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ABSTRACT

Chapter i.containé a presentation of Noun-Commutative
Integration theory. The relation between Segal's CE?] and
Welson's {46) definition of measurability is investigated,
and a new proof of duality for non-commutative probsbility
Lp spaces. 1s given,

Inlchapter IT, known results on isometries between Banach
spaces of functiouns and operators are presented, and a new
proof of the:fact that wit-preserving isometries of abelian

C*?

algebras are #- isomorvhisms is given., It is shown that-
unit-preserving #-isometries between non-commutative proba-
bility Ip spaces come from Jordan #-homomorphisms and several
conclusions are drawn,

Cnzpter III ié e presentation of Tomita-Takessaki theory.
Possible generalizations are pointed out, 2nd the Radon-Nikodym
theorem is discussed. :

| In chapter IV the characterization of equilibrium in
Quantgm Statistiéql llechanics by’the K3 condition is investi-
gated, |

In chapter V, a class of Gibbs states wg is defined on the
algebra 67( of the canonical commutation relations in infinite-
ly many degrees of freedom, This is dne by showing that for
any B >0 the second quantization H of a hamiltonien with
positive polynomially bouwnded discrete spectrﬁm defines a

nuclear operator exp(-B8H) from Fock space into Q} , 2

generalization of Schwartz space for infiniteély meony variables.
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This allows tﬁe construction of ean "almost modular" Hiblert
subalgebrs .Cﬁ'ofqéjfon which the modular_automorphisms may’
be defined, and satisfy the KNS condition,

The final chapter contains a proof of a commutation theorenm,
namely thgf‘the commutent of O in the GNS representation g -
induced by wg}is invariant under the modular =zutomorphisms, and
is isomorphic to its owm commutant via an antiunitary involution

of the GNS Hilbert sace. This is dne by showing that /T; is
'.uﬁitarily equivalent to--left multiplication on Hilbert-Schmidt
operators on Fock spacen acting on a suitable tensor product

of q# with Fock space,
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11 PRC DUCRION

In Quantui Field Theory and Stetistical llechapnics one is
often confrcanted with.acnmplex‘invélutive algebra cnd a
irositive linear functional on it, rejresenting (the algebra
senerated by) the observables of a given rhysical systen
together with their expectetion values.

It is therefcre important to heve a mathematical theory
dealing with such systems in the abstract.,

YWhen the algeyra in question. is commutstive, as in
clascical systemsw, then it is (isomorvhic to) an algebra
of measurable functions on a neasure space; with the inte-
gral as the linear functionaliﬁ. This observationlis
srobably the origin of the term "Algebraic Integration

‘Theory", [70]

& And the algebra is sufficiently "well ochaved", i.e.
esgentiaily may be realiized as an algebra of onervators
acting on a Hilkert sypace, wihich are either bounded or

generated by a self-acdjoint operator.

4t This is essentially a combination of the GIiS con—.
struction and  the Gelfand theory, See SHUAL [7C] where
a very interesting review of the whole subject by one of
its main authors is given, as if wes in 19565, i.c. before

Ponita-Takesakl tieory showed thet cure can "inte rale

with respect to a non-central lineor functional.



“Then the algebfa is non-comuutative, es in quantum systems,
the situation is less tramsparent. Here onme would like to
heve a "loun-Coumutative" Integraﬁion Theory, or, in the case
of a boﬁa fide linear fﬁnctionalw a "Non-Conmutative!" Pro-
bébility Theory (Commutative Probabiiity Thieory being by now
recognised to be the study of a comuutative (real) abstract
algebra, whose elements are interpreted as the "random
variables", with a linear functional on 1it, whose value at
an element of the algebre is interpreted as the exypectation
of the rondom variable). One would Ffurthermore like to do
this with algebras that do not have continuity propérties,
since one knows that observables in quantum theory‘are often
unbdunded. Eowever, such a Ttheory does not exist at présent.
Attempls have been made in this direction by GUDDER and
HGDSoH [22] but have only yielded partial resulls. I attenmpt
in the second part of this thesis to develop such a "Non-
Commutative Probability Theory" relevant %o a class of
examnples of particular ihteres% in Stetistical Lechanics,

wnere things are not entirely pethological.

# As opposed Lo a function from the positive iart of the

algebra to [b,+aﬂ, a situation relevant for example in the

integration of continuous functions over a non-compact space.



“hen the given algebra (can be identified with) a Von
Eeumann.algebra, then the theory is much Tetter developed.
TLooking for the analogue of the integral as a linear
functional on L* of a measure spece, SEGAL [67] ob-
sérved that the "dimension function! for s factor, ccn-

tructed by ﬁUREAY and VO EEUKANN [451 had the countable
additivity property of a measure, and in addition had the
property of being unitarily invariant, a feature which, in
SBEEAL'S [70] words, "compensates for the circumstance that
the lattice of all projections is not Boolean" - a con-—
sequence of non-commutativity. Indeed the (géneralized)
E¥lder inequaliity, and the conscquent construction of "Ton—
Commutetive Lp-spaces" (see chepter I) is invalid (for pg2)
without this sdditional feature, as observed by DIXiIER[14].

In any case, starting from 2 Von Neumann algebra with
a unitarily invariant pcsitive homogendus additive fuzction
from the positive eleuments of the algebra into LO,#qﬂ -
the "integral" - one develoys a wkole "Non-Commutative
Integration Theory", varallel to the cénventional one, with
its Radon-Nikodym tneoreus, auwlltJ tueorem, Riesz-Fischer,

Lebesgue dominated convergence, Fubini theoreums, etc., all

# This functional is defined either essentially by ex-
tension from the MNURRAY-VON NEUIAXN dimension function
(SBGAT [67)), or directly a: 1oua,m cally (DIXII¥n [14],

wnose treatment we snall follow in part).



nore or less direct anclogues of the classical theorenms
with the same names. In this dissertation I shell de-

cribe the essential features of this theory, and make &

]

nell contribution to it, by proving some results in non-—

0

comnutative probability Theory, which are extensiouns of
recent results in the conventional. theory, and which,
suitebly extended, may throw some light on the structure

- 01 the non-coumutative LF—spaces apd eventually Von KNeunmann
slgcbras themselves [82] .

Returning to the general theory, it was discovered that
it could be used to prove several theorems in the theory of
overator algebras, such as the commutatipn theoren for ten-
sor prdducts/ﬁsee Chepter TIT,81). However, the condition
that the "integral' ve uniféfily'invariant imposes restric-—
“tions on.%he algebfa : the algevras for which such non-
trivial (in a sense to be made precise later) nintegralsm
existed were seen to coincide with nsemifiniter Von Neuménn
algcbras; that igéthose that did no% Lave a tyﬁe III com-
ponent, in the bterninclozy of MURRAY znd VON NEUMANN [247 .
However, it was scon shown that tunese Dy no means exhausted
‘all Von Neumsin algeobras; not even those of uirect Thysical
relevance. In fact 1t became apparent [BQI that type ;III
raclors were'tne general rule in tne description of infinite
systems 1in equllibriun at a rinite non-zero temperoture in
otatistical mechanics. |

Qu tne Pure Mathematical silce, bne or the difficulties

with such Yoan Heumenn algebras wos that they vere not seen
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to have a "standard" form, which was indeed the case (uod-
ulo isomor@hiéms) for seuifinite algebras (see Chapter I1I8§1)
Lis a result, for instance, the comumutation theorem for tén—
sor products remsined an ogen question for such algevras for
a long time. It was here that TOLIUA's (84], [60) theory
céue in to show t@at aiy Von Neumann algebra with a faith-
ful normal state f(whether unitarily iavaerisat or hot) could
be .put in a "standerd form". This opened the way for a
series of spéctacular deveiopménts in the structure ﬁheory
of Von Neumann algebras., From the point of view of Thysics,
the realiZation of the oonﬁection of MOLITA'S theory with
fhe KES condition in statistical mechanics [80], also opened
the way for new developments in both fields (see Chaptef Iv).
Thus one now has a new kind of "Non-Commutative Inté-
sration' Theory, in which the objec%s”to be integrated are

1

again operators, as in the SIGAL-DIXLIER theory, but the
"integral" is no longer required o bepuni%arily invariant.
In this dissertation I attempt an extension of this
theory to a case where the operators to be integrated are
no longer bounded, but still behave sufficiently well for
the theory to go throughe I construct the analogue of
Tomita's "Generalized" and "Fodular" Eilbert Algebras, and

prove the corresponding commutation theorem using the latter

object, as in TAKESAXI's [8C] work.
b

# The study of a general Von Neumenn algebra can be re-

duced to the study of one with a. faithful normal state.
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A word about applications to Piysics. The connection of
Toulta-Tekesaki theory with Statistical llechanics has been
made clear above., The specific example which we consider in
chawters V and VI hes obvious physical wmotivation. The
SEGAL-DIXIIER Non-Comuutative Intezration theory, however,
has a quite‘distinct, maybe unexpected, range of applica-—
fions in Huclidean Fermion Quantum Field Theory.

This may be motivated by brieflﬁ locking into Buclidean
Bose Quantum Tield Theory. Iere the fields are rejpresented
0y commuting self—adjoint operators on a Hilbert space (sece
€.g. JAFRD fﬁﬂ ). Thus the algebra generated by them, to-
gether with the (Tuclidean) vacuum state, becomes a coumu-—
tative probvability algebra. It can therefore be realized on
a probability/space, with the fields fepresented es random
variables and the state as the probability wmecasure. The
fields then act as multipiication operators on I* over this
probability.space: this is referred to as the "wave picture"
as the fields are diogonalized in this represeﬁtation. Thié\

is contrasted with the Yock space situation, in which the §

nuwber operator is diegonalized: the "particle picture.

The fact that these two representatiéns are unitarily_equi-

valent is referred to as "wave—pafticle duality". (SEGLL [68))
By analogy with the Béson case, one thinks Sf Tuclidean

Terni fields as elements of a non-comuutative probabiiity

algebfa. In fact, if one looks at rerresentations of the

Canonical Anticommutation Relafions,ﬂndexeaty a complex Hil-

bert space ]AL with conjugation J, the reclevant algebra -is
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the "Clifford Algevra’ £(H) over K, acting on anti—.
symmétric FPock space ]\(I{) over &l . 'The vacuun state then
turns out to be unitarily invariant on C(X), and the "I
space over € (I[) with this state as the ”integralﬁ turns
out to be‘isomorphic to Fock space itself; a fact éxpres—

sing agein the wave-particle “duality (see SEZAL [69],

GrRoss [21] , WIIDE [67] ete.).

This thesis is divided_ into two prarts ¢ the first part
deals with the development of the mathematical techniques,
while the second part contains the applications to Quantun

fa]

tetistical liechanics. Chapter I is devoted to a descrip-

<t

ion of the esseuntial features of the theory of Von Neumann
algebras and the DIXIIBR-SHGAL Non—-Commutative Integration
Theory. Chapter II.. conteins a study of the isometries of
6perator algebras.énd Won-Conmutative IP—s;aces, culninating
in a theoren rel&ting certain isometries of non-commutative
Lp~spaces to the felation vetween the algebraic structures
of the underlying Von Neumann algebras. The first part of
the thesis then concludes with Chapter III, in which the
basic results of Tomita-Takesakl theory are described and
possible generalizations of the theory investigated. The
second part begins with Chapter IV, in which equilibrium
states aand time-~translations in Quantunm Statistical Mecha—.‘
nics are investigated, snd special emphasis is laid on the

KIS condition and its relation to Tomita-Talkesaki theorye.
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The purpose of this cheplter is twofold : on the one hand,
to justify the use of thie KIS condition as the defining pro-
perty of equilibrium states of infinite systems, and on the
other to physically motivate the study of Gibbs states of
the canonical commutation relations undertaken in Chapters
V and VI. In Chapter V, these states are defined, and the
structure df the resulting probability algebra is studied;
the speéial properties of an esvecially well behaved sub-
algebra are also described, and the KES condition is shown
to hold. IMFinally, in Chapter Vlithe nain theorem of the
second part of this thesis is prbved, which constitutes a
generalization of Tomita-Takesaki theory to the algebra of
the CCR.

The main Tesults of Chapter 1T, §3 have already appeared
in [36], which is attached to this thesis. Some of the re-
sults in Chapters V and VI are joint work with Ingeborg

0CH. (See [37]).



PART A
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Chapter T

NON-COMMUTATIVE INTEGRATION

In this Chapter, I will describe the theory of "Non-
Commutative Integration" originating in the papers of
SEGAL (67] and DIXMIER[14] .This theory generalizes ordinary
integration theory in the sense described in the introduction.
As pointed out there,the objects to be integrated are no
longer functions on a measure spéce,but rather operators in
a Von Neumann algebra,and the "integral"™ is s function from
positive operators to (extended)vpositive real numbers.In
Non-Commutative Probability theory,with which We are princi-
pally concerned,the total "measure" of the space (i.e. the
"integral® of the identity) is finite,and thus the "integral"
defines a positive linear functional on the algebra.

Thus we must first diécuss the basic facts about Von
Neumann algebras and their linear forms.These facts are all
taken,unless otherwise specified,from DIXMIER[16].

§1.1 C*aleebras

* . A . . . .
A C" algebra is an involutive algebra with a norm making

it a Banach space,with the properties

xyll €I =yl
lx*xll = fx||?

1

Il

Any C"algebra is isometrically #-isomorphic to a

concrete C*’algebrg y that is , a uniformly closed # —-sub-

algebra of the c* algebra of 8ll bounded operators onm a
Hilbert space (SAKAI|62]1.16.6).



15

-

Any abelisn unital C*¥ aigebra is isometrically #* -iso-
morphic to the ¢ algebra C(X) of all contipuous functions
on a compact Héusdorff space X,eauipped with the supremun
norm,In fact, we have:

Theoren(GELFAND-NAIMARK ; see(62]1.2.1)
Let (Xbe an abelian unital C* algebra, X the set of all non-

zero homomorphisms (characters) ¢:Cﬂ-v——a € .Equipped with

the p(X,CK) topology T,i.e. the W*—topology on X induced by
the dual of (X s X. 1s a compact Hausdorff space,called the
spectrum of O Moreover, the mapping x> & (the Gelfand
Transform) given by

2(9) =d(x)  xell, geX

is an isometric * -isomorphism of (M onto C(X).

§1.2.Von Neumenn algebras

Consider first the algebra B(l ) of all bounded operators
on a Hilbert space kf .Equipped with its norm or uniform topo-
logy, B(W) is a C* algebra.lowever there are other useful
topologies on B(W):

the strong topology (s) defined by the seminorms
(1.1) x:-—.;,[\x?;n ' Z E'JQ[

the weak topology (w) given by the seminorms

(1.2) ~ }{h——»l(;,in)l Zom € Kl

f that is,the weakest topology om X making all the maps

¢ —o(x) (x 00 continuous.
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the ultraweak topology (uw) given by the seminorms

(1.3)  xe—[ZCaam)l em H Tl il <o

The weak topology is weaker than the strong and the ultraw
weak,which are both weaker than the uniform; but w and uw

coincide on norm-bounded sets of B(H).

A Von Neumann (VN) algebrauﬂ is,by definition, a *-csub-
algebra of B(L) which is weakly closed.

By Von Neumann's density theorem,this is equivalent to
/( being strongly or ultraweakly closed.Furthermore,a VN
algebra./(always contains an identity,i.e. a largest project-
ion p such that px = Xp = x for all x ¢ /f.Finally, Von
Neumann's bicommutant theorem states that a *-subalgebra‘di
of B(Y{) containing the identity on | is a VN algebra iff
H=M"*, -

Another density theorem which we shall need is Kaplansky;s
density theorem: If C{c 3 ¢ B(K) are *-algebras,and if OU
is strongly dense in 6> ,then the unit ball of JU is strongly
dense in the unit.béll of 63 .(the converse is- trivially
satisfied). ) .

Given any G algebra OZ,SHERMAN'S Theorem ( [62] 1;17.2)

allows us to identify its double dual CK*# as a VN algebra,

in which CX'may be embedded as an uw dense *-subalgebra,

* For any set ScB(W),its commutant S'= { x ¢ B(Y): [x,5]=0}

where [x,y] = xy-yx
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§1.3 Linear Forms

the linear form on B( L) given

For Z,n ey,denote by wé77

by
(1.4) Wyn(x) = (Zyx7) x e B(W)

and we abbreviate‘wéﬁ to Gy wéﬁ is clearly w-continuous' .
Denote by J1._ the set of all w-continuous linear forms.on a
VN algebra A .Then B(W) coincides with the linear span of
{wén 18s7 € H },and (. consists of all restrictions to S
of elements of B(W ), . |

Let WM, denote the norm closure of . in M. Then M,
consists of all uw-continuous linear forms on J4 ,which are

/
the same as all restrictions to M of uw-continuous linear

forms on B(W).Fach w ¢ B(W), may be written:

- (224
(1.5) o =yug s gom <Ko plalinl <o

Finally,each x e/{defines a linear form ¢y on M, Dby:

1.6) (@) = w(x)  (wey)
and the map | '
- (1.7) b M M,
o X — ¢x —

is an isomorphisn of M onto tne (norm) dual of ‘/1* ,and is
isometric, Thus M, is known as the predual of M . In fact,
the property of being the dual of a Banach space (which turns
out to be unique) characterizes,up to isomorphism, VN alge-
bras among all C* algebras ([62],1.16.7).

In the case of BQ}{),the predual can be easily identified:
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it is (isomorphic to) the spéce of all trace c¢lass operators
p on L[ svia the mapping which associates to each p the li-

near form

(1.8) w(x) = tr(px)  x e BOCH)

which is a Banach space isomorphism, when the space of all

trace class operators is equipped with the trace norm :

*

“p”i = tr( lpl)

This is the first example of a "Radon-Nikodym " theorem:
the "integral is the trace, the objects to be integrated are
elements of B(K ),and (1.8) states that any uw-continuous
linear form ("absolutely continuous measure") corresponds to
an "integrable" element of B('W ). We shall see later that this
situation is quite general (see Thm.2.3,and Thm.L.4 of Ch.III)

For anothé; example,let %{ be thenHilbert space of all
(equivalence classés of) squaré-ihtegrable functions on a
measure space (Q,y).let;y%c B(W ) consist of all operators

e with x € T®(Q,u) defined by

(1.9) Ay (@) = x(wy(w) ¥ e L)

L.

* A trace class operator is an operator such that ”%JPI%CL“%<N
for an orthonormal base {Z,} of [, where|p| = (p*p)% . Ve

then let tr(|p|) = EZ(éL,IpIKL) swhich is independent of the
base., tr then extendg to a linear form on all trace class :
operators,and turns out to be positivé and unitarily invariant

. % ' .
i.e. tr(up u) = tr(p) for all trace class p & unitary u in B(H)

-
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.

M is the_multiplication algebra of L*(q,u).Then one shows

that JQ is a VN algebra, and its predual is isomorphic to
It (Q,u),via the mapping which sends x e It (Q,u) to the

linear forn

Ty s [x@)y@al) (e I @p))

Q

which is avtomatically uw-continuous.
Note that this example exhausts all abelian VN algebras:
Any abelian VN algebra is *-isomorphic to some L™(q,u) ,and

the isomorphism is uw-bi-continuous (SAKAI [62] , 1.18.1)

§1.4.Positive linear forms and the GNS construction

Definitigg A linear form w on a general *-algebra M is said
to be positive iff w(x x)320 for all xe OU(for C* algebras,
this is equivalent to w(x)>0 for all xe OC )Tt is faithful
if w(x*x)zo implies x=0 .A positive linear form on a normed
*—algebra (JU is called a state iff it has norm 1 (as an ele-
ment ‘of the dual of 04 ).A_posifive linear form (henceforth
plf) on a general *-algebra with unit is called a state iff
w(1)= 1 .These two definitions coincide on unital C* algebras

([15152.1.9)

We now define representations of general #-algebras by un-—
bounded operators,as they will be useful.in the sequel,These
cqncepts,which are generalizations of the usual ones for

bounded representations,are due to POWERS [L9].

Definition Let CK'be a unital #-algebra,A *-representation

"7 of O on a Hilbert space T with domain D(w) is a linear

map from (J{ into (possibly unbounded) operators on Jo with
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common densé domain D(m} such that

(1.10) : - w(x)D(r) cb(m) for all xe O
(1.11) m(x)w(y)g =m(xy)s  for all x;ye X, GeD(m)
(1.12) (L, (x)n) = (ﬂ(xﬁ&,n) for all xeX, %,ned(m)

(ie. m(x) cw(x)® )

The induced topology on D(w)iis defined by the seminorms

(1.13) g el (xe )

A *-representation m is said to be closed iff D(w) is
complete in the induced topology.Any ®-representation 7
haé a (unique) closure 7 defined on the completion of D(m)
with respect to the induced topology; T extends 7 in the -

sense that w(x)¢ = m(x)% for all ZeD(w) and xc (V.

4 vector ZeD(m) is called cgyclic for'C”iiT‘ﬂ(Cx)é ic dense

in D(7 ) with respect to the Hilbert space topology; it is

called strongly cyclic iff w((J)% is dense in D(7 ) with
respect to the induced topology. '

The (bounded)lggmﬁutént ' ((X) of a *-representation 7 is
defined by : xed(W) is in 7' ((X) iff,for each yeland

Z,neD(m) ,we have

(1.14) (%,xm(y)n) = (m(y" )%,xn)

The commutant is a weakly closed,*-invariant complex linear -
subsnace of B(}{),but not necessarily an algebra,Furthermore,
' (0) = 7' () .

A *-representation T is said to be irreducible ire 7' ()

consists of multiples of the identity.
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We now proceed to give a sketch of the GNS (GHLFAND-NAIMARK-
SEGAL) construction for unbounded representations,which ié
again a generalization of the GNS construction for C* alge-
bras([15],2.L.4),

Given a plf @ on a unital *Qalgebra,CK,let I=IxeCK:w(x$x)=O}
I is a left ideal of @ . On the quotient vector space D:CZ/I

which consists of all equivalence classes
[x] = § ye OU: =y ¢ 1 } xe OC )

we define
(1.15) ([x],[¥]) = w(x'y)
| This turns out to be a well-defined (positive definite)
inner product on D. Let 1£ denote the Hilbert space completion
of D . The left regular representatién of OUon itself
factors to a well-defined *~-representation Tyof OU on Iy
with domain D given by
Ty (x)[y] = [xy]
Let %u= [1]eD. Then-gm is a étrongiy cyclic for (¥ and
(1.16) oLw(x) = (8w, (x)g,) for all xe (X

Furthernore,the triple (X, ,m,s4,) s called the GNS triple

for Ol determined by w ,1s uniguely determined,up to unitary

equivalence, by (1.16) ; that is, if (J,7,2) is another such
triple,the mapping U defined by Urm,(x)%, = u(x)z (xe 67),'
extends to a unitary from.}@_onto Jd ,and maps the domains
continuously onto one another,(witb respect to the induced .

topologies).
In the case where CQ is a C* algebra,even without identity,
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m,(x) defined above satisfies |lmy(x)|l< |Ixl| ; and w, is a

_*-representation of gt on]JQ in the usual sense.There always
exists a cyclic vector (the two notions of cyclicity now-
coincide) Z,eJd, such that (1.16) is satisfied ([15],2.M;M)J
Finally,we note that in case w is faithful,we have I=0,
and thus m, is faithful,in the sense that 7,(x)% = O for all
ZeD implies x = O, In this case of course D =(72.Furthermore,
the cyclic vector. £ is also separating for m,(CU) *
Suppose now that { oy, ¢ teG } isla group of *-automorphisms

of CY,for vhich ¢,is invariant.Then
‘ U [x] = [og(x)]  teG, xe X
is well defined,and extends to a unitary representation of @
on X, ,such that

‘ Uy = G

- Utwg(x)Ut =y (o (x) - teG, xe O

(in particular, ULDQD for all teG).We say {aL} is unitarily

implemented,

Finally,note that the fepresentation Ty 1s irreducible
iff w is pure , i;e. cannot be written as a convex combination
of two distinct s%ates.
Consider now the case ofﬁa plf w on a VN algebrac/Z.
Then ,as a consequence of positivity (a purely algebraic con-

E
cept),w eM .loreover,the ultraweak topology can also be

characterised algebraically: a plf w is in M iff it is

* A vector éetﬂ'is~said to be separating for a set S of ope-

" rators iff xeS, xZ=0 implies x=0,If M is a VN algebra, & is

<

separating for JY iff it is cyclic for A '.
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normal,that is iff supw(x;) = w(supx,) for each uniformly "
bounded increas;ng family iAxa}sﬁ/%+ . For a normal plf w,
the GIS represeﬁtation 7, is continuous with respect to the
uw topologies on J and B(X,).Thus in particular w, (M) is
a VNI algebra.
It follows that the study of a VN algebra 4 with a
faithfull normal state w is the study of the VN algebra
7, (M) with the cyclic and separating vector Z,.These are
the basic ingredients of.Tomita—Takesaki‘theory.Before we
describe that theory,however,let us first consider the
DIXMIER-S5GAL ([14],(67]) Non-Commutative Integration theory,
since it is both historically and logicaily prior to Tomita-
. Takesali theory,of which it may be considered a special case.

A

§ 2. Non-Commutative Integration Theory

vhat follows is based on a ccurse of seminars I gave at
Bedford College. These seminars were in fact concelved as a
preparation for a presentation of Tomita-Takesaki theory,
and attempted to unify the treatments of SkGal [67] and
DIGIIER [14]. SEGAL constructed his non-commutative Lpspaces
as spaces of (unbounded) operators "affiliated" to a VN
algebrat/% swhile DIXHMIZR constructed them as abstract
completions of a subset of /L with respect to the "Lp norms',
I shall follow NELSONf[u6] in constructing a larger set of
"measurable" operators affiliated with A, into which the Lp'
spaces,abstractly defined as in [1@], are then embedded.
Let us first. consider the non-commutative extension of fhe

conéept of the integral.
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§2.1.Traccs

Definition Let Ol be a C* algebra,cﬁ; its positive part.

A trace_ on OUis a function 7 26&_——4[O;twm] with the

properties - ‘
(i)Additivity: x,yec 0(+ = T(x+y)= 7(x)+7(y)
(ii)Homogeneity: xecﬂ;,kzo = 7(Ax) =A1(x)
(iii)Unitary invariance: xe GZ,ueCK‘unitary =

T(u*xu) = 7(x)
A trace U is said to be :
faithful iff xe O , 7(x) = O implies x = 0

semifinite iff for each Xxe 6{ ther exists a nonzero yetﬁg

such that y<x and 7(y)<+
A trace.T on a VN algebra J4 is said to be normal iff for
each uniformly bounded increasing family ixglgofi s

sup 7(x3) = T(sup xy)

Theorem 2.1

Let /T be a VN algebra,T a trace on . Let J;;{xeyf:T(x$x)<<n}
(the ”TﬁHilbert—Schmidt operators'"),and let J be the linear
span of !xy X,yed },Then J,Jd, are two-sided *-ideals ofe/Z, 
and. Jn¢%+ = {XEuq; : T(X)< w}.Thewre 1s a_ unique linear form

7 on J extending 7 (i.e. 7(x) = 7(x) for ern,&;). 7 is

central or tracial ,that is T(xy) = T(yx) for all x,yecJ.

Finally,if 7 is normal,then for all xeJ,the mapping

wy 2 ¥ T(xy) (yeH)

is an uw continuous linear form on A .. ([62],2.5 ')

The reasons why the notion of a trace is a proper extension

of the.notion of an integral have been explained in the Intro-
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duction.In closer analogy with measure theory, SiGAL[67]

defines his "integral" (the gage) initially on projections,

It is required to be unitarily invariant and_completely

acditive * .SEZGAL([67]),Thm.10) then shows that the gage may

be uniquely extended to a central plf on an ideal.

Definition A VN algebra M is called finite (respectively

semifinite)iff for each xeuﬁ; ’ XfO, there exists a normal

finite (resp. semifinite) trace 7 on J{ such that +(x)> O.

It is called properly infinite (resp. purely infinite) iff

there exists no nonzero finite (resp. semifinite) normal

trace on J% o

Any abelian VN algebra is finite: any vector state wé is
a finite normal trace. B(H ) is semifinite : tr is a normal
faithful semifinite trace. A factor (i.e. a VN algebra /1
whose centre./{fﬁfi’ is trivial) can be of at most one type:
either finite ( type I, ; h<wo or II, in the MURRAY-VON
NEUMANN classification [L4]) or properly infinite semifinite'
(type I of II, ) or - purely infinite (type III)(see [16],
I.6 Cor, 1 ahd 2 ofiprop.8,and.l.8,l4),For a semifinite VN
algebra‘/f, one can show that there exists a faithful normal

semifinite trace on { ([16],I.6 prop.9(i) ).
Ir J% is a semifinite factor,this trace is shown to be

unigue up to normalization ([16],I.6, cor. of Thm.3).Thus
for a factor,one‘may speak of trace class and Hilbert-Schmidt

operators,independent of the trace.ixample: B(X ).

* That is, 3 7(p3) = 7(Lp;) for any orthogonal family of
EY
projections {py} < M .For an we M ,complete additivity is

equivalent to uw continuity (see RINGROSx[56], Thm.L.5).



We now‘have our‘"measure":z',which will be assumed a faith-
ful,normal,sémifinite trace in the sequel.As observed in the
Introduction, the existence of such 7 is a restriction on the
type of VN algebra considered.WWhat follows can only be done
if such a nén—trivial trace exists,i.e. if M is semifinite.If
not,one: has tq resort to Tomita-Takesaki theory +'(Ch.III)’.

We have seen that operators in Je M 2re "integrable" with
respect to v.In the casé of B(%{),these are all: tr'cannot
be extended beyond the trace class operators,since they are
already cbmpiete with respect to the trace-norm, In the case
of a (conventional) probability space,we have the other
exbtreme: all bounded measurable functions‘(eiements of L%=
J) are integrable;and there are nore: we get the rest by

completing L™ with respect to the Ll norm.This sugzests the

¥ It is interesting to note that HAAGERUP [27) hos recently

constructed Lp spaces associated with an arbitrary VN
algebra . These.spaces consist of operators affiliated not
with A ifself,but with a larger VN algebra.lloreover,they not
only consist exclusively of ‘unbounded onerators,but also
LﬁWLq = {O}for p#a (co&pare,'the semifinite situation,vhere
all the Lp spaces contain the common dense subspaée J con-
sisting of bounded operators).However,if A is semifinite,
the Lp spaces of HAAGERUP turn out to be isometricband order—
isomorphic to the ones constructed in this thesiz.Note that
these results in no way bypass Tomita-Takesski theory,as
HAAGERUP' s construction strongly depends on recent results

in that theory.



27

Definition Let xXed , 1<p< o.Define

(X*X)%' )

U

(2.1) ol e r()x[®)® o
Azl ¢= ilxll =the overator norm

Denote by LP(J?,T) the completion of J with respect to the

il ~norm. L¥(H,7) := M (the uw closure of J),

Observe that,in case M is abelian,the above definitién
yields the ordinary L, spaces. For if M= 1®(Q,u) 57 defines
a measure v on {1 by v(A) = T(XA) where x, (the characteristic
function of a measurable subset AcQl ) is in 4, .Since 7 is
faithful , v is equivalent to u , hence A= 1L7(2, V)

(the latter space depending only on the measufe class of‘v).
w

Now for a simple integrable function £ =:Z:A¢XA.6‘/% s
L

T
7 (}£]?) =§[?\L197(><A3 = }“{_l?ﬂp v(a) =[lflpdv
which shows that I¥(q, V) = LP(A,7)

The Lp spaces are at the moment defined as abstract
completions., We will later be able to identify their elements
to (possibly unbounded operators‘'affiliated"” to f{.But already
we can develop the analogues of some of the properties of

classical Lp spaces..

Theorem 2,2

(i) (uBlder inequality) Let 1<D< oy a=p/DP~1 (1/0 = ),X,yed

Then
(2.2) | 7(xy)| < llzylly < =/l llglly

(ii) Let xcJ , 1<pP< o oThen
(2.3) Ixll, = supl |7(x)| = ye ol =1 )
(2.4) il = sup{ | r(xy)| f ove K, Nyl <1

Both sups are attained.

]
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(iii) il , is a norm on J (¥inkowski ineguality).Hence

1P(AM,7) is a Banach space.,

Theoren 2.3 ("Radon-Nikodym")

Lt (M,7) is (isometrically isomorphic to) A, .

e have seen (Thm.2.1) that for xed, w,{y) = 7(xy) (ye A)

defines an element of M . . But by (2.4) ,the mapping

X —_ Wy

is isometric.One chows that it has dense range in qu sand

hence extends to the required isomorphism onto.

The justification of the name "iadon-Nikodym'" is scen 1f
we intervret wy to be the "indefinite integral® correspoﬁding
to % (i.c. we(.) = ”[. xd7 ") ..Thus the theorem says that « .
every w ¢ /{, has a "Radon-Nikodym derivative" in L (A7)
with respect to T . In fact S4GAL ( [67],Thm. 14) shows
that in case 7 is not assumed faithful, w has to vanish on

the projections on which 7 vanishes (absolute continuity).

- § 2.3 leasurable onerators

So far the Lp spaces have bheen defined as abstract
completions of the ideal J; thus,for instance,one cannot de-
cide whether two elements of distinct Lp spaces "actually"
coincide,The purpose of this section is to identify elements
of all Lp spaces with (possibly unbounded ) ogerators .,

This will bring the theory into closer analogy with classical
integration theory,where each feLD can be thought of &s an

unbounded multiplication operator on the Hilbert space L2 .
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This ldentification will be made in three steps:PFirstly,
a new topology will be defined on ./%.,in imitation of the
topology of convergence in measure defined for measurable
functions on a measure space,Then the completion of /Q with
respect to this tcpology will be identified with unbounded
operators (the "measurable" operators)o.Finally, the Lp spaces
will be continuously embedded in this completion.

This treatment is due to NKLSON [L6].

§2.3.1._The _measure_tonology

Let (f,u) be a measure spaca.A net {fy] of measurable fun-
ctions on 1 is said to cbnverge to the neasurable function T
in measure 1iff, given e€> 0 and &> O , we have,for large .
enough r ,

L {weﬂ : lfr{cu) - f(w)lze  J< o
We may reformulate this as follows: denoting the character-
istic function of the set

.{w e 3 |fr(w) - flw)]< €

by pr ( a projection in I®(Q,u) ),we see that £, — f in measure
iff given e>0 and 6>0 there exist projections pre L™(0,u)

such that for large enough r,
llpe (£r=£)|l_<e and ‘fpﬁd# < &
where p# = 1-p,, .Notivated by this, we define:
Definition Let 4 ¢ B(H) be a VN algebra, 7 a faithful normal
semifinite trace on M . Given €50 and 650 ,consiaer

(2.5) 1N(e,d) = | xe H: Fpe A projs such that lxpll<é. and 7(p*)<d }

(2.6) 0(e,d) { %eh/: 3peH proj. such that livZll<e and 7(p*)<o }

1}
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The measurs topology on J{( respectively %/ ) is the vector

space topology which has { N(e,) : e€,d >0} (respectively

{ o(€,d)

-
[
~ -~

é¢f> 0} ) as a base of neighbourhoods of zero.

M and [ denote the completions of A and J with

respect to these topologies.

The idea of these definitions is to break: uwp the spaces
into two parts, one on which things "behave well" and one
whose '"measure" is small, Thus one shows [L6] that given
xev%-and €>0 , there exists a projection peu%'such that
xpe M and 7(pt)< € . |

NELSON [L46] now shows that :er (resp.ff ) is a well defined
Hauédorff topological vector space (resp. *—algebra)land
that the identity representation of 4 extends to a.conﬁinuous

x-representation of A on X .

§ 2.3.2.}easurable operators

I now wish to identify elements of J£ with (possibly un-
bounded) operators on J , which are affiliated to /£ in the

following sense:

.

Definition An operator A on }/ (not necessarily bounded or

everywhere defined) is said to be affiliated to M4 iff for

each unitary ue ' , Au = ud (in particular, uD(4a)cD(A))
We say an .
Clearly AeB(}/) and AnJ/C implies Ae .

Definition If xe X and Zelf ,then xgaj} . If x¥ happens to

"lie in the (measure dense) subset W<y ,we say £ eD(Ty) »

(2.7)

and we define the operator Ty on Xk with domain D(Ty) by

x4 = xg
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Theorem 2.4
For each xej%, T, is a closed,densely defined operator affili—v
ated with J% » and the mapping X+ T, 18 an injective #*-homo-

morphism of Al into dense closed " operators on J/,equipped

with strong addition and multiplication, (SkGAL [67]) i.e.

* .
(2.8) . TX = TX*
(2.9) _ zx+Ty = T'X+:Y
(2.10) ?Txiy = Txy

where A is the closure of A,

- ~
Definition A measurable overator on K is a Ty with xe S o

This definition,due to N:LSON [M6],is not standard. .

SHuGAL's [67] original definition may be paraphrased as follows:

—

Definition A closed densely defined operator An A is said

to be SEGAL-measurable iff there exiets a sequence of project-

ions pneu7 such that p,kcD(A) , py 1s Ffinite * , and prd O

S3GAL's definition is more natural,in the sense that,in

the abellan case, it covers exactly the set of all (multipli-

® A projection.pecfﬁis said to be finite with resvect toc/i'

B £
iff,whenever ue M is such that uw u = p and uwu’ < p,then
uu = D .That is, p is finite iff it cannot dominate any
. brojection which is unitarily equivalent to it via an

element of u{ .
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cations by) almost everywhere finite * measuwrable functions
(modulo null functions,of course)(SzGAL [67] ,Thm.2).

On" the relation betwéen the two definitions,we have the

Proposition 2.5

(1) For all xe JQ?, T, is SXGAL-measurable,

(ii)Suppose T is finite.Then the two definitions of measura-
bility ceincide,and yield 21l closed,demsely defined TnA,

(iii)Suppose,in addition,that A is abelian (so that M=
LP(,p) with p(Q) = 7(1)< o« .Then A consists of all
(equivalence classes of ) msasurable a.e. finite funétions

on fl.

Proof (i) For each nel we may find (see §2.3.1) a projection

pre /L such that xpne./% and T(bﬁ)s(%)”

Letting q, ==7T;m~(the projection onto the intersection of

k.‘.‘“ R o ’
the range spaces of py , k»n ),we have 7(qy)< 2 7(pg) — 0,

an
Xq, =xD.qn€ 7 yand ¢ilO,for if g <gb for all n,then T(Q)ST(QS)
so that 7(g) = O and hence q = O.

Clearly q,WeD(Ty) and xq, = Teqpy

Finally cach qﬁ is finite, for if uneuﬁ.is such that uﬁunzq#
and uhuﬁ < qr , then T(unu:) = 7 Wu,) = 7(gt)< o , sovthat
T (un - unu:;:) = 0, or gy = unun °

The sequence (g therefore satisfies the requirements of SEGAL's

definition, and hence Tyis SiGAL-measurable,

*EIEGAL [67] fails to mention this restriction.However if sfor
a heasurable function £ on (Q,u) , pl we ¢ |flw)] =« I> 0,
then the characteristic function of any subset of this sét

of finite positive measure is orthogonal to D(Tf); thus T,
cannot be densely defined,
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-

(ii) If 7 is finite, NYLSCN [L6] shows that every vclosed,
densely defined operator affiliated to M is a Ty ,with KEJQL
Thus every SEGAL—measurable operator is measurable in our
definition. In this case the other requirements of SEGAL'S
definition are automatically satisfied by any increasing
sequence of projections pne;f( such that pnlfgIKTI) and
pn—1 , since 7(vy)<e® and thus pf must be finite,as
observed in part. (i) for gpi..
(iii) If xégéi%here exists a sequence C&)g,ﬁ{such'that.x,aa X
in measure.But Xs correspond to measurable functions in
Le(Q,1) which are Cauchy in measﬁre (in the conventional
sense).Therefore (HALMOS [28],Thm.22.E)vthey must convefge in
measure to a measurable function T .Since the two notions of .
convergence in measure coincide for the abelian case;and
since the megé@ge topology is Hausdorff,so that limits are
unique,it is clear that x must-conrespond to £, i.e. fX=Tf.

Note that we have not so far used the assumption that
¥ is finite,so that in fact we have shown that in general uj{
consists of (not necessarily all) measurable functions on Q.

Conversely,lét f be an a’most everywhere finite
measurable function on Q ,andAiet €>0 be given.Putting
Ap = {wefl ¢ |f(w)]s n } ,we see that Af | NyAL = A =
={weQ ¢ |f(w)]| = +eo}s Thus p(A) = 0, and hence lim,p(ay) =0
(it is here that the finiteness of u comes in),Choose ndeﬁ
such that u(AL)se , and put p, =_xAn . For all n»n, ,we have
7(pt) = y(Aa )< € ,and

(£ = fpn)oall = lifpApnll = 0 < €

This shows that fp,— f in measure, and since
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Ifoall = supi|f(w)]| : wehr} = n <o
i.e. fppe V1 ,- it follows that Te M .

QED

Observe that,contrary to Segal's definition,our defini-
tion of measurability does not include "very unbounded"
measurable functions,such as f(w) = w on (R,dw).This is

because for all nefl , {weR : |f(w)|>n} has infinite measure,

SO that we cannot approximate this function in measure by
bounded ones: the set on which our approximation is 'bad"
always has infinite measure,

The advantage of NELSON's definition is that it provi-
des us with a'élass of operators with desirable topological
propertiesr,whiie at the same time being a minimal extension
of M which contains all the "interesting" operators
(the eléments of all Lp spaces,as we shall see below,
| We close this subsection with an observation about
Non—Commutative Probability spaces,sinéé wé are nmnostly

concerned with them in the applications of the theory in

this thesis. .

Pronosition 2.6

If 7 is a tracial state,(sothat J = 4 ),the measure topology

on M is given by the metric

(2.11) ) = 2(x] O xDTH (] 0)E xe )

T

Proof . SPINESPRING[/4] Theorem 5.1.
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§ 2.3.3. p=Integrable Operators

e

vie are now ready to embed the Lp(/{,T) spaces into 4 ,
thus showing,in view of Thm.2.4,that they all consist of
(possibly unbounded)operators affiliated to M ,

8uGAL [67] proceeds in the opposite direction:First he
defines a notion of "pointwise almost everywhere convergznce'
of overatorsj;then he calls a (SiGAL)-measurable operator

intcgrable iff it 1s the pointwise a.e. limit of operators

in J; its integral is then the limit of the traces of these’
operators,Then it is a non=-trivial problem to show that this
integral is unique,and that integrable operators form a
Banach space (ﬁon—Commutative Riesz-Fischer Theorem),
Through the use of the measure topology of IT.LSON, ﬁe
will be able to bypass the counter-intuitive concept of
"pointwise a.e. convergence'" (there are no points in a non-
commptative situation!) by identifying our Lp spaces with

subspaces of d% .

Theorem 2,7

.

The topology induced on J by the measure topology of p/( is
weaker than that induced by the Lp norm (1<p<e ).Thus the

identity extends to a continuous linear mapping
.(Lp(uY,T) ’ H.Hp)--9 (M, measure top.)

This mapping is in fact injective,so that we may identify
each Lp(JY,T) with a subspace of M .Thus each xeLp(/q,T)
uniquely defines a closed ,densely defined operator Tyn J% .

Proof NELSON [46],Thm. 5
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Corollary 2.8 (IN:LSON [L6])

Let 1< p<ow o xe M is in Lp(d%,v) iff

@ oo

ftpd'r(et) {ew , where Tlxl = /tdet
° . o
If so,then

I, = ( [$Par(e,))!/?

Having set up a non-comnutative integration theory,it is
natural to attempt to extend to it various results valid in
ordinary Integration theory.Many such results have been
proved;seec,for example, SiGAL [67],8TII§&SPRING [74],KUnZs
[42] end YEADON [91].We collect here some results which will

be useful in the sequel.

Lemma 2,9
Let xe /M, yeJ-, 1< D<o .Then
(2.12) vl el Wil o Myl < Il Helo

Thus each xe¢ / defines bounded. operators of left and right
multivlication on each Lp(‘/f,'r).
Proof The case P = .i1s obvious,.The case p=1 is (2.2)

For 1< p< o ,we have

supi | 7(xyz)| : zed, |lzll_ <1l (a= p/p~1) (2.3)

nyHp = lq
< lIxll o supt llyzll, :zed ,HZHQ<1§ (2.2)
< llxll , llylly supt Hzlly ¢ zed, llzll <13 (2.2)
= llxlle llyll,
lly=ll, = supt ’T(yXZ)l : zed, HZHq<1}

sup{ |7(zyx)| : zeJ, llzllqsﬂ

u

N

supt [lzyll, zeds Nallg<td il < lvll lixle,
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Lemma 2,10

Suppose 7(1) =1 .

(i) If 1< p< Q< ,then

(2.13) HXHP <HXHq for all xe S
' so that - _
(2.14) V%= Lax/%’T) ¢ L (d?;T) < LP(J{:TO c L1(/%’7? = /Y$

N

(11) Let xen LP(JZ,T) : 1< P< oo} .Then

(2.15) lxll g = sup il = 1im flxfl

in the sense that sup “XHD <  iff xe M ,and if so (2.15)

holds.

Proof (i)It is emough to assume p<es,for otherwise(2.13)

follows from (2.12) with y=1.For xe M and p¢a ,let r =

{

=o/py1l, v = r/r-1. Then:

il

=12 = w1 P) = 2P g P, (2.2)

T (I P o (12 )P0 (1P

These inequalities extend to xeLq(/Z,T) by continuity,and
hence (2.14) follows.,
(ii) Since Hpr = Hlx]ﬂp,it is enough to consider x self-
adjoint.Thus letting N e S be the abelian VI algebra
generated by x and 1,and writing 04/= Lo(Qyp) with 1(f)x='
=‘ff(w)du(w)',the problem is reduced to the corresponding
commutative one ,which is well known.I include a proof for
completeness,

Let ¥ = sup HxHP', e> 0.1t is enough to assume ¥ <o ,

for otherwise (2.1%) is obvious from (2.13), and so vaﬂ .
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Let A = jwefl :|x(w)‘ m+€ ,pe[1,co),We have
uPs HXHE E[lx(w)lpdu(w) > f lx(w)lpdy(w) > (M+e)py(A)
o, A

Thus u(A) < (M/M+e)? for all p,and hence p(A) =
Therefore for almost all weQ , |x(w)|<M+e ,s0 that xeLf,u)

and )
sup Ixll < llxllg < sup llxl, + e

for all e>0,which also proves (2.15).Conversely if xe M then
M< x|, < Dy (é.13), and so (2.15) is again valid,
QED
A useful technique in functional analysis is interpolation
of linear operators betﬁeen different LP spaces. A classic
result here is the RIESZ~-THORIN Theorem (see e.g. “YGMﬁGD
[93],Thm.1.11,page 95).This theorem has been extended to the

non-commutative case by XKUNZE u([42] sCorollary 3.1).

Theoren 2011

Let 1< DysP2sQ45Uzs < oLet te(0,1) and define p,q by

-1 . . & .
(1"t)E1 + tpg

-1 -1 -1 4 1 i
a = (1-t)q1 + ta, - ( 0" = T2 0 )

3
It

For i=1,2,let uﬂ& be a VU algébra,'fi a ncrmal faithful semi--
finite trace on a%& with ideal of definition J;. Let

T : J4 =—>Jy be a linear mapping such that

HTx|l o < My {lxl| (i=1,2) for all xeJ,
ai P
Then
HTXH mi mz qu for all xedJ,
If p <w then T extends to an operator L (u”igTi)-éL (S 975)

with the same bound,
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An interesting question is whether there is any relation
between the topology induced on J by the Lp norm and the
various topologies of M .In general there is not much one
can say.The following result,a special case of Prop.7 of
DIXI=R [14] ,is concerned with whét happens in the nonf

commutative probability case.

Proposition 2,12

Let pell1y »)sand suppose 7(1) = 1 (so that J =4 ).0n the
unit bhall oft/% » the topology induced by the Lp norm

coincides with the strong topology.

Proof(i) Let [x }c M be a net such that xsll,< 1 and

HxSHp—» 0.I claim that Xixs-—*O‘ultraweaklyo To see this,let

we A, «By Thm.2.3,. there is a unique yeL; (M, T) such that

w = wy +Let.y'eJ be such that lly = v'li<e . We then have:
|y (x5xe) | = |r(xexey) | < |7(xixsy )|+

o Irtatzs Gy )

< il lly Mg+ Ixsxsll Jly-v il

< edil sty U + HxsN2lly=3 'l
< ; e vty + €

for all large enough s. This proves the claim,
Thus x?xg —5 0 (uw),hence weakly (see §1.2). Therefore
xs —> 0 strongly, for if Zﬁ.%f, Iz g2 = (g,x:xsg)-——+ C.
This shows that the topology induced by the Lp norm is

finer than the strong topology on the unit ball of JM .
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(ii) For the converse,supvose that the net {xs}s‘/% conver—

< 1.Then |X, p--; 0 stronvly*
3

hence weakly,hence ultraveakly (since {|x/{|_<!).Therefore

ges to zero strongly,while Hxs

Ixllp = (|x,|") —> 0 ( 7e/,)

which shows that the strong topology is finer than the ;p

topology on the unit ball of M.

0F

Another intercsting problem is that of duslity., As is
we;; known, the dual of Lp(n,ﬂ)-is Lq(ﬂ’#) yWhere 1< oo
and q = p/p~-1 (1/0 = &) .Ve already know that (Ll(uﬁ$7))*=
(JK*)*= M= L, MsT) {Thm.2.3)oThe case p>1 was first proved
by DIKIIER [14] in thé abstractisetting. A more direct proof
was given by YZADON [91] in SHGAL's setting.Both proofs are
rather more camplicated than the corrésponding ones in the
abelian case, In the case where ¢ is finite,however,é
simpler proof may be given,which is more intuitive,in the
sengse of being closer to one: of the standard proofs inAordi—
nary integration theory( see SiGAL and KUNZE [71],Thm.6.1)

I would 1like to clbse the presentation of (SEGAL-DIXMIER)

Non-Comnutative Integration Theory with this proof.

*

4 1
ror |Ixs|Pal® = [ +*Pallecll®< [t7alleczl® = ]xs]2l® =

( le 'é’ IXs IZ,) = (Z..sX:XsZQ)

il
t

xs2i[? — 0

for each %e W ,where by the spectral theorem
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Theorem 2,13

If 1¢ D¢ w » 4 = /-1 (1/0 = o ) then Lq(ﬂ;’l‘> is
(isometrically isomorphic to) the Banach space dual of Lp(u/“(,’r)°
Proof For the general case ,see DIMMIER [14]), Thm.7 or

YEADON [91]),Thm.b.l. I shall prove the Theorem for the case

7(1) =1 . The case p=1 is Thm.2.3.Therefore assume that p>1.

(i) Let xe M .Define s28 in Thm.2,1 the linear forn Wy by
cwe(¥) = (xy) (ye M)

One then has,if || . Hp. denotes the dual norm on
( Lp( f{: 'T)) ]

ol

supl Jwe (7) ] ve M llyll,= 11

= supl|7(xy) |2 ye M, ilyll,= 1]

x|

= l qQ
by (2.3).Theréfore the mapping X »——y w, extends to a
linsar isometry fromALq(Jq,T) into (LP(/{,qyﬁ.

It remains to show that it is bntoo

(ii)let Fe(LP((M,T))*. I first claim that F restricted to J
is ultraWeakly continuous, so that FLM'EJ%$ .

To see this,first observe that FL”{ is norm-continuous,
for the norm topology on M is stronger than the Lp topology
by Lemma 2.10(i).Thus,in view of [56],Thm.4.5 (see the foot-
note in §2,1) it is enough to show that FIJ{ is completely
additive,i.e. that given any family of orthogonal projections

{ pi ¢ iellc M ,we have
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ZF(PL F(ZP«.)
lel

ieT
where the (poséibly uncountsble) sum on the left hand side
is defined to be the 1limit of the net of all partial (finite}
sums, dlrectvd by inclusion of the index sets. > pi 1is the
q;: JeI finite}
where Ay ".E:pJ sin the strong topology.RBut on projections,

isT
it 1is easy to see that the strong,weak and ultraweak topolo-

limit of the increasing net of projections |

~ gies 001nc1de,and they also colncide with the LP topology by
Prop.2.12 , since projections are contained in the unit ball
of M .Therefore
| #(Zpe) - ZF@y)] = [F(Epe) = Flay)]
{eL J&eT ieLT
< ||F P - 0
I Hptuz;pb azll, —>
which proves the claim.
Thus by the Radon-Nikodym Thm.2.3 there exists a unique

xeLy (M,7) such that F = wy ,that is

(2.16) - My) = 7(xy) for all ye

(iii)To conclude the proof,we must show that xel Q/%,T)
Since xc,/l, writing Tx = u.f:det (see Thm.2. u),lt is
enough to show that ‘[tda(eL)< o (Cor.2.8).
Let x, = uj-tdet = Xe, . Then anuﬂf,and hence by
o

part (i), x, defines a unique Fne(LP(JV,TXf.For ye M,

=] = [rCxeny)| = [BCenn)| < Ul llenvily Il il
so that
xally = WFnll e < 7l
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Now let £(t) := t¢ >0
and R () i=(tY o<t<n
{O t>n
We héve 4
(- n

[za(waren) = [tharte) = i <z,

(]
for all nell,where we have used>Coro2.8.
Since O < fn(t)T £(t) for all t>0, the monotone conver—

gence theorem implies that

[fntwarta t [?u)afr(et)' - [ +%ar(en)

and therefore
(-]

[t%ar(er) <imid,

(-4

Thus by Cor.2.8 ,

- xeLq(yq,T)

‘and

Il < lEl,

Since,by (2.16), the linear functionals F and wy.(which
are now both in (Lp(JY,T»*‘by part (i) since xeLq(J%,T))
agree on the dense set M in LPQ/{,T),they must agree

everywhere,and the proof is complete,
_QED
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Chaoter II
ISONMETRIES

This Chapter is devoted to the study of Isometries between
various Bansch spaces of operators.The aim is to discover
how much of the algebraic‘étructure is transported by these
isometries.

I shall describe various aspects of this problem,starting
with the abelian case,where the results are known,The final
paragraph is devoted to a partial extension of some of these

“results.Speecifically,the aim is to find sufficient conditions
for an isometry between two Non-Commutative Lp spéces to
preserve the algebraic structure of the underlying VN alge-
bras.

The solufion of this problem is of interest im the
classification theory of Banach spsces,as it shows that

certain Non-Commutative LP spaces can be distinguished,zs

Banach svaces; from classicaIALp spaces. More precisely,.if
Lp(/%,f)fié isomorphic, .2s a Banmch space, %oin(fl,fO,thenw
it will follow that J{ is isomorphic, as sp algebra, to |

La412,f0,and therefore is abelisan.

§1. A classic result in the abelian case is the following:
THEOREM 1.1 ( BANACH [7], STONE [75] )
Let X y Y Dbe compact Hausdorff spaces, g X—Y a bijective

homeomorphism,.Then the mapping

(X)) — C(Y)

given by .
(Pf)(y) = £(¢™Hy) (ye¥, £e (X))
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is a linear isometry of C(X) onto C(Y) , and T(1) = 1.
Conversely, let T be a linear isometry .of C(X) onto G(Y).
Then there exists a bijective homeomorphism ¢” of X onto. ¥

and a unitary u e C(Y) such that

(T)(y) = w(¢™ ) £(FHF)  (ye¥, £eCX))

In particular,all unit preserving isometries are induced by

homeomorphisms.

I now wish to translateAthis theorem into an intermnal
characterization of isometries between abaelian C* algebras.
Pirst of all,we know (Chapter I,8§1.1) that C(X) is the most
general abelian C* aigebra.lt is further known(and not too
difficult to see,given +the Gelfand theory and the fact that
the topology of a compact Hausdorff space is the weak topology
determined by its'continuous'functions ) that there exists a
one-to-one correspondence between homeomorphisms of compact
Hausdorff spaces and x-isomorphisms of their function algebras,

(see e.g. SIMIONS {73},Thm. 74D) .Thus Thm.1.1 gives the

’

THEOREM 1.1%

Let T be a bijective linear is&metry between two unital

abelian ¢ * algebras O and 83 . Then there exists a

*-isomorphism S of (l onto @3 such that,for all £ el ,
| Tf = u ST

where w = T(L) e®B is unitary.

I include a mnew proof of this result,which is much
quicker thap the original one (but of course uses méderw

machinery)
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Let T(1) = uw . Then v is extreme in the unit sphere of
(3 (since 1 is extreme iv the unit sphere of X ) hence is

witary ( KADISON [33], Thm.l ).Let

St —— 8
f — RV F

Then S is isometric and S(1) = 1.
I clain that S is positivity preserving.
Suppose not,and let f el y 02 f 2 1 Der guch that St is
not vonnegative. Writing (= C(X) , 3= C(Y) , this
means that there exists y e Y such that (Sf)(y):= a ¢ [0,+%c] ,
Note that ‘ial = [(8£)(y)] 2]lSflle = IfllnZ 1 .Thérgfore

there_exists b e € with Reb 2 1 and \b[<,[beaj (see diagram)

- But then - . S&
o - flloZ (bl <[b - af = ' ////’N\:B\

i
il

b~ (58)(9) | k)/i

Is(b-f)lo= b - £l | b

P S(o-£)(y)| =

1

(1N

a contradiction.
This shows that the dﬁal nap
s*, @~ ot*

given by

(s*6)(£) = g(s£) (£e0 , peB)
is isometric,positivity preserving, snd (S*¢)(1) = ¢(1).
Therefore S*'sends states onto states,~nd,being isometric,
extreme elements of the unit ball of ﬁZ* onto extreme ele-

¥
ments of the unit ball of O .
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Therefbré Sﬁ'maps the pure states of @ onto the pure
states of (Jl . But the pure states of C(X) are precisely

the evaluation fumctionals™t d; (x e X) given by

L) = £(x) (£ e c(®) )

Now for f,g € Ol ana vy e Y, we have,letting :d; = S%F-

(s(£e)(y)

= J(s(ra) = &) (£2) = L(£2) = T(x)e(x) -
= (L) () = () (5Y) (o) =
= (TN (se) = (5£)(y)(58) (¥)

50- that |

s(zg) = (5£)(Sg) -

This shows that § is multiplicative, and it is clearly

a % -map, being positivity preserving.
- B . g QED

We can see this as follows:A .3tate on C(X) is a regular
probability measurgﬂ(Riesz representation Thnm,; see e.g.
HALMOS[?&lThm.56D ).If J2 is pure, and its support contains \

two distinct points,then it must contain two disjoint non-

enpty open sets U,V .Thus O_ép(ﬁ)< 1. But then defining
. c
Vi(8) = p(UnR)/p(U) 5 vip(A) = pe(UA)/pu(U°)

(vhere U% = XNU )we get two probability measures (stétes)
fi, Vo which are distinet and such that

| L PO (00,

This qontrddicts the assumption that fA_is pure.Therefore

the support of I contains exactly one point x , and so jl=J;.
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I now wish to‘discuss isometries of clagssical Lp gpaces,
I shall only describe some recent results,which will be
extended to the non-commutative situation in §3.
Let (£2i’f1) be two (classical) probsbility spaces.

Let U < L“’(Ql’f‘l) be a subalgebra containing constants,.
The following result was proved by FORELLI ( [19],Prop.2):

Theorem 1.2

Let T L Laiiizaﬂz)

be a linear mapping such that T(1) = 1.
If there exists p e {1,%], p £ 2 , such that T preserves

the L, norm, then T is a homomorphism.

This Theorem was extended by SCHNEIDER ( (65|, Thm.B)

for the case p»2 as follows:

Theorem 1.3

Let T UL — Lp( Qz,ﬁz)‘

be a linear Lp-isometry such that T(1) = 1.
Then T is a homomorphism, UTfﬂaf | £llg and “TfUQ = Hfﬂ2

for 211 f e Lé.

The crucial differencé is that the fact that T sends
bounded functions into bounded functions is not assumed,
but is a conclusion of the theorem.

The proof of this result depends on the following

Proposition 1.4

Let 24peeo, f, e Lp(Qi,j—*i) (i=1,2). If there exists r y0

such that, whenever =z e € and [z|Kr ,we'have:

{1 + Zfl“p‘z 1 + zf2”p
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‘then
(a) ”flng = “f2”2

(B) ((£11ly = N5l

Proof (a) is proved inm FORELLI ([19],Prop.l) and (b) in
SCHNEIDER ( [65] ,Thn.A). I sketch the proof of (b),since it
is basic to the non-commutative extension.

Pirst note that since p>y 2, “ij2<cn LI “fl“4 = “f2“4 = oo

there is nothing to prove.Assume therefore that Hf1u4<cn
Consider ,
. 2
1 X o2
(1.1) i f’\l + zet™|Pax - % | 2] -1
o

Expanding (1 + zelx)p/2 as a power series,convergent for

lz1¢ 1,we find that (1.1) equals
(1.2) (P[22 E}P

where

(P/2

) is the uouol binomial coefficient.This shows

. : O I | ixyp - p 2
(1.3) Fj( r,w):= r Mg [ 1L et (@) Pax - § [ 5] 2

(-]

converges 1o (péz)zifj(w)l4 as rM0 for (almost) 2ll we Q.

Now SCHNEIDER (65] shows that (1.1) is non-negative for all
z e € , hence Fatou's Lemma (SEGAL & KUNZE [71] ,Cor.3.4.2)
is applicable to (1.3) =nd gives
(1.4) (%2)2 f £, ()] Faps(w) < lining J Fy(ryw)dps, («)
Q& ‘Q'L ’ ’
Using (1.2),one now finds that.

»(1;5) Fj(r;w) < A\fj(w)[4 +'Brp'4[fj(w)lp if p Ny
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and

(1.6) Fj(r,w) £ C lfj(W)l4 if 2<p£4

where A,B,C are constants.We notice that,for j=1, the right
hand side of both (L.5) and (1.6) are integrable,snd hence
the Lebesgue Dominated Convergence theorem (SEGAL & KUNZE [71)

Cor.3.4.5) may be applied to (1.3) with j=1 to give

@1 s (2 (egn @) = P42 e ()] fap (o) <o
. >0 o, . a, -
However

(1.8) [I‘ (r,w)drl(w) =

2 ‘
| ‘4(5—-[ []1 +ret¥e P ax « 2 2P g5 - 1) =

-4 iXe 1P p2 2 2
r _(Q—E:L ”l + re f2“p dx - T T “f2“2

.

- 1) =~

Ian(r,w)drz(w)

QL

where we have used the aésumption of the Propogsition,part
(a) ,and Fubini's Theorem ( [71],Thm.3.4) to ivterchange
‘ e '
f with £ .
Q3 o

Combining now (1.4),(1.7) &(1.8) ,we find:

(P02 { \2p0)] Yapy(0) £ Lipips j P (r,0) Ay () =
nl

It
]

i f Py (mse) iy (@)

= (%?) 2[ [, Yap (@)
Thus
I £2lly % NE1lly < +o0
so that we may'now repeat the argument With fl and f2

interchanged to get the reguired equality.
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The proof of part (a ) is very similar,the basic difference

being that one replaces (1.1) by

e
gﬁ f~|l + zelxlpdx - 1
o

QED
Another extemsion of this result is due to YOUNG [92] -

Theorem 1.5

Suppose U is a s-subalgebra of L“Tclupl) ,2nd that
either 1£€p£g¢2 or 2<¢q=p<ee ,Let

T:L(—~%Lq@@wé)

be a linear mapping such that ||If[| = ﬂfnp for all f e

~and T(1) =1 .Then T is a +#-homomorphism,

His proof is completely different from those of FORELLI
and SCHNEIDER, and relies on the fact that T may be extended
to the weak closure of UL ([92] ,Lemma 1),which allows him
to conciude that this extension maps characteristic functioms
of messurable disjoint sets to charscteristic functions of |
neasurable disjoint sets,and therefore it (arnd hence also T )

is a homomorphism.

§2.1. The non-commutative smalogue of these problems have a
long hisﬁory.The first version,which was discussed before the
appearance of Non-Commutative Integration theory,was the
following : If two o* algebras are isomorphic as DBanach spaces,
how much of the algebraic sfruoture is transferred by the |

isometry? VYe have seen that this problem is completely
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solved in the abelisv case by Thm.l.1l'.A non-éommutative
extension of this result is due to KADISON [33]. Pirst we

need the definition

Definition Let (T ’ 3 be « -algebras.,A Jordan ¥ -homomorphism

T :0l— @G is a linear mapping which preserves the Jordan
product and the involution,that is

2(x%) = (2(x)°

and «

T(x*) (T(x» for all x e (O,

i

Theorem 2.1

A linear bijection T between two unital C* algebras is
isometric iff it is a Jordsn «-homomorphism composed with

left multiplication by a fixed unitory element,namely T(1) .

Proof The fact that a Jordan #-homomorphism is isometric was

proved by KADISON ( [33],Thm.5) and 3THRMER ([76], Cor.3.5).
The converse assertion is Thm.7 of KADISON (37 .

The structure of Jordsn x-homomorphisms between C¥* alge-

bras has a particularly simple form.7e first have a Lemma:

Temma 2,2
1] . m * ~al »Oz.t
Let T be a Jordan #%-homomorphism from a C° algebra into
a VN algebra S .Then T has 2»n uw continuous extension
ok
T Ol — A
which is also a Jordan #-homomorphism,
A word of explanation is needed here.lPirstly,if adl is

. * '
given the w¥-topology (i.e. the (O, 0U) topology,and N

is givewn the uw topology,then by duality we get a m=2p

T*: ﬂ* > 0-(-*
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since T is covtiruous with resnect to these topologies.

The dusl of this moep is
' 'R 4
T*¥:J%-—*% ot
. ‘ .
since (y%;) = M (Chapter I,81.3).STERIER(76] (Lemma 3.1)
now shows that T ™ is a Jorden ¥ -homomorphism and extends T,

using Shermsn's thm.(Chapter I,§1.2).

Using this Lemmz,one now proves:

Theorem 2,3

Let T: Ol—> 3 be 2 Jordan 4-homomorphism between two C*'alge—
bras.Then T is the sum of a ¥-homomorphism and 2 «-antihomo-
morphism in the following sense:There exist orthogonal central
projections p,q e T(CK)"_(we,assﬁme,és we may (Ch.I,$§1.1),
that 03 is faithfully represented on a Hilbert space) such

-~

that p+g=1 and
N T(x)p
is a « -homomorphism,while

TTQ:'X —> T(x)q

is a #-antihomomorphism,and T = T, + T2 2s linear maps,

1
‘Proof STARMER [76] ,Thm.3.3,extending KADISON 33 ,Thm.10 .

Corollary 2.4

Suppose in addition that T(J{)" is a factor.Then T is either

a k¥ -homomorphism or a s-antihomomorphism.
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’

§2.2. In the previous section wehamalysed completely the structure
of isometries of c* algebras.We now continue our extension of
results in classical annlysis by covsidering isometries of
Nop-Commutative anspaces.

The only result,to ny knowledge,in the semifinite case is

due to BROISE ([10],Thm.1 & Prop. 1) :

Theorem 2.5

Let (yﬁi,zi) (i=1,2) be semifinite VN algebras with faithful
normal semifinite ftraces zi .

(i)Let .
T Lg(ﬂlv'rl)'—"‘% L2(‘/(2,'Z'2)

be an isometric bijection (i.e. a unitary), which is
positivity preserving (i.e. Tf is a positive operator
affiliated to °f12 whenever £ is a positive operator in

Lz(uﬂi,Tl)A).Then there exists 2 unigue Jordan #-isomorphism

S of J%i onto V%é and a positive self-adjoint operater zvjzzﬂJ%;

such that >

T(f) = z5(f) - for a1l f e S NI (H,7)

in particular,if /Vl or J%é'is a factor,then z is s scalaf.
multiple of the identity and é is either a s-homomorphism
or a «-antihomomorphism,
(ii)Conversely,lef |
5: M) —>HM,

be a Jorden x-isomorphism onto.Then there is a unique faiﬁhful

normal semifinite trace T on Jf, such that
_1 +
(g) = 4 (57 g) (5 e A7)

2(S(£*)5(2) = 7 (£78) (£ e M)



55
S(J%lf\LQ(ti’ti» é “%Q’WLQ(/%é’TL»
There exists a upique uvnitary bijection

| )
Tr o, 1;2(/{1,(1) _— Lz(‘/fg,"'e)
which is positivity preserving end coincides with 3 omn
/%ln L2(¢Ql,Ti) ,Pina1ly,there exists 2 unigue positive
self-adjoint operator ZO?Jénu«g such that

T : L2(/ql,fl)l————6 ‘Lz(/%2;22)

X — 7T (%)

is a uwitary positivity preserving bijection.

Prom pOw On, we restrict oursélves to the finite case.
To the end of this section, 7 will be a (finite) V¥ algebra,
and re A, a faithful traci=l state.The first result,due to
RUSSO (61) (Theorem 1) is a parbial extension of Thm.1.5 to
the non-commutative situation.(for p=q=1) obtained basically

by duality (see Chapter I,Thm.2.3) from KADISON's Thm.2,1,

Theorem 2.6

Let - B
Te Ll(/ﬁ,z)v——~alj(¢%,r)

be an isometric bijection.Then there exist: a Jordesn % -auto-
. /
morphism.S of M , a positive self-adjoint operator z'n‘/{nu%

and a uritary u e 4 ,such that

T(x) = S(x)z°u (x e M)

In particular,if M is a factor ond T(1)=1, then T‘JQ

is either a i-automorphism or a y-zntizutomorphisa. -
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’

The next result is a partisl externsion of Thm.l.2.

Theoren 2.7

Let T be a linear bijection of A which preserves the L

p
norm for some p e [(1,+) .The fol;owing are eguivalent :
(i) T is a Jordan % -automorphism.

(ii)T is positivity preserving snd T(i) =1 .

(iii) T sends projections to'projections.

(iv) T maps the self-adjoint part of the writ ball into itself.
and T(1) =1 .

Corollary 2.8

puppose,in Thm,2,7,that N is a féctor.Then:

(i) T is either a.x—automorphisﬁ or'a #~antiautpmorphism.
(ii) In case p = 1 or 2 ,the condition T(1)=1 may be dropped

from condition (ii) of %the theorem.
Proofs RUSSO{61} ,Theorem 2, Corollary 1 and 2.

The necessity of‘assumingvpositivity prgservation is an
interesting questioh. e shall see (83 ,Thm,3.1) that this \
assumption is redundant.in case P ) 2 . Russo [61] gives a
counterexample to the assertion that any urit preserving
¥ -linear L, isometry of & finite factor is necessarily
either a & —automorphism or a #-antisutomorphism,We shall
see in the_next ééction‘that'the assumption of~positivity
preservation isigssential in case p=2 ,ever in the abelian.

case,
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..

§3. In the previous sections, I described knowm results in

the problem of isometries. I shall now embark on the
extension of Theorem 1.3 to the nop-commutative situation.
The main results of this sgction are improvements of results
that have appesred in l36]f )

Throughout this seqtiqﬂ,let VQ; (i=1,2) be two VN algebras,
7, ¢ M,y faithful tracial states.I wish to prove the

following Theorem:

Theorem 3.1

Let U be a unital +-subalgebrs of aql.For some p e (2,e)
let : , '

U T (A, T)

be a %-linear mapping such that T(1) = 1.Suppose that

P “TK“D = ux“p for every normal x ell .

Then T is a Jordan «-homomorphism,

Hote that I need to assume ﬁhat i preserves the involution
and the identity.Ir order to be able to distinguish Lp(u%,t),
as a Banach space,from classical Lp spaces (see the intro-
ductory remarks to this Chapter),at least in the finite case,
one would meed to froye that these two assumptions are
redundant.The assumption that T is a «# -map enters only
through .the non-commutative extension of Prop.l.4 (see Prop.
3.3).In a complete extension of this result,it seems plausible

that this assumption need not be made.An attempt to prove

such an extension,using known non-commutative analogues of

the Theorems of Tatou ,Fubini and Lebesgue Dominated Conver-

‘zence (see the proof of Prop.l.4), was iwnconclusive,Thus this
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is still an open problemn. Ih orderkto get rid of the assumption
that T(1) = 1 , one would need to study a geometrical property
of 1 in the wit ball of Lp(“%l’?l) {inp the . C* zlgebra &useé,
(Thm.2.1) the extremity of 1 is used to show that T(1) is in
fact a unitary) [82] . Agaivn this is an open problem.

YOUNG [92] observed that one might as well assume the'
domain of T to be a VN algebra.Spécifically,he proved the
Temma 3,2

With the assumpbtions of Thm.3.1, T has a unigque extension

Ty r U — I (A7)
(where L denotes the strong closure of UL ) which is also

an Lp isometry on normal elements.

Eyoof Let T, denote the restriction of T to the unit ball

1 -
Uy of M . Now on the unit ball of 0/11 (hence also on Lzlﬁ
the Lp topology coincides Withvthe strong topology (Chapter I,

Prop.2.12).Therefore
1) Uy, 5 ) — (T (HprTp)s (1L

is'continuous,and hence may be extended to the strdng
closure L({ of L y, Tthe resuiting extension ‘%l still
being an Lp isometry by continuity.

By Ksplensky's density Theorem (Chapter I,§1.2) L(;_
coincides with the unit bz2ll of the strong closure Le—of
LL . Thus for 21l x e L&, (x/uxi) e Zf; ,50 we may

défine :
T x = %l T (/)

and Te is clearly an Lb igometry.
QED
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The main ool in the proof of Thm.1.3 is Drop.l.4.
But the statement and conclusion of this Proposition only
involves one elément from each Lp(£2i,f3).This observation

allows one to orove:

Provnosition 3.3

TLet p e (2,§j? ) X5 € Lpﬂ/{i,ri) ,Tki normal ( Tx{7¢@; —~ see
Chapter I,Thm.2.8)

If there . exists r»0 such that,whenever z ¢ € is such that
zl < r ,we have

i + =zx 1 + =zx

it

l“p 2“p-

then

(=) “Xlug = ngug

() “X1”4 = “x2“4 )

Proof Sipce Txiqlu%(i ,the spectral projections of ”Txi

(that is, the projections ei such that T =I'A dei by the
i

spectral theorem (see e.g, RUDIN [59] ,Thm.13,33)) belong to
‘/1i .Denote by 0425;/%1 the abelian VI algebra generated
by these projections. We may write 04; = Lol Q. ,p4) with

X = p [ al . . 42nd us L L T )=
L;i(“)in(“O '%‘Ai) for all x. Q‘Afl ,end thu p(uV;,Zl)
sz(ﬁzi’fi) (Chepter I,§2.2).The identity mavpping obviously
extends to an isometric embedding Lp(uﬂi,ti)g.Lp(J%i,ri);
Thus

X3 © Lp(Qi’Ju'i)’C" Lp(ﬂi’r]’_)‘

and therefore the problem is reduced to the abelian case.

Thus the result follows by Prop.l.4.
QED
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Proof of Thm.3, 1

(1) Tet x e UL e seWL—ﬂ6301nt z e €.5ince T(1l + zx) =

= 1 + zIx ard since Tx is self-2djoint, we have :

1 + zxu =1 + sznp
Thus Prop 3. 3(b) shows that

1 + zxu4 =Hl + szlh < oo ysince x e S = L,

Nov

o \1 + ZX‘4 z:( )(k) Zaz{xaxk
. K= O

and so ' > .

| 11+ 2=t = 22 (Dl (39
4 el a
Similarly v )
Iz - f{:< ><k) 2021, (1) 3 (12) ")
Therefore b ‘ _
(3.1) 7 (355 = GEx) (") 5% = 0,1,2

(ii)Putting j=l,k=2 in (3.1)=gives

7,0 %) = 5(@x)3)
Replacing x by x+a8y , X%X,¥ e;AQ_Self-adjoint, a e M, expanding
and comparing terms in az, one finds | |

7;(Tx(Ty)2 + TxTyTx + (Ty)sz)'z T’l(xy2 + XyX + y2x)
or,in view of the centrality of the traces,
2\
(3.2) . 7,(12(17)%) = 73 (xy”)
On the other hand,polarigation.of part (2) of Prop.3.3 gives

7, (TxTy) = 7 (xy)

Since x and y are self-adgolnt.Replacing y by y2 above, and

_comparing the result with (3.2),one finds
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7,(1x(Ty)%) = 7, (2x2(57)
snd, replacing x by y2,one gets
(3.3) (1) (1)) = %, @)
But (3.1) gives,for j=k=2
%" = 7 (4
while (3.2) with x=y2 becomes
7,(1(y°) (19)?) =7, (54
hence |
(3.4) %@y = 7,(2(5%) (1) ?)

Therefore

—

lmy) 2oz (212 = 2, () 4= (1) %2 (2) < 252 (e 2 (2RI =

by (3.3) 2nd (3.4) ,and thus

(Ty)2 = T(yz) for all self-zdjoint y e WL

(iii) Now let x e L& be arbitrary,and write x=x, +i%,, with

%19%, self-adjoint.Since x;+x, is self-2djoint,part (ii) gives

)2

- 5 .-2
(Tx; + Tx,)* = T(y+x,)°)

Expapnding and using part (ii) again,one finds

Ty Txy. 4 Tx, 0%y = T(X1X2 +x2xl)

Therefore
T(x

]

N N2y g2 2 o
) T«xl+1x2)-) = T(xl ~X5 +1(xlX2 + Ale»

(Txl)Q—(sz)z—i(TxlTx2 + Tx,yTx, ) = (1x)?

QED
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-

Several cownclusions may now be drawn from this result,
But first we need some simple Lemmas,
Lemma 3.4
Let (J{ be a x-slgebra, w a state on O[. Define,for n e M
| | 1/2n
| “ﬂ%‘=w(&%w)/ (x e JU )
Then

(5) fx*xlpn = |50 2nes

(ii) “XQHZ“ = qugn44 ' , if x is normal,
(111) | ®l, = lx I, |, if wis tracial.
(iv) ny“2 < HXH4HYH4 yif w is tracial.
- A 22"y P
Proof (i) |[x Xliom =w((x"x)" ) = uxﬂgnu

n=-i

(1) 5202 = w50 ) 2w (0?2 ) = 0((x)2)

al

2
= ||x “2n~n

(111) (1 U152 = ((x*)7) = w((xx¥)?) = [=*152

(i) xyl = w(y¥atxy) = dlxbeyy®) = fckuliyly v, = 12 12

QED
It is interesfing to hdte\that one may prove,without
any continuity assumptions whatever,that in case w 1is
tracial .and faithful,||.|l,, ore all increasing norms [13], [78] .
This points toryet another direction indwhich one might try to
~develop a Non-commutative Integration theory. Iy attempts in
this direction have so far not yielded very sigrificant

results,and are therefore not included in this thesis.
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Temma 3.5
Let T : U ,_,,£3 be a Jordan homomorphism between associstive
-algebras, Then |
(i) T(xyx) = TxTyTx
(i1) 2((xy)"+(yx)?) = (2xTy) +(TyDx)”
(111) 2(Gr) (7)P) = (Px2y)”(2yix)”
(1v) 2GR = (2ay)
for all k,y e 0{ , n e [,
Proof (i) HERITEIN[29] ,Lemma 3.1,
(1i) KADISON [33] ,Lemns 6.

(iii) & (iv) follow from (i) by induction on n.

Theorem 3.6

With the assumptions of Thm,3.l, we have:

(i) T is isometric with respect to the L, vorm.

(ii)Por all x e WU =20d qy 2, HTx“q £ quq .Bquality holds
if g=2n , n e W,

(iii)!T(l{)go/%z and [[Txlig, = fl xli, for all x e 28 .

(iv) T is positivity preserving.

Proof(i) Let x=x +ix, e Dbe arbitrary,with % séelf-adjoint.

1
As in the proof of Thm.3.1l,part (a) of Prop.3.3 implies that
UTXJHQ = HXJHQ_ (j=172)
But then
2 2 2 . - . . _
HTXUQ = UTxlu2 + HTx2u2 +IZé(TAlTX2) —12é(Tx2Txl)’_

= 1|15+ B 3 = gl + gl = x5
(ii)&(iii) Tor x e U, v e [T,consider

"umxﬂgg = ZQ«TX*Tx)n) = zZ(Tx(Tx“Tx)D“ITx‘).;'
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= (Tx#,(TX*Tx)D_lTX*) = (Tx*;T«x*x)n_lx*)) (Lemma 3.5(iv))

_ (K*,(xfx)n~1x*) by part (i)

1l

7y (x(x"x) ") = g (e*)P) = 1057

Therefore . ‘ .
UTxH2n = ”Xu2n for all n e @

apd letting n —=,we have,by Lemma 2.10 of ChapterI,
7% leo = [ lleo

He m3y now apply'the RIESZ-THORIN-KUNZE Theorem (Chapter I,

Thm.2,11) with P1=01=2 , Dy=0,=°® , p=q to conclude that
ﬂTxHq = ”X”q for a1l x e U 20d q> 2.

(iv)In view of part (ii), there is no loss of generality in
agsuming LL 4o be norm-closed in qu.

If x e d is positive, taere is_a unicue y e L such that
y2=x and y20.Now Tx = T(y2) = (Ty)2 is positive since Ty

i3 self-adjoint. -

This completes the proof.

" Having now shown that T(U)e » and that T is a Jordan
#-homomorphism,we may anply the results of KADISOW and
ST@RIAR on the structure of such mappings between operator

algebras.The following result thus follows from Thn.?2.3.

Theorem 3.7

Under the assuaptions of Thm.3.1,there exists 3 nrojection

D e J%2,in the centre of T(W)",such that the mapping

Py

Tyt ox —> T(x)p
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(respectively Tyt X —> T(x)p* )
is a x ~homomorphism (resp. 2 #-sntihomomorphizm) of WU into

Mo, and T = T, + T, as linear maps. v

A

We close our study of isometries of LD spaces,which
began with the abelian cese,with 2 result at the other end

of the commutativity spectrunm.

Theorem 3,8

Let c/(i (i=1,2) be two VN algebras, Ts e‘/%if faithful
tracial states.Let p e (2,x] ‘ahd .

T i L( A7) — Lp(aqé,fz)
be a ¥ ~linear isometric bijection preserving the identity.
If either‘/fl or yqé is a factor,then T is an isometric;
uw—bicont;nuoué % ~isomorphism or « —antiisomorphism of T,
onto ‘/té.

Proof Both a TfllJ{ satisfy the assumptions of
. : :

T l an
Ma

Thm.3.1.Therefore they are Jordsn « -isomorphisas, inverses

of each other,and hence in particular T(/%i) :‘/(2, T;“(/%é)?p/tl
" That T preserves the operatdr norm follows from Thm.3,6(ii)
T is therefore uw—bicontinuous>by Lemma 2.2 applied to T and
T"l(or indeed bvaemma 3.2,since both T and T—l map the
unit ball into the unit ball).
Let p e./{2 be the central pfojectiom guaranteéd by Tha,3.7
Then q:= T”?(p)>is a projection in V/ll.Clearly Tz(q):T(q)pL

=pp* = 0 in the notation of Thm.3.7.TFor x e S ,we have
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4

T(xa - ax) =Ty (xq - x) + To(xq - nx) =

- ~M o - ~ o -
= Tlelg - quT1“ + quTgx Bszgq

=(Tyx)p -p(Tyx) =0
since p is central:Thus ox - xg = 0 (T is.injective),and so
g is also céntral.Henqe if either uptl or ¢%2 is a factor,
both p and'q will be either O or i,so that T = T, or T,.

QED

Counterexample

This is to show that Thm,3.8 fails for p=2 even in the abelian
case,It will follow that the stronger assumption of vositivity
preserﬁation (which follows automatically in caée P2 -see
Thn,3,6(iv)) is actually essential'(see Thm,2.5 )

Let

2

- 2 an
H (1) = (2%1v) 2 o L eV (s em)

be the Hermite polymomizls:It is well known (see e.g.

OKIXIOLU [47] ,3.10.9) that {Hh : p=0,1,...} is an orthonormal
2 D= _

base of LQ(R, e*t—dt).They are algso clearly real-valued,and
- -1/4 | ‘
H =x . |
For ‘ . 2 :
. I .
L0 o - i
£ ".zicn*h-e Ly(®, €7 at)
define ‘ 9 ]
TE = o  + ¢ Hy + cjH, + z;cn}n

n=3
Clearly T is uritery,snd % -linear,for if f:f*,so that
. . o
c, © R, then Tf = Tf . T obviously preserves the identity,
but is not a homomorphism; for instance,
(Tﬂl)(THQ) = H,Hy

while T(HyM,) 4 HYH,
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Chapter TIII

TOMITA-TAKKSAKT THEORY

According to the point of view adopted in the intro-
duction, non-commutative probability theory is concerned
with the study of an involutive algebra and a. state on it.
More generally, non-commutative integration is concerned
with an involutive algebra and a (not necessarily finite)
positive real valued function on its positive part (a weight
- seeb 2). If this state or weight happens to be unitarily
invariant, i.e. a trace, then we have the DIXMIER-SEGAL non-
commutative integration theory, With'which we were concerned
in the previous chapters.

In both cages we may construct the GNS Hilbert space ofrﬂ
the algebra induced by the trace or weight and represent the
algebra on that Hilbert space. In order to study the most . -
general situation, it is important to realise the speciél
properties of the GNS representation induced by a trace. It
turns out, in fact, that one can canonically associafe with
such a situation an object which has the properties both of
a Hilbert space and of an involutive algebra, with left and
right multiplications being continuous in the Hilbert space

topology. This is called a Hilbert Alecebra (§1). 1In the

general case, when the weight is no longer unitarily in-

variant, the corresponding canonical object is a left Hilbert

Algebra (), in which multiplication is continuous only on

the left,
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Tomita-Takesakl theory is concerned with generalizing
the properties of Hilbert Algebras to left Hilbert Algebras.
One is then sble to put an arbitrary VN algebra in a gtan-
dard form, i.e. to represent it faithfully as the VN algebra
generated by the left regular representation of a left Hil-
bert algebra. Thus the GNS Hilbert space induced by an ar-
bitrary weight is the analogue of the space L2 (/,7) induced
by a trace, which we studied in Chapter I.

/e therefore egin our study with Hilberf algebfas,

e are interested in them not only because we later want to
generalise them tq left Hilbert Algebras, but aiso because
they arise in our study of the algebra of the CCR in Chapter
VI. Thus we Eeed some of their properties which we describe
in § 1.

81, Hilbert Algebras
Ex. 1.1 Let U be a unital *~algebra,yr a state on QU(not
necessarily faithful). We aséume, in addition, that ¥ 1is
tracial in the sense that 7(xy) = 7(yx) for all x,ye(]. Wet‘
let I = 1§ x0l: 7(x*x) = 0 }. As in chapter I, §1.L4, I is
a left ideal., However, the centrality of 7T now ensures

#
that I is in fact a two-sided #-ideal of JL . Thus the

*  Proof T((x#)*(x*¢)) = 7(xx¥) = 7(x*x)
Thus x*el iff Xxel ‘
Also 7((xy)*(xy))? = 7(yéxixy)? = T(yy*xtx)? <
< T((yyrae)s (gyrae) )r(xex)
Thus xe€l =2 xyel
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quotient space §H = O0r/1 1is a *-algebra, and T canonically
defines a tracial faithful state on ..

Vle may thus * restrict curselves to the case where T is
faithful on X. 4s in Chapter I,$ 1.3, We may define the
GNS representation m, on j&}:éﬁ, with domain 07, But note
that, due again to the centrality of T,vthe right regular
(anti)-representation p.(x)y = yx of U on itself is also
a #-(anti)-representation.

Observe also that p.{(x) and m,.(y) commute for all xyell.

Ex, 1.2 Now let S be a VI algebra, T a normal trace on M
(not necessarily semifinite or faithful), with ideal of
definition J. (see Chapter I, Thm. 2.1). Since 7 is now a
tracial state!on J, we may apply the akove construction to
(J, 7), and we may assume, as above, that 7 is faithful. In
this case both 7.(x) and g(x) are bounded on J,** and hence
extend to bounded operators on:LQ. Note that J, (see Chap=-
ter I, Thm, 2.1) is also dense in %k, and hence .'7oft= 12 (A7)
in the sense of Chapter I, 8 2.2, where  is the uw closure
of J, (so that LM 7) = N).

e see that Jg, ecuipped with the inner product (x,y) =
= 7(x*y), has all the properties of what is known as a

Hilbert Algebra :

% peplacing, if necessary, OU by D

s enge o (2)vilz = lyxllz = TGotyrx) = T(yxxeys)

< Tlyy ) lxxsllz = lylls izl
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Definition. A Hilvert Algsvra (O, %, (.,.)) is a *-algebra

with a (positiﬁe—definite) inner product satisfying :

(1) (xz,y) = (z,x*y)
(ii) yv+——zxy is continuous on (X for all xe ¥
(iii) (U = the linear span of §| xy : x, yeOU is
dense in OC |

(iv) (x,y) = (x¥,y*)

Note that our first example also satisfies these pro-
perties, except for continuity of multiplication.

The crucial property is (iv). It ensures that X ) X¥
extends to an antilinear isometry J on K=0{, such that
J2= I, It is more convenient to view J as a linear isometry
(herce a unitary) between T and its opposed Hilbert space

W, defined as follows.

Definition. The opposed Hilbert space H of a Hilbert space
X consists of the same elements as Ja[ as a set, denoted now

by £ instead of Z, but is equipped with the operations.

aZ + by = (ag + bn)

(iv) also ensures that there is complete symmetry between
left and right multiplication. Thus we may define a (bounded)
*-representation @ (respectively, *=anti-representation P )
of Olon ]J as above., ‘. |

We let  L(OU) = {n(x)::xe QU : the left VN algebra of OF

—

and  R(O) = {p(x): xe 0} : the right VI algebra of CU
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bars denoting Qeak‘closures in B(H). (iii) ensures that
Z () and R(JU) are indeed VN algebras, i.e. contain the
identity.

Then we have theAfollbwing fundamental theorem:

Theorem 1.1

(Commutation Theorem for Hilbert Algebras) let (T,*,(, ))
be a Hilbert algebre, with L (), R(O), J as above.
Then X (OU) and R (OU) are commutants of each other, and

(1.1) JX(A)T= R(AQV

Proof., ?{(CKY:: R(O() is proved, in a more general setting,
by prxuIER ({16}, I. 5.2. Thm.1). The second relation follows

from the formuia

(1.2) " Tr(x)T = p(x+)

-—

which is immediate from the definitions.

In Ex, 1.2, one finds (DIXMIER [16], I. 6.2 Thm.2) that

———

the mapping T, given by
7, (x)y =xy (xedf yedz)
extends to an uw bi-continuous *~isomorphism of = LwQAC'T)
. onto Z(J,). It is important to realize that, unless T is
semifinite, J#./. Although we may extend %; to a repre-
sentation of J{ onto ®(J,), this is no longer faithful,
because %}(x) = O only implies that x annihilates the

subspace do J =¢V}{.
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ExX. 1.%. As a particular case of the previous example

we have the Hilbert algebra of all Hilbert-Schmidt operators
on & Hilbert spaceIJ . We may identify this with the Hilbert
space tensor product U@ﬂ ,* by considering each element

.g(g n (zel ,neH) as the rank cne operator on J given by

- (1.3) | (£ ® 1)(8) = (1,8 : pel

= (lg><n])|E>

We observe that the Hilbert Séhmidt norm ||xj|, =.tr(x*x)%
(see Chapter I, §1.3) coincides, on finite rank operators,'
“with the norm of‘?gfﬁ if, and that the latter operators. are
- dense in the Hilbert Schmidt ones,” In the notation of Chap-
'ter I, we may therefore write :HQ’B :E = I2( B(X), tr).
Note that this Hilbert algebra is already complete in the
Hilbert space norm, i.e., J; = L? in this case. Furthermore,
the left VN algebra Z(HD Jc.?) is isomorphic to B('H), and

hence is a factor.

Ex. 1.U. As a final'example, let G be a locally compact
group, with left Haar measure ax, and modular function A
(defined as the Radon-Nikodym derivative of right Haar mea-—

sure with respect to dx). Let OU(G) be the set of all con-

N

* defined as the completion of the algebraic tensor product
Lf@)&{ with respect to the unigue inner product ( «,.)

satisfying

(Z@n.g'@ ') = (£,4")(n',n)
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-tinuous functions of compact support. Equip OU(G) with the
convolution product, the involution f*(x) = A(x-i)ETE:?B,
and the inner product induced by L?2(G). One may check that
OUWG) satisfies properties (i), (ii) and (iii) of the defi-
nition of a Hilbert algebra. It only satisfies property (iv)
if G is unimodular, so that A(x) = 1. In this case, CK(Gj

is a Hilbert algebra; and its completion is L2(G). Moreover,
one shows (DIXMIER [15] 13.10.2) that X((OU(G)) coincides

with the VN algebra generated:by } U(x).: xeG }, where

(1.4) (U(x)£)(y) = £(=7y) : £el?(G), yeG

~is the left regular representation of G on I?(G).
The special properties of Z((K) expressed in Thm. 1.1

motivate the féllowing

Definition. A VN algebra is éaid to be standard (in the
sense of DIXMIFR) iff it is the left VN algebra of a Hilbert
algebra.

Note that the éroperty of being standard is invariant
under unitary egquivalence, (fdr the Hilbert algebra struc-
ture is transported by the unifﬁry) but not under *-~isomor-

phism. Note also that a standard VI algebra satisfies

(1.5) . JAT = A

[}

X% for all xe MnM

(1.6) IxJ

J being an involution of the underlying Hilbert space.
Later we shall generalize the notion of a standard. VN al-

gebra baesed on these two properties.
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Wle have seen above, that if M is a semifinite VN algcbra
then it is #*-isomorphic to the left VM algebra of a Hilbert

algebra. We also have a converse:

Theorem 1.2

(1) 1et U0 be a Hilbert algebra. Then the definition:
A
(1.7) c7(x) = |[gf|2 i w(Z) = x® : xeJ(O0), , ge N

gives a normal semifinite faithful trece on X((OU).

Thus L () is semifinite.

(1i) let M be a semifinite VN algebra, T a faithful
normal trace on/{ . With J, as in Chapter I, Thm. 2.1, A is
*=isomorphic to X (J,). -Morebver, the trace defined on J(J;)

"as in (i) (transported to WM via this isomorphism) coincides

with 7.

Proof DIXKMIER [16] I.6.2 Theorems 1 and 2.

Therefore, Hilbert algebras allow us to.study the struc-

ture of cemifinite VN algebras, For example, one may use
them to prove the famous commutation theorem for tenscr pro-
ducts, namely that, if X, , 4, are semifinite VN algebras
we haves
('/{1 &’/2/2)' =V’ix‘ ggﬂﬁ'

where M, ® M, denotes the weak closure of the algebraic
tensor product M, ® S, in B(¥, 8K ,) (where X, acts on ;)

This theorem 1s proved by defining a Hilbert algebra

structure on the algebraic tensor product 621CQCV; of two

Hilbert algebras in the obvious way, and then showing, using
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Thme 1.1, that _
(0G) & TOL) = X (01,® ;)

~and therefore

I

R(CL ®OT,) = R(OT,)S R(OT,)
(00L& X (Ch,)!

(Z(CL)® X (00))"

However, one knows that semifinite VN algebras do not
exhaust all VN algebras; not even the ones useful in Mathe-— .
matical Physics (see the introduction, and [30]). For gene-
ral VN algebras, snd in particular for those arising fronm
non-unimodular groups, problems such as the‘commgtation theo-
ren for tensor products remained open for a long time. They
were not solved until TOMITA [84] introduced the concept‘of

a left Hilbert algebra.

§ 2, Left Iilbert Algebras

Ex. 2.1 Let us consider our example 1.4. We have already
observed that, if G is not unimodular, then property (iv) of
a left Hilbert algebra is not satisfied. In fact the invo-
lution (wﬁich we now denote by #) is not even continuous.

However, we observe that, if we define :
fb(x) = f(x-Y), then

(£%,8) = (£f,8P) for all f,ge OUG)
+H

Thus the operator fy— ", considered as a linear
.operator 12(G)—LZ(G) (see§ 1), densely defined on Q[(G),

has an adjoint feafd : LQ(G)——>L2(G), again densely
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defined on OUL(G). Therefore it is closable. This suggests
that the following concept would be a useful generalisation

of' the concept of a Hilbert Algebra :

Definition. A (TOMITA) Left Hilbert algebra (s # s (es.))

is an involutive algebra with an inner product satisfying :

(1) (xy,2) = (y,x¥z)

(ii) ywsxy is continuous on O for all xe T
(iii) ®® is dense in O

(iv)  x+>x* is closable, as a densely defined

linear map: OX =]Qf~—§y. :

Note that we no more have a symmetry between left and right
multiplication, as the latter is not even continuous. As in

§ 1, we may define X((QU), but not R (). Thus we need the

dual concept of a right Hilbert algsbra ((,b, (.,.)) which

satisfies:

(1) (xv,2) = (x,2y?)
(i1) yv>yx is continuous on (X for all xe T
(iii)  (r® is dense in O

(iv) x> x? is clossable.

For a right Hilbert algebra we define R () = { p(x) :erI{_
where p(x)y = yx is bounded., Observe that, in Ex. 2.1,
(0UG) ,#,(.,.) is a left Hilbert algebra, and ((G),b,(.,.))
is a right Hilbert algebra.

Guided by this definition, and by our example 1.1, we

see that an adequate generalization of the concept of a
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left Hilvert algebra, in the case of absence of continuity

properties, is the following :

Definition. A closable probability algebra (A #, (oy.)) is

a unital involutive algebra with the properties

(1) (xy,2) = (v,x"2)
(iv) xr»x® is closable.
Note that (iii) is trivially satisfied, due to the existence

of a unit. Furthermore, this allows us to define a state

w(x) = (1,x) (xe)
on any closable probability algebra. Cdnversely, we may
equivalently define a probability algebra (dY,#Qw) (that is =
a unital involqtive algebra withva faithful state w on it)
to be closable iff the involution induces a closable mappoing .
in the GNS Hilbert space associated to Q (see GUDDER and
HUDSON [22], to'whom this concept is due).

We abserve that the concept of a closahle probability -
algebra is more general than that of a left Hilbert algebra,
since left multiplication is ﬁo‘longer required to be con-~
tinuéus, but iﬁ is less general, in that the algebra is. al-
ways assumed to contain an identity. This assumption is a
necessary replacemant of property (iii) in the definition of
a left Hilbert algebra, since continuity properties are no
longer present. |

The very interesting problem nbw arising is whether one
éan extend the results of Tomita-Takesaki theory to a clos-
able probebility algebra Ol. GUDDER and HUDSON ([22], §5)

. . a- / .
were able to construct a right Hilbert algebra CK associasted
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to(jf, assuming that the G5 representation 1w, of CK is
essentially self-adjoint in the sense of POVERS [49].7 This
is already quite a strong restriction, and we shall see later
that they need to impose further restrictions in order to get
a commutation theorem., In Chapfers V and VI, we will be
studying a class of examples of closable probability algebras

to which Tomita-Takesaki theory can be extended.

Ex, 2.2 Ve now consider, as in example 1.2, a VN algebra
l/fg B(l{) with a normal faithful .state w. _We have seen in

Chapter I, §1.4, that we may as_well suppose that w is a vec—
tor state, i.e. that /4 has a cyclic and separating vector Z

If we now let 94 =‘/{§O, we may give CY the structure cf a

left Hilbert algebra by letting

"

(Xgo)(ygo) X0

7 xey,

(xZ,
(,(XéO)’(yZ)O))O(: (7'(;‘40: ,YZ;O ):‘c[

Clearly ([ satisfies (i), (ii) and (iii). To prove (iv),
let xe M, ye A'. Ve have :

(X*éo’“yéo) = (y$X*§o’ éo) = (X*yago: éo)

((x20)%, y&o)

(y*éo s XZo )

i

#* That is, provided that D(w,(x)*) ¢ D(m,) = the domain of

the closure of m, (see Chapter I, § 1.4), for all XECX.
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Thus # is closable, containing the dense set (':= A'Z,
in the domain of its adjoint. In fact,. one may show that
(s by () is a right Hilbert algebra with the product
(xéoj(yéo) = yx%, and the involution (xz_o)b = X*Y, (XE/C);
Moreover, 4 and b have closures; denoted by S and F res-—
pectively, which are adjoints of each other. PFinally, we fird
LX) = M5 ROOC) = ", (see TaguSAKI {81],§2). e ob~
serve that both (X and QU have ¥, as a unit..

Let us now return to the general situation of a left
Hilbert algebra. We denote by S - and F the closure and
the adjoint of x~»yx¥, with domains D(S), D(FP)s Y, res-
pectively., Let (JU be the set of yeD(F) such that the map-

ping S
X > 7(x)y (xeOl)

-~

(i.e. "right multiplication "™ by y) extends. to a bounded

operator on Jd , denoted by o(y). Vle have the

Proposition 2.2 Equipped with the product xy = p(¥)x%,

the involution x P = Fx, and the scalar product of Jd, JU!
becomes a right Hilbert algebra with completion IJ, and p
is a b-anti-representation of CZQMILﬁ

(TACuSAKI [80], Lemmas 3.2, .3.3.)
‘ If one repeats the same procedure, onc arrives at a left
Hilbert algebra (L", containing (N, with the involution S.

Cne says that a left Hilbert algebra is full (achevée) iff

(U= U". Each left Hilbert algebra is contained in a minimal
full left Hilbert algebra, namely (X'". One can now show thé

following commutation theorem,
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Theoren 2.3.
Let U be a left Hilbert algebra, U the associated

right Hilbert algebra (see above). Then we have L (V' =
= R(OU")

(TAKESAKT [80], Thm. 3.1.)

In particular, this shows that < ((X") =R(a"")' =
= R(A")' =Z(00. Thus (X and Ot" generate the same
VN algebra .

We observe that, although this theorem is an important
one, it is not as complete as the corresponding theorem for
Hilbert Algebrés, since two different algebras intervene in
its statenment. In.particular, it does not give us ihfor;
mation on the relation between X () and its own commutant ,
and thus does not allow us, for example, to prove the com—
mutation theorem for tensor products.

Vthat we need is a commutation theoreh in&olving'only C](
(and not CU'), with left and right multiplications by ele-
ments 9§j2£. But we have seen these latter are not con-
tinuous. There are two solutions of this problem : One is
to look for an algebra 04 inside (J( whose right multipli-
cations are also continuous, This was the method originally
used by TAKESAKI [80], and is rather involved technically
(see §3). The other method, due to RIEFFEL and VAN DAELE

[55], is based on the following observation : If Cl is. a

left Hilbert algebra, we let K Dbe the real closed subspace
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of &{ senerated by | Xﬁx : xeCT}. Then the condition that
Xpu—exitbe closable turns out to be equivalent to KniX = {0}.
This allows the development of the theory without any re-
ference to unbounded operators such as S and F, or the al-
. gebra Cﬁ. I shall describe the original method in more de-
tail, since the algebra,Cffkwppens to erise in a very natural
manner in our examples (cf.Chapter V). I would like to ob-
serve, however, that the method of RIEFTFEL and VAN DARLE
seems to be the most appropriate one to generalize to the
case of closable probability algebras. I hope that this
problem will be inveétigated‘fupther. \

Returning, for a minute, tb the subject of closable pro-
bability algeb?as, we have seen that GUDDER and HUDSON [22]
were able to construct under certain’conditions, a right
Hilbert Algebra OU'. But they have no way of asserting that
this algebra has any elements at ali. However, if they
assume that Q' is also dense in Jd, then they are able to
prove the analogue of Thm, 2.3, namely, that R(X') =
=7, (O1)' (cf. Chapter I §1.§ for the definition of the
commutant of an unbounded representation).

I Would like to close this section with a result analo-
gous to Thm. 1.2 and its converse. PFirst we need a defini-

tion:

Definition. Let J{ be a VN algebra. A weight ¢ on M is a

map
é :/—(+-—-——>[ 0, +c0 )

which is additive, i.e.

p(x +y) = ¢(x) + ¢(y) for all x, yEJH;
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and positive homogenuous i.e,
¢(hﬁ) = Ag(x) for all xe/%+, k)O.
(where O(+ o )= +cc)
 Let 7’2¢= { xe M ¢(x*x)< 0 ]y mgb: Vié.‘-)’z,é

Then VQ% is a left ideal and %Qfa.*—subalgebra of A, whose
positive part is the set i xe/{, #(x)<+ew }. ¢ extends to
a plf on m¢. ‘

A weight ¢ is said to be

faithful iff ¢(x*x) = O implies x=0

semifinite iff ?ﬂﬁ(equivalently7fﬁ) is uw dense in 4

‘pormal iff there éxists a set { ws } of normal plf's.

owr M such that ¢(x) = sup ws(x) for all Xe“ﬁ%'

vle see that the notion of a weight is a generalization
of the notion of a trace, where unitary invariance is no
longer assumed. (cf. Chapter I, §2.1)

Ve then have the following results; dué to CONBIS [11]:

Thecrem 2,4

(i) Let Olbe a full left Hilbert algebra. For xe (o),

define

¢(x) = { &2 ir g = w(§)*m(g) for some Fe(T

+ o Otherwise
then ¢ is a npormal semifinite faithful weight on Y (QL).

(ii1) Let /Q'be a VN algsbra, ¢ a normal semifinite
faithful weight on A/, wWe equip 77¢ with the scalar pro-
duct (x,y) = ¢(x%y). Since y?¢ is a left ideal of M, the

GNS representation (Chapter I, §1.4) of ansinduced by ¢ can
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be extended to a representation,ﬂ% ofgf%, given by
w#(x)y = zy (xe A, ye,%}). Bauipping (] = }?Pn Vi*  with
-the product and involution inherifed from_/% and the above
scalar product, (U becomes a full Hilbert algebra such that
LoD = W¢(J%). Moreover the weight defined on Z () as
in (i) (transported to X via my) coincides with ¢.

Just as Thm. 1.2 and its converse ensured that (o0,
'for Cﬂ a Hilbert algebra, exhausted, up to *#-isomorphism,
all semifinite VN algebras, Thm. 2.4 shows that Z(0U), with
O a left Hilbert algebra, exhausts all (asrbitrary) VN al-
gebras (up to *—isomorphism). This 1is because any VN algebra.
can be equipped with a faithful normal semifinite weight.

‘This also follows from the following result:

Theorem 2.5

An arbitrary VN algebra A is isomorphic, as a VN algebra,
to the left VN algebra of a full left-Hilbert algebra.

(TAKESAKI [80], Thm. 12.2)

§3. liodular Hilbert Algebras.

\ie have seen in the previous section that Thm. 2.3 is
not an adequaté commutation theorem; what is needed is a
theorem involving left and right multiplications by elements
of U itself. Hence we are looking for a subset of JC for
which right multivlications are élso continuous.

For example 2.1., OU(G) itself will do, since right
multiplications are in fact continuous. This is becaus:z
O1(G) is both a right snd a left Hilbert algebra, a fact
essenﬁially due:to the existence of the modular function

X > A(x). But tnis is just an accident, and is certainly



84

not the case for exanmple 2,2,

| In the genéral Case, we have constructed two linear maps
S':']J__§jf , F :i?-311, adjoints of each other. Writing
A = IS, one easily sees that A 1s a positive self adjoint

non-singular operator Y. Moreover, the polar decom-

1——
5

position S = J|Fs|? = JA% furnishes us with a partial 150~
metry J 1{__5iz which one easily proves to be an isometry
onto, such that J%= 1. The operator A , called the modular
coperator plays a fundamental role in the theory. One could .
say that A arises from the difference between (x,x) and
(xfﬁx#)v(which is zero in the case of a Hilbert ‘algebra,

where S =J and A = 1,) In fact, we have

(xf,x™) = (SX,8x) = (FSx,x) = (&x,x)

Let us illustrate this with the case of example 2.1.

We see that (Af)(x) = (FsP)(x) = (Fz)(x) = g(x~7)
where g(x) = (S£)(x) = A(x-1)f{x-*)"

e (an) () = A(x)1(x)

loreover, one checks that elements of OU(G) form a dense
set of analytic vectors for A, and hence we may define, for
each. zeC and fe(l(a)
alz)f = A*re (G)

Thus we have defined a group, called the modular auto-—

morphism group, of automorphisms of (QUG) which has the

" following properties :
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(v) (A(z)f)#z a(-z)£# zeC, fe O(G)
(Vi) (A(z)f,g) = (fsA(E)g) zel, f,ge C(G)

(vi1) (A(1)f,g) = (g%, £%)

i

(viii) zvw~—=>(f,a(2)) 1is entire for all f,ge (G)

(ix) My =§ (1 + A(t))f : £eOU(GY is dense in UG)
'. for all teR

These observations help to motivate the following definitions

Definition, A Modular Hilbert Aigebra is a left Hilbert

Algebra (dz,#r, (+y.)) equipped with a one parameter complex
automorphism group |} A(z) : zeC } satisfying prbperties
(v) - (ix) above.

Ye note that property (iv) of the definition of a left
Hilbert algébéé is now redundant, becéﬁse it follows from
(vii) that f;—afﬁ? has an adjoint f»é(ﬂ)ff.with dense do-—
main (. One can show thét, defining A = FS as above,

a(z) = A®  (zet) (the bar denoting closure). The polar
decomposition of S (see above) gives a unitafy involution

j :1J—5ﬁz, which moreover, dué_to property (vii), ;§§z§§~gz
invariant., This ensures, as in the case o Hilbert algebras,
that right multiplication is also continuous. Thus the rigzht
Hilbert algebra (' defined in §2. now contains (. One is
tnerefofe able to prove, without much difficulty, the fol-

lowing.

Theorem 3.1.

Commutaticn theorem for modular Hilbert Algebras.

Let (s #> (v5.)s {6(2)]) be a modular Hilbert algcbra.

-
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e have 3
(o0 = R(A)
30T = R(OV)
(together with their dual relations of codrse)

(TAKSSAKI [80), Thm. L.1)

Nowadays modular iilbert Algebras are a bit out of fashion.
This is due to the fact that they are generally accepted to be
unnecessary for the development of the thewy of léft Hilbert
algebras, as simpler methods have been discovered. (see [55]
and [86]). It does not seem possible to apply these never
methods in a natural way, to this particular problem, as they
rely heavily on the fact that the representations m and p‘are
bounded. It must be emphasized, however, that for the general
case of a closable probability algebra (cf, § 2) these new
methods, especially those of [55], seem to be precisely the
ones one should try to generalize.

The real importance of modular Hilbert algebras lies in
the fact that every left Hilbert algebra has onz of them con-
veniently placed inside it. This is the most difficult part‘
of TOMITA's work (See [80],§ 5 - 10). Ve formulate this as

a theorem,

Theorem 3.2. (The Fundamental Theorem of TOMITA)

For every left Hilbert algebra CR, there exists a dense
involutive subalgebra @ QOZ, and a modular automorphism
group { A(z) : zeC } of @, making 8 into a modular Hilbert

algebra such that 8" = " (see§2)
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’

In particular, therefore, T(B) = L(A)
(TexEsakI [80], Thm. 10.1)
Combining this with Thm. 3.1, we therefore get :

Theoremn 3%.3

For each left. Hilbert algebra Cﬂ, there exists an anti-

unitary involution J of K= (7, such that

JX(O)T = Z(O0)!
X% for all xe L(O0)n Z(JU)"

and Jd X Jd

e now define :

Definition A VI algebra A< 63 (X) is said to be

standard in the sense of Takesaki [81] iff there exists an

antiuwnitary involution J of Il such that

INT = M .
and JxJ = x¥ for all xe Mn M'.

(]

(Compare the definition of standard in the sense of
Dixmier in§1)

Since every VN algebra ishisomorphié to an Z(OU)
(§2, Thm. 2.5), Thm. 3.3 now gives us the :
Theorem 3.4 —

Every VN algebra‘/% has a faithful standard represen-
tation in the sense of Takesaki (that is, a faithful re-
presentation w such that w(/4) 4is standard in the above

sense).

We .. sketch the [ construction of . the algebra ‘8
in Thm., %.2: We have seen how to construct the modular

operator A, which is a positive self-adjoint non-singular

-
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operatér. Thus A has a logarithm. One now defines 03 to be
the : #4sub;algebra of CH generated by elements of the
form f(log a)x, -with xe X and fe ((0,+ o)) = owe Jif-
ferentiablglfunctions of compact support contained in (O,+ o).
It is a highly non—triviai problen, of course, to verify that

83 has the requiréd properties.

§ 4. The modular automorphisms and the KMS condition.

§4.1., The importance of Tomita-Takesaki theory came from the
realization, due to Takesaki [80], that the modular auto—
morphism groun defined for a modular Hilbert aléebra satis-
fied the XMS-condition of Quantum Sfatistical Mechanics,
first formulated in the algebraic.framework by HAAG,
HUCEIHOLTZ anéVWINNINK [26]. This haé had- tremendous im—
plications for the development of both Quantum Statistical
Mechanics (sce Chapter IV) and Tomita-Takesaki theory itself,

We formulate this observation in the form of two propositions:

Proposition 4.1. Let U be a left Hilbert algebra. As in
Thm. 3.2 construct the modular automorphism group {A(a): €Cl,
Then { A(it) : teR } (see §3) extends to a unitary group on

Td = Ol , which leaves (K invarisnt, and acts as an automor-

phism group of (Jl. MNoreover, for all Ze ([

(4.1) w(Atty) = Altg(g) it (teRr)

1

Thus { At : te¢R } induces a one-parameter automorphism
group {ct] of the left VN algebra ().

(TAKESAXI [80], cor.9.1 )
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Theorem .2

Let M be a VN algebra, ¢ a faithful normal semifinite

weight on A (see §2)., With the notations of Thm. 2.4 (ii),
the modular automorphism gfoupr { A(it) 5 ter } of U in-
duces a strongly continuous one-parameter automorphism group

o, of J/{ such ‘that
(4.2) my (oy(x)) =A.L.‘~7r¢<x>a—bi (teR, xeH)

The weight ¢ is a KMS weight with respect to oy , in

the following sense :
(i) OL(X)GmS;; iff =xe Wf;and
(1.3) B $(o(x)) = g(x)

(ii) for all x,ye 01::Y@n7ﬂ*, there exists a

function F, defined, bounded and continuous on the strip

{ zeC ¢+ 0 < .Taz < 1 } and analytic in the interior, such that
(Loly) P(t) = ¢{lo(x)y)s F(t + 1) = ¢(yor(x)) ter

Moreover, oy’ is the only strongly continuous one-

parameter automorphism group of M satisfying (4.3) and (L4.L4)

Finally, ¢ 1is a trace (i.e. is unitarily invariant) iff
op(x) = x for all =xe M, ,(which implies that A =1, F =S =

= J and Ul is a Hilbert algebra).

(couses [11], §4) |
It is interesting to observe that when one is given the

modular automorphism group g, of M corresponding to a normal

faithful semifinite weight ¢, then it is easy to construct a
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maximal moduler Hilbert algebra Cﬁ inside the left Hilbert
algebra Cﬂfs'Y%n%$5 (see Thm. 2.4(ii))., One considers the
algebra JQ; of analytic elements of 4 , namely those xe M
for which - twyo,(x) extends to a (necessarily unique) en-
tire M-valued function Z\—%O;(X).

For each xe.fand s>0, define xg by the Bochner

integral :

(4;5) Xg = (s/w)%[(exp(~st2))ot(x)dt
rR .

Then x e/Z, and in fact

o (xs) = <s/w>%f (exp(~5(t-2)2))ay (x)at
IR

But as s 950, Xy —>X ultraweakly. Thus Jﬁ;is uw dense inM.
If one now lets (f: =.Oznu%; one sees that N, equip-
ped with the left Hilbert algebra structure of CY(see Thm.
2,4(ii)) and the automorphism group | o, : zeC } is a modu-
lar Hilvert algebra, containing any other modular Hilbert
~ © e—tAW
algebra 03 ¢(l, anda Z(00) =M =M.

(PED:RSEY and TAKESAKI (L8], §3)

§L.2 To further justify ﬁhekclaim that Tomita-Takesaki theory
is a Non-Commutative Integration theory, I shall give a brief
account -of the Radon-Nikodym theorem for arbitrary VN algebraé.

We have seen (Chapter I, Thm. 2.3) that for a senifinite
VN algebra‘/% equipped with a (faithful, normal, semifinite)
.trace 7, each um‘/%*has a "Radon~Nikodym derivative" with

~respect to 7; namely, we constructed a unique heLi(JY,T)
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such that

(L.6) w(x) = 7(hx) for all xe.

In caées where unitary invariance is absent, one cannot
hope for a similar theorem to hold for any two weights on./%.
However, one does have a positive fesult, if the weights in
question are required to commute, in a sense to be made pre-

cise below,.

. . ¢
Pirst we define the centralizer 4 of a faithful normal

semifinite weight ¢ with modular automorphism group | Ot, }

to be the set .of fixed points of o, i.e.

(L. 7) A= {ne: o (n) =h, teR ]

This definition is justified by the
Lemma li.3 he ./’(g iff h W?g}’ﬂy, Wlfh gmys and
#(xh) = ¢(hx) for each Xe)?%(see §2)« -
(PLDERSEN and TAKESAKI [L8] Thm. 3.6)

= rer—r—om e s ma—— <4

with ¢ in case ¥ 1is ¢g-invariant in the sense of eqn. (lL.3).
This definition is justified by observing that, in case-
M is semifinite with a (faithful normal semifinite) trace T

on JQ, and ¢,¢€¢%* are states, we may write :

¢(x) = 7(hx), y(x) = 7(kx) (xe M)

where h,kel, (M,7) are the Radon-Nikodym derivatives of
¢ (respectively w) with respect to 7. The modular auto-

morphism groups are given by
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of(x) = ntartt | of(x) = xixxit (xe H, tcR)

since o¢(respectively ow) satisfies the XMS condition with
respect to ¢ (respectively y) (Thm. 4.2). Ve see that ¢
commutes with i in the above sense precisely when (the spec—

tral projections af) h commute with (those of) k.

Thecrem b.b  (Radon-Nikodym)

Let knﬂP (sée Chapter I,§ 2.3.2) be a positive self-

adjoint operator. Define
Ik
(L4.8) ¢ (%) = ¢(k%x k?) (XEJL)\

Then ¢k 1is a normal semifinité weight on M , cbmmuting
with ¢.

Converselj; if ¢ is a normal semifinite weight on A
*commuting with ¢, then there ekists a unique positive self-

adjoint operator knJ€ (the Radon Nikodym derivativs of U

with respect to ¢) such that ¢ = ¢.. loreover, if ¥ is

faithful, the moduiar automorphism group,ow of ¥ 1is given
by . .
‘ ﬁﬁxﬁ = kitot(x)ﬁit (xef, teR)

(PEDERSEN and TAKLSAKI [L8], Theorems L.6 and 5.12)

To justify the need for the extra assumption that i
should commute with ¢, consider the cass vhere ¢is a
(normal, faithful, semifinite) trace én./%(which is always
true if M is abelian), Then M°=M -since o? i trivial

(Thm. 4.2). Thus any (normal semifinite) weight on M
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commutes with ¢. In particular, if e ‘/‘(#is a plf, we re-
cover Thm.I.2.3, since ¢(k) =¢y(1) <o (by (L.8) with x=1 )
implies that keI, (M, ¢).

Just as we could characterize, in Thm. 4.2, all (strongly
continuous) automorphism groups with resjsect to which a given
(normal, faithful, semifinite) weight ¢ satisfies the X3
condition (there is exactly one, namely o¢ !) so we can
chareacterize sll normal semifinite weights that satisfy the
KIS condition with respect to a given (strongly continuous)
automorphism group off[. There may exist none! (PEDERSEN

and TAKESAKI [48) Cor. 7.5). If, however, there exists one,

then we know all the others :

Propositicn 4,5 Let ¢ be a faithful normal semifinite weight

onﬂ, ioL} the corresponding modular automorphism group.

If ¢ is a normal semifinite weight on M satisfying the XLS
condition ((4.3) and (L.4)) with respect to {cy}s then o =

= ¢ with a unique knAnM’. Conversely, if kpMnaM' is
positive and self-adjoint, then ¢, satisfies the KMS con—
dition with respect to {oy}.

(PEDERSEN and TAKESAKI [L8], Cor. 4.7 and Thm. 5..4)

Suppose that M 1is semifinite, and ¢ is a (faithful
normal s‘emifinite) trace on M. Fach normal semifinite weight
v on M is then a ¢, and odx) = kitxgit by Thm. L.k
since of is trivial., Since kpH® = A, kiteH, and is

unitary, so that ot}U is inner, Conversely, if the modular
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automorphism group o#’of a faithful normal semifinite weight
v on M is inner, say o(x) = kKtxKit, then k is positive
and self-adjoint and non-singular by Stone's theorem, and
xtte A implies that kn4. By Thm. L.L, we now see that

¢ = Y » is a normal faithful (since K1 is non-singular)

semifinite weight on4/{. iloreover, we have T
of(x) = (ot )itof(x) (et Jit= x

for all xef, so that, by Thm. 4.2, ¥ is a trace, and hence

0/1 is semifinite. Thus we have shown the

Theorem L.6

A VI s1gebra M is semifinite iff the modular automorphism
group. of any normal semifinite faithful weight on M is

inner,

-~

This theorem, with "state" replacing "weight" (thus apﬁ;
licable only to VN algebras fhat possess Taithful normal
states) is due to TAXESAKI ([80], Thm. 14.2) where the proof
takes about ten pages. The above proof is due to  PEDIRSEIl
and TAVESAKI ([48], Thm. 7.L4).

§4.3 For applications to Mathematical Fhysics, (see Chapter IV)
one often needs to consider a state w of a C*-algebra (jz'

satisfying the XKMS condition with respect to a given auto-

morphism group {oy} of J(. One then has :

Theorem L.,7

In the situation above, the left kernel { xe ((: w{x*x) =

=0 } of w is a two-sided ®~ideal of (J{, end coincides with

-
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the kernel of the GNS representation my *. It ¢, 1is the
corresponding cyclic vector, then it is cyclic and separating
for the VI algebra M = m,(J0)".

Moreover, oy is the modular automorphism group corres-—
ponding to w, in the sense that

ry (o (%)) = Abla, (x)£ (xe 0, teR).

This completes our discussion of the most basic features
of TOMITA-TAXESAKI theory. I hope that I have indicated the
directions in which one might attempt to generalize this
theory, and justified the point of view put forward in the
Introduction, namely that TOMITA-TAXESAKT fheory should be
regarded as a form of Non-Ccmmutative Integration Theory;
Cléarly, however, TOMITA-TAKESAKI theory is much more than
this, as 1ts applications and developments, which I have not
had the opportunity to go into, have shown (see CONHNES [12],

and references quoted there).

This chapter also completes the first part of this
thesis, which was concerned with a discussion of Non-
Commutative Integration Theory. In the second part, I
shall first describe some applications of Tomita-Takesaki
theory in Quantum Statistical ilechanics, and Justify its
relevanée, and then analyse a class of examples, motivated
from Quantum Statistical lechanics, where the theory can

be generalized,

* This is also the case when @ 1is tracial — see §1.
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Chapter IV

BEQUILIBRIUNM STATES AND TIME TRANSLATIONS

I QUANTUM STATISTICAL MECIANICS

The pﬁrpose of this chaptér is to provide an intro-
duction and physical motivation to the matepial of chapters
A% énd vli, by.describing the algebraic approach to Equi-
librium States and Time Translations in Quantum Statistical
Mechanics, as developed initially by HANG, HUGENHOLTZ and
WINNINK [26] (henceforth HHY) and subsequently by other

authors,

§1. The state of a physical system 1s totally specified-by
the expectation values of all observables in that state;
when the observables are taken to form the self-adjoint
part of a complex involutive algebraJl, there corresponds
to each (physical) state of the system a (mathematical)
state w of the aigebra (i.e. a positive normalisad linear
form on CU) via the interpretation that the expectation of
an observable xe Ul in that state is given by w(x). |

In Quantum StatisticaI.Mechanics of finite systems
(say a gas enclosed in an isgﬂated container), the obser-
vables-are {(bounded) operators on a Hilbert space~}f, and
the equilibrium state wﬁ of a system at a temperature
T = 1/kB8 (8>0, k=Boltzman's constant) in the canonical

ensemble 1s defined by the formula

11y . @plx) = tr(exp(-pH)x) / tr(exp(-pn))

-
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where H is th¢ Hamiltonian of the system. This cor-
responds to assigning to each eigenstate gié}[of the
Hamiltonian a probability c; = exp(-fE.) / 3 exp(-£5)
(where 3; 1is the energy of %, HE, = E %, ), so that the
equilibrium state is the mixture p = Echét.* In the
grand-canonical ensemble, the equilibrium state is given
by (1.1), where H is now replaced by H' = H - uN, u being
the chemical potential and N the number operator.

The aim of statistical mechanics 1is to derive the
macroscopic or thermodynamic properties of large systems
from the equations of motion of the individual particles,
The thermodyﬁamic functions, sﬁch as specific heat, are
never significantly dependent on the volume or éhape of
the object béing measured in any expérimental situation.,
Now in finite models, these thermodynamic functions -
usually do depend on the volume or shape of the object;
this dependence only disappears when the volume and
number of particles is allowed to incréase to infinity,
while their ratio (the density) remains finite. This
process is called taking thejﬁhermodynamicllimit, and the
observed independence of volume or shape of the thermo-
dynamic functions provides Justification for the claim

that the experimentalist is faced with a situation

# QOne may ensure that the Hamiltonian has discrete
spectrum and that exp(-pH) is trace class, by choosing

suitable boundary conditions on the walls of the container,
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actually close to that described by the thermodynamic

limit, |

Now. a good model for a thermodynanic system should account
for the characteristic properties of such a system, such as
phase transitions or transport phenomena. Typically, phase
transitions manifest themselves experimentally by abrupt
changes in certain thermodynamic functions (such as specific
heat)., To exhibit this most dramtically in a mathematical
model, and simultaneously to be able to characterise it in

a sharp, well defined manner, one defines a phase transition
to be a discontinuity in the relevant thermodynamic function.
Now in finite models actual discontinuities nevéf occur; at
best very steep. gradients ("smocth phase transitions") may
be present. Of course the experimentalist cannot distinguish
between a steép gradient and an actual discontuity (due to .
the limited accuracy of his measuring apparatus), but the
definition of a phase transition as a discontinuity is cer-—
tainly consistent with the experiméntal situation, and is
also dictated by mathematical convenience.

For these reésons, among bthers, it is necesséry to con-
sider states of infinite systems. The first problem.néw
presenting itself is that in most cases (1.1) does not make
sense any more. The usual way around this is to consider
the infinite system as the limit, in an appropriate sense,
of finite subsystéms; the equilibrium state is then defined
to be the limit of the "local Gibbs states" given by (1.1)

(provided this limit exists).
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s

Specifically, let T = be the physical space of the
system, and let L be the set of all bounded regions A ¢ T.
For each AeL, one defines OJL(A) to be the C#-algebra
generated by the bounded observables for the region A,

One assumes that the property of isctony holds :

For A, ¢ Ayel, there exists an injective #*-~homomorphism
iy ¢ OUWn,) - OUWAg), preserving the identity, and such
that dg5i,4 = 134 whenever A, C A, C AgeL. (This is
the mathematical expression of the fact that the observables
for the région Ay may be considered as observables for the
region Ay ). )

It is then shown'(S;AKAI [62], 1.23.2), that there

‘exists a C#—algebra O, the C%-inductive limit of

LOUA) ¢ AeL }, such that we may identify the OU(4)'s, up
to %~ iscmorphism, with nested o subalgebras of O, and
O= u{ OT(A) & AeL } is (norm) dense in(l. Fhysically,
self-adjoint elements of O(_correspond to observables that

can be measured by experiments in some bounded region AcL

(local observables) while self-adjoint elements of (¥ can

be "approximately'" so measured (quasi-local observables).

* I will be Bd with its usual topology for continuous
systems, or Zd with the discrete topology for lattice

systems, d belng the dimension of the physical space.

*%  i,e, A, C ApeLl implies OU(4A,) < OU(AL)



(1.2)

(1.3)

100

Vie now turn to the definition of the equilibrium state
and dynamics of the infinite system. For each region Ael,
we assume that the "local time development! is well de-
fined as an automorphism group { af : terR } of OU(4A).
Suppose that each (JU(A) is faithfully represented on. e
Hilbert space K'(A), on which the local time develop-—

A

ment oy 1is unitarily implemented. Letting H, be the cor=-

responding Hamiltonian, acting on N{(A), we thus have:
at (x) = exp(itH,)x exp(-itH,) (xe (L), teR)

Again one may ensure that exp(-pHd) 1s trace class
for >0, so that one may define the "“local Gibbs state"
wﬁ“ on JUA) by (1.1).

By the isotony condition, it is clear that if xe O,

for example xe(l(ly) for some A €L, wg(x) is definzd
for all AeL such that ADA,. Physically, wg(x) vields in-
formation on the behaviour or particles in the subregion
Ay, of A. Thus we expect wﬁ(x) to Become independent of
A as the boundary of A recedes to infinity. Indeed, in

many models (see. e.g. [57]) it can be shown that
w (x):= 1lim wf(x
5(x)i= Lim w)(x)

exists for all xe({ for a suitable interpretation of the
limiting procedure (see RUSLLE [60]). The existence of
this limit is in fact the first assumption of HHHY [26].
wg then defines a continuous positive linear form on OU,

and thus extends to a state on OU, the limit (or global)
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gibbs state.

Turning now to the definition of "global dynamics'", wve
first observe that, for all xeCKL, say xe (X(4, ), the isotony
condition ensures that xe QU(A) and so of(x)eQ(A) for all

A D Ay, AL, Thus it is meaningful to consider 1%@na6(x).
-9

The existence of "global'" time translations is a con-

gsiderably more difficult problem than that of the global
gibbs state. HHW [26] require that lim ol (x) exists for
all :xeCﬂL, telR, the limit being taken in an appropriate
sense in the norm topology. Then one may define an auto-

morphism group o of CKL, by
o (x) = lim ap (x) xe O, teR

and extend d; by continuity to all‘Qf a.

This second assumption of HIW has been shown (STREATER
[77], ROBINSON [58]) to be justified for a large class of
lattice systems. However, it has been shown to be invalid
(DUBIN and SEWELL [17], henceforth DS) in the case of the
BCS model (BARDEEN, COOPER and. SCHRIEFFER [8] ), and the
ideal Bose gas model, although HIW's main conclusions have
been shown (ARAKI and WOCDS [6], see § 3) to hold in the
latter case. For this reason, DS [17] have weakened this
assumpﬁion, replacing both assumptions by the following :

(a) for all X, .... xn.e;C7Z;4‘ _ oty ees th R,

nel, 1%m wg(af(xi) ceee af(x,)) exists
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(D) for all X, eee Xys Vi oee ymeczz Ty ees tps
S1 ese SpER, h,m el
lim lip wg(af(xi) e al (%) of(yy) oo aX(vn)) exists
and equals ¢

Lin wf(6f (%) ven af(%) 6(71) vnn od(v))

Note that (a) implies the existence of lin wé(x) for .:
all xe¢ CKJ moreover, DS [17] show that their assumptions
are also satisfied by the ideal Bose Gas model, and by the

BCS model, at least in the strong coupling case.

§ 2. Before we present the main results of HHW aﬂd DS, let
us explain what is meant by the KMS condition., This was
first formulated by KUBO [41], MARTIN and SCHVINGER [43]
as a boundary—condition for ”thermodyﬁamic Green's func-
tions"; in the algebraic formulation, it was first used by
HHW, and has since hecome an essential tool in statistical
mechanics, especially since the realization of its intimate
connection with the Left Hilbert Algebras of Tomita o
(TAKESAKI [80]; see Chapter III of this dissertation).

Consider first a finite system, where the Gibbs state

is defined by (1.1). 4wﬁ

wp has the following two proper-

ties:

(a) faithfulness wﬁ(x*x) =0 => x=0 (xcN)

(b) XiS condition let x,y €. Then there exists

~a function £, defined, bounded and continuous in the strip
{ zeC 2 0 < Imz < B } and analytic in the interior, such

that
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£(t)

wpg(ay, (x)y)

wplyeq (x)) = £(t + 1p) (teR)

(For the simple proof, see WINNINK {89], p.238)
Putting y =1 in (2.1), one obtains, using the Schwartz

reflection principle with respect to the lines Imz = nf,
nez, an entiré function f£(z), which is periodic with period
if, and also uniformly bounded (by ||xl|). Therefore it must

be constant, which shows that

wglon (x)) = £(t) = £(0) = wg(x) | (ze)

Thus a KMS state is time-invariant (WINNINK [88]),

From this WINNINK [88] now concludes, in the case ofia
finite system,.that the Gibbs state is the unique normal LS
state with respect to o for the inverse temperature g, ir
one assumes J(= (ﬁ’ (X¥).

Thus in this case, the KMS condition characterizes the

equilibrium state for inverse temperature g > O.

Clearly, if one can show, for a specific model, that a
KHS state exists, and that it is unigue, then that state-
must describe equilibrium. This has been done in special
cases., .An example is the one dimsnsional lattice system
considered by ARAKI [3], which we now describe.

For lattice systems, the local algebras (J{(A) can be

taken to be 63(]49, IJA being finite dimensional. (For de-

tails see HUGENHOLTZ [31]). For each AeL, we are given a
potential ¢(A)eQl(A) and the M"local time development" af

is given by
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(2.2) al(x) = exp(iv(a)t) x exn(-1U{A)t)
‘ ' Xe OIL, teR
where
(2.3) u(a) = 2 ¢(a")
' Nen

In the one-dimensional case (I'=%Z) ARAKI [3] requires
the following two conditions :

(i) The potential is tempered :

(2.4) sup 2 { (exp (aN(A)))Mlg(a)ll & neal < oo (0>0)
heZ A _

(ii) The "surface energy'
(2.5) w(A) = 2 1 ¢(A') ¢ A'eL, A'nA £ 4, A'ﬁA‘;é ¢ 3
N ( A°=D~A)

is bounded in norm independently of Ae€l.

It is then shown that the limit (1.4) eiists oy virtue
of (i), and defines the time development oy of the infinite
system. Under fhese conditions, ARAXI [3] shows that there
exists exactly one KUS state fér o, at each fixed B>0,

AIt may be of interest to note that such existence and
unigueness theorems mve been formulated in the abstract:

. To%
let (N be a UHF algebra ,and 8§ a normal #*-derivation-

% A UHR algebra is a C%#—algebra U with identity 1 which

contains an increasing sequence of C¥#-~-subalgebras 63“91
which are (isomorphic to) full matrix algebras, such that

U GSh,is (norm) dense in U . Each B, has a unique tracial
"

state 1, , hence L( has a unigue tracizl state 4+ such that

T =’l‘n.

b
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of CK*. Wirite D(8)= yOC, | iOQ}'being an increasing sequence
of matrix algebras. Let h, = h° ¢ OU be such that o(x) =

= ilhy, x] for all xe 0, ([63], Thm.2). Let By: Ol—> Oly
be the canonical conditional expectation of (U onto OU L

If sup {Pah, - h,ll <e0 the closure of 4 generates a one-

parameter automorpﬁism group. py of o4 satisfying:

(2.6) pr(x) = lim exp(iPyhyt)x exp(~iP hyt) x€D(d), teR

(see KISHIHOTO [38]). We say py. is approximately inner.

Under these circumstances, there exists one (POWHRS and
SAKAI [50]) and only one (KISHIMOTO [39]) KuS state of OU
with respect to p, (for g=1). |

Note that Pph, - h, corresponds to the surface term
w(A) for the case of a one dimensional lattice .system.

Coming back to the general case of an infinite system,
we note that although wﬁ cannot now be written in the form

(1.1), it still satisfies the KMS condition, both under the

% A normal *-derivation is a linear map & : D(8)—sCU,

where D(8) is a dense *-subalgébra of O, with the proper-
ties: (1) o(x*)
(ii1) o(xy) = x0(y) + o(x)y : (x,y€D(5))

(1ii) D(d) = chn, each CY, being (isomorphic to)

o(x)* + (xeD(d))

i

a full matrix algebra. A normal *-derivation is always
closable ([51], Thm. 1).
#*% That is, the mapping defined by the property

T((P,x)y) = 7(xy), for all xel, vedl,.
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4

assumptions of HHW and under those of DS ([26], [17]). Thus,
and this was the crucial observation of HHW, the XS condition
may be used as an algebraic requirement on the equilibrium
states of infinite systems. However it is ultimately de-
sirable to define equilibrium in terms of simple physical
requirements., Several such requirements have been studied

by different authors

§2.2., HAAG, KASTLHER and TRYCH-POHIMEYER [25] require that an

equilibrium state be :

(a) Stationafy in time ‘ \

(b) Stable under local pérturbations of the dynamics

(¢) Relatively pure. |

These requirements correspond to the following mathe—-

matiéal assumptions on.the observabie algebra ([ , the time
development oy (ﬁhich we now require to exist as an auto-
morphism group of CY') and the equilibrium state w

(a) (o (x))

(b) Given h

w(x) for all xe O, teR

1

l

h*eCX, one may construct the perturbed

automorphism group &b) which is related to the unperturbed

one by the following property :

(2.7) ‘ 155 atk (x)] = iaf at(x)‘e=o + [h,x]

&
for all xe Olsuch that one of the above derivatives exists o

% Roughly. speaking, if ay(x) = (exp(itH))x(exp(-itH))
then ord“)(x) (exp(it(H+h)))x (exp(-it(il+h)))



107

The state w is now required to be folium stable for inner

Lgpasi—local) pérturbations in the following sense:

There is a map k;——ywcmh) from a zero neighbourhood in

oh
R to the state space of OU such that w( )=

(1) dlkka?)(x)) =.wﬁ”{X) for all xe O, teR

w. and

O (hJ

ii dw = w exists in the weak sense,
b, 1
aAa A=a
(iii) for all h = h*eCR,cu?J is a normal form in

the GNS representation defined by w,* ¢ we say aé“ lies in

the normal folium of w.

This formulates the physical requirement that when the

time evolution is perturbed by Ah (A= small coupling constaht)

(AR

the new stationary state w'""'is only "slightly'" different from

the old one, in the sense of ‘having a perturbation expansion

wML + MUy + ceene

Y . i : i
(c) w has 1L~ - decrease of correlation in time in

the following sense :
There exists a norm dense, self-adjoint subset *3@5(%
such that for each x; ... X, E_S with n<6 there exist

C, &>0 such that

-
(2.5) | o )y e e, Ga)) | <l e spp -]

¥ gee Chapter I,§1.u.
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where wJ is the truncated n-point function.

This technical condition is a strengthening of the vro-.

perty of weak clustering (i.e. vanishing in the mean of the

truncated. two point functions) which is known to be equi~-
valent to extremal invariance for asymptotically ebelian
systems (see KASTLER (34], Chapter II). Extremal invariance,
i.e. the requirement that the equiiibrium state be extremal
among all time-invariant states, is'the least specialized
version of relative purity ([25], Section III) : the equi-
librium state is pure, relative to all stationary states.
Under the above conditions (the last one habing been
slightly weakened by KASTLER and BPRATELLI [35]), it is shovn
([25]) that any w is either a KIS state or that the spec-
trum of the énergy (i.e. of the genefator of time~transla-—
tions in the GNS representation defined by w) is one-sided,
a situation corresponding to thé ground state, which is to
he interpreted as the zero tempgrature state. (see STREATER

and WIGHTMAN [79])

* By definition: O = wg
w(xy) = wI(Xi)

T
w(x %) = wy (% ,%5) + w;(xi)wf(xz)
. .....0..}.00.‘.......
O.)(xi:xz LRI I Xn) =an(xk,,xk¥ LI Xk:‘)...wnr(xk,,}(w,...xkf‘)
\ v \ 5

where the summation extends over all partitions of {1....n}

into {k{ ... kollkg ... KED ... (K2 L., kﬁ}, (ng++..+ng=n)

% '
with Xk <kKj<...<ky and Ki<kf< ook3
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82,3, In a recent paper, PUSZ and WORONOWICZ [52] have formu-
lated the physical requirements for equilibrium in a diffe-
rent way, which allows them to dispense with the requirement
of relative purity and time invarience of the equilibrium
state. Their requirement, termed passivity, is inspired by
the second law of thermodynamics. Namely, if an isolated
system in equilibrium is perturbed by changing the extefnal
conditions (e.g. acting on it with an external force) for a
finite time interval [0,T), after which it is \anézﬁut bed

"z, then a non-negative amount of éhergy
must be transmitted to it in the interval [O,Tj; for thermo—‘
dynamic systems in equilibrium cannot perform work in cyclic
processes., |

This requirement is formulated mathematically as follows:

One considers a C¥~dynamical system, i.e. a C¥-algebra le

with a str. continuous automorphism group {ay : teR} ,
generated by an (unbounded) derivation 6 (see .§2.1). The
system is perturbed in a time interval [O,T] by a local
change in the dynamics, i.e..its perturbed time evolution
agQis generated by a derivation 8y with D(& ) = D(é)‘
given by

(2.9) . Oy (x) = 6(x) + i[hy,x]

where t+——y 1s a continuous mapping of R into the
self-adjoint part of‘Cl(: quasi-local perturbation) which
is zero outside (0,T), and differentiable in norm inside

that interval. (smooth changes). The energy given to the
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system in a state @ of (OUin the interval [0,T] is seen

to equal

Nw) = ij.(ocg‘ Sy )at

Vle then define a state w  to be passive iff ﬂ@u)z‘o
for any local smooth change in the dynamics in the above
sense., One proves that a passive state 1s necessarily time
imvariant ([52], Thm. 1.1) and that all KMS-states or ground
states are passive ([52], Thm. 1.2). One also shows, under
the additional assumption of relative purity defined in
terms of weak clustering (see§§2.2), KMS-states and ground
states exhsust all passive states ([52], Thm. 1.3). "

To relax the assumption of relative purity, one has to
assume a stronger condition than passivity.* This is called

complete passivity and is the requirement that, if one con-

siders, for arbitrary ;3em3 n uncorrelated coples of the
systém, all in the same state, .then the resulting state on
the enlarged system should be passive., More precisely, one
calis a state w of a C¥-algebra o coﬁpletely passive, iff
for all nelN, the state @w on é‘O‘( is passive, relative
to the time evoldtion. dﬁam. “It can then be shown that a
completely passive state of a C¥*-dynamical system is either

g - IS for some 20, or a ground state. ([52], Thm. 1.4) .

* That simple passivity 1is not sufficient 1is seen from

the fact that a convex combination of two XIS states at.

different temperatures cannot be KNS, but is clearly passive.
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§2.4 Another physical requirement for equilibrium is Global

k<
Thermodynanic Stability, formulated by ARMZI [2]° for a

quantum lattice as follows :
The algebras are as in§ 2.1, and the local time develop-
ment ai is given by (2.2) and (2.3), where the conditions

on the potential are now the following :

(1) Translational covariance : ¢(A + a) = 7, ¢(A)
(AeL, ael'), where Ira}‘are the space translation
automorphisms of ( and T, OZ(A) = CU(A + a)
(see [31], p.152)

(ii) Finite body interaction : 3 Noe N such that
¢(A) = O if the number of points N(A) in A ié
larger than N,.

(iii) Relatively short range: |l¢j] = EElN(AjJH¢(A)H<cv
A0

‘Under these conditions, one then shows L?V],that the 1limit

(1.4) exists, and gives rise to an automorphism group o

of Cjz. | . \

#  ARAXI [2] refers to this as the variational principle,
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] ® .
A translationally invariant state w of OU7, is said
to satisfy GTS 1iff:

(2.11) s(w) - pu(a) = sup [a(w') = Aw'(a)], 4 = N(a)*g(a)

ADO

the sup being taken over all translationally invariant states .

0.

Here the mean entropy s(w) is given by the limit, in a

suitable sense

(2.12) s(w) = lim N(A)~tw(~- log pp)
where - pp 1is given by

v(2.13) w(x) = tr (pyx) : xe OUA)

ARAKTI [2] then shows that translationally invariant

states satisfy GTS iff they satisfy KNS with respect to oy »

* weTy = w for all ael'. We note that (2.11) expresses

the minimisation of the mean free energy functional

w(a) = (1/B)s(w). The existence of the limit (2.12) follows
from the subadditivity property of the entropy for a finite

region, together with translation invariance,
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§ 2, In the a@bsence of translation invariance, GTS cannot be
3

(2.14)

formulated at all, since the mean . entropy functional (2.1 )
is not well defined. 1In this setting, ARAKI and SEWSLL [5]

have formulated the physical requirement of ILocal Thermo-

%@@iﬁﬁigbm (LTS). This means that the "local frec
energy” for a bounded region Ae¢L, i.e. the free energy
corresponding to the open system consisting of particles in

A interacting both with one another and with the outside,
should be minimal for variations in the state which leave it
unchanged outside A. Thus we are interested here, not iﬁ
global variations of mean quantities, but in loéal variations.,

For a quantum lattice system (see§ 2.1 and [31]) ARAXI

and SEWELL define the conditional entropy E;Qu) and the con-

ditional free encrgy ?i(w) induced by a state w for the

region Ael as follows :

)t

Ehﬂw) lim [ w(-log pp) = w(-log 2.1

B (@) = wii,) - (1/8)3,()

Eere A,A'el, p,e0U(A) is the density matrix defined by
(2.13), and HAECR-ﬂ: renresents the energy of interaction
of particles in A with one another and with particles out—::

side., .
A state w of CK is then said to satisfy LTS for a

* Restrictions are imposed on these interactions to ensure

that H e O] G
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temperature 1/8 (>0) iff, for each AcL,

~ =
(2.15) F(w) < rA(w')
for each state w' such that w'| = ol

S
The time evolution of the system is assumed to be given
by a automorphism group oy of CK., generated by an un-
bounded derivation & (se2 §2.1), which 1s the closure of

its restriction to OU_ and such that :
o(x) = i H ,x ] ( xer(A), AeL)

Under these conditions, it is shown ([5], [72]) that a
state w of _CK satisfies LTS iff 1t satisfies KNS with
respect to oy.

Thus in general one may say that, for quantum lattice
systems with suitably tempered interactions, LTE&SKES, and
for translationally invariant states, LTS<& KHS&SGTS,.

The above examples provide sufficient justification, in
our view, for using the KMS condition as the defining pro-
perty of equilibrium ih an infinite system, since it is
shown to be equivalent to the Gibbs condition in a finite
system, and also to correspond to simple physical require-
ments under fairly general conditions, in an infinite

system.

§ e We now proceed to examine the consequences of the KIS

condition for the structure of the representation of the

-



algebra of observables induced by a KMS state.

The existence of inequivalent * representations of the
algebra of observables is characteristic of systems with
infinitely mény degrees of freédom, both in Stétistical
Mechanics and in Quantum Field Theory, and was one of the
main arguments in favour of the algebfaic apbroach, ever
since the pioneering work of SEGAL [66] and HAAG [24].

A pure state on the algebra of observables gives rise
to an irreducible GNS representétion, and vice-versa
[Chapter I, §1.4]. Thus a reducible GNS representation
implies that the state is not a pure state, but a mixture.

Consider now the "limit Gibbs state" on the al-

“p
gebra of quasilocal observables CK, given by (1.2). Under
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the assumptions of HHW [26], ws is invariant under the time

evolution oy given by (1.4) (see § 2.0). The corresponding

GIS triple (H_, Mg gﬁ) has the following properties [26]:

(i) The spectrum of the infinitesimal generator
of the time translations U, 1is symmetric about the origin

(in contrast to thé groﬁnd state, where it is one—sided)..

(ii) éﬁ is not only cyclic, but also separating
for }%(Cﬂ)". Thus it is also cyclic (and separating) for

' R
(00

* i,e., not related by a unitary mapping between the under-

lying Hilbert spaces.

** gee Chapter I, §1.4.
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(iii) Not only is 7%(CU) reducible, but it is
in one-~to-one correspondence with its commutant. lore pre-
cicely, there exists an antilinear, antiunitary operafor J
on Tdh such that J°%= I, commuting with the time evolution

Uy, and such that
(3.1) S I(00"T = 7(A)!

Thus the commutant i%(CK)' provides another represen-

tation of (U on Iﬁ

, which is (anti) unitarily equivalent
to ﬂ%. | | |

Ve have seen (Chapter III, Thm. 4.7) that, as a result
of Tomita—Takegaki theory, this structure is exhibited by
the GNS representation of any _C*~a1gebra induced by a XiiS
state, A

These properties were previously discovered by ARAKI and‘
WOODS [6]. They were investigating representations of the
CCR which describe a non-relativistic infinite free Bose gas,
of uniform density. They used_the bounded form of the CCR, -
defined.as follows:

Given a real inner product space of test functions T, a

cyclic‘representation of the CCR 1is a map from T into uni-
tary operators U(f), V(g) on a Hilbert space with the pro-

pertics
(1) u(e) v(eg) = Vig) u(£) exp (-i(f,g))

(2.2) o Uu(r) U(g) = U(F + g)
V(r) v(g) = V(£ + g)
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(i1)  R>A— U(AF),V(Af)  is weakly continuous,

(iii) There exists a cyclic vector ¢ for the

Von Neumann algebra .(J{ generated by {U(f),V(g) : f,ge T{.

.It is known (see e.g. (18], section III.1.c., where more
details can be found) that a cyclic representation of the
CCR is determined, up to unitary equivalence, by the func-
tionalf

(3.3) E(f,g) = < &, U(£)v(g)g > (f£,g8€T)

ARAKI and WOODS [6] determine the functional E(f,g)
pertinent to a free infinite Bose gas whose density is given
as a continuous integrable non-zero positive function in
momentum space, by first‘considering the situation of a dis-
crete density distribution enclosed in a box, then letting
the box become infinitely large, and finally letting the
distribution tend to a continuous one.

On constructihg the representation of the CCR determined
by this functional, one indeed gets a reducible represen—
‘tation, whose commutant furnishes another, equivalent re-—
presentation of the COR [6]. Note also the remarkable fact
that there appears nowhere in ARAKI and WOCDS' treatment .a
time evolution, let alone a KilS state, This is because
there is exactly one time evolution satisfying the KNS con-
dition with respect to some given staté; this is constructed

out of the algebra itself (see Chapter III, Thm. L.2).
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Another problem [17]) is that the free time evolution
does nat give rise to an automorphism group ofHCi. Cne may
define a local time development as in (1.2), with W, the
second quantization of the one-particle free hamiltonian for
a bounded region, but thé limit (1.4) does not exist. How-
ever, assumptions (a) and (b) of DS (see §1) .are satisfied.
As observed previously, this allows the definition of the
limit Gibbs state wge Using assumption (a), DS are able
to construct a Hilbert space ﬁf, a representation m of
in B(W),aunit vector Z%eX and a unitary group U eB(H )
representing time development such that UgZ = Z4; this is
~done by a method parallel to thé Wightman reconstruction
theorem [79]. Then using property(b), they are able to show
that this repfésentaticn is in fact uhitarily equivalent to
the GNS representation ( %%, 5., éﬁ) corresponding to Wy
They further show that

(3.4) ' Ty (%) = Uy xUp teR, xe rﬁ(d{)"

defines a strongly continuous one parameter automorphism

group of f%(CK)”, though not-of OU itself, which is the:

limit of the "local time development", in the sense that
(3.5) . lim r%( af(x)) = UL;E(K)Ugn xeﬁﬁ, telR

the limit being taken 1in the wesk operator topology.

In this setting, they are able to show that mﬁ

the I0iS condition with respect to 7 ", and that {g'(CH)V

satisfies

* Modified in the obvious way to allow fer the fact that

-

T £ Aut OC
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has the structure described by HHW.

This concludes our'generalldiscussion of the present
status of the KIS conditién for equilibrium states in Quan-~-
tum Statistical. Mechanics, and the structure of the asso-.
ciated representations of the observable algebras, We have
seen (Chapter III) that a faithful normal state «w on a
Von Neumann algebra N uniquely defines an automorphism group
oy of a% and satisfies the KIS condition with respect to oay.
This "kind of miracle", in ARAKI's [L] words, has been the
starting point for many devélopments both in Statistical.
Mechanics (some of which have been described in this Chapter)
and in the structure theory of Von Neumann algebras, thus
providing yet another link between Hathematical Physics and

Pure Mathematics.
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CHAPTER V
GIBBS STATES ON THE ALGEBRA OTF THE
CANONICAL CONMUTATION RELATIONS

We now embark on our extension pf Tomita-Takesaki theory
>to an algebra_of unbounded operators.As described in Chapter -
III, the general problem of a closable probability algebra was
attempted by GUDDER & HUDSON [22] (see Chapter III,§2 &3),but
their analysis only jielded partial results.

Our examples are motivated by Quantum Statistical lMecha-
nics.We will take as our algebra the one generated by the
Canonical Commutation Relations (CCR) in their umbounded form.
On this algebra,we will construct'a class of Giﬁbs states
(see Chapter IV),snd a corresponding class of time evolutions
and study the properties ofthe GNS representations induced by
these stétes.In the final Chépter,we will prove a commutation
theorem,analogousvto Theorem 3.3 of Chapter III,

The main problem we have fo face is,of course,the unboun-
ded character of our representation.For this reason, the domaiﬁ’
of‘the representation must berchosen_carefully,and it is with
an analysis of this domain that we begin our investigation.
On this domain,our representation will be continuvous,but we
can no longer hope to have a Hilbert space structure,However,.
it is stiil possible to prove that the Gﬁs representation in-
_ duced by our Gibbs state is a closable probability algebra
(see Chapter III,§2),ana,what is more important,that one may
cohstruct an "almost" Modular Hilbert subalgebra (Chapter III
§3)with the same commutant.This latter algebra is the essen=

tial tool that will enamble wus to prove our commutation the-

.
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orem in the last Chapter.

It is probably possible to prove the commutation theorem:
by studying the associated Weyl form of the CCR(see Chapter
IV,§3).It has to be stressed,however,that the whole purpose
of this construction is to develop a method for extending‘
Tomita-Takesaki theory to algebras of unbounded operators.

It is in this sense fhat the present work is new,and may
prove useful in dealing with more general examples.Part of
the results of this Chapter are taken from joint work with
Ingéborg Koch (see [}i]).

Let us begin by describing the relevant features of the
domain on which our representation of the CCR is to be defined
The results of §1.1 & §1.2 are taken, unless otherwise speci-

fied,from THUE. POULSEN [83].

§1.1 Spaces of type S”..

Consider Quantum Mechanics of a single particle.,Here we
are concerned.Withuthe.conjugatefpairmofuabservablesiq and.p._ -

(position and conjugate momentum) whiich satisfy the CCR:. \

(1.1) | (pyq)= -

The traditionally most important realisation of these

observables is by self-adjoint operators on LZGR) given Dbys:

(1.2) (pf) (t)= -i(af/at) (%)
| (a£) ()= ££(%) .
defihed on a suitable cammon dense domain in Lz(m);lt is
well known (see e,g,EMCH [18] III.1.b Thm.1)that there is no

realisation of (1.1) by bounded self-adjoint operators.There—
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fore any realisation df (1.1) on a Hilbert sﬁéce immediately
creates problems due to the unbounded character of the opera-
tors involved.' _ |

KRISTENSEN,MEJLBO & THUE POULSEN {}Q] proposed the follow-
ing alternative approach to the study of the representations
of (1.1):Instead of requiring the‘representation ggggg to be
a Hilbert space,they require the operators to be everywhere
defined and continuous,and then study the possible represen%a
ation spaces,which will be lccallj convex spaces,equipped
with a continuous scalar product,with respect to which p & q
are required to Be symmetric (the question of self-adjointness
does not arise,since we do not have a Hilbert space structure;.
this is one of the main advantages of this approach).We formu-—
late the-requirements piaced%on the representation space as a
definition for the case of n particles tvb |

Definition:

A space of type s? is a locall convex Hausdorff space S
¥y

with the following properties:
(1.3)There exists a scalar product (i.e. a sesquilineaf posiﬁivg
definite form) (.,.)' on S such that the corresponding normlu
“.“ is continuous on S, }

(1.4)There exist continuous linear mappings bj,b;i (j=1,2,...n)

on S such that
' (£,D58) =(bit, &)
»and ‘ '
(1.5) [bj,bk] =&)§,b§]'=0
(1.6) "bj,b;;] =S Jyk=1,...m
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(1.7)There exists a cyclic element eO)in S such that ueou =1 ,

bjeo=° for j=1,...n and

(1.8) If R denotes the algebra generated byi'bj,bf'

j : j:l,...n}

then T{eo is dence in S.

Here bj and bi are the usual .raising and lowering operators

of Quantum Mechapics,given by:
’ ' . =1/2
(1.9) b, =2 (p. -iq.)
J J J
L -1/2
b =2 (py +Higy)

Pr0p051t10n 1, l

EOr xeR, fe S, defxne'
(1.10) £l = Wt

The locally convex topoldgy defined onm S by the seminorrﬁsll."X

is the weakest locally convex topology oh S with respect to

which S is a space of type S”, and is equivalently given by

the sequence of porms || .||, (re ) given by:
(1.11) 02 = (£,b7r)
where :
i | 2 v
1.12 = . b.b,
) ‘ =) S

moreover,we have:

I£12,, 2 n ufll2

The most important fact about spaces of type s? is that
they can be continuously embedded,in a.way preserving the
properties of the definition,in a maximal space of type Sn,

which is unique (up to an isomorphism preserving the propers.
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ties of the definition).This space is pothing but S(R"),i.e.
the space of all infinitely differentiable functions on r”
which decrease at infinity faster than any polynomiél.We
make S(R”) into a space of.type s” by equiping it with its

usual topology,the scalar product ivherited from L2@Rn),an& :

(1.13) eo(t)":?f-n/d’exp(%g‘fg)) C ot t=(ty,...t) e B
(1.14) (@) = 2 ()
(2.15) o (B (8)= ~a(YO6)E (8) 2i=l,...p

The usual topology of S(R") is the same as that defived in

Prop.l.l.The following sequence representation of S(R®)will
be very useful: ' a

Prop031t10n 1. 2

Tet s” be the space of all multlsequences c= (c ) ve Wn such
that the sums: '
(1.16) 2 ¢ Ivi+n) T ]c,] = |lc:ll2 < co . re [NT

. YEN
Equip s? with the topology defined by the norms || 15, relN,

the scalar product

(L.17) . (ec,c") El c¢e'
SN Y,
and the structure of a space of type s? given by:
(1.18) ey = [1 , for v=(0,0,...0)
' | 0 , otherwise
, ' . 1/2
(1.19) . (bj'c)‘;,.‘__"\,“ =(V3+3_L)" Copmne (V1) = Vi

(1.20)) (ble)y,

/2 : .

>0
0 ‘ if’ 0

Vi
KR

Then the mapping:
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(1.21) J:s® o s(RY)
' P
C V’et/v"c~fev

where the Hermite elements e, , ve N? are given by:

~-1/2 Vi

TR
bl b2 "’bn o

(1.22) ICPVIRIREICZS AV PORRVRD
is a linear topological isomorphism of s onto S(Bpfjpreser-

ving the properties of the definition of a space of ﬁype»Sn. ‘

Note that the Hermite eleménts algebraically span the dense
subspace 3Qeo of S(R?) (see (1.8)).Moreover, they form an
orthonormal bYase in Lz(mp),the completion of S(R") in the
.y, norm. |

Hencefbrth we shall have to deal exclusively with maxi-
mal spaces, and therefore we shall write 8¥ for S(Bp)*and 3
for S(R).We 1ntroduce a conjugation. im S,denoted by a bar,

given by the usual complex conjugation.One checks that
. B e
(1.23) Tee _z_ ( 1)? e

sothat,in the sequence representation,.

(1.24) ) = ((-1)% 5,) | L

We will also use the fact that SP (and hence also s°) is

a countably Hilbert space ,and in fact a nuclear space.

Definition (GELFAND & VILENKIN [20])

A countably Hilbert space E is a Fréchet space (i.e. a com-

plete metrizable locally convex space) whose topology can be
defined by -a sequence of increasing norms.“.[&_(x'e M) each
coming from an inner product (ese) e

We see that,if Er denotes the Hilbert space completion of”
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(E,HJ&),we have:
‘E= Q E, = LioE,

where 1imEr denotes the projective limit of" the spaces Er ’

defined as followss

Definition (SCHAEFFER [64] )

Let { Fi’ ie I} he a family of locally convex gpaces indexed
by a directed set I.Suppose that, for i&j, there exists a

continuous linear mapping:

g5 T3y
Let TF be the subspace of the cartesian product of the Fi
given by:

— ) . —o Ny G2 S
P= {(xi)<. xi_gjiﬂxj) for 1—3}

Equipped with the projective topology with respect to the
mappings fi:‘@-+Fi , thie restrictions of the canomical pro-

jections onto Fi,(i.e. the weakest topology om F making eaclh

fi continuous) F is called the projective limit of the spaces

Fi with respect to the mappings gji'

In the case of a countably Hilbert space'E,the,identity§

1
\

extends to a continuous linear mapping:

gpr:Ep—-—9 Er}

for p2r, since the norms are increasing.

Definition (TREVES[85))

Tet E be a locally convex Hausdorff space, with its topology
given by an increasing set of seminorms ll."r.We let Er be:

the completion of the normed space (E/keru.ur',u,ury,For rr,



127
keru.up c keru.ur ,and so the identity factofs to a continuous
linear mapping:

gpr:(E/kern.up)-a(E/kerH.\5)

which extends to the completions Ep and E_.
E is said to be nuelear iff for all r .there exists p2r such

that gpr is a nuclear mapping.

The following characterization of a nuclear mapping can be

taken as the definition for our purposes:

Definition (TREVES (85]Prop.47.2)

A continuous linear mapping u Yetween two locally convex Haus-
dorff spaces E and F is said to be nuclear  iff we may write

. E - :

. y
u(x) _F‘cixi(x)yi

where: .

(Xi) is an eguicontinuous sequence in the dual E' of E
(i.e. a sequence such that given £)>0,there exists a O-neigh~

bourhood U of E such that |x}(x)|<€ for all x e U and 21l i.)

(yi) is contained in aAconvex,balanced infracomplete

bounded subzat of F(a convex set Bisuch that x e B, |c[¢l =>
’CX‘e B ~balanced ,and such that the subspace of F spanned by

B is complete when equipped with the norm || x|l = iqf{c)O: xecB}
This is satisfied when B itself is complete in the topology

of F (TREVES {85] Lemma 36.1)-infracomplete)

One should note that in case E and T are Hibert spaces,
the above definition is easily seen to be equivalent to the

definition of a trace class operator' u from E to F.
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Thus for a countably Hilbert space E ,the definition of
nuclearity reduces to the following regquirement : for all r,”
there exists p2r such that the mapbing gpr'Ep'“*E is trace
class.

In the case of sn,if we denote by si the Hilbert space

completion of s® with respect to the || .1, norm (given By -

(1.16) ),then we see that the identity extends to a nuclear

mapping _sr+n-—~9 s . For,letting

£, =(lv\+n)-rfn'1e§ v em”

where e_e sn is the multisequence ~given by (1.22), we .
havef,’if‘p—r+n+l : 7 '

3 llepfoll = 1 \Ey, I f_(m.m) Puevu

‘ Ve Ve
E: (rvl+ n) p(lvl+n)r Z:(|v1+n)fn—1<cn
< vewr - veiv”

(This proof is a simplification of Thm.51.5 of TREVES [85]).

§1.2.Spaces of type & . | - -

Having  finished with the case of a finite number of
particles,we now attack an infinite number of them.Here we{
need to represént the canonical pair of field operators an&\
conjugate momenta,indexed by .some test function space.

Again in a Hilbert space representation one is faced with_
problems due to the mnecessarily unbounded character of the
representation,namely the problem of choosing a suitable
common dense domain . on which thesé (infinitely many) opera=-
tors are all (essentially) self-adjoint.

We once again adopt the point of view of §1.1,that is we .

require the operators to be e&erywhere defined and continuous
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v

and look for a suitable space to represent them on. As we are
interested in cyclic representations,we shall assume the

exigtence of a cyclic "vacuum".

Definition.

A space of type G is a locally convex space Qwith the

.- properties:
(1.25) There exists a sc¢alar product (.,.) such that the corres—

ponding norm is continuous.

(1.26) There exist continuous linear mappings:

a,at: S-—--)L(g) *

such that .
(1.27) (a(F)F,6) =(F,a’ (£)6) £ e S, F,G’-e@ ‘
(1.28)) | [a(), @)= [27(£),27(2)] = 0 } o
(1.29) - [2(2),a"(g)] = (£,¢)

(1.30) There exists a vacuum element. lyo eg such that “Wo“ =1

® L(ﬁ) denotes the space of all continuous linear mappings

on % .It' is equipped with the topology of uniform conver- -

gence on bounded sets,which is generated by the seminorms:

I T“I',B = sup{“’fl”“r : Fe B'.}

vwhere I . i are the seminorms defining the topology ofg yand
B runs over all bounded sets of% y,i.e. sets in which all

the seminorms are boundsd.This topology is the natural gene-—
ralisation of the norm topvology on L({B),where & is a normed

space,
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and a(T)yg_zO for a1l £ ¢ S.
(1.31) If OU denotes the algebra generated by {a(f),a+(f)-:f e S}
then O[‘:}Jo, is dense in g .

(1.32) To every symmetric operator k e (cf.(1.8)) there exists a

symmetric operator K e L(g) s the second quantisation of k,
satisfying:

(1.33) [K,2"(£)] = a™(x£) ,feS

We are aiming at realisations of a space of type 9 which
have the same relationship to Pock space (over I?(R)) as S(R)
has %to Lz(B».Roughly speaking, our space will be an infinite
direct sum of n-fold symmetrized ténsor producté of S(R).

Firstly,we défine on the n-fold algebraic tensor product

S@n

/

of" 5,a symmetrization operator:

-1 A '
1. f ) = ! f o0 0
(1.34)  sym(£® 2 @fn) =(n!) ';%R.fp(l)Q p(2)®+ @y (n)
(where P(n) is the symmetric group) and extend by linearity.

@n

We denote its range by éin,the symmetric part of 5% .We find

gﬂn

that sym is continuous in the topology of s? (into which
may be continuously embedded as a debse subspace),and hence
defines>a continuous linear mapping of Sh,whose range we
denote by 82, We may correspondingly define the symmetric
part sE,of s?.
Por any operator k e L(S), we define
(1.35) k) - re1eie. . @1 + 10k018. . 0L +...+ 18.. .6k

‘It is eclear that k(n)e LCSn),and that it commutes with sym.

It therefore leaves Si? and Si“ invariant.
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3

A maximal orthonormal set in S?_ may be constructed as
follows (see GUICHARDET [23] §2.1): Starting from a maximal

orthonormal set {en} in S(for example,the Hermite elements)

we write

(1.36) e(no,nl, ...);;=: (n! (l:]nk!)"l).l_/zsym(eg@e?_@) cee)
where Eg-'nk =n (and hence there are only finitely many non-—
zero nk"s)

Let now 9 be a space of type 6 . We define a map :

(1.37) at®, 5(g)

£, p@. 0 @ ——y 8" (£1)a" (£5)n. .8 g,
from (1.28) we see that at®n _ a+®nsym .

Proposition 1.3

The mapping 'Y/n_: S?n—-———-—-:, g ]

£ > (0!1)71a™(£) Y
is isometric with respect to the norm ||. ”o . The ranges of
\Fn and V\Pm are.orthogonal with respect to the scalar pro-
duct for mfn,and their direct sum equals (X orbence is -
dense in g .vTherefbrel 5 maximal orthonmormsl seb i'ng is l“‘

given by: '

(1.38_)\ {%(»e(no,nl;-...))') s }{;“Dk =n , n e IN}

Proposition 1.4

Every symmetric k e L(S). has a unique second quantization

K e L(Cé) satisfying (1.33) and

K’!g=o

This is characterized. by

(1.39) | c¥ () = \&(k(n)f)l , T e s‘f‘?", ny o
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-

where k(n) is given by (1.35).A11 second quantizations of k

differ from K by a scalar multiple of the identity.

Prop.l.3 shows that the algebraic direct sum (;}? Sf_,)n
(with gfo = €) is livearly embedded as a dense subspace of
any space of type & .Furthern;o‘re,we may equip this space
with the following structure:
The scalar product 7
(1.40) (F,6) = =(£,,8,)
where (f) , G = (g )i and the scalar products on the
right hand side are inherited from 12 (R® ). ’
The vacuum element \I’o = (1,0,0,...)

The operators a(T)), a."‘((f)) of € 5 given by

(1.41) a*(£) g = (041)Y 2sym(twe) g e 5°°

in 1-1 i+l

(1.42) a(T)sym(f@..&) {(n)f‘l/2 _Z_(ff )f ®...5, 0f; 1©..F r;o>0
o 0 y D =0

The locally convex direct sum topologj_ (i.e. ‘bh‘e finest

locally convex topology making all the cavnonical embeddings
S(fn-—-—)@ S?_n continuous). o

Then C:) S?n becomes & minimal space of type & ,in the
sense that it can be con’binuouély embedded .in any space of
type & ,in a way preserving the S -space structure.

On an arbitrary spaceg of type & , we define the topo-
logy T generated by the seminorms |\|. ux where

ll'thx = H'XF‘HO (P eg )

end X is in the algebra generated by (U and all second quati-

zations of symmetric operators in R (see (1.8) ').We have:
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Proposition 1.5

The topology « is given by an increasing sequence of semi=

norms ||, &iven by:
(1.43) Wr)2 = (7,57F) F e?j , T el

where B is the second quantization of bb'e L(S) (see Pr0p.l.l)'

given by Prop.l.4.

-Clearly ,the topoloéy 7 is weaker than the original to-
pology of the space(g 3 in particular, it is weaker than the
direct sum topology on @ Sf_m. Thﬁs the T-completion 'of(é? Scf_n
contains as a dense subspace any space of type Q; (up to 1o~
near topological isomorphism).In fact,since the:restriction
of Ll to ¥ is just that given by (1.11) (this follows
from (1.39) ),fhis completion contaiﬁs the completion of §?n
with respect to this topology,namely Si.Furthermore,one may
show that the operators | ' |

a,a’ : SF-—-—-—-)‘L( @;) S(fn)‘.
are continuous when the right hand side is equipped with the
topology of uniform convergence on j; ~-bounded sets,which
showg that'this'completibn is in fact a space of.type<3 .'
Thefefore we have: o |

Theorem 1.6

Let é; be the completion of the algebraic direct sum of”
nx

S+ ,With respect tothe topology defined by the norms:
: 2 2 . n)r :
(1.44) 172 = Eo(f'n,b( ey, F=(£) , rem
where

p® = 3 (1/2) B2+ a2 1) ,n>0
b(?» = 1
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’

(The formula for b(n) follows easily from (1.6),(1.9) and.
'-(1.12)Y .Then.Cj is a maximal space of type (> in the sence
'explained above.These norms are all increasing,and'ez is a
countably Hilbertspace (hence a Fréchet space).Moreover,if’
Q}r denotes the completion of'g} with respect to el s
qr is a Hilbert space, and qr = @3 Sfr (Hilbe;r"l; space

direct sum - see §1.1). Thus g}o = I, is just the usual

Tock space over L2(R).Finally,

q_—_ Q qr = }—lﬂlgr (see §1.1)‘

Notice the difference between (1.43) and (1.44):in the
(o)

second equation,we have put b = 1 to ensure that “‘“r

is in fact a norm,whereas in (1.43) b(°)= O (see Prop.l.4)
However,both/§ets of seminorms actually define the same topo-—
logy.

in conclusion,one should observe that the spéce (Q Sfﬁ
completed in the locally convex direct sum topology (see

above) and equipped with the structure of an inwvolutive
algebra,has been studied extensively by BORCHERS 9] and '\
other authors.We will not need this extra structure for our

- treatment of the CCR.

§2. Gibbs states on the CCR.

Having néw constructed our domain,we turn to the defini-
tion of the reéresentation.Slightly changing our point of :
view, we consider the algebra (JU of the CCR as an (abstract)
- involutive algebra, and its realization as cdntinuous linear

operators as a representation.on;'éf.
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Definition

The algebra Jlof the Canonical Commutation Relations is the
algebra of. all;polynomials in a(F) and 2t (f) , £ e S,subject
to (1.28) and (1.29) (the CCR} . We give (X an involutive al-
gebra structure by requiring

(2.1) | ﬂf) at (£)
+(f) = a(f)

Note that a and a' are complex linear from § to OU!

We consider (1.41) and (1.42) as defining a .#-repre—: -
séntation mj of (X on Jqfo with domain g’ (see Chapter I,81.4)
1f{e

T € IN} denotes any maximal orthonormal set in S (for

exarnple, the Hermite elements)\ y We easa.ly find that

(2.2) 7 (a (er))gce(n yeen,y..) =( +1)1/2y;+1(e<n0,..hrﬁg;_;..»

C e mteman s

n(aE Y. (e(ny .o, ) ={<nr>1‘i/ 2V, (elmyuon F100) 0
: ' 0 n_=0
0 n,

Since the mappings »
Fge 5 Tped 3 S —> I( 3)‘; |

are continuous (because 53 is a space of type G)‘.‘,we see that

(2.2) is sufficient to define the representation e

\Je now turn to the definition of our class of Gibbs states.

Let w be a von- 1eg,;b1v ..f.,nctn_on on tab integers such that
there exists a posi’sive integer t ‘such that

' wik) = "(k+1)t for every ke .
Define the operator h on 3 as follows:

hey = w(lc)ek © (ke @)



If £ = kN 218 © S andm e I, we have:
21
N N ’
lne)) = || Eqakw(k)ekﬂi - Z;}aﬁF w(k)? (k+1) D

'm
2 m+2% 2
< gf\aﬂ (le+1) = llfum+21:
=1 .
since (e, ,e.) = (3+1)M(e, ,e.) = (j+1)mJ\
k?%57m~ \J k’%j’o kj
Thus h is continuous with respect to the topology of S,and

nence extends to an h e L(s).Denote by H < L(é}} its second

quantization (Prop.l.4)

fow we find that

(2.3)  H(e(rg,pp..)) = (F w0 P ylelng,my,ee)).

e are now able to define, for xe (L and B> 0:

.21- Z (\i{o( e(n07 IJ]_ 9 rﬂ))? (exp("xoﬂ ‘:/_(: "‘"( IF)U;\‘.)).E:C( K)‘;)n( e(r’.o)"'>)) -

(2 . 4) v ( :() - ___:%;o In . ey
| & 2z exp(-8Z w(k)n,) » .
ned I ] W, . .

vhere Jn:‘{(no’nl”") : g Dy =0 }.

‘Note that -
WB(X) = "tr{exp(~8H) ) (%)) / tr(exp(-8H))"

THEOREI 2,1

Tor e , B3>0, WB(K) ig well defived whepever there exists
€20, no matter how small, such that w(k) = (k+g). Wy is then
a Taithful state (i.e. & normalised positive definite Heramitian

form) on X,

The proof will follow from the following lemauas.
We first define:

<
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(2.5)

= 2. exp(~8 7 Xkn,) ne {7
. 3“ IR [28
. (2.6) {'JX = .:?7 exp(-8 2. L.:nk) n,ve I where
“h *
' | Jv Si( n e I 2 =0, o0fify-1 |
(2.7) . 1‘) noy l)oc- c n - I'Jl -_— 7 O .‘ J"“'_.. J
(2.8) sg =1 o - ve T

Lemma 2.2

PIET T VU SR IR

]

Z. (axp( Icmﬂ))”n“l ' (21, v>0 )

IW m-."\/ o=\ .

.?iQ.,.ﬁ -~ fThe Tarst nov-zero index, pnamely D, €20 teke values

Dyeersr 1,0, IT nv~k, 0¥ k€n, then 1b'3 oootrlbu’blon to the sum is

Z sxo (=B 27 na‘) (exp(-Bvk)) > exn(-0 Z \:n. = (change vy Yo ny-k)

Tx N 'n'v:\x.} - . J:Ini'f‘v"Q} C '
*(e*m( Bvk)) 7‘ exp(-B Zm ) = (expn(-B ))"?}3’

RN '

Therefore covtribution for n_»0 is
28 - '
> (exp(-8vk)) gVl , :
& n-% ‘ _ . _ :

it nV:O, consider Dol By the argument, the cogtribuiion

0
o
i3
)

from n, l>O ig: : : g

2,
S (exp(- B(v+1)k))s‘”2

w=l

S0 the total sum is the sum.of the ~ contributions for all nm>(),

0=V, ‘v+1,,..., which gives 'the required result. 0n
Corr 2.3 S = Z(exp(-—[&mk))“m'i
- n ya=zp k=l n- .
(exn(.m-mﬂ“(l. - e,cn(»-nf}))“l ‘ (M)
Rel) R ‘

~

vnere empty produc‘cs are defined to be 1,

—_ = ,,\}'J( v3)
Proof By induction: S{ = > (exp(-mB))

Sy v " '“”"H)T B)

Suppose true up to n-l and consider




138

Z_ %? (LK7(~kmB))n1+l

?“ wxp(dmm>}(@gxr(n4ﬂ(m+1nnﬁﬁf%1-;(mqﬂ@gﬂ”
oy - PO

)
n

V48

mw( W= T - v
_ +exp(—nm3))

=5 (exn(ooma)) (0 + 3

\“,‘\ EXY

n~1
~ eAn(-k‘B “T“(l m\exn( rﬂ» 1)

—-\
.

(k'=n-k, where we have used the induction h«uotqc

and the fact that nglzl).

© n . . - )
= 7 (exp(-nmBR)) TI (1 - (exp(-rR) as required OFD
v e« ld s

2224

Proposition 2.5 .
For all B8)0 , exp(-BH) is a trace class positive operator,that is

(2;9) | i Z(eXp(-B éw(k)n‘k)») < oo
n=o . o

Proof

i Z‘exp(—BZW(k)nk)i < | Z.i gexn(_fs > (k+e)n,)

Z(exv( an))zexv( BZI<nQ~ Z(exp( Bng) S
i(exn( an)TT(l—eXP(-kB))"l

o
by Lemma 2.4.Now the ratio test shows that thls sum is finite,

for the ratio of the (n+l)th term to the nth
' exp(-5¢) (1-exp(-8(n+1) "Ly exp(-8¢) <1

-as n tends to infinity.
QED
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Lemma 2,6
Let (Pn C = (exp(—(B/Ar)\'éw('k)nk)) ,]Un(e(no,nl, )
= (exp(~-8H/4)) ‘fn

The closed convex balanced hull of the <Pn's is a Tt-DBounded
subset of g .

Proof It is clearly sufficient to show that,given m e (N,

supi”(P ”m : (n N R J,s»ne lN}
1s flnlte We have

1R,z = <exP«..B/2>zw<k>nk>>w [
% (exp((-8/2) 3 (kv ), ) (3 (k#1)my )"

(using (1.44)) which are cleatly bounded,uniformly in By yDyees

- s
P !

QED

THEOREM 2.7

exp(-8H) : (HO,II b ) —— (q y T)

is a nuclear ma'oplng (cf, §1.1)

_Ij_ﬁg'_ggj(ii) We first show that exp(-8H) maps '}'Jo continuously
into q .Congider O(% equipped with the topology inherited
from '}J (respectively q ) as a dense linear subset of JQ(
(resp. g ).The unit ball of the first space consists of finite
convex combinations of {»Wn : (no,nl,...) e J , D € \N}

By LeMa 2.6 ,this is sent to a 7T-bounded set of the second
space by exp(-BH).Thus exp(-B8H) maps bounded sets to bounded:
sets.But both spaces are metrizable,and therefore this shows
that exp(-BH) is continuous (TREVES [85] ,Prop.14.8).Hence it

extends to‘ a continuos linear mapping of the completions N‘o &a.
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(ii) For any F e ]JO , We have:

(exp(-BH) N F

pIpMEC IR SRR A

= Z Ej;(eXp((—BB/fl) Zw(x)n, WY, ,F) P,

Now 3 T(exp(-38/H T n(n,) <o by Prop.2.5, the
CPD lie in a convex balanced complete bounded set in\C}by TLemma 2.6
.and‘ the ’:Pn el{o =]Q[O' are wiformly bounded,hence eguicontinuous
Therefore (see §1.1) exp(-B8H) is nuclear. |
QED

Corollary 2.8

(1) "fer(exp(-BE)R (x))| 400 for all x eUl.

(ii) fo %(exp( -3 w(k)nk))(Z(k+l)nk) < oo for all m e [,

Proof Iet A e L(Cj) denote either rro(x) (x e OL) or B™ (see
(L.43)).Then Aeexp(-BH) is the composite

W, exp(=B8H), (9,-()_;_4__, (Cj’r)"_‘*’:‘i{d

the last arrow denoting the identity mapping; ,which is conti-
nuous,since T is finer than the ||. I\, topology. Since the nuclear .
. mappings are a bimedule over the continuous mappings (TREVES 1'8.5;]
Prop:47.1),this composite mapping is nuclear,i.e. trace ciass,
as the spaces involved are Hilbert spaces.The first assertion

of the Corollary is now immediate,while the second follows from

my _ ¢ m
B'Y = (.fk:(k+l)nk) Y
QED
We can now complete the proof of theorem 2.1. Prop.2.5 and
Cor.2.8 (i) show that wB(x) is well defined for 21l x eQU and

wﬁ(‘l)": =1, Simple calculations show that

A\
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wa(x™) = TE ema

wB(x#k) 20

Finally,if WB(xﬁxj = 0,then

\lrg(x)}g(e(no,nl,...))ﬂ = 0 for all n,n_,ny,...

which,in view.of the fact that such vectors are total inﬁi,
implies that x=0.

Therefore w, is a well defined state ov aa .

§3. Having constructed our state w; ,we shall now show that
(CH,#,WB)'is a closable probability algebra.The final aim,as
explained in the introduction of this Chapter,is to prove a
commutation theorem sz#GY,analogous ﬁo Thm, 3.3 of Chepter III.
FPollowing TOMITA's original method (see Chapter 1II §3), we
shall construct an "almoét“‘modular Hilbert subalgebra of OU,
equipped with a modular automorphism group.We shall prove that

w, is a KMS state with respect to this group(see Chapter III,S§4)

Definition

An Almost Modular Hilbert Algebra is an involutive algebra

with an inner product and a complex one-parameter auﬁomorphism
group satisfying: all the properties of the definition of a modu-
lar Hilbert algebra (see Chapter\III,§3N except for continuity .

of multiplication.

We define the subalgebra ([ of U +to be the ome (algebraic—

ally) generated by { a(g&),a+(er) ¢ T e(N} .

Proposition 3.1

o~

OZ is dense in OUin the topology inherited fi'om L(g)'i via “ﬂ,.
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B e ot Ly

Proof (i) We odserve that the map

1555 S (O( , topology inherited fron L(g) )

(£, )t aM(f)a“(g;) _ (where A stands for a-

or arl i

0]

separately continucus.
(ii) Since S is a Fréchet space, the above map is jointly con-

tinuous (TREVEs [ ©5], Corr of ’c‘m 34,1).

o =N
(11.1) For f "2—:_~°Crer , &= ,ng,drer e S
"N)‘ B1(b. ) e (U approximates a"’{(f)aﬁ(g) s OC , where
™. : S o
‘ = » 7 Vi ._ S i 1 'h(‘.t
fﬁ Z:Ocler, e ,g?o drer It now follows by Jndurﬂ:lon tha
X = 1*(1‘1)...a+(f )Q(El)...a(zf' ) can be approximated by elements

of CL in the Lopoloo‘v inherited from L(Q)

2
(¥]
&

THEOREM 3.2

Tet ze €, fe }(eoc S (See (1.8)» .Define

ZS(Z) at(f) = a' ((exp(-Bzn)f)
(3.1) A(z) a(®) = a((exp(Bzn))T)
Az 1 =2 . '
Then A(z) is well defined on (tﬁ,,and A() is a orxe—pafameter
complex automorphism group of & Equipped with the inner pro-
dl,lft induced by W and the modular automorpliism group{A( z)iz e C},

0] is an Almost Modular Hilbert algebra. That is , we have:

(3.2) (xy,n) = (y,x u)

(3.3) 5(2 is dense in OU | |
) W20 =aE T
(3.5)  (Al=)xy) = ADY) o
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(3.6) (ALY = (e
(3.7) 2V (X,A(z)y)v is entire

I~

(3.8) Por each t e R, {(1+A(t))x s X eOZ} is dense iwm O[.

M’ It is clear that A(z) is well defined on at by (3.1)
(where (exp(Bzh))‘e 1= (exp(Bw(r)é))e ). Observe that A(z)
preserves the CCR (1. 28 & 1. 29) om CX , hence deflnes a unique
automorphism on 5'(.1%1 is easy to check (3.2) and (3.4),while
(3.3) is trivial, since 1 efji.

Mo prove (3.5),I first claim.that

(3.9) 7 (A=RY, = (exp(~pai) m(x) (exppar) ¥ (x e O0)

where (exszH)‘})n t= (eXp(Bz%w(k)nk))‘Yn ,and théfef‘ore the
right hand side of (3.9) is well defined ,since ri(x)¥ is a
finite linear combination of "yn's. Since both sides of (3.9)
preserve the CCR, it is sufficient to verify equelity on gene-

—

rating elements of (J{ . We have

(exp(~BzH) (a(E N expzsm)Y¥, =
(exp(-BzH)) r(a(e ))(exp(szw(k)n ))%(e(no,...nr,...)) = -

(exp(-BzI{))(nr)l/2 (exp(zB }E_w(k)nk))’%_l(e(no, ceen 1, )),=.
(exp(-8a( > (i) my-w(r))(m) /2 (xp (28 z;_v;(k)nk))‘iﬁ)_l(e (5,5 +-0,~1.) =

(expBzw(r)) (nr)fl/ijn_l(e(no,,...n ~1,... )=

T

(expBazw(r)) r(,,(‘a('é’r)) qn(e(no,.;'.nr,...)) = TLO(A(z)a(EI,))ql),]

if n,»0 , and if n,, = O then both sides are equal to O.

A similar calculation shows that (3;9) is valid with x = a+'('er))

and therefore it is valid for all x Ol. - |
Using (3.9), we see that
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(i A0, 7 (DY) =
( (exp(-BzH)rt,(x) (exp(8zH)Y , m(y V) =
(exp(8Z Tw(i)p, ) (exo (~827) ()Y, , w(7)¥,) =
((exp(-8zH) 7 (x) ¥, 7,(y) (exp(RZENY) =
( 7(x)Y,, (exp(-8ZH) 5G(y) (exp(8ZHNY)

()Y, ma@)Y,)

and therefore (3.5) follows using (2.4) and the definition of
the inner product on Ol.

To prove (3.6),let x e Ol and r e N, Consider

tr(exp(-8H) (A(1)a(e,) ,x) =

‘Z‘:’g(exp( BZW(k)n ))(T'(A(l)a(e ))\ig JT(X)EV)
Z i(ezp( Biw(k)n N(expBw(r) (g, (a(e ))‘P it (x)lf’)
zz(em_o( s(zwuc)n —w(r). W)Y Ao AL @Y ) =
| gg(ex-m B<z;_w_<k)nlg>>(nr+1)1/ %iﬂ(eg D RTER A TR IS DD )
(changing n_, tor m+1 ,since n =0 does pot contribute to the sum)
Z(exp( -2 xw()n) (o A2 Y (6 ns1L) =
ET(eXp( BXW(k)n N (e (X )Yn,ﬁ( Fle )Y)=

tr(expz 8H)) (x? ,a(e ).

Therefore

(x*iave'r)’*)

il

(M1)a(8,) ,x)
and similarly |

(A(1)a* (e ),x) = (x%a" (e J)
and the general case follows from these,as A(1l) is an automor-

phism of OC.

(3.7) follows from the calculation
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(x,A(z) a+(ejl)...a"‘(’ejm)“a(é'kl)"...a(é' ) =
(=, TTa()a* (o T M2)a(F,)) =
TT(exp(-Bzu( e TT(exp(8an(ks)) (x,1[a* (e JTTa(3,.)) =
=t §=1 =t dT gz s

(exp(-Bz (2 n(3r)- Zn(xs)) (x,[1a* (e, M Ta(5,,))
=l . ez K g1 o

e

Thus for all x e JU, ¥y ¢ Ol the function

kn

z—> (x,0(2)y)

is entire,since every y e'U(may be expressed as a finite linear

combination of elements of the form:
- ot *rg ';'i e\
(3.10) y = a (ejl)...a (ejm;)a(ekl)..._a(elm),

Finally, let y e U ve given by (3.10) .Putting

X

(Lrexp(-6(Zv(3m)- Lo(ke ) Ly e OL (4 o B)

we see that g

et

(1+A(8))x e

This shows that in fact (U = Ul ,so that (3.8) holds.

I

J

This completes the proof of the Theorem.

Lemma 3.3

'xF——~-)WB(X¢"FJ‘:)1/2 is a continuous norm on mequipped with the
topology inherited from L(g).Hence the (pre-)Hilbert space
topology on OZdefined by WB is weaker than the one inherited
from L(g); |

Proof Let (xi) be a net in Olsuch that »ri,,(xi)——aa 0 in the
topology of"L(g). Thus f‘co(xi)-——-) 0 upniformly on any T-bounded
‘set of q .Therefore, if CPn is as in Lemma 2.6, for each po-si-

tive ¢ and each sufficiently large i ,we have :
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“yco(xi)(PDHz <§ for all n,n ,nl,...

Now 5 ' .
(tr(exp(-8H))) ([Yl{l = (tr(exp(-BH)) wB(xfxi) =

= 5 Lemp (-0 To () fime(x,) Y, I -
= TTexn (/DT w0m ) |In(x;)P, P
£ Zz;( exp((-B/2) %W(k)nk)) £

;(’tr( exp (-8H/2))) € ;

Thus || Xi“'_') 0.
. QED

Lemma 3.4
(i) For Rez £ 0, exp(Bzh) e L(S) is well defined,and
zv+—> (exp(Bzh))f is amalytic for all f e S.-
(ii) Define - v _
Alz)at (£) = av(exp(~-Bzn)f) Rez 20, fes
(3.11 [A(z)a(f) = aflexpBzh)T) - o Rez £ OV, fes
Then (3.4),(3.5) and (3.6) are valid for all x,y e OU ,z e €
for which they are meavningful ..In particular, f_ 6= A(it) :t e KR}

is a group of isometric automorphisms of O'( e _ § '1

Proof (i)¥le first observe thet the map

2 —> (expB'zh)éf = (exp;’?,z*.v('r))'e?;

is analytic into S. If fe S is arbitrary, f —~} ¢,
Yo
IS S o ¥ (z)
c_(expBzh)e i~ = T+l expl2BRezw(r) s> O
“ f( phzh) rla E} ( ) M e

wiformly ivn z im. the gtrip Rez < 0.

. Hence Zcr(exszh.)er := (explzh)f converges in S inside
r=Q e

this strip, and defivnea an epalytic Tuvction of z for Rez < O,

which is continuous on the bov.mdé,ry,
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,

(ii) Part (i) shows that the definitions are meaningful, and
define aﬁalytic funcﬁibbs into (Cl,% Q). This is becouse
of (i) and becausei |
S e——— L(QI)
£ T (a(F) - I@Sp.\ fk“—-“b'KJH%(f»
is continuous and hence
» (AL

f}m—uf% a(T) © Tesp. f;»-~ﬁ-&+(f)

S

is continuous by Lemma 3.3,

It is immediate from the definitions that
(A(2)a(®)) = A(-Z)a*(£)  for Rez =0 ,and
(A(z)a"(£)F=p(-E)a(f)  for Res 20

It is also clear that,for each z e €, N(z) preserves the commu-
tation relations between elements of Ol in its domain.This
already shows that E 6 = A(i’c) s t e LR} is an automorphism
group of CK ,Since it is evérywheré defined.It also shows that
(3.4) follows from the above equalities,whenever Both sides of
the equation make sence,. | |
We can show yfor example,that
(A(2)a(T),a(8)) = (a(T),A(Z)a(E)) for Rez £ 0

by using the definition of the Lemma and the fact that f,g e S
can be approximated,in the topologyrof S,by finite linear combi-
nations of er's.The general case now follows from the observa-
tions of the previous paragraph.

We have seen in the proof of Thm.3.2 that (3.6) is in

fact valid for all x e and y e CR_.If we apvroximate a general
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v = a (fl)...a+(f ) e D(A(L)) by the correspondlnv element y'
of CH as in Prop.3. 1, we see that y'#— a(T )...a(T ) is
approximated by y‘#,and“A(l)y = a*«exp(-Bh»fl)...a «exp(-Bh»fnﬁ
is approximéted by A(1l)y* ,since exp(-B8h) e L(S).The validity |
of (3.6) is thus established. |
, - QED

THEORWIT 3.5

. - . i " " . &3
Wo is ipvariant under the automorphisms T of U[, and

satisfies the Xi'S-copdition wrt 0~
_t
eVery x,y e Ck, there is a function Fx 5 continuous and

on (L. Thet is,for
>3
uniforaly bounded on the sirip '{ze T e oélmzél} , and analytic

inside this strip, such that
l‘x,y(t) = WB(O‘ft(_}C)y) .

bx’y(ﬁkl) = WB(yG%(X)).

Eroof Ipvariance follows from the calculation

ve(on(x)) = (Lo (x)) = (w’t( ), x) = (1,%) = v, ()
Por x o= 3f(f1)-~»3+(fn)a(§i}.a.a(§m e {ﬁ, , ve (L, dcflne

T,y (8 =i (A Na E)) e (B I 2a el o™ (£ ) 0™ (£,0))

Tt is clesr from Leommz 3.4 that P{ is well defived in the

t.

strip C0=2Iimzsl ,that it is continuous,and analytic in the
interior.Hence it must attain its meximua modulus on the
boundary.,Tor real t,.we have: -

(8)=( (Alit) (= ('gl),.gg('gm»,;,AILIA(LE)(1+(f Lee2 " (20
=((AG) (o *(rll..m I A (2(E) - (B )

xc-y-

Cmera -~ -
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= ({{16)7)y)
and Jﬁ .

(m) (,,\(M_l Ya(By b a(E, ) i) (atle) oot (e

‘"((‘fz_(lt)(a+(fl)...c+(f WA NLIAL -1 X Fy ke -2(G D)
:(y%,ﬁ(it)(a+(fl)?,a+(anA(it)(a(§l)."a(zm»),
=V (V/(lm)x) ' .

required.Finglly, the inequalities

\Fx’y(t)\: \(Gt(x) = ﬁug("“ el P A o

and

i . 2/ﬂ(u+1)l = ,G’(x))\ VN x U (sivce A is un;ﬁary)

show that ¥ ¥ ig uwniformly bounded in the strip,

“. 9

This concludes the proof,

Definition
~NY

ror xe X define b by xP s A(l)

and * by e 1'.\(»?—):{ .

Observe thét;ﬁ(z) is defiped for all z on both a (f) and-a(?ﬁeaéz.
as there arc no problens of‘conyergence, énd hence the above

definitions maﬁe sence.Formula (3.6) | ghows tnat # iz isonetric
on éi hence e\teﬂds to a conjugate linear isometry J of H the

comnle+1on of (0( I “) (wh;ch is also the completion of (u, N

by prop 3.1, and lenma 3.3,
! - - ‘ ‘~l L . ~y (1
Note that ¥V and % are both involutions on O, called the

2djoint and wnitary involutions resp.. Note also that ¥a is-

a faithful sta2te on the involutive alg ( CZ ).

R S i s Rttt o ————— e e mrntn e m be To e s e
¥
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The following result is now immediate

THEORENM 3.6

(O, #, w,) is a closable probability algebra (see Chapter'
T 3
m‘, §2).

Proof For x e O,y e[ ,we have,by (3.6)

(2,58 = (x,MU)¥) = (7,x%)
Thus the mapping
U s x> (v7,x%)

—~
is continuous for all y e O'(,a.nd hence the involution Ias a

densely defined adjoint,i.e. is closable,

QED

This concludes our study of the probability algebra (O #, wB)*
and the almost modular Hilbert algebra (OC#hwg Alz)).
In the final Chapter, we will use, this iatter algebra to prove

our commutation theoren.
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CHAPTER VI

TOMITA TAKESAKI THEORY ON THE
ATGEBRA OF THE CCR

The aim of this Chapter is to prove the analogue of
Theorem 3.3 of Chapter III for the algebra of the CCR.
Specifically, if we denote by HB the closure of the GNS-
representation induced by w, (see Chapter I,81.4) we would
like to prove that nﬁ(CK) is ,in some sense, isomorphic
to its commutant. Now ﬂh(CK) consists of unbounded overa-—

.tors, and thus not a VN algebra, However we shall show that
its commutant ﬂh(CX)' is a VN algebra,and

T (0T = (OO
where J is the (anti)unitary involution - defined at the end
of Chapter V. —

Wer will follow the original method of TOMITA, by
first prdving our commutation theorem for the almost modu~
lar Hilbert algebra éﬁ epnstrucfed in Chapter V., For this
algebra, the right regular representation is easily seen to
extend to a closed (unbounded): A—aﬁtirepresentatién fh‘ Of‘éﬁ
on K,

Specifically, we equip éﬁ with the left (réspectiVely

right) induced tonologﬁ-¢l(resp.J% ) given by the seminorms

{ Lol »x e(ﬁf (resp.{u.ux ,.x e&} )
given by , , '. v
Ayl = gy = |[=y| (resp. ||y||, = “fb(X)YI|=HYXH)

The domains of the representations ﬂh and /% will be
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-
——— e

D(HB) = (Ei,l) andvD(fh)‘= (é§,§) (the bars denoting com-
pletions).

In order to prove that the commutants of these fepreuu
sentations are commufants of each other(analogously to Thm.
3.1 of Chapter III),we need to put these representations
in a different form,in which the structure of their _
commutants can be studied.

Thus the program for this Chapter is first to construct
a new representation of CK (and hence of &%) for which the
commutant theorem can be proved, and then to show that this
representation is unitarily equivalent (see Chapter i,§l.4)
to ﬂé.'It is interesting to note that this methéd is similar
to the method used by HHW[26] ip their original psper ; -
the important difference is,of course,the unbounded
character of our reéresentation,which this time creates
unexpected problems.3ome of the results of this Chapter are
taken from joint work with Ingeborg Koch (see[37]).The_same

problem in the one dimensional case was treated by GUDDER

& HUDSOW [29] .

The new representation we will define is essentially
left multiplication by nb(x) ,acting on the Hilbert space--
of all Hilbert-Schmidt operators on Fock space.This repre-
sentation being unbounded,again the problem of choosing a
suitable domain arises . We begin with a study of this

domain .
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§L.1 Tet :H be a separable Hilbert space:The algebraic tensor

product sn(@j{(— ﬂiay be identified with the set of all
finite rank operatirs from }( into sP. We equip this space
with the topology givén by all the norms { pz , M e lN} ’
where pﬁ is the norm on the Hilbert space . sg'é ?( of
all . .._Ha_lbefﬁ;_sgh{nia,-f' nperatoré from K into the completiom '
sg of s in the I| {; porm (see Chapter V,§1.1). We let snéfé

be the completion of Sn®}‘< in this topology.It is clear

that snék is a countably Hilbert space,and that
snc%}—z =ﬂsnc§}?, = lim snéf}z
m o <= "n

Note that ,for T e sné}_(. , po(T) is the usual Hil-
bert-Schmidt norm. Thus s%ﬁ " may be embedded as a
dense subspace in 12((Nn)C§j‘—{ .Clearly,under this embedding,
each T e sné}z has range in each sg‘ shence in sn.Moreover;
T is continuous as a mapping from }( into s;]l for every m. ”
Therefore |

T (KLU — (57,%)
is continuous, where L denotes the usual topology of s”.
Conversely,

Proposition 1.1

>12(I§.n) with range in

Every bounded operator . S : 3’{
s? is in sn@ﬁ . |
Proof(based on a comment of WORONOWICZ [90] )

We show S has ciosed graph in ( H,u ) x (sn,'cn)

If llxn—xl(————-b 0, and l]anvyllm;AO for each m e [N, then
in particular \[an-y([o—-—a 0 and hence Sx = y,because S,

being bounded,has closed graph in (T{,I [1) x (12@"),011).
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’

Since both K and s are complete and metrizable,the closed

graph theorem (TREVES[BS],Cor.4 of Phm.17.1) implies that

(K 1“ N— (Sny -tl’))

is continuous.
But s” is a puclear space (Chapter V,$1.1) and hence,

given m e [N, there exists r e N such that the identity i on

n

s” extends to a nuclear operator from Sn, to s?

o Thus

S ¢ (KGN —s (51 10— (sl 10 )

is nuclear,hence Hilbert-Schmidt., Hence S e sm®T( for
all m e N,and therefore S ¢ s"®@ K .
QED

Proposition 1.2

Consider the algebraic direct sum @ K-~ (i.e. the set of - -
VEINS,

2ll mappings }Nna Vi 2, e W .which are O almost every—l'
where,with‘pointWise linear operations.),equipped with the

topology defined by the norms { “.|h1,m e[N}-,Where

W (e M2 = T Gvi+o) Mo f

veiN®

The mapping : . -
K — PoH-
veiN®
(a,) t——> e &2 (e )izl » V=V
;éh*v v LA IR
extends to a linear topological isomorphism from the
completion s”(H) of @ K onto SLEK .

v e N

Proof Let m e N.We have _ _
i a2 = Z(\vnn)muavu? = Z(m+ n)m(ev,ev.ua B
Z-(ev’ eV' V') = pn( Z e ®5V)2

v,v’ vclN"
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Therefore the mapping presei‘ves each m-norm,énd thus it is
bicontinuous and injective.To show that it is surjective,it
is enough to show that its range contains the rank one

operators.Now each c e s may be written

c =V§'Mcvev ».
the sum converging in the topology 7, Thus for all a eX
the finite sums
fv:cvex}ag . |
converge to c®a in the topology of snéf , and they are
the imsges of (éva) e s?(K).
QED

The space sn(fl'() may be termed the secuence representation

of Sné}( .:yin the same way as s? is called the sequénce
representation of S(IRD).Bu't s?@® K also has a function

representation.We "see this as follows:

By Prop.l.l,every T e sn@x gives rise to a bounded-ope—--
rator from K into s”; thus for all a eX , Ta e s =S(R°)
(supressing the isomorphism).For each t e lRH' , the mapping
a —> (Ta)(t)

is continuous on }( ,‘ since Te 7{-—-—>S(1ﬁn) is continuous and-
T, is finer than the topology of pointwise conVergencevon‘.Sr,]
Therefore by the Riesz representation theorem (REED & STMON
53], Thm.II.4) there is a unique b(t) eX such that

(b(t),2) = (Ta)(%t) a el
‘Thus each T e snéj—[ uniguely defines b e S([‘Rn,]-(),v‘
the space of all functions b:Rn-————‘:k such tha‘c. for each

a e X ,the function t+ws(b(t),2) is in S(R").
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Conversely let b e S(R?,{).Define
T K — S(RY)

by (Ta) (t) = (b(t),a) a eH , t e R’
First observe. that the weak differentiability of tw» b(t)

i

implies strong differentibility.In fact,if 'br mtie R,

the sequence
bl = (ti..ti'),‘-‘](b(t )-b(1)) K

converges weakly to O'b/'atl) e K (where t = (t ,..17)er"

end t = (t4,..55...8") e B ).Therefore,by the wniform

r
boundedness principle (REED & SIMON [53] Thm.III.9),it

converges strongly.This shows that, if m e [N, we have

f (5%, 2) (6(%),2)Pat
R

H
1

zali®

il

{J(ngtirgi)b(t),a)th z |
£ Jlall® [UP (ti,g.)b(t)}lzdt |
R

where P (t 9 ) is the diff.operator defining the m-norm.

Hence T K — (S(R? ),‘rn)
is continuous .Thus we have proved:

Proposition 1.3

sP& XK is isomorphic to S(R”,K).

§1.2 We may now define the domain of our new representation.
We let q ®3:<. be the completion of the algebraic temsor
product in the topology given by the norms ipm , M e W}
where Py is the norm on the Hilbert space gm@j{ of" |
Hilbert-Schmidt operators from J{ into C}m (see Chapter )
V,Thm,1.6).Again we see that q ® K is countably '
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Hilbert,and that -

~ s Y/ . 7
g ®K=0Ng oH-= ;}_@qm®k
We also see,as in §1.1, the following

Propositionl.4

q @:K may be embedded, as a dence subspace, inm yéj“(
In this embedding,elements of g@:]{ have range contained
in g , and are continuous from (K ,I Il) into (q,.Z).

Note that since the space g is not nuclear, we do not

have a converse of this statement as in Prop.l.l.

Since g(‘@k @S @K

(Hilbert space direct sum)
it is clear that each T e%’@K restricts to Tn e sim(%}{
and pm(']?) Zp (T)

We also have a seanuence representations

-

THEOREM 1,5

) N
For each n e I, let si(v}() denote the image of "s?_ ®7’<
under the isomorphism between sP(K): and s”& K given by

Prop.1l.2, Equip the algebraic direct sum () sn(K) with the

'
1

norms m(a )H[ fm 2 (we use the convention s+(I°() = \

=Fana [lI2°l, =\la0|lkfor all o e () |

Then the direct sum of the isomorphisms givenv by Prop.l.2
extends to a linear topological isomorphism of the comple-
$ion Q(I‘() of" @si("}() onto Cj@ﬂ .

Proof Since ,for all m e [, sfm(}() is isomorphic,as a
hilbert space,to s?m@}z it follows that the Hilbertd‘ :
space direct sum 9 (K) 1:m(}() is isomorphic to
Ca[ @j{ , the isomorphism belnrr the direct sum of the

isomorphisms between the summands.
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However, g () =ng(}<) = %}_fggm(f(),since'all three spa-
ces contain d.ensely the algebraic direct sum @ sn(}() ,and
their topologies are easily seen to coineide on O ('}().
But it is clear from the definition (or see SCHAEFFER [64]
IT1.5.2) that the projective limni.'bs of isomorphic spa.cevs

are themselves isomorphic.

QLD

n
This concludes our study of the space Q(@K

§2.We are now ready to represent OZ as unbounded operators

on the Hilbert space 3«:[., é)}( .

e et i i e T

Pron,3,1. .
a ‘ i~ ‘ , ~7 .
(i) Let xe L, -7 ¢ gc’; . ~Then T{x)T e %72 K, apnd the
A hoaran
q ——— gS N,

T }“‘T'”f—"“y iC, ( )T

.0

map . (%)

is continuous wrt {pmf.
. —— . 4 . . : . A "
(ii) T is =2 4F~revregentation of Of on ?/ o XK.
Proof 71 (x) e L(g‘), hence for each me 7 there exists ak

and an re [ such that

i ,L(x)*‘ H; €K “Ff{r for esch F e (
Mow let o Z r, @ T e gm J\. ({f} is apn o.n. base
. A ) N 2 L, N 5 '
1y e “\m - M= (r)m e o= Tl i
Ao:f‘. }( ). r.llel’) ('ﬂ' (3)1) = .‘Z:. Il gbé(‘.{x).&j-l\ﬂl .- IX {{——ill?iﬁl‘ . -
_ . ) ‘ :

- I m
= K ’jr(*) .

S50 TWo(x)T e ga L and IT(x) is con ’clnu)u

Part (ii) is now immediate. “QED
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The following result is well known (see,e.g. REED & SILON[54]

Thn.X.41(a) )

Lemms 2.2

Let q(f):=.2’1/2(a("f)'+a+(f)) , p(£)i= —i2 Y22 (£)-a(T)),f e S

Then each ‘fn is an analytic vector for rro(q(f)) and r(t)(p(f)).

Proposition 2.3

re(a(f)) and n(p(f)) are essentially self-adjoint on 9&53{
Proof Let a e X .Noting that n(x)(F@3) = (5 (x)F)ga ,we have:

p, (1 (£) (Y @a)) = po«sgm(f»kwn)@a} = [l (e YNy Yally,

and therefore

0 k
S bt v (n(a() (Ypa)= HaHZ'-rr 17 (VY < eo

k=0

by Lemma 2.2.Hence 1}) ®2 is an analytic vector for m(q(f)) (simi-
larly for m(p(f)) )‘ Since such vectors are coptained im g@ K
and are total in M@K the result follows by NELSON's Thm., [45]

- - QED
The next result is known in different contexts (see,e.g.REED &

STIMON (54] ,Lemma 1 ,p.232 or STREATER & WIGHTMAN([79],Thm.4.5)

- Lemma 2.4 ' |
r(O(O'() is irreducible,i.e. T e rg(O()' implies T = %I (t e €C)

Proof For r e W,define N(e )= a *le )a(e ) e 0( Clearly

T
%(N(er))‘%(e(...nr...)) = nr%(e(...nr...)).Thus we hgve

ALY = (e (e DY, 1Y) = (¥, T (N(e DY) =0
since T e rc (O() and I‘S(N(e ))}P- 0.Thus TSV is orthovonal to

all S+ sy DY0 ,hence T‘VO:: t‘f’,for some t e C,Tor x eUZ r eg ’

(7,7 5 (OV ) L (x*)F, 78 t(x (x)F, V) = t(F,rg(x).‘{/o).



160
Hence ‘J?‘;‘ca(x)\i"o = ttc(x)"r'o. But ¥ is cyelic for W),
. ) . ’ ~
(Chapter V , (1.31)) hence also for ®{(X). To sce this,

: Y . , . .
let €>0, and PeM, be arbitrary. There exists xeCl , such that

\» - mgx)“vo W< & |

By Qha.p’cef. V,Prop‘:: 3.1& Lemma 5.3,"bhere exists x' e Ol s.t.

2 ‘ By ' o2
Wtz - = )k})o = « tr(exp(-BH)) WB( (x-x! V' (') < &/
Hence e - To(x)Y, I <&
Since T is bounded, we now sce that T = tI. 5TD

Corr 2.5

. N.
T, () is irreducidble, since {’cI} =T (QR) 2 (&),

TURORT 2,6

v Gt = A

\

The commutant w of T cownsists of all post-multinlications by

hounded operators on X . That ig,

e ={C e Q(H. & X)) : Jcye B(U) s.t. O(T)#‘I!Jl *J".L‘eh?;'l;cf} W—}

' Proof TLet ¢ e B(K). Define

CeB(BHA W) by ¢(1):= T.C (re Ha W ). |

1 \
. ) "\ -y : . av'd - . N . '
Since each %m @ W iz a right B(W)-module, it is clear that

AT " . . s ;
C leaves QQS JL invarisnt, An application of the definition of ;

the commutant (Thapt.I8§1.4)pow shows that C em'.

Conversely, let C e W'. Fix a,a'e W, and copsider B, i
'47(. .
defined on Ho x HQ by:
Ba,a,(F,F’)m (® 3, c(p m'é'))o
o »/ i : Z . ! . ‘ ’ “ “ T- . .
since lBa,a' (17, 7") | £ (1l ala::t{(ja' l‘g{ )\lF.(O‘.‘. ol llo , (+)
Ba ot is a bounded sesqui-~linear form and thus there exists a
§ < . . , ) e
unigue ¥(a,a') eB (¥, ) such that:
B, 5 (%) = (P, X(a,at)P)  for 211 ¥, ¥ = H,
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Now I claim that X(a,a') e m (OO .

~>

To see this, let G, G' e g , xe U &pd consider:

(G, X(2,20 )Ty (x)G1) = B _, (&, T{x)a)

2,0

(G o3, Clny(x)c') v a')), = (Ga a8, oT(x)(G' oa)),

- W) (6 0D, oo 03, = = B, o (To(x¥)e, 6)

(k(yﬁJ,K&Hw)@) .

This proves the cldim, snd hence by Lemma 2.4 <4here exists

x(@,a') e T such that K(a,a') = k(5,5 )I.

Thus for F, F' e M, , we have

. B (T F‘)
— 1,._", tr e a. ™ a F},' 7
x(a,a') = ( ‘(‘*?’ \,3 L. ’ T, 1)
_ (roz,c( oa)),
T (“ o)

> ¢

This shows that-the mapping W xz K
(3, a') +—— k(=7,a')

is sesquilinean and is bounded since

T I TRUSRN 21 cIElt s
\x(7,3)1 _|lh(q,a')ﬂou “llcdnwlila'mx
by (+). Hence there existz a unigue jl e ® (W) such

X
k(a,a') = (a, C 18" %
Then (++) glves.

(rez, ¢ (@ @a)), =k(a,a") (F,F')

(&, T3 (1,0) = (Fe3, ¥ el
RSN v] 2 ®@a, ¥ ®b )

= (Fo3 , (@ )0, ),

(44)

A — .
Since rank-one operators are total iv Hod W , We nave
T

¢(rfoa) =(Fo a)C ‘and thus c(1) =
1

T e H @ ?L

(This proof is a geveralization of GUDDER & HUNSON ( 22

.C for each

QED
Lemma 24)
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§3.For the rest of this chapter, ‘we assume X =Icr,:

Thus the representation st constructed in the previous section
is a representa’cioﬁ of (U on the Hilbert-Schmidt oparators oun
Fock space.Its commutant x( QU =J1'(5()’ (since the proof of
Thm.2.6 only depended on the irreducibility of X ) has a
particularly simple form: it is the right VN aligebl-"a of the
Hilbert algebra W8 I, (see Chapter IIT,§1.).Thus if we caﬁ
prove that 71 is unitarily équivalent to 7,y We are almost
finished.This will be done by usivg the unicueness of the

GNS construction (see Chapter I,81.4)Thus we need to construct

a unit vector ‘QB e gé L, ,such that. |
(3.1) (1,7,(x)1) = wy(x) = (g, n(x)Qg)

for all x e J{ ,and which is strongly cyclic for s, It is this
last point,surprisingly,which is the most difficult.Even in the
one-dimensional case (see GUDDER & HUDSON [22] ,Lemma 27,although
“our proof is simpler) the proof is rather technical.Our proof
is inépired from the proof that coﬁerent vectprs are total in
Fock space. | 4

It is easy to guess what the cyclic vector L%z should
look like.By inspection of (3.1) and the definition of Wy s
we get the-- _
Definition ™ = exp(-8H/2) . , LQB = ﬂKtr(exp(—BH»)l/2;

THEOREM 3.1

Qg is strongly cyclic for 7t( 52) o—n (d@]nf, :
Proof mirst Q, egé‘ylf. ,since pﬂl(qé')Q.z sr( (exp(=-H)B™) < oo
(see Chapter V,Cor.2.8(ii)).We show that,if € is the closure
of s¢( 5{) QB in the topology of@'é]o[, then € = Cgéﬂcfo
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(")>

o in the topelosy

4
3

~ . .
Tais will show that ’L(CZ)Q is dense ion 3

=t

dehnod by the (contivnuous) seminoras {l{’m_\‘) T xe ,
because, by nrop 2.1 (1) the latter tonwology is wesker,hence
gives rise to larger closures.

o~
. , : - L
Define, for e , re P, and % = (zo,zl,,,zr) e & with

I!’l"'j 8/4

o Z_ Z(ema( ol \(k)u ))(exn(- Zﬂ‘]va))vt(\c)f ODI)

The idea of the proof is the following

e first prove Tr(:-;,O) "r(x (W*nza ’T(e 1))” is \"é[olm]

vhere N(ej) is as iv the proof of Lemma 2,4. Then we show that

r+l , v i\ - .‘
[-};ﬁ} j (exp(miz k.20 7 (%,0)39 Ve, k. e @1
- v+ j=o d 4 L -3
Lo, 2 v
exists ivn the wezk sense, ard hencd is in [L? » llext we show that

this integrsl approximates , for large evough r,

T (%) V ek kqsn. ))@S‘Jk(e(zco,kl,...))

and the regult follows froa L’ll sy since such vectors are clearly

total in (13 & Ho

i

: L r+1
(i) To show that T (,c D) e 6’ _for 8= (8,9,...8) e Y_o,“cl
(a) Let L
Y —
':‘N,q(‘{ Z) Z g,ﬂie U(-':Z Z\:w(k)_nk))\e“p(ll;‘onjdj»KD(“)Pn”) Vs

" (v, =n)
with ¥,0e § ana Tnzyy - 86/4

—~—

These are (separately) analytlc fundtions of z into %(5 Ho ,
being finite rapk Opefators with analytié coefficients.

" S
Noting that BZ\‘I(}{)I) + 2_.4_ . Inz,o, >

B) W 1().(‘ --i (BE/?}D > BZ (w(k) E’;)nk__

W=0 i=o WD

we have: .
1 . .
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p, (T.(x,%) - (f,z.)) |
= (é %’\: : §0> )nn ((ex: Iﬂg-Z"'v'(lc)x)k))(e:lgg)iz_:ﬁjzj)to(:c)‘i’ncg(?n)z
\t__f\K-h)
9. ~—— — .
£(2 2. - >= 2. ) (o508 ZL(w0) = Elo ) IRl E —0
(Z.:n;:*h) :

as M,q ——> w0 , uz)li‘c}rmly in z in t’n.o region I"l" >-BE/4 ,

since '0 Z(e‘{p( B/ w(k)n, ) Uy (x )‘;’ n —tr ((exd=BH)x(x)B ﬂ',(x))

wn=
is Finite by Cor.2.8(i)&(ii) of Chapter V,where we may repla—

ce w(k) by w' (k) s =w(k) - g , since w'(k) = k+ 5 .

N : - -
Thus we have ghown that Jinm PTY (x,2z) = T_(x,2) uniformly in z
A : N,q oo +15( . r

in the region Imzj> ~-BE/4  in the topologyof 9@ i,

; - . . N - . By - ) 3
_Thus Tr(x,z) is (separately) analvtic in Z ip the 2boves region.

(b) Now let S g(@@ ?7; )*, +the topological dual of kacEQ\’”o »
be such that 3(r(x)2,) = 0 for each xe CL. .

- _ A NEN 741
Ve shnll show that S(TT(X, 9)) =0 for each Y el0, 2';\

This will prove, by the Haun-Banach thm, that Tr(x,@) e @ .

'
1
"

Define f(Z ),~ S(’l‘ (x, z)) This is emwalytic in the same region.
Por Xk ,ky,...k eI, consider:
%o Y ‘ Yy - ‘
h) » J
9, 9y ... 9,,. I‘N’q(x,z) . | where ’8$ ( 3)

N0 Vg, }Vlv‘
X ig=n)

=2 2 (e n(-»g’ Zu(k)ﬂ + 127«." DT x(i G, )) ...(1N( )) W @ r’n

> T (x(lﬂ(r‘ )) .,.(uI(e )) r A) , as in (2)

vhere N(e ) is.as defired in the proof of Lemma 2,47

— \ " K ¢ : R
9 p 1, N 3] N
=Z > exn(w‘ Z ,J(k)nk))(ino) (inl)° ..(inr) "expi é_ ,Jzi:-:to(ﬁ\’n@\’r)h

i
i

i
H
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my

Therefore

Lin 5(37. . 0Ty G z.)) = s(1 (x(iily ) 2. . (i, ), D)

N,:‘——’)eo

and hence

3 Y k
Do’ - B, £(8) = 5(1,(=(in,) ?..(wfn )) T O ))
as con be seen by_repezated apnlication of the Dom'-.Corjvergerice*'

thm., Thus

\

Ley v oty k
%75, = Se(x(inG )) ...(iN(er)) T)T)
k' k., . KN .
gince x=(iN eo)) ?..(il\?(e) T e CL » and T (y,o) = "TT.(I(‘)T

Hence the (r+l)-fold Taylor expansion for f, which copverges Tor
r+1 ) '
‘\9@ {O 211] » Since f is enalytic, gives:

k 2
£(9) = 7(1{ )"1(28 ) f(cg)f(?= 6o =0

Yed - \\ro

i.e. S(T%\(K,G)) = 0, which shows that T M@) e €.

(ii) The function

{_O 2»;]?”'39 > (ex n(-—vz kj 93.» TT(X,g)’ e €
=0 \

is continuous, hence inte rable in the weask sense (RUDIN [59]
' y ——x * -
3.27), and its integral © ( ) e €, (k= (ko,kl,..._kr)). e find:

> 1Y+l [ = =
T;{,(K) = [")Tc] j 0}:}7(-—17 J@ ) (%,9)a9
2 E Zq vt =0

- rrl | =
Z_ Z(exp(-«r' Zw(.c)n ) L’Vv J (eeoi ;(faa-—hj i) )uc(n,\} @ \j‘!‘&,
YB? -“f'\\. =Q

I

___Z ?(e‘;m $“v(k)rz1 ) TJU{ 2 ) T(x)Y QIP;
o e w ‘ '

. . _ R
= (exp(=2 W(j)k..))mq(x)u(} (e ,...%_,0,..06Y (e(k_,..%x ,0)
2 &3 J k 0 T k 0 X

g Z SIS PRCERIO N

where o,ni,... ;-nhzn cﬁd r"a:k\i lfor Oéj*’{f’ } ' !

,M (’

’:3
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and 5“{ =k,

J=0
Mlow, keeping r,% ,kl,...kr e W fizxed, define for each r'e W, rtep

the string “=g< goaeK

K r+1?‘>"k ,)  such that k,=0 for rijfr!

d
It follows, a3 above, that

o T+l B a4
R (%)= L{J - (?xg(- 2 k 9 )) N ,(:c,@)d%
- o 2wy 3=°

!

= (exp(-o—é?‘: w(g)k ). xu,(x)f (e(k O,...))@T?k(e(.ko,.,..l_cr,(_).)

07K
3=¢
. {*3, —
+ £ Z(exp(««}_w(i)n.))?tn(x)“r’_ oV
hziaygy ]__' T 17 . n n

.I-.'otioe that the first term remains uncﬁamged for any r'>r, since
'J"O for r<jfr'., | ‘

(iii) We cxaim that the second term goes %o zero, as 1! ——po,
That 1Q, given €% 0 and ne W, there exists r' such that, whev-
ever T" > r', the pmpora of ﬂle second term ig legs "'%19,1)“‘(-‘,..
This will “10 w that

o (2}

Pty

!

() - - (expl § S (i DR 0P ) < ®
. _3_:‘3 3 ~% .‘{

for each 1% N p! by the above formula, snd thevefore, since:

-3

n
¥ (x) e €  for each r", %hat.

TEO(,\:)‘IU aV e € -
k k.
vl
(e}”t)(-—‘- Zw(g)k ) being a scalar, inde spendent of V.

To prove the claim, let Er' be the Qrthogonai projection

——

onto the subspac"e of Fock space spanned’ by{ l}’n(e(mo,...)):

: (no,...) e I , D e {I'I}.Observe w‘cha.t
Co T B Y(e(ky, .k, 0, 70, .. 0= ¥ (elx

-

O,-ca r,o,o,..))
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for all r'=r, while Er,——a 0 strongly on'the orthogonal
complement of Qk(e(ko,...kr,0,0,...».We can see this as follows:
If E,, —» 0, there must exist ¥ such that E_,V¥_ —%eo But
this means that EIJW for all large enough r', since the
I; ,and hence also: the Er' ,are monotonically decreasing.Now
E.,Y =Y  implies ny =k for 0 £ j £r' by definition of

J
Er,,and hence,sinceAr' is arbitrarily large, nh = kj for all j.

Y (e(n

Now let T = exp(-BH)FR','whereiFk is the projection onto the

Thus

))=‘J’(e(k ,0,0...)

0"’ o’oovr

orthogonal complement of the subspade spenned by ZHQ ,0 =n = k}

T, is a nuclear operator by Thm.2.7 of Chapter V.

k
~
FormelN:-, xell ., a.fxd(}eg , consider

I 50 22 OGN Bl < 0% | 3, T,Gn

where B™ is as in Chapter V. ,(1.43), p el , C is a constant,

and the last inequality follows from rg(x) e L(é?»“

: = r.Gu < et
since Bka is bounded,being trace class(Chapter'V,Cor.2.8(ii))ﬂ

Thus °
% n(x)Ty B, || £ elfBPr, |l

and hence the sequence (BT (x)T E ) is a norm-bounded

k !
sequence,converging to O strongly,hence ultrastrongly.Thus we

have:

Pof; Z_?.(exp(?- SUCEREAC )%w )2

nzwn, LY

o

li

$ ¥ (exn(- 8 Zw(L) ) (), I3,

"= E’NI.}

5 lexp(-8Ew(1)n,) B (), )12

nakel :[V
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'

ZZHB AL E P12 —> 0 as e e

n..:o "
by the definition of the ultrastrong toooW 0Ly,
{(iv) We have now shown that, for each ryky,...k e IV,and for

each x e OT,

()Y (elk , ...k o,o,...))@?k(e('ko,...kr,o,o,...)) e C.

r’
To complete the proof,let T e g be given.Since in;(x)‘yoz x eOT.E
is demnse in ( Cd?' ,7) (this follows from the definition of q
together with the density of CTC in 0( in the topology inherited

from T( ?) (Chapter V,Prop.3.1)),given €30 and m e I, ve can
find x e Ol such that

7 - ()Y Il «¢€

Now given k_,ki,...k, e lN , let y e X be such that

7Y (elky, .k ,0,0,.. 0= ¥

Then — —
p,(Te¥, - m(xn)¥,8h) =P - n(x)¥, I,

=7 - w(V I, <€

which shows that F®%c(e(ko’ ...kr,0,0,...)) e €
This concludes the proof,since such elements are clearly total

in Qé\)iﬁ .

QED!!



§4. We are at last able to put all the pieces together and
prove the commutation theorem.Ve will first prove this theorem

-~

for the almost modﬂlar Hilbert algebra m, and then extend it -
to (U .Thus we first restrict attention to CL .

Theorem 3.1 and equation (3.1) show that (K ,ﬁB,l) and

(']J;é—}-f; , 7L, ‘OB)_; are two GNS friples for (07 Vig) - Therefore

they must be equivalent,that is,there exists a unitary

U W oente, UGN,

such that }
Ufﬁ(x)l = Jr(x)Q[3 '

~

for all x e U, and U maps D('TCB) continuously onto D(7R)
with respect to the induced topologies (see Chapter I,§1.4).

We now define the L—antirepresentation‘ﬁ of Olon UD(PB') by
i . 1
- ﬁ(x).— Uﬁg(X)U—

(see the introduction to this Chapter) and the (anti-)unitary
involution J]_' on W,®Y, vy
1

J,:= UJU~

37:
Lemma 4.1 (GUDDER & HUDSON [22] Lemma 21)
J maps D(i‘CB) continuously onto D.(fDB.) and vice versa.Hence Jq
maps D(R) continuously onto D(pP).For x e 6’2,
HrtB(X)"‘ = Ip(xM)T

Proof For x,y e gl ,

A= =1 = =™l =Uxlly-
It follows that J is a topological isomorphism from (5? , )

onto ( OU,d),and hence extends to the completions.
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For %,y e OL,we have

I /(x") Iy = TR (xH)y* = Iy*x™) = xy = p(x)y
Thus JfB(x“)Jy = ﬂ‘B(x)y for all vy e D(ﬂf'g),by the continuity

of the operators involved.This proves the last claim.
: QLD

Tiemma 4.2

For all T e']c&é]cf; ’ JlT' = 7* , the operator adjoint of T.

Proof Since T— T* and J‘l are antilinear isometries of M@M y

it is sufficient to prove the claim on a dense subset. Thus

let T = rc(x)_QB for some x e U .We .have

-1

J.T = UJU™-T = UJx = Ux‘:n:(x*‘)QB

1

Al o] .y 11y - % . * (™

Thus we must show that (?C(:«:)QB) = Tl-(X%)—QT for all xe
. ) . .

Let P cq , re N, We have

i x-8H) (et (a2’ o=
se( exn-BH) (VL('a ('er))QB)* =

_ = < -3 - . +

=z —a 7( %k 4 2 = t

2o Tl Totang) (1, e <er»P)

= v“-. ~. =, _r“)?_ 5° . . . l/? U "y l N
£ %(OXP( 5 _\;w(k)nk)) (03 l) (W, ¥)% ml( (1, o7 v e oL

n (chaoging

i .
[} Ng

Z (exn(- ~—() W(A)o‘ —\'(r)))}( ‘\r)%)n".?}f)

. B \“ — ’
= (G»T{IJ‘{;:‘-"'(I‘))Z > ( e:/:p(wg- f (), \)‘“’ %, (2’ (e,) W
w=9 :\:‘ . -

Thus,

Similarly, we find

e - ‘ =B - L | 1 —
: (Tt(f—-—(ur)),Q.B.) P = (e:\png-»(r))QBT;o(a(er)) o ngo(A(- .72-)31(@1‘))

(2" (0, )Q)F = (exppn(x) Qg (2% (e,) ¥ = O (KM(ZH)at(e,)

<

r=

23
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Thus we see that in general . '

—

(re(x)Q,)F = Q,r(A(-1/2)x)F
Hence, for each F,G e g ,
(n(x)Q,F,6) = (Q(g(a(-1/2)x)F,6) = (r(a(-1/2)x)F,0,G) =

(7, (a(-1/2)x)")3,6) = (¥, 5(x*)2,0)

since (A(-1/2)x)¥ = a(1/2)x = x“f (Chapter V,(3.4)) , and
thus the claim follows, since J‘t(’X)QB is a bounded

operator.
QED

VWle can now prove the analogue of Thm.3.,1 of Chapter III.
THEOREM 4.3

- The commutants r%(&(’)i and ﬁs(éi)' are Von Neumann algebras,
commutants of each other, PB(&)' is standard in the sence
of DIXMIER (see Chapter III,§1) and a factor.Finally, J
induces a spatial isomorphism of either ome of them onto

the other,that is

1

TR (00T = p(d)
Jjﬁ(éi)’J 'rh(éi)'
Proof(i) Let C e (L)' , T,G e D(P) , x e Ol .We have

I

('chle(x)F,G)os (JlC)‘c(x*)JlF,G)o (Lemma 4.1)

il

AN - * ¢
(ch},cfr(x )JlF)o_ (re(x )JlG,CJlF)O

| (Jlja(x**"“)a,c,xlzv)o = (Jlf)(xl')(},CJlF)'lo
since x *¥= (A(l/2)x#)# = A(-1/2)x , so that

= A1/2) (A(-1/2)x)® = A(L/2)A(L/2)x =
=A(1)x = xb .4 '



172

Thus P
(chJlfix)F 6) o= (3,03,F,p(xb)e) |
i.e. J 1691 _P(Ot) . Thus ln(OI) Iy =‘P(ai)',and the equali-
ties of the Theorem follow in the same way.
(ii)By Thm.2.6,we know that (G = R( ?l_) ,where U is the
Hilbert algebra, }f@:g:(see Chﬂpter ITT,§1).Thus each .
Ce ft(CR)' is of the form CG(T) = TC (T eld) for a unique
e 13 (X)) .Hence

J,Cd, (T) = J C(T ) = Jq (r* c ) 1T

using Lemma 4.2.Comb1nlng this with (i) we see that
pla = ()
the left algebra of UL .But: the commutant theorem for Hilbert

algebras (Chapter III thm.1.1) shows that these latter VN

algebras are commubtants of each other.Therefore.

() —p(OZ)" :
(iii) It is clear that
B A A COL

and

URIA) U = p(A)

Thus by (i1) B(A)' is = standard factor,being wnitarily
equivalent to the standard factor (L) (see ChapterIII,
Ex.1.3) apd ﬂ%(OZ)' = ‘fh(Cx)".This concludes the proof.

' ' ' QED

Our main theorem is now trivial to prove:
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THEOREM 4,4

The commutant f%(CK)' is a Von Neumann algebra,and it is
stondard in the sense of DIXMIER . In particular,
TR(00T = 0"
Woreover, . ' . 4
A}tﬂh(CR)'Af¥t = ﬂh(Cm)‘ for all t e R .
ProofExcept for the last asserfion,everything follows from
Thm.4.3,since

B ()" = (o) U =

= v lz(d)v

7, (a0
To check the last equality,let C e f%(CK)',X,y,z e Ol and t e R
We have - o
(AitCA‘itffB(x)y,Z) =
(e xy),07%) = (ca ) (a7 ), 4710 -
(O (8™ ) A by, a7 2 =
(ca by, m (E P )a"02) =
('CA"ity,'rrB('A“itxﬁ)‘ﬂ"ifcz) = (Chapter V, eq. (3.4))
(ca by, (A8 (a-1%,) =
(en iy, 518(x2)) = (aiten iy, o («*)2)

that is Attoa 1t o 5 (OO .

Thig concludes the proof.
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ISOMETRIC MAPPINGS OF NON-COMMUTATIVE
L, SPACES

A. KATAVOLOS

If the L, spaces of two measure spaces are ‘‘the same’’, to what extent can
we identify the underlying measure spaces? This question has been partially
answered by Schneider [7) (extending results of Forelli [2]). He proves that a
linear isometry between the L, spaces of two finite measure spaces is in fact
an (isometric) homomorphism between the corresponding L, spaces, if it pre-
serves the identity.

Kadison [4] and later Russo [10], have considered what might be called
non-commutative analogues of the above problem. Their point of view is
different from ours, however, since their ‘‘measure spaces’’ are already in bi-
jective correspondence by assumption, and their goal is to determine how
much of the algebraic structure is transferred by this bijection.

In this paper, we attempt to extend Schneider’s result to the non-commuta-
tive case, thus strengthening Theorem 2 of Russo [10]. Specifically, we consider
two finite Von Neumann algebras &7, &/, with faithful traces m;, m,, and a
*_linear map T from a *-subalgebra % of &7, to L, (¥, m,) for some p > 2,
which preserves the identity and the L,-norm (see Segal [8] for the relevant
definitions). We prove that T must be a Jordan homomorphism, and must
preserve the operator norm (and thus, by the Riesz-Thorin-Kunze theorem
[5], all L,-norms for ¢ > 2). In the absence of commutativity, we cannot con-
clude that T is an associative homomorphism without some extra assumptions.
In fact, if &7, is a factor, then we can show that T must be either an (associa-
tive) homomorphism or an antihomomorphism.

The results of this paper are similar to well known results of Kadison [4].
However, our hypotheses are weaker, in that he considers the mapping T to be
an isometric bijection between .27, and &7,. Furthermore, his results are not
applicable to our problem (but see Corollary 2.1 (ii)), because we need to
prove first that T is a Jordan homomorphism (using a method entirely different
from Kadison's) in order to be able to conclude that it preserves the operator
norm. A similar relation exists between our results and results of B. Russo [10].
We note that our Theorem 2 is stronger, since, starting from weaker assump-
tions (namely, that T maps a *-subalgebra % of &/, into L, (&4, m2) rather
than &7, onto itself, and that T is *-linear, rather than positivity preserving)
we are able to get stronger conclusions (namely, positivity preservation, and
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preservation of all L,-norms, for p in [2, 00 ]). Finally, we note that M. Broise
[9] has obtained partial results in the semi-finite case.

Throughout this paper, we let % 1,.27; be two finite Von Neumann algebras.
Thus there exist faithful, central, normal states m; on.%/; (: = 1, 2). Then if
& ; acts on the Hilbert space 7, (3¢, &, m;)(i = 1, 2) are finite regular
gage spaces in the sense of Segal [8].

We need a technical result constituting an extension to the present, non-
commutative case, of results of Schneider [7] and Forelli [2];

THEOREM 1. Let 0 < p < 0, f, € L, (S, &y, my) (i =1, 2) f, normal.
Suppose that there is a positive constant A, such that, whenever z € G is such that
lz2| < A4, we have

11 4+ zfillzpmp = H1 + 2fal| Loimay-
Then

(a) HfXHLz(m) = ”f?-HLz(mz)
(b) pr > 2: then ||f1||L4(m1) = ”f2HL4(me)-

Proof. Let # ; €7, be the Von Neumann algebra generated by the spectral
projections of f; (that is by the projections ¢! such that f; = fcxde,". Since
f+ may be identified with a closed densely defined operator acting on 3£, (this
is because the gages are finite; see [6, Theorems 4 and 5]), it follows that
e' € x4 i)-

Then (S, &, mig) is a commutative finite regular gage space. It is
therefore (8, pp. 402-3] algebraically equivalent to the gage space built on a
finite measure space (% ;, o). Since f; is measurable with respect to %,
{8, Definition 2.1] it follows by [8, Theorem 2] that f; corresponds, under
the above equivalence, to a measurable function ¢; on (£ 4, o4).

We now apply the commutative theorem of Forelli-Schneider to the func-
tions ¢; on the measure spaces (%4, ;). Note that, if 2 € G is such that
lz| < A4,

11+ ze1]| Lpeny = [f|1 + z¢l(x)lpdal(x)]1/p

= [mi(|]1 + 21/")]"”” by the above equivalence
. 1/p
= [ma(|1 + 22| = [f|1 + z2(x) Ipdag(x)]

= Hl + ZQDZHL,;(qz) < © Sincefi E Lp(%{,%{,m().
Thus the hypotheses of [2, Proposition 1] and (7, Theorem A] are satisfied,
and so we conclude

(a) ”‘Plan(n) = H§02”L2(02)
and

(b) If p > 2, then ||ei]|zien = lle2]|ziton-
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The desired conclusion now follows from the fact that if 0 < ¢ < 0,

o = mellfdD = [ loi@) o) = llod oo
THEOREM 2. Let U C 7, be a unital *-subalgebra. For some p in (2, ), let
T: U — L,(A 3, ms)
be a *-linear map such that T(1) = 1. Suppose that
UTA pmay = Hfllzoempy  for every mormal f € U.
Then T is a Jordan homomorphism, that 1s,

T(fg + gf) = TfTg + TgTf, f, g€ %.

Remark 1. Young [12] has shown, based on the coincidence of the L, topology
and the strong topology on the unit ball of &/ (Dixmier [3]) that T admits an
extension T, to the weak closure %~ of %, which is also an L,-isometry. By
Corollary 2.1 (see below) T ,(Z~) € &7 5. By Dixmier’s result, T, will be ultra-
weakly continuous at 0, hence everywhere in &/,. This provides a quicker, if
indirect, proof of Lemma 3.1 of Stgrmer [11].

Remark 2. Russo [10] provides an example showing that our assumptions
are too weak for the case p = 2. In this case, the stronger assumptions of his
Theorem 2 are essential.’

Proof. (i) Let f € % be self-adjoint, and z € C. Since T'(1 + zf) = 1 + 2T,
we have (since Tf is also self-adjoint)

11+ 2fllzomo = 1 4 2Tf] 2pome-
Thus Theorem 1 (b) shows ‘
”1 + Zf”m@m) = ”1 + ZTf”LA(mz) < o0, Sincef € Ml —C— L4(ml)-

Now

et 3 (2)(2 )

k=0 \ 7
and so
i e (2 2 ok g osre
gl = 3 (3)( 3 )ewmerm,
Similarly

sttt = 3 (2)( 2 )emmcaniam.

Therefore
(1) mi(fif*) = ma((TA(TH, j,k=0,1,2
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(ii) Putting j = 1, k2 = 2, in (1) yields
ma((Tf)?) = mi(f?).

Replacing f with f + ag, a real, f, g self-adjoint, expanding and comparing
terms in a?, we find

ma(Tf(Tg)* + TgTfTg + (Tg)°Tf) = mi(fg* + gfe + &*f)
or, in view of the centrality of the traces
(2) mo(Tf(Tg)?) = mi(fe?).
On the other hand, putting j = 2 = 1 in (1) yields
m2((Tf)?) = mai(f?) ,
which, upon “linearization’ and use of centrality as above, yields
me(TfTg) = mi(fg).
Replacing g by g? above, and comparing the result with (2) we find
my(Tf(Tg)*) = mo(TfT(g*))
and, replacing f by g2, we get
@) ma(T(g*)(Tg)?) = ma((T(g*))?).
Finally, if we putj = & = 24n (1), we find
ma((Tg)*) = ma(g?)
while (2) with f = g? becomes
mae(T(g?)(Tg)?) = ma(g*)
hence
(4) ma((Tg)) = ma(T(g*) (Tg)?).
Therefore
1(Tg)* — T (g)lo*=m2((Tg)* — (T)*T(g*) — T(g)(Tg)*+ (T(g?))*) =0
by (3) and (4), and so (Tg)? = T (g?) for every self-adjoint g in %.

(iii) Now let f € % be arbitrary, and write f = f1 + if, with fi, fo € %
self-adjoint. Since fi 4 f2 is self-adjoint, part (ii) yields

T((fr + )% = (T(fr + f2))? = (Tfy + Tfa)>
That is,

T(fxz ’!‘fz2 +f1f2 +f2fx) = T(flz) + T(f22) + T(flf2 +f2f1)
= (Tfi)* + (Tf)* + (THTf2 + TfTf1).
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Thus
T(fif: + fof1) = TfiTfs +_Tf2Tf1-

Therefore,

T(f*) = T((fr +if)?) = T(/i* — f22 + i(fife + fof1))
= (Tf1)? — (Tf)* + i(THTf2 + TfTf1)
= (Tfi + iTf2)* = (Tf)>
Finally, if f, g € % are arbitrary, we have
T+ 0% =T + & +fe+2f) = (T + (To)* + T(fe + &)
= (T(f+ )2 = (THr + (Tg)? + TfTg + TgTf.
Therefore,
TfTg + TeTf = T(fg + ¢f).

CoroLLARY 2.1, (i) If f € X is self-adjoint, | Tflle = ||flle-
(ii) For every f € U, ||Tf|lo = ||flle Hence T(U ) S L s.
Gii) T s positivity preserving.

Proof. (i) Let I € N. We have

ITflIZe,mey = ma(I T2 = ma((TF*)HTF)Y)
= m((TEN*(T(Y)) by Theorem 2
= ”T(fl)”iz(mz) = Hfl”iz(m) by Theorem 1 (a)

' = mi(f*f") = mi(|f]*") = |lf”2L:,(7u1)~
Thus

“Tf”Lu(mz) = “f”Lal(m)-
The result follows by letting [ tend to infinity.

(i) If f € % is arbitrary, write f = fi + if, with f; self-adjoint. Since
fi =3+ ), fo = (1/20)(f — f*), it follows that ||fille = ||f]| Therefore

I Tflle = 1THlle + IThlle = lfille + folle = 20|f]lo-

This shows that T(%) C 7.

Now the proof of Kadison [4, Theorem 5] is applicable, and shows that T is
actually isometric. (Although he assumes 7" to be a bijection, the argument
proving that T is isometric does not depend on this, but only on the fact that
T is a Jordan homomorphism and that it is isometric on self-adjoint elements,
which follows from part (i) of the corollary.)

(iii) In view of part (ii), there is no loss of generality in assuming % to be
uniformly closed. :

If f € U is positive, there is a unique g € % such that g2 = f and g = 0.
Now T'(f) = T'(g?) = (Tg)?is positive since Tg is self-adjoint. This completes
the proof.
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THEOREM 3 There exists an orthogonal ceniral projection p € o7 2 such that
the map

T1 If — T(f)P
(respectively Ty : f — T(f)(1 — p))

is a *-homomorphism (respectively a *-anti-homomorphism) and T = T, + T,
as linear maps.

Proof. We have shown that the image of % under T consists of bounded
operators. Therefore, the extension T, of T to %~ (cf. the first remark following
. Theorem 2) satisfies the hypotheses of Theorem 3.3 of Stgrmer [11].

CoroLLARY 3.1. Suppose that, in addition to the assumptions of Theorem 2,
oy is a factor. Then T must be either an (associative) homomorphism or an
antithomomorphism. ‘

Proof. As T has now been proved to be a Jordan homomorphism from %
into .27,, this is an immediate consequence of Theorem 3.

Remark. It is not possible, without some extra assumption, to exclude one or
the other possibility. For example, the identity mapping is an homomorphism
of any factor onto itself, and it clearly preserves the L,-norm. As an example
of an antihomomorphism consider the mapping T defined as follows: %7, is
a factor on a Hilbert space # ;v is an antilinear antiunitary operator from%”
to some Hilbert space # ; we put T(f) = v~!f*s, (f € &1). Then T() is
a factor and T preserves the L,-norm for every p > 1. (This example is due
to Dixmier [1]).
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