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Three-particle breakup near threshold when the Wannier exponent diverges

W. Ihra, F. Mota-Furtado, and P. F. O’Mahony
Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

~Received 9 December 1996!

Wannier theory predicts an infinite threshold exponent for the breakup of three charged particles if two of
the particles have equal charges and the ratio of the charge of one of these to the charge of the third particle
has the value (24!. We show that the Wannier picture of ridge propagation remains valid and that the
threshold law changes to the forms}E21/6exp(2k/E1/6). The classical and quantum results differ, which is in
contrast to the generic Wannier case. We show that the classical limit of the threshold law explains the
threshold behavior obtained numerically by classical trajectory calculations.@S1050-2947~97!08106-7#

PACS number~s!: 34.80.Dp
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I. INTRODUCTION

Wannier theory of three-particle breakup has been s
cessfully extended to the case of arbitrary masses
charges over recent years@1,2#. It predicts a power law

s}Ez ~1!

for the breakup cross section near the thresholdE→10.E is
the total energy of the system. The threshold exponenz
depends on the charges and masses of the individual
ticles. In the case where one of the particles has massm and
chargeq and the other two particles have equal massesM
and charges2Q (q andQ have the same sign!, the exponent
is given by@1,2#

z5
3

4S 11
16

9

112M /m

12Q/4q D 1/22 1

4
. ~2!

In the casesm@M , Q51, andq51 the original Wannier
result z51.127 for electron impact ionization of neutral a
oms is recovered@3#.

One question however has so far remained unanswe
What happens when the ratio of the charges of the w
particles to the charge of the third particle isQ/q54 and the
Wannier exponent becomes infinite? The classical equat
of motion in the vicinity of the Wannier ridge do not allow
an analytical solution in this case@4#, in contrast to what we
call the generic Wannier caseQ/q,4 @3#. Wannier’s picture
of trajectories converging to and diverging from the poten
ridge, however, is still valid even for this exceptional ca
Quantum mechanically these trajectories are related to
vex and concave wave fronts traveling along the poten
ridge @5#. We show how this picture can be incorporated in
this borderline case. We derive the quantum mechan
threshold law and the leading-order terms of the aympt
series near threshold. We also derive the semiclassical
for the threshold law, and show how the numerically det
mined classical threshold law@4# emerges analytically from
our analysis.

A possible experimental realization of the situation an
lyzed in this paper would be the measurement of the in
grated ionization cross section of the beryllium antiproto
ion @Be411p2# by another beryllium ion Be41. We predict
551050-2947/97/55~6!/4263~6!/$10.00
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a strongly suppressed, though finite cross section for fi
positive energies. Due to the exponential suppression an
perimental determination of the threshold law may be di
cult; however, our main emphasis is to demonstrate that
theory presented here heals a shortcoming of the Wan
theory, which cannot make any predictions about the sl
of the cross section forQ/q54 at all. In this context we aim
to clarify the relation between the Wannier picture of rid
propagation and classical mechanics. It has been shown
the breakup of three charged particles reduces to a pu
classical process@6# in the generic Wannier case, even if th
starting point is a quantum-mechanical or semiclassical o
However, we will demonstrate that this statement does
hold in general, but depends on the final state interaction

In Sec. II we present the theory, which is employed
Sec. III to derive the quantum-mechanical threshold law. T
relation to the classical threshold law is then discussed
Sec. IV.

II. THEORY

We use the same set of Jacobi coordinates as in Ref.@2#.
R denotes the vector between the wing particles of m
M , and r is the vector from the third particle of massm to
the center of mass of the wing particles. The latter is writ
in components parallel and orthogonal to the axis defined
the wing particles:r5xR̂1yR̂'. The hat denotes unit vec
tors. We also introduce the reduced massesmR5M /2 and
m r52Mm/(2M1m). Threshold breakup is characterized b
R→`, and motion in the vicinity of the Wannier saddle b
x;0 and y;0. Quantum mechanically the Schro¨dinger
equation must be solved in a region around the Wann
ridge incorporating appropriate boundary conditions. We
atomic units throughout, but keep the dependence on\ in the
equations explicitly in order to take the classical limit lat
on.

In the Wannier theory the potential is expanded arou
the equilibrium configurationx50 andy50 up to second
order:

V~R,r !52
C0

R
2
Cx2

2

x2

R3 1
Cy2

2

y2

R3 , ~3!

with the coefficients
4263 © 1997 The American Physical Society
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C05Q~4q2Q!, Cx2532qQ, Cy2516qQ. ~4!

The wave function is written as

C~R,r !5
1

R
c~R!w~R;x,y!. ~5!

The wave function for the relative motion of the wing pa
ticles is written as a WKB ansatz with outgoing wave boun
ary conditions

c~R!5
1

AK~R!
expF i\ER0

`

K~R!dRG , ~6!

where the momentum is given by

K~R!5A2mR@E1C0 /R2«~R!#. ~7!

The effective potential«(R) takes the coupling between th
relative motion of the wing particles and the bending a
stretching motion around the Wannier configuration into
count. It can be derived directly from a diabatic solution f
w(R,x,y) @2,5#. Alternatively, substituting potential~3! into
the Schro¨dinger equation and fixingR leads to the adiabatic
Schrödinger equation

F2
\2

2m r
S ]2

]x2
1

]2

]y2
1
1

y

]

]yD2
Cx2x

2

2R3 1
Cy2y

2

2R3 Gwasy~R;x,y!

5«~R!wasy~R;x,y! ~8!

for the motion inx andy. The transformation between adia
batic and diabatic ionization channels was carried out in R
@7#. It can be seen from Eq.~11! in @7# that the adiabatic and
diabatic channels coincide to order 1/R3/2 for the case where
C050, i.e., whenQ/q54. It is therefore sufficient to con
sider Eq.~8!, which has the form of a one-dimensional i
verted harmonic oscillator inx, and a two-dimensional har
monic oscillator iny. The energy for the lowest-lying stat
with 1S symmetry is

«~R!52
i

2
vx1vy , vx5

\

m r
1/2R3/2ACx2,

vy5
\

m r
1/2R3/2ACy2, ~9!

which, taking Eq.~4! into account, become

«~R!5
\uC1u
R3/2 expF2 i tan21

1

A2G , uC1u52A6Qq

m r
.

~10!

The minus sign in the first term of Eq.~9! was chosen to
meet outgoing wave boundary conditions for the asympt
wave function inx. This corresponds to the picture of win
particles falling off the Wannier ridge as they move towa
larger interparticle distance. Such events lead to single
ization only. SinceC050, the Coulomb term in Eq.~7! van-
ishes, and the leading-order contribution comes from the
fective potential«(R), which is of leading order 1/R3/2. This
is the essential difference with the generic Wannier case
-

d
-
r

f.

ic

n-

f-

The effective potential«(R) has an imaginary part be
cause the Schro¨dinger equation is solved in a finite region o
configuration space. Sincep/2,arg@E2«(R)#,p, the real
and imaginary parts of the momentumK(R) are both posi-
tive, and the wave function in Eq.~6! is indeed an outgoing
wave with decaying amplitude. The decaying amplitude
associated with particles contributing to single escape ins
of three particle breakup. The wave function for the bend
and stretching motion asymptotically has the form

wasy~R;x,y!5NxexpF i vx

2
x2GNyexpF2

vy

2
y2G . ~11!

The wave function iny, which corresponds to angular co
relations, has a Gaussian peak around the equilibrium c
figuration. The wave function inx is related to the energy
distributions, which is uniform around the equilibrium co
figuration corresponding to an equal energy sharing of
energies of the wing particles. These two features of
standard Wannier theory remain unchanged in the case w
the Wannier exponent becomes infinite. Sincewasy deter-
mines the angular and energy distribution we call it the d
tribution function for matters of abbreviation.

The normalization constantNy is chosen to normalize the
integral of the square of the oscillator iny to unity. The
choice of the normalization constantNx has to be addresse
carefully. In Ref. @7# the transformation from adiabatic t
diabatic wave functionswasywas treated on an equal footin
for the harmonic and antiharmonic oscillators, resulting
equal forms of the coupling matrix elements. This require
normalization of the wave functions of the antiharmonic o
cillator in the same way as for the harmonic oscillator. Fro
the view point of the adiabatic or ‘‘hidden crossing’’ theor
the emergence of the normalization constant was clarifie
Ref. @8#. It is proportional toR1/8. This scaling of the nor-
malization constant withR had to be taken into account i
the diabatic theory of Ref.@7# as well to derive the correc
Wannier exponent. There it was attributed to a phase-sp
factor.

The break-up cross section is proportional to the survi
probabilityP(E) on the saddle which is given by the squa
of the exponential part of the wave function@7,9,8,11#:

P~E!5expF2
2

\
ImE

R0

`

K~R!dRG . ~12!

To arrive at the cross section, the survival probability m
be multiplied by the square of the distribution function tak
at a value R5RC , where the asymptotic distribution
emerges. The relation betweenRC and the energyE will be
addressed in Sec. III. The square of the distribution funct
must be integrated over the coordinatesx and y, and the
integrated ionization cross section for a given angular m
mentumL then gives

s~E!}
p

E1I
~2L11!RC

1/4P~E!. ~13!

I denotes the ionization potential of the target.
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III. QUANTUM-MECHANICAL THRESHOLD LAW

A. Limit as E˜10

In the generic Wannier caseQ/q,4 the dominating in-
teraction in the final channel~6! is an attractive Coulomb
potential. A valid approximation in this case is to expand
survival probability as

P~E!5expF2
2

\ER0
` Im@2«~R!#

K0~R!
dRG , ~14!

with the zero-order momentum

K0~R!5A2mR~E1C0 /R!. ~15!

This is, however, not possible forQ/q54, because the Cou
lomb potential vanishes and the dominant interaction in
ionization channel is the potential~10!. The full expression
~12! must be calculated instead. The radiusR0 characterizes
the boundary of the reaction zone where all three partic
are close together. In the reaction zone the correlated mo
of the three particles must in principle be treated fully qua
tum mechanically. As has been shown elsewhere@8#, the
reaction zone contributes with an additional factor to
double escape probability which goes to a nonzero cons
at E50, and which depends only very weakly on the to
energy near threshold. It therefore plays no role for the
havior of the ionization probability as a function of the e
cess energy, and need not concern us further. The valu
R0 should be chosen on physical grounds. If one of the w
particles is initially bound to the particle with massm, the
binding energy isEb52m(Qq)2/(2\2n2) depending on the
quantum numbern of the initial state. Here the reduced ma
m5mM/(M1m) has been introduced. In a classical pictu
the incoming particle polarizes the bound particle in its orb
and a reasonable choice forR0 is twice the distancex0 of the
expectation value of the radius of the bound particle in
orbit, which is

R0;
2\2n2

m~Qq!
. ~16!

Threshold breakup is characterized by the condition that
excess energyE is much less than the binding energyEb .
With the above choice~16!, it can be easily verified that thi
is equivalent to the condition

E!\uC1u/R0
3/2. ~17!

This in turn means that the motion on the Wannier rid
starts in a region where the effective potential domina
over the kinetic energy of the particles. Notice that the r
part of the potential~10! is repulsive, and thus introduces
potential barrier through which the system has to tunnel
the Wannier ridge because of condition~17!. This can be
understood as a purely quantum-mechanical effect:
bending motion iny has a quantum-mechanical zero po
energy which must be subtracted from the total energyE for
the relative motion of the two wing particles. However,
must be emphasized that even with the real part of«(R)
absent, the imaginary part arising from the stretching mot
in x only leads to an imaginary part inK(R). Neglect of the
e
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real part of the effective potential~10! does not change the
form of the threshold law to be deduced, but only the n
merical constants.

The survival probability~12! is calculated in the Appen
dix under condition~17!. The leading term is independent o
the starting radiusR0 and gives the threshold behavior

Pthr~E!5exp@2k/E1/6#, E→10 ~18!

wherek is given in the analytical form

k5
1

\1/3S 2mR

p D 1/2G~ 1
3 !G~ 1

6 !uC1u2/3sinF23S p2arctan
1

A2D G .
~19!

To relate this result to the cross section, Eq.~13!, the radius
RC must be specified. In the standard Wannier theory
radius at which the asymptotic energy distribution emerge
characterized by the transition from the Coulomb zone
which the potential energy dominates to the asymptotic f
zone where the Coulomb energy can be neglected.
boundary between the two zones scales asRC;1/E, giving
rise to an additional factorE21/4 in the near-threshold cros
section@8#. Since the attractive Coulomb potential is missi
in our case, standard Wannier theory has to be modifie
this point. The Coulomb zone is replaced by the coupl
zone which is dominated by the effective potential~10!. The
boundary between the coupling zone and the asymptotic
zone then scales asRC;E22/3. This leads to the threshold
behavior

s thr~E!}E21/6exp@2k/E1/6#. ~20!

B. Leading-order corrections to threshold law

We now discuss corrections to the threshold law~20! aris-
ing from higher-order terms in the evaluation of the surviv
probability, and estimate the range of validity of the thres
old law. The first correction of the survival probability de
pends on the starting radiusR0 and gives~see the Appendix!

P~E!5Pthr~E!expF S 2mR

\ D 1/2cosS 12arctan1A2D
3S 8uC1u1/2R0

1/42
4R0

7/4

7\uC1u1/2
ED G . ~21!

The energy-dependent part of the correction determines
energy range over which the threshold law~18! is valid. As
the criterion for the critical energyEC above which the
threshold behavior is modified, we choose

expF2A2mRcosS 12arctan1A2D 4R0
7/4

7\3/2uC1u1/2
ECG'0.9,

~22!

which translates into the condition

EC

uEbu
'0.17S nm3

mR
2m r

D 1/4. ~23!
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For the fictitious case of electron impact ionization of a ne
tral atom with chargeq5 1

4, which has been treated in Re
@4#, one has the threshold coefficientk512.056 a.u., and the
critical energy is EC /uEbu'0.2. The Wannier law for
electron-impact ionization on hydrogen (q51) is known to
be valid up to approximately 2.7 eV@10#. Thus, while the
form of the threshold law itself changes the departure fr
the threshold behavior still relates to approximately the sa
ratio of the excess energy to the binding energy. For the
case of ionization of the beryllium antiprotonic io
@Be411p2# by another beryllium ion Be41 the threshold
coefficient is much larger, namelyk5409.2 a.u., and the
ratio of the critical excess energy to the binding energy
EC /uEbu'0.075 which corresponds toEC'0.54mp527
keV. Another, less esoteric example is the single ionizat
of Be31 in a collision with a Be41 ion. Here the exponentia
suppression of the energy behavior of the cross sectio
even more dramatic due to the small mass ratio of the e
tron to the remaining Be31 ions. The threshold coefficient i
k54922 for this case. Effectively such a large threshold
ponent leads to a threshold behavior of the cross sec
which can be interpreted as resulting from an infinite Wa
nier exponent. However, because of the small efficiency
creating the Beryllium antiprotonic ion, the latter examp
may be better suited for an experimental study, andabsolute
values of the cross section near threshold will be larger c
pared to the first.

C. Extension to other potentials

A simple argument for the threshold behavior of the s
vival probability ~18! can be given on the basis of a scalin
argument. Neglecting the total energy in the coupling zo
the integrand in Eq.~12! scales asR23/4. Instead of taking
the upper limit of the integral to be infinite the survival pro
ability is integrated up to the boundaryRC5(\uC1u/E)2/3
between the coupling zone and the asymptotic free z
where the kinetic energy of the particles dominates the
tential energy. The probability therefore scales asP(E)
}exp@2kRC

1/4#, which corresponds to the previously derive
result~18!. Since the argument is rather general we conclu
that any motion which is governed asymptotically by a p
tential of the form

«~R!5
C

Rn ~ ImC<0 and ReC.0, 0,n,2 !

~24!

in the final channel results in a threshold law of the form

Pthr~E!}exp@2kE1/221/n#. ~25!

Especially for the caseQ/q.4, which we have not deal
with so far, we recover the result for the tunneling probab
ity through a repulsive Coulomb potential (n51). In this
case the threshold law does not arise from the effect of
potential«(R) but from the Coulombic nature of the fina
state interaction. Note that this differs from the generic W
nier caseQ/q,4, where the Coulomb interaction is attra
tive and the coupling potential is essential to derive
Wannier law~1!. However, care has to be taken if the d
pendence of the interaction in the final channel has a de
-
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dence onR with a powern>2. Since the radial kinetic en
ergy itself behaves typically like 1/R2, it dominates over the
effective potential, and the above result does not apply@12#.

IV. CLASSICAL LIMIT

In this section we discuss the classical limit of the s
vival probability. Dimitrijević, Grujić, and Simonovic´ per-
formed classical trajectory calculations for the abov
mentioned fictitious caseq5 1

4 and fitted the results to a
threshold law of the form@4#

Pcl~E!;exp@2l/Ax0E#, x05R0/2 ~26!

~cf. Sec. 3.1 of their paper!. They obtained the numerica
valuel51.364. The breakup probability depends explici
on the starting radiusR0 of the outgoing trajectories. This
can be linked to the scaling properties

r→tr , p→p/At , E→E/t, t.0 ~27!

of classical Coulomb systems@3#. The findings of Ref.@4#
are purely numerical, and no explanation could be given
the energy dependence of the classical cross section an
value of the coefficientl.

The classical calculations of Ref.@4# as well as the
quantum-mechanical approach presented here treat
breakup process as a half-collision reaction. However, ap
ently the results differ completely, which needs explanati
In the following we will show that the behavior~26! of the
breakup cross section can be recovered as the classical
of the theory presented here. The classical limit correspo
to \→0, while keeping the excess energyE and the binding
energyEb constant. The later condition implies\n5const
and therefore the starting radius must be kept fixed at a
tain valueR0. The effective potential~10! scales linearly
with \, so the classical limit corresponds to the condition

\uC1u
R3/2 !E, R0<R,`. ~28!

This is the opposite of condition~17! for the quantum-
mechanical threshold law to hold. The proper interpretat
of the above condition~28! is that in the classical limit the
absolute value of the zero point energy of the effective
tential ~10! is small compared to the excess energyE. @Note
that the values chosen in the classical calculations of Ref@4#
namely,R050.1 a.u.,R051 a.u. and energiesE<0.1 a.u.
actually fall within the threshold regime~17! if treated quan-
tum mechanically.#

The survival probability~12! with the momentum given
by Eq. ~7! and C050 is expanded under condition~28!,
which gives the classical threshold law

Pcl~E!5expF2
2

\
A2mREE

R0

` Im@2\C1#

ER3/2
dRG

5expF2S 32~Qq!mR

m r
D 1/2 1

Ax0E
G . ~29!

The bending and stretching motion decouple in the exp
sion for the classical ionization probability, and the bendi
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motion in y is irrelevant because it contributes with a re
part only in the effective potential.

The analytical expression~29! has the same form as the fi
to the numerical results of@4#. For the valuesq5 1

4, Q51,
mR5 1

2, andm r52 of the fictitious system, the value of th
coefficient isl5A2, which departs from the numerical valu
by only 5%. Residual differences between the analyti
value and the fit value may be related to the quadratic
proximation~3! of the potential energy around the Wanni
ridge, while the classical trajectory calculations were p
formed without this approximation. Quantum mechanica
(\51), condition~28! corresponds to the high-energy limi
This also explains the observation of Ref.@4# that the classi-
cal limit of the ionization probability has the same behav
as the far-from-threshold probability for ionization by hea
ions @13#.

The classical @3# and quantum-mechanical derivatio
@5,8# of the threshold law~1! for the generic Wannier cas
lead to identical results. This is in contrast to the exceptio
caseQ/q54 discussed here. In the generic Wannier ca
Eq. ~14! is valid because of the dominance of the sca
independent attractive Coulomb potential in the final ch
nel. Since the potential«(R) is proportional to\, the depen-
dence on\ drops out, and the quantum-mechanical a
classical results coincide to lowest order in\.

V. SUMMARY

We have derived the threshold law for three-parti
breakup near threshold in the case when the Wannier e
nent is infinite. The threshold law changes from a power l
to an exponential behavior as a function of the the exc
energy. An experimental realization of this behavior sho
be feasible, although the strong suppression of the cross
tion near threshold will probably make it difficult to confirm
the analytically derived threshold coefficientk.

The Wannier picture of propagation on the ridge of t
three-particle potential remains valid. The classical thresh
law, however, differs from its quantum-mechanical count
part. This fact requires a refinement of the statement
Wannier theory is essentially a classical theory. The deri
analytic form of the classical threshold law explains the
havior of previous numerical classical trajectory calculatio
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APPENDIX

The survival probability~12! is calculated with the mo-
mentum~7!, C050, and the coupling potential given by E
~10!. We change the integration variable tox5R3/2. The sur-
vival probability takes the form

P~E!5expF2
2

\
J~2mRE,22mR\C1!G , ~A1!
l

l
p-

-

r

al
e,
-
-

d

o-

ss
d
ec-

ld
-
at
d
-
.

-
U

-

with the integral

J~a,b!5 2
3 ImE

x0

`

x21/3Aa1b/xdx. ~A2!

Partial integration gives

J~a,b![J11J25Im@x2/3Aa1b/x#x0
`

1Im
b

2Ex0
` dx

x4/3Aa1b/x
. ~A3!

For a real and positive, which corresponds toE.0, the up-
per limit of the first termJ1 vanishes. The contribution o
the lower limit is calculated in the limita!ubu/x, which
corresponds to Eq.~17!. It gives

J1~a,b!52R0
1/4ImAb2

a

2
R0
7/4Im

1

Ab
1o~R0

13/4!, ~A4!

with

ImAb5A2mR\uC1u1/2 sin@
1
2 arg~b!# ,

arg~b!5p2tan21
1

A2
. ~A5!

The term exp@22/\J1# contributes to the correction term i
Eq. ~21!. So does exp@22/\J2#. The later also determine
the threshold behavior of the survival probability. The int
gral is available in closed form:

J2~a,b!5ImS 3b

2x0
1/3Aa 2F1@

1
3 ,

1
2 ;

4
3 ;2b/~ax0!# D .

~A6!

Expansion forax0 /ubu!1 gives

J2~a,b!5
a21/6

2Ap
G~ 1

3 !G~ 1
6 !Im@b2/3#23R0

1/4ImAb

1
3a

14
R0
7/4Im

1

Ab
1o~R0

13/4!. ~A7!

When the expansions~A4! and ~A7! for J1 andJ2 are in-
serted into~A1! expressions~18!, ~19!, and ~21! for the
threshold behavior of the breakup cross section and
threshold coefficientk result.
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