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We study the variation in the differential conductance G=dj /dV of a normal metal wire in a superconductor/
normal metal heterostructure with a cross geometry under external microwave radiation applied to the super-
conducting parts. Our theoretical treatment is based on the quasiclassical Green’s functions technique in the
diffusive limit. Two limiting cases are considered: first, the limit of a weak proximity effect and low microwave
frequency and second, the limit of a short dimension �short normal wire� and small irradiation amplitude.
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I. INTRODUCTION

Superconductor/normal metal �S/N� nanostructures,
where the proximity effect �PE� plays an important role, have
been studied very actively during last two decades. Interest-
ing phenomena have been discovered in the course of these
studies. Perhaps, the most remarkable one is an oscillatory
dependence of the conductance of a normal wire attached to
two superconductors which are incorporated into a supercon-
ducting loop.1,2 This phenomenon was observed in the so-
called “Andreev interferometers,” i.e., in multiterminal SNS
junctions �see Refs. 2–6 as well as reviews7–10 and references
therein�. The reason for this oscillatory behavior of the dif-
ferential conductance G=dj /dV is a modification of the
transport properties of the n wire due to the PE, i.e., due to
the condensate induced in the n wire. The density of the
induced condensate is very sensitive to an applied magnetic
field H and oscillates with increasing H.

Theory11–14 was successful in explaining the experiments
and predicting new phenomena, including the re-entrance of
the conductance to the normal state in mesoscopic proximity
conductors14–16 and transitions to the � state in the voltage-
biased Andreev interferometers due to nonequilibrium
effects.17–19 The nonmonotonic behavior of the conductance
in SN point contacts and controllable nanostructures has
been observed in Refs. 20–22, and the change in the sign of
the critical Josephson current in multiterminal SNS junctions
has been found in Refs. 23 and 24. Many important results of
the study of the SN mesoscopic structures are reviewed in
Refs. 7–10. The so-called � states have also been realized in
equilibrium Josephson SFS junctions with a ferromagnetic
�F� layer between superconductors25–27 or in superconductor-
insulator-superconductor �SIS� Josephson junctions of
high-Tc, d-wave superconductors.28,29 A number of new phe-
nomena have been discovered in thin one-dimensional N and
S wires30–32 �see also Ref. 33 for a recent review and refer-
ences therein�.

Mesoscopic SNS structures proved to be a promising al-
ternative to superconducting quantum interference devices
�SQUIDs� for certain applications, including magnetic-flux
measurements and readout of quantum bits �qubits�34 with a
potential to achieve higher than state-of-the-art fidelity, sen-
sitivity, and readout speed. To achieve such challenging aims

extensive investigations of high-frequency properties of S/N
nanostructures on a scale similar to that of SQUIDs are in
order.

Studies undertaken to date concerned mainly the station-
ary properties of S/N structures. Experimental data on S/N
structures under microwave radiation appeared only
recently.35,36 As to theoretical studies, one can mention two
papers11,37 where the ac impedance of a S/N structure was
calculated. However, measuring the frequency dependence
of the ac conductance is not an easy task. It is more conve-
nient to measure a nonlinear dc response �dc conductance� to
a microwave radiation. Recently, a numerical calculation of
the dependence of the critical Josephson current Ic in SNS
junction on the amplitude of an external ac radiation has
been performed.38

In this paper, using a simple model we calculate the dc
conductance of a normal �n� wire in an S/N structure �cross
geometry� as a function of the frequency � and the ampli-
tude of the external microwave radiation. We consider the
limiting cases of a long and a short n wire and show that the
response has a resonance peak at a frequency � close to
�s /�, where �s is the energy of a subgap in the n wire in-
duced by the PE. Our theory predicts resonances and can
help to optimize quantum devices based on hybrid SNS
nanostructures.34,39

We employ the quasiclassical Green’s-function technique
in the diffusive limit. This means that we will solve the Us-
adel equation40 for the retarded �advanced� Green’s function
ĝR�A� and the corresponding equation for the Keldysh matrix
function ĝK �Sec. II�. First, a weak PE will be considered
when the Usadel equation can be linearized �Sec. III�. We
calculate the dc conductance of the n wire in this limit, as-
suming that the frequency of the ac radiation is low ��
�T�. In Sec. IV, the opposite limiting case of a short n wire
will be analyzed for arbitrary frequencies �. We present the
frequency dependence of the correction to the dc conduc-
tance caused by ac radiation. In Sec. V, we discuss the ob-
tained results.

II. MODEL AND BASIC EQUATIONS

We consider an S/N structure shown in Fig. 1. It consists
of a n wire or n film which connects two N and S reservoirs
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�n and N stand for a normal metal, S means a supercon-
ductor�. The superconducting reservoirs may be connected
by a superconducting contour. The transverse dimensions of
the n wire are supposed to be smaller than characteristic
dimensions of the problem but larger than the Fermi wave
length and the mean-free path l �diffusive case�. This implies
that all quantities depend only on coordinates along the wire
�the x coordinate in the horizontal direction and the y coor-
dinate in the vertical direction�. The dc voltage 2V is applied
between the normal N reservoirs, and the phase difference
2� exists between the superconducting reservoirs. The phase
� is assumed to be time dependent

��t� = �0 + �� cos��t� �1�

and related to the magnetic flux � inside the superconduct-
ing contour: ��t�=���t� /�0 with ��t�=H�t�S, where H�t� is
an applied magnetic field and S is the area of the supercon-
ducting contour; that is, the magnetic field contains not only
a constant component but also an oscillating one.

For simplicity, we assume the structure to be symmetric
both in the horizontal and vertical directions. This implies, in
particular, that the interface resistances RnN at x= 	Lx are
equal to each other �correspondingly, RnS�Ly�=RnS�−Ly��.
Our aim is to calculate the differential dc conductance G
between the N reservoirs

G =
dj

dV
�2�

as a function of the amplitude of the ac signal �� and the
frequency �.

The calculations will be carried out on the basis of the
well-developed quasiclassical Green’s-functions technique
�see the reviews in Refs. 10 and 41–43� which successfully
was applied to the study of S/N structures �see, for example,
Refs. 8–11, 37, and 44–47�. In this technique, all types of
Green’s functions �the “normal” and Gor’kov’s functions as
well as the retarded, advanced and Keldysh functions� are
matrix elements of a 4
4 matrix

ǧ = �ĝR ĝK

0 ĝA � , �3�

where ĝR�A� are matrices of the retarded �advanced� Green’s
functions and ĝK is a matrix of the Keldysh functions. The
first matrices describe thermodynamical properties of the
system �the density of states �DOS�, supercurrent, etc.�
whereas the matrix ĝK is used to describe dissipative trans-
port and nonequilibrium properties.

The matrix ǧ satisfies the normalization condition48

�ǧ � ǧ��t,t�� = ��t − t�� , �4�

where “�” denotes the integral product �ǧ � ǧ��t , t��
=�dt1ǧ�t , t1� · ǧ�t1 , t�� and “·” is the conventional matrix
product. The Fourier transform performed as ǧ�� ,���
=�dtdt�ei�t−i��t�ǧ�t , t�� yields �ǧ � ǧ��� ,���=2����−���
where now �ǧ � ǧ��� ,���=�

d�1

2� ǧ�� ,�1� · ǧ��1 ,���.
The matrix of Keldysh functions ĝK can be expressed in

terms of the matrices ĝR�A� and a matrix of distribution func-

tions F̂,

ĝK = ĝR � F̂ − F̂ � ĝA, �5�

where the matrix F̂ can be assumed to be diagonal10

F̂ = �̂0F+ + �̂3F−. �6�

Here �̂0 is the identity matrix and �̂3 the third Pauli matrix.
The function F− describes the charge imbalance �premulti-
plied with the DOS and integrated over all energies it gives
the local voltage� while F+ characterizes the energy distribu-
tion of quasiparticles.

Due to the general relation42

ĝA��,��� = − �̂3ĝR†���,���̂3, �7�

one can immediately calculate ĝA after finding the matrix ĝR.

That means that knowing the matrices ĝR and F̂ we can de-
termine all entries of ǧ.

The Green’s functions in N and S reservoirs are assumed
to have an equilibrium form corresponding to the voltages
	V and phases 	��t�. For example, the retarded �advanced�
Green’s functions in the upper S reservoir are

ĝS
R�A��t,t�� = Ŝ�t�ĝS0

R�A��t − t�� · Ŝ†�t�� , �8�

where Ŝ�t�=exp�i�̂3��t� /2� is a unitary transformation matrix
and the Fourier transform of ĝS0

R�A��t− t�� equals

ĝS0
R�A���� =

1


�
R�A�� � �

− � − �
� �9�

with 
�
R�A�= 	���	 i0�2−�2, i.e., the matrix ĝS0

R�A� describes
the BCS superconductor in the absence of phase. The re-
tarded �advanced� Green’s functions in the lower S reservoir
are determined in the same way with the replacement ��t�
→−��t�. The matrix ĝN

R�A� in the right �left� N reservoirs is
equal to ĝS0

R�A� with �=0, i.e., ĝN
R�A�= 	�̂3.

In the reservoirs the matrix F̂�t , t�� can be represented
through the equilibrium distribution Feq���=tanh�� /2T� via
Eq. �8�

y

xN N

−V +V

S

S +ϕ(t)

−ϕ(t)

n
n-Lx Lx

Ly

-Ly

FIG. 1. Structure under consideration.
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F̂�t,t�� = Ŝ�t� · Feq�t − t��Ŝ†�t�� . �10�

The phase ��t� in the upper S reservoir is given by Eq. �1�,
and for �N�t� in the right N reservoir, we have �N�t�=2eVt.
Therefore in the normal reservoir �at the right� the matrix

distribution function has diagonal elements F̂N���11,22

= tanh� 1
2T ��	eV�� and can be written as F̂N���= �̂0FN+���

+ �̂3FN−���

FN	��� =
1

2
	tanh

� + eV

2T
	 tanh

� − eV

2T

 . �11�

Thus, all Green’s functions in the reservoirs are defined
above.

Our task is to find the matrix ǧ in the n wire. In the
considered diffusive limit it obeys the equation48

�̌3 ·
� ǧ

�t
+

� ǧ

�t�
· �̌3 + i�eVn�t�ǧ − ǧeVn�t��� − D � �ǧ � �ǧ� = 0,

�12�

where �̌3 is a diagonal matrix with equal elements ��̌3�11,22
= �̂3, Vn is a local electrical potential in the n wire. We
dropped the inelastic collision term supposing that ETh
=D /Lmax

2 ��inel
−1 , where D is the diffusion coefficient, Lmax

=max�Lx,y� and �inel is an inelastic-scattering time. This
equation is complemented by the boundary condition49

ǧ � �x,yǧ
x,y=	Lx,y
= 	 �N,S�ǧ, ǧN,S��, �13�

where �N,S=1 / �2�RnN,nS� ,RnN,nS are the nN and nS interface
resistances per unit area and � is the conductivity of the n
wire. Here we introduced the commutator �ǧ , ǧN,S��= ǧ � ǧN,S
− ǧN,S � ǧ. The current in the n wire is determined by the for-
mula

j =
�

8e
Tr��̂3 · 2��ǧ � �xǧ�12�t,t�� . �14�

The matrix element �ǧ ��xǧ�12 is the Keldysh component that
equals �ǧ ��xǧ�12= ĝR ��xĝ

K+ ĝK ��xĝ
A.

Even in a time-independent case, an analytical solution of
the problem can be found only under certain
assumptions.8–11,37,44–46 In the considered case of a time-
dependent phase difference, the problem becomes even more
complicated. In order to solve the problem analytically, we
consider two limiting cases: �a� weak proximity effect and
slow phase variation in time; and �b� strong proximity effect
in a short n wire and arbitrary frequency � of the phase
oscillations.

III. WEAK PROXIMITY EFFECT; SLOW PHASE
VARIATION

In this section we will assume that the proximity effect is
weak and the phase difference ��t� is almost constant in
time. The latter assumption means that the frequency of
phase variation satisfies the condition ��T /�. The weak-
ness of the PE means that the anomalous �Gor’kov’s� part

f̂R�A� of the retarded and advanced Green’s functions in the n

wire ĝR�A�=gR�A��̂3+ f̂R�A� can be assumed to be small


 f̂R�A�
 � 1. �15�

The matrix f̂R�A� contains only off-diagonal elements. The
diagonal part obtained from the normalization is

gR�A��̂3 � 	 �̂3�1 −
1

2
� f̂R�A��2� . �16�

Now we can linearize Eq. �12� for the component 11�22�,
that is, for the retarded �advanced� Green’s functions. Then
we obtain a simple linear equation

�2 f̂R�A� − ��
2 f̂R�A� = 0, �17�

where ��
R�A�=��2i� /D. The boundary conditions �Eq. �13��

for the matrices f̂R�A� acquire the form

��x f̂R�A� + 2�Nf̂R�A��
x=+Lx
= 0, �18�

��x f̂R�A� − 2�Nf̂R�A��
x=−Lx
= 0, �19�

��y f̂R�A� − 2�S� f̂ S,+�
R�A� � gS

R�A� · f̂R�A���
y=+Ly
= 0, �20�

��y f̂R�A� + 2�S� f̂ S,−�
R�A� � gS

R�A� · f̂R�A���
y=−Ly
= 0. �21�

As follows from Eq. �8� the functions gS, f̂ S,� are

gS
R�A� = �/
�

R�A�, �22�

f̂ S,�
R�A� = �i�̂2 cos � + i�̂1 sin ���/
�

R�A�. �23�

We took into account that ��t� is almost constant in time.

One can show that the solution for f̂R in the horizontal
part of the n wire is

f̂R = i�̂2f�x� , �24�

f�x� = C cosh��xx/Lx� + sgn�x�S sinh��xx/Lx� , �25�

where sgn�x� is the sign function. Dropping the index R of
the quantities �� ,gS��� ,
� the integration constants C and S
can be written as

C��,�� =
��x cosh �x + rN sinh �x� · rS� cos �/
�

D���
,

�26a�

S��,�� = −
�rN cosh �x + �x sinh �x� · rS� cos �/
�

D���
,

�26b�

where D���= �rSgS����x+rN�y�cosh��x+�y�+ �rSgS���rN
+�x�y�sinh��x+�y�, rN,S=2�N,SLx,y, and �x,y =��Lx,y.

Knowing the function f̂R�x�, one can find the correction to
the conductance of the n wire due to the PE. In order to
obtain the current, we take the �12� component �the Keldysh
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component� of Eq. �12�, multiply this component by �̂3 and
take the trace. In the Fourier representation we get �compare
with Eq. �2� of Ref. 44�

M−��,�,x��xF−�x� = c��,�� , �27�

where the function M−�� ,� ,x�=1+ 1
4 �f�x�+ f��x��2 deter-

mines the correction to the conductivity caused by the PE
and c�� ,�� is an integration constant that is related to the
current

j =
�

2e
�

−�

�

d�c��� . �28�

It is determined from the boundary condition that can be
obtained from Eq. �13�

M−��,�,x��xF−�x� = c��,�� = ��FN− − F−�Lx�� , �29�

where ��� ,��=R�1+ 1
2 f�Lx�2� is the density of states in the n

wire near the nN interface. Finding F−�Lx� and c��� from Eq.
�29�, we obtain for the current density �compare with Eq.
�13� of Ref. 11�

j��� =
1

2e
�

−�

�

d�
FN−

RnN/� + Rn�M��,��−1�
. �30�

Here FN− is defined according to Eq. �11�, Rn=Lx /� is the
resistance of the n wire of the length Lx in the normal state,
and �M�� ,��−1�= �1 /Lx��0

LxdxM−�� ,� ,x�−1. The first term in
the denominator is the nN interface resistance and the second
term is the resistance of the �0,Lx� section of the n wire
modified by the PE. The expressions for the DOS ��� ,�� and
the function �M�� ,��−1� are given in the Appendix.

For the differential conductance G=dj /dV at zero tem-
perature we obtain

G�V,��t�� = �RnN/� + Rn�M�eV,��−1��−1. �31�

In Fig. 2 we show the dependence of the nN interface resis-
tance variation �RnN=RnN /�−RnN and the resistance varia-
tion in the n wire �Rn=Rn�M�eV ,��−1�−Rn on the bias volt-
age V for a fixed phase difference. It can be seen that the
�RnN is either positive or negative depending on V while �Rn
is always negative, i.e., the PE leads to voltage-dependent

changes in the interface resistance �caused by the changes in
the DOS in the n wire� and to a decrease in the resistance of
the n wire.

The conductance variation �G=G�V ,��−Gn, is shown in
Fig. 3 for various values of RnN /RN, where Gn= �RnN
+RN�−1 is the conductance of the n wire in the normal state.
These results have been obtained earlier.11,14,45,46

We are interested in the dc conductance variation aver-
aged in time: �Gav= �� /2���0

2�/�dt�G�V ,��t��. First, from
Eqs. �25� and �26� we can extract the dependence of the
function f on the phase �: f�x ,��= f�x ,0�cos �. Hence we
obtain M−�� ,� ,x�=1+�M−�� ,0 ,x�cos2 �, where
�M−�� ,� ,x�=M−�� ,� ,x�−1. At the same time, ��� ,��=1
+���� ,0�cos2 � with ���� ,��=��� ,��−1. These observa-
tions lead to the relation

�G�V,��t�� = �G�V,0�cos2 ��t� , �32�

which by averaging over time yields

�Gav = �G�V,0� ·
1

2
�1 + J0�2���cos�2�0�� , �33�

where J0 is the Bessel function of the first kind and zeroth
order. This oscillatory behavior of the time-averaged �dc�
conductance variation �Gav as a function of the ac amplitude
can be seen in Fig. 4.

Thus, the calculations carried out in this section under
assumption of adiabatic phase variations allow us to obtain
the dependence of the conductance change �Gav on the am-
plitude �� but provide no information about the frequency
dependence of �Gav. This dependence will be found in the
next section.

IV. STRONG PE; SHORT NORMAL WIRE

In this section we analyze the limiting case of a short n
wire when the Thouless energy ETh=D /Lx

2 is much larger
than characteristic energies: ETh�D�N,S

2 ,T ,eV. In this case
all the functions in Eq. �12� are almost constant in space and
we can integrate this equation from �x ,y�= 	0 to �x ,y�
= 	Lx,y over x and y coordinates. The term �̂3 ·�tǧ+�t�ǧ · �̂3
�in the Fourier representation −i��̂3 · ǧ+ i��ǧ · �̂3� is consid-

∆RnN

RnN

∆Rn

Rn

0.02 0.04 0.06 0.08 0.10
eV

�

�6

�4

�2

2

4

∆R�
R�
�103

FIG. 2. �Color online� Bias voltage dependence of the normal-
ized variations in the resistance contributions �RnN /RnN and
�Rn /Rn. Parameter values: �=� /3, Ly /Lx=1, �N /�=2.5
10−2,
�S /�=5
10−3, and Rn /RnN=1.

a

b

c

0.02 0.04 0.06 0.08 0.10
eV

�

�4

�2

2

4

6

8

10

∆G
Gn
�103

FIG. 3. �Color online� Bias voltage dependence of the normal-
ized conductance variation �G /Gn. Parameter values: �=� /3,
Ly /Lx=1, �N /�=2.5
10−2, and �S /�=5
10−3. Different cases:
�a� Rn /RnN=0.5, �b� Rn /RnN=1, and �c� Rn /RnN=2.
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ered as a constant and the term with the voltage V is omitted
because we neglect the voltage drop over the n wire; the
voltage drops across the nN ,nS interfaces and is set to be
zero in the n wire. Performing this integration and summing
up the results, we obtain

2�Lx + Ly�Ǎ = J̌x�Lx� − J̌x�− Lx� − J̌x�+ 0� + J̌x�− 0� + J̌y�Ly�

− J̌y�− Ly� − J̌y�+ 0� + J̌y�− 0� , �34�

where J̌x�x�=Dǧ ��xǧ 
y=0, J̌y�y�=Dǧ ��yǧ 
x=0, and Ǎ=
−i���̌3 · ǧ− ǧ · �̌3���. Integration around the point �x ,y�
= �0,0� yields the conservation of the “currents” �using ter-
minology of the circuit theory9�

J̌x�+ 0� + J̌y�+ 0� = J̌x�− 0� + J̌y�− 0� . �35�

Combining Eqs. �34� and �35� and the boundary conditions
�Eq. �13��, we arrive at the equation

��̌3 · ǧ − ǧ · �̌3�� = i�N�ǧ, ǧN+�� + i�S�ǧ, ǧS+��. �36�

Here �N,S=D / �2RnN,nS�L� is a characteristic energy related
to the interface transparencies, L=Lx+Ly. The energy �N de-
termines the damping in the spectrum of the n wire and the
energy �S is related to a subgap induced in the n wire due to
the PE. The matrices ǧN,S+ are equal to ǧN,S+= 1

2 �ǧN,S�Lx,y�
+ ǧN,S�−Lx,y��.

In the limit of the short n wire considered in this section,
we need to find only the retarded �advanced� Green’s func-
tions. Indeed, let us rewrite the expression for the current
�Eq. �14�� using the boundary condition �Eq. �13�� at the
right nN interface and concentrating on the dc component of
the current,

j =
1

16eRnN
Tr��̂3 · �

−�

�

d��ĝR · ĝN
K + ĝK · ĝN

A − ĝN
R · ĝK

− ĝN
K · ĝA�� , �37�

where ĝN
R�A�= 	�̂3 and Tr��̂3 · �ĝR · ĝN

K��=4gRFN−. The distri-
bution function FN− in the N reservoir is defined in Eq. �11�.
The integral over energies from the second and third terms is

zero because it is proportional to the voltage in the n wire
which is set to be zero. Therefore the current can be written
as

j =
1

2eRnN
�

−�

�

d�����FN−��� , �38�

where ����= 1
2 �gR−gA�=R�gR����. This formula has an obvi-

ous physical meaning—the current through the nN interface
is determined by the product of the DOS in the n wire and N
reservoir ��N=1� and the distribution function in the N res-
ervoir �the distribution function F− in the n wire is zero�.

Using Eqs. �2�, �11�, and �38� we arrive at the following
expression for the differential conductance:

G =
1

2RnN
�

−�

� d�

4T
����� 1

cosh2� + eV

2T

+
1

cosh2� − eV

2T
� .

�39�

In order to find the matrix ĝR, we can write the �11� com-
ponent of Eq. �36� in the form

�̃�̂3 · ĝR − ĝR · �̂3�̃� = i�S�ĝR, ĝS+
R ��, �40�

where �̃=�+ i�N and �̃�=��+ i�N.
According to Eqs. �1� and �8� the matrix ĝS+

R is a function
of two times, ĝS+

R �t , t��, that is, in the Fourier representation it
is function of two energies: � ,��. Therefore, to find the ma-
trix ĝR�� ,��� in a general case is a formidable task.

However, we can assume that the amplitude of the ac
component of the phase �� is small and obtain the solution
making an expansion in powers of ��,

ĝR = ĝ0
R + �1ĝR + �2ĝR + ¯ . �41�

Here and later all matrix Green’s functions written without
arguments are functions of two energies �� ,���. Those of
them which are diagonal in energy may be also �explicitly�
written with a single energy argument, e.g., ĝS0+

R

= ĝS0+
R ���2����−���.
Similar to Eq. �41� we represent the matrix ĝS+

R �up to the
second order in ��� as ĝS+

R = ĝS0+
R +�1ĝS+

R +�2ĝS+
R and find from

Eq. �8� for the stationary part ĝS0+
R and the corrections �1ĝS+

R

�first order in ��� and �2ĝS+
R �second order in ���,

ĝS0+
R = 2��0���̂3 + i� cos �0�̂2�
�

−1, �42�

�1ĝS+
R = − i�̂2

�

2
��� sin �0�
�

−1 + 
��
−1���� + �−�� , �43�

�2ĝS+
R = − i�̂2

�

8
��

2 � cos �0�P0 + P2� , �44�

where we used the notation ������−��+��, 
��
�
R and

defined the functions

P0 = �0�2
��
−1 + 
��+�

−1 + 
��−�
−1 � ,

P2 =
1

2
��2� + �−2���
��

−1 + 
�
−1 + 2
1/2��+���

−1 � . �45�

2 4 6 8
��

1.2

1.4

1.6

1.8

2.0

2.2

∆Gav

Gn
�103

FIG. 4. �Color online� Bias voltage dependence of the normal-
ized time-averaged conductance variation �Gav /Gn. Parameter val-
ues: �0=� /3, Ly /Lx=1, �N /�=2.5
10−2, �S /�=5
10−3, eV /�
=5
10−2, and Rn /RnN=1.
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Using the expressions for �1ĝS+
R and �2ĝS+

R given above we
can calculate the corrections to ĝ0

R up to the second order in
�� and the corresponding modification of the DOS �� in the
n wire.

In the zeroth-order approximation, i.e., for ��=0 we ob-
tain from Eq. �40� ĝ0

R�� ,���= ĝ0
R���2����−���, where the

matrix ĝ0
R��� obeys the equation

��̂3E�
R + i�̂2Esg

R , ĝ0
R� = 0, �46�

containing E�
R= �̃+ i�SgS0

R ���=�+ i�N+ i�SgS0
R ���, Esg

R

= i�S cos �0fS0
R ���, gS0

R ���=� /
�
R, and fS0

R ���=� /
�
R. The solu-

tion of this equation is11

ĝ0
R��� = �̂3g0

R��� + i�̂2f0
R��� ,

g0
R��� = E�

R/��
R, f0

R��� = Esg,�
R /��

R, �47�

where ��
R=��E�

R�2− �Esg
R �2. The quantity Esg

R determines a
subgap induced in the n wire due to the PE. Indeed, consider
the most interesting case of small energies assuming that
�� ,�S���; then, 
�

R� i�, fS0
R ����−i, and ��

R

����+ i�N�2− ��S cos �0�2. This means that the spectrum of
the n wire has the same form as in the BCS superconductor
with a damping �N and a subgap �S
cos �0
, which depends
on the nS interface transparency and phase difference.

Note that the formula for the subgap induced in the N
metal due to the PE in a tunnel superconductor-insulator-
normal metal �SIN� junction was obtained by McMillan.50

The obtained results for the functions g0
R��� and f0

R��� can be
easily generalized for the case of asymmetric nS interfaces
with different interface resistances RnS1,2 �correspondingly,
�S1,2�. In the limit �S1,2��, we obtain for the subgap �sg,

�sg��0� =
1

2
��S1

2 + �S2
2 + 2�S1�S2 cos 2�0. �48�

This formula shows that the subgap as a function of the
phase difference � varies from 1

2 
�S2−�S1
 for �0=� /2 to
1
2 ��S2+�S1� for �0=0.

We proceed finding the corrections of the first ��1ĝR� and
second ��2ĝR� order in �� for ĝ0

R in a way similar to the one
used in Refs. 47 and 51. The correction of the first order �1ĝ
�for brevity, we drop the index R� obeys the equation

��ĝ0��� · �1ĝ − �1ĝ · ĝ0������� = i�S�ĝ0,�1ĝS+��, �49�

which contains all terms of the first order in �� from Eq.
�40�. Note that we are making use of the relation ĝ0���
=��

−1��̃�̂3+ i�SĝS0+���� evident from Eqs. �40�, �46�, and �47�.
In order to solve Eq. �49�, it is useful to employ the nor-

malization condition �Eq. �4�� for ĝ� ĝR which for the first-
order term of ĝ � ĝ yields

ĝ0��� · �1ĝ + �1ĝ · ĝ0���� = 0. �50�

From Eqs. �49� and �50�, we find

�1ĝ = i�S
�1ǧS+ − ĝ0��� · �1ĝS+ · ĝ0����

�� + ���
. �51�

We determine the correction �2ĝ in the same manner.
Reading off the second-order terms in Eq. �40� gives

���ĝ0,�2ĝ�� = i�S��ĝ0,�2ĝS+�� + ��1ĝ,�1ĝS+��� . �52�

The second-order part of the normalization condition is

ĝ0��� · �2ĝ + �2ĝ · ĝ0���� = − �1ĝ � �1ĝ . �53�

Thus, we obtain the second-order correction

�2ĝ = i�S
�2ǧS+ − ĝ0��� · �2ĝS+ · ĝ0����

�� + ���

+ �i�S
��1ĝS+,�1ĝ��

�� + ���
−

����1ĝ � �1ĝ�
�� + ���

� · ĝ0���� .

�54�

In order to calculate the correction to the dc conductance
caused by the ac radiation, �G, we need to find Tr��̂3 ·�1ĝ�
and Tr��̂3 ·�2ĝ� and take their parts proportional to 2����
−���. By inspection of Eqs. �43� and �51� one recognizes that
the first-order correction contains only terms proportional to
���−��	�� and therefore only contributes to the ac current.
This is the fundamental reason why the second-order analy-
sis is needed to determine the variation in the dc conduc-
tance.

As a result we just have to find the multiple of 2����
−��� contained in Tr��̂3 ·�2ĝ� which we denote as 2�dcg���,
that is, �dcg���2����−���ª 1

2Tr��̂3 ·�2ĝ�dc. We represent the
function �dcg��� as a sum

�dcg��� = �dc
�0�g��� + �dc

���g��� , �55�

where the function �dc
�0�g��� originates from the first term in

Eq. �54� and the function �dc
���g��� from the second and third

terms. If we consider the case when the subgap �S
cos �0
 is
much less than �, i.e.,

�S
cos �0
 � � �56�

then, at low energies ���S, the function �dc
�0�g��� is almost

independent of � whereas the function �dc
���g��� depends

strongly on � at ���S
cos �0
. Assuming the validity of Eq.
�56� we obtain

�dc
�0�g��� = −

1

4
�S

2��
2 cos2 �0

g0���
��

2 , �57�

�dc
���g��,�� =

1

4
�S

2��
2 sin2 �0�

	�



g0����1 + f0���f0�� + �� + g0���g0�� + ���

��� + ��+��2

+
f0����g0���f0�� + �� + f0���g0�� + ���

����� + ��+��
,

�58�

where the functions g0���, f0���, and �� are defined in Eq.
�47�. The sum sign index “	�” in Eq. �58� means that the
given expression is added to the same one with the negative
frequency �−��.

Using the function �dcg�� ,�� we can calculate a correc-
tion to the DOS ���� ,�� due to the PE and with the aid of
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Eq. �39� find the correction �G�V ,�� to the differential dc
conductance. As follows from Eq. �39�, at zero temperature

the normalized differential dc conductance G̃�V ,��
=G�V ,��RnN is equal to

G̃�V,�� � G̃0�V� + �G̃�V,�� = �0�eV� + ���eV,��
�59�

with the definitions �0�eV�=R�g0�eV�� and ���eV ,��
=R��dcg�eV ,���.

Using the obtained formula for g0��� and �dcg��� we can
calculate the conductance G0 and its correction �G due to
microwave radiation for different values of parameters
�damping �N, phase difference 2�0, etc.�. The dependence of
the conductance in the absence of radiation G0 versus the
applied voltage V is presented in Fig. 5. We see that this
dependence follows the energy dependence of a SIN junc-
tion. In our case the n wire with an induced subgap plays a
role of “S” with a damping �N in the “superconductor.” Since
the value of the induced subgap, �sg=�S
cos �0
, depends on
the phase difference 2�0, the position of the peak in the
dependence G0�V� is shifted downward with increasing �0.

Note that in an asymmetrical system ��S1��S2� the lowest
value of the subgap is not zero �cf. Eq. �48��.

In Fig. 6 we show the bias voltage dependence of the
conductance correction due to ac radiation �dcG �coefficient
in front of ��

2 � for different values of �0. The magnitude and
the position of the arising peaks depend strongly on the val-
ues of the parameters, e.g., �0.

By varying the stationary phase difference �0 or the
damping �N one can change the frequency dependence of the
correction �dcG considerably. This is shown in Figs. 7 and 8,
respectively. One can see that if �N��sg��0�, then the depen-
dence �dcG��� has a peak located at ��sg��0� and split into
two subpeaks. The splitting becomes more and more distinct
with increasing bias voltage V. With decreasing �0 and in-
creasing �N, the form of this dependence changes signifi-
cantly. For example, the resonance curve becomes broader
with increasing damping. Increasing temperature leads to a
similar effect as one can see in Fig. 9.

In Fig. 10 we plot the normalized conductance correction

�dcG̃��0� as a function of �0 for different values of the bias
voltage V. At large V this dependence is close to sinusoidal
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FIG. 5. �Color online� Normalized stationary differential con-

ductance G̃0 versus bias voltage V. Parameter values: T /�=10−2,
�S /�=0.1, and �N /�=10−2. Different cases: �a� �0=� /8, �b� �0

=� /4, and �c� �0=3� /8.
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FIG. 6. �Color online� Normalized second-order correction of

differential conductance �G̃ versus bias voltage V. Parameter val-
ues: T /�=10−2, �S /�=0.1, �N /�=10−2, and � /�=5
10−2. Dif-
ferent cases: �a� �0=� /8, �b� �0=� /4, and �c� �0=3� /8.
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FIG. 7. �Color online� Normalized second-order correction of

differential conductance �G̃ versus ac frequency �. Parameter val-
ues: T /�=2
10−3, �S /�=0.1, �N /�=10−2, and eV /�=10−2. Dif-
ferent cases: �a� �0=� /6, �b� �0=� /4, and �c� �0=� /3.
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FIG. 8. �Color online� Normalized second-order correction of

differential conductance �G̃ versus ac frequency �. Parameter val-
ues: T /�=2
10−3, �S /�=0.1, eV /�=10−2, and �0=� /3. Differ-
ent cases: �a� �N /�=5
10−3, �b� �N /�=10−2, and �c� �N /�=2

10−2.
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but at smaller voltages the form of the periodic function
�dcG��0� becomes more complicated.

V. CONCLUSION

We have calculated the change in the conductance in an
S/N structure of the cross geometry under the influence of
microwave radiation. The calculations have been carried out
on the basis of quasiclassical Green’s functions in the diffu-
sive limit. Two different limiting cases have been considered:
�a� a weak proximity effect and low frequency � of radia-
tion; and �b� a strong proximity effect and small amplitude of
radiation.

In the case �a�, the conductance change �G consists of
two parts. One is related to a change in the nN interface
resistance due to a modification of the DOS of the n wire. At
small applied voltages VN, it is negative. Another part is
caused by a modification of the conductance of the n wire
due to the PE. This part is positive and consists of two com-
peting contributions. One contribution, which is negative,
stems from the a modification of the DOS of the n wire.
Another contribution is positive and caused by a term, which
is similar to the Maki-Thompson term.45,46 The conductance
change �G oscillates and decays with increasing amplitude
of radiation.

In the case �b� a short n wire was considered so that the
resistance of the n wire is negligible in comparison with the
resistance of the nN interface. The correction �G has been
found under assumption of a small amplitude of the radia-
tion. We found that at small applied voltages V, the depen-
dence �G��� has a resonance form. It has a maximum when
the frequency � is on the order of �sg=�S
cos �0
 where �sg
is a subgap in the spectrum of the n wire induced by the PE.
With increasing V, the peak in the dependence �G��� splits
into two peaks and overall form of this dependence becomes
complicated.

We assumed that the nS interface resistance is larger than
the resistance of the n wire, that is, �L�RnS. This inequality
can be written in the form �S��Th�D /L2, that is, the sub-

gap energy in the n wire is much smaller than the Thouless
energy �Th. In the opposite limit, �S��Th, a gap on the order
of �Th is induced in the n wire. This limit can be studied
numerically. However, one can expect that in this limit the
resonance should take place at �res��Th /�. Experiment per-
formed in Ref. 36 corresponds to this limit. The frequency
corresponding to the Thouless energy in experiment is equal
to �Th /h� 1

2� �400 /10−8�s−1�6 GHz whereas the resonance
frequency is �res�10 GHz.

Note that we considered a simplified model. For example,
we did not account for the change in the distribution function
in the n film �heating effects�. One can give estimations
when the “heating” can be neglected. The change in an “ef-
fective” electron temperature �T in the n wire is approxi-
mately given by �T��e-ph�E2 /ce, where �e-ph is the
electron-phonon inelastic-scattering time, E��VSRL /RbL
=���RL /eLRb��� is the ac electric field in the n wire, and
ce�T ·n /�F is the heat capacity of electron gas with concen-
tration n. Taking into account that �Rb��−1�Z2 / l, we find
that �T /T� ��0 /T�2��e-ph /��Z4��

2 , where Z2 is the dimen-
sionless coefficient of electron penetration through the SN
interface, which is assumed to be small, l=v� is the mean-
free path in the n wire. Therefore, the heating would be very
small if the condition ��� ��0 /T���� /�e-ph�Z−2 is fulfilled.
The obtained results are useful for understanding the re-
sponse of the considered and analogous SN systems to mi-
crowave radiation which can be used, for example, in Q bits.
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APPENDIX

The DOS in Eqs. �29� and �30� is given by the formula
��� ,��=R�1+ 1

2 f�Lx�2� with f�Lx� defined in Eq. �25�. Mak-
ing use of the weak proximity-effect approximation we re-
write the function �M�� ,��−1� in Eq. �30� as
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FIG. 9. �Color online� Normalized second-order correction of

differential conductance �G̃ versus ac frequency �, Parameter val-
ues: �S /�=0.1, �N /�=10−2, eV /�=10−2, and �0=� /3. Different
cases: �a� T=0, �b� T /�=2
10−3, �c� T /�=6
10−3, and �d�
T /�=10−2.
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FIG. 10. �Color online� Normalized second-order correction of

differential conductance �G̃ versus stationary phase difference �0.
Parameter values: T /�=2
10−3, �S /�=0.1, �N /�=10−2, and
� /�=10−2. Different cases: �a� V=0, �b� eV /�=2
10−2, and �c�
eV /�=4
10−2.
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�M��,��−1� = 1 −
1

2
�R�f2 + f f��� . �A1�

Using Eq. �25� one can easily calculate

�f2� =
C2 + S2

2

sinh 2�x

2�x
+

C2 − S2

2
+ CS

sinh2 �x

�x
, �A2�

�f f�� =

C
2 + 
S
2

2

sinh 2�x�

2�x�
+


C
2 − 
S
2

2

sin 2�x�

2�x�

+ R�C�S� sinh2 �x�

�x�
+ i

sin2 �x�

�x�
�� , �A3�

where �x� and �x� are the real and imaginary parts of �x, re-
spectively, i.e., �x=�x�+ i�x�. We use these expressions for cal-
culating the function �M�� ,��−1� and conductance G.
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