noted, the iterative Expectation-Maximization
method for calculating GMM is computationally expensive and can become
unstable. Stauffer required specialized hardware to achieve his reported real-
time results. GMM methods have since become a standard part of the com-

puter vision toolkit [187, 25, 146].

Koller et al. (1994) [103] used a similar scheme to Wren (1997) in part
of their complex traffic monitoring system, with the addition of a selective
update to improve speed. Only those areas in recent contact with foreground
elements would be updated. However, the lower the update rate of the
background model, the less a system will be able to quickly respond to the

actual background dynamic.

A number of methods try to encode repeating movements into their back-
ground models in order to deal with motion clutter. Monnet (2003) [126]

used “Dynamic Textures”, blocks of video motion which are allowed to re-
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peat without being classified as foreground. Pless (2005) [145] and Ohta
(2001) [137] used similar PCA methods to achieve the same goal. Pic et
al. (2004) [143] were concerned with the case of a moving or shaking camera.
All these methods rely on breaking the frame into small regions which are

assumed to be quasi-stable.

Toyama (1999) [170] also noted that “the difficult part of background
subtraction is... maintenance of a background model”. His solution was a
multiscale decision and update approach, involving pixel-level, region-level

and frame-level detection of various illumination events.

2.3.5 Thresholding

Most background modeling techniques select a threshold level experimentally.

Cavallaro and Ziliani (2000) noted [41]:

“The thresholds that are needed to extract the changed areas
have to be tuned manually according to the sequence character-
istics and they often need an update along the sequence itself.
This main drawback limits this approach for automatic applica-
tions. Moreover, if the contrast of moving objects is not suffi-
ciently high compared to the camera noise, there might not exist
a unique threshold to get rid of noise and to preserve the mo-
tion information. In this case detected objects have not precise

edges.”
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Rosin (1997) [152] observed that experimentally selected threshold values
for background models are not robust, and for practical surveillance systems
they must be chosen automatically. He further noted that locally variable,
rather than global, thresholds are often necessary. Rosin’s technique was to
pick a threshold level which maximizes “clumpiness” of change regions (an
assumption of motion’s spatial coherence), thus avoiding spatially random
noise. Some recent publications have observed that if the threshold selection
method is robust enough, results comparable to background modeling can

be achieved by image differencing [27, 70].

2.3.6 Tracking after detection

After moving objects have been detected by background subtraction, they
must be tracked. However, this task is greatly simpler than is the case for
foreground tracking techniques because the tracking stage now has know-
ledge of object locations. The task is frequently described ag ‘maintaining
object identity through occlusions’ and “Blob Tracking”. The task involves
modeling of some discriminative feature of the moving object and making

assumptions of motion inertia,

Inertial prediction, often in the form of a Kalman filter, is generally more
successful in traffic monitoring [111] than with human tracking [132, 83]
because human behaviour is less predictable [195]. Tt is often not made
clear that the predictive step (i.e. the Kalman filter) and the identity check

(i.e. histogram matching) are separate. When there is no ambiguity (isolated
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objects with small interframe motion} a simple interframe blob overlap test
is sufficient [71]. Jorge et al. (2004) [95] maintained object identity using
a list of logical rules governing merges and splits of multiple objects. This
was formalized as a Bayesian Network. Wang et al. (2000) [180] carried
out appearance based blob matching with motion constraints — in this case
a piecewise assumption of constant acceleration. Bascle et gl (1994) [18]
used post-detection Kalman filter to predict both location and shape. Lou
et al. (2002) [111] used EKF for vehicle tracking. Niu ef al. (2003) [132] and
Lei and Xu (2005) [107] used second order Kalman filters. The BraMBLe
system of Isard and MacCormick (2001) [91] used a particle filter to track an

a priori unknown and changing number of blobs.

Zhou and Aggarwal (2001) [195] explored blob matching using a num-
ber of metrics including PCA selected color features, compactness and shape
matching, the latter two being sensitive to accurate segmentation. Xu (2004)
[187] used a mixture of speed, size, color and the ratio of the major axis to the
minor axis of the best-fit ellipse. Collins (2003) [45] used multiple scales to
‘zoom in’ on the target, using the previous positions as a starting point. This
used an implicit assumption of small interframe movement. Fuentes and Ve-
lastin (2001) [70] use color histogram blob matching with location prediction
while allowing for group formation and dissolution. Xu (2004) [187] follows
a GMM based detection stage with blob matching based on a combination
of shape, size and velocity information. Naftel and Khalid (2004) [128] used

RANSAC to plot paths through noisy detection locations.
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2.4 3D — Spatio-temporal techniques

It has been noted for some time that the Human Brain uses spatio-temporal
(s-1) processing at the heart of its visual system. Tsotsos et al. (1988) [172]
presented results from convolving video with s—t Difference of Gaussian filters
for velocity specific feature detection. Peng and Medioni (1989) [141] and
Peng (1991) [140] use z-¢ slices of video to detect paths and speeds of objects.
Kalivas and Sawchuk (1990) [98] investigated s—t mean, median and mode

filters for video noise removal and compression.

Researchers at the Computer Vision Lab at Linképing University, Swe-
den have published a number of papers covering many aspects the s-¢ ap-
proach [9, 16, 62, 65, 66, 78, 100, 163, 194]. Birman et al. (1991) [16] achieved
similar results to Peng and Medioni using a complex tensor representation
of s-t ‘cones’. Barman managed to extract both velocity and acceleration
information. Knutsson et al. (1992) [100] compared these conic filters to
Gabor filters for 3D medical imagery. Parts of Granlund and Knutsson’s
1995 book [78] cover these topics in detail. More recently, Farnebéck (2000,
2001) [65, 66] used similar filters to segment video into regions of coherent mo-
tion, and Andersson and Knutsson (2003) [9] presented work on non-regular
sampling in 3D data. The Linkoping research involved both 3D s—¢ video,
3D medical imagery and time-varying 3D imagery, noting that the same pro-
cessing techniques are applicable to both. With s— data, slope along the
time axis is due to velocity, and curves are due to acceleration. Other papers

which make this connection include Sohn et al. (2004) [163] and Faas and
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van Vliet (2003) [62]. Yu et al. (2001) [194] compared the Linképing conic

filter with the Hough transform and the Difference of Gaussians filter.

Few s—f papers are concerned with visual tracking and surveillance. Sato
and Aggarwal (2004) [154] used a s—t Hough transform based method to track
objects after they have been detected by background subtraction. Object
interactions are detected as crossed paths in s-f space. Niyogi and Adel-
son (1993) [135] at the MIT Media Lab reported a gait recognition system
which analysed the distinctive braided pattern in y—¢ slices of videos of walk-
ing pedestrians. Kobayashi and Otsu (2006) [101] followed background sub-
traction by convolution with hundreds of s—¢ filters (called CHLAC) each of
which is sensitive to different s—t angles. The output is fed into a Discrimi-

nant Analysis stage with the aim of gait recognition.

Also of interest is the recent work of Michal Irani of the Weizmann Insti-
tute of Israel. Her work has included video completion [183] and behaviour
recognition [159] using st textures. Similarly, Pless (2005) [145] used s-
t filters to build a background model which was tolerant to some motion

clutter.

2.5 Behaviour analysis

After objects have been detected and tracked a large number of capabilities
are open to us. This final stage of processing is actually the real goal of this
whole process. We may wish to distinguish cars from people, groups of peo-

ple, different activities such as bicycle riding, or detect abstract behaviours.
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Alternatively, we may wish to log volumes of traffic (either vehicular or pedes-
trian) and derive statistics based on this. We may divide surveillance systems
into three broad categories. The first uses only the object track and path
information while the second focuses on other available information. The

third is only interested in identifying individuals using gait information.

Malik et al. (1995) [116] developed a traffic monitoring system which
detects crashes and congestion based on vehicle behaviour. Makris and El-
lis [115, 114] developed a system which learns common pedestrian routes
by merging paths together. Scene entry and exit points can be detected.
Dee and Hogg (2004) [51] used a scene model to break tracks into a tree of
goals and subgoals. If a pedestrian deviates from a likely path, his behavior
is flagged as suspicious. Owens et al. (2002) [139] used the techniques of
Novelty Detection {117, 118] to automatically pick out abnormal pedestrian
routes. Niu et al (2004) [133] used HMM to detect complex interactions

such as stalking.

Heikkild and Silvén (2004) [83] combined templates and speed information
to distingnish pedestrians from cyclists. Zhou and Aggarwal (2001) [195]
used nearest neighbour with multiple features to distinguish four categories
of object (vehicle, bicycle, single person and people group), and reported
a 5% misclassification rate. Selinger and Wixson (1998) [156] and Curio et
al. (2000) [48] distinguished people from cars using the periodic deformations
of people’s blobs. Bobick and Davis (1998) [34] integrated the object’s motion
into a ‘motion history image’ and then applied template matching (referred

to as "temporal templates’) to detect specific behaviors.
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Once objects have been classified, their interactions may be understood.
Collins et al. (2000) [46] used Hidden Markov Models to classify events such as
‘human entered a vehicle’ and ‘human rendezvous’. Kojima et al. (2002) [102]
sought to develop a system for automatically describing human behaviour

after these behaviours have been successfully extracted.

Gait analysis is an important area of surveillance research. Vega and
Sarkar (2003) [177] used gait information to distinguish between people who
are walking, jogging or running. However, most work on gait uses videos
produced in indoor labs or under highly controlled conditions. Yoo and
Nixon (2003) [191] discussed the need for feature extraction and the dis-
tinctive near-sinusoidal motion patterns of human gait. Many approaches
rely on extracting a 3D human body model first, before gait can be anal-
ysed. Bharatkumar et al. (1994) [30] used the Medial Axis Transformation
to apply a skeleton model. Dockstader and Tekalp (2002) [56] tackled this
as a tracking problem, where models are applied at coarse and fine resolu-
tions with kinematic constants. Lee (2003) [104] extracted gait information
from multiple binary silhouettes of pedestrians and used this information
to identify particular people. Kobayashi and Otsu (2006) [101] used spatio-
temporal filters to extract gait information for human identification. Benedek
et al. (2005) [25] turned gait analysis on its head, using simple gait infor-
mation to match multi-camera views of the same person and thus build a

multi-camera surveillance system.

Surveillance approaches have been extensively reviewed in Moeslund and

Granum (2001) [123] and Aggarwal and Cai (1999) [2].

ol




2.6 Human Visual System

Aggarwal noted in 1988 that “There are two groups of scientists studying
vision. One group is studying human/animal vision with the goal of under-
standing the operation of biological vision systems... [The other] includes
computer scientists and engineers... with the objective of developing vision
systems.” Farah’s 2000 book [64] traced the current state of knowledge of
the HVS. Visual information is initially collected and preliminarily processed
by the retina. It is then passed on to the Lateral Geniculate Nucleus (LGN)
where information for two eyes is combined. Subsequently, this data is trans-

mitted to the Visual Cortex.

The Visual Cortex is composed of five subregions, V1 through V5, which
are complexly interconnected. Sekuler ef al. (2003) [155] gave an overview
of what is known of motion processing in the Middle Temporal (MT) area
which lies near V5. Although much motion processing has been resolved to
the MT area, it is also known that there are neurons in all regions of the

HVS which are sensitive to combinations of particular features and motion.

Overall, motion detection is a direct experience, uniquely specified by the
visual system. This can be seen most clearly in the ‘blindsight’ condition,
where a patient with neurological damage may be blind to stationary forms
and objects but may still be aware of motion, while being unable to identify
the source. Humans have been shown to be better at detecting relative rather
than absolute motion. Other interesting points include MT neurons sensitive

to changes in object direction. Werthein (1994) [182] reviewed ego-motion
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in the HVS and the need for a reference signal (i.e. assumed fixed points in
image space) as opposed to extraretinal signals (a non-image knowledge of

motion and eye position).

Friston and Biichel (2000) [69] discussed the processing connections be-
tween early V2 and the suspected site of motion processing in V5/MT area.
Britten and Heuer (1999) [35] explored what happens when one motion sen-
sitive cell in the MT region is faced with overlapping motion data for two
objects. Priebe and Lisberger (2004) [149] explored how visual tracking is
related to the contrast of the object. Unsurprisingly, higher contrast objects
are easier to track. Bair ef al (2001) [14] studied the connection between
MT response and stimulus duration. Thornton et . (2002) [169] reported on
a study for biological motion using light point displays and discovered that

recognition is highly attention dependent — suggesting high level processing.

Most of our understanding of the HVS is derived from experiments on
animals. Shadlen and Newsome (1996) [158] presented a study on how the
monkey visual system detects and tracks small moving dots. Dittrich and
Lea (2001) [54] provided a very accessible introduction to motion processing
in birds, noting that many birds have the ability to define and distinguish
patterns and objects using only motion information. The oft-repeated ability
of hawks to spot their prey at great distances is only true if the prey is in |
motion. Conversely, that most small creatures have a ‘freezing’ instinct in i

case of danger shows that motion is a key detection and recognition cue.

Li (2002) [108] discussed the need for on-retina visual bandwidth reduc-

tion, noting that the retina strips perhaps 80% of redundant information 13
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before transmission to the optic nerve. Nadenau et al. (2000) [127] and
Momiji (2003) [125, 124] provided detailed reviews of how models of the
HVS and retina have been used to optimise image compression. Martin and
Aggarwal (1978) [119] also proposed a dual-channel approach whereby the
peripheral region detects motion and directs an attentive tracker which incor-
porates object detail. Simoncelli and Heeger (1998) [160] presented a model
of the MT area which is believed to be the motion processing center of the

HVS.

Grossberg et al. (2001) [79] noted that visual motion perception requires |
the solution of two competing problems of ‘motion integration’ and ‘motion
segmentation’: “The former joins nearby motion signals into a single ob-
Ject, while the latter keeps them separate as belonging to different objects.”

Grossberg suggests a neural model to explain this ability.

Neri ef al. (1998) [131] attempted to explain the HVS’s remarkable ability
to detect ‘biological motion’, i.e. to distinguish the cyclical motion of living
things from that of rigid inanimate objects. Giese and Poggio (2003) [75]
model biological motion recognition using a dual form and motion channel
processing architecture. They conclude with a number of open questions:
“How is the information from the two pathways combined?”, “Does form or

optic flow-based recognition dominate for certain stimulus classes?”

Heeger and Simoncelli (1992) [82] presented a mathematical model of .
how they believe the HVS uses s—¢ filters to compute optical flow. Young
et al. (2001) [192, 193] gave a detailed exploration of s filters in the visual

cortex and reports on the Difference-of-Offset-Gaussians (DoOG) response ‘!
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of some neurons. He noted that “Next to the simple detection of light and
dark, the ability to see motion may be the oldest and most basic of visual

capabilities.”

Most research points to a hardwired motion detection system
centered on s-¢ cells in the MT area. However, there are dissenting views.
Sengpiel (2006) [157] reported evidence which suggests that even low level

motion must be learned and is not innate.

In 1942 anatomist Gordon Lynn Walls observed “If asked what aspect of
vision means the most to them, a watchmaker may answer ‘acuity’, a night
flier ‘semsitivity’, and an artist ‘colour’. But to animals which invented the
vertebrate eye and hold the patents on most features of the human model,

the visual registration of motion was of the greatest importance.” [155]

2.7 Summary

Video surveillance has a very practical aim: to automate the task of de-
tecting and tracking objects and to derive specific information from these
movements and behaviours. The specific information required depends on
the application, and ranges from automatic detection of crashes and jams in

traffic monitoring to crime detection in public areas.

Visual surveillance systems can be divided into four constituent parts or

stages that exist in varying proportions in every reported system:

e MD — Motion Detection

e LP — Location Prediction (or search constraints)
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e AM — Appearance Maftching and modelling

e BA - Behaviour Analysis

"T'wo principal paradigms also exist:

e 1D+2 — Background modeling, where motion detection takes prece-

dence over LP and AM.

® 2D+1 — Foreground tracking methods (i.e. particle filtering), where
emphasis is placed on LP and AM. Here MD might only be used for

bootstrapping or may not be present at all.

Either paradigm, if successful, simply outputs the location and path of the
object. The final behaviour analysis step must either rely solely on this path
information, as many do, or process the video data again to extract extra

information.

The Human Visual System incorporates a strong spatio-temporal motion
detection stage followed by, and integrated with, highly robust location pre-
diction and appearance modeling. However, there is evidence that the HVS
tackles the final surveillance stage using a rich data field extracted directly
from the initial detection stage. ‘Biological motion’ has been shown to be
detected at this initial stage, rather than by some post-tracking processing.
Troscianko et al. (2004) [171] studied the reactions of human CCTV oper-
ators and showed that their ability to detect crime or suspicious behaviour
had little connection with the path taken by the target, but focused mainly

on the intra-body movements and pose.
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The following chapters present new approaches to the stages of video
surveillance. Chapter 3 describes a motion detection technique, called Motion
Distillation, that follows a 8D paradigm. Chapter 4 covers the LP and AM
stages and describes a post detection tracking system which emulates the

dual-channel form-motion scheme of the HVS. Chapter 5 describes a BA

technique which uses motion information produced by the MD stage.




Chapter 3

Motion Detection

Motion detection is a component of many tracking systems. There are

broadly three categories of motion detection:

1. Pizel or feature optical flow approach.

Every instance of a chosen feature type is detected in each frame and
matched to the next. Moving objects are detected as connected regions
of moving features. As frames will normally contain many features
of very similar appearance, this is possible only by using constraint
models to reduce ambiguity. These techniques are not well suited for
surveillance applications because objects are small with respect to the

scene and there are many motion discontinuities [120].

2. Pigelwise statistical background modelling and subtraction.

Here we suppose a model of the stationary scene (background) is being

prepared. Regions of the current frame that are significantly different
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from this background are tracked as objects. When calculating the
background model, each pixel is computed separately, using the statis-
tical assumption that the most common value is that of the stationary
background. The choice of the particular statistical method used is
where the various published methods differ. This choice depends on
the application, the noise properties of the video, and the available

computational resources.

3. Motion ‘Distillation’.

Spatio-temporal edge-based detection. The subject of this work: see

particularly Section 3.3 below.

3.1 Filtering for noise reduction

Perhaps the most basic task in signal processing is filtering for noise reduc-
tion. In general terms this can be explained in terms of the result of applying
a point spread function g to all points of a function / and accumulating the

contribution at every point — a process known as convolution:

r+a= " Hulgl i (3.1)

For a discrete 1D signal of length k., this becomes in practice:

kmaos

F)=fxg=Y" f(k)g(t - k) (32)
k
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For 2D discrete spatial images, of width and height 4., and j,,,:

Flz,y) = f(z,y)*g(z,y)

imaz‘ jmaw
= 2 G, Nglz —iy - ) (3:3)
i g
Video can be viewed as a form of 3D, spatio-temporal signal. Convolution

can be applied using the form:

Flz,y,t) = f(z,y,1) * g(z,y,1)

tmaz Jmaz Kmag

= 22D fGikee—iy—jt—k) (3.4

The nature of the 9(z,y,1) function defines how the data will be effected.
Choices include the filter size, whether it is high or low pass, symmetrical,

smooth, Gaussian, etc.

In image processing, filters are commonly used and easily understood.
An example of a square low-pass averaging function in 2D with a width of 3

is:

L1
g(rr,y)=§ 111 (3.5)
111

This filter will blur regions of high frequency in the data. For example,
a single isolated noise pixel will be smoothed, but neighbouring pixels will
become ‘contaminated’. The usefulness of such an operation depends on

the noise and signal qualities of the data. White Gaussian noise will be
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removed by this filter without disrupting the signal. However, the important

structures in most images involve high frequency components, such as edges.

Kalivas and Sawchuk ( 1990) studied the application of 3D, spatio-temporal
filters for video noise reduction. They noted that a mean, low pass filter ap-

plied using equation 3.4 will blur moving edges over time.

A common alternative to the mean (while not a convolution) is a median
filter. The median (discussed in more detail below) is the mid value of the
ordered distribution. This allows outliers to be excluded, thereby removing
noise points. 2D median filtering does not blur an image but does remove

some fine detail, resulting in a ‘softened’ appearance.

Mode filters are also sometimes used. There are difficulties involved in
calculating the mode accurately because of the small number of discrete
samples generated by common filter sizes of 3x 3 or 5 x 5 pixels. This means
that instead of the smooth distribution whose mode is easily located, we
are presented with a multimodal distribution whose highest point does not

indicate the position of the underlying mode. This is discussed in detail by

Davies (2005) [49].

3.2 Background modelling

In noise reduction, the current pixel is replaced with the ‘central tendency’
value, either mean, median or mode. To detect motion the aim is reversed.

Now it is assumed that the central tendency is the background and the
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Figure 3.1: The logical scheme of Motion Detection by background modelling
methods. The first three steps are 1D pixelwise processes. ‘Pixel Process’
refers to the chosen statistical model, such as Median filtering or Gaussian
Mixture Model. The final two steps are 2D. After Motion Detection is com-
pleted, the system moves on to tracking and behaviour analysis stages.

important value is the outlier, as this may be due to either a moving object

Or or noise.

Background modelling starts with the computation for each pixel of the
central tendency of the ‘pixel process’, followed by its subtraction from the
current pixel value. If the difference is greater than some threshold the
pixel is assigned a ‘true’, otherwise a ‘false’, in a binary detection mask. In
contrast to the spatial and spatio-temporal analysis described above, back-
ground modelling only deals with 1D statistics. This technique is based on
the following assumptions: that the moving object is small, with respect to
the scene; that the object moves quickly, with respect to the filter size or

‘temporal window’; and that the background is non-moving.

Background modelling schemes face two inherent and antagonistic prob-
lems, called the ‘Stationary Background Problem’ and the ‘Transient Back-

ground Problem’. First, the background model must reflect the stationary
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part of the scene to allow accurate segmentation of moving objects. This
problem requires a low difference threshold in the subtraction stage and a
large filter size so that slowly moving objects do not merge with the back-
ground. Conflicting with this is that the background model must update to
appearance changes in the scene, such as changed lighting conditions, requir-

ing a smaller filter size.

No compromise gives perfect results, with a common failure being partial
segmentation when the ‘object depth’ (object overlap in previous frames,
equal to length/speed) is greater than half the filter size. Similarly, a tracked
object that then stops, such as some abandoned luggage, will merge with the
background, vanishing from the tracking stage. For a background model to

successfully segment a moving object:

width

filter size > 2
speed

(3.6)

where filter size is measured in frames, width in pixels and speed in pixels
per frame. This evaluation is frame rate and resolution dependent. The
choice of the central tendency statistic (temporal mean, temporal median
or temporal mode filtering), depends on knowledge of the lighting and scene
characteristics. The mean can give acceptable results in indoor environments
with constant and diffuse lighting whereas outdoor ‘open-world’ scenes re-
quire the greater robustness to lighting fluctuations offered by the median
and the mode. The Gaussian Mixture Model approach has become widely
used as it has the advantages of allowing multimodal pixel processes, and

thus a quick recovery time, and also a wide temporal window for robustness.
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The temporal mean filter has an advantage of speed and simplicity. Tt is
sometimes used in indoor surveillance application where lighting is relatively
constant, and where a motion free bootstrap is available. If there are moving
objects present during the bootstrap sequence these will cause large blurry

regions in the background model.

3.2.1 Median filter

Mathematically, the median is described in terms of a bijective map, X — ¥,

such that V) < ¥, < ... < Yx. The median is calculated by:

YiN_;LI)/g if N is odd
Median(X) = 7 = (3.7)

J; . -
2(Y% ~+~Y1+%) if N is even

To implement this method, a histogram of pixel values is prepared. For
a neighbourhood with n pixels, the median value lies with 5 on either side.
The median filter removes outliers with much less blurring, but at greatly

increased computational cost.

Median background modelling is based on 1D median statistics. At each
pixel location the pixel values over the temporal window (the pixel columns
represented in Figure 3.2) are placed in a histogram (256 levels for 8 hit
pixels). As discussed earlier, there is no temporal window size that perfectly
solves the Stationary Background Problem and the Transient Background

Problem. By experiment I determined that a value of between 20 and 40
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frames gave best results for the videos tested (see Appendix A). This number

is not critical but video frame rate and content are important factors.

The background model is constructed from the median values of each
pixel. These median values are compared to the current frame using a dif-
ference threshold to create a binary ‘motion mask’ (see Section 3.2.2). This
must then be analysed using an object labelling algorithm (see Appendix

section B) and a tracking algorithm (see Chapter 4).

This version of the temporal median flter was implemented for later
performance comparison with the spatio-temporal filtering method presented

below.

3.2.2 Thresholding and video noise

After the background model has been prepared it is subtracted from the
current scene. The task then becomes to decide, by means of a difference
threshold, which parts of the difference map are due to noise and which are
due to motion. From a signal processing approach, each pixel can be viewed
as being composed of the static background value (‘carrier wave’), on top of
which is placed noise and the motion signal we wish to detect. The signal
qualities and noise levels will be quite different for pixels in different parts
of the image, due largely to lighting effects. Further, the strength of the
motion signal depends not on motion, but on the intensity contrast between
the background and that part of the moving object passing over the pixel.

However, for a given pixel, at a given time, the presence of a motion signal
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is a rare event and there is no other source of information on whether there

is motion or not.

The first step to considering automatic threshold selection is to examine
the noise distribution of the signal. Rosin (1997) modeled image difference
noise using a Rayleigh distribution, but conceded that a Gaussian centered

on zero was an acceptable approximation.

Rosin showed that the probability of incorrectly classifying a pixel as

motion, for a given threshold T = zo is:

P = erfc( (3.8)

=)
\/ﬁa
where ‘erfc’ is the complementary error function. Coupled with an experi-

mental knowledge of o, equation 3.8 allows a choice of threshold for a given

proportion of false positives.

Another approach is to rely on the assumption that there should be only
a small number of large moving objects in the scene. Here, the full range of
threshold levels is tried and the number of motion regions is counted. It is
also assumed that true objects will remain stable over a range of threshold
levels. Rosin describes this as a ‘clumpiness’ test. This causes problems with

noisy videos as the constant region may not exist.

Similar results can be achieved more directly by setting a constant thresh-
old value and using morphological dilation and erosion to join separated re-
gions of the same object. An object size threshold can be applied to remove

scattered noise points at the object labelling stage.
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3.2.3 Gaussian Mixture Model

Stauffer and Grimson (1999) realised that pixel processes are often rnulti-
modal in nature. This can be due to a static object, such as a CRT screen,
flickering, or a small object oscillating over the pixel and interrupting its
view of the static background. They also wished to solve the problems of
adaptive and non-global threshold selection. Their solution is to model each
pixel process as a mixture of Gaussian distributions in colour space. They

describe the probability of observing the current pixel intensity value as:

k
P(X;) = sz‘,t 1 Xe, frig, Bi) (3.9

t=1

where k is the number of Gaussians chosen for the distribution, 7 is the
Gaussian pdf, u is the central mean point of each Gaussian and ¥ is the
covariance matrix of each Gaussian. The covariance matrix, g, = o%1, is
simplified to save computation using an assumption that each colour channel
1s independent and has the same variance. Equation 3.9 can be solved using
a k-means algorithm (among other approaches), solving first equation 3.10

followed by equation 3.11:
pe = (1= p)p 1 + pX, (3.10)

o = (1= p)o; y + p(Xt — )" (X, — i) (3.11)

where p is a learning rate. The differencing threshold is automatically de-

termined for each pixel using the standard deviation of the Gaussian distri-
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bution. If the current pixel value is more than 2.5 standard deviations from

any Gaussian mean it is recorded as foreground.

This version of the GMM algorithm was implemented for later perfor-
mance comparison with the spatio-temporal filtering method presented be-
low. While the GMM method does give improved background modelling
results over median filtering, these come at extra computational cost due
to the algorithm’s complexity. In operation it was noted that sometimes
the EM algorithm for a particular pixel would become unstable, causing the
Gaussian pdf to collapse to a point. It was not possible to determine whether
this problem was due to some error in implementation or some property of

the data. An ad hoc solution of re-initialisation of these pixels was applied.

3.2.4 Criticism of background modelling

Figure 3.1 provides a general background modelling scheme. An often over-
looked, yet vital and expensive, stage of background modelling and subtrac-
tion follows the production of the binary foreground map, but precedes the
tracking stage. Here it is necessary to search the foreground map for objects
using connectivity and to eliminate ‘small’ objects as probable noise. It is
very common that pixel-wise detection methods will result in ‘holes’ or in-
correct splits in the object silhouette, where parts of the object are similar
In colour or intensity to the background. This may be tackled using a series

of morphological dilation and erosion steps on the foreground magk.

The background modelling approach can be thought of as an indirect
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route to spatio-temporal motion detection. The first step is a 1D pixel-
wise statistical process. This is followed by a 2D object detection stage
that uses morphology. The 1D step can only detect change rather than true
motion. The reason for this can be seen in Figure 3.2: when only one pixel is
considered it is impossible to distinguish the case of localised random noise
from the case of an object moving across the background. Only reference
to the 2D data can allow this distinction. (Section 3.4.2 and Figure 3.16

illustrate this point from a different perspective.)

3.3 Motion Distillation

Motion Distillation is the name I have given to direct motion detection for
visual tracking. This method uses spatio-temporal edge detecting filters to
achieve this goal with greater robustness to noise and lower computational

costs.

3.3.1 Temporal edge detection

Can we detect motion directly, without statistics? Video is usually thought
of as a sequence of frames, as with a traditional roll of film. A different
approach is to model video as a 3D spatio-temporal structure, notionally
‘stacking the frames’ into an z-y-¢ column as in Figure 3.3. This reveals
some interesting and useful aspects. Stationary image features will form

straight lines parallel to the t-axis, while features in motion will form lines
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Figure 3.2: Video viewed as 1D pixel statistics. On a pixelwise basis it
1s impossible to distinguish the isolated noise points (left) from a spatially
coherent, motion (right). Only subsequent 2D processes can achieve this. An
alternative approach is to apply 3D, spatio-temporal motion detection from
the outset.

aup >

Figure 3.3: The result of ‘stacking the frames’ into g, Z—-y-t column or ‘video
cube’. In this view, edges parallel to the ¢ axis are stationary while edges with
a non-parallel component are in motion. A spatio-temporal edge detector
tuned to detect these edges will thus also detect motion.
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with a non-parallel component.

An ordinary edge detector can be used to enhance these ‘temporal’ edges.
In the past, several researchers have reported a variation of sumple image dif-
ferencing where the difference of edge-maps is taken. This approach has
improved illumination invariance but has disadvantages when non-global

threshold levels are required [152].

A slightly different approach is to use a Sobel or other edge detector in
the z-t and 3¢ planes. Using a filter orientated perpendicular to the t-axis
highlights features in motion. Use of a 3 x 3 edge detector on a surveillance
video in this fashion quickly extracts the moving objects in a robust way [167],
see Figure 3.5. A threshold level is required to binarise the output for blob
extraction and tracking. The histograms in Figure 3.5 compare the outputs
of image differencing and the Sobel method. With image differencing, as
with all pixelwise statistical methods, the output histogram shows that pixel
changes due to noise and motion are grouped together in a large peak near
the zero point; the spatial properties of the Sobel give greater weight to pixel
change due to motion, resulting in a peak at a much larger value. A threshold
level may be chosen robustly (in the sense that the threshold is far from being
critical) in the large gap between the noise peak centered near zero and the
motion peak at larger values, while for image differencing, morphology and

size filtering will be required to extract the target.
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3.3.2 Wavelet decomposition

Rather than use two 2D edge detectors, we can construct a single 3D spatio-
temporal filter. The wavelet transform is a particularly useful mathematical
technique for analysing signals which can be described as aperiodic, noisy and
discontinuous. The transform is composed of two parts, the ‘scaling’ function
low-pass filter and the ‘wavelet’ function high-pass filter. By repeated ap-
plication of the scaling and wavelet filters, the transform can simultaneously
examine the signal in both position and frequency. In its continuous, general

form the wavelet function is represented by:

Vas(t) = 0 (t—;l—’) (3.12)

where a represents the wavelet scale and b the location in the signal. This may
be translated into a discrete wavelet transform by setting a discrete bounding
frame and using a type of logarithmic scaling known as a dyadic grid. The
result is a general discrete scaling function ¢, and a wavelet function 1), each

in turn dependent on the separately chosen mother wavelet 0.

The choice of ¥ depends on the application. Commonly used functions
include the Gaussian, the ‘Mexican Hat’ function (a second derivative Gaus-
sian) and the series of Daubechies wavelets. The JPEG 2000 standard, for
example, uses one of the Daubechies wavelets in a 2D fashion to separate
images into a series of feature maps at different scales, which may then be

efficiently encoded and compressed.

One way of viewing the behaviour of the wavelet transform is as an edge
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Figure 3.4: Shows the scale pyramid output of wavelet image decomposition.
The top row represents the output of the horizontal wavelet, the side column
of the vertical wavelet and the diagonal of the diagonal wavelet. The image
in the top left column is the result of the final scaling function.

detector [1], because a high-pass filter detects discontinuities. To decompose
a 2D signal such as an image, 1D low-pass filter ¢ and high-pass filter ¢ are
combined using the tensor product to produce four filters, each sensitive to

edge features at different orientations.

2-D scaling fn:  ¢(x,y) = o(x)d(y)
2-D horizontal wavelet: Yu(z,y) = o(x)v(y)

2-D vertical wavelet: (2, y) = P(z)p(y)

2-D diagonal wavelet: ,(z, y) = (z)y(y) (3.13)

These filters are applied sequentially to the image. First, the three orientated

wavelet filters are used to extract features at the highest detail scale. Next,
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the scaling filter is used to reduce the scale of the image, followed by another
pass of the wavelet filters. This is repeated to the desired scale, producing a

‘feature pyramid’ (Figure 3.4).

This system can be extended to 3D spatio-temporal wavelet decomposi-
tion using tensor products. The result is eight spatio-temporal filters, rang-

ing from the s-¢ scaling function #(x)d(y)P(t) to the s—¢ diagonal wavelet,
() (y)y(t).

3.3.3 The spatio-temporal Haar wavelet

To apply these wavelets to real data, a specific mother wavelet function must
be chosen. The requirements of the mother wavelet are application-specific
while bearing in mind practical considerations such as computational cost. In
this case, the goal is not to encode or record the image data, but merely to de-
tect temporal discontinuities at particular s- orientations. The widely used
Daubechies category of wavelet has the ability to detect polynomial signal
patterns. The wavelet order is linked to the polynomial order to be detected.
Daubechies 4 (D4) detects second-order polynomials. D6 is sensitive to third-
order polynomials, and so on. The higher the wavelet order, the greater the
computational cost of implementation. The simplest Daubechies wavelet is
D2, and is also known as the Haar wavelet. Here we will demonstrate that
this simplest wavelet, extended to three spatio-temporal dimensions, is a very

powerful and efficient motion-detection tool.

The 1D Haar mother wavelet is composed of just two coefficients. Tensor
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Figure 3.5: Top — the image difference histogram. Noise and motion pixels
grouped together. Lower histogram — Sobel edge detection histogram. Mo-
tion pixels are shifted out and can be easily detected. Bottom — An example

of motion detection using Sobel temporal edge detection.
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Scaling fn = Wavelet fn

1D 1 1] [1 -1]
S R
P o

3D

Figure 3.6: Table showing the coefficients for the Haar Wavelet Transform
for different dimensions. For 3D, white is used to represent a value of ‘1’ and
black ‘—1’. Wavelet decomposition is carried out by sequentially convolving
the signal data with first the scaling fn, and then the wavelet fn for each
desired scale level.

products of 1D wavelets can produce a series of 2D and 3D scaling func-
tions and wavelet functions. The 3D row of Figure 3.6 shows an example
of two of the eight spatio-temporal Haar wavelets, where black represents
‘—1" and white ‘+1". This wavelet function has its step-function orientated

perpendicular to the t-axis.

Spatio-temporal wavelet decomposition of a signal produces a feature
pyramid as with 2D. The input signal is convolved with both the scaling
filter and the wavelet filter. The output of the scaling filter is reduced by
a factor of two in each dimension. This output is again convolved with the

scaling and wavelet filters.

The output of each wavelet convolution is a product of the speed and

contrast of the edge feature. The equation for computing a single wavelet
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filter is:

WZZ Z -T.tij‘_z Z Ttij (3.14)

t=Tp (i,7)eW t=T1 (i,j)eW
where W represents the filter size in i and j dimensions, Zy; represents the
video pixel data at the point in spatio-temporal space (t,4,7). To and T} are
the lower and upper bounds of the filter respectively along the time axis,
and T; is the position of the discontinuity. If part Th <t < T} is equal to
part T} < ¢ < T3 then the wavelet output W, will be zero. This condition
may occur if there is no movement within the data analysed, i.e. if the s—¢
orientation of any edge is parallel to the t-axis. The filter output, W, is

approximately proportional to!:
T
(E — #) x edge contrast (3.15)

where f is angle of edge to the spatial plane. Because of the fact that at a local
level it is impossible to know whether a dark object is moving against a light
background, or visa versa, motion direction information is ambiguous. For
detection, where only binary motion data is required, W can be normalised
to remove this ambiguity. In Chapter 5 we use the raw motion information

for behaviour classification.

3.3.4 Detection comparison

Table 3.7 details a comparison of segmentation results for several videos us-

ing three motion-detection methods — two traditional background modelling

1A more exact form is developed in Section 3.4.2
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Frame _ Median GMM

Y

Figure 3.7: Figure shows comparisons of thresholded detection results for
Haar wavelet and traditional background modelling. Three videos with dif-
ferent noise qualities are analysed. The first (a) low noise, is captured using
a webcam on an overcast day. The second (b, c, d) is a long higher resolu-
tion camcorder video on a sunny day with changing lighting and shadows.
The target pedestrian walks and runs in different directions. Frame 5187
(d) shows the pedestrian walking slowly towards the camera and waving his
hands. The final video (e, f) is taken from the CAVIAR project and has con-
siderably higher lighting noise than the other two. Note: MD segmentation
results shown use edge zoom discussed in Section 3.3.6.
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4
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techniques, median filtering and GMM, and the s—t Haar method. For com-
parison, we have chosen the temporal median filter because it has comparable
algorithmic complexity to our own method; it may be set up to operate over
a small number of frames and it has a simple bootstrap. The GMM approach
is chosen as it is an accepted and particularly widely used background mod-
elling method. Here both the median filter and the new method are computed
over eight frames (the new method is computed to the third decomposition
level, for which the number of frames is 23), and both also have an 8-frame
bootstrap. The GMM requires a larger number of frames in order for the
Gaussians to stabilise on a particular distribution, and in our implementa-
tion we use a 20-frame bootstrap, although this number is not critical. The
output from all three methods is presented without any subsequent morpho-
logical or noise reduction steps, so as to be sure of comparing like with like.
(Naturally, any method can be enhanced to improve performance, but here

we focus on intrinsic performance for clarity.)

The videos are surveillance style and have been chosen for their differing
degrees of noise, characterised by the median value of pixel variance over time,
and they depict behaviours of pedestrian targets. The first case presented
here (Figure 3.7, Video 1) is a simple motion segmentation task of an outdoor
scene with diffuse lighting and low noise. The median pixel intensity variance
is 1.65. The median filter results clearly show the difficulties of that method.
The target is incorrectly segmented with leading and trailing edges separated.
This problem is due to the slow speed of the target with respect to the

temporal window size of 8 frames; the middle of the target has been absorbed
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into the background model. Both the GMM and new method give more

accurate results.

Video 2 in Figure 3.7 shows a variety of target pedestrian behaviours. The
median pixel variance is 3.05. In frame 664, the target is walking directly
across the frame. There are slight shadows that interfere with segmentation
and more random image noise than Video 1. This noise is shown clearly
in both median and GMM background subtraction results because these
methods behave as change detectors. Pixels are segmented if the contrast
with the background model is above some threshold. (In median filtering

this threshold is global; in GMM it is pixelwise and adaptive.) Morphological

closing (which would have to be anisotropic, and would to a fair extent be

an ad hoc measure) could improve the background subtraction results, but

this somewhat expensive step is unnecessary for the new method. However,

it is commonly necessary for many implementations, such as [164].

The random, structureless nature of the video noise means that the edge
detector of the new method reacts less strongly, and is automatically removed
by the scaling process. In this frame there are also two other small regions of
motion. Median filtering detects only one of these, while the GMM catches
both, but in neither of these cases is a strong signal obtained. However, nei-
ther method is capable of cleanly distinguishing these objects from noise and
it is likely that subsequent noise reduction steps will remove them entirely.
The new method clearly detects both small moving regions while robustly

eliminating all noise.
Frame 5136 is of a, target pedestrian walking slowly towards the camera,
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— a case rarely dealt with in the background modelling literature. Because of
the slow motion relative to the Image frame, the centre of the target becomes
absorbed into the background (to a large degree in the median filter, but less
so in the GMM), and the background subtraction results show large gaps.
In Frame 5187 the pedestrian is waving his arms; this is discussed further
in the future work section below. The new method results for Frame 5187
show slight smearing of the arms because of their rapid motion, which is
a characteristic by-product of this method. (It must be emphasised that
motion analysis is necessarily carried out over time, and thus refers to a
range of positions: the complete picture at any moment can therefore only
be ascertained by combining form and motion information.) Again, the new
method also detects a small moving object in the top left corner which is

completely missed by both the median and GMM methods,

The final frames are from the “fights & runs away 1” sequence in the
CAVIAR database. This video shows the highest degree of noise of these
examples with pixel variance ag high as 10 in the brightly lit bottom left
quadrant of the video. Again, the new method has a cleaner response because
this noise is random — and thus changing but not moving. In all cases the new
method demonstrates a far greater robustness to noise than either median

filtering or GMM.

Table 3.1 presents quantitative ob ject detection results for the s—¢ Haar
method. Object detection rates for each video were compared with the man-
ually established ground truth. In Table 3.1, TB stands for ‘True Blobs’,

which is the true number of moving objects in each frame. Blobs are formed
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Table 3.1: Performance of motion channel with three videos from Figure 3.7.
‘Frames’ indicates the length of each test video in frames. ‘TB’ indicates the
total number of real moving objects in each frame (ground truth) and ‘DB’ is
the number of detected blobs. ‘FP’ is False Positives, objects detected where
there are none. False positives are mainly due to motion clutter. ‘FN’ is
false negatives, moving objects not detected. The precision results presented
compare favourably with those for background modelling and at considerably
less computational cost.

FramesTB DB  FP FN  accuracy
Videol 538 378 380 2 0 99%
Video 2 5458 2712 2850 138 0 95%
CAVIAR 550 938 934 20 24 95.30%

by grouping together connected pixels. Any isolated pixel or isolated group
of connected pixels are counted as individual blobs. If a blob exists at the
location of a true object, or touches on the location of part of a true object,
that is counted as a match. The size of the object is not considered here.
‘FP’ and ‘FN’ stand for ‘False Positive’ and ‘False Negative’. FP indicates a
blob (one pixel or more) was in a location where no true object was moving
while FN means no blob was in the correct location. If two separate blobs
are detected at a location which contains only as single true object, this is

counted as a single true positive.

In test videos 1 and 2, all false positives were observed to be due to
moving tree branches and all real moving objects were detected. In the
CAVIAR video a small number of false positives were caused by shadows
and a poster moving in air currents. The 24 false negatives were due to a
single person moving slowly in a dark region of the video (though there is

clearly some argument whether these false negatives should be counted as
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true positives).

The numerical results for the median and GMM filters would be very poor
without some post-detection noise-reduction step, and are thus not fairly
comparable. This comparison is better made with reference to Table 3.2,
which shows pixelwise detection accuracy for the median filter, GMM and
MD methods for the three videos presented in Figure 3.7. These results
were prepared with a random selection of 10 frames from each video using
manually groundtruthing of moving pixels. The results show three categories
of error, FN (false negative) — moving pixels which were not detected, FP+
(false positive plus) — nonmoving pixels falsely detected, but connected to a
correctly detected blob, and FP- (false positive minus) — nonmoving pixels
falsely detected and unconnected to a true moving object. The x-axis values
are denominated in thousands of pixels and these values have been normalised

for frame size to allow comparisons between videos.

The total error level for MD are generally lower than the comparison
methods, beating median filtering in every case and QMM in 70% of cases.
Of particular note is that the instance of unconnected false positives is at
or near zero for MD, while connected noise points are higher. This is due
to the scaling effect of the method which, while removing noise also reduces

pixelwise precision.
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Table 3.2: A pixelwise detection accuracy comparison for the three videos
from Figure 3.7 using the Median, GMM and MD methods. The bars show
the average number of error pixels for each method and video divided into
three categories, FN (false negative pixels), FP* (false positive pixels con-
nected to a correctly detected object) and on the right, FP~ (false positive
pixels unconnected to a true object).

arN = FP+ gFe

Video 1

Video 2
i

CAVIAR

100 120 140

3.3.5 Computational cost

Here we offer a precise derivation of the computational costs of the system
measured in operations per pixel. For comparison, the computational re-
quirement of the temporal median filter method of background modelling
is ~ 256 operations per pixel (because of the need to analyse the intensity
histogram). The GMM technique is more expensive, requiring a lengthy ini-

tialisation step, followed by evaluation of an exponential function for each
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Gaussian and each pixel. For this system, the temporal window concept is
replaced by the idea of a decomposition level D. The number of starting
frames for this decomposition level is 2. On the first iteration, two frames
are convolved with two filters — the scaling function and the wavelet function
— to produce one scaled frame and one motion frame (each of size 5 X 5, where
n is the frame width). The next stage repeats this for two scaled frames from
stage one, resulting in output frames of size 7 x %. The third decomposition
stage uses two second-level scaled frames and produces frames of size ® x 2.

8 8

The total number of pixels in the system is given by:

D D
N=3 (V2 g2 g g-u 3.16
=2 (5) 7= (3.16)
i=0 =0
For the 3D Haar Wavelet Transform, the number of operations required to

decompose the signal to level D is given by equation 3.16 but with the ex-

pression summed to D) — 1. The number of operations per pixel is:

D-1 D-1
1 n\2 2P —5;
w2 (5) 7= 22 (3.17)

This has a minimum value of 1 operation per pixel when D = 1 and the

maximum is found using the limit as D goes to infinity:

D-1
2 =3t | __
i} (22 ) =

This measure of computational load, of less than about 1.14 operations per

oz 1,04 (3.18)

=Jl co

pixel per filter, is close to the minimum possible, and is a major speed im-

provement when compared with that of the median filter or other methods.
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Procésses per pivel

Figure 3.8: Graph of Decomposition level, D, vs. processes per pixel using
the relationship in equation 3.18. This demonstrates how the computational
cost of motion distillation has an upper limit. The value rises quickly towards
the asymptote at £.

Figure 3.8 illustrates the relationship D vs. processes per pixel.

Frame rate comparisons of techniques are problematic because of differ-
ences in implementation, input and equipment. However, we can report that
our implementation of the Motion Distillation scheme runs at 62 fps on a P4
machine, while median filtering and Gaussian Mixture Model (GMM) run

approximately 10 and 80 times slower. Input frame size is 720 x 576.

3.3.6 Edge zoom

A consequence of the reduction in the size of the motion map through spatio-
temporal scaling (see Section 3.3.2) is imprecise segmentation (extra back-
ground pixels outside the edge of the moving object are taken with the ob-
Ject). This is partly due to a spatial uncertainty due to reduced resolution

and partly due to temporal uncertainty, or motion blur, as discussed in Sec-
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tion 3.3.4. Imperfect segmentation is not critical for the tasks of tracking and
behaviour analysis, as discussed in the following chapters. However, there

are times when improved segmentation is desirable.

This can be achieved by integrating the motion detection information
derived during the wavelet decomposition stage. The system overlays the
highest level decomposition mask over the lower level outputs. Each pixel
in the higher level covers four pixels below. The silhouette boundary is re-
fined at each stage using the higher level as a mask. The result is shown in
Figure 3.9. The original image on the far left is cropped using motion infor-
mation from a three-level decomposition to produce the ‘low detail’ image.
This segmentation mask is laid over the second level wavelet decomposition
output. A refined edge position is selected using thresholded motion infor-
mation in the second level. This is repeated for the first level decomposition
(right). The operation is computationally cheap as the motion data has al-
ready been produced and stored at the motion distillation stage and because

the cropped images are small.

The question arises, why not use the first level of decomposition from the
beginning? This is not used because lower levels have mcreased noise results.
The motion signal has less noise at higher decomposition levels, but at the

cost of reduced detail.
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Original High level Medium level Low level
Low detail Medium detail High detail

Figure 3.9: This figure illustrates the task of mtegrating motion detection
: information from multiple decomposition levels to refine edge detail. The
top figure shows the noisy output from the first decomposition level.

3.3.7 Shake protection

Camera shake is a frequent problem in practical CCTV systems. Shake
causes the previously static background features to appear to move. This
can fill the motion channel with spurious objects or, depending on video
content, fill the field with one large object, which may disrupt and crash the

tracker. This is a problem of all motion detection-based tracking systems.

In this implementation, we wish to detect the shaking frames and ignore

them, skipping ahead to the next non-shaking frame. Occlusion reasoning

88

‘ %




e E———

(Chapter 4) is used to recover object tracks following a shake event. Shake
detection works by calculating the percentage of motion pixels in the motion

mask. If this percentage is above a threshold the system discards the frame.

Figure 3.10 shows frames from two shaking videos along with the out-
put of the motion channel. When the Camera moves, all static edges in the
moving background are picked up in the motion channel. The percentage of
shaking motion detected depends on the number of edges in the image and, as
featureless areas show no motion, the percentage does not reach 100%. The
variation of line widths seen in the figure is due to feature contrast effects.
When shaking stops, the system can quickly return to normal. Background
modelling techniques require a longer recovery time because the interrupted
pixels must pass out of the temporal window. In fact, there are really two
types of camera shake: one where the camera returns to the original viewing
angle and the other when the camera view is permanently changed. Back-
ground modelling techniques may have to reinitialise if the viewing angle has
been permanently changed. The motion distillation approach is unaffected

by a permanent change of view.

An alternative to simply discarding the frames would be to determine
the direction of shake and compensate for it — eliminating the background
while maintaining the real moving objects. This could be done using DoOG
filters in the motion detection stage as discussed in Section 3.4.1. However, in
many situations few frames are affected by shaking and the return would be
minimal on this considerable computational investment. Simply discarding

the frames is a more cost-effective solution.
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Figure 3.10: Result of shaking on motion detection. Motion masks (right) are
produced from the camera shake in the videos on the left. A shake protector
algorithm ignores these frames and waits for the shake to end. This protects
the object finding and tracking stage, discussed in the next chapter, from
overload.

3.3.8 Comparison to the Linkdping s—t method

The system presented here provides a computationally cheap method of mo-
tion detection without attempting to generate optical flow information. In
this its aim is to provide information useful for motion tracking and be-
haviour analysis. Only one filter (Haar) is used, which providing only one
datum (colour) for each location, cannot be used alone to generate motion

vector information.

In contrast, the work at LinkGping University, discussed in Chapter 2,
alms to generate full velocity vector and acceleration information akin to

optical flow (e.g. [16]). In this task they generate a tensor representation of
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video motion using a series of six or more quadrature filters. Global optical
flow is then computed, with consideration of the aperture problem, from
these local measurements. See also Bruhn et al. (2005) [39] for a discussion

of the Linkoping work which situates it within the optical flow literature.

For my approach, tracking and behaviour analysis, the extra data pro-
vided by the Linképing approach is not necessarily advantageous. Chapters 4
and 5 demonstrate that this single datum is adequate for ob Jject tracking and
behaviour analysis, and so the method provides considerable computational

efficiencies over the Linképing approach for this task.

3.3.9 Aperture problem

The goal of an optical low algorithm is to output a unique vector field which
describes the frame-to-frame motion apparent in a video sequence. Local, or
even pixel-level, resolution is often desired [7]. Extensive research has been
carried out into this area since the early work of Horn and Schunck [84]:
references [113, 31, 17, 38, 39, 52, 7] exemplify this. In particular, there has
been a continuous development of this topic from before 1981 right to the
present day. Notable recent results include Diag et al. (2006) who implement
the classic Lucas and Kanade approach in real time using FPGA hardware.
Bruhn et al. (2005) combine the Lucas/Kanade and Horn/Schunck methods
mto one system, and Amiaz el al. (2007) improve accuracy by 30% over
benchmark results by adding a subpixel resolution step. However, it must

be emphasised that the original intensity gradient based optical flow work
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has been considerably angmented by use of higher order intensity variations,
largely in the form of corner and other feature detectors. See, for example,

Willis et al. (2006) [185].

The aperture problem refers to the difficulty of determining accurate re-
gion and object level motion information when using local (‘aperture’-based)
measurements of motion. The problem has been most thoroughly explored
in the context of optical low where motion is measured at the pixel level and
the task is to determine a complete velocity vector field of all motion in the

scene.

This task is quite a challenge as edges with mtensity profiles that do
not vary along the direction of motion prevent the local measurement of
motion; only edges with a normal component to the direction of motion carry
information about motion. In addition, there is ambiguity in the direction
and magnitude of the velocity vector due to the limited aperture of local

detection.

From the intensity function, 7 (z,y,t), an equation for velocity field,
v(z,y) can be derived (see [49] for full derivation). Expanding 7 using Taylor

series and assuming the image has shifted an amount (dz,dy) in time dt:

I(z +dz,y+dy,t+dt) = I(z,y, t) (3.19)

Allowing for uncertainty due to the aperture problem, we can determine

that the components of the velocity vector, v, lie along the line described by:
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Lve+ Ly, + I, =0 (3.20)

and that this line is normal to the direction (I, ,) and has a distance from

the velocity origin equal to:

V| = —L/[I2 + 17 (3.21)

Figure 3.11 shows the above equations plotted in Uy—v, space. [, and
I, are the partial derivatives with respect to z and y of the image intensity
function, and the direction (I, I,,) can be determined using a Sobel operator.
All that is known about v is that its components lie along the line described
by equation 3.20. There is no way to determine v uniquely using only lo-
cal, gradient-only, information. (Note, however, that v can be determined if
higher derivatives of I are taken into account: use of corner features provides
a common example of this. [185]) The most common global solution (Horn
and Schunck (1981) [84]) uses a smoothness assumption and iterative relax-
ation labelling to arrive at a self-consistent solution which minimises global

error. However, the problem of ambiguity in textureless regions remains.

The aperture problem is evident in the output of local Haar motion filters
as used in this thesis. Each filter outputs a value for local speed (a scalar
value, there is no direction information) which is representative of local ap-
parent speed only. Motion at regions of zero contrast or where an edge moves

parallel to the pixel grid will not be detected locally.
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Figure 3.11: Determining the velocity vector, v. It is known that v must lie
along a line perpendicular to (12, 1,) and its distance from the origin is |v|.
Figure from Davies 2005 [49]

In the visual surveillance application, the aperture problem will arise
whenever textureless objects move rigidly parallel to the camera pixel grid.
This will occur rarely for some vehicle movements. The detection and track-
ing results presented in this thesis were achieved without implementing a
solution for the aperture problem. This demonstrates that, for surveillance
applications, the aperture problem is not a serious impediment to the task of
object detection and tracking. Chapter 5 presents an ob Jject level behaviour
analysis method, which amounts to an application specific remedy for the
aperture problem. Local motion data, derived from the output of local filter
measurements, are combined at the object level into a single ratio measure.

See Chapter 5 for further details.
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Some applications may require that a more accurate measure of object
level motion be developed to account for the aperture problem. Parts of
some tracked objects will incorrectly be measured as having zero motion
at the local level. This may be due to low local contrast or due to their

motion being aligned with the pixel grid. As the whole object, and its motion

speed and direction, are detected by the methods described in Chapter 4,
this information can be efficiently fed back to the detection stage, assigning
this speed information to the missing sections. However, if full optical flow

information is required, standard optical flow algorithms would be necessary.

3.4 General spatio-temporal wavelets

The above study of Motion Distillation (Section 3.3) explores the most di-
rect and efficient route to motion detection developed. It is a robust and
extremely computationally cheap method and, as will be shown in Chap-

ter 5, can also be used directly to achieve many behaviour analysis tasks.

Detection is sufficient for object tracking. In some applications, goals
other than basic detection may be required. Below, new theoretical studies of
other wavelets are presented, along with potential applications. Section 3.4.2
explores general cuboid filters, presents a mathematical study, and concludes

with a practical method for speed detection independent of edge contrast.

Section 3.4.1 discusses large wavelets with a Gaussian profile and wavelets
with a discontinuity plane which is rotated with respect to the time axis.

Advantages of this include greater precision of detection and speed selectivity.
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This method uses of multiple filters which have rotated discontinuity planes

to derive optic flow information.

3.4.1 Difference of Offset Gaussians

Increasing the size of the filter allows a smoother filter profile, which in turn

j results in greater precision of detection and fine motion detail. Computa-

tional costs increase with the power of filter dimension.

Larger filters also make speed and direction sensitivity practical. The
Haar filter has its discontinuity plane perpendicular to the time axis. The

filter output is proportional to speed and insensitive to direction of motion

(equation 3.15). Changing the angle of the discontinuity plane with respect
to the time axis alters the response of the filter to particular combinations
of speed and direction. For example, if the discontinuity is rotated +45°
about the y-axis, the filter’s maximum response occurs when the detected
edge is moving at one pixel per frame from left to right parallel to the Z-axis.
Minimum output is now when the edge moves at this speed in the opposite

direction. Equation 3.15 becomes:
W (g — 80+ A;) x edge contrast (3.22)

where @ is the angle of the spatio-temporal edge and ), is the angle of the
discontinuity plane of the filter. Both angles are measured perpendicular to
the #-axis of the video data. (For example, for the cubic Haar, where the

filter discontinuity is perpendicular to the t-axis, A, is zero and the above
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equation reduces to equation 3.15.)

Young et al. (2001) [192, 193] propose that neurons in the HVS motion
channel have a spatio-temporal Difference of Offset Gaussian (DoOG) profile.

To construct this the Gaussian equation is used in each dimension:

1 ~(z—p)?

f(IL', anu) = U\/Q-T{e . (323)

Fx,y,f. = f(I: Ty, }U»)f(y’ Ty, ,u)f(t, Ot, ,lL) (3'24)

where in this case y is the center point of the filter and o is the filter size.
In the time direction the sign of the Gaussian is reversed at the midpoint in
order to form the discontinuity plane. For a DoOQ profile:

18,00 ) = o T _ gt
o gV 2

] (3.25)

However, for discrete filters with a, relatively low number of coefficients this

can be simplified with little loss of accuracy (see Figure 3.12):

H X et FisS
Fl .= : (3.26)

=1 x f(x,y,t) ift< 2

A filter with an arbitrary discontinuity plane is constructed by rotating the
coordinate system of the Gaussian function. Centering the function on zero
in the coordinate system (z,y,t¢) the distribution is sampled at points in
the coordinate system (2',4/,t') which is rotated by (d,¢,7). The angles

9, €, 7y represent rotations about the z, y, t axes respectively. These transforms
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Figure 3.12: Graph compares a true Difference of Offset Gaussians profile
(equation 3.25) with the reversed Gaussian profile (equation 3.26).

should be applied in the order presented below:

&' = z(cosdcosy — sind cos esiny)
+ y(cos dsiny + sin d cos € cos )
+ t(sindsinc)

y = xz(—sindcosy — cos d cos esin 7)
+ y(—sindsiny + cosd cos e cos v)
+ t(cosdsine)

t' = a(sinesiny) + y(—sinecos )

+ t(cose) (3.27)

The constructed filter will have a maximum response to edges parallel
to the discontinuity plane and zero response to edges perpendicular to it. &
controls the speed response to motion along the z axis and ¢ controls the

speed response along the y axis. ~y rotates the filter around the ¢ axis and
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so has no effect on detection. Filter response is also dependent on edge
contrast, as shown in equation 3.15. We would like to transform these into
heading (¢) and speed (6) information and to eliminate contrast dependance.
This requires combining the outputs of three filters at each point. The filters
should be arranged as in Figure 3.13, with one filter aligned along each axis.

Using trigonometry:

¢ = arctan % (3.28)
Y
= arctan W (3.29)

Figure 3.14 shows a video of two people moving towards each other, along
with a colour-coded analysis of video using the wavelet decomposition method
described above. The filters used were 8 x 8 x 8 DoOG, with sigma of 4 in
each dimension. The hue of each pixel represents heading, ¢, and pixel inten-
sity represents speed, #. The black lines occur when the filter is positioned
between leading and trailing edges of the object. This method is very com-
putationally expensive, involving the convolution of three 8% filters at each
point. To cut down on unnecessary computation the video was first passed
through an ordinary s-¢ Haar filter. The DoOG process was then performed
only at points where motion was detected by the Haar process. This has the

unintended effect of some blockness around image boundaries.

3.4.2 General cuboid filters

The method described in Section 3.4.1 uses three filters, two of which have

discontinuity planes that are tilted with respect to the time axis and thus
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Figure 3.13: Left: Illustration of a Difference of Offset Gaussian spatio-
temporal filter (modified from Young et al. (2001)[192, 193]) Right: Discon-
tinuity planes of three DoOG filters arranged as used for determining contrast
independent direction and speed detection.

Figure 3.14: Example of DoOG decomposition of video (left) showing two
pedestrians walking towards each other. On the right, pixel hue represents
motion direction and brightness represents speed. Each pedestrian is repre-
sented in a different colour due to their different direction of movement.

100




each is sensitive to a particular combination of speed and direction. This
allows elimination of contrast dependance on the filter output but at the

cost of using three filters.

Next, a theory of general rectangular parallelepiped, or cuboid, spatio-
temporal wavelets is developed. This offers a way of eliminating contrast
dependence using only two filters. This method is also insensitive to motion

direction.

Cuboid filters are defined as ones where height is not necessarily equal
to width, i.e. where ¢ # x and z = y. Figure 3.15 shows an illustration of a
general wavelet. ¢ and z are the wavelet size in time and in the z-dimension
respectively. For illustrative purposes the second spatial dimension, y, is
temporarily ignored. The ratio, r, can be used to describe filter shape, such
that:

=

t
- (3.30)
&

‘Tall’ filters are described by r > 1 (¢ > x); ‘wide’ filters are described

by r < 1 (t < z). The filter where z = t is the Haar filter with r = 1 (see

Figure 3.15).

As with the Haar shown in Figure 3.6 the top half of the filter is positive
and the lower half is negative. When convolved with the video data, temporal
edges with a nonparallel component to the time axis are détected as moving
edges. The temporal edge to be detected is shown as a grey line in the
figure. Its speed is described by the angle 6. The areas B and b represent

the sections of background covered by the filter and A and a are sections of
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Figure 3.15: Diagram of a general cuboid s—¢ filter simplified to 2D. The black
horizontal line represents the filter’s discontinuity plane; the grey sloped line
is the moving edge in data; # represents speed of moving edge. z and t are
filter dimensions. A, a, B and b are areas of filter. Equation 3.31 describes
filter output.

the moving object. If the speed is high, # will be low and the areas a and b
will be small. This means the filter output will be high. The output of the

general cuboid filter is given by:

W = (BIB-F(IIA)—(E)IB-FAIA) (331)

where /4 and Ip represent the pixel intensities of the A and B regions re-
spectively. In the case where motion is at a constant speed, the motion edge

will be straight and areas A = B and a = b. Eqn. 3.31 reduces to:

W = C(A - a) (3.32)

where C is the edge contrast, C' = Iz — I 4. The equation needed to describe
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the area a depends on angle. If ztan@ < t, a is a triangle, otherwise a more

complex calculation is required:

«“:2—2 tan @ if # <tan"1lr
s e (3.33)

zt — %cotﬂ if @ > tan~1r

A=B=2xt~aq (3.34)

These equations show that the response of a general filter is a function
of both edge speed and the width (z) and height (t) of the filter itself. F ig-
ure 3.16 demonstrates this relationship for a range of tall and wide filters.
Filter output is recorded as the edge angle, 6, is increased from 0° to 90°.
Outputs are normalised to the maximum for each filter. The edge contrast

is the same in each case.

The central grey line represents a cubic Haar filter (r =1). This has a
near linear relationship with a maximum at the highest speed and dropping
to zero at zero speed. Introducing asymmetry to the filter by making it
tall or wide results in a concave or convex plot respectively. The dotted
line divides the filter profiles into two regions according to equation 3.33; (i)
when 6 < tan™! 7, and (ii) when > tan~! r. Greater asymmetry in the filter
produces a sharper transition between these two regions. The extreme case of
a 1D column of pixels is also shown (r=100). Background modelling, which
uses such 1D columns, is often described as a method of motion detection.
This plot demonstrates why this is not the case, and in fact, change is being

detected rather than motion. The plot remains at maximum until dropping
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to zero suddenly at zero speed. The response is insensitive to speed and gives

a binary output:

1 8= 90
flz=1)= (3.35)

0 if 8 =90°

Although the output of each asymmetrical filter is contrast dependant,
the ratio for a pair of differently asymmetric filters with the same edge data
is contrast independent. A filter pair can be defined as when the wide filter’s

r value, ry = 1—}—1_, where 77 is the tall filter’s  value. From equation 3.32:

flrw) _ C(Aw — aw) _ Twiw — aw
flrr)  C(Ar —az) Trtp — ap

(3.36)

as the filters form a pair, ry = ;1; For convenience, we also make ty = zp,
which also implies that zyw = t7. Figure 3.17 shows the output profiles of
the ratios of several filter pairs, ryy = (0.9,...,0.5). The pair ratio output,
F(r), has three regions: (i) where # < tan™'r for both filters; (ii) where
@ > tan™' r for both filters; (iii) the more complex case where the filters are

in different output states. In all regions the ratio of filter pairs is independent

of edge contrast:

P flrw)

L) (3.37)

which is approximately proportional to (3 — 6).

This caleulation can be extended to 3D, as illustrated in Figure 3.18.
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Figure 3.16: Graph shows the response to changing edge speed of four cuboid
filters. r =1 is the cubic Haar and shows a near linear response. r = 100 is
a 1D column of pixels as used by background modeling. r = 0.5 and r = 2
are a wide and tall filter pair. Outputs are normalised.

The 3D case reduces to the 2D case when B, the directional component, is
zero; 7y also reduces to 6 in this case. The corners of the filter cause some
sensitivity to changes in 3, which manifests itself as an uncertainty in edge
speed measurement. Using the filter model shown in F igure 3.18, the filter

pair ratio output can be mapped. For an arbitrary pixel in the filter, the

distance from a 3D moving edge is given by t:

d = zcosf—ysinf (3.38)

{ = dtanvy (3.39)

These equations can be used to calculate the continuous (non-pixellated)
theoretical output profiles of arbitrary filters. Figure 3.19 shows the out-

put maps for a cuboid filter pair ratio (left) and a spheroid filter pair ratio
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Figure 3.17: Contrast and direction insensitive speed detecting filters. Cal-
culated from the ratio of two asymmetrical filters. Speed (temporal angles)
range from 0° (maximum speed) to 90° (not moving).

(right) in y—3 space. Filters were sampled over a wide range of angles from
—90° to 4+90° to demonstrate output symmetry. Note the ‘bumps’ due to
corner effects at 7 = +45° in the cuboid filter plot (a). This leads to some
uncertainty in angular measurement (and thus speed measurement), as can
be seen in (c). The spheroid output lacks this uncertainty (b, d); however
perfectly spheroid filters cannot be produced for small sized filters due to
pixelisation. Except for slowly moving edges where uncertainty is large, edge

speeds can be determined with a precision of approximately =45°,

The profile in Figure 3.19 (¢) and (d), where r = 0.5, can be described
by the following equation:

—~%
F(r) = tan™ (7 cot )

S il 3.40
tan~! (1 cot ) (340)
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Figure 3.18: Diagram of a general cuboid s— filter in 3D. The figure shows
only the top half of the filter; the surface bounded by the black line is the
moving edge of the data; y represents the edge speed and 4 the motion
direction; d is the distance of an arbitrary pixel (z,y) from the line described
by (O, 5); h is the vertical distance of that point from the plane of the moving
edge.

where, as 7 — 90°, F'(r) — r? which explains the horizontal limit of 0.25.

Figure 3.20 shows motion information derived from real video using this
method. Intensity in the left-hand image indicates edge speed only. Mo-
tion direction is not detected by the filters used and edge contrast has been

removed by the cancelling process described above.

This speed selectivity can also be achieved using an ordinary Haar filter
by altering the decomposition process. Wide filtering is achieved by inserting
an extra spatial scaling step before each s—t Haar decomposition step. Tall

filtering results from inserting a temporal-only scaling step into the decom-
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Figure 3.19: The ratio output maps of asymmetric cuboid filter pair (left)
and spheroid filters (right) in 43 space. Top (a, b) are the 3D surface plot,
bottom (c, d) are the respective edge-on profiles.

position process.

3.5 Summary

The most common approach to motion detection in video tracking appli-
cations is background modelling. This has been pursued by many earlier
workers despite a lack of theoretical foundation which might define when, or

if, this approach is valid.
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Figure 3.20: Example of contrast free motion detection using non-symmetric
filters, as described in Section 3.4.2. The video (left) shows two pedestrians
walking towards each other. In the motion image on the right intensity
indicates speed only. Edge contrast has been removed and the result is
invariant to edge direction. See F igure 3.14 for comparison with DoOG
derived motion. Blacked out areas within the pedestrian’s motion profile are
due to a local lack of edges.

This chapter has investigated background modelling and demonstrated
its weakness. 1D statistical pixel processes can only detect change, rather
than true motion, because motion is a spatio-temporal phenomenon. Pixel
processes are unable to distinguish motion from noise, as shown in Figure 3.5.

Further, Figure 3.16 shows that this method is insensitive to the speed of

motion, producing only a binary, change/ no-change output.

This chapter presents a, powerful new paradigm for motion detection. This
method, called Motion Distillation, uses spatio-temporal wavelet decompo-
sition to detect motion as edges in space time. Figure 3.7 demonstrates
motion detection by Motion Distillation and compares it to the background

modelling techniques of temporal median filtering and Gaussian Mixture
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Modelling. Table 3.1 provides quantitative detection results for a number
of videos. The computational costs of the new method are extremely low at

Just 1.14 processes per pixel.

Finally, the chapter explores a number of variations on the Motion Dis-
tillation method using larger DoOG wavelets and general cuboid wavelets.
Large wavelets allow a smooth Gaussian profile. Motion direction and speed
information has been derived by combining the outputs of three filters of
different orientations. Alternatively, two rectangular filters can be combined

to achieve speed detection which is contrast and direction independent.

Motion Distillation provides a strong foundation for the later task of
object tracking, as discussed in Chapter 4. The method also generates non-
binary motion detection, which, in Chapter 5, will be used for direct analysis

and classification of object behaviour.

Main points

The main points and achievements of this chapter are:

e Background modelling is inefficient and does not output true motion

detection.

e Motion is a spatio-temporal phenomenon and can be detected using

spatio-temporal edge filters.

o The s-t Haar wavelet decomposition is a very efficient and robust

method of motion detection, but Haar output is edge contrast depen-
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dent.

e Contrast can be removed by:
— Using 3 orthogonally orientated DoOG wavelets to output contrast
independent speed and direction information.

— Using 2 different sized cuboid filters to output contrast indepen-

dent speed information.

— A third method for removing contrast for the purpose of behaviour

analysis is presented in Chapter 5.
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Chapter 4

Dual-Channel Tracking

Tracking is the task of maintaining object identity over time. Many tracking
schemes reported in the literature include an inertia-based predictive mech-
anism, whereby past motion is used to predict a future location. Noise and
uncertainty mean that the predicted location is rarely perfect. At the pre-
dicted location an appearance model is used to search for the true object
location. The error, distance between predicted and true location, is fed

back to improve the next prediction. Figure 4.1 illustrates this approach.

Location prediction serves to limit the search area, as a global scene
search is prohibitively costly, and reduces the chance of mistakenly detecting
clutter. Commonly, prediction uses the Kalman filter or the particle filter.
Location prediction suffers from two fundamental flaws with regard to pedes-
trian tracking. First, it forces a total reliance on the appearance matching
(AM) algorithm, even while the object is in motion; also, pedestrians actu-

ally change shape and appearance in order to move and an AM algorithm
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sufficiently complex to predict this change may be also very costly. Second,
prediction algorithms rely on limits and assumptions of expected object mo-
tion. Pedestrians frequently behave in a highly complex way, changing direc-
tion, starting, stopping, meeting other pedestrians, etc. Particle and Kalman
filter based methods commonly lose track of their target when it makes an
unusual and sudden movement or when the object rotates or deforms, even
though this very motion information could be used to compensate for AM

weakness.

This chapter discusses the operation and problems of the ‘predict and
match’ paradigm of tracking. This is followed by a detailed discussion of the
operation and basis of the tracking method used here. This thesis uses a dual
channel ‘form-motion’ tracking architecture similar in approach to Jorge et al.
2004 [95, 96]. This scheme incorporates both the motion detection module
presented in the previous chapter and an appearance model for use when
motion detection is inappropriate. This chapter also discusses the choice
of the appearance model and presents a quantitative comparison between
two candidates. The chapter concludes with an extensive evaluation of the

practical operation of the dual channel tracking method.
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Location
Prediction

\ Appearance
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Track
To Object
Analysis

\’ Appearance Stages
Matcher

Figure 4.1: A general scheme for foreground, ‘predict and match’ tracking
schemes. These methods use iteration between AM detection and future
location prediction. The Appearance Model must be provided. The object
track is passed on to the behaviour analysis modules.

Figure 4.2: A scheme of the hidden state vectors, z, and their relation to
future values, z,4,, and current measurements, y.
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Figure 4.3: Illustration of the predictive process of the Kalman filter. Teyy 1S
generated from z; using A, the state transform matriz, see equation 4.3. The
state, z, is related to the measurement, y, through C, the input transform
matriz, see equation 4.1. The Kalman gain matrix, K, allows the measure-
ment error to be fed back to improve prediction.

4.1 Prediction

4.1.1 Kalman filter

In prediction terminology, the state vector, or true value, can be only in-
directly detected through a noisy measurement. F igure 4.2 illustrates this
relationship. Time runs from ¢ = 0 to the current time, ¢ = T,, through to
the next, predicted, time step, t = T, + 1, through to the final time, ¢ = Ty.
The current observable measurement, y, is related to the hidden ‘“true’ state,

Zt, using C', the input transfer matriz:

Y = C.’L’t + Uy (4A1)
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The measurement noise, 1, is assumed to have a zero mean Gaussian pdf,

with R as the measurement noise covariance matrix:
p(v) ~ N(0, R) (4.2)

The Kalman filter has two stages; predict and update. The aim of the Kalman
filter is to predict the future state, 241, and thus the future location of the
measurement (where to begin looking) y,,. Involved in this is the state
transition matriz, which relates the current state to the future state using
the physics underlying object motion, and the noise, w, which is a zero mean

Gaussian pdf with process noise covariance matriz
L1 = Aﬁt + wy (43)

p(w) ~ N(0,Q) (4.4)

The noise terms are used to determine the search area. After the object
has been located, using an appearance model, the error (difference between
the predicted location and the true location) is used to update the transfer

matrices:

T = 2 + Ky (Yoq — Creyy) (4.5) \‘

where Ky, is the Kalman gain matriz:

Kip1 = B+1CT(CPH-1CT + R)™! 'I

Pii = ARAT+Q (4.6)
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Figure 44: A demonstration of the inertial behaviour of the Kalman fil-
ter. The predicted position overshoots the true data, position when the data,
suddenly changes direction.

Extra detail, along with derivations, can be found in [72].

The operation of the Kalman filter can be clearly demonstrated using a 1D
tracking example. The Kalman uses an assumption of inertia, that the object
will tend to continue to move in the same direction, speed and acceleration
as it has in the past. Using this assumption the Kalman will filter out higher
frequencies of the signal as noise. In I igure 4.4 the data increases linearly
to the point (20, 100) and then suddenly reverses and starts to fall linearly.
The Kalman tracks this data but loses track at the point where the inertial
assumption fails. In this case, the true measurements are inputed directly,
so the Kalman will use the prediction error to ‘catch up’ with the true signal
eventually. In the visual tracking case, where the predicted location is used
as the starting point for an appearance model search, such a failure of the

inertial assumption may lead to a complete loss of the target. It is also
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Figure 4.5: A pixel process modelled by a Kalman filter. The noisy input data
from the pixel, along with central statistical trend line and error thresholds.
This demonstrates the noise filtering properties of the Kalman.

worth noting that this is an assumption of apparent inertial motion, from
the perspective of the camera frame, which is quite different from real-world
inertial behaviour. Figure 4.5 shows a similar 1D task, this time using real
data — a pixel value tracked by a Kalman filter, along with the automatically
determined thresholds. Kalman predicted pixel processes are used in some

background modelling methods [99].

4.1.2 Particle filter

Particle filters represent an attempt to overcome the limitations of the de-
terministic Kalman filter, and the problem of an imperfect motion model, by

introducing a random component to the search strategy. In cases where the
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state space equations are non-linear particle filters can give better results
than Kalman filters. The particle filter is an on-line version of the batch

Markov chain Monte Carlo method.

Although there are many variations of particle filter, the core algorithm
is Sequential Importance Sampling (SIS). The aim is to represent past mea-
surement locations (samples) with weights and to compute new estimates
based on these samples. As the number of samples approaches infinity the

SIS filter approaches the optimal Bayesian estimate.

The procedure begins with a ‘Random Measure’ using weightings of pre-
vious states, that characterises the posterior pdf. The weights are normalised
and chosen using ‘Importance Sampling’ of the results of testing those lo-
cations. This allows the motion model to control the search procedure. A
posterior density is produced which is used to guide the search. The results

of the search are then used to update the weights.

Diagrammatically, this can be seen in Figure 4.6, where the ‘particles’
at the top represent the initial weights. In visual tracking application, this
motion model is used to guide the search procedure. The outputs of the
appearance model tests are fed back into the system to re-weight the particles

for the next iteration.

4.1.3 General problems

To predict the future location of an ob ject, a prediction algorithm requires a

model of the object’s motion. This is commonly based on an assumption of
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Figure 4.6: A schematic of one prediction cycle of the Particle Filter. A)
shows the initial ‘particles’ with size representing weight. B) new search
locations (unweighted particles) are chosen based on initial particle weights.
C) Appearance model test returns a multimodal pdf of target location. D)
This pdf is used to assign weights to the new particles generated in B.
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inertial motion. That is, the object is likely to continue to move in the same
direction and at the same speed or acceleration. For rigid objects such as
cars this assumption generally holds. Cars move in straight lines along flat

surfaces at approximately constant speeds (at least over the field of view of

a CCTV camera).

Pedestrians are far less predictable. The scenes in which they move have
staircases, ramps, hills, etc. which to a system with no scene model can
make even continuous movement seem more complex and less predictable.
Figure 4.7 illustrates this point with an example of a snowboarder being
tracked in a snowy scene. Even though the snowboarder moves smoothly
across the ground’s surface, the unpredicted movement down a hill (a feature
unknown to the system) causes the predictor to lose track. The track could
have been maintained if the correct level for noise variance was set; however,
this is difficult to determine in advance and a higher noise variance will

increase the risk of detecting clutter.

Another key difficulty is the strong reliance on the appearance model test
(as directed by the motion model). The predictor only tells the system where
to look in the scene. Then the scene is tested using the appearance model
for the target. Even if the location is correct, a poor result in the appearance
test may cause the track to switch to a similarly poor match due to local
clutter and the track may be ultimately lost. Pedestrians change shape and
appearance as they move, due to swinging arms and legs and rotation as they
change direction. As discussed in Section 4.2, this effect is highly dependent

on the specifics of the appearance model used, whether it uses colour, shape,
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feature points, etc. Figure 4.8 shows an example of a particle filter which has
lost track of the person on the left. The appearance model here is based on
detection of the eyes and mouth. The target walked into the scene from the
left, and as he sat down, turned his head to look down, occluding the view
of his face somewhat. The particle filter then lost track as it became stuck

on the local minimum of the clutter on the wall.

The final example illustrates the difficulty of predicting pedestrian be-
haviour. Figure 4.9 shows two pedestrians meeting and interacting. The
appearance model is based on a colour histogram and both pedestrians are
wearing similarly coloured clothes. When they meet, they stop and shake
hands. However, the Kalman filter does not predict this stop. Also, because
the appearance model returns similar results for each person, the two tracks

incorrectly swap onto the opposite targets.

4.2 Appearance model

As discussed in Section 2.2, there are a multitude of different appearance
models described in the literature. Unfortunately, comparisons of the rel-
ative usefulness of different AM techniques for tracking scenarios are rare.
The choice of appearance model is highly application and data dependent.
Consideration must be made for the object to be tracked and how this ob-
Ject may be distinguished from others in the scene and from sections of the
static background. It should further be considered when the AM will be

used. In foreground methods the AM is used multiple times in each frame.
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Figure 4.7: Tracking a target using an inertial motion assumption. The red
ellipse (center) shows the last detected position of the snowboarder. The blue
ellipse (bottom) shows the true location. (from Nummiaro et al. (2002) [136])

Figure 4.8: Example of face tracking using a particle filter. The person on
the left turned his head as he sat down. The appearance model failed to
detect his face properly and the tracker incorrectly fixed on a local minimum
due to clutter. (Image courtesy of Dr. Hamadi Nait-Charif.)
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In background methods the AM may be used only infrequently to resolve
ambiguity, such as after an occlusion. This raises different requirements, as
2 non-rigid object may have changed significantly following an occlusion of
several frames duration. The computational costs of the AM are, of course,

another limitation.

For this application, two AM algorithms were tested for suitability. These
were the colour histogram matching algorithm and template matching. Both
methods were chosen due to their widespread use in the literature, their low
| computational complexity and the eage with which they can acquire and
update models. It was anticipated that due to itg insensitivity to rigidity,
histogram matching would prove more robust than template matching for
pedestrians. However, the results of this examination were somewhat sur-

prising.
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4.2.1 Template matching

Template matching aims to match the appearance model g(z, y) to the image,
f(z,y) using a distance function. Each pixel is treated as a vector in colour
space. Each pixel value in g is subtracted from the pixel at the same relative

position in f using the Euclidean distance:

Rid)= Y S (+oit9)-n@yr  @n

(z.y)e0bj c

where ¢ represents the colour axes; red, green and blue for colour images
or just one intensity value for greyscale images (N, is the number of colour
axes). As template matching is highly dependent on correct alignment of
the template over the image, the template must be raster scanned over the
image, or a segment of the image (by varying i and 7) to find the best
match. The minimum value of eqn 4.7 is the best match. A lower match
threshold must be set to detect a match failure for the case where the object
is not present in the image. More difficult problems include the template’s
sensitivity to rotation, deformation and scale. Objects detected by motion
detection should be resized to a standard width and height before being

matched using a template.

4.2.2 Histogram matching

Here the appearance model is constructed by generating a colour histogram

of the segmented image. One implimentation of a colour histogram is to
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use three histograms, one for each colour channel. (An alternative is to use
a single three dimensional histogram; however, this is problematic if small
object will result in a sparsely filled histogram space.) Commonly, eight value
‘bins’ are used, rather than a full 256, as segmented object images usually
contain insufficient pixels to fill a full histogram. Differences of image and
model scale are dealt with by normalising each histogram; the sum of the
values of all eight bins should equal 1. Tt is also possible to normalise the
input color values to achieve colour constancy, although this is not attempted

here.

To compare two colour histograms, the absolute difference of each bin, b,
of the model, g, and the image, f, is summed for each colour, ¢. The three
resulting histogram values form a vector in colour space. The length of this
vector is used as the comparison between two colour histograms, a shorter

vector being a better match:

Ne Ny

R= > (D lg.(b) — £u(b)))2 (4.8)

where N, and N, are the number of colours and bins respectively. Histogram
matching is computationally cheaper (however, the time required to compute
the histogram negates this advantage somewhat. This may only be significant
for large objects). It is also less sensitive to alignment, avoiding the multiple
tests needed for template matching. It also doesn’t require the image to be

resized. Instead, the histogram is normalised.
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4.2.3 AM comparison test

The chosen AM for this application will be required to be robust to imperfect
segmentation and give good results for rigid and non-rigid objects. The
motion distillation system described in Section 3.3 was used to extract a series
of moving objects from a video. Segmented images of a car and a pedestrian
were tested against the first image segment of the sequence. Figure 4.10
shows the results of template and histogram tests for a car and Figure 4.11
shows results for a pedestrian. Example results for numerous other objects
are included to indicate the ‘discrimination quality’ of the test method. It
can be seen that the matching ability of each method is very similar, and
that in most cases, either method is sufficient to identify the correct object

from its neighbours.

Of note are the matching results which are smooth over time for the
car but more erratic for the pedestrian. This is due to the rigid motion of
the car and the deformations of the pedestrian as he moves. [t might be
expected that, while the template method would be sensitive to non-rigidity,
the histogram should be invariant to the shape of the pedestrian, but this
was not the case. On close examination of the frames, it was discovered that
this was due to lighting and shadow effects which altered the colour of the
pedestrian as he moved. This is expected to be a common effect in outdoor

surveillance applications.

The AM’s robustness to poor segmentation is also of interest. To test this

a series of segmentations of an object was prepared, ranging from extreme
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Figure 4.10: Comparative matching results for a car using a colour histogram
model and a template model. The model is acquired in the first frame and
not updated after this. The ‘false’ points are matching results for a set of
non-target objects.
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Figure 4.11: Comparative matching results for a pedestrian using a colour ‘
histogram model and a template model. The model is acquired in the first |
frame and not updated after this. The ‘false’ points are matching results for

a set of non-target objects.
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Figure 4.12: Test of sensitivity to segmentation. Using a properly segmented
model in both cases, matching results for a histogram and template were pro-
duced for undersegmented and oversegmented target objects (oversegmenta-
tion is represented by less than 100% on the graph and undersegmentation
is greater than 100%).

undersegmentation to oversegmentation!. Figure 4.12 shows results for the
template and histogram matcher. This is computed for one example object
from a single by manually varying the size of a cropping rectangle from
over two times to under half the correct size. Template matching is shown
to be better for poor segmentation. However, as the templates must be

aligned through multiple sample matches, this method engenders greater

computational costs.

These comparisons illustrate that the two methods give very similar
matching results and both can distinguish the target object from neighbour-

ing objects. Surprisingly, due to lighting effects, the histogram method is

1An AM’s response to oversegmentation is also an indication of its response to partial
occlusion of the object during tracking.
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not much better at matching deforming objects. It was decided to use the
histogram method due to its significantly lower computational cost and its

slightly better distinguishing ability.

4.3 Dual-channel approach

The tracking schemes discussed above do not use a motion detection compo-
nent. When a motion detection component is incorporated, this changes the
nature of the tracking problem considerably. Now it can be assumed that
any moving objects will be detected and the tracking task will be reduced to

maintaining object identity through static and dynamic occlusions.

In this section we present an alternative solution to the post-detection
tracking problem. We use the terms ‘sprite’ and ‘blob’ to mean similar but
distinct things. A blob is a connected region corresponding to the area of a
motion in the current frame. A blob may represent a whole moving object,
part of an object if only part of a object is moving, or several overlapping
objects, in the case of groups of objects moving together. A blob has no
knowledge of real objects, either spatially or in time. However, a sprite
represents an attempt to integrate a notional ‘object’ from many blobs over
many frames. This attempt to integrate blobs into sprites is the problem of

post-detection tracking. Object refers to the real world target being tracked.

This problem can be divided into a series of questions. When a blob is

detected, does that blob belong to a currently active sprite, an inactive but

*This is also refered to as a Video Object by the MPEG community.
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visible sprite, an invisible or occluded sprite, or a new sprite? Conversely, if
a sprite cannot be matched to any current blob, is this because the object

has stopped moving, been occluded, or left the scene?

A further complication is due to the limits of motion detection. If an
object stops moving then no blob will be detected. However, we may as-
sume that a stationary object will not change its appearance radically from
frame to frame, as such a sudden transformation would be detected by the
motion-detection stage. Thus, in a missing blob situation, we may distin-
guish between the occluded ob Jject case and the stationary object case using

an appearance matcher at the last known ob ject location.

An salternative approach would be to use a layered background model, as
in [179]. Layered background models store the past locations of stationary
objects as a ‘layer’ of the background model, allowing their location to be

maintained in memory.

This problem statement suggests the dual-channel tracking architecture
described in the neurological literature, such as Giese and Poggio [75] (see
also Section 2.6). As with the HVS, one channel contains motion information
only and the other contains instantaneous form or appearance information.

Neither on its own is sufficient.

The solution presented here relies primarily on the motion channel, as
computed using s—¢ Haar wavelet decomposition, for initialisation and detec-
tion. Detected blobs are sorted and matched using a two-stage rule-based

matching scheme. Blobs detected in the motion channel are sorted first us-
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Table 4.1: Qualitative sorting results of blob identity maintenance. Results
show occurrence of particular event classes in the sample videos. The top
row indicates matches which can be correctly resolved by an overlap test;
other rows require an AM test. The final row indicates static occlusions and
scene exits. These results are compiled from a sample of 1,935 events in
three videos using software and manual ground truthing.

Event types Video 2 CAVIAR Video 3

unique match > T,  96% 80% 78%
unique match < Tp 1% 3% 2%
Multiple matches 1% 6% 12%
AM split 0% 1% 0.5%

Match from memory 1% 1% 1%
No match 1% 9% 6.5%

ing an area Overlap Test, followed by an appearance match test to resolve
ambiguity. Single blob to multiple sprite matches are treated as dynamic
occlusions. Unmatched blobs are considered as new objects. Next, the sprite
list is searched for unmatched sprites. These can be due to either occlusion
or stopped or ‘sleeping’ sprites. The form channel is then accessed to resolve
the ambiguity. Table 4.2 presents these rules as they are applied in the soft-
ware and Figure 4.13 illustrates the program flow within the dual-channel

approach.

Is this approach valid? Viewed from a Bayesian framework, equation 4.9

represents the matching task:

P(T|z) = -P—(%—‘;fl (4.9)

where z is the result of some matching test. P(z) is the probability of this

result in the video being analysed. We wish to know the probability that
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Figure 4.13: Illustration of algorithm flow within the dual-channel approach.
New objects are detected and tracked primarily in the motion channel. Static
occlusions and stopped objects are resolved by reference to the AM in the

form channel. Dynamic occlusions are resolved in the motion channel. See
also Table 4.2.

a measured positive match test result truly indicates that the tested blobs
represent the same object. In equation 4.9, P(T') is the probability of a true
match. P(z|T) is the probability of a positive match result in the case of a
true match and P(T|z) is the probability of a true match given a positive

match result.

These probability values must be calculated from the tracking data. This
is a difficult task and the probability values are highly dependent on the
content and events in the video and they change greatly from video to video.

However, the question at hand can be answered with a study of a small
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Figure 4.14: A schematic view of the motion channel output over time. Ex-
ample A shows an object moving without stopping or being occluded. Ex-
amples B and C require reference to the form channel to decide whether the
object has been occluded or stopped moving.

number of videos. Is the two-stage matching approach valid and is it correct
to test blob overlap first (motion channel) and use the appearance model
to resolve ambiguity (form channel). Table 4.1 provides quantitative results
for the application of these rules for three videos and 1,935 matching events.
The first row shows the percentage of matching events which can be correctly
resolved with the overlap test alone. These results show that the quick over-
lap test is sufficient for a large majority of cases, with only a few percent of

cases remaining ambiguous and requiring reference to the form channel.

Figure 4.14 shows a schematic diagram of this tracking system in action.
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Each ellipse represents a detected blob in the motion channel. All objects
are moving left to right according to the frame numbers underneath. In
scenario A, the object moves without stopping or occlusion. In this case, the
system matches incoming blobs to the sprite stored in memory using overlap
alone when there is a unique match above an area threshold. Table 4.1
demonstrates that this initial, quick test is sufficient for between 78% and
96% of cases (depending on video content). In Figure 4.14, B shows the case
where the tracked object passes behind a stationary object in frame 2 and
C is the case where the object stops moving in frame 2. The system has
no scene knowledge and so cannot predict when objects may be occluded or
stopped; however, it can deal with object reappearance after severa] frames.
In frame 2 the sprite will remain unmatched to a blob in both cases and
the system must distinguish whether the sprite is occluded or sleeping. The
sprite is sorted using the rules in the right-hand column of Table 4.2. The
system uses the appearance model of each sprite, acquired during the tracking
phase, and tests the current frame at the last known position of the sprite.
In terms of dual-channel tracking, this step represents referencing the form

channel.

4.3.1 Bayesian Networks

This section serves as a comparison of the tracking system described in this
chapter to that of Jorge et al. 2004 [95, 96]. Jorge et al. proposed a two-step
system where non-occluded objects are tracked using a simple algorithm and

more complex interactions are resolved using a “data conflict” module. The
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Table 4.2: Sorting rules of blob identity maintenance. First, blobs extracted
from the motion channel are sorted and matched to sprites. Then the list of
sprites in memory is updated and, in cases of ambiguity, checked against the
form channel. Tg is the overlap threshold and Ty is the appearance model
matching threshold.

Motion Channel : Test Blobs Form Channel : Update Sprites

if a blob was detected by MD stage
if OT gives a unique match > T | if the sprite was matched

match blob to sprite if 4 a unique match
if OT gives a unique match < Ty update with blob data
perform AM test if 3 one sprite to multiple blobs
if 4 a match > Tam split sprite
match blob to sprite if 3 multiple sprites to one blob
else register no match merge sprites
if OT gives multiple matches else 3 no blob match
perform AM test AM test current frame
if 3 one response > Thy if object present
match blob to sprite register sleep sprite
else register merged sprite else register occluded

else 3 no match
perform AM test
if 9 a response
register occluded sprite
else register new sprite

136




data conflict module deals with events such as occlusions, group merging and

splitting.

As with the method proposed in this chapter, the first stage of the tracker
attempts to match object motion silhouette, as output from the detection
stage, from one frame to the next. Shape analysis is used as the matching
method. In this chapter a simpler shape analysis method is used, in the form

of an area overlap test.

The data conflict module combines an appearance test with global infer-
ence using assumptions on the movements of the tracked objects. The global
inference feature requires that the method be carried out off-line or in batch
mode. A modified on-line method is also proposed where the global inference
step is greatly simplified; however, a delay of some seconds is still required

to perform the step.

The method proposed in this chapter is similar to that of Jorge et al.
without their global inference step, allowing it to track on-line and without
a delay. The lack of a global inference step did not cause any noticeable

tracking failures for the videos tested.

4.4 Results

This section provides qualitative results for tracking using the dual channel
approach. The system was tested on a wide range of videos, both standard

datasets and original video data. Appendix A provides details of the videos
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! Frame 80 Frame 161

Figure 4.15: Video 1: standard tracking scenario; single pedestrian outdoors
in diffuse lighting.

used.

4.4.1 Video 1

Video 1 is the simplest of the tracking cases that we will investigate. A
single pedestrian moving at an approximately constant (real-world) speed
(although this translates to an apparent deceleration and shrinking because
of perspective effects). Lighting is constant and diffuse and there are no
motion clutter objects, such as moving branches, etc. The system tracks

described tracks easily in this video, see Figure 4.15.

4.4.2 Video 2

Video 2 (Figure 4.16) is more complex. Lighting is strong direct sunlight.
This leads to complex shadow and colour change problems which affect the
AM stage (see Section 4.2.3). The pedestrian repeatedly enters and exits the

scene, sometimes walking (frame 337), suddenly breaking into a run (frame
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1560), changing direction suddenly (frame 1900), walking slowly towards the

camera (frame 2196), etc.

For some applications it may be desirable to attempt to match new sprites
entering the scene against those that have exited in the past (see frame 2368).
However, for busy street scenes or long running systems this would require
a large database and may produce many false positives. Here, this feature is
generally turned off, meaning objects exiting from the boundary of the scene

are deleted from the active memory.

A weakness of this system is shown in frame 1957. The pedestrian was
tracked up to the point when he entered a deep shadow (frame 1900). Once
under shadow, parts of the pedestrian’s clothes have insufficient contrast
and speed to be detected (see equation 3.15 in Section 3.3.3) leaving only
the brightly coloured teeshirt. The new blob fails the overlap threshold test
with the sprite of the previous frame because it is so reduced in size. T he
system attempts an AM test but this also fails to correctly match, because
only the bright pixels of the teeshirt are recorded in the histogram, due to
incorrect detection and segmentation. The pedestrian is still tracked by the

system but it is incorrectly considered to be a new object.

A human would know the pedestrian’s legs could not disappear and would
either assume it or look more closely for them (effectively lowering a thresh-
old). To achieve this strength the system might require a structural model of

the target or a knowledge of what can and can’t happen to different classes

of target.
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Frame 2196 Frame 2368

Figure 4.16: Video 2: a long video illustrating tracking results under a variety
of pedestrian behaviours, including walking, stopping, running, and entering
and exiting the scene.
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4.4.3 Video 3

This video (Figure 4.17) illustrates how the system tracks in cases of dy-
namic occlusion and in the presence of severe motion clutter and noise. This
video was captured during a minor storm, with the trees in the top left of
the video shaking wildly. As the motion detection and AM system has no
prior knowledge of what pedestrians are, it tracks these ‘objects’ just as it
tracks pedestrians. Although the generality of the system is one of its major
strengths, it causes a problem in this case which is only solvable using extra
information on the objects of interest for a particular application. The be-
haviour analysis approach described in Chapter 5 can be used to categorise

(and ignore if desired) certain classes of object.

The video contains two pedestrians who pass each other and interact
three times. First, the two enter from opposite sides of the scene, meet,
stop, shake hands, and then continue as before. During this, one pedestrian
passes behind the other and is dynamically occluded. As shown in Figure 4.9,
sudden stopping may cause problems for a predictive tracker. Second, the
two meet, stop and then reverse direction. Finally they pass each other

running without stopping.

The system successfully tracks these pedestrians as follows. When the
motion detected blobs of two objects dynamically occlude (frame 395) it
appears to the MD channel as a single merged blob. This is treated as a
‘merged sprite’ and the tracks and information of the separate sprites are

combined in memory. While they move together, they are tracked as a single
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object. When an object breaks away from the merged sprite the system will

attempt to match it to one of the original components using the AM.

This merging behaviour can also be seen in an unintended case (frame
373 & 389). When the pedestrian on the left begins to enter the scene,
initially the hand and foot are separately detected and tracked. Then, as the
pedestrian moves fully into scene these separate blobs become one and the
system merges them. Frames 389 and 395 show these merged tracks clearly.
Merged sprites can also be correctly merged and demerged with other sprites
(see 395 and 424). Although this behaviour does not effect the tracking goal,
it could be easily hidden in a final system design by allowing special merges

near the scene boundary.

During this video, the waving branches create several hundred spurious
motion clutter objects which are all tracked. Despite this extra load and
complication, the system still has no difficulty in tracking the pedestrians
through occlusion and correctly maintaining their identity. Ideally, the sys-
tem should be designed to ignore the moving branches. This would require
a model of which object types to ignore or use of the motion information de-
scribed in Chapter 5 to distinguish ‘interesting’ from ‘uninteresting’ moving

objects.

4.4.4 Other videos

The dual-channel tracking algorithm was tested on the CAVIAR database

and simulated CCTV security video supplied by the Home Office (Figure 4.18).
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Frame 536

Frame 564 Frame 687

Figure 4.17: Video 3: Video illustrating tracking of dynamically occluding
objects. The video also contains a high degree of motion clutter caused by the

swaying tree branches and wind. The system successfully tracks the targets
despite this.



The Home Office video shows a straightforward ‘exclusion zone breach’ sce-
nario. The pedestrian is detected on entering the scene at the right and
tracked as he walks to the fence on the left. There the pedestrian stops and
so disappears from the motion channel. The system switches to the form
channel and confirms that the target is still present. When he starts walking

back, he reappears in the motion channel and is tracked until he exits the

scene again.

CAVIAR contains more complex interactions and dynamic occlusions sim-
ilar to Video 3 above. Here several pedestrians enter and exit the scene.
Frame 182 shows the a fight scene where the participants are tracked as a
single merged sprite. When they separate, as with Video 3, the two resulting

objects will be matched with the original components of the merged sprite.

4.5 Summary

In 2D+1 approaches, such as particle filtering, the tracking task is ap-
proached from the methodology of predict and match without any motion
detection stage. As shown in Section 4.1.3, this approach fails frequently
when tracking pedestrians under real conditions. Pedestrians are simply not
always predictable. Failure often occurs when the target changes velocity,
despite the fact that this motion information could be used to overcome

prediction problems.

However, motion information cannot detect a non-moving object. Nor

can it match an emerging object to the track it had prior to an occlusion.
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CAVIAR (Frame 26)

CAVIAR (Frame 199)

Figure 4.18: Tracking examples from the CAVIAR and Home Office datasets.

This can only be achieved using an appearance model.

This chapter has an approach to tracking, similar to Jorge et al. 2004 [95,
96], which combines the strengths of appearance matching with the power-
ful motion detection scheme described in Chapter 3. This tracking scheme
maintains two separate information channels, motion and form, and switches
from one to the other to maintain lock on the target through movement,
stoppages and occlusions. Table 4.2 and Figure 4.13 describe the rules used
to track objects while Table 4.1 defines quantitative results for tracking in a
number of videos. The results section presents extensive qualitative results

for a range of tracking scenarios.

Tracking need not be the final output of a surveillance system. We also
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wish to classify moving objects in the scene and understand something about

an object’s behaviour. This task is explored in the next chapter.

Main points

The main points and achievements of this chapter are:

e Prediction frequently fails when tracking pedestrians.

e Prediction, without motion detection, forces a reliance on the appear-

ance model.

Clutter is generated by false matches of the appearance model.

Motion detection alone cannot track objects through occlusions.

Dual-Channel form-motion tracking seems to provide an effective solu-

tion to these problems.
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Chapter 5

Behaviour Analysis

In many ways behaviour analysis is both the ultimate goal and the most
difficult part of an automatic surveillance system. The task is complicated by
a lack of consensus on the requirements of CCTV systems. Several methods
proposed in the literature aim only to catalog and chart pedestrian tracks in

the scene. A few try to analyse the ‘motion history’ of the object.

The HVS incorporates a strong spatio-temporal motion detection stage
and there is evidence that it tackles the behaviour analysis stage using the
rich data field extracted directly from that initial detection stage. ‘Biological
motion’, the characteristic organic movements of people and animals, has
been shown [75] to be detected at this initial stage, rather than by some

post-tracking processing.

There are few studies of future CCTV requirements. Troscianko et al.

(2004) [171] studied the reactions of human CCTV operators and showed that
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their ability to detect crime or suspicious behaviour had little connection with
the path taken by the target, but focused mainly on intra-body movements

and pose.

Categorisation of tracked objects may permit annotation of video data
and later content-based search. What is required is a signal characteristic of
particular behaviour, yet independent of a particular video, recording views,

particular people, etc.

Here the output of the motion distillation stage is used directly, as is the
case for the human visual system. A number of invariant motion signals are
extracted and these are used to categorise moving objects into vehicles and
pedestrians. Pedestrians are further categorised into a number of behaviours
— walking, running, jumping, waving hands, etc. This information can ul-
timately be combined with the tracking and interaction data developed in

Chapter 4.

This method is deterministic, whereas the human visual system is based
on learning. The output of the motion distillation stage is a complex infor-
mation field and it is presumed that an artificial neural network approach,
trained on a large database of sample behaviours, might provide a more ver-
satile categorisation ability. However, constructing such a training database

1s outside the scope of this thesis.
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5.1 Biological models

The human visual system can recognise an extraordinary range of human
behaviours from motion. Figure 5.1 shows the classic ‘point light’ experiment
where lights are attached to the joints of actors. Different actions are filmed
so that only the light points are visible. When a human subject is presented
with still images of these lights, not even the human form can be detected.
However, when the video is played, even complex actions such as dancing

can be readily identified.

Giese and Poggio published a neurological model in 2003 which attempted
to account for this. The model proposed that the dual-channel approach
used for object detection and tracking be extended to behaviour detection.
Learning using a neural network is important in the recognition of complex
movements. Giese and Poggio, point out that learning is fundamental in the
recognition of 3D stationary objects and the neural representation of objects

seems to be based on learned 2D views. This supports the hypothesis that

learning is involved in the recognition of complex movements [75].

The representation of motion in the model is based on a sets of learned
patterns. These patterns are encoded as sequences of snapshots of body
shapes by neurons in the form pathway, and by sequences of complex optical

flow patterns in the motion pathway.
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Figure 5.1: Point light representations are instantly recognisable, but only
when in motion (From Giese and Poggio 2003 [75]).

5.2 Recognition approaches

5.2.1 Makris and Ellis

Whether tracking is achieved through foreground methods such as particle
filtering or background modelling methods, when the system reaches the final
behaviour analysis stage, only information on object position over time (i.e.
the track) has been generated. Many approaches to behaviour analysis seek
to highlight unusual object tracks. Makris and Ellis’s influential work [115]
uses a training video of the scene to build a map of common pedestrian paths,
along with a measure of allowed variation at each point. During training,
short tracks, or tracks of objects which change direction frequently, are elim-
inated. To counter the effects of perspective, paths are resampled at regular
intervals in image space and velocity information is discarded. Resampling
produces nodes at regular intervals. If a pedestrian moves sufficiently close to
a path it is updated with this information, otherwise a new path is recorded. i

Distances are measured in image space as the separation between the nodes |
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Figure 5.2: Tracks recorded in long videos are compiled into paths, composed
of entry and exit points and equally spaced intermediate nodes. Unusual
tracks are detected if the track is outside the bounding error bars. (From
Makris and Ellis [115].

of stored paths. Figure 5.2 shows the path nodes, variation envelope and
the distance measurement to a new track. Path nodes are updated using the

equation
u . 1

= —

* T+
w+ 1 w4+ 1

where w is the weighting of each node. This number is incremented with each
update. If the new track is partly outside the variation envelope, that enve-
lope is expanded to include it. ¥ and &; are the positions of the nodes of the
path and new track respectively. Paths are resampled after update. When
operational, the system matches new tracks to learned paths, highlighting

those that are unmatched.

This approach has a number of disadvantages for practical CCTV appli-
cations. The learned routes are both scene and view dependant, meaning
a long training phase would be required for each camera and location. If

the layout changes during operation (i.e. a new obstacle is placed in a path,
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forcing pedestrians to avoid it) the learned routes are invalidated.

The question also arises, is the approach valid? Can unusual behaviour
be defined in terms of the path of the object centroid? Studies of CCTV
operators reveal that characteristics such as pose and violence of action are

used to a far greater extent than motion paths [171].

5.2.2 Dee and Hogg

Dee and Hogg developed [51] an interesting extension to track-based recogni-
tion. They reasoned that behaviour can be modelled as a series of goals and
sub-goals through which each pedestrian must pass when walking through
the scene. Goals are defined as exit points, whether at the scene borders or
doorways within the scene. Sub-goals are at the corners of scene obstacles.
Sub-goals allow a pedestrian to reach a goal indirectly when the direct route
is not available due to obstacles. These goals and sub-goals must be manually

added to the scene model as no automated method has been developed.

The aim is to determine whether a particular pedestrian track can be
explained in terms of known goals or sub-goals, or whether it is wnezplica-
ble. At each point in the track the number of goals and sub-goals available
to the pedestrian is calculated using line of sight determination. A cost
function is calculated for each track, with low costs associated with direct
movement. The pedestrian should walk in straight lines through these points
(low cost). Inexplicable behaviour may be due to loitering or unknown goals

(high cost). The system was evaluated by comparing automatically detected
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Figure 5.3: An example of the scene model used in Dee and Hogg. The
pedestrian is represented by a white dot with a white arrow indicating motion
direction: white dots with black centres are sub-goals. Obstacles are shown
as black regions; areas invisible to the pedestrian are white. Areas shaded
grey represent areas visible either directly or via sub-goals. From Dee and
Hogg [51].

unusual routes to those chosen by a human operator.

The approach is quite different from others in that it is not based on statis-
tics or novelty detection. Instead a psychological premise of goal-orientated
behaviour is used to highlight inexplicable behaviour. This system would
also allow an investigator to quickly query a video database with questions

such as ‘show me when someone enters that doorway, or gets into that car’.

Disadvantages of this approach are similar to those of Makris and Ellis.
The layout of the particular scene is critical, meaning a good deal of work is
involved each time the camera is moved. The question whether interesting
or unusual behaviour can be defined by the centroid track of a pedestrian is

also still an issue.
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9.2.3 Bobick and Davis

A few approaches bypass the track entirely and, following the example of
the human visual system, attempt behaviour recognition using the motion
history of the target. Bobick and Davis (2001) [34] developed recognition
based on temporal template matching. Using binary motion detection in-
formation (D(z,y,t)) derived from background modelling, two templates are
calculated. First, the binary Motion Energy Image (MEI) is the combination
of a sequence of motion silhouettes taken over a temporal window, 7. Second,
a grayscale Motion-History Image (MHI) is the value-coded history of past
silhouettes. If a pixel is in the current silhouette it is valued highest; pixels

from previous frames are decremented:

7—1

MEI : E.(z,y,t) = | D(z,y,t - 1)
i=0
¥ # D=1
MBL @ Hizat) = (5.2)

max(0, Hy_y — 1) if D#£1

Figure 5.4 shows the output of two aerobic exercises, with the binary MEI
on the left and grayscale MHI on the right. These images are made scale-
and view-invariant by computing a shape descriptor, and are matched to a

database of standard actions.

Ultimately, this technique relies on binary detection information only,
while studies of the HVS indicate that speed information is critical for be-

haviour detection. The motion templates are very specific to an exact be-
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Figure 5.4: Aerobic performer and binary MEI (left); greyscale MHI (right).
From Bobick and Davis (2001) [34].

haviour. The technique may work if someone is waving their arms, but if
they are walking as well as waving their arms it will be unable to detect any

similarity. This makes the approach unsuitable for CCTV applications.

5.2.4 Stauffer and Grimson

Stauffer and Grimson [165], who developed the Gaussian mixture model
for background modelling, also proposed a behaviour classification method.
Each object is recorded with a list of data for each frame, including position,
speed and direction of motion, and information on the motion silhouette such
as size and aspect ratio. During training, all this information is then passed
through an unsupervised hierarchical categorisation mechanism. During op-
eration, objects are compared to these categories, with unusual events falling

outside any category.

The authors note the importance of perspective on results, meaning that
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Figure 5.5: Stauffer and Grimson show the difficulties of categorising objects
using shape. (a) Unambiguous pedestrians, (b) Vehicles. (c) Ambiguous
cases. From Stauffer and Grimson (2000) [165].

a system trained on one view of a scene could not be expected to correctly
categorise objects if the camera were moved. Also noted is the important
case of pedestrians and vehicles. This approach did not consistently place

each in a separate category (see Figure 5.5).

5.3 Motion signal analysis

Chapter 3 discussed the output of spatio-temporal filters. Equation 3.15
defined the filter output as being a function of both speed and contrast
of a moving edge. The chapter described a number of ways to eliminate
undesirable contrast dependence by combining the outputs of several different
filters. An alternative to these methods is to normalise across the detected

object. The filter equation can output either positive or negative values, but
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in Section 3.3.3 only the absolute value was used for detection. Here, the
original output values are utilised. Equation 5.3 calculates the ratio of the

sums of positive and negative filter outputs across the whole detected object.

i peon; Wi, 5)

Reps = e
N Z(i,j)e@bjfww(%,?)l

(5.3)

The R,y; ratio is the motion signal of the object and has a number of useful
properties. It is invariant to object size. It is also a function of the edge
contrasts of the object and how it is moving. Thus, for a rigid object the
signal remains approximately constant. For a non-rigid object such as a
pedestrian, the signal will change as the pedestrian moves, as a direct result
of the natural deformations involved in walking. In the figures below (Fig-
ures 5.7 and 5.8) the total motion amplitude is also computed. This number

is a function of the size, speed and contrast of the object.

A=Y [Wi(i,5)l+ > IW_(i,9) (5.4)

(4.5)€0bj (i.7}€0bj

A'is a sum of object motion intensity. R and A can be computed for the whole
object or a subsection of it (see Section 5.4). This allows for computationally

cheap categorisation of tracked objects.

Similar in concept to equation 5.3 is the video similarity measure devel-
oped in Syeda-Mahmood et al. (2005) [168]. This paper computed a thresh-
old: the average velocity curves of an optical flow field of cardiac motion.
The ratio of the number of vector components above the threshold to those

below was then computed. The authors found that healthy hearts showed
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sharp peaks in this ratio over time, while diseased hearts showed flattened
peaks. The motion signal method differs in the use of scalar motion distilla-
tion inputs and the use of absolute values of inputs in the ratio, rather than

the number of inputs exceeding a threshold.

| The motion distillation stage filters video and generates motion channel
data. These can be seen in the example in Figure 5.6 taken from a video of
traffic. This figure demonstrates how the stationary features of the video,
such as the road, trees, lampposts, are filtered out, leaving only the moving
objects. In the motion channel images, positive and negative values are
colour-coded as red and blue pixels, with pixel intensity indicating higher
motion channel values. The black areas are due to a lack of motion, allowing
for moving objects to be easily detected by thresholding. The object finding
and tracking stages crop objects from these images, storing them, along with

location information, as sprites’.

Figures 5.7 and 5.8 show examples of these cropped images. On top
are object images cropped from a video sequence from the form and motion
channels of the tracking systems. Note the size of the object changes as the
object moves towards or away from the camera over time. The graphs show
comparisons of Ag; (equation 5.4) and Ry, (equation 5.3) for two classes
of object. A, of each object changes gradually with changing perspective
as the object moves towards or away from the camera. Rq; of each object
is radically different. The graph in Figure 5.7 shows an approximately con-

stant value for R,,;. This data is taken from the rigid motion of a vehicle.

1A sprite was defined in Chapter 4.
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Figure 5.8 is very different. Here the data is taken from a tracked pedestrian

and R,; oscillates with gait.

Analysis of the periodicity motion signal reveals whether the tracked ob-
Ject is moving rigidly as a vehicle or periodic non-rigidly as a pedestrian.
Periodicity is determined by computing the number of times Rp; crosses ‘1
(i.e. when positive filter values become a majority). Other data computed
are the rate of crossings (gait period), the amplitude of the signal peaks, and

the standard deviations of these.

Table 5.1 shows quantitative results for classification of objects into rigid
and periodic non-rigid using the periodicity of the motion signal. The test
sample contained tracked objects from three different videos and a wide range
of motion direction and viewing angles. Classification failed in only two cases
giving an overall accuracy of 97%. One vehicle was mistakenly classified as
a pedestrian. This was because the vehicle moved through a region of the
scene with a number of deep shadows. This, combined with the dark colour
of the vehicle resulted in over-segmentation and thus an oscillating motion
signal. It should be noted that several other vehicles which passed through
these shadows were correctly identified. The second failed classification was
a pedestrian who walked briefly through one corner of the scene. The motion

signal was too short to identify periodicity.

For vehicles little further information can be gleaned from the motion
signal. A CCTV system might then use location or form information (vehicle
colour or licence plate recognition perhaps) to further analyse the object.

The motion signal for pedestrians contains a wealth of further information.
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Table 5.1: Classification of objects into rigid cars and periodic non-rigid
pedestrians showing then number of correctly matched objects using two
tests: the periodicity of the motion signal and the width-height ratio test.
Data was compiled from tracked objects in three videos.

Object Sample Size Width-Height Motion Signal

Saloon 23 22 22
Van 2 1 2
Bus 1 0 1

M-Bike 2 0 2
Truck 1 1 1
Vehicle 29 83% 96%
Bike 1 1 1
Group 5 2 5
Walker 34 26 33
Runner 13 8 13
Strange 2 1 2
Pedestrian 55 69% 98%

Section 5.4 will demonstrate how this detailed information can be used to

categorise the behaviour of the pedestrian.

These detection results can be compared to a simple discriminator based
on the width to height ratio of a best fit bounding box around the object.
By experiment, a ratio threshold of 1.5 was found to be optimum, with
objects above this categorised as pedestrians and below as vehicles. This
method correctly classified the vehicles from Table 5.1 with 83% accuracy
and pedestrians with 69% accuracy. It was noted that the method failed
for almost all buses, motorbikes and groups of pedestrians while the motion

signal method was successful in all these cases.

Before we can move on to behaviour analysis a number of characteristics of

the motion signal must be determined. Among these are the effects of viewing
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Figure 5.6: Three sample frames from a traffic monitoring video (Top) along
with the motion field output (Bottom) produced by the motion distillation
stage. Figure 5.7 and Figure 5.8 below contain figures cropped from this data
using the object finding and tracking stages.
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Figure 5.7: (Top) Cropped images of a rigid object (vehicle) from a sequence
of frames of a traffic video along with motion output images. The graph
shows the total motion amplitude (Ag; — equation 5.4) for this object over
time, increasing because it is approaching the camera, while the motion signal
(Ros; — equation 5.3) is approximately constant due to object rigidity.
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Figure 5.8: (Top) Cropped images of a non-rigid object (pedestrian) along
with motion output images from a sequence of frames of a traffic video. The
graph shows the total motion amplitude (A,; — equation 5.4) for this object
over time and the motion signal (Rob; — equation 5.3). The motion signal
shows a pronounced cyclical response due to the gait of the pedestrian.

angle on the motion signal of pedestrians, the issues involved in accessing gait

information, and the use of different filters in the motion distillation stage.

5.3.1 View independence

CCTV is recorded under largely uncontrolled conditions and may record
pedestrian behaviour from any angle and distance. We would also like to es-

tablish the effects of changing viewing angles on the motion signal. Behaviour
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Figure 5.9: The animated pedestrian viewed from (left to right) @ values of
90°,60°,30°,0°. Top row shows animation viewed from above at a vertical
angle of ¢ = 45°, bottom row shows level view, i.e. ¢ =0°.

analysis techniques should be independent of viewing angle and avoid lengthy

learning or setup processes for different locations.

To test the method under controlled conditions, an animation of a walking
pedestrian was prepared using the Blender software program.? This anima-
tion is purposefully simple and stripped of all texture and detail. It was
then passed through the Motion Distillation process and the motion signal
recorded for each frame. Animations were prepared at nine viewing angles.
With the camera parallel to the ground (¢ = 0°), it was rotated around the
walking figure and recorded at four angles, § = (0°,30°,60°,90°), where 0° is
directly behind the figure and 90° is to one side. Four more animations were
prepared at these horizontal angles but with the camera raised and looking
down, ¢ = 45°. A final animation was prepared with the camera directly
over the pedestrian’s head, ¢ = 90°. Figure 5.9 shows detail of the animated

pedestrian from each viewing angle.

2This subsection (5.3.1), along with Subsection 5.3.2 use simulated data. All other
sections use real data.
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Figure 5.10 shows graphs of the R,; motion signal from the animated
pedestrian, viewed from four different angles. The top graph is recorded
from behind (§ = 0°) on the flat and raised through vertical angles (¢ =
0°,45°). The bottom graph is from the side (# = 90°) on the flat and with
raised angles. The change in vertical perspective has a strong effect on the
amplitude of the motion signal due to different parts of the moving body

being visible.

Figure 5.11 compares the R,,; motion signal from different horizontal
viewing angles. It can clearly be seen that the horizontal viewing angle
changes the phase of the motion signal by about one frame per 30°. This
change in phase and the changing relative height of signal peaks are due to

perspective effects.

Figure 5.12 shows how, even when viewed directly from above (¢ = 90°)

detection of pedestrians by the motion signal is still clear and detectable.

The above test on simulated data shows that the motion signal is affected
by view and direction of motion but that periodicity is still clear. This is true
even for the case where the figure is moving directly away from the camera,
when gait might be difficult to detect by traditional means. Analysis of real
data (Table 5.1) proves that view does not inhibit categorisation into rigid

and non-rigid objects.

View does have a strong effect on both the amplitude of signals and their

phase. This complicates the recognition of gait and behaviour.
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Figure 5.10: These graphs show the effects of vertical viewing angle on the
motion signal. (Top) Signal from 0° view, horizontal and raised at 45°.
(Bottom) Signal from 90°, horizontal and raised. (Using animation.)

9.3.2 Filter dependence

Does the choice of motion detection filter effect the motion signal? In Chap-
ter 3 large filters with a Difference of Offset Gaussian (DoOG) profile were
discussed. These filters have advantages of greater precision but at greater
computational cost. The question arises whether the filters are better for

motion signal analysis than the cheaper Haar wavelet decomposition. Fig-
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Figure 5.11: This graph shows how the phase of the motion signal changes
with horizontal viewing angle. (Using animation.)
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Figure 5.12: The Ray; motion signal of the animated pedestrian viewed from

directly above (¢ = 90°). Aov; is shown for comparison. Gait information is
still clearly visible. (Using animation.)

166




- ... — Gaussian {Bx8x3)
Rey: 3D Haar
25
2 -
%1,5
2
14
0.5
0 — T T — 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 13 19 20 21 22
t (frames)
3,
. .. —Gaussian {8x8x8)
Ke¥ 3D Haar
2.5 1
2,
2
15
=
14
0.5
0 T T

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 10 20 21 22
t {frames)

Figure 5.13: These graphs compare the motion signals generated by the s—t
Haar and DoOG filters in the motion distillation stage. The outputs of the
two filters are presented for two different viewing angles, (top) # = 0° and
(bottom) 90°. (Using animation)

ure 5.13 shows two graphs comparing the motion signals for the animated
pedestrian viewed from two different angles; the top graph shows the motion
signals as viewed from behind; the bottom graph shows the motion signals
as viewed from the side.®* The motion signals from Haar and Gaussian filters

are quite similar, suggesting that the extra costs involved in the Gaussian

filters give little extra benefit for behaviour analysis.

3This subsection (5.3.2), along with Subsection 5.3.1 use simulated data. All other
sections use real data.
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5.3.3 Gait

Classical gait detection uses silhouette extraction or model fitting to extract
gait information. This is usually performed under controlled conditions with
the subject walking across a prepared scene. Often different subjects must
wear similar clothing to aid detection. Despite this, gait has been touted
as a potential biometric for uses with CCTV [134]. The uncontrolled con-
ditions in CCTV, and particularly problems of perspective and uncontrolled
direction of walking with respect to the camera make classical gait detection
techniques difficult or impossible. The motion signal proposed here might
offer a practical alternative. The signal has a distinct advantage over other
gait methods as it contains gait information and, while affected by viewing

angle, has been shown to be accessible from any direction.

Figure 5.14 graphs the motion signal from two pedestrians, one walking
near the front of the image and one running near the back. The top graph
shows the uncalibrated signals, which are the raw input to the system. This
is all that can be achieved without some knowledge of scene layout and
perspective. It can be seen that there are few salient differences between
the signals. In the lower graph, which has been scaled manually using scene
information to account for perspective, the difference between the gait of the
runner and the walker can clearly be seen. The effects of perspective and
clothing would also have to be accounted for in a complete gait biometric

recognition system.
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Figure 5.14: These graphs show the effect of scene perspective on gait infor-
mation in the motion signal, R.;. The runner was towards the back of the
scene, while the walker was near the front. The top graph shows the original
Rop; signal, while the lower graph has been manually calibrated using scene
information. This data was produced using Video 2.
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Figure 5.15: Top: untextured and textured moving circle. Middle: untex-
tured and textured moving square. These four tests were simulated on a
blank background. Bottom: Example of a textured circle on a textured
background.

5.3.4 Shape and Texture

The method was also tested for sensitivity to shape and texture of the object.
Four simulation videos were prepared; a monochrome circle, a textured circle,
a monochrome square and a textured square. Each figure was made to move
rigidly across a white background in a sinusoidal fashion, and processed for
A and R values as before. The A values (normalised to account for slight size
differences) are identical for the two untextured shapes (£0.001%), while the
two textured shapes are identical to each other, while showing a very slight
difference (£0.01%) to the untextured figures. (These slight differences are
likely due to minor differences in pixelation of the simulated textured and
untextured moving objects.) The R values for all simulations are identically

1 at all times as these are perfectly rigid moving objects.
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The case of a textured background was also examined. A textured and
and untextured square and circle were simulated as above, but now a textured
background was used. The difference observed between the textured and un-
textured circle on a textured background was +1%. The textured /untextured

square and circle also showed a +1% difference.

The A and R values were compared with those from the untextured back-
ground test. The average values observed were similar in each test; however,
a higher degree of noise was noted in textured background results, up to
+5%. This is due to the output of the haar motion filter being a function
of edge contrast, as stated earlier. The local edge contrast changes as the
moving objects occlude different texel, resulting in some additional noise in
the final A and R values. Figure 5.15 provides example images from the test

simulations used.

5.4 Behaviour classification

Automatic classification of behaviours is a very difficult task. The human
brain is so expert at this task that it is often startling to consider just how
subtle the differences are between what might be thought of as distinct be-
haviours. This complexity means that automatic detection of a wide range
of behaviours would almost certainly require a machine learning approach
trained on a large database of sample behaviours. This sizeable task was
deemed to be outside the scope of this thesis; however, much can still be

achieved using deterministic analysis of motion distillation data.
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This section presents techniques developed for analysing the motion sig-
nals which can correctly categorise the behaviour of more than 90% of pedes-
trians. Such a system could be used in a CCTV system to significantly reduce

the workload for human operators.

The aim is to categorise pedestrian behaviours into the following types:
walking, running and unknown. In addition, sometimes groups of people
walking closely together are segmented as a single sprite*. Also, two special
cases are detected: waving hands (or violent upper body movement) and sud-
den change in behaviour. These are included to demonstrate the rich detail
available in the motion signal and its potential for full behaviour analysis

using a machine learning approach.

The desired output of motion signal analysis is a signal characteristic
of a particular abstract behaviour but independent of the identity of the
subject pedestrian and of such complications as perspective, clothing, etc.
One possible approach would be to analyse the motion channel output using
moment approximations. Moments, which may be calculated using a series
expansion of the equation below, are powerful shape descriptors, which may
be independent of the size and largely insensitive to small rotations and

distortions:

My = Z =Pyl (z,y) (5.5)

(zy)el

1As discussed in Chapter 3, it would be difficult to separate dynamically occluding
objects without an object model.
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where, I(z,y) is a function providing pixel data on the object and p and ¢
are order number for the moment. However the key behavioural information
of the motion signal lies not in the shape of the object silhouette but in
the ‘amplitude’ of the motion signal. While the moments method might
be modified for this task, research would be needed to determine how this
might be achieved. It was decided to apply a more direct analysis approach

as described below.

The initial rigid/non-rigid test identifies pedestrians (Section 5.3) and,
under normal conditions, the vast majority of these will be walking. ‘Walk-
ing’ can be considered as a hypothesis to be tested. It was noticed during
experimentation that the motion field of a walker is distinct in that it can
usually be contained within a restricted area. To test the hypothesis, a rect-
angle is fitted onto the cropped motion channel data. The rectangle is scaled
to the height of the object with a width equal to a fixed fraction of the height.
The rectangle is positioned so that the sum of motion within its bounds is
maximum. The motion sum outside the box, A.,, is considered as a fraction

of total motion:
Aex
Aobj

n = (5.6)

Figure 5.16 shows the division into two regions; motion internal and ex-
ternal to the rectangle model. These regions are called boz and ez. R and A

signals are computed for each region.

To determine the optimum width of the rectangle, values of width ranging

from 0.1 to 0.9 (as a fraction of rectangle height) were tested for a series of
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Figure 5.16: Applying the rectangle model to a pedestrian divides the sprite
into two regions; motion inside the box is calculated as Rpor and Ap,r. The
areas at the left and right of the box are considered together; motion outside
the box is calculated as R,, and A,,. n 1s calculated as the ratio of the A,,
to Apor region (see equation 5.6).

running and walking pedestrians. Data from a number of different videos
and scenes were used (see Appendix A). Figure 5.17 shows n values for a
series of pedestrians as the width of the bounding box is changed. The lower
value solid line represents the average value for a set of walking pedestrians,
with plus and minus standard deviations shown as broken lines. The higher
valued lines show runners. There is a gap between the walkers and runners
that allows the two categories to be distingnished. A rectangle width of

half the height and a threshold value of 7 = 0.1 was used to produce the

classification results shown in Table 5.2.

As n and R are dimensionless, detection and recognition using these mea-
sures is independent of object scale and image resolution. Figure 5.18 shows
how the motion distillation output for a walker will be enclosed to a high
degree by the rectangle model. 7 is below the 0.1 threshold. This example is

typical of walking pedestrians. This may be compared with the 1 value for a
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Figure 5.17: Graph of 7 vs. width for the rectangle pedestrian model. As the
width decreases, the proportion of motion outside the model, 7, increases.
7 is also a function of the type of motion. The lower solid line represents
the mean value of a sample of typical walking pedestrians, the broken lines
represent one standard deviation from the mean. These line are separated
from the higher value line which record runners. A threshold of n < 0.1 with
width = 0.5 x height is used to distinguish walkers from runners.

running pedestrian in Figure 5.20 (top), where 7 is much greater than the 0.1
threshold. The 7 threshold test was evaluated for a number of videos of dif-
ferent scenes and a range of different pedestrian behaviours. Table 5.3 shows

that ‘walking’ can be identified with a sensitivity of 96% and discriminability

of 96% (see definitions on page 172).

Of special interest to CCTV operators may be cases where a pedestrian
has been determined to be walking but the behaviour changes suddenly.
Figure 5.19 shows such a case, where between frames 10-17 , the 7 signal rises
well above the 0.1 threshold. This was due in this case to the pedestrian
suddenly jumping into the air. This unusual event can be distinguished from

running, which also has a high 7 value, as the 7 signal for a runner is also
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Figure 5.18: An example of the motion distillation output for a walking
pedestrian (far left) beside the original frame (left). The pedestrian model
rectangle is shown superimposed on the motion output. The graph compares
Rep; (oscillating line) to 5 (low valued line). 7 is below the 0.1 threshold

(shown as black line) allowing the system to categorise this pedestrian as a
walker.
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Figure 5.19: A pedestrian who jumps suddenly (between frames 10-17) caus-
ing 7 to increase above the 0.1 threshold (shown as black line).
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Figure 5.20: A comparison of the motion signals from a runner and a group.
Both have a high and oscillating 7 signal. For the runner (top) Rpoe shows
less variation in comparison to R,, while they are similar for the group.
Note that although the group shown here is more distant, and so of smaller
apparent size, this has no effect on the recognition method.
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Figure 5.21: The motion signals from a walker who starts to wave. np shows
large variation due to the movement of the pedestrian’s upper body. Note:
as this pedestrian is walking, the shadow is picked up in the motion channel.
This does not unduly effect the final classification outcome as oscillations in
the motion signal are sought and the shadow is relatively constant.

Pedestrians with a high 7 are tested for being runners or groups. Data was
compiled from three different videos in which pedestrians moved in a wide
range of directions with respect to the camera. View direction presented no
problem for detecting groups or unusual behaviour. However the distine-
tion between walking and running is difficult when the pedestrian is moving
directly towards the camera. The majority of pedestrians were filmed nat-
urally. However, for reasons of practicality, actors were used to provide all

exemplars of running and unusual behaviour. Figure 5.22 shows the original

raw data leading to Table 5.2, together with the decision tree paths that led
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Table 5.2: A confusion matrix indicating classification of objects and be-
haviour using motion channel information. Columns represent true input
types, rows are output classifications

Walking Unknown Running Group

Walking 23 1 0 0
Unknown 1 6 1 0
Running 0 0 14 1
Group 0 0 1 6

to the various classifications.

Table 5.3 details these results in terms of classification sensitivity and
discriminability. Defining TP as true category population, FN as false nega-
tives and FP as false positives, sensitivity is defined as TP/(TP + FN) and
discriminability as TP/(TP + FP).

[Total Number]

54
/\ test 1

24 30 [Walkers : Non-Walking]
7\ test 2
22 8 [RunvGroup : Unknown]
A test 3
15 7 [Running : Group]

Figure 5.22: A decision tree of the behaviour analysis results. Test stages cor-
respond to the pseudocode in Figure 5.23 (excluding Test 0: the rigidity test).
Numbers correspond to the algorithm output (rows) shown in Table 5.2.

Figure 5.23 provides pseudocode for behaviour classification by motion

signal analysis. There are three stages to the approach °. First, the motion

®Note: the last two stages of Figure 5.23 correspond on a one-to-one basis with the
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Table 5.3: Classification results for the object types in Table 5.2 in terms of
sensitivity and discriminability.

Activity Sensitivity Discriminability

Walking  96% 96%
Unknown 86% 75%
Running 88% 93%
Group 86% 86%

Detect and track object
(see Chapters 3 and 4)

Test 0: Rigidity test:

Test Rep; for periodicity
if periodic, categorise as Pedestrian
else, categorise as Vehicle

Test 1 : Behaviour classification:
if Pedestrian, apply rectangle model
Test n < 0.1
if true, categorise as uninteresting pedestrian behaviour
if false,
Test 2: 7 for peaks
if false, categorise as unknown pedestrian behaviour
if true, attempt advanced classification.

Advanced classification:
Test 3: Rey > Rpon
if true, categorise as runner
if false, categorise as group

Figure 5.23: Pseudocode for the object classification using motion signal
analysis. The method has three stages: a rigidity test to distinguish vehicles
from pedestrians; the n threshold test to distinguish uninteresting walking
from interesting unusual behaviour; the final stage serves to demonstrate
the potential of the motion signal analysis approach for advanced behaviour
classification.
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signal R,; is analysed for periodicity to distinguish rigid vehicles from non-
rigid pedestrians. Second, a rectangular model is applied to pedestrians to
detect any potentially unusual behaviour. In the videos analysed, about
90% of moving objects can be accurately categorised as either vehicles or
uninteresting walking pedestrians. Such a determination could be used to
direct the attention of a CCTV operator or to annotate video to facilitate
easy search at a later date. The results for unusual behaviour detection show
a relatively high false positive level. This would be acceptable in the context
of a CCTV application where the avoidance of false negatives is more critical.
The final stage, advanced classification, attempts to further categorise the
remaining 10% of possibly interesting objects. The algorithm offered for this
stage is intended to demonstrate the potential of motion signal analysis for
full classification. However, a complete classification system would require a
machine learning approach, coupled to a large database of behaviour data,
due to the large number of behaviour types in real world CCTV. Such a

system was judged to be outside the scope of this work.

5.5 Summary

This chapter covered one of the most important and difficult problems in
visual surveillance — the task of classifying moving objects and identifying
human behaviours. Although the HVS is expert at this task it is far from

fully understood how this is achieved — but it is known that many behaviours

various stages of the decision tree of Figure 5.22
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are detected directly from the motion channel information.

Several classification methods described in the literature focus on the ob-
ject track alone. This procedure has a number of disadvantages, including
perspective dependence and a requirement for lengthy set up and learning
times for each camera location. Coupled to this, studies of human CCTV
operators indicate that the track is rarely used in practice to determine be-

haviour (but see Dee and Hogg, 2004 [51]).

This chapter has proposed a new behaviour analysis method. Information
is accessed from the motion channel directly and a number of motion signals
are computed for tracked objects. These signals can be used to classify
(rigid) vehicles and (non-rigid) pedestrians, which, when tested under a wide
range of conditions and different videos, achieved a correct recognition rate
of approximately 97%. Use of object level information in this way can be
viewed as an application specific remedy for the aperture problem which

arose from the use of local motion detection filters in Chapter 3.

Using an animated pedestrian, this method has been shown to be view-
and perspective-independent and so requires no training or bootstrapping for
different videos or locations. Further, pedestrians can be classified into five

behavioural categories.

The visual surveillance system described in this thesis comprises three
parts: motion detection using motion distillation, tracking using dual channel
tracking and behaviour analysis as discussed here. In the past, visual tracking

science has developed along ad hoc lines, using what works with little concern
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as to why it works. The next chapter will present a new theoretical framework

which integrates these components.

Main points

The main points and achievements of this chapter are:

Motion signals, extracted directly from the motion channel, can be used

to classify behaviours.

® R, is approximately constant for rigid vehicles and oscillatory for non-

rigid pedestrians.

o As the values Roy;, Rer and 7 are dimensionless, detection and recog-

nition are independent of the object scale and image resolution.

® Recognition by this method is view independent for vehicles, pedestri-

ans and unusual behaviour.
¢ Gait information is present but calibration is needed.

e Assessing pedestrians using rectangles allows unusual behaviours to be

detected.
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Chapter 6

Discussion

This thesis has developed an automatic visual surveillance system consisting
of three main components; motion detection through Motion Distillation,
tracking through a dual-channel form—motion architecture, and behaviour
analysis through the processing of motion signals derived from the motion
distillation outputs. This chapter discusses general issues arising from this

and the limitations of it.

6.1 Motion Distillation

Chapter 3 describes how motion detection may be achieved though spatio-
temporal wavelet decomposition, a process I have termed Motion Distillation.
Distillation using the s—f Haar wavelet is highly computationally efficient and

detection is robust. While the output of statistical background modelling is
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binary detection (Figure 3.16 shows why this is the case) the output of Motion
Distillation is non-binary. This, coupled with increased robustness, are the

chief advantages. The extra non-binary information can be used directly for

behaviour analysis, as discussed in Chapter 5.

The output of a single s— filter, such as the Haar, is a function of edge
speed and contrast (See Subsection 3.3.3). Although this is sufficient for ob-
ject detection, applications such as behaviour analysis require the contrast
dependence to be removed. Three different methods for achieving this have
been presented in this thesis: using three differently orientated symmetri-
cal filters to derive local edge velocity (speed and direction) information
(Subsection 3.4.1); using two non-symmetrical cuboid filters to derive local
speed information (motion direction and contrast independent, see Subsec-
tion 3.4.2); and finally, in Chapter 5, normalising across an object to derive a
contrast free motion signal for the object. The velocity or speed information
produced by the first two methods may have a role in behaviour recognition
but it is expected that this would probably only be practically utilised by a

learning algorithm.

Here, Motion Distillation was implemented on a standard serial computer.
In the HVS the motion channel is highly parallel with vast numbers of s—

responsive neurons operating simultaneously and locally in the visual field.

One can envisage a parallel implementation of Motion Distillation in hard-

ware where a separate parallel processor computes s—t wavelet decomposition
for each pixel location. How best to feed this information to later stages and

whether to tackle tracking and behaviour recognition in a parallel or serial
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processor are questions for future research.

6.2 Tracking

Chapter 4 presented a tracking architecture using two information channels
— the motion channel produced by motion distillation output and the form
channel containing the current appearance of the tracked object. By us-
ing each channel when that data is most appropriate — the motion channel
while the object is in motion and the form channel to resolve ambiguities —
the system overcomes some of the limitations of other tracking paradigms.
The algorithm was tested using a range of video types and scenarios and

demonstrated to track robustly.

This approach cannot be applied to all situations. In dense crowd sit-
uations, where the moving crowd might fill the camera view, the system
will cease to track (actually, in this case the shake protection system will
switch off tracking to prevent overload). For crowds a modified approach
is required, depending on the application. One goal might be to track the
motion of the crowd as a whole, or to find pockets of unusual motion which
might indicate that someone has fallen or has been crushed. Here, a solu-
tion should rely on optic flow information, perhaps generated by the DoOG
method. Alternately, if the goal is to track individuals within the crowd,
use of an appearance model and face tracker would be appropriate. A dense
flowing crowd situation is a failure of the ‘small objects’ assumption stated

in Chapter 1. Alternately, it could also be viewed as a failure of the static
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camera assumption, because if the majority of the field of view is in motion

the result will be the same as for a moving camera.

Aside from these niche applications, the Dual-Channel method has been
shown to successfully track arbitrary objects in a wide variety of surveillance

videos.

6.3 Behaviour

Behaviour Analysis in this system works directly on motion signals derived
from the output of the motion distillation module. These signals are robust
to changes in perspective and viewing angle and so avoid restrictive scene

models and costly bootstrap routines.

Chapter 5 explains how motion signals can be computed and how they
can be used to categorise objects based on their behaviour. Recognition rates
range 75-97% for a selection of different behaviours. Motion signal analysis
does not use shape analysis (as Stauffer and Grimson (2000) [165]), object
tracks (as Malik et al. (1995) [116]) or spatio-temporal feature extraction (as
for the recent work of Shah’s group [6, 190]). Instead two dimensionless ac-
tivity measures, n and R, are used which are independent of object scale and
image resolution. This approach saves considerable computational expense

when compared to other methods.

The motion signals are analysed in a deterministic fashion and this nat-

urally limits the number of detectable behaviours to those which can be
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programmed by hand. In this implementation, only Haar wavelet outputs
are used in motion signals. Other wavelet systems which output optic flow

and speed information may be more useful for behaviour analysis.

A learning algorithm, trained using a large database of different be-
haviours and actors can be expected to improve results and extend the num-
ber of behaviour categories. The more complex information produced by
DoOG wavelets would be fully utilised only with an automatic learning al-
gorithm. This approach was judged to be outside the scope of this work and

is left as a suggestion for future research.

Giese and Poggio (2003) [75] postulate that behaviour recognition in the
HVS uses form, as well as motion, information. Expansion of my algorithm
to include this information, possibly a body pose database, would also be

best achieved using a learning approach.

6.4 Context

Figure 2.1 organises visual surveillance methods according to how video data
is processed to achieve motion detection; how tracking is achieved; and by
which surveillance goal is pursued. In terms of this scheme, the Motion
Distillation and Dual-Channel tracking paradigm follows the middle, 3D,

route.

Motion Distillation is similar to Birman et al. (1991) [16] and Knutsson

et al. (1992) [100]. Differences include the choice of s-¢ filters (tensor cones
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and Gabor filters as opposed to the Haar and DoOG used here) and the use
here of wavelet decomposition. Also, Birman and Knutsson were concerned

with medical imagery, not visual surveillance and tracking.

The dual-channel tracking paradigm developed here is a novel approach
with few parallels in the machine vision literature. The concept is derived
from neurological models of the HVS. In 1978 Martin and Aggarwal [119]
discussed the dual, peripheral versus attentive, structure of the eye, where
peripheral vision emphasises motion detection and the attentive center em-
phasises appearance analysis. In 2003 Giese and Poggio [75] suggested a
dual-channel model to explain the HVS's ability to recognise complex human
activities. Neither appearance information nor motion analysis can account

of this alone.

The approach to surveillance and behaviour analysis developed in this
thesis is also new. Selinger and Wixson (1998) [156] use periodic deformations
of object silhouettes to distinguish rigid vehicles from non-rigid pedestrians.
This is similar in effect to my method, although here the periodic motion
signal is derived directly from the motion channel, not through object shape
information. It would be more difficult to extend Selinger and Wixson’s
method to pedestrian behaviours. Bobick and Davis (1998) [34], used the
‘motion history image’, which is also similar, but again, the non-binary nature
of the motion chanmnel grants greater flexibility. Bobick and Davis’s is not
size or view independent, for example. This system does not use the popular
track modelling approach of Makris and Ellis [115, 114] but this might be

profitably used in conjunction with my approach.
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6.5 Theory and synthesis

In Chapter 1 a number of questions were raised as to the nature and function
of various components of visual surveillance systems. Drawing from the work

presented in previous chapters, some tentative answers can now be suggested:

What is the appropriate role of motion detection in tracking? What

15 the best way to achieve it?

Appearance-based techniques such as particle filters require an appearance
model of the object to be tracked. Techniques that include a motion-detection
stage can track without this model, allowing arbitrary objects to be tracked.
Conversely, objects only become detectable while in motion; when they stop
moving, only comparison with a stored appearance model can detect them.
We can also surmise that in a surveillance application all new objects will
enter the scene in motion, and continue to move for some time before they
stop. This provides a window of opportunity to detect the new object and

acquire its appearance model for later use in case of stopping or occlusion.

It is also known that primitive animals can only detect prey while it is in
motion. Motion detection probably evolved from the most primitive light and
dark sensing cells when animal brains became powerful enough to correlate

spatially coherent changes.

Chapter 3 showed the deficiencies of the classic method of achieving this,
namely background modelling. A new paradigm, Motion Distillation, was

developed which may well prove to be the best way to achieve motion detec-
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tion.

The pixel process calculations of background modelling cannot distin-
guish noise or isolated change from spatially coherent motion. This can only
be achieved by an additional 2D object finding step. The spatio-temporal
3D technique discussed in Chapter 3 can achieve true motion detection in

one step.

Are approaches which avoid motion detection valid and what as-

sumptions do they make?

Those methods which forgo motion detection (frame-based methods) are de-
ficient in that they require a priori appearance information. During tracking,
these methods depend solely on location prediction and the clutter resistance
of the appearance model. Clutter can be understood as detection noise. A
perfect appearance model (AM), which will uniquely detect the target object,
will return no clutter. In real-world systems clutter is a problem. Particle
filters compensate for clutter-prone AMs by maintaining multiple hypothe-
ses, but at significant computational cost. The work of this thesis deals with
this problem by relying on the motion channel while objects are in motion

and when the objects are likely to be subject to changes in appearance.

Is location prediction necessary? What issues arise with appearance
models in visual tracking and how does this relate to other aspects

of the system?

Visual tracking systems can be viewed as having three components in various

proportions — a motion-detection stage, an appearance model stage, and a
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prediction stage: if any two of these components work perfectly, the third is
unnecessary. (Tracking systems often contain an update stage, here this is

considered to be part of the appearance model.)

If the system has perfect motion detection, and perfect prediction while
the object is occluded, there is no need for an appearance model to confirm
the object’s identity on reappearance. If the appearance model is perfect (i.e.
produces no clutter or false positives) and the location prediction is perfect,
then tracking will continue perfectly without any need for the crutch of a
motion detection stage. This is the aim in particle filtering systems. Finally,
if motion detection is perfect and the appearance model is perfect, then
prediction is unnecessary as an occluded object which reappears elsewhere
in the scene will be detected by its motion and perfectly matched by the

appearance model to its original identity.

In the real world there are no perfect components. This answer can be
used as a guide to direct improvement efforts. On which stage would efforts
to improve the system as a whole be best employed? For a background mod-
elling approach, should improvements be directed towards the appearance
model to reduce clutter, or towards the prediction module to reduce search
area’ Some methods such as particle filtering contain no motion-detection
stage. Would including one give more profitable returns than improving

prediction or the appearance model?

The work of this thesis has emphasised motion detection and the appear-
ance model, while limiting prediction to search constraints and a series of

logical sorting rules. Results show the method to be quite robust for the fair
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range of videos tested. The strength of our spatio-temporal motion detection
method allows us to avoid using a complex appearance model. Work on this
module may improve performance in longer videos with large numbers of

objects.

Figure 6.1 illustrates a theoretically complete visual surveillance system.
Information flows from both the motion channel on top and the form channel
on the bottom. The blob sorting logic described in Chapter 4 is represented
by the MD and AM components which together output a Track. Finally, the
BA component accesses information directly from both the motion and the

form channel, and the object track.

This figure represents an ideal system, which the work of this thesis aims
to emulate. In this work, the BA component only accesses information from
the MD component. Tracking information is also implicitly used by the BA
as it maintains the object identity throughout analysis. Future work, pos-
sibly focused on learning-based BA algorithms, will be required to properly

connect the BA to the other components as shown in the figure.

6.6 Suggestions for future research

This thesis has presented work on Motion Distillation and Dual-Channel
tracking. However, much work remains to be done extending the operational
envelope of the system. For now it seems that incorporating a behaviour
learning algorithm to motion signal analysis would be most profitable. On

the evidence presented in this thesis recommendations for future research
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Motion Channel

MD

Track BA

77 7

Form Channel

Figure 6.1: A schematic of a theoretically complete dual-channel tracking
and behaviour analysis system. MD and AM are motion detection and
appearance model respectively. BA is behaviour analysis.
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are:

e Develop a hardware implementation of Motion Distillation. Paral-
lel pixel processors, each performing local s—t wavelet decomposition,

would massively increase speed and performance.

e Extend the dual-channel approach using improved appearance mod-
els. Of particular interest would be performance for large numbers of

objects and crowds.

e Develop a database of sample behaviours for training a behaviour anal-
ysis learning algorithm. The use of appearance information in be-

haviour recognition should also be explored.
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Chapter 7

Conclusions

This thesis has explored the theory and practicalities of automatic visual
surveillance. The research was inspired by neurological models of the Human

Visual System.

Primary achievements of this work include a new motion detection para-
digm, a new dual-channel tracking architecture and a novel behaviour anal-

ysis method. This thesis has also developed a new theory of visual tracking.

Motion Distillation achieves motion detection through spatio-temporal
wavelet decomposition of video. This method is both more computationally
efficient and more robust to noise than traditional methods such as back-

ground modelling.

The dual-channel tracking architecture provides a method of organising
multiple information channels for tracking. The motion channel, the out-

put of motion distillation, is used for detection. The form channel is used
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to resolve ambiguities and occlusions. A combination of the two channels
achieves tracking and overcomes some of the weaknesses of traditional meth-
ods. Detailed quantitative and qualitative results demonstrate the power and

reliability of this approach.

Behaviour analysis is also approached in a novel manner. Information
from the motion channel is accessed directly and motion signals are extracted
and analysed. Object classification based on behaviour is demonstrated with
a success rate from 75% to 97%, depending on the complexity of the be-

haviour to be detected.

I pmi= LA
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Appendix A

Video data

A.1 List of videos

The algorithms presented in this thesis were tested on a wide variety of video
data. More than 20 videos were used. For brevity, the number presented here
was limited to a smaller example set while including those which gave the

most interesting and distinctive results.

A list of the videos discussed in the text is provided below. Videos are

categorised by their dimensions, quality, content and level of noise.

Video 1

Outdoor in diffuse natural lighting; a pedestrian walks across the scene and

back again. The video is recorded on a Logitech Webcam.
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Video 2

Outdoor with strong sunlight and shadows; a pedestrian repeatedly crosses
the scene while walking, running, jumping, waving hands, starting and stop-

ping. This video was recorded on an interlaced Canon MV700 Camcorder.

Video 3

Outdoor with diffuse natural lighting; windy conditions create a lot of motion
clutter. Two pedestrians walk and run several times, meeting and reversing
direction, meeting and continuing and passing each other without stopping.

This video was recorded on an interlaced Canon MV700 Camcorder.

Video 4

Outdoor video of complex traffic scene with changing natural lighting, in-
cluding strong sunlight and shadows. Scene includes vehicles and numerous
pedestrians. This video was recorded on an interlaced Canon MV700 Cam-

corder.
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Video 2

Outdoor with strong sunlight and shadows; a pedestrian repeatedly crosses
the scene while walking, running, jumping, waving hands, starting and stop-

ping. This video was recorded on an interlaced Canon MV700 Camcorder.

Video 3

Outdoor with diffuse natural lighting; windy conditions create a lot of motion
clutter. T'wo pedestrians walk and run several times, meeting and reversing
direction, meeting and continuing and passing each other without stopping.

This video was recorded on an interlaced Canon MV700 Camcorder.

Video 4

Outdoor video of complex traffic scene with changing natural lighting, in-
cluding strong sunlight and shadows. Scene includes vehicles and numerous
pedestrians. This video was recorded on an interlaced Canon MV700 Cam-

corder.
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Name Dim. Noise Type Source
Video 1 320x240 px Low Prog. Scan Webcam
x 700 frames Qutdoor Colour

Name Dim. Noise Type Source
Video 2 720x576 px  Medium Interlace Camcorder
x 5458 frames Outdoor  Colour




Name Dim. Noise Type Source
Video 3 720x576 px High  Interlace Camcorder
%1623 frames Outdoor Colour

Name Dim. Noise Type Source
Video 4 720x576 px Medium Interlace Camcorder
%8245 frames Outdoor  Colour
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Shake Video 1

Outdoor video with diffuse lighting for a pedestrian. Camera shakes inter-

mittently. This video was recorded on an progressive scan Canon IXUS 400

digital camera.

Shake Video 2

Indoor video with diffuse mixed artificial and natural lighting. Camera shakes

intermittently. This video was recorded on an progressive scan Logitech

Webcam.

Home Office (i-Lids pre-release)

Outdoor video with diffuse natural lighting. Pedestrian repeatedly walks

near a security fence.

CAVIAR (Fights & Runs Away)

Indoor video with mixed direct sunlight and artificial lighting; several mov-

ing and stationary pedestrians, as well as motion clutter. Two pedestrians

Interact in a ‘fight’ scene.

203




i
W .

T T s | i e A e g it

— s

Name Dim. Noise Type Source

Shake  320x240 px High  Prog. Scan Camcorder

Video 1  x243 frames Qutdoor Colour

Name Dim. Noise Type Source

Shake  160x120 px Low  Prog. Scan Webcam

Video 2 %278 frames Indoors Greyscale
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A.2 List of video sources

e Webcam: Logitech QuickCam Zoom Webcam, CMOS Optical Sensor
320x240px or 160x120 AVI.

e Digital Camera: Canon IXUS 400, Focal Length 5.4mm-10.8mm,
320x240px at 15fps AVIL.

e Camcorder: Canon MV700, Mini DV, 18x Optical Zoom, Focal
Length 2.8mm-50.4mm




Name Dim. Noise Type Source
Home  360x288 px Low Prog. Scan Unknown
Office  x8773 frames Outdoors Greyscale

Name Dim. Noise Type Source
CAVIAR 384x288 px  High Prog. Scan Unknown
%550 frames Indoors Colour
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Appendix B

Object labelling

Finding and labelling the objects after the binary detection mask has been
produced is still an expensive step. Positive pixels must be examined for
their connectivity to neighbouring positive pixels. The mask must be scanned
multiple times and the neighbourhood of each pixel examined. A ‘label space’
copy of the mask is often required to store the results. Each connectivity
check requires 9N pixel operations, where N is the number of pixels in the
mask. There are a number of different variations on the labelling algorithm.
Here I used a version described by Davies (2005) [49] with slight modifications
to keep the number of passes to two and avoid the need for a new label space

storage area in memory.

The prior threshold process outputs a label space with motion pixels
marked as ‘0’ and non-motion pixels labeled as ‘—1°. However, because of
the way this is stored in memory, there are 126 free positive levels remaining,.

In the first pass, the neighbourhood of each pixel is examined for the highest
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value label value. Pixels labeled as ‘~1’ are ignored and their neighbourhood

is not examined, reducing computation in sparse masks.

An integer variable called ‘counter’ is maintained, which starts at ‘+1’
and is incremented whenever a new object is encountered. Each motion pixel
encountered is labeled as the lowest local label value or as the ‘counter’ value,
if all neighbouring pixels are labeled as ‘0’ or ‘~—1°. This step requires 9N

pixel operations.

If all objects were rectangles, then this would be enough. However, irreg-
ular shapes with spurs will cause the system to label different parts of the
same object with different label numbers, and this is unavoidable. So after
the current pixel has been labeled, any label conflicts in the local neigh-
bourhood are recorded in a ‘collision index’. This step requires 8N pixel

operations, as the current pixel need not be read again.

When this pass is completed, the collision index is processed; in the final
pass the highest object label replaces the others. This step requires N pixel
operations, as the neighbourhood need not be accessed again. Figure B.1

provides pseudocode for this method.

Pixel operations are the slowest type of operation in the program due to
the multiple memory and disk accesses. This object labeling method requires
a total of 18V operations. However, N may still be a large number when deal-
ing with video, and it is clear that reducing N will give great benefits. This

is achieved using spatio-temporal scaling described below (Section 3.3.2).
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Threshold to ‘0’ (motion) or ‘~1’ (no motion)
counter = 1

First Pass
if pizel label > 0
Access pixel neighbourhood
pizel label = min(counter, neighbourhood)
Update ‘collision index’ using neighbourhood
if counter was used, increment

Sort collision index
Second Pass

Replace each pixel label with number determined by collision index
Copy pixel into sprite

Figure B.1: Pseudocode for the object labeling method. This approach re-
duces pixel operations to 18N,
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Appendix C

Glossary of acronyms

ID+2  — 1D process followed by a 2D process
2D+1  — 2D process followed by a 1D process
AM — appearance model

BA — behaviour analysis

CCTV - closed circuit television

EKF  ~ extended Kalman filter

EM — expectation maximisation

FP ~ false positive

FN — false negative

GMM - Gaussian mixture model

HVS — human visual system

LGN - Lateral Geniculate Nucleus
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LP
MD
MT
pdf
TB
TBP
TMF
SBP
st

UKF

location prediction

motion detection

middle temporal

probability density function
true blobs

transient background problem
temporal median filter
stationary background problem
spatio-temporal

unscented Kalman filter
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Appendix D

Author’s Publications

M. Sugrue and E.R. Davies. Towards Pedestrian Tracking in CCTV
video for Crime Detection, RE:HVS Basic Technology Project Open
Day, Imperial College, No. 30, 2004. [Poster]

M. Sugrue and E.R. Davies. Tracking in CCTV Video Using Human
Visual System Inspired Algorithm, The IET Visual Information Engi-
neering 2005, Glasgow, 4-6 April 2005,

M. Sugrue and E.R. Davies. Motion distillation for pedestrian surveil-
lance, The Sizth IEEE International Workshop on Visual Surveillance,
Graz, May 13, 2006.

M. Sugrue. Motion Distillation, BMVA One Day Tech. Meeting, De-
tection vs. Tracking, July 5th 2006. [Talk/

M. Sugrue and E. R. Davies. Motion Distillation, Irish Machine Vision
and Image Processing Conference 2006 (IMVIP’06), 30 Aug-1 Sept
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2006, Dublin City University. [*Winner of Best Poster prize]

M. Sugrue and E. R. Davies. Motion detection and tracking by mimick-
ing neurological dorsal /ventral pathways, Chapter in Reverse Engineer-
ing the human vision system: nezt generation articial vision systems,

Editors: Anil Bharath and Maria Petrou, with publishers, due 2007.

M. Sugrue and E. R. Davies. Motion signals provide rapid discern-
ment of pedestrians and pedestrian behaviour. FElectronics Letiers,

43(23):1267-1269, November 2007.

M. Sugrue and E. R. Davies. Contrast independent motion detection
using ‘inverse pair’ spatiotemporal edge detectors. Electronics Letters,

43(24):1346-1348, November 2007.
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