SIMILARITY OF SETS OF MATRICES
OVER A SKEW FIELD
Ph. D. Thesis

WALTIKR SCOTT SIZoR

Redford College, University of London



ProQuest Number: 10098309

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Pro(Quest.
/ \

ProQuest 10098309
Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.
Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346



- -
ABSTRACT

This thesis looks at various gquestions in matrix theory
over skew fields. . The common thread in all these considera-
tions is the determination of an easily described form for
aiset,of‘matrices, as simultaneously upper triangular or
diagonal, for example.

The first chapter, in addition to giving some results
which prove useful in later chapters, describes the work
of P. M. Cohn on the normal form of a single matrix over
a skew field. We use these results to show that, if the
skew field D has a perfect center, then any matrix over
D is similar to a matrix with entries in a commutative
field.

The second chapter gives some results concerning com-—
mutativity, including the upper triangularizability of any
set of commuting matrices, conditions allowing the simul-
taneous diagonalization of a set of commuting diagonal-
izable matrices, and a description, over skew fields with
perfect centers, of matrices commuting with a given matrix.
We end the chapter with a consideration of the problem
of when a set of matrices over a skew field D is similar
to a set of matrices with entries in a commutative sub-
field of D.

The questions of simultaneously upper triangular-
izing and diagonalizing semigroups of matrices are con-
sidered in the third chapter. A closure operation is
defined on semigroups of matrices over a skew field, and

it is shown that a semigroup is upper triangularizable
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(diagonalizable) if and only if its closure is. Necessary
and sufficient conditions are then given for closed semi-
groups to be upper triangularizable (diagonalizable).

- The last chapter gives a few assorted results on groups
of matrices, including the simultaneous upper triangulariza- -
bility of a solvable group of unipotent matrices and a deter-
mination, for any skew field D, of those finite groups all

of whose: representations over D are diagonalizable.
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INTRODUCTION

Thé>study of'matrices over commutafive fields has béen
puréuéd b& mathematicians since the middle of the ninefeénth
century; the quaternion skew field was.first'described
before 1850, with more general skew fields being described
and studied sihce the early twentieth century; métrix fings
over skew fields, as fiﬁgs; have also been of intereét
since the eerly 1900's ([2], pp. 204-205, 200-201, 251,
252); but the study of matrices over arbitrary skew fields
represents a much newer development{ 'in”thié thesis we
look at precisely this subject.

' Many of the results in this thesis--most of chapter
2 and half of chapter L--are jﬁst ahalog&éé of well known
results from the theory of linear algebra over commuta-
tive fields. 1Indeed, many of therproofs of these results
are just adaptations of well established techniques fron
matrix theory. This is not to say that the results are
uninteresting,;howevef, for matrices over commutative
fields possess properties not shared by matrices over
skew fields, and so not all proofs, indeed not all results,
can be carried over.,

Some of the results reported in this thesis either
go beyond what was known in the case of commutative fields
or answer questions which do not make sense for matrices
over commutative fields. To the author's knowledge, the
results in chapter 3 on upper triangularizing semigroups
of matrices come in the former category. Under the latter

heading we find the treatment in chapter 4 of finite non-
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abelian groups all of whose representations are diagonal-~
izable and the results in chapter 2 on when a set of
metrlcss w111 be 81m11ar to a set of mdtrlces w1th entrles
‘1n a commutatlve fleld. N .

Detalled summarles of the contents of the varlcns» |
chapters are glven at the beglnnlng of each chapter.

All unorlg;nal work is, we trust, sufflclently cred-.
ited to its nlgntful sources; 'iﬁ pentlcular, all num-
bered 1tems were a result of the author s own work. The
author would, howeéer, 11ke to acknowledge some 111um1nat—’
ing conversatlons w1th Dr. Warrsn chks, and would par-
tlcularly llke to thunk Professor P. M. Cohn for his adv1ce

~

and enthu31asm, and especlally for encouraglna the author

FY

in hlS pursult of thls subaect.

Bedford College -
s University of London
;o ST London, England

Lo v o b . November,. 1975
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1. PRALIMINARIZES, AND THE NORMAL FORM OF A SINGLE MATRIX -

in thisvchaptef we describe éome basic reSulfs on skewA‘
fieldérandlthe similarity of:matrices’ovér skew fields,vand
give the conventions we will follbw throﬁghoﬁtAthe work.-
Many of the preliminary resuits aré due fb P. M. Cohn, and
we merely étaté'them with approp}iate réferéncés; in sohe
insfances'giving an indicatién of how they willlbe useful
in our work. - '

Throughodt, D will be_a skéw field wifh éenter ki anyr
further'fesffictions on D or k wili be stated eiplicitly.‘.
The letters E and K Will'aléo denote skew.fields, contain-‘j
ing k‘(or.ah isomorphic copy 6f k) in their centers, ;ndd
F Will déhote a commuta%ivé field Eontaining k (or an iéo;
morphic copy of k). The ring-of nxn matrices over a rihé |
R Wili be;denotéd Rn; R™ will be usedAtB denote fhe nx1
matriceé 6ver'R ("column vectoré”), a righf R-, left Rn-
module in @he natural way. ‘ ]

nMost'of'ourlintefest ﬁill be conéentféted on quéé—tw
tions of the similarity of matriceé.‘ If_xQDn we will
frequently want to show thét B»is'similar tébavset J
Of matrices with’éddiiional pfoﬁertiés; as we are always-
working over arbitréry skew'fieids, we wiil not differen-
tiate between "similar over D" and "similar over an exten-—
sion E 6f D with kgcenfer(E)", but we shall not consider
similarity over extensions which do not preserve the cen—r
ter. For'easelininotafion,twe will genérall& aésume in

.

our pfoofs that if two sets of matrices are similar over

some extension of D then we have chosen D to be large
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enough so they are in fact similar over D; our statements .
of’ our results, however, will generally elther note paren-—

thetlcally that we allow extens1ons preserv1ng the center,

Lo . M L

or else w1ll not spec1fy any reference fleld.

o

Whlle almost all the results dlscussed in thls thes1s
are expressed 1n terms of matr1ces, we make extensive use

of the fact that a matrlx represents a llnear transformatlon

with respect to a partlcular choice of ba31s, and that s1m1—

lar matrlces represent the same linear transformatlon w1th

'
Lo

respcct to dlfferent bases. e shall try to maintaln the

dlstlnctlon'between matrlces and llnear transformatlons,

however, and not use termlnology approprlate to llnear trans-

N

formatlons when referrlng to matrlces. To help malntaln the

()

dlstlnctlon we adopt the follow1ng conventlons'
1. If MeD 1s ‘a matrix, we denote by ¢M the correspondlng

linear transformatlon of D 1f ch 1s a set of matrlces,

¢8-l¢SISezi
2. If yeEnd(D") and B.ls a basis of D ’ y(w B) w111 denote

the matrlx representlng W W1th respect to B, 1f B is not ex-

Ll

pllCltly glven, u(w) w1ll be used to denote a representatlon

of y. If chnd(D ) u(ﬁ,B) u(, B>lwe2 and u<x> iu(w)lwez

We w1ll be concerned w1th matrlces over skew flelds,

and so it 1s natural we should flrst consider skew flelds

themselves.‘ Here two theorems of P. M. Cohn w111 prove ex—

tremely usefuls
Theorem A: (l3], cor. 1 to th. 6. 1, p 210) Let X be a skew
field, K (KeA) a famlly of skew flelds each contalnlng K.

Then the free product of the K. 's amalgamatlng K can be em-

A
bedded in a skew field.
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Theorem B: ([3), th. 6.3, p. 211) Let K be a skew field con-
taining isomorphic skew subfields K1, K2. Then for any iso-

morphism w:K1+K there is an extension D of K such that y

2

is induced by an inner automorphism of D. If k is the cen--
“ter of K, kgK1ﬂK2, énd.k is fixeddby ¥, then we can choose
D so that kccenter(D).

_ In;general our use of theorem B will be straightforward,
and we trust the reader will have no difficulty in inter-
préting our references to it. = Perhaps, however, an‘additiqn—
al word on a frequent context of. our use of theorem Aﬁwould
be in order. For the most part we will»have a skew field
D with center k, and a skew subfield K of D containing k. .
We will know that there is an extension E of K for which a
particular statement is true, and so by theorem A there will
be a skew field extension Do of D containing k in its.center
—--namely the universal field of fractions . _of DiE—-for which
the statement is true. .. i .

The basic starting point for considering questions of
the similarity of matrices over a skew field is the paper
by P. M. Cohn, "The Similarity Reduction of Matrices over a
Skew Field" ([5]). We briefly summarize this theory of a :
single matrix over a skew 1t'ield, as it is essential. to what
follows (all this material can be found in [5], with ref-
erences to [4]; some of our definitions of terms defined in
[4] will not be those of [4], but will be equivalent by -
propositions in [4]).

Given a matrix M=(mij)€Dn’ v=D" becomes a right D[t]

i

module under the action v-zaiti=2M Vo s veV, aieD. Then two

matrices M and N will be similar if and only if the D[t] -
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modules they define are isomorphic. -Now V is a finitely
generated modulg over the (non—commut&tive) principal ideal

domain D[t], the gquotient of the free module'i§1vib[t]Lby~'~
h T

=vit-3 m.. A : .

j—.\{)b ’::1 mi-lvl: 3 |j—1 ,--o,n}n By

results on the equivalence of matrices over a non-commutative

the module generated by {w

pid, tI-M is equivalent to a diagonal matrix S
:dlag[é1,..;,6n], where &, 1§ a total divisor of 6, ,, and
it follows that VaD[t]/61D[t]@..;eb[t]/énp{t]. Recall that
6; 1s a total divisor of éi~ means that there is an ele-

+1
ment aieD[t] with aiD[tJ=DLtJai'(an invariant element) such

that '6;|a; and a;|6, ,. An element 6eD[t] dividing an in-
variant element a is said to be bounded;-a minimal invariant
element (under the ordering of divisibility).a for which
o|a is called a bound for &. Note that 8 seessd _, are
bounded, but.,én need .not be. e .

Now D[tj/61D[tJ@..;eD[tJ/an[t] can be ‘decomposed into
a sum (1.a) D[tJ/a1D[t]@...eD[tJ/aSD[t]EV,
where each,aif i=1,..448-1, is bounded and indecomposable,
and o has no bounded non-unit factors; furthermore, the

expression (1.a) will then be unique up to isomorphism. The

ai's, i<s, are called the elementary divisors of M. If we

pick a basis of Dn corresponding to (1.a) we get a represen—
tation of ¢M as a diagonal sum of matrices
(1.n) u(¢M)=M14...4MS,. .~ where M; has elementary
divisor oy for ics.

The invariant elements of D[t] are just those associated
to polynomials in k[t]). Thus if ai”}s bounded, say with
bound pi(t), we can pick pi(t)ito.lie in k[t]. It follows -

that.pi(Mi)=O, and M; satisfies a non-zero polynomial with
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‘coefficients in k. Such a matrix-Mi:is called algebraic..
It as.is not a unit, then since o has no non-unit in-
variant factors,'it follows that for any non-zero poly-
nomial p(t)ekLtJ p(M ) is invertible. Such a matrix M

is called trdnscendentdl many examples of unexpected be-

hav1or in matrlx theory over skew fields sre a result of
Theorern Cc: ([5], cor. 1 to th. L. 2) Any ‘transcendental =
matrix is similar to a scalar matrlx, further, the diagonal
entry of the scalar matrlx can be taken to be any element
of D transcendental over Xk, S
Thus Mg in (1 b) can “be taken‘to be sealef.

We Want to £find an e331ly descrlbed form for the matrlces
M ’ 1<s, Wthh were algebralc Wlth elementary lelsors di.
An atom in DLtJ is an irreduc1ble element if aeD|t] is‘ad
bounded atom, w1th monic bound a*ek[tj, then we get an
atomic factorlzat1on a¥=g

...araa ...aq of a*. We can |

1 r42
assume by (1.A) 'that D contains a commutative splitting

field F of a*, so we get enother atomic factorizetion
a*:(t—ﬁ1).;.(t-ﬁﬁ) of a* in F|lt|, hence in D[t]. Since
atomic factorizations have the same number of factors and
a and all the ai;s have ‘degree at least 1, we see that a is”
linear—-thet.is to s&ay, we can éssume‘all‘bounded atoms in
Dlt] are linear. - o ; SR
Recall that two elements a,beD[t] are called similar
if D[tj/eDLtJuDLij/bD[tJ (since D|t] is a domain, this .

notion is equivalent‘to the notion of GL-relatedness

([u], p.>91; cor. 1, p. 125), and the latter term is used

in [5]). ©Now each a, wes indecomposable, hence a product

of similar bounded atoms. We observe that



1.¢ if_ai=(t—a1)w..(t-am)a_is an atomic.tactorization of :

o; (where aeD) then the matrix [ ; 4 O i has |
B 2 '“0 .
KR A [ O : » ,.t1. _r .
‘ a

elementary &ivisofg&i—-i.e.;‘M in (1 o) can be taKen to be

thevabove matrix: *(All the above is treated in L5J and LMJ).
NbWDSﬁppose'kJié'ﬁerrect'énd‘ai a“bouhdéa indeébmpbs;

able element of DltJ. Then T |

Liégl ’ﬁLtJ/diD[thDLtJ/BDLiJ if‘ahdJonLywif &i ahd E hévé N

the same bound (Luj, p. 231, and thévderinitioh oflsimilar).

Let pi(t)ekLtj be thg monic bound:bflai;'sihce oy is inde-
composable, Py is.é‘powér'of an invériéntvatom'([u], P. 230)
| —4i;e.,:pi=(qi)ni; Q a‘ﬁbnig irreduciblérbélynomial in‘

kLiJ. Wé‘méj assume (1.A) that D contains a coﬁmufatiﬁe

splitting“field Fl ot ql; Lét"q;(t)=(t—ci{)...(t -c, ) be
a factdriéafion 6f a; in F,. We élaim that (iféi1) i has
bound pl,.cleariy (t— 1) 1|ql .p , 80 (t- c ‘)ni‘has as

bound q. ;“mshi.‘ Then we get qy- _(t 011) 1s(t)_

J

(t.—c.,') ('t C. ij

domaln, and 80 we get (t-c

) . It is ed51¢y seen that b(t)EF LtJ, a

n} ms(t)_ Hz(t ¢y ) " Now. c,

11) ij i1

1s,not a ZEro OI the rlght hand 81de, as k is perfect, SO

A

ci1 is not a zero of‘the left hand 81de, and n ~m. By (1.¢)
the n,xn. matrlx 11.1. ¢ gz =M£ has associated module

Obla

1 (W

DLtJ/(t—c'g)nlD[tJ, by (1.a), Dm/(t- 1)niD[t]~D[tJ/a Dl t),

and it foliows that Mi is 81mllar to M' But we were only

1nterestﬂa 1n tne 51m11ar1ty class of M j*» SO we can take the

o o . L3

matrlx M'

!
A3

We picked F to be any spllttlng fleld of qy» and Ci1 .

to be any root or 4 in F13 we can take all the Fi's equal,
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say-FizF, i=1,...,5-1, and we can further assume that F con-
tains an element transcendental over k. Then by the above
we get that the matrix M we started with is similar to a.
matrix with all its entries in the commutative field F.
Further, if oy and aj have as bounds powers of the same.

k| t]-irreducible polynomial, we can take Cy1=Cyq- Thus we

get

o

Proposition 1: If D is a skew field with pertect center k, .

then any matrix'MeDn is similar to a matrix Jan, P a com-
mutative field. As matrix in Fn"J is in Jordan canonical
form, and diagonal entries of J satisfying the same k|[t]-
irreducilbe polynomial are equal. (Now using 1.C)tFurther,
there is at most one element appearing on the diagonal of
J which is transcendental over k, and no 1's appear on the
super—diagonal above_any occurence. of this eiement;

- Throughout this thesis, whenever we speak of a matrix

in normal form we mean, for matrices over skew fields with
perfect centers, a matrix having the form of the matrix J
in proposition 1; for matrices over other skew fields the
onLy difference will come in blocks where the diagonal en-
tries are purely inseparable over (and not in) k, in which
case we may no longer be able to take all diagonal entries
equal. In any case, a matrix in normal form will be upper
triangular with O's and 1's on the super~diagonal and O's.
above the super-diagonal, and at most one block with a
transcendental entry on the diagonal end that block scalar.
_Before leaving the subject of a single matrix we men-

tion another essential concept developed in ([5]) in more

detail. If MeDn, oeD, then o is called a right eigenvalue

of M if there is a non-zero vector veD®™ such that Mv=va.
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In this case v . is & right eigenvector of M. . The concepts

are similarly defined for linear transformations: if |

WEEnd(Dn), then aeD is a right eigenvalue of ¥ if -there is.

& non-zero veD" such that yv=va; such a v is called a right

eigenvector of . ' As might be expected, we have:

Theorem D: (5], prop. 2.1) If « is a right eigenvalue for

1

MeD_ (¥€End(D”)) and deD-{0f, then 4~ 'ad is & right eigen-

value for M (y¥). If a is a-right eigenvalue for MeD  and

PeGLn(D), then a is a right eigenvalue'for»P_1MP.

We now leave the theory of a single matrix, and start
looking, as we shall for the rest of this thesis, at sets
of matrices. f

ile close this chapter with a result we will have fre- . -
quent occasion to.cite; this lemma allows us to reduce the
problem of. simultaneously upper triangularizing (diagonal-
izing) an arbitrary set of matrices to that of upper tri-
angularizing (dizgonalizing) a finite set, a simplification.
which can be made over commutative fields by Just taking a
maximal lineerly independent subset.-

Lemma 2: Let iMalaemi be a set of nxn matrices over a skew

field D. . Suppose. that tor every finite subset Sca there are
an extension DS
P51MSPS is upper tfiangular (diagonal) tor each seS.  Then

there are an extension E of D and a matrix-PeGLn(E) such that
1

of D and a matrix PSeGLn(DS) such that.

P~ M P is upper triangular (diagonal) for all aed.
Proof: Let T=}all finite non-empty subsets of . For
SeT, -let D.,, P, be as in the hypotheses. Our object is to

S’ 78
obtain a suitable ultrafilter ¢ on T so that the skew field -

E=SQTDS/% has the.property of the conclusion. (For the defi-

nition of U D./; and the verification that E is a skew- field,
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see (|12], p. 65)).

Write & for ®(T), the power set of T. Let
¢=1A59|3XGT and A=2UeT|XgU§§. Then ¥ has the finite inter-
section property, for if 01,...,Cmet, say Ci=iUeTlXigU§,

m m )
then X1U...UXmeT and X1U...UXmeiQ1Ci, SO 12101 is non-empty.

It follows that £ is contained in an ultrafilter ¥ on T,
and we set E:SQTDS/Z.

We have a natural isomorphism H((Ds)n)u(HDs)n, and the
induced homorphisn (HDS)n+En. Let PO be the element of

H((Ds)n) which assumes the valuePq on the gth factor, and

let P be its image in E_;. If Q, is the element of H((Ds)n)

which assumes the value P§1 on the s factor, and Q its

image in En’ then PQ=QP=I. Let aett. We consider P—1MaP

by looking at I P! Let Z=ZSeT|Pé1MaP is

SeT™ S S
upper triangular (diagonal)f. Since 7 is an ultrafilter,
1

M Pen((Dg),).

either Ze? or the complement of Z, Z'e¥. If Ze?, P M P

is upper triangular (diagonal) and we are done; thus we want

to show Z’'g7. Let C={SeT|lafcSi{. Then Cefcy, and for 8,€Cs

Pg1MaP is upper triangular (diagonal) by the choice of
o)

So

P Thus CcZ, so CNZ’ is empty. Now Ce¥, so if Z'ef we

So°
get CNZ'=%e?, an impossibiiitx. Therefore Z'f£%, as desired.
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2o COMMUTATIVITY RESULLS .

In this chapter we concern ourselves for the most part
witix the examination of various properties of commuting ma-
trices. - We 1irst show that, as 'ls the case with matrices
over a commutative fiecld, any set of commuting matries ovér
a skew field,éan be simuftaneously upver triangularized. 1In
contrast to the case of matrices over commutative fields,
however, a set of comnuting diagbnalizable matrices cannot
necéésafily be simultaneously dizgonalized: an example is
given to illustrate this fact, and proofs are givep fo? some
special cases in which simultaneous diagonalization is possi-
ble. A turther parallel with conventional lihear algebra
appears in the description or all matrices which commute with
a given matrix over a skew field with perfect center. e
next give an example to disprove the eppéaling conjecture
that commuting matrices are similar to matriceé all of whose
entries lLie in a commutative rield, and digress to give a
necessary and suificient condition for an absolutely irre-
ducibl e sémigroap‘cf matrices to be similar to a semigrdup
with entries in a commutative field.

As inaicated, our starting point is
Theorem 1: Let iMa[QQRSQDn pe a set or commuting matrices.
Then Zmai can be simultaneously uppél triangularized (by a
similarity transformation lesaving the center of D, fixed);

"Proof: By (1.2) it surrices to take @ finite, say
M={1,.0.,m§; recall ¢M1,..;;¢Mm are the linear transforma-
tions of D corfespondlng t0 M1,..;,Mm.

" We use induction on n to show that the theorem holds in

‘ o L n
case ¢M1,---,¢Mm leave a non-trivisl subspace W of V=D~ in-
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variant: the theorem clearly holds for n=1; we assume n>1 -
and that the result is true for all n’<n; turther suppose
W is a non-trivial subspace of V let't invariant by ¢M1”"’

¢Mm. Let v1,...,v be a basis ol V such that Vyseee,V, are

n r

a basis of W. As W is non-trivial, O<r<n. With respect to
this basis, each é has the torm M’—(Ai Bi) A.eD C.eD
. My o iZ\0 Cyfs A4%Ypr ¥i€Yp pe
. \ -
Since MlMJ_Mjml,
as do the Ci's. Since O<r<n we can apnly the induction

1t tollows that the Al‘s commute pairwise,

hypothesis twice to get PeGLr(D), QeGLn_r(D) such that P—1

AiP
and,Q_1CiQ are upper triangulsr tor i=l1,...,m. Then

P-1 O-1IM'(P 0 is upper tri nvular for";1 d th

O Q i O Q pp a g X 1—' | AU ,m, an ] e

theorem is true. }
We now use induction on m. If m=1 the theorem holds
as a consequence of the cpnsidgratigns on normal form in
cnapter 1. Assume m>1 and the result is true for m-1 com-
muting matrices. Since M1 gan’be upper triangularized we
know thgt M1.has a right eigenyector. ~Let w be & right
eigenv¢¢tor of M1 corresponding to the right eigenvalue o;
then tor i=i,...,m, M1(Miw)=Mi(M1w);(Miw)q——i.e., either
MiW=0 or Miw is a right eigenveector of M1 corresponding to
the rignt eigenvalue a. Thus the space W speanned by right
eigenveqtors oI".M1 corréspondlng to a is a non-zero subspace
ot V invariant under ¢M1,...,¢Mm. Uur~consiaeration‘of in-
variant subspaces above allows us 10 assume W=V, and so V
has a basis B,qqnsistlng or right eigepvgc§ors pf M1 cor-

responding to the rignt eigenvaluc a. We express the ¢M_'s
- ° - o PR « \ . e . not l

«

with respect to this basis, and so p(¢M1,B)=a-I. Since

M1M1=M1M i=2y...,m, it follows that_a centralizes the en-

1’
tries of I%:y(¢M‘,B), i=2,...,m. Let D  be the skew subfield
: i . e
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of D.centralizing aj; then k(a)gcenter(Do), and ME"T"M; are
m-1 commuting matrices over DO, s0 the theorem follows by
inductlion on m. .
| In many future proofs we will use induction on the de-
gree of the mappices involveq to show that the result hqlds
if the corresponding linear transformations leave a non-
trivial subspace invariant. As the arguments would mimic
the one above we willi generally leave out the repetitious
details,

Theorem /1 generaiizes the result obtained for commuting
matrices over commutative I'ields, and the deOf‘lS Just a
carefﬁl adaptation of a standard proof of the usual result
(L1oJ, th. 2, p. 14) That thls approach must be pursued “
w1th cautlon is empha81zed by the follow1nc example, Wthh
contradlcts a weli Known result for matrices over a com-—
mutative tield (L16J, Th. 1, p. 12):

Example 2, of two commutlng dlagonallzdble matrlces ever a
skew flela, wnlcn cannot be 51mu1taneously dlagonallzed

~ -

Let D be a skew fleid w1th center K ana contdlnlng an

- 2

eiemunt X ernecendental over k. Then M1 (X g) ana M (g l)

are gasily seen to be transcendental_matrices, s0 are both
' diagonelizaeie by (1.C). 1t tney could be simuitaneously
diagonalized then‘MZ—M1 would be diagonalizsble; buft‘..M2—M1
is a non-zero nilpotent matrix, so cannot be diagonalized.

Therefore M, and M2 cannot be simultaneously diagonalized.

1
The difficulty encountered in example 2 is the only im-
pediment, however, as we see 1in

Prop081t10n Y Let\lMaIaeangn be a set of commuting matrices.

If every clement of kLMalaemJ (the subring of D  generated by
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iMaiuib-Ilbek}) can -be diagonalized then 1Ma§ can be simul-
taneousiy alagonalized (by a similarity transtormation-leav-
ing the center of D rixed).

Before proving proposition 3 we estapblish the following

diagonalizabliity criterion ror an algebraic matrix: Let

MeDn be an algebraic matrix. Then M 1s diagonalizable it
ana only it M satisriles & poiynomial t'(t)ek|lt] which, when
written as a product ot irreducible polynomials over k, has
no repeated factors.

only ir: Ir M is diagonallzable, M 1s similar to a

“1, O).

matrix M_= . s since M is ualgebraic, so i1s each a..
o (O *Olp,

i

Let 1, (%) ve & pound 1n k[t] of t-a;; as v-o; 1s an atom or
ULt], eacn rl(t) is an invariant atom (|4], p. 230), i.e.,
an irreducible polynomiél in klt]. MO, and hence M, satis-
ry LCM(r,)=1(t), and the irreducible factors or t are just
Tne non-associated fi‘s, hence none are repeatea.

1ri>:Let (t) pe as 1n tne hypotn651s.' Suppose M has
elementary:aivisors h1;...,Kr with bounds (in k|t]) f1(t),

...,fr(t)."Sincé r(M)=0, £, |f ror i=1,...,r. By the defi-

i
nition or eiemenzary divisors, eéch k; 1s 1lndecomposable, sd
eacn rl is a power of an irreduciple polynomial f;(t)eKLtJ.
But f has no repeated factors in k|t}, so fi=f£ is irreducible.
Then eacn-hl must pe tinear, &as the oniy'indecompoéables
bounded by an I-atom nave iengtn 1 ({4), p. 230). But then
the matrix I, obtained rrom the elementary divisors (1.c)

is diagonal and similar to M.

Proor of proposition 3: By (1.2) it suffices to con-

sider a finite set of matrices 1M1,...,Mr§. We agalin use

inauction v n, noting that the result nholds traiviaily it
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1'MJ'P is aiagonal with conjugate

diagonal entries equal; denote;P’-1

n=1. Now suppose M{:Pf
MiP by Mi. The commuta-
tivity of tne,Ml's assures us that non-conjugate diagonal

entries o M;
sum oI subspaces invariant under 1¢Mi|i=1,..;,rs, 0 in-

glve us a decomposition a p” 1nto a direct
duction on n allows us to assume M; is scalar, say M{:a-l,
Denoting by K the skew subﬁie;d of’ D centralizing a, we
nave Maeﬁn, 1=2,...,r; 1f we can show that every matrix
10 k(a)[Mé,...,MéJ is aiagonalizaple over K, we will then
be done by induction on r.

Let Mek(a}[M se++sM ], We can clear expressions 1n o
Irom the denominators of the coerriclents rrom k(a) by
multlplying oy & poiynomial p(a)ekla). We then get a ma-
Trix M':p(a)Mek[aJLMé,...,MLJ,tand M is diagonalizabie over
K ir and.oniy ir M’ is. Let M”:Q—jm’Q be in normal form over
: K.,AwritefMg_ror QiiMiQ, i=2,...,r. . Blocks of M” corre-
sponding TO non-conjugate diagonal entries give a airect sum
decomposition of i into non-trivial KLaJL¢M;,;.,,¢MPJ—
invariant subspaces, andftheiresuit follows by induction on
n, so we may assume all the diagonal entries of M” conjugate.
Ir the diagonal entries ot M” are transcendentai over k(a),
M” 1s diagonal (1in ract scalar) by our derinition 6r normadl
rorm 1n chnapter 1. Ir the diagonal entries of M" are alge-
braic ovef k(a) then they ail satlg:y the same x(a)-lrreau01-

ble polynomial g(T). Agaln we can cle;f exprebblons in o |
Irom the aéﬁomlndtors of tne coefilclents of g, and 80 we

assume q(t)ekla)lt]). Tnen we can tnink or g(M”) as an ele-
ment OI'KLGfIJLMQ,--.,M;J, s0 gq(M”) 1s similar to an eiement

or KLM1,...,MrJ'and hence diagonalizable. But by 1inspection



—P2=
n . N
(a(M”))"=0, and it tollows that q(M”)=U. By our alagonall-
\
Zapliiity criterion ana tne irreducivliLity or q(t), we con-
ciude that M” is diagonalizable over K, and the result fol-

\

LOWS Py 1nduction on r.

An interesting specisal case where we can say more is
given in

rroposition L: - Suppose k-IckeD , F a commutative rield.

Then ¥ 1s simiiar to a scatar rtield.

Proor: Since k-IcF, k|[Fl=F. We tirst want \to show
that every eiement of F is diagonalizable, and apply propo-
sition 3. Let MeF. If M is transcendental M is diagonali-
zable by (1.C). If M has an algebraic part then M has an
algebraic right eigenvalue @, and t-o heas as bound an irre-
ducible polynomial p(t)ek[t]. «.Then p(M) annihilates a non-
zero vector; but p(M)eF (éinéé k-IcF), and any non-zero
element of F is invertible. - Thﬂs'p(MX:O,'and M is diagonali-
zabl € by our diagonalizagbility criterion.

1

Let. F'=P . FP be in diagonal form. By the above para-

graph, each MeF' is either transcendental or satisfies an
irreducible polynomial in k[t]. Consequently the diagonal

entriesvmii~of M will all be conjugate; in fact, the i,i

entries of the matrices in F’' form a field isomorphic to

F, for i=1,...,n. By (1.B), there are elements xi, i=2,...,

. . o —1 —_ 2 . r
{?,-iuch that hi miihi-m11f01 all MeF. Then

2. . CQL F 112.f:>
C> Ao C) M

Looked at from a slightly different point of 'view, the

is scalar, as desired.

difficulties in example 2 arose because'(g ;) was diagonali-

zable. This phenomenon occurs. only when x is transcendental
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or purcly inseparable over ka(and‘not in k). Thus we are led
to make the following oo e ) i
Definition: . A matrix MeDn is called,separable (over k) if M
is algebraic and catisfies a polynomial f(t)ek[t] whose
-irreducible factors have no repeated roots (in any extension).
We observe: .

(a) Any matrix similar to a separable matrix is separable.
(b). A separable matrix ié.diagonalizable if ‘and only if it
satisfies a polynomial f(t)ek[t] with no repeated roots in
any splitting field. Co L ‘ L .
(¢) 1If MGDﬂ is separsble and ngn is a subspace invariant
under ¢M’ then any matrix representing,¢MIW,(the'restriction
map) will be separable. .. . . . . . _.

Proofs of (a) and (c) are immediate,. and (b) follows from our
previous dlagonalizability criterion.: We are now ready to.
prove v e S

Proposition 5: A set of commuting separable diagonalizable

matrices over a skew field D can be simultaneously diagonal-
ized (by a similarity transformation leaving the center of
D, fixed).

Proof: . By (1.2) it suffices to consider finitely many
matrices,M1,.,.,Mr. - We use,inductiontgﬁ;n; the proposition
is true for n=1, and we assume n>1'and the proposition holds
for all n’<n. If M1 has non-~conjugate right eigenvalues we
get a decomposition of o into a direct sum of proper sub-
spaces invariant under. the ¢Mi's,,and (¢). and induction on
n give us our result. Thus we may take M1 to be similer to
a scaler, matrix, say P-1M1P=azl. | Denote by M& the matrix -

1

P MiP’ i=2,...,r. AS before we restrict ourselves.to the
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- skew subfield X of D centralizing a, and observe that.
{MiigKn. It follows by the definition of separable matrices
end (b) that since Mé,...,Mé are separeble and diagonalizable
over k they are also separable and diagonalizable over the

. center of K, and the proof is completed by applying induction
to r. |

We turn now to the question of describing all matrices:
which commute with a given matrix. . We .do this only for ma-.
trices over skew fields D with perfect centers, but we start
in full generslity with

Lemma 6: . Let AeD_, BeD_, and suppose p(t)ex[t] is such that
p(A)=0 and p(B) is non-singular. Then the only nxm matrix

X such that AX=XB is the zero matrix. .

Proof: It is easily verified that p(A)X=Xp(B). Since

p(B) is non-singular, p(B)D"=D". Thus,XDm=Xp(B)Dm=p(A)XDm=O,

and it follows that X=0.

(This lemma is also a consequence of ([5], lem. 2.3), which
is much more general than the result we need).

Our next lemma concerns the solution of certain simul- -
taneous equations over a sizew field with perfect center:
Lemma 7: Let D be a skew field with perfect center k; let
aeD be algebraic over k., If X,yeD satisfy yo-oy=x, Xoa=ax,
then x=0. ..

Proof: Since xa=ax, yf(a)-f(a)y=f’'(a)x for any poly-
nemial f(t)ek[t]. In particular, if f is the minimal poly-
nomial for a, the fact that k is perfect (hence £’ (a)#0) "

forces x to be 0.

(This proof, but not the original proof of the lemma, is due

to Professor Cohn).



-25-_

We denote by Ni,the ixi matrix with 1's on the main
super—diagonal and O's elsewhere.  Then,we have
Lemms 8: Let D be & skew field with perfect center k, and
suppose oaeD is algebraic over k., Let B be an ixJj matrix-

over D such that (a-Ii+Ni)B=B(a-ijNj). ‘Then B has the form
b1 .bzti.b b_1 .b2:..bi ‘ . 1.. :.le
;";b~- if i=j, - -if j>i, and

b, * Ty
o)l o ) e o

1

s

if i>j,'Wheré4bhm=dbh‘for all h.
" proof: We prove the case i»j; -the other case is proved

similarly. Write JQ fof'a-I'+N and Jj“fdr a-Ij+Nj, and set

abf 1 ..O(b13) 1?21000;13 =j "‘ .

b- ...b
ab.1.. ab ij 011 013

B=(b,.). Then JB= (

BJj= =C

b

0 bi1"°b13 ’

. r1
i1a"’bija

for r>1. Comparing i-1,1 and i,1 entries ‘of the products,

?11a"'?1ja)+(9,?11"‘b13 y

). We first show.that b

we get b, 1a—ab 1° b —119= ab 11+b 1° By‘lémma Ts bi1=O'

Given that b =0, r»1, a similar comparison of r,1 and -

r+11

r-1,1 entries and application of the lemma shows that br1=0'
We call an entry bré’ r>s, a sub-diagonal entry. Sup-

pose ncw that all sub-diagonal entries of the first s-1°

columns'of.B;afevO, d>s$1. The sth columns of JiB and BJ.

are then QP1§+b2s and "1 OC+b1s 1 . As above,
ob, , +b. Dg1g*+Ps 1 g1
i-1s "is b
ob 'S8
\bisa =

repeated appliqations pf'lemma { show that the sub-diagonal

entries of the sth column of B. are O. By induction on s !

we conclude that all sub-diagonal entries of B are O.
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If we now compare the s,s entries of JiB and BJj we see

that.bssa=ab 8=1,¢ees]j. -We next show that all entries of

ss?

B commute with a. This statement is true for all sub-diagonal
entries and all entries b%s' Assume “it is true for all brs
with O<s-r<1-1, where O<1l<j. Consider the r,r+l entrisc of

+b_ and b

r+1r 1 ST Irr4l”

b'rr-+1 =brr+l—1—bf+1r+l’

dJd . B and BJJ, Wthh are ab o+b

rr+l rr+l-1

respectlvely. Then lettlng X= abrr+l

we see that the expression on the right commutes with o by
assumption. Setting y=b r+l? we see from lemma 7 that x_O,
which is what we wanted to snow. Inductlon on 1 gives us

brsa_ab. for r= 1,...,1 and s= 1,...,3. But we also get

O=x=b -and we see B has the form claimed in

rr4+l-1 br+1r+l’
the lemma.

The lemma motivates the foliowing'descriptive

Definition: We call a matrix B in the form described in

lemma 8 & triangularly striped matrix with entries in QD(g)
(cf. [16], pp. 26-27). |

Wp are now ready to state

Theorem 9: Let D be a skew field with perfect center, and
let A,BEDn. We know from (1.1) that A is similar to a ma-
trix in normal form, say A—P((a I+H, );...;(a I+H ))P_1, where
HieDni is a diagonal sum N(1)+...+N(;i, and the al s are non-
conjugate elements of D; further, at most one al is transcen-
dental, and if there is one sgch the correspondlng Hi is 0.

Write BbP(Bij)P—1 in block form with square blocks of dimen-—

down the diagonal. Then BA=AB if and

si X1, gees n Xn
ion n1 12 ’ s

only if B, —O for iZj, and B is divided into blocks of
dimension a xa (1<u,v<ri), each such block being a triangu-

larly striped matrix with entries in CD(ai).
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Proof: only if: 1In this direction the proof is imme-
diate from lemmas 6 and 8 for algebraic blocks and from
lemma 6 and‘by inspec£ion whenevér a transcendental block
is»involvéd. h |

| if'\ This follows from the bbséfvaiiénl(in the hotafion
of lemma 8) that 1f Blls a trlanguldrly strlped matrlx Wlth

a0

entrlec in CD(a) then B(oa-I, +1 )= (a I, +N )B.
3l

The ,compareble result for the case of a commutative field D
--identical éﬁcept for our restriction to CD(ai)—-can be
found in ([16], th. 6, p. 28).

. There is at this point the obvigusfquestion of whether
two or more commuting matrices over a skew field D with per-
fect center will be similar to matrlces w1tn entries in a
commutative field. To show that this qusstion must in gen-
eral be enswered_ in the negative, even in the case of
diagonalizable matrices, we give ;

Example 10, Qf a four generator abelian subgroup of D2,
every slement of which is diagonalizable, but which is not
similar to a group of matrices with entries in a commuta-
tive subfield of (any extension of) D.

Let D be a skew field with center k; suppose xeD is
transcendental over Xk; suppose_d1,d2eD_satisfy d1d2£d2d1,
d,x=xd; (i=1,2); let 0,1,a,bek be distinct. Take A to be

the group generated by (é 2)! (Xa1x11)’ (xaax+20 ,
KX+b a

"0 X+b
1) A is abelian, as the generators are easily sesn to com—

2)._ Then

muté. _
2) Every element of 4 is diagonalizable;, this will follow-

from (1.C) once we~shbw that every element of H except I
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is transcendental over k. Any matrix Me} will have the form
M—(xm1(x+1 )mZ(X*a)H'IB(X'*b)mu m m * n ‘m) m.€Z. '
- 0 ™M (x4+1)"2(xra) "3 (x4p) " )2 MiE L.

Let y=xm1(x+1)mz(x+a)m3(x+b)mu. Suppose p(M)v=0 where i

Al

p(t)ek[t] and O#VGDZ. If V=L%) we see that p(y)a=0, so p(y)=0;
a ‘ ‘ o

5

- r A . P : P
p(t)=a_+...+a,t". Since M is non-singular we may assume P

ir v=(%), ££0, then p(y)B=0 and p(y)=0. Wvirite

was chosen so thétiaoﬁogér.” Suppose that‘miﬁo'for’some‘fiXed
i, For ease in notation we write b1=0,7b2=1, b3=a, by =b.

If m;>0 we let R be the ring obtained by localizing k[x] at -
the prime ideal <X+bi>. We can map ‘R homomorphically onto

k by mapping x to -b;; then p(y)eR, and as p(y)=0, p(y) is
mapped to O. But by inspection p(y) is mapped tO'ao#O, a
contradiction, If mi<0,‘a similar argument using -
pf:(x+bi)-rmip(y)'gives us p'+—0 and'p'h+af£0,'a contradiction.
Thus we must have mi=0 for i=1,...,4, and it follows that M=I.
3) A is not similar to a subgroﬁp'of‘Fg; F commutative: if

J is similar to a subgroup of F,, F commutative, then by the
commutative field case of theorem 1,kﬂ is similar to an upper
triangulsar group of matrices over a commutative field F.  If
PeGLz(D) is such that P_qung and is upper triangular, then

the first column of P is a common right eigenvector of the

generators of‘4. The only such have -the form(g), 0£0, for

X+1 1
0 x+1

onalized, contrarytto*example 2. Thus the first column of

otherwiSe{grg) and ( )-I could :be simultaneously diag-

o4
0

tative field, so does oc-IP-':lﬂPOtﬂ.'I; sowe may.take P= (1) 5)’

; _[x+c T
y£0. Let B-( sl

- - "1  fn s "1
ol A ) (R (B S T e e,
4 - Y/ \o Yy xy+c |

P is of the form ( ). Now if P-lﬂP has entries in-'a commu-

) be a generator of [ (so cek). Then -
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if e,fe{0,1,d,,4,},
(%) (xpry-py xy) (xPrey-py xy)=

(xBrey-By " xy) (xB+Ty=py " xy).
First we take e=0, getting
(##)  £y(xp-By xy)=(xp-py” xy)Ly, for fe{C,1,dy,d,].
Using (**), (*) becomes (¥) fyey=eyfy, or fye=eyf for
e,fe{O,1,d1,d2§. Taking e=1 in (#) we get fy=yf for

feid1,d2}. Now we take e=d,, f=d, in (#), gstting

2

d1yd2=d2yd1; but since y£0 and diy=ydi.this reduces to

tradiction arose from our assumption that A was similar to

contradicting our choice of dy» d This con-

a group of matrices over a commutative field F, so we get

our desired result.

In a sense we should not have expected commuting ma-
trices to be similar to matrices over a commutative field,
as matrices over a commutative field are not characterized
by commutativity. : Rather, nxn{matrices over a commutative
subfield F of D are characterized by the fact that there is
a commutative subfield F-I of their centralizer in Dﬁ such
that the algebra they generate over this commutative field .
has dimension less than or equal to n2.  There might still
be problems as in example 10 with reducible semigroups, so

we express our result for absolutely irreducible semigroups

‘ofvmatrices, i.e., sub-semigroups of Dn which are irre-
ducible over all extensions of D. Then we get

Theorem 11: Let,JgDn.be an absolutely irreducible semisroup.
d is similar (over some eitension E of D) to a semigroup of
matrices with entries in a commutative field F if and only

if there is a commutative subfield F_ of Cg (f) with
: n
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(FOX:FO)snz. o

Before going on to tihe proof of theorem 11 we need a
lemma. about skew subfields of D :
Lemma 12: Let D be a skew field with center k, and suppose
K is a skew field with k-ICKcD . If;(K:centef‘K)gng then
either:- n=1 or K is reducible. .

Proof: Assume K is absolutely irreducible, and let F .
be a maximal commutative subfield of K. By proposition L,
F is similar’to a Scalap-field, say:Qf1FQ=F’tI, F;F’gp.' Let
K':Q-1KQ; K’ is also absolutely irreducible. Now let
M

=I, My,...5M, be a basis of K’ as right F'-I space. Since

1 t
(K:center K)snz, t=(K’':F')<n. Write Mi=(mi’M3)’ where mieDn.
The mi's span a D-space of dimension d<t<n. But the D-space
spanned by m,‘,...,mt is the image space under K’ of e1D

(e1 being the vector with 1 in:the first row and 0's else-

t
where)--for if MeK’', then M~.§1le -I, . eF', and.
Me1D ZM f Ie1D M. e1le-Zmif Dc<m1,...,mt>.,yFurther, this
space is K’-invariant, as h'<m{,.;.,mt>=K'K'e1D=K’e1D=

<My seeeyy>e ~As'<m1,..;,mt>#0, the irreducibility of K’
gives us that <m1,...,mt>=Dp, so tzn. But we saw that t<n, .

s0 t=n and 2m1,...,mt}.is a basis of D". .

Let PeGL (D) be such that P 1ml_e (the vector with 1

in the 1th row and O's elsewhere), and take the representa-

tion P-1 K’ P' NOte that‘ P-1 P=I=P—1 (m1 Ses o0 ,mn) ’ SO\ P=(m1 90 0 ,mn) -

We claim that P71K’PQFA. Let MyseeerM be the above F'-I:

n

3 / By — /
basis of K'.  We have MiMj-lz Ml 131 I, aijleF . Now
P‘1M1PP*1mj=P“1MiPej=the 3* column or P7Mu P; but

1 -1 st st

P M;PP mj=P—1(the 1 column of MiMj)=P-1(the 177 column

_ -1 - 1IN .th
of M« 1351 <I)=P (zmlaijl)-Zelaijle(E ). Thus the j ..
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column of P—1MiP has entries in Fj; so P

-1

-1 , .
MiPe(F )n' We also

want to verify that, for feR', P

P_1f‘IP=P—1(f-Im

£-1Pe(F') . But

grovesfeIm ); now £-Im, is the 18% column of
n

f-IM;, and since f-IM, ek’ we have f- I, = 52 1M ﬁ I, ﬁjiEF'.

Thus the first column of f~IMi is ijﬂji,:and

-1

- -1 . . -— -1 4
P 'feIP=P (f Imyseeesf Imn)_P\J(ijﬁj1,...,2mjﬁjn) =(B )eF

Prs
Now PE1K’?, being generated as a ring by P—1MiP (i=1yec.5n)

and P

F' .IP, will be contained in Fﬁ'

We can further assume by (1.A) that there is a skew
field K  isomorphic to K with F’gKOgD; thus
p g FCF c(K,) €D, . Now K is finite dimensional over its
center, so (Ko)n is a finite dimensional simple algebra. We
have isomorphic central simple subalgebras KO-I and E_1K’P
of (Kd)n’ so by the Skolem-Noether Theorem ([9], p. 99)
P_1K'P,is similar to KO-I. But KO~I is in reduced form ‘.. ..
unless n=1, so since K' was absolutely irreducible, we con-~
clude that n=1.

Proof of theorem 11: only if: Assume 3 is similar to

a semigroup of matrices over a commutative field F, say -
EFBPQ%.,mwnF:kC @ujm and (F(P~ ZP)FI)n. But
then F_=PF:IP 1 45 s commutatlve subfield of Cp (2), and

. 4 2
(FOX.PO)sn .

if: Let ggDn be an absolutely irreducible semigroup. .
Then R:kLX]@kDOP will be a ring and D® a left R-module
under the actlon,(ZaifIsiadi)v=2ai-lsivdi; the irreduci-
bility of J means Dn is an irreducible R module, so by Shur's
Lemna ([9], p.5) the commuting ring of R is a skew field.

The commuting ring of R, commuting With all elements 184,

will be a subring of Dn; comnuting with all elements s@1,
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sed, it will be contained ih,CDn(J); it is easy to see that -
the commuting ring of R is in fact CDH(J), SO CDn(3)~is a.
skew field. - ' u Lo e N

If FgCDhﬂJ) is a commutative field, then k[F] will be -
contained in a commutative subficld of CDn(g).»‘If.in addi-
tion it had been the case that (FX:F)snz,.the-sahé would
be true of the algebra over the field generated by k[F].
Thus we can and do assume that £ is an absolutely irreducible
semigroup and ¥ is a commutative subfield of CDn(A) with
k-ICF and (FS:F)<n®.

- We now show that F{ is a simple F-algebra. . Since F.J
is a finite dimensional F-algebra, its radical ;7 is a nil-
potent ideal ([9], p. 20). Because N is nilpotent, ND"£D", .
and because J{is an ideal of F.J, FIDchD”. - Thus D" is an
d~invariant subspace properly contained in Dn.«-From the
irreducibility of 4 we conclude thatTNDn=O,vwhence'ﬂ=O and
Ff is semisimple. If now £ is a non-zero ideal of R4, then
by results on the structure of finite dimensional semisimple
algebras ([9], p. 30) #=Ffe, where e is a non-zero central
idempotent. Then FAeDnﬁeFZDn=eDn;"so eD” is a non-zero jo
invariant subspace. Since £ is irreducible'eDn=Dn; then
since e is idempotent, e=I1 and ﬂ:FXInzFQ. Thus F£ is sim-
ple.

By the Wedderburn-Artin Theorem ([9], p. 48), FA=K .,
K a finite dimensional‘diviéionfalgebra. We identify FQ
with K., denoting the matrix units of K, by fij (1<i, j<e).
Thus we have KrgDn.

. We next show that r|n, say n=rs, and that there are an.

inner automorphism ¢ of Dn and an embedding W:KﬁDS'SuCh that
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we get a commutative diagram

F —K s D

(1) T o1 | |
(DS)P——--—-Dn » where the bottom isomorphism
is the obvious cne. We have a decomposition of the iden-
‘ A r
t;ty In into a sum of orthogonal idempotents, In'121f11

We use induction on r to show these can be simultaneously
diagonalized; for r=1 this is obvious. therwise we diag- .

. - —1 _(IS O - 3 —1 _ A' -Bi
onalize f11 éﬁd get P f11P‘ 0 1 Ol' Ir P .fiiP—<C§ Hi)

_ LR & S & R
and C; are zero.. The matrlces.H: will be orthogonal idem-

(i=25...,r) then since f,,f..=f..F, =0 we see that Ags By

n-sq’ and thelr sum w111 be In S1; by induction

on r we get a matrix QeGL _ (D) such that ®'1H Q is diag-

potents in D

onal‘fob-izz,...,f. Then 1t is easily secen that °

I0_ 1 (IO. . g ‘ , ‘.
(O Q )iP f P 0 Q) is diagomal for 1—1,..f,r. A further
permutation of the basis vectors will now give us a block
decomposition of Dn with r équare blocks of dimensions

) o : L » .
s1xs1, SQXSZ,..., grxsr down the dlagopal, and the fii 8
simultaneously similar to the matrices O’-;O (:) (the

O

I occurring in the jth diagonal block), say

0 ; - : ‘ : ,
1 .°0 s _ N -
S fllS:. OIO<:)» ’ 151,...,3. 7;ow fij'fiifijfjj’ S0
t > .'O

S—1fijS= C?F (7), the only non-zero block, of dimension

oo
s.xsj, occurring in the i
Also flJle fii’ fjifijzfjj’ so we see that FlJ ji Isi,

FJlFlJ Isj' Since Fij and Fji have entries in a skew field

—--but in particulasr a ring with invariant basis number ([4],

th row of blocks and the jth column,

PD.. 5=6)-~we see ‘l:hat.si:s'j for 1<i,j<r. ' In particular rln,



say n=rs.
Now K is embedded in Ds by the map W:Kmf11K f11->

D_O . . : th.
11 oS O)_Ds' The 1nner_eutomorphlsm ¢ of Dn that

we want to make diagram (1) commute is one such that.

s'r, K £, sc->(

eH fi3h+<C)I(:))(the non-zero block again appearing in the 1th
o~ sO

row of blocks and the jth

column). We claim that, with the

above notation, we can -take ¢ to be the map -

%120 oo O\, caeany ve nave £,0(01
M= ."F' S 'MS C) . ‘P -1 1; clearly we have f..hé I );
O Fir v/ T O e

' : ' I, “\(0x..0 Fy o...o"I‘_—1‘
for i>1 we have f, i"’( _F12._O Fia, 0_1
Wl O NG
Ooqto I O....O S .
= <:> e In general, f h»(C)E, O )’, and it fol-

{ o io
lows from the above remarks and the equatlons f1 f1i i3

)

(1<i, j<r) that Flg‘I’ as desired.

NOW r (K center h)<(b3 F)<n2-r282, 50 we have ﬂKcD ,
(K: center K)<s2; Also K- Iccenter (ﬂK) If WK were redu01ble
it would follow that Fz was, hence that Q was, SO we may
assume WK absolutely 1rreduc1ble. It followskfgoﬁtlemma 12
that s=1, so 7K is commutatlve, and in fact FX~K and the
above 51m11arity transformatlon o takes Fg onto the nxn ma-

trix ring over a commutatlve subfield K’ of D, K'MK

Before noting a corollary we give an example 111ustraf—
ing theorem 112 . o | _
Example _i -‘Lei b Be the skew fieid of (real)'quaterniohs,
4 the group generated by 9::((1) SJ , 9:(% S) , A:(_? 2)) If ,?‘
is not abso}utely'irreducible then»ﬂ;,y, end,4 have a com-
mon right eigen&ector w; the only fight eigenvalues of all
three matrices are primitive»foufth roots of 1, so we heve

ﬁw=wai, gw=waj, 4w=waa, oy s aj, aa:primitive fourth roots
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of 1. Then since =49, 44 4g ﬁj—-/@ we see that o,a =0_c. s

1a a’i

ajaa—a aJ, alaa——aaal. Thls_cannot happen with primitive .
fourth roots of 1 1n a skew field,‘so 3 must be absolutely.
1rredu01ble. Taking FQR[L (FX:F):M, so by theorem 11
A is 81m11ar to a semlgroun of matrices over ¢ in faqt,

13 -1 0 1 o -1\
taklng P_{ ){ we have P ‘QP‘{O,ri)"P :£P=(T O)’
- i0
P ‘4P=(O i)’ . _— SR I
‘We note as a consequence of theorem 11 a result on ex-

tending isomorphisms of simple subalgebras of Dn:

Corollary 11.1: Let A, B be isomorphic absolutely irreduci-

ble:(henqe simple) k-subalgebras of Dn of dimension less
than or.equal to n2 over their respective centers. Then -
any k-algebra isomorphism ¥:A=4B is induced by an inner auto-
morphism of £, (£ an extession of D).

Proof:  Let y:A+B be a fixed isomorphism of k-algebras.
From the proof of theorem 11, A~F »B, where F is a commuta-
tive field. Let {ey4|1<i,5<n] be the matrix units of D, and

£, 1<t 3%l, fey4=r,,¥]1<t, 5] the matrix units of A, B
'respectively; As in the proof of theorem 11, there are

-1

bmicen D . PR B ..
matrices P, QeGLn(D) with P f"P‘eij’ Q gijQ’eij’ 1<i, j<n.

1J
We have sn induced isomorphism-of subfields e11P-1APe11u

1 -1

-1 , . - _ i
e11Q_ BQe11 defined by e,,P. aPe11_P Hf11df11Ph+

g
Q 1g11 g11Q— 1Qf1a¢Qe115 by (1.B) there is an element A,
such that k (e 1aPe11)7x=e11Q_1ane11 Then we claim

that ¢‘AﬂB is induced by the inner automorphlsm’f

M=QA~ -IP 1MP?x IQ 3 for if aeA, a=2Jo, Jf 13 (where d;j

P2 4+ e o \l P £ =
and the a's and f's commute), so we have af2f11(f11aijf11)f1j,
1 -1

v_ v A To1p” "107 =854
and a‘-Zg.1(g11 i €14)8y4+ But G -IP £, PA-IQ =gy,

. -1 -1
and Q3 -IP (f11oi 44 )P 197" =Qn  +IeqqP ajsPey r-Iq =1_

A

€A,
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. R B -1_ v
(by the choice of A) Qe 49 aj 4 Qe,,Q =814% 4 Eqq° Com~-

bining, we see that Qk—1-IP-1aPK-IQ_1= -

o erp T sr )L, )PK‘IQ-1=20

LV oY
11 (T i3511 °i1(g11aij gyq)gy 4=a".

we conclude this chapter with a result describing one
additional case .in which a set of commuting matrices will

be similar to @ set of matrices over a commutative field.

Proposition 14: Let’Qgpn be a set of commuting diagonal
matrices. Then there are a commutative subfield F of (an
extension of) D and an invertible diagonal matrix P such
that P'14Pan. - _ s

Procf: We prove this proposition-by induction on n;
for n=1 we have a set of commuting elements of D which =
generate (as field) a commutative subfield of D; taking
P=1 we are done.

Assume n>1 and the result is true for n’<n. We write

0
4 in block form:; if Beﬁ, we write B:(b11 B ). We apply
1
induction on n to get subfields F1, F2 of D and diagonal
matrices P,, P, such that (P11 0-9{b1 }( )e(F1 0 )
3
1 2 O P,){0 By o. P2. 0 (F2)n_1
for all Bgﬂ.v By commutative field theory (cf. [10], ch. L,

sec. 11) we can embed isomorphic copies F! and F/

" 5 of F1, F

2)

respectively,"in & commutative field F. We identify F1 ﬁith

F;, and by (1.A) we may assume FcD.. Now F2~F2,'and Fy» FééD,
so by (1.B) there is an element A such that A 1F2X=Fé. Then

R (Z)CF as desired.

&)

Combining this result with proposition 5 we get

Corollary 1&.1:_ A set of commuting separable diagonali-
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zable matrices over a skew field D is similar to a set of

diagonal matrices with entries in a commutative subfield

F of (some extension of) D.
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3. UPPER TRIANGULARIZING AND DIAGONaLIZING

SEMIGROUPS OF MATRICES. |

+ - In the previous chapter we considered, among other
questions, the questions of upper triangularizing and:
diagonalizing sets of commuting matrices. 'In this chap-
ter we look more closely at the questions of simultane-
ously upper triangularizing and diagonalizing sets of ma-
trices, directing our attention to arbitrary semigroups
of matrices. Our approach will be divided into three
stages: first we note some necessary conditions for a -
semigroup of matrices to be simultaneously upper trian-
gularizable (diagonalizable); then we define a closure
operation XHZ* on subsemigroups of Dn and prove that a
semigroup 4 can be upper triangularized (diagonalized) if
and only if its closure 3* can be; and finally we show
that our previously noted necessary conditions are actu-
ally sufficient for a closed semigroup to be upper tri-
angdlarizable-(diagonalizable). Unfortunately, one of - -
these necessary and sufficient conditions will be that
allfsubéféups;of.ﬁ* can £e upper tfiangularized (diag-
onalized), so the utility of these results is limited by
our ability to answer the corresponding questions for -
groups. It perhaps bears pointing out, since the author
is not aware that the corresponding results were known
for matrices over commutative fields, that the theorems -
and proofs of this chapter remain valid if "skew field"
is everywhere replaced by "commutative field".

- Suppose Vv is a semigroup of matrices in upper tri-

angular form. Then the nilpotent elements of J are those -
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with all entries on the main diagonal equal to 0O, and the -

product of such an element with any other element of o

(on right or left) will again be nilpotent. Thus the nil-

potent elements of 7 form a (semigroup) ideal of j. Trivi-

ally, as J;is upper triangular, every subgroup of J is

upper triangular. Third, for an upper triangular matrix

M over a commutative field, the (right) eigenvalues of M .

are precisely the diagonal entries of M; thus for a semi-

group ? of upper triangular matrices over a commutative

field we have {(right) eigenvalues of (AB)jc - ., -

{(ab)|a a (right) eigenvalue of A, b a (right) eigenvalue

of B} for all A, B.in J. Not surprisingly, the same is true

for a semigroup of upper triangular matrices over a skew

field; this fact follows from

Lemma 1: Let T=(tij)eDn be an upper triangular matrix.

Then {right eigenvalues ofATizid-1tiidl1<i<n, deD-{0}1}.
Proof: Suppose o is a right eigenvalue of T. Let

€ys+++58, be the standard basis of D%, and let v be a right

r

eigenvector of T corresponding to a. Write v_lz1ela R
r-1 I

where .a,#0. Then 216 a;a=va=Tv=; 3, Te o +e bt o+ 3,80t o

Now for i<r Tejec€,,e.., €, ,>» We see from the above equations

r-1

and the fact that the €3 's are independent that o,0= t opr

-1
= t .
and so o= ar rrar

Suppose on the other hand that e is . conjugate to some
tii;71<i$n.a0W6'thoose i minimal such that a is conjugate

(over some extension of D) to t,., say,a:d-1tiid.. Then if

tii is algebraic over the center k of D and,j<i,_tjj;is not
a root of the k-irreducible polynomial satisfied by t,;.

It follows from ([6], th. 3.2(ii)) that the equations
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Oztjjxj_xjtii+tji have solutions for x., J=1se..,i-1. Then
-O"’;HO 1.O’;‘1O B4 X 9
TI_ . . T ". . = . . ‘ } mt
: * =X, X .0 s and T has

11-1 i-1

. 01. Yy
01 : 01‘ . st
. / nny

tii &s right e;genvélue. As.right eigenvalues are similar-
ity invariants (1.D), T has:tii as right eigenvalﬁe; as
conﬁugates of‘fight elgenvalues are fight eigenvalues (1.D),
o 1s a right eigenvalue of T.

Summarizing the discussion pfior to lemma 1 we get

Proposition 2: If a semigroup Jgpn is upper triangulari-

zable, then (i) the nilpotent elements (if any) of J form
a (semigroup) ideal of J; (ii) any subgroup of J can be
upper triangularized; and (iii) for all matrices A, Bed,
{right eigenvalues of (AB)iclabla a right eigenvalue of A,
b a right eigenvalue of B@.
Wevobserve that cohdition (iii) in many cases is a weak con-
dition: if A and B have non-central right eigenvalues then
the right hand side contains products of whole conjugacy
classes, and may in fact be all of D; however, we shall bé
interested in condition (iii) for idempotent matrices A
and B, in which case the right hand side is a subset of
{0,1}. -

Pinding necessary conditions-for a semigroup of ma-
trices to be diagonalizable is easier, and we have

Proposition 3: If a semigroup XEDﬁ can be simultaneously

diagonalized, .then (i) 4 contains no non-zero nilpotent ma-
trices; (ii) all subgroups of )4 are diagonalizable; and.
(iii) all idempotents of A are central.

The conditions of proposition 3 and a weakening of
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those in proposition 2 are sufficient for a large class of
semigroups, but to deflne this clacs .we must dlgress.
It MGDH is any mdtrlx, then we . cew in chapter 1 that

M is similar to a diagonal sum of a non-singular matrix

and a nilpotent matrix, say P—1MP=(S g}, R invertible, @

R 0.~ 0 01 o1
st o o)F s M=p(g Q)P EM'P( o? ™
At P(R ’ O}P-1. Immedlately from the deflnltlons we get

niléotént. We set AM—P(

M 0 0
the fcllowing

Proposition 4: The matrices AN,fAi, Eys N

M
~ . N w ‘2—_ . e
satléfy . | (1) _EM”EM

(2)  ayAy=Fy=Ah,
(3) AM*MzEMAM=A

just defined

o (W), A M M'E"A
(5) LNNﬁ-NMEM =0
(0)  M=A+N,
. (7) M.=AM
_(8)‘ EyM=Ay=HE .

In fact, (%) and (8) follow from (2)-(7), but we do not
need .that result. We do need to show, however, that AM’

EM’ A;, NM are independent of the matrices P, R, and Q which

we used.to define them, This fact follows from

A . 1 ' o RN oot d -
Proposition 5: If 'A., AM, Ey> 'NyeD, satisfy (1)-(8) ..

of proposition 4 then 'A =AM" AM"AM’“

[ ' —
IT’ and . Pﬁﬁ—lﬁﬂ.

Proof: We have E -(AM) (8 )._(A )“(k) -(AM) (! AM)H

. l'l‘ Il. A
(AM) (! AM) Ly—(AM) (M) E=Ey'E,. Similarly, 'EM—FM'EM

DI . =L = by L s ! =M-"! = - = .
=fe) EM EM . Then AR EMM _MM AM, Nﬁ M AM M AM Nm, and
t d '
R T

(The first part of this proof is lemma 4 of ([13])).

Since the deccmposition defined above depends only
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on M, we call A, the non-singular part of M, N, the nilpotent

M M

part of M, EM the idempotent associated to M, and Aﬁ the

relative inverse of M. (Note that M=A +Ny,.1s not a generali-

zation of the Jordan decomposition for matrices over a com-

mutative field, and Aﬁ does not correspond to the usual’

generalized inverse of a matrix over a commutative field).
In view of propositionwé'ﬁe can défine the nilpotent
and nbnﬁsingulaf partsAof a'lineér‘tfanéfbrmation ¥ b& tak-

1ng any matrlx M representlng w and settlng Nw‘¢N ’ AV é%q.,

E and A are similarly deflned

4 ¥

Because of our 1nterest in upper trlangular1z1ng ma-
trlces, we need -
Lemma 6: With the above notation, (a) M is upper triangular

if and only if both N and A are; (b) if M is upper trian-

M M .
gular, so sre EM and AM . 7
Proof': (a)f*if:"This~is;élear, as'MzNM+AM.

only if: Sﬁppose N:(mij) is upper triangular. Since
first show that there is a uni-triangular matrix Q such that

it suffices to show that.AMis upper triangular. Ve

Q" 'Ma=1’ has i,j entry O if one but not both of mygs My

are O. OSuppose j<n and

(1) for all j', 1<i'<J, mij,zo.if one but not both of my,,
mj’j' are 0. We find a unitriangular matrix T such that

1

T MT=M, satisfies,(1) with j replaced by J+1. For
i= 1,...,3 1, 1f one but not both of myys mJ'j are O we can  _
solve the equatlon O_mllxl—xl 53 mijkaP_Xi’ if both or

qelther my s mjj are 0 let xi=Q.;‘Then

My= C2x. M 5 _ has the property claimed. As
1

197" St
o™ o,

I
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our original matrix M satisfies (1) with j=2, a finite num-
ber of such steps gives us our desired matrix M’.

Now let i,s...,1, be (in ascending order) the indices

. . ] . o . . )
such that the 1j,1j entry of M’ .is O, and let Jysecvsdpp

be (in,ascending'order) the remaining indices. Let oesn be

. X T . 1..-I1—1" n-I‘+1...n
the permutation {. . . "
p (31000311-1_’ 11 ‘...._1-

the permutation matrix.correquﬁding to the transformation

‘ -1yip_|A O) A s .
ef_’eo(i)' Then P M‘P.lO B )’ where A is upper triangular

}, and let PeGL (D) be
r . n

and nonesingular and B, is upper triangular and nilpotent.

A0
Then A, =P (o 0

defined, and so (since Q is upper triangular) AM=Q-1AM,Q

)P-1 is upver triangular by the way P was

is upper triangular, as desired.
(b) In the notation of the proof of (a),

21010
Eyr=P (o 0

and so E,, and A& will be too.
M M

. -1 )
ﬁ7=P 1(A O)P,

)P is upper triangular, a§ is Ah a O‘

A subsémigroup $or Dn will be célied closed if when-
ever we have Me d, we also have Ny AM’ Ey» and ﬂ&éﬁ. Any
semigroﬁp similar to a closed semigroup will be cldsed (by
proposition 5), so we can make the analogous definition for
a semigroup of linear transformations--in‘féct, any such
semigroup will be of the form ?g’ J a subsemigroup of Dh,
and ?8 is closed if and only if {4 is éloéed. Clearly the
intersection of closed semigroups will be closed, and we . ~
get a closure operation on subsémigroups of Dn;
Xkﬂﬁ*=ﬂLJl}gjs J a closed subsemigroup of an. We can des-
cribe this closure of a semigroup of matrices explicitly;

set j;:}, and define inductively (for i>1),Ji to be the sub-

semigroup of D, generated by ji-1 and iAM; NM; EM; Ai|M€j§_1}.

Then we get
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Lemma 7: With the above notation,,d*=iﬁzéa.

Proof: Write J for ;E;Ji.

Jcf: Clearly A{gg*, and if Jig,g* then ji+1g2*. Thus
ggj* by induction on i. - | |

j?ggr It suffices to éhow that ¢ is a closed semigroup.
But as a union of a tower of subsemigroups of D, s 4 1is clear-

ly a semigroup. Further, if Med, then MEAQ for some i, soO

Ays Ny

V] ! . i } & i
N, , FM,AAMEXH1 Since ;1S4 We see that J is closed.

One desirable proPerfy of‘the closﬁre 6peratioﬁ; from
oﬁr point of view, is giveﬁ iﬁ N
Theorem 8: Let 4 be a subsemigroup‘of Dh. Then 4 can bé
upper triangularized if and oniy if 3* can be.

»‘ 23992: if: | This is cleér, as y_c_g*. |

only if: Suppose P lyp is.uﬁper triangular. By lemma
7 it suffices to show that P—ﬁA&P is upper triangular for
each ielN. For i=0 this is our assumption; if P—1Ji_1? is

upper triangular (i»1) then for any MeP—1Xi_1P, Ay Ny E

M’
and Aﬁ are all upper triangular by lemma 6. Thus the
generators of P—téiP are upper triéngular, and so P—tgiP
will be., Induction on i completes the proof.

As for diagonalizability‘ﬁe have |

Proposition 9: Let 4 be a subsemigroup of Dn. Then £ can

' ' ) *
be dizgonalized if and cnly if 4 can be.
Proof: 1if: Clear.
only if: Again, if P 8P is diagonal, it suffices to

show that P-tXiP is diagonal for all i. For i=0 this is

Lo e

our assumption. Suppose P—ﬁji_1P is diagonal, i»1, and let

M:(mij)eP_1ji_1P. Then it follows from proposition 5 that
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Q if i#J :
=40 if i=j and m, .=0; and

N, =0; A =M; E =(e..), where e,
M 1J 13 1 otherwise 11

MTT? M

AM=(aij), where aij= O—lf i=j and mii=0. These are sall

7 | ms otherwise o B

diagonal, and together they generate P-ifiP, Thus P-ing
isréiaéonai,_and fhe ?rébosition folibws by induction on iﬂ

‘Before Qoing 6n, it might bg_helpful to‘ﬁoté'that, asr
a special case, a semigroup with zero (=O)‘c$nsiéting Oﬁly
of ideﬁpotéﬁf;métrices is closed. It was thié'éxémple
which led to theorem 12. But in order to prove'fheofem 12,
where wé‘get‘é‘coﬁverse to propoSition 2 for closed semi-
groups, we shall heed two!preliminary results.b The first
of these is of some interest in itsélf:
Theorem lgfx Let J-be a semigroup of 1ineaf_transformations
of . Denote ﬁy'n the ﬁilpotenthéléments of Jand by LL\
the non-nilpotent elements of . Then 4 has an uppervtri—
angular representation if and only‘if'ﬂ’ié a (semigfoup) 7
ideal of 4 or T[is emgty, and Y has:an upper friangular
representation. ”

Proof: oﬁiy if: Clesar.

if: Suppose 7 is an ideal'of Jdor 7 is”empty} and
that it hszs an‘ﬁppéf triangular representation. Writé V for
D"; we firet show that if W is an J-invariant subspace with
quotlent space V then u‘w and uV have uppe" triangular
representatlons.” ' '

uv. Suppose B:Zv1,.;.,v ] is‘a basis of V such that
p(u,B) is upper trlangalar for all ucu. WrifP'V for
<w1,...,vi>, i=1,...,n. Let i, be minimal such that v, #—,

1
and once ij has been determined, let 1j+1ibe minimal such
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that V. #V... Then the representation of y= with respect
lj+1 lJ v
to the basiS‘{Vi1,...,vi ! is upper triangular (where r=
. r
dimV).
ulw: Let V, be as above, -i=1,...,n. Let j, be minimal

Jq-1
such that 'vj1nw,~éio§, and let fy=vy +)3,v,d, evy NW. Once

Ji=1 . X
fi=vji+1§1vldil has been selected, let 3441 be minimal such
h NWAV, NW d let ji+1—é v N

. n e . L=V 3 . €V, e
that Vg  (WAV, O, a 1417 55 12V % 0%V,

Then,representation of W W with respeét to the basis
1f1,...,fn_r} is upper triangular.

We return to the main proof and use induction on n.
If n=1 the result is cléar. Assume n»1 and the result is
true for all n'<n.
- If h is empty or N={0} then f=u or 4=tU{0} and the
theorem holds because W has an upper triangular represen-—
tation by assumption. Thus we can assume that OghV:W. By
Levitzki's Theorem” ([11], p. 135) W#V, and since 71 is an
ideal, W is a non-trivial {-invariant subspace.

The result will follow by induction on n if we can -

_ Simoltaveous

show that (1) non-nilpotents of ALN, £ have,upper tri-
angular representations, and (2) nilpdtents of JIW"iv
form an ideal. (1) follows from our opening argument and
? Iv are contained

respectively. To prove (2), let ¢!W be nil-

the fact that.the non-nilpotents of Jl
in Wy Uy
potent, and let yed. We want to show that l/f¢|w and w’w

¥
are nilpotent. If either of ¢,y come from N, this follows
from the fact that Tl iz an ideal and the restriction of a

nilpotent transformation is nilpotent, so we can assume

¥ . . . R .
Levitzki's Theorem: A semigroup of nilpotent matrices over

a skew field can be simultaneously upper triangularized.
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¢, yeW. By our opening observation and our assumption on
u, ¢lw,and w’w have a representationA%§_upper.triangular
matrices. Since ¢|W is nilpotent, its corresponding @atrix
has O's on the main diagonal, and so the matrices corre-
sponding to w¢lw and‘¢wlw are nilpotent. The‘proof of (2)4
for J= is similar. '

Vv
We digress briefly to note just two applications of

theorem 10: » ) o
Corollary 10.1: If 4 is a subsemigroup of D/ whose nil-
potent elements form an ideal and whose non-nilpotent ele-

ments commute then‘ﬂ can be_upper triangulsrized.

Recall that a unipotent matrix is a matrix of the form

I+N, N nilpotent. o
Corollary 10.2: Let F be a commutative field, 4 a subsemi-
group of Fn consisting only of unipotent and nilpotent ma-
trices. Then,j can be upper triangularized. )

Proof: First we note that the nilpotents‘of_fiform>an
ideal of J: if NeJ'is nilpotent and Sef then Nsed is sin-
gular, ThusiNS‘cannot be unipotent (unipotent matrices
are non-singular), and since every element of # is either
unipotent or nilpoteﬁt, NS must be nilpotent._ Similarly SN
is nilpoteﬁt, so the nilpotents of 4 form an ideal.

Also, the unipotents form a subsemigroup, as unipotents
are units 1in Fn’ 50 no product of unipotents in 4 could be
nilpotent. The corbllary then follows by theorem 10 and
Kolchin's Theorem' ([11], p. 100). _
| We return now to the goal of proving the converse of

proposition 2 for closed semigroups. Ve continue with

5 3
Kolchin's Theorem: A semigroup of unipotent matrices over

a commutative field can be simultaneously upper triangularized.
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Lemma 11: If § is a closed semigrdup of linear transforma-
tions of V:D? and W is an J-invariant subspace, then XIW »
and4?v are closed.

Proof: Let ¢e8; A¢, E¢, N¢, and Aﬁ'are.all in‘Xi(siﬁce
4 is closed), and satisfy (1)-(8) or proposition L. Thus
A¢‘W, E¢‘W, N¢IW, and A.!W are all in jlw and satisfy (1)-(8)
of . proposition L4, so by proposition 5 they are (respectively)

the non-singular part of ¢‘ the idempotent associated to

W’
¢IW, the nilpotent part of ¢lw, and the relative inverse of
¢|W' Thus we see that,ﬁr is closed. Similarly for E;#.

We can now state and prove
Theorem 12: Let XCD be a closed semigroup (cf p. L),
Then J can be upper triangularized if and only if the fol-
lowing conditions are satisfied: (i) the nilpotents of ¢
forma (semigroup) ideal of J§; (ii) every subgroup of . .4
can be upper triangularized; (iii) for any idempotents
A, Bed, {fight eigenvalues of (AB)}cf{o0,1}.

Proof: ‘iny_if: By proposition 2.

if:- Let §cD  be a closed‘semigroup satisfying (i), (ii),
(iii). We first show that if W is a ¢y -invariant subspace
of V=Dn,‘then any representations of ¢X!W{and %;v satisfy
(i), ;(ii)” (iii). ) v .

»(i) ?Xiw: If ¢M‘W is nilpotent then ¢M|W ¢MlN—¢k{|W’
and ¢NMIW€¢31W as 4 is closed. Then for any Sed,
¢S!W¢MIW=¢S W¢NMIV“¢°NM|W is nilpotent by our assumptions on

4. A similar argument works for ¢M!W¢S a2

tion of ?JIW satisfies (i). A similar proof works for §;V’

50 any representa-

(iii) ¢8!W: If ¢M|W is idempotent, ¢M|W 9M|N ¢EM‘W’

and ¢EI|WE¢3|V' Thus if ¢M'W’ ¢M IW are idempotent,

right eige
{rig nvalues of ¢M|V¢M0|W
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{right eigenvalues of ¢EM‘W¢~M |W {fright eigenvalues of
¢EMbd lW ci{right eigenvalues of ¢EMEM§}§§O’ 1}. Thus any
representations of ¢&iw satisfy (iii). A similar proof
works for ¢os. 7

(11) ¢£lwt Let 5 be a subgroup of ¢le.< We will
find a subgroup ¥ of 4 such that, for any Geg, G=¢H|W for
some He}. Since ¥ is upper triangularizable (4 satisfies
(ii)),igﬂlw will have an upper triangular representation
by the opening argument of theorem 10, and so 3 will also. .

- We first need to make two cbservations about idem- - }v
potent matrices; they follow immediately if we take a repre-
I 0),

0 0/
(a) 1if BﬁDé and B=EBE for an idempotent matrix E then

sentation of ¢E in the form (

EB=EEBE; : : - : - : s
(b) if B, FeD  are idempotents of the same rank and F=EFE
then E=F. |

We return to the task of finding a group M as described
sbove, By the proof that ¢X1W satisfies (iii), there is an
idempotent Ted such that_¢E4W=1%; pick E to.be such an

idempotent of minimal rank, and let ¥ be the group of -units

f BEfF. Let Goe?, and let Ged be such thatv¢G|W_G . Then

¢EGE‘W=G ; set H=EGE. Now ¢H!W€3’ so e with ¢ﬁ|w¢r|w=
_¢El Then ¢HDIW¢Kn}W"¢ElW’ and by pronoq1t10n u (7)
and (3) ¢g |W¢F|W‘¢E |W¢HH‘W¢KnlW—¢Hn|W¢KD‘W—¢ElW | But by

(a), ¢EH=¢EH¢E?”$Q we §ee that ¢EH‘W=¢E|W' Now rank (mH)g
rank H=renk (HE)<rank E; by the minimslity of rank E,
rank (EH):.rank E. Also, by (a), E =FELEs S0 by (b) E=E,.
Then HA?&E —APH, 80 Feﬁy and the proof is complete

A similar argument works for ¢W'
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ile return to the proof of the main theorem. If n=1 we
ha&e;nothing to prove.  We show that for n»1, Vis reducible,
‘and the result will.then follow ?y lemma 11, our opening
remarks, and induction on ﬁ.

Assume n>1. By Levitzki's Theorem (p. L7) we can
assume 4 contains & non-nilpotent matrix, so, as § is closed,
J contains & non-zero idempotent. Let Eed be an idempotent
of minimal poSitive rank r, an& take a reﬁreéentatiéﬁ'u of
¢8_sﬁch that,p(¢E)=(ér 8). Let SeE{E be non-nilpotent, so

Egéo. By (a), rank Essrank E, so by the minimalit&'of

rank E and (a) and (b) above, E.=E. As zbove, it follows

S
that S is a unit of.EjE. Then E{Ec § isia semigfoup whose
nilpotent elements fprmrgr§émigroup;idealfan@ whose .non-
hilpotent‘elemeﬁts form a grouﬁ, which, as a subgroup of
4 can be put in upper triangular form (by (ii)). By
:théorem,1d, EJE can be upper triangulerized; it follows
that we can find a representation p’ of ¢, such that
u' (¢)=[gr o) and, for Ted, #:(¢T)=»{§; Ti)’ T,eD,, T,
upper triangular. If r>1, every element of #I(¢g) has. 2,51
entry 0, and the subspace W of V genefated by the first
basis vector and its images under Qgﬂwili have O projection
on the space spanned by the second basis vector. Thus
O#W#V,-aﬁﬁ W is a ﬁg—invariant subspace, so vie are done,

We thus—gssume #I(¢E)=e11f Let p’(¢X)=(xij) be such
that Xi1£0 for some i1 (sgch exist,.or the subspace gen-
erated by the first hasis vector aﬁdrits images would be a

non-trivial ¢,-invariant subspace). Then

X
11 |
p (Pyg)= : 0 eu'(¢y). Since ¢y has rank 1, either ¢
ni : . :
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is nilpotent or ¢XE=A¢YE'

21 _
Case 1:- ¢... is nilpotent; then x,,=0. Since 0# ¢ eDn
2=~ XE ] 11 X4
3PeGL,_, (D) such that P-1(.d1) (o), we take the representation
Xn1 0

#2(¢3)=(14P-1)u'(%X)(1iP). Then u2(¢E)=e11, “2(¢XE)=821
Let Y=(y;;)en”(y). Then ﬂ2(¢E)Y=(¥1,15y1n)eu2<¢g), and

y12 0...0 - :
H (¢E)Yﬂ (¢Xm) @) eu (¢g) Slnce XE is nllpotent

and the nllpotents of & form an 1deal,'p (¢E)Yp (¢XE) is
nllpotent and y12—0. As Y was arbltrary, we see that every
element of u (¢5) has 1,2 entry O, and we get a non—triv1a1

¢3—invar1ant subsPace as before,

~ Case 2: ¢X& v’ S0 x11#0._ Now ey (b), XE—LYFE S0
b () (i Dn ()= (029) (f: O) Stnce u' (v, ) is

idempotent and non-zero, f11=1; since EXEXE=X5, f11x11_xi1;

then because xi1#0 for some i>1,'fi1£o for some i»1. Again,

taking an appropriate choice of-basis, we get a representa-
2 -

tion u“ of ¢, such that p (¢E) =€, 45 K (¢F )_.611+821. Now

let p (@Y)_(y )eu (¢£) We will again show that y,,=0,

and so get a non-trivial ¢e-invariant subspace as before.

..‘y
Now u (¢}Y) ( 11<:> 1n); if EY=0, y12=0, so we need only

consider theé case where EY has rank 1. Again, either EY is
nilpotent or EY:AEY;

Case a: EY is nilpotent. Then"y{1=0; also ;f;;g
- [0y ..y1n ' :
K (¢E )u (9151 )= 0 yj2"'y1n must be nilpotent by assump-

tion (1), s0 y, ,=0.

Case D: EY;AEy, and y11#0 Again, ,/;2(¢\F ) is of the
. : BY - :

4

form ( 11"’317), and ay4= =1. Further, if'y12£0, we conclude

'.—\
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from the equation,EYEEyzEY that a12£0. Thus, to show y12=0

it is enough to show a,.=0. Let H=p2(¢\ )#2(¢_ )=
12 EXE

» LEY
) ...a a12...a1n
(611+GZL) <i::> 1 ay5...8, |- H is a product of
1dempotents, 50 by (111) the only rlght eigenvalues of H
1 1
are O and/or 1. Now H é = é (1+a12), 50 1+a,,=0 or 1+a,=1.
. . : E .
O 0
If 1+a,,=1, 8,,=0 &s desired. If 1+a,,=0, a,,=-1 &nd H°=0.
As the'nilpotents of § form an ideal (by (i)), u (¢E)ﬂ—
1 a12...a1n 1 a12..'a1n

1 8, e6s8

S 12 1n | = (i::> ‘must be nilpotent, which-it

clearly is not. Thus 1+a12£0, and the proof is complete.
e state éxplicitly as a corollafylfhe examble which
motivated the theorem: |
Coroilarg 12.1: If E gDn is a semigroup: consisting of idem-
potent matrices then E can be put in upper triangulsr form.
Proof: Clearly E*=EUEO} will satisfy conditions (1),
(ii), (iii) of. theorem 12.
The converse of proposition 3 for closed semigroups
is much easier:

Proposition 13: Letngn be a closed semigroup of matrices.

Then the matrices of ¢ can be simultaneously diagonalized
if and only if the‘following three conditions hold: (i) 4
contains no non~-zero nilpotent matrices; (ii) all subgroups
of § can be diagonalized; (iii) all idempotents of J are
central.

Proof: only if: Proposition 3.

if: Let J§ be a closed subéemigroup of D satisfying

(i), (ii), (iii). If W is =a ¢y ~invariant subspace then ¢ |,
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will be closed and satisfy (i), (ii), (iii) (the proofs are
similar to those in theorem 12).- If Fej is an idempotent

of minimal vpositive rank, we take a representation u of ﬁg
I0 S1 32)
00 SBSLI-'
Sy 0O} . . ' B
Then “<¢ESE)= 0 O); since E is central, #(¢ESE)=“(¢SE)=

such that p(¢E)=( ). Let Sed and write p(¢s)=(

S1 0 [31 S2 .

(83 O):p(¢ES)= o o ) , 50O 82 apd 83 are both O. Thus ¢,
leaves EV and (I-E)V invariantf The minimality of rank E
allows us to show that EIE is a group (with_éero), and so
can be diégdnalized by assumption.. On the subspace
(I-E)VcV left invariant by ¢, we can get a diagonal repre-.
sentation of the restrictions by induction on n; combin-

ing, we get a diagonal representation for Q&'

< .
Note we do not claim I-Eed, only that ¢, leaves (I-E)V in-

variant.
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L. VARIOUS RESULTS ON LIN#£AR GROUPS

In light of the results of the previous chapter it is
appropriate that we consider the questions of upper tri-
angularizing andidiagonalizing'groups of matrices over a
skew field. -Results here are much more fragmentary and
less closely related. First we prove that a solvable group
of unirotent matrices over a skew field can be simultane-
ously upper trisngularized (cf. Kolchin's Theorem, p. 48).
We élso“getra partial analogue for nilpotent groups of a
well known theorem of Mal'cev in the theory of linear
groups (ef. [14], p. 75)--that a solvable group of ma-
trices over a commutative field has & subgroup of finite
index which can be upper triangularized. And lastly we
detérmine, for a given skew field D, those finite zroups
for which every representation over D can be ‘diagonalized.

* We recall that if G=G<O) is a’groué'then G(1)=G',’the'
subgroup generated by'ig1g2g;1g;1lg1, gged}, is a normal
subgroup of G called the derived group. ‘Once G(i) has been
defined, G(i+1) is defined to be (G(i))'; in this way we
get a series of normal subgrouvs of G, called the derived
series. If there is an integer n such that G(n)={1i, G
is called solvable; if (™ 1)4{1], G is said to be solvable
of length n-(ef. [14], o. 45). We emphasize that if G is
a solvable group of length n>0 then G(n_1) is a non-trivial
abelian normal subgroup of G.

We can now state and prove =
Theorem 1: ifﬂ}gDn is a'solvable group of unipotent ma-
trices (see p. L8), then g,can be put in upper triangular

form,
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Proof: We use induction on n; if n=1 the result is
clear. Assume n>1 and the theorem is true for all n’<n.
Since the restriction of ¢% to an invariant subspace and
the induced group on the quotient space will be solyable
groups of unipotent transformations, our induction assump-
tion allows us to assume that ¢% leaves no nog—trivial in-
variant subspaces.

What we now prove is that if %i is irreducible then
i:{l} and n=1; this will complete the pron of the theorem.
Assume Q% irreducible, and let A bs any abelian normal sub-
group of i. By (2.1) we can put 4 in upper triangular
form, so the matrices in 4 have a cqmmonrright eiggnvector,
Let w be any common_right eigenvector of the matrices in A4,
let Gey, and let Me4d. We now show that Gw is a right eigen-
vector of M--i.e., 3 maps common right eigenvectors of A
into common fight eigenvectors of A. Since,4 is normal,
MG=GM' for some M'ed. Then M(Gw)=G(M'w)=(GW)oy,, where

a is the right eiggnvalue of M’ corresppnding to the

u’
right eigenyector w. Since 9 is a group and w#£0, GwZ0, so
Gw is a right eigenvector of M. Thus the set of right
eigenvectors of A is invariant under ¢i,‘and the subspace
W they generate will bg a‘¢%—invariantvsgbspa¢§. We saw
that W#£Q3; by our assumption.oq the‘irreducibiliﬁy of 9,we
conclude that W:Dn.~‘It followsithat the matrices in A can
be simultaneously diagonalized: But the only diagonal uni-
potent matrix is I, so A={I}. Thus the only abelian nor-
mal subgroup of 9 is {I}; since % is solvable it follows

that 3:{1}; then since 3 is irreducible, n=1 and the re-

sult follows.
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We note a corollary of possible interest to students
of linear groups:

Corollary 1.1: Let igpn be a group of unipotent matrices.
ir %_is locally solvable then q_is solvable.

Proof: 1If % is locally solvable then by theorem 1 and
(1.2) q can be upper triangularized. But an upper trian-
gular group of unipotent matrices is easily seen to be solv-
able. |

We recall that, for any groﬁp G, the upper central
series of G is defined to be the series
{1}=3,(@)=7,(@)=...27;(@)=..., where for 1>0

ji(G)={XeG|for all yeG, xyx |

y_1e3i_1(G)§. G is called nil-
potent if there is an integer m such that jm(G)zG; if
im_1(G)#G, G is said to be nilpotent of class m. Any sub-.
group or homomorphic image of a nilpotent group is nil-.
potent (cf. [15], pp. 140-142).

- Qur interest will be centered on finitely generated
nilpotent groups. By ([7], p. 153), any subgroup of a
finitely generated nilpotent group is finitely generated,
so it follows that subgroups and homomorphic images of
finitely generated nilpotent groups are finitely generated

and nilpotent.

e can now prove

Prooosition 2: Let SgDn be a finitely generated nilpotent
group of algebraic matrices. Then g has .a subgroup ¥ of
finite index which can be upper triangularized.

Proof: We use induction on n to show that it suffices
to take ¢j irreducible. If n=1 the result is trivial, so

we assume n>1 and the proposition is true for n'’<n. Suppose



also that WgDn»is-a non-trivial ¢%-inyariant subspace.
Since ¢§|W and 5;? are homomorphic images of ¢3’ they will
be finitely generated nilpotent groups. Also, for Geg,
¢G|W and Eav satisfy the same polynomial pG(t)ek[t] satis-
fied by G, and so (any representations of) these transfor-
mations will be algebraic. Thus we can apply our induc--
tion assumption to (representations of) ¢5‘W and E;v to
£ind a subgroup éﬁo of ¢3 - of finite index such that.¢Ho
has an upper triangular representation,.and & subgroup
¢ko of E;v of finite index such that QKO has an upper tri-
angular representation. Let M,K .-be maximal subgroups of g
such that ‘¢)4|w=¢»5’ @v—:gbxo;’thén,(gzﬁ)m, (4:K)<eo, and so
¥NK is atsubgroup of q of finite index which can be upper
triangularized. Thus we can assume that ¢$ leaves no non-
trivial invariant subspaces.

We now use induction on-the class.of nilpotency m of
?. If m<1 3 is abelian and the proposition holds by (2.1).
e thus assume m>1 and the result is true for all nilpotent
subgroups of Dn of class less than m. We shall find a sub-
group H1‘of finite index in q.of class less than m.-)°/1
will be finitely generated, and clearly every element of
N1will be algebraic. We can thus apply induction on m to
get a subgroup N of‘V1, (ﬂf#)<m, such that M can be upper
triangularized; but then (%:H) will be finite, and the
proposition proved.

We must first show that we can assume that 31(@) con-
sists of scalar matrices with diagonal entries in the cen-
ter of D; suppose 31(3)=<M1,...,Ms>,-where Mypooosl

are central scalar matrices (1<r<s). Suppose P—1MPP'iS-in

r-1
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normal form; since Mr is central in,ﬂ, the right eigenvec-
tors of Mr generate a ﬁi-invariant subspace, s0 since ¢$
is irreducible, we conclude that P—1MPP is diagonal. Now

1

non-conjugate diagonal entries cf P MrP give rise to non-

trivial ¢@-invariant subspaces, and we see (from our defi-

1MrP is scalar, say P-1MrP=a~I.

nition of normal form) that =
The centrality“pf MP in ? means that the matrices P_1MP, -
Meg, have their entries in the skew subfield of D centraliz-
ing o, and once we restricg'ourselves to this skew field
P71MPP is a central scalar matrix. We use induction én r
(starting with r=1) to justify our assumption that 31(3)
consists of central scélar matrices.

.~ Let A€32(3)5 we now show that (Q:C?(A))qw. Ve do this
by showing A has only finitely many conjugates in j. Let |
Be; since A€32<§)’ 5714 =AM+ I, where kB~Ie31(§) is a cen-
tral scalar matrix. Let g be a right eigenvalue of A, with
right eigenvector v. Then A(Bv):BA(KBgIv); (since Mg, 18

central) BAVA =BN(uAB), so phg is also a right eigenvalue

B
of A. TXNow since A is algebraic, there is a polynomial
p(t)ek[t] such that p(A)=0. We see that for any right
eigenvalue o of 4, p(a)=0. In particular, p(yhB)=O for
every Beg. Thus {uthBegigiroots of p(t) in k(u)}; since
k(p) is commutative, p(t) has at most degree p roots in
k(u), so {uhBJBegf is finite. As p£0 (A, being in j, is
invertible), ihBlBegi is finite. But all conjugates of A
are of the form AKB-I, 50 A hes only finitely many conju-
setes.

Now jz(g) ii finitely generated, say 32(§)=<M1,...,Mt>.

i

Then 03(52(3))=1Q1C (Mi)’ and since each C (M;) has finite
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index in j, it follows that (3:03(32(i)))<aa. Recall we

were looking for a nilpotent subgroup ﬁa of ? of class at’
most m-1; we take)41=09(32(§)). Then
32(3)0N1=32(E)OC?(32(ﬁ)) is central in 03(32(3))=)q, S0
32(3)0)119_}1()[1). V%e claim that for i1, 31+1 (3 );rw1g3i(}/1);

- this has been established for i=1, so assume it is true for
i-121. _Then.ji(ﬁ1)=ixeﬁ1IVy€H1, ny—1yf1§31_1(ﬂ1)}2

{xel, [¥yeN,, xyx y] eH103i(<3)32H1ﬂixegl\?‘yej, xyx Tty e}i(j)l
=)“1“31+1($)° It follows that 3m_1(>¥1 );}#103111(5):}/1, s0 )41 :
is nilpotent of class at most m-1, as desired. -

We remark that, if D had been commutative, we would
have been able to show that any nilpotent group of matrices
has a subgroup of finite index which can be upper trian-
gularized; in that case every matrix would be algebraic any-
way, and the assumption about finite generation, which was
used to get a finite subset ZM1,...,Mt§gji(j) such that
03(31(3))=03(iM1,.,;,Mti), could be dropped, as any maxi-
mal (necessarily finite) D-linearly independent subset of
31(3) would have this property.

We now leave our study of simultaneously upper- tri--
angularizing matrices and return to the quesetion of the
simultaneous diagonalization of matrices.

If F is a commutative field, a group of matrices over-
F can be simultaneously diagonalized if and only if it is
sbelian and every matrix in -the group is diagonalizable. -
Over a skew field, however, a group of diagonal matrices
need not be abelian, and one might ask, for a given skew
field D, if there are non-sbelian groups 5 such that any

subgroup of D?1 isomorphic to 3 can be siﬁultaneously diag-
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onalized. Ve seek in the rest of' this chapter to determine
such finite groups j; we discover that for some skew fields
there are such non-abelian groups.

In general, if 3 is a finite group of diagonal nxn ma-
trices over a skew field D, then 3 is embeddable in a di-
rect product cf‘n‘copies of the multiplicative group
D*zD-iOE, and_phe‘bfojection of ¢ onto each coordinate
will be a finite subgroup of D*.; Since by ([8]) the only
finite multiplicative subgroups of a skew field of chagéc—
terlstlc p>0 are cyclic, we see that 1f the characteristlc
of D is dlfferent from O‘tne only such élnite groups 3 are
abellan. | o

| Thus we assume for the restbof our con51deratlons that
D haS charecterlstlc 0O, and so Q (the ratlonal number fleld)
is contalned in the center k of D. Ir 3 is a flnlte group,
of order m, say, then we can embed the group ring Qg in Qm‘
by the reguldr representatlon. We denote by MG[GES the
matrlces of this representatlon correspondlng to the ele—
ments of g _Ne thus have QE_Q[MGIGeg gh, for every skew
field D of characterlstlc O, and clearly the group of ma-
trlces ZMGIGeg q can be dlagonallzed if and only if Qg |
‘can be. ]I‘i has a non—normal subgroup H then

oL

T.T M is a non-central 1demootent of Q3 and it follows
he) . . .

that Q% cannot be diagonalized.

Thus the only possible non-abelian groups 3 of finite
order with all representations over D diagonalizeble have |
all theirysubgroups normal. Such groups are called ﬂggil—_
tonian, and have the form HxO0xT, where N is the quaternion

group of order 8, ¢ an abelian group of odd order, and T
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a group of exponent 2 ([7], p. 190).
We consider now a case where a group of the form Nx@
#'the quaternion group, @ a cyclic group of odd order, have
representations which are not diagonalizable. Let n be an

odd natural number (greater than 1), and consider the 4nxln

matrices  g_ A'.C> = '.<) = ? Iu O::.? where
| }'(O'AM'(BO'B)’N’ sy

LY

I
O . . .0
o 1 0o, ! = :
a1t O M Be g TLO e S:J, {sW>, then 3r_~}lxcn,
10 1 o O

where Cn is cyclic of order n. Further, ﬂ'and g'have as
right eigenvalues only primitive fourth roots of 1, and n

th root of 1 as right eigenvalue. Thus

has a primitive n
if q can be simultaneously diagonalized, some diagonal
entry, call it n,,;, of the matrix corresponding to N will

be a primitive nth root of 1. If we denote by iii’ J

ii
the corresponding diagonal entries of the matrices eor—
responding to }, 3 respectively, then from the above
observations and the multiplieatibn table of 3 it follows
that <iii’ jii; nii>wﬂx0n.' Thus if a can berdiagonalized
Han can be embedded in a skew field of characteristic O.
By Amitsur's results on finite subgroups of skew fields
of characteristic 0 ([1], th. 7(2))", this can happen if
and only if 2 has odd order modulo n. - '

In light of the sbove examples we are left with the
following result:

Provosition 3¢ Let D be s skew field of characteristic O,

and denote by k its center. Let HxUxT (as sbove) be a
* o 1 . _ . .
In Amitsur's notation, chn'Gun,2n+1’ theorem 4(2b) is

applicable.
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Hamiltonian group, where 2 has odd order modulo the exponent
e of (% If there is a skew field E containing k in its
center and containing a subgroup isomorphic to CexH, then
any group ?.Of nxn matrices isomorphic to Ax0xT can be
simultaneously diagonalized.

Proof: By a result of Zalesskii ([17], lem. 1, p. 930)
any finite group of matrices over a skew field of chéracter—
istic O is completely reducible. In particular, in view éf
(2.1), any finite sbelian group of matrices over such a skew
field will be diagonalizable. Now ivagDn is a ¢3-invariant
subspace,h¢$‘w,will,é;theere abelian, hence any represen-—,
tation of it will be diagonalizable, or any representation
of it will be the sort of group described in the.proposi—b
tion. Thus by Zalesskii's result and induction on n we can
assume ¢%‘is irreducible.

Any matrix Neg of order 2 can be put in the form
Cés—gn;s); if O<s<n, the centrality of M in g will give a
decomposition of Dn.intoia direct: sum of_¢?-invarianp‘sub—
spaces, so we may assume that the only.matrix of.order 2
in.g is =I, which.will be fixed by all similarity transfor-
mations. In other words,.we maytake gme6h ignoring the
other matrices of order 2. = . . v

By (1.A) we may assume EcD.. Let {w, i, jlcD generate
a group isomorphic to che, with <w>~C_ and <i, i>sH.  Let
Meg have order e. We can diagonalize M to get a matrix N’
whose diagonal entries come‘f;om the field Q(w), and we can
taKe;conjugate_diagonal entries equal. As M is in the cen-
ter of‘g our assumption on proper invariant subspaces allows

us to assume M’is the scalar matrix w-I. Denote by @’-the
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corresponding representation of ¢@. The centrality of M’
in 3' means that @” is contained in the matrix ring over
the skew subfield Do of D centralizing w, so now we re-
strict ourselves to considering matrices:over DO; If Moe3
is any other matrix of odd order, we can diagonalize Mé
over'Do, and since the order of Mé divides e, the matrix
Mg we get will have as diagonal entries powers of w. Now
distinct powers of w will be non-conjugate over Do’ and .
by the centrality of Mo and the irreducibility of ¢% we
conclude that MJ is. scalar (hence M/=M_). Thus all ma-
trices in’%f of odd order are scalar, and if we work over.
Do they will remain scalsar.

We are thus reduced to the problem of diagonalizing
a group g_of matrices in (Do)n’ where 3&H and the unique
element of 3 of order 2 is -I, or equivalently, of show-
ing. that if n31 ¢9*isfreducible.f Let 3 geg'be generators
satisfying 92 1o @2, ﬂj=-!ﬂ. We first show that k(w)[/A, H=
k(w, i, j). Any element in k(w)[ﬂ,g] can be written in the
form a-I#b-If+c-Ig+d-I%y, fa, b, c, djck(w), and any ele-
ment of k(w, i, J) can be expressed a*1+b-i+c-j+d-ij,
{a, b, ¢, dick(w). The map a-1+b-i+c-j+d-ij>a-I+b- T+
c-I3+d-I%j is clearly a k-algebra-homomorphism onto, and
as the domain is simple, it .is an isomorphism. Thus
k(w)[}ﬁg] is a skew field; it is in fact four dimensional
over its center k(w)+-I, so by (2.12) either n=1 or it,
and hence‘y, is reducible.

In particular, it follows from Amitsur's work ([1])
that if k=Q then any group of the sort described in pbopo-

sition 3 can be diagonalized. More generallﬁ, this will
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be true if k(w), w a primitive e root or 1, is any commu-
tative field in which O is not a sum of four or fewer non-
zero squares; for then the algebra generated over k(w) by
elements 1, i, J, 1iJ with the multiplication of the quater-
nion algebra will be a skew field, the inverse of a non-zero
element a+1+bei+cj+d-1i] being

(a2¥b2+02+d2)—1(a-1—b-i—c~j-d-ij).
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OPEN QUESTIONS

1. a. Let k-IcKcD , K a skew field. Is K similar to
a scalar skew field? (cf.‘Q.M).

b. Let k-IcKcD , n>1. Is K reducible? (cf. 2.12).

Ce Charactérize gbsolutely irreducible semigroups
of matrices.

d. If A1, A2 are isomorphic simple algebras,
k+IcA;cD,, are A, and A, similar? (efe 2.11.1)

2. a. (Kaplansky) Can every semigroup of unipotent
matrices be upper triangularized? (cf. Kolchin's Theorem,
p. L48; also L.1).

b. Is every group(of unipotent matrices solvable?
(cfe Lo1).

3. a. Does U,2 generalize to solvable groups of ma-
trices?

b. Can the finiteness conditions in L.2 (the require-
ments that the matrices be algebraic and the group finitely
generated) be weskened or dropped?

L. a. (Zalcstein) 1Is a periodic subgroup of D, locally
finite?

b. Is a subgroup of Dn of bounded exponent locally
finite? (These are germane to gquestion 2 for the case

of characteristic p>0).
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