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ABSTRACT

The first chapter, of this thesis is devoted to the development of 
the theory for the ionization of an atom or ion by electron impact.
We have pursued the particular approach adopted by Schiff and derived 
an expression for the triple differential cross section corresponding 
to the ionization process. Chapter 2 described alternative treatments 
of the problem and the various approximate models that have been used 
for calculations. Included amongst these approximate models is the 
first Born approximation and it is upon this that the calculations 
of chapters 3 and 4 are based. These calculations of the triple 
differential cross section for the ionization of helium by electron 
impact are restricted to impact energies below 260e\/ to enable a 
comparison with the experimental measurements of Ehrhardt et al.

The calculations of Chapter 3 use a simple uncorrelated function 
to describe the target ground state and constitute a preliminary 
investigation of the TDC with particular regard to the relative 
importance of the direct, exchange and capture contributions. The 
results of these calculations indicate that the capture process malœs 
negligible contribution to the TDC in the energy region considered 
and it is consequently ignored in the later calculations.

In Chapter 4 the calculations of Chapter 3 are. repeated using 
an accurate 6 configuration C.I. target wave function. The results 
obtained are compared both with experiment and results of calculations 
based on other approximate models.

Finally in Chapter 5 we examine a number of points arising 
from the preceding chapters.
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C H A P T E R  I

INTRODUCTION
As atomic and nuclear processes play increasingly important 

roles in modern technology it becomes essential that such processes 
be well understood. In particular the current interest in thermo­
nuclear research, plasma physics and the recently developed field of 
astrophysics necessitates the accurate evaluation of ionization 
cross-sections of atoms or ions by electron impact. Such cross- 
sections have been the subject of much theoretical and experimental 
research in recent years and considerable progress has been made in 
the determination of accurate data.

With regard to experimental research the large quantity of 
data available is mainly concerned with the single or multiple 
ionization of atoms or ions initially in their ground states. 
Although knowledge of these particular processes is extremely 
valuable they constitute but a small proportion of the wide range 
of ionization processes. However, the determination of many of the 
cross-sections of interest, such as those involving ionization from 
an excited state, present the experimentalist with immense 
observational difficulties. In such cases the desired information 
can only be obtained from a theoretical treatment of the problem.

The aim of the theorist is to evolve, from a mathematical 
model which faithfully reproduces the characteristic features of 
the more readily observable processes, a model, within the same 
framework, capable of predicting the essential features of processes 
presently outside the scope of the experimentalist. Clearly in 
order to test the reliability, and so ascertain the predictive 
value, of a theoretical model, detailed and consistent experimental
data is required.

The considerable volume of data available for the single and



multiple ionization of atoms and ions in their ground states has 
been the subject of a review by Kieffer and Dunn (1966).

From the review the fact emerges that there are appreciable 
differences between some sets of results. The degree of disparity 
depends upon the species and in the case of helium, the subject of 
our investigation, produces a 20-30^ uncertainty in the cross- 
sections obtained by averaging the different data. However, although 
results are not as well defined as one would wish, the salient 
features of the ionization processes are clearly shown. In view of 
this present experimental results may be considered to provide a 
reliable test of theoretical models.

Theoretical calculations of ionization cross-sections are 
extensive but by no means exhaustive. Here, as in the case of the 
experimental studies, there exists a degree of conflict since 
alternative treatments of a problem have produced significantly 
different results. This is perhaps more understandable because of 
the approximate nature of the calculations.

Much of the theoretical work has been reviewed by Rudge (1968) 
who attempted to analyse and assess the validity of the various 
theoretical models and the assumptions upon which they are founded. 
The review presents a comprehensive account of the basic approximate 
methods, both quantal and classical, that have been developed in the 
field of ionization theory and indicates the degree of success 
acheived through each approach.

Often there is an energy region where the predictions of several 
theoretical models are in close agreement, although the models may 
be appreciably different in structure. Outside this region the 
predicted cross-sections may rapidly divert from one another.
However, in such cases it is quite usual for the region of 
disagreement to lie largely outside the range of validity of all



the theoretical models. Such behaviour presents one with the 
problem of distinguishing which model most accurately describes 
the mechanics of the ionization process. This is particularly 
true for the high energy region v/here the behaviour of the 
ionization cross-section may be equally well reproduced by any 
one of several models. >

For the case of ionization of helium by electron impact there 
exists a variety of theoretical results (Massey and Mohr 1933, 
Erskine 1954, Sloan 1964, Inokuti and Kim 1969, Economides and 
McDowell 1969, Peach 1971) most of which are variations on the 
first Barn formulation. Essentially such models differ by virtue 
of the treatment afforded to a particular aspect of the problem.
For instance the work of Peach is largely concerned with an accurate 
description of the initial state and the inclusion of the exchange 
process, whilst the calculations of Economides and McDowell attach 
greater importance to an improved description of the final state. 
However in the high energy region, where these models are truly 
applicable, the predicted cross-sections appear fairly insensitive 
to the choice of model. The threshold of the region of validity 
of these approximate treatments is not clearly defined, so although 
the predictions of the various models may diverge at lower energies 
this provides no reliable indication of which model is to be 
preferred.

In spite of the wide variety of calculations made in Born 
approximation they have all suffered from a common failing. Even 
after taking due account of the uncertainty in the experimental 
data, all the calculations have consistently overestimated the 
cross-section at intermediate energies.

Following the publication of the detailed experimental 
measurements of the tuple differential cross-section ( T D C )  made



by Ehrhardt et al (1972) there has been renev/ed interest in the 
theoretical treatment of the problem. Because of the several 
angular integrations required for the evaluation of the total 
cross-section it was not previously possible to form a clear picture 
of how the different angular regions contribute to the cross-section. 
The TDÜ data now available provide a critical test of the jI
theoretical models, clearly indicating the points on which they fail.

IFrom the characteristic behaviour of the TDC it would seem likely 
that the general agreement between calculations of the total cross- 
section based on different variants of the Born approximation is at 
least in part due to cancellation of errors as a result of the j

angular integrations. ■
In the present work the measurements of Ehrhardt et al are 

compared with calculations based on a first Born formulation in whict 
proper account is taken of all processes contributing to the final 
state of ionization.

Jl The Scattering Amplitude i
In this section we shall develop a formal description of the |

scattering of a single particle by its interaction with a second |
particle and then generalise the results to the many body problem. |
The approach that we shall use is basically that of Schiff (1968).
1.1 The S Matrix approach to Scattering Theory.

The relative motion of the two particles is described by a 
wave function satisfying the time dependent Schrodinger
equation:



v/hereyO C denotes the reduced mass of the system and the
interaction potential between the particles.

The Schrodinger equation is characterised by two basic 
properties. Firstly it is linear in Z jf which allows the super­
position of solutions. Secondly since it is easily seen that each 
time derivative of Zp" may be expressed in terms of I p  itself 
then clearly the values of I p  for alljr at a particular time are 
sufficient to determine i j f  for all at all other times. These 
properties imply that the quantities ZpCC^f^o) for a particular 
time t^, form a basis set of the vector space to which the 
belong. It follows that Z p  must satisfy a homogeneous 
integral equation of the form

, 1p'Cn\b‘) =  c  f&Cù'A£yty'lfic£,b)dn (1.8)
where G r is the Green’s function corresponding to the Hamiltonian

H .
It is convenient to split the domain of G r , with respect to 

time, into two distinct parts. For forward propagation in time 
we define the retarded Green’s function 
G ^'^C r'yt'jA t)^& C c'jt'jr,b) b'>b

= O t < b  (1.5)
and corresponding to backward propagation in time b̂ <̂  b^
we define the advanced Green’s function

b'<b
=  0  t ' > b  (1.4)

Sinple manipulations with these two propagators yield the 
following self evident results.
G-YcSt'j Afc) = 6̂3r„6,)Gtr,,h;r,a)où; ̂ fcSfc, > b

=■ , b '< t,< b

JCr-rO = J'CrO:\b-^c,yb,)G^a>nb,iî:,b)cLf^, b > t ,

s c c - j c - ' ' )  = b < t ,

(1.5)



In the absence of any interaction between the two particles 
comprising the system the potential is identically zero and the 
time dependent Schrodinger equation reduces to

being the free particle wave function.
If we denote the associated Green’s function by Gj, then it may 

be readily shown to have the form

The corresponding retarg^ed and adveinced Green’s functions, 
and Gr^ respectively, are defined in accordance with (1.3) and 
(1.4). It is easily seen that these are interdependent since they 
satisfy the complex conjugate relation

G i C C j  b ' i A  fc) =  (1.8)
which we shall see may be extended to Lt* provided that the 
interaction potential \ /  is real.

We shall now examine the interaction problem by means of an 
approach due to Feynman. Basically v/e would like to know hov; the 
wave function ZjT develops betv/een the times t and b* ^6^ > 6) 
when the interaction potential is present. In order to do this we 
shall firstly consider \ /  to act only during a finite number of 
intervals between 6 and h  ^ denoted by  ̂ with

^  6^.Hence in the time interval initially Z p

develops under the influence of both the free particle propagator 
and the potential V  for a time A t -  and then for the remainder 

of the interval solely under the influence of the propagator .
As a consequence of this the function representing the
state of the system at the time will transform into the 
corresponding function Z j S ^ t h e  time t , according to the



relation

i  G-CA,tnjr„.,)t«-0.............. '̂(̂ ’̂ A,fcajA,fc,)[/-Â\tt‘„fc,)AfcJ

^  G r ^ C ^ ,> ^ > } i> > b )y T c ^ ^ t.') (d n ^  d r y n

(1.9) .
this being to first order in -

If we now expand the brackets appearing in the integrand and 
use the result of (1.5) concerning successive applications of the 
free particle propagator we obtain

tpCCib îdo^cCr

Vo^^,b^'iAbj&TCCjibyiSlib)tp(^,bWtic/ĵ -do

~ f ~ ..............  (1.10)
At this stage we shall allow the intervals Afc^to become 

infinitesimal in size, but infinite in number in such a way that ] /

Âbi - >  f  c tti
c ^ t c

This limiting process leads to the result

^ C A ' t O =  <j/^AA'fe')Afc)^CAfc)û4' 
-h ^CcCbp(^^C^\b'iCcM)Vc^£iti)G-^Cipiiùyb)lpQ:,b^d£.d£

4-    (1.11)

acts continuously. Then



+

Clearly the terras succeeding the*first in (1.11) may he 
arranged in the following v/ay

% 9 ,4 /) ̂ 3  V-; A  6) 6) ( ^ . 4 ^

............

from which it is clear that the series expansion of (1.ll) is in 
fact repeated within itself. Hence provided that the series 
converges we may reduce the expression contained in equation (1.11) 
to the following form

(1.12)
Similarly we can evolve a series expansion form of the 

propagator (jTj for comparison of equations (1.2) and (1.11) 
yields the result

C r ^ C ^ % b 'ic ,b ) = -

(1.13)

8



As "before, provided that this series converges, it may he 
summed to give the equation

G-Ar't'j A  O  =  i K j* 4

(1.14)
Alternatively our approach to the interaction problem could 

have heen developed equally well from the point of view of backward 
propagation in time by using the advanced Green’s functions 
and Gr . This leads to results exactly analogous to those already 
obtained. Using the equation (l.ll) and its counterpart in the 
alternative formulation, together with (1.8), it is possible to 
show that

(1.15)
provided that \ /  is real.

At this stage we have a formalism which enables us to describe 
how the collision process develops. With this it is possible to 
express the probability of a particular final state evolving from 
the interaction, as is shown by the following.

We assume that there exists a time —T]* in the distant past such 
that for all b there is no interaction between the two
particles. For such a time fc the system is represented by a solutior 
of the wave equation (1.6). In a similar fashion it is assumed 
that there exists a time in the distant future such that for 
all fc >  T2 there once again is no interaction between the particles. 
It therefore follows that the wave function representing the system 
at such a time may be represented by a linear combination of the 
solutions provided that no rearrangement has
occurred during the collision. If the system may be considered to 
originate in a state la the distant past ( b < ~ T , ' )  then



this will develop into some state ZjS^ under the influence of the 
interaction potential. Since ijS j"  is a solution of the full time 
dependent Schrodinger equation then we may express it in the integral 
form of equation (1.2). Hence we have

fc< — T|
(1.16)

In the region bJ the interaction potential is no longer
effective and the quantity

(1.17)
is the amplitude of the free-particle state jB  that is contained; 
after the scattering has occurred, in the state that has developed 
from the free-particle state o< describing the system prior to the 
interaction. The transition amplitude of (1.17) defines an element 
of the scattering matrix ( S  matrix). If in (1.17) the wave function 
Z p P  is replaced by the integral form of (1.16) we obtain

'  ̂ ^  (1.18)
Now substituting for from equation (1.14) we have

< / 3  ( s  k >  =  ^

"A J J A*> b ^ i ' ^ C ^ ip ù G ^ iP i i ù p ' )

But from equation (1.15) it is clear that

y î > r 1 x - >  jr", fcO 

±0



Hence the O  matrix element has the form

<C/s / 6  |o< ]> =  t . ) d £ ' d o

%  JJJJGo 62346)

0 ^ C J } p ) d t i d C i d d d r >

(1.19)
By applying the result of (1.16) and its analogue and discarchng 

the index 0 the equation (1.19) may he reduced to the form

< C . f s l S l ^ y  =</3)°^>

(1.80)
Clearly, provided that the wave functions corresponding to

ethe states o ( and j S are orthogonal, the probability of a 
transition to the final state^  is given by

Ç/3 =  / < / 3 | S ) c < > / ^
. (1.21)

In the more general case of scattering by a composite target 
rearrangement of the original system may occur as a result of the 
collision. Such a situation can give rise to the problem of non­
ortho gonal wave functions. To allow for non-orthogonality we 
replace the expression in (1.21) by the follov/ing

Ç / 3 =  | < / 3 | S | o ^ > - < / 3 l = < >  1 ^

(1.22)
Obviously the equations (1.21) and (1.22) are identical if 

the states ^  and y3 are orthogonal.
The expression in (1.S3) represents the prohahility of a 

transition over the entire period of duration of the collision

11



whereas the experimentally observed quantity is the transition 
probability per unit time. Let us represent this quantity by 
and consider a time during the interaction. Then we have

cto
(1.83)

Substituting from equation (1.80) we obtain

(1.84)
If the interaction potential may be considered independent 

of time then we have a stationary situation for which we may write

T c r p ) = oC

V C r , b ) = V c c ) Q O ^ )

(1.85)

where  ̂ E 2 • being the energy corresponding to the state
denoted by 4 , and the function ^^6) is defined by

=• O  ohhejrcDLSQ.

(1.26)
We can now use the results of (1.25) to separate the time and

space dependence of the expression in (1.24). This gives

^ — A)

±Z (1.27)



Hence making the identification

T , f = < u ^ i v < c i i x : >  a.se)
and carrying out the differentiation we obtain

•oo

Since t !  lies within the period of interaction we must have !
» Applying this result to (1.29) and combining the two 

terms within the brackets leads to the equation |

Since we are considering a situation in which energy is conserved 
we are concerned with the limiting case O  , Hence for present |
purposes we may regard as a very small quantity (in accordance
with the Uncertainty Principle). Consequently, since the integrand 
appearing in (1.50) peaks at , the region may be
considered to make negligible contribution to the integral. This 
now allows us to replace unity over the entire range of
integration, so leading to the result

^   ̂ (1.51)
The change of variable fc-t transforms equation (1.51) to
the form

(1.32)
13



Now from the theory of distributions comes the result

c o s c o ^ d t  —  ^ f r S o ^ )

which when applied to equation (1.52) leads to the follov/ing 
expression for

(1.34)

It should be noted that this result is independent of time. The 
matrix T" having elements “Tlcjs is known as the transition matrix.
1. 2  The relation between the scattering amplitude and " 7 "  matrix 

We shall assume that the results of the last section may be
generalized to scattering by a composite target.

)First of all we shall derive an explicit expression for the 
Green’s function corresponding to the stationary scattering problem. 
The potential \/ appearing in the equation (1.1) is now independent 
of time and consequently it is possible to express the wave function 

as an expansion in energy eigenfunctions

with A^Cfc>= (1-35)

where the functions are solutions of the time
independent Schrodinger equation

VEf) )
(1.56)

The symbol ^  denotes summation over discrete states and

14-



integration over the continuum.
If the form (1.35) is now substituted into the equation (1.1) 

we obtain

C'A. ̂ Cc^oÇ A  Cb) =  ^  A ^ Q ù ^ ’̂CecCA)

However since the functions form an orthogonal set '
^  i

then there can be no linear dependence between them. As a consequenc
of this we must have '

c A d A ^ C b )  =  B ^ A ^ C b )
CÙb (1.37) j

Clearly this equation may be integrated to give the following |
form for the coefficients ;

(1.38)
where 6).=

^ -K
The A Q z) appearing in the expansion (1.35) can be replaced byoL

these explicit forms, so giving

(1.39)
But we know that

Hence substituting in equation (1.39) we obtain

(1.40)
±5-



If we compare the equations (l. 40) and (1.3) we see that it |
is now possible to write down an explicit expression for the Green’s
function G “. i.e. j

• . , . ■ ■ I

^  ^  (1.41) I
To obtain the explicit form of the retarded Green’s function |
we make use of the Heaviside function defined by

=  1  t  >  o  I
=  O  2r< O  I

(1.48) j
Then in accordance with the definition of Cr given in equation 

(1.3) we may write '
=  9Ct-b)

-be

(1.43)
The theory of distributions shows that it is possible to 

express & C^) in the following integral form

2TT'Z’J  (ù -h  c ics J
t (1.44)

in which the limit is implied.
If we nov/ combine the equations (1.43) and (1.44) we obtain

—Où .(1.45)
By changing the variable of integration from 6) to (0 + 1 0 ^ . 

the eaqjression of (1.45) is transformed to the follov/ing form

16



— <36

(1.46)

Clearly the corresponding expression for the free particle 
propagator is derived in a similar way. By analogy we have

06

(ÿcr'fc'j
‘où

(1.47)
where the wave functions are solutions of the time independent
Schrodinger equation

(1.48)
We shall now combine these results with those already obtained 

for the general scattering process. In this context it is 
convenient to choose equation (1.12) as our starting point

ri^ J
/
Taking 6 as a time in the distant past at which no interaction 

is present we may write

=■ Cohere CĴ j=
fi
(1.49)

If we now consider the time of interaction to approach infinity 
then the f u n c t i o n e x p r e s s i n g . the time dependence of the

. 7



potential \/(S>yb^ (equation (1.25)) may be assumed identically 
equal to unity. Thus applying the results of (1.47) and (1.49) 
to equation (1.12) we obtain

% V / e

V C ^ ^ X j^ C ^ c ) é ' ‘’^ < > ^ ^ d c .c Û J i

(1.50)
Let UB now consider the integration over the variable 6^. This

has the form

We shall make the identification
e

By making the further identification

Cr',A)= ^ (ç ù -< x > ^ - i-L e f 'tL C d : )U * C p C >OCO V—^

are able to simplify equation (1.50) to the following
(1.58)

&rrk JJ“C6

< ^ C c ' ,C c )  V c ^ û X ^ c r c )  d n - c à ù

±8



Cancellation of the exponential factor C- ® results in the
form

-06

V c n i ' ) X j j i £ ^ 'y d r .c Ù 4 ^

(1.53)
Now since we are interested in the state of the system after

the scattering has occurred and the interaction is no longer present 
. /we shall take c- to he a time in the distant future. Hence we wish 

to examine the limiting form of equation (1.53) as and
4-00 simultaneously. In this limit we have

I'-̂ +cO 

( ^ a ^ iC i ) V c ^ i ) X ^ C C i; > d r ; .c à x 3

(1.54)
But from the theory of distributions we have the result

(1.55)
Hence applying this result to (1.54) an^ simplifying, we obtain

U^CP') -+ ^

which is an integral equation for the spatial wave function
We shall nov/ consider scattering by a composite target. Let us

19



asBiime the target to he an AT electron atom and denote the
corresponding position vectors hy iS. ~  A  A  >... jT̂ Ĵ these heing
measured relative to the nucleus. The position vector of the 
incident electron is denoted hy* O . Then generalization of (1.56) 
leads to the form

Ç C , + ± - J

V a  S ÿ K f
where

'O
n

with 2 _ —  n. for a neutral target .
(1.57)

and the wavefunctions S )  satisfy the time
independent Schrodinger equations (1.58g) and (1.59^ respectively

O (1.68)

Q ^ a ~  ^  (1.59^
By analogy with (1. 52) the retarded Green* s function 
appearing in (1.57) may he expressed as follows

(1.58)
The unpe^urhed hamiltonian H o ; corresponding to the system 

prior to interaction, is composed of two parts

H, =  > i +  H r
Where corresponds to the target system and to the 

incident electron. Hence the wave functions are separable

zo



and may he expressed as products of tvfO functions.
Let tn  characterize the state of the target system described 

hy the wavefunction 0  • If ê*. Is the energy associated
with this state then satisfies the SchrSdinger equation

( W t “  (1.60)
The energy eigenfunctions of the free particle hamiltonian 

will he represented hy the functions where
(7-̂ — CD =  O (1.61)

oC

heing the energy of the free particle state having momentum
kji.

Hence applying these results to equation (1.58) enables us to 
express (jr in the form

.  E , .  s .
If we now write

where _ , (1.63)

and make the change S  -> then equation (1.62) may he
Xtransformed to

But we know the explicit form of the function . to he

21



Hence if we now substitute this form of in equation (1.64)
then we obtain

< A . c s ' ) ( p * c s : i c é ^

The integration over momentum space appearing in equation (1.66) 
is readily evaluated to give the result

& l a '  ^
^  (1.67)

We shall now return to equation (1.57). In order to ascertain 
the effect of the scattering process we need to examine the state 
of the system when there is large separation between the target and 
scattered electron. Thus our interest is directed toward the
asymptotic region C «5 . Clearly the form of the wavefunction

region of interest is largely dependent upon the 
œymptotic behaviour of G" . Therefore let us consider the form
of as r A  DO . How since

r c o s B ^ - h

where 0  is the angle between and J2

and
then

(1.68)
This result enables us to determine the asymptotic form of 

equation (1.57). Clearly for we have

£ £



f b ') c ( c c ^ b .
U  ® (1.69)

We now introduce a vector Mfy ôc^ magnitude equal to
and direction parallel to that o f  f }  » This enables us to replace 
kfy^ei^^f*CosO^ by •JO • Hence equation (1.69) becomes

(1.70)

From a purely physical approach it would be expected that the 
wavefunction describing the system would have the asynptotic form

(1.71)

The first term corresponds to the majority of the incident 
electron beam experiencing no interaction with the target system, 
whilst the second term describes the small scattered part of the 
beam appearing to radiate from the target system, excited to some 
state n z by the collision. The scattering anplitude 
playing the role of an angular dependent weight factor, is defined 
by the form of the wavefunction appearing in (1.71). By comparing 
(1.70) and (1.71) we are able to obtain an explicit expression

'for the scattering anplitude '

^ 3  11.72)



Equation (1.72) can be written in the more compact form

IVâ ,8)lxt>
t i

(1.75)

Hence generalizing the definition of the T ” matrix, given in 
equation (1. 28)ywe may write

(1.74)

1.3 Rearrangement Collisions
So far vfe have only considered the scattering situation in which 

the scattered particle and target system retain their prior-interaction 
identities. However, for the case of the scattering of an electron 
by an atom or ion there exists the possibility of an exchange between 
the .incident-electron-and-an electron-belonging to“ the target. This 
is known as a rearrangement collision. Since the rearrangement 
collision is experimentally indistinguishable from direct scattering 
we must take full account of such collisions. The interaction 
potential will now depend on v/hether we are observing the situation 
before or after the rearrangement has occurred and so is no longer 
unique. It therefore follows that the ~T“ matrix element corresponding 
to a rearrangement collision cannot be obtained by direct analogy 
with (1.28), since this involves a potential. Hence we must seek 
a form of the T ” matrix element that does not explicitly involve the 
potential. In order to obtain an alternative formulation v/e shall 
revert to the simpler problem of scattering by a single potential.

From equation (1.17) we have

</3 |S-/
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whilst equation (l, 20) gives the follov/i]^ expression for the 
same quantity

A
For the stationary situation we may use the results (1,25) to 

obtain

“ * < / 6 / S - l | a . > - - ^ < A | T | « > / ^ W * ' - ^ ' ' ^ ’^  (1.76)
respectively ^

To enable us to evaluate the integral in (1.76) we shall 
replace ^  by E ^ c e  where the limit 6 -> O"*" is implied. Since 
this will result in zero contribution from the lower limit of the 
integration we may set ^ ^ 6) =  1 in the integrand. Hence the 
integrand over time becomes

(1.77)
Combining equations (1.75) and (1.76) and applying the result 

(l.77) we obtain:

Since energy is conserved and (1.78) becomes

~  3  (1.79)
How this expression for theT matrix element does not involve 

the potential and consequently we shall assume that the analogous 
result holds true for rearrangement collisions.

At this stage in the discussion it is useful to introduce the 
Lippmann-Schwinger equations. The Lippmann-Schwinger approach 
provides a symbolic way of expressing the integral e(iuation for the

E S



wavefunction. Let us consider the Schrodinger time independent 
equation •

= O (1.80)
Here the is a differential operator and enbeequent rearrangement 
of (1.80) produces the inhomogeneous differential equation

(1.81)
The general solution of (1.81) will he composed of the 

solution of the homogeneous differential equation

C ^ ^ ~ ^ o ) K i C c ) = o

together with a particular integral of (1,81). I t o C  is the inverse 
integral operator corresponding to we obtain the integral
equation

(1.82)
Symbolically we might write^^^^^/^— . However to avoid 

the singularity occurring at E qc we make the change it ̂*6
where, as before, the limit S O"^ is implied. It can be shown 
that the plus and minus signs correspond to outgoing and ingoing 
waves respectively. Hence v/e have

'V c p ^ y j^ C ù ) (1.83) 

X ^ C O  =  + ( % - / < . -  cr) ( i. s4)

We shall now show how these results may be applied to rearrangement 
collisions.

Let us suppose that the collision of two systems Cb and t 
results in a rearrangement for which the component systems are C , c i ,  

In this event the full hamiltonian H  can be written in either of
two ways

H  -

2£>



where describes the internal and kinetic energies of CL and b

and their interaction, and /~/^ are similarly defined.
If and ^^^ are the outgoing and ingoing waves corresponding
to this scattering process then, in accordance with equations 
(1.83) and (1.84), they satisfy Lippmann-Schwinger equations of the 
form

' ^ a h ^  ^ c d b d r (i.8s)

and (1.86)

where E  is the total energy.
We now introduce operators &GfiBed hy

c ^ c c L —

a h ~
By using the second of these we can write (1.85) in the form

(1-87)
From equation (1.79) the "7"matrix element corresponding to the 

rearrangement collision is given hy
<cc/ IT fa-by = de(u^,

.'e C % + - 2 / ^ ) ) =

^ c d ^ c d  =  c ^ r ^ .d
=  4^6

Hence v/e obtain
< J c c 6 I T l a J : > > = ^ c d / C d ( X J t - ^ a D )  (1-88)

Let us now consider the quantity^^^^ • Î ^̂ m the
definition of the operator we have

How

But
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However since ^ ^  bii alternative expression for 

This leads to the result

Applying the result (1.87) we obtain

=«C/L ~ c^ À ~ K d X p (-'l-^ ‘̂ k)

(1.89)
If v/e now substitute this result in equation (1.88) the 7"matrix 
element will take the following form

< ^ c o 6 1 T I ^ b y  =  C ^ a d >

—  Q ^ c U - ^ H ^ y y .^  ’̂ ( B c d y C ^ a t r ^ c d i t d . i ^

(1.90)

Since / ^ - f / ^ = / l ^ ^ ^ / ^ t h e  second term in (1.90) may be 
rewritten as

C S ^ o d ) H c c Û ^ a tJ )  ^ O ^ c d ) ^ a h )

—  E C .^ c d } ^ d a J ^  ~~ E C ^ c d

=  o
Hence equation (1.90) becomes

^ ^ C O i l l ^ l c t b ^  =  C ^ c d ) ^ C £ l* ^ c L U ^  (1.91)
£8



However we could equally well start from the formulation of the 
1 matrix element in terms of the ingoing wave

( T  I
In this case if we manipulate the original form 'in a way similar
to that previously described then v/e obtain

< J c d l l ~ l a . b y = - ( ^ ' y ^ ^ H ( ^ 2 d a _ ( , )  (1.92)
The equations (1.91) and (1.92) are referred to as the post and
prior forms of the " 7 ~ matrix element respectively.

It should be noted that throughout the analysis leading to |
equations (1.91) and (1.92) it is assumed that the operators 1

/-^^are all hermitian.
1.4 The Ionization of Helium by Electron Impact j

Having developed a formulation capable of dealing with all 
eventualities arising from the collision of two systems we are now 
in a position to consider the single ionization of helium by j
electron impact. By virtue of the indistinguishability of the ;
electrons involved there are three distinct processes that contribute 
to each observed final state. In addition to direct scattering, 
for which the incident electron emerges as the more energetic of |
the two ionization electrons present in the final state, there are | 
two types of rearrangement collision that may occur. Firstly 
there is the possibility of exchange for v/hich the roles of the 
two ionization electrons are interchanged and secondly capture
for which the two atomic electrons are excited to the continuum 
and the incident electron de-excited to a bound state of the 
residue ion.

In the discussion that follows we shall refer to the more 
energetic ionization electron as the 'fast' electron and the other 
as. the 'slow*, denoting the respective momenta by and

£9



AsBociated with the three processes described v/e have the 
direct, exchange and capture amplitudes which, in accordance with 
the work of Rudge (1968), we denote by

respectively. Each amplitude is related to a T ”matrix 
element, corresponding to the particular transition with which the 
amplitude is associated, through an equation of the form (1.74).

Our present intention is to show how the amplitudes combine 
to give the probability for each final state of ionization. In 
order to do this v/e need to determine the relation between the 
amplitudes and the asymptotic form of the wavefunction representing 
the system.

If we denote the spatial co-ordinates of the two atomic 
electrons by and X3 and those of the incident electron by 
then the full hamiltonian corresponding to the electron-helium 
interaction has the form

V O jA S )
where H^CO is the free-electron hamiltonian, the
hamiltonian for the target system and \ /( jS 2 - y S ') the interaction 
potential, is given by

*7 C'a. Cs
Now since the initial symmetry of the system must be retained 

then A  the solution of the full Schrodinger equation
that develops from the wavefunction describing the initial state of 
the system, must be symmetric with respect to interchange of 
and . Let  ̂6=-/>3} represent both the spatial and spin co­
ordinates of the electrons. Hence if we take full account of spin 
the anti-symmetrized wavefunction representing the system is

cyclic permutations of indexes
(1.93)
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where I T i s  the spin function representing a 
state of the target that has total spin and Z  -component 5
cTÇU, (cr, ) is the spin function of an electron having s p i n # 

and denote the spin co-ordinates of the electrons.
Our interest is confined to those collisions that result in

ionization and so we shall retain only such states in the asymptotic
form of . Hence we obtain

X ' ( f ç ü / i '

(1.94)
In the asymptotic form of (1.94) the wavefunction

describes the excited state of the target system which is composed i
of the residual ion, in some state /Tt, together with the less ;
energetic ionization electron. The quantities E  and !
are the total energies of the initial and final states of the system 
respectively. Finally, the quantity P, , is the combination I
of amplitudes obtained after projecting the associated spin functions' 
onto the function * j

Since the present work is concerned with the ionization of a !
helium atom initially in its ground state we have O  and
the corresponding form of ^  . is

ft_pK.s

O;̂ / j -Q >

C OSl j/^8>/^<SP) - s i  

+ CCk, -k » o i/J-liB-J *
3± (1.95)



where the C* S are Glehsch-Gordon coefficients.
We must now examine the different' combinations of spins that

may occur. Let the initial spins bey U f " "+^ jyUjgf=^ and
=  -Jf • In this case the spin function for the ground state

of the helium atom is given by

trCo,o I ,03J) 96)
If we consider dhe-final' state we see .^that^yC^^and maŷ .,
form any of the following combinations

/ ^ 3

- i  
- i

-'k + &
which give rise to the contributions

4-

■b)

C  Gà ):k> -^ > 'k y O ')(^ ^ Q C k p à s ')

C  3
; O, ̂  j ̂  Z= CCk>^)0

=  CC/k)&,oj
C  C&i'kjO j C à ^ )à s)

+ CCk̂ 'k>oi~-k>à>o:̂ '̂ j.<̂ Ckf,ks')-S'S.
Now the only non-zero ülebsch-Gordon coefficients are

and CCk>i)^j-'fe>'k,0) and these are given hy

C)

*■

SQs, I
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and
C'Ci)k>C}-4>-k.>p) =  ̂  

s c - - k l o y ) S c k i % : > ^ ^

=  - k  '
Hence, applying these results, we obtain

p  c o , o , & | & r k ) ' k ) = - + u
kç,ks

(1.97)

Now the probability for any particular transition is proportional 
to the square of the associated anplitude, as indicated by equations
(1.34) and (1.74). Consequently our interest is directed toward 
the quantity

Since J U , has two possible values, each giving an equal contribution 
to the sum of (1.98) then, using the expressions of (1.97), we have

J  I""
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-Tie. [£ckf,ks') ĉkp,kù]

- ^ e . [ £ > J t k f , è s ) ( f c ^ é s ) + ^ C k f j à s ) ) j  J

If we now average over the spin states of the target and incident 
electron, representing the averaged sum by ^ , we obtain

— 9 l e . [ J - C ^ ) à s ) ^ k f , é s ^ J

— T̂ .po:>ckç}ks')(ĵ ckp̂ s'>~̂ Ĉkf>kŷ '2

(1.99)
Let W 4  L represent the transition prohahility per unit time, 
taking full account of all rearrangements that may contribute to the 
final state of ionization. Then from the analogues of equations
(1.34) and (1.74) it follows that this is given by

\ / \ /  = - 4 f ^  â C ^ C '^ ) M f ) k s ' ) - E ^ q C à f > k s ' )

^4^ ^ (1.100)
It is convenient at this stage to adopt the system of atomic units

for our measurements. This merely requires that we set
JUL'=̂  /^^ss/in. all previous expressions, where appropriate.

Now as a consequence of the Uncertainty Principle there will be
a group of states, centred around E   ̂ into which the
system may make transitions, all of which will be observed as the
same excitation process. The probability of transitions, per unit
time, to a group of such states is
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(1.101)
where J the density of states per unit solid angle, 1
may he replaced hy the density of states per unit solid angle j
for the 'fast* outgoing electron. i

Then-substituting from (1.100) we obtain '

When deriving an expression for the density of states, 
it is convenient to initially consider the ionization process to be 
restricted to a finite volume of space. In this event we may use ; 
box normalization, the normalization factor associated with a free !

/  Ielectron v/avefunction being  ̂where Z— is the edge length of the
confining cube. Later we shall take the limit in which the cube | 
encompasses all space. For the present situation it is easily shown 
that and so we arrive at the following expression
for the probability of transitions per unit time

(2ir) (1.108)
The target system experiences a transition to an ionized state, 

which may be regarded as an excitation to a continuum state. However 
unlike the ordinary case of excitation for which each electron occupj£ 
a discrete state, we now have an electron flux, of magnitude 
into a group of continuum states. . The experimentally observed 
quantity would be the electron flux, per unit solid angle, into the 
continuum states, resulting from an incident beam of unit flux. Since 
the flux of the incident beam is k ^ L  ̂  per unit area and time then 
the probability per unit t l m e , o C P , corresponding to the scattering



of the *slow* electron into an element of solid angle, o^cf2^ , is 
given hy

Z- Æ  c/c/2̂ 
Lwhere is the magnitude of the momentum of an incident electron. 

Thus applying the result of (1.102) we obtain

f C k f i b s ' )  ^ c f i y c S l s

Let P  be the total probability, per unit time, of observing a final 
state in which the electron momenta have magnitudes and . 
Then clearly

P  = J y . P  —J T b  k f k j  c^C^yks)cdcS}poàfls

(1.104)
by use of equation (1.103).

If we introduce the quantity to represent the
probability, per unit time, that the particular state of ionization 
characterized by the two momentum vectors and will result 
from the impact by an incident beam of unit flux, then

P= ff X(%r!k^cOSlrd(Jls
d J  (1.105)

Comparison of equations (1.104) and (1.105) leads to the result

—  L z . cf C à p y k ^  (1.106)
& .T r t ^

Since the quantity is a combination of products
of pairs of the amplitudes and each amplitude involves two free 
electron wavefunctions, with associated normalization factors /_ , 
it is clear that a factor Z— arises from « Consequently
the expression of (1.106) is independent of the choice of
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normalization. In the limit of infinite interaction space,
adopting the usual normalization proceedure, Z- is replaced by 

—3/̂ and (1.106) becomes

rv- A
(1.107)

Because, for fixed incident energy, ^^G— depends 
upon the angular co-ordinates of both outgoing electrons and the 
energy of either, it is known as the triple differential cross- 
section. It is sometimes convenient to indicate this by v/riting 
it in the form

where the symbol O' denotes the total cross-section a n A S ^ = - ^ k s y  

the energy of the 'slow * ionization electron.

* we recall that the wavefunction satisfying the full Schrodinger equation has developed from an initial state containing a free 
electron wavefunction.
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C H A P T E R S

In developing the formulation contained in Chapter 1 it was ; 
assumed that it is possible to distinguish times in the remote past 
and future for which the interaction is absent. This is equivalent , 
to considering the interaction potential to be of limited range. 
However, in electron-atom collisions the incident electron interacts | 
with the target atom via coulomb potentials, which are well known 
for their long range effects. In the initial state the incoming | 
electron will see an electrically neutral target and only as it j
nears the target will it be able to distinguish between the '
individual potentials of the consU50tuent particles. Hence although 
v/e are dealing with Coulomb potentials it is sensible to refer to a 
prior interaction state in the distant past. However, after 
ionization has occurred, although the slower outgoing electron will 
tend to screen the 'fast* electron from the charge of the residual ; 
ion, it is unlikely that the ion and * slow * electron will appear 
sufficiently localized to be considered electrically neutral.
Clearly the asymptotic form of the wave function representing the 
interacting systems is dependent upon the character of the interactlo 
potential existing in the final state. Should this potential 
behave like a screened Coulomb potential then it is not possible 
to represent the 'fast' electron hy a plane wave, irrespective of 
how energetic it may be. Hence it v/ould not be possible to 
^.istinguish a time in the distant future at which the interaction 
was absent. For such a situation the approach to the ionization 
problem previously used is no longer applicable.

If the interaction potential in the ionized state is of a short 
range nature then a plane wave representation for the *fast* 
outgoing electron in the asymptotic form of the full wave function
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is adequate and the approach presented in Chapter 1 remains valid.
To allow for the presence of a long range interaction !

potential in the ionized state it is necessary to seek an alternativ 
approach to the ionization problem. In 2.1 we shall outline an 
approach due to Rudge (1968).
2.1 Solution in hyperspherical co-ordinates.

In this section it is our intention to rewrite the usual time 
independent Schrodinger equation in terms of hyperspherical co­
ordinates and then transform this to give the corresponding integral I
form for the wave function from v/hich, by due consideration of the j 
asymptotic form, we may extract an expression for the scattering |
, amplitude. j

One advantage resulting from the use of hyperspherical co­
ordinates is that it is possible to investigate the asymptotic ■
form of the wave function when both outgoing electrons are far 
removed from the residual ion by considering the asymptotic 
dependence upon a single variable in the hyperspherical co-ordinate ; 
system.

We shall develop this alternative treatment through consider­
ation of the particular case of the ionization of atomic hydrogen b 
electron impact. The results so obtained may be easily generalized 
to the ionization of more complex atoms.

The wave function representing the interacting
systems satisfies the time independent Schrodinger equation

(2.1)
where -Ly^=E7 , the total energy of the interacting systems £
and

We shall now introduce the system of hyperspherical co-ordinate 
6) where ( 0 ^  ,  (J>i ; /= A a r e  the usual angular
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co-ordinates of the two electrons, as measured in the spherical 
polar co-ordinate system, and the quantities are defined hy

Ç =  QCOSoC 1 
(^ —  Q sin o C  J

(2.8)
Defining an additional quantity

X  (8.3)
enables us to transform equation (8.1) to the hyperspherical form

(2.4)
having made the substitution

In equation (2,4) a n d d e n o t e  differential operators having
the following forms

/  - - 4

=- ( s ù r d ^ C O S ^ Y ^  4" Sin?v>cL^

(2.5)
with ^ 3 (S iJ ^ 9 id  (s in P -Q i)

The homogeneous differential equation associated with (2.4) 
ig =  O  which is of a standard form having linearly
independent solutions and / V X ) * denoting
the radial Coulomb functions with asymptotic forms -

4 0 (8.6)



where (fee) =
By using a suitable combination of these functions, such ;

that the correct boundary conditions are satisfied, we are able to
!

construct the Green's function for the problem. Proceeding in this |
way it is readily shown that the wave function satisfies
the integral equation |

(2.7)
Now in the final state of ionization v/e are concerned with the

asymptotic behaviour of the wave function as 0 j G. arid. oO
simultaneously. This threefold limiting process may be achieved
by considering the behaviour of the form of the wave function
contained in (2.7) as oô (provided that v/e exclude the points | 
oc=:-0 ,cc-'^ and ). j

IIf we retain only the leading terra in this asymptotic form

^ ^ (2.8)
It is useful to make a comparison betv/een the expression in

(2.8) and the asymptotic form of the wave function corresponding to 
the scattering of an electron by an attractive Coulomb field (c. f. 
Landau and Lifshitz 1965). The factor g  ̂
appearing in (2.8). is clearly the analogue of one such exponential 
factor occUQ?ing in the asymptotic coulomb function. An extension
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of this comparison of terms leads us to make the following 
identification for the scattering anplitude:

(2.9)

Hence we obtain the asymptotic form 

from v/hich follov/s

$ « . 4 ) ----

(2.10)
However since this form of the scattering anplitude is of 

limited use we shall nov/ show how it may he used to derive the more 
familiar integral form of the amplitude.

Let us consider the integral expression

where is the exact solution of the Schrodinger equation
having the asymptotic form previously described, and is
some wave function whose asymptotic form describes two continuum 
electrons moving in Coulomb like fields. Y/e make the following 
choice for ^ G A ? A )

e

where each is a solution of a differential equation of the
form
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k i  - t  l - P )  — O

(2.13)

In the equations (2.12) and (2.13) />£ denote
the momenta of the tv/o continuum electrons in the final state of 
ionization, I b r ^ l y represents some short
range potential and the Z i  are effective charges which will he 
determined at a later stage.

The functions I have the asymptotic forms

where
r - ^ o o
A

(2.14)

c< - h

f  denoting the elastic scattering amplitude.UgZ.
By applying a multi-dimensional form of the divergence theorem 

the integral i  appearing in equation (2.11) may he reduced to 
a surface integral

2 ] = p ^ / ^ d ^ — ^ d ^ ) s i n î c c x y s % ^ d r j d ^

This modified form of PC may he evaluated hy the application 
of tv/o theorems concerning stationary phase (Jeffreys and Jeffreys 
1956). These state that

“■ R.-4-oO (2.16)
provided that Q t ^ c ) = 0 ,  a^3Ce^i> . In the event of
such a point not existing or if O, then
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V  bc=a-
as

(2.17)
Lf we define

kf =XC0Sy6
^ 2.“  X.Sin>^ ^  O  ̂  ̂  ̂

(2.18)

and substitute the asymptotic forms of the wave functions and their 
ierivatives into the integral expression for X , application of the 
stationary phase theorems (2.17) and (2.18) enables us to simplify 
to the following expression for X

(2.19)
the only contribution to the integral arising from the point of 
stationary phase corresponding to •

Now it is clear that the expression in (2.19) will contain 
a divergent phase factor unless the charge parameters satisfy the 
relation .

which may be rewritten as

5- 4- =r JL X  —  (2.20)
fe, fei. ^  I k - k J

Provided that the relation (2.80) is satisfied X  is properly
defined and given by

(2.21)
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(2.22)

A subséquent rearrangement of (2.21), after making the 
appropriate substitutions from (2.18),leads to the following 
expression for the scattering amplitude

- C ^ n - S \ e x j = [ i A C à n à ^ 3 ) l

where 

Hence
F c k A )  =

which may readily be generalized to the case of a target having an 
outer shell of t l  equivalent electrons

.......<a^ (2.23)
It should be noted that the definition of the scattering

amplitude used in this section differs from that appearing in Chapter 
1 in one fundamental respect. The final state wave function ̂  in
(2.23), unlike its counterpart in Chapter 1, has not been 
anti symmetrized and hence the term scattering anplitude as used in 
this and the previous Chapter describes two different quantities. For 
the case of helium the effect of this difference in the definition 
is to introduce an additional factor of two in the usual expression 
for the triple differential cross-section given by (1.107). This may 
be directly attributed to the fact that there are tv/o equivalent 
electrons comprising the helium ground state.

Apart from this difference in definition, which may be easily 
remedied by simply replacing^ by its anti-symmetric form in (2.23), 
we observe that the two forms of the amplitude are basically similar. 
Hov/ever the wave function ̂  in (2.23) now describes a final state 
in which the outgoing electrons continue to move under the influence 
of Coulomb like potentials, whereas before it was assumed that
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such interactions were absent. In addition we now have a momenta 
dependent phase factor associated with the anplitude, the 
significance of which we shall discuss later#

One interesting point that emerges from this alternative 
treatment is the fact that the final state wave function is not 
uniquely defined. Hence this approach does not actually resolve 
the problem regarding the exact nature of the final state wave 
function. Instead it provides a general form for this function 
characterized by effective charges and v/hich are arbitrary, 
subject to the restriction imposed by (2.20). The relation (2.20) 
implies that the charges and J2T̂ are angle dependent quantities 
which asymptotically take full account of the Coulomb potentials. 
From purely physical considerations this situation would seem 
perfectly reasonable. By reason of the latitude present in the 
choice of final state wave function the approach outlined here is 
best regarded as essentially a trial function method. Although 
we are required to satisfy the relation (2.20) we have no 
prescription for the 'best* choice of effective charges.

Kudge and Schwartz (1966) have made calculations of the total 
ionization cross section of based on the theoretical model
described. The final state wave function was represented by a 
product of two coulomb functions corresponding to the choice of 
effective charges:

.̂ = I ~,ir^ I ]
^1

II y
(2.24)

The results ohtained did not represent a significant 
improvement over previous calculations and in fact in the 
intermediate and high energy regions were at even greater variance 
with experiment. It was argued that the choice of charges
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appearing in (2,24) might he partly responsible for the apparent 
failure of the calculations.

From physical considerations it would seem that the roles of 
the two outgoing electrons can be interchanged by merely inter­
changing the corresponding momentum vectors and consequently, 
since the effective charge seen by each electron is a function of 
the momenta alone, we might reasonably expect 2} and to satisfy 
the relation

Such a symmetry relation is achieved by assigning the following 
values to ̂  and Z 2,

(2.25)
One consequence of such a choice would be that even at high 

energies the 'fast* outgoing electron would be moving in a Coulomb 
field since the corresponding effective charge will always be 
greater than zero. This remains so even v/hen the 'slow* electron 
has zero energy and one might reasonably expect it to screen the 'fast* 
electron completely. Hence, in view of this discrepancy, the 
suitability of the choice of values in (2.25), although supported 
to some extent by physical considerations, must remain open to 
question. We shall see a further consequence of this particular 
choice at a later stage in this discussion.

Clearly it is possible to define the other two interaction 
amplitudes associated with the ionization of helium by sinple analogy. 
Hence we obtain the following definitions for
and C X > C k,)k jO the direct, exchange and capture amplitudes

respectively
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fcè„k̂  =

ÿ C à n à a . ) ^

( ü C A „ A j =

ÿ C 4  Æ . r g  ) d r^ o tr^

(2.26)

where the wave function^ is the solution of the full time 
independent Schrodinger equation describing the collisbn process 
and ̂ , the conplex conjugate of the final state wave function, is 
formed from the product of two functions \j^ '^  ^

previously defined, and the conplex conjugate of the function 
describing the ground state of the residual ion. The indexes 1, 2 
and 3 appearing in the definitions (2.26) refer to the incident and 
atomic electrons respectively.

Since we expect the roles of the two outgoing electrons to be 
interchanged as a consequence of interchanging the corresponding 
momentum vectors then both and must
relate to the same physical process and must therefore be 
proportional to each other. (This of course assumes that the form 
of the wave function chosen to describe each outgoing electron is 
appropriate for the entire momentum range. )

Peterkop (1961) independently developed a treatment of the 
ionization problem using an approach closely resembling that of 
Kudge et al and.was the first to show that suitable definition of 
normalization and phase factors leads to the relation

9 /cAz) A/)
U (2.27)
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A demonstration of the derivation of this relation is easily 
achieved by means of a simple manipulation of the expression 
representing the exchange amplitude in (2.26). Now from (2.26)
we have a r k  L \

But we have shown previously that the choice of effective 
charges JS) and.^ is arbitrary provided that the constraint 
imposed by (2.20) is satisfied. Hence if we replace 
by arid by the relation (2.20^
will still be satisfied and the phase Zi(jA,, is then replaced I  

by A . Thus v/e obtain the relation (2.27). In |
subsequent discussion v/e shall refer to the form of the exchange ; 
amplitude resulting from the use of (2.27) as the "Peterkop form".

IIt should be noted that the choice of effective charges I
I

given by (2.25) leaves the phase factor unaltered under the 
transformation: ; ^2^ ^ !  associated with (2.87), since|
A^A/)Aa ) =  A6^)A,) in this case.

The three amplitudes defined by (2.26) may be combined to j1
give the triple differential cross section I

(2.28)
where has form identical to that defined by equation
(1.99), = and denotes the momentum of the incident
electron. The presence of the factor 2.in (2.28) which does not 
appear in (1.107), has already been explained.
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If we consider the form of given hy (1.99) it is
clear that the phase factor associated with each amplitude only
assumes any importance if we use the 'Peterkop form' of the

(
exchange amplitude. In this case we obtain a phase difference of

between the exchange amplitude and either of 
the other two amplitudes, which will obviously affect the way in 
which these amplitudes interfere, Hov/ever, it is observed that the 
choice of effective charges given by (2.25) eliminates any phase 
difference and so leads to a simplification of the interference 
problem.

Other approximate models using the 'Peterkop form' of the 
exchange amplitude have also included a phase difference between
the amplitudes although the prescription for the form of this

I'quantity has varied somewhat, largely depending upon the particular 
approach to the problem used.

Yet another approach to the ionization problem is provided 
by Geltman (1969) who, like Kudge, also maintains that both 
outgoing electrons in the final state should be considered to move 
in Coulomb like fields. Hence the asymptotic form of the wave 
function corresponding to the ionization process should contain 
appropriate Coulomb-type wave representations of these electrons. 
Using the ionization of hydrogen as a simple example he 
demonstrates how the theory can be dev^oped to achieve such a 
situation. Basically the approach consists of modifying the usual 
form of the integral equation derived from the Schrodinger 
equation such that the corresponding homogeneous equation describes 
two non-interacting electrons moving in pure Coulomb fields. The 
result of this alternative resolution for the integral equation 
is that, although the desired asymptotic form of the scattered 
part of the wave is obtained, the unperturbed part of the incident

beam is now represented by a Coulomb function since it is contained
SO



in that part of the solution arising from the homogeneous equation. 
Clearly this does not seem to be in total accord with the 
physical situation.

Geltman has used this form of the wave function to derive the 
relation (2.27) but, in doing so, finds it necessary to eliminate 
the logarithmic phase factors appearing in the asymptotic forms 
of the Coulomb functions representing the outgoing electrons. This 
is achieved by assuming exponential damping of the Coulomb 
potentials. Such a device becomes necessary because the choice of 
effective charges takes no account of a possible energy dependence.

40.2. Approximate Methods
Although the various approaches examined in the previous 

discussion differ from each other in several aspects each associated 
form for the amplitudes is exact, within its terms of reference, in 
the sense that each has been derived without recourse to 
approximate forms of the wave functions. While it is true that the 
choice of representation of the final state of ionization is a 
source of contention, it should be recognised that this arises 
from a difference in the mathematical interpretation of the 
physical situation rather than a divergence of opinion upon the 
validity of different approximate methods.

All expressions so far obtained for the amplitudes involve the 
exact solution of the Schrodinger equation corresponding to the 
ionization process. In practice it is not possible to obtain the 
exact wave function describing any interaction process involving 
more than two distinct entities and one is forced to seek an 
approximate solution to the problem. In the following v/e shall 
describe a number of different approximate forms that have been 
used to replace the exact wave function.

Some approximations are readily suggested by particular ways
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in which v/e are able to express the exact wave function. The 
various orders of the Born approximation fall into such a class. 
These particular approximations are based on the theoretical 
approach to the ionization problem presented in Chapter 1, although 
one can easily derive their analogues using the alternative 
approaches contained in this chapter.

A suitable generalization of equation (1.56) yields the 
following integral form for the wave function 
describing the collision process

(2.29)
Where > ^ 0  describes the unperturbed state,

denotes the corresponding retarded Green's function and 
Y/ the interaction potential. In (2.29) denotes the

spatial co-ordinates of the incident electron and &  —  nO
those of the t \ atomic electrons belonging to the target system. 

Equation (2.29) may be written symbolically as

' ) C o i =  G ,
(2.30)

where represents an integral operator.
Clearly the wave function appearing on the right hand

side of (2.30) may be replaced by the form given by (2.30), so 
leading to the result

(2. 31)



This process may he continued indefinitely to generate
the infinite Born or Neumann series

oc>

psrO (2,32)
We can obtain a v/hole class of approximations for the wave 

function from (2,32) by merely terminating the series
expansion after different numbers of terms. These give the Born 
approximations, the most commonly used being the first Born 
approximation obtained by terminating the series after the first 
two terms. In this case equation (2.29) is replaced by the 
approximate form

V C £ ' ,B ) U ( C O > Ë ) d r o ^

(2.33)
Consequently wherever the function appears in the

expressions for the direct, exchange and capture amplitudes it is 
now replaced by the unperturbed function

The first Born approximation is valid for collisional 
processes involving high energy incident electrons since it can be 
shown to represent the dominant contribution to the process 
provided that JZ,the charge carried by the nucleus of the target 
system, is not too large (see Schiff 1968)

Calculations of electron impact excitation (Woollings 1972) 
and double ionization (Tweed 1973) cross sections for various 
atoms have been made based on the second Born approximation but 
generally the repeated integrals involved render calculation so 
unwieldy as to be impractical without further approximation and a
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consequent loss in accuracy.

•̂3* Approximate forms of the exchange amplitude
Even within the framework of the first Born approximation 

there exists considerable latitude in the choice of wave functions 
since it is not possible to construct exact functions describing 
electron-electron correlations. Of the approximate models that 
take account of exchange several use a modified form of the 
corresponding amplitude based upon the relation (2.27). Such 
modified forms are generally referred to as Born-exchange 
approximations. The phase factors associated with each of the 
amplitudes in the Éudge formulation are omitted but a phase different 
between direct and exchange amplitudes is introduced by modifying 
(2.27) to the following form j

(2.34)
V/hereas in the theoretical model developed by Rudge the 

presence of the phase factor 0  was a natural consequence
of the particular formulation of the problem used, in (2.34) it has 
become a form of parameter which may be adjusted to compensate for 
inaccuracies resulting from the approximate form of the exchange 
an^litude used. As an example of the use of the relation (2.34) 
we shall consider the calculations of Peach (1966) for the 
collisional ionization of a variety of atoms with outer S electrons. 
These calculations are based on the first Born approximation, the 
more energetic outgoing electron being represented by a plane wave 
and the other by a Coulomb function. Because each wave function is 
appropriate to a particular energy region we have the situation in 
which application of (2.34) leads to a totally inadequate description
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of the 'slow* electron for the exchange process. Clearly both 
phase and magnitude of the exchange an^litude are likely to be 
affected by the use of such an approximation. However, since 
exchange effects are most significant when the outgoing electrons 
have nearly equal energies, and in such cases plane wave 
descriptions for the two electrons may be adequate provided the 
energies are sufficiently large, then the Born-exchange approxim­
ation may provide a fairly good description of the exchange contr- 
bution in the total cross section results.

The form of the phase difference appearing in
calculations based on the Born-exchange approximation has varied 
according to the particular criterion applied. Here we shall 
give two choices based on totally different criteria. The first of 
these, suggested by Peterkop ^962 (aJ7i is based on purely 
practical considerations. Since for intermediate and high energies 
first Born calculations tend to overestimate the total cross 
section it is advantageous to maximize the interference between the 
direct and exchange amplitudes since it is through the interference 
term that exchange malces its most significant contribution. This 
may be achieved by the choice

ora F ~^  (2.35)
The second choice which has been frequently used /Peterkop (1962a), 
Geltman, Kudge, and Seaton (1963) and Sloan (1965J7 is given by

?rCA.,Aa.) = o r a  P Q - L ^ f ^  ) - a r ^ P O ~
(2.36)

where Z  is the net charge on the new ion produced.
The origin of this choice of phase difference clearly stems from a 
üoulomb-type wave representation of the outgoing electrons.

Other approximate models have avoided the inaccuracy inherent



in the use of the relation (2.27) by basing exchange calculations 
on the explicit form of the amplitude derived earlier. One j
such model is the Born-Oppenheimer approximation which has been 
used to calculate the ionization cross section of a variety of 
ions /f*Burke and Taylor (1965), HC^S^  ̂  ̂ ^ H e^ (2 s)y

Trefftz (1963), O ; Malik and Trefftz (1961), I Geltman (I960] 
h i This approximation fails to reproduce the correct
behaviour for the cross section, being in considerable error in the 
lev/ and intermediate energy regions for the ionization of neutral ,
species in an initial atomic *s‘ state as a result of spuriously ^
large contributions to the cross section arising from 's’ states 
of the scattered electron. Gonsiderable improvement is obtained 
when the method is used to calculate ionization cross sections 
for positive ions (Burke and Taylor (1965)).

For the ionization of hl^Ls^ th e approximation consists of 
adopting the following forms of the scattering amplitudes: ;

(2.37)
the capture process being excluded. In accordance with the first 
Born approximation the initial state wave function ̂  is given 
by the product of a free electron wave function and a hydrogen!c 
is orbital while the final state wave function uses a plane 
wave description of the ’fast’ outgoing electron and a Coulomb 
function (J3 = ) for the other.

Kudge and others have attributed the failure of the Born- 
Oppenheimer approximation to the lack of orthogonality between the 
functions and appearing in the exchange
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an^litude given by (2.37). They argue that the addition of a 
constant to the hamiltonian H would result in a change in the 
cross section as calculated from the amplitudes of (2.37), which 
contradicts the physical interpretation of such a change in the 
hamiItonion. However, as has been indicated by Schulz (1973), this 
situation does not arise.

Let us consider the Lippmann-Schwinger formulation for 
rearrangement collisions (§1.3). If two colliding systems a 
and b suffer a rearrangement resulting in component systems c and d 
theh the corresponding ingoing and outgoing v/aves , ono/ c(Ji

respectively, satisfy the equations (1.85) and (1.86), i.e.

a } > ~  ^  ''a*' ■' ' 'a b ^ o J >  (2.58)

(2.39)
where and satisfy the homogeneous equations

We shall now examine the effect produced by introducing an 
additional constant, , into the total hamiltonian H. For this 
purpose we need consider only the integral equation (2.38) 
together with the corresponding homogeneous equation. The quantity 
\// may be interpreted as an additional background potential and 
associated with this we must introduce an energy shift of in all 
states, where in our system of units

iEg— %  (2.40)
Now formerly the Schrodinger equation corresponding to the 

collision process was given by the following

or alternatively

S7



However the additional background potential, , produces the 
energy shift and so 2^ must satisfy the equation

which with the help of (2,40) reduces to the original form

Ch - e ) $ = o

Hence the wave function 2p descrihing the interaction of the
systems is unaffected, Now since the potential is present in 
the unperturbed states existing before Eind after the interaction it 
cannot be considered to constitute part of the interaction potential 
(i.e. h i ^  and remain unchanged). In the intial unperturbed
state the same energy shift, £1̂  , must be observed, so leading to 
the following equation for

which reduces to

E ' ) u ^ = - o

Consequently the wave function retains its original form.
Clearly equation (2.58) is invariant with respect to this particular 
change in the hamiltonian. Similar manipulation of (2.39) and the 
corresponding homogeneous equation shows this to be true for these 
as well.

In essence the addition of a constant to the total hamiltonian 
produces a trivial shift in the energy levels that has no effect on 
the Born-Opp enhe imer calculations for the exchange aii%)litude.

Consequently, as and
eigen functions of the same hamiltonian, there is no necessity for 
them to be mutually orthogonal. However this does not imply that the 
wave functions should not be subject to some orthogonality condition
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since when approximate wave functions are used orthogonality 
conditions do at least introduce a measure of consistency into 
the model.

Another form of the exchange amplitude is provided hy the 
Born-Uchkur approximation. Ochkur (1965) argued that the Born- 
Opp enhe imer approximation was appropriate to high energy collisions 
and from this derived an alternative approximate form for the 
exchange amplitude, based on a series expansion, which he claimed 
to be valid for the entire energy range. Essentially the method 
used assujTies that the wave function representing the 'slow*
outgoing electron (and chosen to be a Coulomb v/ave in the 
Opp enhe imer formulation) can be factorized into the form

0^crj) =  e ‘'-*-XcA,r) (2.41)
where the function varies slowly in comparison with

This is equivalent to requiring that

i.e. / Ÿ X C à ) € ) l < ^  A: (2.42)
Use of the form (2.41) leads to an integral of a similar 

nature to the usual Bethe integral appearing in first Born 
expressions for the direct amplitude. Repeated integration by 
parts with respect to two variables results in a series expansion 
in inverse pov/ers of Provided that condition. (2.42) is
satisfied the dominant contribution arises from the first terra of 
the series, all others containing derivatives of ^
using an order of magnitude argueraent̂  Ochkur shows that the 
contribution to the amplitude arising from the term in the
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interaction potential may be omitted. Hence he obtains the 
relation

l k t r k , P  p c à , , à d >

(2.43)
Ochkur provides no convincing explanation as to why this 

form should remain valid for collisional ionization at lower energies 
although in a number of cases this approximation, or modified 
forms of it, has shown considerable improvement over Born-exchange 
calculations. A particular example is given by the calculations of 
Peach (1966) for the ionization cross sections of A/e, 
and from their ground states.

All approximate expressions for the exchange amplitude so far 
examined have been based on the first Born approximation for which

the exact solution of the Schrodinger equation, is. approximated 
with the wave function representing the initial unperturbed state of 
the systems. Burke and Taylor (1965) have attempted to remedy the 
situation by using an improved approximate form for the exact wave 
function. For the ionization of hydrogen this wave function talies 
the form

$ c r , = [ ' +  Çcr,) 2 44
Y*

where the 3 are hydrogenic orbitals and the summation is
over the configurations (Y • JtS,2s,2p ). In equation (2.44) 
is a permutation operator and S the total spin of the system.

The functions are obtained from the Hartree-Fock
equations

o (3.4=)
This model, which retains ‘ the Oppenheimer representation of 

the final state, has been referred to as the Distorted-Wave Born-
Oppenheimer Method*
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In spite of the greater sophistication of this model results 
ohtained show no significant improvement over Born and Born- 
exchange calculations for ionization from the ground state. This 
would seem to indicate that better final state wave functions are 
required. However this method has been used with rather more 
success for the ionization of hydrogen from the 2 s  state.

2.4- SUMMARY
Before concluding this discussion on the use of approximate

forms of the amplitudes we shall present a summary of the 
calculations that have been performed for the triple differential 
cross section corresponding to the ionization of helium. The 
three main contributors are Jacobs (1974), Geltman (1974) and 
Schulz (1973).

The approach used by Jacobs is based on the Born approximation 
the effects of exchange and capture being consistently excluded.
In his treatment of the problem he is concerned with the develop­
ment of a theoretical framework suitable for the calculation of 
triple differential cross sections corresponding to ionization in 
which target atom and residual ion occupy general states. The 
direct amplitude is expressed in terms of the Bethe generalized 
oscillator strength. This approach leads to a Legendre polynomial 
expansion for the amplitude which expresses the angular correlation 
between the two outgoing electrons in terms of the angle between 
the ejected electron momentum vector and the momentum transfer 
vector. The expansion obtained closely resembles the form of the 
amplitude given in chapters 3 and 4. In the subsequent 
calculations the main emphasis is. on the accuracy of the helium 
ground state function, for which a 56-term Hylleraas expansion 
is used. The outgoing electrons are represented hy h - Z % - 2 p  

close coupling continuum functions.
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We have already made mention of the Coulomb-projected 
Born approximation of Geltman et al. Basically this is designed 
to take specific account of the interaction between the "fast" 
outgoing electron and the target nucleus in the final state by 
using a Coulomb wave representation for this electron. Although 
this approximation requires the omission of a term from the 
interaction potential the effect is implicit in the wave functions 
and is not lost through orthogonality requirements as is the case 
v/ith the ordinary Born approximation (c. f. Chapters 3 and 4). In 
the calculations of Geltman the "slow" outgoing electron is 
represented by a Coulomb function corresponding to an effective 
charge and the "fast" electron by a Coulomb function with
effective charge 2. The ground state of the helium atom is 
represented by the simple one-parameter wave function defined 
in equation (3. 5).

The model used by Schulz, although developed from different 
considerations, is of a similar nature to that of Geltman. In 
this model the two outgoing electrons are once again represented 
by Coulomb waves. However the two models differ in the choice 
of effective charges. Schulz has tried various combinations of 
effective charges, largely chosen in accordance with equation
(2.20). In addition, from an analysis of the terms conprising 
the direct amplitude, Schulz is able to determine the dominant 
contributions to the binary and recoil peaks characterizing the 
differential cross section. He has used this information to 
produce a criterion on which to base the choice of effective 
charges. By this the charges are adjusted to achieve the largest 
value of the ratio betv/een the sizes of the peaks. The 
calculations -based on this model use a two-parameter Hartree-Fock 

function to represent the helium ground state.wave
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C H A P T E R

The lon.lza'tlon of* Helium Tjy electron Intact (using a siinple 
one parameter wave function to represent the target system).

A variety of mathematical models used to calculate impact 
ionization cross sections for helium have been reviewed in the 
previous chapters. Although a number of these have taken account 
of the exchange process, to date all models have excluded the 
effects of capture. In this chapter it is our intention to assess 
the relative importance of the capture process in con^arisen with 
the direct and exchange scattering processes. In order to achieve 
this objective we have made calculations of 
and the direct, exchange and capture amplitudes
respectively as defined by Rudge (eq. 2.26), based on the first 
Born approximation (eq. 2.53).

These preliminary calculations are of an exploratory nature 
and hence the emphasis is largely on ease of computation, using 
adequate descriptions of the electron states involved, rather than 
high precision. With regard to the use of approximate wave functions 
it is recognised that while it is relatively simple to approximate 
a bound function to any desired degree of accuracy the same is not 
true for continuum state wave functions. Consequently the choice 
of representation for continuum states is a crucial factor in any 
calculations in which such states are involved. For this reason 
although we have used basic approximate bound state functions in 
these preliminary calculations considerable care has been taken to 
ensure a correct description of the continuum states involved.
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3, 1 The wave functions
The direct, exchange and capture amplitudes, denoted h 5))

respectively, are given hy

f c é f à s ' i = C<  ̂ ^̂ Oi-2,33/\/C)̂ Ĵ/̂ a-̂ >33>

^càfiks'i «  C< .̂i^c2ji>s:>lvch^>3 l̂ f̂Ci52,sX>

C O  i ^ ^ O j  \ /Ch ^ > ^  I ^  I

(3.1)

where O — -”G27T)^ê  ̂ ^^^j’the quantity being a
momenta dependent phase discussed in detail in chapter 2.

The indexes 1, 2 and 3 refer to the incident and atomic 
electrons respectively.

In accordance with the first Born approximation the wave 
functions and 2 &  describe the
unperturbed states of the consistuent systems before and after 
ionization.

As before denotes the momentum of the incident electron 
and ^  and the momenta of the "fast" and "slow" outgoing
electrons respectively.

The function \ /Q ^ 2 y i ) appearing in the expressions for the 
amplitudes given by equations (3.1) represents the interaction 
potential. There are two alternative formS; for this potential 
depending on whether we use the interaction appropriate to the 
initial or final state of the systems. Corresponding to these two 
forms of the potential we have the prior and post formulations of 
the amplitudes respectively, (eqs. 1.91, 1.92). If the total



hamiltonian corresponding to the collisional process is denoted 
by h i and and Hj> are the respective hamiltonians associated with 
the intial and final unperturbed states then the forms of V^/,2,3) 
appropriate to the prior and post formulations respectively are 
given by

V 0 , 2 ; 3 ^ =  H - H c  (g.2)

=  H  -  (3.3)
Let us now direct our attention to the specific forms of the 

wave functions to be used in the expressions (5.1). The function 
describing the initial unperturbed state is clearlyso

separable into the form

- - ' ÿ c w

where the wave function represents the target ground state
and is, for the purposes of these calculations, approximated with 
the simple ansatz

The value of the p a r a m e t e r , is determined by means of the 
Rayleigh-Ritz variational principle.

For the final unperturbed state the corresponding wave function 
must also be separable, i.e.

where describes the excited state of the target formed from
the "slow" electron and residual ion. This excited state is 
approximated with the exchange-adiabatic model of Economides and
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McDowell (1969). Their approach to the' problem, which is a variant 
of the polarized orbital treatment of Sloan (1964), is outlined 
in the following section.

1 The Method of Polarized Orbitals.
Clearly the presence of the "Slow** continuum electron produces 

polarization of the residual ion with a consequent perturbation of 
the is state occupied by the remaining bound electron. The total 
antisymmetrized wave function for the electron-ion system is assumed 
to have the form

(3.7)
where is the usual permutation operator and Z  is the charge
carried by the nucleus of the residual ion.

In the form (3.7) the function is an approximation
to the first order perturbation of the ground state function

produced by a stationary electron at . Following the method 
of Sloan we obtain the corresponding form of ^

where f ±  n>
ecn,Q.)=  ̂Q

and is the angle between the radial vectorsJP and J^.
When the continuum electron is far removed from the residual 

ion the function represents the dipole contribution
to the first order perturbation of *

In accordance with the variational principle applied by Sloan
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we take to be a solution of the equation:

^  E  =
The function describing the continuum electron may

he represented hy a partial wave expansion (PaxSn and Holtzraark 
1929)

Ip CC-) = -L_ , J5̂ -8̂ + 0 ̂
^  ~T~ (3.10)

In the expansion (3.10) the function is the Legendre polynomial 
of order C and is a radial function, regular at the
origin, with the asymptotic form

^  X siri[k r+ (^ ^ ln .(^ r)-lC fr-t-o i+ flJ  
r->ûû ^  fe. (3.11)

where f^^z(^jthe usual Coulomb phase, while
denotes that part of the phase arising from non-Coulomb potentials.

Subsequent substitution for in (3.9) from equation
(3.7), together with the use of the forms (3.8) and (3.10) indicates 
that the radial function must satisfy the integro-
differential equation

[  +  J-)] U^C ,̂r)

-  - B C z r )  U c C lz> 0  -  
Q z f'3'*’

+  H c ^ + 1, 0  +  r)J

-  O s ^ - h k f O - h r X 0 ^ 4 D
Q c + 0
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- 4 g .  a ± J ) r ‘--^ 0 c-c-5 ,r:> -h
68^+0 ^ & l+ 3 )  q^ ~ 0  J

(3.12)

where

Icm,r) =  q  £ ( k y a £ ) x ! ^ c h z (3.15)

.00
J"(m^r) =  f  (3.14)

The quantity /̂ G^Ç) is defined to he the direct
6zr)*polarization potential, having the asymptotic behaviour

^ Q s r )  oÇ
C zr)'* ' r-Goo r*

where o( — the dipole polarizahility.
The exchange-adiabatic approximation of Economides and 

McDowell is obtained by neglecting the perturbation of the ground 
state in the exchange terms. Hence the terms contained in the 
last three square brackets of equation (3.12) are omitted. In 
addition all subsequent calculations are made using the unperturbed 

I s  state wave function to describe the ground state of the 
residual ion.

Due allowance for the neglect of specific terms in the modified 
form of equation (3.12) can be made by the introduction of the 
switching constants A.^Aj^^Ajat the appropriate places in this 
equation

r  c(/̂ 4. k‘"-*-20z~0-̂ 2A,Ùs+±̂ ë̂ -CCCtl̂  + A,/iĜr:>lu.fk,r')
^  cCr^ r (zr)*tJ
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(3.15)
^1,2The normalization of the continuum wave functions.

To ensure the asymptotic behaviour prescribed by equation (3.11) 
it is necessary that the radial function should be
correctly normalized. This is achieved by use of the Stromgren 
method (cf. Bates and Seaton, 1949). The appropriate form of 
equation (3.15) for the asymptotic region will be

oCn^ (3.16)
which is satisfied by a function of the form

U ^ C ^ ,r ) =  C f ^ S i n . £ ( U r ) + S }

where C is a constant and ̂  , which represents is given by

y =  (3.18)
c c ^

The rapid convergence exhibited by the successive approximations 
to ^  arising from the solution of (3.18) by iteration renders the
technique most suitable for this case. As tends to

and so the asymptotic amplitude of (3.17) is simply C k ^

The constant C may be evaluated in the following way; we select 
two values of P , denoted by Ç and , corresponding to points in
the asymptotic region. Associated with these we define the
quantities C. . y

oc ^  ^ Ola." ̂
By suitable manipulation of these, in conjunction with equation
(3.17), we obtain the following expression for C

(3.19)
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which may easily be evaluated.
The method of solution of the equation (3.15), together with 

the numerical techniques involved is described in Appendix A,
For the purposes of the calculations contained in this chapter 
the switching constants, A •, are all set to unity.

d.2 Reduction of the amplitudes
As a further simplification to these preliminary calculations 

it was decided that the Peterkop form of the exchange ainplitude 
given by equation (2.27) should be adopted. Hence v/e require only 
the explicit forms of the direct and capture amplitudes.

3.2.jLThe direct amplitude
The direct scattering amplitude has the form

(3.20)

where (3-21)

also l <  =

*1 *12. - i S
All other quantities are as previously defined.

Since 2^^ are both taken to represent eigenstates
of the target system then they are subject to the orthogonality 
condition

^  (3.24)
This may be achieved by either
(a) requiring the S-wave of the polarized orbital expansion to

—ocrbe orthogonal to C' j or
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(h) replacing tÿ A )
In the first case the orthogonalized function has the form

and in the second case

where are constants#
Let us introduce'the quantity A d e f i n e d  in the following •

v/ay
Aĉ :)=A'"'
A ( k ) =
AC^) —  O  in the absence of any orthogonality condition.

This enables us to write the orthogonalized wave function in 
the general form

r$.C£ j A ) l  = $ . C ^ jA ) A c t ) (:-<<(?-fc'ii)
^  orbh^. (3.25)

Substituting this form of the wave function into (3.20) and 
using the explicit form of the interaction potential given by 
(3.23) we obtain

(3.26)

and

E .  — -
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the associated constant b having the form L = ^00 O 
The integration over the variable P jl , occuring in (3.27), may be 
evaluated immediately since it involves only the familiar Bethe 
integral. The resulting expression for is

(J >̂3
Let tis firstly consider that part of the integral involving 

the second term appearing within the brackets. Denoting this by ̂  
we have

F  = ̂  e 4) «^«(4
(3.29)

Since the wave function is symmetric with respect to
interchange of the vectors ̂  and then (3.29) may be rewritten
as

(3.30)
where the integral X^CX)^ is defined hy

X a , ' >  =

If we now substitute for from equation (3.5) v/e obtain
the following explicit expression for

s ' / - * * '
To facilitate the evaluation of the integration we make use

//iT. rof the series expansion of C- in Legendre polynomials, ie.
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where spherical Bessel function of order C*

Substituting the form (3,33) into (3,32) and using the orthogonality 
properties of Legendre polynomials we obtain

=  6Vrroc*<^i—
h C ^ foci

(3,34)
where ô ,= yW-c< and
Hence equation (3,30) may be reduced to the form

( 5, 35 y
We shall now consider the remaining integral appearing in the 

expression for >

This expression may also be written in a symmetric form

(3.56)
by defining the integral X ^ C t ^ A ^ i ^ b ) in the following way

I^Ct£A,!<b-> =

Subseq,uent substitution of the appropriate forms of the wave 
functions form (3.5), (3.21) gives the following expression for j q
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=  Z®-̂ oC®
%  yvy

(3.38)
We shall firstly direct our attention to the integration over 

the variable in equation (3.38). By using the partial wave 
e^QDansion representation of , given by equation (3.10), in
conjunction with the expansion of in Spherical Harmonics

t

Pc C Û A a ') (3.39)
and (3.33) we can perform the angular part of the integration and 
so obtain

o6 oo

Cso *
(3.40)

The corresponding integration over the variable gives us the 
result

f Vjc, = Mr. zrz+co^
J (CZ+Pij‘'-h 2.

(3. 41)
Using the results (3.40) and (3.41) in the equation (3.38) 
yields the following form for

C-o
où

^0(0J jC /c ^ r '') U jik .s ,r ') r e , ‘̂ 'oC r

Hence
X  (K,o) = '^(26+ 0 a
^ r r -k i^ C z+ p Q y  ^

v*r



and
f j C f < r ) U i ,  ( k s X > ê r ‘̂ ĉiCn

Uf. C

1  C0,i<) = €^(z+oC)z^c<? rf^^(-kg^r)re

Consequently the term C ” is given by the expression
 eo

6=0

f. 1 Cf<r)uXks,r)rë̂ Sér +  Çz+cQ , fuoC^X'ii^^c^r'X
'^o  ̂ ( ^ + ‘i f y - k f X  4  J

(S. 43)
Let us now consider the quantity ^  as defined by (3.28). Since

A f o  =  A ‘“= - g < # . | $ s , >
then clearly can he rewritten in the form

* TT V/ Ç '
v/hich involves the usual Bethe integral.

Hence, following the evaluation of this integral, we obtain

4 ^ A C « b  (3.44)
It now only remains to find an explicit expression for the overlap 
integral denoted by

Act) =  o ir^ dn ^

But
- m r .

U  re+a)*

(3.45)

7S



and f ë ''^ îh ^ C £ :)d ù  =
J  -a kf^Trfà. q

Combining the results of the two integrals above we arrive at the 
expression for A(t) required ^

.
A m  =  y ,3.46)

k è i h - b z f  <4

3*2*2 The capture amplitude
The capture amplitude is defined by equation (3.1). Substituting 

the appropriate forms of the wave functions from equations (3.4),
(3.6) and (3.25) we obtain

c o C k f> à s >  =  '4 A

”■* (3.47)
The post form of the arrplitude is obtained if the interaction 
potential is taken to be

V o x x y  =  \Z c2-i ' ) 3 ) = 4 - ^ 4 r - #Cz Çz Q.
while the prior form corresponds to the choice

\/C»A3)=Vt>j2.3)
If O û'C àpiks^ and CO>^C^^)^s) denote the prior and post formulations 
of the amplitude respectively, then these are given by

co~ C àf)ès'>  

A*fc) e
fr&

(3.48)
and
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[^).z^e'''::4-Ac6)&''S-(:'gc6,^c^
* ^  (3.49)

Interchanging the indexes 1 and 2 in (3.49) we obtain

(o -* -C à f> k s) =

%  77-«.

(3.50)
where we have made the appropriate substitutions from (3.21) and 
(3.22). If we now replace by the explicit form (3.5) and
introduce the quantities V \ / y .à A ,k i , , / 3 ,Y )  , \A ^ C à a .) à k ,/S iY )  

defined by
V \^ C k > .ik i tjS , it)  =  « ^ 2

e^ 'i^ * 0 ^ i^ o (r^ c(rg X C '3 (S. 51)

K  C L A ' A  r) =  i *  j Ï Ï c ^ P £ P < e . ^ - ’^ £ ^  V o -a S )

oCü, oCĉ oCcs
(3.58)

then clearly both CO" and CO"*"have the same basic structure, the 
corresponding expressions being

£rr L  ̂ ^ (3.53)

(3.54)
Substituting the explicit form of the potential \ / Q ^ i n t o
(3.51) we obtain the following expression for

W ô 3  (3.55)
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where _ j j j + ± ^ e**®

CÙ)dCa.dC3
(3.56)

Vv^e = J J J ^

(3.57)

We shall now examine the integration over the variable J?, 
involved in (3.56) -

cC i^cC c,In order to evaluate the integration we need to make use of the 
series expansion

where f> and Q  denote the greater and lesser of rj* and fj* 
respectively.
If we introduce the function defined by

then the evaluation of the jO, integration associated with j
subsequent to the substitution of the expansion (3.58) together 
with the use of (3.39), yields the result

- i - d a d Q

(3.60)
The first term contained in the brackets appearing in (3.60) gives

re



the following contribution to the integral

L=-0
Appropriate use of the expansion (3.53) enables us to perform the 
angular part of the integration and so obtain

(3.61)

J ^  ÂJX -̂p- J
Hence (3.61) takes the form ^

r O ^  f l c k c è b )

%  ^ = û
00

Co ̂ > /^ }  i C 4 D
» ^  (3.62)

Let us now consider the contribution arising from the remaining 
term within the brackets of (3.60)

J I  d c^ d c^
c^o

Replacing by the partial wave expansion (3.10) allows us
to evaluate the integration which results in the expression

(3.63)

J ' e ^ - i > " ^ e ^ ' d r = -  A -T r J jc à i,n ) é r ^ ''T ^ d r

Hence (3.63) may be reduced to the form

k J - C r - ^ 4 f ^ ,  J  (6.S4)
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Combining the résulté (3.68) and (3.64) we obtain

J VcC’)^>/^]jck£)e^'r^dr

LÎT %
(3.65)

Let us now examine the term as given by (3.57). In this case
>the integration over the three configuration spaces is separable 

From the i2, , integration we obtain

J ' ~ S . cF =  —  4-frz^ ( k a r iê l^ ^ t 'c l r

-  _  k 4 t 1 Z

where C» has been replaced by the series expansion (3.33)
Also

T  e  *''c4' =  V.) e - i ^ W r

—  4rn

Hence is given by the expression

W  =  -32.gfT*.z>- g-»*wrr't4C^.r)rc6'
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When evaluating the term defined by (3.52) it is convenient 
to separate it into two parts as was done with , i. e.

+  (5.67)rr
where

(0.68)
and

■3
(3.69)

If we firstly consider and evaluate the r, integration as we did 
for (cf. eq. 3.60) then we obtain

C»o

(3.70)
In equation (3. 70) the first term within the brackets gives rise 
to the integral

which, after evaluation of the integration, may be reduced to 
the expression

X = 0  "  ̂ (5.71)
But ^

Thus (3.7l) becomes

" (3.72)
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The second term arising from (5.70) has the form

■  t=o ^

Performing the integration over we obtain

Now from (3.59) we have
f c k r ) e ^ ' l  d r

Uq '^0 f>

= X  J" ̂ (kn)e^^r%/r4-J j c k r ) € ^ r d r

which may be evaluated to give
tf.CO fc,/3) [ 4 3 k  - C Z f i k c ^ k r * ( p - - i e ) s U ^ k r )

e - n
Hence 

_oo
A 4 C0 ̂ ,̂/S:) e"'̂ “'r“«îr

=  _J—  „ , f - ZlihA LC2pC-ri3'f-- k t j  
k a .C ^ ‘- + ^ T  ̂  ^oc)* CC2><-i-/S,y^-h k X j ^

—  6/3^-^^)- 2 . ^ « + 0 ) h g. 7
U 2 . c ^ p > f - i - k i T  ^

=  ^  ^  —  C/3(^4y3)— (p K + 2 .^ ') 7

(5.74)
ü'inally the jq Integration in (3.75) yields the result
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Using this and the result (3.74) We can reduce (3.73) to
the form

C P > M  k t  # 4 /  L 4^^ J
(3.75)

Combining equations (3.72) and (3.75) yields the following 
expression for

OO Où

6=0 o

Ç â  -  C § & fÇ + /^ z^ 2 P ^ + ^ )} )

(3.76)
The term l/\^gdefined by (3.69) is separable with respect to the 
integrations involved and may be rewritten in the form

=  -  32n-%y
c C ^ C f i ^ - h k l X f + k \ f  (3.77)

where we have used the results for the integrals as previously 
found.

Integrals appearing in the previous analysis that cannot be 
reduced to closed analytic forms are integrated numerically 
using Simpson's Rule over 1500 points. For this purpose the range
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of integration is divided into three parts corresponding to 
steplengths of 0.005, 0.01 and 0.02, the first of these containing 
the first 100 function values, the second the next 200 and the third 
the remaining 1200. The integration routines used in the calculat­
ion of the direct and exchange amplitudes are easily checked by 
running the program for the plane-plane approximation as described 
in Appendix B (retaining only terms corresponding to the simple 
ground state wave function in the alternative analysis). This 
proceedure provided an adequate check on the calculations for both 
the direct and exchange amplitudes since they share the same coding.

The capture amplitude presents more of a problem since even 
for the plane-plane approximation some of the associated integrals 
cannot be easily reduced to analytic forms. In particular we 
require some check on the method used to generate the integrals:

00 -oCC

appearing in the expression for given hy equation (3.65). If
we make the Bessel function replacement corresponding to the plane-
plane approximation the integral becomes 

<00

e r ° ^ X ^ J c k r ) V i C n k ' ,^ : ) d r

Because of the form of the function  ̂defined by (3.59), this 
integral has particular symmetry properties and may also be
expressed in the form

Subsequent evaluation of this integral using both forms presented 
here produced results that agreed to at least four significant 
figures. This clearly indicated the reliability of the numerical 
integration technique used.
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Results *

We have calculated the triple differential cross section '
for the ionization of helium by electron impact using the expressions 
for the Amplitudes given in this chapter. Results are presented ! 
for the energy regions investigated by Erhardt et al (1972). During 
the course of our calculations we have examined the.effects of . 
orthogonality upon the amplitudes. In particular we are interested 
in the extent to which the different methods of achieving orthogonality 
affect the results. For this purpose we have calculated the 
amplitudes using both forms of the orthogonalized final state wave 
function. Tables 1 to 3 compare the results obtained from the two 
choices of orthogonality for selected energies and angles.

V/e have also evaluated in both the past and prior
formulations. If the wave functions 2^^ and 2 ^ ^  are exact 
these two expressions are of course, identical, but otherwise 
the post-prior discrepancy gives a crude measure of the unreliability 
of the wave functions. The tables 4 - 6  show a comparison between 
values of the capture amplitude calculated from the post and prior 
forms for a number of cases.

If we denote the capture probability by then
we have the following definition:

feoThe figures 1 -3 show the variation of with angle, using both
post and prior approximations, for representative sets of collision 
parameters. An inspection of these probability distributions 
clearly indicates basic differences between the two approximations. 
Although the Kidney shape is common to both, and may therefore be 
considered a characteristic of the capture probability distribution, 
the positions of the maxima in either one are completely reversed in
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the other. However the minima ; of the two distributions roughly 
coincide. Another difference that is apparent is that while 
the curve corresponding to the prior approximation is symmetrical 
about the direction of the incident electron that for the post 
approximation is symmetrical about the direction of the “fast** 
outgoing electron.

Tables 7 - 9  show the relative magnitudes of the direct, 
exchange and capture amplitudes for three sets of collision 
parameters. Finally figures 4 — ^ show the variation of the triple 
differential cross section with angle. V/e have only included those 
cases for which there is experimental data available for comparison. 
The triple differential cross section is characterized by a forward 
and backward peak, referred to as the binary and recoil peaks 
respectively. Since the measurements of Ehrhardt et al are not 
absolute it has been necessary to normalize the results of our 
calculations to these measurements. This is achieved by requiring 
that the maximum of the forward peak, as measured experimentally, 
should be in agreement with the calculated value. We observe that 
the curves corresponding to the calculations tend to underestimate 
the magnitude of the recoil peak. A more detailed discussion of 
the differences between the experimental and calculated curves, 
and the reasons for them, is contained in Chapter 4.

3,4- Conclusions
V/e have evaluated the direct, exchange and capture amplitudes^ 

corresponding to the ionization of Helium by electron impact, 
using the first B o m  approximation. Particular consideration has 
been given to the effects of orthogonality and to differences 
arising from the use of the post and prior forms of the capture 
amplitude. Also preliminary calculations for the triple differential
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cross section have been made corresponding to an incident energy 
of 256. 5eV.

The results obtained lead us to the following conclusions:
Firstly, that, at least in the energy range considered, the 

choice of orthogonality condition is unimportant (provided that 
equation 3.24 is satisfied).

Secondly, although both post and prior forms of the capture 
amplitude produce results of the same order of magnitude, there 
is considerable discrepancy between the two. This would seem 
to indicate that the correlation in the He ground state, which has 
been neglected in these calculations, is an important consideration 
in the evaluation of the capture amplitude.

Thirdly, it is clear that the capture process is only signific­
ant at these relatively high energies where the triple differential 
cross section is small, but it may dominate the exchange 
contribution in these regions.

Finally, the calculations of the triple differential cross 
section, although reproducing the salient features of the 
experimental measurements, differ from the experimental measurements 
in several respects. In particular there exists a serious 
discrepancy in the relative magnitudes of the binary and recoil 
peaks.
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CASE: E^= 256.5eV E^ = 226eV/
ORTHOGONALITY 
CONDITION (a)

ORTHOGONALITY 
CONDITION (b)

NO ORTHOGONALITY 
CONDITION

ATTGLE a 7 j.( fc à f9 k ^

•30
60*
90*

120“
150*
180'
210*
240*
270*
300*
330*
360*

0. 339( 
-O. 2241 
-0.6561 
-0. 8771 
-0. 8711 
-0. 6371 -0.195 
O.,370l 
0. 8881 
0.1181 
0.1171 
0. 8651

-2)
■2
•2
•2
-2
•2
■2
-2
■2
•1
•1
•2

0. 404( 
-0.454( 
-O. 7101 
-0. 805 
-0. 8021 
-0. 7011 
-0. 433 
‘O. 7451 
0. 7521 
0. 1271 
0.1251 
0. 715 (

■3)
2
•2
-2
•2
-2
-2
-3
-2
•1
■1
-2

0.
ho. —0. 
—0. 
-0. 
-0. 
ho. o. 
0. 
0. 
0. 
0.

339(
223
655
877'
870
6361941
3711
889
118
1171
865

-2)
•2
■2
-2
■2•2
■2
-2
-2
■1
•1
-2

0.
-0. 
-0. 
-0. 
-0. L-0. 
—0. 
0. 
0. 
0. 
0. 
0.

399(
454(■
711 (8051
803
7021
4341
739
7521
1271
125
715

■3)
■2
■2
•2
•2
■2-2
■3
•2
•1
■1
-2

0.330( 
-0 . 2331 
-0.6651 
-O. 8871 
-0. 8811 
-0. 6471 
-0. 205 
0.3611 
0. 8801 
0. 118 i
0.1171 
0.856(

-2
•2
•2
•2
•2
■2•2
•2
•2
•1
-1
-2

0.
-0. 
-0. 
-0. 
-0. 
—0. 
-0. 
0. 
0. 
0. 
0. 
0.

472(-3 
447(-2 
703(-2 
7971-2 
795(-2 
694(-2 426(-2 
812(-3 
759(-2 
128(-1, 
126(-1, 722(-2

CASE: B. = 256. 5eV Bp =229eV

30*
60*
90*

120*
150*
180*
210*
240*
270*300*
330*
360*

0. 2131 
-0.1261 -0.3981 
-0. 5031 
-0. 4151 
-0.1571 
0.183! 
0. 4471 
0. 5321 
0. 5241 
, 0. 5321 
0. 4621

■2
•2
•2
-2
-2
-2
-2
-2
-2-2
-2
-2

-0. 1731 
-0. 715! 
-0.9881 
k ) . 1071 
-0.100' 
-0. 751 ( 
-0. 2401 
0. 519! 
0.1281 
0.1631 
0. 1341 
0.5961

•2
-2
-2
•l'
-1
-2
-2
-2
-1
-1
-1
-2

0. 214 
-0.125 
-0. 396 
-0.502 
-0.414 
-0. 155 0.184 
0. 448 
0. 533 
0. 525 
0. 534 
0. 463

-0. 
-0. 
-0. 
-0. 
-0. 
-0. 
—0. 
0. 
0. 
0. 0.

173(-2 
710(-2 983(-2 
107(-l| 998(-2 
746(-2 
235(-2 
525(-2129(^1
164(-i;134C-1

TABLE 3.1
VARIATION OF THE DIRECT SCATTERING AMPLITUDE WITH 
ANGLE Gg FOR THE VARIOUS CHOICES OF ORTHOGONALITY 
EXAMINED.



CASE; Ê  =256.5eV Ep =226eV 6^=4*
ORTHOGONALITY 
CONDITION (a)

ORTHOGONALITY 
COIDITION (b)

NO ORTHOGONALITY 
CONDITION

©S.ANGLE
30*
60*
90*
120*
150*
180*
210*
240*
270*
300*
330*
360*

0.114(-3) 
0.628(-4 
0.362(-4 
0. 261 ( -4 
0. 2601-4 
0. 3441-4 
0.5301-4 
0. 844(-4 
0.129 (-3 
0.176(-3 
0.20l(-3 
0.175 (-3

0. 358(-4/ 
0.2031-4 
0.176(-&; 
-0.123(-4 
-0.193(-4' 
-0. 218(-4, 
-0.217(-4 
-0.161(-4 
0.843(-7 
0. 2331-4/ 
0.399(-4 
0. 4331-4'

0.114(-3 
0.628(-4 
0. 361 (-4 
0. 260(-4 
0.259 (-4 
0. 344(-4 
0.529(-4 
0. 844( -4 
0.129(-3 
0.176(-3 
0.20l(-3 
0.175(-3

0.357(-4 
0. 202 (-4 
0.172 (-5 
-0.124(-4 
-0.193 (-4 
-0. 219 (-4 
-01 218 Ç-4 
-0.161 (-4 
0.38?(-7 0.232 (-4 
0. 398( -4) 
0.432(-4)

0.117(-3 
0. 656 (—4 
0.3861-4. 
0. 283{-4) 
0.280(-4; 
0. 364f-4 
0.550(-4 
0.866(-4 
0.131(-3, 
0.179 (-3) 
0.204(-3 ) 
0.178(-3)

0. 389(-4' 
0. 231(-4| 
0. 422(-5 
-0.102 (-4 
-0.173(-4, 
-0.199(-4, 
-0.197(-4, 
-0.139(-4 
0.253 (-5
0. 261 ( -4;
0. 43l(-4, 
0.466 (-4.

CASE; E^ = 256.5eV Er =229e\/ 0p=6*

30*
60*
90*
120*
150*
180*
210*
240*
270*
300*
330*
360*

0.106(-3 
0. 636(—4, 
0.4161-4, 
0.347(-4, 
0.385 (-4, 
0.5251-4, 
0.785(-4 
0.118(-3 
0.164C-3 
0.199 (-3 
0.200(-3 
0.160(-3

0. 299 (-4, 
0.180 (-4. 
0.406 (-5 
-0. 775(-5 
-0.150(-4; 
-0.182 (-4, 
-0.175 (-4, 
-0.112 (-4, 
0.285(-5 
0. 207 (-4; 
0. 333C-4, 
0. 360(-4.

0.1061 
0. 6351 
0.4151 
0. 3461 
0.3841 
0. 5241 
0. 785 
0.1181 
0. 164< 
0.199 
0. 2001 
0.160(-

•3
.4
4
4
4
4
4
•3
*3
-3
•3
■3)

0. 298 (-4, 
0. 180(-4 
0.401 (-5 
-0.778(-5 
-0.151(-4, 
-0. 182(-4 
-0.176 (-4, 
-0.112 (-4, 
0.280(-5 
0.206(-4; 
0.3331-4, 
0. 359 (-4,

0. 108' 
0. 66U 
0.4391
0. 3681 
0. 405( 
0.545( 
0. 805 ( 
0.120( 
0.166 ( 0. 201 ( 
0. 202(

-3
4
4
4
4
4
4
-3
■3
-3
-3)

0. 329 (-4; 
0. 208(-4, 
0.652(-5 
-0.551 (-5 
-0. 129(-4, 
—0.161 (—4, -0. 155 (-4, 
-0.896(-5 
0. 530(-5 0.234(-4, 
0.363 (-4,

TABLE 3.2
VARIATION OF THE EXCHAiVGE AÆPLITUDE (PETERKOP FORM) 
Y/ITH iil̂ GLE 0Ô FOR THE VARIOUS CHOICES OF ORTHOGONALITY 
• EXAiVIINED.



CASE: E^ = 256.5eV Ep = 226eV ^.=4*

■ ORTHOGONALITY 
CONDITION (a)

ORTHOGONALITY 
GOITDITION (D)

NO ORTHOGONALITY 
CONDITION

MGLK 6g '^MCéf>ès) Tè.cùcéf,^ é.Cù(jkfik̂

30 • 
60 • 
90 • 
120 • 
150 • 
180 ' 
210» 
240 * 
270" 
300* 
330* 
360*

0.211(-4) 
0.172(-4) 
0.120 (-4)
0.729(-5)
0.417(-5) 
0.310(-5) 
0. 417(-5) 
0. 729(-5) 
0.120(-4) 
0.172(-4) 
0. 211 (-4) 
0.225(-4)

0.192(-5) 
-0. 394(-5) 
-0. 949 (-5 ) 
-0.130 (-4) 
-0.147 (-4) 
-0.151 (-4) 
-0.147(-4) 
-0.130 (-4) 
-0. 949 (-5) 
-0. S94(-5) 
0. 192 (-5) 
0. 456 (-5)

0. 210 (-4) 
0.1711-4) 
0.1191-4) 
0.720(-5) 
0. 408 (-5) 
0. 301 (-5) 
0. 408 (-5 5 
0. 720 (-5) 
0.119(-4) 
0.171(-4) 
0. 210 (-4) 
0. 224(-4)

0.198(-5) 
-0.388(-5) 
-0.943(-5) 
-0.130(-4) 
-0.146 ( —4 J 
-0.15l(-4) 
-0.146 (-4) 
-0.130 (-4) 
-0. 943 (-5) 
-0. 388(-5 ) 
0.198(-5) 
0.462 (-5)

0.195(-4) 
0.156 (-4) 
0.104 (-4) 
0. 568(-5) 
0.250 (-5) 
0.1441-5) 
0.250(-5) 
0.563(-5) 
0.104 (-4) 
0.156(-4) 
0.195 (-4) 
0. 209 (-4)

0.313(-5) 
-0. 273 (-5) 
-0. 828 (-5 )
-0.118 (-4)
-0.135 (-4) 
-0.139 (-4) 
-0.135 (-4) 
-0.118 (-4)
—0. 828 ( —5 ) 
-0.273(-5) 
0.313(-5) 
0.577(-5)

CASE: E^ = 256. 5 eV Ep = 229eV ^=6'

30* 
60* 
90 * 
120* 
150* 
180" 
210* 
240* 
270* 
300* 
330* 
360*

0.202(-4 
0.1901-4/ 
0.163(-4 
0.131 (-4, 
0.105 (-4, 
0.953(-5 
0.105(-4 
0.131(-4 
0.1631-4 
0.190 (-4, 
0. 202( -4 
0. 204(-4,

0. 784( 
0.992( 
-0.654( 
-0. 123 ( 
-0. 155 { 
-0.166( 
-0.155 ( 
-0.123 ( 
-0.654( 
0.992( 
0. 784( 
0.107(

•5
■6
■5
-4
■4'
■4'
•4'
-4
-5
-6
-5
-4

0. 200(-4/ 
0.188(-4, 
0.162(-4 
0.129 (-4, 
0.103(-4. 
0.939 (-5 
0.103(-4 
0.129(-41 
0. 162 (-4, 
0. 188(-4, 
0.-200 (-4.
0.203(-4)

0.789(-5 
0.104C-5 
-0.649(—5 
-0.122 (-4, 
-0.155(-4 
-0.165(-4, 
-0.155(-4 
-0.122(-4, 
-0. 649 (-5 
0.104(-5 
0.789(-5, 
0.107(-4,

0.176 (-4’ 
0.164(-4, 
0.138(-4, 
0.105(-4, 
0.793(-5 
0.698(-5 
0.793(-5 
0.105(-4; 
0.138(-4 
0.164(-4, 
0.176(-4

0.878(-5 
0.193(-5 
-0. 561 (-5 
-0.114(-4; 
—0.146(—4, 
-0.156(-4, 
-0.146 ( —4, 
-0.114 (-4, 
-0.561(-5 
0.193(-5 
0.878(-5

TABLE 3.3
VARIATION OF THE CAPTURE MIPLITUDE (PRIOR FORM) WITH 
AVGLE ©s FOR THE VARIOUS CHOICES OF ORTHOGONALITY EZAIVlINED.



CASE: E^ = 256.5eV Ep = 229eV

PRIOR APPROXIMATION POST APPROXIMATION

ANGLE 9 s T i^ c o c è fjk s ')

15* 
50* 
45 * 
60* 
75* 
90* 
105* 
120* 
155* 
150* 
165* 
180* 
195* 
210* 
225* 
240* 
255* 
270* 
285* 
300* 
315* 
330* 
345* 
360*

0. 204(-4] 
0. 202(-4, 
-0. 197(-4, 
0. 190(-4, 
0.178 (-4, 
0.163 (-4, 
0.147(-4, 
0.131 (-4, 
0.116 (-4, 
0.105(-4, 
0. 9771-5 
0.953(-5 
0.977(-5 
0. 105 (-4, 
0. 116(-4, 
0.131(-4, 
0.147(-4, 
0. 163(-4, 
0.178(-4, 
0. 190 (-4, 
0.197(-4, 
0.2021-4 
0. 204(-4, 
0. 2041-4,

0.993(-5 
0. 784(-5 
0.472 (-5 
0.992(-6 -0.289(-5 

-0.654(-5 
-0.972(-5 
-0.1231-4, 
—0.142(—4, 
-0.155(-4, 
-0. 1631-4, 
—0.1661—4, 
-0.163(-4, 
-0.155(-4 
-0. 142 (-4, 
-0. 123 (-4 
-0.971 (-5, 
—0. 654i—5 
—0.288(—5 
0. 992(-6 
0. 472 (-5 
0.784(-5 
0.993(-5 
0. 107 (-4,

0.952(-5, 
0. 101(-4, 
0.113(-4 
0. 129 (-4, 
0.147(-4 
0. 167 (-4, 
0.185(-4, 
0.200(-4 
0.21l(-4' 
0.217(-4' 
0.219(-4, 
0. 220 (-4, 
0.220(-4, 
0.219(-4 
0.216(-4 
0. 209(-4, 
0. 197(-4, 
0. 182(-4, 
0.163(-4 
0. 143(-4 
0.125(-4
0.110 (-4;
0. 998{-5 
0. 947(-5

—0. 184(—4, 
-0. 178 (-4, 
—0. 1661—4 
-0. 147 (-4, 
-0. 12l(-4, 
-0.874(-5 
-0. 470 (-5 
-0. 195(-6 0.437(-5 
0. 847 (-5 
0. 115(-4/ 
0. 131 (-4, 
0.129(-4 
0. 110 (-4, 
0. 771 (-5 
0. 347(-5

-0.112 (-5!
-0.555I-5 
-0.948(-5 
-0.127(-4 
-0.152(-4 
—0. 169 (—4 
-0.180 (-4, 
-0. 1851-4,

TABLE 3.4
A COMPARISON OP THE VALUES OP THE CAPTURE AÎ«ÎPLITUDS 
CALCULATED PROM THE PRIOR AND POST FORMULATIONS. ORTHOGONALITY CONDITION (b) IS ILIPOSED.

It should be noted that tabulated values differ from the corresponding 
amplitudes by a multiplicative constant.^ (The entries in the tables 
should be multiplied by a factor \G 4 Z o L ^ Z ^ ^ /r r to obtain +1̂-
actual values of the amplitudes.y



CASE; Eg = 256. SeV Ep = 226d/ q=4*

PRIOR APPROXIMATION POST APPROXIMATION

ANGLE e . ^ .c o c é f j k s ) 7 è .c ù c M f,k s ) d c o c k f t k ^

15»
30*
45*
60*
75*
90*
105*
120*
135*
150*
165*
180*
195*
210*
225*
240*
255*
270*
285*
300*
315*
330*
345*
360*

0. 221 (-4;
0. 2101-4, 
0.193 (-4 
0.171 (-4, 
0.146 (-4, 
0.119 (-4 
0.942(-5 
0. 720 (-5 
0.539(-5 
0.408(-5 
0.328 (-5 
0.3011-5 
0. 328(-5 
0. 4081-5 
0.539 (-5 
0. 720 (-5 
0. 942 (-5 
0. 119 (-4, 
0.1461-4, 
0.171 (-4, 
0. 193C-4, 
0.210(-4, 
0. 221(-4, 
0. 224(-4,

0. 392(-5 
0.198(-5 
-0.787(-6 
-0. 388(-5 
-0.686(-5 
-0. 948 ( -5 
-0.115 (-4, 
—0.130(—4, 
-0.140(-4, 
-0.146 (-4 
-0.150(-4' 
-0.15l(-4, 
-0. 150(-4, 
—0.146(—4, 
-0.140 (-4, 
—0.1301—4, 
-0.115 (-4, 
-0.9431-5 
-0.686(-5 
-0.388(-5 
-0.786(-6 
0.1981-5 
0.3921-5 
0.462(-5

0.223 (-5 
0.298(-5 
0.432(-5 
0.625(-5 0.869(-5 
0.115 (-4, 
0. 146 (-4 
0.177(-4’ 
0.204(-4, 
0.225(-4 
0. 240(-4* 
0. 246 (-4 
0. 244(-4, 
0. 234(-4
0. 216 (-4'0.192(-4, 
0. 1631-4, 
0.132(-4, 
0. 102 (-4, 
0. 749 (-5 
0. 528 (-5 
0. 362(-5 
0.2561-5 
0. 209 (-5

-0. 163 (-4' 
-0. l60(-4, 
-0.154(-4, 
—0.144(—4, 
—0.129(—4, 
—0. IO81—4 
-0.800(-5 -0. 459 (-5 
-0.8561-6 
0.269(-5 
0.541 (-5 
0.673(-5 
0. 632(-5 
0. 429 (-5 
0.110 (-5 
-0.2611-5 
—0. 624( —5 
-0. 940(-5 
-0. 119(-4' 
-0.1371-4 
-0. 1491-4 
-0.157(-4, 
-0.162(-4 
—0.163 (—4,

TABLE 3.5 - - b -
A COIvlPARISON OP THE VALUES OP THE CAPTURE AMPLITUDE 
CALCULATED PROM THE PRIOR AND POST PORMULAJTIONS. 
ORTHOGONALITY CONDITION (b) IS lîvIPOSED. :



CASE: S. 256. 5 eV E,= 197eV P 0=4*P

PRIOR APPROXIMATION POST approximation

AITGLE ©s 7 i . ( o C é f ,k ù d c ù C k f^ k s 'i d c ù c è f t k i i

15* 0.287(-4
30® 0.250(-4
45® 0,2001-4
60» 0.1491-4
75» 0.104(-4
90» 0.676 (-5

105® 0.3971-5
120» 0.193(-5
135» 0. 516 (-6
150» —0. 4051—6
165» -0. 920 (-6
180* —0. 108( —5
195» -0.920(-6
210» -0. 405(-6
225* 0.616 (-6
240* 0.193(-5
255* 0.3971-5
270* 0.6761-5
285* 0.104(^4
300* 0. 149 (-4
315* 0. 200(-4
330» 0. 250 (-4
345» 0.2871-4
360* 0.301(-4

0.599(-6 
-0.15l(-5 
-0.392(-5 
-0.584(-5 
-0.704(-5 
-0.762(-5 
-0.778(-5 
-0.771(-5 
-0.756(-5 
-0.741(-5 -0.730 (-5 
-0.725(-5 
-0. 730 (-5 -0.741(-5 
-0.756(-5 
-0.771(-5 
-0.778(-5 
-0.762(-5 
-0.704(-5 
-0.584(-5 
-0.3921-5 
-0.15l(-5 
0.599(-6 
0.145 (-5

-0.192(-5 
-0.150 (-5 
—0.686(—6 
0.626(-6 0.257(-5 
0.533C-5 
0.909(-5 
0.139 (-4) 
0.197(-4) 
0.258(-4* 
0. 309 (-4 
0.335(-4 
0.327(-4 
0.287(-4 
0. 230 (-4 
0.169 (-4 
0.115 (-4 
0.720(-5 
0.392(-5 
0.157(-5 
-0.550(-7 
-0.112(-5 
-0.174(-5 
-0.200(-5

-0.725(-5 
-0. 738 (-5 
-0. 756(-5 
-0.777 (-5 
-0.796(-5 
-0.795(-5 
-0. 753 (-5 
—0. 642(—5 
-0. 438(-5 
-0. 149(-5 
0.148 (-5 
0. 316 (-5 
0. 262 (-5 
0.169(-6 -0. 291C-5 
-0. 546(-5 
-0.704(-5 
-0. 7791-5 
-0.799(-5 
-0.788(-5 
-0.767Ç-5 
-0.747(-5 
-0.731(-5 
-0.722(-5

TABLE 3.6
A COMPARISON OP THE VALUES OP THE CAPTURE AIVIPLITUDE 
CALCULATED PROM THE PRIOR AND POST FORMULATIONS. 
ORTHOGONALITY CONDITION (b) IS ILIPOSED.



CASK: = 256.5cV Ep = 229eV 9p=4‘

9s
AITGLE
15
50*»
45®
60®
75"
90*
105"
120"
135"
150"
165*
180*
195*
210"
225"
240*
255*
270*
285"
300*
315*
330*
345*
360"

7 l .f c é f ,é s ' )

0.511( 
0. 344( 
0.137( 
■0. 883( 
■0. 306 
■0. 495 
-0. 635 
■0. 7171 
■0. 7321 
■0.6821 
■0. 5681 
•0.4011 
■0.1941 
0. 306' 
0. 249' 
0. 438( 
0.578( 
0. 665( 
0. 707 C 
0. 721 (• 
0. 723' 
0. 7161 
0.6901 
0. 6261

■2
•2
•2
•3
■2
■2

II"2
■2
•2
■2
•3
•2
■2
■2
■2•2
■2
•2
•2
■2
•2

0.
0.
—0. -0. -0. 
-0. 
—0. —0. 
—0. -0. -0. -0. -0. -0. -0. 0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.

668(-2 
142(-2 
338(-2 
741(-2 
106(-1 128(-1, 
143(-1 
151(-i; 
153(-1 
148(-1 
1371-1, 118(-1, 
902(-2 
540(-2 
944(-3 
414(-2 
947(-2 
145(-11 
185(-1 
209(-1^ 
214(-1 
199(-1 
165(-1, 
119(-1.

0.1641 
0.1391 
0.115 
0.9411 
0.783( 
0. 671( 
0. 597( 
0.556( 
0. 543 ( 
0.555( 
0.592( 
0. 654( 
0. 742 ( 
0.858( 
0. 100 ( 
0. 118 ( 
0.1371 
0.1571 
0.1771 
0. 1941 
0. 206 
0. 2091 
0.202( 
0.1861

"3
■3
•3
■4
■4
-4)
-li•4
•4
■4
•4
■4
■4
•3
■3
•3
•3
■3
■3
•3
-3
-3
■3)

0. 
0. 
0. 
0. 
0. 
0. —0. -0. -0. -0. —0. -0. -0. -0. -0. -0. -0. 
0. 
0. 
0. 
0. 
0. 
0. 
0.

381f-4
341(-41
285(-4'
215(-4I
139(-4
6l8(-5
779(-6
655(-5
109(-4
140(-4
159C-4|
169(-4,
169(-4,
157(-4,
132(-4,
890(-5
265(-5
535(-5
144(-4
233(-4'
310(-4
365(-4;
395(-4,
399(-4,

c o c é f , A O

0. 178( 
0. 176( 
0.172 
0.164 
0.152 
0.138 
0.121 
0.105 
0. 906 
0. 793 
0. 722 0. 698 
0. 722 
0. 793 
0. 906 0. 105 
0. 121 
0.138 
0.152 
0.164 
0.172( 
0. 176 ( 0.178 { 
0.178 (

-i]444
4
4
4
4
4
5 
5 
5 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4) 4 
4 
4

d co C k fiyà s)

0.
0.
0.
0.-0. —0. —0. 
—0. -0. -0. -0. -0. -0. -0. -0. —0. 
—0. 
—0. -0. 
0. 
0. 
0. 
0. 
0.

109(-4 
878(-5 
566(-5 
193(-5 
195(-5 
56l(-5 
879(-5 
114(-4; 
133(-4 
1461-4' 
1541-4 1561-4] 
154(-4, 
146(-4' 
133(-4, 
114(-4 
879(-5 
561(-5 
195(-5 
193(-5 
566(-5 
878(-5 
109(-4
116(-4'

TABLE 3.7 :
VARIATION ON THE DIRECT? EXCHANGE AND CAPTURE (PRIOR NORId) 
AIvlPLlTUDES WITH SCATTERING AI'TGLE THE NON-ORTHOGONALIZED
PINAL STATE WAVE PUl'TCTION IS USED. ,



CASE: E, = 256. 5 eV̂ E = 229cV ©^=8*

AITGLE Qc

c o c à f ik s " )

7ico(Èf,kù dcjçéftks')
15*
30*
45*
60*
75"
90"
105*
120*
135*
150*
165*180*
195*
210*
225*
240*
255*
270*
285*
300*
315*
330*
345*
360*

0.258( 
0.136( 
0.170( 
-0.1.27( 
-0. 236( 
-0. 315 ( 
-0, 360( 
■0. 369 ( 
•0. 341 ( 
-0. 2771 
-0.182 ( 
-0. 613( 
0.728( 
0. 203 ( 
0.3101 
0. 378( 
0. 4011 
0. 3921 
0. 3471 
0. 3691 
0. 3831 
0.400' 
0. 394( 
0. 348 (

103(-3 
248(-2 
447(-2 
5881-2 
680(-2 
754(-2 
761(-2 
766(-2 
750(-2 
710(-2 
637(-2 
521(-2 
350(-2 
120(-2 
1671-2 
489(-2 
808(-2 
108(-1 
124(-1 
128(-1 
117(-1 945(-2 
644(—2 
317(-2

0. 106 (-3;
0.793(-4 
0.577(-4 
0.418(-4 
0. 310 (-4 
0. 243(-4 
0.210(-4 
0.202(-4 
0.218(-4 
0. 257(-4) 
0.521(-4) 
0. 414 (-4^ 
0. 540( -4 
0. 704(-4 
0.907(-4 
0.114C-3. 
0.140(-3)
0.165(-3) 
0.186(-3'
0.197(-3 
0.198(-3 
0.186(-3 
0.164(-3, 
0.136(-3)

0. 354(-4] 
0. 314(-4, 
0. 261 (-4, 
0. 200(-4 
0.134(-4. 
0.690(-5 
0.855(-6 -0. 434( -5 
-0.852(-5 
-0. 117 (-4 
-0.138(-4, -0.152(-4, 
-0.156 (-4, 
-0.149(-4 
-0.128 (-4, 
-0.881(-5 
MO. 271 (-5 
0.530(-5 0.144(-4 
0. 234(-4, 
0.308(-4, 
0.358(-4, 
0.38l(-4 
0.378 (-4̂

0.1781 
0. 1761 
0.1721 
0.1641 
0.152' 
0.1381 
0.121( 
0.105 (• 
0. 906 (■ 
0. 793 (■ 
0. 722( 0.698( 
0.722( 
0.793( 
0. 906 ( 
0.105 (■ 
0. 121 ( 
0.138( 
0.152 ( 
0.164( 
0.
0.176 ( 
0.178( 
0.178(

-4'
-4
"4
-4 '
-4'
■4
-4
-4
-5
-5
-5
-5
-5
■5
■5.4
■4'
■4'
-4'
-4'
-4'
-4
-4
-4'

0.
0.
0.
0.-0. -0. -0. -0. -0. -0. -0. -0. -0. -0. -0. —0. -0. -0. -0. 
0. 
0. 
0. 
0. 
0.

109C-4' 
8781-5 
566(-5 
193(-5 
195(-5 
561(-5 
879(-5 114(-4; 
133(-4 
146(-4, 
154(-4 
156(-4, 
154(-4, 
146(-4, 
133(-4, 
114(-4, 
879(-5 
56l(-5 
195(-5 
193(-5 
566(-5 
878(-5 
109(-4 
116(-4.

TABLE 3.8
VARIATION OP THE DIRECT? EXCHAI?TGE AIID CAPTURE (PRIOR PORîvî)
AIVIPLITUDES 7/ITH SCATTERING’AITOLE THE NON-ORTHOGCNHjIZED
PINAL STATE WAVE PUI7CTI0N IS U^ED.



CASE: E^ =256. 5eV =197eV

AI7GLE 8
15*
30*
45*
60*
75*
90*
105*
120*
135*
150*
165*
180*
195*
210*
225*240*
255*
270*
285*
300*
315*
330*
345*
360*

J^Càfibs')

7 ^ .f c k f ,k s )

0. 268( 
0:166( 
0. 721( 
-0. 5861 
-0.6571 
-0.1091 
-0.140 (■ 
-0.159( 
-0.1711 
-0.176' 
-0.1741 
-0.1671 
-0. 1521 
-0. 1271 
-0. 9131 -0.4061 
0.275' 
0.113' 
0. 213 
0. 3131 
0. 3944 
0. 4351 
0.4231 
0. 361(

-2
-2
-3
-4:
-3
■2
■2
■2
•2
•2
•2
-2
•2
•2
•3-3
•3
■2
■2
-2
■2
■2
-2
■2

0.
0.-0. -0. 

-0. -0. 
-0. 
-0. -0. -0. -0. -0. 
-0. —0. -0. —0. -0. -0. 
0. 
0. 
0. 
0. 
0. 
0.

438(-3
198(-4]
265(-3
416(-3
4661-3
458(-3
424(-3
388(-3
360(-3
346(-3
350(-3
37l(-3
404(-3
441(-3
4661—3
453(-3
362(-3
153(-3
197(-3
654(-3
109(-2
133(-2,
126(-2
905(-3

0. 429 f 
0.152 ( 
0. 336( 
-0. 161( 
-0. 769 ( 
-0.145( 
-0. 1961 
-0. 220 (• 
-0. 222' 
-0. 2101 
-0.196' 
-0.189' 
-0.193 -0. 2041 
-0. 213' 
-0.199' 
-0. 1444 
-0. 366' 
0.110' 
0. 283 
0. 5101 
0. 775 
0. 918' 
0. 771(

-4
•4'
-5
•5
•5
•4
■4'
•4'
•4
•4'
■4
•4]
•4
-4'
•4•4]
-4,
■5
■4
-4
-4
-4*
-4'
-4'

Oé 364f-4 
0. 269(-4 
0.185(-4 
0.117(-4 
0.'457(-5 
-0.279(-5 
-0.760(-5 
-0.8T9(-5) 
-0. 745(-5 
-0.524(-5 
-0. 338 (-5 
-0. 262 (-5 
-0. 332 (-5 -0. 562(--5 
-0. 927(-5 
-0.132 (-4 
-0. 150(-4' 
-0. 113(-4 
-0. 132(-6 
0.16l(-4, 
0. 314(-4 0.418 (-4] 
0. 460(-4] 
0. 438(-4

Co cMp 3

0. 287( 
0.250( 
0.200( 
0.149 ( 
0.104( 
0.676( 
0. 397( 
0.193 (• 
0. 516 ( •0. 405 (' 
-0. 920 (■ 
•0.108 ( 
-0.9201 
-0. 4051 
0. 516' 0. 193' 
0. 3971 
0.6761 0. 1041 
0.149 
0. 200' 
0. 250' 
0. 2874 
0.301(

■4
■4
■4 '
■4*
-4’
-5
■5
■5
-6
■6
-6
-5
■6•6
■6-5
•5
•5
-4
-4
•4]
"4̂
-4
.4

0.—0. -0. -0. -0. —0. —0. -0. —0. -0. —0.
g:-Q.-0.-0.-0.-0.-0.-0.
-Ô.-0.
0.
0.

599(-6 15l(-5 
392(-5 
5841-5 
704(-5 
762(-5 
778(-5 
771(-5 
7561-5 
741c-5 
730(-5 
725(-5
m m756(-5 
771(-5 778(-5 
762(-5 
704(-5 
584(-5 
392(-5 
151(-5 
5991-6 145(-5

TABLE 3.9
VARIATION OP THE DIRECT? EXCHANGE AND CAPTURE (PRIOR PORJlî) 
AL'IPLITUDES WITH SCATTERING AI'TGLE 0^ . ORTHOGONALITY 
CONDITION (b) IS lAlPOSED.



CASE: = 256. 5eV Ep = 229feV 0̂=6*
ALTGLE

e .
ECiUAL
phases

COULOIŒ
phases

MaXIMUIvI
INTERFER­
ENCE

RUDGE
PH.rtSE

BORN
OCHICUR

15®
50®
45®
60®
75®
90®
105®
120®
135®
150®
165®
180®
195®
210®
225®
240®
255®
270®
285®
300®
315®
330®
345®
360®

0.1491 
0.7084(-1) 
0.2219 
0. 4988 
0.8050 
0.10691 
0.12471 
0.1316 (+1, 
0.1268(41 
0.1107'
0.8557 
0.5525 
0. 2643 
0.8360(-l) 
0.1149 
0. 4367 0. 1044(41^ 
0.1802(41^ 
0. 2458(41, 
0. 2747(41, 0. 2542(41, 
0.1934(41, 
0.1174(41, 
0.5252

0. 1490 
0.7137(-1) 
0.2227 
0.4996 
0.8057 
0.1070(41 0.1248(41 
0.1317( 41 0.1269(41 
0.1108(41 
0.8566 
0. 5534 
0. 2650 
0.8395(-l) 
0.1147 
0.4355 
0. 1042(41] 
0. 1798(41
0.2452(41] 
0.2741(41 
0.2537(41,0.1930(41, 
0.1171(41 
0. 5239

0. 1490 
0.6959(-l) 
0. 2250 
0. 5013 
0. 8072 0.1072(41
0.1250(41 
0.1319(41 
0.1271(41
0.1112(41. 
0.85l6 
0.5490 
0.2620 
0.8305(-l) 
0.1145 
0. 4336 
0. 1037(41 
0. 1789 ( 41]
0.2440(41
0. 2728 ( 4I, 
0. 2525 ( 41
0.1921(41,
0. 1166(41 
0. 5226

0. 1510 
0. 7394(-l) 
0.2249 
0. 5013 
0.8072 
0.1072(41
0.1250(410.1319 (41
0.1271(41' 0.1111(41'
0.8591 
0.5558 
0.2671 
0.8543(-1) 
0.1148 
0.4336 
0.1037(41
0.1790(41 
0.2441(41
0. 2728(41]
0.2525(41 0.1921(41
0.1167(41 
0.5238

41
41

0.1515 
0.7118(-1) 
0. 2176 
0. 4894 
0.7916 
0.1053 
0.1231(41
0.1300(41]0.1253 0.1095 
0. 8467 
0. 5472 
0.2624 
0. 8436(-1) 
0.1164 I 
0.4359 
0.1038(41 
0. 1787(41, 
0. 2434( 41
0.2719(41]0. 2516141 
0. 1916'
0. 1166'
0. 5249

41,
41

TABLE 3.10
VALUES OP THE TDC? WITH THE INCLUSION OP EXCHANGE AND CAPTURE 

(prior PORIVl),CALCULATED POR VARIOUS PORIvIS .OP THE EXCHANGE AMPLITUDE. 
THE FIRST POUR APPROXIMATIONS CORRESPOND TO THE DIFFERENT CHOICES 
OF THE PHASE FACTOR ASSOCIATED WITH THE EXCHANGE AÎ IPLITUDE, AS 
DESCRIBED IN CHAPTER 2. THE APPROXIMATION DENOTED BY RUDGE PHASE 
CORRESPONDS TO THE CHOICE OP EFFECTIVE CHARGES J3,=. ) >



£ = 200 eV E  m 164. 5 eV

ANGLE
Gf

E3UAL
PHASES

COULOMB
PHASES

MAXIMUIvl
INTERFER­
ENCE

RUDGE
PHASE

BORN
OCHKUR

15*
30*
45*
60*
75*
90*
105*
120*
135*150*
165*
180*
195*
210*
225*
240*
255*
270*
285*
300*
316*
330*
345*
360*

0. 23081-1] 
0.28871-2 
0.2556(-3 
0. 4945 (-4, 
0.24861—4 
0.1674(-4] 
0.1219(-4 
0.9581(-5 0.1083(-4, 
0. 2543 (-4, 
0.65181-4, 
0.63351-4, 
0.3462(-4, 
0.5295(-4, 
0.5601(-4, 
0.40991-4, 
0.324l(-4, 
0. 3862(-4, 
0. 3020(-4, 
0.1027(-3 
0.15691-2 
0.2248(-l, 
0.2996 0.2600(+1)

0.2304(-l 
0.2860(-2 
0.2473(-3 
0. 4965(-4 
0. 25071-4' 
0.1577(-4' 
0.1155(-4 
0.9905(-5 
0.1108(-4 
0.2384(-4 
0. 6088(-4' 
0.58651-4' 
0.3316(-4 
0.5412(-4, 
0.56881-4 
0.4073 (-4] 
0. 3145(-4 
0.3733 (-4] 
0.2934(-4, 
0.1050(-3 
0.15771-2 
0.2247(-1] 
0. 3003 0. 2602(41)

0.2324(-l 
0.2749(-2 
0.2182(-3 
0.4932(-4 
0.2409(-4 
0.858l(-5 
0.9136(-5 
0.9687(-5 
0.1096(-4 
0.1237(-4' 
0. 9136(-4' 
0. 2963 (-4' 
0. 2781(-4, 
0. 4502 (-4, 
0.4930(-4 
0.4070 (-4 
0.2936(-4] 
0.42061-4 
0.2250(-4 
0.1025(-4, 
0.15571-2 
0. 2247(-1] 
0.2990 
0. 2599 (+1)

0.2324(-l 
0.3103(-2 
0. 3272(-3 
0. 4367(-4, 
0.2010(-4 
0. 2122 (-4 
0.1576 (-4] 
0.8981(-5 
0.1067(-4 
0.3219(-4 
0.8272(-4 
0. 8373 (-4] 
0. 4206( -4 
0. 4816 (-4' 
0. 5226 (-4' 
0. 4451(-4] 
0.3872(-4 
0.4216(-4 
0. 3384(-4, 
0.1107(-3 
0.1565(-2 
0. 2279 (-1, 
0.3017 
0.2606(+1)

0.2062(-1 
0.2127(-2 
0.1900(-3 
0. 4129 (-4 
0.2026(-4 
0.1398(-4 
0.1115(-4 
0. 9891(-5 
0.1011 (-4 
0.1237(-4 
0.1731(-4 0.2493 (-4 
0. 2775 ( -4 
0. 4017 (-4 
0. 4065(-4 
0. 33821-4 
0. 2302 (-4 
0.1745(-4 
0. 4120 (-4 
0. 2004(-3 
0.1391(-2 
0.1751 (-1 
0. 2823 0. 2599(4-1)

TABLE 3.11
VALUES OP THE TDC, WITH THE INCLUSION OP EXCHANGE AND 
CAPTURE (PRIOR PORI\l), CALCULATED POR VARIOUS FORMS OF THE 
EXCHANGE AMPLITUDE.



. THE CAPTURE PROBABILITY '   ̂ .

CUSING. ORnrHOQrONAU^ED FINAL STATE V̂ AVE FOfJCT/ONJ (%>))

i

GL=4-'*

4-xfO-̂

FIG-UR.E 3.1
CA$B: E^=256'5eV 

F= ^ 6 e V
er'^-

270®

the f u l l line CORRESPONDS TO THE POST APPROXIMATION 
AND THE BROKEN LINE TO THE PRIOR. APPROXIMATION.



r H E  C A P T U R E  P R O B A B I L I T Y *  '

CUSING- NON-ORTHOGONALIZEO FINAL STATE WAVE FUNCTION)

\

60.

izor

0.

X

-
/ p \

1 / ^ \ \\ > /PI ^II ^
1 \ /1 \ " /

\ ' x c\ / ---\ /\/
/ s.
/  '

fffO*

/̂/y.

(%=6®

2v/0,-10

4-xlO

'âo®

.300®

27D*

%40®

FIG-URE 3 .2

Ep=^9eV
6c=6®

THE FULL.' LINE CORRESPONDS To THE POST APPROXIMATION AND  

Th e BROKEN LINE TO THE PRIOR APPROXIMATION.
Y  ' ■f IT 6 H Ù U U O BE N O T E D THAT T U E S E VALUES DIFFER pROM "THE ACTUAL.
VALÜES OP T H E  P K O B A B I U r y  B y  A FACTOR' 2fefcfê^ £ « ^ j) ^



T H E  C A PTU R E PROBABILITY *
^ c a l c u l a t e d  f r o m  T H E  PRIOR APPROXIM ATION) 

N O N - O R T H O O o N A L I Z E D  f i n a l  s t a t e  w a v e  FUNCTION.

Exicr*®

F l& U R E 3.3

270

130*
T h e  e n e r o y  d e p e n d e n c e  o f  t h e  c a p t u r e  p r o b a b il it y

c a s e s : E ^ = £ 5 6 -5 eV

(BROKEN UNE) E^=226&Y(FULLLlNE)
I T  SHOULD b e  n o t e d  t h a t  THE PRIOR  FORM OF T H E  CAPTURE  
PRO BA BILITY  D oes n o t  d e p e n d  o n  0 p .



THE TRIPLE DIFFERENTIAL CROSS SECTION

CASE: E. = 256.5eV E. = 226e\/ 0= 4** F F

EXCHMGB INCLUDED
ORTHOGON/LIZBD PINAL STATE WAVE PUl'TCTION (a)

ANGLE TDC
15* 0. 639
30* 0.141
45* 0.748(-1)
60* 0. 326
75* 0. 740
90* 0.118 (+1)
105" 0.155(+1)
120* 0.179(+1)
135* 0.186 (+1)150" 0.177(+1)165* 0.151(+1)
180" 0.113(+l)195" 0. 687210" 0.284225" 0.625(-l)
240* 0.176 -255" 0. 729270" 0.169(44)285" 0. 284(4-1)300" 0.377(44)315" 0.410(44)330" 0.368(44)345" 0.270(44)360* 0.156(4l)



T h e  TRIPLE DIFFERENTIAL CROSS SECTION

^WlTH THE  INCLUSION OF EXCHANGE ^PETERKOP FORM))

270"

ISO"
FIG U RE 3 .4-

CASE: Eo=2S6*5'eV/ 
E^=226eV 

. 0p= 4^



. THE TRIPLE DIPFEREOTIAL CROSS SECTION

CASE: E, = 256. BeV Ep = 226eV 6“

ECHANGE AND CAPTURE (PRIOR) INCLUDED 
NON-ORTHOGONALIZED FINAL STATE WAVE FUNCTION

ANGLE ©4 TDC
15 • 0.142
30» 0.456(-l)45 • 0.144 ■
60 • 0. 341
75* 0.560
90" 0.749105" 0.879
120" 0.937
135* 0.919
150* 0.827
165* . . 0.667
ISO* 0.459 :
195* 0.242210* > . . 0.794(-l)
225* 0.600(-l)
240* 0.275
255* 0.769
270* 0.147(+1285* 0.215(+1
300* 0.252(+1
315 * 0. 240(+1
530* , 0.185(41
345* 0.113(41
360* 0.506



TH E T R I P L E  D IF F E R E N T IA L  CROSS’ SECTION 

( w i t h  the i n c l u s i o n  of EXCHANGE(PETERKOP FORM)
AND CAPTURE^PRIOR FORM) ̂

30» 330'

A  300'60
•• ••

270

210

FIGU RE 3 .5

c a s e: Eo=256*5cV
E p = 2 2 6  eV



■ THE TRIPLE DIPPERENTIAL CROSS SECTION

CASE; • • Eo = 256.5e\/ = 230.5eV ^=4®

EXCHANGE INCLUDED
ORTHOGONALIZED PINAL STATE WAVE FUNCTION (b)

ANGLE 0.
15
30
45
60
75
90
105
120
155
150
165
180
195
8 1 0
885
8 4 0

8 7 0

515'

+1
+l'
+l'+1
+1
+l'

TDC
0. 669 
0. 132 
0. 174 
0. 675 
0.1431 
0. 2221 
0. 2871 
0. 3251 
0.3301 
0.300 
0. 241 (+1 
0. 164(41 
0. 851 
0.265 
0. 913 (-1) 
0. 478 
0. 143(+1 
0. 275(+l 
0.4061 
0.4931 
0. 504(41 
0. 434( 41 
0. 310(4l' 
0. 174C 41

41̂
41



T H E  TR/PLE d i f f e r e n t i a l  CROSS S E C T IO N

WITH THE INCLUSION OF EXCHANGE Cp^ T E R K o P FORNO

270'

FIG U R E  3 .6

CASE :
E^»230*5eV

' 6|ŝ  4"®



THE TRIPLE DIPPEEEHTIÆ CROSS SECTION

CASE; E. = 256. S e V  " E. = 229eV 6=6r  F
• - EXCHANGE INCLUDED

ORTHOGONALIZED PINAL STATE WAVE PUÎTCTION (b)

ÆGLE TDC
15® 0.151
30 • 0.718(-1)
45® 0.222
60® ‘ 0.499
75 • 0. 805
90® 0.107(+1
105® 0.125 (+1
120® 0.132(41
135® 0.127(41150® 0.111(41
165® 0.857
180® 0.554
195® 0.266
210® 0.847(-l)
225® 0.116
240 ® 0.437255® 0.104(4l|
270® 0.180(41
285® 0.246(41
300® 0.275(41
315® 0.254(4l|
330® 0.194(41
345® - 0.118(41
360® 0.527



7 H E  I ' R i R L E  D t F F E R E N T l A L  CR039  SECTION

WITH THE INCLUSION OF EXCHANGE (P E TE R KO P  FORM)

b"

3o: 330'

300’

0'9Z

/20’
1*83

ISO

180'

CASE: E^«2S6*5eV



TRIPLE DIFFERENTIAL CROSS S B C T I O N

W/TM THE INCLUSION OF EXCHf\N(xB (P E T E R K O P  FORM)

CASE % E^= 2E6'5eV
Ef^SJZPieV

330'

o \

Cl \

270'

CP
ooo

150* 'ho*

nCrUFLE 3.7a

THE FULL CURVE CORRESPONDS 70  OUR EXCHANGE ADlABRTIC

CALCULATIONS AND THE BROKEN LINE TO BORN-COULOMB

CALCULATIONS USING- A H -F  WAVE FUNCTION 7 0  REPRESENT 
THE t a r g - e t  s v s t e m  ( S c h u l z .).

THE e x p e r i m e n t a l  DATA IS N0RMALIJ2E0 WITH RESPECT TO 

THE B O R N -C o u lo m b  CALCULATIONS.



THE TRIPLE DIFFERENTIAL CROSS SECTION 

CASE; E^ = 256. 5eV Ep = 229eV 4*

EXCHANGE AI\TD CAPTURE (PRIOR) INCLUDED 

NON-ORTHOGONALIZED FINAL STATE Y/AVE FUITOTION 

ANGLE 6c ' TDC
15* 0. 654
30® 0.125
45® 0.12460® 0. 52675® 0.114(+1)
90® 0.179(+l)

105® 0. 232(41)120® 0.264(41)
135® 0.271(41)
150® 0.250(41)
165® 0. 206(4l)
180® 0.145(41)195® 0. 800
210® 0.273225® 0.642(-1)240® 0. 338
255® 0.115270® 0. 237(41)285® 0.367(41)300® 0.459(4l)315® 0. 479(41 )330® 0.418(4l)345" 0. 300(41 )360® 0.169(41 )



THE TRIPLE DIFFERENTIAL CROSS iSECTlON
( w i t h  THE INCLUSION OF EXCHAN&E(P£TBR.KOP FORM) 

AND CAPTUaECPRIORFORM)^

— 0»

180'

FIG-URE 3.8

CASE"; Eo=2E6-5"eV 
Ep=229eV 
6̂ =4-*



CASE:

THE TRIPLE DIFPEREIfTIAL CROSS SECTION

= 256.5eV E. = 197eV e= 4 
F p

EXCHANGE AND CAPTURE (PRIOR) INCLUDED 
ORTHOGONALIZED PINAL STATE WAVE PIETOTION ("b)

ANGLE 0c TDC

15* 30® 
4-5 • 
60* 
75* 
90* 
105* 
120* 
135* 
150* 
165* 
180* 
195* 
210*  
225* 
240* 
255* 
270* 
285* 
300* 
315* 
350* 
345* 
360*

0.195 
0. 734(-l 
0.157(-1 0. 489 (-2 
0.177(-1 
0.379(-l 
0.572(-l 
0.722(-l 0.820(-1 
0.863(-1 
0.851(-1 
0.783(-l 0.660(-1 
0.485(-l 
0. 279 (-1 
0.961(-2 
0. 548 (-2 
0.354(-l 
0.123 
0. 274 
0. 447 
0.550 
0.513 
0. 365



THE TRIPLE DIFPERENTfAL. CROSS SECTION
( w i t h  THE" INCLUSION OF EXCH^NO-E CPHTERKOP FÛftM) 

AND CAPTURE (P R IO R  F O R M ))

a.70®

n&URE 3.9 180*

CASE:
E^= 197 eV 
Dp- 4-" .



C H A P T E R  4

As a consequence of the investigation descrihed in the 
previous chapter we conclude that the capture process makes no 
significant contribution to the triple differential cross section 
in the energy region considered. Hence we can confidently neglect 
the effects of capture in subsequent calculations within the same 
energy region. In this chapter we attempt to evaluate the triple 
differential cross section for electron-helium ionizing collisions 
within the first Born approximation, to high accuracy, and hence 
to identify more clearly the angular regions in which the 
predictions of the first Born approximation are reliable. 
Unfortunately the experimental measurements are restricted to 
impact energies below 260 eV, and it is already clear from aethe- 
aorn plots of the total cross section (Inokuti 1972, Economides 
and McDowell 1969) that the first Born approximation gives an 
unsatisfactory result for the total cross section at such low 
energies.

Any attempt to assess the reliability of first Born predictions 
of the triple differential cross section for electron impact on 
complex atoms requires the use of accurate wave functions for the 
target, and for the slower of the outgoing electrons. Otherwise 
little siginificance can be attached to the degree of agreement 
with the experimental data.

For the purposes of these calculations we have retained the 
adiabatic-exchange description of the residual ion and "slow" 
outgoing electron ( §3.1) while introducing an improved description 
of the target ground state. The simple one parameter wave function 
given by equation (3.5) is now replaced by a six configuration 
C.I. target wave function (Green et al 1953, 1954)
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(4.1)
The nature of the two-electron configuration wave functions

and the method hy which the weights CLi are determined 
are descrihed in the following section.

4’#1. The correlated target wave function
Excellent wave functions describing the ground states of two- 

electron ions have been available for some time. The wave functions 
of Hylleraas provide one such example. However because of the way 
in which the electron-electron correlation is included in these,
(i.e. through a dependence on the inter-electron radius vector jCgg ) 
subsequent calculations involving such wave functions often prove 
difficult, frequently necessitating some type of approximation and 
so forfeiting the initial accuracy. A useful approach to the 
problem of achieving high accuracy while retaining simplicity of 
form is provided by Green et al (1953, 1954). In this v/ork the 
wave function is represented by a series expansion in normalized 
Legendre Polynomials based on a accurate Hylleraas function

® N (4.2)
The normalized function is determined by projecting

"t" N2i5Cû.,J^) onto the usual way. Once the functions
have been obtained then each of these is expanded in combinations 

of hydrogenic orbitals (corresponding to a series of two-electron iI
configurations). Since the orbital angular momenta of the two 
atomic electrons combine through Russell-Saunders— Coupling and the
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total orbital angular momentum of the grgund state is zero then it 
is clear that the configuration expansion can only include suitably 
symmetrized combinations of states having equal but anti-parallel 
momentum C . Moreoever the Spherical Harmonics associated
with the electron states must combine to give the Legendre

p cH
Polynomial h i corresponding to the function Œ  • since the former 
of these contains the entire angular dependence. Hence the expansion 
corresponding to can contain only s-s configurations, that
corresponding to only p-p configurations and so on. In their
initial calculations for the helium ground state Green et al used 
hydrogenic orbitals corresponding to an effective charge21 = 2. 
However the resulting configuration expansions exhibited slow 
convergence, it being necessary to include continuum states in order 
to ensure a good description. Subsequently the charge JZ = was 
treated as a variable parameter to be determined independently for 
each expansion. In this case the coefficients
of the various configurations were functions of 2^ . The method now 
consisted of terminating each configuration expansion after the 
desired number of terms and c h o o s i n g s o  as to maximize the sum

thus provide the best description 
possible from the limited (truncated) set of configurations.

For the present calculations we have adopted the form of the 
wave function suggested by Green et al but have determined the 
effective charges and configuration coefficients by a different 
technique. The wave function 2 ^  is represented by a linear 
combination of the two-electron configurations (is) ,(ls2s),(2s) , 
(2p)^,(2p3p),(3p)^ i.e.

^s^stxtbss
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^p*stoJbes
(4.3)

where the suitably normalized radial functions.
All correlation effects between the two atomic electrons are taken 
to be contained in the second summation appearing in (4.3). The 
quantities 3 and 2, now assume the roles
of parameters which are determined in accordance with the Rayleigh- 
Ritz Variational Principle. This method consists of using the wave 
function given by (4.3) to obtain an explicit expression for the

quantity j where H is the hamiltonian for the

two-electron system, and then minimizing the expression with
respect to each of the parameters. For an exact wave function the
quantity considered yields the energy of the atomic system which may
be shown to provide a lower limit for the minimization proce^dure.
The minimization is performed numerically (Pov/ell 1964), using
the results of Green et al to provide starting values for the
parameters, and the values of the parameters corresponding to the
stationary point are considered to be those most appropriate for the
form of the wave function given by (4.3).

For the method described the criterion that we have sought to
satisfy is that of an accurate ground state energy for the atomic
system. However since the different regions of configuration space
do not contribute equally to the energy this does not automatically
ensure a good wave function. In order to obtain some measure of
reliability of the wave function we have used it to calculate the
atomic form factor/^A:) and the incoherent-scattering function

5  ( k ) for helium over a range of values of K , the momentum iVic.
transfer. For a neutral atom of atomic number .Z we have the 

definitions

,1



FCk)=
(4.4)

u>='
The quantities defined hy (4.4) and (4.5) have heen tabulated for 
a variety of wave functions over a wide range of momentum
transfer (Kim and Inokuti 1968) and results obtained from the 
form of the wave function given in (4.3) are compared with a saiiple 
of these in the table 4.1. Clearly the wave function obtained 
from the minimization proce#dure compares favourably with the 
standard Hylleraas and Hartree-Fock forms in most respects.

Reduction of the amplitudes
Since it is our intention to retain the Peterkop form of the 

exchange amplitude in these calculations ( e q , 2.27) it is only 
necessary to derive an explicit expression for the direct scattering 
amplitude. From equation (3. 20) we have

(4.6)
where given by equation (4.3) and all other
quantities are as previously defined in chapter 3.

If v/e now replace the function by the
orthogonalized form specified by the choice (b) in the previous 
. chapter we obtain _

r ± + j . - &

(4. 7y
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where we have replaced by the explicit expression given
in (3.23) and is an overlap integral defined by

X v “  -  g

As a consequence of the particular orthogonality condition 
imposed on the wave functions it is apparent that the term
in the interaction potential makes no contribution to the anç)litude. 
Hence (4.7) reduces to

4-^ ^

Now the integration over the variable _T̂ involves the familiar 
Bethe integrals which may be evaluated to yield the result

/ 4 A ) = ^  fi+ Ç  j

=  I t  H J (4.9)
where

(4.10)
and

which is seen t̂o be the form factor for the case of helium.
Let us firstly examine the quantity defined by (4.10). This 

may be expressed in the form

F = ^ F - ^ F'i 'OA ' X B
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where

(4.12)
and

/ï[8== (4-IS)

If Y/e now substitute for 215, from equations (3.21) and (3.22) and
j  —

for 215̂  from equation (4.3) then takes the form

^s^states ^
K,c,ĉA:>Rrx,d̂.,Q)f̂cA‘A)̂ ^̂ A

^p*6ttxtâS

,(̂ ô a ) q;/f c4-4)

(4. 14)
where C A A ^  ~  ^ f ^ C A ' A )

In order to perform the angular part of the X3 integration it is 
necessary to v/rite the ÇC^*-Q) in. separable form. This is 
achieved by means of the follov/ing expansion in Spherical Harmonics

Ç c4 . 4 )  (4.16)
It now becomes obvious that due to the orthogonality of the Spherical 
Harmonics the second summation in (4.14) makes no contribution fco 
After performing the ^  integration in the remaining terms we obtain

C 2 rr-)%
^s'staJtes

(4.16)
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For the particular set of configurations used to describe the 
target ground state the radial functions are all of the general
form

and hence

= —  - T - h S l b n c  - i - 2 . i c „ c l
(^-K=C„l)  J

= A  + C „ t ]
(z + o i^ C )  L & + < ^ C f ' ( Z + o i n t ) J

(4.18)

Let us now consider the integration appearing in (4.16). To 
enable us to perform the angular integration it is necessary that 
both the "slow" electron v/ave function and the oscillatory 
exponential be replaced by the respective series expansions (3.10) 
and (3.33). The Legendre polynomials associated with each of these 
expansions are expressed in Spherical Harmonics by use of (4.15). 
From the subsequent angular integration v/e obtain

L=o
Oft

0
(4.19)

Combining the results (4.18) and (4.19) we obtain

t=0 ®
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/ (4.20)

The remaining terms in the expression for arise from the integral 
defined hy (4.13). Substituting for 2^^ and as before

we obtain

W  S ta te s

vN A

(^4 A 6 ) %
yitates 

Ol)R„^^2mQ) Pcr^*4i £ 4 k ^ g

(4.21)
It is convenient to split into tv/o parts ^  and 
corresponding to the contributions arising from the *s* and *p* 
configurations of the target wave function respectively. With the 
aid of the appropriate substitutions from (3.33) and (4.15) the

I—  ®angular part of the integration associated with /^g may be 
evaluated to give OÛ

(4.22)
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Using the form of the radial function prescribed by (4.17) we 
have

But

f  f  i k ' )  1

Hence

r  han L - ) +  2 c ^ l  e> 1
Cp̂ -̂fk.®) L  (/S=+kt) -)

O

 I

_ 2. r IZa,.,m^-K% + Kt&^iïf)-FC^cl^\
T L  O^fT^ Cy6*+K̂ ) JK

where /2 > ~  Z -F  (4. S3)

The angular integration associated with the remaining integral 
in (4.22) may be readily evaluated after substitution from (3.10)

oo

d ' n .  V, J . (4.34)

Combining . results (4.23) and (4.24) yields the following
/—  <sexpression for

^  s ® ^s^stojxs

where (4.25)
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The *p* contribution to the quantity is defined by

p 
IB

Tstates

i^ A  A

If we substitute from (3.33) and (4.15) the ^  integration may be 
evaluated so yielding the follov/ing result

ed

i ^ x

y'^a3t)R^CJz.)a)7c^-4)o^

(4.26)
Replacing by the series expansion (3.10) and performing the

A  - 4integration produces the expression

OO

'o ^ 3  (4.27)
But . / ., .

Hence
Aft 06

J j C k r ) é t ^ R . ^ i ^ ( ^ , ) 0  r ^ c t r  =  —^ ^ ^ ( % r ) G  (^ i )C) rc/r

Substituting for from (4.7) we have, / jCKr)er-̂̂R̂c(̂nr) r Vr
' d h J ^ oO (4.28)
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Evaluation of the integral on the right hand side of equation 
(4.28) leads to the result

= -3 ( -f 7
8 K &  q s i^ -h K ^ )J

(4.29)

Applying the result (4.29) to the expression in (4.27) we obtain

'p̂ s6afces

/ V i  ^ (4. so)

Let us now examine the quantitydefined by equation (4.11).
Since this is symmetric with respect to the radius vectors^ and
n we can write —3

/T = 2 , f J ' gi)

It is convenient to express the ground state wave function in the 
form

® (4.32)
Then, substituting this form into (4.31), wre obtain
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)
AIf v/e perform the _T̂  integration appearing in the second term of 

(4.33) we obtain zero contribution by reason of the orthogonality 
of the Spherical Harmonics. Evaluation of the angular integrations 
associated with the remaining terms yields

F  =

which we shall v/rite in the form

£ =
where ^ ^

Ç  =  y^*CArs)^Cû,Q)$*Ca,a) ̂ ^ ‘̂ d q d q  (4.34)

(4.35)

ÇÉ'/Î.Q) f
^S ŝt at e s

Hence, follov/ing the substitution of this into (4.34), we obtain

fig

But from the orthogonality of the radial functions we have 
joo/ ̂̂s C ^ o > r ) / ^ ^ C Z o , n ) r V r  =  ̂
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Thus

Sn,sAS 0  ^ , n a ) ^ 0
m,

J '̂Ckr)r̂R„̂sĈo,n)R„,̂(feo)r3 d r

n,n̂ m,
\O0

n,mi
c  r~ n,S,naSSnA»l2S

Ha

I C K r )  r=-R^^CZor)R.„^(z^.r-) d r (4.36)

Denoting the integral appearing in (4.36) by T  and substitutingn|fri|
the explicit forms of the radial functions from (4.17) we obtain

«ft
X = JL̂ 2 HnJ'r''sinkre‘̂'cCr

n= l̂
(4.37)

where
H I —  g

Hs ~  Si,ŝ m,s “•“̂ ,5 ̂n,s"̂
Hi*.—  ÛL„,stVï,s’̂ ^m,sbn,s
H r —  ^,S^^|S 

=oCn,s +  oCm^Evaluation of (4.37) yields the result

i : . =
/If/
TTFl

Hence
^— *̂-2.fô] nfl

171=0
jZm+l

n - Z m ^ 2 m

(4.38)
Thus

n,mi *̂3. (4.39)
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/y-S
where the quantity -J- is as defined by equation (4.38). Since p  r),rrif
the terra -  ̂ defined by (4.35), is of a form similar to that of

then by analogy

^ \ m ,  rsa. (,4.4u;

The integral appearing in (4.40) is the exact counterpart
f y  S n,m,

of -l-n^rn, obtained from (4.38) by merely redefining the
quantities and (X in terms of the corresponding 'p*
state parameters.

It only remains now to derive an explicit expression for the 
overlap integral defined by (4.8). Appropriate substitutions
from (3.21), (3.22) and (4.32) lead to the form

Let us consider the second term in this expression. By using the
expansion in Spherical Harmonics given by (4.15) we are able to
write the Legendre polynomial in separable form, which enables us

Ato perform the associated integration. Clearly we obtain 
zero contribution. If we evaluate the angular integrations 
appearing in the remaining term we obtain

f r k / ^  (4.41)
where we have replaced the wave function by the partial wave
expansion (3. lO).

After substituting for ^  we have
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p^e

But

/ n.]
where we have used the form of the radial function given by (4,17). 
Hence

^ n,n^

The partial wave calculations reported in this section were 
checked in two ways. Firstly, by a appropriate choice of parameters 
it v/as possible to recreate the model used in chapter 3 and so 
repeat some of the calculations reported there. The second check 
was achieved by specializing to a plane wave description of the slow 
outgoing electron, in which case the analysis can be evaluated in 
closed form (cf. Appendix B).

We found that contributions from ̂ > 6  were unimportant at the 
energy considered, the dominant contribution arising from 5 p 
transitions. , However in some angular regions there was an 
appreciable quadrapole transition probability (5-> ).
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4.3 Results

In the figures 1 - 6 we compare our calculations of the 
triple differential cross section, for a number of representative 
cases, with the experimental measurements of Ehrhardt et al at the 
incident energy = 256. 5e. V. We shall use E ip and 0 ^ to denote 
the energy and the angle of scattering, respectively, of the "fast" 
outgoing electron. The follov/ing table shov/s the sets of collision 
parameters for v/hich calculations have been made.

F IO U R .E F  C&V) E ^ Ç éJ )

1 256. 5 226. 0 , 4®
2 256.5 226. 0 • 6*
3 256. 5 226.0 8*
4 256. 5 230.5 4*
5 256. 5 229.0 6*
6 256.5 182. 0 8®

Since the experimental measurements are not absolute it is 
necessary to normalize them against the calculated curves in some

Îway. In this study the normalization is achieved by requiring that | 
the maximum of the forward peak of the T'DC, as measured I

experimentally, should be in agreement with the calculated value. The
justification for this course of action is contained in the general I  

discussion that follows.
A preliminary inspection of the results indicates that the use 

of the correlated wave function for the description of the target ;
ground state effects localized, variation, in the magnitude of the T D C .  
In addition v/e observe that there is a significant decrease of the
ratio of the two maxima characterizing the T D C .  Hence we have the
rather surprising result that the simpler model procides a better
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qualitative description of the TDC as measured experimentally.
Hov/ever such a situation should he regarded as being merely 
fortuitous since there can be little doubt that the later model 
provides a better description of the electron states and interactions 
associated v/ith the ionization process. Indeed such a view is 
supported by the other features of the irrproved model, namely the 
constancy of normalization as is described at a later point in this 
discussion.

This somewhat misleading situation regarding the qualitative 
agreement betweera experimental and theoretical results raises the 
important point as to which features of the experimental results 
are most'' important when making a comparison v/ith theoretical 
predictions. Our own investigations clearly indicate that the degree 
of qualitative agreement between calculations and experimental 
measurements is not a sufficiently good basis on v/hich to judge a 
theoretical model.

Now it is noticeable that all the variants of the first Born 
approximation, together with all other approximations in common use, 
predict a maximum of the TDC in the forward direction. It would 
therefore seem logical to give first priority to obtaining the best 
possible description of this forv/ard peak with regard to general 
s hape and angular position. On this basis we have the justification 
for choosing to normalize the experimental measurements against the 
calculations at the maximum of the binary peak. In order to 
introduce some measure of consistency into the comparisons between 
theoretical and experimental results we need to relate the 
different sets of measurements together where possible. This 
is done through the normalization factor. Where appropriate one 
should make a comparison over a series of different cases using 
the same normalization factor. If the general agreement between
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the theoretical and experimental measurements of the binary peak j
persists then a more detailed comparison is justified. The next ;
point to consider would be the general character of the "recoil" i

peak including the ratio of its maximum to that of the "binary" I
Ipeak. . ]

For the cases shown in figures 1 - 3 a constant normalization ’
factor has been used. The results obtained indicate that the 
normalization is preserved by the form of the Born approximation 
used for the calculations. Another point of agreement apparent 
from these and the remaining cases is the general success of the 
calculations in reproducing the shape of the forward peak, albeit 
this pealc may not be correctly positioned. '!

The TDC is characterized by a forward and backv/ard peak 
separated by pronounced minima. These tv/o peaks are referred 
to as 'binary* and *recoil* peaks respectively. Firstly the 
calculations consistently underestimate the magnitude of the * recoil 
peak as measured by Ehrhardt. Secondly the theoretical model I

tends to produce a 'binary* and 'recoil* peak with a common axis 
of symmetry, whereas the experimental results show a definite 
shift of one axis away from the other. The effect of this is for 
the angular position of the 'binary* peak, as predicted by our 
calculations, to lie too close to the polar axis defined by the |
direction of the incoming electron. This angular shift increases 
as the energy of the "slow" outgoing electron increases but the 
indications are that it is not strongly related to the angle of 
scattering of the "fast" outgoing electron. These conclusions 
are reinforced by the results of the calculations performed by 
Schulz (1973) and Jacobs (1974), some of which are included here.

V/ith regard to the point concerning the symmetry of results 
Fano et al (1973), attributing the TDC exclusively to dipole-type
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ionization for large incident energies, predict that the "slow" 
electron distribution will exhibit axial symmetry about the 
momentum exchange vector v/hich accurately describes the
Born calculations presented here. At lower incident energies the 
repulsion between the outgoing electrons is expected to displace 
the peaks, with the consequent loss of symmetry. The neglect of 
the electron-electron interaction in the final state seems a likely 
reason for the discrepancy between calculation and experiment as 
regards the angular positions of the peaks.

Schulz (1973) has made extensive calculations using Coulomb 
v/aves to ̂ represent the outgoing electrons and varying the effective 
charges. By careful choice of effective charges Schulz has been 
able to obtain an improvement in both the angular positions of the 
peaks and their relative magnitudes. However the choice of charges 
is largely associated with curve fitting techniques rather than

A
physical considerations and still fails to provide a completely 
satisfactory description of the 'recoil* peak. V/e have included a 
selection of the results for corrparisen. Also, Salin (1973) has 
used the ing)act parameter method to describe the ionization process.
These calculations take particular account of the Coulomb interaction

!

between the tv/o outgoing electrons. The results obtained are ;
qualitatively similar to those of Schulz. i

The origin of the 'recoil* peak has been discussed in the recentj
publication by Schulz. Vriens (1969) attributed it to ionizing j

icollisions in which an initially bound electron, leaving the ion in |
J

a forv/ard direction, is reflected by the potential of the ion and j 
consequently suffers a reversal of.direction. It has been suggested 
by Schulz that another type of collision contributing to the 'recoil* 
peak is that involving the scattering of the incident electron by 
the nucleus or the electron that remains bound. In this case the 
mutual interaction of all the atomic particles could result in a
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nearly uniform distribution for the ejected electron. The contribut­
ion from the first type of collision decreases with the energy  ̂
whilst that of the second increases v/ith momentum transfer.

Since calculations based on the first Born approximation exdude 
the interaction betv/een the incident electron and the nucleus, then 
the explanations suggested by Vriens and Schulz would at least seem 
compatible with the failure of these calculations to reproduce a 
'recoil* peak of sufficient magnitude. Confirmation of this conclusion 
seems to be provided by the TDC calculations of Geltman (1974). He 
has used the Coulomb-projected Born approximation of Geltman and 
Hidalgo, which takes account of the electron-nucleus interaction, to 
calculate the TDC of helium for a wide range of collision parameters. 
In some respects the results obtained shov/ a considerable improvement 
over calculations based on variants of the first Born approximation.
The Coulofnb-prejected Born approximation produces improved predictions 
for the relative magnitudes of the 'binary' and 'recoil' pealcs but 
fails to locate these correctly. In contrast to those calculations 
previously described the angular shift in the position of the binary 
encounter peak is now away from the polar axis. Y/e include a selection 
of Geltman*s results to show the features described. In addition to 
the improved peak ratio the CPB approximation appears to have a 
wider application than one might expect, producing reasonable 
qualitative agreement at quite low incident energies. However the 
only guide that we have to quantitative agreement is the degree to 
which normalization is conserved and this is not indicated in the 
results.

It‘should be noted that these calculations are based on a 
simple description of the helium target, • the wave function being 
identical to that used in our preliminary calculations of the 
and from our own experience it cannot be assumed that an improved 
description of the helium ground state will result in improved
agreement v/ith experiment.
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The CPB approximation has been used for a variety of 
calculations and is generally comparable to the better theoretical 
models in common use. However there is one case in v/hich it has 
been shown to be decidedly inferior. When used to calculate the 
90° polarization of Lyman (X radiation emitted by the 2p state of 
f-Jexcited by electron impact (incident energies in the range 40 — 
200 eV) the CPb approximation produced results quite different 
from those determined from experimental measurements. In fact 
Morgan and Stauffer (1975) have found that the predictions of the 
CPB approximation have the opposite sign to that indicated both 
by experiment and other theoretical models. However this contrasts 
with the CPB calculations of the differential cross section for 
the excitation of all the n. =2 levels in H, where there is 
satisfactory agreement with experiment. This indicates that there 
may b ^  certain inherent weaknesses associated with the O P B  
approximation.

Let us now examine the double differential cross section 
obtained from the TDC by integrating over the angular co-ordinates 
of the "slow" outgoing electron

c é è e
d é f d k ^ d e .

dt^^slnBA%d<l>s
Because all of the calculations have been confined to in-plsne 
scattering ( 180*^ ) we cannot determine exactly
effect of the integration over the angular co-ordinates. Hswever 
we can rnme a reasonable speculation. In the region sto£smt^=0 
the %  integration has the form

I c .
S t n O ^ d û g
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Since the ‘binary* and 'recoil* peaks of the TDC are almost 
diametrically opposite then the presence of the sin0^ factor in 
the integrand of (4.44) will result in some cancellation between 
the peaks. Hence it seems likely that any model underestimating 
the magnitude of the recoil peak will tend to overestimate the 
total cross section, as is the situation regarding Born calculations 
of the total cross section.

Finally we have made calculations to investigate how the 
various partial waves, appearing in the exchange adiabatic 
representation of the "slow" outgoing electron, contribute to the 
TDC// For the purposes of these calculations we have retained only 
tiie "s " state (Configurations of the C, I, v/avefunction describing 
the target ground state.

We found that for the regions in which the TDC is most 
significant the largest contribution arises from the dipole 
transition ( A 6  =1). However in other angular regions, where the 
TDC is less significant, the quadrapole, and some higher order, 
contributions assume considerable importance. One such region 
is The figures 7 and 8 show the dependence of the
TDC upon the partial wave contributions in this angular region.
The following table shows the values of the collision parameters 
in each case.

FiG-uRE E f(.e.V ) 6 ,

7 256. 5 230.5 4*
8 256.5 230. 5 7°

4 4  Conclusions
We have calculated triple differential cross sections for the 

electron impact ionization of helium in first Born approximation 
at an incident energy of 256.5eV. Particular consideration has
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been given to the use of accurate wave functions to describe 
the target ground state and the 'slow* outgoing electron. The 
results shov/ the first Born approximation to fail on two points; 
namely the prediction of the correct angular positions of the 
'binary* and 'recoil* peaks and the magnitude of the 'recoil* peak. 
The various explanations for the behaviour of the TDC are 
presented, from which it is clear that the discrepancies between 
the calculations and experimental results arise through faults 
inherent in the first Born approximation. In this connection v/ey
have indicated v/hy Born calculations overestimate the total cross 
sections in the ençrgy region considered. Further we have shown 
that there are,angular regions where the ionization process may 
be significantly different from a dipole transition.
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PARAIv'ÎETERS FOR THE TARGET WAVE FUl'TCTION

H
O  is.ls Cls,2s C z s ,2jS

0. 704981 -0.701157 -0.128315(-1) -0.101926 i

C&p,3p - ,  !
0.234939(-l) -165903(-1) 0.993914 0. 215075 C+0 !

CORRESPOKDING GROUND STATE ENERGY

H e

= -0. 520823âu.; !

0±s,±s C ± S ,2 S Cjis,2s c é z p A p
0.991334 -0.112748 -0.222737(-l) -0.624144(-1) ,

O^SpjSp J Z o
0.48915l(-2) . -0.113886(-1) 0.175478 (+1) 0.518423(+1)

i
CORRESPONDING GROUIHD STATE ENERGY =

o o
-0.287660 &LL

Li
C lS jX S E g s .Z a ( X ^ p ^

0, 997407 -0.572918(-1) -0. 125.330 (-1) -0.410064(-1)

z .
0.22068l(-2) -0.726350(-2) 0.273824( 1) 0.812831( 1)

CORRESPONDING GROUND STATE EIŒRGY = -0. 725106(+l)3.U.



MOMENTUM
TRMSPER

0<CLo)

ATOMIC FORM FACTOR F(K)
C.I
WAVE
FUNCTION

3 TERM HF* 3 TERM 
HY + 6 TERM 

HY

O;166243 
0.332485 
0.498728 
0.664971 
0.831214 
0.997456 
0.132994(+1 
0.199491/ +1 
0.2659881+1 
0.332485(+1 
0. 398983 (+1 
0.465480(+1

0.198890(tl) 0.1956451+1 
0.190489 (+1 
0.183735(41 
0.175726(41 
0.166794(41 
0.147339(41 
0.108303(41 
0.757991 
0.519465 
0.355121 
0.244878

0.19892(41 
0.19571(41 
0.19057(+1 
0.18372(41^ 
0.17551(41' 
0.16626(41 
0.14604(41' 
0.10602(41 
0.7383 
0.5089 
0.3529 
0.2481

0.19890(41 
0.19567(41 
0.19046(41^ 0.18354(41 
0.17524(41 
0.16589(41 0.14546(41 0.10519(41 
0.7303 
0.5025 
0.3482 
0.2447

0.198905(41 
0.195481(41 0.190496(41 
0.183613(41 
0.175352(41 
0.166065(41' 
0.145785(41 0.105819(41 
0.73804 
0.50995 
0. 35449 
0. 24965

*HF: HARTREE-FOCK WAVE FUNCTION ĤY: HYLLERAAS WAVE FUIYCTION

MOMEI'TTUM
TRAtTSFER
CRdo)

INCOHERENT SCATTERING FUNCTION 
(VÆLUES LISTED ARE ZSlnc(K) WITH Z = 2)

C.I
WAVE
FUNCTION

3 TERM 
HF .

3 TERM 
HY \

6 TERM 
HY

0.166243 
0.332485 
0. 498728 
0.664971 
0.831214 
0.997456 .0.132994(41, 
0.199491(41, 
0.265988(41, 
0. 332485(41, 
0. 398983(41 0.465480(41,

III0. 208770/-: 
0. 8138741
0.175468 
0.294990 
0.431430 
0.576992 
0.870468 
0.136271(41 
0.167239(41, 
0.183911(+1, 
0.192214(+1, 
0.196211(+1,

lîi0. 2163 (-:
0. 84801 
0.1843 
0.3123 
0. 4598 
0.6178 
0.9336 0.14380(41 ; 
0.17274(41, 
0.18705(41 
0.19377(41 0.19692(41

0. 2043(- 
0.7995 
0.1735 
0.2938 
0.4322 
0.5802 
0.8765 
0.13593 
0.16558 
0.18186 
0.19043 
•0.19487

i l l lil

41
4141 '41
4l'

0.20691(-1 
0.80913 
0.17546 
0.29674 
0. 43599 
0. 58457 
0. 88094 
0. 136108(41, 
0.165524(41 
0.181719(41 
0.190286(41 0.194762(41

TABLE 4.1VALUES OF THE ATOMIC FORM FACTOR AI'TD INCOHERENT SCATTERING 
FUITCTION FOR HELIUM CALCULATED FROM STANDARD Y/AVE FUNCTIONS,



CASE; Eg = 256. 5«V Ec = 226eV 0̂ = 4*

MGLE 0 .

J ' C & r t k s ' )

T t . j f d f j h r s ) 72.

18*
36*54*
72*
90*
108*
126*
144*
162*
180*
198*
216*234*252*
270*
288*
306*324*
342*
360*

0. 521 
0.172 
-0.154 
-0.429 
-0. 635 
-0. 771 
-0.838 
-0.835 
-0. 761 
-0.620 
-0.406 
-0.126 
0. 204 0. 552 
0.851 
0.102(41, 0.108(41, 
0.107(41, 
0.101(41, 0. 828

0. 224 
-0.123 
-0. 364 
-0.523 
-0. 621 
-0.675 
-0. 698 
-0.697 
-0.672 
-0.614 .
-0.511 
-0. 346 
-0.957(-l) 
0.261 
0. 723 0.121(41 
0.153(41 
0.152(41' 0.117(41. 
0. 678

0.166(-1 
0.104(-l' 
0.627(-2 
0.417(-2 
0é322(-2' 
0.265(-2 
0.234(-2 
0.231(-2 
0.262(-2 
0.329(-2 
0.441 (-2 
0.617(-2 0. 886(-2 
0.128(-1 
0.184(-1 
0.251(-1 0. 315(- 
0.342(-l, 
0.311(-1 
0.242(-1

0.475(-2 
0. 417(-2 
0.320(-2 
0.176(-2 
0.179(-3 —0.104(—2 

-0.179(-2 -0. 220(-2 
—0. 2421-2 
-0.254(-2, 
-0.260(-2 
-0.255(-2, 
-0.225(-2 
-0.148(-2, 
-0.140 (-4, 
0.202(-2 0. 381(-2, 
0.480 (-2 
0.518(-2 
0. 5071-2'

TABLE 4 2* VARIATION OF THE DIRECT AND EXCHAITGE (PETERKOP FORIvl) 
AvîPLITUDES Y/ITH SCATTERING AITGLE ©s-

It should be noted that the tabulated values differ from the 
corresponding amplitudes by a multiplicative constant.  ̂
entries in these tables should be multiplied by a factor fiT 
to obtain the actual values of the amplitudes.^



CASE: Eg = 256. 5cV Ep = 229eV 6p= 6*

ANGLE 9.
18* 
36* 
54* 
72* 90* 
108* 
126* 
144* 
162* 
180* 
198* 
216* 
234* 
252* 
270* 
288* . 
306* 324* 
342* 
360*

‘ 0. 374 
0.117 

-0.126 
-0.319 
-0.451 
-0.528 
-0. 544 
-0.496 
-0.391 
-0.229 
-0.680 (-2) 
0. 250 
0. 487 
0. 586 
0. 433 
0.151 
0.692(-1) 
0. 291 
0. 543 
0. 563

-0.218(-1) 
-0. 407 
-0.656 
-0.809 
-0.895 
-0. 940 
-0. 950 
-0.922 
-0. 857 ■
-0. 741 
-0. 543 
-0.231 
0. 242 
0.875 0.153(41 
0.198(4li 0. 208 (+1 
0.179(41, 
0.121(41. 0.537

0.149(-1 
0.9681-2 
0. 636 (-2 
0. 457(-2 
0. 372 (-2 
0.'336(-2 
0.3321-2 
0.361(-2 
0. 429(-2 
0.547 (-2 
0. 733 (-2 
0.102(-1 
0.146(-1 
0. 210 (-1, 
0. 294(-l 
0.377(-l 
0.417(-1 
0.3861-1 0. 308 (-1 
0. 221(-1'

0.425 (-2 
0.368(-2 
0.284(-2 
0.172(-2 0. 509(-3 
-0.527(-3 
-0.128(-2 
-0.177(-2I 
—0. 208 ( —2 
-0. 224(-2 -0.228(-2 
-0. 214 (-2 
-0.173 (-2 
-0.905(-3 
0.398(-3 0.199 (-2 
0.339(-2 
0. 426(-2; 0.460(-2 
0.456 (-2

TABLE 4 3 *' VARIATION OF THE DIRECT AIÎD EXCHANGE (PETERKOP FORM) AIvIPLITIIDES Y/ITH SCATTERING Al'TGLE ©5 .



CASE; E. 256. 5eV Ep = 230. 5eV 10*

ATGLE ©g
15*
30*
45*
60®
75*
90*
105*
120*
135*150*
165*
180*
195*
210*
225*
240*
255*
270*
285*
300*
315*
330*
345*
360*

0.401 
0. 361 
0. 284 
0. 203 
0.132 
0.826(-1 0.5901-1 
0.598(-l 
0.852(-l 
0.136 0.208 
0.290 
0. 365 
0.402 

\ 0.345 
0.145 
-0.192 
-0.563 
-0.805 
-0. 795 
-0.539 
-0.165 
0.164 
0.354

0.567(-2) 
-0. 277 
-0. 484 
-0.624 
-0.710 
-0.762 
-0.789 
-0. 788 
-0.759 
-0.705 
, -0. 616 
-0. 472 
-0.260 
0.283(-1) 
0.389 
0. 767 
0.106(+lj 
0. 119(41, 
0.122(41, 
0.122(41, 
0.199(41 0.104(41, 
0. 742 
0.362

t L
0.734(-2 
0. 488 (-2 
0.316(-2 
0. 208 (-2 
0.148(-2 

.0.122 (-2 0.117(-2 
0.128(-2 
0.155(-2 
0.202 (-2 0.273(-2 
0.375 (-2 0.518(-2 0.713(-2 
0.977(-2 
0.132(-l' 
0.174(-1, 
0. 218 (-1, 
0.249(-1, 
0.255(-l, 
0. 233(-l, 
0.192 (-1 
0. 147 (-1, 
0.106 (-1,

0.350(-2 
0.314(—2 
0. 266 (-2 
0.206(-2 
0.139 (-2 0.708(-3 0.713 (-4 

-0. 472(-3 
-0.906(-3 -0.124(-2 
-0.147(-2 
—0.161(—2 -0.165(-2 
-0.158(-2 
-0.134(-2 
-0.909(-3 
-0. 243 (-3 
0.636(-3 
0. 162 (-2 
0.254(-2 
0. 324(-2 
0.365(-2 
0.380(-2 0.373 (-2

TABLE 4 4" VARIATION OP THE DIRECT AID EXCHANGE (PETERKOP FORM) 
AvIPLITUDES WITH SCATTERING ANGLE %



CASE: E, = 256. 5eV E, = 829eV 0= 4*

AireiiE G<

Sro.ttlED PARTIAL WAVE COHTRIBUTIOITS TO THE TDC

&=0  f L=0 L=0
15
30*
45*
60®
76"
90"
105"
ISO"
135"
150"
165"
180"
195"
210"
225"
240"
255"
270"
285"
300"
315"
330"
345"
360"

0.948f-2 
0. 934(-2 
'0. 946 (-2 
0. 9841-2 
0.104(-1 
0.lll(-l 
0.116(-1. 
0.120(-1 
0. 121 (-1 
0.1181-1, 
0.113(-1 
0. 107(-1 
0.10l(-l] 
0.961(-2 
0.9361-2 
0.9391-2 
0.9641-2 
0.100 (-1, 
0.104C-1 
0.106(—1 
0.1071-1 
0. 105 (-1, 
0.102(-1 0.981(-2

0. 605 
0.126 
0.218(-1) 
0.319 
0.936 0.171(41 
0. 242 (+1 
0. 289 (+1 
0. 299(41, 
0. 269(41, 
0. 207(41 0.130(41) 
0. 581 
0.116 
0.255(-l) 
0. 336 
0.966 0. 175 (4-i; 
0. 247 (+1 
0. 2951 41 j 
0. 304(41 
0. 274(41 
0. 211(41, 
0.133(41,

+14L,

0.497 
0. 996 (-1) 0.193 
0.550 
0. 966 
0.133(41 
0.159(41 0.175 
0.178(41 
0.168(41 0.1471 
0.1151 
0. 750 
0. 344 
0.955(-1) 
0. 236 
0. 942 
0. 216(41, 
0.355(41 
0. 458(4l| 0.480(41 0.412(41 
0. 283(41, 
0. 147(41,

0. 517 
0. 113 
0.166 
0. 484 
0.905 
0.132(41 ) 
0.164(41' 0.182(41 
0.185(41
0.174(41 
0.149(410.111(41 
0. 679 
0. 296 0.928(-l) 
0. 257 
0.955 
0. 219(41 
0. 369(41 
0.490(410.517(41 
0.434(41 
0.289(41
0.148(41

0.513 
0. 113 
0.166 
0. 485 
0. 9080.132 (41) 
0.164(41*
0.183(410.187(41,
0.175(41
0.148(41,
0.111(41, 0.682 
0. 295 0.932(-l) 
0. 256 0.952
0.219(41;
0.369(41,
0.439(41, 0.515(41, 
0.434(41, 0.290(41,0.148{4i;

VALUES OF THE TDC (7/ITH EÎICHAIÎGE AI7D CT-PTîHîj. iiiZCLJDED) 
SH0//II7G THE RSLiÆIVS IlIPOETiETCS OF THE VARIOUS TERLIS IE  
THE III? INI TE SERIES EXPANSION ASSOCIATED WITH THE DIR-SiCT 
AlriPLITlIDE.



CASE: E^ = 256. 5eV Ep = 230. 5e\/ 0̂=t 4*

AI7GLE 0.

SUÎVÏÏ.ÎED PARTIAL-Y/AVE CONTRIBUTIONS TO TDC

£ — J 6=0 6=0 6=0 ^  «6*0

15"
30*
45*
60"
75"
90"
105"
120"
135"150"
165"
180"
195"
210"
225*
240"
255"
270"
285"
300"
315"
330"
345"
360"

0.119 (-1, 
0.119(-1 
0.119 (-l! 
0.119(-1 
0.1196-1 
0.119 (-1, 
0.119(-1, 
0.119 (-1, 
0.1191-1 
0.119(-1 
0.119(-i; 
0.1191-1 
0.119(-1 
0.199(-1 
0.199(-1, 
0.119(-1 
0.119(-1 
0.119(-1 
0.119 (-1, 
0.119 (-1, 
0.119(-1 
0.119(-1 
0.119(-1, 
0.1191-1)

0.676 
0.115 
0.503C-1) 
0.501 
0.135(+1) 
0.236(+l 
0.327(41 
0.384( 41, 
0.391(41 
0. 346(41 
0. 261(41, 
0.160(41) 
0. 687 0.119 
0.478(-1) 
0. 492 
0.133(41
0.234(41
0. 325(41 
0. 581(41 
0.388(41 0.343(41 
0.259(41/ 
0.158(41)

0.559 
0.142 
0. 307 
0. 780 
0.134(41) 
0.186(410.227(410. 252(4i;
0.255(41 
0.235(41
0.197(41 
0.148(41) 
0. 921 
0. 409 0.139 
0.385 
0.134(41
0.290(41;
0.461(410.580(41
0.595(41 0.499(41, 
0.335(410.169(41)

0. 637 
0.167 
0. 277 
0. 725 
0.130(41, 
0.184(41,0.224(41
0. 246 (4l' 0. 248(+l, 0. 232(41 
0.196(41) 
0.144(4l) 
0. 866 
0. 369 0.149 
0.452 
0.143(4i; 
0. 297(41, 0.466(41, 
0.586(41,
0.601(41,
0. 504(41,
0.341(41.0.179(41)

0. 634 
0.167 
0. 276 
0. 727 
0. 130(41) 0.183(41)
0.224(41 
0.247(41, 0.250(41,
0. 232(41 0.195(41) 
0.144(41) 
0.869 
0. 368 
0. 149 
0. 450 0. 143 ( 4 i ;  
0.298(41 0.466(4I 
0.584(410.599(41 
0.504(41 0.542(41 
0.178(41)

TABLE 4.6
VALUES OF THE TDC (WITH EXCHANGE AND CAPTURE EXCLUDED) 
SH07HTG THE RELATIVE IIvIPORT.AlCJE OF THE VARIOUS TERMS IN
CMITTED^FROW^THE CALCULATIONS.



CASE; E^= 256. 5eV Ep = 230. 5eV 0p= 7"

ANGLE 0c

SUÎvII'JED PARTIAL WAVE CONTRIBUTIONS TO THE TDC

^ — » Uo £ L=0 6=0 £ ‘---»6*0
15"
30"
45®
60“
75"
90"
105"
120"
135"
150"165"
180"
195"
210"
225"
240"
255"
270"
285"
300"
315"
330"
345"
360"

0.163(-1 
0.163(-1 
0.163(-1 
0.163(-1 
0.163(-1 
0.163(-1, 
0.163(-1 
0.1631-1 
0.163(-1, 
0.163(-1 
0.163(-1 
0.163(-1 
0.163(-1 
0.163(-1, 
0.163(-1, 
0.163(-1 
0.163C-1, 
0.1631-1 
0.163(-i; 
0.1631-1 
0.1631-1, 
0. 163(-1, 
0.163(-1, 
0.163c-i;

0. 887(-; 
0.212 
0.180 
0. 522 
0.958 
0.137(41 
0.165(41 
0.172 
0.156 
0 .1221  
0. 785 0.373 
0.929(-l) 
0.202(-l) 
0.174 
0.512 
0. 943 0.135(41, 
0.163(41 
0. 170(41 
0.154(41 ; 0.120(41 
0. 772 
0.364

0.119 
0.194 
0. 378 
0. 561 
0. 718 
0.852 0.948 ■
0. 973 
0. 918 0. 803 
0.660 
0.493 
0. 303 
0.144 
0.155 
0.489 0.118(4i; 
0. 204(41, 0. 273(41 
0. 291(41 
0.251(41 ; 
0.171(41 
0. 877 
0. 315

0.152 
0.170 
0.322 
0. 517 
0. 706 
0. 842 0. 908 
0. 920 
0. 890 
O. 798 
0.636 
0. 439 
0.255 0.140 
0. 210 
0. 586 
0.126(41 0. 208(41 
0. 278(41 
0. 299 
0. 255 
0.176 
0.970 
0.401

0.152 
0.169 
0.324 
0. 522 
0.700 
0. 836 0. 922 
0. 944 
0. 895 
0. 788 
0. 636 
0. 445 
0.254 
0.139 
0. 209 0.581 
0.127(41 0.209(41 
0. 276(41 0. 295(41 
0.254(41 0.177(41 
0.971 
0. 396

TABLE 4.7
VALUES OP THE TDC (V/ITH. E]{CHANGE AIU) CAPTURE EXCLUDED) SHOEING THE RELATIVE HvïPORT.ANCE OF THE VARIOUS TSRIuS IN



V

'THE TRIPLE DIFFERENTIAL CROSS SECTION

330'

3 0 0

2.70e90
«0

120'

X/O'ISO'

180

CASES
E^=226eV



THE TRIPLE DIFFERENTIAL CROSS SECTION

CASE: E^= 256.5eV/ Ep = 226eV 0p= 4*

ANCLE 0a TDC

18® 0.352
36® 0.460(-l)54® 0.169
72® 0.490
90® 0. 843 ‘
108® 0.112(+1
126® 0.127(+1
144® 0.126(+l'162® 0.110(+1
180® 0.811
198® 0.455
216® 0.145234® 0.520(-l)
252® 0.390
270® 0.13lC+i;
288®- 0.265(+l,
306® 0.370(+l,
324® 0.364(+l,
342" 0.25l(+l,360® 0.120(41,



THE TRIPLE DIPPEREITTIAL CROSS SECTION

CASE; Eg = 256.5ftV Bp = 226eV' 9^= 6'

AIÎGLE 0« . TDC
15" 0.9Y6(-30* 0.479
45* 0.130
60* 0.271
75* 0.418
90* 0.540
105" 0.623
120" 0.663
135° 0.651
150° 0.590
165° 0.488
180° 0.352
195° 0.202
210° 0.804(-l)
225° 0.477(-l)
240° 0.193
255° 0.616
270° 0.134(+1
285° 0.220(+l
300° 0.276(+l315* 0.258(+l,
330° 0.18l(+l
345° 0.971
360° 0.381

i



THE TRIPLE DIFFERENTIAL CROSS SECTION

3 0 330

300'60 oo

270’oo

120

2(0'

190

case: Eô ŜrS-SeV
Ep= 2 2 6  e \/



THE TRIPLE DIPPERENTIAL CROSS SECTION

CASE; = 256.5eV Ep = 226eV 8®

Al'TGLE 0̂  TDC
15* 0.491(-1)
30*̂  0.609C-1)45* 0.124
60* 0.203
75* 0.273
90* 0.323

105* 0.356
120* 0.367 .
135" 0.350
150" 0.312
165* 0.258
180* 0.184
195* 0.106
210" 0.507(-l)
225" 0.595(-l)
240* 0.210
255" 0.583270* 0.119(+1
285" 0.188(+l'
300* 0.216C+1315* 0.174(+1
330" 0.103(+1
345* 0.473
360" 0.158



t h e  t r i p l e  d if f e r e n t ia l  c r o ss  s e c t io n

30' 330'

300'

120'

210'I#
180'

CASE : Eg= 256'SeV



THE TRIPLE DIFFERENTIAL CROSS SECTION

CASE: E« = 256. 5eV Ep = 230. 5•V/ 9= 4*

Al̂ GLE 0Ô TDC
15* 0.600
30* 0.158
45* 0.267
60* 0.698
75" 0.124(+1
90* 0.174(41
105* • 0.2121+1
120* ' 0.233(+l
135* 0.2361+1
150* 0.219(+1
165* 0.185(+1
180* 0.137(+1
■ 195* 0.829
210* 0.355
225* 0.143
240* 0.427
255* 0.137(+i;
270* 0.290(+l,
285* 0.45l(+l,
300* 0.566(+l
315* 0.581(+1
330* 0.4871+1
345* 0.329C+1360* 0.180(+1



T h e  T R t P L S  DIFFERENTIAL. CROSS SECTION

2 ê tf



THE TRIPLE  DIFFERENTIAL CROSS SECTION
CADDITIONAL G-RAPH)

27üf

lacf

FieuRS 4'. 4 a

CASE S E*,= 2 S h * S é /  
E^®330'5eV
6k* r*

NORMAUZAD ON AS IH CASE ^



THE TRIPLE DIFFERENTIAL CROSS SECTION

3303<ï

300'60

.0% 270 '

000

120'

-210'ISO'

180

CASES B ^ ^ zsh -se y  
Ep=22.9e\/



THE TRIPLE' DIEPEREHTIuAL CROSS SECTION
CASE; Eo .= 256. 5eV Ep = 229 eV

ALGOLS a TDC

15*
50®
45*
60*
75*
90*
105*
120*
135*
150*
165*
180*
195*
210*
225*
240*
255*
270*
285*300*
315*
330*
345*
360*

0. 148 (+1) 
0.513 
0.113 0.166 
0. 485 
0.908 
0.132(+1 
0.164(+1 
0. 183(+1 
0. 187 (+1 
0.175(41 
0.148(4-1 
0.111(4-1! 
0. 682 
0. 295 
0.930(-l) 
0.256 
0.952 
0. 219(+1 0.369(4-1 
0. 489(41 
0. 515 (+1 0. 434(41
0. 290(41.



THE T/5fACE DIFFERENTIAL CROSS SECTION
Ca d d itio n a l  G-RAPH)

330'

# 0

e o

^2Ad120'

z\aISO'

FIG^URE 4.SA

c a s e : E«*^5*6-5eV
Ep*2Z9eV
ep=4̂

NORM ALIZATION AS IN CASE O p*6'^



THE TRIPLE DIFFERENTIAL CROSS SECTION

CASE: E^ = 256.5eV Ep = 182eV 8‘

ANGLE 9g ■ TDC

15" 0.229(-l
30" 0.549(-2
45" 0.135 (-2
60" 0.265(-2
75" 0.521(-2
90" 0.7481-2
105" 0.9171-2
120" 0.102(-1
135" 0.106(-1
150" 0.107(-1
165" 0.104(-1
180" 0.954(-2195" 0.805(-2
210" 0.594(-2
225" 0.3401-2
240" 0.142 (-2
255" 0.329(-2,
270" 0.157(-1,
285" 0.48l(-l.
300" . 0.103
315" 0.156
330" • 0.164
345" 0.121
360" 0.626(-l)



T h e  TRIPLE DIFFERENT*AL CROSS SECTION

330'

60 300

90* 270*

120

2fO

/SO'

FiGVRE 4",6
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E* /82 €V



THE TRIPLE DIFFERENTIAL CROSS SECTION

Z-00 c a s e : Eo*25‘é>-5eV 
Bç^2S0*StV

FÏCUHB 4>7
THE SUMMED PARTIAL WAVE CONTRIBUTIONS  TO T H E  

TR IPLE  DIFFERENTIAL CROSS SECTION.

THE broken curve CORRESPONDS TO THE TDC W/TM 
THE INCLUSION OF THE TERMS L=0,± AND THE FULL 
CURVE TO THE TDC WITH THE INCLUSION OF THE 
T E R M S L=0,6. \

Pv
\3-
\\



TWE TRIPLE C > iP rE R E N T tR L  CROSS SECTION

1*00

80

0*33

CASE! Eo=256'5eV 
E^230*5eV 
0.* 7®

FIGVRB  4 ^ 8
THE SUMMED PARTIAL WAVE CONTRIBUTIONS TO THE  

TRIPLE DIFFERENTIAL CROSS SECTION.

THE BROKEN CURVE CORRESPONDS TO THE TDC W IT H

THE INCLUSION OF j H E  T E R M S L«Oj-l AND THE FULL
CURVE TO THE TDC WITH THE INCLUSION OF THE 
TERM S L-0,b .



THE ’TRIPLE bIFFERENTIA L CROSS SECTION

0*6*

JO 45"
s c a t t e r /n o - ANGLE ©g

DETA IL OF THE TRIPLE DIFFERENTIAL CROSS SECTION IN  THE REOiON  

OF A  M I N I M U M ,  .

c a s e :  E ^ ^ 25h - S e \ /

E£*230*5eV

TH ESE CALCULATIONS ARE BASED ON THE CORRELATED TARGET WAVE 
FUNCTION WITH T H E  ^P ' T E R M S EXCLUDEÙ.THE PARTIAL WAVE 

C O N TR IB U TIO N S L = 0 ,6  ARC INCLUDED.

FIGURE 4 .9
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C H A P T E R S

Introduction

In this chapter v/e shall examine a number of points arising 
from the main section of the work, contained in chapters 3 and 4#
Of these points the one which is of particular interest is the 
question of the validity of the exchange approximation used in the 
calculations. This approximation, derived from equation (2.27), 
was discussed in chapter 2 where due consideration was given to the 
inadequacies implicit.in this form. Although (2.27) is clearly 
true for exact wave functions, when used with approximate wave 
functions it often results in an inadequate description of the 
physics of the exchange process. This is particularly true when 
the approximate wave functions are only appropriate to specific 
energy regions, as in the case of first Born calculations. In such 
a situation there appears to be little reason for preferring the 
"Peterkop approximation", derived from (2.27), to the very much 
simpler plane-plane approximation for the exchange anplitude. The 
main reason for using the "Peterkop approximation" in our 
calculations was that it allowed direct evaluation of the exchange 
amplitude whereas the corresponding expression given by the 
equations (3.1) presents formidable computational difficulties. 
However the results of the calculations of the exchange amplitude 
based on the "Peterkop approximation" and presented in chapters 3 
and 4 indicate that the corre^ ending contribution to the triple 
differential cross section is consistently small. Indeed, in the 
energy region considered, it appears as no more than a first order 
correction throughout the angular range of the "slow" outgoing 
electron, even being dominated by the contribution from the capture

lia



amplitude lu some angular regions* In view o f the rather unexpected 
characteristics present In the behaviour'of the exchange amplitude 
one Is led to question the validity of the approximation upon which 
It Is based* For this reason we have attempted to derive a more 
reliable approximate form of the exchange amplitude* It Is not 
Intended that this should lead to an accurate evaluation of the 
exchange contribution, but rather that it should provide an estimate 
of the correct order of magnitude.

Before seeking a method of approximation It Is useful to first 
examine the sensitivity of the an^litude with respect to variation 
of the different approximate functions involved* It is not In fact 
necessary to conduct a specific Investigation on this point since 
adequate data already exists* For Instance comparison of triple 
differential cross section results obtained from the plane-plane 
approximation and Born-Coulomb calculations, or those contained 
In chapters 3 and 4, show that these may differ by an order of 
magnitude, from which it is clear that the TDO Is highly sensitive 
to the manner of representation of the "slow" outgoing electron* We 
may therefore conclude that any approximation involving this continuum 
function is likely to have significant effect upon the airg)litude*
In addition since the "slow" electron continuum-function carries all 
Information relating to the scattering by the local potentials It 
would be unwise to apply any approximation involving some modification
of this v/ave-function*

In contrast to this, comparison of the TDC results presented in 
chapters 3 and 4 indicates that variation of the target ground state 
function produces much less drastic changes In the H)C* Although 
these changes are non—negligible the characteristic behaviour Is 
unaltered and magnitudes remain comparable* This of course assumes 
that the form of the function resulting from any variation remains 
appropriate to the system that it is intended to describe. As a
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result of the points raised in this discussion the method of 
approximation chosen involves modification of the target ground state 
function rather than the continuum function* A detailed description 
of the method is given in the following section*

6̂ 1. An approximate form of the exchange amplitude

An explicit expression for the exchange amplitude is provided 
by the equations (3.1), being

0  à* (5.1)
where C - __
The final state wave function 2-L5, is given by

where

A ) ' =  ^5.3)
Os -\S

these wave functions being as previously defined.
The wave function 7 \ T (1;2,3) describes the intial state of the

à.system, and has the form

3^,3) =  (5,4)
where ) represents the ground state of the target system.
In order to simplify the following analysis we have chosen to use 
the simple ansatz

(5-5)
If we use the prior formulation of the exchange amplitude then the
interaction potential appearing in (5.1) will have the form

\/o .2.3) =  - |  +  4 - * 4  (6.6)
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where z = 2 for helium.
When one attempts to evaluate the form of the amplitude given 

by (5.1) it is found that all but one of the terms contained therein 
reduce to single integrations over a radial variable which are 
easily evaluated by standard numerical techniques. It is the 
presence of this particular terra that necessitates the use of some 
method of approximation. For the present we shall direct our 
attention toward this term, performing the more straightforward 
integrations associated with the remaining terms at a later stage. 
The term in question is

Denoting this by we have the follov/ingEX

Lf7j ^0 (5.7)

Substituting for from (5.5) we obtain

I  =  __Le f e  ”“^0^3EX Z'tr r r j

■S 'la. (5.8)
Let us now examine the integration over the variable

C z + ° < - y

r r^ Q z-K ^ ')'^  (5.9)

Hence
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dj ^ Ç t  (5.10)

We can transform the Integral of (5.10) hy changing the co-ordinate 
spaces in which we make our measurements, 
i* 6#

12

where 
Then 
and

Q. =  llî-lî^l
In this event we obtain

^ JJ Hk
c(r,cÙ )a_ (5.11)

Let US firstly consider the integration over the variable
appearing in equation (5.11). This takes the form

(5.12)
f ±  r7t-2.r,.c,^7’̂

l/ Qj. ,
which we shall denote by . In order to evaluate the integral.
(5.12) we shall seek an expansion of G. in
terms of Legendre Polynomials. Although it may be shown that this 
can be done exactly it is necessary to introduce some type of 
approximation in order to reduce the complexity of the problem.
The approximation used is achieved by replacing the quantity

with

where fj and Q  have the usual meanings, y U  is the cosine of the 
angle between the two position vectors ( = X) «XJa.  ̂ A  is a
parameter the value of which should be chosen so as to minimize the
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error arising from the approximation.
We shall nov/ consider a series expansion of the function 

^-excr>-/4Aç)

=  where / 8 = A o <

Let -1

The radial functions may he determined by applying the
orthogonality properties of the Legendre Polynomials, i. e.

/ f ^ Ç u ) e ^ ' y u  =
c

To obtain explicit expressions for the we are required
to evaluate integrals of the type contained in (5.13). These 
may all be constructed from the set of integrals of the form

I

H n  Cr<,j3) = f
n

It is easily seen that the integrals may be generated by
means of the relation

where ÛC =y3 f< •
Substituting the appropriate exponential function into the

integrand of (5.18) we obtain
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.olhYirtrfr'f jJ  ̂ (5.16)

But

) ^ Ç u ) U r ,

Vc4a)^(4-)'^iL)
and

m + i y ^ n .
Hence by appropriate use of these two expansions in Spherical 
Harmonics we are able to evaluate the angular part of the integration 
appearing in (5.16). The resulting expression has the form

CO

HL
(5.17)

Y/e shall now make the identification

which enables us to write (5.17) in the more coup act form

C )c A f^ c n ) & i ± i )-it i2*
Using this result v/e are now able to return to the expression for

given by (5.11), and consider the remaining integration contained
there

( T  =  c ^ ^ ( Ê f . 4 ) c / l ^ c n ' ) d r , C ^ 0

Since our interest is confined to ionizing collisions involving 
small momentum transfer (i.e. small) then we shall take
only a two term expansion for the exponential function 
I.e. /L ^ .r \ _ . A.

where , .
t s  =  .If we now substitute this truncated expansion into (5.18) we obtain 

J ^ =  k , +  Kg. (5.19)
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where
K  ^ r ,  ( ê ÿ L O

^ (5.20)
and

Let us consider the integral/<,, given by (5.20). If we replace the 
continuum function Z/lTCJC,) by its series expansion

• ^  ŷ jLÂ̂  t £/
(where the total phase shift associated with the ^
partial wave)
and use the spherical harmonic expansion appropriate to the 
Legendre polynomial of order then we are able to perform the 
angular part of the X), integration. From this we obtain

(5.22)
By making the same replacements in the expression for /Cj., given by 
equation (5. 21), and evaluating the ^  integration we are led to 
the result ^ _______ ^

.4 1

(5.23)
where the indices are subject to the following
restraints

U )  j U - i - r n + r t » 0

(ii) X - ¥ L - i - 1 a n  a x a  in te g e r

(iii) the triangle ine(quality 
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In view of the fact that we are almost entirely concerned with 
collisions involving small momentum transfer it is reasonable to

/ \  Ause the approximation consequent from considering K  and to be
orthogonal unit vectors. For the sake of convenience we shall take 

AÆ as the polar axis for our co-ordinate system.
Let us now consider the summation over the indicesyiC and 

appearing in (5.23)

^  n=-i

If for the present we exclude the cases ̂  - O  or A  = 0  , then '
V/•sif' A ^ A

since » it follows that for non-zero
we r e q u i r e =  D. Consequently condition (i) reduces to

the equality
y U - i ^ n ^ O

Hence the summation becomes 

n = - l
V

But

and also

+  X * c h X ! c è )d i M > }

o 1 }  = X - ' , >
= < t  i
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since condition (ii) requires that the.sum A 4-^ + / he equal to
an even integer. Using these results the summation reduces to 
the form

Hence (5.24) may be rewritten as

(5. 84)

(5.25)
If we now write the spherical harmonics in terms of associated 
Legendre functions v/e obtain

YfcXK ? o  - i >

1-4 4 V r̂ l
A

(5.26)

But Ff CO) = i
and

a  i  o Q  ^  1 0

Substituting these results into (5.26) leads to the following

expression
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C- 1 '2 C 2 x + n . 3 r cA-oic2t-n)iV a ^  i\
4-rr L  CA+/)! S f r  J  v ®  o  o /

(t o-i)Xoc4)Ç!:4*4^)
which we shall denote by the quandty /A 
Now

Y/<4) - m f M A )  - m Ÿ
Hence we obtain

A  =  f_,Y'+kf"^^"^'6r2A+0f264.or  I 7 ^
L >8X^A-f*oJ

(5.26)
In order to proceed further we require to evaluate the V/igner 3-J" 
symbols appearing in (5.26). From the conditions (ii) and (iii)
( /A— I ̂ 4-i I ) it follows that for each value of A ^ O  
we have the tv/o corresponding values o t  C • A — /, A 4-/ . We are 
therefore concerned with the evaluation of the quantities

/ A  C  I  Y  A  C  l \

U  ° ° A '  ° jA+1
It is easily shown that

^  A A —I I A —f I A _  6" rA (A4- O"] ̂(^O O  o ^ /  O -/y C2A4-iX-2A-0L J
and

/ A  A+l I V A  A4-1 jÇA+pAl^X o  o Oy(^ / O - \ )  C 2 X + I)(P ^ + 3 ')L  Z  J
Using these results in conjunction with equation (5.26) we obtain

(6.BU
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Hence the Integral r^now takes the form

f J .
’ Cf^r) r iX ^ ( k s y r ^ l j À ^ C r ) + c /^ C n iJ c X r

-h term corresponding t o A = 0 %

Let US consider the contribution to the summation arising from 
the value A  = 0 .  For this case we must have C =± . In addition 

= O * which implies/7 = O ( s i n c e = -/?). Consequently the only 
combination of spherical harmonics possible is

But

P c ^ . ê f ) = 0
Thus we obtain zero contribution corresponding to A  = 0 ,  so giving 
the following form for k ’̂2.

A
The quantities K, and K^may be evaluated by numerical integration
according to Simpson's Kule, over a 1500 point partition of the
range of the radial variable. The corresponding values of the
functions C/HyC^^ required are generated by a numerical technique 

C'
described elsewhere (see Appendix C).

We must nov/ examine the remaining terms involved in the 
expression for the exchange amplitude. If we take du^account of 
orthogonality by replacing the final state function 2 ^ ^ ^ Ly
?TÎ =  (ZnO ̂ 6 / ^   ̂ in equation (5.1), then we need
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consider the terms
—  aK

cC c ,d jc^ d c&

+ A ® Y / 7 e - ^ V d £ - « - Q y . ^ ^ J _ v ^ - « $ , c A . £ i 9
^  j  \  c %  Ca/

d r ,o ir ^ c ic ^  IJ (5.29)

Denoting the first integral of (5.29) hy L,, and performing the 
integration over the variable v/e obtain

L , = 8od- f f 4 - 1  )
( ^ ^ ■ 4 - k ^ ) J J ~ k s  V  f? % y

But
2p, Cr. ,A) =  W r , ) l f y c z , r ^ ' i  

—6—5
where

When performing the jTJj integration there are tv/o terms that we 
must consider. Firstly

/ e — Vr. =
and secondly

/ I  =  4Tr/^JL
J  Hs i4 G.

where
/3 =  ̂ 4̂- Z a
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Applying these results to equation (5.30) we obtain i

L, =  / ^ C c ; e ‘V-(^/j2Ci--z)-e"^?73+£)l<yr
( ^ ^ - ^ k f f / 3 V  /- r r -{s. 51)

If V/e now replace ) by the corresponding expansion in
spherical harmonics, and at the same time make a similar substitution 
for the exponential function, then we are able to evaluate the
angular part of the integration in (5. 31)

L,= 32iZoi‘̂ Ẑ  , 0 4 )

® (5.32) i

The remaining radial integration appearing in (5.32) may he carried I 

out numerically. Let us consider the second integral contained in 
(5.29) ■

A z  +  ±4._L 2 p  0 3 ! , ^ ) ^ * = * ^ ^
\  n %  ç J  . ^

It is convenient to split this integral, which we shall denote by 
into two parts

L ^ =  A ^ g  (5.33)
where

. d a

and
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The integration over the variable involved in the expression for
is identical to that associated with . Hence we are able to 

reduce to the form

= Sec**"

If we now examine the JÔ  integration we observe that there are tv/o 
types of integral that need to be considered. Firstly '

and secondly

where
X = 2 . c x .

1. e.

Combining these results with (5.36) we obtain

The angular integration appearing in this expression may be 
evaluated directly, yielding the result

I  = 3 2 c c f r ‘ - f r ^ f r k o r X o - z ) ^ ^ ^ -  e ^ ' ' l } i - + - L l ) ^
'd ^ F T ^ f.y J  do V— F -

which when integrated reduces to the form

I  -, =  52p<rrf' f  _ — _J—  .  ̂%L fer C9o(*-f feo ) J
— 3J2o<fr̂  fc i-z) _ O5o(^+k^)l  

Ccx -̂4-l )̂ijK -̂4-t )̂ (9 o c^ K )tl

(5.37)
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It now remains to evaluate the expressiçn for given hy
equation (5, 35). The integration over may he performed to 
produce the following result

=  J ' J é .°^ c ir ,o L rji_

Let us consider the integration involved in the previous 
expression. This takes the form

/ Qz.
By expressing the oscillatory exponential term and the inverse of 
the inter-electron separation as expansions in spherical harmonics 
we are able to evaluate the angular part of the integration. Hence 
v/e obtain oo

la.

(5.38)
where 5 . rb being the greater and lesser

h  ' n t + l  ^ ^pî of (2 r] , respectively.
This may be written in terms of the function defined by 
equation (3.59)

The expression for L ^ ^ m a y now be reduced to the form

t r ^ C n .k f  , c < . ) d r

If v/e once again replace the exponential term by the corresponding 
expansion in spherical harmonics this enables us to perform the 
angular integration with the result

.oo

L ^ =  / 6 n - g
(5.40)



The integrals involved in (5.40) are evaluated by means of 
standard numerical integration techniques.

Before presenting results of calculations based on the analysis 
described in this section v/e shall pause in order to mention a point 
concerning the convergence of the numerical integrations performed. 
With one exception it has been found that all the integrals computed 
have converged well within the range of integration used. This is 
of course to be expected, being a consequence of the presence of 
the negative exponential function appearing in most of the integrands 
The exception is provided by the integrals contained in (5.32).
We observe that one of the terms constituting the integrand of each 
integral does not involve an exponential factor, and it is this 
term that shows some reluctance to converge. In fact it was found 
necessary to make an appreciable extension of the range of integratioi 
in this case, replacing the numerical function by its limiting 
analytic form in the asymptotic region.

Ike suits

We have made calculations of the exchange anplitude based on 
the approximation described in this section. These calculations 
were restricted to two cases which were considered representative 
for the energy regions associated with our investigations. In 
tables 1 and 2 we show a comparison between these values of the 
exchange amplitude and the. corresponding values calculated from 
the Peterkop form of the amplitude. It is clear from this 
comparison that there is considerable discrepancy between the two 
sets of results. The results indicate that the Peterkop 
approximation may, in general, underestimate the magnitude of the 
exchange amplitude. If we introduce the probability associated 
with the exchange process, defined by
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then v/e can use the corresponding probability distributions to 
demonstrate the essential differences between the predictions of 
the tv/o approximations examined. Figures 1 to 3 show the probability 
distributions for the cases considered. It is apparent that the 
differences between the predictions of the two forms of the airplitude

1*7are not merely quan-^ative but are qualitative as well. Although it 
is possible that the approximations used in the evaluation of the 
exchange amplitude defined by (5.1) may partially account for the 
quan-^ative differences between the tv/o sets of results, it is unlikely 
that these would significantly modify the characteristic behaviour 
of the amplitude. For the approximate form of the amplitude described 
in this section is characterized by a three lobed distribution
with approximate symmetry about the direction of the "fast" outgoing 
electron. The distribution corresponding to the Peterkop 
approximation shows a much simpler structure which is almost entirely 
at variance with that previously described. However the angular 
position of the maximum of this distribution does roughly coincide 
with that of one of the three maxima of the other distribution.

5;i,£ Conclusions

The calculations of the exchange amplitude described here indicate 
that the Peterkop approximation fails to provide an accurate 
description of the exchange process for first Born calculations. This 
failure is two-fold. Firstly the approximation tends to underestimate 
the magnitude of the amplitude. Secondly the behaviour of the 
amplitude as predicted by the Peterkop approximation bears little 
resemblance to that predicted by the alternative approximation based 
on the exact form of the amplitude.
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CASK: = 256. 5 eV Ep = 230.5eV

/iiTGLs a

15
30"
45"
60"
75"
90®
105"
120"
135"
150*
165"
180"
195"
210"
225"
240"
255"
270"
285"
300"
315"
330"
345"
360"

PETERKOP FüRJvl OF THE 
EXOHAÎ TGE AvIPLITilDE

0.181(-1) 
0. 160(-1 
0.139f-l 
0. 120(-1 
0.105(-1 
0.936(-2) 
0. 859(-2' 
0. 815(-2 
0.801(-2 
0.815(-2 
0.855(-2 
0.9221-2 
0. 10l(-l, 
0.113(-1 
0.128(-1 
0. 144(-l' 
0.162(-l)
0.197(-i; 
0.211(-1, 
0. 219(-1, 
0.2201-1) 
0.213C-1)

0.524(-2) 
0.292(-2) 
0.244(-2) 
0.185(-2 
0.119(-2 
0. 526 (-3 
-0.929(-4) 
-0.625 (-3 
-0. 105 (-2 
-0.136(-2 
-0.155(-2) 
-0. 164(-2 
-0. 162 (-2 
-0.148(-2 
-0.12l(-2 
-0.787(-3 
-0.216(-3
0.123(-2 
0.197(-2 
0.260(-2 
0. 307(-2 
0.333(-2

THE FORM OF THE AîvlPLlTUDE 
DESCRIBEE IN THIS SECTION-

-0.165(-1) 
-0.156(-l) 
-0.131(-1) 
-0. lOlf-1) 
-0.705(-2 ) 
-0.432(-2) 
-0.250(-2) 
-0. 164(-2) 
-0.832(-3 
0.6321-3 
0.191(-2 
0.139(-2 
0. 179 (-2 
0. 130 (-2 
-0.128(-3) 
-0.124(-2) -0. 202 (-2) 
-0.3241-2) 
-0. 535 (-2) 
-0.813(-2) 
-0.113(-1) 
-0.144(-l) 
-0.166(-1)

0.282(-l 
0.344(-l 
0.356(-l 
0.324(-l 
0. 275(-l0. 220(-1 
0.148(-1 
0. 571(-2 
-0.290(-2 
-0.870 (-2 
-0.122(-1 
-0.163(-1 
-0.141(-1 
-0.109(-1) 
-0.678(-2 
0.628 (-3 
0. 986( -2 
0.178(-1 
0.296(-l) 
0.296(-l)0.344(-l)
0.351(-l)
0.307(-l)

T/13LE 5.1
VARIATION OF THE EXGHilTGS AÎ IPLIT'JDE WITH SCATTERING 
AtYGLE Qs

IT SHOULD BE NOTED THAT THE TABULATED VALUES IN THE TABLES 5.1 
Aim 5. 2 DIFFER FROM THE ACTUAL, VkiLUES OF THE ALŒLITUDE BY A 
MULTIPLICATIVE CONSTANT

rr
* THESE CALCULATIONS CORRESPOND TO THE VALUE A = 1 (SEE EQ. 5.12

ONUARDS)



CASE: E. = 256. 5eV E = 230. 5 eV

ANGLE ft

PETERKOP FORM OF THE 
EXCHMGE iUIPLITIIDE

A )

THE FORM OF THE AI\IPLITUDE 
DESCRIBED IN THIS SECTION*

15 • 
30® 
45* 
60® 
75® 
90® 
105® 
120® 
135® 
150® 
165® 
180® 
195' 
210® 
225® 
240® 
255® 
270® 
285® 
300' 
315® 
330® 
345® 
360®

0.147
0. 109 
0. 813 
0.627 
0. 514 
0.451 
0.423 
0.421 
0.443 
0. 492 
0. 571 
0. 689 
0. 857 
0.109 
0.141 
0.184 
0.237 
0. 295 
0. 345 
0. 367(-l 
0. 354(-l 
0. 310(-1 
0. 252(-l 
0.195(-1

(-2 '
(-2
(-2
C(II
l-U
l-l)(-1
(-1
(-1
(-1

0. 380 
0. 344 
0.292 
0. 225 
0. 147 
0. 679 
■0. 493 
■0. 655 
-0. 112 
-0.146 
-0.169 
-0.181 
-0.182 
■0.171 
-0.1451 
-0.9791-3 
-0. 280(-3 0.630(-3 
0.165(-2 
0. 261(-2, 
0.335(-2 
0. 3821-2' 
0. 402 C-2' 
0. 400(-2

-0.134 
-0.131 
-0. 116 
-0. 986 
-0. 803 
-0. 618 
-0. 477 -0. 411 
-0. 366 
-0. 271 
-0.164 
-0.166 
-0. 178 
-0.196 
-0. 285 
-0. 364(-2 
-0. 420 (-2 
-0. 493 ( -2 
-0.607(-2 
-0. 76l(-2 
-0. 954(-2 
-0.117(-1 
-0.135(-1

I
- 2 )
-2)
-2)-2)
-2)

il
-2)
- 2 )
-2)

0.159 
0. 211 
0, 226 
0.209 0.182 
0.152 
0.109 
0. 520 
—0. 466 
-0. 450 
-0.698 
-0. 946 
-0.921 
-0.705 
-0. 493 
-0.625(-3 
0. 528(-2, 0.10S(-1, 
0.140(-1, 
0.177(-1 
0. 212(-1, 
0. 219(-1, 
0.187(-1.

TABLE 5.2
VARIATION OF THE EXCHANGE AMPLITUDE V/ITH SCATTERING 
ANGLE Q s

■y THESE O.ALOULATIOKS COHllESPOHD TO THE VALUE A = 1 (SEE EQ. 5.13ONVARDS)



THE EXCHANGE PROBABILITY 
(C A L C U L A T E D  FROM TH E P E T E R K O P  FO R M  O F  

THE EXCHANGE a m p l i t u d e )

LxlO-"*-

Z70‘

FIGURE 6:1 180*

CASE: Ep=E5b*5eV
Ef= ̂ O'EeV

THE VALUES SHOWN HERE DIFFER FfîOM THE ACTUAL VALUES OF THE 
EXCHANGE PRO BABILITY B Y  A  MULTI AL/CflTlVE CONSTANT C THEY 
REQUIRE MULTIPLICATION BY

h. *nr̂



THE EXCHANGE PR06ABIUTY
(CALCULATED PKOM THE APPUOP/URTe tXPHES6fC*4 BASED 

«M THE APPROXIMATE RM M  OPTNE ficCHAMBE AMPUTUDC 
DESCRIBED IN

30

,300'

Z70'

120'

ISO'

CASE: Eo=25fe*5eV
Ep=230"5eV

T H E VALUES SHOWN MERC DIPFEA. FROM THE ACTUAL VALUES OF THE EXCHANGE 

PROBABIUTY BY A  MULTIPLICATIVE CONSTANT (THEY RC^UlRC MULTIAUCATION 

BY 2 ^ . ^ ) .  ko fr»-



TTHC EXCHAN&E PROBABILITY .

(CALCOlATCO from the approximate PORM o f  t h e  CXCHAWOe 
AMPUTUDC DESCRISCD IN SCl)

 ̂scatter,

270*

FIG-URE 5 : 3

case: Eo=̂ 56'5'eV 
B= ̂ O'SeV 
6f-7*

T H E  VALUES S H O W N  H E R E DIPPER PROM T H E  ACTUAL VALUES OF THE EXCHANGE 

PROBABILITY BY A  MULTI PUCATIVE CONSTANT (THEY R E Ç uIR E  MULTIPUCATION 

BY ).
ko rr*-



6%2. A rational approximation to the triple differential croBS-section

Clearly even if both capture and exchange are excluded in our 
mathematical models describing the ionization process the expression 
for the triple differential cross section is still sufficiently 
complex to make the further integrations required for the other 
differential cross sections and ultimately the total cross section, 
extremely lengthy and involved. It was with this in mind that we 
attenpted to construct a rational function capable of reproducing 
the triple differential cross section as calculated from the 
expressions contained in the previous chapters.

As with all curve fitting the success of the method is not 
measured merely by how faithfully the ^proximate function reproduces 
the original data but more importantly by the number of parameters 
required in the approximate form to reproduce the data to the 
desired degree of accuracy. It is for this reason that we have used 
a rational function, which is capable of exhibiting widely varying . 
behaviour with the inclusion of a few terms only, rather than a 
polynomial.

The method that we have applied is the usual least squares fit 
by which the parameters of the approximate function are chosen to 
minimize the sum of the squares of the differences between the 
original and regenerated data. The minimization proceÿdure is 
performed by means of the program V0A4A (Powell 1964). However 
before the minimization can proceed we need starting values for the 
parameters, and, if the proce|dure is to function efficiently, values 
that are not too far removed from the optimum. Y/e shall now describe 
the method used to estimate these starting values.

So far we have made no suggestion as to a suitable variable on 
which to base the expansion corresponding to the approximate function. 
However since the techniques outlined in the following are of a
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general nature v/e shall leave the choice of variable until a 
later stage in the discussion. For the present let us simply 
represent this variable by JC . From our knowledge of the 
functional form of the triple differential cross section, provided 
by the analysis of Chapters 3 and 4, we may ascribe to it the 
following form

where K  denotes the magnitude of the momentum transfer and all 
other quantities have their usual meaning. In (5.41) FQ C'^  

represents the rational function that v/e wish to construct. As 
we have seen from the results of earlier analysis, the triple 
differential cross section is characterized by an appreciable 
maximum in the forward direction. The removal of the rS  

factor from the TDO obviously modifes this behaviour. However a 
well defined maximum is found to still exist in the same region as 
the original maximum. Since this is perhaps the most significant 
feature of the curve which we wish to reproduce we shall use this 
maximum as a starting point. Now the simplest rational 
approximation to the curve in the region of the maximum is provided 
by the Breit-Y/igner resonance form

F ô c )  =

where denotes the half width of the ma::imum, the
maximum value of the curve and CQ the value ofOC at which this 
occurs. We can elaborate upon this form by including additional 
terms in numerator and denominator for which the associated 
parameters are initially set to zero when starting the minimization 
proceedure. By this method we construct our rational function. 
H e n c e  t h e  n e c e s s a r y  s t a r t i n g  v a l u e s  f o r  t h e  p a r a m e t e r s  a r e  o h t a i n e d
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in terns of the quantities f̂ , and.X^. We now require a
simple automatic way of extracting these quantities from the TDO 
data. In order to do this we first fit a simple polynomial to the 
modified triple-differential cross section curve (the curve . 
approximated by in (5.42^ in the region of the maximum. For
this purpose we have chosen to use the cubic

(ÜC) =  q £ c .-i-C L ^
(5.43)

the parameters ^ = 0_,3 ^  being determined hy fitting
the function to four data points in the region of the maximum, 
these points being equally distributed on each side of the maximum.

We are now able to locate the maximum by examining the turning 
points of the function^^^aq) . These correspond to the solutions 
of the equation

i f  z= O

i.e. OC =  -  U i
3cto (5.44)

By evaluating the second derivative for each case we are able to 
determine which solution corresponds to the maximum.

1. e. cC ^  —  éâ ac 2 cl, <  O , for the maximum
(5.45)

V/e shall denote the appropriate value of 02 byOC^ . Then 
substituting in (5.43) we obtain the maximum value of the curve, 
denoted by in equation (5.42)

Ç  « /acoy r =  ( 5. ^
Finally we need to estimate the half-width of the curve at the 
maximum. This is defined to be the half-width of the curve at half



its mEDcimum value. Hence the half v/idth is given hy half the 
difference "between the two real solutions of the equation

CLgOC^-h Q.,OC^-^ U jfC .-h O q  =■

i.e. CLqOc?“)• C L p C ? " ,A^ =s O (5.47)

Provided that we have reasonable estimates for the roots of this 
equation we can rapidly improve them "by means of the following 
iterative method. if oC is an approximation to a root oC^ then 
we may write oC^=^OC'hS’ , where 5 is a small correction. Then 
substituting into the equation (5.47) and ignoring terms of order 

(and higher powers) we obtain

(2t,(̂ -̂l-ScĈ G)-hCL,̂ <̂ -l-2c(̂ -4-CLpC-l-â -hÂ =0 

Hence 6  =  ~  (O -oO C^-hapC^+Q -oPC +  A 3} (5.48)
C <3cLo°Ĉ-*-2£L,oC-KZa.)

Using the quantity oC-#-G as a new in^roved estimate we continue 
the proceedure until successive estimates converge within some 
specified limits. initial estimates for the roots can be obtained 
quite simply. Let JSc j correspond to the four
data points used to fit the cubic. \"Ve wish to estimate the points 
of intersection of the cubic with the line . if we assume
that the slope of the curve is almost linear in these regions then 
we can obtain a reasonable first approximation for the points of 
intersection £ ( f ^ c "by linear extrapolation

w h e r e

but
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Then a , =2= e, -  C -f y z d  -  4 ^ )
( / W

and similarly
(Oa ~  (5.49)

Prom these we obtain a first estimate for the half width

X P  =  (5.50)
^  2a

With this information we are able to provide the starting values 
required for the curve fitting proceedure based on the form (5.42).
As a test of the consistency of the method used we can derive a simple 
relation between the quantities extracted from the TDü data, consider 
the JtJreit-Wigner form (5.42). This has half its maximum value when

(5.51)
so

Since or when the function F (? c^  takes half its maximum value,
then v/e obtain

r =  02,-60,
and (5.52)

The second of these relations provides a useful check on our approach, 
as previously mentioned.

V/ith regard to the form of the variableOC^ several choices 
have been tried, with varying degrees of success. We shall give an 
account of two of these. Initially it was hoped to extract the total 
angular dependence of the TDG by constructing a composite variable 
containing the dependence on both outgoing electron scattering 
angles. if we examine the form of the TDG obtained from the plane-

plane approximation (Appendixfi) we find that in addition to the



momentum transfer there is another anglp dependent quantity, 
namely , the magnitude of the recoil momentum
imparted to the residual ion. Here we have a quantity depending 
upon the scattering angles of "both outgoing electrons, so seeming 
to provide the type of composite variable required for our 
calculations. However subsequent calculations based on a function 
of the form gi'̂ en by (5.42), v/ith k .*  replacing the variable , 
produced unsatisfactory results. The postulated curve could only 
be made to fit the data by the addition of an unacceptably large 
number of terms to the numerator and denominator of (5.42). Since 
minor modifications achieved no appreciable improvement it was 
clear that /C^v/as an unsuitable choice of variable and it was 
consequently discarded.

Since our attempts to construct a composite variable 
containing the dependence on both scattering angles were unproduct­
ive it was subsequently decided to treat each dependence separately. 
Our investigation then centred on the form of a suitable variable 
for the 0 ^  dependence. An appropriate choice was found to be that 
given by . In the following we describe results obtained
from this choice of variable.

The function F (̂ c^ defined by equation (5.42) is taken to 
have the parametric form

F cccy —  C o + C /œ - h C o X ? -

(5.53)
where and Cj ̂ = /j 7 are parameters
to be determined by the minimization proceedure.
Let denote values of the function F  extracted from the
triple differential cross section data and the corresponding
values obtained from the rational lorm (5.55). The quantity that 
v/e have chosen to minimize is given by
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fï<s  -

l ~ R x i o ~ ^ J î (5.54)

where .denotes the number of data points used.
If indicates the number of parameters included in the rational 
form of F  then a measure of the accuracy of the fitted curve is
provided by the quantity

X  =
[ n Î - n J'p.

Y/e now present results for tv/o cases. Both correspond to the . 
energies ^  = 200e V , = 164. 5eV , the first case having the
scattering angle of the slow electron fixed at 30*, the second at 
45*. In each case we show the minimum value of 3^ obtained and the 
corresponding values of the parameters.
Case 1

q  = 5o'
X  = 0. 85
CCo= 0.016 Æ, =-0.223 CCa.= 0.932 , ag= 0.373
cCV= 0.384 CCg= 0.279x10 CC^= 0.719x10 0C,= 0.189x10

Case 2

05 = 45“
;^= 0.35
0̂ 0= 0.021 oc, =-0.472 0^= 0.295x10 0%= 0.856

0. 278x10 0Ĉ = 0.112x10 0C^= 0. 252x10 CCy= 0. 433x10
An inspection of the quantity 3^ for each case indicates that the 
fitted curve will reproduce the original data to within an error of 
1^ or less. Clearly then the type of rational function constructed
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THE TRIFLE ÙIFFEFENTIAL CROSS SECTION

f ig u r e 6:4" VARIATION OF THE TRIPLE DIFFERENTIAL CROSS SECTION WITH 
Scattering ANG-LE .

(t»£ VALUES SHOWN H ER E ARE CALCULATED PROM THE MùùBL  DESCAISEO IN 
CHAPTER 3^ USIN& A N  0A7H060NAUZED FWAL STATE WAVE PUNCTION.
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CASE: E*=200eV 
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provide a good representation of the differential cross 
section. However, since it is not clear how the parameters depend 
on the angle 6 ^ , this approach is at present of limited use.

An analysis of the shape of the double differential cross-section

In this section we shall examine the shape of the double 
differential cross section (dependent on energy and slow electron 
scattering angle) as predicted by the mathematical model of chapter 4. 
If v/e neglect the effects of capture and exchange the only contribut­
ion to the triple differential cross section arises from the direct 
amplitude which is, to within an arbitrary phase factor, given by

where  ̂ represents the target ground state and Z D .
Û

is a suitably normalized wave function representing the final state
of excitation. The quantity iÇ  is the momentum transfer, defined

■ > - in the usual way.
We shall now expand the exponential factor appearing in the 

integrand of (5.55) in powers of the quantity

i.e. =  I -h  C c i£ -r^ ')-t- ........ (5.56)
" 1 7 ”  2.1By replacing the exponential in (5.55) by its expansion we are able 

to determine how the various terms in (5.56) contribute to the 
amplitude and hence the triple differential cross section. For this 
purpose we have chosen to retain only the first three terms of the 
expansion. Since we have imposed the orthogonality condition

±Z7



then clearly the first term of the series expansion makes zero 
contribution to the amplitude. The contribution arising from the 
second term in the expansion has the form

where v/e have chosen the polar axis to be along the direction of
the momentum transfer K  »

Substituting the explicit forms of the wave functions 2lS  
Y  N  oand M-^u from (3.2l), (4.6) and associated equations v/e may, by

means of the methods demonstrated in earlier chapters, evaluate
the expression in (5.57) and so obtain

/ f c à c > à s ) —
~ K   (5.58)

the ^ in.5.icatlng that this is the first order contribution 
to the amplitude. The function is given by

.Où

n?fec^= Q + S t ! Ÿ l p ^ ( r ) r ’̂ u l k s r ) c ^

06

js ( r ) é : '" h c ^

 ̂̂ J (5.59)
the functions and being respectively *s* and *p* state
one-electron radial functions appearing in the C. %. wave function 
representing the target ground state. The quantities and oC ĵ

are the associated weights. All other quantities are as previously
defined.
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In order to find the required double differential cross section 
it is necessary to evaluate an integral of the form

The first order contribution to this integral, arising from the 
expansion of the a m p l i t u d e i n  "partial amplitudes" will
be

J  I TcCkf 

= i ï ï ( k s - ) f f ( y c è - t . ' > r c d
K. /  (5.60)

Let us therefore examine the integral

/
where denotes the angle between the vectors and ̂  •
Considerable simplification is achieved by means of the relation

(5.61)
-  S A

Since we are concerned with a situation in which the direction^of
the "slow" electron is fixed then v/e may use the vectors ahd_^^ to 
define the plane =0. Hence ^ k . ^ 0» and equation (5.61)
becomes

C c s B  cos9cas9,+ 6 Ù i 6 s û i Q c o s ( ^ f ^  (5.62)
tÇBs & &s - As —

where we are using a frame of reference in which the polar axis is 
along the line of action of the vector^^ . Clearly since the 
vectors K  and lie in the same azimuthal plane then v/e can 
replace by in equation (5.62). Thus

ccsO,===‘CosOjoos&’̂ scn0ScrL0,cos(^f 
!< k s & s ^  ^
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CUIU.
sù r^ 9 f^ sin ? ^ ^ c a s^ (f)u  

+ AcT6q.Sta6.CQS0, 5 ĥ0, cos0.i£ fcS ks &s

Using the results

and

±7T
I  c x £ ^ ^ (f)d x j> ^ T r

J "  c o s < p d ( p  = 0

we may perform the integration over the azimuthal angle (pf^  

appearing in (5.60) and so obtain

^  o

(5.63)

This equation may be written as the sum of two terms
j r

Æt t c o s ^Bu [  c o s ^ 9 ^  6 i/n 9 h  d O h

'o 
-IT

'O
By applying the Sine Rule to the triangle having sides corresponding 
to the vectors and ̂  we obtain the relation

Sin^Qif —  kt 6ÙT?&r
-  7 ^  ^ (5.64)

In addition v/e have

C O G ^ =  ( à c - iÙ ^  =  C ^ f — ^ t k f C a s & f )

If v/e now substitute from equations (5.64) and (5.65) the expression 
in which we are interested becomes
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he
,Tr

=  -  }^ s ir â 9 fS c n & ^ J ^

C>

77"

(5.66) •
Introducing the change of variable ^  / J ,= ’COS&u the integrals

- f  / -f
appearing in equation (5.66) may be transformed as shown

/

"M_ Ĵ2.

I
(5.67)

o K  
,+(

 ̂D# oo j

There are three different types of integral that we need to evaluate. 
By making the identifications and fi=^
these may he reduced to the forms

+f
f
J C A + ^ )

4.4-1

(i)

(ii)

(iii)



These integrals are readily evaluated, yielding the following 
results

f  (A±B1
Y, B  ^ l a - b J
/ »+!

_. (A +£>/Àf

(i)

(11)

b
^  ] 
- B o ; (111)

By appropriate substitution of these results the integral of (5.67) 
may be simplified to the following

Zk^A- I 4 - 4 ^

Replacing A and B  by the appropriate momenta dependent expressions 
we obtain

+ . . .
In a similar way the integral in equation (5.68) may be shovm to 
equal

Hence v/e arrivé at the result

+ ±

4- T P S à ^ ^ L  f  { f ^ + ^

]
(5.69)
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In order to determine the shape of the* curve corresponding to the ' 
function we shall make a further examination of the energy- 
dependent coefficients of the two terms in equation (5.69). Clearly 
the coefficient of the first term is always positive. Let us |
therefore turn our attention to the coefficient of the second term. | 
To facilitate our investigation v/e shall make the replacement

where I • The coefficient of interest may nov/ he
rewritten in the form j

Using the appropriate series expansion for the logarithmic term 
we obtain

Hence this coefficient is also always positive for all cases. Taking 
the tv/o coefficients in the order in which they occur in equation 
(5.69) we shall denote them by and respectively
If we now eliminate the sin^©/, dependence equation (5.69) may be 
rewritten as

^ ̂  ^  ̂ (5.70)

= ZC, - Cjikojzp)
To conclude our analysis of the functional form of (5.70) it is
necessary to examine the behaviour of the coefficient
Now

4. ̂

j  (5.71)
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Or, replacing the logarithmic term by its series expansion.

(5.72)

It is immediately clear that the sign of this quantity depends upon 
the magnitude of (X . For high energy ionizing collisions involving 
small energy loss of the incident electron 06 v/ill be close to unity 
and will consequently be negative. For small values
of  ̂ will be positive.

The curve corresponding to the function in (5.70) will be 
symmetrical about ©•= , the direction of curvature depending on
the sign of is negative then the curve
will be convex and if it is positive the curve will be concave.

For the ionization of helium there are tv/o sets of experimental 
measurements of the double differential cross section available 
(C. B. Opal et al 1971, Ehrhardt et al 1972). Unfortunately these 
data differ significantly in the region of smallest energy transfer 
to the ejected electron, which is the region of greatest interest. 
Although we can place no reliance on the data available for this 
region it is interesting to note that there is general qualitative 
agreement between the measurements of Opal et al at primary energies 
greater than 2 0 0  e ^ / and the behaviour predicted by (5.70). However 
even here the experimental curves show signs of additional structure. 
As we allow a greater energy transfer to the ejected electron the 
two sets of experimental measurements approach general qualitative 
agreement, both indicating a highly structured form quite different 
to that predicted by (5.70). We must therefore conclude that even 
at high energies the higher order terms in the expansion (5.56) make 
a significant contribution to the cross section. Hence the 
ionization process is not a pure dipole transition.
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A P P E N D I X

In this appendix we present a description of the numerical 
techniq.ues used in the generation of the radial functions 
satisfying the equation (3.15). For this purpose we first rewrite 
equation (3.15) in the form

r

oCn‘ V

(Al)
where

, =  i a + Ù - k - 2 C z - l ^  /S ^ r 'i
r r ()zr)4-

q  (fO  =  -gz^A, (A3)
(7̂  ( Z ù - h l )

CL =■ I  — (A4)

Adopting the approach of Percival and Marriott Marriott 195^ 
we consider the inhomogeneous integro-differential equation

4-r^'^bCn) (A3)
and the associated homogeneous equation

r
cbc.

d ^ X ^ C K rO

(A6)
The solutions of these two equations are denoted tiy and

respectively. The general solution of the inhomogene ous
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equation (Al) may be expressed as a suitable combination of these 
functions and is given by

-t-
(A7)

Subsequent to the generation of the functions and
we are able to evaluate the quantity ’a* in terms of these since 
substitution of the form (A7) into (A4) yields the result

CL

(A8)

V/e nov/ turn our attention to the actual construction of the function;
and . The function  ̂ of v/hich these

are component parts, is subject to the boundary conditions

C C c C ^ ,0 )  =  0  { A9 )

and

i~ - ^ ± s ù % [ k r '+ ^ z D C n C 2 k r ) ~ l( f r + a ( ; ^ - f z ^ l
r^oo k. 2  _(AlO)

The first of these is most easily achieved by requiring that

(All)
Hence the series expansions corresponding to these functions are 
assumed to take the forms

(A12)

r) ^  (A13)
n=o (ùùih, (TyÇ^O
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c l CThe coefficients  ̂ are arbitrary (hut non zero) and all
others are expressible in terms of them, through recurrence relations. 
In the region of the origin the function may be represented
by the series expansion

, -fc^,n) =  Ko OCr!)
^  r (ai4)

where
z^^-ZCz-l-i-A,) z,=

IS

v3

while the corresponding expression for Q C ^  is
at

qCr)= ^  CI-zr-h£z^r^-i-OCr^)J (̂ as)
with 

Â 3 =
Appropriate substitution of the forms (A12),(A14) and (A15) in 
equation (A6) yields

n=o

n=o n—o
from which we may obtain the recurrence relations linking the
coefficients • The equations satisfied (for) by the coefficients

= are

( ^ O - ~ 0 - U ^ + 0 j C Z ^ = - O

— Zfit (AI8) !

^  I



aJ;l(çr-i-iXo-+Z-)-CCC+02=Zoaf+z,a.o

a^^£Co-+2.)(àr-h3)-iCC-t-0j =  a2z>-^-afz,-haJz^ (aso) 

a 2  £Ccr+3Xz-^i^)-^C^'^ O j = aizo-ha£z,-ho,^z^

Equations (A18) - (A2l) provide the means for expressing the 
coefficients succeeding (to in terms of this quantity, while (A17) 
implies that

a t r - o - C C t * l ) - 0

since is non zero.
Equation (A22) has roots /)(T= -^ , only the former of which
satisfies the requirement (T^O . Substituting the value CX^C'^I 
into equations (Ais) - (A2l) allows the relevant coefficients to be 
determined, so enabling us to rewrite (A12) in the form

=  r ‘'-^'\ai+af-n-i-air^-hQ^r^+air‘̂ + 0 C r ^ 2  ( ^ 3)

Similarly v/e can obtain

v/e now make the following identifications
r

E.JiAr'i =  fê^æ^*'X^C^,oc)céc ( ^ 5)
O

fZCk,r)=‘ (A26)
Ô

G i t M -  f e ' ^ ' * ‘Xü>,=cy:ic 

CA,r)‘- J )(cko^ycùic

(A27)

® r J \ /  , » , (A28)



Using the quantities defined "by these equations the differential 
equations satisfied "by the functions and ̂  may "be written as

^ 4: . (A29)

(ASO)

where

and

(A31)

(A32)— g^r)[y~^Gickn)-r‘̂ '^H^ckf^)~lJ J
In order to initiate the numerical technique used to construct the 
solutions of the equations (A29) and (A30) we require explicit
expressions for the functions and in the region of
the origin. These are obtained from equations (A25) - (A28), used 
in conjunction with (A23) and (A24). They are

^(^-h3) (ZL+g-"^ C2JL+S')

+ O M  ] (».)
Kfkr-) =  r * r  C a k z a ^ Y -t- (aj-zai'-i-J^o}')

3  4 -

OÇr‘̂)J
S ’ (A34)

G:Ckr) =  ^  + Ck-zbo>-h (bi-zhj--i-̂ ẑbk)r̂
‘-'(^+3') (^6+4-) Ĉ L-t-s:>

-hO(p^^ J (A35)

H/k,r) =  r^r Ct>!--zbi) r 4- r'-
 ̂ '-z 3 T|. ------

4- Ct>a-!zbL+J^z^bf'-^z^b^)r^^OCr‘̂)l
S 149



Combining these expressions in accordance with equations (A31) 
and (A32) we obtain

^ZC2L-h3)

+  Ca:2~ z a M ^ z ^ / ) r^ -h O M  1 
H(2i+S^ J

and
= -2A'e^'rf-J_ 4 _ ^  rV

L(2^+0 2(2t43) Z(ZL+iÇi

The solutions of the integro-differential equations (A29) and (A30) 
are constructed by outward integration of the equations, performed 
by means of Numerov’s method. For this purpose we introduce the 
quantities.

(A39)

—  2.-h (A40)

where fh is the integration step-length andj^
the Numerov formula enables us to replace equations (A29) and (A30) 
by the recurrence relations

^J+/
The exchange integrals needed for the evaluation of the functions 

and he evaluated in two different ways. In
the work of Economides (1969) the evaluation is accomplished through
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the use of a seven-point Newton-Cotes formula (Ahramowitz and Stegun, 
1965). Applying this to the integral (equation (A25)) v/e
obtain

E  = B . +  O-Skfl IP-/4/?+26P-/^fP,-f / IP 7J+I L  u-4- j-3 j-i 0-1 vJ J
(A43)

v/here
(A44)

Similar expressions may be obtained for the remaining exchange 
integrals.

The second method of evaluation avoids the dissociation of the 
functions and into their component parts by calculating them 
directly. , This is possible because the functions and

/ _ O c
^  LĴ  satisfy differential equations of similar nature to (A29) 
and (A30). The appropriate equation for is

These equations can be solved using the techniques already described.
The original, program followed the method used by Economides.

An alternative version of the program (for generating the radial 
functions) that used the second method described was produced by 
L. A  Morgan (1973). Although results produced by the two methods 
were in good agreement the Morgan version was adopted in place of the 
original because of its greater sophistication.

The formulae presented in this section generate successive 
function values from those preceding. To initiate the integration 
routine we re.^uire six starting values which are easily calculated 
from the series expansions about the origin (A23, A24 and A33 - A36).



A P P E N D I X  B

In this appendix v/e are concerned with the forms taken 
by the amplitudes when both outgoing electrons are represented by 
plane waves. This approximation leads to considerable simplification 
in the analysis and it is now possible to reduce all the integrals 
to simple closed forms, avoiding the infinite series expansions 
present in the original analysis. However in addition to obtaining 
these simple closed forms v/e are also interested in calculating the 
expressions that are directly analogous to those of Chapter 4.

This plane-plane approximation is achieved by replacing the 
function by the exponential form ^
Clearly the only terms in the amplitudes that need to be considered 
are those involving the function . Referring to equation
(4.9) we see that the relevant quantities are and .2^^. The 
quantity c an be divided into two components and
defined by equations (4.12) and (4.13) respectively. Y/e shall firstly 
examine the modified form of • Although the expression for 
given by equation (4.16) involves a double integral the replacement 
associated with the present approximation will only affect the 
second of these integrals. This integral has the form

A
where the /? / are hydrogenic radial functions corresponding to an 
effective charge and have the general form

Using the plane wave representation for the slow electron the 

integral (Bl) becomes



If we introduce the momentum variable K !  defined by It<U 
= / jV/hich is referred to as the recoil momentum, and perform 
the angular part of the integration then we obtain the radial 
integral

(B3)

But from equation (4.23) we have the general result 
a

ko
2.

I c b "-+k t  (fi

where
/5=Z4-OCnL

Hence by an appropriate choice of parameters we can use the. 
result (B4) to reduce (B3) to the form

(B5)

with / 3 =

The remaining integral appearing in (4.16) has the form

which is readily evaluated (equation (4.18)), yielding the result

2- f  \2anJ.a. 4- -h

(B6)
If we now make the identifications 

.0-)

^  C / s v / c ^ i

±53



and
(?)

+ +  C„,,p }

%  + ^ r tgk.. 4  C„^4.|

then the modified expression for rr has the form
Hla

(BY)
Ŝ̂ Qtates

We shall nov/ turn our attention to the quantity . This is
r-« /r'*composed of a "s'* and a "p" contribution denoted by and

respectively. The contribution is defined by equation (4.25)
and may be expressed in the form

a)

r ^ c C / ^ s y r ^ r R , ^ c , M d r

k
By making the replacement ^oC^sjf^) we are able
to transform this expression to the form appropriate to the plane- 
plane approximation

.CO
-Z+cC„^Q

( g g )

TT
"s'stzKtes ĉo

0 -'o
But oa a)

Hence we obtain the result

3̂'states
n-

(B9)
F p

can he obtained from equation (4.30)
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by making the Spherical Bessel function*replacement. In this case 
v/e have

s' = 4.4(7-*
'postâtes

oo

r^K/, Cz., o A
(BIO)

where

H ”(K) =  Z k  ^  4A.//3 -, c^c
qi^-+K^f Cp?-4K‘̂')

Novii from equation (4.29) v/e have the general result

(Bll)

/)*(;Arr)e^''R^(Z,,Or*c^=I C^)
U^± , as defined by

equation (Bll)
Hence it follows that 

.00
f j C k O r ^ R „ A X ^ . , O d r  =
® j—— p

which allows the expression for to be rev/ritten in the simple
closed form

T r  ̂postâtes

(B12)

It now only remains to determine the expression for ïcv 
corresponding to the plane-plane approximation. If we make the 
appropriate replacement in equation (4.42) we obtain the result

-Tov —
ir ^--- :

ŝ̂ sizxbes
J  j ’CkOr'̂ ^Bn.c, CZoyr3<Xr
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w h i c h  may he written in the more convenient form

ŝ̂ ôtixtôs

(B13)

In the analysis corresponding to the plane-plane approximation 
we have avoided the infinite series expansion associated with the 
quantity (cf. equation (4.20)). However it is also necessary to
consider the form of this expansion resulting from the use of the 
present approximation. This will he

t = o  ^ s 's ta J te s

In order to evaluate this expression we require a simple analytic 
form for the integral

O
CO

This integral may he split up into three components of the following

forms
CO

(i)

r^e"" c/r (ü)

J j \ k r ) j c k s 0 r ‘̂ e'^‘d r

i.56



Y/e are enabled to evaluate these integrals through a result given 
by Y/atson (Treatise on Bessel Functions). The appropriate form of 
this result is

00

(B15)
where is the Legendre function of the second kind and order 6 • 

By use of the relation O  v/e are
able to rewrite the integral in (B15) as one involving Spherical
Bessel functions of equal orders

CO

t/ Uc 2 k s K  Z k s K  (B16)

The first of the three integrals required may be obtained from the 
integral appearing in (B16) by differentiation with respect to of. 
Since cC o6cx> ,oC , the result may be expressed in the form

dot

where fJ =
2 h s KThe remaining integrals may be obtained by further differentiation 

with respect to Of . Corresponding results for integrals (ii) and 
(iii) are

(B18)
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, n ) r ' ^ k r =  - 2 L -  |L ^ K 5 o ^(b19)

The evaluation of these integrals involves the generation of the 
Legendre functions and their derivatives. This is readily 
achieved by means of the recurrence relations linking these 
functions. The two basic recurrence relations are

(Ç+ /_)Ç> (otiy —  (2C-i-0coQd<:O^ —

(B20)
and

C[eoQ^O<^)-Q^_^Cc^)J (gsi)

These can be supplemented by the recurrence relations satisfied by 
the higher derivatives, obtained from differentiation of (B2l)

(jp̂ — =.-A - «y f̂Ê-\ / -CO

(CO’̂-1) oC^Qc —  +C2L-2>^cCOi- C c t ^ d  ( B23 )
S O o  cùjO ^

By using the relations B20 - B23 in conjunction with the explicit 
forms of the first three functions and the first derivative 
of the zero order function we are able to generate all the functions 
necessary to our calculations. ■ The relevant explicit forms are 
given by
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^
dxo

Our purpose in performing the analysis for the plane-plane 
approximation is two fold. Firstly it may be used to provide a 
simple check on the coding of the program TRIPLF 3. This is achieved 
by replacing the radial function y/ir by the Spherical Bessel 
function appropriate to the plane-plane approximation. Calculations 
are then made with this modified version of the program. Identical 
calculations are made using the simplified analysis provided by this 
appendix and a comparison of the two sets of results indicates the 
correctness of the coding. The second purpose of the simplified 
analysis arose from the check described. It was found that in some 
cases it v;as necessary to include a correction for the higher order 
terms neglected through the use of the truncated form of the series 
expansion contained in (4.20). This convergence problem
v/as restricted to the calculations of the exchange amplitude. The 
correction that was made corresponds to using the Spherical Bessel 
function replacement in the higher order terms. It is obtained by 
calculating from (B7) and subtracting the sum of the first seven
terms of the series expansion in (B14), evaluated by the use of the 
results B20 - B23.
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A P P E N D I X  C

^Numerical teclmigues associated with the evaluation of the 
form of the exchange amplitude given in chapter 5.̂

In order to evaluate the integrals appearing in (5.28) v/e must 
devise a numerical method suitable for generating the functions

The functions , defined by (5.13), may be readily obtained
in closed analytic form as indicated by (5.15).

The integral (Cl) splits up into two parts, each defined on a
different part of the range of P

n

oo

“f
(02)

For the purpose of numerical integration involving thet/^v/e are
interested in evaluating these functions at selected points over the
range of . We shall consider some partition of the range of Ç
given hy the values  *n } • Let functions
and denote the first and second terms in (C2) respectively.

CZ^
Then

Now

(03)

1+,
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=  e (04)

But
r*' “ r* “4* Ai /t-fi t where is the step length in the region of

integration.
Hence

= e— o(/x /cV^QO®» r) dï'
V

(05)

The integral contained in the previous expression may he evaluated 
hy means of Simpson’s Rule. It is found that a three point integrat­
ion is adequate. Hence defining Q.— and 
Q  = , we have

/V+i

/

• 4+ I

(06)

Let'US now turn our attention to the function appearing inCZ
equation (03). In this case v/e may write

fïzCi'uô =  GtC/3, Q+i) / r / c ^ o

Denoting the integral hy , we have

= G%fA%+,)3̂ (nr+,)

(07)

(08)
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In contrast with the functions , which involved an outward
integration, the generation of the function values for the F̂ ,̂ 
requires inward integration. The approach used is outlined in the 
following
Now ^

&

r'ù

-h frJckfOe'^kr

(09)

As "before it is found that a three point Simpson integration is
adequate for the evaluation of the second term appearing within the
brackets of (09).

The fundamental difference between the methods used to
generate the two sets of functions occurs in the evaluation of
starting values for the tv/o proceedures. To initiate the generation
of the functions we need to calculate^ various function values
at the lower limit of the range of T , which can be done directly,
whereas in the case of the functions F“ we must calculate thecz
function values at the upper limit of the range of r. Since this 
upper limit is necessarily of finite size then clearly evaluating 
starting values at this point is rather more difficult than the 
previous case.

Let correspond to the upper limit for the range of P 3
then to initiate the generation of the functions we need to



evaluate -MAX.
1. e.

rfc^>r)e an
(CIO)

Now in this region of integration we may assume that the functions
constituting the integrand of (CIO) exhibit their asymptotic
behaviours. Hence replacing the spherical Bessel function with
its asymptotic form v/e obtain

oo

ic*^max) —  JslrL(kpr~^CTr)G' dt'
ftrruxxmax

CO

(Oil)

If we introduce the quantities SCR-n\axi and OC^/wax) defined 
■by «.

C(&,ax)=l fcosk.n e^cLr^ ggasCVW)
^ax (012)

then we may write

~  v3(?^wax)COS^^^[) CyCFniax)^^(jf^^ (C13)

Using the formula (C13) to provide a starting value we are now able 
to generate the function values for the by use of the numerical 
technique previously described. These function values are combined
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with those corresponding to the , generated separately as 
previously described, in accordance with equation (03).

The numerical techniques described here were tested by using 
a simple replacement for the function , chosen to enable 
evaluation of the function in closed analytic form. Since we
are concerned with only a small range of values of C then it is 
sufficient to show that the techniques are reliable for the case 
C ^ O  (this not being special in any particular sense. ) This case 
was tested by replacing by a simple exponential. The 
function values generated by the numerical techniques were identical 
(to at least 6 figures) to those evaluated from the analytic form 
over the entire range of P .

Before concluding this section it is of interest to examine 
an alternative approach to the numerical construction of the 
functions. The inward integration involved in the method previously 
described may be replaced by the usual outward integration by 
rewriting the form of in the following way

4+1
l̂-hJ

=  frjCkfr)ê'^cCr— Cçîckfr)ë*^r
(014)

Hov/ever subsequent application of this method showed it to be
unstable, the resulting function values rapidly diverging from the
true values in the asymptotic region. This alternative method
involved the evaluation of the integrals ̂ y^yÜ^P)G cÙ^ ,
which were found to be expressable in closed analytic form. V/e shall
now give a short accô unt of the method used to generate these analytic

forms.
Now
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where C T  . denotes the ordinary*. Bessel function of order

Hence

CcohercyC6= %, ancC =

In the previous expression^denotes a hypergeometric function 
and r~̂  , the gamma function.
V/e wish to investigate the functional form of (CIS) for integer 
values of C » If we exclude the simple case corresponding to C^O 
then the cases to he considered fall into two classes. The first 
class corresponds to even values of C and the second to odd 
values. "

(a) even values of ^
Let C 2LbYz(j2 Bii integer ̂  ; and

oC^
Now

But

0 \  (?/d)nJ^Cn+Un+^yè,,2n+3/:i,-Z) =  /̂Ĵ .̂ n■+3ŷ l̂ -z.)
ClzT’

(ClY)
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where we have the following definition

Wm. =  r  fa-HT.) 
rc o c )

Also

F 'J> =  &'^r^,(l+zS'lc\ThrifFO> 3/jZ.,̂ /̂ , -%)
& L  (Or,.,

If we now consider the series expansion of 
we find that it may he summed to give the result

(019)

Comhining equations (016 - 019) enables us to rewrite equation (015) 
in the form

fnfckfOi^^a^r =  -Trfkf (̂'2.n')l
do Vzn. l2.y[oc^4â(;r(h+;èD/n.!Cn-/)iJ

0^4

(020)
(t) odd values of L

C=2n-i-l

For these cases we need to consider the functions 

But V/e have the result

f^n+yz,n+Z,Za+^Z,-Z)= cC^[ lyn+3/z,-z)rCn+yz,n+Z,Zri+^ZrZ)= t Ç

Ĉ L,0)n+,
±66 (021)



Also

O+'Z.Tl J = (:\T d \F c ^ , h ^ z^ -z)
■ ~ S ) a

=  ̂ O 'd'^ C z^ tan 'z^ J

(C22)

Using the results (021 ) and (022) we obtain

1%
-4]

rfCkffO& d r  Tr i k A . A: . 62n.)i
k ^ + '  U y  0Tn+J-^)/Cni)^

(dz'^'l dz<^

(023)
where ^  = hjf

(X^
The results contained in equations (020) and (023) were checked hy 
numerical integration. The agreement he tv/e en the numerical 
evaluation of the integrals and the corresponding results obtained 
from the analytic forms clearly showed these forms to he correct.
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T H E  P R O G R A M S

This section provides a brief description of the programs used for 
the calculation of the triple differential cross section based on 
the exchange adiabatic approximation of Economides and McDowell.
The coding was written in FORTRAN IV and the programs were developed 
for use on the GDO series of London University. Consequently there 
are small sections of coding that are peculiar to the system used, 
but these can be easily modified.

For convenience the computation was split into two parts. The 
first part is concerned with the generation and storage of the 
angular independent quantities appearing in the calculations. The 
second part performs the majority of the calculations with the aid 
of the information previously stored. The corresponding programs 
are Y/RITEUP and TRIPLE 3 respectively.
V/RITEUP

The main purpose of this program is to generate and store (on 
disc or tape) the numerical wave functions required in the calculation 
These wave functions fall into two classes. Firstly there are the 
exchange adiabatic or polarized orbital radial functions that appear 
in the partial wave ê qjan.sion (3.10). The numerical techniques 
involved in the solution of the integro-differential equations 
satisfied by these functions have been described elsewhere. These 
functions are constructed by means of the sub-program POLORB 
(L. A. Morgan 1973).
Secondly there are the one electron radial functions used in the 
Configuration Interaction description of the target ground state 
given by equation (4.3). Since these functions have simple analytic 
forms expressible in terms of standard functions then they are
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easily generated without the need for a special subroutine. In 
addition the program also generates and stores the various
combinations of these wave functions given by the "s" state |

I
summation appearing in the equation (4.20). |

The various functions described here are evaluated at 1500 |
points (although this may be varied), the interval between 
successive points depending on the region. If 6 denotes the 0 ^  |
point and hi the step length then all our calculations are based on 
the partition^ K  = 0.005, 0 = 1,100; \x = 0.01, 6 = 101,300;
fx = 0.02, C = 301,150oJl. The information generated requires 
three cycles of permanent disc storage. i

f

TRIPLE 3

For any particular set of values of the energy parameters 
this program may be used to calculate the triple differential ' 
cross section for a series of fixed values of and a range of. 
values of ^  covering the entire angular region. Alternatively 
the order of the angular loops within the program may be interchanged 

Prior to the calculation of angular dependent quantities we 
calculate any constant or purely energy dependent quantities. This 
part of the computation is performed by the subroutine PREANG 1. 
PREANG 1 :

This subroutine in turn calls the subroutine US ZERO and 
KXPCjr/ER. The first of these generates the particular examples of 
the integrals required in the calculations, j
The ”s" state integrals of this type, corresponding to ^=*A=0 |
appear in equation (4.42) while the ”p" state counterparts, i

corresponding to ^=?A= / , appear in (4.30). The second subroutine
EXPOjVER calculates the various combinations of "s" state parameters 
within the summation sign of (4.42). PREANG 1 combines the results
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from these two subroutines to obtain the expression (4.42) apart 
from the multiplicative constant.

As previously mentioned in chapter 4 the calculations of the 
triple differential cross section performed by this program used 
the Peterkop form of the exchange amplitude, obtained by a simple 
interchange of momentum vectors in the expressionibr the direct 
amplitude. Hence the coding for exchange terms is exactly analogous 
to that for the terms appearing in the direct amplitude.

The order in which the angular dependent quantities are 
computed depends on which scattering angle is to remain fixed. If 

the scattering angle of the fast electron, remains fixed then 
the next subroutine called by TRIPLE 3 is AlYGPDEP. This subroutine 
calculates most of the terms in the direct amplitude, using, for 
this purpose the subroutines SONE, PONE, ULINTS and PORL'IP.

Because a particular multiplicative constant may be common 
to several expressions it is of course logical to multiply by the 
constant after the expressions have been combined. Hence various 
quantities calculated in the program may differ from the actual 
expressions referenced through the absence of such multiplicative 

constants.
rr^The subroutines SONE and PONE calculate the expressions

 f>
(equation (4.25)) and (equation (4.30)) respectively. The
subroutine ULINTS generates the momentum transfer dependent integrals 
a.pp0a.ring in the Legendre Polynomial expansion for given by 
equation (4.20). We have restricted the expansion to its first 
seven terms, including an appropriate correction for the discarded 
terms at a later stage. In common with other subroutines performing 
numerical integrations ULINTS uses the Simpson Rule. However since 
preliminary investigations indicated that the particular integrals 
to be evaluated were frequently amenable to the use of Gauss-
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Laguerre Quadrature due allowance for the use of this method has 
been made. Each integral is first calculated by Gauss-Laguerre 
Quadrature. The pivotal points for the quadrature are then slightly 
modified and the calculation repeated. If the two results satisfy 
a suitable convergence condition the Simpson Rule integration is not 
activated. Otherwise the integration is performed in the usual way. 
Y/e do not attempt the same proceedure for the corresponding exchange 
terms since Gauss-Laguerre Quadrature has proved to be unsuitable 
for these.

Finally the subroutine FORIvIF and its associated subroutines 
calculate the form factor defined by equation (4.31). Apart from 
instigating the calculation of the quantities described, subroutine
ANGFDEP uses the results of SONS together with the appropriate

s
' I Bphase factors to compute the real and imaginary parts, of fTa •

Also the form factor is combined with the overlap integral (4.42)^ 
calculated by PREANG 1, to give (to within a multiplicative 
constant) the second term inside the brackets of (4.9). In the 
event of the roles of the two scattering angles being interchanged, 
so that remains fixed while 6^ varies, then the routine ANGFDEP 
is replaced by ANGSDEP. This generates exchange terms which are 
exactly analogous to the direct terms obtained from AKGFDEP.

Having completed the calculation of the appropriate direct 
or exchange terms the main program now enters the angular loop 
corresponding to the variable scattering angle. Control then passes 
to whichever of the two subroutines ANGFDEP and AITGSDEP depends 
on the variable angle and the corresponding calculations are 
performed as previously described. By this stage sufficient 
information has been generated to determine, within a multiplicative 
constant, the real and imaginary parts of the direct and exchange 
amplitudes and this is done by the subroutines RIICFD and RIFEivCH
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respectively. Because of the form of the exchange amplitude used
in our model these two subroutines have identical structures. Hence
we shall only describe the function of the first of these two
subroutines. The purpose of the subroutine RllWD is purely to
collate information previously obtained and to set the values of
the parameters for subroutine RIP ARTS to which control next passes.

zzr* PThe calculation of the quantity  ̂ defined by equation (4.50)^ 
has already been made apart from the inclusion of the phase factor 
and the Legendre Polynomial of order one. This calculation is now 
completed, the final expression being split into its real and 
imaginary parts (denoted by ONEPRE and OIYEPIM respectively). The 
next step in the calculations is to extract the real and imaginary 
parts of (equation (4.20)). The integrals appearing in this 
series expansion have been previously generated by the subroutine 
AITGFDEP and it only remains to premultiply them by the appropriate 
Legendre functions and use the phase factors to separate out the 
real and imaginary parts. Following this the real and imaginary 
parts of (defined by equation (4.10)) are obtained from the 
appropriate combinations of the real and imaginary parts of

f—  Pand • The penultimate step in the evaluation of the real and
imaginary parts of the direct amplitude is to include the 
contributions arising from the second term in equation (4.9). This 
is easily achieved through the use of the appropriate phase factor 
since the magnitude of this term is already known. Finally the 
subroutine RIPARTS modifies the real part of the direct amplitude 
by making a correction for the higher order terms neglected through 
the truncation of the series expansion appearing in equation (4.20) 
(see appendix b ). This correction is provided by the subroutine 
HIGIÎEY/, and is obtained by replacing the radial functions 
appearing in the relevant integrals by Spherical Bessel functions
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for v/hich the integrals may he evaluated in closed analytic form.
The integrals that result from the Spherical Bessel fimetlon 
replacement in the first seven terms of the expansion (4.20) are 
calculated hy the subroutine GALBES 2. These are expressible in 
terms of Legendre functions of the second kind and their derivatives 
(see appendix B) which are generated by the subroutine DIVPOL 2 
using the various recurrence relations that exist between the 
functions. The information thus generated is used by to
calculate the first seven terms of the modified form of (4.20) the 
sum of which is denoted by SUMA»

The Spherical Bessel function replacement corresponds to a 
plane wave representation of the slow electron for which the 
quantity ^  may be evaluated without recourse to the expansion 
(4. 20). This calculation is performed by the subroutine SBSHS^ 
the result being denoted by BORlvRES. The correction to the direct 
scattering amplitude is obtained by subtracting SIMA from 
Since both of these quantities are real the correction only affects 
the real part of the direct scattering ang>litude. After the corrected 
amplitude has been calculated control is returned to the main 
program and from there to RTFEWG which performs the corre^ondlng 
calculations for the exchmige anrolitude. Finally these amplitudes 
are combined according to equations (1.99) and (1.106) by the 
subroutine ZSECT3 so giving the triple differential cross section.

If so desired the program allows for the stmpresslon of all 
exchange calculations through an ^proprlate option parameter. The 
output from the program can be obtained in punched card form in 
addition to the standard printout. This option is Included to 
provide -, data cards for other programs performing further analysis#
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