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Abstract

Autoxi dative Degradation of Unsaturated Fatty Acid Esters

The autoxidative degradation of methyl cis-9-octadecenaote, 

methyl cis-9-cis-12-octadecadienoate and methyl c is -9 -c is -12 -c is -15  

octadecatrienoate promoted by both trans ition  metal ions and 

photoin itiators produce 'v o la t i le '  products. These were collected  

by cryogenic and chemical traps, then analysed by g lc , HPLC and 

gc-ms. The major products so iden tif ied  included; 3-heptanone, 

heptanal and octanal from methyl cis-9-octadecenoate, hexanal,

2-hexenal and 2-heptenal from methyl cis-9-cis-12-octadecadienoate, 

and propanal, l-penten-3-ol and l-penten-3-one from methyl 

linolenate. Methyl octanoate was found to be a product common 

to the autoxidation of the three methyl esters. The major products 

are explained by B-scissions of alkoxy radicals . The quantity of 

v o la t i le  compounds produced was found to depend on both the degree 

of unsaturation and the type of promotor.

'V o la t i le  products' were observed during the promoted autoxidative 

crosslinking of polyester resins (alkyd resins). The products so 

formed corresponded to the fa t ty  acids present in the resins. Time 

lapse infrared spectroscopy was used to observe chemical changes 

occurring in the drying resin films. Hydroperoxides are the primary 

autoxidation products and th e ir  rate of formation was shown to depend 

upon the promotor used.

Benzoyloxyethyl cis-9-cis-12-octadecadienoate, a model alkyd, 

was synthesised and autoxidised. The 'v o la t i le '  products formed 

were the same as those observed from methyl cis-9-cis-12-octadecadienoate



Alkyds having a high proportion of non-esterified hydroxyl groups 

may be crosslinked in the presence of strong acids. This has been 

shown to be an autoxidative process where the hydroperoxides are 

decomposed by the acid to give acetal type linkages.

2-Hydroxyethyl l in o le a te , 2-hydroxyethyllinolenate and a series 

of 'variab le  hydroxyl content' alkyds were prepared. The 'v o la t i le  

products' isolated from the alkyds were s im ilar to those produced 

using trans ition  metal promotors but the 2-hydroxyethyl esters 

produced only acetal type compounds.

6,9-Pentadecadiene, 8-methyl- 6 , 9-pentadecadiene and

8 , 8 -dimethyl- 6 , 9-pentadecadiene were synthesised and autoxidised.

The composition and quantity of 'v o la t i le  products' depended upon 

the degree of a l l y l i c  substitution.
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1. Introduction

1.1 Grossi inking in alkyd resin paints

The v u ln e ra b il i ty  of objects to damage at th e ir  surface can

often be minimised by applying a protective coating. Paint, and in

p art icu la r  gloss pain t, finds many applications fo r  the protection of  

surfaces in the home. I t  has the added advantage of improving th e ir  

decorative appearance. The composition of a gloss paint is often based 

upon alkyd resins which are the most v e rs a t i le  and economical of a l l  the 

resin types. The other components are pigment (to provide co lour),  

solvent ( ty p ic a l ly  white s p i r i t ) ,  drying promotors and anti-skinning  

agents.

An alkyd resin has been defined as "the reaction product of 

a polyfunctional alcohol with a polybasic acid together with a 

monofunctional acid obtained by a simple e s té r if ic a t io n  reaction."

The name alkyd is derived from the *aV of alcohol and the ’ cid ' of acid.

Many acids and alcohols may be used to prepare alkyd resins 

although the market price o f the raw products is often the determining 

fac to r in industria l use. The conmon polybasic acids and polyfunctional 

alcohols used in alkyd resins are summarised in table 1. The typical

fa t ty  acids used are given in table 2 .

Table 1

Dibasic acids Polyhydric alcohols

Phthalic acid (as the anhydride) ethylene glycol

Isophthalic acid glycerol

Succinic acid . pentaerythritol

Adi pic acid diethylene glycol

Sebacic acid 1 ,2  propylene glycol 
trimethylol propane 
neopentyl glycol
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Table 2

Typical fa t ty  acids

Stearic acid 

Oleic acid 

Linoleic acid 

Linolenic acid
3- Eleostearic acid

O rig inally  the use of monofunctional acids, such as o leic  or benzoic acid, 

were used to prevent gelationduring resin preparation. These "chain 

stopped" alkyds actually  preceded o il modified alkyds.

The preparation of an alkyd resin is re la t iv e ly  simple, i t  is 

that of po lyestérif ica tion . Two methods may be used to prepare alkyds 

[ i )  the fa t ty  acid route, where the polybasic acids, polyhydric alcohols 

and unsaturated fa t ty  acids are heated at 240°C, under a blanket of 

nitrogen and the water produced by the e s té r if ica t io n  process azeotropically  

removed, ( i i )  the alcoholysis route, where the natural o il (tr ig lyceride)  

is heated at 240°C in the presence of the polyhydric alcohol to give a 

random mixture of glycerol,monoglyceride and diglycerides. This mixture 

is then reacted with the dibasic acid to produce the alkyd resin.

Scheme 1 .1 .1 .

The la t te r  route is used in dustr ia lly  as the natural oils  are 

cheaper than the corresponding fa t ty  acids;
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CHzO— C

CHO— C

CH2OH
I 220- 240"C
CHOH --------------------

CH2O— C

I PbO or NqOH
CH2OH CH2OH

. HoO-—

CHO— C

CH2 O—H

240° C

Phthalic Anhydride

Scheme 1.1.1

Alkyd Resin

The resin preparation has to be care fu lly  monitored to 

prevent to ta l ge la tion . Two tests are carried out which are esoteric  

to alkyd manufacturers, ( i )  acid value which gives the degree of 

reaction and amount of residual COOH end groups. This value is expressed 

as *îmgKOH/g non-volatile  resin", ( i i )  v iscosity which gives a measure of 

molecular weight of the resin. This is carried out using a stoppered 

glass tube almost f i l l e d  with resin. The time taken for the bubble to 

pass through the resin when the tube is inverted is recorded. The 

viscosity  is then reported as "X sec bubble tes t a t 25^CatY% solids 

in Z solvent". The f in a l constants of the resin are expressed as the 

acid value, v iscosity  and % solids.

% Solids = , weight of r e s i . % loo
weight of resin + solvent

Alkyd resins are condensed reproducibly to an acid value and 

viscosity spec ification , these values depending on the f in a l use of the 

resin.
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The composition of the resin is expressed by the following 

general form;

Polyhydric alcohol/dibasic a c id /fa t ty  acid

fo r  example;

Pentaerythrito l/Phthalic acid/Linseed o i l  fa t ty  acids.
2 2 3

the numbers represent the molar ra tios .

Alkyd resins are also c lassified  by the % weight of o il  

( i . e .  tr ig lycerides) used to make the resin. This is known as the 'o i l  

leng th ', below 45% o il is a 'short o il a lkyd ', 45-60%, 'medium o i l '  and 

above 60%, 'long o i l ' .  'Long o il alkyds' are soluble in a liphatic  

hydrocarbons, such as white spirit; whereas 'short o i l  alkyds' require 

aromatic hydrocarbons.

Alkyd re la t ive  molecular masses are believed to range between 

1000 to 5000. Thus a 58% linseed o il glycerol phthalate alkyd contains 

between two and ten fa t ty  ester chains per alkyd molecule, A simplified  

alkyd resin is depicted in figure 1 . 1 . 1 .

The drying of an alkyd based paint occurs by two processes;

( i )  the evaporation of solvent -  termed lacquer drying and ( i i )  a i r -  

drying, which involves autoxidation of the unsaturated fa t ty  esters 

forming hydroperoxides

I t  is believed that the decomposition of these peroxides 

provides the means for crosslinking.

The chemistry of hydroperoxide formation in the commonly used 

unsaturated fa tty  acid derivatives and the mechanism of the various 

promotors w i l l  be reviewed.
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^C(CH2)yCH=CH(CH2y H )

CH
II
CH

(CH2Î7

CH3

o o0 *—CH2*“ C—CH2— O

HOCH2—’ C— CH2OH

o
^ 0—GH2~ C —CH2OH

( [" 2 4  ô
^C(CH2)7CH=CH(CH2)7CH3

HOCH2-C -C H 2OH

/O
HgC(CH2)7CH = CHICH2l7C^

Simplified Alkyd Resin 

Figure 1.1.1

The natural o i ls ,  which are now of increasing importance because 

of th e ir  regeneratable source, w i l l  themselves dry and form a f i lm .  

However, because of th e ir  re la t iv e ly  small size numerous crosslinking  

reactions are required for f i lm  formation. In contrast alkyd resins, 

owing to th e ir  greater molecular weight and much higher drying o il  

functiona lity  require fewer crosslinking reactions to achieve f i lm  

formation. Hence alkyd resins w i l l  dry much fas ter than natural o ils
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This rate  of drying for an alkyd resin is however not s u ff ic ie n t ly  

fa s t ,  obviously a paint must crosslink (dry) in a reasonable time 

period to provide a suitable product. To increase rates of drying 

promotors are added to resins. Several types of promotors have 

been considered by the paint industry v iz : redox catalysts, 

photoin itiators and strong acids (these w il l  be discussed in sections 

1.14, 1.15, 1.16 and 1 .17). The essential features fo r  the a ir-drying  

of an alkyd paint are the unsaturated fa t ty  acid esters, oxygen and the 

drying promotors.

There are two undesirable properties which also accompany the 

autoxidative drying of paints. These are the production of odourous 

v o la t i le  degradation products and 'yellowing’ of the film s. The 

id en tif ic a t io n  of the v o la t i le  degradation products and th e ir  dependence 

on ester structure and promotors form the subject of this study.

1.2 Peroxide id en tif ica tion  in autoxidation

Priestly  f i r s t  observed the interaction of oxygen with organic 

compounds. In ter a l ia  he showed that linseed o il removed the l i f e  

giving element oxygen using rats and a bell ja r .  Currently the term 

autoxidation is generally used to describe the reaction of a compound 

with molecular oxygen, usually atmospheric oxygen in the absence of 

heat and in any case below 120^0 .^

The formation of peroxides as products in autoxidation was
2

f i r s t  suggested almost simultaneously in 1897 by Bach and by Engler 

and Wild.3 Benzoyl hydroperoxide was identif ied  in 1900 by Baeyer
n 5

and Y i l l ig e r ,  Jornssen and Van der Beck isolated this as the 

intermediate product in the autoxidation of benzaldehyde.
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Stephens^ discovered that cyclohexene, on trea ting  with 

oxygen in daylight gave a liqu id  peroxide, CgHijQ0 2 » and presumed i t  

to be a double bond adduct ( I )  which could be isolated by d is t i l la t io n .

?
CH— 0

1 I 1 (!)

This peroxide was re-examined by Hock who although 

obtained seemingly strange results regarding i ts  re a c t iv i ty  agreed 

with the structure ( I )  proposed by Stephens.

Criegee et al^ showed that the ’ peroxide' formed from 

cyclohexene in uv l ig h t  must be a hydroperoxide ( IT )  and s t i l l  contained 

a double bond.

H. ,00H

( I I )

The evidence provided by Criegee fo r this structure was:

( i )  the compound is reducible by sodium sulphite to cyclohexen-3-ol,

( i i )  i t  absorbs one mole of bromine per mol and ( i i i )  i t  contains one 

atom of reactive hydrogen per mole.

Farmer^ confirmed Criegee's work by iso lating the peroxide ( I I )  

and observed that on hydrogenation the peroxide absorbed 2 mois of 

hydrogen, giving cyclohexanol in almost quantitative y ie ld .  Farmer 

also reacted 1-methyl cyclohexene ( I I I )  and 1,2-dimethyl cyclohexene (IV )
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with oxygen in daylight. These compounds gave products which were 

determined as hydroperoxides because they yielded the appropriate alcohols 

(Schemes 1.2.1 and 1 .2 .2 ) .

OH

+
sodium
sulphite

OH

(IV )

Scheme 1.2.1

► ►
sodum
sulphite

Scheme 1.2.2

Cyclic peroxides however have been postulated in o le f in  autoxidations 

by several a u t h o r s , ^  the case appearing strongest in 

the autoxidation of ethyl-13-(i5-cyclopentenyl)tridecanoate.

The majority of evidence was o r ig in a lly  based on unisolated and
1 fi

unpurified m ateria l. However Davies and Packer isolated the 

hydroperoxide (V I) by chromatography and Counter Current extraction.
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OH

O 0 -
(CH2)^C02CH2CH3

b :

N

CĤ IggCOgCHÿH)

DC;CH2t)2C02CH2CH3

VI

I N a B H ^

OH

iH2 / P t

OH
tCH2)i2t02CH2CH3

VIA

Scheme 1 .2 .3
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The infrared spectrum showed the presence of an OH group (3448 cmT )̂

which was exchangeable with DgO to give the OD group (2532 cm”^ ), a

C=C bond (1656 cm"^) with a C=CH group (3067 cm”^). The presence of
11 12

one o le f in ic  bond was confirmed using Baranger and Maréchal's method * 

and by quantitative hydrogenation to give a saturated alcohol VIA.

Scheme 1 .2 .3 .

The isolation of hydroperoxides from autoxidation reactions

has presented many problems. Early workers obtained hydroperoxides by
18 19d is t i l la t io n ,  low temperature solvent c ry s ta ll is a t io n , and adsorption

18 20 21 22chromatography. ’ ’ ’ These methods produced low yields of

hydroperoxides, probably owing to decomposition during the isolation

processes. Purer hydroperoxides were obtained by counter current

d i s t r i b u t i o n , b y  fractionation of complexes with urea^^
2Q in n

and by liqu id  partit io n  chromatography. * *

Many hydroperoxides have now been isolated and iden tif ied  

from the autoxidation of o le fins , these hydroperoxides are adequately
I1stedl26

1.3 Hydroperoxide formation in methyl cis-9-octadecenoate 

(methyl oleate)

CHgCCHg)^ ( C H g ) ;  C (  V I I

\  /  \
C -  C OMe

/  \
H H

Early kinetic  studies estimated that hydroperoxides were 

formed in almost quantitative amounts during the in i t i a l  stages of 

autoxidation of methyl c is -9 -  octadecenoate.^^'^^ ( V I I ) .
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I t  was also shown that the o le f in ic  bond remained in tact  

25and no dimers were formed. The o le f in ic  bond although s t i l l  in tact
oo or

was shown to isomerise from cis to trans, the more stable isomer. * *

This isomérisation was id en tif ied  by infrared spectroscopy using the

increases in absorption at 965 cm"̂  corresponding to trans o le f in ic
57unsaturation. A la t t e r  study by Hall and Roberts confirmed this  

isomérisation by infrared and proton nuclear magnetic resonance
or

spectroscopy. The lower s ta b i l i t y  of the cis isomer led Swern et al

to propose that the cis form of the hydroperoxide would probably not be

isolated during autoxidation.

In addition to the cis-trans isomérisation, positional
37isomérisation was observed from the original 9 position. Degradation 

analysis of the hydroperoxides by scheme 1.3.1 indicated the presence 

of methyl 9-hydroperoxy-trans-lO-octadecenoate and methyl 10-hydroperoxy- 

trans-8-octadecenoate.

Oxime derivatives of the methyl ketostearates formed by the 

analysis shown in scheme 1.3.1 were prepared. Hydrolysis of the amides 

obtained by Beckmann transformation of the oxime gave octanedioic acid 

and undecanedioic acid indicating the presence of 8- and 11-hydroperoxides, 

scheme 1 .3 .2 .

Some confusion has occurred in the l i te ra tu re  over the 

quantitative composition of the hydroperoxides arising from methyl c is -9 -  

octadecenoate [table 3 ). This variation probably results from the long 

routes for th e ir  characterisation, [eg. scheme 1 .3 .1) which resu lt in 

low yields of the desired compounds.
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Analysis of Methyl oleate hydroperoxides

OOH 0
I //

CH3 (CH2 )gCH=CH-CH-{CH2 )7-C

OMe

NaBH.

OH / /
CH3 (CH2 )gCH=CH-CH-(CH2 ) 7-C

OMe

HgPd

r OH 0
I n

CH3(CH2)gCH2CH2-CH(CH2)y-C

'̂ OMe

Oxidn.

« / 
CH3 (CH2 )gCH2CH2-C(CH2 )y-C

^OMe

Soapn.

i  0 0
II /CHgtCHzjaCHgCHg-CCCHgiy-C

OH

Fractional crys ta ll isa tion  to give other isomers

Scheme 1.3.1 using the 9-hydroperoxide as an example
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Oxime formation and analysis of Methyl keto 

stearates formed in scheme 1.3.1

II /
CH3 (CH2 )g-C-(CH2 )g C [

I OMe

OH
I
N 0
II /

CH3 (CH2 )g-C-(CH2 ) 5 -C

OMe

\  y
y C  (CH2 ) g C /  

CH3 (CH2 )g-NH OMe

\ / 
C-(CH2 )6 -C

HO OH

Scheme 1.3 .2
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42Mercier in her study of methyl oleate concentrated the 

hydroperoxides by solvent p a rt it io n  and purified them by e ither  

column chromatography or preparative t . l . c .  The resultant hydroperoxides 

were separated into trans (^85%) and cis (--15%) fractions by AgNO^-tlc.

The configuration being established by polarography, infrared and nmr 

spectroscopy but the re la t iv e  proportions were not determined by these 

methods. The trans hydroperoxides a f te r  NaBĤ  reduction and ca ta ly t ic  

hydrogenation were shown by t ic  to consist of equal amounts of

8- ,9 - ,1 0 - ,1 1 --hydroxy isomers. The cis isomers were shown to consist of 

equal amounts of 8-  and 11-hydroxy isomers. However, the value of t ic  

to quantify these hydroxy isomers is doubted.

The presence of cis hydroperoxides from methyl oleate 

contradicts Swerns e a r l ie r  view, although the cis isomer is apparently 

less abundant. P ire t t i^ ^ ’ ^^’ ^  ̂ however found evidence for the 

c is -9 -  and cis-10- isomers. The oleate hydroperoxides were purified  

by s i l ic a  column chromatography, the positional and geometric isomeric 

composition determined by infrared, AgNOg-tlc, glc and gc-ms. The 

infrared determination of the tota l trans unsaturation (based on methyl 

trans-9-octadecenoate as standard) agreed with the glc analysis of the 

cis and trans a l ly l ic  hydroxy derivatives separated by AgNO^-tlc.

Gc-ms analysis showed the presence of a l l  four 8 - ,9 - ,1 0 - ,1 1 -a l ly l ic  

hydroxy derivatives in both the cis and trans t ic  fractions. The 

isomeric composition was estimated by gc-ms using the saturated 

hydroxy esters as th e ir  trimethylsiyl(TMS) derivatives ( V I I I ) .  The 

re la t iv e  intensity of only one ion arising from the a fragmentation of 

the saturated TMS derivatives, from electron impact mass spectrometry, 

was assumed to be independent of the position of TMS in the fa t ty  chain.
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Frankel^^ checked the gc-ms method of analysis with 

authentic samples of 8- ,9 - ,1 0 - ,  and 11-hydroxy octadecanoates. The 

erroneous results obtained using P i r e t t i 's  method arose from the 

assumption that the ion current due to a fragment ion measured at 

the apex of the chromatographic peak was quantita tive. I t  was 

subsequently shown that for re liab le  quantitative results by gc-ms 

the following two conditions must be met. ( i )  Summation of a l l  

mass spectra within the appropriate gc-peak. ( i i )  The ion currents 

of both fragment ions (a) and (b) should be used in the calculation, 

b -1

,0

CH3(CH2)x4-CH \
0-TMS

L_a

OCH.
TMS derivative of saturated

methyl hydroxy octadecanoate

V I I I

Fragments a

y -  6 m/z 245 

y ^ 7 m/z 259 

y -  8 m/z 273 

y -  9 m/z 287

Fragments b

9 m/z 243 

8 m/z 229 

7 m/z 215 

6 m/z 201

Frankel's quantitative analysis was carried out at d if fe re n t  

temperatures and showed that the 8-  and 11-isomers were s lig h tly  ( 8% 

but consistently higher than the 9- and 10-hydroxy isomers.

Garwood and fellow workers^^ analysed the stereochemistry 

of a l ly l i c  hydroperoxides using nmr. The proportions of cis and 

trans isomers were determined, a f te r  t ic  and treatment with NaBH ,̂ 

usingcharacteristic resonances in the corresponding alcohols arising
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Table 4

Variation in isomer d istr ibution with temperature of autoxidation

Temp (°C) Geometric
isomers 8-OOH

A9

Positional isomers (%)
9-OOH lO-OOH 11-OOH 

Al0 a8 a9

Ref.

20 66.9 trans 7.0 11.0 20.9 28.2

33.1 cis 12.7 1.5 3.6 15.3

40 71.2 trans 6.9 17.4 16.5 30.3

28.2 cis 10.0 5.0 4.7 12.8 45

80 76.5 trans 21.5 21.3 22.0 11.8

23.5 cis 7.4 4.4 3.5 8 .2

25 26.6 24.3 22.3 26.8

40 27.2 23.6 22.0 27.1

60 26.9 22.5 23.3 27.3 46

80 26.5 23.6 23.6 26.3

25 70.0 trans 12.3 23.1 21.7 12.9

30.0 cis 14.1 1.1 1.1 13.7

40 76.0 trans 16.0 22.0 21.7 16.0

24.0 cis 10.6 1.6 1.7 10.1 47

75 82.9 trans 19.0 22.5 22.0 19.5

17.1 cis 6.1 2.7 2.9 5.4

No temps. 26.7 22.3 22.8 28.2
quoted 27.2 23.5 22.6 26.5 48

25.5 22.8 23.8 27.7
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from a l ly l i c  carbon atoms of the cis-trans isomers v iz .  cis (67.5 ppm)

and trans (73.1 ppm). The crude autoxidation mixture and concentrated
13hydroperoxides were analysed by C nmr with the hydroperoxide a l ly l i c

carbons chemical sh ifts  being assigned as cis (81^1 ppm) and trans

(86.9 ppm). I t  was assumed that the stereochemistry of the

hydroperoxides was retained on reduction to the hydroxy compounds.
47Garwood also carried out gc-ms analysis of the saturated hydroxy

stearate compounds obtained by hydrogenation of the hydroperoxides.

They employed computer summation of the ion current aris ing from both the

a fissions of the TMS derivatives.

The work of Frankel^^ and Garwood^  ̂ has now been confirmed

by Chan and Leyett^^ using HPLC. They separated and determined the

re la t iv e  amounts of the saturated 8 - , 9 - , 10- ,  and 11- ,  hydroxy esters

and th e ir  results showed that the 8 -  and 11-isomers were 6 .6  to 9.8%

higher than the 9 - and 10-isomers. Although they carried out 3 analyses

no reaction temperatures were reported.

The analysis results of the hydroperoxides formed from the

autoxidation of methyl oleate are summarised in table 4.

49Park has shown that the positions of hydroperoxide formation 

in tr io leaylg lycero l occurs at the 8- , 9 - , 10- and 11-positions and 

corresponded to those in methyl oleate.

1.4 Mechanism of methyl cis-9-octadecenoate autoxidation

The classical mechanism, f i r s t  suggested by Farmer^ involves 

hydrogen abstraction at carbon numbers 8 or 11. Interaction between

the unpaired electron on carbon 8 or 11 and the electrons of the 

adjacent double 

(Scheme 1 .4 .1 ) .

adjacent double bond^^ provides two a l ly l ic  radicals IX and X.
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VII

- H
R

► R

► R

IX •R

Scheme 1.4.1

A l ly l ic  radical IX would be susceptible to oxygen attacK at

positions 8 and 10 (Scheme 1 .4 .2 ) and a l ly l ic  radical X at positions 9 

and 11 (Scheme 1 .4 .3 ) .

IX

>  RRR

HO —  000 *

H 0 —  000

•R

R XI

R XIII

Scheme 1.4.2

0— OH

R XII

0 — OH

R XIV

Scheme 1.4.3
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42Mercier explained her results via these a l ly l i c  radicals.

The formation of the new o le f in ic  bond,she stated,would be p re fe ren tia l ly  

trans. The cis isomers are proposed to be formed by d irec t attack at 

the in i t ia l  point of hydrogen abstraction i . e .  a t the 8 or 11 . position. 

This approach can account for the formation of the following  

hydroperoxides:

Methyl 8-hydroperoxy-cis-9-octadecenoate XI

Methyl ll-hydroperoxy-cis-9-octadecenoate X II

Methyl lO-hydroperoxy-trans-8 -octadecenoate X I I I

Methyl 9-hydroperoxy-trans-lO-octadecenoate XIV

but not for the following hydroperoxides observed by P ire t t i  

Frankel,^^ Garwood^  ̂ and Chan.^^

Methyl 8 -hydroperoxy trans-9-octadecenoate XV

Methyl 9-hydroperoxy cis-lO-octadecenoate XVI

Methyl 10-hydroperoxy c is -8 -octadecenoate XVII

Methyl 11-hydroperoxy trans-9-octadecenoate X V II I

59 8Frankel proposed a route based on Farmer's mechanism but

involving configurational isomérisation of the a l ly l ic  radicals

[Schemes 1 ,4 .4  and 1 .4 .5 ) .

The preference for the trans isomers was explained in terms of 

steric  effects reducing the s ta b i l i ty  of the cis a l ly l i c  radicals.
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■R XI
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R
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H'

R

HO 0

H'

XV

HO —  0

XVII

Scheme 1 ,4 .4
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0 2

00 '

0 2

+H'

.0— OH

+ H

0 — OH

XV r XV III

Scheme 1.4.5

However other workers have shown that the configurational in teg rity
72of the a l ly l i c  radicals is often retained e.g. in the free radical 

chlorination of the 2-butenes. Scheme 1.4.6 and table 5.
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CH3
RO • +  C —  H

H j C —  C
//
\

\
RO- +  , C — CH

HiC— C\

.  V «  - S

* - f - \
H

Ĉ 3

Scheme 1.4.6

H
\ .

C l . H o C — C

C— H

Cl*

CH2=CH.CHCl.CHg

\
H o C — C\ C L H ? C  C. /

C — CH

Table 5

Chlorination of 2-butenes by te r t  butyl hypochlorite

Reactant
3-chloro-l-butene

Products (%) 
1-chloro c is -2-butene 1-chloro trans-2-butene

trans-2- 27 0 73
butene

c is - 2- 37 63 0
butene
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78Menguy reported a mixture of 34% cis and 66% trans unsaturated

hydroperoxides in the autoxidation of c is - 2-butene, whereas the trans-2-

butene oroduced 90% trans unsaturated hydroneroxide. He attributed

this to the s teric  hindrance of the peroxide grouo, which favours the

passage of the cis peroxide radical to the correspondingly less

s te r ic a l ly  hindered trans form.
123P ire t t i  by the use of molecular models demonstrated that i f  the

a l ly l  peroxide group is localised within a long linear chain the two

CIS- and trans- isomers show practically the same steric hindrance.

Therefore Menguy*s hypotheis is not applicable to methyl oleate.

The rate of isomérisation of an a l ly l  radical is very low 
2 -1 124k = 1 0  sec" in re la tion  to the rate with which the same radical

reacts with oxygen during autoxidation k = 4 x 10  ̂ 1 mole ^sec ^
59therefore the two schemes 1 .4 .4  and 1.4 .5  proposed by Frankel appear 

unlikely .

I t  is therefore suggested the isomérisation process occurs via the 

following pathway: (see scheme 1 .4 .7 ) .

The concept of molecular oxygen as a leaving group had been 

proposed by Chan.^^ He prepared methyl lino leate  hydroperoxides with 

incorporated in the hydroperoxide group, the level of enrichment was 

typ ica lly  55%, see Table 6 .
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OH

\
R 0

HO 0

Scheme 1.4.7

Table 6

^^0 Hydroperoxides from methyl l ino lea te

Hydroperoxide Enrichment

E,Z Me(CH2 )4CH=CH“CH=CH CH(OOH)(CHgjyCOgMe 81.8%

E,E MefCHg)^ CH=CH-CH=CH CHfOOHlfCHglyCOgMe 54.2%

Z,E MeCCHg)  ̂ CH(OOH) CH=CHCH=CH(CH2)yC02Me 56.4%

z . z Me{CH2)4  CH(OOH) CH=CH-CH=CH (CHgjyCO Me 53.9%
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These isomers were isolated and allowed to isomerise^^ under 

an atmosphere of (see section 1 .9 ) .  The analysis of the oxygen 

above the hydroperoxide was found to have the following composition 

(table 7 ) .

Table 7

Composition of oxygen above methyl linoleate  

hydroperoxides

18q  ̂ ISglGo T̂ Og (mole fraction)

Experiment .330 .004 1.00

Control .008 .004 1.00

The high amount of the experimental atmosphere strongly

indicates the oxygen present in the hydroperoxide is being exchanged 

and the lack of any s ign ificant amount of provides evidence

for Og as a leaving group.
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1.5 Hydroperoxide formation in methyl c is -9 - cis-12- 

octadecadienoate (methyl lino leate )

0

CHg(CH2 )4CH=CH CH2 CH=CH(CH2 )y C XXI
^ OMe

The study of methyl lino leate  autoxidation was investigated
50by Treibs who, observing the reaction refractom etrically , did not

51observe the production of any conjugation. However, Farmer deduced 

conjugation of the double bonds during autoxidation, from the strong 

absorptions, c .a . 240 nm, which had been attributed to a straight chain 

conjugated diene by Mitchell i . e .  at 234 nm in a lka li  isomerised 

l in o le ic  acid. Farmer's observations were supported by Gunstone and 

Hilditch^^ who determined the presence of conjugation in the course of 

autoxidation from the absorption bonds at 234 nm and 268 nm. Gunstone 

observed that diene conjugation followed the formation of peroxides; 

the amount of conjugation however reaching a maximum before the maximum 

peroxide value was attained, and thereafter declining steadily . These 

results are in general agreement with Farmer's proposal v iz . ,  that the 

in i t i a l  reaction is the loss of a doubly a l ly l ic  hydrogen atom to give 

a radical which undergoes rearrangement giving a hydroperoxide and a 

conjugated diene system.

Bergstorm^^*^^ also followed the autoxidation of methyl linoleate  

by UV spectroscopy and observed an increase in the absorption at 

232 nm that para lle lled  the oxygen uptake. The oxidised ester was 

separated on alumina yielding two types of peroxides ( i )  with a strong 

absorption in the u ltra v io le t  (log E233 ” ^nd ( i i )  a mixture of 

peroxides with l i t t l e  absorption above 220 nm. The peroxides in
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fraction ( i )  yielded a mixture of monohydroxystearic acids on 

hydrogenation. Whereas fraction ( i i )  gave a mixture of hydroxy- 

stearic acids which could be s p l i t  by lead tetraacetate. The two 

pure monohydroxystearic acids were isolated from fraction ( i )  and 

th e ir  melting points corresponded to 13-hydroxystearic acid and

9-hydroxystearic acid. Bergstorm therefore concluded that the primary 

products from methyl linoleate autoxidation are: methyl-9-hydroperoxy-

1 0 - ,12-octadecadienoate and methyl-13-hydroperoxy-9-j 11-octa-

decadienoate. These accounted for 90% of the autoxidation products,

and this was confirmed by counter current d is t r ib u t io n ^ ^ * ^ ^ a n d
23 31 56reversed phase partition  chromatography ’ ’ methods of isolation of

the peroxides.

s The stereochemistry of the o le fin ic  bonds were investigated by

Privett^^ using infrared spectroscopy. Two major types were

id e n t if ie d , c is , trans conjugated (948 cm ^) and trans,trans conjugated

(988 cmT^). Autoxidation at elevated temperatures results in increased
23 55proportion of the trans,trans conjugated diene hydroperoxides. ’

Hall and Roberts^^ using both Ĥ nmr and infrared spectroscopy also

observed cis,trans conjugated and trans,trans conjugated diene formation

in the autoxidation of methyl l ino lea te . No isolated trans double
-1bonds were observed based upon the absence of a band at 970 cm .

•j
Hydroperoxides formation was observed by H nmr with absorptions at 9.0 and 

8 .8  ppm, and infrared at 3430 and 3460 cm"\ The absorption at 4.2 ppm 

was assigned to the te r t ia ry  proton on the carbon carrying the 

hydroperoxide group, this having a s im ilar chemical s h if t  to that 

observed during the autoxidation of methyl oleate (Section 1 .3 ).  I t  should 

be noted this study was carried out on the unseparated hydroperoxides.
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Other workers reported the amount of cis,trans and trans,trans  

conjugated diene hydroperoxides ranged from 70 - 90%̂ ^

To explain these lower than expected values i t  was suggested that 

u n c o n j u g a t e d ^ ^ a n d  cis ,c is  conjugated diene hydroperoxides 

were f o r m e d . T h e s e  suggestions were discounted by Frankel, 

using the evidence from Hall's  work,^^ and more recently by Chan 

and Levett.^^

Although the presence of the isomeric hydroperoxides XX II, X X I I I ,  

XXIV and XXV was strongly indicated, no d irect separation had been

XXII Methyl-9-hydroperoxy trans-10- cis-12-octadecadienoate

XXIII Methyl-13-hydroperoxy c is-9- trans-11-octadecadienoate

XXIV Methyl-9-hydroperoxy trans-10- trans-12-octadecadienoate

XXV Methyl-13-hydroperoxy trans-9- trans-11-octadecadienoate.

carried out. Measurement of the ra tio  of the 9 and 13 hydroperoxides 

involved the conversion of the mixtures of hydroperoxides onto th e ir  

corresponding hydroxystearates or ketostearates followed by mass 

spectrometry. Alternatively the mixtures were separated by d if fe re n t

chromatographic methods then anal ysed^^’ ^ ^ w i t h  or without 

further derivatisation.

Chan and Prescott^^ separated the 9 from the 13 hydroperoxide 

by high performance liquid chromatography. This technique did not 

separate the four isomers (XXII - XXV) expected but merely the 

positional isomers.

Chan and Levett^^ improved the HPLC conditions and managed to 

resolve the four linoleate hydroperoxide isomers (XXII - XXV).  The 

structures were then established by (a) mass spectroscopy of the
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corresponding hydroxystearates giving the position of the OOH

group. (b) IR spectroscopy giving the geometry of the o le f in ic

bonds. (c) nmr spectroscopy which confirmed the observations

from (a) and (b).

They also established that the trans double bond in the XXII

and XXIII isomers was adjacent to the hydroperoxide.

Terao and Matsushita^^ carried out a study a t the same time as

Chan and L eve tt . They analysed the hydroperoxides a f te r  reduction by

gc-ms either d irec tly  as the hydroxy stearates or as the TMS

derivatives. From the la t te r  method they were able to conclude that

the 9 and 13 positional isomers were formed in equal amounts. They
69subsequently isolated the pure hydroperoxides and carried out 

the ir  analysis by the method shown in schemes 1 .5 .1 ,  1 .5 .2  and 1 .5 .3 .

Analysis of mixtures of methyl linoleate  and methyl linoleate  

hydroperoxides (MLHPO)

Autoxidation mixture

column chromatography 

s il ic a  gel 50% ethyl ether/50% hexane

90% Pure methyl linoleate hydroperoxides (A)

Thin layer chromatography 

benzene/ethyl acetate/petroleum ether

Scheme 1 .5 .1 .

(B) (C)
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Scheme 1.5.1 (contd)

Separation of positional 
isomers (B)

Methyl-13-hydroxystearate

NaBH,

Hg/Pd

(C)

Methyl-9-hydroxystearate

Pure methyl linoleate hydroperoxides

(A)

Scheme 1 .5 .2 .

Separation of cis,trans
and trans,trans isomers (D)

AgNOg T.L.C

(E)

-1Infrared analysis of (D) gave a sharp absorption at 990 cm 

corresponding to a trans,trans conjugated diene.

Infrared analysis of (E) gave two absorptions, one corresponding 

to trans,trans conjugated diene at 990 cm"̂  and the other due to a 

cis,trans conjugated diene at 950 cm \

Pure methyl linoleate hydroperoxides 

(A)

i ,  NaBĤ

 ̂  ̂  ̂ i i .  Trimethyl s i ly l  chloride
Scheme 1 .5 .3 .

TMS derivatives of methyl hydroxyoctadecadienoate 

gc-ms

(F) (G) (H)
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The mass spectra obtained from peaks F, G and H provided direct  

evidence for peak G resulting from a 9-isomer, peak H resulting from 

a 13-isomer. Peak F corresponded to a mixture of 9- and 

13-positional isomers based on the ra tio  of the ion currents for  

m/z 225 and m/z 311 recorded at the apex of peak F.

The separation to give B and C were then each subjected to gc-ms 

analysis. B gave peaks corresponding to F and G, whilst C gave peaks 

corresponding to F and H. The isomers D and E were also analysed 

by gc-ms. The trans,trans isomer D gave peaks G and H whilst the 

cis,trans isomer gave peak F only. The assignment of the T.M.S. 

derivatives F, G and H separated by scheme 1 .5 .3 . are given in table 8 .

Table 8

Conclusion of Teraos analysis of methyl linoleate  hydroperoxides

G.C. Peak Hydroxy compound (as T.M.S. derivatives)

Methyl-9-hydroxy-trans-l0- cis-12-octadecadienoate 

Methyl-13-hydroxy c is -9 - trans-11-octadecadienoate

Methyl-9-hydroxy trans-10- trans-12-octadecadienoate 

Methyl-13-hydroxy trans-9- trans-11-octadecadienoate

Terao also quantified the amounts of the cis,trans and trans,trans  

isomers formed at d iffe rent temperatures and degrees of autoxidation. 

These are summarised in table 9.
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Table 9

Ratio of conjugated diene hydroperoxide isomers

Temp °C
MLHPO (% w/w based on 
total autoxidation 
mixture)

ra tio  of conjugated diene hydroperoxide 
isomers

cis,trans trans,trans

37 11 60 40
24 49 51

60 12 43 57
23 35 65

90 16 32 68

Chan and Levett^^ improved the ir  HPLC method of separating 

hydroperoxides and achieved complete separation of the 4 isomers 

described in the previous s t u d y . T h e  structure of the isomers was 

established by infrared, Ĥ nmr, and UV spectroscopy and gc-ms of 

hydroxystearates derived from reduction of the hydroperoxides. Again 

the presence of the four hydroperoxide isomers was concluded.

More recently Porter^^ studied the autoxidation at various 

temperatures and ester concentrations. The resulting hydroperoxides 

were reduced to alcohols by triphenylphosphine and analysed by HPLC.

The same four isomers were identified  as b e f o r e . P o r t e r  showed that 

the 9- and 13-positional isomers were formed in equal quantities and 

this was independent of temperature or concentration. However the 

proportions of cis-trans isomers depended on both temperature and 

concentration. The trans,trans conjugated diene increased with 

temperature and at lower ester concentrations, n o  dependence on 

oxygen partia l pressure was observed.
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78Grosch isolated two unconjugated hydroperoxides by HPLC.

The hydroxy products formed by the ir  reduction were separated 

into major and minor fractions using s i l ic a  gel/AgNOg. The major 

fraction contained the 9- and 13-isomers, whilst the minor fraction  

(^^1%) was found to contain methyl 14-hydroxyoctadecadienoate and 

methyl 8-hydroxyoctadecadienoate providing strong evidence for the 

formation of hydroperoxides XXVI and XXVII

OOH .0

CH3(CH2)3CH-CH=CH CH2-CH=CH-(CH2)y-C(^^ XXVI

^OMe

Methyl 14-hydroperoxy-9- ,-13-octadecadienoate

OOH ,0

CH3(CH2)4CH=CH-CH2-CH=CH-C-(CH2)g-C XXVII

\ cH3

Methyl 8-hydroperoxy-9- ,-l3-octadecadienoate

The stereochemistry of both double bonds was suggested to be
97c is , but based only on chromatographic properties. No evidence

for the formation of the 11-hydroperoxide has been found although
98its  formation has been postulated.

The best separation of methyl lino leate  hydroperoxides was 
1 0 3obtained by Kostras but no quantitative results were quoted.

1 .6 Mechanism of hydroperoxide formation in methyl 

c is -9 - c is-13- octadecadienoate.

The accepted mechanism of methyl lino leate  autoxidation^^ 

involves hydrogen abstraction at carbon-11- as the in i t i a l  step.
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Interaction of the unpaired electron with the two adjacent 

TT -electron systems produces a b is -a l ly l ic  radical with delocalisation  

over 5 carbon atoms, equation 1 .6 .1 . The maximum overlap between the 

IT orb ita ls  of the double bonds and the orb ital of the unpaired electron  

occurs i f  a l l  5 carbons l i e  on the same plane.

XXYin

r ' =

R = —(CH2 )y“C\
OCH.

Equation 1 .6 .1 .

The terminal carbons of the pentadienyl ra d ic a l,  (X X V II I ) ,  

are equivalent sites for oxygen attachment and results in equal 

amounts of 9- and 13-hydroperoxides being p r o d u c e d . S c h e m e  1 .6 .2

Scheme 1 .6 .2 .

HOO

XXVIII

XXII I

OOH
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The formation of the cis, trans isomers XXII and XX III discussed 

in section 1.5 can be explained simply from radical XXVIII, but the 

trans,trans isomers XXIV and XXV cannot be explained d irec tly  from 

radical XXVIII,some other isomérisation must occur.

Conformational isomérisation of the pentadienyl radical would

provide a means for the formation of the trans,trans isomers.
207Sustman studied the conformation of the pentadienyl radicals  

formed by abstraction of hydrogen from 1,4-pentadiene by 

t-butoxy radicals. At -115°C a superposition of two spectra 

( 'W  and ' Z' form of the radical) is observed by E.S.R. but at 70°C 

only the more stable 'W form remains. The difference in s ta b i l i ty

'W'-form 'Z'-form 'U'-form

probably results from the strain involved in having three and four 

cis interactions in the 'Z' and 'U' forms respectively.

G r i l le r  also studied the conformation of the pentadienyl 

radical. 1 ,4-Pentadiene and d i-t-bu ty l peroxide were photolysed 

together to give the pentadienyl radical in the E,E conformation. 

This conformation was found in photolysis experiments carried out 

from 100°C to -60°C. However when the photolysis was carried out 

below -60°C a new conformation was observed, which became dominant 

below-120°C. This was assigned E,Z. G r i l le r  abstracted bromine 

from trans bromo penta 2,4 diene, the radicals formed by this method 

existed solely on the E,E conformation at temperatures ranging from 

180 to -130°C. This proved that at lower temperatures the radicals 

from 1,4  pentadiene w il l  not be in equilibrium; th e ir  re la tive
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concentrations would appear to depend on the in i t ia l  conformation 

of the pentadiene molecule.

Thus the cis-trans isomérisation to give the trans,trans  

products in the autoxidation of methyl linoleate must occur a f te r  

the in i t i a l  peroxide formation.

Porter^^ explained the formation of a l l  the conjugated diene 

hydroperoxides by scheme 1.6 .3 . This involves molecular oxygen 

as a leaving group (discussed in section 1.4) from a peroxide 

radica l. The mechanism can explain the dependence of the c is ,tra n s /  

trans,trans isomer ratio  on temperature and concentration, v iz . i t  

increases in more concentrated solutions and in the presence of 

excellent hydrogen donors, such as cyclohexadiene. This indicates 

the competition between H-atom abstraction by XXIX, XXX, XXXVIII 

and XXXIX (c is , trans products) and 3 fragmentation, leading to 

radicals XXXI and XXXVII followed by formation of peroxy radicals

XXXII, XXXIII, XXXV and XXXVI (trans,trans products). The more 

easily hydrogens can be abstracted from the medium by radicals XXIX,

XXX, XXXVIII and XXXIX the greater the preponderance of compounds 

XXII and XXIII (cis,trans products). The less easily hydrogens 

can be extracted from the medium, the more l ik e ly  radicals XXXII,

XXXIII, XXXV and XXXVI w ill  be formed resulting in products XXV and 

XXIV (trans,trans products).

The formation of the unconjugated diene hydroperoxides XXVI and XXVII 

can be explained by a similar mechanism to that discussed for the 

autoxidation of methyl oleate (section 1 .4 ) ,  scheme 1 .6 .4 .
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CH- ^^2 R =  -{CH2]^C^'
'OCH:

X X I

/ “ \ = A

OOH

XX\A

HOP

/ W W ' - N

XXT:1

Schem e 1 . 6 . 4 .
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The stereochemistry of XXVI and XXVII have been represented 

as c is ,c is  and unconjugated as indicated in Grosch'spaper.

From the discussion of methyl oleate autoxidation, the presence of 

the following hydroperoxides would also be expected:

XL methyl 8-hydroperoxy-9-trans -12-cis octadecadienoate

XLI methyl lO-hydroperoxy-8-cis -12-cis octadecadienoate

XLII methyl lO-hydroperoxy-8-trans -12-cis octadecadienoate

X L III methyl 12-hydroperoxy-9-cis -13-trans octadecadienoate

XLIV methyl 12-hydroperoxy-9-cis -13-cis octadecadienoate

XLV methyl 14-hydroperoxy-9-cis -12-trans octadecadienoate.

In Grosch's analysis of the minor hydroperoxides, several compounds

in the HPLC chromatogram were unidentified but they may correspond to

the hydroperoxides p(L —  XLV ).

Other autoxidation mechanisms have been proposed in the past.

Khan proposed an 'activated' w complex (XLVI) between oxygen and
71the electrons of the double bond. This mechanism was proposed

on the basis of only cis,trans conjugated isomer formation. Khan

did not observe any trans,trans isomers which Privett^^ had observed

six years e a r l ie r .  Khan's mechanism, scheme 1 .6 .5 . ,  cannot explain

trans,trans isomer formation. This is also a non-radical mechanism

but autoxidation has been shown to be retarded by inclusion of free

127radical inhibitors.
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XXI

/  \  /  \  
H H H H

X L V I

H.

HOO R
CH

X X I I

Scheme 1 . 6 . 5 .
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1.7 Hydroperoxide formation in methyl c is -9 - c is-12-cis-15-  

cctadecantrienoate (methyl linolenate)
. 0

CH2CH2CH=CH-CH2-CH=CHCH2CH=CH(CH2)yC ^

^OMe

methyl linolenate XLVII

Farmer^^’^  ̂ observed that on autoxidation of ethyl linolenate  

absorption of one mole of oxygen was synchronised with the formation of 

1 mole of conjugated diene. This suggested hydroperoxide formation on 

a a methylenic carbon, followed by double bond rearrangement sim ilar to 

that in methyl lino leate  autoxidation.

Fugger^^ attempted the f i r s t  isolation of hydroperoxides from 

autoxidised methyl linolenate using a small 29 tube countercurrent 

distribution apparatus. They were unable to isolate any monomeric 

hydroperoxides, and assumed extensive polymerization had occurred.

However, s ign ificant amounts of diene conjugation was observed in some 

frac tions .

Privett^O showed the presence of monomeric hydroperoxides in a 

sample autoxidised at 0°C. They used counter current extraction which 

on reduction with t i n ( I I )  chloride gave an estimated 90% methyl monohydroxy 

octadecatrienoatewith cis,trans conjugated diene. I t  was therefore 

estimated that 90% of the hydroperoxides formed would be with a conjugated

cis,trans diene.

Frankel^^ isolated hydroperoxides from an autoxidation experiment at 

37°C by partit ion  chromatography and counter current d istribution.
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The hydroperoxide preparations showed similar chemical and spectral 

characteristics to those obtained from methyl linoleate hydro­

p e r o x i d e s . I n f r a r e d  analysis demonstrated that the conjugated 

system had a predominant cis,trans diene conjugation and a minor (~4%) 

trans,trans diene conjugation. Quantitative hydrogenation indicated 

the presence of three o le fin ic  bonds. Frankel also carried a 

complex characterisation of the isomeric hydroperoxides based on two 

sequences of reactions:

( i )  Reduction with potassium iodide or NaBĤ  to the conjugated

h y d r o x y  1 inolenates. The UV and I R  spectra o f  these showed that the

23diene content corresponded to the theoretical value and the stereo­

chemistry of cis,trans and trans,trans double bonds. Acid dehydration 

gave a product containing octadecatetraenoic esters ,one of which (/^50%) 

was shown to be similar to 3 paniraric acid (trans-9- trans-11-trans-13- 

trans-15-octadecatetraenoic ac id ).

( i i )  Catalytic hydrogenation to give a mixture of methyl 

hydroxystearates which,upon dehydration with boric acid at 200-210°C, 

gave a mixture of monoenoic esters with the s ite  of unsaturation 

corresponding to the position of the hydroxy group. Their oxidative 

fission with permanganate-periodate yielded a mixture of dibasic 

acids which was examined by liquid chromatography and glc. By assuming 

an equal amount of monoene is formed on dehydration on each side of the 

hydroxyl groups, the estimated concentration of methyl hydroxystearates 

is shown in table 10 .
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Table 10

Hydroxystearate derivatives formed from the reduction 

of methyl linolenate hydroperoxides

Methyl hydroxy stearates %

9 30.2

12 10.7

13 9.8

16 48.1

These results have since been confirmed by two en tire ly  d iffe ren t
oo

methods. A gc-ms analysis by Frankel, who a fte r  reduction of the 

hydroperoxide^ managed to identify  four isomeric hydroxy a l ly l ic  trienes 

with a conjugated diene system. All eight cis,trans and trans,trans 

diene isomers of the a l ly l ic  hydroxy compounds were separated and 

id en tif ied  by glc as the ir  TMS derivatives. The formation of the 

following hydroperoxides was indicated:-

XLVIII Methyl-9-hydroperoxy-lO-

XLIX Methyl-9-hydroperoxy-lO-

L Methyl-12-hydroperoxy-9-

LI Methyl-12-hydroperoxy-9-

L II  Methyl-13-hydroperoxy-9

LI11 M ethyl-13-hydroperoxy-9

LIV M ethyl-16-hydroperoxy-9

LV Methyl-16-hydroperoxy-9

■trans -12-cis -15-cis octadecatrienoate 

■trans -12-trans -15-cis octadecatrienoate 

■cis -13-trans -15-cis octadecatrienoate 

■cis -13-trans -15-trans octadecatrienoate 

■cis -11-trans -15-cis octadecatrienoate 

-trans - 11-trans -15-cis octadecatrienoate 

-cis -12-cis -14-trans octadecatrienoate 

-cis - 12-trans -14-trans octadecatrienoate
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Quantiative gc-ms analysis of the hydroxy octadecanoate derivatives  

from samples of methyl linolenate autoxidised to d iffe ren t peroxide 

values (134 to 1839) and at d ifferent temperatures (25 to 80^C), 

showed that the proportion of 9- and 16- hydroxy isomers was 

consistently higher (75 to 82%),than the 12 and 13-hydroxy isomers 

(18 to 25%).

84Chan et al achieved complete separation of a ll  eight isomers of

the methyl hydroxy triene derivatives by HPLC. Mass spectrometry of

the hydroxyoctadecenoate derivatives confirmed Frankel's previous 
81 83studies ’ that the 9- and 16- hydroxy isomers were favoured over 

the 12- and 13- hydroxy isomers in the ra tio  3:1. Table 11 shows the 

complete quantitative analysis results.

Table 11

Isomeric distribution of methyl linolenate 

hydroperoxides

Isomer Composition %

XLVIII 30.0 i  1.0

XLIX 3.4 i  0.5

L 8.2 i  1.4

LI 1.9 - 0.4

L I I 10.2 i  1.5

L I I I 2.3 i  0.4

LIV 38.1 - 2.6

LV 5.8 - 0.4
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The ra tio  of cis,trans conjugated diene: trans,trans conjugated 

diene is 6.5 compared to 4.2 in methyl l ino leate , indicating less 

cis-trans isomérisation occurring during the autoxidation of methyl 

linolenate.

1 .8  Mechanism of linolenate autoxidation

The autoxidation of methyl linoleate (section 1.6) involves 

the abstraction of a hydrogen at carbon 11 , the doubly a l ly l ic  methylene 

and the formation of a pentadiene radical. Methyl linolenate has two 

such doubly a l ly l ic  methylenes at positions 11 and 14. Hydrogen abstraction 

at carbon 11 would produce a pentadienyl radical over carbons 9, 10, 11, 12 

and 13 LVI,whereas abstraction at carbon 14 would produce the radical over 

carbons 12, 13, 14, 15 and 16 LVII, scheme 1.8 .1 . The sites for oxygen 

attack v iz . 9, 12, 13 and 16 would a ll  appear to be equal,and an equal 

distribution of a ll  4 hydroperoxides should be expected. I t  is well 

established that the 9 -and 16-isomers predominate over the 12-and 13- 

isomers,and F r a n k e l h a s  suggested that this may be since the 12-and 13- 

hydroperoxides decomposed easier. Chan^  ̂ compared the decomposition of 

9- and 13-1inolenate hydroperoxides (prepared by lipoxygenase oxidation) 

and found them to decompose at the same rate.

Steric effects might cause greater ease of attachment of oxygen 

on carbons 9 and 16 than on carbons 12 and 13.^^ A similar geometric 

isomérisation process probably occurs in methyl linolenate as in methyl 

l ino leate  (section 1 .6 ) to give the trans,trans conjugated dienes.
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16 15 13 12 10 9

^  R=
R' 14 11 R OCH:

0 -,0

+H '

HOO,

L IV

+H '

,00H

V
x m i i

+ +

OOH

L

HOO

R' ■ R
L l l

Scheme 1 . 8 . 1 .
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1.9 Isomérisation of hydroperoxides

Schenck^^^ observed the isomérisation of hydroperoxides in 

cholesterol; the 5 hydroperoxide on standing in CHCl  ̂ a t room 

temperature was shown to rearrange to 7a hydroperoxy cholesterol.

CHCl

HO Room temperatureOOH HO 'OOH

Brill^^^ studied the autoxidation of trans-4-methyl-2-pentene and 

isolated hydroperoxides LVIII and LIX.

CHo
I

CH-, C CH=CH CH.
I
OOH

CH.

CH. C=CH CHCHq 3 I j
OOH

LVIII LIX

He demonstrated that e ither pure LVIII or pure LIX gave an equilibrium 

mixture containing approximately equal quantities of each hydroperoxide 

either in d ilu te  solutions of hexane, carbon tetrachloride, or 

trans-4-methyl-2-pentene at 40^C. The rate of isomérisation of 

LV III or LIX depends inversely on the total hydroperoxide concentration 

and the following mechanism was proposed; scheme 1.9 .1 .
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In it ia t io n

RO* +  'O H 4 R O O H ( R O O H ) ^ — p. decomposition

ROOH +  R O ' ( . O H )  — »  ROO- +  ROH (H ^ O )

ROOM = LV III or LIX 

Propagation

;^3 ç"3 %

C H .  - C - C H = C H -C H ^  C H .C  CHCHCH. ^  C H . - C = C H - C H - C H .
I I I  ̂ I ^
00. 0— 0 00.

O H .  C H .  C H .  C H ., 3  I 3 I 3 , 3
CHg - C = C H - C H -C H 3  +  C H 3 -C -C H = C H -C H 3  ^  C H 3“ C = C H -C H -C H 3  +  C H 3 - C - C H - C H - C H 3  

0 0 * OOH HOO 0 0 .

Scheme 1.9.1.

102Chan reported the f i r s t  observations of hydroperoxide 

isomérisation process in methyl linoleate when hydroperoxides,which 

were predominantly 13 or 9 ,were stored in hexane. Interconversion of 

the positional isomers observed by gc-ms of the corresponding 

hydroxystearates and of cis-trans isomérisation by infrared spectroscopy 

Chan also studied the interconversion process of individual isomers 

into products using HPLC.

Chan^  ̂ proposed a mechanism to account for the interconversion 

(Scheme 1 . 9 . 2 . ) .  The free radical process was supported by a decrease 

of re ac tiv ity  in polar solvent and enhancement by oxygen, metal ions 

and free radical in it ia to rs .
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Linoleate Hydroperoxides 

00.
R -C H = C H  C H = C H - C - R '  ^  (~ R -Ç H Ç H Ç H C H C H -R ' l

H
•0 -  0 -

11
0„

Scheme 1 . 9 . 2 .

The concept of molecular oxygen as a leaving group has been discussed 

in section 1.4.

1.10 Cyclic peroxides

Cyclic peroxide formation has been suggested to explain
20the difference between total peroxide and hydroperoxide values.

Swern suggested as much as 28% of the total peroxides could be not 

in the form of hydroperoxides, based on polarographic analysis. Any 

cyclic peroxides should, on reduction, yield a-glycols but the 

correlation between a-glycol formed and the peroxide value difference 

was not very good.

0 -------0 NaBH. OH OH
1 I  I I

— c —  c — —  c — — - c —

a glycol

More recently Begeman^  ̂ identified a cyclic peroxide-hydroperoxide 

LX from the autoxidation of methyl linolenate.
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This provides evidence for Gunstones®® explanation of the low amounts 

of 12- and 13-hydroperoxides, (section 1.7) by a 1,4 cyclisation of

W" ,0—0,—► r \ r

4H.

.0 - 0 .

Scheme 1.10.1

LX

the internal peroxides formed in methyl linolenate, scheme 1 . 10 . 1 .
87 88Pryor , and la te r  Dahle , reported the isolation and id en tif ica tion

of cyclic  peroxide products from the autoxidation of methyl linolenate

with structures similar to those of endoperoxides formed biosynthetically

from arachidonic acid. They formulated a mechanism involving

1,3 cyclisation of the internal 12- and 13- hydroperoxides and the

formation of a five-membered cyclic peroxide hydroperoxide, LXI.

See scheme 1.10.2.

Malonaldehyde was observed in the autoxidation products in 1952 

by Dahle^^ and also reported in 1966 by Kwan and Olcott^^ Both group of 

workers used 2-th io  barbituric acid to identify  the dialdehyde.

Chan^O reported,in 1980 ,hydroperoxy-epidioxide formation during 

the autoxidation of a hydroperoxide formed from methyl linolenate.
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Scheme 1.10.2 .

HOO.

LII

-2H'

0 -0

OOHLXI

0 0

molonaldehyde

HOO. 0 -0

The hydroperoxide L II was autoxldised at 40 Cfor 95 hours and yielded  

a mixture L I I  (25.4%) LXIII (31.5%) and a mixture of polar products 

(43.0%). Preparative HPLC yielded L X I I I ,  the structure being 

established by UV, Infrared, Mass spectrometry (reduction NaBĤ  followed 

by Pt/H2 ) and spin decoupling nmr.

HOO,

I I I

-H

R= -(CH2)^C02CH3 

R
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0— 0 00 . 0— 0

HOO. 0— 0

L x n

LXIII

Scheme 1 .1 0 .3 .

Hydrogen abstraction from L I I  by LXI I constitutes progagation of

the chain reaction in scheme 1.10.3. When the autoxidation of the
18hydroperoxide was carried out in the presence of O ,̂ the oxygen atom 

at C-13 in LX III  became enriched in ^^0 (26.1 atom %). This 

cyclisation of peroxy radicals, the subject of several recent 

p u b l i c a t i o n s , h a s  been used to produce prostaglandin like  products^^ 

and can occur when there is a remote double bond in the peroxy radical 

substrate.

1.11 Peroxide decomposition and polymeric products

Having outlined the primary products of the autoxidation of 

unsaturated fa t ty  acid esters, the reactions which continue the 

autoxidation process are now discussed.
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The basic equations are as follows: 

I n i t i a t i o n  ^ 2X* (1)
X- (or XOg') + RH -+  R- + XH (or XOgH) ( 2 )

R- + O2 —► RO2' ( 3 )

RO2 ' + RH -» RO2H + R* (4)

k "t
2R0 2 '  ► ROgR (or alcohol and carbonyl compounds) (5)

+ O2

The rate equation for hydroperoxide formation, and for oxygen consumption 

( i f  i ts  reformation by reaction 5 is neglected) is : -

St St i k
kp [RH]

where R̂  the rate of in i t ia t io n ,  combining reactions ( 1 ) and ( 2 ) .

Experiments show that the re la tive  ease of autoxidati-on of RH roughly
113paralle ls  the ease of breaking the C-H bond , and for hydrocarbons

this increases in the series n-alkanes < branched alkanes <  aryl

alkanes ^  alkenes < alkynes]^^’ ^̂  ̂ Thus, both resonance and

inductive effects contribute to the s ta b il i ty  of the resulting radical,

but the subsequent reaction of the alkyl radical with oxygen in
113

reaction (3 ) is usually never rate limiting.
113

Alternative termination reactions to (5) may also occur

2R.  ► R -  R (6)

ROO* +  R* — ► ROOR ( 7 )

and i t  is through these termination reactions that the paint industry 

makes use of oxidative drying.
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Oils containing unsaturated fa tty  acids, on drying, can absorb 

up to 12% of the ir  weight in oxygen. In non-conjugated o i ls ,  

oxygen uptake leads to formation of hydroperoxides, and the ir  decomposition 

accompanies crosslinking r e a c t i o n s . B y  comparison with a f ilm  of

linseed o il (non conjugated) which requires 120 hrs to dry at 25°C in the

presence of O2 , tung o il (conjugated) requires only 48 - 72 hours.

The polymeric compounds which have been reported in the autoxidation of 

methyl linolenate^^ appear to be p o l y p e r o x i d e s . 109,110.

O'Neill^^^ has shown that when methyl oleate was heated with methyl

oleate hydroperoxides, mainly oxygen bonded products were obtained.

Other workers have reported that below 100°C the polymer linkages are
112mainly through oxygen.

Chang"*has isolated dimer and trimer fractions by solvent 

extraction from ethyl lino leate , autoxidised by bubbling with dry a ir  

at 30°C for 350 hrs.
118More recently,Miyashita studied the formation of dimers in the 

autoxidation of methyl linoleate at 30°C for 192 hrs. The oxidised 

ester, separated from the unreacted material by gel chromatography, was 

separated by HPLC into three components. One was assigned as methyl 

l inoleate hydroperoxides and the others as dimeric,capable of being 

cleaved by reduction with sodium borohydride and therefore containing 

the -C-O-O-C- linkage. Miyashita^^^ resolved one of the dimer 

fractions into 4 major fractions by HPLC and determined their  mean 

re la tive  molecular mass, these being 643, 644, 650 and 655 amu. These 

components could contain two molecules of methyl linoleate together with 

three to four molecules of oxygen. Their reduction with stannous 

chloride, s ily la tion  and gc-ms analysis gave three components.-
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the TMS derivatives of methyl-9-and/or 13 hydroxyoctadecadienoate and 

methyl - 9 - , 13-dihydroxyoctadecadienoate. The f ie ld  desorption mass 

spectrum of the last gave a definite molecular ion at m/z 652.

Miyashita has proposed the following structures:

0
LXIV CHgtCHgj^ChkCHCkkCH CH

0 OCH3

X 0 0
* ' ^

CHgfCHgjgCHCĤ CHCHCH CH (CHj)^ C

OCH,

0
LXV C H , ( C H - ) . C H = C H  CH=CH C H ( C H o ) ,  C

0
0 0 

\  ( C H  ) y C H C H  CH CH C H f C H g j ^ C H g  

CHgO X= OH or OOH

0

L X V I  C H g f C H g ) ^  CH=CH CH=CH ( C H g ) ;  C

0 ^  0CH3

0 i  / O
C H j f C H g j ^ C H  CH CH CH C H f C H g j y  C ^

OCH3

0

LXVII C H 3 ( C H 2 ) 4  CH CH=CH CH=CH ( C H g ) ;  C

0
‘ Y

\  9
C ( C H g ) ,  CH CH CH CH CH ( C H 2 )4 C H 3

CH30 '

120 121
Two reviews on the drying oil phenomena are worth noting here.
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Redox promotors of autoxidation - Industrial application 

of drying oils

Certain metal compounds have been known for centuries to 

increase the rate at which oils dry; the ir  f i r s t  recorded use was 

prim arily in the form of lead linoleates in "paints" for mummification 

Litharge or some other oxide of lead was heated with linseed oil to 

produce in te r  a lia  lead linoleate . The term metallic soap appears

to have been mentioned specifically for the f i r s t  time in 1758 when 

Macquer stated that "combination of fa t  oil and calx of lead may be 

considered as a sort of metallic soap." During 1835, zinc oxide 

replaced white lead as a paint pigment, heralding the problem of drying 

the vegetable oils  used as paint vehicles, however with the synthesis of
129 130

many metal soaps the paint industries needs could be satisfied. ’

I t  is now recognised that there are two types of metal promoters.

The f i r s t  group including such metals as cobalt, manganese and iron are

known as 'surface d r ie rs '.  A useful c r ite r ia  is that they exist in two

d if fe re n t  oxidation states, the lower being capable of being oxidised

to the less stable higher oxidation state by the hydroperoxides formed
131during the oxidation of the drying o ils .

The second group are known as 'through driers' and include metals 

such as zinc and lead. These assist the drying of the lower layers of 

the paint f i lm . This is essential as the 'surface driers' used alone

produce a 'shrivelled' film.

The promotors typically used in modern paints are cobalt ( I I )  

b is-(2 -e thy l hexanoate) and lead ( I I )  bis-(2-ethyl hexanoate). The 

alkyl component of the anion provides solubility  for the promotor in 

the non-polar alkyd resin. These promotors are used at concentrations of 

0.04% and 1 . 5% respectively (described as percentages of the weight of 

metal present on the catalyst in the weight of the drying oil present).
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In the presence of these promoters linseed oil w ill  dry in 2 hours^^^ 

(compared to 120 hours unpromoted). This rate of drying is now 

acceptable for a decorative gloss paint.

The metal ions in the ir  higher oxidation state may generate free  

radicals d irec tly  from an organic substrate, both in polar and 

non-polar solvents, by a one electron transfer reaction, (equation 1 . 12.1

RH + . R. + H+ +

Equation 1.12.1

However, this type of in it ia t io n  is masked by the reaction of accumulated
132 133hydroperoxides with the metal ion. Bawn ’ however, showed that 

the cobalt acetate catalysed autoxidation of benzaldehyde in acetic 

acid proceeded by equation 1.12.1. The most conclusive evidence that 

this route is important in metal catalysed autoxidations was reported 

by Heiba.^^^ He studied the cobalt acetate catalysed oxidation of 

alkyl aromatic hydrocarbons in acetic acid in the absence of oxygen.

The f i r s t  step was proposed to be the reversible reaction of Cô ^̂  

with the aromatic hydrocarbon.

+ Co2+

CH2OAC

Ô]-"— ©
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The radical cation is then believed to lose an a proton to give 

a benzyl radical which, in the absence of Og, is rapidly oxidised by 

to the benzyl cation, see scheme 1.12.2. Dessau^^  ̂ obtained 

evidence using ESR for the production of radical cations from several 

alkyl-aromatic hydrocarbons and Cô '*’ .

The study of hydroperoxides in the presence of metal ions really

began when Fenton described the reaction of hydrogen peroxide in
2+ 1 3 7the presence of Fe ions. I t  was Haber and Weiss who proposed

the free radical process in equation 1.12.3.

HgOg + Fe^+ -- . HO. + OH" + Fe^+

Equation 1.12.3

Many organic peroxides, such as a lky l, cycloalkyl and arylalkyl 

hydroperoxides are susceptible to metal ion decomposition. Using

Fentons reagent, the analogous reaction in these compounds appears

to be the generation of alkoxy radicals, equation 1.12.4.

ROOH + m" ------ » RO- + OH" + m"+l

Equation 1.12.4

The decomposition of hydroperoxides by even millimolar amounts 

of transition metal ions such as Cô  , Mn and Fe , is rapid even at 

room temperature. ^ ^ ^ I n  the absence of a reactive substrate 

the reactions below in Scheme 1.12.5 are indicated, thus providing 

a cata lytic  cycle. Hiatt^^^ studied the catalytic decomposition 

of t-butyl hydroperoxide using Co (10 mM) which, at 25 C, gave 

t-butyl alcohol (-87%), t-butyl peroxide (-12%) and propanone (-0.5%).

RO2 H +  » R 0 '  + + - OH

RO2 H +------------------------------- --  RO2 '  + m" + H

Scheme 1 . 1 2 . 5
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I f  the metal ions are present in larger quantities the alkoxy 

rad ica l, (R0-), is reduced as in equation 1 . 12 . 6 .^^!

RO. + m"+ — . RO" +

ROH

Equation 1.12.6

The peroxy radicals ROO* undergo a similar reduction, 

equation 1.12.7.

ROg- + M n ^ +  . RO '̂ + Mn̂ +

Equation 1.12.7

This ion-formation constitutes termination reactions in the free

radical processes discussed in section 1.11. This may provide an

explanation as to why low concentrations of metal ions give optimum
149 145rates for catalyzing autoxidations. ’ However i t  has been 

reported that the drying time of an alkyd resin increases when the 

concentration of metal ion is increased.

The choice of metal ion or the gegen ion can effect the reactions 

given in equations 1.12.5 and 1.12.6 e.g. cobaltic EDTA complex is not 

reduced by hydroperoxides,^^^ although simple cobaltic carboxylates 

are reduced very r a p i d l y . M o s t  Fe ( I I I )  salts do not reduce 

hydroperoxides readily , although the iron phthalocyanine complex 

does.T^^ No apparent correlation between the rate and a relevant
149property such as oxidation-reduction potential has yet been observed.

The autoxidation of methyl linoleate and methyl linolenate in the

presence of cobalt ( I I )  and cobalt ( I I I )  cyclohexane carboxyl ate
150(naphthenate) in n-heptane solution was published by Hendricks.
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He proposed the following reactions, (scheme 1 .12 .8 ), to explain the 

autoxidation of the methyl ester.

In i t ia t io n .

R^RgCHg .- - - - - - - - -  R^RgHC- + HOO-

+ R^F^CHg   + R.|R2HC-+H'^

+ R . R g H C O O H  . + R^RgHCOO- + H"̂

Propagation.

R^RgCH" +  Og -- - - - - ► R^R^HCOO-

R̂ RgHCOO' + R̂ RoCHg — ► R̂ RgHCOOH + R̂ RgHC-

Termination.
-- - - - - - - - - - - - - - - - - -  H 0

Co^II + R̂ RgCH — ------► Co Î+RiRgHCOH + H+

Co^I + R̂ RgHCOO' — — ► Co^II + R̂ RgHCOOH

ZIRiRgHCOO- --------► R-̂ R̂ HCOH + R̂ RgCO +0̂

R̂ RgHCOO- + R̂ RgCH   R̂ R2HC0H + R̂ RgCO

C o ^ I I  +  HOO- - ----- " C o ^ I  +  H +  +O2

Cô  ̂ oxidation.

2CoII + RiRgHCOOH 2Co^^  ̂ + R̂ R̂ HCOH + HgO

Scheme 1.12.8
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1-13 Decomposition of hydroperoxides in the absence of reactive 

substrates

This discussion w ill  be restricted to secondary hydroperoxides 

The decomposition products of secondary hydroperoxides in the presence 

of metal ions are mainly alcohols and carbonyl compounds. Hydrocarbons 

and hydrogen, carbon monoxide and carbon dioxide gas are also found in 

trace amounts.

1-Hydroperoxy ethanol (LXVIII) decomposed in the presence of
153aqueous ferrous sulphate giving ethanoJ and ethanoic acid , equation

1.13.1.

FeZ+/Fe3+ %
CH3CHOH    C H g C ( "  +  CH3C

H OH
OOH

( L X V I I I )

Equation 1.13.1

and 3-hydroperoxyhexane (LXIX) decomposes at 80°C in the presence of

cobalt, copper, nickel, iron or manganese(II) dodecanoate giving
1543-hydroxy hexane (23%) and 3-hexanone (15%) a fte r  20 hrs, equation

1.13.2.
n, n+l

CH3CH2CHCH2CH2CH3  ► CH3CH2CHCH2CH2CH3
I +
OOH 0

11
( L X I X )  CHgCHgCCHgCHgCHg

Equation 1.13.2
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The decomposition of 2-hydroperoxy,3-hydroperoxy~ and

4-hydroperoxy-n-heptane gave the corresponding heptanols and heptanones 

in 20-40% yields^Sl (see table 12).

Table 12

% Heptanol % Heptanone

2-hydroperoxy heptane 31 21

3-hydroperoxy heptane 34 24

4-hydroperoxy heptane 40 30

The decomposition of l-ethoxy-1-hydroperoxy heptane, LXX, in the 

presence of Fe^^ yields ethyl methanoate, n-heptanal and n-dodecane,^^^^ 

scheme 1.13.3.

CH3(CH2)5CH-0CH2CH3 + Fe 

OOH 

LXX

2+ CHg(CH2 )g -C ^C H 2CHg + Fe(OH)
2+

CH3(CH2)5CH + -0CH2CH3 

0

(38%)

CH3(CH2)5ftH0CH2CH3 H-C-OCH2CH3 + 083( 082) 5 - 

(30%)

Dimérisation

CHg(CH2)^gCHg 

(18%)

Scheme 1.13.3
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When the chlorides of Cû  and were used to decompose LXX, 

no n-dodecane was observed. Instead n-hexyl chloride was formed in 

equation 1.13.4.20% yie ld

083 ( 082) 5 - -I- OuOT 083( 082)501

Equation 1.13.4

The ring opening reaction of cyclic hydroperoxides was discovered 

in the early 1950s. A general reaction route is given in scheme 1.13.5

R OOH

-(CH2)n
+ Fe2 + 1 + Fe(0H)2+

(CH2),
R-C-(CH2)2(EH2)r̂ CH2'

Scheme 1.13.5 R = OH, a lky l,  alkoxy, a ry l ,  n = 1 ,2 ,3 .

Specific examples are the decomposition of ( i )  cyclohexylhydroperoxide 

(LXXI) by metal ions ,154,155b 1 . 13 .6 . and ( i i )  1-methylcyclo-

pentyl hydroperoxide (LXXII) with ferrous sulphate to give dodecane 

2,ll_dioneTT56,157,158 scheme 1.13.7.
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= Fê ,̂

OOH nM + M{OH)'

L X X I

OH

Scheme 1.13.6

H3C OOH

L X X I I

+ FeZ+

"3^ /O,

î >  f  F e (O H )^ *

H3C

CH. CHgCICHzlgCCH]

Scheme 1.13.7

Carbon-carbon bond scissions 3 to alkoxy radicals are also 

observed in p r im a ry ^ a n d  te r t ia ry  hydroperoxides^and in general 

the predominant cleavage is that which forms the largest alkyl radical.

Hiatt^^^ studied the rates of decomposition of t-butyl hydroperoxide 

in chlorobenzene with various catalysts and determined the composition 

of the products. The products being t-butyl alcohol, t-butyl peroxide 

and 2-propanone. L i t t le  variance was found in product composition with 

anion selection or temperature. However t^ decreased at higher
2

temperatures and when 2-ethyl hexanoate was the anion. Lead(II)
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cyclohexane carboxylate also decomposed t-butyl hydroperoxide but at 

a much slower rate than c o b a lt ( I I )  stearate.

1.14 Decomposition of hydroperoxides in the presence of alkenes 

The reaction of t-butylhydroperoxide in the presence of 

copper(I) chloride at 70°C with 1-octene gave a mixture of peroxides 

L X X I I I  and L X X I v J ® ^ ’ ^®^ scheme 1.14.1.

(fHgigCOOH + m" --------. (CHjjjCO- + M(OH)"

CsĤ iCHgCĤ CHg +(CH3)3C0-  . (CH3)3C0H + CgH-.CĤ CĤ CHg

CH2 + (CH3)3C00H + M(OH)'n

m" + HgO + CgH,,CH=CHCH200C(CH3)3 + CgHiiCH CH=CH2

00C(CH3)3 

LXXIII LXXIV

Scheme 1.14.1

However i t  was reported that in the presence of cobalt ethanoate 

or cyclohexane carboxylate the compound 2-octenal is also formed by 

the thermal decomposition of LXXIII.

t-Butylhydroperoxide with 1,3-butadiene, in the presence of c o b a lt ( I I )  

cyclohexane carboxylate between-15 and-7 ° , gave a mixture of

l,4-d i(t-butyl-peroxy)-2-butene (LXXV) and 3,4,d i(t-butyl-peroxy)-l-butene
162

(LXXVI) with the following pathway being suggested, scheme 1.14.2 .
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(CHgjgCOO- + CH2=CHCH=CH2 ---------   (CH3)3C00CH2CH=CHCH2I
(CH3)3C00CH2CHCH=CH2

((^3 ) 3000-

------------------ ' (CH3)3COOCH2CH=CHCH200C(CH3)3 + (CH3)3C00CH2CHCH=CH2

00C(CH3)3

LXXV LXXVI

Scheme 1.14.2

This reaction gives support to the structure of the dimers formed 

in the autoxidation of methyl linoleate isolated by Miyashita.^^^ 

(Section 1.11).

1.15 Complexing agents

The search for durable paint films coupled with pressure 

to remove lead driers has recently revived interest in aluminium 

coordination promotors. The li te ra tu re  contains many patents on the 

use of organo aluminium compounds in paint. Although Chatfield^^^ 

observed an increase in the viscosity of paints and varnishes in the 

presence of aluminium soaps,it was le f t  to Weiss^^^’ ^^  ̂ to develop 

the fina l form of the promotor, the use of which is being suggested 

at the present time.

Weiss reacted aluminium butoxide with an equimolar amount of 

acetoacetic ester (AAE). The resultant complex was then reacted with 

Tall o i l acids and from, the amount of alcohol liberated, i t  was 

concluded that the reaction was an exchange of the two butoxide groups 

for two acid groups, equation 1.15.1.
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A1(0Bu ) 2(AAE) + ZRCOgH —  AlfOCORjgtAAE) + ZBuOH

Equation 1.15.1

Turner more recently proposed the same type of exchange 

reaction in the coordination drying of alkyd resins by Al(OR)g, 

equation 1.15.2.

0

A ) — C —  OH = A lkyd  

R = A lky l

+ 3 ROH

Equation 1.15.2

However a long term storage problem has been encountered with the use 

of A1 (0R)3 in paints; the viscosity of the resin increases to an 

unacceptable level. The Weiss compound however gave the resin much 

improved storage properties,but s t i l l  the viscosity increased.



The use of low acid value alkyds in combination with a Weiss type 

aluminium compound gives excellent storage properties.

The compound now considered most suitable for incorporation into 

a paint is aluminium bis(2-butoxide)ethyl acetoacetate. (LXXVII)
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CH

X H :

CH3CH20, 0 — Al

CH:

\ X H :
CH'
\

CH?\
CH:

L X X V I I

Some unpublished work of ICI Paints Division,together with results 

published by Turner^^^ and Love"*^  ̂ suggest that its  complexing reaction 

is s im ilar to that in scheme 1.15.2, except the complex LXXVII w ill  

only combine with two alkyd monomers. The chelating group (ethyl 

acetoacetate) is believed not to be displaced under ambient conditions. 169
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1*16 Acid catalysed crosslinking of alkyd resins

Recently ICI Paints Division patented the use of acid 

catalysts to accelerate the drying of alkyd r e s i n s T h e  acid 

catalyst used for the curing must be a strong acid, such that 

a solution of the acid in water is fu l ly  dissociated i . e .  the acid 

does not have a f in i te  pKa value. Suitably strong aryl and alkyl 

sulphonic acids include benzene, toluene, methane, ethane, propane, 

butane and dodecane.

The alkyd resin is formulated as discussed before (section 1.1) 

but with an excess of polyfunctional alcohol over polycarboxylic 

acid to give the resin a significant excess “hydroxyl content".

Work at ICI^^^ has revealed the following conditions for drying 

to occur: ( i )  the presence of oxygen, ( i i )  the presence of OH

groups in the resin, ( i i i )  the presence of unsaturated fa tty  acids 

and ( iv )  the absence of free radical inhibitors.

With 1-6% w/w of the acid catalyst, based on the weight of the 

fi lm  forming material, the rate of drying was comparable to that of 

conventional driers.

This evidence suggests that oxygen reacts with the unsaturated 

fa t ty  acids in the resin, i . e .  forming hydroperoxides and that the ir  

subsequent decomposition may be assisted by the acid.

The possib ility  of acid catalysed addition of alcohols to double 

bonds in the resin can be disregarded on two counts: ( i )  for this

type of addition to occur the sulphonic acid has to be used as the 

solvent;^^^’ ^^^’ ^^^’ ^^  ̂ ( i i )  the resin would be expected to crosslink 

and gel on storage; in practise the viscosity of these alkyd resins 

often decreases s lig h tly  on storage.
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The acid catalysed decomposition of hydroperoxides may occur 

by protonation at either oxygen of the hydroperoxide, see scheme 1.16.1

H

+ ®ROOH + H
R-O-OH

H
R-O-O-H

©

Scheme 1.16.1

Hydrogen peroxide w il l  become a leaving group with hydroperoxides 

whose R groups are su ffic ien tly  electron d o n a t in g ,e q u a t io n  1.16.2.

Et H Et
I / I

Pho-C-O-OH , — Ph^-C® + HOoH

Equation 1.16.2

Alternatively, the protonation of the hydroxylic oxygen leads to 0-0 

heterolysis, followed by nucleophilic r e a r r a n g e m e n t ^ w i t h  

an alkyl or aryl group undergoing a 1,2 sh ift  from carbon to an 

incip iently  positive oxygen, scheme 1.16.3. Experimental evidence 

R
I H+ R 0

R-C-O-OH „ - — RgC-O-O-H

R

(-HoO) ©
-----------► R-C-O-R

H

Scheme 1.16.3



100

suggests that alkyl oxonium ions never have a free existence,
18(a) partia l decomposition in 0 labelled water does not y ie ld  

residual hydroperoxide containing ^^0 g^d (b) the re la tive

rates for d iffe r in g  R groups show a strong indication of anchimeric 

assistance in the 0-0 bond breaking Many
1 op ] oc

rearrangement products from aromatic compounds are reported, *

few a lip ha tic  compounds have been studied. However Pritckon^^^

reported that secondary alkyl hydroperoxides under acid catalysed

conditions rearrange to give ketones, e.g. 1-methylcyclohexyl

hydroperoxide gives 7-hydroxy-2-heptanone, and 1-methylcyclopentyl-
187hydroperoxide produces 6-hydroxy-2-hexanone in 15% y ie ld .

188March reported that the alkyl migration also occurs in secondary
189alkyl hydroperoxide decompositions. Deno studied the 

decomposition of 2-pentyl hydroperoxide by sulphuric acid and obtained

37% isopropyl hydrogen sulphate (n-propyl migration) and 63% 2-pentanone
190(from H migration). More recently Turner studied the decomposition

of t-buty l hydroperoxide and found product dependence on acid

concentration, lower concentrations giving di-t-butylperoxide. He
179did not detect any 2-methylpropene previously reported by L e ff le r .

He explained the di-t-butylperoxide formation by the elimination of 

hydrogen peroxide from protonated t-butyl hydroperoxide, scheme 1.16.4.

H c - ^ - O O H  H 3 C - C - O O H  ,  '  ^ H 3 C - Ç ©
I I ® i
CH3  H3 C ^^3

CH3  ÇH3

(CH3 Î3 COOH HqC— C —  0 — 0  —  C— CH3

I I
CH3  CH3

Scheme 1.16.4



101

I f  the decomposition was carried out in the presence of 

methanol then methyl-t-butyl ether and methyl ethanoate became 

the major products, schemes 1.16.5 and 1.16.6.

(CHĝ COOH  ± (CH^yC® + H2O + 1/2O2

+ (CĤ lgCOOH ; —  ((:H3l3C)202

(CHglgC® -*• CH3 OH ^ (CH3 ^C 0 CH3  + H

Scheme 1.16.5

H
I

©00C(CH3)3

  „ 3C - i - 0CH3

CH3 CH3

0 ©
— C —  ULH3 ----------------------------r n 3L— U— ucng

L 3 OCH3

H2O

CH3 COOCH3  + CH3 OH

Scheme 1.16.6
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191
Sheldon studied the acid catalysed decomposition of several 

hydroperoxides (LXXVIII) by FSOgHiSbFg (5:1) at -40°C.

I
R = CH2 -CH2CH2" “CH , or 

CH3 \ h .

LXXVIII

CHg-C-CHg

CH3

Spectra obtained by n.m.r. were interpreted to show the formation 

of alkoxycarbonium ion of the structure (LXXIX)

CH3

LXXIX
©

CH3

The chemical s h if t  of the a- hydrogens on the R group being
CH3 ,R

downfield from those a to an ether linkage (e.g. ,

R = CH3 4.89 ppm).

192Schoellner studied the autoxidation of methyl oleate 

and methyl linoleate in the presence of methanol and strong acid, 

Evidence was found for the formation of dimethoxy acetals and these 

was determined by fractional vacuum d is t i l la t io n  (no boiling points 

quoted) and 2,4 d in itrophenylhydrazine derivatives. The acetals 

were formed on the carbon atom that corresponded to the position of 

hydroperoxide formation in the esters. The following mechanism 

was proposed, scheme 1.16.7.
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CH3(CH2)7CH=CH~CH{CH2)^C00CH3

OOH

CH3(CH2)7CH=CH-CH(CH2)^C00CH3 + H2O 

0©

CH3(CH2)7CH=CH-0-CH(CH2)^C00CH3
©

CH3OH

C H 3(C H 2 )7 C H = C H — 0— CH(CH2)5COOCH3 ♦ H 

OCH.

CH3OH

CH3(CH2)7CH2Ĉ
.OCH-

OCH: H3C0 /
CH(CH2)^C00CH:

Scheme 1.16.7

The rearrangement of the oxenium cations can be compared with 

the Wagner-Meerwein rearrangement. I t  is known from the Wagner- 

Meerwein rearrangement that nucleophilicity w ill  show the greatest 

migratory aptitude. For this reason the migration of the 

unsaturated group to the oxygen atom is preferred, as the vinyl 

group is considerably more nucleophilic than a saturated alkyl group 

The peroxide "content" of these autoxidised esters is much 

lower than an ester autoxidised in the normal manner. Methyl
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- ( ^ 0

]  OOH

^C(CH2)7CH =  CHCH=CHCH(CH2)^CH3

= ALkyd
m o le c u le ,

0 ® -H

w

/C(CH2)7CH =  CHCH=CHCH(CH2)4CH3

0,̂
C(CH2)7CH=CHCH =  CH-G — C(CH2)4CH3

0 H

— — CH2OH

V
C(CH2)7CH=CHCH=CH—0-CH(CH2)4CH3

0

CH?

Scheme 1.16.8
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oleate with uv irrad iation  at 50°C showed a 25% peroxide content

a fte r  48 hours, whereas under the same conditions, in the presence

of methanol and sulphuric acid, this same level of peroxides was

obtained only a fte r  36 days.

A possible mechanism of crosslinking in an alkyd resin using

methane sulphonic acid could involve hydroperoxide formation on the

fa t ty  acid chain, its  acid catalysed decomposition, alkoxy carbonium

ion formation and nucleophilic attack by a hydroxyl group attached

to another alkyd molecule, see scheme 1.16.8.

194Gardner in 1984 studied the acid catalysed decomposition of

13-hydroperoxy-cis-9-trans-l1-octadecadienoic acid in the presence

of MeOH/HgO (9:1 v /v ) .  The rather complex mixture of products was

separated by column chromatography and then HPLC and 18 compounds
1

were identif ied  by H n .m .r., infrared spectroscopy and mass 

spectrometry. The type of compounds identified included isomeric 

epoxymethoxyoctadecenoic and hydroxy dimethoxyoctadecenoic acids.

The compounds identif ied  are listed in table 13.

Table 13

Methyl 12,13 epoxy-11-methoxy 9-cis-octadecenoate 

Methyl 12,13 epoxy-11-hydroxy 9-cis-octadecenoate 

Methyl 12 hydroxy -11 ,13-dimethoxy 9-cis-octadecenoate 

Methyl 13 hydroxy -9,12-dimethoxy 10-trans octadecenoate 

Methyl 13 hydroxy -9,10-dimethoxy 11-trans octadecenoate 
Methyl 12,13 dihydroxy-1l-methoxy-9-cis-octadecenoate 

Methyl 11,13 dihydroxy-12-methoxy-9-octadecenoate 

Methyl 12,13 dihydroxy-9-methoxy-lO-octadecenoate 

Methyl 12-oxo-lO-trans dodecenoate 
Methyl 9,13 dihydroxy-12-methoxy-lO-octadecenoate



The formation of the epoxides was explained by electrophi1ic 

attack on the hydroperoxide along with the elimination of water to 

form LXXX and subsequent methanolysis, scheme 1.16.9.
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y
0— H

0
^0— H

R

R = (CH2l^CHg

R ' =  (CH2I7C
OCH:

•H2O

L X X X

OCH
R

R
OCH

LXXXI

Scheme 1.16.9

The formation of methyl 12,13-epoxy-9-methoxy-trans-10- 

octadecenoate (LXXXI) would be expected but no evidence was given 

fo r  i ts  presence.
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The hydroxy and methoxy compounds result from solvolysis of 

the parent epoxides, although the formation of the 9-methoxy 

compounds suggest the intermediacy of LXXXI.

Thus there appears to be two routes for crosslinking on the

acid catalysed drying of alkyd resins, ( i )  the Hock rearrangement 

of hydroperoxides and ( i i )  intramolecular rearrangement of the 

hydroperoxides into epoxides, with the accompanying addition by 

an alcohol.

1.17 Photoinitiated autoxidation and crosslinking reactions 

The absorption of energy by organic compounds in the 

v is ib le  and u ltra v io le t  region of the spectrum involves the

promotion of electrons from the ir  ground state occupation of o, tt

and n orb ita ls  to higher states. In the case of carbonyl compounds, 

the transitions requiring the lowest absorptions of energy correspond

to e ither an n-electron being transferred to the ¥-antibonding
*  *  

orbital ( t t  ) or a n-electron being transferred to the m  orb ita l .

These are referred to as n -* tt and tt — ir transitions respectively

and the former usually has the lowest energy and therefore corresponds

to absorption at longer wavelengths. Normally ground state

electrons are paired and this is termed the 's inglet s ta te '. When

an electronic transition occurs the spin of the electron is conserved

and the in i t ia l  photoexcited state is also a singlet. This species

is very short lived (about 10“  ̂ secs) and usually the spin of the

promoted electron is reversed by a process known as intersystem crossing

giving a ' t r ip le t  s ta te '.  From Hund's rules this state is lower in

energy and longer lived (10  ̂ secs). I t  is from this state that most

of the subsequent photochemistry occurs.
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With a liphatic  ketones we are normally concerned with an 
★

n -  -FT trans ition . An electron previously wholly associated with

the oxygen atom becomes excited to an anti bonding orbital and

associated with both nuclei. The oxygen atom is then electron

defic ien t and there are radical centres at both the carbon and oxygen
★

atoms. With the tt -» n transition the electron distribution is not 

so greatly perturbed and the oxygen does not become electron defic ient.  

In aromatic ketones mixing of the two states occurs and excitation  

energy may be delocalised into the tt system and may not be available  

for reaction at the carbonyl moiety.

Autoxidation of alkenes can be in it ia ted  either directly  by 

uv irrad ia tio n  or by using photo in it ia to rs .  There are two 

pathways for photo-sensitized o x i d a t i o n s I n  type 1 the sensitiser 

reacts, a fte r  absorption, with the substrate (A) to form intermediates 

which then in turn react with ground state ( t r ip le t )  oxygen to y ield  

the oxidation products. In type 2 photo-sensitised oxidation, 

molecular oxygen rather than the substrate is the species which reacts 

with the sensitiser a fter  ligh t absorption. In both cases more than 

one intermediate may be involved, scheme 1.17.1.

Type 1 Sens — —► Sens

Sens + A  intermediates

intermediates + O2 —- Products + Sens.

Type 2 Sens* + Og — " intermediates

intermediates + A — - Products + sens.

Scheme 1.17.1
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In the case of type 2 photo-sensitized oxidation, singlet oxygen is

generally regarded as the reactive species responsible for

oxygenation of the substrate. Here the reaction is between singlet

oxygen and o le fin ic  bonds, and does not involve conjugated free

radicals, but proceeds via a spin-allowed addition i . e .  the 
195ene-reaction. This is a concerted reaction in which the oxygen

molecule is inserted at either carbon atom of the carbon-carbon double

bond which shifts to y ie ld  an a l ly l ic  hydroperoxide. An example of

"type 1" mechanism is the riboflavin photo-sensitized autoxidation of

methyl l ino lea te , which yields the same isomeric hydroperoxides as

autoxidation i . e .  the 9 and 13 conjugated diene hydroperoxides.

The formation of a diene radical is thus suggested. The riboflavin

sensitised autoxidation of methyl oleate gave the 8,9,10 and 11

isomeric a l ly l ic  hydroperoxides and methyl linolenate the expected

9,12,13 and 16 conjugated diene hydroperoxides.

However erythrosine sensitized autoxidation on the other hand

is an example of the 'type 2' mechanism which involves singlet

oxygen as the oxygenating species. Methyl oleate oxidation gave

rise to a mixture of only the 9 and 10 positional hydroperoxide

isomers. The methyl linolenate oxidation gave the 9,12,13 and

16 conjugated diene hydroperoxides along with hydroperoxide groups
197at the 10 and 15 positions.

198The photo-in itia tor system patented by ICI uses the combination 

of a ketone, and a reducing agent that is capable of reducing the 

photo excited state of the ketone. The ketones covered include 

a lip h a tic , benzenoid and non-benzenoid aromatic, a licyc lic  and mixed 

mono and poly ketones. The reducing agents which have been shown
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to have a c t iv ity  include both aliphatic  and aromatic amines,

phosphines, thioureas and sulphinates. The most useful system

for drying unsaturated polyesters (alkyd resins) was reported

to be the combination of benzil and a te rt ia ry  a liphatic  amine.

More recently ICI discovered that the drying of alkyd resins can

be in it ia te d  using benzil alone and in daylight.
*

The electrophi l ie  nature of then-*iT photo-excited state of

carbonyl containing compounds is reactive towards hydrogen abstraction,

The photoreduction of ketones in solution has been the subject of many 
199investigations and can be il lustra ted  by the photoreduction of 

benzophenone in 2-propanol to give a quantitative yield of 

benzopinacol and acetone (equation 1.17.2). The photoreduction is

OH OH 0

Z f C g H g j g C O  +  C H g C H fO H jC H g  CgHg C— C -C g H g  +  C H 3 - C - C H 3

Equation 1.17.2

believed to occur by hydrogen abstraction by the ketone t r ip le t  from 

the carbinol carbon.

The photochemistry of the diketone benzil has been studied.

The resemblance between the absorption spectra of benzil and 

benzaldehyde suggest a s im ilarity  both in their ground states and in 

the ir  f i r s t  excited singlet states. Benzil in its  ground state has 

i ts  individual benzoyl groups planar but generally these l ie  at 

approximately 90^ to each other. There is l i t t l e  configurational 

interaction between the two halves of the molecule in the
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ground state and the n — absorption takes place in individual 

carbonyl groups. The energy of the t r ip le t  state , which is formed 

with nearly 100% efficiency is however decreased by a strong 

interaction between the two carbonyl groups. The photoreduction of 

benzil by 2-propanol does however occur and the reaction is believed 

to be represented by scheme 1.17.3.

0
II

PhC

A/"
II I 

Ph— C —  C— Ph

OH

0 0 
II II 

Ph— C— C—Ph

hv
RH

0

PhCIOHlCPh

BenzilRH

PhC— CPhPhCHO

Benzil

HO OH 
I I 

—C— C— Ph 
I I = c  c = o  
I I 
Ph Ph

Dibenzoin

Scheme 1.17.3

202The hydrogen abstraction by benzil from cyclohexane has also 

been reported, again the abstraction is thought to take place by the 

ketone t r ip le t .

I t  is believed^^^ that benzil in its  t r ip le t  state abstracts 

a methylénic hydrogen from unsaturated fa tty  acids and this production
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of radicals provides a means for the crosslinking of alkyd resins.

Hence benzil would appear to act by a type I mechanism. Benzil

is used at a level of 1% w/w on the resin. Hydroperoxide formation is

observed during resin drying suggesting that oxygen reacts with the

radicals resulting from the hydrogen abstraction process. I t  is

doubted that these peroxides contribute signficantly to the drying

process. This is evidenced by the fact that i f  peroxy and alkoxy1

radical scavengers, such as t-butyl catechol, are added to a res in ,

the rate of drying is reduced only s lig h tly . However i f  an effective

alkyl radical scavenger, such as galvinoxyl or diphenyl pi cry1 hydrazyl,
203is added,then the rate of drying is substantially retarded.

The addition of hydroperoxides, for example cumene hydroperoxide, to
203the resin also had no effect on the rate.

prjO
Armstrong reported that benzil w il l  decompose hydroperoxides

in i ts  excited state and in the absence of oxygen, however no

experimental evidence or references were quoted. Fluorenone

decomposes hydroperoxides via a ketyl-radical mechanism but did not
204 205

photo-sensiti se the decomposition of acyl peroxides. ’
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2. Results and Discussion

2.1 Autoxidation of methyl cis-9-octadecenoate

The vo la ti le  degradation products formed during the 

autoxidation of methyl oleate were collected in a cold trap.

They were analysed by both packed column and capillary column 

glc. After having determined the conditions for good 

chromatographic separations, the products were identified by 

gc-ms. Carbonylic vo la tile  compounds collected by the chemical 

trap were analysed by HPLC. The retention times and the ir

2 ,4 -d in itrophenylhydrazine derivatives were compared to those 

of standard samples.

2.1.1 Autoxidation promoted by C obalt( II)  bis(2-ethyl 

hexanoate) and lead ( I I )  bis(2-ethyl hexanoate)

2.1.1.1 Determination of vo la ti le  products by gc-ms 

The total ion current chromatogram obtained 

from the capillary gc-ms analysis is shown in figure 2 .1 .1 .1 .1  

with the spectra being obtained at the apex of each chromatographic 

peak. The re la tive  abundances of ions were expressed as 

percentages of the base peak in each spectrum.

Scan No.135

m/z 70 55 42 40 39 38 30 27

Rel AB % 36 42 100 13 40 8 13 32

The largest re la tive  molecular mass and the retention time of 

the compound suggests a hydrocarbon of formula CgĤ Q.
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Figure 2.1.1.1.1.

Capillary total ion current chromatogram 

of the v o la t i le  products from the autoxidation 

of methyl oleate in the presence of cobalt and
lead promotors.

RIC

1500
26:15

1000Scan No. 
Time (mins)
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2-Pentene has a base peak at m/z 55 and is therefore ruled out. 

Two other possib ilit ies  ex ist, v iz. cyclopentane and 1-pentene 

both of which have a base oeak at m/z 42. Owing to the ir  very 

sim ilar fragmentation patterns no distinction can be made.

Scan No. 272

m/z 86 68 58 57 45 44 43 42 41 38 29 27

Rel AB % 1.4 1.4 28 22 11 100 26 14 50 26 99 75

A base peak at m/z 44 is characteristic of straight chain aldehydes 

(C  ̂ -  Cy); this ion arises from a McLafferty rearrangement of the 

parent ion, (equation 2 .1 .1 .1 .1 ) .

CH.
0

Equation 2.1.1.1.1

The loss of water (M-18) and ethene (M-28) also provides evidence 

for the aldehyde structure. Comparison with standard spectra^^^ 

confirmed this compound as pentanal.

Scan No. 370

m/z 46 45 44 29

Rel AB % 93 89 23 100
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The molecular ion m/z 46 can arise from methoxy methane, ' 

ethanol or methanoic acid. The loss of 17 dal tons from the 

molecular ion suggests the presence of a hydroxyl group. Thus 

methoxy methane is ruled out and since ethanol gives a base peak 

at m/z 31, i t  appears that this compound is methanoic acid.
p Ar

Comparison with the standard spectrum gave a f a i r ly  good match 

Scan No. 415

m/z 60 45 44 43 42 41 31 29

Rel AB% 37 80 6.8 100 19 4.7 7.4 23

The losses of 15 and 17 dal tons from the molecular ion indicate 

the presence of a methyl and a hydroxyl group respectively.

Possible molecular formulae are Ĉ HgO and Alcohols

corresponding to Ĉ HgO are not applicable because the base peak 

for 1- and 2-propanol are at m/z 31 and m/z 45. However ethanoic 

acid (CgH^Og) is therefore the most probable compound and 

comparison with its  standard spectrum^^) gave a f a i r ly  good match.

Scan No. 458

m/z 88 70 51 56 55 45 44 43 42 41 40 39 31 29 27

Rel AB 0.2 29 14 10 60 5 7 25 100 79 6.8 31 80 86 67

Here the loss of 18 dal tons from the molecular ion suggests a hydroxy 

group in the compound. The loss of 33 dal tons (CH^O), an ion at

m/z 31 of high abundance and the presence of an ion m/z 45 also 

suggest an oxygen containing compound. Taking - 88 the 

molecular formula is CgĤ gO. There is no unsaturation present
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and the evidence indicates an alcohol. 1-, 2- and 3-pentanols 

have base peak ions at m/z 42, 45 and 59 respectively.

Comparison with the standard spectrum of l-pentanol^^G gave 

excellent agreement. I t  is therefore concluded that this compound 

is 1-pentanol.

Scan No. 558

m/z 100 82 72 71 69 67 58 57 56 55 45 44 43 42 41 40 39 29

Rel AB % 0.3 7.5 10.6 4 0.7 6.8 5.6 35 50 14 16 100 58 17.4 88 7. 44 88

The base peak at m/z 44, an ion corresponding to loss of 18 dal tons 

from the molecular ion and an abundant ion (88% of base peak) at m/z 29 

suggests a straight chain aldehyde. The presence of an ion at m/z 56 

which results from a McLafferty-type rearrangement Scheme 2 .1 .1 .1 .2  

indicates again the aldehyde structure. A comparison of this

CH He
0^-CHo-CHOH CH CH
II -̂--------- ► 1̂1

Ch2 

M/Z 56

Scheme 2 .1 .1 .1 .2

206spectrum with the standard spectrum of hexanal confirms this 

assignment.

Scan No. 857

m/z 102 84 70 69 57 56 55 54 53 44 43 42 41 40 39 31 29 27

Rel AB % 0.8 4 2 29 9 100 59 4 4 9 84 64 85 7.3 43 81 77 85
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The presence of ions resulting from (M-18), (M-33) and the ion 

m/z 31 (CHgOH )̂ indicates an oxygen-containing molecule.

The base peak at m/z 56 can result from the loss of water and 

ethene from the parent ion (equation 2 .1 .1 .1 .3 ) .

CH.
hJ  V r  2

CH3 CH2CH

'"2

C H = ‘C H 
2 2

"2°

1-h
CHpCHCH^CH^

Equation 2 .1 .1 .1 .3

This suggests again a primary alcohol structure and comparison
206with the standard spectrum of 1-hexanol 

Scan No. 903

confirmed this assignment.

m/z 114 85 72 58 57 55 43 42 41 39 29 27

Rel AB % 8 25 19 4.7 100 5.3 19 8 48 18 72 53.3

Loss corresponding to the loss of 29 and 57 daltons from the molecular 

ion suggests the presence of CHgCHp- and CH2CH2CH2CH2 -  respectively 

and the rearrangement ion at m/z 72, suggests an oxygen-containing 

ion. These types of fragmentation suggest a ketone structure with 

the larger alkyl group being eliminated preferentia lly  over the 

smaller group, (Scheme 2 .1 .1 .1 .4 ) .
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0

2 - 2  Ln̂ 1 +
CH^CH^C M/Z 57 (100%)

Scheme 2 .1 .1 .1 .4

3-Heptanone was confirmed by comparison with its  standard spectrum. 

Scan No. 936

206

m/z 116 98 87 70 69 59 58 57 56 55 45 44 43 42 41 39 31 29 27

Rel AB % 0.4 3 24 4 73 100 11 20 4 8 12 7 25 7 81 21 69 61 63

The expulsion of water from the molecular ion coupled with a base peak 

at m/z 59 tends to indicate a secondary alcohol. The loss of 

29 daltons from the parent ion implicates the presence of at least a 

CHgCHg group and while the loss of 57 daltons to form the base peak 

ion indicates the presence of CH0CH2CH2CH2- .  3-Heptanol was 

confirmed^^^ as the compound present.

Scan No. 944

m/z 114 96 86 85 81 72 71 70 68 67 57 56 55 54 53 45 44 43 42 41

Rel AB % 0.2 46 7 2 11 5 12 42 9 6 28 4 35 5 4.3 1.3 TOO 67 48 84

m/z 39 29 27

Rel AB %44 82 78
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The base peak at m/z 44, an abundant ion at m/z 29 (82%) together 

with the loss of 18 daltons from the molecular ion and the presence 

of the rearrangement ion peak m/z 70 point to an aldehyde of the 

formula CyH^^O. Comparison with the standard spectrum of heptanal 

confirms this assignment.

Scan No. 1014

206

m/z 86 85 57 56 55 43 42 41 40 39 29 28 27

Rel AB % 8.7 6.0 6.7 11 5 4 73 42 12 17.5 72 100 59

An ion of m/z 86 could be formed from the compound having 

molecular formulae CgĤ gO, Ĉ Ĥ Og and C^H^O .̂ The retention

time of the compound suggested a fa ir ly  polar species and on this  

basis those molecules corresponding to or CgĤ gO were

considered less l ik e ly .  The base peak at m/z 28 probably results 

from t  formation. 2(3H) Dihydrofuranone has m/z 28 as its  base 

peak, (Scheme 2 .1 .1 .1 .5 ) .  Comparison with the standard spectrum of 

2(3H) dihydrofuranone^O^ gave excellent agreement with scan 1014.

!+• n

; CH,
+

2

M/Z 28

+ [ = 0

Scheme 2 .1 .1 .1 .5
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Scan No. 1126

m/z 98 83 70 69 68 57 56 55 45 44 43 42 41 40 39 31 29 27

Rel AB % 1.9 4.9 57 31 9 16 60 54 4 7 65 49 100 6.5 33.5 66 72 76

A computer search of the spectra library  for this spectrum

produced heptyl methanoate as the best f i t .  The molecular ion

(m/z 156) of this compound is also absent in the standard spectrum

and the match between them is very good.

Scan No. 1191

206

m/z 128 110 100 94 85 84 82 81 69 68 67 57 56 55 45 44 43 42 41

Rel AB% .1 2.5 4 3 6 19 10 10.2 10 11 11 37 34 33 12 51 74 35 92

m/z 39 29 27

RelAB% 45 100 93

The molecular ion loses water, so together with the large abundances 

of the ions m/z 44 and 29, an aldehydic structure is l ik e ly .  Octanal has 

= .128. The expected base peak of m/z 44 is not seen, the base peak of

1-octanal is at m/z 43. Although the base peak obtained here was 

at m/z 29 this spectrum is s t i l l  interpreted as being octanal.

The lower mass ions are of higher intensity than expected, probably 

owing to the s tart of the recording of the spectrum being just a fter  

the apex of the total ion current peak. The higher mass ions were 

consequently recorded at a lower source concentration.



Scan No. 1250
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m/z 128 113 99 85 71 57 43 42 39 29 27

Rel AB % 0.6 0.6 43 2 13 14 100 7.5 6 53 44

The losses of neutral fragments of 29 and 71 daltons from the 

molecular ion shows the presence of CHgCHg- and 

Compositions of the ion m/z 43 can be CĤ CÔ  or Similarly

the neutral fragments of 57 daltons lost from the molecular ion can be 

either CĤ CĤ ? or C^Hg. The retention time of this compound 

dictates against the hydrocarbon structures. Octanal (CgH-|gO) was 

identif ied  e a r l ie r  in the chromatogram hence ketone isomers have 

to be considered. Neither 2- or 4-octanones give an ion 

corresponding to m/z 99 whereas 3-octanone does. The standard 

spectrum of 3-octanone^^^ confirms this assignment.

Scan No. 1275

m/z 158 143 130 129 127 115 102 101 87 73 69 59 57 55 45 43

Rel AB % 0.3 0.7 9.3 7 53 8 69 16 100 12 14 21 65 52 73 35

m/z 42 41 39 29 27

Rel AB % 16 82 36 83 68

Ions (M-15), (M-30) and (M-31) suggest a methyl ester. However

base peaks for straight chain methyl esters occur at m/z 74 resulting 

from a McLafferty rearrangement. However i f  the ester is also 

branched at the a-position then the rearrangement ion is altered.



e.g. i f  the a-s ide  chain is an ethyl group then the expected 

rearrangement ion is m/z 102, (Scheme 2 .1 .1 .1 .6 ) .
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^ och^

Scheme 2 .1 .1 .1 .6

OCH.r

CH M/Z 102

f

CH OCH.

CH
M /Z 87

+  R C H = C H

The subsequent loss of a methyl group gives the base peak at 

m/z 87. Confirmation of this fragmentation was provided by the 

observation of a peak at m/z 74.3, resulting from the fragmentation 

of metastable ions at m/z 102.

From the re la tive  abundance of the(M+l) ion, arising from 

heavy isotopes, the presence of nine carbons was indicated i .e .

CgHigOg.

Comparison with the standard spectrum of methyl 2-ethyl 

hexanoate^^^ confirmed this as the compound produced.



Scan No. 1386
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m/z 142 113 98 96 95 82 81 70 69 68 67 57 56 55

Rel AB% 0.2 2.6 12 6 6.7 12 11.3 13.3 13.7 11.7 12 44.5 34.5 31.5

m/z 44 43 42 41 39 29

Rel AB% 36 50 25 78 33 100

CH

H

The tentative assignment of this compound as nonanal is based 

on the molecular ion at m/z 142. The ion of m/z 44 can result  

from a McLafferty rearrangement of the parent ion to give

However the base peak in the 70 eV electron 

_l- impact mass spectrum of nonanal is m/z 57,

whereas in this spectrum m/z 57 is only 44.5% 

of the base peak (m/z 29). A computer search 

using the database at P.C.M.U. Harwell 

gave nonanal as the compound of best f i t .

The packed column qc-ms analysis of the volatile  compounds provided 

evidence for two compounds in addition to those analysed above.

H

m/z 158 127 115 87 83 74 59 57 55 43 42 41 39 29 27

Rel AB 1.0 11 7 36.1 10 100 13 17.5 24 25 9 27 11 17 15.3

The base peak m/z 74 eliminates the possibility of a straight  

chain aldehyde, carboxylic acid or ketone. A base peak at m/z 74 

is characteristic of methyl esters and carboxylic acids with a 

methyl on the 3"Carbon atom and results from McLafferty rearrangements
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The loss of 31 dal tons (OCH )̂ from the parent ion and the 

absence of ions corresponding to M-17, M-18 and m/z 45 (COgH*) 

supports the methyl ester structure.

The fragmentation giving m/z 87 from the parent ion could 

result from a simple fragmentation (as below). Comparison with the

71^

87

t H  CH 
2 2 ^OCH.

206Standard spectrum o f methyl octanoate confirmed the a n a ly s is .

m/z 144 127 116 115 101 88 87 73 60 57 55 45 43 41

Rel AB 2.0 3.0 17.2 11.9 17.0 100.021 87 10 35 17.0 9.7 21.1 29.0

The base peak at m/z 88 must result from a rearrangement process. 

The re la tive  molecular mass of ethylhexanoic acid is 144.

A Mclafferty rearrangement of the 2-ethylhexanoic acid molecular ion 

would result in the formation of an ion m/z 88. Equation 2 .1 .1 .1 .7 .

4-

CH

0^
1

CH^
I 2

CH, M/Z 88

CH.

Equation 2 .1 .1 .1 .7
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A subsequent fragmentation with the loss of a methyl group 

resulting in an ion m/z 73 is confirmed by the presence of 

an ion at m/z 60.6 arising from metastable decomposition.

The presence of an ion having m/z 45 together with an ion 

corresponding toM-17 confirms the acid structure. I t  was 

concluded,after comparison with the standard spectrum^?^ that the 

compound was 2-ethyl hexanoic acid.

The compounds identified  by gc-ms from the autoxidation of 

methyl oleate are summarised in table 14.

Table 14

V ola tile  products formed during the autoxidation 

of methyl oleate in the presence of cobalt and

lead promotors

Compound
% composition determined 

on freshly autoxidised ester

3-Heptanone 18.7
3-Octanone
2(3H) Dihydrofuranone 2.7

Pentanal
Hexanal 1.8
Heptanal 20.0
Octanal 14.1
Nonanal 4.2

1-Pentanol
1-Hexanol
3-Heptanol 1.3

Methyl-2-ethylhexanoate. 20.4
Methyl octanoate 3.1
Heptyl formate
Formic acid
Acetic acid
2-Ethyl hexanoic acid 1.3
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The total amount of vo la tile  material collected in the cold 

trap , from 5 g of methyl oleate, autoxidised under the standard 

conditions (Section 3 .4 .5 ) ,  was determined to be 1.1 x lO'^g 

(using dodecanal as the internal standard).

2 .1 .1 .2  Determination of vo la t i le  products by HPLC 

The vo la tile  products trapped as their  

2,4-dinitrophenylhydrazones were identified by HPLC. The retention 

times of the standard 2,4-dinitrophenylhydrazones, using conditions 

set out in Section 3 .5 .3 .3 . ,are given in table 15.

Table 15

Retention times of standard 2,4 DNPH derivatives

2,4-dinitrophenylhydrazone derivative Retention Time 
(Minutes)

Methan*! 6.6

Ethanal 9.4

Propanone 12.0

Propanal 12.4

Methyl vinyl ketone 15.0

Methyl ethyl ketone 16.2

2-Butenal 16.6

Butanal 17.4

3-Penten-2-one 18.6

Diethyl ketone 19.8

Pentanal 20.8

Hexanal 24.6



The retention times of the compounds collected in the 

chemical trap are given in table 16 along with the ir  assignments

Table 16
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Retention time (minutes) Compound assigned

9.5 Ethanal

12.4 propanal

17.2 Butanal

20.0 Diethyl ketone

2.1.2 Autoxidation promoted by cobalt ( I I )  bis(2-ethyl 

hexanoate) and aluminium bis(2-butoxide) ethyl 

acetoacetate

2.1.2.1 Determination of vo la tile  products by gc-ms 

The total ion current chromatogram obtained 

from the capillary gc-ms analysis is shown in diagram 2 .1 .2 .1 .1 .  

Again the spectra used for analysis were obtained at the apex 

of the chromatographic peak.

Scan No. 106

m/z 46 45 43 41 31 30 29 27 26

Rel AB % 11 28 8.1 2.5 100 8.0 35 30 16
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Figure 2.1.2.1.1
Capillary total ion current chromatogram 

of the vo la ti le  products from the autoxidation 

of methyl oleate in the presence of cobalt and

aluminium promotors.5.0-1

142

RIC

829

288 343 451 777

800
14:00800

10:30200
3:30

Scan No. 
Time (mins)
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The base peak at m/z 31 (CH^OH )̂ suggests a primary alcohol. 

The re la tive  molecular mass of this compound is 46 dal tons and 

comparison with the standard spectrum^^^ of ethanol confirmed 

th is in the chromatogram.

Scan No. 142

m/z 74 73 60 59 57 55 46 45 44 43 42 41 39 31 29 27 26

Rel AB % 0.6  1.2  0.6 18 3.7 3.1 2.5 100 11 18.6 4 19 8 32 34 37 10

The base peak of m/z 45 could result from a secondary alcohol

The molecular formulae possible for this compound are Ĉ H-jqO,

CgHgOg and CgHgOg. The loss of 15 daltons (CH3 ) from the

molecular ion rules out any compound with the formula C2H2O2 

the base peak of propanoic acid (CgH^02) is at m/z 28 thus

leaving only Ĉ Ĥ gO to be considered. Comparison with standard

spectra^^^ confirmed 2-butanol.

Scan No. 151

m/z 92 91 65 63 62 61 51 50 45 39 38 37 27 26

Rel AB % 58 100 17 15 6.8  4 15 12 5 34 9.3 4.9 11 5.6

The loss of a proton from the molecular ion to give the base

peak at m/z 91 is indicative of toluene which was easily confirmed, 

(Scheme 2 .1 .2 .1 ) .

M/Z 91

Scheme 2.1.2.1



Scan No. 829
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m/z 130 115 102 88 87 85 84 73 69 61 60 58 45 43 42 31

Rel AB % 4 1.2 3 10 3.7 10 1.8  1.2  6 3 7.5 2 5 100 24 6.2

m/z 29 27 26

Rel AB % 4.2 34 11

The base peak at m/z 43 can arise from the following ions, 

or C2H2O+ and the ions at m/z 45 and m/z 31 suggest the 

presence of oxygen in this molecule. Thus the base peak ion 

appears to be C ^H gO ^. Analysis of the ( ^ 1 )  heavy isotope ion 

suggested as the molecular formula. The ions of m/z 85

and 86 can be explained by the elimination of CHgCH20 and CĤ CHO.

The ion at m/z 85 may have the structure

8 / fCCH2C CH3 . Thus piecing these fragments together suggests 

a structure LXXXII

8 I
CHgCHg-O-C CHg C CH3

Ethyl acetoacetate LXXXII

Comparison with the standard spectrum of ethylacetoacetate^^^

confirms this assignment.

The vo la ti le  compounds identified by gc-ms from this autoxidation

experiments are summarised in table 1 7.
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Table 1 7

Vo la ti le  compounds detected from the autoxidation of 
methyl oleate in the presence of cobalt and aluminium 

oromotors

Compound % composition

Ethanol 11.3

2-butanol 47.4

Ethyl acetoacetate 39.6

The total quantity of these compounds produced under the 

Standard conditions is 1.7 x 10“ g, based on dodecanal as the 

internal standard.

2.1 .2 .2  Determination of vo la tile  products by HPLC 

In the analysis of the compounds retained by 

the chemical trap great d i f f ic u lty  was encountered in detecting 

any carbonyl compounds. However at high sensitiv ity  settings 

two compounds could be detected (Table 18).

Table 18

Retention time (mirutes) Compound assigned

9.4 Ethanal

12.4 Propanal
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2.1.3 Autoxidation promoted by Benzil

2.1.3.1 Determination of vo la tile  products by gc-ms 

The total ion current chromatogram obtained 

from the capillary  gc-ms study of these volatiles closely resembles 

that obtained in section 2.1.1.1 (figure 2 .1 .1 .1 .1 .) . The differences 

that occur are the absence of a peak at scan No.1275 (methyl-2-ethyl 

hexanoate) and the formation of a new compound at scan No. 892.

Scan No. 892

m/z 106 105 78 77 74 52 51 50 39 38 37 29 27

Rel AB % 71 83 19 100 10 19 72 45 10.1 12 9.3 13 6

The base peak at m/z 77 represents a loss of either CHgCHg or

CHO from the molecular ion. The high abundance of an ion

corresponding to (M-1) indicates a labile hydrogen. The molecular 

formula was established, again from the heavy isotope ratio  

(.Mfl)/M, to be CyHgO suggesting the compound to be aromatic.

The ion m/z 77 probably represents Thus this compound

appears to be benzaldehyde. This was confirmed by comparison with

its  standard spectrum.

The packed column gc-ms analysis confirmed the s im ilar ity  of the 

products with the absence of both methyl-2-ethylhexanoate and

2-ethylhexanoic acid. Table 1 9 l is ts  the vo la ti le  compounds 

determined.
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Table 19

V o la ti le  compounds detected from the autoxidation 

of methyl oleate in the presence of benzil

Compound % composition

3- Heptanone 26.1
2(3H) Dihydrofuranone 3.4
Hexanal 2.5
Heptanal 27.4
Octanal 18.5
Nonanal 3.2
Benzaldehyde 9.6
1-Hexanol -

3-Heptanol 1.7

Methyl octanoate 4.2

The tota l amount of vo la tile  material produced was 0.26 x 10"^ g, 

based on dodecanal as the internal standard, from 5 g methyl oleate 

autoxidised under the standard conditions section 2 .4 .5 .

2 .1 .3 .2  Determination of vo la tile  products by HPLC

The analysis of the 2,4-dinitrophenylhydrazones 

obtained from the chemical trap are summarised in table 20.

Table 20

Rentention time (minutes) Compound assigned

6.5 Methanal

9.5 Ethanal

12.1 Propanone
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2.1 .4  Mechanistic interpretation

The formation of carbonyl compounds during the autoxidation 

of olefins was reported as early as 1913 by Willstatter^^^ who 

observed the formation of cyclohexan-l-ol-2-one in the autoxidation 

of cyclohexene. The formation of ketones in the autoxidation of 

1-methylcyclohexene, 1,2-dimethylcyclohexene, a-pinene, B-pinene, 

limonene and te tra l in  along with the appropriate alcohols were
o

reported by Farmer. He showed that the ketones did not result from 

direct oxidation of the alcohols, but explained them by mechanisms 

involving cyclic peroxides.

The vo la t i le  products observed in the thermal autoxidation of 

methyl oleate was reported by Deatherage. The vo la tile  products

were collected in a dry ice trap and consisted of water and water 

soluble substances along with a water phobic fraction. Swift?^^ 

reported the identification of 2-undecenal from the thermal 

decomposition of methyl oleate hydroperoxides. He proved this 

by isolating i ts  2,4-dinitrophenylhydrazone and semicarbazone
211derivatives from the decomposition mixture. Fritsch and Deatherage

extended th e ir  ea r l ie r  study and identified methanoic and ethanoic

acid along with traces of propionic and higher carboxylic acids in
212the v o la t i le  products. Tai and his co-workers studied the 

v o la t i le  decomposition products from methyl oleate resulting from 

open a ir  heating at 200°C. They showed,based upon glc retention 

times, the presence of Cg and Cg aldehydes, methyl oxo esters,

Cy and Cg hydrocarbons, methyl esters of fa tty  acids, several fa tty  

acids, mono-methyl esters of dibasic acids and some alcohols. 

Withycombe^^^ studied the volatiles from the autoxidation of methyl 

oleate, by trapping them on anthracene crystals coated with 

silicone oil and then subsequently analysing by gc-ms. The compounds 

so identif ied  are given in table 21.



Table 21

V o la ti le  products, identified by gc-ms, from the 

thermal degradation of methyl oleate
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Compounds identified

Heptane Methyl octanoate

Octane 2-Decanone

Benzene Methyl 7-oxoheptanoate

Methyl hexanoate Methyl 8-oxooctanoate

0-Xylene Methyl 9-oxoNoNanoate

Methyl heptanoate

The most complete study of the thermal degradation of methyl
214oleate hydroperoxides was reported by Frankel who compared the 

v o la t i le  products from autoxidation with those from photosensitised 

oxidation. The hydroperoxides were decomposed in the injector port 

of a gas chromatograph and identified by gc-ms. The results they 

obtained are summarised in table 2 2.

The major vo la tile  products are carbonyl compounds, v iz . octanal, 

nonanal and methyl 9-oxononanoate. These compounds are believed 

to result from decomposition of the hydroperoxides into alkoxy 

radicals, followed by carbon-carbon bond scission to form the

v o la t i le  aldehydes.

Hydroperoxides are a ready source of alkoxy radicals from

pyrolysis or photolysis of the peroxide bond (dissociation energy

125 - 167 kJ mol'T.^TG) Evidence that has been collected for the

existence of alkoxy radicals, includes the pyrolysis of ether
217and detection of alkoxy radicals by mass spectrometry.
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Table 22

Gc-ms analysis of volatiles from thermally decomposed 

methyl oleate hydroperoxides

Compound Autoxidation (rel %) Photosensitised 
oxidation (rel %)

Heptane 4.4 4.6
Octane 2.7 10.0
Heptanal 0.5 0.5
1-Heptanol 0.4 0.4
Octanal 11.0 3.8
Methyl heptanoate 1.5 4.9
1-Octanol 0.4 1.0
Nonanal 15.0 10.0
Methyl octanoate 5.0 9.7

2-Nonenal 0.5 0.7

Decanal 3.9 2.0

Methyl nonanoate 1.5 0.8

2-Decenal 5.4 12.0

2-Undecenal 1.7 7.1

Methyl 8-oxooctanoate 3.5 3.0

Methyl 9-oxononanoate 15.0 11.0

Methyl 10-oxodecanoate 12.0 1.7

Methyl lO-oxo-8-decenoate 3.4 5.0

Methyl ll-oxo-9-undecenoate 5.8 4.6

The fluorescence spectra of certain molecules containing alkoxy
2^6groups have also been studied. ' Methyl n i t r i t e ,  n itra te , and 

chioroformate a ll show the same band system (330 - 350 nm).

The emitter is probably the methoxyl group. Chemical evidence
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has been obtained, for example, in the presence of a molecule 

(H - X) with a weakly attached hydrogen atom. The hydrogen 

is abstracted by alkoxy radicals and the corresponding alcohols 

produced. (Scheme 2 .1 .4 .1 . ) .  I f  the alkoxy radical is optically  

active, then this ac tiv ity  is retained.

R - 0• + H - X -----► ROM + X•

2X* — ► dimer

Scheme 2.1.4.1

Alkoxy radicals have been observed by electron spin resonance

spectroscopy from the irradiation of compounds at low 
219-223temperatures.

Alkoxy radicals cannot be detected in solution by ESR owing 

to extreme line broadening, although they can often be trapped 

by CHgiNOg" and analysed as the adduct ROCHgNOg . Gilbert, 

using this method,studied the secondary reactions of alkoxy 

radicals arising from the one electron reduction, by titanium ( I I I )  

ion, of secondary alkyl hydroperoxides and hydroperoxides of cyclic 

alkenes typ ica lly  formed by autoxidation.

The reactions of alkoxy radicals can generally be classified

as follows:

1. Bimolecular radical association.

2. Displacement.
3. Rearrangement.
4. Hydrogen abstraction.

5. Addition.
6. Fragmentation.
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Reaction types 4,5 and 6 w i l l  now be discussed in further 

d e ta i l .  Hydrogen abstraction by alkoxy radicals from organic 

substances is f a i r ly  common (equation 2 .1 .4 .2 ) .  The tendency

R'O' + sBH -----► R'OH + R-

Equation 2.1 .4 .2

for alkoxy radicals to react by hydrogen abstraction is in the 

general order CHgOy» CHgCHgO)» (CHgjgCOt this being based on the 

decomposition of peroxydicarbonates in solution. However 

the re la tive  rates of hydrogen abstraction from a series of 

hydrocarbons appears to be v ir tu a lly  independent of the attacking 

radica l, and whether the reaction is carried out in solution or in the 

gas phase, although the absolute rates d i f f e r , ( t a b l e  23).

Table 23

Reactivity (average) of C-H bonds to alkoxy radicals at 40°C

Paraff in ie  
(CH3 ) 3C0 ‘ CH3O.

Benzylic 

([^3 )300-
A lly lic
( 6̂ 3 ) 300 -

Primary 1.0 1.0 10 12(p) 20 (s)

Secondary 12.2 14 32 61(p) 93(s)

Tertiary 44 46 69 375 (cyclic) 176(p)

Letter in parentheses indicates substitution on 3-carbon centre.
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The e ffect of solvents on the reactiv ity  of t-butoxy radicals

was observed by the competitive removal of the primary and te r t ia ry
227hydrogens from 2,3-dimethylbutane, (scheme 2 .1 .4 .2 ) .

+ (CHgjgCOH

(CHgjgCO- + (CHq^gCHCHfCHg).

+ (CHjljCOH

Scheme 2 .1 .4 .2

Walling in this study reported the re lative rates and their

activation parameters. There is a change in se lectiv ity  which

parallels approximately the solvent polarity and which may be

interpreted in terms of the t-butoxy radicals partia lly  losing

th e ir  solvation in the transition state for hydrogen abstraction.

As mentioned e a r l ie r  in this section,alkoxy radicals w il l  add

to o le fin ic  bonds. Using the reaction of t-butoxy radicals,

derived from t-butyl hypochlorite, with simple alkenes, addition

appears to be favoured by a cis configuration and asymmetrical
72

substitution about the double bond.

The structure of the alkene can give rise to d ifferent re la tive  

rates of addition by the t-butoxy radicals. The rates, at 40°C 

and quoted in table 24,are re lative to the hydrogen abstraction from 

the methyl group of butane.
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T ab le  24

Relative rates of addition to alkenes by t-butoxy

radical

Olefin kadd(relative)

PhCH = CHg 105.0

cis-CHgCH = CHCH3 25.9

(CH3)2  C = GHg 14.6

(CH3)2  CH CH = CHg 4.7

trans-CH3CH = CHCH3 4.4

CH3CH2CH = CH2 4.2

However the important reaction in this study relates to the 

3-scission of alkoxy radicals to form carbonyl compounds. The 

v o la t i le  compounds produced by the thermal degradation of oleate 

hydroperoxides have been proposed to be formed by homolytic 

cleavage of the hydroperoxide to form alkoxy radicals. The 

alkoxy radicals then undergo 3-scission of carbon-carbon bonds 

to give v o la t i le  carbonyl products. The position of hydroperoxide 

formation in the autoxidation of methyl oleate corresponds to the 

position of cleavage, thus providing some evidence for the above

mechanistic approach.

The majority of alkoxy radical studies have been conducted

on t -a lk y l radicals (LXXXIII).

CH.

i — 0- (LXXXIII)
CĤ
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The rupture of the - H bond of both primary and secondary

alkoxy radicals is rarely competitive with the unimolecular

fragmentation by scission of the bond. When i t  is

observed, i t  has to be distinguished from disproportionation
229which is a bimolecular process (Scheme 2 . 1 . 4 .4 ) .

CH3^"2

Scheme 2 .1 .4 .4

The re la tive  rates of 3-scission have been obtained from the 

radical chain decomposition of t -a lky l hypochlorites in which the 

competition is measured re la tive  to hydrogen abstraction from 

cyclohexane. I t  is assumed that the hydrogen abstraction 

rate is invarient of R in the radical LXXXIII, thus 

comparisons of the &p/k^ ratios w ill  give the re lative rates of the

3-scissions involved (see Table 25 and scheme 2 .1 .4 .5 .)

Table 25

Fragmentation of alkoxy radicals R^CHgjgCO- at 40°C

R 'kp/'kn

CH3 0.021

ClCHg 0.121

C6H5CH2 1.98

CH3CH2 2.09

(CHj^gCH 76.4
300.0
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CÎ C C

CH3 RC(CHJPH + R'.

Cl-
-► RCl

>  RCl

Scheme 2.1.4.5

The ratios being determined by equation 2.1.4.6

=  [R'H] [R " ]
^ "  [R'cO

Equation 2.1.4.6 

230The results obtained by Walling presented in table 25 clearly

show a cleavage sequence methyl<ethyl<isopropyl<t-butyl, which is

explained by the increased s ta b il i ty  of the departing radicals.

The ra tio  for the expulsion of the benzyl radical would be

expected, on the e a r l ie r  c r i te r ia ,  to be much larger than that
231reported. Walling explained this anomalous result in terms

of a small PZ factor. Another surprising result is in the case

where R = phenyl. I t  is observed that the methyl group rather

than the phenyl group is lost. One plausible explanation is that

the acetophenone has enhanced s ta b i l i ty ,  compared to acetone,

owing to overlap between the orbitals of the carbonyl group and

the benzene ring.

The difference in rates of elimination of primary relative

to secondary alkyl radicals is emphasised in the product distribution
231shown in scheme 2 .1 .4 .7 . p.,
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(CH ) C H -C -O -C l

3

(CĤ l̂ CHCl 4 CĤ CĤ CCĤ

CH C H C l 4 (CH ) C H C C H _  
3 ^  3 2 3

Scheme 2 .1 .4 .7

The s im ila r ity  of the vo la ti le  products observed from the 

autoxidation promoted by cobalt ( I I )  and lead ( I I )  octoates,or 

the photoin itiator benzil, suggests a similar degradation pathway. 

The s im ila r it ies  between the vo la tile  compounds from the promoted 

autoxidations (tables 14 and 19) and those products previously 

observed in the thermal decomposition of the oleate hydroperoxides 

(table 22) again suggest a common mechanism of formation.

The proposed mechanism of vo la ti le  product formation from the 

promoted autoxidations of methyl oleate are shown in schemes 

2 .1 .4 .8 ,  2 .1 .4 .9  and 2 .1.4.10.

.^0-H
?' /  C H tC H  ) C H C H = C H I C H  I C 

3 2 6 2 7 \
( X I I  or X V I I I )

OCH
(-0H)

0* ,  0
CHJCH ) CHCH==CH (CH ) C 

3 2 6 2 / \ OCH.

0
CH (CH ) C'^ 

3 2 6 \n
4 •  C H = C H (C H  )^C 

27 \
OCH.

Scheme 2.1 .4 .8 Formation of octanal
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One of the expected major v o la t i le  compounds is nonanal, resulting 

from the decomposition of the 10-hydroperoxides X I I I  and XVII 

(Scheme 2 . 1 . 4 . 9). Nonanal however constitutes only^̂ 4% of the 

mixture of vo latiles  from the .promoted autoxidation of methyl 

oleate. The hydroperoxides X I I I  and XVII are formed in smaller 

quantities than the 11-hydroperoxides X II and X V II I ,  so this 

with the lower v o la t i l i t y  of nonanal may explain the lower 'observed' 

y ie ld .
0~ H

CH (CH ) C H C H = C H ( C H J  C 
3 2 7 2 6

( - • O H )
\ ( XIII or XVII )

CH.

0- 0

CH (CH ) C H C H = C H ( C H  ) C 
3 27 2 6 \

OCH

0

H
+  •CHr=CH(CH^I ,

26 \

0

OCH.

Scheme 2 . 1 . 4 .9 Formation of nonanal

The aldehydes pentanal and hexanal probably result from 

hydrogen abstraction further down the hydrocarbon chain resulting 

in hydroperoxide formation at the 13 and 14 carbon positions thus 

providing the potential for alkoxy radical formation and carbon- 

carbon bond scission.
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,0-H
0(j) ^

CH (CH ) C H = C H  CH(CH ) c f  ( X I V  or X V I )  
3 2 6 2 7 \

OCH
3

( - . O H )

CH (CHJ C H = C H  C'^ 4-
0

3 26  \
H

2- D E C E N A L

( - H - )

CH (CH ) CH^CHu^CH C 
3 2 5. \

IO2

ii,RH

^0—H
//
V.

O'

CĤ (CH2)̂ CHCHi;CH Ĉ

0

OCf̂

(♦H*)

0

OCH

MFTHYI OCTANOATE

C H ( C H )  C + - C H - C H C

0

3 25  \ H H

Scheme 2 .1 .4.10
Formation of heptanal and methyl octanoate
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There are however some major discrepancies between the 

compounds in table 22 and those identified  from the promoted 

autoxidations at ambient temperatures, (tables l4  and 19).

The compounds formed in the thermal decomposition of the oleate 

hydroperoxides in the gc injector port include higher molecular 

weight compounds such as methyl 9-oxononanoate (LXXXIV) and 

methyl 10-oxodecanoate (LXXXV). These compounds

Q 0
^C(CHg)yC("

^OMe
(LXXXIV)

))C(CH2)gC,^
OMe

(LXXXV)

are probably formed in the promoted autoxidation of methyl oleate 

but owing to th e ir  lower v o la t i l i ty  are not transported to the 

cold trap. Some differences also occur between the redox promoted 

and photoinitiated autoxidations, namely the identification of 

methyl 2-ethylhexanoate amongst the vo la tile  compounds from the cobalt 

and lead promoted reactions but i ts  total absence in the benzil 

promoted autoxidation. The origin of this ester is discussed in 

section 2.10.1. The reverse is true of benzaldehyde which is 

found solely in the benzil promoted reactions. This results from 

the decomposition of the in i t ia to r  via a ketyl-radical (scheme 

1 .1 7 .3 ,section 1.17).
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The quantity of vo la tile  material produced appears dependent 

on the in i t ia to r ,  the cobalt and lead system produces approximately 

42 times as much as the benzil system. This probably reflects  

the difference in the a b i l i ty  of the promoters to reduce 

hydroperoxides to alkoxy radicals. This in a b il i ty  of benzil is 

i l lu s tra te d  in section 1.17 viz the addition of cumene hydroperoxide 

to an alkyd resin did not increase the rate of crosslinking in the 

presence of benzil. I f  the peroxide was reduced by benzil,the  

rate of drying would be expected to increase. However the absence 

of any detectable vo la tile  compounds from methyl linoleate bubbled 

with oxygen in the absence of a promotor (section 2.10.4) does 

suggest some influence by benzil. The most l ik e ly  effect is that 

the formation of hydroperoxides is aided, thus providing a greater 

probability  of obtaining the ir decomposition products.

The absence of any degradation products from the cobalt ( I I )  

b is (2-ethylhexanoate) and aluminium b is (2-butoxide) ethylacetoacetate 

may suggest that the complexing agent either hinders the degradation 

process or reacts with the carbonyl products. The la t te r  has been 

proposed by ICI Paints^^^i.e. the Meerwein-Ponndorf-Verley reduction, 

equation 2.1 .4 .11. However the absence of the degradation products 

could be due to the ir  low concentration in the 2-butanol/ethyl 

acetoacetate solution. This w ill  be discussed la te r in section 2.2.4

9  9 "  A l f O C H M e g ) ]  9 "  ,9
RCR' + CH3CHCH, —  ̂ RCHR' + CH3-C-CH3O \  ~

Equation 2.1.4.11
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The more vo la ti le  aldehydes such as ethanal, propanal and 

butanal were collected and analysed as the ir  2,4-dinitrophenyl­

hydrazones. The presence of these aldehydes is explained by 

hydrogen abstraction further down the hydrocarbon chain (at 

carbon numbers 15, 16 and 17) with hydroperoxide formation,and 

carbon-carbon bond cleavage with carbonyl formation.

The detection of carbonyl compounds, as their 2,4-dinitrophenyl­

hydrazones, from methyl oleate autoxidised in the presence of the 

cobalt and aluminium promotors provides evidence that autoxidative 

degradation is occuring. This method of analysis has the 

advantage of being selective to carbonyl compounds thus excluding 

the preponderance of 2-butanol from the analysis.
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2 .2 Autoxidation of methyl cis-9- cis-12~octadecadienoate

2.2.1 Autoxidation promoted by cobalt ( I I )  b is(2-ethyl-  

hexanoate) and lead ( I I )  bis(2~ethylhexanoate)

2 .2 . 1.1 Determination of vo la tile  products by gc-ms 

The total ion current chromatogram,obtained 

from capillary  gc-ms, of the vo la tile  compounds collected using 

the cold trap is shown in figure 2 . 2 . 1 . 1 . 1 .

Scan No. 150

m/z 70 56 55 53 43 42 41 40 39 38 29 27

Rel.AB % 35 4 60 53 29 100 63 17 56 93 19 51

This spectrum is as in section 2.1 .1.1 scan No. 135 and again no

distinction can be made between cyclopentane and 1-pentene. 

Scan No. 163

m/z 72 57 44 43 42 41 40 39 29 27

Rel. AB % 213 147 100 61 21 60.7 4 33 62 51

The loss of 15 daltons from the molecular ion together with one abundant 

ion m/z 29 suggests a hydrocarbon chain. The base peak ion at m/z 44 

however is indicative of a straight chain aldehyde. The re lative  

molecular mass of 72 (C^HgO) corresponds to that of butanal. This 

assignment was confirmed by reference to the standard spectrum of

butanal. 206
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Figure 2 . 2 . 1 . 1.1

Total ion current chromatogram of the 

vo la tile  products from the autoxidation 
of methyl Linoieate i n  the presence of the
cobalt and lead promotors.

10. 0”!

RIC

1500
26:15

1000
17:30

500
8:45Scan No.

Time (mins)



Scan No. 169

152

m/z 73 59 45 44 43 42 41 39 31 29 27

Rel AB % 1.3 19 . 100 93 13 3.0 16 7 33 28 28

The base peak at m/z 45 can arise from a secondary alcohol, and 

this compound has a similar spectrum to that obtained in 

section 2.1 .2 .1  Scan No. 142, and i t  is again concluded that 

this compound is 2-butanol.

Scan No. 226

m/z 56 55 45 44 43 42 41 40 39 33 31 29 27

Rel AB % 58 13 5.3 5.3 56.7 29 74 6 .13 6.7 100 40 63

No conclusion was made regarding the assignment of this spectrum, 

Scan No. 274

m/z 86 85 71 70 58 57 56 55 45 44 42 41 40 39 29 27

Rel AB % 13
_____

13 16 67 37 43 15 153 213 100 33 55 107 44 57 56

The base peak at m/z 44 is indicative of straight chain aldehydes, 

and a molecular formula consistent with the ion of largest re la tive  

molecular mass is Ĉ H-jqO. Comparison with the standard spectrum 

of pentanal^OG confirmed the identity  of this compound.

Scan No. 420

Toluene impurity from the slush bath used for the cold trap.
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153

m/z 70 69 57 56 55 43 42 41 39 31 29 27

Rel.AB % 27 5 16 12 63 28 100 63 29 88 96.7 61

The fa c i le  loss of 15 daltons indicates the presence of a methyl 

group but the retention time of this compound suggested that i t  was 

not a hydrocarbon. The presence of CĤ  rules out a molecular 

formula of Ĉ HgO but Ĉ Ĥ O is possible with the fragment at m/z 55 

corresponding to The abundant ion at m/z 31 can only be

CHgO .̂ No structure was assigned to this spectrum.

Scan No. 536

m/z 100 82 72 71 67 58 57 56 55 45 44 42 41 40 39 29 27

Rel.AB % 1.4 18 20 11 15 12 70 54 30 30.1 100 29 55 14 46 52 57

The base peak at m/z 44, for the ion formed in a Mclafferty  

rearrangement, is indicative of a straight chain aldehyde. An ion 

from the loss of 18 daltons from the parent ion (m/z 72) and the 

formation of an ion m/z 56 (equation 2 .2 .1 .1 .1 )  provides more 

evidence for this in i t ia l  assignment. Comparison with the standard 

spectrum of hexanal^^^ confirmed this assignment.

CH.
ch: •CH' +

_» CĤ CĤ CĤ CH,

M /Z  56
CH,

Equation 2 .2 .1.1.1
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Scan No. 591

m/z 88 87 71 70 55 45 43 42 41 39 31 29 27

Rel.AB % 0.7 3.3 3 44 69 6.7 24 100 57 28 59 85 55

The losses of 18 daltons (HgO) and 33 daltons (CH^O) from the 

parent ion along with the presence of ions at m/z 45 (CgHgO) and 

m/z 31 (CHgO+) indicate a primary alcohol. Comparison with the 

standard spectrum of 1-pentanol^^^ confirms the identif ica tion  

of this compound.

Scan No. 650

m/z 98 97 83 80 70 69 68 57 56 55 43 42 41 39 29 27

Rel.AB % 6.7 4 33 6.7 14.7 46.7 5.3 28 11 64 22 55 100 86 89 83

The molecular ion (Rel. Ab. 7% ) and the base peak ion at 

m/z 41 indicates an unsaturated species. The ion at m/z 55 could 

have the composition of Ĉ Hy or Ĉ HgÔ  associated with the losses

of CgHgO" o r  CgHy respectively. The positive charge w ill

probably remain on the heteroatom containing fragments. I t  is 

therefore believed that the ion at m/z 55 is C^H^O .̂ Both the

loss of 29 daltons from the parent ion and the predominant ion

at m/z 29 suggest that an aldehyde group is present in this  

molecule. The molecular ion (m/z 98) demonstrating the presence 

of unsaturation and a heteroatom (oxygen) suggests its  molecular 

formula is C^H^gO. Comparison with the standard spectrum of 

2-hexenal^*^^ confirmed the presence of 2-hexenal.
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Scan No. 734

m/z 114 85 72 57 43 42 41 39 29 27

Rel. AB % 6 23 15 95 16 6 33 13 100 46.7

The fragmentation pattern of this compound resembles very closely 

that observed in Section 2 .1 .1 .1 .  Scan No. 903 and is concluded 

to be 3-heptanone.

Scan No. 755

m/z 116 115 98 87 70 69 59 58 57 56 55 45 43 41 39 31 29 27

Rel. AB % 0.5 0.5 2.7 20 53 73 100 9.3 10.7 4 9.312 21 60 17 49 51 41

The loss of 18 daltons from the parent ion along with the ions at 

m/z 45 and 31 indicate the presence of oxygen in this compound. The 

loss of water (M-18) also suggests a hydroxyl group. This spectrum 

is similar to that for 3-heptanol and comparison with i ts  standard 

spectrum^^^ confirmed th is .

Scan No. 886

m/z 112 83 70 69 68 57 56 55 41 39 29 27

Rel. AB % 15 77 46 31 38 65 .5 61 69 100 53. 531 53.5

The base peak ion at m/z 41 indicates unsaturation. The 

abundant ion at m/z 55 indicates the possib ility  of CH=CHCH=0.
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0

The loss of 29 daltons indicates either CH.CH?- or -C 

being extruded. From the re la tive  molecular mass 

2-heptenal seemed plausible and comparison with standard spectrum 

confirmed th is .

Scan No. 1053

206

m/z 74 73 70 61 60 56 55 45 43 42 41 39 29 27

Rel. AB% 47 43 3 11 100 92 16 28 31 23 45 25 28 61

The base peak at m/z 60 is indicative of straight chain 

carboxylic acids and arises from a Mclafferty rearrangement of 

the parent ion (equation 2 . 2 . 1 . 1 . 2 ).

O'

CH,

CH O H C H ^  OH
M / Z  60

P a r e n t  ion

Equation 2 .2 .1 .1 .2  

Butanoic acid is the f i r s t  member of the carboxylic acid series 

to undergo such a rearrangement. The parent ion could not be 

distinguished in the capillary gc-ms analysis therefore no 

conclusion was reached except that this was a carboxylic acid. 

Scan No. 1056

m/z 158 143 130 129 127 115 102 101 87 83 70 69 59 57 55 43 41

Rel AB % 1 1.6 12 8.5 5.4 13 78 15 100 4 5 12 24 53 27 19 47

m/z 39 29 27

Rel AB % 13 32 21.2
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This spectrum is very similar to the one obtained in section 2.1.1.1  

Scan No. 1275 and is therefore concluded to be methyl-2-ethyl 

hexanoate.

Scan No. 1061

m/z 126 111 108 97 84 83 82 71 70 69 58 57 56 55 43 42

Rel.AB% 1.4 2.0 2.4 14.1 18 62 36 12.790 38 17 60.6 18.3 85.9 18.3 42

m/z 41 39 29 27

Rel.AB % 100 45 73 45.1

The ion at m/z 41, giving rise to the base peak, and the relative  

molecular mass of 126 daltons gives some evidence for an unsaturated 

compound. The loss of 18 and 29 daltons and the ion at m/z 55 

provides evidence for an a , g unsaturated aldehyde. The 

rearrangement ion giving a large peak at m/z 70 could result from 

a Mclafferty-type rearrangement( equation 2 .2 .1 .1 .3  ).

X H ,
CH. '^CH

CH

M/Z 126

CH.

\ 'H 

M / Z  70

Equation 2 .2 .1 .1 .3
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A sim ilar rearrangement was also observed in the spectrum of

2-heptenal. I t  is concluded that this compound is either  

cis or trans 2-octenal.

Scan No. 1081

m/z 126 111 108 98 97 93 84 83 82 71 70 69 68 67 58 57

Rel. AB % 0.7 1.5 1.5 4.7 6.0 6 .0  8 31 15 5.3 45 24 9.3 16 8 29

m/z 56 55 53 43 42 41 39 29 27

Rel. AB % 9 61 11 17 29 3 77.359 100 64

This spectrum has a similar fragmentation to Scan 1061 and is 

therefore concluded to be the other isomeric 2-octenal.

Scan No. 1204

m/z 158 127 115 87 83 74 59 57 55 43 42 41 39 29 27

Rel. AB % 1.7 10.2 6 .8  35 10 100 11 .9 18.6 23.7 25.48.5 27.1 11.2 17 13.6

The base peak ion at m/z 74 and the loss of 31 daltons 

(M-OCH3 ) from the parent ion suggests a straight chain methyl ester. 

Comparison with the standard spectrum of methyl octanoate^^^ confirmed 

the presence of this compound.
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m/z 172 171 170 107 100 99 98 87 83 82 72 71 69 60

Rel. AB % 2.7 20 4.7 2-0 8-0 72 2.7 1.3 28 12 4.7 37 10.7 13.3

m/z 57 56 55 51 45 44 43 39 29 27

Rel. AB % 43 14 31 2.7 9.3 14.7 100 16 51 33

The base peak ion at (m/z 43) indicates the presence of 

hydrocarbon chain containing l i t t l e  or no unsaturation. A hydro­

carbon chain is also indicated by the series of ions 14 daltons 

apart (CH^) i . e .  m/z 71, 57, 43 and 29. The ion at m/z 99 may 

also result from a hydrocarbon fragment (CyH^g) by the fragmentation 

of the molecular ion through the loss of 73 daltons. The 

composition of this neutral fragment could be Ĉ HgOorCgHgOg 

the two other possible compositions CgH and CgHOg being excluded. 

However no conclusive analysis has been possible.

Packed column gc-ms analysis revealed the presence of two 

additional compounds.

m/z 116 99 87 74 73 60 57 56 55 45 43 41 29 27

Rel AB % 2.9 1.5 11.85.9 44 100 10.3 8 .8 8 .8 8.9 11.8 20.611.8 15.0

The base peak ion at m/z 60 is characteristic of a straight 

chain carboxylic acid and the loss of 17 daltons (M-OH) from the 

parent ion and the presence of an ion at m/z 45 (COgH ) support
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this argument. The abundant ion at m/z 43 (44% of the base

peak) can be explained by the formation of a CHgCHgC^^ ion.

This type of fragment was also observed in the

spectra of methyl octanoate i . e .  CHgCHgC

^^OMe

Analysis of the standard spectrum of hexanoic acid^^^ (relative  

molecular mass 116) confirmed this assignment.

The presence of 2-ethylhexanoic acid was also confirmed, the 

analysis of this spectra was discussed in section 2 . 1 . 1 . 1 .

The compounds iden tif ied  by gc-ms from the autoxidation of 

methyl linoieate  are summarised in table 26.

Table 26

The vo la tile  products formed during the autoxidation of methyl

linoieate  in the presence of cobalt and lead promotors

Compound % composition

3-Heptanone 0.9

Butanal 4.71

Pentanal 3.82

Hexanal 72.46

2-Hexenal 0.24

2-Heptenal 1.57

2-Octenal -

2-Butanol -

1-Pentanol -

3-Heptanol 0.68

Methyl heptanoate 0.23

Methyl octanoate 0.68

Methyl 2-ethylhexanoate 0.46

Hexanoic acid -

2-Ethylhexanoic acid 0.77
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The total quantity of v o la t i le  material produced is
_o

2.59 X 10 g based on dodecanal as the internal standard.

The autoxidation of methyl linoieate was carried out in the 

presence of cobalt ( I I )  bis(2-ethylhexanoate) alone, and lead ( I I )  

bis(2-ethylhexanoate) alone. The same v o la t i le  products were 

iden tif ied  in each case and were found to be identical to those in 

table 26. However the quantity of the v o la t i le  material produced 

d iffe red , the results are summarised in table 27 .

Table 27.

Promotor Quantity of vo latiles  produced

Co 2.34 X 10"3g

Pb 0.78 X 10"3g

Co/Pb 2.59 X 1 0 " 3 g

2 .2 .1 .2  Determination of vo la t i le  products by HPLC 

The v o la t i le  products trapped as the ir  

2,4-dinitrophenylhydrazone derivatives were identified  by HPLC; 

(the retention times of the standard 2,4-dinitrophenylhydrazones 

prepared are given in table 15). Their retention times and the 

assignments of the compounds are given in table 28.
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Retention time (minutes) Compound assigned

6.7 Methanal
9.4 Ethanal

12.3 Propanal
16.4 2-Butenal
17.1 Butanal
20.9 Pentanal

2 .2 .1 .3  Collection of v o la t ile  products under reduced
pressure. Autoxidation promoted by cobalt ( I I )  

bis(2-ethylhexanoate) and lead ( I I )  bis (2-ethyl 
hexanoate)

The v o la t ile  products collected in the cold trap 

at point G in diagram 3.7.1 were analysed by packed column gc-ms.

The chromatography conditions were altered to accommodate the higher 

boiling point compounds. The compounds previously identified in 

section 2 . 2 . 1.1 were identified in the early part of the chromatogram. 

•However several other compounds were identified in the la tte r  part,

these being carboxylic acids. The identif ication  of these compounds
w il l  be discussed.
Component 1

m/z 60 45 43 42 29

Rel. AB % 61.8 76 100 16.4 14.5

This mass spectrum is similar to the one obtained from the autoxidation 

of methyl oleate (see section 2 .1 .1 .1 , Scan No.415) and is therefore 

concluded to be ethanoic acid.
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m/z 88 73 60 46 45 44 43 42 41 29 27

Rel. AB % 4.2 33.3 100 26.7 32.5 16.7 24.2 20 25 22.5 25.8

The base peak ion at m/z 60 is indicative of a straight chain 

carboxylic acid; the largest re la tive  molecular mass (88 daltons) 

indentifies this compound to be butanoic acid and comparison with 

the standard spectrum^^^ confirmedthis.

Component 3

m/z 102 87 85 83 74 73 60 55 45 43 42 41 29 27

Rel. AB % 2.7 3 .6 1 .8  2 .8 45 40 100 9.1 10 11 8.2 16.3 16.3 18.3

The base peak ion at m/z 60 is again indicative of a straight 

chain carboxylic acid and the re la tive  molecular mass of 102 daltons 

allows this compound to be pentanoic acid. Again comparison with the 

standard spectrum^^^ confirmed this assignment.

Component 4

m/z 116 99 87 74 73 61 60 55 45 43 42 41 39

Rel. AB % 3.1 8 .6  14.3 5.7 47.6 9.5 100 12.4 13.8 17.1 11.4 30.9 15.2

m/z 29 27

Rel. AB % 13.8 19.0



164

Again the base peak ion at m/z 60 can result from a carboxylic 

acid in which case the re la tive  molecular mass of 116 daltons 

corresponds to hexanoic acid. The standard spectrum of hexanoic 

acid^^^ contains this assignment.

Component 5

m/z 130 115 101 87 73 60 55 45 43 41 29 27

Rel. AB % 3.3 4.2 15 26.7 83.3 100 30 20 35 49 30 26.6

The parent ion of a carboxylic acid at m/z 130 f i t s  the formula
one

of CyH^^Og (heptanoic acid). Comparison with i ts  standard spectrum 

confirms this assignment.

Component 6

m/z 128 110 99 73 68 56 55 45 43 41 29 27

Rel. AB % 8 .0 17.0 50 100 50 81.2 37 21.0 50.0 92.0 32.0 51.0

The loss of 18 daltons from the parent ion indicates the presence 

of an OH group and that of 29 daltons , the presence of CĤ CHg.

The presence of an ion at m/z 45 (21%) provides some evidence for the 

presence of the carboxylicacid functionality . The prominent 

m/z 41 ion also indicates some degree of unsaturation as does the 

parent ion.
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The new compounds iden tif ied  by collection under reduced 

pressure are: ethanoic, butanoic pentanoic, hexanoic and

heptanoic acids.

The object of this experiment was to try  and isolate the 

expected degradation products, resulting from the 9-hydroperoxides 

of methyl linoieate  (XXII and XXIV) - spec ifica lly  methyl-9-oxo- 

nonanoate. This compound would be expected as a mechanism for i ts  

formation corresponds to that of hexanal from the 13-hydroperoxides 

(X X II I  and XXV). However this compound was not iden tif ied . Its  

formation is not rea lly  under doubt as i t  has been isolated from the 

thermal degradation of methyl oleate hydroperoxides (see previous 

section) and long-term uncatalysed autoxidations of the methyl esters 

XXI and XLVII.^^^

Consideration has to be given to the effect of the method of 

isolation upon the nature of the v o la t i le  products. Heating of the 

reaction mixture to aid v o la t i l i t y ,  could induce thermal homolysis of 

hydroperoxides. To be able to iden tify  the presence of methyl 

t 9 - o xo  nonanoate some prior extraction may be necessary before gc-ms 

analysis.

The presence of the carboxylic acids shows that additional 

oxidation has occurred. The autoxidation of aldehydes to form 

the corresponding acid is one of the older reactions in organic 

c h e m i s t r y , i t  is proposed to be free radical chain reactionP^’ ^^^’ ^^^’ ^^  ̂

see scheme 2 .2 .1 .3 .1 .
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In i t ia t io n

R— C — 0 

R* + 0,

R- + 'CHO

RO,

Propagation

R0^+  RCHO RO^H + R— [  =  0

-► R —  C = 0

|2 I
R— C=0 R— C=0

0-,H 
12

R— C =  0  R— C = 0

Termination
0 , H  H
1 I

R— C=0 + R— C = 0

Scheme 2 .2 .1 .3 .1

-► ZRCO^H Carboxylic acid

H R

R— C - 0 — C =  0  
I ^
OH ( P o t e n t ia l l y  

explosive )

I t  is proposed that the carboxylic acids formed in the 

autoxidation reactions result from the corresponding peroxy acids 

and th e ir  reaction with aldehydes.

2.2.2 Autoxidation promoted by cobalt ( I I )  bis(2-ethyl 

hexanoate) and aluminium b is (2-butoxide) ethyl 

acetoacetate

2.2.2.1 Determination of vo la tile  products by gc-ms 

The total ion current chromatogram obtained 

from the gc-ms study of the volatiles closely resembled that obtained 

in section 2 .2 .1 .1 . (figure 2 .2 .1 .1 .1 . ) .  The difference that
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Figure 2 .2 .1 .1 .1

Capillary  to ta l ion current chromatogram of the 

v o la t i le  products from the autoxidation of methyl 

l ino iea te  in the presence of cobalt and aluminium 

promotors.

RIC

1500
26:15

1000500
0:45

Scan No. 
Time (mins)

17:30
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occurred was the absence of the following: butanal, methyl 2-ethyl

hexanoate, hexanoic and 2-ethylhexano(<^ acid, but with the 

additional presence of 2-butanol, ethyl acetoacetate, 2-pentylfuran,

3-octen-2-one and methyl hexanoate. The identif ica tion  of

2-butanol and ethyl acetoacetate has been discussed in section

2 .1 .2 .1 .  The id en tif ica tion  of 2-pentylfuran,3-octen-2-one and 

methyl hexanoate follows.

Scan No. 1354

m/z 138 109 95 94 82 81 67 53 52 51 43 41 39 29 27

Rel. AB % 14.3 2.5 6.2 5.6 28.6 100 7.5 46 8 11 7.1 29 38 36 71.4

The loss of 57 daltons to form the base pt»^ ion coupled with 

the loss of 29 and 43 daltons suggest a hydrocarbon chain. The 

re la t iv e  molecular mass of 138 daltons can have the following

molecular formulae; C-jo^lB* ^9^14^’ ^8^10^2 7̂ ^6^3 ' use

of the heavy isotope ra tio  ((M+l)/M) determined i t  as CgĤ ^O and thus 

the base peak ion to have the composition CgĤ O through the loss of 

57 daltons corresponding to C^Hg. The presence of an ion at m/z 39 

could result from C^Hg, a common fragment in furans, and the base 

peak could be composed of a furan type structure

Comparison with the standard spectrum of 2-pentylfuran^*^^ confirmed 

the presence of this compound.
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Scan No. 1476

m/z 126 111 97 83 79 71 69 68 56 55 53 51 43 41 39 29 27

Rel. AB % 3.7 21 10 43 1.9 5.6 11 6.2 5.0 100 8.7 43 76 42 37.9 24.0 55

The base peak ion at m/z 55 results from the loss of 71 daltons

from the parent ion. The composition of the ion at m/z 55 could be

or CgHgO with the loss from the molecular ion being either CgĤ ^

or C^HyO. I f  the base peak ion is C^HgO ,̂ an unsaturated ketone

structure is suggested. The loss of 15 daltons from the parent ion

suggests that i t  is a methyl ketone. Thus the proposed compound is

3-octen-2-one and this was confirmed by analysis of the standard 

206spectrum.

Scan No. 1124

m/z 130 101 99 88 87 75 74 71 59 57 55 45 43 42 41 39 31

Rel. AB % 0.4 6 .8  15 3.7 28.6 37 86.3 9.9 34 6.2 25 6.0 100 37 52 38.5 6.8

m/z 29 27

Rel. AB % 64 72

The loss of 31 daltons from the parent ion suggests the presence

of OCHo and the large m/z 74 indicates a straight chain methyl ester.
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The re la t iv e  molecular mass of 130 daltons prompted comparison 

of this spectrum with the standard spectrum of methyl hexanoate. 

From the fa i r ly  good match i t  is concluded that this compound is 

methyl hexanoate.

The compounds identif ied  by both capillary  and packed column 

gc-ms are summarised in Table 29.

Table 29

V o la ti le  products formed during the autoxidation of methyl 

lino ieate  in the presence of cobalt and aluminium promotors

Compound
★

% Composition

3-Heptanone 0.7

3-0cten-2-one 0.4

Pentanal 4.7

Hexanal 76.4

2-Hexenal 0.3

2-Heptenal 2.3

2-Butanol -

1-Pentanol -

Methyl hexanoate 0.3

Methyl heptanoate 0.4

Methyl octanoate 

Ethyl acetoacetate

1.1

Pentylfuran 3.7

2-butanol and ethyl acetoacetate are not included.

- 2
The total amount of material collected was 2.15 x 10 g, but excluding

-3
2-butanol and ethyl acetoacetate 2.37 x 10 g.
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2 .2 .2 .2  Determination of v o la t i le  products by HPLC 

The v o la t i le  products trapped chemically 

by the s i l ic a  gel coated with 2,4-dinitrophenylhdrazine were identified  

by th e ir  retention times on a C-jg-reversed phase HPLC column.

The retention times and assignments of the compounds are given in 

table 30 .

Table 30

Retention time (minutes) Compound assigned

9.5 Ethanal

12.3 Propanal

17.4 Butanal

2.2.3 Autoxidation promoted by benzil

2 .2.3.1  Determination of v o la t ile  products by gc-ms

The compounds identified from this autoxidation 

experiment, total ion current chromatogram from capillary  gc-ms figure

2 .2 .3 . 1,1,again resembled closely those obtained from the autoxidation 

of methyl linoieate  in the presence of cobalt and lead promotors 

(figure  2 . 2 . 1 . 1 . 1 ) the major product again being hexanal, but with 

fewer compounds being detected. The vast majority of the compounds 

iden tif ied  by gc-ms have been identified before, with the exception 

of that having scan No.229.
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Figure 2 .2 . 3 .1 .1 .

Capillary total ion current chromatogram of 
the v o la t i le  products from the autoxidation

of methyl lino ieate  in the presence of benzil.
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m/z 84 69 68 63 56 55 52 51 50 43 42 41 39 29 27

Rel. AB % 13 9 1.3 5 10 72 15 31 27 11 28 100 58 17 40

The base peak ion at m/z 41 indicates a compound with o le fin ic  

unsaturation present, the low retention time suggests a compound 

that is not very polar i . e .  an alkene with a molecular formula 

CgH-j2 . Comparison with the standard spectrum of 1-hexene^^^ 

iden tif ied  this as the compound.

The compounds identif ied  by gc-ms are concluded in table 31 . 

The tota l amount of v o la t i le  material collected was 2.3 x 10~^g 

based on dodecanal as the internal standard.

Table 31

V o la ti le  compounds formed during the autoxidation of 
methyl linoieate  in the presence of benzil

Compound % composition

1-Hexene -

2-Hexanone 1.4

Pentanal 4.2

Hexanal 67.2

2-Hexenal 0.9

2-Heptenal 6.4

2-Octenal -

Benzaldehyde 2.6

1-Pentanol 0.7

Methyl octanoate 2.1
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2 .2 .3 .2  Determination of vo la t i le  products by HPLC 

The v o la t i le  products trapped chemically by 

the s i l ic a  gel coated with 2,4-dinitrophenylhydrazine were identified  

by th e ir  retention times by HPLC. The retention times and assignments 

of the compounds are given in table 32.

Table 32

Retention time (minutes) Compound assigned

6.3 Methanal

12 Propanone

12.5 Propanal

2 .2 .3 .3  Destruction of benzil during autoxidation 

In the autoxidation of methyl linoieate  

promoted by benzil the reaction was monitored at 388 nm, corresponding to the 

n — ►IT transition in benzil. The decrease in the concentration of 

benzil, with reaction time is shown in figure 2 .2 .3 .3 .1  and table 33.

A l im it  to any further reduction in concentration from 0.0165mol dm 

occurred a fte r  21.5 h.

-3

2 .2 .4  Mechanism of v o la t i le  product formation in the 

autoxidation of methyl linoieate  

Volatile  carbonyl compounds, formed by successive 

heat reversion and deodorisation ofsoyabean o i l ,  were identified by 

Daubert.^^^’ ^^^’ ^^  ̂ These comoounds included ethanal, propanal.
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Time (hours) Benzil (mol dm" )̂

0.00 0.0214

0.50 0.0214

1.00 0.0214

1.50 0.0213

2.00 0.0212

3.25 0.0208

4.00 0.0203

5.00 0.0201

6.17 0.0198

7.00 0.0195

21.50 0.0165

Least mean squares analysis of the line using the points from
_o

1 hour to 7 hours gave a gradient of -0.32784 x 10 with an error

of -  0.3 X 10~^ (95% confidence).
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Figure 2 .2 .3 .3 .1 .

Benzil concentration versus time during 

the autoxidation of methyl lino leate
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hexanal and 2-pentenal. Hexanal was also found in the v o la t i le  

decomposition products from cotton seed oil autoxidised at 70°C.^40 

Thus C h a n g é proposed hexanal to be a degradation product of 

l in o le ic  acid. Chang also studied the vo la ti le  decomposition 

products of ethyl lino leate  as the ir  hydrazones revealing the presence
no

of propanal, pentanal and hexanal. Badings, from the autoxidation 

of ammonium linoleate  iden tif ied  hexanal, 2 ,4-decadienal and 

2-octenal as th e ir  2,4-dinitroohenylhydrazones. These were not 

analysed as v o la t i le  components but extracted from the 'bulk' 

reaction mixture. Thus the proposal that carbonyl compounds are 

one of the 'primary' products from hydroperoxide decomposition was 

made. Hexanal was proposed to originate from the hydroperoxide 

formed at carbon 13 and 2 ,4-decadienal from that formed at carbon 9, 

in methyl l ino leate . The existence of these hydroperoxides has been 

discussed in section 1.5. The origin of 2-octenal was proposed to 

be from the hydroperoxide formed at carbon 11. However, this 

hydroperoxide has not been id en tif ied , to date, from the autoxidation

of l in o le ic  acid or any of i ts  derivatives.
241Horvart analysed the vo la t i le  products from the autoxidation of 

methyl linoleate at 22°C for 18 days using a U tube trap at-T78°C 

the compounds were separated and identified by gc-ms. The compounds 

id en tif ied  are lis ted in table 34. Although capillary  glc was employed

Table 34

Methyl formate 2-Heptanone
n-Pentane Methyl hexanoate
Propanal n-Hexanol
Butanal 2-Heptenal
Pentanal l-Octene-3-one
n-Butanol Methyl heptanoate
Hexanal Methyl octanoate
Pentyl methanoate
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the separations were often not suffic ient for iden tif ica tion  to be

based on mass spectra alone. The authors confirmed the ir

assignments by comparison of retention times with that of standards,

no quantitation of the components was carried out.
242Horvart in a la te r  publication also identified several

carboxylic acids as th e ir  methyl esters from the autoxidation of

methyl l ino leate . The acids were extracted from an ether solution

using a saturated sodium bicarbonate solution, then the extracted

acids converted to th e ir  methyl esters using diazomethane. (This

extraction was important as i t  removed the chance of confusion with
241the methyl esters previously identified  ). The methyl esters 

were separated and iden tif ied  by capillary  gc-ms. Their corresponding 

acids are given in table 35.

Table 35

Methanoic acid Octanoic acid
Pentanoic acid Nonanoic acid

Hexanoic acid 2,3-Epoxyoctanoic acid
Heptanoic acid Octanedioic acid
2-Heptenoic acid Nonanedioic acid

2-Octenoic acid

214Again Frankel has provided the most complete study of the 

thermal degradation products from methyl linoleate hydroperoxides 

(Experimental details given in section 2 .1 .4 ) .  The degradation 

products from both uncatalysed and photosensitized oxidation are 

shown in table 36.



Table 36

Gc-ms analysis of products from thermally 

decomposed methyl linoleate hydroperoxides
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Autoxidation 
( r e l .%)

Photosensitized 
oxidation ( re l .  %}

Ethanal 0.3 0.4

Pentane 9.9 4.3

Pentanal 0.8 0.3

1-Pentanol 1.3 0.3

Hexanal 15.0 17.0

2-Heptenal Trace 9.9

1-Octen-3-ol Trace 1.9

2-Pentylfuran 2.4 0.6

Methyl heptanoate 1.0 0.3

2-Octenal 2.7 1.5

Methyl octanoate 15.0 7.6

2-Nonenal 1.4 1.6

2,4-Nonadienal 0.3 0.3

2,4-Decadienal 14.0 4.3

Methyl 8-oxooctanoate 1.3 0.9

Methyl 9-oxononanoate 19.0 22.0

Methyl 10-oxodecanoate 0.7 0.7

Methyl lO-oxo-8-decenoate 4.9 14.0

Both reaction conditions produced similar compounds, but with 

sign ificant differences in amounts. The autoxidised linoleate  

hydroperoxides produced much more pentane, 2-pentylfuran,



2 ,4-decadienal and methyl octanoate and much less methyl

lO-oxo-8-decenoate and 2-heptenal than the photooxidised linoleate  

hydroperoxides.

Bell?^^ F r a n k e l , a n d  Kimoto and Gaddis^^^ have proposed 

that monohydroperoxides decompose to alkoxy radicals,and carbonyl 

compound formation results from they3-fragmentation of these 

radicals. See Scheme 2 .2 .4 .1 .

O'
,0-H

R,-CH=CH CH=CH-C-R.
1  I L

R -  CH=CH CH
[O'
! I

=  CH-tC-

B A

PRODUCTS

Scission A gives r— CH=CHCH=CH CHO ♦ -R̂

Scission B gives R— CH=CH CH= CH- + R^CHO

180

Scheme 2.2 .4 .1

(The fragmentation and chemistry of alkoxy radicals has been 

mentioned in sections 1.13 and 2 .1 .4 ) .  Scission of the C-C bond 

on the side of the oxygen-bearing carbon atom away from the o lefin ic  

linkages (Scission A)^will result in the formation of an aldehyde 

and an alkyl rad ica l, while scission of the C-C bond between the 

vinyl function and the carbon atom bearing the oxygen atom 

(Scission B),gives rise to a vinyl radical and an aldehyde.

The s im ila r ity  between the thermal decomposition products 

(table 36) and those observed from the promoted autoxidation of methyl
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lino leate  (tables 26, 29 and 31) indicate a common degradation 

pathway. There are however several compounds not detected in 

the ambient promoted autoxidations which are observed in the thermal 

decomposition of the methyl linoleate hydroperoxides. The 

absence of the higher molecular weight compounds i . e .  2-nonenal,

2,4-nonadienal, 2 ,4-decadienal, methyl 8-oxooctanoate, 

methyl 9-oxononanoate, methyl 10-oxodecanoate and methyl lO-oxo-8- 

decenoate is easily  explained. The thermal degradation of the 

methyl lino leate  hydroperoxides is carried out in the injection  

part of the gas-liquid chromatograph, and hence a ll  the products are 

analysed. However, the degradation products from the promoted 

autoxidations at ambient temperature are transferred via a gas 

stream into a cold trap, thus only compounds which are su ffic ien tly  

'v o la t i le '  w il l  be collected and analysed.

The major 'v o la t i le '  degradation product from a ll  three promoted 

autoxidations of methyl linoleate is hexanal (^70%). This arises 

from the decomposition of the 13-hydroperoxides XXIII and XXV, see scheme 

2 .2 .4 .2 ,  whose formation was discussed in section 1.5.

Other common products from the three promoted autoxidations are 

pentanal, 2-hexenal and 2-heptenal^ee scheme 2 .2 .4 .3 . The formation 

of hydroperoxide XXVI has been discussed in section 1.5.
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C H J C H J ,  CH C H = C H  C H = C H  ( C H . L C ' ^
\ q(2H.

- • O H

CH J C H ^ c i ^ ' C H ^ C H  CH— CH ( C H J _ C ^3 24 27 \
^OCH.

( X X I I I  or X X V )

CH ( C H I C ^  
3 24 \

0

H

H E X A N A L

Scheme 2 .2 .4 .2

CH— CH C H = C H  (CH^)^C
\

O C H .

The formation of hydroperoxides (X L III  or XLIV) is tentatively  

suggested but expected from the a l ly l ic  radical proposed for the 

formation of XXII (methyl-9-hydroperoxy trans-lO-cis-12-octadecadienoate) 

The formation of 2-hexenal is based upon the autoxidation of 2-heptenal 

generated in situ and would be accompanied by the formation of the 

methanyl (formyl, 'CHO) radical. The absence of 2-hexenal amongst 

the thermal decomposition products (Table 35) also suggests that i t  

results from secondary reactions.
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CH3 CH2 CH 2 CH 2  C H ^ C H ^ C H - R  ( X X Î )

- H -
/ O

R = C H , C H = C H ( C H J „ C ^2 2 7 \
OCH.

C H . C H ^ C H ,  CH^ C H — CH— C H - R

ii ,+H'  (orRH)

Q - H

C H ^ C H ^ C H ^ C H ^ C H  C H = C H R

( X X V I )

-  • OH

0

CH^CH^CH^CH^^H^CHR

H

▼ /O
C H _ C H  C H .  CH C /  

3  Z Z 2 \

PENTANAL

Scheme 2 .2 .4 .3
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The formation of the two other common products from the 

three promoted autoxidations i . e .  methyl heptanoate and methyl octanoate 

are explained by Scheme 2 .1 .4 .8  (Section 2 .1 .4 ) .

The 'v o la t i le '  products common to a ll  three promoted autoxidations 

of methyl linoleate  are summarised in table 37.

Table 37

1-Pentanol 
Pentanal 
Hexanal
2-Hexenal
2-Heptenal 
Methyl heptanoate 

Methyl octanoate

Some of the 'v o la t i le '  compounds detected arise d irectly  from the 

promotors. The cobalt ( I I )  and lead ( I I )  bis( 2-ethylhexanoate)s 

promotors gave 2-ethylhexanoic acid and methyl 2-ethylhexanoate 

benzil gave benzaldehyde, and the mixture of cobalt ( I I )  

bis(2-ethylhexanoate) and aluminium bis(2-butoxide) ethyl acetoacetate 

gave 2-butanol and ethyl acetoacetate.

A common non-carbonyl product formed in a ll  three promoted 

autoxidations is 1-pentanol. This probably arises from a pentyl 

radical combining with a hydroxyl radical (scheme 2 .2 .4 .4 ) ,  the 

pentyl radical arising from the decomposition of hydroperoxides 

X X III or XXV. Hydroxyl radicals can be produced in the decomposition
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,0 -H
0

CH =  CH {CHJ ( X X I I  or X X V )

2 7 "'OCH,

- 'OH

C H glC IY gC H ^'C H  C H = C H  C H -C H  (CH^)^ C ^

CH^(C%CH.

+ '0 H

OCH-

+ C CH =r CH C H =  c H (CH )̂  ̂C ^

”  \ C H

CHjICHjjjC ĤOH

1-PENTANOL

Scheme 2 .2 .4 .4

of hydroperoxides in the presence of the cobalt promotor, 

see section 1.12.

The id e n tif ic a t io n  of hexanoic acid from the Co/Pb promoted 

autoxidation provides evidence of further oxidation of hexanal.

Pentyl furan, found in the thermal decomposition of methyl linoleate  

hydroperoxides, has only been identified  in the cobalt/aluminium 

promoted autoxidations. Pentylfuran has been proposed to originate



from the d irec t decomposition of C-10 hydroperoxides XLI or XLII 

(as yet u n id e n t if ie d ) ,  however the cyclisation of alkoxy radicals 

formed by the decomposition of the hydroperoxide seems more 

l i k e ly .

0 - H

CH^(CH2)^CH-CH=CH CH^CH-CH^R

- • O H

/
.CH

CH:

R=
0

OC H .
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CH^(CH2),C-C

CH

( L x x x v n

C H J C H J C

•CH

a
3 a  I V

IS SHXFT

H

0 (cH

CH,

CĤ fCĤ
4- 'CH CHgR

Scheme 2 . 2 . 4 . 5
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Cyclisation reactions of alkoxy radicals with alkenes
OAc:

have been studied by Surzur, e.g. the reduction of

pent-4-enyl hydroperoxide with titanium ( I I I )  chloride gives

tetrahydrofurfuryl compounds. The formation of radicals sim ilar

to LXXXVI are proposed on the reaction pathways.

The 1,5 hydrogen s h i f t ,  proposed in scheme 2 .2 .4 .5 ,  finds
231support in the l i te r a tu r e ,  e.g. the radical addition of

2 5 3carbon te trachloride to cyclooctene, scheme 2 .2 .4 .6 .

+  cc^
hr or

(•ecu

/  ° n /  V
+

\
3 * 8 - 5 %

ecu

5 8 —  6 8 %

ecu
1.5 SHIFT

CCI 3

Scheme 2 .2 .4 .6

A v o la t i le  product common to the Co/Pb and benzil promoted

autoxidations is 2-octenal. I t  has been proposed that methyl-
7811-hydroperoxylinoleate LXXXVII exists although this hydroperoxide 

has not so fa r  been isolated despite the attempts of many research 

groups. The formation of 2-octenal could easily be explained by 

the decomposition of LXXXVII, but i t  could also result by a route 

such as scheme 2 .2 .4 .7 .
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The quantity of v o la t i le  products produced is dependent 

on the promotor used; the promotors containing cobalt ( I I )  

bis(2-ethylhexanoate) producing the greatest amount in the 

autoxidation of methyl l ino lea te . Unlike the autoxidation of 

methyl oleate promoted by a mixture of cobalt ( I I )  

bis (2-ethyl hexanoate) and aluminium bis (2-butoxide) ethyl 

acetoacetate 'v o la t i le '  degradation products are found in the
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comparable autoxidation of methyl l ino leate . When the quantity 

of 2-butanol and ethyl acetoacetate was subtracted from the total 

amount o f  v o la t i le s 'produced i t  was found to approximate to 

that produced from the Co/Pb promoted autoxidation. This 

suggests that the complexing promotor does not in terfere  with the 

autoxidative degradation by a competing Meerwein-Ponndorf-Verley 

reduction. However the absence of 2-ethylhexanoic acid and 

hexanoic acid from th e 'v o la t i le s ' in the Co/Al system (but observed 

on the Co/Pb autoxidation) may suggest some complexing of these 

acids with the aluminium component.

The benzil autoxidation in i t ia to r ,  although producing the same 

v o la t i l  esj only forms about 9% of the quantity compared to the 

redox promotors.

Collection of th e 'v o la t i le ' carbonyl compounds as the ir

2,4-dinitrophenyl hydrazones revealed via HPLC the formation of low 

molecular weight aldehydes, the Co/Pb promotor system producing the 

greatest range of compounds (table 2 8). The benzil promoted 

autoxidation also produced methanal. This compound may be formed 

by the methanyl radical (in scheme 2 .2 .4 .3 ) abstracting a hydrogen 

atom from a suitable donor.

O + RH ------------► C. *R
hi H H

Equation 2 .2 .4 .8

The low molecular weight aldehydes can be formed from methyl 

linoleate by hydrogen abstraction and hydroperoxide formation at
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carbons 14, 15, 16 and 17 followed by alkoxy radical formation and

3-fragmentation. The formation of these non-a lly lic  

hydroperoxides is less favourable than those discussed in section 1.5 

No explanation is offered for the absence of methanal using the 

Co/Al system.

Recent publications^^^’ ^^^’ ^^  ̂ concerned with the formation 

of degradation products from autoxidation of methyl linoleate in 

the absence of promotors,also propose hydroperoxide decomposition 

to alkoxy radicals followed by 3-scission.

2.3 Autoxidation of methyl c is -9 - cis-12- cis-15-

octadecatrienoate (methyl linolenate)

2.3.1 Autoxidation promoted by cobalt ( I I )  

bis(2-ethylhexanoate) and lead ( I I )  

bis(2-ethylhexanoate) .

2 .3.1.1  Determination of v o la t i le  products by gc-ms 

The capillary  gc-ms total ion current 

chromatogram of the v o la t i le  products collected in the cryogenic 

trap is il lu s tra ted  in figure 2 .3 .1 .1 .1 .  The analysis of mass 

spectra obtained at the apex of each chromatographic peak is 

discussed below.

Scan No. 77

m/z 58 57 42 39 29 27

Rel. Ab. % 25.5 7.5 2.2 41 100 67.1
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Figure 2 .3 .1 .1 .1

Total ion current chromatogram of the v o la t i le  

products from the autoxidation of methyl linolenate
4.0-1 in the presence of the cobalt and lead promotors.

RIC

1000 1500Scan No.
Time (mins) 8:45 17:30 26:1! 35:00
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The base peak ion at m/z 29 can have the compositions 

CHgCHĝ  or CHO As this compound elutes a fte r  n-pentane i t  is 

concluded that this compound is oxygen containing. The molecular 

formula corresponding to a re la tive  molecular mass of 58 being 

CgH^O. Thus i t  is proposed that this compound is propanal.

confirmation was obtained by examination of the standard spectra. 

Scan No. 92
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m/z 32 31 30 29

Rel. AB % , 65.2 100 9.3 88.8

The re la t ive  molecular mass of 32 daltons and base peak ion at

m/z 31 suggest that this compound is methanol. Confirmation was

obtained by analysis of the standard spectrum.
Scan No.109

m/z 46 45 43 42 31 30 29 27

Rel. AB % 9.9 25 7.5 3.7 100 6.8 35 30

The base peak ion at m/z 31 (CĤ O ) suggests a primary alcohol.

The re la t ive  molecular mass of 46 daltons permits CgĤ O and CĤ Og as

the molecular formula. Ethanol was confirmed by analysis of the 

206standard spectrum.



Scan No. 124
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m/z 84 83 61 57 56 55 53 50 39 37 29 27 26

Rel. AB % 9.3 2.5 0.6 75 6 .2 100 1.9 1.3 5 1.9 37 38 31

The loss of 29 daltons from the parent ion to form the base peak 

ion at m/z 55 indicates the presence of CHgCHg-. The molecular

formula was determined to be CgHgO from the abundance of the M + 1 ion 

With the base peak^ion having the composition CgHgO, the suggested 

compound is CHgCH2CCH=CH2 and this was confirmed by analysis o f  its
or)f.

standard spectrum.

Scan No. 134

m/z 70 69 50 49 45 43 42 41 40 39 38 37 29

Rel. AB % 44.7 19.5 3.4 1.8 3.1 2.2 15.2 99 15.5 100 25 11.5 33

m/z 27 26

Rel. AB % 29.8 20

The molecular formula of this compound was established to be 

Ĉ Ĥ O from the abundance ratio  fl+l)|M.. The principal ions in this 

spectrum are at m/z 41 (CgHg or CgHO) and m/z 39 (CgHg) thus this 

compound has o le fin ic  unsaturation. The neutral fragment eliminated

in the formation of the ion at m/z 39 is therefore CH3O. The formyl 

ion m/z 29 is often indicative of a furan type structure. Comparison 

with some standard mass spectra^^^ of furans identified  this compound 

as 2,5-dihydrofuran.



Scan No. 146
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m/z 100 85 57 56 53 44 43 42 29 27 26

Rel. AB % 7.5 0.6 23 0.9 1.3 5 100 8.7 70 37 13

This spectrum consists of f ive  major ions at m/z 100, 57, 43,

29 and 27. The formation of the base peak ion at m/z 43 results from 

the elimination of 57 daltons but the presence of an ion at m/z 57 

shows that during the molecular ion fragmentation the charge can 

remain on e ither fragment. These types of fragments are often 

observed from the a-cleavage in ketones. Examination of the 

standard spectra^^^ provided no match for the hexanones, however 

the spectrum for 2,3-pentadione was in excellent agreement with that 

obtained from scan No. 146.

Scan Nos. 178 and 198

m/z 84 83 69 66 65 57 56 55 53 51 50 45 43

Rel AB % 175 29 5.3 3.7 3.7 6.2 14 70 16 10 12 2.2 7.1

m/z 42 41 40 39 38 37 36 29 27 26

Rel AB % 7.5 52 13 77 14 8 1.2 93 100 30.4

The abundant ions at m/z 29, 41 and 55 suggest an unsaturated compound, 

and the ion at m/z 45 indicates the possible presence of oxygen. The 

heavy isotope ra tio  (M+l)/M revealed the molecular formula as CgHgO.
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The loss of water from the molecular ion (M-18) indicates a possible 

aldehyde structure. The abundant parent ion and M-1 is often 

observed in the lower a,B-unsaturated aldehydes. Comparison with 

the standard spectrum of 2-pentenal^^^ gave a reasonable correlation 

but in the recorded spectrum the higher mass ions have lower 

abundances than expected. This may have arisen from the spectrum 

being recorded ju st past the apex of the chromatographic peak.

Scan No. 283

m/z 86 71 69 67 59 58 57 55 50 43 41 40

Rel. AB % 0.6 1.9 0.5 1.2 2.8 4.7 100 5.3 1.2 12.4 14.9 3.1

m/z 39 38 31 29 27

Rel. AB % 15.2 3.4 31.6 85 49

The presence of CH^CHg- in the molecule is shown by the loss of 

15 and 29 daltons from the parent ion. The base peak ion at m/z 57 

can have the following compositions, C^Hg, Ĉ HgO and CgHOg.

Ĉ Hg is doubted because the molecular formula would be Ĉ Ĥ  ̂ and the 

retention time is too long for a hydrocarbon. The Ĉ HgO composition 

appears the most probable as there is a loss of 17 daltons from the 

parent ion. An alcohol structure is suggested and comparison with 

the standard spectra of l-penten-3-ol^^^ and 3-pentanone 

concluded that l-penten-3-ol f i t te d  the better.



Scan No. 654
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m/z 116 98 97 70 69 59 57 55 53 45 43 41 39

Rel.AB % 0.2 1.9 21 43 70 100 17.4 7.5 2.5 13 33 86 30.5

m/z 31 29 27

Rel. AB % 78 78 85

This spectrum is very similar to that obtained in the autoxidation 

of methyl oleate promoted by cobalt Jl) and lead ( I I )  bis(2-ethylhexanoate) 

section 2.T.1.1 scan No. 936, and is therefore concluded to be 3-heptanol.

Scan No. 691

m/z 89 86 68 67 58 57 55 53 51 50 45 43 41

Rel. AB % 1.9 6.8 6.8 5.9 5.6 100 17.4 13 6.2 7 30 36 55

m/z 39 31 29 27

Rel. AB % 61 47 95.6 86

The base peak ion at m/z 57 can have the following compositions; 

C^Hg, CgHgO and CgHOg. However the parent ion could not be identified  

The packed column El gc-ms study did not reveal the presence of this  

compound and therefore the parent ion was not established by Cl gc-ms.
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Scan No. 711

m/z 133 86 83 71 69 68 67 58 57 55 53 51 50 44 43

Rel. AB % 1.6 1.9 1.9 6.2 3.4 19 17 5.6 92 17.4 17. 17.1 6.8 34 33

m/z 42 41 40 39 38 31 29 27

Rel. AB % 14 54 99 61.5 9.9 46.4 100 87

Again the parent ion in this spectrum could not be identified, thus 

making in terpretation d i f f ic u l t  as no similar spectrum could be found 

in the packed column El gc-ms. Cl gc-ms study did not provide any 

information regarding the re la tive  molecular mass of this compound.

Scan No. 923

m/z 110 109 95 91 82 81 79 77 68 67 65 63

Rel. AB % 15 1.9 43 2.8 6.8 100 16 7.8 12 11.8 10.6 5.3

m/z 53 51 50 41 39 29 27

Rel. AB % 43 19. 3 13 47 69 42 58

The loss of 15 and 29 daltons again shows the presence of 

CHgCHg-. The molecular formula of C^H^qO was established by the heavy 

isotope ra tio  (M+l/M). The base peak ion at m/z 81 must therefore have 

the following composition Ĉ HgO, which may result from the structure 

-CH=CHCH=CHC^^- . Comparison with the standard spectrum of

2,4-heptadienal^^^ confirmed its  presence.



Scan No. 961
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m/z 110 95 82 81 79 77 67 65 55 53 51 50

Rel. AB % 10.2 2.5 5.9 100 15.5 8 13.7 5.6 6.2 34.7 16 11.2

m/z 41 40 39 29 27

Rel. AB % 38 12.4 51 35 54

This spectrum is almost identical to that obtained in scan No. 923 

and is concluded to be a cis-trans isomer of 2,4-heptadienal.

Scan No. 1530

m/z 101 88 87 73 69 58 57 42 41 39 27

Rel. AB % 15 69 21 53 12 12.5 21 22 68 37 100

This spectrum has some s im ilar it ies  to that of 2-ethylhexanoic 

acid. However neither the parent ion nor the Mclafferty  

rearrangement ion at m/z 102 is observed. The packed column El 

gc-ms study did not yield a spectrum with similar fragmentation and 

hence the parent ion could not be deduced by packed column Cl gc-ms
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Scan No. 1573

m/z 221 193 180 181 165 137 133 115 109 105 103 95

Rel. AB % 7.5 7.5 28 13 60 24 8 6.2 11.8 10.8 8 6.8

m/z 91 79 77 71 67 57 53 43 41 39 31 29

Rel. AB % 17 7.5 12. 5 9.3 12.7 58 17 86 100 27 18.9 57

The molecular ion cannot be determined and thus interpretation was 

not possible.

Packed column gc-ms analysis identif ied  the following compounds: 

methyl 2-ethylhexanoate, methyl octanoate and 2-ethylhexanoic acid. 

Analysis of the mass spectra of these compounds has been discussed 

e a r l ie r .

The vo la t i le  compounds identif ied  by gc-ms are summarised in table 38



Table 38

V o la t i le  products formed during the autoxidation of methyl 

linolenate in the presence of cobalt and lead promotors
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Compound % Composition

l-Pentene-3-one 0.95

2,3-Pentadione 0.22

Propanal 27.8

2-Pentenal (both isomers) 9.42

2,4-Heptadienal 2.02

2,5-Dihydrofuran 4.03

Methanol —

Ethanol 26.0

l-Pentene-3-ol 14.7

3-Heptanol —

Methyl -2-ethylhexanoate 1.23

Methyl octanoate 7.42

2-Ethylhexanoic acid 0.07

The tota l amount of vo la ti le  material collected in the cold 

trap was 4.73 x lO’ ^g based on dodecanal as the internal standard
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2.3 .1 .2  Determination of v o la t i le  products by HPLC

2,4-Dinitrophenylhydrazone derivatives of 

aldehydes, trapped by the coated s i l ic a  gel, were identif ied  by the ir  

retention times by HPLC using a C-jg reversed phase column. The 

retention times and the ir  assignments are given in table 39.

Table 39

Retention time (Mins) Assignment

6.4 Methanal

9.5 Ethanal

12.3 Propanal

16.7 2-Butenal

17.4 Butanal

2 .3 .2  Autoxidation promoted by cobalt ( I I )  bis (2-ethyl 

hexanoate) and aluminium bis(2-butoxide) ethyl 

acetoacetate

2.3.2.1 Determination of v o la t i le  products by gc-ms

The total ion current chromatogram obtained from 

the cap illa ry  gc-ms analysis of the volatiles collected in the cold trap 

is shown in figure 2 .3 .2 .1 .1 .  The vo la t i le  products are very similar  

to those found in the cobalt and lead promoted autoxidation. The 

exception being the absence of methyl-2-ethylhexanoate, 2-ethylhexanoic 

acid, 2,3-pentanedione and 2,5-dihydrofuran but with the added presence 

of 2-butanol and ethylacetoacetate. The compounds identified from this

autoxidation are given in table40 .
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Figure 2 .3 .2 .1 .1 .

Capillary to ta l ion current chromatogram of the 

v o la t i le  products from the autoxidation of methyl
linolenate in the presence of cobalt and alumini 
promotors.

100.0-1

RIC

Scan No. 
Time (mins)

500 
8; 45

1000
17:30

1500
26:15
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Table 40

V o la ti le  compounds iden tif ied  by gc-ms from the autoxidation 

of methyl linolenate in the presence of cobalt and aluminium

promotors

Compound % Composition

1-Pentene

l-Pentene-3-one 1.3

3-Heptanone

Propanal 29.7

2-Pentenal 10.6

2,4-Heptadienal 3.9

Ethanol 23.1
*

2-Butanol •

l-Penten-3-ol 13.9

Methyl octanoate 8 .2
★

Ethyl acetoacetate

Propanoic acid 1.1

% Composition determined without the inclusion of 2-butanol 

and ethyl acetoacetate.

The total amount of v o la t i le  material collected in the cold 

trap was 4.18 x lO^g. The amount of vo la t i le  degradation products 

( i . e .  excluding 2-butanol and ethyl acetoacetate) is 4.31 x 10” g.
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The mass spectrum of one compound formed in the above reaction 

which could not be identified  is now discussed.

Scan No. 1264

m/z 154 139 126 125 110 109 108 97 81 80 69

Rel. AB % 26.7 1.6 21.2 40.1 8.1 99.4 27 61 11.8 19.3 6.1

m/z 53 52 51 50 43 42 41 39 38 29 27

Rel. AB % 29.5 23.6 30 21 57 5.9 6.2 16.8 8.7 61.5 100

The heavy isotope ra tio  pointed to a molecular formula of 

^8^10^3' loss of 15, 29 and 45 dal tons from the parent ion

suggests the presence of the following groups: CHqCH- and

thus the abundant ion m/z 109 would be composed of Ĉ HgOg or 

CyHgO. No assignment can be made from this spectrum.

2 .3 .2 .2  Determination of vo la t i le  products by HPLC 

The vo la ti le  compounds, collected in the 

chemical trap,were identified  by HPLC as the ir  2,4 dinitrophenyl 

hydrazone derivatives. The retention times and assignments are given 

in table 41.

Table 41

Retention times (Mins) Assignment

12.5
(

Propanal

17.3 Butanal
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2.3 .3  Autoxidation promoted by benzil

2.3.3.1 Determination of v o la t i le  products by gc-ms 

In figure 2.3.3.1.1 the capillary  gc-ms total 

ion chromatogram obtained from the volatiles  trapped in the cold trap 

is depicted. The compounds identified from th e ir  mass spectra are 

very sim ilar to those found in the cobalt and lead promoted 

autoxidation. Some differences occur, those being the absence of 

methyl-2 ethylhexanoate, 2-ethylhexanoic acid, 2,3-pentanedione and 

the presence of benzaldehyde. One compound of s ignificant abundance 

could not be iden tif ied  and its  spectrum is reported below.

Scan No. 525

m/z 88 58 57 55 55 50 45 43 42 41 39 31 29 27 26 i

Rel. AB % 8.4 4.0 80.1 11.5 5.0 0.9 10.6 6 .0 16.1 9.0 8 .0 100 94.7 76.
1

4 43

The molecular ion at m/z 88 could have the following compositions; 

CyH^, CgH^gO, Ĉ HgOg and CgH^Og. There is a loss of 31 dal tons from 

the parent ion and the base peak ion at m/z 31 thus suggesting the 

presence of OCH3 in the molecule. The retention time of this compound 

rules out the hydrocarbon structure CyH .̂ Considering the formula 

CgH^gO, the alcohols 1-pentanol, 2-pentanol and 3-pentanol are ruled 

out since th e ir  base peaks ions are m/z 42, m/z 45 and m/z 59 respectively. 

No aldehyde or ketone structures can be assigned, although ether 

structures may be possible. None of the possible ethers,however,has 

a fragmentation pattern similar to scan No. 526.
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Figure 2 .3 .3 .1 .1 .

Capillary total ion current chromatogram of the

v o la t i le  products from the autoxidation of methyl 
linolenate in the presence of benzil.

RIC

1500
26:15

500
8:45

Scan No. 
Time (mins)
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The formula Ĉ HgOg would allow butanoic acid or methyl 

propanoate. However butanoic acid would undergo a Mclafferty  

rearrangement under electron impact and have a base peak ion at 

m/z 60. The fragmentation of methyl propanoate is similar but has 

an ion at m/z 59 ('^30% of base peak) and is thus ruled out.

I t  is possible that the ion at m/z 88 arises from fragmentation 

of an undetected parent ion and thus the true molecular formula is 

unknown.

The compounds which have been identif ied  from the gc-ms studies 

are summarised in table 4 2.

Table 42

V o la ti le  products formed during the autoxidation of 
methyl linolenate in the presence of benzil

Compound % Composition

l-Penten-3-one 1.3

Propanal 25.1

2-Pentenal 10.4

2,4-Heptadienal 3.9

Benzaldehyde 1.67

Ethanol 13.2

l-Penten-3-ol 16.7

3-Heptanol

Methyl octanoate 7.1

Unknown (scan 526) 4.7
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The total amount of v o la t i le  material collected in the cold 

traps was 0.462 x 10“ g based on dodecanal as the internal standard.

2 .3 .3 .2  Determination of v o la t ile  products by HPLC

The v o la t i le  compounds trapped by the chemical 

trap were analysed by HPLC and identif ied  by the ir  retention times.

The retention times and assignments are given in table 43.

Table 43

Retention time (Mins) % Composition

9.4 Ethanal

12.5 Propanal

15.0 3-Buten-2-one

17.0 Butanal

2 .3 .4  Mechanistic Interpretation

Kawahara^^^ studied the vo la t i le  components from 

the autoxidation of Soybean o il identifying hexanal, 2-pentenal, 

propanal and ethanal as th e ir  2 , 4-d in itrophenylhydrazone (2,4-DNPH) 

derivatives. Dutton^^^ showed that the linolenic acid component 

of glycerides is an unstable precursor of 'painty' and 'rancid' 

frac tio n s .
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251Kawahara studied the volatiles derived from methyl linolenate, 

by bubbling oxygen through the pure ester for 7 days at room 

temperature. The vo la tiles  were collected in a cold trap immersed 

in an ethanol and solid carbon dioxide bath. In this study ethanal, 

propanal, 2-pentenal and hex-3-ene-l,6 -d ial were iden tif ied  as 

th e ir  2,4-DNPH derivatives. Thus the conclusion was drawn that 

ethanal, propanal and 2-pentenal obtained from Soybean o il must

result from the lino len ic  acid component.
252Johnson using 'polymeric ethyl linolenate', again identified

ethanal, propanal, 2-pentenal along with methyl ethyl ketone,but i t  

214has been Frankel who has made the most complete study of the thermal 

decomposition products of methyl linolenate hydroperoxides. The 

hydroperoxides were decomposed in the injection port of the gas 

chromatograph. The compounds are summarised in table 44.

The 'v o la t i le s ' obtained from the promoted autoxidations of 

methyl linolenate (sections 2 .3 .1 , 2.3 .2 and 2 .3 .3 ) are similar to those 

in table 4 4., thus again suggesting similar degradation pathways from 

the hydroperoxide. Unlike the 'v o la t i les ' obtained from methyl 

l ino leate , which is characterised by ^70% hexanal, there is a greater 

spread of products from methyl linolenate. (See tables 38, 40 and 42. ) 

The most abundant carbonyl product from a ll  three promoted 

autoxidations is propanal and this is proposed to arise from the 

hydroperoxides LTV or LV. An abundant non-carbonyl product, 

ethanol, is also formed from the hydroperoxides LTV or LV, scheme 2 .3 .4 .1 .  

This il lu s tra te s  the two carbon-carbon cleavages available to the 

alkoxy radical as shown in Scheme 2 .2 .4 .1 . (see section 2 .2 .4 ) .



Table 44

Gc-ms analysis of 'v o la t i le s ' from thermally 

decomposed methyl linolenate hydroperoxides
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Compound Autoxidation (rel %) Photosensitised 

oxidation (rel %)

Ethane/Ethene 10 3.2

Ethanal 0.8 0.6

Propanal 7.7 9.0

Butanal 0.1 0.8

2-Butenal 0.5 11.0

2-Pentenal 1.6 1.2

2/3-Hexenal 1.4 3.4

2-Butylfuran 0.5 0.3

Methyl heptanoate 1.8 1.0

2,4-Heptadienal 9.3 8.8

Methyl octanoate 22.0 15.0

4,5-Epoxyhepta-2-enal 0.2 0.2

3,6-Nonadienal 0.5 1.1

Methyl nonanoate 0.7 0.3

Decatrienal 14.0 4.8

Methyl 8-oxo-octanoate 0.6 12.0

Methyl 9-oxo-nonanoate 13.0 12.0

Methyl 10-oxo-decanoate 1.0 1.5

Methyl lO-oxo-8-decenoate 4.2 13.0
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,0 -H

CH3 CH2
0" 
tn CH:zCH C H - C H  CH^ C H = C H  (CHJ^C2

(-•OH)

27 \
LIV orLV

OCH.

C H 3 C H 2 CH C H z % C H C H = C H  C H ^ C H — CH
OCH.

C H X H .  + C C H = C H  C H = C H R  3 2 /

CĤ CĤ OH

ETHANOL

CH CH C + . C H = C H  CH— CHR 
3 2 \ h

PROPANAL

R = CHJCH=CH(CH ) C ^  
^  2 7  \

OCH.

Scheme 2.3.4.1

The formation of l-pentene-3-one, l-pentene-3-ol and 2-pentenal 

can be explained from the 13-hydroperoxides, L I I  or L I I I .  The 

mechanism involves the formation of a a l ly l  radical LXXXVIII then the 

addition of e ither a hydroxy radical or oxygen to the system.

The favoured formation of l-pentene-3-ol is explained by the 

a v a i la b i l i ty  of two routes of formation, e ither d irectly  from hydroxy 

radical addition to the a l ly l  radical or from hydrogen abstraction 

by the alkoxy radical LXXXIX. The mode of cleavage of the 

alkoxy radical w i l l  e ither give propanal (C-C breakage) or l-pentene-3-one 

(C-H cleavage). 2-Pentenal is formed via oxygen attack at the terminal 

carbon in the a l ly l  radical LXXXVIII, then hydroperoxide formation and



decomposition to form an alkoxy radical resulting ultimately  

in carbonyl formation. These reactions are given in equation

2 .3 .4 .2  and scheme 2 .3 .4 .3 .
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H-Ov
0

CH C H _ C H = C H  CH ,CH  C H = C H  C H = C H ( C H J _ C '  L I Î  o r L I I I
^OCH

Equation 2 .3 .4 .2
ir'OH

ii, C— C cleavage

%  , /  
+ C C H = C H  C H = C H  ( C H J , r

L X X X V I I I

The formation of l-pentene-3-one involves carbon-hydrogen bond 

f iss ion . As the C-H bond is stronger than the C-C bond its  fission  

is expected to play only a minor part in the decomposition of alkoxy 

radicals . However this mode has been observed in the decomposition 

of the ethoxy r a d i c a l . T h e  minor role of C-H fission is perhaps 

reflected in the low y ie ld  of l-pentene-3-one (^1 .0% ).
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M ETH A N AL

0 - C H  CH CHzzC H
/ /

CH^CIH C H = C H C

CH CH C H - C H  CH2 - P E N T E N A L

Ü - -O H

CH,

C H ^C H ^C H zzC H C H ^ O H  

2 - P E N T E N E - 1 - 0 L

C H ^ C H ^ C H — CH— CH^ 

L X X X V Ü I

CH CH^CH C H = C H ^  
3 2 2

1 - P E N T E N E - 3 - 0 L

0

H

PRO PA N A L

C C cleavage

0— 0 -  

I
CH3CH2CH CH^CH^

\j +H* 

i i , - O H

t
G-

C —  H c leav ag e

Scheme 2 . 3 . 4 . 3

CHjCH-C-CH^CH^

1 - P E N T E N E - 3 -  ONE
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I f  radical LXXXVIII is an intermediate, then the formation 

of 2-pentene-l-ol should be expected. However this compound 

has not been observed in the v o la t i le  products. Frankel^^^ 

explained the formation of l-octen-3-ol from the rearrangement of 

2 -o c ten -l-o l.  The primary alcohol originates from a 2-octene 

radical reacting with a hydroxy radical.

I ,  D H  I
C- --------- — -----------------► C OH

H H

Scheme 2 .3 .4 .4

?"
CHjICH J^CH  C H = C H j

The formation of l-octen-3-ol could be explained easily by the route

proposed for l-pentene-3-ol formation from methyl linolenate. The
214

selective formation of the secondary alcohol, observed by Frankel and 

in this work may possibly be explained by hyperconjugation by the 

ethyl group aiding s ta b i l i ty  of the secondary radical over the primary 

rad ical. Although the formation of 2-pentenal appears to contradict 

th is theory.

2,4-Heptadienal is formed by the decomposition of the 

12-hydroperoxides L or L I. This pathway, scheme 2 .3 .4 .5 ,  is similar  

to the other hydroperoxide decompositions discussed e a r l ie r .  The 

stereochemistry of the double bonds in the 2,4-heptadienal are 

expected to be that in the parent hydroperoxides i . e .  trans-2-,  

cis-4-heptadienal and trans-2-, trans-4-heptadienal. However, although
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0 - 0 - H
C H ^ C H „ C H = :C H  C l f c C H  C CH CH=%CH3 2

OCH.

-(•OH)
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OCH.

two isomers were separated by capillary  qc, electron impact mass 

spectrometry is not usually a suitable technique for identif ication  

of cis-trans isomers. I t  is expected that the second isomer to 

elute would be trans, trans. The last vo la t i le  compound common 

to a l l  the promoted autoxidations is methyl octanoate. Its  

formation has been discussed ea r l ie r  in section 2 .1 .4  (scheme 2 .1 .4 .8 ) .

As well as the above mentioned volatiles the autoxidation of 

methyl linolenate, promoted by cobalt ( I I )  and lead ( I I )  bis 

(2-ethylhexanoate) ,  produced the following compounds:

2,3-pentadione, 2,5-dihydrofuran, methanol, 2-heptanol,methyl

2-ethylhexanoate and 2-ethyl hexanoic acid. The formation of the la t te r

two compounds is discussed elsewhere (section 2 .10 .1 ).
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Benzaldehyde was again found in the benzil promoted,and 

ethylacetoacetate and 2-butanol observed in the Co/Al promoted, 

autoxidation. A dependence of the quantity of v o la t i le  material 

produced upon the promotor was repeated, the benzil promoted 

autoxidation producing only 9.8% of that promoted by Co/Pb.

The short chain aldehydes identified as th e ir  2,4-DNPH 

derivatives were again similar in each autoxidation, the cobalt ( I I )  

and lead ( I I )  bis(2-ethylhexanoate) promoted autoxidation producing 

the greatest number ranging from methanal to butanal. The formation 

of the saturated aldehydes propanal and ethanal can be accounted for  

by hydroperoxide decomposition. Methanal is probably formed by the 

route suggested in scheme 2 .3 .4 .3 . 2-Butenal formation can be

explained from the unconjugated hydroperoxide LXXXX. Scheme 2.3 .4 .6 ,

C H g C H = C H  CH C H ^ C H ^ C H  C H ^ C H ^ t H  ( C l ^ / C ^  L X X X X
OCH.

- ( •O H )

C H  CH— CH cM h  CH— CHCH^CH— CH (CH^).^C
'OCH.

C L L C H = C H  C ^  +  .C H -C H ^^C H  CH C H = O H  (C H A C
3 \n   ̂  ̂ ÔCH-

2-B U T E N A L

Scheme 2 . 3 . 4 . 6
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However the existence of methyl 15-hydroperoxy-9-cis-12-cis-

16-trans-octadecatrienoate LXXXX has not been reported to date.

2.4 Autoxidation of benzoyloxyethyl cis-9-cis-12-octadecadienoate

2.4.1 Synthesis

Benozyloxyethyl cis-9-cis-12-octadecadienoate (LXXXXI) 

was prepared in two steps. F irs t ly  2-hydroxyethylbenzoate was prepared 

using the method of Cretchner by nucleophilic displacement of chlorine 

in chloroethanol. The product purified by d is t i l la t io n  and used in the 

second step, a reaction with linoleyl chloride which was prepared using 

oxalyl chloride, following several unsuccessful attempts using 

thionyl chloride. The estérif ication  was carried out in the presence 

of pyridine to remove the HCl produced, scheme 2 .4 .1 .1 . The resultant 

ester was purified by column chormatography, then characterised by 

Ĥ nmr (table 45) and infrared spectroscopy (table 46).

2 .4 .2  Autoxidation promoted by cobalt ( I I )  bis(2-ethylhexanoate) 

and lead ( I I )  bis(2-ethylhexanoate)

2 .4.2.1  Determination of vo la tile  products by gc-ms

The vo la t i le  products accumulated in the cold 

trap were analysed by packed column glc and gc-ms. The gc-ms experiments 

revealed the presence of the compounds listed in table 47. No 

quantitative determination of the v o la t i le  products was carried out, 

however the percentage composition (by area) of the products was 

determined.
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Table 45

Assignment of n.m.r. spectrum of benzoyloxyethyl

linoleate

1 2
0 . O - C H . - C H - O .

2 2
1‘ \  /

13}"
\  1/T 1 s'-m" 1 f

2 ' - ' 2 ' 5 - ' 2  CH (CHI CH
2" 3-7" 8" i  i i  i

Type of signal Chemical s h if t  
(PPM)

Coupling 
constants (Hz) Intearation

s (br)

m/t

t

s

t

m/t

m/t

0 . 9  CH3 ( 1 8 " )

1 .3 2  8 CH2 ( 3 " - 7 " , 1 5 " - 1 7 " )  

1 . 9 - 2 . 5  3 C H 2 ( 2 " , 8 " , 1 4 " )

2 .8 0  CH2 ( 1 1 " )

4 . 5 5  2CH2 ( 1 ' ,  2 ' )

5 .4 4  4CH ( 9 " , 1 0 " ,  1 2 " ,  1 3 " )

J-j y II 1 gii “  5 .0

' 1̂0" 11" " ^11" 12" 

= 5 .0

^8"9" " '^10"11" "

Jll"12i. =
= 5*0

16

6

2

4

4

7 . 4  -  7 . 8  3H ( 3 , 4 , 5 )

8.1 -  8 . 4  2H ( 2 , 6 )



Table 46

Assignment of IR spectrum of benzoyloxyethyl linoleate
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-1cm Assignment

3050 C-H aromatic stretch

3010 C-H o le fin ic  stretch

2940 C-H^CHg asymmetric stretch

2928 C-H, -CHg- asymmetric stretch

2858 Symmetric stretch CH^pR-CHg-R '

1740 C=0 stretch higher aliphatic  ester

1730 C=0 aryl acid ester

1610 - C :ii£ stretch

1450 Aliphatic C-H def.

1380 Aliphatic C-H def.

1275 C-0 stretch aryl acid ester

1180 C-0 stretch aliphatic  ester

1110 C-0 stretch aryl acid ester

720 out of plane C-H def. cis -CH=CH-

710 out of plane aromatic C-H def.
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Compound % composition

Pentanal 8.1%

Hexanal 70.4%

2-Hexenal 1.0%

2-Heptenal 5.7%

2-Octenal 1.6%

The mass spectra of these compounds were discussed in sections 2 .2 .1 .1 ,

2 .2 .2 .1  and 2 .2 .3 .1 .

2 .4 .2 .2  Determination of vo la tile  products by HPLC

- The v o la t i le  compounds trapped by the s i l ic a  gel 

coated with 2 ,4 -d in itrophenylhydrazine were analysed by HPLC and 

iden tif ied  by comparison with the retention times of standard

2 ,4 -d in itrophenylhydrazone derivatives (see table 15).

The retention times of the derivatives formed in the trap and the ir  

assignments are given in table 48.

Table 48

Retention time (mins) Assignment

9.5 Ethanal

12.4 Propanal

17.5 Butanal
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2.4.3  Autoxidation promoted by benzil

2.4.3.1 Determination of vo la t i le  products by gc-ms 

The vo la ti le  products identified  from the 

autoxidation of benzoyloxyethyl linoleate in the presence of benzil 

by packed column gc-ms were very similar to those observed in the 

presence of the cobalt and lead promotors, section 2 .4 .2 .1 ,  with the 

exception that benzaldehyde was observed in the former autoxidation 

The v o la t i le  compounds identified are summarised in table 49.

Table 49

Compound % composition

Propanal 8.2

Hexanal 68.4

2-Hexenal 0.8

2-Heptenal 10.7

2-Octenal 0.6

Benzaldehyde 2.3

2 .4 .3 .2  Determination of vo la t i le  products by HPLC

The vo la tile  products converted to the ir  appropriate

2 ,4 -d in itrophenylhydrazone derivatives were identif ied  by the ir  retention 

times using HPLC. The retention times and analyses are given in table 50.
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Table 50

Retention time (mins) Assignment

9.3 Ethanal

12.5 Propanal

17.2 Butanal

2.5 Autoxidation of Alkyd Resins - Series 1 and the'Low acid value' Alkyd

2.5.1 Synthesis

The alkyd resins were prepared by the fa t ty  acid route 

described in section 1.1. The fina l acid value of the resins prepared 

were approximately 10 mg KOH/g non-volatile resin. The acid value of 

one resin was reduced to approximately 1 mg KOH/g non-volatile resin by 

further reaction with Cardurea E and this was used as the low acid 

value alkyd in the study of the aluminium drier.

During the condensation process for making the alkyd resins the

acid value and viscosity were continuously monitored. Acid values

should decrease as the estérif ica tion  reaction proceeds and be

accompanied by an increase on viscosity (n). There is a degree of

reaction when the resin becomes solid , this is known as 'g e l l in g '.

Plots of acid value (AV) against 1/n are used to determine the acid

value at which the resin w ill gel. Careful formulation w ill  provide

a resin which w i l l  not gel even at zero acid value. A plot of Av

against 1/n is given for the preparation of alkyd PE/PA/DCOFA in
2 2 3

F i g u r e  2 . 5 . 1 . 1 .



Figure 2 .5 .1 .1 .
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The theoretical gel point of this alkyd is about 1.5 mg KOH/g 

non-volatile resin. Therefore there is no gelling problems in the 

preparation of this type of resin, provided the reaction is 

terminated at an acid value of 10 mg KOH/g non-volatile resin.

The f in a l parameters, determined for these resins, are summarised in 

table 51. I t  is to be noted that 'AnalaR' toluene was used as the 

solvent in a l l  preparations.

2.5 .2  Vo lati le  product identif ica tion  from the autoxidation 

promoted by cobalt ( I I )  bis(2-ethylhexanoate) and 

lead ( I I )  bis(2-ethylhexanoate)

2.5.2.1 Analysis by glc

The resins were not su ff ic ien tly  mobile fo r the 

bubbling apparatus (diagram 3 .5 .1 .1 )  to be used. The resins were 

therefore autoxidised as film s, spread on glass panels. To f i r s t  

remove the toluene solvent the films were kept in a stream of dry 

nitrogen for 4 days. The v o la t i le  autoxidation products were collected 

by both the cryogenic and chemical traps. The products from the 

cryogenic trap were generally analysed by glc; however those from 

the alkyds D' and G' were analysed by packed column gc-ms. Thus the 

iden tif ica tion  of the products re lies  mainly on the ir  retention times. 

The retention times of some compounds on the carbowax 20 M column are 

given in table 52.

The results from the autoxidation of the various alkyds are 

given in table 53. Compounds having short elution times are masked 

by the large amount of toluene necessarily always present as a solvent 

used in the preparation of the alkyds.
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Table 52

Retention times of some v o la t i le  compounds on the 

Carbowax 20 M packed glc column

Compound Retention time (Minutes)

Propanal 6

Butanal 10

Ethanol 12
2-Pentenal 17

Toluene 21

3-Penten-l-ol 25.5

Pentanal 30.5

Hexanal 39.0

2-Hexenal 48.0

3-Heptanone 55.5

Heptanal 61.5

Methyl heptanoate 66.0

Methyl-2-ethyl hexanoate 77.0

Octanal 81.0

2-Heptenal 88.0

2-Octenal 91.5

Methyl octanoate 93.0

2,4-Heptadienal 109.5

Benzaldehyde 121.4

Hexanoic acid 136.0

2-Ethyl hexanoic acid 162.0
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Table 53

V o la ti le  compounds from the autoxidation of various alkyd 

resin films in the presence of cobalt ( I I )  and lead ( I I )  

bis (2-ethylhexanoate)s

Resin Retention time (Minutes) Assignment Remarks

A' 41.4 Hexanal
47.0 2-Hexenal
62.6 Heptanal
84.0 Octanal
86.5 2-Heptenal

110.0 2,4-Heptadienal

B' 40.3 Hexanal
47.5 2-Hexenal
60.5 Heptanal

108.0 2,4-Heptadienal

C 41.0 Hexanal
47.5 2-Hexenal
61.0 Heptanal
87.5 2-Heptenal
91.0 2-Octenal

136.5 Hexanoic acid

D' 39.5 Hexanal Packed column
61.0 Heptanal gc-ms analysis
81.2 Octanal carried out
88.5 2-Heptenal

E' 41.0 Hexanal
47.5 2-Hexenal
88.5 2-Heptenal
91.0 2-Octenal

F' 38.5 Hexanal Packed column
47.6 2-Hexenal gc-ms analysis
86.0 2-Heptenal carried out
90.0 2-Octenal



229

The v o la t i le  products from the autoxidation of the resins D' 

and F' were analysed by packed column gc-ms. In these la te r  studies 

the films were placed under vacuum {-—'6 mm Hg) for about 1 minute to 

assist in the removal of more of the toluene solvent. Better 

chromatography was then obtained in the subsequent gc-ms studies.

The mass spectral analysis confirmed the identity  of the compounds 

proposed on the basis of the ir  retention times in table 53, but also 

revealed the iden tity  of propanal amongst the v o la t i le  compounds.

2 .5 .2 .2  Analysis by HPLC

The 2,4-dinitrophenylhydrazone derivatives 

collected in the chemical trap were analysed by HPLC on a C-jg 

reversed phase column, the compounds being identified by the 

retention times of standard 2,4-dinitrophenylhydrazones, (see table 15) 

The analysis of the volatiles by this method are summarised in table 54

2.5 .3  Vo lati le  product iden tif ica tion  from the autoxidations 

promoted by benzil

2.5.3.1 Analysis by glc

The mixtures of vo latiles were analysed by glc 

and th e ir  iden tity  determined from the retention times given in 

table 52. The results are summarised in table 55.
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Table 54

V o la t i le  compounds identified  by HPLC as the ir  2,4-dinitropheny1hydrazone

derivatives

Resin Retention time (Minutes) Assignment

A' 9.3 Ethanal
12.2 Propanal
16.6 2-Butenal
17.4 Butanal

B' 6.5 Methanal
9.3 Ethanal

12.5 Propanal
16.7 2-Butenal
17.3 Butanal

C 6.6 Methanal
9.4 Ethanal

12.6 Propanal
17.5 Butanal

D' 6.5 Methanal
9.4 Ethanal

12.5 Propanal
17.4 Butanal

E' 6.6 Methanal
9.2 Ethanal

12.3 Propanal
17.1 Butanal

F' No analysis carried out.
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Table 55

V olatile  compounds from the autoxidation of various alkyd resin 

films in the presence of benzil

Resin Retention time (Minutes) Assignment

A‘ 42.0 Hexanal
63.0 Heptanal
83.5 Octanal
87.0 2-Heptenal

109.5 2,4-Heptadienal
120.5 Benzaldehyde

B' 41.0 Hexanal
61.0 Heptanal
83.5 Octanal

108.5 2,4-Heptadienal
121.0 Benzaldehyde

C 41.5 Hexanal
60.5 Heptanal
87.5 2-Heptenal
81.5 Octanal

Benzaldehyde

D' 41.0 Hexanal
61.5 Heptanal
88.0 2-Heptenal
82.0 Octanal

122.0 Benzaldehyde

E' 41.5 Hexanal
47.5 2-Hexenal
88.5 2-Heptenal
92.0 2-Octenal

123.0 Benzaldehyde

F' 41.8 Hexanal
48.0 2-Hexenal
88.0 2-Heptenal
91.5 2-Octenal

121.5 Benzaldehyde



232

2 .5 .3 .2  Analysis by HPLC

The v o la t i le  compounds collected as the ir

2,4-dinitrophenylhydrazone derivatives were identif ied  by HPLC 

using retention times of standard derivatives. The compounds 

id en tif ied  this way from the autoxidised resins are summarised in 

table 56.

Table 56

V o la ti le  compounds identif ied  by HPLC as the ir  2,4-dinitrophenyl 

hydrazone derivatives

Resin Retention time (Minutes) Assignment

A' 6.7 Methanal
9.5 Ethanal

12.6 Propanal
17.4 Butanal

B' 9.4 Ethanal
12.6 Propanal
17.5 2-Butenal

C 9.3 Ethanal
12.6 Propanal

D' 6.6 Methanal
9.3 Ethanal

12.7 Propanal
16.6 2-Butenal
17.3 Butanal

E' 9.5 Ethanal
12.7 Propanal
16.5 2-Butenal

F' No analysis carried out
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2.5 .4  Autoxidation of 'low acid value* alkyd in the presence 

of cobalt ( I I )  bis (2-ethy1hexanoate) and aluminium 

bis ( 2-butoxide) ethyl acetoacetate

2.5 .4 .1  Analysis by GLC and HPLC

The analysis of the volatiles  from this  

autoxidation was studied in the same manner as in sections 2.5 .2  and 

2 .5 .3 . The compounds identif ied  from the autoxidation of alkyd 

resin G' are given in table 57.

Table 57

Volatiles identif ied  from the autoxidation of 

alkyd resin G'

Separation
technique Retention time (Minutes) Assignment

39.8 Hexanal

62.0 Heptanal
81.0 Octanal

GLC 89.0 2-Heptenal

58.0 2-Butanol
108.0 Ethyl acetoacetate

9.5 Ethanal

HPLC 12.4 Propanal

17.4 Butanal
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2.5.5. Mechanistic interpretation

The methyl esters of cis-9-octadecenoic, 

cis-9-cis-12-octadecadienoic and c is -9- cis-12- cis-15- 

octadecatrienoic acids were used as models of the alkyd resins 

employed by the paint industry. The hypothesis proposed was that 

the 'v o la t i le '  degradation products from autoxidation of the methyl 

esters would mimic those formed accompanying the autoxidative cross- 

linking of the alkyd resins.

To test this hypothesis benxoyloxyethyl cis-9-cis-12-octadecadienoate 

(LXXXXI) was synthesised. LXXXXI provides a 'simple' molecule which 

contains the basic components of an alkyd resin, i . e .  aromatic and 

aliphatic  ester bonds to a polyol (ethane 1 , 2-d io l ) .

The v o la t i le  products from the autoxidation of LXXXXI promoted by 

( i )  cobalt ( I I )  and lead ( I I )  bis (2-ethylhexanoate)and ( i i )  benzil were 

very sim ilar to those found in the autoxidation of methyl linoleate . 

Hexanal was again the major 'v o la t i le '  product and accounted for 

approximately 70% of the total vo la tiles . There was a total absence of 

methyl heptanoate and methyl octanoate. This was expected owing to the 

absence of the carboxymethyl groups, however the corresponding compounds 

from LXXXXI would be LXXXXII and LXXXXIII.

V  2^ %  0

(CHj)? 
CH3

0 OCK2CH,

CH.

Benzoyl ox.yethyl nonanoate 

LXXXXII

Benzoyloxyethyl octanoate 

LXXXXIII
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These compounds are presumed in su ff ic ien tly  v o la t i le  to be carried 

by the e ffluent oxygen stream to the cold trap.

The general nature of the v o la t i le  compounds indicates that the 

same autoxidative degradation process is occurring in this model 

of an alkyd resin. I t  is worth noting that no methyl-2-ethylhexanoate 

was found amongst the vo la tiles . The autoxidation of the alkyd 

resins in table 51 was carried out to determine whether the 'painty 

odour' resulted from the same autoxidative degradation observed 

in the methyl esters and the model alkyd.

The resins,apart from F',incorporated a mixture of fa t ty  acid 

esters and thus made the product analysis more d i f f ic u l t .  However 

the major complication was the large amount of toluene present 

(inherent as the resin solvent) obscuring the early eluting components. 

The v o la t i le  compounds formed nevertheless can be correlated with the 

unsaturated fa t ty  acids present in the resin. The typical fa t ty  

acid composition of various oils  used in the resin preparation are 

given in table 58.

I t  can be seen that resins containing oleic acid ( i . e .  resins 

A ',  B ', D ') ,  produce heptanal and octanal. Those resins which 

contain l in o le ic  acid ( i . e .  resins A ',B ' ,D ')  produce hexanal,

2-hexenal,2-heptenal and 2-octenal. Those resins which contain 

l ino len ic  acid ( i . e .  resins A ',B ')  produce 2,4-heptadienal.

The l in o le ic  acid alkyd resin F ' ,  when autoxidised, produced, 

with the exception of the methyl esters, those volatiles found in 

the autoxidation of methyl lino leate . The major product was again 

hexanal. This supports the theory that the alkyd resins 

autoxidatively degrade in the same manner as the methyl esters 

( V I I ,  XXI and XLVII).



Table 58

Typical o i l  compositions
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Oil (alkyd resins 
used in)

Unsaturated fa tty  acids
Oleic Linoleic Linolenic

Soya bean (A') 27.5 52.5 7

Linseed o il  (B ') 20 17.5 50

Tall o i l  (O' and G') 40 40 10

Dehydrated castor o il ( C ) 9 4 -

Resins C  and E' contain a high proportion of conjugated double 

b o n d s T h e  main fa t ty  acid in resin C  is 9,11-octadecadienoic 

acid (LXXXXIV) which would be expected to form 13-hydroperoxides 

sim ilar to those in l in o le ic  acid and this could explain the 

formation of hexanal as the vo la t i le  product. Resin E' is 

formulated using isomerised safflower o i l .  This isomérisation of 

mainly l in o le ic  acid, would produce the conjugated acids LXXXXIV 

and 10,12-octadecadienoic acid. The hexanal observed during the 

autoxidation of this resin can again be explained from 13-hydroperoxide 

formation in LXXXXIV , see scheme 2 .5 .2 .7 .1 .

In the redox promoted drying of the alkyd resins the 2,4-DNPH 

chemical trap revealed the presence of lower aldehydes. Each resin ,  

except resin A ', produced methanal as a vo la tile  product. All 

the resins produced ethanal, propanal and butanal, again supporting 

the theory that autoxidative degradation occurs during alkyd resin  

crosslinking. Again no methyl 2-ethylhexanoate was found in the
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redox promoted autoxidation. Benzaldehyde was however produced 

in the benzil promoted crosslinking of the alkyd resins.

The autoxidation of resin G', promoted by cobalt ( I I )  

bis ( 2-ethylhexanoate) and aluminium b is (2-butoxide) ethyl acetoacetate, 

gave the expected degradation products showing that the aluminium 

promotor does not s ign ificantly  influence the nature of the degradation 

products.

The author believes that the d iffe rent odour characteristics  

reported^^^ for this promotor system resu lt mainly from the 'painty' 

odour being masked by the excessive amounts of 2-butanol and 

ethyl acetoacetate present.

2.6 Methane sulphonic acid promoted autoxidation

2.6.1 2-Hydroxyethyl c is -9 -c is-12-octadecadienoate

2 .6 .1.1 Synthesis

The synthetic route was similar to that 

used in the preparation of benzoyloxyethyl linoleate (section 2 .4 .1 ) .  

Linoleyl chloride was prepared and reacted with 1,2-ethanediol in the 

presence of pyridine. To reduce the formation of the diester a large 

excess of 1,2-ethanediol was employed. 2-Hydroxyethyl c is -9 -c is -12-  

octadecadienoate LXXXXV was purified by column chromatography and 

analysed by Ĥ nmr and IR; the assignments of absorptions are given 

in tables 59 and 60 respectively.
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Table 59

Assignment o f  H nmr spectrum o f 2-hydroxyethyl l in o le a te

H-O-CHj-CHjO^ g io;H

1'  \  / ' ■ -----
^CHJCHJ.CH, ^CH, ^CH (CH I CH

2 '  ^ 3'.f ^ 11' ^ 14" 15-17- 18^

Type of 
Signal

Chemical s h if t  ppm Coupling constants Integration  
(Hz)

t 0.91 CH3 (18 ') ^17'-18' ■ S-1 3

s (br) 1.32 8CH2 ( 3 ' - 7 ' ,  1 5 '-1 7 ') 16

- m/t 1 .9 -2 .5  3CH2 ( 2 ' , 8 ' , 1 4 ' ) 6

t 2 .8  CHg ( 11 ' ) ^1 0 ' 1 1 ' " " h l '^ 1 2 ' 2

t 3.9 CHg (2)
= 5 0

2

s 4.1 HO (1) 1

t 4.6 CHg (3) 2

t 5.44 4CH (9 ' ,1 0 ' ,1 2 ' ,1 3 ' ) '^8'9' " '^lO'll ' " ^11'12' 4



Table 60

Assignment o f  IR Spectrum o f 2-hydroxyethyl l in o le a te

240

-1cm Assignment

3400 (Broad) -OH (H-bonded).

3010 -C-H o le f in ic  stretch.

2940 -C-H CHg asymmetric stretch.

2930 -C-H -CHg- asymmetric stretch.

2860 Symmetric stretch, CH ;̂ -CH2- .

1740 -C=0 stretch higher a liphatic  ester.

1650 - C H ^ C H - ( -C=C-stretch).

1460 -CH deformation a liphatic .

1380 -CH deformation a liphatic .

1250 -C-0 stretch alcohol.

1180 -C-0 stretch a liphatic  ester.

1080 -OH deformation primary alcohol.

720 -C-H out of plane deformation of cis o le fin .

2 .6 .1 .2  Identif ica tion  of v o la t i le  products

The v o la t i le  products from the autoxidation of 

2-hydroxyethyl linoleate promoted by methane sulphonic acid were 

collected in the cryogenic trap,then analysed by glc and gc-ms.

The chromatogram obtained was d iffe rent from any obtained in previous 

experiments, (figure 2 .6 .1 .2 .1 ) .  The analyses of the mass spectra 

are now discussed.
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Figure 2 .6 .1 .2 .1 .
Capillary tota l ion current chromatogram of the 

v o la t i le  products from the autoxidation of
108,0-1 2-hydroxy ethyl lino leate  in the presence of 

methane sulphonic acid.

RIC

2000
35:00

1500
26:15

500Scan No. 
Time (mins)

8:45
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Scan No. 541

m/z 100 82 72 71 67 58 57 56 55 45 44 42 41 40 39 29 27

Rel. AB % 1.2 16.5 23 12 17 13 71 53 30.5 44 100 31.5 52 13 48 52 56

This spectrum, being similar to that obtained in section 2 .2 .1 .1 ,  

Scan No. 536, corresponds to hexanal.

Scan No. 1088

m/z 143 83 74 73 71 67 57 55 45 43 41 39 36 29 27

Rel. AB % .6 .6 3.3 100 3 .6 .6 2.4 4.8 28.9 11 .4 10.2 6.02 3.3 16 16.6

Packed column gc-CIMS analysis showed that this compound had a 

re la t iv e  molecular mass of 144 ( [M+l]  ̂ m/z = 145), thus the base peak 

ion resulting from the loss of 71 dal tons could correspond to 

CHgfCHg)^. The heavy isotope ra tio  indicated that the molecular 

formula was CgH^^Og, thus the ion corresponding to the base peak ion 

then has the composition C^HgOg. Using the ra tio  of the abundances 

of m/z 74 and 73 the proposed composition of the m/z 73 ion was 

supported. Inspection of the mass spectra of 1,3-dioxolane and its  

alkyl derivatives^OG gave evidence that this compound probably is 

2-pentyl-l,3-dioxolane LXXXXVI.

CH2CH2CH2CH2CH3

A
CHj— CH2 (LXXXXVI)
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Scan No. 1613

m/z 198 169 155 141 127 113 99 85 71 57 43 41 39 29 27

Rel.AB% 0.6 0.3 0 .6 0.6 0.9 2.1 4.8 23.5 45 89.8 100 50 8.4 37 18.7

The fragmentation pattern of this compound is characteristic of 

straight chain hydrocarbons. Comparison with the standard spectrum of 

tetradecane^^^ confirmed th is .

Scan No. 1696

m/z 141 113 99 97 85 84 79 71 57 55 43 41 39 29 27

Rel.AB% 3.4 5.6 8.1 3.023 7.5 3.4 57 88 15.5 100 41.6 5.6 22 13.9

The molecular ion could not be determined from packed column 

gc-CIMS making the analysis of this compound d i f f i c u l t .  I t  appears 

to be a straight chain alkane from the general fragmentation pattern

Scan No. 1744

m/z 141 126 119 113 99 97 85 71 69 67 57 55 44 43 42 41

Rel.AB % 1.5 1.5 1.5 1.9 4.5 4. 4 23 46 11 .6 5.2 87 26 12.7 100 13.4 58.7

m/z 36 29 27

Rel.AB % 11.2 39 21
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This mass spectrum is very sim ilar to that found in Scan No. 1696 

but again the packed column gc-CIMS analysis did not reveal the 

presence of the parent ion. However i t  is concluded that this compound 

is a hydrocarbon sim ilar to that corresponding to Scan No. 1696.

Scan No. 1769

m/z 220 206 205 189 163 161 147 145 135 133 131 129 121

pel.AB % 18 11.8 90.7 2.5 1.8 4.3 4.3 18.6 3.1 5.9 6 .8  5.9 7.5

m/z 119 115 105 95 93 9191 81 79 77 69 57 43 41 39 29 27

Rel.AB % 7.5 6 .8 15.2 11.8 3.7 13. 716 7.5 9.6 6 .2 100 11.2 51.5 16.7 38 18

No conclusions were drawn from this spectrum.

2 .6 .2  2-Hydroxyethyl c is-9-cis-12-cis-l5-octadecatrienoate

2 .6 .2.1 Synthesi s

The synthetic approach to this compound was identical 

to that used to prepare 2-hydroxyethyl c is -9 -c is-12-octadecadienoate 

(section 2 .6 .1 .1 ) .  2-Hydroxyethyl c is -9 -c is-12-cis-15-octadecatrienoate

LXXXXVII, was purified by column chromatography, then analysed by

H nmr and infrared spectroscopy. The assignments are presented in

tables 61 and 62 respectively.
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Table 61

Assignment o f  H nmr spectrum o f 2-hydroxy lino lenate

1 2  3

A “ 3

Type of 
signal

Chemical s h if t  ppm Coupling constants Integration  
(Hz)

t 0.90 CH3 (18 ') 3

s (br) 1.32 SCHg ( 3 ' - 7 ' ) 10

m/t 1.9 -  2.5 3CH2 ( 2 ' , S ' , 17') 6

t 2.9 2CH2 (1 1 '.1 4 ') 4

t 3.85 CHg (2) 2

s 4.05 HO (1) 1

t 4.65 CHg (3) 2

t 5.50 6CH (9 ' ,1 0 ' ,1 2 ' ,1 3 ' .1 5 ' ,1 6 ' ) ^8 '9 '"  '^lO'll

J l l ‘ 12 ’ = J ig ,14'=

^15'16' " ^

6



246

Table 62

Assignment o f  IR spectrum o f 2 -hydroxyethy l1inolenate

-1cm Assignment

3410 (br) -0-H (H-bonded)

3010 -C-H o le fin ic  stretch

2941 -C-H -CHg asymmetric stretch

2930 -C-H -CHg asymmetric stretch

2855 symmetric stretch, CHgi-CHg-

1740 -C=0 stretch higher a liphatic  ester

1650 -CH=CH- (C=C stretch)

1465 -C-H deformation a liphatic

1380 -C-H deformation a liphatic

1250 -C-0 stretch - alcohol

1180 -C-0 stretch - a liphatic  ester

1080 -0-H deformation primary alcohol

720 -C-H out-of-plane deformation c is -o le fin

2 .6 .2 .2  Identification of vo la t i le  products

The volatiles from this autoxidation were analysed 

by packed column gc-ms only. The chromatogram obtained consisted of 

three major components.

Component 1

m/z 84 83 69 68 67 56 55 43 42 41 29 27

Rel.AB % 100 4.0 22 1.6 2.4 87 26 8 16 36 .8 4. 0 8.1
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The heavy isotope ra tio  (M+l)/M suggests that the molecular 

formula of this compound is CgH^g. The abundant ion at m/z 56 

rules out o le f in s  therefore i t  is suggested that this compound must

be a cyclic hydrocarbon. Comparison with the standard spectrum of

cyclohexane^^^ confirmed this assignment, the base peak ion of

cyclohexane is m/z 56. The ions of high m/z were more abundant than

in the standard spectrum. This could arise from the spectrum being 

recorded before the apex of the chromatographic peak.

Component 2

m/z 102 101 74 73 72 71 57 45 43 42 41 21 27

Rel.AB % 0.3 5 3.7 100 6.7 2.1 10.9 53 11.2 10.6 10.9 15 17

The base peak ion at m/z 73 was seen in section 2 .6 .1 .2 , Scan No. 

1088 to result from an alkyl 1,3-dioxolane. The parent ion at m/z 102 

would allow CgĤ gOg to be the molecular formula which corresponds to 

2-e thyl-l,3 -d ioxolane. Comparison with the standard spectrum of

2-ethyl-l,3 -d ioxolane  

Component 3

206 confirmed this assignment.

m/z 92 91 73 65 63 57 51 45 39 29 27

Rel.AB % 79 100 29 9.5 5.4 6.7 5.4 12 9.5 2.7 3.0

The parent ion a t m/z 92 and base peak ion a t m/z 91 indicate that 

this compound is toluene, and comparison with the standard spectrum^^^ 

confirmed this analysis.

The other minor components had hydrocarbon type fragmentations, but 

no structural information could be concluded.
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2.6 .3  Variable hydroxyl content alkyds (Series 2)

2 .6 .3.1 Synthesis

These alkyds were prepared by the same general 

route as used in the synthesis of the series 1 alkyds. In these alkyds 

the amount of polyol was increased re la t ive  to the amount of dibasic 

and unsaturated fa t ty  acids. Again the resin preparations were monitored 

by 'Acid Value' and viscosity and a typical 'Acid Value' versus time 

plot is given in figure 2 .6 .3 .1 .1 .  The reactions were halted when the 

resins reached an'Acid Value'of approximately 10 mgKoH/g.n.v. resin .

The f in a l constants of the series 2 resins are given in table 63.

Table 63

Final constants for Series 2 resins

Resin PE PA FA
(Linseed 

oil )

Acid Value
mgKOH/g v 

resin

Viscosity Solids
%

//
A 0.93 1.0 1.33 12.9 12 76.9

1.02 1.0 1.33 10.1 13 77.9

c" 1.11 1.0 1.33 9.94 21 79.4

o'" 1.20 1.0 1.33 9.88 24 78.3

1.24 1.0 1.33 9.1 18 79.0

A.R. Toluene used in a l l  preparations.
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Figure 2 .6 .3 .1 .1 .
"Acid value'v time for the preparation of an

hydroxyl excess alkyd.
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2 .6 .3 .2  Identif ica tion  of v o la t i le  products

The vo la t i le  products from the autoxidation 

of these alkyd film s, using the apparatus shown in diagram 3 .6 . 1 . 1 , 

were collected using the cold trap then analysed by packed column glc. 

The v o la t i le  products did not vary with increasing hydroxyl content 

and the vo la tiles  from alkyd resin D'' were chosen for packed column 

gc-ms analysis. The spectra obtained are now discussed.

Component 1

m/z 84 83 61 58 57 56 55 50 39 38 37 31 29 27 26

Rel.AB % 6.3 4.2 1.3 1.1 7.9 6.4 100 2.1 4 0.7 2.0 1.0 38 42 33

This spectrum is very similar to that obtained in section 2.3.1.1^, 

Scan No. 124 and is therefore concluded to be 2-penten e-3-one.

Component 2

m/z 92 91 73 57 51 45 39 29 27

Rel.AB % 61 100 58 10.9 7.8 10 8.7 3.1 6.2

This spectrum is very similar to that obtained in section 2 .6 .2 .2 . ,  

component 3 and is therefore concluded to be toluene.

Component 3

m/z 100 82 72 71 70 67 58 57 56 55 45 44 42 41 40 39 29 27

Rel.AB % 1.1 19.321 11 20 16 13 70 53 31.2 27 100 27 56 13 47 53 40

This spectrum is very similar to the one obtained in section 2 .2 .1 .1 . ,  

Scan No. 536 and is therefore concluded to be hexanal.
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Component 4

m/z 84 83 69 66 57 56 55 51 50 43 42 41 40 39 38 37 29

Rel.AB % 16 27 5 4 6 17 100 12 14 83 9 46 10 52 12 5.1 63

This spectrum is very similar to the one obtained in section 2.3.1.1  

Scan No. 178 which was analysed to be 2-pentenal. Comparison with the 

standard spectrum of 2- p e n t e n a l g a v e  an excellent agreement and 

confirmed the assignment.

Component 5

m/z 86 71 67 58 57 55 43 41 40 39 31 29 27

Rel.AB % 1.0 3.0 1.5 4.9 100 6.0 14 0 16 4.1 15.6 3.7 73.4 37.6

This spectrum is very similar to that obtained from Scan No. 283 

in section 2 .3 .1 .1  and is concluded to be l-pentene-3-ol.

Component 6

m/z 87 81 73 58 57 46 45 44 43 42 41 29

Rel.AB % 9.3 7.3 91 13 12 100 93 66 13 26 8 80

The abundant ion a t  m/z 73 could indicate a 1 ,3-dioxolane structure 

but no molecular ion could be identif ied  therefore no assignment is 

possible.
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Resin D '' was also autoxidised in the presence o f cobalt ( I I )  

and lead ( I I )  2-ethylhexanoates and the compounds identified  by 

gc-ms from this and the acid promoted autoxidation are summarised 

in table 64.

Table 64

Vo la ti le  products formed during the autoxidation of resin D' ' 

in the presence of methane sulphonic acid compared to those 

formed in the presence o f cobalt and lead promotors

Methane sulphonic acid Cobalt ( I I )  and lead ( I I )  

bis ( 2-ethylhexanoat e )s

2-Penten-3-one Ethanal.

Hexanal Propanal

2-Pentenal Butanal

l-Penten-3-ol 3-Pentene-2-one

2,5-Dihydrofuran

Hexanal

2-Pentenal

l-Pentene-3-ol

Ethanoic acid

Propanoic acid
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2.6 .4  Mechanistic interpretation

The autoxidation of methyl oleate ( V I I ) ,  methyl 

l ino lea te  (XXI) and methy linolenate (XLVII) in the presence of 

methane sulphonic acid was attempted as a preliminary investigation. 

However no v o la t i le  products were detected in the 12 h collection  

period with oxygen as the reactive atmosphere. I t  has been shown^^  ̂

that for crosslinking to occur in an alkyd resin promoted by methane 

sulphonic acid there must be an excess of hydroxyl groups present 

(section 1.16. ) .  Hence compounds LXXXXV and LXXXXVII were

synthesised to provide simple model molecules containing the major 

functions of 'hydroxyl excess' alkyds.

The autoxidation of LXXXXV and LXXXXVII in the presence of methane 

sulphonic acid did produce v o la t ile  products. The nature of the 

'v o la t i le  compounds' differed from those found in previous redox 

and photochemical promoted autoxidative experiments, v iz .  the almost 

complete absence of aldehydes and the presence of hydrocarbons and 

1,3-dioxolane derivatives. This suggests d ifferent mechanistic 

pathways for the production of the vo la ti le  components.

The autoxidation of the 'hydroxyl excess' alkyds A '' - E ''

in the presence of methane sulphonic acid however did produce those

aldehyde products which had been found in the redox and photochemical

promoted autoxidations. Here similar degradation pathways to that

proposed in sections 2 .1 .4 , 2 .2 .4  and 2 .3 .4  may operate. Acid

decomposition of hydroperoxides, previously discussed in section 1.16,
188can lead to the formation of aldehydes. Scheme 2 .6 .4 .1 .
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0 - ° ' "  9  0

r '_ C  — r"   y .  R'_ C -R"   *  r '-C -R '" ''
I - H , 0

► R —

A

- t> R — + R"

Scheme 2.6.4.1

However in the presence of alcohols,acetal formation occurs^^^"^^^ 

as below in scheme 2 . 6 . 4 . 2 .

P -G-" H® P ' ^ 0
CHJCHJ, CH CH=CHR ------0 -------- » CH (CH 1 CM CH=CHR R= CH,CH=CH(CHJ,C3 2 4 L I I \

OCHg

nO ? *  ®
 ------- ► C H g C H ^ ^ C H  C H r = C H R   ► C H ^ lC H ^ l^ C H -O -C H ^ C H  R

/  0 — R

 ► CHg(C H ^ ^ C  H - O - C  H = C H  R

Scheme 2 .6 .4 .2

1 09  1 QQ
Schoellner ’ has proposed that further acetal formation 

can occur to give structures such as represented in equation 2 . 6 .4.3

q /R   ̂ ^ ^ 0—R R-0^̂

cHjC h^i / h- o- ch^ chr - >  '^"2'^

Equation 2 . 6 .4.3

The formation of the alkyl-1,3-oxolane derivatives support 

Schoellner's proposal. The alkyl-1,3-oxolanes probably result from
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the addition of 1 , 2-ethanediol to the oxenium cation in the 

corresponding hydroperoxide decomposition. Thus pentyl-1, 3-oxolane, 

LXXXXVI, formed during the autoxidation of 2-hydroxyethyl linoleate  

may result as in scheme 2 .6 .4 .4 .

H -O -vn

CH ^C H 2)^C H C H =C H  C H =CH(C H^)^C

H + H  
'O'

0

OCH2CH20-H

C H = rC H  CH=:CH \ 0-CH0CH00-H

.0
CHJC H J, C H C H= CH ClfcCH (CH J ,  C ;

3 24 ^o-CH^CHjO-H

4- ^
CH (CH ) CH-0-CI4=CHCH=CH (CH ) C 

3 24 2 / ^

0

OCH2CH2O-H

HO CĤ CĤ OH

HOCH2CH2O I

CĤ CH2^CH-0 —CHz^CH CH%:CH(CĤ )2
O-CH2 CH2OH

0 OtfHzOH
CH ( CH^L C H - 0  —  C H = C H  C H = C H  (CH ) C

3 24 t 2 7 V C H 2 CH2 O-H

■CH,
CH3lCH, 4̂CH 1̂  ̂

0

4  H0CH=CHCH=CH(CH2)7C
\

CHgCĤ O

LXXXXVI

Scheme 2 .6 .4 .4
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The presence of 2-ethyl 1 ,3-oxolane formed in the autoxidation 

of 2-hydroxyethyl linolenate could result from similar chemistry 

to that in scheme 2 . 6 .4 .4  but involving the 16-hydroperoxides rather 

than 13-hydroperoxides. The origin of 1,2-ethanediol is 

presumably from acid catalysed hydrolysis of the ester in the 

2-hydroxyethyl esters.

The proposed mechanism of crosslinking in 'excess hydroxyl' alkyd 

resins promoted by methane sulphonic acid could be by the formation 

of acetals. Aldehyde formation would therefore be expected to be 

suppressed as found in the model compounds LXXXXIV and LXXXXVI.

The in i t i a l  hydroperoxide decompositions could lead to acetal and/or 

epoxide formation with accompanying alcoholysis (scheme 1.16.9, 

section 1.16) providing crosslinking. The mobility within the 

crosslinked resin becomes reduced and hydroperoxide decomposition 

probably proceeds as in scheme 2 . 6 .4.1 with aldehyde formation.

The autoxidative nature of the acid promoted crosslinking of 

'hydroxyl excess' alkyd resins w il l  be discussed in sections 2.7.7  

and 2 .7 .9 .
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2.7 Time lapse infrared studies of drying films in the presence 

of promotors

2.7.1 Introduction

The use of infrared spectroscopy to study the composition 

of alkyd resin films has been established for many years. The 'curing' 

reactions have also received a t t e n t i o n , m a k i n g  use of i ts  

potential to iden tify  functional groups. The changes during these drying 

reactions however are d i f f ic u l t  to in terpret. The main reason for such 

studies has been to determine the yellowing of such alkyd resins during 

the ageing p r o c e s s . B a e r ^ ^ ^  studied the drying of linseed oil  

in the presence of several metal acetylacetonates (Zn^^, Pb^^, Cu^^,

Vo^^, Mn^^) however complete interpetation was limited owing to the
265small changes occurring close to or at intense bands. Hartshorn 

using a fourier  transform infrared system studied the drying reactions 

of both a 60% soya oil-pentaerythrito l-orthophthalic alkyd and linseed 

o il in the presence of cobalt ( I I )  naphthenate at 0.05% cobalt metal.

The spectra were analysed by use of a technique called time lapse 

infrared spectroscopy. This involves the spectra being stored on 

computer disc in a d ig ita l form and the use of point by point subtraction 

to give differenc&spectra. A much fu l le r  analysis of the changes during 

the drying process could be undertaken. The changes observed were the 

increase in bands around 3400, 1750, 990 and 970 cm  ̂ along with decreases 

at 3010, 2930, 2860 and 720 cm "\. These were interpreted to correspond 

to the formation of hydroperoxides, carbonyl compounds and the formation 

of trans conjugated o le fin ic  unsaturation along with the loss of cis 

unsaturation and hydrocarbon chain. Such changes are expected from the 

normal autoxidation reactions observed in the unsaturated methyl esters 

(sections 1 .4 , 1.6 and 1 .8 ).
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The time lapse studies carried out during this project did not 

use FTIR but an infrared spectrometer under computer control, which 

permitted the collection, storage and subtraction of spectral data 

over set time in tervals . The time intervals used were every 15 minutes 

for the f i r s t  3 hours, then every hour up to 12 hours. Assistance in 

the in terpretation of the difference infrared spectra were made with the 

help of two books.

2 .7 .2  Cobalt ( I I )  bis(2-ethylhexanoate)

The pure l ino le ic  acid alkyd F' containing toluene 

was mixed with a n-pentane solution of the cobalt promotor and spread 

on a KBr disc. The solvents were removed under vacuum (^^1 mm Hg) 

and the film  thickness adjusted to g ive^5% transmittance of the ester 

carbonyl band. This experiment was conducted to compare f i rs t ly  the 

results obtainable using the available equipment, with those from the 

fourier  transform experiments of Hartshorn. The difference spectrum 

arising from the subtraction of the 'zero hour' spectrum from the 

12 hour spectrum is given in figure 2 . 7 .2 . 1 , the analysis of this spectrum 

is given in table 65.

The changes in the infrared spectrum are uniform throughout the 

whole 12 hour period, with gradual increase or decrease in the appropriate 

bands with time.

2.7.3 Lead ( I I )  b is (2-ethylhexanoate)

The pure lin o le ic  acid alkyd F' was mixed with a 

n-pentane solution of the lead promotor and spread on a KBr disc.

The spectra were collected and analysed as before (section 2 .7 .2 ) .

In this autoxidation experiment two types of changes occur, the f i r s t  

occurring in the in i t ia l  hour and the second from 1 hour to 12 hours.
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Table 65

Pure l in o le ic  acid alkyd autoxidised in the presence of cobalt ( I I )  

octoate, analysis of 12 h -  0 h difference spectrum

Absorption

Gain loss 
cm”

Assignment

3440 (HO)-O

3010 Unsaturation (o le fin ic )

2955 -CHg asymmetric stretch

2921 R-CHg-R asymmetric stretch

2849 CHg; R-CHg-R symmetric stretch

1850 )

1787 ) Phthalic anhydride

1712

1774
;
)

— C aldehyde formation

1630 a,p unsaturated ketone

1406

1464 CH3- ,  CHgCHg-, CHgCHgCHg-,

f -  c«°

979 Trans unsaturation (trans^rans conjugated)

934 CH=CH2

882 -0 -0 - in C-O-O-H

715 Cis unsaturation
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Figure 2 .7 .2 .1 .
L in o le ic  acid alkyd F' in  the presence o f co b a lt  promotor, 

12 h -  0 h d i f fe re n c e  spectrum.
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During the f i r s t  period only one increase in absorbance was observed, 

a l l  other changes being decreases in absorbance (table 66). During 

the second period the changes observed in the previous experiment 

(section 2 .7 .2 ,  table 65) dominated the difference spectra. The 

differences between the 12 hour and in i t ia l  spectra is given in 

figure 2 .7 .3 .1 .

Table 66

Pure l in o le ic  acid alkyd autoxidised in the presence of lead octoate; 

analysis of 1 h -  0 h difference spectrum

Absorption

Gain Loss 
cm”

Assignment

3010 Olefinic unsaturation
2955 )
2921 e Hydrocarbon
2849 i
1850 )
1787 j- Phthalic anhydride
1774 i
1740 Ester
1460 CHgCHg; CHgCHgCHg

1271 Phthalate

1170 Ester; propionate and higher carboxylates

1133
1125 j- Phthalate

1080

981
905

Trans unsaturation (trans, trans conjugated)

740 CH modes ortho disubstituted aromatic ring

715
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Figure 2 .7 .3 .1 .

L in o le ic  acid alkyd F' in  the presence o f lead promotor,

12 h -  0 h d if fe re n ce  spectrum.
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2.7 .4  Aluminium bis(2-butoxide) ethylacetoacetate

The low acid value alkyd G' was mixed with the 

aluminium promotor and analysed as before. In this experiment 

only decreases in absorption were observed throughout the entire  

12 hour drying period. This catalyst system is a mixture of 

aluminium bis(2-butoxide) ethylacetoacetate and 2-butanol, whose 

in frared spectrum w il l  be discussed in section 2.10.5. The changes 

occurring in an alkyd in the presence of the aluminium promotor 

are sim ilar throughout the fu l l  12 hour period. The analysis of the 

12 hour minus zero-hour difference spectrum is given in table 67.

No increase in any bands was observed during this 12 hour reaction 

period.

2 .7 .5  Cobalt ( I I )  bis(2-ethy1hexanoate) in combination 

with the lead promotor or the aluminium promotor

The time lapse infrared study of the combined

catalyst systems is dominated by the changes observed in alkyd 

films dried in the presence of cobalt promotor only. The changes

observed when the secondary promotors were used on the ir  own could

also be observed. Figures2.7.5.1 and 2 .7 .5 .2  show the changes 

occurring when cobalt ( I I )  bis(2-ethylhexanoate) was combined with 

lead ( I I )  bis(2-ethylhexanoate) or aluminium bis(2-butoxide) ethyl-  

acetoacetate respectively. The losses associated with the aluminium 

promotor are more dominant than those associated with the lead promotor,

2 .7 .6  Benzil

Analysis of the autoxidation of the pure l ino le ic  

acid alkyd F' promoted by benzil was carried out by time lapse 

infrared spectroscopy. The changes in the infrared spectrum occurring 

throughout a 12 hour period were sim ilar, thus the analysis of the
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Table 67

Low a.v . alkyd in the presence of aluminium bis(2-butoxide) 

ethylacetoacetate in 2-butanol solution. Analysis of 

12 h - 0 h difference spectrum

Absorption 
(losses cm-1) Assignment

3529-3 Hydroxyl (OH)

3006 Olefinic unsaturation

2960

2928 j- Hydrocarbon

2849 )

1740 Ester carbonyl C=0

1627
1607

) p—  ̂ Ethyl acetoacetate complex with 
) aluminium

1526 From complex of ethyl acetoacetate 
with aluminium

1418
1369

j-Y'(C-O) Metal alkoxide

1294 VC-0 Stretch 3-keto (enolic)

1173 V(C-O) Metal alkoxide

1140 V(C-O) Metal alkoxide

1124

1061

1023

990 Y(C-O) Metal alkoxide

918

784

738
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Figure 2 .7 .5 .1 .

Alkyd re s in  in  the presence o f  coba lt  and lead

promotors, 12 h -  0 h d if fe rence  spectrum.
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Alkyd re s in  in  the presence o f coba lt and aluminium promotors,

12 h -  0 h d if fe re n ce  spectrum.
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12-hour minus the zero hour difference spectrum is representative  

of a l l  the difference spectra obtained, see table 68.

The difference spectrum is shown in figure 2 .7 .6 .1 .

Table 68

Drying of pure l in o le ic  acid alkyd in the present of  

benzil; analysis of the 12 h -  0 difference spectrum

Adsorption 
Gain loss

cm-1

Assignment

3425 (HO)-O

3006 Olefin ic unsaturation

2944 C-H

2921 R-CHg-R asymmetric stretch

2849 CH ;̂ R^CHg-R symmetric stretch

1718

1849
1787
1774
1748

1 Phthalic anhydride 

aldehyde

1630 a,p unsaturated ketone

1408
/O

C-C^
H

1265 Phthalate ■■ 0

1143
Phthalate — 01110

1071
980 trans unsaturation (trans trans 

conjugated)

882 in C-O-O-H

715 cis unsaturation.
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12 h -  0 h d i f f e r e n c e  spe c t ru m .
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2.7.7  Methane sulphonic acid

The hydroxyl excess resin E ' ' was mixed with 

methane sulphonic acid then spread on a s ilve r  chloride IR disc 

(the sulphonic acid was found to react with the KBr discs) and 

the analysis conducted as before. The 12-hour minus zero hour 

difference spectrum is shown in figure 2.7.7.1 and analysed in 

table 69. Again the difference spectra recorded throughout a 

12 hour period were q u alita t ive ly  identica l.

Table 69

'Hydroxyl excess' alkyd resin E' '  autoxidised in the 

presence of methane sulphonic acid; analysis of 12 h - 0 h 

difference spectrum

Gain loss 
-1cm

Assignment

3424 (HO)-O-

3010 Olefinic unsaturation

2960 CĤ  asymmetric stretch

2921 R-CHg-R asymmetric stretch

2850 CĤ ; R-CHg-R symmetric stretch

1722 Carbonyl formation

1627 a,B Unsaturated ketone

1470 0
1408
1378 \
1346 H

1254 1 Aryl or vinyl ether^C-0 stretch or

1097 y possible acetal ^C-0.

978 Trans unsaturation (trans,trans conjugated)

715 Cis unsaturation
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Figure 2 .7 .7 .1 .
Hydroxyl excess alkyd res in  F ‘ in  the presence o f  methane

sulphonic a c id , 12 h -  0 h d if fe rence  spectrum.
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2.7 .8  Near infrared studies of drying alkyd films 

The increase ofVj^^ at 3440 cm”  ̂ absorption

observed in figures 2 . 7 . 2 . 1 ,  2 . 7 . 3 . 1 ,  2 . 7 . 5 . 1 ,  2 . 7 . 5 . 2 ,  2 . 7 .6 .1

2 . 7 . 7 . 1 ,  although assigned to the H-0 stretch of a hydroperoxide, 

could also result from alcohols or carboxylic acids. The 

hydroperoxide harmonic band at 6850 cm"̂  (1 .46  y )  is however 

specific . The near infrared spectrum of drying alkyd films was 

recorded over the range 8330 cm’  ̂ to 6667 cm”  ̂ (1 .2  -  1 .5y )  in an

attempt to give support to the assignment in the time lapse infrared

studies. Increases were observed at 6850 cm"̂  (1 .4 6 y )  in the 

resins autoxidised in the presence of the following promotors,

( i )  cobalt ( I I )  and lead ( I I )  bis(2-ethylhexanoate) (resin F ' ) ,

( i i )  cobalt ( I I )  bis(2-ethylhexanoate) and aluminium bis(2-butoxide) 

ethylacetoacetate (resin G ') ,  ( i i i )  methane sulphonic acid (resin E") 

and ( iv )  benzil (resin F ' ) .

2.7 .9 Discussion of time lapse infrared studies

The a i r  drying mechanism of several alkyd resins

in the presence of various promotors was investigated. All are

in it ia te d  by oxygen via hydroperoxide formation as observed at

3440 cm“\  This was confirmed by the near infrared studies with

increases in intensity of the band at 6850 cm T,268,269
265The spectral changes observed by Hartshorn in the a ir  drying 

of a soya alkyd promoted by cobalt ( I I )  naphthenate, corresponded to 

that found in the study of pure lin o le ic  acid alkyd (F ‘ ) autoxidised 

in the presence of cobalt ( I I )  bis (2-ethylhexanoate) (section 2 .7 .2 ) .
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The formation of hydroperoxides was accompanied by the loss of 

cis o le f in ic  bonds and a corresponding increase in conjugated 

diene bands, the formation of carbonyl bonds was seen and a loss 

of a liphatic  C-H bonds. These changes are expected from the 

mechanisms of hydroperoxide formation (see sections 1 .4 , 1.6 and 

1.8) and th e ir  decomposition (sections 2 .1 .4 , 2 .2 .4  and 2 .3 .4 ) .

Investigation of the benzil promoted crosslinking of the alkyd 

resin F' revealed the same changes in the infrared spectrum as the 

redox promoted reactions. Thus the same hydroperoxide formation, 

double bond conjugation and carbonyl formation occurs. However 

i t  is suggested from the discussion in section 1.17 that benzil does 

not decompose hydroperoxides and crosslinking reactions occur from 

the combination of two pentadienyl radicals. Unfortunately no 

information can be gathered from the time lapse infrared spectroscopy 

to confirm this hypothesis.

The crosslinking reactions involved in the drying of hydroxyl 

excess alkyds, such as E '' , in the presence of methane sulphonic 

acids is somewhat unresolved. The evidence presented in section 1.16 

suggests an autoxidative pathway and vo la tile  studies in section 2.6 

support th is . The time lapse study of the drying of resin E ' ' in 

the presence of methane sulphonic acid,revealed the formation of 

hydroperoxides, loss of cis unsaturation and the formation of 

conjugated dienes thus confirming autoxidation. The formation of 

a carbonyl bond and loss of aliphatic  C-H bondsendorses the observation 

of aldehydes among the v o la t i le  products from resin E ' ' . However 

the formation of acetal or ether linkages in the 'drying' resin is 

strengthened by the observation of a band increase at 1097 cm“  ̂

(corresponding to V q_q in ethers, acetals and ketals). Thus 

scheme 1.16.8 in section 1.16 appears to present a plausible mechanism 

forcrosslinking.
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The changes associated when the secondary promotors alone are 

mixed with an alkyd resin proved interesting. The exact function 

of the lead ( I I )  bis(2-ethylhexanoate) in autoxidation has not been 

"Solved. The time lapse study of alkyd resin F' in the presence

of ju st the lead promotor reveals something of i ts  mode of action.

During the 1st hour a fter  application there are losses in the ester 

and hydrocarbon bands but accompanied by only a s light increase in 

trans, trans conjugated diene. I t  is d i f f i c u l t  to contemplate any 

chemical changes which involve only the loss of functionality .

As there is no variation in the absorbance of the hydroxyl bands film  

creepage cannot provide any explanation. The changes in the infrared  

spectrum a fte r  the in i t ia l  f i r s t  hour show the normal autoxidative 

processes. The f i lm , in this experiment was also found to crosslink 

and form a hard surface.

The time lapse study of the complexing agent, aluminium bis 

(2-butoxide) ethylacetoacetate, with the 'low Acid Value' alkyd G' showed 

only losses in the infrared spectrum. These corresponded to those of 

the ligands associated with the aluminium i . e .  the loss of 2-butanol 

and ethylacetoacetate. The absence of any increase in functionality  

observed throughout the 12 hour period suggested no significant amount 

of autoxidation and was reflected in the in a b il i ty  of the film  to dry.

When the secondary promotors were combined with cobalt ( I I )  

bis(2-ethylhexanoate), the combined effects of each promotor could be 

observed in the difference spectra (figures 2.7.5.1 and 2 .7 .5 .2 ) .

However the changes associated with autoxidation tended to dominate 

the difference spectra.
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2.8 Rate of hydroperoxide formation in the drying films 

in the presence of various promotors

2.8.1 Determination of rates

The rate of hydroperoxide formation was determined

in a drying alkyd resin by time lapse infrared spectroscopy. The

increase in hydroperoxides was monitored by determining the area

under the band centred at 3440 cm~̂  in the difference spectra.

The plot of absorbance increase against time in a l l  the experiments

was found to be similar to figure 2 .8 .1 .1 .  The data was treated

as f i r s t  order and the rate law ^t = In /  A \  used, where A
I A - X /

is the absorbance a fte r  ' in f in i t e '  time and X the absorbance a fte r

time t .  Plots of In /  A \ against time are given in figures
\A  - X /

2 .8 .1 .2 ,  2 .8 .1 .3 ,  2 .8 .1 .4 ,  2 .8 .1 .5 ,  2 .8 .1 .6  and 2 .8 .1 .7 . The gradient 

of the lines was determined using least means square analysis and the 

rate  coefficients are given in table 70.

The error in the gradients of the lines obtained is ^  6% indicating  

f i r s t  order behaviour for hydroperoxide formation. The observed rate  

coeffic ien t is a composite one, as i t  is believed two basic processes 

are occurring during the autoxidation, i . e .  hydroperoxide formation 

and hydroperoxide decomposition. Scheme 2 .8 .1 .1 .

“k-i ^2
RH + Og — :----> ROOM ------ > decomposition products.

Scheme 2.8.1.1
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Figuré 2.8.1.1

Linoleic acid alkyd autoxidised in the 
presence of cobalt ( I I )  octoate
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Figure 2 .8 .1 .2 .
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Pb IN LINOLEIC ACID ALKYD.
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Figure 2 .8 .1 .3 .
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Co/Pb IN LINOLEIC ACID ALKYD.
INCREASE OF HYDROPEROXIDES IN A DRYING ALKYD FILM
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Figure 2 .8 .1 .4 .
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Co/Al IN LOW ACID VALUE ALKYD
INCREASE OF HYDROPEROXIDES IN DRYING ALKYD FILM
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BENZIL IN LINOLEIC ACID ALKYD
INCREASE OF HYDROPEROXIDES IN DRYING ALKYD FILM
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TIME (HOURS)

Figure 2 .8 .1 .6 .
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M.S.A.  IN PE 2 . 8  ALKYD.
INCREASE OF HYDROPEROXIDES IN A DRYING ALKYD FILM
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Figure 2 .8 .1 .7 .
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Table 70

Kinetics of hydroperoxide formation as determined by 

infrared spectroscopy

Catalyst Rate coeffic ient
t /s " l  ( ic f )

Error 

95% confidence

Cobalt ( I I )  bis (2 -ethyl-  
hexanoate).

2.54 - 0.16 (6.3%)

Cobalt ( I I )  b is (2 -e thy l-  
hexanoate) and 
Aluminium bis(2-butoxide) 
ethylacetoacetate in 
2-butanol solution.

2.44 - 0.21 (8.6%)

Lead ( I I )  b is (2 -e thy l-  
hexanoate).

3.13 -  0.12 (3.9%)

Cobalt ( I I )  and lead ( I I )  
bis(2-ethylhexanoate).

4.80 i  0.29 (5.4%)

Benzil 5.36 - 0.29 (5.4%)

Methane sulphonic acid 5.56 ± 0.39 (7.0%)
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Thus i f  a promotor is e f f ic ie n t  at decomposing hydroperoxides 

the observed rate would be smaller assuming is comparable for 

a l l  the promotor systems. The rate coefficients and quantity of 

v o la t i le  material collected are compared in table 71.

Table 71

Comparison of rate coefficients with the quantity 

of v o la t i le  material

Promotor system
Rate coeffic ient
t /sec"l ( ic f )

V o la ti le  material 
collected (X 10"^g)*

Co/Al 2.44 2.37

Co/Pb 4.80 2.59

Co 2.54 2.34

Pb 3.13 0.78

Benzil 5.36 0.23

based on v o la t i le  products from methyl lino leate .

The mechanism of v o la t i le  formation discussed in section 

2 .1 .4 , 2 .2 .4  and 2.3 .4  a l l  involved the homolytic cleavage of 

hydroperoxides. The redox promotor cobalt ( I I )  bis(2-ethylhexanoate) 

w il l  reduce hydroperoxides to alkoxy radicals thus aiding vo la tile  

formation and reducing the apparent rate of hydroperoxide formation. 

The benzil promotor, which probably does not induce hydroperoxide 

decomposition yet aids the ir  formation by hydrogen abstraction.
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shows a greater observed rate of hydroperoxide formation with a 

lower y ie ld  of vo la ti les . The fact that benzil is regarded as 

a transient d r ie r ,  i . e .  not a true catalyst w il l  also help to 

reduce the formation of vo la tiles . I t  has been demonstrated that 

approximately 25% of the benzil was lost in 21 hours of autoxidation 

(see section 2 .2 .3 .3 ) .  The redox promotor, cobalt ( I I )  bis

(2-ethylhexanoate), however is considered to be tru ly  ca ta ly tic .

The use of the complexing agent (aluminium bis(2-butoxide) ethyl 

acetoacetate) in combination with cobalt ( I I )  bis(2-ethylhexanoate) 

did not s ign if ican tly  a lte r  the observed rate of -OOH formation or 

the quantity of v o la t i le  compounds produced, compared to the 

cobalt ( I I )  bis(2-ethylhexanoate) alone. This supports the 

assumption made in section 2.7.9 that the aluminium compound does 

not engage in any autoxidation reactions or hydroperoxide decompositions.

The combined use of lead ( I I )  bis(2-ethylhexanoate) and cobalt ( I I )  

bis(2-ethylhexanoate) does however have an additive effect on the rate 

of -OOH formation but with only a s light increase in quantity of v o la t i le  

material produced. This reinforces the theory that lead ( I I )  

bis(2-ethylhexanoate) aids hydroperoxide formation but only gives 

l i t t l e  decomposition.

Figure 2 .8 .1 .8 .  compares the rate of hydroperoxide formation 

promoted by cobalt ( I I )  bis(2-ethylhexanoate) benzil and methane 

sulphonic acid (M.S.A.), figure 2.8.15 compares the rate  of 

hydroperoxide formation promoted by cobalt ( I I )  bis (2-ethylhexanoate); 

cobalt ( I I )  bis(2-ethylhexanoate) and lead ( I I )  bis (2-ethylhexanoate) 

(Co/Pb), and cobalt ( I I )  bis (2-ethylhexanoate) and aluminium 

bis (2-butoxide) ethylacetoacetate (Co/Al).
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COMPARISON OF PROMOTORS.
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Unfortunately no quantitation of the volatiles  produced by 

methane sulphonic acid promoted autoxidations was carried out, 

but the observed rate  of hydroperoxide formation was similar to 

that found in the benzil promoted autoxidations.

2.9 Autoxidation of Model Olefinic Compounds

2.9.1 Introduction and synthesis

The autoxidation of methyl c is -9 - cis-12-octa- 

decadienoate is proposed to proceed by the preferential loss of a 

hydrogen.from the doubly a l ly l ic  methylene group (Section 1 .6 ) .

The o lefin  6,9-pentadecadiene should, on autoxidation, give similar 

v o la t i le  products to methyl c is -9 - cis-12-octadecadienoate.

However i t  was anticipated that i f  the central methylene hydrogens 

are replaced by methyl groups this could change the vo la t i le  products 

Accordingly the synthesis of the following compounds was carried out; 

6,9-pentadecadiene Cl , 8-methyl-6,9-pentadecadiene CII and

8.8-dimethyl-6,9-pentadecadiene GUI .

The Wittig reaction was employed to prepare these compounds,

(see Sections 3 .3 .4 ,  3 .3 .5  and 3 .3 .6 ) .  The synthesis of

6.9-pentadecadiene was re la t iv e ly  straightforward involving

phosphonium s a lt  formation (inrv90% yields) using triphenyl phosphine

with 1,3-dibromopropane in refluxing dimethylformamide. The

stereochemistry desired for the o lefin ic  bond formation is cis and

in an attempt to control this the solvent system tetrahydrofuran/
270hexamethylphosphoramide (2:1 v/v) as suggested by Sonnet was used



fo r  the reaction of the y l id  with the carbonyl compound. The 

mechanism of the W ittig reaction is believed to proceed via 

betaines LXXXXVII and LXXXXVIII , see Scheme 2 .9 .1 .1 .
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' 1 = 0

( P h ) , P — C'

/]

THREG BETAINE  
L X X X X V I I I

( P h L P

ERYT HRO BETAINE  
L X X X X V H

Z C I S

4- (Ph)^O

f  ( P h ) ^ P = 0

E T R A N S

Scheme 2.9.1.1
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There is a kinetic preference for the erythro betaine which 

presumably results from the re la tive  energies of the two gauche 

adducts LXXXXIX and C formed by nuclephilic attack of the y lid  

on the carbonyl compound.

LXXXXIX

0 ©
P(Ph) 3

P(Ph)3

ERYTHRO

RPh).'3

THREO

Adduct LXXXXIX has two interactions between two large groups compared 

to adduct C which has these with three thus adduct LXXXXIX has the 

lower energy. I t  is probable that torsional strain and charge 

dissipation involving ion-pair aggregation favours both these 

conformations LXXXXIX and C over those required for fragmentation 

and o lefin  formation. Provided the fragmentation of the betaines 

to olefins is faster than the dissocation there w ill  be a preference ^  

for the cis configuration i . e .  the kinetic product. However i f  the 

y lid  is in terna lly  stabilised or there are metal cations (Li'*’) present



290

the rate of fragmentation is retarded and equilibration of the 

betaines occurs; leading to the trans o lefin  formation i . e .  the 

thermodynamic product. The use of polar solvents e.g. HMPTA 

favours separation of ion-pairs and ion-aggregates; causing 

accelerated fragmentation of the betaines, to produce the k inetica lly  

favoured c is -o le f in s .

The W ittig  reaction of the phosphonium sa lt with butyl lithium  

to form the y l id  followed by reaction with hexanal yielded

6,9-pentadecadiene 30% th eo re tica l) ,  a fte r  purification by column 

chromatography. The synthetic route is given in scheme 2 .9 .1 .2 .

B f
n M F ® ®BrCH,CH,CH,Br + 2P(Ph). EilLiLi ► (Ph)nP CH,CH,CH?P(Ph)q

 ̂  ̂  ̂ reflux 3 hrs  ̂  ̂  ̂ >5

1. BuLi

2. Hexanal
■ >  C H g t C H g i g C H ^ C H  C H 2 C H = C H ( C H 2 ) 4 C H 3

3. Reflux 2 hrs

Scheme 2 .9 .1 .2

The o lefin  formed was identif ied  by infrared; nuclear magnetic 
1 13resonance (both H and C) and mass spectrometry. The data is

given in tables 72, 73, 74 and 75, respectively. For elemental

analysis see table 84.

The ra tio  of cis isomer to trans isomer was 2.9 : 1 (calculated
-1 -1by the in tensities of the absorption bands at 720 cm and 970 cm 

respective ly).
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Assignment of the infrared spectrum of 6,9-pentadecadiene
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-1cm Assignment

3010 Olefinic unsaturation (C-H stretch)

2980 CHg Asymmetric stretch

2920 R-CHg-R Asymmetric stretch

2850 CH3 ; R-CHg-R Symmetric stretch

1650 Olefinic unsaturation (C=C stretch)

1470 , C-H Def )

1380 C-H Def ) S&turated hydrocarbon

1275

1110

970 Trans unsaturation out-of-plane C-H def.

910

720 Cis unsaturation out-of-plane C-H def.
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Table 73

Assignment o f  H nmr spectrum o f  6,9-pentadecadiene

1 2-4 5 6 7 8 

(CH3 (CHg)] CHg CH = 68)2682

Type of signal Chemical s h if t  ppm Coupling constants 
(Hz)

Integration

t 0.9 CH3 (1) 6

s (br) 1.35 eCHg (2-4) 12

m/t 1.95-2.35 2CH2 (5) 4

t 2.75 CHg (8 ) J7 .8  = 5.0 2

t / (m /t ) 5.5 4CH (6,7) J7 .8  " ^6 .5  = 5.0 4

Prominent t r ip le t  (cis) with other peaks due to trans o lefin

Table 74
13Assignment of C nmr spectrum, figure 2 .9 .1 .1 ,  

of 6,9-pentadecadiene

Carbon No.
97?

Chemical s h ift  
(ppm)

1 14.1

2 22.8

3 31.8

4 29.9

5 27.4

6 128.0

7 130.0

8 25.8



Table 75

El Mass spectrum o f 6,9-pentadecadiene
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m/z 208 194 179 165 151 138 137 124 123 110 109

Pel. AB % 39.0 4.8 0.6 1.9 6 .8 6 .8 8.3 13.6 9.2 34.0 22.8

m/z 96 95 83 82 81 69 68 67 57 55 54

Pel. AB % 46.6 48.0 11.2 41.7 71.8 24.3 36.9 100 8.7 40.3 41.7

m/z 43 41 29 27

Pel. AB % 13.6 36.0 13.6 8.7

The mass spectrum, figure 2 .1 .9 .2 . ,  confirmed the re la tive

molecular mass of the compound as 208 dal tons and the general

fragmentation consistent with that of a hydrocarbon. The base

peak ion at m/z 67 has the composition Ĉ Hy which most l ik e ly  is

derived from the diene part of the molecule.

The synthesis of 8-methyl-6,9-pentadecadiene was complicated

by the need for the preparation of 2-methyl-l,3-dibromopropane.
271The method of Brewster was used, scheme 2 .9 .1 .3 ,  but the yields  

obtained were consistently lower than he reported. The triphenyl- 

phosphonium sa lt preparation proceeded with re la tive  ease as did 

the Wittig reaction, the o lefin  was obtained in 29.6% y ie ld .

:H.

CHg = C
LiBr

CHgCl
Acetone 

CH.

CHg = Ĉ

CHgBr

HBr/Peroxides BrCH?-^H-CH?Br (yield: l i t .  80%, obtained 32%)
0°C
Scheme 2.9 .1 .3
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a fte r  purification by column chromatography. The product was
1 13id en tif ied  by in frared, nmr ('H and C) and mass spectrometry. 

This analysis is given in tables 75, 77, 78 and 79 respectively. 

For elemental analysis see table 84.
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Table 76

Assignment of infrared spectrum of 8-methyl- 6 , 9-pentadecadi ene

-1cm Assignment

3010 Olefinic unsaturation (C-H stretch)

2980 CHg, Asymmetric stretch

2920 R-CHg-R, Asymmetric stretch

2850 CHg, R-CHg-R Symmetric stretch

1650 O lefinic unsaturation (-C=C-stretch)

1470 C-H Def )
) Saturated hydrocarbon

1380 C-H Def )

1275

970 Trans unsaturation out-of-plane C-H def.

923

720 Cis unsaturation out-of-plane C-H def.
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Table 77

Assignment o f  nmr spectrum o f  8-methyl-6,9-pentadecadiene

1 2-4 5 6 7 6 9 
(CĤ CĤ gCHgCHz^CĤ CHCHg

Type of 
Signal Chemical s h if t  (ppm) Integration

m/t 0.95 CHg (1,9) 9

s(br) 1.40 6CH2 (2-4) 12

m/t 1.90 - 2.30 2CH2 (5) 4

m/t (br) 2.65-CH (8 ) 1

d / t * 5.5 2CH (6,7) 4

The peaks due to the o le fin ic  protons are complex with a doublet 

overlying a t r ip le t .

Table 78
13Assignment of C nmr spectrum of 8-methyl-6,9-pentadecadiene

Carbon No.
97?

Chemical s h if t  (ppm)

1 14.0

2 22.6

3 31.7

4 29.4

5 27.6

6 128.5

7 134.8

8 27.4

9 30.6
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El mass spectrum o f 8-methyl-6,9-pentadecadiene -  Figure 2 .1 .9 .3

298

m/z 222 207 193 179 165 151 138 137 124 123 109 95 81

Rel.AB % 23.3 3.9 0.9 5.8 3.9 36.9 13.1 11.1 10.7 16.5 17.9 60.2 100.0

m/z 69 68 57 55 43 41

Rel.AB % 19.4 24.3 8.3 34.9 10.7 22.3

Its  re la t iv e  molecular mass of 222 dal tons was confirmed by the mass 

spectrum, figure 2 .1 .9 .3 ,  and the general fragmentation was indicative  

of a hydrocarbon. The base peak ion in this compound at m/z is 14 

daltons higher than in 6 , 9-pentadecadiene, and probably results from 

fragmentations, giving an ion derived from the central diene structure.

The preparation of 8,8-dimethyl-6,9-pentadecadiene again involved

the synthesis of the parent dibromo compound, i . e .  2,2-dimethyl-1 ,3 -

dibromo propane. The alcohol 2,2-dimethyl-1 ,3-propanediol was

brominated using the adduct (CGHgjgPBrg. Attempts were made to

brominate the alcohol using phosphorous tribromide but rearrangement

products were formed instead. The presence of two methyl groups

hindered the phosphonium salt evidenced by the drastic reaction conditions

required (Section 3 .3 .6 ) .  The Wittig reaction however proceeded as

normal. The o lefin  was obtained in 46.4% yield  a fte r  purification by
1 13column chromatography and identified by infrared, nmr (both H and C) 

and mass spectrometry, the data is given in tables 80, 81, 82 and 83 

respectively. For elemental analysis see table 84.
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Table 80

Analysis of infrared spectrum of 8 , 8-dimethyl- 6 , 9-pentadecadiene

-1cm Assignment

3010 Olefinic unsaturation (C-H )

2960 CHg Asymmetric stretch

2920 R-CHg-R Asymmetric stretch

2850 CHg, R-CH2-R Symmetric stretch

1640 C=C Stretch

1460 C-H Def )
) Saturated hydrocarbon

1380 C-H Def )

1360

1260

1100

1010

970 Trans unsaturation

715 Cis unsaturation
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Table 81

Analysis o f  H nmr spectrum o f 8,8-dimethyl-6,9-pentadecadiene

1 2-4 5 6 7 ^^CH3 

(CHgfCHg)] CHg CH=CH)2-C
\ h3

9'
i

Type of 
Signal Chemical sh if t  (ppm) Coupling constants 

Hz
Integration

t 0.85 CH3 (1) ^1.2  " 6

s 1.1 CH3 (9 ,9 ') 6

s(br) 1.4 (2-4) 12

m/t 1 .8-2 .2  (5) 4

d /(m /t) 4.9 - 5.7 (6 ,7) 4

Table 82
13Analysis of C nmr spectrum of 8 ,8 -dimethyl- 6 , 9-pentadecadiene

Carbon No.
9 7 7

Chemical s h if t  (ppm)

1 14.1

2 22.8

3 31.9

4 31.4

5 28.4

6 129.8

7 139.3

8 36.7

9,9' 29.5
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Table 83

El mass spectrum o f 8 , 8-d im e thy l- 6 , 9-pentadecad1ene - f ig u re  2 .1 .9 .4

m/z 236 221 207 197 179 165 151 137 123 112 109 95 83

Rel.AB % 13.8 18.8 9.4 5.9 6.9 93.5 41.6 16.8 19.8 20.3 52.4 100.0 24.3

m/z 81 77 69 67 57 55 43 41

Rel.AB % 56.0 21.3 51.5 38.1 21.8 51.5 27.7 39.6

The parent ion of this spectrum, figure 2 .1 .9 .4 ,  confirms the 

re la t iv e  molecular mass of the compound as 236 dal tons. The base 

peak ion at m/z 95 is 14 dal tons higher than that in 8-methyl-6 ,9 -  

pentadecadiene. The general fragmentation again is that of a hydrocarbon 

In this compound the expulsion of from the molecular ion is very

pronounced (93.5%). In the other olefins 6,9-pentadecadiene and 

8-methyl-6,9-pentadecadiene,this fragmentation gave ion abundances of 

8.3% and 36.9% respectively. These re la tive  abundances re f le c t  the 

e ffec t of s tabilisation by the methyl groups. However, the reason for 

the lack of a l ly l ic  cleavage (M-57) is not apparent.

Table 84

Elemental analysis of model compounds. Cl, CII and C II I

Compound
^calc

Elemental analysis (%) 

^calc ^found  ̂found

Cl 86.54 13.46 86.49 13.68

CII 86.44 13.56 86.57 13.41

C II I 86.44 13.56 84.97 13.71
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2.9 .2  Autoxidation of 6,9-pentadecadiene,
8-methyl-6,9-pentadecadiene and 8 , 8 -dimethyl-
6,9-pentadecadiene in the presence of cobalt ( I I )  

bis(2-ethylhexanoate) and lead ( I I )  bis ( 2 -ethyl-
hexanoate)or benzil promoters. 
of v o la t i le  products by gc-ms.

Iden tif ica tion

The model o le fin ic  compounds were autoxidised in 

the apparatus depicted in diagram 3 .5 .1 .1 . The v o la t i le  products 

collected in the cryogenic trap were identified by El and Cl packed 

column gc-ms and are summarised in tables 85 and 8 6 .

Table 85

Vo la tile  compounds identified  from autoxidation of 
the model olefins Cl, CII and C I I I  in the presence of 
cobalt and lead promotors

Olefin Volatile  compound % composition

6,9-Penta- Pentanal 5.6
decadiene 2-Methyl-2-nonene 3.0

Hexanal 73.4 1.32 X 10 g
2-Hexenal 0.6
2-Heptenal 3.8
2-Octenal 1.7

8 -Methyl- Butanal 0.4
6,9-pentadecadiene Pentanal 3.2 , -3Hexanal 71.0 1.44 X 10 g

2-Heptenal 5.1
1-Pentanol 0.5
Propanoic acid 1.0

8 , 8-Dimethyl- Pentanal 17.1
6,9-pentadecadiene 2-Methyl-2-nonene 18.3 , , -3

Hexanal 11.4 1.06 X 10 '̂ g
2-Hexenal 0.7
2-Heptenal 48.8
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Table 86

V o la ti le  compounds identif ied  from the autoxidation of model 

olefins Cl, CII and C I I I  in the presence of benzil promotor

Olefin Vo latile  compound % Composition Quantity produced

6,9-Pentadecadiene 1-Pentene 0.9

Pentanal 3.7 1.26 X 10"4g

Hexanal 74.1

2-Heptenal 3.2

8-Methyl-6 ,9 - Butanal 0 .8
Pentadecadiene Propanal 4.8 1.73 X 10"4g

Hexanal 75.3

2-Heptenal 6.1

8 ,8 - Dimethyl- Butanal 1.5
6 ,9-pentadecadi ene Pentanal 16.7 0.96 X 10"4g

Hexanal 12.3

2-Heptenal 47.8

The iden tif ica tion  of a ll  these v o la t i le  compounds, except 

2-methyl-2-nonene, has been discussed in previous sections.

2-Methyl-2-nonene was identified in the vo la t i le  products found 

during the autoxidation of 8 ,8 -dimethyl-6,9-pentadecadiene, from the 

mass spectrum reported below:

m/z 140 125 111 97 84 83 70 69 57 56 55 43 42 41

Rel.AB % 29 2.2  12.8 27.6 34.0 44.7 38.2 100 31.9 40.4 53.2 40.4 27.6 89

m/z 39 29 27

Rel.AB % 21 19 17
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The parent ion m/z 140 corresponds to the following molecular

formulae, O'! 1 Hg, ^10^20 * ^10^9^* ^9^16^* ^8^12^2 ^7^8^3 *

The formulae containing 2 or 3 oxygens can be ignored as the

retention time in the chromatogram suggests a less polar compound.

The heavy isotope ra tio  indicates the molecular formula to be

C^gHgO, thus the base peak of m/z 69 results from the loss of 71

dal tons (C^H^-j). As o lefin ic  unsaturation is indicated by the

molecular formula the base peak ion probably arises from an a l ly l ic

cleavage, (equation 2 . 9 .2 . 1 ).

n -  n
["s' , , , , ,

Equation 2.9.2.1

However, 3-methyl-2-nonene would also produce the same base peak

ion. The rearrangement ion at m/z 70 may also be formed from

both the 2- and 3-methyl compounds. No standard spectrum or

commercial source of 2-methyl-2-nonene was available but the electron
217impact mass spectrum of 2-methyl-2-decene was available. The 

fragmentation pattern of the unidentified compound is extremely 

similar to that of 2-methyl-2-decene suggesting that i t  is the 

2-methyl rather than the 3-methyl derivative.
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2.9.3  Mechanistic Interpretation

The autoxidation of 6,9-pentadecadiene (Cl) 

produced the v o la t i le  compounds expected, v iz: hexanal ( 70%),

pentanal, 2-heptenal, 2-hexenal and 2-octenal. These compounds 

were found in the autoxidation of methyl linoleate (XXI) whose 

diene structure Cl mimics. The y ield of vo la t i le  material is 

however found to be greater than from the methyl ester, 0.066% w/w 

compared to 0.0518% w/w from the redox promoted autoxidation.

This increase in yield could result from the symmetrical nature of 

the o le f in .  The benzil promoted autoxidation of 6,9-pentadecadiene 

produced only 9.5% of the material produced by the redox promoted 

autoxidation. This is in accord with previous results found for  

the methyl esters (see sections 2.1, 2.2 and 2 .3 ) .  The volatiles  

are again proposed to arise from alkoxy radicals which result from 

hydroperoxide decomposition, scheme 2 .9 .3 .1 .

The v o la t i le  products from the autoxidation of 8 -methyl-6,9- 

pentadecadiene are again those expected from the previous observations 

Hexanal is the major product in both the redox promoted autoxidation 

and the benzil promoted autoxidation. The presence of the methyl 

group on the doubly a l ly l ic  carbon appears to increase the y ield  

of v o la t i le  material s lig h tly . The methyl group may increase the 

rate of autoxidation by stabilis ing the pentadienyl radical CIV

6  C
11 in 9 ^  7 6 5

C H - X i r  • C I V

although i t  is more probable that the rate is increased by the a l ly l ic
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hydrogen being more susceptible to autoxidation by being on a 

te r t ia ry  carbon rather than s e c o n d a r y T h e r e  is also 

an increase on the proportion of 2-heptenal formed. This is 

surprising in l ig h t  of the above in terpretation. With the apparent 

increased ease of breaking the C-H bond at position 8 , a reduction in 

the re la t iv e  proportion of C-H abstraction at positions -5 and -11 

in CIV would be expected. The abstractions at -5 and -11 are necessary 

to form the hydroperoxides which are the precursors for 2-heptenal 

formation. The benzil promoted autoxidation produced only 12% of the 

vo la tiles  found in the redox promoted autoxidation. This s lig h tly  

higher percentage could again result from increased ease of cleaving 

the C-H bond at position 8 .

The autoxidation of 8 ,8 -dimethyl-6,9-pentadecadiene (C I I I )  

produced a mixture of predicted and unpredicted v o la t i le  products.

With the total absence of any doubly a l ly l ic  hydrogens, the formation 

of a 5-centred alkyl radical is prevented thus the formation of hexanal 

would not be expected. The major products should result from 

hydroperoxide formation of the -5 and -11 positions and their  subsequent 

decomposition i . e .  the formation of pentanal and 2-heptenal, 

scheme 2 .9 .3 .2 .

2-Heptenal is found as the major product in both the redox and 

benzil promoted autoxidations but a significant v o la t i le  product found 

in the redox promoted autoxidation is 2-methyl-2-nonene. The 

formation of 2-heptenal involves the formation of the alkyl radical 

CIV, see scheme 2 .9 .3 .2 . From this radical a mechanism for the 

formation of 2 methyl-2-nonene can be postulated, see scheme 2 .9 .3 .3 .
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CHjCHjC C H =  C H -  Ç -  R C III

CH.

C H ^ C H ^ C l lC H  C H - C  H - C H  -  C -  R

Ü.+H

0 - 0 - H  C H .
I I j

C H ^ C H ^ C H ^ C H ^ C H  C H = C H - C — R

C H ,

ii  ̂ C— C f r a g m e n t a t io n

V

H -O .g CH.

C H 3 C H , C H j C H 2 C H = C H - C H - C  R

CH.

; , - 0 H
ii, C— C fragmentation

V

CH3CH2CH2CĤ Ĉ

p e n t a n a l

• C H = C H - t - R
I h 3

CĤ CĤ CH2CĤ CH=CH c^

• 2 -H E P T E N A L  

4

• C - R  C IV  
I
C H .

Scheme 2.9 .3 .2
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CH.

CH3 (CH2 ) 4CH=CH-C*

(CVIa)

,H

Scheme 2 .9 .3 .3

CH3

CH3 (CH2 )4CH=CH-C - H

L

CH.

-£> CH3 (CH2 ) 4CH CH=C\
(CVIb) CH.

CHgtCHg)^ CH2CH=C{

CH.

CH,

2-Methyl-3-nonene 2-Methyl-2-nonene

The formation of 2-methyl-3-nonene should accompany the formation 

of 2-methyl-2-nonene yet none could be identified  amongst the volatiles  

Radical CVIbmay provide an explanation for the unexpected presence 

of hexanal in the v o la t i le  products via hydroperoxide formation and 

decomposition as in scheme 2 .9 .3 .4 .

The quantity of 'v o la t i le '  products from the autoxidation of 

8 , 8-dimethyl-6,9-pentadecadiene is approximately 20% lower than that 

found in 6,9-pentadecadiene. This reflects  the reduced ease of 

breaking the C-H bonds at positions 5 or 11 in 8 ,8 -dimethyl-6,9- 

pentadecadiene compared to the abstraction of a hydrogen from the 

doubly a l ly l ic  positions in 6,9-pentadecadiene. The benzil promotor 

again only forms 9% of the quantity of 'v o la t i le s ' produced by the 

redox promotor.



\
CVIb

CH3

i, O2 
iu+,H

r

■ 0 -H

CH fCH ) - C - C H = C
j  2 4 I

CH.

CH.

0^
CH^CH^^C%CH=C

/C H 3

\ CH:

+ .CH— C
^CH3

XH-

Scheme 2 .9 .3 .4 .

312

2.10 Miscellaneous experiments

2.10.1 Investigation into the formation of methyl 

2-ethylhexanoate 

To investigate the pathway by which methyl 2-ethyl-hexanoate is 

formed • during the autoxidation of the methyl esters in the presence 

of cobalt ( I I )  and lead ( I I )  bis (2-ethylhexanoate) (sections 2 .1 .1 .1 ,

2 . 2 . 1.1 and 2 . 3 . 1 . 1 ) , ethyl linoleate and methyl(dg) linoleate  were 

sim ilar ly  autoxidised.
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Ethyl lino leate  was obtained commercially but methyl (dg)

lino lea te  was prepared by the reaction of linoleyl chloride^^^

with CD3OH in the presence of pyridine,and analysed by infrared and 
1 13nmr (both H and C) spectroscopy. Spectral details are given in 

tables 87, 88 and 89 respectively.

Table 87

Analysis of infrared spectrum of methyl (dg) linoleate

“ 1cm Assignment

3010 Olefinic unsaturation

2980 CHg, Asymmetric stretch

2920 R-CHg-R Asymmetric stretch

2850 CHg.R-CHg-R Symmetric stretch

1740 Aliphatic Ester (C=0)

1460 C-H def. )
) Saturated hydrocarbon

1415 C-H def )

1200 Aliphatic ester C-0

720 Cis unsaturation
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Table 88

Analysis of H nmr spectrum of methyl (dg) lino leate

0

C CHgfCHgjgCHg CH=CH CH^CH^CH CHgfCHgjCHg 

1 2 3-7 8 9 10 11 12 13 14 15-17 18
CD3

Type of Chemical sh ift Coupling constant Integration
signal (Carbon No. in brackets) (Hz)

t 0.9 (18) '^17,18 " 5.0 3

s(br) ■ 1.3 (3-7, 15-17) 16

m/t 2.2 (2,8,14) 6

t 2.75 (11) 3

t 5.3 (9,10,12,13) *^17,18 " 5.0 4

Table 89
11Analysis of C nmr spectrum of methyl (d^) lino leate

Carbon No. Chemical s h if t  (ppm)

1 174.1

2 34.3

3 25.3

4 29.5

5 29.5

6 29.5

7 29.5

8,14 27.6

9,13 130.2

10,12 128.4

11 26.0

15 29.5
16 31.9
17 22.9
18 1 4 .3_______



315

The presence of the ester carbonyl stretching in the infrared

(1740 cm ^) coupled with the presence of the ester carbonyl carbon
13(174.1 ppm) in the C nmr spectrum show the presence of-C

^OR
13I t  was hoped the C spectrum would show the seven peaks expected from 

the OCD3 but the weaker signals of the deuterated carbons could not 

be detected. The absence of either methyl ester or carboxylic acid 

protons in the nmr spectrum provided evidence for the structure.

The v o la t i le  compounds identified  from the autoxidation of the 

two esters by gc-ms are given in table 90.

Table 90

V o la tile  compounds identified by gc-ms from the autoxidation 

of ethyl linoleate and methyl (dg) linoleate in the presence

of cobalt and lead promotors

Ethyl linoleate Methyl (dg) linoleate

Pentanal Pentanal

Hexanal Hexanal

Pentanol 2-Hexenal

3-Heptanone 2-Heptenal

2-Pentyl furan Pentanol

2-Heptenal Methyl (dg) 2-ethyT- 
hexanoate

Ethyl octanoate Methyl (d^) octanoate
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The El mass spectrum of the compound identified  as ethyl 

octanoate is given below:

m/z 172 143 127 101 88 83 73 70 69 61 60 57

Rel.AB % 2.7 4.0 29.3 37.3 100 64 22.7 93.0 40 18.7 26.7 83.0

m/z 55 45 43 41 29 27

Rel.AB % 93.3 17.3 46.7 93 74.7 34.7

The base peak ion at m/z 88 arising from a McLafferty rearrangement 

similar to that described in section 2 . 1 . 1.1 is indicative of an ethyl 

ester or a carboxylic acid substituted with ayS-ethyl group. The 

substituted acids have however been shown to fragment to an ion at 

m/z 73 which represents 87% of the base peak ion current. However, 

this compound forms m/z 70 readily , which could represent the loss of 

CHgCHgCHgCHg from the (M-OCH2CH3 ) ion at m/z 127.

The detection of the deuterated esters from methyl (d^) linoleate  

is evidenced by the following mass spectra.

Component A

m/z 161 146 143 127 118 105 90 69 59 57 56 43 41

Rel.AB % 1.5 2.3 1.0 6.9 23.4 100 92.1 7.1 7.9 49.1 12.7 16.3 13.7

m/z 29 27

Rel.AB % 6.6  4.5



The fragmentation of this compound is similar to that of 

methyl 2-ethylhexanoate except that ions containing OCD3 are 

3 dal tons higher, e.g. the base peak ion at m/z 105 which arises 

from a McLafferty rearrangement, see scheme 2 .10 .1 .1 .
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CH: CH
I

CH

+

M / Z  161

^OCD^
I

C H .
I ^
CH,

4-

•c^
I

CH. 
1 '
CH:

\ OCD-

M / Z  1 0 5

Scheme 2.10.1.1

I t  was concluded that this compound is methyl (dg) 2-ethylhexanoate 

Component B

m/z 161 146 143 132 130 118 104 91 77 69 57 43 41 29 27

Rel. AB % 1.0 2.4 0.6 3.5 14.7 8 .0 7.5 31.1 100 4.7 10.8 10.7 6.7 4.7 2.1

The basic fragmentation here is similar to that of methyl octanoate 

except that some of the fragments are 3 dal tons higher i . e .  the base peak 

ion at m/z 77 which results from a McLafferty rearrangement of the parent 

ion. I t  was concluded that the compound is methyl (dg) octanoate.

The observation that methyl (dg) 2-ethylhexanoate is formed in 

the methyl (dg) linoleate autoxidation provides evidence for catalyst 

anion exchange equation 2 .10 .1 .2 . However the absence of any
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CH^(CH2 l3 C H - C ^ e  Co e ^ C -C H IC H ^ IjC H ^  +  ) c  (C H j)^ H = C H  C H jC H rrC H  (CH^I^CHj

ÇH3 ÇH3

5-̂ 2 yP 2 °'X %  1̂ 2
CHjKHjljCH C;̂ ©Co ©VC(CH2)21:H=CH CH^CHzzCHICtY^CHg + C CHtCHjljCHj

Equation 2.10.1 .2

ethyl-2-ethylhexanoate from the autoxidation of ethyl linoleate  

appears to contradict this observation. I f  the methyl group exchanges, 

then the ethyl group would also be expected to exchange. The results 

from both experiments however confirm that methyl 2-ethylhexanoate does 

not result from a d irect autoxidation reaction.

2.10.2 Studies on the expulsion of ethylacetoacetate 

from aluminium complexes during autoxidation 

The v o la t i le  product and time lapse infrared studies 

both indicate that complexed ethyl acetoacetate is lost during the 

drying process. To confirm this a 2-butanol solution of cobalt ( I I )  

b is (2-ethylhexanoate) and aluminium b is (2-butoxide) ethyl acetoacetate 

was bubbled with dry nitrogen gas and the 'v o la t i le  products' collected. 

The glc analysis revealed only the presence of 2-butanol, the volatiles  

collected a fte r  addition of methyl l ino leate , again only revealed 

the presence of 2-butanol. The bubbling of Og through the mixture 

for 12 hours produced ethyl acetoacetate. Thus the loss of ethyl 

acetoacetate appears to result from the interaction with autoxidation 

products, probably the carboxylic acids or alcohols formed. This
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collaborates)the observation that the quantity of carboxylic acids 

detected is reduced in the autoxidations described in sections 

2 .1 .2 , 2 .2 .2  and 2 .3 .2 . The observation that complexed ethyl 

acetoacetate may be lost is in contradiction to the work published 

by Love.^^^

2.10.3 Effect of oxygen partia l pressure on the 

composition of v o la t i le  products

To study the effect of oxygen partia l pressure 

on the nature of the v o la t i le  products, methyl linoleate in the 

presence of cobalt ( I I )  and lead ( I I )  bis(2-ethyThexanoate) was 

autoxidised using both an a ir  and oxygen atmosphere. The products 

were collected in the cryogenic trap and analysed by packed column glc 

The chromatograms showed that the products formed were identical and 

independent of the oxygen partia l pressure. However, the quantity 

of the material produced was dependent on the partia l pressure, the 

autoxidation using a pure oxygen atmosphere producing a greater amount 

of v o la t i le  material.

2.10.4 Control experiments

Experiments were conducted to ensure that the 

v o la t i le  compounds identified in the previous sections actually  

resulted from the combined action of oxygen and the promotor. The

experiment in which nitrogen was passed through methyl linoleate, no
\

v o la t i le  compounds were detected. Similarly when an oxygen 

atmosphere was used no v o la t i le  compounds could be detected. Methyl 

linoleate  in the presence of cobalt ( I I )  and lead ( I I )  b is (2 -e thy l- 

hexanoate) bubbled with nitrogen again produced no v o la t i le  products.
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2.10.5 Synthesis of Promotors

The synthesis of the cobalt ( I I )  bis (2 -e th y l- 

hexanoate) catalyst gave a dark blue solid. The cobalt content 

was determined gravimetrically as the tetra-pyrid ine cobalt 

dithiocyanate and was found to be 17.0% (theoretical 17.07%).

Evidence for the carboxyl ate was obtained from the infrared spectrum 

(recorded as a nujol m ull), with two d is tinc t bands seen at 1540 cm"̂  

and 1432 cm"̂  corresponding to assymetric and symmetric

Y c%z2z:0® respectively.

Lead ( I I )  bis(2-ethylhexanoate) proved more d i f f i c u l t  to 

synthesise and was never isolated pure. The pale yellow viscous 

l iqu id  obtained was found to contain 39.0% lead (theoretical 42.01) 

determined gravimetrically as lead chromate. The infrared spectrum

(nujol mull) showed sa lt formation, bands at 1520 cm~̂  and 1425 cm~\ 

but also the presence of some free carboxylic acid (1690 cm” )̂ with 

some anhydride (1810 cm  ̂ and 1740 cm~^). The low band content is 

explained by the presence of free carboxylic acid and anhydride.

The complexing of ethyl acetoacetate with aluminium tris(2-butoxide) 

to form aluminium bis(2-butoxide) ethyl acetoacetate was observed by 

infrared spectroscopy. The absorption decreases at 1750 and 1720 cm~\ 

corresponding to the carbonyl functionality  in ethylacetoacetate, 

correlated with increases a t  1610 and 1530 cm  ̂ assigned by 

Pinchas^^^ as ^ 0 and respectively in the metal

chelate. The infrared spectrum of the fina l reaction products showed 

no bands corresponding to a free carbonyl. These observations confirm 

the formation of the complex LXXVII in a 2-butanol solution.
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3. Experimental

3.1 Materials, instrumentation and analysis

Methyl cis-9-octadecenoate, cis-9-cis-12-octadecadienoic  

acid, i ts  methyl and ethyl esters and c is -9 -c is -12 -c is -15-  

octadecatrienoic acid, i ts  methyl and ethyl esters, were supplied 

by Sigma Chemicals Ltd. at 99% purity and used without further  

pu rif ica tion . Methane sulphonic acid was supplied by Koch Light 

at 98% purity . Benzil was supplied by Fluka Chemicals at 98% purity  

and recrystallised from acetone before use. Other chemicals used were 

supplied by e ither British Drug House (BOH) or Aldrich Chemicals,

Packed column gc-ms analysis was carried out using a Pye 104 

gas chromatograph and a V.G. 12F micromass mass spectrometer.

Capillary column gc-ms analysis was carried out using a Finnigan 1020 

quadrupole mass spectrometer and data base at P.C.M.U., Harwell by 

Dr C. Creaser.

GLC-FID analysis was carried out on either a Pye Unicam GCD 

instrument or a Varian model 3700 instrument. HPLC analysis was 

carried out on a Varian 5000 instrument with a UV detector at 254 nm.

Infrared spectra were recorded on either a Perkin Elmer 177 or 

983 instruments. Time lapse infrared studies were carried out on 

the Perkin Elmer 983 instrument and associated data base. Near

infrared studies were carried out on a Grubbs-Parsons spectrometer 

(modified) instrument. UV spectra were carried out on a Perkin Elmer 

550$ UV-visible spectrometer. 60 MHz Ĥ n.m.r. were recorded using 

either a Hitachi Perkin Elmer R243 or a Varian EM360. 90 MHz Ĥ

and 22.6 MHz ^̂ C n.m.r. were recorded on a Joel FX90Q Fourier Transform 

instrument by Mr D Parkinson.
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3.2 Synthesis of promotors

3.2.1 Cobalt ( I I )  bis(2-ethylhexanoate)^^^

2-Ethyl hexanoic acid (25.5 g, 0.18 M) was dissolved 

in a 10% v/v mixture of 1-butanol in petroleum s p ir i t  (120°C)

(0.5 dm^). Cobalt ( I I )  hydroxide (10 g, 0.11 M) was added, and the 

mixture heated to 120°C and refluxed for 6 h. On cooling, acetone 

was added to the brown slurry , shaken well and f i l te re d  o ff  using a 

No.4 sintered glass f i l t e r  and c e l i te f i l t e r  aid. The resulting  

f i l t r a t e  was reduced in volume under reduced pressure. The remaining 

solution of cobalt sa lt  in unreacted 2-ethyl hexanoic acid was 

partitioned between water and petroleum s p ir i t  and the sa lt  obtained 

by evaporating the water o f f ,  then dried further by azeotropic 

d is t i l la t io n  with toluene. I t  was a purple solid with a cobalt content 

of 17.0% (theoretical 17.07%) as determined by quantitative precipitation  

of tetrapyrid ine cobalt dithiocyanate.^^^The y ie ld  was 4.45 g (14.3%) 

and had = 1540 cm"̂  (C— cT asymmetric) and 1430 cm  ̂ ( C‘- ^ 0 ^  symmetric)

The infrared spectrum is discussed in section 2.10.5.

3 .2 .2  Lead ( I I )  bis(2-ethylhexanoate )
276

2-Ethylhexanoic anhydride (21.8 g, 0.08 M) was mixed

with a stoichometric amount of dry lead ( I I )  oxide (18 g, 0.08 M) and
277

stirred  at 80°C for 2 h. On the addition of petroleum s p ir i t

(40° -  60°C) a white precipitate was observed and this was removed by

f i l t r a t io n .  The f i l t r a t e  was collected and the petroleum s p ir i t

removed under reduced pressure. The product (11.31 g, 28.7%) was a

pale yellow viscous liquid with a lead content of 39% (theoretical 42%)
278

(determined by quantitative precipitation of the chromate ) ,  and had 

Y"= 1810, 1740, 1680, 1540, 1460 and 1420 cm~\ The infrared spectrum 

is discussed in section 2.10.5.
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171
3.2 .3  Aluminium bis(2-butoxide) ethyl acetoacetate

2-Butanol and ethylacetoacetate were re d is t i l le d ,  

the fractions boiling at 78°C and 178°C respectively were collected. 

Aluminium tris(2-butoxide) (100 g, 0.41 M) was dissolved in 2-butanol 

(200 g) under nitrogen. The temperature was raised to 90°C and 

ethyl acetoacetate (53.3 g, 0.41 M) added over a period of 15 min. 

then the temperature maintained at 90°C for a further 30 min. The 

resultant solution had an aluminium content of 5.2% (theoretical 5.4%).

The infrared spectrum of this promotor is discussed in section 2.10.5.

3.3 Synthesis of model compounds

3.3.1 Synthesis of benzoyloxyethyl cis-9-cis-12-octadecadienoate

Cis-9-cis-12-octadecadienoic acid (4 g, 0.015 M) was

refluxed at 70°C with oxalyl chloride (5.4 g, 0.0435 M) for 4 h in a ll  
279glass s t i l l .  The excess oxalyl chloride was removed under reduced 

pressure at 100°C, the cis-9-cis-12-octadecadienoyl chloride purified  

by vacuum d is t i l la t io n  (150°C, 0.5 mm Hg) to y ie ld  1.55 g (35.8%).

Sodium benzoate (14.41 g, 0.1 M) was reacted with l-chloro-2- 

hydroxyethane (24.15 g, 0.3 M) at 130°C for 4 h.^^^ The reaction was 

allowed to cool and the sodium chloride removed by f i l t r a t io n .  

2-Hydroxyethylbenzoate was purified by d is t i l la t io n  (b.p. 149° - 151°C 

at 11 mm Hg, L i t .  value 173°C at 21 mm Hg) giving 11.62 g (70% y ie ld ) .

Cis-9-cis-12-octadecadienoyl chloride (1.55 g ,0.005 M) was added 

to 2-hydroxyethyl benzoate (1 g, 0.006 M) at 0°C in the presence of 

pyridine (1 g, 0.0126 M) and l e f t  overnight. Diethyl ether (10 cm̂ ) 

was added to the reaction mixture and then this solution washed with 

water (3 x 25 cm^). The ester was purified by column chromatography 

(Kieselgel 60, diethyl ether: Petroleum s p ir i t  (b.p. 40 - 60°), 40 : 60) 

to y ie ld  1.39 g (62.5%) of the ester. Spectroscopic data is presented 

in section 2 .4 .1 .
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3.3.2  2-Hydroxyethy1 c is-9-ci s-12-octadecadi enoate 

Cis-9-cis-12-octadecadienoyl chloride (7.2 g ,0.024 M)

as prepared in section 3 .3 .1 ,  was added to 1,2-ethanediol (11 g, 0.18 M) 

in the presence of pyridine (3 g, 0.038 M) at ice bath temperature and 

l e f t  overnight. The reaction mixture was washed with water (4 x 50 cm )̂ 

and the hydroxy compound isolated by column chromatography (Kieselgel 60, 

diethyl ether: petroleum s p ir i t  (b.p. 40° - 60°C), 50:50) to y ield  

3.62 g (46.5%). The n.m.r. and IR of this compound are

presented in section 2 .6 .2 .1 .

3 .3 .3  Methyl (d^) cis-9-cis-12-octadecadienoate 

Cis-9-cis-12-octadecadienoyl chloride (5.6 g ,0.019 M)

Was added to Ĉ HgOH (5 g, 0.14 M, 99% ^H) in pyridine (3 g, 0.038 M) 

at ice-bath temperature. Diethyl ether (10 cm )̂ was added to the 

reaction mixture and then this solution washed with water (3 x 25 cm ).  

The ester was purified by column chromatography (Kieselgel 60, diethyl 

ether: petroleum s p ir i t  (b.p. 40° -  60°C), 50:50) to y ield 2.27 g 

(40.2%) of the ester. Its  n.m.r. and IR spectra are presented in 

section 3 .3 .3 .

3 .3 .4  Synthesis of 6,9-pentadecadiene

1,3-Dibromopropane (10 g, 0.049 M) was added to 

triphenylphosphine (26 g ,0.0992 M) in dimethylformamide (100 cm^).

This was refluxed for 3 h during which a white precipitate formed.

The mixture was cooled and the solid collected by vacuum f i l t r a t io n .

The bisphosphonium sa lt was washed with petroleum s p ir i t  (2 x 100 cm )̂ 

and dried under vacuum to y ield 34.62 g (96.3% ).

1,3-Bis (triphenylphosphonium)propane dibromide (10 g, 0.014 M)
3

(dried and pulverised) was suspended in dry tetrahydrofuran (28 cm ) 

at 0°C under an atmosphere of dry nitrogen. n-Butyl lithium
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(20cm^J.6 M soin. 0.032 M) was added over a period of 30 min. and 

l e f t  for a further 60 min. A dark red solution resulted, and to
o

this hexamethylphosphoratriamide (15 cm ) was added and stirred for  

15 min. Hexanal (2.8 g, 0.028 M) was added and stirred at 0°C
o

for 60 min, then refluxed for 2 h. On cooling, water (150 cm ) and 

petroleum s p i r i t  (40 - 60°C) (100 cm )̂ were added. The organic layer
I

was concentrated and the diene purified by column chromatography 

(Kieselgel 60, petroleum s p i r i t  (boiling below 40°C)) to y ield 0.83 g 

(30.4% ).

3 .3 .5  Synthesis of 8-Methyl-6,9-pentadecadiene

2-Methyl- 1 ,3-dibromopropane (12.8 g, 0.06 M) prepared 
281

by the method of Brewster, was reacted with triphenylphosphine (48 g, 

0.18 M) for 144 h at 145°C in the absence of solvent. To the white 

solid produced, dimethylformamide (30 cm )̂ was added and the mixture 

refluxed for 3 h. The b is-phosphonium salt was collected by vacuum
3

f i l t r a t io n  and washed with diethyl ether (2 x 50 cm ) then petroleum 

s p ir i t  (boiling below 40°C) (2 x 50 cm^). The sa lt  was dried under 

vacuum to y ie ld  12.10 g (27.7%).

2-Methyl- 1 ,3 -b is ( t r i  phenyl phosphonium) propane dibromide (12.10 g, 

0.16 M) was added to dry tetrahydrofuran under nitrogen. n-Butyl 

lithium (22 cm ,̂ 0.035 M) was added over 30 min. and le f t  at ice bath 

temperature for 60 min. Then,to the dark red solution, hexanal 

(3.5 g, 0.035 M) was added and the mixture refluxed for 12 h.

The diene was extracted and purified as in section 3.3 .4  to y ie ld  1.05 g 

(29.6%).
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3.3.6  Synthesis of 8,8-dimethyl-6,9-pentadecadiene

Triphenyl phosphine (26.2 g, 0.1 M) was suspended in 

dry a c e to n itr i le  (100 cm )̂ at 0°C and bromine (16.0 g ,0.1 M) was 

added over 30 min. To the resultant triphenyl phosphonium dibromine 

suspension was introduced 2,3-dimethyl-l,3-dihydroxypropane (5.2 g 

0.05 M), the suspension cleared, and the solution refluxed for 8 h.

The a ceto n itr i le  was removed under reduced pressure and the

2 . 2 - di methyl-1,3-dibromopropane collected by d is t i l la t io n  (bp 60 - 80°C 

at 14 mm Hg) and then re d is t i l le d  (bp 64°C at 12 mm Hg, l i t .  72°C

at 14 mm Hg) to y ie ld  4.22 g (36.7%).

2 ,2-Dimethyl-l,3-dibromopropane (4.22 g, 0.018 M) was reacted with 

triphenyl phosphine (11 g, 0.0478 M) at 145°C for 336 h. The

2 .2 -d im ethy l- l,3 - (tr iphenylphosphonium) propane dibromide salt was 

purified as in section 3 .3 .5  to y ie ld  6.68 g (49.2%).

The Wittig reaction of the bisphosphonium sa lt with n-butyl lithium  

and hexanal was carried out with the appropriate amounts and the diene 

purified by the methods described in section 3.3.5 to y ie ld  0.97 g 

(46.4%).

The n.m.r, IR and mass spectra of the dienes synthesised in sections

3 .3 .4 ,  3.3 .5 and 3 .3 .6  are presented in section 2 .9 .1 .

3.4 Synthesis of alkyd resins

The fa t ty  acid route was employed for the synthesis of a ll  

the resins used in the autoxidation studies. This route was used as 

i t  is a one step synthesis and was therefore easier to perform.
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3.4.1 Series 1 - Variable fa t ty  acid composition

The following general method^^was used to make a ll  

the resins in this series. Pentaerythritol (191 g, 1.4 M), 

phthalic anhydride (208 g, 1.4 NI) and the fa t ty  acids (600 g) were 

added to a f ive  necked flanged l id  glass reaction vessel together 

with Analar toluene (40 cm^). The reaction was carried out with 

vigorous agitation and under a blanket of nitrogen. The 

temperature was raised to 240°C and the water produced azeotropically  

d is t i l le d  off,and collected in a Dean and Stark apparatus.

During the reaction a sample of the resin was removed every hour 

(or occasionally every 30 min.) and the 'acid value' determined by 

t i t r a t io n  with 0.1 M ethanolic potassium hydroxide. The viscosity 

was determined by the method of measuring the time i t  takes an a ir  

bubble at 25°C to move through the resin in a glass tube. When the 

'acid value' reached approximately 10 mg KOH/g non-volatile resin the 

reaction was stopped. Analar toluene (200 g) was then added and well 

mixed into the resin. The fina l 'acid value ',v iscosity and 'solids 

content' were then determined. The 'solids content' is calculated 

as the percentage of the non-volatile material in the f inal resin.

The fa t ty  acids used in the preparation were Soyabean oil fa t ty  acids. 

Linseed o il fa t ty  acids, dehydrated Castor o il fa t ty  acids. Tall 

oil fa t ty  acids and Isomerginic acid S.F. The f in a l constants of the 

resins are presented in section 2 .5 .1 .

3.4 .2  Synthesis of alkyds-series 2- 'variable hydroxyl content'

The general method of preparation for this series of

alkyds was the same as that in section 3 .4 .1 . However the quantities  

of the reactants were d iffe ren t and are summarised in table 91.
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Linseed o il  fa t ty  acids 
g (mole fraction)

Pentaerythritol 
g (mole fraction)

Phthalic anhydride 
g (mole fraction)

579 1.33 194 0.93 226 1.0

569 1.33 208 1.02 222 1.0

558 1.33 223 1.11 218 1.0

548 1.33 236 1.20 214 1.0

544 1.33 243 1.24 212 1.0

(Mole fraction based on phthalic anhydride)

The f in a l constants are reported in section 2 .6 .3 .1 .

3 .4 .3  Synthesis of a low 'acid value* alkyd

The general method employed in section 3.4.1 was used 

in th is  alkyd preparation with Tall o il fa t ty  acids (1800 g), 

pentaerythritol (574 g) and phthalic anhydride (625 g). The fina l  

acid value of this alkyd was found to be 8.8 mg KOH/g non v o la t i le  resin

The alkyd (1290 g) was then reacted with Cardura E (51.16 g) at

170°C u n t i l . th e  acid value was approximately 1.0 mg KOH/g non v o la t i le  

resin. The physical properties are reported in section 2 .5 .1 .

3 .4 .4  A l ino le ic  acid alkyd

This alkyd was synthesised on a re la t iv e ly  small scale

using l in o le ic  acid (124 g ) , pentaerythritol (41.5 g) and phthalic

anhydride (48.5 g). The general method was used as described in 

section 3 .4 .1 . The physical properties are given in section 2 .5 .1 .
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3.5 Autoxidation of model compounds

3.5.1 Apparatus

Air or oxygen were dried by bubbling through 

concentrated sulphuric acid. A splash trap was employed to 

prevent acid contamination of the reaction mixture. The dried 

gas was then s p l i t  into two streams, each going to an autoxidation 

vessel containing equal amounts of reactants, through which,the 

gas was bubbled. The gas streams were combined a fte r  leaving the 

reaction vessels. A schematic representation of the apparatus 

used is shown in diagram 3 .5 .1 .1 .

3.5 .2  Vo lati le  product collection techniques

Two methods were used; cryogenic trapping and 

chemical trapping.

Trapping method ( i )  Here the gas stream, containing the vo la t i le

products from the autoxidation was passed into a cold finger with the

entrance tube extending almost the entire length and with the gas

e x it  at the top of the apparatus as depicted in diagram 3 .5 .2 .1 .

The cooling agent was a 'slush-bath' of liquid nitrogen and toluene
282

which maintains a temperature of -95 C. The trap may be sealed 

at points A and B with PVC tubing closed by Hoffman clips.

The solid 'v o la t i le '  products so collected were removed by allowing 

them to liquefy, then dissolving in 100yul (2 x 50yul) of n-pentane, 

injected via point A and subsequently draining them to point C.

The analysis discussed in sections 3 .5 .3 .1  and 3 .5 .3 .2  were carried  

out on such solutions.
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FROM 
REACTION “  

MIXTURE _

Diagram 3.5 .2 .1

LIQUID N /̂TOLUENE 
‘SLUSH bath’ (-95°C)

Trapping procedure for carbonyl compounds ( i i )  Here the gas 

stream, containing the v o la t i le  products, was passed over s i l ic a  gel 

(0 .3  g) diagram 3 .5 .2 .2 ,  previously coated with 2,4-dinitrophenyl- 

hydrazine by the method of Beasley. The resultant hydrazine 

derivatives were extracted from the s il ic a  gel with aceto n itr ile  

(1 cm )̂ and this analysed as described in section 3 .6 .3 .3 .

(  ̂
VOLATILES

OOOOQ

GLASS WOOL 
PLUGS

\
D.MPH. coated 

SILICA GEL

Diagram 3 .5 .2 .2
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I t  should be noted that only one trapping technique was used at

any one time.
3.5 .3  Chromatographic analysis

3.5.3.1. Gas liquid chromatography analysis

n-Pentane solutions of the v o la t i le  compounds were

analysed by e ither packed column or cap illary  column glc, the

conditions are summarised in tables 92 and 93 respectively.

Table 92 

Packed column glc analysis

Stationary phase 10% carbowax 20 M terminated by TPA 
on chromosorb Q support

Column dimensions 2 metres x 3 mm (ID)

Carrier gas flow rate 40 cm3 min”^

Carrier gas Nitrogen (oxygen free)

Oven temperature 60°C isothermal for 20 min. then rising  
at 1°C min-1 to 160°C.

Injection volume 5 | i l

Detector Flame ionisation detector

In jector temperature 120°C

Detector temperature 210°C



Table 93 

Capillary column analysis
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Stationary phase SP 1000

Column length 25 metres

Carrier gas flow rate T 3 — 1 1cm min

Carrier gas Helium

S p lit te r  ra tio 30:1

Oven temperature 50°C isothermal 5 minutes then 
at 4°C min"! up to 14Q0C

Injection volume 0 .5 | i l

Detector Flame ionisation detector

In jector temperature 120°C

Detector temperature 200°C

In quantitative studies using glc,the internal standard was 

dodecanal. 50 j i l  of a solution of dodecanal (0.13 g) in

n-pentane (50.0 cm̂  was accurately transferred to the 'v o la t i le '  

solution collected at point C in the cold tap (diagram 3 .5 .2 .1 )  

and then this solution analysed by glc. The areas of the peaks 

were calculated by using either a Shannon 308 or a Varian CDS 111 

computing integrator.

3 .5 .3 .2  Gc-ms analysis of the v o la t i le  products

Electron impact (El) and chemical ionisation (Cl) mass 

spectrometry of the vo la t ile  products of autoxidation dissolved in 

n-pentane were carried out using a 6 mm packed column gc-ms.



The conditions for El and Cl analysis are given in tables 94 

and 95 respectively.

Table 94

Mass spectrometer conditions for packed column El gc-ms
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Instrument V.G. micromass 12F

Source temperature /-200°C

Emission current lOjiA

Repel 1er voltage 15V

Electron energy 70 eV

Main mass scan 10 s decade"^, l inear, up, 0 -  240 Dalton

Accelerating voltage 4 k V

Amplification setting 10"^, 10"^ or 10”  ̂ amp

Response time 0.003 s

Gain 1

Integration mass range 38 - 120 Dalton

Integration scan time 2 s decade, linear, up.

Carrier gas for glc
o _1

Helium at 30 cm min

The compounds, separated on the glc column passed into the ion- 

source via a glass lined tubing and je t  separator. After ionisation  

the ions were accelerated, mass analysed and detected by a 17-stage 

dynode electron m ultip lie r . The signal,from the electron m ultip lie r  

a fte r  am plification,was integrated for each scan by the integrating  

ion monitor,and this displayed on a chart recorder giving a total 

ion chromatogram.
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Table 95

Conditions for packed column Cl gc-ms

Instrument VG micromass 12F

Source temperature ^Z20°C

Emission current 1000 ju. amp

Repeller voltage 2V

Electron energy 50 eV

Main mass scan 10 s decade"^, linear, up,0 -  240 Dalton

Accelerating voltage 4 kV

Amplification setting 10 10  ̂ or 10  ̂ amp

Response time 0.003 s

Gain 1

Integration mass range 80 - 200 Dalton

Integration mass scan 2 s decade"^, linear,up

Reagent gas Isobutane

Source pressure 0.08 to rr

Carrier gas for gc Helium at 30 cm̂  min ^

The spectra were recorded manually onto Kodak linagraph d irect  

prin t paper (type 1895) at the apex of each chromatographic peak.

The Finnigen 1020 quadrupole mass spectrometer was equipped to 

perform El gc-ms only and operates under computer control. Spectra 

were acquired,digitised, centroids and areas stored on disc, for la te r  

re tr ieva l and analysis. The instrument had an autotune capability  

so the precise operating conditions are unknown. However, the spectra 

were a ll  recorded at 70 eV. One major difference with the capillary  

analysis was that the glc column terminated d irectly  in the source.
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3 .5 .3 .3  High performance liquid chromatography 

(HPLC) analysis

The 2,4-dinitrophenylhydrazones in an 

aceto n itr ile  solution, formed in the chemical trap (described in 

section 3 .5 .2 ) were analysed by HPLC. The conditions for the 

analysis are given in table 96.

Table 96

HPLC analysis of 2,4 DNPH derivatives

Instrument Vari an 5000

Column ^18 reversed phase (30 cm X 3.9 cm)

Column temperature 30°C

Flow rate 2.0
O

cm min”

Injection loop volume 10^

Detector UV at 254 nm

Biney solvent system 0 - 2 min 35% CHgCN : 65% HgO (v/v)

2 - 15 min 35% CĤ CN: 65% HgO to 45% CHgCN

• 55% HgO (v/v)

15 - 30 min 45% CHgCN : 55% HgO (v/v)

The aldehydes formed were identified by comparison of the 

retention times of th e ir  2,4-dinitrophenylhydrazones with authentic 

derivatives. This technique provides an adequate method for the 

analysis of C-j -  Ĉ  aldehydes.
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3.5 .4  Autoxidation experiments

The apparatus, trapping and analytical techniques 

described in sections 3 .5 .1 ,  3.5 .2 and 3.5.3 were employed in the 

autoxidations. The appropriate amount of promotors were used in 

the following forms:

( i )  C oba lt( I I)  and lead ( I I )  bis(2-ethylhexanoatej as n-pentane 

solutions.

( i i )  C o b a lt( I I)  bis (2-ethyl hexanoate) and aluminium bis(2-butoxide) 

ethyl acetoacetate in 2-butanol solution.

( i i i )  Benzil as a diethyl ether solution.

( iv )  Methane sulphonic acid, 

fo r  the experiments presented in table 97. The masses given

are the amount of promotor contained in the 5 g of the methyl ester.

The reactions were a l l  bubbled with dry nitrogen for 12 h prior 

to autoxidation.

Table 97

'~"--__^Cster Methyl oleate 
Promotor (5 g)

Methyl linoleate  

(5 g)
Methyl linolenate 

(5 g)

Cobalt promotor 
Lead promotor

0.012 g 

0.192 g
0.012 g 

0.192 g
0.012 g 

0.192 g

Cobalt promotor 
Aluminium oromotor

0.012 g 

0.0893 g
0.012 g 

0.0893 g
0.012 g 

0.0893 g

Benzil 0.05 g 0.05 g 0.05 g

Methane sulphonic acid 0.05 g 0.05 g 0.05 g

Experimental conditions
3 . -1cm mm

C
10 h ( i .e .  to ta l of 10 h)
cryogenic trap :-  glc and gc-ms 
chemical trap :-  HPLC

Oxygen flow rate 40
Reaction temperature 20°
Collection period 0 -
Trapping techniques and ( i )  
analytical methods ( ü )



The experiments described in table 98 were not carried 

out under such rigorous conditions as those in ta b le 97 .

Table 98
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Ester Benzoyloxyethyl 
linoleate  

2 q

2-hydroxyethyl
linoleate

3 g

2-hydroxyethyl 
linolenate  

3 g
Promotor

Cobalt promotor 0.005 g

Lead promotor 0.077 g

Benzil 0.02 g

Methane sulphonic
acid 0.03 g 0.03 g

Experimental conditions

Oxygen flow rate 40 cm^min”^

Analysis carried out by glc and gc-ms

The catalysts were in the form used for the methyl esters.

The autoxidation experiments carried out on the dienes are shown on 

table 99.

Table 99

Reactant 6,9-Pentadecadiene 8-methyl-6 ,9 -  
pentadecadiene

(1 g )

8.8-dimethyl-
6.9-penta- 
decadiene

(1 g )
Promotor

(1 g )

Cobalt promotor 0.002 g 0.002 g 0.002 g

Lead promotor 0.038 g 0.038 g 0.038 g

Benzil 0.002 g 0.002 g 0.002 g

Methane sulphonic 
acid in the presence 
of n-butanol (1 g)

0.002 g

All benzil promoted autoxidations were irradiated with ligh t from a 

Shandon 2753 daylight lamp.
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3.6 Autoxidation of alkyd resins

3.6.1 Autoxidation apparatus

The alkyd resins do not permit the bubbling of gas

through them as described in section 3 .5 .1 . Thus the resins were

spread on 15 glass plates (10 x 20 cm) at a thickness of 

approximately 0.004" using a block spreader. These plates were 

f i t t e d  into an aluminium rack and this placed into an a ir - t ig h t  

13" X 10" X 7" Shandon glass chromatography tank. Dry nitrogen was 

passed through this enclosure for 4 days to remove some of the toluene 

vapour formed through evaporation from the plates.

The apparatus was set up as shown in photograph 3.6.1.1 and 

diagram 3 .6 .1 .1 .  The collection and analysis methods discussed in 

sections 3 .5 .2  and 3.5 .3  were used in these autoxidation experiments. 

The dry gas enters the enclosure at point D and exits via E into the 

trapping apparatus. The benzil promoted autoxidations were 

irradiated with l ig h t  from the daylight lamp above (diagram 3 .6 .1 .1 ) .

The catalysts used were as in section 3 .5 .4 .

3 .6 .2  Alkyd autoxidation experiments

Alkyd autoxidations were carried out as tabulated

in table 100. •

The low acid value alkyd (40 g) was autoxidised using cobalt ( I I )  

bis(2-ethylhexanoate) (0.05 g) and aluminium bis(2-butoxide) ethyl 

acetoacetate in a 2 butanol solution (3.85 g). The autoxidation of 

series 2, the variable hydroxyl content,alkyds (40 g), was carried 

out in the presence of methane sulphonic acid (0.22 g).
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Alkyd (a l l  40 g)
Wt. of promotor (g) 
cobalt lead Benzil

Tall o i l  alkyd 0.05 0.85 0.19

Soya bean o il alkyd 0.05 0.84 0.18

Linseed o il alkyd 0.05 0.85 0.19

Isomerginic acid S.F. alkyd 0.05 0.87 0.21

Dehydrated castor o il alkyd 0.05 0.84 0.18

Pure l in o le ic  acid alkyd 0.05 0.85 0.19

Linseed alkyd PE/PA/FA
1.24 1.0 1.33

0.04 0.68 -

3.6.3 Time lapse infrared spectroscopy studies

The autoxidation and drying reactions of several alkyd 

resins were studied by a computer controlled Perkin Elmer 983 infrared  

spectrometer, diagram 3 .6 .3 .1 . The alkyd resin and promotor mixture 

with the promotors used at the levels in section 3.6.2 was spread on 

either a potassium bromide or s ilve r  chloride disc and the excess 

solvent removed under vacuum {r^6 mm Hg). The film  thickness was 

adjusted to give approximately 5% transmittance at the ester carbonyl 

band (approximately 1740 cm”^). The computer was programmed to record 

and store spectra in digitised form then to do so repeatedly a f te r  

desired time intervals. The storage devices were floppy discs.

Point by point subtraction of two spectra could be performed to give a 

difference spectra and the area of peaks in a difference spectra could 

be calculated. The experiments carried out using time lapse infrared  

spectroscopy are summarised in table 101.
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A1 kyd Promotor Plate used

Pure lin o le ic  
acid alkyd

Co bait and lead 
promotor

KBr

Pure l in o le ic  
acid alkyd

Cobalt promotor KBr

Pure l in o le ic  
acid alkyd

L ead promotor KBr

Pure lin o le ic  
acid alkyd

Benzil promotor KBr

Linseed o il alkyd
PE/PA/FA
1.24 1.0 1.33

Methane sulphonic 
acid

AgCl

Low acid value 
al kyd

Cobalt and aluminium 
promotors

KBr

Low acid value Aluminium bis 
(2-butoxide) ethyl 
acetoacetate

KBr

The reactions were analysed under two time conditions:

( i )  spectra recorded every 15 minutes for the f i r s t  3 hrs and then 

every hour until 12 hours reaction time; ( i i )  every 60 minutes for the 

f i r s t  15 hours and thereafter every 5 hours up to 45 hours reaction time 

The results from these experiments are presented in sections 2.7 and 2.8 

respectively.

Near infrared analysis of the hydroperoxide group (/^ 6890 cm ^) 

was conducted on films spread on either a potassium bromide or s ilve r  

chloride disc. The solvent was removed as before but no adjustment 

was made to the film  thickness. The spectra were manually recorded 

on a chart recorder, in the range 8330 -  6667 cm "\ approximately every
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15 minutes over a total period of 3 hours. The following autoxidation 

experiments were analysed by near infrared spectroscopy.

Table 102.

Table 102

Alkyd Promotor IR Disc

Pure l in o le ic  acid Co/Pb KBr

Low acid value alkyd Co/Al KBr

Linseed o il fa t ty  acid 

Alkyd PE/PA/FA 

1.24 1.0 1.33

M.S.A. AgCl

Pure l in o le ic  acid Benzi1 KBr

3.7 Collection of vapours accompanying autoxidation under reduced 

pressure

3.7.1 Collection method

The analysis of the less v o la t i le  components from the 

autoxidation of methyl c is -9 - cis-12-octadecadienoate in the presence 

of cobalt and lead promotors was investigated by trapping the compounds 

at reduced pressure. The ester was f i r s t  autoxidised under an oxygen 

atmosphere for at least 24 hours prior to the analysis. The apparatus, 

depicted in diagram 3.7.1 had two traps both at -95°C (liqu id  nitrogen/ 

toluene slush bath). The compounds were collected by evacuating the 

apparatus to 10 mm Hg pressure and the flask F warmed gently; the 

material collected in trap H was analysed by gc-ms. No products were 

found a t  point G.
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PUMP

F

Diagram 3.7.1

3 .7 .2  Chromatography conditions

Packed column glc and gc-ms analysis were both 

performed on the material collected in trap H. The conditions for  

the glc separation are given in table 103.

Table 103

Stationary phase SPIOOO

Column length 2 metres

Carrier gas flow rate 40 cm̂  min"^

Carrier gas Nitrogen (oxygen f re e ) .  Helium used 
for gc-ms analysis.

Oven temperature 150°C isothermal 10 minutes then at  

2°C m1n'1 up to 210°C.

In ject or volume 2^1

Detector Flame ionisation detector

Injection temperature 200°C

Detector temperature 240°C

The gc-ms analysis was conducted under the conditions described 

in table 93.
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3.8 Miscellaneous experiments

3.8.1 Autoxidation of methyl (CDg) l inoleate with

cebalt ( I I )  and lead ( I I )  bis(2-ethylhexanoate)'

Methyl (CDg) cis-9-cis-12 octadecadienoate (2.2 g) 

was autoxidised in the presence of cobalt ( I I )  bis(2-ethylhexanoate) 

(0.005 g) and lead ( I I )  bis(2-ethylhexanoate) (0.085 g) for 10 h.

The apparatus and trapping (cryogenic only) techniques were as 

described in sections 3.5.1 and 3.5 .2 .  Packed column El gc-ms 

analysis was carried out. The results and discussion are given 

in section 2.10.1.

3.8.2 Ethyl acetoacetate formation from aluminium 

bis(2-butoxide) ethylacetoacetate in 2-butanol solution

Nitrogen was passed through aluminium bis(2-butoxide) ethyl 

acetoacetate (O.lg) in 2-butanol solution (2 g) for 10 h using the 

apparatus described in section 3.5.1 and 3 .5 .2 ,and the condensed 

vapour analysed by packed column glc. To the remaining aluminium 

compound mixture was added methyl cis-9-cis-12-octadecadienoate (5 g) 

and this mixture had nitrogen passed through i t  for 10 h, again the 

collected material was analysed by packed column glc. These results 

are discussed in section 2.10.2.

3.8.3 Control experiments

The experiments given in table 104 ' were performed 

using the apparatus discussed in section 3.5.1 and 3.5.2 and the 

promotor amounts described in table 97.
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Ester Promoter Gas used 
in bubbling

Analysis 
techniques used

Methyl l inoleate  
(5 g)

- 02 glc, HPLC

Methyl l inoleate  
(5 g)

Co/Pb N2 glc, HPLC

Methyl stearate 
(5 g)

Co/Pb 02 glc

6,9'Pentadecadiene - N2 glc
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Chapter 4 Conclusion

The autoxidation of unsaturated fa t ty  acids esters proceeds by 

radical reactions to give, as their  primary products, hydroperoxides. 

The decomposition of hydroperoxides gives alkoxy radicals, which may 

either abstract hydrogen from a suitable substrate or else undergo 

3-scission reactions.

I t  is this chemistry which provides the a i r  drying properties 

of alkyd resin based gloss paints. However, the drying process 

is usually accompanied by the formation of odourous compounds.

These are believed to result from the unsaturated fa t ty  acid 

components in the resin. Autoxidative crosslinking can be promoted 

by transition metal salts (e.g. cobalt ( I I )  salts)  or photoinitiators 

(e.g. benzi l) .  In addition strong acids, such as sulphonic acids, 

promote crosslinking.

The redox and photochemical promotors are believed to increase 

the rate of drying by enhancing hydroperoxide formation; the redox 

promotors also ca ta ly t ica l ly  decompose hydroperoxides. The strong 

acid promotors are believed to operate purely by decomposition of 

hydroperoxides and crosslink through acetal formation.

The'volati le'  products formed during the cobalt promoted 

autoxidation of methyl cis-9-octadecenoate, methyl c is -9-  cis-12-  

octadecadienoate and methyl cis-9-cis-12-cis-15-octadecatrienoate  

were studied as simple autoxidation systems. The redox and 

photoinitiated autoxidations both gave similar vo la t i le  products 

(e.g. aldehydes, alcohols and methyl esters),  but with benzil 

photochemically promoted autoxidations only ca. 10% of the quantity



351

of 'volat i le*mater ia l  formed with the redox system was observed.

By comparison this autoxidation of the methyl esters in the 

presence of strong acid (methane sulphonic acid) did not produce 

any detectable vo la t i le  products. However, the strong acid promoted 

drying of alkyd resins had been found to proceed only in the presence 

of a suf f ic ient  excess of hydroxyl groups.

The vo la t i le  products arise from hydroperoxide decomposition.

The difference in quantity of products may result from the apparent 

in a b i l i ty  of benzil to decompose hydroperoxides.

To mimic better the autoxidation conditions in an alkyd resin,

three model alkyds were prepared namely: benzoyloxyethyl l inoleate

LXXXXI, 2-hydroxyethyl l inoleate LXXXXV, and 2-hydroxyethyl linolenate

LXXXXVII. The autoxidation of LXXXXI in the presence of either

cobalt ( I I )  bis(2-ethylhexanoate) or benzil produced similar vo la t i le

products to those from the simple methyl esters, with the notable

exception of any methyl carboxylates owing to the absence of a

carboxymethyl group in the substrate. The autoxidation of LXXXXV

and LXXXXVII in the presence of methane sulphonic acid gave
Aî

2-pentyl- 1 ,3^oxirane and 2-ethyl- 1 ,3-|Dxirane respectively along with 

some unidentified hydrocarbons. No significant  carbonyl formation 

was observed. These observations support the suggestion of acetal 

formation caused by acid decomposition of hydroperoxides in the 

presence of alcohols.

The e f fect  of the secondary promotors i . e .  lead ( I I )  

bis(2-ethylhexanoate) and aluminium bis(2-butoxide) ethyl acetoacetate 

was found to be minimal. The dif ferent odour characteristics found 

from cobalt ( I I )  bis(2-ethylhexanoate) and aluminium bis(2-butoxide)
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ethylacetoacetate promoted autoxidation results purely from the 

preponderance of 2-butanol and ethylacetoacetate among the vo la t i le  

products. Ethyl acetoacetate results from displacement reactions, 

from the metal complex, by some of the autoxidation products.

The incorporation of the lead promotor with the cobalt promotor had 

no marked e f fect  on the vo la t i le  products.

Some vo la t i le  compounds result from the promotors e.g. in 

autoxidation promoted by cobalt ( I I )  bis(2-ethylhexanoate) or lead ( I I )  

bis(2-ethylhexanoate), methyl-2-ethylhexanoate and 2-ethylhexanoic acid 

are generally found. Further methyl-2-ethylhexanoate is not formed 

i f  the carboxymethyl group is absent from the autoxidation mixture.

The autoxidation of methyl (dg) l inoleate in the presence of cobalt ( I I )  

bis(2-ethylhexanoate) formed methyl (dg) 2-ethylhexanoate in the 

vola t i les  and appears to result from a transestérif ication process.

No methyl 2-ethylhexanoate was observed in any alkyd resin autoxidation. 

All autoxidation reactions promoted by benzil were found to produce, 

in ter  a l i a , benzaldehyde. This originates from radicals formed as the 

result of hydrogen abstraction by the benzil t r ip l e t  state.

The redox and photoinitiated autoxidation of a series of alkyd 

resins with varying oi l  composition (alkyd series 1) produced the 

vo la t i le  compounds expected from the individual unsaturated fa t ty  

acids present, thus showing that the mechanism of vo la t i le  formation 

in alkyd resins is the same as that in the methyl esters.

The autoxidation of a series of 'variable hydroxyl excess' alkyds 

(alkyd series 2) in the presence of methane sulphonic acid, showed 

similar products to those found in the redox and photoinitiated 

autoxidations e.g. aldehydes. This may be explained by the immobility
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within the drying resin, i . e .  the hydroxyl groups were too remote 

for reaction with the oxenium cations. Consequently the products 

associated with 3-scisson of alkoxy radicals dominate.

Time lapse infrared studies of the drying alkyd films provided 

support for the above observations. The redox and photoinitiated 

autoxidations a l l  showed hydroperoxide formation, increase of trans 

unsaturation, carbonyl formation coupled with the loss of cis 

unsaturation and hydrocarbon groups. The 'hydroxyl excess' alkyds 

in the presence of methane sulphonic acid showed the above changes 

but also the formation of acetals during the drying process and 

accords with the proposed mechanism of crosslinking.

The observed rate of hydroperoxide formation in the drying alkyd 

resins was determined and found to depend on the promotor present.

There was a correlation between the quantity of vo la t i le  material 

produced in the promoted autoxidations and the rate of hydroperoxide 

formation. Those promotors which induced the formation of the largest 

amount of 'vo la t i les '  showed a lower observed rate of hydroperoxide 

formation. Thus i f  a promotor does not induce the decomposition of 

hydroperoxides, leading to vo la t i le  formation, the concentration of 

hydroperoxides increases.

The effect  of varying the autoxidation s ite  by adding methyl 

groups to the central doubly a l l y l i c  methylene group was observed.

The 'v o la t i le '  autoxidation products from 8-methyl-6,9-pentadecadiene 

showed a greater quantity of both the total volat i les formed and the 

amount of 2-heptenal, hexanal being the major product, compared to 

those from 6,9-pentadecadiene (hexanal the major product). The
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autoxidation of 8 , 8-dimethyl-6,9-pentadecadiene however produced 

a greater proportion of 2-heptenal (now the major product) but overall 

a lower total quantity of vo la t i le  material.

In conclusion, the vo la t i le  compounds formed during the 

autoxidative crosslinking of alkyd resins include aldehydes, ketones 

and carboxylic acids. The use of secondary driers or complexing 

promotors does not s ignif icantly  change these products. The methyl 

esters, methyl cis-9-octadecenoate, methyl cis-9-cis-12-octadecadienoate 

and methyl cis-9-cis.l2-cis-15-octadecatrienoate, are good models for  

the study of alkyd resins and their  autoxidation.

The strong aCid promoted a ir  drying of alkyd resins is an 

autoxidative process, with the acid decomposition of the hydroperoxides 

to oxenium cations and their  reaction with alcohols providing the 

crosslinking. In the model 'hydroxyl excess' alkyds LXXXXV and LXXXXVII 

carbonyl vo la t i le  formation is suppressed. Whilst in an 'hydroxyl excess' 

alkyd resin carbonyl formation is dominant.

The quantity of vo la t i le  produced was seen to depend on ( i )  the 

promotor used, i . e .  cobalt ( I I )  bis(2-ethylhexanoate) promotes 10 times 

the quantity of that promoted by benzil ,  and ( i i )  the degree of  

unsaturation present. Yields of 'v o la t i le '  products was found to be 

in the order methyl 1inolenate>methyl 1inoleate>methyl oleate.



355

References

1 Swern, D. Organic peroxides, vol. 1.

2 Bach, M.A., Compt. Rend. 124, 951 (1897).

3 Engler, C., and Wild, W. Ber., 30, 1669 (1897).

4 Baeyer, A., and V i l l ig e r ,  V.,  Ber. 33, 858,(1900).

Ber. 33, 1569,(1900).

5 Jonissen, H . , and Van der Beck, S.,  Rec. Trav. Chim. 45, 245 (1926)

6 Stephens, H.N., J. Am. Chem. Soc., 50, 568 (1928).

7 Criegee, R . , Pihz, H . , and Flygave, H . , Chem. Ber. 72, 1799 (1939).

8 Farmer, E.H., and Sundralingam, A.J .,  J. Chem. Soc., 121 (1942).

9 Paquot, C . , Bull .  Soc. Chim. France 12, 120, 450 (1945).

10 Paquot, C . , Oléagineux, 15, (1947).

11 Baranger, P.,  and Maréchal, R . , Compt. Rend. 231, 661 (1950).

12 Baranger, P.,  and Maréchal, R . , Bull . Soc. Chim. France 782 (1957).

13 Bernard, M., Compt. Rend., 236, 2412 (1953).

14 Bernard, M., Parfums, Cosme't, Savons 1, 467 (1958).

15 Bernard, M., Ann. Chim. Paris 10, 315 (1955).

16 Davies, A.G., and Packer, J .E . ,  Chem. and Ind. London 1165, (1960).

17 Hock, H . , and Schrader, 0 . ,  Naturwissenschaften 24, 159 (1936).

18 Farmer, E.H. and Sutton, D.A., J. Chem. Soc., 119 (1943).

19 Swift,  C.E., Dollear, F.G. and O'Connor, R.T.,  J. Am. Oil.Chemists'

Soc., 23, 355 (1946).

20 Bergstrom, S.,  Arkiv. Kemi. Mineral. Geol. 21A, 1 (1945).

21 Bolland, J .L . ,  and Koch, H.P., J. Chem. Soc., 445 (1945).

22 Dugan, L.R. J r . ,  Beadle, B.W., and Henck, A.S.,  J. Am. Oi l .  

Chemists' Soc., 25, 153 (1949).

23 Cannon, J.A .,  Zi lch, K.T.,  Burket, S.C., and Datton, H.J .,

J. Am. Oil .  Chemists' Soc., 29, 447 (1952).

24 Fugger, J . ,  Cannon, J.A.,  Zi lch,  K.T.,and Dutton, H.J .,
J. Am. Chem. Soc., 73, 2861 (1951).



356

25 Fugger, J . ,  Z ilch, K.T.,  Cannon, J .A .,  and Dutton, H.J .,
J. Am. Chem. Soc., 73, 2861 (1951).

26 Pr ivet t ,  O.S., Lundberg, W.O. and Nickel l ,  C.J.,
J. Am. Oi l .  Chemists' Soc., 30, 17 (1953).

27 Zilch, K.T.,  and Dutton, H.J .,  Anal. Chem. 23, 775 (1951).

28 Coleman, J .E . ,  Knight, H.B., and Swern, D.J.,  J. Am. Chem. Soc., 
74, 4886 (1952).

29 Burnett, M., and Desnuelle, P., Rev. Franc. Corps. Gros.
3, 325 (1956).

30 Frankel, E.N., Evans, C.D., McConnell, D.G., and Jones, E.P.,
J. Am. Oil Chemists' Soc., 38, 134 (1961).

31 Sephton, H.H., and Sutton, D.A., J. Am. Oil Chemists' Soc.,
33, 263 (1956).

32 Bolland, J .L . ,  Proc. Roy. Soc. (London), A186, 218 (1946).

33 Bolland, J .L . ,  and Gee, G. Trans. Faraday Soc., 42, 236 (1946).

34 Khan, N.A., Tolberg, W.E., Wheeler, D.H. and Lundberg, W.O.,
J. Am. Oil Chemists' Soc., 31, 460 (1954).

35 Swern, D . , Scanlan, J .T . ,  and Knight, H.B., J. Am. Oil Chemists' 
Soc., 25, 193 (1948).

36 Swern, D . , Coleman, J .E . ,  Knight, H.B., R icc iu t t i ,  C,

Will i t s ,  C.O. and Eddy, C.R., J. Am. Chem. Soc., 75, 3135 (1953),

37 Ross, J . ,  Gebhart, A . I . ,  and Gerecht, J.F. J. Am. Chem. Soc.

71, 282 (1949).

38 Knight, H.B., Swern, D . , and Eddy, C.R., J. Am. Oil Chemists' 

Soc., 28, 188 (1951).

39 Pr ivett ,  O.S., and Nickel l ,  E.C., Fette. Seifen, Anstrichm,

61, 842 (1959).

40 Khan, N.A., Oléagineux 397 (1964).

41 Schollner, R . , and Hertzschuh, R., Fette.Seifen. Anstrichnm.

68, 469 (1966).

42 Mercier, J . ,  Comp. Rend. Acad. Sci. Paris 269, 1002 (1969).

43 P i r e t t i ,  M.V., Capella, P., and Pallotta, V.,  Riv. I t a l .

Sostanze Grasse 46, 652 (1969).



357

44 Capella, P.,  P i r e t t i ,  M.V., and Strocchi, A.,  Ibid. 46, 659 (1969).

45 P i r e t t i ,  M.V., Capella, P., and Bonaga, G. , J. Chromatogr.
92, 196 (1973).

46 Frankel, E.N., Neff, W.E., Rohwedder, W.K., Khambay, B.P.S.,  
Garwood, R.T.,  and Weedon, B.C.L.,  Lipids 12, 901 (1977).

47 Garwood, R.F.,  Khambay, B.P.S., Weedon, B.C.L.,  and 

Frankel, E.N., J. Chem. Soc. Chem. 364 (1977).

48 Chan, H.W.S., and Levett, G., Chem. Ind. (London) 692 (1977).

49 Park, O.K., Terao, T . ,  Matsushita, S.,  Agric. Biol.  Chem.
1981, 45 (9 ) ,  2071-6 (Eng.).

50 Treibs, W., Ber., 75, 925 (1942).

51 Farmer, E.H.,Koch, H.P., and Sutton, D.A., J. Chem. Soc.
541, (1943).

52 Mitchell ,  J .H . ,  Kraybil l ,  H.R. and Zscheile, F .P.,  Ind. Eng.
Chem. Anal. 15, 1 (1943).

53 Gunstone, F.D.,  and Hilditch,  T.P . ,  J. Chem. Soc. 836 (1945).

54 Huckel, E . , Electrochem. 43, 841 (1937).

55 Bergstrom, S.,  Nature 156, 717 (1945).

56 Pr ivett ,  O.S., Lundberg, W.O., Khan, N.A., Tolberg, W.E.,
and Wheeler, D.H., J. Am. Oil Chemists' Soc. 30, 61 (1953).

57 Hal l ,  G.E., and Roberts, D.G., J. Chem. Soc. B 1109 (1966).

58 Chan, H.W.S. and Levett, G., Lipids 12, 99 (1977).

59 Frankel, E.N., Fatty acids 353-378 (1979).

60 Hamberg, M., and Samuelsson, B., J. Biol.  Chem., 242, 5329.

61 Dolev, A.,  Rohwedder, W.K., and Dutton, H.J . ,  Lipids 2, 28 (1967).

62 Zimmerman, D.C., and Vick, B.A., Lipids 5, 392 (1970).

63 Gardner, H.W. and Weisleder, D . , Lipids 5, 678, (1970).

64 Leu, K., and Anderson, J . ,  Lebensm J . ,  Wiss, V.,  Technol.

7, 42 (1974).



358

65 Chan, H.W.S., and Prescott, F.A.A.,  Biochimica et 
Biophysica Acta, 380, 141-44 (1975).

66 Chan, H.W.S., and Levett, G., Acetos du Congres Monidal-Societe 

In t .  I 'Etu des corps Gras 13th Section D 73-79 (1976).

67 Chan, H.W.S. and Levett, G., Lipids 12, 99, (1977).

68 Terao, T . ,  and Matsushita, S. ,  Agric and Biol.  Chem.
39, 10, 2027-2033 (1975).

69 Terao, T . ,  and Matsushita, S. ,  Agric. and Biol.  Chem.
41, 12, 2401-2405 (1977).

70 Parker, N.A., Weber, B.A., Weenen, H . , and Khan, J.A.,
J. Am. Chem. Soc. 102, 5597-5601.

71 Mayo, P. de., Molecular rearrangements Vol. 1 Interscience 

1963 page 435.

72 Walling, C . , and Thaler, W., J. Am. Chem. Soc. 83, 3877 (1961).

73 Menguy, P.,  Chanvel, A., Clement, G., and Balaceanu J.C .,
Bull . Soc. Chim. Fr. 2643 (1963).

74 Howard, J.A. and Ingold, K.U., Can. J. Chem., 45, 793 (1967).

75 Chan, H.W.S., Levett, G., and Matthew, J . ,  J. Chem. Soc.
Chem. Comm. 756 (1978).

76 Chan, H.W.S., Levett, G., and Matthew, J .A . ,  Chemistry and 

Physics of Lipids 24, 245-256 (1979).

77 Frankel, E.N., "Symposium on foods: Lipids and their oxidation"
Avi publishing Co. page 51, (1962).

78 Grosch, W., Schieberle, P., and Laskawy, G., Flavour 81 

(Wearman Symposium, 3rd) 433-48 (1981).

79 Khan, N.A., Can. J. Chem. 37, 1029-34 (1959).

80 Pr ive t t ,  O.S., Nickell ,  C . , Tolberg, W.E., Pashke, R.F.,
Wheeler, D.H., and Lundberg, W.O., J. Am. Oil Chemists' Soc.

31. 23-27 (1954).



359

81 Frankel, E.N., Evans, C.D., McConnell, D.G., Selke, E.,  
and Dutton, H.J.,  J. Org. Chem. 26, 4663-4669 (1961).

82 Chipault, J.R.,  and Hawkins, J.M., J. Am. Oil Chemists' Soc.
36, 535 (1959).

83 Frankel, E.N., Neff, W.E., Rohwedder, W.K., Khambay, B.P.S.,
Garwood, R.F. and Weedon, B.C.L. Lipids 12, 1055 (1977).

84 Chan, H.W.S., and Levett, G., Lipids, 12, 837 (1977).

85 Begemann, H.P., Woestenburg, W.J., and Leer, S. J. Agric.
Food Chem. 16, 679 (1968).

86 Gunstone, F.D., "An Introduction to the chemistry of the 

chemistry and biochemistry of fa t ty  acids and their  glycerides" 

Chapman and Hall Ltd. ,  London, 2nd edit ion, pp. 108-109 (1967).

87 Pryor, W.A., Stanley, O.P., and B la ir ,  E. Lipids 11, 370 (1976).

88 Dahle, L.K.,  M i l l ,  E.G. and Holman, R.T.,  Arch. Biochem.
Biophys. 98, 253 (1952).

89 Kwon, T.W., and Olcott, H.S., Nature, 210, 5032, 214-15 

(1966) Eng.

90 Chan, H.W.S., Matthew, J .A . ,  and Coxon, D.T.,  J.C.S. Chem. Comm.
235 (1980).

91 Porter, N.A., and Funk, M.O., J. Org. Chem., 24, 3614 (1975).

92 Mihelich, E.E.,  J. Am. Chem. Soc. 102, 7141 (1980).

93 Porter, N.A., Funk, M.O., Gilmore, D.W., Isacc, R . ,
Nixon, J.R. J. Am. Chem. Soc. 98, 6000, (1976).

94 Beckwith, A.L.J. ,  Lawrence, T . ,  Serelis, A.K., J. Chem. Soc.

Chem. Comm. 11, 484 (1980)

95 Porter, N.A., Roe, A.N., McPhail, A.T . ,  J. Am. Chem. Soc., 102, 7574 

(1980).

96 G r i l l e r ,  D . , Ingold, K.U. and Walton, J .C .,  J. Am. Chem. Soc.

101, 3, 758 (1979).

97 Schieberle, P., and Grosch, W., Z. Lebensm Unters Forsch, 173 

199-203 (1981).



360

98 Badings, H.T.,  J. Am. Oil Colour Chemists' Soc. 36, 648 (1959).

99 Farmer, H . , Trans. Faraday Soc. 42, 236 (1946).

100 Schenck, G.O., Neumuller, A.O. and E is f ie ld ,  W., Justus Liebigs 

Ann. Chem. 618, 202 (1958).

101 B r i l l ,  W.F., J. Am. Chem. Soc. 87, 3286 (1965).

102 Chan, H.W.S., and Levett, G., Proc. ISF (1976) Sect. A.

103 Kaskas, J .P . ,  C i l lard ,  J . ,  and C i l lard ,  P. Journal of
chromatography 258, 280-283 (1983).

104 Standiner, H . , Ber. 58, 1075 (1925).

105 Bowey, E.A., and Kolthoff,  I .M . ,  J. Am. Chem. Soc. 69, 2143 (1947).

106 Barnes, C.E., Elofsom, P.M., and Jones G.D., J. Am. Chem. Soc.
67, 217 (1945).

107 Barnes, C.E., Elofsom, P.M., and Jones, G.D., J. Am. Chem. Soc.
72, 210 (1953).

108 Smeltz, K.C., Dyer, E . , and Strauze, J .F . ,  J. Am. Chem. Soc.
74, 623 fl952).

109 Smeltz, K.C., Dyer, E . , and Stranze, J .F . ,  Ibid. 78, 136 (1956).

110 Smeltz, K.C., Dyer, E . , and Strauze, J .F . ,  Ibid. 81, 4243, (1959).

111 O'Nei l l ,  L.A.,  Chem. Ind. (London) 384 (1954).

112 Ault, W.C., Knight, H.B., Scanlan, J .T . ,  and Swern, D . ,
J. Am. Chem. Soc. 67, 1132 (1945).

113 Davies, A.G., Organic Peroxides Butterworths, London 1961.

114 Hawkins, E.G.E., Organic Peroxides, van Nostrand Princeton, N.J.,  

1961

115 Arluck, P.M., Mayo, F.R.,  Syz, M. and van Sickle, D.E.,
J. Amer. Chem. Soc. 89, 967 (1967).

116 Turner, G.P.A., Introduction to Paint chemistry, Chapman and

H a l l , London, 1980.

117 Chang, S.S.,  and Kummerow, F.A., J. Am. Oil Chemists' Soc.

30, 251 (1953).



361

118 Miayshita, K., Fujimoto, K., and Kaneda, T . ,  Agric. Biol.
Chem. 46 (3) 751 (1982).

119 Miyashita, K., Fujimoto, K., and Keneda, T . ,  Agric. Biol.
Chem. 46 (9 ) ,  2293 (1982).

120 Wexter, H.,  Chem. Rev. 64, 6, 591 (1964).

121 Poisson, R., Double Liaison 20, 215, 273 (1973).

122 Estrada, N.S., Australian OCCA Proceedingsand News, August,
24, (1982).

123 P i r e t t i ,  M.V., Cavani, C . , and Z e l i ,  F . , Revue Française des
Corps Gras 25, 2, 73-9 (1978).

124 Koki, J .K . ,  and Krusic, P .J . ,  J. Am. Chem. Soc. 90,7157 (1968).

125 M i l le r ,  A.A., and Mayo, F.R.,  J. Am. Chem. Soc. 78, 1017 (1956).

126 'Organic peroxides' Volume I I ,  Wiley Interscience, New York,
1971 Editor, Daniel Swern.

127 Pr ive t t ,  O.S., 0. Am. Oil Chemists' Soc. 36, 507 (1959).

128 Mehrotra, R.C., and Bohra, R . , 'Metal carboxylates'
Academic Press, (1983).

129 E l l i o t t ,  S.B., "The alkaline Earth and Heavy metal soaps' 
Reinhold, New York (1946).

130 McBain, J.W., 'Colloid Science' Reinhold, New York (1950).

131 Morley-Smith, C.T., J. Oil Colour Chemists' Association 

40, 1035 (1957).

132 Bawn, C.E.H., Discussion Faraday Soc. 14, 181 (1953).

133 Bawn, C.E.H., and Jolley, J .E . ,  Proc. Roy. Soc. 237A, 297 (1956).

134 Heiba, E . I . ,  Dessau, R.M., and Koehl, W.J., J. Am. Chem. Soc.
91, 6830, 1969.

135 Dessau, R.M., Shih, S.,  and Heiba, E . I . ,  J. Am. Chem. Soc.
92, 412,(1970).

136 Fenton, H.J.H.,  J. Chem. Soc. 65, 899 (1894).



362

137 Haber, F . ,  and Weiss, J . ,  Proc. Roy. Soc. (London), A.147,
332 (1934).

138 Denisov, E.T .,  and Emanuel, N.M., Russian Chem. Rev. 29, 645 (1960).

139 H ia t t ,  R., M i l l ,  T . ,  and Mayo, F.R.,  J. Org. Chem. 33, 1416 (1968).

140 H ia t t ,  R . , Irwin, K.C. and Gould, C.W., J. Org. Chem. 33, 1430 (1968)

141 Orr, R .J .,  and Williams, H.L.,  J. Am. Chem. Soc. 78, 3273 (1956).

142 Deklein, W.J. and Kooyman, E.C., J. Catalysis. 4, 626 (1965).

143 Den Hartog, H.J .,  and Kooyman, E.C. J. Catalysis 6, 347, 357 (1966).

144 Uri,  N., Chem. Ind. 2060 (1967).

145 Betts, A.T . ,  Uri,  N . , Makromolekulore chemie 95, 22-39 (1966).

146 Betts, A.T. and Uri,  N . , Makromolekulore chemie 95, 22 (1966).

147 Richardson, W.H., J. Amer. Chem. Soc. 87, 247 (1965).

148 Richardson, W.H., J. Amer. Chem. Soc. 87, 1096 (1965).

149 Kochi, J . ,  J. Amer. Chem. Soc. 84, 1193 (1962).

150 Hendriks, C.F.,  Heertjes, P.M., and Hendrik, C.A. van Beehr,
Industrial and engineering chemistry 18, 3, 216 (1979).

151 Pritzkow, W., and Muller,  K.A., Ann. 597, 167 (1955).

152 Pritzkow, W., and Hahn, I . ,  J. Prakt. Chem.16, 282, (1962).

153 Rieche, A., and Meister, R . , Ber, 64, 2328 (1931).

154 Pritzkow, W., and Muller, K.A., Ber, 89, 2321 (1956).

155 a Murai, S.,  Sonoda, N . , and Tsutsumi, S.,  Bull. chem. soc.
Japan 37, 1187 (1964).

15 5b Berezin, I . V . ,  Denisov, E.T.,  and Emanuel, N.M., 'The oxidation
of cyclohexane', Moscow University press, (1962).

156 Hawkins,E.G.E., Nature 166, 69 (1950).

157 Hawkins, E.G.E., and Young, D.P. J. Chem. Soc. 2804 (1950).

158 Punderson, J.O.,  US Patent 2, 822 (399) (1958).

159 Walling, C . , and Wagner, P .J . ,  J. Amer. chem. Soc. 86, 3368 (1964).



363

160 H ia l t ,  R., Irwin, K.C. and Gould, C.W., J. Org. Chem. 33, 4,
1430 (1968).

161 Kharasch, M.S. and Fono, A.,  0. Org. Chem. 23, 324 (1958).

162 Kharasch, M.S., and Fono, A. ,  J. Org. Chem. 24, 72 (1959).

163 Kharasch, M.S., Panson, P.,  and Nudenberg, W. J. Org. Chem.

18, 322 (1953).

164 Chatfield, H.W., Paint Manufacture 20, 116 (1950).

165 Weiss, J. J. Oil and Colour Chemists' Association 40, 863,(1957).

166 Weiss, J . ,  Paint Manufacture 28, 112 (1958).

167 Turner, J.H.W., and Womersley, P.,  Chemistry and Industry 203, (1975)

168 Turner, J.H.W., and Lakin, W.K.H., J. Oil Colour Chemists' Association
62, 419 (1979).

169 Love, D.J.,  0. Coatings Technology 53, 680, 55, (1981).

170 Nicks, P.F.,  European Patent Specification 0 009 356.

171 Nicks, P.F .,  ICI Paints Division, Private communication.

172 Ault,  W.C., and Eisner, A.,  J. Am. Oil Chemists' Soc. 39, 132 (1962).

173 Eisner, A.,  Perl stein. T . ,  and Ault, W.C., J. Am. Oil Chemists'
Soc. 39, 290 (1962).

174 Eisner, A.,  Perl stein, T . ,  and Ault,  W.C., J. Am. Oil Chemists'
Association 40, 594 (1963).

175 Eisner, A.,  Perlstein, T . ,  and Ault, W.C., J. Am. Oil Chemists'
Soc. 41, 557 (1964).

176 Davies, A.G., Foster, R.V., and Nery, R., J. Chem. Soc. 2204 (1954).

177 Criegee, R . , and Kaspar, R . , Ann. 560, 127 (1948).

178 Robertson, A.,  and Waters, W.A., J. Chem. Soc. 1574 (1948).

179 Le f f le r ,  G., Chem. Revs. 45, 385 (1949).

180 Bassey, M., Bunton, C.A., Davies, A.G., Lewis, T.A.,  and
Llewellyn, D.R., J. Chem. Soc. 2471, (1955).



364

181 Burtz lo ff ,  G., Felber, N., Hubner, H., Pritzkow, W., and 

Rolle, W., J. Prakt. Chem. 28, 305 (1965).

182 Anderson, G.H., and Smith, J.G.,  Can. J. Chem. 46, 1553 (1968).

183 Van Stevenick, A.W., and Kooyman, E.C., Rec. Trav. Chim.
79, 413 (1960).

184 Kwart, H., and Keen, R.T.,  J. Amer. Chem. Soc. 81, 943 (1959).

185 Lee, J.B. and Uff ,  B.C., Quart. Rev. Chem. Soc. 21, 449 (1967).

186 Pritzkow, W., and Muller,  K.A., Chem. Ber. 89, 2321 (1956).

187 Hawkins, E.G.E., J. Chem. Soc. 2801 (1950).

188 March, J . , 'Advanced Organic Chemistry', McGraw-Hill,
New York, (1968).

189 Deno, N.C., Billups, W.E., Kramer, K., and Lastomirsky, R.C.,
J. Org. Chem. 35, 9, 3080,(1970).

190 Turner, J.O.,  Tetrahedron Letters 14, 887 (1971).

191 Sheldon, R.A., and van Doom, J.A.,  Tetrahedron Letters 

13, 1021 (1973).

192 Schoellner, R . , and Herzschuh, R . , Fette Seifen Anstrich.
68, 469 (1966).

193 Schoellner, R., and Herzschuh, R . , Fette Seifen Anstrich.
68, 6, 616 (1966).

194 Gardner, H.W., Weisleder, D . , and Nelson, E.C.,
J. Org. Chem. 49, 508 (1984).

195 Gollnick, K. , Advances in Photochemistry Vol. 6 page 2.

196 Foote, C.S., Accounts Chem. Res. 1, 104 (1968).

197 Chan, H.W.S., J. Am. Oil Chemists' Soc. 54, 3, 100 (1977).

198 Armstrong, C.W., Nicks, P.F.,  and Walbridge, D.O., 
Offenlegungsschrift 2350646.

199 Calvert, J.G.,  and P i t ts ,  J.N. 'Photochemistry', Wiley,
New York (1966).

200 Morantz, O.J.,  and Wright, A.J.C.,  J. Chem. Phys. 54, 2, 692 (1971).

201 Brunberg, D.L.,  and Chung, T .T . ,  Cand. J. Chem. 47, 2045 (1969).

202 Brunberg, D.L.,  and Wang, C.T.,  Cand. J. Chem. 46, 1473 (1968).



365

203 Armstrong, C., Internal Report ICI Paints Division (1974).

204 Uberreiter,  W., and Bruns, W., Makromol. Chem. 68, 24 (1963).

205 Walling, C . , and Gibian, M.J., J. Amer. Chem. Soc. 87, 3413 (1965).

206 Hel ler ,  S.R., et a l .  EPA/NIH Mass Spectra Data Base (1978).

207 Sustman, R . , and Schmidt, H . , Chem. Ber., 112, 1440 (1979).

208 W i l ls ta t te r ,  R., and Sonnenfeld, E., Ber. 46, 2952 (1913).

209 Deatherage, F.E.,  and M a t t i l l ,  H.A., Ind. Eng. Chem. 31, 1425 (1939).

210 Swift,  C.E., Dollear, F.G., Brown, I . E . ,  and O'Connor, R.T.,
J. Am. Oil Chemists' Soc. 25, 39 (1948).

211 Fritsch, C.W., and Deatherage, F.E.,  0. Am. Oil Chemists' Soc.
33, 109 (1956).

212 To i l ,  Bnn-ichi, Ota, S.,  and Iwata, K., Yukagaku 11, 508 (1962).

213 Withycombe, D.A., Libbey, L.M., and Lindsay, R.C., Lipids 

6, 10, 758 (1971).

214 Frankel, E.N., Neff, W.E., and Seike, E.,  Lipids 16, 5, 279 (1981).

215 Frankel, E.N., Nowakowska, J . , and Evans, C.D., J. Am. Oil .
Chemists' Soc. 38, 161 (1961).

216 Gray, P, and Williams, A.,  Chem. Rev. 59, 239 (1959).

217 De la Mare, H.E.,  and Vaughan, W.E., J. Chem. Educ. 34, 64 (1957).

218 Komlum, N . , and De la Mare, H.E., J. Am. Chem. Soc. 74, 3079 (1952)

219 Box, H.C., J. Chem. Phys. 73, 5, 2052 (1980).

220 Symons, M.C.R., and Eastland, G.W., J. Chem. Res. 254, (1977).

221 Box, H.C., and Budzinski, E.E., J. Chem. Phys. 62, 197 (1975).

222 Bergene, A.,  and Vaughan, R.A., Internat. J. Radiat. Biol.
29, 145 (1976).

223 Bernhard, W.A., Close, O.M., Huttermann, J . ,  and Zehner, H . ,
J. Chem. Phys. ( in  press).

224 Gilbert ,  G.A., J. Chem. Res. 1, (1977).

225 McMillan, G.R., J. Am. Chem. Soc. 82, 2422 (1960).

226 Mayo, F.R.,  J. Am. Chem. Soc. 89, 2654 (1967).



366

227 Walling, C., and Wagner, P.O., J. Am. Chem. Soc. 85, 2333 (1963); 
86, 3368 (1964).

228 Walling, C., and Thater, W., J. Am. Chem. Soc. 83, 3877 (1961).

229 Gray, P.,  Shaw, R . , and Thynne, J .C .J . ,  Prog. React. Kinet.
4, 65 (1967).

230 Walling, C., and Padwa, A.,  J. Am. Chem. Soc. 85, 1593 (1963).

231 Kochi, J .K . ,  'Free Radicals' Vol. I I ,  John Wiley and Sons (1973).

232 Wohler, F . , and Liebig, J . ,  Ann. 3, 249 (1832).

233 Backstorm, H .L .J . ,  Z. Phys. Chem. 25B, 99, (1934).

234 Bowen, E .J . ,  and T ie tz ,  E.L.,  J. Chem. Soc. 234 (1930).

235 Niclause, M., Selecta Chim. 15, 57 (1956).

236 McNesby, J .R .,  and Heller ,  C.A., Chem. Rev. 57, 325 (1954).

237 Martin, C.J . ,  Schepartz, A. I . ,and Daubert, B.F.,  J. Am. Oil Chemists
Soc. 25, 113-117 (1948).

238 Schepartz, A . I . ,  and Daubert, B.F.,  J. Am. Oil Chemists' Soc.
27, 367-373 (1950).

239 Stapf, R.J.,  and Daubert, B.F.,  J. Am. Oil Chemists' Soc.
27, 374-377 (1952).

240 Swift,  C.E., O'Connor, R.T.,  Brown, L.E.,  and Dollear, F.G.,
J. Am. Oil Chemists' Soc. 26, 297-300 (1949).

241 Horvat, R .J .,  McFadden, W.H., Hawkins, N.G., Black, D.R.,
Lane, W.G., and Teeter, R.M., J. Am. Oi l .  Chemists' Soc. 42, 
1112-1115, (1965).

242 Horvat, R .J .,  McFadden, W.H., Hawkins, N.G., Lane, W.G.,
Lee, A.,  Lundin, R.E., Scherer, J .R .,  and Shepherd, A.D.,
J. Am. Oil Chemists' Soc. 46, 94-96 (1969).

243 Bel l ,  E.R., Raley, J.H.,  Rust, F .F.,  Seubold, F.H.,  and 

Vaughan, W.E., Disc. Faraday Soc. 10, 242-249 (1951).

244 Kimoto, W.J., and Gaddis, A.M., J. Am. Oil Chemists' Soc.
46, 403-408 (1969).



367

245 T a i l le z ,  B., Bertrand, M.P., and Surzur, J.M., J. Chem. Soc.
Perkin Trans. I I  547-553 (1983).

246 Chan, H.W.S., Prescott, F.A.A., and Swobada, P.A.T.,
J. Am. Oil Chemists' Soc. 53, 572-6, (1976).

247 Grosch, W., Schieberle, P.,  and Laskawy, G., Flavour 81
(Weurman Symposium,, 3rd 1981) pg.433-48.

248 Schieberle, P.,  and Grosch, W., J. Am. Oil Chemists' Soc.
58, 602-7 (1981).

249 Kawahara, F.K.,  and Dutton, H.J .,  J. Am. Oil Chemists' Soc.
29, 372 (1952).

250 Dutton, H.J .,  Lancaster, C.R., Evans, L.D.,  and Cowan J.C.,
J. Am. Oil Chemists' Soc. 28, 115-118 (1951).

251 Kawahara, F.K.,  Dutton, H.J .,  and Cowan, J .C .,  J. Am. Oil 
Chemists' Soc. 29, 633 (1952).

252 Johnson, O.C., Chang, S.S.,  and Kummerao, F.A.,  J. Am. Oil 
Chemists' Soc. 30, 317 (1953).

253 Traynham, J.G.,  and Convillon, T.M., J. Am. Chem. Soc.
87, 5807 (1965).

254 Gray, J .A . ,  and Style, D.W.G., Trans. Faraday Soc. 49, 52 (1953).

255 Cretchner, L.H.,  Pitlenger, W.H., J. Am. Chem. Soc. 47, 2561 (1925).

256 Wood, T.R. ,  Jackson, F.L.,  Baldwin, A.R., and Longenecker, H.E.,
J. Am. Chem. Soc 66, 287 (1944).

257 Treibs, W., and Schollner, R . , Chem. Ber 94, 2983 (1961).

258 Treibs, W., and Schollner, R . , Chem. Ber. 94, 42 (1961).

259 Treibs, W., and Schollner, R . , Chem. Ber 94, 2978 (1961).

260 Shreve, O.D., Anal. Chem. 24, 1692 (1952).

261 Mueller, E.R., and Smith, C.D., Ind. and Eng. Chem. 49, 210 (1957).

262 Toussaint, A., and April ,  A., F.A.T.I .P.A.C. Congress 7, 19 (1964).

263 O 'Nei l l ,  L.A.,  Paint Technol. 27, 44 (1963).

264 Baer, N.S., and Indicator, N . , Journal of Coatings Technology 

48, 623, 58 (1976).



368

265 Hartshorn, J .H .,  0. Coating Technology 54, 53-61 (1982).

266 Steele, D . , 'The interpretation of vibrational spectra'
Chapman and H a l l , (1971).

267 Si lverste in ,  R., 'Spectrometric ident if icat ion of organic 

compounds' 3rd ed. Wiley and Sons (1974).

268 Holman, R.T.,  Nickel l ,  C . , P r ive t t ,  O.S., and Edmondson, P.R.,
J. Am. Oi l .  Chemists' Soc. 35, 422-455 (1958).

269 Holman, R.T.,  and Edmondson, P.R., Anal. Chem. 28, 1533 (1958).

270 Sonnet, P.E.,  Organic Preparations and Procedures Int .
6 (6 ) ,  269-273 (1974).

271 Brewster, J.H.,  J. Am. Chem. Soc. 73, 368 (1951).

272 Wehrli, F.W. and Wirth lin, T . ,  ' Interpretation of carbon 13 

NMR spectra', Heyden and Son Ltd. (1976).

273 Pinchas, S.,  S ilver , B.L.,  and Laulicht,  I . ,  J. Chem. Phys.
46, 1506 (1967).

274 Ger. Offen 2, 314, 184.

275 Vogel, A.,  Quantitative Inorganic Analysis page 502.

276 Bruno, J .R .,  Helv. Chim. Acta. 45, 717-37 (1962).

277 In s t i tu t .  National de la Provete Industr ie lle  2, 007, 745.

278 Vogel, A.,  Quantitative 'Inorganic Analysis' page 547.

279 Wood, T.R.,  Jackson, F.L.m Baldwin, A.R., and Longenecker, H.E.,  

J. Am. Chem. Soc. 66, 287 (1944).

280 Cretchner, L.H.,  and Pitlenger, W.H., J. Am. Chem. Soc. 47, 2561 

(1925).

281 Brewster, J.H.,  J. Am. Chem. Soc.. 73, 368, (1951).

282 Rondeau, R.E., J. Chemical and Engineering Data 11, 1, 124.

283 Beasley, R.K., Anal. Chemistry 52, 1110-1114 (1980).

'ijlB.N.C:
UBRAvW



369

This is to certify that

Nigel John LETVTS

who enrolled as a full-time postgraduate student in the Department of 
Chemistry in October 1980, passed the following half-course units;

S141

BCA21

CJ301

High level programming 

General Biochemistry II 

Industrial Chemistry

June 1981 

June 1982


