Standardising authentication protocols
based on public key techniques

Chris Mitchell and Andy Thomas

Tel.: +44-784-443423
Fax: +44-784-439786
Email: ¢jm@dcs.rhbnc.ac.uk

Technical Report
CSD-TR-92-32
12th July 1993 (revised version)

‘ Royal Holloway

University of London

Department of Computer Science
Egham, Surrey TW20 0EX, England

Abstract

ISO has been working on a multi-part authentication mechanisms standard for
some years. The first part, ISO/TEC 9798-1 [15], has recently been published. Parts
two and three (9798-2, [18] and 9798-3, [17]), covering authentication mechanisms
based on symmetric and asymmetric cryptographic techniques respectively, are now
moving towards DIS (Draft International Standard) and full International Standard
status respectively. This paper is concerned with authentication mechanisms based
on asymmetric cryptography; more specifically it contrasts two important authentica-
tion mechanisms from the latest version of 9798-3 and from CCITT Recommendation
X.509-1988 [9], and briefly illustrates certain known attacks against this type of mech-
anism. A new potential security problem is then described, to which many published
mechanisms appear to be prone. Possible solutions to this problem are discussed,
together with potential ramifications on existing standardisation activity.

Introduction 2

1 Introduction

This paper is concerned with mechanisms which provide mutual proof of identity and
timeliness to a pair of communicating entities, based on the use of digital signatures.
Note that these mechanisms consist of an exchange of messages between the two parties.
Hence, what we call here mechanisms are often referred to as authentication protocols;
however, for conformance with ISO usage we avoid the use of the word protocol, which
has a specific and different meaning in the context of the OSI reference model.

There is a well-established need for standardised authentication mechanisms for a variety
of computer networking applications. The need for such mechanisms was recognised as
long ago as 1978 by Needham and Schroeder, [30], who gave a variety of different mecha-
nisms based on both symmetric and asymmetric cryptography. Many of the mechanisms
which have been standardised or are close to standardisation are derived from examples
to be found in [30] and in contemporary work, such as that of Popek and Kline, [31] and
Smid, [32]. In parallel with these developments, a need has also long been recognised
for key distribution over insecure communication paths; mechanisms for key management
have been devised in the context of communications security devices, and often closely
resemble authentication mechanisms. Indeed, as is well known, the goals of authentica-
tion and key distribution mechanisms are often virtually identical, although the term key
distribution arises from communications security applications and the term authentication
arises from the particular security needs of networked computers.

Example applications of authentication mechanisms include:

o the CCITT X.400 electronic mail recommendations, in particular X.411-1988 [8],
which provide for peer entity authentication between message handling entities prior
to the exchange of X.400 messages, based on the use of digital signatures and public
key encryption,

o the Kerberos authentication service, [34], (part of MIT’s Project Athena) which
uses the symmetric block cipher DES, [1, 29] and an on-line authentication server
to provide mutual authentication between communicating computer applications,
and

o the DEC proprietary SPX authentication service, [37], which uses public key cer-
tificates to provide authentication within a distributed system.

Note that both X.400 and SPX are based on the use of the CCITT X.509 ‘Directory
authentication framework’, [9], which standardises a format for public key certificates
and also provides three authentication mechanisms based on the use of digital signature
schemes.

For several years ISO/IEC JTC1/SC27/WG2, and its predecessors ISO TC98/SC20/WG1
and WG2, have been working on a multi-part authentication mechanisms standard. To
date the following progress has been achieved:

o Part 1, the ‘General Model’ was recently published as an international standard:

ISO/IEC 9798-1, [15],

o Part 2, covering authentication mechanisms based on the use of symmetric cryp-

Notation and assumptions 3

tography, was recently subject to a ballot as an ISO/IEC Committee Draft (CD),
[18], and

o Part 3, concerned with authentication mechanisms based on the use of asymmetric
cryptography (i.e. primarily on digital signature mechanisms) has recently received
a favourable vote as a DIS, and will therefore be published as a full International
Standard in the next year or so, [17].

In this paper we are primarily concerned with authentication mechanisms of the type
covered in part 3 of the authentication mechanisms standard, namely those based on
the use of digital signatures. We focus on one particular type of mechanism, which uses
nonces (defined below) to achieve mutual authentication, i.e. authentication of both of a
pair of communicating parties to one another.

2 Notation and assumptions

We assume throughout this paper that there exist a pair of parties denoted A and B,
which wish to check each other’s identity by exchanging messages over an untrusted com-
munications path. As a result of this message exchange they will also typically exchange
secret session key(s), to be used for securing subsequent exchanges of data. Whilst we
observe how such keys may be exchanged within the context of the mechanisms considered
here, this is not the main focus of this paper.

We assume that A and B are both equipped with public key/secret key pairs for the same
digital signature algorithm. Following [25], A will therefore have a pair of transformations,
denoted 54 (for ‘signing’) and Vy4 (for ‘verifying’), used for computing signatures for A
and verifying the signatures of A respectively. A keeps 54 secret and publicises V4. We
write S4(X) for the result of applying A’s secret signing transformation to data string X
and V4(X,9) for the result of applying A’s public verification function to the pair (X, .5),
where S purports to be A’s signature on data X. The result of applying V4 will be either
True or False. B will be similarly equipped with functions Sp and Vg.

We also assume that this signature scheme is operated in conjunction with a collision-free
hash function h, so that if A wishes to sign data X, then what is actually computed is
Sa(X) = 5%(h(X)), where 5 is the actual digital signature transformation (e.g. in the
case of RSA digital signatures, S/ represents modular exponentiation using A’s secret
exponent). Hence, in particular, we are assuming that X is not recoverable from S4(X).
The verification transformation V4 on a pair (X, .5) will then typically consist of checking
that h(X) is equal to V}(5), where V) is the (public) inverse of 5/ (e.g. for RSA digital

signatures, V represents modular exponentiation using A’s public exponent).

Finally observe that we assume throughout that B is equipped with a trusted copy of
A’s public signature key and vice versa. This may be achieved by use of public key
certificates signed by one or more trusted third parties, or by any other reliable means
of public key exchange. For further discussion of digital signatures, hash functions and
public key certificates see, for example, [25].

1CD status is the first of two stages of official draft through which all, or almost all, ISO standards
have to pass; the second stage is the Draft International Standard (DIS).

Time stamps, sequence numbers and nonces 4

3 Time stamps, sequence numbers and nonces

In any authentication mechanism, be it based on the use of symmetric or asymmetric
cryptography, there needs to be a means for checking the timeliness of the exchanged
messages. By timeliness (or freshness) we mean the property that a message has just been
generated and sent, rather than being a replay of a message sent at some previous time.
Observe that giving a completely precise definition of timeliness can cause some semantic
difficulties, since different means of guaranteeing it often give timeliness properties with
subtly distinct meanings. However we do not consider this point further here since the
informal notion of timeliness given above is all we need in this discussion. For further
discussions of timeliness and its provision see, for example, [2, 12, 20].

The timeliness guarantee is necessary to prevent a would-be intruder from impersonating
A by replaying intercepted valid authentication messages signed by A. There are three
commonly accepted devices used to help guarantee timeliness:

o Time stamps,
¢ Sequence numbers,

¢ Challenge-response nonces.

The latest drafts of 9798-2 and 9798-3 both include examples of authentication mech-
anisms based on the use of all three methods of guaranteeing freshness. However, this
paper is concerned primarily with authentication mechanisms based on the use of nonces,
and we do not discuss time stamp and/or sequence number based methods further here.
Before proceeding, we briefly consider the general use of and requirements for nonces.

The term nonce was introduced by Needham and Schroeder, [30]. Protocols based on
nonces have the disadvantage relative to time stamps or sequence numbers that they
typically require an extra message in the authentication exchange. However, their use
avoids the need for synchronised clocks and/or the storage of sequence numbers for every
party with which an authentication exchange may be required.

A nonce (or challenge) is a value included in a message whose inclusion in a subsequent
response can guarantee the freshness of that response. To be effective it is necessary that
a nonce is only ever used once by any one party during the lifetime of that party’s key.
There are two ways commonly used for ensuring the ‘one-time’ property of nonces. Firstly,
if nonces are always chosen at random, then, given that each nonce contains a sufficiently
large number of bits, the probability of nonce repetition can be made very close to zero.
Alternatively, each entity can be equipped with a single counter, from which nonces are
extracted as required (with the counter being incremented every time a nonce is used).

Because of the practical difficulties involved in generating truly random numbers, gener-
ating nonces using a counter, or a pseudo-random source, may appear attractive. One
possible problem with the use of a counter is that, if an entity loses state, then a problem
arises when the counter has to be initialised. Of course if a new key pair is generated
simultaneously then there is no problem, but that will not always be the case—in some ap-
plications public key/secret key pairs for digital signature algorithms are likely to remain
in use for considerable periods of time.

Perhaps more seriously, counters, and other non-random methods for generating nonces,
can give rise to ‘preplay’ attacks. In such attacks, a third party may evince a response

Two example mechanisms 5

to a predicted nonce ahead of time, and play it back as an untimely response when the
same nonce is genuinely sent. To avoid this requires either

1. using only unpredictable nonces, or

2. providing cryptographic measures to guarantee the origin of every message of an
authentication exchange.

Because the second solution is only appropriate to some mechanisms, it is typically au-
tomatically required of nonces that they be unpredictable (hence ruling out counter-
generated nonces), but this is not always strictly necessary.

4 Two example mechanisms

We now consider two examples of authentication mechanisms, both of which use nonces
and digital signatures to provide mutual authentication. The first, which we call mech-
anism (), is a simplified version of the ‘three-way authentication” mechanism specified in
CCITT Recommendation X.509-1988, [9]. The second, which we call mechanism R, is
taken directly from Clause 5.2.2 of the latest version of 9798-3, [17], where it is referred
to as the ‘three pass authentication’ mechanism.

Mechanism (@)
Ql. A —B: Ra,D1,5(Ra, B, Dy)

Q2. B —A: Rp,Dy Sp(Ra,Rp. A, Ds)
Q3. A — B: Sa(RB)
We now briefly describe the procedural aspect of this mechanism. Note that, as in any

authentication mechanism, the recipient of each message performs a check, and only
proceeds with the mechanism if the check proceeds correctly.

On receipt of message Q1:
B checks A’s signature on the string R4, B, D1, where R4 and Dy are recov-
ered from the unsigned portion of the message and B is simply the name of
B (which B is assumed to know).

On receipt of message Q2:
A checks B’s signature on the string R4, Rp, A, Dy, where Rp and Dy are
recovered from the unsigned portion of the message, and R4 has been stored
by A.

On receipt of message Q)3:

B checks A’s signature on the string Rp, where Rp has been stored by B.

Two example mechanisms 6

The purpose of this mechanism is that, having performed this exchange of messages,
A and B should now be sure that they are talking to one another, and that the data
strings D1 and Ds, which might for example include encrypted keys, originate from one
another. Moreover they should also be sure that all the exchanged messages were fresh.
Unfortunately, as we see below, this mechanism is flawed, and hence A and B cannot be
sure that the mechanism has not been manipulated by third parties.

Mechanism R

4.1

R1. A — B: Ry
R2. B — A: Rp,D1,58(RB, R4, A, D))
R3. A — B: Dy, Sa(Ra, Rp, B, D))

The procedural aspects of this mechanism are somewhat similar to those for mechanism
(). Note that one important difference between the two mechanisms is that, in mechanism
R, the signed data strings (D] and D) are different from the data strings sent unsigned
(D1 and Dj). We explain the use of these data strings further in Section 4.1 below.

In both of these two examples R4 and Rp are nonces, chosen by A and B respectively. In
the standards documents R4 and Rp are referred to as random numbers. However, as we
have already discussed, they need not be genuinely random but can be pseudo-random;
the only vital properties that they must possess are

¢ the ‘one-time’ property, i.e. A must never choose the same R4 twice, at least not
within the lifetime of a signature key pair, and

o unpredictability (although, since all three messages of mechanism @) are signed, this
property is not strictly necessary for the first of the two mechanisms).

We now consider three aspects of the design of these two mechanisms, and in doing so
describe a number of attacks that have been devised against these and other similar
authentication mechanisms.

The role of data strings

The roles of the data strings Dy, Dy in mechanism @ and of Dy, D}, D3, D} in mechanism
R merit some explanation. These strings have been provided to enable secure key ex-
change to be achieved simultaneously with mutual authentication. In addition, in some
circumstances these strings can also be used to convey other data items, such as an au-
thentication check for an accompanying message, the origin of which can be verified since
the data strings are signed. It is clear that means must be provided for conveying the
value of these data strings from source to recipient, so they are included in ‘plain text’ as
well as within the scope of the signature. It is at this point that the question naturally
arises as to why mechanism R provides for different data strings Dy, D} and Dz, D).

This has been done to counter a serious security problem, first identified by Burrows,
Abadi and Needham, [7], that occurs in certain applications of mechanism Q. Essentially,
a problem arises when the data string Dy of the first message of the mechanism (i.e. Q1)
is used to contain both an encrypted key, K say, and an integrity check for data encrypted

4.2

Two example mechanisms 7

using K. The recipient of such a data string is then unable to determine whether or not
the originator of the message actually knew the unencrypted data, or simply hijacked
an encrypted key and corresponding encrypted data from a third party’s message. This
problem arises naturally in X.400 electronic mail, and scenarios in which this type of

misuse of third party data causes significant security problems are described in more
detail in [14, 26, 27].

This problem can be solved by signing an unencrypted version of the key K, but sending
K encrypted (K might, for example, be encrypted using the public key of the intended
recipient). However, this then means that the data string which is signed is different from
the plain text data string, and this explains why message R2 includes Dy and Dj. Of
course, in order for the signature to be checked by the legitimate recipient, it is necessary
for D} to be reconstructable using some combination of information contained within Dy
and other information held by the legitimate recipient. Note that signing unencrypted
keys does not risk compromise of their secrecy, since we assume that all data strings are
subject to a one-way hash function prior to application of the signature operation.

Another Burrows—Abadi—Needham attack

In addition to this problem with data strings, Burrows, Abadi and Needham, [7], found a
more fundamental problem with mechanism ¢). Suppose A and B have used mechanism ¢
on some previous occasion, and that malicious user C' has intercepted the three messages
Q1,02,(3. Now suppose that C' wishes to impersonate A to B. We suppose, for the
sake of simplicity, that the data strings Dy and Ds are null and omit them from this
description.

(' initially sends the first of the three previously intercepted messages to B:
Q1. C — B: Ra,S54(R4, B)

B responds (thinking it is talking to A, but actually talking to C'). It challenges C' with
a new nonce, Rp.

Q2. B — C: Ry, Sp(R4, R5, A)

C meanwhile causes A to initiate authentication with C' (by some means). As a result A
sends C' the following message:

Q1. A — C: Ry, Sa(RY,C)

C', when responding to A, uses the random value Ry, provided to C' by B:
Q2. C— A: Ry, Sc(Ry, Rz, A)

A responds with the following message

Q3. A — C: Sa(Rg)

But this is exactly what C needs to convince B (falsely) that it is talking to A, i.e. C' can
now send

4.3

Two example mechanisms 8

Q3. C — B: Sa(Rg)

and B will believe that it is talking to A whereas it is actually talking to C.

The above discussion is a paraphrased version of Burrows, Abadi and Needham’s text.
Their solution is a very simple one, and merely requires a small change to the third
message of the mechanism to the following.

Q3. A — B: Sa(Rp, B)

Thus the only change necessary to avoid the problem is to include the name of B in the
third message of the mechanism.

A Canadian attack

Having considered two major flaws in mechanism), and indicated their influence on the
design of mechanism R, we conclude this discussion of these two example mechanisms by
examining one further aspect of mechanism R. It is by no means immediately obvious
why R4 is included in the signed part of R3, although its presence is vital, as we see
below. Indeed, in the immediately preceding version of 9798-3, R4 was not included in
R3, and the mechanism had the following, slightly different, form:

R1. A — B: Ry
R2. B — A: Rp,D1,58(RB, R4, A, D))

R3. A —B: R Dy Si(RYy,Rp, B,D})

This version of the mechanism is subject to an attack put forward to ISO by the Canadian
Member Body in 1991, [16]. In this attack, an intruder, C' say, convinces A to produce
(as message R2 of the mechanism) exactly what C' needs to impersonate A to B as the
third message of the mechanism. In more detail the attack operates as follows.

C first chooses a random R4 and calls B (pretending to be A):
R1. C—B: Ry

B responds to C' (thinking it is responding to A):

R2. B—C: Rp,Dy,Sp(Rp,Ra A D)

C now calls A pretending to be B, invoking a second copy of the mechanism. C uses the
nonce Rp just chosen by B:

R1. C— A: Rp
A responds to C' (thinking it is responding to B):
R2. A— C: Y. DY, S4a(R, Rp, B, DY)

C' now takes this response from A and forwards it directly to B as the third message of
the mechanism:

Two example mechanisms 9

R3. C — B: "w. DY, Sa(Ry, Rp, B, D"

B now believes itself to be talking to A, although it is actually talking to C.

Note that this attack on the ‘old’ version of mechanism R was only possible because of the
presence of the random value R’; in the third message of the mechanism. The presence
of this value in message R3 makes the formats of messages R2 and R3 identical. This is
what enables €' to use the second message of one instance of the mechanism as the third
message of another instance of the mechanism.

As a result one might argue that the removal of R/, from the third message of the mech-
anism is sufficient to prevent the attack and hence the addition of R4 is unnecessary.
However it is not clear that, to comply with the standard, implementors will be obliged
to sign a string of data items in the same order as specified in the standard. Given the
freedom which implementors will also have over the format and length of data strings, the
inclusion of R4 in the third message is still necessary to prevent attacks against some pos-
sible mechanism implementations. Given the necessity to standardise mechanisms which
are robust in all types of use, the inclusion of R4 appears to be a sound precaution.

The random number R’; was actually inserted into the third message of the mechanism
for a completely unrelated function, namely to protect A against attacks which might be
possible if the cryptographic hash function used to construct signatures is not collision-
free, a property which is normally desirable for hash functions used in constructing digital
signatures (see, for example, [25]). Consider the string which A has to sign in order to
construct message R3’ in normal operation of the mechanism. If R’; is not present then
this string is completely known in advance to B. In such a circumstance B could, by
manipulating the choice of Rp and using the weakness of the hash function, construct
a string X = Rp, B, D}, whose hash value h(X) is the same as the hash value of some
message M which B would like A to sign (and which A would not like to sign). That is,
given the hash function is not collision-free, B might be capable of finding a nonce Rp

for which

where X = Rp, B, D).

It might be argued that a standardised authentication mechanism should not incorporate
features designed to protect users against shortcomings of cryptographic techniques. In-
deed, this reasoning appears to have been followed by the designers of the later mechanism
R, which does not protect against such attacks. Observe that mechanism R could very
simply be modified to protect against this ‘weak hash’ attack by changing message R3 to:

R3". A —B: R, Dy Su(R,. R, Rp,B,D))

Finally note that, in order for the use of a random value R’ to be effective in protecting
against ‘weak hash’ attacks, it requires properties different from those which one would
require of a nonce. First and foremost the value of R, must be unpredictable, i.e. party B
must not be able to predict what value A will choose for R’;. This means that a genuinely
random or cryptographically strong pseudo-random number generator must be available
to the generator of R/;. In addition, for B to be similarly protected against a similar
attack by A, the nonce Rp must also be generated in the same way.

We do not consider the effects of weak cryptographic mechanisms further here.

A possible new problem and a solution 10

5 A possible new problem and a solution

Both mechanisms ¢ and R, and all their variants, require both A and B to be prepared
to sign data strings X of the form

X=...,R,...

where R is a nonce supplied by another party. In certain situations this can cause signif-
icant security problems, as we now describe.

Suppose A has a single secret key/public key pair, used for a number of different digital
signature applications, such as:

o digital signatures for authentication mechanisms,

o digital signatures for message origin authentication, message integrity and/or mes-
sage non-repudiation,

o digital signatures for software integrity checking.

By signing a string of the form X = ..., R,...as part of an authentication mechanism, A
allows the supplier of R (say B) to choose part of the string X which A signs. By careful
selection of R, B might be able to arrange for X to resemble a message with meaning
chosen by B. Once A signs X, B is then in possession of A’s signature on a message
which A never had any intention of signing, and which B may be able to use for malicious
purposes. Hence one message of an authentication mechanism could be misused as a
signed string in some other application.

One ‘obvious’ solution is to use a different signature/hash function combination and/or
public key/secret key pair for each application where digital signatures are required.
Although possible in some circumstances, this is undesirable as a universal solution for
the following reasons.

o It is convenient to use the same digital signature/hash function pair for each appli-
cation where digital signatures are required—hence the only possibility is to vary
the key for each application.

o Whilst the use of a different key for each application would solve the problem, it is
not always convenient or even possible to follow such a route. In the highly inte-
grated computer networks of the future there may be a large variety of inter-related
networked applications all requiring the use of digital signatures. Management of a
large number of key pairs, one for each application, could become a serious problem,
particularly if they are to be stored in a low-cost user device with limited memory
capacity. Moreover, if the X.509 key certification scheme is to be used to dissemi-
nate user public keys (as is already proposed within X.400 electronic mail and the
SPX authentication service), then problems arise because there is no field within an
X.509 certificate for marking the scope of a key, i.e. marking the application(s) for
which this key is to be used. This limitation of X.509 certificates has been pointed
out previously in a completely different context (see, for example, Section 5.2 of
[26]) and modification of the X.509 Recommendation to provide for such a field
would be a great advantage.

Future directions for research 11

It should be pointed out that so called ‘key separation’ (i.e. the use of different keys for
different applications) is already widespread in applications of conventional (symmetric)
cryptography. For example, DES is routinely used with key separation both ‘vertically’
(in a multi-level hierarchy with key encrypting keys and working keys) and ‘horizontally’
(with different working keys for different functions). Omne means of achieving this key
separation has been to associate bit strings (‘control vectors’) with DES keys to limit
their application. This type of approach may also become widely used in applications of
public key cryptography, although, because of the types of problem mentioned above (in
particular the problem arising from the shortcomings of X.509 key certificates) alternative
solutions do need to be examined seriously.

The alternative solution we consider here is always to include an application/mechanism
identifier in the signed string; this identifier must be in a standardised form and in a
fixed location in the string (e.g. always at the beginning). This sets the ‘context’ in
which the signed string should be interpreted, and is, in some sense, the most logical
solution. It seems reasonable to insist that one should always include information as
to the context, and thus to the meaning, of a string before putting one’s signature to it.
Indeed, if one considers the conventional analogy with a human signature, one would never
reasonably expect anyone to sign a document without some reasonable understanding of
its meaning and context (although this does seem to be the norm for insurance and
time-share salesmen!).

An additional advantage of the identifier approach is that, if the identifier also includes the
number of the message in the authentication mechanism, then certain types of attack may
be ruled out—this in turn may enable the mechanism itself to be simplified. In particular
the Canadian Member Body attack on the earlier version of mechanism R appears to be
prevented by the inclusion of such an identifier, and, as a result, mechanism R may be
simplified to the following.

Rl. A—DB: R,
R2. B —A: Rgp,Dy,58(IDy, Rp, Ry, A, D))
R3"”. A —B: Dy, Sa(IDs, Rg, B, D))

Of course, this version of mechanism R needs considerable further checking before it could
be recommended for adoption as part of 9798-3. Note that, by similar reasoning to that
used to enable R4 to be omitted from the signed part of message R3"', it may also be
possible to omit Rp from the signed part of message R2—this possibility also needs
careful checking.

Before proceeding, observe that the problem of the context of a signature applies to all
uses of digital signatures, not just to their use in authentication mechanisms. It would
therefore seem sensible to suggest the adoption of application identifiers in all standardised
uses of digital signatures. However, the need to sign material supplied by another entity
seems most likely to arise in the context of peer entity authentication based on nonces,
and hence it is not entirely illogical to raise the problem in this context.

6 Future directions for research

It is not clear how carefully the five existing mechanisms in the current draft of 9798-3 have
been checked using the available tools. In particular it would seem to be judicious to apply

REFERENCES 12

the known logical tools for checking authentication mechanisms to all five mechanisms in
9798-3. This work should include application of the logics of

o Burrows, Abadi & Needham (1988-90), [4, 5, 6, 7], and various extensions by
Gaarder & Snekkenes (1990/91), [10, 33], Kailar & Gligor (1991), [19], and Gong,
Needham & Yahalom (1990/91), [11, 13],

o Meadows (1989-91), [21, 22, 23, 24],
o Syverson (1990/91), [35, 36], and
o Bieber (1990), [3].

Work also needs to be performed on applying these authentication logics to versions of
the existing 97983 mechanisms when they have been modified to incorporate the use of
mechanism /application identifiers. This may require the modification of existing logics
to recognise the value of such identifiers, in particular where they label the stage of the
mechanism a signed value represents.

More generally the adoption of application/mechanism identifiers needs to be pursued
on a broad front, wherever the use of digital signatures is being standardised. In the
short term this can be done by attempting to influence the emerging work on digital
signature standardisation (e.g. NIST’s proposed Digital Signature Standard (DSS), [28],
and corresponding work in ISO which is at an early stage). In the longer term, the work
on standardising the form of Security Information Objects being pursued within ISO/IEC
JTC1/SC27/WGL is the most logical place to promote the general use of standardised
application/mechanism identifiers—however, this work may take a number of years to
mature.

In short, much needs to be done if agreed and secure authentication mechanisms are to
be standardised in the short term. It is still to be hoped that a DIS version of 9798-3 can
be agreed within the next twelve months, but many hurdles still have to be crossed.

Acknowledgements

The authors would like to thank Dieter Gollmann, Kwok-Yan Lam and John Leach for
their many valuable comments on, and suggestions for improvement to, earlier drafts of
this paper. The second author would also like to thank Hewlett-Packard Ltd. for their
support under SERC CASE studentship No. 90700562.

References

[1] American National Standards Institute, New York. ANSIT X3.92-1981, Data Encryp-
tion Algorithm, 1981.

[2] R.K. Bauer, T.A. Berson, and R.J. Feiertag. A key distribution protocol using event
markers. ACM Transactions on Computer Systems, 1(3):249-255, 1983.

[3] P. Bieber. A logic of communication in hostile environment. In Proceedings: The
Computer Security Foundations Workshop I, pages 14-22. IEEE Computer Society
Press, Los Alamitos, California, June 1990.

[4]

[17]

REFERENCES 13

M. Burrows, M. Abadi, and R. Needham. Authentication: A practical study in belief
and action. In M. Vardi, editor, Proceedings of the Second Conference on Theoretical
Aspects of Reasoning and Knowledge. Morgan Kaufmann, Los Altos, California, 1988.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. In Proceedings of
the Twelfth ACM Symposium on Operating Systems Principles, Arizona, December
3-6, 1989. ACM, 1989.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Proceedings of
the Royal Society of London, Series A, 426:233-271, 1989.

M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical
Report 39, Digital Equipment Corporation Systems Research Center, Palo Alto,
California, February 1990. Revised version.

Comité Consultatif International de Télégraphique et Téléphonique. CCITT Rec-
ommendation X.411-1988, Message Handling Systems: Message Transfer System:
Abstract Service Definition and Procedures, 1988.

Comité Consultatif International de Télégraphique et Téléphonique. CCITT Recom-
mendation X.509-1988, The directory— Authentication framework, 1988.

K. Gaarder and E. Snekkenes. On the formal analysis of PKCS authentica-
tion protocols. In J. Seberry and J. Pieprzyk, editors, Advances in Cryptology:
AUSCRYPT ’90, pages 106-121, Sydney, Australia, 1990. Springer-Verlag, Berlin.

L. Gong. Handling infeasible specifications of cryptographic protocols. In Proceed-
ings: The Computer Security Foundations Workshop IV, pages 99-102. IEEE Com-
puter Society Press, Los Alamitos, California, June 1991.

L. Gong. A security risk of depending on synchronised clocks. ACM Operating
Systems Review, 26(1):49-53, January 1992.

L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic
protocols. In Proceedings: 1990 IFEE Computer Society Symposium on Research in
Security and Privacy, pages 234-248. IEEE Computer Society Press, Los Alamitos,
California, 1990.

C. ’Anson and C.J. Mitchell. Security defects in CCITT recommendation X.509 —
the directory authentication framework. ACM Computer Communication Review,
20(2):30-34, 1990.

International Organization for Standardization, Genéve, Switzerland. ISO/IEC
9798-1: 1991, Information Technology—Security techniques— Entity authentication
mechanisms—Part 1: General model, 1991.

International Organization for Standardization, Genéve, Switzerland. ISO/IEC
JTC1/SC27 N313 (1991-10-02), Summary of voting on Letter Ballot No. 6, doc-
ument SC27 N277, CD9798-3.3 “Entity authentication mechanisms, Part 3: Fntity

authentication using a public key algorithm”, October 1991.

International Organization for Standardization, Genéve, Switzerland. ISO/IEC
JTC1/SC27 N497 (1992-07-06), Revised text of CD 9798-3.4 ‘Entity authentication
mechanisms, Part 3: Entity authentication using a public key algorithm’, submitted
for DIS processing, July 1992.

REFERENCES 14

[18] International Organization for Standardization, Genéve, Switzerland. [SO/IEC
JTC1/SC27 N584 Rev (1992-11-10), ISO/IEC jth CD 9798-2, Information
technology—Security techniques— Entity authentication mechanisms—Part 2: Fntity
authentication using symmetric techniques, November 1992.

[19] R. Kailar and V.D. Gligor. On belief evolution in authentication protocols. In Pro-
ceedings: The Computer Security Foundations Workshop IV, pages 103-116. IEEE
Computer Society Press, Los Alamitos, California, June 1991.

[20] K.-Y. Lam. Building authentication services for distributed systems. Journal of
Computer Security, to appear.

[21] C. Meadows. Using narrowing in the analysis of key management protocols. In
Proceedings: 1989 IFEE Computer Society Symposium on Security and Privacy,
pages 138-147. IEEE Computer Society Press, Los Alamitos, California, May 1989.

[22] C. Meadows. Representing partial knowledge in an algebraic security model. In
Proceedings: The Computer Security Foundations Workshop III, pages 23-31. IEEE
Computer Society Press, Los Alamitos, California, June 1990.

[23] C. Meadows. A system for the specification and analysis of key management pro-
tocols. In Proceedings: 1991 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 182-195. IEEE Computer Society Press, Los Alamitos,
California, 1991.

[24] C. Meadows. Applying formal methods to the analysis of a key management protocol.
Journal of Computer Security, 1:5-35, 1992.

[25] C.J. Mitchell, F.C. Piper, and P.R. Wild. Digital signatures. In G.J. Simmons, editor,
Contemporary cryptology: The science of information integrity, pages 325-378. IEEE
Press, 1992.

[26] C.J. Mitchell, P.D.C. Rush, and M. Walker. A secure messaging architecture im-
plementing the X.400-1988 security features. The Computer Journal, 33:290-295,
1990.

[27] C.J. Mitchell, M. Walker, and P.D.C. Rush. CCITT/ISO standards for secure mes-
sage handling. IFFEE Journal on Selected Areas in Communications, 7:517-524,1989.

[28] National Institute of Standards and Technology (NIST), Gaithersburg, MD. A pro-
posed Federal Information Processing Standard for Digital Signature Standard (DSS),
August 1991.

[29] National Technical Information Service, Springfield, Va. National Bureau of Stan-
dards (NBS) Federal Information Processing Standards (FIPS) Publication 46— Data
Encryption Standard (DES), April 1977.

[30] R.M. Needham and M.D. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21:993-999, 1978.

[31] G.J. Popek and C.S. Kline. Encryption and secure computer networks. Computing
Surveys, 11:331-356, 1979.

[32] M.E. Smid. Integrating the Data Encryption Standard into computer networks.
IEFFE Transactions on Communications, COM-29:762-772, 1981.

[33]

[34]

REFERENCES 15

E. Snekkenes. Exploring the BAN approach to protocol analysis. In Proceedings:
1991 IEFE Computer Society Symposium on Research in Security and Privacy, pages
171-181. IEEE Computer Society Press, Los Alamitos, California, May 1991.

J.G. Steiner, C. Neuman, and J.I. Schiller. Kerberos: an authentication service
for open network systems. In Proceedings: Useniz Association, Winter Conference,
Dallas 1988, pages 191-202. USENIX Association, Berkeley, California, February
1988.

P. Syverson. Formal semantics for logics of cryptographic protocols. In Proceedings:
The Computer Security Foundations Workshop I, pages 32-41. IEEE Computer
Society Press, Los Alamitos, California, June 1990.

P. Syverson. The use of logic in the analysis of cryptographic protocols. In Proceed-
ings: 1991 IEEFE Computer Society Symposium on Research in Security and Privacy,
pages 156-170. IEEE Computer Society Press, Los Alamitos, California, May 1991.

J.J. Tardo and K. Alagappan. SPX: Global authentication using public key cer-
tificates. In Proceedings: 1991 IFEF Computer Society Symposium on Research in
Security and Privacy, pages 232-244. IEEE Computer Society Press, Los Alamitos,
California, May 1991.

