
Cryptanalysis of a Homomorphic
Public-Key Cryptosystem

Su-Jeong Choi

Technical Report
RHUL–MA–2006–7
21 September 2006

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

CRYPTANALYSIS OF A
HOMOMORPHIC PUBLIC-KEY

CRYPTOSYSTEM

Su-Jeong Choi

Royal Holloway and Bedford New College,
University of London

Thesis submitted to

The University of London

for the degree of

Doctor of Philosophy

July 2006.

Abstract

The aims of this research are to give a precise description of a new homomorphic

public-key encryption scheme proposed by Grigoriev and Ponomarenko [7] in 2004

and to break Grigoriev and Ponomarenko homomorphic public-key cryptosystem.

Firstly, we prove some properties of linear fractional transformations. We analyze

the Xn-representation algorithm which is used in the decryption scheme of Grigoriev

and Ponomarenko homomorphic public-key cryptosystem and by these properties of

the linear fractional transformations, we correct and modify the Xn-representation

algorithm. We implement the modified Xn-representation algorithm by program-

ming it and we prove the correctness of the modified Xn-representation algorithm.

Secondly, we find an explicit formula to compute the X(n, S)-representations of ele-

ments of the group Γn. The X(n, S)-representation algorithm is used in the decryp-

tion scheme of Grigoriev and Ponomarenko homomorphic public-key cryptosystem

and we modify the X(n, S)-representation algorithm. We implement the modified

X(n, S)-representation algorithm by programming it and we justify the modified

X(n, S)-representation algorithm. By these two modified Xn-representation algo-

rithm and X(n, S)-representation algorithm, we make its decryption scheme more

efficient. Thirdly, by using those properties of the linear fractional transformations,

we design new X1-representation algorithms I and II and we mainly use these two

X1-representation algorithms to break Grigoriev and Ponomarenko homomorphic

public-key cryptosystem. We implement the algorithms by programming them and

we prove the correctness of these two algorithms. Fourthly, we analyze Grigoriev and

Ponomarenko homomorphic public-key cryptosystem and we give a clear description

of Grigoriev and Ponomarenko scheme with a practical example. We also consider

implementation issues for its practical applications. Lastly, we show several attack

methods with examples and experiments according as the attack methods and so

we break Grigoriev and Ponomarenko homomorphic public-key cryptosystem.

2

Acknowledgments

My first thanks go to my supervisors, Professor Peter Wild and Professor Si-

mon Blackburn, for their guidance and useful comments during my PhD study

at Royal Holloway.

Moreover, I thank to all the members of Information Security Group and

Department of Mathematics, and all my friends who have made enjoyable

time.

My studies have been supported partially by Royal Holloway College Scholar-

ship.

Most of all, I thank my family. My family have provided full financial support

for my study. Without my family’s support, this course of study would never

have been possible.

I dedicate all my efforts to my father and mother.

3

Contents

Abstract 2

Acknowledgments 3

Contents 4

List of Tables 7

1 Introduction 8

2 Public-Key Cryptography 11

2.1 Background . 11

2.2 Encryption Schemes . 14

2.3 Hard Problems . 17

2.4 Probabilistic Encryption . 20

3 Combinatorial Group Theory 23

3.1 Free Groups . 24

3.2 Finitely Presented Groups . 25

3.3 Modular Groups . 27

4 Xn-Representation Algorithm 30

4.1 Linear Fractional Transformations 31

4.2 Analysis of Xn-Representation Algorithm 33

4.3 Modified Xn-Representation Algorithm 37

4.4 Programming Implementation 38

4.5 Correctness of Modified Xn-Representation Algorithm 61

4

5 X(n, S)-Representation Algorithm 88

5.1 Free Basis X(n, S) . 89

5.2 Analysis of X(n, S)-Representation Algorithm 92

5.3 Modified X(n, S)-Representation Algorithm 93

5.4 Programming Implementation 98

5.5 Correctness of Modified X(n, S)-Representation Algorithm . . 113

6 X1-Representation Algorithms 117

6.1 X1-Representation Algorithm I 119

6.2 Programming Implementation I 120

6.3 Correctness of Algorithm I . 139

6.4 X1-Representation Algorithm II 170

6.5 Programming Implementation II 171

6.6 Correctness of Algorithm II 198

7 Homomorphic Public-Key Cryptosystem 221

7.1 Description . 222

7.1.1 Setting Up The Scheme 222

7.1.2 The Keys . 223

7.1.3 The Scheme Itself . 223

7.2 Key Generation in Practice 224

7.2.1 Construction of Message Space H 225

7.2.2 Generating Random Factors n, S and R 225

7.2.3 Construction of Ciphertext Space G 225

7.3 Encryption in Practice . 226

7.4 Decryption in Practice . 227

7.5 Justification . 228

7.6 Example . 229

7.7 Comparison . 233

5

8 Cryptanalysis of A Homomorphic Public-Key Cryptosystem 235

8.1 Finding n . 236

8.1.1 The X1-Representations of Public Key and Ciphertext 237

8.1.2 Experiment Results . 242

8.1.3 Observing Matrix Entries of Public Key and Ciphertext 247

8.2 Finding S . 251

8.3 Ordering The Elements of S 254

8.4 Recovering The X1-Representation of The Public Key from The

X1-Representation of The Ciphertext 257

8.5 Comparison . 261

Appendix 263

Bibliography 308

6

List of Tables

8.1 Experiment Result 1 . 243

8.2 Experiment Result 2 . 244

8.3 Experiment Result 3 . 245

8.4 Experiment Result 4 . 246

8.5 Experiment Result 5 . 246

7

Chapter 1

Introduction

In this thesis, we analyze a new homomorphic public-key encryption scheme

introduced by Grigoriev and Ponomarenko [7] in 2004 and we give a precise

description of Grigoriev and Ponomarenko homomorphic public-key cryptosys-

tem. Next, we break Grigiriev and Ponomarenko homomorphic public-key

cryptosystem. The main stream of thesis consists of four parts. The first part

is a background required to comprehend Grigoriev and Ponomarenko homo-

morphic public-key cryptosystem. The second part is about three representa-

tion algorithms. Two Xn-representation algorithm and X(n, S)-representation

algorithm are used in the decryption scheme of Grigoriev and Ponomarenko ho-

momorphic public-key cryptosystem and new X1-representation algorithms are

used for cryptanalysis of Grigoriev and Ponomarenko homomorphic public-key

cryptosystem. The third part is a description of Grigoriev and Ponomarenko

homomorphic public-key cryptosystem. The last part is cryptanalysis of Grig-

oriev and Ponomarenko homomorphic public-key cryptosystem.

In Chapter 1, we give the structure of thesis and we mention the main parts

which are handled in each chapter.

8

In Chapter 2, we survey symmetric-key cryptography and public-key cryp-

tography. In particular, we focus on public-key cryptography. Moreover, be-

cause this new homomorphic public-key encryption is a probabilistic encryp-

tion scheme, we study deterministic encryption and probabilistic encryption.

As the security of Grigoriev and Ponomarenk homomorphic public-key cryp-

tosystem relies on the difficulty of the membership problem for a group, we

survey computational problems and decision problems.

In Chapter 3, we study combinatorial group theory because the message space

of Grigoriev and Ponomarenko homomorphic public-key encryption scheme is

a finitely presented group and the word problem is implicitly related to the

decryption scheme of Grigoriev and Ponomarenko homomorphic public-key

cryptosystem. We also survey normal forms in connection with the word prob-

lem. In addition, we study matrix group theory such as general linear groups,

special linear groups and modular groups because the ciphertext space of Grig-

oriev and Ponomarenko homomorphic public-key cryptosystem is a subgroup

of a modular group.

In Chapter 4, we prove some properties of linear fractional transformations.

By these properties, we correct and modify the Xn-representation algorithm

used in the decryption scheme of Girgoriev and Ponomarenko homomorphic

public-key cryptosystem. We implement the modified Xn-representation al-

gorithm by programming it and we prove the correctness of the modified Xn-

representation algorithm.

In Chapter 5, we analyze the X(n, S)-representation algorithm which is used

in the decryption scheme of Grigoriev and Ponomarenko homomorphic public-

key cryptosystem and we modify the X(n, S)-representation algorithm. We

implement the modified X(n, S)-representation algorithm by programming it

9

and we prove the correctness of the modified X(n, S)-representation algorithm.

In Chapter 6, we design new X1-representation algorithms I and II to represent

a subgroup of the modular group. We implement these two X1-representation

algorithms by programming them and we prove the correctness of the algo-

rithms respectively.

In Chapter 7, we give a precise description of Girgoriev and Ponomarenko

homomorphic public-key cryptosystem. Moreover, we demonstrate its prac-

tical implementation with an example and we compare Grigoriev and Pono-

marenko’ description with our description.

In Chapter 8, we show several attack methods to break Grigoriev and Pono-

marenko homomorphic public-key cryptosystem with examples and experi-

ments according as the attack methods.

10

Chapter 2

Public-Key Cryptography

In this chapter, we survey some subjects related to public-key cryptography,

based on [7], [14] and [16].

In Section 2.1, we survey both symmetric-key cryptography and public-key

cryptography as general cryptographic techniques. In Section 2.2, we give two

examples which are the most well-known two public-key cryptosystems, RSA

encryption and ElGamal encryption. In Section 2.3, we study computational

problems and decision problems which are in connection with the security

issues of public-key cryptosystems. In Section 2.4, we study deterministic en-

cryption and probabilistic encryption and then we make a comparison between

them.

2.1 Background

Cryptography is a study of encryption and decryption technologies. In other

words, it is a science of securing information by coding so that it can be read

only by those with authentication or permission. Cryptography makes exten-

sive use of mathematics, particularly discrete mathematics including topics

from combinatorics, statistics, information theory, computational complexity

and number theory. So cryptography is a study of mathematical techniques

related to aspects of information security.

11

As its applications, in general, it is used to protect national secrets and

it is associated with the military, the diplomatic service and government. In

addition, it can be used in a computer or computer network to secure infor-

mation in a website and also to protect financial information such as credit

card information, during financial transactions. So it covers a wide range of

security issues in the transmission and protection of information such as mas-

sive file storage, electronic commerce through public networks.

There are two kinds of cryptosystems, symmetric-key cryptosystems and public-

key cryptosystems. If the encryption key is equal to the decryption key, then

the cryptosystem is called a symmetric-key cryptosystem, whereas a public-key

cryptosystem uses two distinct encryption key and decryption key and then

the computation of the decryption key from the encryption key is infeasible.

In this case, the encryption key is public and decipher keeps the decryption

key secret.

Until the late 1970’s, all cryptographic message transmission was by symmetric

key and it is used for the military and diplomatic purposes. The advantages of

symmetric-key cryptography are keys for encryption are relatively short and

thus symmetric-key cryptography is efficient for encryption. Symmetric-key

cryptography can also be used for various cryptographic mechanisms includ-

ing pseudorandom number generators, hash functions, and computationally

efficient digital signature schemes as primitives.

The disadvantage of a symmetric cryptosystem, Alice and Bob should ex-

change the secret key before they start the communication. Someone that

knows the encryption key can obtain the corresponding decryption key and so

secure key exchange is a main problem. Therefore one of the major issues with

symmetric-key cryptosystems is to find an efficient method to agree on and

exchange keys securely. This problem is referred to as the key distribution

12

problem. In a large network, there are many key pairs to be managed and

thus the trust third party needs efficient key management.

Symmetric-Key Cryptosystem

•
N
∧

Alice′s decryption key−−−−−−−−−−−−−−−−−→
•
¥
∧

Alice uses her own encryption key to encrypt her message Bob uses her decryption key to decrypt the ciphertext

Public-Key Cryptosystem

•
N
∧

No Key Exchange
•
¥
∧

Alice uses Bob’s public key to encrypt her message Bob uses his own decryption key to decrypt the ciphertext

The advantage of public-key cryptosystems is that they do not need key ex-

change. When Alice sends a message to Bob, Alice uses his public key for en-

cryption and Bob can decrypt the message by using his private key. So in case

of a public-key cryptosystem, since Alice and Bob have no common shared key

and only the decryption key is secret, the key management is simple. Therefore

in a large network, the number of keys necessary may be considerably smaller

than in a symmetric-key cryptosystem and public-key encryption scheme may

be used to establish a key for a symmetric-key cryptosystem. Another advan-

tage of public-key cryptosystems is that the public-key cryptosystem provides

a digital signature scheme which can not be repudiated. The digital signature

keeps the original entity from denying their data.

The disadvantage of public-key cryptosystems is the computational per-

formance for encryption and decryption. So public-key encryption schemes

are much slower than symmetric-key encryption schemes and thus public-key

cryptosystems are much less efficient than symmetric-key cryptosystems.

13

In practice, we combine a symmetric-key cryptosystem and a public-key cryp-

tosystem. For instance, Alice encrypts the message by using the session key

which Alice generates and she also encrypts the session key by using Bob’s

public key. Then Bob decrypts the session key by using his private key and

decrypts the ciphertext by the session key. Public-key encryption schemes

are most commonly used in practice for the transport of keys used for data

encryption by symmetric-key encryption schemes and other applications such

as data integrity, authentication, credit card numbers and PIN numbers. Fur-

thermore, the most application of a public-key cryptosystem is confidentiality

without key exchange, that is, a message which Alice encrypts by using Bob’s

public key can only be decrypted by Bob’s private key. Public-key digital sig-

nature algorithms can be used for sender’s authentication. Those properties

of public-key cryptosystems are useful for many applications such as digital

cash, password-authenticated key agreement, multi-party key agreement and

so on.

2.2 Encryption Schemes

We describe the most well-known two public-key cryptosystems, called RSA

cryptosystem and ElGamal Cryptosystem. The RSA public-key encryption

was invented in 1978 by Rivest, Shamir and Adleman and it provides both

privacy and authentication. Moreover, the RSA encryption can be found in

Microsoft Window, Netscape Navigator, Apple and Sun and it is also used for

electronic cash. Its security is based on the intractability of the integer factor-

ization problem and there is no efficient algorithms known for this problem.

The ElGamal cryptosystem is related to the Diffie-Hellman key exchange in

1976. Diffie-Hellman key exchange has the fact that it is easy to calculate pow-

ers in modular arithmetic, but difficult to compute logarithms. It means that

it takes considerable running time and cost to compute discrete logarithms

14

relative to the calculation of powers. So the security of ElGamal cryptosystem

is based on the intractability of the discrete logarithm problem and the Diffie

-Hellman problem in Zp
∗ and there is no known polynomial-time algorithm to

solve discrete logarithm problem.

RSA Encryption

We first explain how the RSA encryption scheme works as follows : let the

n-bit integer N = pq be the product of two large primes p and q of the

same size. Let e and d be two integers satisfying ed ≡ 1 mod ϕ(N) where

φ(N) = (p− 1)(q − 1) = N + 1− (p + q) is the Euler φ function of N . These

integers N, e, d are called, respectively, the RSA modulus, the encryption ex-

ponent, and the decryption exponent where N and e are the public key and

d is the secret key. To encrypt a message m, the sender Alice computes the

ciphertext c, which is the least positive residue of me modulo N . To decrypt

c, the receiver Bob computes the least positive residue of cd modulo N and

then cd ≡ med ≡ m (mod N).

Example

Bob chooses p = 97 and q = 83. Then n = 8051 and φ(n) = 96× 82 = 7872.

Bob chooses e = 3221 and he computes the inverse d of 3221 mod 7872. Then

Bob has d = 2813. Hence, his public key is n = 8051 and e = 3221 and

the secret key is d = 2813. Now, Alice encrypts the plaintext 7326 and she

computes

73263221 mod 8051 = 4816

and send the ciphertext 4816 to Bob and he decrypts the ciphertext 4816. Bob

uses his secret key d = 2813 to compute

48162813 mod 8051 = 7326

15

and then Bob obtains the plaintext 7326. ¤

Although we know n = pq, we can not compute p and q. Hence it is com-

putationally infeasible to find ϕ(n) = (p − 1)(q − 1) and thus we can not

determine d satisfying ed ≡ 1 (modϕ(n)). Therefore the security of RSA is

based on the intractability of the integer factorization problem. The RSA en-

cryption scheme is slow relative to other cryptosystems, roughly 100 to 1000

times slower than DES.

ElGamal Encryption

Now we give another example of a public-key cryptosystem, called ElGamal

encryption. We describe the encryption scheme as follows : Bob generates

a large random prime p and a generator g. Bob chooses a random x from

Zp
∗ and computes h = gx. Then Bob publishes h with p and g as his public

key. Bob retains x as his secret key. Alice chooses a random y from Zp
∗ and

calculates c1 = gy and c2 = mhy. Alice sends the ciphertext (c1, c2) to Bob.

Then Bob decrypts a ciphertext (c1, c2) with his secret key x by computing

c2(c
x
1)
−1 = mhy

gxy = mgxy

gxy = m

as the plaintext message.

Example

Let p = 2111 and g = 2 is a primitive element modulo p. Let x = 321.

Then

h = 2321 mod 2111 = 1233.

Alice sends a message m = 1382 to Bob and she chooses a random integer

y = 423. Then Alice computes

16

c1 = 2423 mod 2111 = 695

and

c2 = 1382× 1233423 mod 2111 = 252.

Thus the ciphertext is (c1, c2) = (695, 252) and Bob decrypts

m = 252× (695321)
−1

mod 2111 = 1382.

This is the plaintext. ¤

2.3 Hard Problems

We survey hard problems which most of public-key cryptosystems rely on

in connection with security issues. We first introduce integer factorization

problem and discrete logarithm problem as the most popular computational

problems.

Definition 2.3.1 Integer Factorization Problem

Given a positive integer n, find its prime factorization n = p1
e1p2

e2 · · · pk
ek

where the pi are pairwise distinct primes and each ei ≥ 1.

The security of most of public-key cryptosystems depends on the intractability

of the integer factorization problem and it has been studied intensively for the

past 20 years. So far, the most efficient algorithm to factorize an integer is the

general number field sieve method.

Definition 2.3.2 Discrete Logarithm Problem

Let G be a group and α, β ∈ G. Find an integer x if it exists such that β = αx

in G.

Another computational number theoretic problem that is widely believed to

17

be intractable is that of extracting discrete logarithms in a finite field. The

discrete logarithm problem is defined in 〈α〉 ⊂ G so it is a problem about cyclic

groups. Finding discrete logarithms is difficult, but the inverse operation of

exponentiation can be computed efficiently by using the square and multiply

method. If the discrete logarithm problem is hard, then we have a one-way

function and it is fast computation β = αx but in general, it is difficult to

compute x. Exponentiation in other groups is also a reasonable candidate

for a one-way function supposing that the discrete logarithm problem for the

group is hard. For instance, the discrete logarithm problem is hard in the

group of points on an elliptic curve.

Form now, we survey some decision problems as hard problems used in cryp-

tographic settings. A decision problem is a problem with a yes or no answer,

that is, a function whose range is two values, such as 0, 1.

Definition 2 3.3 Membership Problem

Let G be a group and X ⊂ G be a finite set. For a given g ∈ G, test whether

g ∈ 〈X〉.

In other words, the problem of deciding whether a given element g of the

group G belongs to a fixed subgroup 〈X〉 is called the membership problem

for 〈X〉 in G. Note that group membership problems tend to be undecidable.

Definition 2.3.4 Let G be a group and let X ⊂ G be a finite set. An

X-representation of g ∈ 〈X〉 is a product of elements from X and their in-

verses that is equal to g, that is, g = x1
a1x2

a2 · · · xk
ak where 〈X〉 is a subgroup

generated by X, xi ∈ X ∪X−1 and ai ∈ Z.

Generally any element of 〈X〉 has at least one X-representation with respect

18

to G but not necessary the unique one. However, if G is a free group on X,

then each element of G has the unique X-representation as an irreducible word.

Definition 2.3.5 Representation Problem

Let G be a group and X ⊂ G be a finite set. For g ∈ 〈X〉, find an X-

representation of g where 〈X〉 is a subgroup generated by X.

The representation problem consists in finding a certificate for the membership

problem. For instance, if G = F∗ is the multiplicative group of a finite field F

and X = {g} where g is a generator of the group F∗, then the representation

problem coincides with the discrete logarithm problem. It is remarked that

the representation problem is NP-hard in average in general even if G is a free

group with a finite rank.

Definition 2.3.6 Word Problem

Given two words over the alphabet, decide whether they represent the same

element of the group.

The word problem for groups is the problem of deciding whether two given

words of a presentation of a group represent the same element. In fact, there

exists no general algorithm for this problem in a general group. It is an im-

portant fact that the decidability and the complexity of the word problem of

a finitely generated group depend on the group and not on the generators or

the presentation chosen. In other words, if G has decidable word problem for

some finite generating set X, then G has decidable word problem for every

finite generating set.

The word problem is only concerned with finitely presented groups in Sec-

tion 3.2. A word is a product of generators, and two such words may denote

the same element of the group even if they appear to be different because by

19

using the group axioms and the given relations it may be possible to trans-

form one word into the other. The problem is to find an algorithm which for

any two given words decides whether they denote the same group element.

The effect of the relations in G is to make various strings that represent the

same element of G. In fact the relations provide a list of strings that can

be either introduced where we want, or canceled out whenever we see them,

without changing the group element that is the result of the multiplication.

In the worst case, the relation between strings says they are equal in G is not

decidable.

2.4 Probabilistic Encryption

We introduce two kinds of algorithms, deterministic algorithm and probabilis-

tic algorithm which are used in cryptographic encryption schemes and then

we discuss deterministic encryption and probabilistic encryption.

Definition 2.4.1 Deterministic Algorithm

A deterministic algorithm depends on its input data alone.

If a deterministic algorithm runs repeatedly with the same input data, it will

always proceed in the same way and so its complexity provides an accurate

and consistent estimate of its time and space requirements.

Most of cryptosystems based on the number theory to transmit a message

are deterministic. For a given plaintext, anybody can take the same cipher-

text, that is, under a fixed public key, a probabilistic plaintext m is always

encrypted to the same ciphertext c. For example, RSA, Rabin and Knapsack

encryption schemes are deterministic. So its disadvantage is if an attacker

knows that the plaintext belongs to a small set, then the attacker can encrypt

20

all possibilities in order to determine which is the supposedly secret message.

The RSA, Rabin and knapsack encryption schemes are deterministic because

a plaintext is always encrypted to the same ciphertext. Another disadvantage

is that it is easy to detect when the same message is sent twice. Hence, deter-

ministic encryption can leak information to an attacker. Especially, because in

a public-key cryptosystem, anyone can encrypt chosen messages using a public

key, the attacker can build a large dictionary of useful plaintxet and ciphertext

pairs and then observe the encrypted channel for matching ciphertexts.

Because of these drawbacks of the deterministic encryption, cryptographers

proposed probabilistic encryption. Probabilistic encryption was introduced

by Goldwasser and Micali in 1982 and it uses randomness to attain a provable

and very strong level of security. Hence, in order that we do not leak even

partial information about the plaintext, the encryption must be probabilis-

tic. In particular, when we use the public-key cryptosystem, the probabilistic

encryption is important because the plaintext corresponds to many different

ciphertexts. For example, ElGamal encryption scheme is one of many encryp-

tion schemes which use randomization in the encryption process. ElGamal

cryptosystem is efficient probabilistic encryption scheme.

Definition 2.4.2 Randomized Algorithm

A randomized algorithm makes use of a random number generator during its

execution.

In general, many algorithms in computational group theory depend on making

some random choices such as choosing random elements of groups. A random-

ized algorithm does not depend on its input data alone and its performance

may vary from one run to another run with the same input. Thus, the com-

plexity is the average running time and space requirements of the algorithm

21

under the assumption the random number generator being used is working

properly and is capable of choosing genuinely random integers within a given

range [a, b]. Moreover, deterministic algorithms follow the same execution path

(sequence of operations) each time they execute with the same input. By con-

trast, a randomized algorithm makes random decisions at certain points in the

execution. Hence its execution paths may differ each time and the random

decisions are based on the outcome of random number generator.

22

Chapter 3

Combinatorial Group Theory

This chapter is based on [9] and [14].

In many cases groups arise by means of presentations. A presentation of a

group G consists of a set of generators of G with a collection of relations

among these generators such that any other relation among the generators

is derived from the given relations. Combinatorial group theory is the study

of groups given by presentations. Since authors used a presentation of a fi-

nite group as its message space of Grigoriev and Ponomarenko homomorphic

public-key cryptosystem, we study combinatorial group theory which covers

these topics.

In Section 3.1, we study free groups and finitely generated free groups because

all free groups used in Grigoriev and Ponomarenko homomorphic public-key

cryptosystem are finitely generated. In Section 3.2, we study finitely presented

groups and survey normal forms of a finitely presented group in connection

with the word problem. In Section 3.3, we survey general linear groups, special

linear groups and modular groups related to the ciphertext space of Grigoriev

and Ponomarenko homomorphic public-key cryptosystem.

23

3.1 Free Groups

We begin with some definitions in connection with a concept of a free group.

X± denotes X ∪X−1 and elements of X± are called letters.

Definition 3.1.1 A word in X is a finite sequence of letters, w = a1 · · · an,

n ≥ 0 where ai ∈ X±. If n = 0, then w = 1 called the empty word.

Definition 3.1.2 The length |w| of w = a1 · · · an where ai ∈ X± is |w| = n.

Theorem 3.1.3 The set WX of all words in X is a semigroup under jux-

taposition.

Definition 3.1.4 A word is said to be reduced or irreducible if it does not

contain a subword of the form xx−1 or of the form x−1x.

Let X = {x1, x2, · · · , xt} be a set of symbols where X need not be countable

or ordered. A word on X± means an expression of the form xa1
ε1xa2

ε2 · · ·xam
εm

where ai ∈ {1, 2, · · · , t}, εi = ±1, xai
∈ X and xai

s are not necessarily distinct

symbols. That is, a word is a string of elements of X with exponents either

+1 or −1. So a free group F on X is identified with a subset of WX consisting

of all irreducible words and the identity of F is the empty word 1X ∈ WX .

The words of the free group are like the names of the elements of the free

group. Successive deletion of parts xx−1 or x−1x from any word w must lead

to a reduced word. This determines an equivalence relation on WX and each

equivalence class has a unique representative which is a reduced word. Define

w̄ to be the reduced word corresponding to w. Multiplication in F is defined

by concatenation followed by a reduction to a reduced word. Now we give

another definition of a free group in terms of a free basis.

24

Definition 3.1.5 A subset X of a group F is said to be a free basis for

F if, for every function ϕ : X → G can be extended uniquely to a homomor-

phism ϕ̄ : F → G such that for every x ∈ X, ϕ̄(x) = ϕ(x).

A group F is said to be a free group if there is some subset which is a free

basis for F . For example, the additive group of integers Z is a free group with

either of the singleton sets {1} or {−1} as a free basis. The following results

are well known.

Theorem 3.1.6 Let X be a set. Then there exists a free group F with

a basis X.

Theorem 3.1.7 Every group is a quotient group of a free group.

Theorem 3.1.8 Every subgroup of a free group is free.

Theorem 3.1.9 Free groups on X1 and X2 are isomorphic if and only if

|X1| = |X2|.

Theorem 3.1.10 The matrices A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
over Z are a

basis for a free group.

3.2 Finitely Presented Groups

We start with the definition of a presentation of the group.

Definition 3.2.1 A presentation G = 〈X|<〉 is a pair consisting of a set

X called generators and a set < of words on X called relations.

25

Let G be a group and X ⊆ G. Then the smallest normal subgroup of G

containing X is defined as the normal closure of X in G and denote it by N .

The group presented by G = 〈X|<〉 is the group F/N where F is the free

group with free basis X and N is the normal closure of < in F , that is, the

smallest normal subgroup containing <.

Definition 3.2.2 If both X and < are finite, then G = 〈X|<〉 is said to

be a finite presentation.

Every element g of G = 〈X|<〉 can be described by a word in X± and there

are many ways to describe an element. In other words, the finitely presented

group G consists of equivalence classes of words. The fact that w represents

the identity means that repeated application of the equations in < with the

rules of free cancelation transform w into the empty word 1X . Applying an

equation u = v from < means replacing a subword equal to either u or v by

the other, and applying the rules of free cancelation to w means either deleting

or inserting a subword of the form xx−1 or x−1x, for x ∈ X, that is, two words

w and v are equivalent in G if we can transform w to v by a finite sequence of

replacement as follows :

(1) deleting xixi
−1 or xi

−1xi

(2) inserting xixi
−1 or xi

−1xi

(3) deleting rj or rj
−1

(4) inserting rj or rj
−1.

Example 1

The group 〈 x, y | x2, y3, (xy)2 〉, which is a dihedral group of order 6,

26

can be written as 〈 x, y | x2 = 1, y2 = y−1, xyx = y−1 〉. ¤

Example 2

A presentation of the symmetric group S3 with generators x = (1, 2) and

y = (1, 2, 3) is 〈 x, y | x2 = 1, y2 = y−1, xyx = y−1 〉. ¤

Definition 3.2.3 A normal form which is within an equivalence class specifies

a representative element, which is in a simplest form.

If two distinct terms t and v have the same normal form, then t = v is an iden-

tity. Every object under consideration must have exactly one normal form,

and two objects that have the same normal form must be essentially the same.

In general, it is not true that one can get a normal form for the elements, by

stepwise cancelation. Usually we would like the normal form for u ∈ G to be

the simplest word defining u. If we can compute normal forms, then we can

solve the word problem as two words represent the same element of the group

if and only if they have the same normal form. If we find normal forms for

group elements with an algorithm which put words in the group generators

into normal forms, they enable us to determine the finiteness or infiniteness

of the number of elements of the group because we can generally count the

number of distinct normal forms.

3.3 Modular Groups

This section is based on [12] and [17].

There is a connection between matrix theory and number theory because ma-

trix groups can be defined over Z as one of the basic rings of number theory.

27

Matrix groups play an important role in many different branches of mathe-

matics. In particular, the most important group is the modular group, SL2(Z)

as it is the most famous example of Fuchsian groups of which the study led

to the introduction of combinatorial group theory. So we study general linear

groups, special linear groups and modular groups used for the construction of

Grigoriev and Ponomarenko homomorphic public-key cryptosystem in Chap-

ter 7.

Definition 3.3.1 Given a ring R with identity, the general linear group

GLn(R) is the group of n× n invertible matrices with elements in R.

Definition 3.3.2 Given a ring R with identity, the special linear group

SLn(R) is the group of n× n matrices with elements in R and determinant 1.

We denote the special linear group SLn(q), where q is a prime power, the

set of n×n matrices with determinant 1 and entries in the finite field Fq. The

special linear group SLn(R) is a subgroup of the general linear group GLn(R).

Definition 3.3.3 The projective special linear group PSLn(q) is the group

obtained from the special linear group SLn(q) on factoring by the scalar ma-

trices contained in that group.

Theorem 3.3.4 The following are equivalent.

(1) SL2(Z)/ ± I, the quotient of the group SL2(Z) of 2 × 2 integer matrices

with determinant 1 modulo its central subgroups {±I}.

(ii) The group of complex fractional linear transformations z 7→ az+b
cz+d

with

integer coefficients satisfying ad− bc = 1.

28

Definition 3.3.5 The modular group is the group of all linear fractional

transformations of the upper half of the complex plane which have the form

z 7→ az+b
cz+d

where a, b, c and d are integers with ad − bc = 1, and the group operation is

composition of functions.

The modular group is the group of all linear fractional transformations with

determinant 1 and the modular group is a specific case of the special linear

group. Moreover, the modular group is defined as PSL2(Z), but instead of the

notation PSL2(Z), we use the notation SL2(Z). We also give another descrip-

tion to define the modular group. The modular group is generated by two

transformations S and T

S : z 7→ z + 1 and T : z 7→ −1
z

or

S =

(
1 1
0 1

)
and T =

(
0 −1
1 0

)
.

Every transformation az+b
cz+d

with a, b, c, d ∈ Z and ad− bc = 1 can be expressed

in the form

Su1 T Su2 T · · · Sum T .

In addition, a presentation of the modular group is

〈 S, T | S2 = I, (ST)3 = I 〉

and thus the modular group is isomorphic to the free product of the cyclic

groups C2 and C3.

29

Chapter 4

Xn-Representation Algorithm

Let n be a natural number with n ≥ 2 and

An =

(
1 n
0 1

)
and Bn =

(
1 0
n 1

)
.

Then Γn denotes a group generated by linear fractional transformations corre-

sponding to two matrices An and Bn. Also, Xn denotes a set consisting of two

matrices An and Bn. We consider the group Γn acting on C ∪ {∞} as linear

fractional transformations given by

An
u(z) =

(
1 n
0 1

)u

(z) =

(
1 nu
0 1

)
(z) = z + nu

and

Bn
u(z) =

(
1 0
n 1

)u

(z) =

(
1 0
nu 1

)
(z) = z

nuz+1

for z ∈ C ∪ {∞}. Since Γn is a free group, freely generated by the set Xn

by Theorem 3.1.10 and [pp.168, 14], an element M of Γn has the unique

representation as a reduced word by Theorem 3.1.11 and we call it the Xn-

representation of M . There are four types of the Xn-representations and the

representation of M ∈ Γn takes one of four forms as follows :

An
u1Bn

u2 · · ·Bn
um−1An

um (odd m)

An
u1Bn

u2 · · ·An
um−1Bn

um (even m)

30

Bn
u1An

u2 · · ·Bn
um−1An

um (even m)

Bn
u1An

u2 · · ·An
um−1Bn

um (odd m)

where for each i = 1, · · · ,m, ui is a nonzero integer. For each M(6= I) ∈ Γn, M

has the unique Xn-representation. The Xn-representation algorithm was intro-

duced by Grigoriev-Ponomarenko [7] and it is one of the algorithms used in the

decryption scheme of their homomorphic public-key cryptosystem. The Xn-

representation algorithm is used to compute the Xn-representation of M ∈ Γn.

If we input a matrix M ∈ Γn to the Xn-representation algorithm, then the Xn-

representation algorithm outputs the corresponding reduced word over Xn
±.

There are inadequateness in the description and justification of the algorithm

given by Grigoriev and Ponomarenko. The aim of the chapter is describe and

justify a correct version of the Xn-representation algorithm. The chapter is

arranges as follows. In Section 4.1, we prove some properties of two linear

fractional transformations An
u and Bn

u with an arbitrary nonzero integer u.

In Section 4.2, we analyze the Xn-representation algorithm and correct some

parts of the Xn-representation algorithm. In Section 4.3, we modify the Xn-

representation algorithm to make it efficient. In Section 4.4, we implement

the modified Xn-representation algorithm by programming it with Maple 6.

In Section 4.5, we justify the correctness of the modified Xn-representation

algorithm.

4.1 Linear Fractional Transformations

In this section, we prove several important properties of linear fractional trans-

formations An
u and Bn

u where u is a nonzero integer and we find some explicit

formulae to make the Xn-representation algorithm more efficient. Further, we

will utilize these properties to design new X1-representation algorithms in

31

Chapter 6 which is used extensively for cryptanalysis of Grigoriev and Pono-

marenko homomorphic public-key cryptosystem in Chapter 8. Let D be the

unit open disk in the complex plane with center 0, that is, D = {z ∈ C||z| < 1}
and let Dc = C − D̄ = {z ∈ C||z| > 1} be the complement of the closure of D.

At first, we show that An
u maps D into Dc and Bn

u maps Dc into D.

Lemma 4.1.1 Let u be a nonzero integer and z ∈ D. Then An
u(z) ∈ Dc.

Proof Let z = a + bi ∈ D. Then −1 < a < 1 and An
u(z) =

(
1 nu
0 1

)
(z) =

z + nu = (a + nu) + bi. Since n ≥ 2, if u ≥ 1, then a + nu > −1 + nu ≥ 1 and

so, a + nu ∈ Dc. If u ≤ −1, then a + nu < 1 + nu ≤ −1 and so, a + nu ∈ Dc.

Therefore, in either case, An
u(z) = (a + nu) + bi ∈ Dc. ¤

Lemma 4.1.2 Let u be a nonzero integer and z ∈ Dc. Then Bn
u(z) ∈ D.

Proof Let z = a + bi ∈ Dc and consider Bn
u(z) =

(
1 0
nu 1

)
(z) = z

nuz+1
=

1
nu+ 1

z

. As z ∈ Dc, 1
z
∈ D and by Lemma 4.1.1, An

u(1
z
) = 1

z
+ nu ∈ Dc. Hence,

Bn
u(z) = 1

nu+ 1
z

∈ D. ¤

The following Theorems immediately are obtained by Lemma 4.1.1 and Lemma

4.1.2.

Theorem 4.1.3 If M = An
u1Bn

u2 · · ·Bn
um−1An

um with odd m, i = 1, · · · ,m ∈
N and nonzero ui ∈ Z, then for z ∈ D, M(z) ∈ Dc.

Theorem 4.1.4 If M = Bn
u1An

u2 · · ·Bn
um−1An

um with even m, i = 1, · · · ,m ∈
N and nonzero ui ∈ Z, then for z ∈ D, M(z) ∈ D.

Theorem 4.1.5 If M = An
u1Bn

u2 · · ·An
um−1Bn

um with even m, i = 1, · · · ,m ∈

32

N and nonzero ui ∈ Z, then for z ∈ Dc, M(z) ∈ Dc.

Theorem 4.1.6 If M = Bn
u1An

u2 · · ·An
um−1Bn

um with odd m, i = 1, · · · ,m ∈
N and nonzero ui ∈ Z, then for z ∈ Dc, M(z) ∈ D.

4.2 Analysis of Xn-Representation Algorithm

In this section, we analyze the Xn-representation algorithm given by Grigoriev

and Ponomarenko in [7] and we correct errors which appear in its description.

A matrix M ∈ Γn is input to the Xn-representation algorithm and the algo-

rithm outputs the Xn-representation of M . (z, z′) denotes a pair of complex

numbers with |z| < 1 and |z′| > 1. Grigoriev and Ponomarenko suggest

(z, z′) = (1
2
, 2). Grigoriev and Ponomarenko note that given z ∈ D∪Dc, there

is at most one integer u such that

(z ∈ Dc ∧ An
u(z) ∈ D) ∨ (z ∈ D ∧Bn

u(z) ∈ Dc).

If such an integer exists, then put C = An
u if z ∈ Dc and C = Bn

u if z ∈ D.

Xn-Representation Algorithm

Step 1 (L, L′) ← (M,M) and (w,w′) ← (1Xn , 1Xn).

Step 2 L = I ⇒ output w. L′ = I ⇒ output w′.

Step 3 (w, w′) ← (C−1w, C ′−1w′) and (L,L′) ← (CL,C ′L′) where C = C(Lz)

and C ′ = C(L′(z′)). Go to Step 2.

First of all, we correct an error in their description of the Xn-representation

algorithm. In Step 3 of the Xn-representation algorithm, their setting is

w = C−1w and w′ = C ′−1w′, but they should be w = wC−1 and w′ = w′C ′−1.

In order to demonstrate why this correction is needed,

In Step 1 of the first iteration, input

33

M =

(
1 n
0 1

)(
1 0
n 1

)
=

(
1 + n2 n

n 1

)

to the Xn-representation algorithm where the Xn-representation of M is AnBn.

In Step 3 of the first iteration, L(1
2
) = M(1

2
) = n(n+2)+1

n+2
and L′(2) = M(2) =

2n2+n+2
2n+1

= n(2n+1)+2
2n+1

. For n ≥ 2, L(1
2
) = M(1

2
) > 1 and L(2) = M(2) > 1.

Therefore, set C = An
u and C ′ = An

u. Since M(1
2
) > 1 and M(2) > 1, to find

the nonzero integer u, let

C(M(1
2
)) = An

u(M(1
2
)) = nu+ n(n+2)+1

n+2
= nu+n+ 1

n+2
= n(u+1)+ 1

n+2
∈ D

C(M(2)) = An
u(M(2)) = nu+ n(2n+1)+2

2n+1
= nu+n+ 2

2n+1
= n(u+1)+ 2

2n+1
∈ D.

In both cases, we find u = −1 and thus, C = An
−1 and C ′ = An

−1. The

algorithm sets L = CL = An
−1M = Bn, L′ = C ′L = An

−1M = Bn. Thus,

w = C−1w = An and w′ = C ′−1w = An.

In Step 1 of the second iteration, input L = Bn and L′ = Bn to the Xn-

representation algorithm.

In Step 3 of the second iteration, for n ≥ 2, L(1
2
) = Bn(1

2
) =

1
2

1
2
n+1

= 1
n+2

< 1

and L′(2) = Bn(2) = 2
2n+1

< 1. Set C = Bn
u and C ′ = Bn

u. To find the

nonzero integer u, let

C(L(1
2
)) = Bn

u(L(1
2
)) = Bn

u(1
n+2

) =
1

n+2
1

n+2
nu+1

= 1
nu+n+2

∈ Dc.

Then −1 < n(u + 1) + 2 < 1 and −3 < n(u + 1) < −1. So n(u + 1) = −2.

Since n ≥ 2, we find u + 1 = −1 and u = −2. So C = Bn
−2. Let

C ′(L(2)) = Bn
u(L(2)) = Bn

u(2
2n+1

) =
2

2n+1
2

2n+1
nu+1

= 2
2nu+2n+1

= 1
nu+n+ 1

2

∈ Dc.

Then −1 < nu + n + 1
2

< 1 and −3
2

< n(u + 1) < 1
2
. So n(u + 1) = −1 or

n(u + 1) = 0. Therefore, C ′ = Bn
−1. Since n ≥ 2, u = −1.

The algorithm sets L = CL = Bn
−2Bn = Bn

−1 6= I, L′ = C ′L′ =

Bn
−1Bn = I. w = C−1w = Bn

2An, w′ = C ′−1w′ = BnAn. Hence, in the

second iteration, for z = 2, the Xn-representation algorithm outputs BnAn as

34

the Xn-representation of M . Therefore, in Step 3, its description should be

corrected to setting

w ← wC−1 and w′ ← w′C ′−1.

Next, it should be noted that the Xn-representation algorithm sometimes

throws up errors as it operates. As concrete cases, by definition of the lin-

ear fractional transformation, Bn
u(z) = ∞ in case that the denominator of

Bn
u(z) is zero. For example, B2

−1(1
2
) = ∞. In addition, we may have the

case |Bn
u(z)| = 1, for example, |B3

−1(1
2
)| = 1 and we may also have the case

An
u(z) = 0, for example, A2

−1(2) = 0. These concrete examples show that the

Xn-representation algorithm does not work for those cases. Hence, we have to

consider all cases so that the Xn-representation algorithm works for any case.

Grigoriev and Ponomarenko do not show clearly how to compute the inte-

ger u of An
u and Bn

u. In order to obtain the exponent u of An
u and Bn

u,

Grigoriev and Ponomarenko require the determination of the nonzero integer

exponent u such that (z ∈ Dc∧An
u(z) ∈ D)∨ (z ∈ D∧Bn

u(z) ∈ Dc), but the

algorithm does not provide a direct way to compute it. We give explicit formu-

lae to compute the nonzero exponent u of An and Bn in the Xn-representation

algorithm. This allows our modified Xn-representation algorithm in Section

5.3 to run very efficiently. The following two theorems provide explicit formu-

lae to compute the exponent u of An
u and Bn

u.

Theorem 4.2.1 Let z ∈ R with |z| > 1. If there exists a nonzero inte-

ger u such that |An
u(z)| < 1, then u = d−1−z

n
e = b1−z

n
c.

Proof Let z ∈ Dc ∩ R. Suppose |An
u(z)| = |nu + z| < 1 for a nonzero

u ∈ Z. Then −1 < nu + z < 1, so that −1 − z < nu < 1 − z. Hence

−1−z
n

< u < 1−z
n

. Since for n ≥ 2, the distance between −1−z
n

and 1−z
n

is

35

2
n
≤ 1, there is at most one integer between them. If one of −1−z

n
and 1−z

n

is an integer, then there is no integer between −1−z
n

and 1−z
n

and this is in

contradiction with our assumption. Thus neither −1−z
n

nor 1−z
n

is an integer,

and u = d−1−z
n
e = b1−z

n
c. ¤

Theorem 4.2.2 Let z ∈ R with |z| < 1. If there exists a nonzero inte-

ger u such that |Bn
u(z)| > 1, then u = d−1

nz
+ −1

n
e = b−1

nz
+ 1

n
c.

Proof Let z ∈ D ∩ R. Assume |Bn
u(z)| = | z

nuz+1
| > 1 for a nonzero u ∈ Z.

Then |z| > |nuz + 1|. If z > 0, then |nuz + 1| < z, so that −z < nuz + 1 < z,

−z − 1 < nuz < z − 1 and −z−1
nz

< u < z−1
nz

. Hence, −1
nz

+ −1
n

< u < −1
nz

+ 1
n
. If

z < 0, then |nuz +1| < −z, so that z− 1 < nuz < −z−1. So −z−1
nz

< u < z−1
nz

and −1
nz

+ −1
n

< u < −1
nz

+ 1
n
. Because for n ≥ 2, the distance between −1

nz
+ −1

n

and −1
nz

+ 1
n

is 2
n
≤ 1, there exists at most one integer between −1

nz
+ −1

n
and

−1
nz

+ 1
n
. If one of −1

nz
+ −1

n
and −1

nz
+ 1

n
is an integer, then there is no integer

between −1
nz

+ −1
n

and −1
nz

+ 1
n

and it contradicts our assumption. Thus, neither

−1
nz

+ −1
n

nor −1
nz

+ 1
n

is an integer and u = d−1
nz

+ −1
n
e = b−1

nz
+ 1

n
c. ¤

In addition, the Xn-representation algorithm has no step to define the func-

tions C and C ′ though Grigoriev and Ponomarenko mentioned setting C. So

we add a step to define the functions C and C ′ to the Xn-representation algo-

rithm for its modification.

In the next section, we give our modified version of the Xn-representation algo-

rithm. We correct the error of Griogoriev and Ponomarenko’s Xn-representation

algorithm, adding steps to deal with special cases and we also add steps that

provide a direct computation of the exponent u of An
u and Bn

u in a efficient

way and definition of the function C.

36

4.3 Modified Xn-Representation Algorithm

We describe our modified Xn-representation algorithm. The modified Xn-

representation algorithm takes a matrix M ∈ Γn and a real number z = 1
2

or

z = 2 as inputs, and the modified Xn-representation algorithm outputs a word

in Xn
±. Unlike Grigoriev and Ponomarenko’s Xn-representation algorithm op-

erates a pair (z, z′) = (1
2
, 2) at the same time, the modified Xn-representation

algorithm first runs for z = 1
2
. If the modified Xn-representation algorithm

outputs the Xn-representation, then the modified Xn-representation algorithm

stops and then we do not need to run the Xn-representation algorithm for

z = 2. If the modified Xn-representation algorithm outputs ε for z = 1
2
,

then the modified Xn-representation algorithm runs for z = 2 to compute the

Xn-representation of M . Hence, the modified Xn-representation algorithm

outputs either ε or the Xn-representation of an input M ∈ Γn. Note that the

algorithm terminates when the algorithm has an output.

Modified Xn-Representation Algorithm

Step 0

L ← M

w ← 1Xn .

Step 1

(1) L(z) = 0, |L(z)| = 1,L(z) = ∞⇒ output ε.

(2) |L(z)| > 1 ⇒ v ← b1−L(z)
n c and C ← An

v.

(3) |L(z)| < 1 ⇒ v ← b −1
nL(z) + 1

nc and C ← Bn
v.

Step 2

C = I ⇒ output ε.

37

Otherwise, L ← CL and w ← wC−1

Step 3

L = I ⇒ output w.

Otherwise, return Step 1.

4.4 Programming Implementation

In this section, we implement the modified Xn-representation algorithm by

programming it to show how the modified Xn-representation algorithm works

correctly. We use Maple version 6 to make a program source code. It turns

out that the modified Xn-representation algorithm works very efficiently in

practice to compute the Xn-representation of M ∈ Γn.

The following Xn-representation program is equivalent to the modified Xn-

representation algorithm because the Xn-representation program source code

includes all steps of the modified Xn-representation algorithm. Only the dif-

ference between the algorithm and the program depends on the skill to make

a program and the programming language. The modified Xn-representation

program first runs for z = 1
2

and next, it runs for z = 2 according as the

Xn-representation types. The Xn-representation program outputs the Xn-

representation of M for either z = 1
2

or z = 2. Now we show the Xn-

representation program source code in the following.

Xn-Representation Program Source Code

with(GaussInt):

with(linalg):

su:=proc(z::float, n::integer, M11::integer, M12::integer, M21::integer, M22::integer)

local M, v, C, L;

z;

M:=matrix(2,2,[M11, M12, M21, M22]);

38

L(z) :=(M11*z+M12)/(M21*z+M22);

if abs(L(z)) = 1 then

print(epsilon);

fi;

if abs(L(z))>1 then

v:=floor((1-L(z))/n);

C:=matrix(2, 2, [1, n ∗ v, 0, 1]) ;

print(matrix(2, 2, [1, n, 0, 1])∧{−v});

fi;

if abs(L(z))<1 then

v:=floor((-1)/(n ∗ L(z)) + 1/n);

C:=matrix(2, 2, [1, 0, n*v, 1]);

print (matrix(2, 2, [1, 0, n, 1])∧{−v}) ;

fi;

L:=multiply(C, M);

print(L);

end proc:

Note that this program source code implements a single pass through the

loop of our algorithm. In order to compute the Xn-representation of M ∈ Γn,

we input either z = 0.5 instead of z = 1
2

or z = 2.0 instead of z = 2, the

natural number n, the entities M11,M12,M21, M22 of the matrix M to the

Xn-representation program. For every execution of the Xn-representation pro-

gram, the program outputs two matrices. The first matrix means C−1 = An
−v

or C−1 = Bn
−v in Step 2 of the modified Xn-representation algorithm and

the second matrix means L = CL in Step 2 of the modified Xn-representation

algorithm. If the identity matrix turns up in the second matrix, then ex-

ecution of the program terminates. Next collect the first matrix of every

execution sequentially and concatenate the first matrices which are collected

39

from all executions in order and then we can obtain a word in Xn
± as the

Xn-representation of an input M . When infinite entries appears in the sec-

ond matrix, then execution of the program terminates. It means that the

Xn-representation algorithm outputs ε and the algorithm terminates. From

now, we show concrete examples to show how the modified Xn-representation

algorithm works correctly by implementing the Xn-representation program.

Example 1

For M = A2 =

(
1 2
0 1

)
∈ Γ2, we check whether the Xn-representation pro-

gram works correctly. Input the six values z = 0.5, n = 2, M11 = 1, M12 = 2,

M21 = 0 and M22 = 1 to the Xn-representation program.

For z = 1
2
,

> su(0.5, 2, 1, 2, 0, 1);

(
1 2
0 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = CL =

(
1 2
0 1

)−1 (
1 2
0 1

)
= I in Step 2 of the modified Xn-

representation algorithm and so execution of the program terminates. Collect

the first matrix
(

1 2
0 1

)1

and this is the X2-representation of M .

40

Input z = 2.0, n = 2, M11 = 1, M12 = 2, M21 = 0 and M22 = 1 to

the Xn-representation program.

For z = 2,

> su(2.0, 2, 1, 2, 0, 1) ;
(

1 2
0 1

)2

(
1 −2
0 1

)

> su(2.0, 2, 1, -2, 0, 1) ;
(

1 0
2 1

)∞

(
1 −2
−∞ ∞

)

The second matrix of the second execution of the program is an unusual matrix(
1 −2
−∞ ∞

)
and thus execution of the program terminates. This case is the

same as the situation that the modified Xn-representation algorithm outputs

ε when L(2) =

(
1 −2
0 1

)
(2) = 0 and the algorithm terminates. Hence the

Xn-representation program does not output the X2-representation of M for

z = 2. ¤

Example 2

We show implementation for another even number n = 4 as an input. Given

M = A4 =

(
1 4
0 1

)
∈ Γ4, input z = 0.5, n = 4, M11 = 1,M12 = 4, M21 = 0,

M22 = 1 to the Xn-representation program.

> su(0.5, 4, 1, 4, 0, 1);

41

(
1 4
0 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity ma-

trix which is L = CL =

(
1 4
0 1

)−1 (
1 4
0 1

)
= I in Step 2 of the modified

Xn-representation algorithm. Thus execution of the program terminates and

collect the first matrix
(

1 4
0 1

)1

.

and this is the X4-representation of M obtained from the program for z = 1
2
.

Hence the program works correctly to compute the X4-representation of M .

For z = 2,

> su(2.0, 4, 1, 4, 0, 1);
(

1 4
0 1

)2

(
1 −4
0 1

)

> su(2.0, 4, 1, -4, 0, 1) ;
(

1 4
0 1

)0

(
1 −4
0 1

)

The first matrix of the second execution of the program is

(
1 4
0 1

)0

= I which

is C−1 = An
−v = I and so C = I in Step 2 of the modified Xn-representation

algorithm and so execution of the program terminates. This case is the same

as the Xn-representation algorithm outputs ε and the algorithm terminates.

42

So the program does not output the X4-representation of M for z = 2. ¤

Example 3

So far we have seen how the program works for two even numbers n = 2

and n = 4. Now we see how the program works for odd natural numbers.

Given M = A3 =

(
1 3
0 1

)
∈ Γ3, input z = 0.5, n = 3, M11 = 1, M12 = 3,

M21 = 0 and M22 = 1 to the Xn-representation program.

For z = 1
2
,

> su(0.5, 3, 1, 3, 0, 1) ;
(

1 3
0 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = CL =

(
1 3
0 1

)−1 (
1 3
0 1

)
= I in Step 2 of the modified Xn-

representation algorithm. So execution of the program terminates and collect

the first matrix
(

1 3
0 1

)1

and this is the X3-representation of M .

Input z = 2.0, n = 3, M11 = 1, M12 = 3, M21 = 0 and M22 = 1 to

the Xn-representation program.

For z = 2,

> su(2.0, 3, 1, 3, 0, 1) ;

43

(
1 3
0 1

)2

(
1 −3
0 1

)

> su(2.0, 3, 1, -3, 0, 1) ;

ε

Since

(
1 −3
0 1

)
(2.0) = −1, this means that |L(2)| = 1 in Step 1 of the modi-

fied Xn-representation algorithm. Both the program and the algorithm output

the same ε and so both of them terminate. Hence the Xn-representation pro-

gram does not output the X3-representation of M for z = 2. ¤

Example 4

We implement the modified Xn-representation algorithm for another odd natu-

ral number to show how the algorithm works. Given M = A5 =

(
1 5
0 1

)
∈ Γ5,

input z = 0.5, n = 5, M11 = 1, M12 = 5, M21 = 0 and M22 = 1 to the

Xn-representation program.

For z = 1
2
,

>su(0.5, 5, 1, 5, 0, 1) ;
(

1 5
0 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is that L = CL =

(
1 5
0 1

)−1 (
1 5
0 1

)
= I in Step 2 of the modified X5-

representation algorithm. So execution of the program terminates and collect

the first matrix

44

(
1 5
0 1

)1

.

This is the Xn-representation of M .

Input z = 2.0, n = 5, M11 = 1, M12 = 5, M21 = 0 and M22 = 1 to

the Xn-representation program.

For z = 2,

> su(2.0, 5, 1, 5, 0, 1) ;
(

1 5
0 1

)2

(
1 −5
0 1

)

> su(2.0, 5, 1, -5, 0, 1) ;
(

1 5
0 1

)0

(
1 −5
0 1

)

The first matrix of the second execution of the program is the identity ma-

trix which is C−1 = An
−v =

(
1 5
0 1

)0

= I in Step 2 of the modified Xn-

representation algorithm. So execution of the program terminates and the

modified Xn-representation algorithm outputs ε in step 2 of the algorithm and

the algorithm terminates. ¤

Example 5

Given M = B2 =

(
1 0
2 1

)
∈ Γ2, input z = 0.5, n = 2, M11 = 1, M12 = 0,

M21 = 2 and M22 = 1 to the Xn-representation program.

45

For z = 1
2
,

> su(0.5, 2, 1, 0, 2, 1) ;
(

1 0
2 1

)2

(
1 0
−2 1

)

> su(0.5, 2, 1, 0, -2, 1) ;
(

1 2
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the second execution of the program is an unusual matrix(
1 2
0 1

)∞
which is the same situation that the modified Xn-representation

algorithm outputs ε in Step 1 of the modified Xn-representation algorithm be-

cause L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 1 of the modified Xn-representation

algorithm. In the case, the algorithm and the program terminate. Hence we

can not obtain the X2-representation of M for z = 1
2
.

For z = 2,

> su(2.0, 2, 1, 0, 2, 1);
(

1 0
2 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = CL =

(
1 0
2 1

)−1 (
1 0
2 1

)
= I in Step 2 of the modified Xn-

representation algorithm. Collect the first matrix

46

(
1 0
2 1

)
1 and it is the X2-representation of M . ¤

Example 6

M =

(
1 0
4 1

)
∈ Γ4 and the X4-representation of M is B4. Input z = 0.5,

n = 4, M11 = 1, M12 = 0, M21 = 4 and M22 = 1 to the Xn-representation

program.

For z = 1
2
,

> su(0.5, 4, 1, 0, 4, 1) ;
(

1 0
4 1

)2

(
1 0
−4 1

)

> su(0.5, 4, 1, 0, -4, 1) ;
(

1 0
4 1

)0

(
1 0
−4 1

)

The first matrix of the second execution of the program is the identity matrix(
1 0
4 1

)0

= I which is C−1 = Bn
−v = I and so C = I in Step 2 of the modified

Xn-representation algorithm. Thus execution of the program terminates and

this case is the same as the situation that the modified Xn-representation al-

gorithm outputs ε in Step 2 of the modified Xn-representation algorithm and

the algorithm terminates. Therefore the Xn-representation program does not

output the X4-representation of M for z = 1
2
.

Input z = 2, n = 4, M11 = 1, M12 = 0, M21 = 4 and M22 = 1 to the

47

Xn-representation program.

For z = 2,

> su(2.0, 4, 1, 0, 4, 1) ;
(

1 0
4 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = CL =

(
1 0
4 1

)−1 (
1 0
4 1

)
= I. So execution of the program

terminates. Collect the first matrix
(

1 0
4 1

)1

and this is the X4-representation of M . ¤

Example 7

Given M = B3 =

(
1 0
3 1

)
∈ Γ3, input z = 0.5, n = 3, M11 = 1, M12 = 0,

M21 = 3 and M22 = 1 to the Xn-representation program.

For z = 1
2
,

> su(0.5, 3, 1, 0, 3, 1) ;
(

1 0
3 1

)2

(
1 0
−3 1

)

> su(0.5, 3, 1, 0, -3, 1) ;

48

ε

The program outputs ε in the second execution of the program and so execu-

tion of the program terminates. Since |L(1
2
)| = |

(
1 0
−3 1

)
(1

2
)| = 1, both the

progran and the algorithm output the same ε. Hence the Xn-representation

program does not output the X3-representation of an input M for z = 1
2
.

Input z = 2.0, n = 3, M11 = 1, M12 = 0, M21 = 3 and M22 = 1 to

the Xn-representation program.

For z = 2,

> su(2.0, 3, 1, 0, 3, 1) ;
(

1 0
3 1

)1

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = CL =

(
1 0
3 1

)−1 (
1 0
3 1

)
= I in Step 2 of the modified Xn-

representation algorithm. So execution of the program terminates. Collect

the first matrix
(

1 0
3 1

)1

and this is the Xn-representation of M . ¤

Example 8

Given M = B5 =

(
1 0
5 1

)
∈ Γ5, input z = 0.5, n = 5, M11 = 1, M12 = 0,

M21 = 5 and M22 = 1 to the Xn-representation program.

49

For z = 1
2
,

> su(0.5, 5, 1, 0, 5, 1) ;
(

1 0
5 1

)2

(
1 0
−5 1

)

> su(0.5, 5, 1, 0, -5, 1);
(

1 0
5 1

)0

(
1 0
−5 1

)

Since the first matrix of the second execution of the program is the identity

matrix

(
1 0
5 1

)0

= I which is C−1 = Bn
−v = I and so, C = I in Step 2 of

the modified Xn-representation algorithm. So execution of the program ter-

minates and in this case, the modified Xn-representation algorithm outputs

ε in Step 2 of the algorithm. Hence the Xn-representation program does not

output the X5-representation of M for z = 1
2
.

Input z = 2.0, n = 5, M11 = 1, M12 = 0, M21 = 5 and M22 = 1 to

the Xn-representation program.

For z = 2,

> su(2.0, 5, 1, 0, 5, 1) ;
(

1 0
5 1

)1

(
1 0
0 1

)

50

The second matrix of the first execution of the program is the identity matrix

which is L = CL =

(
1 0
5 1

)(
1 0
5 1

)−1 (
1 0
5 1

)
= I in Step 2 of the modified

Xn-representation algorithm. So execution of the program terminates and

collect the first matrix
(

1 0
5 1

)1

.

This is the X5-representation of M . ¤

Example 9

Given M = A4
−2B4

3A4
2 =

(−95 −768
12 97

)
∈ Γ4, we check whether the pro-

gram outputs the correct X4-representation of M . Input the six values z = 0.5,

n = 4, M11 = −95, M12 = −768, M21 = 12 and M22 = 97 to the Xn-

representation program.

For z = 1
2
,

> su(0.5, 4,−95,−768, 12, 97);

(
1 4
0 1

)−2

(
1 8
12 97

)

> su(0.5, 4, 1, 8, 12, 97);

(
1 0
4 1

)3

(
1 8
0 1

)

51

> su(0.5, 4, 1, 8, 0, 1);

(
1 4
0 1

)2

(
1 0
0 1

)

The second matrix of the third execution of the program is the identity matrix

which is L = CL =

(
1 4
0 1

)−2 (
1 8
0 1

)
= I and so execution of the program

terminates. Collect the first matrix of every execution of the program. Then

we have
(

1 4
0 1

)−2(
1 0
4 1

)3(
1 4
0 1

)2

as the X4-representation of M .

For z = 2,

> su(2.0, 4,−95,−768, 12, 97);

(
1 4
0 1

)−2

(
1 8
12 97

)

> su(2.0, 4, 1, 8, 12, 97);

(
1 0
4 1

)3

(
1 8
0 1

)

> su(2.0, 4, 1, 8, 0, 1);

52

(
1 4
0 1

)3

(
1 −4
0 1

)

> su(2.0, 4, 1,−4, 0, 1);

(
1 4
0 1

)0

(
1 −4
0 1

)

The first matrix of the fourth execution of the program is the identity ma-

trix which is C−1 = An
−v =

(
1 4
0 1

)0

= I in Step 2 of the modified Xn-

representation algorithm. So execution of the program terminates and in this

case, the modified Xn-representation algorithm outputs ε in Step 2 of the

algorithm. Hence the Xn-representation program does not output the X4-

representation of M for z = 2. ¤

Example 10

Given M = B4
−1A4

−2B4
3A4

2 =

(−95 −768
392 3169

)
∈ Γ4, input z = 0.5, n = 4,

M11 = −95, M12 = −768, M21 = 392 and M22 = 3169 to the Xn-

representation program.

For z = 1
2
,

> su(0.5, 4,−95,−768, 392, 3169);

(
1 0
4 1

)−1

(−95 −768
12 97

)

53

> su(0.5, 4,−95,−768, 12, 97);
(

1 4
0 1

)−2

(
1 8
12 97

)

> su(0.5, 4, 1, 8, 12, 97);
(

1 0
4 1

)3

(
1 8
0 1

)

> su(0.5, 4, 1, 8, 0, 1);
(

1 4
0 1

)2

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity matrix

which is L = CL = An
vL =

(
1 4
0 1

)−2 (
1 8
0 1

)
= I in Step 2 of the modified

Xn-representation algorithm. So execution of the program terminates. Collect

the first matrix of every execution and then we have
(

1 0
4 1

)−1(
1 4
0 1

)−2(
1 0
4 1

)3(
1 4
0 1

)2

.

as the X4-representation of M .

Input z = 2.0, n = 4, M11 = −95, M12 = −768, M21 = 392 and M22 = 3169

to the Xn-representation program.

For z = 2.

> su(2.0, 4,−95,−768, 392, 3169);

54

(
1 0
4 1

)−1

(−95 −768
12 97

)

> su(2.0, 4,−95,−768, 12, 97);

(
1 4
0 1

)−2

(
1 8
12 97

)

> su(2.0, 4, 1, 8, 12, 97);

(
1 0
4 1

)3

(
1 8
0 1

)

> su(2.0, 4, 1, 8, 0, 1);

(
1 4
0 1

)3

(
1 −4
0 1

)

> su(2.0, 4, 1,−4, 0, 1);

(
1 4
0 1

)0

(
1 −4
0 1

)

55

The first matrix of the fifth execution of the program is the identity ma-

trix which is C−1 = An
−v =

(
1 4
0 1

)0

= I in Step 2 of the modified Xn-

representation algorithm. So execution of the program terminates. In this

case, the modified Xn-representation algorithm outputs ε in Step 2 of the al-

gorithm and the algorithm terminates. Hence the Xn-representation program

does not output the X4-representation of M for z = 2. ¤

Example 11

Given M = A4
−2B4

3A4
2B4 =

(−3167 −768
400 97

)
∈ Γ4, input the six values

z = 0.5, n = 4, M11 = −3167, M12 = −768, M21 = 400 and M22 = 97 to

the Xn-representation program.

For z = 1
2

> su(0.5, 4,−3167,−768, 400, 97);

(
1 4
0 1

)−2

(
33 8
400 97

)

> su(0.5, 4, 33, 8, 400, 97);
(

1 0
4 1

)3

(
33 8
4 1

)

> su(0.5, 4, 33, 8, 4, 1);

(
1 4
0 1

)2

56

(
1 0
4 1

)

> su(0.5, 4, 1, 0, 4, 1);

(
1 0
4 1

)2

(
1 0
−4 1

)

> su(0.5,4,1,0,-4,1);
(

1 0
4 1

)0

(
1 0
−4 1

)

The first matrix of the fifth execution of the program is the identity matrix

which is C−1 = Bn
−v =

(
1 0
4 1

)0

= I. So execution of the program termi-

nates and in this case, the modified Xn-representation algorithm outputs ε

in Step 2 of the algorithm. Therefore the program does not output the X4-

representation of M for z = 1
2
.

For z = 2,

> su(2.0, 4,−3167,−768, 400, 97);

(
1 4
0 1

)−2

(
33 8
400 97

)

> su(2.0, 4, 33, 8, 400, 97);

57

(
1 0
4 1

)3

(
33 8
4 1

)

> su(2.0, 4, 33, 8, 4, 1);

(
1 4
0 1

)2

(
1 0
4 1

)

> su(2.0, 4, 1, 0, 4, 1);

(
1 0
4 1

)1

(
1 0
0 1

)

The second matrix of the fourth execution is the identity matrix which is

L = CL =

(
1 0
4 1

)−1 (
1 0
4 1

)
= I in Step 2 of the modified Xn-representation

algorithm. So execution of the program terminates and collect each first matrix

of every execution of the program. Then we have

(
1 4
0 1

)−2(
1 0
4 1

)3(
1 4
0 1

)2 (
1 0
4 1

)1

.

This is the X4-representation of M . ¤

Example 12

M = B4
2A4

−2B4
3A4

2B4
−1 =

(
2977 −768
23440 −6047

)
∈ Γ4, input the six val-

ues z = 0.5, n = 4, M11 = 2977, M12 = −768 and M21 = 23440 and

M22 = −6047 to the Xn-representation program.

58

For z = 1
2
,

> su(0.5, 4, 2977,−768, 23440,−6047);

(
1 0
4 1

)2

(
2977 −768
−376 97

)

> su(0.5, 4, 2977,−768,−376, 97);

(
1 4
0 1

)−2

(−31 8
−376 97

)

> su(0.5, 4,−31, 8,−376, 97);

(
1 0
4 1

)3

(−31 8
−4 1

)

> su(0.5, 4,−31, 8,−4, 1);

(
1 4
0 1

)2

(
1 0
−4 1

)

> su(0.5, 4, 1, 0,−4, 1);

59

(
1 0
4 1

)0

(
1 0
−4 1

)

The first matrix of the fifth execution of the program is the identity matrix

which is C−1 = Bn
−v =

(
1 0
4 1

)0

= I and so execution of the program termi-

nates. This is the same as the modified Xn-representation algorithm outputs

ε in Step 2 of the algorithm and the algorithm terminates. Thus the Xn-

representation program does not output the X4-representation of M for z = 1
2
.

For z = 2,

> su(2.0, 4, 2977,−768, 23440,−6047);

(
1 0
4 1

)2

(
2977 −768
−376 97

)

> su(2.0, 4, 2977,−768,−376, 97);

(
1 4
0 1

)−2

(−31 8
−376 97

)

> su(2.0, 4,−31, 8,−376, 97);

(
1 0
4 1

)3

(−31 8
−4 1

)

60

> su(2.0, 4,−31, 8,−4, 1);

(
1 4
0 1

)2

(
1 0
−4 1

)

> su(2.0, 4, 1, 0,−4, 1);

(
1 0
4 1

)−1

(
1 0
0 1

)

The second matrix of the fifth execution of the program is the identity matrix

which is L = CL = Bn
vBn

−1 =

(
1 0
4 1

)−1 (
1 0
4 1

)
= I in Step 2 of the

modified Xn-representation algorithm. So execution of the program terminates

and collect each first matrix of every execution of the program. Then we have

(
1 0
4 1

)2(
1 4
0 1

)−2(
1 0
4 1

)3(
1 4
0 1

)2(
1 0
4 1

)−1

as the X4-representation of M . ¤

4.5 Correctness of Modified Xn-Representation

Algorithm

Let n ≥ 2 and M ∈ Γn. Assume that all exponents of the Xn-representation

of M ∈ Γn are nonzero integers. We prove the correctness of the mod-

ified Xn-representation algorithm. We consider all four types of the Xn-

representations and for each Xn-representation type, we show how the mod-

ified Xn-representation algorithm works for z = 1
2

and z = 2, respectively.

For convenience, the modified Xn-representation algorithm is called the Xn-

representation algorithm.

61

Theorem 4.5.1 Let M = An
u ∈ Γn with a nonzero integer u. If M is

input to the Xn-representation algorithm (z = 1
2
), then the algorithm outputs

An
u as the Xn-representation of M .

Proof If M = An
u, then in Step 1 of the first iteration, by Lemma 4.1.1,

|L(1
2
)| = |An

u(1
2
)| = |nu + 1

2
| > 1. So v = b1−L(1

2
)

n
c = b1−nu− 1

2

n
c = −u,

C = An
v = An

−u. In Step 2, L = CL = An
−uAn

u = I and w = wC−1 = An
u.

In Step 3, since L = I, the algorithm outputs An
u as the Xn-representation of

M and then the algorithm terminates. ¤

Theorem 4.5.2 Let M = An
u ∈ Γn with a nonzero integer u. If M is

input to the Xn-representation algorithm (z = 2), then the algorithm outputs

ε.

Proof If M = An
u, then in Step 1 of the first iteration, L(2) = An

u(2) =

nu + 2.

If n = 2 and u = −1, then |L(2)| = |An
u(2)| = |nu + 2| = 0 and the algorithm

outputs ε. Then the algorithm terminates.

If n = 3 and u = −1, then |L(2)| = |An
u(2)| = |nu + 2| = 1 and the algorithm

outputs ε. Then the algorithm terminates.

Except for these two cases, in Step 1 of the first iteration, |L(2)| = |An
u(2)| =

|nu + 2| > 1, so v = b1−L(2)
n

c = b1−nu−2
n

c = −u − 1 and C = An
v = An

−u−1.

In Step 2, L = CL = An
−u−1An

u = An
−1 and w = wC−1 = An

u+1. In Step 3,

since L = An
−1 6= I, return Step 1.

In Step 1 of the second iteration, L(2) = An
−1(2) = −n + 2.

If n = 2, then |L(2)| = | − n + 2| = 0 and the algorithm outputs ε. Then the

algorithm terminates.

62

If n = 3, then |L(2)| = | − n + 2| = 1 and the algorithm outputs ε. Then the

algorithm terminates.

If n ≥ 4, then |L(2)| = |An
−1(2)| = | − n + 2| > 1, so that v = b1−L(2)

n
c =

b1+n−2
n

c = bn−1
n
c = b1− 1

n
c = 0 and C = An

v = I. In Step 2, since C = I, the

algorithm outputs ε and then the algorithm terminates. ¤

Theorem 4.5.3 Let M = Bn
u ∈ Γn with a nonzero integer u. If M is

input to the Xn-representation algorithm (z = 1
2
), then the algorithm outputs

ε.

Proof In Step 1 of the first iteration, L(1
2
) = Bn

u(1
2
) =

1
2

1
2
nu+1

= 1
nu+2

.

If n = 2 and u = −1, then L(1
2
) = Bn

u(1
2
) = ∞ and the algorithm outputs ε.

Then the algorithm terminates.

If n = 3 and u = −1, then |L(1
2
)| = |Bn

u(1
2
)| = | 1

nu+2
| = 1 and the algorithm

outputs ε. Then the algorithm terminates.

Except for these two cases, in Step 1 of the first iteration, |L(1
2
)| = |Bn

u(1
2
)| =

| 1
nu+2

| < 1, so v = b −1
nL(1

2
)
+ 1

n
c = b −1

n 1
nu+2

+ 1
n
c = −u−1 and C = Bn

v = Bn
−u−1.

In Step 2, L = CL = Bn
−u−1Bn

u = Bn
−1 and w = wC−1 = Bn

u+1. In Step 3,

as L = Bn
−1 6= I, return Step 1.

In Step 1 of the second iteration, L(1
2
) = Bn

−1(1
2
) = 1

−n+2
.

If n = 2, then L(1
2
) = Bn

−1(1
2
) = 1

−n+2
= ∞ and the algorithm outputs ε.

Then the algorithm terminates.

If n = 3, then |L(1
2
)| = |Bn

−1(1
2
)| = | 1

−n+2
| = 1 and the algorithm outputs ε.

Then the algorithm terminates.

If n ≥ 4, then |L(1
2
)| = |Bn

−1(1
2
)| = | 1

−n+2
| < 1, so v = b −1

nL(1
2
)

+ 1
n
c =

b −1
n 1
−n+2

+ 1
n
c = bn−2

n
+ 1

n
c = b1 − 1

n
c = 0 and C = Bn

v = I. In Step 2, since

C = I, the algorithm outputs ε and then the algorithm terminates. ¤

63

Theorem 4.5.4 Let M = Bn
u ∈ Γn with a nonzero integer u. If M is

input to the Xn-representation algorithm (z = 2), then the algorithm outputs

Bn
u as the Xn-representation of M .

Proof In Step 1 of the first iteration, by Lemma 4.1.2, |L(2)| = |Bn
u(2)| =

| 2
2nu+1

| = | 1
nu+ 1

2

| < 1, so v = b −1
nL(2)

+ 1
n
c = b −1

n 1

nu+1
2

+ 1
n
c = b−u+ 1

2n
c = −u and

C = Bn
v = Bn

−u. In Step 2, L = CL = Bn
−uBn

u = I and w = wC−1 = Bn
u.

In Step 3, since L = I, the algorithm outputs Bn
u as the Xn-representation of

M and then the algorithm terminates. ¤

Theorem 4.5.5 Let a matrix M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn where

odd m ≥ 3 and ui is a nonzero integer (i = 1, · · · ,m). If M is input

to the Xn-representation algorithm (z = 1
2
), then the algorithm outputs

An
u1Bn

u2 · · ·Bn
um−1An

um as the Xn-representation of M .

Proof Let a matrix M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn with odd m. Then

in Step 1 of the first iteration, by Theorem 4.1.3, |L(1
2
)| = |An

u1Bn
u2 · · ·Bn

um−1

An
um(1

2
)| = |An

u1(β1)| = |nu1 + β1| > 1 where β1 = Bn
u2 · · ·Bn

um−1An
um(1

2
).

By Theorem 4.1.4, |β1| < 1 and 0 < 1−β1

n
< 2

n
≤ 1. So v = b1−L(1

2
)

n
c =

b1−nu1−β1

n
c = b−u1 + 1−β1

n
c = −u1 and C = An

v = An
−u1 . In Step 2,

L = CL = An
−u1An

u1Bn
u2 · · ·Bn

um−1An
um = Bn

u2 · · ·Bn
um−1An

um and w =

wC−1 = An
u1 . In Step 3, since L = Bn

u2 · · ·Bn
um−1An

um 6= I, return Step 1.

Assume that for 1 < j < m, L = An
ujBn

uj+1 · · ·Bn
um−1An

um with odd

j and w = An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j − 1th iteration or L =

Bn
ujAn

uj+1 · · ·Bn
um−1An

um with even j and w = An
u1Bn

u2 · · ·An
uj−1 in Step

2 of the j − 1th iteration.

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·Bn
um−1An

um with even j,

64

L(1
2
) = Bn

uj(αj) =
αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1 · · ·Bn

um−1An
um(1

2
).

By Theorem 4.1.4, |L(1
2
)| = |Bn

uj(αj)| = | 1
nuj+

1
αj

| < 1. By Theorem 4.1.3,

|αj| = |An
uj+1 · · ·Bn

um−1An
um(1

2
)| > 1 and 0 < 1

n
(1 − 1

αj
) < 2

n
≤ 1. So v =

b −1
nL(1

2
)
+ 1

n
c = b−uj + 1

n
(1− 1

αj
)c = −uj and C = Bn

v = Bn
−uj . In Step 2, L =

CL = Bn
−ujBn

ujAn
uj+1 · · ·Bn

um−1An
um = An

uj+1 · · ·Bn
um−1An

um and w =

wC−1 = An
u1Bn

u2 · · ·An
uj−1Bn

uj . In Step 3, since L = An
uj+1 · · ·Bn

um−1An
um

6= I, return Step 1.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·Bn
um−1An

um with odd j,

then by Theorem 4.1.3, |L(1
2
)| = |An

ujBn
uj+1 · · ·Bn

um−1An
um(1

2
)| = |An

uj(βj)| =
|nuj +βj| > 1 where βj = Bn

uj+1 · · ·Bn
um−1An

um(1
2
). By Theorem 4.1.4, |βj| <

1 and 0 <
1−βj

n
< 2

n
≤ 1. So v = b1−L(1

2
)

n
c = b1−nuj−βj

n
c = b−uj +

1−βj

n
e = −uj

and C = An
v = An

−uj . In Step 2, L = CL = An
−ujAn

ujBn
uj+1 · · ·Bn

um−1An
um

= Bn
uj+1 · · ·Bn

um−1An
um and w = wC−1 = An

u1Bn
u2 · · ·Bn

uj−1An
uj . In Step

3, since L = Bn
uj+1An

uj+2 · · ·Bn
um−1An

um 6= I, return Step 1.

If j = m, then in Step 1 of the j = mth iteration, L = An
um and by

Theorem 4.5.1, in Step 2, L = CL = An
−umAn

um = I and w = wC−1 =

An
u1Bn

u2 · · ·Bn
um−1An

um . In Step 3, since L = I, the algorithm outputs

An
u1Bn

u2 · · ·Bn
um−1An

um as the Xn-representation of M and then the algo-

rithm terminates. ¤

Theorem 4.5.6 Let a matrix M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn where

odd m ≥ 3 and ui is a nonzero integer (i = 1, · · · ,m). If M is input to the

Xn-representation algorithm (z = 2), then the algorithm outputs ε.

Proof Let a matrix M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn with odd m.

Then in Step 1 of the first iteration, L(2) = An
u1Bn

u2 · · ·Bn
um−1An

um(2) =

An
u1(β1) = nu1 + β1 where β1 = Bn

u2 · · ·Bn
um−1An

um(2).

65

If n = 2 and um = −1, then An
um(2) = num + 2 = 0, Bn

um−1(0) = 0 and

An
um−2(0) = num−2 ∈ Dc. By Theorem 4.1.3, L(2) = An

u1Bn
u2 · · ·Bn

um−1An
um

(2) = An
u1Bn

u2 · · ·An
um−2(0) ∈ Dc, so |L(2)| > 1. By Theorem 4.1.4,

β1 = Bn
u2 · · ·Bn

um−1An
um(2) = Bn

u2 · · ·An
um−2(0) ∈ D.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1, Bn

um−1(−1) =

−1
−num−1+1

∈ D. Put γ = Bn
um−1An

um(2) = Bn
um−1(−1) and then |γ| < 1. By

Theorem 4.1.3, L(2) = An
u1Bn

u2 · · ·Bn
um−1An

um(2) = An
u1Bn

u2 · · ·An
um−2(γ)

∈ Dc and so |L(2)| > 1. By Theorem 4.1.4, β1 = Bn
u2 · · ·Bn

um−1An
um(2) =

Bn
u2 · · ·An

um−2(γ) ∈ D.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then An
um(2) =

num+2 ∈ Dc and by Theorem 4.1.5, |L(2)| = |An
u1Bn

u2 · · ·Bn
um−1An

um(2)| =
|An

u1Bn
u2 · · ·Bn

um−1(num + 2)| > 1. By Theorem 4.1.6, β1 = Bn
u2An

u3 · · ·
Bn

um−1An
um(2) = Bn

u2An
u3 · · ·Bn

um−1(num + 2) ∈ D.

Therefore, in all cases, |L(2)| = |An
u1Bn

u2 · · ·Bn
um−1An

um(2)| > 1 and |β1| =
|Bn

u2 · · ·Bn
um−1An

um(2)| < 1. In Step 1 of the first iteration, as −1 < β1 < 1

and 0 < 1−β1

n
< 2

n
≤ 1, v = b1−L(2)

n
c = b1−nu1−β1

n
c = b−u1 + 1−β1

n
c = −u1 and

C = An
v = An

−u1 . In Step 2, L = CL = An
−u1An

u1Bn
u2 · · ·Bn

um−1An
um =

Bn
u2 · · ·Bn

um−1An
um 6= I and w = wC−1 = An

u1 . In Step 3, as L 6= I, return

Step 1.

Suppose that for 1 < j < m − 1, L = An
ujBn

uj+1 · · ·Bn
um−1An

um with

odd j and w = An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j − 1th iteration or

L = Bn
ujAn

uj+1 · · ·Bn
um−1An

um with even j and w = An
u1Bn

u2 · · ·An
uj−1 in

Step 2 of the j − 1th iteration.

66

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·Bn
um−1An

um with even

j, then L(2) = Bn
ujAn

uj+1 · · ·Bn
um−1An

um(2) = Bn
uj(αj) =

αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1Bn

uj+2 · · ·Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0, Bn

um−1(0) = 0 and

An
um−2(0) = num−2 ∈ Dc. By Theorem 4.1.4, |L(2)| = |Bn

ujAn
uj+1 · · ·Bn

um−1

An
um(2)| = |Bn

ujAn
uj+1 · · ·An

um−2(0)| < 1. By Theorem 4.1.3, |αj| = |An
uj+1

Bn
uj+2 · · ·Bn

um−1An
um(2)| = |An

uj+1Bn
uj+2 · · ·An

um−2(0)| > 1.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1, Bn

um−1(−1) =

−1
−num−1+1

∈ D. Put γ = Bn
um−1An

um(2) = Bn
um−1(−1) and then |γ| < 1.

Hence, by Theorem 4.1.4, |L(2)| = |Bn
ujAn

uj+1 · · ·An
um−2Bn

um−1An
um(2)| =

|Bn
ujAn

uj+1 · · ·An
um−2(γ)| < 1. By Theorem 4.1.3, |αj| = |An

uj+1 · · ·Bn
um−1

An
um(2)| = |An

uj+1Bn
uj+2 · · ·An

um−2(γ)| > 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then An
um(2) =

num + 2 ∈ Dc. by Theorem 4.1.6, |L(2)| = |Bn
ujAn

uj+1 · · ·Bn
um−1An

um(2)| =
|Bn

ujAn
uj+1 · · ·Bn

um−1(num + 2)| < 1. By Theorem 4.1.5, |αj| = |An
uj+1 · · ·

Bn
um−1An

um(2)| = |An
uj+1 · · ·Bn

um−1(num + 2)| > 1.

Therefore, in all cases, as −1 < 1
αj

< 1 and 0 < 1
n
(1 − 1

αj
) < 2

n
≤ 1, v =

b −1
nL(2)

+ 1
n
c = b −1

n 1

nuj+ 1
αj

+ 1
n
c = b−uj+

1
n
(1− 1

αj
)c = b−uj+

1
n
(1− 1

αj
)c = −uj and

C = Bn
v = Bn

−uj . In Step 2, L = CL = Bn
−ujBn

ujAn
uj+1 · · ·Bn

um−1An
um =

An
uj+1 · · ·Bn

um−1An
um and w = wC−1 = An

u1Bn
u2 · · ·An

uj−1Bn
uj . In Step 3,

since L 6= I, return Step 1.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·Bn
um−1An

um with odd

j, then L(2) = An
ujBn

uj+1 · · ·Bn
um−1An

um(2) = An
uj(βj) = nuj + βj where

βj = Bn
uj+1 · · ·Bn

um−1An
um(2).

67

If n = 2 and um = −1, then An
um(2) = num + 2 = 0, Bn

um−1(0) = 0 and

An
um−2(0) = num−2 ∈ Dc. By Theorem 4.1.3, |L(2)| = |An

ujBn
uj+1 · · ·Bn

um−1

An
um(2)| = |An

ujBn
uj+1 · · ·Bn

um−3An
um−2(0)| > 1 and by Theorem 4.1.4,

|βj| = |Bn
uj+1 · · ·Bn

um−1An
um(2)| = |Bn

uj+1 · · ·An
um−2(0)| < 1.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1, Bn

um−1(−1) =

−1
−num−1+1

∈ D. Put γ = Bn
um−1An

um(2) = Bn
um−1(−1) and then |γ| < 1.

By Theorem 4.1.3, L(2) = An
u1Bn

u2 · · ·An
um−2(γ) ∈ Dc and |L(2)| > 1. By

Theorem 4.1.4, |β| = |Bn
uj+1 · · ·Bn

um−1An
um(2)| = |Bn

uj+1 · · ·An
um−2(γ)| < 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then An
um(2) =

num + 2 ∈ Dc, by Theorem 4.1.5, |L(2)| = |An
ujBn

uj+1 · · ·Bn
um−1An

um(2)| =

|An
ujBn

uj+1 · · ·Bn
um−1(num+2)| > 1. By Theorem 4.1.6, |β| = |Bn

uj+1An
uj+2 · · ·

Bn
um−1An

um(2)| = |Bn
uj+1 · · ·Bn

um−1(num + 2)| < 1.

Therefore, in all cases, |L(2)| = |An
ujBn

uj+1 · · ·Bn
um−1An

um(2)| > 1 and |βj| =
|Bn

uj+1 · · ·Bn
um−1An

um(2)| < 1. In Step 1 of the jth iteration, as −1 < βj < 1

and 0 <
1−βj

n
< 2

n
≤ 1, v = b1−L(2)

n
c = b1−nuj−βj

n
c = b−uj +

1−βj

n
c = −uj

and C = An
−uj . In Step 2, L = CL = An

−ujAn
ujBn

uj+1 · · ·Bn
um−1An

um =

Bn
uj+1 · · ·Bn

um−1An
um and w = wC−1 = An

u1Bn
u2 · · ·Bn

uj−1An
uj . In Step 3,

as L 6= I, return Step 1.

If j = m − 1, then in Step 1 of the m − 1th iteration, L = Bn
um−1An

um

and L(2) = Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0,

so that L(2) = Bn
um−1An

um(2) = 0. Hence the algorithm outputs ε and then

the algorithm terminates.

68

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

−1
−num−1+1

∈ D, so that |L(2)| = |Bn
um−1An

um(2)| < 1. Hence v = b −1
nL(2)

+

1
n
c = b −1

n −1
−num−1+1

+ 1
n
c = b−um−1 + 2

n
c = −um−1 and C = Bn

v = Bn
−um−1 .

In Step 2, L = CL = Bn
−um−1Bn

um−1An
um = An

um and w = wC−1 =

An
u1Bn

u2 · · ·An
um−2Bn

um−1 . In Step 3, as L 6= I, return Step 1. Then in

Step 1 of the j = mth iteration, L = An
um and by Theorem 4.5.2, the Xn-

representation algorithm (z = 2) outputs ε and then the algorithm terminates.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then in Step 1

of the m − 1th iteration, L = Bn
um−1An

um . An
um(2) = num + 2 ∈ Dc and

by Lemma 4.1.2, Bn
um−1(num + 2) ∈ D. So L(2) = Bn

um−1An
um(2) ∈ D.

Since −1 < 1
num+2

< 1, 0 < 1 − 1
num+2

< 2 and 0 < 1
n
(1 − 1

num+2
) < 2

n
≤ 1,

v = b −1
nL(2)

+ 1
n
c = b −1

n num+2
num−1(num+2)+1

+ 1
n
c = b−um−1 + 1

n
(1− 1

num+2
)c = −um−1.

Hence C = Bn
v = Bn

−um−1 , in Step 2, L = CL = Bn
−um−1Bn

um−1An
um =

An
um and w = An

u1Bn
u2 · · ·An

um−2An
um−1 . In Step 3, as L 6= I, return Step

1. In Step 1 of the j = mth iteration, L = An
um and by Theorem 4.5.2, the

algorithm outputs ε. Thus the algorithm terminates. ¤

Theorem 4.5.7 Let a matrix M = Bn
u1An

u2 · · ·Bn
um−1An

um ∈ Γn where

even m ≥ 2 and ui is a nonzero integer (i = 1, · · · ,m). If M is input

to the Xn-representation algorithm (z = 1
2
), then the algorithm outputs

Bn
u1An

u2 · · ·Bn
um−1An

um as the Xn-representation of M .

Proof In Step 1 of the first iteration, if L = M = Bn
u1An

u2 · · ·Bn
um−1An

um

with even m ≥ 2, then L(1
2
) = Bn

u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 =

An
u2 · · ·Bn

um−1An
um(1

2
). By Theorem 4.1.4, |L(1

2
)| = |Bn

u1(α1)| = | 1
nu1+ 1

α1

| <
1. By Theorem 4.1.3, |α1| = |An

u2 · · ·Bn
um−1An

um(1
2
)| > 1 and 0 < 1

n
(1− 1

α1
) <

2
n
≤ 1. So v = b −1

nL(1
2
)
+ 1

n
c = b−u1 + 1

n
(1− 1

α1
)c = −u1 and C = Bn

v = Bn
−u1 .

69

In Step 2, L = CL = Bn
−u1Bn

u1An
u2 · · ·Bn

um−1An
um = An

u2 · · ·Bn
um−1An

um

and w = wC−1 = Bn
u1 . In Step 3, since L = An

u2 · · ·Bn
um−1An

um 6= I, return

Step 1.

Assume that for 1 < j < m, L = An
ujBn

uj+1 · · ·Bn
um−1An

um with odd

j and w = An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j − 1th iteration or L =

Bn
ujAn

uj+1 · · ·Bn
um−1An

um with even j and w = Bn
u1An

u2 · · ·An
uj−1 in Step

2 of the j − 1th iteration.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·Bn
um−1An

um with even j,

then by Theorem 4.1.3, |L(1
2
)| = |An

ujBn
uj+1 · · ·Bn

um−1An
um(1

2
)| = |An

uj(βj)|
= |nuj + βj| > 1 where βj = Bn

uj+1 · · ·Bn
um−1An

um(1
2
). By Theorem 4.1.4,

|βj| < 1 and 0 <
1−βj

n
< 2

n
≤ 1. So v = b1−L(1

2
)

n
c = b1−nuj−βj

n
c = b−uj +

1−βj

n
e = −uj and C = An

v = An
−uj . In Step 2, L = CL = An

−ujAn
ujBn

uj+1 · · ·
Bn

um−1An
um = Bn

uj+1 · · ·Bn
um−1An

um and w = wC−1 = Bn
u1An

u2 · · ·Bn
uj−1

An
uj . In Step 3, since L = Bn

uj+1An
uj+2 · · ·Bn

um−1An
um 6= I, return Step 1.

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·Bn
um−1An

um with odd j,

L(1
2
) = Bn

uj(αj) =
αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1 · · ·Bn

um−1An
um(1

2
).

By Theorem 4.1.4, |L(1
2
)| = |Bn

uj(αj)| = | 1
nuj+

1
αj

| < 1. By Theorem 4.1.3,

|αj| = |An
uj+1 · · ·Bn

um−1An
um(1

2
)| > 1 and 0 < 1

n
(1 − 1

αj
) < 2

n
≤ 1. So v =

b −1
nL(1

2
)
+ 1

n
c = b−uj + 1

n
(1− 1

αj
)c = −uj and C = Bn

v = Bn
−uj . In Step 2, L =

CL = Bn
−ujBn

ujAn
uj+1 · · ·Bn

um−1An
um = An

uj+1 · · ·Bn
um−1An

um and w =

wC−1 = Bn
u1An

u2 · · ·An
uj−1Bn

uj . In Step 3, since L = An
uj+1 · · ·Bn

um−1An
um

6= I, return Step 1.

If j = m, then in Step 1 of the j = mth iteration, L = An
um and by

Theorem 4.5.1, in Step 2, L = CL = An
−umAn

um = I and w = wC−1 =

An
u1Bn

u2 · · ·Bn
um−1An

um . In Step 3, since L = I, the algorithm outputs

70

Bn
u1An

u2 · · ·Bn
um−1An

um as the Xn-representation of M and then the algo-

rithm terminates. ¤

Theorem 4.5.8 Let a matrix M = Bn
u1An

u2 · · ·Bn
um−1An

um ∈ Γn where

even m ≥ 2 and ui is a nonzero integer (i = 1, · · · ,m). If M is input to the

Xn-representation algorithm (z = 2), then the algorithm outputs ε.

Proof In Step 1 of the first iteration, if L = M = Bn
u1An

u2 · · ·Bn
um−1An

um

with even m ≥ 2, then L(2) = Bn
u1An

u2 · · ·Bn
um−1An

um(2) = Bn
u1(α1) =

α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2Bn

u3 · · ·Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0, Bn

um−1(0) = 0 and

An
um−2(0) = num−2 ∈ Dc. By Theorem 4.1.4, |L(2)| = |Bn

u1An
u2 · · ·Bn

um−1

An
um(2)| = |Bn

u1An
u2 · · ·An

um−2(0)| < 1. By Theorem 4.1.3, |α1| = |An
u2Bn

u3

· · ·Bn
um−1An

um(2)| = |An
u2Bn

u3 · · ·An
um−2(0)| > 1.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1, Bn

um−1(−1) =

−1
−num−1+1

∈ D. Put γ = Bn
um−1An

um(2) = Bn
um−1(−1) and then |γ| < 1.

Hence, by Theorem 4.1.4, |L(2)| = |Bn
u1An

u2 · · ·An
um−2Bn

um−1An
um(2)| =

|Bn
u1An

u2 · · ·An
um−2(γ)| < 1. By Theorem 4.1.3, |α1| = |An

u2 · · ·Bn
um−1An

um

(2)| = |An
u2Bn

u3 · · ·An
um−2(γ)| > 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then An
um(2) =

num + 2 ∈ Dc. by Theorem 4.1.6, |L(2)| = |Bn
u1An

u2 · · ·Bn
um−1An

um(2)| =

|Bn
u1An

u2 · · ·Bn
um−1(num+2)| < 1. By Theorem 4.1.5, |α1| = |An

u2 · · ·Bn
um−1

An
um(2)| = |An

u2 · · ·Bn
um−1(num + 2)| > 1.

Therefore, in all cases, as −1 < 1
α1

< 1 and 0 < 1
n
(1 − 1

α1
) < 2

n
≤ 1, v =

71

b −1
nL(2)

+ 1
n
c = b −1

n 1

nu1+ 1
α1

+ 1
n
c = b−u1+

1
n
(1− 1

α1
)c = b−u1+

1
n
(1− 1

α1
)c = −u1 and

C = Bn
v = Bn

−u1 . In Step 2, L = CL = Bn
−u1Bn

u1An
u2 · · ·Bn

um−1An
um =

An
u2 · · ·Bn

um−1An
um and w = wC−1 = Bn

u1 . In Step 3, since L 6= I, return

Step 1.

Suppose that for 1 < j < m − 1, L = An
ujBn

uj+1 · · ·Bn
um−1An

um with

odd j and w = An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j − 1th iteration or

L = Bn
ujAn

uj+1 · · ·Bn
um−1An

um with even j and w = Bn
u1An

u2 · · ·An
uj−1 in

Step 2 of the j − 1th iteration.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·Bn
um−1An

um with even

j, then L(2) = An
ujBn

uj+1 · · ·Bn
um−1An

um(2) = An
uj(βj) = nuj + βj where

βj = Bn
uj+1 · · ·Bn

um−1An
um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0, Bn

um−1(0) = 0 and

An
um−2(0) = num−2 ∈ Dc. By Theorem 4.1.3, |L(2)| = |An

ujBn
uj+1 · · ·Bn

um−1

An
um(2)| = |An

ujBn
uj+1 · · ·Bn

um−3An
um−2(0)| > 1 and by Theorem 4.1.4,

|βj| = |Bn
uj+1 · · ·Bn

um−1An
um(2)| = |Bn

uj+1 · · ·An
um−2(0)| < 1.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1, Bn

um−1(−1) =

−1
−num−1+1

∈ D. Put γ = Bn
um−1An

um(2) = Bn
um−1(−1) and then |γ| < 1.

By Theorem 4.1.3, L(2) = An
u1Bn

u2 · · ·An
um−2(γ) ∈ Dc and |L(2)| > 1. By

Theorem 4.1.4, |β| = |Bn
uj+1 · · ·Bn

um−1An
um(2)| = |Bn

uj+1 · · ·An
um−2(γ)| < 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then An
um(2) =

num + 2 ∈ Dc, by Theorem 4.1.5, |L(2)| = |An
ujBn

uj+1 · · ·Bn
um−1An

um(2)| =

|An
ujBn

uj+1 · · ·Bn
um−1(num+2)| > 1. By Theorem 4.1.6, |β| = |Bn

uj+1An
uj+2 · · ·

Bn
um−1An

um(2)| = |Bn
uj+1 · · ·Bn

um−1(num + 2)| < 1.

72

Therefore, in all cases, |L(2)| = |An
ujBn

uj+1 · · ·Bn
um−1An

um(2)| > 1 and |βj| =
|Bn

uj+1 · · ·Bn
um−1An

um(2)| < 1. In Step 1 of the jth iteration, as −1 < βj < 1

and 0 <
1−βj

n
< 2

n
≤ 1, v = b1−L(2)

n
c = b1−nuj−βj

n
c = b−uj +

1−βj

n
c = −uj

and C = An
−uj . In Step 2, L = CL = An

−ujAn
ujBn

uj+1 · · ·Bn
um−1An

um =

Bn
uj+1 · · ·Bn

um−1An
um and w = wC−1 = Bn

u1An
u2 · · ·Bn

uj−1An
uj . In Step 3,

as L 6= I, return Step 1.

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·Bn
um−1An

um with odd

j, then L(2) = Bn
ujAn

uj+1 · · ·Bn
um−1An

um(2) = Bn
uj(αj) =

αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1Bn

uj+2 · · ·Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0, Bn

um−1(0) = 0 and

An
um−2(0) = num−2 ∈ Dc. By Theorem 4.1.4, |L(2)| = |Bn

ujAn
uj+1 · · ·Bn

um−1

An
um(2)| = |Bn

ujAn
uj+1 · · ·An

um−2(0)| < 1. By Theorem 4.1.3, |αj| = |An
uj+1

Bn
uj+2 · · ·Bn

um−1An
um(2)| = |An

uj+1Bn
uj+2 · · ·An

um−2(0)| > 1.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1, Bn

um−1(−1) =

−1
−num−1+1

∈ D. Put γ = Bn
um−1An

um(2) = Bn
um−1(−1) and then |γ| < 1.

Hence, by Theorem 4.1.4, |L(2)| = |Bn
ujAn

uj+1 · · ·An
um−2Bn

um−1An
um(2)| =

|Bn
ujAn

uj+1 · · ·An
um−2(γ)| < 1. By Theorem 4.1.3, |αj| = |An

uj+1 · · ·Bn
um−1

An
um(2)| = |An

uj+1Bn
uj+2 · · ·An

um−2(γ)| > 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then An
um(2) =

num + 2 ∈ Dc. by Theorem 4.1.6, |L(2)| = |Bn
ujAn

uj+1 · · ·Bn
um−1An

um(2)| =
|Bn

ujAn
uj+1 · · ·Bn

um−1(num + 2)| < 1. By Theorem 4.1.5, |αj| = |An
uj+1 · · ·

Bn
um−1An

um(2)| = |An
uj+1 · · ·Bn

um−1(num + 2)| > 1.

Therefore, in all cases, as −1 < 1
αj

< 1 and 0 < 1
n
(1 − 1

αj
) < 2

n
≤ 1, v =

73

b −1
nL(2)

+ 1
n
c = b −1

n 1

nuj+ 1
αj

+ 1
n
c = b−uj+

1
n
(1− 1

αj
)c = b−uj+

1
n
(1− 1

αj
)c = −uj and

C = Bn
v = Bn

−uj . In Step 2, L = CL = Bn
−ujBn

ujAn
uj+1 · · ·Bn

um−1An
um =

An
uj+1 · · ·Bn

um−1An
um and w = wC−1 = Bn

u1An
u2 · · ·An

uj−1Bn
uj . In Step 3,

since L 6= I, return Step 1.

If j = m − 1, then in Step 1 of the m − 1th iteration, L = Bn
um−1An

um

and L(2) = Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0,

so that L(2) = Bn
um−1An

um(2) = 0. Hence the algorithm outputs ε and then

the algorithm terminates.

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

−1
−num−1+1

∈ D, so that |L(2)| = |Bn
um−1An

um(2)| < 1. Hence v = b −1
nL(2)

+

1
n
c = b −1

n −1
−num−1+1

+ 1
n
c = b−um−1 + 2

n
c = −um−1 and C = Bn

v = Bn
−um−1 .

In Step 2, L = CL = Bn
−um−1Bn

um−1An
um = An

um and w = wC−1 =

Bn
u1An

u2 · · ·An
um−2Bn

um−1 . In Step 3, as L 6= I, return Step 1. Then in

Step 1 of the j = mth iteration, L = An
um and by Theorem 4.5.2, the Xn-

representation algorithm (z = 2) outputs ε and then the algorithm terminates.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then in Step 1

of the m − 1th iteration, L = Bn
um−1An

um . An
um(2) = num + 2 ∈ Dc and

by Lemma 4.1.2, Bn
um−1(num + 2) ∈ D. So L(2) = Bn

um−1An
um(2) ∈ D.

Since −1 < 1
num+2

< 1, 0 < 1 − 1
num+2

< 2 and 0 < 1
n
(1 − 1

num+2
) < 2

n
≤ 1,

v = b −1
nL(2)

+ 1
n
c = b −1

n num+2
num−1(num+2)+1

+ 1
n
c = b−um−1 + 1

n
(1− 1

num+2
)c = −um−1.

Hence C = Bn
v = Bn

−um−1 , in Step 2, L = CL = Bn
−um−1Bn

um−1An
um =

An
um and w = Bn

u1An
u2 · · ·An

um−2Bn
um−1 . In Step 3, as L 6= I, return Step

1. In Step 1 of the j = mth iteration, L = An
um and by Theorem 4.5.2, the

algorithm outputs ε. Thus the algorithm terminates. ¤

74

Theorem 4.5.9 Let a matrix M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn where

even m ≥ 2 and ui is a nonzero integer (i = 1, · · · ,m). If M is input to the

Xn-representation algorithm (z = 1
2
), then the algorithm outputs ε.

Proof If M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn with even m ≥ 2 and a

nonzero integer ui (i = 1, · · · ,m), then in Step 1 of the first iteration, L(1
2
) =

An
u1Bn

u2 · · ·An
um−1Bn

um(1
2
) = An

u1(β1) = nu1+β1 where β1 = Bn
u2 · · ·An

um−1

Bn
um(1

2
).

If n = 2 and um = −1, then by definition of linear fractional transformations,

Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 + ∞ = ∞ and Bn
um−2(∞) =

∞
num−2∞+1

= 1
num−2

∈ D. By Theorem 4.1.3, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um

(1
2
)| = |An

u1Bn
u2 · · ·An

um−3(1
num−2

)| = |An
u1(β1)| > 1 and by Theorem 4.1.4,

|β1| = |Bn
u2An

u3 · · ·An
um−1Bn

um(1
2
)| = |Bn

u2An
u3 · · ·An

um−3(1
num−2

)| < 1.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.5, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
)| =

|An
u1Bn

u2 · · ·Bn
um−2(num−1 − 1)| = |An

u1(β1)| > 1 and by Theorem 4.1.6,

|β1| = |Bn
u2 · · ·An

um−1Bn
um(1

2
)| = |Bn

u2An
u3 · · ·Bn

um−2(num−1 − 1)| < 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D. So by Theorem 4.1.3, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
)| =

|An
u1Bn

u2 · · ·An
um−1(1

num+2
)| = |An

u1(β1)| > 1 and by Theorem 4.1.4, |β1| =

|Bn
u2 · · ·An

um−1Bn
um(1

2
)| = |Bn

u2 · · ·An
um−1(1

num+2
)| < 1.

Therefore, in all cases, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
)| = |nu1+β1| > 1

and |β1| = |Bn
u2 · · ·An

um−1Bn
um(1

2
)| < 1. In Step 1 of the first iteration,

as −1 < β1 < 1 and 0 < 1−β1

n
< 2

n
≤ 1, v = b1−L(1

2
)

n
c = b1−nu1−β1

n
c =

75

b−u1 + 1−β1

n
c = −u1 and C = An

v = An
−u1 . In Step 2, L = CL =

An
−u1An

u1Bn
u2 · · ·An

um−1Bn
um = Bn

u2 · · ·An
um−1Bn

um and w = wC−1 =

An
u1 . In Step 3, since L 6= I, return Step 1.

Suppose that for 1 < j < m − 2, L = An
ujBn

uj−1 · · ·An
um−1Bn

um and w =

An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j−1th iteration or L = Bn

ujAn
uj−1 · · ·An

um−1

Bn
um and w = An

u1Bn
u2 · · ·An

uj−1 in Step 2 of the j − 1th iteration.

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·An
um−1Bn

um with even

j, then L(1
2
) = Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
) = Bn

uj(αj) =
αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. By Theorem 4.1.4,

|L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |Bn

ujAn
uj+1 · · ·An

um−3(1
num−2

)| =

|Bn
uj(αj)| < 1. By Theorem 4.1.3, |αj| = |An

uj+1Bn
uj+2 · · ·An

um−1Bn
um(1

2
)| =

|An
uj+1Bn

uj+2 · · ·An
um−3(1

num−2
)| > 1.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.6, |L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
ujAn

uj+1 · · ·Bn
um−2(num−1 − 1)| = |Bn

uj(αj)| < 1 and by Theorem 4.1.5,

|αj| = |An
uj+1 · · ·An

um−1Bn
um(1

2
)| = |An

uj+1Bn
uj+2 · · ·Bn

um−2(num−1−1)| > 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D. So by Theorem 4.1.4, |L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
ujAn

uj+1 · · ·An
um−1(1

num+2
)| = |Bn

uj(αj)| < 1 and by Theorem 4.1.3, |αj| =
|An

uj+1Bn
uj+2 · · ·An

um−1Bn
um(1

2
)| = |An

uj+1Bn
uj+2 · · ·An

um−1(1
num+2

)| > 1.

Therefore, in all cases, |L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |Bn

uj(αj)| <

76

1 and |αj| = |An
uj+1Bn

uj+2 · · ·An
um−1Bn

um(1
2
)| > 1. In Step 1 of the jth it-

eration, since −1 < 1
αj

< 1 and 0 < 1
n
(1 − 1

αj
) < 2

n
≤ 1, v = b −1

nL(1
2
)
+ 1

n
c =

b −1
n 1

nuj+ 1
αj

+ 1
n
c = b−uj + 1

n
(1 − 1

αj
)c = −uj and C = Bn

v = Bn
−uj . In

Step 2, L = CL = Bn
−ujBn

ujAn
uj+1 · · ·An

um−1Bn
um = An

uj+1 · · ·An
um−1Bn

um

and w = wC−1 = An
u1Bn

u2 · · ·An
uj−1Bn

uj . In Step 3, as L 6= I, return Step 1.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·An
um−1Bn

um with odd

j, then L(1
2
) = An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
) = An

uj(βj) = nuj + βj where

βj = Bn
uj+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. By Theorem 4.1.3,

|L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |An

ujBn
uj+1 · · ·An

um−3(1
num−2

)| =

|An
uj(βj)| = |nuj + βj| > 1 and by Theorem 4.1.4, |βj| = |Bn

uj+1An
uj+2 · · ·

An
um−1Bn

um(1
2
)| = |Bn

uj+1An
uj+2 · · ·An

um−3(1
num−2

)| < 1.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.5, |L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|An
ujBn

uj+1 · · ·Bn
um−2(num−1 − 1)| = |nuj + βj| > 1 and by Theorem 4.1.6,

|βj| = |Bn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |Bn

uj+1An
uj+2 · · ·Bn

um−2(num−1−1)| < 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D. So by Theorem 4.1.3, |L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|An
ujBn

uj+1 · · ·An
um−1(1

num+2
)| > 1 and by Theorem 4.1.4, |βj| = |Bn

uj+1An
uj+2

· · ·An
um−1Bn

um(1
2
)| = |Bn

uj+1An
uj+2 · · ·An

um−1(1
num+2

)| < 1.

Therefore, in all cases, |L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |An

uj(βj)| =
|nuj + βj| > 1 and |βj| = |Bn

uj+1An
uj+2 · · ·An

um−1Bn
um(1

2
)| < 1. In Step

1 of the jth iteration, since −1 < βj < 1 and 0 <
1−βj

n
< 2

n
≤ 1, v =

77

b1−L(1
2
)

n
c = b1−nuj−βj

n
c = b−uj +

1−βj

n
c = −uj and C = An

v = An
−uj . In Step

2, L = CL = An
−ujAn

ujBn
uj+1 · · ·An

um−1Bn
um = Bn

uj+1 · · ·An
um−1Bn

um and

w = wC−1 = An
u1Bn

u2 · · ·Bn
uj−1An

uj . In Step 3, since L 6= I, return Step 1.

If j = m − 2, then L = Bn
um−2An

um−1Bn
um and w = An

u1Bn
u2 · · ·An

um−3

in Step 2 of the m− 3th iteration and consider L(1
2
) = Bn

um−2An
um−1Bn

um(1
2
)

in Step 1 of m− 2th iteration as follows :

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. So |L(1

2
)| = |Bn

um−2An
um−1

Bn
um(1

2
)| = | 1

num−2
| < 1

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1, An

um−1(−1) = num−1 −
1 ∈ Dc and Bn

um−2(num−1 − 1) = num−1

(num−1−1)num−2+1
= 1

num−2+ 1
num−1−1

∈ D. So

|L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
)| < 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D and by Theorem 4.1.4, |L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
)| = |Bn

um−2

An
um−1(1

num+2
)| < 1.

Therefore, in all cases, |L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
)| < 1.

In Step 1 of the m − 2th iteration, v = b −1
nL(1

2
)

+ 1
n
c = b −1

n 1
num−2

+ 1
n
c =

b−um−2 + 1
n
c = −um−2 and C = Bn

v = Bn
−um−2 . In Step 2, L = CL =

Bn
−um−2Bn

um−2An
um−1Bn

um = An
um−1Bn

um and w = wC−1 = An
u1Bn

u2 · · ·
Bn

um−2 . In Step 3, as L 6= I, return Step 1.

If j = m − 1, then L = An
um−1Bn

um in Step 1 of the m − 1th iteration

and consider L(1
2
) = An

um−1Bn
um(1

2
).

78

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞ and An

um−1(∞) =

num−1 +∞ = ∞. So L(1
2
) = An

um−1Bn
um(1

2
) = ∞ and the algorithm outputs

ε. Then the algorithm terminates.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1 − 1 ∈ Dc. So |L(1
2
)| = |An

um−1Bn
um(1

2
)| = |num−1 − 1| > 1. Thus v =

b1−L(1
2
)

n
c = b−um−1 + 2

n
c = −um−1 and C = An

v = An
−um−1 . In Step 2, L =

CL = An
−um−1An

um−1Bn
um = Bn

um and w = An
u1Bn

u2 · · ·Bn
um−2An

um−1 . In

Step 3, as L 6= I, return Step 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D and by Lemma 4.1.1, |L(1
2
)| = |An

um−1Bn
um(1

2
)| = |L(1

2
)| =

|An
um−1(1

num+2
)| = |num−1+

1
num+2

| > 1. Hence v = b1−L(1
2
)

n
c = b1−num−1− 1

num+2

n
c

= b−um−1 + 1
n
(1− 1

num+2
)c = −um−1 and C = An

v = An
−um−1 . In Step 2, L =

CL = An
−um−1An

um−1Bn
um = Bn

um and w = An
u1Bn

u2 · · ·Bn
um−2An

um−1 . In

Step 3, as L 6= I, return Step 1. If j = m, then L = Bn
um in Step 1 of the

mth iteration. By Theorem 4.5.3, the Xn-representation algorithm outputs ε

and then the algorithm terminates. ¤

Theorem 4.5.10 Let a matrix M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn where

even m ≥ 2 and ui is a nonzero integer (i = 1, · · · ,m). If M is input to the

Xn-representation algorithm (z = 2), then the algorithm outputs An
u1Bn

u2 · · ·
An

um−1Bn
um as the Xn-representation of M .

Proof Let M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn with even m ≥ 2 and

nonzero integer ui (i = 1, · · · ,m). In Step 1 of the first iteration, L(2) =

An
u1Bn

u2 · · ·An
um−1Bn

um(2) = An
u1(β1) = nu1+β1 where β1 = Bn

u2 · · ·An
um−1

Bn
um(2). By Theorem 4.1.5, |L(2)| = |Au1

n Bn
u2 · · ·An

um−1Bn
um(2)| > 1 and

79

by Theorem 4.1.6, |β1| = |Bn
u2 · · ·An

um−1Bn
um(2)| < 1. Since −1 < β1 < 1

and 0 < 1−β1

n
< 2

n
≤ 1, v = b1−L(2)

n
c = b1−nu1−β1

n
c = b−u1 + 1−β1

n
c = −u1 and

C = An
v = An

−u1 . In Step 2, L = CL = An
−u1An

u1Bn
u2 · · ·An

um−1Bn
um =

Bn
u2 · · ·An

um−1Bn
um . In Step 3, as L 6= I, return Step 1.

Assume that for 1 < j < m, L = An
ujBn

uj+1 · · ·An
um−1Bn

um and w =

An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j−1th iteration or L = Bn

ujAn
uj−1 · · ·An

um−1

Bn
um and w = An

u1Bn
u2 · · ·An

uj−1 in Step 2 of the j − 1th iteration,.

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·An
um−1Bn

um with even

j, then L(2) = Bn
ujAn

uj+1 · · ·An
um−1Bn

um(2) = Bn
uj(αj) =

αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1 · · ·An

um−1Bn
um(2). By Theorem 4.1.6, |L(2)| = |Bn

ujAn
uj+1

· · ·An
um−1Bn

um(2)| < 1 and by Theorem 4.1.5, |αj| = |An
uj+1 · · ·An

um−1Bn
um

(2)| > 1. Since −1 < 1
αj

< 1 and 0 < 1
n
(1 − 1

αj
) < n

2
≤ 1, v = b −1

nL(2)
+ 1

n
c =

b −1
n 1

nuj+ 1
αj

+ 1
n
c = b−uj + 1

n
(1 − 1

αj
)c = −uj and C = Bn

v = Bn
−uj . In Step

2, L = CL = Bn
−ujBn

ujAn
uj+1 · · ·An

um−1Bn
um = An

uj+1 · · ·An
um−1Bn

um and

w = wC−1 = An
u1Bn

u2 · · ·An
uj−1Bn

uj . In Step 3, since L 6= I, return Step 1.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·An
um−1Bn

um with odd

j, then L(2) = nuj + βj where βj = Bn
uj+1 · · ·An

um−1Bn
um(2). By Theorem

4.1.5, |L(2)| = |An
ujBn

uj+1 · · ·An
um−1Bn

um(2)| > 1 and by Theorem 4.1.6,

|βj| = |Bn
uj+1 · · ·An

um−1Bn
um(2)| < 1. Since−1 < βj < 1 and 0 <

1−βj

n
< 2

n
≤

1, v = b1−L(2)
n

c = b1−nuj−βj

n
c = b−uj +

1−βj

n
c = −uj and C = An

v = An
−uj . In

Step 2, L = CL = An
−ujAn

ujBn
uj+1 · · ·An

um−1Bn
um = Bn

uj+1 · · ·An
um−1Bn

um

and w = wC−1 = An
u1Bn

u2 · · ·Bn
uj−1An

uj . In Step 3, as L 6= I, return Step 1.

In the j = mth iteration, L = Bn
um and by Lemma 4.1.2 and Theorem

4.5.4, |L(2)| = |Bn
um(2)| < 1, v = −um and C = Bn

v = Bn
−um in Step

80

1 of mth iteration. In Step 2, L = CL = Bn
−umBn

um = I and w =

wC−1 = An
u1Bn

u2 · · ·An
um−1Bn

um . In Step 3, as L = I, the algorithm out-

puts An
u1Bn

u2 · · ·An
um−1Bn

um as the Xn-representation of M and then the

algorithm terminates. ¤

Theorem 4.5.11 Let a matrix M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn where

odd m ≥ 3 and ui is a nonzero integer (i = 1, · · · ,m). If M is input to the

Xn-representation algorithm (z = 1
2
), then the algorithm outputs ε.

Proof Let M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn with odd m ≥ 3 and

nonzero integer ui (i = 1, · · · , m). Then in Step 1 of the first iteration, L =

M = Bn
u1An

u2 · · ·An
um−1Bn

um and L(1
2
) = Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
) =

Bn
u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. By Theorem 4.1.4,

|L(1
2
)| = |Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
)| = |Bn

u1An
u2 · · ·An

um−3(1
num−2

)| = |Bn
u1

(α1)| < 1. By Theorem 4.1.3, |αj| = |An
u2Bn

u3 · · ·An
um−1Bn

um(1
2
)| = |An

u2Bn
u3

· · ·An
um−3(1

num−2
)| > 1.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.6, |L(1
2
)| = |Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
)| =

|Bn
u1An

u2 · · ·Bn
um−2(num−1 − 1)| = |Bn

u1(α1)| < 1 and by Theorem 4.1.5,

|α1| = |An
u2 · · ·An

um−1Bn
um(1

2
)| = |An

u2Bn
u3 · · ·Bn

um−2(num−1 − 1)| > 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D. So by Theorem 4.1.4, |L(1
2
)| = |Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
)| =

|Bn
u1An

u2 · · ·An
um−1(1

num+2
)| = |Bn

u1(α1)| < 1 and by Theorem 4.1.3, |α1| =

|An
u2Bn

u3 · · ·An
um−1Bn

um(1
2
)| = |An

u2Bn
u3 · · ·An

um−1(1
num+2

)| > 1.

81

Therefore, in all cases, |L(1
2
)| = |Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
)| = |Bn

u1(α1)| <
1 and |α1| = |An

u2Bn
u3 · · ·An

um−1Bn
um(1

2
)| > 1.

In Step 1 of the first iteration, since −1 < 1
α1

< 1 and 0 < 1
n
(1 − 1

α1
) <

2
n
≤ 1, v = b −1

nL(1
2
)
+ 1

n
c = b −1

n 1

nu1+ 1
α1

+ 1
n
c = b−u1 + 1

n
(1 − 1

α1
)c = −u1 and

C = Bn
v = Bn

−u1 . In Step 2, L = CL = Bn
−u1Bn

u1An
u2 · · ·An

um−1Bn
um =

An
u2 · · ·An

um−1Bn
um and w = wC−1 = Bn

u1 . In Step 3, as L 6= I, return Step

1.

Suppose that for 1 < j < m − 2, L = An
ujBn

uj−1 · · ·An
um−1Bn

um and w =

Bn
u1An

u2 · · ·Bn
uj−1 in Step 2 of the j−1th iteration or L = Bn

ujAn
uj−1 · · ·An

um−1

Bn
um and w = Bn

u1An
u2 · · ·An

uj−1 in Step 2 of the j − 1th iteration.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·An
um−1Bn

um even j,

then L(1
2
) = An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
) = An

uj(βj) = nuj + βj where

βj = Bn
uj+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. By Theorem 4.1.3,

|L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |An

ujBn
uj+1 · · ·An

um−3(1
num−2

)| =

|An
uj(βj)| = |nuj+βj| > 1 and by Theorem 4.1.4, |βj| = |Bn

uj+1An
uj+2 · · ·An

um−1

Bn
um(1

2
)| = |Bn

uj+1An
uj+2 · · ·An

um−3(1
num−2

)| < 1.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.5, |L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|An
ujBn

uj+1 · · ·Bn
um−2(num−1 − 1)| = |nuj + βj| > 1 and by Theorem 4.1.6,

|βj| = |Bn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |Bn

uj+1An
uj+2 · · ·Bn

um−2(num−1−1)| < 1.

82

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D. So by Theorem 4.1.3, |L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|An
ujBn

uj+1 · · ·An
um−1(1

num+2
)| > 1 and by Theorem 4.1.4, |βj| = |Bn

uj+1An
uj+2

· · ·An
um−1Bn

um(1
2
)| = |Bn

uj+1An
uj+2 · · ·An

um−1(1
num+2

)| < 1.

Therefore, in all cases, |L(1
2
)| = |An

ujBn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |An

uj(βj)| =
|nuj + βj| > 1 and |βj| = |Bn

uj+1An
uj+2 · · ·An

um−1Bn
um(1

2
)| < 1.

In Step 1 of the jth iteration, since −1 < βj < 1 and 0 <
1−βj

n
< 2

n
≤ 1,

v = b1−L(1
2
)

n
c = b1−nuj−βj

n
c = b−uj +

1−βj

n
c = −uj and C = An

v = An
−uj . In

Step 2, L = CL = An
−ujAn

ujBn
uj+1 · · ·An

um−1Bn
um = Bn

uj+1 · · ·An
um−1Bn

um

and w = wC−1 = Bn
u1An

u2 · · ·Bn
uj−1An

uj . In Step 3, since L 6= I, return

Step 1.

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·An
um−1Bn

um with odd

j, then L(1
2
) = Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
) = Bn

uj(αj) =
αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. By Theorem 4.1.4,

|L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |Bn

ujAn
uj+1 · · ·An

um−3(1
num−2

)| =

|Bn
uj(αj)| < 1. By Theorem 4.1.3, |αj| = |An

uj+1Bn
uj+2 · · ·An

um−1Bn
um(1

2
)| =

|An
uj+1Bn

uj+2 · · ·An
um−3(1

num−2
)| > 1.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.6, |L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
ujAn

uj+1 · · ·Bn
um−2(num−1 − 1)| = |Bn

uj(αj)| < 1 and by Theorem 4.1.5,

|αj| = |An
uj+1 · · ·An

um−1Bn
um(1

2
)| = |An

uj+1Bn
uj+2 · · ·Bn

um−2(num−1−1)| > 1.

83

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D. So by Theorem 4.1.4, |L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
ujAn

uj+1 · · ·An
um−1(1

num+2
)| = |Bn

uj(αj)| < 1 and by Theorem 4.1.3, |αj| =
|An

uj+1Bn
uj+2 · · ·An

um−1Bn
um(1

2
)| = |An

uj+1Bn
uj+2 · · ·An

um−1(1
num+2

)| > 1.

Therefore, in all cases, |L(1
2
)| = |Bn

ujAn
uj+1 · · ·An

um−1Bn
um(1

2
)| = |Bn

uj(αj)| <
1 and |αj| = |An

uj+1Bn
uj+2 · · ·An

um−1Bn
um(1

2
)| > 1. In Step 1 of the jth it-

eration, since −1 < 1
αj

< 1 and 0 < 1
n
(1 − 1

αj
) < 2

n
≤ 1, v = b −1

nL(1
2
)
+ 1

n
c =

b −1
n 1

nuj+ 1
αj

+ 1
n
c = b−uj + 1

n
(1 − 1

αj
)c = −uj and C = Bn

v = Bn
−uj . In

Step 2, L = CL = Bn
−ujBn

ujAn
uj+1 · · ·An

um−1Bn
um = An

uj+1 · · ·An
um−1Bn

um

and w = wC−1 = Bn
u1An

u2 · · ·An
uj−1Bn

uj . In Step 3, as L 6= I, return Step 1.

If j = m − 2, then L = Bn
um−2An

um−1Bn
um and w = An

u1Bn
u2 · · ·An

um−3

in Step 2 of the m− 3th iteration and consider L(1
2
) = Bn

um−2An
um−1Bn

um(1
2
)

in Step 1 of m− 2th iteration as follows :

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞, An

um−1(∞) = num−1 +

∞ = ∞ and Bn
um−2(∞) = ∞

num−2∞+1
= 1

num−2
∈ D. So |L(1

2
)| = |Bn

um−2An
um−1

Bn
um(1

2
)| = | 1

num−2
| < 1

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1, An

um−1(−1) = num−1 −
1 ∈ Dc and Bn

um−2(num−1 − 1) = num−1

(num−1−1)num−2+1
= 1

num−2+ 1
num−1−1

∈ D. So

|L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
)| < 1.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D and by Theorem 4.1.4, |L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
)| = |Bn

um−2

An
um−1(1

num+2
)| < 1.

Therefore, in all cases, |L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
)| < 1.

84

In Step 1 of the m − 2th iteration, v = b −1
nL(1

2
)

+ 1
n
c = b −1

n 1
num−2

+ 1
n
c =

b−um−2 + 1
n
c = −um−2 and C = Bn

v = Bn
−um−2 . In Step 2, L = CL =

Bn
−um−2Bn

um−2An
um−1Bn

um = An
um−1Bn

um and w = wC−1 = An
u1Bn

u2 · · ·
Bn

um−2 . In Step 3, as L 6= I, return Step 1.

If j = m − 1, then L = An
um−1Bn

um in Step 1 of the m − 1th iteration

and consider L(1
2
) = An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) = 1

num+2
= ∞ and An

um−1(∞) =

num−1 +∞ = ∞. So L(1
2
) = An

um−1Bn
um(1

2
) = ∞ and the algorithm outputs

ε. Then the algorithm terminates.

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and An

um−1(−1) =

num−1 − 1 ∈ Dc. So |L(1
2
)| = |An

um−1Bn
um(1

2
)| = |num−1 − 1| > 1. Thus v =

b1−L(1
2
)

n
c = b−um−1 + 2

n
c = −um−1 and C = An

v = An
−um−1 . In Step 2, L =

CL = An
−um−1An

um−1Bn
um = Bn

um and w = An
u1Bn

u2 · · ·Bn
um−2An

um−1 . In

Step 3, as L 6= I, return Step 1. If j = m, then L = Bn
um in Step 1 of the

mth iteration. By Theorem 4.5.3, the Xn-representation algorithm outputs ε

and then the algorithm terminates.

If neither n = 2 and um = −1 nor n = 3 and um = −1, then Bn
um(1

2
) =

1
num+2

∈ D and by Lemma 4.1.1, |L(1
2
)| = |An

um−1Bn
um(1

2
)| = |L(1

2
)| =

|An
um−1(1

num+2
)| = |num−1+

1
num+2

| > 1. Hence v = b1−L(1
2
)

n
c = b1−num−1− 1

num+2

n
c

= b−um−1 + 1
n
(1− 1

num+2
)c = −um−1 and C = An

v = An
−um−1 . In Step 2, L =

CL = An
−um−1An

um−1Bn
um = Bn

um and w = Bn
u1An

u2 · · ·Bn
um−2An

um−1 . In

Step 3, as L 6= I, return Step 1. If j = m, then L = Bn
um in Step 1 of the

mth iteration. By Theorem 4.5.3, the Xn-representation algorithm outputs ε

and then the algorithm terminates. ¤

85

Theorem 4.5.12 Let a matrix M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn where

odd m ≥ 3 and ui is a nonzero integer (i = 1, · · · ,m). If M is input to the

Xn-representation algorithm (z = 2), then the algorithm outputs Bn
u1An

u2

· · ·An
um−1Bn

um as the Xn-representation of M .

Proof Let M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn with odd m ≥ 3 and

nonzero integer ui (i = 1, · · · , m). Then in Step 1 of the first iteration, L =

M = Bn
u1An

u2 · · ·An
um−1Bn

um and L(2) = Bn
u1An

u2 · · ·An
um−1Bn

um(2) =

Bn
u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·An

um−1Bn
um(2). By Theo-

rem 4.1.6, |L(2)| = |Bn
u1An

u2 · · ·An
um−1Bn

um(2)| < 1 and by Theorem 4.1.5,

|α1| = |An
u2 · · ·An

um−1Bn
um(2)| > 1. Since −1 < 1

α1
< 1 and 0 < 1

n
(1− 1

α1
) <

n
2
≤ 1, v = b −1

nL(2)
+ 1

n
c = b −1

n 1

nu1+ 1
α1

+ 1
n
c = b−u1 + 1

n
(1 − 1

α1
)c = −u1 and

C = Bn
v = Bn

−u1 . In Step 2, L = CL = Bn
−u1Bn

u1An
u2 · · ·An

um−1Bn
um =

An
u2 · · ·An

um−1Bn
um and w = wC−1 = Bn

u1 . In Step 3, since L 6= I, return

Step 1.

Assume that for 1 < j < m, L = An
ujBn

uj+1 · · ·An
um−1Bn

um and w =

An
u1Bn

u2 · · ·Bn
uj−1 in Step 2 of the j−1th iteration or L = Bn

ujAn
uj−1 · · ·An

um−1

Bn
um and w = An

u1Bn
u2 · · ·An

uj−1 in Step 2 of the j − 1th iteration,.

In Step 1 of the jth iteration, if L = An
ujBn

uj+1 · · ·An
um−1Bn

um with even

j, then L(2) = nuj + βj where βj = Bn
uj+1 · · ·An

um−1Bn
um(2). By Theorem

4.1.5, |L(2)| = |An
ujBn

uj+1 · · ·An
um−1Bn

um(2)| > 1 and by Theorem 4.1.6,

|βj| = |Bn
uj+1 · · ·An

um−1Bn
um(2)| < 1. Since−1 < βj < 1 and 0 <

1−βj

n
< 2

n
≤

1, v = b1−L(2)
n

c = b1−nuj−βj

n
c = b−uj +

1−βj

n
c = −uj and C = An

v = An
−uj . In

Step 2, L = CL = An
−ujAn

ujBn
uj+1 · · ·An

um−1Bn
um = Bn

uj+1 · · ·An
um−1Bn

um

and w = wC−1 = Bn
u1An

u2 · · ·Bn
uj−1An

uj . In Step 3, as L 6= I, return Step 1.

86

In Step 1 of the jth iteration, if L = Bn
ujAn

uj+1 · · ·An
um−1Bn

um with odd

j, then L(2) = Bn
ujAn

uj+1 · · ·An
um−1Bn

um(2) = Bn
uj(αj) =

αj

αjnuj+1
= 1

nuj+
1

αj

where αj = An
uj+1 · · ·An

um−1Bn
um(2). By Theorem 4.1.6, |L(2)| = |Bn

ujAn
uj+1

· · ·An
um−1Bn

um(2)| < 1 and by Theorem 4.1.5, |αj| = |An
uj+1 · · ·An

um−1Bn
um(2)|

> 1. Since −1 < 1
αj

< 1 and 0 < 1
n
(1 − 1

αj
) < n

2
≤ 1, v = b −1

nL(2)
+ 1

n
c =

b −1
n 1

nuj+ 1
αj

+ 1
n
c = b−uj + 1

n
(1 − 1

αj
)c = −uj and C = Bn

v = Bn
−uj . In Step

2, L = CL = Bn
−ujBn

ujAn
uj+1 · · ·An

um−1Bn
um = An

uj+1 · · ·An
um−1Bn

um and

w = wC−1 = Bn
u1An

u2 · · ·An
uj−1Bn

uj . In Step 3, since L 6= I, return Step 1.

In the j = mth iteration, L = Bn
um and by Lemma 4.1.2 and Theorem

4.5.4, |L(2)| = |Bn
um(2)| < 1, v = −um and C = Bn

v = Bn
−um in Step

1 of mth iteration. In Step 2, L = CL = Bn
−umBn

um = I and w =

wC−1 = An
u1Bn

u2 · · ·An
um−1Bn

um . In Step 3, as L = I, the algorithm out-

puts Bn
u1An

u2 · · ·An
um−1Bn

um as the Xn-representation of M and then the

algorithm terminates. ¤

87

Chapter 5

X(n, S)-Representation
Algorithm

Let n ≥ 2 be a natural number and S be an ordered set of integers, where

S = {s1, s2, · · · , st}. For each si ∈ S, define a matrix Mi ∈ SL2(Z) by

Mi = An
−siBnAn

si

and define

X(n, S) = {M1,M2, · · · ,Mt}.

G(n, S) = 〈M1,M2, · · · ,Mt〉. Then it is proved that X(n, S) is a free basis in

Section 5.1 and G(n, S) is a free group, freely generated by {M1,M2, · · · ,Mt}.
Thus every element of G(n, S) can be represented by elements of X(n, S)± and

it is called the X(n, S)-representation. Since G(n, S) is a subgroup of Γn, ev-

ery element of G(n, S) has the Xn-representation as an element of Γn and

thus each element Mi has the Xn-representation An
−siBnAn

si . In Chapter 4,

given M ∈ Γn, it is shown that the Xn-representation algorithm computes

the Xn-representation of M . Further, the X(n, S)-representation algorithm

given by Grigoriev and Ponomarenko [7] computes the X(n, S)-representation

of an element M of G(n, S) as a reduced word in X(n, S)± when the Xn-

representation of M ∈ G(n, S) is provided. So, in this chapter, we consider

the X(n, S)-representation algorithm and the following sections are as follows.

88

In Section 5.1, we show that X(n, S) is a free generating set for G(n, S).

In Section 5.2, we analyze the X(n, S)-representation algorithm. In Section

5.3, we modify the X(n, S)-representation algorithm to makes it efficient. In

Section 5.4, we implement the modified X(n, S)-representation algorithm by

programming it. In Section 5.5, we justify the modified X(n, S)-representation

algorithm.

5.1 Free Basis X(n, S)

This section presents that X(n, S) is a free basis of G(n, S). Let F be a free

group with a generating set X and U = {ui | i ∈ N} be a subset of a free group

F . We introduce elementary Nielsen transformation on a set U = {ui | i ∈ N}
as follows: [14]

1. replace some ui by ui
−1

2. replace some ui by uiuj where j 6= i;

3. delete some ui where ui = 1

where 1 denotes the empty word. A product of such elementary transforma-

tions is called Nielsen transformation. If all triples v1, v2, v3 ∈ U± satisfy the

following conditions: [14]

1. v1 6= 1

2. v1v2 6= 1 implies |v1v2| ≥ |v1|, |v2|

3. v1v2 6= 1 and v2v3 6= 1 implies |v1v2v3| > |v1| − |v2|+ |v3|,

then U is called Nielsen reduced. The Nielsen reduced set plays an important

role as it is a free generating set for the subgroup that it generates. Therefore

we show that X(n, S) satisfies the three conditions to be Nielsen reduced in

89

the following.

Theorem 5.1.1 Given n ≥ 2 and a finite set S ⊂ Z, X(n, S) is Nielsen

reduced.

Proof Given Γn freely generated by two matrices An and Bn and X(n, S) ⊂
Γn, let v1 = An

−sBn
αAn

s, v2 = An
−tBn

βAn
t and v3 = An

−uBn
γAn

u ∈
X(n, S)± where α, β, γ ∈ {1,−1} and s, t, u ∈ S.

1. For v1 = An
−sBn

αAn
s, if s = 0, then v1 = Bn

α 6= 1 and if s 6= 0, then

|v1| = |An
−sBn

αAn
s| = 2|s|+ 1 6= 0 and so v1 6= 1.

2. For v1 = An
−sBn

αAn
s and v2 = An

−tBn
βAn

t, v1v2 = An
−sBn

αAn
s−t

Bn
βAn

t.

(Case 1) If s = t and α = β, then v1v2 = An
−sBn

αAn
s−tBn

βAn
t = An

−sBn
α+βAn

t

and |v1v2| = |An
−sBn

α+βAn
t| = 2|s|+ 2. Thus v1v2 6= 1 and as |v1| = 2|s|+ 1

and |v2| = 2|t|+ 1, |v1v2| ≥ |v1|, |v2|.

(Case 2) If s = t and α 6= β, then v1v2 = An
−sBn

αAn
s−tBn

βAn
t = I and

so v1v2 = 1. Hence, this case can not be considered.

(Case 3) If s 6= t and α = ±β, then v1v2 = An
−sBn

αAn
s−tBn

βAn
t and

|v1v2| = |s|+|t|+|s−t|+2 ≥ 2|s|+2 by the triangle inequality |t|+|s−t| ≥ |s|.
|v1v2| = |An

−sBn
αAn

s−tBn
βAn

t| = |s|+ |t|+ |s− t|+2 = |s|+ |t|+ |t−s|+2 ≥
2|t| + 2 by the triangle inequality |s| + |t − s| ≥ |t|. As |v1| = 2|s| + 1 and

|v2| = 2|t|+ 1, |v1v2| ≥ |v1|, |v2|.

3. For v1 = An
−sBn

αAn
s, v2 = An

−tBn
βAn

t and v3 = An
−uBn

γAn
u, v1v2v3 =

90

An
−sBn

αAn
sAn

−tBn
βAn

tAn
−uBn

γAn
u = An

−sBn
αAn

s−tBn
βAn

t−uBn
γAn

u.

(Case 1) If s = t, α = β, t = u and β = γ, then |v1v2v3| = |An
−sBn

αAn
s−tBn

β

An
t−uBn

γAn
u| = An

−sBn
α+β+γAn

u = 2|s|+3 and |v1|− |v2|+ |v3| = 2|s|+1−
2|t| − 1 + 2|u|+ 1 = 2|s|+ 1. Hence |v1v2v3| > |v1| − |v2|+ |v3|.

(Case 2) If s = t, α = β, t 6= u and β = ±γ, then |v1v2v3| = |An
−sBn

αAn
s−tBn

β

An
t−uBn

γAn
u| = |An

−sBn
α+βAn

t−uBn
γAn

u| = |s| + 2 + |t − u| + 1 + |u| =

|s|+2+ |s−u|+1+ |u| = |s|+2+ |u−s|+1+ |u| ≥ 2|u|+3 by the triangle in-

equality |s|+|u−s| ≥ u and |v1|−|v2|+|v3| = 2|s|+1−2|t|−1+2|u|+1 = 2|u|+1.

Thus |v1v2v3| > |v1| − |v2|+ |v3|.

(Case 3) If s 6= t, α = ±β, t = u and β = γ, then |v1v2v3| = |An
−sBn

αAn
s−tBn

β

An
t−uBn

γAn
u| = |An

−sBn
αAn

s−tBn
β+γAn

u| = |s| + 1 + |s − t| + 2 + |u| =

|s|+1+ |s−u|+2+ |u| ≥ 2|s|+3 by the triangle inequality |s−u|+ |u| ≥ |s|
and |v1| − |v2| + |v3| = 2|s| + 1 − 2|t| − 1 + 2|u| + 1 = 2|s| + 1. Hence

|v1v2v3| > |v1| − |v2|+ |v3|.

(Case 4) If s 6= t, α = ±β, t 6= u and β = ±γ, then |v1v2v3| = |An
−sBn

αAn
s−tBn

β

An
t−uBn

γAn
u| = |s| + 1 + |s − t| + 1 + |t − u| + 1 + |u| = |s| + |s − t| + |t −

u| + |u| + 3 ≥ |s| + |s| − |t| + |u| − |t| + |u| + 3 = 2|s| − 2|t| + 2|u| + 3 and

|v1| − |v2|+ |v3| = 2|s| − 2|t|+ 2|u|+ 1. Therefore |v1v2v3| > |v1| − |v2|+ |v3|.
¤

Theorem 5.1.2 [14] If F is a free group with a basis X and a subset Y of

F is Nielsen reduced and w = y1 · · · ym, (m ≥ 0), yi ∈ Y ± and all yiyi+1 6= 1,

then |w| ≥ m.

Theorem 5.1.3 [14] Let X be a subset of a group G such that X ∩X−1 6= ∅.

91

Then X is a basis for a free subgroup of G if and only if no product w =

x1 · · ·xn is trivial, where n ≥ 1, xi ∈ X±, and all xixi+1 6= 1.

Theorem 5.1.4 Given n ≥ 2 and a finite set S ⊂ Z, X(n, S) is a free

basis for G(n, S).

Proof By Theorem 5.1.1, X(n, S) is Nielsen reduced and we replace the

set Y in Theorem 5.1.2 by X(n, S). Then given w = w1 · · ·wm with m ≥ 0,

wi ∈ X(n, S)± and all wiwi+1 6= 1, |w| ≥ m and by Theorem 5.1.3 it is proven

that X(n, S) is a free basis for G(n, S).

5.2 Analysis of X(n, S)-Representation Algo-

rithm

We describe the X(n, S)-representation algorithm of Grigoriev and Pono-

marenko and we do analysis of the X(n, S)-representation algorithm. As

the X(n, S)-representation algorithm computes the X(n, S)-representation of

M ∈ G(n, S), we can do test the membership for a subgroup G(n, S) of Γn.

The algorithm takes the Xn-representation of g ∈ Γn as an input and it out-

puts (ig, wg) ∈ {0, 1}×WX(n,S) such that g ∈ G(n, S) if and only if ig = 1 and

wg is the X(n, S)-representation of g.

X(n, S)-Representation Algorithm

For a given g ∈ Γn,

Step 1 If g = 1Xn , then output (1, 1X(n,S)). Otherwise, let u = An
aBn

bAn
cu0

be the Xn-representation of g where a, b, c ∈ Z and u0 ∈ WXn

Step 2 If either −a /∈ S or (−a, b) ∈ S × {0}, then output (0, 1X(n,S)).

Otherwise set u = An
a+cu0.

92

Step 3 Recursively find (ih, wh) where h = ū. If ih = 0, then output (ih, wh).

Step 4 Output (1, wg) where wg = vwh with v = An
aBn

bAn
−a.

The idea is to obtain the form An
aBn

bAn
−a with −a ∈ S and a nonzero

integer b by setting u = An
aBn

bAn
cu0 with a, b, c ∈ Z and u0 ∈ WXn in Step

1. If the Xn-representation of g is the empty word 1Xn as an input, then the

X(n, S)-representation algorithm outputs a pair (1, 1X(n,S)). If −a ∈ S and

b 6= 0, then the algorithm sets u = An
a+cu0 in Step 2 and v = An

aBn
bAn

−a in

Step 4. If −a /∈ S or (−a, b) ∈ S×{0}, then the algorithm outputs (0, 1X(n,S))

in Step 2 and it means that g /∈ G(n, S). For instance, if g = An
u ∈ Γn, then

in Step 1, u = An
uBn

0An
0u0 where u0 = 1Xn ∈ WXn and the exponent of Bn

is 0. So the algorithm outputs a pair (0, 1X(n,S)).

In Step 3, for h = ū and |h| < |g|, the algorithm works recursively to find

the X(n, S)-representation of h. In order to compute (ih, wh), each iteration

repeats Step 1 and Step 2. Hence the number of iterations is at most the

number of terms of the Xn-representation of g. In Step 3, if ih = 0, then

output (ih, wh) = (0, 1Xn,S
). It means that h /∈ G(n, S) and so g /∈ G(n, S).

If (ig, wh) = (1, wh) in Step 3, then in Step 4, the algorithm concatenates

v = An
aBn

bAn
−a and wh and the algorithm outputs (1, wg) = (1, vwh) where

wh is the X(n, S)-representation of h.

5.3 Modified X(n, S)-Representation Algorithm

The purpose of this section is to make the X(n, S)-representation algorithm

practical and efficient for implementation. So we modify the X(n, S)-representation

93

algorithm of Grigoriev and Ponomarenko. We consider how the X(n, S)-

representation algorithm works according as concrete Xn-representations. For

a given element M ∈ G(n, S), let the Xn-representation of M be

An
u1Bn

u2An
u3Bn

u4 · · ·An
um−2Bn

um−1An
um

with m ≥ 3 and each nonzero ui (i = 1, · · · ,m). Then the X(n, S)-representation

of M is

An
−sa1Bn

u2An
sa1An

−sa2Bn
u4An

−sa2 · · ·An

sa m−3
2 An

−sa m−1
2 Bn

um−1An

sa m−1
2

where for i = 1, · · · m−1
2

, ai ∈ {1, · · · , t}, sai
∈ S, −u1 = sa1 , u2i−1 =

sai−1
− sai

(i ≥ 2), sai−1
6= sai

(i ≥ 2) and um = sa m−1
2

. Therefore, given the

Xn-representation An
u1Bn

u2 · · ·Bn
um−1An

um with m ≥ 3 and each nonzero

ui (i = 1, · · · , m), we have a formula m−1
2

for computing the number of

terms of the X(n, S)-representation of M . Moreover, the Xn-representation

An
u1Bn

u2 · · ·Bn
um−1An

um can be written as

An
u1Bn

u2An
−u1

An
u1+u3Bn

u4An
−(u1+u3)

An
u1+u3+u5Bn

u6An
−(u1+u3+u5)

An
u1+u3+u5+u7Bn

u8An
−(u1+u3+u5+u7)

...

An
u1+u3+u5+u7+···+u2i−1+···+um−2Bn

um−1An
−(u1+u3+u5+u7+···+u2i−1+···+um−2)

An
(u1+u3+u5+u7+···+u2i−1+···+um−2+um)

where the exponent of the last term An is um = −(u1 + u3 + u5 + u7 + · · · +
u2i−1 + · · ·+ um−2).

If we regard the description above as the X(n, S)-representation

An
−sa1Bn

u2An
sa1An

−sa2Bn
u4An

−sa2 · · ·An

sa m−3
2 An

−sa m−1
2 Bn

um−1An

sa m−1
2

94

of M , then we have the following

u1 = −sa1

u3 = sa1 − sa2

u5 = sa2 − sa3

...

u2i−1 = sai−1
− sai

...

um−2 = sa m−3
2

− sa m−1
2

um = sa m−1
2

and we restate it as follows :

sa1 = −u1

sa2 = −u1 − u3

sa3 = −u1 − u3 − u5

...

sai
= −u1 − u3 − u5 − · · · − u2i−1

...

sa m−1
2

= −u1 − u3 − u5 − · · · − um−2.

Therefore, we have an explicit formula

sai
= −(u1 + u3 + u5 + · · ·+ u2i−1)

to compute the X(n, S)-representation of M . So now we describe the modified

X(n, S)-representation algorithm.

Modified X(n, S)-Representation Algorithm

For odd m ≥ 3, let An
u1Bn

u2 · · ·Bn
um−1An

um be the Xn-representation of M as

an input to the modified X(n, S)-representation algorithm where u2, · · · , um−1

are nonzero integers.

95

Step 0

i ← 1.

w ← An
u1Bn

u2 · · ·Bn
um−1An

um

w = 1Xn ⇒ output 1X(n,S).

Step 1

ei ← −(u1 + u3 + u5 + · · ·+ u2i−1)

ei /∈ S ⇒ output ε.

ei ∈ S ⇒ Ci ← An
−eiBn

u2iAn
ei .

Step 2

w ← Ci
−1w

w = 1Xn ⇒ output C1C2 · · ·Ci.

Otherwise,

i ← i + 1

i = m+1
2 ⇒ output ε

return Step 1.

Now we explain how the X(n, S)-representation algorithm works. Assume

that the Xn-representation of M is given. Then the X(n, S)-representation

algorithm takes the Xn-representation

An
u1Bn

u2An
u3Bn

u4 · · ·An
um−2Bn

um−1An
um

as an input and outputs the X(n, S)-representation

An
u1Bn

u2An
−u1An

u1+u3Bn
u4An

−u1−u3 · · ·An
u1+u3+u5+···+um−2Bn

um−1An
−u1−u3−u5−···−um−2 .

We need to say something about what the input should be if the Xn-representation

of M is not the form An
u1Bn

u2 · · ·Bn
um−1An

um .

96

If the Xn-representation of M ∈ Γn is

Bn
v1An

v2 · · ·Bn
vp−1An

vp (even p),

then input the Xn-representation

An
u1Bn

u2An
u3 · · ·Bn

um−1An
um

to the X(n, S)-representation algorithm where u1 = 0 and ui = vi−1(i =

2, 3, · · · ,m = p + 1).

If the Xn-representation of M ∈ Γn is

An
v1Bn

v2 · · ·An
vp−1Bn

vp (even p),

then input the Xn-representation

An
u1Bn

u2 · · ·Bn
um−1An

m

to the X(n, S)-representation algorithm where ui = vi(i = 1, 2, · · · ,m−1 = p)

and um = 0.

If the Xn-representation of M ∈ Γn is

Bn
v1An

v2 · · ·An
vp−1Bn

vp (odd p),

then input the Xn-representation

An
u1Bn

u2 · · ·Bn
um−1An

m

to the X(n, S)-representation algorithm where u1 = 0, ui = vi−1(i = 2, · · · ,m−
1 = p + 1) and um = 0.

97

5.4 Programming Implementation

This section presents implementation of the modified X(n, S)-representation

algorithm. By using Maple version 6, we make a program. So we demonstrate

how the modified X(n, S)-representation algorithm works correctly. Input the

number m of terms of the Xn-representation An
u1Bn

u2 · · ·Bn
um−1An

um , the

exponents u1, u2, u3, · · · ,um−1 and um. Our implementation provides ad-

ditional intermediate outputs that verify the checks ei /∈ S and ei ∈ S in

Step 1. In Step 1 of each j = 1, · · · , t, the program outputs An
−eiBnAn

ei if

ei = sj and ε if ei /∈ sj. The total number of An
−siBnAn

si and ε output by

the program is tm−1
2

where t is the total number of elements of S and m is

the number of terms of the input Xn-representation of M . After execution of

the program, collect the subwords that appear as outputs of the program and

concatenate them in order. Next, we check whether the number of the terms

of the output X(n, S)-representation of the program is m−1
2

. If the number of

terms of the output X(n, S)-representation of M is m−1
2

, then M ∈ G(n, S)

and it is the correct X(n, S)-representation of M . If the number of terms of

the X(n, S)-representation of M is not m−1
2

, then M /∈ G(n, S) and so it is not

the X(n, S)-representation of M . We implement the following cases according

as the types of input Xn-representations.

Example 1

Given S = {2, 3} and X(n, S) = {A4
−2B4A4

2, A4
−3B4A4

3}, the X4-representation

of M =

(
1393 17088
−176 −2159

)
∈ Γ4 is A4

−2B4
3A4

−1B4A4
3 which is obtained by the

Xn-representation algorithm. Input m = 5 and the exponents u1 = −2, u2 =

3, u3 = −1, u4 = 1, u5 = 3 to the X(n, S)-representation program in the fol-

lowing.

98

> su:=proc()

> local i,e,m,s,u;

> m:=5;

> u[1] := −2;

> u[2] := 3;

> u[3] := −1;

> u[4] := 1;

> u[5] := 3;

> s[0] := 0;

> for i from 1 to (m− 1)/2 do

> s[i] := s[i− 1]− u[2 ∗ i− 1];

> if s[i] = 2 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 3 then

> print(A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

A−2B3A2

99

ε

ε

A−3B1A3

where A = A4 =

(
1 4
0 1

)
and B = B4 =

(
1 0
4 1

)
. For each iteration i of the

program, the program computes each term An
−sBn

u2iAn
s where s ∈ S and

nonzero u2i ∈ Z. Since two elements s = 2 and s = 3 of S are given in the

program, for every iteration i, the program produces two outputs and so the

total number of iterations is m−1
2

= 5−1
2

= 2. Therefore the total number of

outputs of the program is tm−1
2

where t is the number of elements of S. For the

first iteration i = 1 of the program, the program computes A−2B3A2 and the

second output of the first iteration i = 1 of the program is ε. For the second

iteration i = 2 of the program, the first output is ε and the second output is

A−3B1A3. In order to compute the X(n, S)-representation of M , collect the

X(n, S)-representations appear as outputs of the program and concatenate

them in order

A−2B3A2A−3B1A3.

This is the X(n, S)-representation of M obtained by the X(n, S)-representation

program. We check whether the number of terms of the X(n, S)-representation

of M is m−1
2

= 2 and it is the same as the number 2 of terms of the X(n, S)-

representation A−2B3A2︸ ︷︷ ︸ A−3B1A3︸ ︷︷ ︸ (2 terms) of M which is obtained from the

program. Therefore it is the correct X(n, S)-representation of M and so M is

an element of G(n, S).

Example 2

Given S = {2, 3, 5} and X(n, S) = {A4
−2B4A4

2, A4
−3B4A4

3, A4
−5B4A4

5}, the

100

X4-representation of M =

(−141951 −1666816
17932 210561

)
∈ Γ4 is A4

−2B4
3A4

−3B4
1

A4
2B4

−1A4
3 which is obtained by the Xn-representation algorithm. Input m =

7 and the exponents u1 = −2, u2 = 3, u3 = −3, u4 = 1, u5 = 2, u6 = −1, u7 = 3

to the X(n, S)-representation program in the following.

> su:=proc()

> local i,e,m,s,u;

> m := 7;

> u[1] := −2;

> u[2] := 3;

> u[3] := −3;

> u[4] := 1;

> u[5] := 2;

> u[6] := −1;

> u[7] = 3;

> s[0] := 0;

> for i from 1 to (m− 1)/2 do

> s[i] := s[i− 1]− u[2 ∗ i− 1];

> if s[i] = 2 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 3 then

> print(A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

101

> if s[i] = 5 then

> > print(A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

A−2B3A2

ε

ε

ε

ε

A−5B1A5

ε

A−3B−1A3

ε

Collect the X(n, S)-representations which appear as outputs of the program

and concatenate them in order. So we have

A−2B3A2A−5B1A5A−3B−1A3.

102

The number of the terms of the X(n, S)-representation A−2B3A2︸ ︷︷ ︸ A−5B1A5︸ ︷︷ ︸
A−3B−1A3︸ ︷︷ ︸ (3 terms) which is obtained by the program is 3 and it is the same as

the number m−1
2

= 7−1
2

= 3 of terms of the X(n, S)-representation of M by the

formula m−1
2

to compute the number of terms of the X(n, S)-representation.

Therefore the program outputs the correct X(n, S)-representation of M and

M is an element of G(n, S).

So far we have seen the cases that M ∈ Γn is an element of G(n, S). However,

the following is an example to show how the X(n, S)-representation program

works in case that M ∈ Γn is not an element of G(n, S).

Example 3

We show how the algorithm works in case that M is not an element of

G(n, S). Given S = {2, 3} and X(n, S) = {A4
−2B4A4

2, A4
−3B4A4

3}, the X4-

representation of M =

(−141951 −1666816
17932 210561

)
∈ Γ4 is A4

−2B4
3A4

−3B4
1A4

2

B4
−1A4

3 which is obtained by the Xn-representation algorithm. Input m = 7

and the exponents u1 = −2, u2 = 3, u3 = −3, u4 = 1, u5 = 2, u6 = −1, u7 = 3

to the X(n, S)-representation program in the following.

> su:=proc()

> local i,e,m,s,u;

> m := 7;

> u[1] := −2;

> u[2] := 3;

> u[3] := −3;

> u[4] := 1;

> u[5] := 2;

> u[6] := −1;

103

> u[7] = 3;

> s[0] := 0;

> for i from 1 to (m− 1)/2 do

> s[i] := s[i− 1]− u[2 ∗ i− 1];

> if s[i] = 2 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 3 then

> print(A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

A−2B3A2

ε

ε

ε

ε

A−3B−1A3

104

Collect the X(n, S)-representations which appear as outputs of the program

and concatenate them in order. So we we have

A−2B3A2A−3B−1A3.

The number of the terms of A−2B3A2︸ ︷︷ ︸ A−3B−1A3︸ ︷︷ ︸ is 2 and it is not the same

as the number m−1
2

= 7−1
2

= 3 of terms of the X(n, S)-representation of M

by the formula m−1
2

where m is the number of terms of the Xn-representation

of M . It means that M is not an element of G(n, S) and so it is not the

X(n, S)-representation of M .

Example 4

This implementation shows how the X(n, S)-representation program works in

case that the type of the Xn-representation of M is Bn
u1An

u2 · · ·Bn
um−1An

um

(even m). Given S = {0, 2, 3} and X(n, S) = {A4
0B4A4

0, A4
−2B4A4

2, A4
−3B4

A4
3}, the X4-representation of M =

(−1583 −18624
−6132 −72143

)
∈ Γ4 is B4A4

−2B4
3A4

−1

B4
−1A4

3 which is obtained by the Xn-representation algorithm. However, we

consider the X4-representation A4
0B4A4

−2B4
3A4

−1B4
−1A4

3 instead of the Xn-

representation B4A4
−2B4

3A4
−1B4

−1A4
3 to compute the X(n, S)-representation

of M . Input m = 7 and the exponents u1 = 0, u2 = 1, u3 = −2, u4 = 3, u5 =

−1, u6 = −1, u7 = 3 to the X(n, S)-representation program in the following.

> su:=proc()

> local i,e,m,s,u;

> m := 7;

> u[1] := 0;

> u[2] := 1;

> u[3] := −2;

> u[4] := 3;

105

> u[5] := −1;

> u[6] := −1;

> u[7] := 3;

> s[0] := 0;

> for i from 1 to (m− 1)/2 do

> s[i] := s[i− 1]− u[2 ∗ i− 1];

> if s[i] = 0 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 2 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 3 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

(A0)
2
B1

106

ε

ε

ε

A−2B3A2

ε

ε

ε

A−3B−1A3.

Maple version 6 presents A0B1A0 as (A0)
2
B1. Collect the X(n, S)-representations

appear as outputs of the program and concatenate them in order as follows :

A0B1A0A−2B3A2A−3B−1A3.

The number of terms of A0B1A0︸ ︷︷ ︸ A−2B3A2︸ ︷︷ ︸ A−3B−1A3︸ ︷︷ ︸ is 3 and it is the same

as m−1
2

= 7−1
2

= 3 by the formula m−1
2

to compute the number of terms of

the X(n, S)-representation of M where m is the number of terms of the Xn-

representation of M ∈ G(n, S). Therefore M is an element of G(n, S) and

A0B1A0A−2B3A2A−3B−1A3 is the X(n, S)-representation of M .

Example 5

We show how the (n, S)-representation program works in case that the type

of the Xn-representation of M is An
u1Bn

u2 · · ·An
um−1Bn

um (even m). Given

S = {0, 2, 3} and X(n, S) = {A4
0B4A4

0, A4
−2B4A4

2, A4
−3B4A4

3}, the X4-

representation of M =

(−76079 −18624
9612 2353

)
∈ Γ4 is A4

−2B4
3A4

−1B4
−1A4

3B4

107

which is obtained by the Xn-representation algorithm. However, we con-

sider the X4-representation A4
−2B4

3A4
−1B4

−1A4
3B4A4

0 instead of the Xn-

representation A4
−2B4

3A4
−1B4

−1A4
3B4 to compute the X(n, S)-representation

of M . Input m = 7 and the exponents u1 = −2, u2 = 3, u3 = −1, u4 =

−1, u5 = 3, u6 = 1, u7 = 0 to the X(n, S)-representation program in the fol-

lowing.

> su:=proc()

> local i,e,m,s,u;

> m := 7;

> u[1] := −2;

> u[2] := 3;

> u[3] := −1;

> u[4] := −1;

> u[5] := 3;

> u[6] := 1;

> u[7] := 0;

> s[0] := 0;

> for i from 1 to (m− 1)/2 do

> s[i] := s[i− 1]− u[2 ∗ i− 1];

> if s[i] = 0 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 2 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

108

> fi;

> if s[i] = 3 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following

> su();

ε

A−2B3A2

ε

ε

ε

A−3B−1A3.

(A0)
2
B1

ε

ε

Collect the X(n, S)-representations which appear as outputs of the program

and concatenate them in order as follows :

109

A−2B3A2A−3B−1A3A0B1A0.

The number of terms of A−2B3A2︸ ︷︷ ︸ A−3B−1A3︸ ︷︷ ︸ A0B1A0︸ ︷︷ ︸ is 3 and it is the same

as m−1
2

= 7−1
2

= 3 by the formula m−1
2

to compute the number of terms of

the X(n, S)-representation of M where m is the number of terms of the Xn-

representation of M ∈ G(n, S). Hence M is an element of G(n, S) and the

program outputs the correct X(n, S)-representation of M .

Example 6

This implementation shows how the X(n, S)-representation program works in

case that the type of the Xn-representation of M is Bn
u1An

u2 · · ·An
um−1Bn

um

(odd m). Given S = {0, 2, 3} and X(n, S) = {A4
0B4A4

0, A4
−2B4A4

2, A4
−3B4A4

3},
the X4-representation of M =

(−76079 −18624
−294704 −72143

)
∈ Γ4 is B4A4

−2B4
3A4

−1

B4
−1A4

3B4 which is obtained by the Xn-representation algorithm. However,

we consider the X4-representation A4
0B4A4

−2B4
3A4

−1B4
−1A4

3B4A4
0 instead

of the Xn-representation B4A4
−2B4

3A4
−1B4

−1A4
3B4 to compute the X(n, S)-

representation of M . Input m = 9 and the exponents u1 = 0, u2 = 1, u3 =

−2, u4 = 3, u5 = −1, u6 = −1, u7 = 3, u8 = 1, u9 = 0 to the X(n, S)-

representation program in the following.

> su:=proc()

> local m,i,u,s,e;

> m := 9;

> u[1] := 0;

> u[2] := 1;

> u[3] := −2;

> u[4] := 3;

> u[5] := −1;

> u[6] := −1;

110

> u[7] := 3;

> u[8] := 1;

> u[9] := 0;

> s[0] := 0;

> for i from 1 to (m− 1)/2 do

> s[i] := s[i− 1]− u[2 ∗ i− 1];

> if s[i] = 0 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 2 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> if s[i] = 3 then

> print (A∧{−s[i]} ∗B∧{u[2 ∗ i]} ∗A∧{s[i]});

> else

> print(epsilon);

> fi;

> end do;

> end proc:

The program outputs the following.

> su();

(A0)
2
B1

111

ε

ε

ε

A−2B3A2

ε

ε

ε

A−3B−1A3.

(A0)
2
B1

ε

ε

Collect the X(n, S)-representations which appear as outputs of the program

and concatenate them in order as follows :

A0B1A0A−2B3A2A−3B−1A3A0B1A0.

The number of terms of A0B1A0︸ ︷︷ ︸ A−2B3A2︸ ︷︷ ︸ A−3B−1A3︸ ︷︷ ︸ A0B1A0︸ ︷︷ ︸ is 4 and it is

the same as m−1
2

= 9−1
2

= 4 by the formula m−1
2

to compute the number of

terms of the X(n, S)-representation of M where m is the number of the Xn-

representation of M ∈ G(n, S). Therefore M is an element of G(n, S) and the

program outputs the correct X(n, S)-representation of M .

112

5.5 Correctness of Modified X(n, S)-Representation

Algorithm

In this section, we first consider several Xn-representations An
u, Bn

u, An
u1Bn

u2

and Bn
u1An

u2 and we prove that they are not elements of G(n, S) and so the

Xn-representations An
u, Bn

u, An
u1Bn

u2 and Bn
u1An

u2 are not applied to the

modified X(n, S)-representation algorithm. Moreover, we justify the modified

X(n, S)-representation algorithm.

Theorem 5.5.1 If M = An
u with a nonzero integer u, then M /∈ G(n, S).

Proof If M = An
u with a nonzero integer u, then by the Xn-representation al-

gorithm, we obtain An
u as the Xn-representation of M and the Xn-representation

An
u can be written as

An
u = An

uBn
0An

0.

Since the X(n, S)-representation is the form An
−sBn

vAn
s where s ∈ S and a

nonzero integer v, the exponent of Bn does not have to be zero, but in case

of An
u1Bn

0An
0, the exponent of Bn is zero. Hence, the form An

u1Bn
0An

0 is not

the X(n, S)-representation and so M does not have the X(n, S)-representation.

Hence M = An
u is not an element of G(n, S). ¤

Theorem 5.5.2 Let M = Bn
u with a nonzero integer u. Then

1. if 0 ∈ S, then M ∈ G(n, S)

2. if 0 /∈ S, then M /∈ G(n, S).

Proof If M = Bn
u with a nonzero integer u, then by the Xn-representation al-

gorithm, we obtain Bn
u as the Xn-representation of M and the Xn-representation

Bn
u can be written as

113

Bn
u = An

0Bn
uAn

0

where u is a nonzero integer. If 0 ∈ S, then An
0Bn

uAn
0 is the form An

−sBn
vAn

s

where s ∈ S and a nonzero integer v and thus M = Bn
u is an element of

G(n, S). If 0 /∈ S, then it does not satisfy the condition that the exponent of

the third term of An
0Bn

uAn
0 has to belong to S and so M = Bn

u is not an

element of G(n, S). ¤

Theorem 5.5.3 If M = An
u1Bn

u2 with nonzero integers u1 and u2, then

M /∈ G(n, S).

Proof Let M = An
u1Bn

u2 with nonzero integers u1 and u2. Then the Xn-

representation algorithm computes An
u1Bn

u2 of M as the Xn-representation

of M and it can be written as

An
u1Bn

u2An
0

where u1 and u2 are nonzero integers. Since u1 6= 0, An
u1Bn

u2An
0 is not the

form An
−sBn

vAn
s where s ∈ S and v is nonzero integer. Hence M does not

have the X(n, S)-representation and so M = An
u1Bn

u2 is not an element of

G(n, S). ¤

Theorem 5.5.4 If M = Bn
u1An

u2 with nonzero integers u1 and u2, then

M /∈ G(n, S).

Proof If M = Bn
u1An

u2 ∈ Γn with nonzero integers u1 and u2, then the

Xn-representation algorithm computes Bn
u1An

u2 as the Xn-representation of

M and it can be written as

An
0Bn

u1An
u2

where u1 and u2 are nonzero integers. Since u2 6= 0, An
0Bn

u1An
u2 is not

the form An
−sBn

vAn
s where s ∈ S and v is a nonzero integer. Hence M does

114

not have the X(n, S)-representation and so M is not an element of G(n, S). ¤

Theorem 5.5.5 If M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn with each nonzero

integer ui (i = 2, 3, · · · ,m − 1), then the modified X(n, S)-representation

algorithm outputs

An
u1Bn

u2An
−u1An

u1+u3Bn
u4An

−(u1+u3) · · ·An
u1+u3+u5+···+um−2Bn

um−1An
−(u1+u3+u5+···+um−2)

as the X(n, S)-representation where u2, · · · um−1 are nonzero integers. Other-

wise it outputs ε.

Proof If M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn with each nonzero integer ui

(i = 2, 3, · · · ,m− 1), the Xn-representation algorithm computes An
u1Bn

u2 · · ·
Bn

um−1An
um as the Xn-representation of M . So in Step 0 of the first iteration

i = 1, w = An
u1Bn

u2 · · ·Bn
um−1An

um .

In Step 1 of the first iteration, e1 = −u1.

If e1 /∈ S, then the modified X(n, S)-representation algorithm outputs ε and

the algorithm terminates.

If e1 = −u1 ∈ S, then C1 = An
−e1Bn

u2An
e1 = An

u1Bn
−u2An

−u1 .

In Step 2 of the first iteration,

w = C1
−1w

= An
u1Bn

−u2An
−u1An

u1Bn
u2An

u3 · · ·Bn
um−1An

um

= An
u1+u3Bn

u4 · · ·Bn
um−1An

um .

As w 6= 1X(n,S), i = 2 and return Step 1.

Assume that for 1 ≤ j − 1 ≤ m−5
2

, in Step 2 of the i = j − 1th iteration,

w = An
(u1+u3+u5+···+u2j−3+u2j−1)Bn

u2jAn
u2j+1 · · ·Bn

um−1An
um .

In Step 1 of the i = jth iteration, ej = −(u1 + u3 + u5 + · · ·+ u2j−1).

If ej = −(u1 + u3 + u5 + · · ·+ u2j−1) /∈ S, then the algorithm outputs ε and it

115

terminates.

If ej = −(u1 + u3 + u5 + · · ·+ u2j−1) ∈ S, then

Cj = An
−ejBn

u2jAn
ej

= An
u1+u3+u5+···+u2j−1Bn

u2jAn
−(u1+u3+u5+···+u2j−1).

In Step 2 of the i = jth iteration,

w = Cj
−1w

= An
u1+u3+u5+···+u2j−1Bn

−u2jAn
−(u1+u3+u5+···+u2j−1)An

u1+u3+u5+···+u2j−3+u2j−1

Bn
u2jAn

u2j+1Bn
u2j+2 · · ·Bn

um−1An
um

= An
u1+u3+u5+···+u2j−1+u2j+1Bn

u2j+2An
u2j+3 · · ·Bn

um−1An
um

As w 6= 1X(n,S), i = j + 1 and return Step 1.

If j = m−1
2

, then in Step 1, em−1
2

= −(u1 + u3 + u5 + · · ·+ um−2).

If em−1
2

/∈ S, then the algorithm outputs ε and it terminates.

If em−1
2
∈ S, then

Cm−1
2

= An
−e m−1

2 Bn
um−1An

e m−1
2

= An
u1+u3+u5+···+um−2Bn

um−1An
−(u1+u3+u5+···+um−2).

In Step 2 of the j = m−1
2

th iteration,

w = Cm−1
2

−1w

= An
u1+u3+u5+···+um−2Bn

−um−1An
−(u1+u3+u5+···+um−2)w

= An
u1+u3+u5+···+um−2Bn

−um−1An
−(u1+u3+u5+···+um−2)An

u1+u3+u5+···+um−2Bn
um−1An

um

= An
u1+u3+u5+···+um−2+um

If um = −(u1 + u3 + u5 + · · · + um−2), then w = 1X(n,S) and the algorithm

outputs

C1C2C3 · · ·Cm−3
2

Cm−1
2

= An
u1Bn

u2An
−u1An

u1+u3Bn
u4An

−(u1+u3) · · ·An
u1+u3+u5+···+um−2Bn

um−1An
−(u1+u3+u5+···+um−2)

as the X(n, S)-representation of M .

If um 6= −(u1+u3+u5+· · ·+um−2), then w = An
u1+u3+u5+···+um−2+um 6= 1X(n,S)

and i = m+1
2

. Therefore, the algorithm outputs ε and it terminates. ¤

116

Chapter 6

X1-Representation Algorithms

Let Γ1 be the group generated by two matrices A1 and B1 where

A1 =

(
1 1
0 1

)
and B1 =

(
1 0
1 1

)

and let X1 = {A1, B1}. Then for a fixed n ≥ 2, two free generating elements

An and Bn of Γn can be expressed by two matrices A1 and B1 as follows :

An =

(
1 n
0 1

)
=

(
1 1
0 1

)n

= A1
n

and

Bn =

(
1 0
n 1

)
=

(
1 0
1 1

)n

= B1
n,

and

An
u1Bn

u2 · · ·Bn
um−1An

um gives rise to A1
nu1B1

nu2 · · ·B1
num−1A1

num .

Bn
u1An

u2 · · ·Bn
um−1An

um gives rise to B1
nu1A1

nu2 · · ·B1
num−1A1

num .

An
u1Bn

u2 · · ·An
um−1Bn

um gives rise to A1
nu1B1

nu2 · · ·A1
num−1B1

num .

Bn
u1An

u2 · · ·An
um−1Bn

um gives rise to B1
nu1A1

nu2 · · ·A1
num−1B1

num .

In this chapter, we call them the X1-representations, but genuinely the X1-

representations are the following types

117

A1
e1B1

e2 · · ·B1
em−1A1

em (odd m)

B1
e1A1

e2 · · ·B1
em−1A1

em (even m)

A1
e1B1

e2 · · ·A1
em−1B1

em (even m)

B1
e1A1

e2 · · ·A1
em−1B1

em (odd m).

where each ei is a nonzero integer (i = 1, 2, · · · , m).

In Chapter 4, the Xn-representation algorithm computes the Xn-representation

of an element M of Γn assuming the natural number n ≥ 2 is known. So given

the Xn-representation of M ∈ Γn, we can compute the X1-representation of

M . However, we need algorithms not requiring knowledge of n to break Grig-

oriev and Ponomarenko homomorphic public-key cryptosystem in Chapter 8.

Thus we design new algorithms called the X1-representation algorithm I and

II. The X1-representation algorithm I is for M ∈ Γn where n ≥ 2 is an even

natural number and the X1-representation algorithm II is for M ∈ Γn where

n ≥ 3. We will see the behavior of the linear fractional transformations An
u

and Bn
u is different in these two cases and so two algorithms are required.

Because n is unknown, if M ∈ Γn is input to the X1-representation algorithm,

then the X1-representation algorithm outputs one of the following

A1
e1B1

e2 · · ·B1
em−1A1

em (odd m)

B1
e1A1

e2 · · ·B1
em−1A1

em (even m)

A1
e1B1

e2 · · ·A1
em−1B1

em (even m)

B1
e1A1

e2 · · ·A1
em−1B1

em (odd m).

where each ei is a nonzero integer such that ei = nui with a nonzero ui

(i = 1, 2, · · · ,m). So now we describe the structure of the chapter.

In Section 6.1, we present the X1-representation algorithm I. In Section 6.2, We

implement the X1-representation algorithm I by programming it and demon-

strate it. In Section 6.3, we prove the correctness of the X1-representation

118

algorithm I. In Section 6.4, we show the X1-representation algorithm II. In

Section 6.5, we implement the X1-representation algorithm II by program-

ming it and demonstrate it. In Section 6.6, we prove the correctness of the

X1-representation algorithm II.

6.1 X1-Representation Algorithm I

Assume that n ≥ 2 is an unknown even natural number and M ∈ Γn. Then

the X1-representation algorithm I works for every even natural number n ≥ 2.

We input a matrix M ∈ Γn to the X1-representation algorithm and it outputs

one of the four X1-representation types which are shown before. We use two

fixed values z = 1
2

and z = 2 to compute the X1-representation of M . If the

algorithm outputs the X1-representation of M for z = 1
2
, then we do not run

the algorithm for z = 2. If not, then we have to run the algorithm for z = 2

to compute the X1-representation of M . I denotes the identity matrix, w is a

reduced word in X1
± and 1X1 is the empty word in WX1 .

X1-Representation Algorithm I

Step 0

w ← 1X1

L ← M

Step 1

L(z) = 0, |L(z)| = 1,L(z) = ∞⇒ output ε.

|L(z)| > 1 ⇒ go to Step 2

|L(z)| < 1 ⇒ go to Step 3

Step 2

e ← even number in {bL(z)c, dL(z)e}

C ← A1
e and w ← wC.

119

C = I ⇒ output ε.

L ← C−1L

L = I ⇒ output w. Otherwise, return Step 1.

Step 3

e ← even number in {b 1
L(z)c, d 1

L(z)e}

C ← B1
e and w ← wC.

C = I ⇒ output ε.

L ← C−1L

L = I ⇒ output w. Otherwise, return Step 1.

6.2 Programming Implementation I

In order to demonstrate how the X1-representation algorithm I works correctly,

we make a program called the X1-representation program I by Maple version

6 and implement it. The operation of the program is one loop. Input z value

and the entries M11, M12, M21 and M22 of the matrix M ∈ Γn to the X1-

representation program I. Then for every execution of the program, it outputs

two matrices. The first matrix presents a matrix C which is C = A1
e in Step

2 or C = B1
e in Step 3 of the X1-representation algorithm I. The second

matrix is L = C−1L in Step 2 or L = C−1L in Step 3 of the X1-representation

algorithm I. When one of two matrices are the identity matrix, execution of

the program terminates. If the second matrix is the identity matrix, then

collect each first matrix in every execution of the program and concatenate

them in order. So we can obtain the X1-representation of M .

The X1-Representation Program I Source Code

with(GaussInt):

with(linalg):

su:=proc(z::float,M11::integer,M12::integer,M21::integer,M22::integer)

120

local K,C,P,Q;

K:=matrix(2,2,[M11,M12,M21,M22]);

L(z):=(M11 ∗ z + M12)/(M21 ∗ z + M22);

if abs(L(z))=1 then

print(epsilon);

fi;

if abs(L(z))>1 then

if irem(floor(L(z)),2)=0 then

C:=matrix(2,2, [1,1,0,1])∧{floor(L(z))};

P:=matrix(2,2,[1,-floor(L(z)),0,1]);

Q:=multiply(P,K);

print(C);

print(Q);

else

C:=matrix(2,2, [1,1,0,1])∧{ceil(L(z))};

P:=matrix(2,2,[1,-ceil(L(z)),0,1]);

Q:=multiply(P,K);

print(C);

print(Q);

fi;

fi;

if abs(L(z))< 1 then

if irem(floor(1/(L(z))),2)=0 then

C:=matrix(2,2, [1,0,1,1])∧{floor(1/(L(z))};

P:=matrix(2,2,[1,0,-floor(1/(L(z))),1]);

Q:=multiply(P,K);

print(C);

print(Q);

else

121

C:=matrix(2,2, [1,0,1,1])∧{ceil(1/(L(z)))};

P:=matrix(2,2,[1,0,-ceil(1/(L(z))),1]);

Q:=multiply(P,K);

print(C);

print(Q);

fi;

fi;

end proc:

Example 1

Given M = A2 =

(
1 2
0 1

)
∈ Γ2, input z = 0.5, M11 = 1, M12 = 2, M21 = 0

and M22 = 1 to the X1-representation algorithm I.

For z = 1
2
,

> su(0.5,1,2,0,1);

(
1 1
0 1

)2

(
1 0
0 1

)
.

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 1
0 1

)−2 (
1 2
0 1

)
= I in Step 2 of the X1-representation

algorithm I and so execution of the program terminates. Take the first matrix

of the first execution
(

1 1
0 1

)2

and it is the X1-representation of M .

122

For z = 2,

> su(2.0,1,2,0,1);
(

1 1
0 1

)4

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the second execution of the program is an usual matrix(
1 0
1 1

)∞
and it is the same as ε which the X1-representation algorithm I out-

puts in Step 2 because L(2) = A2
−1(2) = 0 in Step 2. Hence execution of the

program terminates and the program does not output the X1-representation

of M for z = 2. ¤

Example 2

Given M = A4 =

(
1 4
0 1

)
∈ Γ4, input z = 0.5, M11 = 1, M12 = 4, M21 = 0

and M22 = 1 to the program.

z = 1
2
,

> su(0.5,1,4,0,1);
(

1 1
0 1

)4

(
1 0
0 1

)

123

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 1
0 1

)−4 (
1 4
0 1

)
= I in Step 2 of the X1-representation

algorithm I. Take the first matrix of the first execution

(
1 1
0 1

)4

and it is the X1-representation of M .

z = 2,

> su(2.0,1,4,0,1);

(
1 1
0 1

)6

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the second execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 2 of the X1-representation algorithm

I because L(2) = A2
−1(2) = 0 in Step 2. So execution of the program termi-

nates and the program does not output the X1-representation of M for z = 2.

¤

Example 3

Given M = A6 =

(
1 6
0 1

)
∈ Γ6, input z = 0.5, M11 = 1, M12 = 6, M21 = 0

and M22 = 1 to the program.

124

For z = 1
2
,

> su(0.5,1,6,0,1);

(
1 1
0 1

)6

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 1
0 1

)−6 (
1 6
0 1

)
= I in Step 2 of the X1-representation

algorithm I and so execution of the program terminates. Take the first matrix

of the first execution of the program

(
1 1
0 1

)6

and this is the X1-representation of M .

For z = 2,

> su(2.0,1,6,0,1);

(
1 1
0 1

)8

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

125

The first matrix of the second execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 2 of the X1-representation algorithm

I because L(2) = A2
−1(2) = 0 in Step 2. So the program does not output the

X1-representation of M . ¤

Example 4

Given M = B2 =

(
1 0
2 1

)
∈ Γ2, input z = 0.5, M11 = 1, M12 = 0, M21 = 2

and M22 = 1 to the X1-representation program.

For z = 1
2
,

> su(0.5,1,0,2,1);

(
1 0
1 1

)4

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the second execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 3 of the X1-representation algo-

rithm I because L(1
2
) =

(
1 0
−2 1

)
(1

2
) = B2

−1(1
2
) =

1
2

−1+1
= ∞ in Step 3. So

execution of the program terminates and the program does not output the

X1-representation of M .

For z = 2,

126

> su(2.0,1,0,2,1);

(
1 0
1 1

)2

(
1 0
0 1

)

The second matrix of the first execution is the identity matrix which is L =

C−1L =

(
1 0
1 1

)−2 (
1 0
2 1

)
= I in Step 3 of the X1-representation algorithm

I. So execution of the program terminates and take the first matrix of the first

execution
(

1 0
1 1

)2

and this is the X1-representation of M . ¤

Example 5

Given M = B4 =

(
1 0
4 1

)
∈ Γ4, input z = 0.5, M11 = 1, M12 = 0, M21 = 4

and M22 = 1 to the program.

For z = 1
2
,

> su(0.5,1,0,4,1);

(
1 0
1 1

)6

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

127

(∞ −∞
−2 1

)

The first matrix of the second execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 3 of the X1-representation algorithm

I because L(1
2
) = B2

−1(1
2
) =

1
2

−1+1
= ∞ in Step 3. So execution of the pro-

gram terminates and the program does not output the X1-representation of M .

For z = 2,

> su(2.0,1,0,4,1);
(

1 0
1 1

)4

(
1 0
0 1

)

The second matrix of the first execution is the identity matrix which is L =

C−1L =

(
1 0
1 1

)−4 (
1 0
4 1

)
= I in Step 3 of the X1-representation algorithm

I and execution of the program terminates. Take the first matrix of the first

execution
(

1 0
1 1

)4

which is C = B1
e = B1

4 in Step 3 and this is the X1-representation of M . ¤

Example 6

Given M = B6 =

(
1 0
6 1

)
∈ Γ6, input z = 0.5, M11 = 1, M12 = 0, M21 = 6

and M22 = 1 to the program.

For z = 1
2
,

> su(0.5,1,0,6,1);

128

(
1 0
1 1

)8

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the second execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 3 of the X1-representation algorithm

I because L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 3. So execution of the program

terminates and the program does not output the X1-representation of M for

z = 1
2
.

For z = 2,

> su(2.0,1,0,6,1);

(
1 0
1 1

)6

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 0
1 1

)−6 (
1 0
6 1

)
= I in Step 3 of the X1-representation

algorithm. So execution of the program terminates and take the first matrix

of the first execution
(

1 0
1 1

)6

.

129

This is the X1-representation of M . ¤

Example 7

Given M = A6
−3B6

−1A6
3 =

(
109 1944
−6 −107

)
∈ Γ6, input z = 0.5, M11 = 109,

M12 = 1944, M21 = −6 and M22 = −107 to the program.

For z = 1
2
,

> su(0.5,109,1944,-6,-107);
(

1 1
0 1

)−18

(
1 18
−6 −107

)

> su(0.5,1,18,-6,-107);
(

1 0
1 1

)−6

(
1 18
0 1

)

>su(0.5,1,18,0,1);
(

1 1
0 1

)18

(
1 0
0 1

)

The second matrix of the third execution of the program is the identity ma-

trix which is L = C−1L =

(
1 1
0 1

)−18 (
1 18
0 1

)
= I in Step 2 of the X1-

representation algorithm I. So execution of the program terminates and collect

each first matrix in every execution. Then we have
(

1 1
0 1

)−18(
1 0
1 1

)−6(
1 1
0 1

)18

.

130

as the X1-representation of M .

For z = 2,

>su(2.0,109,1944,-6,-107);

(
1 1
0 1

)−18

(
1 18
−6 −107

)

> su(2.0,1,18,-6,-107);

(
1 0
1 1

)−6

(
1 18
0 1

)

> su(2.0,1,18,0,1);

(
1 1
0 1

)20

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the fourth execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 2 of the X1-representation algorithm

I because L(2) = C−1L =

(
1 −2
0 1

)
(2) = 0 in Step 2. So execution of the

program terminates and the program does not output the X1-representation

of M for z = 2. ¤

131

Example 8

Given M = A6
−3B6

−1A6
3B6 =

(
11773 1944
−648 −107

)
∈ Γ6, input z = 0.5, M11 =

11773, M12 = 1944, M21 = −648 and M22 = −107 to the program.

> su(0.5,11773,1944,-648,-107);

(
1 1
0 1

)−18

(
109 18
−648 −107

)

> su(0.5,109,18,-648,-107);

(
1 0
1 1

)−6

(
109 18
6 1

)

> su(0.5,109,18,6,1);

(
1 1
0 1

)18

(
1 0
6 1

)

> su(0.5,1,0,6,1);

(
1 0
1 1

)8

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

132

(∞ −∞
−2 1

)

The first matrix of the fifth execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 3 of the X1-representation algorithm

I because L(1
2
) = C−1L(1

2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 3. So execution of the

program terminates and the program does not output the X1-representation

of M .

For z = 2,

>su(2.0,11773,1944,-648,-107);

(
1 1
0 1

)−18

(
109 18
−648 −107

)

> su(2.0,109,18,-648,-107);

(
1 0
1 1

)−6

(
109 18
6 1

)

> su(2.0,109,18,6,1);

(
1 1
0 1

)18

(
1 0
6 1

)

> su(2.0,1,0,6,1);

(
1 0
1 1

)6

133

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity

matrix which is L = C−1L =

(
1 0
1 1

)−6 (
1 0
6 1

)
= I in Step 3 of the X1-

representation algorithm I and so execution of the program terminates. Collect

each first matrix in every execution of the program and concatenate them in

order. Then we have
(

1 1
0 1

)−18(
1 0
1 1

)−6(
1 1
0 1

)18(
1 0
1 1

)6

.

as the X1-representation of M . ¤

Example 9

Given M = B6
2A6

−3B6
−1A6

3 =

(
109 1944
1302 23221

)
∈ Γ6, input z = 0.5, M11 =

109, M12 = 1944, M21 = 1302 and M22 = 23221 to the program.

For z = 1
2
,

> su(0.5,109,1944,1302,23221);

(
1 0
1 1

)12

(
109 1944
−6 −107

)

> su(0.5,109,1944,-6,-107);

(
1 1
0 1

)−18

(
1 18
−6 −107

)

> su(0.5,1,18,-6,-107);

134

(
1 0
1 1

)−6

(
1 18
0 1

)

> su(0.5,1,18,0,1);

(
1 1
0 1

)18

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity

matrix which is L = C−1L =

(
1 1
0 1

)−18 (
1 18
0 1

)
= I in Step 2 of the X1-

representation of the algorithm I and so execution of the program terminates.

Collect each first matrix in every execution of the program and concatenate

them in order. Then we have
(

1 0
1 1

)12(
1 1
0 1

)−18(
1 0
1 1

)−6(
1 1
0 1

)18

as the X1-representation of M .

For z = 2,

> su(2.0,109,1944,1302,23221);

(
1 0
1 1

)12

(
109 1944
−6 −107

)

> su(2.0,109,1944,-6,-107);

(
1 1
0 1

)−18

(
1 18
−6 −107

)

135

> su(2.0,1,18,-6,-107);
(

1 0
1 1

)−6

(
1 18
0 1

)

> su(2.0,1,18,0,1);
(

1 1
0 1

)20

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the fifth execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 2 of the X1-representation algorithm

I because L(2) = C−1L(2) =

(
1 −2
0 1

)
(2) = 0 in Step 2. So execution of the

program terminates and the program does not output the X1-representation

of M for z = 2. ¤

Example 10

Given M = B6
2A6

−3B6
−1A6

3B6 =

(
11773 1944
140628 23221

)
∈ Γ6, input z = 1

2
,

M11 = 11773, M12 = 1944, M21 = 140628 and M22 = 23221 to the pro-

gram.

For z = 1
2
,

> su(0.5,11773,1944,140628,23221);

136

(
1 0
1 1

)12

(
11773 1944
−648 −107

)

> su(0.5,11773,1944,-648,-107);

(
1 1
0 1

)−18

(
109 18
−648 −107

)

> su(0.5,109,18,-648,-107);

(
1 0
1 1

)−6

(
109 18
6 1

)

> su(0.5,109,18,6,1);

(
1 1
0 1

)18

(
1 0
6 1

)

> su(0.5,1,0,6,1);

(
1 0
1 1

)8

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

137

The first matrix of the sixth execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 3 of the X1-representation algorithm

I because L(1
2
) = C−1L(1

2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 3. So execution of the

program terminates and the program does not output the X1-representation

of M for z = 1
2
.

For z = 2,

>su(2.0,11773,1944,140628,23221);

(
1 0
1 1

)12

(
11773 1944
−648 −107

)

> su(2.0,11773,1944,-648,-107);

(
1 1
0 1

)−18

(
109 18
−648 −107

)

> su(2.0,109,18,-648,-107);

(
1 0
1 1

)−6

(
109 18
6 1

)

> su(2.0,109,18,6,1);

(
1 1
0 1

)18

(
1 0
6 1

)

> su(2.0,1,0,6,1);

138

(
1 0
1 1

)6

(
1 0
0 1

)

The second matrix of the fifth execution of the program is the identity matrix

which is L = C−1L =

(
1 0
1 1

)−6 (
1 0
6 1

)
= I in Step 3 of the X1-representation

algorithm I and so execution of the program terminates. Collect each first

matrix in every execution of the program and concatenate them in order.

Then we have
(

1 0
1 1

)12(
1 1
0 1

)−18(
1 0
1 1

)−6(
1 1
0 1

)18(
1 0
1 1

)6

.

as the X1-representation of M . ¤

6.3 Correctness of Algorithm I

In this section, we justify the X1-representation algorithm I and so we show

how the X1-representation algorithm I works correctly for z = 1
2

and z = 2,

respectively. In this chapter, n(≥ 2) indicates an even natural number and

note the fact that the natural number n is unknown.

Theorem 6.3.1 If M = An
u with a nonzero u is input to the algorithm

(z = 1
2
), then the algorithm outputs A1

nu as the X1-representation of M .

Proof If M = An
u ∈ Γn, then by Lemma 4.1.1, in Step 1 of the first it-

eration, |L(1
2
)| = |An

u(1
2
)| = |nu + 1

2
| > 1. bL(1

2
)c = bnu + 1

2
c = nu and

dL(1
2
)e = dnu + 1

2
e = nu + 1. As n is even, bL(1

2
)c = nu is even. In Step 2, as

n is even, e = nu, C = A1
nu, w = wC = A1

nu and L = C−1L = A1
−nuAn

u = I.

So the algorithm outputs A1
nu as the X1-representation of M and it termi-

nates. ¤

139

Theorem 6.3.2 If M = An
u with a nonzero integer u is input to the al-

gorithm (z = 2), then the algorithm outputs ε.

Proof If M = An
u ∈ Γn, then |L(2)| = |An

u(2)| = |nu + 2| in Step 1 of

the first iteration.

If n = 2 and u = −1, then |L(2)| = |nu + 2| = 0 and so the algorithm

outputs ε in Step 2 of the first iteration. Hence the algorithm terminates.

If n 6= 2 or u 6= −1, then in Step 1 of the first iteration, |L(2)| = |An
u(2)| =

|nu + 2| > 1. In Step 2, bL(2)c = bnu + 2c = nu + 2 and dL(2)e = dnu + 2e =

nu + 2. So e = nu + 2, C = A1
e = A1

nu+2, w = wC = A1
nu+2 and

L = C−1L = A1
−nu−2An

u =

(
1 −2
0 1

)
6= I. Thus return Step 1. In Step

1 of the second iteration, L(2) =

(
1 −2
0 1

)
(2) = 0 and thus the algorithm

outputs ε in Step 2 of the second iteration. Hence the algorithm terminates.

¤

Theorem 6.3.3 If M = Bn
u with a nonzero integer u is input to the al-

gorithm (z = 1
2
), then the algorithm outputs ε.

Proof If M = Bn
u ∈ Γn, then |L(1

2
)| = |Bn

u(1
2
)| = | 1

2
1
2
nu+1

| = | 1
nu+2

|.

If n = 2 and u = −1, then in Step 1 of the first iteration, |L(1
2
)| = |Bn

u(1
2
)| =

| 1
nu+2

| = ∞. So in Step 3, the algorithm outputs ε and it terminates.

If n 6= 2 or u 6= −1, then in Step 1 of the first iteration, by Lemma 4.1.2,

|L(1
2
)| = | 1

nu+2
| < 1. b 1

L(1
2
)
c = bnu+2c = nu+2 and d 1

L(1
2
)
e = dnu+2e = nu+2.

In Step 3, as n is even, e = nu + 2, C = B1
e = B1

nu+2, w = wC = B1
nu+2,

140

L = C−1L = B1
−nu−2Bn

u =

(
1 0
−2 1

)
6= I. So return Step 1. In Step 1 of the

second iteration, L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ and so the algorithm outputs ε.

Hence the algorithm terminates. ¤

Theorem 6.3.4 If M = Bn
u with a nonzero integer u is input to the al-

gorithm (z = 2), then the algorithm outputs B1
nu as the X1-representation of

M .

Proof If M = Bn
u ∈ Γn, then in Step 1 of the first iteration, by Lemma

4.1.2, |L(2)| = |Bn
u(2)| = | 2

2nu+1
| = | 1

nu+ 1
2

| < 1. b 1
L(2)

c = bnu + 1
2
c = nu and

d 1
L(2)

e = dnu + 1
2
e = nu + 1. In Step 3, as n is even, e = nu, C = B1

e = B1
nu,

w = wC = B1
nu and L = C−1L = B1

−nuBn
u = I. Hence the algorithm

outputs B1
nu as the X1-representation of M and it terminates.

Theorem 6.3.5 If M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn is input to the

algorithm (z = 1
2
), then the algorithm outputs A1

nu1B1
nu2 · · ·B1

num−1A1
num

as the X1-representation of M where odd m ≥ 3 and ui is a nonzero integer

(i = 1, · · · ,m).

Proof Given M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn with m ≥ 3 and nonzero

ui ∈ Z(i = 1, · · · ,m), put L(1
2
) = An

u1Bn
u2 · · ·Bn

um−1An
um(1

2
) = nu1 + β1

where β1 = Bn
u2 · · ·Bn

um−1An
um(1

2
). By Theorem 4.1.4, |L(1

2
)| = |An

u1Bn
u2 · · ·

Bn
um−1An

um(1
2
)| = |nu1+β1| > 1 and by Theorem 4.1.5, |β1| = |Bn

u2 · · ·Bn
um−1

An
um(1

2
)| < 1. So in Step 1 of the first iteration, |L(1

2
)| > 1.

For −1 < β1 < 0, bL(1
2
)c = bnu1 + β1c = nu1 − 1 and dL(1

2
)e = dnu1 + β1e =

nu1. So in Step 2 of the first iteration, as n is even, e = dL(1
2
)e = nu1, C =

A1
nu1 , w = wC = A1

nu1 and L = C−1L = A1
−nu1A1

nu1B1
nu2 · · ·B1

num−1A1
nm

141

= B1
nu2 · · ·B1

num−1A1
nm . As L 6= I, return Step 1.

For β1 = 0, in Step 2 of the first iteration, as n is even, e = bL(1
2
)c = nu1, C =

A1
nu1 , w = wC = A1

nu1 and L = C−1L = A1
−nu1A1

nu1Bn
u2 · · ·Bn

um−1An
um

= Bn
u2 · · ·Bn

um−1An
um 6= I. So return Step 1.

For 0 < β1 < 1, bL(1
2
)c = bnu1+β1c = nu1 and dL(1

2
)e = dnu1+β1e = nu1+1.

So in Step 2 of the first iteration, as n is even, e = bL(1
2
)c = nu1, C = A1

nu1 ,

w = wC = A1
nu1 and L = C−1L = A1

−nu1A1
nu1Bn

u2 · · ·Bn
um−1An

um =

Bn
u2 · · ·Bn

um−1An
um 6= I. So return Step 1.

Assume that for 1 ≤ i−1 < m−1, in the i−1th iteration, L = An
uiBn

ui+1 · · ·
Bn

um−1An
um or L = Bn

uiAn
ui+1 · · ·Bn

um−1An
um according as i − 1 is even or

odd.

For odd i, in Step 1 of the ith iteration, put L(1
2
) = An

uiBn
ui+1 · · ·Bn

um−1An
um

(1
2
) = nui + βi where βi = Bn

ui+1 · · ·Bn
um−1An

um(1
2
). By Theorem 4.1.3,

|L(1
2
)| > 1 and by Theorem 4.1.4, |βi| < 1.

For −1 < βi < 0, bL(1
2
)c = bnui+βic = nui−1 and dL(1

2
)e = dnui+βie = nui.

So in Step 2 of the ith iteration, as n is even, e = nui, C = A1
e = A1

nui , w =

wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui , L = C−1L =

A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So return

Step 1.

For βi = 0, bL(1
2
)c = bnui + βic = nui and dL(1

2
)e = dnui + βie = nui.

In Step 2 of the ith iteration, as n is even, e = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

142

return Step 1.

For 0 < βi < 1, bL(1
2
)c = bnui +βic = nui and dL(1

2
)e = dnui +βie = nui +1.

In Step 2 of the ith iteration, as n is even, e = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For even i, let L(1
2
) = Bn

uiAn
ui+1 · · ·Bn

um−1An
um(1

2
) = Bn

ui(αi) = αi

nuiαi+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·Bn

um−1An
um(1

2
). In Step 3 of the ith iteration,

by Theorem 4.1.4, |L(1
2
)| < 1 and by Theorem 4.1.3, |αi| > 1.

For −1 < 1
αi

< 0, b 1
L(1

2
)
c = bnui+

1
αi
c = nui−1 and d 1

L(1
2
)
e = dnui+

1
αi
e = nui.

So, in Step 3 of the ith iteration, as n is even, e = d 1
L(1

2
)
e = nui, C = B1

e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui ,

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

For 0 < 1
αi

< 1, b 1
L(1

2
)
c = bnui + 1

αi
c = nui and d 1

L(1
2
)
e = dnui + 1

αi
e = nui + 1.

So in Step 3 of the ith iteration, as n is even, e = bnui +
1
αi
c = nui, C = B1

e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

If i = m, then in Step 1 of the mth iteration, By Theorem 6.3.1, |L(1
2
)| =

|An
um(1

2
)| = |num + 1

2
| > 1. bL(1

2
)c = bnum + 1

2
c = num and bL(1

2
)c =

bnum + 1
2
c = num + 1. So in Step 2 of the ith iteration, As n is even,

e = bL(1
2
)c = num, C = A1

e = A1
num , w = wC = A1

nu1B1
nu2 · · ·B1

num−1C =

A1
nu1B1

nu2 · · ·B1
num−1A1

num and L = C−1L = A1
−numAn

um = I. Thus the

143

algorithm outputs A1
nu1B1

nu2 · · ·B1
num−1A1

num as the X1-representation of M

and the algorithm terminates. ¤

Theorem 6.3.6 If M = An
u1Bn

u2 · · ·Bn
um−1An

um is input to the algorithm

(z = 2), then the algorithm outputs ε where odd m ≥ 3 and ui is a nonzero

integer (i = 1, · · · ,m).

Proof Given M = An
u1Bn

u2 · · ·Bn
um−1An

um ∈ Γn, put L(2) = An
u1Bn

u2 · · ·
Bn

um−1An
um(2) = nu1 + β1 where β1 = Bn

u2 · · ·Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

By Lemma 4.1.1, An
um−2(0) = num−2 ∈ Dc and by Theorem 4.1.3, |L(2)| =

|An
u1Bn

u2 · · ·Bn
um−1An

um(2)| = |An
u1Bn

u2 · · ·Bn
um−3An

um−2(0)| > 1. By

Theorem 4.1.4, |β1| = |Bn
u2 · · ·Bn

um−1An
um(2)| = |Bn

u2 · · ·Bn
um−3An

um−2(0)| <
1. So in Step 1 of the first iteration, |L(2)| > 1 and |β1| < 1.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num +2) ∈ D. So in Step 1 of the first iteration, by

Theorem 4.1.5, |L(2)| = |An
u1Bn

u2 · · ·Bn
um−1An

um(2)| = |An
u1Bn

u2 · · ·An
um−2

Bn
um−1(num + 2)| > 1. By Theorem 4.1.6, |β1| = |Bn

u2 · · ·Bn
um−1An

um(2) =

Bn
u2

· · ·An
um−2Bn

um−1(num + 2)| < 1.

For −1 < β1 < 0, bL(1
2
)c = bnu1 + β1c = nu1 − 1 and dL(1

2
)e = nu1. So

in Step 2 of the first iteration, as n is even, e = dL(1
2
)e = nu1, C = A1

e =

A1
nu1 , w = wC = A1

nu1 , L = C−1L = A1
−nu1A1

nu1B1
nu2 · · ·B1

num−1A1
nm =

B1
nu2 · · ·B1

num−1A1
nm 6= I. So return Step 1.

For βi = 0, bL(1
2
)c = bnu1+β1c = nu1 and dL(1

2
)e = nu1. In Step 2 of the first

144

iteration, as n is even, e = bL(1
2
)c = nu1, C = A1

e = A1
nu1 , w = wC = A1

nu1 ,

L = C−1L = A1
−nu1A1

nu1B1
nu2 · · ·B1

num−1A1
nm = B1

nu2 · · ·B1
num−1A1

nm 6=
I. So return Step 1.

For 0 < β1 < 1, bL(1
2
)c = bnu1 + β1c = nu1 and dL(1

2
)e = nu1 + 1. In

Step 2 of the first iteration, as n is even, e = bL(1
2
)c = nu1, C = A1

e =

A1
nu1 , w = wC = A1

nu1 , L = C−1L = A1
−nu1A1

nu1B1
nu2 · · ·B1

num−1A1
nm =

B1
nu2 · · ·B1

num−1A1
nm 6= I. So return Step 1.

Suppose that for 1 ≤ i − 1 < m − 2, L = An
uiBn

ui+1 · · ·Bn
um−1An

um or

L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in the i − 1th iteration according as i − 1 is

even or odd.

For odd i, put L(2) = An
uiBn

ui+1 · · ·Bn
um−1An

um(2) = nui + βi where βi =

Bn
ui+1 · · ·Bn

um−1An
um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

By Lemma 4.1.1, An
um−2(0) = num−2 ∈ Dc and by Theorem 4.1.3, |L(2)| =

|An
uiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·Bn
um−3An

um−2(0)| > 1. So

in Step 1 of the ith iteration, |L(2)| > 1 and by Theorem 4.1.4, |βi| =

|Bn
ui+1 · · ·Bn

um−1An
um(2)| = |Bn

ui+1 · · ·Bn
um−3An

um−2(0)| < 1.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.5, |L(2)| = |An
uiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·An
um−2

Bn
um−1(num+2)| > 1. By Theorem 4.1.6, |βi| = |Bn

ui+1 · · ·Bn
um−1An

um(2)| =
|Bn

ui+1 · · ·An
um−2Bn

um−1(num + 2)| < 1.

For −1 < βi < 0, bL(2)c = bnui + βicnui − 1 and dL(2)e = nui. In Step

145

2 of the ith iteration, as n is even, e = dL(2)e = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·Bn
ui−1C = A1

nu1B1
nu2 · · ·Bn

ui−1Ai
nui and L =

C−1L = A1
−nuiA1

nuiB1
nui+1 · · ·B1

num−1A1
nm = B1

nui+1 · · ·B1
num−1A1

nm 6= I.

So, return Step 1.

For βi = 0, bL(2)c = bnui + βic = nui and dL(2)e = dnui + βie = nui. In

Step 2 of the ith iteration, as n is even, e = bL(2)c = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiA1

nuiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For 0 < βi < 1, bL(2)c = bnui+βic = nui and dL(2)e = dnui+βie = nui+1. In

Step 2 of the ith iteration, as n is even, e = bL(2)c = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiA1

nuiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For even i, put L(2) = Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2) = Bn
ui(αi) = αi

nuiαi+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·Bn

um−1An
um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

By Lemma 4.1.1, An
um−2(0) = num−2 ∈ Dc and by Theorem 4.1.4, |L(2)| =

|Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·Bn
um−3An

um−2(0)| < 1. By

Theorem 4.1.3, αi = An
ui+1 · · ·Bn

um−1An
um(2) = An

ui+1 · · ·Bn
um−3An

um−2(0) ∈
Dc. So in Step 1 of the ith iteration, |L(2)| < 1 and |αi| > 1.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.6, |L(2)| = |Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·

146

An
um−2Bn

um−1(num+2)| < 1. By Theorem 4.1.5, αi = An
ui+1 · · ·Bn

um−1An
um(2)

= An
ui+1 · · ·Bn

um−3An
um−2Bn

um−1(num + 2) ∈ Dc. Thus in Step 1 of the ith

iteration, |L(2)| < 1 and |αi| > 1.

For −1 < 1
αi

< 0, b 1
L(2)

c = bnui +
1
αi
c = nui−1 and d 1

L(2)
e = dnui +

1
αi
e = nui.

So, in Step 3 of the ith iteration, as n is even, e = d 1
L(1

2
)
e = nui, C = B1

e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

For 0 < 1
α

< 1, b 1
L(2)

c = bnui + 1
αi
c = nui and d 1

L(2)
e = dnui + 1

αi
e = nui + 1.

So in Step 3 of the ith iteration, as n is even, e = bnui +
1
αi
c = nui, C = B1

e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui ,

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

If i = m− 1, then in Step 1 of the m− 1th iteration, L(2) = Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

So L(2) = Bn
um−1An

um(2) = 0 in Step 3 of the m − 1th iteration and the

algorithm outputs ε. Hence the algorithm terminates.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma

4.1.2, |L(2)| = |Bn
um−1An

um(2)| = |Bn
um−1(num + 2)| = | 1

num−1+ 1
num+2

| < 1

in Step 1 of the m − 1th iteration. So in Step 3 of the m − 1th iteration,

b 1
L(2)

c = bnum−1 + 1
num+2

c and d 1
L(2)

e = dnum−1 + 1
num+2

e.

For −1 < 1
num+2

< 0, b 1
L(2)

c = bnum−1 + 1
num+2

c = num−1 − 1 and d 1
L(2)

e =

dnum−1 + 1
num+2

e = num−1. So in Step 3 of the m− 1th iteration, as n is even,

147

e = d 1
L(2)

e = num−1, C = B1
e = B1

num−1 , w = wC = A1
nu1B1

nu2 · · ·A1
num−2C =

A1
nu1B1

nu2 · · ·A1
num−2B1

num−1 and L = C−1L = B1
−num−1Bn

um−1An
um =

An
um 6= I. So return Step 1.

For 0 < 1
num+2

< 1, b 1
L(2)

c = bnum−1 + 1
num+2

c = num−1 and d 1
L(2)

e =

dnum−1 + 1
num+2

e = num−1 + 1. So in Step 3 of the m − 1th iteration,

as n is even, e = d 1
L(2)

e = num−1, C = B1
e = B1

num−1 , w = wC =

A1
nu1B1

nu2 · · ·A1
num−2C = A1

nu1B1
nu2 · · ·A1

num−2B1
num−1 and L = C−1L =

B1
−num−1Bn

um−1An
um = An

um 6= I. So return Step 1.

If i = m, then in Step 1 of the mth iteration, |L(2)| = |An
um(2)| = |num + 2|.

By Theorem 6.3.2, the algorithm outputs ε in Step 2 of the mth iteration and

the algorithm terminates. ¤

Theorem 6.3.7 If M = Bn
u1An

u2 · · ·Bn
um−1An

um is input to the algo-

rithm (z = 1
2
), then the algorithm outputs Bn

u1An
u2 · · ·Bn

um−1An
um as the

X1-representation of M where even m ≥ 2 and ui is a nonzero integer (i =

1, · · · ,m).

Proof Given M = Bn
u1An

u2 · · ·Bn
um−1An

um with m ≥ 2 and nonzero ui ∈ Z
(i = 1, 2, · · · ,m), put L(1

2
) = Bn

u1An
u2 · · ·Bn

um−1An
um(1

2
) = Bn

u1(α1) =

α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·Bn

um−1An
um(1

2
). In Step 1 of the first

iteration, by Theorem 4.1.4, |L(1
2
)| < 1 and by Theorem 4.1.3, |α1| > 1.

For −1 < 1
α1

< 0, b 1
L(1

2
)
c = bnu1 + 1

α1
c = nu1 − 1 and d 1

L(1
2
)
e = dnu1 + 1

α1
e =

nu1. So, in Step 2 of the first iteration, as n is even, e = d 1
L(1

2
)
e = nu1, C =

B1
e = B1

nu1 , w = wC = B1
nu1 , L = C−1L = B1

−nu1Bn
u1An

u2 · · ·Bn
um−1An

um

= An
u2 · · ·Bn

um−1An
um 6= I. So return Step 1.

148

For 0 < 1
α1

< 1, b 1
L(1

2
)
c = bnu1 + 1

α1
c = nu1 and d 1

L(1
2
)
e = dnu1 + 1

α1
e = nu1 +1.

So in Step 2 of the first iteration, as n is even, e = bnu1+
1

α1
c = nu1, C = B1

e =

B1
nu1 , w = wC = B1

nu1 , L = C−1L = B1
−nu1Bn

u1An
u2 · · ·Bn

um−1An
um =

An
u2 · · ·Bn

um−1An
um 6= I. So return Step 1.

Assume that for 1 ≤ i−1 < m−1, in the i−1th iteration, L = An
uiBn

ui+1 · · ·
Bn

um−1An
um or L = Bn

uiAn
ui+1 · · ·Bn

um−1An
um according as i − 1 is even or

odd.

For odd i, let L(1
2
) = Bn

uiAn
ui+1 · · ·Bn

um−1An
um(1

2
) = Bn

ui(αi) = αi

nuiαi+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·Bn

um−1An
um(1

2
). In Step 3 of the ith iteration,

by Theorem 4.1.4, |L(1
2
)| < 1 and by Theorem 4.1.3, |αi| > 1.

For −1 < 1
αi

< 0, b 1
L(1

2
)
c = bnui+

1
αi
c = nui−1 and d 1

L(1
2
)
e = dnui+

1
αi
e = nui.

So, in Step 3 of the ith iteration, as n is even, e = d 1
L(1

2
)
e = nui, C = B1

e =

B1
nui , w = wC = B1

nu1A1
nu2 · · ·A1

nui−1C = B1
nu1A1

nu2 · · ·A1
nui−1B1

nui ,

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

For 0 < 1
αi

< 1, b 1
L(1

2
)
c = bnui + 1

αi
c = nui and d 1

L(1
2
)
e = dnui + 1

αi
e = nui + 1.

So in Step 3 of the ith iteration, as n is even, e = bnui +
1
αi
c = nui, C = B1

e =

B1
nui , w = wC = B1

nu1A1
nu2 · · ·A1

nui−1C = B1
nu1A1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

For even i, in Step 1 of the ith iteration, put L(1
2
) = An

uiBn
ui+1 · · ·Bn

um−1An
um

(1
2
) = nui + βi where βi = Bn

ui+1 · · ·Bn
um−1An

um(1
2
). By Theorem 4.1.3,

|L(1
2
)| > 1 and by Theorem 4.1.4, |βi| < 1.

149

For −1 < βi < 0, bL(1
2
)c = bnui+βic = nui−1 and dL(1

2
)e = dnui+βie = nui.

So in Step 2 of the ith iteration, as n is even, e = nui, C = A1
e = A1

nui , w =

wC = B1
nu1A1

nu2 · · ·B1
nui−1C = B1

nu1A1
nu2 · · ·B1

nui−1A1
nui , L = C−1L =

A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So return

Step 1.

For βi = 0, bL(1
2
)c = bnui + βic = nui and dL(1

2
)e = dnui + βie = nui.

In Step 2 of the ith iteration, as n is even, e = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For 0 < βi < 1, bL(1
2
)c = bnui +βic = nui and dL(1

2
)e = dnui +βie = nui +1.

In Step 2 of the ith iteration, as n is even, e = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

If i = m, then in Step 1 of the mth iteration, By Theorem 6.3.1, |L(1
2
)| =

|An
um(1

2
)| = |num + 1

2
| > 1. bL(1

2
)c = bnum + 1

2
c = num and bL(1

2
)c =

bnum + 1
2
c = num + 1. So in Step 2 of the ith iteration, As n is even,

e = bL(1
2
)c = num, C = A1

e = A1
num , w = wC = A1

nu1B1
nu2 · · ·B1

num−1C =

A1
nu1B1

nu2 · · ·B1
num−1A1

num and L = C−1L = A1
−numAn

um = I. Thus the

algorithm outputs B1
nu1A1

nu2 · · ·B1
num−1A1

num as the X1-representation of M

and the algorithm terminates. ¤

Theorem 6.3.8 If M = Bn
u1An

u2 · · ·Bn
um−1An

um is input to the algorithm

(z = 2), then the algorithm outputs ε where even m ≥ 2 and ui is a nonzero

integer (i = 1, · · · ,m).

150

Proof Given M = Bn
u1An

u2 · · ·Bn
um−1An

um with m ≥ 2 and nonzero

ui ∈ Z(i = 1, · · · ,m), put L(2) = Bn
u1An

u2 · · ·Bn
um−1An

um(2) = Bn
u1(α1) =

α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·Bn

um−1An
um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

By Lemma 4.1.1, An
um−2(0) = num−2 ∈ Dc and by Theorem 4.1.4, |L(2)| =

|Bn
u1An

u2 · · ·Bn
um−1An

um(2)| = |Bn
u1An

u2 · · ·Bn
um−3An

um−2(0)| < 1. By

Theorem 4.1.3, αi = An
u2 · · ·Bn

um−1An
um(2) = An

u2 · · ·Bn
um−3An

um−2(0) ∈
Dc. So in Step 1 of the ith iteration, |L(2)| < 1 and |α1| > 1.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.6, |L(2)| = |Bn
u1An

u2 · · ·Bn
um−1An

um(2)| = |Bn
u1An

u2 · · ·An
um−2

Bn
um−1(num + 2)| < 1. By Theorem 4.1.5, αi = An

u2 · · ·Bn
um−1An

um(2) =

An
u2 · · ·Bn

um−3An
um−2Bn

um−1(num + 2) ∈ Dc. Thus in Step 1 of the ith iter-

ation, |L(2)| < 1 and |αi| > 1.

For −1 < 1
α1

< 0, b 1
L(2)

c = bnu1+
1

α1
c = nu1−1 and d 1

L(2)
e = dnu1+

1
α1
e = nu1.

So, in Step 3 of the first iteration, as n is even, e = d 1
L(1

2
)
e = nu1, C = B1

e =

B1
nu1 , w = wC = B1

nu1A1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nu1Bn

u1An
u2 · · ·Bn

um−1An
um = An

u2 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For 0 < 1
α1

< 1, b 1
L(2)

c = bnu1 + 1
α1
c = nu1 and d 1

L(2)
e = dnu1 + 1

α1
e = nu1 +1.

So in Step 3 of the ith iteration, as n is even, e = bnui+
1

α1
c = nu1, C = B1

e =

B1
nu1 , w = wC = B1

nu1A1
nu2 · · ·A1

nui−1C = B1
nu1A1

nu2 · · ·A1
nui−1B1

nui ,

L = C−1L = B1
−nu1An

u1An
u2 · · ·Bn

um−1An
um = An

u2 · · ·Bn
um−1An

um 6= I.

So return Step 1.

151

Suppose that for 1 ≤ i − 1 < m − 2, L = An
uiBn

ui+1 · · ·Bn
um−1An

um or

L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in the i − 1th iteration according as i − 1 is

even or odd.

For even i, put L(2) = An
uiBn

ui+1 · · ·Bn
um−1An

um(2) = nui + βi where βi =

Bn
ui+1 · · ·Bn

um−1An
um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

By Lemma 4.1.1, An
um−2(0) = num−2 ∈ Dc and by Theorem 4.1.3, |L(2)| =

|An
uiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·Bn
um−3An

um−2(0)| > 1. So

in Step 1 of the ith iteration, |L(2)| > 1 and by Theorem 4.1.4, |βi| =

|Bn
ui+1 · · ·Bn

um−1An
um(2)| = |Bn

ui+1 · · ·Bn
um−3An

um−2(0)| < 1.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.5, |L(2)| = |An
uiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·
An

um−2Bn
um−1(num+2)| > 1. By Theorem 4.1.6, |βi| = |Bn

ui+1 · · ·Bn
um−1An

um

(2)| = |Bn
ui+1 · · ·An

um−2Bn
um−1(num + 2)| < 1.

For −1 < βi < 0, bL(2)c = bnui + βicnui − 1 and dL(2)e = nui. In Step

2 of the ith iteration, as n is even, e = dL(2)e = nui, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·Bn
ui−1C = A1

nu1B1
nu2 · · ·Bn

ui−1Ai
nui and L =

C−1L = A1
−nuiA1

nuiB1
nui+1 · · ·B1

num−1A1
nm = B1

nui+1 · · ·B1
num−1A1

nm 6= I.

So, return Step 1.

For βi = 0, bL(2)c = bnui + βic = nui and dL(2)e = dnui + βie = nui. In

Step 2 of the ith iteration, as n is even, e = bL(2)c = nui, C = A1
e = A1

nui ,

w = wC = B1
nu1A1

nu2 · · ·B1
nui−1C = B1

nu1A1
nu2 · · ·B1

nui−1A1
nui and L =

152

C−1L = A1
−nuiA1

nuiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For 0 < βi < 1, bL(2)c = bnui+βic = nui and dL(2)e = dnui+βie = nui+1. In

Step 2 of the ith iteration, as n is even, e = bL(2)c = nui, C = A1
e = A1

nui ,

w = wC = B1
nu1A1

nu2 · · ·B1
nui−1C = B1

nu1A1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiA1

nuiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

For odd i, put L(2) = Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2) = Bn
ui(αi) = αi

nuiαi+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·Bn

um−1An
um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

By Lemma 4.1.1, An
um−2(0) = num−2 ∈ Dc and by Theorem 4.1.4, |L(2)| =

|Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·Bn
um−3An

um−2(0)| < 1. By

Theorem 4.1.3, αi = An
ui+1 · · ·Bn

um−1An
um(2) = An

ui+1 · · ·Bn
um−3An

um−2(0) ∈
Dc. So in Step 1 of the ith iteration, |L(2)| < 1 and |αi| > 1.

If n 6= 2 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.6, |L(2)| = |Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·
An

um−2Bn
um−1(num+2)| < 1. By Theorem 4.1.5, αi = An

ui+1 · · ·Bn
um−1An

um(2)

= An
ui+1 · · ·Bn

um−3An
um−2Bn

um−1(num + 2) ∈ Dc. Thus in Step 1 of the ith

iteration, |L(2)| < 1 and |αi| > 1.

For −1 < 1
αi

< 0, b 1
L(2)

c = bnui +
1
αi
c = nui−1 and d 1

L(2)
e = dnui +

1
αi
e = nui.

So, in Step 3 of the ith iteration, as n is even, e = d 1
L(1

2
)
e = nui, C = B1

e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

153

So return Step 1.

For 0 < 1
αi

< 1, b 1
L(2)

c = bnui + 1
αi
c = nui and d 1

L(2)
e = dnui + 1

αi
e = nui + 1.

So in Step 3 of the ith iteration, as n is even, e = bnui +
1
αi
c = nui, C = B1

e =

B1
nui , w = wC = B1

nu1A1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui ,

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

If i = m− 1, then in Step 1 of the m− 1th iteration, L(2) = Bn
um−1An

um(2).

If n = 2 and um = −1, then An
um(2) = num + 2 = 0 and Bn

um−1(0) = 0.

So L(2) = Bn
um−1An

um(2) = 0 in Step 3 of the m − 1th iteration and the

algorithm outputs ε. Hence the algorithm terminates.

If n 6= 2 or u 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma

4.1.2, |L(2)| = |Bn
um−1An

um(2)| = |Bn
um−1(num + 2)| = | 1

num−1+ 1
num+2

| < 1

in Step 1 of the m − 1th iteration. So in Step 3 of the m − 1th iteration,

b 1
L(2)

c = bnum−1 + 1
num+2

c and d 1
L(2)

e = dnum−1 + 1
num+2

e.

For −1 < 1
num+2

< 0, b 1
L(2)

c = bnum−1 + 1
num+2

c = num−1 − 1 and d 1
L(2)

e =

dnum−1 + 1
num+2

e = num−1. So in Step 3 of the m− 1th iteration, as n is even,

e = d 1
L(2)

e = num−1, C = B1
e = B1

num−1 , w = wC = A1
nu1B1

nu2 · · ·A1
num−2C =

A1
nu1B1

nu2 · · ·A1
num−2B1

num−1 and L = C−1L = B1
−num−1Bn

um−1An
um =

An
um 6= I. So return Step 1.

For 0 < 1
num+2

< 1, b 1
L(2)

c = bnum−1 + 1
num+2

c = num−1 and d 1
L(2)

e =

dnum−1 + 1
num+2

e = num−1 + 1. So in Step 3 of the m − 1th iteration,

as n is even, e = d 1
L(2)

e = num−1, C = B1
e = B1

num−1 , w = wC =

A1
nu1B1

nu2 · · ·A1
num−2C = A1

nu1B1
nu2 · · ·A1

num−2B1
num−1 and L = C−1L =

154

B1
−num−1Bn

um−1An
um = An

um 6= I. So return Step 1.

If i = m, then in Step 1 of the mth iteration, |L(2)| = |An
um(2)| = |num + 2|.

By Theorem 6.3.2, the algorithm outputs ε in Step 2 of the mth iteration and

the algorithm terminates. ¤

Theorem 6.3.9 If M = An
u1Bn

u2 · · ·An
um−1Bn

um is input to the algorithm

(z = 1
2
), then the algorithm outputs ε where even m ≥ 2 and ui is a nonzero

integer (i = 1, · · · ,m).

Proof Given M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn with even m ≥ 2 and each

nonzero ui ∈ Z(i = 1, · · · ,m), put L(1
2
) = An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
) =

nu1 + β1 where β1 = Bn
u2 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

= ∞, An
um−1Bn

um(1
2
)

= An
um−1(∞) = num−1 +∞ = ∞ and Bn

um−2An
um−1Bn

um(1
2
) = Bn

um−2(∞) =

1
num−2

∈ D. So in Step 1 of the first iteration, by Theorem 4.1.3, |L(1
2
)| =

|An
u1Bn

u2 · · ·An
um−1Bn

um(1
2
)| = |An

u1Bn
u2 · · ·An

um−3(1
num−2

)| > 1 and by

Theorem 4.1.4, |β1| = |Bn
u2 · · ·An

um−1Bn
um(1

2
)| = |Bn

u2 · · ·An
um−3(1

num−2
)| <

1.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. So in Step 1 of the

first iteration, by Theorem 4.1.3, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
)| =

|An
u1Bn

u2 · · ·An
um−1(1

num+2
)| > 1. By Theorem 4.1.4, |β1| = |Bn

u2 · · ·An
um−1

Bn
um(1

2
)| = |Bn

u2 · · ·An
um−1(1

num+2
)| < 1.

For −1 < β1 < 0, bL(1
2
)c = bnu1 + β1c = nu1 − 1 and dL(1

2
)e = dnu1 + β1e =

nu1. So in Step 2 of the first iteration, as n is even, e = dL(1
2
)e = nu1, C =

155

A1
e = A1

nu1 , w = wC = A1
nu1 and L = C−1L = A1

−nu1An
u1Bn

u2 · · ·An
um−1

Bn
um = Bn

u2 · · ·An
um−1Bn

um 6= I. So return Step 1.

For β1 = 0, bL(1
2
)c = bnu1 + β1c = nu1 and dL(1

2
)e = dnu1 + β1e = nu1.

So in Step 2 of the first iteration, as n is even, e = nu1, C = A1
e = A1

nu1 ,

w = wC = A1
nu1 and L = C−1L = A1

−nu1An
u1Bn

u2 · · ·An
um−1Bn

um =

Bn
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

For 0 < β1 < 1, bL(1
2
)c = bnu1+β1c = nu1 and dL(1

2
)e = dnu1+β1e = nu1+1.

In Step 2 of the first iteration, as n is even, e = bL(1
2
)c = nu1, C = A1

e =

A1
nu1 , w = wC = A1

nu1 and L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um =

Bn
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

Suppose that for 1 ≤ i−1 < m−3, in the i−1th iteration, L = An
uiBn

ui+1 · · ·
Bn

um−1An
um or L = Bn

uiAn
ui+1 · · ·Bn

um−1An
um according as i − 1 is even or

odd.

For odd i, let L(1
2
) = An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

= ∞, An
um−1Bn

um(1
2
)

= An
um−1(∞) = num−1 +∞ = ∞ and Bn

um−2An
um−1Bn

um(1
2
) = Bn

um−2(∞) =

1
num−2

∈ D. So in Step 1 of the ith iteration, by Theorem 4.1.3, |L(1
2
)| =

|An
uiBn

ui+1 · · ·An
um−1Bn

um(1
2
)| = |An

uiBn
ui+1 · · ·An

um−3(1
num−2

)| > 1 and by

Theorem 4.1.4, |βi| = |Bn
ui+1 · · ·An

um−3(1
num−2

)| < 1.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. In Step 1 of the

ith iteration, by Theorem 4.1.3, |L(1
2
)| = |An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
)| =

156

|An
uiBn

ui+1 · · ·An
um−1(1

num+2
)| > 1. By Theorem 4.1.4, |βi| = |Bn

ui+1 · · ·An
um−1

Bn
um(1

2
)| = |Bn

ui+1 · · ·An
um−1(1

num+2
)| < 1.

For −1 < βi < 0, bL(1
2
)c = bnui+βic = nui−1 and dL(1

2
)e = dnui+βie = nui.

So in Step 2 of the ith iteration, as n is even, e = dL(1
2
)e = nui, C = A1

e =

A1
nui , w = wC = A1

nu1B1
nu2 · · ·B1

nui−1C = A1
nu1B1

nu2 · · ·B1
nui−1Ai

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For βi = 0, bL(1
2
)c = bnui + βic = nui and dL(1

2
)e = dnui + βie = nui.

So in Step 2 of the ith iteration, as n is even, e = dL(1
2
)e = nui, C = A1

e =

A1
nui , w = wC = A1

nu1B1
nu2 · · ·B1

nui−1C = A1
nu1B1

nu2 · · ·B1
nui−1Ai

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For 0 < βi < 1, bL(1
2
)c = bnui +βic = nui and dL(1

2
)e = dnui +βie = nui +1.

So in Step 2 of the i th iteration, as n is even, e = bL(1
2
)c = nui, C = A1

e =

A1
nui , w = wC = A1

nui and L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um =

Bn
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

For even i, let L(1
2
) = Bn

uiAn
ui+1 · · ·An

um−1Bn
um(1

2
) = Bn

ui(αi) = αi

αinui+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

= ∞, An
um−1Bn

um(1
2
)

= An
um−1(∞) = num−1 +∞ = ∞ and Bn

um−2An
um−1Bn

um(1
2
) = Bn

um−2(∞) =

1
num−2

∈ D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(1
2
)| =

|Bn
uiAn

ui+1 · · ·An
um−1Bn

um(1
2
)| = |Bn

uiAn
ui+1 · · ·An

um−3(1
num−2

)| < 1 and by

Theorem 4.1.3, αi = An
ui+1 · · ·An

um−1Bn
um(1

2
)| = |An

ui+1 · · ·An
um−3(1

num−2
)| >

1.

157

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. In Step 1 of the

ith iteration, by Theorem 4.1.4, |L(1
2
)| = |Bn

uiAn
ui+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
uiAn

ui+1 · · ·An
um−1(1

num+2
)| < 1. By Theorem 4.1.3, |αi| = |An

ui+1 · · ·An
um−1

Bn
um(1

2
)| = |An

ui+1 · · ·An
um−1(1

num+2
)| > 1.

For −1 < 1
αi

< 0, b 1
L(1

2
)
c = bnui+

1
αi
c = nui−1 and d 1

L(1
2
)
e = dnui+

1
αi
e = nui.

So in Step 3 of the ith iteration, as n is even, e = d 1
L(1

2
)
e = nui, C = B1

e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1Bi

nui and

L = C−1L = Bi
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For 0 < 1
αi

< 1, b 1
L(1

2
)
c = bnui + 1

αi
c = nui and d 1

L(1
2
)
e = dnui + 1

αi
e =

nui + 1. So in Step 2, as n is even, e = b 1
L(1

2
)
c = nui, C = B1

e = B1
nui ,

w = wC = A1
nu1B1

nu2 · · ·A1
nui−1C = A1

nu1B1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1

Bn
um 6= I. So return Step 1.

If i = m − 2, then L = Bn
um−2An

um−1Bn
um and put L(1

2
) = Bn

um−2(αm−2) =

1
num−2+ 1

αm−2

where αm−2 = An
um−1Bn

um(1
2
).

If n = 2 and um = −1, then in Step 1 of the m − 2th iteration, L(1
2
) =

Bn
um−2An

um−1Bn
um(1

2
) = Bn

um−2An
um−1(∞) = Bn

um−2(∞) = 1
num−2

∈ D and

αm−2 = An
um−1(∞) = ∞. Since —L(1

2
)| < 1, b 1

L(1
2
)
c =cnum−2b= num−2 and

d 1
L(1

2
)
e = dnum−2e = num−2. So in Step 3 of the m − 2th iteration, as n is

even, e = num−2, C = B1
e = B1

num−2 , w = wC = A1
nu1B1

nu2 · · ·A1
num−3C =

A1
nu1B1

nu2 · · ·A1
num−3B1

num−2 and L = C−1L = B1
−num−2Bn

um−2An
um−1Bn

um

= An
um−1Bn

um 6= I. So return Step 1.

158

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D. By Lemma 4.1.2,

αm−2 = An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1+
1

num+2
∈ Dc. So in Step 1

of the m− 2th iteration, by Lemma 4.1.2, |L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
) =

|Bn
um−2(αm−2)| = | 1

num−2+ 1
αm−2

| < 1. Then b 1
L(1

2
)
c = bnum−2 + 1

αm−2
c and

d 1
L(1

2
)
e = dnum−2 + 1

αm−2
e.

For −1 < 1
αm−2

< 0, b 1
L(1

2
)
c = bnum−2 + 1

αm−2
c = num−2 − 1 and d 1

L(1
2
)
e =

dnum−2 + 1
αm−2

e = num−2. So in Step 3 of the m − 2th iteration, as n is

even, e = dnum−2 + 1
αm−2

e = num−2, C = B1
e = B1

num−2 , w = wC =

A1
nu1B1

nu2 · · ·A1
num−3C = A1

nu1B1
nu2 · · ·A1

num−3B1
num−2 and L = C−1L =

B1
−num−2Bn

um−2An
um−1Bn

um = An
um−1Bn

um 6= I. So return Step 1.

For 0 < 1
αm−2

< 1, b 1
L(1

2
)
c = bnum−2 + 1

αm−2
c = num−2 and d 1

L(1
2
)
e = dnum−2 +

1
αm−2

e = num−2 + 1. So in Step 3 of the m − 2th iteration, as n is even, e =

bnum−2+
1

αm−2
c = num−2, C = B1

e = B1
num−2 , w = wC = A1

nu1B1
nu2 · · ·A1

num−3

C = A1
nu1B1

nu2 · · ·A1
num−3B1

num−2 and L = C−1L = B1
−num−2Bn

um−2An
um−1

Bn
um = An

um−1Bn
um 6= I. So return Step 1.

If i = m− 1, then L = An
um−1Bn

um and L(1
2
) = An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then L(1
2
) = An

um−1Bn
um(1

2
) = An

um−1(∞) = ∞
and so, in Step 1 of the m− 1th iteration, the algorithm outputs ε. Hence the

algorithm terminates.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

L(1
2
) = An

um−1Bn
um(1

2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. So in Step

1 of the m−1th iteration, |L(1
2
)| > 1. Then consider bL(1

2
)c = bnum−1+

1
num+2

c
and dL(1

2
)e = dnum−1 + 1

num+2
e.

159

For −1 < 1
num+2

< 0, then bL(1
2
)c = bnum−1 + 1

num+2
c = num−1 − 1 and

dL(1
2
)e = dnum−1 + 1

num+2
e = num−1. So in Step 2 of the m − 1th itera-

tion, as n is even, e = dL(1
2
)e = num−1, C = A1

e = A1
num−1 , w = wC =

A1
nu1B1

nu2 · · ·B1
num−2C = A1

nu1B1
nu2 · · ·B1

num−2A1
num−1 and L = C−1L =

A1
−num−1An

um−1Bn
um = Bn

um 6= I. So return Step 1. If i = m, then in the

mth iteration, L(1
2
) = Bn

um(1
2
). By Theorem 6.3.3, the algorithm outputs ε

and it terminates.

For 0 < 1
num+2

< 1, then bL(1
2
)c = bnum−1 + 1

num+2
c = num−1 and dL(1

2
)e =

dnum−1 + 1
num+2

e = num−1 + 1. So in Step 2 of the m − 1th iteration,

as n is even, e = bL(1
2
)c = num−1, C = A1

e = A1
num−1 , w = wC =

A1
nu1B1

nu2 · · ·B1
num−2C = A1

nu1B1
nu2 · · ·B1

num−2A1
num−1 and L = C−1L =

A1
−num−1An

um−1Bn
um = Bn

um 6= I. So return Step 1. If i = m, then in the

mth iteration, L(1
2
) = Bn

um(1
2
). By Theorem 6.3.3, the algorithm outputs ε

and it terminates. ¤

Theorem 6.3.10 If M = An
u1Bn

u2 · · ·An
um−1Bn

um is input to the algo-

rithm (z = 2), then the algorithm outputs A1
nu1B1

nu2 · · ·A1
num−1B1

num as

the X1-representation of M where even m ≥ 2 and ui is a nonzero integer

(i = 1, · · · ,m).

Proof Given M = An
u1Bn

u2 · · ·An
um−1Bn

um with even m ≥ 2 and nonzero

ui ∈ Z(i = 1, · · · ,m), put L(2) = An
u1Bn

u2 · · ·An
um−1Bn

um(2) = nu1 + β1

where β1 = Bn
u2 · · ·An

um−1Bn
um(2). By Theorem 4.1.5, |L(2)| > 1 in Step 1

of the algorithm and by Theorem 4.1.6, |β1| < 1.

For −1 < β1 < 0, bL(2)c = bnu1 + β1c = nu1 − 1 and dL(2)e = dnu1 +

βe = nu1. So in Step 2, as n is even, e = dL(2)e = nu1, C = A1
e =

160

A1
nu1 , w = wC = A1

nu1 , L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um =

Bn
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

For β1 = 0, bL(2)c = bnu1 + β1c = nu1 and dL(2)e = dnu1 + β1e = nu1.

So in Step 2, as n is even, e = nu1, C = A1
e = A1

nu1 , w = wC = A1
nu1 ,

L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um = Bn

u2 · · ·An
um−1Bn

um 6= I. So

return Step 1.

For 0 < β1 < 1, bL(2)c = bnu1 + β1c = nu1 and dL(2)e = dnu1 + β1e =

nu1 + 1. So in Step 2, as n is even, e = bL(2)c = nu1, C = A1
e =

A1
nu1 , w = wC = A1

nu1 , L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um =

Bn
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

Assume that for 1 ≤ i−1 < m−1, in the i−1th iteration, L = An
uiBn

ui+1 · · ·
Bn

um−1An
um or L = Bn

uiAn
ui+1 · · ·Bn

um−1An
um according as i − 1 is even or

odd.

For odd i, let L(2) = An
uiBn

ui+1 · · ·An
um−1Bn

um(2) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(2).

For −1 < βi < 0, bL(2)c = bnui + βc = nui − 1 and dL(2)e = dnui + βe =

nui. In Step 2, as n is even, e = dL(2)e = nui, C = A1
e = A1

nui , w =

wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui , L = C−1L =

A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I. So return

Step 1.

For βi = 0, bL(2)c = bnui + βic = nui and dL(2)e = dnui + βie = nui.

In Step 2, as n is even, e = dL(2)e = nui, C = A1
e = A1

nui , w = wC =

A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L = C−1L = A1

−nui

161

An
uiBn

ui+1 · · ·An
um−1Bn

um = Bn
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

For 0 < βi < 1, bL(2)c = bnui+βic = nui and dL(2)e = dnui+βie = nui+1. In

Step 2, as n is even, e = bL(2)c = nui, C = A1
e = A1

nui , w = wC = A1
nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For even i, let L(2) = Bn
uiAn

ui+1 · · ·An
um−1Bn

um(2) = Bn
ui(αi) = αi

αinui+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·An

um−1Bn
um(2). By Theorem 4.1.6, |L(2)| < 1

and by Theorem 4.1.5, |αi| > 1.

For −1 < 1
αi

< 0, bL(2)c = bnui + 1
αi
c = nui − 1 and dL(2)e = dnui +

1
αi
e = nui. In Step 2, as n is even, e = dL(2)e = nui, C = B1

e = B1
nui ,

w = wC = A1
nu1B1

nu2 · · ·A1
nui−1C = A1

nu1B1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

For 0 < 1
αi

< 1, bL(2)c = bnui + 1
αi
c = nui and dL(2)e = dnui + 1

αi
e =

nui + 1. In Step 2, as n is even, e = bL(2)c = nui, C = B1
e = B1

nui ,

w = wC = A1
nu1B1

nu2 · · ·A1
nui−1C = A1

nu1B1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

If i = m, then L(2) = Bn
um(2). By Theorem 6.3.4, the algorithm outputs

A1
nu1B1

nu2 · · ·A1
num−1B1

num as the X1-representation of M and the algorithm

terminates. ¤

Theorem 6.3.11 If M = Bn
u1An

u2 · · ·An
um−1Bn

um is input to the algo-

rithm (z = 1
2
), then the algorithm outputs ε where odd m ≥ 2 and ui is a

162

nonzero integer (i = 1, · · · ,m).

Proof Given M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn with odd m ≥ 2 and each

nonzero ui ∈ Z(i = 1, · · · ,m), put L(1
2
) = Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
) =

Bn
u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

= ∞, An
um−1Bn

um(1
2
)

= An
um−1(∞) = num−1 +∞ = ∞ and Bn

um−2An
um−1Bn

um(1
2
) = Bn

um−2(∞) =

1
num−2

∈ D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(1
2
)| =

|Bn
u1An

u2 · · ·An
um−1Bn

um(1
2
)| = |Bn

u1An
u2 · · ·An

um−3(1
num−2

)| < 1 and by

Theorem 4.1.3, α1 = An
u2 · · ·An

um−1Bn
um(1

2
)| = |An

ui+1 · · ·An
um−3(1

num−2
)| >

1.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. In Step 1 of the

ith iteration, by Theorem 4.1.4, |L(1
2
)| = |Bn

u1An
u2 · · ·An

um−1Bn
um(1

2
)| =

|Bn
u1An

u2 · · ·An
um−1(1

num+2
)| < 1. By Theorem 4.1.3, |α1| = |An

u2 · · ·An
um−1

Bn
um(1

2
)| = |An

u2 · · ·An
um−1(1

num+2
)| > 1.

For −1 < 1
α1

< 0, b 1
L(1

2
)
c = bnu1 + 1

α1
c = nu1 − 1 and d 1

L(1
2
)
e = dnu1 + 1

α1
e =

nu1. So in Step 3 of the first iteration, as n is even, e = d 1
L(1

2
)
e = nu1, C =

B1
e = B1

nu1 , w = wC = B1
nu1 and L = C−1L = B1

−nu1Bn
u2An

u2 · · ·An
um−1

Bn
um = An

u2 · · ·An
um−1Bn

um 6= I. So return Step 1.

For 0 < 1
α1

< 1, b 1
L(1

2
)
c = bnu1 + 1

α1
c = nu1 and d 1

L(1
2
)
e = dnu1 + 1

α1
e =

nu1 + 1. So in Step 2, as n is even, e = b 1
L(1

2
)
c = nu1, C = B1

e = B1
nu1 ,

w = wC = B1
nu1 and L = C−1L = B1

−nu1Bn
u1An

u2 · · ·An
um−1Bn

um =

An
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

163

Suppose that for 1 ≤ i−1 < m−3, in the i−1th iteration, L = An
uiBn

ui+1 · · ·
Bn

um−1An
um or L = Bn

uiAn
ui+1 · · ·Bn

um−1An
um according as i − 1 is even or

odd.

For even i, let L(1
2
) = An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

= ∞, An
um−1Bn

um(1
2
)

= An
um−1(∞) = num−1 +∞ = ∞ and Bn

um−2An
um−1Bn

um(1
2
) = Bn

um−2(∞) =

1
num−2

∈ D. So in Step 1 of the ith iteration, by Theorem 4.1.3, |L(1
2
)| =

|An
uiBn

ui+1 · · ·An
um−1Bn

um(1
2
)| = |An

uiBn
ui+1 · · ·An

um−3(1
num−2

)| > 1 and by

Theorem 4.1.4, |βi| = |Bn
ui+1 · · ·An

um−3(1
num−2

)| < 1.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. In Step 1 of the

ith iteration, by Theorem 4.1.3, |L(1
2
)| = |An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
)| =

|An
uiBn

ui+1 · · ·An
um−1(1

num+2
)| > 1. By Theorem 4.1.4, |βi| = |Bn

ui+1 · · ·An
um−1

Bn
um(1

2
)| = |Bn

ui+1 · · ·An
um−1(1

num+2
)| < 1.

For −1 < βi < 0, bL(1
2
)c = bnui+βic = nui−1 and dL(1

2
)e = dnui+βie = nui.

So in Step 2 of the ith iteration, as n is even, e = dL(1
2
)e = nui, C = A1

e =

A1
nui , w = wC = B1

nu1A1
nu2 · · ·B1

nui−1C = A1
nu1B1

nu2 · · ·B1
nui−1Ai

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For βi = 0, bL(1
2
)c = bnui + βic = nui and dL(1

2
)e = dnui + βie = nui.

So in Step 2 of the ith iteration, as n is even, e = dL(1
2
)e = nui, C = A1

e =

A1
nui , w = wC = B1

nu1A1
nu2 · · ·B1

nui−1C = B1
nu1A1

nu2 · · ·B1
nui−1Ai

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

164

So return Step 1.

For 0 < βi < 1, bL(1
2
)c = bnui +βic = nui and dL(1

2
)e = dnui +βie = nui +1.

So in Step 2 of the i th iteration, as n is even, e = bL(1
2
)c = nui, C = A1

e =

A1
nui , w = wC = B1

nu1A1
nu2 · · ·B1

nui−1C = B1
nu1A1

nu2 · · ·B1
nui−1A1

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For odd i, let L(1
2
) = Bn

uiAn
ui+1 · · ·An

um−1Bn
um(1

2
) = Bn

ui(αi) = αi

αinui+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

= ∞, An
um−1Bn

um(1
2
)

= An
um−1(∞) = num−1 +∞ = ∞ and Bn

um−2An
um−1Bn

um(1
2
) = Bn

um−2(∞) =

1
num−2

∈ D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(1
2
)| =

|Bn
uiAn

ui+1 · · ·An
um−1Bn

um(1
2
)| = |Bn

uiAn
ui+1 · · ·An

um−3(1
num−2

)| < 1 and by

Theorem 4.1.3, αi = An
ui+1 · · ·An

um−1Bn
um(1

2
)| = |An

ui+1 · · ·An
um−3(1

num−2
)| >

1.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. In Step 1 of the

ith iteration, by Theorem 4.1.4, |L(1
2
)| = |Bn

uiAn
ui+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
uiAn

ui+1 · · ·An
um−1(1

num+2
)| < 1. By Theorem 4.1.3, |αi| = |An

ui+1 · · ·An
um−1

Bn
um(1

2
)| = |An

ui+1 · · ·An
um−1(1

num+2
)| > 1.

For −1 < 1
αi

< 0, b 1
L(1

2
)
c = bnui+

1
αi
c = nui−1 and d 1

L(1
2
)
e = dnui+

1
αi
e = nui.

So in Step 3 of the ith iteration, as n is even, e = d 1
L(1

2
)
e = nui, C = B1

e =

B1
nui , w = wC = B1

nu1A1
nu2 · · ·A1

nui−1C = B1
nu1A1

nu2 · · ·A1
nui−1Bi

nui and

L = C−1L = Bi
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

165

For 0 < 1
αi

< 1, b 1
L(1

2
)
c = bnui + 1

αi
c = nui and d 1

L(1
2
)
e = dnui + 1

αi
e =

nui + 1. So in Step 2, as n is even, e = b 1
L(1

2
)
c = nui, C = B1

e = B1
nui ,

w = wC = B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

If i = m − 2, then L = Bn
um−2An

um−1Bn
um and put L(1

2
) = Bn

um−2(αm−2) =

1
num−2+ 1

αm−2

where αm−2 = An
um−1Bn

um(1
2
).

If n = 2 and um = −1, then in Step 1 of the m − 2th iteration, L(1
2
) =

Bn
um−2An

um−1Bn
um(1

2
) = Bn

um−2An
um−1(∞) = Bn

um−2(∞) = 1
num−2

∈ D and

αm−2 = An
um−1(∞) = ∞. Since |L(1

2
)| < 1, b 1

L(1
2
)
c = bnum−2c = num−2 and

d 1
L(1

2
)
e = dnum−2e = num−2. So in Step 3 of the m − 2th iteration, as n is

even, e = num−2, C = B1
e = B1

num−2 , w = wC = B1
nu1A1

nu2 · · ·A1
num−3C =

B1
nu1A1

nu2 · · ·A1
num−3B1

num−2 and L = C−1L = B1
−num−2Bn

um−2An
um−1Bn

um

= An
um−1Bn

um 6= I. So return Step 1.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D. By Lemma 4.1.2,

αm−2 = An
um−1Bn

um(1
2
) = An

um−1(1
num+2

) = num−1+
1

num+2
∈ Dc. So in Step 1

of the m− 2th iteration, by Lemma 4.1.2, |L(1
2
)| = |Bn

um−2An
um−1Bn

um(1
2
) =

|Bn
um−2(αm−2)| = | 1

num−2+ 1
αm−2

| < 1. Then b 1
L(1

2
)
c = bnum−2 + 1

αm−2
c and

d 1
L(1

2
)
e = dnum−2 + 1

αm−2
e.

For −1 < 1
αm−2

< 0, b 1
L(1

2
)
c = bnum−2 + 1

αm−2
c = num−2 − 1 and d 1

L(1
2
)
e =

dnum−2 + 1
αm−2

e = num−2. So in Step 3 of the m − 2th iteration, as n is

even, e = dnum−2 + 1
αm−2

e = num−2, C = B1
e = B1

num−2 , w = wC =

B1
nu1A1

nu2 · · ·A1
num−3C = B1

nu1A1
nu2 · · ·A1

num−3B1
num−2 and L = C−1L =

B1
−num−2Bn

um−2An
um−1Bn

um = An
um−1Bn

um 6= I. So return Step 1.

166

For 0 < 1
αm−2

< 1, b 1
L(1

2
)
c = bnum−2 + 1

αm−2
c = num−2 and d 1

L(1
2
)
e = dnum−2 +

1
αm−2

e = num−2 + 1. So in Step 3 of the m − 2th iteration, as n is even, e =

bnum−2+
1

αm−2
c = num−2, C = B1

e = B1
num−2 , w = wC = B1

nu1A1
nu2 · · ·A1

num−3

C = B1
nu1A1

nu2 · · ·A1
num−3B1

num−2 and L = C−1L = B1
−num−2Bn

um−2An
um−1

Bn
um = An

um−1Bn
um 6= I. So return Step 1.

If i = m− 1, then L = An
um−1Bn

um and L(1
2
) = An

um−1Bn
um(1

2
).

If n = 2 and um = −1, then L(1
2
) = An

um−1Bn
um(1

2
) = An

um−1(∞) = ∞
and so, in Step 1 of the m− 1th iteration, the algorithm outputs ε. Hence the

algorithm terminates.

If n 6= 2 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

L(1
2
) = An

um−1Bn
um(1

2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. So in Step

1 of the m−1th iteration, |L(1
2
)| > 1. Then consider bL(1

2
)c = bnum−1+

1
num+2

c
and dL(1

2
)e = dnum−1 + 1

num+2
e.

For −1 < 1
num+2

< 0, then bL(1
2
)c = bnum−1 + 1

num+2
c = num−1 − 1 and

dL(1
2
)e = dnum−1 + 1

num+2
e = num−1. So in Step 2 of the m − 1th itera-

tion, as n is even, e = dL(1
2
)e = num−1, C = A1

e = A1
num−1 , w = wC =

B1
nu1A1

nu2 · · ·B1
num−2C = B1

nu1A1
nu2 · · ·B1

num−2A1
num−1 and L = C−1L =

A1
−num−1An

um−1Bn
um = Bn

um 6= I. So return Step 1. If i = m, then in the

mth iteration, L(1
2
) = Bn

um(1
2
). By Theorem 6.3.3, the algorithm outputs ε

and it terminates.

For 0 < 1
num+2

< 1, then bL(1
2
)c = bnum−1 + 1

num+2
c = num−1 and dL(1

2
)e =

dnum−1 + 1
num+2

e = num−1 + 1. So in Step 2 of the m − 1th iteration,

as n is even, e = bL(1
2
)c = num−1, C = A1

e = A1
num−1 , w = wC =

167

B1
nu1A1

nu2 · · ·B1
num−2C = B1

nu1A1
nu2 · · ·B1

num−2A1
num−1 and L = C−1L =

A1
−num−1An

um−1Bn
um = Bn

um 6= I. So return Step 1. If i = m, then in the

mth iteration, L(1
2
) = Bn

um(1
2
). By Theorem 6.3.3, the algorithm outputs ε

and it terminates. ¤

Theorem 6.3.12 If M = Bn
u1An

u2 · · ·An
um−1Bn

um is input to the algorithm

(z = 2),then the algorithm outputs B1
nu1A1

nu2 · · ·A1
num−1B1

num as the X1-

representation of M where m ≥ 2 and ui is a nonzero integer (i = 1, · · · ,m).

Proof Given M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn, put L(2) = Bn
u1An

u2 · · ·
An

um−1Bn
um(2) = Bn

u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·An

um−1Bn
um

(2). By Theorem 4.1.6, |L(2)| < 1 and by Theorem 4.1.5, |α1| > 1.

For −1 < 1
α1

< 0, bL(2)c = bnu1 + 1
α1
c = nu1 − 1 and dL(2)e = dnu1 + 1

α1
e =

nu1. In Step 2, as n is even, e = dL(2)e = nu1, C = B1
e = B1

nu1 ,

w = wC = B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nu1Bn

u1An
u2 · · ·An

um−1Bn
um = An

u2 · · ·An
um−1Bn

um 6= I. So re-

turn Step 1.

For 0 < 1
α1

< 1, bL(2)c = bnu1 + 1
α1
c = nu1 and dL(2)e = dnu1 + 1

α1
e =

nu1 + 1. In Step 2, as n is even, e = bL(2)c = nu1, C = B1
e = B1

nu1 ,

w = wC = B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nu1Bn

u1An
u2 · · ·An

um−1Bn
um = An

u2 · · ·An
um−1Bn

um 6= I. So re-

turn Step 1.

Assume that for 1 ≤ i−1 < m−1, in the i−1th iteration, L = An
uiBn

ui+1 · · ·
Bn

um−1An
um or L = Bn

uiAn
ui+1 · · ·Bn

um−1An
um according as i − 1 is even or

odd.

168

For even i, let L(2) = An
uiBn

ui+1 · · ·An
um−1Bn

um(2) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(2).

For −1 < βi < 0, bL(2)c = bnui + βc = nui − 1 and dL(2)e = dnui + βe =

nui. In Step 2, as n is even, e = dL(2)e = nui, C = A1
e = A1

nui , w =

wC = B1
nu1A1

nu2 · · ·B1
nui−1C = B1

nu1A1
nu2 · · ·B1

nui−1A1
nui , L = C−1L =

A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I. So return

Step 1.

For βi = 0, bL(2)c = bnui + βic = nui and dL(2)e = dnui + βie = nui.

In Step 2, as n is even, e = dL(2)e = nui, C = A1
e = A1

nui , w = wC =

B1
nu1A1

nu2 · · ·B1
nui−1C = B1

nu1A1
nu2 · · ·B1

nui−1A1
nui and L = C−1L = A1

−nui

An
uiBn

ui+1 · · ·An
um−1Bn

um = Bn
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

For 0 < βi < 1, bL(2)c = bnui+βic = nui and dL(2)e = dnui+βie = nui+1. In

Step 2, as n is even, e = bL(2)c = nui, C = A1
e = A1

nui , w = wC = A1
nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For odd i, let L(2) = Bn
uiAn

ui+1 · · ·An
um−1Bn

um(2) = Bn
ui(αi) = αi

αinui+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·An

um−1Bn
um(2). By Theorem 4.1.6, |L(2)| < 1

and by Theorem 4.1.5, |αi| > 1.

For −1 < 1
αi

< 0, bL(2)c = bnui + 1
αi
c = nui − 1 and dL(2)e = dnui +

1
αi
e = nui. In Step 2, as n is even, e = dL(2)e = nui, C = B1

e = B1
nui ,

w = wC = B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

169

For 0 < 1
αi

< 1, bL(2)c = bnui + 1
αi
c = nui and dL(2)e = dnui + 1

αi
e =

nui + 1. In Step 2, as n is even, e = bL(2)c = nui, C = B1
e = B1

nui ,

w = wC = B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1Bi
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

If i = m, then L(2) = Bn
um(2). By Theorem 6.3.4, the algorithm outputs

B1
nu1A1

nu2 · · ·A1
num−1B1

num as the X1-representation of M and the algorithm

terminates. ¤

6.4 X1-Representation Algorithm II

Let n ≥ 3 be a natural number and M ∈ Γn. Assume that n is unknown.

Input a matrix M ∈ Γn to the X1-representation algorithm II and then the

algorithm outputs the X1-representation of M as a reduced word in X1
±.

We use two values z = 1
2

and z = 2. If the X1-representation algorithm

II computes the X1-representation of M for z = 1
2
, we do not run the X1-

representation algorithm II for z = 2. Otherwise, we have to run the X1-

representation algorithm II for z = 2. So the X1-representation algorithm II

computes the X1-representation of M ∈ Γn for z = 1
2

or z = 2. When the X1-

representation algorithm II does not output the X1-representation of M for

z = 1
2
, the algorithm outputs ε for z = 1

2
. So the X1-representation algorithm

outputs the X1-representation of M or ε and then the algorithm terminates.

Now we describe the X1-representation algorithm II.

The X1-Representation Algorithm II

Step 0

w ← 1X1

L ← M.

170

Step 1

L(z) = 0, |L(z)| = 1,L(z) = ∞⇒ output ε.

|L(z)| > 1 ⇒ compute e, µ s.t. L(z) = e + µ, e ∈ Z, −1
2 < µ ≤ 1

2

and go to Step 2.

|L(z)| < 1 ⇒ compute e, µ s.t. 1
L(z) = e + µ, e ∈ Z, −1

2 < µ ≤ 1
2

and go to Step 3.

Step 2

C ← A1
e and w ← wC.

C = I ⇒ output ε.

L ← C−1L

L = I ⇒ output w. Otherwise, return Step 1.

Step 3

C ← B1
e and w ← wC.

C = I ⇒ output ε.

L ← C−1L

L = I ⇒ output w. Otherwise, return Step 1.

6.5 Programming Implementation II

This section shows implementation of the X1-representation algorithm II and

so we demonstrate how the X1-representation algorithm works correctly. We

make a program called the X1-representation program II with Maple version 6

and the operation of the program is one loop. The X1-representation program

II takes z = 1
2

or z = 2, the entries M11, M12, M21 and M22 of M ∈ Γn as

inputs and then for every execution of the program, it outputs two matrices.

171

The first matrix presents C = A1
e in Step 2 or C = B1

e in Step 3. The

second matrix presents L = C−1L in Step 2 or L = C−1L in Step 3. If the

identity matrix turns up in the first matrix or the second matrix, then the

program execution terminates. Also, if an usual matrix in the first matrix or

the second matrix appears, then execution of the program terminates. Each

example shows how the algorithm and the program work correctly to compute

the X1-representation of M ∈ Γn. The following is the X1-representation

program II source code.

X1-Representation Program II Source Code

with(GaussInt):

with(linalg):

su:=proc(z::float, M11::integer, M12::integer, M21::integer, M22::integer):

local K, u, v, C, P, Q;

z;

K:=matrix(2,2,[M11, M12, M21, M22]);

L(z) := (M11 ∗ z + M12)/(M21 ∗ z + M22);

R(z) := (M21 ∗ z + M22)/(M11 ∗ z + M12);

if abs(L(z)) = 1 then

print(epsilon);

fi;

if abs(L(z)) > 1 then

u:=floor(L(z));

v:=ceil(L(z));

if abs(L(z)− u) < 0.5 then

C := matrix(2,2, [1,1,0,1])∧{u};

P:=matrix(2,2,[1,-u,0,1]);

Q:=multiply(P, K);

elif abs(L(z)− u) = 0.5 then

172

C := matrix(2,2, [1,1,0,1])∧{u};

P:=matrix(2,2,[1,-u,0,1]);

Q:=multiply(P, K);

else

C := matrix(2,2, [1,1,0,1])∧{v};

P:=matrix(2,2,[1, -v,0,1]);

Q:=multiply(P, K);

fi;

print(C);

print(Q);

fi;

if abs(L(z)) < 1 then

u:=floor(R(z));

v:=ceil(R(z)))

if abs(R(z)− u) < 0.5 then

C := matrix(2,2, [1,0,1,1])∧{u};

P:=matrix(2,2,[1,0,-v,1]);

Q:=multiply(P, K);

elif abs(R(z)− u) = 0.5 then

C := matrix(2,2, [1,0,1,1])∧{u};

P:=matrix(2,2,[1,0,-u,1]);

Q:=multiply(P, K);

else

C := matrix(2,2, [1,0,1,1])∧{v};

P:=matrix(2,2,[1,0,-v,1]);

Q:=multiply(P, K);

fi;

print(C);

print(Q);

173

fi;

end proc :

Example 1

Given M = A3 =

(
1 3
0 1

)
∈ Γ3, input z = 0.5, M11 = 1, M12 = 3, M21 = 0

and M22 = 1 to the program.

For z = 1
2
,

> su(0.5,1,3,0,1);
(

1 1
0 1

)3

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 1
0 1

)−3 (
1 3
0 1

)
= I in Step 2 of the X1-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have
(

1 1
0 1

)3

as the X3-representation of M .

For z = 2,

> su(2.0,1,3,0,1);
(

1 1
0 1

)5

(
1 −2
0 1

)

174

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(∞ −2
−∞ ∞

)

The first matrix of the second execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(2) =

(
1 −2
0 1

)
(2) = 0 in Step 1 of the second iteration of the

X1-representation algorithm II. So execution of the program terminates and

the program does not output the X1-representation of M for z = 2.

Example 2

Given M = B3 =

(
1 0
3 1

)
∈ Γ3, input z = 0.5, M11 = 1, M12 = 0, M21 = 3

and M22 = 1 to the program.

For z = 1
2
,

> su(0.5,1,0,3,1);

(
1 0
1 1

)5

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

175

The first matrix of the second execution of the program is an unusual ma-

trix

(
1 1
0 1

)∞
which is the same ε in Step 1 of the X1-representation of the

algorithm II because L(1
2

=

(
1 0
−2 1

)
(1

2
) = ∞. So execution of the program

terminates and the program does not output the X1-representation of M for

z = 1
2
.

For z = 2,

> su(2.0,1,0,3,1);

(
1 0
1 1

)3

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 0
1 1

)−3 (
1 0
3 1

)
= I in Step 3 of the X1-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have
(

1 0
1 1

)3

as the X1-representation of M .

Example 3

Given M = A8 =

(
1 8
0 1

)
∈ Γ8, input z = 0.5, M11 = 1, M12 = 8, M21 = 0

and M22 = 1 to the program.

For z = 1
2
,

> su(0.5,1,8,0,1);

176

(
1 1
0 1

)8

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 1
0 1

)−8 (
1 8
0 1

)
= I in Step 2 of the X1-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have

(
1 1
0 1

)8

as the X1-representation of M .

For z = 2,

> su(2.0,1,8,0,1);

(
1 1
0 1

)10

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the second execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(2) =

(
1 −2
0 1

)
(2) = 0 in Step 1 of the X1-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X1-representation of M .

177

Example 4

Given M = B8 =

(
1 0
8 1

)
∈ Γ8, input z = 0.5, M11 = 1, M12 = 0, M21 = 8

and M22 = 1 to the program.

For z = 1
2

> su(0.5,1,0,8,1);

(
1 0
1 1

)10

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the second execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 1 of the X1-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X1-representation of M .

For z = 2,

> su(2.0,1,0,8,1);

(
1 0
1 1

)8

178

(
1 0
0 1

)

The second matrix of the first execution of the program is the identity matrix

which is L = C−1L =

(
1 0
1 1

)−8 (
1 0
8 1

)
= I in Step 1 of the X1-representation

algorithm II. So execution of the program terminates and take the first matrix

of the first execution of the program. Then we have
(

1 0
1 1

)8

as the X1-representation of M .

Example 5

Given M = A7
−3B7A7

3 =

(−146 −3087
7 148

)
∈ Γ7, input z = 0.5, M11 =

−146, M12 = −3087, M21 = 7 and M22 = 148 to the program.

For z = 1
2
,

> su(0.5,-146,-3087,7,148);

(
1 1
0 1

)−21

(
1 21
7 148

)

> su(0.5,1,21,7,148);

(
1 0
1 1

)7

(
1 21
0 1

)

> su(0.5,1,21,0,1);

(
1 1
0 1

)21

179

(
1 0
0 1

)

The second matrix of the third execution of the program is the identity ma-

trix which is L = C−1L =

(
1 1
0 1

)−21 (
1 21
0 1

)
= I in Step 2 of the X1-

representation algorithm II and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have
(

1 1
0 1

)−21(
1 0
1 1

)7(
1 1
0 1

)21

as the X1-representation of M .

For z = 2,

> su(2.0,-146,-3087,7,148);

(
1 1
0 1

)−21

(
1 21
7 148

)

> su(2.0,1,21,7,148);

(
1 0
1 1

)7

(
1 21
0 1

)

> su(2.0,1,21,0,1);

(
1 1
0 1

)23

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);

180

(
1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the fourth matrix is an unusual matrix

(
1 0
1 1

)∞
which

is the same as ε in Step 1 of the X1-representation algorithm II because

L(2) =

(
1 −2
0 1

)
(2) = 0 in Step 1 of the X1-representation algorithm II.

So execution of the program terminates and the program does not output the

X1-representation of M .

Example 6

Given M = B7
−1A7

−3B7A7
3 =

(−146 −3087
1029 21757

)
, input z = 0.5, M11 = −146,

M12 = −3087, M21 = 1029 and M22 = 21757 to the program.

For z = 1
2
,

> su(0.5,-146,-3087,1029,21757);

(
1 0
1 1

)−7

(−146 −3087
7 148

)

> su(0.5,-146,-3087,7,148);

(
1 1
0 1

)−21

(
1 21
7 148

)

> su(0.5,1,21,7,148);

181

(
1 0
1 1

)7

(
1 21
0 1

)

> su(0.5,1,21,0,1);

(
1 1
0 1

)21

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity

matrix which is L = C−1L =

(
1 1
0 1

)−21 (
1 21
0 1

)
= I in Step 2 of the X1-

representation algorithm II and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have
(

1 0
1 1

)−7(
1 1
0 1

)−21(
1 0
1 1

)7(
1 1
0 1

)21

as the X1-representation of M .

For z = 2,

> su(2.0,-146,-3087,1029,21757);

(
1 0
1 1

)−7

(−146 −3087
7 148

)

> su(2.0,-146,-3087,7,148);

(
1 1
0 1

)−21

(
1 21
7 148

)

182

> su(2.0,1,21,7,148);

(
1 0
1 1

)7

(
1 21
0 1

)

> su(2.0,1,21,0,1);

(
1 1
0 1

)23

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the fifth execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(2) =

(
1 −2
0 1

)
(2) = 0 in Step 1 of the X1-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X1-representation of M .

Example 7

Given M = A7
−3B7A7

3B7
−1 =

(
21463 −3087
1029 148

)
, input z = 0.5, M11 =

21463, M12 = −3087, M21 = −1029 and M22 = 148 to the program.

For z = 1
2

> su(0.5,21463,-3087,-1029,148);

183

(
1 1
0 1

)−21

(−146 21
−1029 148

)

> su(0.5,-146,21,-1029,148);

(
1 0
1 1

)7

(−146 21
−7 1

)

> su(0.5,-146,21,-7,1);

(
1 1
0 1

)21

(
1 0
−7 1

)

> su(0.5,1,0,-7,1);

(
1 0
1 1

)−5

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the fifth execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 1 of the X1-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X1-representation of M .

184

For z = 2,

> su(2.0,21463,-3087,-1029,148);

(
1 1
0 1

)−21

(−146 21
−1029 148

)

> su(2.0,-146,21,-1029,148);

(
1 0
1 1

)7

(−146 21
−7 1

)

> su(2.0,-146,21,-7,1);

(
1 1
0 1

)21

(
1 0
−7 1

)

> su(2.0,1,0,-7,1);

(
1 0
1 1

)−7

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity

matrix which is L = C−1L =

(
1 0
1 1

)7 (
1 0
−7 1

)
= I in Step 3 of the X1-

representation algorithm II and so execution of the program terminates. Col-

lect each first matrix in every execution of the program. Then we have

(
1 1
0 1

)−21(
1 0
1 1

)7(
1 1
0 1

)21(
1 0
1 1

)−7

185

as the X1-representation of M .

Example 8

Given M = B7
−1A7

−3B7A7
3B7

−1 =

(
21463 −3087
−151270 21757

)
∈ Γ7, input z = 0.5,

M11 = 21463, M12 = −3087, M21 = −151270 and M22 = 21757 to the

program.

For z = 1
2
,

> su(0.5,21463,-3087,-151270,21757);

(
1 0
1 1

)−7

(
21463 −3087
−1029 148

)

> su(0.5,21463,-3087,-1029,148);

(
1 1
0 1

)−21

(−146 21
−1029 148

)

> su(0.5,-146,21,-1029,148);

(
1 0
1 1

)7

(−146 21
−7 1

)

> su(0.5,-146,21,-7,1);

(
1 1
0 1

)21

(
1 0
−7 1

)

186

> su(0.5,1,0,-7,1);

(
1 0
1 1

)−5

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the sixth execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 1 of the X1-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X1-representation of M .

For z = 2,

> su(2.0,21463,-3087,-151270,21757);

(
1 0
1 1

)−7

(
21463 −3087
−1029 148

)

> su(2.0,21463,-3087,-1029,148);

(
1 1
0 1

)−21

(−146 21
−1029 148

)

> su(2.0,-146,21,-1029,148);

187

(
1 0
1 1

)7

(−146 21
−7 1

)

> su(2.0,-146,21,-7,1);
(

1 1
0 1

)21

(
1 0
−7 1

)

> su(2.0,1,0,-7,1);
(

1 0
1 1

)−7

(
1 0
0 1

)

The second matrix of the fifth execution of the program is the identity ma-

trix which is L = C−1L =

(
1 0
1 1

)7 (
1 0
−7 1

)
= I in Step 3 of the X1-

representation algorithm II and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have
(

1 0
1 1

)−7(
1 1
0 1

)−21(
1 0
1 1

)7(
1 1
0 1

)21(
1 0
1 1

)−7

as the X1-representation of M .

Example 9

Given Given M = A−3
10 B10A10

3 =

(−299 −9000
10 301

)
∈ Γ10, input z = 0.5,

M11 = −299, M12 = −9000, M21 = 10 and M22 = 301 to the program.

For z = 1
2
,

> su(0.5,-299,-9000,10,301);

188

(
1 1
0 1

)−30

(
1 30
10 301

)

> su(0.5,1,30,10,301);

(
1 0
1 1

)10

(
1 30
0 1

)

> su(0.5,1,30,0,1);

(
1 1
0 1

)30

(
1 0
0 1

)

The second matrix of the third execution of the program is the identity ma-

trix which is L = C−1L =

(
1 1
0 1

)−30 (
1 30
0 1

)
= I in Step 2 of the X1-

representation algorithm II and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have
(

1 1
0 1

)−30(
1 0
1 1

)10(
1 1
0 1

)30

as the X1-representation of M .

For z = 2,

> su(2.0,-299,-9000,10,301);

(
1 1
0 1

)−30

(
1 30
10 301

)

189

> su(2.0,1,30,10,301);

(
1 0
1 1

)10

(
1 30
0 1

)

> su(2.0,1,30,0,1);

(
1 1
0 1

)32

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the fourth execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm II

because L(2) = C−1L =

(
1 −2
0 1

)
(2) = 0 in Step 1 of the X1-representation

of the algorithm II. So execution of the program terminates and the program

does not output the X1-representation of M .

Example 10

Given M = B−1
10 A−3

10 B10A10
3 =

(−299 −9000
3000 90301

)
∈ Γ10, input z = 0.5, M11 =

−299, M12 = −9000, M21 = 3000 and M22 = 90301 to the program.

For z = 1
2
,

> su(0.5,-299,-9000,3000,90301);

190

(
1 0
1 1

)−10

(−299 −9000
10 301

)

> su(0.5,-299,-9000,10,301);

(
1 1
0 1

)−30

(
1 30
10 301

)

> su(0.5,1,30,10,301);

(
1 0
1 1

)10

(
1 30
0 1

)

> su(0.5,1,30,0,1);

(
1 1
0 1

)30

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity

matrix which is L = C−1L =

(
1 1
0 1

)−30 (
1 30
0 1

)
= I in Step 2 of the X1-

representation algorithm II. Collect each first matrix in every execution of the

program and concatenate them in order. Then we have
(

1 0
1 1

)−10(
1 1
0 1

)−30(
1 0
1 1

)10(
1 1
0 1

)30

as the X1-representation of M .

For z = 2,

> su(2.0,-299,-9000,3000,90301);

191

(
1 0
1 1

)−10

(−299 −9000
10 301

)

> su(2.0,-299,-9000,10,301);

(
1 1
0 1

)−30

(
1 30
10 301

)

> su(2.0,1,30,10,301);

(
1 0
1 1

)10

(
1 30
0 1

)

> su(2.0,1,30,0,1);

(
1 1
0 1

)32

(
1 −2
0 1

)

> su(2.0,1,-2,0,1);
(

1 0
1 1

)∞

(
1 −2
−∞ ∞

)

The first matrix of the fifth execution of the program is an unusual matrix(
1 0
1 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

because L(2) =

(
1 −2
0 1

)
(2) = 0 in Step 1 of the X1-representation algorithm

II. So execution of the program terminates and the program does not output

the X1-representation of M .

192

Example 11

Given M = A−3
10 B10A10

3B−1
10 =

(
89701 −9000
−3000 301

)
∈ Γ10, input z = 0.5, M11 =

89700, M12 = −9000, M21 = −3000 and M22 = 301 to the program.

For z = 1
2
,

> su(0.5,89701,-9000,-3000,301);

(
1 1
0 1

)−30

(−299 30
−3000 301

)

> su(0.5,-299,30,-3000,301);

(
1 0
1 1

)10

(−299 30
−10 1

)

> su(0.5,-299,30,-10,1);

(
1 1
0 1

)30

(
1 0
−10 1

)

> su(0.5,1,0,-10,1);

(
1 0
1 1

)−8

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);

193

(
1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the fifth execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 1 of the X1-representation algorithm

II because L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 1 of the X1-representation algo-

rithm II. So execution of the program terminates and the program does not

output the X1-representation of M .

For z = 2,

> su(2.0,89701,-9000,-3000,301);

(
1 1
0 1

)−30

(−299 30
−3000 301

)

> su(2.0,-299,30,-3000,301);

(
1 0
1 1

)10

(−299 30
−10 1

)

> su(2.0,-299,30,-10,1);

(
1 1
0 1

)30

(
1 0
−10 1

)

> su(2.0,1,0,-10,1);

194

(
1 0
1 1

)−10

(
1 0
0 1

)

The second matrix of the fourth execution of the program is the identity

matrix which is L = C−1L = (1
2
)

(
1 0
1 1

)10 (
1 0
−10 1

)
= I in Step 3 of the

X1-representation algorithm II and so execution of the program terminates.

Collect each first matrix in every execution of the program and concatenate

them in order. Then we have
(

1 1
0 1

)−30(
1 0
1 1

)10(
1 1
0 1

)30(
1 0
1 1

)−10

as the X1-representation of M .

Example 12

Given M = B−1
10 A−3

10 B10A10
3B−1

10 =

(
89701 −9000
−900010 90301

)
∈ Γ10, input z = 0.5,

M11 = 89701, M12 = −9000, M21 = −900010 and M22 = 90301 to the

program.

For z = 1
2
,

> su(0.5,89701,-9000,-900010,90301);

(
1 0
1 1

)−10

(
89701 −9000
−3000 301

)

> su(0.5,89701,-9000,-3000,301);

(
1 1
0 1

)−30

195

(−299 30
−3000 301

)

> su(0.5,-299,30,-3000,301);
(

1 0
1 1

)10

(−299 30
−10 1

)

> su(0.5,-299,30,-10,1);
(

1 1
0 1

)30

(
1 0
−10 1

)

> su(0.5,1,0,-10,1);
(

1 0
1 1

)−8

(
1 0
−2 1

)

> su(0.5,1,0,-2,1);
(

1 1
0 1

)∞

(∞ −∞
−2 1

)

The first matrix of the sixth execution of the program is an unusual matrix(
1 1
0 1

)∞
which is the same as ε in Step 1 of the X1-representation algo-

rithm II because L(1
2
) = C−1L(1

2
) =

(
1 0
−2 1

)
(1

2
) = ∞ in Step 1 of the

X1-representation algorithm II. So execution of the program terminates and

the program does not output the X1-representation of M .

For z = 2,

> su(2.0,89701,-9000,-900010,90301);

196

(
1 0
1 1

)−10

(
89701 −9000
−3000 301

)

> su(2.0,89701,-9000,-3000,301);
(

1 1
0 1

)−30

(−299 30
−3000 301

)

> su(2.0,-299,30,-3000,301);
(

1 0
1 1

)10

(−299 30
−10 1

)

> su(2.0,-299,30,-10,1);
(

1 1
0 1

)30

(
1 0
−10 1

)

> su(2.0,1,0,-10,1);
(

1 0
1 1

)−10

(
1 0
0 1

)

The second matrix of the fifth execution of the program is the identity ma-

trix which is l = C−1L =

(
1 0
1 1

)10 (
1 0
−10 1

)
= I in Step 3 of the X1-

representation algorithm II and so execution of the program terminates. Col-

lect each first matrix in every execution of the program and concatenate them

in order. Then we have
(

1 0
1 1

)−10(
1 1
0 1

)−30(
1 0
1 1

)10(
1 1
0 1

)30(
1 0
1 1

)−10

as the X1-representation of M .

197

6.6 Correctness of Algorithm II

In this section, we justify the X1-representation algorithm II and we also

prove how the X1-representation algorithm II works correctly. We prove sev-

eral properties of the linear fractional transformations which will be used to

prove the correctness of the X1-representation algorithm II. Moreover, we ex-

plain why two X1-representation algorithms are required to compute the X1-

representation of M ∈ Γn from the following two Theorems. The following

theorem is in fact, a special case of Lemma 4.1.2 and we prove it with another

method for z ∈ R ∩Dc.

Theorem 6.6.1 Let n ≥ 2 and z ∈ R ∩ Dc. Then |Bn
u(z)| < 1 for a

nonzero u ∈ Z.

Proof Let n ≥ 2 and z ∈ R ∩Dc. Then −1 < 1
z

< 1 and nu− 1 < nu + 1
z

<

nu + 1. If u ≥ 1, then nu − 1 ≥ n − 1 ≥ 1 and so, 0 < 1
nu+ 1

z

< 1
nu−1

≤ 1.

Hence, Bn
u(z) =

(
1 0
nu 1

)
(z) = z

nuz+1
= 1

nu+ 1
z

< 1. If u ≤ −1, then

nu+1 ≤ −n+1 ≤ −1 and −1 ≤ 1
nu+1

< 1
nu+ 1

z

< 0. Thus we have |Bn
u(z)| < 1.

¤

Theorem 6.6.2 Let n ≥ 3 and z ∈ R ∩ Dc. Then |Bn
u(z)| < 1

2
for a

nonzero u ∈ Z.

Proof Let n ≥ 3 and z ∈ Dc ∩ R. Then −1 < 1
z

< 1 and nu − 1 <

nu+ 1
z

< nu+1. If u ≥ 1, then nu− 1 ≥ n− 1 ≥ 2 and 0 < 1
nu+ 1

z

< 1
nu−1

≤ 1
2
.

Hence, 0 < z
nuz+1

= 1
nu+ 1

z

< 1
2
. If u ≤ −1, then nu + 1 ≤ −n + 1 ≤ −2 and

−1
2
≤ 1

nu+1
< 1

nu+ 1
z

< 0. Thus we have |Bn
u(z)| < 1

2
. ¤

In order to compute µ such that −1
2

< µ ≤ 1
2

in Step 1 of the X1-representation

198

algorithm II, Theorem 6.6.2 is required for n ≥ 3 and so the case n = 2 is

handled separately by the X1-representation algorithm I. ¤

Theorem 6.6.3 Let n ≥ 3 and z ∈ R with |z| < 1
2
. Then 1

|An
u(z)| < 2

5

for a nonzero u ∈ Z.

Proof Assume that n ≥ 3 and z ∈ R such that |z| < 1
2
. Then by Lemma

4.1.1, An
u(z) = nu + z ∈ Dc for a nonzero u ∈ Z. For −1

2
< z < 1

2
, nu− 1

2
<

nu+z < nu+ 1
2
. If u ≥ 1, then 3 ≤ nu and 3− 1

2
≤ nu− 1

2
< nu+z < nu+ 1

2
,

so that 0 < 1
nu+ 1

2

< 1
nu+z

< 1
nu− 1

2

< 1
3− 1

2

= 2
5
. Hence, 0 < 1

An
u(z)

< 2
5
. If

u ≤ −1, then nu ≤ −n ≤ −3 and nu− 1
2

< nu + z < nu + 1
2
≤ −3 + 1

2
= −5

2
,

so that 1
− 5

2

≤ 1
nu+ 1

2

< 1
nu+z

< 1
nu− 1

2

< 0. Hence, −2
5

< 1
An

u(z)
< 0. Therefore

1
|An

u(z)| < 2
5
. ¤

From now, in particular, unless we mention a natural number n, n is a natural

number, n ≥ 3.

Theorem 6.6.4 If M = An
u with a nonzero u ∈ Z is input to the algo-

rithm (z = 1
2
), then the algorithm outputs A1

nu as the X1-representation of

M .

Proof If M = An
u ∈ Γn, then by Lemma 4.1.1, |L(1

2
)| = |An

u(1
2
)| =

|nu + 1
2
| > 1 and so in Step 1 of the first iteration, e = nu and µ = 1

2
.

In Step 2, C = A1
e = A1

nu, w = wC = A1
nu, L = C−1L = A1

−nuAn
u = I. So

the algorithm outputs A1
nu as the X1-representation of M and it terminates.

Theorem 6.6.5 If M = An
u with a nonzero u ∈ Z is input to the algo-

rithm (z = 2), then the algorithm outputs ε.

199

Proof If M = An
u ∈ Γn, then L(2) = An

u(2) = nu + 2.

If n = 3 and u = −1, then in Step 1 of the first iteration, |L(2)| = |nu+2| = 1.

So the algorithm outputs ε and it terminates.

If n 6= 3 or u 6= −1, then in Step 1 of the first iteration, |L(2)| = |nu + 2| > 1,

e = nu + 2 and µ = 0. In Step 2 of the first iteration, C = A1
e = A1

nu+2,

w = wC = A1
nu+2 and L = C−1L = A1

−nu−2An
u =

(
1 −2
0 1

)
6= I. So return

Step 1. In Step 1 of the second iteration, L(2) =

(
1 −2
0 1

)
(2) = 0 and thus

the algorithm outputs ε. Therefore the algorithm terminates. ¤

Theorem 6.6.6 If M = Bn
u with a nonzero u ∈ Z is input to the algo-

rithm (z = 1
2
), then the algorithm outputs ε.

Proof If M = Bn
u ∈ Γn, then L(1

2
) = Bn

u(1
2
) =

1
2

1
2
nu+1

= 1
nu+2

.

If n = 3 and u = −1, then in Step 1 of the first iteration, |L(1
2
)| = | 1

nu+2
| = 1.

So the algorithm outputs ε and it terminates.

If n 6= 3 or u 6= −1, then in Step 1 of the first iteration, |L(1
2
)| = | 1

nu+2
| < 1

and 1
L(1

2
)

= nu + 2. So e = 1
L(1

2
)

= nu + 2 and µ = 0. In Step 3 of the

first iteration, C = B1
e = B1

nu+2, w = wC = B1
nu+2 and L = C−1L =

B1
−nu−2Bn

u =

(
1 0
−2 1

)
6= I. So return Step 1. In Step 1 of the second itera-

tion, L(1
2
) =

(
1 0
−2 1

)
(1

2
) = ∞. So the algorithm outputs ε and it terminates.

¤

Theorem 6.6.7 If M = Bn
u is input to the algorithm (z = 2), then the

algorithm outputs B1
nu as the X1-representation of M .

Proof If M = Bn
u ∈ Γn, then in Step 1 of the first iteration, by Lemma 4.1.2,

|L(2)| = |Bn
u(2)| = | 2

2nu+1
| = | 1

nu+ 1
2

| < 1 and 1
L(2)

= nu + 1
2
. Thus e = nu

and µ = 1
2
. In Step 2 of the first iteration, C = B1

e = B1
nu, w = wC = B1

nu,

200

L = C−1L = B1
−nuBn

u = I. Hence, the algorithm outputs B1
nu as the X1-

representation of M and it terminates. ¤

Theorem 6.6.8 If M = An
u1Bn

u2 · · ·Bn
um−1An

um is input to the algorithm

(z = 1
2
), then the algorithm outputs A1

nu1B1
nu2 · · ·B1

num−1A1
num as the X1-

representation of M where odd m ≥ 3 and each ui (i = 1, 2, · · ·m) is a nonzero

integer.

Proof If M = An
u1Bn

u2 · · ·Bn
um−1An

um , then in Step 1 of the first iteration,

by Theorem 4.1.3, |L(1
2
)| = |An

n1Bn
u2 · · ·Bn

um−1An
um(1

2
)| > 1. Put L(1

2
) =

An
n1Bn

u2 · · ·Bn
um−1An

um(1
2
) = nu1 + β1 where β1 = Bn

u2 · · ·Bn
um−1An

um(1
2
).

Then by Lemma 4.1.1, An
u3 · · ·Bn

um−1An
um(1

2
) ∈ Dc and by Theorem 6.6.2,

|β1| = |Bn
u2(An

u3 · · ·Bn
um−1An

um(1
2
))| < 1

2
. So e = nu1 and µ = β1. In Step

2 of the first iteration, C = A1
e = A1

nu1 , w = wC = A1
nu1 , L = C−1L =

A1
−nu1An

n1Bn
u2 · · ·Bn

um−1An
um = Bn

u2 · · ·Bn
um−1An

um 6= I. So return Step

1.

Assume that for 1 ≤ i − 1 < m − 1, L = C−1L = An
uiBn

ui+1 · · ·Bn
um−1An

um

in Step 3 of the i − 1th iteration, or L = C−1L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um

in Step 2 of the i− 1th iteration according as i− 1 is even or odd.

For even i, let L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith iter-

ation and L(1
2
) = Bn

uiAn
ui+1 · · ·Bn

um−1An
um(1

2
) = Bn

ui(αi) = αi

αinui+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·Bn

um−1An
um(1

2
). By Theorem 4.1.4, L(1

2
) =

Bn
ui+2 · · ·Bn

um−1An
um(1

2
) ∈ D and by Theorem 6.6.3, | 1

αi
| < 2

5
. So in Step

1 of the ith iteration, 1
L(z)

= nui + 1
αi

and then e = nui and µ = 1
αi

.

In Step 3, C = B1
e = B1

nui , w = wC = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um . So

return Step 1.

201

For odd i, let L = An
uiBn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith iter-

ation and L(1
2
) = An

uiBn
ui+1 · · ·Bn

um−1An
um(1

2
) = nui + βi where βi =

Bn
ui+1 · · ·Bn

um−1An
um(1

2
). In Step 1 of the ith iteration, by Theorem 4.1,3,

|L(1
2
)| = |An

uiBn
ui+1 · · ·Bn

um−1An
um(1

2
)| > 1 and An

ui+2 · · ·Bn
um−1An

um(1
2
) ∈

Dc. By Theorem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·Bn
um−1An

um(1
2
))| < 1

2
. So

e = nui and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

If i = m, then in the mth iteration, L = An
um and by Theorem 6.6.4, the

algorithm outputs A1
nu1B1

nu2 · · ·B1
num−1A1

num as the X1-representation of

M . Thus the algorithm terminates. ¤

Theorem 6.6.9 If M = An
u1Bn

u2 · · ·Bn
um−1An

um is input to the algo-

rithm (z = 2), then the algorithm outputs ε where odd m ≥ 3 and each

ui (i = 1, 2, · · · ,m) is a nonzero integer.

Proof Given M = An
u1Bn

u2 · · ·Bn
um−1An

um , put L(2) = An
u1Bn

u2 · · ·Bn
um−1

An
um(2) = nu1 + β1 where β1 = Bn

u2 · · ·Bn
um−1An

um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1An
um(2) =

Bn
um−1(−1) = 1

num−1−1
∈ D. So in Step 1 of the first iteration, by Theorem

4.1.3, L(2) = An
u1Bn

u2 · · ·Bn
um−1An

um(2) = An
u1Bn

u2 · · ·An
um−2(1

num−1−1
) ∈

Dc and An
u3 · · ·An

um−2Bn
um−1An

um(2) = An
u3 · · ·An

um−2(1
num−1−1

) ∈ Dc. By

Theorem 6.6.2, |β1| = |Bn
u2(An

u3 · · ·An
um−2Bn

um−1An
um(2))| < 1

2
. So e = nu1

and µ = β1. In Step 2 of the first iteration, C = A1
e = A1

nu1 , w = wC = A1
nu1

and L = C−1L = A1
−nu1An

u1Bn
u2 · · ·Bn

um−1An
um = Bn

u2 · · ·Bn
um−1An

um 6=

202

I. So return Step 1.

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num +2) ∈ D. So in Step 1 of the first iteration, by

Theorem 4.1.5, |L(2)| = |An
n1Bn

u2 · · ·Bn
um−1An

um(2)| = |An
u1Bn

u2 · · ·Bn
um−1

(num +2)| > 1 and An
u3 · · ·Bn

um−1An
um(2) = An

u3 · · ·Bn
um−1(num +2) ∈ Dc.

By Theorem 6.6.2, |β1| = |Bn
u2(An

u3 · · ·Bn
um−1An

um(2))| < 1
2
. So e = nu1 and

µ = β1. In Step 2 of the first iteration, C = A1
e = A1

nu1 , w = wC = A1
nu1 and

L = C−1L = A1
−nu1An

n1Bn
u2 · · ·Bn

um−1An
um = Bn

u2 · · ·Bn
um−1An

um 6= I. So

return Step 1.

Suppose that for 1 ≤ i− 1 < m− 2, L = C−1L = An
uiBn

ui+1 · · ·Bn
um−1An

um

in Step 3 of the i − 1th iteration or L = C−1L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um

in Step 2 of the i− 1th iteration according as i− 1 is even or odd.

For even i, let L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith itera-

tion and L(2) = Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2) = Bn
ui(αi) = αi

αinui+1
= 1

nui+
1

αi

where αi = An
ui+1 · · ·Bn

um−1An
um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

1
num−1−1

∈ D. So, in Step 1 of the ith iteration, by Theorem 4.1.4, |L(2)| =

|Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·An
um−2(1

num−1−1
)| < 1 and

by Theorem 4.1.3, An
ui+3 · · ·Bn

um−1An
um(2) = An

ui+3 · · ·An
um−2(1

num−1−1
) ∈

Dc. By Theorem 6.6.2, |Bn
ui+2 · · ·Bn

um−1An
um(2)| = |Bn

ui+2 · · ·An
um−2(1

num−1−1
)|

< 1
2

and by Theorem 6.6.3, 1
|αi| = 1

|An
ui+1 ···Bn

um−1An
um (2)| = 1

|An
ui+1 ···An

um−2 (1
num−1−1

)|
< 2

5
. Hence 1

L(2)
= nui + 1

αi
and so, e = nui and µ = 1

αi
. In Step 3 of

the ith iteration, C = B1
e = Binui, w = wC = Bi

nui and L = C−1L =

B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I. So return

Step 1.

203

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.6, |L(2)| = |Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·
Bn

um−1(num + 2)| < 1 and by Theorem 4.1.5, An
ui+3 · · ·Bn

um−1An
um(2) =

An
ui+3 · · ·Bn

um−1(num + 2) ∈ Dc. By Theorem 6.6.2, |Bn
ui+2An

ui+3 · · ·Bn
um−1

An
um(2)| = |Bn

ui+2An
ui+3 · · ·Bn

um−1(num + 2)| < 1
2

and by Theorem 6.6.3,

1
|αi| = 1

|An
ui+1 ···Bn

um−1An
um (2)| = 1

|An
ui+1 ···Bn

um−1 (num+2)| < 2
5
. So 1

L(2)
= nui + 1

αi

and then e = nui and µ = 1
αi

. In Step 3 of the ith iteration, C = B1
e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I.

So return Step 1.

For odd i, let L = An
uiBn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith iteration and

L(2) = An
uiBn

ui+1 · · ·Bn
um−1An

um(2) = nui + βi where βi = Bn
ui+1 · · ·Bn

um−1

An
um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1An
um(2) =

Bn
um−1(−1) = 1

num−1−1
∈ D. So in Step 1 of the ith iteration, by Theorem

4.1.3, |L(2)| = |An
uiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·An
um−2(1

num−1−1
)|

> 1 and An
ui+2 · · ·Bn

um−1An
um(2) = An

ui+2 · · ·An
um−2(1

num−1−1
) ∈ Dc. By

Theorem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·Bn
um−1An

um(2))| < 1
2
. So e = nui

and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui , w = wC =

A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um

= Bn
ui+1 · · ·Bn

um−1An
um 6= I. So return Step 1.

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So, in Step 1 of the ith iteration, by

Theorem 4.1.5, |L(2)| = |A1
nuiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·

204

Bn
um−1(num+2)| > 1 and An

ui+2 · · ·Bn
um−1An

um(2) = An
ui+2 · · ·Bn

um−1(num+

2) ∈ Dc. By Theorem 6.6.2, |Bn
ui+1(An

ui+2 · · ·Bn
um−1An

um(2))| < 1
2
. So

e = nui and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui , w = wC =

A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um

= Bn
ui+1 · · ·Bn

um−1An
um 6= I. So return Step 1.

If i = m − 1, then in Step 1 of the m − 1th iteration, L = Bn
um−1An

um

and consider L(2) = Bn
um−1An

um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

1
num−1−1

∈ D. Since |L(2)| = |Bn
um−1An

um(2)| < 1, 1
L(2)

= num−1 − 1

and then e = num−1 − 1 and µ = 0. In Step 3 of the m − 1th iteration,

C = B1
e = B1

num−1−1, w = wC = A1
nu1B1

nu2 · · ·A1
num−2B1

num−1−1 and L =

C−1L = B1
−num−1+1Bn

um−1An
um = B1

1An
um 6= I. So return Step 1. In Step 1

of the mth iteration, L = B1
1An

um and L(2) = B1
1An

um(2) = B1
1(−1) = ∞.

Hence the algorithm outputs ε and it terminates.

If n 6= 3 and um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1(num + 2) = 1

num−1+ 1
num+2

∈ D. Since |L(2)| = |Bn
um−1An

um(2)| < 1,

1
L(2)

= num−1+
1

num+2
and then e = num−1 and µ = 1

num+2
. In Step 3 of the m−

1th iteration, C = B1
e = B1

num−1 , w = wC = A1
nu1B1

nu2 · · ·A1
num−2B1

num−1

and L = C−1L = B1
−num−1Bn

um−1An
um = An

um 6= I. So return Step 1. In

Step 1 of the mth iteration, L = An
um and by Theorem 6.6.5, the algorithm

outputs ε. Thus the algorithm terminates. ¤

Theorem 6.6.10 If M = Bn
u1An

u2 · · ·Bn
um−1An

um is input to the algo-

rithm (z = 1
2
), then the algorithm outputs B1

nu1A1
nu2 · · ·B1

num−1A1
num as

the X1-representation of M where even m ≥ 2 and each ui (i = 1, 2, · · · ,m)

is a nonzero integer.

205

Proof Given M = Bn
u1An

u2 · · ·Bn
um−1An

um ∈ Γn, put L(1
2
) = Bn

u1An
u2

· · ·Bn
um−1An

um(1
2
) = Bn

u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·Bn

um−1

An
um(1

2
). By Theorem 4.1.4, |L(1

2
)| = |Bn

u1An
u2 · · ·Bn

um−1An
um(1

2
)| < 1

and by Theorem 4.1.3, An
u4 · · ·Bn

um−1An
um(1

2
) ∈ Dc. By Theorem 6.6.2,

|Bn
u3 · · ·Bn

um−1An
um(1

2
)| < 1

2
and by Theorem 6.6.3, 1

|α1| = 1
|An

u2 ···Bn
um−1An

um (1
2
)|

< 2
5
. Hence 1

L(z)
= nu1 + 1

α1
and then e = nu1 and µ = 1

α1
. In Step 3, C =

B1
e = B1

nu1 , w = wC = B1
nu1 and L = C−1L = B1

−nu1Bn
u1An

u2 · · ·Bn
um−1An

um

= An
u2 · · ·Bn

um−1An
um . So return Step 1.

Assume that for 1 ≤ i − 1 < m − 1, L = An
uiBn

ui+1 · · ·Bn
um−1An

um in Step

3 of the i − 1th iteration or L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in Step 2 of the

i− 1th iteration according as i− 1 is odd or even.

For even i, in Step 1 if the ith iteration, L = An
uiBn

ui+1 · · ·Bn
um−1An

um and

put L(1
2
) = An

uiBn
ui+1 · · ·Bn

um−1An
um(1

2
) = nui + βi where βi = Bn

ui+1 · · ·
Bn

um−1An
um(1

2
). By Theorem 4.1,3, |L(1

2
)| = |An

uiBn
ui+1 · · ·Bn

um−1An
um(1

2
)| >

1 and An
ui+2 · · ·Bn

um−1An
um(1

2
) ∈ Dc. So by Theorem 6.6.2, |βi| = |Bn

ui+1

(An
ui+2 · · ·Bn

um−1An
um(1

2
))| < 1

2
and then e = nui and µ = βi. In Step 2, C =

A1
e = A1

nui , w = wC = A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui

and L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6=
I. So return Step 1.

For odd i, let L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith itera-

tion and put L(1
2
) = Bn

uiAn
ui+1 · · ·Bn

um−1An
um(1

2
) = Bn

ui(αi) = αi

αinui+1
=

1
nui+

1
αi

where αi = An
ui+1 · · ·Bn

um−1An
um(1

2
). By Theorem 4.1.4, |L(1

2
)| =

|Bn
uiAn

ui+1 · · ·Bn
um−1An

um(1
2
)| < 1 and An

ui+3 · · ·Bn
um−1An

um(1
2
) ∈ Dc. By

Theorem 6.6.2, |Bn
ui+2An

ui+3 · · ·Bn
um−1An

um(1
2
)| < 1

2
and by Theorem 6.6.3,

1
|αi| = 1

|An
ui+1 ···Bn

um−1An
um (1

2
)| < 2

5
and 1

L(z)
= nui + 1

αi
. So e = nui and µ = 1

αi
.

206

In Step 3, C = B1
e = B1

nui , w = wC = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um . So

return Step 1.

If i = m, then in the ith iteration, L = An
um and in Step 2, by Theorem 6.6.4,

the algorithm outputs B1
nu1A1

nu2 · · ·B1
num−1A1

num as the X1-representation

of M . Thus the algorithm terminates. ¤

Theorem 6.6.11 If M = Bn
u1An

u2 · · ·Bn
um−1An

um is input to the algo-

rithm (z = 2), then the algorithm outputs ε where even m ≥ 2 and each ui

(i = 1, 2, · · · ,m) is a nonzero integer.

Proof Given M = Bn
u1An

u2 · · ·Bn
um−1An

um ∈ Γn, put L(2) = Bn
u1An

u2 · · ·
Bn

um−1An
um(2) = Bn

u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·Bn

um−1

An
um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

1
num−1−1

∈ D. So, in Step 1 of the first iteration, by Theorem 4.1.4, |L(2)| =

|Bn
u1An

u2 · · ·Bn
um−1An

um(2)| = |Bn
u1An

u2 · · ·An
um−2(1

num−1−1
)| < 1 and by

Theorem 4.1.3, An
u4Bn

u5 · · ·Bn
um−1An

um(2) = An
u4Bn

u5 · · ·An
um−2(1

num−1−1
) ∈

Dc. By Theorem 6.6.2, |Bn
u3An

u4 · · ·Bn
um−1An

um(2)| = |Bn
u3An

u4 · · ·An
um−2

(1
num−1−1

)| < 1
2

and by Theorem 6.6.3, 1
|α1| = 1

|An
u2 (Bn

u3 ···Bn
um−1An

um (2))| < 2
5

and 1
L(2)

= nu1 + 1
α1

. So e = nu1 and µ = 1
α1

. In Step 3 of the first iteration,

C = B1
e = B1nu1, w = wC = B1

nu1 and L = C−1L = B1
−nu1Bn

u1An
u2 · · ·

Bn
um−1An

um = An
u2 · · ·Bn

um−1An
um 6= I. So return Step 1.

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num +2) ∈ D. So in Step 1 of the first iteration, by

Theorem 4.1.6, |L(2)| = |Bn
u1An

u2 · · ·Bn
um−1An

um(2)| = |Bn
u1An

u2 · · ·Bn
um−1

207

(num+2)| < 1 and An
u4Bn

u5 · · ·Bn
um−1An

um(2) = An
u4Bn

u5 · · ·Bn
um−1(num+

2) ∈ Dc. By Theorem 6.6.2, |Bn
u3An

u4 · · ·Bn
um−1An

um(2)| = |Bn
u3An

u4 · · ·
Bn

um−1(num +2)| < 1
2

and by Theorem 6.6.3, 1
|α1| | = 1

|An
u2 (Bn

u3 ···Bn
um−1An

um (2))|

< 2
5
. So e = nu1 and µ = 1

α1
. In Step 3 of the first iteration, C = B1

e = B1nu1,

w = wC = B1
nu1 and L = C−1L = B1

−nu1Bn
u1An

u2 · · ·Bn
um−1An

um =

An
u2 · · ·Bn

um−1An
um 6= I. So return Step 1.

Suppose that for 1 ≤ i− 1 < m− 2, L = C−1L = An
uiBn

ui+1 · · ·Bn
um−1An

um

in Step 3 of the i − 1th iteration or L = C−1L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um

in Step 2 of the i− 1th iteration according as i− 1 is odd or even.

For even i, L = An
uiBn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith iteration and

put L(2) = An
uiBn

ui+1 · · ·Bn
um−1An

um(2) = nui + βi where βi = Bn
ui+1 · · ·

Bn
um−1An

um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1An
um(2) =

Bn
um−1(−1) = 1

num−1−1
∈ D. So in Step 1 of the ith iteration, by Theorem

4.1.3, |L(2)| = |An
uiBn

ui+1 · · ·Bn
um−1An

um(2)| = |An
uiBn

ui+1 · · ·An
um−2(1

num−1−1
)|

> 1 and An
ui+2 · · ·Bn

um−1An
um(2) = An

ui+2 · · ·An
um−2(1

num−1−1
) ∈ Dc. By

Theorem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·Bn
um−1An

um(2))| < 1
2
. So e = nui

and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui , w = wC =

A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um

= Bn
ui+1 · · ·Bn

um−1An
um 6= I. So return Step 1.

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma

4.1.2, Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So, in Step 1 of the ith

iteration, by Theorem 4.1.5, |L(2)| = |An
uiBn

ui+1 · · ·Bn
um−1(num + 2)| >

1 and An
ui+2 · · ·Bn

um−1An
um(2) = An

ui+2 · · ·Bn
um−1(num + 2) ∈ Dc. By

Theorem 6.6.2, |Bn
ui+1 · · ·Bn

um−1An
um(2)| = |Bn

ui+1(An
ui+2 · · ·Bn

um−1(num +

208

2))| < 1
2
. So e = nui and µ = βi. In Step 2 of the ith iteration, C =

A1
e = A1

nui , w = wC = A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and L = C−1L =

A1
−nuiAn

uiBn
ui+1 · · ·Bn

um−1An
um = Bn

ui+1 · · ·Bn
um−1An

um 6= I. So return

Step 1.

For odd i, let L = Bn
uiAn

ui+1 · · ·Bn
um−1An

um in Step 1 of the ith iteration,

L(2) = Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2) = Bn
ui(αi) = αi

αinui+1
= 1

nui+
1

αi

where

αi = An
ui+1 · · ·Bn

um−1An
um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

1
num−1−1

∈ D. So in Step 1 of the ith iteration, by Theorem 4.1.4, |L(2)| =

|Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·An
um−2(1

num−1−1
)| < 1 and

An
ui+3 · · ·Bn

um−1An
um(2) = An

ui+3 · · ·An
um−2(1

num−1−1
) ∈ Dc. By Theorem

6.6.2, |Bn
ui+2 · · ·Bn

um−1An
um(2)| = |Bn

ui+2 · · ·An
um−2(1

num−1−1
)| < 1

2
and by

Theorem 6.6.3, 1
|αi| = 1

|An
ui+1 (Bn

ui+2 ···Bn
um−1An

um (2))| < 2
5
. So e = nui and

µ = 1
αi

. In Step 3 of the ith iteration, C = B1
e = B1

nui , w = wC =

B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1B1
nui and L = C−1L = B1

−nui

Bn
uiAn

ui+1 · · ·Bn
um−1An

um = An
ui+1 · · ·Bn

um−1An
um 6= I. So return Step 1.

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1An

um(2) = Bn
um−1(num + 2) ∈ D. So in Step 1 of the ith iteration, by

Theorem 4.1.6, |L(2)| = |Bn
uiAn

ui+1 · · ·Bn
um−1An

um(2)| = |Bn
uiAn

ui+1 · · ·
Bn

um−1(num+2)| < 1 and An
ui+3 · · ·Bn

um−1An
um(2) = An

ui+3 · · ·Bn
um−1(num+

2) ∈ Dc. By Theorem 6.6.2, Bn
ui+2 · · ·Bn

um−1An
um(2) = Bn

ui+2 · · ·Bn
um−1(num+

2) ∈ D and by Theorem 6.6.3, 1
|αi| = 1

|An
ui+1 ···Bn

um−1An
um (2)| = 1

|An
ui+1 ···Bn

um−1 (num+2)|

< 2
5
. So e = nui and µ = 1

αi
. In Step 3 of the ith iteration, C = B1

e = B1
nui ,

w = wC = B1
nu1A1

nu2 · · ·A1
nui−1C = B1

nu1A1
nu2 · · ·A1

nui−1B1
nui and L =

C−1L = B1
−nuiBn

uiAn
ui+1 · · ·Bn

um−1An
um = An

ui+1 · · ·Bn
um−1An

um 6= I. So

return Step 1.

209

If i = m − 1, then in Step 1 of the m − 1th iteration, L = Bn
um−1An

um

and consider L(2) = Bn
um−1An

um(2).

If n = 3 and um = −1, then An
um(2) = num + 2 = −1 and Bn

um−1(−1) =

1
num−1−1

∈ D. Since |L(2)| = |Bn
um−1An

um(2)| = | 1
num−1−1

| < 1, 1
L(2)

=

num−1 − 1 and then e = num−1 − 1 and µ = 0. In Step 3 of the m − 1th

iteration, C = B1
e = B1

num−1−1, w = wC = A1
nu1B1

nu2 · · ·A1
num−2B1

num−1−1

and L = C−1L = B1
−num−1+1Bn

um−1An
um = B1

1An
um 6= I. So return Step

1. In Step 1 of the mth iteration, L = B1
1An

um and L(2) = B1
1An

um(2) =

B1
1(−1) = ∞. Hence the algorithm outputs ε and it terminates.

If n 6= 3 or um 6= −1, then An
um(2) = num + 2 ∈ Dc and by Lemma 4.1.2,

Bn
um−1(num + 2) = 1

num−1+ 1
num+2

∈ D. Since |L(2)| = |Bn
um−1An

um(2)| =

| 1
num−1+ 1

num+2

| < 1, 1
L(2)

= num−1 + 1
num+2

and as for n = 4 and um = −1,

|num + 2| = 2 is a minimum and | 1
num+2

| ≤ 1
2
, e = num−1 and µ = 1

num+2
.

In Step 3 of the m − 1th iteration, C = B1
e = B1

num−1 , w = wC =

A1
nu1B1

nu2 · · ·A1
num−2B1

num−1 and L = C−1L = B1
−num−1Bn

um−1An
um =

An
um 6= I. So return Step 1. In Step 1 of the mth iteration, L = An

um and

by Theorem 6.6.5, the algorithm outputs ε. Thus the algorithm terminates. ¤

Theorem 6.6.12 If M = An
u1Bn

u2 · · ·An
um−1Bn

um is input to the algo-

rithm (z = 1
2
), the algorithm outputs ε where even m ≥ 2 and each ui

(i = 1, 2, · · · ,m) is a nonzero integer.

Proof Given M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn, put L(1
2
) = An

u1Bn
u2 · · ·

An
um−1Bn

um(1
2
) = nu1 + β1 where β1 = Bn

u2 · · ·An
um−1Bn

um(1
2
).

If n = 3 and um = −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| = 1 and as

210

n ≥ 3, An
um−1Bn

um(1
2
) = An

um−1(−1) = num−1 − 1 ∈ Dc. In Step 1 of the

first iteration, by Theorem 4.1.5, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
)| =

|An
u1Bn

u2 · · ·Bn
um−2(num−1− 1)| > 1 and An

u3 · · ·An
um−1Bn

um(1
2
) = An

u3 · · ·
Bn

um−2(num−1−1) ∈ Dc. So by Theorem 6.6.2, |β1| = |Bn
u2(An

u3 · · ·An
um−1Bn

um

(1
2
))| < 1

2
. Thus e = nu1 and µ = β1. In Step 2 of the first iteration, C = A1

e =

A1
nu1 , w = wC = A1

nu1 , L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um =

Bn
u2 · · ·An

um−1Bn
um 6= I. So return Step 1.

If n 6= 3 or um 6= −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| < 1. By Theorem

4.1.3, |L(1
2
)| = |An

u1Bn
u2 · · ·An

um−1Bn
um(1

2
)| = |An

u1Bn
u2 · · ·An

um−1(1
num+2

)|
> 1 and An

u3 · · ·An
um−1Bn

um(1
2
) = An

u3 · · ·An
um−1(1

num+2
) ∈ Dc. So by The-

orem 6.6.2, |β1| = |Bn
u2(An

u3 · · ·An
um−1Bn

um(1
2
))| < 1

2
and then e = nu1 and

µ = β1. In Step 2 of the first iteration, C = A1
e = A1

nu1 , w = wC = A1
nu1 ,

L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um = Bn

u2 · · ·An
um−1Bn

um 6= I. So

return Step 1.

Suppose that for 1 ≤ i− 1 < m− 2, L = C−1L = An
uiBn

ui+1 · · ·An
um−1Bn

um

in Step 3 of the i − 1th iteration or L = C−1L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um

in Step 2 of the i− 1th iteration according as i− 1 is even or odd.

For even i, let L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um in Step 1 of the ith itera-

tion and L(1
2
) = Bn

uiAn
ui+1 · · ·An

um−1Bn
um(1

2
) = Bn

ui(αi) = αi

αinui+1
= 1

nui+
1

αi

where αi = An
ui+1Bn

ui+2 · · ·An
um−1Bn

um(1
2
).

If n = 3 and um = −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| = 1 and as n ≥ 3,

An
um−1Bn

um(1
2
) = An

um−1(−1) = num−1−1 ∈ Dc. By Theorem 4.1.6, |L(1
2
)| =

|Bn
uiAn

ui+1 · · ·An
um−1Bn

um(1
2
)| = |Bn

uiAn
ui+1 · · ·Bn

um−2(num−1− 1)| < 1 and

An
ui+3 · · ·An

um−1Bn
um(1

2
) = An

ui+3 · · ·Bn
um−2(num−1 − 1) ∈ Dc. By Theorem

6.6.2, Bn
ui+2 · · ·An

um−1Bn
um(1

2
) = Bn

ui+2 · · ·Bn
um−2(num−1 − 1) ∈ D and by

211

Theorem 6.6.3, 1
|αi| = 1

|An
ui+1 ···Bn

um−2An
um−1Bn

um (1
2
)| = 1

|An
ui+1 ···Bn

um−2(num−1−1)|

< 2
5
. Then 1

L(1
2
)

= nui + 1
αi

and so, e = nui and µ = 1
αi

. In Step 3 of

the ith iteration, C = B1
e = B1

nui , w = wC = A1
nu1B1

nu2 · · ·A1
nui−1C =

A1
nu1B1

nu2 · · ·A1
nui−1B1

nui , L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um =

An
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

If n 6= 3 or um 6= −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

∈ D and by Lemma

4.1.1, An
um−1(1

num+2
) ∈ Dc. By Theorem 4.1.4, |L(1

2
)| = |Bn

uiAn
ui+1 · · ·An

um−1

Bn
um(1

2
)| = |Bn

uiAn
ui+1 · · ·An

um−1(1
num+2

)| < 1 and An
ui+3 · · ·An

um−1Bn
um(1

2
) =

An
ui+3 · · ·An

um−1(1
num+2

) ∈ Dc. By Theorem 6.6.2, |Bn
ui+2 · · ·An

um−1Bn
um(1

2
)| =

|Bn
ui+2 · · ·An

um−1(1
num+2

)| < 1
2

and by Theorem 6.6.3, 1
|αi| = 1

|An
ui+1 ···Bn

um−2An
um−1Bn

um (1
2
)|

= 1
|An

ui+1 ···An
um−1(1

num+2
)| < 2

5
. Then 1

L(1
2
)

= nui + 1
αi

and so, e = nui and

µ = 1
αi

. In Step 3 of the ith iteration, C = B1
e = B1

nui , w = wC =

A1
nu1B1

nu2 · · ·A1
nui−1C = A1

nu1B1
nu2 · · ·A1

nui−1B1
nui and L = C−1L = B1

−nui

Bn
uiAn

ui+1 · · ·An
um−1Bn

um = An
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

For odd i, let L(1
2
) = An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(1

2
).

If n = 3 and um = −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| = 1 and as

n ≥ 3, An
um−1Bn

um(1
2
) = An

um−1(−1) = num−1 − 1 ∈ Dc. By Theorem 4.1.5,

|L(1
2
)| = |An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
)| = |An

uiBn
ui+1 · · ·Bn

um−2(num−1 −
1)| > 1 and An

ui+2 · · ·An
um−1Bn

um(1
2
) = An

ui+2 · · ·Bn
um−2(num−1 − 1) ∈

Dc. By Theorem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·An
um−1Bn

um(1
2
))| < 1

2
. So

e = nui and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
ui−1C = A1

nu1B1
nu2 · · ·B1

ui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

212

If n 6= 3 or um 6= −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| < 1. By Theorem

4.1.3, |L(1
2
)| = |An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
)| = |An

uiBn
ui+1 · · ·An

um−1(1
num+2

)|
> 1 and An

ui+2 · · ·An
um−1Bn

um(1
2
) = An

ui+2 · · ·An
um−1(1

num+2
) ∈ Dc. So by

Theorem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·An
um−1Bn

um(1
2
))| < 1

2
. So e = nui

and µ = β. In Step 2 of the ith iteration, C = A1
e = A1

nui , w = wC =

A1
nu1B1

nu2 · · ·B1
ui−1C = A1

nu1B1
nu2 · · ·B1

ui−1A1
nui and L = C−1L = A1

−nui

An
uiBn

ui+1 · · ·An
um−1Bn

um = Bn
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

If i = m− 1, then L = An
um−1Bn

um and consider L(1
2
) = An

um−1Bn
um(1

2
).

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and |L(1

2
)| = |An

um−1Bn
um

(1
2
) = An

um−1(−1)| = |num−1 − 1| > 1. So in Step 1 of the m − 1th it-

eration, e = num−1 − 1 and µ = 0. In Step 2 of the m − 1th iteration,

C = A1
e = A1

num−1−1, w = wC = A1
nu1B1

nu2 · · ·B1
num−2A1

num−1−1 and L =

C−1L = A1
−num−1+1An

um−1Bn
um = A1Bn

um 6= I. So return Step 1. In Step

1 of the mth iteration, L = A1Bn
um and L(1

2
) = A1Bn

um(1
2
) = A1(−1) = 0.

Hence the algorithm outputs ε and it terminates.

If n 6= 3 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and |L(1

2
)| = |An

um−1Bn
um(1

2
)|

= |An
um−1(1

num+2
)| = |num−1 + 1

num+2
| > 1. Because for n = 4 and um = −1,

|num + 2| = 2 is a minimum, | 1
num+2

| ≤ 1
2
, e = num−1 and µ = 1

num+2
.

In Step 2 of the m − 1th iteration, C = A1
e = A1

num−1 , w = wC =

A1
nu1B1

nu2 · · ·B1
num−2A1

num−1 and L = C−1L = A1
−num−1An

um−1Bn
um =

Bn
um 6= I. So return Step 1. In Step 1 of the mth iteration, L = Bn

um

and by Theorem 6.6.6, the algorithm outputs ε and it terminates. ¤

Theorem 6.6.13 If M = An
u1Bn

u2 · · ·An
um−1Bn

um is input to the algo-

rithm (z = 2), then the algorithm outputs A1
nu1B1

nu2 · · ·A1
num−1B1

num as the

213

X1-representation of M where even m ≥ 2 and each ui (i = 1, 2, · · · ,m) is a

nonzero integer.

Proof Given M = An
u1Bn

u2 · · ·An
um−1Bn

um ∈ Γn, put L(2) = An
u1Bn

u2 · · ·
An

um−1Bn
um(2) = nu1 + β1 where β1 = Bn

u2 · · ·An
um−1Bn

um(2). By Theorem

4.1.5, |L(2)| > 1 and An
u3 · · ·An

um−1Bn
um(2) ∈ Dc. So, by Theorem 6.6.2,

|β1| = |Bn
u2(An

u3 · · ·An
um−1Bn

um(2))| < 1
2

and then e = nu1 and µ = β1.

In Step 2 of the first iteration, C = A1
e = A1

nu1 , w = wC = A1
nu1 and

L = C−1L = A1
−nu1An

u1Bn
u2 · · ·An

um−1Bn
um = Bn

u2 · · ·An
um−1Bn

um 6= I. So

return Step 1.

Assume that for 1 ≤ i − 1 < m − 1, L = An
uiBn

ui+1 · · ·An
um−1Bn

um in Step

3 of the i − 1th iteration or L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um in Step 2 of the

i− 1th iteration according as i− 1 is even or odd.

For even i, let L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um ∈ Γn in Step 1 of the ith itera-

tion and L(2) = Bn
uiAn

ui+1 · · ·An
um−1Bn

um(2) = Bn
ui(αi) = αi

αinui+1
= 1

nui+
1

αi

where αi = An
ui+1 · · ·An

um−1Bn
um(2). By Theorem 4.1.6, |L(2)| < 1 and

Bn
ui+2 · · ·An

um−1Bn
um(2) ∈ D. So by Theorem 6.6.3, 1

|αi| = 1
|An

ui+1 (Bn
ui+2 ···An

um−1Bn
um (2))|

< 2
5

and then e = nui and µ = 1
αi

. In Step 3 of the ith iteration, C = B1
e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui and

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For odd i, let L = An
uiBn

ui+1 · · ·An
um−1Bn

um ∈ Γn in Step 1 of the ith

iteration and L(2) = An
uiBn

ui+1 · · ·An
um−1Bn

um(2) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(2). By Theorem 4.1.5, |L(2)| > 1 and An

ui+2 · · ·An
um−1

Bn
um(2) ∈ Dc. By Theorem 6.6.2, |βi| = |Bn

ui+1(An
ui+2 · · ·An

um−1Bn
um(2))| <

1
2

and thus, e = nui and µ = βi. In Step 2 of the ith iteration, C = A1
e =

214

A1
nui , w = wC = A1

nu1B1
nu2 · · ·B1

nui−1C = A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

If i = m, then in the mth iteration, L = Bn
um and by Theorem 6.6.7, in Step

3 of the mth iteration, the algorithm outputs A1
nu1B1

nu2 · · ·A1
num−1B1

num as

the X1-representation of M . Thus the algorithm terminates. ¤

Theorem 6.6.14 If M = Bn
u1An

u2 · · ·An
um−1Bn

um is input to the algo-

rithm (z = 1
2
), then the algorithm outputs ε where odd m ≥ 3 and each ui

(i = 1, 2, · · · ,m) is a nonzero integer.

Proof Given M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn, put L(1
2
) = Bn

u1An
u2 · · ·

An
um−1Bn

um(1
2
) = Bn

u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2Bn

u3 · · ·An
um−1

Bn
um(1

2
).

If n = 3 and um = −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| = 1 and as n ≥ 3,

An
um−1Bn

um(1
2
) = An

um−1(−1) = num−1−1 ∈ Dc. By Theorem 4.1.6, |L(1
2
)| =

|Bn
u1An

u2 · · ·An
um−1Bn

um(1
2
)| = |Bn

u1An
u2 · · ·Bn

um−2(num−1 − 1)| < 1 in

Step 1 of the first iteration and by Theorem 4.1.5, An
u4 · · ·An

um−1Bn
um(1

2
) =

An
u4 · · ·Bn

um−2(num−1−1) ∈ Dc. By Theorem 6.6.2, |Bn
u3 · · ·An

um−1Bn
um(1

2
)|

= |Bn
u3 · · ·Bn

um−2(num−1 − 1)| < 1
2

and by Theorem 6.6.3, 1
|α1| =

1
|An

u2(Bn
u3 ···Bn

um−2An
um−1Bn

um (1
2
))| < 2

5
. Then 1

L(1
2
)

= nu1 + 1
α1

and so, e = nu1

and µ = 1
α1

. In Step 3 of the first iteration, C = B1
e = B1

nu1 , w = wC =

B1
nu1 , L = C−1L = B1

−nu1Bn
u1An

u2 · · ·An
um−1Bn

um = An
u2 · · ·An

um−1Bn
um 6=

I. So return Step 1.

If n 6= 3 or um 6= −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

∈ D and by Lemma

4.1.1, An
um−1(1

num+2
) ∈ Dc. By Theorem 4.1.4, |L(1

2
)| = |Bn

u1An
u2 · · ·An

um−1

215

Bn
um(1

2
)| = |Bn

u1An
u2 · · ·An

um−1(1
num+2

)| < 1 and by Theorem 4.1.3, An
u4 · · ·

An
um−1Bn

um(1
2
) = An

u4 · · ·An
um−1(1

num+2
) ∈ Dc. By Theorem 6.6.2, |Bn

u3 · · ·
An

um−1Bn
um(1

2
)| = |Bn

u3 · · ·An
um−1(1

num+2
)| < 1

2
and by Theorem 6.6.3, 1

|α1| =

1
|An

u2(Bn
u3 ···Bn

um−2An
um−1Bn

um (1
2
))| < 2

5
. Then 1

L(1
2
)

= nu1 + 1
α1

and because for

n = 4 and um = −1, |num + 2| = 2 is a minimum, 1
|num+2| ≤ 1

2
. Thus e = nu1

and µ = 1
α1

. In Step 3 of the first iteration, C = B1
e = B1

nu1 , w = wC = B1
nu1

and L = C−1L = B1
−nu1Bn

u1An
u2 · · ·An

um−1Bn
um = An

u2 · · ·An
um−1Bn

um 6=
I. So return Step 1.

Suppose that for 1 ≤ i − 1 < m − 2, L = An
uiBn

ui+1 · · ·An
um−1Bn

um in

Step 3 of the i− 1th iteration or L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um in Step 2 of

the i− 1th iteration according as i− 1 is odd or even.

For even i, let L(1
2
) = An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
) = nui + βi where βi =

Bn
ui+1 · · ·An

um−1Bn
um(1

2
).

If n = 3 and um = −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| = 1 and as

n ≥ 3, An
um−1Bn

um(1
2
) = An

um−1(−1) = num−1 − 1 ∈ Dc. By Theorem 4.1.5,

|L(1
2
)| = |An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
)| = |An

uiBn
ui+1 · · ·Bn

um−2(num−1 −
1)| > 1 and An

ui+2 · · ·An
um−1Bn

um(1
2
) = An

ui+2 · · ·Bn
um−2(num−1 − 1) ∈ Dc.

By Theorem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·An
um−1Bn

um(1
2
))| < 1

2
and so,

e = nui and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui ,

w = wC = A1
nu1B1

nu2 · · ·B1
ui−1C = A1

nu1B1
nu2 · · ·B1

ui−1A1
nui and L =

C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I. So

return Step 1.

If n 6= 3 or um 6= −1, then |Bn
um(1

2
)| = | 1

2
1
2
num+1

| = | 1
num+2

| < 1. By Theorem

4.1.3, |L(1
2
)| = |An

uiBn
ui+1 · · ·An

um−1Bn
um(1

2
)| = |An

uiBn
ui+1 · · ·An

um−1(1
num+2

)|

216

> 1 and An
ui+2 · · ·An

um−1Bn
um(1

2
) = An

ui+2 · · ·An
um−1(1

num+2
) ∈ Dc. By The-

orem 6.6.2, |βi| = |Bn
ui+1(An

ui+2 · · ·An
um−1Bn

um(1
2
))| < 1

2
and so, e = nui

and µ = βi. In Step 2 of the ith iteration, C = A1
e = A1

nui , w = wC =

A1
nu1B1

nu2 · · ·B1
nui−1C = A1

nu1B1
nu2 · · ·B1

nui−1A1
nui and L = C−1L = A1

−nui

An
uiBn

ui+1 · · ·An
um−1Bn

um = Bn
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

For odd i, let L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um and L(1
2
) = Bn

uiAn
ui+1 · · ·An

um−1

Bn
um(1

2
) = Bn

ui(αi) = αi

αinui+1
= 1

nui+
1

αi

where αi = An
ui+1Bn

ui+2 · · ·An
um−1Bn

um

(1
2
).

If n = 3 and um = −1, then in Step 1 of the ith iteration, |Bn
um(1

2
)| =

| 1
2

1
2
num+1

| = | 1
num+2

| = 1 and as n ≥ 3, An
um−1Bn

um(1
2
) = An

um−1(−1) =

num−1−1 ∈ Dc. By Theorem 4.1.6, |L(1
2
)| = |Bn

uiAn
ui+1 · · ·An

um−1Bn
um(1

2
)| =

|Bn
uiAn

ui+1 · · ·Bn
um−2(num−1−1)| < 1 and by Theorem 4.1.5, An

ui+3 · · ·An
um−1

Bn
um(1

2
) = An

ui+3 · · ·Bn
um−2(num−1 − 1) ∈ Dc. By Theorem 6.6.2, Bn

ui+2 · · ·
An

um−1Bn
um(1

2
) = Bn

ui+2 · · ·Bn
um−2(num−1 − 1) ∈ D and by Theorem 6.6.3,

1
|αi| = 1

|An
ui+1 (Bn

ui+2 ···Bn
um−2An

um−1Bn
um (1

2
))| < 2

5
. Then 1

L(1
2
)

= nui + 1
αi

and

so, e = nui and µ = 1
αi

. In Step 2 of the ith iteration, C = B1
e =

B1
nui , w = wC = A1

nu1B1
nu2 · · ·A1

nui−1C = A1
nu1B1

nu2 · · ·A1
nui−1B1

nui ,

L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um = An

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

If n 6= 3 or um 6= −1, then Bn
um(1

2
) =

1
2

1
2
num+1

= 1
num+2

∈ D and by Lemma

4.1.1, An
um−1(1

num+2
) ∈ Dc. By Theorem 4.1.4, |L(1

2
)| = |Bn

uiAn
ui+1 · · ·An

um−1

Bn
um(1

2
)| = |Bn

uiAn
ui+1 · · ·An

um−1(1
num+2

)| < 1 and by Theorem 4.1.3, An
ui+3

· · ·An
um−1Bn

um(1
2
) = An

ui+3 · · ·An
um−1(1

num+2
) ∈ Dc. By Theorem 6.6.2,

|Bn
ui+2 · · ·An

um−1Bn
um(1

2
)| = |Bn

ui+2 · · ·An
um−1(1

num+2
)| < 1

2
and by Theorem

6.6.3, 1
|αi| = 1

|An
ui+1 (Bn

ui+2 ···Bn
um−2An

um−1Bn
um (1

2
))| < 2

5
. Then 1

L(1
2
)

= nui + 1
αi

and thus, in Step 1 of the ith iteration, e = nui and µ = 1
αi

. In Step 3

217

of the ith iteration, C = B1
e = B1

nui , w = wC = A1
nu1B1

nu2 · · ·A1
nui−1C =

A1
nu1B1

nu2 · · ·A1
nui−1B1

nui , L = C−1L = B1
−nuiBn

uiAn
ui+1 · · ·An

um−1Bn
um =

An
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

If i = m− 1, then L = An
um−1Bn

um and consider L(1
2
) = An

um−1Bn
um(1

2
).

If n = 3 and um = −1, then Bn
um(1

2
) = 1

num+2
= −1 and L(1

2
) = An

um−1Bn
um(1

2
)

= An
um−1(−1) = num−1 − 1 ∈ Dc. So in Step 1 of the m − 1th iter-

ation, e = num−1 − 1 and µ = 0. In Step 2 of the m − 1th iteration,

C = A1
e = A1

num−1−1, w = wC = A1
nu1B1

nu2 · · ·B1
num−2A1

num−1−1 and L =

C−1L = A1
−num−1+1An

um−1Bn
um = A1Bn

um 6= I. So return Step 1. In Step

1 of the mth iteration, L = A1Bn
um and L(1

2
) = A1Bn

um(1
2
) = A1(−1) = 0.

Hence the algorithm outputs ε and it terminates.

If n 6= 3 or um 6= −1, then Bn
um(1

2
) = 1

num+2
∈ D and by Lemma 4.1.1,

L(1
2
) = An

um−1Bn
um(1

2
) = An

um−1(1
num+2

) = num−1 + 1
num+2

∈ Dc. Since for

n = 4 and um = −1, |num + 2| = 2 is a minimum, 1
|num+2| ≤ 1

2
. So in Step 1

of the m− 1th iteration, e = num−1 and µ = 1
num+2

. In Step 2 of the m− 1th

iteration, C = A1
e = A1

num−1 , w = wC = A1
nu1B1

nu2 · · ·B1
num−2A1

num−1 and

L = C−1L = A1
−num−1An

um−1Bn
um = Bn

um 6= I. So return Step 1. In Step 1

of the mth iteration, L = Bn
um and by Theorem 6.6.6, the algorithm outputs

ε. Thus the algorithm terminates. ¤

Theorem 6.6.15 If M = Bn
u1An

u2 · · ·An
um−1Bn

um is input to the algo-

rithm (z = 2), then the algorithm outputs B1
nu1A1

nu2 · · ·A1
num−1B1

num as the

X1-representation of M where odd m ≥ 3 and each ui (i = 1, 2, · · · , m) is a

nonzero integer.

Proof Given M = Bn
u1An

u2 · · ·An
um−1Bn

um ∈ Γn, put L(2) = Bn
u1An

u2 · · ·

218

An
um−1Bn

um(2) = Bn
u1(α1) = α1

α1nu1+1
= 1

nu1+ 1
α1

where α1 = An
u2 · · ·An

um−1

Bn
um(2). By Theorem 4.1.6, |L(2)| < 1 and by Theorem 4.1.5, An

u4 · · ·An
um−1

Bn
um(2) ∈ D. By Theorem 6.6.2, Bn

u3 · · ·An
um−1Bn

um(2) ∈ D and by The-

orem 6.6.3, 1
|α1| = 1

|An
u2 (Bn

u3 ···An
um−1Bn

um (2))| < 2
5
. Thus e = nu1 and µ = 1

α1
.

In Step 3 of the first iteration, C = B1
e = B1

nu1 , w = wC = B1
nu1 and

L = C−1L = B1
−nu1Bn

u1An
u2 · · ·An

um−1Bn
um = An

u2 · · ·An
um−1Bn

um 6= I. So

return Step 1.

Assume that for 1 ≤ i − 1 < m − 1, L = An
uiBn

ui+1 · · ·An
um−1Bn

um in Step

3 of the i − 1th iteration or L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um in Step 2 of the

i− 1th iteration according as i− 1 is odd or even.

For even i, L = An
uiBn

ui+1 · · ·An
um−1Bn

um ∈ Γn, put L(2) = An
uiBn

ui+1 · · ·
An

um−1Bn
um(2) = nui + βi where βi = Bn

ui+1 · · ·An
um−1Bn

um(2). By Theo-

rem 4.1.5, |L(2)| > 1 and An
ui+2 · · ·An

um−1Bn
um(2) ∈ Dc. By Theorem 6.6.2,

|β1| = |Bn
ui+1(An

ui+2 · · ·An
um−1Bn

um(2))| < 1
2

and so, e = nui and µ = βi in

Step 1 of the ith iteration. Then in Step 2 of the ith iteration, C = A1
e =

A1
nui , w = wC = A1

nu1B1
nu2 · · ·B1

nui−1C = A1
nu1B1

nu2 · · ·B1
nui−1A1

nui and

L = C−1L = A1
−nuiAn

uiBn
ui+1 · · ·An

um−1Bn
um = Bn

ui+1 · · ·An
um−1Bn

um 6= I.

So return Step 1.

For odd i, let L = Bn
uiAn

ui+1 · · ·An
um−1Bn

um ∈ Γn and put L(2) = Bn
uiAn

ui+1

· · ·An
um−1Bn

um(2) = Bn
ui(αi) = αi

αinui+1
= 1

nui+
1

αi

where αi = An
ui+1 · · ·An

um−1

Bn
um(2). By Theorem 4.1.6, |L(2)| < 1 and by Theorem 4.1.5, An

ui+3 · · ·An
um−1

Bn
um(2) ∈ D. By Theorem 6.6.2, |Bn

ui+2An
ui+3 · · ·An

um−1Bn
um(2)| < 1

2
and

by Theorem 6.6.3, 1
|αi| = 1

|An
ui+1(Bn

ui+2 ···An
um−1Bn

um (2))| < 2
5
. So e = nui and

µ = 1
αi

. In Step 3 of the ith iteration, C = B1
e = B1

nui , w = wC =

A1
nu1B1

nu2 · · ·A1
nui−1C = A1

nu1B1
nu2 · · ·A1

nui−1B1
nui and L = C−1L = B1

−nui

Bn
uiAn

ui+1 · · ·An
um−1Bn

um = An
ui+1 · · ·An

um−1Bn
um 6= I. So return Step 1.

219

If i = m, then in the mth iteration, L = Bn
um and by Theorem 6.6.7, the

algorithm outputs B1
nu1A1

nu2 · · ·A1
num−1B1

num as the X1-representation of

M in Step 3 of the mth iteration. Thus the algorithm terminates. ¤

220

Chapter 7

Homomorphic Public-Key
Cryptosystem

Grigoriev and Ponomarenko [7] proposed a new homomorphic public-key cryp-

tosystem over an arbitrary finite group based on the difficulty of the member-

ship problem for groups of integer matrices. This scheme is a probabilistic

public-key scheme and a homomorphic public-key scheme with a homomor-

phic property which comes from the group homomorphism. Homomorphic

public-key schemes are proven to be useful in many cryptographic protocols

such as electronic elections, computing and data delegations, protecting mo-

bile agents and so on. [7]. Related previous work includes two probabilistic

public-key schemes based on computations in the group SL2(Z) which are not

homomorphic schemes [23, 24] and they were already broken [1, 20]. There

is another homomorphic public-key cryptosystem [6] over an arbitrary finite

group, but its security is related to the intractability of integer factoring.

In this chapter, we describe Grigoriev and Ponomarenko homomorphic public-

key cryptosystem and we analyze key generation algorithm, encryption algo-

rithm and decryption algorithm from a practical point of view. Because de-

scription of Grigoriev and Ponomarenko homomorphic public-key scheme is

very vague, it is necessary to do much more detailed and clear analysis on

221

this homomorphic public-key scheme. Then encryption scheme and decryp-

tion scheme are justified. In addition, we show an example to demonstrate

its implementation for practical applications and we compare Grigoriev and

Ponomarenko’ description with our description.

7.1 Description

We introduce Grigoriev and Ponomarenko homomorphic public-key cryptosys-

tem. For the time being, we ignore practical implementation issues, which we

consider in Section 7.2.

7.1.1 Setting Up The Scheme

The message space is given as a finite presentation 〈X|<〉 of a nontrivial finite

group H where X = {x1, x2, · · · , xt} is a set of generators with t ≥ 2 and

< = {w1, w2, · · · , wm} is a set of relations. Let F be a free group generated by

X and N be the normal closure of <. Then H = F/N . The set < defines an

equivalence relation ≡ defined by w1 ≡ w2 iff w1w2
−1 ∈ N where w1 and w2

are words in X± and each equivalence class corresponds to a group element of

H.

Let n be a natural number with n ≥ 2 and S = {s1, s2, · · · , st} be a set of

integers. Let

φ : F → G(n, S)

be an isomorphism such that for each i = 1, · · · , t,

φ(xi) = Mi

where xi ∈ X and Mi ∈ X(n, S). Randomly choose words r1, r2, · · · , rt ∈ N

and let R = {r1, r2, · · · , rt}. Define words y1, y2, · · · , yt by

yi = xiri (i = 1, 2, · · · , t)

222

where xi ∈ X and ri ∈ R. Also, define matrices Y1, Y2, · · · , Yt ∈ G(n, S) by

Yi = φ(xiri)

= φ(yi).

for i = 1, 2, · · · , t. Let G = 〈Y1, Y2, · · · , Yt〉. Then G is a subgroup of G(n, S)

generated by the matrices Y1, Y2, · · · , Yt and it is the ciphertext space of

Grigoriev and Ponomarenko homomorphic public-key scheme. By Theorem

3.1.8, G is a free group as a subgroup of the free group G(n, S), but the set

{Y1, Y2, · · · , Yt} is not necessarily a free basis.

7.1.2 The Keys

The public key is {Y1, Y2, · · · , Yt} and the secret key consists of n and S.

7.1.3 The Scheme Itself

To encrypt a given message h ∈ H, let

xa1
ε1xa2

ε2 · · · xau
εu

be a representative of h ∈ H where ai ∈ {1, 2, · · · , t} and εi ∈ {1,−1}. At

random choose a word r ∈ N , write

r = xb1
δ1xb2

δ2 · · · xbv
δv

where bi ∈ {1, 2, · · · , t} and δi ∈ {1,−1}. Define two matrices Mr and Mh by

Mr = Yb1
δ1Yb2

δ2 · · ·Ybv

δv

Mh = Ya1

ε1Ya2

ε2 · · ·Yau

εu

where xai
7→ Yai

and xbi
7→ Ybi

.

Let a matrix M be

M = MrMh

223

and then E(h) = M . The matrix M is the ciphertext of h.

To decrypt the ciphertext M ∈ SL2(Z), express M as a word in X(n, S)±

by the Xn-representation algorithm and the X(n, S)-representation algorithm,

and write

M = Mc1
γ1Mc2

γ2 · · ·Mcw

γw

where ci ∈ {1, 2, · · · , t} and γi ∈ {1,−1}. Let

xc1
γ1xc2

γ2 · · · xcw
γw

be its corresponding word in F which represents h ∈ H by xci
7→ Mci

. Then

D(M) = h as the plaintext.

7.2 Key Generation in Practice

This section is related to implementation of Grigoriev and Ponomarenko ho-

momorphic public-key cryptosystem. In practice, we analyze the cryptosystem

in terms of a security parameter k.

Many of the methods in computational group theory depend on whether the

group is represented as a group of permutations, a group of matrices, or by

means of a presentation using generators and relations. So far the great-

est success in computational group theory has come in connection with per-

mutation groups on finite sets, finite solvable groups, and finitely presented

groups. From the viewpoint of computational group theory, Grigoriev and

Ponomarenko used a finitely presented group as the message space and a

group of matrices as the ciphertext space. There are three methods commonly

used to represent groups on a computer, namely, as groups of permutations of

a finite set, groups of matrices over a ring, and as groups defined by a finite

presentation. In this cryptosystem, we represent groups either as matrices or

using generators and relations.

224

7.2.1 Construction of Message Space H

For a finite group H, a fixed finite presentation 〈X|<〉 is given where a

set of generators, X = {x1, x2, · · · , xt} with t ≥ 2 and a set of relations,

< = {w1, w2, · · · , wm}. Since the finite presentation of H and in particular,

the cardinality t of the generating set X do not depend on the security pa-

rameter k. We choose in some way a concrete representation of each element

h ∈ H, namely concrete representative presenting h. So we have one-to-one

correspondence between the concrete representatives and elements of H. This

set of representatives will be used to represent a plaintext in this homomorphic

public-key scheme.

7.2.2 Generating Random Factors n, S and R

We discuss how in practice we choose the private key.

Choose at random a natural number n ≥ 2 with `(n) = k where `(n) is the

bit size of n.

Choose at random integers s1, s2, · · · , st ∈ Z with `(si) = k where `(si) is the

bit size of each integer si, write S = {s1, s2, · · · , st}.
For each i ∈ {1, · · · , t}, we do the following.

Choose a1, · · · , ak ∈ {1, · · · ,m} uniformly at random and set

ri = wa1wa2 · · ·wak

where wai
∈ <±. Write R = {r1, · · · , rt}. Note that the sum of bit sizes of n,

S and R is O(k).

7.2.3 Construction of Ciphertext Space G

For each generator xi(i = 1, 2, · · · , t), the corresponding matrix Yi is defined

by φ(xiri) where xi ∈ X and ri ∈ R. The bit size |Yi| of a matrix Yi is

defined as the sum of bit sizes of the entries of Yi. Note that for each Mi =

225

(
1− n2si −n3si

2

n n2si + 1

)
∈ X(n, S), `(Mi) = `(1 − n2si) + `(−n3si

2) + `(n) +

`(n2si + 1). Since Yi is a product of the matrices Mi ∈ X(n, S), `(Yi) = O(k).

7.3 Encryption in Practice

A message h ∈ H is given by a concrete representative xa1
ε1xa2

ε2 · · ·xau
εu

where ai ∈ {1, 2, · · · , t} and εi ∈ {1,−1}.

To encrypt h ∈ H, the following steps are carried out.

Step 1 Obtain authentic public key {Y1, Y2, · · · , Yt}.

Step 2 Compute a matrix

Mh = Ya1

ε1Ya2

ε2 · · ·Yau

εu

by corresponding xai
→ Yai

.

Step 3 Randomly choose a word r ∈ N by randomly choosing b1, b2, · · · , bk ∈
{1, · · · ,m} and defining

r = wb1wb2 · · ·wbk
.

Write

r = xd1
δ1xd2

δ2 · · · xdv
δv

where di ∈ {1, · · · , t} and δi ∈ {1,−1}.

Step 4 Compute a matrix

Mr = Yd1

δ1Yd2

δ2 · · ·Ydv

δv

226

by corresponding xdi
→ Ydi

.

Step 5 Compute a matrix M = MrMh.

Step 6 Output M as the ciphertext of the message h.

7.4 Decryption in Practice

To decrypt the ciphertext M ∈ SL2(Z), the following steps are carried out.

Step 1 The Xn-representation algorithm computes the Xn-representation of

M

Step 2 The X(n, S)-representation algorithm computes the X(n, S)-representation

of M

Mc1
γ1Mc2

γ2 · · ·Mcw

γw

where ci ∈ {1, 2, · · · , t} and γi ∈ {1,−1}.

Step 3 Find the group element h ∈ H corresponding to the word in X±

xc1
γ1xc2

γ2 · · ·xcw
γw .

given by xci
7→ Mci

.

Step 4 Output the group element h of H as the plaintext.

Note that the decrypted representative of h ∈ H might not be the same

as the original representative of h.

227

7.5 Justification

In this section, we justify the encryption and decryption schemes. That is

to say, we show that for a given message, the two schemes work correctly to

recover the plaintext from the ciphertext.

Correctness of Encryption

For a given message h ∈ H, let E : H → G be the encryption function

and the encryption function is an injection H → G. Then select an arbi-

trary representative xa1
ε1xa2

ε2 · · ·xau
εu corresponding to h and a random word

r = xd1
δ1xd2

δ2 · · · xdv
δv , and encrypt as follows :

E(h) = E(xa1

ε1xa2

ε2 · · · xau

εu)

= MrMh

= Yd1

δ1Yd2

δ2 · · ·Ydv

δvYa1

ε1Ya2

ε2 · · ·Yau

εu

= M

where Yai
, Ydi

∈ {Y1, Y2, · · · , Yt}, ai, di ∈ {1, · · · , t} and εi, δi ∈ {−1, 1}.

Correctness of Decryption

By Theorem 3.1.9, there is an isomorphism φ : F → G(n, S) and define

an epimorphism g ◦ φ−1 : G(n, S) → F/N where φ−1 is the inverse of φ and

g : F → F/N is a natural epimorphism. Then define the restriction map f

of the epimorphism g ◦ φ−1 by f : G → F/N and this restriction map f co-

incides with the decryption function. Note that the group H is fixed, but the

epimorphism f and the group G depend on the security parameter k because

the construction of f and G depends on our choice of n, S and R. Given the

228

ciphertext M , let D : G → H be the decryption function. Then

D(M) = D(E(h))

= D(Mc1
γ1Mc2

γ2 · · ·Mcw

γw)

= f(Mc1
γ1Mc2

γ2 · · ·Mcw

γw)

= g ◦ φ−1(Mc1
γ1Mc2

γ2 · · ·Mcw

γw)

= g(xc1
γ1xc2

γ2 · · · xcw

γw)

But since r1, r2, · · · , rt and r ∈ N ,

g(xc1
γ1xc2

γ2 · · ·xcw
γw) = g(xa1

ε1xa2
ε2 · · ·xau

εu) = h

as
D(M) = D(MrMh)

= f(MrMh)

= f(Mr)f(Mh)

= f(Mh)

= f(Ya1

ε1Ya2

ε2 · · ·Yau

εu)

= g ◦ φ−1(Ya1

ε1Ya2

ε2 · · ·Yau

εu)

= g(xa1

ε1ra1

ε1xa2

ε2ra2

ε2 · · · xau

εurau

εu)

= g(xa1

ε1xa2

ε2 · · · xau

εu)

= h.

7.6 Example

We give an example to show how Grigoriev and Ponomarenko homomorphic

public-key cryptosystem works. The message space H is the dihedral group

D4 which consists of 4 reflections, 3 rotations and the identity transformation.

For i = 0, 1, 2, 3 and z ∈ C, the rotations are given by

z → ωiz

and the reflections are given by

229

z → ωiz̄

where ωi = e
2π
n

i. So the dihedral group D4 is

{
(

1 0
0 1

)
,

(
0 −1
1 0

)
,

(−1 0
0 −1

)
,

(
0 1
−1 0

)
,

(−1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 −1
−1 0

)
}

and its finite presentation is 〈X|<〉 = 〈x1, x2|x1
2 = x2

4 = 1, x1x2x1 = x2
−1〉

where X = {x1, x2} and < = {w1 = x1
2, w2 = x2

4, w3 = (x1x2)
2}.

Given a security parameter k = 2, Bob chooses n = 3 with `(3) = 2 and

S = {s1, s2} with s1 = 2, s2 = 3 and `(si) = 2 (i = 1, 2). Bob sets

X3 = {A3, B3} and Bob constructs the group Γ3 = 〈X3〉 where A3 =

(
1 3
0 1

)

and B3 =

(
1 0
3 1

)
. Let X(n, S) = {M1,M2} where

M1 = A3
−2B3A3

2 =

(−17 −108
3 19

)

M2 = A3
−3B3A3

3 =

(−26 −243
3 28

)
.

and the group G(n, S) = 〈X(n, S)〉. Bob generates random words r1 = w1w1

and r2 = w2w1, set R = {r1, r2}. Thus Bob generates the public key {Y1, Y2}
by

Y1 = φ(x1r1)

= φ(x1w1w1)

= φ(x1x1x1x1x1)

= M1M1M1M1M1

= M1
5

=

(−89 −540
15 91

)

230

Y2 = φ(x2r2)

= φ(x2w2w1)

= φ(x2x2x2x2x2x1x1)

= M2M2M2M2M2M1M1

= M2
5M1

2

=

(−2600 −16011
291 1792

)

Encryption

Alice encrypts a message h = x2x1 by using Bob’s public-key {Y1, Y2}.

For a message h = x2x1,

x2r2x1r1 = x2w2w1x1w1w1

= x2x2x2x2x2x1x1x1x1x1x1x1

= x2
5x1

7

and so Alice computes a matrix Mh corresponding to x2x1

Mh = Y2Y1

= M2
5M1

7

=

(−2600 −16011
291 1792

)(−89 −540
15 91

)

=

(−8765 −53001
981 5932

)
.

Alice generates a random word r = w1w2 = x1x1x2x2x2x2 = x1
2x2

4 in N and

computes a matrix Mr

Mr = Y1Y1Y2Y2Y2Y2

= Y1
2Y2

4

= M1
10(M2

5M1
2)

4

=

(−89 −540
15 91

)2(−2600 −16011
291 1792

)4

231

=

(−79717571533043 −490907171298024
13361344425294 82280225932885

)
.

Then Alice computes a matrix M = MrMh as the ciphertext

M = MrMh

=

(−79717571533043 −490907171298024
13361344425294 82280225932885

)(−8765 −53001
981 5932

)

=

(−9440101397885399 −58132898241657525
1056557456928825 6506365190512276

)
.

Decryption

Given the ciphertext M =

(−9440101397885399 −58132898241657525
1056557456928825 6506365190512276

)
,

Bob computes the Xn-representation of M , write

A3
−2B3

10A3
−1B3

5A3B3
2A3

−1B3
5A3B3

2A3
−1B3

5

A3B3
2A3

−1B3
5A3B3

2A3
−1B3

5A3B3
7A3

2

and Bob computes the X(n, S)-representation of M , write

A3
−2B3

10A3
2A3

−3B3
5A3

3A3
−2B3

2A3
2A3

−3B3
5A3

3A3
−2B3

2A3
2A3

−3B3
5

A3
3A3

−2B3
2A3

2A3
−3B3

5A3
3A3

−2B3
2A3

2A3
−3B3

5A3
3A3

−2B3
7A3

2

= M1
10(M2

5M1
2)

4
M2

5M1
7.

Bob finds a word in X± corresponding to the X(n, S)-representation of M ,

write

x1
10x2

5x1
2x2

5x1
2x2

5x1
2x2

5x1
2x2

5x1
7

232

and computes the word again to obtain the normal form

x1
10x2

5x1
2x2

5x1
2x2

5x1
2x2

5x1
2x2

5x1
7

= 1x21x21x21x21x2x1

= x2
4x2x1

= 1x2x1

= x2x1

by using x1
2 = 1 and x2

4 = 1 and then output h corresponding to the normal

form x2x1. Therefore, Bob recovers the plaintext h from the ciphertext M . ¤

7.7 Comparison

The description of Grigoriev and Ponomarenko homomorphic public-key cryp-

tosystem is not concrete in [7] and in fact, they give only a theoretical idea

to design a new homomorphic public-key cryptosystem over an arbitrary fi-

nite group. So we first clarify the description of Grigoriev and Ponomarenko

homomorphic public-key cryptosystem so that key generation, encryption and

decryption schemes work correctly in practice in terms of the security param-

eter k and so practical issues are discussed.

Grigoriev and Ponomarenko use a presentation 〈X|<〉 of the finite group H

which is finitely generated as the message space whereas we have a finitely

presented group as the message space because a finitely presented group is

used to represent groups on a computer because there is no obvious way of

representing < on a computer unless < is finite.

Grigoriev and Ponomarenko use bijections between X and X(n, S) and be-

tween X and R in key generation scheme and decryption scheme. However,

we describe them implicitly by the correspondences xi 7→ Mi and xi 7→ ri.

Although we do not mention the bijections, we do not lose the generality. In

233

fact, this simplifies the description of the public and secret keys. Moreover, in

key generation algorithm, we provide precise algorithm to generate the ran-

dom factors which Alice and Bob generate respectively in terms of the security

parameter k from a practical point of view.

For encryption, Grigoriev and Ponomarenko represent the message h as a

representative xa1xa2 · · · xau where xai
∈ X, but they have not explained how

they choose such a form and so, their scheme is not clear about how an element

of H is represented. We describe the representative of h as xa1
ε1xa2

ε2 · · ·xau
εu

to represent h where xai
∈ X, ai ∈ {1, · · · , t} and εi ∈ {1,−1} and thus, our

scheme is more explicit about this.

In particular, the decryption scheme works in theory, but not in practice

because they have not considered how Bob verifies that the representative

xc1
γ1xc2

γ2 · · · xcw
γw presents the plaintext h. In theory, the representative

xc1
γ1xc2

γ2 · · · xcw
γw must present the plaintext h, but in connection with its

implementation, the length of the word in X± may be different from the orig-

inal representative of the message h because some of letters can be canceled

according as the choices of random words. So Grigoriev and Ponomarenko

do not describe the method to obtain the plaintext h, but we clearly show

how to obtain the plaintext by using a concrete representation of h and a

normal form of h. In addition, we modified the Xn-representation algorithm

in Chapter 4 and the X(n, S)-representation algorithm in Chapter 5 to make

Grigoriev and Ponomarenko homomorphic public-key cryptosystem efficient.

Therefore, through this chapter, we have made Grigoriev and Ponomarenko

homomorphic public-key cryptosystem work correctly and efficient in practice.

234

Chapter 8

Cryptanalysis of A
Homomorphic Public-Key
Cryptosystem

In this chapter, it is shown how to break Grigoriev and Ponomarenko homo-

morphic public-key cryptosystem and so, it is proved that this new homomor-

phic public-key cryptosystem is vulnerable to our attacks. Given the public

key {Y1, Y2, · · · , Yt} and the ciphertext M , our task is to find the correspond-

ing plaintext h ∈ H. Clearly we can do this if we find the secret key n and

S. So, this chapter presents several attack methods to find the private key n

and S and the attack method to recover the plaintext without knowing the

private key n and S including each example to demonstrate how each attack

method works and each attack method is written in a separate section.

In Section 8.1, we show the attack methods to compute n. In Section 8.1.1,

we use the X1-representations of the public key matrices Y1, Y2, · · · , Yt and

the ciphertext M , respectively to compute n. In Section 8.1.2, we show

our experiment results to demonstrate how our attack methods are efficient.

In Section 8.1.3, we compute n only by using the entries of the public key

matrices Y1, Y2, · · · , Yt or the ciphertext matrix M without using their X1-

representations.

235

In Section 8.2, because we require elements of S to decrypt the ciphertext

M , we show the methods to compute elements of S.

In Section 8.3, in order to recover the plaintext, ordering the elements of S is

also required to know one-to-one correspondence between X and X(n, S). In

fact, ordering the elements of S is implicitly secret and thus, we do exhaustive

search for it.

In Section 8.4, we give an attack method to recover the plaintext without

knowing the private key n and S. This attack method is to recover the original

X1-representation of Yi ∈ {Y1, Y2, · · · , Yt} from the partial X1-representation

of Yi appearing in the X1-representation of the ciphertext M because some of

letters of the original X1-representation of Yi ∈ {Y1, Y2, · · · , Yt} may be can-

celed. Therefore, this attack method demonstrates that knowing the private

key is not always required to obtain the plaintext in Grigoriev and Pono-

marenko homomorphic public-key scheme. So this attack method requires

only the X1-representations of the public key matrices Y1, Y2, · · · , Yt and the

ciphertext M .

In Section 8.5, we compare the attack methods above and summarize them.

8.1 Finding n

We first propose several attack methods to compute n by using the public key

{Y1, Y2, · · · , Yt} and the ciphertext M .

236

8.1.1 The X1-Representations of Public Key and Ci-
phertext

Now we explain the attack method using the X1-representations of Yi or M .

Remember that the main purpose of the X1-representation algorithm is to

break Grigoriev and Ponomarenko homomorphic public-key cryptosystem and

so the X1-representation algorithm is also one of parts for cryptanalysis of

Grigoriev and Ponomarenko homomorphic public-key cryptosystem. In addi-

tion, as the ciphertext M is a product of the public-key matrices Y1, Y2, · · · , Yt,

this attack method can be applied to the ciphertext M by the same way.

Let A1
e1B1

e2 · · ·B1
em−1A1

em be the X1-representation of Yi with each nonzero

integer ei = nui. Since the exponents e1 = nu1, e2 = nu2, · · · , em = num of

the X1-representation are multiples of n, n is one of divisors of the greatest

common divisor of all exponents of the X1-representation of Yi. Moreover,

as the ciphertext M is encrypted by the public-key matrices Y1, Y2, · · · , Yt,

the X1-representation of M also contain information about n. Therefore,

the first attack method uses mainly the X1-representations of the public key

matrices Y1, Y2, · · · , Yt or M to compute the private key n. In practice,

the X1-representation algorithm in Chapter 6 efficiently produces the X1-

representation of Yi and then the following program made with Maple version

6 computes the greatest common divisor of e1 = nu1, e2 = nu2, · · · , em = num.

Computing GCD

> g:=proc(e1::integer, e2::integer, e3::integer, e4::integer, e5::integer)

> local g1, g2, g3, g4, g5;

> g1:=gcd(e1,e2);

> g2:=gcd(g1,e3);

> g3:=gcd(g2,e4);

> g4:=gcd(g3,e5);

237

> print(g4);

> end proc:

> g(e1, e2, e3, e4, e5);

This program is the case that the X1-representation of Yi is A1
e1B1

e2A1
e3B1

e4A1
e5

with each nonzero integer ei = nui. In the program, e1, e2, e3, e4 and e5 indi-

cate the exponents e1, e2, e3, e4 and e5 of the X1-representation of Yi, respec-

tively and g4 indicates the greatest common divisor of e1, e2, e3, e4 and e5. In

general, when we run the program to compute the greatest common divisor

of the exponents e1, e2, · · · , em of the X1-representation of Yi, let di be their

greatest common divisor. Then for i = 1, · · · , t, di is the greatest common

divisor of the exponents of each Yi. We input e1 = d1, e2 = d2, · · · , et = dt to

the program and then the program outputs the greatest common divisor n′ of

d1, d2, · · · , dt. Therefore, the correct secret key n must be one of divisors of

n′. We will also consider how likely n is n′ with experiments and in practice

we will show n = n′ in the following section 8.2. Note that this attack can be

mounted on ciphertext M , rather than the public key matrices Y1, Y2, · · · , Yt

where the public key is not known.

Let 〈X|<〉 be any presentation. Let r be any element of N and let <′ = <∪{r}.
Then it is clear that 〈X|<〉 and 〈X|<′〉 define isomorphic groups [14]. So we

use 〈X|<〉 = 〈x1, x2|x1
2 = 1, x2

4 = 1, (x1x2)
4 = 1, (x1x2)

2 = 1〉 as the fi-

nite presentation of the dihedral group D4 instead of 〈X|<〉 = 〈x1, x2|x1
2 =

1, x2
4 = 1, (x1x2)

2 = 1〉

Example 1

Given a finite presentation 〈X|<〉 = 〈x1, x2|x1
2 = 1, x2

4 = 1, (x1x2)
4 =

1, (x1x2)
2 = 1〉 of the dihedral group D4 where X = {x1, x2} and < = {w1 =

238

x1
2, w2 = x2

4, w3 = (x1x2)
4, w4 = (x1x2)

2} and a security parameter k = 3,

Bob chooses n = 4 and S = {s1, s2} by s1 = 4 and s2 = 6, and generates

random words r1 = w1w2w3 and r2 = w2w1w1, write R = {r1, r2}. Bob con-

structs the group Γ4 = 〈A4, B4〉 by using his private key n = 4 where A4 =(
1 4
0 1

)
and B4 =

(
1 0
4 1

)
and the group G(n, S) = 〈M1,M2〉 where M1 =

A4
−4B4A4

4 =

(−63 −1024
4 65

)
and M2 = A4

−6B4A4
6 =

(−95 −2304
4 97

)
.

Thus Bob generates the public key {Y1, Y2} by

Y1 = φ(x1r1)

= φ(x1w1w2w3)

= φ(x1
3x2

4(x1x2)
4)

= M1
3M2

4(M1M2)
4

=

(
25583195842347841 620605483871411200
−1607410491319748 −38993086395179839

)
.

Y2 = φ(x2r2)

= φ(x2w2w1w1)

= φ(x2x2x2x2x2x1x1x1x1)

= M2
5M1

4

=

(−62175 −998656
2596 41697

)
.

Attack 1

For given the public key matrices Y1 and Y2, we use the X1-representation

algorithm to compute the private key n. The X1-representation algorithm

computes the X1-representation of Y1

A1
−16B1

12A1
−8B1

16A1
8B1

4A1
−8B1

4A1
8B1

4A1
−8

B1
4A1

8B1
4A1

−8B1
4A1

8B1
4A1

−8B1
4A1

24

239

and the X1-representation of Y2

A1
−24B1

20A1
8B1

16A1
16

where A1 =

(
1 1
0 1

)
and B1 =

(
1 0
1 1

)
. Then

for Y1, d1 = gcd(−16, 12,−8, 16, 8, 4,−8, 4, 8, 4,−8) = 4

for Y2, d2 = gcd(−24, 20, 8, 16, 16) = 4

for both Y1 and Y2,

n′ = gcd(−16, 12,−8, 16, 8, 4,−8, 4, 8, 4,−8,−24, 20, 8, 16, 16) = 4.

Hence, we have the correct n′ = n = 4. ¤

Example 2

As it is mentioned before, we can also use the ciphertext M to compute n.

Given a finite presentation 〈X|<〉 = 〈x1, x2|x1
2 = 1, x2

4 = 1, (x1x2)
4 =

1, (x1x2)
2 = 1〉 of the dihedral group D4 where X = {x1, x2} and < = {w1 =

x1
2, w2 = x2

4, w3 = (x1x2)
4, w4 = (x1x2)

2} and a security parameter k = 2,

Bob chooses n = 2 and S = {s1, s2} by s1 = 2 and s2 = 3, and gener-

ates random words by r1 = w1w1 and r2 = w2w1, write R = {r1, r2}. Bob

constructs the group Γ2 = 〈A2, B2〉 by using his private key n = 2 where

A2 =

(
1 2
0 1

)
and B2 =

(
1 0
2 1

)
and the group G(n, S) = 〈M1,M2〉 where

M1 = A2
−2B2A2

2 =

(−7 −32
2 9

)
and M2 = A2

−3B2A2
3 =

(−11 −72
2 13

)
.

Then Bob generates the public key {Y1, Y2} by

Y1 = φ(x1r1)

= φ(x1w1w1)

= φ(x1
5)

= M1
5

=

(−39 −160
10 41

)

240

Y2 = φ(x2r2)

= φ(x2w2w1)

= φ(x2
5x1

2)

= M2
5M1

2

=

(−555 −2344
94 397

)
.

Let x1x2 be a concrete representative of a message h. To encrypt it, Alice

computes a matrix Mh

Mh = Y1Y2

= M1
5M2

5M1
2

=

(
6605 27896
−1696 −7163

)

and Alice chooses the random word r = r1
−1 = w1

−1w1
−1 = x1

−4. Then Alice

computes a matrix Mr

Mr = Y1
−4

= M1
−20

=

(
161 640
−40 −159

)
.

Alice computes the ciphertext M by

M = MrMh

=

(
161 640
−40 −159

)(
6605 27896
−1696 −7163

)

=

(−22035 −93064
5464 23077

)
.

Attack 2

Given the ciphertext M , we use the X1-representation algorithm to compute

n. The X1-representation algorithm computes the X1-representation of M

A1
−4B1

−30A1
−2B1

10A1
2B1

4A1
4

241

and we compute

gcd(−4,−30,−2, 10, 2, 4, 4) = 2

Hence, we have the correct n = n′ = 2. ¤

8.1.2 Experiment Results

In this section, we do several experiments to demonstrate how efficiently our at-

tack methods in Section 8.1.1 work. The greatest common divisor n′ of the ex-

ponents of all the X1- representations of the public key matrices Y1, Y2, · · · , Yt

is a multiple of n, but in practice, our experiments show we have n′ = n. In

order to convince the reader that n′ = n, our implementations are given as

follows.

Experiment 1

This experiment is to demonstrate the relation between the number of terms

of the X1-representation of Yi ∈ {Y1, Y2, · · · , Yt} or M and how likely n′ is

equal to n.

The idea comes from the following fact. Regardless of whatever the natural

number n ≥ 2 is, we only consider the integers u1, u2, · · · , um of the exponents

of the X1-representation A1
nu1B1

nu2 · · ·B1
num−1A1

num of Yi because n′ = n

means gcd(u1, u2, · · · , um) = 1 and n < n′ means gcd(u1, u2, · · · , um) 6= 1.

We count the number of the X1-representations with n′ = n and the number

of the X1-representations with n′ 6= n. So, we can estimate how likely n′ is

equal to n. Note that we use the Maple version 6 to make programs for all

experiments and our programming source codes are shown in Appendix.

Let the X1-representation of Yi ∈ {Y1, Y2, · · · , Yt} or M be A1
e1B1

e2 · · ·B1
em−1A1

em

242

where e1 = nu1, e2 = nu2, · · · , em−1 = num−1, em = num. The experiment is

carried out under the condition that the bit size `(ui) of the exponents of the

X1-representation of Yi is 3 and the number of terms of the X1-representation

of Yi is m = 3, 5, 7 and 9. Because for the X1-representation with longer terms

than 9, it takes quite a long time to do this experiment in reality when we run

the program. So we do this experiment for several cases m = 3, 5, 7 and 9 and

ui = 1, 2, 3, 4, 5, 6, 7. For example, in case of m = 5, let the X1-representation

of Yi be A1
nu1B1

nu2A1
nu3B1

nu4A1
nu5 . Then we can consider totally 75 X1-

representations because each ui have seven cases from 1 up to 7.

The experiment result shows that among the total 16807 X1-representations,

16531 X1-representations have the case n′ = n (gcd(u1, u2, u3, u4, u5) = 1)

and 276 X1-representations have the case n < n′ (gcd(u1, u2, u3, u4, u5) 6= 1).

Therefore, we have the case n′ = n in most of the X1-representations and we

do not have the correct n directly in a few of the X1-representations, but one

of divisors of n′ must be the correct n.

Table 8.1: Experiment Result 1

no. of terms m=3 m=5 m=7 m=9

n′ = n 329 16531 821227 40333411
n′ 6= n 14 276 2316 20196

percentage of n′ = n 95.9 98.4 99.7 99.9

The table shows that the percentage of n′ = n is getting close to 100 per-

cent if the number of terms of the X1-representation is getting larger. There-

fore, it turns out that in practice, how our attack methods using the X1-

representations of the public key matrices Y1, Y2, · · · , Yt is efficient to compute

the secret key n. ¤

243

Experiment 2

This experiment is to demonstrate the relation between the size of the in-

teger exponents of the X1-representation and how likely n′ is equal to n.

Let us fix the X1-representation A1
nu1B1

nu2A1
nu3B1

nu4A1
nu5 of Yi with m = 5

and then we consider three cases, the bit size `(ui) of the exponents of the

X1-representation is 2, 3 and 4. Thus the range of ui is 1 ≤ ui ≤ 2`(ui) − 1.

Then we count the number of the X1-representations with n′ = n and the

number of the X1-representations with n′ 6= n to see how likely n′ is equal to

n.

Let us see the case the X1-representation A1
nu1B1

nu2A1
nu3B1

nu4A1
nu5 and

`(ui) = 4, that is, ui = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 14, 15. Then among

the total 759375 X1-representations, 739201 X1-representations have the case

n′ = n and 20174 X1-representations have n′ 6= n.

Table 8.2: Experiment Result 2

`(ui) `(ui) = 2 `(ui) = 3 `(ui) = 4

n′ = n 241 16531 739201
n′ 6= n 2 276 20174

percentage of n′ = n 99.2 98.4 97.3

The table shows the percentage of n′ = n decreases when the bit sizes of

the integer exponents increases. In other words, for very large integer expo-

nents of the X1-representation, we have less chance to have n′ = n. ¤

244

Experiment 3

The difference between Experiment 2 and Experiment 3 is the size of ui

of the integer exponents of the X1-representation of Yi. Experiment 2 has

been done for the cases `(ui) = 2, 3, 4, whereas Experiment 3 is for the cases

1 ≤ ui ≤ 2α, α = 5, 10, 15, 20, 25, 30, 35 and then we collect randomly 100

X1-representations as random samples for each 1 ≤ ui ≤ 2α to estimate how

likely n′ is equal to n. Among randomly chosen 100 X1-representations, we

only count the number of X1-representations with n′ = n. For instance, for

1 ≤ ui ≤ 25, there are 95 X1-representations with n′ = n among random 100

X1-representations. Therefore, Experiment 3 provides us more general infor-

mation to know the relation between the size of the integer exponents and how

likely n′ is equal to n.

Table 8.3: Experiment Result 3

2α 25 210 215 220 225 230 235

n′ = n 95 95 92 95 94 93 95

From the table, we can see the average percentage of n′ = n is 94 percent. It

means that even in case of the large integer exponents of the X1-representation

of Yi, the average percentage of n′ = n is high as 94 percent although we have

random choices of the X1-representations. Therefore, it shows that using X1-

representations to compute the private key n is very efficient. ¤

Experiment 4

Let the X1-representation of Yi be A1
nu1B1

nu2A1
nu3B1

nu4A1
nu5 and the bit size

`(ui) = 3, that is, ui = 1, 2, 3, 4, 5, 6, 7. Then in case of n′ 6= n, we consider

how n′ is close to n. In this case, we consider all possible greatest common

divisors, 2,3,4,5,6,7. The total number of the X1-representations with n 6= n′

245

is 276 and for each possible greatest common divisor, we count the number of

the X1-representations among 276. We also compute the percentage of each

case.

Table 8.4: Experiment Result 4

gcd 2 3 4 5 6 7

no. of X1-rep. 241 31 1 1 1 1
percentage 87.3 11.2 0.4 0.4 0.4 0.4

Among 276 X1-representations, 241 X1-representations has the greatest com-

mon divisor 2 of u1, u2, u3, u4, u5 and the percentage is about 87 percent. It

means that for n′ 6= n, the closest, that is, the largest divisor of n′ which is

not equal to n′ must be n. ¤

Experiment 5

This experiment has been carried out by the same way as experiment 4

and the difference between them is that we do experiment for the bit size

`(ui) = 4 and so, all possible greatest common divisors of u1, u2, u3, u4, u5 are

2,3,4,5,6,7,8,9,10,11,12,13,14 and 15. However, we have done our implemen-

tations for 2,3,4,5,6,7,8,9,10 and 11 because the program running time is very

long.

Table 8.5: Experiment Result 5

gcd 2 3 4 5 6 7 8 9 10 11

no. of X1-rep. 16531 3091 241 241 31 31 1 1 1 1
percentage 81.9 15.3 1.2 1.2 0.2 0.2 0.0 0.0 0.0 0.0

The table shows that apparently n is the closest integer to n′ except for the

case n′ = n because the case of the greatest common divisor 2 has the most

246

X1-representations as 16531 X1-representations and also the percentage is the

largest percent, about 82 percent. Therefore, the largest divisor of n′ with

n < n′ is the correct n in the most of cases. ¤

8.1.3 Observing Matrix Entries of Public Key and Ci-
phertext

In this section, we show that without using the X1-representations of Yi ∈
{Y1, Y2, · · · , Yt} or M , we can also compute n only by calculating the greatest

common divisor of all the entries of the matrix Yi ∈ {Y1, Y2, · · · , Yt} or M .

This attack method needs some properties of elements of the group Γn. Be-

cause Yi ∈ {Y1, · · · , Yt} or M is in the group G(n, S) generated by X(n, S)

and G(n, S) is a subgroup of Γn, Yi ∈ {Y1, · · · , Yt} and M are in Γn. Since ex-

ponents of the Xn-representations of elements of Γn have the common divisor

n, matrices of Γn may leak information about n. Therefore, we prove some

properties of the group Γn from our observation on Γn and we demonstrate

this attack method.

Theorem 8.1.3.1 For n ≥ 2, let M =

(
M11 M12

M21 M22

)
∈ Γn. Then n di-

vides M11 − 1,M12, M21 and M22 − 1.

Proof Let n ≥ 2 be a natural number. Since M ∈ Γn, M has the Xn-

representation. We prove it by the induction on the number m of terms of the

Xn-representation of M .

For m = 1, M has only one term in its Xn-representation. There are two

cases : one is M = An
u and the other is M = Bn

u.

If M = An
u, then M =

(
M11 M12

M21 M22

)
=

(
1 nu
0 1

)
and thus, n divides

247

M11 − 1 = 0,M12 = nu,M21 = 0 and M22 − 1 = 0. Hence, the theorem

follows in this case.

If M = Bn
u, then M =

(
M11 M12

M21 M22

)
=

(
1 0
nu 1

)
and n divides M11 − 1 =

0,M12 = 0,M21 = nu and M22− 1 = 0. Thus, the theorem follows in this case

as well.

For m ≥ 1, as the inductive hypothesis, we assume that any matrix M =(
M11 M12

M21 M22

)
having the Xn-representation with m terms has the property

that n divides M11 − 1,M12,M21 and M22 − 1. Let M ′ =
(

M11
′ M12

′

M21
′ M22

′

)
have

the Xn-representation with m + 1 terms. Then the Xn-representation of M ′

is one of the following forms :

An
u1Bn

u2 · · ·Bn
um−1An

umBn
um+1

An
u1Bn

u2 · · ·An
um−1Bn

umAn
um+1

Bn
u1An

u2 · · ·An
um−1An

umBn
um+1

Bn
u1An

u2 · · ·An
um−1Bn

umAn
um+1 .

Simply we have either M ′ = MAn
um+1 or M ′ = MBn

um+1 where M has the

Xn-representation with m terms.

If M ′ = MAn
um+1 , then

(
M11

′ M12
′

M21
′ M22

′

)
=

(
M11 M12

M21 M22

)(
1 num+1

0 1

)
=

(
M11 M11num+1 + M12

M21 M21num+1 + M22

)
.

By the inductive hypothesis that n divides M11− 1, M12,M21,M22− 1, clearly

n divides M11
′ − 1 = M11 − 1, M12

′ = M11num+1 + M12, M21
′ = M21 and

M22
′ − 1 = M21num+1 + (M22 − 1).

If M ′ = MBn
um+1 , then

(
M11

′ M12
′

M21
′ M22

′

)
=

(
M11 M12

M21 M22

)(
1 0

num+1 1

)
=

(
M11 + M12num+1 M12

M21 + M22num+1 M22

)
.

By the inductive hypothesis that n divides M11 − 1,M12,M21 and M22 − 1,

M12
′ = M12 and M22

′ = M22− 1, n divides M ′
11− 1 = (M11− 1) + M12num+1,

248

M ′
12 = M12, M ′

21 = M21 + M22num+1 and M22
′ − 1 = M22 − 1. Therefore, the

theorem follows by the induction. ¤

Corollary 8.1.3.2 Let n ≥ 2 and M =

(
M11 M12

M21 M22

)
∈ Γn. Then n is

a divisor of the greatest common divisor of M11 − 1,M12, M21 and M22 − 1.

Proof It is trivially proved by Theorem 8.1.3.1.

Corollary 8.1.3.2 implies that the matrix Yi ∈ {Y1, · · · , Yt} and the cipher-

text M have information about the secret key n. For the public key matrix

Yi =

(
Y11 Y12

Y21 Y22

)
∈ {Y1, Y2, · · · , Yt}, we compute

di = gcd(Y
i11 − 1, Yi12, Yi21, Yi22 − 1)

and for all the public-key matrices Y1, Y2, · · · , Yt, let

n′ = gcd(d1, d2, · · · , dt)

where each i = 1, 2, · · · , t, di corresponds to Yi. Then the secret key n must

be a divisor of n′. Similarly, for the ciphertext M =

(
M11 M12

M21 M22

)
∈ Γn, we

compute

n′ = gcd(M11 − 1, M12,M21,M22 − 1)

and then the private n must be one of divisors of n′.

Now, we consider how n is close to n′ by comparing the case of calculat-

ing the greatest common divisor of all the entries of the public key matrices

Y1, Y2, · · · , Yt and the case of calculating the greatest common divisor of the

entries of the ciphertext M in the following examples. It is shown that the

greatest common divisor n′ of the entries of the public key matrices is more

likely to be n. We apply these attack methods to Example 2 in Section 8.1.1.

249

Example 1

The public key matrices Y1 =

(−39 −160
10 41

)
and Y2 =

(−555 −2344
94 397

)
are

given.

Attack 3

We compute for Y1,

gcd(−39− 1,−160, 10, 41− 1) = 10

and for Y2,

gcd(−555− 1,−2344, 94, 397− 1) = 2.

Therefore, the greatest common divisor n′ of all the entries of the public key

matrices Y1 and Y2 is

n′ = gcd(10, 2) = 2.

Thus we have the correct n′ = n = 2.

Example 2

The ciphertext M =

(−22035 −93064
5464 23077

)
is given.

Attack 4

We compute

n′ = gcd(−22035− 1,−93064, 5464, 23077− 1) = 4.

Hence, we obtain n′ = 4 and in fact, the correct n = 2 is a divisor of n′ = 4.

250

8.2 Finding S

Assume that we have the private key n by using one of techniques in Section

8.1. We now try to find elements s1, s2, · · · , st of S as the other part of the

private key. We present two ways to collect the elements of S. One is to use

the X1-representation algorithm and the other is to use the Xn-representation

algorithm. The difference between them is whether the Xn-representation of

the ciphertext M is obtained by the X1-representation algorithm or the Xn-

representation algorithm.

We explain the first method to compute the Xn-representation of Yi or M .

The X1-representation algorithm takes the public key matrix Yi or the cipher-

text M as an input and then it outputs the X1-representation of M . Let the

X1-representation of M be A1
e1B1

e2 · · ·B1
em−1A1

em with ei = nui. Since n is

revealed by our attacks, we can compute each nonzero ui when we divide ei

by n and so we can obtain the Xn-representation An
u1Bn

u2 · · ·Bn
um−1An

um .

As the second method to obtain the Xn-representation of Yi or M , the Xn-

representation algorithm takes n and the public key matrix Yi(or the ciphertext

M) as two inputs and it outputs the Xn-representation An
u1Bn

u2 · · ·Bn
um−1An

um .

As it is shown in Chapter 5, the Xn-representation can be written as

An
u1Bn

u2An
u3Bn

u4 · · ·Bn
um−1An

um

=A
−sa1
n Bn

u2An
sa1−sa2Bn

u4An
sa2−sa3 · · ·An

sa m−3
2

−sa m−1
2 Bn

um−1An

sa m−1
2

where ai ∈ {1, 2, · · · , t}, sai
∈ S and

u1 = −sa1

u3 = sa1 − sa2

u5 = sa2 − sa3

...

251

u2i−1 = sai−1
− sai

...

um−2 = sa m−3
2

− sa m−1
2

um = sa m−1
2

.

Note that −u1 = sa1 is always an element of S and we can compute elements

sa1 , sa2 , · · · , sa m−1
2

∈ S as follows :

sa1 = −u1

sa2 = −u1 − u3

sa3 = −u1 − u3 − u5

...

sai
= −u1 − u3 − u5 − · · · − u2i−1

...

sa m−1
2

= −u1 − u3 − u5 − · · · − um−2.

Therefore, we can collect elements of S up to m−1
2

. If we can not find all the

elements of S from the public key matrices Y1, Y2, · · · , Yt or the ciphertext ma-

trix M , then we can use another attack method generating many ciphertexts

to get more information about elements of S. However, in practice, the public

key matrices Y1, Y2, · · · , Yt seem to give enough information so that we can

collect all the elements of S. The following example shows how this attack

method works and we apply this attack method to Example 2 in Section 8.1.1.

Example

Two public key matrices Y1 =

(−39 −160
10 41

)
, Y2 =

(−555 −2344
94 397

)
and

the ciphertext matrix M =

(−22035 −93064
5464 23077

)
are given.

252

Attack 5

By the X1-representation algorithm, we have the X1-representation of Y1

A1
−4B1

10A1
4

and the X1-representation of Y2

A1
−6B1

10A1
2B1

4A1
4.

When we divide exponents of the X1-representations of Y1 and Y2 by n = 2,

we have the Xn-representation of Y1

A2
−2B2

5A2
2

and the Xn-representation of Y2

A2
−3B2

5A2B2
2A2

2.

Therefore, from the Xn-representation of Y1, we have

sa1 = −u1 = −(−2) = 2

and from the Xn-representation of Y2, we have

sa1 = −u1 = −(−3) = 3

sa2 = −u1 − u3 = 3− 1 = 2.

Hence, we can compute S = {2, 3} from Xn-representations of the public key

matrices Y1 and Y2.

Attack 6

For the ciphertext M , the X1-representation algorithm computes the X1-

representation of M

253

A1
−4B1

−30A1
−2B1

10A1
2B1

4A1
4.

and when we divide exponents of the X1-representation of M by n = 2, we

have the Xn-representation of M

A2
−2B2

−15A2
−1B2

5A2B2
2A2

2.

So we have
sa1 = −u1 = −(−2) = 2

sa2 = −u1 − u3 = 2− (−1) = 3

sa3 = −u1 − u3 − u5 = 3− 1 = 2.

and hence, we can compute S = {2, 3} from the Xn-representation of the ci-

phertext M .

The preimage of the public key matrix Yi is xiri where xi ∈ X and ri ∈ R

with the length k (security parameter). It means that the choice of the se-

curity parameter k affects the number of the terms of the Xn-representation.

Hence, as the security parameter k increases, the number m of the terms of

the Xn-representation of Yi goes up and the number m of the terms of the

Xn-representation of the ciphertext M also grows because the ciphertext M is

generated by the public key matrices Y1, Y2, · · · , Yt. It implies that the large

security parameter k is likely to recover all the elements of S.

8.3 Ordering The Elements of S

Suppose that we have the private key n and S. Then we have to find S as

an ordered set to recover the plaintext and there are t! ways of ordering the

elements of S because |S| = t. One of them must be correct ordering the

elements of S. For each ordering, we can test if this ordering is correct by

encrypting several plaintexts with the public key and then after decrypting it,

we check whether the original plaintext is produced.

254

Example

We apply this method to Example 2 in Section 8.1.1. Let n = 2 and S = {2, 3}.
Then we compute two matrices A2

−2B2A2
2 =

(−7 −32
2 9

)
and A2

−3B2A2
3 =

(−11 −72
2 13

)
.

Attack 7

If the first ordering way is

M1 = A2
−2B2A2

2 =

(−7 −32
2 9

)

and

M2 = A2
−3B2A2

3 =

(−11 −72
2 13

)
,

then for X = {x1, x2} and X(n, S) = {M1,M2}, x1 7→ M1 and x2 7→ M2. In

order to recover the plaintext from the ciphertext M =

(−22035 −93064
5464 23077

)
,

the X1-representation algorithm computes the X1-representation of M

A1
−4B1

−30A1
−2B1

10A1
2B1

4A1
4,

and the Xn-representation algorithm computes the Xn-representation of M by

taking n as an input

A2
−2B2

−15A2
−1B2

5A2B2
2A2

2.

Then the X(n, S)-representation algorithm computes the X(n, S)-representation

of M

A2
−2B2

−15A2
2A2

−3B2
5A2

3A2
−2B2

2A2
2

= M1
−15M2

5M1
2

255

because elements of S are obtained by the attack methods in Section 8.2.

By x1 7→ M1 and x2 7→ M2, we can compute the representative x1
−15x2

5x1
2

and by the relations x1
2 = 1 and x2

4 = 1,

x1
−15x2

5x1
2

= x1
−1x2

= x1x2

= h.

So we find the representative x1x2 which is the same as the original represen-

tative of h. Therefore, we can obtain the correct plaintext h.

If the second ordering way is

M1 = A2
−3B2A2

3 =

(−11 −72
2 13

)

and

M2 = A2
−2B2A2

2 =

(−7 −32
2 9

)
,

then from the X(n, S)-representation

A2
−2B2

−15A2
2A2

−3B2
5A2

3A2
−2B2

2A2
2

= M2
−15M1

5M2
2,

we have the representative x2
−15x1

5x2
2 and by the relations x1

2 = 1, x2
4 = 1

and (x1x2)
2 = 1,

256

x2
−15x1

5x2
2

= x2
−3x1x2

2

= x2x1x2
2

= x2(x1x2)x2

= x2(x2
−1x1

−1)x2

= (x2x2
−1)x1

−1x2

= x1
−1x2

= x1x2

= h.

So we can also find the same plaintext h in this case, but we might have

a different representative unlike this second case. However, one of the two

ordering ways works to recover the plaintext h.

8.4 Recovering The X1-Representation of The

Public Key from The X1-Representation

of The Ciphertext

In this section, we show that we can also recover the plaintext without knowing

the private key n and S. The attack method uses only the X1-representations

of the public key matrices Y1, Y2, · · · , Yt and the ciphertext matrix M .

Since the ciphertext M is generated by the public key matrices Y1, Y2, · · · , Yt,

we can often see much of the X1-representations of the public key matrices

appearing in the X1- representation of the ciphertext M because significant

cancelation has not occured . However, for some Yi, some letters of Yi may

be canceled and that’s why the partial X1-representation of Yi appears in the

X1- representation of the ciphertext M . Thus the key idea to attack is to

257

recover the whole X1-representation of Yi from the partial X1-representation

of Yi in the X1- representation of the ciphertext M . Next, we can describe

the X1-representation of M in terms of the public key matrices Y1, Y2, · · · , Yt

and then by the public one-to-one correspondence between X = {x1, · · · , xt}
and {Y1, Y2, · · · , Yt}, we find a word in X±. Lastly, we compute a concrete

representative or its normal form corresponding to the plaintext and then we

obtain the plaintext.

Example

Given a finite presentation 〈X|<〉 = 〈x1, x2|x1
2 = 1, x2

4 = 1, (x1x2)
4 =

1, (x1x2)
2 = 1〉 of the dihedral group D4 where X = {x1, x2} and < =

{w1 = x1
2, w2 = x2

4, w3 = (x1x2)
4, w4 = (x1x2)

2} and a security parame-

ter k = 2, Bob chooses n = 2 and S = {s1, s2} by s1 = 1 and s2 = 2 and

generates random words by r1 = w1w1 and r2 = w1w2, write R = {r1, r2}.
Bob constructs the group Γ2 = 〈A2, B2〉 by his private key n = 2 where

A2 =

(
1 2
0 1

)
and B4 =

(
1 0
2 1

)
and the group G(n, S) = 〈M1,M2〉 where

M1 = A2
−1B2A2

1 =

(−3 −8
2 5

)
and M2 = A2

−2B2A2
2 =

(−7 −32
2 9

)
. Bob

generates the public key {Y1, Y2} by

Y1 = φ(x1r1)

= φ(x1w1w1)

= φ(x1
5)

= M1
5

=

(−19 −40
10 21

)
,

258

Y2 = φ(x2r2)

= φ(x2w1w2)

= φ(x2x1x1x2x2x2x2)

= φ(x2x1
2x2

4)

= M2M1
2M2

4

=

(
1041 4304
−290 −1199

)
.

Given a representative x1x2 of a message h, to encrypt it, Alice chooses the

random word r = w2w1. Then

rh

= w2w1x1x2

= x2x2x2x2x1x1x1x2

= x2
4x1

3x2

and the ciphertext M is

M = MrMh

= Y2
4Y1

3Y2

=

(
1041 4304
−290 −1199

)4(−19 −40
10 21

)3 (
1041 4304
−290 −1199

)

=

(−120550653510779 −498415519208360
33582590741180 138846898902381

)
.

where Mr = Y2
4Y1

2 and Mh = Y1Y2.

Attack 8

The X1-representation algorithm computes the X1-representation of Y1

A1
−2B1

10A1
2,

the X1-representation of Y2

A1
−4B1

2A1
2B1

4A1
−2B1

8A1
4.

259

and the X1-representation of M

A1
−4B1

2A1
2B1

4A1
−2B1

10A1
2B1

4A1
−2B1

10A1
2B1

4A1
−2

B1
10A1

2B1
4A1

−2B1
8A1

2B1
30A1

−2B1
2A1

2B1
4A1

−2B1
8A1

4.

When we observe the X1-representation of M , we can see the partial X1-

representations of Y1 and Y2 in the X1-representation of M and hence, we split

the X1-representation of the ciphertext M into the partial X1-representations

of Y1 and Y2 as follows :

M =A1
−4B1

2A1
2B1

4A1
−2B1

10

A1
2B1

4A1
−2B1

10

A1
2B1

4A1
−2B1

10

A1
2B1

4A1
−2B1

8

A1
2B1

30

A1
−2B1

2A1
2B1

4A1
−2B1

8A1
4.

The representation of each line above presents the partial X1-representation

of Y1 or Y2. To recover the original X1-representation of Y1 and Y2, we insert

some letters likely to be parts of the X1-representations of Y1 and Y2. So we

can recover the original X1-representations of Y1 and Y2. Therefore, we can

obtain the following representation of the ciphertext M from the straightfor-

ward computation

M =[A1
−4B1

2A1
2B1

4A1
−2B1

8A1
4]

[A1
−4B1

2A1
2B1

4A1
−2B1

8A1
4]

[A1
−4B1

2A1
2B1

4A1
−2B1

8A1
4]

[A1
−4B1

2A1
2B1

4A1
−2B1

8A1
4]

[A1
−4A1

2B1
30A1

2]

[A1
−2A1

−2B1
2A1

2B1
4A1

−2B1
8A1

4].

260

Therefore, we have M = Y2
4Y1

3Y2 and by the public correspondence x1 7→ Y1

and x2 7→ Y2, we compute a representative x2
4x1

3x2. By the relations x1
2 = 1

and x2
4 = 1,

x2
4x1

3x2 = x1x2 = h.

Therefore, we recover the plaintext h from the given ciphertext M .

8.5 Comparison

In order to recover the plaintext, we compute the private key n and S to con-

struct the secret basis X(n, S) from Section 8.1 to Section 8.3. In Section 8.1.1,

we compute n by the X1-representation of Yi or M , whereas in Section 8.1.3, we

compute n without using the X1-representations of Yi or M . After computing

n, we compute elements of S in Section 8.2 and we compute implicitly another

secret factor, one-to-one correspondence between X and X(n, S), namely or-

dering the elements of S in Section 8.3. So these two different approaching

ways depend on whether or not we use the X1-representation of Yi or M , but

in common both ways need ordering the elements of S to recover the plaintext.

Another approaching way is regardless of the secret key n and S, only by

using the X1-representations of the public key matrices Y1, Y2, · · · , Yt and the

ciphertext M , we can obtain the plaintext in Section 8.4. So there is a clear

difference between the approaches above and this approaching way to recover

the plaintext. However, in both Section 8.1 and Section 8.4 we utilize the X1-

representations of the public key matrices and the ciphertext matrix. Since

ordering the elements of S is implicitly secret, we have to do exhaustive search

for the one-to-one correspondence between X and X(n, S) and it means that

there is still ambiguity to find the correct plaintext relying on ordering the

elements of S. Thus such a situation produces many likely representations of

261

the plaintext according as ordering the elements of S. If the size of the gen-

erating set X is small, then there might not be much difference between the

two ways. However, if the number of elements of the generating set X is large,

then it would take a time to find the plaintext because we do exhaustive search

for ordering the elements of S. In contrast, the attack method in Section 8.4

needs only public one-to-one correspondence between X = {x1, x2, · · · , xt}
and {Y1, Y2, · · · , Yt} by xi 7→ Yi and obviously there is no ambiguity to find

the plaintext because we have only one representation for the plaintext. So in

in some case, the attack method in Section 8.4 may be efficient way to recover

the plaintext.

262

Appendix

The followings are the source codes of experiment results of Section 9.1.3 of

Chapter 9.

Experiment 1

(1) k = 3, length = 3;

> su:=proc()

> local u1, u2, w;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> w:=gcd(u1, u2);

> if not (w = 1) then

> print(u1, u2, w);

> fi;

> od;

> od;

> end:

> su();

(2) k = 3, length = 5;

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

263

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if not (w4 = 1) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(3) k = 3, length = 7;

> su:=proc()

> local u1, u2, u3, u4, u5, u6, u7, w1, w2, w3, w4, w5, w6;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> for u6 from 1 to 7 do

> for u7 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

264

> w4 := gcd(w3, u5);

> w5 := gcd(w4, u6);

> w6 := gcd(w5, u7);

> if not (w6 = 1) then

> print(u1, u2, u3, u4, u5, u6, u7, w6);

> fi;

> od;

> od;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(4) k = 3, length = 9;

> su:=proc()

> local u1, u2, u3, u4, u5, u6, u7, u8, u9, w1, w2, w3, w4, w5, w6, w7, w8;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> for u6 from 1 to 7 do

> for u7 from 1 to 7 do

> for u8 from 1 to 7 do

> for u9 from 1 to 7 do

> w1 := gcd(u1, u2);

265

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> w5 := gcd(w4, u6);

> w6 := gcd(w5, u7);

> w7 := gcd(w6, u8);

> w8 := gcd(w7, u9);

> if not (w8 = 1) then

> print(u1, u2, u3, u4, u5, u6, u7, u8, u9, w8);

> fi;

> od;

> od;

> od;

> od;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

Experiment 2

(1)k = 2, length = 5

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 3 do

> for u2 from 1 to 3 do

266

> for u3 from 1 to 3 do

> for u4 from 1 to 3 do

> for u5 from 1 to 3 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if not (w4 = 1) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(2)k = 3, length = 5

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

267

> w4 := gcd(w3, u5);

> if not (w4 = 1) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(3)k = 4, length = 5

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if not (w4 = 1) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

268

> od;

> od;

> od;

> end:

> su();

Experiment 3

> f1 := rand(1..25) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> localb1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

> print(b4);

> end proc :

> f2(11, 6, 9, 2, 2);

> f2(16, 28, 26, 17, 27);

> f2(6, 29, 6, 12, 22);

> f2(7, 31, 11, 14, 30);

> f2(22, 15, 7, 2, 23);

> f2(24, 10, 5, 4, 11);

> f2(18, 29, 5, 6, 24);

> f2(28, 19, 6, 1, 31);

> f2(9, 6, 14, 22, 16);

> f2(14, 21, 4, 4, 20);

269

> f2(14, 18, 22, 10, 4);

> f2(3, 9, 20, 24, 20);

> f2(8, 23, 22, 21, 27);

> f2(26, 31, 20, 24, 3);

> f2(2, 16, 23, 2, 29);

> f2(11, 6, 9, 2, 2);

> f2(16, 15, 20, 17, 4);

> f2(4, 30, 4, 30, 10);

> f2(13, 20, 13, 28, 10);

> f2(17, 28, 8, 29, 22);

> f2(20, 27, 19, 3, 31);

> f2(4, 10, 13, 29, 19);

> f2(31, 24, 24, 25, 12);

> f2(1, 32, 14, 27, 9);

> f2(3, 13, 31, 4, 5);

> f2(12, 23, 12, 21, 19);

> f2(20, 21, 15, 9, 29);

> f2(28, 1, 8, 20, 24);

> f2(8, 3, 11, 31, 26);

> f1(2, 16, 23, 2, 29);

> f2(1, 1, 27, 6, 18);

> f2(10, 23, 29, 1, 32);

> f2(15, 8, 28, 6, 29);

> f2(26, 6, 9, 13, 13);

> f2(20, 29, 21, 8, 27);

> f2(15, 14, 17, 18, 22);

> f2(14, 15, 19, 21, 20);

> f2(4, 16, 15, 28, 18);

> f2(26, 16, 15, 28, 5);

270

> f2(12, 23, 12, 21, 19);

> f2(20, 21, 15, 9, 29);

> f2(28, 1, 8, 20, 24);

> f2(8, 3, 11, 31, 26);

> f1(2, 16, 23, 2, 29);

> f2(28, 7, 15, 8, 14);

> f2(18, 5, 16, 22, 5);

> f2(32, 19, 23, 5, 31);

> f2(21, 26, 17, 2, 15);

> f2(27, 8, 10, 6, 30);

> f2(23, 14, 16, 23, 28);

> f2(24, 14, 12, 22, 28);

> f2(27, 14, 4, 25, 31);

> f2(15, 24, 18, 24, 10);

> f2(17, 27, 26, 23, 30);

> f2(26, 28, 14, 17, 19);

> f2(21, 30, 6, 14, 1);

> f2(12, 30, 5, 20, 8);

> f2(14, 16, 2, 24, 21);

> f2(16, 1, 19, 8, 8);

> f2(32, 2, 26, 12, 1);

> f2(21, 8, 6, 9, 27);

> f2(17, 15, 2, 12, 13);

> f2(14, 8, 32, 23, 21);

> f2(13, 4, 11, 29, 3);

> f2(9, 17, 17, 24, 2);

> f2(9, 29, 32, 25, 6);

> f2(16, 7, 29, 29, 32);

> f2(6, 25, 28, 30, 13);

271

> f2(2, 32, 5, 19, 23);

> f2(25, 17, 23, 15, 25);

> f2(30, 30, 24, 21, 21);

> f2(17, 9, 25, 24, 21);

> f2(11, 21, 18, 23, 18);

> f2(12, 21, 7, 32, 26);

> f2(26, 22, 23, 15, 13);

> f2(19, 3, 32, 5, 23);

> f2(20, 8, 2, 22, 3);

> f2(28, 11, 22, 18, 13);

> f2(26, 26, 25, 25, 23);

> f2(11, 29, 4, 21, 19);

> f2(12, 22, 32, 23, 9);

> f2(30, 8, 16, 14, 2);

> f2(1, 10, 7, 2, 11);

> f2(18, 2, 24, 5, 15);

> f2(13, 15, 13, 18, 23);

> f2(18, 7, 13, 10, 4);

> f2(27, 21, 18, 32, 24);

> f2(17, 10, 18, 20, 14);

> f2(2, 16, 23, 2, 29);

> f2(22, 1, 23, 26, 30);

> f2(27, 3, 19, 25, 13);

> f2(18, 3, 30, 1, 18);

> f2(9, 1, 6, 10, 3);

> f2(23, 16, 9, 25, 17);

> f2(25, 28, 24, 9, 32);

> f2(23, 23, 7, 32, 8);

> f2(6, 13, 20, 18, 23);

272

> f2(8, 27, 25, 25, 12);

> f2(29, 5, 30, 1, 30);

> f1 := rand(1..210) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

> print(b4);

> end proc :

> f2(702, 99, 783, 698, 559);

> f2(726, 588, 279, 64, 436);

> f2(892, 234, 80, 96, 894);

> f2(210, 521, 990, 857, 263);

> f2(415, 95, 400, 486, 251);

> f2(759, 156, 969, 857, 490);

> f2(716, 437, 15, 855, 619);

> f2(39, 688, 1, 966, 571);

> f2(354, 340, 591, 216, 122);

> f2(784, 465, 902, 359, 370);

> f2(963, 354, 937, 742, 157);

> f2(222, 469, 358, 250, 61);

> f2(528, 209, 818, 137, 276);

> f2(666, 235, 626, 935, 70);

> f2(465, 547, 349, 457, 759);

273

> f2(395, 476, 608, 155, 845);

> f2(846, 305, 464, 1, 953);

> f2(999, 710, 1004, 500, 943);

> f2(575, 489, 197, 880, 30);

> f2(812, 99, 510, 720, 366);

> f2(22, 534, 189, 819, 234);

> f2(752, 6, 656, 309, 161);

> f2(459, 898, 316, 563, 519);

> f2(16, 559, 524, 428, 170);

> f2(165, 324, 645, 421, 613);

> f2(975, 1005, 388, 667, 743);

> f2(180, 81, 641, 73, 339);

> f2(28, 1, 8, 20, 24);

> f2(8, 3, 11, 31, 26);

> f2(952, 365, 807, 273, 419);

> f2(206, 302, 160, 759, 133);

> f2(649, 329, 445, 306, 801);

> f2(264, 752, 841, 947, 929);

> f2(363, 47, 623, 909, 987);

> f2(3, 843, 60, 741, 363);

> f2(490, 9, 700, 673, 574);

> f2(565, 717, 420, 266, 519);

> f2(149, 308, 1009, 173, 203);

> f2(270, 880, 184, 763, 50);

> f2(894, 817, 606, 129, 433);

> f2(783, 649, 66, 335, 57);

> f2(878, 231, 919, 845, 804);

> f2(124, 178, 53, 385, 40);

> f2(602, 360, 836, 597, 983);

274

> f2(150, 676, 907, 977, 842);

> f2(362, 329, 151, 851, 866);

> f2(746, 706, 293, 356, 317);

> f2(133, 267, 744, 685, 118);

> f2(521, 653, 265, 874, 973);

> f2(873, 322, 417, 721, 311);

> f2(835, 975, 843, 149, 256);

> f2(349, 86, 915, 401, 399);

> f2(358, 844, 928, 290, 255);

> f2(963, 362, 584, 600, 546);

> f2(939, 224, 257, 495, 741);

> f2(820, 909, 529, 216, 803);

> f2(411, 743, 746, 993, 679);

> f2(648, 507, 962, 509, 248);

> f2(464, 436, 167, 507, 898);

> f2(140, 917, 585, 463, 874);

> f2(469, 715, 313, 798, 569);

> f2(66, 754, 662, 632, 406);

> f2(559, 184, 560, 221, 158);

> f2(127, 59, 244, 448, 704);

> f2(139, 155, 304, 1005, 994);

> f2(299, 7, 980, 500, 283);

> f2(587, 707, 496, 246, 845);

> f2(174, 492, 333, 391, 871);

> f2(660, 255, 969, 4, 696);

> f2(926, 150, 466, 143, 955);

> f2(287, 215, 645, 455, 161);

> f2(985, 673, 90, 540, 689);

> f2(798, 150, 165, 675, 718);

275

> f2(76, 205, 390, 957, 560);

> f2(889, 576, 310, 562, 60);

> f2(929, 418, 167, 382, 943);

> f2(516, 104, 260, 252, 44);

> f2(962, 912, 111, 742, 638);

> f2(672, 914, 183, 698, 351);

> f2(995, 235, 397, 208, 718);

> f2(468, 935, 1022, 717, 637);

> f2(722, 1023, 546, 1008, 705);

> f2(841, 416, 745, 475, 133);

> f2(265, 670, 707, 328, 771);

> f2(793, 42, 363, 168, 234);

> f2(580, 624, 114, 326, 805);

> f2(567, 597, 199, 638, 734);

> f2(585, 957, 498, 405, 59);

> f2(655, 294, 3, 22, 379);

> f2(948, 346, 640, 102, 887);

> f2(910, 192, 11, 878, 825);

> f2(1000, 722, 854, 108, 36);

> f2(346, 629, 950, 965, 575);

> f2(1022, 61, 219, 934, 1024);

> f2(773, 462, 585, 292, 476);

> f2(938, 142, 822, 437, 1);

> f2(371, 217, 476, 223, 311);

> f2(256, 27, 631, 298, 46);

> f2(238, 533, 629, 176, 561);

> f2(632, 1015, 508, 14, 293);

> f1 := rand(1..215) :

276

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

> print(b4);

> end proc :

> f2(4698, 21911, 5666, 29900, 19201);

> f2(11915, 12038, 7977, 25698, 1314);

> f2(18448, 29628, 12442, 4913, 28827);

> f2(6822, 19133, 3782, 13804, 24726);

> f2(13287, 10623, 9163, 15278, 20734);

> f2(12502, 47, 32519, 28770, 4343);

> f2(5688, 18154, 26341, 15172, 23179);

> f2(10962, 19613, 2629, 5574, 8376);

> f2(10044, 28883, 23494, 25217, 5151);

> f2(23886, 4181, 14404, 26628, 2644);

> f2(19278, 9426, 31766, 22602, 16516);

> f2(32611, 7241, 2068, 13208, 6708);

> f2(18600, 10951, 12406, 16917, 10379);

> f2(28986, 22175, 7924, 504, 14563);

> f2(25698, 25008, 23191, 9506, 29213);

> f2(6241, 20070, 30958, 14547, 51);

> f2(19757, 23632, 5455, 28308, 15921);

> f2(3684, 27982, 2206, 23012, 22366);

> f2(14666, 15181, 16756, 15149, 10652);

> f2(1162, 11793, 24988, 22952, 1789);

277

> f2(1846, 28116, 14751, 31731, 30627);

> f2(30047, 2692, 27562, 7053, 31549);

> f2(10067, 7743, 5528, 31288, 3961);

> f2(27436, 3201, 13376, 15566, 29947);

> f2(21513, 10851, 16845, 8767, 484);

> f2(16605, 27980, 3159, 14828, 30581);

> f2(1843, 32660, 8341, 16687, 13065);

> f2(13501, 9884, 9313, 2312, 14516);

> f2(5272, 28200, 16227, 9771, 31103);

> f2(17722, 28577, 1889, 31195, 31398);

> f2(3698, 27486, 29431, 24829, 18977);

> f2(31968, 25743, 30888, 3644, 4102);

> f2(27069, 2980, 618, 13784, 30790);

> f2(30406, 10310, 23748, 19730, 4264);

> f2(5662, 2746, 30118, 25321, 28173);

> f2(4429, 7764, 15517, 22805, 28296);

> f2(6875, 32655, 21134, 24817, 10002);

> f2(15030, 14446, 22447, 18899, 6197);

> f2(15220, 14100, 31754, 1417, 8421);

> f2(24875, 21092, 8432, 10415, 26364);

> f2(9042, 23834, 31760, 21871, 12476);

> f2(4229, 32284, 32615, 3087, 14344);

> f2(21797, 14560, 18035, 29271, 20069);

> f2(1983, 24213, 2874, 14033, 25122);

> f2(9647, 31675, 15176, 31242, 30310);

> f2(11915, 12038, 7977, 25698, 1314);

> f2(18448, 29628, 12442, 4913, 28827);

> f2(6822, 19133, 3782, 13804, 24726);

> f2(13287, 16023, 9163, 15278, 20734);

278

> f2(12502, 47, 32519, 28770, 4343);

> f2(5688, 18154, 26341, 15172, 23179);

> f2(10962, 19613, 2629, 5574, 8376);

> f2(10044, 28883, 23494, 25217, 5151);

> f2(3145, 7814, 622, 8918, 15568);

> f2(23886, 4181, 14404, 26628, 2644);

> f2(19278, 9426, 31766, 22602, 16516);

> f2(32611, 7241, 2068, 13208, 6708);

> f2(18600, 20951, 12406, 16917, 20379);

> f2(28986, 22175, 7924, 504, 14563);

> f2(25698, 25008, 23191, 9506, 29213);

> f2(6241, 30070, 30958, 14547, 51);

> f2(19757, 23632, 5455, 28308, 15921);

> f2(3684, 27982, 2206, 23012, 22366);

> f2(14666, 15181, 16756, 15149, 10652);

> f2(1162, 11793, 24988, 22952, 1789);

> f2(1846, 28116, 14715, 31731, 30627);

> f2(30027, 2692, 27562, 7053, 31549);

> f2(10067, 7743, 5528, 31288, 3961);

> f2(27436, 3201, 13376, 15566, 29947);

> f2(21513, 10851, 16845, 8767, 484);

> f2(16005, 27980, 3159, 14828, 30581);

> f2(1843, 32660, 8341, 16687, 13065);

> f2(13501, 9884, 9313, 2312, 14516);

> f2(17722, 28577, 1889, 31195, 31398);

> f2(3698, 27586, 29431, 24829, 18977);

> f2(31968, 25743, 30888, 3644, 4102);

> f2(27069, 2980, 618, 13784, 30790);

> f2(10406, 10310, 23748, 19730, 4264);

279

> f2(5662, 2746, 30118, 25321, 28173);

> f2(4429, 7764, 15517, 22805, 28296);

> f2(6875, 32655, 21134, 24817, 10002);

> f2(15030, 14446, 22447, 18899, 6197);

> f2(15220, 14100, 31754, 1417, 8421);

> f2(9042, 23834, 31760, 21871, 12476);

> f2(4229, 32284, 32615, 3087, 14344);

> f2(1902, 26770, 21061, 23600, 470);

> f2(21797, 14560, 18035, 29271, 20069);

> f2(1983, 24213, 2874, 14033, 25122);

> f2(9647, 31675, 15176, 31242, 30310);

> f2(10174, 22135, 11118, 25968, 10231);

> f1 := rand(1..215) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

> print(b4);

> end proc :

> f2(26812, 20216, 3950, 14252, 11958);

> f2(17212, 27945, 2411, 6222, 27391);

> f2(10073, 10907, 18638, 23556, 24537);

> f2(19583, 28943, 18040, 23186, 9016);

> f2(21290, 29905, 12251, 1274, 9399);

280

> f2(19454, 17306, 22780, 2830, 12689);

> f2(30451, 29653, 20382, 24134, 2446);

> f2(27169, 2444, 7998, 22309, 1716);

> f2(24008, 9486, 15344, 25058, 27032);

> f2(20373, 18352, 4929, 8051, 29320);

> f1 := rand(1..220) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5); > print(b4);

> end proc :

> f2(168538, 21911, 38434, 947404, 772865);

> f2(994955, 962310, 892713, 779362, 558370);

> f2(1034256, 29628, 635034, 37681, 1011867);

> f2(72358, 379581, 921286, 210412, 385174);

> f2(340967, 239999, 959435, 801710, 708862);

> f2(209110, 589871, 589575, 389218, 856311);

> f2(595512, 1033962, 255717, 80708, 613003);

> f2(76498, 904349, 2629, 136646, 8376);

> f2(272188, 880851, 383942, 418433, 726047);

> f2(396361, 990854, 197230, 172758, 605392);

> f2(122190, 823381, 407620, 583684, 363092);

> f2(248654, 795858, 228374, 383050, 508036);

> f2(196451, 793673, 198676, 897944, 662068);

281

> f2(772264, 53719, 274550, 246293, 708507);

> f2(323898, 1037983, 597748, 164344, 702691);

> f2(287842, 942512, 744087, 501026, 61981);

> f2(287842, 942512, 744087, 501026, 61981);

> f2(923745, 587126, 194798, 768211, 426035);

> f2(707885, 842832, 595279, 585364, 867889);

> f2(495204, 126286, 2206, 481764, 120670);

> f2(833866, 605005, 409972, 768813, 731548);

> f2(33930, 470545, 876956, 219560, 231165);

> f2(722742, 224724, 244091, 457715, 1013667);

> f2(1013087, 592516, 551850, 498573, 686909);

> f2(960339, 400959, 628120, 621112, 200569);

> f2(420652, 855169, 209984, 15566, 128251);

> f2(742409, 43619, 803277, 598591, 557540);

> f2(933509, 552268, 953431, 473580, 63349);

> f2(984883, 556948, 41109, 311599, 1028873);

> f2(242877, 370332, 828513, 1018120, 604340);

> f2(201880, 814632, 1032035, 632363, 227711);

> f2(17722, 192417, 1889, 227803, 260774);

> f2(462450, 486238, 586487, 90365, 412193);

> f2(589024, 746639, 129192, 396860, 430086);

> f2(911805, 166820, 1016426, 210392, 653382);

> f2(95942, 960582, 449732, 118034, 69800);

> f2(398878, 625338, 980390, 680681, 126477);

> f2(233805, 499284, 1031325, 710933, 585352);

> f2(924379, 196495, 316046, 909553, 10002);

> f2(539318, 702574, 415663, 477651, 38965);

> f2(572276, 931604, 130058, 296329, 860389);

> f2(942379, 283236, 336112, 174255, 976636);

282

> f2(893778, 417050, 654352, 1004911, 340156);

> f2(888965, 130588, 524135, 166927, 538632);

> f2(296814, 977042, 1004101, 23600, 360918);

> f2(840997, 1030368, 706163, 881239, 544357);

> f2(67519, 614037, 625466, 603857, 778786);

> f2(697775, 129979, 80712, 522762, 554598);

> f2(665534, 611959, 961390, 714096, 108535);

> f2(125116, 20216, 397166, 964524, 44726);

> f2(475964, 716073, 493931, 104526, 125695);

> f2(894809, 797339, 542926, 875524, 679897);

> f2(806015, 946447, 50808, 416402, 566072);

> f2(512810, 881873, 634843, 34042, 894135);

> f2(740350, 574362, 22780, 625422, 242065);

> f2(1046259, 95189, 282526, 1039942, 723342);

> f2(616993, 657804, 696126, 120613, 624308);

> f2(679368, 304398, 179184, 614882, 879000);

> f2(247464, 689261, 461243, 516672, 454146);

> f2(419482, 431916, 987169, 260533, 390184);

> f2(169926, 804585, 409019, 264561, 807663);

> f2(875138, 585804, 846861, 389358, 112648);

> f2(989792, 679127, 281173, 325517, 657764);

> f2(48555, 7261, 934115, 429609, 715313);

> f2(863441, 689240, 165730, 745097, 842749);

> f2(398112, 471673, 698502, 227984, 416839);

> f2(633277, 221181, 245536, 250177, 102726);

> f2(989946, 717327, 949160, 832006, 103001);

> f2(401628, 445054, 877389, 888610, 1005888);

> f2(559877, 124531, 577719, 1004636, 601381);

> f2(323890, 761709, 35120, 853369, 1024625);

283

> f2(697367, 42095, 400601, 232542, 839070);

> f2(675864, 546293, 528917, 369137, 326505);

> f2(994041, 890040, 97685, 347211, 1026677);

> f2(497298, 827447, 951026, 758956, 546357);

> f2(407431, 750080, 487162, 385551, 201178);

> f2(751222, 278295, 1039279, 487949, 634355);

> f2(346083, 156032, 908357, 790999, 614228);

> f2(198024, 603106, 727734, 676675, 648252);

> f2(504939, 1021974, 35666, 149005, 708218);

> f2(475034, 555193, 795481, 718551, 608907);

> f2(999805, 338084, 247061, 723059, 420972);

> f2(109526, 91456, 46871, 16393, 840716);

> f2(381175, 861746, 538956, 166748, 778202);

> f2(16700, 221549, 684260, 741280, 573694);

> f2(142756, 546787, 930427, 960095, 499497);

> f2(21797, 14560, 18035, 29271, 20069);

> f2(222120, 655632, 782286, 1005410, 314561);

> f2(338090, 1025927, 501826, 856171, 778514);

> f2(1039202, 127480, 967973, 98543, 465581);

> f2(911503, 1018637, 381714, 62231, 72946);

> f2(453351, 212973, 342794, 462180, 514779);

> f2(69973, 484146, 394624, 289688, 440209);

> f2(194634, 230098, 607220, 392174, 1020086);

> f2(143553, 375063, 888730, 193566, 430811);

> f2(7939, 626643, 720665, 321679, 336530);

> f2(989635, 145982, 833121, 19090, 341705);

> f2(641921, 490278, 451466, 587235, 759351);

> f2(978608, 753385, 272793, 436529, 368185);

> f2(619708, 911032, 117289, 411232, 527991);

284

> f1 := rand(1..225) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

> print(b4);

> end proc :

> f2(3314266, 28333463, 2135586, 31356108, 12307201);

> f2(33500811, 17739526, 10329897, 23848034, 558370);

> f2(33540112, 32535484, 26849434, 11572017, 14643355);

> f2(3218086, 30788285, 23989958, 21181932, 25550998);

> f2(20263911, 21211519, 32416715, 30161838, 33214718);

> f2(4403414, 12124207, 28901127, 2486370, 13439223);

> f2(18421304, 7325418, 26470117, 23149380, 12147339);

> f2(24193746, 20827293, 2629, 3282374, 13639864);

> f2(10757948, 4026579, 28695494, 5661313, 31134751);

> f2(8784969, 3088006, 29557358, 11707094, 28916944);

> f2(20045134, 32280661, 31864900, 15263748, 6654548);

> f2(30657358, 28058834, 8616982, 383050, 4702340);

> f2(6487907, 11279433, 7538708, 4043672, 5904948);

> f2(20695208, 25219543, 24391798, 25412117, 11194267);

> f2(22343994, 17815199, 28909300, 11698680, 702691);

> f2(7627874, 25059760, 29055639, 3646754, 29422109);

> f2(28186721, 29947254, 14874862, 33274067, 28737587);

> f2(14339373, 19717200, 31003983, 5828244, 29179441);

285

> f2(8883812, 25292110, 5245086, 21453284, 13752158);

> f2(10271050, 22625101, 409972, 29080365, 16460188);

> f2(18908298, 8859153, 2974108, 32725416, 3376893);

> f2(10159926, 1273300, 25409915, 28769267, 17790883);

> f2(6255967, 6883972, 14183338, 31955853, 4881213);

> f2(18786131, 27663935, 2725272, 4815416, 20123513);

> f2(22440748, 23923841, 5452864, 24132814, 29488379);

> f2(1790985, 18917987, 13386189, 24715839, 3703268);

> f2(19807877, 16280908, 7244887, 2570732, 18937717);

> f2(2033459, 26771348, 41109, 23380271, 4174601);

> f2(19117245, 18196124, 13411425, 2066696, 24721588);

> f2(4396184, 8154664, 33537891, 24749611, 12810623);

> f2(12600634, 8581025, 9439073, 24345051, 2357926);

> f2(4656754, 7826270, 24703735, 18964733, 32918049);

> f2(6880480, 33252495, 129192, 396860, 3575814);

> f2(7203261, 23235492, 8356458, 8599000, 4847686);

> f2(20018886, 22980678, 24566980, 2215186, 26284200);

> f2(22418974, 10062522, 5174694, 23749353, 23195149);

> f2(32739661, 30907988, 17808541, 17488149, 16313992);

> f2(15604443, 14876559, 17093262, 3006705, 20981522);

> f2(21510838, 24819822, 18241455, 24594899, 18913333);

> f2(32029556, 22951700, 20053002, 5539209, 11346149);

> f2(14573867, 28594788, 27599088, 32680111, 15656700);

> f2(19768146, 29777178, 10091536, 8344943, 22360252);

> f2(27103365, 26344988, 1572711, 2264079, 1587208);

> f2(24414062, 977042, 23024197, 17849392, 16089558);

> f2(10278181, 31439072, 27969139, 21852759, 33050213);

> f2(28379071, 16342677, 22645562, 11089617, 25944610);

> f2(32155055, 7470011, 17906504, 14154250, 18380390);

286

> f2(10102718, 25777783, 21932910, 23782768, 2205687);

> f2(18999484, 27283192, 18222958, 22984620, 8433334);

> f2(6767420, 17493289, 493931, 9541710, 125695);

> f2(13477721, 22817435, 1591502, 28138500, 18505689);

> f2(18631807, 29257999, 2147960, 18242194, 19440440);

> f2(19387178, 15561937, 32092123, 7374074, 25011383);

> f2(1788926, 27837338, 1071356, 11111182, 242065);

> f2(27260659, 10580949, 31739806, 7331398, 9111950);

> f2(14248481, 6949260, 31104830, 17946405, 11110068);

> f2(30039496, 32810254, 5422064, 23683554, 15559064);

> f2(11620245, 3884976, 10490689, 15769459, 18608776);

> f2(22267560, 10126445, 24578491, 28828224, 21425666);

> f2(20342426, 3577644, 25104417, 12843445, 30798888);

> f2(30578630, 24921833, 2506171, 20187505, 807663);

> f2(20798082, 7925836, 7138317, 29749486, 32618504);

> f2(31398496, 20602071, 1329749, 13957005, 14289252);

> f2(26262955, 17833053, 15614179, 9866793, 26929713);

> f2(5057745, 5932120, 27428706, 25910921, 18668541);

> f2(29758240, 8860281, 19572870, 4422288, 15096903);

> f2(18459069, 22241277, 7585568, 6541633, 5345606);

> f2(9378554, 14348815, 11434920, 19706374, 24220249);

> f2(27664604, 22465150, 33383245, 10325794, 4151616);

> f2(23628549, 12707443, 18403511, 25121884, 29961509);

> f2(16052530, 10198893, 21006640, 13436281, 9413233);

> f2(14328855, 30450799, 400601, 8621150, 31247774);

> f2(4139769, 16618680, 23166357, 11881547, 7318133);

> f2(22517394, 1876023, 32408306, 11244716, 27809333);

> f2(2504583, 750080, 21458682, 4579855, 15929818);

> f2(407431, 750080, 487162, 385551, 201178);

287

> f2(10188406, 25444119, 10476463, 2585101, 7974387);

> f2(27609059, 22176128, 14539845, 2888151, 4808532);

> f2(22218120, 13186018, 2824886, 30036803, 4842556);

> f2(19379307, 9410582, 10521426, 14829069, 5951098);

> f2(9912218, 23623865, 18621273, 1767127, 3754635);

> f2(4145533, 6629540, 23315733, 5965939, 7761004);

> f2(16886742, 14771520, 13678359, 6307849, 26006540);

> f2(21352695, 2958898, 23607628, 14846812, 16506842);

> f2(142756, 5789667, 7221883, 9348703, 6790953);

> f2(13648188, 25387373, 8024292, 13324192, 13156606);

> f2(10707880, 11141392, 15462350, 5199714, 22334657);

> f2(10707880, 11141392, 15462350, 5199714, 22334657);

> f2(33545058, 2224632, 9356581, 7438575, 11999917);

> f2(6154383, 27233037, 17158930, 16839447, 2170098);

> f2(22473447, 12795885, 24460042, 29822308, 2611931);

> f2(28381525, 29844274, 14026112, 6581144, 26654609);

> f2(4388938, 28541650, 31015924, 5635054, 20943030);

> f2(17969345, 10860823, 23957402, 10679326, 19305179);

> f2(9445123, 10063827, 16449305, 23390351, 10822290);

> f2(25106883, 4340286, 24950369, 19090, 25507529);

> f2(26856321, 21461798, 23520138, 24704483, 3905079);

> f2(27193008, 5996265, 30681497, 27699505, 1416761);

> f1 := rand(1..230) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

288

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

> print(b4);

> end proc :

> f2(70423130, 61887895, 35690018, 735999180, 112970497);

> f2(1040173072, 837841852, 463057050, 514888497, 383742107);

> f2(573643430, 97897149, 627969734, 860042732, 428204182);

> f2(792015847, 457419135, 971940811, 969685934, 368759038);

> f2(943927510, 716767279, 599326471, 438693986, 13439223);

> f2(18421304, 74434282, 664004325, 224475972, 213473931);

> f2(493955794, 725470365, 671091269, 909252038, 986718392);

> f2(245638972, 574451923, 565566406, 911630977, 31134751);

> f2(411438153, 607067782, 834863726, 917676758, 431570128);

> f2(825351502, 267161685, 937834564, 15263748, 73763412);

> f2(1070844750, 1068246226, 981695510, 235264074, 172474500);

> f2(610467683, 1017912393, 309528596, 775795608, 173677108);

> f2(658229416, 796971479, 91500662, 58966549, 850055067);

> f2(861204794, 957339295, 834215668, 414351864, 336247011);

> f2(779379810, 327049648, 431708823, 137864482, 1002500637);

> f2(833493089, 1070134646, 249755886, 167491795, 397836339);

> f2(81448237, 623696976, 970528079, 978906772, 29179441);

> f2(42438244, 763489614, 642779294, 759650788, 886167390);

> f2(1016904010, 962149197, 906379636, 29080365, 150677916);

> f2(1059095690, 881274385, 2974108, 200497576, 573802237);

> f2(513476406, 1041460692, 293845371, 297204723, 655325091);

> f2(845116767, 141101700, 785935274, 870816653, 373979965);

> f2(488548179, 61218367, 237606296, 843676216, 255004537);

> f2(223767340, 1064111233, 374551616, 795884750, 667022587);

289

> f2(1008423945, 287353443, 214712781, 427369023, 37257700);

> f2(858668677, 955805004, 510561367, 271006188, 656471925);

> f2(1042220851, 429424532, 201367701, 694468911, 641708809);

> f2(757314749, 857056924, 1020044385, 35621128, 595146932);

> f2(138613912, 847015464, 503299939, 293185067, 918780287);

> f2(650134842, 579006369, 210765665, 259226075, 1008990886);

> f2(575082098, 645360478, 427356919, 320954621, 167135777);

> f2(141098208, 268133519, 906098856, 872812092, 775327750);

> f2(174975421, 459443108, 981434986, 243480024, 105510982);

> f2(254899910, 22980678, 293002436, 975293714, 126947496);

> f2(89527838, 278497978, 877589926, 426402537, 560066061);

> f2(1072927053, 1071095380, 722451613, 285923605, 586739336);

> f2(250485467, 954400655, 117756558, 103670001, 926951186);

> f2(424164022, 763017326, 957765551, 494356947, 555784245);

> f2(736672628, 291387156, 187825162, 575964553, 850206949);

> f2(886989099, 28594788, 832905456, 938649775, 921626364);

> f2(925737810, 163994906, 614071312, 712988015, 693448892);

> f2(496865413, 93453852, 68681575, 1008897039, 370685960);

> f2(91522926, 504293522, 828330565, 554720304, 720732630);

> f2(513594661, 1071626464, 699057779, 357397079, 871911013);

> f1 := rand(1..235) :

> seq(f1(), i = 1..5);

> f2 := proc(a1 :: integer, a2 :: integer, a3 :: integer, a4 :: integer, a5 :: integer)

> local b1, b2, b3, b4;

> b1 := gcd(a1, a2);

> b2 := gcd(b1, a3);

> b3 := gcd(b2, a4);

> b4 := gcd(b3, a5);

290

> print(b4);

> end proc :

> f2(3269307980, 26793946391, 19850198080, 30240777652, 25081555836);

> f2(18632741098, 10965063760, 12909431904, 26874001278, 29572849874);

> f2(26267534857, 32746199006, 641808217, 30149802247, 21673854367);

> f2(14894775391, 9180683664, 29275641318, 24016795899, 24959761143);

> f2(3063288988, 31035908041, 24781263705, 4435643882, 29784965836);

> f2(2865148341, 26473123855, 3699650391, 20093271659, 23541926951);

> f2(20951051952, 21953437697, 23722028998, 11445285435, 12784642402);

> f2(5305374036, 9079888463, 12634014936, 13486065786, 16990189328);

> f2(25125729745, 23062484870, 23397440871, 29702303090, 30225099715);

> f2(24181355874, 27786263465, 13953772262, 3264343197, 12556586206);

> f2(5847633365, 603472230, 30690735354, 28998726717, 18270558736)

> f2(27945147601, 8591323954, 14267311241, 24920459540, 700275354);

> f2(3898368235, 31400791666, 24259688359, 22895394886, 23927768529);

> f2(18755534371, 32312406365, 13101683145, 33050561271, 1433291707);

> f2(19321809291, 9320147420, 27122689632, 5541357723, 16869703501);

> f2(9091948366, 24556383538, 32340464080, 26839546881, 28274964409);

> f2(11699736551, 15894932166, 19139950582, 13633454580, 22482572207);

> f2(30764548671, 17526964713, 23697719493, 9524631408, 30370932766);

> f2(18119046956, 23097876579, 26098072062, 15396294352, 9541609838);

> f2(28634401814, 16984389142, 21492627645, 27836629811, 22527509738);

> f2(4305530608, 6773867526, 24829655696, 9104967989, 20189846689);

> f2(1004309963, 10811232130, 26068311356, 24187440691, 5297946119);

> f2(24088028176, 29109983791, 24001932812, 3662077356, 24934261930);

> f2(32639102117, 3020599620, 5961831045, 20648136101, 23733757541);

> f2(25100263375, 29269428215, 17595617668, 6200302235, 24720196327);

> f2(11240756404, 17877512273, 32863039105, 31978979401, 33734611283);

291

> f2(2985375672, 29140255085, 22961776423, 17230783761, 1635540387);

> f2(22959523022, 29130026286, 26514514080, 10953229047, 14225594501);

> f2(28117084809, 30035665225, 4606595517, 19439152434, 22208681761);

> f2(25856752904, 30992412400, 13678373705, 3029686195, 7034407841);

> f2(5617638763, 18456243247, 29693163119, 3193465741, 5342271451);

> f2(11933015043, 14735131467, 935278652, 19362184933, 23870488939);

> f2(30953628138, 33754267657, 7234980540, 24125690529, 6704694846);

> f2(26807768629, 2421005005, 11672689060, 12612471050, 7416416775);

> f2(23608188174, 22875178864, 2648814876, 13258662651, 22760640562);

> f2(20375705470, 16293580593, 28694829662, 9220003969, 24415115697);

> f2(32586107663, 20085364361, 23081248834, 26185797967, 3796994105);

> f2(20308914030, 14656979175, 31391122327, 29325542221, 9210796836);

> f2(34291562620, 986965170, 7636251701, 6647492993, 30645392424);

> f2(18040349274, 21234088296, 22584876868, 9428614741, 7461815255);

> f2(2780173462, 26047958692, 5521615755, 2176809937, 29201733450);

> f2(3292464781, 18678730090, 25290642761, 3042008215, 5469500243);

> f2(30541529954, 22788890346, 11750623938, 15347859749, 10563080548);

> f2(11711038781, 18835622021, 8664311051, 33853698792, 1243533997);

> f2(16665122934, 20519242249, 23234264717, 33787616521, 19952629610);

> f2(2455956988, 33972022083, 1095123919, 24094188363, 2260470933);

> f2(33149864192, 27794528605, 1689770070, 16420636563, 6684092817);

> f2(2431407503, 19763365222, 17298504524, 16592445344, 14394948898);

> f2(14544543999, 21011809219, 24425993578, 14503759432, 15607628376);

> f2(33228228130, 10169135019, 25141985504, 20917754113, 7714560495);

> f2(21537548005, 8197187380, 3201944461, 14549234193, 29457199320);

> f2(2512901923, 8311606683, 25596925671, 26254093034, 31385691105);

> f2(6840129191, 9017241224, 28264740347, 20979919810, 7001033213);

> f2(8970494200, 21310908880, 15647713716, 12446451879, 1336521211);

> f2(29217060738, 18164881929, 24305595646, 9974773427, 8018231646);

292

> f2(33569626379, 21432003093, 10757996978, 30799562994, 8255806475);

> f2(18280008498, 14502911116, 6060492693, 26200280649, 29865133519);

> f2(32124563306, 11171312208, 9264063957, 30564625099, 21606772025);

> f2(33062209310, 4072382009, 5586216002, 16455365362, 26825104022);

> f2(13843517048, 29961786774, 19057697327, 29743316152, 27809552944);

> f2(15071613149, 15398067358, 28873282687, 8314103867, 33850389748);

> f2(9575937472, 30941667008, 10249192587, 31832268955, 12283176240);

> f2(23120720877, 29932431330, 33684991275, 9440924679, 30483983316);

> f2(20251796980, 27070074139, 29343696459, 10950651587, 7379285488);

> f2(33118513398, 9323679565, 18073590958, 31142641132, 16596049229);

> f2(33330473351, 26263793511, 20102378132, 34214985983, 32905762761);

> f2(705914884, 13286760120, 24666617758, 31988142230, 3968560594);

> f2(15715763343, 771398587, 24045650207, 29987093719, 29746811525);

> f2(26480266695, 3720668321, 5675156441, 6578750113, 31112386650);

> f2(16214193692, 23582090929, 31778762526, 867975318, 3789581477);

> f2(23137399459, 29191170766, 28164708428, 29114304717, 9990260102);

> f2(8654612413, 23649214000, 17179601785, 13070172736, 20777388342);

> f2(30902805042, 667619388, 10291922849, 12630524322, 26262022311);

> f2(20994982270, 7515526063, 21684999684, 8713331816, 19981948164);

> f2(23645766908, 26512155692, 14251741122, 26121740176, 25781354607);

> f2(187151467, 512727062, 882936658, 216155661, 5951098);

> f2(2249578214, 26845403774, 33622067872, 27686342546, 8029638839);

> f2(25174990522, 5368486239, 2627987427, 10193058027, 770790797);

> f2(19573575888, 29792636622, 6655475156, 30078385063, 16317485054);

> f2(32724121293, 18454795901, 9510851282, 22768552959, 9117542946);

> f2(4486070256, 5728827071, 8158899017, 15580972448, 14465476329);

> f2(21399323099, 8008361093, 26648734985, 1001407134, 19320173251);

> f2(11981742408, 1629299459, 20242405145, 9096981546, 8044000619);

> f2(32871884968, 21644170474, 28554451524, 34102138480, 18282717298);

293

> f2(21219732806, 3175054117, 11749075511, 25253431893, 28604715207);

> f2(26209915518, 31087246046, 17505804873, 21904851901, 31747916274);

> f2(28365071765, 33345678395, 32539975519, 6524736265, 5723339307);

> f2(22557578244, 4227377804, 20737243791, 2579132710, 33478459395);

> f2(7283409942, 10232857979, 10949707700, 25857023322, 18139184768);

> f2(4952580198, 15447694199, 18049303438, 29312112832, 9458392075);

> f2(20600259438, 7551257401, 22886844577, 27430335018, 964625889);

> f2(8834213897, 19669100953, 23015067624, 1211626194, 26379904854);

> f2(25639898220, 12013283364, 20756223322, 5389655669, 8479080374);

> f2(10101185477, 25286386239, 12392723454, 29692953661, 18354897115);

> f2(30518451110, 10345515008, 9488029445, 14071173582, 23184165449);

> f2(33816140068, 14083858908, 20553458602, 8820575374, 13425277750);

> f2(20068886965, 21277583361, 8979758451, 5856372953, 20839718364);

> f2(8746784991, 1354879287, 23238294784, 16079331355, 11122871927);

> f2(15279354154, 27798263854, 33833868526, 22652481045, 2514005621);

> f2(7547192496, 20087001649, 11465886328, 26146677751, 11361743356);

Experiment 4

k = 3, length = 5

(1)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

294

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 2) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(2)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 3) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

295

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(3)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 4) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

296

> su();

(4)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 5) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(5)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

297

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 6) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(6)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 7 do

> for u2 from 1 to 7 do

> for u3 from 1 to 7 do

> for u4 from 1 to 7 do

> for u5 from 1 to 7 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

298

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 7) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

Experiment 5

k = 4, length = 5

(1)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

299

> if (w4 = 2) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(2)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 3) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

300

> od;

> od;

> end:

> su();

(3)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 4) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(4)

301

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 5) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(5)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

302

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 6) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(6)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 7) then

303

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(7)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 8) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

304

> od;

> end:

> su();

(8)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 9) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(9)

> su:=proc()

305

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 10) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

(10)

> su:=proc()

> local u1, u2, u3, u4, u5, w1, w2, w3, w4;

> for u1 from 1 to 15 do

> for u2 from 1 to 15 do

> for u3 from 1 to 15 do

> for u4 from 1 to 15 do

> for u5 from 1 to 15 do

306

> w1 := gcd(u1, u2);

> w2 := gcd(w1, u3);

> w3 := gcd(w2, u4);

> w4 := gcd(w3, u5);

> if (w4 = 11) then

> print(u1, u2, u3, u4, u5, w4);

> fi;

> od;

> od;

> od;

> od;

> od;

> end:

> su();

307

Bibliography

[1] S. Blackburn, and S. Galbraith, Cryptanalysis of two cryptosystems based

of group actions, Lecture Notes in Comput. Sci., 1716, 52–61, 1999.

[2] J.A. Buchmann, Introduction to cryptography, Springer, 2001.

[3] N. Ferguson, and B. Schneier, Practical cryptography, Wiley, 2003.

[4] J.B. Fraleigh, A first course in abstract algebra, Addison-Wesley, 1989.

[5] M.I. Gonzalez Vasco, and R. Steinwandt, A reaction attack on a public-key

encryption based on the word problem, Appl. Algebra Eng. Com. Comput.

14(5), 335-340, 2004.

[6] D. Grigoriev, and I. Ponomarenko, Homomorphic public-key cryptosystems

and encrypting boolean circuits, arXiv:math.cs.CR/0301022, 2003.

[7] D. Grigoriev, and I. Ponomarenko, Homomorphic public-key cryptosystems

over groups and rings, Quaderni di Mathematica, vol. 13, 305-325, 2004.

[8] D. Grigoriev, and I. Ponomarenko, Constructions in public-key cryptogra-

phy over matrix groups, to appear in Contemporary Math. AMS.

[9] D.F. Holt, Handbook of computational group theory, Chapman &

Hall/CRC, 2005.

[10] http://en.wikipedia.org.

[11] http://eprint.iacr.org/2005/070.pdf.

[12] http://mathworld.wolfram.com.

[13] http://www.ms.unimelb.edu.au/ cfm/notes/cgt-notes.pdf.

308

[14] R.C. Lyndon, and P.E. Schupp, Combinatorial group theory, Springer-

Verlag, 1977.

[15] R.A. Mollin, An introduction to cryptography, Chapman & Hall/CRC,

2001.

[16] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of applied

cryptography, CRC Press, 1997.

[17] M. Newman, Integeral matrices, Academic Press, 1972.

[18] B. Schneier, Applied cryptography, John Wiley & Sons, Inc, 1994.

[19] G.J. Simmons, Contemporary cryptology the science of information secu-

rity, IEEE Press, 1992.

[20] R. Steinwandt, Loopholes in two public-key cryptosystems using the mod-

ular groups, Preprint Universitaet von Karlsruhe, 2000.

[21] D.R. Stinson, Cryptography theory and practice, Chapman & Hall/CRC,

2006 .

[22] N. Wagner, and M. Magyarik, A public-key cryptosystem based on the

word problem, Lecture Notes in Compt. Sci., 196, 19-36, 1985.

[23] A. Yamamura, Public-key cryptosystems using the modular groups, Lec-

ture Notes in Compt. Sci., 1431, 203-216, 1998.

[24] A. Yamamura, A functional cryptosystem using a group action, Lecture

Notes in Compt. Sci., 1587, 314-325, 1999.

309

