
Cryptanalysis of Block Ciphers

Jiqiang Lu

Technical Report
RHUL–MA–2008–19

30 July 2008

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

CRYPTANALYSIS OF BLOCK CIPHERS

JIQIANG LU

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London

2008

Declaration

These doctoral studies were conducted under the supervision of Prof. Chris Mitchell.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Information Security
Group of Royal Holloway, University of London as a candidate for the degree of
Doctor of Philosophy. This work has not been submitted for any other degree or
award in any other university or educational establishment.

Jiqiang Lu
July 2008

2

Acknowledgements

First of all, I thank my supervisor Prof. Chris Mitchell for suggesting block cipher
cryptanalysis as my research topic when I began my Ph.D. studies in September
2005. I had never done research in this challenging field before, but I soon found it
to be really interesting. Every time I finished a manuscript, Chris would give me
detailed comments on it, both editorial and technical, which not only benefitted my
research, but also improved my written English. Chris’ comments are fantastic, and
it is straightforward to follow them to make revisions.

I thank my advisor Dr. Alex Dent for his constructive suggestions, although we work
in very different fields.

I thank Prof. Kenny Paterson, who is neither my supervisor nor my advisor, but who
gave me many helpful suggestions, and shared useful information with me, including
job opportunities.

I thank Prof. Keith Martin for giving me some suggestions on writing a thesis, and
Prof. Peter Wild for providing me some funding information.

I thank my co-authors Orr Dunkelman, Nathan Keller, Jongsung Kim, and Changho-
on Lee for many fruitful discussions, and my colleagues and friends for the happy
time spent together and the help provided.

I thank my PhD examiners Prof. Simon Blackburn and Prof. Lars R. Knudsen for
their comments on the thesis.

I thank my master’s supervisor Prof. Xinmei Wang, Prof. Yumin Wang and Prof.
Guozhen Xiao at Xidian University for initiating me into the field of cryptography
during my master studies.

Many thanks go to the administrative and technical staff at the department and
the university for their support. I am highly impressed by their understanding and
high-quality services.

Special thanks go to my wife Xiaoyan Yan for her support, who had to get accus-
tomed to a rather different culture, has experienced and is still to experience every
moment of my happiness and sadness.

Lastly, I am grateful for the British Chevening / Royal Holloway Scholarship awarded

3

to me before I started study, which removed all my concerns about living, and
enabled me to concentrate solely on my research; more interestingly, it entitled me
to a 30-day interrail pass around Europe. Without its generous sponsorship, I guess
that my PhD study would have been unlikely. I also thank both the department
and the ECRYPT (European Network of Excellence for Cryptology) project of the
European Commission for supporting my travel around the world to attend a number
of academic events, including conferences, workshops and summer schools.

4

Abstract

The block cipher is one of the most important primitives in modern cryptogra-
phy, information and network security; one of the primary purposes of such ciphers
is to provide confidentiality for data transmitted in insecure communication en-
vironments. To ensure that confidentiality is robustly provided, it is essential to
investigate the security of a block cipher against a variety of cryptanalytic attacks.

In this thesis, we propose a new extension of differential cryptanalysis, which we
call the impossible boomerang attack. We describe the early abort technique for
(related-key) impossible differential cryptanalysis and rectangle attacks. Finally, we
analyse the security of a number of block ciphers that are currently being widely
used or have recently been proposed for use in emerging cryptographic applications;
our main cryptanalytic results are as follows.

• An impossible differential attack on 7-round AES when used with 128 or 192
key bits, and an impossible differential attack on 8-round AES when used with
256 key bits. An impossible boomerang attack on 6-round AES when used
with 128 key bits, and an impossible boomerang attack on 7-round AES when
used with 192 or 256 key bits. A related-key impossible boomerang attack
on 8-round AES when used with 192 key bits, and a related-key impossible
boomerang attack on 9-round AES when used with 256 key bits, both using
two keys.

• An impossible differential attack on 11-round reduced Camellia when used with
128 key bits, an impossible differential attack on 12-round reduced Camellia
when used with 192 key bits, and an impossible differential attack on 13-round
reduced Camellia when used with 256 key bits.

• A related-key rectangle attack on the full Cobra-F64a, and a related-key dif-
ferential attack on the full Cobra-F64b.

• A related-key rectangle attack on 44-round SHACAL-2.

• A related-key rectangle attack on 36-round XTEA.

• An impossible differential attack on 25-round reduced HIGHT, a related-key
rectangle attack on 26-round reduced HIGHT, and a related-key impossible
differential attack on 28-round reduced HIGHT.

5

In terms of either the attack complexity or the numbers of attacked rounds, the
attacks presented in the thesis are better than any previously published cryptanalytic
results for the block ciphers concerned, except in the case of AES; for AES, the
presented impossible differential attacks on 7-round AES used with 128 key bits and
8-round AES used with 256 key bits are the best currently published results on AES
in a single key attack scenario, and the presented related-key impossible boomerang
attacks on 8-round AES used with 192 key bits and 9-round AES used with 256 key
bits are the best currently published results on AES in a related-key attack scenario
involving two keys.

6

Contents

1 Introduction 15
1.1 Motivation . 15
1.2 Contributions . 16
1.3 Organisation of Thesis . 17
1.4 Notation . 18

2 Block Cipher Cryptanalysis 20
2.1 Introduction . 20
2.2 Cryptanalytic Methods . 22

2.2.1 Cryptanalysis Scenarios . 23
2.2.2 Elementary Techniques . 24
2.2.3 Mathematical Background . 25
2.2.4 Differential Cryptanalysis . 28
2.2.5 Linear Cryptanalysis . 30
2.2.6 Differential-Linear Cryptanalysis 31
2.2.7 Impossible Differential Cryptanalysis 32
2.2.8 Boomerang and Rectangle Attacks 33
2.2.9 Related-Key Cryptanalysis 36

2.3 Summary . 40

3 The Impossible Boomerang Attack 42
3.1 Introduction . 42
3.2 The Impossible Boomerang Attack 43

3.2.1 The Basic Impossible Boomerang Attack 44
3.2.2 The Impossible Boomerang Attack Using More Tuples 47

3.3 The Related-Key Impossible Boomerang Attack 47
3.4 A Comparison . 48
3.5 Summary . 49

4 The Early Abort Technique 50
4.1 Introduction . 50
4.2 Early Abort for (Related-Key) Impossible Differential Cryptanalysis 51
4.3 Early Abort for the Rectangle Attack 54
4.4 Early Abort for the Related-Key Rectangle Attack 56
4.5 Summary . 58

5 Cryptanalysis of Reduced-Round AES 59
5.1 Introduction . 60

7

CONTENTS

5.2 The AES Block Cipher . 62
5.2.1 Notation . 62
5.2.2 Operations . 62
5.2.3 Generation of Subkeys . 63
5.2.4 Encryption Procedure . 64

5.3 Previous Cryptanalytic Results . 65
5.4 Impossible Differential Cryptanalysis of Reduced-Round AES 66

5.4.1 General Observations . 67
5.4.2 Attacking 7-Round AES-128 72
5.4.3 Attacking 7-Round AES-192 77
5.4.4 Attacking 8-Round AES-256 83

5.5 Impossible Boomerang Attack on Reduced-Round AES 91
5.5.1 4-Round Impossible Boomerang Distinguishers 91
5.5.2 Attacking 6-Round AES-128 94
5.5.3 Attacking 7-Round AES-192 and 7-Round AES-256 96

5.6 Related-Key Impossible Boomerang Attack on Reduced-Round AES 99
5.6.1 Attacking 8-Round AES-192 Using Two Related Keys 100
5.6.2 Attacking 9-Round AES-256 Using Two Related Keys 101

5.7 Summary . 103

6 Impossible Differential Cryptanalysis of Reduced Camellia 105
6.1 Introduction . 106
6.2 The Camellia Block Cipher . 107

6.2.1 Notation . 107
6.2.2 Functions . 107
6.2.3 Generation of Subkeys . 108
6.2.4 Encryption Procedure . 108

6.3 Previous Cryptanalytic Results . 109
6.4 8-Round Impossible Differentials of Camellia 110
6.5 Attacking 13-Round Camellia-256 without the FL Functions 110

6.5.1 Preliminary Results . 111
6.5.2 Attack Description . 112
6.5.3 Complexity Analysis . 115

6.6 Attacking 12-Round Camellia-192 without the FL Functions 116
6.7 Attacking 11-Round Camellia-128 without the FL Functions 117

6.7.1 Attack Description . 117
6.7.2 Complexity Analysis . 118

6.8 Summary . 118

7 Related-Key Cryptanalysis of the Full Cobra-F64a and Cobra-F64b120
7.1 Introduction . 121
7.2 Cobra-F64a and Cobra-F64b . 122

7.2.1 Notation . 122
7.2.2 Functions and DDP-Boxes . 122
7.2.3 Generation of Subkeys . 125
7.2.4 Encryption Procedure . 125

7.3 Previous Cryptanalytic Results . 126

8

CONTENTS

7.4 Properties of Cobra-F64a and Cobra-F64b 126
7.5 Related-Key Rectangle Attack on Cobra-F64a 131

7.5.1 A 15-Round Related-Key Rectangle Distinguisher with Prob-
ability 2−123.62 . 131

7.5.2 Attack Description . 134
7.5.3 Complexity Analysis . 136

7.6 Related-Key Differential Attack on Cobra-F64b 137
7.6.1 A 19.5-Round Related-Key Differential Characteristic with

Probability 2−57 . 137
7.6.2 Attack Description . 137
7.6.3 Complexity Analysis . 139

7.7 Summary . 140

8 Related-Key Rectangle Attack on 44-Round SHACAL-2 142
8.1 Introduction . 143
8.2 The SHACAL-2 Block Cipher . 144

8.2.1 Notation . 144
8.2.2 Functions . 144
8.2.3 Generation of Subkeys . 145
8.2.4 Encryption Procedure . 145

8.3 Previous Cryptanalytic Results . 146
8.4 Properties of SHACAL-2 . 147
8.5 A 35-Round Related-Key Rectangle Distinguisher with Probability

2−460 . 148
8.5.1 A 34-Round Related-Key Rectangle Distinguisher with Prob-

ability 2−456.76 . 148
8.5.2 A 35-Round Related-Key Rectangle Distinguisher with Prob-

ability 2−474.76 . 149
8.5.3 A 35-Round Related-Key Rectangle Distinguisher with Prob-

ability 2−460 . 150
8.6 Attacking the First 44 Rounds of SHACAL-2 151

8.6.1 Preliminary Remarks . 151
8.6.2 Attack Description . 152
8.6.3 Complexity Analysis . 155

8.7 Summary . 157

9 Related-Key Rectangle Attack on 36-Round XTEA 158
9.1 Introduction . 158
9.2 The XTEA Block Cipher . 159

9.2.1 Notation . 159
9.2.2 Generation of Subkeys . 160
9.2.3 Encryption Procedure . 160

9.3 Previous Cryptanalytic Results . 161
9.4 A 24-Round Related-Key Rectangle Distinguisher with Probability

2−124.92 . 162
9.5 Attacking Rounds 16 to 51 of XTEA 165

9.5.1 Preliminary Results . 165

9

CONTENTS

9.5.2 Attack Description . 166
9.5.3 Complexity Analysis . 170

9.6 Summary . 172

10 Cryptanalysis of Reduced HIGHT 173
10.1 Introduction . 174
10.2 The HIGHT Block Cipher . 175

10.2.1 Notation . 175
10.2.2 Functions . 175
10.2.3 Generation of Subkeys . 176
10.2.4 Encryption Procedure . 176

10.3 Previous Cryptanalytic Results . 178
10.4 Properties of HIGHT . 178
10.5 Impossible Differential Attack on 25-Round HIGHT 179

10.5.1 16-Round Impossible Differentials 179
10.5.2 Attacking Rounds 6 to 30 . 180

10.6 Related-Key Rectangle Attack on 26-Round HIGHT 187
10.6.1 18-Round Related-Key Rectangle Distinguishers with Proba-

bility 2−92.4 . 187
10.6.2 Attacking Rounds 1 to 26 . 189

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT . . 195
10.7.1 19-Round Related-Key Impossible Differentials 195
10.7.2 Attack Rounds 2 to 29 . 197

10.8 Summary . 201

11 Conclusions and Future Research 203
11.1 Conclusions . 203
11.2 Possible Directions for Future Research 204

10

List of Figures

2.1 The boomerang and amplified boomerang distinguishers 34
2.2 A related-key rectangle distinguisher 39

3.1 Impossible boomerang and related-key impossible boomerang distin-
guishers . 45

4.1 A Feistel round structure . 53
4.2 The rectangle and related-key rectangle attacks 55

5.1 An example of the early abort technique 69
5.2 4-round impossible differentials of AES of Biham et al. 71
5.3 Impossible differential attack on 7-round AES-128 74
5.4 Impossible differential attack on 7-round AES-192 79
5.5 The differentials in the 4-round impossible boomerang distinguisher 92

6.1 Impossible differential attack on 13-round Camellia-256 113

7.1 (a) Pn,m; (b) P2,1; (c) P4,4; (d) P−1
4,4; (e) P8,12; (f) P−1

8,12; (g) P32,96

and P−1
32,96 . 123

7.2 (a) P(ω)
96,1; (b) P(ω)

32,32 . 124
7.3 (a) F of Cobra-F64a; (b) F of Cobra-F64b 124
7.4 The P32,96 in P(0)

32,32(∆X = 0, ∆V = e1) 133

9.1 The ith encryption round of XTEA 161

10.1 The ith encryption round of HIGHT 178

11

List of Tables

5.1 Subkey differences for the 8-round AES-192 attack 100
5.2 Subkey differences for the 9-round AES-256 attack 101
5.3 Cryptanalytic results on AES . 104

6.1 Cryptanalytic results on Camellia . 119

7.1 The key schedules of Cobra-F64a and Cobra-F64b 125
7.2 The related-key differentials in the 15-round related-key rectangle dis-

tinguisher . 132
7.3 The 19.5-round related-key differential characteristic 137
7.4 Cryptanalytic results on Cobra-F64a and Cobra-F64b 141

8.1 Differential distribution of the functions Ch and Maj 147
8.2 The 25-round related-key differential characteristic for Rounds 1 to 25 150
8.3 The 10-round differential characteristic for Rounds 26 to 35 151
8.4 Cryptanalytic results on the 512-bit key version of SHACAL-2 . . . 157

9.1 The key schedule of XTEA . 160
9.2 The first related-key differential in the 24-round related-key rectangle

distinguisher . 163
9.3 Cryptanalytic results on XTEA . 172

10.1 The key byte used to generate the round subkey KS i 177
10.2 The two 8-round differentials in the 16-round impossible differential 180
10.3 The two related-key differentials in the 18-round related-key rectangle

distinguisher . 188
10.4 The two related-key differentials in the 19-round related-key impos-

sible differential . 196
10.5 Cryptanalytic results on HIGHT . 202

12

Abbreviations
ACPC Adaptive Chosen Plaintexts and Ciphertexts
AES Advanced Encryption Standard
AES-128/192/256 AES when used with a key length of 128, 192 or 256 bits
Camellia-128/192/256 Camellia when used with a key length of 128, 192 or 256 bits
CP Chosen Plaintexts
CRYPTREC Cryptography Research and Evaluation Committees

http://www.cryptrec.jp/english
DES Data Encryption Standard
IEEE The Institute of Electrical and Electronics Engineers

http://www.ieee.org
IETF The Internet Engineering Task Force

http://www.ietf.org
IPsec Internet Protocol security
ISO International Organization for Standardization

http://www.iso.org
KP Known Plaintexts
MA Memory Accesses
MAC Message Authentication Code
NESSIE New European Schemes for Signatures, Integrity, and Encryption

https://www.cosic.esat.kuleuven.be/nessie
NIST National Institute of Standards and Technology, U.S.A.

https://www.nist.gov
RFID Radio-Frequency IDentification
RK-CP Related-Key Chosen Plaintexts
SPN Substitution-Permutation Network

13

Notation
Throughout this thesis, a number without a prefix is in decimal (base 10) notation, a
number with prefix 0x is in hexadecimal (base 16) notation, and a number preceded
and followed by 〈 and 〉2 is in binary (base 2) notation. The bits of an n-bit value
are numbered from 1 to n from left to right. We use the following notation.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same length
& bitwise logical AND of two bit strings of the same length
¬ bitwise logical complement of a bit string
¯ dot product of two bit strings of the same length
¢ addition modulo 2n

¯ subtraction modulo 2n

£ multiplication modulo 2n

<< (>>) left (right) shift of a bit string
≪ (≫) left (right) rotation of a bit string
|| string concatenation
∆ difference with respect to the ⊕ operation
◦ functional composition. When composing functions X and Y, X ◦Y denotes

the function obtained by first applying X and then applying Y
e the base of the natural logarithm, (e = 2.71828 . . .)
|X| the number of elements in a set X

bxc the largest integer that is less than or equal to x

ej an n-bit value with zeros everywhere except for bit position j, (1 ≤ j ≤ n)
ei1,··· ,ij the n-bit word equal to ei1 ⊕ · · · ⊕ eij , (1 ≤ i1, · · · , ij ≤ n)
ej,∼ an n-bit value that has zeros in bit positions 1 to j − 1, a one in bit position j

and indeterminate values in bit positions (j + 1) to n, (1 ≤ j ≤ n− 1)
ej,∼ an n-bit value that has zeros in bit positions 1 to j and indeterminate values in

bit positions (j + 1) to n, (1 ≤ j ≤ n− 1)
? an arbitrary n-bit value, where two values represented by the ? symbol may

be different
X ∼ Poi(λ) a random variable X follows the Poisson distribution with parameter λ, where

λ is the expected value of X. See [72] for the details of Poisson distribution
X ∼ Bin(N, p) a random variable X follows the binomial distribution with parameters N and

p, where N is the number of trials, and p is the success rate for each trial. See
[72] for the details of binomial distribution

14

Chapter 1

Introduction

In this chapter, we give the motivation for our research. We also describe the con-

tributions of this thesis, present its overall structure, and give the notation used

throughout this thesis.

Contents

1.1 Motivation . 15

1.2 Contributions . 16

1.3 Organisation of Thesis . 17

1.4 Notation . 18

1.1 Motivation

Since the first computer network was established in 1956, Internet technologies have

developed very quickly. A wide variety of communications networks, including Pub-

lic Switched Telephone Networks (PSTNs), Public Switched Data Networks (PS-

DNs), Integrated Service Networks (ISNs) and mobile communication systems, are

becoming ever more important in our daily lives, and they have greatly changed the

way we live. As a consequence, as the science of secure communications, cryptology

has received considerable attention.

Cryptology has two main branches — cryptography and cryptanalysis. Cryptogra-

phy is the study of how to design algorithms that provide confidentiality, authen-

ticity, integrity and other security-related services for data transmitted in insecure

communication environments. Confidentiality protects data from leaking to unau-

thorised users. Authenticity provides assurance regarding the identity of a communi-

cating party, which protects against impersonation. Integrity protects data against

being modified (or at least enables modifications to be detected).

15

1.2 Contributions

Modern cryptography involves secret-key (symmetric) cryptography and public-key

(asymmetric) cryptography. In secret-key cryptography, when using a secret-key

encryption algorithm, the sender and receiver of a message use the same secret key;

the sender uses the secret key to encrypt the message, and the receiver uses the same

secret key to decrypt the message. In public-key cryptography, introduced in 1976

by Diffie and Hellman [23], each participating party has a pair of keys, one called the

public key and the other called the private key; the public key is typically published

in a trusted directory, while the private key is kept secret. When using a public-key

encryption algorithm, the sender uses the public key of the receiver to encrypt the

message, and the receiver uses his/her private key to decrypt the message.

Cryptanalysis studies how to evaluate or break cryptographic algorithms. This helps

to enable more secure algorithms to be designed.

The block cipher is an important primitive in secret-key cryptography; one main

purpose of a block cipher is to provide confidentiality for data transmitted in inse-

cure communication environments. A block cipher can also be used to build other

secret-key cryptographic primitives, such as stream ciphers, hash functions, message

authentication codes (MACs), and cryptographically secure pseudorandom number

generators. Block ciphers are also widely used as a fundamental component in

public-key cryptography, information security, network security, computer security,

and other security applications. It is thus of great importance to investigate the

security of a block cipher algorithm against a variety of cryptanalytic attacks.

1.2 Contributions

In this thesis we propose a new extension of differential cryptanalysis, which we

call the impossible boomerang attack. We describe the early abort technique for

(related-key) impossible differential cryptanalysis and rectangle attacks. Finally, we

analyse the security of a number of block ciphers that are currently being widely

used or have recently been proposed for use in emerging cryptographic applications;

our main cryptanalytic results are as follows.

• An impossible differential attack on 7-round AES-128, 7-round AES-192, and

16

1.3 Organisation of Thesis

8-round AES-256. An impossible boomerang attack on 6-round AES-128, 7-

round AES-192, and 7-round AES-256. A related-key impossible boomerang

attack on 8-round AES-192 and 9-round AES-256, using two keys.

• An impossible differential attack on 11-round reduced Camellia-128, 12-round

reduced Camellia-192, and 13-round reduced Camellia-256.

• A related-key rectangle attack on the full Cobra-F64a, and a related-key dif-

ferential attack on the full Cobra-F64b.

• A related-key rectangle attack on 44-round SHACAL-2.

• A related-key rectangle attack on 36-round XTEA.

• An impossible differential attack on 25-round reduced HIGHT, a related-key

rectangle attack on 26-round reduced HIGHT, and a related-key impossible

differential attack on 28-round reduced HIGHT.

In terms of either the attack complexity or the numbers of attacked rounds, the

attacks presented in the thesis are better than any previously published cryptanalytic

results for the block ciphers concerned, except in the case of AES; for AES, the

presented impossible differential attacks on 7-round AES-128 and 8-round AES-256

are the best currently published results on AES in a single key attack scenario, and

the presented related-key impossible boomerang attacks on 8-round AES-192 and

9-round AES-256 are the best currently published results on AES in a related-key

attack scenario using two keys.

Some of the results described in the thesis have previously been presented in [74,

75, 76, 77, 78, 79, 80].

1.3 Organisation of Thesis

The remainder of this thesis is organised as follows.

Literature review: In Chapter 2, we briefly review a number of currently known

cryptanalytic methods for block ciphers. The cryptanalytic methods discussed

17

1.4 Notation

include differential cryptanalysis, linear cryptanalysis, differential-linear crypt-

analysis, impossible differential cryptanalysis, boomerang and rectangle at-

tacks, integral cryptanalysis, and related-key cryptanalysis.

Our new cryptanalytic results: In Chapter 3, we propose the (related-key) im-

possible boomerang attack. In Chapter 4, we give a general description of the

early abort technique for impossible differential cryptanalysis and the rectangle

attack.

In Chapters 5–10, we present our new cryptanalytic results on AES, Camellia,

Cobra-F64a and Cobra-F64b, SHACAL-2, XTEA, and HIGHT, respectively.

In each chapter we start with a description of the block cipher concerned,

followed by a review of the previously published cryptanalytic results for this

cipher. We then present our new cryptanalytic results. Finally, we compare

our new cryptanalytic results with the previous state of the art.

Conclusions: In Chapter 11, we provide a summary of the main results in this

thesis, and give some possible directions for future research.

1.4 Notation

Throughout this thesis, a number without a prefix is in decimal (base 10) notation, a

number with prefix 0x is in hexadecimal (base 16) notation, and a number preceded

and followed by 〈 and 〉2 is in binary (base 2) notation. The bits of an n-bit value

are numbered from 1 to n from left to right. We use the following notation.

• ⊕: bitwise logical exclusive OR (XOR) of two bit strings of the same length

• &: bitwise logical AND of two bit strings of the same length

• ¬: bitwise logical complement of a bit string

• ¯: dot product of two bit strings of the same length

• ¢: addition modulo 2n

• ¯: subtraction modulo 2n

18

1.4 Notation

• £: multiplication modulo 2n

• << (>>): left (right) shift of a bit string

• ≪ (≫): left (right) rotation of a bit string

• ||: string concatenation

• ∆: difference with respect to the ⊕ operation

• ◦: functional composition. When composing functions X and Y, X◦Y denotes

the function obtained by first applying X and then applying Y

• e: the base of the natural logarithm, (e = 2.71828 . . .)

• |X|: the number of elements in a set X

• bxc: the largest integer that is less than or equal to x

• ej : an n-bit value with zeros everywhere except for bit position j, (1 ≤ j ≤ n)

• ei1,··· ,ij : the n-bit word equal to ei1 ⊕ · · · ⊕ eij , (1 ≤ i1, · · · , ij ≤ n)

• ej,∼: an n-bit value that has zeros in bit positions 1 to j−1, a one in bit position

j and indeterminate values in bit positions (j + 1) to n, (1 ≤ j ≤ n− 1)

• ej,∼: an n-bit value that has zeros in bit positions 1 to j and indeterminate

values in bit positions (j + 1) to n, (1 ≤ j ≤ n− 1)

• ?: an arbitrary n-bit value, where two values represented by the ? symbol may

be different

• X ∼ Poi(λ): a random variable X follows the Poisson distribution with pa-

rameter λ, where λ is the expected value of X. See [72] for the details of

Poisson distribution

• X ∼ Bin(N, p): a random variable X follows the binomial distribution with

parameters N and p, where N is the number of trials, and p is the success rate

for each trial. See [72] for the details of binomial distribution

19

Chapter 2

Block Cipher Cryptanalysis

In this chapter we first give a definition of a block cipher. We then briefly review

a number of cryptanalytic methods for block ciphers, including differential crypt-

analysis, linear cryptanalysis, differential-linear cryptanalysis, impossible differen-

tial cryptanalysis, boomerang and rectangle attacks, and related-key cryptanalysis.

These techniques underlie the results presented in the remainder of this thesis.

Contents

2.1 Introduction . 20

2.2 Cryptanalytic Methods . 22

2.2.1 Cryptanalysis Scenarios . 23
2.2.2 Elementary Techniques . 24
2.2.3 Mathematical Background 25
2.2.4 Differential Cryptanalysis 28
2.2.5 Linear Cryptanalysis . 30
2.2.6 Differential-Linear Cryptanalysis 31
2.2.7 Impossible Differential Cryptanalysis 32
2.2.8 Boomerang and Rectangle Attacks 33
2.2.9 Related-Key Cryptanalysis 36

2.3 Summary . 40

2.1 Introduction

A block cipher is an algorithm that transforms a fixed-length data block, called

a plaintext block, into another data block of the same length, called a ciphertext

block, under the control of a secret key. Ideally, the set of transformations induced

20

2.1 Introduction

by the set of all possible secret keys should be indistinguishable from a random set of

transformations. If a block cipher has a plaintext/ciphertext block length of n bits,

then we refer to it as an n-bit block cipher. Currently, the widely used block lengths

are 64 and 128 bits, and the key length is typically 128, 192 or 256 bits. Note that

in the field of block cipher cryptanalysis the term ‘ciphertext’ is sometimes abused

slightly to mean the result of encrypting a plaintext block using a reduced version

of the block cipher concerned.

In practice, almost all block ciphers are constructed by repeating a simple function

many times, known as the iterated method. The repeated function is called the

round function, every iteration is called a round, the key used in every round is

called a round subkey, and the number of iterations is called the number of rounds

of the block cipher.

An iterated block cipher involves three sub-algorithms — an encryption algorithm,

a decryption algorithm and a key schedule algorithm. The encryption algorithm

takes a plaintext block as input, and outputs a ciphertext block, under the control

of a secret key. The decryption algorithm is the inverse of the encryption algorithm,

when under the control of the same secret user key. The key schedule algorithm

takes a secret user key as input, and generates the required round subkeys.

Most block ciphers are examples of one of two special types of iterated ciphers,

known as Feistel ciphers and Substitution-Permutation Networks (SPNs). In a Feis-

tel cipher, the plaintext is split into two halves. The round function is applied to

one half, and the output of the round function is bitwise exored with the other half;

finally, the two halves are swapped, and become the two halves of the next round.

The Data Encryption Standard (DES) block cipher [91] is an example of a Feistel

cipher. In an SPN cipher, the round function is applied to the whole block, and its

output becomes the input of the next round. The Advanced Encryption Standard

(AES) block cipher [90] is an example of an SPN. There also exist block ciphers

with other round structures; one such example is the IDEA block cipher [66]. One

major difference between these two approaches is that, for a Feistel cipher, the round

function can be chosen arbitrarily, whereas, for an SPN, the round function must be

bijective (invertible). A Feistel structure whose round function is bijective is called

a Feistel structure with a bijective round function.

21

2.2 Cryptanalytic Methods

A round function for an iterative block cipher is typically made up of a bitwise XOR

with a round subkey, followed by sub-block substitutions using non-linear S-boxes,

i.e. fixed functions taking a string of bits as input and giving a string of bits as

output, and, finally, a bit-level permutation. The S-boxes used need to be bijective

for an SPN, but can be arbitrarily chosen for a Feistel cipher. An S-box with an

m-bit input and n-bit output is called an m× n S-box.

The notion of ‘branch number’ [20] is sometimes used to measure the diffusion power

of a linear transformation operating on byte tuples, and is defined as follows.

Definition 2.1 Suppose that B = {0, 1}8 and N = {0, 1, 2, 3, · · · }. Let W : B∗ → N
be the function returning the number of non-zero bytes of an input byte tuple. The

branch number of a linear transformation L : Bm → Bn (for specific values of m and

n) is defined to equal the minimum value of W (x)+W (L(x)), where x ∈ Bm−{0m}.

2.2 Cryptanalytic Methods

In the most general sense, a cryptanalytic attack is an algorithm that distinguishes

a cryptosystem from a random function (that operates on data blocks of the same

length). The effectiveness of an attack is usually measured using the following three

metrics.

• Data complexity: the numbers of plaintexts and/or ciphertexts required for

execution of the attack.

• Memory (storage) complexity: the amount of memory required for execution

of the attack.

• Time (computational) complexity: the amount of computation or time re-

quired for execution of the attack. In block cipher cryptanalysis, this is usually

measured in terms of how many encrytions/decryptions of the block cipher or

memory accesses are required.

22

2.2 Cryptanalytic Methods

2.2.1 Cryptanalysis Scenarios

We start this review of cryptanalytic techniques by considering what assumptions

are normally made regarding the resources of a cryptanalyst.

It is generally agreed that any cryptosystem should meet Kerckhoffs’ principle.

Kerckhoffs’ principle [51] A cryptosystem should be secure even if everything about

the system, except the secret key, is public knowledge.

Kerckhoffs’ principle says that the security of a cryptosystem should rely solely on

the secret key, rather than on the secrecy of the cryptographic algorithm. In other

words, the cryptosystem should be secure even if an attacker knows everything about

the cryptographic algorithm except the secret key.

Following from Kerckhoffs’ principle, there are four widely discussed attack scenar-

ios, each giving slightly differing resources to a cryptanalyst. Each scenario gives the

cryptanalyst more resources than the previous, and, in general, it is highly desirable

for any cryptosystem to be secure even in the final scenario.

• Ciphertext-only attack scenario. In this scenario the attacker is assumed to

have access to a number of ciphertexts. The attacker is also assumed to have

some information about the plaintext, e.g. that conforms to certain format-

ting constraints or that it is written in a particular natural language. (If no

information about the plaintext is available, then it is theoretically impossible

to perform cryptanalysis, except to observe that repeated ciphertext blocks

correspond to repeated plaintext blocks).

• Known-plaintext attack scenario. Here, the attacker is assumed to have access

to a number of ciphertexts and the corresponding plaintexts for at least some

of the ciphertexts.

• Chosen-plaintext/cipertext attack scenario. In this case the attacker can

choose a number of plaintexts (and/or ciphertexts), and be given the cor-

responding ciphertexts (and/or plaintexts).

23

2.2 Cryptanalytic Methods

• Adaptive chosen plaintext and ciphertext attack scenario. In this final case

the attacker can choose plaintexts (and/or ciphertexts) and be given the corre-

sponding ciphertexts (and/or plaintexts). Based on the information obtained,

the attacker can then choose further plaintexts/ciphertexts, and be given the

corresponding ciphertexts/plaintexts. This process can be iterated.

2.2.2 Elementary Techniques

We next describe three fundamental cryptanalytic techniques that can be applied to

any block cipher. In the description below (and throughout the thesis) we assume

the use of an n-bit block cipher with a k-bit user key, i.e. the cipher is a function

E : {0, 1}k × {0, 1}n → {0, 1}n, where we write the key input as a subscript, i.e. if

K ∈ {0, 1}k is a key, and P ∈ {0, 1}n is a plaintext block, then the ciphertext is

denoted by EK(P); sometimes, if there is no ambiguity about the key in use, we

simply write E(P). Note that, for any fixed K, the restricted function EK acts

as a permutation on the set {0, 1}n, since otherwise unique decryption will not be

possible.

• A dictionary attack involves an attacker building and maintaining a table con-

taining all 2k possible ciphertext blocks corresponding to a particular plaintext

block, with one entry in the table for each possible key. If the attacker obtains

an enciphered version of the particular plaintext block, then he can deduce

the key from the table with high probability, as long as n ≥ k (if n < k, then

the expected number of possible keys will be reduced to 2k−n). This attack

has a data complexity of 2k ciphertexts, a 2k n-bit memory complexity and a

negligible time complexity. Moreover, it requires a one-off precomputation to

generate the table, which has a time complexity of 2k encryptions; however, the

time complexity of the precomputation is typically not counted as part of the

time complexity of an attack, since it can be performed at the cryptanalyst’s

leisure [36].

• A codebook attack requires an attacker to build and maintain a table of the

2n ciphertexts for the 2n plaintexts encrypted using one particular (unknown)

key. The table is sorted by plaintext, thus and only the 2n ciphertexts need

24

2.2 Cryptanalytic Methods

to be stored in the table. When the attacker gets a ciphertext, he can deduce

the corresponding plaintext from the table, provided that the particular key is

used. Such an attack has a data complexity of 2n plaintext/ciphertext pairs,

a 2n n-bit memory complexity and a negligible time complexity.

• An exhaustive key search (or brute force search) attack involves an attacker

trying every possible key, given a known plaintext/ciphertext pair. The correct

key will yield the correct correspondence between plaintext and ciphertext; if

more than one candidate key is produced, then the incorrect candidates can

be eliminated using one or more additional pairs. Such an attack has a time

complexity of 2k encryptions and negligible data and memory complexities.

An attack is commonly regarded as effective if it is faster (i.e. it has lower time

complexity) than an exhaustive key search. In recent years, a variety of cryptana-

lytic methods have been proposed, of which differential cryptanalysis [12] and linear

cryptanalysis [83] are probably the best known. All of these techniques are trade-

offs between data, time and/or memory complexities [36], compared with the above

three elementary cryptanalytic techniques.

In this chapter, we briefly review a range of cryptanalytic techniques, including

differential cryptanalysis, linear cryptanalysis, differential-linear cryptanalysis, im-

possible differential cryptanalysis, boomerang and rectangle attacks, and related-key

cryptanalysis. These methods all exploit statistical relationships between a block

cipher’s inputs and outputs, in particular between the inputs and outputs of the

nonlinear S-boxes.

2.2.3 Mathematical Background

We first review several types of discrete probability distributions, including Bernoulli

distribution, binomial distribution and Poisson distribution, which are often used

in the statistical cryptanalysis methods to be described below. See [72] for their

detailed introduction.

25

2.2 Cryptanalytic Methods

2.2.3.1 Fundamental Notions

A sample space represents the individual, distinct outcomes in which a random

experiment can terminate. An event is any set of outcomes in a sample space.

The probability of an event, A say, is the sum of the probabilities assigned to the

outcomes that make up A, denoted by Pr(A). A probability space, denoted by

(Ω,F , P), involves a sample space Ω, an non-empty collection F of subsets of Ω,

and a probability function P defined on F . A discrete (real-valued) random variable

X on a probability space (Ω,F , P) is a function X with domain Ω and range a

finite or countably infinite subset (x1, x2, · · ·) of the real numbers R such that {ω ∈
Ω|X(w) = xi} is an event for all i. The expected value (or mathematical expectation)

of a discrete random variable is the sum of the probability of each possible outcome

of the experiment multiplied by the outcome value. A probability mass function,

denoted by fX(x), is a function that gives the probability that a discrete random

variable X is equal to some value x. A probability distribution function, denoted by

FX(x), is a function that describes the probability distribution of a discrete random

variable X, which is defined to equal Pr(X ≤ x).

2.2.3.2 Bernoulli Distribution

Bernoulli distribution is a finite discrete probability distribution where a random

variable can take on only two values. The two values are usually 0 and 1, where 0

and 1 are artificial; for example, we can let 0 and 1 respectively denote failure and

success of a test.

Let Pr(X = 1) = p, then we have Pr(X = 0) = 1 − Pr(X = 1) = 1 − p. The

mathematical expectation of such a Bernoulli distribution is p× 1 + (1− p)× 0 = p.

2.2.3.3 Binomial Distribution

Binomial distribution is a finite discrete probability distribution where a random

variable can be represented to be the sum of the successive results of independent

trials of a Bernoulli experiment. Suppose that X1, X2, · · · , XN are the results of N

26

2.2 Cryptanalytic Methods

independent trials of a Bernoulli experiment (as described in Section 2.2.3.2). Let a

random variable Y be the sum of X1, X2, · · · , XN , (i.e. Y = X1 + X2 + · · ·+ XN),

then the distribution of Y is defined by the following probability function, where

k = 0, 1, · · · , N .

Pr(Y = k) = Pr(X1 + X2 + · · ·+ XN = k)

=
(

N

k

)
pk(1− p)N−k.

This distribution is called the binomial distribution with parameters n and p, written

Y ∼ Bin(N, p). The mathematical expectation of a binomial distribution Y ∼
Bin(N, p) is Np.

2.2.3.4 Poisson Distribution

Poisson distribution is a countably infinite discrete probability distribution. A ran-

dom variable X is said to have a Poisson distribution with parameter λ if and only

if

Pr(X = k) = e−λλk/k!, k = 0, 1, 2, · · · ,

where e(= 2.71828 · · ·) is the base of the natural logarithm.

We write X ∼ Poi(λ) for a random variable X having a Poisson distribution with

parameter λ. The mathematical expectation of a Poisson distribution X ∼ Poi(λ)

is λ.

2.2.3.5 Relationship between Binomial Distribution and Poisson Distribution

A Binomial distribution Y ∼ Bin(N, p) can be approximated with a Poisson distri-

bution Y ∼ Poi(Np) when N is large and p is small. That is,
(

N

k

)
pk(1− p)N−k ≈ e−Np(Np)k/k!, k = 0, 1, 2, · · · , N.

A proof of this relationship is given in [72].

27

2.2 Cryptanalytic Methods

2.2.4 Differential Cryptanalysis

Differential cryptanalysis was introduced in 1990 by Biham and Shamir [12]; it was

the first cryptanalytic method more effective than an exhaustive key search to be

proposed for the full DES [13, 14]. A similar method was used a little earlier by

Murphy [87] to analyse the FEAL block cipher [97].

Differential cryptanalysis takes advantage of how a specific difference in a pair of

inputs of a cipher or function can affect a difference in the pair of outputs of the

cipher or function, where the pair of outputs are obtained by encrypting the pair of

inputs using the same key. The notion of difference can be defined in several ways;

the most widely discussed is with respect to the XOR operation. The difference

between the inputs is called the input difference, the difference between the outputs

of a function is called the output difference, and the difference between internal

values is called an intermediate difference. The combination of the input difference

and the output difference is called a differential. The probability of a differential for

an S-box is defined as follows.

Definition 2.2 Suppose T is an m × n S-box. If γ is an m-bit block and δ is an

n-bit block, then the probability of the differential (γ, δ) for T, written ∆γ → ∆δ, is

defined to be

PrT(∆γ → ∆δ) = Pr
P∈{0,1}m

(T(P)⊕T(P ⊕ γ) = δ).

The following result follows trivially from Definition 2.2:

Proposition 2.1 If T is an m× n S-box, then

PrT(∆γ → ∆δ) =
|{x ∈ {0, 1}m|T(x)⊕T(x⊕ γ) = δ}|

2m
.

The (XOR) difference distribution table for an m× n S-box T is a table storing all

possible pairs of input and output differences (γ, δ) and the numbers of m-bit blocks

x (∈ {0, 1}m) such that T(x)⊕T(x⊕ γ) = δ.

The probability of a differential for a block cipher using a particular key is defined

as follows.

28

2.2 Cryptanalytic Methods

Definition 2.3 Suppose E is an n-bit block cipher and K ∈ {0, 1}k is a key for E.

If α and β are n-bit blocks, then the probability of the differential (α, β) for EK ,

written ∆α → ∆β, is defined to be

PrEK
(∆α → ∆β) = Pr

P∈{0,1}n
(EK(P)⊕EK(P ⊕ α) = β).

The following result follows trivially from Definition 2.3:

Proposition 2.2 If E is an n-bit block cipher, and K ∈ {0, 1}k is a key for E, and

α and β are n-bit blocks. Then

PrEK
(∆α → ∆β) =

|{x|EK(x)⊕EK(x⊕ α) = β, x ∈ {0, 1}n}|
2n

.

Sometimes we refer to the differential of a block cipher without specifying the key.

For most currently studied block ciphers the differential probabilities do not depend

on the key used, and so this is reasonable practice.

There may be a number of different intermediate differences that give rise to the

same differential. A sequence of intermediate differences that give rise to a particular

differential is called a differential characteristic. That is, a differential is the set of all

the differential characteristics with the same input difference and output difference.

A differential (characteristic) for r consecutive rounds is often called an r-round

differential (characteristic). An r-round differential (characteristic) that has a prob-

ability of p is often called an r-round differential (characteristic) with probability

p.

Given a set of c
PrEK

(∆α→∆β) pairs of plaintexts with difference α, (for some c > 1),

then, if they are all encrypted using the key K, the expected number of pairs of

ciphertexts with a difference of β is equal to c
PrEK

(∆α→∆β) · PrEK
(∆α → ∆β) =

c. If, on the other hand, these pairs are input to a randomly chosen function,

then the expected number of pairs of outputs with a difference of β is equal to
c

PrEK
(∆α→∆β) ·2−n = c

2n·PrEK
(∆α→∆β) . Therefore, if PrEK

(∆α → ∆β) is larger than

2−n, we can use the differential to distinguish the block cipher from a randomly

chosen function, given a sufficient number of chosen plaintext pairs.

29

2.2 Cryptanalytic Methods

Definition 2.4 With respect to a particular differential characteristic, an active S-

box is defined to be an S-box that has a non-zero input difference, and an inactive

S-box is defined to be an S-box that has a zero input difference.

Several extensions to differential cryptanalysis have been proposed, including high-

order differential cryptanalysis [56, 65], truncated differential cryptanalysis [56],

impossible differential cryptanalysis [4, 57], and the boomerang and rectangle at-

tacks [6, 48, 103]. In this chapter we restrict our attention to impossible differential

cryptanalysis and the boomerang and rectangle attacks.

2.2.5 Linear Cryptanalysis

Linear cryptanalysis was introduced in 1992 by Matsui and Yamagishi [84], who used

it to analyse the FEAL cipher. In 1993, Matsui [83] presented a linear cryptanalysis

attack on the full DES.

Linear cryptanalysis exploits correlations between a particular linear function of the

input blocks and a second linear function of the output blocks. The most widely used

linear function involves computing the bitwise dot product operation of the block

with a specific binary vector (the specific value combined with the input blocks may

be different from the value applied to the output blocks). The combination of the

two linear functions is called a linear approximation. The probability of a linear

approximation is defined as follows.

Definition 2.5 Suppose E is an n-bit block cipher and K ∈ {0, 1}k is a key for E.

If α and β are n-bit blocks, then the probability of the linear approximation (α, β),

written Γα → Γβ, is defined to be

PrEK
(Γα → Γβ) = Pr

P∈{0,1}n
(P ¯ α = EK(P)¯ β),

where ¯ represents the dot product of two bit strings regarded as binary vectors.

We refer to the dot product P¯α as the input parity, and the dot product EK(P)¯β

as the output parity.

30

2.2 Cryptanalytic Methods

The following result follows trivially from Definition 2.5:

Proposition 2.3 If E is an n-bit block cipher, and K ∈ {0, 1}k is a key for E, and

α and β are n-bit blocks. Then

PrEK
(Γα → Γβ) =

|{x|x¯ α = EK(x)¯ β, x ∈ {0, 1}n}|
2n

.

For a randomly chosen function, the expected probability of a linear approximation

for any pair (α, β) is 1
2 .

Definition 2.6 The bias of a linear approximation Γα → Γβ, denoted by ε, is

defined to be

ε = |PrEK
(Γα → Γβ)− 1

2
|.

Thus, if the bias ε is sufficiently large, we can use the linear approximation to

distinguish a block cipher from a randomly chosen function, given a sufficient number

of matching plaintext/ciphertext pairs.

Several extensions to linear cryptanalysis have been proposed, including bilinear

cryptanalysis [17], linear cryptanalysis using multiple approximations [46], linear

cryptanalysis using nonlinear approximations [59] and linear cryptanalysis using

chosen plaintexts [58].

2.2.6 Differential-Linear Cryptanalysis

Differential-linear cryptanalysis was introduced in 1994 by Langford and Hellman [67];

it is a combination of differential and linear cryptanalysis. In 2002, Biham, Dunkel-

man and Keller [7] presented an enhanced version.

Proposition 2.4 Suppose block cipher E : {0, 1}k×{0, 1}n → {0, 1}n is represented

as a cascade of two sub-ciphers E = E0 ◦ E1 and K ∈ {0, 1}k is a key for E.

Suppose also that there exists a differential ∆α → ∆β with probability p for E0
K

and a linear approximation Γγ → Γδ with bias ε for E1
K . If P ′ is chosen uniformly

at random from {0, 1}n, and P ∗ = P ′ ⊕ α, then (under an assumption about the

31

2.2 Cryptanalytic Methods

random behaviour of E)

Pr(δ ¯EK(P ′)⊕ δ ¯EK(P ∗) = γ ¯ β) =
1
2

+ 2pε2.

Proof. Given a plaintext pair (P ′, P ∗ = P ′ ⊕ α), where P ′ is chosen uniformly

at random from {0, 1}n, we obtain E0
K(P ′) ⊕ E0

K(P ∗) = β with probability p, γ ¯
E0

K(P ′) = δ ¯EK(P ′) with bias ε, and γ ¯E0
K(P ∗) = δ ¯EK(P ∗) with bias ε. We

therefore obtain δ ¯EK(P ′)⊕ δ ¯EK(P ∗) = γ ¯ β with a probability of

p · [(1
2

+ ε) · (1
2

+ ε) + (
1
2
− ε) · (1

2
− ε)] = p(

1
2

+ 2ε2).

If E0
K(P ′)⊕E0

K(P ∗) 6= β, we assume that the value of δ ¯EK(P ′)⊕ δ ¯EK(P ∗) is

distributed uniformly. Hence δ ¯EK(P ′)⊕ δ ¯EK(P ∗) = γ ¯ β with probability

p(
1
2

+ 2ε2) + (1− p) · 1
2

=
1
2

+ 2pε2.

Therefore, Proposition 2.4 holds. ¤

If, by contrast, E is a randomly chosen function, then the expected probability that

δ ¯ EK(P ′) ⊕ δ ¯ EK(P ∗) = γ ¯ β is 1
2 . Therefore, if the bias 2pε2 is sufficiently

large, we can distinguish the block cipher from a randomly chosen function, given a

sufficient number of matching plaintext/ciphertext pairs.

2.2.7 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis was independently introduced by Knudsen [57]

in 1998 and Biham, Biryukov and Shamir [4] in 1999.

An impossible differential is a differential with a probability of zero. Such a differen-

tial is typically constructed in a miss-in-the-middle manner [5]; that is, a differential

with probability 1 is concatenated with another differential with probability 1, where

the intermediate differences of the two differentials contradict one another.

Impossible differential cryptanalysis uses one or more impossible differentials, writ-

ten ∆α 9 ∆β, and it usually treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n

32

2.2 Cryptanalytic Methods

as a cascade of three sub-ciphers E = Ea ◦ E0 ◦ Eb, where E0 denotes the rounds

for which α 9 β holds, Ea denotes a number of rounds before E0, and Eb denotes

a number of rounds after E0.

Given a guess for the subkeys used in Ea and Eb, if a plaintext pair produces

a difference of α just after Ea, and its corresponding ciphertext pair produces a

difference of β just before Eb, then this guess for the subkeys must be incorrect.

Thus, given a sufficient number of matching plaintext/ciphertext pairs, an attacker

can find the correct subkey by discarding the wrong guesses.

2.2.8 Boomerang and Rectangle Attacks

The boomerang attack was introduced in 1999 by Wagner [103]. Such an attack uses

two differentials on two different parts of the cipher, instead of a single differential

on the entire cipher.

A boomerang attack uses something called a boomerang distinguisher. To define

a boomerang distinguisher we need to treat a block cipher E : {0, 1}k × {0, 1}n →
{0, 1}n as a cascade of two sub-ciphers E0 and E1, where E = E0 ◦ E1. Suppose

K ∈ {0, 1}k is a key for E. A boomerang distinguisher is then defined to be a pair of

differentials (∆α → ∆β, ∆γ → ∆δ), where ∆α → ∆β is a differential for E0
K with

probability p, ∆γ → ∆δ is a differential for E1
K with probability q, and p · q > 2−

n
2 .

Suppose we choose N pairs of plaintext blocks (P, P ∗) where P ∗ = P⊕α. We denote

respectively by C and C∗ the ciphertext blocks for the plaintext blocks P and P ∗

encrypted using the block cipher E under key K.

Then, if we apply E0
K to each of these pairs, we will obtain approximately Np pairs

(E0
K(P),E0

K(P ∗)) with the property that E0
K(P)⊕E0

K(P ∗) = β.

Next, we choose N pairs of ciphertext blocks (C ′ = C⊕δ, C ′∗ = C∗⊕δ). If we apply

(E1
K)−1 to each of the pairs (C,C ′), we get that (E1

K)−1(C) ⊕ (E1
K)−1(C ′) = γ

with probability q; if we apply (E1
K)−1 to each of the pairs (C∗, C ′∗), we get

that (E1
K)−1(C∗) ⊕ (E1

K)−1(C ′∗) = γ with probability q. Therefore, we will ob-

33

2.2 Cryptanalytic Methods

P

C

E
0

K

E
1

K

P ∗

C∗

P ′

C ′

P ′∗

C ′∗

α α

β β

γ

γ

δ

δ

P

C

P ∗

C∗

P ′

C ′

P ′∗

C ′∗

α α

β β

γ

γ

δ

δ

(a) (b)

E
0

K

E
0

K

E
0

K

E
0

K

E
0

K

E
0

K

E
0

K

E
1

K

E
1

K

E
1

K

E
1

K

E
1

K
E

1

K

E
1

K

Figure 2.1: The boomerang and amplified boomerang distinguishers

tain approximately Npq2 pairs ((E1
K)−1(C ′), (E1

K)−1(C ′∗)) with the property that

(E1
K)−1(C ′)⊕ (E1

K)−1(C ′∗) = β. This is because

(E1
K)−1(C ′)⊕ (E1

K)−1(C ′∗)

= (E1
K)−1(C)⊕ (E1

K)−1(C∗)⊕ (E1
K)−1(C)⊕ (E1

K)−1(C ′)⊕ (E1
K)−1(C∗)⊕

(E1
K)−1(C ′∗)

= β ⊕ γ ⊕ γ

= β.

Therefore, we will get Np2q2 pairs of plaintext blocks ((EK)−1(C ′), (EK)−1(C ′∗))

with the property that (EK)−1(C ′) ⊕ (EK)−1(C ′∗) = α. Figure 2.1(a) depicts the

boomerang distinguisher.

However, for a randomly chosen function, the expected number of plaintext pairs

(P ′, P ′∗) with the property that P ′ ⊕ P ′∗ = α is approximately N · 2−n.

Therefore, if p · q > 2−
n
2 , the boomerang distinguisher can effectively distinguish

between E and a randomly chosen function, given a sufficient number of adaptive

chosen plaintexts and ciphertexts.

In 2000, Kelsey, Kohno and Schneier [48] presented a variant of the boomerang

34

2.2 Cryptanalytic Methods

attack, known as the amplified boomerang attack.

An amplified boomerang attack uses something called an amplified boomerang dis-

tinguisher. To define an amplified boomerang distinguisher we also need to treat a

block cipher E : {0, 1}k × {0, 1}n → {0, 1}n as a cascade of two sub-ciphers E0 and

E1, where E = E0◦E1. Suppose K ∈ {0, 1}k is a key for E. An amplified boomerang

distinguisher is then defined to be a pair of differentials (∆α → ∆β,∆γ → ∆δ),

where ∆α → ∆β is a differential for E0
K with probability p, ∆γ → ∆δ is a differen-

tial for E1
K with probability q, and p · q > 2−

n
2 .

A right quartet consists of two pairs of plaintext blocks (P, P ∗ = P ⊕ α) and

(P ′, P ′∗ = P ′ ⊕ α) satisfying the following three conditions; see Figure 2.1(b).

C1: E0
K(P)⊕E0

K(P ∗) = E0
K(P ′)⊕E0

K(P ′∗) = β;

C2: E0
K(P)⊕E0

K(P ′) = E0
K(P ∗)⊕E0

K(P ′∗) = γ;

C3: EK(P)⊕EK(P ′) = EK(P ∗)⊕EK(P ′∗) = δ.

Suppose we choose N pairs of plaintext blocks (P, P ∗) where P ∗ = P ⊕ α. These

pairs yield
(
N
2

)
= N(N−1)

2 candidate quartets ((P, P ∗), (P ′, P ′∗)), where (P ′, P ′∗) 6=
(P, P ∗) ∈ {(P, P ∗)}.

Then, if we apply E0
K to each of these quartets, we will obtain approximately Np2

quartets ((P, P ∗), (P ′, P ′∗)) with the property that E0
K(P) ⊕ E0

K(P ∗) = E0
K(P ′) ⊕

E0
K(P ′∗) = β.

Assuming that the intermediate values after E0
K are distributed uniformly over all

possible values, we get E0
K(P)⊕E0

K(P ′) = γ with probability 2−n. Once this occurs,

E0
K(P ∗)⊕E0

K(P ′∗) = γ holds as well, as

E0
K(P ∗)⊕E0

K(P ′∗)

= E0
K(P)⊕E0

K(P ∗)⊕E0
K(P ′)⊕E0

K(P ′∗)⊕E0
K(P)⊕E0

K(P ′)

= γ.

Therefore, the expected number of candidate quartets ((P, P ∗), (P ′, P ′∗)) with the

35

2.2 Cryptanalytic Methods

property that EK(P)⊕EK(P ′) = EK(P ∗)⊕E0
K(P ′∗) = δ is approximately

N(N − 1)
2

· 2−n · p2 · q2.

However, for a randomly chosen function, the expected number of candidate quartets

((P, P ∗), (P ′, P ′∗)) with the property that EK(P)⊕EK(P ′) = EK(P ∗)⊕E0
K(P ′∗) = δ

is approximately N(N−1)
2 · 2−2n.

Therefore, if p · q > 2−
n
2 , the amplified boomerang distinguisher can effectively

distinguish between E and a randomly chosen function, given a sufficient number of

chosen plaintexts.

In 2001, Biham, Dunkelman and Keller [6] presented an improvement of the ampli-

fied boomerang attack, known as the rectangle attack.

The rectangle attack improves over an amplified boomerang attack by allowing β to

take any possible value β′ in E0
K and γ to take any possible value γ′ in E1

K , as long

as β′ 6= γ′. As a result, given the same number of plaintext pairs as described in

the above amplified boomerang attack, the expected number of candidate quartets

((P, P ∗), (P ′, P ′∗)) with the property that EK(P)⊕EK(P ′) = EK(P ∗)⊕E0
K(P ′∗) = δ

is approximately
N(N − 1)

2
· (p̂ · q̂)2 · 2−n,

where p̂ = (
∑

β′ Pr2
E0

K
(∆α → ∆β′))

1
2 and q̂ = (

∑
γ′ Pr2

E1
K

(∆γ′ → ∆δ))
1
2 .

Other extensions to the boomerang attack include the differential-linear boomerang

attack [8] and the differential-bilinear boomerang attack [8].

2.2.9 Related-Key Cryptanalysis

Related-key cryptanalysis was independently introduced by Knudsen [55] in 1992

and Biham [3] in 1993.

Related-key cryptanalysis takes advantage of how a specific difference in a pair of

inputs of a cipher or function can affect a difference in the pair of outputs of the

36

2.2 Cryptanalytic Methods

cipher or function, where the pair of outputs are obtained by encrypting the pair of

inputs using two different keys with a specific difference. The notion of difference

can be defined in several ways; the most widely discussed is with respect to the

XOR operation. The difference between the inputs is called the input difference,

the difference between the outputs of a function is called the output difference,

the difference between internal values is called an intermediate difference, and the

difference between the user keys is called the user key difference. If we denote by

K, K ′ the two related keys, then the combination of the input difference and the

output difference is called a related-key differential under keys K and K ′.

Related-key cryptanalysis assumes that the attacker knows or can choose the key

difference. This assumption means that it is difficult or even infeasible to conduct

such an attack in many applications. Anyway, as demonstrated in [49, 50], certain

current real-world applications may allow for practical related-key attacks, including

key-exchange protocols and hash functions.

The probability of a related-key differential under keys K and K ′, written ∆α → ∆β,

is defined as the probability that the input difference propagates to the output

difference under K and K ′; more formally, it is defined as follows.

Definition 2.7 Suppose E is a block cipher and K, K ′ ∈ {0, 1}k are keys for the

cipher. If α and β are n-bit blocks, then the probability of the related-key differential

for the pair (α, β) under the related keys K and K ′, written ∆α → ∆β, is defined

to be

PrEK ,EK′ (∆α → ∆β) = Pr
P∈{0,1}n

(EK(P)⊕EK′(P ⊕ α) = β).

The following result follows trivially from Definition 2.7:

Proposition 2.5 If E is an n-bit block cipher, K, K ′ ∈ {0, 1}k are keys for the

cipher, and α and β are n-bit blocks, then

PrEK ,EK′ (∆α → ∆β) =
|{x|EK(x)⊕EK′(x⊕ α) = β, x ∈ {0, 1}n}|

2n
.

Sometimes we refer to the related-key differential of a block cipher without spec-

ifying the related keys. For most currently studied block ciphers the differential

probabilities do not depend on the keys used, and so this is reasonable practice.

37

2.2 Cryptanalytic Methods

There may be a number of different intermediate related-key differences that give

rise to the same related-key differential. A sequence of intermediate related-key

differences that give rise to a particular related-key differential is called a related-

key differential characteristic. That is, a related-key differential is the set of all the

related-key differential characteristics with the same input difference and output

difference under the same related keys.

A related-key differential (characteristic) for r consecutive rounds is often called an

r-round related-key differential (characteristic). An r-round related-key differential

(characteristic) that has a probability of p is often called an r-round related-key

differential (characteristic) with probability p.

In the following, we briefly describe the related-key rectangle attack, which is a

combination of the related-key arrack and the rectangle attack.

The related-key rectangle attack [9, 40, 53] uses something called a related-key rect-

angle distinguisher. Like a rectangle distinguisher, a related-key rectangle distin-

guisher treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of two

sub-ciphers E0 and E1, where E = E0 ◦ E1. Typically, such a related-key rect-

angle distinguisher works in a related-key attack scenario involving four related

keys KA,KB,KC ,KD satisfying KA ⊕ KB = KC ⊕ KD = ∆K0 and KA ⊕ KC =

KB ⊕KD = ∆K1, where ∆K0 and ∆K1 are two known differences, and is made up

of four groups of related-key differentials:

• all the possible related-key differentials ∆α → ∆β for E0 under related keys

KA and KB, where β is any possible output difference;

• all the possible related-key differentials ∆α → ∆β for E0 under related keys

KC and KD, where β is any possible output difference;

• all the possible related-key differentials ∆γ → ∆δ for E1 under related keys

KA and KC , where γ is any possible input difference;

• all the possible related-key differentials ∆γ → ∆δ for E1 under related keys

KB and KD, where γ is any possible input difference.

A right quartet consists of two pairs of plaintexts (P, P ∗ = P ⊕ α) and (P ′, P ′∗ =

38

2.2 Cryptanalytic Methods

P

C

E
0

KA

E
1

KA

P ∗

C∗

E
0

KB

E
1

KB

P ′

C ′

E
0

KC

E
1

KC

P ′∗

C ′∗

E
0

KD

E
1

KD

α α

β β

γ

γ

δ

δ

Figure 2.2: A related-key rectangle distinguisher

P ′ ⊕ α) satisfying the following three conditions; see Figure 2.2.

C1: E0
KA

(P)⊕E0
KB

(P ∗) = E0
KC

(P ′)⊕E0
KD

(P ′∗) = β,

C2: E0
KA

(P)⊕E0
KC

(P ′) = E0
KB

(P ∗)⊕E0
KD

(P ′∗) = γ,

C3: EKA
(P)⊕EKC

(P ′) = EKB
(P ∗)⊕EKD

(P ′∗) = δ.

Assuming that the intermediate values after E0 are distributed uniformly over all

possible values, then we can get E0
KA

(P)⊕E0
KC

(P ′) = γ with probability 2−n. Once

this occurs, by C1 we know that E0
KB

(P ∗) ⊕ E0
KD

(P ′∗) = γ holds with probability

1, for

E0
KB

(P ∗)⊕E0
KD

(P ′∗)

= (E0
KA

(P)⊕E0
KB

(P ∗))⊕ (E0
KC

(P ′)⊕E0
KD

(P ′∗))⊕ (E0
KA

(P)⊕E0
KC

(P ′))

= β ⊕ β ⊕ γ

= γ.

As a result, the probability that the quartet satisfies C3 is expected to be approxi-

mately
∑

β,γ

(PrE0
KA

,E0
KB

(∆α → ∆β))2 · 2−n · (PrE1
KA

,E1
KC

(∆γ → ∆δ))2 = 2−n · (p̂ · q̂)2,

39

2.3 Summary

where p̂ = (
∑

β′ Pr2
E0

KA
,E0

KB

(∆α → ∆β′))
1
2 and q̂ = (

∑
γ′ Pr2

E1
KA

,E1
KC

(∆γ′ → ∆δ))
1
2 .

For a random function, the probability that the quartet satisfies C3 is approximately

2−n×2 = 2−2n.

Therefore, if p̂ · q̂ > 2−
n
2 , the related-key rectangle distinguisher can distinguish

between E and a random function given a sufficient number of chosen plaintext

pairs.

Note that there exist three types of related-key rectangle attacks, which correspond

to the following three cases.

• TYPE 1: ∆K0 6= 0, ∆K1 6= 0, (four keys);

• TYPE 2: ∆K0 = 0, ∆K1 6= 0, (two keys);

• TYPE 3: ∆K0 6= 0, ∆K1 = 0, (two keys).

2.3 Summary

In this chapter we have briefly reviewed a number of cryptanalytic methods for block

ciphers. In subsequent chapters we use and extend these techniques to obtain new

cryptanalytic results for a range of block ciphers.

It is very worthy to note that the statistical methods described above generally

treat a basic unit of input (i.e. a chosen-plaintext pair for differential cryptanalysis,

differential-linear cryptanalysis, and impossible differential cryptanalysis; a known-

plaintext for linear cryptanalysis; and a quartet of (adaptive) chosen plaintexts for

boomerang and (related-key) rectangle attacks) as a Bernoulli random variable, and

assume that given a set of inputs of the basic unit, the inputs that satisfy the required

property have (or can be approximated by) a binomial distribution.

The methods we consider here are all statistical in nature; they typically require

assuming that the output of one intermediate round is uniformly distributed, and

is independent from that of previous rounds. As Handschuh and Naccache [31]

40

2.3 Summary

mention, this is “most often not exactly the case, but as often it is a good approxi-

mation”. This means that, in some cases, the success probability of the attack may

be overestimated. However, in the absence of any evidence one way or the other,

it seems reasonable to take the worst case assumption from the point of the user of

the cipher. As a result we make use of assumptions regarding uniform distributions

at various places in this thesis.

Other cryptanalytic methods not considered here include integral cryptanalysis [20,

60, 82] and algebraic cryptanalysis [18]. These techniques are different in nature

from those described above.

41

Chapter 3

The Impossible Boomerang Attack

In this chapter we propose a new extension of differential cryptanalysis, named the

impossible boomerang attack. We also describe a variant of this attack which applies

in a related-key attack scenario.

Contents

3.1 Introduction . 42
3.2 The Impossible Boomerang Attack 43

3.2.1 The Basic Impossible Boomerang Attack 44
3.2.2 The Impossible Boomerang Attack Using More Tuples . . . 47

3.3 The Related-Key Impossible Boomerang Attack 47
3.4 A Comparison . 48
3.5 Summary . 49

3.1 Introduction

Most modern block ciphers are designed to be provably secure against differential

cryptanalysis and linear cryptanalysis [94, 95]. Thus proposing new cryptanalytic

techniques is always desirable in the sense that it provides a better evaluation of the

security of a block cipher and also enables more secure ciphers to be designed.

Impossible differential cryptanalysis and the boomerang-type attacks (including the

boomerang, amplified boomerang and rectangle attacks as well as their related-key

variants) have been used to yield the best currently published cryptanalytic results

for a number of state-of-the-art block ciphers [2, 9, 52, 64, 76, 111]. These techniques

are thus clearly of importance.

42

3.2 The Impossible Boomerang Attack

In this chapter, inspired by the ideas that impossible differential cryptanalysis and

the boomerang attack use, we propose a new extension of differential cryptanalysis,

which we call the impossible boomerang attack. Such an attack is based on the use

of a so-called impossible boomerang distinguisher, which, like a boomerang attack,

treats a block cipher E as two sub-ciphers E0◦E1. It uses two (or more) differentials

with probability 1 for E0 and two (or more) differentials with probability 1 for E1,

where the XOR of the intermediate differences of these differentials is not equal to

zero. We then describe a variant of this attack that applies in a related-key scenario,

giving rise to what we call a related-key impossible boomerang attack.

The rest of this chapter is organised as follows. In Section 3.2 we propose the

impossible boomerang attack. In Section 3.3 we briefly describe the variant of the

impossible boomerang attack in a related-key attack scenario. In Section 3.4 we

compare the impossible boomerang attack with impossible differential cryptanalysis

and the boomerang-type attacks. Section 3.5 summarises this chapter.

3.2 The Impossible Boomerang Attack

Typically, when formulating a differential cryptanalysis attack, it is desirable to use

a differential operating on as many rounds of the cipher as possible. Of course, the

more rounds the differential operates on, the smaller its probability is likely to be.

As described in Section 3.2.1, the boomerang attack is based on a somewhat differ-

ent idea, namely of using two short differentials with relatively large probabilities,

instead of using a differential operating on as many rounds as possible with a small

probability. Impossible differential cryptanalysis involves using a differential that

will never happen under any situation. The attack we describe in this chapter, i.e.

what we call the impossible boomerang attack, combines the boomerang attack with

impossible differential cryptanalysis. Possible combinations of cryptanalytic tech-

niques have been proposed in the past, and have proved effective [8, 9, 34, 40, 53, 67];

a good example is provided by differential-linear cryptanalysis [7, 67].

43

3.2 The Impossible Boomerang Attack

3.2.1 The Basic Impossible Boomerang Attack

As mentioned earlier, an impossible boomerang attack is constructed on an impos-

sible boomerang distinguisher.

3.2.1.1 Distinguisher Using Two Tuples

An impossible boomerang distinguisher is defined as follows. Like a boomerang

distinguisher, an impossible boomerang distinguisher treats a block cipher E :

{0, 1}k × {0, 1}n → {0, 1}n as two sub-ciphers E0 ◦ E1. Such a distinguisher is

made up of four related differentials (or truncated differentials [56]), two for E0

and two for (E1)−1, all of which must have probability 1. That is, an impossible

boomerang distinguisher consists of:

• a differential ∆α → ∆β with probability 1 for E0;

• a differential ∆α′ → ∆β′ with probability 1 for E0;

• a differential ∆δ → ∆γ with probability 1 for (E1)−1;

• a differential ∆δ′ → ∆γ′ with probability 1 for (E1)−1,

where α, α′, β, β′, γ, γ′, δ and δ′ are all n-bit blocks, and β, β′, γ and γ′ meet the

condition β ⊕ β′ ⊕ γ ⊕ γ′ 6= 0. An impossible boomerang distinguisher is shown

pictorially in Figure 3.1(a).

The following theorem provides the theoretical basis for the impossible boomerang

attack.

Theorem 3.1 Suppose that X and X ′ are n-bit blocks and K is a key for an n-bit

block cipher E, where E = E0 ◦ E1 for some E0 and E1. Suppose that ∆α → ∆β

and ∆α′ → ∆β′ are differentials with probability 1 for E0
K , and ∆δ → ∆γ and

∆δ′ → ∆γ′ are differentials with probability 1 for (E1
K)−1, where β⊕β′⊕γ⊕γ′ 6= 0.

44

3.2 The Impossible Boomerang Attack

X

Y

E
0

K

X∗

Y ∗

X ′

Y ′

X ′∗

Y ′∗

E
1

K

α α′

β β′

γ

γ′

δ

δ′

β ⊕ γ ⊕ β′ ⊕ γ′ 6= 0

X

Y

E
0

KA

E
1

KA

X∗

Y ∗

E
0

KB

E
1

KB

X ′

Y ′

E
0

KC

E
1

KC

X ′∗

Y ′∗

E
0

KD

E
1

KD

α α′

β β′

γ

γ′

δ

δ′

E
1

K

E
1

K

E
1

K

E
0

K

E
0

K

E
0

K

(a) (b)

Figure 3.1: Impossible boomerang and related-key impossible boomerang distin-
guishers

Then the following pair of equations cannot both hold:

EK(X)⊕EK(X ′) = δ, (3.1)

EK(X ⊕ α)⊕EK(X ′ ⊕ α) = δ′. (3.2)

Proof. Suppose that equations (3.1) and (3.2) both hold for some X, X ′ and K.

Since both the differentials ∆α → ∆β and ∆α′ → ∆β′ for E0
K hold with probability

1, we have

E0
K(X)⊕E0

K(X ⊕ α) = β,

E0
K(X ′)⊕E0

K(X ′ ⊕ α′) = β′.

As both the differentials ∆δ′ → ∆γ′ and ∆δ → ∆γ for (E1
K)−1 hold with probability

1, we can get the following equation with probability 1:

E0
K(X ′)⊕E0

K(X ′ ⊕ α)

= (E0
K(X ′)⊕E0

K(X))⊕ (E0
K(X)⊕E0

K(X ⊕ α))⊕ (E0
K(X ⊕ α)⊕E0

K(X ′ ⊕ α))

= ((E1
K)−1(EK(X ′))⊕ (E1

K)−1(EK(X)))⊕ (E0
K(X)⊕E0

K(X ⊕ α))⊕
((E1

K)−1(EK(X ⊕ α))⊕ (E1
K)−1(EK(X ′ ⊕ α)))

= γ ⊕ β ⊕ γ′.

45

3.2 The Impossible Boomerang Attack

Hence, from the above discussion we get that E0
K(X ′)⊕E0

K(X ′⊕α) = β′ = γ⊕β⊕γ′

holds. However, this contradicts with the condition that β ⊕ β′ ⊕ γ ⊕ γ′ 6= 0.

Therefore, Theorem 3.1 holds. ¤

From Theorem 3.1 we know that a distinguisher of the form shown in Figure 3.1(a)

can never occur; we call it an impossible boomerang distinguisher, written (∆α, ∆α′)

9 (∆δ,∆δ′).

Note that the two differentials for E0 or E1 may be identical, as long as the condition

β ⊕ β′ ⊕ γ ⊕ γ′ 6= 0 holds.

3.2.1.2 A Key Recovery Attack

An impossible boomerang attack involves treating a block cipher E : {0, 1}n ×
{0, 1}k → {0, 1}n as a cascade of four sub-ciphers E = Ea◦E0◦E1◦Eb, where E0◦E1

denotes the rounds for which the impossible boomerang distinguisher (∆α,∆α′)9
(∆δ,∆δ′) holds, Ea denotes a number of rounds before E0, and Eb denotes a number

of rounds after E1.

In a chosen plaintext attack scenario, given a guess for the subkeys used in Ea and

Eb, the impossible boomerang attack involves checking whether a candidate quartet

consisting of two pairs of plaintext blocks meets the differential conditions required

by the impossible boomerang distinguisher. Specifically, suppose Ka is the guess

for the subkey used in Ea, and Kb is the guess for the subkey used in Eb, then the

attacker checks whether a candidate quartet of known plaintext/ciphertext pairs

(((P, C), (P ∗, C∗)), ((P ′, C ′), (P ′, C ′∗))) satisfies the following four conditions:

Ea
Ka

(P)⊕Ea
Ka

(P ∗) = α, (3.3)

Ea
Ka

(P ′)⊕Ea
Ka

(P ′∗) = α′, (3.4)

(Eb
Kb

)−1(C)⊕ (Eb
Kb

)−1(C ′) = δ, (3.5)

(Eb
Kb

)−1(C∗)⊕ (Eb
Kb

)−1(C ′∗) = δ′. (3.6)

If there exists a candidate quartet satisfying equations (3.3)–(3.6), then the subkey

guess (Ka,Kb) must be incorrect, and can be discarded. Thus, given a sufficient

46

3.3 The Related-Key Impossible Boomerang Attack

number of chosen plaintext pairs, the attacker can find the correct subkeys used in

Ea and Eb by discarding the wrong guesses.

3.2.2 The Impossible Boomerang Attack Using More Tuples

The impossible boomerang distinguisher described above uses two tuples, i.e. (X, X∗

= X⊕α) and (X ′, X ′∗ = X ′⊕α′). In fact, we can construct an impossible boomerang

distinguisher using more tuples.

For example, suppose we have a third tuple (X ′′, X ′′∗ = X ′′⊕α′′), and we have two

additional differentials ∆α′′ → ∆β′′ and ∆δ′′ → ∆γ′′ for E0 and E1, respectively,

both with probability 1. Suppose also that β ⊕ β′ ⊕ β′′ ⊕ γ ⊕ γ′ ⊕ γ′′ 6= 0. Then

we can construct a 6-fold impossible boomerang distinguisher, which can be used to

construct an attack, given a sufficient number of plaintext pairs.

3.3 The Related-Key Impossible Boomerang Attack

In a related-key attack scenario [3, 49, 55], the attacker is assumed to know the

specific differences between one or more pairs of unknown keys.

A related-key impossible boomerang distinguisher treats a block cipher E : {0, 1}k×
{0, 1}n → {0, 1}n as two sub-ciphers E0 ◦E1. Typically, such a distinguisher works

in a related-key attack scenario involving four related keys KA,KB,KC ,KD, and is

made up of four related-key differentials, two for E0 and two for (E1)−1, all of which

must have probability 1. That is, a related-key impossible boomerang distinguisher

consists of:

• a related-key differential ∆α → ∆β with probability 1 for E0 under keys KA

and KB;

• a related-key differential ∆α′ → ∆β′ with probability 1 for E0 under keys KC

and KD;

47

3.4 A Comparison

• a related-key differential ∆δ → ∆γ with probability 1 for (E1)−1 under keys

KA and KC ;

• a related-key differential ∆δ′ → ∆γ′ with probability 1 for (E1)−1 under keys

KB and KD,

where α, α′, β, β′, γ, γ′, δ and δ′ are all n-bit blocks, and β, β′, γ and γ′ meet the

condition β ⊕ β′ ⊕ γ ⊕ γ′ 6= 0. A related-key impossible boomerang distinguisher is

depicted in Figure 3.1(b).

Similarly we can learn that such a related-key distinguisher is impossible and allows

us to conduct a related-key impossible boomerang attack given a sufficient number

of chosen plaintext pairs.

3.4 A Comparison

From an impossible boomerang distinguisher we can always obtain an impossible

differential for the same number of rounds. Consider an impossible boomerang

distinguisher using two tuples; from the condition β ⊕ β′ ⊕ γ ⊕ γ′ 6= 0 we have

β⊕γ 6= β′⊕γ′, which implies that the values β⊕γ and β′⊕γ′ cannot both be equal

to zero. The above result applies when using two tuples, since the four differentials

required by the impossible boomerang distinguisher have a probability of one. A

similar result holds when using more tuples.

However, this relationship does not hold for their variants in a related-key attack

scenario. When formulating a related-key impossible differential, choosing the sub-

key difference for E0 usually incurs a fixed subkey difference for E1, and vice versa;

but when formulating a related-key impossible boomerang distinguisher we have

more flexibility in choosing the subkey differences for E0 and E1: we can use a sub-

key difference for E0 and use a completely irrelevant subkey difference for E1, and

even more flexibly, we can use two different subkey differences for E0 or E1. These

flexibilities in choosing the key differences may enable us to break more rounds of a

block cipher using a related-key impossible boomerang attack.

48

3.5 Summary

The (related-key) impossible boomerang attack gives us different choices on the

(related-key) differentials used as well as the plaintexts required, and can be treated

as multi-dimensional (related-key) impossible differential cryptanalysis.

The advantages of the (related-key) impossible boomerang attack over the boomerang-

type attacks are analogous to those of (related-key) impossible differential crypt-

analysis over (related-key) differential cryptanalysis. A block cipher resistant to

boomerang-type attacks will not necessarily resist a (related-key) impossible boomerang

attack. In boomerang-type distinguishers, one generally assumes that the output

of one intermediate round of the cipher is uniformly distributed and is independent

from that of previous rounds, while an impossible boomerang distinguisher does not

require this assumption, which is often observed to be not the truth [105]. There-

fore, a (related-key) impossible boomerang distinguisher is more reasonable than

boomerang-type distinguishers.

3.5 Summary

In this chapter, inspired by the notions of impossible differential cryptanalysis and

the boomerang attack, we have proposed a new extension of differential cryptanal-

ysis, called the impossible boomerang attack. We have also described a variant of

this attack that applies in a related-key attack scenario.

In Chapter 5 we have applied the impossible boomerang attack to break 6-round

AES-128, 7-round AES-192 and 7-round AES-256 in a single key attack scenario, and

8-round AES-192 and 9-round AES-256 in a related-key attack scenario involving

two keys.

The (related-key) impossible boomerang attack is a general cryptanalytic technique

and can potentially be used to cryptanalyse other block ciphers. It is likely to be

particularly useful in cryptanalysing ciphers with a simple key schedule in a related-

key attack scenario.

49

Chapter 4

The Early Abort Technique

In this chapter we give a general description of early abort techniques for (related-

key) impossible differential cryptanalysis and rectangle attacks. In some circum-

stances these techniques can be used to improve the efficiency of such attacks.

Contents

4.1 Introduction . 50

4.2 Early Abort for (Related-Key) Impossible Differential
Cryptanalysis . 51

4.3 Early Abort for the Rectangle Attack 54

4.4 Early Abort for the Related-Key Rectangle Attack . . . 56

4.5 Summary . 58

4.1 Introduction

Certain cryptanalytic techniques for block ciphers involve exhaustive searches over

one or more subkeys (some of the bits of which may already be known). The means

used to eliminate possibilities for the subkeys are dependent on the cryptanalysis

method. Nevertheless, we can identify a general approach, which we call the early

abort technique, which applies to more than one type of cryptanalysis.

This technique involves taking advantage of special properties of the block cipher

round function. In some cases the structure of the round function itself, when com-

bined with the particular approach to eliminating subkey possibilities, enables the

subkey search to be partitioned, so that some subkey bits can be tested indepen-

50

4.2 Early Abort for (Related-Key) Impossible Differential Cryptanalysis

dently of the values of other subkey bits. This has the potential to significantly

reduce the size of the exhaustive search.

In this chapter we consider in detail two examples of the early abort technique as

applied to specific cryptanalytic techniques — (related-key) impossible differential

cryptanalysis and (related-key) rectangle attacks.

Before proceeding, we observe that a similar technique was previously used in dif-

ferential cryptanalysis of DES [13]. As the permutation function of the DES round

structure is just a reordering of the output bits of the substitution layer, and not

a diffusion function, one can determine the output of an S-box without inverting a

diffusion function. More recently, the term ‘early abort’ has been extensively used

in the cryptanalysis of hash functions, where the technique is also sometimes known

as “early stop”.

The rest of this chapter is organised as follows. In Section 4.2 we describe an early

abort technique for (related-key) impossible differential cryptanalysis. In Section

4.3 we describe an early abort technique for the rectangle attack. In Section 4.4 we

describe an early abort technique for the related-key rectangle attack. Section 4.5

summarises the chapter.

4.2 Early Abort for (Related-Key) Impossible Differential
Cryptanalysis

As discussed in Section 2.2.7, impossible differential cryptanalysis uses one or more

impossible differentials, written ∆α 9 ∆β. Such an attack involves treating a

block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of three sub-ciphers:

E = Ea ◦ E0 ◦ Eb, where E0 denotes the rounds for which ∆α 9 ∆β holds, Ea

denotes the rounds before E0, and Eb denotes the rounds after E0.

Given a candidate for the subkeys used in Ea and Eb, if a plaintext pair produces

a difference of α immediately after Ea, and the corresponding known ciphertext

pair produces a difference of β immediately before Eb, then this candidate for the

subkey must be incorrect. More specifically, suppose Ka is the guess for the subkeys

51

4.2 Early Abort for (Related-Key) Impossible Differential Cryptanalysis

used in Ea, and Kb is the guess for the subkeys used in Eb. Then the candidate

(Ka,Kb) for the subkeys used in Ea and Eb is impossible if there is a pair of known

plaintext/ciphertext pairs ((P, P ′), (C, C ′)) satisfying the following two conditions:

Ea
Ka

(P)⊕Ea
Ka

(P ′) = α, (4.1)

(Eb
Kb

)−1(C)⊕ (Eb
Kb

)−1(C ′) = β. (4.2)

Thus, given a sufficient number of matching plaintext/ciphertext pairs, we can find

the correct subkey by discarding the wrong guesses.

When checking whether a plaintext pair produces a difference of α just after Ea, as

in equation 4.1, (or the corresponding ciphertext pair produces a difference of β just

before Eb, as in equation 4.2), the ‘standard’ approach is to guess all the unknown

bits of the relevant round subkey necessary to partially encrypt (or decrypt) the

pair. Finally, one can check whether the pair produces the expected difference just

after (or before) the round.

As an example, consider a Feistel round function structure similar to that used in

Camellia, as shown in Figure 4.1. We assume that the round function F uses an

nonlinear substitution consisting of m parallel S-boxes and a linear diffusion function

D. Suppose that (P, P ′) is a pair of plaintexts, (Li, Ri) is the input to the ith round

of the encryption of P , (L′i, R
′
i) is the input to the ith round of the encryption of P ′,

(Li+1, Ri+1) is the output of the ith round of the encryption of P , and (L′i+1, R
′
i+1)

is the output of the ith round of the encryption of P ′. For simplicity, we assume

that the final round of Ea is round i, and the current task for the attacker is to

check whether (F(Li)⊕Ri ⊕ F(L′i)⊕R′
i)||(Li ⊕ L′i) = α.

When using the attack procedure described in Section 2.2.7, because of the use of

the function D, the attacker will need to guess all the required unknown bits of the

subkey K (i.e. those corresponding to the active S-boxes). The attacker must then

encrypt Li and L′i through the substitution layer to get the values F(Li ⊕K) and

F(L′i⊕K), and compute the difference F(Li⊕K)⊕F(L′i⊕K). Finally, the attacker

XORs this difference with the difference ∆Ri(= Ri ⊕R′
i) to check whether the pair

(P, P ′) has the difference α after round i.

However, if D is linear, the round structure allows us to partially determine whether

52

4.2 Early Abort for (Related-Key) Impossible Differential Cryptanalysis

Li Ri

Li+1 Ri+1

⊕

s1

s2

sm

D.

.

.

k1 k2 km

⊕

· · ·

Figure 4.1: A Feistel round structure

the candidate pair (P, P ′) could produce the expected difference α by guessing only

a small fraction of the required round subkey bits at a time, instead of all of them

simultaneously. More specifically, since we know the expected difference α and the

intermediate values (Li||Ri) and (L′i||R′
i) of the pair (P, P ′) just before the round,

we can compute the expected difference ∆S = D−1(Ri ⊕ R′
i ⊕ αL) just before the

D function, where αL is the left half of α, because given our assumption that D is

linearly invertible. Only if the expected difference ∆S appears after the substitution

layer could the pair (P, P ′) produce the difference α after the round. We next guess

only the part of the required unknown subkey bits corresponding to one (or more)

active S-box, then encrypt the pair through the S-box, and finally check whether it

produces the corresponding partial difference of ∆S. If not, then the pair (P, P ′) is

not a valid candidate, and we can discard it immediately; otherwise, we guess another

part of the required round subkey bits corresponding to another active S-box, and

check again. A pair is a valid candidate only if it produces the corresponding partial

difference of ∆S under each part of the required set of subkey bits. After each guess,

some invalid candidate pairs can be discarded. This observation enables us to reduce

an attack’s computational workload, and, even more significantly, it may be possible

to break more rounds of a cipher.

More delicate applications depend on the specific (related-key) impossible differen-

tials used as well as the round function of the block cipher concerned. Examples

include the cryptanalyses of AES, Camellia and HIGHT described in Chapters 5, 6

and 10.

The early abort technique can be applied in almost the same way to related-key

53

4.3 Early Abort for the Rectangle Attack

impossible differential cryptanalysis.

4.3 Early Abort for the Rectangle Attack

The rectangle attack, (like the amplified boomerang attack), involves treating a block

cipher E : {0, 1}n×{0, 1}k → {0, 1}n as a cascade of four sub-ciphers E = Ea ◦E0 ◦
E1 ◦ Eb, where E0 ◦ E1 denotes the rounds for which the rectangle distinguisher

holds, Ea denotes the rounds before E0, and Eb denotes the rounds after E1.

Given a guess for the subkeys used in Ea and Eb, the rectangle attack involves check-

ing whether a candidate quartet consisting of two pairs of plaintext blocks meets the

differential conditions required by the rectangle distinguisher. Specifically, suppose

Ka is the guess for the subkeys used in Ea, and Kb is the guess for the subkeys

used in Eb. Then the attacker checks whether a candidate quartet of known plain-

text/ciphertext pairs (((P, C), (P ∗, C∗)), ((P ′, C ′), (P ′∗, C ′∗))) satisfies the following

two conditions:

Ea
Ka

(P)⊕Ea
Ka

(P ∗) = Ea
Ka

(P ′)⊕Ea
Ka

(P ′∗) = α, (4.3)

(Eb
Kb

)−1(C)⊕ (Eb
Kb

)−1(C ′) = (Eb
Kb

)−1(C∗)⊕ (Eb
Kb

)−1(C ′∗) = δ. (4.4)

This is shown in Figure 4.2(a).

In a chosen plaintext attack scenario, the attack involves choosing the pairs (P, P ∗)

and (P ′, P ′∗) in the following way.

1. Choose a plaintext, P say, and encrypt it with Ea under the guess Ka to obtain

Ea
Ka

(P).

2. Set P ∗ = (Ea
Ka

)−1(Ea
Ka

(P)⊕ α).

3. Choose the pair (P ′, P ′∗) in the same way as (P, P ∗).

It is straightforward to verify that a quartet ((P, P ∗), (P ′, P ′∗)) selected in the above

way meets the conditions described in equation 4.3. The remaining problem is to

check whether it also meets the conditions described in equation 4.4.

54

4.3 Early Abort for the Rectangle Attack

P

C

E
b

K

P ∗

C∗

P ′

C ′

P ′∗

C ′∗

α α

(a)

E
b

K E
b

K

E
b

K

E
1

K
◦ E

0

K

δ

δ

E
a

K

E
a

K
E

a

K

E
a

K

P

C

E
b

KA

P ∗

C∗

P ′

C ′

P ′∗

C ′∗

α α

(b)

E
b

KB
E

b

KD

E
b

KC

E
1

KA
◦ E

0

KA

δ

δ

E
a

KA

E
a

KB

E
a

KC

E
a

KD

E1

KB
◦ E0

KB

E
1

KC
◦ E

0

KC

E
1

KD
◦ E

0

KD
E

1

K
◦ E

0

K

E
1

K
◦ E

0

K

E
1

K
◦ E

0

K

Figure 4.2: The rectangle and related-key rectangle attacks

The ‘standard’ approach to this is to simultaneously decrypt both the pairs (C, C ′)

and (C∗, C ′∗) through Eb by guessing the subkeys used in Eb. However, it may be

possible to partially determine whether or not a candidate quartet in a rectangle

attack is useful one or more rounds earlier than usual. More specifically, given that

we know the expected output difference δ after E1, we may also know the expected

output differences of one or more rounds after E1. Thus, we only need to guess

part of the subkeys in Eb in order to check whether a candidate quartet produces

one of the expected output differences in one or more of the rounds after E1. If

not, we can discard it immediately; otherwise, we then guess part (or all) of the

rest of the subkeys used in Eb, and check the quartet in a similar way. Since some

candidate quartets are discarded at each stage, this results in a smaller number of

computations overall, and may allow us to break more rounds, depending on how

many candidate quartets remain and how many subkeys it is necessary to guess.

We also observe that the check can be done a little more efficiently by decrypting

the two pairs in a candidate quartet in a staged way. To simplify the explanation,

we assume that there is only one round in Eb. If the first pair, (C,C ′) say, does not

meet the condition

(Eb
Kb

)−1(C)⊕ (Eb
Kb

)−1(C ′) = δ,

then this candidate quartet is not useful, and we can discard it without decrypting

the second pair (C∗, C ′∗). If it meets this condition, then we decrypt the other pair

55

4.4 Early Abort for the Related-Key Rectangle Attack

(C∗, C ′∗) to check whether it meets the condition

(Eb
Kb

)−1(C∗)⊕ (Eb
Kb

)−1(C ′∗) = δ.

When decrypting either pair from a quartet, we can also apply the technique intro-

duced in Section 4.2.

Generally, using this staged approach to decrypting quartets we can reduce an at-

tack’s computation workload by a factor of O(1
2). While this improvement is small

for a rectangle attack, it may be significant for a related-key rectangle attack.

4.4 Early Abort for the Related-Key Rectangle Attack

A related-key rectangle attack, (like the related-key amplified boomerang attack),

treats a block cipher E : {0, 1}n×{0, 1}k → {0, 1}n as a cascade of four sub-ciphers

E = Ea ◦ E0 ◦ E1 ◦ Eb, where E0 ◦ E1 denotes the rounds for which the rectangle

distinguisher holds, Ea denotes the rounds before E0, and Eb denotes the rounds

after E1.

Given a guess for the subkeys used in Ea and Eb, the related-key rectangle attack

involves checking whether a candidate quartet consisting of two pairs of known

plaintext/ciphertext blocks meets the differential conditions required by the related-

key rectangle distinguisher. Specifically, suppose Ka
A, Ka

B, Ka
C and Ka

D are the

guesses for the subkeys used in Ea, and Kb
A, Kb

B, Kb
C and Kb

D are the guesses for

the subkeys used in Eb. Then the attacker checks whether a candidate quartet of

known plaintext/ciphertext pairs (((P, C), (P ∗, C∗)), ((P ′, C ′), (P ′∗, C ′∗))) satisfies

the following two conditions:

Ea
Ka

A
(P)⊕Ea

Ka
B
(P ∗) = Ea

Ka
C
(P ′)⊕Ea

Ka
D
(P ′∗) = α, (4.5)

(Eb
Kb

A
)−1(C)⊕ (Eb

Kb
C
)−1(C ′) = (Eb

Kb
B
)−1(C∗)⊕ (Eb

Kb
D
)−1(C ′∗) = δ. (4.6)

This is shown in Figure 4.2(b).

In a chosen plaintext attack scenario, the attack involves choosing the pairs (P, P ∗)

and (P ′, P ′∗) in a similar way to that described in Section 4.3, as follows.

56

4.4 Early Abort for the Related-Key Rectangle Attack

1. Choose a plaintext, P say, and encrypt it with Ea under the guess Ka
A to

obtain Ea
Ka

A
(P).

2. Set P ∗ = (Ea
Ka

B
)−1(Ea

Ka
A
(P)⊕ α).

3. Choose the pair (P ′, P ′∗) in the same way as (P, P ∗).

It is straightforward to verify that a quartet ((P, P ∗), (P ′, P ′∗)) selected in the above

way meets the conditions described in equation 4.5. The remaining problem is to

check whether it also meets the conditions described in equation 4.6.

The key schedules of some block ciphers make it impossible for us to determine the

subkey differences used in Eb from the user key differences; thus it is necessary to

guess the four1 different unknown subkeys Kb
A, Kb

B, Kb
C and Kb

D used in Eb to check

whether the candidate quartet ((P, P ∗), (P ′, P ′∗)) meets the condition described in

equation 4.6.

The ‘standard’ approach to this is to first guess the four subkeys at once, then

decrypt both (C,C ′) and (C∗, C ′∗) to check whether they meet the conditions de-

scribed in equation 4.6. However, we observe that the check can be performed more

efficiently by decrypting the two pairs from a candidate quartet in a staged way. To

simplify the explanation, we assume that there is only one round in Eb. We first

guess the two subkeys Kb
A and Kb

C connected with the pair (C, C ′), and then check

whether the pair meets the condition

(Eb
Kb

A
)−1(C)⊕ (Eb

Kb
C
)−1(C ′) = δ.

If the pair does not meet this condition, then we can discard the candidate quartet;

if it meets the condition, then we guess the other two subkeys Kb
B and Kb

D connected

with the other pair (C∗, C ′∗), and check if this pair meets the condition

(Eb
Kb

B
)−1(C∗)⊕ (Eb

Kb
D
)−1(C ′∗) = δ.

Using this approach it may be possible to significantly reduce the workload of an

attack. Even more interestingly, it may be possible to break more rounds of a cipher.
1We consider the related-key rectangle attack with four keys here; similar shortcuts apply in the

version of the attack using two keys.

57

4.5 Summary

An example of this latter case is provided by the attack on SHACAL-2 described in

Chapter 8.

4.5 Summary

In this chapter we have given a general description of the early abort technique

for (related-key) impossible differential cryptanalysis and (related-key) rectangle at-

tacks. This technique can, in certain circumstances, be used to improve the efficiency

of an attack. More detailed descriptions of specific examples of the early abort tech-

nique are given in subsequent chapters.

We have only described the application of the early abort technique to two specific

types of block cipher cryptanalysis; however, depending on the design of the round

function, the technique can also be used to improve the efficiency of other cryptan-

alytic approaches, including differential cryptanalysis and its extensions. For exam-

ple, it can be applied to the rounds preceding a differential-linear distinguisher in a

differential-linear cryptanalysis procedure.

58

Chapter 5

Cryptanalysis of Reduced-Round AES

The Advanced Encryption Standard (AES) is a 128-bit block cipher with a user key

of 128, 192 or 256 bits, which became a CRYPTREC-recommended e-government

cipher in 2002, a NESSIE selected algorithm in 2003, and was adopted as an ISO

international standard in 2005. In this chapter we present a number of novel at-

tacks on reduced versions of AES; these attacks use the impossible differential and

impossible boomerang techniques.

We first present the best currently published impossible differential cryptanalysis re-

sults on AES; these attacks make use of the early abort technique and a number of

observations regarding the key schedule. We give an attack on 7-round AES-128 that

requires 2112.2 chosen plaintexts and has a time complexity of 2115.6 encryptions. We

also describe two attacks on 7-round AES-192, one that requires 291.2 chosen plain-

texts and has a time complexity of 2145.5 encryptions, and another that requires 2113.8

chosen plaintexts and has a time complexity of 2117.2 encryptions. Finally we de-

scribe two attacks on 8-round AES-256, one that requires 289 chosen plaintexts and

has a time complexity of 2247.7 encryptions, and another that requires 2111.6 chosen

plaintexts and has a time complexity of 2233.1 encryptions.

Secondly, we present impossible boomerang attacks on 6-round AES-128, 7-round

AES-192 and 7-round AES-256. The 6-round AES-128 attack requires 2112.2 chosen

plaintexts and has a time complexity of 2112.3 encryptions; the 7-round AES-192

attack requires 2112.5 chosen plaintexts and has a time complexity of 2186.3 encryp-

tions; and the 7-round AES-256 attack requires 2112.8 chosen plaintexts and has a

time complexity of 2186.9 encryptions.

59

5.1 Introduction

Finally, we present related-key impossible boomerang attacks on 8-round AES-192

and 9-round AES-256 using two keys. The 8-round AES-192 attack requires 2122.4

chosen plaintexts and has a time complexity of 2160 encryptions; and the 9-round

AES-256 attack requires 2122.8 chosen plaintexts and has a time complexity of 2242.5

encryptions. This latter attack is the first published attack on 9-round AES-256

using two keys.

Contents

5.1 Introduction . 60
5.2 The AES Block Cipher . 62

5.2.1 Notation . 62
5.2.2 Operations . 62
5.2.3 Generation of Subkeys . 63
5.2.4 Encryption Procedure . 64

5.3 Previous Cryptanalytic Results 65
5.4 Impossible Differential Cryptanalysis of Reduced-Round

AES . 66
5.4.1 General Observations . 67
5.4.2 Attacking 7-Round AES-128 72
5.4.3 Attacking 7-Round AES-192 77
5.4.4 Attacking 8-Round AES-256 83

5.5 Impossible Boomerang Attack on Reduced-Round AES 91
5.5.1 4-Round Impossible Boomerang Distinguishers 91
5.5.2 Attacking 6-Round AES-128 94
5.5.3 Attacking 7-Round AES-192 and 7-Round AES-256 96

5.6 Related-Key Impossible Boomerang Attack on Reduced-
Round AES . 99

5.6.1 Attacking 8-Round AES-192 Using Two Related Keys . . . 100
5.6.2 Attacking 9-Round AES-256 Using Two Related Keys . . . 101

5.7 Summary . 103

5.1 Introduction

In November 2001, NIST published the Advanced Encryption Standard (AES) [90]

as the next-generation data encryption standard for use in the USA, designed to

replace the Data Encryption Standard (DES) [91]. Subsequently, AES became a

CRYPTREC-recommended e-government cipher in 2002, a NESSIE selected algo-

rithm in 2003, and was adopted as an ISO international standard in 2005. AES

60

5.1 Introduction

is an SPN-based block cipher with a 128-bit block length and a user key length of

128, 192 or 256 bits. It was designed by Daemen and Rijndael [21], and was first

published in 1998.

In this chapter, we first revisit the application of the impossible differential crypt-

analysis technique to AES. Taking advantage of the early abort technique and cer-

tain other observations about the operation of the cipher, including some relating

to the key schedule, we present the best currently published impossible differential

cryptanalysis results on AES. We first give an attack on 7-round AES-128 that

requires 2112.2 chosen plaintexts and has a time complexity of 2115.6 encryptions,

which is also the best currently published cryptanalytic result on AES-128. Second

we describe two attacks on 7-round AES-192, one that requires 291.2 chosen plain-

texts and has a time complexity of 2145.5 encryptions, and another that requires

2113.8 chosen plaintexts and has a time complexity of 2117.2 encryptions. Finally we

describe two attacks on 8-round AES-256, one that requires 289 chosen plaintexts

and has a time complexity of 2247.7 encryptions, and another that requires 2111.6

chosen plaintexts and has a time complexity of 2233.1 encryptions.

We then present impossible boomerang attacks on 6-round AES-128, 7-round AES-

192 and 7-round AES-256. The 6-round AES-128 attack requires 2112.2 chosen plain-

texts and has a time complexity of 2112.3 encryptions; the 7-round AES-192 attack

requires 2112.5 chosen plaintexts and has a time complexity of 2186.3 encryptions;

and the 7-round AES-256 attack requires 2112.8 chosen plaintexts and has a time

complexity of 2186.9 encryptions.

Finally, we present related-key impossible boomerang attacks on 8-round AES-192

and 9-round AES-256 using two keys. The 8-round AES-192 attack requires 2122.4

chosen plaintexts and has a time complexity of 2160 encryptions; and the 9-round

AES-256 attack requires 2122.8 chosen plaintexts and has a time complexity of 2242.5

encryptions. This latter attack is the first published attack on 9-round AES-256

using two keys.

The remainder of this chapter is organised as follows. In Section 5.2 we describe

AES. In Section 5.3 we briefly review previous cryptanalytic results relevant to AES.

In Section 5.4 we present our impossible differential cryptanalytic results on AES. In

61

5.2 The AES Block Cipher

Section 5.5 we present our impossible boomerang cryptanalytic results on AES. In

Section 5.6, we present our related-key impossible boomerang cryptanalytic results

on AES. Section 5.7 summarises the main results given in this chapter.

5.2 The AES Block Cipher

In this section we briefly describe the AES block cipher [90].

5.2.1 Notation

In this chapter, the sixteen bytes of a 4 × 4 byte array are numbered from left to

right and then from top to bottom, starting with 1 (i.e. 1, 2, · · · , 16). We use the

following notation.

• ≪: leftward rotation operation on a 32-bit word

• ?: an arbitrary 8-bit value, where two values represented by the ? symbol may

be different

5.2.2 Operations

The four elementary operations BS, SR, MC and KA are used to define the AES

round function.

• BS (Byte Substitution) is a non-linear substitution operation on 4 × 4 byte

arrays, constructed by applying the same 8× 8-bit bijective S-box 16 times in

parallel to a 4× 4 byte array. See [90] for a definition of the S-box.

• SR (Shift Rows) is the linear function on 4 × 4 byte arrays which cyclically

shifts the jth row of a 4× 4 byte array to the left by j bytes, (0 ≤ j ≤ 3).

• MC (Mix Columns) is a permutation of the set of all 4 × 4 byte arrays (it

is a linear function over the finite field of 256 elements). It is equivalent

62

5.2 The AES Block Cipher

to pre-multiplying a 4 × 4 byte array by a fixed 4 × 4 byte array M , where

addition of bytes is simply the XOR operation, and multiplication is equivalent

to multiplication in the finite field of 256 elements (the field representation is

defined in [90]). The matrix M is as follows.

M =

0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

 .

• KA (Add Round Key) is the bitwise logical XOR operation on 4 × 4 byte

arrays. It is used to combine a 4 × 4 byte array with a 16-byte subkey. If X

and Y are 16-byte blocks, then KA(X, Y) = X ⊕ Y .

5.2.3 Generation of Subkeys

The AES cipher uses a total of (Nr +1) 128-bit subkeys Ki (0 ≤ i ≤ Nr), all derived

from the cipher key K of Nk 32-bit words long, where Nr is 10 for AES-128, 12 for

AES-192, and 14 for AES-256 (i.e. the 128, 192 and 256-bit key versions of AES),

and Nk is 4 for AES-128, 6 for AES-192, and 8 for AES-256. The key schedule is,

where θi/Nk
are public constants.

1. Represent the user key K as Nk 32-bit words (W1,W2, · · · ,WNk
).

2. For j = (Nk + 1) to 4(Nr + 1):

• if (j mod Nk = 1), then Wj = Wj−Nk
⊕BS(Wj−1 ≪ 8)⊕ θi/Nk

;

• else if (Nk = 8) and (j mod Nk = 5), then Wj = Wj−Nk
⊕BS(Wj−1);

• else Wj = Wj−Nk
⊕Wj−1.

3. Ki = (W4i+1,W4i+2, W4i+3,W4i+4), (0 ≤ i ≤ Nr).

Each of the subkeys Ki consists of 16 bytes; we write Ki,l for the lth byte of Ki,

where 1 ≤ l ≤ 16.

63

5.2 The AES Block Cipher

5.2.4 Encryption Procedure

AES takes as input a 128-bit plaintext block P , represented as a 4×4 byte array, and

has a total of Nr rounds (where Nr is 10 for AES-128, 12 for AES-192, and 14 for

AES-256). Its encryption procedure is as follows, where A0, Ai, Bi, Ci, Di, ANr , BNr

are 128-bit variables represented as 4× 4 byte arrays.

1. A0 = KA(P, K0).

2. For i = 1 to Nr − 1:

Bi = BS(Ai−1),

Ci = SR(Bi),

Di = MC(Ci),

Ai = KA(Di,Ki).

3. ANr = BS(DNr−1), BNr = SR(ANr).

4. Ciphertext= KA(BNr ,KNr).

An equivalent description of the algorithm can be derived by reversing the order of

the third and fourth operations of step 2 of the above description, i.e. the operations

involving MC and KA. These two steps then become:

D′
i = KA(Ci, K̃i),

Ai = MC(D′
i),

where K̃i) = MC−1(Ki). (Note that MC−1 is well-defined since MC is a linear

function equivalent to a full rank matrix). We use this alternative representation in

certain of the attacks described later in this chapter.

The ith iteration of Step 2 in the above description is referred to below as Round i,

(1 ≤ i ≤ Nr − 1), and the transformation in Step 3 is referred to below as the final

round, i.e. Round Nr.

64

5.3 Previous Cryptanalytic Results

5.3 Previous Cryptanalytic Results

In this section we briefly review previously published cryptanalytic attacks on AES.

• In 1998, using the square attack, the AES proposers Daemen and Rijmen [21]

presented the first published attack on 6-round AES-128.

• In 2000, Gilbert and Minier [26] presented collision attacks on 7-round AES-

128, 7-round AES-192 and 7-round AES-256.

• In 2000, Ferguson, Kelsey, Lucks, Schneier, Stay, Wagner and Whiting [25]

presented partial sums square attacks on 7-round AES-128, 8-round AES-192

and 8-round AES-256, and presented a related-key square attack on 9-round

AES-256 using 256 keys.

• In 2001, Cheon, Kim, Kim, Lee and Kang [16] presented an impossible dif-

ferential attack on 6-round AES-128, building on the impossible differential

attack on 5-round AES-128 of Biham and Keller [11].

• In 2003, Jakimoski and Desmedt [45] presented a related-key impossible dif-

ferential attack on 8-round AES-192 using two keys.

• In 2004, Biryukov [15] presented a boomerang attack on 6-round AES-128.

• In 2004, Phan [96] presented impossible differential attacks on 7-round AES-

192 and 7-round AES-256.

• In 2005, Hong, Kim, Lee and Preneel [40] presented a related-key rectangle

attack on 8-round AES-192 using four keys.

• In 2005, Biham, Dunkelman and Keller [9] presented a related-key rectangle

attack on 9-round AES-192 and 10-round AES-256 using 256 keys.

• In 2006, Zhang, Zhang, Wu and Feng [112] presented a related-key impossible

differential attack on 8-round AES-192 using two keys, building on the related-

key impossible differential attack of Biham et al. [10].

• In 2007, Kim, Hong and Preneel [52] presented related-key rectangle attacks

on 8-round AES-192 using two keys, 9-round AES-192 using 64 keys, 10-round

65

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

AES-192 using 64 (or 256) keys, 9-round AES-256 using 4 keys and 10-round

AES-256 using 64 (or 256) keys.

• In 2007, Bahrak and Aref [2] presented an impossible differential attack on

7-round AES-128.

• In 2007, Zhang, Wu and Feng [111] presented an impossible differential attack

on 7-round AES-128, 7-round AES-192 and 8-round AES-256.

• In 2007, Zhang, Zhang, Wu and Feng [113] presented a related-key differential-

linear attack [34] on 8-round AES-192 using two keys.

• In 2008, Demirci and Selcuk [22] presented a meet-in-the-middle attack on

7-round AES-192 and 8-round AES-256.

In summary, the square attack, the collision attack, the meet-in-the-middle attack,

the impossible differential attack and the boomerang attack are the techniques that

have previously been used to break 6 or more rounds of AES in a single key attack

scenario. The best previously published cryptanalytic results on AES in a single

key attack scenario are the square, collision and impossible differential attacks on

7-round AES-128 [2, 25, 26, 111], the square attack on 8-round AES-192 [25] and the

square, collision and impossible differential attacks on 8-round AES-256 [22, 25, 111].

The best previously published cryptanalytic results on AES in a related-key attack

scenario involving two keys are the related-key impossible differential, rectangle and

differential-linear attacks on 8-round AES-192 [45, 52, 112, 113].

5.4 Impossible Differential Cryptanalysis of Reduced-Round
AES

In this section, using the early abort technique as well as a number of observations

on the key schedule, we present impossible differential attacks on 7-round AES-128,

7-round AES-192 and 8-round AES-256.

66

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

5.4.1 General Observations

As described in Section 2.2.7, impossible differential cryptanalysis is based on one

or more impossible differentials, written ∆α 9 β. It usually involves treating a

block cipher E : {0, 1}n × {0, 1}k → {0, 1}n as a cascade of three sub-ciphers E =

Ea ◦E0 ◦Eb, where E0 denotes the rounds for which ∆α 9 ∆β holds, Ea denotes a

number of rounds before E0, and Eb denotes a number of rounds after E0. Given a

guess for the subkeys used in Ea and Eb, if a plaintext pair produces a difference of

α just after Ea and the corresponding ciphertext pair produces a difference of β just

before Eb, then this guess for the subkey must be incorrect. Thus, given a sufficient

number of matching plaintext/ciphertext pairs, we can find the correct subkey by

discarding all the wrong guesses.

5.4.1.1 Observation I

When checking whether a plaintext pair produces a difference of α just after Ea

(or the corresponding ciphertext pair produces a difference of β just before Eb), the

‘standard’ approach is to guess all the unknown bits of the relevant round subkey

necessary to partially encrypt (respectively decrypt) the pair through the substitu-

tion and diffusion layers. The attacker can then check whether the pair produces

the expected difference just after Ea or just before Eb. Consider the example shown

in Figure 5.1. We assume that it is the the first round in Ea, and the attacker needs

to check whether a plaintext pair with a non-zero difference in only the four bytes

numbered (1,6,11,16) can produce the output difference after the MC operation

with only one non-zero byte in the first column.

Because of the diffusion properties of the MC operation, one possible approach, as

followed in [16, 96], is to guess all the unknown required subkey bits (i.e. the four

bytes (1,6,11,16) of the subkey K0), then encrypt the pair through the BS◦SR◦MC

operation to obtain the corresponding values just after the MC operation, and finally

check whether they have the expected difference. This requires negligible memory,

and has time complexity of one quarter of a round encryption. However, if this

approach is used, then the impossible differential attacks on 7-round AES-128 and

8-round AES-256 presented in [2, 111] would have a time complexity much larger

67

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

than that for an exhaustive key search; that is, they would be infeasible. Instead, a

precomputation table is used, just as in [11], as we now describe.

First note that there are at most 232 × 255× 4 ≈ 242 pairs of 32-bit values of bytes

(1,6,11,16) just after the KA operation which produce an output difference after

the BS ◦ SR ◦MC operation of the expected type (since there are very nearly 240

ordered pairs that produce an output difference which have a single non-zero byte in

a specified position). Let Ω0 be the set of these 242 pairs. Store all the 242 pairs in

Ω0 in a table indexed by the difference between the two 32-bit values in a pair. For

every such difference, there are, on average 242

232 = 210 pairs of 32-bit values, made

up of the values of bytes (1,6,11,16) just after the KA operation. In addition to

storing the 242 pairs in Ω0, the attacker needs to store the 232 possible values of

(K0,1, K0,6,K0,11,K0,16) in a list. Finally, given a plaintext pair, the attacker can

compute the 210 values for (K0,1,K0,6,K0,11,K0,16) under which the plaintext pair

produces the expected output difference, by XORing the plaintext pair with the

approximately 210 pairs of 32-bit values in the precomputation table that have the

same difference as that between the two plaintexts from the plaintext pair, and then

discard the 210 values from the list of (K0,1,K0,6,K0,11,K0,16).

To obtain all the values for (K0,1,K0,6,K0,11,K0,16) under which one plaintext pair

produces an expected difference after applying KA◦BS◦SR◦MC, the first approach

described above requires negligible memory and has a time complexity of 232 × 1
4 =

230 one-round encryptions. By contrast, the approach using a precomputation table

requires 242 × 8 + 232 × 4 ≈ 245 bytes ≈ 262144 Gbits of memory, and has a time

complexity of 210 memory accesses (the time for precomputation is excluded, which

is approximately 232× 1
4 = 230 one-round encryptions). That is, we have a trade-off

between time (or computation workload) and memory, which makes Bahrak et al.’s

and Zhang et al.’s attacks [2, 111] feasible in theory.

We now make the observation that the round structure of AES allows us to par-

tially determine whether a candidate pair could produce the expected difference by

guessing only a small fraction of the required round subkey bits at a time. We can

then perform a series of partial checks by guessing other fractions of the unknown

required subkey bits, instead of guessing all the unknown required subkey bits at

once. More specifically, since we know the expected difference just after the MC

68

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

SR MCBSKA

Ω

: non-zero byte difference : zero byte difference

Figure 5.1: An example of the early abort technique

operation, we can compute the expected difference just before the SR operation, as

the MC operation is a linear function equivalent to a full rank matrix, and hence

readily invertible. There are 255 possible non-zero differences for a single byte, and

thus there are a total of 4 × 255 possible differences with only one non-zero byte

difference in the first column, since there are four different byte positions in this col-

umn. These differences are transformed by the MC−1 ◦ SR−1 operation to 4× 255

possible all non-zero differences in the four bytes (1,6,11,16); we call the set of all

such differences Ω. All the differences in Ω will be transformed by the SR ◦MC

operation to differences with a non-zero byte difference in only one byte of the first

column.

We can now give the following result.

Property 5.1 The differences in Ω have distinct values in the pair of byte positions

(1, 6).

Proof. Suppose there exist two differences x and y from Ω that have the same value

in bytes (1,6), that is to say, x⊕y is equal to zero in the first two bytes. Since x and

y are transformed by the MC−1 ◦ SR−1 operation from two differences with only

one non-zero byte in the first column, say x̃ and ỹ, it follows that at least two out

of the four bytes of x̃ ⊕ ỹ should be zero; however, this is impossible, as the MC

operation has a branch number of 5 [21]. ¤

Thus, we can just guess bytes (1,6) of the subkey K0, and partially encrypt the pair

through the BS operation to check whether it produces a difference equal to the

corresponding partial difference of any difference in Ω. If not, then the pair is not a

valid candidate, and we can discard it immediately. Otherwise, by Property 5.1, we

69

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

know that there is only one difference in Ω that has the same corresponding partial

difference; we label this difference δ1. We next guess another fraction of the required

round subkey bits of K0, i.e. either byte (11) or (16), and check whether the pair

produces a difference equal to the corresponding partial difference in δ1. A pair is

a valid candidate only if it produces the expected partial differences just after the

BS operation, under the guesses for the three parts, i.e. bytes (1,6), (11) and (16),

of the subkey. It is expected that a proportion of about 1− 4×255
216 of plaintext pairs

will be discarded before the next guess for the subkey byte (11) or (16). Therefore,

to obtain all the values for (K0,1,K0,6,K0,11,K0,16) under which one plaintext pair

produces a particular difference after applying KA ◦BS ◦ SR ◦MC, this approach

requires 210 × 4 = 212 bytes ≈ 32 kbits of memory, which is negligible for today’s

computers, and has a time complexity of approximately 216 × 2
16 + 216 × 4×255

216 ×
28 × 1

16 + 216 × 4×255
216 × 28 × 2−8 × 28 × 1

16 ≈ 215.32 one-round encryptions. Hence,

we can use this observation to reduce an attack’s computational workload without

using the precomputation table described earlier, and, even more significantly, we

may be able to break more rounds of a cipher.

As shown in the attacks described in Sections 5.4.2–5.4.4, there exist other examples

of the successful application of the early abort technique to impossible differential

cryptanalysis of AES.

5.4.1.2 Observation II

From the definition of MC and the fact that MC has a branch number of 5, we can

easily get the following result.

Property 5.2 Suppose that a pair of inputs to MC (or MC−1) differ in only two

fixed byte positions of the ith column, and in only three fixed byte positions of the

output of the ith column (1 ≤ i ≤ 4). Then, the following properties hold.

1. The number of possible pairs of input and output differences is 255.

2. If the difference in any of the five fixed byte positions is known, then the dif-

ferences in the other four fixed byte positions can also be determined.

70

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

MC
−1

KA
−1SR

−1
BS

−1

MC KASRBS

KA
−1

SR
−1

BS
−1

MC KASR

contradiction

KA

BS

: non-zero byte difference : zero byte difference

Figure 5.2: 4-round impossible differentials of AES of Biham et al.

5.4.1.3 Observation III

In 2000, Biham et al. [11] gave the following 4-round impossible differentials for AES:

the input difference has zeros in all the bytes but one, and the output difference

has zeros only in the four bytes of any of (1,8,11,14), (2,5,12,15), (3,6,9,16) and

(4,7,10,13), (where, as described in Section 5.2, we are numbering the 16 bytes of a

128-bit block from 1 to 16). See Figure 5.2 for more details.

In 2007, Bahrak et al. [2] and Zhang et al. [111] gave a further class of 4-round

impossible differentials for AES, namely: the input difference has zeros in all the

bytes but one, and the output difference has zeros in all the bytes except three of a

column.

We find that all the following 4-round differentials of AES are impossible: the input

difference has zeros in all the bytes except one or more bytes of any of (1,6,11,16),

(2,7,12,13), (3,8,9,14) and (4,5,10,15), and the output difference has zeros in the four

71

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

bytes of any of (1,8,11,14), (2,5,12,15), (3,6,9,16) and (4,7,10,13), and has arbitrary

values in the remaining 12 bytes.

These impossible differentials apply to any set of four consecutive rounds of AES.

5.4.2 Attacking 7-Round AES-128

In this subsection, we present an impossible differential attack on 7-round AES-128,

using the early abort technique and an observation on the key schedule of AES-128.

This is the best currently published cryptanalytic result on AES-128. Without loss

of generality, we assume that the attacked 7 rounds are Rounds 1 to 7.

5.4.2.1 Preliminary Results

By the key schedule of AES-128, we have the following equations (5.1)–(5.3).

K7,1 = K6,1 ⊕BS(K6,8)⊕ θ1, (5.1)

K7,13 = K6,13 ⊕BS(K6,4)⊕ θ1, (5.2)

K7,8 = K6,8 ⊕K7,7. (5.3)

Hence, we can give the following property.

Property 5.3 For AES-128, a value for (K7,1,K7,7,K7,8,K7,13) yields a 24-bit fil-

tering condition on the possible values of (K6,1,K6,4,K6,8,K6,13).

5.4.2.2 Attack Description

The above analysis enables us to give the following attack on 7-round AES-128. We

use the 4-round impossible differentials of Bahrak et al. in Rounds 2 to 5, and reverse

the order of the operations MC and KA for Rounds 5 and 6. Figure 5.3 illustrates

the attack.

72

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

1. Choose 280.2 structures Si, (i = 1, 2, · · · , 280.2), where a structure Si is defined

to be a set of 232 plaintexts Pi,j with bytes (1, 6, 11, 16) taking all the possible

values and the other 12 bytes being fixed, (j = 1, 2, · · · , 232). In a chosen-

plaintext attack scenario, obtain all the 2112.2 ciphertexts for the 232 plaintexts

in each of the 280.2 structures; we denote by Ci,j the ciphertext for plaintext

Pi,j . Choose the plaintext pairs (Pi,j1 , Pi,j2) such that (Ci,j1 , Ci,j2) has a zero

difference in bytes (2,3,5,6,9,12,15,16), where 1 ≤ j1 6= j2 ≤ 232.

2. Guess a value for the two subkey bytes (K0,1,K0,6), and perform Steps (a) and

(b) below.

(a) Partially encrypt every remaining plaintext pair (Pi,j1 , Pi,j2) to get the

corresponding values for bytes (1,6) just after the BS operation of Round

1, and check whether they have a difference equal to any of the corre-

sponding two-byte partial differences in Ω, where Ω is defined in Ob-

servation I. Keep only the plaintext pairs that meet this condition. By

Property 5.1, we know that there is only one difference in Ω for every

such plaintext pair (Pi,j1 , Pi,j2), and we denote this difference by δ1
i,j1,j2

.

(b) Perform the following two sub-steps for l = 11, 16:

• Guess a value for the subkey byte K0,l.

• Partially encrypt every remaining plaintext pair (Pi,j1 , Pi,j2) to get

the corresponding values for byte (l) just after the BS operation

of Round 1, and check whether they have a difference equal to the

corresponding one-byte partial difference in δ1
i,j1,j2

. Keep only the

plaintext pairs that meet this condition.

3. Perform Steps (a)–(c) below for m = 1, 5, 9, 13:

(a) There are 255 possible 32-bit differences in bytes (1,5,9,13) just after the

KA operation of Round 6 that have a non-zero byte difference only in

byte (m), which are transformed by the MC operation to 255 possible 32-

bit differences in bytes (1,5,9,13) just after the MC operation of Round

6; we denote these differences by set Ωm. Then, guess a value for the two

subkey bytes (K7,1,K7,8), and perform the following two sub-steps.

i. Partially decrypt every ciphertext pair (Ci,j1 , Ci,j2) corresponding to

a remaining plaintext pair (Pi,j1 , Pi,j2) to get the corresponding values

73

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

KA
−1SR

−1
BS

−1

KA
−1

MC
−1SR

−1BS
−1

MC
−1

4-round impossible differentials

BS

KA

SR MC

: non-zero byte difference : zero byte difference

Round 1

Round 6

Round 7

Figure 5.3: Impossible differential attack on 7-round AES-128

for bytes (1,5) just after the MC operation of Round 6, and check

whether they have a difference equal to any of the corresponding

two-byte partial differences in Ωm. Keep only the ciphertext pairs

that meet this condition. Similarly we know that there is only one

difference in Ωm for a pair (Ci,j1 , Ci,j2) meeting the condition, and

we denote this difference by δm
i,j1,j2

.

ii. Perform the following tow sub-steps for l = 11, 14:

• Guess a value for the subkey byte K7,l.

• Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) to

get the corresponding values for byte (b5l−16
4 c) just after the MC

operation of Round 6, and check whether they have a difference

equal to the corresponding one-byte partial difference in δm
i,j1,j2

.

Keep only the ciphertext pairs that meet this condition.

(b) There are 255 possible 32-bit differences in bytes (4,8,12,16) just after the

KA operation of Round 6 that have a non-zero byte difference only in

byte ((m + 6) mod 16 + 1), which are transformed by the MC operation

to 255 possible 32-bit differences in bytes (4,8,12,16) just after the MC

74

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

operation of Round 6; we denote these differences by set Ωm+7. Then,

guess a value for the two subkey bytes (K7,4,K7,7), and perform the

following two sub-steps.

i. Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) to get

the corresponding values for bytes (4,8) just after the MC operation

of Round 6, and check whether they have a difference equal to any

of the corresponding two-byte partial differences in Ωm+7. Keep only

the ciphertext pairs that meet this condition. Similarly we know that

there is only one difference in Ωm+7 for a pair (Ci,j1 , Ci,j2) meeting

the condition, and we denote this difference by δm+7
i,j1,j2

.

ii. Perform the following two sub-steps for l = 10, 13:

• Guess a value for the subkey byte K7,l.

• Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) to

get the corresponding values for byte (b5l
4 c) just after the MC

operation of Round 6, and check whether they have a difference

equal to the corresponding one-byte partial difference in δm+7
i,j1,j2

.

Keep only the ciphertext pairs that meet this condition.

(c) Guess a value for the two subkey bytes (K̃6,m, K̃6,(m+6) mod 16+1). For

every remaining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt the corre-

sponding values for bytes (1,4,5,8,9,12,13,16) just after the MC opera-

tion of Round 6 to get the corresponding values for bytes (m+ bm
4 c, (m+

bm
4 c + 4) mod 16) just after the MC operation of Round 5, and check

whether they produce a difference that has only one zero byte difference

in bytes (m + bm
4 c, (m + bm

4 c + 4) mod 16, (m + bm
4 c + 8) mod 16, (m +

bm
4 c+ 12) mod 16) just after the KA operation of Round 5. If there ex-

ists a ciphertext pair meeting this condition, discard the guessed value for

(K0,1,K0,6,K0,11,K0,16, K7,1,K7,4,K7,7,K7,8,K7,10, K7,11,K7,13,K7,14,K̃6,m,

K̃6,(m+6) mod 16+1), and try another guess.

4. For every guessed possible value for (K0,1,K0,6,K0,11,K0,16,K7,1, K7,4,K7,7,

K7,8,K7,10,K7,11, K7,13,K7,14, K̃6,1, K̃6,4, K̃6,5, K̃6,8, K̃6,9, K̃6,12, K̃6,13, K̃6,16) af-

ter Step 3, check whether the value for (K7,1,K7,7,K7,8,K7,13, K̃6,1, K̃6,4, K̃6,5,

K̃6,8, K̃6,9, K̃6,12, K̃6,13, K̃6,16) meets equations (5.1)–(5.3). If not, discard it;

otherwise, determine the correct key by exhaustively searching the remaining

24 key bits.

75

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

5.4.2.3 Complexity Analysis

The attack requires 2112.2 chosen plaintexts, which take a time complexity of 2112.2

7-round AES-128 encryptions.

In Step 1, a structure Si yields
(
232

2

) ≈ 232×2

2 = 263 plaintext pairs (Pi,j1 , Pi,j2) that

have a zero difference in all the bytes except bytes (1,6,11,16), (i = 1, 2, · · · , 280.2,

1 ≤ j1 6= j2 ≤ 232). Thus the 280.2 structures yield a total of 280.2 × 263 = 2143.2

plaintext pairs that have a zero difference in all the bytes except bytes (1,6,11,16).

There is a 64-bit filtering condition over the ciphertext pairs, hence it is expected

that approximately 2143.2 × 2−64 = 279.2 ciphertext pairs (Ci,j1 , Ci,j2) are chosen in

Step 1. Choosing these ciphertext pairs requires about 2112.2 memory accesses in a

simple implementation using a hash table.

In Step 2(a), there are only 4 × 255 differences in Ω, thus it is expected that

about 279.2 × 4×255
216 = 273.2 plaintext pairs remain after Step 2(a) for every guess

of (K0,1,K0,6). Step 2(a) has a time complexity of 2 × 279.2 × 216 × 2
16 × 1

7 ≈ 294.4

7-round AES-128 encryptions.

In Step 2(b), as the difference δ1
i,j1,j2

for every remaining plaintext pair (Pi,j1 , Pi,j2) is

already fixed in Step 2(a), it is expected that for every subkey guess a proportion of

about 1−2−8 of the remaining plaintext pairs will be discarded after every iteration.

Step 2(b) has a time complexity of 2×273.2×224× 1
16× 1

7+2×265.2×232× 1
16× 1

7 ≈ 296.4

7-round AES-128 encryptions.

In Step 3(a)-i, for every iteration of m, there are 255 differences in Ωm, thus the

expected number of remaining pairs for every subkey guess is about 257.2 × 255
216 =

249.2. In Step 3(a)-ii, as the difference δm
i,j1,j2

for every remaining ciphertext pair

(Ci,j1 , Ci,j2) is already fixed in Step 3(a)-i, it is expected that a proportion of about

1− 2−8 of the remaining ciphertext pairs will be discarded after every iteration of l.

Step 3(a) has a total time complexity of 4× (2× 257.2 × 248 × 2
16 × 1

7 + 2× 249.2 ×
256 × 1

16 × 1
7 + 2× 241.2 × 264 × 1

16 × 1
7) ≈ 2104.7 7-round AES-128 encryptions.

In Step 3(b)-i, for every iteration of m, there are 255 differences in Ωm+7, thus the

expected number of remaining pairs for every subkey guess is about 233.2 × 255
216 =

76

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

225.2. In Step 3(b)-ii, as the difference δm+7
i,j1,j2

for every remaining ciphertext pair

(Ci,j1 , Ci,j2) is already fixed in Step 3(b)-i, it is expected that for every subkey guess

a proportion of about 1 − 2−8 of the remaining pairs will be discarded after every

iteration. Step 3(b) has a time complexity of 4 × (2 × 233.2 × 280 × 2
16 × 1

7 + 2 ×
225.2× 288× 1

16 × 1
7 +2× 217.2× 296× 1

16 × 1
7) ≈ 2112.7 7-round AES-128 encryptions.

In Step 3(c), for every iteration of m, the probability that a remaining ciphertext

pair (Ci,j1 , Ci,j1) meets the condition is 4 × 2−8 = 2−6. For every guessed 96-

bit value for (K0,1,K0,6,K0,11,K0,16, K7,1, K7,4,K7,7,K7,8,K7,10,K7,11,K7,13,K7,14),

it is expected that about 216 × (1 − 2−6)2
9.2 ≈ 22.77 values for the two bytes

(K̃6,m, K̃6,(m+6 mod 16)+1) remain after Step 3(c). After considering the four itera-

tions of m, we get that, for every guessed value for (K0,1,K0,6,K0,11,K0,16,K7,1,K7,4,

K7,7,K7,8,K7,10,K7,11, K7,13,K7,14), there remain approximately 22.77×4 = 211.08

possible values for (K̃6,1, K̃6,4, K̃6,5, K̃6,8, K̃6,9, K̃6,12, K̃6,13, K̃6,16); however, by Prop-

erty 5.3, we get that there are only 296 × 211.08 × 2−24 = 283.08 possible values for

(K0,1, K0,6,K0,11,K0,16,K7,1,K7,4,K7,7,K7,8,K7,10,K7,11, K7,13,K7,14,K̃6,1,K̃6,4,K̃6,5,

K̃6,8, K̃6,9, K̃6,12, K̃6,13, K̃6,16). By the key schedule of AES-128, we learn that, given

a value for (K7,1,K7,4,K7,7, K7,8,K7,10,K7,11,K7,13, K7,14, K̃6,1, K̃6,4, K̃6,5, K̃6,8, K̃6,9,

K̃6,12, K̃6,13, K̃6,16), only three additional subkey bytes are required to recover the

user key. Hence, Step 3(c) has a time complexity of about 4× {2× 2112 × [1 + (1−
2−6) + · · ·+ (1− 2−6)2

9.2
]× 2

16 × 1
7} ≈ 2115.2 7-round AES-128 encryptions.

The exhaustive search in Step 4 has a time complexity of 283.08 × 224 = 2107.08

7-round AES-128 encryptions.

Therefore, the attack has a total time complexity of approximately 2115.6 7-round

AES-128 encryptions.

5.4.3 Attacking 7-Round AES-192

In this subsection, we present an impossible differential attack on 7-round AES-192,

using the early abort technique and an observation on the key schedule of AES-192.

Without loss of generality, we assume that the attacked 7 rounds are Rounds 1 to

7.

77

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

5.4.3.1 Preliminary Results

By the key schedule of AES-192, we have the following equations (5.4)–(5.6).

K7,11 = K6,9 ⊕BS(K7,14)⊕ θ1, (5.4)

K7,15 = K6,13 ⊕BS(K7,2)⊕ θ1, (5.5)

K7,12 = K6,10 ⊕BS(K7,11). (5.6)

We can now give the following result.

Property 5.4 For AES-192, the value for (K6,9,K6,10,K6,13) can be known from a

value of (K7,2, K7,11,K7,12,K7,14,K7,15).

5.4.3.2 Attack Description

As a result, we can give the following attack procedure breaking 7-round AES-192

with a time complexity significantly lower than those for the attacks of Phan [96]

and Zhang et al. [111]. We use the 4-round impossible differentials of Biham et al.

in Rounds 2 to 5, and reverse the order of the operations MC and KA for Rounds

5 and 6. Figure 5.4 illustrates the attack.

1. Choose 259.2 structures Si, (i = 1, 2, · · · , 259.2), where a structure Si is defined

to be a set of 232 plaintexts Pi,j with bytes (1, 6, 11, 16) taking all the possible

values and the other 12 bytes fixed, (j = 1, 2, · · · , 232). In a chosen-plaintext

attack scenario, obtain all the ciphertexts for the 232 plaintexts in each of the

259.2 structures; we denote by Ci,j the ciphertext for plaintext Pi,j . Choose

the plaintext pairs (Pi,j1 , Pi,j2) such that (Ci,j1 , Ci,j2) has a zero difference in

bytes (3,4,6,7,9,10,13,16), where 1 ≤ j1 6= j2 ≤ 232.

2. Guess a value for the 10 subkey bytes (K7,1, K7,2,K7,5,K7,8,K7,11,K7,12,K7,14,

K7,15,K6,1,K6,5). By equations (5.4) and (5.5), we deduce the value for the

two subkey bytes (K6,9,K6,13), and then perform Steps (a)–(d) below.

(a) Partially decrypt every ciphertext pair (Ci,j1 , Ci,j2) to get the correspond-

ing values for bytes (1,6,11,16) just after the MC operation of Round 5,

78

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

KA
−1SR

−1
BS

−1

KA
−1 MC

−1
SR

−1
BS

−1

MC
−1

4-round impossible differentials

BS

KA

SR MC

: non-zero byte difference : zero byte difference

Round 7

Round 6

Round 1

Figure 5.4: Impossible differential attack on 7-round AES-192

and compute the difference; we denote it by δi,j1,j2 . We use all the 4-

round impossible differentials that have a zero difference in only the four

bytes of one of the four sets: bytes (1,8,11,14), bytes (2,5,12,15), bytes

(3,6,9,16) and bytes (4,7,10,13) just after the KA operation of Round

5. Thus, for every ciphertext pair (Ci,j1 , Ci,j2), by Property 5.2 we get

from δi,j1,j2 four possible 32-bit differences in bytes (2,7,12,13) just after

the MC operation of Round 5; let Ω5
i,j1,j2

be the set of these four 32-bit

differences.

(b) Guess a value for the subkey byte K̃6,2. For every remaining ciphertext

pair (Ci,j1 , Ci,j2), partially decrypt the corresponding values for byte (2)

just after the MC operation of Round 6 to get the corresponding values

for byte (2) just after the MC operation of Round 5, and check whether

they have a difference equal to any of the corresponding one-byte partial

differences in Ω5
i,j1,j2

. Keep only the ciphertext pairs that meet this con-

dition. Let δ5
i,j1,j2

be the difference in Ω5
i,j1,j2

such that a ciphertext pair

(Ci,j1 , Ci,j2) meets the condition.

(c) Perform the following two sub-steps for l = 6, 10:

79

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

• Guess a value for the subkey byte K̃6,l.

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt

the corresponding values for byte (l) just after the MC operation of

Round 6 to get the corresponding values for byte (b5l
4 c) just after the

MC operation of Round 5, and check whether they have a difference

equal to the corresponding one-byte partial difference in δ5
i,j1,j2

. Keep

only the ciphertext pairs that meet this condition.

(d) Guess a value for the subkey byte K̃6,14, and then check whether the

above guessed value for (K̃6,2, K̃6,6, K̃6,10, K̃6,14) meets equation (5.6). If

not, discard it, and guess another; otherwise, for every remaining cipher-

text pair (Ci,j1 , Ci,j2), partially decrypt the corresponding values for byte

(14) just after the MC operation of Round 6 to get the corresponding

values for byte (13) just after the MC operation of Round 5, and check

whether they have a difference equal to the corresponding one-byte par-

tial difference in δ5
i,j1,j2

. Keep only the ciphertext pairs that meet this

condition.

3. Guess a value for the subkey bytes (K0,1,K0,6), and perform Steps (a)–(c)

below.

(a) Partially encrypt every plaintext pair (Pi,j1 , Pi,j2) corresponding to a re-

maining ciphertext pair (Ci,j1 , Ci,j2) to get the corresponding values for

bytes (1,6) just after the BS operation of Round 1, and check whether

they have a difference equal to any of the corresponding two-byte partial

differences in Ω, where Ω is defined in Observation I. Keep only the plain-

text pairs that meet this condition. By Property 5.1, we know that there

is only one difference in Ω for a pair (Pi,j1 , Pi,j2) meeting this condition,

and we denote this difference by δ1
i,j1,j2

.

(b) Guess a value for the subkey byte K0,11. Partially encrypt every remain-

ing plaintext pair (Pi,j1 , Pi,j2) to get the corresponding values for byte

(11) just after the BS operation of Round 1, and check whether they

have a difference equal to the corresponding one-byte partial difference

in δ1
i,j1,j2

. Keep only the plaintext pairs that meet this condition.

(c) Guess a value for the subkey byte K0,16. Partially encrypt every remain-

ing plaintext pair (Pi,j1 , Pi,j2) to get the corresponding values for byte

(16) just after the BS operation of Round 1, and check whether they

80

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

have a difference equal to the corresponding one-byte partial difference

in δ1
i,j1,j2

. If there exists a plaintext pair meeting this condition, dis-

card the guessed value for (K0,1,K0,6,K0,11,K0,16, K7,1,K7,2, K7,5,K7,8,

K7,11, K7,12,K7,14,K7,15,K6,1, K6,5, K̃6,2, K̃6,6, K̃6,10, K̃6,14), and try an-

other guess.

4. For every guessed value for (K0,1,K0,6,K0,11,K0,16, K7,1,K7,2, K7,5,K7,8,K7,11,

K7,12,K7,14,K7,15,K6,1,K6,5, K̃6,2, K̃6,6, K̃6,10, K̃6,14) after Step 3, determine

the correct key by exhaustively searching the remaining 96 key bits for the

value of (K7,1, K7,2,K7,5, K7,14,K6,1,K6,5, K6,9,K6,13, K̃6,2, K̃6,6, K̃6,10, K̃6,14).

5.4.3.3 Complexity Analysis

The attack requires 291.2 chosen plaintexts, which take a time complexity of 291.2

7-round AES-192 encryptions.

In Step 1, a structure Si yields
(
232

2

) ≈ 232×2

2 = 263 plaintext pairs (Pi,j1 , Pi,j2) that

have zero byte differences in all the bytes except bytes (1,6,11,16), (i = 1, 2, · · · , 259.2,

1 ≤ j1 6= j2 ≤ 232). Thus the 259.2 structures yield a total of 259.2×263 = 2122.2 plain-

text pairs that have a zero byte difference in all the bytes except bytes (1,6,11,16).

There is a 64-bit filtering condition over the ciphertext pairs, hence it is expected

that about 2122.2 × 2−64 = 258.2 plaintext pairs are chosen in Step 1. Choose these

plaintext pairs requires about 291.2 memory accesses in a simple implementation

using a hash table.

Step 2(a) has a time complexity of 2× 258.2× 280× 1
2 × 2

7 ≈ 2136.4 7-round AES-192

encryptions.

Step 2(b) has a time complexity of 2×258.2×288× 1
16 × 1

7 ≈ 2140.4 7-round AES-192

encryptions. In Step 2(b), there are 4 differences in Ω5
i,j1,j2

given a ciphertext pair

(Ci,j1 , Ci,j2), thus the expected number of remaining ciphertext pairs after Step 2(b)

for every subkey guess is about 258.2 × 4
28 = 252.2.

In Step 2(c), it is expected that for every subkey guess a proportion of about 1−2−8

of the remaining pairs will be discarded after every iteration of l. Step 2(c) has a

81

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

time complexity of 2×252.2×296× 1
16 × 1

7 +2×244.2×2104× 1
16 × 1

7 ≈ 2143.4 7-round

AES-192 encryptions.

In Step 2(d), there is a filtering condition of 2−8 on the possible subkey bytes

(K7,1, K7,2,K7,5, K7,8,K7,11,K7,12,K7,14,K7,15, K6,1,K6,5, K̃6,2, K̃6,6, K̃6,10, K̃6,14), so

Step 2(d) has a time complexity of 2× 236.2 × 2112 × 2−8 × 1
16 × 1

7 ≈ 2134.4 7-round

AES-192 encryptions. In Step 2(d), it is expected that for every subkey guess a

proportion of about 1− 2−8 of the remaining pairs will be discarded.

Step 3(a) has a time complexity of 2×228.2×2120× 2
16× 1

7 ≈ 2143.4 7-round AES-192

encryptions. In Step 3(a), there are 4 × 255 differences in Ω, thus the expected

number of remaining pairs for every subkey guess is 228.2 × 4×255
216 = 222.2.

Step 3(b) has a time complexity of 2× 222.2 × 2128 × 1
16 × 1

7 ≈ 2144.4 7-round AES-

192 encryptions. There is a 8-bit filtering condition in Step 3(b), thus the expected

number of remaining pairs after Step 3(b) for every subkey guess is 222.2×2−8 = 214.2.

In Step 3(c), with a probability of 2−8 we can get a plaintext pair meeting the condi-

tion, thus it is expected that there remain 2104×232×(1−2−8)2
14.2 ≈ 231 guessed val-

ues for (K0,1,K0,6,K0,11,K0,16, K7,1,K7,2,K7,5,K7,8,K7,11, K7,12,K7,14,K7,15,K6,1,

K6,5, K̃6,2, K̃6,6, K̃6,10, K̃6,14). Step 3(c) has a time complexity of 2× 2136× [1+ (1−
2−8) + · · ·+ (1− 2−8)2

14.2
]× 1

16 × 1
7 ≈ 2138.2 7-round AES-192 encryptions.

The exhaustive search in Step 4 has a time complexity of 231 × 296 = 2127 7-round

AES-192 encryptions.

Therefore, the attack has a total time complexity of approximately 2145.5 7-round

AES-192 encryptions.

Note: Another impossible differential attack on 7-round AES-192 can be obtained

from the 7-round AES-128 attack presented in Section 5.4.2. After a similar analysis,

we get that the attack requires 2113.8 chosen plaintexts, and has a time complex-

ity of 2117.2 7-round AES-192 encryptions, dramatically faster than any previously

published attack on 7-round AES-192.

82

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

5.4.4 Attacking 8-Round AES-256

In this subsection, we extend the above presented 7-round AES-128/192 attack

to break 8-round AES-256, using a number of specific observations for AES-256.

Without loss of generality, we assume that the attacked 8 rounds are Rounds 1 to

8.

5.4.4.1 Preliminary Results

By the key schedule of AES-256, we have the following property for AES-256.

Property 5.5 For AES-256, the value for (K6,2,K6,3,K6,4,K6,6,K6,7,K6,8,K6,10,

K6,11,K6,12, K6,14,K6,15,K6,16) can be known from a value of K8.

Property 5.6 implies that, to improve an attack’s efficiency, we should use some

4-round impossible differentials such that there is no need to guess any key byte of

Round 6 after K8 is known or guessed.

5.4.4.2 Extending the 7-Round AES-128 Attack to Break 8-Round AES-256

We extend the 7-round AES-128 attack by adding one more round at the end, and

reverse the order of the operations MC and KA for Rounds 5, 6 and 7. As implied

by Property 5.6 we use 4-round impossible differentials different from those used in

the 7-round AES-128 attack. We briefly describe the attack procedure as follows.

Attack Description

1. Choose 279.6 structures Si, (i = 1, 2, · · · , 279.6), where a structure Si is defined

to be a set of 232 plaintexts Pi,j with bytes (1, 6, 11, 16) taking all the possible

values and the other 12 bytes being fixed, (j = 1, 2, · · · , 232). In a chosen-

plaintext attack scenario, obtain all the ciphertexts for the 232 plaintexts in

each of the 279.6 structures; we denote by Ci,j the ciphertext for plaintext Pi,j .

83

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

2. Perform Steps (a)–(c) below for (m,n) ∈ {(2, 3), (2, 4), (3, 4)}:

(a) Perform the following two sub-steps for l = 1 to 4:

• Guess a value for the subkey bytes (K8,(l−2) mod 4+5,K8,(l−3) mod 4+9,

K8,(l−4) mod 4+13,K8,l).

• Partially decrypt bytes (l, (l − 2) mod 4 + 5, (l − 3) mod 4 + 9, (l −
4) mod 4 + 13) of every (remaining) ciphertext pair (Ci,j1 , Ci,j2) to

get the corresponding values for bytes (l, l + 4, l + 8, l + 12) just

after the K̃A operation of Round 7, where 1 ≤ j1 6= j2 ≤ 232,

and check whether they have a zero byte difference only in bytes

((4− 3l) mod 16, (4− 3l− 4m− 4n− 1) mod 16 + 1). Keep only the

ciphertext pairs that meet this condition.

Finally, for every remaining ciphertext pair, we know the correspond-

ing values just after the KA operation of Round 7.

(b) Perform Steps (i)–(iii) below for l = 1 to 4:

i. There are 255 possible 32-bit differences in bytes (m, m + 4,m +

8,m + 12) just after the KA operation of Round 6 that have a non-

zero byte difference only in byte ((m+4l−5) mod 16+1), which are

transformed by the MC operation to 255 possible 32-bit differences

in bytes (m,m + 4,m + 8,m + 12) just after the MC operation of

Round 6; we denote these differences by set Ωm+4l. Then, guess a

value for the two subkey bytes (K̃7,m, K̃7,(m−2) mod 4+5), and perform

Steps (A) and (B) below.

A. For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially de-

crypt the corresponding values for bytes (m, (m− 2) mod 4 + 5)

just after the KA operation of Round 7 to get the corresponding

values for bytes (m,m+4) just after the MC operation of Round

6, and check whether they have a difference equal to any of the

corresponding two-byte partial differences in Ωm+4l. Keep only

the ciphertext pairs that meet this condition. Similarly we know

that there is only one difference in Ωm+4l for a pair (Ci,j1 , Ci,j2)

meeting the condition, and we denote this difference by δm+4l
i,j1,j2

.

B. Perform the following tow sub-steps for s = (m − 3) mod 4 + 9,

(m− 4) mod 4 + 13:

• Guess a value for the subkey byte K̃7,s.

84

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially de-

crypt the corresponding values for byte (s) just after the KA

operation of Round 7 to get the corresponding values for byte

(m + 4b s−1
4 c) just after the MC operation of Round 6, and

check whether they have a difference equal to the corresponding

one-byte partial difference in δm+4l
i,j1,j2

. Keep only the ciphertext

pairs that meet this condition.

ii. There are 255 possible 32-bit differences in bytes (n, n+4, n+8, n+12)

just after the KA operation of Round 6 that have a non-zero byte

difference only in byte ((4m + 4l − 3n − 5) mod 16 + 1), which are

transformed by the MC operation to 255 possible 32-bit differences

in bytes (n, n+4, n+8, n+12) just after the MC operation of Round

6; we denote these differences by set Ω4m+4l−3n. Then, guess a value

for the two subkey bytes (K̃7,n, K̃7,(n−2) mod 4+5), and perform Steps

(A) and (B) below.

A. For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially de-

crypt the corresponding values for bytes (n, (n − 2) mod 4 + 5)

just after the MC operation of Round 7 to get the corresponding

values for bytes (n, n + 4) just after the MC operation of Round

6, and check whether they have a difference equal to any of the

corresponding two-byte partial differences in Ω4m+4l−3n. Keep

only the ciphertext pairs that meet this condition. Similarly we

know that there is only one difference in Ω4m+4l−3n for a pair

(Ci,j1 , Ci,j2) meeting the condition, and we denote this difference

by δ4m+4l−3n
i,j1,j2

.

B. Perform the following two sub-steps for t = (n − 3) mod 4 + 9,

(n− 4) mod 4 + 13:

• Guess a value for the subkey byte K7,t.

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially de-

crypt the corresponding values for byte (t) just after the MC

operation of Round 7 to get the corresponding values for byte

(n+4b t−1
4 c) just after the MC operation of Round 6, and check

whether they have a difference equal to the corresponding one-

byte partial difference in δ4m+4l−3n
i,j1,j2

. Keep only the ciphertext

pairs that meet this condition.

85

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

iii. Compute the value for the two subkey bytes (K̃6,(m+4l−5) mod 16+1,

K̃6,(4m+4l−3n−5) mod 16+1) from the (K8,1,K8,2, · · · ,K8,16) guessed in

Step 2(a). For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially

decrypt the corresponding values for bytes ((m + 4l − 5) mod 16 +

1, (4m + 4l − 3n − 5) mod 16 + 1) just after the KA operation of

Round 6 to check whether they produce a difference that has only

one zero byte difference in bytes ((m + l − 2) mod 4 + 1, (m + l −
2) mod 4+5, (m+ l−2) mod 4+9, (m+ l−2) mod 4+13) just after

the KA operation of Round 5. Keep only the ciphertext pairs that

meet this condition.

(c) Guess a value for the two subkey bytes (K0,1,K0,6), and perform Steps

(i)–(iii) below.

i. Partially encrypt every plaintext pair (Pi,j1 , Pi,j2) corresponding to a

remaining ciphertext pair (Ci,j1 , Ci,j2) to get the corresponding values

for bytes (1,6) just after the BS operation of Round 1, and check

whether they have a difference equal to any of the corresponding

two-byte partial differences in Ω, where Ω is defined in Observation

I. Keep only the plaintext pairs that meet this condition. By Property

5.1, we know that there is only one difference in Ω for a plaintext pair

(Pi,j1 , Pi,j2) meeting the condition, and we denote this difference by

δ1
i,j1,j2

.

ii. Guess a value for the subkey byte K0,11. Partially encrypt every

remaining plaintext pair (Pi,j1 , Pi,j2) to get the corresponding values

for byte (11) just after the BS operation of Round 1, and check

whether they have a difference equal to the corresponding one-byte

partial difference in δ1
i,j1,j2

. Keep only the plaintext pairs that meet

this condition.

iii. Guess a value for the subkey byte K0,16. Partially encrypt every

remaining plaintext pair (Pi,j1 , Pi,j2) to get the corresponding val-

ues for byte (16) just after the BS operation of Round 1, and check

whether they have a difference equal to the corresponding one-byte

partial difference in δ1
i,j1,j2

. If there exists a plaintext pair meeting

this condition, discard the guessed value for (K̃7,m, K̃7,(m−2) mod 4+5,

K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,n, K̃7,(n−2) mod 4+5,K8,1,K8,2,

· · · ,K8,16, K̃7,(n−3) mod 4+9, K̃7,(n−4) mod 4+13,K0,1,K0,6,K0,11,K0,16),

86

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

and try another.

3. For every guessed possible value for (K8,1,K8,2, · · · ,K8,16, K̃7,2, K̃7,3, K̃7,4, K̃7,5,

K̃7,6, K̃7,7, K̃7,9, K̃7,10, K̃7,12, K̃7,13, K̃7,15, K̃7,16), determine the correct key by

exhaustively searching the remaining 32 key bits.

Complexity Analysis

The attack requires 2111.6 chosen plaintexts, which take a time complexity of 2111.6

8-round AES-256 encryptions.

In Step 1, the 279.6 structures yield a total of 279.6 × 263 = 2142.6 plaintext pairs

(Pi,j1 , Pi,j2), (i = 1, 2, · · · , 279.6, 1 ≤ j1 6= j2 ≤ 232).

In Step 2(a) there is a 16-bit filtering condition in every iteration of l, thus it is

expected that about 2142.6−16×4 = 278.6 ciphertext pairs pass Step 2(a) for every

guessed value of (K8,1,K8,2, · · · , K8,16). Step 2(a) has a time complexity of 3 ×
∑3

i=0(2×2142.6×232×(i+1)×2−16×i× 4
16 × 1

8) ≈ 2188.2 8-round AES-256 encryptions.

For every iteration of (m,n) and every iteration of l in Step 2(b)-i-A, there are 255

differences in Ωm+4l, thus it is expected that 278.6 × 255
216 ≈ 270.6 ciphertext pairs

pass Step 2(b)-i-A for every guess of (K̃7,m, K̃7,(m−2) mod 4+5,K8,1, K8,2, · · · ,K8,16).

For every iteration of (m, n) and every iteration of l in Step 2(b)-i-B, the difference

δm+4l
i,j1,j2

for every remaining ciphertext pair (Ci,j1 , Ci,j2) is already fixed in Step 2(b)-i-

A, thus it is expected that for every subkey guess a proportion of 1−2−8 of remaining

ciphertext pairs will be discarded after every iteration of s. It follows that about

270.6−8×2 = 254.6 ciphertext pairs pass Step 2(b)-i for every subkey guess. Step 2(b)-i

has a total time complexity of 12× (2× 278.6× 2144× 2
16 × 1

8 +2× 270.6× 2152× 1
16 ×

1
8 + 2× 262.6 × 2160 × 1

16 × 1
8) ≈ 2222.2 8-round AES-256 encryptions.

For every iteration of (m,n) and every iteration of l in Step 2(b)-ii-A, there are 255

differences in Ω4m+4l−3n, thus it is expected that 254.6× 255
216 ≈ 246.6 ciphertext pairs

pass Step 2(b)-ii-A for every guess of (K8,1,K8,2, · · · ,K8,16, K̃7,m, K̃7,(m−2) mod 4+5,

K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,n, K̃7,(n−2) mod 4+5). For every iteration of

(m,n) and every iteration of l in Step 2(b)-ii-B, the difference δ4m+4l−3n
i,j1,j2

for ev-

ery remaining ciphertext pair (Ci,j1 , Ci,j2) is already fixed in Step 2(b)-ii-A, thus

87

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

it is expected that for every subkey guess a proportion of 1 − 2−8 of remaining

ciphertext pairs will be discarded after every iteration of t. It follows that about

246.6−8×2 = 230.6 ciphertext pairs pass Step 2(b)-i for every subkey guess. Step 2(b)-

ii has a total time complexity of 12× (2× 254.6 × 2176 × 2
16 × 1

8 + 2× 246.6 × 2184 ×
1
16 × 1

8 + 2× 238.6 × 2192 × 1
16 × 1

8) ≈ 2230.2 8-round AES-256 encryptions.

For every iteration of (m,n) and every iteration of l in Step 2(b)-iii, we can get a

ciphertext pair meeting the condition with a probability of
(
4
1

) × 2−8 = 2−6. After

considering the four iterations of l in Step 2(b), we expect that about 4×224.6 = 226.6

ciphertext pairs pass Step 2(b)-iii for every guessed value for (K̃7,m, K̃7,(m−2) mod 4+5,

K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,n, K̃7,(n−2) mod 4+5, K̃7,(n−3) mod 4+9, K8,1,K8,2,

· · · ,K8,16, K̃7,(n−4) mod 4+13). Step 2(b)-iii has a time complexity of 12× 2× 230.6 ×
2192 × 2

16 × 1
8 ≈ 2221.2 8-round AES-256 encryptions.

In Step 2(c)-i, there are 4 × 255 differences in Ω, thus the expected number of re-

maining pairs for every subkey guess is 226.6× 4×255
216 = 220.6. There is a 8-bit filtering

condition in Step 2(c)-ii, thus the expected number of remaining pairs after Step 2(c)-

ii for every subkey guess is 220.6×2−8 = 212.6. In Step 2(c)-iii, we can get a plaintext

pair meeting the condition with a probability of 2−8. Thus, in Step 2(c)-iii, for every

guessed value for (K̃7,m, K̃7,(m−2) mod 4+5, K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,n,

K̃7,(n−2) mod 4+5, K̃7,(n−3) mod 4+9, K̃7,(n−4) mod 4+13,K8,1,K8,2, · · · ,K8,16), there re-

main about 232×(1−2−8)2
12.6 ≈ 2−2.92 values for (K0,1, K0,6,K0,11,K0,16); it follows

that, given a value for (K8,1,K8,2, · · · ,K8,16), every value for (K0,1,K0,6,K0,11,K0,16)

is suggested on average by about 264×2−2.92

232 = 229.08 values for (K̃7,m, K̃7,(m−2) mod 4+5,

K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,n, K̃7,(n−2) mod 4+5, K̃7,(n−3) mod 4+9, K̃7,(n−4)

mod 4+13). Considering that there are three iterations of (m,n), we get that every

value for (K0,1,K0,6,K0,11,K0,16) is suggested by about 3×229.08× 229.08

232 = 227.74 val-

ues for (K̃7,2, K̃7,3, K̃7,4, K̃7,5, K̃7,6, K̃7,7, K̃7,9, K̃7,10, K̃7,12, K̃7,13, K̃7,15, K̃7,16). As a

consequence, given a value for (K8,1,K8,2, · · · ,K8,16), we get 232×227.74 = 259.74 pos-

sible values for (K̃7,2, K̃7,3, K̃7,4, K̃7,5, K̃7,6, K̃7,7, K̃7,9, K̃7,10, K̃7,12, K̃7,13, K̃7,15, K̃7,16)

after summarising all the 232 possible values for (K0,1,K0,6, K0,11,K0,16), which cor-

respond to 259.74 possible values of (K7,2,K7,3,K7,4,K7,5, K7,6,K7,7, K7,9,K7,10,K7,12,

K7,13,K7,15, K7,16). Step 2(c) has a total time complexity of 3×{2×226.6×2208× 2
16×

1
8+2×220.6×2216× 1

16× 1
8+2×2224×[1+(1−2−8)+· · ·+(1−2−8)2

12.6
]× 1

16× 1
8} ≈ 2232.8

8-round AES-256 encryptions.

88

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

The exhaustive search in Step 3 has a time complexity of about 2128×259.74×232 =

2219.74 8-round AES-256 encryptions.

Therefore, the attack has a total time complexity of approximately 2230.2 + 2232.8 ≈
2233.1 8-round AES-256 encryptions.

5.4.4.3 Extending the 7-Round AES-192 Attack to Break 8-Round AES-256

We extend the 7-round AES-192 attack presented in Section 5.4.3 to break 8-round

AES-256 by adding an additional round at the end. We reverse the order of the

operations MC and KA for Rounds 5 and 7. The attack procedure is as follows.

Attack Description

1. Choose 257 structures Si, (i = 1, 2, · · · , 257), where a structure Si is defined

to be a set of 232 plaintexts Pi,j with bytes (1, 6, 11, 16) taking all the possible

values and the other 12 bytes being fixed, (j = 1, 2, · · · , 232). In a chosen-

plaintext attack scenario, obtain all the ciphertexts for the 232 plaintexts in

each of the 257 structures; we denote by Ci,j the ciphertext for plaintext Pi,j .

The 257 plaintext structures yield a total of 257 × 263 = 2120 plaintext pairs

(Pi,j1 , Pi,j2), where 1 ≤ j1 6= j2 ≤ 232.

2. Perform Steps (a)–(c) below for (m,n) ∈ {(2, 3), (2, 4), (3, 4)}.

(a) Conduct a step similar to Step 2(a) of the 8-round AES-256 attack pre-

sented in Section 5.4.4.2.

(b) Compute the value for the eight subkey bytes (K6,m,K6,m+4,K6,m+8,K6,n,

K6,m+12,K6,n+4, K6,n+8,K6,n+12) from the (K8,1,K8,2, · · · ,K8,16) guessed

in Step 2(a). Guess a value for the eight subkey bytes (K̃7,(m−2) mod 4+5,

K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,(n−2) mod 4+5, K̃7,(n−3) mod 4+9, K̃7,m,

K̃7,n, K̃7,(n−4) mod 4+13). Partially decrypt every remaining pair of cipher-

texts to check whether they produce a difference just after the KA oper-

ation of Round 5 that has a zero byte difference in only the four bytes of

one of the four set: bytes (1,8,11,14), bytes (2,5,12,15), bytes (3,6,9,16)

89

5.4 Impossible Differential Cryptanalysis of Reduced-Round AES

and bytes (4,7,10,13). Keep only the ciphertext pairs that meet this con-

dition.

(c) Conduct a step similar to Step 2(c) of the 8-round AES-256 attack in

Section 5.4.4.2.

3. Conduct a step similar to Step 3 of the 8-round AES-256 attack in Section

5.4.4.2.

Complexity Analysis

The attack requires 289 chosen plaintexts, which take a time complexity of 289 8-

round AES-256 encryptions.

In Step 2(a) there is a 16-bit filtering condition in every iteration of l, thus it

is expected that about 2120−16×4 = 256 ciphertext pairs pass Step 2(a) for every

guessed value for (K8,1,K8,2, · · · ,K8,16). Step 2(a) has a time complexity of 3 ×
∑3

i=0(2× 2120× 232×(i+1)× 2−16×i× 4
16 × 1

8) ≈ 2165.6 8-round AES-256 encryptions.

In Step 2(b), for every iteration of (m,n), we can get a ciphertext pair meeting the

condition with a probability of
(
4
1

) × 2−32 = 2−30, thus it is expected that about

256×2−30 = 226 ciphertext pairs pass Step 2(b) for every guessed subkey value. Step

2(b) has a time complexity of 3× 2× 256 × 2192 × 8
16 × 2

8 = 2247.6 8-round AES-256

encryptions.

In Step 2(c), we similarly know that, for a guessed value for (K̃7,m, K̃7,(m−2) mod 4+5,

K̃7,(m−3) mod 4+9, K̃7,(m−4) mod 4+13, K̃7,n, K̃7,(n−2) mod 4+5, K̃7,(n−3) mod 4+9,K8,1,K8,2,

· · · ,K8,16, K̃7,(n−4) mod 4+13), it is expected that there remain about 232 × (1 −
2−8)2

12 ≈ 28.96 values for (K0,1,K0,6, K0,11,K0,16); it follows that, given a value for

(K8,1, K8,2, · · · ,K8,16), every value for (K0,1,K0,6,K0,11, K0,16) is suggested on av-

erage by about 264×28.96

232 = 240.96 values for (K̃7,m, K̃7,(m−2) mod 4+5, K̃7,(m−3) mod 4+9,

K̃7,(m−4) mod 4+13, K̃7,n, K̃7,(n−2) mod 4+5, K̃7,(n−3) mod 4+9, K̃7,(n−4) mod 4+13). Consid-

ering that there are three different iterations of (m,n), we get that every value for

(K0,1, K0,6,K0,11,K0,16) is suggested by about 3 × 240.96 × 240.96

232 = 251.5 values for

(K̃7,2, K̃7,3, K̃7,4, K̃7,5, K̃7,6, K̃7,7, K̃7,9, K̃7,10, K̃7,12, K̃7,13, K̃7,15, K̃7,16). As a conse-

quence, given a value for (K8,1,K8,2, · · · ,K8,16), we get 232 × 251.5 = 283.5 possible

90

5.5 Impossible Boomerang Attack on Reduced-Round AES

values for (K̃7,2, K̃7,3, K̃7,4, K̃7,5, K̃7,6, K̃7,7, K̃7,9, K̃7,10, K̃7,12, K̃7,13, K̃7,15, K̃7,16), af-

ter summarising all the 232 possible values for (K0,1,K0,6,K0,11, K0,16), which corre-

spond to 283.5 possible values for (K7,2,K7,3,K7,4,K7,5,K7,6,K7,7,K7,9,K7,10,K7,12,

K7,13,K7,15, K7,16). Step 2(c) has a total time complexity of 3×{2×226×2208× 2
16×

1
8 +2×220×2216× 1

16× 1
8 +2×2224×[1+(1−2−8)+· · ·+(1−2−8)2

12
]× 1

16× 1
8} ≈ 2232.2

8-round AES-256 encryptions.

The exhaustive search in Step 3 has a time complexity of about 2128× 283.5× 232 =

2243.5 8-round AES-256 encryptions.

Therefore, the attack has a total time complexity of approximately 2243.5 + 2247.6 ≈
2247.7 8-round AES-256 encryptions.

5.5 Impossible Boomerang Attack on Reduced-Round AES

In this section we first describe certain 4-round impossible boomerang distinguishers

(using two tuples) of AES. We then use them as the basis of impossible boomerang

attacks on 6-round AES-128, 7-round AES-192 and 7-round AES-256.

5.5.1 4-Round Impossible Boomerang Distinguishers

We now describe certain impossible boomerang distinguishers for Rounds 2 to 5 of

AES. Let E0 denote Rounds 2 and 3 including the KA operation of Round 1, and

E1 denote Rounds 4 and 5 excluding the MC operation for Round 5. Figure 5.5

shows the set of four differentials making up the 4-round impossible boomerang dis-

tinguishers for E0◦E1. In this figure, a (small) square corresponds to a byte, a blank

indicates a zero 8-bit difference, and a square labeled a value a, b, · · · indicates an

(arbitrary1) non-zero 8-bit difference. The symbols given in the figure for individual

byte differences are used to simplify our description below. The four differentials

making up the impossible boomerang distinguisher are as follows.

The first differential ∆α → ∆β for E0 is ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))
1By “arbitrary” we mean that these differentials hold with probability 1.

91

5.5 Impossible Boomerang Attack on Reduced-Round AES

SR
−1

KA
−1

SR
−1

KA
−1

BS
−1

MC
−1

g1

g11

f5

f9

f1

f5

f1

f5

f9

(b)

h1 h2 h3

h5 h6 h7

h9 h10 h11

h13 h14 h15

(c)

MC KASRBS

MC

KA

SRBSKA

a a b b c1

c5

c9

c13

c1

c5

c9

c13

d1

d5

d9

d13

d1

d5

d9

d13

e1 e2 e3 e4

e5 e6 e7 e8

e9 e10 e11 e12

e13 e14 e15 e16

(a)

f9

f1

g6

g1

g6

g11

BS
−1

i1 i2 i3

i6 i7 i8
i9 i11 i12
i13 i14 i16

h1 h2 h3

h5 h6 h7

h9 h10h11

h13h14 h15

SR
−1

KA
−1

SR
−1

KA
−1

BS
−1

MC
−1

l1

j5

j1

j5

j1

j5

m1 m2

m5 m7

m9 m10

m13 m14

j1

l6

l1

l6BS
−1

n1 n2

n6 n7

n11 n12

n13 n16

m1 m2

m5 m6

m9 m10

m13m14

e1 e2 e3 e4

e5 e6 e7 e8

e9 e10 e11 e12

e13 e14 e15 e16

etc : non-zero byte difference: zero byte difference a

Figure 5.5: The differentials in the 4-round impossible boomerang distinguisher

→ ((e1, e2, e3, e4), (e5, e6, e7, e8), (e9, e10, e11, e12), (e13, e14, e15, e16)), as shown in Fig-

ure 5.5(a).

The second differential ∆α′ → ∆β′ for E0 has the same format as ∆α → ∆β; we

denote it by ((a′, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)) → ((e′1, e
′
2, e

′
3, e

′
4), (e

′
5, e

′
6,

e′7, e
′
8), (e

′
9, e

′
10, e

′
11, e

′
12), (e

′
13, e

′
14, e′15, e

′
16)).

The first differential ∆δ → ∆γ for E1 is ((f1, 0, 0, 0), (f5, 0, 0, 0), (f9, 0, 0, 0), (0, 0, 0, 0))

→ ((i1, i2, i3, 0), (0, i6, i7, i8), (i9, 0, i11, i12), (i13, i14, 0, i16)), as shown in Figure 5.5(b).

The second differential ∆δ′ → ∆γ′ for E1 is ((j1, 0, 0, 0), (j5, 0, 0, 0), (0, 0, 0, 0), (0, 0,

0, 0)) → ((n1, n2, 0, 0), (0, n6, n7, 0), (0, 0, n11, n12), (n13, 0, 0, n16)), as shown in Fig-

92

5.5 Impossible Boomerang Attack on Reduced-Round AES

ure 5.5(c).

We can now give the following result.

Property 5.6 The four differentials described above constitute an impossible boome-

rang distinguisher for E0◦E1: ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)), (a′, 0, 0, 0),

(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))) 9 (((f1, 0, 0, 0), (f5, 0, 0, 0), (f9, 0, 0, 0), (0, 0, 0, 0)),

((j1, 0, 0, 0), (j5, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))), where a, a′, f1, f5, f9, j1 and j5 are ar-

bitrary but non-zero 8-bit values.

Proof. For the differential ∆α → ∆β, we have (by definition of MC):

e5 = d1, (5.7)

e9 = d1. (5.8)

Similarly, for the differential ∆α′ → ∆β′, we have:

e′5 = d′1, (5.9)

e′9 = d′1. (5.10)

From [21] we know that MC has a branch number of 5; hence h11 6= 0. Consequently,

i9 6= 0.

Note that the 5th and 9th bytes of ∆γ are 0 and i9, respectively; and the 5th and

9th bytes of ∆γ′ are both 0. Thus, from equations (5.7) and (5.9), the 5th byte of

β ⊕ β′ ⊕ γ ⊕ γ′ is e5 ⊕ e′5 = d1 ⊕ d′1, and by equations (5.8) and (5.10) the 9th byte

of β ⊕ β′ ⊕ γ ⊕ γ′ is e9 ⊕ e′9 ⊕ i9 = d1 ⊕ d′1 ⊕ i9.

Since i9 6= 0, thus d1 ⊕ d′1 and d1 ⊕ d′1 ⊕ i9 cannot both be zero, and hence β ⊕ β′ ⊕
γ ⊕ γ′ 6= 0 holds for the four differentials. The result follows. ¤

Before proceeding observe that there are many other similar 4-round impossible

boomerang distinguishers for AES. These impossible boomerang distinguishers apply

to any set of four consecutive rounds of AES.

93

5.5 Impossible Boomerang Attack on Reduced-Round AES

5.5.2 Attacking 6-Round AES-128

We now describe an impossible boomerang attack on the first 6 rounds of AES-128

based on the above 4-round impossible boomerang distinguisher. We reverse the

order of the operations MC and KA for Round 5.

5.5.2.1 Attack Description

1. Choose 280.2 plaintext structures Si, (i = 1, 2, · · · , 280.2), where a structure Si

is defined to be a set of 232 plaintexts Pi,j with bytes (1, 6, 11, 16) taking all

the possible values and the other 12 bytes are fixed, (j = 1, 2, · · · , 232). In a

chosen-plaintext attack scenario, obtain all the ciphertexts for the 232 plain-

texts in each of the 280.2 structures; let Ci,j be the ciphertext for plaintext

Pi,j . Choose the plaintext quartets ((Pi1,j1 , Pi1,j2), (Pi2,j3 , Pi2,j4)) such that

the corresponding ciphertext quartets ((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4)) satisfy

Ci1,j1⊕Ci2,j3 = ((?, 0, 0, 0), (0, 0, 0, ?), (0, 0, 0, 0), (0, 0, 0, 0)) and Ci1,j2⊕Ci2,j4 =

((?, 0, 0, 0), (0, 0, 0, ?), (0, 0, ?, 0), (0, 0, 0, 0)), where 1 ≤ i1, i2 ≤ 280.2, 1 ≤ j1 6=
j2, j3 6= j4 ≤ 232.

2. Guess a value for the two subkey bytes (K6,1,K6,8), and perform Steps (a) and

(b) below for every remaining quartet ((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4)).

(a) Partially decrypt bytes (1,8) of Ci1,j1 and Ci2,j3 to get the correspond-

ing values for bytes (1,5) just after the MC operation of Round 5, and

check whether they produce a difference that has a zero in only one of

bytes (1,5,9,13) just after the KA operation of Round 5. Keep only the

ciphertext quartets that meet this condition.

(b) Guess a value for the subkey byte K6,11. Partially decrypt bytes (1,8,11)

of Ci1,j2 and Ci2,j4 to get the corresponding values for bytes (1,5,9) just

after the MC operation of Round 5, and check whether they produce a

difference that has a zero in only two of bytes (1,5,9,13) just after the

KA operation of Round 5 which include the one byte position with a

zero difference in Step 2(a). Keep only the ciphertext quartets that meet

this condition.

94

5.5 Impossible Boomerang Attack on Reduced-Round AES

3. Guess a value for the four subkey bytes (K0,1, K0,6,K0,11,K0,16). For ev-

ery plaintext quartet ((Pi1,j1 , Pi1,j2), (Pi2,j3 , Pi2,j4)) corresponding to a remain-

ing ciphertext quartet ((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4)), partially encrypt Pi1,j1

and Pi1,j2 to get the corresponding values for bytes (1,5,9,13) just after the

MC operation of Round 1, and check whether they have only one non-zero

byte difference; partially encrypt Pi1,j2 and Pi2,j4 to get the corresponding

values for bytes (1,5,9,13) just after the MC operation of Round 1, and

check whether they have only one non-zero byte difference. If there exists

a plaintext quartet meeting both the conditions, discard the guessed value for

(K6,1,K6,8, K6,11,K0,1,K0,6, K0,11,K0,11), and try another.

4. For every guessed value for (K6,1,K6,8,K6,11,K0,1,K0,6,K0,11,K0,16) after Step

3, determine the correct user key by exhaustively searching the remaining 96

bits for every value of (K0,1,K0,6,K0,11,K0,16).

5.5.2.2 Complexity Analysis

The attack requires 2112.2 chosen plaintexts, which take a time complexity of 2112.2

6-round AES-128 encryptions.

In Step 1, a structure Si yields about
(
232

2

) ≈ 263 plaintext pairs (Pi,j1 , Pi,j2),

where 1 ≤ j1 6= j2 ≤ 232; thus the 280.2 structures yield a total of 280.2 × 263 =

2143.2 plaintext pairs (Pi,j1 , Pi,j2) that have a zero difference in all the bytes ex-

cept bytes (1,6,11,16), which propose
(
2143.2

2

) ≈ 2285.4 candidate plaintext quartets

((Pi1,j1 , Pi1,j2), (Pi2,j3 , Pi2,j4)), (1 ≤ i1, i2 ≤ 280.2, 1 ≤ j3 6= j4 ≤ 232). Expected

number of the remaining ciphertext quartets is about 2285.4 × 2−(13+14)×8 = 269.4.

Choosing the useful ciphertext quartets requires 2× 2112.2 = 2113.2 memory accesses

in a simple implementation.

In Step 2(a), the expected number of remaining quartets for every subkey guess is

269.4×(
4
1

)×2−8 = 263.4. Step 2(a) has a time complexity of 2×269.4×216× 1
6× 2

16 ≈
280.82 6-round AES-128 encryptions.

In Step 2(b), the expected number of remaining quartets for every subkey guess is

263.4×(
3
1

)×2−16 ≈ 248.98. Step 2(b) has a time complexity of 2×263.4×224× 1
6× 3

16 ≈

95

5.5 Impossible Boomerang Attack on Reduced-Round AES

283.4 6-round AES-128 encryptions.

In Step 3, it is expected that we can get a plaintext quartet meeting both the con-

ditions with probability (
(
4
1

)× 2−24)2 = 2−44; thus after analysing 248.98 remaining

plaintext quartets we get that there remain only 256×(1−2−44)2
48.98 ≈ 210.56 guessed

values for (K6,1,K6,8,K6,11,K0,1,K0,6,K0,11,K0,16). Step 3 has a time complexity

of 4× 256× [1+ (1− 2−44)+ · · ·+(1− 2−44)2
48.98

]× 1
6 × 4

16 ≈ 297.42 6-round AES-128

encryptions.

The exhaustive search in Step 4 has a time complexity of about 210.56×296 = 2106.56

6-round AES-128 encryptions.

Therefore, the attack has a total time complexity of approximately 2112.2 +2106.56 ≈
2112.3 6-round AES-128 encryptions.

5.5.3 Attacking 7-Round AES-192 and 7-Round AES-256

With an additional round appended at the end, the above 6-round AES-128 attack

can be extended to break 7-round AES-192/256, as follows. We reverse the order of

the operations MC and KA for Rounds 5 and 6.

1. Choose 2x plaintext structures Si, (i = 1, 2, · · · , 2x), where a structure Si is

defined to be a set of 232 plaintexts Pi,j with bytes (1, 6, 11, 16) taking all the

possible values and the other 12 bytes being fixed, (j = 1, 2, · · · , 232); and the

value of x will be given below. In a chosen-plaintext attack scenario, obtain all

the ciphertexts for the 232 plaintexts in each of the 2x structures; we denote

by Ci,j the ciphertext for plaintext Pi,j . This step has a time complexity of

2x+32 7-round AES-192/256 encryptions.

2. Guess a value for the subkey bytes (K7,1, K7,4,K7,7, K7,8,K7,10,K7,11,K7,13,

K7,14), and partially decrypt bytes (1, 4, 7, 8, 10, 11, 13, 14) of all the ciphertexts

to get the corresponding values for bytes (1,4,5,8,9,12,13,16) just after the KA

operation of Round 6. A structure Si yields about
(
232

2

) ≈ 263 plaintext pairs

(Pi,j1 , Pi,j2), where 1 ≤ j1 6= j2 ≤ 232; thus the 2x structures yield a total of

2x × 263 = 2x+63 plaintext pairs (Pi,j1 , Pi,j2) that have a zero difference in all

96

5.5 Impossible Boomerang Attack on Reduced-Round AES

the bytes except bytes (1,6,11,16), which propose
(
2x+63

2

) ≈ 22x+125 candidate

plaintext quartets ((Pi1,j1 , Pi1,j2), (Pi2,j3 , Pi2,j4)), where (1 ≤ i1, i2 ≤ 2x, 1 ≤
j3 6= j4 ≤ 232). Choose the ciphertext quartets ((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4))

that satisfy the following three conditions:

(i) Ci1,j1 ⊕ Ci2,j3 = ((?, 0, 0, ?), (0, 0, ?, ?), (0, ?, ?, 0), (?, ?, 0, 0));

(ii) Ci1,j2 ⊕ Ci2,j4 = ((?, 0, ?, ?), (0, ?, ?, ?), (?, ?, ?, 0), (?, ?, 0, ?)).

(iii) Either of the pairs (Ci1,j1 , Ci2,j3) and (Ci1,j2 , Ci2,j4) has a non-zero dif-

ference only in bytes (1,8) of bytes (1,4,5,8,9,12,13,16) just after the KA

operation of Round 6;

This step has a time complexity of 2×2x+32×264 = 2x+97 memory accesses and

2x+32 × 264 × 8
16 = 2x+95 one-round AES-192/256 encryptions. It is expected

that there remain 22x+125× 2−48×2× 2−64−32 = 22x−67 ciphertext quartets for

every subkey guess.

3. Guess a value for the four subkey bytes (K7,3,K7,6,K7,9,K7,16). For every

remaining ciphertext quartet ((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4)), partially decrypt

bytes (3,6,9,16) of Ci1,j2 and Ci2,j4 to get the corresponding values for bytes

(3,7,11,15) just after the KA operation of Round 6, and check whether they

have a non-zero difference only in byte (11). Keep only the ciphertext quartets

that meet this condition.

This step has a time complexity of 2× 22x−67 × 296 × 4
16 = 22x+28 one-round

AES-192/256 encryptions. It is expected that there remain 22x−67 × 2−24 =

22x−91 ciphertext quartets for every subkey guess.

4. Conduct a step similar to Step 2 of the 6-round AES-128 attack.

This step has a time complexity of 2×22x−91×2112× 2
16 +2×22x−97×2120× 3

16 ≈
22x+21.8 one-round AES-192/256 encryptions. It is expected that there remain

22x−91×(
4
1

)×2−8×(
3
1

)×2−16 ≈ 22x−111.42 ciphertext quartets for every subkey

guess.

5. Guess a value for the two subkey bytes (K0,1,K0,6). Perform Steps (a)–(c)

below for every plaintext quartet ((Pi1,j1 , Pi1,j2), (Pi2,j3 , Pi2,j4)) corresponding

to a remaining quartet ((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4)).

(a) Partially encrypt Pi1,j1 and Pi1,j2 to get the corresponding values for bytes

(1,6) just after the BS operation of Round 1, and check whether they have

97

5.5 Impossible Boomerang Attack on Reduced-Round AES

a difference equal to the corresponding two-byte difference of one of those

in set Ω defined in Section 5.4.1; if yes, we denote by ∆si1,j1,j2 the differ-

ence from Ω for (Pi1,j1 , Pi1,j2). Partially encrypt Pi2,j3 and Pi2,j4 to get the

corresponding values for bytes (1,6) just after the BS operation of Round

1, and check whether they have a difference equal to the corresponding

two-byte difference of one of those in set Ω defined in Section 5.4.1; if yes,

we denote by ∆ti2,j3,j4 the difference from Ω for (Pi2,j3 , Pi2,j4). Keep the

plaintext quartets that meet both the conditions.

This step has a time complexity of 2 × 22x−111.42 × 2136 × 2
16 = 22x+22.6

one-round AES-192/256 encryptions. It is expected that there remain

22x−111.42× 2−6×2 = 22x−123.42 plaintext quartets for every subkey guess.

(b) Guess a value for the subkey byte K0,11. Partially encrypt Pi1,j1 and

Pi1,j2 to get the corresponding values for byte (11) just after the BS

operation of Round 1, and check whether they have a difference equal to

the corresponding one-byte difference of ∆si1,j1,j2 ; and partially encrypt

Pi2,j3 and Pi2,j4 to get the corresponding values for byte (11) just after the

BS operation of Round 1, and check whether they have a difference equal

to the corresponding one-byte difference of ∆ti2,j3,j4 . Keep the plaintext

quartets that meet both the conditions.

This step has a time complexity of 2 × 22x−123.42 × 2144 × 1
16 = 22x+17.6

one-round AES-192/256 encryptions. It is expected that there remain

22x−123.42× 2−8×2 = 22x−139.42 plaintext quartets for every subkey guess.

(c) Guess a value for the subkey byte K0,16. Partially encrypt Pi1,j1 and

Pi1,j2 to get the corresponding values for byte (16) just after the BS

operation of Round 1, and check whether they have a difference equal to

the corresponding one-byte difference of ∆si1,j1,j2 ; and partially encrypt

Pi2,j3 and Pi2,j4 to get the corresponding values for byte (16) just after

the BS operation of Round 1, and check whether they have a difference

equal to the corresponding one-byte difference of ∆ti2,j3,j4 . If there exists

a plaintext quartet meeting both the conditions, discard the guessed value

for (K7,1,K7,3,K7,4,K7,6,K7,7,K7,8,K7,9,K7,10,K7,11,K7,13,K7,14,K7,16,

K6,1,K6,8,K6,11,K0,1,K0,6,K0,11, K0,16), and try another.

The probability that there exists a plaintext quartet meeting both the

conditions is 2−8×2 = 2−16; thus the probability that a subkey guess re-

mains after the remaining 22x−139.42 quartets are tested is (1−2−16)2
2x−139.42

98

5.6 Related-Key Impossible Boomerang Attack on Reduced-Round AES

≈ e−22x−155.42
, here e(= 2.71828 . . .) is the base of the natural logarithm.

This step has a time complexity of 4× 2152 × [1 + (1− 2−16) + · · ·+ (1−
2−16)2

2x−139.42
]× 1

16 ≈ 2166 one-round AES-192/256 encryptions.

6. For every remaining value for (K̃6,8, K̃6,11,K7,1,K7,3,K7,4,K7,6,K7,7,K7,8,K7,9,

K7,10,K7,11,K7,13,K7,14,K7,16) under AES-192 or every remaining value for

(K̃6,1, K̃6,8, K̃6,11,K7,1,K7,3, K7,4,K7,6, K7,7,K7,8,K7,9,K7,10,K7,11,K7,13,K7,14,

K7,16) under AES-256, determine the correct user key by exhaustively search-

ing the remaining bits.

For AES-192, the attack requires x = 280.5 plaintext structures and has a time

complexity of (2189 +2182.8 +2183.6 +2152×e−22×80.5−155.42×280)× 1
7 ≈ 2186.3 7-round

AES-192 encryptions.

For AES-256, the attack requires x = 280.8 plaintext structures and has a time

complexity of (2189.6 + 2183.4 + 2184.2 + 2152 × e−22×80.8−155.42 × 2136) × 1
7 ≈ 2186.9

7-round AES-256 encryptions.

5.6 Related-Key Impossible Boomerang Attack on Reduced-
Round AES

In this section we describe 6-round related-key impossible boomerang distinguishers

of AES-192/256, and use them to conduct a related-key impossible boomerang attack

on 8-round AES-192 and 9-round AES-256 using two keys.

Let E0 denote Rounds 2 to 5 (of AES-192/256) including the KA operation of

Round 1, E1 denote Rounds 6 to 7 excluding the MC operation of Round 7. We

use a related-key impossible boomerang distinguisher such that KA = KC and

KB = KD.

99

5.6 Related-Key Impossible Boomerang Attack on Reduced-Round AES

5.6.1 Attacking 8-Round AES-192 Using Two Related Keys

The related-key differentials ∆α → ∆β and ∆α′ → ∆β′ for E0 are both ((0, 0, a, a),

(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))→((?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?)), where

the use key difference is KA⊕KB(= KC⊕KD) = ((a, 0, a, 0, 0, 0), (0, 0, 0, 0, 0, 0), (0, 0,

0, 0, 0, 0), (0, 0, 0, 0, 0, 0)), with a being a specific non-zero 8-bit value. The same dif-

ferentials as those depicted in Figure 5.5(b) and (c) are used for E1.

Table 5.1 gives the subkey differences for the first eight rounds of AES-192 given

the user key difference ((a, 0, a, 0, 0, 0), (0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0)),

where b and c are indeterminate 8-bit values.

Similarly, we can learn that there exist the following 6-round related-key impossible

boomerang distinguishers for E0 ◦ E1: (((0, 0, a, a), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)),

((0, 0, a, a), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))) 9 (((?, 0, 0, 0), (?, 0, 0, 0), (?, 0, 0, 0), (0,

0, 0, 0)), ((?, 0, 0, 0), (?, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))).

Table 5.1: Subkey differences for the 8-round AES-192 attack
(i) ∆K5i ∆K5i+1 ∆K5i+2 ∆K5i+3 ∆K5i+4

0

a 0 a 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 a a
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

a 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 a a
0 0 0 0
0 0 0 0
0 0 0 0

1

a a a a
0 0 0 0
0 0 0 0
0 0 0 0

a 0 a 0
0 0 0 0
0 0 0 0
b b b b

a 0 a a
0 0 0 0
0 0 c c
b b b 0

0 0 a a
0 0 0 0
c c c c
b 0 b 0

 /

As a result, we can conduct a related-key impossible boomerang attack on AES-192

reduced to the first 8 rounds (i.e. Rounds 1 to 8), similarly to the 6-round AES-128

attack given in Section 5.5.2.

From Table 5.1 we know that the differences for the subkey bytes K8,1 and K8,8 are

both zero. After an analysis similar to the 6-round AES-128 attack described in

Section 5.5.2, we get that, the attack requires 290.4 plaintext structures, and has a

time complexity of 2×290.4+32 +2×22×90.4−91×216× 1
8 × 2

16 +2×22×90.4−97×224×
1
8 × 3

16 +4×256× [1+(1−2−64)+ · · ·+(1−2−64)2×90.4−111.42]× 1
8 × 4

16 +2160 ≈ 2160

8-round AES-192 encryptions, recovering the entire 192-bit user key.

100

5.6 Related-Key Impossible Boomerang Attack on Reduced-Round AES

5.6.2 Attacking 9-Round AES-256 Using Two Related Keys

The related-key differentials ∆α → ∆β and ∆α′ → ∆β′ for E0 are both ((0, a, a, 0),

(0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))→((?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?), (?, ?, ?, ?)), where

the use key difference is KA⊕KB(= KC⊕KD) = ((0, 0, 0, 0, 0, a, a, 0), (0, 0, 0, 0, 0, 0, 0,

0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0)), with a being a specific non-zero 8-bit value.

The same differentials as those in Figure 5.5(b) and (c) are used for E1.

Table 5.2 gives the subkey differences for the first nine rounds of AES-256 given the

user key difference ((0, 0, 0, 0, 0, a, a, 0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0,

0, 0, 0, 0, 0)), where b, c, d, e, f, g are indeterminate 8-bit values.

Table 5.2: Subkey differences for the 9-round AES-256 attack
(i) ∆K5i ∆K5i+1 ∆K5i+2 ∆K5i+3 ∆K5i+4

0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 a a 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 a 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

0 a a a
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
b b b b

0 a 0 a
0 0 0 0
0 0 0 0
c c c c

0 0 0 0
0 0 0 0
d d d d

b⊕ e e b⊕ e e

0 a a 0
0 0 0 0
f f f f

g ⊕ c g g ⊕ c g

We can similarly learn that there exist the following 6-round related-key impossible

boomerang distinguishers for E0 ◦ E1: (((0, a, a, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)),

((0, a, a, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))) 9 (((?, 0, 0, 0), (?, 0, 0, 0), (?, 0, 0, 0), (0,

0, 0, 0)), ((?, 0, 0, 0), (?, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0))).

Subsequently, we can conduct a related-key impossible boomerang attack on AES-

256 reduced to the first 9 rounds (i.e. Rounds 1 to 9), similarly to the 7-round

AES-192/256 attack in Section 5.5.3. We reverse the order of the operations MC

and KA for Rounds 7 and 8. From the key difference KA ⊕KB we have:

(i) The differences for K9,1, K9,4, K9,7 and K9,8 are all zero;

(ii) The differences for K9,10 and K9,11 are identical and indeterminate non-zero

values;

(iii) The differences for K9,13 and K9,14 are different and indeterminate non-zero

values, with neither of them equal to the difference for K9,10 (or K9,11);

101

5.6 Related-Key Impossible Boomerang Attack on Reduced-Round AES

(iv) The differences for K̃8,1 and K̃8,8 are indeterminate.

Thus, when conducting a step similar to Step 2 of the 7-round AES-192/256 attack,

we first guess a value for the eight subkey bytes (K9,1,K9,4,K9,7,K9,8,K9,10,K9,11,

K9,13,K9,14) of KA, and partially decrypt all the ciphertexts to get the corresponding

values for bytes (1,4,5,8,9,12,13,16) just after the KA operation of Round 8; then for

every guessed value for (K9,1,K9,4,K9,7,K9,8, K9,10,K9,11,K9,13,K9,14) of KA, we

guess a value for the differences for K9,10, K9,13 and K9,14, compute the eight subkey

bytes (K9,1,K9,4,K9,7,K9,8, K9,10,K9,11,K9,13,K9,14) of KB, and partially decrypt

all the ciphertexts to get the corresponding values for bytes (1,4,5,8,9,12,13,16)

just after the KA operation of Round 8. Finally, choose the ciphertext quartets

((Ci1,j1 , Ci1,j2), (Ci2,j3 , Ci2,j4)) that meet the following three conditions:

(i) Ci1,j1 ⊕ Ci2,j3 = ((?, 0, 0, ?), (0, 0, ?, ?), (0, ?, ?, 0), (?, ?, 0, 0));

(ii) Ci1,j2 ⊕ Ci2,j4 = ((?, 0, ?, ?), (0, ?, ?, ?), (?, ?, ?, 0), (?, ?, 0, ?));

(iii) For either of the pairs (Ci1,j1 , Ci2,j3) and (Ci1,j2 , Ci2,j4), the difference between

the corresponding values for bytes (1,4,5,8,9,12,13,16) just after the KA op-

eration of Round 8 has a non-zero byte difference only in bytes (1,8).

Subsequently, after an analysis similar to the 7-round AES-192/256 attack described

in Section 5.5.3, we get that, the attack requires 290.8 plaintext structures, and has a

time complexity of 2×290.8+32+290.8+32×264× 1
9× 8

16 +290.8+32×264+24× 1
9× 8

16 +2×
22×90.8−67×288+32× 1

9× 4
16 +2×22×90.8−91×2120+16× 1

9× 2
16 +2×22×90.8−97×2136+24×

1
9× 3

16+4×22×90.8−111.42×2160+16× 1
9× 2

16+4×22×90.8−143.42×2176+8× 1
9× 1

16+4×2192×
[1+(1−2−16)+· · ·+(1−2−16)2×90.8−159.42]×1

9× 1
16+2192×e−22×90.8−175.42×2136 ≈ 2242.5

9-round AES-256 encryptions, recovering the entire 256-bit user key.

This is the first published attack on 9-round AES-256 using two keys.

102

5.7 Summary

5.7 Summary

In this chapter we have presented impossible differential cryptanalyses of 7-round

AES-128, 7-round AES-192 and 8-round AES-256, extending the results given in [2,

11, 96]. We then present impossible boomerang attacks on 6-round AES-128, 7-

round AES-192 and 7-round AES-256, and finally we present related-key impossible

boomerang attacks on 8-round AES-192 and 9-round AES-256 in a related-key at-

tack scenario using two keys. Table 5.3 summarises the published cryptanalytic

results on AES, where CP, ACPC and RK-CP refer to the required numbers of cho-

sen plaintexts, adaptive chosen plaintexts and ciphertexts and related-key chosen

plaintexts, respectively; and Encryptions refers to the required number of encryp-

tion operations of the relevant reduced-round version of AES-128/192/256.

Note that the early abort technique can be used to improve certain cryptanalytic

results on AES using related keys, such as the related-key truncated and impossible

differential attacks on reduced AES-192 described by Jakimoski and Desmedt in [45].

103

5.7 Summary

Table 5.3: Cryptanalytic results on AES

Key Size Attack Type Rounds Keys Data Time Source

128 Square 6 1 232CP 272Encryptions [21]
7 1 2128 − 2119CP 2120Encryptions [25]

Collision 7 1 232CP 2128Encryptions [26]
Boomerang 6 1 271ACPC 271Encryptions [15]
Impossible boomerang 6 1 2112.2CP 2112.3Encryptions Section 5.5
Impossible differential 5 1 229.5CP 231Encryptions [11]

6 1 291.5CP 2122Encryptions [16]
7 1 2117.5CP 2121Encryptions [2]
7 1 2115.5CP 2119Encryptions [111]
7 1 2112.2CP 2115.6Encryptions Section 5.4

192 Square 7 1 232CP 2184Encryptions [81]
8 1 2128 − 2119CP 2188Encryptions [25]

Collision 7 1 232CP 2140Encryptions [26]
7 1 240CP 280Encryptions [22]

Impossible boomerang 7 1 2112.5CP 2186.3Encryptions Section 5.5
Impossible differential 7 1 292CP 2186Encryptions [96]

7 1 292CP 2162Encryptions [111]
7 1 291.2CP 2145.5Encryptions Section 5.4
7 1 2113.8CP 2117.2Encryptions Section 5.4

RK impossible differential 8 2 288RK-CP 2183Encryptions [45]
8 2 2112RK-CP 2136Encryptions [112]

RK impossible boomerang 8 2 2122.4RK-CP 2160Encryptions Section 5.6
RK rectangle 8 4 286.5RK-CP 286.5Encryptions [40]

8 2 294RK-CP 2120Encryptions [52]
9 64 285RK-CP 2182Encryptions [52]
10 256 2125RK-CP 2182Encryptions [52]
10 64 2124RK-CP 2183Encryptions [52]

256 Square 7 1 232CP 2200Encryptions [81]
8 1 2128 − 2119CP 2204Encryptions [25]

Collision 7 1 232CP 2140Encryptions [26]
8 1 240CP 2208Encryptions [22]

Impossible boomerang 7 1 2112.8CP 2186.9Encryptions Section 5.5
Impossible differential 7 1 292.5CP 2250.5Encryptions [96]

8 1 2116.5CP 2247.5Encryptions [111]
8 1 289CP 2247.7Encryptions Section 5.4
8 1 2111.6CP 2233.1Encryptions Section 5.4

RK square 9 256 285RK-CP 2226.4Encryptions [25]
RK impossible boomerang 9 2 2122.8RK-CP 2242.5Encryptions Section 5.6
RK rectangle 9 4 299RK-CP 2120Encryptions [52]

10 256 2114.9RK-CP 2171.8Encryptions [9]
10 64 2113.9RK-CP 2172.8Encryptions [52]

104

Chapter 6

Impossible Differential Cryptanaly-
sis of Reduced Camellia

Camellia is a 128-bit block cipher with a user key of 128, 192 or 256 bits, which be-

came a CRYPTREC-recommended e-government cipher in 2002, a NESSIE selected

algorithm in 2003, and was adopted as an ISO international standard in 2005. In

this chapter we present impossible differential attacks on 11-round Camellia-128

without the FL functions, 12-round Camellia-192 without the FL functions, and

13-round Camellia-256 without the FL functions, all of which use the early abort

technique. The 11-round Camellia-128 attack requires 2118 chosen plaintexts and

has a time complexity of 2118 encryptions and 2126 memory accesses; the 12-round

Camellia-192 attack requires 2119 chosen plaintexts and has a time complexity of

2147.3 encryptions; and the 13-round Camellia-256 attack requires 2120 chosen plain-

texts and has a time complexity of 2211.7 encryptions. These are better than any

previously published cryptanalytic results on Camellia without the FL functions.

Contents

6.1 Introduction . 106

6.2 The Camellia Block Cipher 107

6.2.1 Notation . 107
6.2.2 Functions . 107
6.2.3 Generation of Subkeys . 108
6.2.4 Encryption Procedure . 108

6.3 Previous Cryptanalytic Results 109

6.4 8-Round Impossible Differentials of Camellia 110

6.5 Attacking 13-Round Camellia-256 without the FL Func-
tions . 110

6.5.1 Preliminary Results . 111
6.5.2 Attack Description . 112
6.5.3 Complexity Analysis . 115

105

6.1 Introduction

6.6 Attacking 12-Round Camellia-192 without the FL Func-
tions . 116

6.7 Attacking 11-Round Camellia-128 without the FL Func-
tions . 117

6.7.1 Attack Description . 117
6.7.2 Complexity Analysis . 118

6.8 Summary . 118

6.1 Introduction

The block cipher Camellia was designed by Aoki, Ichikawa, Kanda, Matsui, Moriai,

Nakajima and Tokita [1], and published in 2000. Camellia has a Feistel structure,

a 128-bit block length, and a user key length of 128, 192 or 256 bits. It became a

CRYPTREC-recommended e-government cipher in 2002, a NESSIE selected algo-

rithm in 2003, and was adopted as an ISO international standard in 2005.

In this chapter we present impossible differential attacks on 11-round Camellia-128

without the FL functions, 12-round Camellia-192 without the FL functions, and

13-round Camellia-256 without the FL functions, all of which use the early abort

technique. The attack on 11-round Camellia-128 requires 2118 chosen plaintexts and

has a time complexity of about 2118 encryptions and 2126 memory accesses; the attack

on 12-round Camellia-192 requires 2119 chosen plaintexts and has a time complexity

of about 2147.3 encryptions; and the attack on 13-round Camellia-256 requires 2120

chosen plaintexts and has a time complexity of about 2211.7 encryptions. These are

better than any previously published cryptanalytic results on Camellia without the

FL functions.

The remainder of this chapter is organised as follows. In Section 6.2 we describe

Camellia. In Section 6.3 we briefly review previous cryptanalytic results on Camellia.

In Section 6.4, we describe the 8-round impossible differentials for Camellia of Wu

et al. [108]. In Sections 6.5, 6.6 and 6.7 we present our cryptanalytic results. Section

6.8 summarises the results given in this chapter.

106

6.2 The Camellia Block Cipher

6.2 The Camellia Block Cipher

In this section we briefly describe the Camellia block cipher [1].

6.2.1 Notation

In this chapter, a 128-bit value is represented as a sequence of sixteen bytes, num-

bered from 1 to 16 from left to right. We use the following notation.

• ?: an arbitrary 8-bit value, where two values represented by the ? symbol may

be different

6.2.2 Functions

Camellia uses the following five functions.

• S : {0, 1}64 → {0, 1}64 is a non-linear substitution constructed by applying

eight 8× 8-bit S-boxes S1,S2,S3,S4,S5,S6,S7 and S8 in parallel to the input,

where S1 and S8 are identical, S2 and S5 are identical, S3 and S6 are identical,

and S4 and S7 are identical. See [1] for specifications of the S-boxes.

• P : GF (28)8 → GF (28)8 is a linear permutation equivalent to multiplication

by the following matrix:

P =

1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

.

• F : {0, 1}64 × {0, 1}64 → {0, 1}64 is a Feistel function. If X and Y are 64-bit

blocks, F(X,Y) = P(S(X ⊕ Y)).

107

6.2 The Camellia Block Cipher

• FL : {0, 1}64×{0, 1}64 → {0, 1}64 and FL−1 : {0, 1}64×{0, 1}64 → {0, 1}64 are

key-dependent linear functions. As we consider the version of Camellia without

the FL or FL−1 functions, we omit the description of these two functions;

see [1] for specifications.

6.2.3 Generation of Subkeys

The Camellia cipher uses a total of four 64-bit whitening subkeys KWj , 2bNr−6
6 c

64-bit subkeys KIl for the FL and FL−1 functions, and Nr 64-bit round subkeys

Ki, (1 ≤ j ≤ 4, 1 ≤ l ≤ 2bNr−6
6 c, 1 ≤ i ≤ Nr), all derived from a Nk-bit key K,

where Nr is 18 for Camellia-128, and 24 for Camellia-192/256 (i.e. the 128, 192 and

256-bit key versions of Camellia), Nk is 128 for Camellia-128, 192 for Camellia-192,

and 256 for Camellia-256. How this derivation is performed is not of significance to

our attacks, and so we do not describe it here (for details see [1]).

Each of the round subkeys Ki consists of 8 bytes; we write Ki,l for the lth byte of

Ki, where 1 ≤ l ≤ 8.

6.2.4 Encryption Procedure

Camellia takes as input a 128-bit plaintext block P , and has a total of Nr rounds,

where Nr is 18 for Camellia-128, and 24 for Camellia-192/256. The encryption

procedure is, where L0, R0, Li, Ri, L′i and R′i are 64-bit variables.

1. L0||R0 = P ⊕ (KW1||KW2)

2. For i = 1 to Nr:

if i = 6 or 12 (or 18 for Camellia-192/256),

L′i = F(Li−1,Ki)⊕Ri−1, R′i = Li−1;

Li = FL(L′i,KI i
3
−1), Ri = FL−1(R′i,KI i

3
);

else

Li = F(Li−1,Ki)⊕Ri−1, Ri = Li−1;

108

6.3 Previous Cryptanalytic Results

3. Ciphertext = (RNr ⊕KW3)||(LNr ⊕KW4).

The ith iteration of Step 2 in the above description is referred to below as Round i,

(1 ≤ i ≤ Nr).

6.3 Previous Cryptanalytic Results

In this section we briefly review previously published cryptanalytic attacks on Camel-

lia.

• In 2001, He and Qing [35] presented a square attack on 6-round Camellia-128

without the FL functions.

• In 2001, Sugita, Kobara, and Imai [102] described an impossible differential

attack on 7-round Camellia-128 without the FL functions.

• In 2001, Lee, Hong, Lee, Lim, and Yoon [71] presented a truncated differential

attack on 8-round Camellia-128 without the FL functions.

• In 2002, Shirai [99] presented a boomerang attack on 9-round Camellia-192/256

with the FL functions, a rectangle attack on 10-round Camellia-256 with the

FL functions, a differential attack on 11-round Camellia-256 without the FL

functions, and a linear attack on 12-round Camellia-256 without the FL func-

tions.

• In 2002, Yeom, Park, and Kim [109] presented a square attack on 9-round

Camellia-256 with the FL functions.

• In 2002, Hatano, Sekine, and Kaneko [33] presented higher-order differential

attacks on 11-round Camellia-256 both with and without the FL functions.

• In 2003, Yeom, Park, and Kim [110] presented an integral attack on 9-round

Camellia-256 with the FL functions.

• In 2004, Wu, Feng, and Chen [107] presented collision attacks on 9-round

Camellia-192/256 without the FL functions and 10-round Camellia-256 with-

out the FL functions.

109

6.4 8-Round Impossible Differentials of Camellia

• In 2005, Duo, Li, and Feng [24] presented square attacks on 10-round Camellia-

192/256 without the FL functions and 11-round Camellia-256 without the FL

functions.

• In 2007, Wu, Zhang, and Feng [108] presented an impossible differential attack

on 12-round Camellia-192/256 without the FL functions.

In summary, the best previously published cryptanalytic results on Camellia without

the FL functions are the truncated differential attack on 8-round Camellia-128 [71],

the impossible differential attack on 12-round Camellia-192 [108], and the linear and

impossible differential cryptanalysis of 12-round Camellia-256 [99, 108].

6.4 8-Round Impossible Differentials of Camellia

In 2007, Wu et al. [108] gave the following 8-round impossible differentials for

Camellia: (0, 0, 0, 0, 0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0) 9 (h, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0), where a and h are any non-zero bytes.

These impossible differentials apply to any set of eight consecutive rounds of Camel-

lia.

6.5 Attacking 13-Round Camellia-256 without the FL Func-
tions

In this section, we present an impossible differential cryptanalysis of 13-round Camellia-

256. Without loss of generality, we assume that the attacked 13 rounds are Rounds

1 to 13, and use the 8-round impossible differentials of Wu et al. applied to Rounds

4 to 11.

110

6.5 Attacking 13-Round Camellia-256 without the FL Functions

6.5.1 Preliminary Results

It is easy to verify by a computer program that, for every S-box of Camellia, there

exist 127 possible output differences for any non-zero input difference, of which 1

output difference occurs with probability 2−6, and each of the other 126 output differ-

ences occurs with probability 2−7. Thus an output difference (h, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0) of the 8-round impossible differentials will propagate to about 27 pos-

sible output differences (g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) after Round 12, where

g is non-zero. Then, every (g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) will propagate to

about (27)5 possible output differences after Round 13. Hence, there are at most

(28− 1)× 27× (27)5 ≈ 250 possible output differences after Round 13; let Ω13 be the

set of all possible output differences after Round 13.

We use the early abort technique in the first two rounds and the last round of the

13-round attack. We first give the following result.

Property 6.1 The following properties hold.

1. If (Pi = (L0
i , R

0
i), Pj = (L0

j , R
0
j)) is a plaintext pair, then P−1(R0

i ⊕ R0
j ⊕

(u, u, u, 0, u, 0, 0, u)) has a unique value in the first two bytes for every non-

zero value of u (one byte long).

2. For a pair of ciphertexts (Ci, Cj), if their corresponding values just after Round

13 have a difference (∆L13 = L13
i ⊕ L13

j , ∆R13 = R13
i ⊕ R13

j) belonging to

Ω13, then the difference between their corresponding values just after the S-

box substitution layer of Round 13 must have the form (?, ?, ?, 0, ?, 0, 0, ?), and

there is a unique value of h such that P−1(L13
i ⊕L13

j ⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has

the form (?, ?, ?, 0, ?, 0, 0, ?).

Proof. (1) Suppose that there are two values u1 and u2 such that P−1(R0
i ⊕R0

j ⊕
(u1, u1, u1, 0, u1, 0, 0, u1))⊕P−1(R0

i ⊕R0
j⊕(u2, u2, u2, 0, u2, 0, 0, u2)) = (0, 0, ?, ?, ?, ?,

?, ?). Thus P−1(u1⊕u2, u1⊕u2, u1⊕u2, 0, u1⊕u2, 0, 0, u1⊕u2) = (0, 0, ?, ?, ?, ?, ?, ?).

By definition of P−1 it follows that the first byte of P−1(x, x, x, 0, x, 0, 0, x) for any

x is equal to x, and hence u1 ⊕ u2 = 0, i.e. u1 = u2, and (1) follows.

111

6.5 Attacking 13-Round Camellia-256 without the FL Functions

(2) The left half of a difference from Ω13 has the form (g, g, g, 0, g, 0, 0, g), where

g is a non-zero byte value; thus, for a pair of ciphertexts (Ci, Cj) such that their

corresponding values just after Round 13 have a difference belonging to Ω13, the

difference between their corresponding values just after the S-box substitution layer

of Round 13 must have the form (?, ?, ?, 0, ?, 0, 0, ?). We now prove the latter part

of Property 6.1-2. Because any difference from Ω13 is obtained given the input

difference (g, g, g, 0, g, 0, 0, g, h, 0, 0, 0, 0, 0, 0, 0) to Round 13, therefore, for a pair of

ciphertexts (Ci, Cj) such that their corresponding values just after Round 13 have

a difference belonging to Ω13, there must be a value of h such that P−1(L13
i ⊕L13

j ⊕
(h, 0, 0, 0, 0, 0, 0, 0)) has the form (?, ?, ?, 0, ?, 0, 0, ?). Assume there are two different

values h1 and h2 that satisfy the condition, then it follows that P−1((h1, 0, 0, 0, 0, 0, 0,

0)⊕ (h2, 0, 0, 0, 0, 0, 0, 0)) also has the form (?, ?, ?, 0, ?, 0, 0, ?); note that the fourth

byte is 0; however, by definition of P−1 it follows that the fourth byte of P−1((h1, 0, 0,

0, 0, 0, 0, 0)⊕ (h2, 0, 0, 0, 0, 0, 0, 0)) should be h1 ⊕ h2 6= 0, giving a contradiction. ¤

6.5.2 Attack Description

We now present a procedure for attacking 13-round Cammellia-256; it involves the

following series of steps. The attack is shown diagrammatically in Figure 6.1.

1. Choose 28 structures Si, (1 ≤ i ≤ 28), where a structure Si is defined to be a set

of 2112 plaintexts Pi,j = (L0
i,j , R

0
i,j) with L0

i,j = P(xi,j
1 , xi,j

2 , xi,j
3 , α4, x

i,j
5 , γi

6, γ
i
7,

xi,j
8)⊕ (xi,j , β2, β3, β4, β5, β6, β7, β8) and R0

i,j = (yi,j
1 , yi,j

2 , yi,j
3 , yi,j

4 , yi,j
5 , yi,j

6 , yi,j
7 ,

yi,j
8), where the bytes α4, β2, β3, · · · , β8 are arbitrary but fixed values (for the 28

structures), the bytes xi,j , xi,j
1 , xi,j

2 , xi,j
3 , xi,j

5 , xi,j
8 , yi,j

1 , yi,j
2 , · · · , yi,j

8 take all the

possible values in {0, 1}8, and the bytes γi
6, γ

i
7 are fixed, (j = 1, 2, · · · , 2112).

In a chosen-plaintext attack scenario, obtain all the 2120 ciphertexts for all the

2112 plaintexts in each of the 28 structures; we denote the ciphertext for plain-

text Pi,j by Ci,j = (L13
i,j , R

13
i,j). Choose the pairs (Ci,j1 , Ci,j2) with a difference

belonging to Ω13, where 1 ≤ j1 6= j2 ≤ 2112.

2. For every remaining ciphertext pair (Ci,j1 , Ci,j2), by Property 6.1-2 there is

only one value of h such that P−1(L13
i,j1

⊕ L13
i,j2

⊕ (h, 0, 0, 0, 0, 0, 0, 0)) has the

form (?, ?, ?, 0, ?, 0, 0, ?); we denote by δ13
i,j1,j2

the value P−1(L13
i,j1

⊕ L13
i,j2

⊕

112

6.5 Attacking 13-Round Camellia-256 without the FL Functions

P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

K ◦ S P ⊕

8-round impossbile differentials

∆L11 = (h, 0, 0, 0, 0, 0, 0, 0) ∆R11 = (0, 0, 0, 0, 0, 0, 0, 0)

∆L12 = (g, g, g, 0, g, 0, 0, g)
δ13

i,j

∆L0 = P(?, ?, ?, 0, ?, 0, 0, ?) ⊕ (?, 0, 0, 0, 0, 0, 0, 0)

∆L1 = (u, u, u, 0, u, 0, 0, u)

∆L2 = (a, 0, 0, 0, 0, 0, 0, 0)

∆L3 = (0, 0, 0, 0, 0, 0, 0, 0)

∆R0 = (?, ?, ?, ?, ?, ?, ?, ?)

δ1

i,j

δ2

i,j

K ◦ S

∆13

Figure 6.1: Impossible differential attack on 13-round Camellia-256

(h, 0, 0, 0, 0, 0, 0, 0)) with the form (?, ?, ?, 0, ?, 0, 0, ?). Then, perform Steps

(a) and (b) below.

(a) Perform the following two sub-steps for l = 1, 2, 3, 5, 8.

• Guess a value for the subkey byte K13,l;

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt

R13
i,j1

and R13
i,j2

to get the corresponding values for byte (l) just after

the S function of Round 13, and check whether they have a difference

equal to the corresponding one-byte difference in δ13
i,j1,j2

. Keep only

the pairs that meet this condition.

(b) Guess a value for the subkey bytes (K13,4,K13,6, K13,7), such that for

every remaining ciphertext pair we can get the corresponding values for

byte (1) just before Round 12.

3. Guess a value for the subkey byte K12,1. For every remaining ciphertext pair

(Ci,j1 , Ci,j2), partially decrypt R12
i,j1

and R12
i,j2

to get the corresponding values

for byte (1) just after the S function of Round 12, and check whether they

113

6.5 Attacking 13-Round Camellia-256 without the FL Functions

have a difference equal to byte (1) of L12
i,j1

⊕ L12
i,j2

. Keep only the pairs that

meet this condition.

4. For every plaintext pair (Pi,j1 , Pi,j2) corresponding to a remaining ciphertext

pair (Ci,j1 , Ci,j2), compute P−1(R0
i,j1

⊕ R0
i,j2

⊕ (u, u, u, 0, u, 0, 0, u)) for all the

255 possible non-zero values of u; label the resulting set of 255 values ∆1
i,j1,j2

.

Then, perform Steps (a) and (b) below.

(a) Guess a value for the two subkey bytes (K1,1,K1,2). For every remaining

plaintext pair (Pi,j1 , Pi,j2), partially encrypt L0
i,j1

and L0
i,j2

to get the cor-

responding values for bytes (1,2) just after the S function of Round 1, and

check whether they have a difference equal to any of the corresponding

two-byte partial differences in ∆1
i,j1,j2

. Keep only the pairs that meet this

condition. By Property 6.1-1 there is only one difference in ∆1
i,j1,j2

for a

pair meeting the condition, and we denote this difference from ∆1
i,j1,j2

by

δ1
i,j1,j2

.

(b) Perform the following two sub-steps for l = 3 to 8:

• Guess a value for the subkey byte K1,l;

• For every remaining plaintext pair (Pi,j1 , Pi,j2), partially encrypt L0
i,j1

and L0
i,j2

to get the corresponding values for byte (l) just after the S

function of Round 1, and check whether they have a difference equal

to the corresponding one-byte partial difference in δ1
i,j1,j2

. Keep only

the pairs that meet this condition.

5. For every remaining plaintext pair (Pi,j1 , Pi,j2), from Property 6.1-2 we sim-

ilarly know that there is only one value of a such that P−1(L0
i,j1

⊕ L0
i,j1

⊕
(a, 0, 0, 0, 0, 0, 0, 0)) has the form (?, ?, ?, 0, ?, 0, 0, ?); we denote by δ2

i,j1,j2
the

value P−1(L0
i,j1
⊕L0

i,j1
⊕ (a, 0, 0, 0, 0, 0, 0, 0)) with the form (?, ?, ?, 0, ?, 0, 0, ?).

Then, perform Steps (a) and (b) below.

(a) Perform the following two sub-steps for l = 1, 2, 3, 5, 8.

• Guess a value for the subkey byte K2,l;

• For every remaining pair (Pi,j1 , Pi,j2), partially encrypt L1
i,j1

and L1
i,j2

to get the corresponding values for byte (l) just after the S function

of Round 2, and check whether they have a difference equal to the

corresponding one-byte partial difference in δ2
i,j1,j2

. Keep only the

pairs that meet this condition.

114

6.5 Attacking 13-Round Camellia-256 without the FL Functions

(b) Guess a value for the subkey bytes (K2,4,K2,6,K2,7), such that for every

remaining plaintext pair we can get the corresponding values for byte (1)

just after Round 2.

6. Guess a value for the subkey byte K3,1. For every plaintext pair (Pi,j1 , Pi,j2),

partially encrypt L2
i,j1

and L2
i,j2

to get the corresponding values for byte (1)

just after the S function of Round 3, and check whether they have a difference

equal to byte (1) of L1
i,j1

⊕ L1
i,j2

. If there exists a ciphertext pair that meets

this condition, then discard this subkey guess, and try another; otherwise, for

every subkey guessed value for (K1,K2), exhaustively search for the remaining

128 key bits.

6.5.3 Complexity Analysis

The attack requires 2120 chosen plaintexts, which take a time complexity of 2120

13-round Camellia-256 encryptions.

In Step 1, after an analysis we learn that, for different values of (xi,j , xi,j
1 , xi,j

2 , xi,j
3 , xi,j

5 ,

xi,j
8 , yi,j

1 , · · · , yi,j
8) in a structure Si, the resultant 128-bit blocks are different. Thus

a structure Si yields
(
2112

2

) ≈ 2112×2

2 = 2223 plaintext pairs (Pi,j1 , Pi,j2), (j =

1, 2, · · · , 2112), and hence the 28 structures yield a total of 2231 ciphertext pairs.

Choosing the pairs (Ci,j1 , Ci,j2) with a difference belonging to Ω13 requires about

2120 × 250 = 2176 memory accesses in a simple implementation. There are 250 pos-

sible differences in Ω13, thus approximately 2231 × 250

2128 = 2153 are chosen in Step

1.

In Step 2(a), a proportion of about 1 − 2−7 of the remaining ciphertext pairs will

be discarded after every iteration. Step 2(b) does not put any filtering condition

on the remaining ciphertext pairs. Step 2 has a total time complexity of about
∑4

i=0(2× 2153−7×i × 28×(i+1) × 1
13 × 1

8) + 2× 2118 × 264 × 1
13 × 3

8 ≈ 2177.9 13-round

Camellia-256 decryptions.

In Step 3, a proportion of about 1 − 2−7 of the remaining ciphertext pairs will be

discarded. Step 3 has a time complexity of about 2 × 2118 × 272 × 1
13 × 1

8 ≈ 2184.3

13-round Camellia-256 decryptions.

115

6.6 Attacking 12-Round Camellia-192 without the FL Functions

In Step 4(a), there are 255 possible values in ∆1
i,j1,j2

for every pair (Pi,j1 , Pi,j2), thus

it is expected that about 2111 × 255
216 ≈ 2103 pairs (Pi,j1 , Pi,j2) remain after Step 4(a)

for every guess of (K13,1,K13,2, K13,3,K13,5,K13,8,K12,1,K1,1,K1,2). In Step 4(b),

the difference δ1
i,j1,j2

is already fixed in Step 4(a), so it is expected that a proportion

of about 1 − 2−8 of the remaining pairs (Pi,j1 , Pi,j2) will be discarded after every

iteration. Step 4 has a total time complexity of about 2 × 2111 × 288 × 1
13 × 2

8 +
∑5

i=0(2×2103−8×i×288+8×(i+1)× 1
13× 1

8) ≈ 2196.3 13-round Camellia-256 encryptions.

In Step 5(a), similarly it is expected that a proportion of about 1 − 2−8 of the

remaining plaintext pairs (Pi,j1 , Pi,j2) will be discarded after every iteration. Step

5(b) does not put any filtering condition on the remaining plaintext pairs. Step 5

has a total time complexity of about
∑4

i=0(2 × 255−8×i × 2136+8×(i+1) × 1
13 × 1

8) +

2× 215 × 2200 × 1
13 × 3

8 ≈ 2210.9 13-round Camellia-256 encryptions.

In Step 6, with a probability of 2−8 we can get a pair (Ci,j1 , Ci,j2) that meets the

condition, thus the expected number of remaining subkey guesses is about 2208 ×
(1− 2−8)2

15 ≈ 223.68, meaning that 2151.68 trial encryptions are required to find the

correct 256 key bits. Step 6 has a time complexity of about 2×2208× [1+(1−2−8)+

· · ·+ (1− 2−8)2
15

]× 1
13 × 1

8 + 2151.68 ≈ 2210.3 13-round Camellia-256 encryptions.

Therefore, the attack has a total time complexity of approximately 2211.7 13-round

Camellia-256 encryptions.

6.6 Attacking 12-Round Camellia-192 without the FL Func-
tions

As mentioned earlier, Wu et al. [108] presented an impossible differential crypt-

analysis on 12-round Camellia-192 without the FL functions. The attack requires

2120 chosen plaintexts, and has a time complexity of 2181 Camellia-192 encryptions.

However, it can be improved; the improved attack is basically the version of the

above 13-round Camellia-256 attack when the last round is removed. The main

difference is that in the last step we exhaustively search for the remaining 64 key

bits for every guessed value for (K1,K2). After a similar analysis, we get that the

improved attack on 12-round Camellia-192 requires 2119 chosen plaintexts, and has

116

6.7 Attacking 11-Round Camellia-128 without the FL Functions

a time complexity of approximately 2147.3 12-round Camellia-192 encryptions;

6.7 Attacking 11-Round Camellia-128 without the FL Func-
tions

Without loss of generality, we assume that the attacked 11 rounds are Rounds 1 to

11. We use the 8-round impossible differentials of Wu et al. in Rounds 3 to 10, and

use the early abort technique in the first round.

6.7.1 Attack Description

The attack procedure is as follows.

1. Choose 230 structures Si, (i = 1, 2, · · · , 230), where a structure is defined to be a

set of 288 plaintexts Pi = (L0
i,j , R

0
i,j) with R0

i,j = P(xi,j
1 , xi,j

2 , xi,j
3 , α4, x

i,j
5 , σi

6, σ
i
7,

xi,j
8)⊕(xi,j , βi

2, β
i
3, β

i
4, β

i
5, β

i
6, β

i
7, β

i
8) and L0

i,j = (yi,j
1 , yi,j

2 , yi,j
3 , γi

4, y
i,j
5 , γi

6, γ
i
7, y

i,j
8),

where the bytes α4, β2, β3, β4, β5, β6, β7, β8 are arbitrary but fixed values (for

the 230 structures), the bytes xi,j , xi,j
1 , xi,j

2 , xi,j
3 , xi,j

5 , xi,j
8 , yi,j

1 , yi,j
2 , yi,j

3 , yi,j
5 , yi,j

8

take all the possible values in {0, 1}8, and the bytes σi
6, σ

i
7, γ

i
4, γ

i
6, γ

i
7 are fixed,

(j = 1, 2, · · · , 288). In a chosen-plaintext attack scenario, obtain all the

2118 ciphertexts for the 288 plaintexts in each of the 230 structures; we de-

note the ciphertext for plaintext Pi,j by Ci,j = (L11
i,j , R

11
i,j). Choose the ci-

phertext pairs (Ci,j1 , Ci,j2) such that L0
i,j1

⊕ L0
i,j2

= (u, u, u, 0, u, 0, 0, u) and

(L11
i,j1

⊕ L11
i,j2

, R11
i,j1

⊕ R11
i,j2

) belonging to the 215 possible output differences

after Round 11.

2. Conduct a step similar to Step 3 of the 13-round Camellia-256 attack presented

in Section 6.5.

3. Conduct a step similar to Step 5 of the 13-round Camellia-256 attack.

4. Conduct a step similar to Step 6 of the 13-round Camellia-256 attack; here,

for every remaining guess for (K1,K2,1), exhaustively search for the remaining

56 key bits.

117

6.8 Summary

6.7.2 Complexity Analysis

In Step 1, a structure yields about 288×2

2 × 255
240 ≈ 2143 ciphertext pairs (Ci,j1 , Ci,j2)

with L0
i,j1

⊕ L0
i,j2

= (u, u, u, 0, u, 0, 0, u), so the 230 structures yield a total of 2173

ciphertext pairs with ∆L0 = (u, u, u, 0, u, 0, 0, u), which generate 2173 × 215

2128 = 260

useful pairs. To get the useful ciphertext pairs, we first store the ciphertexts in a

structure Si into a hash table indexed by bytes (4,6,7) of L11
i,j , bytes (2, 3, · · · , 8)

of R11
i,j , the XOR of the 1st and 2-nd bytes of L11

i,j , the XOR of the 1st and 3-rd

bytes of L11
i,j , the XOR of the 1st and 5th bytes of L11

i,j and the XOR of the 1st and

8th bytes of L11
i,j ; and then we choose the qualified pairs. Thus, it requires about

2118×28 = 2126 memory accesses in a simple implementation. The expected number

of remaining ciphertext pairs is about 260.

Step 2 has a time complexity of about 2 × 260 × 28 × 1
11 × 1

8 ≈ 262.6 11-round

Camellia-128 encryptions.

Step 3 has a time complexity of about
∑4

i=0(2 × 253−8×i × 28+8×(i+1) × 1
11 × 1

8) +

2× 213 × 272 × 1
11 × 3

8 ≈ 281.2 11-round Camellia-128 encryptions.

In Step 4, it is expected that there remain about 280 × (1− 2−8)2
13 ≈ 233.92 guesses

for (K1, K2,1,K11,1); thus 289.92 trial encryptions are required to find the 128 key

bits. This step has a time complexity of about 2× 280 × [1 + (1− 2−8) + · · ·+ (1−
2−8)2

13
]× 1

11 × 1
8 + 289.92 ≈ 290 11-round Camellia-128 encryptions.

Therefore, the attack has a total time complexity of approximately 2118 11-round

Camellia-128 encryptions and 2126 memory accesses.

6.8 Summary

In this chapter we have presented impossible differential attacks on 11-round Camellia-

128 without the FL functions, 12-round Camellia-192 without the FL functions,

and 13-round Camellia-256 without the FL functions. Table 6.1 summarises the

published cryptanalytic results on Camellia, where CP, KP and ACPC refer to

the required numbers of chosen plaintexts, known plaintexts and adaptive chosen

118

6.8 Summary

plaintexts and ciphertexts, respectively; MA and Encryptions refer to the required

numbers of memory accesses and encryption operations of the relevant reduced ver-

sion of Camellia-128/192/256, respectively; “none” means “no FL function”; and

“all” means “all the FL functions”.

Table 6.1: Cryptanalytic results on Camellia

Key Size Attack Type Rounds FL/FL−1 Data Time Source

128 Square 6 none 211.7CP 2112Encryptions [35]
Truncated differential 8 none 283.6CP 255.6Encryptions [71]
Impossible differential 7 none not specified not specified [102]

11 none 2118CP 2126MA&2118Encryptions Section 6.7
192 Boomerang 9 all 2124ACPC 2170Encryptions [99]

Collision 9 none 213CP 2175.6Encryptions [107]
Square 10 none not specified 2186Encryptions [24]
Impossible differential 12 none 2120CP 2181Encryptions [108]

12 none 2119CP 2147.3Encryptions Section 6.6
256 Boomerang 9 all 2124ACPC 2170Encryptions [99]

Square 9 all 260CP 2202Encryptions [109]
10 none not specified 2186Encryptions [24]

Integral 9 all 260.5CP 2202.2Encryptions [110]
Rectangle 10 all 2127CP 2241Encryptions [99]
Collision 10 none 214CP 2239.9Encryptions [107]
Differential 11 none 2104CP 2232Encryptions [99]
High-order differential 11 none 221CP 2255Encryptions [33]

11 all 293CP 2256Encryptions [33]
Square 11 none not specified 2250Encryptions [24]
Linear 12 none 2119KP 2247Encryptions [99]
Impossible differential 12 none 2120CP 2181Encryptions [108]

13 none 2120CP 2211.7Encryptions Section 6.5

119

Chapter 7

Related-Key Cryptanalysis of the Full
Cobra-F64a and Cobra-F64b

Cobra-F64a and Cobra-F64b, designed for firmware-oriented applications, are 64-bit

Data-dependent Permutation based block ciphers with 128 key bits, which involve 16

and 20 rounds, respectively. In this chapter, we present a related-key rectangle attack

on the full Cobra-F64a and a related-key differential attack on the full Cobra-F64b.

The attack on Cobra-F64a requires 264.81 related-key chosen plaintexts, and has a

time complexity of approximately 2123.81 encryptions; the attack on Cobra-F64b re-

quires 261 related-key chosen plaintexts, and has a time complexity of approximately

2110.67 encryptions.

Contents

7.1 Introduction . 121

7.2 Cobra-F64a and Cobra-F64b 122

7.2.1 Notation . 122
7.2.2 Functions and DDP-Boxes 122
7.2.3 Generation of Subkeys . 125
7.2.4 Encryption Procedure . 125

7.3 Previous Cryptanalytic Results 126

7.4 Properties of Cobra-F64a and Cobra-F64b 126

7.5 Related-Key Rectangle Attack on Cobra-F64a 131

7.5.1 A 15-Round Related-Key Rectangle Distinguisher with Prob-
ability 2−123.62 . 131

7.5.2 Attack Description . 134
7.5.3 Complexity Analysis . 136

7.6 Related-Key Differential Attack on Cobra-F64b 137

7.6.1 A 19.5-Round Related-Key Differential Characteristic with
Probability 2−57 . 137

7.6.2 Attack Description . 137
7.6.3 Complexity Analysis . 139

120

7.1 Introduction

7.7 Summary . 140

7.1 Introduction

Cobra-F64a and Cobra-F64b was designed by Goots, Moldovyan, Moldovyan and

Summerville [28], and published in 2003. They have a Feistel structure, a 64-bit

block length, and a 128-bit user key, which involve 16 and 20 rounds, respectively.

Recently, a number of block ciphers, including SPECTR-H64 [29], the CIKS fam-

ily — CIKS-1 [85], CIKS-128 [28] and CIKS-128H [100], and the Cobra family —

Cobra-128, Cobra-F64a and Cobra-F64b [30], Cobra-H64 and Cobra-H128 [101],

have been proposed for use in applications that require a small amount of data to be

encrypted with frequently changed user keys. One example of such an application

is provided by IPsec (Internet Protocol security) [44]. However, many of them have

been shown to be vulnerable to related-key cryptanalytic attacks [62, 63, 68, 69],

although Cobra-F64a and Cobra-F64b [30] have, until now, been exceptions.

In this chapter, we describe a 15-round related-key rectangle distinguisher with

probability 2−123.62 for Cobra-F64a, and use it to mount a related-key rectangle at-

tack on the full 16-round Cobra-F64a. The attack requires 264.81 related-key chosen

plaintexts and has a time complexity of approximately 2123.81 encryptions. We also

describe a 19.5-round related-key differential with probability 2−57 for Cobra-F64b,

and use it as the basis of a related-key differential attack on the full 20-round

Cobra-F64b. The second attack requires 261 related-key chosen plaintexts and has

a time complexity of approximately 2110.67 encryptions.

The remainder of this chapter is organised as follows. In Section 7.2 we describe

Cobra-F64a and Cobra-F64b. In Section 7.3 we briefly review previous cryptan-

alytic results on Cobra-F64a and Cobra-F64b. In Section 7.4 we give a number

of properties of Cobra-F64a and Cobra-F64b. In Sections 7.5 and 7.6 we present

our cryptanalytic results on Cobra-F64a and Cobra-F64b, respectively. Section 7.7

summarises the results given in this chapter.

121

7.2 Cobra-F64a and Cobra-F64b

7.2 Cobra-F64a and Cobra-F64b

In this section we briefly describe the Cobra-F64a and Cobra-F64b block ciphers [30].

7.2.1 Notation

In this chapter, the bits of an n-bit value are numbered from 1 to n from left to right,

where the least significant bit is referred as the nth bit, and the most significant bit

is referred as the 1st bit. We use the following notation.

• ¢: addition modulo 232

• ¯: subtraction modulo 232

• 〈x〉2: x is in binary (base 2) notation

7.2.2 Functions and DDP-Boxes

Cobra-F64a and Cobra-F64b use the function T and a number of so-called DDP-

boxes Pn,m (for specific values of n and m) to construct the round function F. These

functions are defined as follows.

• T : {0, 1}32 → {0, 1}96 is a linear function. If L = (l1, · · · , l32) is 32-bit block,

then T(L) is defined to equal (L1||L1 ≫ 6||L1 ≫ 12||L2||L2 ≫ 6||L2 ≫ 12),

where L1 = (l1, · · · , l16) and L2 = (l17, · · · , l32).

• For certain specific values of n and m (see below), the non-linear function

Pn,m : {0, 1}n × {0, 1}m → {0, 1}n with the property that, for any fixed m-bit

value V , Pn,m(·, V) : {0, 1}n → {0, 1}n is a bijective mapping. Such a function

is called a Data-Dependent Permutation box (DDP-box), and V is called the

controlling vector. We write P−1
n,m(·, V) as (P−1

n,m(·, V))−1 for any fixed V , or

simply write P−1
n,m. Cobra-F64a and Cobra-F64b use the following DDP-boxes.

122

7.2 Cobra-F64a and Cobra-F64b

Pn,m

n

X = (x1, x2, · · · , xn)

n

Pn∗m(X, V) = (y1, y2, · · · , yn)

m

V = (v1, v2, · · · , vn) P2,1 P2,1

P2,1 P2,1

x1 x2 x3 x4

y1 y2 y3 y4

v1 v2

v3 v4
P2,1

x1 x2

y1 y2

(a) (b) (c)

P2,1 P2,1

P2,1 P2,1

x1 x2 x3 x4

y1 y2 y3 y4

v3 v4

v1 v2

(d)

P2,1 P2,1

x1 x2 x3 x4

y1 y2 y3 y4

P2,1 P2,1

P4,4

x5 x6 x7 x8

y5 y6 y7 y8

V3

(e)

V1

V2P4,4 P2,1 P2,1

x1 x2 x3 x4

y1 y2 y3 y4

P2,1 P2,1

P4,4

x5 x6 x7 x8

y5 y6 y7 y8

V1

(f)

V3
V2

P4,4

P8,12 P8,12 P8,12 P8,12

P
−1

8,12
P

−1

8,12
P

−1

8,12
P

−1

8,12

(g)

V1
V2
V3

V4
V5
V6

V6
V5
V4

V3
V2
V1

Figure 7.1: (a) Pn,m; (b) P2,1; (c) P4,4; (d) P−1
4,4; (e) P8,12; (f) P−1

8,12; (g) P32,96 and
P−1

32,96

– P2,1: If x = (x1, x2) ∈ {0, 1}2 and v ∈ {0, 1}, P2,1(x, v) = (x1+v, x2−v).

That is, P2,1(·, v) swaps the two input bits if v = 1; otherwise, it is the

identity function.

– P4,4, P8,12, P32,96, and their inverses P−1
4,4, P

−1
8,12 and P−1

32,96 are all defined

using the 2 × 1 DDP-box P2,1. Figure 7.1 depicts these DDP-boxes.

Detailed specifications of these functions are given in Goots et al. [30].

– The function P(ω)
96,1: is defined in a series of P2,1 that use the same 1-

bit ‘control’ input ω, as shown in Figure 7.2(a). ω = 0 is used for the

encryption function of Cobra-F64a or Cobra-F64b, and ω = 1 is used for

123

7.2 Cobra-F64a and Cobra-F64b

decryption.

– The function P(ω)
32,32 is defined as the functional composition of T, followed

by P(ω)
96,1 and then P32,96, as shown in Figure 7.2(b).

• F : {0, 1}64 × {0, 1}64 → {0, 1}64 is an non-linear Feistel structure. Figure 7.3

depicts F for Cobra-F64a and Cobra-F64b. Detailed specifications of these

two functions are given in [30].

16 × P2,1ω

V1

V
′

1

ω

V3

V
′

3

ω

V5

V
′

5

V4

V
′

4

V2

V
′

2

V6

V
′

6

(a)

T

ω

Y

P
(ω)
96,1

P32,96

(b)

V

X
32

V V ′

32

16 × P2,1 16 × P2,1

Figure 7.2: (a) P(ω)
96,1; (b) P(ω)

32,32

P
(0)
32,32

⊕

P
(0)
32,32

Aj−1 Bj−1

P
(0)
32,32

Aj−1 Bj−1

⊕ ⊕

>>> 8

>>> 8

K2
j

K1
j

K2
j

K1
j

(a) (b)

Aj Bj Aj Bj

Figure 7.3: (a) F of Cobra-F64a; (b) F of Cobra-F64b

124

7.2 Cobra-F64a and Cobra-F64b

7.2.3 Generation of Subkeys

Cobra-F64a uses a total of 34 32-bit subkeys Kj
i (1 ≤ i ≤ 17), j ∈ {1, 2}, all derived

from a 128-bit user key K. Similarly, Cobra-F64b uses a total of 42 32-bit subkeys

Kj
i (1 ≤ i ≤ 21), j ∈ {1, 2}, all derived from a 128-bit user key K. Let K be

represented as a sequence of as four 32-bit words K = (W1,W2,W3,W4), then the

subkeys of Cobra-F64a and Cobra-F64b are generated as shown in Table 7.1.

Table 7.1: The key schedules of Cobra-F64a and Cobra-F64b
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

K1
i W1 W2 W3 W4 W2 W1 W4 W3 W1 W2 W4 W3 W1 W4 W2 W3 W2 W4 W3 W1 W2

K2
i W4 W3 W1 W2 W3 W2 W1 W4 W2 W3 W1 W2 W3 W1 W3 W4 W3 W1 W4 W2 W3

7.2.4 Encryption Procedure

Cobra-F64a and Cobra-F64b both take as input a 64-bit plaintext block P and

have a total of N rounds, where N is 16 for Cobra-F64a, and 20 for Cobra-F64b.

The encryption procedures of Cobra-F64a and Cobra-F64b are as follows, where

A0, B0, Ai, Bi are 32-bit variables.

1. P = (A0, B0).

2. For i = 1 to N :

if i ≤ N − 1,

(Ai, Bi) = F(Ai−1, Bi−1,K
1
i ,K2

i),

(Ai, Bi) = (Bi, Ai).

else

(Ai, Bi) = F(Ai−1, Bi−1,K
1
i ,K2

i).

3. • For Cobra-F64a: Ciphertext = (AN ¯ K1
N+1, BN ¢ K2

N+1).

• For Cobra-F64b: Ciphertext = (AN ⊕K1
N+1, BN ⊕K2

N+1).

The ith iteration of Step 2 in the above description is referred to below as Round

i, (1 ≤ i ≤ N), and the transformation in Step 3 is referred to below as the final

transformation.

125

7.3 Previous Cryptanalytic Results

7.3 Previous Cryptanalytic Results

In 2005, Lee, Kim, Hong, Sung and Lee [68] presented a related-key differential

attack on the first 11 rounds of Cobra-F64a, and a related-key differential attack

on the first 18 rounds of Cobra-F64b. These are the only previously published

cryptanalytic results on Cobra-F64a and Cobra-F64b.

7.4 Properties of Cobra-F64a and Cobra-F64b

In 2004, Ko et al. [62, 63] gave the following three properties of the Cobra DDP-

boxes.

Property 7.1 Let ∆x be the difference between two inputs x and x′ of P2,1, ∆v

be the difference between two controlling vectors v and v′ of P2,1, and ∆y be the

difference between the two outputs P2,1(x, v) and P2,1(x′, v′). Then:

(a) P2,1(x, 0) = P2,1(x, 1) holds if and only if the two bits of the input x are equal,

i.e. it holds with probability 1
2 .

(b) Pr(∆y = 〈10〉2|∆x ∈ {〈10〉2, 〈01〉2},∆v = 0) = Pr(∆y = 〈01〉2|∆x ∈ {〈10〉2, 〈01〉2},
∆v = 0) = 2−1.

(c) Pr(∆y = 〈10〉2|∆x ∈ {〈10〉2, 〈01〉2},∆v = 1) = Pr(∆y = 〈01〉2|∆x ∈ {〈10〉2, 〈01〉2},
∆v = 1) = 2−1.

(d) Pr(∆y = 〈11〉2|∆x = 〈00〉2, ∆v = 1) = Pr(∆y = 〈00〉2|∆x = 〈00〉2, ∆v = 1) =

2−1.

Property 7.2 Suppose X,X ′ ∈ {0, 1}8 and V ∈ {0, 1}12. If X ⊕X ′ = ei for some

i (1 ≤ i ≤ 8), then P8,12(X,V) ⊕ P8,12(X ′, V) = ej, for some j, (1 ≤ j ≤ 8). If i

and j are fixed, then the path for the differential ∆ei → ∆ej is fixed.

Property 7.3 Suppose X ∈ {0, 1}n and V ∈ {0, 1}m. Then the following properties

hold for all the various values of n and m.

(a) Pr(Pn,m(X, V) = Pn,m(X, V ⊕ ei)) = 2−1, for every i (1 ≤ i ≤ m).

126

7.4 Properties of Cobra-F64a and Cobra-F64b

(b) If X ′ ∈ {0, 1}n then W (X ⊕X ′) = W (Pn,m(X, V)⊕Pn,m(X ′, V)), where W is

the Hamming Weight function.

In 2005, Lee et al. [68] gave two further properties of the DDP-boxes P32,96 and P(ω)
32,32

used in Cobra-F64a and Cobra-F64b; we now give these two properties, correcting

certain errors in the versions given in [68].

Property 7.4 Let ∆x be the difference between two inputs x and x′ of P32,96, ∆v

be the difference between two controlling vectors v and v′ of P32,96, and ∆y be the

difference between the two outputs P32,96(x, v) and P32,96(x′, v′). Then:

(a) Pr(∆y = e1|∆x = e1,∆v = 0) = 2−5.

(b) Pr(∆y = e1|∆x = e1, ∆v = e1) = 2−5.

Proof. (a) As shown in Figure 7.1, there are six layers of DDP-boxes P2,1 in a

P32,96. Given the difference e1 between two inputs and a zero difference between

two controlling vectors to P32,96, there are two possibilities to get ∆y = e1: one

is that the controlling bits in the first P2,1 DDP-boxes of the six layers are all

zero, which happens with a probability of 2−6; the other is that the controlling

bit in the first P2,1 DDP-box of the first layer is 1 and the controlling bits in

the third P2,1 of the middle four layers and the first P2,1 of the last layer are

all zero, which happens also with a probability of 2−6. Therefore, we get that

Pr(∆y = e1|∆x = e1, ∆v = 0) = 2−6 + 2−6 = 2−5.

(b) Given the difference e1 between two inputs and the difference e1 between two

controlling vectors to P2,1, we can get either of the differences 〈01〉2 and 〈01〉2
between the two outputs P2,1 with a probability of 2−1. For the case of 〈01〉2, if the

controlling bits in the third P2,1 of the middle four layers and the first P2,1 of the

last layer are all zero, we can get ∆y = e1, which happens with a probability of 2−5.

For the case of 〈10〉2, if the controlling bits in the third P2,1 of the last five layers are

all zero, we can get ∆y = e1, which happens also with a probability of 2−5. Hence,

we get that Pr(∆y = e1|∆x = e1, ∆v = e1) = 2−1 × 2−5 + 2−1 × 2−5 = 2−5. ¤

Property 7.5 Let ∆x be the difference between two inputs x and x′ of P(0)
32,32, ∆v

127

7.4 Properties of Cobra-F64a and Cobra-F64b

be the difference between two controlling vectors v and v′ of P(0)
32,32, and ∆y be the

difference between the two outputs P(0)
32,32(x, v) and P(0)

32,32(x
′, v′). Then:

(a) Pr(∆y = 0|∆x = 0, ∆v = e1) = 2−3.

(b) Pr(∆y = e1|∆x = e1, ∆v = 0) = 2−5.

(c) Pr(∆y = e1|∆x = e1, ∆v = e1) = 2−7.

(d) Pr(∆y = e1|∆x = e1,∆v = e9) = 2−8.

(e) Pr(∆y = e1|∆x = e1, ∆v = e1,9) = 2−10.

Proof. (a) As introduced in Section 7.2.2, P(0)
32,32 is the functional composition of

T, followed by P(0)
96,1 and then P32,96. A DDP-Box P32,96 consists of six layers of

DDP-boxes P2,1. After the application of T and P(0)
96,1, the difference e1 between

two controlling vectors of P(0)
32,32 will produce a one difference in the following three

controlling bits of the P32,96 in P(0)
32,32: the first P2,1 of the first layer, the 7th P2,1

of the second layer and the 13th P2,1 of the third layer, and a zero difference in

the other controlling bits of P32,96. Thus, this property proves correct following

Property 7.1(a).

(b) Similar to the proof of Property 7.4(a).

(c) As mentioned above, after the application of T and P(0)
96,1, the difference e1

between two controlling vectors of P(0)
32,32 will produce a one difference in the following

three controlling bits of the P32,96 in P(0)
32,32: the first P2,1 of the first layer, the 7th

P2,1 of the second layer and the 13th P2,1 of the third layer, and a zero difference

in the other controlling bits of P32,96. Thus, to get ∆y = e1 we require that the

following requirements hold simultaneously.

• The two inputs to the 7th P2,1 of the second layer produce a zero output

difference;

• The two inputs to the 13th P2,1 of the second layer produce a zero output

difference;

128

7.4 Properties of Cobra-F64a and Cobra-F64b

• When the two inputs to the first P2,1 of the first layer produce the output

differences 〈01〉2, the controlling bits in the third P2,1 of the middle four layers

and the first P2,1 of the last layer are all zero, which happens with a probability

of 2−5; or when the two inputs to the first P2,1 of the first layer produce the

output differences 〈10〉2, the controlling bits in the third P2,1 of the last five

layers are all zero, which happens also with a probability of 2−5.

By Property 7.1(a), we know that each of the first two requirements holds with a

probability of 2−1; similarly to Property 7.4(b) we know that the last requirement

holds with a probability of 2−1 × 2−5 + 2−1 × 2−5 = 2−5. Therefore, we learn that

Pr(∆y = e1|∆x = e1, ∆v = e1) = 2−1 × 2−1 × 2−5 = 2−7.

(d) After the application of T and P(0)
96,1, the difference e9 between two controlling

vectors of P(0)
32,32 will produce a one difference in the following three controlling bits

of the P32,96 in P(0)
32,32: the 9th P2,1 of the first layer, the 15th P2,1 of the second

layer and the 5th P2,1 of the third layer, and a zero difference in the other controlling

bits of P32,96. Thus, to get ∆y = e1 we require that the following requirements hold

simultaneously.

• The two inputs to the 9th P2,1 of the first layer produce a zero output differ-

ence;

• The two inputs to the 15th P2,1 of the second layer produce a zero output

difference;

• The two inputs to the 5th P2,1 of the third layer produce a zero output differ-

ence;

• When the two inputs to the first P2,1 of the first layer produce the output

differences 〈01〉2, the controlling bits in the third P2,1 of the middle four layers

and the first P2,1 of the last layer are all zero; or when the two inputs to the

first P2,1 of the first layer produce the output differences 〈10〉2, the controlling

bits in the third P2,1 of the last five layers are all zero.

By Property 7.1(a), we know that each of the first three requirements holds with a

probability of 2−1; similarly to Property 7.4(a) we know that the last requirement

129

7.4 Properties of Cobra-F64a and Cobra-F64b

holds with a probability of 2−1 × 2−5 + 2−1 × 2−5 = 2−5. Therefore, we learn that

Pr(∆y = e1|∆x = e1, ∆v = e9) = 2−1 × 2−1 × 2−1 × 2−5 = 2−8.

(e) After the application of T and P(0)
96,1, the difference e1,9 between two controlling

vectors of P(0)
32,32 will produce a one difference in the following six controlling bits of

the P32,96 in P(0)
32,32: the 1st and 9th P2,1 of the first layer, the 7th and 15th P2,1 of

the second layer and the 5th and 13th P2,1 of the third layer, and a zero difference

in the other controlling bits of P32,96. Thus, to get ∆y = e1 we require that the

following requirements hold simultaneously.

• The two inputs to the 9th P2,1 of the first layer produce a zero output differ-

ence;

• The two inputs to the 7th P2,1 of the second layer produce a zero output

difference;

• The two inputs to the 15th P2,1 of the second layer produce a zero output

difference;

• The two inputs to the 5th P2,1 of the third layer produce a zero output differ-

ence;

• The two inputs to the 13th P2,1 of the third layer produce a zero output

difference;

• When the two inputs to the first P2,1 of the first layer produce the output

differences 〈01〉2, the controlling bits in the third P2,1 of the middle four layers

and the first P2,1 of the last layer are all zero; or when the two inputs to the

first P2,1 of the first layer produce the output differences 〈10〉2, the controlling

bits in the third P2,1 of the last five layers are all zero.

By Property 7.1(a), we know that each of the first five requirements holds with a

probability of 2−1; similarly to Property 7.4(b) we know that the last requirement

holds with a probability of 2−1 × 2−5 + 2−1 × 2−5 = 2−5. Therefore, we learn that

Pr(∆y = e1|∆x = e1, ∆v = e1,9) = 2−1 × 2−1 × 2−1 × 2−1 × 2−1 × 2−5 = 2−10. ¤

130

7.5 Related-Key Rectangle Attack on Cobra-F64a

7.5 Related-Key Rectangle Attack on Cobra-F64a

In this section, we first describe a 15-round related-key rectangle distinguisher with

probability 2−123.62 for Cobra-F64a. This then allows us to construct a related-key

rectangle attack on the full Cobra-F64a. Note that in this section we are concerned

exclusively with Cobra-F64a, and all statements made refer specifically to that ci-

pher.

7.5.1 A 15-Round Related-Key Rectangle Distinguisher with Probability
2−123.62

Let E0 denote Rounds 2 to 9, and E1 denote Rounds 10 to 16 including the final

transformation. The 15-round related-key rectangle distinguisher involves four ci-

pher keys (TYPE 1 as described in Section 2.2.9), which we assume are KA, KB,KC

and KD. The first part of this 15-round distinguisher is an 8-round related-key differ-

ential ∆α → ∆β with probability 2−18 for E0. This has the form: (e1, 0) → (0, e1),

where the key difference is KA ⊕KB = KC ⊕KD = (e1, 0, 0, 0). The second part of

the 15-round related-key distinguisher differential is made up of a 7-round related-

key differential ∆γ → ∆δ with probability 2−12 for E1 (Rounds 10 to 16, and the

final transformation). This has the form: (e1, 0) → (0, 0), where the key difference

is KA ⊕ KC = KB ⊕ KD = (e1, 0, 0, 0). Table 7.2 shows more details of the two

related-key differentials, where the difference in a round is the input difference to

this round.

In the following, we need to sum the square of the probabilities of all the differentials

∆α → ∆β∗ with the same input difference α through E0, which is computationally

infeasible. Instead, we just count those 8-round related-key differentials ∆α → ∆β∗

in each of which only the difference propagation of the second P(0)
32,32 in Round 9

is different from the 8-round related-key differential ∆α → ∆β in Table 7.2, that

is, the input difference and the controlling vector difference of the second P(0)
32,32 in

Round 9 is 0 and e1, respectively, and its 32-bit output difference t has a hamming

weight of 2 with one bit difference in the first byte and the other bit in the second

byte (Case A) or one bit difference in the first two bytes and the other bit in the

last two bytes (Case B). The contributions of the remaining 8-round related-key

131

7.5 Related-Key Rectangle Attack on Cobra-F64a

Table 7.2: The related-key differentials in the 15-round related-key rectangle distin-
guisher

Round(i) (∆Ai−1, ∆Bi−1) (∆K1
i , ∆K2

i) Prob.

2 (e1, 0) (0, 0) 2−6

3 (0, e1) (0, e1) 1
4 (0, 0) (0, 0) 1
5 (0, 0) (0, 0) 1
6 (0, 0) (e1, 0) 2−6

7 (0, e1) (0, e1) 1
8 (0, 0) (0, 0) 1
9 (0, 0) (e1, 0) 2−6

output (0, e1) / /

10 (e1, 0) (0, 0) 2−6

11 (0, e1) (0, e1) 1
12 (0, 0) (0, 0) 1
13 (0, 0) (e1, 0) 2−6

14 (0, e1) (0, e1) 1
15 (0, 0) (0, 0) 1
16 (0, 0) (0, 0) 1
FT (0, 0) (0, 0) 1

output (0, 0) / /

differentials are negligible. We now analyse the probabilities corresponding to these

two cases. Consider the second P(0)
32,32 in Round 9, where the controlling vector

difference is e1 and the input difference is 0. As shown in Figure 7.4, the controlling

vector difference e1 is propagated to V ′
11

, V ′
27

and V ′
313

after the extension T and the

transposition P(0)
96,1 in this P(0)

32,32.

• For Case A, there exist only the following two possible sources:

1. The DDP-box P2,1 corresponding to V ′
313

produces a difference 〈11〉2, and

the other two DDP-boxes P2,1 corresponding to V ′
11

and V ′
27

produce a

difference 〈00〉2. From Property 7.1(d), this holds with a probability of

2−1 × 2−1 × 2−1 = 2−3. Then, to get any specific difference in Case A,

we have a probability of 2−3 × 2−3 = 2−6, as there are three layers of

DDP-boxes to reach each one-bit difference. As a result, the probability

of getting any specific difference in Case A from this source is 2−3×2−6 =

2−9.

2. The DDP-box P2,1 corresponding to V ′
11

produces a difference 〈11〉2, and

the other two DDP-boxes P2,1 corresponding to V ′
27

and V ′
313

produce a

difference 〈00〉2. Again, we can learn from Property 7.1(d) that this holds

with a probability of 2−3. Then, since there are two traces to reach any

specific difference in Case A and there are five layers of DDP-boxes to

132

7.5 Related-Key Rectangle Attack on Cobra-F64a

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

P2,1 P2,1 P2,1 P2,1

0

ei,j

V ′

313

V ′

11

V ′

27

Figure 7.4: The P32,96 in P(0)
32,32(∆X = 0, ∆V = e1)

reach each one-bit difference, we have a probability of 2×2−5×2−5 = 2−9.

As a result, the probability of getting any specific difference in Case A

from this source is 2−3 × 2−9 = 2−12.

Finally, we can conclude from the above analysis that the probability of getting

any specific difference in Case A is 2−9 + 2−12.

• For Case B, there also exist only the following two possible sources:

1. The DDP-box P2,1 corresponding to V ′
27

produces a difference 〈11〉2, and

the other two DDP-boxes P2,1 corresponding to V ′
11

and V ′
313

produce a

difference 〈00〉2, which holds with a probability of 2−1 × 2−1 × 2−1 =

2−3. Then, as there are four layers of DDP-boxes to reach each one-bit

difference of any specific difference in Case B, we have a probability of

2−4 × 2−4 = 2−8. As a result, the probability of getting any specific

difference in Case B from this source is 2−3 × 2−8 = 2−11.

2. The DDP-box P2,1 corresponding to V ′
11

produces a difference 〈11〉2, and

the other two DDP-boxes P2,1 corresponding to V ′
27

and V ′
313

produce

133

7.5 Related-Key Rectangle Attack on Cobra-F64a

a difference 〈00〉2, which holds with a probability of 2−3. Then, since

there are two traces to reach any specific difference in Case B and there

are five layers of DDP-boxes to reach each one-bit difference, we have a

probability of 2×2−5×2−5 = 2−9. As a result, the probability of getting

any specific difference in Case B from this source is 2−3 × 2−9 = 2−12.

Finally, we can conclude from the above analysis that the probability of getting

any specific difference in Case B is 2−11 + 2−12.

Therefore, after considering the probability 2−3 incurred in the first P(0)
32,32 in Round

9, we can compute a square sum of at least 1 × (2−18)2 +
(
8
1

) · (8
1

) · [2−12 × 2−3 ×
(2−9 + 2−12)]2 +

(
16
1

) · (16
1

) · [2−12 × 2−3(2−11 + 2−12)]2 ≈ 2−35.96 for the 321 possible

8-round related-key differentials (e1, 0) → (t, e1), where t ∈ {0, Case A, Case B}.

We also need to sum the square of the probabilities of all the differentials ∆γ∗ →
∆δ with the same output difference δ through E1, which is also computationally

infeasible. Alternatively, we just count those 7-round related-key differentials ∆γ∗ →
∆δ in each of which only the difference propagation of the first P(0)

32,32 in Round 10 is

different from the 7-round related-key differential ∆γ → ∆δ in Table 7.2, that is, the

output difference and the controlling vector difference of the first P(0)
32,32 in Round

10 (through the encryption direction) is 0 and e1, respectively, and its 32-bit input

difference s has a hamming weight of 2. After noting that the two one-bit differences

of such a differential can only distribute in the input to one of the three DDP-boxes

P2,1 corresponding to V ′
11

, V ′
27

and V ′
313

, we can similarly compute a square sum of

at least 1 × (2−12)2 + 1 × (2−13)2 +
(
2
1

) · (2
1

) · (2−16)2 +
(
4
1

) · (4
1

) · (2−18)2 ≈ 2−23.66

for the 22 possible 7-round related-key differentials ∆γ∗ → ∆δ. As a result, the

distinguisher has a probability of 2−64 × 2−35.96 × 2−23.66 = 2−123.62 for the correct

key, while it has a probability of (2−64)2 = 2−128 for a wrong key.

7.5.2 Attack Description

We can use the 15-round distinguisher to mount a related-key rectangle attack on

the full Cobra-F64a. The attack procedure is as follows.

134

7.5 Related-Key Rectangle Attack on Cobra-F64a

1. Choose 263.81 ciphertext pairs (Ci, C
∗
i) with Ci = C∗

i , (i = 1, · · · , 263.81). In

a chosen-ciphertext attack scenario, obtain all the plaintexts for the 263.81

ciphertexts Ci decrypted with KA; we denote by Pi the plaintext for ciphertext

Ci. In a chosen-ciphertext attack scenario, obtain all the plaintexts for the

263.81 ciphertexts C∗
i decrypted with KB; we denote by P ∗

i the plaintext for

ciphertext C∗
i , where KA ⊕KB = (e1, 0, 0, 0).

2. Guess a value for the 64-bit user key (W1,W4), and perform Steps (a) and (b)

below.

(a) Partially encrypt all the plaintexts Pi with (the guessed value for) (W1,W4)

to get the corresponding values just after Round 1; we denote these

values by Ti, respectively. Partially encrypt all the plaintexts P ∗
i with

(W1 ⊕ e1, W4) to get the corresponding values just after Round 1; we

denote them by T ∗i , respectively. Then, store all the values Ti and T ∗i
into a hash table. Finally, choose only the quartets (Ti1 , T

∗
i1

, Ti2 , T
∗
i2

) such

that Ti1 ⊕ T ∗i2 = T ∗i1 ⊕ Ti2 = (e1, 0), where 1 ≤ i1 < i2 ≤ 263.81. If six

or more quartets (Ti1 , T
∗
i1

, Ti2 , T
∗
i2

) pass this condition, execute Step 2(b)

with the quartets meeting this condition; otherwise, repeat Step 2 with

another guess.

(b) Guess a value for the 64-bit user key (W2,W3). Partially encrypt all re-

maining quartets (Ti1 , T
∗
i1

, Ti2 , T
∗
i2

) with (the guessed value for) (W2,W3)

to get the corresponding values just after Round 2; we denote them

by (T i1 , T
∗
i1 , T i2 , T

∗
i2), respectively. Finally, check whether T i1 ⊕ T

∗
i2 =

T
∗
i1 ⊕ T i2 = (0, e1). If six or more quartets (Ti1 , T

∗
i1

, Ti2 , T
∗
i2

) pass this

condition, record the guessed value for (W1,W2, W3,W4), and execute

Step 3; otherwise, repeat this step with another guess, (if all the 264 pos-

sible values for (W2,W3) are tested, repeat Step 2 with another guess for

(W1,W4)).

3. For every recorded value for (W1,W2,W3,W4), do a trial encryption with one

known plaintext/ciphertext pair. If one is suggested, output it as the user key

of Cobra-F64a; otherwise, go to Step 2.

135

7.5 Related-Key Rectangle Attack on Cobra-F64a

7.5.3 Complexity Analysis

The attack requires 264.81 related-key chosen ciphertexts, which have a time com-

plexity of 264.81 encryptions. The required memory for this attack is dominated by

the encrypted plaintext pairs, which is approximately 264.81 × 8 = 267.81 memory

bytes.

Step 2(a) has a time complexity of about 264 × 264.81 × 1
2 × 1

16 ≈ 2123.81 16-round

Cobra-F64a encryptions, where 1
2 means the average fraction of 64-bit key pairs that

are tested in Step 2(a). In Step 2(a), a total of about
(
263.81

2

) ≈ 2126.62 candidate

quartets are yielded, and the probability that the number of the quartets for a

wrong key is no less than six is approximately
∑126.62

i=6 [
(
126.62

i

) · (2−64×2)i · (1 −
2−64×2)126.62−i] ≈ 2−17.77. Thus, about 264×2−17.77× 1

2 ≈ 245.23 keys pass Step 2(a)

for every guess of (W1,W4).

Step 2(b) has a time complexity of 245.23 × 264 × 6 × 4 × 1
16 ≈ 2108.65 16-round

Cobra-F64a encryptions. In Step 2(b), probability 2−6 is required to satisfy the

one-round differential characteristic for Round 2, and the number of the quartets to

be tested in this step is at least 6, so the probability that a wrong guess for (W2,W3)

passes Step 2(b) is about (2−6)6×2 = 2−96. As a result, the expected number of the

recorded values for (W1,W2,W3,W4) in Step 2(b) is 245.23 × 264 × 2−96 = 213.23.

As a consequence, Step 3 has a time complexity of 213.23 16-round Cobra-F64a

encryptions.

Therefore, this attack requires a total time complexity of 2123.81 full-round Cobra-F64a

encryptions.

The probability that a wrong 128-bit key is suggested in Step 3 is approximately

2−64, thus the expected number of suggested wrong 128-bit keys is about 2−64 ×
213.23 ≈ 2−50.77, which is quite low. The expected number of quartets passing Step

2(b) for the right key pair is 2126.62 × 2−123.62 = 8, and the probability that the

number of the quartets for the right subkey is no less than six is approximately
∑2126.62

i=6 [
(
2126.62

i

) · (2−123.62)i × (1 − 2−123.62)2
126.62−i] ≈ 0.8. Therefore, the related-

key rectangle attack can break the full Cobra-F64a, with a success probability of

80%.

136

7.6 Related-Key Differential Attack on Cobra-F64b

7.6 Related-Key Differential Attack on Cobra-F64b

In this section, we first describe a 19.5-round related-key differential characteristic

with probability 2−57 of Cobra-F64b. This then enables us to construct a related-

key differential attack on the full Cobra-F64b. Note that in his section we are

concerned exclusively with Cobra-F64b, and all statements made refer specifically

to that cipher.

7.6.1 A 19.5-Round Related-Key Differential Characteristic with Prob-
ability 2−57

We describe a 19.5-round related-key differential characteristic (0, e1) → (e1, 0) with

probability 2−57, where the key difference is (e1, e1, e1, e1). See Table 7.3 for more

details of the 19.5-round related-key differential characteristic. It is derived from

the full-round related-key differential characteristic presented in [68].

Table 7.3: The 19.5-round related-key differential characteristic
Round(i) (∆Ai−1, ∆Bi−1) (∆K1

i , ∆K2
i) Prob.

1 (0, e1) (e1, e1) 2−3

2 (0, e1) (e1, e1) 2−3

3 (0, e1) (e1, e1) 2−3

.

..
.
..

.

..
.
..

18 (0, e1) (e1, e1) 2−3

19 (0, e1) (e1, e1) 2−3

20(half) (0, e1) (e1, e1) 1†
output (e1, 0) / /

†: This probability is just for the difference between the
intermediate values XORed with the 20th round subkey

7.6.2 Attack Description

In order to reduce the time complexity of our attack, we use the following filter-

ing property: some possible differences between a pair of ciphertexts can be par-

tially determined from the output difference (e1, 0) of the 19.5-round related-key

differential, for those ciphertext pairs that do not meet these differences can be dis-

carded immediately. More specifically, as the input difference and the controlling

vector difference of the DDP-box P(0)
32,32 in Round 20 are 0 and e1, respectively,

137

7.6 Related-Key Differential Attack on Cobra-F64b

the output difference of this P(0)
32,32 should have a hamming weight of 0, 2, 4 or

6, which is caused by the three inherent DDP-boxes P2,1 corresponding to V ′
11

,

V ′
27

and V ′
313

. After an analysis on the P(0)
32,32, we conclude that there are at most(

32
2

)·(16
1

)·(16
1

)·(8
1

)·(8
1

)
= 31×218 possible values for those that have a hamming weight

of 6, at most
(
32
2

)·(16
1

)·(16
1

)
+

(
32
2

)·(8
1

)·(8
1

)
+

(
16
1

)·(16
1

)·(8
1

)·(8
1

)
= 31×212+31×210+214

possible values for those that have a hamming weight of 4, at most
(
32
2

)
= 31 × 24

possible values for those that have a hamming weight of 2, and only 1 with a ham-

ming weight of 0. Therefore, the number of possible output differences of the P(0)
32,32

is totally 31× 218 + 31× 212 + 31× 210 + 214 + 31× 24 + 1 = 8302065. After XORed

with the subkey difference ∆W3 = e1 in the final transformation, these 8302065

possible output differences of the P(0)
32,32 incur 8302065 possible output differences

between the right halve of the pair of ciphertexts. We denote the resultant 8302065

possible output differences by the set Ω. We will not count the possible number for

the left halve, for it seems infeasible due to the right rotation and addition modulo

232 operations in Round 20.

Consequently, we can conduct the following related-key differential attack to break

the full Cobra-F64b.

1. Choose 260 pairs of plaintexts (Pi, P
∗
i) with Pi ⊕ P ∗

i = (0, e1), i = 1, · · · , 260.

In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 260

plaintexts Pi encrypted with KA; we denote by Ci the ciphertext for plaintext

Pi. In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 260

plaintexts P ∗
i encrypted with KB; we denote by C∗

i the ciphertext for plaintext

P ∗
i , where KA ⊕KB = (e1, e1, e1, e1). Keep only the pairs (Ci, C

∗
i) such that

the right half of the difference Ci ⊕ C∗
i belongs to the set Ω.

2. Guess a value for the 64-bit key (W2,W3), and perform Steps (a) and (b)

below.

(a) Partially decrypt all the remaining ciphertexts Ci with (the guessed value

for) (W2,W3) to get the corresponding values just after the data (A19, B19)

XORed with the 20th round subkey (K1
20,K

2
20) in Round 20 (i.e. just after

the last 0.5 round in Round 20 through the backward direction); we de-

note them by Ti, respectively. Partially decrypt all the remaining cipher-

texts C∗
i with (W2⊕e1,W3⊕e1) to get the respective corresponding values

138

7.6 Related-Key Differential Attack on Cobra-F64b

just after the last 0.5 round in Round 20 through the backward direction;

we denote them by T ∗i , respectively. Check whether Ti ⊕ T ∗i = (e1, 0). If

six or more pairs (Ti, T
∗
i) pass this condition, execute Step 2(b) with the

pairs meeting this condition; otherwise, repeat Step 2 with other guess.

(b) Guess a value for the 32-bit key W1. For each remaining pair (Ti, T
∗
i),

partially decrypt Ti with (W1,W2) to get its corresponding value just

after the data (A18, B18) XORed with the 19th round subkey (K1
19,K

2
19)

in Round 19 (i.e. just after the last 1.5 round in Rounds 20 and 19 through

the backward direction); we denote them by T i, respectively. Partially

decrypt T ∗i with (W1⊕e1,W2⊕e1) to get its corresponding value just after

the last 1.5 round in Rounds 20 and 19 through the backward direction;

we denote them by T
∗
i , respectively. Check whether T i ⊕ T

∗
i = (e1, 0).

If six or more pairs (Ti, T
∗
i) pass this condition, record the guessed value

for (W1,W2,W3), and execute Step 3; otherwise, repeat this step with

another guess, (if all the 232 possible values for W1 are tested, repeat

Step 2 with another guess for (W2,W3).

3. For every recorded value for (W1,W2,W3), do an exhaustive search for the

remaining 32-bit subkey W4 using trial encryption. Two known pairs of plain-

texts and ciphertexts are enough for this trial process. If a 128-bit key is

suggested, output it as the user key of the full Cobra-F64b; otherwise, go to

Step 2.

7.6.3 Complexity Analysis

This attack requires 261 related-key chosen plaintexts, which have a time complexity

of 261 full-round Cobra-F64b encryptions. The required memory for this attack is

dominated by the ciphertext pairs, which is approximately 261 × 8 = 264 memory

bytes.

Due to the filtering condition in Step 1, about 260 × 8302065
232 ≈ 250.99 pairs remain

after Step 1.

Step 2(a) has a time complexity of about 264 × 251.99 × 1
2 × 1

20 ≈ 2110.67 full-round

Cobra-F64b encryptions, where 1
2 means the average fraction of 64-bit key pairs that

139

7.7 Summary

are tested in Step 2(a). In Step 2(a), the expected number of pairs recorded for each

guessed key is about 2−41.01× 250.99 = 29.98, for the probability that each decrypted

pair passes the condition of Step 2(a) is about 2−64 × 8302065 = 2−41.01, which is

due to the fact that the filtering step holds 8302065 = 222.99 ciphertext differences.

Step 2(b) has a time complexity of about 29.98 × 2× 296 1
2 × 1

20 ≈ 2101.66 full-round

Cobra-F64b encryptions. In Step 2(b), probability 2−3 is required to satisfy the one-

round differential characteristic for Round 19 (refer to Table 7.3), and the probability

that a wrong guess for (W1,W2,W3) passes Step 2(b) is about
∑29.98

i=6 [
(
29.98

i

) ·(2−3)i×
(1− 2−3)2

9.98−i] ≈ 2−53. Step 3 has a time complexity of 232 × 296 × 2−53 × 1
2 = 274

full-round Cobra-F64b encryptions.

Therefore, the attack requires a total time complexity of 2110.67 full-round Cobra-F64b

encryptions.

Since the probability that a wrong 128-bit key is suggested in Step 3 is approximately

2−128, the expected number of suggested wrong 128-bit keys is about 2−128 × 274 ≈
2−54, which is extremely low. One the other hand, the expected number of text pairs

for the right key pair is 260 × 2−57 = 8, and the probability that the number of the

pairs for the right key guess is no less than six is approximately
∑260

i=6[
(
260

i

) · (2−57)i ·
(1 − 2−57)2

60−i] ≈ 0.8. Therefore, the related-key differential attack can break the

full Cobra-F64b, with a success probability of 0.8.

7.7 Summary

In this chapter we have presented a related-key rectangle attack on the full Cobra-F64a

and a related-key differential attack on the full Cobra-F64b. Table 7.4 summarises

the published cryptanalytic results on Cobra-F64a and Cobra-F64b, where RK-CP

refers to the required numbers of related-key chosen plaintexts, and Encryptions

refers to the required number of encryption operations of Cobra-F64a or Cobra-F64b.

140

7.7 Summary

Table 7.4: Cryptanalytic results on Cobra-F64a and Cobra-F64b
Cipher Attack Type Rounds Data Time Source

Cobra-F64a Related-key differential 11 259RK-CP 2107Encryptions [68]
Related-key rectangle full(16) 264.81RK-CP 2123.81Encryptions Sect. 7.5

Cobra-F64b Related-key differential 18 258RK-CP 2122Encryptions [68]
full(20) 261RK-CP 2110.67Encryptions Sect. 7.6

141

Chapter 8

Related-Key Rectangle Attack on
44-Round SHACAL-2

SHACAL-2 is a 64-round block cipher with a 256-bit block length and a variable

length key of up to 512 bits, which was selected as one of the NESSIE-recommended

algorithms in 2003. In this chapter, we present a related-key rectangle attack on

44 rounds of SHACAL-2. The attack requires 2233 related-key chosen plaintexts,

and has a time complexity of 2497.2 encryptions. This is better than any previously

published cryptanalytic results on SHACAL-2 in terms of the number of attacked

rounds.

Contents

8.1 Introduction . 143
8.2 The SHACAL-2 Block Cipher 144

8.2.1 Notation . 144
8.2.2 Functions . 144
8.2.3 Generation of Subkeys . 145
8.2.4 Encryption Procedure . 145

8.3 Previous Cryptanalytic Results 146
8.4 Properties of SHACAL-2 147
8.5 A 35-Round Related-Key Rectangle Distinguisher with

Probability 2−460 . 148
8.5.1 A 34-Round Related-Key Rectangle Distinguisher with Prob-

ability 2−456.76 . 148
8.5.2 A 35-Round Related-Key Rectangle Distinguisher with Prob-

ability 2−474.76 . 149
8.5.3 A 35-Round Related-Key Rectangle Distinguisher with Prob-

ability 2−460 . 150
8.6 Attacking the First 44 Rounds of SHACAL-2 151

8.6.1 Preliminary Remarks . 151
8.6.2 Attack Description . 152
8.6.3 Complexity Analysis . 155

142

8.1 Introduction

8.7 Summary . 157

8.1 Introduction

In 2000, Handschuh and Naccache [31] proposed a 160-bit block cipher SHACAL,

standardised hash function SHA-1 [92]. In 2001, they then elaborated their original

proposal to give two schemes, SHACAL-1 and SHACAL-2 [32], where SHACAL-1 is

the same as the original SHACAL, and SHACAL-2 is a 256-bit block cipher based

on the compression function of the hash function SHA-256 [93]. In both cases, the

block cipher encryption operation is simply the compression function of the hash

function, with the chaining value input set equal to the plaintext block, and the

message block input set equal to the key. Both SHACAL-1 and SHACAL-2 were

submitted to the NESSIE project [89], and were both selected for the second phase

of the evaluation. However, although SHACAL-2 became a member of the final set

of NESSIE recommended algorithms, SHACAL-1 was rejected because of concerns

regarding its key schedule.

In this chapter, we first describe a novel a 35-round related-key rectangle distin-

guisher with probability 2−460 for SHACAL-2. We then use this distinguisher to

specify a related-key rectangle attack on 44 rounds of SHACAL-2, using the early

abort technique described in Section 4.3. The attack requires 2233 related-key chosen

plaintexts, and has a time complexity of 2497.2 encryptions. This is better than any

previously published cryptanalytic results on SHACAL-2 in terms of the number of

attacked rounds.

The remainder of this chapter is organised as follows. In Section 8.2 we describe

SHACAL-2. In Section 8.3 we briefly review previous cryptanalytic results on

SHACAL-2. In Section 8.4 we describe certain properties of SHACAL-2. In Section

8.5 we give a 35-round related-key rectangle distinguisher with probability 2−460,

which forms the basis for the related-key rectangle attack on 44-round SHACAL-2

described in Section 8.6. Section 8.7 summarises the results of this chapter.

143

8.2 The SHACAL-2 Block Cipher

8.2 The SHACAL-2 Block Cipher

In this section we briefly describe the SHACAL-2 block cipher [32].

8.2.1 Notation

In this chapter, the bits of a 32-bit value are numbered from 1 to 32 from left to

right, where the least significant bit is referred as the 1st bit, and the most significant

bit is referred as the 32nd bit. We use the following notation.

• ¢: addition modulo 232

• ¯: subtraction modulo 232

• ej : a 32-bit word with zeros in all positions but bit j, (1 ≤ j ≤ 32)

• ei1,··· ,ij : the 32-bit word equal to ei1 ⊕ · · · ⊕ eij , (1 ≤ i1, · · · , ij ≤ 32)

• ej,∼: a 32-bit word that has zeros in bits 1 to j − 1, a one in bit j and

indeterminate values in bits (j + 1) to 32, (1 ≤ j ≤ 31)

8.2.2 Functions

SHACAL-2 uses a number of functions, namely Ψ0, Ψ1, Φ0, Φ1, Ch and Maj.

These functions are as follows.

• Ψ0 : {0, 1}32 → {0, 1}32. If X is a 32-bit block, then Ψ0(X) = (X ≫
7)⊕ (X ≫ 18)⊕ (X À 3).

• Ψ1 : {0, 1}32 → {0, 1}32. If X is a 32-bit block, then Ψ1(X) = (X ≫
17)⊕ (X ≫ 19)⊕ (X À 10).

• Φ0 : {0, 1}32 → {0, 1}32. If X is a 32-bit block, then Φ0(X) = (X ≫
2)⊕ (X ≫ 13)⊕ (X ≫ 22).

144

8.2 The SHACAL-2 Block Cipher

• Φ1 : {0, 1}32 → {0, 1}32. If X is a 32-bit block, then Φ1(X) = (X ≫
6)⊕ (X ≫ 11)⊕ (X ≫ 25).

• Ch : {0, 1}32 × {0, 1}32 × {0, 1}32 → {0, 1}32. If X,Y and Z are 32-bit blocks,

then Ch(X, Y, Z) = (X&Y)⊕ (¬X&Z).

• Maj : {0, 1}32×{0, 1}32×{0, 1}32 → {0, 1}32. If X,Y and Z are 32-bit blocks,

then Maj(X,Y, Z) = (X&Y)⊕ (X&Z)⊕ (Y &Z).

8.2.3 Generation of Subkeys

SHACAL-2 uses a total of 64 32-bit subkeys Ki, (1 ≤ i ≤ 64), all derived from a

variable length key of up to 512 bits. Shorter keys can be used by padding them

with zeros to produce a 512-bit key string; however, the proposers recommend that

the key should not be shorter than 128 bits. Let a 512-bit user key K be represented

as a sequence of sixteen 32-bit words K1,K2, · · · ,K16, then these words form the

round keys for the first 16 rounds. The remaining round keys Ki (17 ≤ i ≤ 64) are

defined as follows.

Ki = Ψ1(Ki−2) ¢ Ki−7 ¢ Ψ0(Ki−15) ¢ Ki−16.

8.2.4 Encryption Procedure

SHACAL-2 takes as input a 256-bit plaintext block P , and has a total of 64 rounds.

Its encryption procedure is as follows, where Ai, Bi, Ci, Di, Ei, F i, Gi,H i, T i
1, T

i
2 are

32-bit variables, and θi are public constants.

1. Represent P as eight 32-bit words P = (A0, B0, C0, D0, E0, F 0, G0,H0).

2. For i = 1 to 64:

T i
1 = Ki ¢ Φ1(Ei−1) ¢ Ch(Ei−1, F i−1, Gi−1) ¢ H i−1 ¢ θi,

T i
2 = Φ0(Ai−1) ¢ Maj(Ai−1, Bi−1, Ci−1),

H i = Gi−1,

Gi = F i−1,

145

8.3 Previous Cryptanalytic Results

F i = Ei−1,

Ei = Di−1 ¢ T i
1,

Di = Ci−1,

Ci = Bi−1,

Bi = Ai−1,

Ai = T i
1 ¢ T i

2.

3. The ciphertext = (A64, B64, C64, D64, E64, F 64, G64, H64).

The ith iteration of Step 2 in the above description is referred to below as Round i,

(1 ≤ i ≤ 64).

8.3 Previous Cryptanalytic Results

In this section we briefly review previous cryptanalytic attacks on SHACAL-2.

• In 2003, Hong, Kim, Kim, Sung, Lee and Lee [39] presented an impossible

differential attack on 30-round SHACAL-2.

• In 2004, Shin, Kim, Kim, Hong and Lee [98] presented a square-nonlinear

attack on 28-round SHACAL-2 and a differential-nonlinear attack on 32-round

SHACAL-2.

• In 2004, Kim, Kim, Lee, Lim and Song [53] presented a related-key differential-

nonlinear attack on 35-round SHACAL-2, and a related-key rectangle attack

on 37-round SHACAL-2, where the latter is based on a 33-round related-key

rectangle distinguisher.

• In 2006, Lu, Kim, Keller and Dunkelman [78] presented a related-key rectangle

attack on 42-round SHACAL-2, exploiting a 34-round related-key rectangle

distinguisher with probability 2−456.76 and then using an early abort technique.

• In 2007, Wang [104] presented a related-key rectangle attack on 43-round

SHACAL-2, based on an extension of Lu et al.’s 34-round related-key rect-

angle distinguisher to a 35-round distinguisher with probability 2−474.76.

146

8.4 Properties of SHACAL-2

Table 8.1: Differential distribution of the functions Ch and Maj
x 0 0 0 1 0 1 1 1
y 0 0 1 0 1 0 1 1
z 0 1 0 0 1 1 0 1

Ch 0 0/1 0/1 0/1 1 0/1 0/1 0/1
Maj 0 0/1 0/1 0/1 0/1 0/1 0/1 1

This latter result is the best previously published cryptanalytic result on SHACAL-2

in terms of the number of attacked rounds.

8.4 Properties of SHACAL-2

We first give the following general result, which can be used to compute differential

probabilities of the addition modulo 232 in SHACAL-2.

Theorem 8.1 ([73]) Let x, y and z be 32-bit words. If PrX,Y ∈{0,1}32((X ¢ Y) ⊕
((X ⊕∆x)¢ (Y ⊕∆y)) = ∆z) > 0, then PrX,Y ∈{0,1}32((X ¢Y)⊕ ((X ⊕∆x)¢ (Y ⊕
∆y)) = ∆z) = 2−s, where s is the number of the least significant 31 bit positions that

do not satisfy xi = yi = zi, where xi denotes the ith bit of x, and so on, (1 ≤ i ≤ 31).

We next give two further differential properties of SHACAL-2.

The following observations are due to Shin at al. [98]. The functions Ch and Maj

operate in a bit-by-bit manner, and hence they can be regarded as functions having

a 3-bit input and a 1-bit output. It is thus simple to calculate the differential

properties of these functions, and these properties are summarised in Table 8.1. In

this table, for each possible 3-bit difference, the possible differences in the outputs

of the two functions are indicated, where 0, 1, and 0/1 respectively indicate that the

output is always, 0, always 1, or either 0 or 1 with probability 1
2 .

Property 8.1 ([78, 104]) Suppose that K and K̃ are cipher keys, P and P̃ are

plaintext blocks, and let Ki and K̃i (1 ≤ i ≤ 64) denote the subkeys derived from K

and K̃, respectively. Also let (Ai, Bi, · · · ,H i) denote the values obtained at the end

of Round i when encrypting P using the key K, and let (Ãi, B̃i, · · · , H̃ i) denote the

corresponding values when encrypting P̃ using K̃.

147

8.5 A 35-Round Related-Key Rectangle Distinguisher with Probability
2−460

Then, if (Ai, Bi, · · · ,H i), (Ãi, B̃i, · · · , H̃ i) and Ki ¯ K̃i are known (5 ≤ i ≤ 64),

then the following values can readily be computed:

(i) (Ai−1, Bi−1, · · · , Gi−1) and (Ãi−1, B̃i−1, · · · , G̃i−1);

(ii) H i−1 ¯ H̃ i−1;

(iii) (Ai−5, Bi−5, Ci−5) and (Ãi−5, B̃i−5, C̃i−5);

(iv) Di−5 ¯ D̃i−5.

8.5 A 35-Round Related-Key Rectangle Distinguisher with
Probability 2−460

In this section, we describe a 35-round related-key rectangle distinguisher with prob-

ability 2−460 for Rounds 0 to 34 of SHACAL-2. This distinguisher is an extension of

those described in [78, 104]. These related-key rectangle distinguishers involve two

cipher keys (TYPE 3 as described in Section 2.2.9), which we assume are K and K̃.

We also describe a flaw in Wang’s attack on 43-round SHACAL-2.

8.5.1 A 34-Round Related-Key Rectangle Distinguisher with Probability
2−456.76

In 2006, Lu et al. [78] described a 24-round related-key differential characteristic for

Rounds 2 to 25 of SHACAL-2. This is of the form (0, 0, e7,10,19,21,26,30, e32, 0, e10,14,20,

e19,30, e32) → (e14,25,29, 0, 0, 0, e14,25,29, 0, 0, 0) and has probability 2−38.1 They also

give a 10-round differential characteristic for Rounds 25 to 34 of SHACAL-2, which

has the form (e32, e32, e7,10,19,21,26,30,32, 0, 0, e10,14,20, e19,30,32, 0) → (e7,10,19,21,26,30, e32,

0, 0, e7,21,26, e32, 0, 0) and has probability 2−65.

Then, they computed a square sum of at least 2−74(= 2−37×2) for the probabilities of

all the 24-round related-key differentials for Rounds 2 to 25 with the input difference

(0, 0, e7,10,19,21,26,30, e32, 0, e10,14,20, e19,30, e32), and a square sum of at least 2−126.76(=

1Certain input bits are fixed.

148

8.5 A 35-Round Related-Key Rectangle Distinguisher with Probability
2−460

2−63.38×2) for the probabilities of all the 10-round differentials for Rounds 26 to 35

with the output difference (e7,10,19,21,26,30, e32, 0, 0, e7,21,26, e32, 0, 0).

These two related-key differential characteristics were used to construct a 34-round

related-key rectangle distinguisher with probability 2−456.76(= 2−74 × 2−126.76 ×
2−256) for Rounds 2 to 35 of SHACAL-2. This was finally used in conjunction

with an early abort technique to break the first 42 rounds of SHACAL-2.

8.5.2 A 35-Round Related-Key Rectangle Distinguisher with Probability
2−474.76

In 2007, Wang [104] described a way of extending the 34-round related-key rectangle

distinguisher given in Section 8.5 to a 35-round distinguisher by appending a one-

round related-key differential with probability 1 at the beginning. The differential

requires the pair of plaintext blocks to satisfy certain properties; specifically, sup-

pose P = (A0, B0, C0, D0, E0, F 0, G0,H0) and P̃ = (Â0, B̂0, Ĉ0, D̂0, Ê0, F̂ 0, Ĝ0, Ĥ0)

satisfy:

a0
32 = b0

32, a0
i = c0

i , for i = 7, 10, 19, 21, 26, 30;
b0
10 = ¬e0

10, a0
i = ¬f0

i , for i = 20, 31;
e0
i = 0, for i = 19, 30, 31;

f0
i = g0

i , for i = 10, 14, 20,

(8.1)

where a0
i denotes the ith bit of A0, and so on.

The 35-round distinguisher is made up of the following two related-key differentials.

The following 25-round related-key differential with probability 2−47 is used for

Rounds 1 to 25: (0, e7,10,19,21,26,30, e32, 0, e10,14,20, e19,30, e32,∆′) → (e14,25,29, 0, 0, 0,

e14,25,29, 0, 0, 0), where ∆′ = Φ1(E0) ¯ Φ1(E0 ⊕ e10,14,20) and the key difference

K ⊕ K̃ = (e32, 0, 0, 0, 0, 0, 0, 0, 0, e32, 0, 0, 0, 0, 0, 0). See Table 8.2 for more details.

The second differential making up the 35-round distinguisher is the 10-round differ-

ential with probability 2−65 described in Section 8.5.1.

Wang used this 35-round related-key rectangle distinguisher with probability (2−46)2×
2−126.76 × 2−256 = 2−474.76, to break the first 43 rounds of SHACAL-2. However,

as described below, there is a flaw in the complexity analysis for Wang’s attack

149

8.5 A 35-Round Related-Key Rectangle Distinguisher with Probability
2−460

Table 8.2: The 25-round related-key differential characteristic for Rounds 1 to 25

Round(i) ∆Ai−1 ∆Bi−1 ∆Ci−1 ∆Di−1 ∆Ei−1 ∆F i−1 ∆Gi−1 ∆Hi−1 ∆Ki Prob.

1 0 e7,10,19,21,26,30 e32 0 e10,14,20 e19,30 e32 ∆′ e32 1
2 0 0 e7,10,19,21,26,30 e32 0 e10,14,20 e19,30 e32 0 2−11

3 e32 0 0 e7,10,19,21,26,30 0 0 e10,14,20 e19,30 0 2−10

4 0 e32 0 0 e7,21,26 0 0 e10,14,20 0 2−7

5 0 0 e32 0 0 e7,21,26 0 0 0 2−4

6 0 0 0 e32 0 0 e7,21,26 0 0 2−3

7 0 0 0 0 e32 0 0 e7,21,26 0 2−4

8 0 0 0 0 0 e32 0 0 0 2−1

9 0 0 0 0 0 0 e32 0 0 2−1

10 0 0 0 0 0 0 0 e32 e32 1
11 0 0 0 0 0 0 0 0 0 1

.

..
.
..

.

..
.
..

24 0 0 0 0 0 0 0 0 0 1
25 0 0 0 0 0 0 0 0 · 2−6

output e14,25,29 0 0 0 e14,25,29 0 0 0 / /

algorithm, which makes the attack infeasible.

8.5.2.1 A Flaw in Wang’s Attack

Wang [104] claimed that the probability that six or more quartets pass the fil-

tering condition in Step 6 of the attack is about
∑231.76

i=6 [
(
231.76

i

) · (2−32×2)i · (1 −
2−32×2)2

31.76−i] ≈ 2−202.93. It is thus expected that about 2448 × 2−202.93 = 2245.07

guesses for ((K37, · · · ,K43), (K∗
37, · · · ,K∗

43)) will be output by Step 6. As a result,

Step 7 (which involves finding the 512-bit cipher key by exhaustively searching for

the remaining 288 bits using the guesses output by Step 6) will have a complexity

of around 2533.07, i.e. significantly larger than 2512. Therefore, the attack is less

efficient than an exhaustive key search.

8.5.3 A 35-Round Related-Key Rectangle Distinguisher with Probability
2−460

We next describe a novel 35-round related-key rectangle distinguisher for Rounds

1-35 of SHACAL-2. This distinguisher incorporates a novel 10-round differential

characteristic for Rounds 26 to 35: (0, 0, e7,10,19,21,26,30, e32, 0, e10,14,20, e19,20, e32) →
(e7,10,19,21,26,30, e32, 0, 0, e7,21,26, e32, 0, 0), which has a probability of 2−56. See Ta-

ble 8.3 for more details.

150

8.6 Attacking the First 44 Rounds of SHACAL-2

Table 8.3: The 10-round differential characteristic for Rounds 26 to 35
Round(i) ∆Ai ∆Bi ∆Ci ∆Di ∆Ei ∆F i ∆Gi ∆Hi Prob.

26 0 0 e7,10,19,21,26,30 e32 0 e10,14,20 e14,19,30 e14,32 2−11

27 e32 0 0 e7,10,19,21,26,30 0 0 e10,14,20 e14,19,30 2−14

28 0 e32 0 0 e7,21,26 0 0 e10,14,20 2−7

29 0 0 e32 0 0 e7,21,26 0 0 2−4

30 0 0 0 e32 0 0 e7,21,26 0 2−3

31 0 0 0 0 e32 0 0 e7,21,26 2−4

32 0 0 0 0 0 e32 0 0 2−1

33 0 0 0 0 0 0 e32 0 2−1

34 0 0 0 0 0 0 0 e32 1
35 e32 0 0 0 e32 0 0 0 2−11

output e7,10,19,21,26,30 e32 0 0 e7,21,26 e32 0 0 /

It also uses Wang’s 25-round related-key differential characteristic with probability

2−47. This means that the new 35-round related-key rectangle distinguisher has a

probability of at least (2−46 × 2−56)2 × 2−256 = 2−460 for the correct key, while it

has a probability of (2−256)2 = 2−512 for a wrong key.

8.6 Attacking the First 44 Rounds of SHACAL-2

In this section we describe an attack on the first 44 rounds of SHACAL-2. This attack

exploits the novel related-key rectangle distinguisher described in Section 8.5.3. As

mentioned before, we assume that the two related user keys are K and K̃ with the

relationship K ⊕ K̃ = (e32, 0, 0, 0, 0, 0, 0, 0, 0, e32, 0, 0, 0, 0, 0, 0).

8.6.1 Preliminary Remarks

Property 8.1 allows us to break more rounds of the cipher than would otherwise

be the case by using the early abort technique described in Section 4.3. Because

of the properties of the key schedule of SHACAL-2, it is impossible to determine

the subkey differences of the last few rounds (to be attacked) from the difference

between the two related cipher keys; thus it is necessary to guess the two different

unknown subkeys in every round in order to conduct an early abort. In previously

described related-key rectangle attacks on reduced-round SHACAL-2, such as those

given in [78, 104], this is achieved by first guessing both the round subkeys, then

partially decrypting every remaining candidate quartet to get the corresponding

151

8.6 Attacking the First 44 Rounds of SHACAL-2

quartet just before this round, and finally checking whether it meets the difference

requirements. However, we observe that an early abort can be conducted by checking

the two pairs out of a candidate quartet in a staged way, as described in Section 4.4.

This observation enables us to use the 35-round distinguisher in Section 8.5 to con-

duct a related-key rectangle attack on the first 44 rounds of SHACAL-2. The early

abort technique described in Section 4.4 plays a crucial role in the efficiency of

our attack; otherwise, we would only be able to break only the first 43 rounds of

SHACAL-2.

8.6.2 Attack Description

The attack procedure is as follows.

1. Choose a structure S, which is defined to be a set of 2232 plaintexts Pi =

(A0
i , B

0
i , C0

i , D0
i , E

0
i , F 0

i , G0
i ,H

0
i) under the condition given in equation (8.1),

(i = 1, 2, · · · , 2232). In a chosen-plaintext attack scenario, obtain all the ci-

phertexts for the 2232 plaintexts encrypted with K; let Ci be the ciphertext

corresponding to plaintext Pi.

2. Compute another structure S̃, which contains 2232 plaintexts P̃i = (Â0, B̂0, Ĉ0,

D̂0, Ê0, F̂ 0, Ĝ0, Ĥ0) = (A0
i , B

0
i ⊕e7,10,19,21,26,30, C

0
i ⊕e32, D

0
i , E

0
i ⊕e10,14,20, F

0
i ⊕

e19,30, G
0
i ⊕e32,H

0
i ¢Φ1(E0

i)¯Φ1(E0
i ⊕e10,14,20)). In a chosen-plaintext attack

scenario, obtain all the ciphertexts for the 2232 plaintexts in S̃ encrypted with

K̃ = K ⊕ (e32, 0, 0, 0, 0, 0, 0, 0, 0, e32, 0, 0, 0, 0, 0, 0); let C̃i be the ciphertext

corresponding to plaintext P̃i (encrypted with K̃).

3. Guess a 128-bit subkey pair for ((K41, K42,K43,K44), (K̃41, K̃42, K̃43, K̃44)).

Then, partially decrypt all the ciphertexts Ci through Rounds 44 to 41 us-

ing the subkeys (K44,K43,K42, K41) to get the corresponding values just be-

fore Round 41; let C40
i be the partially decrypted version of Ci. Partially

decrypt all the ciphertexts C̃i through Rounds 44 to 41 using the subkeys

(K̃44, K̃43, K̃42, K̃41) to get the corresponding values just before Round 41; let

C̃40
i be the partially decrypted version of C̃i. Keep (C40

i , C̃40
i) in a hash table.

This process produces about 2232×2

2 = 2463 candidate quartets (C40
i0

, C̃40
i0

, C40
i1

,

152

8.6 Attacking the First 44 Rounds of SHACAL-2

C̃40
i1

), where 1 ≤ i0 ≤ i1 ≤ 2232. By Property 8.1, we can deduce (A35
i0

, B35
i0

, C35
i0

),

(A35
i1

, B35
i1

, C35
i1

), (Â35
i0

, B̂35
i0

, Ĉ35
i0

), (Â35
i1

, B̂35
i1

, Ĉ35
i1

), D35
i0

¯D35
i1

, and D̂35
i0

¯D̂35
i1

. Fi-

nally, choose only the quartets (C40
i0

, C̃40
i0

, C40
i1

, C̃40
i1

) such that (A35
i0

, B35
i0

, C35
i0

)⊕
(A35

i1
, B35

i1
, C35

i1
) = (e7,10,19,21,26,30, e32, 0), (Â35

i0
, B̂35

i0
, Ĉ35

i0
) ⊕ (Â35

i1
, B̂35

i1
, Ĉ35

i1
) =

(e7,10,19,21,26,30, e32, 0), and D35
i0

¯D35
i1

= D̂35
i0

¯D̂35
i1

= 0. If six or more quartets

(C40
i0

, C̃40
i0

, C40
i1

, C̃40
i1

) pass this condition, store the quartet and the associated

information; otherwise, repeat this step with another guess.

4. Perform Steps (a) and (b) below for every remaining quartet (C40
i0

, C40
i1

, C̃40
i0

, C̃40
i1

).

(a) Guess a value for the subkey K40. Partially decrypt C40
i0

and C40
i1

through

Round 40 with K40 to get the corresponding values just before Round

40; we denote them by C39
i0

and C39
i1

, respectively. Thus, we can compute

H38
i0

¯ H38
i1

by Property 8.1; since H38
i = E35

i , we choose the quartets

(C40
i0

, C40
i1

, C̃40
i0

, C̃40
i1

) such that H38
i0

¯ H38
i1
∈ {±26 ± 220 ± 225 mod 232}.

If six or more quartets (C40
i0

, C40
i1

, C̃40
i0

, C̃40
i1

) pass this condition, execute

Step 4(b) with the quartets meeting this condition; otherwise, repeat this

step with another guess for K40.

(b) Guess a value for the subkey K̃40. Partially decrypt C̃40
i0

and C̃40
i1

through

Round 40 with K̃40 to get the corresponding values just before Round

40; we denote them by C̃39
i0

and C̃39
i1

, respectively. Similarly, we choose

only the quartets (C40
i0

, C40
i1

, C̃40
i0

, C̃40
i1

) such that Ĥ38
i0

¯ Ĥ38
i1
∈ {±26 ±

220 ± 225 mod 232}. If six or more quartets (C40
i0

, C40
i1

, C̃40
i0

, C̃40
i1

) pass this

condition, execute Step 5 with the quartets (C39
i0

, C39
i1

, C̃39
i0

, C̃39
i1

) that meet

this condition; otherwise, repeat this step with another guess for K̃40.

5. Perform Steps (a) and (b) below for every remaining quartet (C39
i0

, C39
i1

, C̃39
i0

, C̃39
i1

).

(a) Guess a value for the subkey K39. Partially decrypt C39
i0

and C39
i1

through

Round 39 with K39 to get the corresponding values just before Round 39;

we denote them by C38
i0

and C38
i1

, respectively. Thus, we can compute E35
i0

,

E35
i1

, and H37
i0

¯ H37
i1

. We choose only the quartets (C39
i0

, C39
i1

, C̃39
i0

, C̃39
i1

)

such that E35
i0
⊕E35

i1
= e7,21,26 and H37

i0
¯H37

i1
∈ {±231 mod 232}. If six or

more quartets (C39
i0

, C39
i1

, C̃39
i0

, C̃39
i1

) pass this condition, execute Step 5(b)

with the quartets meeting this condition; otherwise, repeat this step with

another guess for K39.

153

8.6 Attacking the First 44 Rounds of SHACAL-2

(b) Guess a value for the subkey K̃39. Partially decrypt C̃39
i0

and C̃39
i1

through

Round 39 with K̃39 to get the corresponding values just before Round 39;

we denote them by C̃38
i0

and C̃38
i1

, respectively. Thus, we can compute Ê35
i0

,

Ê35
i1

, and Ĥ37
i0

¯ Ĥ37
i1

. We choose only the quartets (C40
i0

, C40
i1

, C̃40
i0

, C̃40
i1

)

such that Ê35
i0
⊕ Ê35

i1
= e7,21,26 and Ĥ37

i0
¯ Ĥ37

i1
∈ {±231 mod 232}. If six or

more quartets (C39
i0

, C39
i1

, C̃39
i0

, C̃39
i1

) pass this test, execute Step 6 with the

quartets (C38
i0

, C38
i1

, C̃38
i0

, C̃38
i1

) that meet this condition; otherwise, repeat

this step with another guess for K̃39.

6. Perform Steps (a) and (b) below for every remaining quartet (C38
i0

, C38
i1

, C̃38
i0

, C̃38
i1

).

(a) Guess a value for the subkey K38. Partially decrypt C38
i0

and C38
i1

through

Round 38 with K38 to get the corresponding values just before Round 38;

we denote them by C37
i0

and C37
i1

, respectively. Thus, we can compute F 35
i0

,

F 35
i1

, and H36
i0

¯ H36
i1

. We choose only the quartets (C38
i0

, C38
i1

, C̃38
i0

, C̃38
i1

)

such that F 35
i0
⊕ F 35

i1
= e32 and H36

i0
¯ H36

i1
= 0. If six or more quar-

tets (C38
i0

, C38
i1

, C̃38
i0

, C̃38
i1

) pass this condition, execute Step 6(b) with the

quartets meeting this condition; otherwise, repeat this step with another

guess for K38.

(b) Guess a value for the subkey K̃38. Partially decrypt C̃38
i0

and C̃38
i1

through

Round 38 with K̃38 to get the corresponding values just before Round 38;

we denote them by C̃37
i0

and C̃37
i1

, respectively. Thus, we can compute F̂ 35
i0

,

F̂ 35
i1

, and Ĥ36
i0

¯ Ĥ36
i1

. We choose only the quartets (C38
i0

, C38
i1

, C̃38
i0

, C̃38
i1

)

such that F̂ 35
i0
⊕ F̂ 35

i1
= e32 and Ĥ36

i0
¯ Ĥ36

i1
= 0. If six or more quar-

tets (C38
i0

, C38
i1

, C̃38
i0

, C̃38
i1

) pass this test, execute Step 7 with the quartets

(C37
i0

, C37
i1

, C̃37
i0

, C̃37
i1

) that meet this condition; otherwise, repeat this step

with another guess for K̃38.

7. Perform Steps (a) and (b) below for every remaining quartet (C37
i0

, C37
i1

, C̃37
i0

, C̃37
i1

).

(a) Guess a value for the subkey K37. Partially decrypt C37
i0

and C37
i1

through

Round 37 with K37 to get the corresponding values just before Round

37; we denote them by C36
i0

and C36
i1

, respectively. Thus, we can compute

H35
i0

¯ H35
i1

. We choose only the quartets (C37
i0

, C37
i1

, C̃37
i0

, C̃37
i1

) such that

H35
i0

¯ H35
i1

= 0. If six or more quartets (C37
i0

, C37
i1

, C̃37
i0

, C̃37
i1

) pass this

condition, execute Step 7(b) with the quartets meeting this condition;

otherwise, repeat this step with another guess for K37.

154

8.6 Attacking the First 44 Rounds of SHACAL-2

(b) Guess a value for the subkey K̃37. Partially decrypt C̃37
i0

and C̃37
i1

through

Round 37 with K̃37 to get the corresponding values just before Round

37; we denote them by C̃36
i0

and C̃36
i1

, respectively. Thus, we can compute

Ĥ35
i0

¯ Ĥ35
i1

. We choose only the quartets (C37
i0

, C37
i1

, C̃37
i0

, C̃37
i1

) such that

Ĥ35
i0

¯Ĥ35
i1

= 0. If six or more quartets (C37
i0

, C37
i1

, C̃37
i0

, C̃37
i1

) pass this test,

then record (K37,K38, · · · ,K44), and execute Step 8; otherwise, repeat

this step with another guess for K̃37.

8. For a recorded value for (K37,K38, · · · ,K44), exhaustively search for the re-

maining 256 bits using one known pair of plaintext and ciphertext. If a 512-bit

key is suggested, output it as the user key of the 44-round SHACAL-2; other-

wise, repeat Step 3 with another guess.

8.6.3 Complexity Analysis

This attack requires 2233 related-key chosen plaintexts. The required memory for

this attack is dominated by the ciphertexts, which is approximately 2233×32 ≈ 2238

memory bytes.

Step 3 has a time complexity of about 2 × 2232 × 232×8 × 8
44 ≈ 2486.54 44-round

SHACAL-2 encryptions, and it also requires about 232×8 × 2232 = 2488 memory

accesses, which is negligible compared with the 2486.54 encryptions. Due to the 128-

bit filtering condition in Step 3, it is expected that only about 2463× (2−128)2 = 2207

candidate quartets remain after Step 3 for every key guess.

Step 4(a) has a time complexity about 2× 2207 × 232×9 × 1
44 ≈ 2490.54 encryptions.

There is a filtering condition of 23

232 = 2−29 in either of Steps 4(a) and (b). In

Step 4(a), the probability that 6 or more quartets pass the test for a wrong guess

is about 1, thus it follows that all the 2288 key guesses pass this step; and about

2207 × 2−29 = 2178 candidate quartets remain after this step for every key guess.

Step 4(b) has a time complexity about 2× 2178 × 232×10 × 1
44 ≈ 2493.54 encryptions.

In Step 4(b), the probability that 6 or more quartets pass the test for a wrong guess

is also about 1, thus it follows that all the 2320 key guesses pass this step; and about

2178 × 2−29 = 2149 candidate quartets remain after this step for every key guess.

155

8.6 Attacking the First 44 Rounds of SHACAL-2

Step 5(a) has a time complexity about 2× 2149 × 232×11 × 1
44 ≈ 2496.54 encryptions.

There is a filtering condition of 2
232 × 1

23 = 2−34 in either of Steps 5(a) and (b). In

Step 5(a), the probability that 6 or more quartets pass the test for a wrong guess

is about 1, so it follows that all the 2352 key guesses pass this step; and about

2149 × 2−34 = 2115 candidate quartets remain after this step for every key guess.

Step 5(b) has a time complexity about 2× 2115 × 232×12 × 1
44 ≈ 2494.54 encryptions.

In Step 5(b), since the probability that 6 or more quartets pass the test for a wrong

guess is also about 1, it follows that all the 2384 key guesses pass this step; and about

2115 × 2−34 = 281 candidate quartets remain after this step for every key guess.

Step 6(a) has a time complexity about 2× 281 × 232×13 × 1
44 ≈ 2492.54 encryptions.

There is a filtering condition of 1
232 × 1

2 = 2−33 in either of Steps 6(a) and (b). In

Step 6(a), the probability that 6 or more quartets pass the test for a wrong guess

is about 1 as well, thus it follows that all the 2416 key guesses pass this step; and

about 281×2−33 = 248 candidate quartets remain after this step for every key guess.

Step 6(b) has a time complexity about 2× 248 × 232×14 × 1
44 ≈ 2491.54 encryptions.

In Step 6(b), the probability that 6 or more quartets pass the test for a wrong guess

is about 1, thus it follows that all the 2448 key guesses pass this step; and about

248 × 2−33 = 215 candidate quartets remain after this step for every key guess.

Step 7(a) has a time complexity about 2× 215 × 232×15 × 1
44 ≈ 2490.54 encryptions.

There is a filtering condition of 2−32 in either of Steps 7(a) and (b). In Step 7(a),

the probability that six or more quartets pass the test for a wrong guess is about
∑215

i=6[
(
215

i

) · (2−32)i · (1− 2−32)2
15−i] ≈ 2−111.49, thus it follows that about the 2480×

2−111.49 = 2368.51 key guesses pass this step. Step 7(b) has a time complexity about

2 × 2368.51 × 6 × 1
44 ≈ 2366.63 encryptions. In Step 7(b), the probability that six

or more quartets pass the test for a wrong guess is about (2−32)6 = 2−192, so it is

expected that only about 2368.51+32× 2−192 = 2208.51 guesses of (K37,K38, · · · ,K44)

pass Step 7(b), which result in 2464.51 trials in Step 8.

Therefore, the attack has a total time complexity of about 2497.2 44-round SHACAL-2

encryptions.

As about 2463 quartets are tested in this attack and the 35-round related-key rect-

angle distinguisher has a probability of 2−460, we can learn that the expected

156

8.7 Summary

number of the qualified quartets for the correct key guess in Step 7(b) is about

2463 × 2−460 = 8. The probability that six or more quartets pass Step 7(b) is
∑2463

i=6 [
(
2463

i

) · (2−460)i · (1 − 2−460)2
463−i] ≈ 0.8, therefore the related-key rectangle

attack works with a success probability of 80%.

8.7 Summary

In this chapter we have presented a related-key rectangle attack on 44 rounds of

SHACAL-2. This is better than any previously published cryptanalytic result on

SHACAL-2 in terms of the number of attacked rounds. Table 8.4 summarises the

published cryptanalytic results on the 512-bit key version of SHACAL-2, where

CP and RK-CP refer to the required numbers of chosen plaintexts and related-key

chosen plaintexts, respectively; and Encryptions refers to the required number of

encryption operations of the relevant reduced-round version of SHACAL-2.

Table 8.4: Cryptanalytic results on the 512-bit key version of SHACAL-2

Attack Type Rounds Data Time Source

Impossible differential 30 744CP 2495.1Encryptions [39]
Square-nonlinear 28 240.9CP 2494.1Encryptions [98]
Differential-nonlinear 32 243.4CP 2504.2Encryptions [98]
Related-key differential-nonlinear 35 242.4RK-CP 2452.1Encryptions [54]
Related-key rectangle 37 2235.2RK-CP 2487Encryptions [54]

42 2243.4RK-CP 2488.4Encryptions [78]
43† 2240.4RK-CP 2480.4Encryptions [104]
44 2233RK-CP 2497.2Encryptions Section 8.6

†: there is a flaw, as shown in Section 8.5.2.

157

Chapter 9

Related-Key Rectangle Attack on
36-Round XTEA

XTEA is a 64-bit block cipher with a 128-bit user key. In this chapter, we present a

related-key rectangle attack on 36 rounds of XTEA; the attack requires 264.98 related-

key chosen plaintexts, and has a time complexity of 2126.3 encryptions. This is better

than any previously published cryptanalytic results on XTEA in terms of the number

of attacked rounds.

Contents

9.1 Introduction . 158
9.2 The XTEA Block Cipher 159

9.2.1 Notation . 159
9.2.2 Generation of Subkeys . 160
9.2.3 Encryption Procedure . 160

9.3 Previous Cryptanalytic Results 161
9.4 A 24-Round Related-Key Rectangle Distinguisher with

Probability 2−124.92 . 162
9.5 Attacking Rounds 16 to 51 of XTEA 165

9.5.1 Preliminary Results . 165
9.5.2 Attack Description . 166
9.5.3 Complexity Analysis . 170

9.6 Summary . 172

9.1 Introduction

The block cipher TEA (Tiny Encryption Algorithm) was designed by Wheeler and

Needham [106] in 1994 as a short C language program that would run safely on

158

9.2 The XTEA Block Cipher

most machines. It has no preset tables or long set up times, and achieves a high

performance by performing all its operations on 32-bit words, using only exclusive-or,

addition modulo 232, multiplication modulo 232 and shifts. TEA has a simple Feistel

structure, but uses a large number (i.e. 64) of rounds to achieve the desired level of

security. Although it was originally written in C, TEA can readily be implemented

in a range of languages, including assembler. However, taking advantage of its

simple key schedule, in 1997 Kelsey, Schneier and Wagner [50] described a related-

key attack. To secure TEA against related-key attacks, Needham and Wheeler [88]

presented an extended version of TEA in 1997, known as XTEA, which retains the

original objectives of simplicity and efficiency.

In this chapter, we describe a 24-round related-key rectangle distinguisher with prob-

ability 2−124.92 for XTEA. We then apply it to mount a related-key rectangle attack

on 36 rounds of XTEA, using the early abort technique described in Section 4.3.

The attack requires 264.98 related-key chosen plaintexts and has a time complexity

of 2126.3 36-round XTEA computations.

The remainder of this chapter is organised as follows. In Section 9.2 we describe

XTEA. In Section 9.3 we briefly review previous cryptanalytic results on XTEA.

In Section 9.4 we give the 24-round related-key rectangle distinguisher for XTEA.

In 9.5 we present our cryptanalytic results on XTEA. Section 9.6 summarises the

results of this chapter.

9.2 The XTEA Block Cipher

In this section we briefly describe the XTEA block cipher [88].

9.2.1 Notation

In this chapter, the bits of a 32-bit value are numbered from 1 to 32 from left to

right, where the least significant bit is referred as the 1st bit, and the most significant

bit is referred as the 32nd bit. We use the following notation.

159

9.2 The XTEA Block Cipher

• ¢: addition modulo 232

• £: multiplication modulo 232

• ej : a 32-bit word with zeros everywhere except for bit position j, (1 ≤ j ≤ 32)

• ei1,··· ,ij : the 32-bit word equal to ei1 ⊕ · · · ⊕ eij , (1 ≤ i1, · · · , ij ≤ 32)

• ej,∼: a 32-bit word that has zeros in bit positions 1 to j − 1, a one in bit

position j and indeterminate values in bit positions (j +1) to 32, (1 ≤ j ≤ 31)

• ? : an arbitrary 32-bit value, where two values represented by the ? symbol

may be different

• ρl
j : an l-bit value with zeros everywhere except for bit position j, (1 ≤ j ≤ l)

• ρl
j,∼: an l-bit value that has zeros in bit positions 1 to j, a one in bit position

j and indeterminate values in the remaining positions, (1 ≤ j ≤ l)

9.2.2 Generation of Subkeys

XTEA uses a total of 64 32-bit subkeys Ki, (1 ≤ i ≤ 64), all derived from a

128-bit key K. Let K be represented as a sequence of four 32-bit words K =

(W1,W2,W3,W4), then Ki = W(b i
2
c£ θ >>11)&3, where θ = 0x9e3779b9. Table 9.1

lists the set of subkey values.

Table 9.1: The key schedule of XTEA
Round(i) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ki W1 W4 W2 W3 W3 W2 W4 W1 W1 W1 W2 W4 W3 W3 W4 W2

Round(i) 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Ki W1 W1 W2 W1 W3 W4 W4 W3 W1 W2 W2 W2 W3 W1 W4 W4

Round(i) 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Ki W1 W3 W2 W2 W3 W2 W4 W1 W1 W4 W2 W3 W3 W2 W4 W2

Round(i) 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
Ki W1 W1 W2 W4 W3 W3 W4 W3 W1 W2 W2 W1 W3 W4 W4 W3

9.2.3 Encryption Procedure

XTEA takes as input a 64-bit plaintext block P , and has a total of 64 rounds. Its

encryption procedure is as follows, where Li and Ri are 32-bit variables.

160

9.3 Previous Cryptanalytic Results

1. Represent P as two 32-bit words P = (L0, R0).

2. For i = 1 to 64:

Ri = Li−1 ¢ (((Ri−1 << 4⊕Ri−1 >> 5) ¢ Ri−1)⊕ (b i
2c£ θ ¢ Ki)),

Li = Ri−1;

3. Ciphertext = (L64, R64).

<< 4

>> 5

⊕

⊕

Kib i

2
c

Li+1 Ri+1

Li Ri

θ

Figure 9.1: The ith encryption round of XTEA

The ith iteration of Step 2 in the above description is referred to below as Round i,

(1 ≤ i ≤ 64). Figure 9.1 depicts such a round.

Let K̃i = (b i
2c × θ) ¢ Ki, (1 ≤ i ≤ 64). We write K̃i,[l1,l2] for bits (l1, · · · , l2) of K̃i,

where 1 ≤ l1 ≤ l2 ≤ 32.

9.3 Previous Cryptanalytic Results

In this section we briefly review previously published cryptanalytic attacks on XTEA.

• In 2002, Moon, Hwang, Lee, Lee and Lim [86] presented an impossible differ-

ential attack on 14 rounds of XTEA.

• In 2003, Hong, Hong, Ko, Chang, Lee and Lee [38] presented a differential

attack on 15 rounds of XTEA and a truncated differential attack on 23 rounds

of XTEA, where the former attack uses a 13-round differential with probability

2−54.795, and the latter attack uses an 8-round truncated differential.

161

9.4 A 24-Round Related-Key Rectangle Distinguisher with Probability
2−124.92

• In 2004, Ko, Hong, Lee, Lee and Kang [61] presented a related-key truncated

differential attack on 27 rounds of XTEA, based on the 8-round truncated

differential of Hong et al.

• In 2006, Lee, Hong, Chang, Hong and Lim [70] presented a related-key rect-

angle attack on 34 rounds of XTEA that works under the assumption that the

key used is a member of a special class of weak keys.

In summary, the related-key truncated differential attack on 27-round XTEA of Ko

et al. [61] is the best previously published cryptanalytic result on XTEA without

making a weak key assumption.

9.4 A 24-Round Related-Key Rectangle Distinguisher with
Probability 2−124.92

In this section, we describe a novel 24-round related-key rectangle distinguisher for

XTEA.

The definition of a related-key rectangle distinguisher requires the part of the cipher

E concerned to be decomposed into two sub-ciphers E0 and E1. Let E0 denote

Rounds 21 to 36 of XTEA, and E1 denote Rounds 37 to 44 of XTEA. To define

the distinguisher we need to specify related-key differentials for E0 and E1. The

24-round related-key rectangle distinguisher involves four cipher keys (TYPE 1 as

described in Section 2.2.9), which we assume are KA,KB, KC ,KD.

The first related-key differential making up the 24-round distinguisher is the follow-

ing related-key differential ∆α → ∆β with probability 2−32.49 for E0: (e22,27,31, e27) →
(e12,17,21, e7,25,27), where the relationship between the four cipher keys is KA⊕KB =

KC⊕KD = (0, 0, 0, e32). See Table 9.2 for further details of this differential. During

the calculations of the probability of this related-key differential, we use the general

result described in Theorem 8.1.

The second related-key differential making up the 24-round distinguisher is the

following related-key differential ∆γ → ∆δ with probability 1 for E1: (e32, 0) →

162

9.4 A 24-Round Related-Key Rectangle Distinguisher with Probability
2−124.92

Table 9.2: The first related-key differential in the 24-round related-key rectangle
distinguisher

Round(i) (∆Li−1, ∆Ri−1) ∆Ki Prob. Round(i) (∆Li−1, ∆Ri−1) ∆Ki Prob.

21 (e22,27,31, e27) 0 2−4.16 31 (0, 0) e32 1
22 (e27, e32) e32 2−1.52 32 (0, e32) e32 2−1.52

23 (e32, 0) e32 1 33 (e32, e27) 0 2−4.16

24 (0, 0) 0 1 34 (e27, e22,27,31,32) 0 2−5.15

...
...

...
... 35 (e22,27,31,32, e17,27) 0 2−8.31

29 (0, 0) 0 1 36 (e17,27, e12,17,21) 0 2−7.67

30 (0, 0) 0 1 output (e12,17,21, e7,25,27) / /

(0, e32), where the relationship between the four cipher keys is KA ⊕KC = KB ⊕
KD = (0, 0, e32, 0).

In the following, we need to sum the squares of the probabilities of all the possible

16-round differentials ∆α → ∆β∗ with the same input difference α to E0, which is

computationally infeasible. To address this problem, we just count some of those

in which only the last one-round (Case A), two-round (Case B) or five-round (Case

C) related-key differential characteristic is different from the 16-round related-key

differential ∆α → ∆β in Table 9.2:

Case A: The last one-round (i.e. Round 36) related-key differential characteristic

has the form (e17,27, e12,17,21) → (e12,17,21,∆R37). From an analysis of this

one-round differential, we know that there exists at least 1 possible ∆R37 (i.e.

e7,25,27) with a lower bound probability of 2−7.67, at least 4 possible ∆R37 (i.e.

e7,8,25,27, e7,18,25,27, e7,25,26,27, e7,25,26) with a lower bound probability of 2−8.67+

2−9.72 ≈ 2−8.10, at least 7 possible ∆R37 (i.e. e7,8,9,25,27, e7,8,18,25,27, e7,8,25,26,27,

e7,8,25,26, e7,18,19,25,27, e7,18,25,26,27, e7,18,25,26) with a lower bound probability of

2−9.67 + 2−11.86 ≈ 2−9.38, at least 2 possible ∆R37 (i.e. e7,25,26,28, e7,25,26,27,28)

with a lower bound probability of 2−9.67 +2−12.85 ≈ 2−9.52, at least 10 possible

∆R37 with a lower bound probability of 2−10.67, at least 15 possible ∆R37

with a lower bound probability of 2−11.67, at least 21 possible ∆R37 with a

lower bound probability of 2−12.67 and at least 28 possible ∆R37 with a lower

bound probability of 2−13.67. Thus, we can compute a square sum of at least

2−7.67×2 + 4 × 2−8.1×2 + 7 × 2−9.38×2 + 2 × 2−9.52×2 + 10 × 2−10.67×2 + 15 ×
2−11.67×2 +21×2−12.67×2 +28×2−13.67×2 ≈ 2−13.25 for the probabilities of the

one-round differentials (e17,27, e12,17,21) → (e12,17,21, ∆R37).

163

9.4 A 24-Round Related-Key Rectangle Distinguisher with Probability
2−124.92

Case B: The last two-round (i.e. Rounds 35 and 36) related-key differential char-

acteristic has the form (e22,27,31,32, e17,27) → (e17,27, ∆R36) → (∆R36, ∆R37).

Here, we only consider ∆R36 ∈ {e12,17,21, e12,17,21,22, e12,17,21,32, e12,17,21,22,32};
after an analysis we can learn that these four possibilities of ∆R36 have the

same probability 2−8.31 for the one-round differential (e22,27,31,32, e17,27) →
(e17,27, ∆R36). Similar to that described in Case A, we can compute a square

sum of at least 2−14.04 for the case ∆R36 = e12,17,21,32, a square sum of at least

2−15.55 for the case ∆R36 = e12,17,21,22 and a square sum of at least 2−16.26 for

the case ∆R36 = e12,17,21,22,32.

Case C: The last five-round (i.e. Rounds 32 to 36) related-key differential character-

istic has the form (0, e32) → (e32,∆R33) → (∆R33,∆R34) → (∆R34, ∆R35) →
(∆R35, ∆R36) → (∆R36, ∆R37). Here, we only consider (∆R34,∆R35) ∈
{(e22,27,31,32, e17,27), (e22,27,31,32, e17,27,32), (e22,27,31, e17,32), (e22,27,31, e17)}; we can

know that the four possibilities of (∆R34, ∆R35) have the same probability

of at least 2−10.83 + 2−13.55 + 2−17.56 ≈ 2−10.62 for the three-round differen-

tial (0, e32) → (∆R34,∆R35). Subsequently, a detailed analysis reveals that

the one-round differential (∆R34, ∆R35) → (∆R35, ∆R36) has a probability

of at least 2−8.31 for the eight cases ∆R34 = e22,27,31,32 and (∆R35, ∆R36) ∈
{(e17,27, e12,17,21), (e17,27, e12,17,21,22), (e17,27, e12,17,21,32), (e17,27, e12,17,21,22,32),

(e17,27,32, e12,17,21,27), (e17,27,32, e12,17,21,22,27), (e17,27,32, e12,17,21,27,32), (e17,27,32,

e12,17,21,22,27,32)}, and has a probability of at least 2−7.46 for the eight cases

∆R34 = e22,27,31 and (∆R35, ∆R36) ∈ {(e17, e12,17,21,27,31), (e17, e12,17,21,22,27,31),

(e17, e12,17,21,27,31,32), (e17, e12,17,21,22,27,31,32), (e17,32, e12,17,21,31), (e17,32, e12,17,21,

22,31), (e17,32, e12,17,21,31,32), (e17,32, e12,17,21,22,31,32)}. Then, similar to that de-

scribed in Case A, for the one-round differentials (∆R35, ∆R36)→(∆R36, ∆R37),

we can compute a square sum of at least 2−17.11 for the probabilities of the dif-

ferentials from either of the two cases (∆R34, ∆R35, ∆R36) ∈ {(e22,27,31,32, e17,27,

32, e12,17,21,27),(e22,27,31,32, e17,27,32, e12,17,21,27,32)}, a square sum of at least 2−18.13

for the probabilities of the differentials from either of the two cases (∆R34, ∆R35,

∆R36) ∈ {(e22,27,31,32, e17,27,32, e12,17,21,22,27), (e22,27,31,32, e17,27,32, e12,17,21,22,27,

32)}, and a square sum of at least 2−18.22 for the probabilities of the differentials

from each of the eight cases with ∆R34 = e22,27,31.

Thus, with the three cases above, we can compute a square sum for the probabilities

164

9.5 Attacking Rounds 16 to 51 of XTEA

of the differentials α → β∗ of at least (2−4.16×2−1.52×2−10.62)2×(2−8.31×2×2−13.25+

2−8.31×2× 2−14.04 + 2−8.31×2× 2−15.55 + 2−8.31×2× 2−16.26 + 2× 2−8.31×2× 2−17.11 +

2× 2−8.31×2 × 2−18.13 + 8× 2−7.46×2 × 2−18.22) ≈ 2−60.92.

As the 8-round related-key differential ∆γ → ∆δ for E1 has a probability of 1, this

distinguisher has a probability of at least
∑

β∗ [Pr(∆α → ∆β∗)2 × 2−64] = 2−60.92 ×
2−64 = 2−124.92 for the correct key, while it has a probability of (2−64)2 = 2−128 for

a wrong key.

9.5 Attacking Rounds 16 to 51 of XTEA

In this section we describe a related-key rectangle attack on 36 rounds of XTEA.

9.5.1 Preliminary Results

We first give three properties of XTEA.

The following result follows from inspection of Table 9.1.

Property 9.1 In the key schedule of XTEA, only 64 user key bits (W1,W2) are

used in Rounds 16 to 20 and 48 to 51.

The following property follows from the structure of the XTEA round function.

Property 9.2 Suppose two blocks are encrypted using XTEA with a pair of keys

for which the subkeys for Rounds i, i + 1, i + 2 and i + 3 are either the same or

differ by e32 (for some i, 1 ≤ i ≤ 61). Then, if the difference just after Round i

is (0, e32), then the difference just after Round (i + 1) has the form (e32, e27,∼), the

difference just after Round (i+2) has the form (e27,∼, e22,∼), and the difference just

after Round (i + 3) has the form (e22,∼, e17,∼).

We know that the addition modulo operation definitely preserves the least significant

differences in the original positions, and may preserve the other differences in the

165

9.5 Attacking Rounds 16 to 51 of XTEA

original positions or propagate them to the more significant positions, but never to

the less significant positions. Thus, we can get the following property.

Property 9.3 Given a pair of 64-bit values (xl, xr) and (x̂l, x̂r) with difference

(ej+5,∼, ej,∼) after Round i (1 ≤ j ≤ 27), to determine whether it could produce a

difference with the form (ξ, ej+5,∼) just before Round i, we only need to guess the

most significant (32 − j) bits of K̃i and the carry bit occurred in the (j − 1)th bit

of the left addition modulo 232 operation in Round i, where ξ denotes a (possible)

specific 32-bit difference.

Property 9.1 enables us to travel through the nine rounds from Rounds 16 to 20

and Rounds 48 to 51 by guessing only 64 user key bits (W1,W2). Properties 9.2

and 9.3 allow us to break Rounds 45 and 47 by using the early abort technique. We

guess only part of the 32 bits of an unknown K̃i when conducting an early abort;

otherwise, our attack would be impossible.

We use plaintext structures in our attack. For a plaintext pair to produce the

difference (e22,27,31, e27) just before Round 21, the input difference to Round 16

should have the form (?, e2,∼).

9.5.2 Attack Description

As a result, the above analysis enables us to give the following attack procedure to

break the 36 rounds from Rounds 16 to 51 of XTEA. The attack procedure is as

follows.

1. Choose a structure S, which is defined to be a set of 262.96 plaintexts Pl with

the second rightmost bits fixed, (l = 1, · · · , 262.96). In a chosen-plaintext

attack scenario, obtain all the ciphertexts for the 262.96 plaintexts encrypted

with KA and KC , respectively; let Cl and C ′
l be the ciphertexts for plaintext

Pl encrypted with KA and KC , respectively. Choose another structure Ŝ,

which contains the 263 plaintexts P̂j with the second rightmost bits fixed to

be the complement of the second rightmost bit value in S, (j = 1, · · · , 263).

In a chosen-plaintext attack scenario, obtain all the ciphertexts for the 263

166

9.5 Attacking Rounds 16 to 51 of XTEA

plaintexts in Ŝ encrypted with KB and KD; we denote by Ĉ∗
j and Ĉ ′∗

j the

ciphertexts for plaintext P̂j , encrypted with KB and KD, respectively. Here,

KA⊕KB = KC⊕KD = (0, 0, 0, e32), and KA⊕KC = KB⊕KD = (0, 0, e32, 0).

2. Guess a value for the 64-bit user key (W1,W2), compute the subkeys (K16, · · · ,

K20), and perform Steps (a) and (b) below.

(a) Partially encrypt every plaintext Pl in S with (K16, · · · ,K20) through

Rounds 16 to 20 to get its corresponding value just after Round 20;

we denote it by εl. Then, partially decrypt εl ⊕ (e22,27,31, e27) with

(K16, · · · ,K20) through Rounds 16 to 20 to get its plaintext; we denote

it by P̃l. Find P̃l in Ŝ. We denote by C̃∗
l and C̃ ′∗

l the corresponding

ciphertexts of P̃l encrypted under KB and KD, respectively. This step

generates a total of 262.96 plaintext pairs with difference (e22,27,31, e27)

after Round 20 for every guess for (W1, W2), which can propose about(
262.96

2

) ≈ 262.96×2

2 = 2124.92 candidate quartets.

(b) Compute the subkeys (K48, · · · , K51) with the guessed value for (W1,W2).

Partially decrypt all the 264 ciphertexts with (K48, · · · ,K51) through

Rounds 48 to 51 to get the corresponding values just before Round 48; we

denote the corresponding values for the ciphertexts Cl, C̃∗
l , C ′

l and C̃ ′∗
l by

Tl, T̃ ∗l , T ′l and T̃ ′∗l , respectively. Store (Tl, T
′
l , T̃

∗
l , T̃ ′∗l) in a hash table. Fi-

nally, choose only the quartets (Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

) such that both Tl1 ⊕ T ′l2
and T̃ ∗l1 ⊕ T̃ ′∗l2 have the form (e22,∼, e17,∼), where 1 ≤ l1 ≤ l2 ≤ 262.96.

If one or more quartets (Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

) pass this test, execute Step 3

with the quartets meeting this condition; otherwise, repeat Step 2 with

another guess.

3. Guess a value for the most significant 16 bits K̃47,[17,32] of the 32-bit value K̃47,

and perform Steps (a) and (b) below.

(a) For each remaining quartet (Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

), partially decrypt Tl1 and

T ′l2 with K̃47,[17,32] under the two possibilities 0 and 1 of the carry bit

occurred in bit (16) of the left add modulo operation to get the corre-

sponding values for the most significant 16 bits of both the left and right

halves just before Round 47; we denote them by Qm,l1 and Q′
m,l2

, re-

spectively, where m ∈ {0, 1} denotes the two possibilities of the carry

bit; and check whether Qm,l1 ⊕ Q′
m,l2

has the form (ρ16
11,∼, ρ16

6,∼). If not,

167

9.5 Attacking Rounds 16 to 51 of XTEA

repeat this step with another quartet; otherwise, partially decrypt T̃ ∗l1
and T̃ ′∗l2 with K̃47,[17,32] ⊕ ρ16

16 under the two possibilities 0 and 1 of the

carry bit occurred in bit (16) of the left add modulo operation to get the

corresponding values for the most significant 16 bits of both the left and

right halves just before Round 47; we denote them by Q̃∗
n,l1

and Q̃′∗
n,l2

,

respectively, where n ∈ {0, 1} denotes the two possibilities of the carry

bit. Finally, check whether Q̃∗
n,l1

⊕ Q̃′∗
n,l2

has the form (ρ16
11,∼, ρ16

6,∼). If

one or more quartets (Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

) pass this test, record the quar-

tets (Qm,l1 , Q̃
∗
n,l1

, Q′
m,l2

, Q̃′∗
n,l2

), and execute Step 3(b) with the quartets

(Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

) that meet this condition; otherwise, repeat Step 3 with

another guess for K̃47,[17,32].

(b) Guess a value for the least significant 16 bits K̃47,[1,16] of K̃47. For every

remaining quartet (Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

), partially decrypt Tl1 and T ′l2 with

K̃47(= K̃47,[1,16]||K̃47,[17,32]) to get the corresponding values just before

Round 47; we denote them by Ql1 and Q′
l2
, respectively; and check

whether Ql1⊕Q′
l2

has the form (e27,∼, e22,∼). If not, repeat this step with

another quartet; otherwise, partially decrypt T̃ ∗l1 and T̃ ′∗l2 with K̃47 ⊕ e32

to get the corresponding values just before Round 47; we denote them

by Q̃∗
l1

and Q̃′∗
l2
, respectively. Finally, check whether Q̃∗

l1
⊕ Q̃′∗

l2
has the

form (e27,∼, e22,∼). If one or more quartets (Tl1 , T̃
∗
l1
, T ′l2 , T̃

′∗
l2

) pass this

test, execute Step 4 with the quartets (Ql1 , Q̃
∗
l1
, Q′

l2
, Q̃′∗

l2
) that meet this

condition; otherwise, repeat this step with another guess for K̃47,[1,16].

4. Compute the subkey K̃46 with the W2 guessed in Step 2. For every remaining

quartet (Ql1 , Q̃
∗
l1
, Q′

l2
, Q̃′∗

l2
), partially decrypt (Ql1 , Q

′
l2
) with K̃46 to get the

corresponding values just before Round 46; we denote them by (Rl1 , R
′
l2
),

respectively; and check whether Rl1 ⊕ R′
l2

has the form (e32, e27,∼). If not,

repeat this step with another quartet; otherwise, partially decrypt (Q̃∗
l1
, Q̃′∗

l2
)

with K̃46 to get the corresponding values just before Round 46; we denote

them by (R̃∗
l1
, R̃′∗

l2
), respectively. Finally, check whether R̃∗

l1
⊕ R̃′∗

l2
has the form

(e32, e27,∼). If one or more quartets (Ql1 , Q̃
∗
l1
, Q′

l2
, Q̃′∗

l2
) pass this test, execute

Step 5 with the quartets (Rl1 , R̃
∗
l1
, R′

l2
, R̃′∗

l2
) that meet this condition; otherwise,

repeat Step 3(b) with another guess for K̃47,[1,16].

5. Guess a value for the most significant 6 bits K̃45,[27,32] of the 32-bit value K̃45,

and perform Steps (a) and (b) below.

168

9.5 Attacking Rounds 16 to 51 of XTEA

(a) For each remaining quartet (Rl1 , R̃
∗
l1
, R′

l2
, R̃′∗

l2
), partially decrypt Rl1 and

R′
l2

with K̃45,[27,32] and K̃45,[27,32] ⊕ ρ6
6, respectively, under the two pos-

sibilities 0 and 1 of the carry bit occurred in bit (26) of the left add

modulo operation to get the corresponding values for the most significant

6 bits of the left and right halves just before Round 45; we denote them

by Us,l1 and U ′
s,l2

, respectively, and partially decrypt R̃∗
l1

and R̃′∗
l2

with

K̃45,[27,32] and K̃45,[27,32] ⊕ ρ6
6, respectively, under the two possibilities 0

and 1 of the carry bit occurred in bit (26) of the left add modulo opera-

tion to get the corresponding values for the most significant 6 bits of the

left and right halves just before Round 45; we denote them by Ũ∗
t,l1

and

Ũ ′∗
t,l2

, respectively, where s, t ∈ {0, 1} denote the two possibilities of the

carry bit. Finally, check whether Us,l1 ⊕ U ′
s,l2

= Ũ∗
t,l1
⊕ Ũ ′∗

t,l2
= (0, ρ6

6). If

one or more quartets (Rl1 , R̃
∗
l1
, R′

l2
, R̃′∗

l2
) pass this test, execute Step 5(b)

with the quartets (Rl1 , R̃
∗
l1
, R′

l2
, R̃′∗

l2
) that meet this condition; otherwise,

repeat Step 5 with another guess for K̃45,[27,32].

(b) Guess a value for the least significant 26 bits K̃45,[1,26] of K̃45. For every

remaining (Rl1 , R̃
∗
l1
, R′

l2
, R̃′∗

l2
), partially decrypt Rl1 and R′

l2
with K̃45(=

K̃45,[1,26]|| K̃45,[27,32]) and K̃45⊕e32, respectively, to get the corresponding

values just before Round 45; we denote them by Ul1 and U ′
l2
, respectively;

and check whether Ul1 ⊕ U ′
l2

= (0, e32). If not, repeat this step with

another quartet; otherwise, partially decrypt R̃∗
l1

and R̃′∗
l2

with K̃45 and

K̃45⊕e32, respectively, to get the corresponding values just before Round

45; we denote them by Ũ∗
l1

and Ũ ′∗
l2

, respectively. Finally, check whether

Ũ∗
l1
⊕ Ũ ′∗

l2
= (0, e32). If one or more quartets (Rl1 , R̃

∗
l1
, R′

l2
, R̃′∗

l2
) pass this

test, execute Step 6 with the quartets (Ul1 , Ũ
∗
l1
, U ′

l2
, Ũ ′∗

l2
) that meet this

condition; otherwise, repeat this step with another guess for K̃45,[1,26].

6. Compute the subkey K̃21 with the W3 indicated by K̃45. For every plaintext

quartet (Pl1 , P̃
∗
l1
, P ′

l2
, P̃ ′∗

l2
) corresponding to a remaining (Ul1 , Ũ

∗
l1
, U ′

l2
, Ũ ′∗

l2
), par-

tially encrypt εl1 and εl1 ⊕ (e22,27,31, e27) with K̃21 to get the corresponding

values just after Round 21; we denote them by Vl1 and Ṽ ∗
l1
, respectively; and

check whether Vl1⊕ Ṽ ∗
l1

= (e27, e32). If not, repeat this step with another quar-

tet; otherwise, partially encrypt εl2 and εl2 ⊕ (e22,27,31, e27) with K̃21 ⊕ e32 to

get the corresponding values just after Round 21; we denote them by Vl2 and

Ṽ ∗
l2
, respectively. Finally, check whether Vl2 ⊕ Ṽ ∗

l2
= (e27, e32). If one or more

169

9.5 Attacking Rounds 16 to 51 of XTEA

quartets (Pl1 , P̃
∗
l1
, P ′

l2
, P̃ ′∗

l2
) pass this test, then record (W1,W2, K̃47, K̃45), and

execute Step 7; otherwise, repeat Step 5(b) with another guess for K̃45,[1,26].

7. For a recorded value for (W1,W2, K̃47, K̃45), do a trial encryption with three

plaintext/ciphertext pairs to determine the correct user key of the 36-round

XTEA, (If all the possible guesses during any of Steps 3 to 5 are tested, repeat

its previous steps with other guess).

9.5.3 Complexity Analysis

The attack requires 2 × (262.96 + 263) ≈ 264.98 related-key chosen plaintexts. The

required memory for this attack is dominated by the ciphertexts, which is approxi-

mately 264.98 × 8 = 267.98 memory bytes.

Step 2(a) has a time complexity of about 2 × 262.96 × 264 × 5
36 ≈ 2125.12 36-round

XTEA encryptions. The time complexity of Step 2(b) is dominated by the partial

decryptions, which is about 264 × 264 × 4
36 ≈ 2124.83 36-round XTEA computations.

Besides, Step 2(b) requires about 264 × 262.96 ≈ 2126.96 memory accesses, which is

negligible compared with the 2124.83 computations (actually it can be done more

efficiently using computers of today). In Step 2(b), the probability that a quartet

meets the filtering condition is (1
222 × 1

217)2 = 2−78, so it follows that the expected

number of the quartets passing the test for each guess is 2124.92 × 2−78 = 246.92.

The probability that one or more quartets pass the test for a wrong guess is about
∑2124.92

i=1 [
(
2124.92

i

) · (2−78)i · (1 − 2−78)2
124.92−i] ≈ 1, thus, almost all the 264 possible

values of (W1,W2) pass Step 2(b).

In Step 3(a), the probability that a remaining quartet meets either of the filtering

conditions is 1
210 + 1

210 = 2−9, thus the time complexity of Step 3(a) is about 2×264×
216× 246.92× 2× 1

2 × 1
36 +2× 264× 216× 237.92× 2× 1

2 × 1
36 ≈ 2122.75, where 1

2 means

the average fraction of the key bits that are tested. In this step, the probability that

a remaining quartet meets both the filtering conditions is (1
210 + 1

210)2 = 2−18, so the

expected number of the quartets passing the test for each guess is 246.92 × 2−18 =

228.92, and the probability that one or more quartets pass the test for a wrong guess

is about 1. Thus, it is expected that almost all the 280 possible (W1,W2, K̃47,17−32)

pass this step. In Step 3(b), the probability that a remaining quartet meets either of

170

9.5 Attacking Rounds 16 to 51 of XTEA

the filtering conditions is 2−1, because both the pairs in a remaining quartet should

produce the required carry bits occurred in bit 15 of the left add modulo operation;

thus the time complexity of Step 3(b) is about 2× 280 × 216 × 228.92 × 2× 1
2 × 1

36 +

2× 280× 216× 227.92× 2× 1
2 × 1

36 ≈ 2121.34; the probability that a remaining quartet

meets both the filtering conditions is 2−1×2 = 2−2, so the expected number of the

quartets passing the test for each guess is 228.92 × 2−2 = 226.92, and almost all the

296 possible values of (W1,W2, K̃47) pass Step 3(b).

In Step 4, the probability that a remaining quartet meets either of the filtering

conditions is 2−10, thus the time complexity of Step 4 is about 2× 296× 226.92× 1
2 ×

1
36 +2×296×216.92× 1

2 × 1
36 ≈ 2117.75. In this step, the probability that a remaining

quartet meets both the filtering conditions is 2−10×2 = 2−20, so the expected number

of the quartets passing the test for each guess is 226.92 × 2−20 = 26.92, and the

probability that one or more quartets pass the test for a wrong guess is about 1.

Thus, it is expected that almost all the 296 possible values of (W1,W2, K̃47) pass

this step.

In Step 5(a), the time complexity is about 4 × 296 × 26 × 26.92 × 2 × 1
2 × 1

36 ≈
2105.75, and the probability that a remaining quartet meets the filtering condition

is (1
25 + 1

25)2 = 2−8, so the expected number of the quartets passing the test for

each guess is 26.92 × 2−8 = 2−1.08. The probability that one or more quartets

pass the test for a wrong guess is about
∑26.92

i=1 [
(
26.92

i

) · (2−8)i · (1 − 2−8)2
6.92−i] ≈

2−1.08. Hence, it is expected that about 296 × 26 × 2−1.08 = 2100.92 possible values

of (W1,W2, K̃47, K̃45,[27,32]) pass Step 5(a). In Step 5(b), the probability that a

remaining quartet meets either of the filtering conditions is 2−1; as a result, it is

expected that 2100.92×226×2−1 = 2125.92 possible values of (W1,W2, K̃47, K̃45) pass

the first filtering condition in Step 5(b). Therefore, the time complexity of Step 5(b)

is about 2 × 2100.92 × 226 × 1
2 × 1

36 + 2 × 2125.92 × 1
2 × 1

36 ≈ 2122.34. In this step, it

is expected that about 2126.92 × 2−2 = 2124.92 possible values of (W1,W2, K̃47, K̃45)

pass Step 5(b).

In Step 6, as the probability that a remaining quartet meets either of the filtering

conditions is 2−4.16, it follows that about 2124.92 × 2−4.16 = 2120.76 possible values of

(W1,W2, K̃47, K̃45) are expected to pass the first filtering condition in this step. The

time complexity of this step is about 2×2124.92×1
2× 1

36+2×2120.76×1
2× 1

36 ≈ 2119.83. In

171

9.6 Summary

this step, the probability that a remaining quartet meets both the filtering conditions

is 2−4.16×2 = 2−8.32, so it follows that about 2124.92 × 2−8.32 = 2116.6 possible values

of (W1,W2, K̃47, K̃45) are expected to pass this step, which result in about 2116.6

trials in Step 7.

Therefore, this attack has a total of approximately 2126.3 36-round XTEA compu-

tations.

The probability that a wrong key is suggested in Step 7 is approximately 2−192, so

the expected number of suggested wrong 128-bit keys is about 2−192×2116.6 = 2−75.4,

which is extremely low. In Step 6, the expected number of quartets for the correct

key guess is 2124.92 × 2−124.92 = 1, and the probability that one or more quartets

pass the test for the correct key guess is approximately
∑2124.92

i=1 [
(
2124.92

i

) · (2−124.92)i ·
(1 − 2−124.92)2

124.92−i] ≈ 0.63. Therefore, with a success probability of 63%, the

related-key rectangle attack can break the 36-round XTEA, marginally faster than

exhaustive key search.

9.6 Summary

In this chapter we have presented a related-key rectangle attack on 36 rounds of

XTEA. This is better than any previously published cryptanalytic results on XTEA

in terms of the number of attacked rounds. Table 9.3 summarises the published

cryptanalytic results on XTEA, where CP and RK-CP refer to the required numbers

of chosen plaintexts and related-key chosen plaintexts, respectively; and Encryptions

refers to the required number of encryption operations of the relevant reduced-round

version of XTEA.

Table 9.3: Cryptanalytic results on XTEA
Attack Type Rounds Data Time Source

Impossible differential 14 262.5CP 285Encryptions [86]
Differential 15 259CP 2120Encryptions [38]
Truncated differential 23 220.55CP 2120.65Encryptions [38]
Related-key truncated 25 116RK-CP 2110.05Encryptions [61]
differential 27 220.5RK-CP 2115.15Encryptions [61]

Related-key rectangle 34† 262RK-CP 231.94Encryptions [70]
36 264.98RK-CP 2126.3Encryptions Section 9.5

†: Under weak key assumptions

172

Chapter 10

Cryptanalysis of Reduced HIGHT

HIGHT is a 64-bit block cipher with a 128-bit user key. In this chapter, we present

an impossible differential attack on 25-round HIGHT, a related-key rectangle attack

on 26-round HIGHT, and a related-key impossible differential attack on 28-round

HIGHT. The 25-round HIGHT attack requires 260 chosen plaintexts and has a time

complexity of 2126.78 encryptions; the 26-round HIGHT attack requires 249.7 related-

key chosen plaintexts and has a time complexity of 2120.41 encryptions; the 28-round

HIGHT attack requires 260 related-key chosen plaintexts and has a time complex-

ity of 2125.54 encryptions. These attacks are better than any previously published

cryptanalytic results on HIGHT in terms of the number of attacked rounds.

Contents

10.1 Introduction . 174

10.2 The HIGHT Block Cipher 175

10.2.1 Notation . 175
10.2.2 Functions . 175
10.2.3 Generation of Subkeys . 176
10.2.4 Encryption Procedure . 176

10.3 Previous Cryptanalytic Results 178

10.4 Properties of HIGHT . 178

10.5 Impossible Differential Attack on 25-Round HIGHT . . 179

10.5.1 16-Round Impossible Differentials 179
10.5.2 Attacking Rounds 6 to 30 180

10.6 Related-Key Rectangle Attack on 26-Round HIGHT . . 187

10.6.1 18-Round Related-Key Rectangle Distinguishers with Prob-
ability 2−92.4 . 187

10.6.2 Attacking Rounds 1 to 26 189
10.7 Related-Key Impossible Differential Attack on 28-Round

HIGHT . 195

10.7.1 19-Round Related-Key Impossible Differentials 195

173

10.1 Introduction

10.7.2 Attack Rounds 2 to 29 . 197
10.8 Summary . 201

10.1 Introduction

Recently, cryptographic techniques suitable for use in embedded and ubiquitous

computing systems has received extensive attention. In 2006, Hong, Sung, Hong,

Lim, Lee, Koo, Lee, Chang, Lee, Jeong, Kim, Kim and Chee [37] proposed a 64-bit

block cipher known as HIGHT, meaning “high security and light weight”. HIGHT

has a Feistel structure with four branches, a 128-bit user key, and a total of 32

rounds. It is especially efficient in hardware implementations, and is most suitable

for various real-life resource-constrained application environments, such as RFID

(Radio-Frequency IDentification) [47].

In this chapter we describe certain 16-round impossible differentials for HIGHT, and

use them to mount an impossible differential attack on 25-round HIGHT requiring

260 chosen plaintexts and has a time complexity of 2126.78 encryptions. We next

describe an 18-round related-key rectangle distinguisher with probability 2−92.4 for

HIGHT, and then use it to construct a related-key rectangle attack on 26-round

HIGHT which requires 249.7 related-key chosen plaintexts and has a time complexity

of 2120.41 encryptions. Finally, we describe certain 19-round related-key impossible

differentials for HIGHT, and use them to mount a related-key impossible differential

attack on 28-round HIGHT which requires 260 related-key chosen plaintexts and has

a time complexity of 2125.54 encryptions. The attacks use the early abort technique

described in Chapter 4.

The remainder of this chapter is organised as follows. In Section 10.2 we describe

HIGHT. In Section 10.3 we briefly review previous cryptanalytic results on HIGHT.

In Section 10.4 we introduce two properties of HIGHT. In Sections 10.5, 10.6 and

10.7 we present our cryptanalytic results on HIGHT. Section 10.8 summarises the

results of this chapter.

174

10.2 The HIGHT Block Cipher

10.2 The HIGHT Block Cipher

In this section we briefly describe the HIGHT block cipher [37]. Note that in order to

maintain consistency of presentation throughout the thesis, the description below is

different from (but equivalent to) that given in [37]; in particular, we use a different

numbering of the bits of a value.

10.2.1 Notation

In this chapter, a 64-bit value is represented as a sequence of eight bytes, numbered

from 1 to 8 from left to right; and the bits of a byte are numbered from 1 to 8 from

left to right, where the least significant bit is referred as the 1st bit, and the most

significant bit is referred as the 8th bit. We use the following notation.

• ¢: addition modulo 28

• ej : an 8-bit value with zeros everywhere except for bit position j (1 ≤ j ≤ 8)

• ei1,··· ,ij : the 8-bit value equal to ei1 ⊕ · · · ⊕ eij (1 ≤ i1, · · · , ij ≤ 8)

• ej,∼ : an 8-bit value that has zeros in bit positions 1 to j − 1, a one in bit

position j and indeterminate values in bit positions (j + 1) to 8, 1 ≤ j ≤ 8

• ej,∼: an 8-bit value that has zeros in bit positions 1 to j and indeterminate

values in bit positions (j + 1) to 8, 1 ≤ j ≤ 8

• ? : an arbitrary 8-bit value, where two values represented by the ? symbol

may be different

10.2.2 Functions

The HIGHT round function uses the following two elementary functions:

• F0 : {0, 1}8 → {0, 1}8. If X is a 8-bit block, then F0(X) = (X ≫ 1)⊕ (X ≫
2)⊕ (X ≫ 7).

175

10.2 The HIGHT Block Cipher

• F1 : {0, 1}8 → {0, 1}8. If X is a 8-bit block, then F1(X) = (X ≫ 3)⊕ (X ≫
4)⊕ (X ≫ 6).

10.2.3 Generation of Subkeys

HIGHT uses a total of eight 8-bit whitening subkeys KW j (1 ≤ j ≤ 8), and 128

8-bit round subkeys KS i, (1 ≤ i ≤ 128), all derived from a 128-bit user key K. Let

K be represented as a sequence of as sixteen bytes (W1,W2, · · · ,W16).

The whitening subkeys KW j are defined as follows.

KW j = Wj+12 for j = 1, 2, 3, 4;

KW j = Wj−4 for j = 5, 6, 7, 8.

The round subkeys KS i are as follows, where λ16·l+j−16 and λ16·l+j−8 are public

constants, (1 ≤ l, j ≤ 8).

KS 16·l+j−16 = Wj−l mod 8+1 ¢ λ16·l+j−16;

KS 16·l+j−8 = W(j−l mod 8)+9 ¢ λ16·l+j−8.

Table 10.1 lists the user key byte used to compute the round subkey KS i for every

i, (1 ≤ i ≤ 128).

We write Wi,l for the lth bit of Wi, Wi,[l1,l2] for bits (l1, · · · , l2) of Wi, KS i,l for the lth

bit of KS i, and KS i,[l1,l2] for bits (l1, · · · , l2) of KS i, where 1 ≤ l ≤ 8, 1 ≤ l1 ≤ l2 ≤ 8.

10.2.4 Encryption Procedure

HIGHT takes as input a 64-bit plaintext block P , and has a total of 32 rounds.

Its encryption procedure is as follows, where X0,1, X0,2, · · · , X0,8, Xi,1, · · · , Xi,8 are

8-bit variables.

1. Represent P as eight bytes P = (P1, P2, · · · , P8).

176

10.2 The HIGHT Block Cipher

Table 10.1: The key byte used to generate the round subkey KS i
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

KS i W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16

i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
KS i W8 W1 W2 W3 W4 W5 W6 W7 W16 W9 W10 W11 W12 W13 W14 W15

i 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
KS i W7 W8 W1 W2 W3 W4 W5 W6 W15 W16 W9 W10 W11 W12 W13 W14

i 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
KS i W6 W7 W8 W1 W2 W3 W4 W5 W14 W15 W16 W9 W10 W11 W12 W13

i 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
KS i W5 W6 W7 W8 W1 W2 W3 W4 W13 W14 W15 W16 W9 W10 W11 W12

i 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
KS i W4 W5 W6 W7 W8 W1 W2 W3 W12 W13 W14 W15 W16 W9 W10 W11

i 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
KS i W3 W4 W5 W6 W7 W8 W1 W2 W11 W12 W13 W14 W15 W16 W9 W10

i 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
KS i W2 W3 W4 W5 W6 W7 W8 W1 W10 W11 W12 W13 W14 W15 W16 W9

2. (X0,1, X0,2, X0,3, X0,4, X0,5, X0,6, X0,7, X0,8) = (P1 ¢ KW 1, P2, P3 ⊕ KW 2, P4,

P5 ¢ KW 3, P6, P7 ⊕KW 4, P8).

3. For i = 1 to 32:

Xi,1 = Xi−1,8 ⊕ (F0(Xi−1,7) ¢ KS 4i),

Xi,2 = Xi−1,1,

Xi,3 = Xi−1,2 ¢ (F1(Xi−1,1)⊕KS 4i−1),

Xi,4 = Xi−1,3,

Xi,5 = Xi−1,4 ⊕ (F0(Xi−1,3) ¢ KS 4i−2),

Xi,6 = Xi−1,5,

Xi,7 = Xi−1,6 ¢ (F1(Xi−1,5)⊕KS 4i−3),

Xi,8 = Xi−1,7.

4. Ciphertext = (X32,2 ¢ KW 5, X32,3, X32,4 ⊕ KW 6, X32,5, X32,6 ¢ KW 7, X32,7,

X32,8 ⊕KW 8, X32,1).

The ith iteration of Step 3 in the above description is referred to below as Round

i, (1 ≤ i ≤ 32), the transformation in Step 2 is referred to below as the initial

transformation, and the transformation in Step 4 is referred to below as the final

transformation. Figure 10.1 depicts an encryption round.

177

10.3 Previous Cryptanalytic Results

⊕F0

KS4i−2

Xi−1,8Xi−1,7Xi−1,6Xi−1,5Xi−1,4Xi−1,3Xi−1,2Xi−1,1

Xi,8Xi,7Xi,6Xi,5Xi,4Xi,3Xi,2Xi,1

⊕F0

KS4i

⊕F1

KS4i−3

⊕F1

KS4i−1

Figure 10.1: The ith encryption round of HIGHT

10.3 Previous Cryptanalytic Results

The HIGHT proposers Hong et al. [37] describe a differential attack, a linear attack

and a boomerang attack on 13-round HIGHT, a truncated differential attack and a

saturation attack on 16-round HIGHT, an impossible differential attack on 18-round

HIGHT, and a related-key boomerang attack on 19-round HIGHT. These are the

only previously published cryptanalytic results on HIGHT.

10.4 Properties of HIGHT

We first give the following general property of the ¢ and ⊕ operations.

Property 10.1 The ¢ operation definitely preserves the least significant differences

in the original positions, and may preserve the other differences in the original po-

sitions or propagate them to the more significant positions, but never to the less

significant positions, while the ⊕ operation always preserves all the differences in

their original positions.

HIGHT has a Feistel-like round structure with four branches, which can be efficiently

implemented. However, we observe that this round structure is much less effective

in diffusing bit/byte changes than other commonly used Feistel structures. This

property of limited diffusion can be formalised in the following way.

Property 10.2 A byte value (or difference) input to Round i will affect at most

two bytes of the output of Round i; two byte value (or difference) input to Round

178

10.5 Impossible Differential Attack on 25-Round HIGHT

i will affect at most four bytes of the output of Round i; and three byte value (or

difference) input to Round i will affect at most six bytes of the output of Round i,

(1 ≤ i ≤ 31).

Property 10.2 implies that, in order to learn a byte value (or difference) input to a

round, we need not guess all the twelve 8-bit subkeys in the following three rounds.

Also we can determine whether a candidate pair is useful in a byte by byte way, and

even bit by bit, because of the round structure and the operations involved. This

observation is another example of the application of the early abort technique.

10.5 Impossible Differential Attack on 25-Round HIGHT

In this section, we describe certain 16-round impossible differentials of HIGHT, and

then use them to conduct an impossible differential attack on 25-round HIGHT.

10.5.1 16-Round Impossible Differentials

We describe certain 16-round impossible differentials: (0, 0, 0, 0, 0, 0, 0, ei,∼)9 (e8, 0,

0, 0, 0, 0, 0, e1,4,6,7,8), where 2 ≤ i ≤ 8. Note that the 16-round differentials (0, 0, 0, 0,

0, 0, e1,4,6,7,8, e8) → (0, 0, 0, 0, 0, 0, ei,∼, 0) are also impossible. These 16-round im-

possible differentials arise because of Property 10.1.

The 16-round impossible differentials are built in a miss-in-the-middle manner [5]:

a 8-round differential (0, 0, 0, 0, 0, 0, 0, ei,∼) → (?, ?, ?, ?, ?, ?, ?, ei,∼) with probabil-

ity 1 is concatenated with another 8-round differential (?, ?, ?, ?, ?, ?, 0, e1,∼) ←
(e8, 0, 0, 0, 0, 0, 0, e1,4,6,7,8) with probability 1, but the rightmost bytes of the in-

termediate differences of these two differentials contradict one another. Table 10.2

shows more details of the two 8-round differentials.

The input difference (0, 0, 0, 0, 0, 0, 0, ei,∼) of the first 8-round differential propagates

to a difference (ei,∼, 0, 0, 0, 0, 0, 0, 0) after one round of HIGHT, which then propa-

gates to a difference (0, ei,∼, ?, 0, 0, 0, 0, 0) after another round. As a result, the dif-

ference (0, ei,∼, ?, 0, 0, 0, 0, 0) finally propagates to a difference (?, ?, ?, ?, ?, ?, ?, ei,∼)

179

10.5 Impossible Differential Attack on 25-Round HIGHT

Table 10.2: The two 8-round differentials in the 16-round impossible differential
Round(i) ∆Xi−1,1 ∆Xi−1,2 ∆Xi−1,3 ∆Xi−1,4 ∆Xi−1,5 ∆Xi−1,6 ∆Xi−1,7 ∆Xi−1,8

1 0 0 0 0 0 0 0 ei,∼
2 ei,∼ 0 0 0 0 0 0 0
3 0 ei,∼ ? 0 0 0 0 0
4 0 0 ei,∼ ? ? 0 0 0
5 0 0 0 ei,∼ ? ? ? 0
6 ? 0 0 0 ei,∼ ? ? ?
7 ? ? ? 0 0 ei,∼ ? ?
8 ? ? ? ? ? 0 ei,∼ ?

output ? ? ? ? ? ? ? ei,∼
9 ? ? ? ? ? ? 0 e1,∼
10 e1,∼ ? ? ? ? ? 0 0
11 0 e1,∼ ? ? ? ? 0 0
12 0 0 e1,∼ ? ? ? 0 0
13 0 0 0 e1,∼ ? ? 0 0
14 0 0 0 0 e1,∼ ? 0 0
15 0 0 0 0 0 e1,∼ 0 0
16 0 0 0 0 0 0 e1,4,6,7,8 0

output e8 0 0 0 0 0 0 e1,4,6,7,8

after a further six rounds.

On the other hand, when we roll back the difference (e8, 0, 0, 0, 0, 0, 0, e1,4,6,7,8)

through one round of HIGHT in the reverse direction, we definitely get the dif-

ference (0, 0, 0, 0, 0, 0, e1,4,6,7,8, 0), as the difference e1,4,6,7,8 becomes (e1,4,6,7,8 ≫
1) ⊕ (e1,4,6,7,8 ≫ 2) ⊕ (e1,4,6,7,8 ≫ 7) = e1,2,5,7,8 ⊕ e1,2,3,6,8 ⊕ e3,5,6,7,8 = e8 after

the F0 function. The difference (0, 0, 0, 0, 0, 0, e1,4,6,7,8, 0) propagates to a difference

(?, ?, ?, ?, ?, ?, 0, e1,∼) when we roll it back through seven more rounds.

We now have a contradiction if i 6= 1, as the rightmost byte difference of one of the

two intermediate differences is ei,∼ while the leftmost byte difference of the other is

e1,∼.

These impossible differentials apply to any set of sixteen consecutive rounds of

HIGHT.

10.5.2 Attacking Rounds 6 to 30

We can use the 16-round impossible differentials to break 25-round HIGHT. We

attack Rounds 6 to 30 of HIGHT with only the final transformation. We use the

16-round impossible differentials described in the previous section applied to Rounds

180

10.5 Impossible Differential Attack on 25-Round HIGHT

11 to 26. The attack procedure is as follows.

10.5.2.1 Attack Description

1. Choose 213 structures Si, (i = 1, 2, · · · , 213), where a structure Si is defined

to be a set of 247 plaintexts Pi,j with the first two bytes and bit (1) of the

third byte fixed, and the other 47 bit positions taking all the possible values,

(j = 1, 2, · · · , 247). In a chosen-plaintext attack scenario, obtain all the 260

ciphertexts for the 247 plaintexts in each of the 213 structures; let Ci,j be the

ciphertext for plaintext Pi,j . Choose only the ciphertext pairs (Ci,j1 , Ci,j2)

such that Ci,j1 ⊕ Ci,j2 = (0, 0, e1,∼, ?, ?, ?, ?, ?), where 1 ≤ j1 6= j2 ≤ 247.

2. Guess a value for the two key bytes (W1,W4), then compute the subkeys

(KW 8,KS 120), and perform Steps (a)–(h) below.

(a) Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) with (KW 8,

KS 120) to get the corresponding values for bytes (7,8) just before Round

30, and check whether they have a difference (?, 0). Keep only the pairs

that meet this condition.

(b) Guess a value for the two key bytes (W3,W8), then compute the sub-

keys (KW 7,KS 119), and compute the subkey KS 115 with the W4 guessed

above. Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) with

(KW 7,KS 115,KS 119) to get the corresponding values for bytes (5,6) just

before Round 29.1 Check whether they have a difference (?, 0). Keep

only the pairs that meet this condition.

(c) Guess a value for the key byte W2, compute the subkey KW 6, and perform

the following two sub-steps.

i. Guess a value for the least significant bit W7,1 of the key byte W7,

and compute the least significant bit KS 118,1 of the subkey KS 118.

Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) with

(KW 6,KS 118,1) to get the corresponding values for bit (1) of byte

(4) just before Round 30, and check whether they have a non-zero

difference. Keep only the pairs that meet this condition.
1The other required corresponding values have been obtained in the previous steps. The same

statement applies to certain subsequent steps, as well as the attacks in the next two sections,
although we do not make any further explicit statements.

181

10.5 Impossible Differential Attack on 25-Round HIGHT

ii. Guess a value for the most significant seven bits W7,[2,8] of W7, and

compute the subkey KS 118 (together with the W7,1 guessed above).

Partially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) with

(KW 6,KS 118) to get the corresponding values for bytes (3,4) just

before Round 30.

(d) Compute the subkey KS 114 with the W3 guessed above. For every re-

maining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt the corresponding

values for bytes (4,5) just before Round 30 with KS 114 to get the corre-

sponding values for bytes (3,4) just before Round 29, and check whether

they have a difference (e1,∼, e3,∼). Keep only the pairs that meet this

condition.

(e) For l = 1 to 8:

• Guess a value for the lth bit W16,l of the key byte W16, and compute

the l-bit subkey KS 110,[1,l] of the subkey KS 110.

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt

the corresponding values for bytes (4,5) just before Round 29 with

KS 110,[1,l] to get the corresponding values for bits (1, 2, · · · , l) of byte

(4) just before Round 28, and check whether they have a zero differ-

ence. Keep only the pairs that meet this condition.

(f) Guess a value for the key byte W6, compute the subkey KS 117, and com-

pute the subkeys (KW 5,KS 113) with the (W1,W2) guessed above. Par-

tially decrypt every remaining ciphertext pair (Ci,j1 , Ci,j2) with (KW 5,

KS 113,KS 117) to get the corresponding values for bytes (1,2) just before

Round 29, and check whether they have the difference (0, e1,4,6,7,8). Keep

only the pairs that meet this condition.

(g) Guess a value for the least significant bit W15,1 of the key byte W15. For

l = 2 to 8, perform the following two sub-steps.

• Guess a value for the lth bit W15,l of W15, and compute the l-bit

subkey KS 109,[1,l] of the subkey KS 109.

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt

the corresponding values for bytes (2,3) just before Round 29 with

KS 109,[1,l] to get the corresponding values for bits (1, 2, · · · , l) of byte

(2) just before Round 28. If l 6= 8, check whether they have a zero

182

10.5 Impossible Differential Attack on 25-Round HIGHT

difference; if l = 8, check whether they have difference e8. Keep only

the pairs that meet this condition.

(h) Guess a value for the least significant 3 bits W11,[1,3] of the key byte W11.

For l = 4 to 8, perform the following two sub-steps.

• Guess a value for the lth bit W11,l of W11, and compute the l-bit

subkey KS 105,[1,l] of the subkey KS 105.

• For every remaining ciphertext pair (Ci,j1 , Ci,j2), partially decrypt

the corresponding values for bytes (2,3) just before Round 28 with

KS 105,[1,l] to get the corresponding values for bits (1, 2, · · · , l) of byte

(2) just before Round 27, and check whether they have a zero differ-

ence. Keep only the pairs that meet this condition.

3. Compute the subkey KS 24 with the W7 guessed in Step 2, and perform Steps

(a)–(e) below.

(a) Partially encrypt every plaintext pair (Pi,j1 , Pi,j2) corresponding to a re-

maining ciphertext pair (Ci,j1 , Ci,j2) with KS 24 to get the corresponding

values for bytes (1,8) just after Round 6, and check whether they have a

difference (0, ?). Keep only the plaintext pairs that meet this condition.

(b) Compute the subkeys (KS 23,KS 28) with the (W6,W11) guessed in Step

2. Partially encrypt every remaining plaintext pair (Pi,j1 , Pi,j2) with

(KS 23,KS 28) to get the corresponding values for bytes (1,8) just after

Round 7, and check whether they have a difference (0, ?). Keep only the

plaintext pairs that meet this condition.

(c) Guess a value for the two key bytes (W5,W10), compute the subkeys

(KS 22,KS 27), and compute the subkey KS 32 with the W15 guessed in

Step 2. Partially encrypt every remaining plaintext pair (Pi,j1 , Pi,j2) with

(KS 22,KS 27, KS 32) to get the corresponding values for bytes (1,8) just

after Round 8, and check whether they have a difference (0, ?). Keep only

the plaintext pairs that meet this condition.

(d) Guess a value for the two key bytes (W9,W14), compute the subkeys

(KS 26,KS 31), and compute the subkeys (KS 21,KS 36) with the (W2,W4)

guessed in Step 2. Partially encrypt every remaining plaintext pair (Pi,j1 ,

Pi,j2) with (KS 21,KS 26,KS 31,KS 36) to get the corresponding values for

bytes (1,8) just after Round 9, and check whether they have a difference

(0, ?). Keep only the plaintext pairs that meet this condition.

183

10.5 Impossible Differential Attack on 25-Round HIGHT

(e) Guess a value for the key byte W13, compute the subkey KS 30, and com-

pute the subkeys (KS 25,KS 35,KS 40) with the (W1,W6,W16) guessed in

Step 2. Partially encrypt every remaining plaintext pair (Pi,j1 , Pi,j2) with

(KS 25, KS 30,KS 35,KS 40) to get the corresponding values for bytes (1,8)

just after Round 10, and check whether they have a difference (0, e1,∼).

If none of the remaining plaintext pairs meets this condition, record the

guessed value for (W1, · · · ,W11,W13, · · · ,W16), and execute Step 4; oth-

erwise, discard this guess, and try another.

4. For a recorded value for (W1, · · · , W11,W13, · · · ,W16), exhaustively search for

the remaining 8 key bits using three known pairs of plaintexts and ciphertexts.

If a 128-bit key is suggested, output it as the user key of the 25-round HIGHT;

otherwise, go to Step 2.

10.5.2.2 Complexity Analysis

The attack requires 260 chosen plaintexts, which take a time complexity of 260 25-

round HIGHT encryptions.

In Step 1, a structure Si yields
(
47
2

) ≈ 247×2

2 = 293 plaintext pairs (Pi,j1 , Pi,j2)

with difference (0, 0, e1,∼, ?, ?, ?, ?, ?), (i = 1, 2, · · · , 213, 1 ≤ j1 6= j2 ≤ 247), thus

the 213 structures yield a total of 2106 plaintext pairs (Pi,j1 , Pi,j2). There is a 17-

bit filtering condition over the candidate ciphertext pairs, so it follows that about

2106 × 2−17 = 289 ciphertext pairs (Ci,j1 , Ci,j2) remain after Step 1.

In Step 2(a) there is an 8-bit filtering condition over the candidate ciphertext pairs,

so it follows that about 289 × 2−8 = 281 ciphertext pairs (Ci,j1 , Ci,j2) pass Step 2(a)

for every guess of (W1,W4). Step 2(a) has a time complexity of 2×289×216× 1
4× 1

25 ≈
299.36 25-round HIGHT encryptions.

In Step 2(b) there is an 8-bit filtering condition over the candidate ciphertext pairs,

so it follows that about 281 × 2−8 = 273 ciphertext pairs (Ci,j1 , Ci,j2) pass Step 2(b)

for every guess of (W1,W3,W4,W8). Step 2(b) has a time complexity of 2 × 281 ×
232 × 1

4 × 2
25 ≈ 2108.36 25-round HIGHT encryptions.

184

10.5 Impossible Differential Attack on 25-Round HIGHT

In Step 2(c) there is a 1-bit filtering condition over the candidate ciphertext pairs

(in Step 2(c)-i), so it follows that about 273×2−1 = 272 ciphertext pairs (Ci,j1 , Ci,j2)

pass Step 2(c) for every guess of (W1,W2,W3,W4,W7, W8). Step 2(c) has a time

complexity of 2 × 273 × 241 × 1
4 × 1

25 + 2 × 272 × 248 × 1
4 × 1

25 ≈ 2114.36 25-round

HIGHT encryptions.

In Step 2(d) there is a 3-bit filtering condition over the candidate ciphertext pairs,

so it follows that about 272 × 2−3 = 269 ciphertext pairs (Ci,j1 , Ci,j2) pass Step 2(d)

for every guess of (W1,W2,W3,W4, W7,W8). Step 2(d) has a time complexity of

2× 272 × 248 × 1
4 × 1

25 ≈ 2114.36 25-round HIGHT encryptions.

In Step 2(e) there is a 1-bit filtering condition over the candidate ciphertext pairs in

every iteration, so it follows that about 269×2−8 = 261 ciphertext pairs (Ci,j1 , Ci,j2)

pass Step 2(e) for every guess of (W1,W2,W3,W4,W7,W8, W16). Step 2(e) has a

time complexity of
∑7

l=0(2 × 269−l × 248+l+1 × 1
4 × 1

25) ≈ 2115.36 25-round HIGHT

encryptions.

In Step 2(f) there is a 7-bit filtering condition over the candidate ciphertext pairs, so

it follows that about 261× 2−7 = 254 ciphertext pairs (Ci,j1 , Ci,j2) pass Step 2(f) for

every guess of (W1,W2,W3,W4,W6,W7,W8,W16). Step 2(f) has a time complexity

of 2× 261 × 264 × 1
4 × 2

25 ≈ 2120.36 25-round HIGHT encryptions.

In Step 2(g) there is a 1-bit filtering condition over the candidate ciphertext pairs in

every iteration, so it follows that about 254×2−7 = 247 ciphertext pairs (Ci,j1 , Ci,j2)

pass Step 2(g) for every guess of (W1,W2, W3,W4,W6,W7,W8,W15,W16). Step 2(g)

has a time complexity of
∑6

l=0(2 × 254−l × 264+2+l × 1
4 × 1

25) ≈ 2117.16 25-round

HIGHT encryptions.

In Step 2(h) there is a 1-bit filtering condition over the candidate ciphertext pairs in

every iteration, so it follows that about 247×2−5 = 242 ciphertext pairs (Ci,j1 , Ci,j2)

pass Step 2(h) for every guess of (W1,W2,W3,W4, W6,W7,W8,W11,W15,W16). Step

2(h) has a time complexity of
∑4

l=0(2× 247−l× 272+4+l× 1
4 × 1

25) ≈ 2119.68 25-round

HIGHT encryptions.

In Step 3(a) there is an 8-bit filtering condition over the candidate plaintext pairs,

185

10.5 Impossible Differential Attack on 25-Round HIGHT

so it follows that about 242×2−8 = 234 plaintext pairs (Pi,j1 , Pi,j2) pass Step 3(a) for

every guess of (W1,W2,W3,W4,W6,W7,W8,W11,W15,W16). Step 3(a) has a time

complexity of 2× 242 × 280 × 1
4 × 1

25 ≈ 2116.36 25-round HIGHT encryptions.

In Step 3(b) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 234×2−8 = 226 plaintext pairs (Pi,j1 , Pi,j2) pass Step 3(b) for

every guess of (W1,W2, W3,W4,W6,W7,W8,W11,W15,W16). Step 3(b) has a time

complexity of 2× 234 × 280 × 1
4 × 2

25 ≈ 2109.36 25-round HIGHT encryptions.

In Step 3(c) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 226×2−8 = 218 plaintext pairs (Pi,j1 , Pi,j2) pass Step 3(c) for

every guess of (W1, · · · ,W8, W10,W11,W15,W16). Step 3(c) has a time complexity

of 2× 226 × 296 × 1
4 × 3

25 ≈ 2117.94 25-round HIGHT encryptions.

In Step 3(d) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 218 × 2−8 = 210 plaintext pairs (Pi,j1 , Pi,j2) pass Step 3(d)

for every guess of (W1, · · · ,W11,W14, W15,W16). Step 3(d) has a time complexity

of 2× 218 × 2112 × 1
4 × 4

25 ≈ 2126.36 25-round HIGHT encryptions.

In Step 3(e) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 2120 × (1 − 2−8)2
10 ≈ 2120 × e−22 ≈ 2114.24 guesses for

(W1, · · · ,W11, W13, · · · ,W16) are recorded in Step 3(e), where e(= 2.71828 . . .) is

the base of the natural logarithm. Thus, the expected number of wrong keys in Step

4 is about 2114.24× 28× 2−192 = 2−73.76. Therefore, it is very likely that we can find

the correct key guess. Step 3(e) has a time complexity of about 2× 2120 × [1 + (1−
2−8) + · · · + (1 − 2−8)2

10
] × 1

4 × 4
25 ≈ 2124.36 25-round HIGHT encryptions. Step 4

has a time complexity of about 2122.24 25-round HIGHT encryptions.

Therefore, the attack has a total time complexity of approximately 2126.78 25-round

HIGHT encryptions.

186

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

In this section, we describe certain 18-round related-key rectangle distinguishers

with probability 2−92.4 of HIGHT, such that we can mount a related-key rectangle

attack on 26-round HIGHT.

10.6.1 18-Round Related-Key Rectangle Distinguishers with Probability
2−92.4

Let E0 denote Rounds 3 to 12 of HIGHT, and E1 denote Rounds 13 to 20 of HIGHT.

The 18-round related-key rectangle distinguisher involves four cipher keys (TYPE

1 as described in Section 2.2.9), which we assume are KA,KB,KC ,KD. The first

related-key differential making up this 18-round distinguisher is the related-key dif-

ferential ∆α → ∆β with probability 2−12 for E0: (0, 0, 0, 0, 0, e8, e1,2,7, e2,4,6) →
(0, 0, 0, 0, e8, e1,7,8, e2,6,7, 0), where the key difference KA ⊕ KB = KC ⊕ KD =

(0, 0, e8, 0, · · · , 0). The second related-key differential making up this 18-round

distinguisher is the related-key differential ∆γ → ∆δ with probability 2−9 for

E1: (0, e8, e1,7,8, e3,6,7, 0, 0, 0, 0) → (e1,2,7, 0, 0, 0, 0, 0, 0, e8), where the key difference

KA ⊕ KC = KB ⊕ KD = (0, · · · , 0, e8, 0). See 10.3 for details of two related-key

differentials.

We can compute a square sum of at least 6× (2−12)2 +20× (2−13)2 +20× (2−14)2 +

72 × (2−15)2 ≈ 2−19.98 for the probabilities of all the possible 10-round related-key

differentials ∆α → ∆β′ for E0, as there are at least 6 possible β′ with probability

2−12, at least 20 possible β′ with probability 2−13, at least 20 possible β′ with

probability 2−14, and at least 72 possible β′ with probability 2−15. We can also

compute a square sum of at least 5× (2−9)2 + 18× (2−10)2 + 40× (2−11)2 ≈ 2−14.42

for the probabilities of all the possible 8-round related-key differentials ∆γ′ → ∆δ

for E1, as there are at least 5 possible γ′ with probability 2−9, at least 18 possible

γ′ with probability 2−10, and at least 40 possible γ′ with probability 2−11.

Therefore, this 18-round related-key rectangle distinguisher has a probability of at

least 2−19.98 × 2−14.42 × 2−64 = 2−98.4 for the correct key, while it has a proba-

bility of (2−64)2 = 2−128 for a wrong key. We can further improve it by counting

187

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

Table 10.3: The two related-key differentials in the 18-round related-key rectangle
distinguisher
Round(i) ∆Xi−1,1 ∆Xi−1,2 ∆Xi−1,3 ∆Xi−1,4 ∆Xi−1,5 ∆Xi−1,6 ∆Xi−1,7 ∆Xi−1,8 subkey difference Prob.

3 0 0 0 0 0 e8 e1,2,7 e2,4,6 (0, 0, 0, 0) 2−3

4 0 0 0 0 0 0 e8 e1,2,7 (0, 0, 0, 0) 2−3

5 0 0 0 0 0 0 0 e8 (0, 0, 0, e8) 1
6 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
7 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
8 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
9 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
10 0 0 0 0 0 0 0 0 (e8, 0, 0, 0) 1
11 0 0 e8 0 0 0 0 0 (0, 0, 0, 0) 2−3

12 0 0 0 e8 e1,7,8 0 0 0 (0, 0, 0, 0) 2−3

output 0 0 0 0 e8 e1,7,8 e2,6,7 0 / /

13 0 e8 e1,7,8 e3,6,7 0 0 0 0 (0, 0, 0, 0) 2−3

14 0 0 e8 e1,7,8 0 0 0 0 (0, 0, 0, 0) 2−3

15 0 0 0 e8 0 0 0 0 (0, e8, 0, 0) 1
16 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
17 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
18 0 0 0 0 0 0 0 0 (0, 0, 0, 0) 1
19 0 0 0 0 0 0 0 0 (0, 0, e8, 0) 1
20 0 0 0 0 0 0 e8 0 (0, 0, 0, 0) 2−3

output e1,2,7 0 0 0 0 0 0 e8 / /

many possible 8-round related-key differentials ∆γ′ → ∆δ′ for every related-key

differential ∆γ′ → ∆δ for E1. We count those that only have the output differ-

ence (∆X20,0, 0, 0, 0, 0, 0, 0, e8) different from the 8-round differential ∆γ′ → ∆δ;

an analysis of this one-round differentials reveals that there are 4 possible ∆X20,0

(i.e. e1,2,7, e1,7, e1,7,8, e1,2,7,8) with probability 2−3, 4 possible ∆X20,0 with proba-

bility 2−4, 4 possible ∆X20,0 with probability 2−5, 4 possible ∆X20,0 with prob-

ability 2−6, and 8 possible ∆X20,0 with probability 2−7. Actually, these are all

the 24 possible output differences of the last one-round differentials; we denote

them by the set Ω. As a result, the distinguisher now has a probability of at least

2−19.98×(4×2−7.21+4×2−8.21+4×2−9.21+4×2−10.21+8×2−11.21)2×2−64 = 2−92.4

for the correct key, while it has a probability of (24× 2−64)2 ≈ 2−118.83 for a wrong

key.

We note that this distinguisher can be extended to a distinguisher that operates

on more rounds, by appending one or more rounds at the ends; however, we will

conduct a key recovery on these rounds such that a less data complexity is required.

Similar related-key rectangle distinguishers exist for some other series of 18 rounds.

188

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

10.6.2 Attacking Rounds 1 to 26

The output difference (x, 0, 0, 0, 0, 0, 0, e8) of this distinguisher will propagate to a

difference (e8, x, ?, 0, 0, 0, 0, 0) just after Round 21, where x ∈ Ω, which will then

propagate to a difference (0, e8, e1,∼, ?, ?, 0, 0, 0) just after Round 22, to a difference

(e8, 0, e8, e1,∼, ?, ?, ?, 0) just after Round 23 (due to the subkey difference in Round

23), and a difference (?, e8, e3,∼, e8, e1,∼, ?, ?, ?) just after Round 24. This property

allows us to use the early abort technique described in Section 4.4 to break Rounds

21 and 24.

The above analysis enables us to give the following related-key rectangle attack

on the first 26 rounds of HIGHT with the final transformation only. Note that

the same 64 user key bits are used in Rounds 1, 2, 25 and 26 as well as the final

transformation. To get the difference (0, 0, 0, 0, 0, e8, e1,2,7, e2,4,6) just before Round

3, the input difference to Round 1 must have the form (0, 0, 0, e8, e1,∼, ?, e1,∼, ?),

with 31 bits definitely being zero. We conduct the early abort in an optimized

order, according to the output differences of the distinguishier.

10.6.2.1 Attack Description

1. Choose 216.2 structures Si, (i = 1, 2, · · · , 216.2), where a structure Si is defined

to be a set of 233 plaintexts Pi,l with the first three bytes and bits (1,2,· · · ,7) of

the fourth byte fixed, and the remaining 33 bit positions taking all the possible

values, (l = 1, 2, · · · , 233). In a chosen-plaintext attack scenario, obtain all the

ciphertexts for the 233 plaintexts in each of the 216.2 structures encrypted

with KA,KB,KC ,KD, where KA ⊕KB = KC ⊕KD = (0, 0, e8, 0, · · · , 0) and

KA ⊕KC = KB ⊕KD = (0, · · · , 0, e8, 0). We denote by Ci,l, C
∗
i,l, C

′
i,l, C

′∗
i,l the

ciphertexts for plaintext Pi,l encrypted respectively with KA,KB,KC ,KD.

2. Guess a value for the 8 key bytes (W1, · · · ,W8), compute the subkeys (KS 1, · · · ,

KS 8), and perform Steps (a) and (b) below.

(a) Partially encrypt every plaintext Pi,l through Rounds 1 and 2 with (KS 1,

· · · ,KS 8) to get the corresponding value just after Round 2; we denote it

by xi,l. Then, partially decrypt xi,l ⊕ (0, 0, 0, 0, 0, e8, e1,2,7, e2,4,6) through

189

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

Rounds 1 and 2 with (KS 1,KS 2,KS 3⊕e8,KS 4, · · · ,KS 8) to get its plain-

text; we denote it by P̃i,l. Find P̃i,l in Si. We denote by C̃i,l, C̃
∗
i,l, C̃ ′

i,l and

C̃ ′∗
i,l the corresponding ciphertexts for P̃i,l encrypted under KA, KB,KC

and KD, respectively.

(b) Compute the subkeys (KS 97, · · · ,KS 104,KW 5, · · · ,KW 8) with the (W1,

· · · ,W8) guessed above. Then, partially decrypt all the Ci,l and C
′
i,l

with these subkeys to get the corresponding values just before Round

25; we denote them by Ti,l and T
′
i,l, respectively. Partially decrypt all

the C̃∗
i,l and C̃∗′

i,l with the related subkeys (KS 97 ⊕ e8,KS 98,KS 99, · · · ,

KS 104,KW 5,KW 6,KW 7 ⊕ e8,KW 8) to get the corresponding values

just before Round 25; we denote them by T̃ ∗i,l and T̃ ∗′i,l , respectively.

Store (Ti,l, T
′
i,l, T̃

∗
i,l, T̃

∗′
i,l) in a hash table. Finally, choose only the quartets

(Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ′∗i2,l2
) such that both Ti1,l1 ⊕ T

′
i2,l2

and T̃ ∗i1,l1
⊕ T̃ ′∗i2,l2

have the form (?, e8, e3,∼, e8, e1,∼, ?, ?, ?), where 1 ≤ i1 ≤ i2 ≤ 216.2 and

1 ≤ l1, l2 ≤ 233. If six or more quartets (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ∗′i2,l2
) pass this

test, execute Step 3 with the quartets meeting this condition; otherwise,

repeat Step 2 with another guess.

3. Perform Steps (a) and (b) below for j = 1 to 8:

(a) Guess a value for the jth bit W11,j of the key byte W11, and compute the

j-bit subkey KS 96,[1,j] of the subkey KS 96.

(b) For every remaining quartet (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ∗′i2,l2
), partially decrypt

bytes (1,8) of Ti1,l1 and T
′
i2,l2

with KS 96,[1,j] to get the corresponding

values for bits (1, 2, · · · , j) of byte (8) just before Round 24, and check

whether they have a zero difference. If not, repeat this step with another

quartet; otherwise, partially decrypt bytes (1,8) of T̃ ∗i1,l1
and T̃ ∗′i2,l2

with

KS 96,[1,j] to get the corresponding values for bits (1, 2, · · · , j) of byte (8)

just before Round 24, and check whether they have a zero difference as

well. If six or more quartets pass this condition, execute next iteration

(Step 4 when j = 8) with the quartets meeting this condition; otherwise,

repeat Step 3(a) with another guess.

4. Guess a value for the key byte W10, and compute the subkey KS 95. Perform

Steps (a) and (b) below for j = 1 to 8.

(a) Guess a value for the jth bit W14,j of the key byte W14, and compute the

190

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

j-bit subkey KS 91,[1,j] of the subkey KS 91.

(b) For every remaining quartet (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ∗′i2,l2
), partially decrypt

bytes (6,7) of Ti1,l1 and T
′
i2,l2

with (KS 95,KS 91,[1,j]) to get the corre-

sponding values for bits (1, 2, · · · , j) of byte (6) just before Round 23,

and check whether they have a zero difference. If not, repeat this step

with another quartet; otherwise, partially decrypt bytes (6,7) of T̃ ∗i1,l1

and T̃ ∗′i2,l2
with (KS 95,KS 91,[1,j]) to get the corresponding values for bits

(1, 2, · · · , j) of byte (6) just before Round 23, and check whether they

have a zero difference as well. If six or more quartets pass this condition,

execute next iteration (Step 5 when j = 8) with the quartets meeting

this condition; otherwise, repeat Step 4(a) with another guess, (if all the

guesses for W14,j are tested, repeat Step 4 with another guess for W10).

5. Guess a value for the least significant 3 bits W16,[1,3] of the key byte W16.

Perform Steps (a) and (b) below for j = 4 to 8.

(a) Guess a value for the jth bit W16,j of W16, and compute the j-bit subkey

KS 93,[1,j] of the subkey KS 93.

(b) For every remaining quartet (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ∗′i2,l2
), partially decrypt

bytes (2,3) of Ti1,l1 and T
′
i2,l2

with KS 93,[1,j] to get the corresponding

values for bits (1, 2, · · · , j) of byte (2) just before Round 24, and check

whether they have a zero difference. If not, repeat this step with another

quartet; otherwise, partially decrypt bytes (2,3) of T̃ ∗i1,l1
and T̃ ∗′i2,l2

with

KS 93,[1,j] to get the corresponding values for bits (1, 2, · · · , j) of byte (2)

just before Round 24, and check whether they have a zero difference as

well. If six or more quartets pass this condition, execute next iteration

(Step 6 when j = 8) with the quartets meeting this condition; otherwise,

repeat Step 5(a) with another guess.

6. Guess a value for the key bytes (W9,W13), compute the subkeys (KS 90,KS 94),

and compute the subkey KS 86 with the W1 guessed in Step 2. For every re-

maining quartet (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ∗′i2,l2
), partially decrypt bytes (4,5) of Ti1,l1

and T
′
i2,l2

with (KS 94,KS 90,KS 86) to get the corresponding values for bytes

(3,4) just before Round 22, and check whether they have a difference (?, 0). If

not, repeat this step with another quartet; otherwise, partially decrypt bytes

(4,5) of T̃ ∗i1,l1
and T̃ ∗′i2,l2

with (KS 94,KS 90,KS 86) to get the corresponding val-

191

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

ues for bytes (3,4) just before Round 22, and check whether they have a dif-

ference (?, 0) as well. If six or more quartets pass this condition, execute Step

7 with the quartets meeting this condition; otherwise, repeat this step with

another guess.

Now, for every remaining quartet (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ∗′i2,l2
), we obtain the cor-

responding values just before Round 24 under the guess for (W1, · · · ,W11, W13,

W14, W16); we denote them by (Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗′
i2,l2

), respectively.

7. Guess a value for the key byte W12, compute the subkey KS 89, and com-

pute the subkey KS 85 with the W8 guessed in Step 2. For every quartet

(Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗′
i2,l2

), partially decrypt bytes (2,3) of Qi1,l1 and Q
′
i2,l2

with (KS 89,KS 85) to get the corresponding values for bytes (1,2) just be-

fore Round 22, and check whether they have a difference belonging to the

set {(e8, x)|x ∈ Ω}. If not, repeat this step with another quartet; otherwise,

partially decrypt bytes (2,3) of Q̃∗
i1,l1

and Q̃∗′
i2,l2

with (KS 89,KS 85) to get the

corresponding values for bytes (1,2) just before Round 22, and check whether

they have a difference belonging to the set {(e8, x)|x ∈ Ω}. If six or more quar-

tets (Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗′
i2,l2

) pass this test, execute Step 8 with the quartets

meeting this condition; otherwise, repeat this step with another guess for W12.

8. Compute the subkey KS 81 with the W4 guessed in Step 2. For every remaining

quartet (Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗′
i2,l2

), since we already obtain the corresponding

values for bytes (1,2) just before Round 22, we can partially decrypt them

with KS 81 to check whether the corresponding values for byte (2) just before

Round 21 for (Qi1,l1 , Q
′
i2,l2

) have a zero difference, and check whether the

corresponding values for byte (2) just before Round 21 for (Q̃∗
i1,l1

, Q̃∗′
i2,l2

) have

a zero difference as well. If six or more quartets (Qi1,l1 , Q̃
∗
i1,l1

, Q
′
i2,l2

, Q̃∗′
i2,l2

)

pass this test, record the guessed value for (W1, · · · ,W14,W16), and go to Step

9; otherwise, repeat Step 7 with another guess for W12.

9. For a recorded value for (W1, · · · ,W14,W16), exhaustively search for the re-

maining 8 key bits using a known plaintext/ciphertext pair. If a 128-bit key

is suggested, output it as the user key of the 26-round HIGHT; otherwise, go

to Step 2 (If all the guesses are tested during any of Steps 3 to 8, repeat its

previous steps with another guess).

192

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

10.6.2.2 Complexity Analysis

The attack requires 251.2 (related-key) chosen plaintexts, which take a time com-

plexity of 251.2 26-round HIGHT encryptions.

In Step 2(a), about 216.2 × 233

2 = 248.2 plaintext pairs are yielded for every guess of

(W1, · · · ,W8), which produce the difference (0, 0, 0, 0, 0, e8, e1,2,7, e2,4,6) just before

Round 3 under the key guess, thus about
(
248.2

2

) ≈ 248.2×2

2 = 295.4 candidate quartets

are constructed for every guess of (W1, · · · ,W8). To produce the output difference

(x, 0, 0, 0, 0, 0, 0, e8) just before Round 21, where x ∈ Ω, the two pairs (Ti1,l1 , T
′
i2,l2

)

and (T̃ ∗i1,l1
, T̃ ′∗i2,l2

) in a candidate quartet (Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ′∗i2,l2
) must have a dif-

ference of the form (?, e8, e3,∼, e8, e1,∼, ?, ?, ?) just before Round 25, so a candidate

quartet that does not meet this filtering condition is an incorrect quartet. Step 2(a)

has about 2 × 249.2 × 264 × 1
2 × 2

26 ≈ 2109.5 26-round HIGHT encryptions, where 1
2

means the average fraction of the guessed keys that are tested in the step.

In Step 2(b), either of the pairs (Ti1,l1 , T
′
i2,l2

) and (T̃ ∗i1,l1
, T̃ ′∗i2,l2

) meets the condition

with a probability of 2−20, thus about 295.4 × (2−20)2 = 255.4 candidate quartets

(Ti1,l1 , T̃
∗
i1,l1

, T
′
i2,l2

, T̃ ′∗i2,l2
) remain after 2(b) for every guess of (W1, · · · ,W8). The

probability that 6 or more quartets pass the condition is
∑295.4

i=6 [
(
295.4

i

) · (2−40)i · (1−
2−40)2

95.4−i] ≈ 1, so it is expected that almost all the 264 guesses for (W1, · · · ,W8)

will pass Step 2(b). The time complexity of Step 2(b) is dominated by the partial

decryptions, which is about 4 × 249.2 × 264 × 1
2 × 2

26 ≈ 2110.5 26-round HIGHT

encryptions.

In Step 3(b), the probability that a quartet meets either of the filtering conditions

in every iteration is 2−1, so it follows that all the 272 guesses for (W1, · · · , W8,W11)

will past Step 3, and for a wrong guess it is expected about 255.4 × 2−1×2×8 = 239.4

quartets remain after Step 3. Step 3 has a time complexity of about
∑7

l=0(2 ×
255.4−2×l × 265+l × 1

2 × 1
4 × 1

26 + 2 × 255.4−(2×l+1) × 265+l × 1
2 × 1

4 × 1
26) ≈ 2115.28

26-round HIGHT encryptions.

In Step 4(b), the probability that a quartet meets either of the filtering conditions

in every iteration is 2−1, so it is expected that all the 288 guesses for (W1, · · · ,W8,

W10,W11,W14) will past this step, and for a wrong guess about 239.4 × 2−1×2×8 =

193

10.6 Related-Key Rectangle Attack on 26-Round HIGHT

223.4 quartets remain after Step 4. Step 4 has a time complexity of about
∑7

l=0(2×
239.4−2×l × 281+l × 1

2 × 1
4 × 2

26 + 2 × 239.4−(2×l+1) × 281+l × 1
2 × 1

4 × 2
26) ≈ 2116.28

26-round HIGHT encryptions.

In Step 5(b), the probability that a quartet meets either of the filtering conditions in

every iteration is 2−1, so it is expected that all the 296 guesses for (W1, · · · ,W8, W10,

W11,W14,W16) will past this step, and for a wrong guess about 223.4 × 2−1×2×5 =

213.4 quartets remain after Step 5. Step 5 has a time complexity of about
∑4

l=0(2×
223.4−2×l × 292+l × 1

2 × 1
4 × 1

26 + 2 × 223.4−(2×l+1) × 292+l × 1
2 × 1

4 × 1
26) ≈ 2110.24

26-round HIGHT encryptions.

In Step 6, the probability that a quartet meets the filtering conditions is 2−8×2 =

2−16, so for a wrong guess about 213.4 × 2−16 = 2−2.6 quartets remain after Step

6, and the probability that 6 or more quartets pass the tests for a wrong guess is

approximately
∑213.4

i=6 [
(
213.4

i

) · (2−16)i · (1− 2−16)2
13.4−i] ≈ 2−25.09, thus it is expected

that about 2112×2−25.09 = 286.91 guesses for (W1, · · · ,W11, W13,W14,W16) pass Step

6. Step 6 has a time complexity of about 2× 213.4 × 2112 × 1
2 × 1

4 × 3
26 + 2× 25.4 ×

2112 × 1
2 × 1

4 × 3
26 ≈ 2120.28 26-round HIGHT encryptions.

In Step 7, the probability that a quartet meets the filtering conditions is (24
27)2 =

2−4.83, and the probability that 6 or more quartets pass the tests for a wrong guess is

approximately (2−4.83)6 ≈ 2−28.98, so it is expected about 286.91+8 × 2−28.98 = 265.93

guesses for (W1, · · · , W14,W16) pass Step 7. Step 7 has a time complexity of about

2 × 6 × 294.91 × 1
2 × 1

4 × 2
26 + 2 × 6 × 292.5 × 1

2 × 1
4 × 2

26 ≈ 292.05 26-round HIGHT

encryptions.

In Step 8, the probability that 6 or more quartets pass the tests for a wrong guess

is approximately (2−8×2)6 = 2−96, thus it is expected about 265.93 × 2−96 = 2−30.07

guesses for (W1, · · · ,W14,W16) pass Step 8. Therefore, it is expected that we can

find the correct user key with 28 trials in Step 9. Step 8 has a time complexity of

about 4× 6× 265.93 × 1
2 × 1

4 × 1
26 ≈ 262.81 26-round HIGHT encryptions.

Therefore, the attack has a total time complexity of about 2120.41 26-round HIGHT

encryptions.

194

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT

In Step 8, it is expected about 295.4×2−92.4 = 8 quartets pass the filtering condition

for the correct key, and the probability that 6 or more quartets pass the test for the

correct key guess is approximately
∑295.4

i=6 [
(
295.4

i

) · (2−92.4)i · (1− 2−92.4)2
95.4−i] ≈ 0.8.

Therefore, the related-key rectangle attack can break the 26-round HIGHT with a

success probability of 80%.

10.7 Related-Key Impossible Differential Attack on 28-Round
HIGHT

In this section, we describe certain 19-round related-key impossible differentials of

HIGHT, which enable us to conduct a related-key impossible differential attack on

28-round HIGHT.

10.7.1 19-Round Related-Key Impossible Differentials

We describe certain 19-round related-key impossible differentials: (0, 0, 0, 0, 0, 0, 0, e8)

9 (e1,∼, 0, 0, 0, 0, 0, 0, 0), where the key difference (∆W1, ∆W2, · · · ,∆W16) is (0, · · · ,

0, e8, 0, 0, 0, 0, 0), which start from Round 7 and end at Round 25.

They are also built in a miss-in-the-middle manner: a 12-round related-key dif-

ferential with probability 1 is concatenated with a 7-round related-key differential

with probability 1, where the second byte of the output difference of the 12-round

related-key differential is e1,∼, and the second byte of the difference of the 7-round

related-key differential is e1,∼, which contradict with each other. See 10.4 for more

details of the two related-key differentials.

Due to the key difference, the input difference (0, 0, 0, 0, 0, 0, 0, e8) to Round 7 will

be canceled to zero by the subkey difference in Round 7. The zero difference will be

kept until the input of Round 12, for the subkey differences in Rounds 8 to 11 are all

zero. Since the subkey difference (∆KS 45, ∆KS 46,∆KS 47, ∆KS 48) in Round 12 is

(e8, 0, 0, 0), the input difference to Round 13 is (0, 0, e8, 0, 0, 0, 0, 0), which propagates

to a difference (0, 0, 0, e8, e1,∼, 0, 0, 0) just after Round 13. Then, the difference

(0, 0, 0, e8, e1,∼, 0, 0, 0) propagates to a difference (?, 0, 0, 0, 0, e8, e1,∼, ?) just before

195

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT

Table 10.4: The two related-key differentials in the 19-round related-key impossible
differential

Round(i) ∆Xi−1,1 ∆Xi−1,2 ∆Xi−1,3 ∆Xi−1,4 ∆Xi−1,5 ∆Xi−1,6 ∆Xi−1,7 ∆Xi−1,8 subkey difference

7 0 0 0 0 0 0 0 e8 (0, 0, 0, e8)
8 0 0 0 0 0 0 0 0 (0, 0, 0, 0)

..

.
..
.

..

.
11 0 0 0 0 0 0 0 0 (0, 0, 0, 0)
12 0 0 0 0 0 0 0 0 (e8, 0, 0, 0)
13 0 0 e8 0 0 0 0 0 (0, 0, 0, 0)
14 0 0 0 e8 e1,∼ 0 0 0 (0, 0, 0, 0)
15 0 0 0 0 e8 e1,∼ ? 0 (0, 0, 0, 0)
16 ? 0 0 0 0 e8 e1,∼ ? (0, e8, 0, 0)
17 ? ? ? 0 e8 0 e8 e1,∼ (0, 0, 0, 0)
18 e1,∼ ? ? ? ? e8 e3,∼ e8 (0, 0, 0, 0)

output ? e1,∼ ? ? ? ? ? e3,∼ (0, 0, 0, 0)

19 0 e1,∼ ? ? ? ? ? ? (0, 0, 0, 0)
20 0 0 e1,∼ ? ? ? ? ? (0, 0, e8, 0)
21 0 0 0 e1,∼ ? ? ? ? (0, 0, 0, 0)
22 0 0 0 0 e1,∼ ? ? ? (0, 0, 0, 0)
23 0 0 0 0 0 e1,∼ ? ? (0, 0, 0, 0)
24 0 0 0 0 0 0 e1,∼ ? (0, 0, 0, e8)
25 0 0 0 0 0 0 0 e1,∼ (0, 0, 0, 0)

output e1,∼ 0 0 0 0 0 0 0 (0, 0, 0, 0)

Round 16. Since the subkey difference (∆KS 61, ∆KS 62, ∆KS 63,∆KS 64) in Round

16 is (0, e8, 0, 0), the output difference of Round 16 is (?, ?, ?, 0, e8, 0, e8, e1,∼), which

propagates to a difference (e1,∼, ?, ?, ?, ?, e8, e3,∼, e8) just after Round 17. Finally,

we can learn that the output difference of Round 18 has the form (?, e1,∼, ?, ?, ?,

?, ?, e3,∼).

On the other hand, when we roll back the output difference (e1,∼, 0, 0, 0, 0, 0, 0, 0) of

Round 25 through seven rounds of HIGHT in the reverse direction, we will definitely

get an input difference (0, e1,∼, ?, ?, ?, ?, ?, ?) to Round 19.

Now, a contradiction occurs between the intermediate differences of these two differ-

entials, because the second byte of the output difference of the 12-round related-key

differential is e1,∼, while the second byte of the difference of the 7-round related-key

differential is e1,∼. Therefore, these 19-round related-key differentials are impossible.

196

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT

10.7.2 Attack Rounds 2 to 29

The 19-round related-key impossible differentials can be used to break the 28 rounds

from Rounds 2 to 29 of HIGHT with only the final transformation, similar to that

given in Section 10.5.2. The main difference between them lies in that here we

compute the related-key difference between a pair of data. The attack procedure is

as follows.

10.7.2.1 Attack Description

1. Choose 219 structures Si, (i = 1, 2, · · · , 219), where a structure is defined to

be a set of 240 plaintexts Pi,j with the first two bytes, bits (1,2,· · · ,7) of the

third byte and bit (1) of the fourth byte fixed, and the other 40 bit positions

taking all the possible values, (j = 1, 2, · · · , 240). In a chosen-plaintext attack

scenario, obtain all the ciphertexts of the 240 plaintexts in each of the 219 struc-

tures encrypted with KA and KB, where KA⊕KB = (0, · · · , 0, e8, 0, 0, 0, 0, 0);

we denote by Ci,j and C̃i,j for the ciphertexts for Pi,j encrypted respectively

with KA and KB. Choose only the ciphertext pairs (Ci,j1 , C̃i,j2) with difference

(0, 0, 0, e1,∼, ?, ?, ?, ?), where 1 ≤ j1 6= j2 ≤ 240.

2. Guess a value for the key bytes (W4,W5), compute the subkeys (KW 8,KS 116),

and perform Steps (a)–(c) below.

(a) Partially decrypt every remaining ciphertext pair (Ci,j1 , C̃i,j2) with (KW 8,

KS 116) to get the corresponding values for bytes (7,8) just before Round

29, and check whether they have a difference (?, 0). Keep only the pairs

that meet this condition.

(b) Guess a value for the two key bytes (W3,W9), compute the subkeys

(KW 7,KS 111), and compute the subkey KS 115 with the W4 guessed

above. Partially decrypt every remaining ciphertext pair (Ci,j1 , C̃i,j2) with

(KW 7,KS 111,KS 115) to get the corresponding values for bytes (5,6) just

before Round 28, and check whether they have a difference (?, 0). Keep

only the pairs that meet this condition.

(c) Guess a value for the three key bytes (W2, W12,W16), compute the sub-

keys (KW 6, KS 106,KS 110), and compute the subkey KS 114 with the W3

197

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT

guessed above. Partially decrypt every remaining ciphertext pair (Ci,j1 ,

C̃i,j2) with (KW 6,KS 106,KS 110,KS 114) to get the corresponding values

for bytes (3,4) just before Round 27, and check whether they have a

difference (?, 0). Keep only the pairs that meet this condition.

3. Perform Steps (a)–(c) below for a plaintext pair (Pi,j1 , P̃i,j2) corresponding to

a remaining ciphertext pair (Ci,j1 , C̃i,j2).

(a) Guess a value for the key byte W8, and compute the subkey KS 8. Par-

tially encrypt every plaintext pair (Pi,j1 , P̃i,j2) with KS 8 to get the cor-

responding values for bytes (1,8) just after Round 2, and check whether

they have a difference (0, ?). Keep only the pairs that meet this condition.

(b) Guess a value for the key byte W7, compute the subkey KS 7, and com-

pute the subkey KS 12 with the W12 guessed above. Partially encrypt

every remaining plaintext pair (Pi,j1 , P̃i,j2) with (KS 7,KS 12) to get the

corresponding values for bytes (1,8) just after Round 3, and check whether

they have a difference (0, ?). Keep only the pairs that meet this condition.

(c) Guess a value for the two key bytes (W6,W11), compute the subkeys (KS 6,

KS 11), and compute the subkey KS 16 with the W16 guessed above. For

every remaining pair plaintext (Pi,j1 , P̃i,j2), partially encrypt Pi,j1 with

(KS 6,KS 11,KS 16) to get the corresponding value for bytes (1,8) just

after Round 4, and partially decrypt P̃i,j2 with (KS 6,KS 11 ⊕ e8,KS 16)

to get the corresponding value for bytes (1,8) just after Round 4. Check

whether they have a difference (0, ?). Keep only the pairs that meet this

condition.

4. Guess a value for the key bytes (W1,W15), compute the subkeys (KW 5,KS 109),

and compute the subkeys (KS 101,KS 105, KS 113) with the (W2, W7,W11) guessed

above. For every ciphertext pair (Ci,j1 , C̃i,j2) corresponding to a remaining

plaintext pair (Pi,j1 , P̃i,j2), partially decrypt Ci,j1 with (KW 5,KS 101,KS 105,

KS 109,KS 113) to get the corresponding value for bytes (1,2) just before Round

26, and partially decrypt C̃i,j2 with (KW 5,KS 101,KS 105 ⊕ e8,KS 109, KS 113)

to get the corresponding value for bytes (1,2) just before Round 26. Check

whether they have a difference (e1,∼, 0). Keep only the pairs that meet this

condition.

5. Perform Steps (a) and (b) below for a plaintext pair (Pi,j1 , P̃i,j2) corresponding

198

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT

to a remaining ciphertext pair (Ci,j1 , C̃i,j2).

(a) Guess a value for the key byte W10, compute the subkey KS 10, and

compute the subkeys (KS 5,KS 15,KS 20) with the (W3,W5, W15) guessed

above. Partially encrypt every remaining plaintext pair (Pi,j1 , P̃i,j2) with

(KS 5,KS 10, KS 15,KS 20) to get the corresponding values for bytes (1,8)

just after Round 5, and check whether they have a difference (0, e1,∼).

Keep only the pairs that meet this condition.

(b) Guess a value for the key byte W14, compute the subkey KS 14, and

compute the subkeys (KS 9,KS 19,KS 24) with the (W2,W7,W9) guessed

above. For every remaining plaintext pair (Pi,j1 , P̃i,j2), partially encrypt

the corresponding values for bytes (1,2) just after Round 2 with (KS 9,

KS 14,KS 19,KS 24) to get the corresponding values for bytes (1,8) just

after Round 6. Check whether they have a difference (0, e8). If none

of the plaintext pairs meet this condition, record the guessed value for

(W1, · · · ,W12,W14, W15,W16), and execute Step 6; otherwise, discard this

guess, and try another.

6. For a recorded value for (W1, · · · ,W12, W14,W15,W16), exhaustively search for

the remaining 8 key bits using three known pairs of plaintexts and ciphertexts.

If a 128-bit key is suggested, output it as the user key of the 28-round HIGHT;

otherwise, go to Step 2.

10.7.2.2 Complexity Analysis

The attack requires 260 (related-key) chosen plaintexts, which take a time complexity

of 260 28-round HIGHT encryptions.

In Step 1, a structure Si yields
(
240

2

) ≈ 279 plaintext pairs (Pi,j1 , Pi,j2) with difference

(0, 0, e8, e1,∼, ?, ?, ?, ?), thus the 219 structures yield a total of 298 plaintext pairs

(Pi,j1 , Pi,j2) with difference (0, 0, e8, e1,∼, ?, ?, ?, ?), (1 ≤ j1 6= j2 ≤ 240). There is a

25-bit filtering condition over the candidate ciphertext pairs, so it follows that about

298 × 2−25 = 273 ciphertext pairs (Ci,j1 , C̃i,j2) remain after Step 1.

In Step 2(a) there is an 8-bit filtering condition over the candidate ciphertext pairs,

199

10.7 Related-Key Impossible Differential Attack on 28-Round HIGHT

so it follows that about 273 × 2−8 = 265 ciphertext pairs (Ci,j1 , C̃i,j2) pass Step 2(a)

for every guess of (W4,W5). Step 2(a) has a time complexity of 2×273×216× 1
4× 1

28 ≈
283.2 28-round HIGHT encryptions.

In Step 2(b) there is an 8-bit filtering condition over the candidate ciphertext pairs,

so it follows that about 265 × 2−8 = 257 ciphertext pairs (Ci,j1 , C̃i,j2) pass Step 2(b)

for every guess of (W3,W4,W5,W9). Step 2(b) has a time complexity of 2 × 265 ×
232 × 1

4 × 2
28 ≈ 292.2 28-round HIGHT encryptions.

In Step 2(c) there is an 8-bit filtering condition over the candidate ciphertext pairs,

so it follows that about 257 × 2−8 = 249 ciphertext pairs (Ci,j1 , C̃i,j2) pass Step 2(c)

for every guess of (W2,W3,W4,W5, W9,W12, W16). Step 2(c) has a time complexity

of 2× 257 × 256 × 1
4 × 3

28 ≈ 2108.78 28-round HIGHT encryptions.

In Step 3(a) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 249×2−8 = 241 plaintext pairs (Pi,j1 , P̃i,j2) pass Step 3(a) for

every guess of (W2,W3,W4,W5,W8,W9,W12,W16). Step 3(a) has a time complexity

of 2× 249 × 264 × 1
4 × 1

28 ≈ 2107.2 28-round HIGHT encryptions.

In Step 3(b) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 241 × 2−8 = 233 plaintext pairs (Pi,j1 , P̃i,j2) pass Step 3(b)

for every guess of (W2,W3,W4,W5, W7,W8,W9,W12,W16). Step 3(b) has a time

complexity of 2× 241 × 272 × 1
4 × 2

28 ≈ 2108.2 28-round HIGHT encryptions.

In Step 3(c) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 233 × 2−8 = 225 plaintext pairs (Pi,j1 , P̃i,j2) pass Step 3(c)

for every guess of (W2, · · · ,W9,W11,W12, W16). Step 3(c) has a time complexity of

2 × 233 × 288 × 1
4 × 1

2 × 3
28 ≈ 2115.78 28-round HIGHT encryptions, where 1

2 means

the average fraction of the guessed keys that are tested.

In Step 4 there is an 8-bit filtering condition over the candidate ciphertext pairs, so

it follows that about 225 × 2−8 = 217 ciphertext pairs (Ci,j1 , C̃i,j2) pass Step 4 for

every guess of (W1, · · · ,W9, W11,W12,W15,W16). Step 4 has a time complexity of

2× 225 × 2104 × 1
4 × 1

2 × 4
28 ≈ 2124.2 28-round HIGHT encryptions.

200

10.8 Summary

In Step 5(a) there is an 8-bit filtering condition over the candidate plaintext pairs,

so it follows that about 217 × 2−8 = 29 plaintext pairs (Pi,j1 , P̃i,j2) pass Step 5(a)

for every guess of (W1, · · · ,W12, W15,W16). Step 5(a) has a time complexity of

2× 217 × 2112 × 1
4 × 1

2 × 4
28 ≈ 2124.2 28-round HIGHT encryptions.

In Step 5(b) there is a 7-bit filtering condition over the candidate plaintext pairs,

so it is expected that about 2120 × (1 − 2−7)2
9 ≈ 2120 × e−22 ≈ 2114.24 guesses for

(W1, · · · ,W12, W14,W15,W16) are recorded in Step 5(b). Thus, the expected number

of suggested wrong keys in Step 6 is about 2114.24× 28× 2−192 = 2−69.76. Thus, it is

very likely that we can find the correct key guess. Step 5(b) has a time complexity

of about 2× 2120× [1+ (1− 2−7) + · · ·+(1− 2−7)2
9
]× 1

2 × 1
4 × 4

28 ≈ 2122.19 28-round

HIGHT encryptions. Step 6 has about 2122.24 28-round HIGHT encryptions.

Therefore, the attack has a total time complexity of about 2125.54 28-round HIGHT

encryptions.

10.8 Summary

In this chapter we have presented an impossible differential attack on 25-round

HIGHT, a related-key rectangle attack on 26-round HIGHT, and a related-key im-

possible differential attack on 28-round HIGHT. These attacks are better than

any previously published cryptanalytic results on HIGHT in terms of the number

of attacked rounds. Table 10.5 summarises the published cryptanalytic results on

HIGHT, where CP, KP and RK-CP refer to the required numbers of chosen plain-

texts, known plaintexts and related-key chosen plaintexts, respectively; and En-

cryptions refers to the required number of encryption operations of the appropriate

reduced version of HIGHT.

201

10.8 Summary

Table 10.5: Cryptanalytic results on HIGHT
Attack Type Rounds Data Time Source

Differential 13 262CP not specified
Linear 13 257KP not specified
Boomerang 13 262CP not specified
Truncated differential 16 214.1CP 2108.69Encryptions [37]
Saturation 16 242CP 251Encryptions
Related-key boomerang 19 not specified not specified
Impossible differential 18 246.8CP 2109.2Encryptions

25 260CP 2126.78Encryptions Section 10.5
Related-key rectangle 26 251.2RK-CP 2120.41Encryptions Section 10.6
Related-key impossible differential 28 260RK-CP 2125.54Encryptions Section 10.7

202

Chapter 11

Conclusions and Future Research

In this chapter we summarise the cryptanalytic results presented in the thesis and

give some possible directions for future research.

Contents

11.1 Conclusions . 203

11.2 Possible Directions for Future Research 204

11.1 Conclusions

In this thesis we propose a new extension of differential cryptanalysis, which we

call the impossible boomerang attack. We describe the early abort technique for

(related-key) impossible differential cryptanalysis and rectangle attacks. Finally, we

analyse the security of a number of block ciphers that are currently being widely

used or have been recently proposed for use in emerging cryptographic applications.

The main cryptanalytic results are as follows.

• We give an impossible differential attack on 7-round AES when used with 128

or 192 key bits, and an impossible differential attack on 8-round AES when

used with 256 key bits. We also present an impossible boomerang attack on 6-

round AES when used with 128 key bits, and an impossible boomerang attack

on 7-round AES when used with 192 or 256 key bits. Finally, we describe

a related-key impossible boomerang attack on 8-round AES when used with

192 key bits, and a related-key impossible boomerang attack on 9-round AES

203

11.2 Possible Directions for Future Research

when used with 256 key bits, both using two keys.

• We give an impossible differential attack on 11-round reduced Camellia when

used with 128 key bits, an impossible differential attack on 12-round reduced

Camellia when used with 192 key bits, and an impossible differential attack

on 13-round reduced Camellia when used with 256 key bits.

• We give a related-key rectangle attack on the full Cobra-F64a, and a related-

key differential attack on the full Cobra-F64b.

• We give a related-key rectangle attack on 44-round SHACAL-2.

• We give a related-key rectangle attack on 36-round XTEA.

• We give an impossible differential attack on 25-round reduced HIGHT, a

related-key rectangle attack on 26-round reduced HIGHT, and a related-key

impossible differential attack on 28-round reduced HIGHT.

In terms of either the attack complexity or the numbers of attacked rounds, the

attacks presented in the thesis are better than any previously published cryptanalytic

results for the block ciphers concerned, except in the case of AES. For AES, the

impossible differential attacks on 7-round AES used with 128 key bits and 8-round

AES used with 256 key bits are the best currently published results on AES in

a single key attack scenario, and the presented related-key impossible boomerang

attacks on 8-round AES used with 192 key bits and 9-round AES used with 256 key

bits are the best currently published results on AES in a related-key attack scenario

using two keys.

11.2 Possible Directions for Future Research

We give some possible directions for future research on block cipher cryptanalysis,

and it would be interesting to investigate these directions.

• As mentioned in Chapter 3, the impossible boomerang attack can potentially

be used to cryptanalyse other block ciphers, in particular analysing those with

a simple key schedule in a related-key attack scenario. For example, IDEA [66]

204

11.2 Possible Directions for Future Research

is a widely used block cipher with a linear key schedule, thus it is desirable

to check whether some good cryptanalytic results can be obtained when we

apply the impossible boomerang attack to IDEA. Actually, this is part of my

ongoing work.

• Other than those described in Chapter 4, there exist a variety of other exam-

ples of the application of the early abort technique to (related-key) impossible

differential and rectangle attacks, as well as other cryptanalytic methods, de-

pending on the specific design of the round function of a block cipher; for

instance, the way we exploit Properties 9.3 and 10.2 when conducting the at-

tacks on XTEA and HIGHT. As a result, it may be possible to improve certain

existing cryptanalytic results for block ciphers using the early abort technique.

• Cryptology is a very fast moving field. It is possible to improve the results

presented in this thesis.

205

Bibliography

[1] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho

Moriai, Junko Nakajima, and Toshio Tokita. Camellia: a 128-bit block cipher

suitable for multiple platforms — design and analysis. In D.R. Stinson and

S.E. Tavares, editors, Proceedings of SAC ’00 — The 7th Annual Workshop

on Selected Areas in Cryptography, volume 2012 of Lecture Notes in Computer

Science, pages 39–56. Springer-Verlag, 2001.

[2] Behnam Bahrak and Mohammad Reza Aref. A novel impossible differenital

cryptanalysis of AES, In Proceedings of WEWoRc ’07 — Western European

Workshop on Research in Cryptology. 2007.

[3] Eli Biham. New types of cryptanalytic attacks using related keys. In T. Helle-

seth, editor, Advances in Cryptology - Proceedings of EUROCRYPT ’93 —

Workshop on the Theory and Application of Cryptographic Techniques, volume

765 of Lecture Notes in Computer Science, pages 398–409. Springer-Verlag,

1993.

[4] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced

to 31 rounds using impossible differentials. In J. Stern, editor, Advances in

Cryptology - Proceedings of EUROCRYPT ’99 — International Conference

on the Theory and Application of Cryptographic Techniques, volume 1592 of

Lecture Notes in Computer Science, pages 12–23. Springer-Verlag, 1999.

[5] Eli Biham, Alex Biryukov, and Adi Shamir. Miss in the middle attacks on

IDEA and Khufu. In L.R. Knudsen, editor, Proceedings of FSE ’99 — The 6th

International Workshop on Fast Software Encryption, volume 1636 of Lecture

Notes in Computer Science, pages 124–138. Springer-Verlag, 1999.

206

BIBLIOGRAPHY

[6] Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack —

rectangling the Serpent. In B. Pfitzmann, editor, Advances in Cryptology -

Proceedings of EUROCRYPT ’01 — International Conference on the Theory

and Application of Cryptographic Techniques, volume 2045 of Lecture Notes in

Computer Science, pages 340–357. Springer-Verlag, 2001.

[7] Eli Biham, Orr Dunkelman, and Nathan Keller. Enhancing differential-linear

cryptanalysis. In Y. Zheng, editor, Advances in Cryptology - Proceedings of

ASIACRYPT ’02 — The 8th International Conference on the Theory and

Application of Cryptology and Information Security, volume 2501 of Lecture

Notes in Computer Science, pages 254–266. Springer-Verlag, 2002.

[8] Eli Biham, Orr Dunkelman, and Nathan Keller. New results on boomerang and

rectangle attacks. In J. Daemen and V. Rijmen, editors, Proceedings of FSE

’02 — The 9th International Workshop on Fast Software Encryption, volume

2365 of Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, 2002.

[9] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and

rectangle attacks. In R. Cramer, editor, Advances in Cryptology - Proceedings

of EUROCRYPT ’05 — The 24th Annual International Conference on the

Theory and Applications of Cryptographic Techniques, volume 3494 of Lecture

Notes in Computer Science, pages 507–525. Springer-Verlag, 2005.

[10] Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key impossible dif-

ferential attacks on 8-round AES-192. In D. Pointcheval, editor, Proceedings

of CT-RSA ’06 — Cryptographers’ Track at the RSA Conference 2006, vol-

ume 3860 of Lecture Notes in Computer Science, pages 21–33. Springer-Verlag,

2006.

[11] Eli Biham and Nathan Keller. Cryptanalysis of reduced variants of Rijndael.

In Proceedings of The Third Advanced Encryption Standard Candidate Con-

ference. NIST, 2000.

[12] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosys-

tems. In A. Menezes and S.A. Vanstone, editors, Advances in Cryptology -

Proceedings of CRYPTO ’90 — The 10th Annual International Cryptology

Conference, volume 537 of Lecture Notes in Computer Science, pages 2–21.

Springer-Verlag, 1990.

207

BIBLIOGRAPHY

[13] Eli Biham and Adi Shamir. Differential cryptanalysis of the Data Encryption

Standard. Springer-Verlag, 1993.

[14] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round DES.

In E.F. Brickell, editor, Advances in Cryptology - Proceedings of CRYPTO

’92 — The 12th Annual International Cryptology Conference, volume 740 of

Lecture Notes in Computer Science, pages 487–496. Springer-Verlag, 1993.

[15] Alex Biryukov. The boomerang attack on 5 and 6-round reduced AES. In

H. Dobbertin, V. Rijmen, and A. Sowa, editors, Proceedings of AES ’04 —

The 4th International Conference on Advanced Encryption Standard, volume

3373 of Lecture Notes in Computer Science, pages 11–15. Springer-Verlag,

2005.

[16] Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo

Kang. Improved impossible differential cryptanalysis of Rijndael and Cryp-

ton. In K. Kim, editor, Proceedings of ICISC ’01 — The 4th International

Conference on Information Security and Cryptology, volume 2288 of Lecture

Notes in Computer Science, pages 39–49. Springer-Verlag, 2001.

[17] Nicolas Courtois. Feistel schemes and bi-linear cryptanalysis. In M.K.

Franklin, editor, Advances in Cryptology - Proceedings of CRYPTO ’04 —

The 24th Annual International Cryptology Conference, volume 3152 of Lec-

ture Notes in Computer Science, pages 23–40. Springer-Verlag, 2004.

[18] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with

overdelned systems of equations. In Y. Zheng, editor, Advances in Cryptology

- Proceedings of ASIACRYPT ’02 — The 8th International Conference on the

Theory and Application of Cryptology and Information Security, volume 2501

of Lecture Notes in Computer Science, pages 267–287. Springer-Verlag, 2002.

[19] CRYPTREC — Cryptography Research and Evaluatin Committees, report

2002. http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html.

[20] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher Square.

In E. Biham, editor, Proceedings of FSE ’97 — The 4th International Work-

shop on Fast Software Encryption, volume 1267 of Lecture Notes in Computer

Science, pages 149–165. Springer-Verlag, 1997.

208

BIBLIOGRAPHY

[21] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. In Proceedings of

The First Advanced Encryption Standard Candidate Conference. NIST, 1998.

[22] Huseyin Demirci and Ali Aydin Selcuk. A meet-in-the-middle attack on 8-

round AES. In K. Nyberg, editor, Proceedings of FSE ’08 — The 15th Inter-

national Workshop on Fast Software Encryption, volume ? of Lecture Notes

in Computer Science, pages ?–? Springer-Verlag, 2008.

[23] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22:644–654, 19767.

[24] Lei Duo, Chao Li, and Keqin Feng. New observation on Camellia. In B. Pre-

neel and S.E. Tavares, editors, Proceedings of SAC ’05 — The 12th Annual

Workshop on Selected Areas in Cryptography, volume 3897 of Lecture Notes

in Computer Science, pages 51–64. Springer-Verlag, 2006.

[25] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay,

David Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In

B. Schneier, editor, Proceedings of FSE ’00 — The 7th International Work-

shop on Fast Software Encryption, volume 1978 of Lecture Notes in Computer

Science, pages 213–230. Springer-Verlag, 2001.

[26] Henri Gilbert and Marine Minier. A collision attack on 7 rounds of Rijn-

dael. In Proceedings of The Third Advanced Encryption Standard Candidate

Conference. NIST, 2000.

[27] Nick D. Goots, Boris V. Izotov, Alexander A. Moldovyan, and Nick A.

Moldovyan. Fast ciphers for cheap hardware: differential analysis of SPECTR-

H64. In Vladimir Gorodetsky, Igor V. Kotenko, and Victor A. Skormin, edi-

tors, Proceedings of MMM-ACNS ’03 — The Second International Workshop

on Mathematical Methods, Models, and Architectures for Computer Network

Security, volume 2776 of Lecture Notes in Computer Science, pages 449–452.

Springer-Verlag, 2003.

[28] Nick D. Goots, Boris V. Izotov, Alexander A. Moldovyan, and Nick A.

Moldovyan. Modern cryptography: protect your data with fast block ciphers.

A-LIST Publishing, 2003.

[29] Nick D. Goots, Alexander A. Moldovyan, and Nick A. Moldovyan. Fast encryp-

tion algorithm SPECTR-H64. In Vladimir I. Gorodetski, Victor A. Skormin,

209

BIBLIOGRAPHY

and Leonard J. Popyack, editors, Proceedings of MMM-ACNS ’01 — Interna-

tional Workshop on Information Assurance in Computer Networks: Methods,

Models, and Architectures for Network Security, volume 2052 of Lecture Notes

in Computer Science, pages 275–286. Springer-Verlag, 2001.

[30] Nick D. Goots, Alexander A. Moldovyan, Nick A. Moldovyan, and D.H. Sum-

merville. Fast DDP-based ciphers: from hardware to software. In Proceedings

of the 46th IEEE Midwest International Symposium on Circuits and Systems,

pages 770–773, 2003.

[31] Helena Handschuh and David Naccache. SHACAL. In Proceedings of The First

Open NESSIE Workshop, 2000. Archive available at https://www.cosic.esat.

kuleuven.be/nessie/workshop/submissions.html.

[32] Helena Handschuh and David Naccache. SHACAL. NESSIE, 2001. Archive

available at https://www.cosic.esat.kuleuven.be/nessie/tweaks.html.

[33] Yasuo Hatano, Hiroki Sekine, and Toshinobu Kaneko. Higher order differential

attack of Camellia(II). In K. Nyberg and H.M. Heys, editors, Proceedings of

SAC ’02 — The 9th Annual Workshop on Selected Areas in Cryptography,

volume 2595 of Lecture Notes in Computer Science, pages 39–56. Springer-

Verlag, 2003.

[34] Philip Hawkes. Differential-linear weak key classes of IDEA. In K. Nyberg,

editor, Advances in Cryptology - Proceedings of EUROCRYPT ’98 — Interna-

tional Conference on the Theory and Application of Cryptographic Techniques,

volume 1403 of Lecture Notes in Computer Science, pages 112–126. Springer-

Verlag, 1998.

[35] Yeping He and Sihan Qing. Square attack on reduced Camellia cipher. In

S. Qing, T. Okamoto, and J. Zhou, editors, Proceedings of ICICS ’01 — The

Third International Conference on Information and Communications Security,

volume 2229 of Lecture Notes in Computer Science, pages 238–245. Springer-

Verlag, 2001.

[36] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transac-

tions on Information Theory, IT-26(4):401–406, 1980. IEEE Press.

[37] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bon-Seok

Koo, Changhoon Lee, Donghoon Chang, Jesang Lee, Kitae Jeong, Hyun Kim,

210

BIBLIOGRAPHY

Jongsung Kim, and Seongtaek Chee. HIGHT: a new block cipher suitable

for low-resource device. In L. Goubin and M. Matsui, editors, Proceedings

of CHES ’06 — The 8th International Workshop on Cryptographic Hardware

and Embedded Systems, volume 4249 of Lecture Notes in Computer Science,

pages 46–59. Springer-Verlag, 2006.

[38] Seokhie Hong, Deukjo Hong, Youngdai Ko, Donghoon Chang, Wonil Lee, and

Sangjin Lee. Differential cryptanalysis of TEA and XTEA. In J. Lim and

D. Lee, editors, Proceedings of ICISC ’03 — The 6th International Confer-

ence on Information Security and Cryptology, volume 2791 of Lecture Notes

in Computer Science, pages 402–417. Springer-Verlag, 2003.

[39] Seokhie Hong, Jongsung Kim, Guil Kim, Jaechul Sung, Changhoon Lee, ,

and Sangjin Lee. Impossible differential attack on 30-round SHACAL-2. In

T. Johansson and S. Maitra, editors, Proceedings of INDOCRYPT ’03 — The

4th International Conference on Cryptology in India, volume 2904 of Lecture

Notes in Computer Science, pages 97–106. Springer-Verlag, 2003.

[40] Seokhie Hong, Jongsung Kim, Sangjin Lee, , and Bart Preneel. Related-

key rectangle attacks on reduced versions of SHACAL-1 and AES-192. In

H. Gilbert and H. Handschuh, editors, Proceedings of FSE ’05 — The 12th

International Workshop on Fast Software Encryption, volume 3557 of Lecture

Notes in Computer Science, pages 368–383. Springer-Verlag, 2005.

[41] The Institute of Electrical and Electronics Engineers (IEEE). http://grouper.

ieee.org/groups/802/11.

[42] International Standardization of Organization (ISO), International Standard –

ISO/IEC 18033-3, Information technology – Security techniques – Encryption

algorithms – Part 3: Block ciphers, July, 2005.

[43] International Standardization of Organization (ISO), International Standard–

ISO/IEC 8802-11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) specifications. http://www.iso.org/iso/en/CatalogueDetailPage.

CatalogueDetail?CSNUMBER=39777.

[44] The Internet Engineering Task Force (IETF), RFC 4301 – Security Architec-

ture for the Internet Protocol, December, 2005.

211

BIBLIOGRAPHY

[45] Goce Jakimoski and Yvo Desmedt. Related-key differential cryptanalysis of

192-bit key AES variants. In M. Matsui and R.J. Zuccherato, editors, Pro-

ceedings of SAC ’03 — The 10th Annual Workshop on Selected Areas in Cryp-

tography, volume 3006 of Lecture Notes in Computer Science, pages 208–221.

Springer-Verlag, 2004.

[46] Burton S. Kaliski Jr. and Matthew J.B. Robshaw. Linear cryptanalysis using

multiple approximations. In Y. Desmedt, editor, Advances in Cryptology -

Proceedings of CRYPTO ’94 — The 14th Annual International Cryptology

Conference, volume 839 of Lecture Notes in Computer Science, pages 26–39.

Springer-Verlag, 1994.

[47] Ari Juels. RFID security and privacy: a research survey. IEEE Journal on

Selected Areas in Communications, 24(2):381–394, 2006.

[48] John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang

attacks against reduced-round MARS and Serpent. In B. Schneier, editor,

Proceedings of FSE ’00 — The 7th International Workshop on Fast Software

Encryption, volume 1978 of Lecture Notes in Computer Science, pages 75–93.

Springer-Verlag, 2001.

[49] John Kelsey, Bruce Schneier, and David Wagner. Key-schedule cryptanaly-

sis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In N. Koblitz, editor,

Advances in Cryptology - Proceedings of CRYPTO ’96 — The 16th Annual In-

ternational Cryptology Conference, volume 1109 of Lecture Notes in Computer

Science, pages 237–251. Springer-Verlag, 1996.

[50] John Kelsey, Bruce Schneier, and David Wagner. Related-key cryptanalysis of

3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In Y. Han,

T. Okamoto, and S. Qing, editors, Proceedings of ICICS ’97 — The First In-

ternational Conference on Information and Communications Security, volume

1334 of Lecture Notes in Computer Science, pages 233–246. Springer-Verlag,

1997.

[51] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences mili-

taires, IX:5–83, 1883.

[52] Jongsung Kim, Seokhie Hong, and Bart Preneel. Related-key rectangle attacks

on reduced AES-192 and AES-256. In A. Biryukov, editor, Proceedings of FSE

212

BIBLIOGRAPHY

’07 — The 14th International Workshop on Fast Software Encryption, volume

4593 of Lecture Notes in Computer Science, pages 225–241. Springer-Verlag,

2007.

[53] Jongsung Kim, Guil Kim, Seokhie Hong, Sangjin Lee, and Dowon Hong.

The related-key rectangle attack — application to SHACAL-1. In H. Wang,

J. Pieprzyk, and V. Varadharajan, editors, Proceedings of ACISP ’04 — The

9th Australasian Conference on Information Security and Privacy, volume

3108 of Lecture Notes in Computer Science, pages 123–136. Springer-Verlag,

2004.

[54] Jongsung Kim, Guil Kim, Sangjin Lee, Jongin Lim, and Junghwan Song.

Related-key attacks on reduced rounds of SHACAL-2. In A. Canteaut and

K. Viswanathan, editors, Proceedings of INDOCRYPT ’04 — The 5th Inter-

national Conference on Cryptology in India, volume 3348 of Lecture Notes in

Computer Science, pages 175–190. Springer-Verlag, 2004.

[55] Lars R. Knudsen. Cryptanalysis of LOKI91. In J. Seberry and Y. Zheng, edi-

tors, Advances in Cryptology - Proceedings of ASIACRYPT ’92 — Workshop

on the Theory and Application of Cryptographic Techniques, volume 718 of

Lecture Notes in Computer Science, pages 196–208. Springer-Verlag, 1993.

[56] Lars R. Knudsen. Trucated and higher order differentials. In B. Preneel, editor,

Proceedings of FSE ’94 — The Second International Workshop on Fast Soft-

ware Encryption, volume 1008 of Lecture Notes in Computer Science, pages

196–211. Springer-Verlag, 1995.

[57] Lars R. Knudsen. DEAL — a 128-bit block cipher. Technical report, Depart-

ment of Informatics, University of Bergen, Norway, 1998.

[58] Lars R. Knudsen and John E. Mathiassen. A chosen-plaintext linear attack

on DES. In B. Schneier, editor, Proceedings of FSE ’00 — The 7th Interna-

tional Workshop on Fast Software Encryption, volume 1978 of Lecture Notes

in Computer Science, pages 262–272. Springer-Verlag, 2001.

[59] Lars R. Knudsen and Matthew J.B. Robshaw. Non-linear approximations

in linear cryptoanalysis. In U.M. Maurer, editor, Advances in Cryptology -

Proceedings of EUROCRYPT ’96 — International Conference on the Theory

213

BIBLIOGRAPHY

and Application of Cryptographic Techniques, volume 1070 of Lecture Notes in

Computer Science, pages 224–236. Springer-Verlag, 1996.

[60] Lars R. Knudsen and David Wagner. Integral cryptanalysis. In J. Daemen and

V. Rijmen, editors, Proceedings of FSE ’02 — The 9th International Work-

shop on Fast Software Encryption, volume 2365 of Lecture Notes in Computer

Science, pages 112–127. Springer-Verlag, 2002.

[61] Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Re-

lated key differential attacks on 27 rounds of XTEA and full-round GOST. In

B. Roy and W. Meier, editors, Proceedings of FSE ’04 — The 11th Interna-

tional Workshop on Fast Software Encryption, volume 3017 of Lecture Notes

in Computer Science, pages 299–316. Springer-Verlag, 2004.

[62] Youngdai Ko, Changhoon Lee, Seokhie Hong, and Sangjin Lee. Related key

differential cryptanalysis of full-round SPECTR-H64 and CIKS-1. In H. Wang,

J. Pieprzyk, and V. Varadharajan, editors, Proceedings of ACISP ’04 — The

9th Australasian Conference on Information Security and Privacy, volume

3108 of Lecture Notes in Computer Science, pages 137–148. Springer-Verlag,

2004.

[63] Youngdai Ko, Changhoon Lee, Seokhie Hong, Jaechul Sung, and Sangjin Lee.

Related-key attacks on ddp based ciphers: CIKS-128 and CIKS-128H. In

A. Canteaut and K. Viswanathan, editors, Proceedings of INDOCRYPT ’04

— The 5th International Conference on Cryptology in India, volume 3348 of

Lecture Notes in Computer Science, pages 191–205. Springer-Verlag, 2004.

[64] Ulrich Kühn. Cryptanalysis of reduced-round MISTY. In B. Pfitzmann, ed-

itor, Advances in Cryptology - Proceedings of EUROCRYPT ’01 — Interna-

tional Conference on the Theory and Application of Cryptographic Techniques,

volume 2045 of Lecture Notes in Computer Science, pages 325–339. Springer-

Verlag, 2001.

[65] Xuejia Lai. Higher order derivatives and differential cryptanalysis. Communi-

cations and Cryptography, pages 227–233, 1994. Kluwer Academic Publishers.

[66] Xuejia Lai and James L. Massey. A proposal for a new block encryption

standard. In I. Damgard, editor, Advances in Cryptology - Proceedings of EU-

ROCRYPT ’90 — Workshop on the Theory and Application of Cryptographic

214

BIBLIOGRAPHY

Techniques, volume 473 of Lecture Notes in Computer Science, pages 389–404.

Springer-Verlag, 1991.

[67] Suzan K. Langford and Martin E. Hellman. Differential-linear cryptanalysis.

In Y. Desmedt, editor, Advances in Cryptology - Proceedings of CRYPTO

’94 — The 14th Annual International Cryptology Conference, volume 839 of

Lecture Notes in Computer Science, pages 17–25. Springer-Verlag, 1994.

[68] Changhoon Lee, Jongsung Kim, Seokhie Hong, Jaechul Sung, and Sangjin

Lee. Related-key differential attacks on Cobra-S128, Cobra-F64a and Cobra-

F64b. In E. Dawson and S. Vaudenay, editors, Proceedings of Mycrypt ’05 —

The First International Conference on Cryptology in Malaysia, volume 3715

of Lecture Notes in Computer Science, pages 244–262. Springer-Verlag, 2005.

[69] Changhoon Lee, Jongsung Kim, Jaechul Sung, Seokhie Hong, Sangjin Lee, and

Dukjae Moon. Related-key differential attacks on Cobra-H64 and Cobra-H128.

In N.P. Smart, editor, Proceedings of IMA Cryptography and Coding ’05 —

The 10th IMA International Conference on Cryptography and Coding, volume

3796 of Lecture Notes in Computer Science, pages 201–219. Springer-Verlag,

2005.

[70] Eunjin Lee, Deukjo Hong, Donghoon Chang, Seokhie Hong, and Jongin Lim.

A weak key class of XTEA for a related-key rectangle attack. In P.Q. Nguyen,

editor, Proceedings of Vietcrypt ’06 — The First International Conferenceon

Cryptology in Vietnam, volume 4341 of Lecture Notes in Computer Science,

pages 286–297. Springer-Verlag, 2006.

[71] Seonhee Lee, Seokhie Hong, Sangjin Lee, Jongin Lim, and Seonhee Yoon.

Truncated differential cryptanalysis of Camellia. In K. Kim, editor, Proceed-

ings of ICISC ’01 — The 4th International Conference on Information Secu-

rity and Cryptology, volume 2288 of Lecture Notes in Computer Science, pages

32–38. Springer-Verlag, 2002.

[72] B.W. Lindgren and G.W. Mcelrath. Introduction to PROBABILITY and

STATISTICS — third edition. The Macmillan Company, 1969.

[73] Helger Lipmaa and Shiho Moriai. Efficient algorithms for computing differen-

tial properties of addition. In M. Matsui, editor, Proceedings of FSE ’01 —

215

BIBLIOGRAPHY

The 8th International Workshop on Fast Software Encryption, volume 2355 of

Lecture Notes in Computer Science, pages 336–350. Springer-Verlag, 2001.

[74] Jiqiang Lu. Cryptanalysis of reduced versions of the HIGHT block cipher from

CHES 2006. In K. Nam and G. Rhee, editors, Proceedings of ICISC ’07 —

The 10th International Conference on Information Security and Cryptology,

volume 4817 of Lecture Notes in Computer Science, pages 11–26. Springer-

Verlag, 2007.

[75] Jiqiang Lu. Related-key rectangle attack on 36 rounds of the XTEA block

cipher. International Journal of Information Security, ?:?–?, 2008.

[76] Jiqiang Lu and Jongsung Kim. Attacking 44 rounds of the SHACAL-2 block

cipher using related-key rectangle cryptanalysis. IEICE Transactions on Fun-

damentals of Electronics, Communications and Computer Sciences, 91-A:?–?,

2008.

[77] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Differen-

tial and rectangle attacks on reduced-round SHACAL-1. In R. Barua and

T. Lange, editors, Progress in Cryptology - INDOCRYPT ’06 — The 7th In-

ternational Conference on Cryptology in India, volume 4329 of Lecture Notes

in Computer Science, pages 17–31. Springer-Verlag, 2006.

[78] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Related-

key rectangle attack on 42-round SHACAL-2. In S.K. Katsikas, J. Lopez,

M. Backes, and B. Preneel, editors, Proceedings of ISC ’06 — The 9th Inter-

national Conference on Information Security, volume 4176 of Lecture Notes in

Computer Science, pages 85–100. Springer-Verlag, 2006.

[79] Jiqiang Lu, Jongsung Kim, Nathan Keller, and Orr Dunkelman. Improving

the efficiency of impossible differential cryptanalysis of reduced Camellia and

MISTY1. In T. Malkin, editor, Proceedings of CT-RSA ’08 — Cryptographers’

Track at the RSA Conference 2008, volume 4964 of Lecture Notes in Computer

Science, pages 370–386. Springer-Verlag, 2008.

[80] Jiqiang Lu, Changhoon Lee, and Jongsung Kim. Related-key attacks on the

full-round Cobra-F64a and Cobra-F64b. In R.D. Prisco and M. Yung, editors,

Proceedings of SCN ’06 — The Fifth International Conference on Security

216

BIBLIOGRAPHY

and Cryptography for Networks, volume 4116 of Lecture Notes in Computer

Science, pages 95–110. Springer-Verlag, 2006.

[81] Stefan Lucks. Attacking seven rounds of Rijndael under 192-bit and 256-bit

keys. In Proceedings of The Third Advanced Encryption Standard Candidate

Conference. NIST, 2000.

[82] Stefan Lucks. The saturation attack — a bait for Twofish. In M. Matsui, editor,

Proceedings of FSE ’01 — The 8th International Workshop on Fast Software

Encryption, volume 2355 of Lecture Notes in Computer Science, pages 1–15.

Springer-Verlag, 2002.

[83] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth,

editor, Advances in Cryptology - Proceedings of EUROCRYPT ’93 — Work-

shop on the Theory and Application of Cryptographic Techniques, volume 765

of Lecture Notes in Computer Science, pages 386–397. Springer-Verlag, 1994.

[84] Mitsuru Matsui and Atsuhiro Yamagishi. A new method for known plaintext

attack of FEAL cipher. In R.A. Rueppel, editor, Advances in Cryptology -

Proceedings of EUROCRYPT ’92 — Workshop on the Theory and Applica-

tion of Cryptographic Techniques, volume 658 of Lecture Notes in Computer

Science, pages 81–91. Springer-Verlag, 1993.

[85] Alexander A. Moldovyan and Nick A. Moldovyan. A cipher based on data-

dependent permutations. Journal of Cryptology, 15(1):61–72, 2002. Springer.

[86] Dukjae Moon, Kyungdeok Hwang, Wonil Lee, Sangjin Lee, and Jongin Lim.

Impossible differential cryptanalysis of reduced round XTEA and TEA. In

J. Daemen and V. Rijmen, editors, Proceedings of FSE ’02 — The 9th In-

ternational Workshop on Fast Software Encryption, volume 2365 of Lecture

Notes in Computer Science, pages 49–60. Springer-Verlag, 2002.

[87] Sean Murphy. The cryptanalysis of FEAL-4 with 20 chosen plaintexts. Journal

of Cryptology, 2(3):145–154, 1990. Springer.

[88] Roger M. Needham and David J. Wheeler. TEA extensions. Technical report,

the Computer Laboratory, University of Cambridge, 1997. Archive available

at http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps.

217

BIBLIOGRAPHY

[89] NESSIE — New European Schemes for Signatures, Integrity, and Encryption,

final report. https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf.

[90] NIST — National Institute of Standards and Technology, Advanced Encryp-

tion Standard (AES), FIPS-197, 2001.

[91] NIST — National Institute of Standards and Technology, Data Encryption

Standard (DES), FIPS-46, 1977.

[92] NIST — National Institute of Standards and Technology, Secure Hash Stan-

dard, FIPS 180-1, 1995.

[93] NIST — National Institute of Standards and Technology, Secure Hash Stan-

dard, FIPS 180-2, 2002.

[94] Kaisa Nyberg. Linear approximation of block ciphers. In A.D. Santis, editor,

Advances in Cryptology - Proceedings of EUROCRYPT ’94 — Workshop on

the Theory and Application of Cryptographic Techniques, volume 950 of Lecture

Notes in Computer Science, pages 439–444. Springer-Verlag, 1994.

[95] Kaisa Nyberg and Lars R. Knudsen. Provable security against differential

cryptanalysis. In E.F. Brickell, editor, Advances in Cryptology - Proceedings of

CRYPTO ’92 — the 12th Annual International Cryptology Conference, volume

740 of Lecture Notes in Computer Science, pages 566–574. Springer-Verlag,

1993.

[96] Raphael C.-W. Phan. Impossible differential cryptanalysis of 7-round Ad-

vanced Encryption Standard (AES). Information Processing Letters, 91:33–38,

2004. Elsevier Science.

[97] Akihiro Shimizu and Shoji Miyaguchi. Fast data encipherment algorithm

FEAL. In D. Chaum and W.L. Price, editors, Advances in Cryptology - Pro-

ceedings of EUROCRYPT ’87 — Workshop on the Theory and Application of

Cryptographic Techniques, volume 304 of Lecture Notes in Computer Science,

pages 267–278. Springer-Verlag, 1988.

[98] Yongsup Shin, Jongsung Kim, Guil Kim, Seokhie Hong, and Sangjin Lee.

Differential-linear type attacks on reduced rounds of SHACAL-2. In H. Wang,

J. Pieprzyk, and V. Varadharajan, editors, Proceedings of ACISP ’04 — The

9th Australasian Conference on Information Security and Privacy, volume

218

BIBLIOGRAPHY

3108 of Lecture Notes in Computer Science, pages 110–122. Springer-Verlag,

2004.

[99] Taizo Shirai. Differential, linear, boomerang and rectangle cryptanalysis of

reduced-round Camellia. In Proceedings of The Third NESSIE Workshop,

2002.

[100] Nicolas Sklavos, Nick A. Moldovyan, and Odysseas G. Koufopavlou. A new

DDP-based cipher CIKS-128H: architecture, design and VLSI implementation

optimization of CBC-encryption and hashing over 1 GBPS. In Proceedings of

The 46th IEEE Midwest International Symposium on Circuits and Systems,

pages 463–466, 2003.

[101] Nicolas Sklavos, Nick A. Moldovyan, and Odysseas G. Koufopavlou. High

speed networking security: design and implementation of two new DDP-based

ciphers. Mobile Networks and Applications, 10(1–2):219–231, 2005. Kluwer

Academic Publishers.

[102] Makoto Sugita, Kazukuni Kobara, and Hideki Imai. Security of reduced ver-

sion of the block cipher Camellia against truncated and impossible differential

cryptanalysis. In C. Boyd, editor, Advances in Cryptology - Proceedings of

ASIACRYPT ’01 — The 7th International Conference on the Theory and

Application of Cryptology and Information Security, volume 2248 of Lecture

Notes in Computer Science, pages 193–207. Springer-Verlag, 2001.

[103] David Wagner. The boomerang attack. In L.R. Knudsen, editor, Proceedings

of FSE ’99 — The 6th International Workshop on Fast Software Encryption,

volume 1636 of Lecture Notes in Computer Science, pages 156–170. Springer-

Verlag, 1999.

[104] Gaoli Wang. Related-key rectangle attack on 43-round SHACAL-2. In E. Daw-

son and D.S. Wong, editors, Proceedings of ISPEC ’07 — The Third Interna-

tional Conference on Information Security Practice and Experience, volume

4464 of Lecture Notes in Computer Science, pages 33–42. Springer-Verlag,

2007.

[105] Gaoli Wang, Nathan Keller, and Orr Dunkelman. The delicate issues of addi-

tion with respect to XOR differences. In C. Adams, A. Miri, and M. Wiener,

editors, Proceedings of SAC ’07 — The 14th Annual Workshop on Selected

219

BIBLIOGRAPHY

Areas in Cryptography, volume 4876 of Lecture Notes in Computer Science,

pages 212–231. Springer-Verlag, 2008.

[106] David J. Wheeler and Roger M. Needham. TEA, a tiny encryption algo-

rithm. In B. Preneel, editor, Proceedings of FSE ’94 — The Second Interna-

tional Workshop on Fast Software Encryption, volume 1008 of Lecture Notes

in Computer Science, pages 363–366. Springer-Verlag, 1995.

[107] Wenling Wu, Dengguo Feng, and Hua Chen. Collision attack and pseudo-

randomness of reduced-round Camellia. In H. Handschuh and M.A. Hasan,

editors, Proceedings of SAC ’04 — The 11th Annual Workshop on Selected

Areas in Cryptography, volume 3357 of Lecture Notes in Computer Science,

pages 256–270. Springer-Verlag, 2005.

[108] Wenling Wu, Wentao Zhang, and Dengguo Feng. Impossible differential crypt-

analysis of reduced-round ARIA and Camellia. Journal of Computer Science

and Technology, 22(3):449–456, 2007. Springer.

[109] Yongjin Yeom, Sangwoo Park, and Iljun Kim. On the security of Camellia

against the square attack. In J. Daemen and V. Rijmen, editors, Proceedings

of FSE ’02 — The 9th International Workshop on Fast Software Encryption,

volume 2356 of Lecture Notes in Computer Science, pages 89–99. Springer-

Verlag, 2002.

[110] Yongjin Yeom, Sangwoo Park, and Iljun Kim. A study of integral type crypt-

analysis on Camellia. In Proceedings of The 2003 Symposium on Cryptography

and Information Security, pages 453–456, 2003.

[111] Wentao Zhang, Wenling Wu, and Dengguo Feng. New results on impossi-

ble differential cryptanalysis of reduced AES. In K.-H. Nam and G. Rhee,

editors, Proceedings of ICISC ’07 — The 10th International Conference on

Information Security and Cryptology, volume 4817 of Lecture Notes in Com-

puter Science, pages 239–250. Springer-Verlag, 2007.

[112] Wentao Zhang, Lei Zhang, Wenling Wu, and Dengguo Feng. Improved related-

key impossible differential attacks on reduced-round AES-192. In E. Biham

and A.M. Youssef, editors, Proceedings of SAC ’06 — The 13th Annual Work-

shop on Selected Areas in Cryptography, volume 4356 of Lecture Notes in Com-

puter Science, pages 15–27. Springer-Verlag, 2007.

220

BIBLIOGRAPHY

[113] Wentao Zhang, Lei Zhang, Wenling Wu, and Dengguo Feng. Related-key

differential-linear attacks on reduced AES-192. In K. Srinathan, C. Pandu

Rangan, and M. Yung, editors, Proceedings of INDOCRYPT ’07 — The 8th

International Conference on Cryptology in India, volume 4859 of Lecture Notes

in Computer Science, pages 73–85. Springer-Verlag, 2007.

221

