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ABSTRACT

This thesis falls into two parts. In Part A, Tomita-Takesaki theory 

is extended to the unbounded CCR-algebra A in infinitely many degrees 

of freedom. A particular Hamiltonian with polynomially bounded spectrum 

defines the Gibbs state to on A. it is shown that A admits a modularp
operator and that tô  is a KMS-state with respect to the modular automorph

ism. In the GNS-representation induced by to , the commutant tt (A) ' isp  P
shown to satisfy the conclusion of Tomita's theorem. This is done by 

constructing another representation of A - on the Hilbert-Schmidt 
operators - for which Tomita's result is known.

In Part B, perturbations of dynamical systems are considered. For 

a C*-dynamical system (A,a) with generator 6 and A c B ( H ) ,  6 is perturbed 

by a derivation A on A and it is shown that 6 + A generates an automorph

ism group of A if A is inner, and an automorphism group of A" if A is 
polynomially relatively bounded. Finally, a result by Buchholz and 

Roberts on bounded perturbations is generalised. For two W*-dynamical 

systems (M,a), (M,3) with generators 6^ and 6^ , respectively, it is 

shown that, under a local commutativity condition on a and g, the 

norm-proximity of a and g on P(6^)AP(6^) is described in terms of the 

operator on P(ô^)Af(ô^), where F is a linear operator mapping

P (6^) into P(ôg).
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Zur Erinnerung an meinen Vater, 

der das Ende dieser Arbeit 

gerne miterlebt hMtte.



INTRODUCTION

This thesis deals with some aspects of operator algebra, a field 

which is growing very rapidly at present.

The thesis is organised in the following way. In Chapter 1 we 

follow standard textbooks to establish notation and review basic results 

Theorems, propositions etc. taken from other authors are clearly marked 

by a specific reference to the source; all other theorems, propositions 

etc. are due to the author. The references are listed at the end of 

the thesis. The thesis is then divided into two parts which deal with 

different aspects of operator algebras.

In Part A (consisting of Chapters 2 and 3) we consider the CCR-alg

ebra - an algebra which consists of unbounded operators - and show that 

Tomita's theorem can be generalised to such an algebra in infinitely- 

many degrees of freedom. This work is a generalisation of results 

obtained by Gudder and Hudson [g &h] . The results described in Part A 

are published (see [k &k ] ) and represent joint work with my fellow 

student Aristides Katavalos; they formed a major part of his Ph.D. 

thesis, which was accepted by the University of London in 1977.

In Part B we are concerned with C*- and W*-dynamical systems and 

consider questions of stability of such systems when the dynamics are 

perturbed by derivations and Hamiltonians. The results presented in 

this Part I obtained by myself in 1977-78 and 1983-85. i arrived at 

the proofs presented in section 4.2 independently of Buchhriiz 

Roberts [b u r ] in 1977-78 while I was a student at Bedford College. 

Although their approach to the problem was somewhat different from 

mine, the results and methods of proof are so similar - both using



cocycles - that I could not publish my results. I was interested in 

showing when a perturbed derivation is the generator, of an automorph

ism group of a given C*-algebra, while Buchholz and Roberts character

ised the closeness in norm of two automorphism groups of a W*-algebra. 

Their paper is reviewed briefly in section 4.4. In section 4.3 we 

present an alternative way - using the Trotter product formula - of 

dealing with the problems raised above, and we show that this method 

can be applied to polynomially relatively bounded as well as bounded 

perturbations of generators. The last section of Part B is a general

isation of the results of Buchholz and Roberts which I proved in 1983-5.

Finally, I would like to express my thanks to my supervisor Ray 

Streater for suggesting this research and for his help and guidance.

I also want to thank Aristides Katavalos, Françoise Debacker-Mathot 

and Larry Landau for many useful discussions; and I want to thank the 

British Council, who supported me as a fellow during 1975-78. 

Furthermore, I would like to thank the Department of Mathematics of the 

Australian National University, and in particular Gert Pedersen and 

Derek Robinson, for their generous hospitality in 1983. In addition I 

want to thank Bob Anderssen and Terry Speed of CSIRO, Division of Math

ematics and Statistics, for their encouragement and support.

Lastly, I want to thank my parents and Alun for their understanding 

and help throughout this thesis.



Chapter 1

PRELIMINARIES AND BASIC RESULTS



1.1 OPERATORS ON A HILBERT SPACE

Let H denote a complex Hilbert space with inner product 

which is linear in the first component. A tïnear operator X on H 

is a linear map from a subspace P(x) in H, called its domain, into H.
In general we shall be concerned with those linear operators whose 

domain is dense in H . Let B(H) denote the set of bounded linear opera

tors whose domain equals H. Then X e B{H} if and only if X is continuous 

For a densely defined linear operator X on H, its adjoint X* is a linear 

operator on H with domain
V{x*) = { n E H : C *— > is continuous on P(x) }

and such that <X^,n> = <%,X*n> for  ̂z V [x] , j] e V [x* ] .

The graph G{x) of a linear operator X on H is the subspace in 
H X H of all ordered pairs (Ç,XÇ) , for  ̂z V{x). A linear operator X

on H is closed if its graph is a closed subspace in f/xH. This is equi

valent to the following: if is a sequence in V{x] which converges in 

H , and i f (x^J also converges in H, then

lig 5^ E V M  and x ( l m  = 1 ^  XÇ^. (1.1)

By the closed graph theorem, X e B{H] if and only if V{x) = H and X is 
closed.

Let X, y be two linear operators on H with domains P(x) and Viy] 

respectively. We say, ^ is an extension of x, denoted by x iS. (/ if V{x)

e  V{y] and if t/Ç = XÇ for Ç z V{x) . Furthermore, X is called closable

if it can be extended to a closed operator, which is then denoted by x. 
One can add and multiply linear operators, but care has to be taken with 

the domains involved:

1. X + y is the operator defined on V{x] n V{y].

2. xy is the operator with domain V{xy) = { ^zV{y): y^ z V{x]}.



3. X*y* ̂  iyx)* and equality holds if y  ̂ B(Hl.

In the sequel we shall encounter the following linear operators on H.

We say X is symmetric if X<5 X*, and X is selfadjoint if X = X*. Fur

thermore, a symmetric operator X is essentially self adjoint if X is self-

adjoint. If X e B(H), then the three concept coincide. A selfadjoint 

operator X is positive if there exists a selfadjoint operator y on H

such that X = y^. An operator u is isometric if ||txÇ|| = ||ç|| for C sV(u],

and u is unitary if u e B(H) and ll*u = llu* = 7. Finally, a bounded
2operator p is called a projection if p = p.

Amongst the bounded operators we shall also meet two particular sub

classes of operators. If X e B(H) is positive, the trace of X is

tr(x) = I <XÇ.,Î.> (1.2)
1)1

where {Ç.} are an orthonormal basis for H. If xeB(H) is not positive,
Vzthe element |x| = |xx*| is positive and the trace can be defined for 

|x|. The set of trace class operators, T(H), consists of those x e B(H) 

for which tr(|x|) < «> ; and X e B(H) belongs to HS(H), the set of Hilbert- 

Schmidt operators, if tr(X*X) < “ . Some of the important properties of 

the trace are: the trace is independent of the basis; tr(X*X) = tr(XX*)

and tr also defines an inner product on the space HS[H) by

<X,i/>Hs = tr{y*X) (1.3)

which makes HS(H) into a Hilbert space. Furthermore, the following rela

tionship holds for trace class and Hilbert-Schmidt operators.

THEOREM 1.1 ([GSV] Ch. 1.2.2 thm.3)
1, X  ̂HSlHj if and only if X  < «> where the X are the eigen-

n^l ” ”
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values of x.

2, X. ( TiH) if and only if 1  \  where the are the eigen-

values of x.
3, X Ç HS(H) if and only if xÇ =  ^  X >n (1-4)

where and {ri^} are orthonormal sets in Hj and X^€ ( JR^),

4, For every x,# ( KS(H), the product xy is trace class^ and every 
X € T(H) can be written as the product of two y,z € HS(H).

5, T(H) is a two-sided ideal in B(H).
6, TlHj Ç HS(H) Ç  B(H).

Now we return to unbounded selfadjoint linear operators which possess 

some important properties. Let X be a linear operator on H, and denote 

by sp(x) its spectrum, that is, the set of ..A e Œ for which (X - A%) 

is not invertible. Note, if X is selfadjoint, then sp(X) ^  OR.

Let 777 denote a o-algebra in 3R, then we call a map E: 77? — 9- B[H) a

projection-valued measure if

' 1. E(0) = 0 and E( ]R) = 7

2. For CÙ € ^  , E(co) is a selfadjoint projection

3. For cü̂  € M, E(w^ H = E(cü̂ )E(cù2 )

4. If n ^ 2  = 0, (0^, ^ 2  € #2 , then E(cô  V cô ) = E(w^) + Efw^)

5. For C, D € H, the function E^ defined by^ j n
Er _(w) = <E(w)C,n>S sM

(for w ( ^  ) is a complex measure on TR .

Using these measures, we get the famous spectral theorem whose 

origin goes back as far as Hilbert for bounded operators.
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THEOREM 1.2 ([Rud] thm. 13.30)

For each selfadjoint operator x on H there exists a unique projection 

valued measure E such that

<%C,n> = / t dEr Jt) (1.5)
]R

for ^ f H, % ( P(x) . E is concentrated on sp(x). Furthermore^ if f 

is a real-valued E-measurable function then

f M  = ! f(t)dE(t) . (1.6)
]R

If the operator x is also bounded, then its spectrum lies in the
interval [-HxlLIU II 1 •

We conclude this section with another relationship between selfadjoint 

and unitary operators. Let : t e n) denote a family of unitary ope

rators on H. We call a = a strongly continuous one-parameter group

of unitaries or a unitary representation of JR into the unitary group 
UlHj of B(H) if 

1. u = 1o
2. u . = a a and a* = a . (s, t E]R)t+s t s t -t
3. the map tx: 3R. ̂  Ü (H),, t ̂  is continuous in the strong topology 

of B(H) . (See section 1.2 for the definition of the strong topology.)

The group u is norm continuous or uniformly continuous if tequirements 1
and 2 above hold and 3 is replaced by

3: the map t*"̂  is continuous in the topology of BiHj which is in

duced by the sup norm.

THEOREM 1.3 (stone), ([Rud] thm. 13.37; [b&ri] props.3.1.1, 3.1.6)

Let be a strongly continuous one-parameter group of unitaries on H .
Then there exists a unique selfadjoint operator x on H such that
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u.̂  = for t z ]R3 (1.7)
and V{x) is dense in H .

Furthermore3 if is norm continuous3 then the selfadjoint operator x 

corresponding to u via (1.7) is hounded and defined everywhere on H.

The selfadjoint operator X is often called the generator of the 

unitary group a.
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1.2 *-ALGEBRAS, FUNCTIONALS AND REPRESENTATIONS

Since we shall be concerned with algebras of bounded as well as un

bounded operators, we begin with Power's [powj definition of a *-algebra.

A ^-algebra A is an algebra over the complex field with a map 

X I— y X* ( A , called the involution^ such that
1. (x*)* = X

2. (ax + £/)* = ax* + y* for X,y € A, a € Œ
3. (x^)* = y*x*

In part A of this thesis, we shall be interested in a special class 

of *-algebras, the algebra of the canonical commutation relations (CCR) 

which is described here for a finite number, n, of degrees of freedom.

Let H = L^ OR^); on this Hilbert space, we consider two actions.

1. The position operators are defined by (q^f)x = x^f(x) for 

f € L^( m") such that x^f ( L^( ]R̂ ) , where x = (x^,...,x^).

2. The momentum operators p^ are defined by (puf)x = - i ^  f(x) for

f ( L^( ]R̂ ) such that the partial derivatives are in L^( 3R̂ ) (i = l,.,n)

The CCR-algebra A in n degrees of freedom is the free non-commutative 
algebra of all polynomials in p^ and (i=l,...,n) subject to the re

lations :

° bi'Pj] = • (2.1)

The set of bounded operators on H , B(H), can be equipped with a 

*-algebra structure as well as topologies different from the norm or 

uniform topology referred to in the last section. For Ç e H, Xw- ||x̂ || 
is a seminorm on B(H). The strong topology is the locally convex topo
logy on B(H) defined by these seminorms. For Ç, t] e H, |<XÇ,n>|

is a seminorm on B(H). The Weak topology is the locally convex topology
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which is defined by these seminorms. For sequences , (n^) in H

which satisfy  ̂|| and  ̂|| n̂ ||̂  < “ r I |<X%^ r |

defines a seminorm on B(H) . The o-weak or ultvaweak topology on B(H) 
is the locally convex topology which is defined by these seminorms.

On the unit ball of B(H) these three topologies coincide*, in general, 

however, they are not equivalent, and they are all weaker than the uni

form topology on B(H). The weak topology is weaker than the strong and 

a-weak topology, but the latter two are not usually comparable. There 

exists a number of other locally convex topologies on B(H), but we shall 

not be concerned with them here.

Let M be a subset of B(H) . The oorrmutant W' of W is defined by 

{ X € B(H) :  ̂ W xy = yx } . The double commutant is ana

logously defined as the commutant of N' , and W C N".

A von Neumann algebra or -algebra on H is a *-subalgebra M in 

B(H) such that M = M".

THEOREM 2.1 (Bicommutant theorem) ( [Ped] thm. 2.2.2)

For a *-subalgebra M in B(H) the following are equivalent:
1. M = M"

2. M is u-weakly closed

2. M is weakly closed
4. M is strongly closed.

without reference to an underlying Hilbert space, one can define a 

*-algebra. A -algebra A is a Banach space which is also a 

*-algebra such that multiplication and involution of A are compatible 
with the Banach space norm of A , that is, \\xy\\ ̂  ||x|| \\y || and ||x*x|| =
INI IKII = INiP for X, y E A.
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Amongst the large class of linear functionals 4) : A CC, an interesting 

subclass consists of the 'states' which represent the states of a system 

or the dynamics in quantum mechanics. Let A be a *-algebra with unit 7 .
A linear functional  ̂ is a state on A if (j) is positive (i.e. (p(X*X)  ̂0) 

and (j)(7) = 1. A state cj) on A is faithful if *(X) =|= ^ for every non-zero 

% E A, and a state c|) is pure if it cannot be written as a convex combina

tion of other states.

Other physically relevant states such as the ground state or the 

equilibrium states of a system are usually density matrices, that is, 

"statistical mixtures" of pure states. For a von Neumann algebra M, 

these states can be characterised explicitly; put

n^l n^l n>l

M# is the space of all o-weakly continuous linear functionals on M.
Let denote the set of positive elements in M . A state (j) on M is 

normal if for each increasing net (%^) in with upper bound X̂  4>(X̂ ) 

converges to 4>(x).

By [b&RI] prop. 2.4.18, M* is a closed subspace of M*, the Banach

space dual of M, and M is isomorphic to the Banach space dual of .

For this reason,M* is called the predual of M and it can be characteri
sed in the following way.

THEOREM 2.2 ( [b&ri] thm. 2.4.21)

Let  ̂he a state on the von Neumann algebra M The following

are equivalent:

1, is normal

2. (p is o-weakly continuous

2. there exists a positive trace class operator y e T(Hj.with trfyj =  1
such that (pCxJ =  tr(yx) for every x e M.
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With every *-algebra A and every state ({) on it, one can associate 

a representation of A on some Hilbert space (see thm. 2.3 below), but 

representations (that i^ particular realisations of A) can also be de

fined abstractly without reference to a state on A.

A f^-repvesentation (n,K,P^) of a *-algebra A with unit is a *-algebra 

homomorphism tt of A into linear operators on H which are defined on a 

common domain V that is dense in H such thatTT
1. TT (7 ) = 7 ,

2. <TT(X)Ç,n> = <Ç, TT(X*)n> for Ç, , x e A
3. tt(X)P ^  V for every X e A.TT TT

If A is a C*-algebra or a von Neumann algebra, = K ( so. abridge (tf,H,P^)

to (tt, H ) ) , and tt(A) is a *-subalgebra of B(H) for which n(X)* = n (X*) .

Note that 2. above implies that TT (X) * tt(X*). Since we are only intere

sted in those representations which preserve the involution as in 2., 

it suffices to refer to the ^-representations used here simply as repré

sentations .

Because of the added complications involved in the domain of general 

*-algebras, we concentrate on C*-algebras and von Neumann algebras 

first. Unless specified differently, A will denote a C*- or a W*-algebra.

A representation (tt,U) of A is cyclic if there is a Ç e H  such that

tt(A) Ç is dense in H. The vector Ç is called cyclic and the

cyclic representation will be denoted by (tt,H, Ç).

THEOREM 2.3 (Gelfand-Naimark-Segal) ( [b &RiJ thm. 2.3.16)

Let A he a C^-algehra witn Lor a - algebra. For every positive 

linear functional  ̂on A there exists a cyclic representation ( tt̂  

of A such that

#(x) = <n^(x)C^ , for X E A
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The oyotio representation corresponding to 4̂ is unique up to unitary 

equivalence3 that is3 if are two cyclic representa

tions of A such that

= 4>fx) = <n^(x)t^3l2> ^

then there exists a unitary a : ^ 2  ^2 such that U-Cj =

an^rxj = T[^(xju for x € A .

Such a cyclic representation is called the GNS-representation of A 
associated with 4̂ . A vector Ç e H is separating for. tt (A) ̂  B (H), if t t ( X ) ^  f 0 
for t t ( X ) =j=0. If 4> is a faithful state, then A is isomorphic to tt(A), and
the cyclic vector associated with the GNS-representation is separating

for TT ( A) .

THEOREM 2.4 ([BSRl] prop. 2.5.3)

Let M t B(H) be a von Neumann algebra^ A vector Ç e H is cyclic 
for M if and only if ^ is separating for the commutant Ml

The pure states played a special role amongst the linear functionals 

and they will also give rise to a special class of representations.

THEOREM 2..5 ([B&Rl] thm. 2.3.19)
At

Let A be a. C-~algebra. ^ is a pure state on A if and only if the GNS- 
representation induced by <p is irreducible 3 that is y the commu
tant n^fAj' consists of multiples of the identity only.

We now return to representations of *-algebras. If (tt,H ) is a 

representation of a *-algebra A , the bounded commutant tt(A) ' of tt(A)

is the set of all y e B(H) such that

<yn{x)i, T]> = <y^ ,n(x*)n> (2.2)

for X] £ V and X e A .
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As in the case of unbounded operators where the concept of a closed 

operator was introduced in order to compensate partially for the lack 

in continuity, for *-algebras the concept of a closed representation is 

required for a GNS-type theorem. Let (TT,H,f^) be a representation of 

A . There is a natural induced topology on which is defined as follows. 

Let S be a finite set of elements in A, and define a seminorm II *11 g on

lldls = (2-3)
where the sum is taken over the elements x e  s. xThe SN -topology or 

the induced topology on is the topology which is induced by these 

seminorms. Note that ïï(X) becomes a continuous operator from into 

in tlie SN-topology for every X e  A. Furthermore, a representation ( tt 

of A is closed if is complete in the SN-topology, and a vector  ̂ e 

is strongly cyclic for tt(A) if tt (A) Ç is dense in in the SN-topology.

A representation (it, H,^) of A is then called strongly cyclic if there is 
a vector  ̂ e which is strongly cyclic for tt (A) .

The concepts of faithful and pure states are the same for *-algebras 

as for C*- and W*-algebras, since they do not depend on topologies. The 

GNS-theorem can now be stated for *-algebras in the following way.

THEOREM 2.6 ([pow] thm. 6.3)

For each state  ̂of a ^-algebra A with unit there is a closed strongly 
cyclic representation (iTyHyV̂ J of A with strongly cyclic vector C E 
such that *fxj =  <n(xJ5, Ç> for x e A. This representation is deter

mined by (j) up to unitary equivalencey and it is irreducible if and only 
if  ̂is a pure state.
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1.3 DERIVATIONS, AUTOMORPHISM GROUPS AND THEIR GENERATORS

Unless otherwise specified, A will denote a C*-algebra or a von 

Neumann algebra in this section.

A ^-derivation (or for short a derivation) 6 is a linear operator 

from a *-subalgebra P(ô) -in^A its.rdomain, into A which satisfies

1. 6(X*) = 6(X)*
for X,t/ i Vid)

2. 6 (x#)  = d(x)y + x6(y) (3 . 1)

3. 6(7) = 0 if 7 eP(6).

In general we shall assume that 7 e V {6). In the case of a C*-algebra 

with unit, this follows by [b&RI| p. 238.

Derivations are linear operators, and usually we shall assume that 

they are densely defined, that is, if 6 is a derivation on a C*-algebra

A then V{6) is norm-dense in A , and if 6 is a derivation on a von Neu

mann algebra, we shall assume that V{6) is a-weakly-dense in A. Corres

ponding to the bounded operators on a Hilbert space, we say a derivation

6 is bounded if V{6) = A and 6 is a bounded linear operator on A or 

equivalently if 6 is continuous and defined everywhere on A .

Since derivations are linear operators, the notions of graph, closedness 

and closability apply to derivations in an analogous way, where H is re

placed by A in the definition, and the a-weak topology is used everywhere 

instead of the norm- topology if one is dealing with derivations on von 

Neumann algebras.

A derivation 6 on A ^  B(H) is called spatial if there exists a sym
metric operator H on H with domain V(H] such that

1. for X z V[6], xV{H) ̂  V[H)
(3.2)

2. Six) = i[H,xJ for X e V{&) on P(H) .

If H and 6 satisfy the above relationship, we say H implements 6.
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If a derivation is bounded, then it is always spatial (see {"b &Ri] cor. 

3.2.47), while there exist unbounded derivations which are not spatial.

One criterion for a derivation to be spatial is the existence of a 6- 

invaviant state (|) , that is, ^(ô(X)) = 0  forXeP(ôl. via the GNS-repre

sentation (7t,H,Ç) induced by (|) this implies (by [b&Ri] prop. 3.2.28) that 

there exists a symmetric operator H on H which satisfies

1. 7r(ô(X)) = i[H,TT(x)] on V{H) for X e V(6) .
(3.3)

2. = 0.
As we shall see in thm. 3.2 below, derivations also play an important 

role as generators of automorphism groups, to which we turn now.

Let aut(A) denote the set of *-automorphisms of A- A map aut(A)'

t a^, is called a one-parameter group of *-automorphisms of A if
1. a = a a for t, s e 3Rt+s t s (3.4)
2. = id the identity automorphism.

For brevity, a one-parameter group of *-automorphisms of A will often be 
referred to as an automorphism group of A and the pair (A/Cx) is called a 

dynamical system.

Often one will require that ot satisfies some continuity assumptions.

We shall be concerned with the following concepts. The automorphism group 

a on A is norm continuous if the map t*^'a^(x) is continuous in the norm 

topology of A for every x E A. The pair (A,a) is called a C^-dynamical 

system if A is a C*-algebra and a is pointwise norm continuous, that is, 

for every x E A, the map o(x):]R + A , tf+ a^(%), is continuous in the 

norm topology. Lastly, a pair (A,a) is a -dynamical system if A is a 
von Neumann algebra and a is a-weakly continuous, that is, for x E A, the 

map a(x) : ]R A is a-weakly continuous.

A covariant representation of a C*-(respectively W*-) dynamical sys

tem (A,a) is a triple (it,H,u.) where (ir,H) is a representation of A and a
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is a strongly continuous (respectively a-weakly continuous)unitary repre

sentation of 3R into ULBlsuch that

ïï(a^(x)) T= u^7T(x)a* for x e A. (3.5)

Covariant representations are related to GNS-representations via invari

ant states. We call a state  ̂on (A,a) o.-iyv)CLT%ant if ^(a^Xx)l = #(x) 

for t e ]R and x z k.

THEOREM 3.1 (.[b&ri] p. 235)

Let (ksal denote a C^-dynami'odl system . Let (TtjH) be the GNS-represen

tation of A induced by an a-invariant state Then there exists a 

strongly continuous unitary representation u such that

1. -nC aJx l)  =  u.-nCxJul

2. - 5
for X z A j ^ ^  Ç cyclic vector which arises in the GNS-representa- r
tion induced by (j> .

For a dynamical system (A,a)r the automorphism group a is called 

implemented if there exists a group of unitaries which satisfies* (3.5), 
and cx is called inner if the group belongs to A. Not every automor

phism is implemented (see [b&R!̂  p.306) . However, if A = B[H) or if A

is simple and contains a unit, then a is implemented^by [Sak] thm. 4.1.19 .

Let (Ara)- be a C*- (respectively W*-) dynamical system. The (infini

tesimal), generator & of a is the linear operator on A whose domain P(A) 

consists of all X e A for which the limit

A(X) = lim ^  (.cx (X) - X). (3.7)
t-KD

exists in the pointwise norm topology (respectively in the a-weak topology)

If (X is norm continuous, then its generator is defined analogously. 
tAWe write = e if A is the generator of a. From the properties of 

automorphism groups it follows that A satisfies all the properties of a
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derivation.

THEOREM 3.2 ([b&RiJ cor. 3.2.49, thm. 3.2.50)

Let k he a -a lgebra3 and a an automorphism group with generator 6 .
The following holds.

1. a, is norm continuous if and only if 6 is a bounded derivation 
(with domain V[^l - k).

2. a is pointwise norm continuous if and only if 6 is a norm-densely 
defined norm-closed derivation.

S. .(k̂ al it a W*-dynamical system if and only if  ̂is a o-weakly- 

closed à-wedkly-denselySdefined derivation. ( )

Since we are concerned with ^-derivations only and not with the more 

general concept of a derivation, we shall give the next theorem in a 

form adjusted to our situation.

in analogy to Stone's theorem (.thm. 1.3)^ which related selfadjoint opera

tors and unitary groups, one has:

THEOREM 3.3 ([B&Rl] thm. 3.2.50)

Let k be a C*-algebra. A norm-densely defined^ norm-closed ^-derivation 

6 generates a group of *-automorphisms a of k if and only if

1. The 'set of analytic elements of 6 is norm-dense in A .
2. I I A 6 W  f x|| > llxll for A fJR , x iV(b).

Note if we replace "norm-dense" by "o-weakly-dense" each time it 

occurs and "norm-closed" by "o-weakly.closed" then the above theorem 

holds for von Neumann algebras, and 6 is the generator of a o-weakly 

continuous group of ^-automorphisms.
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1 .4 TOMITA-TAKESAKI-rTHEORY

Let CAloi) denote a C*- or a W*-dynam±cal system. A state # on A sa
tisfies the Fubo-Mavtin-Sohwinger condition wrt a (or is a KMS-state wrt 
a ) at  ̂> 0 if for x, tf e A there exists a function F which is con-

JLf y

tinuous and uniformly Bounded in the strip -C z e Œ : 0 ^ imz ^ 3 }- and

analytic inside the strip and satisfies the boundary conditions

Fv Jt): = 4)Ca. F^ ,/t+ig) = 4>(^a^CX)) (4.1)
JL, y r X , y u

Statements equivalent to this can be found in [b &RIi] section 5.3.1.

The limiting case for g = «» (which is interpreted as the zero temperature 

case) is usually referred to as the ground state of a system.

KMS-states are considered to be good candidates for the physically 

important equilibrium states. The latter are represented by the Gibbs 

states in quantum statistical mechanics. .Starting with a finite system A 

and a specific Hamiltonian on the system, one defines the Gibbs equi

librium state.w_ by 3/A

Wn, (x) = tr((e P^A)x)/tr(e (4.2)P A
where x is an observable, p can be taken to be the .inverse temperature

or the chemical potential. And one is then interested in taking the

thermodynamic limit as A . For this definition of a Gibbs state

to make sense - the equilibrium state is required to be a density matrix

- the Hamiltonian has to be a selfadjoint operator such that

e” ^^A e TLHl Furthermore, putting . e ^^^A , we see that

Wg'A(^t(*)^  ̂ " Wg'A(# *t+ig(*)) (for x,y e A) (4.3)

since tr(xy) = tr{yx). For more general states, this behaviour is 

no longer observed in general. However, it can be shown that the KMS- 
states satisfy some of the characteristics associated with equilibrium

states.
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THEOREM 4 .1 ([B&R2] ĵ rop. 5.3.3 and cor. 5.3.9)

1. If ip is a KMS-state on (AjOJ, then cp is a-invariant.

2. Let (p be a KMS-state on (A, oJ with GNS-representation the?2

4 is separating for tt (A) ".

Tomita-Takesaki theory has become part of the repertoire of every 

standard textbook on operator algebras, and we thus restrict our atten

tion here to the main theorem. The proofs have been much simplified. 

over the years, and a particularly nice account is given in [Ped] in 

which a bounded operator approach due to Rieffel and van Daele [R5D] 

is presented.

Let M e  B(H) be a von Neumann algebra with cyclic and separating 

vector ^ ( H . By thm. 2.4, ^ is also cyclic and separating for M ' , 
thus MÇ and M'^ are both dense in H. We now define two antili- 

near operators with #(5^) = M^ , with domain PfF^) = M'^ :

(x ( M) F^x'^ = x'*% (x'f M' ) (4.4)
Then S = = F* and F = F^ = S* , where S (respectively F) is the

closure of (respectively F^). Let S = denote the polar de

composition of S where J is the antiunitary part and A = S*S the 

positive selfadjoint part. A is called the modular operator  ̂ and J is 

called the modular conjugation associated with (M,C). The following 

relations hold:

1. A = FS a"' = SF

2. S - JA'/̂  F = JA”‘̂  ̂ (4.5)

3. J = J’ 1 = 1  JÇ = Ç

A"'* =

1$ Ç cQiçresponda to a tracial state ^ on A yia, the GNS-tepresentation 

- <p could be the equilihriuitT state of (4.21- then S = p, A =  ̂ and 0 =  S.
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Furthermore, it then follows that JMO = M ’. For general faithful normal 

states the unbounded modular operator A in some sense makes up for the 

trace property:

THEOREM 4.2 ([BSRl] thm. 2.5.14)

Let M he a vo?i Neumann algebra with cyelic and separating vector ^ .

Let A and J denote the modular operator and the modular conjugation 

respectively which are associated with Then

1. JMJ = M ’
it -it (4 . 5 )

2. A MA = M for t iJR

Takesaki made the connection between Tomita’s theorem and the KMS-

states, which demonstrates the close link between tracial states and

KMS-states, by making use of the information contained in the modular
it — itgroup. Let = A .A in the notation of thm. 4.2. Then a is a 

one-parameter group of ^-automorphisms, called the modular autanorphism 

group (associated with (M,Ç)). Starting with a faithful state ç ( ,

we get the following extension of Tomita’s result:

THEOREM 4.3 ( (.[pedj thm. 8.14.51

Let M he a von Neumann algebra with a faithful normal state . Then there 
exists a unique W^^-dynamical system such that ij) satisfies the
KMS condition for 3 ^  -d with respect to o.
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PART A

TOMITA-TAKESAKI THEORY FOR THE CCR-ALGEBRA

Chapter 2

A KMS-STATE ON THE CLOSABLE HILBERT ALGEBRA OF THE COR
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2.1 INTRODUCTION

In this chapter, the CCR-algebra A in infinitely many degrees of 

freedom and a "Gibbs" state on it are introduced, and in the following 

chapter, the algebra tt̂  (A ) is shown to satisfy Tomita's theorem.

The research presented in this and the following chapter shows how 

Tomita-Takesaki-theory can be extended to a class of unbounded algebras. 

Although Tomita-Takesaki-theory has undergone refinements and the proofs 

have been simplified (see section 1.4), in our approach we follow the 

original proof of Tomita; we define analogues of the left Hilbert algebra 

and the modular Hilbert algebra, and then show the commutation theorem 

of the algebra via that of our "modular” algebra.

A triple (A,*, <, >) consisting of a *-algebra A together with an 

inner product which makes A into a pre-Hilbert space (whose completion 

is denoted by H ) is a Hilbert algebra if
1.

for X, y , z e A
2. < X L j , z >  - <y,x*z>

3. For X ( A , the map y 1— + xy is continuous

4 . A^ is dense in A (with respect to the topology induced by

'the inner product).

For Hilbert algebras, Dixmier showed (see [ DixJ Ch.1.6) that

1(A)' = J L(A) J = R(A) (1.1)

where L(A) consists of elements f £ B(H) such that f extends the conti-
X. %

nuous map g xy , for x, y e A ; and R(A] is defined analogously using 
multiplication operators on the right. The operator J is an extension 
of the involution * on A to an antiunitary involution on H . An impor

tant example of Hilbert algebras which we consider in the next chapter
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is the algebra of Hilbert Schmidt operators.

A triple (A,*, <, >) is a left Hilbert algebra if it satisfies 

conditions 2 to 4 of Hilbert algebras and 1 is replaced

la. the map S : X h- X* is closable in H. Furthermore, the triple

(A,*, < , >) is a modular Hilbert algebra if there exists a complex one- 

parameter group A of homomorphisms of A such that conditions 2 to 4 

of Hilbert algebras hold together with

5. (A^x)* = A_-X*

6. <b^x,y> = < x , A f o r  X, y, z e A

7 . <ls^x*,y*> - < y , x >  z e d

8. z I <A^x,i/> is entire

9. for t ( ]R = {(7 t A^)x : X € A} is dense in A .

Tomita proved (1.1) for modular Hilbert algebras, where the existence

of the'modular" automorphism is used instead of condition 1. He then

showed the following:

THEOREM. For every left Hilbert algebra (A,*,<.,.>) there eocists 

a dense subalgebra X  which is a modular Hilbe-rt algebra such that 

1(A) = l(K) .

If M is a von Neumann algebra with cyclic and separating vector C 
as in section 1.4, then A = MÇ is a left Hilbert algebra where multipli

cation and involution of A are induced by the corresponding operations 
on M (i.e. if a , b = e A, then ab = a^b^^ and a* = ).

We shall pursue the same direction, with the main difference that we 

shall deal with an unbounded algebra.
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2.2 THE CCR-ALGEBRA AND THE FOCK REPRESENTATION

To define the CCR-algebra for infinitely many degrees of freedom, we 

use the annihilation operator a and the creation operator of as genera

tors which are defined from the position and momentum operators:
a = i  (P - iq) = -  (P t  iq) ( 2 , i )

Let A denote the CCR-algebra in infinitely‘-many dimensiorsjs i.e. A 
is the *-algebra with generators a(f) and a^(g) (f, g e 5(3R) ) and rela - 

tions

[a(f), a(g)] = [a#(f), a«(g)] = 0
(2.2)

[a^(g) , a(f)] = <g,f>7 

General elements of A are denoted by or by X^, X(f) if necessary.

We now turn to the Fock representation of A. For the CCR-algebra in 

n degrees of freedom, the appropriate Hilbert space is H = L^(nR^). Since 

we work with infinitely many degrees of freedom, an appropriate Hilbert 

space is the Fock space F(H) which is defined by

F(H) - © H" = © L̂ Or̂ )̂ • (2.3)
n > 0 n > 0

where = Œ , H = L^(3R), and denotes the tensor product

(n factors). Note that is isometrically isomorphic to L^(H^) ,

and elements in with Ç H can be represented' -

as functions f in L (]R ) . For more details on tensor product spaces 

see [R & S] p. 49 f f ^

An element ï e F(H) is a sequence of vectors Ï = > o

e H". The norm of F(H) is derived from the norms of the direct 

summands and uses the isomorphism between H" and (m ) . Let Ï = }

E F(H); then
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= Z   ̂ and
n > 0

 ̂ I l  = )| dt ...dt < ™  jij n '
'° If = k°l*.

Unfortunately, Fock space is not quite the right Hilbert space on 

which to represent A . Since A denotes the CCR-algebra which corres

ponds to the Bose-Einstein statistics, the appropriate choice of Hilbert 

space is the symmetrised or Bose Fock space, a subspace of F(H) which 

we now turn to. But we first define the synvnetrisation operator 

for the space . For (gi. . in we put

V ' " >  = «.(1)
n

where the sum is taken over all elements tt in the group of per

mutations on n elements. By linearity, 11̂  extends to a projection

operator on , that is, H has norm one and II  ̂ = II . The^ ' n n n
subspace is called the symmetrised part of and consists

of these elements in which are invariant under permutation of the

components .

Similarly, we can define a symmetrisation operator FI on F(H) . 

We do this in such a way that II restricted to agrees with

(see e.g. [B & R2] section 5.2.1). The symmetrised or Bose Foch space 

will here be denoted by and equals

H = F(H) = BF(H) (2.6)+ t
= ©  n h" = ®  h"
ni.0 ^ n — 0
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Elements in are sequences of vectors T = where E , and

the norm on is inherited from the norm of F(H) in the natural way. 

Using this Hilbert space , we show the following.

THEOREM 2.1 There exists a closed ’̂-representation J

of A such that for x e A j n^fxj is a continuous linear operator on 
with respect to the SN-topology.

For an analogue of this theorem in the case of the CCR-algebra in n 

degrees of freedom see [Pow] section V example 2, where it is shown that 

for the Schrttdinger representation tt of the algebra, = S {:r̂ ) and the 

SN-topology is equivalent to the Schwartz space topology on S(]R .

We shall proceed in a similar fashion and first concentrate on the space

V .TT

We first consider a space V. We define the Fock representation 

(tt̂ ,H_̂ ,P) and equip the domain V with the SN-topology. We show that

TT̂ (X) is continuous on V in the SN-topology and then extend n^(%) to
5^ SN .= V by continuity.

Let V denote the algebraic sum
V = ® with (2.7)

5° = Œ , = S(H) , and . (2.8)

The space is the symmetrised Schwartz space in n dimensions, and 

denotes the symmetrisation operator (see (2.5)).

LEMMA 2.2 V is dense in

Proof. First note that 11̂  is a projection operator on L^(nR^) 
which maps into itself. But is dense in L^(HR^) and therefore
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n s" is dense in n for every n e . In complete analogyn n
2to the L -case, one can form the direct sum of these symmetrised Schwartz 

spaces. In general, V is not a complete space, but P is dense in , 

since is dense in for n e and the topologies of and V are
derived from the direct summands respectively. ///•

We now define a *-representation Fl̂ ,V ) on elements e

For E Œ, S) ... 8 Tp̂ E S , and f E S(3R ) , put

7T^(a(f)'F°)= 0 7T^(/(f)T°)= f

7T^(a(f)T^)= Æ" , f> (ip̂ <5̂. ..0^^) (2.9)

no(a*(f)Y*)= Æ T T  (f ®  ® ___ ®  Ip ) ̂ n

To guarantee that andir^(<% ) map symmetrised spaces into symmetrised

spaces, put tt (a (f) ) =  tt {Ila.(f) II) and tt (a^(f)) = tt (Il(X̂ (f)II). From p.9 o s o o s o
in [b&R2] it now follows that tt (a (f) ) = tt (a(f) II) and tt (a^(f)) =o s  o o s
TT^dla (f ) ) . We are only interested in the symmetrised spaces and the

symmetrised operators, and by abuse of notation will write n^(Æ) and

TT (a ) instead of tt (a ) and tt (a ) respectively, o o s  o s

LEMMA 2.3 The operators i\̂ (a(f)) and -n̂ CoÊif)) are mutually ad

joint on J that is^ <-n̂ (aff (f)}pj (p> = <\p̂ J <p> for (|) E

Proof. To see this, consider in and

= (f)̂ 0, , ,<%) ^n+1 , Then for f in SÛR) we have •

<TT (0*(f))Y",$*+l> = <TT (no* (f) )%",$*+!>O S  O

= (n+1)^ <n(f 8 4^... G *̂ 1 ® **• ®

= (n+1)^ <f,(j)̂ XT|̂  ̂a ... G T|̂ ,̂ n (^2 G ... s>(p ^^^)> 

k= (n+1) a ... a <*^,f>n(^2 g ... a *^^^)>
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n — n-4-1<Y . 7T^(a(f)n)$^^-"> _ (2.10)

/ / / .

Starting with ( C , which corresponds physically to the vacuum 

or the zero-particle state, we can "create" particles in 

n = 1, 2,... by successively applying a as outlined in (2.9). Let

( SÛR) i = l,...,n, then

■J)" = (n!)"^ a*(f )a*(f , ).. (f, )f “ (2.11)n n-l 1
= f ^ f - '8». . .<S> f, n n-l 1

Thus e , and ..e . Elements obtained in this way

are total for -5’̂ if the f^ (i = l,.,,,n) are taken to be a basis in 

SÛR) (see e.g. section 2.1 in [Gui]), a fact which we shall make use 

of in later sections.

The elements can be regarded as natural embeddings from S^ into 
V; they are denoted by 0^ = $(*^). The n-th component of is 

and all other components are zero. With this notation,

the following holds (for a proof see [k m t ] thm 3.14)

LEMMA 2.4, Every (p in V has a unique representation as a finite 

orthogonal sum

4) = Z  = Z = z 4 ^( Vn--- cp.) (2.12)
i = 0 * i > 0 ' i > 0  ^

and Z  denotes that the sum is actually finite^ and = cp̂  ® . . cp̂
in S^ .
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Since we are aiming at a closed representation, we now consider a 

natural induced topology on V which is given by the family of seminorms:

I  = I  <(t, , ?(")> (2.13)

1 ^where (p> is as in (2 .J.2I, h = id on C, h = *9 Z  (p.^ + + D  (seeu n _ _ 1 1
/ \ / \ 1 “* J-

[r&s] p.142/, and <. ^ ^ > is the inner product in . From

section V in [Pow] it follows that this topology is locally convex and 

equivalent to the SN-topology introduced in section 1.2. For r = 0 , 

the seminorm is indeed a norm, namely the usual Hilbert space norm on 

; and for r > 0 , the seminorms are increasing.

LEMMA 2.5 For the representation of K 3 ir̂ fxJV V •

Proof. From the definitions and calculations (2.9) and (2 .1 0 ) it

follows that 7t̂  is a #-homomorphism. Hence for general elements x e Ar 
# #,(tt̂ (x )) )' It remains to be shown that the operators n^(%) map

V into itself. To see this, consider 77 (&%) and tt (aJ and then extendo f  o f
by linearity. Note that a total set in can be generated using (2.11),

But since f\,...,f e S(^), II (f-, G ... 8 f ) eS. r and hence a further I n  n i  n +
application of 7t̂ (o.̂ ) maps this element to ///.

In general, V is not closed in the SN-topology defined by the semi

norms (2.13). Let denote the completion of V in the SN-topology;

clearly, S  H . It remains to show that tt (x) can be defined on V" +  o  tt

and maps V continuously into itself with respect to the SN-topology.IT
We do this by first showing that for X e A, n^(x) is SN-continuous on P. 
Let L(V ) denote the space of linear operators from V into itselfIT TT
equipped with the topology given by the family of seminorms :

® z sup ||T(H| (2.14)
((> € B '
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where B is a bounded set in , ( Note that if is a Hilbert

space, this topology reduces to the norm topology of B(V^)

A similar topology can.be defined on the space L(P) where P^ is repla
ced by P everywhere in the definition. The next lemma completes the 

proof of theorem 2.1.

LEMMA 2.6 For x E A, is a continuous linear operator on P^j
and thus u (xj e L[V ) .

O  TT

Proof. ' The continuity of 7T^(x ) on follows by referring to

some results presented in [KMT]. Note that m^Cx ) is a continuous

operator on P means that tt.(x ) is in L(P ) endowed with the top- ^ TT 0 ■ TT
ology described above, since this topology arises from continuous semi

norms on , But the latter result follows, that is, t^Cx ) ( L(P^) ,

when we have shown that the map ° & ; S(]R) — ► L(V ) is continuous,U —  TT
where a denotes a or a € A , This result is proved in two steps

in [KMT]; on p. 193 the map °  ̂L(P) is shown to be
continuous. Note that tt (cl ) can be uniquely defined on P , as tt (a )o TT o -t
is SN-continuous, and the extension of tt o a to L(P ) now follows fromo  -  TT
lemma 3.42 of [k m t ]. Hence n^(X) E L(P^), and this concludes the proof 

of theorem 2.1. ///•
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2.3 THE HAMILTONIAN AND THE GIBBS STATE

We begin the description of our Hamiltonian by recalling the defini

tion of second-quantisation operators, since this is the kind of operator 

on which we shall use.

Let h be an (unbounded) selfadjoint operator on a Hilbert space 

R . Define an operator on the symmetrised tensor product space

k" by

h (f, ®...s f ) = n ( y  f. ,.® hf. »...® f ) , (3.1)n 1 n n . ^ - i  i n '1 = 1

where f^ 6 P(h) , the domain of h in H , i = l,.,,,n . Then 

is essentially selfadjoint on (see section 5,2.1 in [B & R2]).

Since is the direct sum of the spaces (n > 0), we define the

eeoond-quantisation operator (associated with the operator h on K ) 

to be the closure of the direct sum of the and denote it by -,

Note that the closure of the direct sum operator ensures that is

selfadjoint on , (For further details see [B 6 R2], section 5.2.1)

Since we are dealing with an unbounded algebra, we will choose a
— BHparticularly nice Hamiltonian H, for which we can show that e e T(H^) 

for positive real g.

2Let denote the basis of L (3R ) consisting of the Hermite

functions (see [R & ^p.l42). Then e^ e 5(3R) for k=0,l,.,. . Let

e " ( n o . n i . . . . ) = n ^ ( e / ^ ® e / 2  . . .  , j 0 . 3 )
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where the vector ê  appears -times on the right hand side of (5 ^ )

(before symmetrisation), and n =- Z^j .Elements of this kind form a 

basis for (see [Gui] Ch. 2.1). We write or Y^(e"(n^n^— ))

for the element in which is obtained from e^(n^n^...) by the natural 

embedding (see also section 2.2).

The Hamiltonian H will be the second-quantisation operator of the 

linear operator h on L (]R ) which is defined by

he^ = w(k)e^ for k = 0,1... , (3.4)

where w denotes a real-valued non-negative function on the integers 

such that there exists t e ]N and real e > 0 with 

(k + £) 6̂ w(k) $ (k + 1)^ for all k £ 3N .

LEMMA 3,1, The operator h is self adjoint on L^QR) and maps 

S(jR) continuously into itself with respect to the Schwartz space topo-

Proof. By linearity, h extends to a selfadjoint operator on

L^(]R) with domain P(h) = 5(]R), since {e,}€S(]R); and h is continuous
N

on S(IR), since w is polynomially bounded. For f i S(]R), f = Z
k=0 ^ ^

and fixed m in U  we have

llhfll̂  = HZ a w(k)e 11̂  = Z  |a |^w(k)^(k + 1)^ (3,5,)TT) , K  K  TTl , Kk k

Recall that the topology induced by these seminorms is equivalent to the 

Schwartz space topology (see [R 5 S], Appendix to Ch. V.3). ///.

The action of on can be written down explicitly on the

basis elements of the form e^^n^n^..,.) (see (3,3)):



Let H denote the second-quantisation operator of h  ̂ and 

put Hijj° = 0 for e œ and

HY^(e^(nn = ( Z  w(k)n, )T^(e^(n n . . . . ) ) J (3.7)u J.  ̂ ^ K u 1 I

THEOREM 3.2 The linear operator H is self adjoint onH_̂  ̂  belongs 

to L{V^] and for g >#, e is positive and e~^^ c T(H^) .

Proof. The selfadjointness of H follows sinceH is a second-quanti

sation operator on (see [b&R2] section 5.2.1). Furthermore, by lemma

3.16 of [kmt], H is SN-continuous onP^ , and hence H e L(P^) .
—  SHIt remains to show that e is a positive trace class operator on ,

that is, for every orthonormal basis {Ç.} in

I  < »i > 0 ^ ^
- bhFix 3 > 0 and put T = e . Then

(3.8)

and for fixed n, one'obtains by (3.6) and (3,7)
= Z  <e"^^e?(nQn^...), e^(nQ...)> I (3.10)

i > 0
= y  <e ^e^(n n ...), e?(n n ...)> = Z_ l U I  l U I  T

n
with

e
J - - - - - - . j'n

= {(n^n^...) : In^ =  | , (3.11)

and the partial sums are taken over all sequences in J^. Hence (3.8) 

is satisfied provided I converges. This is shown in the next two 

lemmas. ///•

LEMMA 3.3 Let = I exp(-3\kn.j^). Then for n e JN ̂
^n



ç

39

n (1 - e"k6)-l (3.12)
" )< = 1

Proof. For n = 0 , put = 1 , and define the empty product 

to be 1 . For n > 1 , the claim is an application of some results in 

the theory of partitioning. From [And] thm. 1,1, we conclude that

n (1 - x’̂) ^ = y  p("{l,...,n}", s.) x®'k = 1

where p("{l,...,n}", £) denotes the number of partitions of £ such

that no part exceeds n ; and by applying [And] thm. 1.4 (which states

that the number of partitions of n , in which no part exceeds m ,

equals the number of partitions of n with at most m parts) we prove 
the claim for every n e 2sl . ///.

LEMMA 3.4 T o  < «, .
n

Proof.
-gYw(k)n. E)n_

y  E  e k < y  E  e
n S 0 J n > O J _

n
y n (1 -

n > 0 ... y = 1

by lemma 3.3, The ratio test shows that this sum is finite: the ratio 

of the (n + l)-st and the n-th term is

e-gE(i _ -̂e(n + 1))-1 _  g-ee < i as n
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-BHThe trace property of e' follows now from (3\8) and (3.9 ). Also, 

e IS positive, since

e

-BHWe want to use the operator e in the definition of the Gibbs state

Since all operators with X e A map into itself, the operator
-BH

^ ^o/*^ makes sense as an element of L(P ) if we can show thatTT
— 6He is a trace class operator from H. into V . To do this, we make+  TT

use of the equivalence (stated below in a form adjusted to our require

ments) :

THEOREM 3.5. ([Tre], prop. 47.2)
A continuous map T from into is a trace class operator

if and only if the following holds:

There exist

2. a sequence in the closed unit hall of

2. a sequence {ri^} in a convex balanced bounded subset of
3, an l^-sequence of complex numbers 

such that T equals the map

K

LEMMA 3,6. For in , let

n 0 1 '

Û
Then the convex balanced hull of the elements is ai fK-hounded subset

in .



41

DProof. It is sufficient to show that the are bounded with

respect to the seminorms defined in (2-13). For m ( IN ,

mI I V V  = |iH'"(e"(n n =  (E (k + l)n )tj ill o  ±  in , Kk

-follows from lemma 3.1 and the definition of the m-seminorms: thus

= (e ^ (k + D n ^ ) ™
k

g
which are bounded, uniformly in n^n^, n^  Clearly, is in

for in ' and |A[ < 1  , and since the elements con-
g

stitute a basis of , the 4)̂ define a sequence which is contained 

in a convex balanced bounded subset of , ///.

PROPOSITION 3.7 The operator e is trace class from into V̂ .

Proof. We first show that e is continuous from into where

P^is equipped with the SN-topology. To do this, consider the space of

all finite linear combinations of elements equipped with the Z? -

topology (and the SN-topology respectively) as a dense linear subset

of (and as a dense linear subset of ^^ respectively). The

unit ball of the first space consists of finite linear combinations

y  X where TIX 1̂  < 1 . The map e sends this unit ball to an ^  n e n' ^
SN-bounded set in P^ , because for m ( IN

' ' - ' " B . " : ' : :  - p i o i y  -n n

-BHby lemma 3.6, This implies that e maps bounded sets into bounded
-6Hsets. Since and are metrisable, it follows that e” is

continuous; see [Tre], prop. 14.8. Now extend by linearity to general
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elements of H, and V .t  TT
—  rHHaving shown the continuity of e , we next put

-(3/4)BZw(k)n,
= y  e ; then by lemma 3 .4 , {X^} € , and for C €

we have

e'GHg = I  I  <5. f  = I  <|>® '
n > O J  ^ ^ n > 0 " ^ "n

- r Hwhich is the desired form of e by theorem 3.5. ///.

Since the trace class operators from an ideal in L(P^) (see [Tre] 

prop. 47.1), the next corollary follows immediately from prop 3.7.

COROLLARY 3.8. For x  ̂ A e ^^tt^Cx) is a trace class operator 

on .

We now define our Gihhs state w on A . Let B > 0 , thenP

Wg : XI tr(e ^^ïï^Cx) )/tr(e . (3 .14)

A comparison with the state ^ for finite systems (see section 1.4)

indicates why we are justified in calling a Gibbs state. We con

clude this section with the following observation on .

THEOREM 3.9 For B > m is a faithful state on A, and the B
GNS-representation induced by w_ is faithful,B + p B

Proof. is well-defined and positive, since e“^^ is a positive

linear operator. The linear functional u)̂  is a state, since w_(7) = i,p B
It remains to check that is faithful. This is true because

Wg(XX*) = 0 implies that ||tTq (x )Ŷ || = 0 ,\hile1he vectors of the form

are total in V . Hence X = 0, and tt̂  is faithful, since K  = tt„(7). e TT B B B
///.
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2.4 THE ALGEBRA A INSIDE THE CLOSABLE ALGEBRA A AND THE KMS STATE

In this section, we describe the algebra X  which sits inside A 
and for which we shall prove T omita’s theorem first. This algebra X 

bears the same relationship to A as the modular Hilbert algebra does to 
the left Hilbert algebra.

The triple (B, <.,.>) is a closable (Hilberij algebra if B is a
*-algebra with unit such that

(la) the map X • X is closable

(2) <X#, 2> = <(/, X Z> for X, 2 € B (4.1)

(4) B^ is dense in B

The triple (B, <.,.>) is an almost modular (Hilbert) algebra if B is
a *-algebra and there exists a complex one-parameter group A of *-homo

morphisms of B such that

(2) <xi/, W> = < y , X W>

(4) B^ is dense in B

(5 ) (A^x) = A ^ x  X, y, u) e B

(6) <A^X, y> = <X,A^> (A . 2 )

(7) <A^x , > = <(/, x.> z e d :

(8) Z» *■ <A^X, (/> is entire

(9) for t € IR , B^ = {(7 + A^)X : X 6 B} is dense in B

A comparison with left Hilbert algebras (respectively modular Hilbert

algebras) (see section 2.1) shows that the maps y ^  xy (for X,y e B) are 

no longer continuous in a closable (respectively almost modular) algebra.

We first concentrate on A and let (A,|| || ) denote the algebra A equi
pped with the topology inherited from and let (A, x ) denote the al

gebra A equipped with the topology of uniform convergence on bounded sets 
inherited from L[V ).ÏÏ
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LEMMA 4 .1. The map X *— x) is a continuous norm on A 
equipped with the subspace topology inherited from L(P^) .

Proof. First recall that the topology of L(V ) is givenÏÏ
by a family of seminorms (see (2.13)), and that bounded
sets in are those for which all these seminorms are bounded. Let

g
B be the closed convex hull of elements é which were defined inn
Lemma 3.6. If {x^} is a net in A such that n^Cx^) —  ̂0 in the 

subspace topology, then, for sufficiently large i , we have

and hence

tr(e )||x̂ ||̂  = tr(e ^^)u)^(X^X^)

- I Z e
n > 0 Jn

-^eZw(k)n g 9
= I  I  e k II,
n > 0 J n

< .  I  E  .
n > 0

Now let A denote the ^-algebra which is algebraically generated by 
all elements a(e^), a (e^) (the basis (e^j is as defined just before (3.3)) 

and subject to the commutation relations (2.2). Then A 5  A.

LEMMA 4.2. X  is dense in A with respect to the subspace topology 

inherited from L(P^) .

Proof. First notice that the map from 5 (3R ) x 5 (IR ) ->■ A
\

which sends (f,g) X^X (for X^, X c A ) is separately continuous.
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But SÛR) is a Frechet space, and, by [Tre] cor 34.1, this implies that

the above map is jointly continuous, too. Consider elements f, g 6 SÛR)

with f = Z  c e  5 g = Z  d e and define
r > 0 r > 0 "" ""

Clearly, approximates a^\f)a+(g) by above, where a'̂
#IS either a or a . For general elements x ( A , where 

X - a (f^)...a (f^)a (g^)...a*(g^) , the result now follows by induction.

///.

The next result follows easily from the preceding lemmas.

COROLLARY 4.3. Consider the topological spaces [A_, t ) and rÂ ||l|j, 

The T-topology is the stronger one on A  ̂ and X is dense in A with 

respect to both topologies.

One of the important ingredients in the definition of the almost 

modular Hilbert algebra is the modular operator to which we turn now.

For fixed 3 > 0, define the modular operator A: G ^ A by:
1. A(z)7 = 7

2. A(z)/(e^) = a (a(e^) , a*(e^| e X) (4.3)
3. A(z)a(e ) = a(e^^’'e )r r

X  together with this modular operator A has all the desired prop

erties of an almost modular algebra, as the next theorem shows.

THEOREM 4.4. The modular operator A defines a group of *-auto

morphisms from C into a u t(X ) which makes X an almost modular 

algebra.

Proof. a) From (4.3) it is clear that A(z) is well-defined on
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A for every z e Œ. Since A(z) preserves the commutation relations, 

it defines an automorphism on A. We now show that A and A satisfy the 

condition given in (4.2): (2) and (4) follow from the definition of A 

which inherits the inner product of A, and (5) follows from (4.3).

(b) to prove (6): <h{z)X,y> = <X,à{z)y> , we first claim that

n (A(z)%)Y^ = e (x)e^^^Y (4.4)Ü e u n
which we show on the generating elements a(e ), a (e ) , Note that

zBZwTk)n, ^ ^gZ3H^n  ̂ ^ kyU  ̂ Thus we have ;
e e

0 e e U e er r

. ,.-1

-zB^wTk)n -w(r) z3^w(k)n 
= e ~ /n e "(since e^ is'deleted)

= ^ A a -  = ^„(A(z)a-0 e e 0 e er  r

Similarly, one proves that

y" = T r Q ( A ( z ) a " ( e ^ ) .

From these equations for the generating elements, we get for y, x € X;

<tTjj(A(z )x'I'̂ , = <e'G=H TTQ(x)e®^^ , 7ip(y)'i'">

= <Hq (x )S'̂  , = <TTp(x)'i'” , Tig(A(z)ÿ)'l'^> ,

and th e  r e s u lt  fo l lo w s  u s in g  the  d e f in i t io n  o f  th e  in n e r  p ro du c t on X  .
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c) The proof of (7) ; <A(1)% , y > - <y, X>

Since A(l)a— = a(e^^e ) = & ( e ^ ) w e  have the following

for X ( A ,

<x*, A(l)(a* )^> = <x*, A(i)a- >
^r %

= (tr y  y  e ti (A(i)a- )Y">n r o  J 0 e 0 en

= (tr e-p")-" y y
n - 0 Jn

= (tr y  y  TT (x )'F">
n i 0 J ® 0 en

= (tr y  y
n > 0 J e 0 en

Similarly, <X , A(l)(a—  ) > = <0.—  , X> , And the general result follows
^r ®r ^

by taking finite linear combinations of the a and a

d) The proof of (8) ; z »— ^<A(z)X, y> is entire.

A general element y F. A is of the form

# # # 
u - a a , CL a—  a—  .... a—

®ji ^j2 ^jm ®kl ^k2 ^kn

Thus the result follows from the following calculation

m  ̂ n
oc, A(z)f/> = <x, II A(z)a n A(z)a- >

r  = 1 ^ j r  s = 1 ^ks

= I e-G:"(ir) n eB-(ks) % / S a- >
r  = 1 s = l r  = 1 ^ j r  s = 1 ^ks
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<e ) <X; y>

which proves that z i ► <x, à(z)y> is analytic.

e) The proof of (9); is dense in X  .

Recall that X^ = {(7 + A^(t))x : X € A) . Take y as in the proof 

of d) 5 and put

X = (! + e ) y i A.

Then

i/ = (7 + A(t))x which is in X^ ,

From this construction of y by elements X € A , it follows that A^ 
is dense. This completes the proof of theorem 4.4 ///.

Next we want to extend the modular automorphism A from X to A 
where this is possible and meaningful. For this, we use the following 

restrictive form and put

A(z)&*(f) = a (e ^^^f) if Re z > 0

A(z)a(f) = f) if R e z S  O (A.5)

PROPOSITION 4.5. a. For Re z £ 0, ie a welt-defined con

tinuous linear operator on SOR) and z i— ► is analytic for every

f € SOR) . 
<A(l)^, x> = <x , y > for x, y i A , and y (P(A(l)J.
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C . = A(it) (t ( ]R) i s  a  g r o u p  o f  * - a u t o m o r p h i s m s  o n  A .

Proof, a. The map z i e = is analytic intor r
5ÛR). Hence for arbitrary elements f i SQR) with f = Y  c e  we

n > 0 ^ ^
have

I y c f  z y |c |2(r + ^)2m^2 Bw(r).Re(z)
r = N ^ ^ ^ r = N ^

For N, M — »■ 00 , the right hand side of the last equation tends to zero.

uniformly in z in the strip Re(z) < 0 . Thus, Y  c (e^^^)e = e^^^f,
r > 0 ^ ^

converges in 5ÛR) inside the strip Re(z) fr 0 , and defines an analytic 

function of z for Re(z) < 0 which is continuous on the boundary.

b. The proof is similar to that given in (c) of proof to thm 4.4.

c. Put z = it. Since Re z = 0 , A(it) can be extended to all

of It is now clear that A(it) is isometric on Thus = A(it)

is a group of *-automorphisms on A, since it is defined everywhere. ///.

The involution  ̂ which has been used so far corresponds to the 

operator ' of section 1.4, We define the b-involution in the following 

way. For X ( A put

af = A(l)x* (4.6)
+ #X = A(t)x

Note that b and + are both involutions on X  which we call the

adjoint and unitary involution, respectively. By theorem 4.4, is
# #isometric on A: <A(1)X , ^ > = <X, {/>, hence it can be extended to

a conjugate linear isometry J on the completion of (A ,|| || ).



THEOREM 4.6. The triple (A, <«,.>) is a olosahle HiVbert algebra,

Proof. Using prop. 4.5(b), we have for X € A, £/ € "X that
b ,,  ̂ # #<# , x> = <A(i)t/ , x> = <x , #> .

And this shows that the map X i >■ <x , (x € A) is contiuous for

every {/ E A . But %  is dense in A , and hence the adjoint of the 

map X I »■ X is densely defined^ whence X i ■ > X is closable, ///.

As a last point in this chapter, we turn to the Gibbs state again 

and show:

THEOREM 4.7 Let g >0, and let =  à(it) be the modular automor
phism on A. Then la is a o.-KMS state on A-

Proof. The invariance of under follows from the calculationp t
below (for a definition of KMS state see section 1.4):

oa^COfCx)) = <o^(x), 1> = <x^ o_^(7)> = <x, 1> = w (x)

For a general X ( A which is of the form x = a ^ ...&  ̂a— ...a— 

and for t/ € A , we define the function F by

F (z) = 0) (A(iz)(a- .. .a- )yà(iz)(a .. .a )) . (4.7)
^ ^1 ®m ^1 ^n

Let S = {z 6 Œ  : 0 < Imz < g} ; then it follows from thm. ,4.4* that 

F is well-defined on S , that F is continuous on S and analytic 

inside S . Hence> F must attain its maximum modulus on the boundary
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and^ for t ( IR , we thus have

F ^(t) = <A(l)A(it)(a" ) , [A(it)(a- ...a- )y]">
Si Sm

= <A(it)(a- ...a- )y , [A(it)(a^ . )]*> = uu(A(it)X|%r
^1 n ^

by theorem 4.4.Similarly, one shows that ^(t + ig) = Wg(^A(it)x) . 

Finally, F is uniformly bounded on S , since

and

|f (t + i6)| = <0 (X), / >  s ||/||||x||X  L

This concludes the proof of the KMS-property of the state .

///
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Chapter 3

TOMITA'S THEOREM FOR THE OCR-ALGEBRA
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3.1 INTRODUCTION

In this chapter, we prove the commutation theorem for the algebra 

ïï̂ (A) . Since we do not have any concrete knowledge of i^A) and R̂ (A) , 

we first construct another representation tt of A on a Hilbert space of 

Hilbert-Schmidt operators for which the commutant of î (A) can be given 

explicitly (see below). By proving that the two representations and

7T are unitarily equivalent, we can then show the commutation theorem

for ng(A) - essentially by the uniqueness of the GNS-construction.

This line of proof was adopted by Haag, Hugenholtz and Winnink [h h w ] 

who proved the commutation theorem for a C*-algebra by showing that the 

GNS-representation of the Gibbs state is unitarily equivalent to the 

left regular representation of the Hilbert-Schmidt operators. Thereby 

they reduced their problem to the case of Hilbert algebras, for which 

the commutation theorem was known before Tomita-Takesaki theory (see 

also section 2.1).

For details of the following see [Dix] Ch. 1.6.

Let HS(K) denote the Hilbert space of Hilbert-Schmidt operators. We 

identify HS(K) with the tensor product K'sK where K' denotes the conju

gate or opposed Hilbert space of K. Under the isomorphism^X e HS(K)

is mapped to ^ a.6. a n. such that for Ç e K
i

x ( V  = I a^<C . . I b l P  = I l“ il^ (1-1)

where the (Ç.) and the (ri.) form orthonormal sets in K j e (L.

Since HS(K) is a two-sided ideal in B(K), multiplication on the 

left and right is continuous. Clearly, the left (resp. right) von Neu

mann algebra associated with B = HS(K) is
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1(B) = 0%, » B(K) (12)
(resp R(B) = B(K') )

(see prop, 6 of [Dix]). - It clearly follows (by prop, 14 of [Dix]) that

UB)' = (C%, ^ B(K))' = B(A 8 = R(B) (1.3)

In the case of the CCR-algebra (which consists of unbounded operators) 

we consider a representation on the Hilbert space of Hilbert-Schmidt 

operators. We show that, in this representation, the elements of the 

algebra act continuously on the common dense domain.
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3.2 THE REPRESENTATION (ïï,H ,V )- - - - - - - - - - - - - - - - - - - - - - - - - - — - -  — El- - - - - El--

The aim of this section is to construct a representation of A on 
the Hilbert space which is identified with the tensor product space

v) . The results presented in this section can easily be generalised 

to a representation on K' ^where K denotes any separable Hilbert

space. In the subsequent sections, however, we shall only be interested 

in the _case where K.JL _andwe_ shall thus r e f r a in jfrpm th _gen era 1 - _ _

isation. The interested reader will find no difficulty in adjusting the 
results to the general situation. We show the following.

THEOREM 2.1 There exists a -representation (t., K c/ A and
for x e A j  -n(x) z L[V^ )

Our candidate for the_space is the space__H^ _,.̂ .,and_we claim j.

= HscH^, v p  , (2-1)

where V^) = {  X e : x(HS(H^)) S  , and X is continuous

from into } .

To prove (2.1) , recall that is the completion of the space V with 
respect to the family of seminorms given in Ch.2 (2.13). For each 

r = 0, 1,-2,... these seminorms are in fact norms. Let denote 

the completion of with respect to tie first rncrms. Then o +' r^ r+1
and V is a Hilbert space contained in H for each r — 0, 1, 2,... . r +
Furthermore, * We will use the notation

LEMMA 2.2. For r = 0, 1, 2,,.., the spaces^ ®  and

P^) are isomorphic.

Proof. Since P^ = h P^ = HSW^) . For r = 1, 2,... , we

first show that the space of finite rank operators on with range in
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is isomorphic to the algebraic tensor product ® P^. (Recall that 

a linear operator X; P^ is a finite rank operator if X maps onto

a finite dimensional subspace of P^.) The result then follows since the
I

two spaces are dense in H S , P̂ ) and H^ B P^ respectively and we 

can extend by continuity.

We now describe the isomorphism and its inverse. The reader can

check that the maps are in fact Hilbert space isomorphisms.
I

Let r e B  be fixed. Let F e H © P , and choose C. E H , n. s P ,^ + r 1 + 1 r'
i=l,...,n such that F = 'I & n. . Define  ̂£ HS (H , P ) by

N i=l ^ ^ + r
for i £ H . The definition of does not depend

i=l ^ ^
on the choice of the , and F h- is clearly a Hilbert space

homomorphism.

Conversely let : H^ he a finite fank operator and let t. = vm

denote its polar decomposition. So a is an isometry from H_̂  into P 

and a is positive from into H_̂  (a = t t) . Let S denote the orthonor

mal basis for H^ which consists of eigenvectors for a. Let be those 

elements in S which correspond to non-zero eigenvalues and put 

^i ~ ^i^^i * Then ^ B &s a Hilbert space homomorphism and

is the inverse to F h- jj . ///.

PROPOSITION 2.3 The-topological vector spaces H_J_k  P^ ai'id 

HS(H^,V^j are isomorphic.

Proof. Note that the tensor product H^aP^ is not a Hilbert space 

since P is not a Hilbert space. However, it is well-defined as theTT
(7T-) completion (see [Tre] Ch. 45) of the algebraic tensor product 

H|©P^ . The space HS^ - KS(H^,P^) was defined immediately after (2.1) 

The isomorphism between H^eV^ and , the space of finite rank opera
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tors form into V^, follows in a similar fashion to the corresponding 

proof given in the previous lemma for the spaces V
r

To show that the topological vector spaces HS^ and are

isomorphic, we show that

i. HS^ is the inverse limit of the spaces HS(H_^,P^) (that is 

HS^ = lim ),

ii. = lim (H^aP^)

The claim then follows since inverse limits are unique up to isomorphism 

(see [sem ] 11.8.1) and since the Hilbert spaces H5(H_^, P^) and H^a P^ 

are isomorphic as Hilbert spaces by lemma 2.2 for r=0,l,2,...

To prove i. , note that HS^ is endowed with the topology induced

by P^, that is, the topology derived from the inner products <.,.>^ , 

r=0,l,... (see Ch.2 (2.13) ) which make the spaces HS(H_^,P^) into Hil

bert spaces (see also Ch.l (1.3) ). Since P^ is complete, it follows 

that HS^ is a complete topological vector space.

Let T be a Hilbert-Schmidt operator on with range in P^ . Then the 

following chain of equivalences a. - d. demonstrates that HS is theTT
intersection of the spaces HS(H^, P^).

a. T: H V is continuous.+  TT
b. i o T : H P is continuous for r=0,l,... , where 1 denotesr + r r

the inclusion map from P^ into P^, and r=0,l,...

(this equivalence follows from prop.4 p.30 of [ B o u ] ).

c. T: P^ is continuous for r=0,l,____^^(range of T ^  P^ ,
since P^

d. JeHS(H^f P^) for every r=0,l,...

Thus HS is the intersection, with the intersection topology, of theTT
spaces HSiH^r P^)r that is, the inverse limit.

To show ii. , let L = l^m(H|B P^) denote the inverse limit of the

spaces H'h P r and let C = H'®P denote the algebraic tensor product of+ r + TT



and V^, Clearly,C embeds continuously into each space V ^

and hence (from the definition of the inverse limit) there is a unique 

map C : C -> 1 such that the following diagram commutes for each r=0,l.

H's V+ r

H ' 0 V + r

where <=—  ̂ denotes the natural embedding. It follows that C is also 

an embedding. Let Ü denote the closure of C(C) in L. Then by [Bou] Cor. (ii 

p.49, Ü  is the inverse limit of the closures of C with respect to the 

topology induced by (r=0,l,...) . Since the algebraic tensor pro

duct C is dense in for each r=0,l,... , it follows that

TT = l^m (H^b V^) = L , and that C is a dense embedding. Next observe 

(see [Bou] cor. p.187) that L is complete since the spaces are

complete for r=0,l,... . A further reference to Bourbaki ([Bou] prop.13

p.195) now shows that L is the completion of C, and hence L = H's V .+  TT

///.

Putting V^) , it is clear that P^ is dense

in , since is dense in . P^ is complete in the

tensor product topology on where P^ catries the topology given

by the norms of Ch.2 (2.13). We next concentrate on the representation 

TT . For X e  A , let tt (X) denote the linear operator on which is 

defined for T e P by

TT (X) : T « >- tTq (X)T (2.2)

From (2.2) it follows immediately that tt is a *-homomorphism from A into 
the linear operators on H^.



59

PROPOSITION 2.4.

1. For X 6 A , 7t(x) maps into itself,

2. For X i k , 7t(x) ( L(V^) .

Proof. 1. Let T ( Pg , X ( A , then ïï(x)T = 7Îq(x)T is in

P^ . To see this, note that T is a Hilbert-Schmidt operator from

into P . TT-(x) leaves P invariant by Ch. 2 thm. 2.1 and hence TT " 0 TT
tt̂ (x )T is a Hilbert-Schmidt operator from into P^ by [G & V]

thm. 3 p. 36.

2. To prove that ii(x) is continuous from P^ into itself, note that

for X C A tTq(X) C l(P^); hence for m C B  , there exists a k > 0 

and r C B  such that

i|7To(x)ii||̂  < kllnllp for each Ti ( P^ .

N _
Put T = y  , where E. is an orthonormal basis in H and ̂ 1 1  ̂ +

( 9^ , then

1 = 1 1 = 1

■So irX%)T -E f(’ ^-p , Bnd tr(x) E L(P_) , by Ch.-2 (2-.-13)̂ .(2-.14) . ///.
_ Q - -- - - xÿ — - . , _ _

The proof of thm..2.1 depended on the properties of the space P TT
in the sense that we showed that properties of P^ carried over to and

were compatible with the structure of the tensor product. This mode

of proof is no longer possible when considering the commutant t t ' o f  tt .

We first consider the commutant of tt . ‘o
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PROPOSITION 2.5 t\ (k) is iTreducihïe,o

Proof. By Ch.l (2 .2 ), TT̂ is irreducible if and only if tî (A)' = {XÎ}

We first show that t^(A)' = {X7} . The result then follows for %^(A)',

since tt (A) ç tt (A) implies that tt (A) ' tt (A)'. Put o o o o#
N(e ) = a (e )a(e ). Then tt (N(e ))Y^ = nT^ , and it follows that for r r r D r e e
T i TT^(%)'

n <Tt°, (N(e = <lTT^(N(e ))i°, ï"> = 0G O r e  O r e

since t^(N(e^))Y - 0 . But this implies that TY° is orthogonal to

all the spaces 5^ for n > 0 , hence TY° is in the subspace spanned 

by Y° .

For general X € A and Ç C we have thus for some t e Œ

<TTT^(X)'i'°,Ç> = <TY°,TTg(x5s> = t<'F°,TIp(X**)Ç> = t<TTjj(x)'l'°,Ç>

From this it follows that Ttt^(x)¥° = tTT^(x)T°. And from prop. 4.7 in 

[Thu] we conclude that is cyclic for tt (A) . Hence,

is cyclic for TT^(%) , too^ whence it follows that T = tl , since 

T is bounded. ///.

‘The next theorem is a generalisation of the one-dimensional results 

proved in [G 6 H].

THEOREM 2.6. The commutant tt(A)’ of tt(A) consists of all right 

multiplications by bounded operators on , that is^

tt(A)’ = {C € B(H; H^) : 3C^ € B(H^) with 

C(T) = TC- VT € HI H j  .J- T  T
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Proof Let C, ( B(H ) . Define C € B(H' »  H ) bv C(T) = TC1 if T T J-
for T € . Since is a right B(H )-module, it is clear

I
that C leaves b invariant. Since

<C (TT (x)T) ,S> = <C (tt^(x)1),S> = <tt^(x)TCj^,S> = <C (T) ,TT̂ (X) ̂ S> ,

for x e A ,  S, T c P , it follows that C e tt (A)

Conversely, let C €tt(A)’ . Fix and consider the map

which is defined on x by

(n', n) = <C(f' T]' ), r  <& n>

Now, since | B^ ^,(D,n’)| - t|C||||C||||C 'llllnlllln '|| , where ||C|| denotes
2the operator norm, all the other norms are the L -norms, B^ is a 

bounded sesqui-linear form and thus there exists a unique K ( B(H^)
• depending on ^ and Ç ’ such that

Bg ç(n‘,n ) = <Kn' , n> for aii n, n' < .

Clearly ||K|| 2  ||C|||tS|||tC'|| , (2.3)

where ||K|| and ||C|| denote operator norms in B(Hp and B(H| >9 Hp 
respectively. We claim that K i n^(A)' ,

To see this, let C, E* ( , X € A and consider the expression

<KiTq (x )C', C> = Ç)

= <C(Ç' ®  tVq (x )C' ), g a  C>

= <Cn(x)(E' 0 ;'), Ç 6 ç>

= < c ( r  a  A U .  jT(xA)(r.® ()>
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= = < K c , % ( x ^ o c >  .

This proves the claim above, by prop. 2.5,-and hence there is a k e

k depending on C and C ̂ , such that K = kl , Thus for r), r)’ 6 ,

we have

k = < K n ’, n>/<n', n> = n)/<n', n> (2.4.)

= <C(C' ^  n ' ), C  ̂  n > / < n \  n> .

This last equation shows that the map from x  >- Œ which sends

. . ( ^ . Ç l _ t o _ k , _ i ^ 6 e q u n i n e a r , _ _ J t _ i s  , =JI.4I._

- ilC||HE"'IIlim by (2.4). Hence there exists a unique ( B(Kj) such

that k = <C^ T' , . By (2.4) it now follows that

< C ( t '  S ’! ' ) ,  t ® n >  =  k < n ' ,  n >  = < ( ? ’ »  n ’ ) C y  , T ®  n >  .

I Ibecause of the isomorphism between H b H and HS(H ,V ). '
+  +  +  TT .

But the rank one operators are total in • and it thus follows

that C (^'^ f)) = (^ ®  n)C^ , and hence C(T) = T.C^ for arbitrary

— I “ ̂  Cy-ji ̂  — , —  .. —  —  — —  - — —  —  —  _  y y y , _
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3.3 THE STRONGLY CYCLIC VECTOR FOR (TT. H .V ) ------------ ------------------------ H---B—

In this section we show that tt has a strongly cyclic vector
ÇI such that u^Ax) = , 0 > for x € A . To exhibit such aTT g  TT TT
vector for the representation (tt, r P^) is the single most import

ant step in proving the commutation theorem for tt̂  (A) , as it will 

enable us to construct the unitary operator between the two represen

tations, and then use the uniqueness of the GNS-representation to deduce 

the result.

-gHIn Ch. 2, prop 3.7, we have shown that for g > 0  ̂ e maps

H continuously into P^ and is trace class. But every trace class
— RHoperator is a Hilbert-Schmidt operator, hence e belcmg^jCo =_____ __

H' S>V = H S Œ ,  P ) . Putt  TT +■> TT

__________ (2     X3.J.4------

Then ^ E P^ , by the last comment, and 0 can be approximated by 

finite rank operators of the following form:

n" = [  » Tg (3.2)
n

where is as in Ch.2 (3.11) and the are as section 2.3 (see the 

paragraph following eq.(3.3)).

PROPOSITION 3.1. o" belongs to P  . For n — y œ   ̂ ^  converges 
to in P ^  .

A proof of this follows the next lemma.

Let ^ = {(n^n^^....) ( : n^ = 0 for 0 < i 5 p - 1 } . For

positive real \ , let __

-gxX knĵ
(A) = I  e ^ (3.3)

"'P jn,p



64

LEMMA 3.2. F o r  g > 0  ̂ m ( 3N  ̂ w e  h a v e

-eZ (k + c)n^
Z  e X  ( p x  + c ) n , r z ( - | ^ ) ^
n,p

Proof. Note that the power series in e ^ converges absolutely: 

we can thus differentiate S term by term m times. This clearlyn,p
gives the desired equality. ///.

2
Proof of Proposition 3.1. Let || ||q denote the Hilbert space norm

-3^w(k)nj^
on <S> ^^pR) _. Then ||̂ 1̂|q = ^ * sion is_finite

-Jn
by Ch. 2 lemma 3.4, and thus belongs to H| . To prove

the claim we show that € H ’ <S> . This means that we have to show ••+ T
that converges for all the seminorms which define the topology on

and hence on S> .
Fix m € IN , and let II 11 denote the m-seminorm. Then" "m

-i$gjw(k)nk
= Zte X j2 + i)n )”

m Jn
-gT(k t e)n

5 ^ e  (^(k t 1 )n^) since w(k) > k + e

-3X(k + e)n ŷ /2
5 ^e (^(k t E)n^) (n + A) for some A > 0

= ( S^(A)e ^ . (n + A) by Lemma 3.2

vvWA

Replacing 3 by 3A in Ch.2 lemma 2.3, it follows immediately that the

series  ̂ e S^^A)(n + converges absolutely for A > 0 (by
n>o

Ch.2 lemma 3.3 and lemma 3.4) and thus it can be differentiated term 

by term, leading to
iA/2 < 00

///.
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We now define the strongly cyclic vector by

= 2̂/tr (e . (3.4)

LEMMA 3.3. Q, is a unit vector in K' tg, H iwhich is containedTT +  +
in . Furthermore^ for x ( A  ̂ we have

Wg(x) = <n(x)0^ , (3.5)

Proof. The vector belongs to HS (H_̂) . Since

~^6H ~6H h= e /tr(e ) , its Hilbert-Schmidt norm is

ll«TrliHs = ^-gH  ̂ ^ _

Since e by Ch. 2 prop 3.7, E P^ . Using the inner product in 

H 5 ( H ^ ) ,  and the definition of tt (see eq.(2 .2 )), for X e A  we have

<n(x)0^, n^> = tr(R^TT(x)n^) = tr(e"GHn(x))/tr(e'BH) = „
^ ///.

THEOREM 3.4 0 ts strongly cyclic for CtTj H^j P^/L

Outline of Proof. The idea of the proof of theorem

3.4 consists in showing that if C is the closure of tt(A)S7̂  in the 

topology.of _ P,̂  3 then _ C = P_ . _ This will show that n(A)^ is dense

in P^ in the t^-topology which is induced by the family of semi

norms l̂l*li,p(x.) = : X 6  A } , since this topology is weaker than

the topology induced on TT(A)fî  by P ./

Let r e IN , k (k^^,..., k^) e IN be fixed but arbitrary and set

k = I k .
j=0 ^

For X e A, z = (z^,...,z^) s with Imz^ > ge/4 , put

i iT^(x, ^) = tt(x e )̂2 , (3 .6 )
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N(e.) = a\e.)aie.) (3.7)
] ] ]

We first prove (in lemma 3.5) that T^Cx, 6 ) € C for 6. ( fO, 2ttJ 
Next we show (lemma 3,6) that

kr(T) = 2 tt

r -i I  k 6

exists in the weak sense and hence belongs to C. !
k

Finally, we prove in lemma 3.7 that the integral I^^T) approximates.

a scalar multiple of js as r The result follows from
this, since vectors of the latter kind are total in V

LEMMA 3.5. For 6_ = (6^, 6^,..., 6^) € [0, 2%]^ x € A, r € IN

i I  GjN(e.)
T^(X, £) = Ti(x e  ̂ ° )n belongs to C .

Proof. 1. By (3.2) and prop 3.1, we can rewrite T^(x, £) in

the following way
r

-^g^(k)n^ i^TijZj
T (X, zj = Z  Z  e X g j=0 (3.9)

' n > 0 Jn

which is the form we shall be using in the proof.
r

-%gZw(k)n. i Zn^z^^ J-A J JLet F,_q(x. :) = Z  I  e X g 3=0 .
n=0

where = {(nun,...) ( J : n = 0 Vi > q} , N, q (IN , and Imz > n 0 1 n 1 ]

These functions ^ are (separately) analytic functions of _z Into

, as they are finite rank operators with analytic coefficients.
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r
Note that g ^  w(k)n + 2  ^  Imz.n.

k > 0 j = 0  ̂ ^

> g X  w(k)n - Y  (3e/2 )n. > g ^  (w(k) - f)n
k > 0  ^ i = 0  ̂ k > 0  K

Thus

- — - - - - -  — -i —^  ̂— XX •« —    —  — —
= ( z  I. - I  Dile '' e Ô=0 . (x)Ÿ" 0

n>0 J n=0 _q 
%

M -6Z(” (k) - |-)nĵ
S ( Z  Z  - Z  Z)(e X )||„ (x)Ÿ^||2 0

nïO J n=0 ,q u e m
" '̂ n

as N, q — , uniformly in £  in the region Imz^> - ^ge , since

-ggw^k)n^
Z  Z  e X < "

n > 0 Jn

0
by prop 3 .1 , where we may replace w(k) by w ’(k) = w(k) - —  , since

Thus we have shown that

lim F-, (x, z) = T (x, z) uniformly in z in the region
N , q _ «  N'Q -  - - -

Imz^> ^ge in the topology of , This clearly shows that T^(x, ẑ)]
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is (separately) analytic in z in the above region

2. To show that T^(X, .6J € C , we use the following approach. Let 

S € V^* , the topological dual of , be such that S (tt (x )S7̂  ) = 0 

for each X € A . We show that S(T^(X, £)) = 0 for each ^  € [0 , 2TT 

This, then^will prove, by the Hahn-Banach theorem, that T (X, ^) € C .

Define f(z) = S(T (X, z )) , This function is analytic in the region

where I is. For k., k,,..., k ( IN consider partial derivatives of r 0 ’ 1 ’ ’ r
F and put 3 .  ̂ =N,q j  ̂ *, then

k k k
C ' l  FN,q(*'

r
N k k, k= Z  I  e X ( i n ^ ) ° a n p 5 . . ( i n ^ ) ’̂ e 0 = 0  ^

n=0 p 
n

r
N -*seZ«(k)n^+i Z  n . z .  ^  ^

= I  Z e  0-0 Tt^(x(iN(eQ))‘’...(iN(e^))’" ) f ^ 0 f "
n=0 ^q r e e

n

N,q -> “o
k k ■

T^(x(iN(e^)) ...(iN(e^)) ẑ) as in part i of the proof.

Hence

 lim SO^^T. .a^^f — ^<X,^))—  S(T^X(iN(eQ-)) - .u.-<iN(e”) ^,z))

and
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= S(T^(x(iN(eQ)) °...(iN{e )) 6))

as can be seen by repeated application of the dominated convergence 
theorem. Thus

= 0 S(n(x(iN(eg)) °...('iN(e^)) r)0) = 0 

k k
since xCiNfeg)) ...(iN(e^)) ^ i A and T^(^, = ïï(^)fi . Thus,
the (r + l)-fold Taylor expansion for f which converges for

, r~ +l^  € [0, 2it] by the analyticity of f , gives

that is, S(T^(x, 6̂ ) ) = 0 which shows that T^(%, 6) ( C . ///

LEMMA 3.6 The integral l^(T) exists and belongs to C. For a - r 
a n d k =  (kg,...,k^.k^^y...,kp e with k. =  0 for r<j^s, we have

-S5B_Iw(j)K. 
i ( T )  = .e _ .22°____

-Î53jw(i)n^
. j _ - X  ---------------------------------- 7

n^ + 1  '̂ s

where if = {(n^n^... ) « : I  n. = n, n. = k. for 0 < i £ s T  .
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I kjG.
Proof. The function 6 i ► e  ̂  ̂ T ( x , 6 )  from [0, 2ïï]̂  ^—  r —

into C is continuous, hence integrable in the weak sense ([Rud] thm. 3.27)
K*and its integral I'(T) which belongs to C , has the following form:

-i Î  u e .
rtl

i-0 ] : e T (X, 6)d6r —  —
[ 0 ,  2 ttJ  

-%^^w(k)n

1^0 J 2 tt

rtl i Ÿ  (n.-k. )6 
j=0  ̂ 1 ^

n [0 ,2W]r+1
0 e e

-)$@]w(k)n^ ^ 
l i e  ^ n 6(k., n.)n^(x)W" ®
lao J i=0n

O' ' e e

-^3  I  w( j  )k .
= e j=0 . X _ ,.,knQ(x)W (e(kQ,...k^^O,..) a  W^(e(kQ,...,k^^O

-^6lw(i)n.

n>ktl _rXjn

7T^(X)f' ®  Y- G e e

For s ^ c IN as in the statement of the lemma insteadh r and for k e  ̂ in

of k e , we now estimate the integral I (T)

kr(T)s 2tt
5tl

e  ̂ T (X, 6 ) d6
CO, 2 it] stl

= e
-3  I  w ( i ) k j  „ . __    . „  ___
^ 0=0 Ttp(X)fX(e(k̂ ,..k̂ ô..) ®  yX(e(k̂ .̂.k̂ .O,..)
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-£ Iw(i)n^
+ y  I  e  ̂  ̂ II (X)f‘ »  Y"

n>ktl 
n

This is the required result. ///.

LEMMA 3.7 For s approximates \ t\q (x)}P ^ a  ̂ )

Proof. If we consider the expression for 1^(7) exhibited at the 

end of the proof of JLerama 3.6,.we notice.that_the .first term remains 

unchanged for any s > r , since k^ = 0 for r < j 5 s .

We prove the lemma by showing that the second term in (3.10) goes to
Q r

zero as s -> 0°. The result then follows for A = exp(-^  ̂ w(j)k. ).
j=0 °

Let be the orthogonal projection onto the subspace of

spanned by : (n^,...) € I® , n ( M} . Then E^^F^CeCk^,.. ,k^ ̂ 0.. . ) )

= Y (eCk^,..,k^,0 ...)) for all s > r , while E^  ► 0 strongly in

the orthogonal complement of the Y^(e(k^,,..,k^,0 ,... ) ) .

"Let denote thé projection onto the orthogonal"complement of the

subspace spanned by {Y^ : 0 < n < k} , and put T = e”^^F, . Thene k k
is a trace class operator by Ch. 2 cor. 3.8. For m ( IN, X ( A ,

n 6 consider

where B denotes the second-quantisation operator of h (Ch.2 (2.13)), p e X>î 

and C constant. The last inequality follows since tTq (x ) € 1(P^) ,

Thus the above equals
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Ĉ llB̂ Tĵ Ê nlî  5 Ĉ IIB̂ T ll̂ llnll̂  • B^T is trace class, since
T, is. Thus k

l|B̂o(x)TkEsll 5 C||B\||

and hence the sequence (B^tQ(x)T^E^)^ is norm bounded, and as it con

verges to zero strongly, it also converges ultrastrongly. Thus

—  —  - —- - —g ( 1 )n^—'>LÏ'n>ktl jS 
n

-glw(i)n^
l i e  i

n>k-fl jS 
n

n>ktl jS 
n

-glw(i)n^ 

■

I I (x)T EgYgWn — ► 0 as s
n>k+l jS

I k.by the definition of the ultraweak topology. Thus I^(T) X̂ iTq (X)Y^ ®

•as—ŝ ^̂ "«>-(x e a: ).
///.

So far, we have shown that for r, kQ,.,,,k € IN with J)<. = k
—k k ^and for X € A , the element n^CxyY^ ®  Y^ belongs to C . To com

plete the proof of theorem 3.4, we now observe that these elements are 

total in V . To see this, let p € P . Since {tt (x)Y° : X € A} 
is dense in P^ , given e > 0 , m € IN there exists X € A such that



lin - ^  ̂ • Now, given , let f/ F A be such

that %o(y)YX = Y° .

Then «  n - 9^ g % (X//) ï‘'ll = Ih - t (X)Y°W < Ee e o e m 0 m

thus ®  ri E C , This concludes the proof, since such elements

are clearly total in .

///.
The analogous theorem for %  is now almost a corollary, but we will

state it here, since it will be needed in the next section.

THEOREM 3.8, is a strongly oyolic vector for the represen

tation ^ .

Proof, We claim that ; X € X) is dense in . By Ch

2 cor. 4.3p X is dense in (A, || || ) , and we may thus approximate an
 ̂  ̂   _

element X € A which is of the form X = a (f^)...a (f^)a(g^)...a(g^)

by the corresponding elements of X . The rest follows in the same way

as in the case of A .

///.
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3.4 THE COMMUTATION THEOREM

seminorms

In this section, we finally prove the commutation theorem for the 

representation ) of A. As in the case of Tomita's original proof

we show the commutation theorem for the almost modular algebra A

first and then deduce the corresponding result for A.

Let (ïï^,H^,P_ ) denote the closure of the *-representation 
3

with respect to the t -topology on V which is induced by the family of7T^ TT
{ II . 11̂ : X e A } .  In Ch.2 (4.6), the isomet-

+  ̂ bric involution and the -involution on A were defined. The former ex

tends to an anti-unitary involution J on H^, while the latter is used in

the definition of the right regular representation. Let (p ,H ,V ) de-
3 b

note the closure of the right regular representation of A : p is a -ho-
the ®

momorphism of A into/continuous linear operators onP (where P is equip-
%  *̂ 6

ped with the t -topology which is induced by the family of seminorms

{ p  (x)ll •  I I  = II .pg(X) II : X 0 A } ) and Pg acts by multiplication on the
3 ^

right and preserves the -involution.

LEMMA 4.1 J maps P _  onto V and vice versa, and for x s A
%  "eTT^rxj =  Jpgfx ;j .

Proof. Since, for x, 6 X  , we have ^Ijx || = \\yx || = |[J(t/X )|| =
W^y^W - l|x|| , J is a topological ismorphism from (X , |̂| || ) onto

y ry
(X , II II ) and hence extends to the completions. For x. y  ̂A we now

have K = and3 3 Pg

Jwp(x^)JC = = ng(y^ng(X)7g = Pg(x)G'

Thus, Jmo(x^)JS = pa(x)C for each  ̂ E P by the continuity of all the3, '3 Pg
operators involved. Since P̂  is dense in , the result follows.

3
- ///.
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To show that J  intertwines the left and r i g h t  von Neumann algebras 

7T (A) ' and p (A) ' , we have to make use of the representation ,V ).P  P  B  B
Similarly to the above, let (u ,V-) denote the closure of (tt.H ,V )B 71 B B
with respect to the t^-topology ( see outline of proof of thm. 3.4).

Note that and are two GNS-triples for A with respect

to the state w . This implies that for X e A P
u).(X) = <ïï (X)/ , ? > = <n(X)Ü , Ü > . (4.1)P p p p 7T TT

By Ch.l thm. 2.6 it follows that there exists a unitary operator U from

onto which maps V— continuously onto V- and is such that
3

Utt (X) Î = iT(x)f2 for X E A. (4.2)P P TT

Using this unitary U, we define the right regular representation 
of A by

p(X) = Up (X)U ^ for X E A, (4.3)

and the anti-unitary operator on by

= UJU”^ . (4.4)

From these definitions, it follows that p is a -anti-represen

tation on" H with domain V ' = DP 1  T o  seeTiow acts"'on we 'show :gl —  - — - - - - - - p  p    . — - - - - - - -  0 9  - - - - - - j s  —  - - - -

LEMMA 4.2 For T e maps T to its operator adjoint T*.

Proof. Both T I— ► T , and are antilinear isometries on

H It is thus enough to prove the result on.a dense set. Let
B
T = TT(x)fi , X E %  . Then TT

J I = UJU~^n(X)0 = UJtt (X) / = Dm (x^)7 = n(x^)0 .B  7T P  P  P  p  TT

Thus we must show that (n(x)O^)* = n(x*)0^ for all X € "X . For 

n € , r E ]N , we have
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-^3Zw(k)nj^
I  I  e ^ <n,

n > O J  ^  ̂ r en

-=3s3̂ wXJc4Hĵ
I  Z e  (n + 1)"̂  <n.
> 0 J ® ®n

=^3^(kln-=w(rl
E  ^ <nn > O J  u r e en

-^3Ew(k)nj^
, gîsewtr) Z  Z  e <n (a*(e ))n, v"> ?"

n > : O J  ^ ^ e e .n

Thus (n(a*(e ))0 )n = C&*(e ))n = O n  (A(-%)a*(e ))nr T T  T T U r  TT 0 r

and similarly, we have

(TT(a(ê ))fî̂ ) n = = m^w^(A(-%)a(e^))n

For general X € A , we thus get (tt (x)0^)n = fî Tr̂ (A(-is)x)Ti .

Hence for Ç, ri € we have

<%Q(x)ô n, C> = <G^(nQ(A(-%)x)n, ç> = <(iTQ(A(-3s)x)n, o^S>

 ̂ + 
= <n, tTq (a c -35)x ) = <n, itq(x

H H -i-since (A(-^)x) = A(%)x = x , The claim now follows since 7Tq(x)JÎ̂

is bounded • ///.
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How we have ail the ingredients to prove our main result for A .

THEOREM 4.3. The commutants 7T^(X)’ and pg (%) ' are von Neumann

algebras in B(H ) ; -commutants of each other. Moreover^ the operator + 
J induces a spatial anti-isomorphism of either one of them onto the 

other^ that iŝ

Jp^(X)’J = 7Tg(%)'

Proof. 1 . since tt and tt (respectively p and p ) are unitarilyp  p
equivalent via U, and J maps the the domain V- onto V by lemmas 4.1H  TT P
and 4.2, we find that p(%) = J tt(X*̂ )J and J tt(A)'J = p (A) ' .B  B  B  B

2. Next.-we show that p (A) ' = tt (A)’’ = L(H ). Recall from section 3.1B
(1.3) that tt(A)' = R(H ) where R denotes the right von Neumann algebra 

of the Hilbert algebra H . Since tt (A) ' = tt(A) ', every C e tt(A) ' is ofB
the form C (I) = TC, for some e B(H ) and for T e H by thm. 2.6.J- -L +  B
Hence for T e fi we getB

J CJ (I) = J C(T*) = J (T*C,) = C*T 'B  B  B  B  1 1

by lemma 4.2. This equality, together with Ĵ tt (A) ' = p ( A ) then

implies that p (A) ' = L(H^) = tt(A)" , where i-(Ĥ ) is the left von 

Neumann algebra of H .

3. To show (4.5)^ one makes use of the following relationships:

UHg(À)'U'^ = n(A)■ and Upg(À)' =  p (À)•

Finally, by using the equations obtained in parts 1 and 2 of this proof, 

we have

Jtt (A)'J = p (A) ' and hence tt (A) " = p (A) ' . ///.



78

The extension from A to A has become almost trivial now. Recall 

that Tt̂  is a right closed regular representation of A, and as in the 
case of A, TTg and tt are unitarily equivalent.

THEOREM 4.4. The commutant n^/Aj' is a von Neumann algebra which 
satisfies the following:

1. Jtt^ta; 'J = tt̂ ta; " .

2. iJ'̂ 'ïï̂ (A) 'à = tt̂ TA; ' for t e -IR .

Proof. TTg(A)' is spatially isomorphic to t t ( A ) '  = t t ( A ) '  via U.

Since the latter is a von Neumann algebra so is tt (A) ' (see thm. 4.3).p
Thus Ti (A) ' = TT (A) ' and P  P

Jtt (A)'J =  Jtt (A)'J = p (A)' = tt (A) " = n (A) "P  p  p  p  p

This follows again from the previous theorem and 2. now follows immedia

tely by applying Ch.2 prop. 4.4 ///.

In conclusion, we have seen that it is possible to extend Tomita- 

Takesaki theory to a certain physically important class of unbounded 

*-algebras.
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PART B

PERTURBATIONS OF THE DYNAMICS

Chapter 4

PERTURBATIONS OF DERIVATIONS



Bü

4 .1 INTRODUCTION

In this chapter we consider W*-dynamical systems (M,ot) , M B(H) . 

The generator of a is denoted by 6 , and 6 is a *-derivation on M (see 

Ch.l section 1.3) with domain V{6). Let A denote another *-derivaton 

on M and define the perturbed derivation 6 by

6 = 6 + A (1.1)P

We are interested in those derivations 6^ which generate automorphism 

groups of M. Two kinds of problems arise.

1. The convergence problem : What properties of A or 6^ guarantee 

that 6^ is the generator of an automorphism group 3 of B(H) such that 

(M,3) is a W*-dynamical system?

2 . The approximation problem : Let (M,a) and (M,3) be two W*-dynami

cal systems with generators 6^ and 6  ̂respectively. How can the proximi

ty of a and 3 be described in terms of their generators?

Both kinds of problem are addressed in the subsequent sections. The 

two problems are of course closely related and similar methods of proof 

can be applied (at least in the case of bounded perturbing derivations). 

The approximation problem was first considered by Buchholz and Roberts 

who characterised a and 3 in terms of their generating selfadjoint opera

tors. Their result is briefly reviewed in section 4.4. Independently 

of them, I was interested in the convergence problem which is dealt with 

in sections 4.2 and 4.3.

We now turn to the classes of derivations which are considered as 

the perturbing derivations A in the following sections. Let A be a 

bounded *-derivation on a C*-algebra (by Ch.l section 1.3, such a *-deri- 

vation is everywhere defined and continuous). We say A is inner if there
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exists h = h c A such that

A(X) = i[/l , x] for every X E A (1.2)

Note that on von Neumann algebras, every bounded *-derivation is inner 

(see [b&RI] cor. 3.2.47). Inner derivations (respectively the implemen

ting element h e M) are the objects of interest in section 4.2 and in 

Buchholz and Roberts' work.

For linear operators on Banach spaces one is also interested in per

turbations which are no longer bounded. Let T and S be linear operators 

on a Banach space B with domains V(T) and V(S) respectively. The opera

tor S is called J-bounded or relatively bounded with respect to T if 
V(S)^ V(T) and if there exist positive numbers a, b such that

II S (X) II ^ a|| x|| + b|| T(X) II for every X e V(T) . (1.3)

If S is T-bounded, the greatest lower bound b^ of all possible constants 

b in (1.3) is called the T-bound of S. if S is a bounded linear operator, 

then S is T-bounded with T-bound b^=0. Of particular importance are 

those T-bounded linear operators S whose T-bound is less than one, as 

the next two theorems demonstrate.

THEOREM 1.1 ([Kat] Ch. U.l thm. 1.1) Let S  ̂ J be operators on 

a Banach space and S is 1-bounded with 1-bound less than 1, Then

1. S ■/- T is closable if and only if T is closable.
2. If T is closable then PfS + I) = V(l),
3. S f T is closed if and only if T is closed.

Relatively bounded derivations are clearly special cases of the above, 

and we shall meet them in sections 4.3 and 4.4. Another special case 

of the above are selfadjoint operators on a Hilbert space, and for pertur-
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bation theory on Hilbert spaces it is important to know when the sum 

of a selfadjoint and a symmetric operator is selfadjoint. The answer 

to this question is due to Kato and Rellich.

THEOREM 1.2 (Kato-Rellich) ([wei] Satz 5.28)

Let 1 be a selfadjoint (essentially selfadjoint) operator on the Eilbert 

space H. Let S be a symmetric and 1-bounded operator on H with ~\-bound 

less than 1 . Then T -f S is selfadjoint (essentially selfadjoint) on

V(J) (and V(J+S) = V(D).
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4.2 INNER PERTURBATIONS AND THE COCYCLE CONDITION

In this section we treat perturbations of derivations which arise 

from elements in the algebra. For such perturbing derivations we show:

THEOREM 2.1 Let (k̂ o.) be a C*-dynamical system with generator 5 

and A c  B(H). Let A be an inner '^-derivation on A and put = b f A. 

Then b^ generates a one-parameter group of '^-automorphisms p suoh 

that (Â Ç>) is a -dynamical system and || = 0(t).

We prove the theorem by means of 1-cocycles over K. These objects 

are standard in cohomology but they also occur naturally in differential 

equations (see [Ara]). We start our proof with a proposition on these 

cocycles. The idea of the proof of thm. 2.1 is to show that A gives 

rise to a norm continuous cocycle , and the automorphism group 3 

will then be 3^ = y^a^ (t E . We first define the candidate for y :

t
y = T exp(f ds a Aa_ ) for t e  3R , (2.1)t 0 s s

where T denotes the time-ordered product.

PROPOSITION 2.2 Let fA^aJjb be as in thm. 2.2j y as in (2.1)‘ Then

1. t y  ̂ is norm continuous^

2. y^ satisfies the cocycle equation with respect to a :

Yt+8 = t,S E Æ  (2.2)

3. for t z JR ̂ y^ E aut(A).

Proof. 1. Let k = k* denote the selfadjoint element in A which 
implements A. For s e  3R , put A(s) = a^Aa_^. Then A(s) is an inner 

♦-derivation which is implemented by = a^ih) e  A.

Let t_ ^ t (i=l,2,...,n-l) and put
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t t
^  I  à t  . . .  J  dt ̂  A (t ). . . . A (t ) . (2 .3)
TT&O 0 Ô n

We show that t*-> is a norm continuous map on A. Once this is done 

it is easy to see that given by (2.1) , equals for t e 3R .

Let S denote the n-th term in (2.3). For X e A we have: n , t
t t

IIS = II /  d t  . . .  d t  i ( t  ) . . . A , ( t , ) ( x ) | |  I
n,t f 1 0 " " ^

t  t _
S I dt ... dt^ ||A(t )...A(t,)(x)i|0 0 n n 1

< J dt ... dt 2"j,kfj|xj| 5 ^  (2||/l||)"l|x|| 
0 0 ’ (2.4)

t nHence ||ŝ  J| - — (|| 27i||)̂ , and thus the n-th term is bounded in norm.

Similarly it follows that the partial sums ^ S^ ^ are bounded in norm; 

and they converge to uniformly in x , since h is bounded. Hence for

E  > 0 there exists an such that

ll*u) - y ^/dt .../‘ dt (A(t̂ ),..i(t̂ ))(x)ii
n'̂ O ’ 0 0

- I ^  (2|| 41 ) " l|x II < t for N > Nq .
n^N

Hence is norm continuous. But the last inequality also implies that 

t ^(A) E A / since A is norm closed.
We now have all the ingredients required in Araki's set-up of exponent

ials (see [Ara]). Note that Araki's proofs hold for the element k^e A , 
but it is not difficult to generalise the relevant proofs to A(s) = 

i[kg,.] .
Define the time- or dered product T on elements A(t^)...A(t^) by

T(A(t )...A(t )) = A(t )...A(t )i n  ^1

where is a permutation of the integers {1 , ,n} such that
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^7T < . . . < . Following [Ara] section 2 (2.2) and (2.6), by
n n-1 1

using his "right" notation E^, and T instead of T, it is clear that

of (2.3) satisfies

t t
= E  / dt ... / dt —  T(A(t ). . .A(t ) ) (2.5)

t
and hence x = T exp(J ds A(s)) = y for t e 3R .

0 ^

2. For convenience of notation we shall sometimes omit the T in 

front of the exponential, since it is clear how is defined. Note that

t+s t s
y^^g = exp( J drA(r)) = exp(J drA(r)) exp(J drA(r+t))

^ 0  0 0
s

= y exp(| drA(r+t)) , 
0

by [Ara], prop.5. It thus remains to show that

s s
expij drA(r+t)) = a exp(J drA(r)) a_ 

0 0

For this, we first consider finite sums and put 

s ^n-1
T ^4. = / ds ...f ds A(s +t) A(s +t). (2.6)n,s+t 0 0 n n 1

From this definition it follows that

s N
exp(f drA(r+t)) = lim J T ' ,

0 N-X» n=0 ^ '

where the limit refers to the norm limit in A. For fixed n e  ISI, we have

s ^n-1
L , s + t  = /  d s ^ . . .  J ds^

s ^n-1
= f ds^—  f ds a.A(s )A(s ^)— A(s_)a ^^ 1  ^ n t n n-1 1 -t

s Ts n-1
= a ( f ds^—  J ds A(s )...A(s_) )a  ̂ = a S  a  ̂ ,t ^ 1 Q n n 1 - t t  n,s -t
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since is independent of the integration and  ̂ is as in (2.4) .

A similar relationship holds for finite sums of the T's and S's, namely

nlo " “t ‘ J q ®n,s ' “-t

For N -> o", we now have for X e A

s s
||(exp(J drA(r+t)) - a (exp(J drA (r) ) a_ ) ) (x) ||

0 0

N
:exp(/ dr A(r+t)) - I (X)|| + ||( I T^.s+t " “t ®n,s“-t

0 n=0 n=0 n=0
)(X)

J s
+ 1K( I S - expij drA(r)))# II < 2e 

n=0 ^ ' 0 ^

where ^ = a (x) . The last inequality holds, since  ̂T and SL L n^Si"C xî s
converge uniformly, and the second summand is zero. Hence y satisfies 

the cocycle condition with respect to a.

3. Note that y^(A)sA follows from the proof of part 1. For t=0,
*y^ = id follows from the definition. Also, y^(X ) = y^(x)* , since A(s)

is a *-derivation. It remains to show that for X, y z A,

y^ix y ) = y ^ i x ) y ^ i y ) . Let x , y e A , and put = Y_.j. ({/) • Then

d
^  iy^iy_^U)y_^iy))) = y^A(t) (z_^) - y^(A(tXy_^(x) )y_^(T/) )

- y ^ i y _ ^ i x ) A i t ) y _ ^ i y ) ) ,

by the derivation property of A(t) and by [Ara] props. 2 and 3 which deal 

with derivatives and inverses of exponentials respectively. The above 

implies that

^  Yt(Y_t(%)Y_t(#)) = 0 for t E m  ,

and hence y^ixy) = y^ix)y^iy) follows immediately.

Putting y =1 , one observes that y^(7) = J . And this now implies that 

y^ is a *-automorphism of A. ///.
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Put 3^ = The proof of thm. 2.1 follows now easily from the

following lemma.

LEMMA 2.3 is a C^-dynamical system; 3 is generated by 6^
and |'|3^ - aj| = 0(t) .

Proof. Let X E A, then 3^(Y) = y^&^(%) £ A, since both a and y

leave A invariant. From the group property of a and the cocycle pro

perty of y it is easily verified that 3 is a group. To check the con

tinuity of 3 , let t e OR , X E A, then || 3^(%) - X || = ||y^a^(X) - x|| ^
= ||y.j.(X) - x|| + II y^(a^ - id) (X) || -> 0 as t-K) , since a is strongly con

tinuous and y is norm preserving and norm continuous.

Next consider X e D( 6), then

t
(3. - a ) (X) = f ds3 (6 - 6)a. (X).t t ^ s p t-s

The right hand side is well-defined, since P (6 ) = #(ô) and since a

leaves P(6) invariant (because and 6 commute on P(6) ). Thus

t
||(B - a J  (X) II = II / dsg Aa (X)|| Ê |t|sup || Aa (X)|| ^ 2 | t|||(l ||||)C ||, (2.7)

^ ^ 0 S t s  o^s^t ■ ^ ®

since A = i[A,.] is a bounded inner derivation (see the beginning of 

proof of part 1 of prop. 2.2). But V{6) is norm-dense in A, and 

||(ŷ  - id) (X)|| = II (3^ - a^) (X)|| with t h- y^ a norm continuous map. It 

follows that (2.7) can therefore be extended to the norm-closure of 

P(6 ), that is, to A . ///.



88

4.3 PERTURBATIONS AND THE TROTTER PRODUCT

In this section we shall employ a different technique for proving 

that perturbations of *-derivations are generators. We first assume that 

A is a bounded *-derivation (see (1.1) of section 4.1) and show:

THEOREM 3,1 Let (k̂ o.) he a C*-dynamioal system with generator 6 . 

Let (Ù he a faithful a-invariant state on A with GNS-representation 

Let h he a hounded *-derivation on B{H]such that AnfAJ ^ t TAA 

Then 6^ = -no6 + à is a ^-derivation cn it (A) which generates a q-weakly 

continuous group of ’̂-automorphisms of T\(k)".

The proof of thm. 3,1 follows from the next three lemmas.

LEMMA 3.2 Let A £ B(H) he a C*-algebra, and let L be a bounded 

*-derivation on B(H), The following are equivalent.

1. L(x) i k for X € A.

2. A - A for t i JR.

Proof, Recall from Ch. 1 thm. 3.2 that A is bounded if and only
. r t A . .if = e IS norm continuous.

We first show 1, => 2.

Since A(x) ( A for every X € A , it follows that A^(x) € A for x € A. 
Polynomials in A converge to y norm for every x € A , since A is boun
ded. Hence y is the limit in norm of a sequence of elements in A , and 

thus Y^(%) ( A , for x E A and t € 3R.

2. « 1.

From Y^fx) ( A for X ( A , it follows that ^Y^(x) - x) € A for 
X € A and t > 0. Recall that A(x) = ^ (Y^fx) - x). Since y is

norm continuous, this limit exists in norm for every x € A , whence it 

follows that A(x) ( A ///,
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As in the previous section, we now have to show that = e p 
exists and is connected to e^ and e . Here we proceed via the

implementing selfadjoint operators.

LEMMA 3.3 The -derivation 6^ is implemented by a selfadjoint ope
rator oyi H,

Proof. Let H denote the selfadjoint operator which implements 6
on H (such an H exists by Ch.l (3.3) and it is selfadjoint by Ch.l thms.

1.3 and 3.1). Next observe that A is bounded, and thus by [sak] thm. 

4.1.6, there exists an k = k* e B(H) which implements A . Put = H + A, 
then is selfadjoint with P(H^) = V(H) by thm. 1.2. Furthermore, let 

6^ = 1TOÔ , then 6^ is a *-derivation on tt (A) satisfying ô^(7t(X)) = tt(ô(X)) 

for X E 0(6). Let X c 0(6), % £ P(H). it follows that tt (X) Ç s 0(H) , 
since V{6) = V(6 ) , P(H) = P (H ) and since V(ô )#(H) s. P(H) . Hence 6P  P  TT p
is spatial as the following calculation shows:

6 p ( n ( x ) ) C  =  ( 6 ^  +  A ) ( t t(x ) ) Ç  =  i [ H  +  A , t t(x ) ] ç  =  i [ H ^ , T T ( x i l ^  . / / / .

LEMMA 3.4 There exists a o-w&akly continuous one-parameter group 

of *-automorphisms p E aut(T\(A))" such that = e^^p (t  ̂IR).

itHProof. Since of lemma 3.3 is selfadjoint, = e p is a 

strongly continuous group of unitaries on H by Stone’s theorem for 

t (]R. We want to show that V^n(A)"v* = tt(A)".

For this purpose we apply a theorem by Trotter - a proof can be found 

in [Wei] thm. 7.40 - which states that for selfadjoint operators S,T , 
S +.T the following relationship holds;

git(S+T)  ̂ (gi(t/n)S^i(t/n)Tjn (t ( m) (3.2)
n-H»
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where the limit denotes the strong limit. Applying Trotter's "product 

formula" to , we get

= s-lim _
n-^ .

Consider the term v . = ^i(t/n)H^i(t/n)A,  ̂ Let t € ]R , thenn,t

(v + ) " n ( A ) ( v *  y  = (V ^tt(A)u* (v * )n,t n,t n,t n,t n,t n,t
n-1 _ / *  / * \n-l

(3.3)
= (V )̂  ^n(A)(v* )̂   ̂= ... = n(A),n,t n,t

since H and k generate automorphism groups of tt (A) by assumption and

by lemma 3.2 respectively. Let g  ̂ = (v > (u* _) ̂  . Then gri/t n /1 ri/t n
extends to a o-weakly continuous * - automorphism of tt (A) " • For t e 3 R  ,

let g^ denote the o-weak limit of the sequence g This limit exists

o-weakly, since the (v .)^ form a strongly convergent group of unita-n , t
ries on H, and hence

g = o-lim (v )" . (v = e^^^p . e ^^^p .u n ■ u n / un-x»
itHThe group property of g follows from that of the unitary group e p . 

Furthermore, for y e tt(A)" and t e 3R , g^(^) e tt (A) ", since tt(A)" is 

o-weakly closed and g is o-weakly continuous. Therefore g is a o-weakly 

continuous group of *-automorphisms, of tt(A)" with ^  g^|^_Q = 6 . ///.

This completes the proof of thm 3.1. We now turn to relatively 

bounded perturbations and apply the above-mentioned techniques there.

THEOREM 3.5 Let {A,aJ be a -dynamical system with generator 6. 

Let ui be a faithful a-invariant state on A with GNS-representation 

Let L be a norm-densely defined norm-closed ’̂-derivation on A such that 

A has a dense set of analytic elements and such that V(h) '^V(6). 

Let S and H denote the implementing operators of A and 6 on H
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respectively with VfSj r? V(Hj, Asswve further that ihçire exist constants 

a,h > 0 and 0 < c < 2 such that for every C c V(W) the following are 

satisfied:

I I  S ç j l  =  e | |  H ( | |
(2.4)

2. II = a2)”n.'|l Hç|| n=l,2...

Then 6^ = 6 A generates a o-weakly continuous one-parameter group of 

-automorphisms of T((k)",

We first concentrate on A and S, which are no longer bounded.

PROPOSITION 3.6 S is essentially selfadjoint and 

=  TTfAj" for t  ̂JR.

Proof. We first show that the symmetric operator S is essentially 
selfadjoint, thus has a selfadjoint closure (see section 1.1). Recall

that for a linear operator T on H and for n c K, (adS)Tp = [S,TJn . .

Using the bounds given in (3.4), it follows that the analytic elements 

of H/ denoted by #*(H), are contained in P^(S), the analytic elements 

of S , by [Far] thm. 16.4. But H is selfadjoint, and hence by [wei] thm. 
8.31 Folgerung 1, the set iH) is dense in H. It follows that the sym

metric operator S has a dense set of analytic vectors, and, applying 
Nelson's theorem to $(see [Wei] thm. 8.31 or [r&SH] thm. X.39), we find 

that S is essentially selfadjoint (note that we do not claim here that 

S ( S )  is essentially selfadjoint). Let S denote the selfadjoint clo
sure of S. Then = e^^^ . e defines a o-weakly continuous group

of *-automorphisms on B(H). Let X = ^  ”̂tIt=0 denote its generator.

We want to show that y^(7T(A)")c tt (A) " . First note that X restict- 

ted to the set n(#(A)) equals t t o A  . The representation tt is faithful 
and thus all properties of the derivation A with respect to A apply to 
t t o A  and t t( A ) .  Put -A^ = t t o A  , then A^(n(x)) = t t( A ( x )) for every x e
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P(A). Since A is a *-derivation on A, Xu (V(L))iZ-/n (A) . Next let D^(A) 

denote the set of analytic elements of A. Fix x e P^(A). Then there
exists t > 0  such thatX

IN n
Y ^ ( t t ( X ) )  "  I ^  A ^ ( 7 t ( X ) )  II ^ 0 as N -J- “ for|t|< t^. (3.5)

N nIn=0
Since A is a derivation on A, A(X)e A for every X e V(A); and hence the 

norm limit •ŷ (tt(x)) in (3.5) belongs to tt(A) for |t| < t^. Furthermore

\  ^ &  *%("(%)) = I &  , (3.6)n=0 n=0

and since A is a norm-closed operator on A, y^(tt(x)) e u(V(/\)) for |t|

< t^. Because A^ and y commute on tt(P(A)) and because y is norm pre

serving, a repeated application of A^ as in (3.6) shows that y^(ir(X)) is 

analytic for A^ for |t | < and radius of convergence t^. Hence for

I s I < y^ (y^ ( tt (X) )) e tt(A) for |t|< t^ by (3.5). But y^ is a group

and it thus follows that

= y^,(n(x)) e tt(A) for |t'| < .

For general t e , y^ (tt (x) ) e tt(A), since one defines

y^(TT(x)) = (y^y^)"(n(x)) for n > 2^^^
X

This shows that for x e V^(A) , y^(n(x)) e tt(A) for every t e HR .
Since A has a dense set of analytic elements, y^n(X) e tt (A) for a norm-

dense set of elements of A. To show that y leaves it (A) invariant, it is

sufficient to show that || AA(X) + x|| - ||x || for X e P(A) and A e ]R

by Ch.l thm. 3.3. But this last property of A can be derived from the

corresponding property of X , since X is the generator of y and since

V(X) 2  uV(A). Hence A is a generator and y^ = e^^ leaves tt (A) invariant.

The conclusion of the proposition follows now easily. ///.

LEMMA 3.7 The '^-derivation 6 is implemented by a selfadjoint 

operator and (A)"e = tt fAj" for t  ̂JR ,
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Proof. The operator S is symmetric and H-bounded with H-bound 1

(by (3.4)). This guarantees, by thm. 1.2, that = H + S is selfadjoint

on P(H). Since P(A) Z" V(6), 6^ = 6 + A is defined on V(6^) = V(6),
i t ( X )  leaves V {H ) invariant for every X e V {6 ) and P P

w(6p(X))S = 7t ( 6 ( X )  + A(X))G = i[H + S, n(X)]S (3.7)

for X e V (6),  ̂e P(H), whence it follows that 6^ is implemented by

a selfadjoint operator. Note that 6 is closable by thm. 1.1. Let 6P P
denote its closure, then (3.7) holds for ô , too.P
Put 3^ = e p . e p for t e IR . It remains to show that 3 e aut(A)".

As in the proof of thm. 3.1, this follows by applying Trotter's product

formula (3.2) to H , and thus e^^^p = s-lim ^^/n)H^^i(t/n)n
^ itH -itH^”̂for t E ]R . Recall that e ïï(A) e = it (A) by assumption, and

itS . -itS = IT (A)" by lemma 3.6. Hence the desired result may be e t t ( A ) "  e
derived in a fashion similar to that given in the proof of lemma 3.4. ///.

This completes the proof of thm. 3.5.
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4.4 PROXIMITY OF AUTOMORPHISMS

In this final section, we consider perturbation of a dynamical sys

tem as an approximation problem. Let (M,ot) and (M,3) denote two W*-dyna- 

mical systems. We are interested in the relationship between a and 3 
in terms of their closeness for small t. This study was originated by 

Buchholz and Roberts whose results are quoted in prop. 4.1.

PROPOSITION 4.1 [BuR] Let (M,a) and be W*-dynamical systemsj

= e^^^ . e j t̂ ~ ^ for t i JR. Then the following

are equivalent.

IIcî - p̂ ll 0 as t 0 . (4.1)

2. There exists a unitary u and a selfadjoint k  ̂ both in , such

that Ki =  uHa + H  for ^ E V(K).

The proof uses the cocycle which is norm continuous,
and hence inner, since M is a von Neumann algebra, and condition 1 is
shown to be equivalent to the existence of a norm continuous cocycle 

of unitaries in M such that 3^ = adu.̂  â .

A partial extension of this result was obtained by Olesen and Peder

sen for the case of a simple C*-algebra, which we present here for the

case of a simple C*-algebra with unit (see [o&p] cor.8.2)

PROPOSITION 4.2 [O&P] Let (A,cl) and (A^^) be -dynamical sys

tems where A is simple and contains a unit. If

||(f)C?a.̂ - 11 0 VLS t 0 (4.2)

for every pure state (j> on A, then there exists a norm continuous a.-2-co- 

cycle of unitaries of A such that 3^ = ada^ for t z JR .



95

We shall be concerned with groups of *-automorphisms which do not 

converge to zero everywhere on M, as in prop. 4.1. As a consequence, our 

generators will no longer differ by a bounded operator onP'(<^) and the 

"twist", which led to a in the case of Buchholz and Roberts, is no longer 

of this nice nature. As in Ch.l section 1.3, we shall assume that the 

unit element in M belongs to the domain of the derivations unless other

wise specified. We show the following.

THEOREM 4.3 Let and be separable -dynamical sustems

with generators 8^ and 6^ respectively. Fut A  V(à^).

Assume that 

there exist >.0 and 8^ > 0 such that for 0 ^\t\,\s\^ 8 
(4.3)

and for x e | ts | |ix|| .
Then the following ore equivalent. 

1. For Cj > 0 there exists 6̂  > 0 such that for 0 - \t\ - 6 and 

for X e

II (â  - I I  - 2̂ II ^ 1 1  • (4.4)

2. There exist a bounded operator r on M mapping D(8^j into #(8^)

and a linear operator A which is bounded on such that

Y * ’a. B = is hounded on M

b . = AF - ! lift

c. for Eg > 0 there exists > 0 such that for 0 ^ \b\ - and 

for X E

llrâ r - ra^;rx;|l ^ e^H X|| . (4.5)

If these conditions are satisfied, then the operator

P = 18 - 8_r (4.6)a 3
is bounded on and extends to a r8 -bounded operator on V{6 J.a CL
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Before proving the theorem, we make some general observations about 

automorphism groups on M, which are used in the proof of the theorem. 

Let (Mfx) denote a W*-dynamical system with generator A. Put

= { % E M : II (T.J. - id) (X) II -^0 as t ^ 0 } . (4.7)

Then is o-weakly dense in M by [ped] p.250. Furthermore

P(A) = { X E  M : sup Y  I I  - id) (X) || < ™ } (4.8)
0<t^l

by [b &R i ] p.182, since i is a C*-group in their terminology. Clearly, 

P(A)ÇM^^ and both sets are invariant under x .

LEMMA 4.4 Let (M,aJ and he -dynamical systems which satis

fy (4.3). Then for s e JR, ^  where is as in the theorem.

Proof. Clearly a^/%) £ P(ô^) for every s £ 3R and X e  P(ô^). it 

thus suffices to show that leaves 0(6^) invariant. Let be

ae in (4.3) .Let |s|,|t| ^ 6^ and let X e  #(0^) with ||x|| ^ 1. Then

11(6̂  - id)a (X) II ^  II (gl a - a 3 ) (x)|| + ||ct (3^ - id) (X)||t S u S S * C  s * c

-  |s t le^+  II (B^ -  id)  (x)||

holds by (4.3)̂  since a is an isomorphism. And therefore one has

sup E  II(3 _ id)a (X) || ^ sup [ | s | £ q + E ||(3 id) (X) || ] < »
0<t^l ^ ^ ® 0<t^l ^

by (4.8), since X e V {6 ). It follows that a (X) e  P(8 ) for |s| ^ 6^
nFor arbitrary s e  JR , put = (a^y^) where n > ( s / 6 q ) and then note

that (a . )^M^ S {a . )^ ç .. .Ç . ///.s/n s/n

Next let a and 3 be as in the theorem and define

Y = 3 a  ̂ for t E  ]R . (4.9)' t t -t
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LEMMA 4.5 For t z IR, is a ’̂-automorphism of ̂ ; 1 is a '̂-weakly
continuous a-l-cocycle and it is a group if and only if ̂  and 3 commute.

yFurthermore, if a and 3 satisfy (4.4), then for x  ̂ with ||x ^  ̂

I U y ^  - id)U) I I  ^  i f  I t  I ^  '

Proof. The automorphi&n-\ property of Y follows immediately from the 
definition (4.9), since a and 3 are automorphisms. The cocycle identity 

(see prop. 2.2) follows from (4.9).

Now assume that Y is a group; then for X e M, Y.j__j_ (X) = Y.̂ Y (X) . Take

X = a^(0 for t e JR and ^ e M . Then

= G_sTsTt<%) = .

This implies that a and 3 commute. The reverse direction follows along 

the same line.

Next observe that for X e M

II (Ŷ . - id) (X) II = II (a^ - (X)̂ | (4.10) .

follows from the definition of y, too, since ot and :3 are norm preserving.

Fix > 0. Let X E with ||x || ^ 1. Then for |t| ^ 6^, || (Y_̂  - id) (X)||

^ E^ by (4.10) and (4.4) .

To show that y is o-weakly continuous, let X e M , t £ JR and

|4i(Y^ - id) (X) I = |$(a^ - B^(X) | ^ |*(a^ - id) (X) | + |(|,(6̂  - id) (X) | -<■ o

as t -> 0, since a and 3 are o-weakly continuous. ///.

COROLLARY 4.6 In the notation of the theorem^ let xe and s, t 

z M  . Then the following are equivalent.

2. I I r - ^̂ â ) ( X)\\ = 0(st) .
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We now show that 1 implies 2 of theorem 4.3. Fix 0 < < 1.

By (4.4) there exists 8^ > 0 such that for X e with ||x ||- 1,

l|(“t - for |t| ^ 6^.

By (4.3) there exists 8^ > 0 corresponding to the . Put

T = min {8^ , 8^} , 

and define

1  T  T
r = r  = —  j ds Y = —  j ds 3 a . (4.11)T T & ?S T ̂

LEMMA 4.7

1, T is a linear contraction on M , thus uniformly continuous.
2. r  maps leaves invariant.

1 TProof. 1. Let X € M , then ||rx|| = 11- / dsy (x)|| 5 Bup 11y_(x)
■*0 ® ossrt

- 11x11/ since Y is isometric. Thus F is uniformly bounded, and hence 

uniformly continuous.

2. We first show that (see (4.7)). Let X e then using

T T+t
3. /  ds3 (X) = /  ds3 (X) ,
^ 0 ^ t ®

we have

T
J 
0

IkPt - =11 ^  ; (Pt - id)PsO_2(x)ds

T + t  T= ||1 ( / p̂ a_̂ â (x)ds - J x)ds)||

= 111 ( Y a +(x)ds - J Y^(x) ds + / Y (a -id)(x)d̂ l| 
* s t 0 s t
T + t
J 
%

2 t  . T - t5 ^  11x11 + ̂  ll(a ̂  - id)(x;

= Y  (2 11x11- II (a^ -  id) (X) II ) + i\ (a^ _ id) (X)|| 0 as t ̂  0



99

since % E M .

Next let X e  V(ô^). By the above calculation it follows that

sup i II (6 -  i d ) r ( x )  II < » ,
o<t^i

since the first term above becomes independent of t and less than 4 || X || /t 

while the second term is finite by (4.8). This implies that F(X) e  V(6^).

It remains to show that is invariant under T. Because of the ar

gument above, it suffices to show that T(X) e  P(6^) for X e  . Let

E and note that
T
/0I I  Y  r ( x )  I I  = 1 1  7 /  d s  Y.Y=(x) I Ir I Q r s

-  H  T  }  d s  Y t + s ) ( x ) l l  +  I I  ^  } ^ Y .  (X) II
0

- sup I I  (Y Y - Y )(X)|| + I I  i T  Y (X)ll
O^S^T ^ ® ^+S T S

Put S = sup II (y Y -  Ŷ _, ) (x) II . Then S ^ En I ^ H U  II by (4.3) and O^s^T t s t+s u
cor. 4.6, if |t|,|s| ^ 6̂  (with e^ and 6^ as in (4.3.)). Hence

T + t  T
II (Y -  i d ) r ( x ) | |  ^  II -  ( /  -  /  )ds y W\\ + s

T  t  0  ®

T  +  t  t=  1 !  7 (  /  -  /  ) d s  Y g C X )  I I  +  s

-  I I  X  I I  +  ^ o l t l x l l x
By (4.10) it now follows that

I  (a^ - id)r(X) II ^ II i  (a^ -  e^)r(X) II + II i  - id) F (X)

-  7  I h  I I  +  v i h  I I  +  I I  7  -  id )F(X )  II ,

and therefore sup || ^  (a - id)T(X) || < °° follows since T(X) e  V{6 ) .
0<t^ l   ̂  ̂ P

///
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We now turn to the linear operator A and show:

PROPOSITION 4.8 There exists a linear operator A on M which maps 

its domain into and satisfies AT = FA =  ̂[̂ĵy .

Proof. We construct A as the limit of V (7 - I’)^.
n^O

Put A^ = 7 - r • The operator is uniformly bounded on M, hence con

tinuous and leaves invariant, since r enjoys all these properties by 

lemma 4.7. Thus the same is true for the operator A^ . Furthermore,

if X e M'Y , then || A^(X) || ^ e?H X || $|| x|| since || r(X) - x|| =
1 T N

- ~ J  ds I I  (Yg - id) (X) I I  ^ ê ll x|| by (4.11) . Now put A^ =  ̂ A^ =

= (7 - F) . One shows similarly that the partial sum operator A
n=0 ^

is continuous on M, leaves M^ invariant and is bounded on M^ by

N N+1I|A„(X)||  ̂ I ||a;(x)|| ||x||<-4^||x||
n=0 1 1

for X e M^. Note that for X s M^ {A^(X)} forms a Cauchy sequence

in M, as the following argument shows: Let X E M^ with || X || ^ 1 , and

let M > N. Then

MI I  A (X) - A (X) I I  = 'I -^0. as N , M since < 1 .
^ ^ n=N+l

But M is complete, and therefore the sequence (X) } converges to a limit,

say y, in M. Put

N
y = A(x) = lim A (X) = lim I A^(x) . (4.12)

N ^  N->« n=0
YThis process defines a linear operator A on M .

To show that A is the inverse of F on M^, note that 

N N
A r = I (1 - r)"r = I r d  - d "  = fa = ) - (J - d

n=0 n=0

and hence for X e M , we have

N+1
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TA(X) = r dim A (X)) = lim FA (X) = lim A_F(X) = AF(X) ,N  N  NM - H w

since F is continuous and leaves Aî  invariant and since the sequence 

{A^(X)} converges to A(X) uniformly for X e . The above equality also 

implies that A and F commute on hï. And since ( 7 - F)^^^ 0 uni

formly on iVf, we have for X c

lim A F(X) = lim (7 - (7 - F)^"^\x) = 7(X),

and hence FA = AF = 7 . ///•

So far we have shown that 2b of thm 4.3 holds. We now turn to 2c 

where assumption (4.3) is required.

LEMMA 4.9 Let (M^a) and fMLfJ satisfy (4.2). Then 2c of theorem 4.2 

follows.

Proof. Let > 0. Put 2̂ - min{<5^ , — } where 6^ corresponds 
to via (4.3). We show that for X e and for |t| - ^2

II (Fa^ - aj) (X) II ^ E^llx II .

Let X e and let |t| ^ 6^ . Then

1 T
(Fa^ - a^F) (x) || = || - J ds(y^a^ - a^y^) (x) ||

= II7  / ds(6^a^a_^ - a^6^a_^)(x)

- II ‘®s“t - )

For 0 - s - T, put = a_g(X). By lemma 4.4, y^ e and hence 

II (3gCx̂  - a^3g) (Wg) II ^ &o|ts| \\yj\ = e^|ts| ||x|| , by (4.3) . Since t ^ 5^

sup ||(3 a - a 3 ) (X) || - e^|t|T||x|| . And hence for |t| ^ 6 , x e O^s^T ' s t t s u 2

we get

(Fa^ - »t^^ ^^Hl ^ Ê . a^.T.llxW = ' ///.
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It only remains to show that the difference between the operators

FÔ A and 6 is bounded on . a 3

PROPOSITION 4.10 For x e , || r6 A(x) - 6„rxJ|| ^|x|| (k <

Proof. For t e IR , put

= -3^Fa_^A . (4.13)

We will show that on the difference between F6 A and 6_ equalsa 3
d I Y^  ^t*t=0 that for x s M , this operator is bounded.

First recall from prop. 4.8 that on A is the uniform limit of A =
N n ^

=  ̂ (7 - F) f by (4.12). Since the operators A^ are bounded, we have
n=0 

for X E

I I  A(X) I I  = I _ ||x I I£l

by prop. 4.8 , with 0 < < 1. Since A is defined and bounded on

and a, 3 and F are uniformly bounded on M, the last calculation shows 

that T|̂  is defined and bounded on for t e ]R . Next observe that for

t, r e IR

T , T+r
/0

and therefore

T+r T
/0

1 1 T+r T
- F  (r^+r -  ̂ 7 ds Y^+s " / Yt+s^^

^  T + r  r
=  -  _  { 7 ds Yt+s - / ds Yt+g}A .

T 0

The last equality implies that is a-weakly differentiable, since a 

and 3 (and hence also y) are. Furthermore, its derivative

^  \  ■ T

exists a-weakly, being the o-weak limit of the- above. Let B denote this
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O-weak limit for fh), then

B = o-lim i (?) - id) = = - id) A , (4.14). „ t t dt t t=0 T  T  - TU“HJ

since = id |^y . Clearly, B is defined on M^. Now let x e M^. Then 

the following is true for 0 < t e IR

i  r(a^ - id)A(x) = ^  ^  (n^ " id)Ta^A(x) (4.15)

since o^(M^) c  and AT |^y = 7 |^y by lemma 4.4 and prop. 4.8 respectively.

The o-weak limit for (4.15) exists as t ^ 0 , since is a-weakly dif

ferentiable and a and 3 are a-weakly continuous. Hence for X e and 

for (f) c M*/ this limit becomes (by (4.14))

*(ra A(X)) = (|)(6 (X)) + *(B(X)). (4.15)a p

To conclude that Pô A(%) = 6 (X) + B(X) for X e note that M is sepa-a 3
rable. This implies that every (J) e is of the form (|) (. ) = <.^, ç> for

some vectors ç e 77 . But these vectors are clearly separating, and

it thus follows that for X  e  A|Y

F6 A(X) = 6^(X) + B(X) . a 3

It remains to estimate B. Let X E with ||x|| 1. Then

SAx) - F6 A(x) II = II - (g a - id)A(x)3 ot " " T  T  - T

=  I I I  -  «x ' A' x ' l l

by the above estimate for A and by (4.4). ///

This completes the direction 1 =>2 of the proof of thm. 4.3. The 

converse is shown in the next proposition.

PROPOSITION 4.11 Let and fM,3J be separable VJ*-dynamical sys

tems as in theorem 4.3 and assume that 2 of theorem 4.3 holds. Then 1 follows.
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Proof. We first show that for X c , ||( 6^1 - (X)|| Q as t ->,0.

The conclusion of the proposition will then follow easily.

We start by showing that for x e i. and ii. below are equivalent.

i. I| (Pô A - 6 ) (x) II - k J| XII (some k < “) ,
• ' a  3 1" 1 (4.17)

iL II (FÔ - Ô F) (x) II - kj| XII (some k < «)." a  3 2“ " 2
To see that these two statements are equivalent, let x e M^. Put y = F (x) 

Then A(y) = X, since F and A are inverses of each other on by assum

ption. Assume i. Then

(FÔ - 6 F) (X) II = II (FÔ - 6^F)A((/)|| = II (FÔ A - 6J(y)a 3 " " a 3 ot 3

since F is a bounded operator. The other direction can be shown similar

ly.

Next observe that for groups of *-automorphisms p and a with genera

tors R and S respectively, the following relationship holds for every 
X E M for which the right hand side is defined ( R and S are un
bounded and hence not everywhere defined). 

t
Pt - °t = 7 ds p^(R - S)Ot_s .

Applying this formula to = 3^F and to , one obtains

t
= / ds e^(6^r - r 6 j a ^ _ ^  . (4.18)

We now want to estimate (4.18) for elements in . Note that P(F6 )a
= Vis ) since p is bounded, and P(6 F) = { X e M  : F(X) eP(6.) } $ a 3 3
Vis ) f since r maps ViS ) into #6 ) by assumption. Furthermore, for a a 3
X e WE have

t
II (B^r - rc^)(x)|| = II / d s  B^(6gF - )Ot_s(x)||

^ |t| sup II B (6ar - P6 )a^ (X)
O^s^t s B a t-s
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The last expression can be further simplified using (4.17)^ For fixed 

s e IR one gets

H G s ' G g r  -  ■ ' V V s ^ O I  =  II ( B g r -  r 6 ^ ) a ^ _ ^ ( x ) | |  ^ k j l x | |

for some constant < °° , since a and 3 are isometries. This last 

inequality does not depend on s.

Thus for X e m 'y we get

II (6^r - ra^) (X) II ^ |t|k^||x|| . (4.19)

To show thatjla^ - B̂ |->- 0 on let X s Put y = MX). Then

X = TA(X) and

II (a^ - 3^) (X) II = II (a^ - 3^)rA(X) ||

^ II (a^r - ra^)A(X)|| + II (ra^ - B^DA(X)|| .

Since A is bounded on and leaves invariant, the first term goes 

to zero as t -> 0 by 2c of thm. 4.3. The second term goes to zero by 

(4.18), and therefore |^^ - 3j| on M^ becomes small for small t. ///

This concludes the proof of the equivalence of 1 and 2 in thm. 4.3. 

If r and A are as in (4.11) and as in the proof of prop. 4.8 respective

ly, the operator P6^A is in general not a *-derivation since F is stri-
* *ctly positive, that is, F(X X) > F(X)F(X ). This is true since for

X e M

T T

0 0

T  T
/ ds /
0 0

Now note that |y^(x) - Yg(x)| = 0  if and only if y^(x) = y^(x) for s ,

r E [0,t] if and only if = 3^ for 0 ̂  |t| ̂ t .

2(F(X*X) - F(X*) F (X)) = —  / ds / dr (y (X*X) + y (X*X) - 2y (X*)y (X))
t2 0 0 s r r s

1 T T 2
= - 2- / ds / dr|y (X) - y (X) I ^ 0  .T i i ' r ' s '
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Because of the positivity of P,there is no loss in generality by con

sidering the operator P = P6^ - ô^P instead of the operator B = P6^A 
- By (4.17) P is bounded on M'Y if and only if B is bounded on M'Y .

Furthermore P can be extended to V {6 ). Unless M^ = #(6 ), P will noa a
longer be bounded on V(ô^), in general, however, it is still Pô^-bounded, 

as the next lemma and proposition show.

PROPOSITION 4.12 Gfô J and G(S ) are norm-closed subspaces fnMxMa p
and Pô^ and ô^P are norm-closed operators.

Proof. We first show that G(ô^) is norm-closed in M xM .

Let (X ,& (X )) be a norm-convergent sequence in G(g ) whose limit {X ,y) n u n a
belongs to MxM . Clearly (X̂ ) is a a-weakly convergent sequence. But 

is a-weakly closed (being the generator of a), and hence X e P(6^), 

by the uniqueness of the limit. Furthermore cj)(ô̂ (X)) = f (£/) for every 

0 E M^ . It remains to show that 6^(X) = y. This follows since M is

separable. Recall that each f e M^ is of the form = <.^,n> for Ç, n

E H. Hence (o^ (X) - y) = <(6^(X) - ^)E, n> . Since these vectors are

clearly separating, it follows that 6^(X) = , and therefore G (6^) is

norm-closed in MxM , By Ch. 1 section 1.1, this also implies that 6^ 

is a norm-closed operator. Next we want to show that P0^ is a norm- 

closed operator. 'P(rô^) = P(ô^) , since P is a bounded operator on M.

It therefore follows immediately that Pô^ is norm-closed on P(6^), since 

6^ is norm-closed and P is uniformly continuous.

In a similar fashion one shows that G (6 ) is norm-closed in MxM .p
To show that 6 P is a norm-closed operator, note that f’(ô^P) = { X c M :p p
P (X) E P(6g) } . In genral, P(ô^P) But ô^P is norm-closed on

its domain as the following argument shows. Let (X , ô-P(X^)) be a normn p
convergent sequence in MxM with limit (%,^). Then (X^, P(X^^) conver

ges to (X,Z) E MxM in norm, X E P(P) = M and P(X) = Z by the uniform
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continuity of T . Hence (r(X^), is a norm convergent sequence

in MxM with limit {Z,y). But Ô is norm-closed, and therefore Z e #(ô )p  P
and Ô (z) = y . However, since Z = F(X), it follows that X e 'P(6 F) and p  P
6g(Z) = 6gF(X) = 1 ^  6gF(X^). ///.

LEMMA 4.13 ic Fô -hounded on V(6 ).6 a a

Proof. By lemma 4.7, W (ô ) s  V(6), whence P(a_r):> V (Ô ) follows.a p p a
By the previous proposition, Fô^ and 6^F are norm-closed operators, and 

thus G(F6^) is complete in the graph norm defined by || . || ^ = || . || +|| Fô^.

We now define a new operator C from G(Fô^) into M by

C: (%,F6 (X)), =>6 F(X) .a 6

C is clearly linear, and we now show that it is norm-closed.

Let (x fF6 (x ), S T (x )) converge to (x,^\Z) in norm. Since G(Fô ) is n a n  p n a
norm-closed, the limit ix,y) of the convergent sequence (X^, r6^(X^))

belongs to G(Fô^). In particular, this implies that x e P(ô^F),

and since 6 F is a norm-closed operator, it follows that 6 F (X) = z.p P
But this implies that C is closed. We can now apply the Closed Graph 

theorem which provides us with a constant c > 0 such that

II 6gF(x)|| - c||x||g = c|| X II + c|| F6^(X) II forxeP(ô^).

It now follows easily that

II F6a(x) - 6^F(x) II ^  a||x II + b|| Fô^(x) II for xc V{6^) .

The last calculation with a = c and b = c + 1 gives the required result,

///.

We have thus shown that 6.F is F6 -bounded on V{6 ) , and hence the6 a a
proof of thm. 4.3 is complete.
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So far we have not made any assumptions about the 'size' of ,

It certainly is not required that Al'Y be o-weakly dense in Ai. Clearly 

m 'y contains the identity, since the domains of 6^ and 6^ do. If M^ con

sists just of multiples of the identity, theorem 4.3 is trivially true 

since a^(7) = 3^(7) = 7 for t £ IR , and <5̂ (7) = ^^(7) = 0. However, 

if m 'y = P ( 6 ), we get the following.

COROLLARY 4.14 if s  V(6̂) and the assumptions of theorem 4.2
holdj then B and P are hounded on

On the other hand, if one replaces the 'almost commutativity' (4.3)

by the assumption that a and 3 commute, theorem 4.3 can be strengthened

in the following way:

COROLLARY 4.15 Let and he separahle W’̂-dynamioal sys
tems which satisfy (4.4) or (4.5) and assume that ot and 3 commute on M. 
Then B - Ŝ is a ̂ -derivation which is defined on M̂  ̂and is houn
ded there.

Proof. If r is given by (4.11), then a^F = Fa^ for t e IR follows

since a and 3 commute. Furthermore, a t>(6 ) ^  V(6 ) for t e IR . Fromf 3 3
the commutativity of F and a (and hence also of A) one deduces that

6^ commutes with F. It thus follows that = Fô^A . ///.

We conclude this section by giving an example of two generators 

H and K whose "twisted" difference is bounded on P(H) n P(K), but for 

which P(H) n V(K) is not dense. This kind of situation is clearly not 

covered by Buchholz and Roberts' theorem (prop. 4.1), while it neverthe

less fits into the framework of theorem 4.3. The example was inspired 

by one given in a paper by van Daele [Dae].
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Let H denote a separable Hilbert space and let { :  n=l,2...} be 

a fixed basis in H. Define an operator S on H by = nÇ^ for n=l,2.

Then S is a selfadjoint operator with domain V(S) ={ip£H:\p = J^aC /n n

n

Next define a partition of the set of indices IN̂  into disjoint subsets 

Ff, F^f... as follows:

F, = {1} , F^ = {(2k-l) : k=2,3...} , F = { (2k-l)2^"^ : k=l,2...}1 2  n
Define sequences of vectors (n=l,2...) by

OO CO

' ^2 " 7 ^ Ï2k-1 ' " J- k ^(2k-l)2'’"^ 'k=2 k=l

\  =  V l l  Gn II •

Clearly, the sequence {n^ : n=l,2...} forms an orthonormal basis for H, 

since the. F^^s are disjoint, and for n >• 2 , rî   ̂P(S).

On these two orthonormal bases and there exists an isometry

V which is defined by VÇ = r) (n=l,2...) . Put R =  1 + ~V . Then Rn n 2
has an everywhere defined and bounded inverse R Next define the opera

tor T by T = SR The operator T is a densely defined closed operator

with V{J) = R P(S)  . Furthermore, P ( S ) r \ # ( T )  = : A e Œ }.

The operators H and K are now defined in the following way:
* *

H = S S and K =  T T . H and K are positive selfadjoint and selfadjoint

respectively, and P ( H ) a P ( K )  = {AÇ^ : A e Œ } . Hence H and K intersect

on a one-dimensional subspace of H, Put I = P(H)n7^(K).

For any pair of linear operators U and V on H which satisfy condition 2b

of theorem 4.3 the following can easily be verified. Let Ç e I. Then

II (uHv -  K) (Ç) II =  II (H -  K) (Ç) II = II (1 -  ( R * R ) ” ^) (? )  ||
* -1and 1 - (R R) is clearly a bounded operator.
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Errata

p8 17 Delete sentence starting with 'Then x'.

p8 T5 Replace line by 'if it can be extended to a closed operator;

every closable operator has a unique smallest closed extension, 

called its closure and denoted by Y. If x is continuous

(relative to the norm topology that D(x) inherits from H), then 

X has an extension to B(H).', 

p9 PT Add after 'space.': 'Note that trace class and Hilbert-Schmidt

operators are compact operators (i.e. operators which map

bounded sets into relatively compact sets).' 

p9 12 Replace 'thm.3' by 'thms. 3 & %'.

p9 ÎT Replace ' %  < oo ' by 'x is compact and %  ^V"'̂ I I
plO 12 Replace Av, < oo ' by 'x is compact and %  \

plO 15 Replace ' by

p11 11 Change 'thm. 13-30' to 'thms. 13-30 & 13-24'.

pi 1 17 Replace line by: 'there exists a densely defined closed operator

y on H, which is characterised by

<yg,y - ( 5 e D(y),-»^6 H) (1.6)'.

pi 1 19 Append: 'Note if E is the projection-valued measure of a

selfadjoint operator x and f is an E-measurable function on 

sp(x), then it is customary to denote the operator y of (1-6) by 

JfdE or by f(x) (for details see [Rud] 12.24, 13.24).'. 

pi 1 14 Replace 'sup norm' by 'operator norm', 

pi4 110 Replace '*-subalgebra M by '*-subalgebra M with unit', 

pi8 16 Change 'Let S be a finite set' to 'For each finite set S' and 

delete 'and'.

pi8 110-11 Replace 'these seminorms' by 'the family {|| |l̂ : S C  A, 3 

finite}'.

pi9 110 Replace 'this follows ...' by 'this follows by [B&RI]
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Cor.3.2.30, if S is norm-closed and norm-densely defined.'.

p20 19-8 Replace 't— ôf̂ (x)' to end of sentence by: (jc :R —► aut(A) 

satisfies ||(c<̂ -id) (x)(|0 as t->0 uniformly for x 5 A.'. 

p21 14 Replace 'Covariant representations' by: 'In fact, these two

topologies are the same for unitary representations, since 

belongs to the unit ball of B(H). In what follows we consider 

those covariant representations which '.

p21 110-9 Replace sentence starting 'However' by: 'However, if (B(H),oc) 

is a W*-dynamical system, then oc is implemented. Furthermore, 

the C*-dynamical system (A,%) is implemented, if A is a simple 

C*-algebra with unit and ot is norm continuous (see [Sak] thm. 

4.1.19).'. 

p25 IT Replace 1̂ —  1' by T3=+1'. 

p29 17-6 Delete from 'and' to end of sentence. 

p29 I4 Change '>' to '»'.

p32 16 Replace the next 11 lines by the following:

let denote the basis of (R) consisting of the Hermite

functions (see [R&S] p.142). Then e^ e S(R) for k-0,1... . Let 

e"(n.n,...) - (n! T^e^'eeT' ) (2.9)

where the vector ej appears nj-times on the right (before 

symmetrisation), and n-Zn^ . Elements of this kind belong to 

and form a basis for h !J (see [Gui] Ch.2.1). We write or

Y'le'̂  (nji,... ) ) for the elements in D which are obtained from 

e"(n*n|...) by the natural embedding — ^D.

We now define a ^-representation (Hç, ,H ,D) of A. Put 

"n^a(e^ ) )Y*̂ (e*̂ (n(̂ n, ... ) - Cfn^ (n^-.-nr-l...))

I 0 if n-0 (2.10)

■nĵ (â (ê ) )'P*̂ (e*̂ (non, ... )- ln̂ +l' V*̂ '̂(e*̂ ’̂ (n*...ny+1...))
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It is clear from this definition that nja(f)) and (f,g

e S(R)) map symmetrised spaces into symmetrised spaces.1

p32 17ff Replace by 'D' in statement of lemma 2.3. Replace the

proof of lemma 2.3 by the following*.
4''Proof. It is enough to show that TT̂ ,(a(ê )) is the adjoint 

of T\o(a(î )). The result follows since every element in S(R) 

can be expressed as a linear combination of Cr's. Consider the 

elements - V (e*̂ (n̂ ,.. .nj,.. ) ) and = f (^"^Vn ...n^+1...))

in D. Take ey. e S(R), then

- <VtvM’Vy',S'7'> - /ny + l' -

- %*'.<> - <Tgir.(a(ê;))r7'>.

The first and last equalities follow by (2.10), the others

follow since the elements and Y e. are orthogonal in D. Note

that it suffices to show the above relationship on elements Y^ 

and Ŷ *̂ , since < > = 0  unless n«m and e-e'. 

p33 13 Change 's'̂ ' to and to

p33 14 Replace '(2.9)' by '(2.10)'.

p33 15ff Replace to end of page by: 'ê . e S(R), i-1,...,n (not

necessarily all distinct). Elements of the form

(2.11)
belong to D. (2.11) is the image of the element 

e (.. .n̂ .̂. .n)̂ .̂.. ) e S4. (with - 0 unless j-k; ) under the natural 

embedding Y'̂ : D (see also (2.9)). Clearly,  ̂ if

e'̂ (n̂ n̂  ...) e S% and e'*^^(n*n, ...) e then Y^ and'Y]^/

are orthogonal in D. Let (%) e D, then is of the form

{ e S%, n-0,1... }. Using also that D is an algebraic

sum, we can get a representation for elements of D. This is a 

combination of the results given in [KMT] thm. 3.14 and (3.19),
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which we state as:

LEMMA 2.4 Every e D has a unique representation as a 

finite orthogonal sum

Y - Z' (2.12)

where Z' denotes that the sum is finite, and e S^.

P34 112 Replace ^^-homomorphism' by '^-homomorphism'.

P34 113 Replace '(%o(x) by '(Ko(x))*'.

p34 114-17 Replace from 'and then' by: 'and note that -these operators 

leave D invariant by (2.10) and (2.11). The result for general 

elements ^^(x) then follows by linearity. ///.

P36 18 Change 'h^' to-'hŷ TTĴ ' on left, and first 'f; ' to 'f, ' on right. 

P36 19 Append at end of sentence: 'and then extend by continuity.'. 

p36 T5 to p37 14 Delete paragraph. 

p37 IT and p44 16 Change '(3.3)' to '(2.9)'.

p42 13-1 Replace sentence starting 'This is' by 'Suppose w^(xx*)-0.

Then 1IKq(x)'7̂ /(-0 for every e D. Note that x can be

decomposed uniquely into the following sum: x « %  A^ + ,
\

such that of̂ e C and differs from Aŷ  by at least one factor 

a(Cy.) (a denotes a or a^), where A^= IT a J(ey<;)TT a î(ê .) , 

and nyj>0. Take Y'̂ (e'̂ (̂n̂ n. .. .n».... ) ) e D such that n,.
is greater than the largest power of a(eŷ ) occurring in the sum. 

By (2.10) we have

IIll,(x)Y;il-lUoYe + + I  (p̂  11̂  ^

where ^  is of the form Y*l[^(m^m, ...)). By' the choice of 

ĉ >̂0. Furthermore, since the A^ are distinct, and the ^  are 

all distinct and, in fact, orthogonal. Therefore the last 

expression above can only be zero if all o(̂  are zero.', 

p91 14&5 Replace '-' by '̂ ' in both places.
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p95 thm 4.3: Delete the last 3 lines starting with 'If these ...' and

change '2.' in the following way:

2. There exist a bounded operator P on M mapping D(d^) 

into D(<Tp) with P (M̂ ) g  and a linear operator A  which is

bounded on such that

a. P « r<T̂  - i s  bounded on M^ (4.5)

b. on the following holds: AP « PA = 1 V
c. for > 0 there exists 0 such that for 0 * \t{ ̂  £2.

and for x e M %

lUĵ r̂ - Pf^^)(x)« ^ gjlxlt . (4.6)

p97 17-5 Replace 3 lines by: 'To see that ^ is ^-weakly continuous,

observe that cx and are G-weakly continuous automorphism 

groups. ///.' 

pi00 12-3 Delete: 'maps its domain into and'. 

p100 17 Change 'A,' to 'aF- 

pi00 18 Change '-' to

plOI 110-1 Replace by: 'lUPp,^-p^P)(x) \l  ̂Ê llxlf. Let x e  and let

ItI^ S.. Then

ll( p^P)(x) 11 .  11 f  d s (y^ |l^ - Vs)(x)\l -

*04 & 'l( "<-i P4  ■ s) (x) " ^ CjtlAltx 11,
by (4.3)^ since t ‘ S,. Ue get for 111& , x e

1I (P (^ ^ -f i^ D (x ) l l  e SoSitllxll c i j l l x l l  . / / / . ' .

p102 12,3,6 Change T ^ A  ' to W * '  and '%' to 'ipP " In all 3 lines. 

p102 17 Change to ' ( ^ , o  )î''•

p103 12 Change first '-id' to. '+ld'. 

p103 13 Change - id' to - -id'. 

p103 15 Change eq (4.15) to:
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i P(o(̂  - id)AP(x) - 1 ( - id)P(x) -1 +id)P</^AP(x) (4.15).

p103 16 Insert after 'since': T(M^) S M*', and change 'lemma 4.4' to 

'lemmas 4.7 & 4.4'. 

p103 110 Change eq (4.16) to:

-4>(%P(x)) + Y(BP(x)) (4.16).

p103 111&15 Replace 'P<Ç,A(x) - dp^x) + B(x)' by 'Pf^(x) - d|̂ P(x) + 

BP(x)' in both places. 

p103 116 Replace 'B' by 'P » BP '.
p103 117-19 Replace by: Î15p̂ r(x) - P<f̂ (x)ll - - id)Ar(x)ll =

- 1 4  ( M - t  - id)(x)ll ^ -|t||xll' . 

pi04 13-18 Replace by: 'Integration by parts shows that the following 

relationship holds for every x e M for which the rhs is 

defined.'.

pi04 17&2 Insert 'i ' before '|3̂ ' in both places.

pi05 18-12 Replace from sentence starting 'Put' to end of 112 by: 'Note 

that ft and p, leave invariant (by lemma 4.4) and therefore

\\(p>t- tx̂ )(x)H . UAP(pt - o(̂ )(x)W ^

^ l l A ( ( V ^ r - p f i ^ ) ( x ) l l  + I IA (P ^ t  - P t D ( x ) l l  <

< k { II (p,^P -  Pp^)(x)l |  + (I (Pof^- ( l ^ D ( x ) l l  }

since A is bounded on ' Then start next sentence with 'The

first term'.

PIO5 TÏÔ Replace '(4.18)' by '(4.19)'.

p105 18 - pi 06 14 Delete up to 'extended to D(<f̂  ). '.

p106 16 Replace line by: 'if e< and ji commute, for example.'.

pi06 17-8 Replace 2 lines by:

COROLLARY 4.12 If oc and p> commute and the assumptions of 

theorem 4.3 hold, then is Pc^-bounded on D(d^).

pi06 110-7 Delete sentences starting from 'Next we want...'.
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pi07 14 Change '///.' to 'To show that P<f̂  is norm continuous, we use 

that « and commute, as this fact implies that - V<x̂ for 

t e R. From this it follows that P(D(<}^))c D(<^)^ 4 ^  and

D(r<7^)-D( <̂  ). The proof of the norm-closedness of the operator 

follows closely the corresponding proof for 

pi07 15 Replace 'Lemma 4.13' by 'It remains to show that' 

pi07 16 Delete ''Proof.'.

p107 12-1 Delete.

p108 17 Change '4.14' to '4.13'.

p108 19-19 Delete.

pi09 T4-T Replace by. 'Let u be a bounded operator on 'N which acts on 

I by: u:%—  ̂c5 (c=constant ), and put vj « for ^ e I. It is 

easy to see that a.-c. below are satisfied.

a. uH ^ Ku is bounded on D(H)r\D(K)

b. uv - vu - 1 on D(H)rvD(K)

0 . ll(exp(itK)u - uexp(itK) ) (5)11 cEllSll for |t| small and

5 € D(H) a D(K).

This is the situation described in 2. of thm. 4.3. Note that 

the operators H and K commute on I, and therefore the general 

assumptions of thm. 4.3 are also satisfied.'.



Background to Errata

p8 17 An appropriate statement about continuous operators has been 

included on p8 T5ff. 

pi0 14-5 X compact not needed, since x e H S ( H )  implies that x  is 

compact, while, on the other hand, a representation of the kind 

given for x  shows that x  is compact, since it is the limit of 

finite dimensional operators (see e.g. [G&V] 1.2.2 thm. 3 or 

[Wei] Satz 6.5).

p29 16 The isomorphism between and ) can be constructed in the

following way: Let {cĵ } denote a basis for H;

is then a basis for The map U which is given by

® ) (t; ,...t^^) * M )

maps the above basis of 1-1 onto a basis of L^Cr '̂ ) and thus 

extends uniquely to an isomorphism between and (R*̂ ). 

p36 Ï3 - p37 15 This paragraph has been moved forward to section 2.3, 

and eq (3.3) has become eq (2.9). 

p95 thm 4.3: Changes related to thm 4.3.

In prop 4.8 it was claimed that A(M^) ç M^. This is not true 

in general, and some changes are therefore required. The claim 

A (M̂ ) £. was used in defining the operator B » ft/A - dp (old 

thm 4.3). However, instead of first introducing this operator 

B, we now work directly with the operator P defined by 

P - (old thm 4.3). As a consequence, thm 4.3 is

slightly modified; the general assumptions and 1. remain 

unchanged, in 2a. we change B to P, and in 2c. a corresponding 

estimate for is used instead of the previous one given

in terms of (ro<̂ -o|̂ r). Lastly, the last 3 lines of the thm are 

deleted, since they are not true without further assumptions 

(see new cor 4.12).
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The changes in the thm have the following consequences on its 

proof:

plOO prop 4,8: The statement is changed, the proof remains

unchanged, since we had not shown that A(M^)Ç 

p101 lemma 4.9: The roles of o( and p are interchanged in the proof 

in order to show 2c, but the proof remains essentially the same, 

pi02 prop 4.10: We now have to find a bound for P and not for B, in 

order to show 2a.

pi03 prop 4.11: In the proof the new conditions 2a. and 2c. are used 

to show that 2. 1., but the essence of the proof is the same.

The proof of thm 4.3 is then complete at the end of prop 4.11. 

pi06 prop 4.12 and lemma 4.13: These do not follow from the general 

asumptions of thm 4.3. However the results still hold under the 

additional assumption that oc and p commute (this assumption was 

made in the old cor 4.15). The content of the prop and lemma now 

become cor 4.12, and the old cor 4.15 becomes redundant. 

p97 16 This line was wrong, however ^ is 6-weakly continuous; this can 

be seen as follows: Since M is a von Neumann algebra, M c B(H) 
for some H and and ^ can be extended to B(H) where they are 
implemented by strongly continuous groups of unitaries say u and 

V (see e.g. [B&RI] p.243). Put » then w is strongly

continuous, since \\(ŵ  - Dill « -“ Dill ^ ||(v̂ u_̂  -

v^)S\ l  + lUy^ -  i ) S «  -  W ( u t  -  1 )1% + as

t —>0. Furthermore, if “ w^.w^, then is 6 -weakly

continuous and


