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Abstract

A systematic investigation is carried out of tiie multiplicity of 

potential energy minima for up to 13 atoms interacting under central 

two-body potentials of Lennard-Jones and Morse type. The sets of 

minima discovered by various growth algorithms are believed to be 

virtually exhaustive of all possible N—atom isomers for the potentials 

used, with N < 14. These are classified according to the presence 

of crystallographic or non-crystallographic (5-fold) symmetry, and 

their energy distributions are statistically analyzed. It is shown 

that non-crystallographic configurations predominate in structures 

of both greatest and least binding energy. A striking result is 

the extreme sensitivity of the number of possible stable minima to 

variations in the range and softness of the pair potential. Thus, 

of no fewer than 988 energetically distinct minima for 13 Lennard-Jones 

(6-12) atoms, only some 36 are supported by the Morse (a = 3) potential.

A vibrational analysis is performed for each configuration and the 

resulting vibrational frequencies are used to construct an approxima

tion to the multi-configuration partition function (MCPF). This 

partition function is compared with the corresponding single-configura

tion partition function derived from the most stable cluster (SCPF) .

Tilermodynamic properties for monatomic systems of rare gases, based 

on a rigid rotor/harmonic oscillator (RRHO) approach, are obtained via 

both single- and multi-configuration partition functions. It is seen 

that the validity of the single-configuration approximation depends 

strongly upon the distribution of isomer energies and less strongly 

upon the number of these isomers. From the computed partition functions 

equilibrium constants and relative concentrations are estimated, as



is the size of the critical nucleus at various pressures. The first 

five reduced virial coefficients are calculated and a correspondence 

between the equilibrium constants and Mayer's Cluster Integrals 

presented.

The use of graph theory in the enumeration of geometrically 

distinct isomers in 3 and higher dimensional spaces is noted, and 

adjacency matrices for some specific isomers constructed . Inspection 

of these matrices enables one to determine how compact the correspond

ing structures are.



Introduction

The development of fast digital computers has made possible a 

systematic investigation of the potential energy surfaces of micro

scopic N-atom clusters, with N<14. A knowledge of the minima in 

these surfaces enables one to determine thermodynamic properties and 

equilibrium constants of very small microclusters by applying stat

istical mechanical techniques based on the rigid rotor/harmonic 

oscillator (RRHO) approximation (Hill (I960)). Ultimately one is 

able to determine the sizes of critical nuclei at various temperatures 

and pressures.

Several researchers (Reed (1952), Stogryn and Hirschfelder (1959), 

Andres and Boudart (1965), Courtney (1966), Buckle (1969), Burton 

(1970a,b,1971a,1972a,b), McGinty (1971,1972,1973), Bonissent ^ d  

Jutaftschiev (1973) and Hoare and Pal (1971a, 1972a,b,1975)) have 

investigated an N-body approach to the statistical mechanical properties 

of microclusters from a potential energy surface standpoint. Only 

the last three groups cited above, however, have attempted a systematic 

investigation of the potential energy surfaces of microclusters.

McGinty (1971) has optimized argon clusters in f.c.c. and h.c.p. form 

by use of molecular dynamical techniques whilst Hoare and Pal have 

'grown' clusters by starting with intuitively sound bases and proceed

ing along a well-defined growth pattern. Bonissent and Mutaftschiev 

(1973) have constructed different configurations for N.̂ 9 by a similar 

process. The present work extends and modifies previous data for 

clusters ranging from the 2-atom dimer to the 13-atom icosahedron. 

Rouvray (1975) provides an interesting review of early attempts at 

isomer enumeration. Once all isomers for specified N have been



enumerated it becomes possible to construct a multi-configuration 

partition function (MCPF) and hence to calculate multi-configuration 

thermodynamic properties. McGinty (1972) has noted that the single

configuration partition function (SCPF) is only an approximation to 

the MCPF and recognizes that more information about the multiplicity 

of configurations is required to calculate more accurate values of 

cluster thermodynamic properties. Kristensen et al (1974) have 

investigated these properties using molecular dynamics; Etters and 

Kaelberer (1975) present thermodynamic data for very small aggregates 

of rare gas atoms which are obtained in a similar fashion. An 

outstanding advantage of computer simulations is that in principle

all regions of phase space may be explored.

To represent the interatomic forces between the constituent atoms 

of a cluster the Lennard-Jones 6-12 potential is used in the major 

part of this thesis; a Morse (a=3) potential is introduced to determine 

the effect of range and hardness of a potential on the isomer multi

plicity. The multiplicity is seen to be extremely sensitive to the 

range and hardness of the applied potential. Each cluster is perm

itted to relax in all coordinates under both the Lennard-Jones and Morse

potentials until it is mechanically stable in potential energy terms; 

the numbers, energies and energy distributions of the relaxed configura

tions provide a basis from which the MCPF may be calculated. The 

vibrational frequencies of the clusters are assumed to be harmonic and 

are determinedly a method described by Gwinn (1971). The clusters 

are then treated as an ensemble of ideal gas molecules in thermodynamic 

equilibrium with the monomeric vapour in a heat reservoir; a full 

statistical mechanical treatment leads to the determination of cluster 

thermodynamic properties and equilibrium constants. Cluster symmetry



factors are required to determine tne rotational sub-partition 

functions; these are dependent upon the assumption that the cluster 

acts as a rigid rotor. A basic premise in the RRHO approximation 

is that the atoms vibrate harmonically about their equilibrium 

positions. Although enharmonic effects and liquid-like properties 

become pronounced at reduced temperatures greater than approximately 

.3 (Burton (1971a)), harmonic calculations may still be undertaken 

at higher reduced temperatures if the calculations are viewed in the 

same perspective as the cell model of the liquid state (McGinty (1971)). 

Harmonic approximations have been used by Reed (1952) for small 

nitrogen clusters and by Burton (1969,1970a,b,1971b,1972a,b), McGinty 

(1971,1972,1973) and Hoare and Pal (1972a,b,1975), for rare gas 

clusters. Once the rotational and vibrational sub-partitioiT functions 

have been constructed one may proceed to a multi-configurational 

treatment of the cluster thermodynamics. Comparison of the MCPF 

results and SCPF results is made - the SCPF is that partition function 

associated with the most stable cluster for each N-value. An estimate 

of the validity of the SC approximation may therefore be made. This 

comprehensive treatment leads to the evaluation of free energies, 

internal energies, entropies and heat capacities, whilst the principle 

of detailed balance enables one to estimate relative equilibrium 

concentrations and equilibrium constants. Configurational thermo

dynamic properties, relevant to the theory of the glass transition 

(Kauzmann (1948), Goldstein (1972)), are calculated in order to det

ermine whether the atomistic model presented in this work is able to 

model the glass transition,

Tne size dependence of low temperature heat capacities has been 

studied by Frohlich (1937), Montroll (1950), Burton (1970a,1971a)



and Hoare and Pal (1972a,1975). Burton has calculated the heat

capacities of small argon clusters uy invoking the concept of surface

energies; Hoare and Pal approached the problem from an atomistic

viewpoint. Jura and Pitzer (1952) have studied the heat capacity

in cuoic configurations by considering standing waves in slabs of

elastic cube. In the present work the vibrational heat capacities
3of the rare gases are shown to be non-linear in T at very low temp

eratures .

Thermodynamic stabilities in terms of Gibbs free energy may be 

combined with the kinetic approach to homogeneous nucléation (Farkas 

(1927)) which with the previously mentioned condition of mechanical 

stability enables the relative stabilities of the various isomeric 

forms to be determined. Thermodynamic stability implies the deter- 

mination of the least extravagant cluster in free energy terras - thus 

from the stationary values of the Gibbs free energy of formation deter

mined via the MCPF the size of the critical nucleus may be estimated 

for various gases at different temperatures and pressures. Calcula

tion of the free energy of formation from the MCPF bypasses any need 

to extend the classical concepts of surface free energies to clusters 

of microscopic proportions. A link is therefore formed between 

classical nucléation theory (Gibbs (1906), Becker and Doring (1925), 

Volmer and Weber (1925) and Zeldovich (1942) and an explicit treatment 

of the mechanics of microscopic N-atom clusters which as yet seems 

not possible for clusters containing more than a few atoms. The 

classical theory predicts results compatible with experimental cloud 

chamber studies but the extension of this theory to the size range 

studied here, i.e. 2^N^13, becomes invalid when one attempts to integrate 

the concepts of surface energies into a truly microscopic approach.



Theoretical studies on nucléation processes are centred 

around the premise that in the limit the bulk stable phase is part of 

an infinite crystal, and consequently imply areas of local or non

local order. X-ray diffraction studies show an increase in order as 

a liquid approaches its freezing point; Gingrich (1943) has provided 

evidence of ordered structures in argon whilst Farges et al (1973) 

have indicated the existence of local solid-like symmetries in clusters 

of argon formed by expansion through a nozzle at supersonic velocities.

A similar technique has been used by Leckenby and Robbins (1966),

Milne and Greene (1967) and Milne, Vandegrift and Greene (1970) to 

determine the equilibrium constants of microscopic clusters. An 

atomistic theory such as that proposed by Walton (1962) becomes neces

sary to explain the structure of microcrystallites, in which ^t is 

probable that ordered regions exist which have no long-range order or 

any relationship to regular lattice structures.

The virial coefficients of a Lennard-Jones gas may be expressed in 

terms of cluster equilibrium constants (Woolley (1953), Leckenby and 

Robbins (1968), Spurling and Mason (1969)); estimates of the first 

five reduced coefficients are determined in the present work. 

Hirschfelder et al (1954) have compiled extensive tables of reduced 

second and third virial coefficients, whilst Barker (1975) and Barker 

et al (1966) have published values of the second, fourth and fifth 

reduced coefficients. The expansion coefficients of Kihara (1951) 

enable the third reduced coefficients to be calculated. Comparisons 

of the coefficients determined in this thesis are made with the 

published data. By considering the virial equation of state a relation

ship between the Mayer cluster integrals (Mayer and Mayer (1940)) and 

the virial coefficients is established.
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Following Randid (1974) adjacency matrices for some distinct 

configurations are constructed and a description of a graph-theoretic 

procedure which enables one to determine the number of distinct graphs 

(clusters) on N vertices (atoms) in three and higher dimensional 

spaces is presented. Gutman et al (1975), in Part Xll of a series 

of papers analyzing the topological properties of conjugated compounds 

by a similar approach, includes references to previous works in this 

series which amplify the uses of graph theory in theoretical physics 

and chemistry.

Summary of Arrangement of Thesis

Growth schemes; L-J optimizations; multiplicity of L-J isomers with 

energy statistics and distributions; Morse optimizations and isomer 

multiplicity. ^ .

Harmonic oscillator vibrational analysis; construction of vibrational 

SCPF and MCPF for neon, argon, krypton and xenon clusters. Vibrational 

thermodynamic properties of finite clusters; comparison of MCPF data 

and SCPF data; calculations of relative equilibrium concentrations and 

equilibrium constants.

Gibbs free energies of formation; estimates of critical nuclear sizes; 

approximations to L-J virial coefficients; the uses of graph theory 

in isomer enumeration problems.
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Caapter 1

1.1 The Potential Energy Surface

The potential energy of an N-atom cluster located in coordinate

space by the vectors {_r̂ , £ 2 » ,,, may be expressed in terras of

some applicable potential energy function V(_r^, 2 2 * ••• 2^) * where

this function contains both repulsive and.attractive components, witn 

the latter tending to draw tne N-atoms into some stable compact con

figuration. In this work tlie potential energy surface is taken to 

be tne resultant of central 2-body forces, enaoling the potential 

energy to be written

N-1 N
I2’  ̂ 2 V(|r^-r. |)

1 j>l
(1.1)

where V(r) is an appropriate potential. In the major part of this 

thesis V(r) is chosen to be the Lennard-Jones 6-12 potential"applic

able to rare gas clusters.

1 .e.

V(r) = 4 E o
12 (1.2)

where a is that value of r for which V(r) = 0 and e is the depth of 

tne potential energy well.

Equation (1.2) may be scaled such that both the pair energy 

(e) and the equilibrium distance (2^^^a) are equal to unity. This 

leads to

V(r) = 1 - 2
12

V'(r) = -U 
7

V"(r) = _12 
8

1 - 1
6

1 3 - 7
6

y (1.3)



16

where ’ and " signify 1st and 2nd derivatives with respect to distance 

respectively. These equations are presented in Figure 1. This 

scaling removes any necessity to refer to particular atomic aggreg

ates by name, whilst enabling the potential energy of any particular 

species at absolute zero to be easily obtained by insertion of the 

appropriate values of a and e. The L-J 6-12 potential represented 

by equation (1,3) is merely a specific case of the more general Mie 

potential, given in equation (1.4):

V(r) = I
(n-m)

n - m
m n r r

(1.4)

Subsequently, the potential energy surface is investigated 

using a long-range Morse potential, equation (1.5) below:

V(r) = [l-exp{3(l-r)>]^ - 1 (1.5)

Although the functional form of the potential in (1.1) may be 

specified and evaluated at any point almost nothing may be said about 

the location and characteristics of these minima in the potential 

energy surface embedded in a (3N-5)-dimensional space. In general 

sufficient conditions for the existence of at least one stable 

configuration are that V(r) is:

(i) differentiable 

(ii) bounded below 

(iii) convex at infinity 

(iv) positive infinite at r = 0.

These conditions ensure the existence of a greatest lower bound 

for V{_r^}. The polyhedron formed in co-ordinate space corresponding
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to the set of vectors evidently may be considered as NI points

in configuration space differing only in the numbering of the

a t o m s .

One inescapable fact is that the potential energy surface contains 

a considerable number of local minima, some of which correspond to 

stable isomeric forms, whilst others represent metastable configura

tions. At these latter ’saddle-point’ configurations atoms 'pop- 

over' from one configuration to another: the effective dimension

ality of these saddle-points depends on the number of co-operatively- 

moving atoms involved. Internal popping-through motions in general 

correspond to saddle-points of higher dimensionality than those 

associated with surface popping-through, since the distortion of 

internal neighbouring regions involves the co-operative movements of 

a greater number of atoms than does surface distortion.

The precise number of local minima is shown to be extremely 

sensitive to the range and hardness of the potential function used, 

but one may say with certainty that at each local minimum all 

partial derivatives (8V/8Ç^) of the potential function vanish, with 

all 2nd derivatives being positive definite, where

are the bond lengths. The principal radii of curvature of any 

particular minimunin the potential energy surface may then be 

obtained from the eigenvalues of the Hessian matrix of 2nd derivatives; 

physically these eigenvalues correspond to the normal mode frequencies 

of vibration governing small motions. Only for 2<N^4 is it possible
I

to give unequivocal minimum configurations: these are, for N = 2, 3

and 4 respectively:- the dumb bell, the equilateral triangle, and 

the regular tetrahedron. For N^5 the problem becomes non-trivial
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in that the number of interatomic distances Qn(N-I)^ exceeds the 

number of co-ordinates required [SN-bj. Early attempts to locate 

possible minima followed the tradition of sphere-packing (e.g.

Coxeter (1961), Fejes (1964)), with investigations into the close- 

packing of hard-spheres being carried out by Boerdijk (1952), Bagley

(1965), Nicholas (1968) and van Hardeveld and Hartog (1969).

Werfelmeier (1937) precedes all these authors in his description of 

sphere-packing experiments. Adams and Matheson (1972) have used 

a computer to generate random close-packing of hard-spheres. Hoare 

and Pal (1971a) attempted a systematic enumeration of all possible 

structures with N^9, as did Bonissent and Mutaftschiev (1973). 

However, Hoare and Pal permitted growth of an (N+l)-atom cluster 

only via the most stable N-atom cluster: this procedure leads to

incorrect isomer multiplicities for N%8, a fact pointed out by 

Bonissent and Mutaftschiev (1973). It becomes necessary to find 

an algorithm which is capable of discovering at least a large propor

tion of minima for N>5, if not all of them. The key to such an

algorithm lies in the generation of hard-sphere clusters (loc. cit) 

in rigid contact. By the addition of an (N+l)th sphere to a surface 

facet of an N-hard-sphere cluster it is possible to locate regions 

of configuration space which may produce a local minimum energy.

Full minimization of the potential energy function for the (N+1)- 

hard-sphere cluster confirms or denies the existence of this particu

lar local minimum. In such a fashion hard-sphere clusters may be 

*grown' in the computer from some appropriate base structure to 

locate possible minimal regions of configuration space, and the 

properties of these regions of space investigated.
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1.2 Growth Patterns

Hard sphere clusters are grown from 2 basic non-lattice *seed- 

structures * :

(i) the 4-atom tetrahedron and

(ii) the 6-atom octahedron.

The pentagonal (7-atoms) seed, referred to by Hoare and Pal (1971a), 

spontaneously appears from the tetrahedral growth scheme and conse

quently pentagonally grown structures are absorbed into the tetra

hedral group. Other seed-structures used include the Archimedean 

antiprism plus one or two caps, and the fully-capped trigonal biprism, 

These other seeds generate clusters which are not accessible via the 

tetrahedral or octahedral routes, and have been chosen from Bemal *s 

list of canonical polyhedra (Bemal (1959), (1960), (1964)). . All 

of the previously mentioned seed-structures are illustrated in 

Figure 2. The 8-atom regular cube is shown to be unstable under a 

Lennard-Jones potential, collapsing to a tetrahedral structure. 

Consequently it is not used as a seed structure.

A systematic enumeration of all possible N-atom structures 

involves the growth of minimal structures from all the basic seeds 

by making all possible positionings of additional atoms on their 

surfaces. Every N-atom minimum obtained must then be examined for 

uniqueness and geometrically indistinguishable structures deleted 

from the list of bases for the next generation. A sufficient 

condition for the geometric uniqueness of two clusters is that the 

distance matrices 13 should be different for some

choices of numbering. A more easily computed, although weaker, 

condition for the same is that the diagonalized inertia tensors in
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the centre of mass reference frame of each of the clusters should 

differ. These conditions,however, do not distinguish between 

enantiamorphic pairs which occur for N^6. To test whether a structure 

possesses a plane of symmetry (and therefore does not possess an 

enantiamorph) we may use the fact that, if a plane or planes of 

symmetry is (are) present, two of the principal axes of the inertia 

ellipsoid will lie in this plane (one of these planes), (Symon 

(1967)). The absence of a plane of symmetry is therefore established

by testing the symmetry of the 3 planes determined by the principal 

axes.

The following growth algorithm may then be used (Hoare and 

Mclnnes (1976)).

1) Choose a seed-strueture of N-atoms and relax to its minimum

in the required potential. Keeping this configuration 

fixed, test the structures obtained by adding an additional 

atom to each surface facet in turn. Store all geometrically 

distinct configurations.

2) Relax these configurations to their true (N+1) atom minimum. - 

Confirm that they remain distinct and delete any which 

collapse to previously generated structures.

3) Take each of the (N+1) atom structures discovered in this

way and repeat the procedures under 1) and 2) above, using

it in place of the seed-structure.

4) Terminate the sequence when computing time becomes unreasonable. 

Pick a new seed-structure and restart, checking each new 

minimum for distinctness against the full list for all previous 

sites.
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3 /\A
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Interrelationships for Tetrahedral Minima of up to 8 L-J Atoms

The 'itat'ia nimhers ident'ify the nionber of equivalent surface facets for a 
particular growth step; the letters in each circle identify the structures,
4A(tetrahedron); bA(double tetrahedron); 6Aj7Aj8A (Boerdijk spiral); ?B 
(pentagonal bipyramid); 7C (incomplete stellated tetrahedron); 8B (irregular 
figure); 8C (pentagonal bipyramid + 1); 8D (skewed tetrahedral figure); 8E 
(fully stellated tetrahedron).
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Inter-relationships for Octahedral Minima of up to 9 L-J
Atoms

The italio niunhevs identify the number of equivalent surface facets 
for a particular growth step; the letters in each circle identify the 
structures. The various structures may be identified by reference to 
Figure 9. Structure A is more stdbte than structure Bj which is more 
stable than structure etc.
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A flow chart for this growth algorithm is presented in Figure Al, 

Appendix A.

Table 1 contains the basic geometrical properties of the two 

major seed structures used, and of some very compact structures.

TABLE 1

Structure N No. of No. of Symmetry Symmetry Description 
____________    Vertices Faces Group Operations of Structure

Tetrahedron 4 4 4 T^ 12 Spherical top

Octahedron 6 6 8 0̂  ̂ 24 Spherical top

Pentagonal
Bipyramid 7 7 10 10 Symmetric top

Icosahedron 13 12 20 I^^Y^) 60 Spherical top

Using this algorithm the L-J 6-12 minima for N<13 are generated. 

At N=13 there exists the important icosahedral configuration ^ t h  12 

atoms grouped around a central 13th. This structure, shown in Figure 

3, provides another possible growth seed, although all structures 

based on a 13-atom icosahedron are accessible from the 4-atom tetra

hedral seed, in the same way that pentagonal structures based around 

the 7-atom pentagonal bipyramid, shown in Figure 2, are themselves 

accessible from the tetrahedral seed. Hoare and Pal (1972b) have invi 

estigated the geometry of spherical face-centred-cubic clusters, based 

on the 6-atom octahedron, although all but one of their structures are 

larger than those considered here. Closely allied to the octahedral 

clusters are the cuboctahedral unit cell configuration and the 

hexagonal close packed structure. However, as Burton (1970,

1971a), McGinty (1971) and Hoare and Pal (1972b) have shown, 

these structures relax into the icosahedral configuration
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under a Lennard-Jones 6-12 potential. Burton’s relaxation appears 

incomplete as although his final structure possesses full icosahedral 

symmetry it is extended in the radial direction, leading to a lower 

binding energy/atom than that calculated by Hoare and Pal (1972b). 

This method of growing spherical clusters was introduced by Benson 

and Shuttleworth (1951) and extended by van Hardeveld and Hartog 

(1969) in their investigation of the variation in the number of 

surface atoms on metal crystals of differing structures, and in the 

work of Nishioka et al (1971) who have calculated tlie replacement 

partition functions of small f.c.c. crystals. Unlike the interpre

tation of tetrahedral growth given by Hoare and Pal (1971a), who 

defined a growth path bypassing the 7-atom pentagonal bipyramid, 

tetrahedrally grown clusters defined in this work include all 

clusters able to be grown from the 4-atom tetrahedral seed. Figure 

4 illustrates the relationships between the various seed-structures 

and their corresponding families, whilst Figures 5 and 6 identify 

the first stages in the tree-like interrelationships of minima of 

the tetrahedral and octahedral families respectively.

It is of interest to note that the enumeration of hard spheres 

in contact becomes considerably protracted due to the existence of 

clearance regions inherent in hard-sphere packings, which arise 

through the space-filling deficit of tetrahedra. When a realistic 

potential is imposed and the hard-sphere structures ’relaxed* these 

clearance regions 'heal-up', often producing symmetric pentagonal 

motifs. Figure 7 illustrates the healin^-up of the clearance 

region present in the 7-atom pentagonal bipyramid structure. 

Permutations of these clearance gaps around a structure lead to 

several additional stable structures, all of which relax to an
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(a)

(b)

The Clearance Gap in Hard-Sphere Isomers

The cteavance région shown above (b) avises when seven hard spheres 
are packed in an imperfect pentagonal bipyramid. On relaxation the gap 
of 7^ 20' heals up and a configuration with perfect symmetry results.
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identical structure when a potential such as the'Lennard-Jones 6-12 

is applied. Hard sphere enumeration is also possible by graph 

theoretic methods (see Chapter 11), related to the simpler problem 

of counting ^animals' of N adjacent points on a lattice (Harary 

(1967)), but a greater physical insight is provided by the growth 

sequences described above.

Once a set of hard-sphere clusters has been generated it is 

necessary to minimize equation (1.1), i.e. the cluster potential 

energy function, for each member of this set. Procedures to 

minimize functions of many variables are described in the following 

section.

1.3 Optimization Techniques
>-

Hie optimization procedures used to minimize equation (1.1) may 

be considered as falling into three major groups.

(i) The energies of various simple lattice structures are derived

by summing the interatomic potential energy contributions for some *
realistic potential. In their estimations of the surface energies 

of f.c.c. and b.c.c. crystals Benson and Shuttleworth (1951), and 

Nicholas (1968) have calculated lattice energies in this way,

Nishioka et al (1971) also followed this procedure in the first stages 

of their calculations of the replacement partition functions of 

small f.c.c. crystals.

(ii) By scaling the lattice constants and allowing atoms positioned 

at some preselected lattice sites to relax within the overall 

symmetry, a search for an energy minimum may be made. Allpress and 

Sanders (1970), in their study of a number of metallic f.c.c. clusters.
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were the first to apply this method. Burton (1970a) carried out 

similar calculations but allowed independent relaxation of different 

layers to accommodate the experimentally well-known phenomenon 

(Vook and Otoono (1967)) of surface relaxation. This method of 

relaxed lattice optimization, although an improvement on the fixed 

lattice procedure described in (i) above, is liable to disguise the 

fact that the 'final' structure obtained may be physically non— 

realistic with some potential functions. It is possible for a 

valley to exist in the energy surface which is only accessible by 

permitting completely free relaxation in all the variables. A 

notable example of this type of structure is the simple 8-atom cube: 

this structure, when allowed to relax freely under a Lennard-Jones 

6-12 potential, has insufficient attraction along the diagonals 

to maintain full cubic symmetry, and consequently collapses to a 

tetrahedral structure.

(iii) By removing all restraints and permitting full relaxation in 

all 3N variables the cluster has the freedom of complete rearrange

ment of ”its constituent atoms. In this rearrangement initial 

symmetries may dissolve and final completely different symmetries 

may spontaneously emerge. Since in any system in which atoms 

nucleate in space it is possible for any initial configuration to 

be present, full relaxation is necessarily required to reach the 

true minimum in the potential energy surface, unless this minimum 

coincidentally possesses an initial lattice symmetry. Sinclair and 

Pollard (1970), in their studies of the equilibrium configurations 

of arrays near crystal defects, used a sophisticated full relaxation 

technique, whilst McGinty (1971) relaxed compact f.c.c. lattice 

configurations by moving each atom in the direction of force acting
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on. it through a distance proportional to this force. Burton (1971a) 

and Hoare and Pal (1971a,1971b,1972a,1972b) have .systematically 

optimized f.c.c. clusters and amorphous packings respectively.

Barker, Hoare and Finney (1975) have optimized the inner 999-atom 

core of the Bernal random close-packed structure: this optimization,

involving 2997 variables, appears to involve the greatest number of 

variables used in a full relaxation procedure to date. Bonissent 

and Mutaftschiev (1973) have also used a full relaxation technique 

in a study of the stability of very small clusters.

With either an increasing number of atoms or an increasing 

variety of different isomeric forms containing the same number of 

atoms it becomes essential to discover faster and more efficient 

full relaxation procedures. Hoare and Pal (1971a,1971b,1972a,1972b) 

used a simple but slow sectioning procedure (Wilde and Brightler 

1967), which is not appropriate to the minimization of very large 

multiplicities of isomers. Possible minimization methods include 

the method of steepest descent (Householder (1953)) and the conjugate 

gradient minimization technique(Fletcher and Powell (1963),Fletcher 

(197.2)), the latter having been developed from a procedure described 

by Davidon (1959). This latter method, used also by Barker, Hoare 

and Finney (1975), is utilised in this work. It is superior to 

the method of steepest descent in that the search direction on each 

iteration contains an explicit reference to the search direction 

obtained on the previous iteration. A brief outline of the method 

of conjugate gradients is given below; Fletcher (1972) provides a 

fuller description. Figure A2 in Appendix A presents a flow chart 

for the computer program used.
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 ̂  ̂ Minimization by the Method of Conjugate Gradients

Given a function V(_x) of 3N variables, the method of conjugate 

gradients involves linear searching such that given an approxima- 

tion on the k iteration, a direction may be chosen and 

— k+1 calculated from:

2^+1 = i  '+ "k& (1-6)

where is chosen so that minimizes V(x^^ + for all a.

Quadratic termination is achieved by choosing the search directions 

to be mutually conjugate to the Hessian matrix G of 2nd 

derivatives 

ie.
ii i  ij = 0, for all i, i ^ j (1.7)

where the superscript T denotes transpose.

Tlie gradient vector _ĝ  of the function to be minimized is used to 

calculate the search directions on each iteration by the following 

prescription:

ik " (1-8)

It is evident from (1.8) that for k = 1 the search directions are
I

merely the directions of steepest descent; for k>l the directions 

involve the directions of steepest descent of the current iteration 

plus the search directions from the previous iteration multiplied 

by some scalar This scalar in general involves the directions

of steepest descent obtained from the previous iteration (Fletcher 

and Reeves (1964), Fletcher (1971)). Four points to note when
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minimizing general (i.e. non-quadratic) functions by this method
are :

(i) the starting configuration should be as near as possible to 

the final configuration.

• (if) some convoluted 3N-dimensional surfaces convergence may be

extremely slow due to, for example, movement down a banana-shaped

valley (Rosenbrock (I960)). Periodic reversion to the steepest

descent direction instead of the usual search direction avoids

'trapping* in convoluted areas of the surface, provided such

reversions are not more frequent than every 3N iterations, whilst

retaining quadratic convergence for harmonic functions.

(iii) the formal requirement for x. to be at a minimum is the 1
gradient vector = 0. Computational rounding errors make this 

requirement unobtainable, so iterations need to be continued until 

a complete cycle of 3N iterations, starting from a steepest descent 

search, produces no reduction in V (jc) .

(iv) since equation (1.7) may not be solved exactly for with 

non-quadratic functions some approximate solution is required.

Hie-method used in this work is described by Davidon (1959) and 

implemented by Fletcher and Powell (1963). Various tests may be 

made for satisfactory values of a (Fletcher (1972)), but this linear 

search problem still remains formidable. Both cubic interpolation 

(Fletcher and Reeves (1964)) and extrapolation are used to revise 

the values of a. Fletcher (1970) removes the linear search problem 

entirely by. replacing the quadratic termination problem by one of 

montatomic convergence of an approximating matrix to the inverse 

Hessian.

The minimization program used in subsequent Chapters is based on 

a program supplied by the Theoretical Physics Division, A.Ë.R.E., 

at Harwell.
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Chapter 2

2.1 Lennard-Jones Clusters; 2<îi<13

Starting from some basic seed-structure a systematic application 

of the growth algorithm previously described, using a Lennard-Jones 

6-12 potential (equations 1.3), results in a family of soft-sphere 

Lennard-Jones (L-J) isomers. The members of such a family are desig

nated tetrahedral, octahedral or Bernal structures, depending upon the 

original seed. By removing the requirement that the parent structure 

is relaxed to a minimum in the applied potential it is possible to 

generate a family of hard-sphere (H-S) isomers; however the clearance 

regions inherent in H-S structures (see Figure 7) lead to the produc

tion of very many more H-S than L-J clusters. Consequently computing 

time restrictions cause the termination of H-S isomer enumeration at 

N=ll. Several geometrically distinct H-S structures relax under 

the applied potential to forms equivalent in both energy and morphology. 

Reference to Tables 2 to 4 illustrates this fact - these tables contain 

the calculated numbers of H-S and L-J isomers belonging to the tetra

hedral, octahedral and Bemal families. Since clusters containing 

6 or more atoms may exist in both left- and right-handed forms the 

total number of L-J isomers is examined for chirality: the results of 

this investigation are contained in Table 5. The necessity of inc

luding enantiamorphs in the multi-configuration partition function is 

emphasised by the contents of this table. Fitting the multiplicity 

data of Table 5 to an exponential curve results in the following 

generating function for the number of isomers g(N) containing more 

than thirteen atoms;

g(N) exp{-2.5176 + 0.3572N + 0.0286N^} (2.1)

Equation (2.1) predicts 3279 stable isomers for N=14 and 10753 for N=15,
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Taole 2 Table 3 Table 4 Table 5
N H-S L-J N H-S ■ L-J N H-S L-J M Total Enants
4 1 1 6 1 1 9 2 1 4 1 0
5 1 1 7 1 1 10 9 3 5 1 0
6 1 1 8 4 3 11 >19 16 6 2 1
7 3 3 9 9 6 12 *>14 53 7 4 1
8 6 5 10 40 29 13 *>66 167 8 8 1
9 23 11 11 136 60 9 18 3

10 73 25 12 * 142 10 57 11
11 337 69 13 * 338 11 145 19
12 •k 171 12 366 47
13 * 483 13 988 131

*si gnifies computing time restrictions.

Tables 2 to 4 present the respective numhers of hard-sphere and 
Lennard-Jones 6-l2 isomers for the tetrahedral̂  octahedral and Bemal 
sub-groups. Table 5 contains the total nwnber of isomers in the range 
4sJslZ and the nunber of ena?itiamorphs present in this range.

Figures 8 to 11 show the various subsets of minima for li^l2.

Since the lists of minima for î'i=l3 are too great to present iyi toto

Figures 12 and 13 illustrate some of the most and least staole minima in

this category. In each case the most stable structure appears at the

top left-nand side with isomers in descending order of binding energy 
*

along the rows. One immediately notes the trend towards more 

extended structures as the binding energy decreases. The Boerdijk 

spiral configuration (Boerdijk (1952)), resembling a chain of tetra

hedra face to face, is easily identified in the figures of tetrahedral 

clusters. It is interesting to note that these extended structures 

are not the least stable available biit are followed in the figures by 

many others of less systematic extended structure.

2.2 Minimal Energy Configurations

The morphologies and scaled potential energies of the most stable 

L-J isomers are presented in Table 6. One notices the tendency for 

the compact structures to possess high symmetry. Information in this
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N=9

N=10
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Tetrahedral Isomers
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N = 11

N = 10

N = 9

N = 8

Octahedral L-J Isomers: 7<N<12
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table is subsequently used in the calculations of rotational partition 

functions. Energies quoted in this and subsequent tables, as well 

as throughout the text, have the minus sign suppressed.

V(N)

1.0000
3.0000

6.0000

9.1039

12.7121

16.5054

8 19.8214

9 24.1134

10 28.4225

11. 32.7659

12 37.9676

13 44.3268

Subsett
Table 6

Point Symmetry 
Group Operations

3h

D5h

Ih

'2v

'3v

‘2v

'5v

2

3

12

24

10

60

Description of 
Structure

Principal 
Moments 
of Inertia

0.5000,0.5000,
0.0000.
1.0000,1.0000,

1.0000,1.0000,
1.0000.
1.8245,1.8245,
1.0029.

Dimer, unit 
side
Equilateral
triangle, unit 0.5000. 
side.Symmetric 
top.
Tetrahedron, 
unit side.
Spherical top.
Trigonal bi
pyramid.
Symmetric top.
Octahedron, 1.9820,1.9820, 
spherical top. 1.9820. 
Pentagonal 3.6285,2.3370,
bipyramid. 2.3370.
Symmetric top.
Pentagonal hi- 4.6574,3.6944, 
pyramid + 1. 2.6679.
Asymmetrie top.
Pentagonal bi- 5.6316,4.3395, 
pyramid + 2. 3.3402.
Asymmetric top.
Pentagonal bi- 6.5102,4.6021, 
pyramid + 3 .  4.6017.
Symmetric top.
Pentagonal bi- 7.1325,5.9453, 
pyramid + 4 ,  5.1933.
Asymmetric top.
Pentagonal bi- 7.5465,6.4154, 
pyramid + 5, 6.4152.
Symmetric top.
Oblate structure.
Icosahedron. 7.4315,7.4313, 
Spherical top. 7.4312.

* Minus sign suppressed throughout, 

tf; tetrahedral subset; 0: octahedral subset

Morphologies of the most stable L-J isomers
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For all values of N except N=6 the most stable structure is a member 

of the tetrahedral fairiily. The minimal energy 6-atom structure is 

the octahedron, with full octahedral symmetry. For N=2 and N=3 the 

minimal energy configurations are the linear dimer and the planar 

equilateral triangle respectively. With distances scaled as in 

equations (1.3) both of these structures have interatomic spacings of 

1 unit. The 4-atom tetrahedron is the first non-planar structure; 

all atoms are in mutual contact with an interatomic spacing of 1 unit. 

For N=5 one finds the first occurrence of non-nearest neighbours in 

the trigonal bipyramid; this structure may be considered as two 

tetrahedra back to back sharing a common base. The edges of this 

base are distended by .15% to 1.0015 units with the peak to peak 

distance contracted by approximately .4% to 1.6267 units. The 6-atom 

octahedron has a base side of .9955 units with a peak to peak distance 

of 1.4079 units : this peak to peak distance represents a contraction

of .45%. The 7-atom pentagonal bipyramid has an axial distance of 

1.0225 units, an edge distance of .9935 units, and a planar 5-membered 

ring with an interatomic spacing of 1.00145 units. These latter 

interatomic distances differ from those cited by Hoare and Pal (1971a); 

nevertheless the structure maintains full symmetry and is margin

ally more stable, (energy 16.5054), i.e. possesses higher binding 

energy, than Hoare and Pal's bipyramid (energy 16.5049).

Minimal clusters for N>7 follow the Werfelmeier sequence 

(Werfelmeier (1937)) - the sequence of structures obtained on adding 

atoms around the fivefold axis of the pentagonal bipyramid. This 

sequence culminates with the regular icosahedron at N=13. The most 

stable 9-atom structure has two adjacent atoms added to the pentagonal 

bipyramid (see Figure 8). By following the Werfelmeier sequence
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Figure 10

12-atom tetrahedral isomers
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Figure 11

Octahedral 12—atom Isomers
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one arrives at the oblate 12-atom cluster which may be recognised as 

tae icosahedron minus one atom. Addition of a thirteenth atom to 

the five-coordinated site at tne apex of this cluster produces the 

icosahedron with twelve peripheral atoms arranged symmetrically about 

the central one. The twelve radial bonds are contracted to .9638 

units while the sides of the equilateral triangles covering the 

surface are distended to 1.0134 units, thus producing the peripheral 

to radial bond ratio of 1.0515 characteristic of icosahedral 

structures. Although it is not possible to be certain that such a 

structure is the absolute minimal one for 13-atoms it is almost 

inconceivable that a structure with higher binding energy could 

exist.

2.3 Tetrahedral Isomers

For 3<N<6 only tetrahedral L-J structures exist, since the 5-atom 

square pyramid, composed of a fifth atom added to a planar square of 

four atoms, is found from its frequency spectrum to be metastable.

This structure, with an energy V(5)=8.4806 and belonging to the point 

group collapses to the trigonal bipyramid described in the

previous section. The tetrahedral 6-atom structure comprises three 

tetrahedra packed face to face, forming a Boerdijk spiral configura

tion. This configuration, with energy V (6) =12.3029 and symmetry 

may exist in both left- and right-handed forms.

By adding atoms to three of the faces of a tetrahedron the 7-atom 

partially stellated tetrahedron, energy V(7)=15.5932, is formed. 

Addition of a fourth atom to the final face of the basic tetrahedron 

results in the 8-atom fully stellated tetrahedron, energy V(8)=18.9761. 

Subsequent addition of atoms to the faces of the fully stellated 

tetrahedron generates that set of clusters referred to by Hoare and Pal



44

(lJ71a) üa tetrahedral isomers*. Hoare and Pal-designate those 

structures grown by the addition of atoms to a pentagonal bipyramid 

pentagonal isomers*. The set of tetrahedral isomers referred to 

in this work includes both the tetranedral and pentagonal structures 

of Hoare and Pal*s work.

Table 7 contains the results of the statistical analyses of all 

tetrahedral binding energies. The measures of skewness and kurtosis 

(Spiegel (1961)) in this table indicate the degrees of asymmetry and 

peakedness of the distributions, taken relative to the normal

Table 7

J V(N)/N S^xlO^ Skewness
xlO

Kurtosii
xlO

2 .5000 . _

3 - - 1.0000 - - -
4 - - 1.5000 - - -
5 - - 1.8208 - - -
6 - - 2.0505 - - -
7 2.3579 2.2190 2.2682 7.78 6.97 -15.00
8 2.4777 2.3473 2.3815 5.45 14.00 +1.08
9 2.6793 2.4479 2.5315 7.61 3.98 -8.92

10 2.8423 2.5289 2.6318 9.17 5.79 -7.67
11 2.9787 2.5953 2.7327 9.62 • 3.58 -7.17
12 3.1640 2.6508 2.8083 10.26 4.45 -2.17
13 3.4098 2.7022

+ Standard deviatioi\

2.8828 10.96 4.76 +3.55

Statistical Analysis of Tetrahedral Binding Energies

distribution. A gradual increase in the standard deviations with 

increasing N is seen for N>7, showing an increasing energy spread, 

but the skewness and kurtosis of each distribution appear to follow 

no specific trend. This may be explained when one realises that the 

latter two measures are extremely sensitive to the morphology of the 

previous parent generation. If a particular extended N-atom cluster 

with low binding energy has more available sites for the addition of 

an (N+l)th atom than does"another more compact structure, the mean
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binding energy is displaced towards the low energy limit. Addition— 

botli compact and extended structures contribute equal numbers 

of daughter* clusters, the distribution curve tends to become flat

tened.

2.4 Octahedral Isomers

The set of octahedral isomers originates with the 6-atom octahedron, 

described in Section 2.2. Growth from this seed produces units which, 

unlike the tetrahedral units, have a space filling characteristic. 

Examination of the first 8-atom structure in Figure 9 shows an 

opening of the 4-atom ring - Werfelmeier (1937) identifies this 

structure as a tetragonal hemihedron of the second kind, with 

symmetry Such a cluster may be described as being formed from

two identical trapezia interpenetrating in perpendicular planes .

Tlie energy of this hemihedron (19.7653) closely approaches that of 

the overall minimal cluster for 8-atoms, i.e. the pentagonal bipyramid 

plus one (energy 19.8216). Opening of the octahedral ring may be 

seen in a number of other isomers presented in Figure 9. Such ring 

openings occur when one side of the ring is under pressure from two 

atoms positioned directly opposite one another on opposite sides 

of the plane containing the ring (see the structures in Figure 9).

Three octahedral clusters for N=8 and six for N=9 are found, in 

disagreement with the figures of two for N=8 and three for N=9 quoted 

by Hoare and Pal (1971a). These clusters, with others, are shown in 

Figure 9. ,

A particularly striking 10-atom cluster is the f.c.c. tetrahedron 

formed by the addition of three atoms to each edge of a tetrahedron.

This structure has full tetrahedral symmetry and an energy of 25.7918 

units. It is the final 10-atom octahedral cluster in Figure 9, having 

emerged spontaneously from the octahedral growth sequence. Allpress 

and Sanders (1970) and Ino (1970), suggest that externally symmetric
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Figure 12

First 43 Tetrahedral 13-atom Isomers

Last 43 Tetrahedral 13-atom Isomers

Boerdijk Spiral
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Figure 13

First 38 13-atom Octahedral L-J Isomers

Last 38 13-atom Octahedral L-J Isomets
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forms such as the f.c.c. tetrahedron may form a basic unit for growth 

by twinning. Kimoto and Nishida (1967), and Allpress and Sanders (1970) 

report the observations of pseudo-crystallites with non-lattice sym

metries in condensing metal vapours. Such pseudo-crystallites may be 

formed by the growth of a daughter phase forming a mirror image of 

such an f.c.c. structure as that mentioned above. In such a fashion 

larger ’twinned’ figures may be constructed. Fukano and Wayman (1969) 

criticise the extension of such a mechanism to clusters larger than the 

twinned 23-atom pentagonal bipyramid and advocate a sphere—packing

modification in which five atoms are added around the five-fold axis of

this cluster. A sixth atom is then added on the symmetry axis.

Komoda (1968) suggests the growth of twinned structures by the addition

of atoms to the 7-atom pentagonal bipyramid and the 13-atom icosahedron 

in such a fashion as to preserve the overall shape of the cluster.

Statistical analyses of the octahedral binding energies produce

the data contained in Table 8. Examination of this Table shows the

standard deviations for all N to be less than those in Table 7 for 
*

tetrahedral isomer distributions. Fluctuations in the skewness and 

kurtosis coefficients may again be attributed to the morphology of 

the parent structure.

Table 8

N Vmax(H)/N Vmin(K)/" V(N)/N t 2 S xlO^ Skewness
xlO

Kurtosis
xlO

5$ 1.6961
6 — - 2.1187 - - -
7 — - 2.2847 - - -
8 2.4707 2.3962 2.4218 4.23 7.04 -15.00
9 2.5748 2.4972 2.5472 2.63 -12.22 4.31

10 2.7206 2.5792 2.6518 3.22 5.22 4.81
11 2.8570 2.6986 2.7520 4.14 4.61 -8.50
12 3.0174 2.7295 2.8389 5.48 4.63 1.49
13 3.1038 2.7911 
i"
Standard deviation

2.9241 6.57 0.86 -4.89

"^Metastahte structure 
Statistical Analysis of Octahedral Binding Energies
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2.5 Lemal and Other Structures

It is possible to construct a number of clusters grown from 

seeds which are neither tetrahedral nor octahedral. Some such 

seed—structures, members of Bernal’s list of canonical polyhedra 

(Bemal (1959), (1960), (1964)), are illustrated in Figure 2. The 

6-atom trigonal prism is unstable under a Lennard-Jones potential, 

reforming to the trigonal bipyramid. However the simultaneous 

addition of three half—octahedral caps forms a stable structure, 

which has an optimized energy of 23.2698 units and symmetry 

The trigonal prism plus one cap reforms to the single 7-atom octahed

ral structure (energy 15.9350 units), whilst the trigonal prism plus 

two caps distorts into the 8-atom tetragonal hemihedron (Werfelmeier 

(1937)), also a member of the octahedral group. The Archimedean 

antiprism relaxes to a structure with an energy of 22.3567 units - 

however the frequency spectrum for such a configuration shows it to 

be metastable. The addition of one cap to the antiprism produces 

a structure which relaxes to the trigonal prism plus three caps. The

10-atom fully-capped antiprism (energy 26.7712, symmetry C^^) is 

stable and therefore may be used as a seed structure.

An investigation into the stability under a L-J potential of the 

8-atom cube shows the collapse of such a structure to the fully 

stellated tetrahedron (energy 18.9761 units). Optimizing the cube 

under the constraint that cubic symmetry is preserved produces a 

cluster with an energy of 15.1771 units. The danger of such a 

constraint is well illustrated by the collapse of this structure to 

a tetrahedral configuration on the removal of the constraint - the 

cube has insufficient attraction along the diagonals to support itself 

under a Lennard-Jones 6—12 potential.
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Bennett (1972) describes a 10-atom structure, composed of 2 

adjacent octahedra, waich relaxes to the most stable 

octahedral structure.

As in the previous two sections a statistical analysis of the 

binding energies for each value of N is performed: the results of

these analyses are presented in Table 9. One immediately notes 

the almost constant standard deviation for B e m a l  clusters and the 

tendency for the kurtosis coefficients of the distributions to app

roach that of the normal distribution with increasing N,

Table 9

N V (N)/N max Vmin(K)/N V(N)/N S^xlO^ Skewness
xlO

Kurtosi:
xlO

9 2.5855
10 2.7214 2.6695 2.6894 2.80 6.48 -15.00
11 2.8320 2.6481 2.7078 6.13 6.87 V- 5.70
12 2.9619 2.7373 2.8365 5.07 6.69 - 2.73
13 3.0746 2.7630

^ Standard deviation.

2.9077 6.24 -1.60 - 1.50

Statistical Analyses of Bemal Binding Energies

2.6 Discussion

Figures 5 and 6 illustrate tetrahedral and octahedral interrela

tionships. The removal of one cluster may result in the loss of 

several later generation clusters; thus a systematic cluster 

enumeration is essential. Division of clusters into sub-groups is 

an aid to classification: however statistical analyses of the total

isomer set are required for a description of the system as a whole. 

The results of such analyses for varying N are presented in Table 10. 

As in Table 9 the tendency for the standard deviation to remain 

independent of N is noted. Table 7 shows positive skewness for all
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Table 10

N V(N)/N S ^ x l O ^  - Skevmess xlO Kurtosis X

7 2.2702 6.37 6.89 -11.28
8 2.3966 5.14 7.42 -10.08
9 2.5397 6.16 0.79 -3.19

10 2.6450 6.61 2.52 + 3.05
11 2.7379 7.52 2.40 0.30
12 2.8243 8.16 1.74 4.80
13 2.9011 9.14 1.33 6.48

"t* •Standard deviation

Statistical Analyses of Total Binding Energies

values of N, i.e. the frequency curves of distributions have longer 

tails to the right of the central maximum. An interpretation of 

these results is that it is easier to form alternative structures by 

variation of the less stable, more d.ongated structures than *the more 

compact units. 9-atom octahedral clusters and 13-atom Bemal clusters 

exhibit negative skewness, indicating the existence of a larger number 

of structures with comparatively high binding energies than with low 

binding energies. From the skewness coefficients in Table 10.one 

may conclude that overall tbiere exists a greater variety of extended 

structures than compact structures. The kurtosis coefficients in 

the same table show the distributions of total binding energies to 

move from platykurtic, through mesokurtic at N=ll, to leptokurtic.

In Figure 14 the distributions of tetrahedral and octahedral structures 

by binding energy for 13-atom L-J clusters are presented. These 

distributions are noticeably asymmetric, with the detached single 

point for the icosahedral structure. The latter is separated by 

2.8548 units from its closest competitor in energy (respective energies 

44.3268 and 41.4720),
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Tables 3 and 4 indicate that the octahedral structures in 

the size range N^13 are comparable in number with the tetrahedral 

types. The binding energies of the former set are more narrowly 

peaked about the most probable than the latter. Figures 15 and 16 

present the statistics of structural types graphically. In these 

figures each of the three symbols marks a structural type of a particu

lar minimum for a specific N. The minima are arranged in

decreasing order of binding energy as in Figures 8 to 13. The 

predominance of tetrahedral minima at both extremes and the compara

tively uniform distribution of other types is clearly distinguishable.

For N=13 it is possible to construct highly symmetric figures 

other than the icosahedron, such as the f.c.c. cuboctahedron which 

reforms under an L-J potential to the regular icosahedron. This 

reformation is also noted by Burton (1970a,1971), McGinty (1971), 

and Hoare and Pal (1972b). The hexagonal close packing (h.c.p.) unit 

cell structure forms another unstable cluster, collapsing to the 

icosahedron. The icosahedron may itself be used as a seed-strueture 

to generaEe larger clusters: by covering all the faces of a regular

icosahedron the 33-atom dodecahedron may be constructed.

The binding energies per atom for the most and least stable 

tetrahedral and octahedral L-J structures, N^13, are plotted in Figure 

17, as is the binding energy per atom in an infinite f.c.c. crystal 

(Kihara and Koba (1952)). The inclusion of the octahedral energy range 

in the tetrahedral range is clearly seen in this figure. To obtain 

the binding energy of a cluster of a specific gas it is necessary to 

multiply the scaled energy by the appropriate well-depth e . The 

L-J parameters for the rare gases are contained in Table 11. Table 

12 presents the binding energies per atom of this work’s minimal
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See captions to Figure 15, '
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Table 11

Gas e/k.°Abs. a.mxlO^^ Mass.a.m. u Melting

Neon 35.60 2.749 20.183
Argon 119.8 3.405 39.948
Krypton 171.0 3.60 83.80
Xenon 221.0 4.10 131.30

Lennard-Jones Parameters for the Rare Gases
(data from Hirschfetder̂ Curtiss and Bird

clusters and the binding energies obtained by McGinty

investigation of growth from close packed lattices.

Table 12

N (a) (b)

2 .5000 .5000
3 1.0000 1.0000
4 1.5000 1.5000
5 1.8208 1.8207
6 2.1187 2.1186
7 2.3579 2.3578
8 2.4777 2.4706
9 2.6793 2.5512
10 2.8423 2.7189
11 2.9787 2.8254
12 3.1640 2.9691
13 3.4098 3.1901

(a) this work

24.48
83.95
116.55
161.25

(b) MaGinty (1971)

Maximum Binding Energy/Atom

sets of energies agree closely; as N increases McGinty’s binding 

energies are lower than those of this work, showing that the preferred 

minimal configurations, in terms of potential energy at absolute zero, 

are non-lattice structures in the size range studied. An entropy 

advantage is also conferred on the non-lattice structures since 

these forms naturally have greater disorder than the lattice-based
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structures. Although it has not been possible to obtain unequivo- 

cably absolute minima the relative stabilities of various isomeric 

forms are well-defined. To assess the thermodynamic competition 

between clusters a statistical mechanical analysis based on the 

harmonic oscillator approximation is undertaken. In subsequent chapters we 

investigate the statistical thermodynamics of finite solid-like 

clusters: more weakly bound clusters possess more strongly pronounced

liquid-like characteristics which increase the complexity of 

cluster partition function determinations.
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Chapter 3

3.1 Amorphous Solids and the Glassy State

Dense random packings of hard spheres have been used by a number

of authors to provide structural models of amorphous metal alloys

(Frank and Kasper (1958,1959), Cargill (1970a,1970b), Polk (1970),

Bennett et al (1971), Sadoc et al (1973)), amorphous transition

element films (Leung et al (1974a,1974b)), and amorphous germanium

and silicon (Polk (1971), Polk and Boudreaux (1973)). Alfrey et al

(1943) suggest the migration of 'holes’ as a mechanism involved in

the formation of glasses (see also Kauzmann (1948)) - Polk (1972)

models metallic alloy glasses in terms of Voronoi polyhedra, referring

to the 'holes' classified by Bernal (1964). Cohen and Turnbull (1961) 
.consider glass formation in metallic and ionic systems from a sphere- 

packing standpoint. In this chapter the soft-sphere structures des

cribed in Chapter 2 are re-optimized under the influence of a potential 

chosen to represent the behaviour of amorphous materials. In their

investigations of amorphous metals Weaire et al (1971) use Morse 

potentials with the parameters of Girifalco and Weizer (1959) - 

following the former authors' example a Morse (a = 3) potential is used 

in this chapter (Figure 1 and equation (1.5)). The set of Morse 

minima generated from the Lennard-Jones (L-J) set is not necessarily 

complete since the superposition of the Morse potential on the minimal 

L-J configurations may result in a 'passing-over' of very shallow 

minima near the initial points in the configuration space. Neverthe

less one may feel reasonably confident that by far the greater part of 

the Morse minimal set is discovered by this method.
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3.2 The Multiplicity of Morse (a = 3) Isomers

The application of a Morse (a = 3) potential to the L-J cluster 

set produces a new set of clusters, the members of which have higher 

binding energies and in general are more compact (Table 13). A 

surprisingly small fraction of the L-J minima survive in the Morse 

potential energy surface - see Table 14. If a particular geometric 

motif is eliminated on changing the range or hardness of the potential, 

then a whole series of available growth paths are excluded from subse

quent generations. Certain tetrahedral configurations, for example 

the 6-atom trigonal bipyramid, 'open-up' to form octahedral-type 

minima on the application of the Morse potential. The longer range 

potential thus shows a tendency to form crystallographic structures, 

and produces a considerable 'smoothing-out' of the topography of the 

potential energy surface.

Table 13 

N V(N)/N

L-J Morse

6 2.1187 2.2574

7 2.2702 2.4723

8 2.3966 2.6715

9 2.5397 2.8875

10 2.6450 3.1050

11 2.7379 3.3047

12 2.8243 3.4774

13 2.9011 3.6608

Comparison of Mean L-J and Morse Binding Energies
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Table 14

N ‘ Morse L-J +H-S^

6 1 2 2

7 3 4 4

8 5 8 > 10

9 8 18 > 32

10 16 57 >113

11 24 145 >473

12 22 366 *

13 36 988 ■k

The Multiplicity of Morse, L-J and Hard-Sphere Isomers

+ •Trie mmhe-ûG qiwted for hard-sphere 'isomers refer only to • 

tetrahedral-type co7i figurât'Cons,

* Computing time restrictions.

The reduction in the number of Morse isomers on going from N = 11 

to N = 12 (Table 14) need not seem paradoxical if we reason as follows.

The minimal 11-atom cluster is the icosahedron with two adjacent gaps.

For the Morse potential it is possible that a number of variations of 

this structure have a precarious existence close to low saddle points - 

on the addition of a twelfth atom many of these variants may shrink to 

arrangements identical in both energy and morphology. The data in 

Table 14 enable one to produce the following generating function (equation

(3.1) for N-atom Morse clusters. Use of (^.1) enables predictions of 

g(N) = 7.3919 - 3.6151N + 0.4258N^ (3.1) ,

40 14-atom and 49 15-atom Morse clusters to be made.
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Figure 18

N = 7

N = 8

N = 9

Morse Isomers: 6<N<I0

Figure 19

Figure 20

L_J isomers which survive under aMorse potential are underlined



The two b-atom L-J clusters both relax to an octahedral structure 

(symmetry 0^) under the Morse potential. This structure has a base 

length of .9769 units (L-J: .9955), a peak to peak height of 1.3817

units (L-J: 1.4079), and an edge length of .9769 units (L-J: .9955).

Its energy is 13.544 units, compared to the L-J octahedral energy of 

12.712 units; i.e. there is an energy increase of 6.5%. The Morse 

pentagonal bipyramia has an energy of 17.5530 units (an increase of 

6.3% on the corresponding L-J cluster), an axial length of 1.0926 units 

(L-J: 1.0225), an edge of length .9799 units (L-J: .9935), and a

separation between the members of the five-fold ring of .9564 units 

(L-J: 1.00145). From these lengths it is apparent that the^Morse

potential has ’stretched’ the pentagonal bipyramid along its five-fold 

axis; full symmetry is preserved. The energy of the Morse icosa

hedron is 51.7370 units (L-J: 44.3268). Radial and surface bonds are

contracted to approximately 95% of the corresponding L-J lengths, pre

serving the characteristic icosahedral ratio of 1.0515. The Morse 

binding energies are shown (Table 14) to be 6-7% greater than the 

corresponding L-J energies - bond lengths in general contract to 95-98% 

of the L-J cluster values.

Figure 18 shows a selection of the Morse isomer sets - in this 

figure the clusters are arranged in order of decreasing binding energy 

and the interleaving of tetrahedral and octahedral structures is clearly 

illustrated. Figures 19 and 20 identify s"omB of those distinct L-J 

clusters which remain distinct under the influence of the Morse potential.

The results of statistical analyses of the energy distributions, 

of N-atom clusters are presented in Table 15. We see that except for
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8- and 11-atom clusters the energy distributions possess negative 

skewness, indicating that more compact than elongated structures exist 

This result is a consequence of the strong attractive component of the 

Morse potential, which distorts the tetrahedral clusters into crystal

lographic octahedral forms and thereby reduces the number of distinct 

elongated structures.

Table 15

N V (N)/N max Vmin(K)/W V(N) /N s
xlO

Skewness
xlO

Kurtosis
xlO

7 2.5076 2.4060 2.4723 .48 - 7.11 -11.18

8 2.7554 2.6262 2.6715 .55 + 7.61 -10.30

9 2.9754 2.7853 2.8875 .60 - 1.31 - 5.83

10 3.1889 2.9135 3.1050 .78 -12.90 + 6.60

11 3.4483 3.1675 3.3047 .75 + 1.95 - 1.85

12 3.6748 3.2595 3.4774 1.25 - 1.91 - 7.19

13 3.9798 3.2397 3.6608 1.83 - 0.60 - 3.35

Statistical Analyses of Total Morse Binding Energies

Standard deviation.

The kurtosis coefficients for all N ^ 10 indicate that the distribution 

curves are platykurtic. For 10-atom clusters the energy distribution 

is leptokurtic and possesses strong negative skewness. This distri

bution suggests the existence of a variety of compact 10-atom structures 

and a large number of structures with energies very close to that of 

the most probable.
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From a knowledge of Morse and L-J multiplicities oonfigurational 
thermodynamic properties may be calculated. Gibbs (1960), Adam and 

Gibbs (1965) and Goldstein (1973a) attribute the glass transition to 

configurational entropy - the investigations of these authors provide 

a motivation for the study of configurational thermodynamic properties 

in Chapter 6.
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Chapter 4

4.1 The Vibrational Motion of Clusters

The constituent atoms of the clusters considered here are envisaged 

as performing small vibrations about an equilibrium configuration whilst 

the cluster retains its rigid body character. The cluster is defined 

by its potential energy V and its kinetic energy T with the equili

brium configuration corresponding to zero values of the generalized 

coordinates {q}. If the potential energy is expanded in a Taylor 

series in the displacement and terms higher than quadratic in this 

expansion ignored, V is expressed as a homogeneous quadratic function 

in {q}. The linear terms in the expansion are all zero since the 

partial derivatives of V with respect to {q} must be zero when the 

{q} are zero. Neglect of higher order terms is equivalent^to assum

ing central forces between the atoms. The kinetic energy T is a 

homogeneous quadratic function of {q} with coefficients involving {q}, 

where the • signifies a time derivative. Since the {q} and {q} 

are assumed to be small one may retain only those terms of.lowest 

order in T and thereby replace the coefficients involving {q} by those 

values they assume when the {q} are replaced by zeros. Therefore T 

may be expressed as a homogeneous quadratic function in {q} with 

constant coefficients. If the {q} are expressed in terms of normal 

coordinates the vibrational motions of the cluster may be resolved 

into a set of normal vibrations. Such vibrations are characterized 

by the facts that each atom executes simple harmonic motion and that 

all atoms vibrate in phase with the same frequency. These motions 

are dependent on the solution of the equations of motion (4.1)

J
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4.2.1 The Transformation to Normal Coordinates

The theory of normal coordinates is comprehensively treated by 

several authors (e.g. Whittaker (1937), Herzberg (1945), Wilson,

Decius and Cross (1955). In order to understand the following 

sections some salient points from normal coordinates theory are included 

below.

The Hamiltonian of a system is written H = T+V where

3N .
(kinetic energy) 2T = Z a..q.q. = q^Aq , (4.2)ij ij 1 j _ -

3iN
(potential energy) 2V = I k..q.q. = q'̂ Kq , (4.3)£j  ̂ J —  —

and the prime signifies a matrix transpose. A transformation is

required which reduces each of (4.2) and (4.3) to a sum of squares of 

3N new variables. If the new variables are chosen to be {Q}, where

= a^^q^, it is shown (Whittaker (1937)) that the kinetic and potential 

energies take the form

3N -2 . .2T = Z QT = Q ' W  (4.4)i=l 1
3N

2V = Z C . Q 7  = Q'CQ (4.5)i=l 1 1

where c. = ^ii . In matrix language one requires the simultaneous
k..11

reduction of A and K to a unit and diagonal matrix respectively.

If mass-weighted Cartesian coordinates are used, the kinetic 

energy matrix is already a unit matrix. Gwinn (1971) describes a 

procedure in which the normal coordinates are calculated in such a 

mass-weighted system. Unlike the methods used in chemical spectroscopy 

(see for example Wilson-, Decius and Cross (1955)), Gwinn*s method
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involves no separation of rotational and translational motion until 

the potential energy matrix is diagonalized; consequently five or six 

zero frequencies are found which provide a useful check on the 

accuracy of the computation. No coupling between vibrational and 

rotational motion is assumed. The V matrix is generated by the 

method outlined in 4.2.3, whilst the transformation which diagonalizes 

2  is the transformation from Cartesian to normal coordinates. Once 

the kinetic energy and potential energy matrices are established an 

orthogonal transformation is required to generate the normal coordin

ates. Such a transformation is possible since at least one form (the 

kinetic energy matrix) is positive definite (Whittaker (1937)).

4.2.2 The Kinetic Energy Matrix T

The kinetic energy of an N-atom cluster in which each atom has 

mass m is, in Cartesian coordinates.

. I  = i 1=1
matrix form as

which may be rewritten in

2T = R"mR (4.6)

In (4.6) R^ = x^, Rg = y^, R^ = z^, R^ = x^, etc. In such a form 

the kinetic energy matrix is already diagonal. If mass-weighted 

coordinates are used, in which {X} = {m^R}, equation (4.6) reduces to

2T = X"1X (4.7)

i.e. the kinetic energy matrix is reduced to a unit matrix.
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4.2.3 Trie Potential Energy Matrix V

The force constant K . . is assumed to be the second derivative withij
respect to the distance r^j between atoms i and j of the Lennard-Jones

potential function. The potential energy matrix may be constructed

in the following way (Gwinn (1971)). Considering the general term

K.ôr...ôr. , the variation of r.. is written Lj £m ij

= Z ( 3 r \ j / 9 R ^ ) 6 R ^ ,  (4.8)

with

{R} as defined in Section 4.2.2 and the coordinates R^ indexed for

atom N as 3(N-1)+1, 3(N-l)+2, 3(N-l)+3. In (4.9) the positive sign

is taken if k corresponds to atom r, and the negative sign if k

corresponds to atom s, with k/ = k modulo 3. The coefficients for

each 6R^ are stored and the process repeated for 6r^^. The two

series are multiplied together, resulting in terms such as

K$ ÔX ÔX . The coefficient K$ is added to ther ij s £m r s r ij s £m
r-s element of the V_ matrix. Each force constant thus contributes to 

many elements of this V matrix, which is an overlay of all the force const

ants. IheVmdirixis easily converted to mass-weighted Cartesian coordin

ates by dividing all of the elements in each row and column by the 

square root of the mass of a constituent atom.

4.2.4 Diagonalization of the V matrix

Once the V matrix is established in mass-weighted Cartesian 

coordinates it only remains for this matrix to be diagonalized using
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an orthogonal transformation. It is possible that the resulting 

diagonal matrix may not be positive definite - such an occurrence 

results in the production of imaginary frequencies. Physically this 

result implies that the potential energy surface is convex with 

respect to infinitesimally small movements of the atoms, indicating 

that the cluster is metastable or incompletely optimized. An 

incompletely optimized structure corresponds to one distorted by 

fictitious forces (Hoare and Pal (19 72a)), resulting in an increase 

in computed frequencies (Rayleigh's Theorem). Since there has been 

no separation of rotational and translational motions the diagonaliza

tion procedure produces five or six zero frequencies, according as 

the cluster contains two or more atoms. The procedure used to diag- 

onalize V is the well-known variable threshold Jacobi method (see, 

for example, Wilkinson (1965)).

4.3 The Frequency Spectra of Real Systems

The normal vibrations of the optimized clusters described in 

Chapter 2 are determined by Gwinn's (1971) method and the normal 

frequencies thus obtained are used to calculate the harmonic partition 

functions. Chapter 5 details how thermodynamic properties may be 

estimated by use of these partition functions. Table l7 presents 

the frequency distribution of the most and least stable clusters in 

the size range 2 ^ N < 13. Due to the scaling of the Lennard-Jones 

6-12 potential (see equation ( 1 . 3)) it 'is necessary to multiply

the frequencies in Table 17 by /£ These factors for the
im

four rare gases considered here are calculated from the data in Table 

11 and are contained in Table 16.



/i

Tapie 16

Al Al 2^
3.93 X lü" 4.13 X 10" 3.22 x 10" 2.57 x 10"

Conversion Factors for Absolute Frequencies

One notes from this table that the argon frequencies are slightly 

greater than the neon frequencies, even though the argon atoms are 

almost twice as neavy as tne neon atoms. However the argon well 

depth is nearly four times as deep as the neon well depth - 

consequently the more massive argon atoms vibrate with higher freq

uencies than do the neon atoms in a cluster of specified size and 

configuration. For the heavier clusters of krypton and xenon the 

frequencies decrease as the mass of the constituent atom increases.

Table 17

2 1.910

3 1.654(2), 2.339

4 1.350(2), 1.910(3), 2.701

5 1.062(2), 1.588, 1.868(2), 1.940(2), 2.516, 2.790

6^ 1.339(2), 1.415(3), 2.001(3), 2.451(3), 2.792

.731, .998, 1.451, 1.467, 1.600, 1.827, 1.984,

1.998, 2.148, 2.379, 2.747, 2.866.

7^ 1.051(2), 1.466(2), 1.503, 1.604(2), 1.967, 2.195(2),

2.222(2), 2.815,(2), 2.845

72 .657, .809, 1.097, 1.430, 1.561, 1.637, 1.657,

1.851, 1.978(2), 2.174, 2.451, 2.571, 2.835, 2.975
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Table 17 Continued 

H ^

.726, .996, 1.U95, 1.421, 1.495, 1.582, 1.588, 

1.670, 1.777, 1.866, 2.075, 2.181, 2.304, 2.364,

2.641, 2.844, 2.855, 3.089.

bg .536, .758, .834, 1.302, 1.337, 1.539, 1.597,

1.699, 1.829, 1.865, 1.909, 2.079, 2.137, 2.405,

2.547, 2.792, 2.943, 3.017

9^ .953, .969, .999, 1.483, 1.498, 1.513, 1.523,

1.597, 1.667, 1.691, 1.790, 1.864, 2.140, 2.197,

2.389, 2.394, 2.583, 2.785, 2.872, 3.049, 3.283.

9^ .522, .574, .698, 1.192, 1.248, 1.279, 1.525,

1.576, 1.686, 1.844, 1.846, 1.940, 1.956,">1.992,

2.138, 2.300, 2.557, 2.789, 2.814, 3.029, 3.070.

10^ .917(2), 1.099, 1.349(2), 1.451, 1.532(2),

1.640(2), 1.650, 1.856, 1.902(2), 2.043, 2.162, 

2.391(2), 2.637(2), 2.796, 2.911, 3.503(2).'

10^ .463, .513, .595, .942, 1.106, 1.262, 1.362,

1.472, 1.557, 1.707, 1.822(2), 1.875, 1.938,

1.985, 2.104, 2.109, 2.267, 2.443, 2.784, 2.814, 

2.836, 3.602, 3.165

11̂  .849, .866, 1.059, 1.188, 1.355, 1.383, 1.452,

1.482, 1.524, 1.625, 1.659, 1.701, 1.779, 1.843,

2.000, 2.032, 2.150, 2.203, 2.282, 2.355, 2.553,

2.611, 2.690, 2.762, 3.068, 3.767, 3.847

11^ .412, .441, .556, .771, 1.027, 1.059, 1.292, 1.401,

1.455, 1.567, 1.683, 1.803, 1.820, 1.825, 1.925, 

1.935, 2.029(2), 2.221, 2.233, 2.385, 2.665, 2.828, 

2.831, 2.898, 3.154, 3.188
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Table 17 Continued

N V ̂

12^ .850(2), 1.199(2), 1.232, 1.244, 1.387(2), 1.627(4)

1.777(2), 1.809, 2.059(2), 2.084(2), 2.144(2), 

2.310, 2.503(2), 2.512(2), 2.636, 3.688, 4.259(2) 

12^ .387, .396, .468, .675, .940, 1.003, 1.042, 1.330,

1.395, 1.476, 1.592, 1.699, 1.708, 1.790, 1.827,

1.875, 1.916, 1.965, 2.013, 2.090, 2.182, 2.314,

2.340, 2.557, 2.782, 2.833, 2.858, 2.974, 3.197,

3.227.

13^ 1.153(5), 1.564(4), 1.695(5), 1.828(3), 2.148(3),

2.164(4), 2.487(5), 2.693, 4.411(3)

13^ .372, .392, .440, .632, .784, .841, 1.034, 1.174,

1.230, 1.357, 1.430, 1.560, 1.622, 1.658, 1.689,

1.827, 1.864, 1.896, 1.954, 1.974, 2.044, 2.077,

2.256, 2.389, 2.433, 2.489, 2.658, 2.709, 2.852,

2.965, 3.045, 3.294, 3.546

Scaled Vibrational Frequencies of the Most and Least Stable Isomers

Absolute frequeyicies are obtained by multiplying the scaled freq

uencies by the relevant factor from Table 26, The numbers in brackets 

are the numbers of degenerate vibrations.

The data in Table 17 show that the most stable clusters produce 

a greater number of degenerate vibrations than do the least stable.

Tais is to be expected since in general the most stable clusters

possess a higher order of symmetry than the less stable ones. As
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the cluster size increases one sees a corresponding spread in freq

uencies. Acoustic type vibrational modes due to the co-operative 

movement of neighbouring atoms in the same direction produce the 

low frequencies, whilst the higher frequencies are due to 'breathing' 

modes. These latter modes constitute optical type modes, in which 

there is co-operative displacement of neighbouring atoms in opposite 

directions. Due to the small size of the clusters it is futile to 

attempt any identification of surface harmonics. Development of 

the acoustic modes is limited due to the size of the system:

Figure 21 illustrates the tendency for the frequency spectra to 

split in distinct 'bands', thus making any transition from the bulk 

to the finite frequency spectrum impossible. Similar behaviour is

observed by Dickey and Paskin (1968) in molecular dynamics experiments
'>

on platelets; these authors attribute such behaviour to the 

existence of surface and edge vibrational modes. One notes from 

the histograms in Figure 21 and from Table 17 the wider frequency 

spread associated with the less stable clusters, which tend to be 

irregular extended structures and are therefore capable of accommo

dating lower acoustic type vibrations. The histograms in Figure 21 

show very little resemblance to the frequency spectra of infinite 

systems (Dickey and Paskin (1968)(1970)) or to the Debye model; 

however since the largest cluster considered here contains a mere 

thirteen atoms this result is not unexpected. The decrease in the 

low frequency end with increasing cluster size is observed; as the 

number of atoms tends to infinity one expects this decrease to tend 

to zero. However the finite size of the system establishes a lower 

limit to the frequency spectrum with small clusters possessing low 

frequency modes not seen in the bulk solid. Van Hove (1953) predicts
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Figure 21
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that the frequency distribution function of a crystal, assuming 

harmonic interatomic forces and periodicity, has singularities, as 

opposed to the smooth distribution function obtained by, for example, 

Blackman (1941) . The frequency spectrum of the thirteen atom 

icosahedron (Figure 21) shows a gap which is reminiscent of the 

structure in the continuous spectra of infinite crystals. Newell 

(1953) shows such a gap in the frequency distribution of a simple 

cubic monatomic lattice. Dickey and Paskin (1970) illustrate the 

decreasing importance of bulk vibrational modes as the surface to 

volume ratio increases.

The clusters with high configurational symmetry (which in the 

case of the very small clusters considered here tend to coincide with 

the most stable clusters) possess frequency spectra which show a 

marked separation into frequency bands. These bands are due to the 

presence of degenerate vibrations; Hoare and Pal (1972a,1975) present 

frequency spectra which ;show the same qualitative trends as those 

in Figure 21, although their data are in all cases except one for 

systems containing more than thirteen atoms. The spectra of finite 

clusters enables an explanation of the thermodynamic properties 

described in Chapter 6 to be made.

4.4 Cluster Zero Point Energies

The cluster zero point energy per degree of freedom is calculated

f rom
imax

E = E = h . Z V. (4.10)zero zero —  . - i   2 1=11max

where the index i runs over all non-zero vibrational frequencies. In 

Table 18 the mean zero point energies per degree of freedom of clusters 

containing less than 7 atoms are presented.
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Table 19 contains statistical analyses of the cluster zero point 

energies per degree of freedom for clusters in the range 7 N ^ 13.

It is apparent from this table, taking due regard of the standard 

deviation, trie mean zero point energy per degree of freedom Ezero
remains constant in the size range studied. The distribution curves

are all platykurtic and except for N = 11 and N = 12 show positive

skewness. For all N except N = 8 the most stable cluster also

possesses the highest E - for N = 8 the maximum value of Ezero zero
is possessed by the most stable octahedral structure. The minimum

potential energy N-atom clusters, with 7 < N ^ 10, correspond to

those clusters with minimum values of E - for N = 11 and 12zero
octahedral structures have minimum E values, whilst for N = 13zero
an elongated irregular cluster has the minimum ^^ero* is possible

to conclude that in general clusters with high symmetry and conse

quently a number of degenerate vibrations possess higher zero point 

energies than the irregular, low sjmimetry clusters, which have a 

wider spread of frequencies (see Figure 2l) but few, if any,, degener

ate vibrations.

Table 18
N E , E Ë  +max zero min zero zero '

xlO
2 9.5492

3 9.4116

4 as Ê  . 9.2761zero .
5 9.2413

6 9.6119 9.2908 9.4514

Mean Lennard-Jones Zero Point Energies per Degree of Freedom

i  'on mutt'Cplying by n
* f-w
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N Emax zero . E ■ min zero Ezero st Skewness Kurtosis

xlO^ - 2xlO

7 9.6742 9.2201 9.4165 2.16 2.46 -16.45

8 9.6880 9.2016 9.3840 1.86 4.98 -11.90

9 9.8187 9.1839 9.4483 1.94 1.04 -8.50

10 9.9396 9.1676 9.4544 1.87 +2.00 -5.00

11 10.0159 8.9928 9.4854 2.00 -0.88 -2.76

12 10.1625 8.9275 9.5334 2.04 -0.74 -0.95

13 10.5226 9.1370 9.5595 2.15 +0.75 -0.44

Statistical Analyses of Lennard-Jones Zero Point Energies

Energies in the above table are per degree of freedom; absolute

energies may be obtained on multiplying by 
 ̂Standard Deviation

h 1 e
w

Table 2Ü compares the maximum cluster zero point energies

(= i ,E ). and the maximum potential energies at max max » ^
absolute zero. As the size of a cluster increases the zero point 

energy may make a sizeable contribution to the total cluster energy, 

however, Table 20 shows that for 2 ^ N ^ 13 the potential energies 

at absolute zero are all approximately one order of magnitude larger 

than the corresponding zero point energies.
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Table 20

t. .. I1 X t 0.261 0.773 1.523 2.276 3.157 3.972max zero

N X E f 1.654 4.962 9.923 15.06 21.02 27.30max

N

8 9 10 11 12 13

X E t 4.726 5.643 6.529 7.401 8.344 9.504max zero

N X E Î 32.78 39.88 47.01 54.19 62.79 73.30max

Comparison of Maximum Cluster Zero Point Energies and Maximum Lennard- 

Jones Potential Energies at Absolute Zero for Argon Clusters

: i is the nwnher of degrees of freedom
t . . 21T : all energies are measured in Joules x 10

4.5 The ilaximum Number of Vibrational Levels of L-J 6-12 Dimers

In tnis section the maximum number of vibrational energy levels 

of a harmonic oscillator in a well of depth c is compared with the 

maximum number of dimer levels calculated by Stogryn and Hirschfelder 

(1959) using a WKB approximation. The implications of the dis

crepancy are noted.
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Table 21

He Ar Kr )(e

1 3 6 9

3 9 16 26

Harmonie Approx. 

NKB Calcs.(a)

Exact and Harmonie Energy Levels for Lennard-Jones Dimers 

(a) data from Stogryn and Hirschfelder (1959)

The above table shows that the harmonie approximation predicts fewer 

dimer energy levels than does the WKB calculation. This result is 

expected since the harmonic approximation levels are equally spaced, 

see Table 22, whilst enharmonic effects cause the convergence of 

levels as higher energies are considered, A knowledge of the 

maximum number of vibrational dimer states enables one to determine 

an approximate temperature below which the use of classical mechanics 

is invalid in the evaluation of the partition functions. Classical 

statistical mechanics apply when the energy difference between two 

neighbouring states is very much less than kT. Since the rotational 

levels are very close we confine our interest to the vibrational 

states. For example, since Stogryn and Hirschfelder (1959) calculate 

nine dimer vibrational levels for argon, it may be argued that 

classical statistical mechanics are valid if T* >> 1/g. In the 

above authors* calculations of the maximum number of levels the 

angular quantum number Z is assumed to be zero, since for f > 0 the 

effective potential well is made shallower and narrower, thereby
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decreasing tae number of energy levels. They state taat quantum 

corrections for argon, krypton and xenon are small fbr T'̂  ^ .5; 

for neon T' needs to be greater than rv, 1.0.

Table 22

Neon Argon Krypton Xenon Principal Quantum
j

0.491 1.654 2.361 3.051

0.248 0.261 0.204 0.163 0

- 0.784 0.612 0.488 1
- 1.307 1.020 0.813 2
- ■ — 1.428 1.139 3

- 1.836 1.464 4

- - 2.244 1.789 5

- - - 2.115 6

- - - 2.440 7

- - - 2.765 8

Harmonic Energy Levels for Rare Gas Dimers

t depth 
21 Alt energies are measured in Joules x 10

Since the harmonic approximation underestimates the number of 

levels one would expect the harmonic partition function to under

estimate the 'exact' partition function - however a compensating 

and unfortunately non-separable influence, described in Chapter 10, 

also exists.



Chapter 5

5,1 Basic Statistical Thermodynamics

At sufficiently low temperatures we may adopt the RR-HO approximation 

( Farges et.al. (1973)) ; in this case the cluster hamiltonian 

may be separated into vibrational, rotational and translation 

components. Such a decomposition enables the cluster partition 

function Z(N,T) to be written as a product of three sub-partition 

functions, as in equation (5.1)

Z(N,T) = Z^(N,T)Z^(N,T)Z^(N,T)exp{-V(N)/kT} (5.1)

where t, r and v identify translational, rotational and vibrational 

contributions and V(N) is the binding energy of the minimum about 

which vibration occurs. The thermodynamic functions of a solid-like 

N-atom cluster at temperature T may be written (Hill (I960)): .

Helmholtz Free Energy

F(N,T) = -kT lnZ(N,T) (5.2)

Internal Energy

E(N,T) = kT^ 91nZ(N,T) (5.3)
3Ï

Entropy

S(N,T) = kT 81nZ(N,T) + klnZ(N,T) (5.4)
BT

Heat Capacity

C (N,I) = 2kT 31nZ(N,T) + kT^ 3^1nZ(N,T) (5,5)
31

The partition function to be used in equations (5.2) to (5.5) may be 

either the single-configuration partition function (SCPF), identified 

by the subscripts sc, or the multi-configuration partition function, 

(MCPF), identified by the subscripts me.



83

5.2 The Single-Configuration Approximation

Assuming the rigid rotor/harmonic oscillator (RRHO) approximation

standard texts on statistical thermodynamics (eg. Hill (I960)) present

the single-configuration sub-partition functions listed below.
-1

v.sc
3N-6

(N,T) = n exp
i=l

hv4
2kT 1-exp

Zr.sc(M'T) = X

Zt.sc("'T) =
2imNkT 3/2 •V mkT -*2

(5.6)

(5.7)

(5.8)

In the above equations

= the normal mode frequencies about the given minimum,

N = the number of atoms present,

T = the absolute temperature,

k = Boltzmann's constant, r* = equilibrium separation,

X = the cluster symmetry factor, introduced to correct for

repeated countings of indistinguishable clusters^

m

V

Planck's constant, ^  - h/2m ^

the principal moments of inertia of the cluster, 

the mass of an individual atom, 

the volume of the container.

Vibrational motion is considered to be quantised, leading to the 

quantum vibrational sub-partition function, whilst the rotational 

motion is assumed to be classical. Such an assumption is justified 

owing to the large moments of inertia of polyatomic molecules 

(Abraham and Pound (1968)) - however numerical results for neon indi

cate the increasing importance of quantum contributions as the atomic 

mass decreases.
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Use of equations (5.1) and (5.6) to (5.8) with equations (5.2) 

to (5.5) produces the following equations for the single-configuration 

thermodynamic functions

-11
scF(N,T) = -kTln

r3N-6 r  u '

1=1 *— -J
1-exp _ tüikT +V(N)

-kTln- 2TTmNkf ■ - k T l n i b ^ a ^ b ^ J  ^ SiT^kfJ J
3/2

sc

scE(N,T) =
3N-6

E
i=l

Fj.(N,T)

hv£
exp(hv^/kT)-l

scEyOS.T)

scfrCH'T) (5.9)

3N-6
+ ^  Ev. + V(N)

i=l
+ 3kT

scE(.(N,T) + 

scfr(K.;)
(5.10)

scS(N,T) =
3N-6| 

k E • 
i=l|

hvj/kT 
exp(hv^/kT)-l — In 1-exp (-h-O^/kT)

scSv(K.T)

+ k ■3 _ F (N,T)'
0 + k ■3 _ F (N,T)"
J  kT - kT

,,SpN.T) (5.11)

scCvol(H'T)
k̂ ”j.Y(hVi/kT)̂ exp(h\)£/kT)'J ^

 ̂ [exp(hv j^/kT)-l]^ J"

f v o l . v ( K ' T )  scCv o l . t ( K ' T ) + s c C v o l , r ( H ' T )

(5.12)

Equations (5.9) to (5.12) are used in Chapter 6 to calculate 

single-configuration thermodynamic quantities.
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5.3 The Multi-Configuration Approximation

The single-configuration approximation described in the previous 

section involves the interpretation of the partition function in 

equations (5.2) to (5.5) as corresponding to only one stable config

uration of N atoms. However, for each value of N there is a 

multiplicity of stable configurations (McGinty (1971),(1972)), each 

of which provides contributions to the 'exact* cluster partition 

function from the region of phase space in the neighbourhood of 

each minimum in the potential energy function. Consequently a 

more realistic representation of the cluster partition function, 

and subsequently of allied thermodynamic properties, is provided 

by the multi-configuration approximation in which contributions 

from all phase space are summed to produce a multi-configuration

partition function. Thus
C

Zmc(K.T) = /  (5.13)
i=l

where the summation runs over all geometrically distinct stable 

minima for clusters of N atoms. Each stable configuration k has 

corresponding vibrational, rotational and translational sub-partition 

functions, which, in the case of a separable hamiltonian, may be 

written

In (5.14) the tilde on the vibrational partition function indicates 

the absorption of the exponential factor in equation (5.1). Substi

tution of (5.14) into (5.13) produces
C

Zmc(K'T) = Zv.sc(K.ï)(i)Zr^sc(N.T)(")Z;_,c(N.I)(i)

which reduces to
C

Zmc(H.T) = 1 = 1 .
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since tlie translational partition function is configuration-independent. 

Equation (5.15) is the full IICPF: a vibrational MCPF is obtained in a

similar fashion by summing over all vibrational partition functions,

V , me (N,T) E Z (N,T) (i)
i=l v.sc (5.16)

Tne vibrational multi-configuration thermodynamic functions used in 

Chapter 7 are contained in equations (5.17) to (5.20), which are obtained 

via equations (5.2) to (5.6) and (5.16). A useful, check on the

validity of equations (5.17) to (5.20) may be made by comparing thermo

dynamic quantities calculated by the use of these equations when only 

one configuration exists with those obtained on using the vibrational 

components of the single-configuration equations (5.9) to (5.12).

C 3N-6 
= -kT in Z _n

1=1 J=1
' -hv./2kT 'e J exp< 1 1 h +1 E ^  1 £
- -hv./kT 1-e J i kT

H5.17)

= kT' /  
1=1

3N-6
E

j=l
9a."1
9T^ a,

E .
I _

. kT' 1

3N-6
n

j = l

-hv./2kT e J
- -hv./kT 1-e J

C 3N-6 
E n  

i=l j=l

f -hv./2kT 1 r 1 1 + E . 1e J •exp ' O ' 1
. -hv./kT kT1-e JV Ji  ̂ /

V < 1 s
'exp +1Eo.il

kT
Ji L /

(5.18)

mcSv(W.I) = mcE^/N.T) - „,F^(N,T) (5.19)

mcCvol.v(«'T) 2 E (N,T) + kT'me V ’ 6 - n ^ / '
C 3N-6 
E n 

i=l j=l

-hv./2kT
G 2___^" -hv./kT 1-e 1

'exp
+ E

kT

C 3N-6 
E n 

i=l j=l

f  -hv./2kT 1 e 3 •exp r+ iE o h i
. -hv./kT kT1-e J

(5.20)

where a., 9a;, and 9 a > are given by:
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a. =J
-h v; /2kT e J

" -hVi/kT 1-e J
(5.21)

isj =3T
 ̂h v . J  ̂-hvi/2kT ' e J [l + 2e-kVj/kT |

, -hv./kTll-e J J 1-e-hVj/kT
(5.22)

9^gj = 
3T^

 ̂hv. f -hv./2kT 'J • e J •

^kT^, 1 -hv;/kT [1-e J <

hvj . e + hy; - 2T^
^ (l-e-hvj/k?) 2k

^hVj f -hv-/2kT ' e J
2 f -hv./2kTl e J ,-hVj/kT + 3hv. _ 2,1

. -hv./kT 1-e J I J k (i_e-hvj/kT) 2k ]

(5.23)

with

6 = E 
i=l

3N-6 f -hv./2kT 1 (e . 1 fEn e J 0,1 + 2 0,1 exp
, -hv;/kT kT 1 m3j=l [1-e 2 i I J [ kT J I

(+\e I ]I n I •
kT

3N-6/' -hv./2kT ' e J______
" -hv•/kT 1-e J

+ n
j=i

fjEol.l I n-6
y 1 ^ 1  i

2 '3N-6 3a. 1 T
kT

I J
L

_j=i ^3T^ 2̂ âj i L
3T^*aj

i>
3N-6 -  2 n  
j=i

and

C
n = z 

i=l

-hv./2kT e J
. -hV:/kT 1-e J

exp

i j=l^ kT2 *
exp

(5 . 24)

3N-6
n

j=i

'-hv./2kT ' e J
" -hv•/kT 1-e J

exp kT kT'

(5.25)

(v .) is the j vibrational frequency of the i^^ configuration,
J i

|e^|^ is the absolute value of the i^^ potential energy minimum.

Derivations of equations (5.17) to (5.20) are contained in Appendix B 

In subsequent chapters the subscripts sc and me are inserted only 

when ambiguity may arise through their omission.
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The immense problem of identifying the symmetry factor of 

each N-atom cluster necessitates the introduction of an approxima

tion to the full MCPF. This approximation involves the use of 

only the most symmetric cluster, thereby removing the requirement 

that all cluster symmetry factors are known. Thus

Z„,(N,T)=. Zt,sc(N.T)Z,, sc(N.T)(l) Z Zy (5.26)» » 1=1 »

This is the form of the MCPF used in subsequent calculations 

of equilibrium concentrations, equilibrium constants and free 

energies of formation - it is seen to be related to the vibrational 

MCPF by a simple multiplication factor.

5.4 Equilibrium Constants and Relative Equilibrium Concentrations

The equilibrium constant K(N,T) of an N-atom cluster in equilib

rium with the monomeric vapour at temperature T may be expressed in 

terms of the cluster partition function by using the principle of 

detailed balance. The grand canonical partition function is written

C(N,Th“ fC(N,T)
3  (y,V,T) = E ^ E exp

N=0
y(N,T)C(N,T)~ Z(N,T)

kT C(N,T) (5.27)

In equation (5.27)

(i) the outer summation is over all 'phases' of the system,

(ii) C(N,T) is the number of clusters of size N at temperature T per 

unit volume,
tTi(iii) y(N,T) is the chemical potential of the N phase at temperature 

T (u(N,T) = Ny(l,T)),

(iv) Ê(N,T) is the N-atom cluster partition function per unit volume 

at temperature T (given by equation (5.26) divided by the volume 

V).
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Let us now consider clusters of size N only and drop the explicit 

temperature dependence to simplify notation. The contribution to

the grand canonical partition function from the phase ('-/—V^  phase N
is the term in curly brackets in equation (5.27). The average popula 

tion of N-atom clusters <C(N)> is given by (Hill (1956))

<C(N)> = kT 9&n 3

From equation (5.27)

phase N

phase N
8y (N)

C(N)
I Z(N)exp y(N)

kT
C(N) !

C(N)

(5.28)

exp Z(N)exp fy(N)l
I kT J

In equation (5.29) the relationship

exp(Y) = E
n=l nl

has been used. 

Equations (5.28) and (5.29) lead to

<C (N) > = exp
Z(N)

N

or in a more familiar form 

<C(N)>______  = Z(N) = K(N)
<C(1)>“ Z(l)^

(5.29)

'y(N)" = ’’<C(1)>“ (5.30)
_kT_ L Z(l) J >

(5.31)

The equilibrium constant of an N-atom cluster (at temperature T) may 

therefore be expressed in terms of the N-atom cluster partition 

function and the monomer partition function.
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For two geometrically distinct N-atom clusters A and B, differing 

in free energy by AF = F(N,T)^ - F(N,T)^, the relative equilibrium 

concentration .of cluster A to cluster B at temperature T is written

C(N,T)a = exp 

C(N,T)g ,

- AF 
kT

(5.32)

in which the free energy of each cluster is calculated according to 

equation (5.2). Use of equations (5.1), (5.2) and (5.32) enables 

the relative equilibrium concentration of two N-atom clusters at 

temperature T to be written

C(N,T)^ = Z(N,T)^ (5.33)

C(N,T)g Z(N,T)g

The temperature dependence in equation (5.33) is suppressed in future 

references unless ambiguity may arise by this suppression.
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Chapter 6

6 .1 Introduction

The vibrational single-configuration thermodynamic properties of

monatomic systems of rare gas clusters interacting through a Lennard-

Jones 6-12 potential are presented in this chapter. Vibrational

cluster frequencies are calculated as detailed in Chapter 4 and these

frequencies used in equations (5.9) to (5.12). Graphs of free

energies, entropies and heat capacities are plotted as a function of
3reduced temperature, and the T dependence of theheat capacities at 

low temperatures (<5°A) investigated. Configurational thermodynamic 

properties for Lennard-Jones and Morse clusters are calculated and 

comparison is made of the relative contributions of vibrational and 

configurational components to cluster properties. Configurational 

heat capacities and entropies are found to be independent of the 

chemical species;- it is suggested (Gibbs (1960), Adam and Gibbs (1965), 

Goldstein (1973a)) that configurational entropy is a major factor in 

precipitating the glass transition. r

6.2 Vibrational Single-Configuration Internal Energies

Cluster internal energies are calculated using the vibrational

component of equation (5.10). The internal energy may be naturally

divided into thermal, zero-point (^^^^^(N)) and potential (V(N))

contributions (respectively the first three terms in equation (5.4)).

Thus to compare cluster stabilities even at absolute zero it is

necessary to compare values of E ' (N) + V(N) rather than values ofzero

the classical potential energy V(N). As the depth of the potential 

well increases the zero-point contribution decreases; for the heavier
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krypton and xenon clusters the potential well supports very many more 

bound states (see Table 21) and zero-point energy effects become 

almost negligible. For cluster of neon and to a lesser extent argon 

such effects are no longer negligible. Zero-point energies are 

included in the thermodynamic calculations presented here - the zero 

temperature limits of the free energy curves in Figures 22 aud 23 

correspond to V(N) + ^2ero^^^ rather than to the classical potential 

energy V(N) (Table 6 ),

6 .3 Vibrational Single-Configuration Free Energies

Use of the first term in equation (5.9) enables calculations of 

the vibrational single-configuration free energies of N-atom clusters 

to be made. This term may be written

3N-6 3N-6
F (N,T) = kT E hvi + kT E £n 1-expf-hv.] + V(N) (6.1)

where the first contribution represents the zero-point energy for the 

3N-6 vibrations, the last contribution is the binding energy of the 

minimum about which vibration occurs, and the middle contribution 

reflects the entropie effects (see equation (6.2 )). Equation (6.1) 

illustrates the conflict between energetic and entropie effects in 

cluster free energies. It is seen in Figure 22 that for values of T* ^  .3 

for neon clusters and T .1 for argon clusters the cluster free 

energies per atom remain almost constant; i.e. entropie effects below 

10-12°A are negligible (McGinty (1971), Hoare and Pal (1972a,1975)).

The curves in Figure 23 show a steady decrease in free energy per atom 

from the lowest reduced temperature plotted - since this reduced

f - 11-exp -hv£
ki J
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temperature corresponds to an absolute temperature of ^ 1 7 °  for 

krypton and ^ 22° for xenon one may conclude that at these tempera

tures there are non-negligible entropie contributions to cluster free 

energies. Figures 22 and 23 indicate that the free energy per atom 

decreases virtually monatomically with both T* and N; no structure is 

seen in these curves. With increasing atomic mass the absolute free- 

energy per atom increases, as shown clearly in these figures.

The weak entropie contributions at temperatures below approximately 

12°A reinforces the assumption that energy-minimized clusters are also 

thermodynamically favourable (Hoare and Pal (1972a,1975)). Equation

(6 .2 ) presents the energy-entropy competition in a more transparent 

manner.

F(N,T) = E(N,T) - TS(N,T)

V. p
+ V(N)

3N-6 hv. hv. r 1
Z - T S(N,T)

i=l exp(hv^/kT)-l 2

(6.2)

The free energy of formation of an N-atom cluster from the ideal

monomer at specified temperature and pressure is calculated in Chapter

9 for N^13. The free energies thus calculated are compared to those 

obtained by McGinty (1971) for crystalline structures to determine 

whether the potential energy advantage of microcrystallites over 

crystalline forms is maintained as a thermodynamic advantage in the

rigid rotor/harmonic oscillator approximation (Chapter 9)•

6.4 Vibrational Single-Configuration Entropies

Cluster entropies are calculated according to equation (5.11) and 

the entropy per atom S(N,T)/N for the four rare gases are plotted in
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Figures 24 to 27 . These curves show an increase in S(N,T)/N with 

both T' and atomic mass. No structure is seen on these curves nor 

any tendency for the entropy per atom to rise to a maximum and 

subsequently decrease (see Burton (1970a,1972b) who suggests an 

entropy 'peak* at N=40). With increasing N the entropy per atom 

approaches a limit - such behaviour is consistent with the conclusion 

of Hoare and Pal (1972a,1975) that S(N,T)/N remains approximately 

constant for clusters containing more than 20 atoms. This tendency 

to remain constant implies that any change in the free energy per atom 

is due to energetic rather than entropie effects for clusters con

taining more than 20 atoms. It is possible that the constant entropy 

per atom (for N>20) is an artifact due to the harmonic oscillator 

approximation; computer calculations using exact equations of motion 

may be used to confirm or deny this hypothesis. The molecular dynam

ical calculations of Kristensen et al (1974) do not provide any 

systematic study of the variation of entropy with size, although they

do simulate pre-melting phenomena in clusters containing between 55

and 429 atoms.

As is shown in equation (6,2), the existence of entropy sources 

indicates a tendency for a condensed nucleus to remain stable if the 

internal energy remains constant, A highly symmetric cluster has 

less high frequency modes (Table 1 7) and therefore possesses higher ent

ropy (Burton (1972b), Kanamori (I960)); on the other hand a tightly 

packed cluster has less low frequency modes » which results in an entropy 

decrease (Hoover et al (1972)), If a low saddle point is associated 

with a particular minimum in the potential energy space (i.e. the 

minimum has at least one large radius of curvature) more regions of ,

phase space are accessible to the N-atom cluster and the entropy is
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Figure 25

1 0
Xe

N = 7
9-

Kr
8 -  -

7-

ArU J

6 - -U J

toC M O

4--

Ne3 —
LL

2 - -

U J

1 - -

1-0
REDUCED TEMPERATURE

Entropy; Reduced Temperature



99

Figure 26
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correspondingly higher. Related to the latter factor is the effect

of isomer multiplicity; the greater the multiplicity the greater the 

entropy is since more minima exist in the potential energy space.

As a further complication discrete clusters have low frequency edge 

vibrational modes which cause the generation of higher entropy (Burton 

(1972b)), Edge effects are particularly important for clusters of 

the size studied here - these clusters have high surface to volume 

ratios,

It is important not to underestimate entropie contributions to 

the free energy since the basic competition between internal energy 

and entropy (equation (6 ,2 )) may cause clusters which are not minimal 

in binding energy to become minimal in free energy. Entropie effects 

at temperatures less than 10-12°A are very weak (Figures 22 and 23); 

at higher temperatures entropie contributions increase in importance 

with increasing N, although as N approaches 12 and 13 this increase 

appears to approach a limit.

The entropy excess per atom at T* = ,7 (approximately the melting 

temperature for the species), relative to the corresponding infinite 

crystalline solids, is calculated for various sized clusters of each 

gas (Table 23), Equation (6,3) (Pal (1972)) is used to approximate 

the entropy per atom for the infinite solid.

2 = 3 4 - £n f 0 + 1 '0'2 - 1 '0'
k ^  It 40 T 2240 T

+ ,,^ per atom

(6,3)

in which 0 is the Debye temperature.
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Table 23

t
6°A T°A kAS Joule deg  ̂ atom ^

N=4 N=7 N=9 N=13

Ne 75 24.92 -. 106 .361 .511 .542

Ar 92 83.86 -1.020 .131 .479 .700

Kr 72 119.70 -1.863 -.330 .130 .471

Xe 64 154.7 -2.250 - .408 .144 .582

*f" k 'is Boitzmann*s constant.

Entropy Excess per Rare Gas Atom

Table 23 shows that the entropy excess per atom increases with 

N for all gases. This excess implies that clusters containing less 

than 14 atoms may form nuclear ’seeds* under suitable conditions.

Since the entropy excess per atom is increasing, albeit slowly, as N 

approaches 13 it seems that the larger clusters in the range cohsidered 

here are more likely to form nuclear embryos than clusters containing 

4~9 atoms. As N increases above 13 it is apparent that the entropie 

contribution to the free energy of formation of critical nuclei dec

reases in importance, indicating that energetic effects govern the 

formation of larger critical nuclei.

6.5 Vibrational Single-Configuration Heat Capacities

The vibrational S-C heat capacities ( C  ̂ (N,T)) of small^ sc vol,v ’
clusters of rare gases, calculated by use of equation (5 .12), are plotted 

in Figures 28 to 31 as functions of reduced temperature T*. These , 

curves illustrate the following trends in cluster heat capacities:
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(i) C T (N,T) per atom increases with increasing N for all T"<:1 sc VOljV  ̂ ^
(Figure 30);

(ii) " " ” per degree of freedom decreases with increasing N

for all T*<1;

(iii) " " " per atom increases as the mass of the cluster atoms

increases for all T*^l (Figures 28 and 29);

(iv) as the cluster temperature approaches the appropriate Debye

temperature 0 (0 = um/k, where w is the phonon spectrum cut-off

frequency and k is Boltzmann's constant) the C _ (N,T) per^ sc vol,v
atom: T* curves level out for argon, krypton and xenon clusters -

the neon curves show no such behaviour since the Debye tempera

ture for neon (75°A) corresponds to a reduced temperature of

2.1 (Figures 28 and 31);

(v) no structure is seen in the C . (N,T) curves.sc vol,v *

Attempts have been made by various authors (Jura and Pitzer (1952), 

Maradudin (1963), Burton (1969,1970a,b), Hoare and Pal (1972a,1975)) 

to explain the anomalous behaviour of the heat capacities exhibited by 

finite clusters. Nonnenmacher (1975) shows that such anomalous 

behaviour follows from a qualitative discussion of the asymptotic 

behaviour of the heat capacity formulae in the high and low temperature 

limits. The vibrational spectrum of the cluster governs the calculated 

heat capacity (equation (5 .12) - the spectrum is itself dependent on

the cluster size and shape. As the cluster size decreases the vibra

tional spectrum contains fewer low frequency modes (Table 17 in Chapter 

4 ); the low frequency vibrations provide larger contributions to the 

heat capacity than do higher frequency modes. The absence of these
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lower modes in small clusters therefore contributes comparatively 

little to the heat capacities of these clusters, leading to a decrease 

in heat capacity per atom as N decreases ((i) above). The deficiency 

of vibrational degrees of freedom as N decreases becomes more pro

nounced, as reflected in (ii) above,

Montroll (1950) derives the following equation (5.4) for the heat 

capacity per atom of a semi-infinite solid:

C  ̂  ̂ = 127T kvol,vol — j v2/3
Ç.' 1 
C2 wl/3

per atom.

In equation (6.4) ^(3) is the Riemann zeta function, and C2 are 

related to the velocities of propagation of longitudinal and transverse 

elastic waves in the crystal (c^ and c^) by:

— 1 — i “iC . /  = + 2c^ (6.5),

and S and V are the crystal*s surface area and volume respectively.

Equation (6.4) presents two components of the vibrational heat capacity
3per atom; one proportional to T (the Debye law) and the other

2 . . .proportional to T . It is evident from equation (6.4) that for high
2surface to volume ratios the T contribution to the heat capacity 

increases in importance (between .5 and 10 per cent of the total heat 

capacity at 1°A (Montroll (1950)). Jura and Pitzer (1952) indicate 

that changes in the shape of a cluster, leading to a greater surface 

area for the same volume, are important factors governing heat capacity 

increases. The computer simulations of Dickey and Paskin (1970) show 

the increasing importance of surface modes as the cluster size decreases; 

Frô’hlich (1937) provides a discussion of the effect of cluster size on 

low temperature heat capacities.
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The first term in equation (6.4) is used to calculate the heat 

capacity per atom of semi-infinite crystals of neon and argon at a 

reduced temperature of .05 and .1. These data are presented in 

Table 24, with the heat capacities per atom of 13-atom clusters 

calculated by use of equation (5.12). We see that the semi-infinite 

crystal has a lower heat capacity than the finite cluster at T^ = .1 

but a higher value at T* - .05. The reduction in Debye temperature 

at very low temperatures (Blackman (1937)) increases the heat capacities 

of finite clusters; on the other hand the heat capacities of finite 

clusters fall faster to zero than do those of the semi-infinite crystal 

as T 0. The latter effect is due to the lack of relatively low 

frequencies in finite clusters; the exponential term in equation (5.12)

Table 24
-1 23Heat Capacity/Atom. Joule, deg xlO

T Equation (5.12) Equation (6.4)
finite clusters Montroll (1950)

Ne 1.78 .00041 .00043

Ne 3.56 .0373 .0891

Ar 5.99 .060 .0345

Ar 11.98 1.558 .7123

Comparison of Cluster Heat Capacities/Atom and Semi-Infinite 

Heat Capacities/Atom

3 .reduces their heat capacities to zero faster than the T term in 

equation (6.4) does. Figure 32 shows that cluster heat capacities 

at temperatures less than 5°A is not linear in T^. This anomalous 

effect is due to the surface effects of very small clusters and the
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dependence of vibrational heat capacities on die cluster frequency 

spectrum as well as to the reduction in the Debye temperature.

Figure 29 indicates that once the Debye temperature of the 

relevant gas has been reached the heat capacity per atom remains 

approximately independent of temperature for specified N. Below the 

Debye temperature the heat capacity is dependent on both N and T* in 

agreement with Pal (1972) who suggests that the heat capacity inc

reases mone&et^ically with N for N<20. The heat capacity per xenon 

atom at the Debye temperature, calculated by use of equation (5.12) 

for a 13-atom cluster, is ^'2.53k; calculated for a 4-atom xenon cluster 

it is ^l.SOk. Classically, the heat capacity per atom in an infinite 

crystal is given by the high temperature approximation

Cy =(N,T) = (3-6/N)kpl- 1 + 1 fel^
L 20 560 T

(6 .6)

which is approximately equal to 2.95k at the Debye temperature.

The heat capacities of finite clusters at temperatures above the Debye 

temperature therefore show the same qualitative behaviour as those 

shown-by infinite crystals.

Figure 32 presents the heat capacity/atom curves for 13-atom 

clusters of all gases at temperatures less than 5°A - smaller clusters 

exhibit similar behaviour. As at higher temperatures the heat 

capacity per atom increases with increasing N whilst per degree of 

freedom it decreases. An interesting point to note is that for neon 

clusters the heat capacity curve lies above the argon curve - this is 

a trend not seen at higher temperatures (Figures 28 and 29) and is 

therefore more likely to be a consequence of quantum effects important 

in neon clusters at low temperatures than due to the scaling factors for
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o
neon frequencies (Table 16) . The Debye T dependence is valid for 

temperatures .19 (Kittel (1969)); reference to Table 23 shows that

•l®Ar > -“ Me ' ' 5°A . (6.7)

One would therefore expect the heat capacities in Figure 32 to show
3 . . 3a linear dependence on T . Deviation from the T law is seen first

for xenon clusters, followed by krypton, neon and argon clusters, in 

accord with the ordering of {.10} in (6.7) above. One may conclude 

that with increasing temperature on the range 0-5°A clusters containing 

13 or fewer atoms possess heat capacities which increase less rapidly 

than T^.

6.6 Configurational Thermodynamic Properties

The glass transition has been explained in terras of free volume 

effects by Williams et al (1955) and Turnbull and Cohen (1961), whilst 

other investigations (Gibbs (1960), Adam and Gibbs (1965), Goldstein 

(1973a)) attribute the transition to the effects of configurational 

entropy. Goldstein (1969) postulates that at low temperatures a glass 

is in or near a potential energy minimum; the relaxation of glass and 

the statistical mechanics of the glass transition are elaborated upon, 

by Goldstein (1972,1973b). In this section the configurational thermo

dynamic properties of L-J and Morse 13-atom isomers are compared at 

two reduced temperatures (Table 25) in an attempt to decide whether 

or not the sets of minima discovered in Chapters 2 and 3 are able to 

model the glass transition.

If the exponential term in equation (5.1) is interpreted as a 

configurational partition function which may be separated from the
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vibrational partition function as shown below

Z(N,T) =
C C

Z'(N,T)Z (N,T) 2 Z (N,T)^^^ 2 exp 
i=l ^ i=l

-E (ih
0,1
kT

(6.8)

in which the * indicates the partition function of the most stable
•. th minimumcluster and E . is the energy of the i potential energy 0,1

(eV(N)^^^), it becomes possible to calculate configurational thermo

dynamic properties for the rare gases. Such a separation is analagous 

to considering an Einstein model in which all the 3N-6 vibrational 

frequencies of the cluster are assumed to be identical. Equations

(5.2) to (5.5) indicate that configurational thermodynamic proper

ties may be calculated if the 1st and 2nd derivatives of In (configura

tional partition function) are obtained. Thus, ^

InZ (N,T) = In 2 exp f-E ./kflconfig i=l L J »
(6.9)

ST i=l kT *

C -E ./kT 
2 e °»" 

i=l

-1

>
(6.10)

ST^

C
2

i=l
0,1
kT^

0,1 - 2
kT

-E ./kT
.e 0.1

i=l kT
C ^  r/kT 
2 e 

i=l

-i2

(6 .11)

Substitution of equations (6.9) to (6.11) into equations (5.2) to (5,5) 

produces configurational thermodynamic functions.
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Table 25 contains the results of a comparison of Morse and L-J 

configurational properties of rare gas clusters. One sees from this 

table that the entropies and heat capacities are independent of the 

cnemical species. This result is more easily understood when one 

remembers that these two properties are proportional to energy differ

ences and not to absolute energies (equation (6 .1 2)).

S = U - F
T (6.12)

C = ^
dT , where the symbols have their usual meanings. 

Rapid decreases in configurational entropy and heat capacity with 

decreasing temperature are clearly seen in Table 25; Kauzmann (1948) 

indicates that the fall-off of configurational entropy with decreasing 

temperature is so rapid that it would become zero at a finite tempera

ture. The decrease calculated in the present work is more pronounced 

for clusters interacting through the Lennard-Jones potential, probably 

due to the far greater number of minima in the Lennard-Jones potential 

space. The studies of Johari and Goldstein (1970,1971) reveal a 

uniformity of behaviour in glass-forming liquids which implies a 

dependence of these liquids on either configurational entropy or config

urational heat capacity. Rosenstock (1972) shows that the low 

temperature heat capacity of disordered solids is linear in the tempera

ture provided that the distribution of cavities in the solid is of 

inverse-cube nature. The atomistic model considered here confirms 

the uniform behaviour observed by Johari and Goldstein (1970,1971) and 

shows the rapid decrease in configurational entropy required for 

agreement with Kauzmann (1948) . '
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Table 25

Ne Ar Kr Xe T-D
Property

L-J Morse L-J Morse L-J Morse L-J Morse

.2 -.218 -.256 -.733 - .860 -1.046 -1.228 -1.352 -1.587 Free energy

.7 -.219 -.259 -.736 -.873 -1.051 -1.246 -1.358 -1.610 J xl0^9

.2

.7

-.218

-.213

-.254

-.253

-.733

-.717

-.856

-.852

-1.046 

-1.023

-1.221 -1.352 

-1.216 -1.322

-1.578

-1.572

Internal 
Energy 
J xl0l9

.2

.7

3.862
(-28)

2.329
(-23)

1.915
(-23)

2.465
(-23)

* t a t * t
Entropy 

J. deg"’-

.2

.7

5.363
(-27)

1.089
(-2 2)

1.289
(-25)

1.311
(-23)

* t * t * t
Heat

Capacity 
J. deg"l

Comparison of Configurational Thermodynamic Properties of 13-atom L--J (6-12)

and Morse (a=3) Clusters^ r

* as L-J Ne; t as Morse Ne; Î numbers in brackets denote powers of 10,

In Table 26 configurational and vibrational free energies and internal 

entropies of 13-atom L-J clusters are shown to be within one order of 

magnitude of each other throughout the entire temperature range. Con

figurational heat capacities and entropies a!re approximately five orders 

of magnitude smaller than their vibrational counterparts at low reduced 

temperatures, with the difference decreasing to l'̂2 orders at higher 

reduced temperatures. This behaviour illustrates the increasing
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configurational disorder in the cluster as the temperature increases

Vibrational properties have been calculated by use of equations

(5. 9) to (5.12).

Table 26

T* Thermodynamic Property Configurational Vibrational Gas

.2 Entropy 3.862(-28) 0.276(-22) Ne
(Joule, deg ) 2.916(-22) Ar

5.277(-22) Kr
7.360(-22) Xe

.7 2.329(-23) 0.472(-21) Ne
0.958(-21) Ar

! 1.230(-21) Kr
1.449(-21) Xe

.2 Heat Capacity 5.363(-27) 0.884(-22) Ne
(Joule, deg” ) 3.533(-22) Ar

4.19K-22) Kr
4.409(-22) Xe

.7 1.089(-22) 4.314(-22) Ne
5.305(-22) Ar
5.40K-22) Kr
5.427(-22) Xe

.2 Internal Energy -0.218(-19) . -0.126(-19) Ne
(Joule) -0.733(-19) -0.595(-19) Ar

-1.046(-19) -0.877(-19) Kr
-1.352(-19) -1.144(-19) Xe

.7 -0.213(-19) -0.530(-20) Ne
-0.717(-19) -2.502(-20) Ar
-1.023(-19) -3.655(-20) Kr
-1.322(-19) -4.753(-20) Xe

.2 Free Energy -0.218(-19) -0.128(-19) Ne
(Joule) -0.733(-19) -0.665(-19) Ar

-1.046(-19) -1.058(-19) Kr
-1.352(-19) -1.470(-19) Xe

.7 -0.219(-19) -0.171(-19) Ne
-0.736(-19) -1.054(-19) Ar
-1.05K-19) -1.838(-19) Kr
-1.358(-19) -2.717(-19) Xe

Comparison of Configurational and Vibrational Thermodynamic Properties of

13-atom L-J (6-12) Clusters^

I: numbers in brackets denote powers of ten.
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Chapter 7

7.1 Introduction to tiie Multi-Configuration Approach

The need to use a multi-configuration (MC) approach in the calcula

tions of the thermodynamic properties of systems of the type considered 

here has been recognised by a number of authors: McGinty (1971,1972)

and Burton (1970) remain in conflict over the interpretation of multi- 

configurational results. Bonissent and Mutaftschiev (1973) conclude 

that such an approach is not necessary for clusters containing less 

than 15 atoms. Kristensen et al (1974) note the limitations imposed 

by a single configuration (SC) approach and resort to molecular dynamical 

techniques in an investigation of cluster thermodynamic properties.

Similar techniques are used by Briant and Burton (1973) in a study of 

the melting transition of a 55-atom cluster. The use of molecular 

dynamics enables enharmonic effects to be included in tne calculations - 

which appear at low temperatures as perturbations on the energy levels - 

and in principle enable all phase space to be explored. Andres (1962) 

notes that the single occupancy model (equivalent to the SC approximation) 

underestimates the equilibrium concentrations because of the prevention 

of free interchange of the atoms. This chapter investigates how 

accurately the single-configuration partition function approximates 

the multi-configuration partition function for N > 5, and the resulting 

effect on tne cluster thermodynamic properties*. In all cases the 

percentage difference between MC and SC results are calculated by use 

of equation (7.1) below.

% diff = A = MC(calc.)-SC(calc.) x 100 (7.1)
SC(calc.)

*For N < 6 isomer multiplicity does not exist; in such cases MC 

calculations provide thermodynamic properties equal to those produced 

by SC calculations.



118

7.2 Vibrational Partition Functions

Tables 27 to 30 , containing percentage differences between 

vibrational MCPFs and SCPFs, illustrate clearly two points;

(i) the increasing importance of the MCPF approximation with increas

ing temperature, and

(ii) the decreasing importance of the MCPF approximation with increas

ing atomic mass.

Figure 33 indicates the dependence of on N - all four gases show 

the same qualitative behaviour. If the energy of the most stable 

configuration is widely separated, in terms of binding energy, from the 

energies of alternative stable configurations, the corresponding MCPF 

is dominated by the contribution from the region of phase space in 

the neighbourhood of this energy minimura. In this case the SCPF 

approximates closely the MCPF up to a reduced temperature of .4 (see

the 13-atom curve in Figure 33). At T* = .4 App for 13-atom argon

clusters is only 6 .6 . On the other hand those sets of N-atom clusters 

in which the energy of the most stable configuration is comparatively 

close to the energies of the other structures lead to the production

of a MCPF which does not possess any dominant contribution. In this

case the MCPF depends on the number of contributing structures and is 

approximated rather less well by the SCPF (see, for example, the 11- 

atom curve in Figure33). For 11-atom argon clusters at T* = .4 Ap^

is 782. 13-atom clusters of all gases at T = .1 have A„^s ^ 10—7pr= '
(Figure 33). This figure shows that the percentage difference between 

the MCPFs and the SCPFs remains almost constant at 2 orders of 

magnitude for 6- and 8-atom clusters. It is significant that for 

clusters of these sizes there is no particularly favourable configuration,
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Table 27

“A ' 6 7 8 9 10 11 12 13

.1 13.16 1.73 25.70 1.50 0.79 2.34 6.57x
10-4

2.15X
10-7

.2 41.91 24.25 89.26 52.91 36.18 78.81 1.14 1.18x
10-2

.3 66.66 66.23 180.79 210.79 210.78 421.40 26.90 0.87

.4 86.39 114.47 281.99 457.93 631.22 1260.10 197.75 16.06

.5 101.99 162.02 381.01 760.40 1333.33 2752.86 793.27 142.39

.6 114.46 206.16 472.88 1090.43 2290.01 4940.95 2200.26 730.61

.7 124.59 246.09 556.11 1429.03 3446.81 7776.96 4799.35 2558.25

.8 132.93 281.84 630.78 1764.26 4745.72 11166.44 8880.13 6866.69

.9 139.92 313.76 697.57 2089.07 6135.73 14998.97 14608.94 15241.83

1.0 145.84 342.28 757.33 2399.62 7575.91 19166.49 22035.09 29412.22

Percentage Differences for Neon Vibrational Partition Functions

6 7 8

Table 28

9 10 11 12 13

.1 4.26 0.62 40.91 0.26 0.18 0.20 9.29x 
10-5 •

1.99x
10-9

.2 29.10 14.81 81.82 27.61 18.34 22.36 0.43 1.98x
10-3

.3 56.22 50.44 155.43 148.86 134.53 199.72 13.03 0.29

.4 78.43 96.69 249.59 367.05 460.11 782.16 113.16 6.61

.5 95.87 144.60 347.62 651.56 1058.44 1978.64 515.50 70.26

.6 109.65 190.01 441.12 972.62 1923.38 3874.80 1568.74 419.18

.7 120.72 231.49 526.93 1308.51 3008.94 6451.16 3661.18 1643.29

.8 129.77 268.77 604.37 1645.02 4257.70 9626.12 7122.20 4795.03

.9 137.28 302.09 6.73.80 1973.50 5615.89 13291.87 12168.98 11331.66

1.0 143.61 331.84 735.96 2289.03 7038.88 17337.19 18897.79 22940.31

Percentage Differences for Argon Vibrational Partition Functions
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Table

9

29

10 11 *

121

12 13

.1 3.79 0.55 43.56 0.22 0.15 0.16 6 .81x 
10-5

1.068X
10-9

.2 28.26 14.16 81.53 26.00 17.09 20.47 0.38 1 .62x 
10-3

.3 55.50 49.29 153.60 144.55 129.30 189.00 12.08 0.26

.4 77.86 95.37 247.18 360.54 447.96 754.22 107.45 6.09

.5 95.42 143.29 345.11 643.64 1038.64 1928.84 496.48 66.07

6 109.30 188.80 438.73 963.96 1896.68 3802.53 1524.76 400.01

.7 120.44 230.39 524.73 1299.59 2976.77 6358.45 3580.77 1584.48

.8 129.53 267.79 602.37 1636.15 4221.62 9516.24 6996.54 4657.61

.9 137.09 301.21 672.00 1964.86 5577.27 13168.44 11992.91 11066.10

1.0 143.45 331.05 734.34 2280.74 6998.83 17203.65 18669.83 22492.78

Percentage Differences for Kryp ton Vibrational Partition Functions

Table 30

6 7 8 9 10 11 12 13

.1 3.68 0.53 44.29 0.20 0.14 0.14 8.97x
10-5

8.746x 
10-10

.2 28.04 13.98 81.45 25.57 16.76 19.99 0.37 1.530X
10-3

.3 55.31 48.99 153.12 143.41 127.79 186.27 11.83 0.25

.4 77.71 95.02 246.54 358.83 444.77 747.01 105.95 5.96

.5 95.30 142.95 344.45 641.56 1033.44 1915.88 491.50 64.99

.6 109.20 188.48 438.10 961.68 1889.65' 3783.65 1513.24 395.04

.7 120.36 230.10 524.15 1297.24 2968.30 6334.16 3559.69 1569.19

.8 129.47 267.53 601.84 1633.81 4212.12 9487.42 6963.56 4621.79

.9 137.03 300.98 671.52 1962.59 5567.10 13136.02 11946.66 1Ô996.73

1.0 143.40 330.84 733.91 .- 2278.56 6988.29 17168.54 18609.88 22375.69

Percentage Differences for Xenon Vibrational Partition Functions
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The decision as to whether or not one should use the MCPF hinges

on the answer to the question: are the energies of the stable config

urations evenly distributed over an energy range or is there one 

configuration possessing an energy widely separated from the others in 

that group? In the former case it appears to be necessary to use the 

MCPF, whilst if the latter situation exists one has some justification 

for using the SCPF. With increasing temperature the {A^p} increase 

t o 4 orders of magnitude, although at reduced temperatures much 

above .3 ^  .4 anharmonic effects and fluid-like motions render the 

harmonic oscillator approximation strictly invalid, except as a general 

guide to the properties of the system. Near the boiling point 

(T* .7) of argon there is a percentage difference of orders of

magnitude. The results in Tables 27 to 30 contradict the conclusion 

of Bonissent and Mutaftschiev (1973): ie. that the MCPFs for N < 15 

differ only slightly from the SCPFs. This contradiction is probably

due to the neglect by Bonissent and Mutaftschiev of some stable 

configurations.

7.3 Vibrational Free Energies

The free energy percentage differences {A^g} in Table 31 follow

the pattern shown by the {A^g} with a maximum for 11-atom clusters.

The maximum A is just less than 17 - this percentage difference occurs 

for 11-atom neon clusters at T* = 1.0. The overall minimum A^g for 

neon clusters is 3 at T* = .3; for argon clusters at the same tempera

ture it is not greater than 1.5, whilst for the heavier krypton and xenon 

clusters at this temperature it is ^ 1 .  Figure 35 shows the {Agg} for 

neon clusters to be substantially greater than those for clusters of 

the heavier gases - this is probably due to quantum effects which become

increasingly important with decreasing atomic mass. Near the boiling 

point of the gases all the percentage differences are ^ 11, With
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increasing temperature the percentage differences increase, shown quite 

clearly in Table 31.

For reduced temperatures .< .3 the SC approximation to free energies 

appears to be valid. McGinty (1971) notes differences of up to 2% in 

the free energy/argon atom - his calculations use a simplified MC approach 

for clusters containing less than 100 atoms at temperatures up to 70°K.

The present calculations produce differences of up to .5% in free energy/ 

argon atoms at a reduced temperature of .6 (ie.^72°K). Even for the 

light neon clusters the maximum A^^/neon atom at T* = .6 is only

Table 31
N r̂-k 6 7 8 9 10 11 12 13
.3

.6

1.0

2.26

5.54

7.27

1.68

6.12

9.20

2.80

7.78

10.81

2.51

9.13

13.67

2.10

9.88

15.75

2.61

10.49

16.58

3.20C-1)

7.18

14.81

9.87C-3)

4.19

13.85

N r̂'k 6

Neon

7 8 9 10 11 12 13
.3 1.08 7.56C-1) 1.44 1.16 9.19(-1) 1.03 . 9.90C-2) 2.02(-3)

.6 2.55 2.84 3.72 4.39 4.77 5.10 3.41 1.76

1.0 3.32 4.27 5.11 6.49 7.55 8.01 7.20 • 6.70

6

Argon

7 8 9 10 11 12 13
.3 8.98(-l) 6.30(-l) 1.21 9.69(-1) 7.67(-l) 8.54(-l) 7.97C-2) 1.57(-3)

.6 2.03 2.27 2.98 3.53 3.85 4.13 2.76 1.41

1.0 2.61 3.37 4.04 5.14 5.99 6.38 5.75 5.35

N rj,* 6

Krypton

7 8 9 10 11 12 13
.3 8.00 (-1) 5.62(-l) 1.08 8 .6 6 (-l) 6 .8 6 C-1) 7.64C-1) 7.08(-2) 1.39C-3)

.6 1.75 1.06 2.58 3.06 3.34 3.59 2.41 1.23

1.0 2.23 2.89 3.47 4.41 5.15 5.49 4.96 4.62

Xenon

Percentage Differences in Vibrational Free Energies for the Rare Gases 

Numbers in parenthesis denote powers of 10,
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7.4 Vibrational Internal Energies

The percentage differences in internal energies {A^g} are presented 

in Table 32. The most obvious feature of this table is that all 

except one of the percentage differences are negative (the exception 

being for 6-atom neon clusters at the top of the potential well) .

This feature shows that the internal energies increase when the MC 

approximation is used. For 6-atom neon clusters at T* = 1,0 the internal 

energy is positive for both MC and SC approximations, being greater in 

the MC calculations. This increase is in accord with the behaviour 

shown by clusters of different sizes for the other rare gases. The 

very large percentage differences possessed by 7, 8 and 9-atom neon 

clusters (e.g. -550 for 7-atom neon clusters) become acceptable when one 

realizes that the internal energies are increasing from a negative 

value, through zero, to positive values. As the SC internal energies 

pass through the immediate vicinity of zero the percentage différences 

obtained via equation (7,1) become very large.

Hie maximum A^g (<̂  -6) at T* = ,3 occurs for neon 10-atom 

clusters: for argon, krypton and xenon clusters at the same reduced

temperature the A^g is ^  -4. The SC approach may be used with some 

confidence at or below this temperature. At the top of the potential 

well 6-atom xenon clusters show the least sensitivity to the different 

approximations, as expected because of their mass. Figure 34 illustrates 

the marked difference between the {A^g} for neon clusters and those for 

clusters of the other gases. The same figure shows the tendency for

the {A^g} to increase with N; this result contrasts with the behaviour 

at T* = .3. In the latter case the percentage differences reach a 

maximum for clusters containing 1 0 1 1  atoms, and fall rapidly for 

larger sized clusters. The maximum A^g o f ^  -550 occurs for 7-atom 

neon clusters at a reduced temperature of 1 ,; for the other gases
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at this temperature the average A^g is -40. With increasing 

temperature the {A^g} increase.

Table 32

-p* 6 7 8 9 10 11 12 13
.3

.6

1.0

-1.96 

-4.97 

+60.16

-3.10

-9.38

-550.08

-3.23

-8.69

-472.44

-4.92

-12.35

-114.02

-5.60

-15.80

-94.98

-5.56

-14.87

-75.40

-2.26

-20.51

-79.31

-1.06(-1) 

-24.20 

-79.45

N rj,* 6

Neon

7 8 9 10 11 12 13
.3 — 1.64 - 2.22 -2.22 -3.67 -3.83 -4.25 -9.73(-l) -2.87C-2)

. 6 -3.96 -7.43 —6.84 -9.96 - 12.86 -12.64 -16.78 -18.88

1.0 -39.61 -47.66 -42.56 -44.35 -48.37 -43.93 -52.21 -58.41

N rp* 6

Argon

7 8 9 10 11 12 13
.3 -1.61 -2.16 -2.15 -3.58 -3.71 -4.12 -8.97(-l) -2.54(-2)

.6 -3.90 -7.32 -6.73 -9.81 -12.69 -12.49 -16.55 -18.51

1.0 -35.38 -44.70 -39.91 -42.45 -46.71 -42.64 -50.94 -57.30

N 6

Krypton

7 8 9 10 11 12 13
.3 -1.60 -2.15 -2.13 -3.56 -3.68 -4.09 -8.77(-l) -2 .46 (-2)

.6 -3.88 -7.29 . -6.71 -9.78 -12.64 -12.45 -16.49 -18.41

1.0 -34.42 -43.98 -39.27 -41.98 -46.29 -42.31 -50.61 -57.02

Xenon

Percentage Differences in Vibrational Internal Energies for the Rare

Gases_____________________________________________________________________

Numbers vu -parenthesïs denote powers of 10,
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7.5 Vibrational Entropies

All the gases show the same qualitative behaviour for the variation 

of percentage differences in entropy {6^} with N. At reduced tempera

tures ̂  .3 the {Ag} rise to a maximum at N = 11, and then fall rapidly 

for 12- and 13-atom clusters. At higher temperatures the {Ag} increase 

steadily with N over the entire N range (see Figure 36). As in Figures 

34 and 35 the neon curve is widely separated from the other curves.

The variation of the {Ag} with temperature is rather more complicated - 

for most clusters containing less than 12 neon or argon atoms the 

percentage difference in entropy decreases as the temperature increases.

On the other hand Ag(T*) rises to a maximum value at T* = .5'^.7 (i.e. 

near the boiling point of the gases) for most clusters of the heavier 

gases. This behaviour of the (Ag(T*)} is also exhibited by 12- and 

13-atom clusters of neon and argon.

The SC approximation introduces quite serious errors in the vibra

tional entropy at T* = .3 (e.g. for neon 11-atom clusters Ag 85; 

for xenon 11-atom clusters Ag %% 8). The {Ag} for clusters containing 

more than 11-atoms drop rapidly at T* = .3, to a value of ̂  0.05 for 

13-atom xenon clusters. The comparatively mild decrease from the 

{Ag(N=ll)} to the {Ag(N=12)} at this temperature is probably due more to 

the, combined effects of a large multiplicity of isomers and an appropriate 

energy distribution rather than to just one of these factors. Conversely, 

the very low percentage differences for 13-atom clusters is almost cert

ainly a direct consequence of the dominance of the icosahedron in the 

13-atom set. At the top of the potential we,11 the 6-atom clusters are 

least affected by the SC approximation, with AgS ranging from 9 (Ne) to 

3(Xe). At T* = .3 percentage entropy differences lie in the following 

ranges

neon 2-85; argon ,1 .- 16; krypton 0 - 10; xenon 0 - 8 .

From these data the SC approximation appears to be definitely invalid at
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reduced temperatures less than .3, with N < 12. For larger clusters 

of the heavier gases the SC approximation may be used at these tempera

tures. i-IcGinty (1971) notes an 8% difference in entropy/argon atom 

between SC and ilC calculations; this difference is about 5 times greater 

than the difference predicted in the present work. At T* = 1.0 the 

percentage differences range from 3 (6-atom xenon clusters) to <^35 

(13-atom neon clusters). These differences call into question the use 

of the SC approximation even at higher temperatures.

Table 33
N 6 7 8 9 10 11 12 13
.3 39.75 44.63 51.47 71.45 77.72 84.64 28.48 1.61

. b 14.37 20.45 22.41 31.20 38.53 40.38 43.44 49.25

1.0 8.80 13.06 14.22 19.70 24.40 26.04 28.76 34.78

N 6

Neon

7 8 9 10 11 12
<>

13
.3 7.51 8.16 10.30 13.87 14.05 16.08 3.35 1.07(-1)

.6 5.41 7.76 8.70 11.93 14.70 15.59 16.44 17.07

1.0 4.31 6.43 7.08 9.70 12.01 12.85 14.17 16.85

6

Argon

7 8 9 10 11 12 13
.3 4.83 5.23 6.66 8.91 8.96 10.25 2.04 6.18(-2)

.6 4.00 5.74 6.46 8.83 10.87 11.54 12.14 12.44

1.0 3.38 5.05 5.58 7.62 9.42 10.08 11.11 13.16

N 6

Krypton

7 8 9 10 11 12 13
.3 3.72 4.03 5.15 6.87 6.89 7.89 1.55 4.6K-2)

.6 3.30 4.75 5.35 7.29 8.98 9.53 10.02 10.22

1.0 2.88 4.31 .4.76 5.40 8.03 8.60 9.47 11.19

Xenon

Percentage Differences in Vibrational Entropies for the Rare Gases 

Numbers i-n parenthes-is dejwte powers of 10,
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7.6 Viprational Heat Capacities

The heat capacity percentage differences .in Table 34 show

that except for 13-atom clusters of all gases, the SC approximation intro

duces larger deviations to the heat capacities at low temperatures than 

it does at higher temperatures. This behaviour is possibly due to the 

dependence of heat capacity on the first and second derivatives with 

respect to temperature of £n (partition function). As in the previous

section the at T* .3 rise to a maximum at N = 10 11 and

then decrease, whilst at higher temperatures they increase constantly 

over the full range of N. The structure shown in Table 33 is lost in

Table 34 , due in some measure to the compensating effect of the second

derivative. For 13-atom clusters, dominated by tne icosahedron, the 

increase with T* = .5 .6 , and then decrease rapidly. For

5 < N < 13 at T* = .3 the percentage differences range from 7 to .77 

for neon, and from 4 to 32 for argon, krypton and xenon. The neon 

clusters are, as before, the most seriously affected by the SC approxima

tion, although the discrepancy between the neon heat capacity curves 

and those curves for the other gases is much less than for the other 

thermodynamic properties (see Figure 37). At T":= 1.0 the maximum

A is ^  5 (13-atom neon clusters) witn a minimum at this temperature 
HC
of .3 (6-atom xenon clusters).

For N < 12 and T* ^  .3, the SC approximation is invalid. As 

is the case for the vibrational entropies, the SC approximation may be 

used for larger clusters at reduced temperatures less than .3 if the MCPF 

for these clusters possesses a dominant term.' At T* = 1.0 the maximum 

A^C is implying that, once one approaches the boiling point of the

gases, the use of the SCPF gains validity with increasing temperature.

This conclusion remains questionable due to the breakdown of the harmonic 

oscillator approximation at these temperatures.
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Table 34
N 6 7 8 9 10 11 12 13
.3 6.93 19.60 15.97 28.40 50.97 41.95 77.02 7.14

. 6 1.45 . 3.99 3.15 4 .64 6.50 7.88 13.93 43.25

1.0 4.97(-l) 1.27 1.01 1.61 2.02 2.92 3.77 5.38

Neon

6 7 8 9 10 11 12 13
.3 3.85 11.71 10.50 17.88 30.85 31.97 25.94 1.28

.6 1.01 3.36 2.71 3 .66 5.37 5.69 13.42 51.34

1.0 3.52(-l) 1.02 8 .0 K - 1) 1.27 1.55 2.24 3.13 4.41

N ^A 6

Argon

7 8 9 10 11 12 13
.3 3.64 11.10 10.02 16.98 29.15 30.57 23.08 1.08

.6 9.80(-l) 3.30 2.68 3.58 5.28 5.55 13.35 51.97

1.0 3.42(-l) 1.01 7.86(- 1) 1.24 1.51 2.19 3.07 4.33

Krypton
N ^A 6 7 8 9 10 11 12 13
.3 3.59 10.93 8.89 16.74 28.69 30.18 22.34 1.03

.6 9.70(-l) 3.28 2.67 3.56 5.25 5.51 13.33 52.14

1.0 3.39(-l) 1.00 7.82(- 1) 1.24 1.50 2.18 3.05 4.30

Xenon

Percentage Differences in VibrationalHeat Capacities for the Rare Gases 

Numbers in parentheses denote powers of 10,

7.7 Conclusion

The overall conclusions of this work disagree with the suggestion 

of Bonissent and Mutaftschiev (1973) that the MCPF differs only slightly 

from the SCPF at all temperatures. Whilst this suggestion may be true at 

reduced temperatures less than .1 it is certainly not substantiated at
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higher reduced temperatures. Tlu percentage differences in thermodynamic 

properties decrease with increasing atomic mass, as shown in Figures 

34 to 37. They also depend strongly upon the energy distribution of 

the clusters and less strongly upon the number of these clusters. It 

should be noted that the harmonic oscillator approximation is not valid 

for reduced temperatures much greater than A/.3 .

Burton (1972c), McGinty (1971,1972) and Nishioka et al (1971) all suggest, 

as is suggested in this present work, large corrections to cluster free 

energies calculated using the SC approximation. McGinty (1972) indicates 

that at low temperatures the SCPF yields free energies very close to 

the 'exact* MCPF free energies if the most stable configuration is used 

in the SC calculations. This indication is confirmed by the present 

work. It appears essential to use a full MC treatment in the calcula- 

tion of vibrational entropies and specific heats at reduced temperatures 

^  .3. Any fine structure seen on entropy and specific heat curves is 

more likely to be due to the SC approximation than to possess any physi

cal significance (in agreement with McGinty (1972) and Ab rail am and Dave 

(1971a). On the other hand the comparatively small percentage differ

ences in free and internal energies introduced by the SC approximation are 

unlikely to cause much fine structure for N < 14. In these cases fine 

structure may possess physical significance (Burton (1970a)). As the 

cluster size increases the number of possible configurations rises 

exponentially, so it is probable that for N > 13 the fine structure 

seen on any graph of thermodynamic properties is due to the SC 

approximation.
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Chapter 8

8 .1 Introduction

The development of statistical mechanical techniques in Chapter 

5 produces equation (5.31) for the equilibrium constant of an N-atom 

cluster and equation (5.33) for the relative equilibrium concentra

tions of two different isomers containing the same number of atoms. 

Bearing in mind that according to classical nucléation theory 

(Zettlemoyer (1969)) clusters containing less than a certain critical 

number N* of atoms may be metastable with respect to both the vapour 

and smaller clusters, equations (5.31) and (5 .33) are used, in 

conjunction with the MCPF for 6<N$13 and the SCPF for 2^N^5, to 

calculate equilibrium constants and relative equilibrium concentra

tions at various temperatures for the four rare gases considered. 

Comparison is made in the case of equilibrium constants with data 

obtained by use of Andres* (1965) model, which is described in 

section 2 of this Chapter.

8.2 Equilibrium Constants

Equilibrium constants for the four rare gases with 2<N^13 over 

the entire reduced temperature range are calculated by use of equation 

(5 ,31). Tables 35 to 38 present the log^^ of these constants, 

with the log^Q of the equilibrium constants calculated by the simpli

fied model of Andres (1965), equations (8.1) and (8.2), included for 

comparison. Following the example set by Reed (1952), who estimated 

the equilibrium constants of clusters with Z$N^8 by considering the 

clusters as polymers with an equilibrium configuration of lowest 

energy and greatest symmetry, and assuming 3N-6 harmonic dimer modes, 

Andres has obtained expressions for the equilibrium constants of
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clusters with 2<N(12, Andres makes the further .assumptions (i) 

regular tetrahedral growth and (ii) only nearest neighbour bonds 

contribute to the cluster’s binding energy. The equilibrium con

stant of a dimer based on such a model is represented by

K(2) = 2710

and for 2<N^12

2 r  -I 3 ^^27rkT
V"(o)

expCe/kp), (8 .1)

K(N) = X ^(877^0^)2^^ 27TkT
V ^ )

3(N-2)/2 cl
exp kT

(8 .2)

where a is the equilibrium separation of 2 atoms ,

V"(o) the 2nd derivative of the intermolecular potential 

at that separation,

e is the depth of the potential energy well and 

X is the rotational symmetry number.

8.3 Discussion of Tables 35 to 38

Andres’ model for the equilibrium constant with N>2 is valid 

only for N^12. However Tables 35 to 38 contain the log^^ 'of the 

equilibrium constants for N=13 obtained by equation (5 .31) to test 

the validity of equation (8.2) for N>12. Before a detailed analysis 

of Tables 35 to 38 is made 3 points should be noted:

(i) the assignment of dimer modes to represent the frequency 

spectrum overestimates the zero point energy,

(ii) consideration of only nearest neighbour bonds to represent 

the binding energy underestimates the cluster potential energy,

(iii) owing to the importance of non-nearest neighbour bonds 

the overall energy of an optimized cluster is higher. As N inc

reases so does the contribution due to non-nearest neighbour bonds, 

leading to a decrease in K(N).

The equilibrium constant K(N), as defined by equation (5.31),
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is expressed in terms of partition functions per unit volume. Con

sequently it is not dimensionless, having dimensions where

N is the number of atoms in the cluster under consideration. Care 

has to be taken when comparing equilibrium constants expressed in 

this form. The equilibrium constants presented in Tables 35 to 

38 are calculated in S.I. units, ie. their dimensions are

A single-configuration partition function underestimates the 

'exact' partition function of a system, so one would expect the 

multi-configuration partition functions used in equation (5.31) for 

K(N) to produce equilibrium constants higher than those produced 

by single-configuration partition functions or by Andres' simplified 

model. Tables 36 to 38 for argon, krypton and xenon respect

ively show that the equilibrium constants calculated by use %  

equation (5.31) and the SCPF (2^N^5) or the MCPF (6^M^13) are 

either extremely close to Andres' figures or are higher than his 

figures (ie. are less negative). The differences between the 

calculations of this work and of Andres are greater at lower than 

at higher temperatures. For argon, krypton and xenon clusters with 

N^6 the values of K(N) obtained from equation (5 .31) are all greater 

than Andres' values. It is worth noticing that for N^6 the MCPF 

approximation has been used. For N<6 at T*=.l for tne three gases 

mentioned above the % by which Andres calculations exceed these in 

this work is less than 1 , for argon, decreasing with increasing 

atomic weight to less than .1 for xenon. These % differences fall 

easily into the range of fluctuation produced by cumulative rounding 

errors in computation.
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Table 35 shows that there are larger discrepancies between 

this work and that of Andres for neon than for the other rare 

gases. For 2^N^5 Andres' figures exceed tiiis work's figures by 

just under 5%. for 14=2, increasing to 12% for N=5 at a reduced 

temperature of .1. For 6^N^13 at the same temperature the % 

difference drops to less than .5% at N=13. This turning point in

% differences at N=5 is again an indication of the validity of the

MC approximation in calculating these equilibrium constants. With 

increasing temperature the %s by which Andres' figures exceed those 

of this work drop to a maximum of .13% (for 5-atom clusters), at 

the top of the potential energy well, and to a minimum of .03% (for 

6-atom clusters), at the same temperature. As the temperature

increases from T*=.l to T*=.2 Andres' excess rises from 1.5% to

just over 3% in the range 2<N^5, and drops to <.7% at N=ll. For 

11<N^13 Andres' figures are less than those for this work (T'* > .1).

It seems reasonable to conclude that use of the multi-configuration 

approximation produces equilibrium constants which are greater than 

those produced by Andres' simple model over the entire temperature 

range for argon, krypton and xenon. Extension of Andres* model to 

include the equilibrium constants of 13-atom clusters appears to be 

valid on examination of the data in Tables 35 to 38. The 

equilibrium constants obtained via the multi-configuration approxi

mation imply the existence in equilibrium of a set of different 

isomeric forms for a specific N. With T*>'^.1 the MC approximation

is also valid for neon clusters. With T*<»%1 it seems probable

that important quantum effects need to be considered in the case 

of neon, and that the use of the classical rotational partition function in 

equation (5.26) is no longer permissible. The Lennard-Jones
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parameters used for neon in these calculations are contained in 

Table 11 ; use of different parameters (e.g. p.1110 in Hirschfelder, 

Curtiss and Bird (1954)) in conjunction with a full quantum 

mechanical treatment may yield equilibrium constants at very low 

temperatures more in accord with those provided by Andres.

8.4 Relative Equilibrium Concentrations

Any model which is designed to investigate the thermodynamic 

properties of a system needs to incorporate the existence of very 

many stable and distinct isomeric forms for specified N. Modifica

tion of the single configuration model becomes necessary to take 

account of these isomeric forms. The relative concentration of 

one isomer over another in a heat bath depends on the thermodynamic

advantage of one over the other: relative equilibrium concentra-
•>

tions for the most stable and least stable configurations for 6^N^13, 

calculated by use of equation (5.33), for the 4 gases under considera

tion over the entire temperature range are presented in Tables 39 

to 42, Figures 38 to 41 illustrate the behaviour of these 

equilibrium concentrations. Except for N=6 , in which case the 

most stable isomer possesses octahedral symmetry, both the most and 

least stable isomers for all N are grown on the tetrahedral growth 

scheme. This growth scheme is therefore capable of producing 

both very compact structures and elongated structures. Metastable 

configurations are not used in the calculation of these equilibrium 

concentrations; these configurations are considered to reform 

extremely rapidly to a previously identified stable configuration 

and do not therefore contribute to the overall concentration for 

that size cluster.
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Figure 40
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Writing equation (5 .33) for the concentration of isomer A over 

isomer Bexplicitly, with an implicit temperature ciepenaence, produces

C(N) X (I I I ): 3N-6 {exp(-*"'’-/2kT)[l-exp(J'”-/kTq"’'}̂

C(N)g i=l {exp(-bvi/2kT)[ï-exp(-hvi/kTg

X exp{[|-V(N)^ + V(N)J/kT} (8.3)

where V(N). is the potential energy of the N-atom cluster.

This equation illustrates the competition between the vibrational 

and rotational partition functions; the most stable configuration 

with the largest vibrational partition function is likely to possess 

a high order of symmetry

(e.g. N=6 , regular octahedron, symmetry group 0^, X=24;

N=7, pentagonal bipyramid, symmetry group X=10;

N=13, regular icosahedron, symmetry group I^, X=60) -

with a correspondingly large symmetry number X. Since the rotational 

partition function varies inversely with X the competition between 

rotational and vibrational contributions to equation (8.3) is 

clearly seen. In the size range studied here the more compact 

structures (ie. higher binding energies) are also highly symmetric; 

these mutually compensating effects reduce the relative equilibrium 

concentrations for most and least stable configurations. Conse

quently in this size range symmetry effects are extremely important, 

since the compensating contribution due to binding energy is small 

for small clusters. With increasing N symmetry considerations 

become less important and the relative concentration of two isomers 

depends predominantly on potential energy contributions. Because 

of the minute size of the clusters any possibility of a sharp transi

tion between differing isomeric forms or between liquid and solid
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behaviour is removed. Fluctuations between different forms become 

important for microclusters of these dimensions in the determination 

of the Gibbs free energy, of formation; consequently a multi- 

configurational approximation should be used in any search for 

critical nuclear sizes from the stationary values of the free energy 

of formation curves at different pressures.

8 .5 Discussion of Relative Equilibrium Concentrations

The immediate impression gained from Tables 39 to 42 , or 

from Figures 38 to 41, is that with increasing temperature the 

relative concentrations of most to least stable configurations 

decrease. It is interesting to note the temperature at which the 

relative concentrations pass through unity. For neon 6-atom 

clusters the relative concentrations are always less than 1 in the 

temperature range studied (T*=.l 1.0), but for larger neon clusters

we see that there is a preponderance of the more stable configura

tions over the less stable configurations up to T^'^.2 for N=7, 

T*=^%6-.7 for N=8,9,10 and T*=^%8 for N=ll,12 and 13. The inter

pretation of these temperatures is that for larger clusters (in the 

size range studied) the most stable configuration takes precedence 

over the least stable up to a temperature which is approximately 

the bulk melting point, whilst for smaller clusters, with correspond

ingly smaller energy differences between most and least stable 

configurations, thermal fluctuations are sufficient to cause the

formation of less ordered structures at very low reduced temperatures.
. '

One sees that for neon 6-atom clusters the thermal disorder in the 

system is sufficient at T*=.l to cause an excess of the least stable 

isomers over the most stable. Tables 40, 41 and 42 for argon,

krypton and xenon respectively show the same qualitative behaviour
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as Table 39 does for neon; this is perhaps illustrated more 

clearly by Figures 38 and 40 , For the heavier rare gases the 

relative concentrations increase, although the concentrations for 

all gases, for the same N, pass through unity at approximately 

the same reduced temperature. The largest concentration is for 

13-atom neon clusters, at a reduced temperature of .1 , with a log^^ 

o f -^27.5. The smallest concentration is for 6-atom clusters of 

the same gas at a reduced temperature of 1.0 with a log^^ of ̂ 1 .3 . 

Figures 38 to 41 show an almost exponential decrease, suggesting 

at lower temperatures the most stable configuration is strongly 

dominant. With increasing temperature the advantage possessed by 

the most stable configuration is diminished by increasing disorder 

in the system, until the concentration ratio passes through 1 and 

the least stable configuration becomes dominant. However, the 

dominance of the least stable configuration is weak; see Figures 

38 to 41 , which show that log^^ of the equilibrium concentration 

slows almost asymptotically. Such behaviour may be deduced from 

the form of equation (8.3), which shows the relative concentrations 

to be dominated by the interatomic potential of the most stable 

configuration. With increasing temperature the effect of this 

potential is strongly reduced. Once the concentration ratio has 

passed through 1 (from above) temperature increases do not .signifi

cantly alter the proportion of number of most stable configurations 

to number of least stable configurations.
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Chapter 9

9.1 An Introduction to Nucléation Theory

Gibbs (1906) and Thomson (1870) were the first to treat quantit

atively the stability of a phase by considering the work required to 

form a spherical droplet of radius r(N), The ideas of Gibbs were 

developed by Volmer and Weber (1926), Farkas (1927), Volmer and Flood 

(1934), Becker and Db’ring (1935), and Zeldovich (1942,1943), and cul

minated in the classical liquid-drop theory of nucléation. Feder 

et al (1966) provide a general review of steady state nucléation theory 

In the liquid-drop theory the free energy of formation of a spherical 

drop of radius r(N) in the centre of a large volume of vapour is 

calculated by use of equation (9.1).

AG(N) = 4itr(N)^n + 4Tir(N)^ AG (9.1)
3 ^

In equation (9.1) n is the surface free energy.

AG = -kT InV —
'̂ 1

v^ is the molecular volume of the liquid, 

P is the partial pressure of the vapour'.

is the equilibrium vapour pressure.

AG^ is the free energy change per unit volume of the stable condensed 

phase. This equation has a maximum at the critical radius r*(N*); 

clusters containing fewer than N* atoms are unstable whilst larger 

clusters form stable, growing nuclei. The formation of the condehsed
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phase is by the growth of small clusters into droplets by the addition 

of monomers. The- supersaturated vapour is considered as a gaseous 

mixture of these clusters and the monomers (Frenkel (1946)); growth 

and decay is limited to the gain or loss of a single atom. Thus the 

growth mechanism may be represented as follows:

Al +

^ - 1  ^1

Interactions between clusters are ignored, since these are considered 

to be highly improbable (Volmer and Weber (1925)). The equilibrium 

concentration of an N-atom critical nucleus at temperature T is given 

by equation (9.2); this equation is valid only for the critical 

nucleus since other clusters are not in equilibrium with the monomeric 

vapour. A lower limit to

C(N) = exp
ctlj

- G(N)
kT

(9.2)

the applicability of equation (9.2) is suggested by Courtney (1962) to 

be for clusters containing 19 atoms; Frisch (1957) advocates a lower 

limit for clusters containing only 2 atoms.

Kirkwood and Buff (1945), Benson and Shuttleworth (1951) and 

Plesnes (1964) have attempted to extend classical nucléation theory so 

that the behaviour of very small finite clusters may be investigated. 

These authors have considered modifications to the surface energy term
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in equation (9.1); Dunning (1969) has questioned the propriety of such 

modifications. Rather than any extrapolation of the classical theory 

one would prefer an atomistic theory (Walton (1962)), based on inter- 

molecular forces rather than on assumed macroscopic quantities such as 

surface energy. Hirth (1963) has pointed out that the classical 

model may not be used in calculations of the thermodynamic properties 

of very small clusters - Benson and Shuttleworth (1951) have established 

differences between the potential energies of finite clusters and 

'larger clusters. Classical nucléation theory neglects the transla

tional and rotational motion of a free cluster (Lothe and Pound (1962)) - 

a finite N-atom cluster has only 3N-6 degrees of freedom. This neglect 

may lead to differences of between experimental and classical

nucléation rates, and has been discussed by Abraham and Pound (1968) 

and Abraham and Canosa (1969). A number of experimental studies inv

olving nucléation processes have been undertaken (Milne and Green 

(1967), Stein and Wegener (1967), Milne, Vandegrift and Greene (1970), 

Farges et al (1973)); agreement with classical nucléation rates is 

in general good (Volmer and Flood (1934), Katz (1970)). However, the 

classical theory should not be applied to very small clusters because 

of basic incompatibilities between this theory and its extension to 

finite clusters. Refinements of the classical theory by Lee et al

(1973), and Abraham and Dave (1971a), who use Einstein model to intro

duce the six degrees of freedom that a microcluster lacks, have produced 

closer agreement with experimental data. Nishioka et al (1971) and 

Burton (1971b) have argued that such modifications are necessary; 

these authors are opposed by Bonissent and Mutaftschiev (1973) who 

have provided evidence in favour of the original Gibbs-Thomson formula

tion. The validity of the Einstein model has been established through
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the molecular dynamical experiments of Dickey and Paskin (1970) and 

by Burton (1970b). Burton (1971b) has stated that the combination 

of the Lothe-Pound replacement factor (i.e. the inclusion of six 

Einstein oscillators) and the statistical thermodynamical results 

produces nucléation rates in agreement with those predicted by the 

classical theory. Thus an indication is provided as to why the liquid- 

drop model often produces results compatible with experimental 

observations.

In recent years several investigations of the morphological and 

thermodynamic properties of small clusters (Burton (1969,1970a,b,1971b, 

1972a,b,c,1973), McGinty (1971,1972,1973), Hoare and Pal (1971a,b,

1972a,b,1975)) have been undertaken, with a view to using an atomistic 

model in subsequent calculations of nucléation properties. These 

investigations have shown that general Gibbsian behaviour may be 

reproduced by an atomistic model.

The detailed balance equation in Chapter 5 (equation (5.3l)) is 

used to express the ratio of N-atom concentration to monomer concentra

tion C(N,T) in terms of the cluster partition functions in the follow
ed,!)

ing fashion:

N-1 kTl^"^ (9.3)Z(N,T) .CO,T) " = C(N,T) = Z(N,T) 
z(i,T)^ ctTrry Z(1 ,T)^

In equation (9.3) the partition functions are reduced for unit volume, 

and the monomer pressure is approximated by the total pressure.. Equation 

(9.3) may now be used to express the Gibbs free energy of formation of 

an N-atom cluster at temperature T and pressure P in terms of the 

cluster partition function. ,
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9.2 Free Energies of Formation of Atomic Clusters

McGinty (1971) and Hoare and Pal (1975) have prepared extensive 

tables of the standard Gibbs, free energy of formation of argon micro

clusters; the former author has constructed both 'spherical' and 

lattice-based structures whilst Hoare and Pal have relied upon their 

knowledge of the morphology of microclusters (1971a,b,1972a,b) to 

locate minimal energy configurations. In the present work the 

necessity of using clusters minimal in potential energy is removed; 

an 'effective' partition function (the multi-configuration partition 

function described in Chapter 5) is used in subsequent calculations of 

free energies. The dependence of the free energy of formation on 

size is examined to determine the critical nuclear size at specified 

temperature and pressure. Since the identity of the critical^nucleus 

is by no means well-defined in atomistic terms (Hoare and Pal (1975)) 

the use of an 'effective' partition fuuctioii is particularly appropriate 

IVhen the number of nuclei is greater than 'V;13 a single-configuration 

approximation (Zeldovich (1942)) is probably inescapable due to-the 

rapid increase in isomer multiplicity.

Following the example of McGinty (1971) and Hoare and Pal (1975) 

the cluster partition functions (see Chapter 5) are used in equations 

(9.2) and (9.3) to calculate the cluster free energies of formations. 

Equations (9.2) and (9.3) may be combined to yield the following equa

tion for the Gibbs free energy of formation AG^(N,T,P) of an N-atom 

cluster as a function of temperature and pressure:

AG^(N,T,P) = -kT|lnZ(N,T) - NlnZ(l,T) + (l-N)ln^^jJ (9.4)

In equation (9.4) Z(N,T) is the partition function defined in equation
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(5.1), reduced for unit volume. The standard free energy of formation 

AG°(N,T,1) is obtained from equation (9.4) by introducing a pressure

of one atmosphere (in the appropriate units), and is related to 

AG^(N,T,P) in the following fashion,

AG°(N,T,1) = AG^(N,T,P) - kT(l-N)ln P (9.5)

Equations (9.4) and (9.5) illustrate the connection between the 

-partition functions and experimentally determined parameters such as 

temperature and pressure.

Extensive tables of AG°(N,T,1) for neon, argon, krypton and xenon 

have been prepared (Appendix D) by using an appropriate partition 

function in equation (9.4). For N>5 the MCPF (equations (5.26), (5.6) 

to (5.8)) is used; when N <6 the single-configuration partition function 

is relevant (equations (5.6) to (5.8) directly inserted into equation

(5.1)). Reference to the tables in Appendix D confirms that AG°(N,T,1)
*

reaches a maximum at a critical value N , and that with increasing 

temperature AG°(N,T,1) increases. From these tables it is possible 

to calculate AG^(N,T,P) at any pressure by use of equation (9.5).

Table 43 contains the {AG°(N,T,1)} of argon microclusters computed 

via equation (9.4) and the {AG°(N,T,1)} of lattice-grown argon struc

tures calculated by McGinty (1971) . Comparison of these data is not 

easy due to the calculation of {AG^(N,T,1)} at slightly different 

temperatures. However it appears that at a reduced temperature of .4 

non-crystalline clusters possess a distinct thermodynamic advantage 

over the lattice-based structures. At higher temperatures the MCPF

approximation yields standard free energies of formation which imply
■ '  ̂ > that the non-crystalline microclusters are thermodynamically favourable;
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however the literal validity of the harmonic oscillator approximation

reduced temperatures greater

Table 43 

AG°(N,T,1).Joules

than .3”̂.4. 

xlO^l

N a b c d

2 1.561 1.575 3.361 2.993

3 3.012 3.425 7.156 6.847

4 4.820 5.539 12.093 11.54

5 5.574 6.565 15.568 14.79

6 7.166 8.121 20.506 19.10

7 6.899 8.965 22.770 22.54

8 5.947 9.810 23.777 25.64

9 6.320 9.152 27.230 26.60

10 6.357 10.30 29.951 30.74

11 5.557 10.94 32.055 33.96 .

12 5.702 11.00 35.736 36.78

13 5.359 9.264 40.673 37.93

Comparison of Standard Gibbs Free Energy of Formation 

of Argon Clusters

a) this work at T = 47,92^A

h) MoGinty (1971) at T = 50,3PA
a) this work at T = 71,88^A

d) McGinty (1971) at T = 70,1^A

Equation (9.5) and the data in Appendix D are used to calculate 

free energies of formation of N-atom clusters at pressures of .01, .1
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and l.üO atmospheres. Figures 46 to 49 illustrate the behaviour 

of AG^(N,T,P) as a function of temperature and chemical species.

These figures, in agreement with those of McGinty (1971) and Hoare 

and Pal (1975), show broad maxima at critical values of N, thereby 

confirming the validity of the atomistic approach. With increasing 

atomic mass the free energy of formation of an N-atom cluster inc

reases (see Appendix D and Figures 42 to 49 ).

9.3 Critical Nuclear Sizes

From Figures 46 to 49, equation (9.5) and the data in Appendix D

the critical nuclear sizes of rare gas clusters as a function of

pressure may be calculated. Table 44 contains representative results

at a reduced temperature of .3. The number of nuclei in the
■>

critical nucleus is seen to remain constant (at 4) for all four gases 

at a pressure of one atmosphere, although more energy is required to 

form the nucleus as the atomic mass increases. With reducing pressure 

the size of the critical nucleus increases, until at a pressure of .01 

atmosphere no critical nucleus is predicted for neon clusters contain

ing less than 14 atoms. The critical nuclei predicted by McGinty (1971),

Table 44
AGf(N*, T*=.3, P) Joules x 10^^

P
atmos. Ne (N*) Ar (N*) Kr (N*) Xe (N*)

.01 * 14.987 (12) 21.980 (12) 26.753 (12)

.10 2.127 (6) 6.157 (6) 9.761 (7) 11.147 (6)

1.00 0.438 (4) 1.188 (4) 1.962 (4) 2.123 (4)

Critical Nuclear Sizes and Corresponding Free Energies of Formation 

no turning point for N<14, '
Burton (1971b), and Hoare and Pal (1975) all contain at least 10 atoms 

more than do the nuclei estimated in the present work.
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Chapter 10

10.1 Introduction-

The canonical partition function for a single-component system of 

N structureless particles may be written (see for example Hill (1956)).

r.3N = Jd r exp -1 [ Z u . .
. kT|i<j (10.1)

NÎ A3N

where A = f h
2-ïïmkT

, is the potential energy of interaction between

the i^^ and j p a r t i c l e s ,  and the integral in (1 0 .1) is the configura

tion integral q^. The grand canonical partition function is given by

3(y,V,T) = Z Q exp(yN/iç.-j;) =
N=0

1 + E q^X 
N=l-

N (10.2)

NÎ

where y = chemical potential,

X = exp(y/kT) = activity.

Since = exp IpV the pressure may be expressed as a power series 
[kTj

in the activity

= 1  Infl + Z q X
kT V L N=1-4t

Ni (10.3)

Use of the expansion

ln(l + X ) = - Z (-x)^ 
n=l n

in (10.3) leads directly to

IL = 1  la ,3
kT V

(10.4),
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V7here the coefficients {b} are the Mayer cluster integrals.

Expressions for llVb^ are known as the semi-invariants of Thiele and 

are tabulated for £$10 by Kendall and Stuart (1969).

Since the mean number of particles N = A fs £n ̂  , equation (10.4)
9A

may be used to produce

N — A 9
V 9A

Ï b
£=1 ■

Z £b A* (1 0 .5 )
£=1

Inversion of (10.5) to obtain A as a power series i n e n a b l e s  the
V

substitution of A into (10.4) thus producing the virial expansion

P = Z B. 
kT i=l ^

(10.6)

The coefficients {B} in (10.6) are the virial coefficients eî^ressed

in terms of the cluster integrals {b}: {B}^, i=2,5, are tabulated

below.

B^ = -b^; B^ = -2b 3 + 4^2; B^ = -3b^ + ISb^b^ - 20b^,

B^ = -4b3 + ISbj + 24b2b^ - SAb^b^ + SWbg (10.7)

Equations (10.4) and (10.5) are the Mayer Cluster Expansions 

(Mayer 1940) by means of which the configuration integral has been 

factorized into a set of 'mathematical*, ie. non-physical, clusters. 

Such a factorization is rigorous only when the gaseous phase alone 

is present. The following sections investigate a connection between 

the mathematical cluster integrals of Mayer and physical cluster 

partition functions.

10.2 Virial Coefficients

Since the physical clusters constructed in this thesis exhibit 

Van der Waals forces it is reasonable to expect deviations from ideal
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gas behaviour. Such deviations of an imperfect gas may be investigated 

by considering the gas as a perfect-gas mixture of different species, 

each species corresponding to a set of the same size 'mathematical' 

clusters. Frenkel (1939) and Band (1939) indicate that approximate 

results may be obtained via a theory based on the equilibrium 

constants of physical clusters. The n^^ virial coefficient is then 

a measure of the degree of interaction between physical n-clusters.

The cluster concentration Ĉ , of all clusters in thermodynamic 

equilibrium in a volume V is

C„ = N„ = E N C(N,T) (10.8)

The principle of detailed balance i.e.

C(N,T) = Z(N,T) .
C(1,T)N Z(I,T)^ ^

may be used in (1 0 .8 ) to obtain

= EN a(N,T)3(T)^ (10.9)

where a(N,T) = Z(N,T) = Z(N,T), 3(T) = C(1,T)V = C(1,T) , and Z(N,T)
V Z(1,T) a(l,T)

and C(N,T) are the cluster partition function and cluster concentration

respectively. To simplify notation the explicit temperature depen

dence will now be dropped.

When the gas is sufficiently dilute there is no interaction between

clusters and 3 = As the gas becomes, less dilute deviations from
1(1)

ideal gas behaviour may be included by expanding 3 as a power series 

in the concentration i.e.

3 = (10.10)
i . , -
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Inserting (10.10) into (10.9) yields

N
C = ENa(N) 

N 1-1
(10.11)

For a 5^^ order approximation the i=l,5, are obtained by equating

the coefficients of C_^, i=l,5, in (10.11). Explicitly

Y = 1 ; = -2a(2) ; ŷ  = -3a(3) + 8a(2)^
0(1)3 0(1)4 0(1)5

\  = -4a(4) + 30a(2)g(3) - 40a(2)3
a(l)3 a(l)^ a(l)^

ŷ  = -5a (5) + 48a(2)a(4) - 228a(2)^a(3) + 224a(2)4 + 1 8a(3)^2
0(1)6 a(i)7 0(1)6 0(1)3 0(1)7

(10.12)

A comparison of equations (10.9) and (10.5) enables an identification
N . £of o(N) with b^ and 3 with X to be made - thus

P = 0 (1)3 + o(2)3^ + 0 (3)3^ + .... (10.13)
kT :

Using the {Y} from (10.12) in (10.13) and collecting terms in powers 

of Ĉ , enables the first 5 coefficients, equal to the n^^ virial coef

ficient divided by where IT is Avogadro's number and n=l to 5,

to be written:

A = 1; B = -g(2) ; C = -2a(3) + 4o(2)^ ;
0 (1)2 0(1)3 0(1)4

D = -3a(4) + 18o(2)o(3) - 20o(2)3
o(l)4 o(l)3 o(l)6

E = -4g(5) + 18o(3)2 + 24o(2)o(4) - 84a(2)2g(3) + 32ot(2)4
0(1)3 o(l)6 0 (1)6 0(1)7 0 (1)8

(10.14)
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Tiie functions of a(N) in (10.14) are related to the' equilibrium con

stants K(N) by

K(N) = g(N) = Z(N) (10.15)
a(l)“ Z(l)“

The reduced virial coefficients in terms of the equilibrium constants 

are

= -K(2) ; C* = -2 [k (3)-2K(2)2J

D = -J_ [3K(4) - 18K(2)K(3) + 20K(2)3]
b 3o

E* = -1 f4K(5) - 32K(2)K(4) + 120K(2)2k (3) - 9K(3) - 112K(2) 1
bo

(10.16)

3 ■ .where bo = 2Trg , with the appropriate choice of a from Table 11,

Woolley (1953), Leckenby and Robbins (1968) and Spurling and Mason (1969) 

have investigated the relationships between virial coefficients and 

equilibrium constants with similar results. The coefficients of the 

equilibrium constants in Woolley's (1953) expression for the fifth virial 

coefficient differ from those presented here; Woolley's coefficients 

may be reconstructed by omitting the coefficient of in the expansion 

of g3 (equation (10.13)). Hirschfelder et al (1942) and Epstein (1952) 

also relate the second virial coefficient with the dimer equilibrium 

constant K(2).

10.3 Results and Discussion

Tables 45 to 47 contain the second to fifth reduced viriàl 

coefficients, based on an harmonic partition function. Hirschfelder
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et al (1954) provides comparative data for B and G*, whilst the 

expansion coefficients of Kihara (1951) enable the computation of C* 

for further comparison. Barker etaL (1966) present data for the exact 

D* and E* but their temperature range permits comparison only at 

T’‘ = .8 and 1.0.

The harmonic partition function differs on two points from the 

exact partition function. Firstly, due to the flattening of the 

potential energy curve at large displacements from the minimum the 

-harmonic partition function is lower than the exact partition function. 

Secondly, only bound clusters are considered in the harmonic approxi

mation, whilst the exact partition function takes into account the 

effect of non-bound clusters; i.e. those with a positive relative 

energy. This second effect reduces the exact partition function due 

to the exclusion of a region of space for the molecules' passage.

These effects are unfortunately not separated, although increasing 

temperature accentuates the latter condition.

Table 45
B*(T*)

T* (a) (b)
.1 3.673 -
.2 1.773 -
.3 1.163 1.445
.4 0.873 1.140
.5 0.713 0.941
.6 0.603 0.792
,17 0.543 0.673
.8 0.483 0.572
.9 0.453 0.484

1.0 0.433 0.405

The Second Reduced yirial Coefficients
(a) This work
(b) Data from Hirschfelder et al (1954) 

All coefficients are negative.
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Table 46 
log^Q C*(T*)

T* (a) (b) (c)
.1 10.515 - 6.920
.2 4.724 - 4.458
.3 2.090 - 3.130
.4 1.963 11 2.251
.5 1.807 # — 1.595
. 6 1.638 1 - 1.049
.7 1.551 1 0.528 0.537
.8 1.442 1-0.071 -0.057
.9 1.366 -1.116 -1.182

1.0 1.366 -0.367 -0.371

The Third Reduced Virial Coeffi cients

(a) This work
(b) Data from Hirschfelder et al (1954)
(c) Calculated from Kihara's expansion coefficientŝ  

Kihara (1951)
Coefficients below the dotted line are positive.

Table 47
logjQ D*(T*) log^Q E*(T*) ^

T* (a) (b) (a) (b)
I - - - - - - - 1

.8 2.492 0.973 • 3.678* 1.892
• !1.0 2.398 _  ]_3.541)______0_.4_56

The Fourth and Fifth Reduced Virial Coefficients

(a) This work
(b) Data from Barker et al (1966)

Coefficients below the dotted line are positive,-
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The second virial coefficient based on the harmonic partition

function overestimates the effect of collisions involving dimers by

approximately 48% at T* = .3, falling to approximately 7% at T* = .9.

It underestimates by nearly 7% the same effect at T* = 1.0. The

overestimate of ^^armonic* corresponding to an underestimate of

K(2), may be explained by the results of Leckenby and Robbins (1966)

which indicate that more bound dimers are detected. This excess of

dimers increases the value of K(2) which consequently reduces the

coefficient B* (B* = -K(2)). The excess dimer contribution decreases

as the temperature increases, leading to the closer agreement between

B and B . presented above. Stogryn and Hirschfelderexact harmonic ^
(1959) indicate that contributions to the second virial coefficient

due to (i) collisions between free monomers and (ii) the existence
>•

of metastable dimers remain non-negligible even at the boiling point

of the rare gases (T* = .7). This fact is noted by Milne and

Greene (1969) and is substantiated by the data in Table 45.

The third virial coefficient is overestimated by almost 90% at

T* = .3, rising to an overestimate of nearly two orders of magnitude

at T* = .9. This overestimate falls to one order of magnitude at

T* = 1.0. At reduced temperatures below .3 0* is less than ̂ harmonic
C* _. One may conclude that the overestimate in the third virial exact
coefficient is due to an underestimate in the equilibrium constant 

K(3), ie that more bound trimers exist than predicted in the harmonic 

approximation. Such behaviour is reported by Reed (1952) with 

respect to Lennard-Jones nitrogen clusters. Graphs of the third 

reduced virial coefficients (Bird et al (1950)) show extremely steep 

gradients in the reduced temperature range T* ^ 1.0. It is therefore 

reasonable to expect the difference between the calculated third 

virial coefficients to be large.
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The data of Barker et al (1966) show the overestimate of the 

fourth virial coefficient to be one order of magnitude at T* = ,8 

and two orders at T^ = 1.0. The same data present evidence of a 

similar order of magnitude overestimate of the fifth virial coef

ficient at T* = .8, with a three order of magnitude overestimate for 

this coefficient at T =1.0. Such large overestimates of the

fourth and fifth virial coefficients imply the existence of higher

concentrations of four and five atom clusters than is predicted.

This statement is not unequivocable however due to the dependence 

of the virial coefficients on lower order equilibrium constants.

The estimation of higher order virial coefficients becomes inc

reasingly hazardous due to the dependence of these coefficients on 

equilibrium constants which in general underestimate actual 

concentrations.

10.4 Mayer Cluster Integrals

The coefficients {B} in (10.7) may be seen to bear a remarkable 

resemblance to the coefficients B to E in (10.14). One may identify

{b} in the former equation with the {a(N)} in the latter -

= k (N) (10.17)
^ a(l)%

where K(N) is expressed in terms of partition functions in (10.15). 

Thus a formal relationship between the Mayer cluster integrals, which 

are based on the concept of mathematical clusters, and the equilibrium 

constants of physical clusters is presented. This relationship 

illustrates the connection between the Mayer theory of imperfect gases 

and the Frenke1-Band approximate theory.
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Chapter 11

11.1 The Uses of Graph Theory in Isomer Enumeration

In this chapter a completely different approach to the problem 

of isomer enumeration is investigated; an approach used extensively 

in theoretical chemistry (Gutman et al (1975) and references therein), 

developed by, amongst others, Essam and Fisher (1970). The tech

nique involves the construction of various graphs (Harary (1967)), 

corresponding to differing molecular arrangements, and their 

associated adjacency matrices, with the adjacency matrices being 

defined by

J 1 for adjacent vertices (atoms) ^
^ij ^  otherwise

Once these matrices have been generated the identity of any two or 

more graphs may be established by a procedure described by Randid

(1974). Thus the problem of isomer enumeration reduces to one of 

counting graphs. Nevertheless this problem is in itself not trivial, 

since it involves the recognition of identical graphs from different 

adjacency matrices. One is also confronted with the fact that the 

theory is not restricted to the enumeration of isomers in 3-dimensional 

coordinate space; once the abstract concept of an adjacency matrix is 

left and attempts made to relate such a matrix to a physical 3- 

dimensional cluster, complications arise. It becomes necessary to 

reject those matrices, which, although corresponding to perfectly 

acceptable distinct graphs, have no place in the 3-dimensional world.

Graph theory is used in two stages to assist with isomer 

enumeration: (i) a complete set of anisomorphic graphs on a given
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number of vertices may be listed, with the rejection of those graphs 

corresponding to physically non-realisable clusters, and (ii) having 

constructed a number of physical clusters in some alternative fashion, 

the isomorphism of these clusters may be tested by the construction 

of the relevant adjacency matrices.

11.2 Adjacency Matrices; their Classification and Ordering

For an N-atom cluster the symmetric adjacency matrix as defined 

by equation (11.1) may be constructed. It is apparent that 

different numberings of atoms lead to different adjacency matrices; 

in general for a graph on N vertices there exist NI adjacency 

matrices (some of which may be identical). The adjacency matrix 

for the 4-atom tetrahedron is

4^1

0 1 1 1  
1 0  1 1  
1 1 0  1 
1 1 1 0

4^1

with being the associated graph. The pre-subscripts refer to

the number of atoms whilst the post-subscripts identify the particular

structure within this set. Matrices and illustrate theD— i D— z
possibility of the existence of more than one adjacency matrix for 

graphs which differ only in their labelling.

5^1

~0 0 1 1 f" “ o 1 1 1 f
0 0 1 1 1 5^2 1 0 1 1 1
1 1 0 1 1 1 1 0 1 0
1 1 1 0 1 1 1 1 0 1

__1 1 1 1 0__ _1 1 0 1 0

5 2
'5^1 ’ 5^2 *
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Some unique numbering convention for the constituent atoms within 

a cluster is required: once this convention exists graphs may be

renumbered and the newly constructed adjacency matrices compared 

against a standard adjacency matrix. Read (1972) discusses various 

coding algorithms, whilst Silk (1964) and Penny (1965) consider 

numbering systems specifically related to chemical nomenclature.

By writing the rows of an adjacency matrix as a sequence of 

end-to-end segments, and considering the Os and Is as digits in a 

binary code, one may represent the matrix by a single number M.

No two matrices will have the same M unless they differ only in the 

labelling of equivalent atoms. From all the different matrices 

associated with the same graph it is necessary to choose one matrix 

to represent that graph - one particular choice involves the inter

pretation of each row of the matrix as a binary number n^, l^i$M.

The matrix is thus represented by a string of such numbers{n^}.

Rows and columns are then interchanged in the matrix until the 

members of the set {n^} combine to yield the smallest possible 

M-value. This requires an ordering such that

n^ ^2 ^ *̂ 3 ^ .. » • • ^ 1̂4*

A matrix with rows ordered in such a fashion is known as an arranged 

matrix. Such a matrix is not necessarily unique, i.e. a number of 

ordered sets may arise from the same matrix. Additional permuta

tions of rows and columns are required to establish whether or not 

the smallest M-value has been obtained. « Each number n^ is examined 

in an attempt to reduce the current n^ value; if at any stage a 

disarranged matrix results, further arrangement is required.
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An alternative method of choosing a representative matrix 

uses a numbering scheme which produces the largest possible M-value 

- however this method removes the possibility of ordering the set 

{n^} due to zeros on the principal diagonal.

11.3 Adjacency Matrices of Some Specific Structures

Arranged adjacency matrices for some structures of interest are 

constructed in this section. The complete graph on N vertices is 

defined as that graph with all vertices mutually connected: an

unconnected graph is one in which free vertices exist. Only 

connected graphs are considered here.

11.3.1 The Dimer

2-1 0 1 
1 0

2°1

Only one connected graph on 2 vertices exists.

11.3.2 The Equilateral Triangle and Linear Chain

361 '“o 1 3^2 = ~“o 1 0“ 3^3 ~0 0 1“
1 0 1 1 0 1 0 0 1

_1 1 0 _0 1 0_ _1 1 0

3 S 3S

3A 2 is not arranged; it may be arranged by interchanging rows 

(and columns) 2 and 3. This interchange reduces ^A^ to 3A 3 -

these two matrices represent the same graph. Consequently there
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are only 2 connected graphs for N = 3, relating ,to the equilateral 

triangle and the linear chain.

11.3.3 The Tetrahedron

The tetrahedron corresponds to the complete graph on 4 vert

ices: this graph with its associated matrix is presented in Section 

11.2. If one constrains each vertex to be connected, to at least 

three others is the only N = 4 matrix which exists. Removing

such a constraint permits the existence of linear chains and other 

planar configurations.

11.3.4 Some 5-Vertex Structures;

and ^A^ in Section 11.2 both correspond to the double 

tetrahedron. ^A^ is not arranged: interchanging rows and colums

4 and 5 produces ^A^,

5-2 0 1 1 1 1  
1 0  1 1 1  
1 1 0  0 1 
1 1 0  0 1 
1 1 1 1 0

The base of the double tetrahedron is labelled 3-4-5 for ^A^, and 

1-2-5 for ^ 2 *  CkiG point to note is that neither of these matrices 

represent the complete graph on 5 vertices. The complete graph 

possesses 20 non-zero elements - since a parallel may be drawn 

between non-zero elements and nearest neighbour bonds it is apparent 

that the matrix corresponding to the double tetrahedron requires only 

18 (i.e. 2x(3N-6), multiplied by 2 because of matrix symmetry) non

zero elements.
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Consider all those clusters which may be grown from a 4-atom 

tetrahedron with atoms labelled 1-2-3-4. The faces on which a 5th 

atom may be added are 1-2-3, 1-2-4, 1-3-4, and 2-3-4. These four

new structures produce matrices

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 5"
(i) 1 0 1 1 1 (ii) 1 0 1 1 1 (iii) 1 0 1 1 0 (iv) 1 0 1 1 1
face 1 1 0 1 1 face 1 1 0 1 0 face 1 1 0 1 1 face 1 1 0 1 1
1-2-3 1 1 1 0 0 1-2—4 1 1 1 0 1 1—3—4 1 1 1 0 1 2-3-4 1 1 1 0 1

I 1 1 0 0 I 1 0 1 0 _1 0 1 1 0 0 1 1 1 0

It is now necessary (a) to reduce if possible matrices (i)-(iv) to 

one single arranged matrix, and (b) to investigate whether further 

permutations lead to a lower M-value. Matrix (i) is already ordered 

and matrix (ii) is merely which itself has been arranged to form

Furthermore, interchanging rows and columns 3 and 4 followed 

by 4 and 5 in (i) again produces i.e. (i) and (ii) represent

the same structure with different labellings. Matrix (iii) may be 

arranged by interchanging rows and columns 4 and 5 followed by 3 and 

4 - this produces

5^3 0 1 1 1 1  
1 0  0 1 1  
1 0  0 1 1  
1 1 1 0  1 
1 1 1 1 0

Is it now possible to reduce bo ’ This is achieved by inter

changing rows and columns 2 and 4. In the case of (iv) interchange

of rows and columns 2 and 5 produces . This latter matrix

produces the lowest possible M-value for a graph with a minimum of 

3 edges at each vertex, .so finally the question is raised as to
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whether may be reduced to ^A^. This reduction is possible by 

the interchange of rows and columns 1 and 3 in . The final 

arranged matrix ^A^ corresponds to a double tetrahedral structure 

with atoms 3-4-5 forming the common face. Thus

(a) matrices (i)-(iv) are isomorphic

(b) the matrix with the lowest M-value requires the common 

face to have the highest possible atomic numbering.

The half octahedron possesses an adjacency matrix with 16 

non-zero elements as opposed to the 18 in the case of the double 

tetrahedron due to its 8 nearest neighoour bonds. As ^A^ shows 

the base is formed by atoms labelled 1-2-3-4.

A 0 0 1 1 1  
0 0 1 1 1  
1 1 0  0 1 
1 1 0  0 1 
1 1 1 1 0

5 G4

11.3.5 Some 6-Vertex Structures

The arranged adjacency matrix with the lowest M-value corre

sponding to the trigonal prism is, with corresponding graph.

6^1 0 0 0 1 1 1

0 0 1 0 1 1

0 1 0 1 1 1

1 0 1 0 1 1

1 1 I 1 0 1
1 1 1 1 1 0

6^1
3 4 1

The structure corresponding to this graph is the double tetrahedron 

on a base labelled 4-5-6 with the final atom added on face 3-5-6.
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Tlie full octahedron with a base defined by .labels 1-2-3-4 

produces *

6^2 1) 1 0 1 1 r" 6^2 = “ o 0 1 1 1 r~
1 0 1 0 1 1 0 0 1 1 1 1
0 1 0 1 1 1 1 1 0 0 1 1
1 0 1 0 1. 1 1 1 0 0 1 1
1 1 1 1 0 0 1 1 1 1 0 0

__1 1 1 1 0 __1 1 1 1 0 0

Permutations of rows and columns results in the arranged matrix 

^2* which corresponds to a structure with the base atoms labelled 

3-5-4-6. The graph for this matrix is

2 6 1

6̂ 2
3

4 5

The trigonal bipyramid is represented by

with graph6^3 0 0 0 1 1 1
0 0 1 0 1 1
0 1 0 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0

6

11.3.6 The Distorted Pentagonal Bipyramid

An arranged adjacency matrix for the distorted 7-atom pentagonal 

bipyramid formed by hard-sphere packings is
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7-1 0 0 0 1 1 1
0 0 1 0 1 1
0 1 0 0 0 1
1 0 0 0 0 1
1 1 0 0 0 1
1 1 1 1 1 0
1 1 1 1 1 1

7^1
2

7

0

This structure has a clearance gap between atoms 3 and 4. The 

5-membered ring defined by the plane containing atoms 3-2-5-1-4 is 

distorted by this gap and does not possess perfect 5-fold symmetry.

11.3.7 The Cube

The regular cube has an adjacency matrix associated with it as 

shown in .

8^1 0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0
0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0

8^1
1

6 4

This structure has 12 nearest neighbour bonds.

11.3.8 The Icosahedron

Using data from the growth program the following adjacency matrix 

for the 13-atom icosahedron may be produced

13^1 0 1 1 1 1 1 1 1 1 1 1 1^ 1
1 0 1 1 1 1 1 0 0 0 0 0 0
1 1 0 1 1 0 0 1 1 0 0 0 0
1 1 1 0 0 1 0 1 0 1 0 0 0
1 1 1 0 0 0 1 0 1 0 1 0 0

Continued ....



179

1 1 0 1 0 0 0 0 0 1 0 1 0
1 1 0 0 1 0 0 0 0 0 1 1 0
1 0 1 1 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0

Tine following permutations of rows and columns are required to arrange

13^1
2 H

5 -

10 4

13;

9;
11.

4-

->
13;

8;

4;
10; 4-

12;

5; -V
4-

11;

9;

4- 5 ;
10;

Such rearrangements lead to an arranged adjacency matrix 

for a graph on 13 vertices.

13^1 0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1 1 1 1 0 1
1 0 0 0 0 0 1 0 0 0 1 0 0
1 0 0 0 0 1 1 0 1 1 0 1 0

1 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 1 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 0

1 0 1 1 0 0 0 1 0 1 0 0 0
1 1 0 0 1 0 0 0 1 0 0 0 0
1 1 1 0 0 0 0 0 1 0 0 0 0

From this matrix it is seen that the central enclosed atom is 

labelled number 1,
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1 1 . 4  The G e n e r a t i o n  o f  t h e  C o m p l e t e  S e t  o f  A n i s o m o r p h i c  G r a p h s  

on a  G i v e n  N u m b e r  o f  V e r t i c e s

I f  a l l  t h e  a r r a n g e d  a d j a c e n c y  m a t r i c e s  on a g i v e n  n u m b e r  o f

v e r t i c e s  a r e  c o n s t r u c t e d  a n d  t h o s e  m a t r i c e s  w h i c h  a r e  i s o m o r p h i c  a r e  

e l i m i n a t e d ,  a l l  a n i s o m o r p h i c  g r a p h s  on t h a t  n u m b e r  o f  v e r t i c e s  a r e ,  

b y  n e c e s s i t y ,  f o u n d . F r o m  t h e s e  g r a p h s  t h e  v a r i o u s  m o l e c u l a r  c o n f i g 

u r a t i o n s  may  b e  r e c o g n i s e d .  C v e t k o v i d  ( 1 9 7 4 )  s u g g e s t s  t h a t  p e r m u 

t a t i o n s  o f  t h e  m o l e c u l a r  g r a p h  a r e  r e l a t e d  t o  t h e  v a r i o u s  K e k u l é  

s t r u c t u r e s  w h i l s t  G u t m a n  e t  a l  i n  a  s e r i e s  o f  p a p e r s  ( 1 9 7 2 - 1 9 7 5 )  

a p p l y  g r a p h  t h e o r y  t o  c h e m i c a l  p r o b l e m s .  A s y s t e m a t i c  a p p r o a c h  t o  

t h e  g e n e r a t i o n  o f  a l l  g r a p h s  i n v o l v e s  s t a r t i n g  f r o m  t h e  c o m p l e t e  

NxN m a t r i x  a n d  p r o c e e d i n g  t o  f i r s t  g e n e r a t i o n  m a t r i c e s  b y  r e p l a c i n g  

a  p a r t i c u l a r  1 b y  a  0 ,  R e s u l t i n g  m a t r i c e s  m u s t  b e  a r r a n g e d ,  t h e r e b y

l i m i t i n g  t h e  n u m b e r  o f  a c c e p t a b l e  m a t r i c e s .  As f u r t h e r  I s  a r e

r e p l a c e d  b y  Os s e c o n d  a n d  h i g h e r  g e n e r a t i o n  m a t r i c e s  a r e  p r o d u c e d ,  

u n t i l  t h e  m a t r i x  c o r r e s p o n d i n g  t o  t h e  c o n n e c t e d  g r a p h  w i t h  t h e  

m i n i m u m  n u m b e r  o f  e d g e s  i s  g e n e r a t e d .  S u b s e q u e n t  o p e r a t i o n s  l e a d  

t o  s u b g r a p h s  w i t h  u n c o n n e c t e d  v e r t i c e s  w h i c h  a r e  o f  n o  i n t e r e s t  h e r e .  

F o r  a  g r a p h  on N v e r t i c e s  ( N - 1 )  a r r a n g e d  m a t r i c e s  n e e d  t o  b e  c o n 

s i d e r e d  ( n o t  a l l  o f  w h i c h  c o r r e s p o n d  t o  p h y s i c a l l y  p o s s i b l e  s t r u c t u r e s )  

A l l  f i r s t  g e n e r a t i o n  g r a p h s  a r e  i s o m o r p h i c  d u e  t o  t h e  e q u i v a l e n c e  o f  

a l l  e d g e s  i n  t h e  c o m p l e t e  g r a p h .  H a r a r y  ( 1 9 5 9 )  a n d  S p i a l t e r  ( 1 9 6 4 )  

h a v e  sh o wn  t h a t  f o r  N = 4  a n d  N=5  o n l y  n o n - i s o m o r p h i c  g r a p h s  a r e  r e q 

u i r e d  f o r  t h e  d e t e r m i n a t i o n  o f  a l l  p o s s i b l e  g r a p h s  a s s o c i a t e d  w i t h  

t l i e  o r d e r i n g  o f  t h e  v e r t i c e s ,  c o r r e s p o n d i n g  t o  t h e  l o w e s t  M - v a l u e ;  

t h i s  h a s  n o t  b e e n  p r o v e d  f o r  N > 5 .

To a p p l y  t h i s  t e c h n i q u e  t o  t h e  p r o b l e m  o f  i s o m e r  g r o w t h  f r o m  

v a r i o u s  s e e d - s t r u c t u r e s  some r e s t r i c t i o n s  o n  t h e  n u m b e r  a n d  d i s t r i b u 

t i o n  o f  n o n - z e r o  m a t r i x  e l e m e n t s  a r e  r e q u i r e d .  T h e s e  r e s t r i c t i o n s  a r e ;
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2 x ( 3 N - 6 )  t e t r a h e d r a l ,  o c t a h e d r a l ,  s q u a r e  

a n t i p r i s m  p l u s  2 c a p s ,  t r i g o n a l  b i p r i s m s  

p l u s  3 c a p s  g r o u p s .

( i )  t h e  t o t a l  n u m b e r  o f  )  2 x ( 3 N - 7 )  s q u a r e  a n t i p r i s m  p l u s  o n e  c a p ,

n o n - z e r o  m a t r i x  \  t r i g o n a l  b i p r i s m  p l u s  2 c a p s  g r o u p s ,

e l e m e n t s  m u s t  e q u a l  [ 2 x ( 3 N - 8 )  s q u a r e  a n t i p r i s m ,  t r i g o n a l

b i p r i s m  p l u s  1 c a p  g r o u p s .

2 x ( 3 N - 9 )  T r i g o n a l  b i p r i s m  g r o u p .

( i i )  t h e r e  m u s t  b e  a t  l e a s t  3 n o n - z e r o  e l e m e n t s  p e r  r o w .  R e s t r i c t i o n

( i )  a r i s e s  b e c a u s e  o f  t h e  c h o i c e  o f  s e e d - s t r u c t u r e  a n d  t h e  c o n d i t i o n  

t h a t  a t o m s  a r e  a d d e d  t o  t r i a n g u l a r  f a c e t s .  F o r  e x a m p l e  t h e  a r r a n g e d  

a d j a c e n c y  m a t r i x  c o r r e s p o n d i n g  t o  t h e  o c t a h e d r a l  s e e d  h a s  24  

n o n - z e r o  e l e m e n t s .  Due t o  t h e  s y m m e t r y  o f  t h e  m a t r i x  t h i s  r e p r e s e n t s  

o n l y  12 e d g e s  -  i . e .  t h e  o c t a h e d r a l  s e e d  h a s  12 n e a r e s t  n e i g h b o u r  

b o n d s .  T h e  a d d i t i o n  o f  a  s i n g l e  a t o m  t o  a  t r i a n g u l a r  f a c e t  i n c 

r e a s e s  t h e  n u m b e r  o f  n e a r e s t  n e i g h b o u r  b o n d s  t o  12 + 3 ( N - 6 )  =  3 N - 6 .

I n  t h e  l a n g u a g e  o f  g r a p h  t h e o r y  t h i s  c o n d i t i o n  s t a t e s  t h a t  e a c h  

a d d i t i o n a l  v e r t e x  c o n t r i b u t e s  3 e d g e s  t o  t h e  g r a p h .  S i m i l a r  a r g u 

m e n t s  may b e  c a r r i e d  t h r o u g h  f o r  t h e  o t h e r  s e e d  s t r u c t u r e s  c o n s i d e r e d .  

T h e  s e c o n d  r e s t r i c t i o n  e n s u r e s  t h a t  e v e r y  a t o m  t o u c h e s  a t  l e a s t  t h r e e  

o t h e r s ,  e n a b l i n g  s e v e r a l  m a t r i c e s  t o  b e  i m m e d i a t e l y  r e j e c t e d .  T h o s e  

m a t r i c e s  n o t  r e j e c t e d  c o r r e s p o n d  t o  s t r u c t u r e s  w h i c h  i n c l u d e  t h e  

p o l y t o p e s ,  d e s c r i b e d  b y  C o x e t e r  ( 1 9 6 3 ) ,  i n  4  a n d  h i g h e r  d i m e n s i o n a l  

s p a c e s .

Two m a j o r  p o i n t s  n e e d  t o  b e  n o t e d  w h e n  a p p l y i n g  g r a p h - t h e o r e t i c
I

m e t h o d s  t o  i s o m e r  e n u m e r a t i o n  p r o b l e m s ;  f i r s t l y  t h a t  r e s t r i c t i o n  ( i )  

a b o v e  l e a d s  t o  t h e  g e n e r a t i o n  o f  h a r d - s p h e r e  i s o m e r s ,  a n d  s e c o n d l y  

t h a t  a l t h o u g h  t h e  a d j a c e n c y  m a t r i x  c o n t a i n s  i n f o r m a t i o n  as  t o  w h i c h  

a t o m s  a r e  i n  m u t u a l  c o n t a c t  i t  d o e s  n o t  c o n t a i n  i n f o r m a t i o n  c o n c e r n i n g  

t h e  p o s s i b l e  o b s t r u c t i o n  o f  a  n e w  s i t e  b y  n e i g h b o u r i n g  a t o m s .  T h e
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f o r m e r  p o i n t  i s  a  d i r e c t  c o n s e q u e n c e  o f  e q u a t i o n  ( 1 1 , 1 )  -  o n c e  o n e  

a d m i t s  t h e  e x i s t e n c e  o f  s o f t - s p h e r e  s t r u c t u r e s  t h e  q u e s t i o n  o f  

w h e t h e r  t w o  a t o m s  ’ t o u c h ’ b e c o m e s  p r o b l e m a t i c .  T h e  l a t t e r  p o i n t  

a l l o w s  t h e  c o n s t r u c t i o n  o f  m a t r i c e s  c o r r e s p o n d i n g  t o  p h y s i c a l l y  

n o n - r e a l i z a b l e  s t r u c t u r e s .  T h e  d i s t a n c e  m a t r i x  D c o n t a i n s  t h e

i n f o r m a t i o n  n e c e s s a r y  t o  d e c i d e  w h e t h e r  a  n e w  m a t r i x  c o r r e s p o n d s  t o  

a p h y s i c a l  c l u s t e r  -  h o w e v e r  t h e  D m a t r i x  r e q u i r e s  t h e  i n t r o d u c t i o n  

o f  a  c o o r d i n a t e  s y s t e m .  I n d i s c r i m i n a t e  u s e  o f  g r a p h  t h e o r y  may  

l e a d  t o  t h e  p r e d i c t i o n  o f  v a r i o u s  i s o m e r i c  f o r m s  w h i c h  a l t h o u g h  

p o s s e s s i n g  t h e  c o r r e c t  n u m b e r  o f  b o n d s  a r e  u n a b l e  t o  e x i s t  i n  

3 - d i m e n s i o n a l  s p a c e .  M a t r i x  i l l u s t r a t e s  t h i s  p o i n t .

0  0  0  1 1 1

0  0  0  1 1 1

0  0 . 0  1 1 1

1 1 1  O i l

1 1 1  1 0 1

1 1 1  1 1 0

A t  f i r s t  s i g h t  a p p e a r s  t o  r e p r e s e n t  a  p e r f e c t l y  r e a s o n a b l e  p h y s i c a l

c l u s t e r .  C l o s e r  e x a m i n a t i o n  shows t h e  f i r s t  t h r e e  r o w s  t o  b e  

i d e n t i c a l .  T h i s  i m p l i e s  t h a t  t h e r e  a r e  m o r e  t h a n  t w o  a t o m s  on  t h e  

same t r i a n g u l a r  b a s e  ( 4 - 5 - 6 ) ;  s i n c e  a n y  p l a n e  s u c h  as  t h a t  d e f i n e d  

b y  t h e  b a s e  a t o m s  ( 4 - 5 - 6 )  h a s  o n l y  t w o  f a c e s  t h e  c l u s t e r  a s s o c i a t e d  

w i t h  ^Ay  ̂ i s  n o t  p h y s i c a l l y  r e a l i z a b l e .  T h e  i d e n t i f i c a t i o n  o f  s u c h  

c l u s t e r s  f r o m  t h e i r  a r r a n g e d  a d j a c e n c y  m a t r i c e s  r e m a i n s  a  f o r m i d a b l e  

t a s k ,  i n c r e a s i n g  i n  c o m p l e x i t y  as t h e  n u m b e r  o f  v e r t i c e s  i n c r e a s e s .
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( 1 9 4 4 )  C h a p t e r  7 ,  D o v e r  P u b l i c a t i o n s ,  N . Y .

W i l l i a m s  M . L . ,  L a n d e l  R . F .  a n d  F e r r y  J . D . ,  J . A m e r . C h e m . S o c .  1J_ ( 1 9 5 5 )  3 7 0 1
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Appendix A

D e s c r i p t i o n  o f  M a j o r  C o m p u t e r  P r o g rams a n d  A u x i l i a r y  P r o g r a m s  

A . l

T h e  t h r e e  m a j o r  c o m p u t e r  p r o g r a m s  u s e d  i n  t h i s  r e s e a r c h  a r e :

( 1 )  G r o w t h  A l g o r i t h m

( 2 )  O p t i m i z a t i o n  b y  t h e  M e t h o d  o f  C o n j u g a t e  G r a d i e n t s

( 3 )  V i b r a t i o n a l  A n a l y s i s ,

A l l  p r o g r a m s  a r e  r u n  on e i t h e r  t h e  C D C 6 6 0 0  o r  C D C 7 6 0 0  a t  t h e  

U n i v e r s i t y  o f  L o n d o n  C o m p u t i n g  C e n t r e  ( U . L . C . C . ) .  S i n g l e  p r e c i s i o n  

a r i t h m e t i c  i s  u s e d  t h r o u g h o u t  e x c e p t  i n  a f e w  r u n s  o f  t h e  o p t i m i z a 

t i o n  p r o g r a m  w h e r e  d o u b l e  p r e c i s i o n  i s  r e q u i r e d  t o  a c h i e v e  a  

m i n i m u m  w i t h i n  t h e  a c c u r a c y  s p e c i f i e d .  O p t i m i z a t i o n  t o  w i t h i n  a  

s p e c i f i e d  a c c u r a c y  i s  n e c e s s a r y  t o  e n s u r e  t h a t  a l l  v i b r a t i o & a l  

f r e q u e n c i e s  f o u n d  i n  t h e  v i b r a t i o n a l  a n a l y s i s  p r o g r a m  a r e  p o s i t i v e  

s e m i - d e f i n i t e  ( i e .  t h e  p o t e n t i a l  e n e r g y  s u r f a c e  i s  c o n c a v e ) .

P r o g r a m s  a r e  w r i t t e n  i n  GDC F o r t r a n ,  t h i s  b e i n g  s l i g h t l y  m o r e  

f l e x i b l e  t h a n  s t a n d a r d  F o r t r a n  I V .  B o t h  t h e  CDC FORTRAN E x t e n d e d  

C o m p i l e r  ( F T N )  a n d  M i n n e s o t a  F o r t r a n  (M NF )  a r e  u s e d  t o  c o m p i l e  t h e  

p r o g r a m s .  L i b r a r y  s u b r o u t i n e s  f r o m  t h e  I B M  S c i e n t i f i c  S u b r o u t i n e  

P a c k a g e  ( S S P )  a r e  u s e d  i n  t h e  G r o w t h  P r o g r a m ,  w h i l s t  c o m p r e h e n s i v e  

u s e  i s  made  o f  b o t h  t h e  D i m f i l m  a n d  t h e  M i c r o f i l m  f a c i l i t i e s  a t  

U . L . C . C .  t o  p r o v i d e ,  r e s p e c t i v e l y ,  much o f  t h e  g r a p h i c a l  o u t p u t  

a n d  t h e  d i s p l a y s  o f  v a r i o u s  i s o m e r i c  f o r m s .

A . 2

F u l l  d e s c r i p t i o n s  o f  t h e  G r o w t h ,  O p t i m i z a t i o n ,  a n d  V i b r a t i o n a l  

A n a l y s i s  P r o g r a m s  a r e  c o n t a i n e d  i n  t h e  r e l e v a n t  C h a p t e r s .  F l o w  

d i a g r a m s  f o r  t h e s e  t h r e e  p r o g r a m s  a r e  p r e s e n t e d  i n  F i g u r e s  ( A l )  t o  

( A 3 )  .
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A.3

S p e c i a l l y  w r i t t e n  p a c k a g e s  h a v e  b e e n  p r e p a r e d  u s i n g  t h e  

s o p h i s t i c a t e d  D i m f i l m  ■ a n d  M i c r o f i l m  f a c i l i t i e s  a v a i l a b l e  a t  

U . L . C . C .  t o  p r o d u c e  g r a p h s ,  d r a w i n g s  o f  d i f f e r e n t  i s o m e r i c  c o n f i g 

u r a t i o n s ,  a n d  s t e r e o  v i e w s  o f  m i c r o c l u s t e r s .  T h e s e  p a c k a g e s  

c o m b i n e  f l e x i b i l i t y  w i t h  g r e a t  a c c u r a c y  a n d  h i g h  s p e e d  p r o d u c t i o n ,  

a n d  a r e  i n v a l u a b l e  f o r  t h e  r e p r o d u c t i o n  o f  f i n e  d e t a i l .  I m a g e s  

on a  c a t h o d e  r a y  t u b e  a r e  p h o t o g r a p h e d  u s i n g  16mm o r  35mm f i l m :  

t h e  d e v e l o p e d  f i l m  may t h e n  b e  u s e d  t o  p r o d u c e  e i t h e r  p h o t o g r a p h i c  

p l a t e s  o r  p r i n t s  on p h o t o s e n s i t i v e  p a p e r .  D e t a i l e d  i n f o r m a t i o n  

on t h e  u s e  o f  D i m f i l m  a n d  M i c r o f i l m  may b e  f o u n d  i n  t h e  U . L . C . C .  

D i m f i l m  a n d  M i c r o f i l m  m a n u a l s .
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F i g u r e  A IF iA KT
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c o o r d i n a t e s

C a l c u l a t e  s i t e  
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Y e s
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a n y  j f i
Rew i s o r n e r  f o u n d *  i 
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N o
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I s o a i e r  e q u i v a l e n t  
t o  a  p r e v i o u s  o n e

r A n y
m o r e
b a s e s

NoSTOP

Y e s  .

F l o w  D i a g r a m  o f  G r o w t h  P r o g r a m
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START

j i i ipuC c o o r u i a a t e s J
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Y e s

Y e s
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Y ê a _ ^ accuracy  

' ̂ attained.
l i aSTOP

F l o w  D i a g r a m  o f  O p t i m i z a t i o n  P r o g r a m
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F i g u r e  A3STAR'
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No

STOP-

F l o w  D i a g r a m  o f  V i b r a t i o n a l  A n a l y s i s  P r o g r a m



200

Appendix B

Vibrational Multiiconfigurational Thermodynamic Functions

T h e  d e r i v a t i o n s  o f  t h e  e x p l i c i t  MC v i b r a t i o n a l  f o r m u l a e ,  

e q u a t i o n s  ( 5 , 1 7 )  t o  ( 5 . 2 0 ) ,  a r e  p r e s e n t e d  b e l o w .

S e p a r a t i n g  t h e  e x p o n e n t i a l  t e r m  i m p l i c i t l y  i n c l u d e d  i n  

e q u a t i o n  ( 5 . 1 6 )  ( s e e  e q . ( 5 . 1 ) ) ,  t h e  v i b r a t i o n a l  MCPF may  b e  w r i t t e n

c  “ ^ o  i

Zv.mc W  = Z v .s c  (B -1 )
» 1 =  1 *

where E . is the energy of the i^^ minimum about which vibration 0,1
o c c u r s ,  a n d  o t h e r  t e r m s  a r e  a s  p r e v i o u s l y  d e f i n e d .  F o r  e x p l i c i t  

s u b s t i t u t i o n  o f  ( B . l )  i n t o  t h e  s t a n d a r d  f o r m u l a e  ( 5 . 2 )  t o  ( 5 . 5 )  

i t  i s  a p p a r e n t  t h a t  t h e  f i r s t  a n d  s e c o n d  d e r i v a t i v e s  o f

c  / . X - E  . /
I n  E '(■ .  e  k T

i = l  v . s c

w i t h  r e s p e c t  t o  t e m p e r a t u r e ,  a r e  r e q u i r e d .

(  ’ \  -E . /
L e t  3 =  ( N )  ^ a n d  =  e  ( B , 2 )

j , i  ^

w i t h  Z  ( N ) ( ^ )  g i v e n  b y  H a .  . ( s e e  e q u a t i o n s  ( 5 . 6 )  a n d  ( 5 . 2 1 ) )
V , s  c  j  j  ,  1

t h e n  t h e  p r o b l e m  i s  a n  e x p l i c i t  e v a l u a t i o n  o f

? T  p , i
( B . 3 )

_9
9 T

a n d  

2  c
•2  I n  S H a .  . y .  

1 = 1  j

F o r  t h e  f i r s t  d e r i v a t i v e :

( B . 4 )
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I  I l a .  . Y-
i = l  j . 1

( B . 5 )

The  d e r i v a t i v e  on t h e  r i g h t - h a n d  s i d e  o f  ( B . 5 )  may b e  w r i t t e n

8T E Ha .  - Y
i = l  j ?“ j , i  I t  f i (B.6)

On p e r f o r m i n g  t h e  d i f f e r e n t i a t i o n  we f i n d

i ï i  = _
31

e x p E / k T  o 1 
1

o '  1

a x  P i . i = n%.' . X
J

k T

' 3 N - 6

i = l 3T

( B . 7 )

w h e r e  a n d  3 a ^ / 9 T  a r e  g i v e n  b y  e q u a t i o n s  ( 5 - 2 ] )  a n d  ( 5 * 2 2 )  r e s p e c -  

e c t i v e l y .  U s e  o f  e q u a t i o n s  ( B . 7 )  i n  ( B . 6 )  a n d  t h e  u s e  o f  t h e  

r e s u l t i n g  e q u a t i o n  i n  ( B . 5 )  l e a d s  t o  an e x p l i c i t  f o r m u l a t i o n  o f  

( B . 3 )  i e .

IÏ
1 = 1 J

c f  - E  _ . /  

i = l

3 N - 60 , 1  _ „ / 3 a ;  1/ 3a;Z < e K ^ . n a .  , .x Z \ - n a .  e k T
j  “ i j  j  - ; ^ 2 -

E H a .  . Y. 
i = i  j  1

( B . 8 )

F o r  t h e  s e c o n d  d e r i v a t i v e :

e x p r e s s i n g  ( B . 8 )  i n  t e r m s  o f  3 ,  Y ,  a n d  a ,  w i t h  t h e i r  a s s o c i a t e d
J

d e r i v a t i v e s  we o b t a i n

31 ( B . 9 )
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D i f f e r e n t i a t i n g  ( B . 9 )  a g a i n  w i t h  r e s p e c t  t o  T l e a d s  t o  an e x p r e s s i o n  
c
E 3 -  - Y .  i n  t e r m s  o f  3 ,  Y a n d  a ,  w i t h  c o m b i n a t i o n s  o f  t h e  

i = l  -
1 s t  a n d  2 n d  d e r i v a t i v e s  o f  t h e s e  t e r m s .

f o r  c ^ / a T ^  I n  E

E x p l i c i t l y :

a ^ l n

3T 2 v , m c ( N ) ( i )

E G . A j . i  . 6 .  . A i  + 2 i i i  m.i3T sr

E 6 .  . Y .  
i = l  "

x ( - l ) E 3 .  . Y.  
i = l  J » "  ^

—2 c Hi +
i  = l p . l 3 I  i S T

( B . I O )

I n s p e c t i o n  o f  ( B . l O )  r e v e a l s  a  d e p e n d e n c e  o n  t h e  2 n d  d e r i v a t i v e s  

o f  3 a n d  Y i n  a d d i t i o n  t o  3 ,  9 3 / 9 T ,  Y, 8 Y / 3 T .

l l l i  =
3T̂

- I Z i
3T k T + 2 f / T  =

— E ^ o / k T

k T 3 k T
‘ 3

( B . l l )

U s i n g  t h e  2 n d  l i n e  o f  ( B . 7 )  p r o d u c e s

A j . i
3T

33
"

3 a ;  1 
3 1  o?

2 2 ' . w h e r e  3 a ^ / 3 T  i s  g i v e n  b y  e q u a t i o n  ( 5 . 2 3 ) ,

U s e  o f  e q u a t i o n s  ( B . 2 ) ,  ( B . 7 ) ,  ( B . l l )  a n d  ( B . 1 2 )  f o r  3*  • ,  ■
J » ^ ^

2 29 3 ;  £ ,  3 Y" , 9 Y^ a n d  3 3 :  ^ r e s p e c t i v e l y  i n  e q u a t i o n  ( B . I O )  l e a d s
3T '  3T  g ^ 2  3 ^ 2 ^ ’
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t o  a  f o r m a l  r e p r e s e n t a t i o n  o f  9 ^ / 3 T ^  I n  Z ( N ) . A l g e b r a i cv , m c

m a n i p u l a t i o n  o f  t h e  gs a n d  ys w i t h  t h e i r  a s s o c i a t e d  1 s t  a n d  2 n d  

d e r i v a t i v e s  l e a d s  t o  t h e  s e t  o f  m u l t i c o n f i g u r a t i o n a l  v i b r a t i o n a l  

e q u a t i o n s  f o r  v i b r a t i o n a l  f r e e  e n e r g y ,  i n t e r n a l  e n e r g y ,  e n t r o p y  a n d  

h e a t  c a p a c i t y  p r e s e n t e d  i n  e q u a t i o n s  ( 5 . 1 7 )  t o  ( 5 . 2 0 ) .



204

Appendix C

C l u s t e r  D i s t r i b u t i o n s  i n  C o n f i g u r a t i o n  S p a c e

T h e  d i s t a n c e s  i n  3 N - s p a c e  s e p a r a t i n g  t h e  m o s t  s t a b l e  N - a t o m  c l u s t e r  

f r o m  t h e  o t h e r  m e m b e r s  o f  t h a t  s e t  o f  m i n i m a  a r e  c a l c u l a t e d  a c c o r d i n g  

t o  e q u a t i o n  ( C . l )  f o r  t h e  L e n n a r d - J o n e s  s t r u c t u r e s ,  w i t h  8 < N < 1 0 ,

( C . l )

I n  e q u a t i o n  ( C . l )  { X } ,  { Y }  a n d  { Z } a r e  t h e  C a r t e s i a n  c o o r d i n a t e s  o f  t h e

m o s t  s t a b l e  c l u s t e r  and  t h e  j { x } ,  j ' t y )  a n d  j { z }  a r e  t h e  c o o r d i n a t e s  o f

. t h  . .t h e  j  m i n i m u m .

T h e  d i a g r a m s  i n  F i g u r e  C l  i n d i c a t e  a  m i l d  c o r r e l a t i o n  b e t w e e n  t h e s e

d i s t a n c e s  a n d  t h e  e n e r g y  r a t i o  r ^  = e . , w h e r e  e ^  i s  t h e  c l u s t e r  e n e r g y
£

an d  E i s  t h e  e n e r g y  o f  t h e  m o s t  s t a b l e  c l u s t e r .  F o r  e a c h  N v a l u e

t h e  s e t  o f  d i s t a n c e s  i s  s t a t i s t i c a l l y  a n a l y z e d  a n d  t h e  r e s u l t s  p r e s e n t e d

i n  T a b l e  C l .

T a b l e  C l

N r a S t a n d a r d  d e v i a t i o n  

i n
S k e w n e s s K u r t o s i s

9 . 9 3 9 2 . 6 6 0 . 7 4 0 . 0 7 -  1 . 3 3

1 0 . 9 2 3 2 . 8 6 0 . 9 7 0 . 4 6 -  0 . 8 9

11 . 9 1 6 3 . 3 9 0 . 9 5 0 . 5 1 -  0 . 8 6

We s e e  f r o m  t h i s  t a b l e  t h a t  t h e  m e a n  d i s t a n c e  d ^  i n c r e a s e s  w i t h  N ,  

as  e x p e c t e d  s i n c e  d _  i s  a  f u n c t i o n  o f  N ,  w h i l s t  t h e  m e a n  e n e r g y  r a t i o



205

r a  d e c r e a s e s  c o m p a r a t i v e l y  s l o w l y .  W i t h  i n c r e a s i n g  N t h e  d i s t r i 

b u t i o n  o f  d i s t a n c e s  b e c o m e s  m o r e  s k e w e d  b u t  l e s s  p l a t y k u r t i c .  I t  

se em s t h a t  t h o s e  c l u s t e r s  e n e r g e t i c a l l y  n e a r  t h e  m o s t  s t a b l e  c l u s t e r  

a l s o  t e n d  t o  b e  n e a r  t h i s  s t r u c t u r e  i n  c o n f i g u r a t i o n  s p a c e .

F i g u r e  C l

T
(AJ-l•H
§

V-l
•H

3cr

6

10

4

2

0
. 8 4 .88 . 9 2 . 9 6 1.0

•H
§
;■H
rO•HI—I
•H
dCT"0)

6

4

2

r a

0
. 8 4 .88 . 9 2 . 9 6 1,0
T h e  D i s t r i b u t i o n  o f  C l u s t e r s  i n  C o n f i g u r a t i o n  S p a c e
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Appendix D

Standard Gibbs Free Energies of Formation
I

Table D1

Neon G°(N,T*,1) Joules xlO^^

. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 1 . 0

2 - . 1 8 2 - . 0 1 9 + . 1 7 8 . 3 9 7 . 6 2 5 . 8 5 8 1 . 1 0 2 1 . 3 4 8 1 . 5 9 9 1 . 8 5 1

3 - . 5 7 8 - . 1 8 0 + . 2 9 4 . 8 0 4 1 . 3 3 5 1 . 8 8 6 2 . 4 4 1 3 . 0 0 4 3 . 5 6 5 4 . 1 4 4

4 - 1 . 1 6 4 - . 4 2 5 + . 4 3 8 1 . 3 6 0 2 . 3 0 5 3 . 2 7 4 4 . 2 4 8 5 . 2 3 0 6 . 2 1 3 7 . 2 0 5

5 - 1 . 8 5 7 - . 8 3 8 +  . 3 5 0 1 . 6 1 2 2 . 9 1 3 4 . 2 2 7 5 . 5 6 4 6 . 8 9 4 8 . 2 3 9 9 . 5 7 7

6 - 2 . 5 6 8 - 1 . 1 7 6 +  . 4 2 5 2 . 1 2 7 3 . 4 3 1 5 . 3 9 8 7 . 4 1 8 9 . Ï 0 2 1 0 . 9 8 9 1 2 . 7 8 6

7 - 3 . 5 3 2 - 1 . 8 4 9 + . 0 7 0 2 . 0 9 0 4 . 1 5 8 6 . 2 6 9 8 . 3 4 5 1 0 . 4 5 0 1 2 . 5 5 8 1 4 . 6 7 1

8 - 4 . 4 0 3 - 2 . 5 4 2 - . 4 0 7 + 1 . 8 4 5 4 . 1 4 9 6 . 4 8 3 8 . 8 2 9 1 1 . 1 8 2 1 3 . 5 2 5 1 5 . 8 7 7

9 - 5 . 4 2 1 - 3 . 1 7 0 -  . 6 3 4 + 2 . 0 1 6 4 . 7 2 3 7 . 4 6 3 1 0 . 2 0 8 1 2 . 9 6 5 1 5 . 7 1 5 1 8 . 4 6 4

1 0 - 6 . 5 0 0 - 3 . 8 7 4 - . 9 4 2 + 2 . 0 9 2 5 . 1 7 3 8 . 2 7 4 1 1 . 3 8 9 1 4 . 5 1 2 1 7 . 6 3 0 2 0 . 7 4 5

1 1 - 7 . 6 4 8 - 4 . 7 2 8 - 1 . 4 7 4 + 1 . 9 0 0 5 . 3 3 4 8 . 7 9 2 1 2 . 2 6 1 1 5 . 7 2 4 1 9 . 1 9 8 2 2 . 6 5 3

1 2 - 9 . 0 8 0 - 5 . 7 0 9 - 1 . 8 6 0 + 2 . 0 7 1 5 . 9 7 1 9 . 8 5 4 1 3 . 7 4 3 1 7 . 6 2 4 2 1 . 5 0 0 2 5 . 3 6 4

1 3 - 1 0 . 7 9 6 - 6 . 9 3 7 - 2 . 4 9 4 + 2 . 1 7 9 6 . 8 2 2 1 1 . 3 0 3 1 5 . 7 2 4 2 0 . 1 1 2 2 4 . 4 9 4 2 8 . 8 6 7
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T a b l e  D2

A r g o n  A G ° ( N , T * , 1 )  J o u l e s  x l O ^ ^

V "
*

.1 . 2 . 3 . 4 . 5 .6 . 7 . 8 . 9 1.0

2 - . 9 0 5 - . 1 3 4 + . 6 9 7 1 . 5 6 1 2 . 4 4 1 3 . 3 6 1 4 . 2 5 9 5 . 2 2 7 6 . 1 5 9 7 . 0 9 4

3 - 2 . 9 0 4 - 1 . 0 1 5 + . 9 8 2 3 . 0 1 6 5 . 0 7 1 7 . 1 5 6 9 . 2 3 9 1 1 . 3 6 9 1 3 . 4 8 3 1 5 . 6 3 4

4 - 5 . 8 8 8 - 2 . 4 0 6 + 1 . 1 8 8 4 . 8 2 0 8 . 4 4 5 1 2 . 0 9 3 1 5 . 7 3 7 1 9 . 3 9 9 2 3 . 0 3 5 2 6 . 6 8 9

5 - 9 . 2 5 0 - 4 . 3 9 8 + . 5 8 2 5 . 5 7 4 1 0 . 5 8 1 1 5 . 5 6 8 2 0 . 5 5 6 2 5 . 5 1 0 3 0 . 4 6 2 3 5 . 4 5 8

6 - 1 2 . 9 0 0 - 6 . 2 6 9 + . 4 4 5 7 . 1 6 6 1 3 . 8 4 0 2 0 . 5 0 6 2 7 . 1 3 5 3 5 . 0 9 4 4 0 . 3 5 7 4 5 . 9 3 1

7 - 1 7 . 3 2 4 - 9 . 2 5 9 - 1 . 1 4 3 + 6 . 8 9 9 1 4 . 8 5 3 2 2 . 7 7 0 3 0 . 6 2 1 3 8 . 4 6 3 4 6 . 2 4 2 5 4 . 0 2 4

8 - 2 1 . 3 2 6 - 1 2 . 2 4 2 - 3 . 0 9 7 + 5 . 9 4 7 1 4 . 8 9 4 2 3 . 7 7 7 3 2 . 6 1 5 4 1 . 3 7 5 5 0 . 1 3 8 5 8 . 8 3 3

9 - 2 6 . 0 8 5 - 1 5 . 1 6 4 - 4 . 3 1 9 + 6 . 3 2 0 1 6 . 8 2 0 2 7 . 2 3 0 3 7 . 5 6 7 4 7 . 8 5 1 5 8 . 0 4 5 6 8 . 2 1 2

10 - 3 1 . 0 2 7 - 1 8 . 3 9 8 - 5 . 8 3 9 + 6 . 3 5 7 1 8 . 3 2 8 2 9 . 9 5 1 4 2 . 7 6 0 5 4 . 2 0 6 6 5 . 0 9 5 7 6 . 6 0 0

11 - 3 6 . 1 7 4 - 2 2 . 0 2 0 -8.010 + 5 . 5 5 7 1 8 . 8 8 3 3 2 . 0 5 5 4 5 . 1 0 0 5 8 . 0 6 2 7 0 . 9 1 1 8 . 3 7 3 2

1 2 - 4 2 . 4 2 2 - 2 6 . 4 0 4 - 1 0 . 1 4 6 + 5 . 7 0 2 2 0 . 9 6 5 3 5 . 7 3 6 5 0 . 3 7 2 6 4 . 8 7 4 7 5 . 2 3 0 9 3 . 5 2 9

13 - 5 0 . 0 4 5 - 3 1 . 7 8 6 - 1 3 . 1 7 4 + 5 . 3 5 9 2 3 . 4 6 0 4 0 . 6 7 3 5 7 . 2 9 7 7 3 . 6 6 5 9 1 . 5 8 1 1 0 5 . 9 9 2
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T a b l e  D3

K r y p t o n  A G ° ( N , T * , 1 )  J o u l e s  x . l O ^ ^

- r
*

. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 1 . 0

2 - 1 . 3 1 1 - . 1 4 3 + 1 . 1 0 0 2 . 3 9 0 3 . 6 8 5 5 . 0 4 0 6 . 4 0 2 7 . 7 8 6 9 . 1 5 6 1 0 . 5 8 5

3 - 4 . 2 4 3 - 1 . 3 6 3 + 1 . 5 9 6 4 . 6 0 7 7 . 6 4 4 1 0 . 7 0 0 1 3 . 7 9 2 1 6 . 9 1 9 2 0 . 0 2 4 2 3 . 1 8 1

4 - 8 . 6 3 6 - 3 . 3 6 5 + 1 . 9 6 2 7 . 3 0 1 1 2 . 6 6 2 1 7 . 9 9 1 2 3 . 3 5 2 2 8 . 7 0 5 3 4 . 0 7 2 3 9 . 4 1 9

5 - 1 3 . 5 7 9 - 6 . 2 2 6 + 1 . 1 5 4 8 . 5 1 8 1 5 . 8 5 9 2 3 . 1 9 4 3 0 . 4 7 6 3 7 . 7 9 5 4 5 . 0 3 7 5 2 . 2 8 7

6 - 1 8 . 9 8 3 - 8 . 9 3 4 + 1 . 0 3 1 1 0 . 9 0 8 2 0 . 7 1 4 3 0 . 4 5 3 4 0 . 1 8 8 5 0 . 0 1 6 5 9 . 5 2 5 6 9 . 1 7 7

7 - 2 5 . 4 6 9 - 1 3 . 2 4 1 - . 0 2 3 + 1 0 . 6 2 4 2 2 . 3 3 4 3 3 . 9 2 7 4 5 . 4 4 8 5 6 . 8 8 9 6 8 . 2 9 0 7 9 . 6 5 3

8 . - 3 1 . 3 4 7 - 1 7 . 5 1 5 - 3 . 9 4 5 + 9 . 3 8 3 2 2 . 5 4 2 3 5 . 5 7 6 4 8 . 5 3 9 6 1 . 4 1 3 7 4 . 2 1 7 8 6 . 9 7 6

9 - 3 8 . 3 5 5 - 2 1 . 7 4 6 - 5 . 6 5 0 + 1 0 . 0 3 4 2 5 . 4 6 7 4 0 . 7 4 7 5 5 . 8 9 2 7 0 . 9 3 8 8 5 . 9 1 6 1 0 0 . 7 6 8

1 0 - 4 5 . 6 1 3 - 2 6 . 4 2 2 - 7 . 7 6 2 + 1 0 . 2 0 7 2 7 . 7 6 7 4 5 . 1 3 5 6 2 . 2 9 3 7 9 . 3 3 2 9 6 . 2 9 5 1 1 3 . 1 4 7

11 - 5 3 . 1 7 5 - 3 1 . 6 5 3 - 1 0 . 8 3 7 + 9 . 1 6 2 2 8 . 7 3 5 4 8 . 0 5 5 6 7 . 1 7 3 8 6 . 1 6 1 1 0 5 . 0 1 1 1 2 3 . 7 3 2

12 - 6 2 . 3 4 1 - 3 7 . 6 1 1 - 1 3 . 8 9 5 + 9 . 4 4 3 3 1 . 7 9 6 5 3 . 5 5 2 7 4 . 9 8 2 9 6 . 2 0 8 1 1 7 . 2 4 8 1 3 8 . 1 7 6

1 3 - 7 3 . 5 3 4 - 4 5 . 8 1 1 - 1 8 . 2 4 2 + 9 . 0 0 7 3 5 . 5 6 4 6 0 . 7 7 8 8 5 . 1 1 2 1 0 9 . 0 8 1 1 3 2 . 8 1 3 1 5 6 . 3 7 1
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T a b l e  D4

X e n o n  A G ° ( N , T * , 1 )  J o u l e s  x l O ^ ^

-r *
. 1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 1 . 0

2 - 1 . 7 5 7 - . 2 6 7 + 1 . 2 9 8 2 . 9 2 5 4 . 5 5 8 6 . 2 6 7 7 . 9 8 5 9 . 7 3 3 1 1 . 4 6 2 1 3 . 2 6 8

3 - 5 . 6 3 6 - 1 . 9 6 8 + 1 . 7 9 5 5 . 6 2 4 9 . 4 6 7 1 3 . 3 3 5 1 7 . 2 4 9 2 1 . 2 0 8 2 5 . 1 3 8 2 9 . 0 6 5

4 - 1 1 . 4 1 8 —4 . 6 6 6 + 2 . 1 2 3 8 . 9 1 4 1 5 . 7 1 2 2 2 . 5 1 1 2 9 . 2 6 6 3 6 . . 1 1 1 4 2 . 8 5 9 4 9 . 7 1 0

5 - 1 7 . 9 2 4 - 8 . 4 7 4 + . 9 3 4 1 0 . 2 9 3 1 9 . 6 3 7 2 8 . 9 4 6 3 8 . 2 3 5 4 7 . 4 7 3 5 6 . 7 2 4 6 5 . 9 2 8

6 - 2 5 . 0 2 8 - 1 2 . 0 9 9 . + . 6 0 9 1 3 . 1 9 0 2 5 . 6 7 1 3 8 . 1 2 2 5 0 . 4 4 9 6 2 . 7 7 0 7 5 . 0 7 8 8 7 . 2 7 5

7 . - 3 3 . 5 4 3 - 1 7 . 7 9 0 - 2 . 4 1 3 + 1 2 . 6 5 8 2 7 . 5 5 9 4 2 . 2 8 1 5 6 . 9 5 9 7 1 . 4 9 1 8 6 . 0 3 5 1 0 0 . 4 7 3

8 - 4 1 . 2 5 0 - 2 3 . 4 5 2 - 6 . 1 1 0 + 1 0 . 8 9 0 2 7 . 6 2 1 4 4 . 2 0 7 6 0 . 6 6 5 7 7 . 0 0 8 • 9 3 . 2 6 1 1 0 9 . 4 5 6

9 - 5 0 . 4 4 7 - 2 9  . 0 4 4 - 8 . 4 5 8 + 1 1 . 5 1 0 3 1 . 1 6 1 5 0 . 6 0 1 6 9 . 8 8 0 8 8 . 9 8 9 1 0 8 . 0 1 1 1 2 6 . 9 3 9

10 - 5 9 . 9 7 3 - 3 5 . 2 1 2 - 1 1 . 3 5 4 + 1 1 . 5 4 1 3 3 . 9 2 8 5 5 . 9 8 2 7 7 . 8 6 5 9 9 . 5 6 5 1 2 1 . 0 5 4 1 4 2 . 5 2 5

11 - 6 9 . 8 7 9 - 4 2 . 1 1 1 - 1 5 . 4 7 3 + 1 0 . 0 2 5 3 4 . 9 7 3 5 9 . 5 5 2 8 3 . 8 8 3 1 0 8 . 0 0 5 1 3 1 . 9 4 7 1 5 5 . 7 9 4

12 - 8 1 . 8 8 6 - 5 0 . 4 7 1 - 1 9 . 6 1 2 + 1 0 . 1 9 6 3 8 . 6 8 8 6 6 . 3 6 7 9 3 . 6 3 8 1 2 0 . 6 0 4 1 4 7 . 3 9 3 1 7 3 . 9 7 9

1 3 - 9 6 . 5 3 4 - 6 0 . 7 1 4 - 2 5 . 4 1 6 + 9 . 4 1 1 4 3 . 3 1 7 7 5 . 4 5 8 1 0 6 . 4 4 2 1 3 6 . 9 6 8 1 6 7 . 1 3 7 - 9 7 . 1 5 3


