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Abstract

It is well known in the theory of Kolmogorov complexity that most strings cannot
be compressed; more precisely, only exponentially few (Θ(2n−m)) binary strings of
length n can be compressed by m bits. This paper extends the ‘incompressibility’
property of Kolmogorov complexity to the ‘unpredictability’ property of predictive
complexity. The ‘unpredictability’ property states that predictive complexity (de-
fined as the loss suffered by a universal prediction algorithm working infinitely long)
of most strings is close to a trivial upper bound (the loss suffered by a trivial mini-
max constant prediction strategy). We show that only exponentially few strings can
be successfully predicted and find the base of the exponent.

1 Introduction

We consider the following on-line prediction problem: given observed outcomes
x1, x2, . . . , xn−1, the prediction algorithm is required to output a prediction γn

for the new outcome xn. Let all outcomes be either 0 or 1 and predictions be
real numbers from the interval [0, 1]. A loss function λ(ω, γ) is used to measure
the discrepancy between predictions and actual outcomes. The performance
of the algorithm is measured by the cumulative loss

∑n
i=1 λ(xi, γi). This prob-

lem has been extensively studied; see, e.g., [CBFH+97,HKW98,LW94]. The
existing literature is mainly concerned with construction of specific predic-
tion algorithms and studying their properties. This paper deals with a more
abstract question: how many strings can be successfully predicted?
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The difficulty of predicting a sequence x1, x2, . . . , xn is formalised by the notion
of predictive complexity (introduced in [VW98]). The loss suffered by any
prediction algorithm on a sequence is at least the predictive complexity of
the sequence and predictive complexity can be approached in the limit if a
universal prediction algorithm is allowed to work infinitely long.

This paper shows that most strings have predictive complexity close to the
loss of a trivial minimax constant strategy. In other words, we prove that on
most strings even the idealised optimal algorithm performs little better than
the trivial strategy. Of course, this result is hardly surprising: one would not
expect a random string to be predictable. The interesting part is the number
of predictable sequences: even though the fraction of such sequences is tiny,
we happen to be especially interested in them. Our main result (Theorem 1)
says that the idealised optimal algorithm beats the trivial strategy by m on
the fraction Θ(βm

0 ) of strings of length n, where β0 ∈ (0, 1) is a constant
determined by the loss function.

The situation is similar to that with Kolmogorov complexity, which formalises
our intuition concerning the shortest description of an object. Results of the
theory of predictive complexity are expressed in the same asymptotic fashion
as the results about Kolmogorov complexity. In fact, Kolmogorov complexity
coincides with predictive complexity for a particular loss function called the
logarithmic loss function.

One of the important properties of Kolmogorov complexity is the so called in-
compressibility property (see [LV97], Sect. 2.2). It states that for most strings
Kolmogorov complexity is close to the length of the string (see Appendix A for
the exact statements). The intuitive interpretation is that for a random string
there is no substantially shorter way to describe it than to list its elements in
the most straightforward way. The unpredictability property generalises the
incompressibility property and states that for most strings there is no substan-
tially better way to predict their elements than to always use the same trivial
minimax strategy. The fraction of strings of length n that have Kolmogorov
complexity less than n − m is Θ(2−m); therefore, β0 = 1/2 for the logarith-
mic loss. In general, β0 is determined by both the local behaviour of the loss
function in the neighbourhood of the minimax and its global behaviour.

Sect. 2 defines predictive complexity. Sect. 3 contains the statement of the
main theorem followed by a discussion. The main result is proven in Sect. 4.
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2 Preliminaries

We consider finite strings of elements from the binary alphabet B = {0, 1}
and denote these strings by bold letters. The set of all finite binary strings is
denoted by B

∗. The length of a string x ∈ B
∗ is denoted by |x|. We use similar

notation |A| for the number of elements of a set A. The notation x
(k) refers

to the prefix of x of length k. The notation N refers to the set of non-negative
integers {0, 1, 2, . . .}.

We will now define predictive complexity and discuss some of its properties.

2.1 The Definition of Predictive Complexity

An on-line prediction game (or simply game) G is a triple (B, [0, 1], λ), where
B = {0, 1} is the outcome space 1 , [0, 1] is the prediction space, and λ : B ×
[0, 1] → [0, +∞] is a loss function. We suppose that λ is computable and
continuous.

The following are examples of games: the square-loss game with the loss func-
tion λ(ω, γ) = (ω − γ)2 and the logarithmic game with

λ(ω, γ) =











− log2(1 − γ) if ω = 0 ,

− log2 γ if ω = 1 .

Consider a computable prediction strategy A : B
∗ → [0, 1]; it maps a sequence

of outcomes into a prediction. We say that on a finite sequence x1x2 . . . xn ∈
B

n, where n ∈ N, the strategy A suffers loss

LossG

A(x1x2 . . . xn) =
n
∑

i=1

λ(xi, A(x1x2 . . . xi−1)) .

A function L : B
∗ → [0, +∞] is a loss process if it coincides with the loss of a

computable prediction strategy.

An equivalent definition of a loss process can be given as follows. A computable
function L : B

∗ → [0, +∞] is a loss process if L(Λ) = 0, where Λ is the empty
string, and for every x ∈ B

∗ there is γ ∈ [0, 1] such that

{

L(x0) − L(x) = λ(0, γ) ,

L(x1) − L(x) = λ(1, γ) .
(1)

1 In this paper we restrict ourselves to games with the outcome space B. These
games are sometimes called ‘binary’. A more general definition is possible.
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Unfortunately, for the majority of nontrivial games the class of loss processes
does not have a universal (i.e., smallest in some natural sense) element. It
can be easily shown using a simple diagonalisation argument that every com-
putable strategy is greatly outperformed by some other computable strategy
on some sequences. To overcome this problem we extend the class of loss
processes to the class of superloss processes. The original idea goes back to
Kolmogorov and Levin, who applied it to what is in our terms the logarithmic
game. A superloss process is a function L : B

∗ → [0, +∞] such that

• L is semi-computable from above,
• L(Λ) = 0, and
• for every x ∈ B

∗ there is γ ∈ [0, 1] such that

{

L(x0) − L(x) ≥ λ(0, γ) ,

L(x1) − L(x) ≥ λ(1, γ) .
(2)

We say that a superloss process K is universal if for every superloss process
L there is a constant C such that K(x) ≤ L(x) + C for all strings x. As
we will see below, many games, including the logarithmic and the square-loss,
have universal superloss processes. A universal process for some game is called
predictive complexity for that game.

We will need a more general definition of conditional complexity. Let Ξ be
an ensemble of constructive objects containing the representations of all finite
sequences B

∗ and natural numbers N. A function L : B
∗ × Ξ → [0, +∞] (we

will separate arguments of L by the vertical line | rather than by the comma)
is a conditional superloss process if

• L(Λ | y) = 0 for all y ∈ B
∗,

• L is semi-computable from above, and
• for every x, y ∈ B

∗ there is γ ∈ [0, 1] such that

{

L(x0 | y) − L(x | y) ≥ λ(0, γ) ,

L(x1 | y) − L(x | y) ≥ λ(1, γ) .
(3)

In other terms, it is required that L(x | y) should be uniformly semicom-
putable from above and, for each fixed y, should be a superloss process. The
intuition behind this concept is that the learner may have access to certain
additional information.

A conditional superloss process K is universal if for every conditional superloss
process L there is a constant C such that the inequality K(x | y) ≤ L(x |
y) + C holds for all x, y ∈ B

∗. A universal conditional superloss process is
called conditional predictive complexity. It is easy to see that the existence of
conditional predictive complexity K(x | y) implies the existence of K(x), and
K(x | Λ) coincides with K(x) up to an additive constant.
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2.2 Superpredictions and the Existence of Predictive Complexity

We call a point (x0, x1) ∈ [0, +∞]2 a superprediction w.r.t. G if there is a
prediction γ ∈ [0, 1] such that x0 ≥ λ(0, γ) and x1 ≥ λ(1, γ); let S be the set
of superpredictions. Geometrically, S is the set of points lying to the north-east
of the curve {(λ(0, γ), λ(1, γ) | γ ∈ [0, 1]}.

We need to define some classes of games in terms of S. We say that G is
symmetric if S is symmetric w.r.t. the straight line x = y. For example, if λ
is such that λ(0, t) = λ(1, 1 − t), then the game is symmetric.

Mixability is a less trivial property introduced in [VW98]. Take a parameter
β ∈ (0, 1) and consider the homeomorphism Bβ : [0, +∞]2 → [0, 1]2 specified
by

Bβ(x, y) = (βx, βy) . (4)

A game G with the set of superpredictions S is called β-mixable if the set
Bβ(S) is convex. A game G is mixable if it is β-mixable for some β ∈ (0, 1).

The mixability property is equivalent to the existence of predictive complexity.
It is shown in [VW98] that if a game G with the set of superpredictions S is
mixable then there is predictive complexity w.r.t. G. The converse theorem is
proven in [KVV04] under certain computability assumptions on games. The
same equivalence holds for conditional predictive complexity.

It is easy to see that there is a positive constant C such that for all strings
x and y the inequality K(x | y) ≤ K(x) + C holds. On the other hand, by
applying the Aggregating Algorithm (see [VW98]) it may be shown that, if the
game is mixable, then there is a positive constant c such that K(x) ≤ K(x |
y) + cKP(y) for all strings x and y, where KP stands for prefix complexity.

The square-loss and the logarithmic games are both mixable and thus they
specify conditional and unconditional complexities. We denote them by Ksq

and Klog, respectively. It follows from the definition that the (unconditional)
complexity w.r.t. the logarithmic game coincides with KM, the negative log-
arithm of Levin’s a priori semimeasure. Indeed (see [LV97], Sect. 4), KM =
− log2 M, where M is an a priori semimeasure defined as follows. An (enumer-
able continuous) semimeasure µ : B

∗ → [0, 1] is a function such that

• µ is semi-computable from below,
• µ(Λ) ≤ 1, and
• for every x ∈ B

∗ we have

µ(x) ≥ µ(x0) + µ(x1) . (5)

A semimeasure M is an a priori semimeasure if for every semimeasure µ
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there is a constant C > 0 such that CM ≥ µ. Take L = − log2 µ. One can
rewrite (5) as 2−L(x0) + 2−L(x1) ≤ 2−L(x), which is equivalent to the existence
of γ ∈ [0, 1] satisfying (2) with the logarithmic loss function. One can check
this by excluding γ from the system. Thus Klog coincides with KM.

The function KM differs from plain Kolmogorov complexity K by a term of
logarithmic order in the length of the string, i.e., there is c > 0 such that
for all strings x 6= Λ we have |K(x) − KM(x)| ≤ c ln |x|. A proof may be
found in [LV97]. The definition of plain Kolmogorov complexity K is given in
Appendix A.

3 Main Results and Discussion

Theorem 1 (Unpredictability Property) Let G be a mixable symmetric
game specifying conditional predictive complexity K. Suppose that the set S of
superpredictions for G is such that the boundary ∂S is a twice differentiable
curve in a vicinity of the point (B, B), where B = inf{t ∈ R | (t, t) ∈ S}.
Then the inequalities

sup
n,m∈N

|{x ∈ B
n | K(x | m) ≤ Bn − m}|

2nβm
0

≤ 1 (6)

and

inf
m∈N

lim
n→∞

|{x ∈ B
n | K(x | m) ≤ Bn − m}|

2nβm
0

> 0 (7)

hold, where β0 ∈ (0, 1) is the infimum of all β ∈ (0, 1) such that the set Bβ(S)
lies below the straight line x + y = 2βB.

This theorem assumes not only that the loss function is computable but also
that β0 is computable and that the set

Bβ0
(S) ∩ {(x, y) | x 6= y and x + y = 2βB

0 }

contains a computable point (if non-empty). For specific loss functions studied
in the literature this is always the case.

Let us discuss the theorem informally. Inequality (6) means that for all positive
integers n and m the inequality

|{x ∈ B
n | K(x | m) ≤ Bn − m}|

2n
≤ βm

0

holds. This can be interpreted as a statement about the probability provided
we assign equal probabilities to all strings of length n. Lemma 2 proves this
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inequality for any β ∈ (0, 1) such that Bβ(S) lies below the straight line
x/2 + y/2 = βB. The value β0 simply provides the best bound.

Note that values of β such that Bβ(S) lies below the straight line x/2 +
y/2 = βB exist. Indeed, since G is mixable, the set Bβ(S) is convex for some
β ∈ (0, 1). Since the set Bβ(S) is symmetric in the bisector x = y, the line
x + y = 2βB is a support line for Bβ(S) and convex sets are not cut by their
support lines (see, e.g., [Egg58]).

However, in the general case, G is not necessarily β0-mixable. It is possible
that for some values of β the game is not β-mixable, i.e., the set Bβ(S) is not
convex, but Bβ(S) still lies below the straight line in question (cf. Fig. 1).

Inequality (7) shows that the value β0 cannot be decreased further. The in-
equality can be reformulated as follows. There is a constant θ > 0 such that
for every positive integer m there is a number n0(m) such that for all integers
n > n0(m) the inequality

|{x ∈ B
n | K(x | m) ≤ Bn − m}|

2n
≥ θβm

0 (8)

holds. If we portray a pair (n, m) by a corresponding point in the positive
quadrant, (8) holds inside a certain ‘wedge’. Lemmas 4 and 5 give insight into
the shape of this wedge. Depending on the set S, there are two cases, which
are addressed by the lemmas. In one of the cases we show that n0(m) can be
taken to be equal cm, where c is a constant independent of m and in the other
case we take n0(m) = cm3 (given certain regularity conditions, it is possible to
reduce the degree and to take n0(m) = cm2). The exact shape of the ‘wedge’
is an open problem.

It is easy to see that for the logarithmic game B = 1 and β0 = 1/2 and thus
our theorem states that

|{x ∈ B
n | KM(x | m) ≤ n − m}| ≤ 2n−m (9)

for all positive integers n and m. On the other hand, there is θ > 0 such that
for every positive integer m for some n on we have

|{x ∈ B
n | KM(x | m) ≤ n − m}| ≥ θ2n−m . (10)

Note that θ is uniform in m while the value n0(m) such that the inequality
holds for all n > n0(m) can differ for different m.

Appendix A reviews the definition of the plain Kolmogorov complexity K
and the incompressibility property. It is remarkable that similar estimates
exist for the plain Kolmogorov complexity while their short proof is based on
completely different ideas.
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4 Proof of the Main Theorem

This section contains the proof of the main theorem. The proof splits into a
number of lemmas.

PROOF of Theorem 1 First the existence of values of β ∈ (0, 1) such that
Bβ(S) lies below the line x+y = 2βB is proved in the discussion in Section 3.

Secondly the infimum of such values of β is greater than 0. This is implied by
the formula for the second derivative of the function gβ(x) whose graph rep-
resents ∂Bβ(S) in a vicinity of (βB, βB). Indeed, let x(t) and y(t) be smooth
functions parameterising the boundary ∂S in a vicinity of (B, B). For defi-
niteness sake, assume that x(t) strictly increases and y(t) strictly decreases.
Then gβ(βx) = βy and

d2βy(t)

d (βx(t))
2 =

βy(t)−2x(t)

ln β · (x′(t))2

(

(y′(t) − x′(t))y′(t) ln β +
y′′(t)x′(t) − y′(t)x′′(t)

x′(t)

)

.

The inequality g′′
β(βx) ≤ 0 is equivalent to

(y′(t) − x′(t))y′(t) ln β ≥ −
y′′(t)x′(t) − y′(t)x′′(t)

x′(t)
. (11)

For every fixed value of t, the left-hand side is a negative value which tends to
−∞ as β → 0, while the right-hand side is a fixed number. Thus the inequality
gets violated for small values of β.

Inequality (6) follows from Lemma 2 below.

In order to prove (7), we need to consider two cases. Either there is ∆ ∈ (0, βB
0 ]

such that the inverse image B
−1
β0

(βB
0 −∆, βB

0 +∆) is a superprediction, or the
line x + y = 2βB

0 and the curve ∂Bβ0
(S) have a contact of the second order 2

at (βB
0 , βB

0 ) (see Figs. 1 and 2).

Indeed, suppose that gβ0
has a strictly negative second derivative at the point

βB
0 . By continuity, for some small β < β0 the second derivative of gβ at βB will

remain negative and thus there are ε, δ > 0 such for every β ∈ [β0 − ε, β0] the

2 We say that curves y = f1(x) and y = f2(x) have a contact of the n-th order at a

point (x0, y0) if y0 = f1(x0) = f2(x0), f ′
1(x0) = f ′

2(x0),..., f
(n)
1 (x0) = f

(n)
2 (x0). This

simple definition if sufficient for our purposes; of course it can be refined and made
coordinate-independent.
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βB
0

βB
0

Bβ0
(S)

βB
0
− ∆

x + y = 2βB
0

βB
0

+ ∆

Fig. 1. The case of positive ∆; the set
Bβ0

(S) is shaded

βB
0

Pδ

Bβ0
(S)

x + y = 2βB
0

βB
0
− δ βB

0

Fig. 2. The case of the contact of
the second order; the set Bβ0

(S) is
shaded

part of Bβ(S) in the stripe [βB−δ, βB +δ]×R lies below the line x+y = 2βB.
Since β0 is the infimum, there exists ∆ in question.

The cases are considered in Lemmas 4 and 5. 2

4.1 The Upper Bound on Probability

In this subsection we derive the upper bound on the number of strings of low
complexity.

Lemma 2 Let G be a symmetric game with the set of superpredictions S;
let B = inf{t ∈ R | (t, t) ∈ S} and let L be a conditional superloss process
w.r.t. G. Let β ∈ (0, 1) be such that Bβ(S) lies below the straight line x + y =
2βB. Then for all positive integers n and m we have

∣

∣

∣{x ∈ B
n | ∃k ∈ {1, 2, . . . , n} : L(x(k) | m) ≤ Bk − m}

∣

∣

∣

2n
≤ βm . (12)

PROOF. Consider the function Mm(x) = βL(x|m)−B|x|. If we show that for
every fixed m it is a supermartingale w.r.t. the Bernoulli distribution with the
probability of success equal to 1/2 and apply a variant of Doob’s inequality,
the bound will follow. The definitions of a martingale and a supermartingale
and the required inequality may be found in Appendix B. We must check that
1
2
Mm(x0) + 1

2
Mm(x1) ≤ M(x).

Lemma 3 Under the conditions of Lemma 2, for every x ∈ B
∗, the inequality

1

2
βL(x0|m)−B(|x0|) +

1

2
βL(x1|m)−B(|x1|) ≤ βL(x|m)−B|x|

holds for every positive integer m.
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PROOF of Lemma 3 It follows from the definition of predictive complexity
that the pair (L(x0 | m) − L(x | m), L(x1 | m) − L(x | m)) is a superpre-
diction, i.e., belongs to S. The conditions of Lemma 2 imply that for every
(x, y) ∈ Bβ(S), the inequality x/2 + y/2 ≤ βB holds. The lemma follows. 2

It follows from this lemma that Mm(x) is a supermartingale. We can now
apply Prop. 9. 2

4.2 Tightness of the Bound

In this subsection we show that the bound from the previous subsection is
tight.

Lemma 4 Let G be a symmetric game with the set of superpredictions S; let
B = inf{t ∈ R | (t, t) ∈ S} and let G specify conditional complexity K. Let
β0 ∈ (0, 1) and ∆ ∈ (0, βB

0 ] be such that the point B
−1
β0

((βB
0 −∆, βB

0 +∆)) is a
superprediction. Then there are positive constants c and θ such that for every
positive integer m and positive integer n ≥ cm the inequality

θβm
0 ≤

|{x ∈ B
n | K(x | m) ≤ Bn − m}|

2n

holds.

The conditions of the lemma are pictured in Fig. 1.

Lemma 5 Let G be a symmetric game with the set of superpredictions S,
let B = inf{t ∈ R | (t, t) ∈ S}, and let the boundary ∂S be represented by
a twice differentiable curve in a vicinity of the point (B, B); let G specify
conditional predictive complexity K. Let β0 ∈ (0, 1) be such that the curves
x/2 + y/2 = βB

0 and B(∂S) have a contact of the second order at the point
(βB

0 , βB
0 ). Then there are positive constants c and θ such that for every positive

integer m and positive integer n ≥ cm3 the inequality

θβm
0 ≤

|{x ∈ B
n | K(x | m) ≤ Bn − m}|

2n
(13)

holds.

The statements of the lemmas and some details of the proofs are illustrated
by Figs. 1 and 2.

Let us prove the lemmas.
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PROOF of Lemma 4 Let (logβ0
(βB

0 − ∆), logβ0
(βB

0 + ∆)) be a superpre-
diction. For every positive integer m we will construct a superloss process Lm

that achieves

p(n, m) =
|{x ∈ B

n | Lm(x) ≤ Bn − m}|

2n
≥

1

4
βm

0 (14)

for every n ≥ c1m + c2, where c1 and c2 are some constants independent of m
or n.

In order to construct these superloss processes, we need the metaphor of a
‘superstrategy’. Within this proof the word ‘superstrategy’ is taken to mean a
prediction algorithm that on every trial outputs a superprediction and suffers
corresponding loss. The total loss of a superstrategy is a superloss process.

Let A be the superstrategy that always outputs the same superprediction
(logβ0

(βB
0 −∆), logβ0

(βB
0 + ∆)) and let L(x) be the loss of this superstrategy.

The superstrategy Am works as follows. It imitates A as long as the inequality
L(x) > B|x| − m holds (note that the inequality is true for x = Λ because
m > 0). After the inequality gets violated, the superstrategy switches to the
superprediction (B, B). Let Lm(x) be the loss of Am. Put A = B− logβ0

(βB
0 +

∆) > 0 so that (B|x| − m) − Lm(x) does not exceed A. In other terms, L(x)
cannot jump over the threshold B|x| − m by more than A.

Let M(x) = β
L(x)−B|x|
0 and Mm(x) = β

Lm(x)−B|x|
0 . These processes are mar-

tingales w.r.t. the Bernoulli distribution with the probability of success being
equal to 1/2. The identity (M(x0) + M(x1))/2 = M(x) implies that

EM(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) = EMm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) = 1

for every positive integer m, where ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n are results of n in-
dependent Bernoulli trials with the probability of success being equal to 1/2.
Since β−A

0 = 1+∆β−B
0 ≤ 2 we get Mm(x) ≤ β−m−A

0 ≤ 2β−m
0 for every x ∈ B

m.

Fix a positive integer m as in the statement of the theorem. Pick x of length
n and consider the ‘trajectories’

〈1, M(x(1)), M(x(2)), . . . , M(x(n))〉

and
〈1, Mm(x(1)), Mm(x(2)), . . . , Mm(x(n))〉 .

Consider ε > 0 such that ε < 1 ≤ β−m
0 . There are three mutually exclusive

options:

(1) M(x(k)) ≥ β−m
0 for some k ≤ n and thus β−m

0 ≤ Mm(x) ≤ 2β−m
0 .

(2) M(x(k)) < β−m
0 for all k ≤ n and Mm(x) = M(x) ≤ ε.

(3) M(x(k)) < β−m
0 for all k ≤ n and β−m

0 > Mm(x) = M(x) > ε.
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1

2

3

n

β−m−A
0

ε

1

β−m
0

M

Mm

Fig. 3. Three options for trajectories from the proof of Lemma 4

These three options are shown in Fig. 3, where the values of M(x(k)) and
Mm(x(k)) are plotted against values of k.

The expectation of Mn(x) over all x of length n splits into the sum of three
terms corresponding to the three classes of trajectories

1 = EMm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) = Σ1 + Σ2 + Σ3 , (15)

where ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n are as above. The following bounds hold:

Σ1 ≤ 2β−m
0 Pr{Mm(ξ

(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) ≥ β−m
0 )},

Σ2 ≤ ε,

Σ3 ≤ β−m
0 Pr{ε < Mm(ξ

(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) < β−m
0 }

≤ β−m
0 Pr{M(ξ

(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) > ε} .

The event {Mm(x) ≥ β−m
0 )} coincides with the event {Lm(x) ≤ Bn − m}

and thus Pr{Mm(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) ≥ β−m
0 )} = p(n, m). If we denote the

value

Pr{M(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) > ε} =

Pr{L(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) − Bn < logβ0
ε}

(16)

by αε(n), we obtain the inequality

1 ≤ 2β−m
0 p(n, m) + ε + β−m

0 αε(n) (17)

and thus

p(n, m) ≥
βm

0

2
−

εβm
0

2
−

αε(n)

2
. (18)

We will construct an upper bound on αε(n). The case ∆ = βB
0 (i.e., the point

appears on the line x + y = 2βB
0 at the intersection with a coordinate axis) is

trivial: the probability that L(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) is finite equals 1/2n and
this upper bound is sufficient for our purposes.
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If ∆ < βB
0 we will use the Chernoff bound in Hoeffding’s form (see [Hoe63],

Theor. 1). We need the following simple corollary. If X1, X2, . . . , Xn are in-
dependent Bernoulli trials with the probability of success equal to p ∈ (0, 1),
S = X1 + X2 + · · · + Xn, and t ≥ 0, then

Pr
{

S

n
− p ≤ −t

}

≤ e−2nt2 . (19)

Let us ‘straighten’ the function L(x) − B|x| in order to apply the Chernoff
bound. The value

d =
(L(x0) − B|x0|) + (L(x1) − B|x1|)

2
− (L(x) − B|x|)

=
1

2
(logβ0

(βB
0 − ∆) + logβ0

(βB
0 + ∆) − 2B)

=

ln

(

1 −
(

∆
βB

0

)2
)

2 lnβ0

> 0

is independent of x ∈ B
∗ so that E(L(ξ

(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) − Bn) = nd; let
r = (logβ0

(βB
0 − ∆) − B) − d = d − (logβ0

(βB
0 + ∆) − B) > 0. The function

S(x) =
L(x) − B|x| − d|x|

2r
+

|x|

2

can be treated as the sum of outcomes of independent Bernoulli trials with
the probability of success equal to 1/2 and thus satisfies (19). By substituting
the definition of S(x) and p = 1/2 into (19) we get the inequality

Pr{L(ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n ) − Bn ≤ dn − 2nrt} ≤ e−2nt2 , (20)

which holds for all t ≥ 0, where ξ
(1/2)
1 , ξ

(1/2)
2 , . . . , ξ(1/2)

n are results of indepen-
dent Bernoulli trials with the probability of success equal to 1/2.

Let us now choose t and apply (20) in order to construct an upper bound
on αε(n) defined by (16). Let logβ0

ε = dn − 2nrt. If n ≥ 1
d
logβ0

ε, then

t(ε) = d
2r
− 1

2nr
logβ0

ε ≥ 0 and (20) can be applied. If, moreover, n ≥ 2
d
logβ0

ε

then 0 < d/(4r) ≤ t ≤ d/(2r) and αε(n) ≤ e−2nt2 ≤ e−
n

8
( d

r
)
2

.

Fix ε = 1/4. We can achieve α1/4(n) ≤ βm
0 /4 by taking

n ≥ max(
2

d
logβ0

1

4
, 8
(

r

d

)2

(m ln(1/β0) + ln 4)) . (21)

The substitution to (18) yields p(n, m) ≥ βm
0 /4. We can take c1 = 8

(

r
d

)2
ln 1

β0

and c2 = max
(

2
d

ln 4
ln(1/β0)

, 8
(

r
d

)2
ln 4

)

. 2

13



We are now moving on to the other lemma.

PROOF of Lemma 5

The proof is based upon the proof of Lemma 4.

For every small δ > 0, consider the point (βB
0 − δ, βB

0 + δ). It is not the
image of a superprediction, but we still can define the function L(δ)

m treating
the point (logβ0

(βB
0 − δ), logβ0

(βB
0 + δ)) in the same fashion as we treated

(logβ0
(βB

0 − ∆), logβ0
(βB

0 + ∆)) in the definition of Lm above. The processes

L(δ)
m are no longer superloss processes w.r.t. G, but for every fixed δ they still

satisfy (14). We will use the notation d(δ), r(δ), c1(δ), and c2(δ) for numbers
defined in the same fashion as d, r, c1, and c2 in the construction above.

We will use these processes to construct a superloss process L̃m and a constant
C > 0 such that

p(n, m) =

∣

∣

∣{x ∈ B
n | L̃m(x) ≤ Bn − m + C}

∣

∣

∣

2n
≥

1

4
βm

0 (22)

for every n ≥ c̃1m
3 + c̃2, where c̃1 and c̃2 are some constants independent of

m, n.

Now take points on ∂Bβ0
(S) approximating (βB

0 − δ, βB
0 + δ). For definiteness

sake, for every small δ > 0 let Pδ be the intersection of x = βB
0 − δ and the

boundary ∂Bβ0
(S) (see Fig. 2). The distance between Pδ and (βB

0 − δ, βB
0 + δ)

is O(δ3) as δ approaches 0. Let L̃(δ)
m be the superloss process which uses the

components of the superprediction B
−1
β0

(Pδ) exactly where L(δ)
m uses numbers

logβ0
(βB

0 − δ) and logβ0
(βB

0 + δ). Since

logβ0
(βB

0 ± δ + O(δ3)) − logβ0
(βB

0 ± δ) = logβ0

(

1 +
O(δ3)

βB
0 ± δ

)

= O(δ3)

as δ → 0, there is t > 0 such that |L̃(δ)
m (x) − L(δ)

m (x)| ≤ t|x|δ3 for every small
positive δ and every string x.

The superloss processes L̃m are constructed as follows. For every m we will
choose δ(m) > 0 and a positive integer n0(m). The process L̃m imitates L̃(δ(m))

m

as long as the length of the string is less than n0(m). The remaining ‘tail’ is
provided by the trivial strategy predicting (B, B). As soon in the length n0(m)
is reached, the superstrategy switches to (B, B). The problem is to choose δ(m)
and n0(m) such that L̃m will still be close enough to L(δ(m))

m (x) for strings of
length up to n0(m) and the inequality (22) will be achieved.

14



It is easy to check that

d(δ) =

ln

(

1 −
(

δ
βB

0

)2
)

2 lnβ0

∼ d̄δ2

and

r(δ) = (logβ0
(βB

0 − δ) − B) − d(δ) ∼ r̄δ

as δ → 0, where d̄ and r̄ are some positive numbers. Thus we obtain the
inequalities c1(δ) ≤ c̄1/δ

2 and c2(δ) ≤ c̄2/δ
2 for all sufficiently small δ and

some positive constants c̄1 and c̄2.

Consider three inequalities

n0(m) ≥ m
c̄

δ2(m)
, (23)

1 ≥ tn0(m)δ3(m) , (24)

η ≥ δ(m) . (25)

The first one, with c̄ = c̄1+ c̄2, implies that n0(m) ≥ (c1(δ(m))+c2(δ(m)))m ≥
c1(δ(m))m + c2(δ(m)); the second ensures that the difference L̃(δ(m))

m (x) −
L(δ(m))

m (x) is bounded by a constant in the absolute value for strings x of length
|x| = n0(m); and the last one, where η > 0 is a small constant, guarantees
that δ(m) is sufficiently small. Inequalities (23) and (24) imply

√

mc̄

n0(m)
≤ δ(m) ≤ 3

√

1

tn0(m)
.

These two inequalities are consistent if and only if

m3c̄3

n3
0(m)

≤
1

t2n2
0(m)

,

i.e., n0(m) ≥ m3c̄3t2. Similarly, (23) and (25) imply

√

mc̄

n0(m)
≤ δ(m) ≤ η

and these inequalities are consistent if and only if n0(m) ≥ mc̄/η2. Let

n0(m) =

⌈

max

{

m3c̄3t2,
mc̄

η2

}⌉

δ(m) =

√

mc̄

n0(m)
.

The lemma follows. 2
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Remark 6 If the boundary ∂S can be represented by a thrice differentiable
curve in a vicinity of the point (B, B), the construction from the proof of
Lemma 5 can be strengthened to show that (13) holds for all n ≥ cm2 for
some c.

Indeed, since the set Bβ0
(S) is symmetric in the straight line x = y, the

contact between the boundary and the line x + y = 2βB at (βB, βB) has the
third order. This observation implies that |L̃(δ(m))

m (x)−L(δ(m))
m (x)| ≤ t|x|δ4(m).

Inequality (24) may thus be replaced by 1 ≥ tn0(m)δ4(m).
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Appendix A: Kolmogorov Complexity

In this appendix we briefly survey the definition of Kolmogorov complexity
and the incompressibility property.

A programming language P is a partial computable function from B
∗ × B

∗ to
B
∗. Informally, an argument p of P (p, y) is a program, y is an input and the

value P (p, y) is the result of executing of program p on input y; this result may
be undefined. Given a programming language P , one may define complexity
of x given y w.r.t. P by the equation

KP (x | y) = min{n | ∃p ∈ B
n : P (p, y) = x} , (26)

where min(∅) = +∞ by definition.

A fundamental theorem of Kolmogorov’s (see any of [ZL70,V’y94,LV97]) states
that there is a universal programming language U , i.e., a language such that
for every P there is a constant C > 0 such that for every x, y ∈ B

∗ we have

KU(x | y) ≤ KP (x | y) + C.

Clearly, the difference between the two complexities specified by universal
programming languages is bounded by a constant. We may pick one universal
programming language U and define conditional (plain) Kolmogorov complex-
ity K = KU .

17



Unconditional Kolmogorov complexity can be defined by K(x) = K(x | Λ),
where Λ is the empty string. We have K(x | y) ≤ K(x)+C for some constant
C.

Proposition 7 (Incompressibility Property)

(i) There is a constant C such that for every x ∈ B
∗ the inequality

K(x) ≤ |x| + C (27)

holds.
(ii) For every positive integer n and every m < n we have

|{x | |x| = n and K(x) ≤ n − m}| ≤ 2n−m+1 . (28)

This statement can be found in any of the sources [ZL70,V’y94,LV97]. For
completeness, we give a short proof.

PROOF. The proof of (i) is by considering the programming language which
performs the identity mapping. The statement (ii) follows from the observa-
tion that there can be no more then 2s strings of complexity s since each of
them is generated by its own program of length s. 2

The bound in (ii) is tight since the following holds:

Proposition 8 There is a positive constant θ such that for all positive inte-
gers n and m < n we have

|{x | |x| = n and K(x | m) ≤ n − m}| ≥ θ2n−m+1 . (29)

PROOF Sketch Consider the function Pm(y) := 0m
y which transforms any

string y of length n − m into the string Pm(y) of length n, and K(Pm(y) |
m) ≤ n−m+C for some constant C independent of y, n and m. The number
of y’s of length n−m is 2n−m. To obtain the statement of theorem, replace m
by m+C and take θ = 2−C−1. We omit some technical details needed because
we should change m in the condition for m + C. 2

Appendix B: Martingales

Here we briefly review a general definition of a (super)martingale, adapt it to
our special case, and formulate an inequality necessary for the derivation of
the incompressibility property.
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We are going to use (more or less) the terminology and notation from [Wil91].
Throughout this appendix Ω refers to a sample space; its elements ω ∈ Ω are
sample points. A filtered space is a quadruple (Ω,F , {Fn}, Pr) where F is a
σ-algebra on Ω, σ-algebras Fn, n = 0, 1, 2, . . ., are sub-σ-algebras of F such
that

F0 ⊆ F1 ⊆ . . . ⊆ F , (30)

and Pr is a probability measure on (Ω,F). A sequence of random variables
X0, X1, X2, . . . on Ω is a martingale w.r.t. (Ω,F , {Fn}, Pr) if for every n =
0, 1, 2, . . . the variable Xn is measurable w.r.t. Fn, and for every n ≥ 1 we
have

• EPr(|Xn|) < +∞, and
• EPr(Xn | Fn−1) = Xn−1.

In the definition of a supermartingale the last condition should be replaced
by EPr(Xn | Fn−1) ≤ Xn−1. In the above expressions EPr stands for the
expectation taken w.r.t. the probability Pr.

Non-negative martingales satisfy Doob’s inequality (see, e.g., [Wil91]); we need
a version of this inequality for supermartingales. The following statement may
be found, e.g., in [KT75] (Lemma 5.2):

Proposition 9 If non-negative random variables Z0, Z1, Z2, . . . form a super-
martingale w.r.t. (Ω,F , {Fn}, Pr), then for every c > 0 and positive integer n
we have

Pr
{

max
k=0,1,2,...

Zk ≥ c
}

≤
EZ0

c
.

Consider the case of the Bernoulli distribution with the probability of 1 equal
to p. The sample space is the set of all infinite binary strings B

∞. The σ-algebra
F is generated by all cylinders Γx, x ∈ B

∗, where

Γx = {xτ | τ ∈ B
∞} .

For every n = 0, 1, 2, . . ., the σ-algebra Fn is generated by the cylinders Γx

such that |x| = n. A function measurable w.r.t. Fn may be identified with a
function defined on B

n. Thus a sequence of random variables X0, X1, X2, . . .
such that Xn is measurable w.r.t. Fn, n = 0, 1, 2, . . ., may be identified with
a function L : B

∗ → R. In order to be a martingale, it should satisfy the
condition pL(x1)+ (1− p)L(x0) = L(x) for every x ∈ B

∗. If for every x ∈ B
∗

we have pL(x1) + (1 − p)L(x0) ≤ L(x), it is a supermartingale.
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