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Abstract



The work reported in this thesis falls 
conveniently into two parts. The first two chapters 
deal with interstellar while the final two chapters 
deal with intergalactic material.

The problem of the formation of molecules 
(principally H2 ) at the surfaces of interstellar 
dust grains is considered in Chapter I. It is shown 
that the amounts of formed are sufficient to 
maintain the interstellar gas at 100 K̂. The results 
obtained for CH, CH"̂  show that the mechanism considered 
does not lead to absurd results under the conditions 
assumed. The importance of at high densities is 
also discussed.

Chapter II deals with a theory of star 
formation in a medium composed of randomly moving 
cloudlets or floccules. An outline is given of a 
recent paper by McCrea who shows that this idea leads 
to a satisfactory account of the formation of the 
solar system and removes the angular momentum 
difficulty of other star formation theories. The 
collisions of floccules are considered in detail and 
a theory of the gravitational capture of the 
fragments of collision is outlined.

The expansion of a fully ionised gas into a



vacuum is discussed in Chapter III. This problem is 
connected with a recent theory of galaxy formation.
The expansion of a monatomic gas and Lagrange*s 
Ballistic problem are first considered. The latter 
leads to a new model for a freely expanding gas. It 
is then shown that, if the fully ionised gas remains 
neutral, by suitably defining the sound speed the 
equations for a fully ionised gas may be reduced to 
those for a monatomic gas.

Finally in Chapter IV, Hoyle * s theory of 
the origin of the angular velocities of galaxies is 
reviewed. A specific model based on this theory is 
discussed. It is shov/n that some features of galaxy 
rotation may be accounted for in terms of this theory.
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Chapter I

The Formation of Molecules at the 
Surfaces of Interstellar Dust Grains.
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Introduction

Since interstellar material is the material 
out of which stars are ultimately formed, it is of 
interest to know the composition of the material over 
a wide range of temperatures and densities. Inter
stellar material exists in clouds of mean radius 8 pc, 
and density 10 H, atoms cm~^. The space between the 
clouds has a particle density of less than
0.1 H. atoms cm*”̂ . The clouds have a line of sight 
random velocity of 7 km.sec"^. The values have been 
taken from Allen (1955)-

The interstellar material is composed mainly 
of atomic hydrogen with the addition of atoms such as 
Na, Ca, K, etc., molecules CH, CH^, ON, and ions 0 II, 
0 III, N II, Ca II etc, as well as electrons. Since 
atomic hydrogen is a poor radiator at kinetic 
temperatures below 10^ K̂, the cooling of the inter
stellar gas is done by the other atoms, molecules, 
ions and electrons. In order to maintain the gas at 
the observed temperature ( ̂  100 K̂) some molecular 
hydrogen must be postulated. The molecular hydrogen 
can radiate through quadrupole transitions between the 
rotational levels of the ground vibrational state. 
Unfortunately the amounts of molecular hydrogen
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present in the interstellar medium are unknown and 
assumptions must be made about its density. Assuming 
that H2 constitutes ten percent of the particle 
density Spitzer (194-8, 194-9) and Spitzer and Savedoff 
(1 9 5 0) have shown that the temperature of interstellar

t
material is about 60 K̂. More recent estimates taking 
a one percent mixture of H and suggest that the mean 
temperature of 100 ^K.should be taken for the gas.

However, the composition of the interstellar 
material may alter on compression and it is of interest 
to investigate the mechanisms which lead to the 
formation of molecules and in particular to the 
formation of H2 . Molecular hydrogen if it existed in 
large quantities would enable the interstellar gas to 
cool quickly and this property would have important 
consequencies for the theory of stellar formation.

With this general aim, the question of the 
formation of molecular hydrogen was investigated in 
this chapter. Associated with the problem, the 
formation of other hydride molecules was also 
considered.
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Section 1. Previous work on the formation of 
______ diatomic molecules._______

Bates (1951) has considered the formation of 
certain diatomic molecules by radiative association.
In this process the atoms approach each other along 
some potential energy curve and make a transition to a 
stable potential curve by the emission of a photon.
The process is summarised by the equation,

A f B AB + h»
where A, B denote the atomic species, and hv denotes
the emitted photon. Bates computed the rate coefficient
y for the process where y is defined by

J t

where H denotes the particle densities of the 
atomic or molecular species indicated. The molecules
studied by Bates were CH, CH'̂ , The values of

y  which he obtained for these molecules are given in
Table I.
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Molecule

CH

CH

N, +

Table I

Rate Coefficient (cm? sec“!̂ )
?

2.10—18

6.10-18

0

5.10-17

1 *

I
2.10"^® C+ ,

I % ’

H, 1.6. 10-18

The values of the rate coefficients are for a 
kinetic temperature of 100 ®K. except H2'*’ which is the 
value at 5OO K̂, (the rate coefficient in the case of 
H2 "̂ increases with temperature). In the table two 
values are given for the rate coefficients for the 
formation of CH, CH*̂ . The ground state of carbon has 
three levels and one value for y has been computed 
assuming that the carbon can be in any of these levels.
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The second case which is considered to he more nearly- 
realised under interstellar conditions is that all the 
carbon is in the lowest level of the ground state. A 
similar argument applies to singly ionised carbon which 
has two levels composing the ground state.

The table shows that radiative association is 
a very slow process. The rate coefficient for the 
formation of 1̂ 2  ̂is the largest while the other rate 
coefficients are an order of magnitude smaller.

Bates & Spitzer (1951) have applied the results 
for the radiative association of CH, GH"̂  to investigate 
the equilibrium of these molecules in interstellar 
space. They assumed that the interstellar radiation 
field could be represented by the radiation emitted by 
a black body at 10^ K̂, diluted by a factor of 5.10"^^ 
at moderate energies ( ^  4- e.V.), 10 at high energies 
( ^  10 e.V.) and by a factor of 10“^^ beyond the Lyman 
limit. They also assumed that the gas temperature was 
100

In Table II are listed the reactions considered 
relevant by Bates and Spitzer for the equilibrium of 
these molecules.
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Reaction
Table II

Rate Coefficient 
Designation Value

-18
(i) C + H — ► CH + hv

(ii) C"+ H CH"̂  + hV

(ill) CH + hv — » CH'̂  + e

(iv) CH'̂  + e -«• CH + h V

(v) CH^ + e 

CH'

CH' + hv 
CH + hV 
C + H

(vi) CH"̂  + e C + H

(vii) CH + hV C + H

(viii) CH"*̂ + hv —> C"̂ + H

r.
I

A
P.

2.10
6.10
2.10
0

-18

-18 1

cm? sec~^

3 -1cm. sec -

8.10"^^ secl^

7.10”^^ sec

Unknown

1.5.10"^^ secl^

3.1Q-^^ sec-^

Of the values of the rate coefficients given 
in Table II the most uncertain are those for photo 
dissociation. The values adopted by Bates and Spitzer 
are those estimated by Kramers and ter Haar (194-6). 
Using Thble II Bates and Spitzer consider the
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equilibrium in four separate cases,

(a) ^  << ; o<̂ << o(,

(b) T;, X ;

(c) - Y, ' '*■

(d) r, - r. ; <-

The results of their equilibrium calculations 
for a cloud whose density is 20 H-atoms cml^ have been 
summarised in Table III.

Table III

Case n(CH) (cm
(a) 2.10-^°

(b) 2.10-^°

(c) 2.10-9

(d) 7.10-^^

Bates and Spitzer
n(CH)/n(H) and nCCH-^VnCH)
spectral lines CH \  4300,

n(GH"**) (cml^)
$.10-9

9.10"^^

$.10-7

2.10-^^
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obtaining,

n(CH)
n(H)

nCCH"̂ )
n(H)

= 1.6. 10~®

8. 10-9

In the computation of these values Bates and Spitzer 
used the theoretically determined value (Herzherg 1955a) 
for the oscillator strength for the line CH A 4-300•
The oscillator strength for the line CH"̂  A 4-232 is 
taken to be twice that for the CH line since the orbital 
degeneracy factor is two for the CH*̂  line, but unity 
for the CH line. However, experimental work by 
Dunham (194-0) suggests that the oscillator strength for 
the CH line may be larger than the theoretical value by 
a factor of thirty. If this change were made in the 
oscillator strengths for both molecules the above ratios 
would be depressed by a factor of thirty.

Since the hydrogen atom density rarely exceeds 
20 atoms cm~^ there is a discrepancy between the 
calculations and the observations. Cases (a), (b) yield 
much too low values for n(CH) and n(CH"*") and in addition 
the ratios of n(CH) and n(CH"̂ ) from the theory are too 
small. Case (c) leads to a rather better estimation of



the amount of CH present but grossly overestimates the 
amount of CH’*' while case (d) fails completely.

From these results Bates and Spitzer estimate 
that if theory and observation are to be brought into 
agreement then the rate coefficients must be increased 
by a factor in the range 500 to 2000. If this is not 
acceptable interstellar clouds of density 10^ H.atoms cm"^ 
must be postulated. The situation is not very much 
improved if the experimental value is adopted for the 
oscillator strength since there would still be a 
discrepancy of a factor between 15 and 60 in the results.

In order to circumvent this discrepancy Bates 
and Spitzer suggest that the grains may be responsible 
for the observed molecular density though no definite 
mechanism is examined in detail. However, they suggest 
that the clouds of GH"̂  observed near late B type stars 
may result from the sublimation of GH^ from the grains.
The CH^ is degredated to CH by photo-dissociation and 
finally photo-ionised. The sublimation, degradation 
and ionisation take place in the vicinity of the star.
This theory gives a result consistent with the 
observations of CH'*' near late B stars adopting the 
theoretical estimates for the oscillator strength.
However, this theory does not account for the observa
tions on CH. The theory also must assign some chemical
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structure to the grains and it also requires the ' 
destruction of the grains.

Unfortunately no rate coefficient is available 
for the production of H2 by radiative association but 
Herzberg (I955h) considers the transition probability, 
for the process of molecule formation in this way, to 
be so small that the formation of molecular hydrogen by 
radiative association would be very slow. Herzberg at 
the same time also suggested that chemical exchange 
reactions might be a possible source of molecular 
hydrogen. He suggested reactions of the following type 
may be involved,

CH + H — * H2 + C

NH + H H2 + N

These reactions would have to be very rapid in order to 
offset the low densities of the molecules involved. In 
the case of GH a factor of 10^ would be required before 
the reaction could proceed at the same rate as a 
reaction involving only H—atoms which had the same rate 
coefficient. However, the rates of these reactions are
unknown and it is not clear even if this type of process
is exrothermic or not.

At the present time the only interstellar
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molecules whose formation has been treated in detail are 
CH, CH**". Radiative association does not appear able to 
account for the observed amounts of these molecules and 
the sublimation theory is only satisfactory in 
explaining the presence of CH'*’ in the neighbourhood of 
late b type stars. Chemical exchange reactions may 
offer a solution in the case of the formation of H2 , but 
even for these the starting molecules must be present in 
sufficient quantity. Consequently a further type of 
mechanism must be sought and a different mechanism is 
the production of molecules at the surfaces of inter
stellar grains.



21

Section 2. The formation of molecules at 
______ grain surfaces._______

The idea that molecules may be formed at the 
surfaces of interstellar grains has been suggested 
several times (e.g. the extensive discussion by van de 
Hulst (194-9) and the more recent shorter discussion by 
Kahn (1955) ). Kahn, using the results of Spitzer (194-9), 
found that only 0.5 percent of the hydrogen present in an 
interstellar gas cloud need be in the molecular form to 
maintain the gas at a kinetic temperature of 100 K̂. 
Assuming that the probability of two hydrogen atoms 
striking a grain ultimately leaving as a molecule is 
about unity, Kahn showed that if this were the only 
formation process and photo-dissociation were the only 
removal process, then molecular hydrogen would form 
about 0 .2 5 percent of the total particle population.

The idea of the formation of molecules on 
interstellar dust grains may be extended to cover not 
only the formation of H2 but the formation of any 
diatomic molecule in which hydrogen is one component. 
Consequently the theory proposed here takes account, 
principally, of the formation of H2 ? but also of the 
formation of such molecules as CH, NH, OH.

The interstellar grains are surrounded by gas
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which is composed, in the main, of hydrogen atoms.
These hydrogen atoms collide with the grain and some of 
the hydrogen atoms on striking the grain may remain on 
the grain surface. The precise nature of the forces 
holding the atomic hydrogen onto the surfaces will not 
be investigated here, but since atomic hydrogen is very 
reactive chemically, it may be imagined that the atoms 
enter into a loose chemical bond with the grain surface. 
In his discussion of the problem van de Hulst (194-9) 
discusses the experimental evidence for the accommoda
tion of atoms on surfaces at low temperatures. 
Unfortunately, there is no experimental evidence on 
atomic hydrogen, but the evidence from experiments with 
other atoms suggests that nearly ,every-atom striking 
the surface will remain bound to it. Table IV which 
has been taken from van de Hulst * s review shows how the 
accommodation coefficient d varies with temperature 
for the adsorption of various gases on glass. The 
accommodation coefficient is defined to be the 
probability that an atom or molecule striking the 
surface is captured by the surface. The maximum value 
of CL is therefore unity.



Table IV

He on glass H^ on glass Ne on glass N2 on glass

T(°K) OL T(°K) a T(°k) CL T(°K) a

2 7 5 .1 0 0.336 2 7 5 .1 0 0.283 2 7 5 .1 0 0.670 2 7 5 .1 0 0.855
7 7 .2 0 0.383 7 0 .1 0 0 .3 3 3 9 0 .1 1 0.803 86.58 1.041
17.85 0.369 17.87 0.984 1 7 .8 7 1.056 70.08 1 .0 0 5

15.80 0.611 14.51 1 .0 3 3 1 5.80 1.036
12.10 0.666

From Table IV it is clear that at the low temperatures 
of the grain surfaces (^ 20^K) the hydrogen atoms 
striking the grain will have a good chance of being 
permanently captured.

We further suppose that any hydrogen atom which 
strikes the grain remains fixed on the grain surface and 
is not free to wander over the surface. The question of 
mobility in the surface layer will be discussed later. 
The hydrogen atoms on the grain surface are exposed to 
further impacts with fresh atoms from the gas. The 
atoms of the surface layer on the grain will be assumed 
to be hydrogen atoms only, but the atoms colliding with 
this surface layer will be mainly atomic hydrogen though 
other atoms such as carbon, nitrogen and oxygen may also 
be assumed present. This last type of collision may
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lead to the formation of a molecule. By forming a 
molecule the nature of the bond holding the atom to the 
surface is altered, with the result that the molecule 
may be returned to the interstellar gas. The energy 
released by the process of molecule formation is taken 
up by the grain and radiated away.

A grain whose surface is originally "clean",
i.e. free from adsorbed hydrogen atoms, will become 
coated with a complete layer of hydrogen atoms in a 
time T c.l. given by

=  /

where 'IZ'(H) is the mean velocity of the hydrogen 
atoms and A is the area occupied by a hydrogen atom 
on the grain surface. It will be assumed that a 
complete layer one atom thick is formed when the
surface is covered with hydrogen atoms which are in
contact with each other. If the radius of the 
hydrogen atom is O" then the area effectively 
occupied by the hydrogen atom will be (not ir(T̂  )
This is the value adopted for A . Taking H { H ) to
be 10 atoms cm"T̂ , the kinetic temperature to be 100 ̂K.
and (T to be 10“ cm, we obtain

•== 6 .2 5. 10 ̂  sec. or 2.10 ̂ yr.
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This time is short compared with 10^ yr. the 
time scale usually adopted for the process of star 
formation. Consequently the grain may be assumed to be 
coated with a complete layer, one atom thick, of 
hydrogen atoms. The consequences of the layer being 
greater than one atom thick will be discussed later.

Once a molecule has been formed at the surface 
of the grain the type of bond holding the molecule to 
the grain will be weaker than the bond holding the atom. 
For molecules the energy required to break a chemisorp- 
tion bond is of the order of 1 e.V. (e.g. Brunaurer . ., 
19^5) and the molecule formation process releases about 
4 e.V. per molecule so that sufficient energy is 
available to release a molecule on formation.

Furthermore in the case of molecular hydrogen 
van de Hulst (1949) has shown that a layer of 
10  ̂cm. thick would evaporate in 10 -̂ sec. under inter
stellar conditions. This can be regarded as evidence 
that a molecule of hydrogen (and we shall assume this 
to be true for any molecule) ultimately leaves the grain 
after its formation.

Several experiments have been performed in the 
laboratory on the recombination of hydrogen and oxygen 
atoms. This type of experiment was pioneered by Smith 
(1 9 4 3) who studied the recombination of hydrogen at



various surfaces. The experiments were repeated for 
metallic surfaces using more refined techniques by- 
Wood and Wise (1958). They found that the recombination 
coefficient (the fraction of hydrogen atoms striking tte 
surface that come off as molecules) was in the range
0.1 to 0 .2 5 for most metals. Aluminium was outstanding 
in giving a value of 10 . The recombination
coefficient was also determined for Pyrex glass and was 
found to be 7*5• 10” .̂

Experiments by Linnett and Marsden (1956) and 
Greaves and Linnett (1958) gave recombination

t
coefficients in the range 10~^ to 10"^ for metallic 
surfaces and 10"^ to 10" for non-metallic surfaces. 
Linnett and Marsden also investigated the variation of 
the recombination coefficient with temperature on oxide 
surfaces in the temperature range 293 °K.to 675 ^K.and 
a substantial change of several orders of magnitude was 
found in the rate coefficient in this range. The rate 
coefficient was found to increase with increasing 
temperature, but at both high and low temperatures it 
tended to a constant value and in some cases a minimum 
value seemed to be obtained near room temperature. 
However, there do not seem to be any experiments in 
which the recombination coefficient was measured at 
temperatures substantially below room temperature.
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The experimental evidence, though tenuous, 
indicates that reactions of the type considered can 
take place in so far as hydrogen and oxygen are concerned. 
The calculations of van de Hulst show that molecules 
once formed will be evaporated back into the inter
stellar medium and our own calculation coupled with 
those of van de Hulst indicates that a complete 
monatomic layer of hydrogen could form quickly on the 
surface of an interstellar grain.
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Section 3. The mathematical theory and 
 numerical results.____

The theory as outlined in Section 2 will now 
be developed mathematically. In the first instance 
the theory will be presented for the formation of 
molecular hydrogen. The modifications required to take 
account of the formation of other molecules will be 
made at the end.

(a) Notation

For the hydrogen gas we write,

= atomic mass,
7), = number of free hydrogen atoms per unit volume,
'T\̂  = number of hydrogen molecules per unit volume,
^0 = H, + IffX = total number of free and combined

atoms per unit volume,
T  = kinetic temperature, assuming a Maxwellian 

distribution of velocities

We define the quantity yU by
= total mass of interstellar material per 

unit volume.
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For the grains we write,

l\l = number of grains per unit volume,
= mean radius of a grain,

'7 = total surface area of the grains
per unit volume, 

y = ^  A/fJ = total volume of the grains per
? ^ ~ ' ' unit volume,

yoV = total mass of grains per unit volume,
S = = fraction of total material in

the form of dust.

We define |3 ‘ , the rate coefficient for the 
formation of , by

|Sf)oT), .= number of H2 molecules formed per unit 
volume per unit time,

and we define nZT to be the probability that a hydrogen
atom impinging on the grain will ultimately form a
molecule and return to the interstellar gas.

(b) The derivation of an■ expression for j i .

Let the number of hydrogen atoms per unit 
volume having velocity V be ^ ( U )  . Therefore 
the number of collision per grain per unit time may be 
written

11(1/) Aiy. ■ (1)
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Averaging (1) over a Maxwellian distribution of 
velocities we obtain,

% <30 <0

ITT bT

=  u.fl k T
îT ï'm ^

(2)

where a, 1/; are the velocity components and k is
Boltzmann's constant. In writing down equations (1) 
and (2) we have neglected any random velocity which the 
grains may possess. However, the grains are so massive 
compared with the atoms that little error is introduced 
by this assumption.

‘Since is the probability that a
hydrogen atom striking the grain leaves as part of an 
atom* then -y'ttT is the probability that any given 
collision between an atom and a grain results in the 
formation of a molecule. From equation (2) the rate of 
formation of hydrogen molecules is

kT
'h

feT-w,
2TT

■h

(5)
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(c) The properties of the grains

Oort and van de Hulst (1946) have developed a 
theory of grain formation and have computed a 
distribution function l \ ] ( ' t )^ t for the number of grains 
having radii in the range f, f + df" . This distribu
tion function has a complicated character but over the 
significant range of f it tends to the form

m) -  j
where d , are constants.

An integral of the form

can be transformed by making the substitution ,

into the form
<30
yX

where K =  -̂ 7—  and ^ ̂ ^P fP
Equation (5) is then a standard form which may be

(4)

t e x p ( - t ) J t  (5)
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integrated to give
OO

(6)

Equation (6) may now be applied to determine the mean 
radius and the values of 't, and ^ ,

1

i: =
'o
.00

f m M
ro9

<30

a

A

P

A_ P

r i p " )

r ( 5 p - )

r ( 2 p " ) ^(7)
r ( n

a

inn(■

a

3_Q s^}

r ^ K ‘)
. (8 )

f m u t  _  _  ^ , j % £ )  ( 9 )
rOO  ̂ I—« / I -1 \

■/o

a

Pr m
Therefore i;

X(P)

i

(lOa)

where xiM
r a n n ^ n  

n r )  P a r ) ClOb)
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Using this result for we can eliminate
it from equation (3) and obtain,

Inserting numerical values for the constants k , iTin we 
may v/rite

B =  Q-i id'̂  ^ ( ~̂  ') X(f>) CTf)-^ ■ (12)
^ Odt.)f> Woo /

I

If 'TxT does not vary or varies only slowly with 
temperature, the rate coefficient varies as the square 
root of the temperature. The rate coefficient also 
varies inversely as the mean radius of the grains.

Equation (12) must be ammended if account is 
to be taken of the formation of other molecules of the
type X H . The expression for j3 is changed in two
ways.
(i) '. Assuming that all the atoms in an inter
stellar cloud are in thermal equilibrium the velocity
of the atomic species X must be decreased by a factor 

where is the atomic weight of the
species X
(ii) The value of n jf must be altered. Since
the atom X on striking the grain finds an almost
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complete layer of hydrogen atoms on the surface, the 
maximum value that can be taken by is unity, i.e.
the chance that any given atom of species X 
colliding with the surface of the grain, comes off as 
part of a molecule is unity.

Taking account of these changes, the rate 
coefficient for the production of the
molecule X A is

B —  I- Î 1 . 10  ̂ Cm? ̂ <r'.',(13)

where denotes the probability that the molecule
XH is formed.

(d) The numerical values

Since the remaining parameters in equations
(12) and (13) are not precisely defined we will choose 
values for them defining a set of favourable circum
stances as set out below.

*7Zr = 1.0

The experimental values for rgT as 
determined for the formation of by Wood and Wise 
(1958) for metallic surfaces lay in the range 0.1 to 0 .2 5 .
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The work by Smith (1943) on the formation of H2 on non 
metallic surfaces such as K^ S i D ^ , also
shows that ^ 0.1. For substances such as quartz
and glass the value is much lower being of the order of 
lO”"̂. However, it is unlikely that a surface similar 
to that possessed by quartz or glass would be present 
under interstellar conditions.

Furthermore we have considered ohly surfaces 
which are smooth and have an immobile monatomic layer 
of H atoms on them. If the grain is a loose aggregation 
with a porous structure rather than a compact body, then 
the chance that an atom may encounter an active site 
(i.e. a hydrogen atom) on the surface will be increased. 
If there is any mobility within the layer i.e. the 
hydrogen atoms are able to move around within the layer 
the chance of encounters will be increased. Mobility 
will be much more likely if the grain is covered by
several layers of hydrogen atoms. Since the binding of
the outer layers will be much weaker than the binding 
of the innermost layer, it is unlikely that the hydrogen 
on the grain surface will be present in more than one 
layer. Such a condition if it did exist would enhance
the production of molecular hydrogen.

In order to give the process"the best chance 
of working we choose the value of ^  to be unity.
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This choice is further supported by the conclusions of 
de Boer reported by Kahn (1955)# This value is also 
adopted for 'XJx .

2.5 ^  < 3.0 : K ( f )  = 0.55

The results obtained by Oort and van de Hulst 
(194-6) on the distribution function for grain radii are 
given in Table 2 of their paper. Taking a distribution 
law of the form of equation (4) we find that their 
results are best fitted by choosing 2.5 < < 3.0. The

V

distribution law curve of Oort and van de Hulst and the 
curves for ^ = 2.5, = 3-0 are drawn in Figure 1.
The approximate curves are drawn_so that they agree with 
the curve of Oort and van de Hulst when ' f  -  Û, .

I f  j> = 2.5, X(f>) ^  0 .5 4  while I f  jo = 3.0,
(j)) .=’0.56 so that a sufficiently good approximation 

will be obtained if is taken to beo .55 witjiout
specifying jo more closely since H( f >) is not very 
sensitive to changes in jo . Although ii still 
depends on we do not require any closer specifica
tion of j) since the value of ^ may be taken
directly from the results of Oort and van de Hulst.

f, = 10~5 cm.

The mean radius f quoted by Oort and van de
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Hulst is 1 .5 . 10~^ cm. The mean radius for metallic 
grains is, however, usually taken to he 10  ̂cm. These 
values are smaller than the value for the radius of the 
grains which cause interstellar extinction. The radius 
of these latter grains is usually taken to he J.IO  ̂cm. 
(Allen 1955)* Since it appears that metallic grains 
would he more favourable for surface recomhination than 
dielectric grains, this low value for was adopted.
However, the theory does not assume that metallic grains 
must he present - we only note that this would he a 
favourable circumstance.

The theory has assumed that the grains are 
spherical. Spherical grains could not cause the 
observed interstellar extinction and the grains, if they 
are responsible for this extinction, must he elongated. 
An elongated grain having the same volume as a given 
spherical grain has a greater area available for 
collision purposes. This effect would tend to reduce 
the value of ^

p = 1.1 gm. cm /

This is the mean density of an interstellar 
grain as given by Allen (1955) and van de Hulst (19^9). 
This density would he too small for a compact metallic
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grain, but the grain may be a porous structure, so that
this value may still be appropriate even if the density
of the material of the grain is somewhat larger.

^ = 10~.̂
The mean density of grains in space near the

galactic plane is given by Allen (1955) to be 1.4 10 gm.cm
«24 -5The mean density of the interstellar gas is 10 gm.cm

This would suggest a value for <5 of 1.4 10*”̂ . The
value given by Allen is not likely to be exceeded since 
there is almost certainly insufficient heavy atoms to 
give a much higher density. Some estimates of the 
density of the interstellar grains are appreciably less 
than this and the above value was adopted for h so 
limiting ourselves to regions in which grains are 
relatively plentiful.

-13.

This value for the mean molecular weight assumes that 
the elements are distributed in the interstellar gas in 
the same way as they are in stars. Thus the abundance 
of the elements will be given by the cosmic abundance 
and the mean atomic weight will be ,1.5 (Allen, 1955)-
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T  = 100 ° K .

The mean temperature of the interstellar gas 
in HI regions is of the order of 100 ^K. A small 
change in T  will not lead to a large change in jS 
since j i depends on .

The parameters chosen as listed above are 
regarded as being favourable for the production of 
molecules at the surfaces of grains. Of these the 
parameter rgr is the most adjustable and has been 
assumed to have its maximum value. Accordingly the 
calculations will be sensitive to any changes which may 
be made in t2T by the results of further theoretical 
or experimental investigations. The other parameters 
are typical for HI regions and are not likely to vary 
appreciably .

(e) The numerical values of the rate coefficients.

Using the values obtained in (d) above, we can 
evaluate equations (12) and (1$). The values obtained 
are given in Table V.
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Molecule Produced Rate Coefficient (cm? sec .̂ )

Hg 5.9- 10"^”̂

OH or OH'*' $.4. 10“^”̂

NH 5.2. 10

OH 5.0. lO"^”̂

The results obtained in Table V do not 
represent upper bounds for the rate coefficients since 
the conditions.for which the rate coefficients were 
calculated, while favourable, are,not the most 
favourable. It may happen that there are many more 
grains of small radius than predicted by the distribu
tion function or the grains may have a surface activity 
greater than has been assumed.

Furthermore, it would not be meaningful to 
give a lower bound for jB • However, if the laboratory 
experiments may be taken as a guide the activity of the 
surface should not be reduced below the value assumed 
by much more than a factor of 10"^. Since the behaviour 
of surfaces at low temperatures is not well known, any 
assessment of a lower bound would be of little value.

This inability of the present theory to give



upper and lower bounds for the rate coefficients is an 
inescapable but unsatisfactory feature of the theory. 
We shall later show, however, that the favourable 
conditions do not lead to absurd predictions about the 
state of the interstellar gas.



Section 4. Collisions between interstellar 
___________ clouds.____________

The results obtained in the last section were 
obtained for normal undisturbed regions of the inter
stellar gas. However, interstellar clouds collide with 
one another. The mean random velocity of interstellar 
clouds is 7 km. sec"^ (Allen, 1955) so that any given 
cloud makes a collision approximately every 10 ŷr.
Since the mean thermal speed of the atoms in the gas 
cloud is about 1 km. secl^ the clouds are moving at 
supersonic speeds and on collision a shock wave will 
move into the clouds from the interface.

Under these conditions the density and 
temperature of the region between the shock waves is 
higher than in the normal undisturbed cloud. In this 
type of region therefore enhanced molecule formation 
may take place. In order to investigate the conditions 
which may be found in such a region we use the analysis 
developed by McCrea (1956) for dealing writh shock waves.

Let a subscript 1 denote the supersonic side 
of the shock and subscript 2 denote the subsonic side.
If ^  denote pressure, density and velocity
respectively where i = 1 , 2  then, assuming isentropic 
flow, the conditions for conservation of momentum, mass
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and energy through the shock are,

1=, + + p X . (14)/|v: >’ '

, (15)

where y is the ratio of the specific heats.
It is convenient to introduce the Mach number 

Ui defined by

Hi =  -di  ̂ (17)
Ci

2 Y h"where Q =    —  (18)
, ft

is the sound speed. Introducing Ui into equations 
(14) to (16) gives

0 . r « ; i 4  =  ( ' . (19)
and using equations (15) and (1?) in (14)

=  p.C .U , (20)
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and

Eliminating '̂/Ca betw^een equations (19) and (21) 
gives

2y Mi'Uj —  ( y - =  O . (22)

If U, is very much greater than U 2, equation (22) ' 
may be written

2 y U Î u l  — —  0,

or l~ -! - ■ (25)Ï+ I
Since the kinetic temperature 17 of the gas is 
related to the sound speed by the relation

Q =  . (24)r
where is the gas constant and yU is the mean
molecular weight, we have.

J L  =  /A-\^ =  .-^r/yrlL u". (25)
T ( Y . i r  '

using equation (24). Equation (20) gives

=  iiA. =  J L l L  . (26)
p. T - l
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Equation (26) gives the maximum compression that can occur 
behind such a shock.

If two similar clouds collide with relative 
velocity ^ 1/" then

i f  =  C,U, ~  C^tl, (27)

from the definition of Ui . Using equations (20) and 
(26) in equation (2 7) we have

C.U, =  j ( r - n ) i r .  (28)

If one of the clouds has thickness j in the 
direction of motion then the time required for the 
shock wave to traverse the cloud ,is

=  - à  -  7 F W

In deriving these results we have assumed that 
the gas between the shock waves has no means of losing 
energy. However, if the material could cool rapidly,
say by radiation, to some temperature Tj then since
U, is very much greater than unity we may write the 

density corresponding to the temperature in
the approximate form

P ' i l =  f t i X  (50)

i.e. cooling takes place under conditions of



approximately constant pressure.
To apply these results obtained by McCrea to 

the collision of two interstellar clouds let us take 
jüi = 1 .Î5, ~ 100 d = 16 pc. and
1T = 7 km. sec“ .̂ Then equation (26) gives,

=  k f t  ' (51)

and equation (2 5) gives,

(-— ) =  - j r -  =  O S ^ , u ,  *̂5 2 )

and
S' / T~C, =  I'Oyjof— ^ )  cw, êc:' (53)

 ̂ /O O  /

-1Since C, 1 km. sec , U =  ”3" so that

( - ^ f  =  S-25 . (5 4 )

whence t(d) ^ 2. ID Cjt (55)

Since the reaction rates in which we are 
interested are proportional to the square of the 
density and to the square root of the temperature then 
under these conditions the rate of production of
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2molecules would be enhanced by a factor of 4 x 5*25 ~ 84 
This enhancement would be effective over a period of the 
order of 10^ yr. This type of enhancement would take 
place in cloud collisions provided the collisions were 
not sufficiently violent to disrupt the grains.
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Section 5* The equilibrium between atoms and 
molecules in interstellar space.

This section is divided into three parts. In 
the first part some characteristic times are derived 
from general considerations while in the second part 
the equilibrium between molecular and atomic hydrogen 
is considered both v/ith and without a radiation field. 
The third part discusses the equilibrium of CH and CH*̂ .

(a) Some characteristic times.

If we consider only the formation of 
molecules then we can write down the rate at which 
H atoms disappear. This is

=  - 2 p f i A  (56)

The factor of two is required since two hydrogen atoms
disappear when a molecule of hydrogen is formed. 
Integration of equation (36) gives,

71, =  % e x f > ( - 2 f t l j ) (57)
where 'W, = %  at time b -  0 . The time T  ( H)
required to convert a fraction (I - e~') of the 
atoms into molecules is therefore

T(H) —  ' (58)
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We adopt T(H) as the characteristic time for 
formation.

If we assume that hydrogen molecules can only 
be removed by photo-dissociation then the rate of 
molecule removal is

di

where oc is the chance that an molecule will be 
photo-dissociated in unit time. Integrating (39) we 
have that

A  =  .n, ex|>(-<xt) (40)

where is the original number of molecules
present. The characteristic time for molecule removal 
is therefore

=  oC ' (4-1)

If molecule formation and dissociation are in a steady 
state then the rates of formation and removal are 
equal so that

o t n  =  (42)
2T(H) M)
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If there is not a steady, state then,

d t
=  + 2 (^7!:, =  +o<7?„.(45)

The characteristic time for approach to the steady state 
is

.-IT(S.T) =  + (44)

From the form of T (S.T) it is clear that it is not 
very different from the shorter of the times , TCHJ .

In the case of GH, GH*̂  these results would 
need minor modification since only one carbon atom 
goes into a molecule. The equilibrium of GH, GH"̂  
involves, processes other than photo-dissociation causing 
their removal so that the times discussed above for the 
case of hydrogen do not have much meaning in the case 
of CH, GH"̂ .

(b) The equilibrium of hydrogen.

The equilibrium between the atomic and 
molecular forms of hydrogen will be examined in two 
stages. In the first stage, it will be assumed that 
the interstellar gas is in thermal equilibrium in the 
absence of a radiation field. The second stage of the
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investigation will consider the.equilibrium when a 
radiation field is present assuming a single formation 
process and a single removal process.

For a gas in thermal equilibrium in the absence 
of a radiation field the equilibrium between the 
molecular species AB and the atomic species A , B 
may be expressed in terms of the dissociation constant 

K* defined by

I/' —  'fi(S) (4-5)
m e )

Fowler and Guggenheim (194-9) give the following 
expression for K ‘ ,

J-i

where M is the reduced mass of the molecule,
J> is the dissociation energy of the molecule,
I is the moment of inertia of the molecule,
k is Boltzmann’s constant,
^ is Planck’s constant, •
T  is the kinetic temperature,
 ̂  ̂̂  are the electronic weights for the

normal states of the atoms,
Û is the electronic weight of the lowest 

molecular state.
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(T is the symmetry number being 2 for ft , 6
Ho

identical and unity otherwise, 
and (j^(T) is the partition function.

If the energy of the lowest vibrational level 
is small compared with the dissociation energy we can 
write

=  0 -  e'U"' , (47)

where S — ^ /kT , P being the frequency of the lowest
vibrational level. Hence

K' -

which is the expression given by Aller (1955) apart
from a factor of k T  required to convert K' to K
the dissociation constant in terms of partial pressures 
and the symmetry factor . Expressing M , I in
atomic units, D in electron volts, writing I - 
where f  is the mean interatomic distance and taking 
logarithms to the base 10 we obtain

(49)
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I.e.

lô K =  ” + 2 Iĉ T + % Lo^lA -iLo^t '*- lô  (I <f ̂)

+ h \ ^ ^ e ^ Y ~ \  * • (50)

For hydrogen the numerical values taken were
3) = 4.476 e.V., h  = 0.5041, i =0.7416/)'

and 5 =  ^L.-^ ~  where ^/c - 4395 cm~^

SO that

The last term in equation (51) is not very effective 
until T ~ 10^ K̂. At interstellar temperatures
T = 100 so that K = - 205. Therefore 

under interstellar conditions K* is very small so ^
that amounts of fatomicjjhydrogen present in an inter- 
stellar gas cloud in the absence of a radiation field 
will be negligible. However, the observations on 
interstellar hydrogen show that it is almost all in 
the atomic form. Therefore photo-dissociation by the 
interstellar radiation field must be very rapid with 
a slow recombination process in order to maintain the 
hydrogen in the atomic form. The recombination ̂
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mechanism considered in this chapter is such a slow 
process.

We can consider the equilibrium of atomic and
molecular hydrogen by supposing that molecular hydrogen
is formed only by the mechanism discussed in this
chapter and is removed only by photo-dissociation.
The rate of photo-dissociation has been given by Kahn
to be 1.1. 10"^^ secl^ using Dunham’s results (1959)
on the interstellar radiation field or using the more
recent results of Lambrecht (1955) the rate of photo-

— 14- —1dissociation is 5’.5* 10 sec . Equating the rates
of formation and removal,

I L
%ll\, =

i-3.
/ O (52)

using our previous notation. Taking to be 10
particles cm . the molecular hydrogen has a density of 
0.4-8 molecules cml^ using Dunham’s results or 0.17 
molecules cm”.̂ using Lambrecht’s results.

Using the results obtained in part (a) of 
this section, we can evaluate T(h) ,T(S.T) assuming 
a constant radiation field at all densities. The 
results are given in Table VI.
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Table VI

Tlo- T(H) (sec.) T (S .T ) (sec.)

1 8 ,5 . 10^5 5 .0 . 10^5

10 8 .5 . 10^^ 2 .9 . 10^5

10^ . ...8 .5 . 10^5 2.2. 10^5

iq5 8 .5 . 10^^ 6.6. 10^^

10^ 8 .5 . 10^^ 8.2. 10^^

Prom the table it is clear that as the density 
increases the' rate of conversion of hydrogen from the 
atomic to the molecular form increases. At a density 
of 10^ H, atoms cml^ T(H) — 5.10^ yr. which is a
short time compared with that of star formation-

The condition given in equation (4-2) ,for a 
steady state may also he expressed as•

n  __ ot ^  _  fiUo (55)-n, o( u,
so that we can estimate the fraction of hydrogen in 
the form of free atoms and molecules. From the form 
of the second expression in equation (55) it is clear 
that > Y 97# SLS %  becomes large. The values of

'Tî, 'Hi have been computed for various values of ^ 
for various temperatures assuming the radiation field

o



which was discussed by Lambrecht (1955)- The results 
are given in Table VII.

%

Table VII 

10 10' 10- oo

T . I
T
; % n  \ A

50
i

0.998 I 0.001 : 9.751 0.124 79.8 10.1 282 359 393
100 0.996 0.002 9.65 ' 0.173 73.6 13.2 218 391 280
500 0.992 0.004 9.27 0.365 56.0 22.0 112 444 127

The table shows that if the density becomes very large 
then whatever the density the number of free atoms can 
never exceed the limiting value since the
remainder of the hydrogen will be in the molecular form. 
This value is a maximum value too in view of
the fact that the radiation field has been assumed 
constant at all densities. This however will not be 
true and as the density increases the value of ^  will 
decrease for the interior of the cloud. The value of 7\, 

for 71̂ ,= oo therefore represents the maximum number of 
free hydrogen atoms. It is interesting to note that 
observations have never demanded that the hydrogen atom 
density should exceed 100 atoms cm*”̂ . The present work 
suggests that the formation of molecular hydrogen tends
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to take place in order to maintain this limit. If 
this suggestion is valid regions of high density in 
the interstellar material may occur, hut their presence 
will not be revealed by the measurement of the 
hydrogen atom densities. However, without further 
investigation of all the relevant factors this 
explanation must remain tentative and of application 
only to those regions in which grains are also present.

(c) The equilibrium of CH, CH"*".

The reactions listed in Table II may be used
,um of CH, CH"̂
,-17 .„3

to determine the equilibrium of CH, CH*̂  except that we
take Yj = y = 5.4. 10  ̂ cm: sec . . We also adopt 
the same radiation field as Bates and Spitzer. The 
equilibrium of CH, CH"** is shown diagrammatically in 
Figure 2. Retaining y separately for the present 
we can write the equilibrium equations as

CH : y 7 1 (0 71(H) + a , 'n (C H *)H (e ) =  ( f i + ^ ) n ( C H ) ,  (54)

CH"̂ : Xy’̂ ic O n lH )  + ^7 I(C H ) =  ( d L , »(<•/»)( 55)

where H(e) denotes the electron number density and 
using the notation of Table II. Solving this pair of
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g
CH

Y. -
c" + H r\ CH’*'.

 ^ i:quilibrium of C, C .

Figure 2.
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equations for TlfCH') and T) (CĤ ) we obtain

'yi (c h) =  1̂(//) K 7?̂ )̂+A  + Yx̂ iĤ C*) (56)
<=(,)] ^ (e )

Bates and Spitzer (1951) found that they had to examine 
four cases (see Section 1) since the coefficient 
is unknown. The results of Bates and Spitzer's 
evaluation of equations (56) and= (57) have already been 
presented in Table III.

The situation has not been much improved by
the new determination of the rate coefficient since 
the new values are only increased by a factor in the
range 5-15* It is possible that most of the
formation of CH, GH^ may take place under conditions
of cloud collision so that a further gain of a factor
of 80 may be obtained. There is also uncertainty as
previously mentioned about the oscillator strength of
the line measured experimentally. This could give a
further gain by a factor of 50. If all these factors
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worked together embarrassingly large amounts of the 
molecules could be formed.

Accordingly no attempt was made to reinvestigate 
the equilibrium of these molecules further beyond noting 
that it would be possible under conditions of cloud 
collision to enhance the rate of molecule formation by 
a factor in excess of that required by Bates and 
Spitzer to explain the observed amounts of OH, CH"’’.
Some modifications of the equilibrium will be suggested 
in the next section.

The equilibrium of NH, OH is not discussed 
since there is no information on the relevant 
reactions involved in their equilibrium.
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Section 6. Discussion of the Results.

A. The results for CH, CH^.

Bates and Spitzer (1951) showed that 
radiative association failed to account for the 
observed values by a factor in the range 500 to 2000 
and the present results only give an increase by a 
factor of 5 to 15 in the rate coefficients. 
Consequently, the formation of CH and CH"’* at grain 
surfaces, while proceeding more rapidly than radiative 
association, does not proceed with sufficient rapidity 
in order to explain the observed amounts of CH, CH"’*.

However, if collisions between clouds do . 
occur, then under the conditions of increased density 
and temperature existing in the collision region a 
gain of about a factor of 80 may be obtained. 

Therefore under these conditions it would be possible 
to explain the observations. Under these conditions 
too the results of Bates and Spitzer would also 
account for the observations provided the experimen
tally determined oscillator strength was used. The 
use of the experimental oscillator strength in the 
results obtained in this chapter would lead to 
undesirably large amounts of the molecules formed.
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The decay of CH, CH^ takes place very rapidly 
with a decay time which is of the order of a few 
thousand years (using the rate coefficients listed in 
Table II). This means that any reaction which gives 
rise to these molecules must take place in situ. The 
decay time is too rapid to support any hypothesis which 
relies on the injection of molecules into the inter
stellar clouds from some region in which conditions are 
particularly favourable for molecule formation, e.g. 
regions of high density.

The present work offers a possible solution 
to this problem but if divorced from the possibility 
of cloud collisions the present theory of molecule 
formation is only a slight improvement on radiative 
association.

In our work we have assumed that carbon ions 
and carbon atoms exist in the interstellar gas, the 
balance between them being maintained by the 
radiation field. The ions or atoms on striking the 
grain are allowed only to form a hydride molecule. If 
the grain were charged it would have an effect on the 
carbon ions in two ways. The charge on the grain 
would alter the collision cross section for C’’*. If the 
grain were positively charged the positive ions would 
be repelled so reducing the cross section for C"*" ions
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whereas if the grain were negatively charged the C"’’ 
ions would he attracted to the grain so increasing the 
effective cross section. The magnitude of the change 
in the cross section is uncertain since the amount of 
charge residing on the grain is not known with 
certainty as this depends on the structure of the 
surface of the grain. Spitzer and Savedoff (1950) have 
shown that unless the grain has a surface equivalent 
to a good photocell the charge is likely to be negative 
in regions not in the vicinity of early type stars.
The degree of charging found by Spitzer and Savedoff 
is small being of the order of 0.01 volts at normal 
cloud densities. Van de Hulst (194-9) gives the degree 
of charging as an order of magnitude larger but in the 
same sense i.e. negative.

The second effect is rather more subtle. The 
ions on striking the charged grain may neutralise 
before molecule formation can take place. This would 
result in the formation of CH only at the grain surface 
and any OH’’' which is formed will be due to the photo
ionisation of the CH molecule. This would then give 
an equilibrium situation of types (a), (b) considered 
by Bates and Spitzer. Since 1951 evidence has been 
accumulating (see for example Massey and Burhop, 1956) 
which shows that 01% is very large and its value may
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lie in the range 10~^ to 10~'̂ . Seaton (private 
communication) thinks that the larger value would be 
the more appropriate.

Since the effect of ions in neutralising the 
negative charge on the grains has been considered when 
assessing the resultant charge, it seems unlikely that 
the first effect will be very significant, but the 
second effect is likely to be very important. There
fore the equilibrium of CH, CH"’" has been recalculated 
assuming that CH only is produced at the grain surface 
and CH*’" results from the photo-ionisation of the CH.
The value of ^  (CH)/ 7? (H) is 5*10'”̂ ^ cml^ which is 
again too small but would not be _ very far wrong if theI
experimental oscillator strength were adopted.
However, the value of 71 (CH'’’)/71 (H) is 7.10"^^ cml^ 
which is much too small. Furthermore the ratio of 
71 (CH)/71(CH’’’) is also in disagreement with the 
observed value. In order to give this ratio the 
correct value would have to be 5-10”  ̂cm^ secl^
but even with this value the predicted values of 
7) (CH)/ 7) (H) and 71 (CH’’’)/71(H) are still too small.

We shall not however pursue this topic further 
since the radiation field would also need review if a 
thorough investigation of the equilibrium was required. 
However, we are not here principally concerned with the



formation of interstellar CH and CH*’". We have 
considered them only because of the check that they 
offer when discussing the formation of The results
show that since we have not predicted an excess of CH 
and CH"’’ then the rate coefficient obtained for the 
formation of is probably not overestimated.

B. The results for

In order to examine the results we have 
obtained we shall compute the cooling produced in a 
cloud containing 10 H.atoms cm / and 0.02 H2 

molecules cm~^. Spitzer (194-9) has worked out the 
rate of cooling produced by molecular hydrogen 
assuming that the rotational levels of the ground 
vibrational state only are excited. Radiation is 
emitted by quadrupole transitions between the 
rotational levels. Spitzer examined two limiting 
types of emission when (a) the population of the 
rotational levels is given by a Maxwell-Boltzmann 
distribution function, (b) collisional de-excitation 
is negligible. We let E, denote the energy 
(in erg. secT^) emitted in case (a) and denote
the energy (in erg. cm? secl̂ ') emitted in case (b). 
Since the cases considered are limiting cases, Spitzer
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assumes that the harmonic mean of these two rates 
gives an accurate representation of what is actually 
happening.

Recently the rate of cooling by molecular 
hydrogen has been reviewed by Seaton (1958). Using new 
cross sections determined by Takayanagi (1957) for the 
excitation of the vibrational levels of Seaton 
shows that if,atomic hydrogen is very much in excess of 
molecular hydrogen the rate of cooling L must be 
written

L =  .. l07l(H)fl(Hi)E,Ex__ eiQ crrf^oecZ* (58)

However, if molecular hydrogen is the more abundant 
then the result obtained by Spitzer applies,namely

L =  --  efÿ. (59)

Using the tabulated results for E, and Ê  
we can compute the variation of L  (using equation 
(58)) with temperature for 7] (H) = 10  ̂ ^  = 0.02.
The results are given in Table VIII.
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Table VIII

5040
T

E, E, L

1.0 2.08.10"^^ 1.7.10"^^ 3.37.10"^^

5.0 8 .5 2.10"^^ 1.2.10"^^ 2.10.10

10.0 6.50.10"̂ 5 2.6.10"^^ 3.68.10~^5

25.0 1.02.10-^"^ 2.2.10“^® 1.39.10"^®

5 0 .0 5.48.10“^® 1.5.10"^'^ 8.02.10“^®

100.0 5.35.10"^® 7.0.10“^° 4 .5 1 .10"^°

Making use of the rates'of cooling found in 
Table VIII we can estimate the rate of energy loss per 
hydrogen atom and compare this with the rate, of energy 
gain per hydrogen atom. Spitzer (1954-) supposed that 
the chief source of energy gain came from the cosmic 
rays and he estimated that the energy gain was 
4-. 10""̂  ̂erg.secT^ per H. atom. Curves are drawn for 
the gain and loss of energy in Figure 5. From the 
figure it is clear that the rate of energy loss equals 
the rate of energy gain at about 64 °K.

This calculation however assumes only one 
source of energy and one type of energy loss. Seaton 
(1955) and Kahn (1955) have considered the source of
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Cosmic Ray Energy

Figure 3*
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cloud heating to be principally due to collisions between 
the clouds. They estimate that cloud collisions heat 
any given cloud to about 5000 once every 1 0 yr. The 
measurements of cloud temperatures indicate that the 
cloud has a mean temperature of about 100 ^K. Kahn 
assumes that all the cooling is produced by H2 molecules, 
while Seaton assumes that the cooling is produced by 
C*̂ , Si"̂  ions.

Kahn calculates an approximate rate of cooling 
using only in the analytic form,

=  2 exjk j- ̂  j . (60)

The differential equation for the cooling rate can then 
be integrated and the density of hydrogen molecules 
computed to give any required mean temperature. Prom
this calculation Kahn showed that for a hydrogen atom

—2 — ^density of 20 cm /  only 7*5* 10 hydrogen molecules cm /
would be required to maintain the gas at a mean

temperature of 100 °K. He also showed that in order
to keep the gas at a mean temperature of 50 K̂. a

-5hydrogen molecule density of 25 cm / would be required.
Seaton showed that cooling by Si"̂ , ions

only could also give a mean temperature of 100 ^K. 
However, we shall not consider this mechanism further.

The results obtained in Section 5 show that
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more H2 is present than is required to maintain the 
gas at 100 K̂, but Kahn*s calculations show that the 
degree of cooling produced will not lower the 
temperature much below 100 K̂. Kahn, however, has 
used the unrevised result due to Spitzer .and in 
consequence these values would need to be recomputed. 
However, an analytic expression cannot now be found fcr 
the rate of cooling.

The principal value of having H2 present is 
that it provides an effective coolant for the inter
stellar gas. Atomic hydrogen is of no value as a 
coolant except under conditions in which an appreciable
fraction of the hydrogen is ionised, i.e. at kinetic

4 otemperatures in excess of 10 K. Molecular hydrogen 
is effective in keeping the temperature in the range 
50° - 100 K̂, but below 50 K̂. molecular hydrogen is 
also a poor radiator.

In the process of star formation the inter
stellar gas is compressed and we have shown that as the 
gas density increases the process of molecule formation 
takes place more and more rapidly until as has been 
shown in Table VII most of the hydrogen is in the 
molecular form. The radiation emitted by the molecules 
keeps the gas cool during the compression. The time 
required to cool the molecular gas from 5000 K̂. will be
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in the range 10^ to yr. This time is of the order
of the time required for star formation.

Unfortunately molecular hydrogen cannot be 
observed experimentally with the techniques currently 
available. Regions of great density in interstellar 
space, as has been shown by this work, will not reveal 
their presence through observation of the atomic 
hydrogen. Consequently, we must ask if any other 
effects are to be expected that would enable us to 
detect these regions.

One method of detection would be the observa
tion of other molecular lines in regions of high 
density. However, a high density region is likely to 
be of small extent and it is not surprising that no 
high density regions have been detected so far in this 
way. Furthermore the conditions of high density may 
introduce additional factors which would mask any
means of detection, e.g. light from stars shining through 
the cloud may be so attenuated that any absorption
lines would be undetectable.

However, the crucial test of this theory of 
H^ formation is whether a layer of hydrogen atoms can 
form at the surface of a grain. Not only is this 
problem related to the properties of surfaces at very 
low temperatures, but it is related to the problem of
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the formation of grains. Hydrogen is not thought to 
form a large part of the grains, but^our theory demands 
that it forms a surface layer. Therefore a theory of 
grain formation would be required in which the grain 
could grow without taking up the surface layer except 
in so far as stable molecules of the type GH^, NH^, H2O 
were concerned.

However, the theory as given here, although 
it predicts rather more hydrogen molecules than 
absolutely necessary to maintain the interstellar gas 
at 100 K̂, does not predict such an excess of molecules 
that the temperature would be reduced much below 100 K̂. 
Therefore problems in stellar structure should now 
consider the condensation of clouds of molecular 
hydrogen rather than atomic hydrogen.

C. Other Molecules.
In a table given by Dufay (1957) the only 

molecules which have been identified in interstellar 
space are CH’’’, CH, ON. Molecules such as OH, NH whose 
rate coefficients have been predicted by this theory 
have not been observed. Due to this lack of 
observational material on OH, NH they cannot be 
discussed further with profit, but the case of ON is 
somewhat anomalous. If ON is formed at grain surfaces
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then its reaction rate must be about 10^ times faster 
than the rates calculated here since carbon and nitrogen 
have such a low abundance. Radiative association would 
be unlikely to give a rate coefficient larger than 
lO” "̂̂ cm^ secl^ so that yet another mechanism must be 
looked for to explain the production of ON. Two 
mechanisms are possible, namely the erosion of carbon 
and nitrogen from the grains and chemical exchange.
The erosion mechanism can be eliminated since it would 
not proceed any faster than a surface reaction. A 
chemical exchange reaction could be of the type

CH + /V —  ̂ C A/ + H

Assuming that such a reaction is possible and that every 
encounter of a GH molecule with a nitrogen atom leads 
to the formation of ON, then a rate coefficient of 
about 10*"̂  ̂cm? secT^ would be obtained at 100 °K. The 
number of molecules formed would be several orders of 
magnitude less than the number of GH molecules formed, 
but the removal processes may be less efficient. The 
mechanism would not constitute a serious loss of GH.

However, in view of the uncertainty involved 
here (the dissociation energy for GN is uncertain) and 
since this reaction is of a different type to that 
discussed in this chapter, calculations on the 
formation of GN have not been taken further.
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The mechanism whereby interstellar molecules 
are formed at the surfaces of interstellar grains, as 
outlined in this chapter, has shown that molecular 
hydrogen could be present in normal clouds in sufficient 
density to maintain the cloud at a kinetic temperature 
of 100 °K. The control calculation on the formation 
of CH shows that the rate of formation has not been 
overestimated, since the rate coefficient for GH 
production cannot account for the observed amounts of 
GH, unless it is assumed that GH is formed under 
conditions of cloud collision.:

The production of H^ has been shown to be 
very fast at densities in excess of normal cloud 
densities and if this type of reaction is at all 
possible, then the process of star formation must 
start by considering the compression of a cloud composed 
largely of molecular hydrogen. Such a cloud would be 
able to cool by radiation due to the quadrupole 
transitions between the rotational levels of the 
ground vibrational state of the molecule. Such a 
cooling mechanism would not be available for a cloud 
composed of atomic hydrogen.

However, many major problems remain to be
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solved. The nature of the forces holding the hydrogen 
atom to the surface of the grain at low temperatures 
have not been specified in this treatment. Before 
the mechanism could be firmly established the nature 
of these forces would have to be investigated.

The equilibrium of even the best documented 
interstellar molecules CH, CH"̂  is uncertain since the 
cross sections for some of the reactiohs involving 
these molecules are unknoi/im. The radiation field too 
will have to be more precisely defined and a new 
calculation of the equilibrium densities of these 
molecules, based on recent estimates of the radiation 
field, would now seem appropriate.

The present work has put on a more mathematical 
basis the suggestion made by several authors in the 
past, that grains may be the principal seat of the 
largest part of interstellar chemistry. The results 
which we have obtained do not indicate that this type 
of reaction leads to serious disagreement with the 
experimental results.
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Chapter II

The Formation of Stars in 
Inhomogeneous Gas Clouds
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Introduction

Most theories of star formation assume that 
the star condenses from a gas cloud whose density is 
uniform or varies only slowly. It is usually assumed 
that the cloud will contract when it has acquired 
sufficient mass for its own self gravitation to 
control any dissipative effects (e.g. the random 
thermal motion of the gas atoms). There are several 
objections to this type of process. In general, the 
interstellar gas clouds are not uniform but are in a 
chaotic state i.e. there are large scale variations of 
density within the cloud. Further, the criterion 
determining the onset of gravitational instability 
requires a cloud whose dimensions are larger than an 
average interstellar cloud. An average cloud contains 
about 400 solar masses so even if this cloud could 
contract on the large scale the problem of the 
fragmentation of small masses (of the order of a solar 
mass) still remains.

In the present chapter we consider gas 
clouds in which there are large scale departures from 
uniformity. These departures are idealised into 
small clouds called floccules which are able to move 
about independently (to a first approximation) within



the framework of the large cloud.
The collisions of the floccules are of 

interest since we suppose that these collisions are 
ultimately responsible for the production of stars.
The collisions of the floccules can be approached from 
two different points of view. The first point of view 
still regards gravitational forces as being of 
primary importance. The collisions between the 
floccules serve to reduce their velocity to such a 
value that they may be captured gravitationally by a 
set of already bound floccules. In this way a set of 
bound floccules will be obtained and these may come 
together under their own self gravitation to form a 
star. However, it will be later shown that this 
process is itself unlikely to be responsible for star 
formation though it may act as a first step to the 
second approach.

The second approach has been developed in 
some detail by McCrea who considers the formation of 
an incipient condensation, say by the fortuitous 
collision of several floccules, to form a floccule of 
larger than average mass. Further floccules collide 
with this incipient condensation and adhere to it.
The incipient condensation grows until it can pull
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itself together by its own self gravitation. Further 
infall of floccules takes place by chance encounter, 
but as the condensation grows its gravitational 
attraction becomes more efficient in accreting floccules 

In this chapter we first discuss previous 
condensation theories and then discuss the ideas 
underlying the concept of a floccule. A discussion of 
the two floccule theories is then given.
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Section 1. Previous work on condensation 
_________processes.________

Most theories of star formation assume that 
the star is formed from the interstellar material.
Since the mean density of the interstellar material is 
10~^^ gm.cm"^, or 10“*̂  ̂gm.cml^ in clouds and the mean 
density of the sun is 1.4 gm.cml^ (Allen 1955) ? si

g% pii_compression of 10  ̂or 10 must be obtained in order 
to convert the interstellar material into a star. Some 
of the past attempts to find such a compression by the 
uniform contraction of a uniform gas cloud will be 
briefly reviewed in this section.

Condensation by gravitational contraction.

A gas cloud if it is sufficiently massive may 
be able to contract under its own self gravitation.
As infall proceeded the gravitational forces would 
always control the motion provided the random motions 
inside the cloud did not become of the order of the 
escape velocity. Consequently this type of process 
could give compression in a single stage. This problem 
was investigated by Jeans (1928) who showed that a 
cloud would become unstable if its linear dimensions
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denoted by A were given by

(1)

where yO is the uniform density, jb is the 
pressure and Q is the gravitational constant.
Jeans derived this result, known as the Jean's 
Criterion, from a hydrodynamical argument assuming an 
infinite gas cloud of uniform density. He showed that 
if plane sound waves of wavelength A were 
propagated in one direction (say along the x~ axis), 
those sound waves whose wavelengths satisfied the 
inequality (1) had an amplitude which would increase 
exponentially with time. He therefore assumed that any 
region of linear dimensions of the order of A would 
be unstable gravitationally against the propagation of 
small disturbances through the gas. The derivation of 
the inequality (1) has been given in vector form by 
Bonnor (1957) who re-discusses the Jean's criterion 
and its application. Since the treatment of Jeans and 
Bonnor becomes essentially one dimensional when the 
propagation of plane waves is introduced and since a 
uniform cloud of infinite extent is examined, the 
interpretation of A is somewhat doubtful.

The problem of the instability of a finite 
mass of gas is more usefully approached by an
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application of the Virial Theorem (e.g. see 
Chandrasekhar 1957). In order that the gas cloud 
should be unstable, the virial theorem shows that the 
gravitational energy of the cloud must exceed twice the 
thermal energy of the material contained within the 
cloud. For a cloud whose radius is A  and whose 
uniform density is ^  the instability condition 
derived from the virial theorem may be expressed as

where 61 is the gas constant, T  is the kinetic 
temperature of the cloud material and ^  is its mean 
molecular weight. The virial theorem approach is 
rather more flexible than the hydrodynamical approach 
since the effects of magnetic fields,rotation and 
external pressure may be included in it (e.g. see 
Chandrasekhar and Fermi 1955, Bel and Schatzman:, 1958, 
and McCrea 1957).

In order to find out the minimum value of A
for which instability would be possible, typical
interstellar values for and T  were inserted in
inequality (2). The value found for A  is

20approximately 10 cm. However, an average interstellar 
cloud has a diameter of 5*10^^ cm.so that an average 
cloud is just stable against gravitational



contraction. Further an average cloud contains about 
400 solar masses so that only massive larger than 
average clouds could contract under their own self 
gravitation. Even if such a cloud did contract, the 
problem of how further sub-condensations of about solar 
dimensions could form still remains.

Hoyle (1953) has proposed a hàirarchical 
structure for the process of galaxy and star formation 
by gravitational contraction. Hoyle assumes that 
initially a mass of gas, of the order of a galaxy mass, 
can satisfy the inequality (2) and so start to 
condense. As the material contracts its density 
increases and there will ultimately come a stage when 
the Jeans criterion will apply to regions of the 
proto-galaxy whose radii are smaller than that of the 
proto-galaxy. These regions contract and the Jeans 
criterion can be applied to sub-regions and so on till 
massesof stellar size have been formed. Hoyle showed 
that the time scale for such a process is not very 
much longer than the time required for the initial 
condensation. Layzer (1958) has pointed out that such 
a separation will not occur since the main body of 
the cloud will be contracting faster than the 
fragment. The hê^rarchical model must therefore be 
regarded as suspect.
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The gravitational instability of rotating gas clouds.

In order to retain the heirarchical model to 
some degree, it may be supposed that the gas cloud is 
initially rotating, so that at some stage of the 
contraction the rotational and gravitational forces may 
balance. This would remove the objection raised by 
Layzer and allow further sub-condensations to form.

The introduction of rotation, as has been 
shown by Bel and Schatzman: (1958), increases the
diameter of the cloud which is just unstable 
gravitationally. Therefore rotation is at once 
aggravating the problem of the size of the cloud which 
must initially contract. However, a simple approach 
to this problem is not possible, since an axis of 
rotation must be defined for the cloud. The problem 
may then be idealised to that of a rotating sphere of 
compressible fluid. This type of problem has been 
treated by Jeans (1928) who showed that the further 
evolution of the cloud would be as follows. As the 
sphere contracts under its own self-gravitation, the 
angular velocity will increase and the sphere will 
become deformed into an ellipsoid after passing through 
various spheroidal configurations. As the angular 
velocity increases, the equatorial velocities of



particles in the outer regions of the cloud will become 
larger than the escape velocity and material will 
stream away at the equatorial regions. No equilibrium 
configuration will be attained. A star will only be 
formed when the cloud has lost most of its material, 
so this process is very inefficient in its use of the 
interstellar material. Stars may form in the material 
ejected from the equatorial regions, but since the 
rate at which material is ejected cannot be determined 
we can derive no useful information from this line of 
attack.

The most damaging objection to the introduction 
of rotation is the very large equatorial angular 
velocity which a star formed in this way would have. 
Assuming that the cloud originally has a rotation of 
the same magnitude as the galactic rotation, then if 
angular momentum is conserved at all stages of the 
process, a star of solar dimensions will have a final 
equatorial velocity greater than the speed of light.
If the cloud of diameter 5*10^^ cm.has an initial 
angular velocity of 10”^̂  sec“.̂, the equatorial 
velocity of a star whose radius is one solar radius,

IPis 9.10 cm.sec"" . Such equatorial velocities are 
clearly absurd.

Therefore, if a rotational theory is to be
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invoked, some additional mechanism must be introduced 
to dissipate the rotational energy. Various mechanisms 
have been proposed which will dissipate angular 
momentum. The angular momentum may be removed through 
the interaction of the surrounding interstellar gas 
with the star. This type of mechanism has been 
considered by von Weizsacker (194-7) and ter Haar
(194-9). This mechanism depends on the formation of 
stars surrounded by a large rotating envelope. The 
envelope acts on the central mass which will lose 
angular momentum to it. This angular momentum will be 
transported away as the envelope disperses. However 
ter Haar estimates that only 10"^ of the initial angular 
momentum can be removed in this way.

Magnetic braking has also been investigated 
by several authors (e.g. Lust and Schluter, 1955). A 
star is, in general, surrounded by an ionised region 
(i.e. its StrBmgren sphere). If the star possesses a 
magnetic field, it will be magnetically coupled, 
through the ionised region, to the interstellar gas.
The braking is produced by the coupling. The rate at 
which angular momentum is lost depends on the field 
assumed for the star and on the size of the ionised 
regions. Lust and Schluter have shown that if a star 
has insufficient angular momentum to produce



rotational instability, then a field of 100 gauss will 
remove this angular momentum in 10^ yr. However, the 
star must lose a large amount of angular momentum before 
it can become rotationally stable. This does not find 
an explanation in terms of this theory since in the 
initial stages of the condensation the amount of 
ionisation produced will be small and so the coupling 
will be weak.

The theories based on the condensation of a 
uniform gas cloud under its own self gravitation fail 
in two ways. The Jeans criterion requires a large 
mass to contract and in order to obtain the condensa
tion of masses of solar dimensions, additional 
hypotheses must be made. If rotation is introduced a 
difficulty arises in that the resulting star would have 
excess angular momentum. Mechanisms which dissipate 
this excess angular momentum, must be introduced. The 
fundamental assumption of all these theories is that 
the gas cloud contracts as a whole and is 
approximately uniform. However, observation shows that 
a gas cloud is non uniform and the consequences of 
supposing large inhomogeneities to exist will be 
examined in the following sections.
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Section 2. The properties of floccules
«

In this section we shall discuss how floccules 
may he formed and how they interact with one another. 
The problem of defining a mean free path for floccule 
interactions will also be considered.

The formation of floccules.

Before the concept of floccules becomes of any 
value some compression of the interstellar gas will be 
required. The mechanism which causes this pressure may 
be considered to be similar to that proposed by Oort 
and Spitzer (1955) and Biermann, and Schluter (1954-). 
This mechanism presupposes the existence of a hot 
0 type star within a complex of interstellar clouds. 
This 0 type star is assumed to be suddenly born in the 
cloud complex since this leads to a simple model. The 
new star will ionise the hydrogen in its immediate 
vicinity. An ionisation front will proceed outwards 
from the star and will ionise the region within the 
radius of the StrBmgren sphere for the starj The 
temperature inside the StrBmgren sphere will be 
increased to about 10^ ^K.compared with 10^ for the 
temperature of the material outside this sphere.
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Consequently the hot gas will tend to expand into the
cold gas. A compressed region 11 form between the hot
and cold gas masses and if this region can maintain
itself at nearly the temperature of the cold gas, its

2density will be increased by a factor of 10 . The 
acceleration of the compression front will cease due 
to the braking action of the surrounding interstellar 
gas.

This mechanism was developed primarily to 
explain the motions of the interstellar clouds, but we 
may adapt it for our purposes. Suppose the cloud 
'complex contained several 0 stars each having a 
compression front. Even if the cloud complex initially 
has a uniform density the passage of the compression 
fronts through the gas would tend to break it up into 
a rather lumpy structure. These lumps are idealised 
into discrete floccules. Each floccule moves about 
independently of the others and the floccules move in a 
rather tenuous gas continuum, which serves as a 
background defining the parent cloud.

The above type of mechanism for floccule 
formation limits their usefulness to those regions in 
which pressure disturbances are moving randomly through 
the interstellar gas. Floccules do not, however, 
depend on the Oort-Spitzer, Biermann-Schluter mechanism
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for producing pressure variations, but they do require 
some mechanism which produces such variations. The 
problem of the formation of floccules needs more 

♦ elucidation to see if some less drastic mechanism 
could produce them.

The permanence of floccules.

If the floccules are to have permanence, they 
must travel with speeds which are in excess of the 
thermal speeds of the gas atoms. This ensures that ‘ 
the density increase represented by a floccule is not 
rapidly smoothed out by the random motions of its

iconstituent atoms and molecules. The floccules there
fore move with supersonic speeds. The floccules must 
however not move so fast that they disperse the cloud 
which they form.

If the mean temperature of the interstellar 
gas is 100 ^K.then the speed of sound in the gas is 
1 km.sec~^. The mean random velocity of an entire 
cloud in the line of sight is 7 km.sec"^ (Allen 1955).
Therefore the floccules must have a velocity greater 

—1than 1 km.sec” and less than 7 km.sec"" . An 
interstellar cloud collides on an average once in
71 0 yri so that the mean life of a cloud is of this
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7order. In order to give the cloud a lifetime of 1 0 yr. 
before its dispersal, a floccule velocity of about 
2 km.secT^ would be required. We shall therefore 
assume that the floccules move about with a mean 
velocity of 2 km.secl^.

The interaction of floccules.

The interaction of floccules is described in 
different terms depending on the situation in which we 
are interested. In the models of star formation which 
we shall discuss later, it is convenient at some 
stages to regard the floccules as non-interacting 
gravitationally, while at other stages the gravitational 
interaction of the floccules is of primary importance.

In a cloud in which the floccules are moving 
about freely with a random velocity of 2 km.sec"^ we 
assume that the floccules do not interact gravitationally. 
The only way in which a floccule can become "aware" of 
the presence of another floccule is by colliding with 
it. This assumption may be justified if we consider the 
energy of the floccules compared with the energy of the 
gravitational field in which they are moving. The 
energy possessed by the field will be of the order of 

erg.gm“A where Q is the gravitational 
constant , lA is the mass of a floccule and R 
is the mean separation of the floccules. Anticipating
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28a later result we may take M  =9*10 gm,
R = 10̂ "̂  cm,’the gravitational energy is
c __T PA6.10^ erg. gm , or taking McCrea's values ( M  = 2.10 gm., 

R = 2.10^^ cm.) the gravitational energy is
rp

6 .7 . 1 0 erg.grn” . The energy of random motion is 
2.10^^ erg.gm”.̂ so that the gravitational field is 
only at most about 0.33 percent of the random energy. 
Therefore the neglect of gravitational effects between 
floccules may be justified to a first approximation.

However, once collisions between the floccules 
have taken place the situation is altered. Some of the 
fragments of such a collision may have their 
velocities so reduced, that they cannot escape from 
some set of gravitationally bound floccules. Also 
some specially favoured floccule may grow so large 
that its gravitational effect may control the motions 
of the surrounding floccules. However, these effects 
are not operative during the early stages of any star 
forming process. Therefore we may regard floccules 
as not interacting gravitationally so long as they have 
not suffered a collision or come into the neighbourhood 
of a larger than average floccule. After a collision 
the question of whether any given fragment may be 
controlled by the gravitational field of another 
floccule or group of floccules must be re-investigated.
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Collisions between floccules.

We adopt the following model to describe the 
collisions between floccules. If two floccules pass 
by one another and only graze, then no collision is 
assumed to have taken place. A collision between two 
floccules is assumed to concern only those regions of 
the floccules which physically "overlap". The parts 
of the floccules which do not overlap during the 
collision are assumed to be unaware that a collision 
has taken place and continue on their original paths. 
The model is represented diagrammatically in Figure 4. 
This model can only be an approximation to what 
actually happens, but its adoption can be justified on 
hydrodynamical and atomic grounds.

We consider now a collision of floccules which 
is not completely head on. In the region where the two 
floccules overlap shock waves will be generated since 
the floccules are travelling with supersonic speeds. 
Since gas will he pouring into the collision region 
the shock waves will tend to move out into the 
infalling gas. The situation described here is 
similar to that described in Section 4 of Chapter I.

Those regions of the floccules which do not 
actually overlap will not be aware of the collision



(i) no collision.

(a)

(h)

(ii) a collision - (a) before, (b) after.

Figure 4.
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until reached by a shock wave. However, these regions 
will be streaming past the collision region and the 
shock waves v/ill not be able to progress easily through 
them. Consequently the collision region will become 
bounded by a standing shock wave.

Since gravity has been discounted and since we 
only allow those parts of the floccules which overlap 
to take part in the collision, this type of collision 
model only estimates the minimum mass which can have 
its centre of mass velocity reduced by a collision.

It is perhaps more instructive to examine the 
model from an atomic point of view. For this purpose 
we may regard one of the colliding floccules as being 
stopped. This floccule then forms a reservoir of gas.
The other floccule now travelling with the relative 
velocity may be regarded as a beam of atoms each having 
the speed of the relative velocity. The problem is now 
one of beam attenuation or beam slowing depending on 
whether elastic or inelastic collisions are dominant.

If the gas composing the floccules is assumed 
to be atomic hydrogen, then if each atom has a 
velocity of 4 km.sec"!̂  it will have an energy of 0.1 e.V. 
The energy of the atoms is therefore very low and since 
the lowest excited level of hydrogen occurs at 10 e.V. 
no inelastic collisions will take place. However, if
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the floccules are composed of molecular hydrogen 
inelastic collisions will occur through the excitation 
of the rotational spectrujn. We therefore examine the 
two cases to see if any substantial difference exists

i
between them.

If atomic hydrogen is the principal atomic 
species present in the two floccules, the collisions 
between the atoms mil be of the momentum transfer type. 
The cross sections for this type of collision have been 
recently computed by Dalgarno (I960) for atomic 
hydrogen in the energy range 0.1 to 100 e.V. The 
values found by Dalgarno are given in Table IX.

Table IX

Impact Energy (e.V.) Cross section ( 7 T )

0.1 47
1 37

10 29
10  ̂ 22

The value of TTdo , the area of the first Bohr 
orbit, is 8.797- 10"̂ "̂  cm^.

Since large energy losses by momentum transfer 
are associated with scattering at large angles, an
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incident beam will not appear to be slowed but 
attenuated, most of the particles being scattered out 
of the beam. Using these results we can determine the 
mean free path for this type of scattering. The mean 
free path is defined by

{  =  ( ' n Q ) ' , (5)

where 71 is the density of particles in the 
scatterer and Q is the scattering cross section. 
Inserting the numerical values we can write down the 
mean free path as

{  =2.42. 10̂ .̂ 11“  ̂cm. (4)

At normal cloud densities ̂ the mean free path will be
15of the order of 2.42. 10  ̂cm. which is small compared 

with the dimensions of the cloud. Under conditions of 
increased density, such as those envisaged in the 
floccule models to be discussed later, the mean free 
path will be very much smaller. If a compression of 
5*10^^ has been attained (i.e. the halfway stage in a 
complete compression of 10^^) the density of the gas 
will be 5.10^^ particles cm~^ and the mean free path 
will be 48 cm.

Therefore since the mean free path for
scattering is very much smaller than the dimensions of

12the floccules (which will never be less than 10 cm.
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11at a compression of 5-10 ) the boundary region between
the collision region and the undisturbed part of the
floccule will be very small.

If molecules predominate inelastic collisions
will occur as well as elastic collisions. If inelastic
collisions are the most frequent type of encounter the
beam will be slowed down, but will not appear to suffer
much attenuation. Takayanagi (1957) has shown that if
the gas is composed largely of hydrogen molecules and

5 othe temperature of the gas is less than 10 K. the
majority of the transitions excited by the collisions
will be from the rotational level T = 0 to the
level T = 2 . Transitions from the level 7 ~ O to
the level 7=1+ will only be of importance when the

5 otemperature is in excess of 10 K. The cross section 
for the transition 7= O to 7  = 4 is estimated to 
be an order of magnitude smaller than the transition 
7 =0  to 7 = 2 .  At energies of 0.1 e.V. per 

molecule Takayanagi gives the cross section for the 
transition 7 = 0  to 7 = 2  to be 2.5*10"̂ '̂  crn̂ . 
Using this result in equation (5) the mean free path 
is

■£, = 4.10^^ . -71“  ̂cm. (5)

Again at all densities the mean free path is very much
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smaller than the radius of the floccules. Therefore 
any molecule escaping from the collision region will 
not proceed far into the undisturbed parts of the 
floccule before it becomes slowed down.

Consequently the distinction between inelastic 
and elastic collisions is not very significant in these 
boundary regions, even though the cross sections differ 
by several orders of magnitude. The model we have 
proposed for floccule collisions is approximately 
correct, since the boundary layer between the collision 
region and the undisturbed cloud is of small extent 
compared with the size of a floccule. The model of 
floccule collisions, assuming that only those regions 
which physically overlap are involved in the 
collision, will be taken as a background when consider
ing the collisions of average floccules.

The mean free path for floccules.

Since on collision the floccules coalesce the 
definition of a mean free path for floccule collision 
cannot be made by analogy with the kinetic theory of 
gases. Gas molecules may be treated more or less as 
rigid spheres, each atom or molecule preserving its 
overall identity during the collision. However, the 
same does not apply to the collision of floccules.
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since part of the floccules coalesce on collision and 
part retains the original motion of the parent 
floccule, so that the identity of the floccules is not 
preserved.

Although a mean free path of the gas kinetic 
theory type cannot be defined for collisions between 
the floccules, it is usually possible to define a 
length which serves as a mean free path for most of 
the time involved in the process of star formation.
In one model, which v n . l l be described later, the mean 
free path is assumed to be the radius of the cloud 
containing the floccules. This value is justified on 
the grounds that if the mean free path were larger 
than this few collisions would take place while if it 
vrere smaller too many collisions would take place. It 
means that each floccule on crossing the cloud will 
make one collision only. This has the advantage of 
taking into account that any floccule can make just one
collision before loosing its identity.

However, such a definition of a mean free
path does not take into account the variation of mean 
free path that will occur as the number of uncollided 
floccules decreases. The error introduced by this 
assumption of a constant mean free path only affects 
the rate at which the protostar will grow in the later



stages of its formation. In these stages other forces, 
such as gravitation, will probably be dominant so that 
any loss of efficiency in the collision process may be 
offset by increased efficiency in other processes.

The definition that the mean free path is of 
the same order as the dimensions of the parent cloud 
will be assumed and it will be shown that the results 
of this assumption do not lead to absurdity.

In the model proposed by McCrea the definition 
of a mean free path is much more difficult. He assumes 
that the material which is ultimately going to form the 
solar system resides within a sphere whose radius is 
that of the orbit of Neptune. Consequently the 
assumption of a mean free path of cloud dimensions is 
not legitimate. By analogy with the previous case we 
may assume that if the bulk of the material within the 
sphere must ultimately go into the star, the mean free 
path must be such that each floccule has at least one 
chance of making a collision before it leaves the 
sphere. Therefore the mean free path in this model has 
been taken to be the radius of the sphere. This 
definition is subject to the same limitations as 
previously discussed. The definition of the mean free 
path used by McCrea does not mean that only material 
originally present in the sphere can be included in
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the solar system. Material from outside the sphere can 
enter it and collide with an original floccule. 
Similarly floccules can leave the sphere without making 
a collision. More will be said about this when 
discussing McCrea’s model.

The properties of the floccules discussed in 
this section, though not an exhaustive survey, are 
designed to give a qualitative picture of the ideas 
underlying the concept of floccules. The ideas are 
vague at this stage, but we hope to make them a little 
more precise when discussing the actual models in the 
next two sections.
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Section 3. The formation of a condensation by the 
gravitational binding of the products 

of a collision of two floccules.

In this model for star formation the collision 
of the floccules leads to the assembling of material 
which is gravit a ti onallybound. This material as it 
falls together forms a protostar. We are interested in 
those floccule collisions vâiich take place in such a 
way that most of the velocity of translation of the 
floccules is dissipated, i.e. the centre of mass 
velocity of the collision region is small. The parts 
of the floccules not taking part in the collision move 
away with their original velocity and are no longer 
considered.

The collision region or composite floccule may 
have a centre of mass velocity v/hich is so small that 
it cannot escape from the gravitational field of a set 
of already gravitationally bound composite floccules.
To start this process we may suppose that two floccules 
collide forming a composite floccule which for the sake 
of simplicity we may assume to be stationary with 
respect to a set of axes fixed at the centre of mass of 
the parent cloud. Somewhere in the gas cloud a further 
collision takes place resulting in a composite floccule
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having a centre of mass velocity less than the velocity 
\

of escape from the original one. Further collisions 
then give rise to other composite floccules having less 
than the velocity of escape from this pair and so on 
till a set of gravitationally bound floccules has been 
built up. These floccules then fall together and form 
a protostar.

Initially the escape velocity will be very 
small so that any collision which is going to lead to a 
small centre of mass velocity must be nearly head on.
In order to investigate the problem mathematically, we 
must idealise the collision of floccules still further. 
We suppose that the floccules may be treated as 
particles and that those parts of the floccules which 
interact can be represented by allowing the equivalent 
parts of the particles to adhere together. We shall 
assume that all the particles have the same mass W  
and that each collision forms a floccule of mass few 
where 0  ̂ k < ^ .

The problem can now be investigated in two 
parts. We suppose in one case that the floccules all 
have the same distribution of velocities while in the 
second case we assume that the floccules have a 
Maxwellian distribution of velocities established 
amongst them.
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The collision of floccules each having the 
same random velocity.

Suppose that in some Cartesian frame of 
reference attached to the centre of mass of the parent 
gas cloud, the two colliding floccules have velocity 
components (u, 1/, L j )  , (  u ’ 1/, Ut ) respectively. Since 
the floccules have the same random velocity we may 
write,

\/I , a %V =  =  u Ÿ ù/ ■ (6)

After the collision of the floccules the components of 
the velocity of the centre of mass of the composite 
floccule will he

t (u + u ') , + kCuz+of')’

assuming that each floccule contributes equally to the 
composite floccule. The velocity U of the composite 
floccule is given by

i+l;' =  {(u + u'Ÿ + C'y + v 'T  * ( 1̂ -+u /S j ,

i.e. l u ^  =  y *  i a a ' i r y ' + i d i y ' )  . (?)

We now wish to consider only those collisions in which U
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is less than a certain value C where C is small.
For this to be true the floccules must approach nearly 
head on. Therefore only floccules which approach 
within a certain solid angle can have their velocity 
reduced to a low value.

Suppose the floccules approach along paths 
making an angle with one another. Let the floccules
have velocity vectors V , V respectively. Then 
since the floccules moving at these speeds have no 
appreciable gravitational interaction we can assume 
that the angle oC is determined by the scalar product 
of the velocity vectors,

y.V =  -  V̂C05oC =  l / j  ’f’ à / k j  ,

=  uu' + 1/1/' + lûur* . (8)
where i  , J  , !S are unit vectors in the directions of 
the Cartesian axes. Using equation (8) in equation (?) 
we have

2\J =  — V̂co5 o( =  V̂ (/ — , (9)

If \J «  y we must have oC very small. The maximum
value that U can have is the escape velocity from
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some original composite floccule. If the bound material 
within a sphere of radius R is uniformly distributed 
and has a total mass M  , the escape velocity from a 
point inside the cloud distant f  ^  R from the centre 
is

d  =  (10)

This is a minimum value for the escape velocity since 
it concerns only the bound material. The other 
floccules vTill have an effect towards increasing 
even though they themselves are not bound. Therefore 
the maximum value of o( is given by

Jn I — cos u . (11)
1/

The corresponding solid angle do; is given by

dii> =  1T(i — cos<̂ ) ,

so that the cone within which the velocity vectors 
must lie has a solid angle do; and the fraction of 
all velocity vectors lying vdthin this cone is

lS £ . =  . (12)
if ir  r

For a set of randomly moving floccules the fraction of
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collisions leading to a velocity of the composite 
floccule which is less than the escape velocity C is

The following notation will be used,

1)  ̂= number of floccules per unit volume, ' "
cr = radius of a floccule,
f  = distance of a floccule from the centre of

mass of the cloud,
^ = mean density of the cloud,
m  = mass of an individual floccule.

The further simplifying assumption is made 
that the floccules are uniformly distributed throughout 
the parent cloud which is spherical in shape.
Therefore the centre of the cloud is also its centre 
of mass.

The number of floccule collisions taking place 
per unit time per unit volume is

T v ‘ cr* V.
The fraction of these collisions leading to a 
composite floccule having a velocity less than the 
escape velocity C is

V"^ =  T2J^cr^-^ . (13)
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The number of collisions of this type taking place 
between the radii f  , f  + d/" is,

I T .

The number taking place in the volume between 
f  -  0   ̂ i  - /? is,

^t V o-̂ - f  )fdf =  (14)

substituting from equation (10) for . The rate
at which mass is added to the already gravitationally 
bound material is .

in_ =  IX' , (15)
dt  ̂ V

where k tn is the mass added per collision. 
Integration gives

=  /I. IV?! , (16)

I iLTT̂
where 7^ =  k(T , (17)

and V in =
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The dimensions of the floccule may be removed from (17) 
by defining f TT (T v') to be the mean free path for 
the collision of floccules by analogy with kinetic 
theory. Denoting the mean free path by A we have,

JL =  JkrkA^JL. (18)T 5 A V

The value of T  can now be computed using the 
values of ^  » R for an average gas cloud while 
values for A , V may be assumed as outlined in 
Section 2.

In evaluating 7  we shall assume that 
each collision of a pair of floccules gives a 
composite floccule, whose mass is the same as the 
original mass of a component floccule. This is an 
average value, since if the conditions were right a 
composite floccule of mass 2 .W  could form and 
equally so could a floccule of mass very much less 
than ^  . Therefore we shall take fe = / . For
the remaining values we shall take V = 2  km.sec"^,
^  = 10""̂  ̂gm.cm”.̂, A  — R  = 2 .3 .10^^ cm.

Inserting these values in equation (18) we find that T  
is 3.8.10̂  ̂yrs. This is too large a value for T 
which must be of the order of 10^ yrs. If some 
compression is introduced we can decrease 7  .



%Increasing the density by a factor of 10"̂  involves a 
decrease of 10 in the linear dimensions of the cloud. 
Therefore the introduction of such a compression

p cdecreases T  by a factor of 10 giving 7  = 3.8.10^ yr
The fact that some initial compression of the 

gas is necessary to obtain a value of 7  which is of 
the correct order of magnitude is consistent with the 
assumption made in Section 2 that some compression is 
required in order to produce the floccules in the first 
place. If a time scale of 3*8.10^ yr. is allowed for 
the process of star formation then the mass collected 
in this time would be

M  =  Mo 10 .

If M is taken to be a solar mass the value of 
is 9*10^^ gm. This value of 9-10^^ gm. could be taken 
to be about the mass of a floccule. Therefore an
average interstellar cloud ivhich has been compressed

3 7by a factor of 10"̂  would contain about 1 0 floccules.
It is of interest to note that the mass of a floccule
is an order of magnitude larger than the mass of the
earth (5.977- 10^'^ gm.).
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The collision of floccules having a Maxv/ellian 
distribution of velocities.

This problem in the case of the kinetic theory 
of gases has already been solved by Jeans (1921). We 
shall adapt his results to apply to the present problem 
by taking a Maxwellian distribution of velocities among 
the floccules and making use of our definition of a 
collision. Jeans considered that if the two colliding 
particles just grazed each other this should count as a 
collision. In our case such an encounter would only 
lead to the dissipation of floccule material. We 
define our collision cross section in such a way that 
we only regard collisions in which the "edge” of one 
floccule would pass through the centre of the other, 
if this were possible. Jeans therefore defines his 
collision cross section by letting (T denote the 
diameter of the particle while we define 7  to be 
the radius of the particle.

Jeans shows that the number of collisions 
leading to a composite particle or floccule having a 
velocity vector in the range C  ̂ C + dc for an initial 
relative velocity in the range V, 1/ +• dV is

+ 2 y^)jc^ d V   ̂ (19)
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where ^ =  2 ^ t ’ ^ being the mean speed of the
floccule. We now suppose that the speed of the 
composite floccule is small compared with the mean 
velocity of the original particles. In this case we 
can take exj>^-' to be unity. Integrating over V
v/e have the number of collisions per unit time per 
unit volume resulting in a centre of mass velocity 
less than C to be (dropping the vector notation),

C.-5 sec-1 ,(20)

using equation (10). This result is also subject to 
the same limitations as equation (14) introduced by our 
definition of C . The number of collisions occurring 
in the shell of material lying between the radii 
f, i  + jf is,

(21)

Integrating over the whole cloud this becomes,
r

1 - 2 5 . (22)

The rate at which mass is added is then

dlA
d t

=  I2S.!d^ {qM Rj k in  gm.sec"^
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or integrating (2 3)

2(A' "  A'/") “

where the mass is Mo at time t = 0 and M at any 
later time. Equation (23) may be rearranged to give,

M  -  M.{,

=  I —  Vt ] , (24)

where ^  ^  sec~^ (25)

Again introducing the mean density and the mean
free path A we have

J_ =  L M M { q  Rf"" sec"^ (26)
T 2TT X

The value of T  depends on the value 
chosen for • This difficulty did not arise in
the previous case. From equation (24) we see also that 
tA — > oo as t —> 7  i.e. the mechanism can build up 
an infinite mass in a finite time. These points will 
be discussed later.

Using the same values for yo , R , A as taken
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in the last calculation (assuming no compression) and 
taking C = 2  km.sec"^, k = 1, we have

T  =  131^,10^h o  oec. =  y^O./d (27)

If Mo = 9.10^^ gm., T  = 2.46. 10^^ yr. which is 
much too long a time for the process of star formation. 
Once again we must postulate some compression. If a

% pocompression of 10 is taken with M» = 9*10 gm. the 
value of 7  becomes 7*8. 10^ yr. This is still a 
long time for star formation and accordingly a somewhat 
greater compression of the order of 10^ is required to 
give 7  a value of the right order of magnitude.

The results depend upon the value chosen for 
Mo . If the floccules are rather more massive than 

has been assumed, a smaller initial compression will be 
required. The results also indicate that the 
Maxwellian case is less favourable than the case in 
which all the floccules had the same velocity. The 
results obtained here will be discussed in detail in 
Section 3, after consideration of the model proposed 
by McCrea.
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Section 4. The formation of stars from an
incipient condensation.

The conditions under which stars form are
rather different in this model from those described in
the last section. The model has been developed in some
detail by McCrea (1960a, 1960b) so a brief outline only
of this work will be given here. McCrea supposes that
the interstellar gas cloud is compressed by an external
pressure of a type which he has previously discussed
(1957)' Due to the compression the distributions of
density and velocity within the cloud become highly
chaotic and again the situation is idealised into a set
of floccules in random non-interacting motions. The
degree of compression required by McCrea is of the
order of 5*10^^ as opposed to compressions of the order 

5 6of 10“̂ to 10 which were required in the last section.
The mechanism proposed by McCrea depends on 

the formation of a larger than average floccule or 
incipient condensation. The incipient condensation m^ 
form through a favourable collision of two floccules 
leading to a slightly more massive floccule. Further 
encounters may in favourable circumstances lead to the 
addition of considerably more mass to the composite 
floccule than it loses in these encounters. Therefore 
in these favourable circumstances an incipient



condensation may grow. The incipient condensation is 
assumed to be larger than an average floccule, so that 
any collision between a floccule and the condensation 
leads to the capture of the floccule by the condensation. 
Many such incipient condensations will form throughout 
the gas cloud.

In the early stages of this process the 
gravitational effect of the incipient condensation is 
negligible so that the condensation grows by chance 
encounters with the floccules. However, once the 
incipient condensation has grown sufficiently large it 
will be able to contract under its ovm self gravitation. 
Thereafter gravitation assists the infall of further 
floccules onto the incipient condensation.

A fundamental assumption made by McCrea is 
that the angular momentum, possessed by the floccules 
in a certain region of space, will go into the 
condensation formed in that region, despite the fact 
that not all the floccules in that region participate 
in this condensation. Therefore angular momentum is 
not precisely conserved in the region considered due 
to the migration of floccules in and out of the 
region. However, the correlation between events in one 
region and events in a neighbouring region will be 
very weak for this type of chaotic motion. Consequently



if a meaningful mean free path can he defined then 
angular momentum can be approximately conserved within 
a region whose dimensions are a few times this mean 
free path, for a certain period of time.

The conservation of angular momentum can be 
rigorously satisfied by assuming that stars are not 
formed singly but in groups and floccules starting off 
from one region may ultimately coalesce with an incipient 
condensation of another region. Consequently while 
angular momentum need not be precisely conserved for 
any single star, the angular momentum is conserved 
whenever the angular momentum of the star group, about 
its mass centre, is considered.

If the floccules are initially considered as 
being non interacting gravitationally we may find the 
angular momentum possessed by a large group of 
floccules by applying the theory of random flights to 
their motion. The argument given here is slightly 
different to that used by McCrea.

Suppose we have /V floccules mthin a 
certain radius R each of mass Tfi and each having 
a random velocity V . In order to find the 
average angular momentum of each floccule due to its 
translational velocity, we move all the floccules to 
the mean radius and then average over all values of
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the direction of the velocity vector. We assume that 
the floccules are uniformly distributed throughout the 
sphere of radius R . The mean value of the radius
is given by

R

I n , =  J.R  ̂ (28)

where f  denotes the distance of the floccules from 
the centre of the sphere of radius R . The angular 
momentum possessed by a floccule of mass whose
velocity vector makes an angle d with the radius 
has angular momentum

7n V P. 4 R .
The average value of si'ti 6 in the range 0 ^ 6 i %  
is 0.5, so that the average value of the angular 
momentum possessed by a floccule is

j w V R  . (29)

The angular momenta of the N floccules 
must now be summed. The magnitude of the angular 
momentum possessed by each floccule is the same for 
all floccules, but the orientations are different.
The problem is now that of a random walk with steps of
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equal length, hut the directions of the steps are 
random. Chandrasekhar (1945) has shown that the 
probability of finding a particle after a number N 

of random steps of length ^ between the points L , L + 
is,

■ <5°>
In this particular case L  denotes the angular 
momentum. Applying this result we find that the mean 
value of the angular momentum is.

(a m -L =

kLj V/IL) 4
11. if i 1

where the length of the step £ is given by 
equation (29) and M  is the total mass of the 
floccules contained within the sphere of radius R 

The coefficient in equation (31) has the
numerical value 0.35* McCrea (1960b) obtains a value
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of 0 .5 for the coefficient. The difference is not 
significant. From equation (51) it is clear that if 
the mass contained within the sphere of radius R is 
maintained constant then sub-division into more and 
more floccules decreases the total angular momentum 
available.

McCrea specifies the problem more precisely 
and restricts the theory to the formation of the solar • 
system. To do this he assumes that the floccules 
ultimately forming the solar system are contained 
within a region whose radius is the present radius of 
the solar system. This is taken to be the radius of 
the orbit of Neptune, since Pluto is now thought not 
to be a planet but an escaped satellite. The radius 
of this region which is also the mean free path for 
the floccules is 5.10^^ cm. The angular momentum of 
the floccules residing within the sphere of this
radius is talc en to be the present angular momentum of

RO ' p —.*1 the solar system, namely 1.?. 10^ gm.cm.. sec" , while
the mass residing within this sphere is a solar mass.

Having obtained a value for the total angular
m^omentum'the number of floccules present can be derived
from equation (51). Taking the velocity of the

—1floccules to be 1 km.sec . McCrea finds that there wrill 
be lO'̂  floccules withj.n the sphere. Therefore each
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28floccule has a mass of 2.10 gm. Having fixed all 
these values there are no parameters left arhitary. 
McCrea then showed that for the conditions assumed 
the incipient condensation became unstable against 
gravitational contraction after it had grown to a mass 
of some 20 floccule masses. Thereafter he treated the 
infall problem as one of the gravitational accretion 
of floccules.

A floccule, distant R from a gravitating 
mass M  at some point 0, is initially moving with
speed y along a line whose perpendicular distance
from 0 is At its nearest approach to 0 let U

be the speed of the floccule and CL its distance 
from 0, then using the conservation of energy and 
momentum laws McCrea writes,

3 _ 2_qM ^  W» _ z£M
^ a  R (32)

I/o, =
McCrea neglects terms in and shows that the
impact parameter may he written in the form

^  [ a ( a  + ) j  (55)

i/j
Evaluating Cĵ for J i = 20 m, d = (20)5 
where 5 is the radius of a floccule and for
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M  = 2 .1 0 ^ ^ gm, â- = 7.10^^ cm.McCrea found 
«

% -  4.5. 10l2 cm., ■ ^54a)

<1, -  43. 10^^ cm., (34b)

where the subscript zero refers to the first set of 
values and the subscript one refers to the second set. 
Thus the value of the impact parameter  ̂ does not 
vary by more than a factor of ten throughout the 
process. This is due to the fact that the decrease in 
radius in offset by the increase in mass. Taking the 
mean value of ^ to be i and since for any 
impact parameter Cĵ the mean value of  ̂ ±s ^

i

McCrea takes the angular momentum of any floccule 
entering the condensation to be 3 'Wl 1/̂  ̂ . Therefore
the most probable value of the resultant angular 
momentum of the sun is

h

JWVCj^^ijNf =  ^  jm. cffC (35)

where a subscript O denotes that the value of the 
quantity so marked has the solar value.

Although the theory presented by McCrea is 
quite simple this value of the angular momentum is only 
4.6 times the actual angular momentum possessed by the
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sun. This feature of the theory, the prediction of ' 
the s’olar angular momentum, is one of its principal 
successes.

McCrea further shows that the time required 
before the incipient condensation becomes self 
gravitating is of the order of 5000 yrs, while the 
time required for the whole process is almost 
certainly less than 1.?.10^ yr. and may be about 2.10^ yr. 
This time scale is consistent with other estimates of 
star ages.

Having considered the formation of the sun, 
McCrea also considers the formation of the planets from 
the floccules', which have not fallen into the central 
condensation but remain trapped by its gravitational 
field. He estimates that there will be about 1000 
floccules trapped and these will circulate about the 
central condensation in randomly orientated orbits.
These orbits, through the collision of the floccules, 
will ultimately tend to settle down into a single plane. 
In the initial stages of the condensation of planetary 
material, it was supposed that the tidal effect of 
the sun was large so that the planets rotated always 
presenting the same face towards the sun. However, 
when the planets had contracted to their present size 
the tidal effect would be small and the rotation of
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the planets would increase to their present values.
The initial densities of the material from which the 
planets were formed could then he computed and these 
formed an orderly decreasing progression as one moved 
out from the earth. The value for Neptune was just an
order of magnitude larger than the assumed density of
a floccule.

A further feature of the theory indicates 
that the Roche limit for stability against the dis
ruptive tidal action of the sun is placed about the
orbit of Jupiter. Consequently the theory aè 
developed by McCrea applies to the formation of the 
major planets which have been able to condense with 
their full quota of hydrogen, but does not apply to 
the "terrestrial" planets. The Asteroids are
regarded as protoplanets which were at the crucial 

'
distance for disruption, the disruption occurring when 
they lost their hydrogen.

This theory developed by McCrea accounts 
very well for the angular momentum possessed by the 
sun and for the formation of the major planets. For 
such a simple theory, not elaborated in detail, it 
gives very good numerical agreement with the major 
parameters of the solar system. The theory leads 
naturally to the formation of a planetary system and 
it also requires that stars are formed in groups and 
clusters and not in isolation.



Section 5. Discussion of the results.

Two models of star formation have been 
considered in this chapter. For the purposes of this 
discussion the model of Section 3 will be called the 
gravitational model, while the model of Section 4 will 
be called McCrea*s model.

The gravitational model.

The gravitational model has several defects. 
It assumes that material throughout the whole extent 
of the cloud becomes bound and it does not give any 
information on whether more than one system of bound 
material can be formed. If a Maxwellian distribution 
of velocities is assumed for the floccules, then the 
theory predicts that an infinite amount of material 
may become gravitationally bound in a finite time.
This result is clearly absurd.

However, in considering the Maxwellian case 
the approximation was made that the centre of mass 
velocities of the composite floccules were small.
This is certainly true initially, but it will not be 
true in the later stages of the process. In these 
later stages the exponential term 2 'filTIC^) cannot
be neglected and its re-introduction may prevent the
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acquisition of an infinite mass. On physical grounds 
an infinite mass could not be obtained since the amount 
of available material would put a natural limit on the 
growth. There is another effect which applies not only 
to the Maxwellian case but also to the case in which 
the floccules are all assumed to have the same velocity. 
Once two floccules have collided to form a bound 
composite floccule we have assumed that this composite 
floccule suffers no further collision. This assumption 
is quite plausible from the definition of the mean free 
path. However, a small number of collisions will take 
place in which bound floccules may be disrupted by the 
collision. If such encounters took place the amount 
of bound material collected, as discussed in Section 3, 
would be a maximum.

The gravitational theory has considered the 
formation of a set of bound floccules throughout the 
whole cloud. However, it may happen that the mean 
free path is shorter than has been assumed. When 
discussing the mean free path it was mentioned that 
it should be of the same order as the cloud radius if 
collisions were not to take place too rapidly or too 
slowly. This is certainly a good guiding rule, but 
once having obtained a model based on this assumption 
it is of interest to note the results obtained by 
altering some of the basic assumptions.
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The effect of shortening the mean free path 
would have the effect, as pointed out when describing 
McCrea’s model, of dividing the cloud into a number of 
independent subregions whose dimensions were of the 
order of a few mean free paths. Therefore a set of 
condensations of gravitationally bound floccules could 
be obtained. If the mean free path were reduced by a 
factor of ten and the radius of the independent 
subregion was two mean free paths, then the density 
would need to be increased only by a factor of two to 
maintain the short time scale. Therefore by making a 
small change to the initial conditions we can obtain 
a set of gravitationally bound systems of floccules. 
However, the amount of material available to each such 
condensation has now diminished and the process may 
not be so effective.

This type of consideration suggests that the 
gravitational model is not very suitable for a 
discussion of star formation, but as will be suggested 
later it may have a place in a h|@^rarchical floccule 
model.

The question of angular momentum has not been 
investigated for this model since its computation 
could not be carried out in any simple way such as 
discussed in McCrea's model. It is not therefore known
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whether this model would resolve the angular momentum 
difficulty.

McCrea*s model.

The model proposed hy McCrea, although it 
uses a simple mathematical analysis, accounts in a most 
elegant fashion for the large scale features observed 
in the solar system. It depends however on whether 
the assumed starting conditions can in fact be 
realised or not. The theory demands that the inter
stellar gas should be at almost constant temperature 
during a large compression, but it is not known whether 
this ivould occur. Ît depends on the ability of the 
atomic hydrogen to convert itself into molecular 
hydrogen and on the ease v/ith which the radiation from 
the molecular hydrogen can escape from the compressed 
cloud. The results of Chapter I suggest that there 
will be no difficulty in forming molecular hydrogen, 
but the absorption of the radiation from molecular 
hydrogen at various densities has not yet been 
investigated.

McCrea does not specify his pressure source 
precisely and some mechanism producing a compression 
of at least 2.$.10^^ would need to be found. It is not 
clear just what degree of compression the mechanism
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discussed by Oort and Spitzer (1955) sind Biermann and 
Schluter (1954) would produce. The initial stages of 
the floccule forming process therefore require more 
discussion.

McCrea has also assumed that the floccules 
have a mean speed of 1 km.secl^, but when discussing 
the origin of the planets he requires floccules having 
speeds of 10 km.sec"^. The existence of these 
floccules is justified on the grounds that since the 
sun possesses very little of the angular momentum of 
the solar system, the floccules from which the 
planetary system forms must carry about as much 'of the 
total angular momentum as the low velocity floccules. 
However, these faster floccules would tend to disperse 
very rapidly. These faster floccules may not be 
present initially but may acquire these velocities at 
a later stage through gravitational interaction with 
other floccules. This sort of additional hypothesis 
introduces some indeterminancy into the calculations. 
The relaxation of a system of floccules in weak 
gravitational interaction was therefore examined very 
briefly.

The relaxation of a system of floccules.

The relaxation time for a system of floccules
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may be found from the results obtained by Chandrasekhar 
(19 4 2) for the relaxation of a star cluster. The 
relaxation time for a system of floccules of mass

po
9 .1 0 gm. in a cloud of radius 1 pc. is approximately

56.10"̂  yr. if all the material is in the form of
28floccules. For a system of floccules of mass 2.10 gm 

within a cloud whose radius is 5.10^^ cm. this 
relaxation time is increased by a factor of 60. This 
last calculation ignores gravitational effects from 
floccules outside the cloud. If a value of 10^ yr. is 
taken for the relaxation time then it would just be 
possible in the time available to obtain some spread 
of the floccule velocities. However, the evaluation 
of a precise relaxation time is difficult since the 
number of floccules will be varying throughout the 
condensation process and the relaxation time depends 
on the floccule density.

This calculation also suggests that the 
Maxwellian distribution of velocities, assumed in one 
case of the gravitational model, is not particularly 
appropriate. Therefore the assumption that all the 
floccules have the same velocity initially is 
justifiable.
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yA hierarchical model for star formation.

The following is a tentative suggestion for 
a hierarchical model for star formation, whereby the 
gravitational model and McCrea*s model may be combined.'

The gravitational model is more efficient at 
low compressions than McCrea*s model, requiring only

I % 4a compression of 10-̂  to 10 as opposed to a compression 
in excess of 10^^ required by McCrea*s model. However, 
the gravitational model would be too rapid at larger 
compressions.

The size of the floccules demanded by the
gravitational model are somewhat larger than those
needed by McCrea. Consequently, assuming that
gravitational condensations may form in subregions of
the cloud as previously mentioned in this section, we
suggest that the regions of bound material formed as
in the gravitational model may become the incipient
condensations required by McCrea. The fragments of
the floccules produced in the encounters may then
become the floccules for McCrea * s model. This model
has the advantage that it suggests how gravitationally
bound incipient condensations may be formed, but it has
the disadvantage that while only requiring an initial

% 4compression of 10 to 10 the high densities
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obtaining in McCrea*s floccules must now be explained 
in some other way.

However, this suggestion is only tentative 
and before anything definite can be said on the 
initial stages of star formation more work will be 
required to investigate the properties of clouds of 
molecular hydrogen at various densities and on the 
compression of the gas clouds by external agencies.
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Conclusion

This chapter has reviewed some of the problems 
which a theory of star formation will encounter. 
Gravitational instability was shown to lead to the 
condensation of a much larger mass than that usually 
associated with stars. Any endeavour which tried to 
improve the situation, such as introducing rotation, 
lead to the formation of further hypotheses in order 
to obtain agreement with the observations. In the case 
of rotation some form of braking had to be considered 
in order to reduce the angular momentum of the star to 
acceptable values.

However, the interstellar material is not
uniform and this non uniformity was taken to the
limiting case of supposing that a gas cloud was
composed of small cloudlets or floccules which were in
a state of random motion. The collisions of these
floccules were examined and it was found that a
collision could be regarded as the interaction of those
parts of the floccules which physically overlapped,

«

the remainder of the floccule being unaffected.
The effects of the collisions of these 

floccules were then investigated. The results obtained 
by McCrea were outlined and it was shown that an
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acceptable theory of the formation of both the sun and
the major planets could be obtained in a simple way.
The theory predicted an angular momentum for the sun
which was of the correct order of magnitude (as
opposed to an angular momentum many orders of magnitude
too large as predicted on the basis of uniform
contraction theories) and gave results which were of
the correct size for the planetary system. The theory,
however, assumed a high degree of initial compression.

A second way in which condensations could
grow was also given. In this mechanism the floccules
were treated as rigid spherical gas particles and the
number of collisions leading to a low final velocity
after collision was determined. The final velocity was
found by supposing the collision lead to a velocity
less than the velocity of escape from some nearby
stationary floccule. It was shown that if an initial

%compression of 10“̂ was assumed such a system could
collect up a solar mass in less than 10^ yr. provided

28the mass of a typical floccule was 9*10 gm.
However, the second mechanism had some 

disadvantages since it involved the whole cloud and 
not just part of the cloud. This disadvantage could 
be removed by re-defining the mean free path for 
floccule collisions. It was tentatively suggested



that the gravitational model, while perhaps an 
unsuitable description of the entire process of star 
formation, could be used as the first stage towards 
the realisation of McCrea*s model.

The models discussed are at present rather 
sketchy since the processes involved are very 
complicated. The stages are separated out, but in 
practice one stage will lead on to the next continuously, 
The work of McCrea is an exciting starting point for 
future work in this field, since it achieves a single 
theory of the formation of the solar system without a 
host of additional hypotheses.
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Chapter III

The Expansion of a Fully Ionised Gas 
into a vacuum.
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Introduction

Hoyle has recently proposed a new theory of 
galaxy formation within the framework of steady state 
cosmology. Since steady state cosmological theory 
demands that matter is continually created, Hoyle • 
supposes that the material is created in the form of 
neutrons. The neutrons decay radioactively into 
protons and electrons forming a gas of high kinetic 
temperature.

The kinetic temperatures are different for 
protons and electrons and it may be shown that at the 
densities assumed the gas will not be able to attain 
thermal equilibrium in the time available. The theory 
presented by Hoyle makes no clear distinction between 
the kinetic temperature of the electrons and the 
kinetic temperature of the protons, -since he assumes 
thermal equilibrium at all times. The distinction 
between these two temperatures has several minor 
consequences and an important one.

The minor consequences will be dealt with as 
they arise. The important case arises out of Hoyle * s 
discussions of the condensation process. He assumes 
that cool fully ionised gas is compressed by a hot 
fully ionised gas under the influence of a large



pressure gradient. The problem is to find how rapidly 
the cool gas is compressed. Hoyle assumes that the 
compression front will move with the speed of sound in 
the cool gas.

If the pressure differences are sufficiently 
great the motion of the hot gas may be idealised into 
the motion of a gas expanding into vacuum. Therefore 
in this Section we attempt to study the expansion of a 
fully ionised gas into a vacuum. We shall find that 
whereas we could not solve this problem in general, it 
could be solved for a particular case.

In investigating the expansion of a fully 
ionised gas we were lead to examine the previous 
solutions obtained for the expansion of a monatomic 
gas into a vacuum. By considering the fundamental 
theory governing such flow we are able to show that 
these solutions follow inevitably from the definition 
of the Riemann invariants. Lagrange’s Ballistic 
Problem is also considered since it is mathematically 
simpler than the free expansion problem. Consideration 
of the ballistic problem allows us to investigate the 
expansion of a gas obeying van der Waal’s equation of 
state and to postulate a model for free expansion.

We then deal with the expansion of the fully 
ionised gas under restricted conditions and show that
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its equations of motion may be reduced to those for a 
monatomic gas.

Prom the equations of motion we can derive a 
sound speed for the fully ionised gas which shows that 
even though the gas has not attained thermal 
equilibrium the speed of sound is governed by the 
electron temperature. This result depends on there 
being a large disparity between the proton and electron 
temperatures.

Consequently in the problem considered by 
Hoyle the compression rate will be governed by the 
conditions prevailing in the hot gas provided the 
pressure gradients are very steep. The compression 
rate will be very rapid since the gas causing the 
compression is at a very high temperature.



Section 1. The theory of galaxy formation 
_____ proposed hy Hoyle.______

Hoyle (1958) has put forward a new theory of 
galaxy formation within the framework of steady state 
cosmology. In order to maintain a steady state 
universe Hoyle suggested that the necessary new 
material is created in the form of neutrons. These 
neutrons decay radioactively to form protons and 
electrons. The intergalactic medium is therefore in 
the form of a fully ionised gas. The gas is very hot 
since the electrons released by neutron decay are very 
energetic. Hoyle takes the temperature of the gas to 
be 10^ °K.

At the density of the intergalactic material 
predicted by the steady state theory (i.e. 10"̂ ĝm.cm"".̂ ) 
cooling by radiative free-free transitions is very slow. 
Hoyle therefore proposed that the intergalactic 
material had already suffered some compression and 
cooling and he takes as the basis of his discussion 
intergalactic material at a density of 10"  ̂gm.cm / 
and at a kinetic temperature of 10*̂  K̂. The initial 
cooling and compression will be further discussed 
later. Under these conditions the radiation from 
free-free transitions and free-bound transitions can



dispose of the kinetic energy of the protons and 
electrons in a Hubble time. The radiation rate used 
by Hoyle is,

8 7 /7) ^ ]îî efq. gw".'/ôecZ* ̂ (1)

*/awhere the free-free radiation depends on T  and
** "”T“the free-bound radiation depends on T  , and T

denotes the kinetic temperature and ^  denotes the
number density of the electrons (equal to the number 
density of the protons). The energy possessed by the 
ionised hydrogen is the sum of the ionisation energy 
and the kinetic energy. This is

+ 2 S . / o ^ T  etg.gtn'' (2)

where thermal equilibrium has been assumed to exist 
between the electrons and the protons.

In order that the hydrogen should be able to 
radiate away the energy given in expression (2) in a 
time of 4.10^^ sec. (the Hubble time) the ion number 
density ^ will be given approximately by

17 ^  7 . ( 3 )

Equation (5) is obtained by multiplying expression (1)
by the Hubble time and equating the product to 
expression (2) and neglecting the contribution from
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free-bound transitions and the ionisation energy.
Hoyle makes the further assumption that the 

pressure equilibrium is maintained at all stages of the 
cooling process. This assumption is later waived when 
considering the collapse of the cool gas under the 
influence of gross pressure differences. This means
that the pressure is determined by the hot gas and so

—1 ? —Phas a value of 10" dynes cm" . The pressure
equilibrium condition may then be expressed as

/»T S. i d . (4)

Combination of equations (3) and (4) gives T  .= 10*̂  °K,
71 10  ̂cm Therefore radiative cooling is

important on the cosmological time scale at densities 
greater than 10"̂ "̂  gm.cm"^. At the lower density of 
10"̂ *̂  gm.cm"^ the rate of cooling falls to ten percent 
of the value at the larger density, even when the

2temperature of the gas is increased by a factor of 10 . 
As the density increases radiative cooling becomes of 
greater and greater importance. Hoyle shows that if 
pressure equilibrium is maintained the time scale for 
cooling behaves as 'V for T > 3.10^ ^K.and
approximately as '7Î for lower temperatures
(these results may be deduced from (1) and (2)).
Since H varies as where R is the radius
of the cloud the •cooling time varies respectively
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as and . Therefore as R diminishes,
cooling rapidly increases. Hoyle supposes that this 
rapid cooling induces the formation of blobs of 
material and does not effect uniform condensation.
The mechanism whereby this non uniform cooling is 
effected is not made explicit in Hoyle’s paper, but we 
may suppose that this effect is due to the existence 
of initial density variations in the cooling cloud. 
Cooling will cease when the gas is no longer ionised,

Zl qi.e. at about 10 K. and the pressure criterion 
(equation (4)) shows that this occurs for a density of 
about one atom cm . The condensed blobs at this 
stage of their evolution are identified by Hoyle with 
proto-galaxies.

At a temperature of 10*̂  ^K.the speed of sound
in a gas which is in thermal equilibrium is of the
order of 500 km.sec"^. Let us denote this sound speed
by V . The condensation of the cloud will not
take place with a speed less than V , so that the
time for condensation is ^ / V . At a density of
10" gm.cm"/ a galaxy mass is contained within a
radius of 3.10^^ cm. Therefore ^ / V is
approximately 10^^ sec. But as the time scale for

17cooling is 4.10 ' sec., the cool gas vdll not permit 
itself to be compressed at this rate, so that at the



start of the condensation mechanism,compression and
cooling will keep in step. When R has decreased to
one third of its initial value the cooling time scale

15will be about 10 sec. while the compression time scale 
is 2.10^^ sec. At this stage compression begins to 
have difficulty in keeping up with cooling. The 
assumption of pressure equilibrium must now be 
abandoned since the condensation will be driven inwards 
by external pressure. During this stage appreciable 
dynamical motions will be built up in the compressed 
gas.

When pressure equilibrium has been restored 
Hoyle assumes that the condensed cloud may be regarded 
as a set of condensed blobs in random motion. The gas 
composing the blobs will have considerable random 
energy through the generation of dynamical motions 
during the condensation process. Hoyle takes the 
speed for these motions to be less than, but of the 
same order as, V the initial speed of sound in 
the gas cloud. (He assumes, in fact, that the speed 
is Y V .) If the blobs are to be able to control 
this motion gravitationally their masses must be of

lULthe order of 2.10 gm. This is of the order of a 
galaxy mass.

Since the time scale for cooling has been
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chosen to be a Hubble time and allowing a further period 
17of 4.10 sec. for the initial cooling and compression,

the mean density of material in the form of galaxies
—^1 —^was found to be 10 gm.cm Hoyle computed this

value assuming that the mean life of intergalactic 
4 17material was ^ 10 sec. This value agrees well with 

the observed value.
The primary cooling mechanism by which the 

intergalactical material at a density of lO"^^ gm.cm"^ 
and temperature of 10*̂  K̂. is brought to the density and 
temperature necessary for the previously outlined 
mechanism for galaxy formation, is not at all clear. 
Hoyle rejects the idea that any substantial cooling is 
effected by the presence of already existing galaxies, 
since the mean density of material in the form of 
galaxies is one percent of the mean density of the 
intergalactic gas. He suggests that some form of 
highly efficient heat engine effect may operate, but 
the type of effect required is not made explicit.
Some cooling of the gas is due to radiation loss and 
heat transfer to the existing galaxies, but the 
largest amount of the available energy is assumed to 
be converted into dynamical motions. Hoyle supposes 
that these dynamical motions may be used for the 
acceleration of the cosmic rays. He finds that he can
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get agreement with the observed cosmic ray spectrum 
at high energies, provided half the cosmic rays 
present are regarded as newly injected into the inter
galactic medium after acceleration by this mechanism.

Hoyle *s theory of galaxy formation is open to 
several objections. He makes no clear distinction 
between the electron and proton temperatures. Using 
the data on neutron decay obtained by Robson (1951) we 
can find the kinetic temperatures which must be 
assigned to the protons and the electrons. Robson 
finds that the cut-off for the emitted electron’s 
energy occurs at 782 i 13 keV., while the maximum 
number of emitted electrons have an energy ofI
approximately 400 keV. This mean energy was used in 
deriving the kinetic temperature for the electrons, 
while the cut-off energy was used to find the kinetic 
temperature for the protons. The emitted neutrino 
has been neglected and the problem treated as a two 
body recoil problem. The temperature to be associated 
with the electrons is 1.4. 10^ and the temperature 
to be associated with the protons is 5*8. 10 °K.
The proton temperature is therefore very much less 
than the electron temperature and so most of the* thermal 
energy is carried by the electrons. This would suggest 
that expression (2) should be altered to

1-3./o'* + l-2S./0^Ti + t - 2 S . I 0 ^ %  , (5)
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where 1% is the proton temperature and “Q> is the 
electron temperature, v/hile should replace T
in expression (1).

However, Hoyle had assumed that the protons 
and electrons were in thermal equilibrium. The above 
results suggest that the equilibrium temperature for 
the gas would be 7.10^ K̂, but we must find the time 
required for the protons and electrons to come to 
equilibrium before Hoyle's assumption can be finally 
justified. We can use a result obtained by Spitzer 
(1956) to compute the time required for a fully ionised 
gas to come to equilibrium. The equilibrium times for 
a fixed value of the proton temperature (5.8. 10^ ^K)

I
and various values of the electron temperature have 
been computed for the relevant density range. The 
values are given in Table X. The equilibrium time Tg 
is given by

“ ,11. * II"'.T, - 2 We

where A =  9 » ir-Me e* I ' • (?)

where is the mass of the particle denoted by the
subscript, 6 is the electron charge, /? is
Boltzmann's constant and the other terms have their
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usual meanings. The values of A are given in
Table XI.

#

Table X

41,
1% 10^ 10® lo"̂  10®

10-5 1.89. lol^ 5.75. iQl? 2 .1 2. lol® 6 .5 0. 10l4

10-4 1.94. lol® 5 .9 2. lol® 2 .1 9. 1015 6 .7 2. I0I5

10-5 2.00. lol? 6.10. 10I5 2.26. 10l4 6 .9 5. 1q12

10-2 2.06. lol® 6 .3 0. 10l4 2 .3 3. I0I5 7 .2 0. loii

10-1 2.12. lol5 6 .5 0 . I0I5 2.42. I0I2 7 .4 7 . loi®

1 2.19. 10l4 6 .7 2. I0I2 2 .5 0. loii 7 .7 7. 10^

Table XI

'Ylç Te 105 10® 10? • 10®

10-5 42.58 40.08 37.78 3 5 .4 7

10-4 41.23 38.93 36.63 3 4 .3 2

10-5 40.08 37.78 3 5 .4 7 3 3 .1 7

10-2 38.93 36.63 3 4 .3 2 3 2 .0 2

10-1 ,37.78 3 5 .4 7 3 3 .1 7 30.87
1 36.63 3 4 .3 2 3 2 .0 2 2 9 .7 3



The values of logç A in Table XI extend a table given 
by Spitzer (1956) to lower densities. The value of Tg 
from Table X shows, for regions in which the electron

Q Qtemperature is 10 K. and density of 10 electrons cm/,
that equilibrium will only be established after fifty
Hubble times have elapsed. Therefore the intergalactic
medium, if it is formed by the decay of neutrons, will
not be in thermal equilibrium.

However, after the compression of the material
to a density of lO” "̂̂ gm.cm"*.̂  and cooling to lo'̂  ^K.the
electrons and protons will rapidly reach equilibrium

14in approximately 2.10 sec. Consequently in treating 
this region expressions (5) and (2) are identical and 
Hoyle's assumption is valid.

The low density hot regions which are not in 
thermal equilibrium may be investigated further by 
finding out what period of time must elapse before a 
Maxwellian distribution of velocities can become 
established among the electrons and among the protons. 
Using a further result given by Spitzer (1956) the 
time for a Maxwellian distribution of velocities to 
become established is given by

_ VAtTf . (8)
•■M s<ltnrne‘'Loj,s
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For the electrons has the value 2.10^^ sec., so
that the electrons may be regarded as having a 
Maxwellian distribution of velocities. The protons on 
the other hand require a time of 1.6. 10^^ sec. to elapse 
before they can establish a Maxv/ellian distribution of 
velocities among themselves. The protons therefore 
will not have a Maxwellian distribution of velocities.

Since the hot gas is not in thermal 
equilibrium it is of interest to investigate the 
problem of how such a gas will compress a cool gas.
The maximum speed with which the hot gas can compress 
the cool gas is the speed with which the hot gas can 
expand into a vacuum. This approximation is only a 
good one when there is a large difference in pressure 
between the hot gas and the cold one. Such a situation 
will occur during the middle stages of the compression 
process considered by Hoyle. This problem will be 
discussed in the following sections.

The rate of -compression of a cool gas by a 
hot one is not the only problem which arises out of 
Hoyle's new theory of galaxy formation. By far the 
largest problem remaining unsolved is that of the 
primary cooling mechanism. The cooling produced by 
the material actually in galaxies will be negligible, 
but this type of mechanism cannot be ruled out, since
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galaxies are grouped in dusters and it is not known how 
much gas exists between the galaxies in a cluster. If 
large amounts of gas are present in the clusters they 
may act as very efficient cooling agents. If the 
cluster were able to produce cooling and also was in 
random motion through the gas, it could tunnel out a 
region of cold gas. This cold gas will not necessarily 
be in pressure equilibrium with the surrounding hot 
gas. The pressure disequilibrium may then lead to the 
collapse of the cooler region. The idea here is 
similar to that proposed by Sciama (1955) except that 
pressure forces and not gravitational forces are 
involved.

A further line of approach in accordance with 
the ideas outlined in Chapter 11 would be to assume 
that the intergalactic medium is non-uniform. The 
regions which have a higher density than average will 
cool more rapidly and will tend to become compressed 
by the hot gas. It would be of interest to investigate 
what sort of variation of density would be required to 
establish such a system.

Hoyle did not consider intergalactic magnetic 
fields. If the intergalactic material is fully 
ionised, as has been suggested by Hoyle's theory, then 
any intergalactic magnetic field which may exist will
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be of the greatest significance. The effect of these 
fields on non-uniform material would also be of 
interest.

However these problems, though important, lie 
outside the scope of this thesis and we shall confine 
our attention to discussing expansion of a fully 
ionised gas into a vacuum in order to see how rapidly 
pressure forces may compress the medium.



Section 2. The fundamental theory of 
 expansion waves,____

The fundamental theory of expansion waves 
for an unionised gas will be discussed here very 
briefly in order to clarify the various solutions of 
the problem of the expansion of a monatomic gas into 
a vacuum as discussed in Section 5* This section is 
a brief summary of chapter one and part of chapter 
three of a book by Courant and Friedrichs (1948). 
Their discussion of hyperbolic flow, while of 
fundamental importance to this work, is too long to 
be included here. Reference will be made to their 
discussion of hyperbolic flow when necessary.

In order to simplify the problem we shall 
assume that flow takes place in one direction only, 
namely along the x- axis. The motion of the gas is 
then defined by four equations, two of which are 
conservation laws, one is an equation of state, while 
the fourth indicates how changes of state are to be 
made. For a compressible fluid of density p  

flowing with speed U along the X-axis, the 
conservation laws and the equation of state may be
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written as below

Conservation of Momentum: p —  ^ nu—  + ^  =  n (9)
I U  ̂ àX èX ^  '

Conservation of Mass: V  + ,,1P , ^  p. (10)

: ' Equation of State: |d =  , (11)

where |d , S are the pressure and entropy of the 
fluid.

Changes of state in a flow problem may be made 
in three ways, (a) isothermally, (b) isentropically,
(c) adiabatically. In this work we shall assume that 
all changes of state ‘are made isentropically, so 
assuming that the fluid is inviscid. The fourth 
equation expressing that changes of state are made 
isentropically has the form

u i I = o  (12)
d t  H  ax

The speed of sound Û for the gas is 
defined by

=  J L  . (13)

Using equations (11) and (13) it may be shown that

dp + . (14)



Division of equation (14) by dt and use of 
equations (10) and (12) gives

Multiplication of equation (9) by (X gives on 
addition to equation (15)

I T   ̂ * ‘HI =

while on subtraction,

^  ~  ̂ it) “  0

Courant and Friedrichs from the form of equations 
(12), (16) and (17) choose the following three 
directions in the X ^ t plane,

dx =  Udt, (18a)

dx =  (u + a) dt, (18b)

dx =  lu - a) dt , ( 1 8 c )

since the theory of hyperbolic flow discussed by them
suggests that these directions are of fundamental 
importance. We shall denote, these three directions in
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the % , t plane by C^, C_̂ , C_ respectively. 
Substitution of equation (18a) in equation (12), 
equation (18b) in equation (16) and equation (18c) in 
equation (17 )shows that

dS “  0 along , (19a)

d p  =  -  p a  du along 0^ , (19b)

df̂  =  + p a d u  along C_ (19c)

Since the flow has been assumed to be
isentropie equation (19a) adds no new information, but
equations (19b), (19q) are called the Characteristic
Equations since they are true along the Characteristic
Directions C^, C_ respectively.

Courant and Friedrichs from their discussion
of hyperbolic flow show that the directions C , C+ —
are of fundamental importance in this type of flow 
problem. They show that C^ or C_ represents, in the 
X,t plane, the path taken by the "head" of a 

"disturbance wave". A disturbance wave in this 
context may be thought of, for example, as the 
disturbance caused when a piston is suddenly pushed 
into a gas initially at rest: the head of such a
disturbance wave separates the as yet undisturbed gas



Il>2,

from the disturbed gas. Equations (18b), (18c) show 
the velocity of the disturbance is Li -  (X along a 
characteristic and Ü -f- d along a characteristic.
The velocity of the disturbance relative to the gas, 
whose flow speed is U , is + Û for each point 
on the characteristic. The head of a disturbance wave 
therefore travels with the speed of sound relative to 
the gas. Courant and Friedrichs use this argument to 
justify the identification of the characteristics with 
the paths of sound waves.

They now introduce two quantities and
called the Riemann Invariants, which are defined to be 
the constants of integration obtained in the integration 
of equations (19b) and (19c) respectively

U + —  zf (20)i. P *
U -   -ZX, . (21)

4. /=■“

For a real gas it is assumed that the integrals in
equations (20) and (21) are positive for a finite p

and vanish as p  vanishes. In order to evaluate
these integrals we must assume a relation between
and yO . The relation between and p  is
taken to be the adiabatic law,

Y
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where y is the ratio of specific heats and K is 
a constant. Substituting for p in equations 
(20), (21) and performing the integration one obtains

2f =  + a , (23)
I ~  '

=  't/'T " ^ > (24)Y - I

assuming that yO tends to zero.
Since equations (25), (24) have been obtained 

by the integration of equations (I9b), (19c) which 
relate the change of pressure and flow speed along a 
characteristic, it can be inferred that f and yd 
are constant along a characteristic: f is constant
along a characteristic and yd along a C 
characteristic. By using the Riemann Invariants the 
motion at the head of a disturbance may be investigated 

Three types of flow may now be distinguished:
(a) a constant state in which U , yO remain constant,
(b) a simple wave in which one or other of f ,  xf remain
constant, (c) the general case in which neither f
nor yd remains constant. A rarefaction or expansion
wave is a simple wave and this is the type of wave
considered here.

The Riemann Invariants can be used to 
investigate what happens'when a gas expands. Suppose
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initially that a state of uniform density exists in 
the region — co x 6 o with a boundary at x = O . 
This boundary is taken to be a moveable frictionless 
piston. If the piston is made to recede from the gas 
(i.e. moving from left to right) a wave will move from 
the piston into the gas and only those gas particles, 
which have been reached by this wave front, will take 
part in the expansion. Let the piston start from rest 
and recede from the gas with a continually increasing 
speed Up . The gas at the piston acquires the 
speed of the piston, so that the piston speed can 
replace the flow speed in the expression for the 
Riemann Invariant. The Riemann Invariant for a wave 
proceeding from right to left is f  if Up is 
taken in the direction of increasing x

If Up is initially zero and d o is the 
initial sound speed in the uniform gas then,

-  f r y  '
initially and in general.

Up =   ̂ - (a. - . (̂ 5)

When the piston reaches a speed of 2Uo(y ~ 0 , the
sound speed in the gas at the piston becomes zero, 
implying that the gas has reached zero density at the
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piston. This is known as the stage of complete 
rarefaction. If lip exceeds lUo(y - l) the piston 
would simply move away from the gas. For y = %  
complete rarefaction would be obtained when the piston 
had acquired a speed of 3do  • The wave proceeding 
into the gas from the piston moves with a constant 
speed do , which is the speed of sound in the 
undisturbed gas.

The object of this summary of the fundamental 
theory of rarefaction waves is to show that a state 
of complete rarefaction demands that a speed of (y- l) 
be associated with it. This is subject to the 
requirement that the flow is isentropic and the gas 
obeys the adiabatic law connecting the pressure and 
density. This interpretation enables us to understand 
what is happening in the case of a freely expanding 
gas which is discussed in the next section.

-I
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Section 5. The expansion of a monatomic gas 
________ into a vacuum.________

The expansion of a monatomic gas into a 
vacuum is considered because this problem has been 
treated by several authors. These authors obtain a 
solution for the speed of expansion of the gas under 
different conditions. The value of considering this 
problem lies in the fact that the equations of motion 
for a fully ionised gas, under the conditions later 
assumed, can be reduced to the equations of motion for 
a monatomic gas.

The problem has been considered principally5
by Burgers (1946), McVittie (1950) and Copson (1950). 
We shall show that the results obtained by these 
authors are a consequence of the boundary conditions 
which they assume, namely that the density of the gas 
on the gas vacuum interface is zero. This is a state 
of complete rarefaction, which we have shoim in 
Section 2 to imply an expansion speed of 2CioC^0 •
We shall, however, start with a brief review of the 
work of previous authors who tackled this problem.
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Previous work on the expansion of a 
monatomic gas.

Burgers (1946) considered the expansion of an 
initially uniform semi-infinite distribution of gas 
into a vacuum. Except at the initial instant, he 
assumed that the density of the gas at the gas vacuum 
interface was zero. He found that the gas expanded 
into vacuum with a constant speed of I d o l y  where

CLq is the sound speed in the initially 
undisturbed uniform gas.

McVittie (1950) attempted to improve on 
Burgers solution by introducing a model which removed 
the discontinuity in the density boundary condition 
at the initial instant. McVittie assumed that the 
semi-infinite gas had a non-uniform density 
distribution. The density of the gas declined to 
zero at the initial boundary. He found that the gas 
attained Burgers' speed of expansion after an infinite 
time, where do is now defined to be the sound 
speed in the undisturbed gas in the interior of the gas 
distribution far from the expansion front. However, 
McVittie offers no evidence on how rapidly this final 
speed is attained.

Copson (1950) pointed out that the density 
distribution for the gas considered by McVittie, would
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cause the gas to be in motion, since there would be 
pressure differences within the gas due to the 
non-uniform density. He therefore suggested a 
compromise model. He assumed that most of the semi
infinite gas had a uniform density distribution and 
that there was a boundary layer in which the gas 
density declined to zero at the gas vacuum interface. 
Copson showed that the speed of expansion ICio (y " 
(where Ûq is the speed of sound in the uniform 
undisturbed gas) was attained after a time, which 
depended on the thickness assumed for the boundary 
layer. After the elapse of this time the expansion
proceeded with a constant velocity as found by

;

Burgers. Copson*s model has been used by most 
subsequent authors in discussing the expansion of a 
monatomic gas into a vacuum.

Copson (1955) has rediscussed this problem 
using a complex variable approach for a general value 
of Y • the special case of y - %  he recovered
his previous solution. Pack (1955a) reviewed the 
problem and showed that if the flow remained 
continuous^ Burgers result must ultimately apply. He 
further showed that if discontinuities did arise, then 
an even greater final speed of expansion could result. 
Pack (1955b) also considered the expansion into vacuum
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of a gas in which there was an initial inhomogeneous 
temperature distribution. He showed that the initial 
complex waves grew into a simple wave and the results 
were similar to those obtained from Copson's model.

Mackie (1953) extended this work to a finite 
region containing gas free to expand in opposite 
directions into a vacuum, when the density of the gas 
was inhomogeneous having a maximum at the centre of 
the distribution. The final speed of expansion was 
2 (y "0 times the initial sound speed at the centre 

of the distribution of gas.
Khare (1953, 1954a, 1954b) treated Copson*s 

model in a new way not involving the Riemann Invariants.
i

In his first paper he discussed Copson*s model using 
the Riemann Invariants for any general y , while 
in his second paper he showed that by introducing the 
velocity potential he could solve the equations of 
motion without recourse to the Riemann Invariants.
His results from the second paper could be 
interpreted to show that the final speed of expansion 
was 2Clo(y'"0* In his final paper Khare showed that 
viscosity could be taken into account if the velocity 
potential method of solution were adopted. However, 
he could only obtain a solution for y = 3 . In this 
case the effect of viscosity disappeared and the
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expansion speed was do •

The mathematical formulation of the problem.

We shall now give the mathematical formulation 
of the expansion of a . monatomicicr. gas as developed by 
McVittie (1950). The resulting equations v/ill be 
solved for a uniform semi-infinite distribution of gas 
by a method also given by McVittie obtaining Burgers^ 
(1946) solution to the problem.

The problem will be solved assuming the 
adiabatic law (equation (22)). The fundamental 
equations governing the flow are equations (9), (10) 
and (15). Substituting from equations (15) and (22) 
the conservation laws (equations (9), (10)) may be 
written in the form,

14 ,,!«.+ M  =  0 (26)
it )x Y-' Ax

2 da + _ M _ i â  + a #  =  0 (27)
Y - I at y -  I ÙX ix

The Riemann Invariants are introduced in the form,

. u . 2 ^  =  ^  - u .

Differentiation of the Riemann Invariants with respect
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to X gives

. af 1 aa  ̂aw .i/s _  i èa iu
=  7 7 7 ^3̂  + 17 ' / x  -

and differentiation with respect to t  gives

, 1 1  =  + M  , , M  _  _J^1A _ M
i t  Y-1 at )t Y-1 i t  i t

Addition of the derivatives of ' t and %( with 
respect to x  gives

i àa11 M  =
ix ix y-I ix

while subtraction gives

J i  _  M  =  366ax èx 3x
Addition of the derivatives of f and yd with 
respect to t gives

± L  + M  =  ,at at y - i  at
while subtraction gives

If _ 1 1 =  _à/L .
àt H  àt

Making these substitutions for the derivatives of CL,U 

with respect to X, t in equations (25) and (2 7)
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one obtains,

i  -  0 .

(28.,

From the definition of f , x) it follows that

f + X  =  ; t  -  yS =  u .

Therefore U -h d  =  o( Y" ^ jSxj

and U - d =  — (jBi +

where

Substitution of these results into equations (28) 
gives,

-H U i  ^ jBx)# =  O . (29a)àt i x

^  -  (ol.d + |3f) ^  =  0 . (29b)

McVittie then assumes a result due to 
Riemann that if,

f il f « -
then "f", /d may be used as independent variables.
Since,

dt =  t  ^ d x  , d^ =  ^ d t  > -M d x



use of equation (2 9) gives,

df “  I f + /3xf)dt + dx jax

ax

and similarly.

dd ax

d [x - (o(i -h p yd) tj + t(o(dt i- p d ^ )

d | x  + (j3t + o(xf)t j - t (jSdt "f" ocd̂)

McVittie then defines functions X  ̂ / by setting,
X =  X  - + pyd)t , y =  X  f +/3f)fr,(50)

and by regarding ^ , / as functions of  ̂ ^
obtains,

ax

But since f , yd are independent variables the above 
equations give.

ay (31)
ax) a t

From equations (51) one obtains.

Ü  -  ( - f  ) -  0 .
and so a function OA of t, -d can be defined by setting

dur —  Xd/ - ydx) .
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Therefore,
■^ =  y =  X (o(zd +-Pt)t , (53a)
d/)

—  =  X =  X - (ocf +■ j b A ) t  . (33b)
it

Using equation (31) and (33),

_ _av _  _ ftafjj i t

and y - X —  (oC+pXt-t-xj)t,

then ^  A
af a,d (o(

__A i w  =  n(54)
+ js)(-f+/>)Uf )

Equation (54) is the fundamental equation to be solved. 
McVittie and Copson solve this equation for the 
particular case in which y = %  when equations (54) 
takes the form,

- J l E -  + ' — >— \ M  +  m  ^  Q (35)

Khare (1955, 1954a) solved equations (54) quite 
generally.

Equation (55) was solved by McVittie in the 
following way. Consider gas expanding along the 
X - axis as shovm in Figure 5. Initially the gas 

vacuum interface was at (B̂ )̂̂  ̂while at some later
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time it is at . The^wave front moving into the
gas at rest was initially at (3 2 )̂  and. at any later 
time is at B2 * For the present, the assumption that 
(Bi)i, (®2^i at the same place will not be made 
nor will the origin of coordinates be taken at one or 
other of these interfaces.

The interface advancing into the vacuum is 
defined to be the plane on which the density of the 
gas is zero. Consequently on B^,

+ x), =  O . (36)

The speed of advance of B^ is V; =  • This is
obtained by totally differentiating equation (36), 
using equations (28) and setting U  =  a,  ̂ CL - o  whence

il + ii, 

ax ax
The boundary therefore advances with the speed of the 
gas at the boundary.

On the front B2 the boundary conditions are 
U-a ~ O. - - do whence

t == o  , (58a)
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For a homogeneous distribution of gas do is 
constant. Let B2 be at at time and at
at time 4- dt̂  , then the speed of advance of B2 is

—  (- ’ which by total differentiation of
the equations (58) and the application of the boundary 
conditions gives

=  Q (39a)
 ̂ax 4 '

%  =  — do , (39b)

Hence B2 is moving to the left with the speed of sound
in the undisturbed gas. Equation (59a) indicates that

is constant in the region X̂  ̂  x ̂ (Xj)̂  .
The Riemann invariant is constant so

that the subscript may now be dropped and the value
of yd may be found from the boundary conditions at
B2 giving,

. (4-0)Y - I
Using equation (40) in equation (56) gives,

X =  U. =  Ilf =  - 24 =“ •
Therefore equation (29a) may be written,

w  * ° •

and its solution equation (50a) may be written
X - t k f  - - ^ )  =  f ( f )  , (41)



where f ( f )  is an arhitarj function of f  
Substituting for f , o( and jS ,

X - *-u)~ * Û.) , (42)

where U =  , ( d  -h d o ) . (45)

This solution (equations (42) and (45)) gives a complete 
description of the motion of the front advancing into a 
vacuum.

If we now follow Burgers (1946) and assume 
that (B2 )j_, (B^)^ are identical and are at the origin 
of X then since % = O when 6 = 0 ,  ^ Ct) = o  

so that solving for A  and U we obtain,

u =  ■ a, (44)o >

a — X z X  J L  a (45)Y+ / t Y+ I

Equations (44) and (45) are Burgers' solution to the 
problem. The results show that the front advances into 
the vacuum with speed 2Æo(y - 0 'and that a wave moves 
back into the gas at rest with speed Ct©

Using a similar approach McVittie solves the 
problem for a gas in which there is a non-uniform 
density distribution. Copson* s (1950) approach is



also similar though his boundary conditions are more 
complicated. The results of their analyses have been 
discussed previously.

For a monatomic gas ^ ~ so that an
originally uniform gas will expand into a vacuum with 
a speed of three times the sound speed in the undisturbed 
gas.

Discussion.

The result obtained from this analysis is a 
result of the boundary conditions assumed at the gas 
vacuum interface. The interface is defined to be the 
plane over which the gas density is zero. Such a 
boundary condition implies that a state of complete 
rarefaction exists at the interface. Therefore the

.-Ispeed of the interface must be 0 sis has been
already shown when discussing the Riemann Invariants 
in Section 2.

It is, however, unrealistic to assume that 
complete rarefaction has been attained at the 
interface at all stages of the motion. Consider an 
atomic model of the expanding gas. Suppose we have a 
semi-infinite uniform gas contained behind a barrier.
Let all the atoms of the gas have the same random



velocity. When the barrier is removed those atoms near 
the boundary which happen to have a velocity component 
in the x-direction will move out into the vacuum . 
Immediately after the barrier has been removed the 
boundary between gas and vacuum v/ill still be quite 
sharp, since dispersion of the atoms due to their 
random motion will not have had an appreciable effect.
At a much later stage, assuming no interatomic 
collisions for simplicity, only those atoms which 
initially happen to be moving very closely parallel to 
the X-axis will constitute the leading edge, the 
remainder having dispersed. As one proceeds further 
from the initial boundary the number of atoms moving 
parallel to the x - axis will become fewer so that 
ultimately the approximation of zero density on the 
gas vacuum interface becomes a very accurate one.

While the work of Burgers tells us little about 
the start of an expansion of a semi-infinite gas into a 
vacuum, the atomic point of view suggests that some 
time after the removal of the barrier Burgers solution 
is an accurate description of v/hat is happening. This 
is also the conclusion reached by Pack (1953b) on 
somewhat different grounds. The atomic model indicates 
that Copson*s model is the most realistic of the 
three models considered. Consequently, we may assume
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that a uniform gas ultimately expands into a vacuum' 
with a speed 2CLo ( y 0 where CLq is the speed of 
sound in the undisturbed gas. This speed is attained 
when sufficient time has elapsed to make the 
approximation, that the density of the gas at the gas 
vacuum interface is zero, a good one and this time 
will depend on the specific problem considered.
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Section 4. Lagrange*s Ballistic Problem.

The solutions for the expansion of a monatomic 
gas into a vacuum obtained by McVittie and Copson 
require a complicated mathematical analysis for their 
evaluation. However, Lagrange's Ballistic Problem as 
considered by Love and Pidduck (1922) offers an easier 
mathematical analysis and their analysis is used first 
to discuss the expansion of a gas.which obeys a van 
der Waal's equation of state and then to discuss a 
new model for the expansion of a gas.

The solution by Love and Pidduck to 
Lagrange's ballistic problem.

Love and Pidduck (1922) solved Lagrange's 
ballistic problem for a gas contained in a cylinder 
between two frictionless movable pistons. They 
considered the motion of the two pistons quite 
generally taking into account the effects of the 
collisions of the rarefaction waves with both other 
rarefaction waves and the pistons. We are concerned 
here only with one part of the problem, namely with 
the motion of a single piston without the additional 
complication of its collision with wave fronts.

The problem we wish to consider is similar to



that already discussed when considering the inter
pretation of the Riemann Invariants. Consider a semi
infinite distribution of gas contained in a cylinder 
closed at one end by a frictionless movable piston of 
mass M  . In order to remove any difficulties about 
wall effects the cylinder may be considered as 
extending to infinity in all directions perpendicular 
to the direction of expansion, which is taken to be 
the X - axis described positively. Only unit area of 
the piston is considered, so that M  is the mass of 
the piston per unit area. The system is sketched in 
Figure 5.

Suppose that the gas has pressure and
density initially where fi > fo homogeneous
throughout the gas. Let the piston he held at rest 
at X = o , the gas occupying the region between X = o
and X = — oo . When the piston is released the gas
pressure pushes the piston in the direction of X 
increasing. Consequently, the gas becomes rarefied and 
the process may be described in terms of simple waves 
as discussed in Section 2.

In the mathematical analysis which follows we 
use the method devised by Love and Pidduck. If, when 
the speed of the piston is 1 / from left to right,
the pressure at the piston is jb , then the equation
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of motion for the piston is,

=  b (46)
dt

-IDefining (T to be 20. ( ^ -  l) then,

JJL-L =  C_2L\Y-' (47)

f o r  the isentropic motion. Substitution of equation 
(47) in equation (46) gives

j LdU ^  k  ( (T (48)
dt n ̂  (To /

The wave moving back into the gas is a simple wave 
moving from right,to left, so that the Riemann 
Invariant f  is constant while yd varies. If 
is the sound speed in the undisturbed gas then the 
constancy of f implies.

y. ^ - 2 d  iCLo
Y-i Y-1 '

or 1/ + <T =  (T; (49)

where the piston speed IT now replaces the flow 
speed. From equation (49) d<r so that
equation (48) becomes,

dt =  —
P. ^



l U .

Integration of this equation subject to the boundary 
conditions 6 = o , CT - Og ; t = t , C T - c r  gives

' - - ')
From equations (4-9) and (50) the velocity of expansion 
may be written,

V -  ai - <r -  o;ji -<l *

-  - (' - I (M)
Equation (51) may be integrated further to give the 
distance travelled by the piston. Taking the boundary 
condition to be x - O , t = 0 then at any later time.

X =  gg.
Y-l

L __ . lAd? I  ̂ y + 1 y»» _ i)
h i  2 tAao J

(52)

Equations (51) and (52) were obtained by Love and 
Pidduck as a first step in their solution of Lagrange's 
ballistic problem. From equation (51) it would appear

- Ithat ^  attains the value only after an
infinite time. However, this is not particularly 
relevant since we are interested in how rapidly it 
approaches this limiting value. The rate at which 1 /
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attains its limiting value is determined by the initial 
conditions of pressure and density as well as by the 
mass of the piston.

Using equation (51) the density of the gas at 
the piston is given by

P  -  p . { ^  *  (55)

Equation (53) shows that p  vanishes as t --> oo
i.e. the final speed of expansion is associated with 
the state of complete rarefaction, as would be 
expected from our general discussion in Section 2.

It is also clear from equation (51) that if 
the mass of the piston vanishes the speed of expansion 
is constant. Therefore this solution passes over into 
Burgers* (1946) solution for a piston of zero mass.

The motion of a piston pushed by a 
van der Waal's gas.

The method of solution devised by Love and 
Pidduck as outlined above can be modified to take 
account of a gas obeying van der Waal's equation of 
state. We have examined this case in order to see 
how rapidly a gas, approximating more nearly to a real 
gas, could push the piston.



One form of van der Waal's equation of state
is,

(f) f cyD̂ )(l- ^ p )  =  k v T  , (54)

where p  is the density, ^ is the pressure, k  

is Boltzmann's constant, 7? is the number of particles 
per unit volume, T  is the absolute temperature and 

, C are positive constants. The pressure T  

of the equivalent perfect gas is

T =  ^ c p \  (55)

Suppose the piston acquires a speed U when pushed 
by a perfect gas as in Lagrange's ballistic problem 
described earlier ’and let A U  be the increment in 
speed due to the fact that the gas is not perfect.
Then we may define the piston speed V  to be U 4- AU . 
As before the equation of motion of a piston of mass M  
per unit area is

n j f  -  !> . (56)

or =  T  -  c p  . (57)

Equation (57) can now be divided into two parts. By 
definition U is the speed acquired by the piston 
when pushed by a perfect gas so.

n f .  -  p.
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But this is simply equation (45) which has solution, 

U -  ^ - 1 ' -  ,

where is the initial pressure and y , do are
defined for the perfect gas.

Removal of that part of equation (57) which 
concerns the perfect gas leaves us with.

± t ^ n \  =  _ rn' (58)

Since c is a positive constant a deceleration of the 
piston will result from the departure of the gas from 
a perfect gas.

In order to solve equation (58) we must know 
the dependence of yO on f . However, this is 
unknown and so some approximate method of solution 
must be found. As a first order approximation it will 
be assumed that yO depends on t as for a perfect 
gas. This dependence is given by equation (55).
Therefore taking the boundary condition t o  he Ù U  -  0  ̂ t - o 

we have

w  -  -if I" - .

« 9 )Y-l 3



Eliminating To

AU =  -
gao Y- 1
Y -1 3-y

equation (59) may be written,
3-Y

.(60)

Therefore the speed of the piston is.

Y-/
Y-f

a(Y-j)
(61)

From equation (61) it is clear that 1/ can never 
attain the value ,2ûo ( y 0 'provided y < 3 which it is 
for all real gases. Consequently in a gas in which 
there is an interaction between the molecules of the 
gas, the final flow speed obtained by the leading 
wave front will be less than 2do(y - 0 in the case of 
free flow. The amount by which it will be less will 
be small for a very tenuous gas such as exists under 
astrophysical conditions.

This type of approach to the problem of a 
freely expanding gas allows us to examine, in a 
simple if approximate way, how a real gas will behave, 
since the solution of Love and Pidduck transforms into 
Burgers' solution by letting M  tend to zero.
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A model for a freely expanding gas.

The method of solution developed for 
Lagrange's ballistic problem may be used in order to 
construct a simple model of a freely expanding gas.
In this model we again suppose that the gas is perfect

We suppose that the piston is replaced by
(part of the expanding gas, i.e. we suppose that the 

gas composing the leading edge of the expanding gas is 
being pushed by the remainder of the gas. The density 
of the gas in the leading edge is continually
changing. The first stage in the problem is to decide
hov7 the density will change with the flow speed.

If we assume that the expansion is taking 
place as a simple wave, we may suppose that the
conditions at the leading edge can be described by a
single Riemann Invariant. If the simple wave is 
proceeding from right to left then f  is constant.
We can derive a relation for the density from f  

using the adiabatic lav/ (equation (22)). The 
Riemann invariant T is,

2 d  _  2 d

Hence,
y-l Y-l

p =  . (62a)

^ • (62b)
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Suppose now that the leading unit volume of gas is being 
pushed along by the remainder of the gas. Then its 
equation of motion will be

p M .  
/  dt

(63)

where p  is the density of the leading unit volume 
of gas and ^ is the pressure on it. In equation 
(65) denotes the speed of the leading unit volume

Substituting for p  , jb from equations (62) 
allows us to integrate the equation of motion,

dV-

-

I.e. 'V

_L
A

M
A

dt

y

»h.noe, V  -  1Got (64)

-IThis result for i/" shows that since 2y (y — i) is 
small { < 1 0 -fot Vi - Y ^3) the final speed is 
attained very rapidly (less than 1 sec.if O.0 is 
10^ cm.secl^ for example).

The model shows that if CLo is large the 
final speed is rapidly attained. However, this result
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is approximate since the situation v/ill not exist in 
practice. We have assumed that the expansion may be 
described by a simple wave for which a Riemann invariant 
is constant and in the general free flow problem this 
will not be the case. It does represent a model v/hich 
tries to take into account the fact that the density 
of the gas does not vanish immediately on the gas- 
vacuum interface. Its use lies in the fact that it 
shows that Burgers* approximation was a good one 
because the final flov/ speed is rapidly approached and 
it is conceivable that the density will vary in a 
manner not far different from that assumed.
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Section 5* The expansion of a fully ionised 
_______ gas into vacuum.________

We shall consider a fully ionised gas which 
is composed of protons and electrons. The electrons 
and protons composing the gas will not be assumed to 
be in thermal equilibrium. The expansion of a fully 
ionised gas is a more complicated problem than the 
corresponding one already discussed for a monatomic 
gas. The complications arise from the fact that the 
protons and electrons can interact with each other 
and with external fields.

We shall attempt to find a solution to the 
problem for a set of special circumstances. These 
special conditions relate the problem to that 
discussed in Section 1 where the expansion of a fully 
ionised gas into a vacuum was regarded as the 
limiting case of the compression of a cool gas by a 
hot gas under gross pressure differences. The general 
problem of the free expansion of a fully ionised gas 
into vacuum will not be attempted.

The boundary region between the 
hot and cool gases.

To make the problem specific we shall consider
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that the conditions discussed in Section 1 apply, 
namely that the hot gas has an electron temperature of 
lo'̂  ^K,while the cool gas has a temperature of 10*̂
Since electrons have a greater velocity than protons 
in general (this will be so unless the electron 
temperature is about a factor of 2000 less than the 
proton tanperature), they will tend to move away from 
the protons at any free boundary. In the case of the 
boundary between the hot and cool gases more electrons 
from the hot gas will move into the cool gas than 
return from the cool gas into the hot gas. This 
initial movement on removal of the barrier between the 
two regions is caused in two ways. In the first place

i

the hot electrons move faster than the cool electrons 
and in the second place they are pushed by the 
pressure difference between the hot and cool gas.
This movement of charge from the hot region to the cool 
one cannot continue indefinitely, since it would 
result in large scale charge separation, the cool gas 
becoming negatively charged and the hot gas positively 
charged. This would lead to the build up of large 
scale electrical forces. We therefore make the 
assumption that neutrality is strictly maintained in 
both the hot and cool gases. These assumptions need 
not apply to the boundary layer however. We shall



describe a mechanism, which may operate within the 
boundary layer tending to maintain neutrality.

In the boundary layer we expect an excess of 
negative charge on the cool side and an excess of 
positive charge on the hot side of the layer. This 
space charge is assumed to limit itself when the 
negatively charged region can produce a field which 
will prevent the further escape of electrons from the 
hot gas. On this view the negative charge is built up 
by the escape of electrons from the hot gas. The 
negative space charge region is assisted in maintaining 
itself by the change of resistivity encountered on 
crossing the boundary. Electrons crossing the 
boundary from the hot gas to the cool gas find that 
the electrical resistance of the cool gas is about 
1000 times greater than the electrical resistance of 
the hot gas. This follows since the resistivity of a 
fully ionised gas has been shown to depend on Tç 
(e.g. see Spitzer (1956)) where 7̂  is the electron 
temperature. Therefore electrons crossing from the 
hot gas to the cool one are slowed down not only by 
the electric field due to charge separation, but also 
by meeting an increased resistivity. This resistivity 
effect would not apply to a freely expanding fully 
ionised gas.



It may be objected that such a space charge 
region would decay rapidly as would be deduced from tie 
relaxation time for the decay of space charge, 
calculated from Maxwell*s equations. However, the 
space charge with which we are concerned is not a static 
phenomenon. Due to the fact that the hot region is 
compressing the cool region the boundary separating 
the two regions will be continually advancing.
Therefore, the space charge region in the boundary 
layer will be continually replenished by fresh electrons 
from the hot gas. We can however determine 
approximately the amount of negative charge which 
would exist in the boundary region if the input of 
charge from the hot gas was exactly balanced by the 
rate at which the space charge decayed. If N  

denotes the amount of charge continuously present in 
the space charge region then the rate at which charge 
decays is,

^ < T C N  , (65)

from Maxwell * s equations, where CT is the 
conductivity of the gas, c is the velocity of 
light and K is the dielectric constant. The rate 
at which charge is entering the region is,

. (66)



i p .

where 77 is the density of the electrons in the hot 
gas and C is their mean thermal speed. In actual 
fact C should be the speed of the electrons relative
to the compression front, but since the speed of 
advance of the compression front is slow compared with 
the speed of the electrons the error is negligible. 
Equating expressions (65) and (66) for a unit volume 
we have,

/V =  , (67)
Ib TTT  C

for the density of the negative space charge. The 
conductivity may be calculated from the expression for 
the resistivity given by Spitzer (1956) which is

•11 =  6 e.m.u.. (68)
• t

where dj is the resistivity and A has been 
defined in Section 1. Assuming that the relevant 
electron temperature is 10^ K̂., then mailing use of 
Table XI we have that.

yj =  S YS e.m.u. ,

so that the conductivity is 1.4-5. 10""̂  e.m.u.
Assuming that 77 is 10“5 electrons cml^ the space
charge density is 1.4-4-. 10”  ̂electrons cm P if K is 
unity. This represents the number of excess electrons
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permanently^^space charge region. Although we speak of 
a permanent space charge region we do not imply that it 
is always composed of the same electrons.

We must now investigate the extent of the 
space charge region, which would be required to prevent 
loss of electrons from the hot gas. In the calculation 
which follows we shall use the above value for the 
space charge density and we note here that a lower 
value for the conductivity (corresponding to a lower 
temperature) would increase the space charge density. 
Therefore the size of the region which we shall compute 
will be its maximum value.

The Size of the space charge region.

In order to determine the approximate size of 
the space charge region we shall make use of an 
argument used by Spitzer (1956). We suppose that the 
flow of charge takes place along the % -axis. We 
want to know the extent of a region composed of 
negative charges which will produce a field, such that 
further negative charges entering the field will be 
stopped by it.

In this calculation we shall suppose that the 
only charge which is effective in stopping the 
electrons is the space charge, i.e. we now neglect any
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effects from the electrons and protons of the cool gas. 
We further suppose that the density of the space charge 
is uniform. Then from Poisson*s equation the electro
static potential V of the negatively charged region 
is given by,

where A/ is the density of the space charge determined 
from equation (67)* Integration of equation (69) 
assuming that the electric field vanishes for v - o , 
(this will be only approximately satisfied in practice) 
gives,

V Vo =  17TNecx\ (70)

where V = V© at % - O . Therefore in crossing a 
region whose width is x , a change of i i r H e c ' x . ^  

occurs in the electrostatic potential. For an electron 
moving along the x - axis into the negative region 
equation (70) measures the loss of energy suffered by 
the electron in moving distance x . We shall find 
the distance ^  which the electron must travel 
before it loses all its kinetic energy. We find this 
distance rather than that required for the electron to 
lose its kinetic energy in the x- direction, since 
collisions may randomise the motion of the escaping
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electron. Therefore the value of ^  is found by 
equating the mean kinetic energy of the electrons with 
the energy lost in moving a distance ,

■| feTe =  I T  N

Using a similar argument Spitzer (1956) 
deduced a slightly different value for is
called the Debye Shielding Distance and Spitzer 
showed that while its precise applicability for fully 
ionised gases is obscure, it represents the distance 
over v/hich a fully ionised gas can depart appreciably 
from neutrality.

We interpret the value of 'fi as defined by 
equation (71) to be the extent of the negative space 
charge region separating the hot from the cool gas.
Taking %  = 10^ and N = 1.44. 10"^ electrons cml"̂
the value of ^  is 5.15. 10^ cm. This is a small 
distance compared vd th other lengths of interest in 
the problem of galaxy formation.

This discussion has shown that if the decay 
of space charge is offset by replenishment with fresh 
charge only a small departure from neutrality would be 
required over a small region, in order to preserve
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neutrality in the hot gas.
The calculations are only approximate, but 

they do serve as an order of magnitude indication of 
the relevant quantities. The amount of space charge 
required is only about 10 percent of the electron 
density in the hot gas in addition to the electron 
density already present. The assumption that rigorous 
neutrality is preserved in the hot gas may therefore 
be justified in a tentative manner on these grounds.

This justification only applies to the model 
we have considered. We have assumed that the hot gas 
is pushing a cooler gas and we have developed a model 
of the boundary which leans on this assumption, since

ithe cool gas iS invoked to assist the prevention of 
electron escape from the hot gas. The conditions which 
should apply to the free expansion of a fully ionised 
gas into a vacuum are not clear, but we expect that 
the conditions at the boundary v/ill not be very far 
different from those discussed. Their precise evaluation 
will however be much more complicated.

The expansion of a fully ionised gas 
assuming neutrality.

We shall now consider the expansion of a fully
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ionised gas into a vacuum assuming that there is no 
charge separation. The maintainance of neutrality may 
be regarded as being a result of the formation and 
continuous renewal of a space charge region ahead of 
the expanding gas.

Since it is assumed that the fully ionised 
gas is neutral and no magnetic fields are present the 
problem may be treated as a hydrodynamical problem for 
a binary gas mixture. However, the effect of the 
electric field due to the space charge will be 
retained in the equation expressing momentum 
conservation.

In our treatment of the problem we assume that 
there is no magnetic field present so that we may write 
the equations of conservation of momentum for the 
protons and electrons as,

-  Yh ^ . (72)

~ Yte  ̂ ' (75)

following Spitzer (1956) where the subscript I 

denotes the protons and a subscript ^ denotes the . 
electrons, 'tn is the mass of a particle, E is 
the electric field, ^  is the flow speed, ^ is 
the pressure and P is a term governing the proton-
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electron interaction. *P-e , Pet are equal and 
opposite.

Since we are assuming that no separation of 
the charges occurs, the electrons and protons will have 
the same flow speed which we denote by tt . We 
consider only flow of the gas parallel to the X-axis.
If the gas is flowing parallel to the x - axis then

/
the electric field E will be parallel to the 
X -  axis by symmetry if E is assumed to arise in the 
space charge layer, which we have supposed necessary 
to maintain neutrality. The equations (72) and (75) 
then become,

“ f l  -  ^  "4)

♦ “S  -   ̂ (75)

The equation of continuity for the electrons is,

■ t  -  - i i M .

with a similar equation for the protons (in which 
replaces He ) •

Adding equations (74) and (75) we obtain

(HiWc + == - ̂  4  + > (77)
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since and Tec are equal and opposite and using,
the result that He • Subtracting equations (74)
and (75) we obtain

~ fe) * i - ^ E  + 2'Pç.(78)

We now make the further assumption that the 
proton gas and the electron gas each separately obey 
the adiabatic law. This may be justified since the 
interaction between the protons and the electrons
is so very weak under the conditions assumed. This is 
equivalent to assuming that the gas expands in the 
same way as a gas containing two atomic species, 
which do interact in any way. The presence of the 
external field is assumed not to affect this 
assumption. Therefore we may write.

Kip} —  ; a] =  pl‘ ~'. (79)

=  Ke^ =  (Kglfle )'Mf ) Q.g pg , (80)

where K,y constants and CL is the sound speed.
Using equations (79) and (80) in equation (77)

we obtain

“ «1 -  - f t * ' #



Since the gas is neutral Hi ' 7)^ and we may write

-^ =  :Wi. =  p ^  o (82)
>  fî. ^ ' a.

Using equation (82) in equation (81) we obtain

We now define a new quantity (X such that,

ltd. p ^ b  . , ,'/a

a -

Substituting for de in equation (85) we obtain

Substituting for 11̂ in equation (76) in terms of CXe 

gives

fjWh, +. yMf) _ _ÜL ,
àt- ax I ax

and replacing d* by CL gives -

^ + a M. =  o . (86)Yg-I at Ye" I )x

If equations (85) and (86) are compared with
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equations (26), (2 7) for a monatomic gas, it is clear 
that the equations for a filly ionised gas may be 
reduced to those for a monatomic gas provided the gas 
remains neutral.

The problem of the expansion of a fully ionised 
gas into a vacuum has now been solved, since we have 
reduced the equations of motion to those for the 
expansion of a monatomic gas. The final speed of 
expansion will be Id©(Ye" where CLq is some initial 
value o f  CL . We therefore identify û v/ith the 
speed of sound in a fully ionised gas.

It is more usual to express CL in terms of 
the kinetic temperature. We must therefore evaluate ?

n :
and "R ,

p =  -/2L. =  Æk ,
TJe

_  di Yi~n W e
d-e YgTe T)i

Therefore
Yglè + yI-i . (87)

Q* =  fe -Wi + Wp

In the case in which we are interested l e  »  7ï]ç

so that

Yebi; . (88)

In this case the sound speed is such that the electron
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temperature must be associated with the protons. 
Therefore in a fully ionised gas which is far from 
thermal equilibrium the sound speed înust be defined so 
that the electron temperature is associated with the 
protons. This result is not unexpected, since the 
speed of the sound wave generated by positive ion 
oscillations will also be given by equation (88) under 
similar conditions, as was shown by Spitzer (1956).

It may be shown from equation (78) using 
equation (77) to eliminate the flow speed that the 
electric field is given by

where H - He and T(e has been neglected.
Spitzer (1956) interprets this result by supposing 
that the electric field present must almost cancel the 
electron pressure gradient and transmits to the protons 
the force associated with the electron pressure 
gradient. Returning to our space charge hypothesis 
this means that the space charge field acts as a brake 
on the electrons and as an accelerator for the protons.

The values for v Y.•c *

Since the proton-electron interaction is very



weak the period between collisions v/ill be very long. 
The pressure is non-isotropic so that the motion is 
essentially one dimensional as far as velocity space 
is concerned. This argument applies both to the 
electrons and to the protons. The specific heat of a 
gas may be defined in terms of the number of degrees 
of freedom possessed by the gas. Let 5 be the 
number of degrees of freedom possessed by the gas then,

Y =  2 O -  (90)

For a fully ionised gas there are no internal 
degrees of freedom to consider. Since the interaction 
between the protons and electrons is weak and the 
motion is one dimensional ^  -  I so that Ye “ Yi “ 
for an ionised gas.

If randomising collisions did occur the value 
of ^ would be three giving = %  as for a
monatomic gas. However, under the conditions assumed 
in Section 1 randomising collisions are unlikely. We 
therefore conclude that an initially uniform semi
infinite fully ionised gas would expand into a vacuum 
with the initial sound speed.
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Discussion.

The work in this section implies that the hot 
gas would compress the cool gas, of Hoyle * s (1958) 
model for galaxy formation, at speeds which would be 
nearly that of the sound speed in the hot gas. This 
would mean that some stages of the compression under 
gross pressure differences would proceed more rapidly 
than has been assumed by Hoyle with the consequence 
that larger dynamical motions would be built up in 
the gas than has been supposed by Hoyle. However, 
before this problem can be definitely settled the 
problem of what happens when one fully ionised gas is 
compressing another would have to be solved for a 
.vaiiefcy of circumstances. The case discussed here is 
only the limiting case for gross pressure differences.

The problem discussed in this section does 
not attempt to include the solution for the free 
expansion of a fully ionised gas. The present problem 
confines its attention to the expansion of the gas, 
when the gas is assumed to be neutral at all times.

A mechanism is suggested whereby the gas may 
be maintained neutral by supposing that a space charge 
region exists ahead of the expanding front. While 
recognising that this space charge region is
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continually being renewed since the front is always 
moving into it, we can show by a quasi-static model of 
the region that it does not demand much excess charge 
to effectively prevent further electrons from leaving 
the gas. The space charge region was also shown to be 
small compared with other dimensions of interest.

The problem of the freely expanding fully 
ionised gas in principle should be similar to this. 
However, it is by no means clear if such a space charge 
region could exist. Electrons might escape from the 
space charge region and run away from the expanding 
cloud. A much more detailed analysis of the problem 
would be required, both from the atomic point of view 
and from the magnetohydrodynamical point of view. It 
may even be that the atomic point of view is misleading.

No attempt has been made here to include 
magnetic fields and the expansion has been supposed to 
talce place in some region free of magnetic fields.
The presence of these fields would act as a slowing 
down agent tending to drag the charged particles back. 
This clearly would be of the greatest importance in 
Hoyle * s model where magnetic forces may act as a means 
of dissipating excess energy.
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Summary

This chapter has reviewed the fundamental 
equations for expansion waves and considered the 
previous solutions obtained for the expansion of a 
monatomic gas into a vacuum. It was shown that the 
final speed of expansion is associated with the 
complete rarefaction of the gas.

Consideration of Lagrange’s ballistic problem 
showed that not only could a solution for the free 
expansion of the gas be obtained vhLth a simpler 
analysis, but the effects of the departure of the gas 
from being a perfect gas could also be investigated.
An approximate model of the free expansion of a gas was 
then investigated and it was shown that the final speed 
of expansion is approached very closely a short time 
after the start of the motion.

The expansion of a fully ionised gas was 
discussed assuming that the gas remained neutral. A 
mechanism was suggested whereby the gas, under suitable 
conditions, could be maintained neutral. Under these 
conditions it was shown that the problem of the 
expansion of a fully ionised gas reduced to that of a 
monatomic gas already discussed. In deriving the 
equations of motion for the fully ionised gas an
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expression was found for the speed of sound in the gas. 
This expression showed that if the electron temperature 
greatly exceeded the proton temperature the former 
characterised the speed of sound in the fully ionised 
gas.
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Chapter IV

The Rotation of Galaxies.
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Introduction.

In this chapter the rotation of galaxies is 
considered in an elementary fashion. It is supposed 
that the rotation of the galaxy is produced by the 
action of a non-uniform gravitational field on an 
irregular condensation which ultimately forms the 
galaxy.

This problem has been treated by Hoyle in a 
general way and we first review his work. We then 
examine a specific model in order to make Hoyle’s 
discussion more definite. We considered a gas cloud 
which is shaped like a dumb-bell in which the two 
masses are equal and each contains half the mass of 
the resulting galaxy.

The results of the calculations based on this
model account for the broad features of the observed
results. However, the values obtained are maximum
values and any dissipative process will tend to
diminish the values obtained for the angular velocities
The results indicate that the angular velocity of a
galaxy is dependent on the gravitational field in
which it was formed. However, the results do not
predict any variation of angular velocity with the mass
of the proto galaxy to the order of the approximation 
to which they were taken. Furthermore no account
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can be taken of the recently observed high rotational 
speed of the central nucleus of our own galaxy.
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Section !• Hoyle’s theory for galaxy 
_______ rotation._______

Hoyle (1951) suggested that the angular 
momentum of a galaxy could he accounted for by 
supposing that the galaxy condensed from an initially 
irregular cloud situated in a non-uniform gravitational 
field. As the cloud is in a non-uniform field it 
would be acted upon by a couple, which would produce 
the angular motion. In order to apply this idea Hoyle 
assumed that the initial stages of the condensation 
occupied most of the time available for condensation, 
the final stages taking place comparatively rapidly.

Hoyle takes the condensation time to be 
 ̂ ^ where p  is the initial density of the
cloud and is the gravitational constant. This is 
the time for contraction under Newtonian forces.
Hoyle assumes that the cloud remains irregular for 
approximately the whole of this time. An origin of 
coordinates is taken at the centre of mass of the 
irregular cloud and then principal axes are defined 
for the cloud. The cloud will have moments of inertia 
A, B, C respectively about these axes and in general 
these moments of inertia will not be the same. Hoyle 
supposes that the non-uniform gravitational field is



produced by the surrounding pre-existing galaxies and 
that for the purposes of mathematical treatment the 
field may be supposed due to a single point mass M  
distant d from the centre of mass of the cloud. The 
value of d is supposed to be very much larger than 
the initial radius R of the cloud. The components 
of the couple acting on the cloud are,

- ( (6 -c)w-n , (c - F t)'nf, (fl - e)/wj , (1)

where sn, 41 are the direction cosines of the line 
joining M to the mass centre of the cloud. The 
result expressed in (1) has been derived by Milne (1948) 
in a very compact vector form.

From the form of (1) it is clear that the 
couple vanishes when A = B - C i.e. when the gas 
cloud has become spherical in shape. Therefore the 
moments of inertia must be computed at the start of 
the condensation process when the cloud is non- 
spherical. The magnitude of the angular velocity 
produced by this couple, Hoyle takes to be given by 
the product of the condensation time and the largest 
couple component, which is denoted by 3M(^xd 
The angular velocity is therefore.

 i Ÿ  ■ (2)
d
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This result is obtained by integrating the usual 
angular equation of motion assuming that the couple and 
moment of inertia remain constant throughout.

Once the radius of the condensation has 
become very much smaller than the initial radius R 
the angular momentum will become essentially constant, 
since the couple acting on the condensation will have 
almost vanished. However, as the condensation 
decreases in radius the angular velocity will increase. 
Hoyle therefore makes the assumption that the 
condensing cloud acquires most of its angular momentum 
when the cloud still has its initial dimensions and 
thereafter angular momentum is conserved. If the final 
radius of the condensed cloud is f  the final angular 
velocity Q  possessed by the cloud will be.

G  =

since the angular velocity increases as the inverse 
square of the radius.

Hoyle then makes the additional assumption 
that in the final state of the condensed cloud the 
angular and gravitational energies will be of the 
same order, so that

to- -  ^  . (4)
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where W is the mass of the condensation. But,

w  =  . (5)

Eliminating from equation (5) by means of
equations (4) and (5), the expression for the angular 
velocity becomes,

«  =

In order to find a value k>r Cl Hoyle has 
to find some suitable value for the gravitational 
field producing the couple. Instead of using the
nearest neighbour approximation for M and d ,
he notes that the field galaxies in general have 
peculiar velocities of the order of 200 km.sec""̂ .
These peculiar velocities he assigns to the effects 
of large scale irregularities in the distribution of 
the intergalactic material. Consequently, by setting 
the gravitational energy per unit mass possessed by a 
mass M  equal to the square of the peculiar 
velocity. Hoyle eliminates tA and obtains

Q  c . (7)

Hoyle then considered some numerical consequencies of
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equation (?)• He chooses the value of % to lie in 
the range o-IO < X  ̂ 0*33 and two types of density 
region were considered. In the first type of region 
the density is taken to be 10"̂ '̂  gm.cm~^, while in the 
second type of region the gas density is taken to be 
10“^^ gm.cm'"̂ . The latter value is assumed to be more 
appropriate for galaxies forming in large clusters.
For the low density region,

Q = 10-'  ̂ ^ec:' , (8a)

while in the high density region,

0 ^  ! o ' ^  X ' ^  ydec'! (8b)

If X  has a value 0.35 equation (8a) gives an 
angular velocity of approximately 5-10"^^ sec” .̂ The 
angular velocity of our own galaxy is about 10"^^sec~^.

From equation (5) it can also be concluded 
that if two galaxies have comparable masses, the 
galaxy which has a low angular velocity has a large 
radius and the galaxy which has a large angular 
velocity has a small radius. Further, equations (8a) 
and (8b) together suggest that cluster galaxies should 
have systemmatically higher angular velocities than 
field galaxies. Hence cluster galaxies should be more 
condensed than field galaxies.

The values obtained by Hoyle for the angular
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velocities are so very near the observed values that 
it was thought desirable to examine Hoyle’s hypothesis 
by choosing a particular model for the initial 
irregular cloud. Consequently any discussion of Hoyle’s 
hypothesis is deferred until Section 5.
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Section 2. The dumb-bell model for
galaxy rotation.__

We now develop the ideas put forward by Hoyle 
in terms of a specific model. We suppose that the 
irregular cloud may be regarded as a dumb-bell. The 
mass of the dumb-bell is assumed to be divided into 
two equal parts which are separated by a constant 
distance 2 ̂  . The mathematical treatment of the 
problem will not take into account the gravitational 
interaction of the two masses comprising the dumb-bell, 
though the effect of decreasing the separation of the 
two masses will be discussed. For the sake of 
simplicity it will be assumed that the masses composing 
the dumb-bell and the mass producing the non-uniform 
gravitational field are all in the same plane.

This problem is similar to one recently 
discussed by Synge (1959). Synge considered the 
motion of a pendulum attached to a satellite moving 
in orbit around the earth. Our present problem differs 
from that discussed by Synge, since the dumb-bell is 
not necessarily moving in a closed orbit and we are 
concerned here only with the motion of the dumb-bell 
about its centre of mass.



The motion of the dumb-bell about its 
centre of mass.

The system considered is sketched in Figure 1 • 
The non-uniform field is assumed to be produced by a 
point source of mass M distant R from the centre 
of mass Q of the dumb-bell. The dumb-bell is 
composed of two equal masses ^  separated by a 
constant distance 2 / . The centre of mass ^ of
the dumb-bell is therefore midway between the two 
masses 'ÏÏï . The angle between the line joining the 
masses of the dumb-bell and is 6

The mass M attracts the masses 'W , but 
since in general one of the masses 171 will be nearer 
the mass than the other, there will be a
resultant moment about Q . The resultant couple 
about anticlockwise is,

_ 4. - C l  -i-2^CosB

If terms in /R  are neglected in the expansion of 
equation (9) the equation of motion for the motion of 
the dumb-bell about the mass centre Q becomes,

----- g (10)



M

Pleure /.



The equation would also hold if the masses 177 attracted 
one another - ^  would then vary with time. We are
assuming however, that ^ is constant so that 
equation (10) may be written,

ë + =  0. (11)

Equation (11) is the equation of motion for a simple 
pendulum. If the dumb-bell moves such that © is 
always small the period of oscillation of the dumb-bell 
will be,

^  ■

If the solution of equation (11) is taken to higher 
orders of approximation the value of the period will be 
increased. Equation (11) shows that the period of the 
dumb-bell depends only on the parameters M and R 
determining the external field. In fact in the 
expansion of equation (9) the terms in ^  I cancel, 
so that our approximation only neglects terms in ^  

and higher powers. This suggests that if the rotation 
of the galaxies is a property of the gravitational 
field during the initial stages of their condensation, 
then the periods of rotation of the galaxies ought not 
to be very dependent upon the mass of the actual galaxy.



It would also indicate that a distinction could be made 
between galaxies that were formed under crowded 
conditions and those that were not.

Solving equation (11) for small B we obtain

6 =  Rs/7?(^ft + Bcos(^îl , (13)

where A are constants. Assuming that B - for
t = 0 and 6 * 0  for t = then fl is zero and 3

is equal to 2. . Hence the maximum angular velocity
that can be generated under these circumstances is

U) =  JLl . (14)
^ I / T

This value of CO has been derived from equation (15)? 
which is true only for small angles, while A^ 3 have 
been determined for finite angles. However, the error 
introduced is not very large. The calculations can 
therefore only be correct to within an order of 
magnitude. If the galaxy is to acquire maximum angular 
momentum we must assume that the dumb-bell remains 
rigid until the quarter period has elapsed and then 
rapidly becomes spherical.

However, in practice the cloud will be 
condensing and so ^ will be continually decreasing. 
The couple acting on the dumb-bell will therefore



diminish as the collapse proceeds. Furthermore, since 
the period of a pendulum which moves through a finite 
angle is larger than that for a pendulum executing small 
oscillations, the angular velocity W is the maximum 
that the galaxy could obtain.

The boundary conditions used in evaluating A,B 
assume 6 = at t * 0 . If this were the case the
dumb-bell would not move, so we assume that a small 
perturbation causes a small change in 6 so allowing 
the non-uniform field to act.

We therefore assume for the rest of this 
discussion that the dumb-bell acquires the maximum 
angular velocity CO given in equation (14) before 
the gravitational collapse of the dumb-bell occurs. 
During the collapse we shall assume that the angular 
momentum is conserved.

The final angular velocity attained.

We shall use a slightly different argument to 
that used by Hoyle. The time required for two masses 

in initially separated by a distance 2 f to fall 
together from rest under their own self gravitation is.

. (15)
'' 2q w  '
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Assuming that the time for infall is of the same order 
as j j ; T  we can compute a value for -€ . This assumption 
means that the initial rate of infall is slow, but the 
final stages occur quickly. If is the initial
value of the radius of the condensation and ^ is the 
radius of the resulting galaxy, the maximum angular 
velocity which the galaxy can attain is.

Q -  u>l-4rŸ

In order to compute values for O we shall
deal with two cases. In the first case we shall assume
that only the nearest neighbouring galaxy produces the
couple on the condensation. Allen (1955) gives the

44mean mass of a galaxy as 10 gm. and we shall suppose
22that the average diameter of a galaxy is 5-10 cm,

while the mean intergalaxy distance is 5-10 cm.
Using these values we find that = T  is 1.24.10^'^ sec
and Î  is 2.2JD^^ cm. Therefore Q  is 5.8.10"^^ sec” .̂

The second model is applicable only to a
cluster of galaxies. We suppose that a galaxy forms
in a cluster of pre-existing galaxies. Allen (1955)

24states that a cluster has a mean diameter of 4.8.10 cm.
and contains on average 200 galaxies. Assuming that

24the galaxy forms at about 2.10 cm.from the centre of 
the cluster, then we may suppose that all the galaxies



within this radius affect the rotation of the condensing 
galaxy. Using these values - TT is 0.9* 10̂ "̂  sec.
and {  is 1.79* 10^^ cm. so that the final value
of Q  is 2.4. 10“^^ sec"^.

Of these two approaches the nearest neighbour 
approach gives a larger value for Q  , but both
approaches give values which are lower than the value
for our own galaxy. However, they approach the values
found by Kerr and de Vaucouleurs (1955) for the
Magellanic Clouds (5.10"^^ sec"!̂  for the Large Cloud,
5.10 sec“.̂ for the Small Cloud). The second
approach has the advantage that the value of M  can be
increased by adding intergalactic material to the
cluster so increasing the value of Q

The results obtained in this section are 
smaller than the results obtained by Hoyle. We have 
not needed to make the assumption that the rotational 
energy is of the same order as the gravitational 
energy of the galaxy.

The value of Q could be increased if the 
nearest neighbour galaxy were of more than average mass 
or if the cluster contained large amounts of 
intergalactic material.
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Section 5* Discussion

The hypothesis suggested by Hoyle requires 
that the condensing cloud which will form the galaxy 
must rotate as a rigid body at all densities. It is 
not known whether a gas cloud can rotate in this manner. 
This is the crucial test which would decide whether 
galaxies would acquire their angular momentum in this 
way or not.

However, there are other properties of a 
galaxy which may indicate whether or not the mechanism 
is valid at least for some parts of the galaxy. From 
Hoyle's analysis of the problem and from the 
mathematical treatment of a specific model, it is clear 
that the actual mass and shape of the condensing cloud 
has very little influence, within fairly broad limits, 
on the actual angular velocity which the galaxy will 
ultimately have. The major part of the angular 
velocity is determined by the gravitational field in 
which the galaxy is situated. This should have 
detectable consequences.

The angular velocities possessed by our own 
galaxy, M51 and M55 lie in the range 10""̂  ̂to 4.10"^^secl^, 
while the Magellanic Clouds have angular velocities 
5.10“^̂ , 5•10~^^sec"’̂ . The range of angular velocities
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is about a single order of magnitude, while the range 
of masses for the same galaxies covers several orders 
of magnitude. This would suggest that the mass of the 
galaxy plays little part in determining its angular 
velocity.

Furthermore, the hypothesis suggested by 
Hoyle would predict that galaxies, which were formed 
in regions in which the density of galaxies was 
greater than average, would have large .angular 
velocities. Galaxies which were formed in regions of 
low galaxy density would have small angular velocities. 
This may be the explanation of the observation by de 
Vaucouleurs (1958) that as one passes along the 
galaxy classification sequence from E7.S0 to Sc 
the period of rotation increases. If it is assumed 
that the galaxy ages are given by this sequence with 
E7 galaxies younger than Sa galaxies and so on, then 
the older galaxies (e.g. the Sc galaxies) being formed 
in less crowded conditions would rotate more slowly 
than the younger galaxies.

However, the discussion in Sections 1 and 2 
of this chapter is very approximate. The cohtraction 
of the cloud is not allowed for in the mathematical 
analysis. It would be a very difficult problem to



treat with rigour, since it would involve an 
integration in which all the parameters governing the 
dimensions of the cloud would he varying continuously.

However, the approximation that the contraction 
is slow at first is a good one, since the speed of 
contraction depends on the square root of the distance 
through which contraction has already proceeded. The 
value predicted by the theory for the angular velocity 
is a maxdmum value and the calculations of Section 2 
indicate that this mechanism may just fail to account 
for the observed velocities, except in clusters where 
the intergalactic matter may be used to increase the 
effective mass. The intergalactic material would need 
to constitute almost the entire mass of the cluster, 
while the galaxies would only have to contribute one 
percent to the cluster mass if an increase in the 
angular velocity of a factor of 10 is required. This 
is, however, about the correct proportion of free 
intergalactic material to galactic material.

Zwicky (1 9 5 7) has published some diagrams 
showing the variation of angular velocity across a 
galaxy. The inner regions of a galaxy from these 
diagrams appear to rotate as a rigid body, but this is 
not maintained in the outer regions. The rotation of 
the outer parts of a galaxy can be better explained
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in terms of Keplerian orbits. Therefore the theory 
outlined here cannot account for the rotational 
properties of the whole galaxy.

Recently there has been evidence to show that 
the central nucleus of the galaxy is rotating very 
rapidly. This is contrary to any uniform rotation 
hypothesis. Therefore, the hypothesis made by Hoyle, 
while appearing to account for some features of the 
rotation of galaxies, does not give a complete account. 
For a complete solution to the problem more 
investigation of the properties of a condensing cloud 
in a non-uniform gravitational field will be required.
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