INVOLUTIONS ON COMPACT 3-MANIFOLDS

Vera Lucia Carrara Zanetic

Thesis submitted in part
fulfilments of the requirements
for the M. Phil. (Mathematics)
degree of the University of
London.

Bedford College,

ProQuest Number: 10097335

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10097335
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.
All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ABSTRACT

Let G be a finite group and X a closed fixed-point free G-manifold of odd dimension, that is G acts on X preserving the orientation. We have associated to (G, X) for each $g e G, g \neq 1$, an invariant (α), as follows.

According to the free cobordism theory of Conner and Floyd (4), the disjoint union $k X$ of k copies bounds a free G-manifold Y, for some k. α is defined by

$$
\alpha(g, X)=1 / k \quad \operatorname{Sign}(g, Y), g \neq 1 .
$$

When G has order two, $G=\left\{1, T: T^{2}=1\right\}$, we have a fixed-point free involution $T: X \longrightarrow X$ and it turns out that α coincides with the Browder-Livesay invariant (β) of (T, X).

In this thesis develop the proof by F.Hirzebruch and K.Jänich that $\alpha=\beta$, when $H_{2 m+2}(X, Q)=0$, where $\operatorname{dim} x=4 m+3$.

We also compute the Browder-Livesay invariant of involutions derived from free actions of the generalized quaternion / groups

$$
Q_{4 t}=\left\{x, y: x^{2 t}=1, x^{t}=y^{2}, y^{-1} x y=x^{-1}\right\}
$$

on the spheres $s^{4 m-1}$.
Furthermore, Lopez de Medrano constructs involutions on homology 3-spheres, as follows.

Theorem (Medrano). For every i $\in \mathbb{Z}$, there is a fixed-point free in volution (T, \sum^{3}) of a homology 3 -sphere \sum^{3} such that $\beta\left(T, \Sigma^{3}\right)=8 i$.

We work with the examples above and prove the following theorem.

Theorem. If $\beta\left(T, \Sigma^{3}\right) / 8$ is odd, where $\left(T, \Sigma^{3}\right)$ is one of Medrano's examples, then \sum^{3} cannot be h-cobordant to s^{3}. Also, \sum^{3} does not imbed in R^{4}.

For this, we compute first the signature of a sui table 4-manifold with \sum^{3} as boundary, and compute the μ-invariant of \sum^{3}.

Acknowledgements

I want to thank Professor P.M. Cohn for the help given to me to submit this thesis.

I want to thank Dr. C.B. Thomas, who suggested me the questions to be discussed and helped me to clarify the problems. I want to thank him for his guidance throughout this work.

I am also indebted to Dr. R. Seymour for the several talks and important suggestions on the resolution of the problems.

During this course I had the finantial help of the Brazilian Institution FAPESP.

CONTENTS

Introduction 6
Chapter I - Involutions on Spaces of Constant Curvature
I. 0 Notation 9
I.l Definition of Invariants
I.l.l G-Signatures 10
I.1.2 Definition of α-invariants .
Computation formulae
I.l. 3 The Browder-Livesay invariants 16
I.1.4 $\alpha=\beta$. First part of the proof 18
I. 2 Hirzebruch's results on lens spaces 22
I. 3 The generalized quaternion group case 25
Chapter II - Involutions on Homology Spheres
II. 0 Introduction. Definitions and Notation 32
II. 1 Construction of Lopez de Medrano's examples 35
II. 2 Definition of the μ-invariants 39
II. 3 Second part of the proof of $\alpha=\beta$ 41
II. 4 Proposition 44
II. 5 Theorem 52

INTRODUCTION

Several authors have been concerned with involutions on odd dimensional compact manifolds.

Browder and Livesay have defined an invariant, β, for fixed point free involutions on ($4 \mathrm{~m}-1$) - homotopy spheres $(\mathrm{m} \geq 1)$ and Lopez de Medrano[13]has used this invariant for their classification. If $\left(T, \sum^{3}\right)$ denotes such an involution, there is an invariant $(2 m-2)$ - connected submanifold W of \sum given by $W=A \cap T A$, such that $\sum=A \cup T A$, where A is a compact submanifold of \sum with boundary $\partial A=W$. Then, β is defined as the signature of the form

$$
f(x, y)=x \circ T * y,
$$

on

$$
\operatorname{Ker}\left\{\mathrm{H}_{2 \mathrm{~m}}-1(W) \longrightarrow \mathrm{H}_{2 \mathrm{~m}-1}(\mathrm{~A})\right\}
$$

(see I.l.3).

A manifold X with a fixed point free involution T can be considered as a free G-manifold with $G=\left\{1, T: T^{2}=1\right\}$. C. T. Wall and others have used an invariant, α, for the classification of free G-manifolds. The invariant α of (T, X) is given by the number

$$
\frac{1}{k} \operatorname{sign}(T, X)
$$

where Y is as free G-manifold with boundary $\partial Y=k X$ and $\operatorname{sign}(T, Y)$ is the equivariant signature of Atiyah and Singer (1).

The invariants β, on the other hand, are also defined for a class larger than that of homotopy spheres and it turned out that $\alpha=\beta$, in the case of involutions.

Part of this dissertation deals with the exposition of the proof of $\alpha=\beta$, due to Hirzebruch-Janich, and which we use a tool for a subsequent result.

Lopez de Medrano, in his above mentioned work, gives examples of involutions on homology 3 -spheres with values of β being of the form 8i, for any integer number i. The examples with $i \neq 0$ cannot be homeomorphic to the standard sphere, as any involution of s^{3} is equivalent to the antipodal map (12). If it happens that $\pi_{1}\left(\sum^{3}\right)=0$, where \sum^{3} is one of those examples, a counter-example to the Poincaré conjecture in dimension 3 will have been found. This is unlikely to be the case. Using the result $\alpha=\beta$ and the μ - invariant for homo logy spheres defined by Hirzebruch in (9) , we prove the following theorem.

Theorem : Let $\left(T, \sum_{i}^{3}\right)$ be a Medrano's example with $\beta\left(T, \sum_{i}^{3}\right)=$ 8i(iez). Then, if i is odd, we have:
(i) \sum_{i}^{3} is not h - cobordant to s^{3}, (ii) \sum_{i}^{3} does not imbed in R^{4}.

To prove this we compute first the signature of a suitable 4-manifold with \sum^{3} as boundary and we compute the μ-invari ant of \sum^{3}. More precisely, we prove first the following proposition: Proposition. Let $\left(T, \sum_{i}^{3}\right)$ be as in the theorem. Then \sum_{i}^{3} bounds a π - manifold M_{i} such that $\operatorname{sign}\left(M_{i}\right) \equiv \beta\left(T, \sum_{i}^{3}\right)$ (mod.16). Further more, the μ - invariants of \sum_{i}^{3} are

$$
\begin{aligned}
\mu\left(\sum_{i}^{3}\right) & =1 / 2, \text { for } i \text { odd } \\
& =0, \text { for } i \text { even }
\end{aligned}
$$

Another problem of interest is the computation of the invariants themselves. Hirzebruch has calculated the BrowderLivesay invariants of involutions on lens speces (7). Following his procedure, we compute the β - invariants of involutions T derived from free actions of the generalized quaternion groups $Q_{4 t}$, of order $4 t$, on the spheres $s^{4 m-1}$.

This exposition is divided into two chapters.
In chapter I we define the invariants α and β, as well as other invariants needed in the sequel. We give the first part of the proof of $\alpha=\beta$. We end this chapter with the computation of the β - invariants of $\left(T,\left[S^{4 m-1}, Q_{4 t}\right]\right.$).

Chapter II starts with the construction of Lopez de Medrano's examples. We define the μ - invariants of homology spheres. Next we end the proof of $\alpha=\beta$, and finally we prove our proposition and theorem above.

Chapter I

INVOLUTIONS ON SPACES OF CONSTANT CURVATURE

I. 0 Notation.

Throughout this chapter, an m-manifold Y is a compact oriented differentiable manifold without boundary, of dimension m. When we want to consider manifolds with boundary, we specify it. In this case we denote $\partial \mathrm{X}$ for the boundary of X . - X denotes the manifold X with orientation reversed. If $\partial X_{1}=Y$ and $\partial X_{2}=-Y$, we write $X_{1}{ }^{U_{Y}} X_{2}$ for the manifold obtained by pasting X_{1} and X_{2} along the boundary and smoothing if necessary. The technique for this can be found in Milnor $(17,19)$

A symmetric bilinear form over z is a symmetric bilinear map $\rho: V \times V \longrightarrow z$, defined on a finitely generated free \mathbf{z} - module V. We say that φ is non-degenerate when it satisfies the condition

$$
\rho(x, y)=0 \text { for all } y \text { e } v \Rightarrow x=0
$$

Following the notation of Hirzebruch (7) we can consider φ as a form over the real numbers and by $\operatorname{sign}(\varphi$) we mean the difference between the number of positive diagonal entries and that of the negative ones in the matrix of ρ (after being diagonalized in its decomposition in to unary forms).

If Y is a $4 n$ - manifold, the cup-product defines a nondegenerate symmetric bilinear form on $H^{2 n}(Y ; \mathbb{R})$ over \mathbb{R}, that is, a form

$$
\rho: H^{2 n}(Y ; \mathbb{R}) \otimes H^{2 n}(Y ; \mathbb{R}) \rightarrow \mathbb{R}
$$

given by

$$
\rho(x, y)=(x \cup y)[y], \quad x, y \in H^{2 n}(y ; \mathbb{R})
$$

where $[Y]$ denotes the fundamental class of Y. The signature of this form is then called the signature (or index) of Y, and denoted by sign (Y).

Most of the invariants next defined are known and involve a series of extensive works. For this reason, some related theorems and propositions in this chapter are announced without proof. Our intention is to make use of them either for a subsequent theoretic exposition or for application in the calculation of invariants.

I.l Definition of invariants.

I.l.l G- Signatures.

Let Y be a manifold (possibly with boundary), and suppose that a compact Lie group G acts differentiably on Y preserving the orientation. We call Y a G-manifold.

If Y is a $4 n$-manifold and a G-manifold, we can asso ciate to it the element $\operatorname{sign}(G, Y)$ of the representation ring $R(G)$ of G. This is done as follows. Let $£(x, y)$ denote the symmetric bilinear form on $H^{2 n}(Y ; \mathbb{R})$ given by cup-product, that is

$$
\rho(x, y)=(x \cup y)[y], x, y \in H^{2 n}(Y ; \mathbb{R})
$$

This form is G-invariant. If we choose any definite inner-product $<,>$ on $H^{2 n}$, invariant under G, then the operator A defined by

$$
\varphi(x, y)=\langle x, A y\rangle
$$

commutes with the action of G. Notice that A is self-adjoint, so that we get a decomposition $H^{2 n}=H^{2 n} \oplus H^{2 n}$, invariant under G,
given by the positive and negative eigenspaces of A. We have two real representations of G, P^{+}and P^{-}, say. The G-signature is now defined as

$$
\operatorname{sign}(G, Y)=p^{+}-p^{-} e R \circ(G) \subset R(G)
$$

where $R O(G)$ denotes the real representation ring of G. This is independent of the choice of inner-product, as discussed in (1).

Evaluating the character of sign (G, Y) on g e G, we obtain a real number $\operatorname{sign}(\mathrm{g}, \mathrm{Y})$. This number is determined by the action of g on the real cohomology of Y.

If now Y is a G -manifold with boundary $\partial \mathrm{Y}=\mathrm{X}$, then $\operatorname{sign}(\mathrm{g}, \mathrm{Y})$ is defined by the action of G on $\hat{\mathrm{H}}^{\mathrm{n}}(\mathrm{Y} ; \mathbb{R})$ (the image of $\mathrm{H}^{\mathrm{n}}(\mathrm{Y}, \mathrm{X} ; \mathbb{R}) \longrightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{Y} ; \mathbb{R}) \quad$.

Atiyah and others, in their series of papers on the index of elliptic operators () , defined sign (G,Y) for a $2 n-d i$ mensional G - manifold (as a generalization of sign (Y), when Y is $4 n$-dimensional), and proved the following theorem.

G-signature theorem $\cdot \operatorname{sign}(\mathrm{g}, \mathrm{Y})=\mathrm{L}(\mathrm{g}, \mathrm{Y})$, for a 2 n manifold Y (without boundary).

Here $L(g, Y)$ is a number involving the evaluation of certain characteristic classes on the fixed point set $F i x(g, Y)$ of g and it depen ds only on the action of g in the neighbourhood of $\operatorname{Fix}(\mathrm{g}, \mathrm{y})$,

Remarks - a) $\operatorname{sign}(g, Z)=0(g$ e $G)$ for an even dimensional free G-manifold Z.
b) Novikov gives the following additivity property of the equivariant signature

$$
\operatorname{sign}(G, Z)=\operatorname{sign}(G, Y)+\operatorname{sign}\left(G, Y^{\prime}\right),
$$

when $Z=Y{ }^{Z} Y^{\prime}$ and Y, Y^{\prime} are even dimensional G-manifolds with boundaries X and -X , respectively.

Proof. Let $\mathrm{f}: \mathrm{H}^{\mathrm{n}}(\mathrm{Y}, \mathrm{X}) \longrightarrow \mathrm{H}^{\mathrm{n}}(\mathrm{Y})$ (with real coefficients) be the natural homomorphism above. We have the bilinear form ρ on \hat{H}^{n} (Y) given by

$$
\varphi(f(x), f(y))=(x \cup y)[y],
$$

which is symmetric for n even and skew symmetric for n odd and de fined sign (G,Y). (Note that we have Poincare duality isomorphism $H^{n}(Y) \cong H_{n}(Y, X)$, so that $H^{n}(Y)$ is dual to $H^{n}(Y, X)$, hence φ is nondegenerate). Consider the dual cohomology sequences

$$
\begin{aligned}
& \mathrm{H}^{\mathrm{n}}\left(Y^{\prime}, X\right) \stackrel{\alpha^{\prime}}{\beta^{\prime}} H^{n}(Z) \xrightarrow{\beta}{ }^{\beta} H^{n}(Y) \\
& H^{n}\left(Y^{\prime}\right) \stackrel{\alpha}{\rightleftarrows} H^{n}(Y, X)
\end{aligned}
$$

of (Z, Y) and $\left(Z, Y^{\prime}\right)$ where $H^{n}\left(Y^{\prime}, X\right) \cong H^{n}(Z, Y)$ and $H^{n}(Y, X) \cong H^{n}\left(Z, Y^{\prime}\right)$.
Then $\operatorname{Im}(\alpha)$ and $\operatorname{Im} \alpha^{\prime}$ (the images of α and α^{\prime} in $\left.H^{n}(z)\right)$ are mutual anihilators for the bilinear form $\varphi(Z)$ given by cup-product on $H^{n}(Z)$. Um $\alpha \cap \operatorname{Im} \alpha^{\prime}$ anihilates $\operatorname{Im} \alpha+\operatorname{Im} \alpha^{\prime}$ and so

$$
\mathrm{H}^{\mathrm{n}}(\mathrm{Z}) / \operatorname{Im} \alpha+\operatorname{Im} \alpha^{\prime} \cong\left(\operatorname{Im} \alpha \text { n } \operatorname{Im} \alpha^{\prime}\right)
$$

We also have the isomorphisms
$\left(\operatorname{Im} \alpha+\operatorname{Im} \alpha^{\prime}\right) /\left(\operatorname{Im} \alpha \cap \operatorname{Im} \alpha^{\prime}\right) \cong \operatorname{Im} \alpha /\left(\operatorname{Im} \alpha \cap \operatorname{Im} \alpha^{\prime}\right) \oplus$
$\operatorname{Im} \alpha^{\prime} /\left(\operatorname{Im} \alpha \cap \operatorname{Im} \alpha^{\prime}\right) \cong \operatorname{Im} \beta \alpha \oplus \operatorname{Im} \beta^{\prime} \alpha^{\prime} \cong \hat{H}^{n}(Y) \oplus \hat{H}^{n}\left(Y^{\prime}\right)$

We get a decomposition of G-modules
$\mathrm{H}^{\mathrm{n}}(\mathrm{Z}) \cong\left(\operatorname{Im} \alpha \quad \mathrm{n} \quad \operatorname{Im} \alpha^{\prime}\right) \oplus \hat{\mathrm{H}}^{\mathrm{n}}(\mathrm{Y}) \oplus \hat{H}^{\mathrm{n}}\left(\mathrm{Y}^{\prime}\right) \oplus\left(\operatorname{Im} \alpha \quad \mathrm{n} \operatorname{Im} \alpha^{\prime}\right)^{*}$.

Then the bilinear form $\rho(Z)$ on $H^{n}(Z)$ is represented by a matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & \varphi(Y) & 0 & * \\
0 & 0 & \rho\left(Y^{\prime}\right) & * \\
(-1)^{n} & * & * & *
\end{array}\right)
$$

All the terms * can be eliminated by a transformation of the form $T^{\prime}($) T, so that

$$
\rho(Z) \cong \rho(Y) \oplus \varphi\left(Y^{\prime}\right) \oplus c .
$$

C is here the natural bilinear form on

$$
\left(\operatorname{Im} \alpha+\operatorname{Im} \alpha^{\prime}\right) \oplus\left(\operatorname{Im} \alpha+\operatorname{Im} \alpha^{\prime}\right) *
$$

and has signature egual to zero ($1, \|^{5}$). Hence

$$
\operatorname{sign}(G, Z)=\operatorname{sign}(G, Y)+\operatorname{sign}\left(G, Y^{\prime}\right),
$$

as required.
I.1.2 Definition of α-invariants. Computation formulae.
a. Let G be a finite group and X be a fixed - point free G-manifold of odd dimension. Then the disjoint union $k X$ of k copies of X bounds a free G -manifold Y , for some integer k , according to equivariant cobordism theory (4; see also 25).

$$
\text { Definition } \cdot \alpha(g, x)=\frac{1}{k} \operatorname{sign}(g, Y), \text { for } g \neq 1
$$

This is well defined, for if Y_{1} and Y_{2} satisfy the conditions above, we take $\mathrm{Z}=\mathrm{Y}_{1} \mathrm{U}_{\mathrm{kX}}-\mathrm{Y}_{2}$ and apply the G-signature theorem (remark a)) and the Novikov additivity property, to obtain $\operatorname{sign}\left(g, Y_{1}\right)=\operatorname{sign}\left(g, Y_{2}\right)$. We get a function

$$
\alpha(g, x): G-\{I\} \longrightarrow \mathbb{C}
$$

When X is an integral homology sphere of dimension $4 \mathrm{k}+3$ and $G=\left\{1, T: T^{2}=1\right\}, \alpha(T, X)$ is an integer, since it is the Browder-Livesay invariant of the involution T (see definition of α and β and proof of $\alpha=\beta$).

A different expression can be used for the computation of α (g, X) in some cases. If X bounds a G-manifold Y , not necessarily free, then

$$
\alpha(g, X)=\operatorname{sign}(g, Y)-L(g, Y),
$$

for $g \neq 1$. This also follows from the G-signature theorem. Let Y be as above and let Y_{1} be a free G-manifold as in the definition of α. Then $\partial \mathrm{Y}_{1}=\mathrm{kX}, \partial \mathrm{Y}=\mathrm{X}$. Let Y_{2} be the disjoint union of k copies of $-Y$, and consider the manifold $Z=Y_{1} \quad U_{k X} \quad Y_{2}$, obtained by identifying each copy of $-X=\partial(-Y)$ with one of $X \subset \partial Y_{1}$. Then Z is also a G-manifold. We have

$$
\begin{aligned}
& \operatorname{sign}(g, Z)=\operatorname{sign}\left(g, Y_{1}\right)+\operatorname{sign}\left(g, Y_{2}\right) \\
&=\operatorname{sign}\left(g, Y_{1}\right)-k \operatorname{sign}(g, Y) \\
& \text { We also have } \\
& L(g, Z)=L\left(g, Y_{2}\right)=-k L(g, Y),
\end{aligned}
$$

because the fixed - point set $\operatorname{Fix}(\mathrm{g}, \mathrm{Z})$ is the same as Fix $\left(\mathrm{g}, \mathrm{Y}_{2}\right)$, as Y_{1} is G -free. Applying the G -signature theorem to Z , the result follows.
(2)
b. Atiyah - Bott gives a simpler version of the theorem, for the case of isolated fixed-points.

Theorem . Let $\mathrm{f}: \mathrm{Y} \longrightarrow \mathrm{Y}$ be an isometry of the even dimensional Riemann manifold Y. Assume that f has only isolated fixed points P, and let $\left\{\theta_{k}^{P}\right\}$ be a system of coherent angles for $d f_{p}: T{ }_{p}^{*} \longrightarrow T_{p}^{*}$.

Then the signature of f is given by

$$
\operatorname{sign}(f, Y)=\sum_{p} i^{-m} \pi_{k} \cot \left(\theta_{k}^{P} / 2\right), \text { where } \operatorname{dim} Y=2 m
$$

A coherent system for $d f_{p}$ is a set of angles $\left\{\theta_{k}\right\}$
obtained in the following way. Let $\lambda^{k_{T}} Y$ denote the bundle of k th exterior powers of $T Y$. We have a basic $2 m$-form $\mathcal{V} \mathrm{C} \Gamma\left(\lambda^{2 m} T Y\right)$, which arises from thecorientation and riemannian structure in $T Y$, and which is characterized by the requirement that, at every point P,

$$
\nu_{P}=\theta_{1} \wedge \ldots \wedge \theta_{2 m},
$$

for each orthonormal frame $\left(\theta_{1}, \ldots, \theta_{2 m}\right)$ for $T_{p} Y$, in the orientation of Y.Now f is an isometry of $Y, d f p$ is an isometry of the cotangent space $T^{*}{ }_{p} Y$, and so this decomposes into a direct sum of orthogonal 2-planes, invariant under df_{p},

$$
T^{*}{ }_{P} Y=V_{1} \oplus V_{2} \oplus \ldots \oplus V_{m}
$$

say, where $\operatorname{dim} Y=2 m$. We can choose an orthogonal base of $v_{k},\left(e_{k}, e_{k}^{\prime}\right)$, say, satisfying

$$
\nu_{P}\left(e_{1} \wedge e_{1}^{\prime} \wedge \ldots \wedge e_{m} \wedge e_{m}^{\prime}\right)=1
$$

It follows that

$$
\begin{aligned}
& d f_{p} \cdot e_{k}=\cos \theta_{k} e_{k}+\sin \theta_{k} e_{k}^{\prime} \\
& d f_{p} \cdot e_{k}^{\prime}=\sin \theta_{k} e_{k}+\cos \theta_{k} e_{k}^{\prime},
\end{aligned}
$$

that is, $d f_{P}$ is given by rotations through angles θ_{k} in v_{k}.

$$
\text { For the case of only one fixed point } P \text {, we get the }
$$

formula

$$
\operatorname{sign}(f, Y) \cdot \pi\left(1-\xi_{k}\right)=\pi\left(1+\xi_{k}\right),
$$

where $\xi_{k}=e^{-i} \theta_{k}$.
I.1.3 The Browder-Livesay invariants.

These invariants were originally defined for homotopy spheres. So, we start with this case.

Denote (T, \sum^{m}) for an involution T on a homotopy sphere \sum^{m}. A characteristic submanifold for $\left(T, \sum^{m}\right)$ is an $(m-1)$ submanifold W such that $W=A \cap T A$ and $\sum=A \cup T A$, where A is a compact submanifold of \sum with boundary $\partial A=W$, together with the involution $T \mid W$.

It follows that every (T, \sum) has a characteristic submanifold,(see 13). Given two characteristic submanifolds W_{o} and W_{1}, let $W_{0}=W_{0} x\{0\}$ and $W_{1}=W_{1} x\{1\}$ in $\sum x I$. Then $\sum x I=B u(T x I) B$, where $B \cap(T \times 1) B=V$ and V is transverse to W_{0} and $W_{1} ; B$ is a compact submanifold of $\left\{x I\right.$ with boundary $A_{o} x\{0\} \cup V \cup A_{1} x\{1\}$ (and corners along W_{o} and W_{1}). We call ($T \times 1 \mid V, V$) a characteristic cobordism (13).

Now, let W be a characteristic submanifold for / $\left(T, L^{m}\right)$. If W is $(q-1)$ - connected, for $q \leq\left[\frac{m-3}{2}\right]$, we use the process of equivariant surgery, described in the introduction of Chapter II, on an element $\alpha e \mathrm{~K}=\operatorname{Ker}\left\{H_{q}(W) \longrightarrow H_{q}(A)\right\}$, to kill α, that is, to obtain a new characteristic submanifold W^{\prime} with / $\operatorname{Ker}\left\{H_{q}\left(W^{\prime}\right) \rightarrow H_{q}(A)\right\} \cong K_{(\alpha)}$. (see, for example, 17). Repeating this process a finite number of times, we get an $\left[\frac{m-3}{3}\right]-$ connected characteristic submanifold for $\left(T, \sum^{m}\right)$.

Suppose now that $m=4 n+3$ and let W be a $2 n-$ connec ted $-2 n$ characteristic submanifold for ($T, ~ \sum$). The intersection form on $\mathrm{H}_{2 \mathrm{n}+1}(\mathrm{~W})$ is skew-symmetric and unimodular, by Poincaré duality.

We consider the form

$$
f(x, y)=x \circ T_{\star} Y
$$

defined on $K=\operatorname{Ker}\left\{\mathrm{H}_{2 n+1}(\mathrm{~W}) \longrightarrow \mathrm{H}_{2 \mathrm{n}+1}(\mathrm{~A})\right\}$, where $\mathrm{W} \longrightarrow \mathrm{A}$
is the inclusion. This form is now symmetric. It is also even : let the imbedded sphere $s^{2 n+1}$ represent $x e k$; by general position, $S^{2 n+1}$ meets $T s^{2 n+1}$ transversely, so, the form is even as $s^{2 n+1} n$ $\cap T S^{2 n+1}$ is invariant under T. From the Mayer-Vietoris sequence of ($\sum, A, T A$) it follows that $H_{2 n+l}(W)=K \oplus T_{\star} K$ and so f is unimodular. According to Milnor (18) sign (f) is a multiple of 8 .

Definition. $\beta\left(T, \sum\right)=\operatorname{sign}(f)$.
β is independent of the choice of W, since there al ways exists a characteristic cobordism joining two of them. So, β is a well-defined invariant of (T, \sum).

The Browder-Livesay invariant is also defined when $m=4 n+1$ and in this case as the Arf invariant of a quadratic form associated to f, as f is now skew-symmetric.

General case.
Denote by $\left(T, M^{n}, \partial M\right)$ a fixed-point free involution of a manifold M with boundary ∂M. A characteristic submanifold is an im bedded submanifold $\left(W^{m-1}, \partial W\right) \subset(M, \partial M)$ satisfying
i) $\partial \mathrm{M}=\mathrm{A} \cup \mathrm{TA}, \partial \mathrm{W}=\mathrm{An} T \mathrm{~A}$, where A is a compact submanifold of ∂M with boundary ∂W,
ii) $M=B \cup T B, W=B \cap T B$, where B is a compact submanifold of M with boundary $A \cup W$ (and corner along ∂W).

Similar results to the previous ones hold for ($T, M^{m}, \partial M$).

There is always a characteristic submanifold for ($T, M, \partial M$), any two of them can be joined by a characteristics cobordism, etc. Also, / any characteristic submanifold for $(T \mid \partial M, \partial M)$ is the boundary of one of ($T, M, \partial M$).

Suppose now that $\partial M=\varnothing$. Define the following invariants (Browder-Livesay) for $m=4 k+3$ and T orientation preser ving, or $m=4 k+1$ and T orientation reversing. Let $N=A \cap T A$ be a characteristic submanifold for (T, M) and

$$
\partial: \quad \frac{H_{m+1}}{2}(M) \longrightarrow H_{\frac{m+1}{}}^{2}(N) \text { be the Mayer-Vietories }
$$

boundary homomorphism.

$$
K=\operatorname{Ker}\left(\mathrm{H}_{\frac{\mathrm{m}}{}-1}^{2} \text { (N) } \longrightarrow \mathrm{H}_{\frac{\mathrm{m}-1}{}}^{2}{ }^{(A)) \text {. Then the form }}\right.
$$

$f(x, y)=x \circ T_{\star} y$ is defined on $K / i m \partial$. It is symmetric and unimodular, and so its signature is a multiple of 8 . We put

$$
\beta(T, M)=\operatorname{sign}(f)
$$

I.1.4 $\alpha=\beta$. First part of the proof.

Let (T, X) be an orientation preserving fixed-point
free involution of a compact oriented differentiahle $(4 k+3)$-manifold. The invariant $\alpha(T, X)$ is defined. Suppose that some multiple mX of X bounds a compact oriented differentiable manifold Y and / $T: Y \longrightarrow Y$ is an orientation preserving involution extending T, possibly with fixed points. We have

$$
\alpha(T, X)=\frac{1}{m}\left(\tau\left(T^{\prime}, Y\right)-\operatorname{sign}\left(F i x T^{\prime} \circ F i x T^{\prime}\right)\right.
$$

(Hirzebruch-Janich's formula $(10,8)$). In this formula we denote
by $\mathcal{C}\left(T^{\prime}, X\right)$ the signature of the bilinear form f on $H_{2 k+2}(Y ; Q)$; given by

$$
f(x, y)=x \circ T_{*} y,
$$

and Fix T' o Fix T^{\prime} is the oriented self intersection cobordism / class (1) of the fixed point set Fix T^{\prime} (even dimensional) of T^{\prime}.

We want to study a manifold \mathscr{D} with an involution \mathcal{J} such that $\partial D=(T, X)-2 X / T$ and J is the trivial involution on $2 X / T$. This manifold was first constructed by Dold in (5), and we show that

$$
\alpha(T, X)=\overparen{C}, \mathcal{D}, D)=-\operatorname{sign}(D) .
$$

The Browder-Livesay invariant is defined for (T, X). It turns out that, when $H_{2 k+2}(X ; Q)=0$, then

$$
\beta(t, x)=-\operatorname{sign}(D),
$$

so that we obtain
$\alpha(T, X)=\beta(T, X)$, if $H_{2 k+2}(X ; Q)=0$.
The proof of $\alpha=\beta$ (in this case), which is to be shown is due to Hirzebruch and Jänich (8).

The Dold construction . Let M be a compact differentiable manifold without boundary and V a closed sub-manifold without boundary of M and of codimension 1 . Let $Y=M \times[0,1]$ and $\mathrm{z}=\mathrm{V} \times[0,1 / 2]$. We construct a double covering D of y , branched at $\mathrm{V} \times\{1 / 2\}$ such that the covering transformation is an involution \mathcal{J} on \mathscr{D}.

Let $\tilde{\mathrm{V}}$ be the $\mathrm{z} / 2_{\mathbb{Z}^{-}}$- principal bundle over v , defined by the normal bundle of V in M. If we "cut" M along V, we obtain a compact differentiable manifold $A=(M-V) u \tilde{V}$ (disjoint union),
with boundary $\partial A=V$. In the same way, let B be the disjoint union

$$
(Y-V \times[0,1 / 2)) \quad u \quad(V \times[0,1 / 2))
$$

with the topology given in a canonical way. Let B^{*} another copy of / B and $B \cup B^{*}$ be the disjoint union. Identify each $x \in V x\{1 / 2\} \in B$ with $x^{*} \in V x\{1 / 2\} \subset B^{*}$ and, for $0 \leq t<1 / 2$, each point / $x \in \tilde{v} x\{t\} \subset B$ with $-x^{*} \in \tilde{v} x\{t\} \subset B^{*}$. To the topological space \mathscr{D} thus obtained, it can be given a differentiable structure such that it coincides with the canonical structure in $D-V \mathrm{~V}\{1 / 2\}$ (as in (8)).

The involution $\mathcal{J}: \rho \longrightarrow \rho$ can now be defined by
$f(x)=x^{*}$
$f\left(x^{*}\right)=x$, for $x \in B, x^{*} \in B^{*}$.
The fixed-point set of ρ is then Fix $\mathcal{f}=\mathrm{V} \times\left\{\frac{1}{2}\right\}$.
The given differentiable structure is such that Fix f has a non-zero normal section and is regular, in the following sense : Fix J is a submanifold in the interior of M and has a linear normal bundle in M, which can be imbedded as a tubular neigh-bourhood of $F i x$ ρ, such that \mathcal{J} is the antipodal map on each fibre. It follows that Fix $\mathcal{J} \circ$ Fix $J=0$.

Let $\pi: D \rightarrow M \times[0,1]$ be the projection.
Then $\pi^{-1}(M \times\{1\})=2 M$, the disjoint union of two copies of M, and $\pi^{-1}(\mathrm{M} \times\{0\})=\tilde{M}$ is a differentiable manifold obtained from the dis joint union $A \cup A^{*}$, of two copies of A, by identifying each point / $x \in \tilde{\mathrm{~V}} \subset A$ with its opposite point $-x^{*} \in \tilde{\mathrm{~V}} \subset A^{*}$.

Now, if (T, X) is a fixed-point free involution on a compact differentiable manifold without boundary X and $X /_{T} \cong M$, then, for a suitable submanifold V of $M,(T, X)$ will be equivariantly diffeomorphic to $(\tilde{M} ; \mathcal{J} / \tilde{M})$. So, we are interested in the case when \tilde{M} is
oriented and ($\varnothing / \tilde{\mathrm{M}}, \tilde{\mathrm{M}})$ is orientation preserving.

Orientation . We make the following convention: if Y is a orientable manifold with boundary $\partial \mathrm{Y}$, then the orientation of Y is obtained from that of $\partial \mathrm{Y}$, followed by the inwards pointing normal vector.

With this assumption, the orientation of \tilde{M} induces an orient station on M and on $\partial \mathscr{D}$ such that

$$
\partial D=\tilde{M}-2 \mathrm{M} .
$$

$\underline{\alpha(T, X)}=\mathbb{Z}(\mathcal{S}, \mathscr{D})$. Applying Hirzebruch-Jänich's formula , we have

$$
\alpha(\rho \mid \partial \mathscr{D}, \partial \mathscr{D})=\square(\rho, \mathscr{O}) .
$$

The involution \mathcal{J} on $2 X / T$ is the trivial one. Let N be an oriented cobordism between the two copies of X / T. This always exists, since the elements of $\Omega_{4 \mathrm{k}+3}$ are of order two. Let T_{1} be the trivial involution on 2 M . Then

$$
\tau\left(T_{1}, 2 M\right)=0,
$$

and

$$
\alpha\left(J \mid 2 X_{/ T}, 2 X_{/ T}\right)=\frac{1}{2} \zeta\left(T_{1}, 2 M\right)=0 \text {, }
$$

so that

$$
\alpha(T, X)=\alpha(\rho \mid \partial D, \partial D)=\zeta(J, D) .
$$

$\zeta(\mathcal{J}, \mathcal{D})=-\operatorname{sign}(\mathscr{D})$. Let U be the normal closed disc bundle of Fix ρ. In U all intersection mum bens are zero, because Fix J has a non-zero normal section, hence / $\tau(\mathcal{J} \mid U, U)=0$. Now, U is invariant under \mathcal{J} and

$$
(\rho \mid D-U, D-U) \text { is a fixed-point free involu - }
$$

Lion. Also

$$
\zeta(J, D)=\zeta(J \mid D-U, D-U) .
$$

Therefore,

$$
\begin{aligned}
G(\rho \mid D-U, \mathscr{D}-\mathrm{U}) & =2 \operatorname{sign}(Y-\pi(U))-\operatorname{sign}(D-U) \\
& =2 \operatorname{sign}(Y)-\operatorname{sign}(D-U) \\
& =-\operatorname{sign}(D-U)
\end{aligned}
$$

(We have applied above the formula which relates the signatures sign (T, M), sign (M) and $\operatorname{sign}(M / T)$; its proof is to be shown in Chapter II)

$$
\begin{aligned}
& \text { As sign }(\mathscr{O}-\mathrm{U})=\operatorname{sign}(\mathscr{\infty}) \text {, it follows that } \\
& \sigma(\rho, \infty)=-\operatorname{sign}(D) \text {, }
\end{aligned}
$$

and so

$$
\alpha(T, X)=\zeta(\rho, D)=-\operatorname{sign}(D) .
$$

I. 2 Hirzebruch's results on lens spaces.

Le $\mathbb{Z} / q_{\mathbb{Z}}$ be the cyclic group of order q, and / p_{1}, \ldots, p_{n} be natural numbers prime to $q . z / q z$ is isomorphic to the group of $q^{\text {th }}$ roots of unity in C. Then

$$
\zeta\left(z_{1}, \ldots, z_{n}\right)=\left(\xi^{P l} z_{1}, \ldots, \xi^{p_{n}} z_{n}\right), \quad e z / q z
$$

is a free action of $\mathbb{z} / q \mathbb{z}$ on the sphere

$$
\left.s^{2 n-1}=\left\{z_{1}, \ldots, z_{n}\right) e c^{n}: z_{1} \overline{z_{1}}+\ldots+z_{n} \overline{z_{n}}=1\right\}
$$

The orbit space is the $(2 n-1)$-dimensional lens space fo ($q ; p_{1}, \ldots, p_{n}$).

The inclusion $\int_{Z / 2 q Z}^{z / q Z}$ gives a natural map $\mathcal{B}\left(q: P_{1}, \ldots, p_{n}\right)$,
when the p_{j} 's are prime to $2 q$. This is a double covering and the covering translation in an involution T of $B\left(q ; P_{1}, \ldots, p_{n}\right)$.

The Browder-Livesay invariant for the involution T is then given by the formula

$$
\xi^{q \neq 1}
$$

For n even, it is also given by
$\alpha\left(T, b\left(q ; p_{1}, \ldots, p_{n}\right)\right)=\frac{(-1)^{\frac{n}{2}}+1}{q} \sum_{j=1}^{2 q-1} \cot \left(\frac{j p_{1}}{2 q} \pi\right) \cdot \cot \left(\frac{j p_{2}}{2 q} \pi\right) \ldots$
$\left.\ldots \cot \left(\frac{j p_{n}}{2 q}\right) \pi\right)$
(Hirzebruch (7).
He introduced the integer
$t\left(a_{1}, \ldots, a_{m} ; b_{1}, \ldots, b_{m}\right)=\#\left\{x \in \mathbb{r}^{m}: 0<x_{k}<a_{k}\right.$ and $\left.0 \sum_{k=1}^{m} \frac{x_{k} b_{k}}{a_{k}}<1 \bmod 2\right\}$

- \# $\left\{x \in z^{m}: 0<x_{k}<a_{k}\right.$ and $\left.1<\sum_{k=1}^{m} \frac{x_{k}^{k} b_{k}}{a_{k}}<2 \bmod 2\right\}$,
for any 2 -row of natural numbers $\left(a_{1}, \ldots, a_{m} ; b_{1}, \ldots, b_{m}\right)$ with $b_{j} /$ and $2 a_{j}$ coprime, and proved
$t\left(a_{1}, \ldots, a_{m} ; b_{1}, \ldots, b_{m}\right)=\frac{(-1)^{\frac{m-1}{2}}}{N} \sum_{j=1}^{2 N-1} \operatorname{jod}\left(\frac{J \pi}{2 N}\right) \cot \left(\frac{j b_{1}}{2 a_{1}} \pi\right) \ldots$
$\cdots \cot \left(\frac{j^{b_{m}}}{2 a_{m}} \pi\right)$,
for m odd, where N is any common multiple of a_{1}, \ldots, a_{m}, and

$$
\alpha\left(T, R\left(q ; 1, p_{2}, \ldots, p_{n}\right)=t\left(q, \ldots, q ; p_{2}, \ldots, p_{n}\right)\right.
$$

The proof of the first formula was done in this way: first Hirzebruch used Atiyah-Bott formula to get $\alpha\left(\bar{\xi}, s^{2 n-1}\right)$, $\xi \in \mathbb{Z} / q \mathbb{Z}$ and then he applied the following proposition. Proposition. Let X be a free G-manifold (without boundary) of odd di mension. Let U be a normal subgroup of G. Then X / U is a free G / U manifold. If $\mathrm{p}: \mathrm{G} \longrightarrow \mathrm{G} / \mathrm{U}$ is the natural homomorphism, then for / $\xi \in G / U(\xi \neq 1)$.

$$
\alpha(\xi, \mathrm{X} / \mathrm{U})=\frac{1}{|\mathrm{U}|} \sum_{\mathrm{g} \in \mathrm{e}^{-1}(\xi)}^{1} \alpha(\mathrm{~g}, \mathrm{X}) .
$$

Proof. Let W be a representation space of G, where W is a real (or a complex) finite dimensional vector space. Then the group G / U
acts on

$$
W^{U}=\{x \in W \mid u x=x \text { for all } u \in U\}
$$

Let $R(G)$ denote the representation ring of G. We get a map

$$
\rho: R(G) \longrightarrow R(G / U)
$$

Now, if Y is a free G-manifold with boundary $\partial Y=k X$, then $\partial(Y / U)=k(X / U)$ and Y / U is a free G-manifold. The real (or complex) cohomology of Y / U can be identified with the U-invariant part of the cohomology of Y. Hence,

$$
\rho(\operatorname{sign}(G, Y))=\operatorname{sign}(G, Y / U) .
$$

On the other hand, the image of
$\xrightarrow[|\mathrm{U}|]{1} \sum_{\text {ue } \mathrm{g}} \mathrm{gu}: \mathrm{W} \longrightarrow \mathrm{W}$
is W^{U} and

$$
\frac{1}{|U|} u \sum_{e U} g u(x)=g(x) \text {, for } x \in W^{U}
$$

Hence the trace of this endomorphism is the trace of g on W^{U}.Therefore, if $h \in R(G)$, the character of h and ρh satisfy

$$
x_{\rho h}(\xi)=\frac{1}{|U|} \sum_{g \in p^{-1}(\xi)} x_{h}(g) \text {, for } \xi \in G / U \text {, }
$$

and the result follows.
I. 3 The generalized quaternion group case.

$$
\begin{aligned}
& \text { Let } Q_{4 t} \text { denote the generalized quaternion group } \\
& Q_{4 t}=\left\{x, y: x^{2 t}=1, x^{t}=y^{2}, y^{-1} x y=x^{-1}\right\}
\end{aligned}
$$

of order $4 t$, for a natural number t. Elements of $Q_{4 t}$ are of the form

$$
\begin{aligned}
& x^{r} y^{s}, \quad 0 \leq r \leq 2 t-1, \quad s=0 \text { or } 1 . \\
& Q_{4 t} \text { acts freely on } \\
& s^{3}=\left\{\left(z_{1}, z_{2}\right) \text { e } c^{2}: z_{1} \overline{z_{1}}+z_{2} \overline{z_{2}}=1\right\}
\end{aligned}
$$

via the representation T_{q} given by

$$
\begin{aligned}
& Q_{4 t} \longrightarrow U(2) \\
& x \longmapsto\left(\begin{array}{cc}
\xi^{q} & 0 \\
0 & \xi^{-q}
\end{array}\right), \quad y \mapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),
\end{aligned}
$$

for q a natural number prime to $2 t$ and $\quad \overline{=}=e^{\frac{2 \pi i}{2 t}}$.

$$
\text { As } s^{4 n-1}=s^{3} * \ldots * s^{3} \text { (join of } n \text { copies of } s^{3} \text {), }
$$

then for q_{1}, \ldots, q_{n} prime to $2 t, Q_{4 t}$ acts freely on $S^{4 n-1}$ via the sum of these actions

$$
\mathrm{T}_{\mathrm{q}_{1}}+\mathrm{T}_{\mathrm{q}_{2}}+\ldots+\mathrm{T}_{\mathrm{q}_{\mathrm{n}}}
$$

Now, for q_{1}, \ldots, q_{n} prime to $4 t$, the inclusion
$Q_{4 t}$ gives us a map $\left[\mathrm{s}^{4 \mathrm{n}-1}, Q_{4 t}\right]$ which is a double covering.

The covering translation is a fixed-point involution T on $\left[S^{4 n-1}, Q_{4 t}\right]$.
We follow the metod used by Hirzebruch, to prove the

Proposition . The Browder-Livesay invariant of the involution T on $\left[S^{4 n-1}, Q_{4 t}\right]$ is given by the formula

$$
\alpha\left(T,\left[S^{4 n-1}, Q_{4 t}\right]=\frac{-1}{4 t} \sum_{\substack{\xi^{4 t=1} \\ \xi^{2 t \neq 1}}}^{\prod_{j=1}^{n}} \frac{\left(\xi^{q} j+1\right)\left(\xi^{-q} j+1\right)}{\left(\xi^{q} j-1\right)\left(\xi^{-q}{ }_{j}-1\right)}-\frac{(-1)^{n}}{2}\right.
$$

Consider the case $\mathrm{n}=1$ first, so that we have action on s^{3}.

$$
\begin{aligned}
T_{q}: x & \longmapsto\left(\begin{array}{cc}
\xi^{q} & 0 \\
0 & \xi^{-q}
\end{array}\right) \quad, \bar{y}=e^{2 \pi i} / 4 t \\
y & \longmapsto\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

gives

$$
\begin{aligned}
& x^{r} \longmapsto\left(\begin{array}{cc}
\xi^{q} & 0 \\
0 & \xi^{-q}
\end{array}\right) \\
& x^{r} y \longmapsto\left(\begin{array}{cc}
0 & - \\
\xi^{q} \\
\xi^{-q} & 0
\end{array}\right) \quad, \xi=\xi^{r} .
\end{aligned}
$$

Taking $G=Q_{8 t}, U=Q_{4 t}$ in Hirzebruch's proposition, we see that the elements that belong to $\mathrm{p}^{-1}(\mathrm{~T})$ are of the form

$$
x^{r} y^{s}, 0 \leq r \leq 4 t-1, r \text { odd, } s=0 \text { or } 1
$$

Now S^{3} bounds the disc D^{4}, on which g e G operates and we have

$$
\alpha\left(g, s^{3}\right)=\operatorname{sign}\left(g, D^{4}\right)-L\left(g, D^{4}\right), g \neq 1
$$

The origin is the only fixed point, $\operatorname{sign}\left(\mathrm{g}, \mathrm{D}^{4}\right)=0$, and so

$$
\alpha\left(g, s^{3}\right)=-L\left(g, D^{4}\right)
$$

$L\left(g, D^{4}\right)$ can be calculated by using the G-signature theorem, in its special case given by Atiyah-Bott's theorem.

As a matter of notation, as $T_{p}^{*} D^{4} \cong C^{2} \cong\left(R^{4}\right)^{*}$, we fix as basis for $T_{p}^{*} D^{4}$ the set of vectors

$$
\{(1000),(0100),(0010),(0001)\} .
$$

Take f to be the operation of x^{r} on S^{3} and P to be the origin. Then $T_{p}^{*} D^{4}$ decomposes as $T_{p}^{*} D^{4}=\mathbb{R}^{2 *} \oplus \mathbf{R}^{2 *}$,

$$
\begin{aligned}
& \text { with basis } e_{1} \\
& \{(1000),(0100)\},\{(0010),(0001)\} \text {, respectively, }
\end{aligned}
$$

which satisfies the requirements of Atiyah-Bott's theorem. With this notation, $d f_{p}: T_{p} Y \longrightarrow T_{p} Y$, where $T_{p} Y$ is the tangent space of Y at P, is given by

$$
A=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & \\
0 & & \cos (-\theta)
\end{array}\right)-\sin (-\theta) . \quad, \theta=\frac{2 \pi \text { ir } \mathrm{r} q}{4 t} .
$$

We have

$$
\begin{aligned}
& e_{1} \cdot A=(\cos \theta-\sin \theta \quad 0 \quad 0)=\cos \theta e_{1}-\sin \theta e_{1}^{\prime} \\
& e_{1}^{\prime} \cdot A=\left(\begin{array}{ll}
\sin \theta & \cos \theta \quad 0
\end{array}\right)=\sin \theta e_{1}+\cos \theta e_{1}^{\prime} \\
& e_{2} \cdot A=\left(\begin{array}{lll}
0 & 0 & \cos (-\theta)-\sin (-\theta)
\end{array}\right)=\cos (-\theta) e_{2}-\sin (-\theta) e_{2}^{\prime} \\
& e_{2}^{\prime} \cdot A=(0 \quad 0 \sin (-\theta) \cos (-\theta))=\sin (-\theta) e_{2}+\cos (-\theta) e_{2}^{\prime}
\end{aligned}
$$

So $\left\{\theta_{1}, \theta_{2}\right\}=\{-\theta,+\theta\}$ is a coherent system for $d f^{*} p$.
Let $\xi_{k}=e^{-i \theta_{k}}$.

$$
L\left(x^{r}, D^{4}\right)=\frac{\left(1+\xi_{1}\right)\left(1+\xi_{2}\right)}{\left(1-\xi_{1}\right)\left(1-\xi_{2}\right)}=\frac{\left(1+\xi \xi^{q}\right)\left(1+\xi^{-q}\right)}{\left(1-\xi \xi^{q}\right)\left(1-\xi^{-q}\right)}
$$

Take f to be, now, the action of $x^{r} y$. We have the decomposition

$$
\mathrm{T}_{\mathrm{p}}^{*} \mathrm{D}^{4}=\mathrm{V}_{1} \oplus \mathrm{~V}_{2}
$$

with basis $\left\{e_{1}, e_{1}^{\prime}\right\},\left\{e_{2}, e_{2}^{\prime}\right\}$, respectively, satisfying the required
conditions , given by

$$
\begin{aligned}
& e_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right) \\
& e_{1}^{\prime}=\left(\begin{array}{lll}
0 & 0 & \cos \theta-\sin \theta
\end{array}\right) \\
& e_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right) \\
& e_{2}^{\prime}=\left(\begin{array}{lll}
0 & 0 & \sin \theta \cos \theta
\end{array}\right)
\end{aligned}
$$

$d f_{p}: T_{p} X \longrightarrow T_{p} X$ has matrix
$A=\left(\begin{array}{ccc}0 & -\cos \theta & \sin \theta \\ & -\sin \theta & -\cos \theta \\ \cos (-\theta) & -\sin (-\theta) & 0 \\ \sin (-\theta) & \cos (-\theta) & 0\end{array}\right)$
so

$$
\begin{aligned}
& e_{1} A=\left(\begin{array}{cccc}
0 & 0 & -\cos \theta & \sin \theta
\end{array}\right)=-e_{1}^{\prime} \\
& e_{1}^{\prime} A=\left(\begin{array}{cccc}
1 & 0 & 0 & 0
\end{array}\right)=e_{1} \\
& e_{2} A=\left(\begin{array}{llll}
0 & 0 & -\sin \theta & -\cos \theta
\end{array}\right)=-e_{2}^{\prime} \\
& e_{2}^{\prime} A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0
\end{array}\right)=e_{2}
\end{aligned}
$$

Then $\left\{\theta_{1}, \theta_{2}\right\}=\{-\pi / 2,-\pi / 2\}$ is a coherent system for df * p .
$L\left(x^{r} y, D^{4}\right)=\frac{(1+i)(1+i)}{(1-i)(1-i)}=-1$.

Finally, we aply Hirzebruch's proposition to obtain

$$
\begin{aligned}
& \alpha\left(T,\left[S^{3}, Q_{4 t}\right]=-\frac{1}{4 t} \quad \sum_{4 t}=1 \quad\left(\frac{\left(\xi^{q}+1\right)\left(\xi^{-q}+1\right)}{\left(\xi^{q}-1\right)\left(\xi^{-q}-1\right)}-1\right)\right. \\
& \xi^{2 t} \neq 1
\end{aligned}
$$

For an arbitrary n, we have the action of $T_{q_{1}}+T_{q_{2}}+\ldots+T_{q_{n}}$
on $\mathrm{S}^{4 \mathrm{n}-1}$. According to C.T.c. Wall (25) the value of α for the join action is the product of the values of α for the separate actions on s^{3}. So, we have
$-\alpha\left(x^{r}, D^{4 n}\right)=L\left(x^{r}, D^{4 n}\right)=\prod_{j=1}^{n} \frac{\left(\xi^{q_{j}}+1\right)\left(\xi^{-q_{j}}+1\right)}{\left(\xi^{q_{j}}+1\right)\left(\xi^{-q_{j}}-1\right)}$

As a result,

$$
\begin{aligned}
& \xi^{2 t} \neq 1
\end{aligned}
$$

Now, taking $q_{1}=1$, we can rewrite the above
formula as

$$
\begin{gathered}
\alpha\left(T,\left[S^{4 n-1}, Q_{4 t}\right]\right)=-\frac{1}{4 t} \sum_{r=1}^{4 t-1} i^{-2 n} \cot \frac{-r}{4 t} \pi \cot \frac{-r}{4 t} \pi \cot \frac{-r}{4 t} q_{2} \pi \\
r \text { odd }
\end{gathered}
$$

$\cot \frac{r q_{2}}{4 t} \pi \ldots \cot \frac{-r q_{n}}{4 t} \pi \cot \frac{r q_{n}}{4 t} \pi-\frac{(-1)^{n}}{2}=$
$=\frac{(-1)^{n}}{2} \cdot \frac{(-1)^{n+1}}{2 t} \sum_{\substack{r=1 \\ r \\ \text { odd }}}^{4 t-1} \cot \frac{r}{4 t} \pi \cot \frac{r}{4 t} \pi \cot \frac{r^{q_{2}}}{4 t} \pi \cot \frac{r^{q_{2}}}{4 t} \pi \ldots$
$\cot \frac{r q_{n}}{4 t} \pi \cot \frac{r q_{n}}{4 t} \pi-\frac{(-1)^{n}}{2}$,
so that we have the
Proposition . The Browder-Livesay invariant of the involution T on [$s^{4 n-1}, Q_{4 t}$] is given by the formula
$\alpha\left(T,\left[S^{4 n-1}, Q_{4 t}\right]\right)=\frac{(-1)^{n}}{2}\left(t\left(2 t, \ldots, 2 t ; 1, q_{2}, q_{2}, \ldots, q_{n}, q_{n}\right)-1\right)$.

Remark. If we look at the finite groups which act orthogonally on $s^{3}(20)$, we see that there is also an exotic case which could be considered, that is, the case of the action on S^{3} by the binary te trahedral and octahedral groups, T_{*} and O_{*}, of order 24 and 48 , res pectively. These groups are obtained from the tetrahedral and octahedral subgroups T and 0 of $S O(3)$, which can be lifted to S^{3} by / means of

$$
0 \longrightarrow \mathbf{z} / 2 \mathbb{z} \longrightarrow \mathrm{~s}^{3} \longrightarrow \mathrm{SO}(3) \longrightarrow 1 \text {, }
$$

giving T_{*} and O_{*}. The inclusion

$$
\int_{o_{*}}^{T_{*}} \text { leads to an involution on }
$$

The invariant $\alpha\left(T,\left[S^{3}, T_{*}\right]\right)$ can be calculated in a similar way.

Chapter II

INVOLUTIONS ON HOMOLOGY SPHERES

II. 0 Introduction. Definitions e notation.

This chapter is devoted to prove the proposition announced in the introduction. We work with the involutions on ho mology 3-spheres given by Lopez de Medrano in (13) and (14). Other references for the invariants for involutions are (3), (8) and (4).

For the theory of quadratic forms and their signa tures, as well as the intersection theory, see (3) and (9).

As a background of homology and cohomology theories, duality theorems, we refer to (24).

We recall the following definitions which will be used in this chapter.

A G-homology n-sphere is a connected compact oriented differentiable manifoldXof dimension n, with $\partial X=\varnothing$ and such that $H_{0}(X)=H_{n}(X)=G$ and $H_{i}(X)=0$ otherwise.

Let D^{n} denote the unit discin euclidean n -space and S^{n-1} be its boundary.

The connected sum $M_{1} \| M_{2}$ of two connected compact oriented differentiable manifolds M_{1} and M_{2} is defined as follows. Let

$$
\begin{aligned}
& i_{1}: D^{n} \longrightarrow M_{1} \\
& i_{2}: D^{n} \longrightarrow M_{2}
\end{aligned}
$$

be imbeddings, i_{1} orientation preserving and i_{2} orientation reversing. $M_{1} \# M_{2}$ is obtained from the disjoint union $\left(M_{1}-i_{1}(0)\right) u$ $u\left(M_{2}-i_{2}(0)\right)$ by identifying $i_{1}(t u)$ with $i_{2}\left((1-t){ }_{u}\right)$ for each / $u \in s^{n-1}$ and each $0<t<1$. Choose for $M_{1} H M_{2}$ the orientation com patible with that of M_{1} and M_{2}.

Similarly the connected sum along the boundary of the two compact oriented differentiable $(n+1)$-manifolds W_{1} and W_{2} with connected boundaries is obtained in the same way by taking now two half-discs neighbourhoods of points in W_{1} and W_{2}. The re sulting manifold W, with boundary $\partial W=\partial W_{1} \# \partial W_{2}$ has the homotopy type of $W_{1} V W_{2}$, the union with a single point in commom (1l).

Disjoint equivariant surgery : Let (T, N) be an involution on a simply-connected compact differentiable manifold N and let $X=A \cap T A$ be a characteristic submanifold for (T, N). Suppose that $f:\left(D^{q+1}, S^{q}\right) \longrightarrow(A, X)$ is an imbedding such that $f\left(D^{q+1}-S^{q}\right)$ c $c A-X, f\left(D^{q+1}\right)$ intersects X transversely and $f\left(S^{q}\right) \cap T f\left(S^{q}\right)=\varnothing$. Then, there is a tubular neighbourhood V of $\left(f\left(D^{q+1}\right), f\left(S^{q}\right)\right.$) in / (A, X) such that $V \cap T V=\varnothing . \operatorname{Let} A^{\prime}=\overline{A-N U T N}$ (after smoothing). We get a new characteristic submanifold for (T, N), which is $X^{\prime}=$ $=A^{\prime} \cap T A^{\prime}$.

Let M be a compact differentiable manifold with boundary $\partial M=A \cup B, A \cap B=\partial A=\partial B$ and suppose that (T, A) is an involution on A. We can form a new manifold M^{\prime}, with an involu tion $T^{\prime \prime}: M^{\prime} \longrightarrow M^{\prime}$ as follows. Let M^{*} be another copy of M. Then $M^{\prime}=M U(T, A) M^{M^{*}}$ is obtained from the disjoint union of M and M^{*} by identifying x^{*} and $T(x)$ for each $x \in A$, where x^{*} is the point
in M^{*} corresponding to $x \in M$. Define $T^{\prime}: M^{\prime} \longrightarrow M^{\prime}$ by $T^{\prime}(x)=x^{*}$ and $T^{\prime}\left(x^{*}\right)=x$, for each $x \in M$. This is compatible with the identifications because T is an involution. An example of this construc tion is the Dold manifold in I.1.4. .

I'.1. Construction of Lopez de Medrano's examples.

Theorem . For every i e z there is a fixed-point free involution $\left(T, \sum^{3}\right)$ of a homology 3 -sphere \sum^{3} such that $\beta\left(T, \Sigma^{3}\right)=8 i$.
(S.L. de Medrano (13), (14))

We give a detailed construction of such involutions, which we divide into two parts. First, we start with the antipodal / map on the sphere S^{3} to obtain $\left(T, L^{3}\right)$ and then we consider the algebraic conditions in order to have $\beta\left(T, \Sigma^{3}\right)=8 i$.
a) Let $T_{o}: S^{3} \longrightarrow S^{3}$ be the antipodal map. Any invariant $S^{2} \in S^{3}$ is a characteristic submanifold for $\left(T_{0}, S^{3}\right)$. Perform k stardard disjoint equivariant surgeries on S^{2} to obtain a new characteristic submanifold $W=\#_{2 k}\left(S^{1} \times S^{1}\right)$ (the connected sum of $2 k$ copies of $S^{1} \times S^{1}$). We want to construct a homology sphere \sum^{3} with an involution T such that W is a characteristic submanifold for $\left(T, \sum^{3}\right)$.

Let V be connected sum along the boundary of $2 k$ copies of $S^{1} \times D^{2}$ and V^{\prime} be the closure of its complement in S^{3}, so that $W=\partial V$. Let $\left\{\alpha_{1}, \ldots, \alpha_{2 k}, \beta_{1}, \ldots, \beta_{2 k}\right\}$ be a standard basis for H_{1} (W) such that $\left\{\alpha_{1}, \ldots, \alpha_{2 k}\right.$ \}generates $K=\operatorname{ker}\left\{i_{*}: H_{1}(W) \longrightarrow H_{1}(V)\right\}$ and $\left\{\beta_{1}, \ldots, \beta_{2 k}\right\}$ generates ker $\left\{i_{\star}^{\prime}: H_{1}(W) \longrightarrow H_{l}\left(V^{\prime}\right)\right\}$, where i, i^{\prime} denote the inclusions $W \subset V$ and $W \subset V^{\prime}$ respectively, so that the ma trix of intersections numbers with respect to it is

$$
\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

Now, choose another basis for $k, \alpha_{1}^{\prime}, \ldots, \alpha_{2 k}^{\prime}$, say
and elements $\beta_{1}^{\prime}, \ldots, \beta_{2 k}^{\prime} \in H_{1}(W)$ satisfying $\alpha_{i}^{\prime} \circ \alpha_{j}^{\prime}=0$, $\alpha_{i}^{\prime} \circ \beta_{j}^{\prime}=$ $=\mathcal{f}_{i j}$ and $\beta_{i}^{\prime} \circ \beta_{j}^{\prime}=0$. Then $\left\{\alpha_{i}^{\prime}, \ldots, \alpha_{2 k}^{\prime}, \beta_{1}^{\prime}, \ldots, \beta_{2 k}^{\prime}\right\}$ is a basis for $H_{l}(W)$ and the matrix of intersection numbers with respect to it is again

$$
\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right)
$$

This imply that the automorphism of $H_{l}(W)$ given by $\alpha_{i}^{\prime} \longrightarrow \alpha i \quad$ can be lifted to an automorphism of $\pi_{1}(W)$ (see (16-pp-177 $\beta_{i}^{\prime} \longrightarrow \beta i \quad 178$ and $355-356$)) and so, it can be realized by a homeo morphism $\mathrm{f}: \mathrm{W} \longrightarrow \mathrm{W}$ (According to Nielsen's theorem (2l-(p.266))

Let A be the mapping cilinder of f, union V. Then $\partial A=W, A$ is homeomorphic to V and the map $H_{1}(W) \rightarrow H_{1}(A)$ induced by the inclusion $W \in A$ is given by

$$
\begin{aligned}
& \alpha_{i}^{\prime} \longrightarrow 0 \\
& \beta_{i}^{\prime} \longrightarrow b i,
\end{aligned}
$$

where $\left\{b_{1}, \ldots, b_{2 k}\right\}$ is a basis for $H_{1}(A)$.
Consider now another copy $A *$ of A. Let $\sum^{3}=A U_{T_{O}} A^{*}$
and define $T:\left[^{3} \longrightarrow \sum^{3}\right.$ by $T(x)=x^{*}, T\left(x^{*}\right)=x . T$ is a fixed point free involution on \sum^{3} and $T \mid W=T_{o} \cdot \sum^{3}$ is a homology sphere, as fol lows easily from the Mayer-Vietories sequence of the $\operatorname{triad}\left(\sum^{3}, A, A *\right)$, if we only observe that

$$
\mathrm{H}_{1}(\mathrm{~W}) \longrightarrow \mathrm{H}_{1}(\mathrm{~A}) \oplus \mathrm{H}_{1}\left(\mathrm{~A}^{*}\right)
$$

is an isomorphism.
b) In a) we have obtained, for each choice of / $\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{2 k}^{\prime}, \beta_{1}^{\prime}, \ldots, \beta_{2 k}^{\prime}\right\}$ satisfying the required conditions, an involution (T, \sum^{3}) of a homology sphere \sum^{3}. Now, we want to make such a choice more explicitly in order to determine $\beta\left(T, L^{3}\right)$. For this, we must look at the matrices giving the change of basis. / First, observe that the matrix U of $T_{o *}: H_{1}(W) \longrightarrow H_{1}(W)$, with res pect to $\left\{\alpha_{i}, \beta_{i}\right\}$ consists of l's the non-principal diagonal and 0 's / elsewhere.

Let $\alpha_{i}^{\prime}=\sum p_{i j} \quad \alpha_{j}+\sum q_{i j} \beta_{j}$ and the ($2 k \times 2 k$) -matrices $P=\left(p_{i j}\right), Q=\left(q_{i j}\right)$ and $H=P U P^{t}-Q U Q^{t}$ be such that $P Q^{t}$ is even and symmetric and H is unimodular, that is, $\operatorname{det}(H)= \pm 1$. / $\beta_{i}^{\prime}=\sum r_{i j} \alpha_{j}+\sum s_{i j} \beta_{j}$, where $\left(r_{i j}\right)=R=H^{-1} Q U$ and $\left(s_{i j}\right)=S=$ $=H^{-1} \mathrm{P} U$.

Then
$\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right) \quad\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)^{t}=\left(\begin{array}{cc}0 & I \\ -I & 0\end{array}\right)$ and $\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{2 k}^{\prime}, \beta_{1}^{\prime}, \ldots, \beta_{2 k}^{\prime}\right\}$ satisfiesthe conditions in $\left.a\right)$.

The matrix of T_{o} is then given by
$\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)\left(\begin{array}{ll}0 & U \\ U & 0\end{array}\right) \quad\left(\begin{array}{ll}P & Q \\ R & S\end{array}\right)^{-1}=\left(\begin{array}{ll}0 & H \\ H^{-1} & 0\end{array}\right)$
and it follows that the matrix of $\left(\alpha_{i}^{\prime} \circ T_{O^{*}} \alpha_{j}^{\prime}\right)$ is H.
Associated to this choice of basis we get an involution (T, \sum^{3}) with $\beta\left(T, \sum^{3}\right)=$ Sign (H). Then, the following propo sition completes the proof of the theorem. (Its proof can be found explicitly in (15).

Proposition . For every i $e \mathbb{Z}$, there is an integral ($2 k \times 2 k$) matrix H for some k, with sign (H) $=8 i$ and such that
(I) H is unimodular
(II) there exist integral matrices P, Q such that $P Q{ }^{t}$ is even and symmetric and $H=P U P{ }^{t}-Q U Q{ }^{t}$, where U denotes the / ($2 \mathrm{k} \times 2 \mathrm{k}$) - matrix with l's in the non principal diagonal and 0 's elsewhere.

We wish to show that when i is odd, \sum^{3} cannot be h -cobordant to s^{3}.

We first construct a suitable 4 -manifold with \sum^{3} as boundary and compute its signature, as well as the μ-invariant of \sum^{3}. In the following section we deal with the definition of μ. Remark . In the higher dimensional case, Lopez de Medrano also cons tructs involutions of $(4 m+3)$ - homotopy spheres $(m \geq 1)$, with / values of β of the form 81 , for each i e \mathbb{Z}.

Here we start with $W^{4 m+2}(m \geq 1)$, being the conne c^{-} ted ${ }_{\text {sum }}$ Of 2 k copies of $\mathrm{S}^{2 \mathrm{~m}+1} \times \mathrm{S}^{2 \mathrm{~m}+1}$ and $\mathrm{T}_{\mathrm{O}}: \mathrm{W} \longrightarrow \mathrm{W}$ being the restric tion to W of the antipodal map $T_{0}: S^{4 m+3} S^{4 m+3}$. If $\left\{\alpha_{1}, \ldots, \alpha_{2 k}, \beta_{1}, \ldots, \beta_{2 k}\right\}$ is the standard basis of $H_{2 m+1}(W)$, then we consider a new basis $\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{2 k}^{\prime}, \beta_{1}^{\prime}, \ldots, \beta_{2 k}^{\prime}\right\}$, satisfying the same conditions as before, so that the matrix of $\left(\alpha_{i}^{\prime} \circ T_{*} \alpha_{j}^{\prime}\right)=H$. We can perform framed surgery on the elements α_{i}^{\prime} of $H_{2 m+1}(W)$ and we get a framed cobordism between W and homotopy sphere. This is now diffeomorphic to a proper sphere, since it is of dimension $4 m+2$, with $m \geq 1$, and bounds a π-manifold(1l). We attach a disc to this sphere
to get a differentiable manifold A, with $\partial A=W$. Then, if $A *$ is another copy of A, we form the differentiable manifold $\sum^{4 \mathrm{~m}+3}=$ $A U_{T} A^{*}$ and define $T^{\prime}: \sum \longrightarrow \sum$ by $T^{\prime}(x)=X^{*}$ and $T^{\prime}\left(x^{*}\right)=x$, for each $x \in\left[\right.$ '. It follows that T^{\prime} is an involution and $\sum^{4 m+3}$ is a homotopy sphere, with $\beta(T, \Sigma)=\operatorname{sign}(H)$.
II. 2 Definition of the μ-invariant (Hirzebruch (9)).

Let X be a $\mathrm{Z} / 2 \mathrm{Z}$ - homology 3 -sphere. The μ-invariant of x is defined to be

Definition $\cdot \mu(X)=\frac{-\operatorname{sign}(N)}{16}$ (reduced mod. 1 over Q), where M is given by the following lemma.

Lemma . Let X be as above. Then X bounds a compact connected oriented differentiable 4 -manifold M such that $H_{1}(M)$ has no 2-torsion the and symmetric bilinear form on M (that is, the form given by cup pro duct on $H^{2}(M, \partial M)$) is even. Furthermore, $\mu(X)$ is independent of the choice of M, so that $\mu(X)$ is a well-defined invariant of the diffeomorphism type of x .

Proof. To prove that $\mu(X)$ is well defined, suppose that X boundes M_{1} and M_{2} which satisfy the conditions above. Let $N=M_{1} U_{X}-M_{2}$. Consider the Mayer-Vietoris sequence

$$
\mathrm{H}_{1}(\mathrm{X}) \longrightarrow \mathrm{H}_{1}\left(\mathrm{M}_{1}\right) \oplus \mathrm{H}_{1}\left(\mathrm{M}_{2}\right) \longrightarrow \mathrm{H}_{1}(\mathrm{~N}) \longrightarrow 0
$$

Now, M_{1} and M_{2} have no 2-torsion and $H_{1}(X)$ is a torsion group. By Poincaré duality of homology groups, N has no 2-torsion. As the bilinear form on M_{1} and M_{2} are even, it follows that the bilinear form on N is also even (see the proof of the Novikov additivity property, / chapter I). Let $\mathrm{w}_{2}(\mathrm{~N})$ denote the 2 nd Stiefel-Whitney class of N (recall
that $\mathrm{w}_{2}(\mathrm{~N})$ is the unique characteristic element in $\mathrm{H}_{2}(\mathrm{~N} ; \mathrm{z} / 2 \mathbb{Z})$ of the form over $\mathbb{Z} / 2 \mathbb{Z}$ given by cup product and such that ($x \cup x$)
$[N]=\left(x \cup w_{2}(N)\right)[N]$ for each $x \in H^{2}(N ; \mathbb{Z} / 2 \mathbb{Z})$. As N has no 2-torsion, the short exact sequence of coefficients,

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{(x 2)} \mathbb{Z} \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \longrightarrow 0
$$

leads to the short exact sequence,

$$
0 \longrightarrow H^{2}(N ; \mathbb{Z}) \xrightarrow{(x 2)} H^{2}(N ; \mathbb{Z}) \longrightarrow H^{2}(N, \mathbb{Z} / 2 \mathbb{Z}) \rightarrow 0
$$

so, in this case, the bilinear form on N being even is equivalent to $\mathrm{w}_{2}(\mathrm{~N})=0$. Thus, we can apply Rohlin's theorem to have

$$
\operatorname{sign}(N) \equiv 0 \quad(\bmod \cdot 16)
$$

Remark . For a proof of Rohlin's theorem, see (23): If M is a 4-manifold with $\partial M=\varnothing$ and $w_{2}=0$, then Sign (M) $\equiv 0(\bmod .16)$.

Again, by Novikov's additivity property, we have
$\operatorname{Sign}(N) \equiv \operatorname{Sign}\left(M_{1}\right)-\operatorname{Sign}\left(M_{2}\right)$, so
$\operatorname{Sign}\left(M_{1}\right) \equiv \operatorname{Sign}\left(M_{2}\right)(\bmod .16)$
This proves that μ is well defined.

Now, according to Milnor (19) (and Hirsch(6)) X bounds a compact simply-connected π-manifold M, in particular, $H_{1}(M)=0$ and $w_{2}(M)=0$. Let $N=M U_{X}-M$. From the Mayer-Vietoris sequence

$$
0 \longrightarrow H^{2}(N, \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z}) \oplus H^{2}(M ; \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow 0
$$

and the naturality of the Stiefel-Whitney classes, we have $w_{2}(N)=0$ and hence the bilinear form on N is even. As before, the bilinear / form on M is also even and the lemma is proved.
II. 3 Second part of the proof of $\alpha=\beta$.

Following the notation in I.l.4, let (T, \tilde{M}) be an invo lution on the compact oriented differentiable $(4 \mathrm{k}+3)$ - manifold \tilde{M}, and $(\mathcal{J}, \mathcal{D})$ be the Dold construction with boundary $\partial, \mathcal{D}=(T, \tilde{M})-2(\tilde{M} / T)$. Then $\beta(T, \tilde{M})$, defined in chapter I, is the signature of the form

$$
(x, y) \longrightarrow x \circ T_{*} y
$$

defined on

$$
L=\operatorname{Ker}\left\{\mathrm{H}_{2 \mathrm{k}+1}(\tilde{\mathrm{~V}} ; Q) \longrightarrow \mathrm{H}_{2 \mathrm{k}+1}(\mathrm{~A}, Q)\right\},
$$

where $\mathrm{H}_{2 \mathrm{k}+1}(\tilde{\mathrm{~V}} ; \mathbb{Q}) \longrightarrow \mathrm{H}_{2 \mathrm{k}+1}(\mathrm{~A} ;(\mathbb{Q})$ is induced by the inclusion $\tilde{\mathrm{V}}=\partial \mathrm{A} \subset A$.

Suppose further, that $H_{2 k+2}(\tilde{M} ; \mathbb{Q})=0$.
Proof of $\beta(T, \tilde{M})=-\operatorname{sign}(D)$ All homology groups considered are with coefficients in Q. Let
$F=\pi^{-1}\left(M \times\left\{\frac{1}{2}\right\}\right) . F$ is a topological space, obtained from the disjoint union $A \cup A^{*}$ of two copies of A, by identifying all four points $x \in \tilde{V} \subset A,-x \in \tilde{V} \subset A, x^{*} \in \tilde{V} \subset A^{*}$ and $-x^{*} \in \tilde{V} \subset A^{*}$. We start on studying $H_{2 k+2}(F)$, as F is a deformation retract of D (because $M \times\left\{\frac{1}{2}\right\}$ is a deformation retract of $M \times[0,1]$).

Let $V=V x\left\{\frac{1}{2}\right\} \subset F$ and $A \cup A^{*} \subset F$ be the inclusions; they are homotopic in θ to maps into D - F. Let $\tilde{\mathrm{V}} \cup \tilde{\mathrm{V}}^{*}$ be the disjoint union of two copies of $\tilde{\mathrm{V}}$ and consider the Mayer-Vietories se quence

$$
\begin{gathered}
\mathrm{H}_{2 k+2}(\mathrm{~V}) \oplus \mathrm{H}_{2 \mathrm{k}+2}\left(\mathrm{~A} \cup A^{*}\right) \xrightarrow{f_{\longrightarrow}} \mathrm{H}_{2 k+2}(\mathrm{~F}) \xrightarrow{\mathrm{X}} \mathrm{H}_{2 k+1}\left(\tilde{\mathrm{~V}} \cup \tilde{\mathrm{~V}}^{*}\right) \\
\xrightarrow{\psi} \mathrm{H}_{2 k+1}(\mathrm{~V}) \oplus \mathrm{H}_{2 k+1}\left(\mathrm{~A} \cup A^{*}\right) .
\end{gathered}
$$

Then $x \circ y=0$, for $x \in \operatorname{Im} \varphi$ and $y \in H_{2 k+2}(F)$ and hence
the intersection form $(x, y) \longrightarrow x \circ y$ is well defined on

$$
L^{\prime}=H_{2 k+2}(F) / \operatorname{Im} \rho
$$

Its signature is then $\operatorname{sign}(\mathscr{D})$.
Let G denote the manifold obtained from $A \cup A^{*}$ by identifying $x \in \tilde{v} \subset A$ with $x^{*} \in \tilde{v}^{*} \subset A^{*}$ and consider the following Mayer-Vietoris sequences

$$
\begin{aligned}
& H_{2 k+2}(\tilde{\mathrm{M}}) \longrightarrow \mathrm{H}_{2 \mathrm{k}+1}\left(\tilde{\mathrm{~V}} \cup \tilde{\mathrm{~V}}^{*}\right) \xrightarrow{\tilde{\Psi}} \mathrm{H}_{2 k+1}\left(\tilde{\mathrm{~V})} \oplus \mathrm{H}_{2 k+1}\left(\mathrm{~A} \cup A^{*}\right)\right. \\
& \mathrm{H}_{2 k+2}(\mathrm{G}) \xrightarrow{x_{G}} \mathrm{H}_{2 k+1}\left(\tilde{\mathrm{~V}} \cup \tilde{\mathrm{~V}}^{*}\right) \xrightarrow{\Psi_{G}} \mathrm{H}_{2 k+1}(\tilde{\mathrm{~V}}) \oplus \mathrm{H}_{2 k+1}\left(\mathrm{~A} \cup A^{*}\right)
\end{aligned}
$$

In the first sequence, the homomorphism $H_{2 k+1}\left(\tilde{\mathrm{~V}} \cup \tilde{\mathrm{~V}}^{*}\right)$
$\mathrm{H}_{2 \mathrm{k}+1}(\tilde{\mathrm{~V}})$ is induced by the identity $\tilde{\mathrm{V}} \longrightarrow \tilde{\mathrm{V}}$ and by $\mathrm{T}: \tilde{\mathrm{V}} \xrightarrow{*} \tilde{\mathrm{~V}}$, while in the second one by the identities $\tilde{\mathrm{V}} \longrightarrow \tilde{\mathrm{V}}$ and $\tilde{\mathrm{V}}^{*} \longrightarrow \tilde{\mathrm{~V}}$.

Now
$\mathrm{H}_{2 \mathrm{k}+1}\left(\tilde{\mathrm{~V}} \cup \tilde{\mathrm{~V}}^{*}\right) \cong \mathrm{H}_{2 \mathrm{k}+1}(\tilde{\mathrm{~V}}) \oplus \mathrm{H}_{2 \mathrm{k}+1}(\tilde{\mathrm{~V}})$
and so the kernel of

$$
\mathrm{H}_{2 \mathrm{k}+1}\left(\tilde{\mathrm{~V}} \cup \tilde{\mathrm{~V}}^{*}\right) \longrightarrow_{\mathrm{H}_{2 k+1}}\left(\mathrm{~A} \cup \mathrm{~A}^{*}\right)
$$

is $\mathrm{L} \oplus \mathrm{L}$.
Thus

$$
\begin{aligned}
& \operatorname{Ker} \tilde{\psi}=\{(a, b) \text { e } L \oplus L \mid a+T b=0\} \\
& \operatorname{Ker} \psi_{G}=\{(a, b) \text { e } L \oplus L \mid a+b=0\}
\end{aligned}
$$

and so

$$
\begin{aligned}
& \text { Ker } \psi=\{(a, b \in L \oplus L \mid a+T a+b+T b=0\} . \\
& \text { As } H_{2 k+2}(\tilde{M} ; Q)=0 \text {, it follows that } \\
& \text { Ker } \tilde{\psi}=0,
\end{aligned}
$$

and
$\operatorname{Ker} \psi=\operatorname{Ker} \psi_{G}=\{(a,-a) \mid a \in L\}$
This implies that $L \cong L^{\prime}$, as $L^{\prime} \cong$ Ker ψ.
If $f: G \longrightarrow F \subset D$ denotes the canonical map, then as
Ker $\psi=$ Ker ψ_{G}, any element of L^{\prime} is represented by $f_{*}(x)$ for some $x \in H_{2 k+2}(G)$.

$$
\begin{aligned}
& \text { Let } x, y \in H_{2 k+2}(G) \text {. Then } X_{G}(x)= \\
& =X\left(f_{*}(x)\right)=(a,-a) \text { and } X_{6}(y)= \\
& =X\left(f_{*}(y)\right)=(b,-b), \text { for some } a, b \in \text { L. }
\end{aligned}
$$

We prove next that
$-f_{*}(x) \circ f_{*}(y)=a \circ T b$,
and the proof of the theorem will be completed.
We may assume that x and y are represented by oriented $(2 k-2)$ - sub manifolds of G, transversal at $\tilde{V} \subset G \cdot \tilde{V} \cap x$ and $\tilde{v} \cap y$ can be oriented as the boundary of $A \cap x$ and $A \cap y$ and $\tilde{v} \cap x$ and $\tilde{v} \cap y$ represent a and b, respectively. So, denote / $a=\tilde{v} \cap x$ and $b=\tilde{v} \cap y$. We may assume that a is transversal to b and Tb .

The immersion $\mathrm{f}: \mathrm{G} \longrightarrow \mathcal{D}$ induces an immersion $\mathrm{f}: \mathrm{x} \longrightarrow \varnothing$, which represents $f_{*}(x) \in H_{2 k+2}(D)$. We can now substitute f by an isotopic immersion $f^{\prime}: G \longrightarrow \mathscr{D}$ (see (8)), so that $f^{\prime}: y \rightarrow \mathscr{D}$ repre sents $f_{*}(y) \in H_{2 k+2}(\mathscr{D})$ and is transversal to $\mathrm{f}: \mathrm{x} \longrightarrow \mathscr{D}$.

Let pex and qe y . Then

$$
\begin{aligned}
& f(p)=f^{\prime}(q) \Longleftrightarrow p=q \in a \cap b \text { or } \\
& p=T q \in a \cap T b .
\end{aligned}
$$

Considering the orientations involved, we get

$$
-f_{*}(x) \circ f_{X}(y)=a \circ T b+a \circ b
$$

Now \tilde{V} is the boundary of the oriented manifold A and a and b are in the kernel of

$$
\mathrm{H}_{2 \mathrm{k}+1}(\tilde{\mathrm{~V}}) \longrightarrow \mathrm{H}_{2 \mathrm{k}+1}(\mathrm{~A}),
$$

so that

$$
a \circ b=0
$$

Hence

$$
-f_{x}(x) \circ f_{*}(y)=a \circ T b,
$$

and the result follows.
II. 4 In this section we prove the following proposition

Proposition . Let (T, \sum_{i}^{3}) be an involution of a Medrano's homology sphere \sum_{i}^{3} such that $\beta\left(T, \sum_{i}^{3}\right)=8 i(i \in z)$.

Then \sum_{i}^{3} bounds a π-manifold M_{i} such that $\operatorname{Sign}\left(M_{i}\right) \equiv \beta\left(T, \sum_{i}^{3}\right)(\bmod .16)$ Furthermore, the μ-invariants of \sum_{i}^{3} are

$$
\begin{aligned}
\mu\left(\sum_{i}^{3}\right) & =1 / 2, \text { for } i \text { odd } \\
& =0, \text { for } i \text { even. }
\end{aligned}
$$

Remark. Orlik-Rourke proved in (22) that the analgously constructed homotopy-sphere $\sum_{i}^{4 m+3}, m \geq 1$, with an involution T such / that $\beta\left(T, \sum_{i}\right)=8 i$, bounds a π-manifold M_{i} such that $\operatorname{Sign}\left(M_{i}\right)=$ $=\beta\left(T, \Sigma_{i}\right)$.
Proof of the proposition . Let (T, \sum^{3}) denote a Lopez de Medrano's example. Recall that $\sum^{3}=A U_{T} A^{A}{ }^{*}, \partial A=W$,
where A is the mapping cilinder of $f: W \longrightarrow W$, as before(see II.1),
and $\mathrm{W}=\partial \mathrm{V}$, if V denotes the solid torus of genus 2 k , for some integer $\mathrm{k} ; \mathrm{T}_{\mathrm{o}}: \mathrm{S}^{3} \longrightarrow \mathrm{~S}^{3}$ is the antipodal map.

Now, $V \mathrm{U}_{\mathrm{W}} \mathrm{A}$ is a compact 3 -dimensional manifold, hence it bounds a compact simply-connected π-manifold B (Milnor-Hirsch). Let V ' be the closure of the complement of V in S^{3} and let B^{*} be another copy of B glued to V^{\prime} by T_{o} / V^{\prime}. Let C be the standard 4-disc with / boundary $\mathrm{V} \mathrm{U}_{\mathrm{W}} \mathrm{V}^{\prime}$.

Then $M=B U_{V} C U_{V}, B{ }^{*}$ is a compact symply-connected π-manifold with boundary $\partial \mathrm{M}=\sum^{3}$.

> Define $\mathcal{J}: M \longrightarrow M$ by
> $\mathcal{J}(x)=x^{*}$, if $x \in B$
> $f\left(x^{*}\right)=x$, if $x^{*} \in B^{*}$
> $(x)=T_{0}(x)$, if $x \in C$.
\mathcal{I} is an orientation preserving involution on M such that $\mathcal{J} \mid c$ is the antipodal map and $\mathcal{\rho} \mid \Sigma^{3}=T$. Furthermore, $\operatorname{Fix} \rho=\{P\}$, where P is the origin of C.

Let C ' be an invariant 4 -disc about P contained in the interior of C and $S^{\prime 3}=\partial C^{\prime}$.

Let M_{0} be the closure of $M-C^{\prime}$.

Mo

(ρ_{0}, M_{0}) is a free involution on M_{0}, where $\rho_{0}=\rho \mid M_{0}: M_{0} \rightarrow M_{0}$, and $\partial M_{o}=\sum^{3} U s^{\prime 3}$.

We get
$\alpha\left(T, \sum^{3}\right)=\alpha\left(f \mid \partial M_{0}, \partial M_{0}\right)-\alpha\left(T_{0} \mid S^{\prime 3}, S^{\prime 3}\right)=\alpha\left(f \mid \partial M_{0}, \partial M_{0}\right)$.
Now, Hirzebruch-Janich's formula(see 8) gives $\alpha\left(T, \Gamma^{3}\right)=\sigma\left(\rho_{0}, M_{0}\right)$.
As Sign $(M)=\operatorname{Sign}\left(M_{0}\right)$, by the additivity property of the signature, we now have prove that

$$
\zeta\left(\rho_{0}, M_{0}\right) \equiv \operatorname{sign}\left(M_{0}\right)(\bmod .16)
$$

and the result will follow.

At this point, we need a result obtained by Lopez de Medrano (13). As Fix $\rho_{0}=\varnothing$, then

$$
\zeta\left(\rho_{0}, M_{0}\right)=2 \operatorname{sign}\left(M_{0} / \rho_{0}\right)-\operatorname{sign}\left(M_{0}\right) .
$$

To prove this, consider homology with real coefficients. Let $H=H_{2}\left(M_{O} ; R\right)=A \oplus B$, where $A=\left(1+J_{O_{*}}\right) H, B=\left(1-J_{O_{*}}\right) H$. A and B are orthogonal for the intersetion form as well as for the form $f(x, y)=x \circ \mathcal{J}_{O_{*}} y$, and

$$
\begin{aligned}
f(x, y)= & x \circ y \text { on } A, \\
& -x \circ y \text { on } B .
\end{aligned}
$$

Let $\mathrm{p}: \mathrm{m}_{0} \longrightarrow \mathrm{~m}_{0} / \rho_{0}$ be the projection. Then $\mathrm{p}_{*} \mid \mathrm{B}=0$ and $p_{\star} \mid A: A \longrightarrow H_{2}\left(M_{0} / J_{0} ; R\right)$ is an isomorphism. For $x, y \in A$, we have

$$
p_{*}(x) \circ p_{*}(y)=x \circ y+x \circ \rho_{0_{*}} y=2 x \circ y
$$

It follows that $\operatorname{sign}(f \mid A)=\operatorname{sign}\left(M_{0} / \rho_{0}\right)$, and so

$$
\begin{aligned}
& \tau\left(\rho_{0}, M_{0}\right)=\operatorname{sign}(f \mid A)+\operatorname{sign}(f \mid B), \\
& \operatorname{sign}\left(M_{0}\right)=\operatorname{sign}(f \mid A)-\operatorname{sign}(f \mid B),
\end{aligned}
$$

that is,

$$
\zeta\left(\rho_{0}, M_{0}\right)=2 \operatorname{sign}\left(M_{0} / \rho_{0}\right)-\operatorname{sign}\left(M_{0}\right) .
$$

Now, let $<,>$ denote the intersection form on M_{0}, that is

$$
\langle x, y\rangle=x \circ y \text {, for } x, y \in H_{2}\left(M_{0}\right)
$$

Considering the results above , it is enough to prove that

$$
\operatorname{sign}(<\quad, \quad>\mid B) \equiv 0(\bmod .8) .
$$

For this, consider the Mayer-Vietoris sequence of $\left(M_{0} ; B \cup C_{0}, C_{0} \cup B^{*}\right)$, where $f: B \cup C_{0} \rightarrow M_{0}, \varphi^{\prime}: C_{0} \cup B^{*} \rightarrow M_{0}$ are the inclusions: $0=H_{2}\left(C_{0}\right) \rightarrow H_{2}\left(B \cup C_{0}\right) \oplus H_{2}\left(C_{0} \cup B^{*}\right) \frac{\rho_{*}^{+} \varphi_{*}^{\prime}}{\cong} H_{2}\left(M_{0}\right) \rightarrow H_{1}\left(C_{0}\right)=0$

$$
\begin{aligned}
& +\rho_{0}+\rho_{0_{*}} \\
& \mathrm{H}_{2}\left(\mathrm{~B} \mathrm{\cup C} \mathrm{C}_{0}\right) \oplus \mathrm{H}_{2}\left(\mathrm{C}_{\mathrm{o}} \cup \mathrm{~B}^{*}\right) \xrightarrow{\boldsymbol{*}^{+} \varphi^{\prime}} \mathrm{H}_{2}\left(\mathrm{M}_{0}\right)
\end{aligned}
$$

This diagram commutes. Note that $\int_{O_{*}}$ interchanges $H_{2}\left(B \cup C_{0}\right)$ and $H_{2}\left(C \cup B^{*}\right)$, that is, $f_{O_{*}}(u, v)=\left(f_{o_{*}} u, f_{O_{*}} v\right)$, for $(u, v) \in H_{2}\left(B \cup C_{o}\right) \oplus H_{2}\left(C_{o} \cup B^{*}\right)$. It follows that $\rho: J_{O_{*}}=\rho_{0_{*}} \rho_{*}$.

As M_{0} is simply-connected, $H_{1}\left(M_{0}\right)=0$ and $H^{2}\left(M_{0}\right)$ is free abelian (by the universal coefficient theorem) ; as $H_{2}\left(M_{0}\right)$ is isomorphic to $H_{2}\left(M_{0}, \partial M_{0}\right), H_{2}\left(M_{0}\right)$ is also free abelian, by Poincare duality. Also

$$
\mathrm{H}_{2}\left(\mathrm{M}_{0} ;(\mathbb{Q}) \cong \mathrm{H}_{2}\left(M_{0}\right) \otimes \mathscr{Q} .\right.
$$

Note that the same conclusions hold for $B \cup C_{0}$, as $H_{1}\left(\partial\left(B \cup C_{0}\right)\right)=H_{2}\left(\partial\left(B \cup C_{0}\right)\right)=0$ (it follows from the MayerVietoris sequence of $(B \cup C ; B, C)$ that $\partial(B \cup C)$ is a homology 3-sphere.)

Let

$$
\Delta_{-}=\left\{x \in H_{2}\left(M_{0}\right) ; \int_{O_{*}}(x)=-x\right\}
$$

$$
\text { If } u \in H_{2}\left(B \cup C_{0}\right) \text {, }
$$

$\left(\rho_{*}+\rho_{*}^{\prime}\right)\left(u,-f_{o_{*}} u\right)=\rho_{*} u-f_{o_{*}} f_{*} u \in \Delta_{-}$.
Conversely, suppose $x \in \Delta_{-}$and write $x=\rho_{x} u+\rho_{x} \cdot v$, for some $(u, v) \in H_{2}\left(B \cup C_{0}\right) \oplus H_{2}\left(C_{0} \cup B^{*}\right)$. From the diagram above, $f_{\circ_{*}} x=-x$ implies

$$
\left(\rho_{*}+\rho_{*}^{\prime}\right)\left(\rho_{O_{*}} v, f_{o_{*}} u\right)=\left(\rho_{*}+\rho_{\star}^{\prime}\right)(-u,-v)
$$

and thus

$$
v=-f_{o_{*}} u
$$

Therefore

$$
\Delta_{-}=\left\{\rho_{*} u-\rho_{0_{*}} \rho_{*} u \in H_{2}\left(M_{0}\right): u \in H_{2}\left(B \cup C_{0}\right)\right\} .
$$

We get the same result for rational coefficients, that is, if

$$
\Delta_{-}^{Q}=\left\{x \in H_{2}\left(M_{0} ; Q\right): \mathcal{S}_{O_{*}} x=-x\right\}
$$

then

$$
\Delta_{-}^{\varrho}=\left\{\rho_{*} u-\rho_{O_{*}} \rho_{*} u \in H_{2}\left(M_{0} ; Q\right): u \in H_{2}\left(B \cup C_{O} ; Q\right)\right\}
$$

Let

$$
\Delta_{-} \otimes Q+\Delta_{-}^{Q}
$$

be the inclusion. It is an isomorphism: let
$x=\rho_{*} u-\rho_{0_{*}} \rho_{*} u \in \Delta_{-}^{Q}, u \in H_{2}\left(B \cup C_{0} ; Q\right)$. Then
$u=\sum u_{i} \otimes \lambda_{i}, u_{i} \in H_{2}\left(B \cup C_{o}\right), \lambda_{i} \in \mathbb{Q}$.
Thus

$$
x=\Sigma\left(\rho_{*} u_{i}-\rho_{o_{*}} \rho_{*} u_{i}\right) \otimes \lambda_{i} \in \Delta_{-} \otimes Q
$$

Therefore, we have a well defined form on Δ_{-}, given by $<,>\mid \Delta_{-}$.

Let $x, y \in \Delta_{-}$. Write $x=\rho_{*} u-\rho_{o_{*}} \rho_{*} u$,
$y=\rho_{*}^{v}-J_{0_{*}} \rho_{*} v$. As ρ_{0} is orientation preserving,
$\langle x, y\rangle=\left\langle\int_{O_{*}} x, \int_{O_{*}} y\right\rangle$, for $x, y \in H_{2}\left(M_{0}\right)$.
Thus,

$$
\begin{aligned}
\langle x, y\rangle & =\left\langle\rho_{*} u-\rho_{o_{*}} \rho_{*} u, \rho_{*} v-\rho_{o_{*}} \rho_{*} v\right\rangle= \\
& \left.\left.=2<\rho_{*} u, \rho_{*} v\right\rangle-2<\rho_{*} u, \rho_{O_{*}} \rho_{*} v\right\rangle .
\end{aligned}
$$

We can consider the form [,] on $\Delta_{\text {_ }}$ given by $[x, y]=\frac{1}{2}\langle x, y\rangle$.

As $\operatorname{Sign}([])=,\operatorname{Sign}\left(<,>\mid \Delta_{-}\right)$, we have now to show that [,] is even and unimodular. Then by Milnor (18) (see also $(9, \mathrm{p} .30)), \operatorname{Sign}([],) \equiv 0(\bmod .8)$ as required.

To show it is unimodular, we must prove that the homomorphism dual to $[$,$] ,$

$$
\psi: \Delta_{-} \longrightarrow \operatorname{Hom}\left(\Delta_{-} ; z\right)
$$

given by

$$
\psi x \cdot y=\frac{1}{2}\langle x, y\rangle, \text { for } x, y \in \Delta_{-},
$$

is an isomorphism.
Let

$$
\partial: \Delta_{-} \longrightarrow \operatorname{Hom}\left(\Delta_{-} ; z\right)
$$

denote the homomorphism dual to $<,>\mid \Delta_{-}$,

$$
\partial x \cdot y=\langle x, y\rangle, \text { for } x, y \in \Delta_{-} .
$$

(similarly for $x, y \in \Delta$).
Consider the diagram
$\Delta_{-} \xrightarrow{\partial} \operatorname{Hom}\left(\Delta_{-} ; \mathbb{Z}\right)$
$\cap \cap$
$\Delta_{-}^{Q} \cong \Delta_{-} \otimes Q \xrightarrow{\partial} \operatorname{Hom}\left(\Delta_{-} \otimes Q ; Q\right) \cong \operatorname{Hom}\left(\Delta_{-} ; \mathbf{Z}\right) \otimes Q$.
$\partial: \Delta_{-} \otimes Q \rightarrow H o m\left(\Delta_{-} \otimes Q ; Q\right)$ is an isomorphism, by Poincare duality. The diagram commutes and hence, ψ is a monomorphism.

To prove it is also an epimorphism, consider the following commutative diagram:

Since any element of $H_{2}\left(M_{0}\right)$ is of the form $\rho_{*} u-\rho_{O_{*}} \rho_{*} v$, $u, v \in H_{2}\left(B \cup C_{o}\right)$, for each $f \in \operatorname{Hom}\left(\Delta_{-} ; \mathbb{Z}\right)$, define $\tilde{f} \in \operatorname{Hom}\left(\mathrm{H}_{2}\left(\mathrm{M}_{0}\right) ; \mathbb{Z}\right)$ by

$$
\ddagger\left(\rho_{*} u-\rho_{o_{*}} \rho_{*} v\right)=f\left(\varphi_{*} u-\rho_{o_{*}} \rho_{*} u\right) .
$$

Thus, the restriction is onto, hence $--\rightarrow$ is also onto.
So, given $f \in \operatorname{Hom}\left(\Delta_{-} ; \mathbb{Z}\right)$, there exists $x \in H_{2}\left(M_{o}\right)$,
such that

$$
f(y)=\langle x, y\rangle \text {, for all } y \in \Delta_{-} .
$$

Now

$$
\langle x, y\rangle=\left\langle f_{O_{*}} x, f_{O_{*}} y\right\rangle=\left\langle f_{O_{*}} x,-y\right\rangle=-\left\langle f_{O_{*}} x, y\right\rangle
$$

Hence

$$
\left\langle x-J_{O_{*}} x, y\right\rangle=2\langle x, y\rangle
$$

where $x-\mathcal{J}_{0_{*}} x \in \Delta_{-}$. We get
$\psi\left(x-f_{O_{*}} x\right) \cdot y=\frac{1}{2}\left\langle x-f_{O_{*}} x, y\right\rangle=f(y)$,
for any $y \in \Delta_{-}$, and $x-\int_{0_{*}} x$ maps onto f, under ψ. Therefore ψ is onto and hence it is an isomorphism.

To prove $[$,$] is even, let x=\rho_{*} u-\rho_{0_{*}} \rho_{*} u \in \Delta_{-}$, where $u \in H_{2}\left(B \cup C_{o}\right)$.

$$
\begin{aligned}
{[x, x] } & \left.=\frac{1}{2}<\rho_{*} u-\rho_{o_{*}} \rho_{*} u, \rho_{*} u-\rho_{o_{*}} \rho_{*} u\right\rangle= \\
& =\left\langle\rho_{*} u, \rho_{*} u\right\rangle-\left\langle\rho_{*} u, \rho_{o_{*}} \rho_{*} u\right\rangle .
\end{aligned}
$$

Now, let x_{1}, \ldots, x_{e} be a basis for $H_{2}\left(M_{0}\right)$ represented by immersed spheres $s_{i}{ }^{2}$. Then $\mathcal{O}_{0}\left(S_{i}{ }^{2}\right)$ represents $\int_{O_{*}} x_{i}$. By general position, we can arrange such that $s_{i}{ }^{2}$ and $\int_{0}\left(s_{i}{ }^{2}\right)$ meet transversely in a finite set of points. $s_{i}{ }^{2} \cap \int_{0}\left(S_{i}{ }^{2}\right)$ is invariant under \int_{0} and \mathcal{S}_{0} is fixed-point free, so $s_{i}{ }^{2}$ and $\int_{0}\left(S_{i}{ }^{2}\right)$ must intersect in an even number of points. Therefore $<x_{i}, f_{O_{*}} x_{i}>$ is even. On the other hand, as the form $<,>$ is even, as in II.2, it follows that $\left\langle x_{i}, x_{i}\right\rangle$ is even.

Therefore $[x, x]$ is also even, as required.
This proves that $\operatorname{Sign}([]$,$) and hence \operatorname{Sign}\left(<,>\mid \Delta_{-}\right)$
is a multiple of 8 , and thus

$$
\mathscr{C}\left(\rho_{0}, M_{0}\right) \equiv \operatorname{sign}\left(M_{0}\right)(\bmod \cdot 16)
$$

Therefore

$$
\beta\left(T, \Sigma^{3}\right)=\alpha\left(T, \Sigma^{3}\right) \equiv \operatorname{Sign}(M)(\bmod , 16),
$$

and the first part of the proposition is proved.
Now, the μ-invariants of Σ_{i}^{3} are given by

$$
\begin{aligned}
\mu\left(\Sigma_{i}^{3}\right) & =\frac{-\operatorname{Sign}\left(M_{i}\right)}{16}(\bmod \cdot 1)=\frac{-\beta\left(T, \Sigma_{i}^{3}\right)}{16}(\bmod .1) \\
& =1 / 2, \text { for } i \text { odd } \\
& 0, \text { for } i \text { even. }
\end{aligned}
$$

This completes the proof of the proposition.
II. 5 Now, we are able to prove the following theorem.

Theorem. If $B\left(T, \Sigma^{3}\right) / 8$ is odd, where $\left(T, \Sigma^{3}\right)$ is one of Medrano's example, then \sum^{3} cannot be h-cobordant to s^{3}. In particular, \sum does not imbed in R^{4}.

Remark. We say that X_{1} is h-cobordant to X_{2}, where X_{1} and x_{2} are n-manifolds (compact oriented differentiable) without boundary, if there is an ($n+1$)-manifold W such that ∂W is the disjoint union of X_{1} and $-x_{2}$ and the inclusions $x_{1} \subset W, X_{2} \subset W$ are both homotopy equivalences. In this case, we say that ($W ; X_{1}, X_{2}$) is an h-cobordism.

Lemma. (Hirzebruch) Let X_{1} and X_{2} be h-cobordant $\mathbb{Z} / 2 \mathbb{Z}$-homology 3-spheres. Then $\mu\left(X_{1}\right)=\mu\left(X_{2}\right)$.
Proof. Let $\left(W ; X_{1}, X_{2}\right)$ be an h-cobordism and let $X_{2}=\partial M_{2}$, where
M_{2} is given by the Lemma in II.2, that is, $H_{1}\left(M_{2}\right)$ has no 2-torsion and the symmetric bilinear form on M_{2} is even. Let $M_{1}=M_{2} U_{X_{2}} W$.

Then $X_{1}=\partial M_{1}$ and M_{2} is a deformation retract of M_{1}.
This implies that $H_{q}\left(M_{2}\right) \cong H_{q}\left(M_{1}\right)$ and the isomorphism
preserves the bilinear form, so that M_{1} satisfies the required
conditions in II. 2 and

$$
\mu\left(x_{1}\right)=-\frac{\operatorname{sign}\left(M_{1}\right)}{16}(\bmod \cdot 1)=-\frac{\operatorname{sign}\left(M_{2}\right)}{16}(\bmod \cdot 1)=\mu\left(X_{2}\right)
$$

Proof of the theorem. The first part now follows from the proposition in section II. 3 and the Lemma above, if we only
note that $\mu\left(S^{3}\right)=0$. Suppose now that \sum^{3} denotes a Medrano's example which is embeddable in \mathbb{R}^{4}. By Alexander duality, $\mathbb{R}^{4}-\sum^{3}$ has two components. Let V be the bounded component, then $W=V \cup \sum^{3} \subset \mathbb{R}^{4}$ is a compact manifold with boundary $\partial W=\sum^{3}$. Let V^{\prime} be the umbounded component and let $W^{\prime}=V^{\prime} \cup \sum^{3}$. Then $\left(W, \sum^{3}\right)$ is a strong deformation retract of ($W \cup U, U$), where \sum^{3} is a deformation retract of an open neighbourhood $U \subset W^{\prime}$. This implies that

$$
H_{q}\left(W, \Sigma^{3}\right) \cong H_{q}(W \cup U, U) \cong H_{q}\left(\mathbb{R}^{4}, W^{\prime}\right),
$$

and we get the Mayer-Vietoris sequence of $\left(\mathbb{R}^{4} ; W, W^{\prime}\right)$,

$$
H_{q}\left(\Sigma^{3}\right) \rightarrow H_{q}(W) \oplus H_{q}\left(W^{\prime}\right) \rightarrow H_{q}\left(\mathbb{R}^{4}\right)
$$

Hence, $H_{2}(W)=H_{1}(W)=0, W$ satisfies the conditions in II. 2 and, as $\operatorname{Sign}(W)=0$, it follows that $\mu\left(\Sigma^{3}\right)=0$. This completes the proof of the theorem.

We have shown that when $B\left(T,\left[^{3}\right) / 8\right.$ is odd, then the homology sphere \sum^{3} is not h-cobordant to s^{3}. Now, $\pi_{1}\left(\sum^{3}\right)=0$ would imply that \sum^{3} were a homotopy sphere. Hence, the interest of the theorem relies in the fact that, if it could be shown that all homotopy spheres were h-cobordant to s^{3}, then $\pi_{1}\left(\sum^{3}\right) \neq 0$. The problem is that it may be fake 3 -spheres which do not bound contractible 4-manifolds. Kervaire and Milnor (1l) have proved that the groups $\theta_{n}(n \neq 3)$ of n-cobordism classes of homotopy spheres are all finite. The case $n=3$ is open, but if we assume, conversely, the Poincare hypothesis, we would have $\theta_{3}=0$.

REFERENCES

1. Atiyah, M.F., Singer, I.M. - The index of elliptic operators: III, Ann. of Math. 87 (1968), 546-604.
2. Atiyah, M.F., Bott, R. - A Lefschetz fixed point formula for elliptic complexes: II. Applications. Ann. of Math. 88 (1968), 451-491.
3. Browder, W. - Surgery on Simply-Connected Manifolds, Springer Verlag, 1972.
4. Conner, P.E., Floyd, E.E. - Differentiable periodic maps, Springer-Verlag, 1964
5. Dold, A. - Dēmonstration elēmēntaire de deux rēsultats du cobordism, Séminaire de topologie et de géométrie diffērentielle, dirigé par C. Ehresmann, Paris, Mars 1959.
6. Hirsch, M.W. - The imbedding of bounding manifolds in euclidean space, Ann. of Math. 74 (1961), 494-497.
7. Hirzebruch, F. - Free involutions on Manifolds and some elementary number theory,
8. Hirzebruch, F., Jänich, K. - Involutions and Singularities, Proc. Int. Colloq. on Algebraic Geometry, Bombay 1968.
9. Hirzebruch, F., Newmann, W.D., Koh, S.S. - Differentiable manifolds and quadratic forms.
10. Janich, K., Ossa, E. - On the signature of an involution Topology 8, 27-30.(1969).
11. Kervaire, M.A., Milnor, J.W. - Groups of Homotopy-Spheres: I, Ann. Math. 77 (1963), 504-537.
12. Livesay, G.R. - Fixed point free involutions on the 3-spheres. Ann. of Math. 72 (1960), 603-611.
13. S.L. de Medrano - Involutions on Manifolds, Springer-Verlag, 1971.
14. S.L. de Medrano - Involutions of Homotopy spheres and homology 3-spheres, Bull. Amer. Math. Soc. 73 (1967), 727-731.
15. S.L. de Medrano - Some results on involutions of homotopy spheres, Proc. Tulane Conf. Transformation Groups, 1967, Springer-Verlag, Berlin.
16. Magnus, W., Karrass, A., Solitar, D. - Combinatorial group theory, Interscience, New York, 1966.
17. Milnor, J. - A procedure for killing the homotopy groups of differentiable manifolds. AMS symposium in Pure Mathematics III (1961).
18. Milnor, J. - On simply-connected 4-manifolds. Symposium Internac. de Topologia Algebraica, Mēxico (1956).
19. Milnor, J. - Differentiable manifolds which are homotopy spheres (mimeografed), Princeton, 1959.
20. Milnor, J. - Groups which act on s^{n} without fixed points, Ann. J. Math. 79, 623-630 (1957).
21. Nielsen, J. - Untersuchungen zur Topologie der Geschlossenen Zweiseitigen Flächen, Acta Math. 50 (1924), 189-358.
22. Orlik, P., Rouke, C.P. - Free involutions on homotopy (4k-3)spheres. Bull. Am. Math. Soc. 74 (1968), 949-953.
23. Rohlin, V.A. - A new result in the theory of 4-dimensional manifolds (russian), Dokl. Akad. Nauk. SSSR 84 (1952), 221-224.
24. Spanier, E.H. - Algebraic Topology, TATA Mc. Graw-Hill, Bombay, New Delhi.
