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Abstract

The aims of this research are to give a precise description of a new homomorphic
public-key encryption scheme proposed by Grigoriev and Ponomarenko [7] in 2004
and to break Grigoriev and Ponomarenko homomorphic public-key cryptosystem.

Firstly, we prove some properties of linear fractional transformations. We analyze
the X, -representation algorithm which is used in the decryption scheme of Grigoriev
and Ponomarenko homomorphic public-key cryptosystem and by these properties of
the linear fractional transformations, we correct and modify the X,,-representation
algorithm. We implement the modified X, -representation algorithm by program-
ming it and we prove the correctness of the modified X,,-representation algorithm.
Secondly, we find an explicit formula to compute the X (n, S)-representations of ele-
ments of the group I';,. The X (n, S)-representation algorithm is used in the decryp-
tion scheme of Grigoriev and Ponomarenko homomorphic public-key cryptosystem
and we modify the X (n, S)-representation algorithm. We implement the modified
X (n, S)-representation algorithm by programming it and we justify the modified
X (n, S)-representation algorithm. By these two modified X,-representation algo-
rithm and X (n, S)-representation algorithm, we make its decryption scheme more
efficient. Thirdly, by using those properties of the linear fractional transformations,
we design new Xi-representation algorithms I and II and we mainly use these two
Xj-representation algorithms to break Grigoriev and Ponomarenko homomorphic
public-key cryptosystem. We implement the algorithms by programming them and
we prove the correctness of these two algorithms. Fourthly, we analyze Grigoriev and
Ponomarenko homomorphic public-key cryptosystem and we give a clear description
of Grigoriev and Ponomarenko scheme with a practical example. We also consider
implementation issues for its practical applications. Lastly, we show several attack
methods with examples and experiments according as the attack methods and so

we break Grigoriev and Ponomarenko homomorphic public-key cryptosystem.
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Chapter 1

Introduction

In this thesis, we analyze a new homomorphic public-key encryption scheme
introduced by Grigoriev and Ponomarenko [7] in 2004 and we give a precise
description of Grigoriev and Ponomarenko homomorphic public-key cryptosys-
tem. Next, we break Grigiriev and Ponomarenko homomorphic public-key
cryptosystem. The main stream of thesis consists of four parts. The first part
is a background required to comprehend Grigoriev and Ponomarenko homo-
morphic public-key cryptosystem. The second part is about three representa-
tion algorithms. Two X,,-representation algorithm and X (n, S)-representation
algorithm are used in the decryption scheme of Grigoriev and Ponomarenko ho-
momorphic public-key cryptosystem and new X;-representation algorithms are
used for cryptanalysis of Grigoriev and Ponomarenko homomorphic public-key
cryptosystem. The third part is a description of Grigoriev and Ponomarenko
homomorphic public-key cryptosystem. The last part is cryptanalysis of Grig-

oriev and Ponomarenko homomorphic public-key cryptosystem.

In Chapter 1, we give the structure of thesis and we mention the main parts

which are handled in each chapter.



In Chapter 2, we survey symmetric-key cryptography and public-key cryp-
tography. In particular, we focus on public-key cryptography. Moreover, be-
cause this new homomorphic public-key encryption is a probabilistic encryp-
tion scheme, we study deterministic encryption and probabilistic encryption.
As the security of Grigoriev and Ponomarenk homomorphic public-key cryp-
tosystem relies on the difficulty of the membership problem for a group, we

survey computational problems and decision problems.

In Chapter 3, we study combinatorial group theory because the message space
of Grigoriev and Ponomarenko homomorphic public-key encryption scheme is
a finitely presented group and the word problem is implicitly related to the
decryption scheme of Grigoriev and Ponomarenko homomorphic public-key
cryptosystem. We also survey normal forms in connection with the word prob-
lem. In addition, we study matrix group theory such as general linear groups,
special linear groups and modular groups because the ciphertext space of Grig-
oriev and Ponomarenko homomorphic public-key cryptosystem is a subgroup

of a modular group.

In Chapter 4, we prove some properties of linear fractional transformations.
By these properties, we correct and modify the X,-representation algorithm
used in the decryption scheme of Girgoriev and Ponomarenko homomorphic
public-key cryptosystem. We implement the modified X, -representation al-
gorithm by programming it and we prove the correctness of the modified X, -

representation algorithm.

In Chapter 5, we analyze the X (n,S)-representation algorithm which is used
in the decryption scheme of Grigoriev and Ponomarenko homomorphic public-
key cryptosystem and we modify the X (n,S)-representation algorithm. We

implement the modified X (n, S)-representation algorithm by programming it



and we prove the correctness of the modified X (n, S)-representation algorithm.

In Chapter 6, we design new X;-representation algorithms I and I to represent
a subgroup of the modular group. We implement these two X;-representation
algorithms by programming them and we prove the correctness of the algo-

rithms respectively.

In Chapter 7, we give a precise description of Girgoriev and Ponomarenko
homomorphic public-key cryptosystem. Moreover, we demonstrate its prac-
tical implementation with an example and we compare Grigoriev and Pono-

marenko’ description with our description.
In Chapter 8, we show several attack methods to break Grigoriev and Pono-

marenko homomorphic public-key cryptosystem with examples and experi-

ments according as the attack methods.
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Chapter 2

Public-Key Cryptography

In this chapter, we survey some subjects related to public-key cryptography;,
based on [7], [14] and [16].

In Section 2.1, we survey both symmetric-key cryptography and public-key
cryptography as general cryptographic techniques. In Section 2.2, we give two
examples which are the most well-known two public-key cryptosystems, RSA
encryption and ElGamal encryption. In Section 2.3, we study computational
problems and decision problems which are in connection with the security
issues of public-key cryptosystems. In Section 2.4, we study deterministic en-
cryption and probabilistic encryption and then we make a comparison between

them.

2.1 Background

Cryptography is a study of encryption and decryption technologies. In other
words, it is a science of securing information by coding so that it can be read
only by those with authentication or permission. Cryptography makes exten-
sive use of mathematics, particularly discrete mathematics including topics
from combinatorics, statistics, information theory, computational complexity
and number theory. So cryptography is a study of mathematical techniques

related to aspects of information security.
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As its applications, in general, it is used to protect national secrets and
it is associated with the military, the diplomatic service and government. In
addition, it can be used in a computer or computer network to secure infor-
mation in a website and also to protect financial information such as credit
card information, during financial transactions. So it covers a wide range of
security issues in the transmission and protection of information such as mas-

sive file storage, electronic commerce through public networks.

There are two kinds of cryptosystems, symmetric-key cryptosystems and public-
key cryptosystems. If the encryption key is equal to the decryption key, then
the cryptosystem is called a symmetric-key cryptosystem, whereas a public-key
cryptosystem uses two distinct encryption key and decryption key and then
the computation of the decryption key from the encryption key is infeasible.
In this case, the encryption key is public and decipher keeps the decryption

key secret.

Until the late 1970’s, all cryptographic message transmission was by symmetric
key and it is used for the military and diplomatic purposes. The advantages of
symmetric-key cryptography are keys for encryption are relatively short and
thus symmetric-key cryptography is efficient for encryption. Symmetric-key
cryptography can also be used for various cryptographic mechanisms includ-
ing pseudorandom number generators, hash functions, and computationally
efficient digital signature schemes as primitives.

The disadvantage of a symmetric cryptosystem, Alice and Bob should ex-
change the secret key before they start the communication. Someone that
knows the encryption key can obtain the corresponding decryption key and so
secure key exchange is a main problem. Therefore one of the major issues with
symmetric-key cryptosystems is to find an efficient method to agree on and

exchange keys securely. This problem is referred to as the key distribution

12



problem. In a large network, there are many key pairs to be managed and

thus the trust third party needs efficient key management.

Symmetric-Key Cryptosystem

% Alice's decryption key ,

Alice uses her own encryption key to encrypt her message Bob uses her decryption key to decrypt the ciphertext

Public-Key Cryptosystem

é No Key FExchange ,

Alice uses Bob’s public key to encrypt her message Bob uses his own decryption key to decrypt the ciphertext

The advantage of public-key cryptosystems is that they do not need key ex-
change. When Alice sends a message to Bob, Alice uses his public key for en-
cryption and Bob can decrypt the message by using his private key. So in case
of a public-key cryptosystem, since Alice and Bob have no common shared key
and only the decryption key is secret, the key management is simple. Therefore
in a large network, the number of keys necessary may be considerably smaller
than in a symmetric-key cryptosystem and public-key encryption scheme may
be used to establish a key for a symmetric-key cryptosystem. Another advan-
tage of public-key cryptosystems is that the public-key cryptosystem provides
a digital signature scheme which can not be repudiated. The digital signature
keeps the original entity from denying their data.

The disadvantage of public-key cryptosystems is the computational per-
formance for encryption and decryption. So public-key encryption schemes
are much slower than symmetric-key encryption schemes and thus public-key

cryptosystems are much less efficient than symmetric-key cryptosystems.

13



In practice, we combine a symmetric-key cryptosystem and a public-key cryp-
tosystem. For instance, Alice encrypts the message by using the session key
which Alice generates and she also encrypts the session key by using Bob’s
public key. Then Bob decrypts the session key by using his private key and
decrypts the ciphertext by the session key. Public-key encryption schemes
are most commonly used in practice for the transport of keys used for data
encryption by symmetric-key encryption schemes and other applications such
as data integrity, authentication, credit card numbers and PIN numbers. Fur-
thermore, the most application of a public-key cryptosystem is confidentiality
without key exchange, that is, a message which Alice encrypts by using Bob’s
public key can only be decrypted by Bob’s private key. Public-key digital sig-
nature algorithms can be used for sender’s authentication. Those properties
of public-key cryptosystems are useful for many applications such as digital
cash, password-authenticated key agreement, multi-party key agreement and

SO Oon.

2.2 Encryption Schemes

We describe the most well-known two public-key cryptosystems, called RSA
cryptosystem and ElGamal Cryptosystem. The RSA public-key encryption
was invented in 1978 by Rivest, Shamir and Adleman and it provides both
privacy and authentication. Moreover, the RSA encryption can be found in
Microsoft Window, Netscape Navigator, Apple and Sun and it is also used for
electronic cash. Its security is based on the intractability of the integer factor-
ization problem and there is no efficient algorithms known for this problem.
The ElGamal cryptosystem is related to the Diffie-Hellman key exchange in
1976. Diffie-Hellman key exchange has the fact that it is easy to calculate pow-
ers in modular arithmetic, but difficult to compute logarithms. It means that

it takes considerable running time and cost to compute discrete logarithms

14



relative to the calculation of powers. So the security of ElGamal cryptosystem
is based on the intractability of the discrete logarithm problem and the Diffie
-Hellman problem in Z,* and there is no known polynomial-time algorithm to

solve discrete logarithm problem.
RSA Encryption

We first explain how the RSA encryption scheme works as follows : let the
n-bit integer N = pg be the product of two large primes p and ¢ of the
same size. Let e and d be two integers satisfying ed = 1 mod ¢(N) where
d(N)=(p—1)(¢—1) =N +1—(p+q) is the Euler ¢ function of N. These
integers N, e, d are called, respectively, the RSA modulus, the encryption ex-
ponent, and the decryption exponent where N and e are the public key and
d is the secret key. To encrypt a message m, the sender Alice computes the
ciphertext ¢, which is the least positive residue of m® modulo N. To decrypt
c, the receiver Bob computes the least positive residue of ¢ modulo N and

then ¢ = m® = m (mod N).

Example

Bob chooses p = 97 and ¢ = 83. Then n = 8051 and ¢(n) = 96 x 82 = 7872.
Bob chooses e = 3221 and he computes the inverse d of 3221 mod 7872. Then
Bob has d = 2813. Hence, his public key is n = 8051 and e = 3221 and
the secret key is d = 2813. Now, Alice encrypts the plaintext 7326 and she

computes
73263221 mod 8051 = 4816

and send the ciphertext 4816 to Bob and he decrypts the ciphertext 4816. Bob

uses his secret key d = 2813 to compute

4816213 mod 8051 = 7326

15



and then Bob obtains the plaintext 7326. [

Although we know n = pg, we can not compute p and ¢q. Hence it is com-
putationally infeasible to find ¢(n) = (p — 1)(¢ — 1) and thus we can not
determine d satisfying ed = 1 (mody(n)). Therefore the security of RSA is
based on the intractability of the integer factorization problem. The RSA en-
cryption scheme is slow relative to other cryptosystems, roughly 100 to 1000

times slower than DES.
ElGamal Encryption

Now we give another example of a public-key cryptosystem, called ElGamal
encryption. We describe the encryption scheme as follows : Bob generates
a large random prime p and a generator g. Bob chooses a random z from
Z," and computes h = g*. Then Bob publishes h with p and ¢ as his public
key. Bob retains z as his secret key. Alice chooses a random y from Z,* and
calculates ¢; = ¢¥ and co = mh?. Alice sends the ciphertext (c¢;,cs) to Bob.

Then Bob decrypts a ciphertext (cp, co) with his secret key x by computing

z\—1 _ mh¥Y __ mg®¥ __
02<Cl> — gtv T g =m

as the plaintext message.

Example

Let p = 2111 and g = 2 is a primitive element modulo p. Let z = 321.
Then

h = 23! mod 2111 = 1233.

Alice sends a message m = 1382 to Bob and she chooses a random integer

y = 423. Then Alice computes

16



¢ = 2*2% mod 2111 = 695
and
¢y = 1382 x 1233%% mod 2111 = 252.
Thus the ciphertext is (¢1, ¢2) = (695, 252) and Bob decrypts
m = 252 x (695%2))"" mod 2111 = 1382.

This is the plaintext. [

2.3 Hard Problems

We survey hard problems which most of public-key cryptosystems rely on
in connection with security issues. We first introduce integer factorization
problem and discrete logarithm problem as the most popular computational

problems.

Definition 2.3.1 Integer Factorization Problem
Given a positive integer n, find its prime factorization n = p;“'py® - - - pp%

where the p; are pairwise distinct primes and each e; > 1.

The security of most of public-key cryptosystems depends on the intractability
of the integer factorization problem and it has been studied intensively for the
past 20 years. So far, the most efficient algorithm to factorize an integer is the

general number field sieve method.
Definition 2.3.2 Discrete Logarithm Problem
Let G be a group and «, § € G. Find an integer x if it exists such that § = o”

in G.

Another computational number theoretic problem that is widely believed to

17



be intractable is that of extracting discrete logarithms in a finite field. The
discrete logarithm problem is defined in (@) C G so it is a problem about cyclic
groups. Finding discrete logarithms is difficult, but the inverse operation of
exponentiation can be computed efficiently by using the square and multiply
method. If the discrete logarithm problem is hard, then we have a one-way
function and it is fast computation 5 = o but in general, it is difficult to
compute x. Exponentiation in other groups is also a reasonable candidate
for a one-way function supposing that the discrete logarithm problem for the
group is hard. For instance, the discrete logarithm problem is hard in the

group of points on an elliptic curve.

Form now, we survey some decision problems as hard problems used in cryp-
tographic settings. A decision problem is a problem with a yes or no answer,

that is, a function whose range is two values, such as 0, 1.

Definition 2 3.3  Membership Problem
Let G be a group and X C G be a finite set. For a given g € GG, test whether
g € (X).

In other words, the problem of deciding whether a given element ¢ of the
group G belongs to a fixed subgroup (X) is called the membership problem
for (X) in G. Note that group membership problems tend to be undecidable.

Definition 2.3.4 Let G be a group and let X C G be a finite set. An
X-representation of g € (X) is a product of elements from X and their in-
verses that is equal to g, that is, g = x1" 2% - - - 1, where (X)) is a subgroup

generated by X, r; € X UX ! and a; € Z.

Generally any element of (X') has at least one X-representation with respect

18



to G but not necessary the unique one. However, if G is a free group on X,

then each element of G has the unique X-representation as an irreducible word.

Definition 2.3.5 Representation Problem
Let G be a group and X C G be a finite set. For ¢ € (X), find an X-
representation of g where (X) is a subgroup generated by X.

The representation problem consists in finding a certificate for the membership
problem. For instance, if G = F* is the multiplicative group of a finite field F
and X = {g} where g is a generator of the group F*, then the representation
problem coincides with the discrete logarithm problem. It is remarked that
the representation problem is NP-hard in average in general even if GG is a free

group with a finite rank.

Definition 2.3.6 'Word Problem
Given two words over the alphabet, decide whether they represent the same

element of the group.

The word problem for groups is the problem of deciding whether two given
words of a presentation of a group represent the same element. In fact, there
exists no general algorithm for this problem in a general group. It is an im-
portant fact that the decidability and the complexity of the word problem of
a finitely generated group depend on the group and not on the generators or
the presentation chosen. In other words, if G has decidable word problem for
some finite generating set X, then G has decidable word problem for every
finite generating set.

The word problem is only concerned with finitely presented groups in Sec-
tion 3.2. A word is a product of generators, and two such words may denote

the same element of the group even if they appear to be different because by
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using the group axioms and the given relations it may be possible to trans-
form one word into the other. The problem is to find an algorithm which for
any two given words decides whether they denote the same group element.
The effect of the relations in GG is to make various strings that represent the
same element of G. In fact the relations provide a list of strings that can
be either introduced where we want, or canceled out whenever we see them,
without changing the group element that is the result of the multiplication.
In the worst case, the relation between strings says they are equal in G is not

decidable.

2.4 Probabilistic Encryption

We introduce two kinds of algorithms, deterministic algorithm and probabilis-
tic algorithm which are used in cryptographic encryption schemes and then

we discuss deterministic encryption and probabilistic encryption.

Definition 2.4.1 Deterministic Algorithm

A deterministic algorithm depends on its input data alone.

If a deterministic algorithm runs repeatedly with the same input data, it will
always proceed in the same way and so its complexity provides an accurate

and consistent estimate of its time and space requirements.

Most of cryptosystems based on the number theory to transmit a message
are deterministic. For a given plaintext, anybody can take the same cipher-
text, that is, under a fixed public key, a probabilistic plaintext m is always
encrypted to the same ciphertext ¢. For example, RSA, Rabin and Knapsack
encryption schemes are deterministic. So its disadvantage is if an attacker

knows that the plaintext belongs to a small set, then the attacker can encrypt

20



all possibilities in order to determine which is the supposedly secret message.
The RSA, Rabin and knapsack encryption schemes are deterministic because
a plaintext is always encrypted to the same ciphertext. Another disadvantage
is that it is easy to detect when the same message is sent twice. Hence, deter-
ministic encryption can leak information to an attacker. Especially, because in
a public-key cryptosystem, anyone can encrypt chosen messages using a public
key, the attacker can build a large dictionary of useful plaintxet and ciphertext

pairs and then observe the encrypted channel for matching ciphertexts.

Because of these drawbacks of the deterministic encryption, cryptographers
proposed probabilistic encryption. Probabilistic encryption was introduced
by Goldwasser and Micali in 1982 and it uses randomness to attain a provable
and very strong level of security. Hence, in order that we do not leak even
partial information about the plaintext, the encryption must be probabilis-
tic. In particular, when we use the public-key cryptosystem, the probabilistic
encryption is important because the plaintext corresponds to many different
ciphertexts. For example, ElGamal encryption scheme is one of many encryp-
tion schemes which use randomization in the encryption process. ElGamal

cryptosystem is efficient probabilistic encryption scheme.

Definition 2.4.2 Randomized Algorithm
A randomized algorithm makes use of a random number generator during its

execution.

In general, many algorithms in computational group theory depend on making
some random choices such as choosing random elements of groups. A random-
ized algorithm does not depend on its input data alone and its performance
may vary from one run to another run with the same input. Thus, the com-

plexity is the average running time and space requirements of the algorithm

21



under the assumption the random number generator being used is working
properly and is capable of choosing genuinely random integers within a given
range |a, b]. Moreover, deterministic algorithms follow the same execution path
(sequence of operations) each time they execute with the same input. By con-
trast, a randomized algorithm makes random decisions at certain points in the
execution. Hence its execution paths may differ each time and the random

decisions are based on the outcome of random number generator.

22



Chapter 3

Combinatorial Group Theory

This chapter is based on [9] and [14].

In many cases groups arise by means of presentations. A presentation of a
group G consists of a set of generators of G with a collection of relations
among these generators such that any other relation among the generators
is derived from the given relations. Combinatorial group theory is the study
of groups given by presentations. Since authors used a presentation of a fi-
nite group as its message space of Grigoriev and Ponomarenko homomorphic
public-key cryptosystem, we study combinatorial group theory which covers

these topics.

In Section 3.1, we study free groups and finitely generated free groups because
all free groups used in Grigoriev and Ponomarenko homomorphic public-key
cryptosystem are finitely generated. In Section 3.2, we study finitely presented
groups and survey normal forms of a finitely presented group in connection
with the word problem. In Section 3.3, we survey general linear groups, special
linear groups and modular groups related to the ciphertext space of Grigoriev

and Ponomarenko homomorphic public-key cryptosystem.
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3.1 Free Groups

We begin with some definitions in connection with a concept of a free group.

X* denotes X U X! and elements of X* are called letters.

Definition 3.1.1 A word in X is a finite sequence of letters, w = ay - - - ay,,

n > 0 where a; € X*. If n =0, then w = 1 called the empty word.
Definition 3.1.2 The length |w| of w = a; - - - a,, where a; € X* is |w| = n.

Theorem 3.1.3 The set Wy of all words in X is a semigroup under jux-

taposition.

Definition 3.1.4 A word is said to be reduced or irreducible if it does not

1 1

contain a subword of the form zz~" or of the form x™ z.

Let X = {x1, 29, -+, 2} be a set of symbols where X need not be countable
or ordered. A word on X* means an expression of the form Tay Ty o g,
where a; € {1,2,--- ,t},¢; = £1, x,, € X and x,,s are not necessarily distinct
symbols. That is, a word is a string of elements of X with exponents either
+1 or —1. So a free group F' on X is identified with a subset of W consisting
of all irreducible words and the identity of F' is the empty word 1x € Wix.
The words of the free group are like the names of the elements of the free
group. Successive deletion of parts zz~! or 7tz from any word w must lead
to a reduced word. This determines an equivalence relation on Wy and each
equivalence class has a unique representative which is a reduced word. Define
w to be the reduced word corresponding to w. Multiplication in F' is defined

by concatenation followed by a reduction to a reduced word. Now we give

another definition of a free group in terms of a free basis.
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Definition 3.1.5 A subset X of a group F' is said to be a free basis for
F if, for every function ¢ : X — G can be extended uniquely to a homomor-

phism ¢ : F' — G such that for every z € X, ¢(x) = p(z).

A group F is said to be a free group if there is some subset which is a free
basis for F. For example, the additive group of integers Z is a free group with
either of the singleton sets {1} or {—1} as a free basis. The following results

are well known.

Theorem 3.1.6 Let X be a set. Then there exists a free group F with
a basis X.

Theorem 3.1.7 Every group is a quotient group of a free group.
Theorem 3.1.8 Every subgroup of a free group is free.

Theorem 3.1.9 Free groups on X; and X, are isomorphic if and only if

| Xa] = | Xzl

Theorem 3.1.10 The matrices A = ((1) ?) and B = (; (1)> over Z are a

basis for a free group.

3.2 Finitely Presented Groups

We start with the definition of a presentation of the group.

Definition 3.2.1 A presentation G = (X|R) is a pair consisting of a set

X called generators and a set R of words on X called relations.
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Let G be a group and X C (. Then the smallest normal subgroup of G
containing X is defined as the normal closure of X in G and denote it by V.
The group presented by G = (X|R) is the group F/N where F is the free
group with free basis X and N is the normal closure of  in F, that is, the

smallest normal subgroup containing R.

Definition 3.2.2 If both X and R are finite, then G = (X|R) is said to

be a finite presentation.

Every element g of G = (X|R) can be described by a word in X* and there
are many ways to describe an element. In other words, the finitely presented
group G consists of equivalence classes of words. The fact that w represents
the identity means that repeated application of the equations in i with the
rules of free cancelation transform w into the empty word 1x. Applying an
equation u = v from R means replacing a subword equal to either u or v by
the other, and applying the rules of free cancelation to w means either deleting
or inserting a subword of the form zz~! or 7'z, for z € X, that is, two words
w and v are equivalent in G if we can transform w to v by a finite sequence of
replacement as follows :

1) deleting x;z; ! or x; x;

2
3

inserting z;x; 7! or x; lw;

deleting r; or r;7*

. . -1
4) inserting r; or 7, .

(1)
(2)
(3)
(4)

Example 1

The group { =, v | %, %*, (xy)? ), which is a dihedral group of order 6,
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can be written as (z,y | 2? =1, y* =y !, ayz =y~ ' ). O
Example 2

A presentation of the symmetric group Ss with generators x = (1,2) and

y=(1,2,3)is(z, y|a*=1, y =y ayz =y ). O

Definition 3.2.3 A normal form which is within an equivalence class specifies

a representative element, which is in a simplest form.

If two distinct terms ¢ and v have the same normal form, then ¢ = v is an iden-
tity. Every object under consideration must have exactly one normal form,
and two objects that have the same normal form must be essentially the same.
In general, it is not true that one can get a normal form for the elements, by
stepwise cancelation. Usually we would like the normal form for u € G to be
the simplest word defining u. If we can compute normal forms, then we can
solve the word problem as two words represent the same element of the group
if and only if they have the same normal form. If we find normal forms for
group elements with an algorithm which put words in the group generators
into normal forms, they enable us to determine the finiteness or infiniteness
of the number of elements of the group because we can generally count the

number of distinct normal forms.

3.3 Modular Groups

This section is based on [12] and [17].

There is a connection between matrix theory and number theory because ma-

trix groups can be defined over Z as one of the basic rings of number theory.
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Matrix groups play an important role in many different branches of mathe-
matics. In particular, the most important group is the modular group, SLo(Z)
as it is the most famous example of Fuchsian groups of which the study led
to the introduction of combinatorial group theory. So we study general linear
groups, special linear groups and modular groups used for the construction of
Grigoriev and Ponomarenko homomorphic public-key cryptosystem in Chap-

ter 7.

Definition 3.3.1 Given a ring R with identity, the general linear group

GL,(R) is the group of n x n invertible matrices with elements in R.

Definition 3.3.2 Given a ring R with identity, the special linear group

SL,(R) is the group of n X n matrices with elements in R and determinant 1.

We denote the special linear group SL,(q), where ¢ is a prime power, the
set of n X n matrices with determinant 1 and entries in the finite field F,. The

special linear group SL, (R) is a subgroup of the general linear group GL,,(R).

Definition 3.3.3 The projective special linear group PSL,(q) is the group
obtained from the special linear group SL,(¢) on factoring by the scalar ma-

trices contained in that group.

Theorem 3.3.4 The following are equivalent.

(1) SLy(Z)/ £+ I, the quotient of the group SLy(Z) of 2 x 2 integer matrices

with determinant 1 modulo its central subgroups {+1}.

.o . . . +b .
(ii) The group of complex fractional linear transformations z — <= with

integer coefficients satisfying ad — bc = 1.
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Definition 3.3.5 The modular group is the group of all linear fractional

transformations of the upper half of the complex plane which have the form

az+b
cz+d

where a, b, c and d are integers with ad — bc = 1, and the group operation is

composition of functions.

The modular group is the group of all linear fractional transformations with
determinant 1 and the modular group is a specific case of the special linear
group. Moreover, the modular group is defined as PSLy(Z), but instead of the
notation PSLy(Z), we use the notation SLy(Z). We also give another descrip-
tion to define the modular group. The modular group is generated by two

transformations S and T

S: z—2z+1 and T: z»—>’71

or
11 0 —1
S—(O 1) and T_<1 0).
Every transformation % with a,b,c,d € Z and ad — bc = 1 can be expressed

in the form
SwrsweT ... SUm T,
In addition, a presentation of the modular group is
(S, T|S*=1,(ST)*=1)

and thus the modular group is isomorphic to the free product of the cyclic

groups Cy and Cs.
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Chapter 4

Xn-Representation Algorithm

Let n be a natural number with n > 2 and

1 n 1 0
An:<0 1) andBn:(n 1).

Then I'), denotes a group generated by linear fractional transformations corre-
sponding to two matrices A, and B,. Also, X,, denotes a set consisting of two
matrices A, and B,,. We consider the group T, acting on C U {co} as linear

fractional transformations given by

A (z) = (é ’f)u(z) _ ((1) ”1“) (2) = 2 +nu

and

5= () ) @ (o )0 =

for z € CU {o0}. Since I',, is a free group, freely generated by the set X,

by Theorem 3.1.10 and [pp.168, 14|, an element M of T',, has the unique
representation as a reduced word by Theorem 3.1.11 and we call it the X,,-
representation of M. There are four types of the X, -representations and the

representation of M € I, takes one of four forms as follows :

A By - B A (odd m)

A, B AU B (even my)
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B," A" - Bt A (even m)

By A2 - A1 By (odd m)

where for each i = 1,--- | m, u; is a nonzero integer. For each M (#£ 1) € T',,, M
has the unique X,,-representation. The X, -representation algorithm was intro-
duced by Grigoriev-Ponomarenko [7] and it is one of the algorithms used in the
decryption scheme of their homomorphic public-key cryptosystem. The X,-
representation algorithm is used to compute the X,,-representation of M € I',,.
If we input a matrix M € I',, to the X,,-representation algorithm, then the X, -

representation algorithm outputs the corresponding reduced word over X,,*.

There are inadequateness in the description and justification of the algorithm
given by Grigoriev and Ponomarenko. The aim of the chapter is describe and
justify a correct version of the X,-representation algorithm. The chapter is
arranges as follows. In Section 4.1, we prove some properties of two linear
fractional transformations A," and B," with an arbitrary nonzero integer u.
In Section 4.2, we analyze the X, -representation algorithm and correct some
parts of the X, -representation algorithm. In Section 4.3, we modify the X,-
representation algorithm to make it efficient. In Section 4.4, we implement
the modified X,-representation algorithm by programming it with Maple 6.
In Section 4.5, we justify the correctness of the modified X, -representation

algorithm.

4.1 Linear Fractional Transformations

In this section, we prove several important properties of linear fractional trans-
formations A," and B, where u is a nonzero integer and we find some explicit
formulae to make the X, -representation algorithm more efficient. Further, we

will utilize these properties to design new X;j-representation algorithms in
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Chapter 6 which is used extensively for cryptanalysis of Grigoriev and Pono-
marenko homomorphic public-key cryptosystem in Chapter 8. Let D be the
unit open disk in the complex plane with center 0, that is, D = {z € C||z| < 1}
and let D¢ =C — D = {z € C||z| > 1} be the complement of the closure of D.
At first, we show that A, maps D into D¢ and B,* maps D¢ into D.

Lemma 4.1.1 Let u be a nonzero integer and z € D. Then A,“(2) € D°.

0 1
z+nu = (a+nu)+bi. Since n > 2, if u > 1, then a +nu > —1+nu > 1 and

Proof Let z=a+0bi € D. Then —1 <a <1 and A,"(z) = (1 nu) (2) =

so, a+nu € D¢ If u < —1, then a+nu <1+ nu < —1 and so, a + nu € D°.

Therefore, in either case, A,"(z) = (a + nu) + bi € D¢. O

Lemma 4.1.2 Let u be a nonzero integer and z € D°. Then B,"(z) € D.

Proof Let z = a+ bi € D and consider B,"(z) = L (1) (2) = g =

L AszeDe, % € D and by Lemma 4.1.1, An"(%) =1 4 nu € D°. Hence,

1
u—l—z z

B, "(z) ==l €D O

nw

The following Theorems immediately are obtained by Lemma 4.1.1 and Lemma

4.1.2.

Theorem 4.1.3 If M = A,"*B,**--- B, 1A, withoddm,i=1,--- ,m €

N and nonzero u; € Z, then for z € D, M(z) € D°.

Theorem 4.1.4 If M = B,"*A,,**--- B, 'A,"" withevenm,i=1,--- ,m €
N and nonzero w; € Z, then for z € D, M(z) € D.

Theorem 4.1.5 If M = A,"*B,,**--- A" B, withevenm,i=1,--- ,m €
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N and nonzero u; € Z, then for z € D, M(z) € D°.

Theorem 4.1.6 If M = B,"*A,"**--- A, B, withoddm,i=1,--- ,m €

N and nonzero u; € Z, then for z € D, M(z) € D.

4.2 Analysis of X ,-Representation Algorithm

In this section, we analyze the X, -representation algorithm given by Grigoriev
and Ponomarenko in [7] and we correct errors which appear in its description.
A matrix M € I',, is input to the X, -representation algorithm and the algo-
rithm outputs the X, -representation of M. (z,2’) denotes a pair of complex
numbers with |z] < 1 and |2/| > 1. Grigoriev and Ponomarenko suggest
(z,2') = (3,2). Grigoriev and Ponomarenko note that given z € DU D*, there

is at most one integer u such that
(z€ D°NAM(2) € D)V (z€ DAB,(z) € D°).
If such an integer exists, then put C' = A,“ if z € D and C' = B," if z € D.
X,-Representation Algorithm

Step 1 (L, L") «— (M, M) and (w,w’) « (1x,, 1x,)-
Step 2 L = I = output w. L' = I = output w'.

Step 3 (w,w') «— (C~'w,C"'w') and (L, L') « (CL,C'L') where C = C(Lz)
and C" = C(L'(Z")). Go to Step 2.

First of all, we correct an error in their description of the X,,-representation
algorithm. 1In Step 3 of the X, -representation algorithm, their setting is
w=C"1wand w' = ¢’ 'w', but they should be w = wC~! and v’ = w'C"".
In order to demonstrate why this correction is needed,

In Step 1 of the first iteration, input
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- Y-(

to the X,,-representation algorithm where the X,,-representation of M is A,,B,,.

In Step 3 of the first iteration, L(3) = M(3) = "(";—EQ)H and L/(2) = M(2) =

Iinis "<2;n++11>+2. Forn > 2, L(}) = M(}) > 1 and L(2) = M(2) > 1.

Therefore, set C' = A," and C" = A,,". Since M(3) > 1 and M(2) > 1, to find

1
2

the nonzero integer u, let

C(M(2) = A" (M(2) = nu—i—n(2++11)4r2 = nu+n+2n2+1 = n(u—l—l)—i—TZH e D.

In both cases, we find v = —1 and thus, C = A, and ¢’ = A, '. The
algorithm sets L = CL = A, 'M = B,, L' = C'L = A, 'M = B,. Thus,
w=C"lw=A,and w =C" tw=A,.

In Step 1 of the second iteration, input L = B, and L' = B, to the X,-

representation algorithm.
1

In Step 3 of the second iteration, for n > 2, L(3) = B,(3) = %fﬂ = n+r2 <1
and L'(2) = Bu(2) = 5247 < 1. Set C = B," and C' = B,". To find the

nonzero integer u, let

1

O(L(z)) = B."(L(2)) = Bu'(75a) = ot = v € D7

Then —1 < n(u+1)+2<land -3 <n(u+1) < —1. Son(u+1) = —2.
Since n > 2, we find u+1=—1 and u = —2. So C'= B, 2. Let

2

C/(L<2)) - Bnu(L<2)) - Bnu<2n2+1) - ﬁ"‘l - 2nu+22n+1 - nu-l—ln-i-% € D"

Then —1 < nu+n+4 <land 32 <n(u+1) <3 Son(u+1) =-1or
n(u + 1) = 0. Therefore, C' = B,,~'. Since n > 2, u = —1.

The algorithm sets L = CL = B, B, = B, # I, ' = C'L' =
B, 'B, =1. w=C"w = B,24,, w = C'""'w' = B,A,. Hence, in the

second iteration, for z = 2, the X,,-representation algorithm outputs B, A,, as
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the X,,-representation of M. Therefore, in Step 3, its description should be

corrected to setting
w — wC~! and W — wC'

Next, it should be noted that the X,-representation algorithm sometimes
throws up errors as it operates. As concrete cases, by definition of the lin-
ear fractional transformation, B,"(z) = oo in case that the denominator of

B,"(2) is zero. For example, B, *() = oo. In addition, we may have the

>
case | B,"(z)| = 1, for example, |B;~'(3)| = 1 and we may also have the case
A, (2) = 0, for example, Ay~ '(2) = 0. These concrete examples show that the
X,-representation algorithm does not work for those cases. Hence, we have to

consider all cases so that the X, -representation algorithm works for any case.

Grigoriev and Ponomarenko do not show clearly how to compute the inte-
ger u of A" and B,". In order to obtain the exponent u of A," and B,",
Grigoriev and Ponomarenko require the determination of the nonzero integer
exponent u such that (z € D°ANA,“(2) € D)V (2 € DAB,"(z) € D), but the
algorithm does not provide a direct way to compute it. We give explicit formu-
lae to compute the nonzero exponent u of A, and B,, in the X ,-representation
algorithm. This allows our modified X, -representation algorithm in Section
5.3 to run very efficiently. The following two theorems provide explicit formu-

lae to compute the exponent u of A," and B,".

Theorem 4.2.1 Let z € R with |z| > 1. If there exists a nonzero inte-

ger u such that |A,"(z)] < 1, then u = (%W = L%J

Proof Let z € D°NR. Suppose |A,"(z)| = |nu+ z| < 1 for a nonzero

u € Z. Then —1 < nu+ 2z < 1, so that —1 — 2z < nu < 1 — z. Hence

% <u < 1% Since for n > 2, the distance between == 1;Z is

and
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% < 1, there is at most one integer between them. If one of % and 1;'2
is an integer, then there is no integer between % and 1—: and this is in

contradiction with our assumption. Thus neither % nor 1;—2 is an integer,

and u = [==2] = |[=2]. O

Theorem 4.2.2 Let z € R with |2| < 1. If there exists a nonzero inte-

ger u such that |B,"(2)| > 1, then u = [=2 + 1] = [ =L 4 1],

nz n

Proof Let z € DNR. Assume |B,"(2)| = |;-Z=| > 1 for a nonzero u € Z.

Then |z| > |nuz + 1|. If z > 0, then |nuz + 1| < z, so that —z < nuz +1 < z,

—z—1<nuz<z—1and%<u<

z=L  Hence ’—1+’71<u<;—21+%. If

nz ’ nz

z < 0, then |[nuz+1| < —z, so that z —1 < nuz < —z—1. So % <u< Zn_zl
and = + =t < u < =L + 1 Because for n > 2, the distance between =L 4 =L

nz n nz n nz n
and = 4+ L is % < 1, there exists at most one integer between ;—Zl + _71 and

nz n

-1, 1 -1, -1 -1 1 : : :
— + ~. If one of — + = and — + ~ is an integer, then there is no integer

1

between — + _71 and ;—ZI + % and it contradicts our assumption. Thus, neither

-1, -1 -1, 1 . =1 —17 _ =1, 1
— 4+ —mor — + - isanintegerand u = [— + —[ = [— + -] [
In addition, the X,,-representation algorithm has no step to define the func-
tions C' and C’ though Grigoriev and Ponomarenko mentioned setting C'. So
we add a step to define the functions C' and C’ to the X,,-representation algo-

rithm for its modification.

In the next section, we give our modified version of the X, -representation algo-
rithm. We correct the error of Griogoriev and Ponomarenko’s X,,-representation
algorithm, adding steps to deal with special cases and we also add steps that
provide a direct computation of the exponent u of A, and B," in a efficient

way and definition of the function C.
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4.3 Modified X, -Representation Algorithm

We describe our modified X, -representation algorithm. The modified X,,-

representation algorithm takes a matrix M € I',, and a real number z = % or
z = 2 as inputs, and the modified X, -representation algorithm outputs a word

in X,,%. Unlike Grigoriev and Ponomarenko’s X,,-representation algorithm op-

1

erates a pair (z,2') = (3,2) at the same time, the modified X,,-representation

1
3

algorithm first runs for z = If the modified X,,-representation algorithm
outputs the X, -representation, then the modified X, -representation algorithm
stops and then we do not need to run the X,-representation algorithm for
z = 2. If the modified X,-representation algorithm outputs e for z = %,
then the modified X,,-representation algorithm runs for z = 2 to compute the
X,-representation of M. Hence, the modified X, -representation algorithm
outputs either € or the X, -representation of an input M € I',. Note that the

algorithm terminates when the algorithm has an output.
Modified X,-Representation Algorithm

Step 0
L—M

W < 1Xn'

Step 1

(1) L(z) = 0,|L(z)| = 1,L(z) = co = output e.

(2) |L(z)| > 1= v — [ 2E= | and C — A,".

Step 2

C =1= output ¢
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Otherwise, L — CL and w — wC™?!

Step 3
L =1= output w.

Otherwise, return Step 1.

4.4 Programming Implementation

In this section, we implement the modified X, -representation algorithm by
programming it to show how the modified X, -representation algorithm works
correctly. We use Maple version 6 to make a program source code. It turns
out that the modified X, -representation algorithm works very efficiently in
practice to compute the X, -representation of M € I',,.

The following X, -representation program is equivalent to the modified X, -
representation algorithm because the X,,-representation program source code
includes all steps of the modified X,,-representation algorithm. Only the dif-
ference between the algorithm and the program depends on the skill to make
a program and the programming language. The modified X,,-representation
program first runs for z = % and next, it runs for z = 2 according as the
X,-representation types. The X,-representation program outputs the X,,-
representation of M for either z = % or z = 2. Now we show the X,,-

representation program source code in the following.
X,-Representation Program Source Code

with(GaussInt):

with(linalg):

su:=proc(z::float, n::integer, M11::integer, M12::integer, M21::integer, M 22::integer)
local M, v, C, L;

z;

M:=matrix(2,2,[M11, M12, M21, M22]);
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L(z) :=(M11*z+M12)/(M21*z+M22);
if abs(L(z)) = 1 then

print(epsilon);

fi;

if abs(L(z))>1 then
v:=floor((1-L(z))/n);

C:=matrix(2, 2, [1, nxv, 0, 1]) ;
print(matrix(2, 2, [1, n, 0, 1])" {—v});
fi;

if abs(L(z))<1 then

vi=floor((-1)/(n + L(z)) + 1/n);
C:=matrix(2, 2, [1, 0, n*v, 1]);

print (matrix(2, 2, [1, 0, n, 1])"{—v}) ;
fi;

L:=multiply (C, M);

print(L);

end proc:

Note that this program source code implements a single pass through the
loop of our algorithm. In order to compute the X,,-representation of M € I',,
we input either z = 0.5 instead of z = % or z = 2.0 instead of z = 2, the
natural number n, the entities M 11, M12, M21, M22 of the matrix M to the
X,-representation program. For every execution of the X,,-representation pro-
gram, the program outputs two matrices. The first matrix means C~! = A4, 7"
or C~t = B, in Step 2 of the modified X,,-representation algorithm and
the second matrix means L = C'L in Step 2 of the modified X, -representation
algorithm. If the identity matrix turns up in the second matrix, then ex-
ecution of the program terminates. Next collect the first matrix of every

execution sequentially and concatenate the first matrices which are collected
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from all executions in order and then we can obtain a word in X, as the
X,-representation of an input M. When infinite entries appears in the sec-
ond matrix, then execution of the program terminates. It means that the
X,-representation algorithm outputs € and the algorithm terminates. From
now, we show concrete examples to show how the modified X,,-representation

algorithm works correctly by implementing the X, -representation program.

Example 1

1 2
01
gram works correctly. Input the six values z = 0.5, n =2, M11 =1, M12 = 2,

For M = Ay, = ( ) € I'y, we check whether the X,,-representation pro-
M?21 =0 and M22 =1 to the X,-representation program.

_1
For z = 3,

> su(0.5,2,1,2,0,1);

(03)
(o)

The second matrix of the first execution of the program is the identity matrix
-1

which is L = CL = <(1) f) ((1) ?) = [ in Step 2 of the modified X,,-

representation algorithm and so execution of the program terminates. Collect

(03)

and this is the Xs-representation of M.

the first matrix
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Input z = 2.0, n = 2, M11 = 1, M12 = 2, M21 = 0 and M22 = 1 to

the X, -representation program.
For z = 2,

> su(2.0,2,1,2,0,1);

> su(2.0,2,1,-2,0,1) ;

(Y
(> <)

The second matrix of the second execution of the program is an unusual matrix

1 =2 . . : :
(—oo oo) and thus execution of the program terminates. This case is the

same as the situation that the modified X, -representation algorithm outputs

¢ when L(2) = ((1]

X,-representation program does not output the Xs-representation of M for

z=2. 0

_12) (2) = 0 and the algorithm terminates. Hence the

Example 2

We show implementation for another even number n = 4 as an input. Given

M= A= ((1) i‘) €Ty, input z = 0.5, n =4, M11 =1, M12 = 4, M21 = 0,

M?22 =1 to the X,,-representation program.

> su(0.5, 4, 1, 4, 0, 1);
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(03)
(o)

The second matrix of the first execution of the program is the identity ma-

-1
trix which is L = CL = ((1) ?) ((1) 411) = [ in Step 2 of the modified

X,-representation algorithm. Thus execution of the program terminates and

1 4\
0 1)
1

and this is the Xy-representation of M obtained from the program for z = 3.

collect the first matrix

Hence the program works correctly to compute the X,-representation of M.
For z = 2,

> su(2.0, 4, 1, 4, 0, 1);

> su(2.0,4, 1,-4,0, 1) ;

(07

. . . (1 4 .
The first matrix of the second execution of the program is 01) = I which
is C7'' = A, =1 and so C = I in Step 2 of the modified X,,-representation
algorithm and so execution of the program terminates. This case is the same

as the X,-representation algorithm outputs € and the algorithm terminates.
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So the program does not output the Xy-representation of M for z = 2. [
Example 3

So far we have seen how the program works for two even numbers n = 2
and n = 4. Now we see how the program works for odd natural numbers.

Given M = Az = (1) i’) € I's, input 2z =05, n =3, M11 =1, M12 = 3,

M?21 =0 and M22 =1 to the X,-representation program.
For z = %,

> su(0.5, 3, 1, 3,0, 1) ;

(03)
(o)

The second matrix of the first execution of the program is the identity matrix
-1

which is L = CL = (é i’) <(1) i’) = [ in Step 2 of the modified X,-

representation algorithm. So execution of the program terminates and collect

(03)

and this is the X3-representation of M.

the first matrix

Input 2z = 2.0, n = 3, M11 =1, M12 = 3, M21 = 0 and M22 = 1 to

the X,,-representation program.

For z = 2,

> su(2.0,3,1,3,0,1) ;

43



> su(2.0, 3, 1,-3,0, 1) ;

Since <(1) _13) (2.0) = —1, this means that |L(2)| = 1 in Step 1 of the modi-

fied X, -representation algorithm. Both the program and the algorithm output
the same € and so both of them terminate. Hence the X, -representation pro-

gram does not output the Xs-representation of M for z = 2. [J
Example 4

We implement the modified X,,-representation algorithm for another odd natu-
15
0 1
input z = 0.5, n =5, M11 =1, M12 =5, M21 = 0 and M22 = 1 to the

ral number to show how the algorithm works. Given M = A5 = el

X,-representation program.

1
For z = 3,

>su(0.5, 5, 1, 5, 0, 1) ;

o
(o)

The second matrix of the first execution of the program is the identity matrix
-1

which is that L = CL = <(1) ?) <(1) i) = I in Step 2 of the modified X5-

representation algorithm. So execution of the program terminates and collect

the first matrix
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(03

This is the X, -representation of M.

Input z = 2.0, n = 5, M11 =1, M12 = 5, M21 = 0 and M22 = 1 to

the X,,-representation program.
For z = 2,

> su(2.0, 5,1, 5,0, 1) ;

> su(2.0, 5,1,-5,0,1) ;

(o)

The first matrix of the second execution of the program is the identity ma-
0
. S _ 15 . .
trix which is C~! = A,,7" = 0 1> = I in Step 2 of the modified X,-
representation algorithm. So execution of the program terminates and the

modified X,,-representation algorithm outputs € in step 2 of the algorithm and

the algorithm terminates. [J

Example 5

Given M = B, = (; (1)> €[y, input 2 =05, n =2, M11 =1, M12 = 0,

M?21 =2 and M22 =1 to the X,-representation program.
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_ 1
For z = 3,

> su(0.5,2,1,0,2,1) ;

> su(0.5,2,1,0,-2,1) ;

The first matrix of the second execution of the program is an unusual matrix
1 2\7 o - : :
(0 1) which is the same situation that the modified X,,-representation
algorithm outputs € in Step 1 of the modified X,,-representation algorithm be-
1 0\,
~92 1 (5
algorithm. In the case, the algorithm and the program terminate. Hence we

cause L(3) = ) = oo in Step 1 of the modified X,,-representation

1

can not obtain the Xj-representation of M for z = 3.

For z = 2,

> su(2.0,2,1,0,2,1);

(:5)
(o)

The second matrix of the first execution of the program is the identity matrix
-1

which is L = CL = (; (1]) (; ?) = [ in Step 2 of the modified X,-

representation algorithm. Collect the first matrix
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(; ?) ! and it is the Xs-representation of M. O

Example 6

M = (111 (1)) € I'y and the Xy-representation of M is B,. Input z = 0.5,

n=4, M11 =1, M12 =0, M21 = 4 and M22 =1 to the X,-representation

program.
_ 1
For z = 3,

> su(0.5,4,1,0,4,1) ;

()
(1)

()
(1)

The first matrix of the second execution of the program is the identity matrix

> su(0.5,4,1,0,-4,1) ;

0
(le (1]) = [ whichis C~' = B, = I and so C' = [ in Step 2 of the modified
X,-representation algorithm. Thus execution of the program terminates and
this case is the same as the situation that the modified X,,-representation al-
gorithm outputs € in Step 2 of the modified X,,-representation algorithm and
the algorithm terminates. Therefore the X, -representation program does not
output the X -representation of M for z = 1

5 .

Input 2 =2, n =4, M11 = 1, M12 = 0, M21 = 4 and M22 = 1 to the
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X,-representation program.
For z = 2,

> su(2.0,4,1,0,4,1);

()
(o 7)

The second matrix of the first execution of the program is the identity matrix

-1
which is L = CL = (le (1]) (le (1)) = I. So execution of the program

terminates. Collect the first matrix

1 0\’
4 1
and this is the X -representation of M. [

Example 7

10
31
M?21 =3 and M22 =1 to the X,-representation program.

Given M = B3 = ( ) € I's, input 2z =05, n =3, M11 =1, M12 = 0,

1
For z = 3,

> su(0.5,3,1,0,3,1) ;

()
()

> su(0.5,3,1,0,-3,1) ;
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The program outputs € in the second execution of the program and so execu-

tion of the program terminates. Since |L(3)| = | _13 O) (3)] = 1, both the

1
progran and the algorithm output the same e. Hence the X,-representation

program does not output the Xs-representation of an input M for z = %

Input z = 2.0, n = 3, M1l = 1, M12 = 0, M2l = 3 and M22 = 1 to

the X, -representation program.
For z = 2,

> su(2.0,3,1,0,3,1) ;

()
o 7)

The second matrix of the first execution of the program is the identity matrix

-1
which is L = CL = <; (1)) (; (1J) = [ in Step 2 of the modified X,,-

representation algorithm. So execution of the program terminates. Collect

()

and this is the X,,-representation of M. []

the first matrix

Example 8

10
5 1
M21 =5 and M22 =1 to the X,,-representation program.

Given M = By = € ['s, input 2z =05, n =5, M11 =1, M12 = 0,
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_ 1
For z = 3,

> su(0.5,5,1,0,5,1);

(o)
(s 1)

G5
(5 1)

Since the first matrix of the second execution of the program is the identity

> su(0.5, 5, 1, 0, -5, 1);

matrix (é (1))0 = [ which is C7!' = B,” = I and so, C = I in Step 2 of
the modified X,,-representation algorithm. So execution of the program ter-
minates and in this case, the modified X,,-representation algorithm outputs
€ in Step 2 of the algorithm. Hence the X, -representation program does not

output the Xs-representation of M for z = %

Input 2z = 2.0, n = 5, M11 =1, M12 = 0, M21 = 5 and M22 = 1 to

the X,,-representation program.
For z = 2,

> su(2.0, 5, 1,0,5, 1) ;

G5
(o)

20



The second matrix of the first execution of the program is the identity matrix

-1
o 1 0\ /1 0 10 : .
which is L = CL = <5 1) (5 1) <5 1) = [ in Step 2 of the modified

X,-representation algorithm. So execution of the program terminates and

()

This is the X5-representation of M. [J

collect the first matrix

Example 9

—95 —768
12 97
gram outputs the correct X,-representation of M. Input the six values z = 0.5,

n =4, M11 = =95, M12 = —768, M21 = 12 and M22 = 97 to the X,-

Given M = A, 2B;2A% = ( ) € I'y, we check whether the pro-

representation program.
_1
For z = 3,

> su(0.5,4, —95, —768, 12, 97);

ol
(12 57

> su(0.5,4,1,8,12,97);
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> su(0.5,4,1,8,0,1);
1 4\?
01
10
0 1

The second matrix of the third execution of the program is the identity matrix

-2
which is L = CL = ((1] 11) ((1) f) = [ and so execution of the program

terminates. Collect the first matrix of every execution of the program. Then

G GG

as the X,-representation of M.

we have

For z = 2,

> su(2.0,4, —95, —768, 12, 97);

1 4\ 2
0 1

1 8
12 97

> su(2.0,4,1,8,12,97);

1 0\°
4 1

1 8

0 1

> su(2.0,4,1,8,0,1);
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> su(2.0,4,1, -4,0,1);

(1)
(07

The first matrix of the fourth executi%n of the program is the identity ma-
trix which is C~! = A4,,7" = (é le> = [ in Step 2 of the modified X,,-
representation algorithm. So execution of the program terminates and in this
case, the modified X, -representation algorithm outputs € in Step 2 of the

algorithm. Hence the X,,-representation program does not output the Xj-

representation of M for z =2. O

Example 10

Given M = By ' A, 2B A,° = <599§ 517298) € T, input z = 0.5, n = 4,

M11 = =95, M12 = —768, M21 = 392 and M22 = 3169 to the X,-
representation program.
For z =

1
27

> su(0.5,4, —95, —768, 392, 3169);

()

—-95 768
12 97

23



> su(0.5,4, —95, —768, 12, 97);

> su(0.5,4,1,8,12,97);

> su(0.5,4,1,8,0,1);

The second matrix of the fourth execution of the program is the identity matrix

—2
which is L = CL = A,"L = ((1) le) ((1] ?) = [ in Step 2 of the modified

X,-representation algorithm. So execution of the program terminates. Collect

the first matrix of every execution and then we have

G5 6D GHG6Y)

as the Xy-representation of M.

Input z = 2.0, n = 4, M11 = —95, M12 = —768, M21 = 392 and M22 = 3169

to the X,,-representation program.
For z = 2.

> su(2.0,4, —95, —768, 392, 3169);
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1 0\"
41
—95 —768
12 97

> su(2.0,4, —95, —768, 12, 97);

ol
(12 57

> su(2.0,4,1,8,12,97);

> su(2.0,4,1,8,0,1);

> su(2.0,4,1,—4,0,1);

95



The first matrix of the fifth execution of the program is the identity ma-

0
trix which is C7! = A4,,7" = (1) le

representation algorithm. So execution of the program terminates. In this

= [ in Step 2 of the modified X,,-

case, the modified X, -representation algorithm outputs € in Step 2 of the al-
gorithm and the algorithm terminates. Hence the X,,-representation program

does not output the Xy -representation of M for z = 2. [

Example 11

GiVGl’l M = A4_2B43A4QB4 = <_435(?7 _5768

2 =05n=4, M1l = —3167, M12 = —768, M21 = 400 and M22 = 97 to

€ I'y, input the six values
the X,,-representation program.
For z = 5

> su(0.5, 4, —3167, —768, 400, 97);

1 4\
0 1

33 8
400 97

()
()

> su(0.5, 4, 33,8, 400, 97):

> su(0.5,4,33,8,4,1);

(03)
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10

41
> su(0.5,4,1,0,4,1);

1 0\’

4 1

1 0

—4 1

(45)
(44

The first matrix of the fifth execution of the program is the identity matrix
0
1
which is C™!' = B, = 4 (1] = [. So execution of the program termi-
nates and in this case, the modified X,,-representation algorithm outputs €

> su(0.5,4,1,0,-4,1);

in Step 2 of the algorithm. Therefore the program does not output the X,-
representation of M for z = %
For z = 2,

> su(2.0,4, —3167, —768, 400, 97);

1 4\
0 1

33 8
400 97

> su(2.0, 4, 33, 8,400, 97);
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()
()

> su(2.0,4,33,8,4,1);

> su(2.0,4,1,0,4,1);

(i)
(o)

The second matrix of the fourth execution is the identity matrix which is

-1
L=CL= <le ?) <le (1)> = I in Step 2 of the modified X,,-representation
algorithm. So execution of the program terminates and collect each first matrix

of every execution of the program. Then we have
1A\ 721 0\’ /1 4\* (1 0\’
0 1 4 1 0 1 4 1) °
This is the X,-representation of M. [J

Example 12

2977 —T768
23440 —6047
ues z = 0.5, n = 4, M11 = 2977, M12 = —768 and M21 = 23440 and

M = B42A4_ZB43A42B4_1 = S F4, input the six val-

M?22 = —6047 to the X,,-representation program.
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1
Forz-§,

> su(0.5, 4, 2977, —768, 23440, —6047);

1 0\’
41
2977 —768
—376 97
> su(0.5,4, 2977, =768, —376,97);
14\ °
0 1
—31 8
376 97
> su(0.5,4, —31,8, —376,97);
1 0\’
41
-31 8
—4 1
> su(0.5,4, —31,8, —4,1);
1 4\’
01
1 0
—4 1

> su(0.5,4,1,0, —4,1);
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()
(1)

The first matrix of the fifth execution of the program is the identity matrix

0
which is C~' = B, = le (1)

nates. This is the same as the modified X, -representation algorithm outputs

= [ and so execution of the program termi-

€ in Step 2 of the algorithm and the algorithm terminates. Thus the X,-

1
5

representation program does not output the Xy -representation of M for z =

For z = 2,

> su(2.0, 4, 2977, —768, 23440, —6047);

1 0\
4 1
2077 —768
376 97
> su(2.0,4, 2977, —768, —376, 97);
1 4\
01
—31 8
—376 97
> su(2.0,4, —31,8, —376,97);
1 0\’
4 1
—31 8
—4 1
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> su(2.0,4, —31,8, —4,1);

> su(2.0,4,1,0,—4,1);

()
o 7)

The second matrix of the fifth execution of the program is the identity matrix
-1

which is L = CL = B,’B,, ' = (111 (1]) (le (1)) = [ in Step 2 of the

modified X, -representation algorithm. So execution of the program terminates

and collect each first matrix of every execution of the program. Then we have

GG EDEDEY

as the X -representation of M. [

4.5 Correctness of Modified X,-Representation
Algorithm

Let n > 2 and M € I',,. Assume that all exponents of the X, -representation
of M € T, are nonzero integers. We prove the correctness of the mod-
ified X, -representation algorithm. We consider all four types of the X,,-
representations and for each X,-representation type, we show how the mod-
ified X, -representation algorithm works for z = % and z = 2, respectively.

For convenience, the modified X,,-representation algorithm is called the X,-

representation algorithm.
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Theorem 4.5.1 Let M = A, € I', with a nonzero integer u. If M is
input to the X,,-representation algorithm (z = %), then the algorithm outputs

A," as the X, -representation of M.

Proof 1If M = A,", then in Step 1 of the first iteration, by Lemma 4.1.1,
LG = 14" B = u+ 3 > L Sov = [FH2] = |75 = —,
C=A4,"=A," InStep2, L=CL=A4,""A" =1 and w =wC™! = A,"“

In Step 3, since L = I, the algorithm outputs A, as the X,,-representation of
M and then the algorithm terminates. [

Theorem 4.5.2 Let M = A," € I', with a nonzero integer u. If M is
input to the X,,-representation algorithm (z = 2), then the algorithm outputs

€.

Proof If M = A,", then in Step 1 of the first iteration, L(2) = A,"(2) =
nu + 2.

If n =2and u = —1, then |L(2)| = |A,"(2)| = |nu+ 2| = 0 and the algorithm
outputs €. Then the algorithm terminates.

If n =3 and u = —1, then |L(2)| = |4,“(2)| = |nu+ 2| = 1 and the algorithm

outputs €. Then the algorithm terminates.

Except for these two cases, in Step 1 of the first iteration, |L(2)| = |A,*(2)] =
nu+2] > 1,50 0= |22 ] = [lm=2) — —y — 1 and C = A4," = 4,7,

InStep 2, L=CL=A, “'4,"=A, " and w = wC~" = A,“™. In Step 3,
since L = A, # I, return Step 1.

In Step 1 of the second iteration, L(2) = A, '(2) = —n + 2.
If n =2, then |L(2)| = | — n+ 2| = 0 and the algorithm outputs e. Then the

algorithm terminates.
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If n =3, then |L(2)| = | —n+ 2| = 1 and the algorithm outputs ¢. Then the
algorithm terminates.

If n > 4, then |L(2)] = |4, (2)] = | —n +2| > 1, so that v = [ L& | =
|[H=2 | = =] = [1-1] =0and C = A," = I. In Step 2, since C = I, the

algorithm outputs € and then the algorithm terminates. [

Theorem 4.5.3 Let M = B," € I', with a nonzero integer u. If M is
input to the X,,-representation algorithm (z = %), then the algorithm outputs
€.

1
Proof In Step 1 of the first iteration, L(3) = B,"(3) = e .
If n =2 and u = —1, then L(3) = B,"(3) = oo and the algorithm outputs e.
Then the algorithm terminates.

If n =3 and u = —1, then |L(3)| = [B,"(3)| = |;7z45] = 1 and the algorithm

outputs €. Then the algorithm terminates.

Except for these two cases, in Step 1 of the first iteration, |L(3)| = |B,"(3)| =

1 =l 1=l 1 _ _puv_p —u-l
‘nu+2| < 1, SOV = LnL(%)—i_ﬁJ = L%—FEJ =—u—1and C = Bn = Bn .
In Step 2, L=CL =B, “'B," =B, " and w = wC~" = B,"™. In Step 3,

as L = B, ' # I, return Step 1.

In Step 1 of the second iteration, L(3) = B, '(3) = =3

If n =2, then L(3) = B, '(3) = —— = 0o and the algorithm outputs e.

Then the algorithm terminates.

If n =3, then |L(3)| = |B, ' (3)| = |- ‘| = 1 and the algorithm outputs €.
Then the algorithm terminates.

1 ~1/1 1 -1 1
If n > 4, then [L(3)| = [B., (3)| = |5l < 1,50 v = [nL(%) + =] =

Lni+%J=L"T_Q+%J=L —%JanndC:Bn”:[. In Step 2, since
2

C = I, the algorithm outputs € and then the algorithm terminates. [J
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Theorem 4.5.4 Let M = B," € I', with a nonzero integer u. If M is
input to the X,,-representation algorithm (z = 2), then the algorithm outputs
B," as the X,,-representation of M.

Proof In Step 1 of the first iteration, by Lemma 4.1.2, |L(2)| = |B,"(2)| =

il = | < 1sov = Lz +4) = 72+ ) = [—ut ) = —uand
2

C=B,=B," InStep2, L=CL=5B,"B,=1and w=wC""!= B,".

In Step 3, since L = I, the algorithm outputs B,," as the X,,-representation of

M and then the algorithm terminates. [

Theorem 4.5.5 Let a matrix M = A,"*B,**---B,""'A,*" € I',, where
odd m > 3 and u; is a nonzero integer (i = 1,---,m). If M is input
1

to the X,-representation algorithm (2 = 35), then the algorithm outputs

A, B, - B, "t A" as the X, -representation of M.

Proof Let a matrix M = A,"*B,*?--- B,"™ A, € I',, with odd m. Then
in Step 1 of the first iteration, by Theorem 4.1.3, |L(5)| = |A," B," - - - B,""
An”m(%)| = |A,"“(61)| = |nuy + B1] > 1 where 8, = B,"**- --Bn“m*IAn"’”(%).
By Theorem 4.1.4, |f1] < 1 and 0 < % < % <1 Sowv = L%(%)J =
B | = |y + BB = gy and € = 4, = A,7". In Step 2,
L=CL=A,""A,""B,"* ---B,)"" A, = B,"*--- B,"" ' A" and w =

wC™t = A,". In Step 3, since L = B,">--- B,"™'A,"™ # I, return Step 1.

Assume that for 1 < 7 < m, L = A,“B,"“* ... B,"" 1A, with odd
jand w = A,""'B,**---B,""! in Step 2 of the j — 1th iteration or L =
B, A, B Y ALY with even j and w = A,"*B,"*? -+ A, in Step

2 of the j — 1th iteration.

In Step 1 of the jth iteration, if L = B,"“ A,,*** ... B,*""1 A, “™ with even 7,

64



L) = B,(0) = iy = mbr where ay = 4,550 B0 4,00 (3)
By Theorem 4.1.4, |L( )| = |B, ”3(04])| = |nqu | < 1. By Theorem 4.1.3,
;| = ]An“HI---Bn“m*lAn“’m(E)\ > 1land 0 < n(l — a—lj) < ,21 <1 Sov =
Ln;é) +yl=ly+;0-1)=-uyandC=B,"=B,". InStep 2, L =
OL = BniujBnujAnuijl ce Bnum_lAnum - Ant+1 tee Bnum_lAnum and w =

wC™t =A,"" B, .- A,"1B,"% . In Step 3, since L = A,"+! ... B,"m"1 A "

# I, return Step 1.

In Step 1 of the jth iteration, if L = A,“ B,"“*' .. B,*"*A,“" with odd 7,
then by Theorem 4.1.3, |L(3)] = |A," B,"** -+« B,"m 1A, ()] = |A." (35)| =
lnuj+06;| > 1 where 3; = B,"* - - - B,""~1A,*"(3). By Theorem 4.1.4, |5;| <
land 0 < 1_Tﬁj<%§1. Sov = L%(i)j = L#fﬁﬂ = L_Uj+1nﬁj—| = —u;
andC =A,"=A, . InStep2, L=CL=A,,"%A,B,"* ... B, 1A,"™
= B, ... B 1 A" and w = wC ™! = A, B, - B, A% . In Step

3, since L = B,"“*tA,"+2... B """ 1 A, %" £ [ return Step 1.

If j = m, then in Step 1 of the j = mth iteration, L = A,“™ and by
Theorem 4.5.1, in Step 2, L = CL = A, """ A,"" = [ and w = wC™! =
A, B, - B ALY, In Step 3, since L = I, the algorithm outputs
A, B, - B,"m A" as the X,-representation of M and then the algo-

rithm terminates. O

Theorem 4.5.6 Let a matrix M = A,*B,**---B,""'A,*" € I',, where
odd m > 3 and wu; is a nonzero integer (i = 1,--- ,m). If M is input to the

X,,-representation algorithm (z = 2), then the algorithm outputs e.
Proof Let a matrix M = A,“*B,*?---B,""'A,"" ¢ I, with odd m.

Then in Step 1 of the first iteration, L(2) = A,"*B,"*--- B, A,""(2) =
UI (61) =nu; + 61 where Bl B uz Bnum—1Anum (2>
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If n =2 and w, = —1, then A,""(2) = nu,, +2 = 0, B,*"*(0) = 0 and
Ap"m2(0) = nuy—o € D°. By Theorem 4.1.3, L(2) = A,"* B,,"* - - - B, 1 A"
(2) = A, B,"---A,"2(0) € D° so |L(2)] > 1. By Theorem 4.1.4,
By = B," - B,"n 1 A, (2) = B," -+ A,"2(0) € D.

If n =3 and u, = —1, then A,""(2) = nu,, +2 = —1, B,"""'(—1) =
m € D. Put y = B,""'A,""(2) = B,"""'(—1) and then |y| < 1. By
Theorem 4.1.3, L(2) = A,"' B,** -+ - B, "' A" (2) = A, B,"* - - A, 2(7)
€ D¢ and so |L(2)| > 1. By Theorem 4.1.4, 8, = B,"**--- B, "™ 'A,""(2) =

B, ... A, "n2(v) € D.

If neither n = 2 and w,, = —1 nor n = 3 and w,, = —1, then A,""(2) =
nu,+2 € D¢ and by Theorem 4.1.5, |L(2)| = |A,"' B,"* - - - B,"" 1A, (2)] =
|A, " B, - - By (nu,, + 2)| > 1. By Theorem 4.1.6, 5, = B,"?A,"* - --
B,"m AU (2) = By Ay - Byt (ny, + 2) € D

Therefore, in all cases, |L(2)| = |A,"*B,"? -+ B, "1 A,"(2)] > 1 and |5| =
|B," -+ B, ™1 A,*™(2)] < 1. In Step 1 of the first iteration, as —1 < 31 < 1
and0<1_—7fl<%§1,v: L%@)J :LI_L;_&J = L—u1+%J = —u; and
C=A4,"=A4," InStep2, L=CL=A4,"A,"*B,"*---B," 1A' =
B,"? - By"m A £ T and w = wO™! = A", In Step 3, as L # I, return
Step 1.

Suppose that for 1 < j < m—1, L = A,“B,"*'..-B,""'A,"" with
odd j and w = A,"'B,"*--- B,"~! in Step 2 of the j — 1th iteration or
L =B,“A,“* ... B,*"tA,"" with even j and w = A,"*B,"*--- A, in

Step 2 of the 7 — 1th iteration.
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In Step 1 of the jth iteration, if L = B, A, ... B,"'A,"" with even
j’ then L(2) - BnujAntJrl te BnumilAnum<2) = Bnt (04]) = ] = 1

ajnu;+1 nu]dr%
J
where a; = A, B+ ... B, "1 A, (2).

If n =2 and w, = —1, then A,""(2) = nu,, +2 = 0, B,*"*(0) = 0 and
A" 2(0) = nuy—o € D°. By Theorem 4.1.4, |L(2)| = |B," A"+t - - - B, ™!
A (2)| = |B A - A" 2(0)| < 1. By Theorem 4.1.3, |ay| = |A,"+!
B,z ... B o1 A v (2)’ = |Anuj+1 B,z A tme2 (0)| > 1.

If n =3 and w, = —1, then A,""(2) = nu,, + 2 = —1, B, (1) =
—it—7 € D. Put y = B,""'A,""(2) = B,""'(~1) and then |y| < 1.
Hence, by Theorem 4.1.4, |L(2)| = |B," A"+ -+ A, 2B, "1 A, (2)| =
| B, Ayt - A "2 ()| < 1. By Theorem 4.1.3, |o| = |A,"* - - B,

A (2)] = | AR B A2 ()| > 1

If neither n = 2 and w,, = —1 nor n = 3 and w,, = —1, then A,“"(2) =
nuy, + 2 € D by Theorem 4.1.6, |L(2)| = |B," A"+ --- B,""1A,,""(2)| =
| B, "7 A, - Byt (nuy, + 2)| < 1. By Theorem 4.1.5, |a;| = |4, - -
Byt A (2)| = |AL - B (nuy, + 2)] > 1.

Therefore, in all cases, as —1 < O% < land 0 < %(1 — a—lj) < % <1, 0v=
Lng(12)+%J = Lﬁ%"'ﬂ = L_Uj"‘%(l_a%” = L—Uj—i-%(l—o%j)j = —u; and
"uj+Tj

C=B," =B, . InStep 2, L = CL = By, " B," A"+ ... B,"m1 At —
Anuj+l C. BnumflAnuT” and w = U}C_l = AnuanuQ cee Anujlenuj. In Step 3,

since L # I, return Step 1.
In Step 1 of the jth iteration, if L = A," B,"*!...- B,""*A,"" with odd

4, then L(2) — A, % B, __Bnum—1Anum<2) = AW (ﬁ]) = nu; + ﬁj where
ﬁj = Bnuj+1 - Bn“m—lAn“m (2)
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If n =2 and w, = —1, then A,""(2) = nu,, +2 = 0, B,*"*(0) = 0 and
Ap"m2(0) = nuy—o € D By Theorem 4.1.3, |L(2)| = |A," B, "+t -+ - B, ™!
A (2)] = |A By - B 2 A, =2(0)] > 1 and by Theorem 4.1.4,
1 = 1B+ Byt A, (2) = By - An2(0)] < 1

If n =3 and u, = —1, then A,""(2) = nu,, +2 = —1, B,"""'(-1) =
—ﬂw;ilﬂ € D. Put v = B,""*A,""(2) = B,"*(—1) and then |y| < 1.

By Theorem 4.1.3, L(2) = A,"'B,"*--- A,""2() € D° and |L(2)| > 1. By
Theorem 4.1.4, || = |B,"* - -- B,"" 1A, ™ (2)| = | B,"** - A2 ()] < 1.

If neither n = 2 and w,, = —1 nor n = 3 and w,, = —1, then A,“"(2) =
N, + 2 € D¢ by Theorem 4.1.5, |L(2)| = |A," B," '+t --- B,"" 1A, (2)| =
|A,% B, 4 -+ B (nu,+2)| > 1. By Theorem 4.1.6, || = | B,/ A, *2 -
B, 1A (2)| = | Bttt - By (nug, + 2)| < 1

Therefore, in all cases, |L(2)| = |A," B, - -- B, ™1 A,""(2)| > 1 and |3;| =
| B, it - Byt A" (2)] < 1. In Step 1 of the jth iteration, as —1 < §; < 1
and 0 < % <2<1,0= Llfi@)j = Ll_"i‘"_ﬁjj = |—u; + l_nﬁjj = —u,
and C' = A, . In Step 2, L =CL = A, A, B, ... B,“" 1A' =
Byt B tm=1 A Y and w = wC ™! = A, B,"--- B, A,". In Step 3,

as L # I, return Step 1.

If j = m — 1, then in Step 1 of the m — 1th iteration, L = B,"™'A,"™
and L(2) = B,""'A,"(2).

If n =2 and w,, = —1, then A,“"(2) = nu,, +2 = 0 and B,""'(0) = 0,

so that L(2) = B,""'A,"™(2) = 0. Hence the algorithm outputs ¢ and then

the algorithm terminates.
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If n =3 and w,, = —1, then A,“"(2) = nu,, + 2 = —1 and B,""!(—1) =
m € D, so that |L(2)| = |B,""'A4,""(2)| < 1. Hence v = an—é) +
===+ = |~tm1+ 2] = —tp1and C = B," = B, """.
In Step éiu?lz CL = B, " B,"m 14, = A,"" and w = wC™! =
A B - A2 Byt In Step 3, as L # I, return Step 1. Then in
Step 1 of the 5 = mth iteration, L = A,“™ and by Theorem 4.5.2, the X,-

representation algorithm (z = 2) outputs € and then the algorithm terminates.

If neither n = 2 and w,, = —1 nor n = 3 and u,, = —1, then in Step 1
of the m — 1th iteration, L = B,""'A,*". A,""(2) = nu, + 2 € D¢ and
by Lemma 4.1.2, B, *(nu,, +2) € D. So L(2) = B,""'A,""(2) € D.
<2and 0 < (1 —

2
nu+2 ) Egl

v=ligmtil = et i = [t + 20— )] =~
Ny 1 (Num+2)+1

Hence C = B, = B, "™, in Step 2, L = CL = B, "™ 'B,"" 1A, =

Ayt and w = A, B, - - A" 2 A, 1. In Step 3, as L # I, return Step

1. In Step 1 of the j = mth iteration, L = A,,“™ and by Theorem 4.5.2, the

NUm, +2

algorithm outputs e. Thus the algorithm terminates. [

Theorem 4.5.7 Let a matrix M = B,“*A,**--- B, 'A,“" € I',, where

even m > 2 and wu; is a nonzero integer (i = 1,---,m). If M is input

%), then the algorithm outputs

B,"* A" --- B, 1t A, as the X, -representation of M.

to the X,-representation algorithm (z =

Proof In Step 1 of the first iteration, if L = M = B,"*A,,**--- B,“™*A,"™
with even m > 2, then L(3) = B," (o) = T = 17 where a; =
A" - Byt A, (). By Theorem 4.1.4, |L(2)| = |B, “1(a1)| = |nu1+
1. By Theorem 4.1.3, |oy| = |4,"2 - B, """ A,""(3)] > 1and 0 < (1——) <

2<l.Sov=|+1]=|-w+i(1-L)|=-uand C = B," = B, ™"

n(H) T

1|<
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In Step 2, L=CL =B, “B,*A,"*---B,"™ A" = A,"*--- B,*" 1 A,"™
and w = wC~! = B,". In Step 3, since L = A,"?--- B,""'A,"™ # I, return
Step 1.

Assume that for 1 < j < m, L = A,“B,"“* ... B,"" 1A, with odd
jand w = A,""B,**---B,""! in Step 2 of the 7 — 1th iteration or L =
B, A, . B, Y"1 A, with even j and w = B,"*A,"*--- A, in Step

2 of the j — 1th iteration.

In Step 1 of the jth iteration, if L = A, B,,"“** ... B,*" 1A, “™ with even 7,
then by Theorem 4.1.3, |L(3)| = |A," B, -+ B,"m YA, ()| = | A, (6))]
= |nu; + B;| > 1 where 8; = B,"* -+ B,*"'A,""(%). By Theorem 4.1.4,

2
et s — B
1Bjl < 1and 0 < % <2< Sow= Ll i(2)J = |2 - B = | —u; +
8 = —y;jand C = A," = A,7. InStep2, L = CL = A, A, B,"+ ...

B,tm=1 At = Bt Btmt A Y and w = wC T = B" A2 - B!
A, . In Step 3, since L = B, "t A"+ ... B, """ A, "™ £ [ return Step 1.

In Step 1 of the jth iteration, if L = B, A,"“*' ... B,"™*A,"" with odd 7,

L(%) = B," (o) = a~no;j~+1 = nuii where a; = A"+ . --Bn“m‘lAn“’"(%).
By Theorem 4.1.4, |L(%)| = |Bnuj(04j)| = |ﬁ| < 1. By Theorem 4.1.3,

gl = A By A > 1 and 0 < L1 - 1) < 2 < 1 Sow =
i Tl = lmy+3(=3)) = —ujand O = B," = B, ™. Tn Step 2, L =
CL = B, B, A, "' - Byt At = A+ - B "1 A" and w =
wC™t=B," A" -+ A, 'B,". In Step 3, since L = A"+ --- B,"" 1 A,"™

# I, return Step 1.
If j = m, then in Step 1 of the j = mth iteration, L = A,“™ and by

Theorem 4.5.1, in Step 2, L = CL = A, """ A,"" = [ and w = wC™! =
A, B, B ALY In Step 3, since L = I, the algorithm outputs
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B, A" - B,"m 1 A," as the X,-representation of M and then the algo-

rithm terminates. O

Theorem 4.5.8 Let a matrix M = B,"*A,"--- B, A" € I',, where
even m > 2 and wu; is a nonzero integer (i = 1,--- ;m). If M is input to the

X,-representation algorithm (z = 2), then the algorithm outputs e.

Proof In Step 1 of the first iteration, if L = M = B,"*A,,**--- B,“™*A,"™
with even m > 2, then L(2) = B, A,**--- B,""'A,""(2) = B," () =

ai _ 1 _ u2 uz ., Um—1 Um
ETTES where oy = A,,"? B, B, A (2).

If n =2 and w, = —1, then A,""(2) = nu,, +2 = 0, B,*"*(0) = 0 and
Ap"m2(0) = nuy,—o € D°. By Theorem 4.1.4, |L(2)| = |B,"*A,"* - -- B,""*
A (2)| = |B," A - A" 2(0)] < 1. By Theorem 4.1.3, |y | = |A,"? B,"?
- Byttt A U (2)| = |AL B - A2 (0)] > L

If n =3 and u, = —1, then A,""(2) = nu, +2 = —1, B,""'(—1) =
=it € D. Put y = B,"" A" (2) = B,""(—~1) and then [y] < 1.
Hence, by Theorem 4.1.4, |L(2)| = |B,"*A,"? - A, 2B, """ 1A, (2)| =
|B," A, 2 - A2 ()| < 1. By Theorem 4.1.3, |ay| = |A,"2 -+ B, "™ 1A,

@) = A, B, - A2 ()] > 1.

If neither n = 2 and w,, = —1 nor n = 3 and w,, = —1, then A,“"(2) =
num + 2 € D¢ by Theorem 4.1.6, |L(2)| = |B,"*A,"*--- B,"" A, ™ (2)| =
|B," A2 - Bt (nuy,+2)| < 1. By Theorem 4.1.5, |ag| = |A,"2 - - Bt
A (2) = JAL - B (nug, + 2)] > 1.

Therefore, in all cases, as —1 < o% < land 0 < £(1— ail) <2<1,0=
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byt = i+ = L (= 0) = w3 (1= 2] = —urand
nu1+a—1

C'=B,"=B,™. InStep 2, L = CL = B, B, A," -+ B,"n1 A" =
A" Bt ALY and w = wC ™! = B,"'. In Step 3, since L # I, return

Step 1.

Suppose that for 1 < j < m -1, L = A,“B,“*..-B,“"'A,"™ with
odd j and w = A, B,"?---B,""! in Step 2 of the 7 — 1th iteration or
L =B,9A,"* ... B,*"'A," with even 57 and w = B,"*A,"*--- A, in

Step 2 of the j — 1th iteration.

In Step 1 of the jth iteration, if L = A,"“ B,"*' ... B,“"*A,"™ with even
j, then L(2) = A, B,"+' ... B,"" 1A, " (2) = A,"(8;) = nu; + (; where
B) = B+t - Bt A, (2).

If n =2 and u, = —1, then 4,""(2) = nu,, +2 = 0, B,""*(0) = 0 and
A" 2(0) = nUy—2 € D¢ By Theorem 4.1.3, |L(2)| = |A," B,"+t -+ - B!
A (2) = |AY B - B 3 A 2(0)] > 1 and by Theorem 4.1.4,
B3] = |Bp® ot - Byt Ay (2)] = | Bt - At 2 (0)] < 1

If n =3 and w, = —1, then A,""(2) = nu,, + 2 = —1, B,"" (1) =
—_nu;iﬁl € D. Put v = B,""'A,""(2) = B,""*(—1) and then |vy| < 1.

By Theorem 4.1.3, L(2) = A,"'B,"*--- A,""2() € D° and |L(2)| > 1. By
Theorem 4.1.4, |3| = |B,"+ -+« B,"m1 A, (2)] = | B+ - A,"m=2(v)] < 1.

If neither n = 2 and w,, = —1 nor n = 3 and w,, = —1, then A,""(2) =
nuy, + 2 € D¢ by Theorem 4.1.5, |L(2)| = |A," B,“+t - B, 1 A,"(2)| =
| A% Byt -+ B (nu,,+2)| > 1. By Theorem 4.1.6, || = | B,/ A,"7*2 -
By A (2)| = | B - B (nug, + 2)| < 1
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Therefore, in all cases, |L(2)| = |A," B,/ - - B, A,""(2)| > 1l and |3;| =
| B, it - Bp'm=t A" (2)] < 1. In Step 1 of the jth iteration, as —1 < f§; <1
and 0 < % <2<10= Ll_i(g)J = Llfm:f*ﬂjj = |—u; + kfjj = —u;
and C = A, . Tn Step 2, L = CL = A, % A% B,%+1 ... Bim-1 A, "n —
B4+ . B*m1 A " and w = wC™! = B,"A,*2--- B,""*A,". In Step 3,

as L # I, return Step 1.

In Step 1 of the jth iteration, if L = B," A"+ -.. B,""'A,*" with odd
j’ then L(2) = BntAnt+1 cte BnumilAnum<2) == Bnuj (OCJ) —= X — 1

ajnu;+1 nu]~+$
J
Where Oé] = Anuj+1Bnuj+2 e Bnu’milAnum (2)

If n =2 and w, = —1, then A,""(2) = nu,, +2 = 0, B,*"*(0) = 0 and
Ap"m2(0) = nuy—o € D°. By Theorem 4.1.4, |L(2)| = |B," A"+t - - - B, ™!
A (2)| = | B A - A" 2(0)| < 1. By Theorem 4.1.3, |ay| = |A,"+!
B,z ... B tm-1 A v (2)’ — |Anuj+1 B,z A tme2 (0)| > 1.

If n =3 and w, = —1, then A,""(2) = nu,, + 2 = —1, B,"" (1) =
=7 € D. Put y = B,""A,""(2) = B,""(~1) and then [y] < 1.
Hence, by Theorem 4.1.4, |L(2)| = |B,"7 A"+ -+« A" 2B, "1 A,"(2)| =
| B, 1 A+t A "2 ()| < 1. By Theorem 4.1.3, |o| = |A,"* - - B,

AU (2)] = |A M B - At ()] > 1.

If neither n = 2 and w,, = —1 nor n = 3 and w,, = —1, then A,“"(2) =
nuy, + 2 € D by Theorem 4.1.6, |L(2)| = |B," A"+ --- B,""1A,,""(2)| =
| B, "7 A, - Byt (nuy, + 2)| < 1. By Theorem 4.1.5, |a;| = |4, - -
Byt A (2)| = |AL - B (nuy, + 2)] > 1.

Therefore, in all cases, as —1 < ai < land 0 < %(1 — a_1]> < % <1l 0v=

J
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g+ a) = 2] = [+ 20 2] = [yt (1= 1)) = —uy and
"“j+Tj

C=B,=DB,"% InStep2, L=CL=B,“B,"A,"“*-.-B,“" 1A' =

Ayttt B tmet A U oand w = wCT = B, A" - A% B,% . In Step 3,

since L # I, return Step 1.

If j = m — 1, then in Step 1 of the m — 1th iteration, L = B,"™'A,"™
and L(2) = B,""'A,"(2).

If n =2 and w,, = —1, then A,“"(2) = nu,, +2 = 0 and B,""'(0) = 0,
so that L(2) = B,""'A,""(2) = 0. Hence the algorithm outputs ¢ and then

the algorithm terminates.

If n =3 and w,, = —1, then A,""(2) = nu,, + 2 = —1 and B,""'(—1) =
m € D, so that |L(2)| = |B,""*A,""(2)| < 1. Hence v = Lﬁé) +
=l——+:] = [-Un1+2] = —tp,and C = B,” = B, """
In Step —27:umL—1: CL = B, " 'B,"m 1A' = A," and w = wC™! =
B, A" - A2 B In Step 3, as L # I, return Step 1. Then in
Step 1 of the j = mth iteration, L = A,,"™ and by Theorem 4.5.2, the X,,-

representation algorithm (z = 2) outputs € and then the algorithm terminates.

If neither n = 2 and w,, = —1 nor n = 3 and u,, = —1, then in Step 1
of the m — 1th iteration, L = B,""'A,"". A,""(2) = nu,, +2 € D° and
by Lemma 4.1.2, B, " '(nu, +2) € D. So L(2) = B,""'A,""(2) € D.

Since =1 < 25 <L, 0<1— s <2and 0 < (1 - ——) < 2 <1,
v= Ly Tl = et i = e+ (U )] = e

Ny, 1 (num+2)+1

Hence C = B, = B, “" ', in Step 2, L = CL = B, """ 'B,*"1A,"™ =
A and w = B," A" - A" 2B . In Step 3, as L # I, return Step
1. In Step 1 of the j = mth iteration, L = A,,“™ and by Theorem 4.5.2, the

algorithm outputs €. Thus the algorithm terminates. [
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Theorem 4.5.9 Let a matrix M = A,"*B,**--- A, 'B,*" € I',, where
even m > 2 and wu; is a nonzero integer (i = 1,--- ,m). If M is input to the

X,-representation algorithm (z = 3), then the algorithm outputs .

Proof If M = A,"*B,*---A,"'B,*" € I', with even m > 2 and a
nonzero integer u; (¢ = 1,--- ,m), then in Step 1 of the first iteration, L(%) =
A By - A B () = A (Br) = nug+0; where 8y = B,"2 -+ At
B,"(1).

2

If n =2 and u,, = —1, then by definition of linear fractional transformations,
B, (3) = nu1+2 = 00, A,"" 7 (00) = NUp—1 + 00 = 00 and B,,""%(c0) =
e tT = nul, € D. By Theorem 4.1.3, |L(3)| = |A,"' B,"2 - - - A" B, "™

(%)’ = |A," B, - "Anum’?’(num 2)\ = |A,"* (A1) > 1 and by Theorem 4.1.4,
‘61' — |Bnu2Anu3 . _Anum—1Bnum<%)’ — |Bnu2Anu3 . _.Anum—:a(nu _2)| < 1.

If n = 3 and u, = —1, then B,""(5) = 05 = —1 and A,"""*(=1) =
N1 —1 € D°. By Theorem 4.1.5, |[L(3)| = [4,"* B,"* - -+ A, B, " (3)| =
|A,“ B, - B2 (-1 — 1)| = |A4,“*(61)] > 1 and by Theorem 4.1.6,
|G1] = |By"2 -+ A" By (3)] = | B2 Ay -+ B 2 (n—1 — 1)| < 1.

If neither n = 2 and w, = —1 nor n = 3 and u,, = —1, then B,""(3) =
e —L— € D. So by Theorem 4.1.3, |L(3)| = |4, B,"* - -- A" B, (3)] =
|A," By - 'Anu’"*l(nu"b“)\ =|A4,"*(61)| > 1 and by Theorem 4.1.4, |5;| =
\an . Anum_anuW(§)\ — ’an .. 'A”um_l(—numw)’ < 1.

Therefore, in all cases, |L(3)| = [A,"' B,"2 - - A" B, " (3)| = [nui+ 61| > 1
and |31] = |B," - --An“mlen“m(i)] < 1. In Step 1 of the first iteration,

(L
as —1 < B < land 0 < 1200 < 2 < q o = |[Z22G)) | lonuchy )

n
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| —u; + %J = —u; and C = A, = A, ™. In Step 2, L = CL =
A, A B A B = B AL B and w o= wCT =
A" In Step 3, since L # I, return Step 1.

Suppose that for 1 < j <m -2, L = A,“B,“ .- A, 'B,"™ and w =
A, B,"* -+ B,"~ in Step 2 of the j—1th iterationor L = B, A"~ --- A,“"!
B,"™ and w = A,"*B,"*--- A,,"~' in Step 2 of the j — 1th iteration.

In Step 1 of the jth iteration, if L = B," A"+ ... A, B, with even
j, then L(%) = B, A"+ .. -An“’”*an”m(%) =B, () = —L - = —1

ajnu;+1 nu]-+ai]_
where a; = A,"*1 - A" B ().
If n =2 and w,, = —1, then B,""(3) = nui% = 00, A" (00) = N1 +
_ Uy, — _ 0 _ 1
o0 = oo and B,""*(00) = —22-—5 = ——— € D. By Theorem 4.1.4,
‘L(%)| = |Bn“jAnuj+1 .. .Anu’ﬂl—anum(%)‘ — |BnujAnuj+l e A"um_3(nui_2)| =

|B,,"(vj)| < 1. By Theorem 4.1.3, |o;| = |A, 71 B, "+ - - -An”’"*an“m(%ﬂ
\AnquBn“’j“ .. .Anum%ﬁ( 1 )‘ > 1.

Nnum—2

If n =3 and w,, = —1, then B,""(3) = —— = —1 and A,""'(-1) =

NUM+2

Num—1—1 € D°. By Theorem 4.1.6, |L(3)| = | B, A"+ - -+ A, ' B, " (3)] =
| B, "7 A, - B2 (nu,—1 — 1)| = |B,"(a;)] < 1 and by Theorem 4.1.5,

|| = [A - A B (L)) = AL B - Bt (g, —1)] > 1

If neither n = 2 and w,, = —1 nor n = 3 and u,, = —1, then B,""(5) =

1
2
m € D. So by Theorem 4.1.4, |L(3)| = |B," A"+ - - A, B, ()| =

|B," A Ayt (—2=)| = | B, ()| < 1 and by Theorem 4.1.3, |a;| =

NUM+2

| Ayt Btz ... A =t Bn“m(%” = |A, B L A 1 )| > 1.

NUm+2

Therefore, in all cases, |L(3)| = |B," A"+ - - A1 B (3)] = | Bn" (a)] <
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1 and |oy| = |4, B+ A,"1B,""(3)| > 1. In Step 1 of the jth it-

erat10nsmce—1<—<1and0< 11— ,)<%§1,v:L_1 +1]=
Qa;j

|—— + 1] = L—uj+l(1—Lj)J = —u; and C = B,” = B,”%. In

nnu+1 n n (e}

Step 2, L CL=B,“%B,“A,"“* ... A, Y"1t B, = A%+ ... A "1 B,
and w =wC™ = A,""B,"*--- A, *B,". In Step 3, as L # I, return Step 1.

In Step 1 of the jth iteration, if L = A, B,"“+ ... A" B,"" with odd
j, then L(3) = A, B,"+1 - A, 1B (3) = A, (B;) = nu; + (; where
ﬁj = Bn“j+1 ... Anuqunum(%)‘

If n =2 and u,, = —1, then Bn“m(%) = m = 00, A, " (00) = N1 +
— Um — — o0 _ 1

oo = oo and B,""*(0c0) = —22— = ——— € D. By Theorem 4.1.3,

‘L(%)| — |AnuJ'Bnuj+1...AnumﬂBnum(%)‘ = |A, Y B, - A e 3(nui 2)| —

| A, (B;)| = |nu; + B;] > 1 and by Theorem 4.1.4, |3;| = | B+ 4,2 - -
Um—1 Um (1 o Uj Uj Uy —

An B, (§)| - |Bn HAH 2. An S(num 2>| <1

If n =3 and u, = —1, then B,""(5) = ;== = —1 and A,"(~1) =

NUy,—1—1 € D By Theorem 4.1.5, ’L( )| — ’A Ui B it .Anum—anu'm(%M _
|A," B, 7%t - B2 (nty,—1 — 1)| = |nu; + G| > 1 and by Theorem 4.1.6,
‘6]| - ‘Bnuj+1 U Anum—anum<%)’ = ‘Bnt+1Anuj+2 te BnUM72(nUmfl_1)’ < 1

If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then B,"™
p— +2 € D. So by Theorem 4.1.3, |L(3)| = |4, B, "+ - - A" B, '
| A" Byt - AUt ()| > 1 and by Theorem 4.1.4, |3;] = | B, "7+ A, "0+
. .Anum—an“m(%ﬂ A )| < 1.

NUm, +2

Therefore, in all cases, | L(1)] = [A,% B, %+ - .- A" B, " (L)| = |A Yi(6;)] =
| <

lnu; + 3;| > 1 and |B;| = |B,"+ A, 42 -+ A, "' B, “m(%) In Step
1-p;

n

1 of the jth iteration, since —1 < 3; < 1 and 0 <

<3§1,v:
n

77



|EG) | i | gy 25 = gy and € = A,° = A, ™. In Step

27 L — OL — An—ujAnujBnuj+1 R AnUmfl Bnum — Bnuj+1 . AnUmfl Bn'LLm and
w=wC"1=A,""B,">-.-B,"1A," . In Step 3, since L # I, return Step 1.

If j = m—2, then L = B, %A, 'B," and w = A,"*B,"*---A,"'™3
in Step 2 of the m — 3th iteration and consider L(%) = Bn“m*QAn“mlen“m(%)

in Step 1 of m — 2th iteration as follows :

If n =2 and u,, = —1, then Bn“m(%) = nu:L+2 = 00, A, (00) = NUp_1 +
00 = oo and Bnum_Q(oo) = num_ojoo-i-l - nui_z € D. So |L(%)| - |Bnum_2A"um_1
B, (3)] = lms | < 1

If n =3 and u,, = —1, then B,""(3) = nu,,lL—f—Q =—1, A" (—1) = nuy_1 —

C Um,— S NUm — _ 1

1€ D®and B, 2(num71 N 1) o (num—lfl)mlim—erl o ’I’Lum—2+num1—1*1 €D. So
|L(%)| = |BnUM72Anum71Bnum<%>| <1l

If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then Bn”m(%) =

L € Dandby Theorem 4.1.4, |L(3)| = | B, 2 A" B,""(3)| = | B,""*

NUm+2

At () < 1

NUm+2

Therefore, in all cases, |L(3)] = |B,"" 2 A" B,"" (3)| < 1.

In Step 1 of the m — 2th iteration, v = Ln;(lé) +1] = |- — + 1| =
NUm—2

| —tm—2 + %J = —Upo and C = B," = B, “" 2. In Step 2, L = CL =
B, "m 2B, 2 A Bt = A B and w = wCTl = A, B, -
B,"“"=2. In Step 3, as L # I, return Step 1.

If j =m—1, then L = A,""'B,"™ in Step 1 of the m — 1th iteration
and consider L(3) = 4,"" ' B,""(3).
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If n =2 and u, = —1, then B,""(}) = nu:L+2 = oo and A,""'(o0) =
NUyy—1 + 00 = 00. SO L(%) = An“mlen“m(%) = oo and the algorithm outputs

€. Then the algorithm terminates.

If n =3 and w,, = —1, then B,""(3) = nu;+2 = —1 and A,""'(-1) =
Num—1 —1 € D% So |L(3)| = |A"" ' B,"" (3)| = |[nupm—1 — 1] > 1. Thus v =
L%(%)j = |—tup_1+ %j = —Upy_1 and C = A," = A, " '. In Step 2, L =
CL = A, " A" B, = B," and w = A," B,"™ - B,"" 2 A," . In

Step 3, as L # I, return Step 1.

If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then B,"™

(
L~ € D and by Lemma 4.1.1, |L(3)| = |4,""'B,""(3)| = |L(3

NUm+2

L I G
A4 ()| = [t gl > 1. Homee = [ 17508 = | 1= o
= [—Un_1+ %(1 — nui+2)J = —Up_1and C = A," = A, "' In Step 2, L =

CL=A,""1A,""'B,"™ = B," and w = A,"*B,"*--- B,"*"2A,*""'. In
Step 3, as L # I, return Step 1. If j = m, then L = B,“™ in Step 1 of the
mth iteration. By Theorem 4.5.3, the X,,-representation algorithm outputs €

and then the algorithm terminates. [

Theorem 4.5.10 Let a matrix M = A,"*B,"**--- A, *B,"™ € I',, where
even m > 2 and wu; is a nonzero integer (i = 1,--- ,m). If M is input to the
X,,-representation algorithm (z = 2), then the algorithm outputs A, B,"? - - -
A1 B, as the X, -representation of M.

Proof Let M = A,“B,**---A,"~ B, € I', with even m > 2 and
nonzero integer w; (i = 1,---,m). In Step 1 of the first iteration, L(2) =
A By - At BL Y (2) = A" (Br) = nug+0y where 5) = B2 - At
B,"™(2). By Theorem 4.1.5, |L(2)| = |A2B,"*--- A" 'B,*"(2)] > 1 and

79



by Theorem 4.1.6, |51| = |B,"* -+ A, ' B,""(2)| < 1. Since —1 < ; < 1
and0<1;7f1<%§1,v: L%@)J :[kn”—ﬂj = L—ul—k%J = —up and
C=A"=A,". InStep 2, L=CL=A,""A,""B,"--- A,""'B,"" =
B, - A 1B, In Step 3, as L # I, return Step 1.

Assume that for 1 < 57 < m, L = A,“B,"*--- A" 'B,"" and w =
A, B,"*--- B, in Step 2 of the j—1th iterationor L = B, A"t ... A,"“m!
B,'™ and w = A,"'B,"*--- A,"~' in Step 2 of the j — 1th iteration,.

In Step 1 of the jth iteration, if L = B,“A,"“*' .- A, 1B, with even
ja then L(Q) = BTLUjAHUjJrl o 'Anum_anum<2) = BHUj (aj) = ajno;i—&-l = nu]‘}i-%

J
where a; = A"+ -+ A, "1 B, " (2). By Theorem 4.1.6, |L(2)| = |B," A,,"*!
- A B " (2)| < 1 and by Theorem 4.1.5, |aj| = |4, - A, B,"

. 1 1 1 n -1 1) _
(2)| > 1. Smce—1<a—j<1and0<ﬁ(1—a—j)<§§1,v_LnL—(2)+_J_

n

b=+ A = L+ 20— 1)) = —uy and € = B, = B, ™. In Step

2, L = CL = By~ By" A%+t - .. Aim=1B,m — A%+ ... A "n=1 B, and
w=wC"1=A4,""B,"*-.-A,"'B," . In Step 3, since L # I, return Step 1.

In Step 1 of the jth iteration, if L = A, B,"“+ ... A, B,"" with odd
J, then L(2) = nu; + ; where §; = B,"*' .- A,"""'B,*"(2). By Theorem
4.1.5, |L(2)| = |A B, - A 1B (2)] > 1 and by Theorem 4.1.6,
6] = | Byt -+ A, "1 B, (2)] < 1. Since —1 < §; < land 0 < =% < 2 <
1,v= [l_im)J = [ijfﬂjj = |—u;+ 1;ﬁjj =—ujand C=A4," =A,7. In

Step 2, L = CL = A, ™" A" B+ - A1 B — Bt ... A, tne1 Bt
and w =wC™t = A,""B,"*---B,""*A,". In Step 3, as L # I, return Step 1.

In the 7 = mth iteration, L = B,"™ and by Lemma 4.1.2 and Theorem
454, |L(2)| = |B,"(2)] < 1, v = —u,, and C' = B,’ = B, ™™ in Step
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1 of mth iteration. In Step 2, L = CL = B, " B,"™ = I and w =
wC™t = A, B,"*--- A" 'B,"". In Step 3, as L = I, the algorithm out-
puts A,"*B,“?--- A" ' B, as the X,-representation of M and then the

algorithm terminates. [J

Theorem 4.5.11 Let a matrix M = B,"*A,**--- A, 'B,“" € I',, where
odd m > 3 and w; is a nonzero integer (¢ = 1,--- ,m). If M is input to the

X,,-representation algorithm (z = %), then the algorithm outputs e.

Proof Let M = B,"*A,**.--A,*'B,*" € I', with odd m > 3 and

nonzero integer u; (i = 1,--- ,m). Then in Step 1 of the first iteration, L =
M = B, A" .- A" 'B,"™ and L(%) = B,"1A," .. .Anu"l_anum(%) _
B, () = ;oo = nulira—ll where a; = A4,"% -+ A,"" 1 B,""(3).

If n =2 and u,, = —1, then Bn“m(%) = nui+2 = 00, A" (00) = N1 +

_ Um — _ o) _ 1

o0 = o0 and B,""*(00) = 25 = .——— € D. By Theorem 4.1.4,
LG = [Ba™ Ap™ - A By (3)] = [ B An™ - A" (= ) = | Ba™
(an)| < 1. By Theorem 4.1.3, |a;j| = 4,2 B,"* - - - A, B, " (3)] = |A," B,
..Anum—?,(num 2)| > 1.

If n = 3 and u, = —1, then B,""(5) = =05 = —1 and A,""*(-1) =

NUy,—1 —1 € D By Theorem 4.1.6, ]L( )| = |Bp" A2 - .An“m—an“m(%)‘ =
| B, A2 - B2 (-1 — 1)| = |B," (a1)| < 1 and by Theorem 4.1.5,
‘041| — ‘Anw .. AnumlenuW%%)’ _ ‘Anuanug .. B’HUM72(num—1 o 1)| > 1.

If neither n = 2 and w, = —1 nor n = 3 and u,, = —1, then B,""(}) =
num+2 € D. So by Theorem 4.1.4, |[L(3)| = |B,"*4,"* - -+ A,"" ' B,""(3)| =
B, A2 - Ayt (25) = |Bp" (an)| < 1 and by Theorem 4.1.3, || =
‘AnUQBnUB te Anum_anum(§)| - |AnUQBnu3 te Anum_l(nu +2)| > 1

81



Therefore, in all cases, |L(3)] = [B," A" - - A" B, (
1 and |011| = |AanBnu3 v 'AnHM71Bnum(§)’ > 1.

)| = [Bn" ()] <

1
2

In Step 1 of the first iteration, since —1 < a% < land 0 < 1(1 - ail) <

2<tv= s+ = e b = w20 - ) = —u and
2

nu1+—

C=B,=B,". InStep2, L=CL =B, “B,*A,"*---A,""*B,"™ =
A2 A B and w = wC T = B,". In Step 3, as L # I, return Step
1.

Suppose that for 1 < j <m -2, L = A,"“B,"*---A,“"*B,"™ and w =
B," A" - - B," =1 in Step 2 of the j—1th iterationor L = B, A"~ ... A,
B,"™ and w = B,"*A,"*--- A"~ in Step 2 of the 7 — 1th iteration.

In Step 1 of the jth iteration, if L = A, B,“*'-.-A,""'B,"™ even j,
then L(3) = A, B,"+ - A" 1B, " (3) = A,"(8;) = nu; + §; where
B; = Byt An“mlen“m(%).

If n =2 and u,, = —1, then Bn“m(%) = m = 00, A" (00) = N1 +

oo = oo and B,""?%(0c0) = > = —1— € D. By Theorem 4.1.3,

NUpp—200+1 NUp—2

L(3)| = [AL B, Ay By ()] = AW B e A (e )| =

| A, (B;)| = |nu;+B;| > 1 and by Theorem 4.1.4, |5;| = | B,/ A, 7+2 - - - A,
Bnum(%” = |Bnuj+1Anuj+2 o 'Anum_s( >| < 1.

NUm—2

If n =3 and u, = —1, then B,""(5) = == = —1 and A,"(~1) =
NUy,—1—1 € D By Theorem 4.1.5, ’L( )| — ’A uj B, it .Anum—anu'm(%M _
|A," B, 7+t - B2 (nty,—1 — 1)| = |nu; + G| > 1 and by Theorem 4.1.6,

8;] = | B, 9% - Ay m 1 By (3)] = | B, Ay - Bt (g, — 1) < 1.

82



If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then B,"™

l) —
2
m € D. So by Theorem 4.1.3, |L(3)| = |4, B, "+ - - A" B, (3)| =

| A By i+t At (—nui+2)| > 1 and by Theorem 4.1.4, |3;| = | B, "7+ A,"7+?

,__Anum_anum(%ﬂ = |B, " A, 2 Anum_l(nui+2)| < 1.

Therefore, in all cases, |L(1)| = |4, B,"* - - A, B (3)] = | A, (6;)] =
lnuj + 6;] > 1 and |5;| = |B," 1 A,"%2 - A, 1B (5)] < 1.

In Step 1 of the jth iteration, since —1 < §8; < 1 and 0 < % < 2 <,

— R By gy 4 BB — g and O = 4,° = 4,7, In
Step 2, L = CL = A, " A% B,"+1 ... A, “n-1B " — B Uit ... A tm-1[3 tn
and w = wC™' = B,"A,"> ... B,"'A," . In Step 3, since L # I, return

Step 1.

In Step 1 of the jth iteration, if L = B,"“ A"+ ... A, B,"" with odd
j, then L(%) = B, A ... An“”HBn“m(%) =B, (o) = —1— = 1

ajHUj+1 nuj+$
where o; = A, - - An”mlen“m(%).

If n =2 and u,, = —1, then Bn“m(%) = m = 00, A" (00) = N1 +
oo = 0o and B,""?(00) = 2 —m = nurln,z € D. By Theorem 4.14,
‘L(%)’ = ‘BnujAnuj-o—l - AnumﬂBnum(%)‘ — |BnujAn“j+1 .. .Anumfs(nui__z)‘ =

|B,"(;)] < 1. By Theorem 4.1.3, || = |A,"* B, 42 - - A" B, " (1)

|An”j+1 B, .. .Anumﬁa(m;wﬂ > 1.

If n =3 and u,, = —1, then Bn“m(%) = nu:l+2 = —1 and A,"""1(-1) =
Num,—1—1 € D°. By Theorem 4.1.6, |L(3)| = |B," A"+ -+ A1 B, (3)] =
| B, 1 A+ - B (nu— — 1) = |Bp" (a;)] < 1 and by Theorem 4.1.5,

laj| = |4, A B (L) = | A B2 - B (g, —1)] > 1L

1
2
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If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then Bn“m(%) =
€ D. So by Theorem 4.1.4, |L( )| = |By" A AL B “”I(%) =

| B, " A, it -An“mfl(num+2)| = |B," (a;)| < 1 and by Theorem 4.1.3, |«;| =

| A, 4 B2 L A e Bn“m(%)| = |A, W B2 A ( )| > 1.

NUm +2

NUm, +2

Therefore, in all cases, |L(1)| = |B,"“ A" - - A1 B (3)] = | B ()] <

1 and |aj| = [A,H B, 2 - A" B,"(5)] > 1. In Step 1 of the jth it-

eration, since —1 < aij<1and0< %(1—%) <%§1,vz[ ’1 +1] =

Lnil + 1] = [—u; + (1 - %)J = —u; and C = B,” = B,f”f. In
nujtas

Step 2, L = CL = By~ By A, 1 -+« AUm1 B "m — A %1 ... A, Un1 B tn

and w =wC™!' = B," A" -~ A, *B,". In Step 3, as L # I, return Step 1.

If j =m-—2, then L = B,""2A,""*'B,"™ and w = A,"*B,"*---A,"™3
in Step 2 of the m — 3th iteration and consider L(3) = B,""24,""1B,""(3)

in Step 1 of m — 2th iteration as follows :

If n =2 and u,, = —1, then B,"(3) = nui+2 = 00, A, " (00) = Ny +
oo = oo and Bnum_2(oo) = numf;ooJrl = nui_z € D. So |L(%)| = |B”um_2A”um_1
Bnum(%) =

If n =3 and u,, = —1, then B,""(3) = nu:ri-? = -1, A, (=1) = nup_1 —
1 € D and Bnum_2 (num—l - 1) - (numflnf{r):;mffrl ~ 72+1 L €D. 5o

nuy,_1—1

L) =By Ayt By (5)] < L.

If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then Bn“m(%) =
p— L € D and by Theorem 4.1.4, |[L(3)| = | By "2 A" B, (3)| = | B2
A ) < L

Therefore, in all cases, |L(%)| = |Bn”m_2Anum_anum(%)| <L
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In Step 1 of the m — 2th iteration, v = LnL_(I%) +1] = ==+z =
NUm—2

|—tm—2 + 1] = =ty and C = B,” = B, “" 2. In Step 2, L = CL =
B, "m2 B tm=2 A v B Y = A Ut B oand w = wC T = A, B, -
B,"™=2. In Step 3, as L # I, return Step 1.

If 7 =m-—1, then L = A, !B, in Step 1 of the m — 1th iteration
and consider L(3) = 4,1 B,""(3).

If n =2 and w, = —1, then B,""(}) = nu,i+2 = oo and A,"“"1(o0) =
N1 + 00 = 00. So L(3) = A, B,""(3) = 0o and the algorithm outputs

€. Then the algorithm terminates.

If n = 3 and u, = —1, then B,""(5) = 05 = —1 and A,""*(~1) =
Num—1 —1 € D° So |L(3)| = |A,"" ' B,"" (3)| = |[nup—1 — 1] > 1. Thus v =
L%(%)j = |[~Um-1+ 2] = —tpgand C = A," = A, "' In Step 2, L =
CL=A,""1A,“"'B,"' = B, and w = A,*B,,**--- B,*"2A,""'. In
Step 3, as L # I, return Step 1. If j = m, then L = B,,“™ in Step 1 of the

mth iteration. By Theorem 4.5.3, the X,,-representation algorithm outputs €

and then the algorithm terminates.

If neither n = 2 and u,, = —1 nor n = 3 and u,, = —1, then B,"™

(
L~ € D and by Lemma 4.1.1, |L(3)| = |4,""'B,""(3)| = |L(3

NUm +2

m— 17L(l) 1—num,— —7%
A" ()| = It > 1 Hemce v = [ =027 = | ——— 2

= [~Um 1+ (1= 7)) = —um1and C = A," = A, 7"~ In Step 2, L =
CL=A,""1A,"""'B,"™ = B," and w = B,"*A,"*--- B,""2A,*"'. In
Step 3, as L # I, return Step 1. If j = m, then L = B,,“™ in Step 1 of the
mth iteration. By Theorem 4.5.3, the X,,-representation algorithm outputs €

and then the algorithm terminates. [
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Theorem 4.5.12 Let a matrix M = B,,"*A,**--- A, 'B,*" € T',, where
odd m > 3 and wu; is a nonzero integer (i = 1,--- ,m). If M is input to the
X,,-representation algorithm (z = 2), then the algorithm outputs B,,"* A,"?
AU BL Y™ as the X, -representation of M.

Proof Let M = B, A,"*--- A, 'B,"" € I', with odd m > 3 and

nonzero integer u; (i = 1,--- ,m). Then in Step 1 of the first iteration, L =
M = By A A1 B and L(2) = By A2 .. AU 1B, (2) =
B, () = ;o0 = nulia—ll where a; = A,"%--- A" B,""(2). By Theo-

rem 4.1.6, |L(2)| = |B,"* A" - - A, B,"(2)| < 1 and by Theorem 4.1.5,

an| = A2 At B (2)] > 1. Since —1 < - <land 0 < (1 —4-) <

s5<Lv=lge+a=1; ‘i +o] = ru+ (1)) = —u and
RUIH

C =B, =B, ™. InStep 2, L = CL = B, "B, A," .. A" B, =
A2 A B and w = wCO T = BL,*. In Step 3, since L # I, return
Step 1.

Assume that for 1 < j < m, L = A,“B,"“* .- A" 1B,"" and w =
A, B,"* -+ - B,"~ in Step 2 of the j—1th iterationor L = B,"7 A"~ ... A,“"!
B,"™ and w = A,"*B,"*--- A,"~' in Step 2 of the j — 1th iteration,.

In Step 1 of the jth iteration, if L = A, B,"“*' ... A,""'B,"™ with even
J, then L(2) = nu; + B; where §; = B,"*' .- A,""'B,""(2). By Theorem
4.1.5, |L(2)| = |A, B, - A1 B (2)] > 1 and by Theorem 4.1.6,
18] = | B+ -+ A, 1 B (2)] < 1. Since —1 < §; < Tand 0 < =2 < 2 <
Lv= [1752)] = Ll_m:f_ﬂjj = |—u;+ l_nﬁjj =—u;and C =4," =A,”". In
Step 2, L = CL = A, ™% A% B, %+ ... A tm=1 B, um — B, it ... A tm-1g tm
and w =wC~t = B, A,"*--- B, ' A,". In Step 3, as L # I, return Step 1.
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In Step 1 of the jth iteration, if L = B,"“A,"“+ ... A, B,"" with odd
J, then L(2) = B, A, AHUM71Bnum(2) = B," <aj) = ajn():j;+1 = nu]iro%

where a; = A"+ .- A, B,""(2). By Theorem 4.1.6, |L(2)| = |B," A"/
<o A" B, " (2)| < 1and by Theorem 4.1.5, |a;| = |4, -+ A, B,"(2)|

: 1 1 1 n —1 1
> 1 Since -1 < &= <land 0 < ;(1-5) <3 <1Lv=|ggtsl=

|- “— + il =|-w+:i(1-21)] =—u;and C = B,” = B,”"™. In Step
nuj+%j J

2 I = CL = B, " B," A"+ .. AUm1B,"m — A %+t ... A n-1 B % and
w=wC"1t=DB,""A,"-.-A,"1B,". In Step 3, since L # I, return Step 1.

In the 5 = mth iteration, L = B,"™ and by Lemma 4.1.2 and Theorem
454, |L(2)| = |B.,"(2)] < 1, v = —u,, and C' = B,’ = B, ™ in Step
1 of mth iteration. In Step 2, L = CL = B, " B,"™ = I and w =
wC™t = A, B,"--- A" 'B,"". In Step 3, as L = I, the algorithm out-
puts B,"*A,*?--- A" ' B,“" as the X, -representation of M and then the

algorithm terminates. [J
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Chapter 5

X (n, S)-Representation
Algorithm

Let n > 2 be a natural number and S be an ordered set of integers, where

S ={s1,82, -+ ,s:}. For each s; € S, define a matrix M; € SLy(Z) by
M; = A, " B,A,”
and define
X(n,S)={My, My, -, M;}.

G(n,S) = (My, My, -+, M;). Then it is proved that X (n,S) is a free basis in
Section 5.1 and G(n, S) is a free group, freely generated by { My, My, -+, M,;}.
Thus every element of G(n, S) can be represented by elements of X (n, S)= and
it is called the X (n,S)-representation. Since G(n,S) is a subgroup of T',,, ev-
ery element of G(n,S) has the X, -representation as an element of I',, and
thus each element M; has the X,,-representation A, % B, A,*. In Chapter 4,
given M € TI',, it is shown that the X,-representation algorithm computes
the X,-representation of M. Further, the X(n,S)-representation algorithm
given by Grigoriev and Ponomarenko [7] computes the X (n, S)-representation
of an element M of G(n,S) as a reduced word in X(n,S)* when the X,-
representation of M € G(n,S) is provided. So, in this chapter, we consider

the X (n, S)-representation algorithm and the following sections are as follows.
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In Section 5.1, we show that X(n,S) is a free generating set for G(n,S5).
In Section 5.2, we analyze the X (n,S)-representation algorithm. In Section
5.3, we modify the X (n,S)-representation algorithm to makes it efficient. In
Section 5.4, we implement the modified X (n, S)-representation algorithm by
programming it. In Section 5.5, we justify the modified X (n, S)-representation

algorithm.

5.1 Free Basis X(n,S)

This section presents that X (n,S) is a free basis of G(n, S). Let F be a free
group with a generating set X and U = {u; | i € N} be a subset of a free group

F. We introduce elementary Nielsen transformation on a set U = {u; | i € N}

as follows: [14]
1. replace some u; by u;
2. replace some u; by u;u; where j # 1;

3. delete some u; where u; = 1

where 1 denotes the empty word. A product of such elementary transforma-
tions is called Nielsen transformation. If all triples vy, vo, v3 € U* satisfy the

following conditions: [14]

1. v #1

2. v1v9 # 1 implies |v1ve| > |v1], |vg|

3. v1v9 # 1 and vyuz # 1 implies |vyvous| > |v1| — |va| + |vs],

then U is called Nielsen reduced. The Nielsen reduced set plays an important
role as it is a free generating set for the subgroup that it generates. Therefore

we show that X (n,S) satisfies the three conditions to be Nielsen reduced in
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the following.

Theorem 5.1.1 Given n > 2 and a finite set S C Z, X(n,S) is Nielsen

reduced.

Proof Given I, freely generated by two matrices A, and B,, and X (n,S) C
r,, let vy = A, °B,"A,°, vy = A, 'B,PA,t and v3 = A, “BJA" €
X(n,S)jE where «, 3, v € {1,—1} and s, t, u € S.

1. For vy = A, °B,“A,°, if s = 0, then v; = B,* # 1 and if s # 0, then
v = |A,°B,%A,.°| = 2|s| + 1 # 0 and so v # 1.

2. For v, = A, *B,,%A,° and vy = A, 'B," A, vivs = A, B, A,
B, A,

(Case 1) If s = tand a = (3, then vyvy = A, *B,*A,*'B,PA,' = A, °B,*"P A}
and |v1vy] = |4, B,*P A, = 2|s| + 2. Thus v1vy # 1 and as |vy| = 2|s| + 1

and |vg| = 2[t| 4+ 1, |vyva| > |v1], |vel.

(Case 2) If s = t and o # 3, then vjvy, = A, *B,"A," "B, A,' = I and

so v1vo = 1. Hence, this case can not be considered.

(Case 3) If s # t and o = £0, then vjvy = A, *B,%A,*'B,’A,! and
|v1ve| = [s|+|t|+|s—t|+2 > 2|s|+2 by the triangle inequality |t|+|s—t| > |s|.
10| = |An * B A T By A = s+t s — ] +2 = |s| 4+ [t + [t —s]+2 >
2|t| + 2 by the triangle inequality |s| + |t — s| > [t|. As |vi] = 2|s| + 1 and
|va] = 2t + 1, |vyva| = |oa], |va].

3. For vy = A, °B,“A,.°, va = A, 7'B,P A, and vy = A, TUBT ALY, vivgus =
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A, B A A TIBP A AT B TAY = A B AT B P AT BT ALY

(Case 1) If s=t, =0, t=wand B =, then |vyvovs| = \An_anaAns_tBnﬁ
ATUBY ALY = AT B TP ALY = 20s| 4 3 and || — |vg| 4 |vs| = 2|s] 4+ 1 —
2|t| — 14 2Ju| + 1 = 2|s| + 1. Hence |vjvqvs| > |v1| — |vo| + |vs].

(Case2)If s =t, o = 3,t # wand 3 = %, then |v,vovs| = |4, *B,* A, 'B,”
ATUBAY = |ATEB TP AT BTAY = sl 2t —u| 1+ |u] =
|s|+2+|s—u|+14|u| = |s|+ 2+ |u—s|+1+|u|] > 2|u|+ 3 by the triangle in-
equality |s|+|u—s| > uand |vy|—|va|+|vs| = 2|s|+1=2|t| —142|u|+1 = 2|u|+1.

Thus |vivevs| > |v1] — |v2| + |vs].

(Case3)If s #t, o = £, t = wand B = v, then |[v,v503| = | A, *B,*A,* ' B,”
ATUBAY = |A T B ATIB P ALY = sl LA s =t 24 |u| =
|s| +14|s—u| +2+ |u| > 2|s| + 3 by the triangle inequality |s — u|+ |u| > |s|
and |vi| — |vg| + |vg| = 2|s| + 1 = 2|t — 1 + 2Ju] + 1 = 2|s| + 1. Hence

|vvgus| > |v1| — |va] + |us].

(Cased) If s #t,a = £, t # wand 3 = £, then |v v9v3] = ]An’anaAnS’tBnﬁ
ASTEUBA = sl 1+ s =t 4+ 1+t —ul+ 1+ |u] = |s| +|s— ]+ |t —
ul + |ul +3 > |s| + [s| — [t] + |u| — |t| + |u] + 3 = 2|s| — 2|t| + 2|u| + 3 and
|v1| — |va| + |vs| = 2|s| — 2|t] + 2|u| + 1. Therefore |vyvavs| > |v1| — |va| + |vs].
U

Theorem 5.1.2 [14] If F'is a free group with a basis X and a subset Y of
F is Nielsen reduced and w = y; -+ - Y, (m > 0), y; € Y* and all vy, # 1,

then |w| > m.

Theorem 5.1.3 [14] Let X be a subset of a group G such that X N X1 £ (.
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Then X is a basis for a free subgroup of G if and only if no product w =

Ty -+ - T, is trivial, where n > 1, z; € X*, and all z;2,,1 # 1.

Theorem 5.1.4 Given n > 2 and a finite set S C Z, X(n,S5) is a free
basis for G(n, S).

Proof By Theorem 5.1.1, X(n,S) is Nielsen reduced and we replace the
set Y in Theorem 5.1.2 by X (n,S). Then given w = wy - - - w,, with m > 0,
w; € X (n,S)* and all w;w;, 1 # 1, Jw| > m and by Theorem 5.1.3 it is proven
that X (n,S) is a free basis for G(n, S).

5.2 Analysis of X(n,S)-Representation Algo-
rithm

We describe the X (n,S)-representation algorithm of Grigoriev and Pono-
marenko and we do analysis of the X(n,S)-representation algorithm. As
the X (n, S)-representation algorithm computes the X (n, S)-representation of
M € G(n,S), we can do test the membership for a subgroup G(n,S) of T',.
The algorithm takes the X, -representation of ¢ € I'), as an input and it out-
puts (ig,wy) € {0,1} X Wx(y ) such that g € G(n, S) if and only if i, = 1 and

w, is the X (n, S)-representation of g.
X(n,S)-Representation Algorithm

For a given g € ',

Step 1 If g = 1x,, then output (1,1x(,s)). Otherwise, let u = A,°B,b A, Cuq

be the X,,-representation of g where a,b,c € Z and uy € Wx,,

Step 2 If either —a ¢ S or (—a,b) € S x {0}, then output (0,1xp.s)).

Otherwise set u = A,,* uy.
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Step 3 Recursively find (i, w,) where h = . If i), = 0, then output (s, wp,).
Step 4 Output (1, w,) where w, = vw;, with v = A, B, A,

The idea is to obtain the form A,*B,’A, ® with —a € S and a nonzero
integer b by setting u = A, "B, A, uy with a,b,c € Z and uy € Wy, in Step
1. If the X,-representation of g is the empty word 1x, as an input, then the
X (n, S)-representation algorithm outputs a pair (1,1x(m,s)). If —a € S and
b # 0, then the algorithm sets u = A,,*"uq in Step 2 and v = 4,"B,’4,,"® in
Step 4. If —a ¢ S or (—a,b) € S x {0}, then the algorithm outputs (0, 1x(,.s))
in Step 2 and it means that g ¢ G(n,S). For instance, if g = A,,* € ', then
in Step 1, u = A,"B, A, ug where vy = 1x, € Wy, and the exponent of B,

is 0. So the algorithm outputs a pair (0, 1x(,,s))-

In Step 3, for h = @ and |h| < |g|, the algorithm works recursively to find
the X (n,S)-representation of h. In order to compute (i, wy), each iteration
repeats Step 1 and Step 2. Hence the number of iterations is at most the
number of terms of the X, -representation of g. In Step 3, if 7, = 0, then
output (in,wpn) = (0,1x, ). It means that h ¢ G(n,S) and so g ¢ G(n,S).
If (ig,ws) = (1,wp) in Step 3, then in Step 4, the algorithm concatenates
v=A,"B,"A,”® and w;, and the algorithm outputs (1, w,y) = (1, vwy,) where

wy, is the X (n, S)-representation of h.

5.3 Modified X (n, S)-Representation Algorithm

The purpose of this section is to make the X(n,S)-representation algorithm

practical and efficient for implementation. So we modify the X (n, S)-representation
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algorithm of Grigoriev and Ponomarenko. We consider how the X(n,S)-
representation algorithm works according as concrete X,,-representations. For

a given element M € G(n,S), let the X,,-representation of M be
A B, A, B, . A, B, e A

with m > 3 and each nonzerow; (i = 1,--- ,m). Then the X (n, S)-representation

of M is

_Sam

— — _ -3 -1 Sam_1
An Saq BRUZAnsal An Sag Bn“‘lAn Sag , .. An TAn 3 Bn“mflAn s

where for i = 1,~~mT’1, a; € {1,-+-,t}, 8o, € S, —u1 = Sqy, U1 =
Sa;_y — Sa; (1 > 2), Sq,_, # Sa; (1 > 2) and u,, = S,,, ,. Therefore, given the
2
X,-representation A,"*B,"*---B,""*A,"" with m > 3 and each nonzero
m—1

u; (i = 1,---,m), we have a formula ™= for computing the number of

terms of the X (n,S)-representation of M. Moreover, the X, -representation

A, B, B,Y" 1 A,"™ can be written as
u u —Uu
A, B, A, "
u1tus U —(u1+tus:
Am 3Bn4An(1 3)

A witustus g ous g —(u1+us+us)
n n n

A witustustur p ous g —(u1+us+us+ur)
n n n

A wrtustusturtetuzioittum—2 D Um-1 g —(uitugtusturt-tuzi—1+ - +Hum—2)
n n n

A (itustusturtetugi—1+Fum—2+tm)
n

where the exponent of the last term A, is u,, = —(u1 + ug + us + uy + -+ - +

Ugi—1 + -+ + Up2).

If we regard the description above as the X (n, S)-representation

_ _ _ Sam_3 “Sam_1 Sam—_1
An sal BnugAnsal An sa2BnU4An Sa2 . _An mTAn WTBnumflAn %
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of M, then we have the following
Uy = _Sa1
U3 = Sa; — Say

Us = Say — Sag

u2’i—1 = Sai_l - Sai

Um—2 = Sam—B - Sam—l
2 2
Uy = Sam71
m-1

5(11 = —U
Say = —UL — U3
Saz = —U1 — U3 — Us
Sa; = —U1L — U3 —Us — =+ — Ug—1
Sap_g = “UL U3 Us — T Um—2-
m-1

Therefore, we have an explicit formula
Sa; = —(u1 +U3 ‘|—U5 + - +u2i_1)

to compute the X (n, S)-representation of M. So now we describe the modified

X (n, S)-representation algorithm.
Modified X (n,S)-Representation Algorithm

For odd m > 3, let A,,“*B,"?--- B, *A,,“™ be the X,,-representation of M as
an input to the modified X (n, S)-representation algorithm where ug, - - -, w1

are nonzero integers.
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Step 0
i—1.
w— A,"B,"2 ... B,"m A

w = 1x,, = output lx(,s)-

Step 1
e — —(u; +uz+us+---+uzi-1)
ei ¢ S = output e.

;€S =C;«— A, “B,"A,.

Step 2

w— C; lw

w = 1x_ = output C;C;---C;.
Otherwise,

i—i+1

m+1

i= "= = output ¢

return Step 1.

Now we explain how the X (n,S)-representation algorithm works. Assume
that the X,,-representation of M is given. Then the X (n,S)-representation

algorithm takes the X,-representation
A MB U2 A BB M A U2 B tmel A U

as an input and outputs the X (n, S)-representation

Anul BnuzAn*ul Anu1+u3Bnu4An*U1*U3 . _Anu1+u3+u5+“'+u7n—2Bnurnfl An—ul—ug—ug,—---fum,g'

We need to say something about what the input should be if the X,,-representation
of M is not the form A,“*B,*?--- B,"™tA,"™.

96



If the X,,-representation of M € I',, is
B, A, - B, ALY (even p),
then input the X, -representation
A B " A - B A
to the X(n,S)-representation algorithm where u; = 0 and u; = v;_1(i =
2,3,--- ,m=p+1).
If the X, -representation of M € I',, is
AP B AP B, (even p),
then input the X, -representation
A B Bt A
to the X (n, S)-representation algorithm where u; = v;(i = 1,2,--- ,m—1=p)
and u,, = 0.
If the X, -representation of M € I',, is
B, A2 - AP B, (odd p),
then input the X, -representation
A B Bt A

to the X (n, S)-representation algorithm where uy = 0, u; = v;_1(i = 2,--- ,m—

1=p+1) and u,, =0.
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5.4 Programming Implementation

This section presents implementation of the modified X (n, S)-representation
algorithm. By using Maple version 6, we make a program. So we demonstrate
how the modified X (n, S)-representation algorithm works correctly. Input the
number m of terms of the X,-representation A,“*B,“*--- B,“"'A,"™, the
exponents uy, g, uz, *-- ,U,_1 and u,. Our implementation provides ad-
ditional intermediate outputs that verify the checks e; ¢ S and e; € S in
Step 1. In Step 1 of each j = 1,--- ¢, the program outputs A, “B,A,“ if
e; = s; and € if e; ¢ s;. The total number of A, % B, A,* and e output by
the program is tmT’l where t is the total number of elements of S and m is
the number of terms of the input X,,-representation of M. After execution of
the program, collect the subwords that appear as outputs of the program and
concatenate them in order. Next, we check whether the number of the terms
of the output X (n, S)-representation of the program is mT’l If the number of
terms of the output X (n, S)-representation of M is “t, then M € G(n,S)
and it is the correct X (n, S)-representation of M. If the number of terms of
the X (n, S)-representation of M is not =1, then M ¢ G(n, S) and so it is not
the X (n, S)-representation of M. We implement the following cases according

as the types of input X,,-representations.
Example 1

Given S = {2,3} and X (n,S) = {A4_QB4A42, A4_3B4A43}, the X -representation
1393 17088 . _ _ Lo .

of M = (—176 _2159> eTyis A, 2B2 A, 1B, A2 which is obtained by the

X,-representation algorithm. Input m = 5 and the exponents u; = —2,uy =

3,us = —1,uy = 1,us = 3 to the X (n, S)-representation program in the fol-

lowing.
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> su:=proc()

> local i,e,m,s,u;

> m:=5;
> ufl] = —2;
> uf2] = 3;
> uf3] = —1;
> uf4] :=1;
> u[5] := 3;
> s[0] := 0;

> for i from 1 to (m —1)/2 do

> sli]i=s[i—1] —u[2xi—1];

> if s[i| = 2 then

> print (A" {—s[i]} * B {u[2 xi]} x A"{s[i]});
> else

> print(epsilon);

> fi;

> if s[i| = 3 then

> print (A" {—sli]} » B {u[2 ]} » A" {s[i]});
> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

A—QBSA2
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A—3B1A3

0 1 4 1
program, the program computes each term A, *B,"*A,° where s € S and

where A = A, = (1 4) and B = By = (1 0). For each iteration ¢ of the

nonzero uy; € Z. Since two elements s = 2 and s = 3 of S are given in the
program, for every iteration ¢, the program produces two outputs and so the
total number of iterations is mT’l = % = 2. Therefore the total number of
outputs of the program is tmT_l where t is the number of elements of S. For the
first iteration 4 = 1 of the program, the program computes A=2B3A? and the
second output of the first iteration ¢ = 1 of the program is e¢. For the second
iteration ¢ = 2 of the program, the first output is € and the second output is
A73B'A3. In order to compute the X (n,S)-representation of M, collect the

X (n, S)-representations appear as outputs of the program and concatenate

them in order
A2B3A2A 3B A3,

This is the X (n, S)-representation of M obtained by the X (n, S)-representation
program. We check whether the number of terms of the X (n, S)-representation
of M is ™= =2 and it is the same as the number 2 of terms of the X (n, S)-

representation A 2B%A% A3 B' A3 (2 terms) of M which is obtained from the
S————

program. Therefore it is the correct X (n, S)-representation of M and so M is

an element of G(n, S).

Example 2

Given S = {2, 3, 5} and X(TL, S) = {A472.B4A42, A473B4A43, A475B4A45}, the
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—141951 —1666816
17932 210561
A Byt A,? which is obtained by the X,,-representation algorithm. Input m =

X -representation of M = > €Ty is Ay ’Bs°Ay° By

7 and the exponents u; = —2,us = 3,u3 = —3,us = 1,u5 = 2,ug = —1,u7; = 3

to the X (n, S)-representation program in the following.

> su:=proc()

> local i,e,m,s,u;

>m:=7,

> ufl] == -2
> uf2] :=3;
> uf3] ;= —3;
> u[4]:=1;
> ul5] == 2;
> uf6] == —1;
> ul7] =3;

> s[0] := 0;

> for i from 1 to (m —1)/2 do

> sfi] :i=s[i— 1] —u[2*i—1];

> if s[i] = 2 then

> print (AN —sli]} * BM{u[2 *i]} * AMs[i]});
> else

> print(epsilon);

> fi;

> if s[i| = 3 then

> print (AN {—s[i]} * BM{u[2 x|} « A"{s][i]});
> else

> print(epsilon);

> fi;
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> if s[i] = 5 then

V

> print(A"{—s[i]} * B {u[2 = i]} «* A{s[i]});
> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

A2B3A?

A5 BT A®

A3B7LA3

Collect the X (n,S)-representations which appear as outputs of the program

and concatenate them in order. So we have

AT?B3A2ASBIASA—3B~1 A3,

102



The number of the terms of the X (n, S)-representation A >B*A% A°B'A®

A?B~! A? (3 terms) which is obtained by the program is 3 and it is the same as
—_—

the number 251 = T=1 = 3 of terms of the X (n, S)-representation of M by the
formula ™= to compute the number of terms of the X (n, S)-representation.
Therefore the program outputs the correct X (n,S)-representation of M and

M is an element of G(n, S).

So far we have seen the cases that M € I',, is an element of G(n, S). However,
the following is an example to show how the X (n, S)-representation program

works in case that M € I'), is not an element of G(n, S).
Example 3

We show how the algorithm works in case that M is not an element of
G(TL, S) Given S = {2,3} and X(n,S) = {A4_2B4A42,A4_SB4A43}, the X4—

representation of M = — 141951 _1666816) elyis Ay 2B3A, 3B A2

17932 210561
By 'A43 which is obtained by the X, -representation algorithm. Input m =7
and the exponents w1 = —2,us = 3,u3 = =3, us = l,us = 2,us = —1,u7 = 3

to the X (n, S)-representation program in the following.

> su:=proc()

> local i,e,m,s,u;
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> for i from 1 to (m —1)/2 do

> sfi]:=s[i— 1] —u[2*i—1];

> if s[i] = 2 then

> print (A" {—s[i]} * B"{u[2 * i} * A"{s[i]});
> else

> print(epsilon);

> fi;

> if s[i] = 3 then

> print (A" {—s[i]} * BM{u[2 xi|} « A"{s]i]});
> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

AT2B3A?

A3B7A3
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Collect the X (n,S)-representations which appear as outputs of the program

and concatenate them in order. So we we have
A2B3A2A3B 1 A3,

The number of the terms of A 2B3A2 A3B~' A% is 2 and it is not the same

g

as the number ™= = % = 3 of terms of the X (n,S)-representation of M

by the formula mT_l where m is the number of terms of the X,,-representation
of M. It means that M is not an element of G(n,S) and so it is not the

X (n, S)-representation of M.
Example 4

This implementation shows how the X (n, S)-representation program works in
case that the type of the X, -representation of M is B,“*A,"?--- B,"™tA,""
(even m). Given S = {0,2,3} and X (n,S) = {A°B,AL, A, 2ByA2, Ay By
A4}, the X -representation of M = — 1583 —18624 € I'yis ByAy 2B, A1
4 4P —6132 —72143 415 Bafe B
By 'A% which is obtained by the X, -representation algorithm. However, we
consider the X,-representation A,°BsA, 2Bs*Ays ' B, ' A, instead of the X,-
representation By A, 2By3 Ay B, A3 to compute the X (n, S)-representation
of M. Input m = 7 and the exponents u; = 0,us = 1,u3 = —2,u4 = 3, u5 =

—1,ug = —1,u7 = 3 to the X(n, S)-representation program in the following.

> su:=proc()

> local i,e,m,s,u;

>m:=T;

> u[l] :=0;
> u2] :=1;
> uf3] == —2;
> ul4] :=3;
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> ul6] := —1;
> ul7]:=3;
> s[0] := 0;

> for i from 1 to (m —1)/2 do

> sfi] :=s[i—1] —u[2xi—1];

> if s[i| = 0 then

> print (A" —s[i]} * BNu[2 = i]} * A{s][i]});
> else

> print(epsilon);

> fi;

> if s[i| = 2 then

> print (A" —s[i]} * B {u[2 xi]} * A"{s[i]});
> else

> print(epsilon);

> fi;

> if s[i| = 3 then

> print (AN —sli]} * BM{u[2 x i]} x A" {s]i]});
> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

(A%)*B!
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AT2B3A?

AT3B7LA3,

Maple version 6 presents A’ B*A° as (A°)* B, Collect the X (n, S)-representations

appear as outputs of the program and concatenate them in order as follows :

A°BYAYA2B3A2A3B 1 A3,

The number of terms of A’B'A° A2B3A42 A3B~142 is 3 and it is the same
W\ ~~ _/ \ J/

~~

m-l — 721 — 3 by the formula ™= to compute the number of terms of

as 2 2 2

the X (n, S)-representation of M where m is the number of terms of the X,,-
representation of M € G(n,S). Therefore M is an element of G(n,S) and
A°B'AYA2B3A2A3B~1 A3 is the X (n, S)-representation of M.

Example 5

We show how the (n, S)-representation program works in case that the type
of the X,,-representation of M is A,"*B,"*--- A, 'B," (even m). Given
S = {0,2,3} and X(n, S) = {A4OB4A40,A4_2B4A42,A4_334A43}, the X4—

—76079 —18624) € Ty is Ay 2BRA B LA,

representation of M = ( 9612 2353
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which is obtained by the X,-representation algorithm. However, we con-
sider the X, -representation A, 2B,>A, ‘B, *A,*B,A,° instead of the X,,-
representation A, 2B3 A, ' B, A4 By to compute the X (n, S)-representation
of M. Input m = 7 and the exponents u; = —2,uy = 3,u3 = —1,uy =
—1,us = 3,us = 1,u; = 0 to the X (n, S)-representation program in the fol-

lowing.

> su:=proc()

> local i,e,m,s,u;

>m:="T,
> ufl] == —2;
> uf2] = 3;
> uf3] ;== —1;
> ul4] := —1;
> u[5] := 3;
> ul6] :=1;
> u[7] = 0;
> s[0] := 0;

> for i from 1 to (m —1)/2 do

> sli]i=s[i—1] —u2xi—1];

> if s[i] = 0 then

> print (AN —sli]} * B {u[2 i} * A™s[i]});
> else

> print(epsilon);

> fi;

> if s[i] = 2 then

> print (AN —s[i]} * BMu[2 *i]} x A™{s[i]});
> else

> print(epsilon);
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> fi;

> if s[i| = 3 then

> print (AN —s[i]} * BN {u[2 x|} x A"{s]i]});
> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following

> su();

A2B3A?

A3B71 A3,

(A%)*B!

Collect the X (n,S)-representations which appear as outputs of the program

and concatenate them in order as follows :
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A2B3A2A3B 1 A3A B A°.

The number of terms of A2B34%2 A 3B 143 A’B'A° is 3 and it is the same
- ~~ 2/ \ ~ W

m—1

as 3

= % = 3 by the formula mT_l to compute the number of terms of
the X (n, S)-representation of M where m is the number of terms of the X,,-
representation of M € G(n,S). Hence M is an element of G(n,S) and the

program outputs the correct X (n, S)-representation of M.
Example 6

This implementation shows how the X (n, S)-representation program works in
case that the type of the X,,-representation of M is B,“*A,"*--- A,“" ' B,""
(oddm). Given S = {0,2,3} and X (n, S) = {A,°B4A,", Ay, 2By A2, Ay 2 ByASY,
—76079 —18624) €T, is Budy 2B A,

—294704 —72143
B, ' A,2B, which is obtained by the X, -representation algorithm. However,

the X, -representation of M = (
we consider the Xy-representation ALByATEBAA B Y AB BLALL instead
of the X,-representation ByA, ?Bs* Ay, ' B, ' A4® B, to compute the X (n, S)-
representation of M. Input m = 9 and the exponents u; = 0,us = 1,ug =
—2uy = 3us = —lug = —l,u; = 3,ug = l,ug = 0 to the X(n,95)-

representation program in the following.

> su:=proc()

> local m,i,u,s,e;
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> ul8]:=1;
> ul9] :=0;
> s[0] := 0;

> for i from 1 to (m —1)/2 do

> sfi] :=s[i—1] —u[2xi—1];

> if s[i| = 0 then

> print (A" —s[i]} * BNu[2 = i]} * A{s][i]});
> else

> print(epsilon);

> fi;

> if s[i| = 2 then

> print (A" —s[i]} * B {u[2 xi]} * A"{s[i]});
> else

> print(epsilon);

> fi;

> if s[i| = 3 then

> print (AN —sli]} * BM{u[2 x i]} x A" {s]i]});
> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

(A%)*B!
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AT2B3A?

AT3B7LA3,

(A°)°B!

Collect the X (n,S)-representations which appear as outputs of the program

and concatenate them in order as follows :
A'B1AYA2B3A2A 3B 1A3AYB1 A°,

The number of terms of A°B'A° A2B342 A 3B 143 A°B'A° is 4 and it is
—

the same as mT’l = % = 4 by the formula

mT’l to compute the number of
terms of the X (n, S)-representation of M where m is the number of the X,-
representation of M € G(n, S). Therefore M is an element of G(n,.S) and the

program outputs the correct X (n, S)-representation of M.
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5.5 Correctness of Modified X (n, S)-Representation
Algorithm

In this section, we first consider several X ,,-representations A,,“, B,", A,,"* B,*?
and B," A,"? and we prove that they are not elements of G(n,S) and so the
X,-representations A,", B,", A,"*B,"* and B,"*A,** are not applied to the
modified X (n, S)-representation algorithm. Moreover, we justify the modified

X (n, S)-representation algorithm.
Theorem 5.5.1 If M = A," with a nonzero integer u, then M ¢ G(n,?5).

Proof If M = A,* with a nonzero integer u, then by the X, -representation al-
gorithm, we obtain A,," as the X,,-representation of M and the X, -representation

A" can be written as
At = A,"B, AL,

Since the X (n, S)-representation is the form A, °B,"A,* where s € S and a
nonzero integer v, the exponent of B,, does not have to be zero, but in case
of AnuanoAnO, the exponent of B,, is zero. Hence, the form A, B, A, is not
the X (n, S)-representation and so M does not have the X (n, S)-representation.
Hence M = A," is not an element of G(n,S). O

Theorem 5.5.2 Let M = B," with a nonzero integer u. Then
1. if 0 € §, then M € G(n,S5)

2. if0 ¢ S, then M ¢ G(n,S).

Proof If M = B,* with a nonzero integer u, then by the X,,-representation al-
gorithm, we obtain B,," as the X, -representation of M and the X,,-representation

B," can be written as
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Bnu — AnOBnuAnO
where u is a nonzero integer. If0 € S, then A,,°B,,“A,,° is the form A, °B," A,
where s € S and a nonzero integer v and thus M = B," is an element of
G(n,S). If 0 ¢ S, then it does not satisfy the condition that the exponent of

the third term of 4,°B,"“A,,° has to belong to S and so M = B," is not an
element of G(n,S). O

Theorem 5.5.3 If M = A,"'B,"* with nonzero integers u; and uy, then

M ¢ G(n,S).

Proof Let M = A,"' B,"* with nonzero integers u; and uy. Then the X,,-
representation algorithm computes A,“*B,“? of M as the X,,-representation

of M and it can be written as
AnUI BnUQAno

where u; and uy are nonzero integers. Since u; # 0, A,"*B,"2A,° is not the
form A, °B,"A,” where s € S and v is nonzero integer. Hence M does not
have the X (n, S)-representation and so M = A,“*B," is not an element of

G(n,S). O

Theorem 5.5.4 If M = B,"*A,"* with nonzero integers u; and us, then

M ¢ G(n,S).

Proof If M = B,"*A,"? € T',, with nonzero integers u; and us, then the
X,,-representation algorithm computes B,“' A,“* as the X,-representation of

M and it can be written as
AnOBnulAnuz

where u; and uy are nonzero integers. Since uy # 0, A,°B,"“A,"* is not

the form A, *B,"A,° where s € S and v is a nonzero integer. Hence M does
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not have the X (n, S)-representation and so M is not an element of G(n, S). O

Theorem 5.5.5 If M = A,*B,**---B,*" A, € I',, with each nonzero
integer u; (i = 2,3,---,m — 1), then the modified X (n,S)-representation

algorithm outputs

Anm BnUZAn_ul An“1+“3Bnu4An_(u1+“3) . An“1+"3+“5+"'+“’"*2 BnumflAn—(u1+u3+u5+-~~+um72)

as the X (n, S)-representation where ug, - - - u,,,—1 are nonzero integers. Other-

wise it outputs e.

Proof If M = A,“*B,"**---B,""*A,"" € I',, with each nonzero integer u;
(1=2,3,---,m—1), the X,-representation algorithm computes A,"*B,"* - - -
B, tA,"™ as the X,,-representation of M. So in Step 0 of the first iteration
i=1,w=A,""B,"? - B, "t A,"".
In Step 1 of the first iteration, e; = —u;.
If e; ¢ S, then the modified X (n,S)-representation algorithm outputs ¢ and
the algorithm terminates.
If e =—u; € S, then C; = A, B, A, = A, B, "“?A,, ™.
In Step 2 of the first iteration,
w=C; 'w

— AMB, A A MR A UL B tmel A tm

= A, TR Bt A
As w # 1xn,s), i = 2 and return Step 1.
Assume that for 1 < j —1 < mT’S, in Step 2 of the i = j — 1th iteration,
w= An(ul+US+Us+'"+u2j73+u2jfl)BnuzjAnwjﬂ oo B UMt A
In Step 1 of the i = jth iteration, e; = —(uy + ug + us + - - - + ugj_1).
If e; = —(ug +us+us+---+ugj_1) ¢ S, then the algorithm outputs e and it
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terminates.
Ife; =—(us +ug+us+ - +ug_1) €9, then
C) = Ay 9 B, A,
_ Anu1+u3+u5+---+u2j71BnUQjAn*(“1+u3+“5+”‘+“2j71)'

In Step 2 of the ¢ = jth iteration,
w = Cj_lw

— Anul+u3+us+'”+u2j—1Bn*UZjAn*(ul+u3+u5+'"+u2jfl)Anul+US+U5+"'+U2j73+U2j71

B, A, Y2+ B U2it2 ... B Um—1 A Um
— Anul+u3+u5+“'+u2j—1+u2j+1 Bnu2j+2Anu2j+3 . BnumflAnum

As w # 1x@m,s), i = j + 1 and return Step 1.

If j = mT_l, then in Step 1, emo1 = —(up +uz+us+ -+ Up_2).
It em_1 ¢ S, then the algorithm outputs € and it terminates.
It emo1 € S, then
Cuna = A, "5 B 1A, "
2
— A witustustodum—2 g um—1 g —(uituztusttum—2)
n n n .
In Step 2 of the j = mT’lth iteration,
w = CmT—l_lw
— Anu1+u3+u5+"'+um72Bn_umflAn_(ul+u3+u5+"'+um72)w
— Anu1+u3+u5+“'+uvn—2anunlflAn7(ul+U3+U5+'"+Um72)Anu1+u3+us+'”+unL—2BnumflAnum
:AHU1+u3+u5+-~-+um—2+um
If up, = —(u1 +uz +us + -+ + Up_2), then w = 1x(, s and the algorithm
outputs
C1CC5 - - CmTf‘SCWTfl
_ AnulanAn—mAnu1+uanU4An—(U1+U3) . ‘Anu1+u3+u5+~~+umf2BnumqAn—(u1+u3+U5+~~+um72)
as the X (n, S)-representation of M.
If U 7£ _(u1_|_u3_|_u5_|_. . '+um—2), then w = Anu1+u3+u5+---+um—2+um 7& 1X(n,5’)

andi:mTJrl

. Therefore, the algorithm outputs € and it terminates. [J
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Chapter 6

X1-Representation Algorithms

Let I'y be the group generated by two matrices A; and By where

11 10
Al(o 1) andBl(l 1)

and let X; = {A;, B1}. Then for a fixed n > 2, two free generating elements

A, and B,, of I',, can be expressed by two matrices A; and B; as follows :

1 n 1 1\" "
A”:(o 1)2(0 1) =

and

10 1 0\" "
5= (o 1) = (1 1) e

and

A By - Bt ALY gives rise to A" B2 - Byt A
B, A" - B,"m 1 ALY gives rise to By A2 L. ByYmot A
A, B - AU B gives rise to A B2 - Ay By
B, A" AU B gives rise to By A M2 - AT By

In this chapter, we call them the X;-representations, but genuinely the X;-

representations are the following types
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A1 B1%% - Bi*m A (odd m)
B A% - By*m 1 A1°™ (even m)
A1 By% - A B (even m)
By A% - AP B (odd m).

where each e; is a nonzero integer (i = 1,2,--- ,m).

In Chapter 4, the X,,-representation algorithm computes the X,,-representation
of an element M of I',, assuming the natural number n > 2 is known. So given
the X,,-representation of M € I',,, we can compute the X;-representation of
M. However, we need algorithms not requiring knowledge of n to break Grig-
oriev and Ponomarenko homomorphic public-key cryptosystem in Chapter 8.
Thus we design new algorithms called the X;-representation algorithm I and
IT. The X;-representation algorithm I is for M € I',, where n > 2 is an even
natural number and the X;-representation algorithm II is for M € T',, where
n > 3. We will see the behavior of the linear fractional transformations A,
and B," is different in these two cases and so two algorithms are required.
Because n is unknown, if M € I, is input to the X;-representation algorithm,

then the X;j-representation algorithm outputs one of the following

A1 B - Bi*m A (odd m)
By A% - By*m 1 A1°™ (even m)
Ay By AP B (even m)
Byt A2 Ao B (odd m).

where each e; is a nonzero integer such that e; = nu; with a nonzero u;

(1=1,2,---,m). So now we describe the structure of the chapter.

In Section 6.1, we present the X;-representation algorithm I. In Section 6.2, We
implement the X;i-representation algorithm I by programming it and demon-

strate it. In Section 6.3, we prove the correctness of the X;j-representation
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algorithm I. In Section 6.4, we show the Xi-representation algorithm II. In
Section 6.5, we implement the X;-representation algorithm II by program-
ming it and demonstrate it. In Section 6.6, we prove the correctness of the

Xi-representation algorithm II.

6.1 X;-Representation Algorithm I

Assume that n > 2 is an unknown even natural number and M € I',,. Then
the Xi-representation algorithm I works for every even natural number n > 2.
We input a matrix M € I',, to the X;-representation algorithm and it outputs

one of the four X;-representation types which are shown before. We use two

1

5 and z = 2 to compute the X;-representation of M. If the

fixed values z =
algorithm outputs the X;-representation of M for z = %, then we do not run
the algorithm for z = 2. If not, then we have to run the algorithm for z = 2
to compute the X;-representation of M. I denotes the identity matrix, w is a

reduced word in X;* and 1y, is the empty word in Wy, .
Xi-Representation Algorithm I

Step 0
W < 1X1

L—M

Step 1
L(z) =0, |L(z)| = 1,L(z) = co = output .
|L(z)] > 1 = go to Step 2

|L(z)] < 1= go to Step 3
Step 2

e «— even number in {|L(z)|, [L(z)]}

C+ A;°and w +— wC.
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C =1 = output ¢
L« C 'L

L =1= output w. Otherwise, return Step 1.

Step 3

e «+ even number in {Lﬁj, [ngﬂ}
C +— B;°® and w «— wC.

C =1 = output ¢

L+~ CL

L =1= output w. Otherwise, return Step 1.

6.2 Programming Implementation I

In order to demonstrate how the X;-representation algorithm I works correctly,
we make a program called the X;-representation program I by Maple version
6 and implement it. The operation of the program is one loop. Input z value
and the entries M 11, M12, M21 and M22 of the matrix M € I',, to the X;-
representation program I. Then for every execution of the program, it outputs
two matrices. The first matrix presents a matrix C' which is C' = A;° in Step
2 or C' = B1° in Step 3 of the Xj-representation algorithm I. The second
matrix is L = C7'L in Step 2 or L = C~'L in Step 3 of the X;-representation
algorithm I. When one of two matrices are the identity matrix, execution of
the program terminates. If the second matrix is the identity matrix, then
collect each first matrix in every execution of the program and concatenate

them in order. So we can obtain the X;i-representation of M.
The X,-Representation Program I Source Code

with(GaussInt):
with(linalg):

su:=proc(z::float,M11::integer,M12::integer,M21::integer,M22::integer)
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local K,C,P,Q;
K:=matrix(2,2,[M11,M12,M21,M22]);
L(z):=(M11 x z + M12)/(M21 x z + M22);
if abs(L(z))=1 then

print(epsilon);

fi;

if abs(L(z))>1 then

if irem(floor(L(z)),2)=0 then
C:=matrix(2,2,([1,1,0,1])" {floor(L(z))};
P:=matrix(2,2,[1,-floor(L(z)),0,1]);
Q:=multiply (P,K);

print(C);

print(Q);

else

C:=matrix(2,2,[1,1,0,1))" {ceil(L(z))};
P:=matrix(2,2,[1,-ceil(L(z)),0,1]);
Q:=multiply (P,K);

print(C);

print(Q);

fi;

fi;

if abs(L(z))< 1 then

if irem(floor(1/(L(z))),2)=0 then
C:=matrix(2,2,[1,0,1,1])" {floor(1/(L(z))};
P:=matrix(2,2,[1,0,-floor(1/(L(z))),1]);
Q:=multiply (P,K);

print(C);

print(Q);

else
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C:=matrix(2,2,[1,0,1,1))" {ceil(1/(L(z)))};
P:=matrix(2,2,[1,0,-ceil(1/(L(z))),1]);
Q:=multiply (P,K);

print(C);

print(Q);

fi;

fi;

end proc:

Example 1

1 2
0 1
and M22 =1 to the X;-representation algorithm I.

Given M = A, = < ) eIy, input 2z =0.5, M11 =1, M12 =2, M21 =0

Forz:%,

> su(0.5,1,2,0,1);
11\’
0 1
1 0
0 1/°

The second matrix of the first execution of the program is the identity matrix
-2

whichis L = C7'L = (é }) ((1) f) = [ in Step 2 of the X;-representation

algorithm I and so execution of the program terminates. Take the first matrix

(03)

and it is the X;-representation of M.

of the first execution
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For z = 2,

> su(2.0,1,2,0,1);

> su(2.0,1,-2,0,1);

()
(<)

The first matrix of the second execution of the program is an usual matrix
1 o0\~* .. : : :

(1 ?) and it is the same as € which the X;-representation algorithm I out-

puts in Step 2 because L(2) = Ay '(2) = 0 in Step 2. Hence execution of the

program terminates and the program does not output the X;i-representation

of M for z =2. O

Example 2

1 4
01
and M22 =1 to the program.

Given M = Ay = ( > €'y, input z =05 M11 =1, M12=4, M21 =0

N
I
N[ =

> su(0.5,1,4,0,1);
11\’
01
1 0
01
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The second matrix of the first execution of the program is the identity matrix
—4

whichis L = C7'L = (é 1) ((1) 11) = [ in Step 2 of the X;-representation

algorithm I. Take the first matrix of the first execution

1 1\"
0 1
and it is the X;i-representation of M.

z =2,
> su(2.0,1,4,0,1);

> su(2.0,1,-2,0,1);

()
(= <)

The first matrix of the second execution of the program is an unusual matrix
1 o
11

I because L(2) = Ay~ (2) = 0 in Step 2. So execution of the program termi-

which is the same as € in Step 2 of the X;-representation algorithm

nates and the program does not output the X;-representation of M for z = 2.

U

Example 3

1 6
01
and M22 =1 to the program.

Given M = Ag = < ) € Iy, input z = 0.5, M11 =1, M12 =6, M21 =0
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Forz:%,

> su(0.5,1,6,0,1);
1 1\°
0 1
1 0
0 1

The second matrix of the first execution of the program is the identity matrix

—6
whichis L = C7'L = (é }) ((1) (15) = [ in Step 2 of the X;-representation

algorithm I and so execution of the program terminates. Take the first matrix

of the first execution of the program

(0 3)

and this is the X;-representation of M.
For z = 2,

> su(2.0,1,6,0,1);

> su(2.0,1,-2,0,1);
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The first matrix of the second execution of the program is an unusual matrix

11

(1 O) which is the same as € in Step 2 of the X;-representation algorithm
I because L(2) = Ay~ "(2) = 0 in Step 2. So the program does not output the

Xi-representation of M. [J

Example 4

10
2 1
and M22 =1 to the X;-representation program.

Given M = By = ( ) €Ty, input z = 0.5, M11 =1, M12 =0, M21 = 2

_1
For z = 3,

> su(0.5,1,0,2,1);

()
()

(1)
> 7)

The first matrix of the second execution of the program is an unusual matrix

> su(0.5,1,0,-2,1);

(1 1) which is the same as € in Step 3 of the Xj-representation algo-

0 1

1 0
-2 1
execution of the program terminates and the program does not output the

rithm I because L(3) = ( ) 1) =B""(3) = P —coin Step 3. So

—1+1

Xj-representation of M.

For z = 2,
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> su(2.0,1,0,2,1);

()
(o)

The second matrix of the first execution is the identity matrix which is L =
-2

C7L = (1 (1)> (é (1)> = I in Step 3 of the X;j-representation algorithm

I. So execution of the program terminates and take the first matrix of the first

()

and this is the X;-representation of M. [J

execution

Example 5

Given M = By = G (1)) €T, input z = 0.5, M11 =1, M12 =0, M2l =4

and M22 =1 to the program.
For z = %,

> su(0.5,1,0,4,1);

> su(0.5,1,0,-2,1);
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> 7)

The first matrix of the second execution of the program is an unusual matrix

(é 1) which is the same as € in Step 3 of the X;-representation algorithm

1
I because L(1) = By7'(3) = —7 = o0 in Step 3. So execution of the pro-

gram terminates and the program does not output the X;-representation of M.
For z = 2,

> su(2.0,1,0,4,1);

()
o 7)

The second matrix of the first execution is the identity matrix which is L =

—4
CL = (1 (1)> (111 (1)> = I in Step 3 of the X;-representation algorithm

I and execution of the program terminates. Take the first matrix of the first

()

which is C' = B;® = B;* in Step 3 and this is the X;-representation of M. [

execution

Example 6

Given M = Bg = (é [1)

and M22 =1 to the program.

) € T, input 2 = 0.5, M11 =1, M12 =0, M21 = 6

_ 1
For z = 3,

> su(0.5,1,0,6,1);
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> su(0.5,1,0,-2,1);

The first matrix of the second execution of the program is an unusual matrix

(é D which is the same as € in Step 3 of the X;-representation algorithm

—9 1) \2
terminates and the program does not output the X;-representation of M for

I because L(3) = < L 0) (1) = oo in Step 3. So execution of the program

_1
2—2.

For z = 2,

> su(2.0,1,0,6,1);

()
o 7)

The second matrix of the first execution of the program is the identity matrix

-6
whichis L = C7'L = (1 (1)) (é (1)) = [ in Step 3 of the X;-representation

algorithm. So execution of the program terminates and take the first matrix

()

of the first execution

129



This is the X;i-representation of M. [

Example 7

Given M = Ag—*Bs1Ag® = (1_03 i%‘;) € Ty, input = = 0.5, M11 = 109,

M12 = 1944, M21 = —6 and M22 = —107 to the program.
For z = %,

> 51(0.5,109,1944,-6,-107);

> su(0.5,1,18,-6,-107);

>su(0.5,1,18,0,1);

(o 7)

The second matrix of the third execution of the program is the identity ma-

11\ % /1 18
trix which is L = C7'L = (0 1> <O 1) = [ in Step 2 of the Xi-
representation algorithm I. So execution of the program terminates and collect

each first matrix in every execution. Then we have
1\ B0\ 1 1\
01 11 0 1)~
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as the Xi-representation of M.
For z = 2,

>su(2.0,109,1944,-6,-107);

1 18
-6 —107

> su(2.0,1,18,-6,-107);

> su(2.0,1,18,0,1);

> su(2.0,1,-2,0,1);

1 =2

—00 0
The first matrix of the fourth execution of the program is an unusual matrix
(1 (1)) which is the same as € in Step 2 of the X;-representation algorithm

1 =2
0 1
program terminates and the program does not output the X;-representation

of M for z =2. O

I because L(2) = C7'L = (2) = 0 in Step 2. So execution of the
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Example 8

. 35 _ 11773 1944
leen M = AG 336 1A63Bﬁ = (—648 107

11773, M12 = 1944, M21 = —648 and M22 = —107 to the program.
> 5u(0.5,11773,1944,-648,-107);

1 1 —18

0 1

109 18
—648 —107

X}
v
by
0

> 51(0.5,109,18,-648,-107);

> su(0.5,109,18,6,1);

> su(0.5,1,0,6,1);

> su(0.5,1,0,-2,1);
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) € I'g, input z = 0.5, M11 =



> 7)

The first matrix of the fifth execution of the program is an unusual matrix

(é 1) which is the same as € in Step 3 of the X;j-representation algorithm

I because L(3) = C'L(3) = L0

9 1 (5) = oo in Step 3. So execution of the

program terminates and the program does not output the X;-representation

of M.

For z = 2,

>su(2.0,11773,1944,-648,-107);
11\
01

109 18
—648 —107

1 0\ °
11
109 18
6 1

(b1)
(6 1)

()

> su(2.0,109,18,-648,-107);

> 5u(2.0,109,18,6,1);

> su(2.0,1,0,6,1);
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o 7)

The second matrix of the fourth execution of the program is the identity

—6
matrix which is L = C7'L = G 2) (é (1)) = [ in Step 3 of the X;i-

representation algorithm I and so execution of the program terminates. Collect
each first matrix in every execution of the program and concatenate them in

order. Then we have

L) GGG

as the X;-representation of M. [

Example 9

Given M = BgA¢ 2B 1 Ag® = (1130092 213924241) € I'g, input z = 0.5, M11 =

109, M12 = 1944, M21 = 1302 and M22 = 23221 to the program.
For z =

1
29

> su(0.5,109,1944,1302,23221):

1 0\ “
11

109 1944

-6 —107

> 51(0.5,109,1944,-6,-107);

> 5u(0.5,1,18,-6,-107);
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T
5

(b 1)
o 7)

The second matrix of the fourth execution of the program is the identity

1 1\ ®/1 18
matrix which is L = C7'L = <O 1) <0 1> = I in Step 2 of the X;-

representation of the algorithm I and so execution of the program terminates.

> su(0.5,1,18,0,1);

Collect each first matrix in every execution of the program and concatenate

them in order. Then we have

G566 G

as the X;-representation of M.
For z = 2,

> su(2.0,109,1944,1302,23221);

1 0\"
11

109 1944
-6 —107

11\
0 1
1 18
-6 —107
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> su(2.0,1,18,-6,-107);

> su(2.0,1,18,0,1);

> Su(2'0;17_27071);

1 =2
—00 00
The first matrix of the fifth execution of the program is an unusual matrix

G (1]) which is the same as € in Step 2 of the X;-representation algorithm

1 =2
0 1
program terminates and the program does not output the X;-representation

of M for z =2. O

I because L(2) = C~1L(2) = (2) = 0 in Step 2. So execution of the

Example 10

: 3 11773 1944 .
Given M = Bg?A¢ 2 Bg 'A¢*Bs = <140628 23221) € I'g, input z = %,

M11 = 11773, M12 = 1944, M21 = 140628 and M22 = 23221 to the pro-
gram.

_ 1
For z = 3,

> su(0.5,11773,1944,140628,23221);
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1 0\
11
11773 1944

—648 —107

> su(0.5,11773,1944,-648,-107);
1 1 —18
0 1
109 18
—648 —107

1 0\°°
11
109 18
6 1

(b1
(o 1)

()

> 5u(0.5,109,18,-648,-107);

> su(0.5,109,18,6,1);

> su(0.5,1,0,6,1);

> su(0.5,1,0,-2,1);
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The first matrix of the sixth execution of the program is an unusual matrix

(é 1) which is the same as € in Step 3 of the X;-representation algorithm

I because L(%) = O_lL(%) = (_12 ?) (%) = 00 in Step 3. So execution of the

program terminates and the program does not output the X;-representation
of M for z = %

For z = 2,

>su(2.0,11773,1944,140628,23221):

1 0\ “
11
11773 1944
—648 —107

> 5u(2.0,11773,1944,-648 -107);
1 1 —18
0 1
109 18
—648 —107

&)
v
by
0

> su(2.0,109,18,-648,-107):

> su(2.0,109,18,6,1);

> su(2.0,1,0,6,1);
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()
o 7)

The second matrix of the fifth execution of the program is the identity matrix

—6
S 1 1 . i
whichis L = C71L = (1 (1)) (6 (1)) = I in Step 3 of the X;-representation
algorithm I and so execution of the program terminates. Collect each first
matrix in every execution of the program and concatenate them in order.

Then we have

GG 686Gy

as the Xi-representation of M. [

6.3 Correctness of Algorithm 1

In this section, we justify the Xi-representation algorithm I and so we show

how the Xj-representation algorithm I works correctly for z = % and z = 2,
respectively. In this chapter, n(> 2) indicates an even natural number and

note the fact that the natural number n is unknown.

Theorem 6.3.1 If M = A," with a nonzero u is input to the algorithm
(z = %), then the algorithm outputs A;™* as the X;-representation of M.

Proof If M = A," € T',,, then by Lemma 4.1.1, in Step 1 of the first it-
eration, |L(3)| = |A,"(3)| = [nu+ 3| > 1. |L(3)] = [nu+ 3] = nu and
[L(3)] = [nu+ 3] =nu+1. Asniseven, | L(1)] =nuis even. In Step 2, as
niseven, e = nu, 0 = A" w=wC =A;""and L =C 'L = A, ™A, = 1.

nu

So the algorithm outputs A;"* as the Xi-representation of M and it termi-

nates. [
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Theorem 6.3.2 If M = A," with a nonzero integer u is input to the al-

gorithm (z = 2), then the algorithm outputs e.

Proof If M = A,"* € T',,, then |L(2)| = |A,“(2)] = |nu + 2| in Step 1 of

the first iteration.

If n =2 and u = —1, then |L(2)] = |nu + 2| = 0 and so the algorithm

outputs € in Step 2 of the first iteration. Hence the algorithm terminates.

If n # 2 or u # —1, then in Step 1 of the first iteration, |L(2)| = |A4,“(2)| =
|nu+2| > 1. In Step 2, |L(2)| = [nu+2] =nu+2and [L(2)] = [nu+2] =
nu+2 Soe=nu+2 C = A°= A" w=wC = A" and
L=C'L=A""72A" = <(1) _12) # I. Thus return Step 1. In Step
1
0

outputs € in Step 2 of the second iteration. Hence the algorithm terminates.

0

1 of the second iteration, L(2) = ( _12> (2) = 0 and thus the algorithm

Theorem 6.3.3 If M = B," with a nonzero integer u is input to the al-

gorithm (z = %), then the algorithm outputs e.

Proof If M = B," € T\, then [L(})| = [B,"(})| = |

5N

If n =2 and u = —1, then in Step 1 of the first iteration, |L(3)| = |B,"(3)| =
=
nu+2

| = 00. So in Step 3, the algorithm outputs € and it terminates.

If n # 2 or u # —1, then in Step 1 of the first iteration, by Lemma 4.1.2,

IL(3)| = \nu1+2\ < 1. L@J = |nu+2] = nu+2 and [ﬁ%)} = [nu+2] = nu+2.

In Step 3, as n is even, e = nu + 2, C = B,* = B"™ ™ w = wC = B;"""?,
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1

-2
1 0
-2 1
Hence the algorithm terminates. [

L=C'L=B""2B"= ( (1)) # I. So return Step 1. In Step 1 of the

second iteration, L(3) = ( ) (3) = oo and so the algorithm outputs .

Theorem 6.3.4 If M = B," with a nonzero integer u is input to the al-
gorithm (z = 2), then the algorithm outputs B, as the X;-representation of
M.

Proof If M = B,* € I',,, then in Step 1 of the first iteration, by Lemma

41.2, |L(2)] = |B."(2)| = |3 = \nul%y <1 |zl = [nu+ 3] = nu and
[ﬁ} = [nu+ %] =nu+ 1. In Step 3, as n is even, e = nu, C = B, = B;"",
w=wC = B™ and L = C7'L = B;"™B,* = I. Hence the algorithm

outputs B as the X;-representation of M and it terminates.

Theorem 6.3.5 If M = A,“*B,**---B,""'A,*" € I, is input to the
algorithm (z = %), then the algorithm outputs A;"“*B;"%2 ... B;"m-1 A,"m
as the Xj-representation of M where odd m > 3 and wu; is a nonzero integer

(1=1,---,m).

Proof Given M = A, B,,**--- B,*"'A,"*™ € I',, with m > 3 and nonzero
up € Z(i = 1,--- ,m), put L(3) = A, B," -+ B,"" 14, (3) = nuy + (3
where 8 = B," - B,""*A,""(3). By Theorem 4.1.4, |L(3)| = |A,"* B," - -
B, A (3)] = [nui+B1| > 1 and by Theorem 4.1.5, || = |B,"2 - - - B, "™
A" (3)] < 1. So in Step 1 of the first iteration, |L(1)| > 1.

For —1 < 31 <0, [L(%)J = |nuy + 6] = nu; — 1 and [L(%ﬂ = [nuy + 5] =

nuy. So in Step 2 of the first iteration, as n is even, e = [L(3)] = nuy, C =

A w = wC =A™ and L= C7'L = Ay ™A™ B, L Byt Ay
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= B{""? ... By""m 1 A" As L # I, return Step 1.

For 3, = 0, in Step 2 of the first iteration, as n is even, e = LL(%)J =nu, C' =
A w = wC =A™ and L= C-1L = A, ™A™ B," ... B,"n-1 A, "

=B, - - B,"" A, # I. So return Step 1.

For 0 < 8 <1, [L(3)] = |[nui+61] = nuy and [L(2)] = [nui+ 1] = nug +1.

So in Step 2 of the first iteration, as n is even, e = LL(%)j =nu,, C = A",
w = wC = A™ and L = C'L = A "™ A™B,"-..B,"" 1A' =

B,"* - Bt A" £ I. So return Step 1.

Assume that for 1 <i—1 < m—1, in the ¢ — 1th iteration, L = A, B,,"“*! - -
B,' ™A, or L = B, A"+ --- B,""1A,"" according as i — 1 is even or

odd.

For odd 7, in Step 1 of the ith iteration, put L(%) = A, B, ... B, 1A,
(3) = nu; + B; where 3; = B,"*' .- B,""1A4,""(3). By Theorem 4.1.3,

|L(3)| > 1 and by Theorem 4.1.4, |3;| < 1.

For —1 < 3; <0, |[L(3)] = |nu;+8;] = nu;—1 and [L(2)] = [nu;+ 8] = nu,.
So in Step 2 of the ith iteration, as n is even, e = nu;, C' = A1 = A", w =
wC = A" B"™2 ... B"1C = A" B"™ ... B A [ = C7UL =
ATMA B Bt ALY = B B YA £ T So return
Step 1.

For 3 = 0, |[L(3)] = [nu; + 8] = nu; and [L(5)] = [nw + Bi] = nu,.
In Step 2 of the ith iteration, as n is even, e = nu;, C = A = A",
w=wC = A" B""*?... B{"""C = A" B;"* ... B;"" A" and L =
C7IL = A;7™ A B, .. B"m 1AM = Bt ... B U1 A% £ T So
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return Step 1.

For 0 < §3; < 1, |L(3)] = [nw; + 3] = nu; and [L(3)] = [nw; + 3i] = nu; + 1.
In Step 2 of the ¢th iteration, as n is even, e = nu;, C = A = A",
w=wC = A" B ... By" 1 C = A" B Bt A™ and L=
C™IL = A7 A B, M+ .. B 1AM = B+ ... B" A% £ I, So

return Step 1.

For even 1, let L(%) = B, A"t Bn“"HAn“m(%) = B,"(q;) = —%— =

nu;o;+1

T where o; = A, - -Bn“’"*lAn“m(%). In Step 3 of the ith iteration,

by Theorem 4.1. 4, |L(3)| < 1 and by Theorem 4.1.3, |oy;| > 1.

For -1 < - <0, [ (2)J = [nuﬁ—ij = nu; —1 and [ 1 = [nu;+ 11 = nu;.
So, in Step 3 of the ith iteration, as n is even, e = ( W =nu;, C = B =
B", w = wC = A" B" ... A" C = A1"“131"“2- S A BT
L=C"1L =B "B, A"+ - B,"m 1A, = AN+ Bt At LT
So return Step 1.

For0 < - <1, | e )j = [nw; + o] = nu; and [ﬁ%)] = [nu; + o1 = nu; + 1.
So in Step 3 of the ith iteration, as n is even, e = |nu; + Q%J =nu;, C = B, =
B," w =wC = A" B"™? .- A" C = A" B AP B and
L=C"1L=B""4B,"A," ... B " 1A," = A"+ ... B A" #£ 1.
So return Step 1.

If i = m, then in Step 1 of the mth iteration, By Theorem 6.3.1, |L(3)| =
A ()] = Inum + 3] > 10 [L(3)] = |num + 3] = nu, and [L(3)] =
[num, + 3] = nu, + 1.0 So in Step 2 of the ith iteration, As n is even,
e = [L(%)J = Ny, C = A =A™, w=wC =A""B"?... B""1C =

A B Bt A and L = CTUL = Ay ALY = 1. Thus the

143



algorithm outputs A,"“* B;""? ... B;"""~1 A;""™ as the X;-representation of M

and the algorithm terminates. [

Theorem 6.3.6 If M = A,"*B,**--- B,"""'A,"“™ is input to the algorithm
(z = 2), then the algorithm outputs € where odd m > 3 and w; is a nonzero

integer (i =1,---,m).

Proof Given M = A,"*B,"**--- B, 1A, €T, put L(2) = A,“*B,"* - -
B, 1A, " (2) = nuy + $1 where 5; = B,*?--- B,"" 1A, " (2).

If n =2 and w, = —1, then A4,""(2) = nu,, +2 = 0 and B,""'(0) = 0.
By Lemma 4.1.1, A,,“"~2(0) = nu,,—2 € D° and by Theorem 4.1.3, |L(2)| =
|A, B, - Bt A (2)| = |AM B - Bt A2 (0)] > 1. By
Theorem 4.1.4, 81| = |B,"* - - - B,"" ' A, (2)| = |B,"* - - - B,"*A,,""2(0)| <
1. So in Step 1 of the first iteration, |L(2)| > 1 and |G| < 1.

If n # 2 or u, # —1, then A,“"(2) = nu,, + 2 € D and by Lemma 4.1.2,
B, 1A, ™(2) = B, "' (num, +2) € D. Soin Step 1 of the first iteration, by
Theorem 4.1.5, |L(2)] = |A, "' B,"* - - - B, 1A, (2)] = |A, "' B,"2 - - - A, 2
B,""'(nu,, +2)| > 1. By Theorem 4.1.6, || = |B,"*--- B,"" A, (2) =
B,

s At B (nuyy, + 2)| < 1

For —1 < 8, < 0, |[L(})] = |[nwy + B1] = nuy — 1 and [L(3)] = nus. So
in Step 2 of the first iteration, as n is even, e = [L(3)] = nuy, C = A,° =
Alnul, w = wC = Alnul, L= C_lL = AlfnulAlntlnug s Blnum_lAlnm =

By"% ... By"m=t A" £ [, So return Step 1.

For 3; =0, | L(3)] = [nui+61] = nuy and [L(3)] = nu. In Step 2 of the first
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iteration, as n is even, e = LL(%)j =nu, C = A= A" w=wC = A",
L = C«flL — AlfnulAlnulBlnuz . 'BlnumflAlnm _ Blnu2 . 'Blnu7n,1A1nm 7&

1. So return Step 1.

For 0 < 81 < 1, [L(3)] = [nw + B1) = nuy and [L(3)] = nuy + 1. In
Step 2 of the first iteration, as n is even, e = [L(3)] = nuy, C = A =
A" w = wC =A™, L =C7'L=A"""A"™B"™ ... B™m 1AM =
B"? ... Byt A" £ [ So return Step 1.

Suppose that for 1 < i—1 < m—2, L = A,“B,"*---B,*"tA,"™ or
L = B, A"+ .- B,"" 1A, in the ¢ — 1th iteration according as ¢ — 1 is

even or odd.

For odd i, put L(2) = A, B, --- B, "™ *A,""(2) = nu; + (; where §; =
Byt Bt AL (2).

If n =2 and w, = —1, then A,""(2) = nu, +2 = 0 and B,""'(0) = 0.
By Lemma 4.1.1, A,“"2(0) = nu,—2 € D and by Theorem 4.1.3, |L(2)| =
|A B - Bt A (2)] = |A B - Bt ALY 2(0)] > 1. So
in Step 1 of the ith iteration, |L(2)] > 1 and by Theorem 4.1.4, |5;| =
| B, - Bt ALY (2)] = | BY - Bt A2 (0)] < 1.

If n # 2 or u, # —1, then A4,“"(2) = nu,, +2 € D° and by Lemma 4.1.2
Bt A" (2) = B,"" ' (nu, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4.1.5, |L(2)| = |A,“ B, ! -+ - B, 1A, (2)] = |A," By it -+ - A, m—2
B, "' (nu,,+2)| > 1. By Theorem 4.1.6, |5;| = |B,""** -+ - B, "1 A,""(2)| =

| B, it A2 B (nugy, + 2)] < 1

For —1 < 3 < 0, [L(2)] = [nw; + BiJnu; — 1 and [L(2)] = nu;. In Step
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2 of the ith iteration, as n is even, e = [L(2)| = nu;, C = A = A™
w = wC = A" B"...B,"“"1C = A" B""*..-B,""tA"™ and L =
C—IL — Al—nuiAlnuiBlnqu . Blnum71A17‘Lm — Blnui_,_l - BlnumflAlnm 7é I

So, return Step 1.

For B; = 0, |L(2)] = [nu; + Bi] = nu; and [L(2)] = [nu; + 5;] = nu,;. In
Step 2 of the ith iteration, as n is even, e = |L(2)| = nu;, C = A;¢ = A",
w=wC = A" B™ ... B" 1 C = A" B™2 .- BT A™ and L =
CIL = Ay ™A™ B+t < Bytmt At = BU L B Ut AU £ T So

return Step 1.

For 0 < §; < 1, |[L(2)] = [nui+08;] = nu; and [L(2)] = [nu;+6;] = nu;+1. In
Step 2 of the ith iteration, as n is even, e = |L(2)| = nu;, C = A, = A",
w=wC = A"™B" ... By"1C = A" B"™? ... By A" and L =
C™'L = Ay ™A™ B+ - B, "1 A" = B+ - B, A" #£ 1. So
return Step 1.

For even i, put L(2) = B," A, --- B,""1A,"(2) = B,"(cj) = —%— =

nu;o;+1
1 Uj U — U
W where o; = An .. Bn m lAn m(2)

g

If n =2 and w, = —1, then A,""(2) = nu, +2 = 0 and B,""'(0) = 0.
By Lemma 4.1.1, A,“"2(0) = nu,,_2 € D° and by Theorem 4.1.4, |L(2)| =
| B, A, Bt A (2)] = | B AL - Bt A2 (0)] < 1. By
Theorem 4.1.3, a;; = A, -+« B, 1A, (2) = A, - B,"m 2 A,"2(0) €
D¢. So in Step 1 of the ith iteration, |L(2)| < 1 and |oy| > 1.

If n # 2 or u, # —1, then A4,“"(2) = nu,, + 2 € D and by Lemma 4.1.2,

Bt A" (2) = B, ' (nu,, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4167 ‘L(2)| = |BnuZ‘Anuz‘+1 e Bnum—lAnum (2)| — ‘BnuiAnui+1 .
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A 2 B (nug,+2)| < 1. By Theorem 4.1.5, a; = A"+ -+ Bt A, "™ (2)
= A, Bt A2 B (i, + 2) € D Thus in Step 1 of the ith

iteration, |L(2)| < 1 and || > 1.

For —1 < - <0, Lﬁj = [nu;+ 4] = nu;—1 and [ﬁ} = [nu; + -1 = nu;.
So, in Step 3 of the ith iteration, as n is even, e = [#%)1 = nu,;, C' = B;* =
B"™ w=wC = A" B"™? .- A\ C = A" B"™2 - A B™ and
L=C"1L=B""4B,"A," "+ ... B " 1A," = A"+ ... B A" #£ 1.
So return Step 1.

For 0 < + <1, Lﬁj = |nu; + = | = nu; and [ﬁ} = [nu; + o] = nu; + 1.

&7

So in Step 3 of the ith iteration, as n is even, e = |nu; + aij =nu;, C = B, =
Blnui’ w o= wC’ — AlnulBanQ . _Alnui_lcr — AlnulBanQ . _Alnui_lBlnui’
L=C7'L =B ""B,"%A"Y" ... B,Ym 1A = AWt ... B Um-t A Um L]

So return Step 1.
If i = m — 1, then in Step 1 of the m — 1th iteration, L(2) = B,"“"'A,""(2).

If n =2 and w, = —1, then A,""(2) = nu,, +2 = 0 and B,""'(0) = 0.
So L(2) = B,""'A,""(2) = 0 in Step 3 of the m — 1th iteration and the

algorithm outputs €. Hence the algorithm terminates.

If n # 2 or w, # —1, then A,""(2) = nu,, +2 € D¢ and by Lemma
4.1.2, |L(2)| = |B," A" (2)] = |By""*(nu, + 2)| = ‘m| <1
m— num+2

in Step 1 of the m — 1th iteration. So in Step 3 of the m — 1th iteration,

For —1 < —W:LJFQ <0, Lﬁj = |num-1 + nu,,lL+2J = nu,,—1 — 1 and (ﬁ} —

(M1 + m1 = NUy,—1. S0 in Step 3 of the m — 1th iteration, as n is even,
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€ = (ﬁ—l = NUpm—1, C = Ble = BlrLUm_l, w=wC = AlnulBanQ cee Alnum_QC =
A B2 L A Bt and [ o= CTML = By TMmoiBUml A =
A" # 1. So return Step 1.

For 0 < —— < 1, [ﬁj = |nUpm-1 +

1 1
Um+2 num+2J = NUp-y and [m-I -

(M1 + m1 = NUp—1 + 1. So in Step 3 of the m — 1th iteration,
as n is even, e = (ﬁ} = NUpm_1, C = B = B"™ ', w = wC =
A" B A O = AT B A2 Bl and L= O L =
By Mmr g tmet A Y = AU £ [ So return Step 1.

If i = m, then in Step 1 of the mth iteration, |L(2)| = |4,“"(2)| = |nu., + 2|.
By Theorem 6.3.2, the algorithm outputs € in Step 2 of the mth iteration and

the algorithm terminates. [

Theorem 6.3.7 If M = B,""A,"*---B,""'A," is input to the algo-
rithm (z = %), then the algorithm outputs B,“*A,“*--- B,“"'A,"™ as the
Xj-representation of M where even m > 2 and wu; is a nonzero integer (i =

1, ,m).

Proof Given M = B,"*A,,**--- B, *A,"™ with m > 2 and nonzero u; € Z
(1t = 1,2,---,m), put L(%) = BnulAnW---Bn“’”*lAn”m(%) = B, (1) =
S = nulia—ll where a; = A,"%--- Bn“m‘lAn“m(%). In Step 1 of the first

iteration, by Theorem 4.1.4, |L(1)| < 1 and by Theorem 4.1.3, |ay| > 1.

For —1 < - <0, L@J = |nuy + 5] = nuy — 1 and (@1 = [nuy + -] =
nuy. So, in Step 2 of the first iteration, as n is even, e = [ﬁl
2
B¢ = By w=wC = By"™ [ =C~'L = By "™ B, " A, ... Bum-1 A, un

=A,"?--- B, 1A, # I. So return Step 1.

=nuy, C =
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For 0 < - <1, L—(12—j [nuy + 2 2] =nu; and [ 1 = [nul—l—oﬂ = nu; + 1.
Soin Step 2 of the first iteration, as n is even, e = Lnul—i—ailj =nuy, C = B, =
B" w=wC = B"™,L=C"'L =B "B,""A," .- B, 1A' =
A% Bpt'm A #£ 1. So return Step 1.

Assume that for 1 <i—1 < m—1, in the ¢ — 1th iteration, L = A, B, "+ - - -
B, mtA,"" or L = B, A, ... B,*"1A,"™ according as ¢ — 1 is even or

odd.

For odd 1, let L(

nulii where o; = A"+ .- Bn“m—lAn“m(%). In Step 3 of the ith iteration,

by Theorem 4.1. 4, |L(3)| < 1 and by Theorem 4.1.3, |oy;| > 1.

) — BnuiAnUi+l .. Bnuqunum(%) — BnUi(ai) — o —

1
2 nu;o;+1

For —1 < o- <0, | (2)j = [nui+ 4] = nu;—1 and (%W = [nu;+ o] = nu.
So, in Step 3 of the ith iteration, as n is even, ¢ = f W =nu;, C = B* =
Bi"™, w = wC = B"™A"™... A"™1C = Blm“Al"“?---Al"“l By
L=C7L = By ™ B, A, s B A = AN B A oL T
So return Step 1.

For 0 < - - <1, | e )J = LnulJra%J = nu; and fﬁé)] = [nuz+a%1 = nu; + 1.
So in Step 3 of the ith iteration, as n is even, e = |nu; + a%J =nu;, C = B,* =
B"™, w=wC = B"™A™? ... A\"™1C = B;"" A" .. A" B™ and
L=CL =By ™B,% AN . Bt A = AN Byt A LT
So return Step 1.

For even ¢, in Step 1 of the ¢th iteration, put L(%) = A, B, . B YA
(%) = nu; + §; where 3; = Bnu”l---Bn“m*lAn"m(%). By Theorem 4.1.3,

|L(3)| > 1 and by Theorem 4.1.4, |3;| < 1.
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For —1 < 3; < 0, [L(})] = [nui+3;] = nu;— 1 and [L(3)] = [nu;+ 8] = nu,.
So in Step 2 of the ith iteration, as n is even, e = nu;, C' = A = A", w =
wC = B"™A™ ... B" 10 = B"A™2 ... B A L= CTUL =
AT"MA B B Y ALY = B B Y ALY £ [ So return
Step 1.

For 3; = 0, |L(3)] = [nu; + Bi] = nu; and [L(3)] = [nu; + Bi] = nu,.
In Step 2 of the ith iteration, as n is even, e = nu;, C = A = A",
w=wC = A" B2 ... B"™ 1 C = A" B Bt A™ and L=
C7IL = A7 A B, M+ .. B A" = B"t ... B" A% £ . So

return Step 1.

For 0 < (3; < 1, LL(%)J = |nu; + 5;] = nu; and [L(%ﬂ = [nu; + 5;] = nu; + 1.
In Step 2 of the ¢th iteration, as n is even, e = nu;, C = A = A",
w=wC = A" B""...B""'\C = A" B,"*...B;""" A" and L =
CL = A7 A B, M+ .. B YA = B+ - B" 1A' # 1. So

return Step 1.

If i = m, then in Step 1 of the mth iteration, By Theorem 6.3.1, |L(3)| =
[ A" (] = [num + 31 > L [L(3)] = [num + 3] = nup and [L(3)] =

[N, + 3] = nuy, + 1.0 So in Step 2 of the ith iteration, As n is even,

e = LL(%)J =Ny, C = A= A", w=wC = A" B""?... By"m1(C =
AM By Bytmet A Mmogand L = O = Ay ™ ALY = 1. Thus the
algorithm outputs B;"“* A2 - - - B;""m~1 A;"™"™ as the X;-representation of M

and the algorithm terminates. [J
Theorem 6.3.8 If M = B,"*A,“*--- B, 'A,"™ is input to the algorithm

(z = 2), then the algorithm outputs € where even m > 2 and u; is a nonzero

integer (1 =1,---,m).
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Proof Given M = B,"*A,**---B,""'A,“" with m > 2 and nonzero
w € Z(i=1,---,m), put L(2) = B,"*A,"*--- B,"" A, (2) = B," (1) =

%1 _ 1 _ uz ., Um—1 Um
TTTES . where o = A, B, Aptm(2).

If n =2 and w, = —1, then A,""(2) = nu, +2 = 0 and B,""'(0) = 0.
By Lemma 4.1.1, A,""2(0) = nu,—2 € D and by Theorem 4.1.4, |L(2)| =
|B," A% - Bt AL (2)] = | B ALY - Bt ALY 2(0)] < 1. By
Theorem 4.1.3, a; = A,"*---B,""1A,"(2) = A,"?--- B,""3A,"“"2(0) €
D¢. So in Step 1 of the ith iteration, |L(2)| < 1 and |ay| > 1.

If n # 2 or u, # —1, then A,""(2) = nu,, + 2 € D° and by Lemma 4.1.2,
B,""1A,"(2) = B,""'(nu,, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4.1.6, |L(2)| = |B,"*A4,"* - - - B, 1A, (2)| = | B,"" A, - - - A2
B,"" ' (nu,, + 2)| < 1. By Theorem 4.1.5, o; = A,"*--- B,"™1A,""(2) =
A2 Bt A2 B (nuy, + 2) € D Thus in Step 1 of the ith iter-
ation, |L(2)] < 1 and |oy| > 1.

For -1 < - <0, Lﬁj = [nuy+5-| = nuy—1and [ﬁ] = [nuy+5-1 = nuy.
So, in Step 3 of the first iteration, as n is even, e = fﬁ%)] =nuy, C = B¢ =
B" w=wC = By"™ A" .- A" C = A" B™2 - A B and
L=C'L=B""""B,""A," - B,"" A" = A,"*--- B,"" A, # 1. So
return Step 1.

For 0 < .- <1, [ﬁj = [nuy + 5] = nuy and (ﬁ} = [nuy + -] = nuy + 1.
So in Step 3 of the ith iteration, as n is even, e = |nu; + a%j =nu, C = B, =
B", w = wC = B{""A"™ ... A" C = By"MAM2 . A BT
L = C'L = B ™A,mA"™ .- B, A" = A" ... B,"m 1A £ T
So return Step 1.
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Suppose that for 1 < -1 < m—2, L = A,“B,"*..-B,*" 1A, or
L = B,“ A"+ .- B,"""1A," in the ¢ — 1th iteration according as i — 1 is

even or odd.

For even i, put L(2) = A, B,""*--- B,""'A,"“"(2) = nu; + 3; where [3; =
Byt Bt AL (2).

If n =2 and w,, = —1, then A,“"(2) = nu,, +2 = 0 and B,""'(0) = 0.
By Lemma 4.1.1, A,""2(0) = nu,—2 € D and by Theorem 4.1.3, |L(2)| =
|A,Y B - Bt A (2)] = | A B - Bt ALY 2(0)] > 1. So
in Step 1 of the ith iteration, |L(2)] > 1 and by Theorem 4.1.4, |5;| =
| B, i+t Bt AL (2)] = | B - Bt A2 (0)] < L

If n # 2 or u, # —1, then A,""(2) = nu,, + 2 € D° and by Lemma 4.1.2,
B, 1A (2) = By (nuy, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4.1.5, |L(2)| = [A,“ B, "+ - Bt A" (2)| = |A,% B, -
A2 By (nuy,+2)| > 1. By Theorem 4.1.6, |5;| = | B, "+t -+« B, 1A,
()| = By - A2 By (nwyy, + 2)] < 1.

For —1 < 3 < 0, |L(2)] = [nw; + f;|nu; — 1 and [L(2)] = nw;. In Step
2 of the ith iteration, as n is even, e = [L(2)] = nu;, C = A, = A™,
w = wC = A" B"*...B,"C = A" B"?...B,""'A4,"™ and L =
CLL = Ay A, By L Byt A — By Byt AT ]

So, return Step 1.

For 5; = 0, |L(2)] = [nu; + Bi] = nu; and [L(2)] = [nu; + 5;] = nu,;. In
Step 2 of the ith iteration, as n is even, e = |L(2)| = nu;, C = A;° = A",
w = wC = BlnulAanQ . 'BlnuFlC = BlnulAanQ . 'BlnuiflAlnui and L =
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C7lL = A 7™ A ™ B+ ... B U1 A W = B Wit B Um=t A Um oL [ So
return Step 1.

For0 < f; < 1, | L(2)] = |nu;+06;] = nu; and [L(2)] = [nu;+6;] = nu;+1. In
Step 2 of the ith iteration, as n is even, e = |L(2)| = nu;, C = A;¢ = A;™,
w = wC = B" A" ... 3" C = B A" .- B" T A™ and L =
C7L = A 7™ A" B+ ... B,"™ 1A% = B,"+1... B ¥m=14 “m =L [ So
return Step 1.

For odd i, put L(2) = B, A,"*'--- B,"™1A,""(2) = B," () = —%— =

nu;o;+1
1 L Witl |, , Um—1 [
mi T Where o; = A" Byt A, m(2).

g

If n =2 and w,, = —1, then A,“"(2) = nu,, +2 = 0 and B,"""'(0) = 0.
By Lemma 4.1.1, A,""2(0) = nu,—2 € D and by Theorem 4.1.4, |L(2)| =
| B, A, - Byt A0 (2)] = | B AL - Bt A2 (0)] < 1. By
Theorem 4.1.3, o; = A, "' -+« B, 1A, (2) = A%+ - B2 A,"2(0) €
D¢. So in Step 1 of the ith iteration, |L(2)| < 1 and |oy| > 1.

If n # 2 or u, # —1, then A,""(2) = nu,, + 2 € D° and by Lemma 4.1.2,
B,"m1A,"(2) = B, '(nu,, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4.1.6, |L(2)| = |B," A, ' -+« B, 1A, (2)| = | B, A, - -
A2 B (g, +2)| < 1. By Theorem 4.1.5, iy = A"+ -+« Bt A, (2)
= A, Bt A2 B (ny, + 2) € D Thus in Step 1 of the dth

iteration, |L(2)| < 1 and |a;| > 1.

For -1 < - <0, Lﬁj = [nu;+ 4] = nu;—1 and [ﬁ} = [nu; + -1 = nu;.

So, in Step 3 of the ith iteration, as n is even, e = [ﬁ} = nu;, C' = B;* =
2

Blnul" w = wC — Aln'LLlBlan .. _Alnui_1C — AlnulBln’U/Q .. Alnul_lBlnul a,nd

L=C"'L =B "B,% AN - B A = AU B A o
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So return Step 1.

For 0 < a% <1, Lﬁj = |nu; + Q%J = nu,; and (ﬁ} = [nu; + Oﬂ = nu; + 1.
So in Step 3 of the ith iteration, as n is even, e = |nu; + aij =nu;, C = B =
B"™, w = wC = B™A"™ ... A"™1C = AM™B™ .. A B
L=CL =B ™B," A, " . BUmt A = AN Byt A LT

So return Step 1.
If i = m — 1, then in Step 1 of the m — 1th iteration, L(2) = B,""'A,,“"(2).

If n =2 and u, = —1, then A4,""(2) = nu,, +2 = 0 and B,""'(0) = 0.
So L(2) = B,""'A,""(2) = 0 in Step 3 of the m — 1th iteration and the

algorithm outputs €. Hence the algorithm terminates.

If n # 2 or u # —1, then A,""(2) = nu, + 2 € D° and by Lemma
4.1.2, [L(2)] = |B," A" (2)] = |B, " (nu + 2)| = |ﬁ| <1

NUm —1 + num 12

in Step 1 of the m — 1th iteration. So in Step 3 of the m — 1th iteration,

I‘ﬁJ - Lnumfl + nu,}ﬁ-ZJ a’nd Irﬁ—l = [numfl + nui+2—"

1
NUm+2

1
NUm+2

€ = (ﬁ—l = NUpm—1, C = Ble = BlrLUm_l, w=wC = AlnulBanQ cee Alnum_QC =
A B LA M B Mm 1 and [, = O-17, — By Mmo1 B tmet g tUm
A" # 1. So return Step 1.

1

For —1 < <0, lzgl = [rum— + mj = NUpy,—1 — 1 and fﬁ} =

[nty,—1 + | = nty,—1. Soin Step 3 of the m — 1th iteration, as n is even,

For 0 < s < L |z) = [nwn + pogs) = nuper and [55] =

[MUy—1 + m1 = NUp—1 + 1. So in Step 3 of the m — 1th iteration,
as n is even, e = (ﬁ} = NUp_1, C = B = B, w = wC =

Aln’l.tlBln’LLQ .. .Alnum_QC — AI’I’LU1B1TLUQ .. .Alnum_QBln’LLm_l and L — C’—lL —
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By Mmr B tmet A Y = AU £ [ So return Step 1.

If i = m, then in Step 1 of the mth iteration, |L(2)| = |4, (2)| = |nu., + 2|.
By Theorem 6.3.2, the algorithm outputs € in Step 2 of the mth iteration and

the algorithm terminates. [J

Theorem 6.3.9 If M = A,"*B,**---A,""'B,"™ is input to the algorithm
(z = %), then the algorithm outputs € where even m > 2 and u; is a nonzero

integer (1 =1,--- ,m).

Proof Given M = A,*B,)**--- A, 'B,"*™ € I',, with even m > 2 and each
nonzero u; € Z(i = 1,---,m), put L(3) = A, B,"? - A,"" 1 B,""(3) =
nu; + (5, where 8, = B,,"*? - - -An“’”*an“m(%).

Ifanandum:—1,thean“m(l): . 3 1 = 00, A,""'B Um(%)

3NUm+1 NUm+2

= A" (00) = NUy,_1+00 = 00 and B,*" 2 A" ' B “m( ) = B,""%(00) =
L— € D. So in Step 1 of the first iteration, by Theorem 4.1.3, |L(3)| =

NUm—2

A By - A 1 Bt (1)) = (A B - A3 ()| > 1 and by

Theorem 4.1.4, |Bi| = |B,"* - -+ A, 1B, (3)| = |By"* - -An“'”‘3(nu —)| <
1.

If n # 2 or u, # —1, then B,""(3) = nu1+2 € D and by Lemma 4.1.1,
A B (5) = Ayt 1(nun11+2) = N1+ 7 L € D So in Step 1 of the

first iteration, by Theorem 4.1.3, |L(3)| = [A,"'B," -+ A" ' B, (3)| =
|A, "1 B, - ~An“m‘1(nu —)| > 1. By Theorem 4.1.4, 3] = |B,,"* - -- A"
Bnu'm(%)| — |Bn’u2 . _An’lhn—l(m>| < 1

For —1 < 1 <0, | L(3)] = [nu1 + B1] =nuy — 1 and [L(3)] = [nus + 5] =

up. So in Step 2 of the first iteration, as n is even, e

I
— N~
=
N[ —=
Bt

|

S
<
oy
Q

|
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Af=A"" w=wC=A""and L =C7 'L = A, ™A, B,"? ... A"
B, = B,"*--- A" ' B,"" # I. So return Step 1.

For 81 = 0, |L(3)] = [nuy + B1] = nuy and [L(3)] = [nuy + fi] = nuy.
So in Step 2 of the first iteration, as n is even, e = nuy, C = A = A",
w = wC = A™ and L = C'L = A "™A"MB,"--- A" ' B,"" =
B, - A1 B,"™ # 1. So return Step 1.

For 0 < 8y <1, [L(3)] = [nuy+61] = nuy and [L(3)] = [nui+ 5] = nuy +1.
In Step 2 of the first iteration, as n is even, e = [L(3)] = nuy, C = A" =
A = wC = Ay and L= C-L = A, ™A BB ... A, U1 B U —
B, A 'B,"™ # I. So return Step 1.

Suppose that for 1 <i—1 < m—3, in the ¢ — 1th iteration, L = A,,“*B,"“*! - - -
B,'m 1A, or L = B,"" A"+ --- B,""1A,"" according as i — 1 is even or

odd.

For odd i, let L(%) = A,“B," - --An“m—an“’"(%) = nu; + 3; where 3; =
Bnu¢+1 e Anum—l Bnum(%>‘

If n = 2 and u,, = —1, then B,"" (1) = ——2— = —L_ = 00, A" B,"" (1)

%num—i-l NUm+2
= A, 1(00) = N1 +00 = 00 and B, " 2A4,"" 1 B,""(3) = B,""%(00)
nu172 € D. So in Step 1 of the ith iteration, by Theorem 4.1.3, |L(3)

‘AnuiBnuiH .. _Anuqunum(%)‘ - ’Aannqu .. .An“m*(ﬁﬂ > 1 and by
Theorem 4.1.4, | 3| = | B, "+ -+ A, "3 (——)| < 1.

NUmM—2

If n # 2 or u, # —1, then B,"" (1) = nui—l—Q € D and by Lemma 4.1.1,
An“’”*an“m(%) = An“m*(nuiﬂ) = NUpy_1 + nu:LJrQ € D¢ In Step 1 of the

ith iteration, by Theorem 4.1.3, |L(3)| = [A," B,"*' -+ A" B, " (3)] =
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‘AnuiBnuiH .. .Anum_1<nu +2)’ > 1. By Theorem 4.1. 4 |Bz’ _ |B Uit , .Anum—1

B ()] = By A (k) < 1.

For —1 < 3; <0, |[L(3)] = [nui+6;] = nu;—1 and [L(3)] = [nu;+53;] = nu;.
So in Step 2 of the ith iteration, as n is even, e = [L(3)] = nu;, C = A;° =
Alnui, w = wC = AlnulBanQ L Blnui_lc — AlnulBanQ . Blnui_lAinui and
L=C1L = Ay ™A B, s A B = BN A B oL T

So return Step 1.

For 3; = 0, |L(3)] = [nu; + Bi] = nu; and [L(3)] = [nu; + Gi] = nu,.
So in Step 2 of the ith iteration, as n is even, e = [L(3)] = nu;, C = A;° =
AM L w = wC = A" B B C = AP B By A™ and
L=C L= Ay ™ A, B, o A1 By = Bt A Mmot B L ]

So return Step 1.

For 0 < §3; <1, |[L(3)] = [nw; + Bi] = nu; and [L(3)] = [nw; + 3] = nu; + 1.
So in Step 2 of the ¢ th iteration, as n is even, e = |L(3)] = nu;, C = 4,° =
Ay p = wC = Ay and L= O~V L = A, ™4 A% B, "+ ... A, U1 B, um —
B, A B Y™ £ T So return Step 1.

For even 4, let L(1) = B, " A, + - A" B," (1) = By () = =%~ =

a;nu;+1
1 Uj41 U —1 U 1
Tt I where a; = A" - A B (5).

1

Ifn =2 and u,, = —1, then B,"" (1) = %nfmﬂ = nui” = 00, A,"" 1B, (%)
= A,""1(00) = Ny, +00 = o0 and B, "2 A4,"" 1B, " (3) = B,""%(00) =

nui,z € D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(§)| =
|B, A A B (L)) = | B A -An“m*‘”’(nu172)| < 1 and by
Theorem 4.1.3, a; = A, +1 - -+ An“’"’anu’”(%)\ = A, A3 (

1.

)| >

NUmM—2
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If n # 2 or w, # —1, then B,""(3) = —— € D and by Lemma 4.1.1,

NUmM+2

A Byt (3) = A (i) = Mmoo € D In Step 1 of the

ith iteration, by Theorem 4.1.4, |L(3)| = |B," A"+ - A" B, " (3)] =
|B," A - AUt (—L—)| < 1. By Theorem 4.1.3, |ay| = | A, -+ A,

NUm +2

By ()] = [ 45 A ()] > 1

2 NUpm+2

1

For -1 < - <0, || = [nui+=| = nu;—1 and [=] = [nu;++] = nu,.
(673 L(E) (67 L(i) Qs

So in Step 3 of the ith iteration, as n is even, e = [ﬁ] =nu;, C = B¢ =

2

Blnui’ w = wc — AlnulBlnuz .. .Alnui_lc — AlnulBlTLug .. .Alnui_lBinui and

L=C1L = By ™ B, A"+ o At Bl = A, A et B LT

So return Step 1.

For 0 < L <1, |- = [nu; + L] = ny; and [-5] = [ny; + 2] =
a; L(3) ; L(3) o;

nu; + 1. So in Step 2, as n is even, e = Lﬁj = nu;, C = B¢ = B"",

2
w = wC = AlnulBanQ .. 'Alnui710 = AlnulBanQ .. 'Alnuileinui and L =
C—IL — Bl —nu; BnuiAHUi+1 . Anumfl Bnum — Anuz'-u . Anumfl

B,"™ # I. So return Step 1.

If i =m —2, then L = B,""2A,""'B,"" and put L(%) = B, " (ap_2) =

1 _ Um— Um (1
—— where iy, = A, B, (3).
If n =2 and u,, = —1, then in Step 1 of the m — 2th iteration, L(%) =
Bn’U‘m72An’U‘mlenUrn(%) — Bn’LLm72An’Mm71(OO) = B, um2 (OO) = nu:@% € D and

U = A" (00) = c0. Since —L(3)| < 1, L#%)J = | NUp_2|= Ntlp_y and

[ﬁ] = [num,_2] = nuy,_o. So in Step 3 of the m — 2th iteration, as n is
2

even, € = Nly,—s, C' = B = By""" 2 w=wC = A" B;"" ... A{"'m=3(C =
Ay By L A s Bmin 2 and [ = (71 = Byt B tee2 A, o1 B,

=A,""'B,"™ # I. So return Step 1.
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If n # 2 or w, # —1, then B,""(3) = —— € D. By Lemma 4.1.2,

NUM+2

Qg = A,™™ 1Bum() A, tm= 1( L ):num_l

NUm+2
of the m — 2th iteration, by Lemma 4.1.2, |L(3)| = |B thm = 2A Um-1 ”m( ) =

B (ana)] = — 1< 1 Then [g5) =

. Soin Step 1

‘ NUm, — 2+

[#%)] = [nty_2 + &m72—|'

For -1 < —— <0, LL_(lg)J = |num—2 + ;| = Ny — 1 and [L—(I%—)] =
[Nty o So in Step 3 of the m — 2th iteration, as n is
even, e = [nuy,_o + %372] = NUpm_o, C = B°* = B"" 2 w = wC =

AlnulBlnug . Alnum_gc _ AlnulBlnug . Alnum_gBlnum_z and L = C—IL —
By "m2 B2 A B = AU B ™ #£ 1L So return Step 1.

1o _
) LT%)J -
am_J = NuU,;,_o + 1. So in Step 3 of the m — 2th iteration, as n is even, e =

I o I,QJ =Ny, C = B,° = B""" % w=wC = A"" B"™ ... A"
C= A" B"™ ... Aj"m=3p"Mm=2 and [ = C71L = B, "m2B,'m2A, tm1
B,'™ = A,""'B,"™ # I. So return Step 1.

ﬁ%)} = [NUpm—o +
1

Ifi=m—1, then L = A,"'B,*" and L(%) = An“mlen“m(%).

If n =2 and w,, = —1, then L(3) = A4,""'B,""(3) = 4,""(00) =
and so, in Step 1 of the m — 1th iteration, the algorithm outputs €. Hence the

algorithm terminates.

If n # 2 or u, # —1, then B,""(3) = nu1+2 € D and by Lemma 4.1.1,
L(3) = A, B, (3) = A" 1(m:ﬂﬂ) MUy 1+m — € D°. So in Step

1 of the m—1th iteration, |L(3)| > 1. Then consider [L(3)] = [ntm-—1+——

el
and [L ( )1 = [, ;) +21
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For -1 < —L— < 0, then |L(3)] = |[num—1 +

p——— = NU,—; — 1 and

s
[L(%ﬂ = [nup_1 + mw = NUpy_1. S0 in Step 2 of the m — 1th itera-
tion, as n is even, e = [L(3)] = nup_1, C = A;° = A" w = wC =
A" B B M2 O = A B ML B2 A Mt and [ = O =
ApTMmr AU B Y = B 22 [ So return Step 1. If @ = m, then in the
mth iteration, L(3) = B,""(3). By Theorem 6.3.3, the algorithm outputs €

and it terminates.

For 0 < m < 1, then LL(%)J = [NUp—1 + mj = NUy,_1 and [L(%ﬂ =

(M1 + = NUy,_1 + 1. So in Step 2 of the m — 1th iteration,

e
as n is even, e = [L(3)] = nup_1, C = 4° = A" w = wC =
A" B B 2O = AP B B2 A and L = O =
ATMmer A Yt B Y = B Y £ 1L So return Step 1. If ¢ = m, then in the
mth iteration, L(1) = B,""(3). By Theorem 6.3.3, the algorithm outputs €

and it terminates. [

Theorem 6.3.10 If M = A, B,"*---A,“"'B,"™ is input to the algo-
rithm (z = 2), then the algorithm outputs A;"*tB"? ... A;"m=1 B™" ag
the X;-representation of M where even m > 2 and wu; is a nonzero integer

(t=1,---,m).

Proof Given M = A,“*B,**--- A, 'B,“™ with even m > 2 and nonzero
w, € Z(i = 1,--- ,m), put L(2) = A, B,"*--- A,""'B,"(2) = nuy + [
where 0, = B,"*--- A, B,""(2). By Theorem 4.1.5, |L(2)| > 1 in Step 1
of the algorithm and by Theorem 4.1.6, |5;| < 1.

For —1 < B < 0, |L(2)] = |nuy + 1] = nuy — 1 and [L(2)] = [nu; +
Bl = nu;. So in Step 2, as n is even, e = [L(2)] = nuy, C = A° =
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A" w = wC = A™, L = C7'L = A;7"™A,B," .. A,'m 1 B," =
B," - AY B # 1. So return Step 1.

For 1 = 0, |L(2)] = [nuy + (1] = nuy and [L(2)] = [nu; + Bi] = nuy.
So in Step 2, as n is even, e = nuy, C = A1 = A", w = wC = A",
L=C1L=A"""A,""B," - A" 'B,"" = B,"--- A,""'B,*" # 1. So
return Step 1.

For 0 < i < 1, |[L(2)] = [nus + 1] = nuy and [L(2)] = [nuy + B1] =
nu; + 1. So in Step 2, as n is even, e = |[L(2)] = nu;, C = A° =
A" w = wC = A", L = C'L = A" A, B," ... A" B,"" =
B, A 'B,"™ # I. So return Step 1.

Assume that for 1 <i—1 < m—1, in the ¢ — 1th iteration, L = A," B,"“** - -
B,' ™A, or L = B,"" A"+ --- B,""1A,"" according as i — 1 is even or

odd.

For odd i, let L(2) = A, B, --- A" ' B,""(2) = nu; + ; where ; =
B, i+t ... A umet Bnum(2)'

For =1 < 3, < 0, | L(2)] = [nu; + 8] = nu; — 1 and [L(2)] = [nu,; + (] =
nu;. In Step 2, as n is even, e = [L(2)| = nu;, C = A = A™ w =
wC = A" B™? ... B"1C = A" B"™? ... B" A [ = O7L =
A;TMAM B AT B Y = B AU B Y £ [ So return
Step 1.

For 6; = 0, |[L(2)] = |[nu; + B;] = nu; and [L(2)] = [nw; + Bi] = nu,.

In Step 2, as n is even, e = [L(2)] = nu;, C = A1 = A", w = wC =
Al’nulBl’rLug - Blnui710 — AanI Blnuz - BlnuiflAlnui and L — C—IL — Alfnui
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A, B A B Y = B ALY B Y™ £ 1L So return Step 1.

For0 < f; < 1, | L(2)] = |nu;+06;] = nu; and [L(2)] = [nu;+6;] = nu;+1. In
Step 2, asniseven, e = | L(2)| = nu;, C = A1° = A", w = wC = A;™ and
L=C7L = Ay ™ A B, 5 oo A Byt = B A Bt L

So return Step 1.

For even i, let L(2) = B,"“ A"+ --- A" 1B,"(2) = B," () = —%— =

a;nu;+1

ﬁ where a; = A, - A" 1 B,""(2). By Theorem 4.1.6, |L(2)

)

and by Theorem 4.1.5, |a;| > 1.

<1

For =1 < &+ <0, [L(2)] = [nu; + | = ny; — 1 and [L(2)] = [nu; +
aiﬂ = nu;. In Step 2, as n is even, e = [L(2)] = nu;, C = B,* = B"",
w=wC = A" B"™ . A0 = AT BM e AT B™ and L=
C™'L = By ™ B,"“ A"+ - A" 1B = AN A B £ 1. So

return Step 1.

For 0 < o~ < 1, |[L(2)] = [nu; + o] = ny; and [L(2)] = [nu; + -] =
nu; + 1. In Step 2, as n is even, e = |[L(2)] = nu;, C = B = B™",
w=wC = A™B™ ... A" 1C = A" B"™? ... A" ' B;™ and L =
C7lL = By ™ B,"“ A"+ ... A" B = A%t AUt B Y £ [ So

return Step 1.

If i = m, then L(2) = B,""(2). By Theorem 6.3.4, the algorithm outputs
A" B A1 B as the X-representation of M and the algorithm

terminates. O

Theorem 6.3.11 If M = B,"*A,**---A,“"*B," is input to the algo-

rithm (z = 1), then the algorithm outputs e where odd m > 2 and u; is a
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nonzero integer (i = 1,--- ,m).

Proof Given M = B,"*A,,"**---A,*"*B,"*™ € I',, with odd m > 2 and each
nonzero u; € Z(i = 1,---,m), put L(5) = B," A" - A,""1B,""(3) =

“ = __ - _1 U2 Um—1 12 Um (1
Bn (al) - alnu1+1 - nulJ’»L Where al An A ATL m Bn m<§)'
u 1 1 1 ” w 1
— — m(Ly — 2 — — m—1 m (1
If n = 2 and u,, = —1, then B,""(5) Tnuml - mumt2 — OO A, B,""(3)

= A,""1(00) = N1 +00 = 00 and B, "2 A4,"" 1 B,""(3) = B,""%(00) =
L— € D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(1)| =

NUm—2

B A, - A Bt (1)) = (B A - A3 ()| < 1 and by

Theorem 4.1.3, a; = Anuz . _.AnUm—anUﬂn(%>| — |Anui+1 . ..Anum—3(nu 2)| >
1.

If n # 2 or w, # —1, then B,"" (1) = nu1+2 € D and by Lemma 4.1.1,
Anum_anum(%) = Anum_l(nu:fl*Z) = NUm—1 + NUm +2 < DC In Step 1 Of the

ith iteration, by Theorem 4.1.4, |L(3)| = |B,"*A,"* - A,""'B,""(3)| =
| B, A, - -An“’"*l(nu +2)\ < 1. By Theorem 4.1.3, |ay| = |4,“*--- A, !
Bt (D) = 4,2+ A (=) > 1

NUm, +2

For —1 < o% <0, L#%)J = |nu + a%] =nu; — 1 and I_L(lé | = [nu; + —] =
uy. So in Step 3 of the first iteration, as n is even, e = (m} = nuy, C' =
2
B*=B"" w=wC=DB""and L =C"'L=DB"""B,"A," ... A, !
B,'™ =A% A, 1B, £ I. So return Step 1.

For 0 < + < 1, || = [nuy + & = nu; and (—W [nuy + 5] =
ar e ar D)
nu; + 1. So in Step 2, as n is even, e = Lﬁj = nuy, C = B = B"",
2
w = wC = B"™ and L = C7'L = B, "™B,"A,"... A" 'B,"™ =

A2 At B #£ 1. So return Step 1.
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Suppose that for 1 <i—1 < m—3, in the i — 1th iteration, L = A,"“ B,"“*! - .-
B, ™A, or L = B, A"+ --- B,""1A,"" according as i — 1 is even or

odd.

For even i, let L(%) = A" B, ... An“m‘an“m(%) = nu; + (; where §; =
Bnui+1 N Anumlenum@)‘

Ifn =2 and w, = —1, then B,""(}) = m—=2— = —1_ — o0, 4," 1 B,"" (1)

FNUm~+1 NUm+2
= A, (00) = ny_1 00 = 00 and B, "2 A4,"" 1 B,""(3) = B,""%(00) =
nu:%g € D. So in Step 1 of the ith iteration, by Theorem 4.1.3, |L(3)| =

‘AnuiBnui+1 . ~AnUm_1BnUm(%)‘ — ’AnuiBnuiJrl . _Anum—B(ﬁ” > 1 and by
Theorem 4.1.4, |3;] = | B, "+ - -+ Anum_s(ﬁﬂ <L

If n # 2 or w, # —1, then B,"" (1) = nu1+2 € D and by Lemma 4.1.1,

An“m‘an“m(l) = A"um_l(nuiu) = NUy—1 + ——— € D 1In Step 1 of the

ith iteration, by Theorem 4.1.3, |L(3)| = [A," B,"*' -+ A" B, " (3)| =

| A" By L - -An"’"*l(nu —)| > 1. By Theorem 4.1.4, |3;| = [ B, "+ - - A,
B ()] = B A ()| < 1

NUm, +2

NUm, +2

For —1 < 3; <0, |[L(3)] = [nui+6;] = nu;—1 and [L(3)] = [nu;+5i] = nu,.

So in Step 2 of the ith iteration, as n is even, e = [L(3)] = nu;, C = A,° =
Alnui7 w = wC = BlnulAanQ L Blnui,lc — AlnulBlnug L. BlnuiflAinui and
L=CL = Ay ™ A B, 5 - A "n i Byt = B A Bt L

So return Step 1.

For 3; = 0, |L(3)] = [nu; + Bi] = nu; and [L(3)] = [nu; + Bi] = nu,.
So in Step 2 of the ith iteration, as n is even, e = [L(3)] = nu;, C = A;° =
Alnui, w = wC = BlnulAlnug L Blnui_lc _ BlnulAlnug . .Blnui_1Ainui and

L=C"'L= A "ANB, A B = B AU B o ]
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So return Step 1.

For 0 < §3; < 1, |L(3)] = [nw; + 3] = nu; and [L(3)] = [nw; + 3i] = nu; + 1.
So in Step 2 of the ¢ th iteration, as n is even, e = |L(3)] = nu;, C' = 4,° =
A" w = wC = By"MA™2 - ByM IO = BYMMAM - BT A™ and
L=C71L = Ay ™A B, s A B = B L A B oL T
So return Step 1.

For odd i, let L(

1 Uj41 U —1 u 1
WT where o; = A, - A B, m(é)

) — B, A, .Anumlen’U;m(%) _ BnUi(ai) _ a; _

a;nu;+1

N =

1

If n =2 and u,, = —1, then B,""(3) = %MZH = nu1+2 = 00, A,"" 1B, (3)
= A,""(00) = ny,_1 4+ 00 = 00 and B, "2 A4,"" 1 B,""(3) = B,""*(00) =

L_ ¢ D. Soin Step 1 of the ith iteration, by Theorem 4.1.4, IL(3)| =
NUm—2
| B, Ayt - 'Anum—anum(%)‘ = | B, M A, Anum—3(nu1_2)| < 1 and by
Theorem 4.1.3, a; = A"+ -+ An”mlen“m(%ﬂ = |A M A3 (

1.

)| >

NUmM—2

If n # 2 or u, # —1, then B,""(3) = —— € D and by Lemma 4.1.1,

NUm+2

A B () = Ayt 1(nu1+2) = NUp-1 + 57— +2 € D¢ In Step 1 of the
ith iteration, by Theorem 4.1.4, |L(3)| = |B,"A,"* -+ A" 1B, " ()| =
| B, Ayt 'An“m‘l(nu —)| < 1. By Theorem 4.1.3, |oy;| = [A,"*" - A,

B Um(%)| — |An’ui+1 . 'Anu"kl(nu +2)| > 1.

For —1 < o- <0, | (2)j = [nu;+ 4] = nu;—1 and (ﬁ%)} = [nu;+ 1] = nu.
So in Step 3 of the ith iteration, as n is even, e = [#%)] =nu;, C = B¢ =
B{"™, w=wC = B"A™? ... A" 1C = B;" A" ... A" 1 B;™ and
L=C-1L = B ™ B, " A"+ o A" B = A0 AUl B oL ]
So return Step 1.
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For 0 < L < 1, |-} = |nui + =] = nu; and [25] = [nu; + 2] =
(73 L(§) (673 L(§) Q;
nu; + 1. So in Step 2, as n is even, e = Lﬁj = nu;, C = B = B"™",
2
w = wC = By"A" ... A" C = By A2 AL B and L=
CL = By ™ B, A, Wt ... A m—1 B n — A W1 .. A um-1 B um L [ S

return Step 1.

If i=m—2, then L = B,""2A,""'B," and put L(%) = B,"" (o) =

; — Um—1 Um l
T—— where a,,_5 = A, B, " (3).

If n = 2 and u, = —1, then in Step 1 of the m — 2th iteration, L(3) =
By A, "1 Bt (1) = B2 A,"m 1 (00) = B, (00) = —— € D and

nu

Qo = A" (00) = oo. Since |L(3)] < 1, L J = [NUp,— 2J = NUp,—o and
(@] = [nup_2] = nuy,_o. So in Step 3 of the m — 2th iteration, as n is
even, € = N,,—a, C' = B1* = By""" 2, w =wC = By""A;""? ... A{"'m=3(C =
By"MM A M2 A s By 2 and L= CTL = By M2 B2 At B Y
= A" 1B, # I. So return Step 1.

If n # 2 or w, # —1, then B,""(3) = —— € D. By Lemma 4.1.2,

NUm+2

amg—A“’”lB“m() At () = nugy 1

NUm,+2

v +2 € D¢ Soin Step 1
of the m — 2th iteration, by Lemma 4.1.2, |L(3)| = |B,""*A,""'B “m( )=
‘Bn " (Oémf2)| = ‘ 2+ﬁ’ < 1. Then LL(E)

IV#%)] [num 2 + Qm— 2—|

For —1 < an}_Q < 0, Lﬁ%)j = [NUpy_o + | = nupy_o — 1 and [#%)] =

QAm—2

L1 = nu,_s. So in Step 3 of the m — 2th iteration, as n is
C = B = Bi" 2 w = wC =
By A ™2 A3 O = By A M L A3 B2 and [ = O UL =
By Mm2 B Ume2 A UmL B Y = A Y1 B Y™ £ [ So return Step 1.

[Ny, o +

Qm—2
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1 . 11
z7p) = s + 5] = nun and [75] = [nun-2 +
aml%} = NU,;,_2 + 1. So in Step 3 of the m — 2th iteration, as n is even, e =
L | = Rty , C = Bi* = By, = wC = By A - A
C =DB;"™A™2 ... A;™m=3B,™m2 and L = Ol = By Mm-2 B um-2 A tm-—1

B,'m = A,""*B,"™ # I. So return Step 1.

If i =m—1, then L = A,""'B,"" and L(3) = A,"" ' B,""(3).

If n =2 and w, = —1, then L(3) = A4,""'B,""(3) = A4,""(00) =
and so, in Step 1 of the m — 1th iteration, the algorithm outputs €. Hence the

algorithm terminates.

If n # 2 or w, # —1, then B,"" (1) = nu1+2 € D and by Lemma 4.1.1,
L(3) = A" 1B (5) = A" 1(71’117—14’2) = NUp—1 + L € D°. So in Step

1 of the m—1th iteration, [L(3)| > 1. Then consider |L(3)] = [num—1+

and [L(3)] = [ntm-1 + 72251

num+2J

For =1 < o < 0, then [L(3)] = [nUm—1 + o5] = -y — 1 and

[L(3)] = [nup—1 + m:ﬁﬂ = NUpy-1. S0 in Step 2 of the m — 1th itera-
tion, as n is even, e = (L(%ﬂ = NUp_1, C = A1 = A" w = wC =
B{" A2 B2 = ByM™M A2 B2 At and L = O7ML =
ApTMmmr A Yt B Y = B Y £ [ So return Step 1. If ¢ = m, then in the
mth iteration, L(%) = Bn“m(%). By Theorem 6.3.3, the algorithm outputs €

and it terminates.

(3)] = [ntm—1 + g5 ] = Ny and [L(35)] =
(M1 + nu:ﬁﬂ = NU,_-1 + 1. So in Step 2 of the m — 1th iteration,

as n is even, e = [L(3)] = nupm_1, C = 4° = A" w = wC =
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BlnulAanQ e Blnum_QC — BlnulAanQ . Blnum_QAlnum_l and L — C—lL —
ApTMmmr A Ymmt B Y = B Y £ [0 So return Step 1. If ¢ = m, then in the
mth iteration, L(1) = B,""(1). By Theorem 6.3.3, the algorithm outputs €

and it terminates. O

Theorem 6.3.12 If M = B,"*A,“*--- A, B,,"™ is input to the algorithm
(z = 2),then the algorithm outputs B;"**A;"*2 ... A;"*"~1B""™ as the X;-

representation of M where m > 2 and w; is a nonzero integer (i = 1,--- ,m).

Proof Given M = B,,**A,"**--- A, ' B,"™ € I, put L(2) = B,"* A,"*---

A B (2) = Byt (o) = —2— = —L 1 where oy = A, -+ A, ' B,""

ainui+1 nui+5-

(2). By Theorem 4.1.6, |L(2)| < 1 and by Theorem 4.1.5, |ay| > 1.

For —1 < = <0, [L(2)] = [nu1 + 2| = nuy — 1 and [L(2)] = [nuy + =] =
nui. In Step 2, as n is even, e = [L(2)] = nuy, C = B = B™,
w = wC = B"™A"™? ... A\"1C = B A AU B™ and L=
C™L =B, "™DB,""A," - A" 'B," = A,">--- A" B,"" # I. So re-
turn Step 1.

For 0 < all < 1, |[L(2)] = [nu + ailj = nu; and [L(2)] = [nu; + ail] =
nuy; + 1. In Step 2, as n is even, e = |L(2)] = nuy, C = B,* = B™",
w = wC = B"™A™2 ... Ay"C = B A A B and L=
C-L = B, ™ B, A, ... A U1 B,um — A u2... A 1B £ [ So re-

turn Step 1.
Assume that for 1 <i—1 < m—1, in the ¢ — 1th iteration, L = A, B,,"“*! - -

B, A, or L = B, A"+ --- B,"""1A,"" according as i — 1 is even or

odd.
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For even i, let L(2) = A, B,"“* -+ A, 1B,""(2) = nu; + 3; where §; =
Bnui+1 . Anumfl Bnum(2)

For =1 < 3, < 0, | L(2)] = [nu; + 8] = nu; — 1 and [L(2)] = [nu,; + ] =
nu;. In Step 2, as n is even, e = [L(2)] = nu;, C = A1 = A", w =
wC = B"™A™ ... B"™ 10 = B"MA™ ... B A L= CTUL =
AT"MA B A B Y = B ALY B Y £ [0 So return
Step 1.

For 8; = 0, |L(2)| = |nu; + 5] = nu; and [L(2)] = [nu; + Bi] = nu,.
In Step 2, as n is even, e = [L(2)] = nu;, C = A1 = A", w = wC =
By A L B = BT A M L Bt A W and [ = O = A,
A B A Bt = B ALY B Y £ T So return Step 1.

For0 < 3; < 1, |L(2)] = |nw;+06;] = nu; and [L(2)] = [nu;+6;] = nu;+1. In
Step 2, as nis even, e = | L(2)| = nu;, C = A1 = A", w = wC = A;™ and
L=C7'L=A""A,B," " .. A" 1B, = B,"* ... A" 1B,%" £ I.
So return Step 1.

For odd 4, let L(2) = B," A" --- A" ' B,""(2) = B" () = iy =
ﬁ where a; = A, A, "1 B,"(2). By Theorem 4.1.6, |L(2)| < 1

i

and by Theorem 4.1.5, |a;| > 1.

For —1 < o% < 0, |[L(2)] = [nu; + Q%J = nu; — 1 and [L(2)] = [nu; +
Cﬂ = nu;. In Step 2, as n is even, e = [L(2)] = nu;, C = B = B"™",
w=wC = B"A"™ ... A" 1C = B"MAM A B™ and L=
C-UL = By ™ B, AUt A 1 B = A Uikt A Umo1 B Um L [ S

return Step 1.
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For 0 < o~ < 1, [L(2)] = [nu; + o] = ny; and [L(2)] = [nu; + ;-] =
nu; + 1. In Step 2, as n is even, e = |[L(2)] = nu;, C = B = B™,
w = wC = B"™A"™ ... A" C = By A - AT B™ and L=
C7lL = By ™iB,"A,M+ ... A B = A%t A vt Bt oL [ So

return Step 1.

If i = m, then L(2) = B,"™(2). By Theorem 6.3.4, the algorithm outputs
B{"M A M2 A B as the X -representation of M and the algorithm

terminates. O

6.4 X;-Representation Algorithm II

Let n > 3 be a natural number and M € I',,. Assume that n is unknown.
Input a matrix M € I', to the X;-representation algorithm II and then the
algorithm outputs the Xj-representation of M as a reduced word in X;*.

We use two values z = - and z = 2. If the Xj-representation algorithm

3
IT computes the X;-representation of M for z = %, we do not run the X;-
representation algorithm II for z = 2. Otherwise, we have to run the X;-
representation algorithm II for z = 2. So the X;-representation algorithm II
computes the X;-representation of M € I',, for z = % or z = 2. When the X;-
representation algorithm II does not output the X;-representation of M for
z = %, the algorithm outputs € for z = % So the Xi-representation algorithm

outputs the X;i-representation of M or € and then the algorithm terminates.

Now we describe the Xj-representation algorithm II.
The X;-Representation Algorithm II

Step 0
W 1x1

L — M.
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Step 1

L(z) =0, |L(z)| = 1,L(z) = oo = output .

|L(z)| > 1= compute e, us.t. L(z) =e+p,ecZ, —3 <p< i
and go to Step 2.
|L(z)] < 1 = compute e, u s.t. ﬁ:e—i—u,eez, -2 <p<i

and go to Step 3.

Step 2

C+«+— A;° and w +— wC.
C =1 = output ¢

L+~ C L

L =1= output w. Otherwise, return Step 1.

Step 3

C +— B;°® and w «— wC.
C =1 = output e.

L+ C L

L =1= output w. Otherwise, return Step 1.

6.5 Programming Implementation 11

This section shows implementation of the X;-representation algorithm IT and
so we demonstrate how the Xj-representation algorithm works correctly. We
make a program called the X;-representation program II with Maple version 6
and the operation of the program is one loop. The X;-representation program
IT takes z = % or z = 2, the entries M 11, M12, M21 and M22 of M € T',, as

inputs and then for every execution of the program, it outputs two matrices.
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The first matrix presents C' = A;° in Step 2 or C' = B;° in Step 3. The
second matrix presents L = C7'L in Step 2 or L = C7'L in Step 3. If the
identity matrix turns up in the first matrix or the second matrix, then the
program execution terminates. Also, if an usual matrix in the first matrix or
the second matrix appears, then execution of the program terminates. Each
example shows how the algorithm and the program work correctly to compute
the Xi-representation of M € I',. The following is the X;i-representation

program II source code.
X;-Representation Program II Source Code

with(GaussInt):

with(linalg):

su:=proc(z::float, M11::integer, M12::integer, M21::integer, M22::integer):
local K, u, v, C, P, Q;

z;

K:=matrix(2,2,[M11, M12, M21, M22]);
L(z) := (M11 *z + M12)/(M21 * z + M22);
R(z) := (M21 * z + M22)/(M11 % z + M12);
if abs(L(z)) = 1 then

print(epsilon);

fi;

if abs(L(z)) > 1 then

w:=floor(L(z));

vi=ceil(L(z));

if abs(L(z) —u) < 0.5 then

C := matrix(2,2,[1,1,0,1])" {u};
P:=matrix(2,2,[1,-u,0,1]);
Q:=multiply (P, K);

elif abs(L(z) — u) = 0.5 then
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C := matrix(2,2,[1,1,0,1])" {u};
P:=matrix(2,2,[1,-u,0,1]);
Q:=multiply (P, K);

else

C := matrix(2,2,[1,1,0,1]))"{v};
P:=matrix(2,2,[1, -v,0,1]);
Q:=multiply (P, K);

fi;

print(C);

print(Q);

fi;

if abs(L(z)) <1 then
u:=floor(R(z));

vi=ceil(R(z)))

if abs(R(z) — u) < 0.5 then

C := matrix(2,2,[1,0,1,1])" {u};
P:=matrix(2,2,[1,0,-v,1]);
Q:=multiply (P, K);

elif abs(R(z) —u) = 0.5 then

C := matrix(2,2,[1,0,1,1])" {u};
P:=matrix(2,2,[1,0,-u,1]);
Q:=multiply (P, K);

else

C := matrix(2,2,[1,0,1,1]))" {v};
P:=matrix(2,2,[1,0,-v,1]);
Q:=multiply (P, K);

fi;

print(C);

print(Q);
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fi;

end proc :

Example 1

1 3
01
and M22 =1 to the program.

Given M = A3 = < ) € I's, input z =0.5, M11 =1, M12 =3, M21 =0

_ 1
For z = 3,

> su(0.5,1,3,0,1);
11\’
01
10
01

The second matrix of the first execution of the program is the identity matrix

-3
whichis L = C7'L = ((1) 1) ((1) ?) = [ in Step 2 of the X;-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have

(03)

as the Xs-representation of M.
For z = 2,

> su(2.0,1,3,0,1);
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> 5u(2.0,1,-2,0,1);

()
(= <)

The first matrix of the second execution of the program is an unusual matrix

(1 (1)) which is the same as € in Step 1 of the Xj-representation algorithm

1
0
X-representation algorithm II. So execution of the program terminates and

IT because L(2) = ( _12> (2) = 0 in Step 1 of the second iteration of the
the program does not output the X;-representation of M for z = 2.
Example 2

Given M = B; = (; (1)) € I's, input 2 =0.5, M11 =1, M12 =0, M21 =3

and M22 =1 to the program.

_1
For z = 3,

> su(0.5,1,0,3,1);

> su(0.5,1,0,-2,1);
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The first matrix of the second execution of the program is an unusual ma-

trix ((1) 1) which is the same € in Step 1 of the X;-representation of the

—9 1/ \2
terminates and the program does not output the X;i-representation of M for

algorithm II because L(3 = ( L O) (1) = 0. So execution of the program
z=1
For z = 2,
> su(2.0,1,0,3,1);
10\’
11
10
01

The second matrix of the first execution of the program is the identity matrix

-3
whichis L = C7'L = (i (1)> (il)) (1)) = [ in Step 3 of the X;-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have

()

as the Xi-representation of M.
Example 3

Given M = Ag = <(1) ?) € l'g, input z = 0.5, M11 =1, M12 =8, M21 =0

and M22 =1 to the program.
For z = %,

> su(0.5,1,8,0,1);
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(03)
(o)

The second matrix of the first execution of the program is the identity matrix
-8

whichis L = C7'L = ((1) }) ((1) ?) = [ in Step 2 of the X;-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have

(03)

as the Xi-representation of M.
For z = 2,

> su(2.0,1,8,0,1);

> Su(2.0717‘27071);

1 =2

—00 0
The first matrix of the second execution of the program is an unusual matrix
(1 (1)) which is the same as € in Step 1 of the X;-representation algorithm

1
0

rithm II. So execution of the program terminates and the program does not

IT because L(2) = ( _12) (2) = 0 in Step 1 of the X;-representation algo-

output the X;-representation of M.
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Example 4

8 1
and M22 =1 to the program.

Given M = Bg = (1 0) € I'g, input z =05, M11 =1, M12 =0, M21 =8

Forz:%

> su(0.5,1,0,8,1);

1 0\
11

> su(0.5,1,0,-2,1);

The first matrix of the second execution of the program is an unusual matrix

(é D which is the same as € in Step 1 of the X;-representation algorithm

—9 1) \2
rithm II. So execution of the program terminates and the program does not

IT because L(1) = ( L O) (1) = 0o in Step 1 of the X;-representation algo-
output the X;-representation of M.
For z = 2,

> su(2.0,1,0,8,1);

()
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o 7)

The second matrix of the first execution of the program is the identity matrix

-8
whichis L = C7'L = G (1)> (é (1)) = [ in Step 1 of the X;-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have

()

as the Xi-representation of M.

Example 5

Given M = A;*B;A;* = (_1746 _5’2887> € Tz, input z = 0.5, M11 =

—146, M12 = —3087, M21 =7 and M22 = 148 to the program.
For z = %,
> su(0.5,-146,-3087,7,148);
11\
0 1
1 21
7 148

> su(0.5,1,21,7,148);

b 7)
(b1)
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> su(0.5,1,21,0,1);



o 7)

The second matrix of the third execution of the program is the identity ma-

11\ /1 21
trix which is L = C7'L = (0 1> <O 1) = I in Step 2 of the X;-

representation algorithm II and so execution of the program terminates. Col-
lect each first matrix in every execution of the program and concatenate them

in order. Then we have

G NG

as the X;-representation of M.
For z = 2,

> su(2.0,-146 -3087,7,148):

> su(2.0,1,21,7,148);

> su(2.0,1,21,0,1);

> su(2.0,1,-2,0,1);
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()
(> <)

. . (1 0\™ .
The first matrix of the fourth matrix is an unusual matrix (1 1 which
is the same as € in Step 1 of the X;j-representation algorithm II because

L(2) = <(1) _12) (2) = 0 in Step 1 of the Xj-representation algorithm II.

So execution of the program terminates and the program does not output the

Xi-representation of M.
Example 6

Given M = B; ' A; 2 B; A% = (155196 ;13?5877) ,input z = 0.5, M11 = —1486,

M12 = —3087, M21 = 1029 and M22 = 21757 to the program.
For z = %,
> su(0.5,-146,-3087,1029,21757);
10\’
11

—146 —3087
7 148

11\ 2
01

1 21

7 148

> su(0.5,-146,-3087,7,148);

> su(0.5,1,21,7,148);
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> su(0.5,1,21,0,1);
L\
01
10
0 1

The second matrix of the fourth execution of the program is the identity

11\ /1 21
matrix which is L = C7'L = <O 1) <0 1> = I in Step 2 of the X;-

representation algorithm IT and so execution of the program terminates. Col-
lect each first matrix in every execution of the program and concatenate them

in order. Then we have

(36D GYG6)

as the X;-representation of M.
For z = 2,

> su(2.0,-146,-3087,1029,21757);

()

—146 —3087
7 148

L\
01
1 21
7 148

182

> su(2.0,-146,-3087,7,148);



> s1(2.0,1,21,7,148);

()

> su(2.0,1,21,0,1);

> su(2.0,1,-2,0,1);

1 =2

—00 0
The first matrix of the fifth execution of the program is an unusual matrix

1o\~ .. .. : : .

(1 ?) which is the same as € in Step 1 of the Xj-representation algorithm
1
0
rithm II. So execution of the program terminates and the program does not

IT because L(2) = ( _12) (2) = 0 in Step 1 of the X;-representation algo-
output the X;-representation of M.
Example 7

Given M = A; °B;A;°B; " = (211042693 _32887), input z = 0.5, M11 =

21463, M12 = —3087, M21 = —1029 and M22 = 148 to the program.
For z = 5

> 5u(0.5,21463,-3087,-1029,148);
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1 N\
0 1

—146 21
—1029 148

1 0\
11
146 21
7 1

1 1\ %
01

> su(0.5,-146,21,-1029,148):

> su(0.5,-146,21,-7,1):

> su(0.5,1,0,-7,1);

> Su(0.571707_271);

The first matrix of the fifth execution of the program is an unusual matrix

<(1) 1) which is the same as € in Step 1 of the X;-representation algorithm

IT because L(1) = (_12 (1)> (3) = oo in Step 1 of the X;-representation algo-
rithm II. So execution of the program terminates and the program does not

output the X;-representation of M.
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For z = 2,

> su(2.0,21463,-3087,-1029,148);
1o\
0 1

—146 21
—1029 148

1 0\’
11
146 21
7 1

(03)
()

()
o 7)

The second matrix of the fourth execution of the program is the identity

10\ (1 0
matrix which is L = C7'L = (1 1) (_7 1> = I in Step 3 of the X;-

representation algorithm IT and so execution of the program terminates. Col-

> su(2.0,-146,21,-1029,148):

> su(2.0,-146,21,-7,1);

> su(2.0,1,0,-7,1);

lect each first matrix in every execution of the program. Then we have
110\ 10\ /1 N\*/1 0\
01 11 0 1 11
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as the Xi-representation of M.

Example 8

. 14 -3 3, -1 [ 21463  —3087 ) _
Given M = By "A; °B;A°B;” = <_151270 91757 € I'7, input z = 0.5,
M11 = 21463, M12 = —3087, M21 = —151270 and M22 = 21757 to the
program.
For z = %,

> su(0.5,21463,-3087,-151270,21757);

()

21463 —3087
—1029 148

> su(0.5,21463,-3087,-1029,148);
1 1 —21
01
146 21
~1029 148
1 0\
11
146 21
7 1
1 1 21
01
1 0
71

186

> 5u(0.5,-146,21,-1029,148);

> su(0.5,-146,21,-7,1):



> su(0.5,1,0,-7,1);

> su(0.5,1,0,-2,1);
11\~
01
0o —00
-2 1
The first matrix of the sixth execution of the program is an unusual matrix

(é D which is the same as € in Step 1 of the X;-representation algorithm

—92 1) \2
rithm II. So execution of the program terminates and the program does not

IT because L(3) = ( L O) (1) = 0o in Step 1 of the X;-representation algo-
output the X;-representation of M.
For z = 2,

> su(2.0,21463,-3087,-151270,21757);

()

21463 —3087
—1029 148

> su(2.0,21463,-3087,-1029,148);
1 1\
01
—146 21
—1029 148

> su(2.0,-146,21,-1029,148):
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1 0\
11
146 21
7 1

(03)
()

()
(o)

The second matrix of the fifth execution of the program is the identity ma-

10\ (1 0
trix which is L = C7'L = < ) ( ) = I in Step 3 of the X;-

> su(2.0,-146,21,-7,1);

> su(2.0,1,0,-7,1);

11 -7 1
representation algorithm IT and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have

N A GHIHEGH

as the Xi-representation of M.
Example 9

Given Given M = A1_03BloA103 = (_12(?9 _??((])100) S FlOu iHPUt = 057

M11 = —299, M12 = —9000, M21 = 10 and M22 = 301 to the program.
For z = %,

> su(0.5,-299,-9000,10,301);
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1 1\
0 1

1 30
10 301

()
b 7)

(01)
(o)

The second matrix of the third execution of the program is the identity ma-

—30
trix which is L = C7'L = ((1) 1) <(1) 310) = [ in Step 2 of the X;-

representation algorithm I and so execution of the program terminates. Col-

> 5u(0.5,1,30,10,301);

> su(0.5,1,30,0,1);

lect each first matrix in every execution of the program and concatenate them

in order. Then we have

1 1N30/1 NP/ 1)\
0 1 11 01

as the Xi-representation of M.

For z = 2,

> su(2.0,-299,-9000,10,301);
11\ ®
0 1
1 30
10 301

189



> su(2.0,1,30,10,301);

> 5u(2.0,1,30,0,1);

> su(2.0,1,-2,0,1);

1 =2
—00 0
The first matrix of the fourth execution of the program is an unusual matrix

(1 0) which is the same as € in Step 1 of the X;-representation algorithm II

11

1 =2
0 1
of the algorithm II. So execution of the program terminates and the program

because L(2) = C7'L = (2) = 0 in Step 1 of the X;-representation
does not output the X;-representation of M.
Example 10

. —2 — .
Given M — Bl_()lAl_o3BloA103 _ (30309 933?8?) € I'yp, input 2z = 0.5, M11 =

—299, M12 = —9000, M21 = 3000 and M22 = 90301 to the program.
For z = %,

> su(0.5,-299,-9000,3000,90301 );
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1 o\
11

—299
10

> 51(0.5,-299,-9000,10,301);

—9000
301

AN
0 1

1
10

> su(0.5,1,30,10,301);

> su(0.5,1,30,0,1);

0

30
301

10
)
30
1

1\ %
1

o 7)

The second matrix of the fourth execution of the program is the identity

11

matrix which is L = C~'L = (O )

0 1

—30
> <1 30> = I in Step 2 of the X;-

representation algorithm II. Collect each first matrix in every execution of the

program and concatenate them in order. Then we have

(%) G

as the Xj-representation of M.

For z = 2,

> 5u(2.0,-299,-9000,3000,90301);

070 0N /1 1\
11 01
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1 0\ "

11
~9299  —9000
10 301

1 1\

0 1

1 30

10 301

> 51(2.0,-299,-9000,10,301);

> $1(2.0,1,30,10,301);

> su(2.0,1,30,0,1);

> Su(2.0717‘27071);

()
(= <)

The first matrix of the fifth execution of the program is an unusual matrix

(1 (1)) which is the same as € in Step 1 of the X;-representation algorithm

1 -2
0 1
IT. So execution of the program terminates and the program does not output

because L(2) = ( (2) = 01in Step 1 of the X;-representation algorithm

the X;-representation of M.
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Example 11

. _ _ 89701 —9000
leen M = AlOSBloAlogBlol = (_3000 301

89700, M12 = —9000, M21 = —3000 and M22 = 301 to the program.
For z = %,
> su(0.5,89701,-9000,-3000,301);

1 1\

01

—-299 30
—3000 301

1 0\
11
—299 30
—-10 1

> su(0.5,-299,30,-3000,301);

> su(0.5,-299,30,-10,1);

> su(0.5,1,0,-10,1);

> su(0.5,1,0,-2,1);
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€ 'y, input z = 0.5, M11 =



(1)
> 7)

The first matrix of the fifth execution of the program is an unusual matrix

((1) D which is the same as € in Step 1 of the Xj-representation algorithm

II because L(3) = (_12 (1)) (3) = oo in Step 1 of the X;-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X;i-representation of M.

For z = 2,

> su(2.0,89701,-9000,-3000,301);
11\ P
0 1

—-299 30
—3000 301

1 0\Y
11
—299 30
—-10 1

> su(2.0,-299,30,-3000,301);

> 51(2.0,-299,30,-10,1);

> su(2.0,1,0,-10,1);
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()
o)

The second matrix of the fourth execution of the program is the identity

1o\’ 1 0
matrix which is L = C7'L = (3) (1 1) (_10 1) = I in Step 3 of the

Xi-representation algorithm II and so execution of the program terminates.
Collect each first matrix in every execution of the program and concatenate

them in order. Then we have

1 1N20/1 NP1 1\ /1 o\
01 11 0 1 11

as the Xi-representation of M.

Example 12

) 1A _ 89701 —9000 )
Given M = Big Aj¢ BiAw’ By = (_900010 90301> € Lo, input = = 0.5,

M11 = 89701, M12 = —9000, M21 = —900010 and M22 = 90301 to the

program.

1
For z = 3,

> su(0.5,89701,-9000,-900010,90301);

1 o\
11

89701 —9000
—-3000 301

> 5u(0.5,89701,-9000,-3000,301);

1 1\ ®
01
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—-299 30
—3000 301

> su(0.5,-299,30,-3000,301);

> 51(0.5,-299,30,-10,1):

> su(0.5,1,0,-10,1);

> su(0.5,1,0,-2,1);

The first matrix of the sixth execution of the program is an unusual matrix

01
rithm IT because L(3) = C7'L(3) = ( L 0) (2) = oo in Step 1 of the

(1 1) which is the same as € in Step 1 of the X;-representation algo-

—9 1) \2
Xi-representation algorithm II. So execution of the program terminates and

the program does not output the X;-representation of M.
For z = 2,

> 5u(2.0,89701,-9000,-900010,90301);

196



1 o\
11

89701 —9000
—3000 301

> su(2.0,89701,-9000,-3000,301);
11\ P
01

—-299 30
—3000 301

1 o0\Y
11
—299 30
—-10 1

> su(2.0,-299,30,-3000,301);

> 51(2.0,-299,30,-10,1);

(0 )

()
o 7)

The second matrix of the fifth execution of the program is the identity ma-

10
trix which is | = C71L = (1 0) ( 1 O) = [ in Step 3 of the X;-

> su(2.0,1,0,-10,1);

11 —10 1
representation algorithm IT and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have

1o\ /1 1N /1 0N/ 1\ oY
11 0 1 11 0 1 11

as the Xi-representation of M.
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6.6 Correctness of Algorithm II

In this section, we justify the Xj-representation algorithm II and we also
prove how the Xi-representation algorithm II works correctly. We prove sev-
eral properties of the linear fractional transformations which will be used to
prove the correctness of the Xi-representation algorithm II. Moreover, we ex-
plain why two X;-representation algorithms are required to compute the X;-
representation of M € I, from the following two Theorems. The following
theorem is in fact, a special case of Lemma 4.1.2 and we prove it with another

method for z € RN D°.

Theorem 6.6.1 Let n > 2 and z € RN D Then |B,"(2)|] < 1 for a

nonzero u € 7.

Proof Letn > 2 and z € RN D¢ Then —1<%<1andnu—1<nu+%<

nu+1. Ifu>1 thennu—1>n—1>1andso, 0 < 4+ < 24— < 1.

nu+% nu—1 —
u 1 0 z 1
Hence, B,"(z) = — (2) = 753 = sl < 1. If w < —1, then
nu+1< -—-n+l1<—-land —-1< #ﬂ < ﬁ < 0. Thus we have |B,"(z)| < 1.
O

Theorem 6.6.2 Let n > 3 and z € RN D°. Then |B,"(z)] < 1 for a

nonzero u € 7.

Proof Let n > 3 and z € D°NR. Then —1 < % < land nu —1 <

nu+t<nu+l Ifu>1thennu—1>n—-1>2and 0 < —5 < —= < 4

nu—‘,—% nu—1 — 5

Hence, 0 < —2%—= = 11<%- Ifu<-1,thennu+1<-n+1< -2 and

nuz+1 nu+

< nu1+1 < nuﬂr% < 0. Thus we have |B,"(z)| < 3. O

In order to compute p such that ’71 <pu< % in Step 1 of the X;-representation
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algorithm II, Theorem 6.6.2 is required for n > 3 and so the case n = 2 is

handled separately by the X;-representation algorithm I. [J

Theorem 6.6.3 Let n > 3 and z € R with |2| < 1. Then oy < 2

for a nonzero u € Z.

Proof Assume that n > 3 and z € R such that |z| < 5. Then by Lemma

4.1.1, A,"(2) = nu+ z € D for a nonzero u € Z. For —1 <z < 3, nu— 1 <

nu+z<nu—|—%. If u> 1, then 3 < nu and 3—% <nu—3i <nu—|—z<nu—|—%,

2
1 2
<5 M

1 11<311:
32 32

nu-+z nu

[\

so that 0 < —L+ < Hence, 0 <
2

nu+
5

ug—l,thennug—ng—f—iandnu—%<nu—|—z<nu+%§—3+%=—§,

L < 0. Hence,
2

—2 « L __ <. Therefore

1 1 1
so that = < T < < 5 < A7)

-2 — nuts nu+z nu

From now, in particular, unless we mention a natural number n, n is a natural

number, n > 3.

Theorem 6.6.4 If M = A," with a nonzero u € Z is input to the algo-
rithm (z = %), then the algorithm outputs A;"" as the X;j-representation of

M.

Proof If M = A," € T, then by Lemma 4.1.1, |L(3)| = |4,"(3)| =
|nu + %| > 1 and so in Step 1 of the first iteration, e = nu and p = %
InStep 2, C = A =A™ w=wC=A" L=C1'L=A4""4"=1 So

the algorithm outputs A;"" as the X;-representation of M and it terminates.

Theorem 6.6.5 If M = A," with a nonzero u € Z is input to the algo-

rithm (z = 2), then the algorithm outputs e.
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Proof If M = A" €T, then L(2) = A,"(2) = nu + 2.

If n =3 and u = —1, then in Step 1 of the first iteration, |L(2)| = |nu+2| = 1.
So the algorithm outputs € and it terminates.

If n # 3 or u # —1, then in Step 1 of the first iteration, |L(2)| = |nu+ 2| > 1,
e =nu-+2and u = 0. In Step 2 of the first iteration, C = A;° = A,"“*?
w=wC=A"""and L = C7'L = A, 7™ 24, % = (1 _12) # 1. So return

0

1 -2
01 > (2) = 0 and thus

the algorithm outputs €. Therefore the algorithm terminates. [J

Step 1. In Step 1 of the second iteration, L(2) = (

Theorem 6.6.6 If M = B," with a nonzero u € Z is input to the algo-

rithm (z = 1), then the algorithm outputs .

1
— u 1y _ u(ly _ 2 _ 1
Proof If M = B," € Iy, then L(5) = B,"(5) = %mi—l—l = s
If n =3 and u = —1, then in Step 1 of the first iteration, |L(3)| = |=5| = 1.
So the algorithm outputs € and it terminates.
If n # 3 or u # —1, then in Step 1 of the first iteration, |L(3)| = |nu1+2| <1

and —~ = nu+2. Soe = = =nu+2and g = 0. In Step 3 of the
L(3) L(3)
first iteration, C = B¢ = B, w = wC = B"*™ and L = C~'L =

Bl—nu—QBnu _ ( 1 0

_9 1) = 1. So return Step 1. In Step 1 of the second itera-

tion, L(3) = <_12 (f) (3) = 00. So the algorithm outputs € and it terminates.
U

Theorem 6.6.7 If M = B," is input to the algorithm (z = 2), then the

algorithm outputs B;"" as the X;-representation of M.

Proof If M = B, € T',,, then in Step 1 of the first iteration, by Lemma 4.1.2,
IL(2)| = |Bx"(2)
and p = % In Step 2 of the first iteration, C' = B, = B;""*, w = wC = B;"",

| = |2n5+1‘ = ‘nui_%| < 1 and ﬁ — nu_|_% ThuS e = nu
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L =C7 'L = B, ™B," = I. Hence, the algorithm outputs B;"™" as the X;-

representation of M and it terminates. [

Theorem 6.6.8 If M = A,"*B,**--- B,"""'A,"™ is input to the algorithm
(z = %), then the algorithm outputs A;"“*B;"“*--- B{""""1 A;"*" as the X;-
representation of M where odd m > 3 and each u; (i = 1,2, ---m) is a nonzero

integer.

Proof If M = A,*B,,"**--- B,*"*A,"™, then in Step 1 of the first iteration,
by Theorem 4.1.3, |L(3)| = |A," B,"*--- B,"" 1 A,""(3)] > 1. Put L(3) =
AU B2 - Bt AL (L) = nuy + By where By = B2 - Bt A M(3).
Then by Lemma 4.1.1, A,"%--- Bn“m‘lAn“m(%) € D¢ and by Theorem 6.6.2,
G1] = |B,"2 (A, -+ Bp"m A, ()| < 3. So e = nuy and p = (1. In Step
2 of the first iteration, ¢ = A;° = A\"", w = wC = A", L = C7'L =
AT"MAM B Bt ALY = B - BYm ALY £ 1L So return Step
1.

Assume that for 1 <i—1<m—1, L =C7 'L = A, B,"+ .. B, ™A,
in Step 3 of the ¢ — 1th iteration, or L = C7'L = B, A"+ .. B, "™ 1A, "™

in Step 2 of the ¢ — 1th iteration according as ¢ — 1 is even or odd.

For even i, let L = B,“"A,“*'-.-B,""1A,“™ in Step 1 of the ith iter-
ation and L(%) = Bn“"An“i“---Bn"mflAn"’“(%) = B () = —%— =

a;nu;+1

where o; = A,"*' ... B, "1 4,""(3). By Theorem 4.1.4, L(3) =

1
1
nurf‘;
1

B2 By"m A" (L) € D and by Theorem 6.6.3, |ai] < 2. So in Step

1 of the ith iteration, ﬁ = nu; + — and then e = nu; and p = -
In Step 3, C = B = B;"", w = wC = A" B;"?.-- A" *B;"™ and
L=C L = By ™ B U A5+ .. Bim1 A = AU+ ... B, i1 A un . So

return Step 1.
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For odd i, let L = A,“B,"“* -.--B,""'A,"" in Step 1 of the ith iter-
ation and L(%) = An“iBn“i“---Bn“mflAn“m(%) = nu; + §; where 3, =
Bt Byt At (L), In Step 1 of the ith iteration, by Theorem 4.1,3,
IL(3)| = |A B, -+ B "L A" (3)] > 1 and A,"+2 -+« B,"" 1A' (3) €
D¢. By Theorem 6.6.2, |5;] = |B,"* (4,2 B,""1A,""(3))] < 3. So
e = nu; and p = F;. In Step 2 of the ¢th iteration, C' = A;© = A"
w=wC = A" B ... By" 1 C = A" B B A and L o=
CL = A, "™ A B+ ... B tm=1 A U = B %+ ... B um-1 A v £ [ So

return Step 1.

If i = m, then in the mth iteration, L = A,“™ and by Theorem 6.6.4, the
algorithm outputs A;"“*B{"“?-.. B;"*m=1 A" as the X;j-representation of

M. Thus the algorithm terminates. [J

Theorem 6.6.9 If M = A,“B,**---B,""'A," is input to the algo-
rithm (z = 2), then the algorithm outputs € where odd m > 3 and each

w; (i=1,2,---,m) is a nonzero integer.

PrOOf Given M = AnulBTLUQ Tt Bnum*lAnuma pUt L(Q) = AnuanUQ e Bnumfl
Anum(Q) =nuy + 51 where 51 = Bn“2 . BnumﬂAnum (2)

If n =3 and u,, = —1, then A,“"(2) = nu,, +2 = —1 and B,""*A,"(2) =

B,'m1(-1) = num:_l € D. So in Step 1 of the first iteration, by Theorem

41.3, L(2) = A, B, -~ B," 1A, " (2) = A, By - Ayt (=) €
D®and A" .- A2 B A (2) = A A (=) € DO By
Theorem 6.6.2, |31| = |B,"?(A," - - A" 2 B, 1A, " (2))| < 3. So e = nwy
and p = (1. In Step 2 of the first iteration, C' = A, = A", w = wC = A"

and L = C7'L = A, 7" A, B, - B,"" " A,"™ = B,">--- B,"™ 1A, #
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I. So return Step 1.

If n # 3 or u, # —1, then A,“"(2) = nu,, + 2 € D and by Lemma 4.1.2,
Bt A" (2) = B, (nu, +2) € D. So in Step 1 of the first iteration, by
Theorem 4.1.5, |L(2)| = |A,"™ By - - Bp"n=1 A, (2)] = | A, By - - - B, "=
(nuy,+2)] > 1and A, --- B,"" 1A, (2) = A, - - B,"" ' (nu, +2) € D°.
By Theorem 6.6.2, | 31| = |B,"2(A4," - - B,""1A,""(2))| < 1. Soe = nu; and
= (1. In Step 2 of the first iteration, C = A = A", w = wC = A;""* and
L=C L= A ™ AMB ... BUmt A = B ... B, A" £ ] So
return Step 1.

Suppose that for 1 <i—1<m —2, L =C7 'L = A,"“ B,"“+ ... B,"m1A,"
in Step 3 of the i — 1th iteration or L = C~'L = B,"“ A"+ ... B, "1 A"

in Step 2 of the ¢+ — 1th iteration according as ¢ — 1 is even or odd.

For even i, let L = B,"“A,“ "+ ---B,*™1A,"™ in Step 1 of the ith itera-
tion and L(2) = B,"“ A"+ -+ B, " A" (2) = B," (o) = —%— = —1

a;nu;+1 nui‘i‘i
7
where o; = A, - B, A (2>

If n =3 and w, = —1, then A,“"(2) = nu,, + 2 = —1 and B,""'(—1) =

1 € D. So, in Step 1 of the ith iteration, by Theorem 4.1.4, |L(2)| =

Mum—1—1

|B," A, - Bt A (2)] = | By A M An“m—Q(numl_lfl)\ < 1 and
by Theorem 4.1.3, A"+ ... B,"""1 A, (2) = A, ... Anum%(numilq) €
De. By Theorem 6.6.2, | B,"+* - - - B,""=1 A" (2)| = |B,"+2 - - A, "2 (=)
< 3 and by Theorem 6.6.3, ﬁ = ‘Anum,,,Bnulm,lAnum(gﬂ = |Anui+1...Anunllfz(numlilfl)\
< % Hence ﬁ = nu; + ai and so, e = nu; and pu = ai In Step 3 of

the ith iteration, C = B;° = Bynu;, w = wC = B"™ and L = C7'L =
B, "B A B A = A B ALY £ T So return
Step 1.
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If n # 3 or u, # —1, then A,“"(2) = nu,, +2 € D° and by Lemma 4.1.2
Bt A" (2) = B, (nu, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4.1.6, |L(2)| = |B," A, - - - B, A" (2)] = | B," A" - - -

B, ' (nu,, + 2)] < 1 and by Theorem 4.1.5, A,"*3 ... B,“""1A4,"“"(2) =
At B (nuyy, + 2) € D By Theorem 6.6.2, | B, "2 A, 2 .. B, “m!

A (2)| = B YA Bt (nuy, + 2)] < % and by Theorem 6.6.3,

1 1 _ 1 2 L — pu 4+ L
m o |Anui+l“‘Bnum71Anum(2)‘ o IAnui+1“'Bnumil(num+2)| < 5° SO L(2) = N - Qg

and then e = nu; and p = ai In Step 3 of the ith iteration, C' = B¢ =
Blnui’ w = wc — AlnulBlan .. ‘Alnui_lc — Alnu1B17‘Lu2 . Alnui_lBlnui and
L=C7'L =B "B,"A"Y" ... BUm 1A m = A Witt ... B Um=t A Um L]

So return Step 1.

For odd ¢, let L = A" B,"“** --- B,“™ ' A,,"™ in Step 1 of the ith iteration and
L(2) = A, By -+ - B 1A% (2) = nu; + §; where §; = B,"#! ... B, “m1
A (2).

If n =3 and u,, = —1, then A4,“"(2) = nu,, + 2 = —1 and B,""'A,""(2) =
B,*"'(=1) = —L— € D. So in Step 1 of the ith iteration, by Theorem

NUp—1—1

4.1.3, |L(2)| = |AnUiBnUi+1 . BnumflAnum(2>| —_ |AnUiBnUi+1 - Anum72( 1 )|

NUm—1—1

> 1 and A"+ B,"m 1A, (2) = A,"+2..- A'm2(—L1 ) ¢ D°. By

NUm—1—1

Theorem 6.6.2, |3;] = |B,"+ (A,"“+* - B,"" 1 A,""(2))] < 3. So e = nu,

2

and p = ;. In Step 2 of the ith iteration, C' = A, = A" w = wC =
A B By A and L= O = AT AR B A
= B, .- Bt A" £ [ So return Step 1.

If n # 3 or u, # —1, then A,“"(2) = nu,, + 2 € D and by Lemma 4.1.2,

B, 1A, (2) = B, '(nu, +2) € D. So, in Step 1 of the ith iteration, by
Theorem 4.1.5, |L(2)| = |A;™ B, %+t - .. B, Um=1 A, " (2)| = |A,% B, %+ - -
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B,*"'(nu,+2)| > 1and A,“*2 .- B,"" 1A, (2) = A,"*2 - B, " (nu,,+
2) € D°. By Theorem 6.6.2, |B," (A, "2 - B,""1A4,""(2))| < 3. So

e = nu; and p = ;. In Step 2 of the ith iteration, C' = A, = A" w = wC =

A B B A and L= OV L = Ay ALY B - Byt At
= B, - B ALY #£ 1. So return Step 1.

If i = m — 1, then in Step 1 of the m — 1th iteration, L = B,"“™*A,"™
and consider L(2) = B, "' A,""(2).

If n =3 and u,, = —1, then A,""(2) = nu,, +2 = —1 and B,"""'(-1) =

mmom1 € Do Since L)) = B A 2)] < L gy = nger — 1

and then e = nu,,_ 1 — 1 and x = 0. In Step 3 of the m — 1th iteration,
C =B =B" ! w=wC=A""B""... A\™m2p"m-1"1 and [ =
C1L = By Mum—1tlp um-1 g um — 1A um # I. So return Step 1. In Step 1
of the mth iteration, L = B;*A4,*" and L(2) = B;'A,,""(2) = B;'(—1) = cc.

Hence the algorithm outputs € and it terminates.

If n # 3 and u,, # —1, then A, (2) = nu,, + 2 € D¢ and by Lemma 4.1.2,
B,"" ' (ny, + 2) = —————— € D. Since |L(2)| = |B,"" A, " (2)] < 1,

num_1+num+2

ﬁ = num_1+m and then e = nu,,_; and p = m In Step 3 of the m—
1th iteration, C' = By = B;""" ', w = wC = A" B;""? ... A;"m—2 B,""m-1
and L = C7'L = B, "™ B, "1 A" = A" #£ I. So return Step 1. In
Step 1 of the mth iteration, L = A,“™ and by Theorem 6.6.5, the algorithm

outputs €. Thus the algorithm terminates. [J

Theorem 6.6.10 If M = B,"*A,**---B,“"'A,"™ is input to the algo-
rithm (z = %), then the algorithm outputs B;™“'A;""? ... B;"m-1A™™ as
the Xj-representation of M where even m > 2 and each u; (i = 1,2,--- ,m)

is a nonzero integer.
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Proof Given M = B,"*A,**--- B,*"*A,"™ €T, put L(%) = B,"1 A"

o BnumflAnum<%) = B”ul (al) - alno;l1+1 - nuli‘i where a1 = Anu2 U Bnum71
Ay (3). By Theorem 4.1.4, |L(3)| = [B," A4," -+ B,"" A" (35)] < 1
and by Theorem 4.1.3, A,"*- --Bn“'”‘lAn“m(%) € D°. By Theorem 6.6.2,
|B," - B,"m1A,""(3)| < 3 and by Theorem 6.6.3, ﬁ = lAn"2-~~Bn"ﬂ1—1An“m(%)|

< % Hence ﬁ = nuy + ail and then e = nuy, and pu = o% In Step 3, C =

B =B"" w=wC=B"" and L = C7'L = B;7"™ B, A,"* - - - B, 1 A,""
=A,"---B,"" A" So return Step 1.

Assume that for 1 <¢—-1<m—-1, L = A,“ B, "+ --- B,"™1A,"™ in Step
3 of the ¢ — 1th iteration or L = B,"“A,“ "+ -.- B,*™1A,“™ in Step 2 of the

© — 1th iteration according as ¢ — 1 is odd or even.

For even i, in Step 1 if the ith iteration, L = A,"“' B,"“*' ... B,""'A,“™ and
put L(%) = A" B, ... Bn“’”*lAn“m(%) = nu,; + §; where §; = B,“ "+ - .-
B, A, (3). By Theorem 4.1,3, |L(3)] = |A," B, "+« -+ By"m 1 A" (1)] >
1 and A,"+2 ... B,""14,""(3) € D°. So by Theorem 6.6.2, |3;| = |B,"*!
(A2 B, 1A, (3))| < 3 and then e = nu; and p = ;. In Step 2, C =
A= A" w =wC = A" B™? - By C = A B2 - By A
and L = C71L = A, 7™ A, B, "+ ... B"m1 A% = B,%t+ ... B Ym1 A Ym £
I. So return Step 1.

For odd i, let L = B,"A,"*-.-B,""tA,"" in Step 1 of the ith itera-

tion and put L(3) = B," A" -+ B," YA, " (3) = By (o) = A =
— where a; = A"+ -+ B,"" 1 A,"" (). By Theorem 4.1.4, |L(3)| =

|BHU¢Anui+1 ce BnumflAnum(%N < 1 and Anui+3 ce BnumflAnum(%) c D, By
Theorem 6.6.2, |B,"*2A,"+3 - .- B, """t A4,""(3)| < 3 and by Theorem 6.6.3,

1 1 2
ol = TAnm B Ay < 5 and

1
L(2)

1

a;”

:nui—i—%. So e =nu; and p =
K2
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In Step 3, C = B = B{"", w = wC = A" B;"? ... A;"B;" and
L =C"'L =B ""B,"“A," "+ ... B,"14," = A"+ ... B,*"14,"". So

return Step 1.

If i = m, then in the ith iteration, L = A,“™ and in Step 2, by Theorem 6.6.4,
the algorithm outputs B;"“* A;"*? ... B;"“"t A""™ as the X;-representation

of M. Thus the algorithm terminates. [J

Theorem 6.6.11 If M = B,"*A,"**---B,""*A,"™ is input to the algo-
rithm (z = 2), then the algorithm outputs € where even m > 2 and each v;

(1=1,2,--- ,m) is a nonzero integer.

Proof Given M = B,"*A,"**---B,""'A,"™ € T, put L(2) = B,"*A,"**---

BnumilAnum (2) = Bnm (&1) = a1no;11+1 - nul}i‘o%l where Qy = Anu2 T Bnumﬁl
Aptm(2).

If n =3 and w,, = —1, then A,""(2) = nu,, + 2 = —1 and B,"""'(—1) =
L € D. So, in Step 1 of the first iteration, by Theorem 4.1.4, |L(2)| =

NUm—1—1

|BnU1AnU2 e Bnum_lAnum (2)| - |BnU1AnU2 et Anum_2<num1_171)| < 1 and by
Theorem 4.1.3, A, B, - - B," "' A" (2) = A" B, - - A2 (— :_1) €
D¢. By Theorem 6.6.2, |B,"*A,"* -+ B, "™ 1A, (2)| = |B,"* A" - - - A, "2
(numl_ﬁl)’ < % and by Theorem 6.6.3, ﬁ = \An“2(Bn“3-~-Bi“m*1An“m(2))\ < %
and ﬁ =nuy + a% So e =nu; and p = a% In Step 3 of the first iteration,

C = B, = Binuy, w=wC = B{"™" and L =C7'L =B, " B,"A," .
B, 1A = A2 B'm ALY #£ 1. So return Step 1.

If n # 3 or u, # —1, then A,“"(2) = nu,, + 2 € D and by Lemma 4.1.2,

Bt A" (2) = B, '(nu, +2) € D. So in Step 1 of the first iteration, by
Theorem 4.1.6, |L(2)| = |B,"* A,"? - - - B,"™ 1A, (2)| = |B,"* A" - - - B, 1
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(nuy,+2)| < land A, B," --- B,""*A,"(2) = A, B,"* - - - B, ' (nu,, +
2) € D°. By Theorem 6.6.2, |B,“* A, - -+ B,"" 1A, (2)] = |B,"* A" - - -

B, (nuy, +2)| < 3 and by Theorem 6.6.3 :

1] =
’ |O@1|| T [An"2(Bpt3 By tm— 1 Ayt (2))]

< % Soe =nuj; and y = a% In Step 3 of the first iteration, C' = B = Bynuy,
w = wC = B"™ and L = C7'L = B, "™ B,""A,"2---B,"" A" =
A2 Bt ALY £ 1L So return Step 1.

Suppose that for 1 <i—1<m —2, L =C7 'L = A,“ B,"“+ ... B,"m1A,"
in Step 3 of the 4 — 1th iteration or L = C~'L = B, A"+ ... B,"™ 1A "™

in Step 2 of the ¢ — 1th iteration according as ¢ — 1 is odd or even.

For even i, L = A,“ B,“ "+ --- B,"™'A,“™ in Step 1 of the ith iteration and
put L(2) = A" B, -+ B, "1 A,""(2) = nu; + 3; where §; = B,“* .-
Bt A, (2).

If n =3 and u,, = —1, then A,“"(2) = nu,, +2 = —1 and B,""'A,""(2) =
B, (~1) = ~ ml € D. So in Step 1 of the ith iteration, by Theorem

Um—1—1
4.1.3,|L(2)| = |A, B+ -+ B" AL (2)] = | A Bttt - - Anum—2<nu 1_1_1)|
> 1 and 14nwJr2 e Bnum_lAnum(2) - ATLUi+2 e Anum_Q(numl_lfl) € D" By

Theorem 6.6.2, |3;] = |B,"+'(A,"**--- B, "1 4,""(2))| < 3. So e = ny
and u = ;. In Step 2 of the ith iteration, C' = A = A", w = wC =
A" B Byt A and L = CTL = AT A Y B, L Bt A

= B, .- B,"m 1 A," £ 1. So return Step 1.

If n # 3 or u, # —1, then 4,""(2) = nu,, +2 € D° and by Lemma
4.12, B,""'A,"(2) = B, '(nu, +2) € D. So, in Step 1 of the ith
iteration, by Theorem 4.1.5, |L(2)|] = |A,“ B,"*' - B, " (nu,, + 2)| >
1 and A,%+2 ... Byum-1 4, %n(2) = A u+2... B U (ny,, +2) € D°. By
Theorem 6.6.2, |B,,“*t -+ B, 1A, (2)]| = | B, "+ (A, 2 - - - B, (nuy, +
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2))| <
A =A™ w = wC = A™B™ ... B"™ 1 A™ and L = C7'L =
A;TMA B Bt ALY = B B ALY £ [0 So return
Step 1.

So e = nu; and u = ;. In Step 2 of the ith iteration, C' =

N[ —=

For odd i, let L = B,“A,"“*--- B, 1A, in Step 1 of the ith iteration,
L(2) = B, A, - B,"m 1A' (2) = By (o) = —is = L__ where

a;nui+1 nui+ 4
1
;= AU Bt AN (),

If n =3 and w,, = —1, then A,""(2) = nu,, + 2 = —1 and B,""'(—1) =
1 € D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(2)| =

NUm—1—1

|Bn’uiAnui+1 . B Umo1 A Um (2)| — |BnUiAnU¢+1 R An“m—Q( L )‘ < 1 and

NUpm—1—1

A tis B Umet A U (2) = At . A2 (—L ) € D, By Theorem

NUm—1—1

6.6.2, |B,"+2 .- B," 1A, " (2)| = | By 2. A" (—L1—)| < L and by

M1 —1 2
Theorem 6.6.3, \a_1| = |Anui+1(Bnum_“gnum,lAnum(z))‘ < %
o= a% In Step 3 of the ith iteration, C' = B = B;"", w = wC =
By A ™2 A O = By A2 A B and L= CTL = By ™

B, A, - Byt A = AL B et A U 2 S0 return Step 1

So e = nu; and

If n # 3 or u, # —1, then A,“"(2) = nu,, +2 € D° and by Lemma 4.1.2,
Bt A" (2) = B, ' (nu,, +2) € D. So in Step 1 of the ith iteration, by
Theorem 4.1.6, |L(2)| = |B,"“ A%+t - - - Byt A, (2)| = | B,% A, +1 - - -
B, " (nuy,+2)| < 1and A"+ -+ B, "1 A" (2) = A"+ - B " (N, +
2) € D. By Theorem 6.6.2, B,,"*? - .- B,""~1 A,"™(2) = B,"*? -+ B," ' (nu,+
2) € D and by Theorem 6.6.3, = L 1

» Jau] = [A, i1 B, "m—1 4, %m(2)| = [A, 5 F 1B, "m—1 (nu, +2)]

< % So e =nu; and pu = ai In Step 3 of the ith iteration, C = B,* = B;"",
w = wC = BlnulAanQ . -Alm”‘lC = BlnulAanQ . 'Alnui_lBlnui and L =
C7lL = By ™ B,"“ A"+ ... Bm1 A" = A%t B Yt A v £ [ So

return Step 1.
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If i = m — 1, then in Step 1 of the m — 1th iteration, L = B,"" A"
and consider L(2) = B, "' A,""(2).

If n =3 and w,, = —1, then A,“"(2) = nu,, + 2 = —1 and B,""'(-1) =
L ¢ D. Since |L(2)| = |B,"" A" (2)] = |——| < 1, +& =

NUm—1—1 NUp—1—1 ’L(2)

Nnu,—1 — 1 and then e = nu,, 1 — 1 and u = 0. In Step 3 of the m — 1th
iteration, C' = B¢ = By 171 w = wC = A;" B2 ... 4,"m-2 B "um-1~1
and L = C~'L = B, ™m-1tlp um-1 4 um — B 1A “m oL [ So return Step
1. In Step 1 of the mth iteration, L = B;*A,“" and L(2) = B;*A4,""(2) =

B;'(—1) = 0o. Hence the algorithm outputs € and it terminates.

If n # 3 or u, # —1, then A4,“"(2) = nu,, + 2 € D and by Lemma 4.1.2,

By (g, + 2) = ———— € D. Since |L(2)| = |B, "~ A, (2)] =
nUm71+num+2

‘TLUm—linum+2‘ < 17 ﬁ = NUm-1 + nu:z+2 and as for n= 4 and tm = _17

|nu, + 2| = 2 is a minimum and |MWIL+2| < %, € = Nm—y and p = nunqur?'

In Step 3 of the m — 1th iteration, C = B¢ = B{""" !, w = wC =
A" B A mee BiMmet and [ = CTL = Byl B Ume AN =
A, 2 1. So return Step 1. In Step 1 of the mth iteration, L = A,“™ and

by Theorem 6.6.5, the algorithm outputs e. Thus the algorithm terminates. [J

Theorem 6.6.12 If M = A, B,"*---A,“"'B,"™ is input to the algo-
rithm (z = %), the algorithm outputs € where even m > 2 and each wu;

(1=1,2,--- ,m) is a nonzero integer.

Proof Given M = A,"'B,"--- A,""'B,"" € Ty, put L(3) = A, Bp"2 - - -
Anum,anum(%) = nuy + (1 where 8, = B,"2 - - Anumlenum(%).

If n =3 and u,, = —1, then \Bnum(%” = | 2

TS B
%num+1| = |zl = 1 and as
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n > 3, An“m‘an“’"(%) = A, (=1) = nuy_ — 1 € D In Step 1 of the
first iteration, by Theorem 4.1.5, |L(3)| = [A,"'B," -+ A" ' B, ()| =
|A, By - - B2 (nty,—1 — 1)] > 1 and A, --- A, ' B “m( )=A," -
B,""2(nu,—1—1) € D¢ So by Theorem 6.6.2, |3;| = |B,"?(A4," - -- A, B,
(3))] < 3. Thus e = nu; and u = (1. In Step 2 of the first iteration, C' = A;* =
A" w = wC = A™, L =C'L=A""4,""B" .- A, " 'B,"" =
B, - A1 B,"™ # 1. So return Step 1.

If n % 3 or u, # —1, then |B,""(3)| = Ermei il
L3 D) = A B e A B (| — LA By A ()
>1and A," - A" 1B, (5) = A A “m‘l(nu —) € D°. So by The-
orem 6.6.2, |3 = [B,"2(A," - -+ A" B,""(3))| < & and then e = nu; and
= P1. In Step 2 of the first iteration, C' = A;° = Alm”, w=wC = A",

L=C"L=A""A"B," . A1 B," = B," ... A,""1B,"" £ I. So

P | < 1. By Theorem

return Step 1.

Suppose that for 1 <i—1<m —2, L =C7'L = A,“B,"“+ ... A" B, "
in Step 3 of the i — 1th iteration or L = C~'L = B,"“ A"+ .. A" B,

in Step 2 of the ¢ — 1th iteration according as ¢ — 1 is even or odd.

For even i, let L = B," A"+ ---A,""'B,"™ in Step 1 of the ith itera-
tion and L(%) — B UiA Ui+, .Anum_anum(%) = B(ey) = —% - = 1

agnu;+1 nu;+ -
k2
where o; = A, B, 2 ... An“"HBn“m(%).

If n =3 and u,, = —1, then |B,""(5)| = | 1nu —
A By (3) = A"t (—1) = nuy,— —1 € D By Theorem 4.1.6, |L(1)| =
|B, " A Ay B (L) = | B AL By (o — 1) < 1 and
A s An“’"len“m(%) = A, B2 (nuy, -1 — 1) € D°. By Theorem
6.6.2, B,"t?... An“m‘an“m(%) = B,""** ... B,""*(nuy,—1 — 1) € D and by

\—]num+2]—1andasn>3
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Theorem 6.6.3 ! L

? |a| |A,%i+1... B, Um—2 A, %m~1B, um(2)| \A T By, o =2 (Nt _1—1)]|

2 — . 1 - . - L
< . Then @ = nu; + 4 and so, e = nu; and p = e In Step 3 of
the ith iteration, C = B, = B;"™", w = wC = A" B™? ... A;"™1C =
AlnulBlnug . Alnui,;l Blnui’ I = C—IL — Bl—nuiBnuiAnuiJrl . Anum_anum —

At At B £ T So return Step 1.

1603 ot 1, them B, (3) = iy = gy € D and by Lemma
411, At (— ) € D°. By Theorem 4.1.4, |L(3)| = | B," A"+ -+ - A,

B () = B A Ay
Anuz’+3 .. Anumfl(

T +2)| <1 andA Uit3 | Anumlen’Ufm(%) _
1
2

) € D¢. By Theorem 6.6.2, | B,"+2 - - - A,"n=1 B, " (1)| =

NUm, +2
Uita |, A Um—1 1 1
| B, " A, (—=—)| < 5 and by Theorem 6.6.3, - |a | = A B, A By (0]
_ 1 g I o
T A A (L] < £. Then L(%) = nu; + o and so, e = nu; and

o= ai In Step 3 of the ith iteration, C' = B = B;"", w = wC =
AlnulBlnug . Alnu,-_1C — Alnu1Blnu2 . Alnui_lBlnui and L = C—IL — Bl—nui
B, A A B Y = AL ALY B Y™ £ 1L So return Step 1.

For odd i, let L(%) = A, M B, . --An“mlen“m(%) = nu; + ; where 3; =
Bnui+1 ces Anum—anum(%>.

= 1 and as

[0 = 3 and u, = 1, then |5, (})] = | = [y

n >3, A" 1B, " (3) = A"t (—1) = nuym-1 — 1 € D°. By Theorem 4.1.5,
L) = [AMB o A B ()] = [ASB 0 B (s —
)] > 1 and A,"*2-- A" 1B,"(3) = A"+ B, " 2(nup—1 — 1) €
D¢. By Theorem 6.6.2, |3;] = |B,"*(A4,"+2 - A" B,"(1))] < 3. So
e = nu; and p = F;. In Step 2 of the ith iteration, C' = A;* = A"
w = wC = A" B" ... B"'C = A" B"™ .- By A" and L =
C7L = A;7™ A B - AV Bt = Bt A1 B #£ 1. So

return Step 1.
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If n % 3 or u, # —1, then |B,""(3)| = | 17”% —l= |mm+2
LB E()] = AL B A, B ()] = A0 B, Ao ()
> 1 and A"+ .- A" 1B, (5) = A, ~An“m‘1(nu —) € D¢ So by
Theorem 6.6.2, |5;] = |B,"* (A, "2 A" 1B, (3))] < 3

and u = 3. In Step 2 of the ith iteration, C = A;° = A", w = wC =
A" B B O = A B By A™ and L= CTL =A™

A, B ALY B Y = B AU B Y™ £ 1L So return Step 1.

| < 1. By Theorem

5. S0 € = nu;

If i =m — 1, then L = A,""'B,"" and consider L(3) = A,""*B,""(3).

fn = andu, = ~1, then B," (1) = —L = —Tand |L()] = |4, B,

NUM +2
(3) = A" (=1)] = |ntm-1 — 1] > 1. So in Step 1 of the m — 1th it-

eration, ¢ = nu,_1 — 1 and p = 0. In Step 2 of the m — 1th iteration,
C=A° = A"t =wC = A" B™2 ... By"™m-2 A,™m—1—1 and [ =
CL = A mm-atl g um—1p um — A B “m - [ So return Step 1. In Step
1 of the mth iteration, L = A;B,"" and L(3) = A, B,""(3) = A;(-1) = 0.
Hence the algorithm outputs € and it terminates.

Ifn # 3 oru,, # —1, then Bn“m(%) = € D and |L( )| =]A "B um(%”

NUm +2
_ Um—1 1 — —_
= A" (o 52)| = Inum—1 + nu"L+2| > 1. Because for n =4 and u,, = —1,
o . .. 1 . . 1
|num, + 2| = 2 is a minimum, |—num+2| < 5 €= Ny and p = .

In Step 2 of the m — 1th iteration, C = A = A" w = wC =
A" B By mez A Mmet and [ = CTML = AT AU B Y =
B,'™ # I. So return Step 1. In Step 1 of the mth iteration, L = B,"™

and by Theorem 6.6.6, the algorithm outputs € and it terminates. [J

Theorem 6.6.13 If M = A, B,"*---A,""'B,"™ is input to the algo-
rithm (z = 2), then the algorithm outputs A;"* B2 ... A;""=1 B;™" as the
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Xj-representation of M where even m > 2 and each u; (i = 1,2,--- ,m) is a

nonzero integer.

Proof Given M = A,"*B,"*--- A,*"'B,"™ € T, put L(2) = A,"*B," - - -
At B ™ (2) = nuy + By where 51 = B,"? -+ A" 1B, " (2). By Theorem
4.1.5, |L(2)] > 1 and A,"---A,*"'B,""(2) € D°. So, by Theorem 6.6.2,
|61] = |B."* (A, - A1 B (2))] < % and then e = nu; and u = (.
In Step 2 of the first iteration, C' = A;* = A", w = wC = A" and
L=C'L=A""A""B," - - A" B,"™ = B,"*--- A,""'B,"™ £ I. So

return Step 1.

Assume that for 1 <¢i—1<m—1, L = A,“ B, "+ --- A" B,"™ in Step
3 of the ¢ — 1th iteration or L = B, A,“**--- A" B,"" in Step 2 of the

1 — 1th iteration according as ¢ — 1 is even or odd.

For even i, let L = B,“A,,“*'--- A,“"*B,"™ € I', in Step 1 of the ith itera-
tion and L(2) = B, 4,541 - A, B0 (2) = B, (ag) =~ = ]

ajnu;+1 nu;+2-
where o = A, A1 B, (2). By Theorem 4.1.6, |L(2)] < 1 and
BnuiJrQ cee An’U«m—anum(2) e D. So by Theorem 6637 ﬁ = (A, Tt 1 (Bnu“r?---Znumlenum(Q))‘

% and then e = nu; and p = ai In Step 3 of the ith iteration, C' = B;° =

Blnui’ w = wC = AlnulBlnug . Alnui_10 — Alnu1Blnug . Alnui_lBlnui and
L=C"'L= B B, A, o A B = AN A B oL

<

So return Step 1.

For odd i, let L = A,“B,"*---A,"*B," € I, in Step 1 of the ith
iteration and L(2) = A,“B,"“*'--- A,"" ' B,""(2) = nu; + (5; where 3; =
B, - At B (2). By Theorem 4.1.5, |L(2)] > 1 and A, +2--- A,
B,"™(2) € D°. By Theorem 6.6.2, |3;| = | B, (A,"**--- A,""'B,"(2))] <

% and thus, e = nu; and u = §;. In Step 2 of the ith iteration, C' = A, =
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Alnui7 W = 'IUC — AlnulBanQ . Blnuiflc — Alnu1B1mm . Blnui,lAlnui and
L = C«flL — AlfnuiAnuz'Bnqu .. ‘Anumlen’U«m — Bnui+1 .. Anumfl Bnum 7é I.
So return Step 1.

If # = m, then in the mth iteration, L = B,"™ and by Theorem 6.6.7, in Step
3 of the mth iteration, the algorithm outputs A;"“* B;"“? ... A{"“"=1 B;""™ as

the Xi-representation of M. Thus the algorithm terminates. [J

Theorem 6.6.14 If M = B,"*A,"*---A,“"'B,"™ is input to the algo-
rithm (z = ), then the algorithm outputs € where odd m > 3 and each v,

(1=1,2,--- ,m) is a nonzero integer.

Proof Given M = B,"*A,**--- A, B, €T, put L(l) = B,"1A," .

An“mlen“m(%) = B," (1) = —%— = —L where a; = A,"2B," -+ A"

ainui+1 nui+5-
B, (1).

If n =3 and u, = —1, then | B,"" ()| = |1nu =
At By (5) = A"t (—1) = nuy,—1—1 € D°. By Theorem 4.1.6, |L(3)| =
|B, " A2 - -An“m‘an“m(§)| = |B,"" A" B," 2 (nupy—1 — 1)] < 1 in
Step 1 of the first iteration and by Theorem 4.1.5, A, -- -An“mlen“m(%) =
A" By 2 (nuy,—1—1) € D°. By Theorem 6.6.2, |B,"* - -+ A,"™ ' B,"" (1))
=|B," - By""*(nuy—1 — 1)| < 5 and by Theorem 6.6.3
|An"2(Bn“i%---Bn“m}Mn“m*an“m(%))\ < 5. Then T%)
and pu = a% In Step 3 of the first iteration, C' = B* = By"", w = wC =
B",L=C"'L=DB"""B,""A," .. A" 'B," = A" ... A" 1B, #£

\—]num+2|—1andasn>3

’ |a1\

= nu; + a_1 and so, e = nuy

I. So return Step 1.

It n 7é 3 or Up 7é _1 then B um(l) - %nu%n—i-l - num+2 € D and by Lemma
4.1.1, A" (-2) € D°. By Theorem 4.1.4, [L(3)] = [B," A, - -+ A"
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B um(l)| = |B,"1 A uz,..Anum—1(nu —
A Um — 1B Um( ) A uq _Anumfl<

)| < 1 and by Theorem 4.1.3, A,"* - - -
) € D°. By Theorem 6.6.2, |B," - -

At B (L)) = | B, .Anumfl(nu =) <3 1 and by Theorem 6.6.3, o] 1‘

1 _
4,72 (BB, A, By (1)) < 2. Then T%) = nuy + a_1 and because for
n =4 and u,, = —1, |nu,, + 2| = 2 is a minimum, | L _ <1 Thuse=nuy

num+2| — 2
and p = o% In Step 3 of the first iteration, C' = B, = B;""', w = wC = B;""*

and L = C7'L = B, "™ B, A,"--- A" B,"™ = A" ... A" B,"™ #
I. So return Step 1.

Suppose that for 1 < 71 —1 < m —2, L = A,“B,“*--- A" 1B, in
Step 3 of the ¢ — 1th iteration or L = B,“'A,,"“"*--- A"t B,“™ in Step 2 of

the ¢ — 1th iteration according as ¢ — 1 is odd or even.

For even i, let L(%) = A" B, .. -An“mlen“’"(%) = nu; + §; where 3; =
Bnui+1 cos Anum—anum(%»

If n = 3 and u, = —1, then |B,""(3)| = |1num+1| = |Wm+2 1 and as
n >3, A,"" 1B, (1) = A" (=1) = nuy,—1 — 1 € D°. By Theorem 4.1.5,
IL(3)] = [A" B+ At Bt ()| = [A" By - By (Rt —
1)] > 1 and A4,"+2 -+ A" B," (1) = A"+ .. B, " 2(nuy,_1 — 1) € D°.
By Theorem 6.6.2, ;| = |By"*'(A4," - A,"'B,""(3))| < % and so,
e = nu; and p = F;. In Step 2 of the ith iteration, C' = A;* = A"
w = wC = A" B" ... By 1C = A" B" ... Byt A™ and L =
C7'L = A;7™ A B - AV Bt = Bt A1 B #£ 1. So

return Step 1.

If n # 3 or u,, # —1, then |B,"" ()| = | Lo | = s
413, |L(3)| = |4 Byt - A Byt ()| = | A B - At (s )|

NUM+2

| < 1. By Theorem
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> 1and A" %2 A, B (L) = A2 A “m‘l(nu —) € D°. By The-
orem 6.6.2, |3;| = |B," (A, 2+ A, 1B, (1)) < 3 and so, e = ny;
and p = ;. In Step 2 of the ith iteration, C = A, = A" w = wC =
AB™ME By C = A B - By A and L= OV L = A

A, B ALY B Y = B A B Y™ £ T So return Step 1.

Forodd i,let L = B," A"+ -+ A" B, and L(3) = B," A"+ -+ At
Bnum(l) = Bnm(az) = ” = ! T where Q= AnUiJrl BnUiJrQ e Anum_anum

2 a;nu;+1 nuiJra—Z_
(3)-

If n = 3 and w, = —1, then in Step 1 of the ith iteration, |B,""(3)| =
1

|1mjn+1! = |m —| = 1land as n > 3, A,""'B,""(3) = A" '(-1) =

Num—1—1 € D°. By Theorem 4.1.6, |L(1)| = |B," A,"+ - A" B,"" (1)| =

| B, A - B 2 (nuy,—1—1)| < 1 and by Theorem 4.1.5, A,,“*3 ... A, “m—1

B,'m (%) = A+ . B,"2(nu,,_, — 1) € D°. By Theorem 6.6.2, B,"+2 - .-

2

An”"‘*an“m(%) = B+ B,""%(nu,,_1 — 1) € D and by Theorem 6.6.3,
1 1 2 1 1

o = [A(B, By A, L By (1)) < £ Then e nu; + 5- and

so, e = nu; and p = ai In Step 2 of the ith iteration, C = B;® =
Bi", w = wC = A" B"? .. A" C = AT B Ay By
L=C7'L =B "B, A" .. A" 1B, = A"+ . AU B £ T
So return Step 1.

If n # 3 or uy, 7é —1, then B,""(3) = %nf = L € D and by Lemma
4.1.1, A" (725) € D By Theorem 4.1.4, |L(5)| = | B," Ay - - Ay
B, (3)| = ]BnulAn R An“m‘l(nu —)| <1 and by Theorem 4.1.3, A,"*

A B (L) = A A" (1) € D°. By Theorem 6.6.2,

NUm+2

i m— m (1 — i m—
| B, 2 At Bt (L)) = Byt A l(m =) <3 L and by Theorem
1 2
6.6. 37 |a2| |Anui+1(Bnui+2...Bn“m—QAn“m—lBn“m(%)” < 5 Then L(%) = nu; + Oé_i

and thus, in Step 1 of the ith iteration, e = nu; and u = ai In Step 3
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of the ith iteration, C' = B = By"", w = wC = A{""* By""** ... A" 1C =
AP B A M BT = O = By "M B, WA, A Umel B =
Ayttt AUt B Y™ £ 1L So return Step 1.

If i =m—1, then L = A,""'B,"" and consider L(3) = A,""*B,""(3).

Ifn = 3and u,, = —1, then B,""(}) = ;=205 = —land L(3) = A,"" ' B,""(3)
= A, (=1) = nuy —1 € D So in Step 1 of the m — 1th iter-
ation, ¢ = nu,,_; — 1 and p = 0. In Step 2 of the m — 1th iteration,
C = A = A1 gy = O = A" B2 ... Bim—2 g Mimo1=l and [ =
C1L = A Mum—1tl g um—1p um — A B “m 2 [ So return Step 1. In Step
1 of the mth iteration, L = A;B,"" and L(3) = A, B,""(3) = A;(—1) = 0.

Hence the algorithm outputs € and it terminates.

If n # 3 or u, # —1, then B,""(3) = nu,i+2 € D and by Lemma 4.1.1,
L(%) = An“"HBn”m(%) = An“m*l(nuiﬁ) = NUp_1 + miH € D¢. Since for
n =4 and u,, = —1, |nu,, + 2| = 2 is a minimum, m < % So in Step 1

of the m — 1th iteration, e = nu,,_1 and u = nui+2' In Step 2 of the m — 1th
iteration, C' = A, = A" w = wC = A" B,""? ... By""m=2 A"~ and
L=C1'L=A"""14,"""B,"*" = B,"™ # I. So return Step 1. In Step 1
of the mth iteration, L = B,“™ and by Theorem 6.6.6, the algorithm outputs

€. Thus the algorithm terminates. [J

Theorem 6.6.15 If M = B,"*A,"*---A,“"*B," is input to the algo-
rithm (z = 2), then the algorithm outputs B;"* A" ... A;"*"=1 B;™" as the
Xj-representation of M where odd m > 3 and each u; (i = 1,2,--- ,m) is a

nonzero integer.

Proof Given M = B,**A,"**--- A, 'B,*" € T, put L(2) = B,"1A,"*---
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A" By (2) = By (on) = gelay = st where ag = A" - Ay

ajnu;+1 nui+ o=
B,*™(2). By Theorem 4.1.6, |L(2)| < 1 and by Theorem 4.1.5, 4,4 --- A,,*m~!
B,""(2) € D. By Theorem 6.6.2, B,"*--- A,“"'B,"“"(2) € D and by The-

1 _ 1
P ar] T |Ap¥2(BRrY3 - Ay tm—1 By um (2))]

In Step 3 of the first iteration, C' = B = B{""', w = wC = B;" and
L=C"1'L=B""B,""A" - A" 'B"™ = A" .- A" 'B,*" # 1. So

1

a1’

orem 6.6.3 < 2. Thus e = nu; and p =

return Step 1.

Assume that for 1 <i—1<m—1, L = A,“B,"“*---A,"" ' B,"™ in Step
3 of the ¢ — 1th iteration or L = B, A,“**--- A" B,"" in Step 2 of the

t — 1th iteration according as ¢ — 1 is odd or even.

For even i, L = A, B,"*' --- A,* "B, € I',,, put L(2) = A, B,"“* ...

At BL ™ (2) = nu; + §; where §; = B, -+ A1 B,"“"(2). By Theo-
rem 4.1.5, |L(2)] > 1 and A,"*2--- A,""'B,""(2) € D°. By Theorem 6.6.2,
|61] = | B (A 2 - A1 B (2))] < % and so, e = nu; and p = f3; in
Step 1 of the ith iteration. Then in Step 2 of the ith iteration, C' = A, =
A™ w = wC = A" B - B C = A B2 - BT A™ and
L=CL = Ay ™ A B, 4 oo A Byt = B A Bt L

So return Step 1.

For odd ¢, let L = B,“ A, "+ -+ A" 1B, € T',, and put L(2) = B, A"
T Anumianum<2) = Bnm (al) = az‘no;ii+1 - nuzio% where a; = ARUi+1 t Anum71

B,"™(2). By Theorem 4.1.6, |L(2)| < 1 and by Theorem 4.1.5, A"+ ... A, *m1
B,""(2) € D. By Theorem 6.6.2, |B,"*2A,"+3 ... A" B,""(2)| < % and

by Theorem 6.6.3, ﬁ = lAnuM(Bnum_,_Znum,anum@))‘ < % So e = nu; and
o= ai In Step 3 of the ith iteration, C' = B = B;"", w = wC =
AlnulBlnug . Alnui_1C — Alnu1Blnu2 . Alnui_lBlnui and L = C—IL — Bl—nui

B, A A B = A AP B 24 1L So return Step 1.
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If i = m, then in the mth iteration, L = B,“™ and by Theorem 6.6.7, the
algorithm outputs B;"“*A;"“?... A;""m=1 B as the X;j-representation of

M in Step 3 of the mth iteration. Thus the algorithm terminates. [J
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Chapter 7

Homomorphic Public-Key
Cryptosystem

Grigoriev and Ponomarenko [7] proposed a new homomorphic public-key cryp-
tosystem over an arbitrary finite group based on the difficulty of the member-
ship problem for groups of integer matrices. This scheme is a probabilistic
public-key scheme and a homomorphic public-key scheme with a homomor-
phic property which comes from the group homomorphism. Homomorphic
public-key schemes are proven to be useful in many cryptographic protocols
such as electronic elections, computing and data delegations, protecting mo-
bile agents and so on. [7]. Related previous work includes two probabilistic
public-key schemes based on computations in the group SLy(Z) which are not
homomorphic schemes [23, 24] and they were already broken [1, 20]. There
is another homomorphic public-key cryptosystem [6] over an arbitrary finite

group, but its security is related to the intractability of integer factoring.

In this chapter, we describe Grigoriev and Ponomarenko homomorphic public-
key cryptosystem and we analyze key generation algorithm, encryption algo-
rithm and decryption algorithm from a practical point of view. Because de-
scription of Grigoriev and Ponomarenko homomorphic public-key scheme is

very vague, it is necessary to do much more detailed and clear analysis on
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this homomorphic public-key scheme. Then encryption scheme and decryp-
tion scheme are justified. In addition, we show an example to demonstrate
its implementation for practical applications and we compare Grigoriev and

Ponomarenko’ description with our description.

7.1 Description

We introduce Grigoriev and Ponomarenko homomorphic public-key cryptosys-
tem. For the time being, we ignore practical implementation issues, which we

consider in Section 7.2.

7.1.1 Setting Up The Scheme

The message space is given as a finite presentation (X|®) of a nontrivial finite
group H where X = {xy, 29, -+, 2} is a set of generators with ¢t > 2 and
R = {wy,ws, -+ ,wy,} is a set of relations. Let F' be a free group generated by
X and N be the normal closure of ®. Then H = F'/N. The set R defines an
equivalence relation = defined by w; = ws iff wiw,™' € N where w; and w,
are words in X* and each equivalence class corresponds to a group element of
H.

Let n be a natural number with n > 2 and S = {s1, $2,- -+, s} be a set of

integers. Let

¢:F — G(n,S)
be an isomorphism such that for each 2 =1, --- |,
o(x:) = M;
where z; € X and M; € X(n,S). Randomly choose words ry,rg, -,y € N

and let R = {ry,ry,--- ,r}. Define words yi, 42, -+, y; by

Yi = T35 (221727 7t)
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where z; € X and r; € R. Also, define matrices Y1,Ys, -+ ,Y; € G(n,S) by
Y = ¢(xri)
= o(yi)-
fori=1,2,---,t. Let G = (Y1,Ys,---,Y;). Then G is a subgroup of G(n, 5)
generated by the matrices Y7, Ys,--- Y, and it is the ciphertext space of
Grigoriev and Ponomarenko homomorphic public-key scheme. By Theorem

3.1.8, G is a free group as a subgroup of the free group G(n,S), but the set

{Y1,Ys,---,Y;} is not necessarily a free basis.

7.1.2 The Keys

The public key is {Y;, Ys, -+ ,Y;} and the secret key consists of n and S.

7.1.3 The Scheme Itself

To encrypt a given message h € H, let

€1 €2 ... €u
La, Lay La,

be a representative of h € H where a; € {1,2,--- t} and ¢ € {1,—1}. At

random choose a word r € N, write

v

v

_ 1 6
r= Ty, T,

-Ib
where b; € {1,2,--- .t} and §; € {1, —1}. Define two matrices M, and M}, by
M, =YY, - Y5,

Mh - Y01€1Ya262 e Yaueu

where z,, — Y, and z;, — Y},.

Let a matrix M be

M = M, M,
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and then E'(h) = M. The matrix M is the ciphertext of h.

To decrypt the ciphertext M € SLy(Z), express M as a word in X (n,S)i
by the X,-representation algorithm and the X (n, S)-representation algorithm,

and write
M — Mclﬁ/lMCg'YQ e Mcw’)/w
where ¢; € {1,2,--- ,t} and ; € {1, —1}. Let

xcl'Yl xcz'}’? SR Yw

w

be its corresponding word in F' which represents h € H by z., +— M,.,. Then
D(M) = h as the plaintext.

7.2 Key Generation in Practice

This section is related to implementation of Grigoriev and Ponomarenko ho-
momorphic public-key cryptosystem. In practice, we analyze the cryptosystem

in terms of a security parameter k.

Many of the methods in computational group theory depend on whether the
group is represented as a group of permutations, a group of matrices, or by
means of a presentation using generators and relations. So far the great-
est success in computational group theory has come in connection with per-
mutation groups on finite sets, finite solvable groups, and finitely presented
groups. From the viewpoint of computational group theory, Grigoriev and
Ponomarenko used a finitely presented group as the message space and a
group of matrices as the ciphertext space. There are three methods commonly
used to represent groups on a computer, namely, as groups of permutations of
a finite set, groups of matrices over a ring, and as groups defined by a finite
presentation. In this cryptosystem, we represent groups either as matrices or

using generators and relations.
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7.2.1 Construction of Message Space H

For a finite group H, a fixed finite presentation (X|R) is given where a
set of generators, X = {x1,x9,---,2;} with ¢ > 2 and a set of relations,
R = {wy,ws, -+ ,wy,}. Since the finite presentation of H and in particular,
the cardinality ¢ of the generating set X do not depend on the security pa-
rameter k. We choose in some way a concrete representation of each element
h € H, namely concrete representative presenting h. So we have one-to-one
correspondence between the concrete representatives and elements of H. This
set of representatives will be used to represent a plaintext in this homomorphic

public-key scheme.

7.2.2 Generating Random Factors n, S and R

We discuss how in practice we choose the private key.

Choose at random a natural number n > 2 with ¢(n) = k where ¢(n) is the
bit size of n.

Choose at random integers sy, So, -+ , 84 € Z with £(s;) = k where £(s;) is the
bit size of each integer s;, write S = {s1, 59, , 5}

For each i € {1,--- ,t}, we do the following.

Choose aq, -+ ,a; € {1,--- ,m} uniformly at random and set

Ty = Wgq, Wqy * * * Wq,,

where w,, € ®F. Write R = {ry,--- ,r;}. Note that the sum of bit sizes of n,
S and R is O(k).

7.2.3 Construction of Ciphertext Space G

For each generator z;(i = 1,2,--- |t), the corresponding matrix Y; is defined
by ¢(z;r;) where x; € X and r; € R. The bit size |Y;| of a matrix Y; is
defined as the sum of bit sizes of the entries of Y;. Note that for each M; =
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2 3..2
1—n*s; —n’s;

n 7’L2S‘ + 1) € X<n7 S)? K(Mz) = €<1 — n25i) -+ ﬁ(—n?’sf) + ﬁ(n) +
¢(n?s;+1). Since Y; is a product of the matrices M; € X(n, S), £(Y;) = O(k).

7.3 Encryption in Practice

A message h € H is given by a concrete representative x,, 2., - 24,

where a; € {1,2,--- ,t} and ¢; € {1,—1}.
To encrypt h € H, the following steps are carried out.
Step 1 Obtain authentic public key {Y1,Ys, -, Y;}.

Step 2 Compute a matrix
Mh = Ya1€1Ya2€2 te Yaueu

by corresponding z,, — Y;,.

Step 3 Randomly choose a word r € N by randomly choosing by, by, - -+ , b, €
{1,---,m} and defining

T = Wy, Wpy * * * Wy, -

Write

02 |

r= xdl‘sla:dZ < Xq

v

where d; € {1,--- ,t} and ¢; € {1, —1}.

Step 4 Compute a matrix

M, = yd151yd252 LYy O

v
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by corresponding x4, — Yy,.
Step 5 Compute a matrix M = M, M,

Step 6 Output M as the ciphertext of the message h.

7.4 Decryption in Practice

To decrypt the ciphertext M € SLy(Z), the following steps are carried out.

Step 1 The X,,-representation algorithm computes the X, -representation of

M

Step 2 The X (n, S)-representation algorithm computes the X (n, S)-representation
of M

71 "2 Y
M, "M, M., ™

where ¢; € {1,2,--- ,t} and ; € {1, —1}.

Step 3 Find the group element h € H corresponding to the word in X+
x0171x0272 v xcw'Yw.

given by z., — M,,.
Step 4 Output the group element h of H as the plaintext.

Note that the decrypted representative of h € H might not be the same

as the original representative of h.
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7.5 Justification

In this section, we justify the encryption and decryption schemes. That is
to say, we show that for a given message, the two schemes work correctly to

recover the plaintext from the ciphertext.

Correctness of Encryption

For a given message h € H, let £ : H — G be the encryption function
and the encryption function is an injection H — G. Then select an arbi-
trary representative x,, ' x,, - - - T4, corresponding to h and a random word

%2 ...74 % and encrypt as follows :

r= xdl‘slde
E(h) = E(24," %, + T4, ")
- MrMh
=Y, 0,2 Y, Y, Y, 2 Y,
=M

where Y, , Yy € {Y1,Ys, -+ | Y;}, a;,d; € {1,--- ,t} and ¢;,0; € {—1,1}.

Correctness of Decryption

By Theorem 3.1.9, there is an isomorphism ¢ : F — G(n,S) and define
an epimorphism go ¢! : G(n,S) — F/N where ¢! is the inverse of ¢ and
g : F— F/N is a natural epimorphism. Then define the restriction map f
of the epimorphism go ¢! by f : G — F/N and this restriction map f co-
incides with the decryption function. Note that the group H is fixed, but the
epimorphism f and the group G depend on the security parameter k because

the construction of f and G depends on our choice of n, S and R. Given the

228



ciphertext M, let D : G — H be the decryption function. Then
D(M) = D(E(h))
=DM, "M, 2 M, ™)
— f(]wq'ﬂ]\jCZ'Y2 ce Mcw'yw)
= go¢ (Mg, M, 2 -+ M, ™)
= g(@e, "3, e, )

But since r1,r9,--- ,rpand r € N,
g(xcllec2'y2 e x0w7w> — g(xalelxa252 e xau€U> = h

* D(M) = D(M,My)

= f(M,My)

= f(M,)f(Mp)

= f(My)

= (Yl Y, )

=go¢ (Yo, Vo, - Yo, )

= 9(Ta, 0, 00y Ty T, T, )

7.6 Example

We give an example to show how Grigoriev and Ponomarenko homomorphic
public-key cryptosystem works. The message space H is the dihedral group
D, which consists of 4 reflections, 3 rotations and the identity transformation.

For i =10,1,2,3 and z € C, the rotations are given by
z — wiz

and the reflections are given by
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where w; = e So the dihedral group Dy is

1) G o) (5 (5o,
(o -0 a) 6 5) (o)

and its finite presentation is (X|R) = (21, zo|21? = 2 = 1, 212021 = 2571)

where X = {z1, 25} and R = {wy = 212, wy = 2%, w3 = (2122)°}.

Given a security parameter k = 2, Bob chooses n = 3 with ¢(3) = 2 and
S = {s1,89} with s = 2, s = 3 and l(s;) = 2 (i = 1,2). Bob sets

X3 = {A3, B3} and Bob constructs the group I's = (X3) where Az = ((1) ?)

and B3 = <;) (1)) Let X(n,S) = {My, My} where
_ —17 —108
My = A3 ?B3Ay* = ( 3 10 )
_ —26 —243
M2 = Ag 3331433 = ( 3 28 )

and the group G(n,S) = (X (n,S)). Bob generates random words r; = wyw;
and ry = wywy, set R = {ry,ro}. Thus Bob generates the public key {Y7,Y5}

by
Y] = ¢(x17)

= ¢(T1wrwy)
= ¢($1$11‘1$1$1)
= M1M1M1M1M1

= M;?

(-89 —540
15 a1
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Yy = ¢(x2r2)
= ¢(rawowy)
= ¢($21‘2$2$29€2$11‘1)
= My My Mo Mo My My My
— My M2

~[=2600 —16011
201 1792

Encryption
Alice encrypts a message h = xoz1 by using Bob’s public-key {Y7, Y2 }.

For a message h = xo11,

L2171 = T2WW1 X1 W1 Wy

= X2X2T2X2X2X1T1X1X1X1X1T1

= .I‘25ZL'17

and so Alice computes a matrix M), corresponding to xoxq
My, =YYy

:M25M17
~(—2600 —16011 —89 —540
a 291 1792 15 91
—8765 —53001

981 5932

Alice generates a random word r = wiwy = T1T1T2T2T2Ts = T1202% in N and

computes a matrix M,
M, = Y1Y1Y2Y5Y5Ys

:}/12}/24

— Mllo(M25M12)4

/-89 —540\°/-2600 —16011)"
15 o1 291 1792
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[ —T79717571533043 —490907171298024
—\ 13361344425294 82280225932885

Then Alice computes a matrix M = M, M, as the ciphertext

M = M, M,

([ —T79717571533043 —490907171298024 [—8765 —53001
-~ \ 13361344425294 82280225932885 981 2932

~ [ —9440101397885399 —58132898241657525
~\ 1056557456928825 6506365190512276

Decryption

Given the ciphertext M = ( 1056557456928825  6506365190512276

Bob computes the X,,-representation of M, write

—9440101397885399 —58132898241657525)

A3°B3" A3 B3’ A3 B3 Ay Bs" A3 B3 Ay By®
A3B3? A1 Bs% A3 B2 A3 1 B° A3 BT A2
and Bob computes the X (n, S)-representation of M, write
A 2By 0 A2 Ay By® A Ay 2 By As? Ay B AP Ay 2 Bs2 A2 Ay~ By
A A3 T2 By? As? A3 3 Bs® Ag® Ay T2 By® As? A3 2 B Ag A3 72 By Ag?
_ Mllo(M25M12)4M25M17.

Bob finds a word in X* corresponding to the X (n,S)-representation of M,

write

xl10w25x12x25x12$25x12$25x12x25x17
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and computes the word again to obtain the normal form
2110057 2w 2y 2P 2 T
= 1I21$21$21$21$2I‘1
= ZL’24ZE2I1
= 1$2$1
= T

by using 212 = 1 and x5* = 1 and then output h corresponding to the normal

form xox;. Therefore, Bob recovers the plaintext h from the ciphertext M. [J

7.7 Comparison

The description of Grigoriev and Ponomarenko homomorphic public-key cryp-
tosystem is not concrete in [7] and in fact, they give only a theoretical idea
to design a new homomorphic public-key cryptosystem over an arbitrary fi-
nite group. So we first clarify the description of Grigoriev and Ponomarenko
homomorphic public-key cryptosystem so that key generation, encryption and
decryption schemes work correctly in practice in terms of the security param-

eter k and so practical issues are discussed.

Grigoriev and Ponomarenko use a presentation (X|R) of the finite group H
which is finitely generated as the message space whereas we have a finitely
presented group as the message space because a finitely presented group is
used to represent groups on a computer because there is no obvious way of

representing R on a computer unless R is finite.

Grigoriev and Ponomarenko use bijections between X and X(n,S) and be-
tween X and R in key generation scheme and decryption scheme. However,
we describe them implicitly by the correspondences x; — M; and z; — 7;.

Although we do not mention the bijections, we do not lose the generality. In
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fact, this simplifies the description of the public and secret keys. Moreover, in
key generation algorithm, we provide precise algorithm to generate the ran-
dom factors which Alice and Bob generate respectively in terms of the security

parameter k from a practical point of view.

For encryption, Grigoriev and Ponomarenko represent the message h as a
representative x,, x,, - - - T4, Where x,, € X, but they have not explained how
they choose such a form and so, their scheme is not clear about how an element
of H is represented. We describe the representative of h as z,,“'x,,% - - - T4,

to represent h where x,, € X, a; € {1,--- ,t} and ¢; € {1, —1} and thus, our

scheme is more explicit about this.

In particular, the decryption scheme works in theory, but not in practice
because they have not considered how Bob verifies that the representative
Ty e, -, presents the plaintext h. In theory, the representative
Ty Mo, -+ -, must present the plaintext h, but in connection with its
implementation, the length of the word in X* may be different from the orig-
inal representative of the message h because some of letters can be canceled
according as the choices of random words. So Grigoriev and Ponomarenko
do not describe the method to obtain the plaintext h, but we clearly show
how to obtain the plaintext by using a concrete representation of h and a
normal form of h. In addition, we modified the X, -representation algorithm
in Chapter 4 and the X (n, S)-representation algorithm in Chapter 5 to make
Grigoriev and Ponomarenko homomorphic public-key cryptosystem efficient.
Therefore, through this chapter, we have made Grigoriev and Ponomarenko

homomorphic public-key cryptosystem work correctly and efficient in practice.
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Chapter 8

Cryptanalysis of A
Homomorphic Public-Key
Cryptosystem

In this chapter, it is shown how to break Grigoriev and Ponomarenko homo-
morphic public-key cryptosystem and so, it is proved that this new homomor-
phic public-key cryptosystem is vulnerable to our attacks. Given the public
key {Y1, Y5, .-+ ,Y;} and the ciphertext M, our task is to find the correspond-
ing plaintext h € H. Clearly we can do this if we find the secret key n and
S. So, this chapter presents several attack methods to find the private key n
and S and the attack method to recover the plaintext without knowing the
private key n and S including each example to demonstrate how each attack

method works and each attack method is written in a separate section.

In Section 8.1, we show the attack methods to compute n. In Section 8.1.1,
we use the Xi-representations of the public key matrices Y;,Ys,--- Y, and
the ciphertext M, respectively to compute n. In Section 8.1.2, we show
our experiment results to demonstrate how our attack methods are efficient.
In Section 8.1.3, we compute n only by using the entries of the public key
matrices Y, Yo, -+, Y; or the ciphertext matrix M without using their X;-

representations.
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In Section 8.2, because we require elements of S to decrypt the ciphertext

M, we show the methods to compute elements of S.

In Section 8.3, in order to recover the plaintext, ordering the elements of S is
also required to know one-to-one correspondence between X and X (n,S). In
fact, ordering the elements of S is implicitly secret and thus, we do exhaustive

search for it.

In Section 8.4, we give an attack method to recover the plaintext without
knowing the private key n and S. This attack method is to recover the original
Xj-representation of Y; € {Y7,Y5,---,Y;} from the partial X;-representation
of Y; appearing in the X;-representation of the ciphertext M because some of
letters of the original Xj-representation of Y; € {Y1,Ys, -+ ,Y;} may be can-
celed. Therefore, this attack method demonstrates that knowing the private
key is not always required to obtain the plaintext in Grigoriev and Pono-
marenko homomorphic public-key scheme. So this attack method requires
only the Xi-representations of the public key matrices Yi,Y5,--- | Y; and the
ciphertext M.

In Section 8.5, we compare the attack methods above and summarize them.

8.1 Finding n

We first propose several attack methods to compute n by using the public key
{Y1,Ys,---,Y;} and the ciphertext M.
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8.1.1 The X;-Representations of Public Key and Ci-
phertext

Now we explain the attack method using the X;i-representations of Y; or M.
Remember that the main purpose of the X;-representation algorithm is to
break Grigoriev and Ponomarenko homomorphic public-key cryptosystem and
so the X;-representation algorithm is also one of parts for cryptanalysis of
Grigoriev and Ponomarenko homomorphic public-key cryptosystem. In addi-
tion, as the ciphertext M is a product of the public-key matrices Y7, Y5, - -+ , Y},
this attack method can be applied to the ciphertext M by the same way.

Let A1 B1%?--- B1°""1 A;°™ be the X;-representation of Y; with each nonzero
integer e; = nu;. Since the exponents e; = nuy,es = nug, -+ , €, = N, of
the Xi-representation are multiples of n, n is one of divisors of the greatest
common divisor of all exponents of the X;-representation of Y;. Moreover,
as the ciphertext M is encrypted by the public-key matrices Y7, Y5, -, Y,
the Xji-representation of M also contain information about n. Therefore,
the first attack method uses mainly the X;-representations of the public key
matrices Yi,Ys,---,Y; or M to compute the private key n. In practice,
the Xj-representation algorithm in Chapter 6 efficiently produces the Xji-
representation of Y; and then the following program made with Maple version

6 computes the greatest common divisor of e; = nuy, es = nug, - -+ , €, = Nyy,.
Computing GCD

> g:=proc(el::integer, e2::integer, e3::integer, e4::integer, e5::integer)
> local gl, g2, g3, g4, g5;

> gl:=gcd(el,e2);

> g2:=gcd(gl,e3);

> g3:=gcd(g2,e4);

> gd:=gcd(g3,e5);
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> print(g4);
> end proc:

> g(el, e2, e3, e4, e5);

This program is the case that the X;-representation of Y; is A;“* By A% B;“* A,*
with each nonzero integer e; = nu;. In the program, el, e2,e3, e4 and €5 indi-
cate the exponents ey, e, 3, ¢4 and e5 of the X;-representation of Y;, respec-
tively and ¢4 indicates the greatest common divisor of ey, es, e3,e4 and e5. In
general, when we run the program to compute the greatest common divisor
of the exponents ey, eq, - , e, of the X;-representation of Y;, let d; be their
greatest common divisor. Then for ¢ = 1,--- ¢, d; is the greatest common
divisor of the exponents of each Y;. We input el = dy,e2 =dy,--- ,et = d; to
the program and then the program outputs the greatest common divisor n’ of
di,ds, -+ ,ds. Therefore, the correct secret key n must be one of divisors of
n'. We will also consider how likely n is n’ with experiments and in practice
we will show n = n’ in the following section 8.2. Note that this attack can be
mounted on ciphertext M, rather than the public key matrices Y7, Ys,--- .Y,

where the public key is not known.

Let (X|R) be any presentation. Let r be any element of N and let i/ = RU{r}.
Then it is clear that (X|R) and (X|R') define isomorphic groups [14]. So we
use (X|R) = (z1,25]z12 = 1, 25" = 1, (z122)" = 1, (z125)° = 1) as the fi-
nite presentation of the dihedral group D, instead of (X|R) = (z1, zo|z,% =

1ot =1, (331;1:2)2 =1)

Example 1

Given a finite presentation (X|R) = (zy, 20212 = 1L,2* = 1, (z12,)" =

1, (z125)° = 1) of the dihedral group Dy where X = {zy,z,} and ® = {w; =
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212, wy = xt wy = (x122)", Wy = (2122)7} and a security parameter k = 3,
Bob chooses n = 4 and S = {s1,s82} by s; = 4 and sy = 6, and generates
random words 7 = wywows and 7y = wywywy, write R = {ry,m}. Bob con-
structs the group I'y = (A4, B4) by using his private key n = 4 where Ay =
(1 4) and By = (1 O) and the group G(n,S) = (M, My) where M, =

01 4 1
—95 —2304)

_ —63 —1024 _
A4 4B4A44 = ( 4 65 ) and MQ == A4 GB4A46 = ( 4 97

Thus Bob generates the public key {Y7, Y5} by

Y1 = ¢(x171)
= ¢(m1w1w2w3)
= ¢z wa* (w172)")

= M3 My* (M, My)*

25583195842347841  620605483871411200
—1607410491319748 —38993086395179839 |

Yy = ¢(war9)
= ¢($2w2w1’w1)

= P(X9XoloXoTal1 X1 T121)

— M25M14
[ —62175 —998656
2596 41697

Attack 1

For given the public key matrices Y; and Y5, we use the X;-representation
algorithm to compute the private key n. The X;i-representation algorithm

computes the X;-representation of Y;
A B2 A, 8BS A BB AA, S BAA B A,

B14A18B14A1—8B14A18B14A1—8B14A124
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and the X;-representation of Y5

A1—243120A183116A116
1 0

1 1) and By = ( ) Then

where A; = (O 1 11
for Y;, d, = ged(—16,12, —8,16,8,4, —8,4,8,4, —8) = 4

for Ys, dy = ged(—24,20,8,16,16) = 4
for both Y] and Y5,

n' = ged(—16,12,—8,16,8,4, —8,4,8,4, —8, —24, 20,8, 16, 16) = 4.

Hence, we have the correct n’ =n =4. [
Example 2
As it is mentioned before, we can also use the ciphertext M to compute n.

Given a finite presentation (X|R) = (z1, 20212 = 1,25* = 1,(z12,)" =
1, (z125)* = 1) of the dihedral group Dy where X = {z1, 25} and R = {w; =
112, wy = xot wy = (w122)", Wy = (2122)7} and a security parameter k = 2,
Bob chooses n = 2 and S = {s1,$2} by s1 = 2 and s; = 3, and gener-
ates random words by 7 = wjw; and 1y = wewy, write R = {ry,r2}. Bob
constructs the group I'y = (As, By) by using his private key n = 2 where
Ay = (1 2) and By = <1 0) and the group G(n,S) = (My, M) where

0 1 2 1
My = Ay 2By As* = <_27 —5’2 and M, — Ay S ByA,? — (—211 —1;2>
Then Bob generates the public key {Y7, Y2} by
Y1 = ¢(xyrq)
= ¢(x1wywn)
= ¢(z1°)
= M,°

(=39 —160
10 4
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Yy = ¢(wa12)
= ¢(zwpw)
= ¢(9€25$12)

= M," My?
(=555 —2344
S\ 94 397 )
Let z1x5 be a concrete representative of a message h. To encrypt it, Alice

computes a matrix M

M, = Y1Ys

— M15M25M12

_ [ 6605 27896

- \—1696 —7163
and Alice chooses the random word r = 77! = w; ~'w; ! = 2;7*. Then Alice
computes a matrix M,

Mr = }/1_4
_ M1_20

(161 640
~\—40 -159/°
Alice computes the ciphertext M by
M = M, M,
(161 640 6605 27896
-~ \—40 —159) \ —1696 —7163
—22035 —93064
5464 23077 )

Attack 2

Given the ciphertext M, we use the X;-representation algorithm to compute

n. The X;i-representation algorithm computes the X;-representation of M

A1_4Bl_30A1_2B110A12B14A14
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and we compute
ged(—4,—30,—-2,10,2,4,4) = 2
Hence, we have the correct n =n' =2. O

8.1.2 Experiment Results

In this section, we do several experiments to demonstrate how efficiently our at-
tack methods in Section 8.1.1 work. The greatest common divisor n’ of the ex-
ponents of all the X;- representations of the public key matrices Y7, Y5, -+ | Y}
is a multiple of n, but in practice, our experiments show we have n’ = n. In
order to convince the reader that n’ = n, our implementations are given as

follows.

Experiment 1

This experiment is to demonstrate the relation between the number of terms
of the Xj-representation of Y; € {Y7,Ys, -+ ,Y;} or M and how likely n’ is

equal to n.

The idea comes from the following fact. Regardless of whatever the natural
number n > 2 is, we only consider the integers uy, us, - - - , u,, of the exponents
of the Xi-representation A;"“*B;"“?...B;"™m"1 A" of Y; because n’ = n
means ged(ug, ug, -+ ,Uy) = 1 and n < n’ means ged(ug, ug, -+, uy) # 1.
We count the number of the X;-representations with n’ = n and the number
of the Xi-representations with n’ # n. So, we can estimate how likely n’ is
equal to n. Note that we use the Maple version 6 to make programs for all

experiments and our programming source codes are shown in Appendix.

Let the X;-representation of Y; € {Y1,Ys,--- | Y;} or M be A1 By -+ By*"* A ™
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where e; = nuy,es = nug, -+ ,€pm_1 = NUp_1, €y = NU,,,. The experiment is
carried out under the condition that the bit size ¢(u;) of the exponents of the
Xj-representation of Y; is 3 and the number of terms of the X;-representation
of Y;ism = 3,5,7 and 9. Because for the X;-representation with longer terms
than 9, it takes quite a long time to do this experiment in reality when we run
the program. So we do this experiment for several cases m = 3,5,7 and 9 and
u; = 1,2,3,4,5,6,7. For example, in case of m = 5, let the X;-representation
of Y; be A" B""2 A" B,""* A" Then we can consider totally 7° X;-

representations because each u; have seven cases from 1 up to 7.

The experiment result shows that among the total 16807 X;-representations,
16531 X;-representations have the case n' = n (ged(uy, ug, ug, ug, us) = 1)
and 276 X;-representations have the case n < n' (ged(uy, ug, ug, ug, us) # 1).
Therefore, we have the case n’ = n in most of the Xj-representations and we
do not have the correct n directly in a few of the X;-representations, but one

of divisors of n’ must be the correct n.

Table 8.1: Experiment Result 1

no. of terms m=3 m=H m="7 m=9
n=n 329 16531 R21227 40333411
n' #n 14 276 2316 20196

percentage of " =n 959  98.4 99.7 99.9

The table shows that the percentage of n’ = n is getting close to 100 per-
cent if the number of terms of the X;-representation is getting larger. There-
fore, it turns out that in practice, how our attack methods using the Xj-
representations of the public key matrices Y7, Ys, - - -, Y} is efficient to compute

the secret key n. [J

243



Experiment 2

This experiment is to demonstrate the relation between the size of the in-

teger exponents of the X;-representation and how likely n’ is equal to n.

Let us fix the X;-representation A;"“* B{"“?A;""** B;""* A,""® of Y; with m =5
and then we consider three cases, the bit size ¢(u;) of the exponents of the
Xj-representation is 2, 3 and 4. Thus the range of u; is 1 < u; < 2lui) _ 1.
Then we count the number of the X;-representations with n’ = n and the
number of the X;-representations with n’ # n to see how likely n’ is equal to

n.

Let us see the case the Xj-representation A;"“'B;"“?A;"“*B;""*A{""* and
O(u;) = 4, that is, u; = 1,2,3,4,5,6,7,8,9,10,11,12,12,14,15. Then among
the total 759375 X;-representations, 739201 X;-representations have the case

n’ =n and 20174 X;-representations have n’ # n.

Table 8.2: Experiment Result 2

O(u;) lu)) =2 Ll(w)=3 L(u;) =4

n=n 241 16531 739201

n #n 2 276 20174
percentage of n’ =n 99.2 98.4 97.3

The table shows the percentage of n’ = n decreases when the bit sizes of
the integer exponents increases. In other words, for very large integer expo-

nents of the X;-representation, we have less chance to have n’ =n. [
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Experiment 3

The difference between Experiment 2 and Experiment 3 is the size of wu;
of the integer exponents of the Xi-representation of Y;. Experiment 2 has
been done for the cases £(u;) = 2,3, 4, whereas Experiment 3 is for the cases
1 < wu <2% o = 5,10,15,20,25,30,35 and then we collect randomly 100
Xj-representations as random samples for each 1 < u; < 2 to estimate how
likely n’ is equal to n. Among randomly chosen 100 X;-representations, we
only count the number of X;-representations with n’ = n. For instance, for
1 < wu; < 2°, there are 95 X, -representations with n’ = n among random 100
Xi-representations. Therefore, Experiment 3 provides us more general infor-
mation to know the relation between the size of the integer exponents and how

likely n' is equal to n.

Table 8.3: Experiment Result 3
X 25 210 215 220 225 230 235
n=n 95 95 92 95 94 93 95

From the table, we can see the average percentage of n’ = n is 94 percent. It
means that even in case of the large integer exponents of the X;-representation
of Y;, the average percentage of n’ = n is high as 94 percent although we have
random choices of the X;-representations. Therefore, it shows that using X;-

representations to compute the private key n is very efficient. [
Experiment 4

Let the X;-representation of Y; be A;"“* B;"“2 A;"" B;""* A;{""® and the bit size
l(u;) = 3, that is, u; = 1,2,3,4,5,6,7. Then in case of n’ # n, we consider

how n’ is close to n. In this case, we consider all possible greatest common

divisors, 2,3,4,5,6,7. The total number of the X;-representations with n # n’
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is 276 and for each possible greatest common divisor, we count the number of
the Xi-representations among 276. We also compute the percentage of each

case.

Table 8.4: Experiment Result 4
ged 2 3 4 5 6 7

no. of Xj-rep. 241 31 1 1 1 1
percentage  87.3 11.2 04 04 04 04

Among 276 X;-representations, 241 X;-representations has the greatest com-
mon divisor 2 of wuq, us, us, uy4, us and the percentage is about 87 percent. It
means that for n’ # n, the closest, that is, the largest divisor of n’ which is

not equal to n’ must be n. O

Experiment 5

This experiment has been carried out by the same way as experiment 4
and the difference between them is that we do experiment for the bit size
l(u;) = 4 and so, all possible greatest common divisors of u, ug, ug, u4, us are
2,3,4,5,6,7,8,9,10,11,12,13,14 and 15. However, we have done our implemen-
tations for 2,3,4,5,6,7,8,9,10 and 11 because the program running time is very

long.

Table 8.5: Experiment Result 5
ged 2 3 4 5 6 7 8 9 10 11

no. of Xy-rep. 16531 3091 241 241 31 31 1 1 1 1
percentage 81.9 153 1.2 1.2 0.2 02 0.0 00 0.0 0.0

The table shows that apparently n is the closest integer to n’ except for the

case n’ = n because the case of the greatest common divisor 2 has the most
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Xj-representations as 16531 X;-representations and also the percentage is the
largest percent, about 82 percent. Therefore, the largest divisor of n’ with

n < n' is the correct n in the most of cases. [

8.1.3 Observing Matrix Entries of Public Key and Ci-
phertext

In this section, we show that without using the X;-representations of Y; €
{Y1,Ys2,---,Y;} or M, we can also compute n only by calculating the greatest

common divisor of all the entries of the matrix Y; € {V¥;,Ys, -+ ,Y;} or M.

This attack method needs some properties of elements of the group I',,. Be-
cause Y; € {Yy,---,Y;} or M is in the group G(n,S) generated by X(n,S5)
and G(n, S) is a subgroup of ', ¥; € {Y3, -+ ,Y;} and M are in I',,. Since ex-
ponents of the X, -representations of elements of I',, have the common divisor
n, matrices of I',, may leak information about n. Therefore, we prove some
properties of the group I', from our observation on I', and we demonstrate

this attack method.

Mll M12

Theorem 8.1.3.1 For n > 2, let M =
o (M21 Mo,

vides M11 — ]_,Mlg, M21 and MQQ — 1.

) e I',, Then n di-

Proof Let n > 2 be a natural number. Since M € I',, M has the X,,-
representation. We prove it by the induction on the number m of terms of the

X,,-representation of M.

For m = 1, M has only one term in its X, -representation. There are two
cases : one is M = A,," and the other is M = B,,".

. w - M11 M12 . 1 nu ..
It M = A", then M = (M21 M22) = (0 1> and thus, n divides
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My —1 = 0,My = nu,My; = 0 and Moy — 1 = 0. Hence, the theorem
follows in this case.

_pu (M Mp\ (10 .. B
It M = B,", then M = (M21 Mgg) = (nu 1) and n divides M;; — 1 =
0, M5 = 0, My; = nu and Myy — 1 = 0. Thus, the theorem follows in this case

as well.

For m > 1, as the inductive hypothesis, we assume that any matrix M =

M M, having the X, -representation with m terms has the property
My My
. / Myy" My
that n divides M11 — 1, M12, M21 and M22 — 1. Let M' = / ’ have
Moy" Moo

the X,,-representation with m + 1 terms. Then the X,-representation of M’

is one of the following forms :

Anul Bnu2 . Bnum—lAnumBnum+l
Anul BnUZ .. Anum—l BnumAnUm+1
Bnu1 Anuz - AnHM71AnumBnum+1
BnulAnUQ . AnumlenumAnuqul'

Simply we have either M’ = M A"+ or M' = M B,"™** where M has the
X,-representation with m terms.

If M' = MA,"* then
(Mn/ M12,> _ (Mn M12) (1 num+1> _ (Mn Myinum 1 +M12)
My" My My Msz ) \O 1 Mo Moinumir + My )
By the inductive hypothesis that n divides My, — 1, Mo, Moy, Moy — 1, clearly
n divides My, — 1 = My, — 1, My = Mynu,q + Mia, My’ = My and
Msy' — 1 = Mynu,1 + (May —1).
If M' = MB,"**, then
(Mn/ M12/> _ (Mn M12) ( 1 0) _ (Mn + Mianty, 1 MIQ)
My' My My Moy NUumyr 1 Moy + Magnuuy, 1 Maa )
By the inductive hypothesis that n divides My, — 1, M9, My, and Moy — 1,
My = Myp and Myy' = Moy — 1, n divides M|, —1 = (My; — 1) + Miont, 41,
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My = My, M}, = My + Maontiy, 1 and Moy’ — 1 = My — 1. Therefore, the
theorem follows by the induction. [

My My
My May
a divisor of the greatest common divisor of My, — 1, M9, My, and Msy — 1.

Corollary 8.1.3.2 Let n > 2 and M = ) € I',,. Then n is

Proof It is trivially proved by Theorem 8.1.3.1.

Corollary 8.1.3.2 implies that the matrix Y; € {Yj,---,Y;} and the cipher-
text M have information about the secret key n. For the public key matrix

Y = no Yo € {Y1,Ys, -+, Y;}, we compute
Yor Yoo

d; = ged(Y,11 — 1, Yo, Yior, Yoo — 1)
and for all the public-key matrices Y7, Y5, -+, Y}, let
n, - ng(d17 d2a e 7dt)

where each ¢ = 1,2,--- ,t, d; corresponds to Y;. Then the secret key n must
My M

be a divisor of n’. Similarly, for the ciphertext M = 1 2) er,, we

My Moy

compute
n' = ged(Myy — 1, Mg, May, Moy — 1)

and then the private n must be one of divisors of n'.

Now, we consider how n is close to n’ by comparing the case of calculat-
ing the greatest common divisor of all the entries of the public key matrices
Y1,Ys, -+, Y, and the case of calculating the greatest common divisor of the
entries of the ciphertext M in the following examples. It is shown that the
greatest common divisor n’ of the entries of the public key matrices is more

likely to be n. We apply these attack methods to Example 2 in Section 8.1.1.
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Example 1

. . -39 —160 —555  —2344
The public key matrices Y; = ( 10 A1 ) and Yy = ( 04 397 ) are

given.
Attack 3

We compute for Y7,
ged(—39 — 1,-160, 10,41 — 1) = 10
and for Y5,
ged(—555 — 1, —2344, 94,397 — 1) = 2.

Therefore, the greatest common divisor n’ of all the entries of the public key

matrices Y; and Y5 is
n’ = ged(10,2) = 2.

Thus we have the correct n’ = n = 2.

Example 2

—22035 —93064

The ciphertext M = ( 5464 93077 > is given.

Attack 4

We compute
n’ = ged(—22035 — 1, —93064, 5464, 23077 — 1) = 4.

Hence, we obtain n’ = 4 and in fact, the correct n = 2 is a divisor of n’ = 4.
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8.2 Finding S

Assume that we have the private key n by using one of techniques in Section
8.1. We now try to find elements s, so,--- ,s; of S as the other part of the
private key. We present two ways to collect the elements of S. One is to use
the X;-representation algorithm and the other is to use the X,,-representation
algorithm. The difference between them is whether the X, -representation of
the ciphertext M is obtained by the Xi-representation algorithm or the X,,-

representation algorithm.

We explain the first method to compute the X,-representation of Y; or M.
The X;-representation algorithm takes the public key matrix Y; or the cipher-
text M as an input and then it outputs the X;j-representation of M. Let the
Xj-representation of M be A;*B;**--- B1*"* A" with e; = nu;. Since n is
revealed by our attacks, we can compute each nonzero u; when we divide e;

by n and so we can obtain the X,,-representation A,“*B,"*--- B,“"1A,"™.

As the second method to obtain the X, -representation of Y; or M, the X,-
representation algorithm takes n and the public key matrix Y;(or the ciphertext

M) as two inputs and it outputs the X,,-representation A,"“* B,"? - - - B, "™ 1 A,,"™.

As it is shown in Chapter 5, the X, -representation can be written as
A B, A B - B AL
— A, 51 B U2 A Se1=Saz B Ui g Saz~Sag “_AnSamTfa Tem_1 Bn“m—lAnsa%;l
where a; € {1,2,--- |t}, s,, € S and
Uy = —Say

U3 = Sa; — Sas

Us = Say — Sas
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U2i—1 = Sa;_1 — Sa

Um—2 = Sam—S - Sam—l
2 2

Um = Sa,p_1 -

2

Note that —u; = s,, is always an element of .S and we can compute elements

Sala Saza e 7Sam_1 c S as fOHOWS .
2
Sal = —Uq
Sqy = —U1 — U3
Saz = —U1 — U3 — Us

Sq; = —UL — U3 — U5 — *+* — U]
Sapog = ~UL — U3 — U5 — * = Up—2.

m=1

Therefore, we can collect elements of S up to mT_l If we can not find all the
elements of S from the public key matrices Y7, Y5, - - - , Y, or the ciphertext ma-
trix M, then we can use another attack method generating many ciphertexts
to get more information about elements of S. However, in practice, the public
key matrices Y7,Ys, .-+ Y, seem to give enough information so that we can
collect all the elements of S. The following example shows how this attack

method works and we apply this attack method to Example 2 in Section 8.1.1.

Example

' , -39 —160 —555 —2344
Two public key matrices ¥; = ( 10 A1 ), Yo = ( 94 397 ) and

. . —22035 —93064 :
the ciphertext matrix M = < 5464 93077 ) are given.
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Attack 5

By the X;-representation algorithm, we have the X;-representation of Y;
A 4B 1OA A
and the X-representation of Y5
A75B A 2B A

When we divide exponents of the X;-representations of Y; and Y3 by n = 2,

we have the X, -representation of Y}
Ay 2By’ Ay?
and the X, -representation of Y5
Ay P By° Ay By Ay”.
Therefore, from the X,,-representation of Y7, we have
Sqy = —uyp = —(—2) =2
and from the X,,-representation of Y5, we have

Sqy = —up = —(=3) =3

Say = —Up —U3 =3 —1=2.

Hence, we can compute S = {2,3} from X,-representations of the public key

matrices Y; and Y5.

Attack 6

For the ciphertext M, the Xj-representation algorithm computes the Xj-

representation of M
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Al_4Bl_30A1_23110A12B14A14.

and when we divide exponents of the X;i-representation of M by n = 2, we

have the X, -representation of M
Ay 2By P Ay By Ay By Ay,
So we have
Sq; = —up = —(—2) =2
Say = —Up —uz =2 —(—1) =3

Sgg = —Up — Uz —Us =3 — 1 =2.

and hence, we can compute S = {2,3} from the X, -representation of the ci-

phertext M.

The preimage of the public key matrix Y; is x;r; where x; € X and r; € R
with the length %k (security parameter). It means that the choice of the se-
curity parameter k affects the number of the terms of the X, -representation.
Hence, as the security parameter k increases, the number m of the terms of
the X,,-representation of Y; goes up and the number m of the terms of the
X,-representation of the ciphertext M also grows because the ciphertext M is
generated by the public key matrices Y7, Ys, -+, Y;. It implies that the large

security parameter k is likely to recover all the elements of S.

8.3 Ordering The Elements of S

Suppose that we have the private key n and S. Then we have to find S as
an ordered set to recover the plaintext and there are ¢! ways of ordering the
elements of S because |S| = t. One of them must be correct ordering the
elements of S. For each ordering, we can test if this ordering is correct by
encrypting several plaintexts with the public key and then after decrypting it,

we check whether the original plaintext is produced.
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Example

We apply this method to Example 2 in Section 8.1.1. Let n = 2 and S = {2, 3}.

-7 _32) and A273B2A23 =

Then we compute two matrices Ay 2By Ay? = ( 5 9

—11 =72
2 13 /-
Attack 7

If the first ordering way is

M, = Ay 2By A2 = (‘7 _32)

2 9
and
—11 =72
_ -3 3 _
MQ_AZ B2A2_<2 13)’

then for X = {x1,22} and X (n,S) = {My, My}, x1 — M; and x5 — M. In
—22035 —93064
5464 23077 )’
the Xi-representation algorithm computes the X;-representation of M

order to recover the plaintext from the ciphertext M =

Al74Bl730A1723110A12314A14’

and the X, -representation algorithm computes the X, -representation of M by

taking n as an input
A2 By P Ay By’ Ay Bo Ay®

Then the X (n, S)-representation algorithm computes the X (n, S)-representation
of M

A2—2B2—15A22A2—3B25A23A2—2B22A22

— M1—15M25M12
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because elements of S are obtained by the attack methods in Section 8.2.

By x; — M; and x5 — M,, we can compute the representative x; °xy’x,?

and by the relations 7,2 = 1 and z,* = 1,

ZL‘1_15£C25$12

=7 'my

= T122

= h.

So we find the representative x;xo which is the same as the original represen-

tative of h. Therefore, we can obtain the correct plaintext h.

If the second ordering way is

Ml - A2_3BQA23 — <_11 _72>

2 13
and
. 9 o [(—T7 —32
M2 = AQ BQAQ = ( 2 9 )

then from the X (n, S)-representation
A272B2715A22A273B25A23A272B22A22
= My P M°My?,

15

we have the representative xo 5215292 and by the relations z12 = 1, a2* =1

and (z129)° = 1,
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I’2_15CL’15I22

= x2*3x1x22

= Ty, 15°

= Ta(2172) 72

= 2o(xy oy )1y
= (zomy ™ ay 'wy
=21 Ty

= I1%9

= h.

So we can also find the same plaintext A in this case, but we might have
a different representative unlike this second case. However, one of the two

ordering ways works to recover the plaintext h.

8.4 Recovering The X -Representation of The
Public Key from The X;-Representation
of The Ciphertext

In this section, we show that we can also recover the plaintext without knowing
the private key n and S. The attack method uses only the X;-representations
of the public key matrices Y7, Y5, -+ ,Y; and the ciphertext matrix M.

Since the ciphertext M is generated by the public key matrices Y7,Ys, -+ | Y,
we can often see much of the X;-representations of the public key matrices
appearing in the X;- representation of the ciphertext M because significant
cancelation has not occured . However, for some Y;, some letters of Y; may
be canceled and that’s why the partial X;-representation of Y; appears in the

X;- representation of the ciphertext M. Thus the key idea to attack is to
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recover the whole X;-representation of Y; from the partial X;-representation
of Y; in the X;- representation of the ciphertext M. Next, we can describe
the X;i-representation of M in terms of the public key matrices Y7, Y5,---,Y;
and then by the public one-to-one correspondence between X = {z1,--- ,z;}
and {Y1,Ys, -, Y}, we find a word in X*. Lastly, we compute a concrete
representative or its normal form corresponding to the plaintext and then we

obtain the plaintext.
Example

Given a finite presentation (X|R) = (z1, 20212 = 1,a* = 1, (z12,)" =
1, (z125)° = 1) of the dihedral group D, where X = {x;,2,} and R =
{w, = 212wy = 1wz = (x1x2)4,w4 = (mlarg)Q} and a security parame-
ter k = 2, Bob chooses n = 2 and S = {s1,s2} by sy = 1 and s, = 2 and
generates random words by 71 = wjw; and ry = wywe, write R = {ry,rs}.
Bob constructs the group I's = (Ay, Bs) by his private key n = 2 where
Ay = (é ?) and By = (; (1)) and the group G(n,S) = (M, Ms) where
My = Ay 'ByAy' = (_23 _58
generates the public key {Y;, Y5} by

) and M2 = A272B2A22 = (_27 _§2> Bob
Y1 = ¢(x171)

= ¢(:U1w1w1)

= ¢(x1°)

= M,°

(=19 —40
L1021 )
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My M,y ?My*
1041 4304
—290 —-1199 /"
Given a representative x1x9 of a message h, to encrypt it, Alice chooses the

random word r = wew;. Then

rh
= WaW1T1T2
= ToX2X2X2X1T1T1T
:1’249013352
and the ciphertext M is
M = M, M,
=Y2'Y1’Y,
/1041 4304 \'/—=19 —40\’ (1041 4304
-\ —290 —1199 10 21 —290 —1199
[ —120550653510779 —498415519208360
| 33582590741180 138846898902381

where M, = Y5*V;2 and M), = V1Ys.
Attack 8

The X;-representation algorithm computes the X;-representation of Y;
A 7?B A,
the X;-representation of Y5

A7 B 2A2B YA, 2 B8 AL
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and the X;-representation of M
Al_4312A12314A1_23110A12314A1_23110A12Bl4A1_2
Bl10A12B14A172318A12B130A172B12A12BI4A172B18A14.

When we observe the X;j-representation of M, we can see the partial Xi-
representations of Y; and Y5 in the X;-representation of M and hence, we split
the Xi-representation of the ciphertext M into the partial X;-representations

of Y] and Y5 as follows :
M =A,*B2A2B* A, 2B,

A2B YA, 2B,

A2B A 2B, Y

A’B A ?B,®

A2B,®

A72B2ACB YA TP B A
The representation of each line above presents the partial X;-representation
of Y; or Y5. To recover the original X;-representation of Y; and Y5, we insert
some letters likely to be parts of the X;i-representations of Y7 and Y. So we
can recover the original X;-representations of Y; and Y;. Therefore, we can

obtain the following representation of the ciphertext M from the straightfor-

ward computation

M =[A,*B?A’B* A, 2B A4
[A,7*B?A’B* A, 2 B8 ALY
[Al_4Bl2A12Bl4A1_2318A14]
[A17*Bi?A’B* A, 2 B8 ALY
[A;7%A,2B,%° 4,7
[A,72A,°B2A2B*A, 2B % ALY,
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Therefore, we have M = Y5Y12Y, and by the public correspondence x; — Y;
and x5 — Y5, we compute a representative zo%z1325. By the relations 2,2 = 1

and xyt =1,
IL‘24ZL‘13[E2 = 1T = h.

Therefore, we recover the plaintext h from the given ciphertext M.

8.5 Comparison

In order to recover the plaintext, we compute the private key n and S to con-
struct the secret basis X (n, S) from Section 8.1 to Section 8.3. In Section 8.1.1,
we compute n by the X;-representation of Y; or M, whereas in Section 8.1.3, we
compute n without using the X;-representations of Y; or M. After computing
n, we compute elements of S in Section 8.2 and we compute implicitly another
secret factor, one-to-one correspondence between X and X (n,S), namely or-
dering the elements of S in Section 8.3. So these two different approaching
ways depend on whether or not we use the X;-representation of Y; or M, but

in common both ways need ordering the elements of S to recover the plaintext.

Another approaching way is regardless of the secret key n and S, only by
using the X;-representations of the public key matrices Y7, Ys,--- ,Y; and the
ciphertext M, we can obtain the plaintext in Section 8.4. So there is a clear
difference between the approaches above and this approaching way to recover
the plaintext. However, in both Section 8.1 and Section 8.4 we utilize the X;-
representations of the public key matrices and the ciphertext matrix. Since
ordering the elements of S is implicitly secret, we have to do exhaustive search
for the one-to-one correspondence between X and X (n,S) and it means that
there is still ambiguity to find the correct plaintext relying on ordering the

elements of S. Thus such a situation produces many likely representations of
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the plaintext according as ordering the elements of S. If the size of the gen-
erating set X is small, then there might not be much difference between the
two ways. However, if the number of elements of the generating set X is large,
then it would take a time to find the plaintext because we do exhaustive search
for ordering the elements of S. In contrast, the attack method in Section 8.4
needs only public one-to-one correspondence between X = {xy,z9, -+, 24}
and {Y1,Ys, -+, Y} by z; — Y; and obviously there is no ambiguity to find
the plaintext because we have only one representation for the plaintext. So in
in some case, the attack method in Section 8.4 may be efficient way to recover

the plaintext.
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Appendix

The followings are the source codes of experiment results of Section 9.1.3 of

Chapter 9.
Experiment 1

(1) k = 3,1length = 3;

> sw:=proc()

> local ul, u2, w;

> for ul from 1 to 7 do
> for u2 from 1 to 7 do
> wi=ged(ul, u2);

> if not (w = 1) then
> print(ul, u2, w);

> fi;

> od;

> od;

> end:

> su();

(2) k = 3,length = 5;

> sw:=proc()

> local ul, u2,u3, ud, ud, wl, w2, w3, w4;
> for ul from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do
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> for u5 from 1 to 7 do
> wl = ged(ul, u2);

> w2 := ged(wl, ud);

> w3 = ged(w2, ud);

> w4 = ged(w3, ub);

> if not (w4 = 1) then
> print(ul, u2, ud, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(3) k = 3,length = 7;

> sw:=proc()

> local ul, u2,u3, ud, ub, ub, u7, wl, w2, w3, wd, wh, wo;
> for ul from 1 to 7 do
> for u2 from 1 to 7 do
> for u3 from 1 to 7 do
> for u4 from 1 to 7 do
> for u5 from 1 to 7 do
> for u6 from 1 to 7 do
> for u7 from 1 to 7 do
> wl = ged(ul, u2);

> w2 := ged(wl, u3);

> w3 = ged(w2, ud);
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> w4 = ged(w3, ub);
> wbh = ged(wd, ub);
> w6 = ged(wh, u7);
> if not (w6 = 1) then
> print(ul, u2, u3, ud, ub, ub, u7, wo);
> fi;

> od;

> od;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(4) k = 3,1length = 9;

> sw:=proc()

> local ul, u2,u3, ud, ub, ub, u7, u8, u9, wl, w2, w3, wd, wd, w6, w7, ws;
> for ul from 1 to 7 do
> for u2 from 1 to 7 do
> for u3 from 1 to 7 do
> for u4 from 1 to 7 do
> for u5 from 1 to 7 do
> for u6 from 1 to 7 do
> for u7 from 1 to 7 do
> for u8 from 1 to 7 do
> for u9 from 1 to 7 do

> wl := ged(ul, u2);
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> w2 := ged(wl, u3);
> wd = ged

(
(
(
> wb = ged(w4, ub);
> w6 = ged(
(
(

> print(ul, u2, u3, ud, ub, ub, u7, u8, u9, w);

> od;
> od;
> od;
> od;
> od;
> od;
> od;
> od;
> od;
> end:

> su();
Experiment 2

(1)k = 2,1length =5

> su:=proc()

> local ul, u2,u3, ud, ud, wl, w2, w3, wd;
> for ul from 1 to 3 do

> for u2 from 1 to 3 do
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> for u3 from 1 to 3 do
> for u4 from 1 to 3 do

> for u5 from 1 to 3 do

> wl = ged(ul, u2);
> w2 := ged(wl, u3);
> w3 := ged(w2, ud);
> w4 = ged(w3, ub);

> if not (w4 = 1) then

> print(ul, u2, u3, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(2)k = 3,length =5

> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, w4;
> for ul from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> wl = ged(ul, u2);

> w2 := ged(wl, u3);

> w3 = ged(w2, ud);
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> w4 = ged(w3, ub);

> if not (w4 = 1) then

> print(ul, u2, ud, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(3)k =4,length =5

> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, w4;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl = ged(ul, u2);

> w2 = ged(wl, u3);

> w3 = ged(w2, ud);

> w4 = ged(w3, ub);

> if not (w4 = 1) then

> print(ul, u2, ud, ud, ub, wd);
> fi;

> od;

> od;
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> od;
> od;
> od;
> end:

> su();

Experiment 3

> f1:=rand(1..2%) :

> seq(f1(),i = 1..5);

> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 ::

> localbl, b2, b3, b4;
> bl := ged(al, a2);
> b2 := ged(bl, a3);
> b3 := ged(b2, ad);
> b4 := ged (b3, ab);
> print(b4);

> end proc:

> 2(11,6,9,2,2);

> £2(16,28,26,17,27);
> £2(6,29, 6,12, 22);
> f£2(7,31,11, 14, 30);
> £2(22,15,7,2,23);

> £2(24,10,5,4,11);

> £2(28,19,6,1,31);

)
)
> £2(18,29, 5,6, 24);
)
> £2(9,6,14,22,16);
)

> f2(14,21, 4, 4, 20);
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> f2(14,18,22,10,4);
> £2(3,9,20, 24, 20);
> £2(8,23,22,21,27);
> £2(26,31,20,24, 3);
> £2(2,16,23,2,29);
> 2(11,6,9,2,2);

> f2(16,15,20,17, 4);
> f2(4, 30,4, 30, 10);
> £2(13,20,13,28,10);
> f2(17,28,8,29,22);
> £2(20,27,19, 3, 31);
> £2(4,10,13,29,19);
> f2(31,24,24,25,12);
> f2(1, 32,14, 27,9);
> f2(3,13,31,4,5);

> £2(12,23,12,21,19);
> £2(20,21, 15,9, 29);
> £2(28,1,8,20,24);
> £2(8,3,11, 31, 26);
> f1(2,16, 23,2, 29);
> f2(1,1,27,6,18);

> £2(10,23,29,1, 32);
> f2(15,8,28, 6, 29);
> £2(26,6,9,13,13);
> £2(20,29,21,8,27);
> f2(15,14,17,18,22);
> f2(14,15,19,21,20);
> f2(4,16, 15,28, 18);

> f2(26,16,15,28,5);
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> £2(12,23,12,21,19);

> £2(20,21, 15,9, 29);

3

> £2(28,1,8, 20,24

)

> £2(8,3,11,31, 26

> £2(28,7,15,8, 14

)

)
)
> £1(2,16,23,2,29);
)
)

> f2(18,5, 16, 22, 5);
> 2(32,19,23,5,31);
> 2(21,26,17,2,15);

> £2(27,8, 10, 6, 30);

> £2(23,14, 16,23, 28);

> f2(24,14,12,22,28);

> £2(27,14, 4,25, 31);

> £2(15,24, 18,24, 10);
> £2(17,27,26,23,30);

> £2(26,28,14,17,19);

> f2(21, 30,6, 14, 1);
> £2(12,30, 5,20, 8);
> 2(14,16,2, 24, 21);
> f2(16,1,19,8,8);

> £2(32,2,26,12,1);
> f2(21,8,6,9,27);

> £2(17,15,2,12,13);
> f2(14,8,32,23,21);
> £2(13,4,11,29, 3);
> £2(9,17,17, 24, 2);
> £2(9,29,32,25,6);
> f2(16,7,29,29, 32);

> f2(6,25,28,30,13);
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> £2(2,32,5,19,23);
> £2(25,17,23,15,25);
> £2(30,30,24,21,21);
> £2(17,9,25,24, 21);
> f2(11,21,18,23,18);
> £2(12,21,7, 32, 26);
> £2(26,22,23,15,13);
> f2(19,3,32,5,23);
> £2(20,8,2,22,3);

> £2(28,11,22,18,13);
> £2(26,26,25,25,23);
> f2(11,29,4,21,19);
> £2(12,22,32,23,9);
> £2(30,8, 16,14, 2);
> £2(1,10,7,2,11);

> f2(18,2,24,5,15);
> f£2(13,15,13,18,23);
> £2(18,7,13,10, 4);
> £2(27,21,18,32,24);
> f2(17,10, 18,20, 14);
> £2(2,16, 23,2, 29);
> £2(22,1,23,26,30);
> f2(27,3,19,25,13);
> £2(18,3,30, 1, 18);
> £2(9,1,6,10,3);

> £2(23,16,9,25,17);
> £2(25,28,24,9, 32);
> £2(23,23,7,32,8);

> f2(6,13,20,18,23);
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> f2(8,27,25,25,12);

> £2(29,5,30, 1, 30);

> f1:=rand(1..2'):

> seq(f1(),i = 1..5);

> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)
> local b1,02,b3, b4,

> bl := ged(al, a2);

> print(b4);

> end proc:

> £2(702,99, 783,698, 559);
> [2(726,588,279,64,436);
> £2(892,234,80,96,894);

> £2(210,521,990, 857, 263);
> f2(415,95, 400, 486, 251);
> £2(759, 156,969, 857, 490);
> f2(716,437,15,855,619);
> £2(39, 688, 1,966, 571);

> £2(354, 340,591,216, 122);
> f2(784, 465,902, 359, 370);
> £2(963, 354,937, 742, 157);
> f2(222,469, 358,250, 61);
> £2(528,209, 818, 137,276);
> [2(666, 235,626,935, 70);

> 2(465, 547,349, 457, 759);
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> £2(395, 476,608, 155, 845);
> [2(846, 305,464, 1,953);

> £2(999,710, 1004, 500, 943);
> f2(575,489, 197,880, 30);

> £2(812,99,510, 720, 366);
> £2(22, 534,189, 819, 234);
> f2(752, 6,656,309, 161);

> f2(459, 898,316,563, 519);
> f2(16,559, 524, 428, 170);
> f2(165,324, 645,421, 613);
> £2(975,1005, 388, 667, 743);
> f2(180,81,641,73,339);

> £2(28,1,8,20,24);

> £2(8,3,11,31,26);

> £2(952, 365,807,273, 419);
> £2(206,302, 160, 759, 133);
> £2(649, 329, 445, 306, 801);
> £2(264, 752,841,947, 929);
> [2(363,47, 623,909, 987);

> f2(3,843,60, 741, 363);

> £2(490,9,700, 673, 574);

> f2(565, 717,420,266, 519);
> £2(149, 308, 1009, 173, 203);
> £2(270,880, 184, 763, 50);

> £2(894, 817, 606, 129, 433);
> f2(783,649, 66,335, 57);

> f2(878,231,919, 845, 804);
> £2(124, 178,53, 385, 40);

> f2(602, 360,836,597, 983);
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> f2(150, 676,907,977, 842);
> £2(362,329, 151,851, 866);
> f2(746, 706,293,356, 317);
> f2(133,267, 744,685, 118);
> f2(521, 653,265, 874,973);
> f2(873,322,417,721,311);
> f2(835,975,843, 149, 256);
> £2(349, 86,915,401, 399);
> [2(358,844, 928,290, 255);
> £2(963,362, 584, 600, 546);
> £2(939, 224, 257,495, 741);
> £2(820,909, 529,216, 803);
> f2(411, 743,746,993, 679);
> f2(648,507, 962,509, 248);
> f2(464,436, 167,507, 898);
> £2(140,917, 585, 463, 874);
> [2(469, 715,313,798, 569);
> f2(66, 754, 662, 632, 406);
> f2(559, 184, 560, 221, 158);
> £2(127,59, 244, 448, 704);
> £2(139, 155, 304, 1005, 994);
> £2(299,7,980, 500, 283);

> f2(587, 707,496,246, 845);
> f2(174,492, 333,391, 871);
> f2(660, 255,969, 4, 696);

> £2(926, 150,466, 143,955);
> f2(287,215, 645,455, 161);
> £2(985, 673,90, 540, 689);

> f2(798,150, 165, 675, 718);

275



> f2(76,205, 390,957, 560);

> £2(889, 576,310, 562, 60);
> £2(929,418, 167, 382,943);
> f2(516, 104, 260, 252, 44);
> £2(962,912, 111, 742, 638);
> f2(672,914, 183,698, 351);
> £2(995, 235,397,208, 718);
> f2(468,935,1022, 717, 637);
> £2(722,1023, 546, 1008, 705);
> f2(841, 416, 745,475, 133);
> f2(265, 670,707,328, 771);
> f2(793,42,363,168,234);

> £2(580, 624, 114, 326, 805);
> f2(567,597,199, 638, 734);
> f2(585, 957,498,405, 59);

> f2(655,294, 3,22, 379);

> £2(948, 346, 640, 102, 887);
> £2(910,192, 11,878, 825);

> £2(1000, 722,854, 108, 36);
> £2(346,629, 950,965, 575);
> £2(1022, 61, 219, 934, 1024);
> f2(773,462, 585,292, 476);
> £2(938,142,822, 437, 1);

> f2(371,217, 476,223, 311);
> f2(256,27, 631,298, 46);

> £2(238,533,629, 176, 561);

> £2(632,1015, 508, 14, 293);

> f1:=rand(1..2%) :
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> seq(f1(),7 = 1..5);

> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 ::

> local 01,02, b3, b4;

> bl := ged(al, a2);

> b2 := ged(bl, a3);

> b3 := ged(b2, ad);
> b4 := ged(b3, ab);

> print(b4);

> end proc:

> £2(4698,21911, 5666, 29900, 19201);

> £2(11915, 12038, 7977, 25698, 1314);

> f2(18448,29628,12442,4913, 28827);

> £2(6822,19133, 3782, 13804, 24726);

> £2(13287, 10623, 9163, 15278, 20734);

> £2(12502, 47, 32519, 28770, 4343);

> f2(5688,18154, 26341, 15172, 23179);

> £2(10962, 19613, 2629, 5574, 8376);

> £2(10044, 28883, 23494, 25217, 5151);

> £2(23886, 4181, 14404, 26628, 2644);

> £2(19278,9426, 31766, 22602, 16516);

> £2(32611, 7241, 2068, 13208, 6708);

> £2(18600, 10951, 12406, 16917, 10379);

> £2(28986, 22175, 7924, 504, 14563);

> £2(25698, 25008, 23191, 9506, 29213);

> £2(6241, 20070, 30958, 14547, 51);

> f2(19757, 23632, 5455, 28308, 15921);

> £2(3684, 27982, 2206, 23012, 22366);

> £2(14666, 15181, 16756, 15149, 10652);

> £2(1162, 11793, 24988, 22952, 1789);
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> f2(1846, 28116, 14751, 31731, 30627);
> £2(30047, 2692, 27562, 7053, 31549):
> f2(10067, 7743, 5528, 31288, 3961);
> f2(27436, 3201, 13376, 15566, 20947);
> f2(21513,10851, 16845, 8767, 484);
> f2(16605, 27980, 3159, 14828, 30581);
> f2(1843, 32660, 8341, 16687, 13065):
> f2(13501, 9884, 9313, 2312, 14516);
> £2(5272, 28200, 16227, 9771, 31103);
> f2(17722, 28577, 1889, 31195, 31398);
> £2(3698, 27486, 20431, 24829, 18977);
> [2(31968, 25743, 30888, 3644, 4102):
> £2(27069, 2980, 618, 13784, 30790);
> £2(30406, 10310, 23748, 19730, 4264);
> f2(5662, 2746, 30118, 25321, 28173);
> [2(4429, 7764, 15517, 22805, 28296):
> f2(6875, 32655, 21134, 24817, 10002);
> £2(15030, 14446, 22447, 18899, 6197);
> £2(15220, 14100, 31754, 1417, 8421);
> [2(24875, 21092, 8432, 10415, 26364);
> £2(9042, 23834, 31760, 21871, 12476);
> £2(4229, 32284, 32615, 3087, 14344);
> £2(21797, 14560, 18035, 29271, 20069);
> £2(1983,24213, 2874, 14033, 25122);
> £2(9647, 31675, 15176, 31242, 30310);
> f2(11915, 12038, 7977, 25698, 1314);
> £2(18448, 29628, 12442, 4913, 28827);
> [2(6822, 19133, 3782, 13804, 24726):

> £2(13287,16023,9163, 15278, 20734);
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> £2(12502, 47, 32519, 28770, 4343);

> f2(5688, 18154, 26341, 15172, 23179);
> £2(10962, 19613, 2629, 5574, 8376):;
> £2(10044, 28883, 23494, 25217, 5151);
> f2(3145, 7814, 622, 8918, 15568);

> £2(23886, 4181, 14404, 26628, 2644);
> £2(19278, 9426, 31766, 22602, 16516);
> f2(32611, 7241, 2068, 13208, 6708);
> £2(18600, 20951, 12406, 16917, 20379);
> [2(28986, 22175, 7924, 504, 14563);
> £2(25698, 25008, 23191, 9506, 20213);
> £2(6241, 30070, 30958, 14547, 51);

> f2(19757, 23632, 5455, 28308, 15921);
> £2(3684, 27982, 2206, 23012, 22366);
> f2(14666, 15181, 16756, 15149, 10652);
> £2(1162, 11793, 24988, 22952, 1789):
> f2(1846, 28116, 14715, 31731, 30627);
> £2(30027, 2692, 27562, 7053, 31549):
> £2(10067, 7743, 5528, 31288, 3961);
> f2(27436, 3201, 13376, 15566, 20947);
> f2(21513,10851, 16845, 8767, 484);
> f2(16005, 27980, 3159, 14828, 30581);
> [2(1843, 32660, 8341, 16687, 13065):
> f2(13501, 9884, 9313, 2312, 14516);
> f2(17722, 28577, 1889, 31195, 31398);
> [2(3698, 27586, 20431, 24829, 18977);
> [2(31968, 25743, 30888, 3644, 4102):
> £2(27069, 2980, 618, 13784, 30790);

> £2(10406, 10310, 23748, 19730, 4264);
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> f2(5662, 2746, 30118, 25321, 28173);
> [2(4429, 7764, 15517, 22805, 28296):
> £2(6875, 32655, 21134, 24817, 10002);
> f2(15030, 14446, 22447, 18899, 6197);
> £2(15220, 14100, 31754, 1417, 8421);
> £2(9042, 23834, 31760, 21871, 12476);
> [2(4229, 32284, 32615, 3087, 14344);
> £2(1902, 26770, 21061, 23600, 470);
> £2(21797, 14560, 18035, 20271, 20069);
> £2(1983,24213, 2874, 14033, 25122);
> £2(9647, 31675, 15176, 31242, 30310);
> £2(10174, 22135, 11118, 25968, 10231);

> f1:=rand(1..2"):

> seq(f1(),7 = 1..5);

> f2:= proc(al :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)
> local 01,02, b3, b4,

> bl := ged(al, a2);

> b2 := ged(bl, a3);
> b3 := ged(b2, ad);
> b4 := ged(b3, ab);
> print(b4);

> end proc:

> £2(26812, 20216, 3950, 14252, 11958);
> £2(17212,27945, 2411, 6222, 27391);

> £2(10073,10907, 18638, 23556, 24537);
> £2(19583, 28943, 18040, 23186, 9016);

> £2(21290, 29905, 12251, 1274, 9399);
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> £2(19454, 17306, 22780, 2830, 12689);
> f2(30451, 20653, 20382, 24134, 2446);
> [2(27169, 2444, 7998, 22309, 1716);

> £2(24008, 9486, 15344, 25058, 27032);

> £2(20373,18352, 4929, 8051, 29320);

> f1:=rand(1..2%20) :

> seq(f1(),7 = 1..5);

> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 ::

> local 01,02, b3, b4,
> bl := ged(al, a2);

> b2 := ged(bl, a3);
> b3 := ged(b2, ad);
> b4 := ged(b3, ab); > print(b4);

> end proc:

> 2(168538, 21911, 38434, 947404, T72865);

> £2(994955, 962310, 892713, 779362, 558370);

> £2(1034256, 29628, 635034, 37681, 1011867);

> £2(72358, 379581, 921286, 210412, 385174);

> £2(340967, 239999, 959435, 801710, 708862);
> £2(209110, 589871, 589575, 389218, 856311);

> £2(595512,1033962, 255717, 80708, 613003);

> £2(76498, 904349, 2629, 136646, 8376);

> £2(272188,880851, 383942, 418433, 726047);
> £2(396361, 990854, 197230, 172758, 605392);
> £2(122190, 823381, 407620, 583684, 363092);
> £2(248654, 795858, 228374, 383050, 508036);

> £2(196451, 793673, 198676, 897944, 662068);
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> f2(772264, 53719, 274550, 246293, 708507);
> £2(323898, 1037983, 597748, 164344, 702691);
> £2(287842, 942512, 744087, 501026, 61981);
> f2(287842, 942512, 744087, 501026, 61981);
> £2(923745, 587126, 194798, 768211, 426035);
> f2(707885, 842832, 595279, 585364, 867889);
> £2(495204, 126286, 2206, 481764, 120670);

> £2(833866, 605005, 409972, 768813, 731548);
> £2(33930, 470545, 876956, 219560, 231165);
> 2(722742, 224724, 244091, 457715, 1013667);
> f2(1013087, 592516, 551850, 498573, 686909);
> £2(960339, 400959, 628120, 621112, 200569);
> [2(420652, 855169, 209984, 15566, 128251);
> £2(742409, 43619, 803277, 598591, 557540);
> £2(933509, 552268, 953431, 473580, 63349);
> [2(984883, 556948, 41109, 311599, 1028873);
> [2(242877, 370332, 828513, 1018120, 604340);
> f2(201880, 814632, 1032035, 632363, 227711);
> f2(17722,192417, 1889, 227803, 260774);

> [2(462450, 486238, 586487, 90365, 412193);
> £2(589024, 746639, 129192, 396860, 430086);
> f2(911805, 166820, 1016426, 210392, 653382);
> £2(95942, 960582, 449732, 118034, 69800);

> [2(398878, 625338, 980390, 680681, 126477);
> £2(233805, 499284, 1031325, 710933, 585352);
> £2(924379, 196495, 316046, 909553, 10002);
> f2(539318, 702574, 415663, 477651, 38965);
> f2(572276, 931604, 130058, 296329, 860389);

> £2(942379, 283236, 336112, 174255, 976636 );
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> f2(893778, 417050, 654352, 1004911, 340156);
> [2(888965, 130588, 524135, 166927, 538632);
> £2(296814, 977042, 1004101, 23600, 360918);
> £2(840997, 1030368, 706163, 881239, 544357);
> f2(67519, 614037, 625466, 603857, T78786);
> f2(697775,129979, 80712, 522762, 554598);
> f2(665534, 611959, 961390, 714096, 108535);
> f2(125116, 20216, 397166, 964524, 44726);

> [2(475964, 716073, 493931, 104526, 125695);
> £2(894809, 797339, 542926, 875524, 679897);
> f2(806015, 946447, 50808, 416402, 566072);
> f2(512810, 881873, 634843, 34042, 894135);
> f2(740350, 574362, 22780, 625422, 242065);
> f2(1046259, 95189, 282526, 1039942, 723342);
> f2(616993, 657804, 696126, 120613, 624308);
> [2(679368, 304398, 179184, 614882, 879000);
> [2(247464, 689261, 461243, 516672, 454146);
> £2(419482, 431916, 987169, 260533, 390184);
> £2(169926, 804585, 409019, 264561, 807663);
> f2(875138, 585804, 846861, 389358, 112648);
> £2(989792, 679127, 281173, 325517, 657764);
> f2(48555, 7261,934115, 429609, 715313);

> [2(863441, 689240, 165730, 745097, 842749);
> [2(398112, 471673, 698502, 227984, 416839);
> £2(633277,221181, 245536, 250177, 102726);
> £2(989946, 717327, 949160, 832006, 103001);
> [2(401628, 445054, 877389, 888610, 1005888);
> f2(559877, 124531, 577719, 1004636, 601381);

> £2(323890, 761709, 35120, 853369, 1024625);
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> f2(697367, 42095, 400601, 232542, 839070);
> [2(675864, 546293, 528917, 369137, 326505);
> £2(994041, 890040, 97685, 347211, 1026677);
> [2(497298, 827447, 951026, 758956, 546357);
> f2(407431, 750080, 487162, 385551, 201178);
> f2(751222,278295, 1039279, 487949, 634355);
> £2(346083, 156032, 908357, 790999, 614228);
> £2(198024, 603106, 727734, 676675, 648252);
> £2(504939, 1021974, 35666, 149005, 708218);
> f2(475034, 555193, 795481, 718551, 608907);
> £2(999805, 338084, 247061, 723059, 420972);
> £2(109526, 91456, 46871, 16393, 840716);

> f2(381175, 861746, 538956, 166748, 778202);
> f2(16700, 221549, 684260, 741280, 573694);
> f2(142756, 546787, 930427, 960095, 499497);
> f2(21797,14560, 18035, 29271, 20069):

> £2(222120, 655632, 782286, 1005410, 314561);
> £2(338090, 1025927, 501826, 856171, 778514);
> £2(1039202, 127480, 967973, 98543, 465581);
> £2(911503, 1018637, 381714, 62231, 72946);
> 2(453351, 212973, 342794, 462180, 514779);
> £2(69973, 484146, 394624, 289688, 440209);
> £2(194634, 230098, 607220, 392174, 1020086);
> f2(143553, 375063, 888730, 193566, 430811);
> £2(7939, 626643, 720665, 321679, 336530);

> £2(989635, 145982, 833121, 19090, 341705);
> £2(641921,490278, 451466, 587235, 759351);
> f2(978608, 753385, 272793, 436529, 368185);

> £2(619708, 911032, 117289, 411232, 527991);
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> f1:=rand(1..2%%) :

> seq(f1(),i = 1..5);

> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 ::
> local bl, b2, b3, b4;

> bl := ged(al, a2);

> b2 := ged(bl, a3);
> b3 := ged(b2, ad);
> b4 := ged(b3, ab);
> print(b4);
> end proc:

> £2(3314266, 28333463, 2135586, 31356108, 12307201);

> £2(33500811, 17739526, 10329897, 23848034, 558370);

integer, ad ::

> £2(33540112, 32535484, 26849434, 11572017, 14643355);

> f2(3218086, 30788285, 23989958, 21181932, 25550998);

> £2(20263911,21211519, 32416715, 30161838, 33214718);

> £2(4403414,12124207, 28901127, 2486370, 13439223);
> £2(18421304, 7325418, 26470117, 23149380, 12147339);
> £2(24193746, 20827293, 2629, 3282374, 13639864 );

> £2(10757948, 4026579, 28695494, 5661313, 31134751);
> £2(8784969, 3088006, 29557358, 11707094, 28916944);
> f2(20045134, 32280661, 31864900, 15263748, 6654548);
> £2(30657358, 28058834, 8616982, 383050, 4702340);

> f2(6487907,11279433, 7538708, 4043672, 5904948);

> £2(20695208, 25219543, 24391798, 25412117, 11194267);

> £2(22343994, 17815199, 28909300, 11698680, 702691 );

> f2(7627874, 25059760, 29055639, 3646754, 20422109);

> f2(28186721,29947254, 14874862, 33274067, 28737587);

> f2(14339373, 19717200, 31003983, 5828244, 29179441);
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> £2(8883812, 25292110, 5245086, 21453284, 13752158);
> £2(10271050, 22625101, 409972, 29080365, 16460188);
> £2(18908298, 8859153, 2974108, 32725416, 3376893);

> £2(10159926, 1273300, 25409915, 28769267, 17790883);
> [2(6255967, 6883972, 14183338, 31955853, 4881213);

> f2(18786131, 27663935, 2725272, 4815416, 20123513);
> £2(22440748, 23923841, 5452864, 24132814, 29488379);
> £2(1790985, 18917987, 13386189, 24715839, 3703268);
> f2(19807877, 16280908, 7244887, 2570732, 18937717);
> [2(2033459, 26771348, 41109, 23380271, 4174601);

> £2(19117245, 18196124, 13411425, 2066696, 24721588);
> [2(4396184, 8154664, 33537891, 24749611, 12810623);
> £2(12600634, 8581025, 9439073, 24345051, 2357926);

> [2(4656754, 7826270, 24703735, 18964733, 32918049);
> £2(6880480, 33252495, 129192, 396860, 3575814);

> £2(7203261, 23235492, 8356458, 8599000, 4847686);

> f2(20018886, 22980678, 24566980, 2215186, 26284200);
> £2(22418974, 10062522, 5174694, 23749353, 23195149);
> £2(32739661, 30907988, 17808541, 17488149, 16313992);
> £2(15604443, 14876559, 17093262, 3006705, 20981522);
> £2(21510838, 24819822, 18241455, 24594899, 18913333);
> £2(32029556, 22951700, 20053002, 5539209, 11346149);
> f2(14573867, 28594788, 27599088, 32680111, 15656700);
> f2(19768146, 29777178, 10091536, 8344943, 22360252);
> f2(27103365, 26344988, 1572711, 2264079, 1587208);

> £2(24414062, 977042, 23024197, 17849392, 16089558);
> f2(10278181, 31439072, 27969139, 21852759, 33050213);
> f2(28379071, 16342677, 22645562, 11089617, 25944610);

> f2(32155055, 7470011, 17906504, 14154250, 18380390);
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> £2(10102718, 25777783, 21932910, 23782768, 2205687);
> £2(18999484, 27283192, 18222958, 22984620, 8433334);
> f2(6767420, 17493289, 493931, 9541710, 125695);

> f2(13477721, 22817435, 1591502, 28138500, 18505689);
> f2(18631807, 29257999, 2147960, 18242194, 19440440);
> £2(19387178, 15561937, 32092123, 7374074, 25011383);
> f2(1788926, 27837338, 1071356, 11111182, 242065);

> £2(27260659, 10580949, 31739806, 7331398, 9111950);
> f2(14248481, 6949260, 31104830, 17946405, 11110068);
> £2(30039496, 32810254, 5422064, 23683554, 15559064);
> £2(11620245, 3884976, 10490689, 15769459, 18608776);
> £2(22267560, 10126445, 24578491, 28828224, 21425666);
> £2(20342426, 3577644, 25104417, 12843445, 30798888);
> f2(30578630, 24921833, 2506171, 20187505, 807663);
> £2(20798082, 7925836, 7138317, 29749486, 32618504);
> £2(31398496, 20602071, 1329749, 13957005, 14289252);
> [2(26262955, 17833053, 15614179, 9866793, 26929713);
> f2(5057745, 5932120, 27428706, 25910921, 18668541);
> f2(29758240, 8860281, 19572870, 4422288, 15096903);
> f2(18459069, 22241277, 7585568, 6541633, 5345606);
> f2(9378554, 14348815, 11434920, 19706374, 24220249);
> f2(27664604, 22465150, 33383245, 10325794, 4151616);
> f2(23628549, 12707443, 18403511, 25121884, 29961509);
> £2(16052530, 10198893, 21006640, 13436281, 9413233);
> £2(14328855, 30450799, 400601, 8621150, 31247774);
> f2(4139769, 16618680, 23166357, 11881547, 7318133);
> f2(22517394, 1876023, 32408306, 11244716, 27809333);
> f2(2504583, 750080, 21458682, 4579855, 15929818);

> £2(407431, 750080, 487162, 385551, 201178);
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> £2(10188406, 25444119, 10476463, 2585101, 7974387);
> f2(27609059, 22176128, 14539845, 2888151, 4808532);
> £2(22218120, 13186018, 2824886, 30036803, 4842556);
> £2(19379307, 9410582, 10521426, 14829069, 5951098);
> £2(9912218, 23623865, 18621273, 1767127, 3754635);
> £2(4145533, 6629540, 23315733, 5965939, 7761004);

> f2(16886742, 14771520, 13678359, 6307849, 26006540);
> £2(21352695, 2958898, 23607628, 14846812, 16506842);
> £2(142756, 5789667, 7221883, 9348703, 6790953);

> f2(13648188, 25387373, 8024292, 13324192, 13156606);
> £2(10707880, 11141392, 15462350, 5199714, 22334657);
> f2(10707880, 11141392, 15462350, 5199714, 22334657);
> f2(33545058, 2224632, 9356581, 7438575, 11999917);
> f2(6154383, 27233037, 17158930, 16839447, 2170098);
> £2(22473447, 12795885, 24460042, 20822308, 2611931);
> £2(28381525, 29844274, 14026112, 6581144, 26654609);
> [2(4388938, 28541650, 31015924, 5635054, 20943030);
> £2(17969345, 10860823, 23957402, 10679326, 19305179);
> £2(9445123, 10063827, 16449305, 23390351, 10822290);
> £2(25106883, 4340286, 24950369, 19090, 25507529);

> [2(26856321,21461798, 23520138, 24704483, 3905079);

> £2(27193008, 5996265, 30681497, 27699505, 1416761);

> f1:=rand(1..230):

> seq(f1(),4 = 1..5);

> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)
> local 01,02, b3, b4,

> bl := ged(al, a2);

> b2 := ged(bl, a3);
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> b3 := ged(b2, ad);
> b4 := ged(b3, ab);
> print(b4);

> end proc:

> f2(70423130, 61887895, 35690018, 735999180, 112970497);

> £2(1040173072, 837841852, 463057050, 514888497, 383742107);
> f2(573643430,97897149, 627969734, 860042732, 428204182);
> £2(792015847,457419135, 971940811, 969685934, 368759038);
> £2(943927510, 716767279, 599326471, 438693986, 13439223);
> £2(18421304, 74434282, 664004325, 224475972, 213473931);

> £2(493955794, 725470365, 671091269, 909252038, 986718392);
> £2(245638972, 574451923, 565566406, 911630977, 31134751);
> £2(411438153,607067782, 834863726, 917676758, 431570128);
> f2(825351502, 267161685, 937834564, 15263748, 73763412);

> £2(1070844750, 1068246226, 981695510, 235264074, 172474500);
> £2(610467683, 1017912393, 309528596, 775795608, 173677108);
> £2(658229416,796971479,91500662, 58966549, 850055067);

> £2(861204794, 957339295, 834215668, 414351864, 336247011);
> f2(779379810, 327049648, 431708823, 137864482, 1002500637 );
> £2(833493089, 1070134646, 249755886, 167491795, 397836339);
> f2(81448237, 623696976, 970528079, 978906772, 29179441);

> £2(42438244, 763489614, 642779294, 759650788, 886167390);
> £2(1016904010,962149197,906379636, 29080365, 150677916);
> f2(1059095690, 881274385, 2974108, 200497576, 573802237);
> £2(513476406, 1041460692, 293845371, 297204723, 655325091 );
> f2(845116767,141101700, 785935274, 870816653, 373979965);
> £2(488548179,61218367, 237606296, 843676216, 255004537);

> £2(223767340, 1064111233, 374551616, 795884750, 667022587 );
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> £2(1008423945, 287353443, 214712781, 427369023, 37257700);
> £2(858668677,955805004, 510561367, 271006188, 656471925);
> £2(1042220851,429424532, 201367701, 694468911, 641708809);
> f2(757314749, 857056924, 1020044385, 35621128, 595146932);
> £2(138613912, 847015464, 503299939, 293185067, 918780287);
> £2(650134842, 579006369, 210765665, 259226075, 1008990886 );
> £2(575082098, 645360478, 427356919, 320954621, 167135777);
> £2(141098208, 268133519, 906098856, 872812092, 775327750);
> f2(174975421, 459443108, 981434986, 243480024, 105510982);
> £2(254899910, 22980678, 293002436, 975293714, 126947496);
> f2(89527838, 278497978, 877589926, 426402537, 560066061 );
> £2(1072927053, 1071095380, 722451613, 285923605, 586739336);
> £2(250485467, 954400655, 117756558, 103670001, 926951186 );
> £2(424164022, 763017326, 957765551, 494356947, 555784245);
> f2(736672628,291387156, 187825162, 575964553, 850206949);
> £2(886989099, 28594788, 832905456, 938649775, 921626364 );
> £2(925737810, 163994906, 614071312, 712988015, 693448892);
> f2(496865413, 93453852, 68681575, 1008897039, 370685960);
> £2(91522926, 504293522, 828330565, 554720304, 720732630);

> £2(513594661, 1071626464, 699057779, 357397079, 871911013);

> f1:=rand(1..2%%) :
> seq(f1(),7 = 1..5);
> f2:=proc(al :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)
> local b1,02,03, b4,
> bl := ged(al, a2);
> b2 := ged(b1, a3);
> b3 := ged(b2, ad);
(b3, a5)

> b4 := ged (b3, ad);
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> print(b4);

> end proc:

> £2(3269307980, 26793946391, 19850198080, 30240777652, 25081555836);
> £2(18632741098, 10965063760, 12909431904, 26874001278, 29572849874);
> £2(26267534857, 32746199006, 641808217, 30149802247, 21673854367 );
> £2(14894775391, 9180683664, 29275641318, 24016795899, 24959761143);
> £2(3063288988, 31035908041, 24781263705, 4435643882, 29784965836);
> £2(2865148341, 26473123855, 3699650391, 20093271659, 23541926951);
> £2(20951051952, 21953437697, 23722028998, 11445285435, 12784642402);
> £2(5305374036, 9079888463, 12634014936, 13486065786, 16990189328);
> £2(25125729745, 23062484870, 23397440871, 29702303090, 30225099715);
> £2(24181355874, 27786263465, 13953772262, 3264343197, 12556586206);
> £2(5847633365, 603472230, 30690735354, 28998726717, 18270558736

> f2(27945147601, 8591323954, 14267311241, 24920459540, 700275354 );

> £2(3898368235, 31400791666, 24259688359, 22895394886, 23927768529);
> f2(18755534371, 32312406365, 13101683145, 33050561271, 1433291707);
> £2(19321809291, 9320147420, 27122689632, 5541357723, 16869703501);
> £2(9091948366, 24556383538, 32340464080, 26839546881, 28274964409);
> £2(11699736551, 15894932166, 19139950582, 13633454580, 22482572207 );
> £2(30764548671, 17526964713, 23697719493, 9524631408, 30370932766);
> £2(18119046956, 23097876579, 26098072062, 15396294352, 9541609838);
> £2(28634401814, 16984389142, 21492627645, 27836629811, 22527509738);
> £2(4305530608, 6773867526, 24829655696, 9104967989, 20189846689);

> £2(1004309963, 10811232130, 26068311356, 24187440691, 5297946119);
> £2(24088028176, 29109983791, 24001932812, 3662077356, 24934261930);
> £2(32639102117, 3020599620, 5961831045, 20648136101, 23733757541);
> £2(25100263375, 29269428215, 17595617668, 6200302235, 24720196327 );

> f2(11240756404, 17877512273, 32863039105, 31978979401, 33734611283);

291



> £2(2985375672, 29140255085, 22961776423, 17230783761, 1635540387);
> £2(22959523022, 29130026286, 26514514080, 10953229047, 14225594501 );
> £2(28117084809, 30035665225, 4606595517, 19439152434, 22208681761);
> £2(25856752904, 30992412400, 13678373705, 3029686195, 7034407841);
> f2(5617638763, 18456243247,29693163119, 3193465741, 5342271451);
> £2(11933015043, 14735131467, 935278652, 19362184933, 23870488939);
> £2(30953628138, 33754267657, 7234980540, 24125690529, 6704694846);

> £2(26807768629, 2421005005, 11672689060, 12612471050, 7416416775);

i

> £2(23608188174, 22875178864, 2648814876, 13258662651, 22760640562

)

)
> £2(20375705470, 16293580593, 28694829662, 9220003969, 24415115697)
> £2(32586107663, 20085364361, 23081248834, 26185797967, 3796994105);

)

> £2(20308914030, 14656979175, 31391122327, 29325542221, 9210796836
> £2(34291562620, 986965170, 7636251701, 6647492993, 30645392424);

> £2(18040349274, 21234088296, 22584876868, 9428614741, 7461815255);
> f2(2780173462, 26047958692, 5521615755, 2176809937, 29201733450);

> £2(3292464781, 18678730090, 25290642761, 3042008215, 5469500243);

> £2(30541529954, 22788890346, 11750623938, 15347859749, 10563080548);
> £2(11711038781, 18835622021, 8664311051, 33853698792, 1243533997);
> £2(16665122934, 20519242249, 23234264717, 33787616521, 19952629610);
> £2(2455956988, 33972022083, 1095123919, 24094188363, 2260470933);

> £2(33149864192, 27794528605, 1689770070, 16420636563, 6684092817);
> £2(2431407503, 19763365222, 17298504524, 16592445344, 14394948898);
> £2(14544543999, 21011809219, 24425993578, 14503759432, 15607628376);
> £2(33228228130, 10169135019, 25141985504, 20917754113, 7714560495);
> £2(21537548005, 8197187380, 3201944461, 14549234193, 29457199320);
> £2(2512901923, 8311606683, 25596925671, 26254093034, 31385691105);
> £2(6840129191, 9017241224, 28264740347,20979919810, 7001033213);

> £2(8970494200, 21310908880, 15647713716, 12446451879, 1336521211);

> f2(29217060738, 18164881929, 24305595646, 9974773427, 8018231646);
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> £2(33569626379, 21432003093, 10757996978, 30799562994, 8255806475);
> £2(18280008498, 14502911116, 6060492693, 26200280649, 29865133519);
> £2(32124563306, 11171312208, 9264063957, 30564625099, 21606772025);
> £2(33062209310, 4072382009, 5586216002, 16455365362, 26825104022);
> £2(13843517048,29961786774,19057697327, 29743316152, 27809552944);
> £2(15071613149, 15398067358, 28873282687, 8314103867, 33850389748

b

> £2(9575937472,30941667008,10249192587, 31832268955, 12283176240

> £2(20251796980, 27070074139, 29343696459, 10950651587, 7379285488

i

)
)
> £2(23120720877, 29932431330, 33684991275, 9440924679, 30483983316);
)
)

> £2(33118513398, 9323679565, 18073590958, 31142641132, 16596049229
> £2(33330473351, 26263793511, 20102378132, 34214985983, 32905762761 );
> f2(705914884, 13286760120, 24666617758, 31988142230, 3968560594 );

> f2(15715763343, 771398587, 24045650207, 29987093719, 29746811525);
> £2(26480266695, 3720668321, 5675156441, 6578750113, 31112386650);

> f2(16214193692, 23582090929, 31778762526, 867975318, 3789581477);

> £2(23137399459, 29191170766, 28164708428, 29114304717, 9990260102);
> £2(8654612413, 23649214000, 17179601785, 13070172736, 20777388342);
> £2(30902805042, 667619388, 10291922849, 12630524322, 26262022311);
> £2(20994982270, 7515526063, 21684999684, 8713331816, 19981948164);
> £2(23645766908, 26512155692, 14251741122, 26121740176, 25781354607 );
> f2(187151467,512727062, 882936658, 216155661, 5951098);

> £2(2249578214, 26845403774, 33622067872, 27686342546, 8029638839);
> £2(25174990522, 5368486239, 2627987427, 10193058027, 770790797);

> £2(19573575888, 29792636622, 6655475156, 30078385063, 16317485054 );
> £2(32724121293, 18454795901, 9510851282, 22768552959, 9117542946);
> £2(4486070256, 5728827071, 8158899017, 15580972448, 14465476329);

> £2(21399323099, 8008361093, 26648734985, 1001407134, 19320173251);
> £2(11981742408, 1629299459, 20242405145, 9096981546, 8044000619);

> f2(32871884968, 21644170474, 28554451524, 34102138480, 18282717298);
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> £2(21219732806, 3175054117,11749075511, 25253431893, 28604715207 );
> £2(26209915518, 31087246046, 17505804873, 21904851901, 31747916274 );
> £2(28365071765, 33345678395, 32539975519, 6524736265, 5723339307 );
> £2(22557578244,4227377804, 20737243791, 2579132710, 33478459395);
> £2(7283409942, 10232857979, 10949707700, 25857023322, 18139184 768);
> £2(4952580198, 15447694199, 18049303438, 29312112832, 9458392075);
> £2(20600259438, 7551257401, 22886844577, 27430335018, 964625889);
> £2(8834213897, 19669100953, 23015067624, 1211626194, 26379904854 );
> £2(25639898220, 12013283364, 20756223322, 5389655669, 8479080374 );
> £2(10101185477, 25286386239, 12392723454, 29692953661, 18354897115);
> £2(30518451110, 10345515008, 9488029445, 14071173582, 23184165449);
> £2(33816140068, 14083858908, 20553458602, 8820575374, 13425277750);
> £2(20068886965, 21277583361, 8979758451, 5856372953, 20839718364 );
> f2(8746784991, 1354879287, 23238294784, 16079331355, 11122871927);
> £2(15279354154, 27798263854, 33833868526, 22652481045, 2514005621);

> f2(7547192496, 20087001649, 11465886328, 26146677751, 11361743356);

Experiment 4

k = 3,length =5

&

> sw:=proc()

> local ul, u2,u3, ud, ud, wl, w2, w3, wd;
> for ul from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> wl := ged(ul, u2);
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> w2 := ged(wl, u3);
> w3 = ged(w2, ud);
> w4 = ged(w3, ub);
> if (w4 = 2) then
> print(ul, u2, u3, ud, ub, wd);
> fi

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(2)

> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, ws;
> for ul from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> wl = ged(ul, u2);

> w2 := ged(wl, ud);

> w3 = ged(w2, ud);

> w4 = ged(w3, ub);

> if (w4 = 3) then

> print(ul, u2, u3, ud, ub, wi);

> fi;
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> od;
> od;
> od;
> od;
> od;
> end:

> su();

®3)

> su:=proc()

> local ul, u2, u3, u4, ud, wl, w2, w3, wi;
> for ul from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for ub from 1 to 7 do

> wl = ged(ul, u2);

(

> w2 := ged(wl, u3);
(
(

w3, ub);

> if (w4 = 4) then

> print(ul, u2, u3, ud, ub, wi);
> i

> od;

> od;

> od;

> od;

> od;

> end:

296



> su();

(4)
> sw:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, w4;
> for ul from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> wl = ged(ul, u2);

> w2 = ged(wl, u3);

(

(

> w3 = ged(w2, ud);

> w4 = ged(w3, ub);
)

> if (w4 = 5) then

> print(ul, u2, u3, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(5)
> su:=proc()
> local ul,u2,u3, ud, ub, wl, w2, w3, ws;

> for ul from 1 to 7 do
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> for u2 from 1 to 7 do
> for u3 from 1 to 7 do
> for u4 from 1 to 7 do
> for u5 from 1 to 7 do
> wl = ged(ul, u2);

> w2 = ged(wl, u3);

> w3 = ged(w2, ud);

> w4 = ged(w3, ub);

> if (w4 = 6) then

> print(ul, u2, ud, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(6)

> sw:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, w4;

>

>

>

>

>

>

>

for ul from 1 to 7 do
for u2 from 1 to 7 do
for u3 from 1 to 7 do
for u4 from 1 to 7 do
for ub from 1 to 7 do
wl = ged(ul, u2);

w2 := ged(wl, u3);
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> w3 = ged(w2, ud);
> w4 = ged(w3, ub);
> if (w4 = 7) then
> print(ul, u2, u3, ud, ub, wi);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();
Experiment 5
k = 4,length =5

M
> su:=proc()
> local ul, u2,u3, ud, ud, wl, w2, w3, wd;
> for ul from 1 to 15 do
> for u2 from 1 to 15 do
> for u3 from 1 to 15 do
> for u4 from 1 to 15 do
> for u5 from 1 to 15 do
> wl = ged(ul, u2);
> w2 = ged(wl, u3);
> w3 := ged(w2, ud);
(

> w4 = ged(w3, ub);
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> if (w4 = 2) then

> print(ul, u2, u3, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(2)
> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, w4;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl := ged(ul, u2);

(
> w2 := ged(wl, u3);
> w3 = ged(w2, ud);
> w4 = ged(w3, ub);

> print(ul, u2, u3, ud, ub, wi);
> fi;

> od;

> od;

> od;
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> od;
> od;
> end:

> su();

(3)

> sw:=proc()

> local ul, u2, u3, ud, ud, wl, w2, w3, w;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl := ged(ul, u2);

(

> w2 := ged(wl, u3);
(
(

> print(ul, u2, ud, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(4)
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> sw:=proc()

> local ul, u2,u3, ud, ud, wl, w2, w3, wd;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl ;= ged

> w2 = ged(wl, ud);

> print(ul, u2, ud, ud, ub, wd);

> od;
> od;
> od;
> od;
> od;
> end:

> su();

()

> su:=proc()

> local ul, u2, u3, u4, ud, wl, w2, w3, w;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do
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> for ub from 1 to 15 do

> wl = ged(ul, u2);

> if (w4 = 6) then

> print(ul, u2, ud, ud, ub, wd);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(6)

> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, w4;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl = ged(ul, u2);

> w2 = ged(wl, u3);

(

(

> w3 = ged(w2, ud);

> w4 = ged(w3, ub);
)

> if (w4 = 7) then
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>

>

>

print(ul, u2, u3, ud, us, w4);

fi;

od;
od;
od;
od;
od;

end:

su();

(7)

>

> local ul, u2,u3, ud, ud, wl, w2, w3, wd;

>

>

>

>

>

>

su:=proc()

for ul from 1 to 15 do
for u2 from 1 to 15 do
for u3 from 1 to 15 do
for u4 from 1 to 15 do
for u5 from 1 to 15 do
wl := ged(ul, u2);
w2 = ged(wl, ul);
w3 1= ged(w2, ud);
w4 = ged(w3, ub);

if (w4 = 8) then

print(ul, u2, u3, ud, ud, w);

fi;
od;
od;

od;

od;
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> od;
> end:

> su();

(8)

> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, ws;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl := ged

> print(ul, u2, u3, ud, ub, wi);
> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(9)

> su:=proc()
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> local ul, u2, u3, ud, ud, wl, w2, w3, wi;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do

> wl := ged(ul, u2);

(

> w2 := ged(wl, u3);
> w3 = ged(w2, ud);
> w4 = ged(w3, ub);
> if (w4 = 10) then

> print(ul, u2, ud, ud, ub, wd);
> fi

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(10)

> su:=proc()

> local ul, u2,u3, ud, ub, wl, w2, w3, ws;
> for ul from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for ub from 1 to 15 do
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if (w4 = 11) then

print(ul, u2, u3, ud, ub, wd);
fi;
od;
od;
od;
od;
od;

end:

su();
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