Live and Trustworthy Forensic Analysis of
Commodity Production Systems

L. Martignoni', A. Fattori, R. Paleari?, and L. Cavallaro®

! Universita degli Studi di Udine, Italy
lorenzo.martignoni@uniud.it
2 Universita degli Studi di Milano, Italy
{aristide,roberto}@security.dico.unimi.it
3 Vrije Universiteit Amsterdam, The Netherlands
sullivan@few.vu.nl

Abstract. We present HyperSleuth, a framework that leverages the vir-
tualization extensions provided by commodity hardware to securely per-
form live forensic analysis of potentially compromised production sys-
tems. HyperSleuth provides a trusted execution environment that guar-
antees four fundamental properties. First, an attacker controlling the
system cannot interfere with the analysis and cannot tamper the results.
Second, the framework can be installed as the system runs, without a
reboot and without loosing any volatile data. Third, the analysis per-
formed is completely transparent to the OS and to an attacker. Finally,
the analysis can be periodically and safely interrupted to resume nor-
mal execution of the system. On top of HyperSleuth we implemented
three forensic analysis applications: a lazy physical memory dumper, a
lie detector, and a system call tracer. The experimental evaluation we
conducted demonstrated that even time consuming analysis, such as the
dump of the content of the physical memory, can be securely performed
without interrupting the services offered by the system.

1 Introduction

Kernel-level malware, which compromise the kernel of an operating system (OS),
are one of the most important concerns systems security experts have to fight
with, nowadays [1]. Being executed at the same privilege level of the OS, such
a malware can easily fool traditional analysis and detection techniques. For in-
stance, Shadow Walker exploits kernel-level privileges to defeat memory content
scanners by providing a de-synchronized view of the memory used by the mal-
ware and the one perceived by the detector [2].

To address the problem of kernel-level malware and of attackers that are
able to obtain kernel-level privileges, researchers proposed to run out-of-the-box
analyses by exploiting virtual machine monitor (VMM), or hypervisor, technol-
ogy. In such a context, the analysis is executed in a trusted environment, the
VMM, while the monitored OS and users’ applications, are run as a guest of the
virtual machine. Recently, this research direction has been strongly encouraged

by the introduction of hardware extensions for the x86 architecture that sim-
plify the development of virtual machine monitors [3,4]. Since the hypervisor
operates at a higher privilege level than the guest OS, it has complete control
of the hardware, it can preemptively intercept events, it cannot be tampered
by a compromised OS, and therefore it can be used to enforce stronger protec-
tion [5-9]. Advanced techniques, like the one used by Shadow Walker to hide
malicious code, are defeated using out-of-the-box memory content scanners. Un-
fortunately, all the VMM-based solutions proposed in literature are based on the
same assumption: they operate proactively. In other words, the hypervisor must
be started before the guest OS and it must run until the guest terminates. There-
fore, post-infection analysis of systems that were not running such VMM-based
protections before an infection continues to be unsafe, because the malware and
the tools used for the analysis run at the same privilege level.

In this paper we propose HyperSleuth, a tool that exploits the VMM exten-
sions available nowadays (and typically unused) in commodity hardware, to se-
curely perform live forensic analyses of potentially compromised production sys-
tems. HyperSleuth is executed on systems that are believed to be compromised,
and obtains complete and tamper-resistant control over the OS, by running at
“ring minus-one” (i.e., the hypervisor privilege level). HyperSleuth consists in
(1) a tiny hypervisor that performs the analysis and (1) a secure loader that
installs the hypervisor and verifies that its code is not tampered during installa-
tion. Like in virtualization-based malware, the hypervisor is installed on-the-fly:
the alleged compromised host OS is transformed into a guest as it runs [10].
Since the hardware guarantees that the hypervisor is not accessible from the
guest code, HyperSleuth remains persistent in the system for all the time neces-
sary to perform the live analysis. On the contrary, other solutions proposed in
literature for executing verified code in untrusted environments are not persis-
tent and thus cannot guarantee that the verified code is not tampered when the
execution of the untrusted code is resumed [11-13]. By providing a persistent
trusted execution environment, HyperSleuth opens new opportunities for live and
trusted forensic analyses, including the possibility to perform analyses that re-
quire to monitor the run-time behavior of the system. When the live analysis is
concluded positively (e.g., no malicious program is found), HyperSleuth can be
removed from the system and the OS, which was temporarily transformed into
a guest OS, becomes again the host OS. As for the installation, the hypervisor
is removed on-the-fly.

We developed a memory acquisition tool, a lie detector [6], and a system call
tracer on top of HyperSleuth, to show how our hardware-supported VMM-based
framework can be successfully used to gather volatile data even from production
systems whose services cannot be interrupted. To experimentally demonstrate
our claims about the effectiveness of HyperSleuth, we simulated two scenarios:
a compromised production system running a heavy-loaded DNS server and a
system infected by several kernel-level malware. We used HyperSleuth to dump
the content of the physical memory of the former and to detect the malware in
the latter. In the first case, HyperSleuth was able to dump the entire content of

3. Analysis
2. Dynamic Root of
m Trust bootstrap

. Result

- v
ﬁ Potentially

compromised host

Trusted host

Fig. 1. Overview of HyperSleuth execution

the physical memory, without interrupting the services offered by the server. In
the second case, HyperSleuth detected all the infections.

2 Overview

HyperSleuth should not be considered merely as a forensic tool, but rather as a
framework for constructing forensic tools. Indeed, its goal is to provide a trusted
execution environment for performing any live forensic analysis on production
systems. More precisely, the execution environment in which a forensic analysis
should be performed must guarantee four fundamental properties. First, the en-
vironment must guarantee a tamper-proof execution of the analysis code. That
is, an attacker controlling the system cannot interfere with the analysis and can-
not tamper the results. Second, it must be possible to perform an a-posteriori
bootstrap of the trusted execution environment, even after the system has been
compromised, and the bootstrap process itself must require no specific support
from the system. Third, the trusted execution environment must be completely
transparent to the system and to the attacker. Fourth, the trusted execution
environment must be persistent. That is, the analysis performed in the trusted
environment can be periodically interrupted, and the normal execution of the
system resumed. Practically speaking, that allows to analyze an alleged com-
promised system without freezing it and without interrupting the services it
provides. Moreover, such a property would allow to perform forensic analyses
that require to monitor the run-time behavior of the system. As we will briefly
see in the next sections, HyperSleuth fulfills all the aforementioned properties
and can thus be used to safely analyze any compromised system that meets the
requirements described in Section 2.3.

Figure 1 depicts the execution of HyperSleuth. HyperSleuth is installed and
executed on demand (step 1 in Figure 1), only when there is a suspect that the
host has been compromised, or in general when there is the necessity to perform
a live forensic analysis. The execution is characterized by two phases. In the first
phase (step 2 in Figure 1), HyperSleuth assumes complete control of the host
and establishes a Dynamic Root of Trust (DRT). That is accomplished with the
collaboration of a trusted host (located in the same local network). The trusted
host is responsible for attesting that the DRT has been correctly established. In

the second phase (steps 3-4 in Figure 1), HyperSleuth performs a specific live
forensic analysis and transmits the results of the analysis to the trusted host.
Since the trusted host has a proof that the DRT has been correctly established
and since, in turn, the DRT guarantees that the analysis code executes in the
untrusted host untampered, the results of the analysis can be transitively con-
sidered authentic.

In the following, we briefly describe the architecture of HyperSleuth and how
it manages to assume and maintain complete control of the untrusted host.
Then, we describe the mechanism we use to bootstrap the dynamic root of
trust, and, finally, we describe the assumptions and the threat model under
which HyperSleuth runs.

2.1 HyperSleuth Architecture

HyperSleuth needs to be isolated from the host OS, to prevent any attack po-
tentially originating from a compromised system. Simultaneously, HyperSleuth
must be able to access certain resources of the host, to perform the requested
forensic analysis, and to access the network to transmit the result to the trusted
machine.

Figure 2 shows the position where HyperSleuth resides in the host. Since
HyperSleuth needs to obtain and maintain complete control of the host and
needs to operate with more privileges than the attacker, it resides at the lowest
level: between the hardware and the host OS. HyperSleuth exploits hardware
virtualization support available in commodity x86 CPUs [3,4] (which is typically
unused). In other words, it executes at the privilege level of a Virtual Machine
Monitor (VMM) and thus it has direct access to the hardware and its isolation
from the host OS is facilitated by the CPU.

One of the peculiar features of HyperSleuth is the possibility to load and
unload the VMM as the host runs. This hot-plug capability is indeed a very im-
portant feature: it allows to transparently take over an allegedly compromised
system, turning, on-the-fly, its host OS into a guest one, and vice-versa at will.
This is done without rebooting the system and thus preserving all those valu-
able run-time information that can allow to discover a malware infection or an
intrusion. To do that, HyperSleuth leverages a characteristic of the hardware vir-
tualization support available in x86 CPUs that allows to launch a VMM at any
time, even when the host OS and users’ applications are already running. Once
the VMM is launched, the host becomes a guest of the VMM and the attacker
loses her monopoly of the system and any possibility to tamper the execution of
the VMM and the results of the forensic analysis.

The greyed portions in Figure 2 represent the trusted components in our sys-
tem. During the launch, HyperSleuth assumes complete control of virtual memory
management, to ensure that the host OS cannot access any of its private memory
locations. Moreover, HyperSleuth does not trust any existing software component
of the host. Rather, it contains all the necessary primitives to inspect directly
the state of the guest and to dialog with the network card to transmit data to
the trusted party.

Operating system kernel

User User User User User User
process process process process process process

S

Operating system kernel j

N ——— Y A———
[- Q D L{;ﬂ] [.:HyperSIeuthIlVMM:l :I
1 A\ S/ /

lt Unload p—

— m L =

Fig. 2. Overview of HyperSleuth architecture

Depending on the type of forensic analysis, the analysis might be performed
immediately after the launch, or it might be executed in multiple rounds, in-
terleaved with the execution of the OS and users’ applications. The advantage
of the latter approach over the former is that the host can continue its normal
activity while the analysis is being performed. Thus, the analysis does not result
in a denial of service and can also target run-time evolving characteristics of
the system. In both cases, when the analysis is completed, HyperSleuth can be
disabled and even unloaded.

2.2 HyperSleuth Trusted Launch

HyperSleuth’s launch process consists in enabling the VMM privilege level, in
configuring the CPU to execute HyperSleuth code at this level, and in configuring
the CPU such that all virtual memory management operations can be intercepted
and supervised by the VMM. Unfortunately, an attacker could easily tamper the
launch. For example, she could simulate a successful installation of the VMM and
then transmit fake analysis results to the trusted host. This weakness stems from
the fact that the launch process just described lacks an initial trusted component
on which we can rely to establish the DRT.

The approach we use to establish the DRT is based on a primitive for tamper
proof code execution. This primitive allows to create and to prove the establish-
ment of a minimalistic trusted execution environment that guarantees that the
code executed in this environment runs with maximum available privileges and
that no attacker can manipulate the code before and during the execution. We
use this primitive to create the environment to launch HyperSleuth and to prove
to the trusted host that we have established the missing trusted component and
that all subsequent operations are secured.

We currently rely on a pure software primitive that is based on a challenge
and response protocol and involves an external trusted host [14]. Alternatively,
a TPM-based hardware attestation primitive can be used for this purpose (e.g.,
Intel senter and AMD skinit primitives [3,15]).

2.3 Requirements and Threat Model

Since HyperSleuth leverages hardware support for virtualization available in com-
modity CPUs, such support must be available on the system that must be ana-
lyzed!. To maximize the portability of HyperSleuth, we have designed it to only
require first generation of hardware facilities for virtualization (i.e., HyperSleuth
does not require extensions for MMU and I/O virtualization). Clearly, Hyper-
Sleuth cannot be used on systems on which virtualization support is already in
use [16]. If a trusted VMM were already running on the host, the VMM could
be used directly to perform the analysis. On the other side, if a malicious VMM
were running on the host, HyperSleuth’s trusted launch would fail.

In order to launch HyperSleuth some privileged instructions must be executed.
That can be accomplished by installing a kernel driver in the target host. Note
that, in the unlikely case of a damaged system that does not allow to load any
kernel driver, alternative solutions for executing code in the kernel can be used
(e.g., the page-file attack [10]).

The threat model under which HyperSleuth operates takes into consideration
a very powerful attacker, e.g., an attacker with kernel-level privileges. Nonethe-
less, some assumptions were made while designing HyperSleuth. In particular, the
attacker does not operate in system management mode, the attacker does not
perform hardware-based attacks (e.g., a DMA-based attack), and the attacker
does not leverage an external and more powerful host to simulate the bootstrap
of the DRT. Some of these assumptions could indeed be relaxed by virtualizing
completely I/O devices using either a pure-software approach or recent hardware
support for devices virtualization (e.g., Intel VT-d), and by employing an hard-
ware trusted platform for code attestation (e.g., TPM), keeping HyperSleuth a
secure and powerful framework for performing forensic analysis of live data.

3 Implementation

The core of HyperSleuth is a minimalistic virtual machine monitor that is in-
stalled on the host while the OS and users’ applications are already running.
We achieve this goal by exploiting hardware support for virtualization available
in modern x86 CPUs. In this Section we describe how we have implemented
HyperSleuth on a system with an Intel x86 CPU with VT-x extensions.

3.1 Intel VT-x

Before presenting the details of HyperSleuth VMM implementation, we give a
brief overview of the hardware virtualization technology available in Intel x86
CPUs, called VT-x. AMD technology, named SVM, is very similar and differs
mostly in terms of terminology.

1 Although nowadays all consumer CPUs come with hardware support for virtual-
ization, in order to be usable, the support must be enabled via the BIOS. At the
moment we do not know how many manufactures enable the support by default.

Intel VT-x separates the CPU execution into two modes of operation: VMX
root mode and VMX non-root mode. The VMM and the guest (OS and appli-
cations) execute respectively in root and non-root modes. Software executing in
both modes can operate in any of the four privilege levels that are supported
by the CPU. Thus, the guest OS can execute at the highest CPU privilege and
the VMM can supervise the execution of the guest without any modification of
the guest. When a VMM is installed, the CPU switches back and forth between
non-root and root mode: the execution of the guest might be interrupted by
an erit to root mode and subsequently resumed by an enter to non-root mode.
After the launch, the VMM execution is never scheduled and exits to root-mode
are the only mechanism for the VMM to regain the control of the execution.
Like hardware exceptions, exits are events that block the execution of the guest,
switch from non-root mode to root mode, and transfer the control to the VMM.
However, differently from exceptions, the set of events triggering exits to root
mode can be configured dynamically by the VMM. Examples of exiting events
are exceptions, interrupts, I/O operations, and the execution of privileged in-
structions that access control registers or descriptor tables. Exits can also be
requested explicitly by the guest through a VMM call. Exits are handled by a
specific VMM routine that eventually executes an enter to resume the execution
of the guest. The state of the CPU at the time of an exit and of an enter is
stored in a data structure called Virtual Machine Control Structure, or VMCS.
This structure also controls the set of events triggering exists and the state of
the CPU for executing in root-mode.

In the typical deployment, the launch of the VMM consists of three steps.
First, the VMX root-mode is enabled. Second, the CPU is configured to execute
the VMM in root-mode. Third, the guests are booted in non-root mode. However,
Intel VT-x allows to launch a VMM at any time, thus giving the ability to
transform a running host into a guest of a VMM. The procedure for such a
delayed launch is the same as the one just described, with the exception of the
third step. The state of the CPU for non-root mode is set to the exact same state
of the CPU preceding the launch, such that, when the launch is completed, the
execution of the OS and its applications resumes in non-root mode. The inverse
procedure can be used to unload the VMM, disable VMX root-mode, and give
back full control of the system to the OS.

3.2 HyperSleuth VMM

HyperSleuth can be loaded at any time by exploiting the delayed launch feature
offered by the CPU. Figure 3 shows a simplified memory layout after the launch
of HyperSleuth. The environment for non-root mode, in which the OS and users’
application are executed, is left intact. The environment for root mode instead
is created during the launch and maintained isolated by the VMM. The VMCS
controls the execution contexts of both root and non-root modes. In the following
paragraphs we describe in details the steps required to launch the VMM, to
recreate the environment for running the OS and users’ applications, and to
enforce the isolation of root-mode from non-root mode.

7

Non-root mode Root mode
VMCS
Guest state Host state Control
o - area area fields
DT ke T ~a
GDT/LDT \ IDT
A
Data & LT T
Code Page Data &
table Code
v

727727727

N
NSNNNY
NSNS
NN

N

N

N

N

N

N

N

~

2272722727

Physical memory

Fig. 3. Memory layout after the launch of HyperSleuth; --» denotes the CPU con-
texts stored in the VMCS, — denotes physical memory mappings, and &z denotes the
physical memory locations of the VMM that must not be made accessible to the guest.

VMM Launch. To launch HyperSleuth VMM in a running host we perform
the following operations. First, we allocate a fixed-size chunk of memory to hold
the data and code of the VMM. Second, we enable VMX root-mode. Third, we
create and initialize the VMCS. Fourth, we resume the normal execution of the
guest by entering non-root mode.

When, at the end of the launch, the CPU enters non-root mode, it loads
the context for executing the guest from the guest-state area of the VMCS.
The trick to load the VMM without interrupting the execution of the OS and
users’ applications is to set, in the VMCS, the context for non-root mode to the
same context in which the launch was initiated. The context in which the VMM
executes is instead defined by the host-state area of the VMCS. Like during an
enter, the CPU loads the context from the VMCS during an exit. The context
is created from scratch during the launch and the host-state area is configured
accordingly. In particular, we create and register a dummy Interrupt Descriptor
Table (to ignore interrupts that might occur during switches between the two
VMX modes), we register the Global and Local Descriptor Tables (we use the
same tables used in non-root mode), we register the address of the VMM entry
point (i.e., the address of the routine for handling exits), and we assign the stack.

The set of events that trigger exits to root-mode are defined in the execution
control fields of the VMCS. The configuration of these fields depends on the type
of the forensic analysis we want to perform and can be changed dynamically.

VMM Trusted Launch. Although on the paper the launch of the VMM
appears a very simple process, it requires to perform several operations. Such
operations must be performed atomically, otherwise a skilled attacker may in-
terfere with the whole bootstrap process and tamper VMM code and data. To
maximize HyperSleuth portability, we decided to address this problem using a
software-based primitive for tamper-proof code execution. The primitive we rely

on is thoroughly described in [14]. In a few words, the primitive is based on a
challenge-response protocol and a checksum function. The trusted host issues
a challenge for the untrusted system and the challenge consists in computing a
checksum. The result of the checksum is sent back to the trusted host. A valid
checksum received within a predefined time is the proof that a Trusted Comput-
ing Base (TCB) has been established on the untrusted system. The checksum
function is constructed such that the correct checksum value can be computed
in time only if the checksum function and the code for launching the VMM are
not tampered, and if the environment in which the checksum is computed and in
which the VMM launch will be performed guarantees that no attacker can inter-
rupt the execution and regain the control of the execution before the launch is
completed. Practically speaking, the correct checksum will be computed in time
only if the computation and the launch are performed with kernel privileges,
with interrupts disabled, and no VMM is running,.

MMU Virtualization. In order to guarantee complete isolation of the VMM
from the guest, it is essential to ensure that the guest cannot access any of the
memory pages in use by the VMM (i.e., the crosshatched regions in Figure 3).
However, to perform any useful analysis, we need the opposite to be possible.

Although modern x86 CPUs provide hardware support for MMU virtualiza-
tion, we have opted for a software-based approach to maximize the portability
of HyperSleuth. The approach we use is based on the assumption that the direct
access to physical memory locations is not allowed by the CPU (with paging
enabled) and that physical memory locations are referenced through virtual ad-
dresses. The CPU maintains a mapping between virtual and physical memory
locations and manages the permissions of these locations through page tables.
By assuming the complete control of the page tables, the VMM can decide which
physical locations the guest can access. To do that, the VMM maintains a shadow
page table for each page table used by the guest, and tricks the guest into using
the shadow page table instead of the real one [17].

A shadow page table is a clone of the original page table and is used to
maintain a different mapping between virtual and host physical addresses and to
enforce stricter memory protections. In our particular scenario, where the VMM
manages a single guest and the OS has already filled the page tables (because
the VMM launch is delayed), the specific duty of the shadow page table is to
maintain as much as possible the original mapping between virtual and physical
addresses and to ensure that none of the pages assigned to the VMM is mapped
into a virtual page accessible to the guest. As described in Section 4, we also
rely on the shadow page table to restrict and trap certain memory accesses to
perform the live forensic analysis. The algorithm we currently use to maintain
the shadow page tables trades off performance for simplicity and is based on
tracing and simulating all accesses to tables.

Unrestricted Guest Access to I/O Devices. In the typical deployment,
physical 1/O devices connected to the host are shared between the VMM and
one or more guests. In our particular scenario, instead, there is no need to share
any I/0 device between the guest and the VMM: HyperSleuth executes batch and

interacts only with the trusted host via network. Thus, the guest can be given
direct and unrestricted access to I/O devices. Since the OS runs in non-root
mode, unmodified, and at the highest privilege level, it is authorized to perform
I/O operations, unless the VMM configures the execution control fields of the
VMCS such that I/O operations cause exits to root-mode. By not doing so, the
VMM allows the guest OS to perform unrestricted and direct I/O. This approach
simplifies drastically the architecture of the VMM and, most importantly, allows
the OS to continue to perform I/O activities exactly as before, without any
additional overhead.

Direct Network Access. HyperSleuth relies on a trusted host to bootstrap
the dynamic root of trust and to store the result of the analysis. Since we are
assuming that no existing software component of the host can be trusted, the
only viable approach to communicate securely over the network is to dialog
directly with the network card. For this reason, HyperSleuth contains a mini-
malistic network driver that supports the card available on the host. All the
data transmitted over the network is encapsulated in UDP packets. Packets are
signed and encrypted automatically by the driver using a pre-shared key, which
we hardcode in HyperSleuth just before the launch.

As described in the previous paragraph, HyperSleuth does not virtualize hard-
ware peripherals, but it lets the guest to access them directly. Thus, the network
card must be shared transparently with the guest. In other words, to avoid in-
terferences with the network activity of the guest, HyperSleuth must save and
restore the original state of the card (i.e., the content of PCI registers), respec-
tively before and after using the network. To transmit a packet the driver writes
the physical address and the size of the packet to the appropriate control reg-
isters of the device. The driver then polls the status register of the device until
the transmission is completed. Polling is used because, for simplicity, we execute
all VMM code with interrupts disabled. Packets reception is implemented in the
same way.

VMM Removal. HyperSleuth can be completely removed from the system at
the end of the analysis. The removal essentially is the opposite process of the
launch. First, we disable VMX root-mode. Second, we deallocate the memory
regions assigned to the VMM (e.g., the Interrupt Descriptor Table, the stack,
and the code). Third, we update the context of the CPU such that the OS and
users’ applications can resume their normal execution. More precisely, we set the
context to that stored in the guest-state area of the VMCS, which reflects the
context of the CPU in non-root mode when the last exit occurred. Fourth, we
transfer the execution to a small snippet of code that deallocates the VMCS and
then transfers the control to where the execution was interrupted in non-root
mode.

4 Live Forensic Analysis

HyperSleuth operates completely in batch mode. The only user action required
is to copy an executable on the system to be analyzed and to fire its execution.

10

This executable is a loader that establishes the dynamic root of trust by creating
a tamper-proof execution environment and by using this environment to launch
the VMM. Note that, the loader is removed from the memory and the disk
to prevent malicious software to detect its presence. Once launched, the VMM
performs the forensic analysis, transmits the results to the trusted hosts and
then removes itself.

Although HyperSleuth VMM is completely transparent to the OS and users’
applications and it is removed after the end of the analysis, the launch of the
VMM is a slightly invasive process. Indeed, it requires to execute the loader
that in turn loads a kernel driver (to launch the VMM) and might start other
additional in-guest utilities. Our claim is that, considered the valuable volatile
information HyperSleuth can gather from the system, the little modifications its
installation produces to the state of the system are an acceptable compromise.
After all, no zero invasive solution for a posteriori forensic analysis exists.

Currently, HyperSleuth supports three live forensic applications: a lazy phys-
ical memory dumper, a lie detector, and a system call tracer. Clearly, all these
analyses could be performed also without the need of a dynamic root of trust and
the VMM. Indeed, there are several commercial and open source applications
with the same capabilities available, but, by operating at the same privilege level
of the OS kernel to analyze, they can easily be tampered by an attacker (with
the same privileges), and cannot thus provide the safety guarantees offered by
HyperSleuth.

4.1 Physical Memory Dumper

Traditional approaches for dumping the content of the physical memory are
typically based on kernel drivers or on FireWire devices. Unfortunately, both
approaches have a major drawback that limits their applicability to non pro-
duction systems. Dumping the content of the physical memory is an operation
that should be performed atomically, to guarantee the integrity of the dumped
data. Failing to achieve this would, in fact, enable an attacker to make arbitrary
modification to the content of the memory, potentially hampering any forensic
analysis of live data. On the other side, if the dump is performed atomically,
the system, and the services the system provides, will be blocked for the en-
tire duration of the dump. That is not desirable, especially if there is only a
marginal evidence that the system has been compromised. Being the dump very
time consuming, the downtime might be economically very expensive and even
dangerous.

To address this problem, we exploit HyperSleuth’s persistent trusted execu-
tion environment to implement a new approach for dumping lazily the content
of the physical memory. This approach guarantees that the state of the physical
memory dumped corresponds to the state of the memory at the time the dump
is requested. That is, no malicious process can “clean” the memory after Hy-
perSleuth has been installed. Moreover, being performed lazily, the dump of the
state of the memory does not monopolize the CPU and does not interrupt the
execution of the processes running in the system. In other words, HyperSleuth

11

switch (VMM exit reason)
case CR3 write:
Sync PT and SPT
for (v = 0; v < sizeof (SPT); v++)
if (SPT[v].Writable && !DUMPED[SPT[v].PhysicalAddress])
SPT[v] .Writable = 0;

o e RN N

case Page fault: // ’v’ is the faulty address
if (PT/SPT access)
Sync PT and SPT and protect SPTEs if necessary
else if (write access && PT[v].Writable)
if (!DUMPED[PT[v].PhysicalAddress])
DUMP (PT [v] .PhysicalAddress) ;
SPT[v] .Writable = DUMPED[PT[v].PhysicalAddress] = 1;
else
Pass the exception to the 0S

e e e e
o U A W RO ©

case Hlt:
for (p = 0; p < sizeof (DUMPED); p++)
if (!DUMPED[pl)
DUMP(p) ; DUMPED[p] = 1;
break;

NN N e e
N = O ©

Fig. 4. Algorithm for lazy dump of the physical memory

allows to dump the content of the physical memory even of a production system
without causing any outage of the services offered by the system.

The dump of the memory is transmitted via network to the trusted host.
Each page is fragmented, to fit the MTU of the channel, and labelled. The
receiver reassembles the fragments and reorders the pages to reconstruct the
original bitstream image of the physical memory. To ease further analysis, the
image produced by HyperSleuth is compatible with off-the-shelf tools for memory
forensic analysis (e.g., Volatility [18]).

The algorithm we developed for dumping lazily the content of the physical
memory is partially inspired by the technique used by operating systems for
handling shared memory and known as copy-on-write. The rationale of the algo-
rithm is that the dump of a physical memory page can be safely postponed until
the page is accessed for writing. More precisely, the algorithm adopts a com-
bination of two strategies to dump the memory: dump-on-write (DOW), and
dump-on-idle (DOI). The former permits to dump a page before it is modified
by the guest; the latter permits to dump a page when the guest is idle. Note
that the algorithm assumes that the guest cannot access directly the physical
memory. However, an attacker could still program a hardware device to alter the
content of the memory by performing a DMA operation. In our current threat
model we do not consider DM A-based attacks.

Figure 4 shows the pseudo-code of our memory dumper. Essentially the VMM
intercepts three types of events: updates of the page table address, page-fault
exceptions, and CPU idle loops. The algorithm maintains a map of the physical
pages that have already been dumped (DUMPED) and leverages the shadow page
table (SPT) to enforce stricter permissions than the ones specified in the real page
table (PT) currently used by the system. When the page table address (stored
in the CR3 register) is updated, typically during a context switch, the algorithm
synchronizes the shadow page table and the page table (line 3). Subsequently,

12

all the entries of the shadow page table mapping physical not yet dumped pages
are granted read-only permissions (lines 4-6). Such a protection ensures that
all the memory accesses performed by the guest OS for writing to any virtual
page mapped into a physical page that has not been dumped yet results in
a page fault exception. The VMM intercepts all the page fault exceptions for
keeping the shadow page table and the real page table in sync, for reinforcing
our write protection after every update of the page table (lines 9-10), and also
for intercepting all write accesses to pages not yet dumped (lines 11-14). The
latter type of faults are characterized by a write access to a non-writable virtual
page that is marked as writable in the real page table. If the accessed physical
page has not been dumped yet, the algorithm dumps the page and flags it as
such. All other types of page fault exceptions are delivered to the guest OS that
will manage them accordingly. Finally, the VMM detects CPU idle loops by
intercepting all occurrences of the hlt instruction. This instruction is executed
by the OS when there is no immediate work to be done, and it halts the CPU
until an interrupt is delivered. We exploit these short idle periods to dump the
pending pages (lines 19-22). It is worth noting that a loaded system might enter
very few idle loops. For this reason, at every context switch we check whether
the CPU has recently entered the idle loop and, if not, we force a dump of a
small subset of the pending pages (not shown in the figure).

4.2 Lie Detector

Kernel-level malware are particularly insidious as they operate at a very high
privilege level and can, in principle, hide any resource an attacker wants to
protect from being discovered (e.g., processes, network communications, files).
Different techniques exist to achieve such a goal (see [1]), but all of them aim at
forcing the OS to lie about its state, eventually. Therefore, the only effective way
to discover such liars is to compare the state of the system perceived from the
system itself with the state of the system perceived by a VMM. Unfortunately,
so far lie detection has been possible only using a traditional VMM and thus it
has not been applicable on production systems not already deployed in virtual
machine environments. On the other hand, HyperSleuth’s hot-plug capability of
securely migrating a host OS into a guest one (and vice-versa) on-the-fly makes
it a perfect candidate for detecting liars in production systems that had not been
deployed in virtual machine environments since the beginning.

To this end, besides launching the VMM, HyperSleuth loader runs a simple
in-guest utility that collects detailed information about the state of the system
and transmits its output to the trusted host. This utility performs the opera-
tions typically performed by system tools to display information about the state
of the system and intentionally relies on the untrusted code of the OS. The
intent is to trigger the malicious code installed by the attacker to hide any ma-
licious software component or activity. For example, this utility collects the list
of running processes, active networks connections, loaded drivers, open files and
registry keys, and so on. At the end of its execution, the utility performs a VMM
call to transfer the execution to the HyperSleuth VMM. At this point the VMM

13

collects the same information through OS-aware inspection. That is, the VMM
does not rely on any untrusted code of the system, but rather implements its
own primitives for inspecting the state of the guest and, when possible, offers
multiple primitives to inspect the state of the same resource. For example it
offers primitives to retrieve the list of running processes/threads, each of which
relies on a different data structure available in the kernel. Finally, the trusted
host compares the views provided by the in-guest utility and the VMM.

Since the state of the system changes dynamically and since the in-guest
utility and the VMM does not run simultaneously, we repeat the procedure
multiple times, with a variable delay between each run to limit any measurement
error.

4.3 System Call Tracer

System calls tracing has been widely recognized as a way to infer, observe, and
understand the behavior of processes [19]. Traditionally, system calls were in-
voked by executing software interrupt instructions causing a transition from
user-space to kernel-space. Such user-/kernel-space interactions can be inter-
cepted by HyperSleuth, as interrupt instructions executed by the guest OS in
VMX non-root mode cause an exit to VMX root mode, i.e., to the VMM.

Alternative and more efficient mechanisms for user-/kernel-space interac-
tions have been introduced by CPU developers, recently. Unfortunately, Intel
VT-x does not support natively the tracing of system calls invoked through the
sysenter/sysexit fast invocation interface used by modern operating systems.
The approach we use to trace system calls is thus inspired by Ether [5]. System
calls are intercepted through another type of exits: synthetic page fault excep-
tions. All system calls invocations go through a common gate, whose address
is defined in the SYSENTER_EIP register. We shadow the value of this register
and set the value of the shadow copy to the address of a non-existent memory
location, such that all system calls invocations result in a page fault exception
and in an exit to root mode. The VMM can easily detect the reason of the fault
by inspecting the faulty address. When a system call invocation is trapped by
the VMM, it logs the system call and then resumes the execution of the guest
from the real address of SYSENTER_EIP. To intercept returns from system calls
we mark the page containing the return address as not accessible in the shadow
page table. The log is transmitted via network to the trusted host.

5 Experimental Evaluation

We implemented a prototype of the VMM and of the routines for the three
analyses described in Section 4. Our current implementation of HyperSleuth is
specific for the Microsoft Windows XP (32-bit) operating system. While the core
of HyperSleuth is mostly OS-independent, the routines for the analysis (e.g.,
the enumeration of running processes and of active network connections) are
OS-dependent and may require to be slightly adapted to provide support for
different operating systems.

14

01 F

0.0

Round-trip time (seconds)

0.001

0.0001
o 20 40 60 a0 100 120 140

Time (seconds)

Fig. 5. Round-trip time of the queries performed against the compromised production
DNS server before (1) and after (2) the launch of HyperSleuth and (3-5) during the
lazy dump of the physical memory (the scale of the ordinate is logarithmic).

In this section we discuss the experimental results concerning the launch of
HyperSleuth, the lazy physical memory dumper, and the lie detector. To this
end, we simulated the compromised production system using an Intel Core i7,
with 3GB RAM, and a Realtek RTL8139 100Mbps network card. Note that we
disabled all cores of the CPU but one, since the VMM currently supports a single
core. We simulated the trusted host using a laptop. We used the trusted host to
attest the correct establishment of the dynamic root of trust and to collect and
subsequently analyze the results of the analysis.

5.1 HyperSleuth Launch and Lazy Dump of the Physical Memory

To evaluate the cost of launching HyperSleuth, the base overhead of the VMM,
and the cost of the lazy physical memory dumper we simulated the following
scenario. A production DNS server was compromised and we used HyperSleuth
to dump the entire content of the physical memory when the server was under
the heaviest possible load. We used an additional laptop, located on the same
network, to flood the DNS server with queries and to measure the instantaneous
round-trip time of the queries. About 20 seconds after we started the flood, we
launched HyperSleuth; 25 seconds later we started to dump the content of the
memory.

Figure 5 summarizes the results of our experiments. The graph shows the
round-trip time of the queries sent to the compromised DNS server over time.
For the duration of the experiment, the compromised machine was able to han-
dle all the incoming DNS queries, and no query timed out. Before launching
HyperSleuth the average round-trip time was ~ 0.34ms (mark 1 in Figure 5).
Just after the launch, we observed an initial increase of the round-trip time to

15

about 0.19s (mark 2 in Figure 5). This increase was caused by the bootstrap
of the dynamic root of trust and then by the launch of the VMM, which must
be performed atomically. After the launch, the round-trip time quickly stabi-
lized around 1.6ms, less than five times the round-trip time without the VMM.
The overhead introduced by the VMM was mostly caused by the handling of
the shadow page table. When we started the dump of the physical memory we
observed another and steeper peak (mark 3 in Figure 5). We were expecting
this behavior since there are a lot of writable memory pages that are frequently
accessed (e.g., the stack of the kernel and of the user-space processes and the
global variables of the kernel) and that, most likely, are written each time the
corresponding process is scheduled. Thus, the peak was caused by the massive
number of write accesses to pages not yet dumped. A dozen of seconds later the
round-trip time stabilized again around 1.6ms (mark 4 in Figure 5). That cor-
responds to the round-trip time observed before we started the dump. Indeed,
the most frequently written pages were written immediately after the dump was
started, and the cost of the dump of a single page was much less than the round-
trip time and was thus unnoticeable. The regular peaks around 32ms about
every second (mark 5 in Figure 5) were instead caused by the periodic dump of
non-written pages. Since the system was under heavy load, it never entered an
idle loop. Thus, the dump was forced after every second of uninterrupted CPU
activity. More precisely, the dumper was configured to dump 64 physical pages
about every second. Clearly, the number of non-written pages to be dumped
when either the system enters the idle loop, or the duration of uninterrupted
CPU activity hits a certain threshold, is a parameter that can be tuned accord-
ingly to the urgency of the analysis, to how critical the system is, and to the
throughput of the network.

In conclusion, the dump of the whole physical memory of the system (3GB
of RAM), in the setting just described, required about 180 minutes and the
resulting dump could be analyzed using an off-the-shelf tool, such as Volatil-
ity [18]. The total time could be further decreased by increasing the number of
physical pages dumped periodically, at the cost of a higher average round-trip
time. It should also be pointed out that, on a 1Gbps network, we could increase
the number of physical pages dumped every second to 640, without incurring
in any additional performance penalty. In this case, the whole physical memory
(3GB) would be dumped in just ~ 18 minutes. It is important to remark that
although HyperSleuth, and in particular the algorithm for dumping lazily the
memory, introduces a non-negligible overhead, we were able to dump the en-
tire content of the memory without interrupting the service (i.e., no DNS query
timed out). On the other hand, if the memory were dumped with traditional
(atomic) approaches the dump would require, in the ideal case, about 24 sec-
onds, 50 seconds, and 4 minutes respectively on a 1Gbps network, on a 480Mbps
FireWire channel, and on a 100Mbps network (these estimations are computed
by dividing the maximum throughout of the media by the amount of data to
transmit). In these cases, the production system would have not been able to
handle any incoming request, for the entire duration of the dump.

16

Sample Characteristics Detected?
FU DKOM

FUTo DKOM

HaxDoor DKOM, SSDT hooking, API hooking
HE4Hook SSDT hooking

NtIllusion DLL injection

NucleRoot API hooking

Sinowal ~ MBR infection, Run-time patching

NN NN N RN

Table 1. Results of the evaluation of HyperSleuth’s lie detector with seven different
malware (all equipped with a root-kit component)

5.2 Lie Detection

Table 1 summarizes the results of the experiments we performed to assess the
efficacy of the lie detection module. To this end, we used seven malware sam-
ples, each of which included a root-kit component to hide the malicious activity
performed on the infected system. We used HyperSleuth’s lie detector to detect
the hidden activities. The results testify that our approach can be used to detect
both user- and kernel-level root-kits.

For each malware sample we proceeded as follows. First, we let the malware
infect the untrusted system. Then, we launched HyperSleuth on the compromised
host and triggered the execution of the lie detector. The module performed the
analysis, first by leveraging the in-guest utility, and then by collecting the same
information directly from the VMM through OS-aware inspection. The results
were sent separately to the trusted host. On the trusted host we compared
the two views of the state of the system and, in all cases, we detected some
discrepancies between the two. These discrepancies were all caused by lies. That
is, the state visible to the in-guest utility was altered by the root-kit, while the
state visible to HyperSleuth VMM was not.

As an example, consider the FUTo root-kit. This sample leverages direct
kernel object manipulation (DKOM) techniques to hide certain kernel objects
created by the malware (e.g., processes) [1]. Our current implementation of the
lie detector counteracts DKOM through a series of analyses similar to those
implemented in RAIDE [20]. Briefly, those analyses consist in scanning some
internal structures of the Windows kernel that the malware must leave intact
in order to preserve its functionalities. Thus, when we compared the trusted
with the untrusted view of the state of the system we noticed a process that
was not present in the untrusted view produced by the in-guest utility. Another
interesting example is NucleRoot, a root-kit that hooks Windows’ System Service
Descriptor Table (SSDT) to intercept the execution of several system calls and
to filter out their results, in order to hide certain files, processes, and registry
keys. In this case, by comparing the two views of the state of the system, we
observed that some registry keys related to the malware were missing in the
untrusted view. Although we have not yet any empirical proof, we speculate
the even rootkits like Shadow Walker [2] would be detected by our lie detector

17

since our approach allows to inspect the memory directly, bypassing a malicious
page-fault handler and bogus TLBs’ entries.

6 Discussion

We presented HyperSleuth from a technical prospective. The decisions we made
in designing and implementing HyperSleuth were mostly motivated by the intent
of minimizing the dependencies on the hardware and of maximizing the porta-
bility. Therefore, we always opted for pure software-based approaches (e.g., to
secure the launch of the VMM and to virtualize the MMU), whenever possible.
However, since HyperSleuth is a framework for performing live forensic analyses,
it is important to reason about its probatory value. From such a prospective,
we must take into account that the trustworthiness of the results of the analy-
ses depends on the trust people have in the tool that generated the results. To
strengthen its probatory value, all HyperSleuth’s components should be verified
in order to prove that their code meets all the expectations [21]. At this aim,
in the future we plan to further decrease the size of HyperSleuth’s code base
in order to ease its verifiability (e.g., by leveraging hardware-based attestation
solutions, such as the TPM).

HyperSleuth’s effectiveness depends on the impossibility to detect its pres-
ence from the guest. Although the VMM is completely isolated from the guest,
the malware might attempt to detect HyperSleuth by trying to install another
VMM. One approach to contrast such attempts is to let the malware believe
that virtualization support is not available at all.

7 Related work

The idea of leveraging a virtual machine monitor to perform sophisticated run-
time analyses, with the guarantee that the results cannot be tampered by a mali-
cious attacker, has already been widely explored in the literature. Garfinkel et al.
were the first to propose to use a VMM to perform OS-aware introspection [6],
and subsequently the idea was further elaborated [5,22]. Other researchers in-
stead proposed to use a VMM to protect the guest OS from attacks by supervis-
ing its execution, both with a software-based VMM [8] and by leveraging hard-
ware support for virtualization [9]. Similar ideas were also suggested by other
authors [7,23]. In [24] Chen et al. proposed a solution to protect applications’
data even in the presence of a compromised operating system. More recently, Va-
sudevan et al. proposed XTREC, a lightweight framework to record securely the
execution control flow of all code running in an untrusted system [25]. Unfortu-
nately, in order to guarantee that the analyses they perform cannot be tampered
by an attacker, all the aforementioned solutions must take control of the system
before the guest is booted, and cannot be removed until the guest is shut down.
On the contrary, HyperSleuth can be installed as the compromised system runs,
and, when the analyses are completed, it can be removed on-the-fly. The idea to
take advantage of the possibility to install a VMM on a running system was also

18

sketched in [26], and later investigated in our previous research work to realize
HYPERDBG, a transparent kernel-level debugger [27].

Several researchers proposed to use VMMSs to implement malware that are
particularly hard to detect and to eradicate. SubVirt was one of the first pro-
totypes that employed this technique [28]. However, being implemented using a
software-based VMM, the installation of Subvirt required to reboot the machine,
and the malware also introduced a noticeable run-time overhead in the infected
target. Later, the Blue Pill malware started to exploit the hardware-assisted sup-
ports for virtualization to implement an efficient VMM-based malware that is
able to infect a machine as it runs, without the need for reboot [10]. HyperSleuth
was inspired by this malware.

8 Conclusion

We presented HyperSleuth, a framework for constructing forensic tools that lever-
ages the virtualization extensions provided by commodity hardware to guaran-
tee that the results of the analyses cannot be altered, even by an attacker with
kernel-level privileges. HyperSleuth consists in a tiny hypervisor that is installed
on a potentially compromised system as it runs, and a secure loader that installs
the hypervisor and verifies its integrity. We developed a proof-of-concept pro-
totype of HyperSleuth and, on top of it, we implemented three forensic analysis
applications: a lazy physical memory dumper, a lie detector, and a system call
tracer. Our experimental evaluation testified the effectiveness of the proposed
approach.

References

1. Hoglund, G., Butler, J.: Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional (2005)

2. Sparks, S., Butler, J.: Shadow Walker. Raising The Bar For Windows Rootkit
Detection. Phrack Magazine (Vol. 11, No. 63) (2005)

3. AMD, Inc.: AMD Virtualization www.amd.com/virtualization.

4. Intel Corporation: Intel Virtualization Technology http://www.intel.com/
technology/virtualization/.

5. Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: Malware Analysis via Hard-
ware Virtualization Extensions. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security. (2008)

6. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture
for Intrusion Detection. In: Proceedings of the Network and Distributed Systems
Security Symposium, The Internet Society (2003)

7. Payne, B.D., Carbone, M., Sharif, M., Lee, W.: Lares: An Architecture for Secure
Active Monitoring Using Virtualization. In: Proceedings of the IEEE Symposium
on Security and Privacy. (2008)

8. Riley, R., Jiang, X., Xu, D.: Guest-Transparent Prevention of Kernel Rootkits
with VMM-Based Memory Shadowing. In: Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection. (2008)

19

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes. In: Proccedings of the ACM
Symposium on Operating Systems Principles, ACM (2007)

Rutkowska, J.: Subverting Vista Kernel For Fun And Profit. Black Hat USA
2006

1(\/[cCu)ne, J.M., Parno, B., Perrig, A., Reiter, M.K., Isozaki, H.: Flicker: An exe-
cution infrastructure for tcb minimization. In: Proceedings of the ACM European
Conference in Computer Systems. (2008)

Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
Verifying integrity and guaranteeing execution of code on legacy platforms. In:
Proceedings of ACM Symposium on Operating Systems Principles. (2005)
Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: Swatt: Software-based attes-
tation for embedded devices. In: Proceedings of the IEEE Symposium on Security
and Privacy. (2004)

Martignoni, L., Paleari, R., Bruschi, D.: Conqueror: tamper-proof code execution
on legacy systems. In: Proceedings of the Conference on Detection of Intrusions
and Malware and Vulnerability Assessment. Lecture Notes in Computer Science
2010

E}rawzock, D.: Dynamics of a Trusted Platform: A Building Block Approach. Intel
Press (2009)

Carbone, M., Zamboni, D., Lee, W.: Taming virtualization. IEEE Security and
Privacy 6(1) (2008)

Smith, J.E., Nair, R.: Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann (2005)

Volatile Systems LLC: Volatility (http://www.volatilesystems.com/).

Forrest, S., Hofmeyr, S.R., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix
Processes. In: Proceedings of the IEEE Symposium on Security and Privacy. (1996)
Butler, J., Silberman, P.: RAIDE: Rookit analysis identification elimination. In:
Black Hat USA. (2006)

Franklin, J., Seshadri, A., Qu, N., Datta, A., Chaki, S.: Attacking, Repairing, and
Verifying SecVisor: A Retrospective on the Security of a Hypervisor. Technical
report, Carnegie Mellon University (2008)

Jiang, X., Wang, X.: ”out-of-the-box” monitoring of VM-based high-interaction
honeypots. In: Proceedings of the International Symposium on Recent Advances
in Intrusion Detection. (2007)

Sharif, M., Lee, W., Cui, W., Lanzi, A.: Secure In-VM Monitoring Using Hard-
ware Virtualization. In: Proceedings of the ACM Conference on Computer and
Communications Security. (2009)

Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam, P., Waldspurger, C.A.,
Boneh, D., Dwoskin, J., Ports, D.R.K.: Overshadow: a virtualization-based ap-

proach to retrofitting protection in commodity operating systems. Operating Sys-

tems Review 42(2) (2008)

Perrig, A., Gligor, V., Vasudevan, A.: XTREC: secure real-time execution trace

recording and analysis on commodity platforms. Technical report, Carnegie Mellon
University (2010)

Sahita, R., Warrier, U., Dewan, P.: Dynamic software application protection. Tech-
nical report, Intel Corporation (2009)

Fattori, A., Paleari, R., Martignoni, L., Monga, M.: HyperDbg: a fully transparent

kernel-level debugger http://code.google.com/p/hyperdbg/.

King, S.T., Chen, P.M., Wang, Y.M., Verbowski, C., Wang, H.J., Lorch, J.R.:
SubVirt: Implementing malware with virtual machines. In: Proceedings of IEEE
Symposium on Security and Privacy. (2006)

20

